1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Routines having to do with the 'struct sk_buff' memory handlers. 4 * 5 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk> 6 * Florian La Roche <rzsfl@rz.uni-sb.de> 7 * 8 * Fixes: 9 * Alan Cox : Fixed the worst of the load 10 * balancer bugs. 11 * Dave Platt : Interrupt stacking fix. 12 * Richard Kooijman : Timestamp fixes. 13 * Alan Cox : Changed buffer format. 14 * Alan Cox : destructor hook for AF_UNIX etc. 15 * Linus Torvalds : Better skb_clone. 16 * Alan Cox : Added skb_copy. 17 * Alan Cox : Added all the changed routines Linus 18 * only put in the headers 19 * Ray VanTassle : Fixed --skb->lock in free 20 * Alan Cox : skb_copy copy arp field 21 * Andi Kleen : slabified it. 22 * Robert Olsson : Removed skb_head_pool 23 * 24 * NOTE: 25 * The __skb_ routines should be called with interrupts 26 * disabled, or you better be *real* sure that the operation is atomic 27 * with respect to whatever list is being frobbed (e.g. via lock_sock() 28 * or via disabling bottom half handlers, etc). 29 */ 30 31 /* 32 * The functions in this file will not compile correctly with gcc 2.4.x 33 */ 34 35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 36 37 #include <linux/module.h> 38 #include <linux/types.h> 39 #include <linux/kernel.h> 40 #include <linux/mm.h> 41 #include <linux/interrupt.h> 42 #include <linux/in.h> 43 #include <linux/inet.h> 44 #include <linux/slab.h> 45 #include <linux/tcp.h> 46 #include <linux/udp.h> 47 #include <linux/sctp.h> 48 #include <linux/netdevice.h> 49 #ifdef CONFIG_NET_CLS_ACT 50 #include <net/pkt_sched.h> 51 #endif 52 #include <linux/string.h> 53 #include <linux/skbuff.h> 54 #include <linux/splice.h> 55 #include <linux/cache.h> 56 #include <linux/rtnetlink.h> 57 #include <linux/init.h> 58 #include <linux/scatterlist.h> 59 #include <linux/errqueue.h> 60 #include <linux/prefetch.h> 61 #include <linux/if_vlan.h> 62 #include <linux/mpls.h> 63 64 #include <net/protocol.h> 65 #include <net/dst.h> 66 #include <net/sock.h> 67 #include <net/checksum.h> 68 #include <net/ip6_checksum.h> 69 #include <net/xfrm.h> 70 #include <net/mpls.h> 71 #include <net/mptcp.h> 72 73 #include <linux/uaccess.h> 74 #include <trace/events/skb.h> 75 #include <linux/highmem.h> 76 #include <linux/capability.h> 77 #include <linux/user_namespace.h> 78 #include <linux/indirect_call_wrapper.h> 79 80 #include "datagram.h" 81 82 struct kmem_cache *skbuff_head_cache __ro_after_init; 83 static struct kmem_cache *skbuff_fclone_cache __ro_after_init; 84 #ifdef CONFIG_SKB_EXTENSIONS 85 static struct kmem_cache *skbuff_ext_cache __ro_after_init; 86 #endif 87 int sysctl_max_skb_frags __read_mostly = MAX_SKB_FRAGS; 88 EXPORT_SYMBOL(sysctl_max_skb_frags); 89 90 /** 91 * skb_panic - private function for out-of-line support 92 * @skb: buffer 93 * @sz: size 94 * @addr: address 95 * @msg: skb_over_panic or skb_under_panic 96 * 97 * Out-of-line support for skb_put() and skb_push(). 98 * Called via the wrapper skb_over_panic() or skb_under_panic(). 99 * Keep out of line to prevent kernel bloat. 100 * __builtin_return_address is not used because it is not always reliable. 101 */ 102 static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr, 103 const char msg[]) 104 { 105 pr_emerg("%s: text:%px len:%d put:%d head:%px data:%px tail:%#lx end:%#lx dev:%s\n", 106 msg, addr, skb->len, sz, skb->head, skb->data, 107 (unsigned long)skb->tail, (unsigned long)skb->end, 108 skb->dev ? skb->dev->name : "<NULL>"); 109 BUG(); 110 } 111 112 static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr) 113 { 114 skb_panic(skb, sz, addr, __func__); 115 } 116 117 static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr) 118 { 119 skb_panic(skb, sz, addr, __func__); 120 } 121 122 /* 123 * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells 124 * the caller if emergency pfmemalloc reserves are being used. If it is and 125 * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves 126 * may be used. Otherwise, the packet data may be discarded until enough 127 * memory is free 128 */ 129 #define kmalloc_reserve(size, gfp, node, pfmemalloc) \ 130 __kmalloc_reserve(size, gfp, node, _RET_IP_, pfmemalloc) 131 132 static void *__kmalloc_reserve(size_t size, gfp_t flags, int node, 133 unsigned long ip, bool *pfmemalloc) 134 { 135 void *obj; 136 bool ret_pfmemalloc = false; 137 138 /* 139 * Try a regular allocation, when that fails and we're not entitled 140 * to the reserves, fail. 141 */ 142 obj = kmalloc_node_track_caller(size, 143 flags | __GFP_NOMEMALLOC | __GFP_NOWARN, 144 node); 145 if (obj || !(gfp_pfmemalloc_allowed(flags))) 146 goto out; 147 148 /* Try again but now we are using pfmemalloc reserves */ 149 ret_pfmemalloc = true; 150 obj = kmalloc_node_track_caller(size, flags, node); 151 152 out: 153 if (pfmemalloc) 154 *pfmemalloc = ret_pfmemalloc; 155 156 return obj; 157 } 158 159 /* Allocate a new skbuff. We do this ourselves so we can fill in a few 160 * 'private' fields and also do memory statistics to find all the 161 * [BEEP] leaks. 162 * 163 */ 164 165 /** 166 * __alloc_skb - allocate a network buffer 167 * @size: size to allocate 168 * @gfp_mask: allocation mask 169 * @flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache 170 * instead of head cache and allocate a cloned (child) skb. 171 * If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for 172 * allocations in case the data is required for writeback 173 * @node: numa node to allocate memory on 174 * 175 * Allocate a new &sk_buff. The returned buffer has no headroom and a 176 * tail room of at least size bytes. The object has a reference count 177 * of one. The return is the buffer. On a failure the return is %NULL. 178 * 179 * Buffers may only be allocated from interrupts using a @gfp_mask of 180 * %GFP_ATOMIC. 181 */ 182 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask, 183 int flags, int node) 184 { 185 struct kmem_cache *cache; 186 struct skb_shared_info *shinfo; 187 struct sk_buff *skb; 188 u8 *data; 189 bool pfmemalloc; 190 191 cache = (flags & SKB_ALLOC_FCLONE) 192 ? skbuff_fclone_cache : skbuff_head_cache; 193 194 if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX)) 195 gfp_mask |= __GFP_MEMALLOC; 196 197 /* Get the HEAD */ 198 skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node); 199 if (!skb) 200 goto out; 201 prefetchw(skb); 202 203 /* We do our best to align skb_shared_info on a separate cache 204 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives 205 * aligned memory blocks, unless SLUB/SLAB debug is enabled. 206 * Both skb->head and skb_shared_info are cache line aligned. 207 */ 208 size = SKB_DATA_ALIGN(size); 209 size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 210 data = kmalloc_reserve(size, gfp_mask, node, &pfmemalloc); 211 if (!data) 212 goto nodata; 213 /* kmalloc(size) might give us more room than requested. 214 * Put skb_shared_info exactly at the end of allocated zone, 215 * to allow max possible filling before reallocation. 216 */ 217 size = SKB_WITH_OVERHEAD(ksize(data)); 218 prefetchw(data + size); 219 220 /* 221 * Only clear those fields we need to clear, not those that we will 222 * actually initialise below. Hence, don't put any more fields after 223 * the tail pointer in struct sk_buff! 224 */ 225 memset(skb, 0, offsetof(struct sk_buff, tail)); 226 /* Account for allocated memory : skb + skb->head */ 227 skb->truesize = SKB_TRUESIZE(size); 228 skb->pfmemalloc = pfmemalloc; 229 refcount_set(&skb->users, 1); 230 skb->head = data; 231 skb->data = data; 232 skb_reset_tail_pointer(skb); 233 skb->end = skb->tail + size; 234 skb->mac_header = (typeof(skb->mac_header))~0U; 235 skb->transport_header = (typeof(skb->transport_header))~0U; 236 237 /* make sure we initialize shinfo sequentially */ 238 shinfo = skb_shinfo(skb); 239 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref)); 240 atomic_set(&shinfo->dataref, 1); 241 242 if (flags & SKB_ALLOC_FCLONE) { 243 struct sk_buff_fclones *fclones; 244 245 fclones = container_of(skb, struct sk_buff_fclones, skb1); 246 247 skb->fclone = SKB_FCLONE_ORIG; 248 refcount_set(&fclones->fclone_ref, 1); 249 250 fclones->skb2.fclone = SKB_FCLONE_CLONE; 251 } 252 253 skb_set_kcov_handle(skb, kcov_common_handle()); 254 255 out: 256 return skb; 257 nodata: 258 kmem_cache_free(cache, skb); 259 skb = NULL; 260 goto out; 261 } 262 EXPORT_SYMBOL(__alloc_skb); 263 264 /* Caller must provide SKB that is memset cleared */ 265 static struct sk_buff *__build_skb_around(struct sk_buff *skb, 266 void *data, unsigned int frag_size) 267 { 268 struct skb_shared_info *shinfo; 269 unsigned int size = frag_size ? : ksize(data); 270 271 size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 272 273 /* Assumes caller memset cleared SKB */ 274 skb->truesize = SKB_TRUESIZE(size); 275 refcount_set(&skb->users, 1); 276 skb->head = data; 277 skb->data = data; 278 skb_reset_tail_pointer(skb); 279 skb->end = skb->tail + size; 280 skb->mac_header = (typeof(skb->mac_header))~0U; 281 skb->transport_header = (typeof(skb->transport_header))~0U; 282 283 /* make sure we initialize shinfo sequentially */ 284 shinfo = skb_shinfo(skb); 285 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref)); 286 atomic_set(&shinfo->dataref, 1); 287 288 skb_set_kcov_handle(skb, kcov_common_handle()); 289 290 return skb; 291 } 292 293 /** 294 * __build_skb - build a network buffer 295 * @data: data buffer provided by caller 296 * @frag_size: size of data, or 0 if head was kmalloced 297 * 298 * Allocate a new &sk_buff. Caller provides space holding head and 299 * skb_shared_info. @data must have been allocated by kmalloc() only if 300 * @frag_size is 0, otherwise data should come from the page allocator 301 * or vmalloc() 302 * The return is the new skb buffer. 303 * On a failure the return is %NULL, and @data is not freed. 304 * Notes : 305 * Before IO, driver allocates only data buffer where NIC put incoming frame 306 * Driver should add room at head (NET_SKB_PAD) and 307 * MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info)) 308 * After IO, driver calls build_skb(), to allocate sk_buff and populate it 309 * before giving packet to stack. 310 * RX rings only contains data buffers, not full skbs. 311 */ 312 struct sk_buff *__build_skb(void *data, unsigned int frag_size) 313 { 314 struct sk_buff *skb; 315 316 skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC); 317 if (unlikely(!skb)) 318 return NULL; 319 320 memset(skb, 0, offsetof(struct sk_buff, tail)); 321 322 return __build_skb_around(skb, data, frag_size); 323 } 324 325 /* build_skb() is wrapper over __build_skb(), that specifically 326 * takes care of skb->head and skb->pfmemalloc 327 * This means that if @frag_size is not zero, then @data must be backed 328 * by a page fragment, not kmalloc() or vmalloc() 329 */ 330 struct sk_buff *build_skb(void *data, unsigned int frag_size) 331 { 332 struct sk_buff *skb = __build_skb(data, frag_size); 333 334 if (skb && frag_size) { 335 skb->head_frag = 1; 336 if (page_is_pfmemalloc(virt_to_head_page(data))) 337 skb->pfmemalloc = 1; 338 } 339 return skb; 340 } 341 EXPORT_SYMBOL(build_skb); 342 343 /** 344 * build_skb_around - build a network buffer around provided skb 345 * @skb: sk_buff provide by caller, must be memset cleared 346 * @data: data buffer provided by caller 347 * @frag_size: size of data, or 0 if head was kmalloced 348 */ 349 struct sk_buff *build_skb_around(struct sk_buff *skb, 350 void *data, unsigned int frag_size) 351 { 352 if (unlikely(!skb)) 353 return NULL; 354 355 skb = __build_skb_around(skb, data, frag_size); 356 357 if (skb && frag_size) { 358 skb->head_frag = 1; 359 if (page_is_pfmemalloc(virt_to_head_page(data))) 360 skb->pfmemalloc = 1; 361 } 362 return skb; 363 } 364 EXPORT_SYMBOL(build_skb_around); 365 366 #define NAPI_SKB_CACHE_SIZE 64 367 368 struct napi_alloc_cache { 369 struct page_frag_cache page; 370 unsigned int skb_count; 371 void *skb_cache[NAPI_SKB_CACHE_SIZE]; 372 }; 373 374 static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache); 375 static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache); 376 377 static void *__napi_alloc_frag(unsigned int fragsz, gfp_t gfp_mask) 378 { 379 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 380 381 return page_frag_alloc(&nc->page, fragsz, gfp_mask); 382 } 383 384 void *napi_alloc_frag(unsigned int fragsz) 385 { 386 fragsz = SKB_DATA_ALIGN(fragsz); 387 388 return __napi_alloc_frag(fragsz, GFP_ATOMIC); 389 } 390 EXPORT_SYMBOL(napi_alloc_frag); 391 392 /** 393 * netdev_alloc_frag - allocate a page fragment 394 * @fragsz: fragment size 395 * 396 * Allocates a frag from a page for receive buffer. 397 * Uses GFP_ATOMIC allocations. 398 */ 399 void *netdev_alloc_frag(unsigned int fragsz) 400 { 401 struct page_frag_cache *nc; 402 void *data; 403 404 fragsz = SKB_DATA_ALIGN(fragsz); 405 if (in_irq() || irqs_disabled()) { 406 nc = this_cpu_ptr(&netdev_alloc_cache); 407 data = page_frag_alloc(nc, fragsz, GFP_ATOMIC); 408 } else { 409 local_bh_disable(); 410 data = __napi_alloc_frag(fragsz, GFP_ATOMIC); 411 local_bh_enable(); 412 } 413 return data; 414 } 415 EXPORT_SYMBOL(netdev_alloc_frag); 416 417 /** 418 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device 419 * @dev: network device to receive on 420 * @len: length to allocate 421 * @gfp_mask: get_free_pages mask, passed to alloc_skb 422 * 423 * Allocate a new &sk_buff and assign it a usage count of one. The 424 * buffer has NET_SKB_PAD headroom built in. Users should allocate 425 * the headroom they think they need without accounting for the 426 * built in space. The built in space is used for optimisations. 427 * 428 * %NULL is returned if there is no free memory. 429 */ 430 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len, 431 gfp_t gfp_mask) 432 { 433 struct page_frag_cache *nc; 434 struct sk_buff *skb; 435 bool pfmemalloc; 436 void *data; 437 438 len += NET_SKB_PAD; 439 440 /* If requested length is either too small or too big, 441 * we use kmalloc() for skb->head allocation. 442 */ 443 if (len <= SKB_WITH_OVERHEAD(1024) || 444 len > SKB_WITH_OVERHEAD(PAGE_SIZE) || 445 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) { 446 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE); 447 if (!skb) 448 goto skb_fail; 449 goto skb_success; 450 } 451 452 len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 453 len = SKB_DATA_ALIGN(len); 454 455 if (sk_memalloc_socks()) 456 gfp_mask |= __GFP_MEMALLOC; 457 458 if (in_irq() || irqs_disabled()) { 459 nc = this_cpu_ptr(&netdev_alloc_cache); 460 data = page_frag_alloc(nc, len, gfp_mask); 461 pfmemalloc = nc->pfmemalloc; 462 } else { 463 local_bh_disable(); 464 nc = this_cpu_ptr(&napi_alloc_cache.page); 465 data = page_frag_alloc(nc, len, gfp_mask); 466 pfmemalloc = nc->pfmemalloc; 467 local_bh_enable(); 468 } 469 470 if (unlikely(!data)) 471 return NULL; 472 473 skb = __build_skb(data, len); 474 if (unlikely(!skb)) { 475 skb_free_frag(data); 476 return NULL; 477 } 478 479 if (pfmemalloc) 480 skb->pfmemalloc = 1; 481 skb->head_frag = 1; 482 483 skb_success: 484 skb_reserve(skb, NET_SKB_PAD); 485 skb->dev = dev; 486 487 skb_fail: 488 return skb; 489 } 490 EXPORT_SYMBOL(__netdev_alloc_skb); 491 492 /** 493 * __napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance 494 * @napi: napi instance this buffer was allocated for 495 * @len: length to allocate 496 * @gfp_mask: get_free_pages mask, passed to alloc_skb and alloc_pages 497 * 498 * Allocate a new sk_buff for use in NAPI receive. This buffer will 499 * attempt to allocate the head from a special reserved region used 500 * only for NAPI Rx allocation. By doing this we can save several 501 * CPU cycles by avoiding having to disable and re-enable IRQs. 502 * 503 * %NULL is returned if there is no free memory. 