xref: /openbmc/linux/net/core/skbuff.c (revision d83a7cb3)
1 /*
2  *	Routines having to do with the 'struct sk_buff' memory handlers.
3  *
4  *	Authors:	Alan Cox <alan@lxorguk.ukuu.org.uk>
5  *			Florian La Roche <rzsfl@rz.uni-sb.de>
6  *
7  *	Fixes:
8  *		Alan Cox	:	Fixed the worst of the load
9  *					balancer bugs.
10  *		Dave Platt	:	Interrupt stacking fix.
11  *	Richard Kooijman	:	Timestamp fixes.
12  *		Alan Cox	:	Changed buffer format.
13  *		Alan Cox	:	destructor hook for AF_UNIX etc.
14  *		Linus Torvalds	:	Better skb_clone.
15  *		Alan Cox	:	Added skb_copy.
16  *		Alan Cox	:	Added all the changed routines Linus
17  *					only put in the headers
18  *		Ray VanTassle	:	Fixed --skb->lock in free
19  *		Alan Cox	:	skb_copy copy arp field
20  *		Andi Kleen	:	slabified it.
21  *		Robert Olsson	:	Removed skb_head_pool
22  *
23  *	NOTE:
24  *		The __skb_ routines should be called with interrupts
25  *	disabled, or you better be *real* sure that the operation is atomic
26  *	with respect to whatever list is being frobbed (e.g. via lock_sock()
27  *	or via disabling bottom half handlers, etc).
28  *
29  *	This program is free software; you can redistribute it and/or
30  *	modify it under the terms of the GNU General Public License
31  *	as published by the Free Software Foundation; either version
32  *	2 of the License, or (at your option) any later version.
33  */
34 
35 /*
36  *	The functions in this file will not compile correctly with gcc 2.4.x
37  */
38 
39 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
40 
41 #include <linux/module.h>
42 #include <linux/types.h>
43 #include <linux/kernel.h>
44 #include <linux/kmemcheck.h>
45 #include <linux/mm.h>
46 #include <linux/interrupt.h>
47 #include <linux/in.h>
48 #include <linux/inet.h>
49 #include <linux/slab.h>
50 #include <linux/tcp.h>
51 #include <linux/udp.h>
52 #include <linux/sctp.h>
53 #include <linux/netdevice.h>
54 #ifdef CONFIG_NET_CLS_ACT
55 #include <net/pkt_sched.h>
56 #endif
57 #include <linux/string.h>
58 #include <linux/skbuff.h>
59 #include <linux/splice.h>
60 #include <linux/cache.h>
61 #include <linux/rtnetlink.h>
62 #include <linux/init.h>
63 #include <linux/scatterlist.h>
64 #include <linux/errqueue.h>
65 #include <linux/prefetch.h>
66 #include <linux/if_vlan.h>
67 
68 #include <net/protocol.h>
69 #include <net/dst.h>
70 #include <net/sock.h>
71 #include <net/checksum.h>
72 #include <net/ip6_checksum.h>
73 #include <net/xfrm.h>
74 
75 #include <linux/uaccess.h>
76 #include <trace/events/skb.h>
77 #include <linux/highmem.h>
78 #include <linux/capability.h>
79 #include <linux/user_namespace.h>
80 
81 struct kmem_cache *skbuff_head_cache __read_mostly;
82 static struct kmem_cache *skbuff_fclone_cache __read_mostly;
83 int sysctl_max_skb_frags __read_mostly = MAX_SKB_FRAGS;
84 EXPORT_SYMBOL(sysctl_max_skb_frags);
85 
86 /**
87  *	skb_panic - private function for out-of-line support
88  *	@skb:	buffer
89  *	@sz:	size
90  *	@addr:	address
91  *	@msg:	skb_over_panic or skb_under_panic
92  *
93  *	Out-of-line support for skb_put() and skb_push().
94  *	Called via the wrapper skb_over_panic() or skb_under_panic().
95  *	Keep out of line to prevent kernel bloat.
96  *	__builtin_return_address is not used because it is not always reliable.
97  */
98 static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr,
99 		      const char msg[])
100 {
101 	pr_emerg("%s: text:%p len:%d put:%d head:%p data:%p tail:%#lx end:%#lx dev:%s\n",
102 		 msg, addr, skb->len, sz, skb->head, skb->data,
103 		 (unsigned long)skb->tail, (unsigned long)skb->end,
104 		 skb->dev ? skb->dev->name : "<NULL>");
105 	BUG();
106 }
107 
108 static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr)
109 {
110 	skb_panic(skb, sz, addr, __func__);
111 }
112 
113 static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr)
114 {
115 	skb_panic(skb, sz, addr, __func__);
116 }
117 
118 /*
119  * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells
120  * the caller if emergency pfmemalloc reserves are being used. If it is and
121  * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves
122  * may be used. Otherwise, the packet data may be discarded until enough
123  * memory is free
124  */
125 #define kmalloc_reserve(size, gfp, node, pfmemalloc) \
126 	 __kmalloc_reserve(size, gfp, node, _RET_IP_, pfmemalloc)
127 
128 static void *__kmalloc_reserve(size_t size, gfp_t flags, int node,
129 			       unsigned long ip, bool *pfmemalloc)
130 {
131 	void *obj;
132 	bool ret_pfmemalloc = false;
133 
134 	/*
135 	 * Try a regular allocation, when that fails and we're not entitled
136 	 * to the reserves, fail.
137 	 */
138 	obj = kmalloc_node_track_caller(size,
139 					flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
140 					node);
141 	if (obj || !(gfp_pfmemalloc_allowed(flags)))
142 		goto out;
143 
144 	/* Try again but now we are using pfmemalloc reserves */
145 	ret_pfmemalloc = true;
146 	obj = kmalloc_node_track_caller(size, flags, node);
147 
148 out:
149 	if (pfmemalloc)
150 		*pfmemalloc = ret_pfmemalloc;
151 
152 	return obj;
153 }
154 
155 /* 	Allocate a new skbuff. We do this ourselves so we can fill in a few
156  *	'private' fields and also do memory statistics to find all the
157  *	[BEEP] leaks.
158  *
159  */
160 
161 struct sk_buff *__alloc_skb_head(gfp_t gfp_mask, int node)
162 {
163 	struct sk_buff *skb;
164 
165 	/* Get the HEAD */
166 	skb = kmem_cache_alloc_node(skbuff_head_cache,
167 				    gfp_mask & ~__GFP_DMA, node);
168 	if (!skb)
169 		goto out;
170 
171 	/*
172 	 * Only clear those fields we need to clear, not those that we will
173 	 * actually initialise below. Hence, don't put any more fields after
174 	 * the tail pointer in struct sk_buff!
175 	 */
176 	memset(skb, 0, offsetof(struct sk_buff, tail));
177 	skb->head = NULL;
178 	skb->truesize = sizeof(struct sk_buff);
179 	atomic_set(&skb->users, 1);
180 
181 	skb->mac_header = (typeof(skb->mac_header))~0U;
182 out:
183 	return skb;
184 }
185 
186 /**
187  *	__alloc_skb	-	allocate a network buffer
188  *	@size: size to allocate
189  *	@gfp_mask: allocation mask
190  *	@flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache
191  *		instead of head cache and allocate a cloned (child) skb.
192  *		If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for
193  *		allocations in case the data is required for writeback
194  *	@node: numa node to allocate memory on
195  *
196  *	Allocate a new &sk_buff. The returned buffer has no headroom and a
197  *	tail room of at least size bytes. The object has a reference count
198  *	of one. The return is the buffer. On a failure the return is %NULL.
199  *
200  *	Buffers may only be allocated from interrupts using a @gfp_mask of
201  *	%GFP_ATOMIC.
202  */
203 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
204 			    int flags, int node)
205 {
206 	struct kmem_cache *cache;
207 	struct skb_shared_info *shinfo;
208 	struct sk_buff *skb;
209 	u8 *data;
210 	bool pfmemalloc;
211 
212 	cache = (flags & SKB_ALLOC_FCLONE)
213 		? skbuff_fclone_cache : skbuff_head_cache;
214 
215 	if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX))
216 		gfp_mask |= __GFP_MEMALLOC;
217 
218 	/* Get the HEAD */
219 	skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node);
220 	if (!skb)
221 		goto out;
222 	prefetchw(skb);
223 
224 	/* We do our best to align skb_shared_info on a separate cache
225 	 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives
226 	 * aligned memory blocks, unless SLUB/SLAB debug is enabled.
227 	 * Both skb->head and skb_shared_info are cache line aligned.
228 	 */
229 	size = SKB_DATA_ALIGN(size);
230 	size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
231 	data = kmalloc_reserve(size, gfp_mask, node, &pfmemalloc);
232 	if (!data)
233 		goto nodata;
234 	/* kmalloc(size) might give us more room than requested.
235 	 * Put skb_shared_info exactly at the end of allocated zone,
236 	 * to allow max possible filling before reallocation.
237 	 */
238 	size = SKB_WITH_OVERHEAD(ksize(data));
239 	prefetchw(data + size);
240 
241 	/*
242 	 * Only clear those fields we need to clear, not those that we will
243 	 * actually initialise below. Hence, don't put any more fields after
244 	 * the tail pointer in struct sk_buff!
245 	 */
246 	memset(skb, 0, offsetof(struct sk_buff, tail));
247 	/* Account for allocated memory : skb + skb->head */
248 	skb->truesize = SKB_TRUESIZE(size);
249 	skb->pfmemalloc = pfmemalloc;
250 	atomic_set(&skb->users, 1);
251 	skb->head = data;
252 	skb->data = data;
253 	skb_reset_tail_pointer(skb);
254 	skb->end = skb->tail + size;
255 	skb->mac_header = (typeof(skb->mac_header))~0U;
256 	skb->transport_header = (typeof(skb->transport_header))~0U;
257 
258 	/* make sure we initialize shinfo sequentially */
259 	shinfo = skb_shinfo(skb);
260 	memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
261 	atomic_set(&shinfo->dataref, 1);
262 	kmemcheck_annotate_variable(shinfo->destructor_arg);
263 
264 	if (flags & SKB_ALLOC_FCLONE) {
265 		struct sk_buff_fclones *fclones;
266 
267 		fclones = container_of(skb, struct sk_buff_fclones, skb1);
268 
269 		kmemcheck_annotate_bitfield(&fclones->skb2, flags1);
270 		skb->fclone = SKB_FCLONE_ORIG;
271 		atomic_set(&fclones->fclone_ref, 1);
272 
273 		fclones->skb2.fclone = SKB_FCLONE_CLONE;
274 	}
275 out:
276 	return skb;
277 nodata:
278 	kmem_cache_free(cache, skb);
279 	skb = NULL;
280 	goto out;
281 }
282 EXPORT_SYMBOL(__alloc_skb);
283 
284 /**
285  * __build_skb - build a network buffer
286  * @data: data buffer provided by caller
287  * @frag_size: size of data, or 0 if head was kmalloced
288  *
289  * Allocate a new &sk_buff. Caller provides space holding head and
290  * skb_shared_info. @data must have been allocated by kmalloc() only if
291  * @frag_size is 0, otherwise data should come from the page allocator
292  *  or vmalloc()
293  * The return is the new skb buffer.
294  * On a failure the return is %NULL, and @data is not freed.
295  * Notes :
296  *  Before IO, driver allocates only data buffer where NIC put incoming frame
297  *  Driver should add room at head (NET_SKB_PAD) and
298  *  MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info))
299  *  After IO, driver calls build_skb(), to allocate sk_buff and populate it
300  *  before giving packet to stack.
301  *  RX rings only contains data buffers, not full skbs.
302  */
303 struct sk_buff *__build_skb(void *data, unsigned int frag_size)
304 {
305 	struct skb_shared_info *shinfo;
306 	struct sk_buff *skb;
307 	unsigned int size = frag_size ? : ksize(data);
308 
309 	skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC);
310 	if (!skb)
311 		return NULL;
312 
313 	size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
314 
315 	memset(skb, 0, offsetof(struct sk_buff, tail));
316 	skb->truesize = SKB_TRUESIZE(size);
317 	atomic_set(&skb->users, 1);
318 	skb->head = data;
319 	skb->data = data;
320 	skb_reset_tail_pointer(skb);
321 	skb->end = skb->tail + size;
322 	skb->mac_header = (typeof(skb->mac_header))~0U;
323 	skb->transport_header = (typeof(skb->transport_header))~0U;
324 
325 	/* make sure we initialize shinfo sequentially */
326 	shinfo = skb_shinfo(skb);
327 	memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
328 	atomic_set(&shinfo->dataref, 1);
329 	kmemcheck_annotate_variable(shinfo->destructor_arg);
330 
331 	return skb;
332 }
333 
334 /* build_skb() is wrapper over __build_skb(), that specifically
335  * takes care of skb->head and skb->pfmemalloc
336  * This means that if @frag_size is not zero, then @data must be backed
337  * by a page fragment, not kmalloc() or vmalloc()
338  */
339 struct sk_buff *build_skb(void *data, unsigned int frag_size)
340 {
341 	struct sk_buff *skb = __build_skb(data, frag_size);
342 
343 	if (skb && frag_size) {
344 		skb->head_frag = 1;
345 		if (page_is_pfmemalloc(virt_to_head_page(data)))
346 			skb->pfmemalloc = 1;
347 	}
348 	return skb;
349 }
350 EXPORT_SYMBOL(build_skb);
351 
352 #define NAPI_SKB_CACHE_SIZE	64
353 
354 struct napi_alloc_cache {
355 	struct page_frag_cache page;
356 	unsigned int skb_count;
357 	void *skb_cache[NAPI_SKB_CACHE_SIZE];
358 };
359 
360 static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache);
361 static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache);
362 
363 static void *__netdev_alloc_frag(unsigned int fragsz, gfp_t gfp_mask)
364 {
365 	struct page_frag_cache *nc;
366 	unsigned long flags;
367 	void *data;
368 
369 	local_irq_save(flags);
370 	nc = this_cpu_ptr(&netdev_alloc_cache);
371 	data = page_frag_alloc(nc, fragsz, gfp_mask);
372 	local_irq_restore(flags);
373 	return data;
374 }
375 
376 /**
377  * netdev_alloc_frag - allocate a page fragment
378  * @fragsz: fragment size
379  *
380  * Allocates a frag from a page for receive buffer.
381  * Uses GFP_ATOMIC allocations.
382  */
383 void *netdev_alloc_frag(unsigned int fragsz)
384 {
385 	return __netdev_alloc_frag(fragsz, GFP_ATOMIC | __GFP_COLD);
386 }
387 EXPORT_SYMBOL(netdev_alloc_frag);
388 
389 static void *__napi_alloc_frag(unsigned int fragsz, gfp_t gfp_mask)
390 {
391 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
392 
393 	return page_frag_alloc(&nc->page, fragsz, gfp_mask);
394 }
395 
396 void *napi_alloc_frag(unsigned int fragsz)
397 {
398 	return __napi_alloc_frag(fragsz, GFP_ATOMIC | __GFP_COLD);
399 }
400 EXPORT_SYMBOL(napi_alloc_frag);
401 
402 /**
403  *	__netdev_alloc_skb - allocate an skbuff for rx on a specific device
404  *	@dev: network device to receive on
405  *	@len: length to allocate
406  *	@gfp_mask: get_free_pages mask, passed to alloc_skb
407  *
408  *	Allocate a new &sk_buff and assign it a usage count of one. The
409  *	buffer has NET_SKB_PAD headroom built in. Users should allocate
410  *	the headroom they think they need without accounting for the
411  *	built in space. The built in space is used for optimisations.
412  *
413  *	%NULL is returned if there is no free memory.
414  */
415 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len,
416 				   gfp_t gfp_mask)
417 {
418 	struct page_frag_cache *nc;
419 	unsigned long flags;
420 	struct sk_buff *skb;
421 	bool pfmemalloc;
422 	void *data;
423 
424 	len += NET_SKB_PAD;
425 
426 	if ((len > SKB_WITH_OVERHEAD(PAGE_SIZE)) ||
427 	    (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
428 		skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
429 		if (!skb)
430 			goto skb_fail;
431 		goto skb_success;
432 	}
433 
434 	len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
435 	len = SKB_DATA_ALIGN(len);
436 
437 	if (sk_memalloc_socks())
438 		gfp_mask |= __GFP_MEMALLOC;
439 
440 	local_irq_save(flags);
441 
442 	nc = this_cpu_ptr(&netdev_alloc_cache);
443 	data = page_frag_alloc(nc, len, gfp_mask);
444 	pfmemalloc = nc->pfmemalloc;
445 
446 	local_irq_restore(flags);
447 
448 	if (unlikely(!data))
449 		return NULL;
450 
451 	skb = __build_skb(data, len);
452 	if (unlikely(!skb)) {
453 		skb_free_frag(data);
454 		return NULL;
455 	}
456 
457 	/* use OR instead of assignment to avoid clearing of bits in mask */
458 	if (pfmemalloc)
459 		skb->pfmemalloc = 1;
460 	skb->head_frag = 1;
461 
462 skb_success:
463 	skb_reserve(skb, NET_SKB_PAD);
464 	skb->dev = dev;
465 
466 skb_fail:
467 	return skb;
468 }
469 EXPORT_SYMBOL(__netdev_alloc_skb);
470 
471 /**
472  *	__napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance
473  *	@napi: napi instance this buffer was allocated for
474  *	@len: length to allocate
475  *	@gfp_mask: get_free_pages mask, passed to alloc_skb and alloc_pages
476  *
477  *	Allocate a new sk_buff for use in NAPI receive.  This buffer will
478  *	attempt to allocate the head from a special reserved region used
479  *	only for NAPI Rx allocation.  By doing this we can save several
480  *	CPU cycles by avoiding having to disable and re-enable IRQs.
481  *
482  *	%NULL is returned if there is no free memory.
483  */
484 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, unsigned int len,
485 				 gfp_t gfp_mask)
486 {
487 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
488 	struct sk_buff *skb;
489 	void *data;
490 
491 	len += NET_SKB_PAD + NET_IP_ALIGN;
492 
493 	if ((len > SKB_WITH_OVERHEAD(PAGE_SIZE)) ||
494 	    (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
495 		skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
496 		if (!skb)
497 			goto skb_fail;
498 		goto skb_success;
499 	}
500 
501 	len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
502 	len = SKB_DATA_ALIGN(len);
503 
504 	if (sk_memalloc_socks())
505 		gfp_mask |= __GFP_MEMALLOC;
506 
507 	data = page_frag_alloc(&nc->page, len, gfp_mask);
508 	if (unlikely(!data))
509 		return NULL;
510 
511 	skb = __build_skb(data, len);
512 	if (unlikely(!skb)) {
513 		skb_free_frag(data);
514 		return NULL;
515 	}
516 
517 	/* use OR instead of assignment to avoid clearing of bits in mask */
518 	if (nc->page.pfmemalloc)
519 		skb->pfmemalloc = 1;
520 	skb->head_frag = 1;
521 
522 skb_success:
523 	skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN);
524 	skb->dev = napi->dev;
525 
526 skb_fail:
527 	return skb;
528 }
529 EXPORT_SYMBOL(__napi_alloc_skb);
530 
531 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
532 		     int size, unsigned int truesize)
533 {
534 	skb_fill_page_desc(skb, i, page, off, size);
535 	skb->len += size;
536 	skb->data_len += size;
537 	skb->truesize += truesize;
538 }
539 EXPORT_SYMBOL(skb_add_rx_frag);
540 
541 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
542 			  unsigned int truesize)
543 {
544 	skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
545 
546 	skb_frag_size_add(frag, size);
547 	skb->len += size;
548 	skb->data_len += size;
549 	skb->truesize += truesize;
550 }
551 EXPORT_SYMBOL(skb_coalesce_rx_frag);
552 
553 static void skb_drop_list(struct sk_buff **listp)
554 {
555 	kfree_skb_list(*listp);
556 	*listp = NULL;
557 }
558 
559 static inline void skb_drop_fraglist(struct sk_buff *skb)
560 {
561 	skb_drop_list(&skb_shinfo(skb)->frag_list);
562 }
563 
564 static void skb_clone_fraglist(struct sk_buff *skb)
565 {
566 	struct sk_buff *list;
567 
568 	skb_walk_frags(skb, list)
569 		skb_get(list);
570 }
571 
572 static void skb_free_head(struct sk_buff *skb)
573 {
574 	unsigned char *head = skb->head;
575 
576 	if (skb->head_frag)
577 		skb_free_frag(head);
578 	else
579 		kfree(head);
580 }
581 
582 static void skb_release_data(struct sk_buff *skb)
583 {
584 	struct skb_shared_info *shinfo = skb_shinfo(skb);
585 	int i;
586 
587 	if (skb->cloned &&
588 	    atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
589 			      &shinfo->dataref))
590 		return;
591 
592 	for (i = 0; i < shinfo->nr_frags; i++)
593 		__skb_frag_unref(&shinfo->frags[i]);
594 
595 	/*
596 	 * If skb buf is from userspace, we need to notify the caller
597 	 * the lower device DMA has done;
598 	 */
599 	if (shinfo->tx_flags & SKBTX_DEV_ZEROCOPY) {
600 		struct ubuf_info *uarg;
601 
602 		uarg = shinfo->destructor_arg;
603 		if (uarg->callback)
604 			uarg->callback(uarg, true);
605 	}
606 
607 	if (shinfo->frag_list)
608 		kfree_skb_list(shinfo->frag_list);
609 
610 	skb_free_head(skb);
611 }
612 
613 /*
614  *	Free an skbuff by memory without cleaning the state.
