1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Routines having to do with the 'struct sk_buff' memory handlers. 4 * 5 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk> 6 * Florian La Roche <rzsfl@rz.uni-sb.de> 7 * 8 * Fixes: 9 * Alan Cox : Fixed the worst of the load 10 * balancer bugs. 11 * Dave Platt : Interrupt stacking fix. 12 * Richard Kooijman : Timestamp fixes. 13 * Alan Cox : Changed buffer format. 14 * Alan Cox : destructor hook for AF_UNIX etc. 15 * Linus Torvalds : Better skb_clone. 16 * Alan Cox : Added skb_copy. 17 * Alan Cox : Added all the changed routines Linus 18 * only put in the headers 19 * Ray VanTassle : Fixed --skb->lock in free 20 * Alan Cox : skb_copy copy arp field 21 * Andi Kleen : slabified it. 22 * Robert Olsson : Removed skb_head_pool 23 * 24 * NOTE: 25 * The __skb_ routines should be called with interrupts 26 * disabled, or you better be *real* sure that the operation is atomic 27 * with respect to whatever list is being frobbed (e.g. via lock_sock() 28 * or via disabling bottom half handlers, etc). 29 */ 30 31 /* 32 * The functions in this file will not compile correctly with gcc 2.4.x 33 */ 34 35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 36 37 #include <linux/module.h> 38 #include <linux/types.h> 39 #include <linux/kernel.h> 40 #include <linux/mm.h> 41 #include <linux/interrupt.h> 42 #include <linux/in.h> 43 #include <linux/inet.h> 44 #include <linux/slab.h> 45 #include <linux/tcp.h> 46 #include <linux/udp.h> 47 #include <linux/sctp.h> 48 #include <linux/netdevice.h> 49 #ifdef CONFIG_NET_CLS_ACT 50 #include <net/pkt_sched.h> 51 #endif 52 #include <linux/string.h> 53 #include <linux/skbuff.h> 54 #include <linux/splice.h> 55 #include <linux/cache.h> 56 #include <linux/rtnetlink.h> 57 #include <linux/init.h> 58 #include <linux/scatterlist.h> 59 #include <linux/errqueue.h> 60 #include <linux/prefetch.h> 61 #include <linux/bitfield.h> 62 #include <linux/if_vlan.h> 63 #include <linux/mpls.h> 64 #include <linux/kcov.h> 65 66 #include <net/protocol.h> 67 #include <net/dst.h> 68 #include <net/sock.h> 69 #include <net/checksum.h> 70 #include <net/gso.h> 71 #include <net/ip6_checksum.h> 72 #include <net/xfrm.h> 73 #include <net/mpls.h> 74 #include <net/mptcp.h> 75 #include <net/mctp.h> 76 #include <net/page_pool.h> 77 #include <net/dropreason.h> 78 79 #include <linux/uaccess.h> 80 #include <trace/events/skb.h> 81 #include <linux/highmem.h> 82 #include <linux/capability.h> 83 #include <linux/user_namespace.h> 84 #include <linux/indirect_call_wrapper.h> 85 #include <linux/textsearch.h> 86 87 #include "dev.h" 88 #include "sock_destructor.h" 89 90 struct kmem_cache *skbuff_cache __ro_after_init; 91 static struct kmem_cache *skbuff_fclone_cache __ro_after_init; 92 #ifdef CONFIG_SKB_EXTENSIONS 93 static struct kmem_cache *skbuff_ext_cache __ro_after_init; 94 #endif 95 96 97 static struct kmem_cache *skb_small_head_cache __ro_after_init; 98 99 #define SKB_SMALL_HEAD_SIZE SKB_HEAD_ALIGN(MAX_TCP_HEADER) 100 101 /* We want SKB_SMALL_HEAD_CACHE_SIZE to not be a power of two. 102 * This should ensure that SKB_SMALL_HEAD_HEADROOM is a unique 103 * size, and we can differentiate heads from skb_small_head_cache 104 * vs system slabs by looking at their size (skb_end_offset()). 105 */ 106 #define SKB_SMALL_HEAD_CACHE_SIZE \ 107 (is_power_of_2(SKB_SMALL_HEAD_SIZE) ? \ 108 (SKB_SMALL_HEAD_SIZE + L1_CACHE_BYTES) : \ 109 SKB_SMALL_HEAD_SIZE) 110 111 #define SKB_SMALL_HEAD_HEADROOM \ 112 SKB_WITH_OVERHEAD(SKB_SMALL_HEAD_CACHE_SIZE) 113 114 int sysctl_max_skb_frags __read_mostly = MAX_SKB_FRAGS; 115 EXPORT_SYMBOL(sysctl_max_skb_frags); 116 117 #undef FN 118 #define FN(reason) [SKB_DROP_REASON_##reason] = #reason, 119 static const char * const drop_reasons[] = { 120 [SKB_CONSUMED] = "CONSUMED", 121 DEFINE_DROP_REASON(FN, FN) 122 }; 123 124 static const struct drop_reason_list drop_reasons_core = { 125 .reasons = drop_reasons, 126 .n_reasons = ARRAY_SIZE(drop_reasons), 127 }; 128 129 const struct drop_reason_list __rcu * 130 drop_reasons_by_subsys[SKB_DROP_REASON_SUBSYS_NUM] = { 131 [SKB_DROP_REASON_SUBSYS_CORE] = RCU_INITIALIZER(&drop_reasons_core), 132 }; 133 EXPORT_SYMBOL(drop_reasons_by_subsys); 134 135 /** 136 * drop_reasons_register_subsys - register another drop reason subsystem 137 * @subsys: the subsystem to register, must not be the core 138 * @list: the list of drop reasons within the subsystem, must point to 139 * a statically initialized list 140 */ 141 void drop_reasons_register_subsys(enum skb_drop_reason_subsys subsys, 142 const struct drop_reason_list *list) 143 { 144 if (WARN(subsys <= SKB_DROP_REASON_SUBSYS_CORE || 145 subsys >= ARRAY_SIZE(drop_reasons_by_subsys), 146 "invalid subsystem %d\n", subsys)) 147 return; 148 149 /* must point to statically allocated memory, so INIT is OK */ 150 RCU_INIT_POINTER(drop_reasons_by_subsys[subsys], list); 151 } 152 EXPORT_SYMBOL_GPL(drop_reasons_register_subsys); 153 154 /** 155 * drop_reasons_unregister_subsys - unregister a drop reason subsystem 156 * @subsys: the subsystem to remove, must not be the core 157 * 158 * Note: This will synchronize_rcu() to ensure no users when it returns. 159 */ 160 void drop_reasons_unregister_subsys(enum skb_drop_reason_subsys subsys) 161 { 162 if (WARN(subsys <= SKB_DROP_REASON_SUBSYS_CORE || 163 subsys >= ARRAY_SIZE(drop_reasons_by_subsys), 164 "invalid subsystem %d\n", subsys)) 165 return; 166 167 RCU_INIT_POINTER(drop_reasons_by_subsys[subsys], NULL); 168 169 synchronize_rcu(); 170 } 171 EXPORT_SYMBOL_GPL(drop_reasons_unregister_subsys); 172 173 /** 174 * skb_panic - private function for out-of-line support 175 * @skb: buffer 176 * @sz: size 177 * @addr: address 178 * @msg: skb_over_panic or skb_under_panic 179 * 180 * Out-of-line support for skb_put() and skb_push(). 181 * Called via the wrapper skb_over_panic() or skb_under_panic(). 182 * Keep out of line to prevent kernel bloat. 183 * __builtin_return_address is not used because it is not always reliable. 184 */ 185 static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr, 186 const char msg[]) 187 { 188 pr_emerg("%s: text:%px len:%d put:%d head:%px data:%px tail:%#lx end:%#lx dev:%s\n", 189 msg, addr, skb->len, sz, skb->head, skb->data, 190 (unsigned long)skb->tail, (unsigned long)skb->end, 191 skb->dev ? skb->dev->name : "<NULL>"); 192 BUG(); 193 } 194 195 static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr) 196 { 197 skb_panic(skb, sz, addr, __func__); 198 } 199 200 static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr) 201 { 202 skb_panic(skb, sz, addr, __func__); 203 } 204 205 #define NAPI_SKB_CACHE_SIZE 64 206 #define NAPI_SKB_CACHE_BULK 16 207 #define NAPI_SKB_CACHE_HALF (NAPI_SKB_CACHE_SIZE / 2) 208 209 #if PAGE_SIZE == SZ_4K 210 211 #define NAPI_HAS_SMALL_PAGE_FRAG 1 212 #define NAPI_SMALL_PAGE_PFMEMALLOC(nc) ((nc).pfmemalloc) 213 214 /* specialized page frag allocator using a single order 0 page 215 * and slicing it into 1K sized fragment. Constrained to systems 216 * with a very limited amount of 1K fragments fitting a single 217 * page - to avoid excessive truesize underestimation 218 */ 219 220 struct page_frag_1k { 221 void *va; 222 u16 offset; 223 bool pfmemalloc; 224 }; 225 226 static void *page_frag_alloc_1k(struct page_frag_1k *nc, gfp_t gfp) 227 { 228 struct page *page; 229 int offset; 230 231 offset = nc->offset - SZ_1K; 232 if (likely(offset >= 0)) 233 goto use_frag; 234 235 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0); 236 if (!page) 237 return NULL; 238 239 nc->va = page_address(page); 240 nc->pfmemalloc = page_is_pfmemalloc(page); 241 offset = PAGE_SIZE - SZ_1K; 242 page_ref_add(page, offset / SZ_1K); 243 244 use_frag: 245 nc->offset = offset; 246 return nc->va + offset; 247 } 248 #else 249 250 /* the small page is actually unused in this build; add dummy helpers 251 * to please the compiler and avoid later preprocessor's conditionals 252 */ 253 #define NAPI_HAS_SMALL_PAGE_FRAG 0 254 #define NAPI_SMALL_PAGE_PFMEMALLOC(nc) false 255 256 struct page_frag_1k { 257 }; 258 259 static void *page_frag_alloc_1k(struct page_frag_1k *nc, gfp_t gfp_mask) 260 { 261 return NULL; 262 } 263 264 #endif 265 266 struct napi_alloc_cache { 267 struct page_frag_cache page; 268 struct page_frag_1k page_small; 269 unsigned int skb_count; 270 void *skb_cache[NAPI_SKB_CACHE_SIZE]; 271 }; 272 273 static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache); 274 static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache); 275 276 /* Double check that napi_get_frags() allocates skbs with 277 * skb->head being backed by slab, not a page fragment. 278 * This is to make sure bug fixed in 3226b158e67c 279 * ("net: avoid 32 x truesize under-estimation for tiny skbs") 280 * does not accidentally come back. 281 */ 282 void napi_get_frags_check(struct napi_struct *napi) 283 { 284 struct sk_buff *skb; 285 286 local_bh_disable(); 287 skb = napi_get_frags(napi); 288 WARN_ON_ONCE(!NAPI_HAS_SMALL_PAGE_FRAG && skb && skb->head_frag); 289 napi_free_frags(napi); 290 local_bh_enable(); 291 } 292 293 void *__napi_alloc_frag_align(unsigned int fragsz, unsigned int align_mask) 294 { 295 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 296 297 fragsz = SKB_DATA_ALIGN(fragsz); 298 299 return page_frag_alloc_align(&nc->page, fragsz, GFP_ATOMIC, align_mask); 300 } 301 EXPORT_SYMBOL(__napi_alloc_frag_align); 302 303 void *__netdev_alloc_frag_align(unsigned int fragsz, unsigned int align_mask) 304 { 305 void *data; 306 307 fragsz = SKB_DATA_ALIGN(fragsz); 308 if (in_hardirq() || irqs_disabled()) { 309 struct page_frag_cache *nc = this_cpu_ptr(&netdev_alloc_cache); 310 311 data = page_frag_alloc_align(nc, fragsz, GFP_ATOMIC, align_mask); 312 } else { 313 struct napi_alloc_cache *nc; 314 315 local_bh_disable(); 316 nc = this_cpu_ptr(&napi_alloc_cache); 317 data = page_frag_alloc_align(&nc->page, fragsz, GFP_ATOMIC, align_mask); 318 local_bh_enable(); 319 } 320 return data; 321 } 322 EXPORT_SYMBOL(__netdev_alloc_frag_align); 323 324 static struct sk_buff *napi_skb_cache_get(void) 325 { 326 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 327 struct sk_buff *skb; 328 329 if (unlikely(!nc->skb_count)) { 330 nc->skb_count = kmem_cache_alloc_bulk(skbuff_cache, 331 GFP_ATOMIC, 332 NAPI_SKB_CACHE_BULK, 333 nc->skb_cache); 334 if (unlikely(!nc->skb_count)) 335 return NULL; 336 } 337 338 skb = nc->skb_cache[--nc->skb_count]; 339 kasan_unpoison_object_data(skbuff_cache, skb); 340 341 return skb; 342 } 343 344 static inline void __finalize_skb_around(struct sk_buff *skb, void *data, 345 unsigned int size) 346 { 347 struct skb_shared_info *shinfo; 348 349 size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 350 351 /* Assumes caller memset cleared SKB */ 352 skb->truesize = SKB_TRUESIZE(size); 353 refcount_set(&skb->users, 1); 354 skb->head = data; 355 skb->data = data; 356 skb_reset_tail_pointer(skb); 357 skb_set_end_offset(skb, size); 358 skb->mac_header = (typeof(skb->mac_header))~0U; 359 skb->transport_header = (typeof(skb->transport_header))~0U; 360 skb->alloc_cpu = raw_smp_processor_id(); 361 /* make sure we initialize shinfo sequentially */ 362 shinfo = skb_shinfo(skb); 363 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref)); 364 atomic_set(&shinfo->dataref, 1); 365 366 skb_set_kcov_handle(skb, kcov_common_handle()); 367 } 368 369 static inline void *__slab_build_skb(struct sk_buff *skb, void *data, 370 unsigned int *size) 371 { 372 void *resized; 373 374 /* Must find the allocation size (and grow it to match). */ 375 *size = ksize(data); 376 /* krealloc() will immediately return "data" when 377 * "ksize(data)" is requested: it is the existing upper 378 * bounds. As a result, GFP_ATOMIC will be ignored. Note 379 * that this "new" pointer needs to be passed back to the 380 * caller for use so the __alloc_size hinting will be 381 * tracked correctly. 382 */ 383 resized = krealloc(data, *size, GFP_ATOMIC); 384 WARN_ON_ONCE(resized != data); 385 return resized; 386 } 387 388 /* build_skb() variant which can operate on slab buffers. 389 * Note that this should be used sparingly as slab buffers 390 * cannot be combined efficiently by GRO! 391 */ 392 struct sk_buff *slab_build_skb(void *data) 393 { 394 struct sk_buff *skb; 395 unsigned int size; 396 397 skb = kmem_cache_alloc(skbuff_cache, GFP_ATOMIC); 398 if (unlikely(!skb)) 399 return NULL; 400 401 memset(skb, 0, offsetof(struct sk_buff, tail)); 402 data = __slab_build_skb(skb, data, &size); 403 __finalize_skb_around(skb, data, size); 404 405 return skb; 406 } 407 EXPORT_SYMBOL(slab_build_skb); 408 409 /* Caller must provide SKB that is memset cleared */ 410 static void __build_skb_around(struct sk_buff *skb, void *data, 411 unsigned int frag_size) 412 { 413 unsigned int size = frag_size; 414 415 /* frag_size == 0 is considered deprecated now. Callers 416 * using slab buffer should use slab_build_skb() instead. 417 */ 418 if (WARN_ONCE(size == 0, "Use slab_build_skb() instead")) 419 data = __slab_build_skb(skb, data, &size); 420 421 __finalize_skb_around(skb, data, size); 422 } 423 424 /** 425 * __build_skb - build a network buffer 426 * @data: data buffer provided by caller 427 * @frag_size: size of data (must not be 0) 428 * 429 * Allocate a new &sk_buff. Caller provides space holding head and 430 * skb_shared_info. @data must have been allocated from the page 431 * allocator or vmalloc(). (A @frag_size of 0 to indicate a kmalloc() 432 * allocation is deprecated, and callers should use slab_build_skb() 433 * instead.) 434 * The return is the new skb buffer. 435 * On a failure the return is %NULL, and @data is not freed. 436 * Notes : 437 * Before IO, driver allocates only data buffer where NIC put incoming frame 438 * Driver should add room at head (NET_SKB_PAD) and 439 * MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info)) 440 * After IO, driver calls build_skb(), to allocate sk_buff and populate it 441 * before giving packet to stack. 442 * RX rings only contains data buffers, not full skbs. 443 */ 444 struct sk_buff *__build_skb(void *data, unsigned int frag_size) 445 { 446 struct sk_buff *skb; 447 448 skb = kmem_cache_alloc(skbuff_cache, GFP_ATOMIC); 449 if (unlikely(!skb)) 450 return NULL; 451 452 memset(skb, 0, offsetof(struct sk_buff, tail)); 453 __build_skb_around(skb, data, frag_size); 454 455 return skb; 456 } 457 458 /* build_skb() is wrapper over __build_skb(), that specifically 459 * takes care of skb->head and skb->pfmemalloc 460 */ 461 struct sk_buff *build_skb(void *data, unsigned int frag_size) 462 { 463 struct sk_buff *skb = __build_skb(data, frag_size); 464 465 if (likely(skb && frag_size)) { 466 skb->head_frag = 1; 467 skb_propagate_pfmemalloc(virt_to_head_page(data), skb); 468 } 469 return skb; 470 } 471 EXPORT_SYMBOL(build_skb); 472 473 /** 474 * build_skb_around - build a network buffer around provided skb 475 * @skb: sk_buff provide by caller, must be memset cleared 476 * @data: data buffer provided by caller 477 * @frag_size: size of data 478 */ 479 struct sk_buff *build_skb_around(struct sk_buff *skb, 480 void *data, unsigned int frag_size) 481 { 482 if (unlikely(!skb)) 483 return NULL; 484 485 __build_skb_around(skb, data, frag_size); 486 487 if (frag_size) { 488 skb->head_frag = 1; 489 skb_propagate_pfmemalloc(virt_to_head_page(data), skb); 490 } 491 return skb; 492 } 493 EXPORT_SYMBOL(build_skb_around); 494 495 /** 496 * __napi_build_skb - build a network buffer 497 * @data: data buffer provided by caller 498 * @frag_size: size of data 499 * 500 * Version of __build_skb() that uses NAPI percpu caches to obtain 501 * skbuff_head instead of inplace allocation. 502 * 503 * Returns a new &sk_buff on success, %NULL on allocation failure. 504 */ 505 static struct sk_buff *__napi_build_skb(void *data, unsigned int frag_size) 506 { 507 struct sk_buff *skb; 508 509 skb = napi_skb_cache_get(); 510 if (unlikely(!skb)) 511 return NULL; 512 513 memset(skb, 0, offsetof(struct sk_buff, tail)); 514 __build_skb_around(skb, data, frag_size); 515 516 return skb; 517 } 518 519 /** 520 * napi_build_skb - build a network buffer 521 * @data: data buffer provided by caller 522 * @frag_size: size of data 523 * 524 * Version of __napi_build_skb() that takes care of skb->head_frag 525 * and skb->pfmemalloc when the data is a page or page fragment. 526 * 527 * Returns a new &sk_buff on success, %NULL on allocation failure. 528 */ 529 struct sk_buff *napi_build_skb(void *data, unsigned int frag_size) 530 { 531 struct sk_buff *skb = __napi_build_skb(data, frag_size); 532 533 if (likely(skb) && frag_size) { 534 skb->head_frag = 1; 535 skb_propagate_pfmemalloc(virt_to_head_page(data), skb); 536 } 537 538 return skb; 539 } 540 EXPORT_SYMBOL(napi_build_skb); 541 542 /* 543 * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells 544 * the caller if emergency pfmemalloc reserves are being used. If it is and 545 * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves 546 * may be used. Otherwise, the packet data may be discarded until enough 547 * memory is free 548 */ 549 static void *kmalloc_reserve(unsigned int *size, gfp_t flags, int node, 550 bool *pfmemalloc) 551 { 552 bool ret_pfmemalloc = false; 553 unsigned int obj_size; 554 void *obj; 555 556 obj_size = SKB_HEAD_ALIGN(*size); 557 if (obj_size <= SKB_SMALL_HEAD_CACHE_SIZE && 558 !(flags & KMALLOC_NOT_NORMAL_BITS)) { 559 obj = kmem_cache_alloc_node(skb_small_head_cache, 560 flags | __GFP_NOMEMALLOC | __GFP_NOWARN, 561 node); 562 *size = SKB_SMALL_HEAD_CACHE_SIZE; 563 if (obj || !(gfp_pfmemalloc_allowed(flags))) 564 goto out; 565 /* Try again but now we are using pfmemalloc reserves */ 566 ret_pfmemalloc = true; 567 obj = kmem_cache_alloc_node(skb_small_head_cache, flags, node); 568 goto out; 569 } 570 *size = obj_size = kmalloc_size_roundup(obj_size); 571 /* 572 * Try a regular allocation, when that fails and we're not entitled 573 * to the reserves, fail. 574 */ 575 obj = kmalloc_node_track_caller(obj_size, 576 flags | __GFP_NOMEMALLOC | __GFP_NOWARN, 577 node); 578 if (obj || !(gfp_pfmemalloc_allowed(flags))) 579 goto out; 580 581 /* Try again but now we are using pfmemalloc reserves */ 582 ret_pfmemalloc = true; 583 obj = kmalloc_node_track_caller(obj_size, flags, node); 584 585 out: 586 if (pfmemalloc) 587 *pfmemalloc = ret_pfmemalloc; 588 589 return obj; 590 } 591 592 /* Allocate a new skbuff. We do this ourselves so we can fill in a few 593 * 'private' fields and also do memory statistics to find all the 594 * [BEEP] leaks. 595 * 596 */ 597 598 /** 599 * __alloc_skb - allocate a network buffer 600 * @size: size to allocate 601 * @gfp_mask: allocation mask 602 * @flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache 603 * instead of head cache and allocate a cloned (child) skb. 604 * If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for 605 * allocations in case the data is required for writeback 606 * @node: numa node to allocate memory on 607 * 608 * Allocate a new &sk_buff. The returned buffer has no headroom and a 609 * tail room of at least size bytes. The object has a reference count 610 * of one. The return is the buffer. On a failure the return is %NULL. 611 * 612 * Buffers may only be allocated from interrupts using a @gfp_mask of 613 * %GFP_ATOMIC. 614 */ 615 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask, 616 int flags, int node) 617 { 618 struct kmem_cache *cache; 619 struct sk_buff *skb; 620 bool pfmemalloc; 621 u8 *data; 622 623 cache = (flags & SKB_ALLOC_FCLONE) 624 ? skbuff_fclone_cache : skbuff_cache; 625 626 if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX)) 627 gfp_mask |= __GFP_MEMALLOC; 628 629 /* Get the HEAD */ 630 if ((flags & (SKB_ALLOC_FCLONE | SKB_ALLOC_NAPI)) == SKB_ALLOC_NAPI && 631 likely(node == NUMA_NO_NODE || node == numa_mem_id())) 632 skb = napi_skb_cache_get(); 633 else 634 skb = kmem_cache_alloc_node(cache, gfp_mask & ~GFP_DMA, node); 635 if (unlikely(!skb)) 636 return NULL; 637 prefetchw(skb); 638 639 /* We do our best to align skb_shared_info on a separate cache 640 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives 641 * aligned memory blocks, unless SLUB/SLAB debug is enabled. 642 * Both skb->head and skb_shared_info are cache line aligned. 643 */ 644 data = kmalloc_reserve(&size, gfp_mask, node, &pfmemalloc); 645 if (unlikely(!data)) 646 goto nodata; 647 /* kmalloc_size_roundup() might give us more room than requested. 648 * Put skb_shared_info exactly at the end of allocated zone, 649 * to allow max possible filling before reallocation. 650 */ 651 prefetchw(data + SKB_WITH_OVERHEAD(size)); 652 653 /* 654 * Only clear those fields we need to clear, not those that we will 655 * actually initialise below. Hence, don't put any more fields after 656 * the tail pointer in struct sk_buff! 657 */ 658 memset(skb, 0, offsetof(struct sk_buff, tail)); 659 __build_skb_around(skb, data, size); 660 skb->pfmemalloc = pfmemalloc; 661 662 if (flags & SKB_ALLOC_FCLONE) { 663 struct sk_buff_fclones *fclones; 664 665 fclones = container_of(skb, struct sk_buff_fclones, skb1); 666 667 skb->fclone = SKB_FCLONE_ORIG; 668 refcount_set(&fclones->fclone_ref, 1); 669 } 670 671 return skb; 672 673 nodata: 674 kmem_cache_free(cache, skb); 675 return NULL; 676 } 677 EXPORT_SYMBOL(__alloc_skb); 678 679 /** 680 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device 681 * @dev: network device to receive on 682 * @len: length to allocate 683 * @gfp_mask: get_free_pages mask, passed to alloc_skb 684 * 685 * Allocate a new &sk_buff and assign it a usage count of one. The 686 * buffer has NET_SKB_PAD headroom built in. Users should allocate 687 * the headroom they think they need without accounting for the 688 * built in space. The built in space is used for optimisations. 689 * 690 * %NULL is returned if there is no free memory. 691 */ 692 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len, 693 gfp_t gfp_mask) 694 { 695 struct page_frag_cache *nc; 696 struct sk_buff *skb; 697 bool pfmemalloc; 698 void *data; 699 700 len += NET_SKB_PAD; 701 702 /* If requested length is either too small or too big, 703 * we use kmalloc() for skb->head allocation. 704 */ 705 if (len <= SKB_WITH_OVERHEAD(1024) || 706 len > SKB_WITH_OVERHEAD(PAGE_SIZE) || 707 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) { 708 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE); 709 if (!skb) 710 goto skb_fail; 711 goto skb_success; 712 } 713 714 len = SKB_HEAD_ALIGN(len); 715 716 if (sk_memalloc_socks()) 717 gfp_mask |= __GFP_MEMALLOC; 718 719 if (in_hardirq() || irqs_disabled()) { 720 nc = this_cpu_ptr(&netdev_alloc_cache); 721 data = page_frag_alloc(nc, len, gfp_mask); 722 pfmemalloc = nc->pfmemalloc; 723 } else { 724 local_bh_disable(); 725 nc = this_cpu_ptr(&napi_alloc_cache.page); 726 data = page_frag_alloc(nc, len, gfp_mask); 727 pfmemalloc = nc->pfmemalloc; 728 local_bh_enable(); 729 } 730 731 if (unlikely(!data)) 732 return NULL; 733 734 skb = __build_skb(data, len); 735 if (unlikely(!skb)) { 736 skb_free_frag(data); 737 return NULL; 738 } 739 740 if (pfmemalloc) 741 skb->pfmemalloc = 1; 742 skb->head_frag = 1; 743 744 skb_success: 745 skb_reserve(skb, NET_SKB_PAD); 746 skb->dev = dev; 747 748 skb_fail: 749 return skb; 750 } 751 EXPORT_SYMBOL(__netdev_alloc_skb); 752 753 /** 754 * __napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance 755 * @napi: napi instance this buffer was allocated for 756 * @len: length to allocate 757 * @gfp_mask: get_free_pages mask, passed to alloc_skb and alloc_pages 758 * 759 * Allocate a new sk_buff for use in NAPI receive. This buffer will 760 * attempt to allocate the head from a special reserved region used 761 * only for NAPI Rx allocation. By doing this we can save several 762 * CPU cycles by avoiding having to disable and re-enable IRQs. 763 * 764 * %NULL is returned if there is no free memory. 765 */ 766 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, unsigned int len, 767 gfp_t gfp_mask) 768 { 769 struct napi_alloc_cache *nc; 770 struct sk_buff *skb; 771 bool pfmemalloc; 772 void *data; 773 774 DEBUG_NET_WARN_ON_ONCE(!in_softirq()); 775 len += NET_SKB_PAD + NET_IP_ALIGN; 776 777 /* If requested length is either too small or too big, 778 * we use kmalloc() for skb->head allocation. 