504 */ 505 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, unsigned int len, 506 gfp_t gfp_mask) 507 { 508 struct napi_alloc_cache *nc; 509 struct sk_buff *skb; 510 void *data; 511 512 len += NET_SKB_PAD + NET_IP_ALIGN; 513 514 /* If requested length is either too small or too big, 515 * we use kmalloc() for skb->head allocation. 516 */ 517 if (len <= SKB_WITH_OVERHEAD(1024) || 518 len > SKB_WITH_OVERHEAD(PAGE_SIZE) || 519 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) { 520 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE); 521 if (!skb) 522 goto skb_fail; 523 goto skb_success; 524 } 525 526 nc = this_cpu_ptr(&napi_alloc_cache); 527 len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 528 len = SKB_DATA_ALIGN(len); 529 530 if (sk_memalloc_socks()) 531 gfp_mask |= __GFP_MEMALLOC; 532 533 data = page_frag_alloc(&nc->page, len, gfp_mask); 534 if (unlikely(!data)) 535 return NULL; 536 537 skb = __build_skb(data, len); 538 if (unlikely(!skb)) { 539 skb_free_frag(data); 540 return NULL; 541 } 542 543 if (nc->page.pfmemalloc) 544 skb->pfmemalloc = 1; 545 skb->head_frag = 1; 546 547 skb_success: 548 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN); 549 skb->dev = napi->dev; 550 551 skb_fail: 552 return skb; 553 } 554 EXPORT_SYMBOL(__napi_alloc_skb); 555 556 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off, 557 int size, unsigned int truesize) 558 { 559 skb_fill_page_desc(skb, i, page, off, size); 560 skb->len += size; 561 skb->data_len += size; 562 skb->truesize += truesize; 563 } 564 EXPORT_SYMBOL(skb_add_rx_frag); 565 566 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size, 567 unsigned int truesize) 568 { 569 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 570 571 skb_frag_size_add(frag, size); 572 skb->len += size; 573 skb->data_len += size; 574 skb->truesize += truesize; 575 } 576 EXPORT_SYMBOL(skb_coalesce_rx_frag); 577 578 static void skb_drop_list(struct sk_buff **listp) 579 { 580 kfree_skb_list(*listp); 581 *listp = NULL; 582 } 583 584 static inline void skb_drop_fraglist(struct sk_buff *skb) 585 { 586 skb_drop_list(&skb_shinfo(skb)->frag_list); 587 } 588 589 static void skb_clone_fraglist(struct sk_buff *skb) 590 { 591 struct sk_buff *list; 592 593 skb_walk_frags(skb, list) 594 skb_get(list); 595 } 596 597 static void skb_free_head(struct sk_buff *skb) 598 { 599 unsigned char *head = skb->head; 600 601 if (skb->head_frag) 602 skb_free_frag(head); 603 else 604 kfree(head); 605 } 606 607 static void skb_release_data(struct sk_buff *skb) 608 { 609 struct skb_shared_info *shinfo = skb_shinfo(skb); 610 int i; 611 612 if (skb->cloned && 613 atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1, 614 &shinfo->dataref)) 615 return; 616 617 skb_zcopy_clear(skb, true); 618 619 for (i = 0; i < shinfo->nr_frags; i++) 620 __skb_frag_unref(&shinfo->frags[i]); 621 622 if (shinfo->frag_list) 623 kfree_skb_list(shinfo->frag_list); 624 625 skb_free_head(skb); 626 } 627 628 /* 629 * Free an skbuff by memory without cleaning the state. 630 */ 631 static void kfree_skbmem(struct sk_buff *skb) 632 { 633 struct sk_buff_fclones *fclones; 634 635 switch (skb->fclone) { 636 case SKB_FCLONE_UNAVAILABLE: 637 kmem_cache_free(skbuff_head_cache, skb); 638 return; 639 640 case SKB_FCLONE_ORIG: 641 fclones = container_of(skb, struct sk_buff_fclones, skb1); 642 643 /* We usually free the clone (TX completion) before original skb 644 * This test would have no chance to be true for the clone, 645 * while here, branch prediction will be good. 646 */ 647 if (refcount_read(&fclones->fclone_ref) == 1) 648 goto fastpath; 649 break; 650 651 default: /* SKB_FCLONE_CLONE */ 652 fclones = container_of(skb, struct sk_buff_fclones, skb2); 653 break; 654 } 655 if (!refcount_dec_and_test(&fclones->fclone_ref)) 656 return; 657 fastpath: 658 kmem_cache_free(skbuff_fclone_cache, fclones); 659 } 660 661 void skb_release_head_state(struct sk_buff *skb) 662 { 663 skb_dst_drop(skb); 664 if (skb->destructor) { 665 WARN_ON(in_irq()); 666 skb->destructor(skb); 667 } 668 #if IS_ENABLED(CONFIG_NF_CONNTRACK) 669 nf_conntrack_put(skb_nfct(skb)); 670 #endif 671 skb_ext_put(skb); 672 } 673 674 /* Free everything but the sk_buff shell. */ 675 static void skb_release_all(struct sk_buff *skb) 676 { 677 skb_release_head_state(skb); 678 if (likely(skb->head)) 679 skb_release_data(skb); 680 } 681 682 /** 683 * __kfree_skb - private function 684 * @skb: buffer 685 * 686 * Free an sk_buff. Release anything attached to the buffer. 687 * Clean the state. This is an internal helper function. Users should 688 * always call kfree_skb 689 */ 690 691 void __kfree_skb(struct sk_buff *skb) 692 { 693 skb_release_all(skb); 694 kfree_skbmem(skb); 695 } 696 EXPORT_SYMBOL(__kfree_skb); 697 698 /** 699 * kfree_skb - free an sk_buff 700 * @skb: buffer to free 701 * 702 * Drop a reference to the buffer and free it if the usage count has 703 * hit zero. 704 */ 705 void kfree_skb(struct sk_buff *skb) 706 { 707 if (!skb_unref(skb)) 708 return; 709 710 trace_kfree_skb(skb, __builtin_return_address(0)); 711 __kfree_skb(skb); 712 } 713 EXPORT_SYMBOL(kfree_skb); 714 715 void kfree_skb_list(struct sk_buff *segs) 716 { 717 while (segs) { 718 struct sk_buff *next = segs->next; 719 720 kfree_skb(segs); 721 segs = next; 722 } 723 } 724 EXPORT_SYMBOL(kfree_skb_list); 725 726 /* Dump skb information and contents. 727 * 728 * Must only be called from net_ratelimit()-ed paths. 729 * 730 * Dumps whole packets if full_pkt, only headers otherwise. 731 */ 732 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt) 733 { 734 struct skb_shared_info *sh = skb_shinfo(skb); 735 struct net_device *dev = skb->dev; 736 struct sock *sk = skb->sk; 737 struct sk_buff *list_skb; 738 bool has_mac, has_trans; 739 int headroom, tailroom; 740 int i, len, seg_len; 741 742 if (full_pkt) 743 len = skb->len; 744 else 745 len = min_t(int, skb->len, MAX_HEADER + 128); 746 747 headroom = skb_headroom(skb); 748 tailroom = skb_tailroom(skb); 749 750 has_mac = skb_mac_header_was_set(skb); 751 has_trans = skb_transport_header_was_set(skb); 752 753 printk("%sskb len=%u headroom=%u headlen=%u tailroom=%u\n" 754 "mac=(%d,%d) net=(%d,%d) trans=%d\n" 755 "shinfo(txflags=%u nr_frags=%u gso(size=%hu type=%u segs=%hu))\n" 756 "csum(0x%x ip_summed=%u complete_sw=%u valid=%u level=%u)\n" 757 "hash(0x%x sw=%u l4=%u) proto=0x%04x pkttype=%u iif=%d\n", 758 level, skb->len, headroom, skb_headlen(skb), tailroom, 759 has_mac ? skb->mac_header : -1, 760 has_mac ? skb_mac_header_len(skb) : -1, 761 skb->network_header, 762 has_trans ? skb_network_header_len(skb) : -1, 763 has_trans ? skb->transport_header : -1, 764 sh->tx_flags, sh->nr_frags, 765 sh->gso_size, sh->gso_type, sh->gso_segs, 766 skb->csum, skb->ip_summed, skb->csum_complete_sw, 767 skb->csum_valid, skb->csum_level, 768 skb->hash, skb->sw_hash, skb->l4_hash, 769 ntohs(skb->protocol), skb->pkt_type, skb->skb_iif); 770 771 if (dev) 772 printk("%sdev name=%s feat=0x%pNF\n", 773 level, dev->name, &dev->features); 774 if (sk) 775 printk("%ssk family=%hu type=%u proto=%u\n", 776 level, sk->sk_family, sk->sk_type, sk->sk_protocol); 777 778 if (full_pkt && headroom) 779 print_hex_dump(level, "skb headroom: ", DUMP_PREFIX_OFFSET, 780 16, 1, skb->head, headroom, false); 781 782 seg_len = min_t(int, skb_headlen(skb), len); 783 if (seg_len) 784 print_hex_dump(level, "skb linear: ", DUMP_PREFIX_OFFSET, 785 16, 1, skb->data, seg_len, false); 786 len -= seg_len; 787 788 if (full_pkt && tailroom) 789 print_hex_dump(level, "skb tailroom: ", DUMP_PREFIX_OFFSET, 790 16, 1, skb_tail_pointer(skb), tailroom, false); 791 792 for (i = 0; len && i < skb_shinfo(skb)->nr_frags; i++) { 793 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 794 u32 p_off, p_len, copied; 795 struct page *p; 796 u8 *vaddr; 797 798 skb_frag_foreach_page(frag, skb_frag_off(frag), 799 skb_frag_size(frag), p, p_off, p_len, 800 copied) { 801 seg_len = min_t(int, p_len, len); 802 vaddr = kmap_atomic(p); 803 print_hex_dump(level, "skb frag: ", 804 DUMP_PREFIX_OFFSET, 805 16, 1, vaddr + p_off, seg_len, false); 806 kunmap_atomic(vaddr); 807 len -= seg_len; 808 if (!len) 809 break; 810 } 811 } 812 813 if (full_pkt && skb_has_frag_list(skb)) { 814 printk("skb fraglist:\n"); 815 skb_walk_frags(skb, list_skb) 816 skb_dump(level, list_skb, true); 817 } 818 } 819 EXPORT_SYMBOL(skb_dump); 820 821 /** 822 * skb_tx_error - report an sk_buff xmit error 823 * @skb: buffer that triggered an error 824 * 825 * Report xmit error if a device callback is tracking this skb. 826 * skb must be freed afterwards. 827 */ 828 void skb_tx_error(struct sk_buff *skb) 829 { 830 skb_zcopy_clear(skb, true); 831 } 832 EXPORT_SYMBOL(skb_tx_error); 833 834 #ifdef CONFIG_TRACEPOINTS 835 /** 836 * consume_skb - free an skbuff 837 * @skb: buffer to free 838 * 839 * Drop a ref to the buffer and free it if the usage count has hit zero 840 * Functions identically to kfree_skb, but kfree_skb assumes that the frame 841 * is being dropped after a failure and notes that 842 */ 843 void consume_skb(struct sk_buff *skb) 844 { 845 if (!skb_unref(skb)) 846 return; 847 848 trace_consume_skb(skb); 849 __kfree_skb(skb); 850 } 851 EXPORT_SYMBOL(consume_skb); 852 #endif 853 854 /** 855 * __consume_stateless_skb - free an skbuff, assuming it is stateless 856 * @skb: buffer to free 857 * 858 * Alike consume_skb(), but this variant assumes that this is the last 859 * skb reference and all the head states have been already dropped 860 */ 861 void __consume_stateless_skb(struct sk_buff *skb) 862 { 863 trace_consume_skb(skb); 864 skb_release_data(skb); 865 kfree_skbmem(skb); 866 } 867 868 void __kfree_skb_flush(void) 869 { 870 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 871 872 /* flush skb_cache if containing objects */ 873 if (nc->skb_count) { 874 kmem_cache_free_bulk(skbuff_head_cache, nc->skb_count, 875 nc->skb_cache); 876 nc->skb_count = 0; 877 } 878 } 879 880 static inline void _kfree_skb_defer(struct sk_buff *skb) 881 { 882 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 883 884 /* drop skb->head and call any destructors for packet */ 885 skb_release_all(skb); 886 887 /* record skb to CPU local list */ 888 nc->skb_cache[nc->skb_count++] = skb; 889 890 #ifdef CONFIG_SLUB 891 /* SLUB writes into objects when freeing */ 892 prefetchw(skb); 893 #endif 894 895 /* flush skb_cache if it is filled */ 896 if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) { 897 kmem_cache_free_bulk(skbuff_head_cache, NAPI_SKB_CACHE_SIZE, 898 nc->skb_cache); 899 nc->skb_count = 0; 900 } 901 } 902 void __kfree_skb_defer(struct sk_buff *skb) 903 { 904 _kfree_skb_defer(skb); 905 } 906 907 void napi_consume_skb(struct sk_buff *skb, int budget) 908 { 909 /* Zero budget indicate non-NAPI context called us, like netpoll */ 910 if (unlikely(!budget)) { 911 dev_consume_skb_any(skb); 912 return; 913 } 914 915 lockdep_assert_in_softirq(); 916 917 if (!skb_unref(skb)) 918 return; 919 920 /* if reaching here SKB is ready to free */ 921 trace_consume_skb(skb); 922 923 /* if SKB is a clone, don't handle this case */ 924 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) { 925 __kfree_skb(skb); 926 return; 927 } 928 929 _kfree_skb_defer(skb); 930 } 931 EXPORT_SYMBOL(napi_consume_skb); 932 933 /* Make sure a field is enclosed inside headers_start/headers_end section */ 934 #define CHECK_SKB_FIELD(field) \ 935 BUILD_BUG_ON(offsetof(struct sk_buff, field) < \ 936 offsetof(struct sk_buff, headers_start)); \ 937 BUILD_BUG_ON(offsetof(struct sk_buff, field) > \ 938 offsetof(struct sk_buff, headers_end)); \ 939 940 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old) 941 { 942 new->tstamp = old->tstamp; 943 /* We do not copy old->sk */ 944 new->dev = old->dev; 945 memcpy(new->cb, old->cb, sizeof(old->cb)); 946 skb_dst_copy(new, old); 947 __skb_ext_copy(new, old); 948 __nf_copy(new, old, false); 949 950 /* Note : this field could be in headers_start/headers_end section 951 * It is not yet because we do not want to have a 16 bit hole 952 */ 953 new->queue_mapping = old->queue_mapping; 954 955 memcpy(&new->headers_start, &old->headers_start, 956 offsetof(struct sk_buff, headers_end) - 957 offsetof(struct sk_buff, headers_start)); 958 CHECK_SKB_FIELD(protocol); 959 CHECK_SKB_FIELD(csum); 960 CHECK_SKB_FIELD(hash); 961 CHECK_SKB_FIELD(priority); 962 CHECK_SKB_FIELD(skb_iif); 963 CHECK_SKB_FIELD(vlan_proto); 964 CHECK_SKB_FIELD(vlan_tci); 965 CHECK_SKB_FIELD(transport_header); 966 CHECK_SKB_FIELD(network_header); 967 CHECK_SKB_FIELD(mac_header); 968 CHECK_SKB_FIELD(inner_protocol); 969 CHECK_SKB_FIELD(inner_transport_header); 970 CHECK_SKB_FIELD(inner_network_header); 971 CHECK_SKB_FIELD(inner_mac_header); 972 CHECK_SKB_FIELD(mark); 973 #ifdef CONFIG_NETWORK_SECMARK 974 CHECK_SKB_FIELD(secmark); 975 #endif 976 #ifdef CONFIG_NET_RX_BUSY_POLL 977 CHECK_SKB_FIELD(napi_id); 978 #endif 979 #ifdef CONFIG_XPS 980 CHECK_SKB_FIELD(sender_cpu); 981 #endif 982 #ifdef CONFIG_NET_SCHED 983 CHECK_SKB_FIELD(tc_index); 984 #endif 985 986 } 987 988 /* 989 * You should not add any new code to this function. Add it to 990 * __copy_skb_header above instead. 