615  */
616 static void kfree_skbmem(struct sk_buff *skb)
617 {
618 	struct sk_buff_fclones *fclones;
619 
620 	switch (skb->fclone) {
621 	case SKB_FCLONE_UNAVAILABLE:
622 		kmem_cache_free(skbuff_head_cache, skb);
623 		return;
624 
625 	case SKB_FCLONE_ORIG:
626 		fclones = container_of(skb, struct sk_buff_fclones, skb1);
627 
628 		/* We usually free the clone (TX completion) before original skb
629 		 * This test would have no chance to be true for the clone,
630 		 * while here, branch prediction will be good.
631 		 */
632 		if (atomic_read(&fclones->fclone_ref) == 1)
633 			goto fastpath;
634 		break;
635 
636 	default: /* SKB_FCLONE_CLONE */
637 		fclones = container_of(skb, struct sk_buff_fclones, skb2);
638 		break;
639 	}
640 	if (!atomic_dec_and_test(&fclones->fclone_ref))
641 		return;
642 fastpath:
643 	kmem_cache_free(skbuff_fclone_cache, fclones);
644 }
645 
646 static void skb_release_head_state(struct sk_buff *skb)
647 {
648 	skb_dst_drop(skb);
649 #ifdef CONFIG_XFRM
650 	secpath_put(skb->sp);
651 #endif
652 	if (skb->destructor) {
653 		WARN_ON(in_irq());
654 		skb->destructor(skb);
655 	}
656 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
657 	nf_conntrack_put(skb_nfct(skb));
658 #endif
659 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
660 	nf_bridge_put(skb->nf_bridge);
661 #endif
662 }
663 
664 /* Free everything but the sk_buff shell. */
665 static void skb_release_all(struct sk_buff *skb)
666 {
667 	skb_release_head_state(skb);
668 	if (likely(skb->head))
669 		skb_release_data(skb);
670 }
671 
672 /**
673  *	__kfree_skb - private function
674  *	@skb: buffer
675  *
676  *	Free an sk_buff. Release anything attached to the buffer.
677  *	Clean the state. This is an internal helper function. Users should
678  *	always call kfree_skb
679  */
680 
681 void __kfree_skb(struct sk_buff *skb)
682 {
683 	skb_release_all(skb);
684 	kfree_skbmem(skb);
685 }
686 EXPORT_SYMBOL(__kfree_skb);
687 
688 /**
689  *	kfree_skb - free an sk_buff
690  *	@skb: buffer to free
691  *
692  *	Drop a reference to the buffer and free it if the usage count has
693  *	hit zero.
694  */
695 void kfree_skb(struct sk_buff *skb)
696 {
697 	if (unlikely(!skb))
698 		return;
699 	if (likely(atomic_read(&skb->users) == 1))
700 		smp_rmb();
701 	else if (likely(!atomic_dec_and_test(&skb->users)))
702 		return;
703 	trace_kfree_skb(skb, __builtin_return_address(0));
704 	__kfree_skb(skb);
705 }
706 EXPORT_SYMBOL(kfree_skb);
707 
708 void kfree_skb_list(struct sk_buff *segs)
709 {
710 	while (segs) {
711 		struct sk_buff *next = segs->next;
712 
713 		kfree_skb(segs);
714 		segs = next;
715 	}
716 }
717 EXPORT_SYMBOL(kfree_skb_list);
718 
719 /**
720  *	skb_tx_error - report an sk_buff xmit error
721  *	@skb: buffer that triggered an error
722  *
723  *	Report xmit error if a device callback is tracking this skb.
724  *	skb must be freed afterwards.
725  */
726 void skb_tx_error(struct sk_buff *skb)
727 {
728 	if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
729 		struct ubuf_info *uarg;
730 
731 		uarg = skb_shinfo(skb)->destructor_arg;
732 		if (uarg->callback)
733 			uarg->callback(uarg, false);
734 		skb_shinfo(skb)->tx_flags &= ~SKBTX_DEV_ZEROCOPY;
735 	}
736 }
737 EXPORT_SYMBOL(skb_tx_error);
738 
739 /**
740  *	consume_skb - free an skbuff
741  *	@skb: buffer to free
742  *
743  *	Drop a ref to the buffer and free it if the usage count has hit zero
744  *	Functions identically to kfree_skb, but kfree_skb assumes that the frame
745  *	is being dropped after a failure and notes that
746  */
747 void consume_skb(struct sk_buff *skb)
748 {
749 	if (unlikely(!skb))
750 		return;
751 	if (likely(atomic_read(&skb->users) == 1))
752 		smp_rmb();
753 	else if (likely(!atomic_dec_and_test(&skb->users)))
754 		return;
755 	trace_consume_skb(skb);
756 	__kfree_skb(skb);
757 }
758 EXPORT_SYMBOL(consume_skb);
759 
760 void __kfree_skb_flush(void)
761 {
762 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
763 
764 	/* flush skb_cache if containing objects */
765 	if (nc->skb_count) {
766 		kmem_cache_free_bulk(skbuff_head_cache, nc->skb_count,
767 				     nc->skb_cache);
768 		nc->skb_count = 0;
769 	}
770 }
771 
772 static inline void _kfree_skb_defer(struct sk_buff *skb)
773 {
774 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
775 
776 	/* drop skb->head and call any destructors for packet */
777 	skb_release_all(skb);
778 
779 	/* record skb to CPU local list */
780 	nc->skb_cache[nc->skb_count++] = skb;
781 
782 #ifdef CONFIG_SLUB
783 	/* SLUB writes into objects when freeing */
784 	prefetchw(skb);
785 #endif
786 
787 	/* flush skb_cache if it is filled */
788 	if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) {
789 		kmem_cache_free_bulk(skbuff_head_cache, NAPI_SKB_CACHE_SIZE,
790 				     nc->skb_cache);
791 		nc->skb_count = 0;
792 	}
793 }
794 void __kfree_skb_defer(struct sk_buff *skb)
795 {
796 	_kfree_skb_defer(skb);
797 }
798 
799 void napi_consume_skb(struct sk_buff *skb, int budget)
800 {
801 	if (unlikely(!skb))
802 		return;
803 
804 	/* Zero budget indicate non-NAPI context called us, like netpoll */
805 	if (unlikely(!budget)) {
806 		dev_consume_skb_any(skb);
807 		return;
808 	}
809 
810 	if (likely(atomic_read(&skb->users) == 1))
811 		smp_rmb();
812 	else if (likely(!atomic_dec_and_test(&skb->users)))
813 		return;
814 	/* if reaching here SKB is ready to free */
815 	trace_consume_skb(skb);
816 
817 	/* if SKB is a clone, don't handle this case */
818 	if (skb->fclone != SKB_FCLONE_UNAVAILABLE) {
819 		__kfree_skb(skb);
820 		return;
821 	}
822 
823 	_kfree_skb_defer(skb);
824 }
825 EXPORT_SYMBOL(napi_consume_skb);
826 
827 /* Make sure a field is enclosed inside headers_start/headers_end section */
828 #define CHECK_SKB_FIELD(field) \
829 	BUILD_BUG_ON(offsetof(struct sk_buff, field) <		\
830 		     offsetof(struct sk_buff, headers_start));	\
831 	BUILD_BUG_ON(offsetof(struct sk_buff, field) >		\
832 		     offsetof(struct sk_buff, headers_end));	\
833 
834 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
835 {
836 	new->tstamp		= old->tstamp;
837 	/* We do not copy old->sk */
838 	new->dev		= old->dev;
839 	memcpy(new->cb, old->cb, sizeof(old->cb));
840 	skb_dst_copy(new, old);
841 #ifdef CONFIG_XFRM
842 	new->sp			= secpath_get(old->sp);
843 #endif
844 	__nf_copy(new, old, false);
845 
846 	/* Note : this field could be in headers_start/headers_end section
847 	 * It is not yet because we do not want to have a 16 bit hole
848 	 */
849 	new->queue_mapping = old->queue_mapping;
850 
851 	memcpy(&new->headers_start, &old->headers_start,
852 	       offsetof(struct sk_buff, headers_end) -
853 	       offsetof(struct sk_buff, headers_start));
854 	CHECK_SKB_FIELD(protocol);
855 	CHECK_SKB_FIELD(csum);
856 	CHECK_SKB_FIELD(hash);
857 	CHECK_SKB_FIELD(priority);
858 	CHECK_SKB_FIELD(skb_iif);
859 	CHECK_SKB_FIELD(vlan_proto);
860 	CHECK_SKB_FIELD(vlan_tci);
861 	CHECK_SKB_FIELD(transport_header);
862 	CHECK_SKB_FIELD(network_header);
863 	CHECK_SKB_FIELD(mac_header);
864 	CHECK_SKB_FIELD(inner_protocol);
865 	CHECK_SKB_FIELD(inner_transport_header);
866 	CHECK_SKB_FIELD(inner_network_header);
867 	CHECK_SKB_FIELD(inner_mac_header);
868 	CHECK_SKB_FIELD(mark);
869 #ifdef CONFIG_NETWORK_SECMARK
870 	CHECK_SKB_FIELD(secmark);
871 #endif
872 #ifdef CONFIG_NET_RX_BUSY_POLL
873 	CHECK_SKB_FIELD(napi_id);
874 #endif
875 #ifdef CONFIG_XPS
876 	CHECK_SKB_FIELD(sender_cpu);
877 #endif
878 #ifdef CONFIG_NET_SCHED
879 	CHECK_SKB_FIELD(tc_index);
880 #endif
881 
882 }
883 
884 /*
885  * You should not add any new code to this function.  Add it to
886  * __copy_skb_header above instead.
887  */
888 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
889 {
890 #define C(x) n->x = skb->x
891 
892 	n->next = n->prev = NULL;
893 	n->sk = NULL;
894 	__copy_skb_header(n, skb);
895 
896 	C(len);
897 	C(data_len);
898 	C(mac_len);
899 	n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
900 	n->cloned = 1;
901 	n->nohdr = 0;
902 	n->destructor = NULL;
903 	C(tail);
904 	C(end);
905 	C(head);
906 	C(head_frag);
907 	C(data);
908 	C(truesize);
909 	atomic_set(&n->users, 1);
910 
911 	atomic_inc(&(skb_shinfo(skb)->dataref));
912 	skb->cloned = 1;
913 
914 	return n;
915 #undef C
916 }
917 
918 /**
919  *	skb_morph	-	morph one skb into another
920  *	@dst: the skb to receive the contents
921  *	@src: the skb to supply the contents
922  *
923  *	This is identical to skb_clone except that the target skb is
924  *	supplied by the user.
925  *
926  *	The target skb is returned upon exit.
927  */
928 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
929 {
930 	skb_release_all(dst);
931 	return __skb_clone(dst, src);
932 }
933 EXPORT_SYMBOL_GPL(skb_morph);
934 
935 /**
936  *	skb_copy_ubufs	-	copy userspace skb frags buffers to kernel
937  *	@skb: the skb to modify
938  *	@gfp_mask: allocation priority
939  *
940  *	This must be called on SKBTX_DEV_ZEROCOPY skb.
941  *	It will copy all frags into kernel and drop the reference
942  *	to userspace pages.
943  *
944  *	If this function is called from an interrupt gfp_mask() must be
945  *	%GFP_ATOMIC.
946  *
947  *	Returns 0 on success or a negative error code on failure
948  *	to allocate kernel memory to copy to.
949  */
950 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask)
951 {
952 	int i;
953 	int num_frags = skb_shinfo(skb)->nr_frags;
954 	struct page *page, *head = NULL;
955 	struct ubuf_info *uarg = skb_shinfo(skb)->destructor_arg;
956 
957 	for (i = 0; i < num_frags; i++) {
958 		u8 *vaddr;
959 		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
960 
961 		page = alloc_page(gfp_mask);
962 		if (!page) {
963 			while (head) {
964 				struct page *next = (struct page *)page_private(head);
965 				put_page(head);
966 				head = next;
967 			}
968 			return -ENOMEM;
969 		}
970 		vaddr = kmap_atomic(skb_frag_page(f));
971 		memcpy(page_address(page),
972 		       vaddr + f->page_offset, skb_frag_size(f));
973 		kunmap_atomic(vaddr);
974 		set_page_private(page, (unsigned long)head);
975 		head = page;
976 	}
977 
978 	/* skb frags release userspace buffers */
979 	for (i = 0; i < num_frags; i++)
980 		skb_frag_unref(skb, i);
981 
982 	uarg->callback(uarg, false);
983 
984 	/* skb frags point to kernel buffers */
985 	for (i = num_frags - 1; i >= 0; i--) {
986 		__skb_fill_page_desc(skb, i, head, 0,
987 				     skb_shinfo(skb)->frags[i].size);
988 		head = (struct page *)page_private(head);
989 	}
990 
991 	skb_shinfo(skb)->tx_flags &= ~SKBTX_DEV_ZEROCOPY;
992 	return 0;
993 }
994 EXPORT_SYMBOL_GPL(skb_copy_ubufs);
995 
996 /**
997  *	skb_clone	-	duplicate an sk_buff
998  *	@skb: buffer to clone
999  *	@gfp_mask: allocation priority
1000  *
1001  *	Duplicate an &sk_buff. The new one is not owned by a socket. Both
1002  *	copies share the same packet data but not structure. The new
1003  *	buffer has a reference count of 1. If the allocation fails the
1004  *	function returns %NULL otherwise the new buffer is returned.
1005  *
1006  *	If this function is called from an interrupt gfp_mask() must be
1007  *	%GFP_ATOMIC.
1008  */
1009 
1010 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
1011 {
1012 	struct sk_buff_fclones *fclones = container_of(skb,
1013 						       struct sk_buff_fclones,
1014 						       skb1);
1015 	struct sk_buff *n;
1016 
1017 	if (skb_orphan_frags(skb, gfp_mask))
1018 		return NULL;
1019 
1020 	if (skb->fclone == SKB_FCLONE_ORIG &&
1021 	    atomic_read(&fclones->fclone_ref) == 1) {
1022 		n = &fclones->skb2;
1023 		atomic_set(&fclones->fclone_ref, 2);
1024 	} else {
1025 		if (skb_pfmemalloc(skb))
1026 			gfp_mask |= __GFP_MEMALLOC;
1027 
1028 		n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
1029 		if (!n)
1030 			return NULL;
1031 
1032 		kmemcheck_annotate_bitfield(n, flags1);
1033 		n->fclone = SKB_FCLONE_UNAVAILABLE;
1034 	}
1035 
1036 	return __skb_clone(n, skb);
1037 }
1038 EXPORT_SYMBOL(skb_clone);
1039 
1040 static void skb_headers_offset_update(struct sk_buff *skb, int off)
1041 {
1042 	/* Only adjust this if it actually is csum_start rather than csum */
1043 	if (skb->ip_summed == CHECKSUM_PARTIAL)
1044 		skb->csum_start += off;
1045 	/* {transport,network,mac}_header and tail are relative to skb->head */
1046 	skb->transport_header += off;
1047 	skb->network_header   += off;
1048 	if (skb_mac_header_was_set(skb))
1049 		skb->mac_header += off;
1050 	skb->inner_transport_header += off;
1051 	skb->inner_network_header += off;
1052 	skb->inner_mac_header += off;
1053 }
1054 
1055 static void copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
1056 {
1057 	__copy_skb_header(new, old);
1058 
1059 	skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
1060 	skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
1061 	skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
1062 }
1063 
1064 static inline int skb_alloc_rx_flag(const struct sk_buff *skb)
1065 {
1066 	if (skb_pfmemalloc(skb))
1067 		return SKB_ALLOC_RX;
1068 	return 0;
1069 }
1070 
1071 /**
1072  *	skb_copy	-	create private copy of an sk_buff
1073  *	@skb: buffer to copy
1074  *	@gfp_mask: allocation priority
1075  *
1076  *	Make a copy of both an &sk_buff and its data. This is used when the
1077  *	caller wishes to modify the data and needs a private copy of the
1078  *	data to alter. Returns %NULL on failure or the pointer to the buffer
1079  *	on success. The returned buffer has a reference count of 1.
1080  *
1081  *	As by-product this function converts non-linear &sk_buff to linear
1082  *	one, so that &sk_buff becomes completely private and caller is allowed
1083  *	to modify all the data of returned buffer. This means that this
1084  *	function is not recommended for use in circumstances when only
1085  *	header is going to be modified. Use pskb_copy() instead.
1086  */
1087 
1088 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
1089 {
1090 	int headerlen = skb_headroom(skb);
1091 	unsigned int size = skb_end_offset(skb) + skb->data_len;
1092 	struct sk_buff *n = __alloc_skb(size, gfp_mask,
1093 					skb_alloc_rx_flag(skb), NUMA_NO_NODE);
1094 
1095 	if (!n)
1096 		return NULL;
1097 
1098 	/* Set the data pointer */
1099 	skb_reserve(n, headerlen);
1100 	/* Set the tail pointer and length */
1101 	skb_put(n, skb->len);
1102 
1103 	if (skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len))
1104 		BUG();
1105 
1106 	copy_skb_header(n, skb);
1107 	return n;
1108 }
1109 EXPORT_SYMBOL(skb_copy);
1110 
1111 /**
1112  *	__pskb_copy_fclone	-  create copy of an sk_buff with private head.
1113  *	@skb: buffer to copy
1114  *	@headroom: headroom of new skb
1115  *	@gfp_mask: allocation priority
1116  *	@fclone: if true allocate the copy of the skb from the fclone
1117  *	cache instead of the head cache; it is recommended to set this
1118  *	to true for the cases where the copy will likely be cloned
1119  *
1120  *	Make a copy of both an &sk_buff and part of its data, located
1121  *	in header. Fragmented data remain shared. This is used when
1122  *	the caller wishes to modify only header of &sk_buff and needs
1123  *	private copy of the header to alter. Returns %NULL on failure
1124  *	or the pointer to the buffer on success.
1125  *	The returned buffer has a reference count of 1.
1126  */
1127 
1128 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1129 				   gfp_t gfp_mask, bool fclone)
1130 {
1131 	unsigned int size = skb_headlen(skb) + headroom;
1132 	int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0);
1133 	struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE);
1134 
1135 	if (!n)
1136 		goto out;
1137 
1138 	/* Set the data pointer */
1139 	skb_reserve(n, headroom);
1140 	/* Set the tail pointer and length */
1141 	skb_put(n, skb_headlen(skb));
1142 	/* Copy the bytes */
1143 	skb_copy_from_linear_data(skb, n->data, n->len);
1144 
1145 	n->truesize += skb->data_len;
1146 	n->data_len  = skb->data_len;
1147 	n->len	     = skb->len;
1148 
1149 	if (skb_shinfo(skb)->nr_frags) {
1150 		int i;
1151 
1152 		if (skb_orphan_frags(skb, gfp_mask)) {
1153 			kfree_skb(n);
1154 			n = NULL;
1155 			goto out;
1156 		}
1157 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1158 			skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
1159 			skb_frag_ref(skb, i);
1160 		}
1161 		skb_shinfo(n)->nr_frags = i;
1162 	}
1163 
1164 	if (skb_has_frag_list(skb)) {
1165 		skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
1166 		skb_clone_fraglist(n);
1167 	}
1168 
1169 	copy_skb_header(n, skb);
1170 out:
1171 	return n;
1172 }
1173 EXPORT_SYMBOL(__pskb_copy_fclone);
1174 
1175 /**
1176  *	pskb_expand_head - reallocate header of &sk_buff
1177  *	@skb: buffer to reallocate
1178  *	@nhead: room to add at head
1179  *	@ntail: room to add at tail
1180  *	@gfp_mask: allocation priority
1181  *
1182  *	Expands (or creates identical copy, if @nhead and @ntail are zero)
1183  *	header of @skb. &sk_buff itself is not changed. &sk_buff MUST have
1184  *	reference count of 1. Returns zero in the case of success or error,
1185  *	if expansion failed. In the last case, &sk_buff is not changed.
1186  *
1187  *	All the pointers pointing into skb header may change and must be
1188  *	reloaded after call to this function.
1189  */
1190 
1191 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
1192 		     gfp_t gfp_mask)
1193 {
1194 	int i, osize = skb_end_offset(skb);
1195 	int size = osize + nhead + ntail;
1196 	long off;
1197 	u8 *data;
1198 
1199 	BUG_ON(nhead < 0);
1200 
1201 	if (skb_shared(skb))
1202 		BUG();
1203 
1204 	size = SKB_DATA_ALIGN(size);
1205 
1206 	if (skb_pfmemalloc(skb))
1207 		gfp_mask |= __GFP_MEMALLOC;
1208 	data = kmalloc_reserve(size + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
1209 			       gfp_mask, NUMA_NO_NODE, NULL);
1210 	if (!data)
1211 		goto nodata;
1212 	size = SKB_WITH_OVERHEAD(ksize(data));
1213 
1214 	/* Copy only real data... and, alas, header. This should be
1215 	 * optimized for the cases when header is void.