779 * When the small frag allocator is available, prefer it over kmalloc 780 * for small fragments 781 */ 782 if ((!NAPI_HAS_SMALL_PAGE_FRAG && len <= SKB_WITH_OVERHEAD(1024)) || 783 len > SKB_WITH_OVERHEAD(PAGE_SIZE) || 784 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) { 785 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX | SKB_ALLOC_NAPI, 786 NUMA_NO_NODE); 787 if (!skb) 788 goto skb_fail; 789 goto skb_success; 790 } 791 792 nc = this_cpu_ptr(&napi_alloc_cache); 793 794 if (sk_memalloc_socks()) 795 gfp_mask |= __GFP_MEMALLOC; 796 797 if (NAPI_HAS_SMALL_PAGE_FRAG && len <= SKB_WITH_OVERHEAD(1024)) { 798 /* we are artificially inflating the allocation size, but 799 * that is not as bad as it may look like, as: 800 * - 'len' less than GRO_MAX_HEAD makes little sense 801 * - On most systems, larger 'len' values lead to fragment 802 * size above 512 bytes 803 * - kmalloc would use the kmalloc-1k slab for such values 804 * - Builds with smaller GRO_MAX_HEAD will very likely do 805 * little networking, as that implies no WiFi and no 806 * tunnels support, and 32 bits arches. 807 */ 808 len = SZ_1K; 809 810 data = page_frag_alloc_1k(&nc->page_small, gfp_mask); 811 pfmemalloc = NAPI_SMALL_PAGE_PFMEMALLOC(nc->page_small); 812 } else { 813 len = SKB_HEAD_ALIGN(len); 814 815 data = page_frag_alloc(&nc->page, len, gfp_mask); 816 pfmemalloc = nc->page.pfmemalloc; 817 } 818 819 if (unlikely(!data)) 820 return NULL; 821 822 skb = __napi_build_skb(data, len); 823 if (unlikely(!skb)) { 824 skb_free_frag(data); 825 return NULL; 826 } 827 828 if (pfmemalloc) 829 skb->pfmemalloc = 1; 830 skb->head_frag = 1; 831 832 skb_success: 833 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN); 834 skb->dev = napi->dev; 835 836 skb_fail: 837 return skb; 838 } 839 EXPORT_SYMBOL(__napi_alloc_skb); 840 841 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off, 842 int size, unsigned int truesize) 843 { 844 skb_fill_page_desc(skb, i, page, off, size); 845 skb->len += size; 846 skb->data_len += size; 847 skb->truesize += truesize; 848 } 849 EXPORT_SYMBOL(skb_add_rx_frag); 850 851 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size, 852 unsigned int truesize) 853 { 854 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 855 856 skb_frag_size_add(frag, size); 857 skb->len += size; 858 skb->data_len += size; 859 skb->truesize += truesize; 860 } 861 EXPORT_SYMBOL(skb_coalesce_rx_frag); 862 863 static void skb_drop_list(struct sk_buff **listp) 864 { 865 kfree_skb_list(*listp); 866 *listp = NULL; 867 } 868 869 static inline void skb_drop_fraglist(struct sk_buff *skb) 870 { 871 skb_drop_list(&skb_shinfo(skb)->frag_list); 872 } 873 874 static void skb_clone_fraglist(struct sk_buff *skb) 875 { 876 struct sk_buff *list; 877 878 skb_walk_frags(skb, list) 879 skb_get(list); 880 } 881 882 static bool skb_pp_recycle(struct sk_buff *skb, void *data, bool napi_safe) 883 { 884 if (!IS_ENABLED(CONFIG_PAGE_POOL) || !skb->pp_recycle) 885 return false; 886 return page_pool_return_skb_page(virt_to_page(data), napi_safe); 887 } 888 889 static void skb_kfree_head(void *head, unsigned int end_offset) 890 { 891 if (end_offset == SKB_SMALL_HEAD_HEADROOM) 892 kmem_cache_free(skb_small_head_cache, head); 893 else 894 kfree(head); 895 } 896 897 static void skb_free_head(struct sk_buff *skb, bool napi_safe) 898 { 899 unsigned char *head = skb->head; 900 901 if (skb->head_frag) { 902 if (skb_pp_recycle(skb, head, napi_safe)) 903 return; 904 skb_free_frag(head); 905 } else { 906 skb_kfree_head(head, skb_end_offset(skb)); 907 } 908 } 909 910 static void skb_release_data(struct sk_buff *skb, enum skb_drop_reason reason, 911 bool napi_safe) 912 { 913 struct skb_shared_info *shinfo = skb_shinfo(skb); 914 int i; 915 916 if (skb->cloned && 917 atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1, 918 &shinfo->dataref)) 919 goto exit; 920 921 if (skb_zcopy(skb)) { 922 bool skip_unref = shinfo->flags & SKBFL_MANAGED_FRAG_REFS; 923 924 skb_zcopy_clear(skb, true); 925 if (skip_unref) 926 goto free_head; 927 } 928 929 for (i = 0; i < shinfo->nr_frags; i++) 930 napi_frag_unref(&shinfo->frags[i], skb->pp_recycle, napi_safe); 931 932 free_head: 933 if (shinfo->frag_list) 934 kfree_skb_list_reason(shinfo->frag_list, reason); 935 936 skb_free_head(skb, napi_safe); 937 exit: 938 /* When we clone an SKB we copy the reycling bit. The pp_recycle 939 * bit is only set on the head though, so in order to avoid races 940 * while trying to recycle fragments on __skb_frag_unref() we need 941 * to make one SKB responsible for triggering the recycle path. 942 * So disable the recycling bit if an SKB is cloned and we have 943 * additional references to the fragmented part of the SKB. 944 * Eventually the last SKB will have the recycling bit set and it's 945 * dataref set to 0, which will trigger the recycling 946 */ 947 skb->pp_recycle = 0; 948 } 949 950 /* 951 * Free an skbuff by memory without cleaning the state. 952 */ 953 static void kfree_skbmem(struct sk_buff *skb) 954 { 955 struct sk_buff_fclones *fclones; 956 957 switch (skb->fclone) { 958 case SKB_FCLONE_UNAVAILABLE: 959 kmem_cache_free(skbuff_cache, skb); 960 return; 961 962 case SKB_FCLONE_ORIG: 963 fclones = container_of(skb, struct sk_buff_fclones, skb1); 964 965 /* We usually free the clone (TX completion) before original skb 966 * This test would have no chance to be true for the clone, 967 * while here, branch prediction will be good. 968 */ 969 if (refcount_read(&fclones->fclone_ref) == 1) 970 goto fastpath; 971 break; 972 973 default: /* SKB_FCLONE_CLONE */ 974 fclones = container_of(skb, struct sk_buff_fclones, skb2); 975 break; 976 } 977 if (!refcount_dec_and_test(&fclones->fclone_ref)) 978 return; 979 fastpath: 980 kmem_cache_free(skbuff_fclone_cache, fclones); 981 } 982 983 void skb_release_head_state(struct sk_buff *skb) 984 { 985 skb_dst_drop(skb); 986 if (skb->destructor) { 987 DEBUG_NET_WARN_ON_ONCE(in_hardirq()); 988 skb->destructor(skb); 989 } 990 #if IS_ENABLED(CONFIG_NF_CONNTRACK) 991 nf_conntrack_put(skb_nfct(skb)); 992 #endif 993 skb_ext_put(skb); 994 } 995 996 /* Free everything but the sk_buff shell. */ 997 static void skb_release_all(struct sk_buff *skb, enum skb_drop_reason reason, 998 bool napi_safe) 999 { 1000 skb_release_head_state(skb); 1001 if (likely(skb->head)) 1002 skb_release_data(skb, reason, napi_safe); 1003 } 1004 1005 /** 1006 * __kfree_skb - private function 1007 * @skb: buffer 1008 * 1009 * Free an sk_buff. Release anything attached to the buffer. 1010 * Clean the state. This is an internal helper function. Users should 1011 * always call kfree_skb 1012 */ 1013 1014 void __kfree_skb(struct sk_buff *skb) 1015 { 1016 skb_release_all(skb, SKB_DROP_REASON_NOT_SPECIFIED, false); 1017 kfree_skbmem(skb); 1018 } 1019 EXPORT_SYMBOL(__kfree_skb); 1020 1021 static __always_inline 1022 bool __kfree_skb_reason(struct sk_buff *skb, enum skb_drop_reason reason) 1023 { 1024 if (unlikely(!skb_unref(skb))) 1025 return false; 1026 1027 DEBUG_NET_WARN_ON_ONCE(reason == SKB_NOT_DROPPED_YET || 1028 u32_get_bits(reason, 1029 SKB_DROP_REASON_SUBSYS_MASK) >= 1030 SKB_DROP_REASON_SUBSYS_NUM); 1031 1032 if (reason == SKB_CONSUMED) 1033 trace_consume_skb(skb, __builtin_return_address(0)); 1034 else 1035 trace_kfree_skb(skb, __builtin_return_address(0), reason); 1036 return true; 1037 } 1038 1039 /** 1040 * kfree_skb_reason - free an sk_buff with special reason 1041 * @skb: buffer to free 1042 * @reason: reason why this skb is dropped 1043 * 1044 * Drop a reference to the buffer and free it if the usage count has 1045 * hit zero. Meanwhile, pass the drop reason to 'kfree_skb' 1046 * tracepoint. 1047 */ 1048 void __fix_address 1049 kfree_skb_reason(struct sk_buff *skb, enum skb_drop_reason reason) 1050 { 1051 if (__kfree_skb_reason(skb, reason)) 1052 __kfree_skb(skb); 1053 } 1054 EXPORT_SYMBOL(kfree_skb_reason); 1055 1056 #define KFREE_SKB_BULK_SIZE 16 1057 1058 struct skb_free_array { 1059 unsigned int skb_count; 1060 void *skb_array[KFREE_SKB_BULK_SIZE]; 1061 }; 1062 1063 static void kfree_skb_add_bulk(struct sk_buff *skb, 1064 struct skb_free_array *sa, 1065 enum skb_drop_reason reason) 1066 { 1067 /* if SKB is a clone, don't handle this case */ 1068 if (unlikely(skb->fclone != SKB_FCLONE_UNAVAILABLE)) { 1069 __kfree_skb(skb); 1070 return; 1071 } 1072 1073 skb_release_all(skb, reason, false); 1074 sa->skb_array[sa->skb_count++] = skb; 1075 1076 if (unlikely(sa->skb_count == KFREE_SKB_BULK_SIZE)) { 1077 kmem_cache_free_bulk(skbuff_cache, KFREE_SKB_BULK_SIZE, 1078 sa->skb_array); 1079 sa->skb_count = 0; 1080 } 1081 } 1082 1083 void __fix_address 1084 kfree_skb_list_reason(struct sk_buff *segs, enum skb_drop_reason reason) 1085 { 1086 struct skb_free_array sa; 1087 1088 sa.skb_count = 0; 1089 1090 while (segs) { 1091 struct sk_buff *next = segs->next; 1092 1093 if (__kfree_skb_reason(segs, reason)) { 1094 skb_poison_list(segs); 1095 kfree_skb_add_bulk(segs, &sa, reason); 1096 } 1097 1098 segs = next; 1099 } 1100 1101 if (sa.skb_count) 1102 kmem_cache_free_bulk(skbuff_cache, sa.skb_count, sa.skb_array); 1103 } 1104 EXPORT_SYMBOL(kfree_skb_list_reason); 1105 1106 /* Dump skb information and contents. 1107 * 1108 * Must only be called from net_ratelimit()-ed paths. 1109 * 1110 * Dumps whole packets if full_pkt, only headers otherwise. 1111 */ 1112 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt) 1113 { 1114 struct skb_shared_info *sh = skb_shinfo(skb); 1115 struct net_device *dev = skb->dev; 1116 struct sock *sk = skb->sk; 1117 struct sk_buff *list_skb; 1118 bool has_mac, has_trans; 1119 int headroom, tailroom; 1120 int i, len, seg_len; 1121 1122 if (full_pkt) 1123 len = skb->len; 1124 else 1125 len = min_t(int, skb->len, MAX_HEADER + 128); 1126 1127 headroom = skb_headroom(skb); 1128 tailroom = skb_tailroom(skb); 1129 1130 has_mac = skb_mac_header_was_set(skb); 1131 has_trans = skb_transport_header_was_set(skb); 1132 1133 printk("%sskb len=%u headroom=%u headlen=%u tailroom=%u\n" 1134 "mac=(%d,%d) net=(%d,%d) trans=%d\n" 1135 "shinfo(txflags=%u nr_frags=%u gso(size=%hu type=%u segs=%hu))\n" 1136 "csum(0x%x ip_summed=%u complete_sw=%u valid=%u level=%u)\n" 1137 "hash(0x%x sw=%u l4=%u) proto=0x%04x pkttype=%u iif=%d\n", 1138 level, skb->len, headroom, skb_headlen(skb), tailroom, 1139 has_mac ? skb->mac_header : -1, 1140 has_mac ? skb_mac_header_len(skb) : -1, 1141 skb->network_header, 1142 has_trans ? skb_network_header_len(skb) : -1, 1143 has_trans ? skb->transport_header : -1, 1144 sh->tx_flags, sh->nr_frags, 1145 sh->gso_size, sh->gso_type, sh->gso_segs, 1146 skb->csum, skb->ip_summed, skb->csum_complete_sw, 1147 skb->csum_valid, skb->csum_level, 1148 skb->hash, skb->sw_hash, skb->l4_hash, 1149 ntohs(skb->protocol), skb->pkt_type, skb->skb_iif); 1150 1151 if (dev) 1152 printk("%sdev name=%s feat=%pNF\n", 1153 level, dev->name, &dev->features); 1154 if (sk) 1155 printk("%ssk family=%hu type=%u proto=%u\n", 1156 level, sk->sk_family, sk->sk_type, sk->sk_protocol); 1157 1158 if (full_pkt && headroom) 1159 print_hex_dump(level, "skb headroom: ", DUMP_PREFIX_OFFSET, 1160 16, 1, skb->head, headroom, false); 1161 1162 seg_len = min_t(int, skb_headlen(skb), len); 1163 if (seg_len) 1164 print_hex_dump(level, "skb linear: ", DUMP_PREFIX_OFFSET, 1165 16, 1, skb->data, seg_len, false); 1166 len -= seg_len; 1167 1168 if (full_pkt && tailroom) 1169 print_hex_dump(level, "skb tailroom: ", DUMP_PREFIX_OFFSET, 1170 16, 1, skb_tail_pointer(skb), tailroom, false); 1171 1172 for (i = 0; len && i < skb_shinfo(skb)->nr_frags; i++) { 1173 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 1174 u32 p_off, p_len, copied; 1175 struct page *p; 1176 u8 *vaddr; 1177 1178 skb_frag_foreach_page(frag, skb_frag_off(frag), 1179 skb_frag_size(frag), p, p_off, p_len, 1180 copied) { 1181 seg_len = min_t(int, p_len, len); 1182 vaddr = kmap_atomic(p); 1183 print_hex_dump(level, "skb frag: ", 1184 DUMP_PREFIX_OFFSET, 1185 16, 1, vaddr + p_off, seg_len, false); 1186 kunmap_atomic(vaddr); 1187 len -= seg_len; 1188 if (!len) 1189 break; 1190 } 1191 } 1192 1193 if (full_pkt && skb_has_frag_list(skb)) { 1194 printk("skb fraglist:\n"); 1195 skb_walk_frags(skb, list_skb) 1196 skb_dump(level, list_skb, true); 1197 } 1198 } 1199 EXPORT_SYMBOL(skb_dump); 1200 1201 /** 1202 * skb_tx_error - report an sk_buff xmit error 1203 * @skb: buffer that triggered an error 1204 * 1205 * Report xmit error if a device callback is tracking this skb. 1206 * skb must be freed afterwards. 1207 */ 1208 void skb_tx_error(struct sk_buff *skb) 1209 { 1210 if (skb) { 1211 skb_zcopy_downgrade_managed(skb); 1212 skb_zcopy_clear(skb, true); 1213 } 1214 } 1215 EXPORT_SYMBOL(skb_tx_error); 1216 1217 #ifdef CONFIG_TRACEPOINTS 1218 /** 1219 * consume_skb - free an skbuff 1220 * @skb: buffer to free 1221 * 1222 * Drop a ref to the buffer and free it if the usage count has hit zero 1223 * Functions identically to kfree_skb, but kfree_skb assumes that the frame 1224 * is being dropped after a failure and notes that 1225 */ 1226 void consume_skb(struct sk_buff *skb) 1227 { 1228 if (!skb_unref(skb)) 1229 return; 1230 1231 trace_consume_skb(skb, __builtin_return_address(0)); 1232 __kfree_skb(skb); 1233 } 1234 EXPORT_SYMBOL(consume_skb); 1235 #endif 1236 1237 /** 1238 * __consume_stateless_skb - free an skbuff, assuming it is stateless 1239 * @skb: buffer to free 1240 * 1241 * Alike consume_skb(), but this variant assumes that this is the last 1242 * skb reference and all the head states have been already dropped 1243 */ 1244 void __consume_stateless_skb(struct sk_buff *skb) 1245 { 1246 trace_consume_skb(skb, __builtin_return_address(0)); 1247 skb_release_data(skb, SKB_CONSUMED, false); 1248 kfree_skbmem(skb); 1249 } 1250 1251 static void napi_skb_cache_put(struct sk_buff *skb) 1252 { 1253 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 1254 u32 i; 1255 1256 kasan_poison_object_data(skbuff_cache, skb); 1257 nc->skb_cache[nc->skb_count++] = skb; 1258 1259 if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) { 1260 for (i = NAPI_SKB_CACHE_HALF; i < NAPI_SKB_CACHE_SIZE; i++) 1261 kasan_unpoison_object_data(skbuff_cache, 1262 nc->skb_cache[i]); 1263 1264 kmem_cache_free_bulk(skbuff_cache, NAPI_SKB_CACHE_HALF, 1265 nc->skb_cache + NAPI_SKB_CACHE_HALF); 1266 nc->skb_count = NAPI_SKB_CACHE_HALF; 1267 } 1268 } 1269 1270 void __napi_kfree_skb(struct sk_buff *skb, enum skb_drop_reason reason) 1271 { 1272 skb_release_all(skb, reason, true); 1273 napi_skb_cache_put(skb); 1274 } 1275 1276 void napi_skb_free_stolen_head(struct sk_buff *skb) 1277 { 1278 if (unlikely(skb->slow_gro)) { 1279 nf_reset_ct(skb); 1280 skb_dst_drop(skb); 1281 skb_ext_put(skb); 1282 skb_orphan(skb); 1283 skb->slow_gro = 0; 1284 } 1285 napi_skb_cache_put(skb); 1286 } 1287 1288 void napi_consume_skb(struct sk_buff *skb, int budget) 1289 { 1290 /* Zero budget indicate non-NAPI context called us, like netpoll */ 1291 if (unlikely(!budget)) { 1292 dev_consume_skb_any(skb); 1293 return; 1294 } 1295 1296 DEBUG_NET_WARN_ON_ONCE(!in_softirq()); 1297 1298 if (!skb_unref(skb)) 1299 return; 1300 1301 /* if reaching here SKB is ready to free */ 1302 trace_consume_skb(skb, __builtin_return_address(0)); 1303 1304 /* if SKB is a clone, don't handle this case */ 1305 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) { 1306 __kfree_skb(skb); 1307 return; 1308 } 1309 1310 skb_release_all(skb, SKB_CONSUMED, !!budget); 1311 napi_skb_cache_put(skb); 1312 } 1313 EXPORT_SYMBOL(napi_consume_skb); 1314 1315 /* Make sure a field is contained by headers group */ 1316 #define CHECK_SKB_FIELD(field) \ 1317 BUILD_BUG_ON(offsetof(struct sk_buff, field) != \ 1318 offsetof(struct sk_buff, headers.field)); \ 1319 1320 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old) 1321 { 1322 new->tstamp = old->tstamp; 1323 /* We do not copy old->sk */ 1324 new->dev = old->dev; 1325 memcpy(new->cb, old->cb, sizeof(old->cb)); 1326 skb_dst_copy(new, old); 1327 __skb_ext_copy(new, old); 1328 __nf_copy(new, old, false); 1329 1330 /* Note : this field could be in the headers group. 1331 * It is not yet because we do not want to have a 16 bit hole 1332 */ 1333 new->queue_mapping = old->queue_mapping; 1334 1335 memcpy(&new->headers, &old->headers, sizeof(new->headers)); 1336 CHECK_SKB_FIELD(protocol); 1337 CHECK_SKB_FIELD(csum); 1338 CHECK_SKB_FIELD(hash); 1339 CHECK_SKB_FIELD(priority); 1340 CHECK_SKB_FIELD(skb_iif); 1341 CHECK_SKB_FIELD(vlan_proto); 1342 CHECK_SKB_FIELD(vlan_tci); 1343 CHECK_SKB_FIELD(transport_header); 1344 CHECK_SKB_FIELD(network_header); 1345 CHECK_SKB_FIELD(mac_header); 1346 CHECK_SKB_FIELD(inner_protocol); 1347 CHECK_SKB_FIELD(inner_transport_header); 1348 CHECK_SKB_FIELD(inner_network_header); 1349 CHECK_SKB_FIELD(inner_mac_header); 1350 CHECK_SKB_FIELD(mark); 1351 #ifdef CONFIG_NETWORK_SECMARK 1352 CHECK_SKB_FIELD(secmark); 1353 #endif 1354 #ifdef CONFIG_NET_RX_BUSY_POLL 1355 CHECK_SKB_FIELD(napi_id); 1356 #endif 1357 CHECK_SKB_FIELD(alloc_cpu); 1358 #ifdef CONFIG_XPS 1359 CHECK_SKB_FIELD(sender_cpu); 1360 #endif 1361 #ifdef CONFIG_NET_SCHED 1362 CHECK_SKB_FIELD(tc_index); 1363 #endif 1364 1365 } 1366 1367 /* 1368 * You should not add any new code to this function. Add it to 1369 * __copy_skb_header above instead. 1370 */ 1371 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb) 1372 { 1373 #define C(x) n->x = skb->x 1374 1375 n->next = n->prev = NULL; 1376 n->sk = NULL; 1377 __copy_skb_header(n, skb); 1378 1379 C(len); 1380 C(data_len); 1381 C(mac_len); 1382 n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len; 1383 n->cloned = 1; 1384 n->nohdr = 0; 1385 n->peeked = 0; 1386 C(pfmemalloc); 1387 C(pp_recycle); 1388 n->destructor = NULL; 1389 C(tail); 1390 C(end); 1391 C(head); 1392 C(head_frag); 1393 C(data); 1394 C(truesize); 1395 refcount_set(&n->users, 1); 1396 1397 atomic_inc(&(skb_shinfo(skb)->dataref)); 1398 skb->cloned = 1; 1399 1400 return n; 1401 #undef C 1402 } 1403 1404 /** 1405 * alloc_skb_for_msg() - allocate sk_buff to wrap frag list forming a msg 1406 * @first: first sk_buff of the msg 1407 */ 1408 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first) 1409 { 1410 struct sk_buff *n; 1411 1412 n = alloc_skb(0, GFP_ATOMIC); 1413 if (!n) 1414 return NULL; 1415 1416 n->len = first->len; 1417 n->data_len = first->len; 1418 n->truesize = first->truesize; 1419 1420 skb_shinfo(n)->frag_list = first; 1421 1422 __copy_skb_header(n, first); 1423 n->destructor = NULL; 1424 1425 return n; 1426 } 1427 EXPORT_SYMBOL_GPL(alloc_skb_for_msg); 1428 1429 /** 1430 * skb_morph - morph one skb into another 1431 * @dst: the skb to receive the contents 1432 * @src: the skb to supply the contents 1433 * 1434 * This is identical to skb_clone except that the target skb is 1435 * supplied by the user. 1436 * 1437 * The target skb is returned upon exit. 1438 */ 1439 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src) 1440 { 1441 skb_release_all(dst, SKB_CONSUMED, false); 1442 return __skb_clone(dst, src); 1443 } 1444 EXPORT_SYMBOL_GPL(skb_morph); 1445 1446 int mm_account_pinned_pages(struct mmpin *mmp, size_t size) 1447 { 1448 unsigned long max_pg, num_pg, new_pg, old_pg, rlim; 1449 struct user_struct *user; 1450 1451 if (capable(CAP_IPC_LOCK) || !size) 1452 return 0; 1453 1454 rlim = rlimit(RLIMIT_MEMLOCK); 1455 if (rlim == RLIM_INFINITY) 1456 return 0; 1457 1458 num_pg = (size >> PAGE_SHIFT) + 2; /* worst case */ 1459 max_pg = rlim >> PAGE_SHIFT; 1460 user = mmp->user ? : current_user(); 1461 1462 old_pg = atomic_long_read(&user->locked_vm); 1463 do { 1464 new_pg = old_pg + num_pg; 1465 if (new_pg > max_pg) 1466 return -ENOBUFS; 1467 } while (!atomic_long_try_cmpxchg(&user->locked_vm, &old_pg, new_pg)); 1468 1469 if (!mmp->user) { 1470 mmp->user = get_uid(user); 1471 mmp->num_pg = num_pg; 1472 } else { 1473 mmp->num_pg += num_pg; 1474 } 1475 1476 return 0; 1477 } 1478 EXPORT_SYMBOL_GPL(mm_account_pinned_pages); 1479 1480 void mm_unaccount_pinned_pages(struct mmpin *mmp) 1481 { 1482 if (mmp->user) { 1483 atomic_long_sub(mmp->num_pg, &mmp->user->locked_vm); 1484 free_uid(mmp->user); 1485 } 1486 } 1487 EXPORT_SYMBOL_GPL(mm_unaccount_pinned_pages); 1488 1489 static struct ubuf_info *msg_zerocopy_alloc(struct sock *sk, size_t size) 1490 { 1491 struct ubuf_info_msgzc *uarg; 1492 struct sk_buff *skb; 1493 1494 WARN_ON_ONCE(!in_task()); 1495 1496 skb = sock_omalloc(sk, 0, GFP_KERNEL); 1497 if (!skb) 1498 return NULL; 1499 1500 BUILD_BUG_ON(sizeof(*uarg) > sizeof(skb->cb)); 1501 uarg = (void *)skb->cb; 1502 uarg->mmp.user = NULL; 1503 1504 if (mm_account_pinned_pages(&uarg->mmp, size)) { 1505 kfree_skb(skb); 1506 return NULL; 1507 } 1508 1509 uarg->ubuf.callback = msg_zerocopy_callback; 1510 uarg->id = ((u32)atomic_inc_return(&sk->sk_zckey)) - 1; 1511 uarg->len = 1; 1512 uarg->bytelen = size; 1513 uarg->zerocopy = 1; 1514 uarg->ubuf.flags = SKBFL_ZEROCOPY_FRAG | SKBFL_DONT_ORPHAN; 1515 refcount_set(&uarg->ubuf.refcnt, 1); 1516 sock_hold(sk); 1517 1518 return &uarg->ubuf; 1519 } 1520 1521 static inline struct sk_buff *skb_from_uarg(struct ubuf_info_msgzc *uarg) 1522 { 1523 return container_of((void *)uarg, struct sk_buff, cb); 1524 } 1525 1526 struct ubuf_info *msg_zerocopy_realloc(struct sock *sk, size_t size, 1527 struct ubuf_info *uarg) 1528 { 1529 if (uarg) { 1530 struct ubuf_info_msgzc *uarg_zc; 1531 const u32 byte_limit = 1 << 19; /* limit to a few TSO */ 1532 u32 bytelen, next; 1533 1534 /* there might be non MSG_ZEROCOPY users */ 1535 if (uarg->callback != msg_zerocopy_callback) 1536 return NULL; 1537 1538 /* realloc only when socket is locked (TCP, UDP cork), 1539 * so uarg->len and sk_zckey access is serialized 1540 */ 1541 if (!sock_owned_by_user(sk)) { 1542 WARN_ON_ONCE(1); 1543 return NULL; 1544 } 1545 1546 uarg_zc = uarg_to_msgzc(uarg); 1547 bytelen = uarg_zc->bytelen + size; 1548 if (uarg_zc->len == USHRT_MAX - 1 || bytelen > byte_limit) { 1549 /* TCP can create new skb to attach new uarg */ 1550 if (sk->sk_type == SOCK_STREAM) 1551 goto new_alloc; 1552 return NULL; 1553 } 1554 1555 next = (u32)atomic_read(&sk->sk_zckey); 1556 if ((u32)(uarg_zc->id + uarg_zc->len) == next) { 1557 if (mm_account_pinned_pages(&uarg_zc->mmp, size)) 1558 return NULL; 1559 uarg_zc->len++; 1560 uarg_zc->bytelen = bytelen; 1561 atomic_set(&sk->sk_zckey, ++next); 1562 1563 /* no extra ref when appending to datagram (MSG_MORE) */ 1564 if (sk->sk_type == SOCK_STREAM) 1565 net_zcopy_get(uarg); 1566 1567 return uarg; 1568 } 1569 } 1570 1571 new_alloc: 1572 return msg_zerocopy_alloc(sk, size); 1573 } 1574 EXPORT_SYMBOL_GPL(msg_zerocopy_realloc); 1575 1576 static bool skb_zerocopy_notify_extend(struct sk_buff *skb, u32 lo, u16 len) 1577 { 1578 struct sock_exterr_skb *serr = SKB_EXT_ERR(skb); 1579 u32 old_lo, old_hi; 1580 u64 sum_len; 1581 1582 old_lo = serr->ee.ee_info; 1583 old_hi = serr->ee.ee_data; 1584 sum_len = old_hi - old_lo + 1ULL + len; 1585 1586 if (sum_len >= (1ULL << 32)) 1587 return false; 1588 1589 if (lo != old_hi + 1) 1590 return false; 1591 1592 serr->ee.ee_data += len; 1593 return true; 1594 } 1595 1596 static void __msg_zerocopy_callback(struct ubuf_info_msgzc *uarg) 1597 { 1598 struct sk_buff *tail, *skb = skb_from_uarg(uarg); 1599 struct sock_exterr_skb *serr; 1600 struct sock *sk = skb->sk; 1601 struct sk_buff_head *q; 1602 unsigned long flags; 1603 bool is_zerocopy; 1604 u32 lo, hi; 1605 u16 len; 1606 1607 mm_unaccount_pinned_pages(&uarg->mmp); 1608 1609 /* if !len, there was only 1 call, and it was aborted 1610 * so do not queue a completion notification 1611 */ 1612 if (!uarg->len || sock_flag(sk, SOCK_DEAD)) 1613 goto release; 1614 1615 len = uarg->len; 1616 lo = uarg->id; 1617 hi = uarg->id + len - 1; 1618 is_zerocopy = uarg->zerocopy; 1619 1620 serr = SKB_EXT_ERR(skb); 1621 memset(serr, 0, sizeof(*serr)); 1622 serr->ee.ee_errno = 0; 1623 serr->ee.ee_origin = SO_EE_ORIGIN_ZEROCOPY; 1624 serr->ee.ee_data = hi; 1625 serr->ee.ee_info = lo; 1626 if (!is_zerocopy) 1627 serr->ee.ee_code |= SO_EE_CODE_ZEROCOPY_COPIED; 1628 1629 q = &sk->sk_error_queue; 1630 spin_lock_irqsave(&q->lock, flags); 1631 tail = skb_peek_tail(q); 1632 if (!tail || SKB_EXT_ERR(tail)->ee.ee_origin != SO_EE_ORIGIN_ZEROCOPY || 1633 !skb_zerocopy_notify_extend(tail, lo, len)) { 1634 __skb_queue_tail(q, skb); 1635 skb = NULL; 1636 } 1637 spin_unlock_irqrestore(&q->lock, flags); 1638 1639 sk_error_report(sk); 1640 1641 release: 1642 consume_skb(skb); 1643 sock_put(sk); 1644 } 1645 1646 void msg_zerocopy_callback(struct sk_buff *skb, struct ubuf_info *uarg, 1647 bool success) 1648 { 1649 struct ubuf_info_msgzc *uarg_zc = uarg_to_msgzc(uarg); 1650 1651 uarg_zc->zerocopy = uarg_zc->zerocopy & success; 1652 1653 if (refcount_dec_and_test(&uarg->refcnt)) 1654 __msg_zerocopy_callback(uarg_zc); 1655 } 1656 EXPORT_SYMBOL_GPL(msg_zerocopy_callback); 1657 1658 void msg_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref) 1659 { 1660 struct sock *sk = skb_from_uarg(uarg_to_msgzc(uarg))->sk; 1661 1662 atomic_dec(&sk->sk_zckey); 1663 uarg_to_msgzc(uarg)->len--; 1664 1665 if (have_uref) 1666 msg_zerocopy_callback(NULL, uarg, true); 1667 } 1668 EXPORT_SYMBOL_GPL(msg_zerocopy_put_abort); 1669 1670 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb, 1671 struct msghdr *msg, int len, 1672 struct ubuf_info *uarg) 1673 { 1674 struct ubuf_info *orig_uarg = skb_zcopy(skb); 1675 int err, orig_len = skb->len; 1676 1677 /* An skb can only point to one uarg. This edge case happens when 1678 * TCP appends to an skb, but zerocopy_realloc triggered a new alloc. 