991 */ 992 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb) 993 { 994 #define C(x) n->x = skb->x 995 996 n->next = n->prev = NULL; 997 n->sk = NULL; 998 __copy_skb_header(n, skb); 999 1000 C(len); 1001 C(data_len); 1002 C(mac_len); 1003 n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len; 1004 n->cloned = 1; 1005 n->nohdr = 0; 1006 n->peeked = 0; 1007 C(pfmemalloc); 1008 n->destructor = NULL; 1009 C(tail); 1010 C(end); 1011 C(head); 1012 C(head_frag); 1013 C(data); 1014 C(truesize); 1015 refcount_set(&n->users, 1); 1016 1017 atomic_inc(&(skb_shinfo(skb)->dataref)); 1018 skb->cloned = 1; 1019 1020 return n; 1021 #undef C 1022 } 1023 1024 /** 1025 * alloc_skb_for_msg() - allocate sk_buff to wrap frag list forming a msg 1026 * @first: first sk_buff of the msg 1027 */ 1028 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first) 1029 { 1030 struct sk_buff *n; 1031 1032 n = alloc_skb(0, GFP_ATOMIC); 1033 if (!n) 1034 return NULL; 1035 1036 n->len = first->len; 1037 n->data_len = first->len; 1038 n->truesize = first->truesize; 1039 1040 skb_shinfo(n)->frag_list = first; 1041 1042 __copy_skb_header(n, first); 1043 n->destructor = NULL; 1044 1045 return n; 1046 } 1047 EXPORT_SYMBOL_GPL(alloc_skb_for_msg); 1048 1049 /** 1050 * skb_morph - morph one skb into another 1051 * @dst: the skb to receive the contents 1052 * @src: the skb to supply the contents 1053 * 1054 * This is identical to skb_clone except that the target skb is 1055 * supplied by the user. 1056 * 1057 * The target skb is returned upon exit. 1058 */ 1059 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src) 1060 { 1061 skb_release_all(dst); 1062 return __skb_clone(dst, src); 1063 } 1064 EXPORT_SYMBOL_GPL(skb_morph); 1065 1066 int mm_account_pinned_pages(struct mmpin *mmp, size_t size) 1067 { 1068 unsigned long max_pg, num_pg, new_pg, old_pg; 1069 struct user_struct *user; 1070 1071 if (capable(CAP_IPC_LOCK) || !size) 1072 return 0; 1073 1074 num_pg = (size >> PAGE_SHIFT) + 2; /* worst case */ 1075 max_pg = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT; 1076 user = mmp->user ? : current_user(); 1077 1078 do { 1079 old_pg = atomic_long_read(&user->locked_vm); 1080 new_pg = old_pg + num_pg; 1081 if (new_pg > max_pg) 1082 return -ENOBUFS; 1083 } while (atomic_long_cmpxchg(&user->locked_vm, old_pg, new_pg) != 1084 old_pg); 1085 1086 if (!mmp->user) { 1087 mmp->user = get_uid(user); 1088 mmp->num_pg = num_pg; 1089 } else { 1090 mmp->num_pg += num_pg; 1091 } 1092 1093 return 0; 1094 } 1095 EXPORT_SYMBOL_GPL(mm_account_pinned_pages); 1096 1097 void mm_unaccount_pinned_pages(struct mmpin *mmp) 1098 { 1099 if (mmp->user) { 1100 atomic_long_sub(mmp->num_pg, &mmp->user->locked_vm); 1101 free_uid(mmp->user); 1102 } 1103 } 1104 EXPORT_SYMBOL_GPL(mm_unaccount_pinned_pages); 1105 1106 struct ubuf_info *msg_zerocopy_alloc(struct sock *sk, size_t size) 1107 { 1108 struct ubuf_info *uarg; 1109 struct sk_buff *skb; 1110 1111 WARN_ON_ONCE(!in_task()); 1112 1113 skb = sock_omalloc(sk, 0, GFP_KERNEL); 1114 if (!skb) 1115 return NULL; 1116 1117 BUILD_BUG_ON(sizeof(*uarg) > sizeof(skb->cb)); 1118 uarg = (void *)skb->cb; 1119 uarg->mmp.user = NULL; 1120 1121 if (mm_account_pinned_pages(&uarg->mmp, size)) { 1122 kfree_skb(skb); 1123 return NULL; 1124 } 1125 1126 uarg->callback = msg_zerocopy_callback; 1127 uarg->id = ((u32)atomic_inc_return(&sk->sk_zckey)) - 1; 1128 uarg->len = 1; 1129 uarg->bytelen = size; 1130 uarg->zerocopy = 1; 1131 uarg->flags = SKBFL_ZEROCOPY_FRAG; 1132 refcount_set(&uarg->refcnt, 1); 1133 sock_hold(sk); 1134 1135 return uarg; 1136 } 1137 EXPORT_SYMBOL_GPL(msg_zerocopy_alloc); 1138 1139 static inline struct sk_buff *skb_from_uarg(struct ubuf_info *uarg) 1140 { 1141 return container_of((void *)uarg, struct sk_buff, cb); 1142 } 1143 1144 struct ubuf_info *msg_zerocopy_realloc(struct sock *sk, size_t size, 1145 struct ubuf_info *uarg) 1146 { 1147 if (uarg) { 1148 const u32 byte_limit = 1 << 19; /* limit to a few TSO */ 1149 u32 bytelen, next; 1150 1151 /* realloc only when socket is locked (TCP, UDP cork), 1152 * so uarg->len and sk_zckey access is serialized 1153 */ 1154 if (!sock_owned_by_user(sk)) { 1155 WARN_ON_ONCE(1); 1156 return NULL; 1157 } 1158 1159 bytelen = uarg->bytelen + size; 1160 if (uarg->len == USHRT_MAX - 1 || bytelen > byte_limit) { 1161 /* TCP can create new skb to attach new uarg */ 1162 if (sk->sk_type == SOCK_STREAM) 1163 goto new_alloc; 1164 return NULL; 1165 } 1166 1167 next = (u32)atomic_read(&sk->sk_zckey); 1168 if ((u32)(uarg->id + uarg->len) == next) { 1169 if (mm_account_pinned_pages(&uarg->mmp, size)) 1170 return NULL; 1171 uarg->len++; 1172 uarg->bytelen = bytelen; 1173 atomic_set(&sk->sk_zckey, ++next); 1174 1175 /* no extra ref when appending to datagram (MSG_MORE) */ 1176 if (sk->sk_type == SOCK_STREAM) 1177 net_zcopy_get(uarg); 1178 1179 return uarg; 1180 } 1181 } 1182 1183 new_alloc: 1184 return msg_zerocopy_alloc(sk, size); 1185 } 1186 EXPORT_SYMBOL_GPL(msg_zerocopy_realloc); 1187 1188 static bool skb_zerocopy_notify_extend(struct sk_buff *skb, u32 lo, u16 len) 1189 { 1190 struct sock_exterr_skb *serr = SKB_EXT_ERR(skb); 1191 u32 old_lo, old_hi; 1192 u64 sum_len; 1193 1194 old_lo = serr->ee.ee_info; 1195 old_hi = serr->ee.ee_data; 1196 sum_len = old_hi - old_lo + 1ULL + len; 1197 1198 if (sum_len >= (1ULL << 32)) 1199 return false; 1200 1201 if (lo != old_hi + 1) 1202 return false; 1203 1204 serr->ee.ee_data += len; 1205 return true; 1206 } 1207 1208 static void __msg_zerocopy_callback(struct ubuf_info *uarg) 1209 { 1210 struct sk_buff *tail, *skb = skb_from_uarg(uarg); 1211 struct sock_exterr_skb *serr; 1212 struct sock *sk = skb->sk; 1213 struct sk_buff_head *q; 1214 unsigned long flags; 1215 u32 lo, hi; 1216 u16 len; 1217 1218 mm_unaccount_pinned_pages(&uarg->mmp); 1219 1220 /* if !len, there was only 1 call, and it was aborted 1221 * so do not queue a completion notification 1222 */ 1223 if (!uarg->len || sock_flag(sk, SOCK_DEAD)) 1224 goto release; 1225 1226 len = uarg->len; 1227 lo = uarg->id; 1228 hi = uarg->id + len - 1; 1229 1230 serr = SKB_EXT_ERR(skb); 1231 memset(serr, 0, sizeof(*serr)); 1232 serr->ee.ee_errno = 0; 1233 serr->ee.ee_origin = SO_EE_ORIGIN_ZEROCOPY; 1234 serr->ee.ee_data = hi; 1235 serr->ee.ee_info = lo; 1236 if (!uarg->zerocopy) 1237 serr->ee.ee_code |= SO_EE_CODE_ZEROCOPY_COPIED; 1238 1239 q = &sk->sk_error_queue; 1240 spin_lock_irqsave(&q->lock, flags); 1241 tail = skb_peek_tail(q); 1242 if (!tail || SKB_EXT_ERR(tail)->ee.ee_origin != SO_EE_ORIGIN_ZEROCOPY || 1243 !skb_zerocopy_notify_extend(tail, lo, len)) { 1244 __skb_queue_tail(q, skb); 1245 skb = NULL; 1246 } 1247 spin_unlock_irqrestore(&q->lock, flags); 1248 1249 sk->sk_error_report(sk); 1250 1251 release: 1252 consume_skb(skb); 1253 sock_put(sk); 1254 } 1255 1256 void msg_zerocopy_callback(struct sk_buff *skb, struct ubuf_info *uarg, 1257 bool success) 1258 { 1259 uarg->zerocopy = uarg->zerocopy & success; 1260 1261 if (refcount_dec_and_test(&uarg->refcnt)) 1262 __msg_zerocopy_callback(uarg); 1263 } 1264 EXPORT_SYMBOL_GPL(msg_zerocopy_callback); 1265 1266 void msg_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref) 1267 { 1268 struct sock *sk = skb_from_uarg(uarg)->sk; 1269 1270 atomic_dec(&sk->sk_zckey); 1271 uarg->len--; 1272 1273 if (have_uref) 1274 msg_zerocopy_callback(NULL, uarg, true); 1275 } 1276 EXPORT_SYMBOL_GPL(msg_zerocopy_put_abort); 1277 1278 int skb_zerocopy_iter_dgram(struct sk_buff *skb, struct msghdr *msg, int len) 1279 { 1280 return __zerocopy_sg_from_iter(skb->sk, skb, &msg->msg_iter, len); 1281 } 1282 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_dgram); 1283 1284 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb, 1285 struct msghdr *msg, int len, 1286 struct ubuf_info *uarg) 1287 { 1288 struct ubuf_info *orig_uarg = skb_zcopy(skb); 1289 struct iov_iter orig_iter = msg->msg_iter; 1290 int err, orig_len = skb->len; 1291 1292 /* An skb can only point to one uarg. This edge case happens when 1293 * TCP appends to an skb, but zerocopy_realloc triggered a new alloc. 1294 */ 1295 if (orig_uarg && uarg != orig_uarg) 1296 return -EEXIST; 1297 1298 err = __zerocopy_sg_from_iter(sk, skb, &msg->msg_iter, len); 1299 if (err == -EFAULT || (err == -EMSGSIZE && skb->len == orig_len)) { 1300 struct sock *save_sk = skb->sk; 1301 1302 /* Streams do not free skb on error. Reset to prev state. */ 1303 msg->msg_iter = orig_iter; 1304 skb->sk = sk; 1305 ___pskb_trim(skb, orig_len); 1306 skb->sk = save_sk; 1307 return err; 1308 } 1309 1310 skb_zcopy_set(skb, uarg, NULL); 1311 return skb->len - orig_len; 1312 } 1313 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_stream); 1314 1315 static int skb_zerocopy_clone(struct sk_buff *nskb, struct sk_buff *orig, 1316 gfp_t gfp_mask) 1317 { 1318 if (skb_zcopy(orig)) { 1319 if (skb_zcopy(nskb)) { 1320 /* !gfp_mask callers are verified to !skb_zcopy(nskb) */ 1321 if (!gfp_mask) { 1322 WARN_ON_ONCE(1); 1323 return -ENOMEM; 1324 } 1325 if (skb_uarg(nskb) == skb_uarg(orig)) 1326 return 0; 1327 if (skb_copy_ubufs(nskb, GFP_ATOMIC)) 1328 return -EIO; 1329 } 1330 skb_zcopy_set(nskb, skb_uarg(orig), NULL); 1331 } 1332 return 0; 1333 } 1334 1335 /** 1336 * skb_copy_ubufs - copy userspace skb frags buffers to kernel 1337 * @skb: the skb to modify 1338 * @gfp_mask: allocation priority 1339 * 1340 * This must be called on skb with SKBFL_ZEROCOPY_ENABLE. 1341 * It will copy all frags into kernel and drop the reference 1342 * to userspace pages. 1343 * 1344 * If this function is called from an interrupt gfp_mask() must be 1345 * %GFP_ATOMIC. 1346 * 1347 * Returns 0 on success or a negative error code on failure 1348 * to allocate kernel memory to copy to. 1349 */ 1350 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask) 1351 { 1352 int num_frags = skb_shinfo(skb)->nr_frags; 1353 struct page *page, *head = NULL; 1354 int i, new_frags; 1355 u32 d_off; 1356 1357 if (skb_shared(skb) || skb_unclone(skb, gfp_mask)) 1358 return -EINVAL; 1359 1360 if (!num_frags) 1361 goto release; 1362 1363 new_frags = (__skb_pagelen(skb) + PAGE_SIZE - 1) >> PAGE_SHIFT; 1364 for (i = 0; i < new_frags; i++) { 1365 page = alloc_page(gfp_mask); 1366 if (!page) { 1367 while (head) { 1368 struct page *next = (struct page *)page_private(head); 1369 put_page(head); 1370 head = next; 1371 } 1372 return -ENOMEM; 1373 } 1374 set_page_private(page, (unsigned long)head); 1375 head = page; 1376 } 1377 1378 page = head; 1379 d_off = 0; 1380 for (i = 0; i < num_frags; i++) { 1381 skb_frag_t *f = &skb_shinfo(skb)->frags[i]; 1382 u32 p_off, p_len, copied; 1383 struct page *p; 1384 u8 *vaddr; 1385 1386 skb_frag_foreach_page(f, skb_frag_off(f), skb_frag_size(f), 1387 p, p_off, p_len, copied) { 1388 u32 copy, done = 0; 1389 vaddr = kmap_atomic(p); 1390 1391 while (done < p_len) { 1392 if (d_off == PAGE_SIZE) { 1393 d_off = 0; 1394 page = (struct page *)page_private(page); 1395 } 1396 copy = min_t(u32, PAGE_SIZE - d_off, p_len - done); 1397 memcpy(page_address(page) + d_off, 1398 vaddr + p_off + done, copy); 1399 done += copy; 1400 d_off += copy; 1401 } 1402 kunmap_atomic(vaddr); 1403 } 1404 } 1405 1406 /* skb frags release userspace buffers */ 1407 for (i = 0; i < num_frags; i++) 1408 skb_frag_unref(skb, i); 1409 1410 /* skb frags point to kernel buffers */ 1411 for (i = 0; i < new_frags - 1; i++) { 1412 __skb_fill_page_desc(skb, i, head, 0, PAGE_SIZE); 1413 head = (struct page *)page_private(head); 1414 } 1415 __skb_fill_page_desc(skb, new_frags - 1, head, 0, d_off); 1416 skb_shinfo(skb)->nr_frags = new_frags; 1417 1418 release: 1419 skb_zcopy_clear(skb, false); 1420 return 0; 1421 } 1422 EXPORT_SYMBOL_GPL(skb_copy_ubufs); 1423 1424 /** 1425 * skb_clone - duplicate an sk_buff 1426 * @skb: buffer to clone 1427 * @gfp_mask: allocation priority 1428 * 1429 * Duplicate an &sk_buff. The new one is not owned by a socket. Both 1430 * copies share the same packet data but not structure. The new 1431 * buffer has a reference count of 1. If the allocation fails the 1432 * function returns %NULL otherwise the new buffer is returned. 1433 * 1434 * If this function is called from an interrupt gfp_mask() must be 1435 * %GFP_ATOMIC. 1436 */ 1437 1438 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask) 1439 { 1440 struct sk_buff_fclones *fclones = container_of(skb, 1441 struct sk_buff_fclones, 1442 skb1); 1443 struct sk_buff *n; 1444 1445 if (skb_orphan_frags(skb, gfp_mask)) 1446 return NULL; 1447 1448 if (skb->fclone == SKB_FCLONE_ORIG && 1449 refcount_read(&fclones->fclone_ref) == 1) { 1450 n = &fclones->skb2; 1451 refcount_set(&fclones->fclone_ref, 2); 1452 } else { 1453 if (skb_pfmemalloc(skb)) 1454 gfp_mask |= __GFP_MEMALLOC; 1455 1456 n = kmem_cache_alloc(skbuff_head_cache, gfp_mask); 1457 if (!n) 1458 return NULL; 1459 1460 n->fclone = SKB_FCLONE_UNAVAILABLE; 1461 } 1462 1463 return __skb_clone(n, skb); 1464 } 1465 EXPORT_SYMBOL(skb_clone); 1466 1467 void skb_headers_offset_update(struct sk_buff *skb, int off) 1468 { 1469 /* Only adjust this if it actually is csum_start rather than csum */ 1470 if (skb->ip_summed == CHECKSUM_PARTIAL) 1471 skb->csum_start += off; 1472 /* {transport,network,mac}_header and tail are relative to skb->head */ 1473 skb->transport_header += off; 1474 skb->network_header += off; 1475 if (skb_mac_header_was_set(skb)) 1476 skb->mac_header += off; 1477 skb->inner_transport_header += off; 1478 skb->inner_network_header += off; 1479 skb->inner_mac_header += off; 1480 } 1481 EXPORT_SYMBOL(skb_headers_offset_update); 1482 1483 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old) 1484 { 1485 __copy_skb_header(new, old); 1486 1487 skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size; 1488 skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs; 1489 skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type; 1490 } 1491 EXPORT_SYMBOL(skb_copy_header); 1492 1493 static inline int skb_alloc_rx_flag(const struct sk_buff *skb) 1494 { 1495 if (skb_pfmemalloc(skb)) 1496 return SKB_ALLOC_RX; 1497 return 0; 1498 } 1499 1500 /** 1501 * skb_copy - create private copy of an sk_buff 1502 * @skb: buffer to copy 1503 * @gfp_mask: allocation priority 1504 * 1505 * Make a copy of both an &sk_buff and its data. This is used when the 1506 * caller wishes to modify the data and needs a private copy of the 1507 * data to alter. Returns %NULL on failure or the pointer to the buffer 1508 * on success. The returned buffer has a reference count of 1. 1509 * 1510 * As by-product this function converts non-linear &sk_buff to linear 1511 * one, so that &sk_buff becomes completely private and caller is allowed 1512 * to modify all the data of returned buffer. This means that this 1513 * function is not recommended for use in circumstances when only 1514 * header is going to be modified. Use pskb_copy() instead. 1515 */ 1516 1517 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask) 1518 { 1519 int headerlen = skb_headroom(skb); 1520 unsigned int size = skb_end_offset(skb) + skb->data_len; 1521 struct sk_buff *n = __alloc_skb(size, gfp_mask, 1522 skb_alloc_rx_flag(skb), NUMA_NO_NODE); 1523 1524 if (!n) 1525 return NULL; 1526 1527 /* Set the data pointer */ 1528 skb_reserve(n, headerlen); 1529 /* Set the tail pointer and length */ 1530 skb_put(n, skb->len); 1531 1532 BUG_ON(skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len)); 1533 1534 skb_copy_header(n, skb); 1535 return n; 1536 } 1537 EXPORT_SYMBOL(skb_copy); 1538 1539 /** 1540 * __pskb_copy_fclone - create copy of an sk_buff with private head. 1541 * @skb: buffer to copy 1542 * @headroom: headroom of new skb 1543 * @gfp_mask: allocation priority 1544 * @fclone: if true allocate the copy of the skb from the fclone 1545 * cache instead of the head cache; it is recommended to set this 1546 * to true for the cases where the copy will likely be cloned 1547 * 1548 * Make a copy of both an &sk_buff and part of its data, located 1549 * in header. Fragmented data remain shared. This is used when 1550 * the caller wishes to modify only header of &sk_buff and needs 1551 * private copy of the header to alter. Returns %NULL on failure 1552 * or the pointer to the buffer on success. 1553 * The returned buffer has a reference count of 1. 1554 */ 1555 1556 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom, 1557 gfp_t gfp_mask, bool fclone) 1558 { 1559 unsigned int size = skb_headlen(skb) + headroom; 1560 int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0); 1561 struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE); 1562 1563 if (!n) 1564 goto out; 1565 1566 /* Set the data pointer */ 1567 skb_reserve(n, headroom); 1568 /* Set the tail pointer and length */ 1569 skb_put(n, skb_headlen(skb)); 1570 /* Copy the bytes */ 1571 skb_copy_from_linear_data(skb, n->data, n->len); 1572 1573 n->truesize += skb->data_len; 1574 n->data_len = skb->data_len; 1575 n->len = skb->len; 1576 1577 if (skb_shinfo(skb)->nr_frags) { 1578 int i; 1579 1580 if (skb_orphan_frags(skb, gfp_mask) || 1581 skb_zerocopy_clone(n, skb, gfp_mask)) { 1582 kfree_skb(n); 1583 n = NULL; 1584 goto out; 1585 } 1586 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1587 skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i]; 1588 skb_frag_ref(skb, i); 1589 } 1590 skb_shinfo(n)->nr_frags = i; 1591 } 1592 1593 if (skb_has_frag_list(skb)) { 1594 skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list; 1595 skb_clone_fraglist(n); 1596 } 1597 1598 skb_copy_header(n, skb); 1599 out: 1600 return n; 1601 } 1602 EXPORT_SYMBOL(__pskb_copy_fclone); 1603 1604 /** 1605 * pskb_expand_head - reallocate header of &sk_buff 1606 * @skb: buffer to reallocate 1607 * @nhead: room to add at head 1608 * @ntail: room to add at tail 1609 * @gfp_mask: allocation priority 1610 * 1611 * Expands (or creates identical copy, if @nhead and @ntail are zero) 1612 * header of @skb. &sk_buff itself is not changed. &sk_buff MUST have 1613 * reference count of 1. Returns zero in the case of success or error, 1614 * if expansion failed. In the last case, &sk_buff is not changed. 