1216 	 */
1217 	memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head);
1218 
1219 	memcpy((struct skb_shared_info *)(data + size),
1220 	       skb_shinfo(skb),
1221 	       offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags]));
1222 
1223 	/*
1224 	 * if shinfo is shared we must drop the old head gracefully, but if it
1225 	 * is not we can just drop the old head and let the existing refcount
1226 	 * be since all we did is relocate the values
1227 	 */
1228 	if (skb_cloned(skb)) {
1229 		/* copy this zero copy skb frags */
1230 		if (skb_orphan_frags(skb, gfp_mask))
1231 			goto nofrags;
1232 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1233 			skb_frag_ref(skb, i);
1234 
1235 		if (skb_has_frag_list(skb))
1236 			skb_clone_fraglist(skb);
1237 
1238 		skb_release_data(skb);
1239 	} else {
1240 		skb_free_head(skb);
1241 	}
1242 	off = (data + nhead) - skb->head;
1243 
1244 	skb->head     = data;
1245 	skb->head_frag = 0;
1246 	skb->data    += off;
1247 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1248 	skb->end      = size;
1249 	off           = nhead;
1250 #else
1251 	skb->end      = skb->head + size;
1252 #endif
1253 	skb->tail	      += off;
1254 	skb_headers_offset_update(skb, nhead);
1255 	skb->cloned   = 0;
1256 	skb->hdr_len  = 0;
1257 	skb->nohdr    = 0;
1258 	atomic_set(&skb_shinfo(skb)->dataref, 1);
1259 
1260 	/* It is not generally safe to change skb->truesize.
1261 	 * For the moment, we really care of rx path, or
1262 	 * when skb is orphaned (not attached to a socket).
1263 	 */
1264 	if (!skb->sk || skb->destructor == sock_edemux)
1265 		skb->truesize += size - osize;
1266 
1267 	return 0;
1268 
1269 nofrags:
1270 	kfree(data);
1271 nodata:
1272 	return -ENOMEM;
1273 }
1274 EXPORT_SYMBOL(pskb_expand_head);
1275 
1276 /* Make private copy of skb with writable head and some headroom */
1277 
1278 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
1279 {
1280 	struct sk_buff *skb2;
1281 	int delta = headroom - skb_headroom(skb);
1282 
1283 	if (delta <= 0)
1284 		skb2 = pskb_copy(skb, GFP_ATOMIC);
1285 	else {
1286 		skb2 = skb_clone(skb, GFP_ATOMIC);
1287 		if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
1288 					     GFP_ATOMIC)) {
1289 			kfree_skb(skb2);
1290 			skb2 = NULL;
1291 		}
1292 	}
1293 	return skb2;
1294 }
1295 EXPORT_SYMBOL(skb_realloc_headroom);
1296 
1297 /**
1298  *	skb_copy_expand	-	copy and expand sk_buff
1299  *	@skb: buffer to copy
1300  *	@newheadroom: new free bytes at head
1301  *	@newtailroom: new free bytes at tail
1302  *	@gfp_mask: allocation priority
1303  *
1304  *	Make a copy of both an &sk_buff and its data and while doing so
1305  *	allocate additional space.
1306  *
1307  *	This is used when the caller wishes to modify the data and needs a
1308  *	private copy of the data to alter as well as more space for new fields.
1309  *	Returns %NULL on failure or the pointer to the buffer
1310  *	on success. The returned buffer has a reference count of 1.
1311  *
1312  *	You must pass %GFP_ATOMIC as the allocation priority if this function
1313  *	is called from an interrupt.
1314  */
1315 struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
1316 				int newheadroom, int newtailroom,
1317 				gfp_t gfp_mask)
1318 {
1319 	/*
1320 	 *	Allocate the copy buffer
1321 	 */
1322 	struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom,
1323 					gfp_mask, skb_alloc_rx_flag(skb),
1324 					NUMA_NO_NODE);
1325 	int oldheadroom = skb_headroom(skb);
1326 	int head_copy_len, head_copy_off;
1327 
1328 	if (!n)
1329 		return NULL;
1330 
1331 	skb_reserve(n, newheadroom);
1332 
1333 	/* Set the tail pointer and length */
1334 	skb_put(n, skb->len);
1335 
1336 	head_copy_len = oldheadroom;
1337 	head_copy_off = 0;
1338 	if (newheadroom <= head_copy_len)
1339 		head_copy_len = newheadroom;
1340 	else
1341 		head_copy_off = newheadroom - head_copy_len;
1342 
1343 	/* Copy the linear header and data. */
1344 	if (skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
1345 			  skb->len + head_copy_len))
1346 		BUG();
1347 
1348 	copy_skb_header(n, skb);
1349 
1350 	skb_headers_offset_update(n, newheadroom - oldheadroom);
1351 
1352 	return n;
1353 }
1354 EXPORT_SYMBOL(skb_copy_expand);
1355 
1356 /**
1357  *	skb_pad			-	zero pad the tail of an skb
1358  *	@skb: buffer to pad
1359  *	@pad: space to pad
1360  *
1361  *	Ensure that a buffer is followed by a padding area that is zero
1362  *	filled. Used by network drivers which may DMA or transfer data
1363  *	beyond the buffer end onto the wire.
1364  *
1365  *	May return error in out of memory cases. The skb is freed on error.
1366  */
1367 
1368 int skb_pad(struct sk_buff *skb, int pad)
1369 {
1370 	int err;
1371 	int ntail;
1372 
1373 	/* If the skbuff is non linear tailroom is always zero.. */
1374 	if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
1375 		memset(skb->data+skb->len, 0, pad);
1376 		return 0;
1377 	}
1378 
1379 	ntail = skb->data_len + pad - (skb->end - skb->tail);
1380 	if (likely(skb_cloned(skb) || ntail > 0)) {
1381 		err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
1382 		if (unlikely(err))
1383 			goto free_skb;
1384 	}
1385 
1386 	/* FIXME: The use of this function with non-linear skb's really needs
1387 	 * to be audited.
1388 	 */
1389 	err = skb_linearize(skb);
1390 	if (unlikely(err))
1391 		goto free_skb;
1392 
1393 	memset(skb->data + skb->len, 0, pad);
1394 	return 0;
1395 
1396 free_skb:
1397 	kfree_skb(skb);
1398 	return err;
1399 }
1400 EXPORT_SYMBOL(skb_pad);
1401 
1402 /**
1403  *	pskb_put - add data to the tail of a potentially fragmented buffer
1404  *	@skb: start of the buffer to use
1405  *	@tail: tail fragment of the buffer to use
1406  *	@len: amount of data to add
1407  *
1408  *	This function extends the used data area of the potentially
1409  *	fragmented buffer. @tail must be the last fragment of @skb -- or
1410  *	@skb itself. If this would exceed the total buffer size the kernel
1411  *	will panic. A pointer to the first byte of the extra data is
1412  *	returned.
1413  */
1414 
1415 unsigned char *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len)
1416 {
1417 	if (tail != skb) {
1418 		skb->data_len += len;
1419 		skb->len += len;
1420 	}
1421 	return skb_put(tail, len);
1422 }
1423 EXPORT_SYMBOL_GPL(pskb_put);
1424 
1425 /**
1426  *	skb_put - add data to a buffer
1427  *	@skb: buffer to use
1428  *	@len: amount of data to add
1429  *
1430  *	This function extends the used data area of the buffer. If this would
1431  *	exceed the total buffer size the kernel will panic. A pointer to the
1432  *	first byte of the extra data is returned.
1433  */
1434 unsigned char *skb_put(struct sk_buff *skb, unsigned int len)
1435 {
1436 	unsigned char *tmp = skb_tail_pointer(skb);
1437 	SKB_LINEAR_ASSERT(skb);
1438 	skb->tail += len;
1439 	skb->len  += len;
1440 	if (unlikely(skb->tail > skb->end))
1441 		skb_over_panic(skb, len, __builtin_return_address(0));
1442 	return tmp;
1443 }
1444 EXPORT_SYMBOL(skb_put);
1445 
1446 /**
1447  *	skb_push - add data to the start of a buffer
1448  *	@skb: buffer to use
1449  *	@len: amount of data to add
1450  *
1451  *	This function extends the used data area of the buffer at the buffer
1452  *	start. If this would exceed the total buffer headroom the kernel will
1453  *	panic. A pointer to the first byte of the extra data is returned.
1454  */
1455 unsigned char *skb_push(struct sk_buff *skb, unsigned int len)
1456 {
1457 	skb->data -= len;
1458 	skb->len  += len;
1459 	if (unlikely(skb->data<skb->head))
1460 		skb_under_panic(skb, len, __builtin_return_address(0));
1461 	return skb->data;
1462 }
1463 EXPORT_SYMBOL(skb_push);
1464 
1465 /**
1466  *	skb_pull - remove data from the start of a buffer
1467  *	@skb: buffer to use
1468  *	@len: amount of data to remove
1469  *
1470  *	This function removes data from the start of a buffer, returning
1471  *	the memory to the headroom. A pointer to the next data in the buffer
1472  *	is returned. Once the data has been pulled future pushes will overwrite
1473  *	the old data.
1474  */
1475 unsigned char *skb_pull(struct sk_buff *skb, unsigned int len)
1476 {
1477 	return skb_pull_inline(skb, len);
1478 }
1479 EXPORT_SYMBOL(skb_pull);
1480 
1481 /**
1482  *	skb_trim - remove end from a buffer
1483  *	@skb: buffer to alter
1484  *	@len: new length
1485  *
1486  *	Cut the length of a buffer down by removing data from the tail. If
1487  *	the buffer is already under the length specified it is not modified.
1488  *	The skb must be linear.
1489  */
1490 void skb_trim(struct sk_buff *skb, unsigned int len)
1491 {
1492 	if (skb->len > len)
1493 		__skb_trim(skb, len);
1494 }
1495 EXPORT_SYMBOL(skb_trim);
1496 
1497 /* Trims skb to length len. It can change skb pointers.
1498  */
1499 
1500 int ___pskb_trim(struct sk_buff *skb, unsigned int len)
1501 {
1502 	struct sk_buff **fragp;
1503 	struct sk_buff *frag;
1504 	int offset = skb_headlen(skb);
1505 	int nfrags = skb_shinfo(skb)->nr_frags;
1506 	int i;
1507 	int err;
1508 
1509 	if (skb_cloned(skb) &&
1510 	    unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
1511 		return err;
1512 
1513 	i = 0;
1514 	if (offset >= len)
1515 		goto drop_pages;
1516 
1517 	for (; i < nfrags; i++) {
1518 		int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]);
1519 
1520 		if (end < len) {
1521 			offset = end;
1522 			continue;
1523 		}
1524 
1525 		skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset);
1526 
1527 drop_pages:
1528 		skb_shinfo(skb)->nr_frags = i;
1529 
1530 		for (; i < nfrags; i++)
1531 			skb_frag_unref(skb, i);
1532 
1533 		if (skb_has_frag_list(skb))
1534 			skb_drop_fraglist(skb);
1535 		goto done;
1536 	}
1537 
1538 	for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
1539 	     fragp = &frag->next) {
1540 		int end = offset + frag->len;
1541 
1542 		if (skb_shared(frag)) {
1543 			struct sk_buff *nfrag;
1544 
1545 			nfrag = skb_clone(frag, GFP_ATOMIC);
1546 			if (unlikely(!nfrag))
1547 				return -ENOMEM;
1548 
1549 			nfrag->next = frag->next;
1550 			consume_skb(frag);
1551 			frag = nfrag;
1552 			*fragp = frag;
1553 		}
1554 
1555 		if (end < len) {
1556 			offset = end;
1557 			continue;
1558 		}
1559 
1560 		if (end > len &&
1561 		    unlikely((err = pskb_trim(frag, len - offset))))
1562 			return err;
1563 
1564 		if (frag->next)
1565 			skb_drop_list(&frag->next);
1566 		break;
1567 	}
1568 
1569 done:
1570 	if (len > skb_headlen(skb)) {
1571 		skb->data_len -= skb->len - len;
1572 		skb->len       = len;
1573 	} else {
1574 		skb->len       = len;
1575 		skb->data_len  = 0;
1576 		skb_set_tail_pointer(skb, len);
1577 	}
1578 
1579 	return 0;
1580 }
1581 EXPORT_SYMBOL(___pskb_trim);
1582 
1583 /**
1584  *	__pskb_pull_tail - advance tail of skb header
1585  *	@skb: buffer to reallocate
1586  *	@delta: number of bytes to advance tail
1587  *
1588  *	The function makes a sense only on a fragmented &sk_buff,
1589  *	it expands header moving its tail forward and copying necessary
1590  *	data from fragmented part.
1591  *
1592  *	&sk_buff MUST have reference count of 1.
1593  *
1594  *	Returns %NULL (and &sk_buff does not change) if pull failed
1595  *	or value of new tail of skb in the case of success.
1596  *
1597  *	All the pointers pointing into skb header may change and must be
1598  *	reloaded after call to this function.
1599  */
1600 
1601 /* Moves tail of skb head forward, copying data from fragmented part,
1602  * when it is necessary.
1603  * 1. It may fail due to malloc failure.
1604  * 2. It may change skb pointers.
1605  *
1606  * It is pretty complicated. Luckily, it is called only in exceptional cases.
1607  */
1608 unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta)
1609 {
1610 	/* If skb has not enough free space at tail, get new one
1611 	 * plus 128 bytes for future expansions. If we have enough
1612 	 * room at tail, reallocate without expansion only if skb is cloned.
1613 	 */
1614 	int i, k, eat = (skb->tail + delta) - skb->end;
1615 
1616 	if (eat > 0 || skb_cloned(skb)) {
1617 		if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
1618 				     GFP_ATOMIC))
1619 			return NULL;
1620 	}
1621 
1622 	if (skb_copy_bits(skb, skb_headlen(skb), skb_tail_pointer(skb), delta))
1623 		BUG();
1624 
1625 	/* Optimization: no fragments, no reasons to preestimate
1626 	 * size of pulled pages. Superb.
1627 	 */
1628 	if (!skb_has_frag_list(skb))
1629 		goto pull_pages;
1630 
1631 	/* Estimate size of pulled pages. */
1632 	eat = delta;
1633 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1634 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
1635 
1636 		if (size >= eat)
1637 			goto pull_pages;
1638 		eat -= size;
1639 	}
1640 
1641 	/* If we need update frag list, we are in troubles.
1642 	 * Certainly, it possible to add an offset to skb data,
1643 	 * but taking into account that pulling is expected to
1644 	 * be very rare operation, it is worth to fight against
1645 	 * further bloating skb head and crucify ourselves here instead.
1646 	 * Pure masohism, indeed. 8)8)
1647 	 */
1648 	if (eat) {
1649 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
1650 		struct sk_buff *clone = NULL;
1651 		struct sk_buff *insp = NULL;
1652 
1653 		do {
1654 			BUG_ON(!list);
1655 
1656 			if (list->len <= eat) {
1657 				/* Eaten as whole. */
1658 				eat -= list->len;
1659 				list = list->next;
1660 				insp = list;
1661 			} else {
1662 				/* Eaten partially. */
1663 
1664 				if (skb_shared(list)) {
1665 					/* Sucks! We need to fork list. :-( */
1666 					clone = skb_clone(list, GFP_ATOMIC);
1667 					if (!clone)
1668 						return NULL;
1669 					insp = list->next;
1670 					list = clone;
1671 				} else {
1672 					/* This may be pulled without
1673 					 * problems. */
1674 					insp = list;
1675 				}
1676 				if (!pskb_pull(list, eat)) {
1677 					kfree_skb(clone);
1678 					return NULL;
1679 				}
1680 				break;
1681 			}
1682 		} while (eat);
1683 
1684 		/* Free pulled out fragments. */
1685 		while ((list = skb_shinfo(skb)->frag_list) != insp) {
1686 			skb_shinfo(skb)->frag_list = list->next;
1687 			kfree_skb(list);
1688 		}
1689 		/* And insert new clone at head. */
1690 		if (clone) {
1691 			clone->next = list;
1692 			skb_shinfo(skb)->frag_list = clone;
1693 		}
1694 	}
1695 	/* Success! Now we may commit changes to skb data. */
1696 
1697 pull_pages:
1698 	eat = delta;
1699 	k = 0;
1700 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1701 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
1702 
1703 		if (size <= eat) {
1704 			skb_frag_unref(skb, i);
1705 			eat -= size;
1706 		} else {
1707 			skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i];
1708 			if (eat) {
1709 				skb_shinfo(skb)->frags[k].page_offset += eat;
1710 				skb_frag_size_sub(&skb_shinfo(skb)->frags[k], eat);
1711 				eat = 0;
1712 			}
1713 			k++;
1714 		}
1715 	}
1716 	skb_shinfo(skb)->nr_frags = k;
1717 
1718 	skb->tail     += delta;
1719 	skb->data_len -= delta;
1720 
1721 	return skb_tail_pointer(skb);
1722 }
1723 EXPORT_SYMBOL(__pskb_pull_tail);
1724 
1725 /**
1726  *	skb_copy_bits - copy bits from skb to kernel buffer
1727  *	@skb: source skb
1728  *	@offset: offset in source
1729  *	@to: destination buffer
1730  *	@len: number of bytes to copy
1731  *
1732  *	Copy the specified number of bytes from the source skb to the
1733  *	destination buffer.
1734  *
1735  *	CAUTION ! :
1736  *		If its prototype is ever changed,
1737  *		check arch/{*}/net/{*}.S files,
1738  *		since it is called from BPF assembly code.
1739  */
1740 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
1741 {
1742 	int start = skb_headlen(skb);
1743 	struct sk_buff *frag_iter;
1744 	int i, copy;
1745 
1746 	if (offset > (int)skb->len - len)
1747 		goto fault;
1748 
1749 	/* Copy header. */
1750 	if ((copy = start - offset) > 0) {
1751 		if (copy > len)
1752 			copy = len;
1753 		skb_copy_from_linear_data_offset(skb, offset, to, copy);
1754 		if ((len -= copy) == 0)
1755 			return 0;
1756 		offset += copy;
1757 		to     += copy;
1758 	}
1759 
1760 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1761 		int end;
1762 		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
1763 
1764 		WARN_ON(start > offset + len);
1765 
1766 		end = start + skb_frag_size(f);
1767 		if ((copy = end - offset) > 0) {
1768 			u8 *vaddr;
1769 
1770 			if (copy > len)
1771 				copy = len;
1772 
1773 			vaddr = kmap_atomic(skb_frag_page(f));
1774 			memcpy(to,
1775 			       vaddr + f->page_offset + offset - start,
1776 			       copy);
1777 			kunmap_atomic(vaddr);
1778 
1779 			if ((len -= copy) == 0)
1780 				return 0;
1781 			offset += copy;
1782 			to     += copy;
1783 		}
1784 		start = end;
1785 	}
1786 
1787 	skb_walk_frags(skb, frag_iter) {
1788 		int end;
1789 
1790 		WARN_ON(start > offset + len);
1791 
1792 		end = start + frag_iter->len;
1793 		if ((copy = end - offset) > 0) {
1794 			if (copy > len)
1795 				copy = len;
1796 			if (skb_copy_bits(frag_iter, offset - start, to, copy))
1797 				goto fault;
1798 			if ((len -= copy) == 0)
1799 				return 0;
1800 			offset += copy;
1801 			to     += copy;
1802 		}
1803 		start = end;
1804 	}
1805 
1806 	if (!len)
1807 		return 0;
1808 
1809 fault:
1810 	return -EFAULT;
1811 }
1812 EXPORT_SYMBOL(skb_copy_bits);
1813 
1814 /*
1815  * Callback from splice_to_pipe(), if we need to release some pages
1816  * at the end of the spd in case we error'ed out in filling the pipe.
1817  */
1818 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
1819 {
1820 	put_page(spd->pages[i]);
1821 }
1822 
1823 static struct page *linear_to_page(struct page *page, unsigned int *len,
1824 				   unsigned int *offset,
1825 				   struct sock *sk)
1826 {
1827 	struct page_frag *pfrag = sk_page_frag(sk);
1828 
1829 	if (!sk_page_frag_refill(sk, pfrag))
1830 		return NULL;
1831 
1832 	*len = min_t(unsigned int, *len, pfrag->size - pfrag->offset);
1833 
1834 	memcpy(page_address(pfrag->page) + pfrag->offset,
1835 	       page_address(page) + *offset, *len);
1836 	*offset = pfrag->offset;
1837 	pfrag->offset += *len;
1838 
1839 	return pfrag->page;
1840 }
1841 
1842 static bool spd_can_coalesce(const struct splice_pipe_desc *spd,
1843 			     struct page *page,
1844 			     unsigned int offset)
1845 {
1846 	return	spd->nr_pages &&
1847 		spd->pages[spd->nr_pages - 1] == page &&
1848 		(spd->partial[spd->nr_pages - 1].offset +
1849 		 spd->partial[spd->nr_pages - 1].len == offset);
1850 }
1851 
1852 /*
1853  * Fill page/offset/length into spd, if it can hold more pages.
1854  */
1855 static bool spd_fill_page(struct splice_pipe_desc *spd,
1856 			  struct pipe_inode_info *pipe, struct page *page,
1857 			  unsigned int *len, unsigned int offset,
1858 			  bool linear,
1859 			  struct sock *sk)
1860 {
1861 	if (unlikely(spd->nr_pages == MAX_SKB_FRAGS))
1862 		return true;
1863 
1864 	if (linear) {
1865 		page = linear_to_page(page, len, &offset, sk);
1866 		if (!page)
1867 			return true;
1868 	}
1869 	if (spd_can_coalesce(spd, page, offset)) {
1870 		spd->partial[spd->nr_pages - 1].len += *len;
1871 		return false;
1872 	}
1873 	get_page(page);
1874 	spd->pages[spd->nr_pages] = page;
1875 	spd->partial[spd->nr_pages].len = *len;
1876 	spd->partial[spd->nr_pages].offset = offset;
1877 	spd->nr_pages++;
1878 
1879 	return false;
1880 }
1881 
1882 static bool __splice_segment(struct page *page, unsigned int poff,
1883 			     unsigned int plen, unsigned int *off,
1884 			     unsigned int *len,
1885 			     struct splice_pipe_desc *spd, bool linear,
1886 			     struct sock *sk,
1887 			     struct pipe_inode_info *pipe)
1888 {
1889 	if (!*len)
1890 		return true;
1891 
1892 	/* skip this segment if already processed */
1893 	if (*off >= plen) {
1894 		*off -= plen;
1895 		return false;
1896 	}
1897 
1898 	/* ignore any bits we already processed */
1899 	poff += *off;
1900 	plen -= *off;
1901 	*off = 0;
1902 
1903 	do {
1904 		unsigned int flen = min(*len, plen);
1905 
1906 		if (spd_fill_page(spd, pipe, page, &flen, poff,
1907 				  linear, sk))
1908 			return true;
1909 		poff += flen;
1910 		plen -= flen;
1911 		*len -= flen;
1912 	} while (*len && plen);
1913 
1914 	return false;
1915 }
1916 
1917 /*
1918  * Map linear and fragment data from the skb to spd. It reports true if the
1919  * pipe is full or if we already spliced the requested length.