1679 */ 1680 if (orig_uarg && uarg != orig_uarg) 1681 return -EEXIST; 1682 1683 err = __zerocopy_sg_from_iter(msg, sk, skb, &msg->msg_iter, len); 1684 if (err == -EFAULT || (err == -EMSGSIZE && skb->len == orig_len)) { 1685 struct sock *save_sk = skb->sk; 1686 1687 /* Streams do not free skb on error. Reset to prev state. */ 1688 iov_iter_revert(&msg->msg_iter, skb->len - orig_len); 1689 skb->sk = sk; 1690 ___pskb_trim(skb, orig_len); 1691 skb->sk = save_sk; 1692 return err; 1693 } 1694 1695 skb_zcopy_set(skb, uarg, NULL); 1696 return skb->len - orig_len; 1697 } 1698 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_stream); 1699 1700 void __skb_zcopy_downgrade_managed(struct sk_buff *skb) 1701 { 1702 int i; 1703 1704 skb_shinfo(skb)->flags &= ~SKBFL_MANAGED_FRAG_REFS; 1705 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 1706 skb_frag_ref(skb, i); 1707 } 1708 EXPORT_SYMBOL_GPL(__skb_zcopy_downgrade_managed); 1709 1710 static int skb_zerocopy_clone(struct sk_buff *nskb, struct sk_buff *orig, 1711 gfp_t gfp_mask) 1712 { 1713 if (skb_zcopy(orig)) { 1714 if (skb_zcopy(nskb)) { 1715 /* !gfp_mask callers are verified to !skb_zcopy(nskb) */ 1716 if (!gfp_mask) { 1717 WARN_ON_ONCE(1); 1718 return -ENOMEM; 1719 } 1720 if (skb_uarg(nskb) == skb_uarg(orig)) 1721 return 0; 1722 if (skb_copy_ubufs(nskb, GFP_ATOMIC)) 1723 return -EIO; 1724 } 1725 skb_zcopy_set(nskb, skb_uarg(orig), NULL); 1726 } 1727 return 0; 1728 } 1729 1730 /** 1731 * skb_copy_ubufs - copy userspace skb frags buffers to kernel 1732 * @skb: the skb to modify 1733 * @gfp_mask: allocation priority 1734 * 1735 * This must be called on skb with SKBFL_ZEROCOPY_ENABLE. 1736 * It will copy all frags into kernel and drop the reference 1737 * to userspace pages. 1738 * 1739 * If this function is called from an interrupt gfp_mask() must be 1740 * %GFP_ATOMIC. 1741 * 1742 * Returns 0 on success or a negative error code on failure 1743 * to allocate kernel memory to copy to. 1744 */ 1745 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask) 1746 { 1747 int num_frags = skb_shinfo(skb)->nr_frags; 1748 struct page *page, *head = NULL; 1749 int i, order, psize, new_frags; 1750 u32 d_off; 1751 1752 if (skb_shared(skb) || skb_unclone(skb, gfp_mask)) 1753 return -EINVAL; 1754 1755 if (!num_frags) 1756 goto release; 1757 1758 /* We might have to allocate high order pages, so compute what minimum 1759 * page order is needed. 1760 */ 1761 order = 0; 1762 while ((PAGE_SIZE << order) * MAX_SKB_FRAGS < __skb_pagelen(skb)) 1763 order++; 1764 psize = (PAGE_SIZE << order); 1765 1766 new_frags = (__skb_pagelen(skb) + psize - 1) >> (PAGE_SHIFT + order); 1767 for (i = 0; i < new_frags; i++) { 1768 page = alloc_pages(gfp_mask | __GFP_COMP, order); 1769 if (!page) { 1770 while (head) { 1771 struct page *next = (struct page *)page_private(head); 1772 put_page(head); 1773 head = next; 1774 } 1775 return -ENOMEM; 1776 } 1777 set_page_private(page, (unsigned long)head); 1778 head = page; 1779 } 1780 1781 page = head; 1782 d_off = 0; 1783 for (i = 0; i < num_frags; i++) { 1784 skb_frag_t *f = &skb_shinfo(skb)->frags[i]; 1785 u32 p_off, p_len, copied; 1786 struct page *p; 1787 u8 *vaddr; 1788 1789 skb_frag_foreach_page(f, skb_frag_off(f), skb_frag_size(f), 1790 p, p_off, p_len, copied) { 1791 u32 copy, done = 0; 1792 vaddr = kmap_atomic(p); 1793 1794 while (done < p_len) { 1795 if (d_off == psize) { 1796 d_off = 0; 1797 page = (struct page *)page_private(page); 1798 } 1799 copy = min_t(u32, psize - d_off, p_len - done); 1800 memcpy(page_address(page) + d_off, 1801 vaddr + p_off + done, copy); 1802 done += copy; 1803 d_off += copy; 1804 } 1805 kunmap_atomic(vaddr); 1806 } 1807 } 1808 1809 /* skb frags release userspace buffers */ 1810 for (i = 0; i < num_frags; i++) 1811 skb_frag_unref(skb, i); 1812 1813 /* skb frags point to kernel buffers */ 1814 for (i = 0; i < new_frags - 1; i++) { 1815 __skb_fill_page_desc(skb, i, head, 0, psize); 1816 head = (struct page *)page_private(head); 1817 } 1818 __skb_fill_page_desc(skb, new_frags - 1, head, 0, d_off); 1819 skb_shinfo(skb)->nr_frags = new_frags; 1820 1821 release: 1822 skb_zcopy_clear(skb, false); 1823 return 0; 1824 } 1825 EXPORT_SYMBOL_GPL(skb_copy_ubufs); 1826 1827 /** 1828 * skb_clone - duplicate an sk_buff 1829 * @skb: buffer to clone 1830 * @gfp_mask: allocation priority 1831 * 1832 * Duplicate an &sk_buff. The new one is not owned by a socket. Both 1833 * copies share the same packet data but not structure. The new 1834 * buffer has a reference count of 1. If the allocation fails the 1835 * function returns %NULL otherwise the new buffer is returned. 1836 * 1837 * If this function is called from an interrupt gfp_mask() must be 1838 * %GFP_ATOMIC. 1839 */ 1840 1841 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask) 1842 { 1843 struct sk_buff_fclones *fclones = container_of(skb, 1844 struct sk_buff_fclones, 1845 skb1); 1846 struct sk_buff *n; 1847 1848 if (skb_orphan_frags(skb, gfp_mask)) 1849 return NULL; 1850 1851 if (skb->fclone == SKB_FCLONE_ORIG && 1852 refcount_read(&fclones->fclone_ref) == 1) { 1853 n = &fclones->skb2; 1854 refcount_set(&fclones->fclone_ref, 2); 1855 n->fclone = SKB_FCLONE_CLONE; 1856 } else { 1857 if (skb_pfmemalloc(skb)) 1858 gfp_mask |= __GFP_MEMALLOC; 1859 1860 n = kmem_cache_alloc(skbuff_cache, gfp_mask); 1861 if (!n) 1862 return NULL; 1863 1864 n->fclone = SKB_FCLONE_UNAVAILABLE; 1865 } 1866 1867 return __skb_clone(n, skb); 1868 } 1869 EXPORT_SYMBOL(skb_clone); 1870 1871 void skb_headers_offset_update(struct sk_buff *skb, int off) 1872 { 1873 /* Only adjust this if it actually is csum_start rather than csum */ 1874 if (skb->ip_summed == CHECKSUM_PARTIAL) 1875 skb->csum_start += off; 1876 /* {transport,network,mac}_header and tail are relative to skb->head */ 1877 skb->transport_header += off; 1878 skb->network_header += off; 1879 if (skb_mac_header_was_set(skb)) 1880 skb->mac_header += off; 1881 skb->inner_transport_header += off; 1882 skb->inner_network_header += off; 1883 skb->inner_mac_header += off; 1884 } 1885 EXPORT_SYMBOL(skb_headers_offset_update); 1886 1887 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old) 1888 { 1889 __copy_skb_header(new, old); 1890 1891 skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size; 1892 skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs; 1893 skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type; 1894 } 1895 EXPORT_SYMBOL(skb_copy_header); 1896 1897 static inline int skb_alloc_rx_flag(const struct sk_buff *skb) 1898 { 1899 if (skb_pfmemalloc(skb)) 1900 return SKB_ALLOC_RX; 1901 return 0; 1902 } 1903 1904 /** 1905 * skb_copy - create private copy of an sk_buff 1906 * @skb: buffer to copy 1907 * @gfp_mask: allocation priority 1908 * 1909 * Make a copy of both an &sk_buff and its data. This is used when the 1910 * caller wishes to modify the data and needs a private copy of the 1911 * data to alter. Returns %NULL on failure or the pointer to the buffer 1912 * on success. The returned buffer has a reference count of 1. 1913 * 1914 * As by-product this function converts non-linear &sk_buff to linear 1915 * one, so that &sk_buff becomes completely private and caller is allowed 1916 * to modify all the data of returned buffer. This means that this 1917 * function is not recommended for use in circumstances when only 1918 * header is going to be modified. Use pskb_copy() instead. 1919 */ 1920 1921 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask) 1922 { 1923 int headerlen = skb_headroom(skb); 1924 unsigned int size = skb_end_offset(skb) + skb->data_len; 1925 struct sk_buff *n = __alloc_skb(size, gfp_mask, 1926 skb_alloc_rx_flag(skb), NUMA_NO_NODE); 1927 1928 if (!n) 1929 return NULL; 1930 1931 /* Set the data pointer */ 1932 skb_reserve(n, headerlen); 1933 /* Set the tail pointer and length */ 1934 skb_put(n, skb->len); 1935 1936 BUG_ON(skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len)); 1937 1938 skb_copy_header(n, skb); 1939 return n; 1940 } 1941 EXPORT_SYMBOL(skb_copy); 1942 1943 /** 1944 * __pskb_copy_fclone - create copy of an sk_buff with private head. 1945 * @skb: buffer to copy 1946 * @headroom: headroom of new skb 1947 * @gfp_mask: allocation priority 1948 * @fclone: if true allocate the copy of the skb from the fclone 1949 * cache instead of the head cache; it is recommended to set this 1950 * to true for the cases where the copy will likely be cloned 1951 * 1952 * Make a copy of both an &sk_buff and part of its data, located 1953 * in header. Fragmented data remain shared. This is used when 1954 * the caller wishes to modify only header of &sk_buff and needs 1955 * private copy of the header to alter. Returns %NULL on failure 1956 * or the pointer to the buffer on success. 1957 * The returned buffer has a reference count of 1. 1958 */ 1959 1960 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom, 1961 gfp_t gfp_mask, bool fclone) 1962 { 1963 unsigned int size = skb_headlen(skb) + headroom; 1964 int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0); 1965 struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE); 1966 1967 if (!n) 1968 goto out; 1969 1970 /* Set the data pointer */ 1971 skb_reserve(n, headroom); 1972 /* Set the tail pointer and length */ 1973 skb_put(n, skb_headlen(skb)); 1974 /* Copy the bytes */ 1975 skb_copy_from_linear_data(skb, n->data, n->len); 1976 1977 n->truesize += skb->data_len; 1978 n->data_len = skb->data_len; 1979 n->len = skb->len; 1980 1981 if (skb_shinfo(skb)->nr_frags) { 1982 int i; 1983 1984 if (skb_orphan_frags(skb, gfp_mask) || 1985 skb_zerocopy_clone(n, skb, gfp_mask)) { 1986 kfree_skb(n); 1987 n = NULL; 1988 goto out; 1989 } 1990 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1991 skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i]; 1992 skb_frag_ref(skb, i); 1993 } 1994 skb_shinfo(n)->nr_frags = i; 1995 } 1996 1997 if (skb_has_frag_list(skb)) { 1998 skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list; 1999 skb_clone_fraglist(n); 2000 } 2001 2002 skb_copy_header(n, skb); 2003 out: 2004 return n; 2005 } 2006 EXPORT_SYMBOL(__pskb_copy_fclone); 2007 2008 /** 2009 * pskb_expand_head - reallocate header of &sk_buff 2010 * @skb: buffer to reallocate 2011 * @nhead: room to add at head 2012 * @ntail: room to add at tail 2013 * @gfp_mask: allocation priority 2014 * 2015 * Expands (or creates identical copy, if @nhead and @ntail are zero) 2016 * header of @skb. &sk_buff itself is not changed. &sk_buff MUST have 2017 * reference count of 1. Returns zero in the case of success or error, 2018 * if expansion failed. In the last case, &sk_buff is not changed. 2019 * 2020 * All the pointers pointing into skb header may change and must be 2021 * reloaded after call to this function. 2022 */ 2023 2024 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, 2025 gfp_t gfp_mask) 2026 { 2027 unsigned int osize = skb_end_offset(skb); 2028 unsigned int size = osize + nhead + ntail; 2029 long off; 2030 u8 *data; 2031 int i; 2032 2033 BUG_ON(nhead < 0); 2034 2035 BUG_ON(skb_shared(skb)); 2036 2037 skb_zcopy_downgrade_managed(skb); 2038 2039 if (skb_pfmemalloc(skb)) 2040 gfp_mask |= __GFP_MEMALLOC; 2041 2042 data = kmalloc_reserve(&size, gfp_mask, NUMA_NO_NODE, NULL); 2043 if (!data) 2044 goto nodata; 2045 size = SKB_WITH_OVERHEAD(size); 2046 2047 /* Copy only real data... and, alas, header. This should be 2048 * optimized for the cases when header is void. 2049 */ 2050 memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head); 2051 2052 memcpy((struct skb_shared_info *)(data + size), 2053 skb_shinfo(skb), 2054 offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags])); 2055 2056 /* 2057 * if shinfo is shared we must drop the old head gracefully, but if it 2058 * is not we can just drop the old head and let the existing refcount 2059 * be since all we did is relocate the values 2060 */ 2061 if (skb_cloned(skb)) { 2062 if (skb_orphan_frags(skb, gfp_mask)) 2063 goto nofrags; 2064 if (skb_zcopy(skb)) 2065 refcount_inc(&skb_uarg(skb)->refcnt); 2066 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 2067 skb_frag_ref(skb, i); 2068 2069 if (skb_has_frag_list(skb)) 2070 skb_clone_fraglist(skb); 2071 2072 skb_release_data(skb, SKB_CONSUMED, false); 2073 } else { 2074 skb_free_head(skb, false); 2075 } 2076 off = (data + nhead) - skb->head; 2077 2078 skb->head = data; 2079 skb->head_frag = 0; 2080 skb->data += off; 2081 2082 skb_set_end_offset(skb, size); 2083 #ifdef NET_SKBUFF_DATA_USES_OFFSET 2084 off = nhead; 2085 #endif 2086 skb->tail += off; 2087 skb_headers_offset_update(skb, nhead); 2088 skb->cloned = 0; 2089 skb->hdr_len = 0; 2090 skb->nohdr = 0; 2091 atomic_set(&skb_shinfo(skb)->dataref, 1); 2092 2093 skb_metadata_clear(skb); 2094 2095 /* It is not generally safe to change skb->truesize. 2096 * For the moment, we really care of rx path, or 2097 * when skb is orphaned (not attached to a socket). 2098 */ 2099 if (!skb->sk || skb->destructor == sock_edemux) 2100 skb->truesize += size - osize; 2101 2102 return 0; 2103 2104 nofrags: 2105 skb_kfree_head(data, size); 2106 nodata: 2107 return -ENOMEM; 2108 } 2109 EXPORT_SYMBOL(pskb_expand_head); 2110 2111 /* Make private copy of skb with writable head and some headroom */ 2112 2113 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom) 2114 { 2115 struct sk_buff *skb2; 2116 int delta = headroom - skb_headroom(skb); 2117 2118 if (delta <= 0) 2119 skb2 = pskb_copy(skb, GFP_ATOMIC); 2120 else { 2121 skb2 = skb_clone(skb, GFP_ATOMIC); 2122 if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0, 2123 GFP_ATOMIC)) { 2124 kfree_skb(skb2); 2125 skb2 = NULL; 2126 } 2127 } 2128 return skb2; 2129 } 2130 EXPORT_SYMBOL(skb_realloc_headroom); 2131 2132 /* Note: We plan to rework this in linux-6.4 */ 2133 int __skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri) 2134 { 2135 unsigned int saved_end_offset, saved_truesize; 2136 struct skb_shared_info *shinfo; 2137 int res; 2138 2139 saved_end_offset = skb_end_offset(skb); 2140 saved_truesize = skb->truesize; 2141 2142 res = pskb_expand_head(skb, 0, 0, pri); 2143 if (res) 2144 return res; 2145 2146 skb->truesize = saved_truesize; 2147 2148 if (likely(skb_end_offset(skb) == saved_end_offset)) 2149 return 0; 2150 2151 /* We can not change skb->end if the original or new value 2152 * is SKB_SMALL_HEAD_HEADROOM, as it might break skb_kfree_head(). 2153 */ 2154 if (saved_end_offset == SKB_SMALL_HEAD_HEADROOM || 2155 skb_end_offset(skb) == SKB_SMALL_HEAD_HEADROOM) { 2156 /* We think this path should not be taken. 2157 * Add a temporary trace to warn us just in case. 2158 */ 2159 pr_err_once("__skb_unclone_keeptruesize() skb_end_offset() %u -> %u\n", 2160 saved_end_offset, skb_end_offset(skb)); 2161 WARN_ON_ONCE(1); 2162 return 0; 2163 } 2164 2165 shinfo = skb_shinfo(skb); 2166 2167 /* We are about to change back skb->end, 2168 * we need to move skb_shinfo() to its new location. 2169 */ 2170 memmove(skb->head + saved_end_offset, 2171 shinfo, 2172 offsetof(struct skb_shared_info, frags[shinfo->nr_frags])); 2173 2174 skb_set_end_offset(skb, saved_end_offset); 2175 2176 return 0; 2177 } 2178 2179 /** 2180 * skb_expand_head - reallocate header of &sk_buff 2181 * @skb: buffer to reallocate 2182 * @headroom: needed headroom 2183 * 2184 * Unlike skb_realloc_headroom, this one does not allocate a new skb 2185 * if possible; copies skb->sk to new skb as needed 2186 * and frees original skb in case of failures. 2187 * 2188 * It expect increased headroom and generates warning otherwise. 2189 */ 2190 2191 struct sk_buff *skb_expand_head(struct sk_buff *skb, unsigned int headroom) 2192 { 2193 int delta = headroom - skb_headroom(skb); 2194 int osize = skb_end_offset(skb); 2195 struct sock *sk = skb->sk; 2196 2197 if (WARN_ONCE(delta <= 0, 2198 "%s is expecting an increase in the headroom", __func__)) 2199 return skb; 2200 2201 delta = SKB_DATA_ALIGN(delta); 2202 /* pskb_expand_head() might crash, if skb is shared. */ 2203 if (skb_shared(skb) || !is_skb_wmem(skb)) { 2204 struct sk_buff *nskb = skb_clone(skb, GFP_ATOMIC); 2205 2206 if (unlikely(!nskb)) 2207 goto fail; 2208 2209 if (sk) 2210 skb_set_owner_w(nskb, sk); 2211 consume_skb(skb); 2212 skb = nskb; 2213 } 2214 if (pskb_expand_head(skb, delta, 0, GFP_ATOMIC)) 2215 goto fail; 2216 2217 if (sk && is_skb_wmem(skb)) { 2218 delta = skb_end_offset(skb) - osize; 2219 refcount_add(delta, &sk->sk_wmem_alloc); 2220 skb->truesize += delta; 2221 } 2222 return skb; 2223 2224 fail: 2225 kfree_skb(skb); 2226 return NULL; 2227 } 2228 EXPORT_SYMBOL(skb_expand_head); 2229 2230 /** 2231 * skb_copy_expand - copy and expand sk_buff 2232 * @skb: buffer to copy 2233 * @newheadroom: new free bytes at head 2234 * @newtailroom: new free bytes at tail 2235 * @gfp_mask: allocation priority 2236 * 2237 * Make a copy of both an &sk_buff and its data and while doing so 2238 * allocate additional space. 2239 * 2240 * This is used when the caller wishes to modify the data and needs a 2241 * private copy of the data to alter as well as more space for new fields. 2242 * Returns %NULL on failure or the pointer to the buffer 2243 * on success. The returned buffer has a reference count of 1. 2244 * 2245 * You must pass %GFP_ATOMIC as the allocation priority if this function 2246 * is called from an interrupt. 2247 */ 2248 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, 2249 int newheadroom, int newtailroom, 2250 gfp_t gfp_mask) 2251 { 2252 /* 2253 * Allocate the copy buffer 2254 */ 2255 struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom, 2256 gfp_mask, skb_alloc_rx_flag(skb), 2257 NUMA_NO_NODE); 2258 int oldheadroom = skb_headroom(skb); 2259 int head_copy_len, head_copy_off; 2260 2261 if (!n) 2262 return NULL; 2263 2264 skb_reserve(n, newheadroom); 2265 2266 /* Set the tail pointer and length */ 2267 skb_put(n, skb->len); 2268 2269 head_copy_len = oldheadroom; 2270 head_copy_off = 0; 2271 if (newheadroom <= head_copy_len) 2272 head_copy_len = newheadroom; 2273 else 2274 head_copy_off = newheadroom - head_copy_len; 2275 2276 /* Copy the linear header and data. */ 2277 BUG_ON(skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off, 2278 skb->len + head_copy_len)); 2279 2280 skb_copy_header(n, skb); 2281 2282 skb_headers_offset_update(n, newheadroom - oldheadroom); 2283 2284 return n; 2285 } 2286 EXPORT_SYMBOL(skb_copy_expand); 2287 2288 /** 2289 * __skb_pad - zero pad the tail of an skb 2290 * @skb: buffer to pad 2291 * @pad: space to pad 2292 * @free_on_error: free buffer on error 2293 * 2294 * Ensure that a buffer is followed by a padding area that is zero 2295 * filled. Used by network drivers which may DMA or transfer data 2296 * beyond the buffer end onto the wire. 2297 * 2298 * May return error in out of memory cases. The skb is freed on error 2299 * if @free_on_error is true. 2300 */ 2301 2302 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error) 2303 { 2304 int err; 2305 int ntail; 2306 2307 /* If the skbuff is non linear tailroom is always zero.. */ 2308 if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) { 2309 memset(skb->data+skb->len, 0, pad); 2310 return 0; 2311 } 2312 2313 ntail = skb->data_len + pad - (skb->end - skb->tail); 2314 if (likely(skb_cloned(skb) || ntail > 0)) { 2315 err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC); 2316 if (unlikely(err)) 2317 goto free_skb; 2318 } 2319 2320 /* FIXME: The use of this function with non-linear skb's really needs 2321 * to be audited. 2322 */ 2323 err = skb_linearize(skb); 2324 if (unlikely(err)) 2325 goto free_skb; 2326 2327 memset(skb->data + skb->len, 0, pad); 2328 return 0; 2329 2330 free_skb: 2331 if (free_on_error) 2332 kfree_skb(skb); 2333 return err; 2334 } 2335 EXPORT_SYMBOL(__skb_pad); 2336 2337 /** 2338 * pskb_put - add data to the tail of a potentially fragmented buffer 2339 * @skb: start of the buffer to use 2340 * @tail: tail fragment of the buffer to use 2341 * @len: amount of data to add 2342 * 2343 * This function extends the used data area of the potentially 2344 * fragmented buffer. @tail must be the last fragment of @skb -- or 2345 * @skb itself. If this would exceed the total buffer size the kernel 2346 * will panic. A pointer to the first byte of the extra data is 2347 * returned. 2348 */ 2349 2350 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len) 2351 { 2352 if (tail != skb) { 2353 skb->data_len += len; 2354 skb->len += len; 2355 } 2356 return skb_put(tail, len); 2357 } 2358 EXPORT_SYMBOL_GPL(pskb_put); 2359 2360 /** 2361 * skb_put - add data to a buffer 2362 * @skb: buffer to use 2363 * @len: amount of data to add 2364 * 2365 * This function extends the used data area of the buffer. If this would 2366 * exceed the total buffer size the kernel will panic. A pointer to the 2367 * first byte of the extra data is returned. 2368 */ 2369 void *skb_put(struct sk_buff *skb, unsigned int len) 2370 { 2371 void *tmp = skb_tail_pointer(skb); 2372 SKB_LINEAR_ASSERT(skb); 2373 skb->tail += len; 2374 skb->len += len; 2375 if (unlikely(skb->tail > skb->end)) 2376 skb_over_panic(skb, len, __builtin_return_address(0)); 2377 return tmp; 2378 } 2379 EXPORT_SYMBOL(skb_put); 2380 2381 /** 2382 * skb_push - add data to the start of a buffer 2383 * @skb: buffer to use 2384 * @len: amount of data to add 2385 * 2386 * This function extends the used data area of the buffer at the buffer 2387 * start. If this would exceed the total buffer headroom the kernel will 2388 * panic. A pointer to the first byte of the extra data is returned. 2389 */ 2390 void *skb_push(struct sk_buff *skb, unsigned int len) 2391 { 2392 skb->data -= len; 2393 skb->len += len; 2394 if (unlikely(skb->data < skb->head)) 2395 skb_under_panic(skb, len, __builtin_return_address(0)); 2396 return skb->data; 2397 } 2398 EXPORT_SYMBOL(skb_push); 2399 2400 /** 2401 * skb_pull - remove data from the start of a buffer 2402 * @skb: buffer to use 2403 * @len: amount of data to remove 2404 * 2405 * This function removes data from the start of a buffer, returning 2406 * the memory to the headroom. A pointer to the next data in the buffer 2407 * is returned. Once the data has been pulled future pushes will overwrite 2408 * the old data. 2409 */ 2410 void *skb_pull(struct sk_buff *skb, unsigned int len) 2411 { 2412 return skb_pull_inline(skb, len); 2413 } 2414 EXPORT_SYMBOL(skb_pull); 2415 2416 /** 2417 * skb_pull_data - remove data from the start of a buffer returning its 2418 * original position. 2419 * @skb: buffer to use 2420 * @len: amount of data to remove 2421 * 2422 * This function removes data from the start of a buffer, returning 2423 * the memory to the headroom. A pointer to the original data in the buffer 2424 * is returned after checking if there is enough data to pull. Once the 2425 * data has been pulled future pushes will overwrite the old data. 2426 */ 2427 void *skb_pull_data(struct sk_buff *skb, size_t len) 2428 { 2429 void *data = skb->data; 2430 2431 if (skb->len < len) 2432 return NULL; 2433 2434 skb_pull(skb, len); 2435 2436 return data; 2437 } 2438 EXPORT_SYMBOL(skb_pull_data); 2439 2440 /** 2441 * skb_trim - remove end from a buffer 2442 * @skb: buffer to alter 2443 * @len: new length 2444 * 2445 * Cut the length of a buffer down by removing data from the tail. If 2446 * the buffer is already under the length specified it is not modified. 2447 * The skb must be linear. 2448 */ 2449 void skb_trim(struct sk_buff *skb, unsigned int len) 2450 { 2451 if (skb->len > len) 2452 __skb_trim(skb, len); 2453 } 2454 EXPORT_SYMBOL(skb_trim); 2455 2456 /* Trims skb to length len. It can change skb pointers. 