1615 * 1616 * All the pointers pointing into skb header may change and must be 1617 * reloaded after call to this function. 1618 */ 1619 1620 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, 1621 gfp_t gfp_mask) 1622 { 1623 int i, osize = skb_end_offset(skb); 1624 int size = osize + nhead + ntail; 1625 long off; 1626 u8 *data; 1627 1628 BUG_ON(nhead < 0); 1629 1630 BUG_ON(skb_shared(skb)); 1631 1632 size = SKB_DATA_ALIGN(size); 1633 1634 if (skb_pfmemalloc(skb)) 1635 gfp_mask |= __GFP_MEMALLOC; 1636 data = kmalloc_reserve(size + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)), 1637 gfp_mask, NUMA_NO_NODE, NULL); 1638 if (!data) 1639 goto nodata; 1640 size = SKB_WITH_OVERHEAD(ksize(data)); 1641 1642 /* Copy only real data... and, alas, header. This should be 1643 * optimized for the cases when header is void. 1644 */ 1645 memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head); 1646 1647 memcpy((struct skb_shared_info *)(data + size), 1648 skb_shinfo(skb), 1649 offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags])); 1650 1651 /* 1652 * if shinfo is shared we must drop the old head gracefully, but if it 1653 * is not we can just drop the old head and let the existing refcount 1654 * be since all we did is relocate the values 1655 */ 1656 if (skb_cloned(skb)) { 1657 if (skb_orphan_frags(skb, gfp_mask)) 1658 goto nofrags; 1659 if (skb_zcopy(skb)) 1660 refcount_inc(&skb_uarg(skb)->refcnt); 1661 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 1662 skb_frag_ref(skb, i); 1663 1664 if (skb_has_frag_list(skb)) 1665 skb_clone_fraglist(skb); 1666 1667 skb_release_data(skb); 1668 } else { 1669 skb_free_head(skb); 1670 } 1671 off = (data + nhead) - skb->head; 1672 1673 skb->head = data; 1674 skb->head_frag = 0; 1675 skb->data += off; 1676 #ifdef NET_SKBUFF_DATA_USES_OFFSET 1677 skb->end = size; 1678 off = nhead; 1679 #else 1680 skb->end = skb->head + size; 1681 #endif 1682 skb->tail += off; 1683 skb_headers_offset_update(skb, nhead); 1684 skb->cloned = 0; 1685 skb->hdr_len = 0; 1686 skb->nohdr = 0; 1687 atomic_set(&skb_shinfo(skb)->dataref, 1); 1688 1689 skb_metadata_clear(skb); 1690 1691 /* It is not generally safe to change skb->truesize. 1692 * For the moment, we really care of rx path, or 1693 * when skb is orphaned (not attached to a socket). 1694 */ 1695 if (!skb->sk || skb->destructor == sock_edemux) 1696 skb->truesize += size - osize; 1697 1698 return 0; 1699 1700 nofrags: 1701 kfree(data); 1702 nodata: 1703 return -ENOMEM; 1704 } 1705 EXPORT_SYMBOL(pskb_expand_head); 1706 1707 /* Make private copy of skb with writable head and some headroom */ 1708 1709 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom) 1710 { 1711 struct sk_buff *skb2; 1712 int delta = headroom - skb_headroom(skb); 1713 1714 if (delta <= 0) 1715 skb2 = pskb_copy(skb, GFP_ATOMIC); 1716 else { 1717 skb2 = skb_clone(skb, GFP_ATOMIC); 1718 if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0, 1719 GFP_ATOMIC)) { 1720 kfree_skb(skb2); 1721 skb2 = NULL; 1722 } 1723 } 1724 return skb2; 1725 } 1726 EXPORT_SYMBOL(skb_realloc_headroom); 1727 1728 /** 1729 * skb_copy_expand - copy and expand sk_buff 1730 * @skb: buffer to copy 1731 * @newheadroom: new free bytes at head 1732 * @newtailroom: new free bytes at tail 1733 * @gfp_mask: allocation priority 1734 * 1735 * Make a copy of both an &sk_buff and its data and while doing so 1736 * allocate additional space. 1737 * 1738 * This is used when the caller wishes to modify the data and needs a 1739 * private copy of the data to alter as well as more space for new fields. 1740 * Returns %NULL on failure or the pointer to the buffer 1741 * on success. The returned buffer has a reference count of 1. 1742 * 1743 * You must pass %GFP_ATOMIC as the allocation priority if this function 1744 * is called from an interrupt. 1745 */ 1746 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, 1747 int newheadroom, int newtailroom, 1748 gfp_t gfp_mask) 1749 { 1750 /* 1751 * Allocate the copy buffer 1752 */ 1753 struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom, 1754 gfp_mask, skb_alloc_rx_flag(skb), 1755 NUMA_NO_NODE); 1756 int oldheadroom = skb_headroom(skb); 1757 int head_copy_len, head_copy_off; 1758 1759 if (!n) 1760 return NULL; 1761 1762 skb_reserve(n, newheadroom); 1763 1764 /* Set the tail pointer and length */ 1765 skb_put(n, skb->len); 1766 1767 head_copy_len = oldheadroom; 1768 head_copy_off = 0; 1769 if (newheadroom <= head_copy_len) 1770 head_copy_len = newheadroom; 1771 else 1772 head_copy_off = newheadroom - head_copy_len; 1773 1774 /* Copy the linear header and data. */ 1775 BUG_ON(skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off, 1776 skb->len + head_copy_len)); 1777 1778 skb_copy_header(n, skb); 1779 1780 skb_headers_offset_update(n, newheadroom - oldheadroom); 1781 1782 return n; 1783 } 1784 EXPORT_SYMBOL(skb_copy_expand); 1785 1786 /** 1787 * __skb_pad - zero pad the tail of an skb 1788 * @skb: buffer to pad 1789 * @pad: space to pad 1790 * @free_on_error: free buffer on error 1791 * 1792 * Ensure that a buffer is followed by a padding area that is zero 1793 * filled. Used by network drivers which may DMA or transfer data 1794 * beyond the buffer end onto the wire. 1795 * 1796 * May return error in out of memory cases. The skb is freed on error 1797 * if @free_on_error is true. 1798 */ 1799 1800 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error) 1801 { 1802 int err; 1803 int ntail; 1804 1805 /* If the skbuff is non linear tailroom is always zero.. */ 1806 if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) { 1807 memset(skb->data+skb->len, 0, pad); 1808 return 0; 1809 } 1810 1811 ntail = skb->data_len + pad - (skb->end - skb->tail); 1812 if (likely(skb_cloned(skb) || ntail > 0)) { 1813 err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC); 1814 if (unlikely(err)) 1815 goto free_skb; 1816 } 1817 1818 /* FIXME: The use of this function with non-linear skb's really needs 1819 * to be audited. 1820 */ 1821 err = skb_linearize(skb); 1822 if (unlikely(err)) 1823 goto free_skb; 1824 1825 memset(skb->data + skb->len, 0, pad); 1826 return 0; 1827 1828 free_skb: 1829 if (free_on_error) 1830 kfree_skb(skb); 1831 return err; 1832 } 1833 EXPORT_SYMBOL(__skb_pad); 1834 1835 /** 1836 * pskb_put - add data to the tail of a potentially fragmented buffer 1837 * @skb: start of the buffer to use 1838 * @tail: tail fragment of the buffer to use 1839 * @len: amount of data to add 1840 * 1841 * This function extends the used data area of the potentially 1842 * fragmented buffer. @tail must be the last fragment of @skb -- or 1843 * @skb itself. If this would exceed the total buffer size the kernel 1844 * will panic. A pointer to the first byte of the extra data is 1845 * returned. 1846 */ 1847 1848 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len) 1849 { 1850 if (tail != skb) { 1851 skb->data_len += len; 1852 skb->len += len; 1853 } 1854 return skb_put(tail, len); 1855 } 1856 EXPORT_SYMBOL_GPL(pskb_put); 1857 1858 /** 1859 * skb_put - add data to a buffer 1860 * @skb: buffer to use 1861 * @len: amount of data to add 1862 * 1863 * This function extends the used data area of the buffer. If this would 1864 * exceed the total buffer size the kernel will panic. A pointer to the 1865 * first byte of the extra data is returned. 1866 */ 1867 void *skb_put(struct sk_buff *skb, unsigned int len) 1868 { 1869 void *tmp = skb_tail_pointer(skb); 1870 SKB_LINEAR_ASSERT(skb); 1871 skb->tail += len; 1872 skb->len += len; 1873 if (unlikely(skb->tail > skb->end)) 1874 skb_over_panic(skb, len, __builtin_return_address(0)); 1875 return tmp; 1876 } 1877 EXPORT_SYMBOL(skb_put); 1878 1879 /** 1880 * skb_push - add data to the start of a buffer 1881 * @skb: buffer to use 1882 * @len: amount of data to add 1883 * 1884 * This function extends the used data area of the buffer at the buffer 1885 * start. If this would exceed the total buffer headroom the kernel will 1886 * panic. A pointer to the first byte of the extra data is returned. 1887 */ 1888 void *skb_push(struct sk_buff *skb, unsigned int len) 1889 { 1890 skb->data -= len; 1891 skb->len += len; 1892 if (unlikely(skb->data < skb->head)) 1893 skb_under_panic(skb, len, __builtin_return_address(0)); 1894 return skb->data; 1895 } 1896 EXPORT_SYMBOL(skb_push); 1897 1898 /** 1899 * skb_pull - remove data from the start of a buffer 1900 * @skb: buffer to use 1901 * @len: amount of data to remove 1902 * 1903 * This function removes data from the start of a buffer, returning 1904 * the memory to the headroom. A pointer to the next data in the buffer 1905 * is returned. Once the data has been pulled future pushes will overwrite 1906 * the old data. 1907 */ 1908 void *skb_pull(struct sk_buff *skb, unsigned int len) 1909 { 1910 return skb_pull_inline(skb, len); 1911 } 1912 EXPORT_SYMBOL(skb_pull); 1913 1914 /** 1915 * skb_trim - remove end from a buffer 1916 * @skb: buffer to alter 1917 * @len: new length 1918 * 1919 * Cut the length of a buffer down by removing data from the tail. If 1920 * the buffer is already under the length specified it is not modified. 1921 * The skb must be linear. 1922 */ 1923 void skb_trim(struct sk_buff *skb, unsigned int len) 1924 { 1925 if (skb->len > len) 1926 __skb_trim(skb, len); 1927 } 1928 EXPORT_SYMBOL(skb_trim); 1929 1930 /* Trims skb to length len. It can change skb pointers. 1931 */ 1932 1933 int ___pskb_trim(struct sk_buff *skb, unsigned int len) 1934 { 1935 struct sk_buff **fragp; 1936 struct sk_buff *frag; 1937 int offset = skb_headlen(skb); 1938 int nfrags = skb_shinfo(skb)->nr_frags; 1939 int i; 1940 int err; 1941 1942 if (skb_cloned(skb) && 1943 unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))) 1944 return err; 1945 1946 i = 0; 1947 if (offset >= len) 1948 goto drop_pages; 1949 1950 for (; i < nfrags; i++) { 1951 int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]); 1952 1953 if (end < len) { 1954 offset = end; 1955 continue; 1956 } 1957 1958 skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset); 1959 1960 drop_pages: 1961 skb_shinfo(skb)->nr_frags = i; 1962 1963 for (; i < nfrags; i++) 1964 skb_frag_unref(skb, i); 1965 1966 if (skb_has_frag_list(skb)) 1967 skb_drop_fraglist(skb); 1968 goto done; 1969 } 1970 1971 for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp); 1972 fragp = &frag->next) { 1973 int end = offset + frag->len; 1974 1975 if (skb_shared(frag)) { 1976 struct sk_buff *nfrag; 1977 1978 nfrag = skb_clone(frag, GFP_ATOMIC); 1979 if (unlikely(!nfrag)) 1980 return -ENOMEM; 1981 1982 nfrag->next = frag->next; 1983 consume_skb(frag); 1984 frag = nfrag; 1985 *fragp = frag; 1986 } 1987 1988 if (end < len) { 1989 offset = end; 1990 continue; 1991 } 1992 1993 if (end > len && 1994 unlikely((err = pskb_trim(frag, len - offset)))) 1995 return err; 1996 1997 if (frag->next) 1998 skb_drop_list(&frag->next); 1999 break; 2000 } 2001 2002 done: 2003 if (len > skb_headlen(skb)) { 2004 skb->data_len -= skb->len - len; 2005 skb->len = len; 2006 } else { 2007 skb->len = len; 2008 skb->data_len = 0; 2009 skb_set_tail_pointer(skb, len); 2010 } 2011 2012 if (!skb->sk || skb->destructor == sock_edemux) 2013 skb_condense(skb); 2014 return 0; 2015 } 2016 EXPORT_SYMBOL(___pskb_trim); 2017 2018 /* Note : use pskb_trim_rcsum() instead of calling this directly 2019 */ 2020 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len) 2021 { 2022 if (skb->ip_summed == CHECKSUM_COMPLETE) { 2023 int delta = skb->len - len; 2024 2025 skb->csum = csum_block_sub(skb->csum, 2026 skb_checksum(skb, len, delta, 0), 2027 len); 2028 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { 2029 int hdlen = (len > skb_headlen(skb)) ? skb_headlen(skb) : len; 2030 int offset = skb_checksum_start_offset(skb) + skb->csum_offset; 2031 2032 if (offset + sizeof(__sum16) > hdlen) 2033 return -EINVAL; 2034 } 2035 return __pskb_trim(skb, len); 2036 } 2037 EXPORT_SYMBOL(pskb_trim_rcsum_slow); 2038 2039 /** 2040 * __pskb_pull_tail - advance tail of skb header 2041 * @skb: buffer to reallocate 2042 * @delta: number of bytes to advance tail 2043 * 2044 * The function makes a sense only on a fragmented &sk_buff, 2045 * it expands header moving its tail forward and copying necessary 2046 * data from fragmented part. 2047 * 2048 * &sk_buff MUST have reference count of 1. 2049 * 2050 * Returns %NULL (and &sk_buff does not change) if pull failed 2051 * or value of new tail of skb in the case of success. 2052 * 2053 * All the pointers pointing into skb header may change and must be 2054 * reloaded after call to this function. 2055 */ 2056 2057 /* Moves tail of skb head forward, copying data from fragmented part, 2058 * when it is necessary. 2059 * 1. It may fail due to malloc failure. 2060 * 2. It may change skb pointers. 2061 * 2062 * It is pretty complicated. Luckily, it is called only in exceptional cases. 2063 */ 2064 void *__pskb_pull_tail(struct sk_buff *skb, int delta) 2065 { 2066 /* If skb has not enough free space at tail, get new one 2067 * plus 128 bytes for future expansions. If we have enough 2068 * room at tail, reallocate without expansion only if skb is cloned. 2069 */ 2070 int i, k, eat = (skb->tail + delta) - skb->end; 2071 2072 if (eat > 0 || skb_cloned(skb)) { 2073 if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0, 2074 GFP_ATOMIC)) 2075 return NULL; 2076 } 2077 2078 BUG_ON(skb_copy_bits(skb, skb_headlen(skb), 2079 skb_tail_pointer(skb), delta)); 2080 2081 /* Optimization: no fragments, no reasons to preestimate 2082 * size of pulled pages. Superb. 2083 */ 2084 if (!skb_has_frag_list(skb)) 2085 goto pull_pages; 2086 2087 /* Estimate size of pulled pages. */ 2088 eat = delta; 2089 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2090 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 2091 2092 if (size >= eat) 2093 goto pull_pages; 2094 eat -= size; 2095 } 2096 2097 /* If we need update frag list, we are in troubles. 2098 * Certainly, it is possible to add an offset to skb data, 2099 * but taking into account that pulling is expected to 2100 * be very rare operation, it is worth to fight against 2101 * further bloating skb head and crucify ourselves here instead. 2102 * Pure masohism, indeed. 