1920  */
1921 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe,
1922 			      unsigned int *offset, unsigned int *len,
1923 			      struct splice_pipe_desc *spd, struct sock *sk)
1924 {
1925 	int seg;
1926 	struct sk_buff *iter;
1927 
1928 	/* map the linear part :
1929 	 * If skb->head_frag is set, this 'linear' part is backed by a
1930 	 * fragment, and if the head is not shared with any clones then
1931 	 * we can avoid a copy since we own the head portion of this page.
1932 	 */
1933 	if (__splice_segment(virt_to_page(skb->data),
1934 			     (unsigned long) skb->data & (PAGE_SIZE - 1),
1935 			     skb_headlen(skb),
1936 			     offset, len, spd,
1937 			     skb_head_is_locked(skb),
1938 			     sk, pipe))
1939 		return true;
1940 
1941 	/*
1942 	 * then map the fragments
1943 	 */
1944 	for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
1945 		const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
1946 
1947 		if (__splice_segment(skb_frag_page(f),
1948 				     f->page_offset, skb_frag_size(f),
1949 				     offset, len, spd, false, sk, pipe))
1950 			return true;
1951 	}
1952 
1953 	skb_walk_frags(skb, iter) {
1954 		if (*offset >= iter->len) {
1955 			*offset -= iter->len;
1956 			continue;
1957 		}
1958 		/* __skb_splice_bits() only fails if the output has no room
1959 		 * left, so no point in going over the frag_list for the error
1960 		 * case.
1961 		 */
1962 		if (__skb_splice_bits(iter, pipe, offset, len, spd, sk))
1963 			return true;
1964 	}
1965 
1966 	return false;
1967 }
1968 
1969 /*
1970  * Map data from the skb to a pipe. Should handle both the linear part,
1971  * the fragments, and the frag list.
1972  */
1973 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
1974 		    struct pipe_inode_info *pipe, unsigned int tlen,
1975 		    unsigned int flags)
1976 {
1977 	struct partial_page partial[MAX_SKB_FRAGS];
1978 	struct page *pages[MAX_SKB_FRAGS];
1979 	struct splice_pipe_desc spd = {
1980 		.pages = pages,
1981 		.partial = partial,
1982 		.nr_pages_max = MAX_SKB_FRAGS,
1983 		.flags = flags,
1984 		.ops = &nosteal_pipe_buf_ops,
1985 		.spd_release = sock_spd_release,
1986 	};
1987 	int ret = 0;
1988 
1989 	__skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk);
1990 
1991 	if (spd.nr_pages)
1992 		ret = splice_to_pipe(pipe, &spd);
1993 
1994 	return ret;
1995 }
1996 EXPORT_SYMBOL_GPL(skb_splice_bits);
1997 
1998 /**
1999  *	skb_store_bits - store bits from kernel buffer to skb
2000  *	@skb: destination buffer
2001  *	@offset: offset in destination
2002  *	@from: source buffer
2003  *	@len: number of bytes to copy
2004  *
2005  *	Copy the specified number of bytes from the source buffer to the
2006  *	destination skb.  This function handles all the messy bits of
2007  *	traversing fragment lists and such.
2008  */
2009 
2010 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
2011 {
2012 	int start = skb_headlen(skb);
2013 	struct sk_buff *frag_iter;
2014 	int i, copy;
2015 
2016 	if (offset > (int)skb->len - len)
2017 		goto fault;
2018 
2019 	if ((copy = start - offset) > 0) {
2020 		if (copy > len)
2021 			copy = len;
2022 		skb_copy_to_linear_data_offset(skb, offset, from, copy);
2023 		if ((len -= copy) == 0)
2024 			return 0;
2025 		offset += copy;
2026 		from += copy;
2027 	}
2028 
2029 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2030 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2031 		int end;
2032 
2033 		WARN_ON(start > offset + len);
2034 
2035 		end = start + skb_frag_size(frag);
2036 		if ((copy = end - offset) > 0) {
2037 			u8 *vaddr;
2038 
2039 			if (copy > len)
2040 				copy = len;
2041 
2042 			vaddr = kmap_atomic(skb_frag_page(frag));
2043 			memcpy(vaddr + frag->page_offset + offset - start,
2044 			       from, copy);
2045 			kunmap_atomic(vaddr);
2046 
2047 			if ((len -= copy) == 0)
2048 				return 0;
2049 			offset += copy;
2050 			from += copy;
2051 		}
2052 		start = end;
2053 	}
2054 
2055 	skb_walk_frags(skb, frag_iter) {
2056 		int end;
2057 
2058 		WARN_ON(start > offset + len);
2059 
2060 		end = start + frag_iter->len;
2061 		if ((copy = end - offset) > 0) {
2062 			if (copy > len)
2063 				copy = len;
2064 			if (skb_store_bits(frag_iter, offset - start,
2065 					   from, copy))
2066 				goto fault;
2067 			if ((len -= copy) == 0)
2068 				return 0;
2069 			offset += copy;
2070 			from += copy;
2071 		}
2072 		start = end;
2073 	}
2074 	if (!len)
2075 		return 0;
2076 
2077 fault:
2078 	return -EFAULT;
2079 }
2080 EXPORT_SYMBOL(skb_store_bits);
2081 
2082 /* Checksum skb data. */
2083 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
2084 		      __wsum csum, const struct skb_checksum_ops *ops)
2085 {
2086 	int start = skb_headlen(skb);
2087 	int i, copy = start - offset;
2088 	struct sk_buff *frag_iter;
2089 	int pos = 0;
2090 
2091 	/* Checksum header. */
2092 	if (copy > 0) {
2093 		if (copy > len)
2094 			copy = len;
2095 		csum = ops->update(skb->data + offset, copy, csum);
2096 		if ((len -= copy) == 0)
2097 			return csum;
2098 		offset += copy;
2099 		pos	= copy;
2100 	}
2101 
2102 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2103 		int end;
2104 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2105 
2106 		WARN_ON(start > offset + len);
2107 
2108 		end = start + skb_frag_size(frag);
2109 		if ((copy = end - offset) > 0) {
2110 			__wsum csum2;
2111 			u8 *vaddr;
2112 
2113 			if (copy > len)
2114 				copy = len;
2115 			vaddr = kmap_atomic(skb_frag_page(frag));
2116 			csum2 = ops->update(vaddr + frag->page_offset +
2117 					    offset - start, copy, 0);
2118 			kunmap_atomic(vaddr);
2119 			csum = ops->combine(csum, csum2, pos, copy);
2120 			if (!(len -= copy))
2121 				return csum;
2122 			offset += copy;
2123 			pos    += copy;
2124 		}
2125 		start = end;
2126 	}
2127 
2128 	skb_walk_frags(skb, frag_iter) {
2129 		int end;
2130 
2131 		WARN_ON(start > offset + len);
2132 
2133 		end = start + frag_iter->len;
2134 		if ((copy = end - offset) > 0) {
2135 			__wsum csum2;
2136 			if (copy > len)
2137 				copy = len;
2138 			csum2 = __skb_checksum(frag_iter, offset - start,
2139 					       copy, 0, ops);
2140 			csum = ops->combine(csum, csum2, pos, copy);
2141 			if ((len -= copy) == 0)
2142 				return csum;
2143 			offset += copy;
2144 			pos    += copy;
2145 		}
2146 		start = end;
2147 	}
2148 	BUG_ON(len);
2149 
2150 	return csum;
2151 }
2152 EXPORT_SYMBOL(__skb_checksum);
2153 
2154 __wsum skb_checksum(const struct sk_buff *skb, int offset,
2155 		    int len, __wsum csum)
2156 {
2157 	const struct skb_checksum_ops ops = {
2158 		.update  = csum_partial_ext,
2159 		.combine = csum_block_add_ext,
2160 	};
2161 
2162 	return __skb_checksum(skb, offset, len, csum, &ops);
2163 }
2164 EXPORT_SYMBOL(skb_checksum);
2165 
2166 /* Both of above in one bottle. */
2167 
2168 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
2169 				    u8 *to, int len, __wsum csum)
2170 {
2171 	int start = skb_headlen(skb);
2172 	int i, copy = start - offset;
2173 	struct sk_buff *frag_iter;
2174 	int pos = 0;
2175 
2176 	/* Copy header. */
2177 	if (copy > 0) {
2178 		if (copy > len)
2179 			copy = len;
2180 		csum = csum_partial_copy_nocheck(skb->data + offset, to,
2181 						 copy, csum);
2182 		if ((len -= copy) == 0)
2183 			return csum;
2184 		offset += copy;
2185 		to     += copy;
2186 		pos	= copy;
2187 	}
2188 
2189 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2190 		int end;
2191 
2192 		WARN_ON(start > offset + len);
2193 
2194 		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
2195 		if ((copy = end - offset) > 0) {
2196 			__wsum csum2;
2197 			u8 *vaddr;
2198 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2199 
2200 			if (copy > len)
2201 				copy = len;
2202 			vaddr = kmap_atomic(skb_frag_page(frag));
2203 			csum2 = csum_partial_copy_nocheck(vaddr +
2204 							  frag->page_offset +
2205 							  offset - start, to,
2206 							  copy, 0);
2207 			kunmap_atomic(vaddr);
2208 			csum = csum_block_add(csum, csum2, pos);
2209 			if (!(len -= copy))
2210 				return csum;
2211 			offset += copy;
2212 			to     += copy;
2213 			pos    += copy;
2214 		}
2215 		start = end;
2216 	}
2217 
2218 	skb_walk_frags(skb, frag_iter) {
2219 		__wsum csum2;
2220 		int end;
2221 
2222 		WARN_ON(start > offset + len);
2223 
2224 		end = start + frag_iter->len;
2225 		if ((copy = end - offset) > 0) {
2226 			if (copy > len)
2227 				copy = len;
2228 			csum2 = skb_copy_and_csum_bits(frag_iter,
2229 						       offset - start,
2230 						       to, copy, 0);
2231 			csum = csum_block_add(csum, csum2, pos);
2232 			if ((len -= copy) == 0)
2233 				return csum;
2234 			offset += copy;
2235 			to     += copy;
2236 			pos    += copy;
2237 		}
2238 		start = end;
2239 	}
2240 	BUG_ON(len);
2241 	return csum;
2242 }
2243 EXPORT_SYMBOL(skb_copy_and_csum_bits);
2244 
2245  /**
2246  *	skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy()
2247  *	@from: source buffer
2248  *
2249  *	Calculates the amount of linear headroom needed in the 'to' skb passed
2250  *	into skb_zerocopy().
2251  */
2252 unsigned int
2253 skb_zerocopy_headlen(const struct sk_buff *from)
2254 {
2255 	unsigned int hlen = 0;
2256 
2257 	if (!from->head_frag ||
2258 	    skb_headlen(from) < L1_CACHE_BYTES ||
2259 	    skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS)
2260 		hlen = skb_headlen(from);
2261 
2262 	if (skb_has_frag_list(from))
2263 		hlen = from->len;
2264 
2265 	return hlen;
2266 }
2267 EXPORT_SYMBOL_GPL(skb_zerocopy_headlen);
2268 
2269 /**
2270  *	skb_zerocopy - Zero copy skb to skb
2271  *	@to: destination buffer
2272  *	@from: source buffer
2273  *	@len: number of bytes to copy from source buffer
2274  *	@hlen: size of linear headroom in destination buffer
2275  *
2276  *	Copies up to `len` bytes from `from` to `to` by creating references
2277  *	to the frags in the source buffer.
2278  *
2279  *	The `hlen` as calculated by skb_zerocopy_headlen() specifies the
2280  *	headroom in the `to` buffer.
2281  *
2282  *	Return value:
2283  *	0: everything is OK
2284  *	-ENOMEM: couldn't orphan frags of @from due to lack of memory
2285  *	-EFAULT: skb_copy_bits() found some problem with skb geometry
2286  */
2287 int
2288 skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen)
2289 {
2290 	int i, j = 0;
2291 	int plen = 0; /* length of skb->head fragment */
2292 	int ret;
2293 	struct page *page;
2294 	unsigned int offset;
2295 
2296 	BUG_ON(!from->head_frag && !hlen);
2297 
2298 	/* dont bother with small payloads */
2299 	if (len <= skb_tailroom(to))
2300 		return skb_copy_bits(from, 0, skb_put(to, len), len);
2301 
2302 	if (hlen) {
2303 		ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen);
2304 		if (unlikely(ret))
2305 			return ret;
2306 		len -= hlen;
2307 	} else {
2308 		plen = min_t(int, skb_headlen(from), len);
2309 		if (plen) {
2310 			page = virt_to_head_page(from->head);
2311 			offset = from->data - (unsigned char *)page_address(page);
2312 			__skb_fill_page_desc(to, 0, page, offset, plen);
2313 			get_page(page);
2314 			j = 1;
2315 			len -= plen;
2316 		}
2317 	}
2318 
2319 	to->truesize += len + plen;
2320 	to->len += len + plen;
2321 	to->data_len += len + plen;
2322 
2323 	if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) {
2324 		skb_tx_error(from);
2325 		return -ENOMEM;
2326 	}
2327 
2328 	for (i = 0; i < skb_shinfo(from)->nr_frags; i++) {
2329 		if (!len)
2330 			break;
2331 		skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i];
2332 		skb_shinfo(to)->frags[j].size = min_t(int, skb_shinfo(to)->frags[j].size, len);
2333 		len -= skb_shinfo(to)->frags[j].size;
2334 		skb_frag_ref(to, j);
2335 		j++;
2336 	}
2337 	skb_shinfo(to)->nr_frags = j;
2338 
2339 	return 0;
2340 }
2341 EXPORT_SYMBOL_GPL(skb_zerocopy);
2342 
2343 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
2344 {
2345 	__wsum csum;
2346 	long csstart;
2347 
2348 	if (skb->ip_summed == CHECKSUM_PARTIAL)
2349 		csstart = skb_checksum_start_offset(skb);
2350 	else
2351 		csstart = skb_headlen(skb);
2352 
2353 	BUG_ON(csstart > skb_headlen(skb));
2354 
2355 	skb_copy_from_linear_data(skb, to, csstart);
2356 
2357 	csum = 0;
2358 	if (csstart != skb->len)
2359 		csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
2360 					      skb->len - csstart, 0);
2361 
2362 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
2363 		long csstuff = csstart + skb->csum_offset;
2364 
2365 		*((__sum16 *)(to + csstuff)) = csum_fold(csum);
2366 	}
2367 }
2368 EXPORT_SYMBOL(skb_copy_and_csum_dev);
2369 
2370 /**
2371  *	skb_dequeue - remove from the head of the queue
2372  *	@list: list to dequeue from
2373  *
2374  *	Remove the head of the list. The list lock is taken so the function
2375  *	may be used safely with other locking list functions. The head item is
2376  *	returned or %NULL if the list is empty.
2377  */
2378 
2379 struct sk_buff *skb_dequeue(struct sk_buff_head *list)
2380 {
2381 	unsigned long flags;
2382 	struct sk_buff *result;
2383 
2384 	spin_lock_irqsave(&list->lock, flags);
2385 	result = __skb_dequeue(list);
2386 	spin_unlock_irqrestore(&list->lock, flags);
2387 	return result;
2388 }
2389 EXPORT_SYMBOL(skb_dequeue);
2390 
2391 /**
2392  *	skb_dequeue_tail - remove from the tail of the queue
2393  *	@list: list to dequeue from
2394  *
2395  *	Remove the tail of the list. The list lock is taken so the function
2396  *	may be used safely with other locking list functions. The tail item is
2397  *	returned or %NULL if the list is empty.
2398  */
2399 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
2400 {
2401 	unsigned long flags;
2402 	struct sk_buff *result;
2403 
2404 	spin_lock_irqsave(&list->lock, flags);
2405 	result = __skb_dequeue_tail(list);
2406 	spin_unlock_irqrestore(&list->lock, flags);
2407 	return result;
2408 }
2409 EXPORT_SYMBOL(skb_dequeue_tail);
2410 
2411 /**
2412  *	skb_queue_purge - empty a list
2413  *	@list: list to empty
2414  *
2415  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
2416  *	the list and one reference dropped. This function takes the list
2417  *	lock and is atomic with respect to other list locking functions.
2418  */
2419 void skb_queue_purge(struct sk_buff_head *list)
2420 {
2421 	struct sk_buff *skb;
2422 	while ((skb = skb_dequeue(list)) != NULL)
2423 		kfree_skb(skb);
2424 }
2425 EXPORT_SYMBOL(skb_queue_purge);
2426 
2427 /**
2428  *	skb_rbtree_purge - empty a skb rbtree
2429  *	@root: root of the rbtree to empty
2430  *
2431  *	Delete all buffers on an &sk_buff rbtree. Each buffer is removed from
2432  *	the list and one reference dropped. This function does not take
2433  *	any lock. Synchronization should be handled by the caller (e.g., TCP
2434  *	out-of-order queue is protected by the socket lock).
2435  */
2436 void skb_rbtree_purge(struct rb_root *root)
2437 {
2438 	struct sk_buff *skb, *next;
2439 
2440 	rbtree_postorder_for_each_entry_safe(skb, next, root, rbnode)
2441 		kfree_skb(skb);
2442 
2443 	*root = RB_ROOT;
2444 }
2445 
2446 /**
2447  *	skb_queue_head - queue a buffer at the list head
2448  *	@list: list to use
2449  *	@newsk: buffer to queue
2450  *
2451  *	Queue a buffer at the start of the list. This function takes the
2452  *	list lock and can be used safely with other locking &sk_buff functions
2453  *	safely.
2454  *
2455  *	A buffer cannot be placed on two lists at the same time.
2456  */
2457 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
2458 {
2459 	unsigned long flags;
2460 
2461 	spin_lock_irqsave(&list->lock, flags);
2462 	__skb_queue_head(list, newsk);
2463 	spin_unlock_irqrestore(&list->lock, flags);
2464 }
2465 EXPORT_SYMBOL(skb_queue_head);
2466 
2467 /**
2468  *	skb_queue_tail - queue a buffer at the list tail
2469  *	@list: list to use
2470  *	@newsk: buffer to queue
2471  *
2472  *	Queue a buffer at the tail of the list. This function takes the
2473  *	list lock and can be used safely with other locking &sk_buff functions
2474  *	safely.
2475  *
2476  *	A buffer cannot be placed on two lists at the same time.
2477  */
2478 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
2479 {
2480 	unsigned long flags;
2481 
2482 	spin_lock_irqsave(&list->lock, flags);
2483 	__skb_queue_tail(list, newsk);
2484 	spin_unlock_irqrestore(&list->lock, flags);
2485 }
2486 EXPORT_SYMBOL(skb_queue_tail);
2487 
2488 /**
2489  *	skb_unlink	-	remove a buffer from a list
2490  *	@skb: buffer to remove
2491  *	@list: list to use
2492  *
2493  *	Remove a packet from a list. The list locks are taken and this
2494  *	function is atomic with respect to other list locked calls
2495  *
2496  *	You must know what list the SKB is on.
2497  */
2498 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
2499 {
2500 	unsigned long flags;
2501 
2502 	spin_lock_irqsave(&list->lock, flags);
2503 	__skb_unlink(skb, list);
2504 	spin_unlock_irqrestore(&list->lock, flags);
2505 }
2506 EXPORT_SYMBOL(skb_unlink);
2507 
2508 /**
2509  *	skb_append	-	append a buffer
2510  *	@old: buffer to insert after
2511  *	@newsk: buffer to insert
2512  *	@list: list to use
2513  *
2514  *	Place a packet after a given packet in a list. The list locks are taken
2515  *	and this function is atomic with respect to other list locked calls.
2516  *	A buffer cannot be placed on two lists at the same time.
2517  */
2518 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
2519 {
2520 	unsigned long flags;
2521 
2522 	spin_lock_irqsave(&list->lock, flags);
2523 	__skb_queue_after(list, old, newsk);
2524 	spin_unlock_irqrestore(&list->lock, flags);
2525 }
2526 EXPORT_SYMBOL(skb_append);
2527 
2528 /**
2529  *	skb_insert	-	insert a buffer
2530  *	@old: buffer to insert before
2531  *	@newsk: buffer to insert
2532  *	@list: list to use
2533  *
2534  *	Place a packet before a given packet in a list. The list locks are
2535  * 	taken and this function is atomic with respect to other list locked
2536  *	calls.
2537  *
2538  *	A buffer cannot be placed on two lists at the same time.