2457 */ 2458 2459 int ___pskb_trim(struct sk_buff *skb, unsigned int len) 2460 { 2461 struct sk_buff **fragp; 2462 struct sk_buff *frag; 2463 int offset = skb_headlen(skb); 2464 int nfrags = skb_shinfo(skb)->nr_frags; 2465 int i; 2466 int err; 2467 2468 if (skb_cloned(skb) && 2469 unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))) 2470 return err; 2471 2472 i = 0; 2473 if (offset >= len) 2474 goto drop_pages; 2475 2476 for (; i < nfrags; i++) { 2477 int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]); 2478 2479 if (end < len) { 2480 offset = end; 2481 continue; 2482 } 2483 2484 skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset); 2485 2486 drop_pages: 2487 skb_shinfo(skb)->nr_frags = i; 2488 2489 for (; i < nfrags; i++) 2490 skb_frag_unref(skb, i); 2491 2492 if (skb_has_frag_list(skb)) 2493 skb_drop_fraglist(skb); 2494 goto done; 2495 } 2496 2497 for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp); 2498 fragp = &frag->next) { 2499 int end = offset + frag->len; 2500 2501 if (skb_shared(frag)) { 2502 struct sk_buff *nfrag; 2503 2504 nfrag = skb_clone(frag, GFP_ATOMIC); 2505 if (unlikely(!nfrag)) 2506 return -ENOMEM; 2507 2508 nfrag->next = frag->next; 2509 consume_skb(frag); 2510 frag = nfrag; 2511 *fragp = frag; 2512 } 2513 2514 if (end < len) { 2515 offset = end; 2516 continue; 2517 } 2518 2519 if (end > len && 2520 unlikely((err = pskb_trim(frag, len - offset)))) 2521 return err; 2522 2523 if (frag->next) 2524 skb_drop_list(&frag->next); 2525 break; 2526 } 2527 2528 done: 2529 if (len > skb_headlen(skb)) { 2530 skb->data_len -= skb->len - len; 2531 skb->len = len; 2532 } else { 2533 skb->len = len; 2534 skb->data_len = 0; 2535 skb_set_tail_pointer(skb, len); 2536 } 2537 2538 if (!skb->sk || skb->destructor == sock_edemux) 2539 skb_condense(skb); 2540 return 0; 2541 } 2542 EXPORT_SYMBOL(___pskb_trim); 2543 2544 /* Note : use pskb_trim_rcsum() instead of calling this directly 2545 */ 2546 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len) 2547 { 2548 if (skb->ip_summed == CHECKSUM_COMPLETE) { 2549 int delta = skb->len - len; 2550 2551 skb->csum = csum_block_sub(skb->csum, 2552 skb_checksum(skb, len, delta, 0), 2553 len); 2554 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { 2555 int hdlen = (len > skb_headlen(skb)) ? skb_headlen(skb) : len; 2556 int offset = skb_checksum_start_offset(skb) + skb->csum_offset; 2557 2558 if (offset + sizeof(__sum16) > hdlen) 2559 return -EINVAL; 2560 } 2561 return __pskb_trim(skb, len); 2562 } 2563 EXPORT_SYMBOL(pskb_trim_rcsum_slow); 2564 2565 /** 2566 * __pskb_pull_tail - advance tail of skb header 2567 * @skb: buffer to reallocate 2568 * @delta: number of bytes to advance tail 2569 * 2570 * The function makes a sense only on a fragmented &sk_buff, 2571 * it expands header moving its tail forward and copying necessary 2572 * data from fragmented part. 2573 * 2574 * &sk_buff MUST have reference count of 1. 2575 * 2576 * Returns %NULL (and &sk_buff does not change) if pull failed 2577 * or value of new tail of skb in the case of success. 2578 * 2579 * All the pointers pointing into skb header may change and must be 2580 * reloaded after call to this function. 2581 */ 2582 2583 /* Moves tail of skb head forward, copying data from fragmented part, 2584 * when it is necessary. 2585 * 1. It may fail due to malloc failure. 2586 * 2. It may change skb pointers. 2587 * 2588 * It is pretty complicated. Luckily, it is called only in exceptional cases. 2589 */ 2590 void *__pskb_pull_tail(struct sk_buff *skb, int delta) 2591 { 2592 /* If skb has not enough free space at tail, get new one 2593 * plus 128 bytes for future expansions. If we have enough 2594 * room at tail, reallocate without expansion only if skb is cloned. 2595 */ 2596 int i, k, eat = (skb->tail + delta) - skb->end; 2597 2598 if (eat > 0 || skb_cloned(skb)) { 2599 if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0, 2600 GFP_ATOMIC)) 2601 return NULL; 2602 } 2603 2604 BUG_ON(skb_copy_bits(skb, skb_headlen(skb), 2605 skb_tail_pointer(skb), delta)); 2606 2607 /* Optimization: no fragments, no reasons to preestimate 2608 * size of pulled pages. Superb. 2609 */ 2610 if (!skb_has_frag_list(skb)) 2611 goto pull_pages; 2612 2613 /* Estimate size of pulled pages. */ 2614 eat = delta; 2615 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2616 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 2617 2618 if (size >= eat) 2619 goto pull_pages; 2620 eat -= size; 2621 } 2622 2623 /* If we need update frag list, we are in troubles. 2624 * Certainly, it is possible to add an offset to skb data, 2625 * but taking into account that pulling is expected to 2626 * be very rare operation, it is worth to fight against 2627 * further bloating skb head and crucify ourselves here instead. 2628 * Pure masohism, indeed. 8)8) 2629 */ 2630 if (eat) { 2631 struct sk_buff *list = skb_shinfo(skb)->frag_list; 2632 struct sk_buff *clone = NULL; 2633 struct sk_buff *insp = NULL; 2634 2635 do { 2636 if (list->len <= eat) { 2637 /* Eaten as whole. */ 2638 eat -= list->len; 2639 list = list->next; 2640 insp = list; 2641 } else { 2642 /* Eaten partially. */ 2643 if (skb_is_gso(skb) && !list->head_frag && 2644 skb_headlen(list)) 2645 skb_shinfo(skb)->gso_type |= SKB_GSO_DODGY; 2646 2647 if (skb_shared(list)) { 2648 /* Sucks! We need to fork list. :-( */ 2649 clone = skb_clone(list, GFP_ATOMIC); 2650 if (!clone) 2651 return NULL; 2652 insp = list->next; 2653 list = clone; 2654 } else { 2655 /* This may be pulled without 2656 * problems. */ 2657 insp = list; 2658 } 2659 if (!pskb_pull(list, eat)) { 2660 kfree_skb(clone); 2661 return NULL; 2662 } 2663 break; 2664 } 2665 } while (eat); 2666 2667 /* Free pulled out fragments. */ 2668 while ((list = skb_shinfo(skb)->frag_list) != insp) { 2669 skb_shinfo(skb)->frag_list = list->next; 2670 consume_skb(list); 2671 } 2672 /* And insert new clone at head. */ 2673 if (clone) { 2674 clone->next = list; 2675 skb_shinfo(skb)->frag_list = clone; 2676 } 2677 } 2678 /* Success! Now we may commit changes to skb data. */ 2679 2680 pull_pages: 2681 eat = delta; 2682 k = 0; 2683 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2684 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 2685 2686 if (size <= eat) { 2687 skb_frag_unref(skb, i); 2688 eat -= size; 2689 } else { 2690 skb_frag_t *frag = &skb_shinfo(skb)->frags[k]; 2691 2692 *frag = skb_shinfo(skb)->frags[i]; 2693 if (eat) { 2694 skb_frag_off_add(frag, eat); 2695 skb_frag_size_sub(frag, eat); 2696 if (!i) 2697 goto end; 2698 eat = 0; 2699 } 2700 k++; 2701 } 2702 } 2703 skb_shinfo(skb)->nr_frags = k; 2704 2705 end: 2706 skb->tail += delta; 2707 skb->data_len -= delta; 2708 2709 if (!skb->data_len) 2710 skb_zcopy_clear(skb, false); 2711 2712 return skb_tail_pointer(skb); 2713 } 2714 EXPORT_SYMBOL(__pskb_pull_tail); 2715 2716 /** 2717 * skb_copy_bits - copy bits from skb to kernel buffer 2718 * @skb: source skb 2719 * @offset: offset in source 2720 * @to: destination buffer 2721 * @len: number of bytes to copy 2722 * 2723 * Copy the specified number of bytes from the source skb to the 2724 * destination buffer. 2725 * 2726 * CAUTION ! : 2727 * If its prototype is ever changed, 2728 * check arch/{*}/net/{*}.S files, 2729 * since it is called from BPF assembly code. 2730 */ 2731 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len) 2732 { 2733 int start = skb_headlen(skb); 2734 struct sk_buff *frag_iter; 2735 int i, copy; 2736 2737 if (offset > (int)skb->len - len) 2738 goto fault; 2739 2740 /* Copy header. */ 2741 if ((copy = start - offset) > 0) { 2742 if (copy > len) 2743 copy = len; 2744 skb_copy_from_linear_data_offset(skb, offset, to, copy); 2745 if ((len -= copy) == 0) 2746 return 0; 2747 offset += copy; 2748 to += copy; 2749 } 2750 2751 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2752 int end; 2753 skb_frag_t *f = &skb_shinfo(skb)->frags[i]; 2754 2755 WARN_ON(start > offset + len); 2756 2757 end = start + skb_frag_size(f); 2758 if ((copy = end - offset) > 0) { 2759 u32 p_off, p_len, copied; 2760 struct page *p; 2761 u8 *vaddr; 2762 2763 if (copy > len) 2764 copy = len; 2765 2766 skb_frag_foreach_page(f, 2767 skb_frag_off(f) + offset - start, 2768 copy, p, p_off, p_len, copied) { 2769 vaddr = kmap_atomic(p); 2770 memcpy(to + copied, vaddr + p_off, p_len); 2771 kunmap_atomic(vaddr); 2772 } 2773 2774 if ((len -= copy) == 0) 2775 return 0; 2776 offset += copy; 2777 to += copy; 2778 } 2779 start = end; 2780 } 2781 2782 skb_walk_frags(skb, frag_iter) { 2783 int end; 2784 2785 WARN_ON(start > offset + len); 2786 2787 end = start + frag_iter->len; 2788 if ((copy = end - offset) > 0) { 2789 if (copy > len) 2790 copy = len; 2791 if (skb_copy_bits(frag_iter, offset - start, to, copy)) 2792 goto fault; 2793 if ((len -= copy) == 0) 2794 return 0; 2795 offset += copy; 2796 to += copy; 2797 } 2798 start = end; 2799 } 2800 2801 if (!len) 2802 return 0; 2803 2804 fault: 2805 return -EFAULT; 2806 } 2807 EXPORT_SYMBOL(skb_copy_bits); 2808 2809 /* 2810 * Callback from splice_to_pipe(), if we need to release some pages 2811 * at the end of the spd in case we error'ed out in filling the pipe. 2812 */ 2813 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i) 2814 { 2815 put_page(spd->pages[i]); 2816 } 2817 2818 static struct page *linear_to_page(struct page *page, unsigned int *len, 2819 unsigned int *offset, 2820 struct sock *sk) 2821 { 2822 struct page_frag *pfrag = sk_page_frag(sk); 2823 2824 if (!sk_page_frag_refill(sk, pfrag)) 2825 return NULL; 2826 2827 *len = min_t(unsigned int, *len, pfrag->size - pfrag->offset); 2828 2829 memcpy(page_address(pfrag->page) + pfrag->offset, 2830 page_address(page) + *offset, *len); 2831 *offset = pfrag->offset; 2832 pfrag->offset += *len; 2833 2834 return pfrag->page; 2835 } 2836 2837 static bool spd_can_coalesce(const struct splice_pipe_desc *spd, 2838 struct page *page, 2839 unsigned int offset) 2840 { 2841 return spd->nr_pages && 2842 spd->pages[spd->nr_pages - 1] == page && 2843 (spd->partial[spd->nr_pages - 1].offset + 2844 spd->partial[spd->nr_pages - 1].len == offset); 2845 } 2846 2847 /* 2848 * Fill page/offset/length into spd, if it can hold more pages. 2849 */ 2850 static bool spd_fill_page(struct splice_pipe_desc *spd, 2851 struct pipe_inode_info *pipe, struct page *page, 2852 unsigned int *len, unsigned int offset, 2853 bool linear, 2854 struct sock *sk) 2855 { 2856 if (unlikely(spd->nr_pages == MAX_SKB_FRAGS)) 2857 return true; 2858 2859 if (linear) { 2860 page = linear_to_page(page, len, &offset, sk); 2861 if (!page) 2862 return true; 2863 } 2864 if (spd_can_coalesce(spd, page, offset)) { 2865 spd->partial[spd->nr_pages - 1].len += *len; 2866 return false; 2867 } 2868 get_page(page); 2869 spd->pages[spd->nr_pages] = page; 2870 spd->partial[spd->nr_pages].len = *len; 2871 spd->partial[spd->nr_pages].offset = offset; 2872 spd->nr_pages++; 2873 2874 return false; 2875 } 2876 2877 static bool __splice_segment(struct page *page, unsigned int poff, 2878 unsigned int plen, unsigned int *off, 2879 unsigned int *len, 2880 struct splice_pipe_desc *spd, bool linear, 2881 struct sock *sk, 2882 struct pipe_inode_info *pipe) 2883 { 2884 if (!*len) 2885 return true; 2886 2887 /* skip this segment if already processed */ 2888 if (*off >= plen) { 2889 *off -= plen; 2890 return false; 2891 } 2892 2893 /* ignore any bits we already processed */ 2894 poff += *off; 2895 plen -= *off; 2896 *off = 0; 2897 2898 do { 2899 unsigned int flen = min(*len, plen); 2900 2901 if (spd_fill_page(spd, pipe, page, &flen, poff, 2902 linear, sk)) 2903 return true; 2904 poff += flen; 2905 plen -= flen; 2906 *len -= flen; 2907 } while (*len && plen); 2908 2909 return false; 2910 } 2911 2912 /* 2913 * Map linear and fragment data from the skb to spd. It reports true if the 2914 * pipe is full or if we already spliced the requested length. 2915 */ 2916 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe, 2917 unsigned int *offset, unsigned int *len, 2918 struct splice_pipe_desc *spd, struct sock *sk) 2919 { 2920 int seg; 2921 struct sk_buff *iter; 2922 2923 /* map the linear part : 2924 * If skb->head_frag is set, this 'linear' part is backed by a 2925 * fragment, and if the head is not shared with any clones then 2926 * we can avoid a copy since we own the head portion of this page. 2927 */ 2928 if (__splice_segment(virt_to_page(skb->data), 2929 (unsigned long) skb->data & (PAGE_SIZE - 1), 2930 skb_headlen(skb), 2931 offset, len, spd, 2932 skb_head_is_locked(skb), 2933 sk, pipe)) 2934 return true; 2935 2936 /* 2937 * then map the fragments 2938 */ 2939 for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) { 2940 const skb_frag_t *f = &skb_shinfo(skb)->frags[seg]; 2941 2942 if (__splice_segment(skb_frag_page(f), 2943 skb_frag_off(f), skb_frag_size(f), 2944 offset, len, spd, false, sk, pipe)) 2945 return true; 2946 } 2947 2948 skb_walk_frags(skb, iter) { 2949 if (*offset >= iter->len) { 2950 *offset -= iter->len; 2951 continue; 2952 } 2953 /* __skb_splice_bits() only fails if the output has no room 2954 * left, so no point in going over the frag_list for the error 2955 * case. 2956 */ 2957 if (__skb_splice_bits(iter, pipe, offset, len, spd, sk)) 2958 return true; 2959 } 2960 2961 return false; 2962 } 2963 2964 /* 2965 * Map data from the skb to a pipe. Should handle both the linear part, 2966 * the fragments, and the frag list. 2967 */ 2968 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset, 2969 struct pipe_inode_info *pipe, unsigned int tlen, 2970 unsigned int flags) 2971 { 2972 struct partial_page partial[MAX_SKB_FRAGS]; 2973 struct page *pages[MAX_SKB_FRAGS]; 2974 struct splice_pipe_desc spd = { 2975 .pages = pages, 2976 .partial = partial, 2977 .nr_pages_max = MAX_SKB_FRAGS, 2978 .ops = &nosteal_pipe_buf_ops, 2979 .spd_release = sock_spd_release, 2980 }; 2981 int ret = 0; 2982 2983 __skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk); 2984 2985 if (spd.nr_pages) 2986 ret = splice_to_pipe(pipe, &spd); 2987 2988 return ret; 2989 } 2990 EXPORT_SYMBOL_GPL(skb_splice_bits); 2991 2992 static int sendmsg_unlocked(struct sock *sk, struct msghdr *msg, 2993 struct kvec *vec, size_t num, size_t size) 2994 { 2995 struct socket *sock = sk->sk_socket; 2996 2997 if (!sock) 2998 return -EINVAL; 2999 return kernel_sendmsg(sock, msg, vec, num, size); 3000 } 3001 3002 static int sendpage_unlocked(struct sock *sk, struct page *page, int offset, 3003 size_t size, int flags) 3004 { 3005 struct socket *sock = sk->sk_socket; 3006 3007 if (!sock) 3008 return -EINVAL; 3009 return kernel_sendpage(sock, page, offset, size, flags); 3010 } 3011 3012 typedef int (*sendmsg_func)(struct sock *sk, struct msghdr *msg, 3013 struct kvec *vec, size_t num, size_t size); 3014 typedef int (*sendpage_func)(struct sock *sk, struct page *page, int offset, 3015 size_t size, int flags); 3016 static int __skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, 3017 int len, sendmsg_func sendmsg, sendpage_func sendpage) 3018 { 3019 unsigned int orig_len = len; 3020 struct sk_buff *head = skb; 3021 unsigned short fragidx; 3022 int slen, ret; 3023 3024 do_frag_list: 3025 3026 /* Deal with head data */ 3027 while (offset < skb_headlen(skb) && len) { 3028 struct kvec kv; 3029 struct msghdr msg; 3030 3031 slen = min_t(int, len, skb_headlen(skb) - offset); 3032 kv.iov_base = skb->data + offset; 3033 kv.iov_len = slen; 3034 memset(&msg, 0, sizeof(msg)); 3035 msg.msg_flags = MSG_DONTWAIT; 3036 3037 ret = INDIRECT_CALL_2(sendmsg, kernel_sendmsg_locked, 3038 sendmsg_unlocked, sk, &msg, &kv, 1, slen); 3039 if (ret <= 0) 3040 goto error; 3041 3042 offset += ret; 3043 len -= ret; 3044 } 3045 3046 /* All the data was skb head? */ 3047 if (!len) 3048 goto out; 3049 3050 /* Make offset relative to start of frags */ 3051 offset -= skb_headlen(skb); 3052 3053 /* Find where we are in frag list */ 3054 for (fragidx = 0; fragidx < skb_shinfo(skb)->nr_frags; fragidx++) { 3055 skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx]; 3056 3057 if (offset < skb_frag_size(frag)) 3058 break; 3059 3060 offset -= skb_frag_size(frag); 3061 } 3062 3063 for (; len && fragidx < skb_shinfo(skb)->nr_frags; fragidx++) { 3064 skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx]; 3065 3066 slen = min_t(size_t, len, skb_frag_size(frag) - offset); 3067 3068 while (slen) { 3069 ret = INDIRECT_CALL_2(sendpage, kernel_sendpage_locked, 3070 sendpage_unlocked, sk, 3071 skb_frag_page(frag), 3072 skb_frag_off(frag) + offset, 3073 slen, MSG_DONTWAIT); 3074 if (ret <= 0) 3075 goto error; 3076 3077 len -= ret; 3078 offset += ret; 3079 slen -= ret; 3080 } 3081 3082 offset = 0; 3083 } 3084 3085 if (len) { 3086 /* Process any frag lists */ 3087 3088 if (skb == head) { 3089 if (skb_has_frag_list(skb)) { 3090 skb = skb_shinfo(skb)->frag_list; 3091 goto do_frag_list; 3092 } 3093 } else if (skb->next) { 3094 skb = skb->next; 3095 goto do_frag_list; 3096 } 3097 } 3098 3099 out: 3100 return orig_len - len; 3101 3102 error: 3103 return orig_len == len ? ret : orig_len - len; 3104 } 3105 3106 /* Send skb data on a socket. Socket must be locked. */ 3107 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset, 3108 int len) 3109 { 3110 return __skb_send_sock(sk, skb, offset, len, kernel_sendmsg_locked, 3111 kernel_sendpage_locked); 3112 } 3113 EXPORT_SYMBOL_GPL(skb_send_sock_locked); 3114 3115 /* Send skb data on a socket. Socket must be unlocked. */ 3116 int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len) 3117 { 3118 return __skb_send_sock(sk, skb, offset, len, sendmsg_unlocked, 3119 sendpage_unlocked); 3120 } 3121 3122 /** 3123 * skb_store_bits - store bits from kernel buffer to skb 3124 * @skb: destination buffer 3125 * @offset: offset in destination 3126 * @from: source buffer 3127 * @len: number of bytes to copy 3128 * 3129 * Copy the specified number of bytes from the source buffer to the 3130 * destination skb. This function handles all the messy bits of 3131 * traversing fragment lists and such. 3132 */ 3133 3134 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len) 3135 { 3136 int start = skb_headlen(skb); 3137 struct sk_buff *frag_iter; 3138 int i, copy; 3139 3140 if (offset > (int)skb->len - len) 3141 goto fault; 3142 3143 if ((copy = start - offset) > 0) { 3144 if (copy > len) 3145 copy = len; 3146 skb_copy_to_linear_data_offset(skb, offset, from, copy); 3147 if ((len -= copy) == 0) 3148 return 0; 3149 offset += copy; 3150 from += copy; 3151 } 3152 3153 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 3154 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 3155 int end; 3156 3157 WARN_ON(start > offset + len); 3158 3159 end = start + skb_frag_size(frag); 3160 if ((copy = end - offset) > 0) { 3161 u32 p_off, p_len, copied; 3162 struct page *p; 3163 u8 *vaddr; 3164 3165 if (copy > len) 3166 copy = len; 3167 3168 skb_frag_foreach_page(frag, 3169 skb_frag_off(frag) + offset - start, 3170 copy, p, p_off, p_len, copied) { 3171 vaddr = kmap_atomic(p); 3172 memcpy(vaddr + p_off, from + copied, p_len); 3173 kunmap_atomic(vaddr); 3174 } 3175 3176 if ((len -= copy) == 0) 3177 return 0; 3178 offset += copy; 3179 from += copy; 3180 } 3181 start = end; 3182 } 3183 3184 skb_walk_frags(skb, frag_iter) { 3185 int end; 3186 3187 WARN_ON(start > offset + len); 3188 3189 end = start + frag_iter->len; 3190 if ((copy = end - offset) > 0) { 3191 if (copy > len) 3192 copy = len; 3193 if (skb_store_bits(frag_iter, offset - start, 3194 from, copy)) 3195 goto fault; 3196 if ((len -= copy) == 0) 3197 return 0; 3198 offset += copy; 3199 from += copy; 3200 } 3201 start = end; 3202 } 3203 if (!len) 3204 return 0; 3205 3206 fault: 3207 return -EFAULT; 3208 } 3209 EXPORT_SYMBOL(skb_store_bits); 3210 3211 /* Checksum skb data. */ 3212 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len, 3213 __wsum csum, const struct skb_checksum_ops *ops) 3214 { 3215 int start = skb_headlen(skb); 3216 int i, copy = start - offset; 3217 struct sk_buff *frag_iter; 3218 int pos = 0; 3219 3220 /* Checksum header. */ 3221 if (copy > 0) { 3222 if (copy > len) 3223 copy = len; 3224 csum = INDIRECT_CALL_1(ops->update, csum_partial_ext, 3225 skb->data + offset, copy, csum); 3226 if ((len -= copy) == 0) 3227 return csum; 3228 offset += copy; 3229 pos = copy; 3230 } 3231 3232 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 3233 int end; 3234 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 3235 3236 WARN_ON(start > offset + len); 3237 3238 end = start + skb_frag_size(frag); 3239 if ((copy = end - offset) > 0) { 3240 u32 p_off, p_len, copied; 3241 struct page *p; 3242 __wsum csum2; 3243 u8 *vaddr; 3244 3245 if (copy > len) 3246 copy = len; 3247 3248 skb_frag_foreach_page(frag, 3249 skb_frag_off(frag) + offset - start, 3250 copy, p, p_off, p_len, copied) { 3251 vaddr = kmap_atomic(p); 3252 csum2 = INDIRECT_CALL_1(ops->update, 3253 csum_partial_ext, 3254 vaddr + p_off, p_len, 0); 3255 kunmap_atomic(vaddr); 3256 csum = INDIRECT_CALL_1(ops->combine, 3257 csum_block_add_ext, csum, 3258 csum2, pos, p_len); 3259 pos += p_len; 3260 } 3261 3262 if (!(len -= copy)) 3263 return csum; 3264 offset += copy; 3265 } 3266 start = end; 3267 } 3268 3269 skb_walk_frags(skb, frag_iter) { 3270 int end; 3271 3272 WARN_ON(start > offset + len); 3273 3274 end = start + frag_iter->len; 3275 if ((copy = end - offset) > 0) { 3276 __wsum csum2; 3277 if (copy > len) 3278 copy = len; 3279 csum2 = __skb_checksum(frag_iter, offset - start, 3280 copy, 0, ops); 3281 csum = INDIRECT_CALL_1(ops->combine, csum_block_add_ext, 3282 csum, csum2, pos, copy); 3283 if ((len -= copy) == 0) 3284 return csum; 3285 offset += copy; 3286 pos += copy; 3287 } 3288 start = end; 3289 } 3290 BUG_ON(len); 3291 3292 return csum; 3293 } 3294 EXPORT_SYMBOL(__skb_checksum); 3295 3296 __wsum skb_checksum(const struct sk_buff *skb, int offset, 3297 int len, __wsum csum) 3298 { 3299 const struct skb_checksum_ops ops = { 3300 .update = csum_partial_ext, 3301 .combine = csum_block_add_ext, 3302 }; 3303 3304 return __skb_checksum(skb, offset, len, csum, &ops); 3305 } 3306 EXPORT_SYMBOL(skb_checksum); 3307 3308 /* Both of above in one bottle. */ 3309 3310 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, 3311 u8 *to, int len) 3312 { 3313 int start = skb_headlen(skb); 3314 int i, copy = start - offset; 3315 struct sk_buff *frag_iter; 3316 int pos = 0; 3317 __wsum csum = 0; 3318 3319 /* Copy header. */ 3320 if (copy > 0) { 3321 if (copy > len) 3322 copy = len; 3323 csum = csum_partial_copy_nocheck(skb->data + offset, to, 3324 copy); 3325 if ((len -= copy) == 0) 3326 return csum; 3327 offset += copy; 3328 to += copy; 3329 pos = copy; 3330 } 3331 3332 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 3333 int end; 3334 3335 WARN_ON(start > offset + len); 3336 3337 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]); 3338 if ((copy = end - offset) > 0) { 3339 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 3340 u32 p_off, p_len, copied; 3341 struct page *p; 3342 __wsum csum2; 3343 u8 *vaddr; 3344 3345 if (copy > len) 3346 copy = len; 3347 3348 skb_frag_foreach_page(frag, 3349 skb_frag_off(frag) + offset - start, 3350 copy, p, p_off, p_len, copied) { 3351 vaddr = kmap_atomic(p); 3352 csum2 = csum_partial_copy_nocheck(vaddr + p_off, 3353 to + copied, 3354 p_len); 3355 kunmap_atomic(vaddr); 3356 csum = csum_block_add(csum, csum2, pos); 3357 pos += p_len; 3358 } 3359 3360 if (!(len -= copy)) 3361 return csum; 3362 offset += copy; 3363 to += copy; 3364 } 3365 start = end; 3366 } 3367 3368 skb_walk_frags(skb, frag_iter) { 3369 __wsum csum2; 3370 int end; 3371 3372 WARN_ON(start > offset + len); 3373 3374 end = start + frag_iter->len; 3375 if ((copy = end - offset) > 0) { 3376 if (copy > len) 3377 copy = len; 3378 csum2 = skb_copy_and_csum_bits(frag_iter, 3379 offset - start, 3380 to, copy); 3381 csum = csum_block_add(csum, csum2, pos); 3382 if ((len -= copy) == 0) 3383 return csum; 3384 offset += copy; 3385 to += copy; 3386 pos += copy; 3387 } 3388 start = end; 3389 } 3390 BUG_ON(len); 3391 return csum; 3392 } 3393 EXPORT_SYMBOL(skb_copy_and_csum_bits); 3394 3395 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len) 3396 { 3397 __sum16 sum; 3398 3399 sum = csum_fold(skb_checksum(skb, 0, len, skb->csum)); 3400 /* See comments in __skb_checksum_complete(). */ 3401 if (likely(!sum)) { 3402 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) && 3403 !skb->csum_complete_sw) 3404 netdev_rx_csum_fault(skb->dev, skb); 3405 } 3406 if (!skb_shared(skb)) 3407 skb->csum_valid = !sum; 3408 return sum; 3409 } 3410 EXPORT_SYMBOL(__skb_checksum_complete_head); 3411 3412 /* This function assumes skb->csum already holds pseudo header's checksum, 3413 * which has been changed from the hardware checksum, for example, by 3414 * __skb_checksum_validate_complete(). And, the original skb->csum must 3415 * have been validated unsuccessfully for CHECKSUM_COMPLETE case. 3416 * 3417 * It returns non-zero if the recomputed checksum is still invalid, otherwise 3418 * zero. The new checksum is stored back into skb->csum unless the skb is 3419 * shared. 