8)8) 2103 */ 2104 if (eat) { 2105 struct sk_buff *list = skb_shinfo(skb)->frag_list; 2106 struct sk_buff *clone = NULL; 2107 struct sk_buff *insp = NULL; 2108 2109 do { 2110 if (list->len <= eat) { 2111 /* Eaten as whole. */ 2112 eat -= list->len; 2113 list = list->next; 2114 insp = list; 2115 } else { 2116 /* Eaten partially. */ 2117 2118 if (skb_shared(list)) { 2119 /* Sucks! We need to fork list. :-( */ 2120 clone = skb_clone(list, GFP_ATOMIC); 2121 if (!clone) 2122 return NULL; 2123 insp = list->next; 2124 list = clone; 2125 } else { 2126 /* This may be pulled without 2127 * problems. */ 2128 insp = list; 2129 } 2130 if (!pskb_pull(list, eat)) { 2131 kfree_skb(clone); 2132 return NULL; 2133 } 2134 break; 2135 } 2136 } while (eat); 2137 2138 /* Free pulled out fragments. */ 2139 while ((list = skb_shinfo(skb)->frag_list) != insp) { 2140 skb_shinfo(skb)->frag_list = list->next; 2141 kfree_skb(list); 2142 } 2143 /* And insert new clone at head. */ 2144 if (clone) { 2145 clone->next = list; 2146 skb_shinfo(skb)->frag_list = clone; 2147 } 2148 } 2149 /* Success! Now we may commit changes to skb data. */ 2150 2151 pull_pages: 2152 eat = delta; 2153 k = 0; 2154 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2155 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 2156 2157 if (size <= eat) { 2158 skb_frag_unref(skb, i); 2159 eat -= size; 2160 } else { 2161 skb_frag_t *frag = &skb_shinfo(skb)->frags[k]; 2162 2163 *frag = skb_shinfo(skb)->frags[i]; 2164 if (eat) { 2165 skb_frag_off_add(frag, eat); 2166 skb_frag_size_sub(frag, eat); 2167 if (!i) 2168 goto end; 2169 eat = 0; 2170 } 2171 k++; 2172 } 2173 } 2174 skb_shinfo(skb)->nr_frags = k; 2175 2176 end: 2177 skb->tail += delta; 2178 skb->data_len -= delta; 2179 2180 if (!skb->data_len) 2181 skb_zcopy_clear(skb, false); 2182 2183 return skb_tail_pointer(skb); 2184 } 2185 EXPORT_SYMBOL(__pskb_pull_tail); 2186 2187 /** 2188 * skb_copy_bits - copy bits from skb to kernel buffer 2189 * @skb: source skb 2190 * @offset: offset in source 2191 * @to: destination buffer 2192 * @len: number of bytes to copy 2193 * 2194 * Copy the specified number of bytes from the source skb to the 2195 * destination buffer. 2196 * 2197 * CAUTION ! : 2198 * If its prototype is ever changed, 2199 * check arch/{*}/net/{*}.S files, 2200 * since it is called from BPF assembly code. 2201 */ 2202 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len) 2203 { 2204 int start = skb_headlen(skb); 2205 struct sk_buff *frag_iter; 2206 int i, copy; 2207 2208 if (offset > (int)skb->len - len) 2209 goto fault; 2210 2211 /* Copy header. */ 2212 if ((copy = start - offset) > 0) { 2213 if (copy > len) 2214 copy = len; 2215 skb_copy_from_linear_data_offset(skb, offset, to, copy); 2216 if ((len -= copy) == 0) 2217 return 0; 2218 offset += copy; 2219 to += copy; 2220 } 2221 2222 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2223 int end; 2224 skb_frag_t *f = &skb_shinfo(skb)->frags[i]; 2225 2226 WARN_ON(start > offset + len); 2227 2228 end = start + skb_frag_size(f); 2229 if ((copy = end - offset) > 0) { 2230 u32 p_off, p_len, copied; 2231 struct page *p; 2232 u8 *vaddr; 2233 2234 if (copy > len) 2235 copy = len; 2236 2237 skb_frag_foreach_page(f, 2238 skb_frag_off(f) + offset - start, 2239 copy, p, p_off, p_len, copied) { 2240 vaddr = kmap_atomic(p); 2241 memcpy(to + copied, vaddr + p_off, p_len); 2242 kunmap_atomic(vaddr); 2243 } 2244 2245 if ((len -= copy) == 0) 2246 return 0; 2247 offset += copy; 2248 to += copy; 2249 } 2250 start = end; 2251 } 2252 2253 skb_walk_frags(skb, frag_iter) { 2254 int end; 2255 2256 WARN_ON(start > offset + len); 2257 2258 end = start + frag_iter->len; 2259 if ((copy = end - offset) > 0) { 2260 if (copy > len) 2261 copy = len; 2262 if (skb_copy_bits(frag_iter, offset - start, to, copy)) 2263 goto fault; 2264 if ((len -= copy) == 0) 2265 return 0; 2266 offset += copy; 2267 to += copy; 2268 } 2269 start = end; 2270 } 2271 2272 if (!len) 2273 return 0; 2274 2275 fault: 2276 return -EFAULT; 2277 } 2278 EXPORT_SYMBOL(skb_copy_bits); 2279 2280 /* 2281 * Callback from splice_to_pipe(), if we need to release some pages 2282 * at the end of the spd in case we error'ed out in filling the pipe. 2283 */ 2284 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i) 2285 { 2286 put_page(spd->pages[i]); 2287 } 2288 2289 static struct page *linear_to_page(struct page *page, unsigned int *len, 2290 unsigned int *offset, 2291 struct sock *sk) 2292 { 2293 struct page_frag *pfrag = sk_page_frag(sk); 2294 2295 if (!sk_page_frag_refill(sk, pfrag)) 2296 return NULL; 2297 2298 *len = min_t(unsigned int, *len, pfrag->size - pfrag->offset); 2299 2300 memcpy(page_address(pfrag->page) + pfrag->offset, 2301 page_address(page) + *offset, *len); 2302 *offset = pfrag->offset; 2303 pfrag->offset += *len; 2304 2305 return pfrag->page; 2306 } 2307 2308 static bool spd_can_coalesce(const struct splice_pipe_desc *spd, 2309 struct page *page, 2310 unsigned int offset) 2311 { 2312 return spd->nr_pages && 2313 spd->pages[spd->nr_pages - 1] == page && 2314 (spd->partial[spd->nr_pages - 1].offset + 2315 spd->partial[spd->nr_pages - 1].len == offset); 2316 } 2317 2318 /* 2319 * Fill page/offset/length into spd, if it can hold more pages. 2320 */ 2321 static bool spd_fill_page(struct splice_pipe_desc *spd, 2322 struct pipe_inode_info *pipe, struct page *page, 2323 unsigned int *len, unsigned int offset, 2324 bool linear, 2325 struct sock *sk) 2326 { 2327 if (unlikely(spd->nr_pages == MAX_SKB_FRAGS)) 2328 return true; 2329 2330 if (linear) { 2331 page = linear_to_page(page, len, &offset, sk); 2332 if (!page) 2333 return true; 2334 } 2335 if (spd_can_coalesce(spd, page, offset)) { 2336 spd->partial[spd->nr_pages - 1].len += *len; 2337 return false; 2338 } 2339 get_page(page); 2340 spd->pages[spd->nr_pages] = page; 2341 spd->partial[spd->nr_pages].len = *len; 2342 spd->partial[spd->nr_pages].offset = offset; 2343 spd->nr_pages++; 2344 2345 return false; 2346 } 2347 2348 static bool __splice_segment(struct page *page, unsigned int poff, 2349 unsigned int plen, unsigned int *off, 2350 unsigned int *len, 2351 struct splice_pipe_desc *spd, bool linear, 2352 struct sock *sk, 2353 struct pipe_inode_info *pipe) 2354 { 2355 if (!*len) 2356 return true; 2357 2358 /* skip this segment if already processed */ 2359 if (*off >= plen) { 2360 *off -= plen; 2361 return false; 2362 } 2363 2364 /* ignore any bits we already processed */ 2365 poff += *off; 2366 plen -= *off; 2367 *off = 0; 2368 2369 do { 2370 unsigned int flen = min(*len, plen); 2371 2372 if (spd_fill_page(spd, pipe, page, &flen, poff, 2373 linear, sk)) 2374 return true; 2375 poff += flen; 2376 plen -= flen; 2377 *len -= flen; 2378 } while (*len && plen); 2379 2380 return false; 2381 } 2382 2383 /* 2384 * Map linear and fragment data from the skb to spd. It reports true if the 2385 * pipe is full or if we already spliced the requested length. 2386 */ 2387 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe, 2388 unsigned int *offset, unsigned int *len, 2389 struct splice_pipe_desc *spd, struct sock *sk) 2390 { 2391 int seg; 2392 struct sk_buff *iter; 2393 2394 /* map the linear part : 2395 * If skb->head_frag is set, this 'linear' part is backed by a 2396 * fragment, and if the head is not shared with any clones then 2397 * we can avoid a copy since we own the head portion of this page. 2398 */ 2399 if (__splice_segment(virt_to_page(skb->data), 2400 (unsigned long) skb->data & (PAGE_SIZE - 1), 2401 skb_headlen(skb), 2402 offset, len, spd, 2403 skb_head_is_locked(skb), 2404 sk, pipe)) 2405 return true; 2406 2407 /* 2408 * then map the fragments 2409 */ 2410 for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) { 2411 const skb_frag_t *f = &skb_shinfo(skb)->frags[seg]; 2412 2413 if (__splice_segment(skb_frag_page(f), 2414 skb_frag_off(f), skb_frag_size(f), 2415 offset, len, spd, false, sk, pipe)) 2416 return true; 2417 } 2418 2419 skb_walk_frags(skb, iter) { 2420 if (*offset >= iter->len) { 2421 *offset -= iter->len; 2422 continue; 2423 } 2424 /* __skb_splice_bits() only fails if the output has no room 2425 * left, so no point in going over the frag_list for the error 2426 * case. 2427 */ 2428 if (__skb_splice_bits(iter, pipe, offset, len, spd, sk)) 2429 return true; 2430 } 2431 2432 return false; 2433 } 2434 2435 /* 2436 * Map data from the skb to a pipe. Should handle both the linear part, 2437 * the fragments, and the frag list. 2438 */ 2439 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset, 2440 struct pipe_inode_info *pipe, unsigned int tlen, 2441 unsigned int flags) 2442 { 2443 struct partial_page partial[MAX_SKB_FRAGS]; 2444 struct page *pages[MAX_SKB_FRAGS]; 2445 struct splice_pipe_desc spd = { 2446 .pages = pages, 2447 .partial = partial, 2448 .nr_pages_max = MAX_SKB_FRAGS, 2449 .ops = &nosteal_pipe_buf_ops, 2450 .spd_release = sock_spd_release, 2451 }; 2452 int ret = 0; 2453 2454 __skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk); 2455 2456 if (spd.nr_pages) 2457 ret = splice_to_pipe(pipe, &spd); 2458 2459 return ret; 2460 } 2461 EXPORT_SYMBOL_GPL(skb_splice_bits); 2462 2463 /* Send skb data on a socket. Socket must be locked. */ 2464 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset, 2465 int len) 2466 { 2467 unsigned int orig_len = len; 2468 struct sk_buff *head = skb; 2469 unsigned short fragidx; 2470 int slen, ret; 2471 2472 do_frag_list: 2473 2474 /* Deal with head data */ 2475 while (offset < skb_headlen(skb) && len) { 2476 struct kvec kv; 2477 struct msghdr msg; 2478 2479 slen = min_t(int, len, skb_headlen(skb) - offset); 2480 kv.iov_base = skb->data + offset; 2481 kv.iov_len = slen; 2482 memset(&msg, 0, sizeof(msg)); 2483 msg.msg_flags = MSG_DONTWAIT; 2484 2485 ret = kernel_sendmsg_locked(sk, &msg, &kv, 1, slen); 2486 if (ret <= 0) 2487 goto error; 2488 2489 offset += ret; 2490 len -= ret; 2491 } 2492 2493 /* All the data was skb head? */ 2494 if (!len) 2495 goto out; 2496 2497 /* Make offset relative to start of frags */ 2498 offset -= skb_headlen(skb); 2499 2500 /* Find where we are in frag list */ 2501 for (fragidx = 0; fragidx < skb_shinfo(skb)->nr_frags; fragidx++) { 2502 skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx]; 2503 2504 if (offset < skb_frag_size(frag)) 2505 break; 2506 2507 offset -= skb_frag_size(frag); 2508 } 2509 2510 for (; len && fragidx < skb_shinfo(skb)->nr_frags; fragidx++) { 2511 skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx]; 2512 2513 slen = min_t(size_t, len, skb_frag_size(frag) - offset); 2514 2515 while (slen) { 2516 ret = kernel_sendpage_locked(sk, skb_frag_page(frag), 2517 skb_frag_off(frag) + offset, 2518 slen, MSG_DONTWAIT); 2519 if (ret <= 0) 2520 goto error; 2521 2522 len -= ret; 2523 offset += ret; 2524 slen -= ret; 2525 } 2526 2527 offset = 0; 2528 } 2529 2530 if (len) { 2531 /* Process any frag lists */ 2532 2533 if (skb == head) { 2534 if (skb_has_frag_list(skb)) { 2535 skb = skb_shinfo(skb)->frag_list; 2536 goto do_frag_list; 2537 } 2538 } else if (skb->next) { 2539 skb = skb->next; 2540 goto do_frag_list; 2541 } 2542 } 2543 2544 out: 2545 return orig_len - len; 2546 2547 error: 2548 return orig_len == len ? ret : orig_len - len; 2549 } 2550 EXPORT_SYMBOL_GPL(skb_send_sock_locked); 2551 2552 /** 2553 * skb_store_bits - store bits from kernel buffer to skb 2554 * @skb: destination buffer 2555 * @offset: offset in destination 2556 * @from: source buffer 2557 * @len: number of bytes to copy 2558 * 2559 * Copy the specified number of bytes from the source buffer to the 2560 * destination skb. This function handles all the messy bits of 2561 * traversing fragment lists and such. 2562 */ 2563 2564 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len) 2565 { 2566 int start = skb_headlen(skb); 2567 struct sk_buff *frag_iter; 2568 int i, copy; 2569 2570 if (offset > (int)skb->len - len) 2571 goto fault; 2572 2573 if ((copy = start - offset) > 0) { 2574 if (copy > len) 2575 copy = len; 2576 skb_copy_to_linear_data_offset(skb, offset, from, copy); 2577 if ((len -= copy) == 0) 2578 return 0; 2579 offset += copy; 2580 from += copy; 2581 } 2582 2583 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2584 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2585 int end; 2586 2587 WARN_ON(start > offset + len); 2588 2589 end = start + skb_frag_size(frag); 2590 if ((copy = end - offset) > 0) { 2591 u32 p_off, p_len, copied; 2592 struct page *p; 2593 u8 *vaddr; 2594 2595 if (copy > len) 2596 copy = len; 2597 2598 skb_frag_foreach_page(frag, 2599 skb_frag_off(frag) + offset - start, 2600 copy, p, p_off, p_len, copied) { 2601 vaddr = kmap_atomic(p); 2602 memcpy(vaddr + p_off, from + copied, p_len); 2603 kunmap_atomic(vaddr); 2604 } 2605 2606 if ((len -= copy) == 0) 2607 return 0; 2608 offset += copy; 2609 from += copy; 2610 } 2611 start = end; 2612 } 2613 2614 skb_walk_frags(skb, frag_iter) { 2615 int end; 2616 2617 WARN_ON(start > offset + len); 2618 2619 end = start + frag_iter->len; 2620 if ((copy = end - offset) > 0) { 2621 if (copy > len) 2622 copy = len; 2623 if (skb_store_bits(frag_iter, offset - start, 2624 from, copy)) 2625 goto fault; 2626 if ((len -= copy) == 0) 2627 return 0; 2628 offset += copy; 2629 from += copy; 2630 } 2631 start = end; 2632 } 2633 if (!len) 2634 return 0; 2635 2636 fault: 2637 return -EFAULT; 2638 } 2639 EXPORT_SYMBOL(skb_store_bits); 2640 2641 /* Checksum skb data. */ 2642 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len, 2643 __wsum csum, const struct skb_checksum_ops *ops) 2644 { 2645 int start = skb_headlen(skb); 2646 int i, copy = start - offset; 2647 struct sk_buff *frag_iter; 2648 int pos = 0; 2649 2650 /* Checksum header. */ 2651 if (copy > 0) { 2652 if (copy > len) 2653 copy = len; 2654 csum = INDIRECT_CALL_1(ops->update, csum_partial_ext, 2655 skb->data + offset, copy, csum); 2656 if ((len -= copy) == 0) 2657 return csum; 2658 offset += copy; 2659 pos = copy; 2660 } 2661 2662 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2663 int end; 2664 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2665 2666 WARN_ON(start > offset + len); 2667 2668 end = start + skb_frag_size(frag); 2669 if ((copy = end - offset) > 0) { 2670 u32 p_off, p_len, copied; 2671 struct page *p; 2672 __wsum csum2; 2673 u8 *vaddr; 2674 2675 if (copy > len) 2676 copy = len; 2677 2678 skb_frag_foreach_page(frag, 2679 skb_frag_off(frag) + offset - start, 2680 copy, p, p_off, p_len, copied) { 2681 vaddr = kmap_atomic(p); 2682 csum2 = INDIRECT_CALL_1(ops->update, 2683 csum_partial_ext, 2684 vaddr + p_off, p_len, 0); 2685 kunmap_atomic(vaddr); 2686 csum = INDIRECT_CALL_1(ops->combine, 2687 csum_block_add_ext, csum, 2688 csum2, pos, p_len); 2689 pos += p_len; 2690 } 2691 2692 if (!(len -= copy)) 2693 return csum; 2694 offset += copy; 2695 } 2696 start = end; 2697 } 2698 2699 skb_walk_frags(skb, frag_iter) { 2700 int end; 2701 2702 WARN_ON(start > offset + len); 2703 2704 end = start + frag_iter->len; 2705 if ((copy = end - offset) > 0) { 2706 __wsum csum2; 2707 if (copy > len) 2708 copy = len; 2709 csum2 = __skb_checksum(frag_iter, offset - start, 2710 copy, 0, ops); 2711 csum = INDIRECT_CALL_1(ops->combine, csum_block_add_ext, 2712 csum, csum2, pos, copy); 2713 if ((len -= copy) == 0) 2714 return csum; 2715 offset += copy; 2716 pos += copy; 2717 } 2718 start = end; 2719 } 2720 BUG_ON(len); 2721 2722 return csum; 2723 } 2724 EXPORT_SYMBOL(__skb_checksum); 2725 2726 __wsum skb_checksum(const struct sk_buff *skb, int offset, 2727 int len, __wsum csum) 2728 { 2729 const struct skb_checksum_ops ops = { 2730 .update = csum_partial_ext, 2731 .combine = csum_block_add_ext, 2732 }; 2733 2734 return __skb_checksum(skb, offset, len, csum, &ops); 2735 } 2736 EXPORT_SYMBOL(skb_checksum); 2737 2738 /* Both of above in one bottle. */ 2739 2740 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, 2741 u8 *to, int len) 2742 { 2743 int start = skb_headlen(skb); 2744 int i, copy = start - offset; 2745 struct sk_buff *frag_iter; 2746 int pos = 0; 2747 __wsum csum = 0; 2748 2749 /* Copy header. */ 2750 if (copy > 0) { 2751 if (copy > len) 2752 copy = len; 2753 csum = csum_partial_copy_nocheck(skb->data + offset, to, 2754 copy); 2755 if ((len -= copy) == 0) 2756 return csum; 2757 offset += copy; 2758 to += copy; 2759 pos = copy; 2760 } 2761 2762 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2763 int end; 2764 2765 WARN_ON(start > offset + len); 2766 2767 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]); 2768 if ((copy = end - offset) > 0) { 2769 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2770 u32 p_off, p_len, copied; 2771 struct page *p; 2772 __wsum csum2; 2773 u8 *vaddr; 2774 2775 if (copy > len) 2776 copy = len; 2777 2778 skb_frag_foreach_page(frag, 2779 skb_frag_off(frag) + offset - start, 2780 copy, p, p_off, p_len, copied) { 2781 vaddr = kmap_atomic(p); 2782 csum2 = csum_partial_copy_nocheck(vaddr + p_off, 2783 to + copied, 2784 p_len); 2785 kunmap_atomic(vaddr); 2786 csum = csum_block_add(csum, csum2, pos); 2787 pos += p_len; 2788 } 2789 2790 if (!