2539  */
2540 void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
2541 {
2542 	unsigned long flags;
2543 
2544 	spin_lock_irqsave(&list->lock, flags);
2545 	__skb_insert(newsk, old->prev, old, list);
2546 	spin_unlock_irqrestore(&list->lock, flags);
2547 }
2548 EXPORT_SYMBOL(skb_insert);
2549 
2550 static inline void skb_split_inside_header(struct sk_buff *skb,
2551 					   struct sk_buff* skb1,
2552 					   const u32 len, const int pos)
2553 {
2554 	int i;
2555 
2556 	skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
2557 					 pos - len);
2558 	/* And move data appendix as is. */
2559 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
2560 		skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
2561 
2562 	skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
2563 	skb_shinfo(skb)->nr_frags  = 0;
2564 	skb1->data_len		   = skb->data_len;
2565 	skb1->len		   += skb1->data_len;
2566 	skb->data_len		   = 0;
2567 	skb->len		   = len;
2568 	skb_set_tail_pointer(skb, len);
2569 }
2570 
2571 static inline void skb_split_no_header(struct sk_buff *skb,
2572 				       struct sk_buff* skb1,
2573 				       const u32 len, int pos)
2574 {
2575 	int i, k = 0;
2576 	const int nfrags = skb_shinfo(skb)->nr_frags;
2577 
2578 	skb_shinfo(skb)->nr_frags = 0;
2579 	skb1->len		  = skb1->data_len = skb->len - len;
2580 	skb->len		  = len;
2581 	skb->data_len		  = len - pos;
2582 
2583 	for (i = 0; i < nfrags; i++) {
2584 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2585 
2586 		if (pos + size > len) {
2587 			skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
2588 
2589 			if (pos < len) {
2590 				/* Split frag.
2591 				 * We have two variants in this case:
2592 				 * 1. Move all the frag to the second
2593 				 *    part, if it is possible. F.e.
2594 				 *    this approach is mandatory for TUX,
2595 				 *    where splitting is expensive.
2596 				 * 2. Split is accurately. We make this.
2597 				 */
2598 				skb_frag_ref(skb, i);
2599 				skb_shinfo(skb1)->frags[0].page_offset += len - pos;
2600 				skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos);
2601 				skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos);
2602 				skb_shinfo(skb)->nr_frags++;
2603 			}
2604 			k++;
2605 		} else
2606 			skb_shinfo(skb)->nr_frags++;
2607 		pos += size;
2608 	}
2609 	skb_shinfo(skb1)->nr_frags = k;
2610 }
2611 
2612 /**
2613  * skb_split - Split fragmented skb to two parts at length len.
2614  * @skb: the buffer to split
2615  * @skb1: the buffer to receive the second part
2616  * @len: new length for skb
2617  */
2618 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
2619 {
2620 	int pos = skb_headlen(skb);
2621 
2622 	skb_shinfo(skb1)->tx_flags = skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG;
2623 	if (len < pos)	/* Split line is inside header. */
2624 		skb_split_inside_header(skb, skb1, len, pos);
2625 	else		/* Second chunk has no header, nothing to copy. */
2626 		skb_split_no_header(skb, skb1, len, pos);
2627 }
2628 EXPORT_SYMBOL(skb_split);
2629 
2630 /* Shifting from/to a cloned skb is a no-go.
2631  *
2632  * Caller cannot keep skb_shinfo related pointers past calling here!
2633  */
2634 static int skb_prepare_for_shift(struct sk_buff *skb)
2635 {
2636 	return skb_cloned(skb) && pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2637 }
2638 
2639 /**
2640  * skb_shift - Shifts paged data partially from skb to another
2641  * @tgt: buffer into which tail data gets added
2642  * @skb: buffer from which the paged data comes from
2643  * @shiftlen: shift up to this many bytes
2644  *
2645  * Attempts to shift up to shiftlen worth of bytes, which may be less than
2646  * the length of the skb, from skb to tgt. Returns number bytes shifted.
2647  * It's up to caller to free skb if everything was shifted.
2648  *
2649  * If @tgt runs out of frags, the whole operation is aborted.
2650  *
2651  * Skb cannot include anything else but paged data while tgt is allowed
2652  * to have non-paged data as well.
2653  *
2654  * TODO: full sized shift could be optimized but that would need
2655  * specialized skb free'er to handle frags without up-to-date nr_frags.
2656  */
2657 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
2658 {
2659 	int from, to, merge, todo;
2660 	struct skb_frag_struct *fragfrom, *fragto;
2661 
2662 	BUG_ON(shiftlen > skb->len);
2663 
2664 	if (skb_headlen(skb))
2665 		return 0;
2666 
2667 	todo = shiftlen;
2668 	from = 0;
2669 	to = skb_shinfo(tgt)->nr_frags;
2670 	fragfrom = &skb_shinfo(skb)->frags[from];
2671 
2672 	/* Actual merge is delayed until the point when we know we can
2673 	 * commit all, so that we don't have to undo partial changes
2674 	 */
2675 	if (!to ||
2676 	    !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom),
2677 			      fragfrom->page_offset)) {
2678 		merge = -1;
2679 	} else {
2680 		merge = to - 1;
2681 
2682 		todo -= skb_frag_size(fragfrom);
2683 		if (todo < 0) {
2684 			if (skb_prepare_for_shift(skb) ||
2685 			    skb_prepare_for_shift(tgt))
2686 				return 0;
2687 
2688 			/* All previous frag pointers might be stale! */
2689 			fragfrom = &skb_shinfo(skb)->frags[from];
2690 			fragto = &skb_shinfo(tgt)->frags[merge];
2691 
2692 			skb_frag_size_add(fragto, shiftlen);
2693 			skb_frag_size_sub(fragfrom, shiftlen);
2694 			fragfrom->page_offset += shiftlen;
2695 
2696 			goto onlymerged;
2697 		}
2698 
2699 		from++;
2700 	}
2701 
2702 	/* Skip full, not-fitting skb to avoid expensive operations */
2703 	if ((shiftlen == skb->len) &&
2704 	    (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
2705 		return 0;
2706 
2707 	if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
2708 		return 0;
2709 
2710 	while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
2711 		if (to == MAX_SKB_FRAGS)
2712 			return 0;
2713 
2714 		fragfrom = &skb_shinfo(skb)->frags[from];
2715 		fragto = &skb_shinfo(tgt)->frags[to];
2716 
2717 		if (todo >= skb_frag_size(fragfrom)) {
2718 			*fragto = *fragfrom;
2719 			todo -= skb_frag_size(fragfrom);
2720 			from++;
2721 			to++;
2722 
2723 		} else {
2724 			__skb_frag_ref(fragfrom);
2725 			fragto->page = fragfrom->page;
2726 			fragto->page_offset = fragfrom->page_offset;
2727 			skb_frag_size_set(fragto, todo);
2728 
2729 			fragfrom->page_offset += todo;
2730 			skb_frag_size_sub(fragfrom, todo);
2731 			todo = 0;
2732 
2733 			to++;
2734 			break;
2735 		}
2736 	}
2737 
2738 	/* Ready to "commit" this state change to tgt */
2739 	skb_shinfo(tgt)->nr_frags = to;
2740 
2741 	if (merge >= 0) {
2742 		fragfrom = &skb_shinfo(skb)->frags[0];
2743 		fragto = &skb_shinfo(tgt)->frags[merge];
2744 
2745 		skb_frag_size_add(fragto, skb_frag_size(fragfrom));
2746 		__skb_frag_unref(fragfrom);
2747 	}
2748 
2749 	/* Reposition in the original skb */
2750 	to = 0;
2751 	while (from < skb_shinfo(skb)->nr_frags)
2752 		skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
2753 	skb_shinfo(skb)->nr_frags = to;
2754 
2755 	BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
2756 
2757 onlymerged:
2758 	/* Most likely the tgt won't ever need its checksum anymore, skb on
2759 	 * the other hand might need it if it needs to be resent
2760 	 */
2761 	tgt->ip_summed = CHECKSUM_PARTIAL;
2762 	skb->ip_summed = CHECKSUM_PARTIAL;
2763 
2764 	/* Yak, is it really working this way? Some helper please? */
2765 	skb->len -= shiftlen;
2766 	skb->data_len -= shiftlen;
2767 	skb->truesize -= shiftlen;
2768 	tgt->len += shiftlen;
2769 	tgt->data_len += shiftlen;
2770 	tgt->truesize += shiftlen;
2771 
2772 	return shiftlen;
2773 }
2774 
2775 /**
2776  * skb_prepare_seq_read - Prepare a sequential read of skb data
2777  * @skb: the buffer to read
2778  * @from: lower offset of data to be read
2779  * @to: upper offset of data to be read
2780  * @st: state variable
2781  *
2782  * Initializes the specified state variable. Must be called before
2783  * invoking skb_seq_read() for the first time.
2784  */
2785 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
2786 			  unsigned int to, struct skb_seq_state *st)
2787 {
2788 	st->lower_offset = from;
2789 	st->upper_offset = to;
2790 	st->root_skb = st->cur_skb = skb;
2791 	st->frag_idx = st->stepped_offset = 0;
2792 	st->frag_data = NULL;
2793 }
2794 EXPORT_SYMBOL(skb_prepare_seq_read);
2795 
2796 /**
2797  * skb_seq_read - Sequentially read skb data
2798  * @consumed: number of bytes consumed by the caller so far
2799  * @data: destination pointer for data to be returned
2800  * @st: state variable
2801  *
2802  * Reads a block of skb data at @consumed relative to the
2803  * lower offset specified to skb_prepare_seq_read(). Assigns
2804  * the head of the data block to @data and returns the length
2805  * of the block or 0 if the end of the skb data or the upper
2806  * offset has been reached.
2807  *
2808  * The caller is not required to consume all of the data
2809  * returned, i.e. @consumed is typically set to the number
2810  * of bytes already consumed and the next call to
2811  * skb_seq_read() will return the remaining part of the block.
2812  *
2813  * Note 1: The size of each block of data returned can be arbitrary,
2814  *       this limitation is the cost for zerocopy sequential
2815  *       reads of potentially non linear data.
2816  *
2817  * Note 2: Fragment lists within fragments are not implemented
2818  *       at the moment, state->root_skb could be replaced with
2819  *       a stack for this purpose.
2820  */
2821 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
2822 			  struct skb_seq_state *st)
2823 {
2824 	unsigned int block_limit, abs_offset = consumed + st->lower_offset;
2825 	skb_frag_t *frag;
2826 
2827 	if (unlikely(abs_offset >= st->upper_offset)) {
2828 		if (st->frag_data) {
2829 			kunmap_atomic(st->frag_data);
2830 			st->frag_data = NULL;
2831 		}
2832 		return 0;
2833 	}
2834 
2835 next_skb:
2836 	block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
2837 
2838 	if (abs_offset < block_limit && !st->frag_data) {
2839 		*data = st->cur_skb->data + (abs_offset - st->stepped_offset);
2840 		return block_limit - abs_offset;
2841 	}
2842 
2843 	if (st->frag_idx == 0 && !st->frag_data)
2844 		st->stepped_offset += skb_headlen(st->cur_skb);
2845 
2846 	while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
2847 		frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
2848 		block_limit = skb_frag_size(frag) + st->stepped_offset;
2849 
2850 		if (abs_offset < block_limit) {
2851 			if (!st->frag_data)
2852 				st->frag_data = kmap_atomic(skb_frag_page(frag));
2853 
2854 			*data = (u8 *) st->frag_data + frag->page_offset +
2855 				(abs_offset - st->stepped_offset);
2856 
2857 			return block_limit - abs_offset;
2858 		}
2859 
2860 		if (st->frag_data) {
2861 			kunmap_atomic(st->frag_data);
2862 			st->frag_data = NULL;
2863 		}
2864 
2865 		st->frag_idx++;
2866 		st->stepped_offset += skb_frag_size(frag);
2867 	}
2868 
2869 	if (st->frag_data) {
2870 		kunmap_atomic(st->frag_data);
2871 		st->frag_data = NULL;
2872 	}
2873 
2874 	if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) {
2875 		st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
2876 		st->frag_idx = 0;
2877 		goto next_skb;
2878 	} else if (st->cur_skb->next) {
2879 		st->cur_skb = st->cur_skb->next;
2880 		st->frag_idx = 0;
2881 		goto next_skb;
2882 	}
2883 
2884 	return 0;
2885 }
2886 EXPORT_SYMBOL(skb_seq_read);
2887 
2888 /**
2889  * skb_abort_seq_read - Abort a sequential read of skb data
2890  * @st: state variable
2891  *
2892  * Must be called if skb_seq_read() was not called until it
2893  * returned 0.
2894  */
2895 void skb_abort_seq_read(struct skb_seq_state *st)
2896 {
2897 	if (st->frag_data)
2898 		kunmap_atomic(st->frag_data);
2899 }
2900 EXPORT_SYMBOL(skb_abort_seq_read);
2901 
2902 #define TS_SKB_CB(state)	((struct skb_seq_state *) &((state)->cb))
2903 
2904 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
2905 					  struct ts_config *conf,
2906 					  struct ts_state *state)
2907 {
2908 	return skb_seq_read(offset, text, TS_SKB_CB(state));
2909 }
2910 
2911 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
2912 {
2913 	skb_abort_seq_read(TS_SKB_CB(state));
2914 }
2915 
2916 /**
2917  * skb_find_text - Find a text pattern in skb data
2918  * @skb: the buffer to look in
2919  * @from: search offset
2920  * @to: search limit
2921  * @config: textsearch configuration
2922  *
2923  * Finds a pattern in the skb data according to the specified
2924  * textsearch configuration. Use textsearch_next() to retrieve
2925  * subsequent occurrences of the pattern. Returns the offset
2926  * to the first occurrence or UINT_MAX if no match was found.
2927  */
2928 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
2929 			   unsigned int to, struct ts_config *config)
2930 {
2931 	struct ts_state state;
2932 	unsigned int ret;
2933 
2934 	config->get_next_block = skb_ts_get_next_block;
2935 	config->finish = skb_ts_finish;
2936 
2937 	skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state));
2938 
2939 	ret = textsearch_find(config, &state);
2940 	return (ret <= to - from ? ret : UINT_MAX);
2941 }
2942 EXPORT_SYMBOL(skb_find_text);
2943 
2944 /**
2945  * skb_append_datato_frags - append the user data to a skb
2946  * @sk: sock  structure
2947  * @skb: skb structure to be appended with user data.
2948  * @getfrag: call back function to be used for getting the user data
2949  * @from: pointer to user message iov
2950  * @length: length of the iov message
2951  *
2952  * Description: This procedure append the user data in the fragment part
2953  * of the skb if any page alloc fails user this procedure returns  -ENOMEM
2954  */
2955 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
2956 			int (*getfrag)(void *from, char *to, int offset,
2957 					int len, int odd, struct sk_buff *skb),
2958 			void *from, int length)
2959 {
2960 	int frg_cnt = skb_shinfo(skb)->nr_frags;
2961 	int copy;
2962 	int offset = 0;
2963 	int ret;
2964 	struct page_frag *pfrag = &current->task_frag;
2965 
2966 	do {
2967 		/* Return error if we don't have space for new frag */
2968 		if (frg_cnt >= MAX_SKB_FRAGS)
2969 			return -EMSGSIZE;
2970 
2971 		if (!sk_page_frag_refill(sk, pfrag))
2972 			return -ENOMEM;
2973 
2974 		/* copy the user data to page */
2975 		copy = min_t(int, length, pfrag->size - pfrag->offset);
2976 
2977 		ret = getfrag(from, page_address(pfrag->page) + pfrag->offset,
2978 			      offset, copy, 0, skb);
2979 		if (ret < 0)
2980 			return -EFAULT;
2981 
2982 		/* copy was successful so update the size parameters */
2983 		skb_fill_page_desc(skb, frg_cnt, pfrag->page, pfrag->offset,
2984 				   copy);
2985 		frg_cnt++;
2986 		pfrag->offset += copy;
2987 		get_page(pfrag->page);
2988 
2989 		skb->truesize += copy;
2990 		atomic_add(copy, &sk->sk_wmem_alloc);
2991 		skb->len += copy;
2992 		skb->data_len += copy;
2993 		offset += copy;
2994 		length -= copy;
2995 
2996 	} while (length > 0);
2997 
2998 	return 0;
2999 }
3000 EXPORT_SYMBOL(skb_append_datato_frags);
3001 
3002 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
3003 			 int offset, size_t size)
3004 {
3005 	int i = skb_shinfo(skb)->nr_frags;
3006 
3007 	if (skb_can_coalesce(skb, i, page, offset)) {
3008 		skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size);
3009 	} else if (i < MAX_SKB_FRAGS) {
3010 		get_page(page);
3011 		skb_fill_page_desc(skb, i, page, offset, size);
3012 	} else {
3013 		return -EMSGSIZE;
3014 	}
3015 
3016 	return 0;
3017 }
3018 EXPORT_SYMBOL_GPL(skb_append_pagefrags);
3019 
3020 /**
3021  *	skb_pull_rcsum - pull skb and update receive checksum
3022  *	@skb: buffer to update
3023  *	@len: length of data pulled
3024  *
3025  *	This function performs an skb_pull on the packet and updates
3026  *	the CHECKSUM_COMPLETE checksum.  It should be used on
3027  *	receive path processing instead of skb_pull unless you know
3028  *	that the checksum difference is zero (e.g., a valid IP header)
3029  *	or you are setting ip_summed to CHECKSUM_NONE.
3030  */
3031 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
3032 {
3033 	unsigned char *data = skb->data;
3034 
3035 	BUG_ON(len > skb->len);
3036 	__skb_pull(skb, len);
3037 	skb_postpull_rcsum(skb, data, len);
3038 	return skb->data;
3039 }
3040 EXPORT_SYMBOL_GPL(skb_pull_rcsum);
3041 
3042 /**
3043  *	skb_segment - Perform protocol segmentation on skb.
3044  *	@head_skb: buffer to segment
3045  *	@features: features for the output path (see dev->features)
3046  *
3047  *	This function performs segmentation on the given skb.  It returns
3048  *	a pointer to the first in a list of new skbs for the segments.
3049  *	In case of error it returns ERR_PTR(err).
3050  */
3051 struct sk_buff *skb_segment(struct sk_buff *head_skb,
3052 			    netdev_features_t features)
3053 {
3054 	struct sk_buff *segs = NULL;
3055 	struct sk_buff *tail = NULL;
3056 	struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list;
3057 	skb_frag_t *frag = skb_shinfo(head_skb)->frags;
3058 	unsigned int mss = skb_shinfo(head_skb)->gso_size;
3059 	unsigned int doffset = head_skb->data - skb_mac_header(head_skb);
3060 	struct sk_buff *frag_skb = head_skb;
3061 	unsigned int offset = doffset;
3062 	unsigned int tnl_hlen = skb_tnl_header_len(head_skb);
3063 	unsigned int partial_segs = 0;
3064 	unsigned int headroom;
3065 	unsigned int len = head_skb->len;
3066 	__be16 proto;
3067 	bool csum, sg;
3068 	int nfrags = skb_shinfo(head_skb)->nr_frags;
3069 	int err = -ENOMEM;
3070 	int i = 0;
3071 	int pos;
3072 	int dummy;
3073 
3074 	__skb_push(head_skb, doffset);
3075 	proto = skb_network_protocol(head_skb, &dummy);
3076 	if (unlikely(!proto))
3077 		return ERR_PTR(-EINVAL);
3078 
3079 	sg = !!(features & NETIF_F_SG);
3080 	csum = !!can_checksum_protocol(features, proto);
3081 
3082 	if (sg && csum && (mss != GSO_BY_FRAGS))  {
3083 		if (!(features & NETIF_F_GSO_PARTIAL)) {
3084 			struct sk_buff *iter;
3085 
3086 			if (!list_skb ||
3087 			    !net_gso_ok(features, skb_shinfo(head_skb)->gso_type))
3088 				goto normal;
3089 
3090 			/* Split the buffer at the frag_list pointer.
3091 			 * This is based on the assumption that all
3092 			 * buffers in the chain excluding the last
3093 			 * containing the same amount of data.
3094 			 */
3095 			skb_walk_frags(head_skb, iter) {
3096 				if (skb_headlen(iter))
3097 					goto normal;
3098 
3099 				len -= iter->len;
3100 			}
3101 		}
3102 
3103 		/* GSO partial only requires that we trim off any excess that
3104 		 * doesn't fit into an MSS sized block, so take care of that
3105 		 * now.