3420 */ 3421 __sum16 __skb_checksum_complete(struct sk_buff *skb) 3422 { 3423 __wsum csum; 3424 __sum16 sum; 3425 3426 csum = skb_checksum(skb, 0, skb->len, 0); 3427 3428 sum = csum_fold(csum_add(skb->csum, csum)); 3429 /* This check is inverted, because we already knew the hardware 3430 * checksum is invalid before calling this function. So, if the 3431 * re-computed checksum is valid instead, then we have a mismatch 3432 * between the original skb->csum and skb_checksum(). This means either 3433 * the original hardware checksum is incorrect or we screw up skb->csum 3434 * when moving skb->data around. 3435 */ 3436 if (likely(!sum)) { 3437 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) && 3438 !skb->csum_complete_sw) 3439 netdev_rx_csum_fault(skb->dev, skb); 3440 } 3441 3442 if (!skb_shared(skb)) { 3443 /* Save full packet checksum */ 3444 skb->csum = csum; 3445 skb->ip_summed = CHECKSUM_COMPLETE; 3446 skb->csum_complete_sw = 1; 3447 skb->csum_valid = !sum; 3448 } 3449 3450 return sum; 3451 } 3452 EXPORT_SYMBOL(__skb_checksum_complete); 3453 3454 static __wsum warn_crc32c_csum_update(const void *buff, int len, __wsum sum) 3455 { 3456 net_warn_ratelimited( 3457 "%s: attempt to compute crc32c without libcrc32c.ko\n", 3458 __func__); 3459 return 0; 3460 } 3461 3462 static __wsum warn_crc32c_csum_combine(__wsum csum, __wsum csum2, 3463 int offset, int len) 3464 { 3465 net_warn_ratelimited( 3466 "%s: attempt to compute crc32c without libcrc32c.ko\n", 3467 __func__); 3468 return 0; 3469 } 3470 3471 static const struct skb_checksum_ops default_crc32c_ops = { 3472 .update = warn_crc32c_csum_update, 3473 .combine = warn_crc32c_csum_combine, 3474 }; 3475 3476 const struct skb_checksum_ops *crc32c_csum_stub __read_mostly = 3477 &default_crc32c_ops; 3478 EXPORT_SYMBOL(crc32c_csum_stub); 3479 3480 /** 3481 * skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy() 3482 * @from: source buffer 3483 * 3484 * Calculates the amount of linear headroom needed in the 'to' skb passed 3485 * into skb_zerocopy(). 3486 */ 3487 unsigned int 3488 skb_zerocopy_headlen(const struct sk_buff *from) 3489 { 3490 unsigned int hlen = 0; 3491 3492 if (!from->head_frag || 3493 skb_headlen(from) < L1_CACHE_BYTES || 3494 skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS) { 3495 hlen = skb_headlen(from); 3496 if (!hlen) 3497 hlen = from->len; 3498 } 3499 3500 if (skb_has_frag_list(from)) 3501 hlen = from->len; 3502 3503 return hlen; 3504 } 3505 EXPORT_SYMBOL_GPL(skb_zerocopy_headlen); 3506 3507 /** 3508 * skb_zerocopy - Zero copy skb to skb 3509 * @to: destination buffer 3510 * @from: source buffer 3511 * @len: number of bytes to copy from source buffer 3512 * @hlen: size of linear headroom in destination buffer 3513 * 3514 * Copies up to `len` bytes from `from` to `to` by creating references 3515 * to the frags in the source buffer. 3516 * 3517 * The `hlen` as calculated by skb_zerocopy_headlen() specifies the 3518 * headroom in the `to` buffer. 3519 * 3520 * Return value: 3521 * 0: everything is OK 3522 * -ENOMEM: couldn't orphan frags of @from due to lack of memory 3523 * -EFAULT: skb_copy_bits() found some problem with skb geometry 3524 */ 3525 int 3526 skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen) 3527 { 3528 int i, j = 0; 3529 int plen = 0; /* length of skb->head fragment */ 3530 int ret; 3531 struct page *page; 3532 unsigned int offset; 3533 3534 BUG_ON(!from->head_frag && !hlen); 3535 3536 /* dont bother with small payloads */ 3537 if (len <= skb_tailroom(to)) 3538 return skb_copy_bits(from, 0, skb_put(to, len), len); 3539 3540 if (hlen) { 3541 ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen); 3542 if (unlikely(ret)) 3543 return ret; 3544 len -= hlen; 3545 } else { 3546 plen = min_t(int, skb_headlen(from), len); 3547 if (plen) { 3548 page = virt_to_head_page(from->head); 3549 offset = from->data - (unsigned char *)page_address(page); 3550 __skb_fill_page_desc(to, 0, page, offset, plen); 3551 get_page(page); 3552 j = 1; 3553 len -= plen; 3554 } 3555 } 3556 3557 skb_len_add(to, len + plen); 3558 3559 if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) { 3560 skb_tx_error(from); 3561 return -ENOMEM; 3562 } 3563 skb_zerocopy_clone(to, from, GFP_ATOMIC); 3564 3565 for (i = 0; i < skb_shinfo(from)->nr_frags; i++) { 3566 int size; 3567 3568 if (!len) 3569 break; 3570 skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i]; 3571 size = min_t(int, skb_frag_size(&skb_shinfo(to)->frags[j]), 3572 len); 3573 skb_frag_size_set(&skb_shinfo(to)->frags[j], size); 3574 len -= size; 3575 skb_frag_ref(to, j); 3576 j++; 3577 } 3578 skb_shinfo(to)->nr_frags = j; 3579 3580 return 0; 3581 } 3582 EXPORT_SYMBOL_GPL(skb_zerocopy); 3583 3584 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to) 3585 { 3586 __wsum csum; 3587 long csstart; 3588 3589 if (skb->ip_summed == CHECKSUM_PARTIAL) 3590 csstart = skb_checksum_start_offset(skb); 3591 else 3592 csstart = skb_headlen(skb); 3593 3594 BUG_ON(csstart > skb_headlen(skb)); 3595 3596 skb_copy_from_linear_data(skb, to, csstart); 3597 3598 csum = 0; 3599 if (csstart != skb->len) 3600 csum = skb_copy_and_csum_bits(skb, csstart, to + csstart, 3601 skb->len - csstart); 3602 3603 if (skb->ip_summed == CHECKSUM_PARTIAL) { 3604 long csstuff = csstart + skb->csum_offset; 3605 3606 *((__sum16 *)(to + csstuff)) = csum_fold(csum); 3607 } 3608 } 3609 EXPORT_SYMBOL(skb_copy_and_csum_dev); 3610 3611 /** 3612 * skb_dequeue - remove from the head of the queue 3613 * @list: list to dequeue from 3614 * 3615 * Remove the head of the list. The list lock is taken so the function 3616 * may be used safely with other locking list functions. The head item is 3617 * returned or %NULL if the list is empty. 3618 */ 3619 3620 struct sk_buff *skb_dequeue(struct sk_buff_head *list) 3621 { 3622 unsigned long flags; 3623 struct sk_buff *result; 3624 3625 spin_lock_irqsave(&list->lock, flags); 3626 result = __skb_dequeue(list); 3627 spin_unlock_irqrestore(&list->lock, flags); 3628 return result; 3629 } 3630 EXPORT_SYMBOL(skb_dequeue); 3631 3632 /** 3633 * skb_dequeue_tail - remove from the tail of the queue 3634 * @list: list to dequeue from 3635 * 3636 * Remove the tail of the list. The list lock is taken so the function 3637 * may be used safely with other locking list functions. The tail item is 3638 * returned or %NULL if the list is empty. 3639 */ 3640 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list) 3641 { 3642 unsigned long flags; 3643 struct sk_buff *result; 3644 3645 spin_lock_irqsave(&list->lock, flags); 3646 result = __skb_dequeue_tail(list); 3647 spin_unlock_irqrestore(&list->lock, flags); 3648 return result; 3649 } 3650 EXPORT_SYMBOL(skb_dequeue_tail); 3651 3652 /** 3653 * skb_queue_purge - empty a list 3654 * @list: list to empty 3655 * 3656 * Delete all buffers on an &sk_buff list. Each buffer is removed from 3657 * the list and one reference dropped. This function takes the list 3658 * lock and is atomic with respect to other list locking functions. 3659 */ 3660 void skb_queue_purge(struct sk_buff_head *list) 3661 { 3662 struct sk_buff *skb; 3663 while ((skb = skb_dequeue(list)) != NULL) 3664 kfree_skb(skb); 3665 } 3666 EXPORT_SYMBOL(skb_queue_purge); 3667 3668 /** 3669 * skb_rbtree_purge - empty a skb rbtree 3670 * @root: root of the rbtree to empty 3671 * Return value: the sum of truesizes of all purged skbs. 3672 * 3673 * Delete all buffers on an &sk_buff rbtree. Each buffer is removed from 3674 * the list and one reference dropped. This function does not take 3675 * any lock. Synchronization should be handled by the caller (e.g., TCP 3676 * out-of-order queue is protected by the socket lock). 3677 */ 3678 unsigned int skb_rbtree_purge(struct rb_root *root) 3679 { 3680 struct rb_node *p = rb_first(root); 3681 unsigned int sum = 0; 3682 3683 while (p) { 3684 struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode); 3685 3686 p = rb_next(p); 3687 rb_erase(&skb->rbnode, root); 3688 sum += skb->truesize; 3689 kfree_skb(skb); 3690 } 3691 return sum; 3692 } 3693 3694 /** 3695 * skb_queue_head - queue a buffer at the list head 3696 * @list: list to use 3697 * @newsk: buffer to queue 3698 * 3699 * Queue a buffer at the start of the list. This function takes the 3700 * list lock and can be used safely with other locking &sk_buff functions 3701 * safely. 3702 * 3703 * A buffer cannot be placed on two lists at the same time. 3704 */ 3705 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk) 3706 { 3707 unsigned long flags; 3708 3709 spin_lock_irqsave(&list->lock, flags); 3710 __skb_queue_head(list, newsk); 3711 spin_unlock_irqrestore(&list->lock, flags); 3712 } 3713 EXPORT_SYMBOL(skb_queue_head); 3714 3715 /** 3716 * skb_queue_tail - queue a buffer at the list tail 3717 * @list: list to use 3718 * @newsk: buffer to queue 3719 * 3720 * Queue a buffer at the tail of the list. This function takes the 3721 * list lock and can be used safely with other locking &sk_buff functions 3722 * safely. 3723 * 3724 * A buffer cannot be placed on two lists at the same time. 3725 */ 3726 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk) 3727 { 3728 unsigned long flags; 3729 3730 spin_lock_irqsave(&list->lock, flags); 3731 __skb_queue_tail(list, newsk); 3732 spin_unlock_irqrestore(&list->lock, flags); 3733 } 3734 EXPORT_SYMBOL(skb_queue_tail); 3735 3736 /** 3737 * skb_unlink - remove a buffer from a list 3738 * @skb: buffer to remove 3739 * @list: list to use 3740 * 3741 * Remove a packet from a list. The list locks are taken and this 3742 * function is atomic with respect to other list locked calls 3743 * 3744 * You must know what list the SKB is on. 3745 */ 3746 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list) 3747 { 3748 unsigned long flags; 3749 3750 spin_lock_irqsave(&list->lock, flags); 3751 __skb_unlink(skb, list); 3752 spin_unlock_irqrestore(&list->lock, flags); 3753 } 3754 EXPORT_SYMBOL(skb_unlink); 3755 3756 /** 3757 * skb_append - append a buffer 3758 * @old: buffer to insert after 3759 * @newsk: buffer to insert 3760 * @list: list to use 3761 * 3762 * Place a packet after a given packet in a list. The list locks are taken 3763 * and this function is atomic with respect to other list locked calls. 3764 * A buffer cannot be placed on two lists at the same time. 3765 */ 3766 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list) 3767 { 3768 unsigned long flags; 3769 3770 spin_lock_irqsave(&list->lock, flags); 3771 __skb_queue_after(list, old, newsk); 3772 spin_unlock_irqrestore(&list->lock, flags); 3773 } 3774 EXPORT_SYMBOL(skb_append); 3775 3776 static inline void skb_split_inside_header(struct sk_buff *skb, 3777 struct sk_buff* skb1, 3778 const u32 len, const int pos) 3779 { 3780 int i; 3781 3782 skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len), 3783 pos - len); 3784 /* And move data appendix as is. */ 3785 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 3786 skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i]; 3787 3788 skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags; 3789 skb_shinfo(skb)->nr_frags = 0; 3790 skb1->data_len = skb->data_len; 3791 skb1->len += skb1->data_len; 3792 skb->data_len = 0; 3793 skb->len = len; 3794 skb_set_tail_pointer(skb, len); 3795 } 3796 3797 static inline void skb_split_no_header(struct sk_buff *skb, 3798 struct sk_buff* skb1, 3799 const u32 len, int pos) 3800 { 3801 int i, k = 0; 3802 const int nfrags = skb_shinfo(skb)->nr_frags; 3803 3804 skb_shinfo(skb)->nr_frags = 0; 3805 skb1->len = skb1->data_len = skb->len - len; 3806 skb->len = len; 3807 skb->data_len = len - pos; 3808 3809 for (i = 0; i < nfrags; i++) { 3810 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 3811 3812 if (pos + size > len) { 3813 skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i]; 3814 3815 if (pos < len) { 3816 /* Split frag. 3817 * We have two variants in this case: 3818 * 1. Move all the frag to the second 3819 * part, if it is possible. F.e. 3820 * this approach is mandatory for TUX, 3821 * where splitting is expensive. 3822 * 2. Split is accurately. We make this. 3823 */ 3824 skb_frag_ref(skb, i); 3825 skb_frag_off_add(&skb_shinfo(skb1)->frags[0], len - pos); 3826 skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos); 3827 skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos); 3828 skb_shinfo(skb)->nr_frags++; 3829 } 3830 k++; 3831 } else 3832 skb_shinfo(skb)->nr_frags++; 3833 pos += size; 3834 } 3835 skb_shinfo(skb1)->nr_frags = k; 3836 } 3837 3838 /** 3839 * skb_split - Split fragmented skb to two parts at length len. 3840 * @skb: the buffer to split 3841 * @skb1: the buffer to receive the second part 3842 * @len: new length for skb 3843 */ 3844 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len) 3845 { 3846 int pos = skb_headlen(skb); 3847 const int zc_flags = SKBFL_SHARED_FRAG | SKBFL_PURE_ZEROCOPY; 3848 3849 skb_zcopy_downgrade_managed(skb); 3850 3851 skb_shinfo(skb1)->flags |= skb_shinfo(skb)->flags & zc_flags; 3852 skb_zerocopy_clone(skb1, skb, 0); 3853 if (len < pos) /* Split line is inside header. */ 3854 skb_split_inside_header(skb, skb1, len, pos); 3855 else /* Second chunk has no header, nothing to copy. */ 3856 skb_split_no_header(skb, skb1, len, pos); 3857 } 3858 EXPORT_SYMBOL(skb_split); 3859 3860 /* Shifting from/to a cloned skb is a no-go. 3861 * 3862 * Caller cannot keep skb_shinfo related pointers past calling here! 3863 */ 3864 static int skb_prepare_for_shift(struct sk_buff *skb) 3865 { 3866 return skb_unclone_keeptruesize(skb, GFP_ATOMIC); 3867 } 3868 3869 /** 3870 * skb_shift - Shifts paged data partially from skb to another 3871 * @tgt: buffer into which tail data gets added 3872 * @skb: buffer from which the paged data comes from 3873 * @shiftlen: shift up to this many bytes 3874 * 3875 * Attempts to shift up to shiftlen worth of bytes, which may be less than 3876 * the length of the skb, from skb to tgt. Returns number bytes shifted. 3877 * It's up to caller to free skb if everything was shifted. 3878 * 3879 * If @tgt runs out of frags, the whole operation is aborted. 3880 * 3881 * Skb cannot include anything else but paged data while tgt is allowed 3882 * to have non-paged data as well. 3883 * 3884 * TODO: full sized shift could be optimized but that would need 3885 * specialized skb free'er to handle frags without up-to-date nr_frags. 3886 */ 3887 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen) 3888 { 3889 int from, to, merge, todo; 3890 skb_frag_t *fragfrom, *fragto; 3891 3892 BUG_ON(shiftlen > skb->len); 3893 3894 if (skb_headlen(skb)) 3895 return 0; 3896 if (skb_zcopy(tgt) || skb_zcopy(skb)) 3897 return 0; 3898 3899 todo = shiftlen; 3900 from = 0; 3901 to = skb_shinfo(tgt)->nr_frags; 3902 fragfrom = &skb_shinfo(skb)->frags[from]; 3903 3904 /* Actual merge is delayed until the point when we know we can 3905 * commit all, so that we don't have to undo partial changes 3906 */ 3907 if (!to || 3908 !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom), 3909 skb_frag_off(fragfrom))) { 3910 merge = -1; 3911 } else { 3912 merge = to - 1; 3913 3914 todo -= skb_frag_size(fragfrom); 3915 if (todo < 0) { 3916 if (skb_prepare_for_shift(skb) || 3917 skb_prepare_for_shift(tgt)) 3918 return 0; 3919 3920 /* All previous frag pointers might be stale! */ 3921 fragfrom = &skb_shinfo(skb)->frags[from]; 3922 fragto = &skb_shinfo(tgt)->frags[merge]; 3923 3924 skb_frag_size_add(fragto, shiftlen); 3925 skb_frag_size_sub(fragfrom, shiftlen); 3926 skb_frag_off_add(fragfrom, shiftlen); 3927 3928 goto onlymerged; 3929 } 3930 3931 from++; 3932 } 3933 3934 /* Skip full, not-fitting skb to avoid expensive operations */ 3935 if ((shiftlen == skb->len) && 3936 (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to)) 3937 return 0; 3938 3939 if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt)) 3940 return 0; 3941 3942 while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) { 3943 if (to == MAX_SKB_FRAGS) 3944 return 0; 3945 3946 fragfrom = &skb_shinfo(skb)->frags[from]; 3947 fragto = &skb_shinfo(tgt)->frags[to]; 3948 3949 if (todo >= skb_frag_size(fragfrom)) { 3950 *fragto = *fragfrom; 3951 todo -= skb_frag_size(fragfrom); 3952 from++; 3953 to++; 3954 3955 } else { 3956 __skb_frag_ref(fragfrom); 3957 skb_frag_page_copy(fragto, fragfrom); 3958 skb_frag_off_copy(fragto, fragfrom); 3959 skb_frag_size_set(fragto, todo); 3960 3961 skb_frag_off_add(fragfrom, todo); 3962 skb_frag_size_sub(fragfrom, todo); 3963 todo = 0; 3964 3965 to++; 3966 break; 3967 } 3968 } 3969 3970 /* Ready to "commit" this state change to tgt */ 3971 skb_shinfo(tgt)->nr_frags = to; 3972 3973 if (merge >= 0) { 3974 fragfrom = &skb_shinfo(skb)->frags[0]; 3975 fragto = &skb_shinfo(tgt)->frags[merge]; 3976 3977 skb_frag_size_add(fragto, skb_frag_size(fragfrom)); 3978 __skb_frag_unref(fragfrom, skb->pp_recycle); 3979 } 3980 3981 /* Reposition in the original skb */ 3982 to = 0; 3983 while (from < skb_shinfo(skb)->nr_frags) 3984 skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++]; 3985 skb_shinfo(skb)->nr_frags = to; 3986 3987 BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags); 3988 3989 onlymerged: 3990 /* Most likely the tgt won't ever need its checksum anymore, skb on 3991 * the other hand might need it if it needs to be resent 3992 */ 3993 tgt->ip_summed = CHECKSUM_PARTIAL; 3994 skb->ip_summed = CHECKSUM_PARTIAL; 3995 3996 skb_len_add(skb, -shiftlen); 3997 skb_len_add(tgt, shiftlen); 3998 3999 return shiftlen; 4000 } 4001 4002 /** 4003 * skb_prepare_seq_read - Prepare a sequential read of skb data 4004 * @skb: the buffer to read 4005 * @from: lower offset of data to be read 4006 * @to: upper offset of data to be read 4007 * @st: state variable 4008 * 4009 * Initializes the specified state variable. Must be called before 4010 * invoking skb_seq_read() for the first time. 4011 */ 4012 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from, 4013 unsigned int to, struct skb_seq_state *st) 4014 { 4015 st->lower_offset = from; 4016 st->upper_offset = to; 4017 st->root_skb = st->cur_skb = skb; 4018 st->frag_idx = st->stepped_offset = 0; 4019 st->frag_data = NULL; 4020 st->frag_off = 0; 4021 } 4022 EXPORT_SYMBOL(skb_prepare_seq_read); 4023 4024 /** 4025 * skb_seq_read - Sequentially read skb data 4026 * @consumed: number of bytes consumed by the caller so far 4027 * @data: destination pointer for data to be returned 4028 * @st: state variable 4029 * 4030 * Reads a block of skb data at @consumed relative to the 4031 * lower offset specified to skb_prepare_seq_read(). Assigns 4032 * the head of the data block to @data and returns the length 4033 * of the block or 0 if the end of the skb data or the upper 4034 * offset has been reached. 4035 * 4036 * The caller is not required to consume all of the data 4037 * returned, i.e. @consumed is typically set to the number 4038 * of bytes already consumed and the next call to 4039 * skb_seq_read() will return the remaining part of the block. 4040 * 4041 * Note 1: The size of each block of data returned can be arbitrary, 4042 * this limitation is the cost for zerocopy sequential 4043 * reads of potentially non linear data. 4044 * 4045 * Note 2: Fragment lists within fragments are not implemented 4046 * at the moment, state->root_skb could be replaced with 4047 * a stack for this purpose. 4048 */ 4049 unsigned int skb_seq_read(unsigned int consumed, const u8 **data, 4050 struct skb_seq_state *st) 4051 { 4052 unsigned int block_limit, abs_offset = consumed + st->lower_offset; 4053 skb_frag_t *frag; 4054 4055 if (unlikely(abs_offset >= st->upper_offset)) { 4056 if (st->frag_data) { 4057 kunmap_atomic(st->frag_data); 4058 st->frag_data = NULL; 4059 } 4060 return 0; 4061 } 4062 4063 next_skb: 4064 block_limit = skb_headlen(st->cur_skb) + st->stepped_offset; 4065 4066 if (abs_offset < block_limit && !st->frag_data) { 4067 *data = st->cur_skb->data + (abs_offset - st->stepped_offset); 4068 return block_limit - abs_offset; 4069 } 4070 4071 if (st->frag_idx == 0 && !st->frag_data) 4072 st->stepped_offset += skb_headlen(st->cur_skb); 4073 4074 while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) { 4075 unsigned int pg_idx, pg_off, pg_sz; 4076 4077 frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx]; 4078 4079 pg_idx = 0; 4080 pg_off = skb_frag_off(frag); 4081 pg_sz = skb_frag_size(frag); 4082 4083 if (skb_frag_must_loop(skb_frag_page(frag))) { 4084 pg_idx = (pg_off + st->frag_off) >> PAGE_SHIFT; 4085 pg_off = offset_in_page(pg_off + st->frag_off); 4086 pg_sz = min_t(unsigned int, pg_sz - st->frag_off, 4087 PAGE_SIZE - pg_off); 4088 } 4089 4090 block_limit = pg_sz + st->stepped_offset; 4091 if (abs_offset < block_limit) { 4092 if (!st->frag_data) 4093 st->frag_data = kmap_atomic(skb_frag_page(frag) + pg_idx); 4094 4095 *data = (u8 *)st->frag_data + pg_off + 4096 (abs_offset - st->stepped_offset); 4097 4098 return block_limit - abs_offset; 4099 } 4100 4101 if (st->frag_data) { 4102 kunmap_atomic(st->frag_data); 4103 st->frag_data = NULL; 4104 } 4105 4106 st->stepped_offset += pg_sz; 4107 st->frag_off += pg_sz; 4108 if (st->frag_off == skb_frag_size(frag)) { 4109 st->frag_off = 0; 4110 st->frag_idx++; 4111 } 4112 } 4113 4114 if (st->frag_data) { 4115 kunmap_atomic(st->frag_data); 4116 st->frag_data = NULL; 4117 } 4118 4119 if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) { 4120 st->cur_skb = skb_shinfo(st->root_skb)->frag_list; 4121 st->frag_idx = 0; 4122 goto next_skb; 4123 } else if (st->cur_skb->next) { 4124 st->cur_skb = st->cur_skb->next; 4125 st->frag_idx = 0; 4126 goto next_skb; 4127 } 4128 4129 return 0; 4130 } 4131 EXPORT_SYMBOL(skb_seq_read); 4132 4133 /** 4134 * skb_abort_seq_read - Abort a sequential read of skb data 4135 * @st: state variable 4136 * 4137 * Must be called if skb_seq_read() was not called until it 4138 * returned 0. 4139 */ 4140 void skb_abort_seq_read(struct skb_seq_state *st) 4141 { 4142 if (st->frag_data) 4143 kunmap_atomic(st->frag_data); 4144 } 4145 EXPORT_SYMBOL(skb_abort_seq_read); 4146 4147 #define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb)) 4148 4149 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text, 4150 struct ts_config *conf, 4151 struct ts_state *state) 4152 { 4153 return skb_seq_read(offset, text, TS_SKB_CB(state)); 4154 } 4155 4156 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state) 4157 { 4158 skb_abort_seq_read(TS_SKB_CB(state)); 4159 } 4160 4161 /** 4162 * skb_find_text - Find a text pattern in skb data 4163 * @skb: the buffer to look in 4164 * @from: search offset 4165 * @to: search limit 4166 * @config: textsearch configuration 4167 * 4168 * Finds a pattern in the skb data according to the specified 4169 * textsearch configuration. Use textsearch_next() to retrieve 4170 * subsequent occurrences of the pattern. Returns the offset 4171 * to the first occurrence or UINT_MAX if no match was found. 