(len -= copy)) 2791 return csum; 2792 offset += copy; 2793 to += copy; 2794 } 2795 start = end; 2796 } 2797 2798 skb_walk_frags(skb, frag_iter) { 2799 __wsum csum2; 2800 int end; 2801 2802 WARN_ON(start > offset + len); 2803 2804 end = start + frag_iter->len; 2805 if ((copy = end - offset) > 0) { 2806 if (copy > len) 2807 copy = len; 2808 csum2 = skb_copy_and_csum_bits(frag_iter, 2809 offset - start, 2810 to, copy); 2811 csum = csum_block_add(csum, csum2, pos); 2812 if ((len -= copy) == 0) 2813 return csum; 2814 offset += copy; 2815 to += copy; 2816 pos += copy; 2817 } 2818 start = end; 2819 } 2820 BUG_ON(len); 2821 return csum; 2822 } 2823 EXPORT_SYMBOL(skb_copy_and_csum_bits); 2824 2825 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len) 2826 { 2827 __sum16 sum; 2828 2829 sum = csum_fold(skb_checksum(skb, 0, len, skb->csum)); 2830 /* See comments in __skb_checksum_complete(). */ 2831 if (likely(!sum)) { 2832 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) && 2833 !skb->csum_complete_sw) 2834 netdev_rx_csum_fault(skb->dev, skb); 2835 } 2836 if (!skb_shared(skb)) 2837 skb->csum_valid = !sum; 2838 return sum; 2839 } 2840 EXPORT_SYMBOL(__skb_checksum_complete_head); 2841 2842 /* This function assumes skb->csum already holds pseudo header's checksum, 2843 * which has been changed from the hardware checksum, for example, by 2844 * __skb_checksum_validate_complete(). And, the original skb->csum must 2845 * have been validated unsuccessfully for CHECKSUM_COMPLETE case. 2846 * 2847 * It returns non-zero if the recomputed checksum is still invalid, otherwise 2848 * zero. The new checksum is stored back into skb->csum unless the skb is 2849 * shared. 2850 */ 2851 __sum16 __skb_checksum_complete(struct sk_buff *skb) 2852 { 2853 __wsum csum; 2854 __sum16 sum; 2855 2856 csum = skb_checksum(skb, 0, skb->len, 0); 2857 2858 sum = csum_fold(csum_add(skb->csum, csum)); 2859 /* This check is inverted, because we already knew the hardware 2860 * checksum is invalid before calling this function. So, if the 2861 * re-computed checksum is valid instead, then we have a mismatch 2862 * between the original skb->csum and skb_checksum(). This means either 2863 * the original hardware checksum is incorrect or we screw up skb->csum 2864 * when moving skb->data around. 2865 */ 2866 if (likely(!sum)) { 2867 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) && 2868 !skb->csum_complete_sw) 2869 netdev_rx_csum_fault(skb->dev, skb); 2870 } 2871 2872 if (!skb_shared(skb)) { 2873 /* Save full packet checksum */ 2874 skb->csum = csum; 2875 skb->ip_summed = CHECKSUM_COMPLETE; 2876 skb->csum_complete_sw = 1; 2877 skb->csum_valid = !sum; 2878 } 2879 2880 return sum; 2881 } 2882 EXPORT_SYMBOL(__skb_checksum_complete); 2883 2884 static __wsum warn_crc32c_csum_update(const void *buff, int len, __wsum sum) 2885 { 2886 net_warn_ratelimited( 2887 "%s: attempt to compute crc32c without libcrc32c.ko\n", 2888 __func__); 2889 return 0; 2890 } 2891 2892 static __wsum warn_crc32c_csum_combine(__wsum csum, __wsum csum2, 2893 int offset, int len) 2894 { 2895 net_warn_ratelimited( 2896 "%s: attempt to compute crc32c without libcrc32c.ko\n", 2897 __func__); 2898 return 0; 2899 } 2900 2901 static const struct skb_checksum_ops default_crc32c_ops = { 2902 .update = warn_crc32c_csum_update, 2903 .combine = warn_crc32c_csum_combine, 2904 }; 2905 2906 const struct skb_checksum_ops *crc32c_csum_stub __read_mostly = 2907 &default_crc32c_ops; 2908 EXPORT_SYMBOL(crc32c_csum_stub); 2909 2910 /** 2911 * skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy() 2912 * @from: source buffer 2913 * 2914 * Calculates the amount of linear headroom needed in the 'to' skb passed 2915 * into skb_zerocopy(). 2916 */ 2917 unsigned int 2918 skb_zerocopy_headlen(const struct sk_buff *from) 2919 { 2920 unsigned int hlen = 0; 2921 2922 if (!from->head_frag || 2923 skb_headlen(from) < L1_CACHE_BYTES || 2924 skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS) 2925 hlen = skb_headlen(from); 2926 2927 if (skb_has_frag_list(from)) 2928 hlen = from->len; 2929 2930 return hlen; 2931 } 2932 EXPORT_SYMBOL_GPL(skb_zerocopy_headlen); 2933 2934 /** 2935 * skb_zerocopy - Zero copy skb to skb 2936 * @to: destination buffer 2937 * @from: source buffer 2938 * @len: number of bytes to copy from source buffer 2939 * @hlen: size of linear headroom in destination buffer 2940 * 2941 * Copies up to `len` bytes from `from` to `to` by creating references 2942 * to the frags in the source buffer. 2943 * 2944 * The `hlen` as calculated by skb_zerocopy_headlen() specifies the 2945 * headroom in the `to` buffer. 2946 * 2947 * Return value: 2948 * 0: everything is OK 2949 * -ENOMEM: couldn't orphan frags of @from due to lack of memory 2950 * -EFAULT: skb_copy_bits() found some problem with skb geometry 2951 */ 2952 int 2953 skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen) 2954 { 2955 int i, j = 0; 2956 int plen = 0; /* length of skb->head fragment */ 2957 int ret; 2958 struct page *page; 2959 unsigned int offset; 2960 2961 BUG_ON(!from->head_frag && !hlen); 2962 2963 /* dont bother with small payloads */ 2964 if (len <= skb_tailroom(to)) 2965 return skb_copy_bits(from, 0, skb_put(to, len), len); 2966 2967 if (hlen) { 2968 ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen); 2969 if (unlikely(ret)) 2970 return ret; 2971 len -= hlen; 2972 } else { 2973 plen = min_t(int, skb_headlen(from), len); 2974 if (plen) { 2975 page = virt_to_head_page(from->head); 2976 offset = from->data - (unsigned char *)page_address(page); 2977 __skb_fill_page_desc(to, 0, page, offset, plen); 2978 get_page(page); 2979 j = 1; 2980 len -= plen; 2981 } 2982 } 2983 2984 to->truesize += len + plen; 2985 to->len += len + plen; 2986 to->data_len += len + plen; 2987 2988 if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) { 2989 skb_tx_error(from); 2990 return -ENOMEM; 2991 } 2992 skb_zerocopy_clone(to, from, GFP_ATOMIC); 2993 2994 for (i = 0; i < skb_shinfo(from)->nr_frags; i++) { 2995 int size; 2996 2997 if (!len) 2998 break; 2999 skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i]; 3000 size = min_t(int, skb_frag_size(&skb_shinfo(to)->frags[j]), 3001 len); 3002 skb_frag_size_set(&skb_shinfo(to)->frags[j], size); 3003 len -= size; 3004 skb_frag_ref(to, j); 3005 j++; 3006 } 3007 skb_shinfo(to)->nr_frags = j; 3008 3009 return 0; 3010 } 3011 EXPORT_SYMBOL_GPL(skb_zerocopy); 3012 3013 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to) 3014 { 3015 __wsum csum; 3016 long csstart; 3017 3018 if (skb->ip_summed == CHECKSUM_PARTIAL) 3019 csstart = skb_checksum_start_offset(skb); 3020 else 3021 csstart = skb_headlen(skb); 3022 3023 BUG_ON(csstart > skb_headlen(skb)); 3024 3025 skb_copy_from_linear_data(skb, to, csstart); 3026 3027 csum = 0; 3028 if (csstart != skb->len) 3029 csum = skb_copy_and_csum_bits(skb, csstart, to + csstart, 3030 skb->len - csstart); 3031 3032 if (skb->ip_summed == CHECKSUM_PARTIAL) { 3033 long csstuff = csstart + skb->csum_offset; 3034 3035 *((__sum16 *)(to + csstuff)) = csum_fold(csum); 3036 } 3037 } 3038 EXPORT_SYMBOL(skb_copy_and_csum_dev); 3039 3040 /** 3041 * skb_dequeue - remove from the head of the queue 3042 * @list: list to dequeue from 3043 * 3044 * Remove the head of the list. The list lock is taken so the function 3045 * may be used safely with other locking list functions. The head item is 3046 * returned or %NULL if the list is empty. 3047 */ 3048 3049 struct sk_buff *skb_dequeue(struct sk_buff_head *list) 3050 { 3051 unsigned long flags; 3052 struct sk_buff *result; 3053 3054 spin_lock_irqsave(&list->lock, flags); 3055 result = __skb_dequeue(list); 3056 spin_unlock_irqrestore(&list->lock, flags); 3057 return result; 3058 } 3059 EXPORT_SYMBOL(skb_dequeue); 3060 3061 /** 3062 * skb_dequeue_tail - remove from the tail of the queue 3063 * @list: list to dequeue from 3064 * 3065 * Remove the tail of the list. The list lock is taken so the function 3066 * may be used safely with other locking list functions. The tail item is 3067 * returned or %NULL if the list is empty. 3068 */ 3069 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list) 3070 { 3071 unsigned long flags; 3072 struct sk_buff *result; 3073 3074 spin_lock_irqsave(&list->lock, flags); 3075 result = __skb_dequeue_tail(list); 3076 spin_unlock_irqrestore(&list->lock, flags); 3077 return result; 3078 } 3079 EXPORT_SYMBOL(skb_dequeue_tail); 3080 3081 /** 3082 * skb_queue_purge - empty a list 3083 * @list: list to empty 3084 * 3085 * Delete all buffers on an &sk_buff list. Each buffer is removed from 3086 * the list and one reference dropped. This function takes the list 3087 * lock and is atomic with respect to other list locking functions. 3088 */ 3089 void skb_queue_purge(struct sk_buff_head *list) 3090 { 3091 struct sk_buff *skb; 3092 while ((skb = skb_dequeue(list)) != NULL) 3093 kfree_skb(skb); 3094 } 3095 EXPORT_SYMBOL(skb_queue_purge); 3096 3097 /** 3098 * skb_rbtree_purge - empty a skb rbtree 3099 * @root: root of the rbtree to empty 3100 * Return value: the sum of truesizes of all purged skbs. 3101 * 3102 * Delete all buffers on an &sk_buff rbtree. Each buffer is removed from 3103 * the list and one reference dropped. This function does not take 3104 * any lock. Synchronization should be handled by the caller (e.g., TCP 3105 * out-of-order queue is protected by the socket lock). 3106 */ 3107 unsigned int skb_rbtree_purge(struct rb_root *root) 3108 { 3109 struct rb_node *p = rb_first(root); 3110 unsigned int sum = 0; 3111 3112 while (p) { 3113 struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode); 3114 3115 p = rb_next(p); 3116 rb_erase(&skb->rbnode, root); 3117 sum += skb->truesize; 3118 kfree_skb(skb); 3119 } 3120 return sum; 3121 } 3122 3123 /** 3124 * skb_queue_head - queue a buffer at the list head 3125 * @list: list to use 3126 * @newsk: buffer to queue 3127 * 3128 * Queue a buffer at the start of the list. This function takes the 3129 * list lock and can be used safely with other locking &sk_buff functions 3130 * safely. 3131 * 3132 * A buffer cannot be placed on two lists at the same time. 3133 */ 3134 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk) 3135 { 3136 unsigned long flags; 3137 3138 spin_lock_irqsave(&list->lock, flags); 3139 __skb_queue_head(list, newsk); 3140 spin_unlock_irqrestore(&list->lock, flags); 3141 } 3142 EXPORT_SYMBOL(skb_queue_head); 3143 3144 /** 3145 * skb_queue_tail - queue a buffer at the list tail 3146 * @list: list to use 3147 * @newsk: buffer to queue 3148 * 3149 * Queue a buffer at the tail of the list. This function takes the 3150 * list lock and can be used safely with other locking &sk_buff functions 3151 * safely. 3152 * 3153 * A buffer cannot be placed on two lists at the same time. 3154 */ 3155 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk) 3156 { 3157 unsigned long flags; 3158 3159 spin_lock_irqsave(&list->lock, flags); 3160 __skb_queue_tail(list, newsk); 3161 spin_unlock_irqrestore(&list->lock, flags); 3162 } 3163 EXPORT_SYMBOL(skb_queue_tail); 3164 3165 /** 3166 * skb_unlink - remove a buffer from a list 3167 * @skb: buffer to remove 3168 * @list: list to use 3169 * 3170 * Remove a packet from a list. The list locks are taken and this 3171 * function is atomic with respect to other list locked calls 3172 * 3173 * You must know what list the SKB is on. 3174 */ 3175 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list) 3176 { 3177 unsigned long flags; 3178 3179 spin_lock_irqsave(&list->lock, flags); 3180 __skb_unlink(skb, list); 3181 spin_unlock_irqrestore(&list->lock, flags); 3182 } 3183 EXPORT_SYMBOL(skb_unlink); 3184 3185 /** 3186 * skb_append - append a buffer 3187 * @old: buffer to insert after 3188 * @newsk: buffer to insert 3189 * @list: list to use 3190 * 3191 * Place a packet after a given packet in a list. The list locks are taken 3192 * and this function is atomic with respect to other list locked calls. 3193 * A buffer cannot be placed on two lists at the same time. 3194 */ 3195 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list) 3196 { 3197 unsigned long flags; 3198 3199 spin_lock_irqsave(&list->lock, flags); 3200 __skb_queue_after(list, old, newsk); 3201 spin_unlock_irqrestore(&list->lock, flags); 3202 } 3203 EXPORT_SYMBOL(skb_append); 3204 3205 static inline void skb_split_inside_header(struct sk_buff *skb, 3206 struct sk_buff* skb1, 3207 const u32 len, const int pos) 3208 { 3209 int i; 3210 3211 skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len), 3212 pos - len); 3213 /* And move data appendix as is. */ 3214 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 3215 skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i]; 3216 3217 skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags; 3218 skb_shinfo(skb)->nr_frags = 0; 3219 skb1->data_len = skb->data_len; 3220 skb1->len += skb1->data_len; 3221 skb->data_len = 0; 3222 skb->len = len; 3223 skb_set_tail_pointer(skb, len); 3224 } 3225 3226 static inline void skb_split_no_header(struct sk_buff *skb, 3227 struct sk_buff* skb1, 3228 const u32 len, int pos) 3229 { 3230 int i, k = 0; 3231 const int nfrags = skb_shinfo(skb)->nr_frags; 3232 3233 skb_shinfo(skb)->nr_frags = 0; 3234 skb1->len = skb1->data_len = skb->len - len; 3235 skb->len = len; 3236 skb->data_len = len - pos; 3237 3238 for (i = 0; i < nfrags; i++) { 3239 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 3240 3241 if (pos + size > len) { 3242 skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i]; 3243 3244 if (pos < len) { 3245 /* Split frag. 3246 * We have two variants in this case: 3247 * 1. Move all the frag to the second 3248 * part, if it is possible. F.e. 3249 * this approach is mandatory for TUX, 3250 * where splitting is expensive. 3251 * 2. Split is accurately. We make this. 3252 */ 3253 skb_frag_ref(skb, i); 3254 skb_frag_off_add(&skb_shinfo(skb1)->frags[0], len - pos); 3255 skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos); 3256 skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos); 3257 skb_shinfo(skb)->nr_frags++; 3258 } 3259 k++; 3260 } else 3261 skb_shinfo(skb)->nr_frags++; 3262 pos += size; 3263 } 3264 skb_shinfo(skb1)->nr_frags = k; 3265 } 3266 3267 /** 3268 * skb_split - Split fragmented skb to two parts at length len. 3269 * @skb: the buffer to split 3270 * @skb1: the buffer to receive the second part 3271 * @len: new length for skb 3272 */ 3273 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len) 3274 { 3275 int pos = skb_headlen(skb); 3276 3277 skb_shinfo(skb1)->flags |= skb_shinfo(skb)->flags & SKBFL_SHARED_FRAG; 3278 skb_zerocopy_clone(skb1, skb, 0); 3279 if (len < pos) /* Split line is inside header. */ 3280 skb_split_inside_header(skb, skb1, len, pos); 3281 else /* Second chunk has no header, nothing to copy. */ 3282 skb_split_no_header(skb, skb1, len, pos); 3283 } 3284 EXPORT_SYMBOL(skb_split); 3285 3286 /* Shifting from/to a cloned skb is a no-go. 3287 * 3288 * Caller cannot keep skb_shinfo related pointers past calling here! 3289 */ 3290 static int skb_prepare_for_shift(struct sk_buff *skb) 3291 { 3292 return skb_cloned(skb) && pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 3293 } 3294 3295 /** 3296 * skb_shift - Shifts paged data partially from skb to another 3297 * @tgt: buffer into which tail data gets added 3298 * @skb: buffer from which the paged data comes from 3299 * @shiftlen: shift up to this many bytes 3300 * 3301 * Attempts to shift up to shiftlen worth of bytes, which may be less than 3302 * the length of the skb, from skb to tgt. Returns number bytes shifted. 