3106 		 */
3107 		partial_segs = len / mss;
3108 		if (partial_segs > 1)
3109 			mss *= partial_segs;
3110 		else
3111 			partial_segs = 0;
3112 	}
3113 
3114 normal:
3115 	headroom = skb_headroom(head_skb);
3116 	pos = skb_headlen(head_skb);
3117 
3118 	do {
3119 		struct sk_buff *nskb;
3120 		skb_frag_t *nskb_frag;
3121 		int hsize;
3122 		int size;
3123 
3124 		if (unlikely(mss == GSO_BY_FRAGS)) {
3125 			len = list_skb->len;
3126 		} else {
3127 			len = head_skb->len - offset;
3128 			if (len > mss)
3129 				len = mss;
3130 		}
3131 
3132 		hsize = skb_headlen(head_skb) - offset;
3133 		if (hsize < 0)
3134 			hsize = 0;
3135 		if (hsize > len || !sg)
3136 			hsize = len;
3137 
3138 		if (!hsize && i >= nfrags && skb_headlen(list_skb) &&
3139 		    (skb_headlen(list_skb) == len || sg)) {
3140 			BUG_ON(skb_headlen(list_skb) > len);
3141 
3142 			i = 0;
3143 			nfrags = skb_shinfo(list_skb)->nr_frags;
3144 			frag = skb_shinfo(list_skb)->frags;
3145 			frag_skb = list_skb;
3146 			pos += skb_headlen(list_skb);
3147 
3148 			while (pos < offset + len) {
3149 				BUG_ON(i >= nfrags);
3150 
3151 				size = skb_frag_size(frag);
3152 				if (pos + size > offset + len)
3153 					break;
3154 
3155 				i++;
3156 				pos += size;
3157 				frag++;
3158 			}
3159 
3160 			nskb = skb_clone(list_skb, GFP_ATOMIC);
3161 			list_skb = list_skb->next;
3162 
3163 			if (unlikely(!nskb))
3164 				goto err;
3165 
3166 			if (unlikely(pskb_trim(nskb, len))) {
3167 				kfree_skb(nskb);
3168 				goto err;
3169 			}
3170 
3171 			hsize = skb_end_offset(nskb);
3172 			if (skb_cow_head(nskb, doffset + headroom)) {
3173 				kfree_skb(nskb);
3174 				goto err;
3175 			}
3176 
3177 			nskb->truesize += skb_end_offset(nskb) - hsize;
3178 			skb_release_head_state(nskb);
3179 			__skb_push(nskb, doffset);
3180 		} else {
3181 			nskb = __alloc_skb(hsize + doffset + headroom,
3182 					   GFP_ATOMIC, skb_alloc_rx_flag(head_skb),
3183 					   NUMA_NO_NODE);
3184 
3185 			if (unlikely(!nskb))
3186 				goto err;
3187 
3188 			skb_reserve(nskb, headroom);
3189 			__skb_put(nskb, doffset);
3190 		}
3191 
3192 		if (segs)
3193 			tail->next = nskb;
3194 		else
3195 			segs = nskb;
3196 		tail = nskb;
3197 
3198 		__copy_skb_header(nskb, head_skb);
3199 
3200 		skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom);
3201 		skb_reset_mac_len(nskb);
3202 
3203 		skb_copy_from_linear_data_offset(head_skb, -tnl_hlen,
3204 						 nskb->data - tnl_hlen,
3205 						 doffset + tnl_hlen);
3206 
3207 		if (nskb->len == len + doffset)
3208 			goto perform_csum_check;
3209 
3210 		if (!sg) {
3211 			if (!nskb->remcsum_offload)
3212 				nskb->ip_summed = CHECKSUM_NONE;
3213 			SKB_GSO_CB(nskb)->csum =
3214 				skb_copy_and_csum_bits(head_skb, offset,
3215 						       skb_put(nskb, len),
3216 						       len, 0);
3217 			SKB_GSO_CB(nskb)->csum_start =
3218 				skb_headroom(nskb) + doffset;
3219 			continue;
3220 		}
3221 
3222 		nskb_frag = skb_shinfo(nskb)->frags;
3223 
3224 		skb_copy_from_linear_data_offset(head_skb, offset,
3225 						 skb_put(nskb, hsize), hsize);
3226 
3227 		skb_shinfo(nskb)->tx_flags = skb_shinfo(head_skb)->tx_flags &
3228 			SKBTX_SHARED_FRAG;
3229 
3230 		while (pos < offset + len) {
3231 			if (i >= nfrags) {
3232 				BUG_ON(skb_headlen(list_skb));
3233 
3234 				i = 0;
3235 				nfrags = skb_shinfo(list_skb)->nr_frags;
3236 				frag = skb_shinfo(list_skb)->frags;
3237 				frag_skb = list_skb;
3238 
3239 				BUG_ON(!nfrags);
3240 
3241 				list_skb = list_skb->next;
3242 			}
3243 
3244 			if (unlikely(skb_shinfo(nskb)->nr_frags >=
3245 				     MAX_SKB_FRAGS)) {
3246 				net_warn_ratelimited(
3247 					"skb_segment: too many frags: %u %u\n",
3248 					pos, mss);
3249 				goto err;
3250 			}
3251 
3252 			if (unlikely(skb_orphan_frags(frag_skb, GFP_ATOMIC)))
3253 				goto err;
3254 
3255 			*nskb_frag = *frag;
3256 			__skb_frag_ref(nskb_frag);
3257 			size = skb_frag_size(nskb_frag);
3258 
3259 			if (pos < offset) {
3260 				nskb_frag->page_offset += offset - pos;
3261 				skb_frag_size_sub(nskb_frag, offset - pos);
3262 			}
3263 
3264 			skb_shinfo(nskb)->nr_frags++;
3265 
3266 			if (pos + size <= offset + len) {
3267 				i++;
3268 				frag++;
3269 				pos += size;
3270 			} else {
3271 				skb_frag_size_sub(nskb_frag, pos + size - (offset + len));
3272 				goto skip_fraglist;
3273 			}
3274 
3275 			nskb_frag++;
3276 		}
3277 
3278 skip_fraglist:
3279 		nskb->data_len = len - hsize;
3280 		nskb->len += nskb->data_len;
3281 		nskb->truesize += nskb->data_len;
3282 
3283 perform_csum_check:
3284 		if (!csum) {
3285 			if (skb_has_shared_frag(nskb)) {
3286 				err = __skb_linearize(nskb);
3287 				if (err)
3288 					goto err;
3289 			}
3290 			if (!nskb->remcsum_offload)
3291 				nskb->ip_summed = CHECKSUM_NONE;
3292 			SKB_GSO_CB(nskb)->csum =
3293 				skb_checksum(nskb, doffset,
3294 					     nskb->len - doffset, 0);
3295 			SKB_GSO_CB(nskb)->csum_start =
3296 				skb_headroom(nskb) + doffset;
3297 		}
3298 	} while ((offset += len) < head_skb->len);
3299 
3300 	/* Some callers want to get the end of the list.
3301 	 * Put it in segs->prev to avoid walking the list.
3302 	 * (see validate_xmit_skb_list() for example)
3303 	 */
3304 	segs->prev = tail;
3305 
3306 	if (partial_segs) {
3307 		struct sk_buff *iter;
3308 		int type = skb_shinfo(head_skb)->gso_type;
3309 		unsigned short gso_size = skb_shinfo(head_skb)->gso_size;
3310 
3311 		/* Update type to add partial and then remove dodgy if set */
3312 		type |= (features & NETIF_F_GSO_PARTIAL) / NETIF_F_GSO_PARTIAL * SKB_GSO_PARTIAL;
3313 		type &= ~SKB_GSO_DODGY;
3314 
3315 		/* Update GSO info and prepare to start updating headers on
3316 		 * our way back down the stack of protocols.
3317 		 */
3318 		for (iter = segs; iter; iter = iter->next) {
3319 			skb_shinfo(iter)->gso_size = gso_size;
3320 			skb_shinfo(iter)->gso_segs = partial_segs;
3321 			skb_shinfo(iter)->gso_type = type;
3322 			SKB_GSO_CB(iter)->data_offset = skb_headroom(iter) + doffset;
3323 		}
3324 
3325 		if (tail->len - doffset <= gso_size)
3326 			skb_shinfo(tail)->gso_size = 0;
3327 		else if (tail != segs)
3328 			skb_shinfo(tail)->gso_segs = DIV_ROUND_UP(tail->len - doffset, gso_size);
3329 	}
3330 
3331 	/* Following permits correct backpressure, for protocols
3332 	 * using skb_set_owner_w().
3333 	 * Idea is to tranfert ownership from head_skb to last segment.
3334 	 */
3335 	if (head_skb->destructor == sock_wfree) {
3336 		swap(tail->truesize, head_skb->truesize);
3337 		swap(tail->destructor, head_skb->destructor);
3338 		swap(tail->sk, head_skb->sk);
3339 	}
3340 	return segs;
3341 
3342 err:
3343 	kfree_skb_list(segs);
3344 	return ERR_PTR(err);
3345 }
3346 EXPORT_SYMBOL_GPL(skb_segment);
3347 
3348 int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb)
3349 {
3350 	struct skb_shared_info *pinfo, *skbinfo = skb_shinfo(skb);
3351 	unsigned int offset = skb_gro_offset(skb);
3352 	unsigned int headlen = skb_headlen(skb);
3353 	unsigned int len = skb_gro_len(skb);
3354 	struct sk_buff *lp, *p = *head;
3355 	unsigned int delta_truesize;
3356 
3357 	if (unlikely(p->len + len >= 65536))
3358 		return -E2BIG;
3359 
3360 	lp = NAPI_GRO_CB(p)->last;
3361 	pinfo = skb_shinfo(lp);
3362 
3363 	if (headlen <= offset) {
3364 		skb_frag_t *frag;
3365 		skb_frag_t *frag2;
3366 		int i = skbinfo->nr_frags;
3367 		int nr_frags = pinfo->nr_frags + i;
3368 
3369 		if (nr_frags > MAX_SKB_FRAGS)
3370 			goto merge;
3371 
3372 		offset -= headlen;
3373 		pinfo->nr_frags = nr_frags;
3374 		skbinfo->nr_frags = 0;
3375 
3376 		frag = pinfo->frags + nr_frags;
3377 		frag2 = skbinfo->frags + i;
3378 		do {
3379 			*--frag = *--frag2;
3380 		} while (--i);
3381 
3382 		frag->page_offset += offset;
3383 		skb_frag_size_sub(frag, offset);
3384 
3385 		/* all fragments truesize : remove (head size + sk_buff) */
3386 		delta_truesize = skb->truesize -
3387 				 SKB_TRUESIZE(skb_end_offset(skb));
3388 
3389 		skb->truesize -= skb->data_len;
3390 		skb->len -= skb->data_len;
3391 		skb->data_len = 0;
3392 
3393 		NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE;
3394 		goto done;
3395 	} else if (skb->head_frag) {
3396 		int nr_frags = pinfo->nr_frags;
3397 		skb_frag_t *frag = pinfo->frags + nr_frags;
3398 		struct page *page = virt_to_head_page(skb->head);
3399 		unsigned int first_size = headlen - offset;
3400 		unsigned int first_offset;
3401 
3402 		if (nr_frags + 1 + skbinfo->nr_frags > MAX_SKB_FRAGS)
3403 			goto merge;
3404 
3405 		first_offset = skb->data -
3406 			       (unsigned char *)page_address(page) +
3407 			       offset;
3408 
3409 		pinfo->nr_frags = nr_frags + 1 + skbinfo->nr_frags;
3410 
3411 		frag->page.p	  = page;
3412 		frag->page_offset = first_offset;
3413 		skb_frag_size_set(frag, first_size);
3414 
3415 		memcpy(frag + 1, skbinfo->frags, sizeof(*frag) * skbinfo->nr_frags);
3416 		/* We dont need to clear skbinfo->nr_frags here */
3417 
3418 		delta_truesize = skb->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
3419 		NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE_STOLEN_HEAD;
3420 		goto done;
3421 	}
3422 
3423 merge:
3424 	delta_truesize = skb->truesize;
3425 	if (offset > headlen) {
3426 		unsigned int eat = offset - headlen;
3427 
3428 		skbinfo->frags[0].page_offset += eat;
3429 		skb_frag_size_sub(&skbinfo->frags[0], eat);
3430 		skb->data_len -= eat;
3431 		skb->len -= eat;
3432 		offset = headlen;
3433 	}
3434 
3435 	__skb_pull(skb, offset);
3436 
3437 	if (NAPI_GRO_CB(p)->last == p)
3438 		skb_shinfo(p)->frag_list = skb;
3439 	else
3440 		NAPI_GRO_CB(p)->last->next = skb;
3441 	NAPI_GRO_CB(p)->last = skb;
3442 	__skb_header_release(skb);
3443 	lp = p;
3444 
3445 done:
3446 	NAPI_GRO_CB(p)->count++;
3447 	p->data_len += len;
3448 	p->truesize += delta_truesize;
3449 	p->len += len;
3450 	if (lp != p) {
3451 		lp->data_len += len;
3452 		lp->truesize += delta_truesize;
3453 		lp->len += len;
3454 	}
3455 	NAPI_GRO_CB(skb)->same_flow = 1;
3456 	return 0;
3457 }
3458 EXPORT_SYMBOL_GPL(skb_gro_receive);
3459 
3460 void __init skb_init(void)
3461 {
3462 	skbuff_head_cache = kmem_cache_create("skbuff_head_cache",
3463 					      sizeof(struct sk_buff),
3464 					      0,
3465 					      SLAB_HWCACHE_ALIGN|SLAB_PANIC,
3466 					      NULL);
3467 	skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
3468 						sizeof(struct sk_buff_fclones),
3469 						0,
3470 						SLAB_HWCACHE_ALIGN|SLAB_PANIC,
3471 						NULL);
3472 }
3473 
3474 /**
3475  *	skb_to_sgvec - Fill a scatter-gather list from a socket buffer
3476  *	@skb: Socket buffer containing the buffers to be mapped
3477  *	@sg: The scatter-gather list to map into
3478  *	@offset: The offset into the buffer's contents to start mapping
3479  *	@len: Length of buffer space to be mapped
3480  *
3481  *	Fill the specified scatter-gather list with mappings/pointers into a
3482  *	region of the buffer space attached to a socket buffer.
3483  */
3484 static int
3485 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
3486 {
3487 	int start = skb_headlen(skb);
3488 	int i, copy = start - offset;
3489 	struct sk_buff *frag_iter;
3490 	int elt = 0;
3491 
3492 	if (copy > 0) {
3493 		if (copy > len)
3494 			copy = len;
3495 		sg_set_buf(sg, skb->data + offset, copy);
3496 		elt++;
3497 		if ((len -= copy) == 0)
3498 			return elt;
3499 		offset += copy;
3500 	}
3501 
3502 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3503 		int end;
3504 
3505 		WARN_ON(start > offset + len);
3506 
3507 		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
3508 		if ((copy = end - offset) > 0) {
3509 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3510 
3511 			if (copy > len)
3512 				copy = len;
3513 			sg_set_page(&sg[elt], skb_frag_page(frag), copy,
3514 					frag->page_offset+offset-start);
3515 			elt++;
3516 			if (!(len -= copy))
3517 				return elt;
3518 			offset += copy;
3519 		}
3520 		start = end;
3521 	}
3522 
3523 	skb_walk_frags(skb, frag_iter) {
3524 		int end;
3525 
3526 		WARN_ON(start > offset + len);
3527 
3528 		end = start + frag_iter->len;
3529 		if ((copy = end - offset) > 0) {
3530 			if (copy > len)
3531 				copy = len;
3532 			elt += __skb_to_sgvec(frag_iter, sg+elt, offset - start,
3533 					      copy);
3534 			if ((len -= copy) == 0)
3535 				return elt;
3536 			offset += copy;
3537 		}
3538 		start = end;
3539 	}
3540 	BUG_ON(len);
3541 	return elt;
3542 }
3543 
3544 /* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given
3545  * sglist without mark the sg which contain last skb data as the end.
3546  * So the caller can mannipulate sg list as will when padding new data after
3547  * the first call without calling sg_unmark_end to expend sg list.
3548  *
3549  * Scenario to use skb_to_sgvec_nomark:
3550  * 1. sg_init_table
3551  * 2. skb_to_sgvec_nomark(payload1)
3552  * 3. skb_to_sgvec_nomark(payload2)
3553  *
3554  * This is equivalent to:
3555  * 1. sg_init_table
3556  * 2. skb_to_sgvec(payload1)
3557  * 3. sg_unmark_end
3558  * 4. skb_to_sgvec(payload2)
3559  *
3560  * When mapping mutilple payload conditionally, skb_to_sgvec_nomark
3561  * is more preferable.
3562  */
3563 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
3564 			int offset, int len)
3565 {
3566 	return __skb_to_sgvec(skb, sg, offset, len);
3567 }
3568 EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark);
3569 
3570 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
3571 {
3572 	int nsg = __skb_to_sgvec(skb, sg, offset, len);
3573 
3574 	sg_mark_end(&sg[nsg - 1]);
3575 
3576 	return nsg;
3577 }
3578 EXPORT_SYMBOL_GPL(skb_to_sgvec);
3579 
3580 /**
3581  *	skb_cow_data - Check that a socket buffer's data buffers are writable
3582  *	@skb: The socket buffer to check.
3583  *	@tailbits: Amount of trailing space to be added
3584  *	@trailer: Returned pointer to the skb where the @tailbits space begins
3585  *
3586  *	Make sure that the data buffers attached to a socket buffer are
3587  *	writable. If they are not, private copies are made of the data buffers
3588  *	and the socket buffer is set to use these instead.
3589  *
3590  *	If @tailbits is given, make sure that there is space to write @tailbits
3591  *	bytes of data beyond current end of socket buffer.  @trailer will be
3592  *	set to point to the skb in which this space begins.
3593  *
3594  *	The number of scatterlist elements required to completely map the
3595  *	COW'd and extended socket buffer will be returned.
3596  */
3597 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
3598 {
3599 	int copyflag;
3600 	int elt;
3601 	struct sk_buff *skb1, **skb_p;
3602 
3603 	/* If skb is cloned or its head is paged, reallocate
3604 	 * head pulling out all the pages (pages are considered not writable
3605 	 * at the moment even if they are anonymous).
3606 	 */
3607 	if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
3608 	    __pskb_pull_tail(skb, skb_pagelen(skb)-skb_headlen(skb)) == NULL)
3609 		return -ENOMEM;
3610 
3611 	/* Easy case. Most of packets will go this way. */
3612 	if (!skb_has_frag_list(skb)) {
3613 		/* A little of trouble, not enough of space for trailer.
3614 		 * This should not happen, when stack is tuned to generate
3615 		 * good frames. OK, on miss we reallocate and reserve even more
3616 		 * space, 128 bytes is fair. */
3617 
3618 		if (skb_tailroom(skb) < tailbits &&
3619 		    pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
3620 			return -ENOMEM;
3621 
3622 		/* Voila! */
3623 		*trailer = skb;
3624 		return 1;
3625 	}
3626 
3627 	/* Misery. We are in troubles, going to mincer fragments... */
3628 
3629 	elt = 1;
3630 	skb_p = &skb_shinfo(skb)->frag_list;
3631 	copyflag = 0;
3632 
3633 	while ((skb1 = *skb_p) != NULL) {
3634 		int ntail = 0;
3635 
3636 		/* The fragment is partially pulled by someone,
3637 		 * this can happen on input. Copy it and everything
3638 		 * after it. */
3639 
3640 		if (skb_shared(skb1))
3641 			copyflag = 1;
3642 
3643 		/* If the skb is the last, worry about trailer. */
3644 
3645 		if (skb1->next == NULL && tailbits) {
3646 			if (skb_shinfo(skb1)->nr_frags ||
3647 			    skb_has_frag_list(skb1) ||
3648 			    skb_tailroom(skb1) < tailbits)
3649 				ntail = tailbits + 128;
3650 		}
3651 
3652 		if (copyflag ||
3653 		    skb_cloned(skb1) ||
3654 		    ntail ||
3655 		    skb_shinfo(skb1)->nr_frags ||
3656 		    skb_has_frag_list(skb1)) {
3657 			struct sk_buff *skb2;
3658 
3659 			/* Fuck, we are miserable poor guys... */
3660 			if (ntail == 0)
3661 				skb2 = skb_copy(skb1, GFP_ATOMIC);
3662 			else
3663 				skb2 = skb_copy_expand(skb1,
3664 						       skb_headroom(skb1),
3665 						       ntail,
3666 						       GFP_ATOMIC);
3667 			if (unlikely(skb2 == NULL))
3668 				return -ENOMEM;
3669 
3670 			if (skb1->sk)
3671 				skb_set_owner_w(skb2, skb1->sk);
3672 
3673 			/* Looking around. Are we still alive?
3674 			 * OK, link new skb, drop old one */
3675 
3676 			skb2->next = skb1->next;
3677 			*skb_p = skb2;
3678 			kfree_skb(skb1);
3679 			skb1 = skb2;
3680 		}
3681 		elt++;
3682 		*trailer = skb1;
3683 		skb_p = &skb1->next;
3684 	}
3685 
3686 	return elt;
3687 }
3688 EXPORT_SYMBOL_GPL(skb_cow_data);
3689 
3690 static void sock_rmem_free(struct sk_buff *skb)
3691 {
3692 	struct sock *sk = skb->sk;
3693 
3694 	atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
3695 }
3696 
3697 /*
3698  * Note: We dont mem charge error packets (no sk_forward_alloc changes)
3699  */
3700 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
3701 {
3702 	if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
3703 	    (unsigned int)sk->sk_rcvbuf)
3704 		return -ENOMEM;
3705 
3706 	skb_orphan(skb);
3707 	skb->sk = sk;
3708 	skb->destructor = sock_rmem_free;
3709 	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
3710 
3711 	/* before exiting rcu section, make sure dst is refcounted */
3712 	skb_dst_force(skb);
3713 
3714 	skb_queue_tail(&sk->sk_error_queue, skb);
3715 	if (!sock_flag(sk, SOCK_DEAD))
3716 		sk->sk_data_ready(sk);
3717 	return 0;
3718 }
3719 EXPORT_SYMBOL(sock_queue_err_skb);
3720 
3721 static bool is_icmp_err_skb(const struct sk_buff *skb)
3722 {
3723 	return skb && (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP ||
3724 		       SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP6);
3725 }
3726 
3727 struct sk_buff *sock_dequeue_err_skb(struct sock *sk)
3728 {
3729 	struct sk_buff_head *q = &sk->sk_error_queue;
3730 	struct sk_buff *skb, *skb_next = NULL;
3731 	bool icmp_next = false;
3732 	unsigned long flags;
3733 
3734 	spin_lock_irqsave(&q->lock, flags);
3735 	skb = __skb_dequeue(q);
3736 	if (skb && (skb_next = skb_peek(q)))
3737 		icmp_next = is_icmp_err_skb(skb_next);
3738 	spin_unlock_irqrestore(&q->lock, flags);
3739 
3740 	if (is_icmp_err_skb(skb) && !icmp_next)
3741 		sk->sk_err = 0;
3742 
3743 	if (skb_next)
3744 		sk->sk_error_report(sk);
3745 
3746 	return skb;
3747 }
3748 EXPORT_SYMBOL(sock_dequeue_err_skb);
3749 
3750 /**
3751  * skb_clone_sk - create clone of skb, and take reference to socket
3752  * @skb: the skb to clone
3753  *
3754  * This function creates a clone of a buffer that holds a reference on
3755  * sk_refcnt.  Buffers created via this function are meant to be
3756  * returned using sock_queue_err_skb, or free via kfree_skb.