4172 */ 4173 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from, 4174 unsigned int to, struct ts_config *config) 4175 { 4176 struct ts_state state; 4177 unsigned int ret; 4178 4179 BUILD_BUG_ON(sizeof(struct skb_seq_state) > sizeof(state.cb)); 4180 4181 config->get_next_block = skb_ts_get_next_block; 4182 config->finish = skb_ts_finish; 4183 4184 skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state)); 4185 4186 ret = textsearch_find(config, &state); 4187 return (ret <= to - from ? ret : UINT_MAX); 4188 } 4189 EXPORT_SYMBOL(skb_find_text); 4190 4191 int skb_append_pagefrags(struct sk_buff *skb, struct page *page, 4192 int offset, size_t size, size_t max_frags) 4193 { 4194 int i = skb_shinfo(skb)->nr_frags; 4195 4196 if (skb_can_coalesce(skb, i, page, offset)) { 4197 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size); 4198 } else if (i < max_frags) { 4199 skb_zcopy_downgrade_managed(skb); 4200 get_page(page); 4201 skb_fill_page_desc_noacc(skb, i, page, offset, size); 4202 } else { 4203 return -EMSGSIZE; 4204 } 4205 4206 return 0; 4207 } 4208 EXPORT_SYMBOL_GPL(skb_append_pagefrags); 4209 4210 /** 4211 * skb_pull_rcsum - pull skb and update receive checksum 4212 * @skb: buffer to update 4213 * @len: length of data pulled 4214 * 4215 * This function performs an skb_pull on the packet and updates 4216 * the CHECKSUM_COMPLETE checksum. It should be used on 4217 * receive path processing instead of skb_pull unless you know 4218 * that the checksum difference is zero (e.g., a valid IP header) 4219 * or you are setting ip_summed to CHECKSUM_NONE. 4220 */ 4221 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len) 4222 { 4223 unsigned char *data = skb->data; 4224 4225 BUG_ON(len > skb->len); 4226 __skb_pull(skb, len); 4227 skb_postpull_rcsum(skb, data, len); 4228 return skb->data; 4229 } 4230 EXPORT_SYMBOL_GPL(skb_pull_rcsum); 4231 4232 static inline skb_frag_t skb_head_frag_to_page_desc(struct sk_buff *frag_skb) 4233 { 4234 skb_frag_t head_frag; 4235 struct page *page; 4236 4237 page = virt_to_head_page(frag_skb->head); 4238 skb_frag_fill_page_desc(&head_frag, page, frag_skb->data - 4239 (unsigned char *)page_address(page), 4240 skb_headlen(frag_skb)); 4241 return head_frag; 4242 } 4243 4244 struct sk_buff *skb_segment_list(struct sk_buff *skb, 4245 netdev_features_t features, 4246 unsigned int offset) 4247 { 4248 struct sk_buff *list_skb = skb_shinfo(skb)->frag_list; 4249 unsigned int tnl_hlen = skb_tnl_header_len(skb); 4250 unsigned int delta_truesize = 0; 4251 unsigned int delta_len = 0; 4252 struct sk_buff *tail = NULL; 4253 struct sk_buff *nskb, *tmp; 4254 int len_diff, err; 4255 4256 skb_push(skb, -skb_network_offset(skb) + offset); 4257 4258 skb_shinfo(skb)->frag_list = NULL; 4259 4260 while (list_skb) { 4261 nskb = list_skb; 4262 list_skb = list_skb->next; 4263 4264 err = 0; 4265 delta_truesize += nskb->truesize; 4266 if (skb_shared(nskb)) { 4267 tmp = skb_clone(nskb, GFP_ATOMIC); 4268 if (tmp) { 4269 consume_skb(nskb); 4270 nskb = tmp; 4271 err = skb_unclone(nskb, GFP_ATOMIC); 4272 } else { 4273 err = -ENOMEM; 4274 } 4275 } 4276 4277 if (!tail) 4278 skb->next = nskb; 4279 else 4280 tail->next = nskb; 4281 4282 if (unlikely(err)) { 4283 nskb->next = list_skb; 4284 goto err_linearize; 4285 } 4286 4287 tail = nskb; 4288 4289 delta_len += nskb->len; 4290 4291 skb_push(nskb, -skb_network_offset(nskb) + offset); 4292 4293 skb_release_head_state(nskb); 4294 len_diff = skb_network_header_len(nskb) - skb_network_header_len(skb); 4295 __copy_skb_header(nskb, skb); 4296 4297 skb_headers_offset_update(nskb, skb_headroom(nskb) - skb_headroom(skb)); 4298 nskb->transport_header += len_diff; 4299 skb_copy_from_linear_data_offset(skb, -tnl_hlen, 4300 nskb->data - tnl_hlen, 4301 offset + tnl_hlen); 4302 4303 if (skb_needs_linearize(nskb, features) && 4304 __skb_linearize(nskb)) 4305 goto err_linearize; 4306 } 4307 4308 skb->truesize = skb->truesize - delta_truesize; 4309 skb->data_len = skb->data_len - delta_len; 4310 skb->len = skb->len - delta_len; 4311 4312 skb_gso_reset(skb); 4313 4314 skb->prev = tail; 4315 4316 if (skb_needs_linearize(skb, features) && 4317 __skb_linearize(skb)) 4318 goto err_linearize; 4319 4320 skb_get(skb); 4321 4322 return skb; 4323 4324 err_linearize: 4325 kfree_skb_list(skb->next); 4326 skb->next = NULL; 4327 return ERR_PTR(-ENOMEM); 4328 } 4329 EXPORT_SYMBOL_GPL(skb_segment_list); 4330 4331 /** 4332 * skb_segment - Perform protocol segmentation on skb. 4333 * @head_skb: buffer to segment 4334 * @features: features for the output path (see dev->features) 4335 * 4336 * This function performs segmentation on the given skb. It returns 4337 * a pointer to the first in a list of new skbs for the segments. 4338 * In case of error it returns ERR_PTR(err). 4339 */ 4340 struct sk_buff *skb_segment(struct sk_buff *head_skb, 4341 netdev_features_t features) 4342 { 4343 struct sk_buff *segs = NULL; 4344 struct sk_buff *tail = NULL; 4345 struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list; 4346 skb_frag_t *frag = skb_shinfo(head_skb)->frags; 4347 unsigned int mss = skb_shinfo(head_skb)->gso_size; 4348 unsigned int doffset = head_skb->data - skb_mac_header(head_skb); 4349 struct sk_buff *frag_skb = head_skb; 4350 unsigned int offset = doffset; 4351 unsigned int tnl_hlen = skb_tnl_header_len(head_skb); 4352 unsigned int partial_segs = 0; 4353 unsigned int headroom; 4354 unsigned int len = head_skb->len; 4355 __be16 proto; 4356 bool csum, sg; 4357 int nfrags = skb_shinfo(head_skb)->nr_frags; 4358 int err = -ENOMEM; 4359 int i = 0; 4360 int pos; 4361 4362 if ((skb_shinfo(head_skb)->gso_type & SKB_GSO_DODGY) && 4363 mss != GSO_BY_FRAGS && mss != skb_headlen(head_skb)) { 4364 struct sk_buff *check_skb; 4365 4366 for (check_skb = list_skb; check_skb; check_skb = check_skb->next) { 4367 if (skb_headlen(check_skb) && !check_skb->head_frag) { 4368 /* gso_size is untrusted, and we have a frag_list with 4369 * a linear non head_frag item. 4370 * 4371 * If head_skb's headlen does not fit requested gso_size, 4372 * it means that the frag_list members do NOT terminate 4373 * on exact gso_size boundaries. Hence we cannot perform 4374 * skb_frag_t page sharing. Therefore we must fallback to 4375 * copying the frag_list skbs; we do so by disabling SG. 4376 */ 4377 features &= ~NETIF_F_SG; 4378 break; 4379 } 4380 } 4381 } 4382 4383 __skb_push(head_skb, doffset); 4384 proto = skb_network_protocol(head_skb, NULL); 4385 if (unlikely(!proto)) 4386 return ERR_PTR(-EINVAL); 4387 4388 sg = !!(features & NETIF_F_SG); 4389 csum = !!can_checksum_protocol(features, proto); 4390 4391 if (sg && csum && (mss != GSO_BY_FRAGS)) { 4392 if (!(features & NETIF_F_GSO_PARTIAL)) { 4393 struct sk_buff *iter; 4394 unsigned int frag_len; 4395 4396 if (!list_skb || 4397 !net_gso_ok(features, skb_shinfo(head_skb)->gso_type)) 4398 goto normal; 4399 4400 /* If we get here then all the required 4401 * GSO features except frag_list are supported. 4402 * Try to split the SKB to multiple GSO SKBs 4403 * with no frag_list. 4404 * Currently we can do that only when the buffers don't 4405 * have a linear part and all the buffers except 4406 * the last are of the same length. 4407 */ 4408 frag_len = list_skb->len; 4409 skb_walk_frags(head_skb, iter) { 4410 if (frag_len != iter->len && iter->next) 4411 goto normal; 4412 if (skb_headlen(iter) && !iter->head_frag) 4413 goto normal; 4414 4415 len -= iter->len; 4416 } 4417 4418 if (len != frag_len) 4419 goto normal; 4420 } 4421 4422 /* GSO partial only requires that we trim off any excess that 4423 * doesn't fit into an MSS sized block, so take care of that 4424 * now. 4425 */ 4426 partial_segs = len / mss; 4427 if (partial_segs > 1) 4428 mss *= partial_segs; 4429 else 4430 partial_segs = 0; 4431 } 4432 4433 normal: 4434 headroom = skb_headroom(head_skb); 4435 pos = skb_headlen(head_skb); 4436 4437 do { 4438 struct sk_buff *nskb; 4439 skb_frag_t *nskb_frag; 4440 int hsize; 4441 int size; 4442 4443 if (unlikely(mss == GSO_BY_FRAGS)) { 4444 len = list_skb->len; 4445 } else { 4446 len = head_skb->len - offset; 4447 if (len > mss) 4448 len = mss; 4449 } 4450 4451 hsize = skb_headlen(head_skb) - offset; 4452 4453 if (hsize <= 0 && i >= nfrags && skb_headlen(list_skb) && 4454 (skb_headlen(list_skb) == len || sg)) { 4455 BUG_ON(skb_headlen(list_skb) > len); 4456 4457 i = 0; 4458 nfrags = skb_shinfo(list_skb)->nr_frags; 4459 frag = skb_shinfo(list_skb)->frags; 4460 frag_skb = list_skb; 4461 pos += skb_headlen(list_skb); 4462 4463 while (pos < offset + len) { 4464 BUG_ON(i >= nfrags); 4465 4466 size = skb_frag_size(frag); 4467 if (pos + size > offset + len) 4468 break; 4469 4470 i++; 4471 pos += size; 4472 frag++; 4473 } 4474 4475 nskb = skb_clone(list_skb, GFP_ATOMIC); 4476 list_skb = list_skb->next; 4477 4478 if (unlikely(!nskb)) 4479 goto err; 4480 4481 if (unlikely(pskb_trim(nskb, len))) { 4482 kfree_skb(nskb); 4483 goto err; 4484 } 4485 4486 hsize = skb_end_offset(nskb); 4487 if (skb_cow_head(nskb, doffset + headroom)) { 4488 kfree_skb(nskb); 4489 goto err; 4490 } 4491 4492 nskb->truesize += skb_end_offset(nskb) - hsize; 4493 skb_release_head_state(nskb); 4494 __skb_push(nskb, doffset); 4495 } else { 4496 if (hsize < 0) 4497 hsize = 0; 4498 if (hsize > len || !sg) 4499 hsize = len; 4500 4501 nskb = __alloc_skb(hsize + doffset + headroom, 4502 GFP_ATOMIC, skb_alloc_rx_flag(head_skb), 4503 NUMA_NO_NODE); 4504 4505 if (unlikely(!nskb)) 4506 goto err; 4507 4508 skb_reserve(nskb, headroom); 4509 __skb_put(nskb, doffset); 4510 } 4511 4512 if (segs) 4513 tail->next = nskb; 4514 else 4515 segs = nskb; 4516 tail = nskb; 4517 4518 __copy_skb_header(nskb, head_skb); 4519 4520 skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom); 4521 skb_reset_mac_len(nskb); 4522 4523 skb_copy_from_linear_data_offset(head_skb, -tnl_hlen, 4524 nskb->data - tnl_hlen, 4525 doffset + tnl_hlen); 4526 4527 if (nskb->len == len + doffset) 4528 goto perform_csum_check; 4529 4530 if (!sg) { 4531 if (!csum) { 4532 if (!nskb->remcsum_offload) 4533 nskb->ip_summed = CHECKSUM_NONE; 4534 SKB_GSO_CB(nskb)->csum = 4535 skb_copy_and_csum_bits(head_skb, offset, 4536 skb_put(nskb, 4537 len), 4538 len); 4539 SKB_GSO_CB(nskb)->csum_start = 4540 skb_headroom(nskb) + doffset; 4541 } else { 4542 if (skb_copy_bits(head_skb, offset, skb_put(nskb, len), len)) 4543 goto err; 4544 } 4545 continue; 4546 } 4547 4548 nskb_frag = skb_shinfo(nskb)->frags; 4549 4550 skb_copy_from_linear_data_offset(head_skb, offset, 4551 skb_put(nskb, hsize), hsize); 4552 4553 skb_shinfo(nskb)->flags |= skb_shinfo(head_skb)->flags & 4554 SKBFL_SHARED_FRAG; 4555 4556 if (skb_orphan_frags(frag_skb, GFP_ATOMIC) || 4557 skb_zerocopy_clone(nskb, frag_skb, GFP_ATOMIC)) 4558 goto err; 4559 4560 while (pos < offset + len) { 4561 if (i >= nfrags) { 4562 i = 0; 4563 nfrags = skb_shinfo(list_skb)->nr_frags; 4564 frag = skb_shinfo(list_skb)->frags; 4565 frag_skb = list_skb; 4566 if (!skb_headlen(list_skb)) { 4567 BUG_ON(!nfrags); 4568 } else { 4569 BUG_ON(!list_skb->head_frag); 4570 4571 /* to make room for head_frag. */ 4572 i--; 4573 frag--; 4574 } 4575 if (skb_orphan_frags(frag_skb, GFP_ATOMIC) || 4576 skb_zerocopy_clone(nskb, frag_skb, 4577 GFP_ATOMIC)) 4578 goto err; 4579 4580 list_skb = list_skb->next; 4581 } 4582 4583 if (unlikely(skb_shinfo(nskb)->nr_frags >= 4584 MAX_SKB_FRAGS)) { 4585 net_warn_ratelimited( 4586 "skb_segment: too many frags: %u %u\n", 4587 pos, mss); 4588 err = -EINVAL; 4589 goto err; 4590 } 4591 4592 *nskb_frag = (i < 0) ? skb_head_frag_to_page_desc(frag_skb) : *frag; 4593 __skb_frag_ref(nskb_frag); 4594 size = skb_frag_size(nskb_frag); 4595 4596 if (pos < offset) { 4597 skb_frag_off_add(nskb_frag, offset - pos); 4598 skb_frag_size_sub(nskb_frag, offset - pos); 4599 } 4600 4601 skb_shinfo(nskb)->nr_frags++; 4602 4603 if (pos + size <= offset + len) { 4604 i++; 4605 frag++; 4606 pos += size; 4607 } else { 4608 skb_frag_size_sub(nskb_frag, pos + size - (offset + len)); 4609 goto skip_fraglist; 4610 } 4611 4612 nskb_frag++; 4613 } 4614 4615 skip_fraglist: 4616 nskb->data_len = len - hsize; 4617 nskb->len += nskb->data_len; 4618 nskb->truesize += nskb->data_len; 4619 4620 perform_csum_check: 4621 if (!csum) { 4622 if (skb_has_shared_frag(nskb) && 4623 __skb_linearize(nskb)) 4624 goto err; 4625 4626 if (!nskb->remcsum_offload) 4627 nskb->ip_summed = CHECKSUM_NONE; 4628 SKB_GSO_CB(nskb)->csum = 4629 skb_checksum(nskb, doffset, 4630 nskb->len - doffset, 0); 4631 SKB_GSO_CB(nskb)->csum_start = 4632 skb_headroom(nskb) + doffset; 4633 } 4634 } while ((offset += len) < head_skb->len); 4635 4636 /* Some callers want to get the end of the list. 4637 * Put it in segs->prev to avoid walking the list. 4638 * (see validate_xmit_skb_list() for example) 4639 */ 4640 segs->prev = tail; 4641 4642 if (partial_segs) { 4643 struct sk_buff *iter; 4644 int type = skb_shinfo(head_skb)->gso_type; 4645 unsigned short gso_size = skb_shinfo(head_skb)->gso_size; 4646 4647 /* Update type to add partial and then remove dodgy if set */ 4648 type |= (features & NETIF_F_GSO_PARTIAL) / NETIF_F_GSO_PARTIAL * SKB_GSO_PARTIAL; 4649 type &= ~SKB_GSO_DODGY; 4650 4651 /* Update GSO info and prepare to start updating headers on 4652 * our way back down the stack of protocols. 4653 */ 4654 for (iter = segs; iter; iter = iter->next) { 4655 skb_shinfo(iter)->gso_size = gso_size; 4656 skb_shinfo(iter)->gso_segs = partial_segs; 4657 skb_shinfo(iter)->gso_type = type; 4658 SKB_GSO_CB(iter)->data_offset = skb_headroom(iter) + doffset; 4659 } 4660 4661 if (tail->len - doffset <= gso_size) 4662 skb_shinfo(tail)->gso_size = 0; 4663 else if (tail != segs) 4664 skb_shinfo(tail)->gso_segs = DIV_ROUND_UP(tail->len - doffset, gso_size); 4665 } 4666 4667 /* Following permits correct backpressure, for protocols 4668 * using skb_set_owner_w(). 4669 * Idea is to tranfert ownership from head_skb to last segment. 4670 */ 4671 if (head_skb->destructor == sock_wfree) { 4672 swap(tail->truesize, head_skb->truesize); 4673 swap(tail->destructor, head_skb->destructor); 4674 swap(tail->sk, head_skb->sk); 4675 } 4676 return segs; 4677 4678 err: 4679 kfree_skb_list(segs); 4680 return ERR_PTR(err); 4681 } 4682 EXPORT_SYMBOL_GPL(skb_segment); 4683 4684 #ifdef CONFIG_SKB_EXTENSIONS 4685 #define SKB_EXT_ALIGN_VALUE 8 4686 #define SKB_EXT_CHUNKSIZEOF(x) (ALIGN((sizeof(x)), SKB_EXT_ALIGN_VALUE) / SKB_EXT_ALIGN_VALUE) 4687 4688 static const u8 skb_ext_type_len[] = { 4689 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 4690 [SKB_EXT_BRIDGE_NF] = SKB_EXT_CHUNKSIZEOF(struct nf_bridge_info), 4691 #endif 4692 #ifdef CONFIG_XFRM 4693 [SKB_EXT_SEC_PATH] = SKB_EXT_CHUNKSIZEOF(struct sec_path), 4694 #endif 4695 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT) 4696 [TC_SKB_EXT] = SKB_EXT_CHUNKSIZEOF(struct tc_skb_ext), 4697 #endif 4698 #if IS_ENABLED(CONFIG_MPTCP) 4699 [SKB_EXT_MPTCP] = SKB_EXT_CHUNKSIZEOF(struct mptcp_ext), 4700 #endif 4701 #if IS_ENABLED(CONFIG_MCTP_FLOWS) 4702 [SKB_EXT_MCTP] = SKB_EXT_CHUNKSIZEOF(struct mctp_flow), 4703 #endif 4704 }; 4705 4706 static __always_inline unsigned int skb_ext_total_length(void) 4707 { 4708 return SKB_EXT_CHUNKSIZEOF(struct skb_ext) + 4709 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 4710 skb_ext_type_len[SKB_EXT_BRIDGE_NF] + 4711 #endif 4712 #ifdef CONFIG_XFRM 4713 skb_ext_type_len[SKB_EXT_SEC_PATH] + 4714 #endif 4715 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT) 4716 skb_ext_type_len[TC_SKB_EXT] + 4717 #endif 4718 #if IS_ENABLED(CONFIG_MPTCP) 4719 skb_ext_type_len[SKB_EXT_MPTCP] + 4720 #endif 4721 #if IS_ENABLED(CONFIG_MCTP_FLOWS) 4722 skb_ext_type_len[SKB_EXT_MCTP] + 4723 #endif 4724 0; 4725 } 4726 4727 static void skb_extensions_init(void) 4728 { 4729 BUILD_BUG_ON(SKB_EXT_NUM >= 8); 4730 BUILD_BUG_ON(skb_ext_total_length() > 255); 4731 4732 skbuff_ext_cache = kmem_cache_create("skbuff_ext_cache", 4733 SKB_EXT_ALIGN_VALUE * skb_ext_total_length(), 4734 0, 4735 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 4736 NULL); 4737 } 4738 #else 4739 static void skb_extensions_init(void) {} 4740 #endif 4741 4742 void __init skb_init(void) 4743 { 4744 skbuff_cache = kmem_cache_create_usercopy("skbuff_head_cache", 4745 sizeof(struct sk_buff), 4746 0, 4747 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 4748 offsetof(struct sk_buff, cb), 4749 sizeof_field(struct sk_buff, cb), 4750 NULL); 4751 skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache", 4752 sizeof(struct sk_buff_fclones), 4753 0, 4754 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 4755 NULL); 4756 /* usercopy should only access first SKB_SMALL_HEAD_HEADROOM bytes. 4757 * struct skb_shared_info is located at the end of skb->head, 4758 * and should not be copied to/from user. 4759 */ 4760 skb_small_head_cache = kmem_cache_create_usercopy("skbuff_small_head", 4761 SKB_SMALL_HEAD_CACHE_SIZE, 4762 0, 4763 SLAB_HWCACHE_ALIGN | SLAB_PANIC, 4764 0, 4765 SKB_SMALL_HEAD_HEADROOM, 4766 NULL); 4767 skb_extensions_init(); 4768 } 4769 4770 static int 4771 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len, 4772 unsigned int recursion_level) 4773 { 4774 int start = skb_headlen(skb); 4775 int i, copy = start - offset; 4776 struct sk_buff *frag_iter; 4777 int elt = 0; 4778 4779 if (unlikely(recursion_level >= 24)) 4780 return -EMSGSIZE; 4781 4782 if (copy > 0) { 4783 if (copy > len) 4784 copy = len; 4785 sg_set_buf(sg, skb->data + offset, copy); 4786 elt++; 4787 if ((len -= copy) == 0) 4788 return elt; 4789 offset += copy; 4790 } 4791 4792 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 4793 int end; 4794 4795 WARN_ON(start > offset + len); 4796 4797 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]); 4798 if ((copy = end - offset) > 0) { 4799 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 4800 if (unlikely(elt && sg_is_last(&sg[elt - 1]))) 4801 return -EMSGSIZE; 4802 4803 if (copy > len) 4804 copy = len; 4805 sg_set_page(&sg[elt], skb_frag_page(frag), copy, 4806 skb_frag_off(frag) + offset - start); 4807 elt++; 4808 if (!(len -= copy)) 4809 return elt; 4810 offset += copy; 4811 } 4812 start = end; 4813 } 4814 4815 skb_walk_frags(skb, frag_iter) { 4816 int end, ret; 4817 4818 WARN_ON(start > offset + len); 4819 4820 end = start + frag_iter->len; 4821 if ((copy = end - offset) > 0) { 4822 if (unlikely(elt && sg_is_last(&sg[elt - 1]))) 4823 return -EMSGSIZE; 4824 4825 if (copy > len) 4826 copy = len; 4827 ret = __skb_to_sgvec(frag_iter, sg+elt, offset - start, 4828 copy, recursion_level + 1); 4829 if (unlikely(ret < 0)) 4830 return ret; 4831 elt += ret; 4832 if ((len -= copy) == 0) 4833 return elt; 4834 offset += copy; 4835 } 4836 start = end; 4837 } 4838 BUG_ON(len); 4839 return elt; 4840 } 4841 4842 /** 4843 * skb_to_sgvec - Fill a scatter-gather list from a socket buffer 4844 * @skb: Socket buffer containing the buffers to be mapped 4845 * @sg: The scatter-gather list to map into 4846 * @offset: The offset into the buffer's contents to start mapping 4847 * @len: Length of buffer space to be mapped 4848 * 4849 * Fill the specified scatter-gather list with mappings/pointers into a 4850 * region of the buffer space attached to a socket buffer. Returns either 4851 * the number of scatterlist items used, or -EMSGSIZE if the contents 4852 * could not fit. 4853 */ 4854 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len) 4855 { 4856 int nsg = __skb_to_sgvec(skb, sg, offset, len, 0); 4857 4858 if (nsg <= 0) 4859 return nsg; 4860 4861 sg_mark_end(&sg[nsg - 1]); 4862 4863 return nsg; 4864 } 4865 EXPORT_SYMBOL_GPL(skb_to_sgvec); 4866 4867 /* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given 4868 * sglist without mark the sg which contain last skb data as the end. 4869 * So the caller can mannipulate sg list as will when padding new data after 4870 * the first call without calling sg_unmark_end to expend sg list. 4871 * 4872 * Scenario to use skb_to_sgvec_nomark: 4873 * 1. sg_init_table 4874 * 2. skb_to_sgvec_nomark(payload1) 4875 * 3. skb_to_sgvec_nomark(payload2) 4876 * 4877 * This is equivalent to: 4878 * 1. sg_init_table 4879 * 2. skb_to_sgvec(payload1) 4880 * 3. sg_unmark_end 4881 * 4. skb_to_sgvec(payload2) 4882 * 4883 * When mapping mutilple payload conditionally, skb_to_sgvec_nomark 4884 * is more preferable. 4885 */ 4886 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg, 4887 int offset, int len) 4888 { 4889 return __skb_to_sgvec(skb, sg, offset, len, 0); 4890 } 4891 EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark); 4892 4893 4894 4895 /** 4896 * skb_cow_data - Check that a socket buffer's data buffers are writable 4897 * @skb: The socket buffer to check. 4898 * @tailbits: Amount of trailing space to be added 4899 * @trailer: Returned pointer to the skb where the @tailbits space begins 4900 * 4901 * Make sure that the data buffers attached to a socket buffer are 4902 * writable. If they are not, private copies are made of the data buffers 4903 * and the socket buffer is set to use these instead. 4904 * 4905 * If @tailbits is given, make sure that there is space to write @tailbits 4906 * bytes of data beyond current end of socket buffer. @trailer will be 4907 * set to point to the skb in which this space begins. 4908 * 4909 * The number of scatterlist elements required to completely map the 4910 * COW'd and extended socket buffer will be returned. 4911 */ 4912 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer) 4913 { 4914 int copyflag; 4915 int elt; 4916 struct sk_buff *skb1, **skb_p; 4917 4918 /* If skb is cloned or its head is paged, reallocate 4919 * head pulling out all the pages (pages are considered not writable 4920 * at the moment even if they are anonymous). 4921 */ 4922 if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) && 4923 !__pskb_pull_tail(skb, __skb_pagelen(skb))) 4924 return -ENOMEM; 4925 4926 /* Easy case. Most of packets will go this way. */ 4927 if (!skb_has_frag_list(skb)) { 4928 /* A little of trouble, not enough of space for trailer. 4929 * This should not happen, when stack is tuned to generate 4930 * good frames. OK, on miss we reallocate and reserve even more 4931 * space, 128 bytes is fair. */ 4932 4933 if (skb_tailroom(skb) < tailbits && 4934 pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC)) 4935 return -ENOMEM; 4936 4937 /* Voila! */ 4938 *trailer = skb; 4939 return 1; 4940 } 4941 4942 /* Misery. We are in troubles, going to mincer fragments... */ 4943 4944 elt = 1; 4945 skb_p = &skb_shinfo(skb)->frag_list; 4946 copyflag = 0; 4947 4948 while ((skb1 = *skb_p) != NULL) { 4949 int ntail = 0; 4950 4951 /* The fragment is partially pulled by someone, 4952 * this can happen on input. Copy it and everything 4953 * after it. */ 4954 4955 if (skb_shared(skb1)) 4956 copyflag = 1; 4957 4958 /* If the skb is the last, worry about trailer. */ 4959 4960 if (skb1->next == NULL && tailbits) { 4961 if (skb_shinfo(skb1)->nr_frags || 4962 skb_has_frag_list(skb1) || 4963 skb_tailroom(skb1) < tailbits) 4964 ntail = tailbits + 128; 4965 } 4966 4967 if (copyflag || 4968 skb_cloned(skb1) || 4969 ntail || 4970 skb_shinfo(skb1)->nr_frags || 4971 skb_has_frag_list(skb1)) { 4972 struct sk_buff *skb2; 4973 4974 /* Fuck, we are miserable poor guys... */ 4975 if (ntail == 0) 4976 skb2 = skb_copy(skb1, GFP_ATOMIC); 4977 else 4978 skb2 = skb_copy_expand(skb1, 4979 skb_headroom(skb1), 4980 ntail, 4981 GFP_ATOMIC); 4982 if (unlikely(skb2 == NULL)) 4983 return -ENOMEM; 4984 4985 if (skb1->sk) 4986 skb_set_owner_w(skb2, skb1->sk); 4987 4988 /* Looking around. Are we still alive? 4989 * OK, link new skb, drop old one */ 4990 4991 skb2->next = skb1->next; 4992 *skb_p = skb2; 4993 kfree_skb(skb1); 4994 skb1 = skb2; 4995 } 4996 elt++; 4997 *trailer = skb1; 4998 skb_p = &skb1->next; 4999 } 5000 5001 return elt; 5002 } 5003 EXPORT_SYMBOL_GPL(skb_cow_data); 5004 5005 static void sock_rmem_free(struct sk_buff *skb) 5006 { 5007 struct sock *sk = skb->sk; 5008 5009 atomic_sub(skb->truesize, &sk->sk_rmem_alloc); 5010 } 5011 5012 static void skb_set_err_queue(struct sk_buff *skb) 5013 { 5014 /* pkt_type of skbs received on local sockets is never PACKET_OUTGOING. 5015 * So, it is safe to (mis)use it to mark skbs on the error queue. 5016 */ 5017 skb->pkt_type = PACKET_OUTGOING; 5018 BUILD_BUG_ON(PACKET_OUTGOING == 0); 5019 } 5020 5021 /* 5022 * Note: We dont mem charge error packets (no sk_forward_alloc changes) 5023 */ 5024 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb) 5025 { 5026 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >= 5027 (unsigned int)READ_ONCE(sk->sk_rcvbuf)) 5028 return -ENOMEM; 5029 5030 skb_orphan(skb); 5031 skb->sk = sk; 5032 skb->destructor = sock_rmem_free; 5033 atomic_add(skb->truesize, &sk->sk_rmem_alloc); 5034 skb_set_err_queue(skb); 5035 5036 /* before exiting rcu section, make sure dst is refcounted */ 5037 skb_dst_force(skb); 5038 5039 skb_queue_tail(&sk->sk_error_queue, skb); 5040 if (!sock_flag(sk, SOCK_DEAD)) 5041 sk_error_report(sk); 5042 return 0; 5043 } 5044 EXPORT_SYMBOL(sock_queue_err_skb); 5045 5046 static bool is_icmp_err_skb(const struct sk_buff *skb) 5047 { 5048 return skb && (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP || 5049 SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP6); 5050 } 5051 5052 struct sk_buff *sock_dequeue_err_skb(struct sock *sk) 5053 { 5054 struct sk_buff_head *q = &sk->sk_error_queue; 5055 struct sk_buff *skb, *skb_next = NULL; 5056 bool icmp_next = false; 5057 unsigned long flags; 5058 5059 spin_lock_irqsave(&q->lock, flags); 5060 skb = __skb_dequeue(q); 5061 if (skb && (skb_next = skb_peek(q))) { 5062 icmp_next = is_icmp_err_skb(skb_next); 5063 if (icmp_next) 5064 sk->sk_err = SKB_EXT_ERR(skb_next)->ee.ee_errno; 5065 } 5066 spin_unlock_irqrestore(&q->lock, flags); 5067 5068 if (is_icmp_err_skb(skb) && !icmp_next) 5069 sk->sk_err = 0; 5070 5071 if (skb_next) 5072 sk_error_report(sk); 5073 5074 return skb; 5075 } 5076 EXPORT_SYMBOL(sock_dequeue_err_skb); 5077 5078 /** 5079 * skb_clone_sk - create clone of skb, and take reference to socket 5080 * @skb: the skb to clone 5081 * 5082 * This function creates a clone of a buffer that holds a reference on 5083 * sk_refcnt. Buffers created via this function are meant to be 5084 * returned using sock_queue_err_skb, or free via kfree_skb. 5085 * 5086 * When passing buffers allocated with this function to sock_queue_err_skb 5087 * it is necessary to wrap the call with sock_hold/sock_put in order to 5088 * prevent the socket from being released prior to being enqueued on 5089 * the sk_error_queue. 