3303 * It's up to caller to free skb if everything was shifted. 3304 * 3305 * If @tgt runs out of frags, the whole operation is aborted. 3306 * 3307 * Skb cannot include anything else but paged data while tgt is allowed 3308 * to have non-paged data as well. 3309 * 3310 * TODO: full sized shift could be optimized but that would need 3311 * specialized skb free'er to handle frags without up-to-date nr_frags. 3312 */ 3313 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen) 3314 { 3315 int from, to, merge, todo; 3316 skb_frag_t *fragfrom, *fragto; 3317 3318 BUG_ON(shiftlen > skb->len); 3319 3320 if (skb_headlen(skb)) 3321 return 0; 3322 if (skb_zcopy(tgt) || skb_zcopy(skb)) 3323 return 0; 3324 3325 todo = shiftlen; 3326 from = 0; 3327 to = skb_shinfo(tgt)->nr_frags; 3328 fragfrom = &skb_shinfo(skb)->frags[from]; 3329 3330 /* Actual merge is delayed until the point when we know we can 3331 * commit all, so that we don't have to undo partial changes 3332 */ 3333 if (!to || 3334 !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom), 3335 skb_frag_off(fragfrom))) { 3336 merge = -1; 3337 } else { 3338 merge = to - 1; 3339 3340 todo -= skb_frag_size(fragfrom); 3341 if (todo < 0) { 3342 if (skb_prepare_for_shift(skb) || 3343 skb_prepare_for_shift(tgt)) 3344 return 0; 3345 3346 /* All previous frag pointers might be stale! */ 3347 fragfrom = &skb_shinfo(skb)->frags[from]; 3348 fragto = &skb_shinfo(tgt)->frags[merge]; 3349 3350 skb_frag_size_add(fragto, shiftlen); 3351 skb_frag_size_sub(fragfrom, shiftlen); 3352 skb_frag_off_add(fragfrom, shiftlen); 3353 3354 goto onlymerged; 3355 } 3356 3357 from++; 3358 } 3359 3360 /* Skip full, not-fitting skb to avoid expensive operations */ 3361 if ((shiftlen == skb->len) && 3362 (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to)) 3363 return 0; 3364 3365 if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt)) 3366 return 0; 3367 3368 while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) { 3369 if (to == MAX_SKB_FRAGS) 3370 return 0; 3371 3372 fragfrom = &skb_shinfo(skb)->frags[from]; 3373 fragto = &skb_shinfo(tgt)->frags[to]; 3374 3375 if (todo >= skb_frag_size(fragfrom)) { 3376 *fragto = *fragfrom; 3377 todo -= skb_frag_size(fragfrom); 3378 from++; 3379 to++; 3380 3381 } else { 3382 __skb_frag_ref(fragfrom); 3383 skb_frag_page_copy(fragto, fragfrom); 3384 skb_frag_off_copy(fragto, fragfrom); 3385 skb_frag_size_set(fragto, todo); 3386 3387 skb_frag_off_add(fragfrom, todo); 3388 skb_frag_size_sub(fragfrom, todo); 3389 todo = 0; 3390 3391 to++; 3392 break; 3393 } 3394 } 3395 3396 /* Ready to "commit" this state change to tgt */ 3397 skb_shinfo(tgt)->nr_frags = to; 3398 3399 if (merge >= 0) { 3400 fragfrom = &skb_shinfo(skb)->frags[0]; 3401 fragto = &skb_shinfo(tgt)->frags[merge]; 3402 3403 skb_frag_size_add(fragto, skb_frag_size(fragfrom)); 3404 __skb_frag_unref(fragfrom); 3405 } 3406 3407 /* Reposition in the original skb */ 3408 to = 0; 3409 while (from < skb_shinfo(skb)->nr_frags) 3410 skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++]; 3411 skb_shinfo(skb)->nr_frags = to; 3412 3413 BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags); 3414 3415 onlymerged: 3416 /* Most likely the tgt won't ever need its checksum anymore, skb on 3417 * the other hand might need it if it needs to be resent 3418 */ 3419 tgt->ip_summed = CHECKSUM_PARTIAL; 3420 skb->ip_summed = CHECKSUM_PARTIAL; 3421 3422 /* Yak, is it really working this way? Some helper please? */ 3423 skb->len -= shiftlen; 3424 skb->data_len -= shiftlen; 3425 skb->truesize -= shiftlen; 3426 tgt->len += shiftlen; 3427 tgt->data_len += shiftlen; 3428 tgt->truesize += shiftlen; 3429 3430 return shiftlen; 3431 } 3432 3433 /** 3434 * skb_prepare_seq_read - Prepare a sequential read of skb data 3435 * @skb: the buffer to read 3436 * @from: lower offset of data to be read 3437 * @to: upper offset of data to be read 3438 * @st: state variable 3439 * 3440 * Initializes the specified state variable. Must be called before 3441 * invoking skb_seq_read() for the first time. 3442 */ 3443 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from, 3444 unsigned int to, struct skb_seq_state *st) 3445 { 3446 st->lower_offset = from; 3447 st->upper_offset = to; 3448 st->root_skb = st->cur_skb = skb; 3449 st->frag_idx = st->stepped_offset = 0; 3450 st->frag_data = NULL; 3451 st->frag_off = 0; 3452 } 3453 EXPORT_SYMBOL(skb_prepare_seq_read); 3454 3455 /** 3456 * skb_seq_read - Sequentially read skb data 3457 * @consumed: number of bytes consumed by the caller so far 3458 * @data: destination pointer for data to be returned 3459 * @st: state variable 3460 * 3461 * Reads a block of skb data at @consumed relative to the 3462 * lower offset specified to skb_prepare_seq_read(). Assigns 3463 * the head of the data block to @data and returns the length 3464 * of the block or 0 if the end of the skb data or the upper 3465 * offset has been reached. 3466 * 3467 * The caller is not required to consume all of the data 3468 * returned, i.e. @consumed is typically set to the number 3469 * of bytes already consumed and the next call to 3470 * skb_seq_read() will return the remaining part of the block. 3471 * 3472 * Note 1: The size of each block of data returned can be arbitrary, 3473 * this limitation is the cost for zerocopy sequential 3474 * reads of potentially non linear data. 3475 * 3476 * Note 2: Fragment lists within fragments are not implemented 3477 * at the moment, state->root_skb could be replaced with 3478 * a stack for this purpose. 3479 */ 3480 unsigned int skb_seq_read(unsigned int consumed, const u8 **data, 3481 struct skb_seq_state *st) 3482 { 3483 unsigned int block_limit, abs_offset = consumed + st->lower_offset; 3484 skb_frag_t *frag; 3485 3486 if (unlikely(abs_offset >= st->upper_offset)) { 3487 if (st->frag_data) { 3488 kunmap_atomic(st->frag_data); 3489 st->frag_data = NULL; 3490 } 3491 return 0; 3492 } 3493 3494 next_skb: 3495 block_limit = skb_headlen(st->cur_skb) + st->stepped_offset; 3496 3497 if (abs_offset < block_limit && !st->frag_data) { 3498 *data = st->cur_skb->data + (abs_offset - st->stepped_offset); 3499 return block_limit - abs_offset; 3500 } 3501 3502 if (st->frag_idx == 0 && !st->frag_data) 3503 st->stepped_offset += skb_headlen(st->cur_skb); 3504 3505 while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) { 3506 unsigned int pg_idx, pg_off, pg_sz; 3507 3508 frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx]; 3509 3510 pg_idx = 0; 3511 pg_off = skb_frag_off(frag); 3512 pg_sz = skb_frag_size(frag); 3513 3514 if (skb_frag_must_loop(skb_frag_page(frag))) { 3515 pg_idx = (pg_off + st->frag_off) >> PAGE_SHIFT; 3516 pg_off = offset_in_page(pg_off + st->frag_off); 3517 pg_sz = min_t(unsigned int, pg_sz - st->frag_off, 3518 PAGE_SIZE - pg_off); 3519 } 3520 3521 block_limit = pg_sz + st->stepped_offset; 3522 if (abs_offset < block_limit) { 3523 if (!st->frag_data) 3524 st->frag_data = kmap_atomic(skb_frag_page(frag) + pg_idx); 3525 3526 *data = (u8 *)st->frag_data + pg_off + 3527 (abs_offset - st->stepped_offset); 3528 3529 return block_limit - abs_offset; 3530 } 3531 3532 if (st->frag_data) { 3533 kunmap_atomic(st->frag_data); 3534 st->frag_data = NULL; 3535 } 3536 3537 st->stepped_offset += pg_sz; 3538 st->frag_off += pg_sz; 3539 if (st->frag_off == skb_frag_size(frag)) { 3540 st->frag_off = 0; 3541 st->frag_idx++; 3542 } 3543 } 3544 3545 if (st->frag_data) { 3546 kunmap_atomic(st->frag_data); 3547 st->frag_data = NULL; 3548 } 3549 3550 if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) { 3551 st->cur_skb = skb_shinfo(st->root_skb)->frag_list; 3552 st->frag_idx = 0; 3553 goto next_skb; 3554 } else if (st->cur_skb->next) { 3555 st->cur_skb = st->cur_skb->next; 3556 st->frag_idx = 0; 3557 goto next_skb; 3558 } 3559 3560 return 0; 3561 } 3562 EXPORT_SYMBOL(skb_seq_read); 3563 3564 /** 3565 * skb_abort_seq_read - Abort a sequential read of skb data 3566 * @st: state variable 3567 * 3568 * Must be called if skb_seq_read() was not called until it 3569 * returned 0. 3570 */ 3571 void skb_abort_seq_read(struct skb_seq_state *st) 3572 { 3573 if (st->frag_data) 3574 kunmap_atomic(st->frag_data); 3575 } 3576 EXPORT_SYMBOL(skb_abort_seq_read); 3577 3578 #define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb)) 3579 3580 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text, 3581 struct ts_config *conf, 3582 struct ts_state *state) 3583 { 3584 return skb_seq_read(offset, text, TS_SKB_CB(state)); 3585 } 3586 3587 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state) 3588 { 3589 skb_abort_seq_read(TS_SKB_CB(state)); 3590 } 3591 3592 /** 3593 * skb_find_text - Find a text pattern in skb data 3594 * @skb: the buffer to look in 3595 * @from: search offset 3596 * @to: search limit 3597 * @config: textsearch configuration 3598 * 3599 * Finds a pattern in the skb data according to the specified 3600 * textsearch configuration. Use textsearch_next() to retrieve 3601 * subsequent occurrences of the pattern. Returns the offset 3602 * to the first occurrence or UINT_MAX if no match was found. 3603 */ 3604 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from, 3605 unsigned int to, struct ts_config *config) 3606 { 3607 struct ts_state state; 3608 unsigned int ret; 3609 3610 config->get_next_block = skb_ts_get_next_block; 3611 config->finish = skb_ts_finish; 3612 3613 skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state)); 3614 3615 ret = textsearch_find(config, &state); 3616 return (ret <= to - from ? ret : UINT_MAX); 3617 } 3618 EXPORT_SYMBOL(skb_find_text); 3619 3620 int skb_append_pagefrags(struct sk_buff *skb, struct page *page, 3621 int offset, size_t size) 3622 { 3623 int i = skb_shinfo(skb)->nr_frags; 3624 3625 if (skb_can_coalesce(skb, i, page, offset)) { 3626 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size); 3627 } else if (i < MAX_SKB_FRAGS) { 3628 get_page(page); 3629 skb_fill_page_desc(skb, i, page, offset, size); 3630 } else { 3631 return -EMSGSIZE; 3632 } 3633 3634 return 0; 3635 } 3636 EXPORT_SYMBOL_GPL(skb_append_pagefrags); 3637 3638 /** 3639 * skb_pull_rcsum - pull skb and update receive checksum 3640 * @skb: buffer to update 3641 * @len: length of data pulled 3642 * 3643 * This function performs an skb_pull on the packet and updates 3644 * the CHECKSUM_COMPLETE checksum. It should be used on 3645 * receive path processing instead of skb_pull unless you know 3646 * that the checksum difference is zero (e.g., a valid IP header) 3647 * or you are setting ip_summed to CHECKSUM_NONE. 3648 */ 3649 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len) 3650 { 3651 unsigned char *data = skb->data; 3652 3653 BUG_ON(len > skb->len); 3654 __skb_pull(skb, len); 3655 skb_postpull_rcsum(skb, data, len); 3656 return skb->data; 3657 } 3658 EXPORT_SYMBOL_GPL(skb_pull_rcsum); 3659 3660 static inline skb_frag_t skb_head_frag_to_page_desc(struct sk_buff *frag_skb) 3661 { 3662 skb_frag_t head_frag; 3663 struct page *page; 3664 3665 page = virt_to_head_page(frag_skb->head); 3666 __skb_frag_set_page(&head_frag, page); 3667 skb_frag_off_set(&head_frag, frag_skb->data - 3668 (unsigned char *)page_address(page)); 3669 skb_frag_size_set(&head_frag, skb_headlen(frag_skb)); 3670 return head_frag; 3671 } 3672 3673 struct sk_buff *skb_segment_list(struct sk_buff *skb, 3674 netdev_features_t features, 3675 unsigned int offset) 3676 { 3677 struct sk_buff *list_skb = skb_shinfo(skb)->frag_list; 3678 unsigned int tnl_hlen = skb_tnl_header_len(skb); 3679 unsigned int delta_truesize = 0; 3680 unsigned int delta_len = 0; 3681 struct sk_buff *tail = NULL; 3682 struct sk_buff *nskb, *tmp; 3683 int err; 3684 3685 skb_push(skb, -skb_network_offset(skb) + offset); 3686 3687 skb_shinfo(skb)->frag_list = NULL; 3688 3689 do { 3690 nskb = list_skb; 3691 list_skb = list_skb->next; 3692 3693 err = 0; 3694 if (skb_shared(nskb)) { 3695 tmp = skb_clone(nskb, GFP_ATOMIC); 3696 if (tmp) { 3697 consume_skb(nskb); 3698 nskb = tmp; 3699 err = skb_unclone(nskb, GFP_ATOMIC); 3700 } else { 3701 err = -ENOMEM; 3702 } 3703 } 3704 3705 if (!tail) 3706 skb->next = nskb; 3707 else 3708 tail->next = nskb; 3709 3710 if (unlikely(err)) { 3711 nskb->next = list_skb; 3712 goto err_linearize; 3713 } 3714 3715 tail = nskb; 3716 3717 delta_len += nskb->len; 3718 delta_truesize += nskb->truesize; 3719 3720 skb_push(nskb, -skb_network_offset(nskb) + offset); 3721 3722 skb_release_head_state(nskb); 3723 __copy_skb_header(nskb, skb); 3724 3725 skb_headers_offset_update(nskb, skb_headroom(nskb) - skb_headroom(skb)); 3726 skb_copy_from_linear_data_offset(skb, -tnl_hlen, 3727 nskb->data - tnl_hlen, 3728 offset + tnl_hlen); 3729 3730 if (skb_needs_linearize(nskb, features) && 3731 __skb_linearize(nskb)) 3732 goto err_linearize; 3733 3734 } while (list_skb); 3735 3736 skb->truesize = skb->truesize - delta_truesize; 3737 skb->data_len = skb->data_len - delta_len; 3738 skb->len = skb->len - delta_len; 3739 3740 skb_gso_reset(skb); 3741 3742 skb->prev = tail; 3743 3744 if (skb_needs_linearize(skb, features) && 3745 __skb_linearize(skb)) 3746 goto err_linearize; 3747 3748 skb_get(skb); 3749 3750 return skb; 3751 3752 err_linearize: 3753 kfree_skb_list(skb->next); 3754 skb->next = NULL; 3755 return ERR_PTR(-ENOMEM); 3756 } 3757 EXPORT_SYMBOL_GPL(skb_segment_list); 3758 3759 int skb_gro_receive_list(struct sk_buff *p, struct sk_buff *skb) 3760 { 3761 if (unlikely(p->len + skb->len >= 65536)) 3762 return -E2BIG; 3763 3764 if (NAPI_GRO_CB(p)->last == p) 3765 skb_shinfo(p)->frag_list = skb; 3766 else 3767 NAPI_GRO_CB(p)->last->next = skb; 3768 3769 skb_pull(skb, skb_gro_offset(skb)); 3770 3771 NAPI_GRO_CB(p)->last = skb; 3772 NAPI_GRO_CB(p)->count++; 3773 p->data_len += skb->len; 3774 p->truesize += skb->truesize; 3775 p->len += skb->len; 3776 3777 NAPI_GRO_CB(skb)->same_flow = 1; 3778 3779 return 0; 3780 } 3781 3782 /** 3783 * skb_segment - Perform protocol segmentation on skb. 3784 * @head_skb: buffer to segment 3785 * @features: features for the output path (see dev->features) 3786 * 3787 * This function performs segmentation on the given skb. It returns 3788 * a pointer to the first in a list of new skbs for the segments. 3789 * In case of error it returns ERR_PTR(err). 