3757  *
3758  * When passing buffers allocated with this function to sock_queue_err_skb
3759  * it is necessary to wrap the call with sock_hold/sock_put in order to
3760  * prevent the socket from being released prior to being enqueued on
3761  * the sk_error_queue.
3762  */
3763 struct sk_buff *skb_clone_sk(struct sk_buff *skb)
3764 {
3765 	struct sock *sk = skb->sk;
3766 	struct sk_buff *clone;
3767 
3768 	if (!sk || !atomic_inc_not_zero(&sk->sk_refcnt))
3769 		return NULL;
3770 
3771 	clone = skb_clone(skb, GFP_ATOMIC);
3772 	if (!clone) {
3773 		sock_put(sk);
3774 		return NULL;
3775 	}
3776 
3777 	clone->sk = sk;
3778 	clone->destructor = sock_efree;
3779 
3780 	return clone;
3781 }
3782 EXPORT_SYMBOL(skb_clone_sk);
3783 
3784 static void __skb_complete_tx_timestamp(struct sk_buff *skb,
3785 					struct sock *sk,
3786 					int tstype)
3787 {
3788 	struct sock_exterr_skb *serr;
3789 	int err;
3790 
3791 	serr = SKB_EXT_ERR(skb);
3792 	memset(serr, 0, sizeof(*serr));
3793 	serr->ee.ee_errno = ENOMSG;
3794 	serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
3795 	serr->ee.ee_info = tstype;
3796 	if (sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID) {
3797 		serr->ee.ee_data = skb_shinfo(skb)->tskey;
3798 		if (sk->sk_protocol == IPPROTO_TCP &&
3799 		    sk->sk_type == SOCK_STREAM)
3800 			serr->ee.ee_data -= sk->sk_tskey;
3801 	}
3802 
3803 	err = sock_queue_err_skb(sk, skb);
3804 
3805 	if (err)
3806 		kfree_skb(skb);
3807 }
3808 
3809 static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly)
3810 {
3811 	bool ret;
3812 
3813 	if (likely(sysctl_tstamp_allow_data || tsonly))
3814 		return true;
3815 
3816 	read_lock_bh(&sk->sk_callback_lock);
3817 	ret = sk->sk_socket && sk->sk_socket->file &&
3818 	      file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW);
3819 	read_unlock_bh(&sk->sk_callback_lock);
3820 	return ret;
3821 }
3822 
3823 void skb_complete_tx_timestamp(struct sk_buff *skb,
3824 			       struct skb_shared_hwtstamps *hwtstamps)
3825 {
3826 	struct sock *sk = skb->sk;
3827 
3828 	if (!skb_may_tx_timestamp(sk, false))
3829 		return;
3830 
3831 	/* take a reference to prevent skb_orphan() from freeing the socket */
3832 	sock_hold(sk);
3833 
3834 	*skb_hwtstamps(skb) = *hwtstamps;
3835 	__skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND);
3836 
3837 	sock_put(sk);
3838 }
3839 EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp);
3840 
3841 void __skb_tstamp_tx(struct sk_buff *orig_skb,
3842 		     struct skb_shared_hwtstamps *hwtstamps,
3843 		     struct sock *sk, int tstype)
3844 {
3845 	struct sk_buff *skb;
3846 	bool tsonly;
3847 
3848 	if (!sk)
3849 		return;
3850 
3851 	tsonly = sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TSONLY;
3852 	if (!skb_may_tx_timestamp(sk, tsonly))
3853 		return;
3854 
3855 	if (tsonly) {
3856 #ifdef CONFIG_INET
3857 		if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_STATS) &&
3858 		    sk->sk_protocol == IPPROTO_TCP &&
3859 		    sk->sk_type == SOCK_STREAM)
3860 			skb = tcp_get_timestamping_opt_stats(sk);
3861 		else
3862 #endif
3863 			skb = alloc_skb(0, GFP_ATOMIC);
3864 	} else {
3865 		skb = skb_clone(orig_skb, GFP_ATOMIC);
3866 	}
3867 	if (!skb)
3868 		return;
3869 
3870 	if (tsonly) {
3871 		skb_shinfo(skb)->tx_flags = skb_shinfo(orig_skb)->tx_flags;
3872 		skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey;
3873 	}
3874 
3875 	if (hwtstamps)
3876 		*skb_hwtstamps(skb) = *hwtstamps;
3877 	else
3878 		skb->tstamp = ktime_get_real();
3879 
3880 	__skb_complete_tx_timestamp(skb, sk, tstype);
3881 }
3882 EXPORT_SYMBOL_GPL(__skb_tstamp_tx);
3883 
3884 void skb_tstamp_tx(struct sk_buff *orig_skb,
3885 		   struct skb_shared_hwtstamps *hwtstamps)
3886 {
3887 	return __skb_tstamp_tx(orig_skb, hwtstamps, orig_skb->sk,
3888 			       SCM_TSTAMP_SND);
3889 }
3890 EXPORT_SYMBOL_GPL(skb_tstamp_tx);
3891 
3892 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked)
3893 {
3894 	struct sock *sk = skb->sk;
3895 	struct sock_exterr_skb *serr;
3896 	int err;
3897 
3898 	skb->wifi_acked_valid = 1;
3899 	skb->wifi_acked = acked;
3900 
3901 	serr = SKB_EXT_ERR(skb);
3902 	memset(serr, 0, sizeof(*serr));
3903 	serr->ee.ee_errno = ENOMSG;
3904 	serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS;
3905 
3906 	/* take a reference to prevent skb_orphan() from freeing the socket */
3907 	sock_hold(sk);
3908 
3909 	err = sock_queue_err_skb(sk, skb);
3910 	if (err)
3911 		kfree_skb(skb);
3912 
3913 	sock_put(sk);
3914 }
3915 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack);
3916 
3917 /**
3918  * skb_partial_csum_set - set up and verify partial csum values for packet
3919  * @skb: the skb to set
3920  * @start: the number of bytes after skb->data to start checksumming.
3921  * @off: the offset from start to place the checksum.
3922  *
3923  * For untrusted partially-checksummed packets, we need to make sure the values
3924  * for skb->csum_start and skb->csum_offset are valid so we don't oops.
3925  *
3926  * This function checks and sets those values and skb->ip_summed: if this
3927  * returns false you should drop the packet.
3928  */
3929 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
3930 {
3931 	if (unlikely(start > skb_headlen(skb)) ||
3932 	    unlikely((int)start + off > skb_headlen(skb) - 2)) {
3933 		net_warn_ratelimited("bad partial csum: csum=%u/%u len=%u\n",
3934 				     start, off, skb_headlen(skb));
3935 		return false;
3936 	}
3937 	skb->ip_summed = CHECKSUM_PARTIAL;
3938 	skb->csum_start = skb_headroom(skb) + start;
3939 	skb->csum_offset = off;
3940 	skb_set_transport_header(skb, start);
3941 	return true;
3942 }
3943 EXPORT_SYMBOL_GPL(skb_partial_csum_set);
3944 
3945 static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len,
3946 			       unsigned int max)
3947 {
3948 	if (skb_headlen(skb) >= len)
3949 		return 0;
3950 
3951 	/* If we need to pullup then pullup to the max, so we
3952 	 * won't need to do it again.
3953 	 */
3954 	if (max > skb->len)
3955 		max = skb->len;
3956 
3957 	if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL)
3958 		return -ENOMEM;
3959 
3960 	if (skb_headlen(skb) < len)
3961 		return -EPROTO;
3962 
3963 	return 0;
3964 }
3965 
3966 #define MAX_TCP_HDR_LEN (15 * 4)
3967 
3968 static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb,
3969 				      typeof(IPPROTO_IP) proto,
3970 				      unsigned int off)
3971 {
3972 	switch (proto) {
3973 		int err;
3974 
3975 	case IPPROTO_TCP:
3976 		err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr),
3977 					  off + MAX_TCP_HDR_LEN);
3978 		if (!err && !skb_partial_csum_set(skb, off,
3979 						  offsetof(struct tcphdr,
3980 							   check)))
3981 			err = -EPROTO;
3982 		return err ? ERR_PTR(err) : &tcp_hdr(skb)->check;
3983 
3984 	case IPPROTO_UDP:
3985 		err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr),
3986 					  off + sizeof(struct udphdr));
3987 		if (!err && !skb_partial_csum_set(skb, off,
3988 						  offsetof(struct udphdr,
3989 							   check)))
3990 			err = -EPROTO;
3991 		return err ? ERR_PTR(err) : &udp_hdr(skb)->check;
3992 	}
3993 
3994 	return ERR_PTR(-EPROTO);
3995 }
3996 
3997 /* This value should be large enough to cover a tagged ethernet header plus
3998  * maximally sized IP and TCP or UDP headers.
3999  */
4000 #define MAX_IP_HDR_LEN 128
4001 
4002 static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate)
4003 {
4004 	unsigned int off;
4005 	bool fragment;
4006 	__sum16 *csum;
4007 	int err;
4008 
4009 	fragment = false;
4010 
4011 	err = skb_maybe_pull_tail(skb,
4012 				  sizeof(struct iphdr),
4013 				  MAX_IP_HDR_LEN);
4014 	if (err < 0)
4015 		goto out;
4016 
4017 	if (ip_hdr(skb)->frag_off & htons(IP_OFFSET | IP_MF))
4018 		fragment = true;
4019 
4020 	off = ip_hdrlen(skb);
4021 
4022 	err = -EPROTO;
4023 
4024 	if (fragment)
4025 		goto out;
4026 
4027 	csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off);
4028 	if (IS_ERR(csum))
4029 		return PTR_ERR(csum);
4030 
4031 	if (recalculate)
4032 		*csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
4033 					   ip_hdr(skb)->daddr,
4034 					   skb->len - off,
4035 					   ip_hdr(skb)->protocol, 0);
4036 	err = 0;
4037 
4038 out:
4039 	return err;
4040 }
4041 
4042 /* This value should be large enough to cover a tagged ethernet header plus
4043  * an IPv6 header, all options, and a maximal TCP or UDP header.
4044  */
4045 #define MAX_IPV6_HDR_LEN 256
4046 
4047 #define OPT_HDR(type, skb, off) \
4048 	(type *)(skb_network_header(skb) + (off))
4049 
4050 static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate)
4051 {
4052 	int err;
4053 	u8 nexthdr;
4054 	unsigned int off;
4055 	unsigned int len;
4056 	bool fragment;
4057 	bool done;
4058 	__sum16 *csum;
4059 
4060 	fragment = false;
4061 	done = false;
4062 
4063 	off = sizeof(struct ipv6hdr);
4064 
4065 	err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN);
4066 	if (err < 0)
4067 		goto out;
4068 
4069 	nexthdr = ipv6_hdr(skb)->nexthdr;
4070 
4071 	len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len);
4072 	while (off <= len && !done) {
4073 		switch (nexthdr) {
4074 		case IPPROTO_DSTOPTS:
4075 		case IPPROTO_HOPOPTS:
4076 		case IPPROTO_ROUTING: {
4077 			struct ipv6_opt_hdr *hp;
4078 
4079 			err = skb_maybe_pull_tail(skb,
4080 						  off +
4081 						  sizeof(struct ipv6_opt_hdr),
4082 						  MAX_IPV6_HDR_LEN);
4083 			if (err < 0)
4084 				goto out;
4085 
4086 			hp = OPT_HDR(struct ipv6_opt_hdr, skb, off);
4087 			nexthdr = hp->nexthdr;
4088 			off += ipv6_optlen(hp);
4089 			break;
4090 		}
4091 		case IPPROTO_AH: {
4092 			struct ip_auth_hdr *hp;
4093 
4094 			err = skb_maybe_pull_tail(skb,
4095 						  off +
4096 						  sizeof(struct ip_auth_hdr),
4097 						  MAX_IPV6_HDR_LEN);
4098 			if (err < 0)
4099 				goto out;
4100 
4101 			hp = OPT_HDR(struct ip_auth_hdr, skb, off);
4102 			nexthdr = hp->nexthdr;
4103 			off += ipv6_authlen(hp);
4104 			break;
4105 		}
4106 		case IPPROTO_FRAGMENT: {
4107 			struct frag_hdr *hp;
4108 
4109 			err = skb_maybe_pull_tail(skb,
4110 						  off +
4111 						  sizeof(struct frag_hdr),
4112 						  MAX_IPV6_HDR_LEN);
4113 			if (err < 0)
4114 				goto out;
4115 
4116 			hp = OPT_HDR(struct frag_hdr, skb, off);
4117 
4118 			if (hp->frag_off & htons(IP6_OFFSET | IP6_MF))
4119 				fragment = true;
4120 
4121 			nexthdr = hp->nexthdr;
4122 			off += sizeof(struct frag_hdr);
4123 			break;
4124 		}
4125 		default:
4126 			done = true;
4127 			break;
4128 		}
4129 	}
4130 
4131 	err = -EPROTO;
4132 
4133 	if (!done || fragment)
4134 		goto out;
4135 
4136 	csum = skb_checksum_setup_ip(skb, nexthdr, off);
4137 	if (IS_ERR(csum))
4138 		return PTR_ERR(csum);
4139 
4140 	if (recalculate)
4141 		*csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
4142 					 &ipv6_hdr(skb)->daddr,
4143 					 skb->len - off, nexthdr, 0);
4144 	err = 0;
4145 
4146 out:
4147 	return err;
4148 }
4149 
4150 /**
4151  * skb_checksum_setup - set up partial checksum offset
4152  * @skb: the skb to set up
4153  * @recalculate: if true the pseudo-header checksum will be recalculated
4154  */
4155 int skb_checksum_setup(struct sk_buff *skb, bool recalculate)
4156 {
4157 	int err;
4158 
4159 	switch (skb->protocol) {
4160 	case htons(ETH_P_IP):
4161 		err = skb_checksum_setup_ipv4(skb, recalculate);
4162 		break;
4163 
4164 	case htons(ETH_P_IPV6):
4165 		err = skb_checksum_setup_ipv6(skb, recalculate);
4166 		break;
4167 
4168 	default:
4169 		err = -EPROTO;
4170 		break;
4171 	}
4172 
4173 	return err;
4174 }
4175 EXPORT_SYMBOL(skb_checksum_setup);
4176 
4177 /**
4178  * skb_checksum_maybe_trim - maybe trims the given skb
4179  * @skb: the skb to check
4180  * @transport_len: the data length beyond the network header
4181  *
4182  * Checks whether the given skb has data beyond the given transport length.
4183  * If so, returns a cloned skb trimmed to this transport length.
4184  * Otherwise returns the provided skb. Returns NULL in error cases
4185  * (e.g. transport_len exceeds skb length or out-of-memory).
4186  *
4187  * Caller needs to set the skb transport header and free any returned skb if it
4188  * differs from the provided skb.
4189  */
4190 static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb,
4191 					       unsigned int transport_len)
4192 {
4193 	struct sk_buff *skb_chk;
4194 	unsigned int len = skb_transport_offset(skb) + transport_len;
4195 	int ret;
4196 
4197 	if (skb->len < len)
4198 		return NULL;
4199 	else if (skb->len == len)
4200 		return skb;
4201 
4202 	skb_chk = skb_clone(skb, GFP_ATOMIC);
4203 	if (!skb_chk)
4204 		return NULL;
4205 
4206 	ret = pskb_trim_rcsum(skb_chk, len);
4207 	if (ret) {
4208 		kfree_skb(skb_chk);
4209 		return NULL;
4210 	}
4211 
4212 	return skb_chk;
4213 }
4214 
4215 /**
4216  * skb_checksum_trimmed - validate checksum of an skb
4217  * @skb: the skb to check
4218  * @transport_len: the data length beyond the network header
4219  * @skb_chkf: checksum function to use
4220  *
4221  * Applies the given checksum function skb_chkf to the provided skb.
4222  * Returns a checked and maybe trimmed skb. Returns NULL on error.
4223  *
4224  * If the skb has data beyond the given transport length, then a
4225  * trimmed & cloned skb is checked and returned.
4226  *
4227  * Caller needs to set the skb transport header and free any returned skb if it
4228  * differs from the provided skb.
4229  */
4230 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
4231 				     unsigned int transport_len,
4232 				     __sum16(*skb_chkf)(struct sk_buff *skb))
4233 {
4234 	struct sk_buff *skb_chk;
4235 	unsigned int offset = skb_transport_offset(skb);
4236 	__sum16 ret;
4237 
4238 	skb_chk = skb_checksum_maybe_trim(skb, transport_len);
4239 	if (!skb_chk)
4240 		goto err;
4241 
4242 	if (!pskb_may_pull(skb_chk, offset))
4243 		goto err;
4244 
4245 	skb_pull_rcsum(skb_chk, offset);
4246 	ret = skb_chkf(skb_chk);
4247 	skb_push_rcsum(skb_chk, offset);
4248 
4249 	if (ret)
4250 		goto err;
4251 
4252 	return skb_chk;
4253 
4254 err:
4255 	if (skb_chk && skb_chk != skb)
4256 		kfree_skb(skb_chk);
4257 
4258 	return NULL;
4259 
4260 }
4261 EXPORT_SYMBOL(skb_checksum_trimmed);
4262 
4263 void __skb_warn_lro_forwarding(const struct sk_buff *skb)
4264 {
4265 	net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n",
4266 			     skb->dev->name);
4267 }
4268 EXPORT_SYMBOL(__skb_warn_lro_forwarding);
4269 
4270 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen)
4271 {
4272 	if (head_stolen) {
4273 		skb_release_head_state(skb);
4274 		kmem_cache_free(skbuff_head_cache, skb);
4275 	} else {
4276 		__kfree_skb(skb);
4277 	}
4278 }
4279 EXPORT_SYMBOL(kfree_skb_partial);
4280 
4281 /**
4282  * skb_try_coalesce - try to merge skb to prior one
4283  * @to: prior buffer
4284  * @from: buffer to add
4285  * @fragstolen: pointer to boolean
4286  * @delta_truesize: how much more was allocated than was requested
4287  */
4288 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
4289 		      bool *fragstolen, int *delta_truesize)
4290 {
4291 	int i, delta, len = from->len;
4292 
4293 	*fragstolen = false;
4294 
4295 	if (skb_cloned(to))
4296 		return false;
4297 
4298 	if (len <= skb_tailroom(to)) {
4299 		if (len)
4300 			BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len));
4301 		*delta_truesize = 0;
4302 		return true;
4303 	}
4304 
4305 	if (skb_has_frag_list(to) || skb_has_frag_list(from))
4306 		return false;
4307 
4308 	if (skb_headlen(from) != 0) {
4309 		struct page *page;
4310 		unsigned int offset;
4311 
4312 		if (skb_shinfo(to)->nr_frags +
4313 		    skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS)
4314 			return false;
4315 
4316 		if (skb_head_is_locked(from))
4317 			return false;
4318 
4319 		delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
4320 
4321 		page = virt_to_head_page(from->head);
4322 		offset = from->data - (unsigned char *)page_address(page);
4323 
4324 		skb_fill_page_desc(to, skb_shinfo(to)->nr_frags,
4325 				   page, offset, skb_headlen(from));
4326 		*fragstolen = true;
4327 	} else {
4328 		if (skb_shinfo(to)->nr_frags +
4329 		    skb_shinfo(from)->nr_frags > MAX_SKB_FRAGS)
4330 			return false;
4331 
4332 		delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from));
4333 	}
4334 
4335 	WARN_ON_ONCE(delta < len);
4336 
4337 	memcpy(skb_shinfo(to)->frags + skb_shinfo(to)->nr_frags,
4338 	       skb_shinfo(from)->frags,
4339 	       skb_shinfo(from)->nr_frags * sizeof(skb_frag_t));
4340 	skb_shinfo(to)->nr_frags += skb_shinfo(from)->nr_frags;
4341 
4342 	if (!skb_cloned(from))
4343 		skb_shinfo(from)->nr_frags = 0;
4344 
4345 	/* if the skb is not cloned this does nothing
4346 	 * since we set nr_frags to 0.
4347 	 */
4348 	for (i = 0; i < skb_shinfo(from)->nr_frags; i++)
4349 		skb_frag_ref(from, i);
4350 
4351 	to->truesize += delta;
4352 	to->len += len;
4353 	to->data_len += len;
4354 
4355 	*delta_truesize = delta;
4356 	return true;
4357 }
4358 EXPORT_SYMBOL(skb_try_coalesce);
4359 
4360 /**
4361  * skb_scrub_packet - scrub an skb
4362  *
4363  * @skb: buffer to clean
4364  * @xnet: packet is crossing netns
4365  *
4366  * skb_scrub_packet can be used after encapsulating or decapsulting a packet
4367  * into/from a tunnel. Some information have to be cleared during these
4368  * operations.
4369  * skb_scrub_packet can also be used to clean a skb before injecting it in
4370  * another namespace (@xnet == true). We have to clear all information in the
4371  * skb that could impact namespace isolation.