5090 */ 5091 struct sk_buff *skb_clone_sk(struct sk_buff *skb) 5092 { 5093 struct sock *sk = skb->sk; 5094 struct sk_buff *clone; 5095 5096 if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt)) 5097 return NULL; 5098 5099 clone = skb_clone(skb, GFP_ATOMIC); 5100 if (!clone) { 5101 sock_put(sk); 5102 return NULL; 5103 } 5104 5105 clone->sk = sk; 5106 clone->destructor = sock_efree; 5107 5108 return clone; 5109 } 5110 EXPORT_SYMBOL(skb_clone_sk); 5111 5112 static void __skb_complete_tx_timestamp(struct sk_buff *skb, 5113 struct sock *sk, 5114 int tstype, 5115 bool opt_stats) 5116 { 5117 struct sock_exterr_skb *serr; 5118 int err; 5119 5120 BUILD_BUG_ON(sizeof(struct sock_exterr_skb) > sizeof(skb->cb)); 5121 5122 serr = SKB_EXT_ERR(skb); 5123 memset(serr, 0, sizeof(*serr)); 5124 serr->ee.ee_errno = ENOMSG; 5125 serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING; 5126 serr->ee.ee_info = tstype; 5127 serr->opt_stats = opt_stats; 5128 serr->header.h4.iif = skb->dev ? skb->dev->ifindex : 0; 5129 if (sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID) { 5130 serr->ee.ee_data = skb_shinfo(skb)->tskey; 5131 if (sk_is_tcp(sk)) 5132 serr->ee.ee_data -= atomic_read(&sk->sk_tskey); 5133 } 5134 5135 err = sock_queue_err_skb(sk, skb); 5136 5137 if (err) 5138 kfree_skb(skb); 5139 } 5140 5141 static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly) 5142 { 5143 bool ret; 5144 5145 if (likely(READ_ONCE(sysctl_tstamp_allow_data) || tsonly)) 5146 return true; 5147 5148 read_lock_bh(&sk->sk_callback_lock); 5149 ret = sk->sk_socket && sk->sk_socket->file && 5150 file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW); 5151 read_unlock_bh(&sk->sk_callback_lock); 5152 return ret; 5153 } 5154 5155 void skb_complete_tx_timestamp(struct sk_buff *skb, 5156 struct skb_shared_hwtstamps *hwtstamps) 5157 { 5158 struct sock *sk = skb->sk; 5159 5160 if (!skb_may_tx_timestamp(sk, false)) 5161 goto err; 5162 5163 /* Take a reference to prevent skb_orphan() from freeing the socket, 5164 * but only if the socket refcount is not zero. 5165 */ 5166 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) { 5167 *skb_hwtstamps(skb) = *hwtstamps; 5168 __skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND, false); 5169 sock_put(sk); 5170 return; 5171 } 5172 5173 err: 5174 kfree_skb(skb); 5175 } 5176 EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp); 5177 5178 void __skb_tstamp_tx(struct sk_buff *orig_skb, 5179 const struct sk_buff *ack_skb, 5180 struct skb_shared_hwtstamps *hwtstamps, 5181 struct sock *sk, int tstype) 5182 { 5183 struct sk_buff *skb; 5184 bool tsonly, opt_stats = false; 5185 5186 if (!sk) 5187 return; 5188 5189 if (!hwtstamps && !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TX_SWHW) && 5190 skb_shinfo(orig_skb)->tx_flags & SKBTX_IN_PROGRESS) 5191 return; 5192 5193 tsonly = sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TSONLY; 5194 if (!skb_may_tx_timestamp(sk, tsonly)) 5195 return; 5196 5197 if (tsonly) { 5198 #ifdef CONFIG_INET 5199 if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_STATS) && 5200 sk_is_tcp(sk)) { 5201 skb = tcp_get_timestamping_opt_stats(sk, orig_skb, 5202 ack_skb); 5203 opt_stats = true; 5204 } else 5205 #endif 5206 skb = alloc_skb(0, GFP_ATOMIC); 5207 } else { 5208 skb = skb_clone(orig_skb, GFP_ATOMIC); 5209 5210 if (skb_orphan_frags_rx(skb, GFP_ATOMIC)) { 5211 kfree_skb(skb); 5212 return; 5213 } 5214 } 5215 if (!skb) 5216 return; 5217 5218 if (tsonly) { 5219 skb_shinfo(skb)->tx_flags |= skb_shinfo(orig_skb)->tx_flags & 5220 SKBTX_ANY_TSTAMP; 5221 skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey; 5222 } 5223 5224 if (hwtstamps) 5225 *skb_hwtstamps(skb) = *hwtstamps; 5226 else 5227 __net_timestamp(skb); 5228 5229 __skb_complete_tx_timestamp(skb, sk, tstype, opt_stats); 5230 } 5231 EXPORT_SYMBOL_GPL(__skb_tstamp_tx); 5232 5233 void skb_tstamp_tx(struct sk_buff *orig_skb, 5234 struct skb_shared_hwtstamps *hwtstamps) 5235 { 5236 return __skb_tstamp_tx(orig_skb, NULL, hwtstamps, orig_skb->sk, 5237 SCM_TSTAMP_SND); 5238 } 5239 EXPORT_SYMBOL_GPL(skb_tstamp_tx); 5240 5241 #ifdef CONFIG_WIRELESS 5242 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked) 5243 { 5244 struct sock *sk = skb->sk; 5245 struct sock_exterr_skb *serr; 5246 int err = 1; 5247 5248 skb->wifi_acked_valid = 1; 5249 skb->wifi_acked = acked; 5250 5251 serr = SKB_EXT_ERR(skb); 5252 memset(serr, 0, sizeof(*serr)); 5253 serr->ee.ee_errno = ENOMSG; 5254 serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS; 5255 5256 /* Take a reference to prevent skb_orphan() from freeing the socket, 5257 * but only if the socket refcount is not zero. 5258 */ 5259 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) { 5260 err = sock_queue_err_skb(sk, skb); 5261 sock_put(sk); 5262 } 5263 if (err) 5264 kfree_skb(skb); 5265 } 5266 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack); 5267 #endif /* CONFIG_WIRELESS */ 5268 5269 /** 5270 * skb_partial_csum_set - set up and verify partial csum values for packet 5271 * @skb: the skb to set 5272 * @start: the number of bytes after skb->data to start checksumming. 5273 * @off: the offset from start to place the checksum. 5274 * 5275 * For untrusted partially-checksummed packets, we need to make sure the values 5276 * for skb->csum_start and skb->csum_offset are valid so we don't oops. 5277 * 5278 * This function checks and sets those values and skb->ip_summed: if this 5279 * returns false you should drop the packet. 5280 */ 5281 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off) 5282 { 5283 u32 csum_end = (u32)start + (u32)off + sizeof(__sum16); 5284 u32 csum_start = skb_headroom(skb) + (u32)start; 5285 5286 if (unlikely(csum_start >= U16_MAX || csum_end > skb_headlen(skb))) { 5287 net_warn_ratelimited("bad partial csum: csum=%u/%u headroom=%u headlen=%u\n", 5288 start, off, skb_headroom(skb), skb_headlen(skb)); 5289 return false; 5290 } 5291 skb->ip_summed = CHECKSUM_PARTIAL; 5292 skb->csum_start = csum_start; 5293 skb->csum_offset = off; 5294 skb->transport_header = csum_start; 5295 return true; 5296 } 5297 EXPORT_SYMBOL_GPL(skb_partial_csum_set); 5298 5299 static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len, 5300 unsigned int max) 5301 { 5302 if (skb_headlen(skb) >= len) 5303 return 0; 5304 5305 /* If we need to pullup then pullup to the max, so we 5306 * won't need to do it again. 5307 */ 5308 if (max > skb->len) 5309 max = skb->len; 5310 5311 if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL) 5312 return -ENOMEM; 5313 5314 if (skb_headlen(skb) < len) 5315 return -EPROTO; 5316 5317 return 0; 5318 } 5319 5320 #define MAX_TCP_HDR_LEN (15 * 4) 5321 5322 static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb, 5323 typeof(IPPROTO_IP) proto, 5324 unsigned int off) 5325 { 5326 int err; 5327 5328 switch (proto) { 5329 case IPPROTO_TCP: 5330 err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr), 5331 off + MAX_TCP_HDR_LEN); 5332 if (!err && !skb_partial_csum_set(skb, off, 5333 offsetof(struct tcphdr, 5334 check))) 5335 err = -EPROTO; 5336 return err ? ERR_PTR(err) : &tcp_hdr(skb)->check; 5337 5338 case IPPROTO_UDP: 5339 err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr), 5340 off + sizeof(struct udphdr)); 5341 if (!err && !skb_partial_csum_set(skb, off, 5342 offsetof(struct udphdr, 5343 check))) 5344 err = -EPROTO; 5345 return err ? ERR_PTR(err) : &udp_hdr(skb)->check; 5346 } 5347 5348 return ERR_PTR(-EPROTO); 5349 } 5350 5351 /* This value should be large enough to cover a tagged ethernet header plus 5352 * maximally sized IP and TCP or UDP headers. 5353 */ 5354 #define MAX_IP_HDR_LEN 128 5355 5356 static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate) 5357 { 5358 unsigned int off; 5359 bool fragment; 5360 __sum16 *csum; 5361 int err; 5362 5363 fragment = false; 5364 5365 err = skb_maybe_pull_tail(skb, 5366 sizeof(struct iphdr), 5367 MAX_IP_HDR_LEN); 5368 if (err < 0) 5369 goto out; 5370 5371 if (ip_is_fragment(ip_hdr(skb))) 5372 fragment = true; 5373 5374 off = ip_hdrlen(skb); 5375 5376 err = -EPROTO; 5377 5378 if (fragment) 5379 goto out; 5380 5381 csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off); 5382 if (IS_ERR(csum)) 5383 return PTR_ERR(csum); 5384 5385 if (recalculate) 5386 *csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr, 5387 ip_hdr(skb)->daddr, 5388 skb->len - off, 5389 ip_hdr(skb)->protocol, 0); 5390 err = 0; 5391 5392 out: 5393 return err; 5394 } 5395 5396 /* This value should be large enough to cover a tagged ethernet header plus 5397 * an IPv6 header, all options, and a maximal TCP or UDP header. 5398 */ 5399 #define MAX_IPV6_HDR_LEN 256 5400 5401 #define OPT_HDR(type, skb, off) \ 5402 (type *)(skb_network_header(skb) + (off)) 5403 5404 static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate) 5405 { 5406 int err; 5407 u8 nexthdr; 5408 unsigned int off; 5409 unsigned int len; 5410 bool fragment; 5411 bool done; 5412 __sum16 *csum; 5413 5414 fragment = false; 5415 done = false; 5416 5417 off = sizeof(struct ipv6hdr); 5418 5419 err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN); 5420 if (err < 0) 5421 goto out; 5422 5423 nexthdr = ipv6_hdr(skb)->nexthdr; 5424 5425 len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len); 5426 while (off <= len && !done) { 5427 switch (nexthdr) { 5428 case IPPROTO_DSTOPTS: 5429 case IPPROTO_HOPOPTS: 5430 case IPPROTO_ROUTING: { 5431 struct ipv6_opt_hdr *hp; 5432 5433 err = skb_maybe_pull_tail(skb, 5434 off + 5435 sizeof(struct ipv6_opt_hdr), 5436 MAX_IPV6_HDR_LEN); 5437 if (err < 0) 5438 goto out; 5439 5440 hp = OPT_HDR(struct ipv6_opt_hdr, skb, off); 5441 nexthdr = hp->nexthdr; 5442 off += ipv6_optlen(hp); 5443 break; 5444 } 5445 case IPPROTO_AH: { 5446 struct ip_auth_hdr *hp; 5447 5448 err = skb_maybe_pull_tail(skb, 5449 off + 5450 sizeof(struct ip_auth_hdr), 5451 MAX_IPV6_HDR_LEN); 5452 if (err < 0) 5453 goto out; 5454 5455 hp = OPT_HDR(struct ip_auth_hdr, skb, off); 5456 nexthdr = hp->nexthdr; 5457 off += ipv6_authlen(hp); 5458 break; 5459 } 5460 case IPPROTO_FRAGMENT: { 5461 struct frag_hdr *hp; 5462 5463 err = skb_maybe_pull_tail(skb, 5464 off + 5465 sizeof(struct frag_hdr), 5466 MAX_IPV6_HDR_LEN); 5467 if (err < 0) 5468 goto out; 5469 5470 hp = OPT_HDR(struct frag_hdr, skb, off); 5471 5472 if (hp->frag_off & htons(IP6_OFFSET | IP6_MF)) 5473 fragment = true; 5474 5475 nexthdr = hp->nexthdr; 5476 off += sizeof(struct frag_hdr); 5477 break; 5478 } 5479 default: 5480 done = true; 5481 break; 5482 } 5483 } 5484 5485 err = -EPROTO; 5486 5487 if (!done || fragment) 5488 goto out; 5489 5490 csum = skb_checksum_setup_ip(skb, nexthdr, off); 5491 if (IS_ERR(csum)) 5492 return PTR_ERR(csum); 5493 5494 if (recalculate) 5495 *csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr, 5496 &ipv6_hdr(skb)->daddr, 5497 skb->len - off, nexthdr, 0); 5498 err = 0; 5499 5500 out: 5501 return err; 5502 } 5503 5504 /** 5505 * skb_checksum_setup - set up partial checksum offset 5506 * @skb: the skb to set up 5507 * @recalculate: if true the pseudo-header checksum will be recalculated 5508 */ 5509 int skb_checksum_setup(struct sk_buff *skb, bool recalculate) 5510 { 5511 int err; 5512 5513 switch (skb->protocol) { 5514 case htons(ETH_P_IP): 5515 err = skb_checksum_setup_ipv4(skb, recalculate); 5516 break; 5517 5518 case htons(ETH_P_IPV6): 5519 err = skb_checksum_setup_ipv6(skb, recalculate); 5520 break; 5521 5522 default: 5523 err = -EPROTO; 5524 break; 5525 } 5526 5527 return err; 5528 } 5529 EXPORT_SYMBOL(skb_checksum_setup); 5530 5531 /** 5532 * skb_checksum_maybe_trim - maybe trims the given skb 5533 * @skb: the skb to check 5534 * @transport_len: the data length beyond the network header 5535 * 5536 * Checks whether the given skb has data beyond the given transport length. 5537 * If so, returns a cloned skb trimmed to this transport length. 5538 * Otherwise returns the provided skb. Returns NULL in error cases 5539 * (e.g. transport_len exceeds skb length or out-of-memory). 5540 * 5541 * Caller needs to set the skb transport header and free any returned skb if it 5542 * differs from the provided skb. 5543 */ 5544 static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb, 5545 unsigned int transport_len) 5546 { 5547 struct sk_buff *skb_chk; 5548 unsigned int len = skb_transport_offset(skb) + transport_len; 5549 int ret; 5550 5551 if (skb->len < len) 5552 return NULL; 5553 else if (skb->len == len) 5554 return skb; 5555 5556 skb_chk = skb_clone(skb, GFP_ATOMIC); 5557 if (!skb_chk) 5558 return NULL; 5559 5560 ret = pskb_trim_rcsum(skb_chk, len); 5561 if (ret) { 5562 kfree_skb(skb_chk); 5563 return NULL; 5564 } 5565 5566 return skb_chk; 5567 } 5568 5569 /** 5570 * skb_checksum_trimmed - validate checksum of an skb 5571 * @skb: the skb to check 5572 * @transport_len: the data length beyond the network header 5573 * @skb_chkf: checksum function to use 5574 * 5575 * Applies the given checksum function skb_chkf to the provided skb. 5576 * Returns a checked and maybe trimmed skb. Returns NULL on error. 5577 * 5578 * If the skb has data beyond the given transport length, then a 5579 * trimmed & cloned skb is checked and returned. 5580 * 5581 * Caller needs to set the skb transport header and free any returned skb if it 5582 * differs from the provided skb. 5583 */ 5584 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb, 5585 unsigned int transport_len, 5586 __sum16(*skb_chkf)(struct sk_buff *skb)) 5587 { 5588 struct sk_buff *skb_chk; 5589 unsigned int offset = skb_transport_offset(skb); 5590 __sum16 ret; 5591 5592 skb_chk = skb_checksum_maybe_trim(skb, transport_len); 5593 if (!skb_chk) 5594 goto err; 5595 5596 if (!pskb_may_pull(skb_chk, offset)) 5597 goto err; 5598 5599 skb_pull_rcsum(skb_chk, offset); 5600 ret = skb_chkf(skb_chk); 5601 skb_push_rcsum(skb_chk, offset); 5602 5603 if (ret) 5604 goto err; 5605 5606 return skb_chk; 5607 5608 err: 5609 if (skb_chk && skb_chk != skb) 5610 kfree_skb(skb_chk); 5611 5612 return NULL; 5613 5614 } 5615 EXPORT_SYMBOL(skb_checksum_trimmed); 5616 5617 void __skb_warn_lro_forwarding(const struct sk_buff *skb) 5618 { 5619 net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n", 5620 skb->dev->name); 5621 } 5622 EXPORT_SYMBOL(__skb_warn_lro_forwarding); 5623 5624 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen) 5625 { 5626 if (head_stolen) { 5627 skb_release_head_state(skb); 5628 kmem_cache_free(skbuff_cache, skb); 5629 } else { 5630 __kfree_skb(skb); 5631 } 5632 } 5633 EXPORT_SYMBOL(kfree_skb_partial); 5634 5635 /** 5636 * skb_try_coalesce - try to merge skb to prior one 5637 * @to: prior buffer 5638 * @from: buffer to add 5639 * @fragstolen: pointer to boolean 5640 * @delta_truesize: how much more was allocated than was requested 5641 */ 5642 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from, 5643 bool *fragstolen, int *delta_truesize) 5644 { 5645 struct skb_shared_info *to_shinfo, *from_shinfo; 5646 int i, delta, len = from->len; 5647 5648 *fragstolen = false; 5649 5650 if (skb_cloned(to)) 5651 return false; 5652 5653 /* In general, avoid mixing page_pool and non-page_pool allocated 5654 * pages within the same SKB. Additionally avoid dealing with clones 5655 * with page_pool pages, in case the SKB is using page_pool fragment 5656 * references (PP_FLAG_PAGE_FRAG). Since we only take full page 5657 * references for cloned SKBs at the moment that would result in 5658 * inconsistent reference counts. 5659 * In theory we could take full references if @from is cloned and 5660 * !@to->pp_recycle but its tricky (due to potential race with 5661 * the clone disappearing) and rare, so not worth dealing with. 5662 */ 5663 if (to->pp_recycle != from->pp_recycle || 5664 (from->pp_recycle && skb_cloned(from))) 5665 return false; 5666 5667 if (len <= skb_tailroom(to)) { 5668 if (len) 5669 BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len)); 5670 *delta_truesize = 0; 5671 return true; 5672 } 5673 5674 to_shinfo = skb_shinfo(to); 5675 from_shinfo = skb_shinfo(from); 5676 if (to_shinfo->frag_list || from_shinfo->frag_list) 5677 return false; 5678 if (skb_zcopy(to) || skb_zcopy(from)) 5679 return false; 5680 5681 if (skb_headlen(from) != 0) { 5682 struct page *page; 5683 unsigned int offset; 5684 5685 if (to_shinfo->nr_frags + 5686 from_shinfo->nr_frags >= MAX_SKB_FRAGS) 5687 return false; 5688 5689 if (skb_head_is_locked(from)) 5690 return false; 5691 5692 delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff)); 5693 5694 page = virt_to_head_page(from->head); 5695 offset = from->data - (unsigned char *)page_address(page); 5696 5697 skb_fill_page_desc(to, to_shinfo->nr_frags, 5698 page, offset, skb_headlen(from)); 5699 *fragstolen = true; 5700 } else { 5701 if (to_shinfo->nr_frags + 5702 from_shinfo->nr_frags > MAX_SKB_FRAGS) 5703 return false; 5704 5705 delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from)); 5706 } 5707 5708 WARN_ON_ONCE(delta < len); 5709 5710 memcpy(to_shinfo->frags + to_shinfo->nr_frags, 5711 from_shinfo->frags, 5712 from_shinfo->nr_frags * sizeof(skb_frag_t)); 5713 to_shinfo->nr_frags += from_shinfo->nr_frags; 5714 5715 if (!skb_cloned(from)) 5716 from_shinfo->nr_frags = 0; 5717 5718 /* if the skb is not cloned this does nothing 5719 * since we set nr_frags to 0. 5720 */ 5721 for (i = 0; i < from_shinfo->nr_frags; i++) 5722 __skb_frag_ref(&from_shinfo->frags[i]); 5723 5724 to->truesize += delta; 5725 to->len += len; 5726 to->data_len += len; 5727 5728 *delta_truesize = delta; 5729 return true; 5730 } 5731 EXPORT_SYMBOL(skb_try_coalesce); 5732 5733 /** 5734 * skb_scrub_packet - scrub an skb 5735 * 5736 * @skb: buffer to clean 5737 * @xnet: packet is crossing netns 5738 * 5739 * skb_scrub_packet can be used after encapsulating or decapsulting a packet 5740 * into/from a tunnel. Some information have to be cleared during these 5741 * operations. 5742 * skb_scrub_packet can also be used to clean a skb before injecting it in 5743 * another namespace (@xnet == true). We have to clear all information in the 5744 * skb that could impact namespace isolation. 5745 */ 5746 void skb_scrub_packet(struct sk_buff *skb, bool xnet) 5747 { 5748 skb->pkt_type = PACKET_HOST; 5749 skb->skb_iif = 0; 5750 skb->ignore_df = 0; 5751 skb_dst_drop(skb); 5752 skb_ext_reset(skb); 5753 nf_reset_ct(skb); 5754 nf_reset_trace(skb); 5755 5756 #ifdef CONFIG_NET_SWITCHDEV 5757 skb->offload_fwd_mark = 0; 5758 skb->offload_l3_fwd_mark = 0; 5759 #endif 5760 5761 if (!xnet) 5762 return; 5763 5764 ipvs_reset(skb); 5765 skb->mark = 0; 5766 skb_clear_tstamp(skb); 5767 } 5768 EXPORT_SYMBOL_GPL(skb_scrub_packet); 5769 5770 static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb) 5771 { 5772 int mac_len, meta_len; 5773 void *meta; 5774 5775 if (skb_cow(skb, skb_headroom(skb)) < 0) { 5776 kfree_skb(skb); 5777 return NULL; 5778 } 5779 5780 mac_len = skb->data - skb_mac_header(skb); 5781 if (likely(mac_len > VLAN_HLEN + ETH_TLEN)) { 5782 memmove(skb_mac_header(skb) + VLAN_HLEN, skb_mac_header(skb), 5783 mac_len - VLAN_HLEN - ETH_TLEN); 5784 } 5785 5786 meta_len = skb_metadata_len(skb); 5787 if (meta_len) { 5788 meta = skb_metadata_end(skb) - meta_len; 5789 memmove(meta + VLAN_HLEN, meta, meta_len); 5790 } 5791 5792 skb->mac_header += VLAN_HLEN; 5793 return skb; 5794 } 5795 5796 struct sk_buff *skb_vlan_untag(struct sk_buff *skb) 5797 { 5798 struct vlan_hdr *vhdr; 5799 u16 vlan_tci; 5800 5801 if (unlikely(skb_vlan_tag_present(skb))) { 5802 /* vlan_tci is already set-up so leave this for another time */ 5803 return skb; 5804 } 5805 5806 skb = skb_share_check(skb, GFP_ATOMIC); 5807 if (unlikely(!skb)) 5808 goto err_free; 5809 /* We may access the two bytes after vlan_hdr in vlan_set_encap_proto(). */ 5810 if (unlikely(!pskb_may_pull(skb, VLAN_HLEN + sizeof(unsigned short)))) 5811 goto err_free; 5812 5813 vhdr = (struct vlan_hdr *)skb->data; 5814 vlan_tci = ntohs(vhdr->h_vlan_TCI); 5815 __vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci); 5816 5817 skb_pull_rcsum(skb, VLAN_HLEN); 5818 vlan_set_encap_proto(skb, vhdr); 5819 5820 skb = skb_reorder_vlan_header(skb); 5821 if (unlikely(!skb)) 5822 goto err_free; 5823 5824 skb_reset_network_header(skb); 5825 if (!skb_transport_header_was_set(skb)) 5826 skb_reset_transport_header(skb); 5827 skb_reset_mac_len(skb); 5828 5829 return skb; 5830 5831 err_free: 5832 kfree_skb(skb); 5833 return NULL; 5834 } 5835 EXPORT_SYMBOL(skb_vlan_untag); 5836 5837 int skb_ensure_writable(struct sk_buff *skb, unsigned int write_len) 5838 { 5839 if (!pskb_may_pull(skb, write_len)) 5840 return -ENOMEM; 5841 5842 if (!skb_cloned(skb) || skb_clone_writable(skb, write_len)) 5843 return 0; 5844 5845 return pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 5846 } 5847 EXPORT_SYMBOL(skb_ensure_writable); 5848 5849 /* remove VLAN header from packet and update csum accordingly. 5850 * expects a non skb_vlan_tag_present skb with a vlan tag payload 5851 */ 5852 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci) 5853 { 5854 int offset = skb->data - skb_mac_header(skb); 5855 int err; 5856 5857 if (WARN_ONCE(offset, 5858 "__skb_vlan_pop got skb with skb->data not at mac header (offset %d)\n", 5859 offset)) { 5860 return -EINVAL; 5861 } 5862 5863 err = skb_ensure_writable(skb, VLAN_ETH_HLEN); 5864 if (unlikely(err)) 5865 return err; 5866 5867 skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN); 5868 5869 vlan_remove_tag(skb, vlan_tci); 5870 5871 skb->mac_header += VLAN_HLEN; 5872 5873 if (skb_network_offset(skb) < ETH_HLEN) 5874 skb_set_network_header(skb, ETH_HLEN); 5875 5876 skb_reset_mac_len(skb); 5877 5878 return err; 5879 } 5880 EXPORT_SYMBOL(__skb_vlan_pop); 5881 5882 /* Pop a vlan tag either from hwaccel or from payload. 5883 * Expects skb->data at mac header. 5884 */ 5885 int skb_vlan_pop(struct sk_buff *skb) 5886 { 5887 u16 vlan_tci; 5888 __be16 vlan_proto; 5889 int err; 5890 5891 if (likely(skb_vlan_tag_present(skb))) { 5892 __vlan_hwaccel_clear_tag(skb); 5893 } else { 5894 if (unlikely(!eth_type_vlan(skb->protocol))) 5895 return 0; 5896 5897 err = __skb_vlan_pop(skb, &vlan_tci); 5898 if (err) 5899 return err; 5900 } 5901 /* move next vlan tag to hw accel tag */ 5902 if (likely(!eth_type_vlan(skb->protocol))) 5903 return 0; 5904 5905 vlan_proto = skb->protocol; 5906 err = __skb_vlan_pop(skb, &vlan_tci); 5907 if (unlikely(err)) 5908 return err; 5909 5910 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci); 5911 return 0; 5912 } 5913 EXPORT_SYMBOL(skb_vlan_pop); 5914 5915 /* Push a vlan tag either into hwaccel or into payload (if hwaccel tag present). 5916 * Expects skb->data at mac header. 5917 */ 5918 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci) 5919 { 5920 if (skb_vlan_tag_present(skb)) { 5921 int offset = skb->data - skb_mac_header(skb); 5922 int err; 5923 5924 if (WARN_ONCE(offset, 5925 "skb_vlan_push got skb with skb->data not at mac header (offset %d)\n", 5926 offset)) { 5927 return -EINVAL; 5928 } 5929 5930 err = __vlan_insert_tag(skb, skb->vlan_proto, 5931 skb_vlan_tag_get(skb)); 5932 if (err) 5933 return err; 5934 5935 skb->protocol = skb->vlan_proto; 5936 skb->mac_len += VLAN_HLEN; 5937 5938 skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN); 5939 } 5940 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci); 5941 return 0; 5942 } 5943 EXPORT_SYMBOL(skb_vlan_push); 5944 5945 /** 5946 * skb_eth_pop() - Drop the Ethernet header at the head of a packet 5947 * 5948 * @skb: Socket buffer to modify 5949 * 5950 * Drop the Ethernet header of @skb. 5951 * 5952 * Expects that skb->data points to the mac header and that no VLAN tags are 5953 * present. 5954 * 5955 * Returns 0 on success, -errno otherwise. 5956 */ 5957 int skb_eth_pop(struct sk_buff *skb) 5958 { 5959 if (!pskb_may_pull(skb, ETH_HLEN) || skb_vlan_tagged(skb) || 5960 skb_network_offset(skb) < ETH_HLEN) 5961 return -EPROTO; 5962 5963 skb_pull_rcsum(skb, ETH_HLEN); 5964 skb_reset_mac_header(skb); 5965 skb_reset_mac_len(skb); 5966 5967 return 0; 5968 } 5969 EXPORT_SYMBOL(skb_eth_pop); 5970 5971 /** 5972 * skb_eth_push() - Add a new Ethernet header at the head of a packet 5973 * 5974 * @skb: Socket buffer to modify 5975 * @dst: Destination MAC address of the new header 5976 * @src: Source MAC address of the new header 5977 * 5978 * Prepend @skb with a new Ethernet header. 5979 * 5980 * Expects that skb->data points to the mac header, which must be empty. 5981 * 5982 * Returns 0 on success, -errno otherwise. 5983 */ 5984 int skb_eth_push(struct sk_buff *skb, const unsigned char *dst, 5985 const unsigned char *src) 5986 { 5987 struct ethhdr *eth; 5988 int err; 5989 5990 if (skb_network_offset(skb) || skb_vlan_tag_present(skb)) 5991 return -EPROTO; 5992 5993 err = skb_cow_head(skb, sizeof(*eth)); 5994 if (err < 0) 5995 return err; 5996 5997 skb_push(skb, sizeof(*eth)); 5998 skb_reset_mac_header(skb); 5999 skb_reset_mac_len(skb); 6000 6001 eth = eth_hdr(skb); 6002 ether_addr_copy(eth->h_dest, dst); 6003 ether_addr_copy(eth->h_source, src); 6004 eth->h_proto = skb->protocol; 6005 6006 skb_postpush_rcsum(skb, eth, sizeof(*eth)); 6007 6008 return 0; 6009 } 6010 EXPORT_SYMBOL(skb_eth_push); 6011 6012 /* Update the ethertype of hdr and the skb csum value if required. */ 6013 static void skb_mod_eth_type(struct sk_buff *skb, struct ethhdr *hdr, 6014 __be16 ethertype) 6015 { 6016 if (skb->ip_summed == CHECKSUM_COMPLETE) { 6017 __be16 diff[] = { ~hdr->h_proto, ethertype }; 6018 6019 skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum); 6020 } 6021 6022 hdr->h_proto = ethertype; 6023 } 6024 6025 /** 6026 * skb_mpls_push() - push a new MPLS header after mac_len bytes from start of 6027 * the packet 6028 * 6029 * @skb: buffer 6030 * @mpls_lse: MPLS label stack entry to push 6031 * @mpls_proto: ethertype of the new MPLS header (expects 0x8847 or 0x8848) 6032 * @mac_len: length of the MAC header 6033 * @ethernet: flag to indicate if the resulting packet after skb_mpls_push is 6034 * ethernet 6035 * 6036 * Expects skb->data at mac header. 6037 * 6038 * Returns 0 on success, -errno otherwise. 6039 */ 6040 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto, 6041 int mac_len, bool ethernet) 6042 { 6043 struct mpls_shim_hdr *lse; 6044 int err; 6045 6046 if (unlikely(!eth_p_mpls(mpls_proto))) 6047 return -EINVAL; 6048 6049 /* Networking stack does not allow simultaneous Tunnel and MPLS GSO. */ 6050 if (skb->encapsulation) 6051 return -EINVAL; 6052 6053 err = skb_cow_head(skb, MPLS_HLEN); 6054 if (unlikely(err)) 6055 return err; 6056 6057 if (!skb->inner_protocol) { 6058 skb_set_inner_network_header(skb, skb_network_offset(skb)); 6059 skb_set_inner_protocol(skb, skb->protocol); 6060 } 6061 6062 skb_push(skb, MPLS_HLEN); 6063 memmove(skb_mac_header(skb) - MPLS_HLEN, skb_mac_header(skb), 6064 mac_len); 6065 skb_reset_mac_header(skb); 6066 skb_set_network_header(skb, mac_len); 6067 skb_reset_mac_len(skb); 6068 6069 lse = mpls_hdr(skb); 6070 lse->label_stack_entry = mpls_lse; 6071 skb_postpush_rcsum(skb, lse, MPLS_HLEN); 6072 6073 if (ethernet && mac_len >= ETH_HLEN) 6074 skb_mod_eth_type(skb, eth_hdr(skb), mpls_proto); 6075 skb->protocol = mpls_proto; 6076 6077 return 0; 6078 } 6079 EXPORT_SYMBOL_GPL(skb_mpls_push); 6080 6081 /** 6082 * skb_mpls_pop() - pop the outermost MPLS header 6083 * 6084 * @skb: buffer 6085 * @next_proto: ethertype of header after popped MPLS header 6086 * @mac_len: length of the MAC header 6087 * @ethernet: flag to indicate if the packet is ethernet 6088 * 6089 * Expects skb->data at mac header. 6090 * 6091 * Returns 0 on success, -errno otherwise. 6092 */ 6093 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len, 6094 bool ethernet) 6095 { 6096 int err; 6097 6098 if (unlikely(!eth_p_mpls(skb->protocol))) 6099 return 0; 6100 6101 err = skb_ensure_writable(skb, mac_len + MPLS_HLEN); 6102 if (unlikely(err)) 6103 return err; 6104 6105 skb_postpull_rcsum(skb, mpls_hdr(skb), MPLS_HLEN); 6106 memmove(skb_mac_header(skb) + MPLS_HLEN, skb_mac_header(skb), 6107 mac_len); 6108 6109 __skb_pull(skb, MPLS_HLEN); 6110 skb_reset_mac_header(skb); 6111 skb_set_network_header(skb, mac_len); 6112 6113 if (ethernet && mac_len >= ETH_HLEN) { 6114 struct ethhdr *hdr; 6115 6116 /* use mpls_hdr() to get ethertype to account for VLANs. */ 6117 hdr = (struct ethhdr *)((void *)mpls_hdr(skb) - ETH_HLEN); 6118 skb_mod_eth_type(skb, hdr, next_proto); 6119 } 6120 skb->protocol = next_proto; 6121 6122 return 0; 6123 } 6124 EXPORT_SYMBOL_GPL(skb_mpls_pop); 6125 6126 /** 6127 * skb_mpls_update_lse() - modify outermost MPLS header and update csum 6128 * 6129 * @skb: buffer 6130 * @mpls_lse: new MPLS label stack entry to update to 6131 * 6132 * Expects skb->data at mac header. 6133 * 6134 * Returns 0 on success, -errno otherwise. 6135 */ 6136 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse) 6137 { 6138 int err; 6139 6140 if (unlikely(!eth_p_mpls(skb->protocol))) 6141 return -EINVAL; 6142 6143 err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN); 6144 if (unlikely(err)) 6145 return err; 6146 6147 if (skb->ip_summed == CHECKSUM_COMPLETE) { 6148 __be32 diff[] = { ~mpls_hdr(skb)->label_stack_entry, mpls_lse }; 6149 6150 skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum); 6151 } 6152 6153 mpls_hdr(skb)->label_stack_entry = mpls_lse; 6154 6155 return 0; 6156 } 6157 EXPORT_SYMBOL_GPL(skb_mpls_update_lse); 6158 6159 /** 6160 * skb_mpls_dec_ttl() - decrement the TTL of the outermost MPLS header 6161 * 6162 * @skb: buffer 6163 * 6164 * Expects skb->data at mac header. 6165 * 6166 * Returns 0 on success, -errno otherwise. 6167 */ 6168 int skb_mpls_dec_ttl(struct sk_buff *skb) 6169 { 6170 u32 lse; 6171 u8 ttl; 6172 6173 if (unlikely(!eth_p_mpls(skb->protocol))) 6174 return -EINVAL; 6175 6176 if (!pskb_may_pull(skb, skb_network_offset(skb) + MPLS_HLEN)) 6177 return -ENOMEM; 6178 6179 lse = be32_to_cpu(mpls_hdr(skb)->label_stack_entry); 6180 ttl = (lse & MPLS_LS_TTL_MASK) >> MPLS_LS_TTL_SHIFT; 6181 if (!--ttl) 6182 return -EINVAL; 6183 6184 lse &= ~MPLS_LS_TTL_MASK; 6185 lse |= ttl << MPLS_LS_TTL_SHIFT; 6186 6187 return skb_mpls_update_lse(skb, cpu_to_be32(lse)); 6188 } 6189 EXPORT_SYMBOL_GPL(skb_mpls_dec_ttl); 6190 6191 /** 6192 * alloc_skb_with_frags - allocate skb with page frags 6193 * 6194 * @header_len: size of linear part 6195 * @data_len: needed length in frags 6196 * @max_page_order: max page order desired. 6197 * @errcode: pointer to error code if any 6198 * @gfp_mask: allocation mask 6199 * 6200 * This can be used to allocate a paged skb, given a maximal order for frags. 6201 */ 6202 struct sk_buff *alloc_skb_with_frags(unsigned long header_len, 6203 unsigned long data_len, 6204 int max_page_order, 6205 int *errcode, 6206 gfp_t gfp_mask) 6207 { 6208 int npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT; 6209 unsigned long chunk; 6210 struct sk_buff *skb; 6211 struct page *page; 6212 int i; 6213 6214 *errcode = -EMSGSIZE; 6215 /* Note this test could be relaxed, if we succeed to allocate 6216 * high order pages... 6217 */ 6218 if (npages > MAX_SKB_FRAGS) 6219 return NULL; 6220 6221 *errcode = -ENOBUFS; 6222 skb = alloc_skb(header_len, gfp_mask); 6223 if (!skb) 6224 return NULL; 6225 6226 skb->truesize += npages << PAGE_SHIFT; 6227 6228 for (i = 0; npages > 0; i++) { 6229 int order = max_page_order; 6230 6231 while (order) { 6232 if (npages >= 1 << order) { 6233 page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) | 6234 __GFP_COMP | 6235 __GFP_NOWARN, 6236 order); 6237 if (page) 6238 goto fill_page; 6239 /* Do not retry other high order allocations */ 6240 order = 1; 6241 max_page_order = 0; 6242 } 6243 order--; 6244 } 6245 page = alloc_page(gfp_mask); 6246 if (!page) 6247 goto failure; 6248 fill_page: 6249 chunk = min_t(unsigned long, data_len, 6250 PAGE_SIZE << order); 6251 skb_fill_page_desc(skb, i, page, 0, chunk); 6252 data_len -= chunk; 6253 npages -= 1 << order; 6254 } 6255 return skb; 6256 6257 failure: 6258 kfree_skb(skb); 6259 return NULL; 6260 } 6261 EXPORT_SYMBOL(alloc_skb_with_frags); 6262 6263 /* carve out the first off bytes from skb when off < headlen */ 6264 static int pskb_carve_inside_header(struct sk_buff *skb, const u32 off, 6265 const int headlen, gfp_t gfp_mask) 6266 { 6267 int i; 6268 unsigned int size = skb_end_offset(skb); 6269 int new_hlen = headlen - off; 6270 u8 *data; 6271 6272 if (skb_pfmemalloc(skb)) 6273 gfp_mask |= __GFP_MEMALLOC; 6274 6275 data = kmalloc_reserve(&size, gfp_mask, NUMA_NO_NODE, NULL); 6276 if (!data) 6277 return -ENOMEM; 6278 size = SKB_WITH_OVERHEAD(size); 6279 6280 /* Copy real data, and all frags */ 6281 skb_copy_from_linear_data_offset(skb, off, data, new_hlen); 6282 skb->len -= off; 6283 6284 memcpy((struct skb_shared_info *)(data + size), 6285 skb_shinfo(skb), 6286 offsetof(struct skb_shared_info, 6287 frags[skb_shinfo(skb)->nr_frags])); 6288 if (skb_cloned(skb)) { 6289 /* drop the old head gracefully */ 6290 if (skb_orphan_frags(skb, gfp_mask)) { 6291 skb_kfree_head(data, size); 6292 return -ENOMEM; 6293 } 6294 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 6295 skb_frag_ref(skb, i); 6296 if (skb_has_frag_list(skb)) 6297 skb_clone_fraglist(skb); 6298 skb_release_data(skb, SKB_CONSUMED, false); 6299 } else { 6300 /* we can reuse existing recount- all we did was 6301 * relocate values 6302 */ 6303 skb_free_head(skb, false); 6304 } 6305 6306 skb->head = data; 6307 skb->data = data; 6308 skb->head_frag = 0; 6309 skb_set_end_offset(skb, size); 6310 skb_set_tail_pointer(skb, skb_headlen(skb)); 6311 skb_headers_offset_update(skb, 0); 6312 skb->cloned = 0; 6313 skb->hdr_len = 0; 6314 skb->nohdr = 0; 6315 atomic_set(&skb_shinfo(skb)->dataref, 1); 6316 6317 return 0; 6318 } 6319 6320 static int pskb_carve(struct sk_buff *skb, const u32 off, gfp_t gfp); 6321 6322 /* carve out the first eat bytes from skb's frag_list. May recurse into 6323 * pskb_carve() 6324 */ 6325 static int pskb_carve_frag_list(struct sk_buff *skb, 6326 struct skb_shared_info *shinfo, int eat, 6327 gfp_t gfp_mask) 6328 { 6329 struct sk_buff *list = shinfo->frag_list; 6330 struct sk_buff *clone = NULL; 6331 struct sk_buff *insp = NULL; 6332 6333 do { 6334 if (!list) { 6335 pr_err("Not enough bytes to eat. Want %d\n", eat); 6336 return -EFAULT; 6337 } 6338 if (list->len <= eat) { 6339 /* Eaten as whole. */ 6340 eat -= list->len; 6341 list = list->next; 6342 insp = list; 6343 } else { 6344 /* Eaten partially. */ 6345 if (skb_shared(list)) { 6346 clone = skb_clone(list, gfp_mask); 6347 if (!clone) 6348 return -ENOMEM; 6349 insp = list->next; 6350 list = clone; 6351 } else { 6352 /* This may be pulled without problems. */ 6353 insp = list; 6354 } 6355 if (pskb_carve(list, eat, gfp_mask) < 0) { 6356 kfree_skb(clone); 6357 return -ENOMEM; 6358 } 6359 break; 6360 } 6361 } while (eat); 6362 6363 /* Free pulled out fragments. */ 6364 while ((list = shinfo->frag_list) != insp) { 6365 shinfo->frag_list = list->next; 6366 consume_skb(list); 6367 } 6368 /* And insert new clone at head. */ 6369 if (clone) { 6370 clone->next = list; 6371 shinfo->frag_list = clone; 6372 } 6373 return 0; 6374 } 6375 6376 /* carve off first len bytes from skb. Split line (off) is in the 6377 * non-linear part of skb 6378 */ 6379 static int pskb_carve_inside_nonlinear(struct sk_buff *skb, const u32 off, 6380 int pos, gfp_t gfp_mask) 6381 { 6382 int i, k = 0; 6383 unsigned int size = skb_end_offset(skb); 6384 u8 *data; 6385 const int nfrags = skb_shinfo(skb)->nr_frags; 6386 struct skb_shared_info *shinfo; 6387 6388 if (skb_pfmemalloc(skb)) 6389 gfp_mask |= __GFP_MEMALLOC; 6390 6391 data = kmalloc_reserve(&size, gfp_mask, NUMA_NO_NODE, NULL); 6392 if (!data) 6393 return -ENOMEM; 6394 size = SKB_WITH_OVERHEAD(size); 6395 6396 memcpy((struct skb_shared_info *)(data + size), 6397 skb_shinfo(skb), offsetof(struct skb_shared_info, frags[0])); 6398 if (skb_orphan_frags(skb, gfp_mask)) { 6399 skb_kfree_head(data, size); 6400 return -ENOMEM; 6401 } 6402 shinfo = (struct skb_shared_info *)(data + size); 6403 for (i = 0; i < nfrags; i++) { 6404 int fsize = skb_frag_size(&skb_shinfo(skb)->frags[i]); 6405 6406 if (pos + fsize > off) { 6407 shinfo->frags[k] = skb_shinfo(skb)->frags[i]; 6408 6409 if (pos < off) { 6410 /* Split frag. 6411 * We have two variants in this case: 6412 * 1. Move all the frag to the second 6413 * part, if it is possible. F.e. 6414 * this approach is mandatory for TUX, 6415 * where splitting is expensive. 6416 * 2. Split is accurately. We make this. 6417 */ 6418 skb_frag_off_add(&shinfo->frags[0], off - pos); 6419 skb_frag_size_sub(&shinfo->frags[0], off - pos); 6420 } 6421 skb_frag_ref(skb, i); 6422 k++; 6423 } 6424 pos += fsize; 6425 } 6426 shinfo->nr_frags = k; 6427 if (skb_has_frag_list(skb)) 6428 skb_clone_fraglist(skb); 6429 6430 /* split line is in frag list */ 6431 if (k == 0 && pskb_carve_frag_list(skb, shinfo, off - pos, gfp_mask)) { 6432 /* skb_frag_unref() is not needed here as shinfo->nr_frags = 0. */ 6433 if (skb_has_frag_list(skb)) 6434 kfree_skb_list(skb_shinfo(skb)->frag_list); 6435 skb_kfree_head(data, size); 6436 return -ENOMEM; 6437 } 6438 skb_release_data(skb, SKB_CONSUMED, false); 6439 6440 skb->head = data; 6441 skb->head_frag = 0; 6442 skb->data = data; 6443 skb_set_end_offset(skb, size); 6444 skb_reset_tail_pointer(skb); 6445 skb_headers_offset_update(skb, 0); 6446 skb->cloned = 0; 6447 skb->hdr_len = 0; 6448 skb->nohdr = 0; 6449 skb->len -= off; 6450 skb->data_len = skb->len; 6451 atomic_set(&skb_shinfo(skb)->dataref, 1); 6452 return 0; 6453 } 6454 6455 /* remove len bytes from the beginning of the skb */ 6456 static int pskb_carve(struct sk_buff *skb, const u32 len, gfp_t gfp) 6457 { 6458 int headlen = skb_headlen(skb); 6459 6460 if (len < headlen) 6461 return pskb_carve_inside_header(skb, len, headlen, gfp); 6462 else 6463 return pskb_carve_inside_nonlinear(skb, len, headlen, gfp); 6464 } 6465 6466 /* Extract to_copy bytes starting at off from skb, and return this in 6467 * a new skb 6468 */ 6469 struct sk_buff *pskb_extract(struct sk_buff *skb, int off, 6470 int to_copy, gfp_t gfp) 6471 { 6472 struct sk_buff *clone = skb_clone(skb, gfp); 6473 6474 if (!clone) 6475 return NULL; 6476 6477 if (pskb_carve(clone, off, gfp) < 0 || 6478 pskb_trim(clone, to_copy)) { 6479 kfree_skb(clone); 6480 return NULL; 6481 } 6482 return clone; 6483 } 6484 EXPORT_SYMBOL(pskb_extract); 6485 6486 /** 6487 * skb_condense - try to get rid of fragments/frag_list if possible 6488 * @skb: buffer 6489 * 6490 * Can be used to save memory before skb is added to a busy queue. 6491 * If packet has bytes in frags and enough tail room in skb->head, 6492 * pull all of them, so that we can free the frags right now and adjust 6493 * truesize. 6494 * Notes: 6495 * We do not reallocate skb->head thus can not fail. 6496 * Caller must re-evaluate skb->truesize if needed. 6497 */ 6498 void skb_condense(struct sk_buff *skb) 6499 { 6500 if (skb->data_len) { 6501 if (skb->data_len > skb->end - skb->tail || 6502 skb_cloned(skb)) 6503 return; 6504 6505 /* Nice, we can free page frag(s) right now */ 6506 __pskb_pull_tail(skb, skb->data_len); 6507 } 6508 /* At this point, skb->truesize might be over estimated, 6509 * because skb had a fragment, and fragments do not tell 6510 * their truesize. 6511 * When we pulled its content into skb->head, fragment 6512 * was freed, but __pskb_pull_tail() could not possibly 6513 * adjust skb->truesize, not knowing the frag truesize. 6514 */ 6515 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb)); 6516 } 6517 EXPORT_SYMBOL(skb_condense); 6518 6519 #ifdef CONFIG_SKB_EXTENSIONS 6520 static void *skb_ext_get_ptr(struct skb_ext *ext, enum skb_ext_id id) 6521 { 6522 return (void *)ext + (ext->offset[id] * SKB_EXT_ALIGN_VALUE); 6523 } 6524 6525 /** 6526 * __skb_ext_alloc - allocate a new skb extensions storage 6527 * 6528 * @flags: See kmalloc(). 6529 * 6530 * Returns the newly allocated pointer. The pointer can later attached to a 6531 * skb via __skb_ext_set(). 6532 * Note: caller must handle the skb_ext as an opaque data. 6533 */ 6534 struct skb_ext *__skb_ext_alloc(gfp_t flags) 6535 { 6536 struct skb_ext *new = kmem_cache_alloc(skbuff_ext_cache, flags); 6537 6538 if (new) { 6539 memset(new->offset, 0, sizeof(new->offset)); 6540 refcount_set(&new->refcnt, 1); 6541 } 6542 6543 return new; 6544 } 6545 6546 static struct skb_ext *skb_ext_maybe_cow(struct skb_ext *old, 6547 unsigned int old_active) 6548 { 6549 struct skb_ext *new; 6550 6551 if (refcount_read(&old->refcnt) == 1) 6552 return old; 6553 6554 new = kmem_cache_alloc(skbuff_ext_cache, GFP_ATOMIC); 6555 if (!new) 6556 return NULL; 6557 6558 memcpy(new, old, old->chunks * SKB_EXT_ALIGN_VALUE); 6559 refcount_set(&new->refcnt, 1); 6560 6561 #ifdef CONFIG_XFRM 6562 if (old_active & (1 << SKB_EXT_SEC_PATH)) { 6563 struct sec_path *sp = skb_ext_get_ptr(old, SKB_EXT_SEC_PATH); 6564 unsigned int i; 6565 6566 for (i = 0; i < sp->len; i++) 6567 xfrm_state_hold(sp->xvec[i]); 6568 } 6569 #endif 6570 __skb_ext_put(old); 6571 return new; 6572 } 6573 6574 /** 6575 * __skb_ext_set - attach the specified extension storage to this skb 6576 * @skb: buffer 6577 * @id: extension id 6578 * @ext: extension storage previously allocated via __skb_ext_alloc() 6579 * 6580 * Existing extensions, if any, are cleared. 6581 * 6582 * Returns the pointer to the extension. 6583 */ 6584 void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id, 6585 struct skb_ext *ext) 6586 { 6587 unsigned int newlen, newoff = SKB_EXT_CHUNKSIZEOF(*ext); 6588 6589 skb_ext_put(skb); 6590 newlen = newoff + skb_ext_type_len[id]; 6591 ext->chunks = newlen; 6592 ext->offset[id] = newoff; 6593 skb->extensions = ext; 6594 skb->active_extensions = 1 << id; 6595 return skb_ext_get_ptr(ext, id); 6596 } 6597 6598 /** 6599 * skb_ext_add - allocate space for given extension, COW if needed 6600 * @skb: buffer 6601 * @id: extension to allocate space for 6602 * 6603 * Allocates enough space for the given extension. 6604 * If the extension is already present, a pointer to that extension 6605 * is returned. 6606 * 6607 * If the skb was cloned, COW applies and the returned memory can be 6608 * modified without changing the extension space of clones buffers. 6609 * 6610 * Returns pointer to the extension or NULL on allocation failure. 6611 */ 6612 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id) 6613 { 6614 struct skb_ext *new, *old = NULL; 6615 unsigned int newlen, newoff; 6616 6617 if (skb->active_extensions) { 6618 old = skb->extensions; 6619 6620 new = skb_ext_maybe_cow(old, skb->active_extensions); 6621 if (!new) 6622 return NULL; 6623 6624 if (__skb_ext_exist(new, id)) 6625 goto set_active; 6626 6627 newoff = new->chunks; 6628 } else { 6629 newoff = SKB_EXT_CHUNKSIZEOF(*new); 6630 6631 new = __skb_ext_alloc(GFP_ATOMIC); 6632 if (!new) 6633 return NULL; 6634 } 6635 6636 newlen = newoff + skb_ext_type_len[id]; 6637 new->chunks = newlen; 6638 new->offset[id] = newoff; 6639 set_active: 6640 skb->slow_gro = 1; 6641 skb->extensions = new; 6642 skb->active_extensions |= 1 << id; 6643 return skb_ext_get_ptr(new, id); 6644 } 6645 EXPORT_SYMBOL(skb_ext_add); 6646 6647 #ifdef CONFIG_XFRM 6648 static void skb_ext_put_sp(struct sec_path *sp) 6649 { 6650 unsigned int i; 6651 6652 for (i = 0; i < sp->len; i++) 6653 xfrm_state_put(sp->xvec[i]); 6654 } 6655 #endif 6656 6657 #ifdef CONFIG_MCTP_FLOWS 6658 static void skb_ext_put_mctp(struct mctp_flow *flow) 6659 { 6660 if (flow->key) 6661 mctp_key_unref(flow->key); 6662 } 6663 #endif 6664 6665 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id) 6666 { 6667 struct skb_ext *ext = skb->extensions; 6668 6669 skb->active_extensions &= ~(1 << id); 6670 if (skb->active_extensions == 0) { 6671 skb->extensions = NULL; 6672 __skb_ext_put(ext); 6673 #ifdef CONFIG_XFRM 6674 } else if (id == SKB_EXT_SEC_PATH && 6675 refcount_read(&ext->refcnt) == 1) { 6676 struct sec_path *sp = skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH); 6677 6678 skb_ext_put_sp(sp); 6679 sp->len = 0; 6680 #endif 6681 } 6682 } 6683 EXPORT_SYMBOL(__skb_ext_del); 6684 6685 void __skb_ext_put(struct skb_ext *ext) 6686 { 6687 /* If this is last clone, nothing can increment 6688 * it after check passes. Avoids one atomic op. 6689 */ 6690 if (refcount_read(&ext->refcnt) == 1) 6691 goto free_now; 6692 6693 if (!refcount_dec_and_test(&ext->refcnt)) 6694 return; 6695 free_now: 6696 #ifdef CONFIG_XFRM 6697 if (__skb_ext_exist(ext, SKB_EXT_SEC_PATH)) 6698 skb_ext_put_sp(skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH)); 6699 #endif 6700 #ifdef CONFIG_MCTP_FLOWS 6701 if (__skb_ext_exist(ext, SKB_EXT_MCTP)) 6702 skb_ext_put_mctp(skb_ext_get_ptr(ext, SKB_EXT_MCTP)); 6703 #endif 6704 6705 kmem_cache_free(skbuff_ext_cache, ext); 6706 } 6707 EXPORT_SYMBOL(__skb_ext_put); 6708 #endif /* CONFIG_SKB_EXTENSIONS */ 6709 6710 /** 6711 * skb_attempt_defer_free - queue skb for remote freeing 6712 * @skb: buffer 6713 * 6714 * Put @skb in a per-cpu list, using the cpu which 6715 * allocated the skb/pages to reduce false sharing 6716 * and memory zone spinlock contention. 6717 */ 6718 void skb_attempt_defer_free(struct sk_buff *skb) 6719 { 6720 int cpu = skb->alloc_cpu; 6721 struct softnet_data *sd; 6722 unsigned int defer_max; 6723 bool kick; 6724 6725 if (WARN_ON_ONCE(cpu >= nr_cpu_ids) || 6726 !cpu_online(cpu) || 6727 cpu == raw_smp_processor_id()) { 6728 nodefer: __kfree_skb(skb); 6729 return; 6730 } 6731 6732 DEBUG_NET_WARN_ON_ONCE(skb_dst(skb)); 6733 DEBUG_NET_WARN_ON_ONCE(skb->destructor); 6734 6735 sd = &per_cpu(softnet_data, cpu); 6736 defer_max = READ_ONCE(sysctl_skb_defer_max); 6737 if (READ_ONCE(sd->defer_count) >= defer_max) 6738 goto nodefer; 6739 6740 spin_lock_bh(&sd->defer_lock); 6741 /* Send an IPI every time queue reaches half capacity. */ 6742 kick = sd->defer_count == (defer_max >> 1); 6743 /* Paired with the READ_ONCE() few lines above */ 6744 WRITE_ONCE(sd->defer_count, sd->defer_count + 1); 6745 6746 skb->next = sd->defer_list; 6747 /* Paired with READ_ONCE() in skb_defer_free_flush() */ 6748 WRITE_ONCE(sd->defer_list, skb); 6749 spin_unlock_bh(&sd->defer_lock); 6750 6751 /* Make sure to trigger NET_RX_SOFTIRQ on the remote CPU 6752 * if we are unlucky enough (this seems very unlikely). 6753 */ 6754 if (unlikely(kick) && !cmpxchg(&sd->defer_ipi_scheduled, 0, 1)) 6755 smp_call_function_single_async(cpu, &sd->defer_csd); 6756 } 6757 6758 static void skb_splice_csum_page(struct sk_buff *skb, struct page *page, 6759 size_t offset, size_t len) 6760 { 6761 const char *kaddr; 6762 __wsum csum; 6763 6764 kaddr = kmap_local_page(page); 6765 csum = csum_partial(kaddr + offset, len, 0); 6766 kunmap_local(kaddr); 6767 skb->csum = csum_block_add(skb->csum, csum, skb->len); 6768 } 6769 6770 /** 6771 * skb_splice_from_iter - Splice (or copy) pages to skbuff 6772 * @skb: The buffer to add pages to 6773 * @iter: Iterator representing the pages to be added 6774 * @maxsize: Maximum amount of pages to be added 6775 * @gfp: Allocation flags 6776 * 6777 * This is a common helper function for supporting MSG_SPLICE_PAGES. It 6778 * extracts pages from an iterator and adds them to the socket buffer if 6779 * possible, copying them to fragments if not possible (such as if they're slab 6780 * pages). 6781 * 6782 * Returns the amount of data spliced/copied or -EMSGSIZE if there's 6783 * insufficient space in the buffer to transfer anything. 6784 */ 6785 ssize_t skb_splice_from_iter(struct sk_buff *skb, struct iov_iter *iter, 6786 ssize_t maxsize, gfp_t gfp) 6787 { 6788 size_t frag_limit = READ_ONCE(sysctl_max_skb_frags); 6789 struct page *pages[8], **ppages = pages; 6790 ssize_t spliced = 0, ret = 0; 6791 unsigned int i; 6792 6793 while (iter->count > 0) { 6794 ssize_t space, nr, len; 6795 size_t off; 6796 6797 ret = -EMSGSIZE; 6798 space = frag_limit - skb_shinfo(skb)->nr_frags; 6799 if (space < 0) 6800 break; 6801 6802 /* We might be able to coalesce without increasing nr_frags */ 6803 nr = clamp_t(size_t, space, 1, ARRAY_SIZE(pages)); 6804 6805 len = iov_iter_extract_pages(iter, &ppages, maxsize, nr, 0, &off); 6806 if (len <= 0) { 6807 ret = len ?: -EIO; 6808 break; 6809 } 6810 6811 i = 0; 6812 do { 6813 struct page *page = pages[i++]; 6814 size_t part = min_t(size_t, PAGE_SIZE - off, len); 6815 6816 ret = -EIO; 6817 if (WARN_ON_ONCE(!sendpage_ok(page))) 6818 goto out; 6819 6820 ret = skb_append_pagefrags(skb, page, off, part, 6821 frag_limit); 6822 if (ret < 0) { 6823 iov_iter_revert(iter, len); 6824 goto out; 6825 } 6826 6827 if (skb->ip_summed == CHECKSUM_NONE) 6828 skb_splice_csum_page(skb, page, off, part); 6829 6830 off = 0; 6831 spliced += part; 6832 maxsize -= part; 6833 len -= part; 6834 } while (len > 0); 6835 6836 if (maxsize <= 0) 6837 break; 6838 } 6839 6840 out: 6841 skb_len_add(skb, spliced); 6842 return spliced ?: ret; 6843 } 6844 EXPORT_SYMBOL(skb_splice_from_iter); 6845