4372  */
4373 void skb_scrub_packet(struct sk_buff *skb, bool xnet)
4374 {
4375 	skb->tstamp = 0;
4376 	skb->pkt_type = PACKET_HOST;
4377 	skb->skb_iif = 0;
4378 	skb->ignore_df = 0;
4379 	skb_dst_drop(skb);
4380 	secpath_reset(skb);
4381 	nf_reset(skb);
4382 	nf_reset_trace(skb);
4383 
4384 	if (!xnet)
4385 		return;
4386 
4387 	skb_orphan(skb);
4388 	skb->mark = 0;
4389 }
4390 EXPORT_SYMBOL_GPL(skb_scrub_packet);
4391 
4392 /**
4393  * skb_gso_transport_seglen - Return length of individual segments of a gso packet
4394  *
4395  * @skb: GSO skb
4396  *
4397  * skb_gso_transport_seglen is used to determine the real size of the
4398  * individual segments, including Layer4 headers (TCP/UDP).
4399  *
4400  * The MAC/L2 or network (IP, IPv6) headers are not accounted for.
4401  */
4402 unsigned int skb_gso_transport_seglen(const struct sk_buff *skb)
4403 {
4404 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
4405 	unsigned int thlen = 0;
4406 
4407 	if (skb->encapsulation) {
4408 		thlen = skb_inner_transport_header(skb) -
4409 			skb_transport_header(skb);
4410 
4411 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
4412 			thlen += inner_tcp_hdrlen(skb);
4413 	} else if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
4414 		thlen = tcp_hdrlen(skb);
4415 	} else if (unlikely(shinfo->gso_type & SKB_GSO_SCTP)) {
4416 		thlen = sizeof(struct sctphdr);
4417 	}
4418 	/* UFO sets gso_size to the size of the fragmentation
4419 	 * payload, i.e. the size of the L4 (UDP) header is already
4420 	 * accounted for.
4421 	 */
4422 	return thlen + shinfo->gso_size;
4423 }
4424 EXPORT_SYMBOL_GPL(skb_gso_transport_seglen);
4425 
4426 /**
4427  * skb_gso_validate_mtu - Return in case such skb fits a given MTU
4428  *
4429  * @skb: GSO skb
4430  * @mtu: MTU to validate against
4431  *
4432  * skb_gso_validate_mtu validates if a given skb will fit a wanted MTU
4433  * once split.
4434  */
4435 bool skb_gso_validate_mtu(const struct sk_buff *skb, unsigned int mtu)
4436 {
4437 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
4438 	const struct sk_buff *iter;
4439 	unsigned int hlen;
4440 
4441 	hlen = skb_gso_network_seglen(skb);
4442 
4443 	if (shinfo->gso_size != GSO_BY_FRAGS)
4444 		return hlen <= mtu;
4445 
4446 	/* Undo this so we can re-use header sizes */
4447 	hlen -= GSO_BY_FRAGS;
4448 
4449 	skb_walk_frags(skb, iter) {
4450 		if (hlen + skb_headlen(iter) > mtu)
4451 			return false;
4452 	}
4453 
4454 	return true;
4455 }
4456 EXPORT_SYMBOL_GPL(skb_gso_validate_mtu);
4457 
4458 static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb)
4459 {
4460 	if (skb_cow(skb, skb_headroom(skb)) < 0) {
4461 		kfree_skb(skb);
4462 		return NULL;
4463 	}
4464 
4465 	memmove(skb->data - ETH_HLEN, skb->data - skb->mac_len - VLAN_HLEN,
4466 		2 * ETH_ALEN);
4467 	skb->mac_header += VLAN_HLEN;
4468 	return skb;
4469 }
4470 
4471 struct sk_buff *skb_vlan_untag(struct sk_buff *skb)
4472 {
4473 	struct vlan_hdr *vhdr;
4474 	u16 vlan_tci;
4475 
4476 	if (unlikely(skb_vlan_tag_present(skb))) {
4477 		/* vlan_tci is already set-up so leave this for another time */
4478 		return skb;
4479 	}
4480 
4481 	skb = skb_share_check(skb, GFP_ATOMIC);
4482 	if (unlikely(!skb))
4483 		goto err_free;
4484 
4485 	if (unlikely(!pskb_may_pull(skb, VLAN_HLEN)))
4486 		goto err_free;
4487 
4488 	vhdr = (struct vlan_hdr *)skb->data;
4489 	vlan_tci = ntohs(vhdr->h_vlan_TCI);
4490 	__vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci);
4491 
4492 	skb_pull_rcsum(skb, VLAN_HLEN);
4493 	vlan_set_encap_proto(skb, vhdr);
4494 
4495 	skb = skb_reorder_vlan_header(skb);
4496 	if (unlikely(!skb))
4497 		goto err_free;
4498 
4499 	skb_reset_network_header(skb);
4500 	skb_reset_transport_header(skb);
4501 	skb_reset_mac_len(skb);
4502 
4503 	return skb;
4504 
4505 err_free:
4506 	kfree_skb(skb);
4507 	return NULL;
4508 }
4509 EXPORT_SYMBOL(skb_vlan_untag);
4510 
4511 int skb_ensure_writable(struct sk_buff *skb, int write_len)
4512 {
4513 	if (!pskb_may_pull(skb, write_len))
4514 		return -ENOMEM;
4515 
4516 	if (!skb_cloned(skb) || skb_clone_writable(skb, write_len))
4517 		return 0;
4518 
4519 	return pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
4520 }
4521 EXPORT_SYMBOL(skb_ensure_writable);
4522 
4523 /* remove VLAN header from packet and update csum accordingly.
4524  * expects a non skb_vlan_tag_present skb with a vlan tag payload
4525  */
4526 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci)
4527 {
4528 	struct vlan_hdr *vhdr;
4529 	int offset = skb->data - skb_mac_header(skb);
4530 	int err;
4531 
4532 	if (WARN_ONCE(offset,
4533 		      "__skb_vlan_pop got skb with skb->data not at mac header (offset %d)\n",
4534 		      offset)) {
4535 		return -EINVAL;
4536 	}
4537 
4538 	err = skb_ensure_writable(skb, VLAN_ETH_HLEN);
4539 	if (unlikely(err))
4540 		return err;
4541 
4542 	skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
4543 
4544 	vhdr = (struct vlan_hdr *)(skb->data + ETH_HLEN);
4545 	*vlan_tci = ntohs(vhdr->h_vlan_TCI);
4546 
4547 	memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN);
4548 	__skb_pull(skb, VLAN_HLEN);
4549 
4550 	vlan_set_encap_proto(skb, vhdr);
4551 	skb->mac_header += VLAN_HLEN;
4552 
4553 	if (skb_network_offset(skb) < ETH_HLEN)
4554 		skb_set_network_header(skb, ETH_HLEN);
4555 
4556 	skb_reset_mac_len(skb);
4557 
4558 	return err;
4559 }
4560 EXPORT_SYMBOL(__skb_vlan_pop);
4561 
4562 /* Pop a vlan tag either from hwaccel or from payload.
4563  * Expects skb->data at mac header.
4564  */
4565 int skb_vlan_pop(struct sk_buff *skb)
4566 {
4567 	u16 vlan_tci;
4568 	__be16 vlan_proto;
4569 	int err;
4570 
4571 	if (likely(skb_vlan_tag_present(skb))) {
4572 		skb->vlan_tci = 0;
4573 	} else {
4574 		if (unlikely(!eth_type_vlan(skb->protocol)))
4575 			return 0;
4576 
4577 		err = __skb_vlan_pop(skb, &vlan_tci);
4578 		if (err)
4579 			return err;
4580 	}
4581 	/* move next vlan tag to hw accel tag */
4582 	if (likely(!eth_type_vlan(skb->protocol)))
4583 		return 0;
4584 
4585 	vlan_proto = skb->protocol;
4586 	err = __skb_vlan_pop(skb, &vlan_tci);
4587 	if (unlikely(err))
4588 		return err;
4589 
4590 	__vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
4591 	return 0;
4592 }
4593 EXPORT_SYMBOL(skb_vlan_pop);
4594 
4595 /* Push a vlan tag either into hwaccel or into payload (if hwaccel tag present).
4596  * Expects skb->data at mac header.
4597  */
4598 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci)
4599 {
4600 	if (skb_vlan_tag_present(skb)) {
4601 		int offset = skb->data - skb_mac_header(skb);
4602 		int err;
4603 
4604 		if (WARN_ONCE(offset,
4605 			      "skb_vlan_push got skb with skb->data not at mac header (offset %d)\n",
4606 			      offset)) {
4607 			return -EINVAL;
4608 		}
4609 
4610 		err = __vlan_insert_tag(skb, skb->vlan_proto,
4611 					skb_vlan_tag_get(skb));
4612 		if (err)
4613 			return err;
4614 
4615 		skb->protocol = skb->vlan_proto;
4616 		skb->mac_len += VLAN_HLEN;
4617 
4618 		skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
4619 	}
4620 	__vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
4621 	return 0;
4622 }
4623 EXPORT_SYMBOL(skb_vlan_push);
4624 
4625 /**
4626  * alloc_skb_with_frags - allocate skb with page frags
4627  *
4628  * @header_len: size of linear part
4629  * @data_len: needed length in frags
4630  * @max_page_order: max page order desired.
4631  * @errcode: pointer to error code if any
4632  * @gfp_mask: allocation mask
4633  *
4634  * This can be used to allocate a paged skb, given a maximal order for frags.
4635  */
4636 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
4637 				     unsigned long data_len,
4638 				     int max_page_order,
4639 				     int *errcode,
4640 				     gfp_t gfp_mask)
4641 {
4642 	int npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
4643 	unsigned long chunk;
4644 	struct sk_buff *skb;
4645 	struct page *page;
4646 	gfp_t gfp_head;
4647 	int i;
4648 
4649 	*errcode = -EMSGSIZE;
4650 	/* Note this test could be relaxed, if we succeed to allocate
4651 	 * high order pages...
4652 	 */
4653 	if (npages > MAX_SKB_FRAGS)
4654 		return NULL;
4655 
4656 	gfp_head = gfp_mask;
4657 	if (gfp_head & __GFP_DIRECT_RECLAIM)
4658 		gfp_head |= __GFP_REPEAT;
4659 
4660 	*errcode = -ENOBUFS;
4661 	skb = alloc_skb(header_len, gfp_head);
4662 	if (!skb)
4663 		return NULL;
4664 
4665 	skb->truesize += npages << PAGE_SHIFT;
4666 
4667 	for (i = 0; npages > 0; i++) {
4668 		int order = max_page_order;
4669 
4670 		while (order) {
4671 			if (npages >= 1 << order) {
4672 				page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) |
4673 						   __GFP_COMP |
4674 						   __GFP_NOWARN |
4675 						   __GFP_NORETRY,
4676 						   order);
4677 				if (page)
4678 					goto fill_page;
4679 				/* Do not retry other high order allocations */
4680 				order = 1;
4681 				max_page_order = 0;
4682 			}
4683 			order--;
4684 		}
4685 		page = alloc_page(gfp_mask);
4686 		if (!page)
4687 			goto failure;
4688 fill_page:
4689 		chunk = min_t(unsigned long, data_len,
4690 			      PAGE_SIZE << order);
4691 		skb_fill_page_desc(skb, i, page, 0, chunk);
4692 		data_len -= chunk;
4693 		npages -= 1 << order;
4694 	}
4695 	return skb;
4696 
4697 failure:
4698 	kfree_skb(skb);
4699 	return NULL;
4700 }
4701 EXPORT_SYMBOL(alloc_skb_with_frags);
4702 
4703 /* carve out the first off bytes from skb when off < headlen */
4704 static int pskb_carve_inside_header(struct sk_buff *skb, const u32 off,
4705 				    const int headlen, gfp_t gfp_mask)
4706 {
4707 	int i;
4708 	int size = skb_end_offset(skb);
4709 	int new_hlen = headlen - off;
4710 	u8 *data;
4711 
4712 	size = SKB_DATA_ALIGN(size);
4713 
4714 	if (skb_pfmemalloc(skb))
4715 		gfp_mask |= __GFP_MEMALLOC;
4716 	data = kmalloc_reserve(size +
4717 			       SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
4718 			       gfp_mask, NUMA_NO_NODE, NULL);
4719 	if (!data)
4720 		return -ENOMEM;
4721 
4722 	size = SKB_WITH_OVERHEAD(ksize(data));
4723 
4724 	/* Copy real data, and all frags */
4725 	skb_copy_from_linear_data_offset(skb, off, data, new_hlen);
4726 	skb->len -= off;
4727 
4728 	memcpy((struct skb_shared_info *)(data + size),
4729 	       skb_shinfo(skb),
4730 	       offsetof(struct skb_shared_info,
4731 			frags[skb_shinfo(skb)->nr_frags]));
4732 	if (skb_cloned(skb)) {
4733 		/* drop the old head gracefully */
4734 		if (skb_orphan_frags(skb, gfp_mask)) {
4735 			kfree(data);
4736 			return -ENOMEM;
4737 		}
4738 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
4739 			skb_frag_ref(skb, i);
4740 		if (skb_has_frag_list(skb))
4741 			skb_clone_fraglist(skb);
4742 		skb_release_data(skb);
4743 	} else {
4744 		/* we can reuse existing recount- all we did was
4745 		 * relocate values
4746 		 */
4747 		skb_free_head(skb);
4748 	}
4749 
4750 	skb->head = data;
4751 	skb->data = data;
4752 	skb->head_frag = 0;
4753 #ifdef NET_SKBUFF_DATA_USES_OFFSET
4754 	skb->end = size;
4755 #else
4756 	skb->end = skb->head + size;
4757 #endif
4758 	skb_set_tail_pointer(skb, skb_headlen(skb));
4759 	skb_headers_offset_update(skb, 0);
4760 	skb->cloned = 0;
4761 	skb->hdr_len = 0;
4762 	skb->nohdr = 0;
4763 	atomic_set(&skb_shinfo(skb)->dataref, 1);
4764 
4765 	return 0;
4766 }
4767 
4768 static int pskb_carve(struct sk_buff *skb, const u32 off, gfp_t gfp);
4769 
4770 /* carve out the first eat bytes from skb's frag_list. May recurse into
4771  * pskb_carve()
4772  */
4773 static int pskb_carve_frag_list(struct sk_buff *skb,
4774 				struct skb_shared_info *shinfo, int eat,
4775 				gfp_t gfp_mask)
4776 {
4777 	struct sk_buff *list = shinfo->frag_list;
4778 	struct sk_buff *clone = NULL;
4779 	struct sk_buff *insp = NULL;
4780 
4781 	do {
4782 		if (!list) {
4783 			pr_err("Not enough bytes to eat. Want %d\n", eat);
4784 			return -EFAULT;
4785 		}
4786 		if (list->len <= eat) {
4787 			/* Eaten as whole. */
4788 			eat -= list->len;
4789 			list = list->next;
4790 			insp = list;
4791 		} else {
4792 			/* Eaten partially. */
4793 			if (skb_shared(list)) {
4794 				clone = skb_clone(list, gfp_mask);
4795 				if (!clone)
4796 					return -ENOMEM;
4797 				insp = list->next;
4798 				list = clone;
4799 			} else {
4800 				/* This may be pulled without problems. */
4801 				insp = list;
4802 			}
4803 			if (pskb_carve(list, eat, gfp_mask) < 0) {
4804 				kfree_skb(clone);
4805 				return -ENOMEM;
4806 			}
4807 			break;
4808 		}
4809 	} while (eat);
4810 
4811 	/* Free pulled out fragments. */
4812 	while ((list = shinfo->frag_list) != insp) {
4813 		shinfo->frag_list = list->next;
4814 		kfree_skb(list);
4815 	}
4816 	/* And insert new clone at head. */
4817 	if (clone) {
4818 		clone->next = list;
4819 		shinfo->frag_list = clone;
4820 	}
4821 	return 0;
4822 }
4823 
4824 /* carve off first len bytes from skb. Split line (off) is in the
4825  * non-linear part of skb
4826  */
4827 static int pskb_carve_inside_nonlinear(struct sk_buff *skb, const u32 off,
4828 				       int pos, gfp_t gfp_mask)
4829 {
4830 	int i, k = 0;
4831 	int size = skb_end_offset(skb);
4832 	u8 *data;
4833 	const int nfrags = skb_shinfo(skb)->nr_frags;
4834 	struct skb_shared_info *shinfo;
4835 
4836 	size = SKB_DATA_ALIGN(size);
4837 
4838 	if (skb_pfmemalloc(skb))
4839 		gfp_mask |= __GFP_MEMALLOC;
4840 	data = kmalloc_reserve(size +
4841 			       SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
4842 			       gfp_mask, NUMA_NO_NODE, NULL);
4843 	if (!data)
4844 		return -ENOMEM;
4845 
4846 	size = SKB_WITH_OVERHEAD(ksize(data));
4847 
4848 	memcpy((struct skb_shared_info *)(data + size),
4849 	       skb_shinfo(skb), offsetof(struct skb_shared_info,
4850 					 frags[skb_shinfo(skb)->nr_frags]));
4851 	if (skb_orphan_frags(skb, gfp_mask)) {
4852 		kfree(data);
4853 		return -ENOMEM;
4854 	}
4855 	shinfo = (struct skb_shared_info *)(data + size);
4856 	for (i = 0; i < nfrags; i++) {
4857 		int fsize = skb_frag_size(&skb_shinfo(skb)->frags[i]);
4858 
4859 		if (pos + fsize > off) {
4860 			shinfo->frags[k] = skb_shinfo(skb)->frags[i];
4861 
4862 			if (pos < off) {
4863 				/* Split frag.
4864 				 * We have two variants in this case:
4865 				 * 1. Move all the frag to the second
4866 				 *    part, if it is possible. F.e.
4867 				 *    this approach is mandatory for TUX,
4868 				 *    where splitting is expensive.
4869 				 * 2. Split is accurately. We make this.
4870 				 */
4871 				shinfo->frags[0].page_offset += off - pos;
4872 				skb_frag_size_sub(&shinfo->frags[0], off - pos);
4873 			}
4874 			skb_frag_ref(skb, i);
4875 			k++;
4876 		}
4877 		pos += fsize;
4878 	}
4879 	shinfo->nr_frags = k;
4880 	if (skb_has_frag_list(skb))
4881 		skb_clone_fraglist(skb);
4882 
4883 	if (k == 0) {
4884 		/* split line is in frag list */
4885 		pskb_carve_frag_list(skb, shinfo, off - pos, gfp_mask);
4886 	}
4887 	skb_release_data(skb);
4888 
4889 	skb->head = data;
4890 	skb->head_frag = 0;
4891 	skb->data = data;
4892 #ifdef NET_SKBUFF_DATA_USES_OFFSET
4893 	skb->end = size;
4894 #else
4895 	skb->end = skb->head + size;
4896 #endif
4897 	skb_reset_tail_pointer(skb);
4898 	skb_headers_offset_update(skb, 0);
4899 	skb->cloned   = 0;
4900 	skb->hdr_len  = 0;
4901 	skb->nohdr    = 0;
4902 	skb->len -= off;
4903 	skb->data_len = skb->len;
4904 	atomic_set(&skb_shinfo(skb)->dataref, 1);
4905 	return 0;
4906 }
4907 
4908 /* remove len bytes from the beginning of the skb */
4909 static int pskb_carve(struct sk_buff *skb, const u32 len, gfp_t gfp)
4910 {
4911 	int headlen = skb_headlen(skb);
4912 
4913 	if (len < headlen)
4914 		return pskb_carve_inside_header(skb, len, headlen, gfp);
4915 	else
4916 		return pskb_carve_inside_nonlinear(skb, len, headlen, gfp);
4917 }
4918 
4919 /* Extract to_copy bytes starting at off from skb, and return this in
4920  * a new skb
4921  */
4922 struct sk_buff *pskb_extract(struct sk_buff *skb, int off,
4923 			     int to_copy, gfp_t gfp)
4924 {
4925 	struct sk_buff  *clone = skb_clone(skb, gfp);
4926 
4927 	if (!clone)
4928 		return NULL;
4929 
4930 	if (pskb_carve(clone, off, gfp) < 0 ||
4931 	    pskb_trim(clone, to_copy)) {
4932 		kfree_skb(clone);
4933 		return NULL;
4934 	}
4935 	return clone;
4936 }
4937 EXPORT_SYMBOL(pskb_extract);
4938 
4939 /**
4940  * skb_condense - try to get rid of fragments/frag_list if possible
4941  * @skb: buffer
4942  *
4943  * Can be used to save memory before skb is added to a busy queue.
4944  * If packet has bytes in frags and enough tail room in skb->head,
4945  * pull all of them, so that we can free the frags right now and adjust
4946  * truesize.
4947  * Notes:
4948  *	We do not reallocate skb->head thus can not fail.
4949  *	Caller must re-evaluate skb->truesize if needed.
4950  */
4951 void skb_condense(struct sk_buff *skb)
4952 {
4953 	if (skb->data_len) {
4954 		if (skb->data_len > skb->end - skb->tail ||
4955 		    skb_cloned(skb))
4956 			return;
4957 
4958 		/* Nice, we can free page frag(s) right now */
4959 		__pskb_pull_tail(skb, skb->data_len);
4960 	}
4961 	/* At this point, skb->truesize might be over estimated,
4962 	 * because skb had a fragment, and fragments do not tell
4963 	 * their truesize.
4964 	 * When we pulled its content into skb->head, fragment
4965 	 * was freed, but __pskb_pull_tail() could not possibly
4966 	 * adjust skb->truesize, not knowing the frag truesize.
4967 	 */
4968 	skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
4969 }
4970