3790 */ 3791 struct sk_buff *skb_segment(struct sk_buff *head_skb, 3792 netdev_features_t features) 3793 { 3794 struct sk_buff *segs = NULL; 3795 struct sk_buff *tail = NULL; 3796 struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list; 3797 skb_frag_t *frag = skb_shinfo(head_skb)->frags; 3798 unsigned int mss = skb_shinfo(head_skb)->gso_size; 3799 unsigned int doffset = head_skb->data - skb_mac_header(head_skb); 3800 struct sk_buff *frag_skb = head_skb; 3801 unsigned int offset = doffset; 3802 unsigned int tnl_hlen = skb_tnl_header_len(head_skb); 3803 unsigned int partial_segs = 0; 3804 unsigned int headroom; 3805 unsigned int len = head_skb->len; 3806 __be16 proto; 3807 bool csum, sg; 3808 int nfrags = skb_shinfo(head_skb)->nr_frags; 3809 int err = -ENOMEM; 3810 int i = 0; 3811 int pos; 3812 3813 if (list_skb && !list_skb->head_frag && skb_headlen(list_skb) && 3814 (skb_shinfo(head_skb)->gso_type & SKB_GSO_DODGY)) { 3815 /* gso_size is untrusted, and we have a frag_list with a linear 3816 * non head_frag head. 3817 * 3818 * (we assume checking the first list_skb member suffices; 3819 * i.e if either of the list_skb members have non head_frag 3820 * head, then the first one has too). 3821 * 3822 * If head_skb's headlen does not fit requested gso_size, it 3823 * means that the frag_list members do NOT terminate on exact 3824 * gso_size boundaries. Hence we cannot perform skb_frag_t page 3825 * sharing. Therefore we must fallback to copying the frag_list 3826 * skbs; we do so by disabling SG. 3827 */ 3828 if (mss != GSO_BY_FRAGS && mss != skb_headlen(head_skb)) 3829 features &= ~NETIF_F_SG; 3830 } 3831 3832 __skb_push(head_skb, doffset); 3833 proto = skb_network_protocol(head_skb, NULL); 3834 if (unlikely(!proto)) 3835 return ERR_PTR(-EINVAL); 3836 3837 sg = !!(features & NETIF_F_SG); 3838 csum = !!can_checksum_protocol(features, proto); 3839 3840 if (sg && csum && (mss != GSO_BY_FRAGS)) { 3841 if (!(features & NETIF_F_GSO_PARTIAL)) { 3842 struct sk_buff *iter; 3843 unsigned int frag_len; 3844 3845 if (!list_skb || 3846 !net_gso_ok(features, skb_shinfo(head_skb)->gso_type)) 3847 goto normal; 3848 3849 /* If we get here then all the required 3850 * GSO features except frag_list are supported. 3851 * Try to split the SKB to multiple GSO SKBs 3852 * with no frag_list. 3853 * Currently we can do that only when the buffers don't 3854 * have a linear part and all the buffers except 3855 * the last are of the same length. 3856 */ 3857 frag_len = list_skb->len; 3858 skb_walk_frags(head_skb, iter) { 3859 if (frag_len != iter->len && iter->next) 3860 goto normal; 3861 if (skb_headlen(iter) && !iter->head_frag) 3862 goto normal; 3863 3864 len -= iter->len; 3865 } 3866 3867 if (len != frag_len) 3868 goto normal; 3869 } 3870 3871 /* GSO partial only requires that we trim off any excess that 3872 * doesn't fit into an MSS sized block, so take care of that 3873 * now. 3874 */ 3875 partial_segs = len / mss; 3876 if (partial_segs > 1) 3877 mss *= partial_segs; 3878 else 3879 partial_segs = 0; 3880 } 3881 3882 normal: 3883 headroom = skb_headroom(head_skb); 3884 pos = skb_headlen(head_skb); 3885 3886 do { 3887 struct sk_buff *nskb; 3888 skb_frag_t *nskb_frag; 3889 int hsize; 3890 int size; 3891 3892 if (unlikely(mss == GSO_BY_FRAGS)) { 3893 len = list_skb->len; 3894 } else { 3895 len = head_skb->len - offset; 3896 if (len > mss) 3897 len = mss; 3898 } 3899 3900 hsize = skb_headlen(head_skb) - offset; 3901 3902 if (hsize <= 0 && i >= nfrags && skb_headlen(list_skb) && 3903 (skb_headlen(list_skb) == len || sg)) { 3904 BUG_ON(skb_headlen(list_skb) > len); 3905 3906 i = 0; 3907 nfrags = skb_shinfo(list_skb)->nr_frags; 3908 frag = skb_shinfo(list_skb)->frags; 3909 frag_skb = list_skb; 3910 pos += skb_headlen(list_skb); 3911 3912 while (pos < offset + len) { 3913 BUG_ON(i >= nfrags); 3914 3915 size = skb_frag_size(frag); 3916 if (pos + size > offset + len) 3917 break; 3918 3919 i++; 3920 pos += size; 3921 frag++; 3922 } 3923 3924 nskb = skb_clone(list_skb, GFP_ATOMIC); 3925 list_skb = list_skb->next; 3926 3927 if (unlikely(!nskb)) 3928 goto err; 3929 3930 if (unlikely(pskb_trim(nskb, len))) { 3931 kfree_skb(nskb); 3932 goto err; 3933 } 3934 3935 hsize = skb_end_offset(nskb); 3936 if (skb_cow_head(nskb, doffset + headroom)) { 3937 kfree_skb(nskb); 3938 goto err; 3939 } 3940 3941 nskb->truesize += skb_end_offset(nskb) - hsize; 3942 skb_release_head_state(nskb); 3943 __skb_push(nskb, doffset); 3944 } else { 3945 if (hsize < 0) 3946 hsize = 0; 3947 if (hsize > len || !sg) 3948 hsize = len; 3949 3950 nskb = __alloc_skb(hsize + doffset + headroom, 3951 GFP_ATOMIC, skb_alloc_rx_flag(head_skb), 3952 NUMA_NO_NODE); 3953 3954 if (unlikely(!nskb)) 3955 goto err; 3956 3957 skb_reserve(nskb, headroom); 3958 __skb_put(nskb, doffset); 3959 } 3960 3961 if (segs) 3962 tail->next = nskb; 3963 else 3964 segs = nskb; 3965 tail = nskb; 3966 3967 __copy_skb_header(nskb, head_skb); 3968 3969 skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom); 3970 skb_reset_mac_len(nskb); 3971 3972 skb_copy_from_linear_data_offset(head_skb, -tnl_hlen, 3973 nskb->data - tnl_hlen, 3974 doffset + tnl_hlen); 3975 3976 if (nskb->len == len + doffset) 3977 goto perform_csum_check; 3978 3979 if (!sg) { 3980 if (!csum) { 3981 if (!nskb->remcsum_offload) 3982 nskb->ip_summed = CHECKSUM_NONE; 3983 SKB_GSO_CB(nskb)->csum = 3984 skb_copy_and_csum_bits(head_skb, offset, 3985 skb_put(nskb, 3986 len), 3987 len); 3988 SKB_GSO_CB(nskb)->csum_start = 3989 skb_headroom(nskb) + doffset; 3990 } else { 3991 skb_copy_bits(head_skb, offset, 3992 skb_put(nskb, len), 3993 len); 3994 } 3995 continue; 3996 } 3997 3998 nskb_frag = skb_shinfo(nskb)->frags; 3999 4000 skb_copy_from_linear_data_offset(head_skb, offset, 4001 skb_put(nskb, hsize), hsize); 4002 4003 skb_shinfo(nskb)->flags |= skb_shinfo(head_skb)->flags & 4004 SKBFL_SHARED_FRAG; 4005 4006 if (skb_orphan_frags(frag_skb, GFP_ATOMIC) || 4007 skb_zerocopy_clone(nskb, frag_skb, GFP_ATOMIC)) 4008 goto err; 4009 4010 while (pos < offset + len) { 4011 if (i >= nfrags) { 4012 i = 0; 4013 nfrags = skb_shinfo(list_skb)->nr_frags; 4014 frag = skb_shinfo(list_skb)->frags; 4015 frag_skb = list_skb; 4016 if (!skb_headlen(list_skb)) { 4017 BUG_ON(!nfrags); 4018 } else { 4019 BUG_ON(!list_skb->head_frag); 4020 4021 /* to make room for head_frag. */ 4022 i--; 4023 frag--; 4024 } 4025 if (skb_orphan_frags(frag_skb, GFP_ATOMIC) || 4026 skb_zerocopy_clone(nskb, frag_skb, 4027 GFP_ATOMIC)) 4028 goto err; 4029 4030 list_skb = list_skb->next; 4031 } 4032 4033 if (unlikely(skb_shinfo(nskb)->nr_frags >= 4034 MAX_SKB_FRAGS)) { 4035 net_warn_ratelimited( 4036 "skb_segment: too many frags: %u %u\n", 4037 pos, mss); 4038 err = -EINVAL; 4039 goto err; 4040 } 4041 4042 *nskb_frag = (i < 0) ? skb_head_frag_to_page_desc(frag_skb) : *frag; 4043 __skb_frag_ref(nskb_frag); 4044 size = skb_frag_size(nskb_frag); 4045 4046 if (pos < offset) { 4047 skb_frag_off_add(nskb_frag, offset - pos); 4048 skb_frag_size_sub(nskb_frag, offset - pos); 4049 } 4050 4051 skb_shinfo(nskb)->nr_frags++; 4052 4053 if (pos + size <= offset + len) { 4054 i++; 4055 frag++; 4056 pos += size; 4057 } else { 4058 skb_frag_size_sub(nskb_frag, pos + size - (offset + len)); 4059 goto skip_fraglist; 4060 } 4061 4062 nskb_frag++; 4063 } 4064 4065 skip_fraglist: 4066 nskb->data_len = len - hsize; 4067 nskb->len += nskb->data_len; 4068 nskb->truesize += nskb->data_len; 4069 4070 perform_csum_check: 4071 if (!csum) { 4072 if (skb_has_shared_frag(nskb) && 4073 __skb_linearize(nskb)) 4074 goto err; 4075 4076 if (!nskb->remcsum_offload) 4077 nskb->ip_summed = CHECKSUM_NONE; 4078 SKB_GSO_CB(nskb)->csum = 4079 skb_checksum(nskb, doffset, 4080 nskb->len - doffset, 0); 4081 SKB_GSO_CB(nskb)->csum_start = 4082 skb_headroom(nskb) + doffset; 4083 } 4084 } while ((offset += len) < head_skb->len); 4085 4086 /* Some callers want to get the end of the list. 4087 * Put it in segs->prev to avoid walking the list. 4088 * (see validate_xmit_skb_list() for example) 4089 */ 4090 segs->prev = tail; 4091 4092 if (partial_segs) { 4093 struct sk_buff *iter; 4094 int type = skb_shinfo(head_skb)->gso_type; 4095 unsigned short gso_size = skb_shinfo(head_skb)->gso_size; 4096 4097 /* Update type to add partial and then remove dodgy if set */ 4098 type |= (features & NETIF_F_GSO_PARTIAL) / NETIF_F_GSO_PARTIAL * SKB_GSO_PARTIAL; 4099 type &= ~SKB_GSO_DODGY; 4100 4101 /* Update GSO info and prepare to start updating headers on 4102 * our way back down the stack of protocols. 4103 */ 4104 for (iter = segs; iter; iter = iter->next) { 4105 skb_shinfo(iter)->gso_size = gso_size; 4106 skb_shinfo(iter)->gso_segs = partial_segs; 4107 skb_shinfo(iter)->gso_type = type; 4108 SKB_GSO_CB(iter)->data_offset = skb_headroom(iter) + doffset; 4109 } 4110 4111 if (tail->len - doffset <= gso_size) 4112 skb_shinfo(tail)->gso_size = 0; 4113 else if (tail != segs) 4114 skb_shinfo(tail)->gso_segs = DIV_ROUND_UP(tail->len - doffset, gso_size); 4115 } 4116 4117 /* Following permits correct backpressure, for protocols 4118 * using skb_set_owner_w(). 4119 * Idea is to tranfert ownership from head_skb to last segment. 4120 */ 4121 if (head_skb->destructor == sock_wfree) { 4122 swap(tail->truesize, head_skb->truesize); 4123 swap(tail->destructor, head_skb->destructor); 4124 swap(tail->sk, head_skb->sk); 4125 } 4126 return segs; 4127 4128 err: 4129 kfree_skb_list(segs); 4130 return ERR_PTR(err); 4131 } 4132 EXPORT_SYMBOL_GPL(skb_segment); 4133 4134 int skb_gro_receive(struct sk_buff *p, struct sk_buff *skb) 4135 { 4136 struct skb_shared_info *pinfo, *skbinfo = skb_shinfo(skb); 4137 unsigned int offset = skb_gro_offset(skb); 4138 unsigned int headlen = skb_headlen(skb); 4139 unsigned int len = skb_gro_len(skb); 4140 unsigned int delta_truesize; 4141 struct sk_buff *lp; 4142 4143 if (unlikely(p->len + len >= 65536 || NAPI_GRO_CB(skb)->flush)) 4144 return -E2BIG; 4145 4146 lp = NAPI_GRO_CB(p)->last; 4147 pinfo = skb_shinfo(lp); 4148 4149 if (headlen <= offset) { 4150 skb_frag_t *frag; 4151 skb_frag_t *frag2; 4152 int i = skbinfo->nr_frags; 4153 int nr_frags = pinfo->nr_frags + i; 4154 4155 if (nr_frags > MAX_SKB_FRAGS) 4156 goto merge; 4157 4158 offset -= headlen; 4159 pinfo->nr_frags = nr_frags; 4160 skbinfo->nr_frags = 0; 4161 4162 frag = pinfo->frags + nr_frags; 4163 frag2 = skbinfo->frags + i; 4164 do { 4165 *--frag = *--frag2; 4166 } while (--i); 4167 4168 skb_frag_off_add(frag, offset); 4169 skb_frag_size_sub(frag, offset); 4170 4171 /* all fragments truesize : remove (head size + sk_buff) */ 4172 delta_truesize = skb->truesize - 4173 SKB_TRUESIZE(skb_end_offset(skb)); 4174 4175 skb->truesize -= skb->data_len; 4176 skb->len -= skb->data_len; 4177 skb->data_len = 0; 4178 4179 NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE; 4180 goto done; 4181 } else if (skb->head_frag) { 4182 int nr_frags = pinfo->nr_frags; 4183 skb_frag_t *frag = pinfo->frags + nr_frags; 4184 struct page *page = virt_to_head_page(skb->head); 4185 unsigned int first_size = headlen - offset; 4186 unsigned int first_offset; 4187 4188 if (nr_frags + 1 + skbinfo->nr_frags > MAX_SKB_FRAGS) 4189 goto merge; 4190 4191 first_offset = skb->data - 4192 (unsigned char *)page_address(page) + 4193 offset; 4194 4195 pinfo->nr_frags = nr_frags + 1 + skbinfo->nr_frags; 4196 4197 __skb_frag_set_page(frag, page); 4198 skb_frag_off_set(frag, first_offset); 4199 skb_frag_size_set(frag, first_size); 4200 4201 memcpy(frag + 1, skbinfo->frags, sizeof(*frag) * skbinfo->nr_frags); 4202 /* We dont need to clear skbinfo->nr_frags here */ 4203 4204 delta_truesize = skb->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff)); 4205 NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE_STOLEN_HEAD; 4206 goto done; 4207 } 4208 4209 merge: 4210 delta_truesize = skb->truesize; 4211 if (offset > headlen) { 4212 unsigned int eat = offset - headlen; 4213 4214 skb_frag_off_add(&skbinfo->frags[0], eat); 4215 skb_frag_size_sub(&skbinfo->frags[0], eat); 4216 skb->data_len -= eat; 4217 skb->len -= eat; 4218 offset = headlen; 4219 } 4220 4221 __skb_pull(skb, offset); 4222 4223 if (NAPI_GRO_CB(p)->last == p) 4224 skb_shinfo(p)->frag_list = skb; 4225 else 4226 NAPI_GRO_CB(p)->last->next = skb; 4227 NAPI_GRO_CB(p)->last = skb; 4228 __skb_header_release(skb); 4229 lp = p; 4230 4231 done: 4232 NAPI_GRO_CB(p)->count++; 4233 p->data_len += len; 4234 p->truesize += delta_truesize; 4235 p->len += len; 4236 if (lp != p) { 4237 lp->data_len += len; 4238 lp->truesize += delta_truesize; 4239 lp->len += len; 4240 } 4241 NAPI_GRO_CB(skb)->same_flow = 1; 4242 return 0; 4243 } 4244 4245 #ifdef CONFIG_SKB_EXTENSIONS 4246 #define SKB_EXT_ALIGN_VALUE 8 4247 #define SKB_EXT_CHUNKSIZEOF(x) (ALIGN((sizeof(x)), SKB_EXT_ALIGN_VALUE) / SKB_EXT_ALIGN_VALUE) 4248 4249 static const u8 skb_ext_type_len[] = { 4250 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 4251 [SKB_EXT_BRIDGE_NF] = SKB_EXT_CHUNKSIZEOF(struct nf_bridge_info), 4252 #endif 4253 #ifdef CONFIG_XFRM 4254 [SKB_EXT_SEC_PATH] = SKB_EXT_CHUNKSIZEOF(struct sec_path), 4255 #endif 4256 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT) 4257 [TC_SKB_EXT] = SKB_EXT_CHUNKSIZEOF(struct tc_skb_ext), 4258 #endif 4259 #if IS_ENABLED(CONFIG_MPTCP) 4260 [SKB_EXT_MPTCP] = SKB_EXT_CHUNKSIZEOF(struct mptcp_ext), 4261 #endif 4262 }; 4263 4264 static __always_inline unsigned int skb_ext_total_length(void) 4265 { 4266 return SKB_EXT_CHUNKSIZEOF(struct skb_ext) + 4267 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 4268 skb_ext_type_len[SKB_EXT_BRIDGE_NF] + 4269 #endif 4270 #ifdef CONFIG_XFRM 4271 skb_ext_type_len[SKB_EXT_SEC_PATH] + 4272 #endif 4273 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT) 4274 skb_ext_type_len[TC_SKB_EXT] + 4275 #endif 4276 #if IS_ENABLED(CONFIG_MPTCP) 4277 skb_ext_type_len[SKB_EXT_MPTCP] + 4278 #endif 4279 0; 4280 } 4281 4282 static void skb_extensions_init(void) 4283 { 4284 BUILD_BUG_ON(SKB_EXT_NUM >= 8); 4285 BUILD_BUG_ON(skb_ext_total_length() > 255); 4286 4287 skbuff_ext_cache = kmem_cache_create("skbuff_ext_cache", 4288 SKB_EXT_ALIGN_VALUE * skb_ext_total_length(), 4289 0, 4290 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 4291 NULL); 4292 } 4293 #else 4294 static void skb_extensions_init(void) {} 4295 #endif 4296 4297 void __init skb_init(void) 4298 { 4299 skbuff_head_cache = kmem_cache_create_usercopy("skbuff_head_cache", 4300 sizeof(struct sk_buff), 4301 0, 4302 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 4303 offsetof(struct sk_buff, cb), 4304 sizeof_field(struct sk_buff, cb), 4305 NULL); 4306 skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache", 4307 sizeof(struct sk_buff_fclones), 4308 0, 4309 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 4310 NULL); 4311 skb_extensions_init(); 4312 } 4313 4314 static int 4315 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len, 4316 unsigned int recursion_level) 4317 { 4318 int start = skb_headlen(skb); 4319 int i, copy = start - offset; 4320 struct sk_buff *frag_iter; 4321 int elt = 0; 4322 4323 if (unlikely(recursion_level >= 24)) 4324 return -EMSGSIZE; 4325 4326 if (copy > 0) { 4327 if (copy > len) 4328 copy = len; 4329 sg_set_buf(sg, skb->data + offset, copy); 4330 elt++; 4331 if ((len -= copy) == 0) 4332 return elt; 4333 offset += copy; 4334 } 4335 4336 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 4337 int end; 4338 4339 WARN_ON(start > offset + len); 4340 4341 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]); 4342 if ((copy = end - offset) > 0) { 4343 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 4344 if (unlikely(elt && sg_is_last(&sg[elt - 1]))) 4345 return -EMSGSIZE; 4346 4347 if (copy > len) 4348 copy = len; 4349 sg_set_page(&sg[elt], skb_frag_page(frag), copy, 4350 skb_frag_off(frag) + offset - start); 4351 elt++; 4352 if (!(len -= copy)) 4353 return elt; 4354 offset += copy; 4355 } 4356 start = end; 4357 } 4358 4359 skb_walk_frags(skb, frag_iter) { 4360 int end, ret; 4361 4362 WARN_ON(start > offset + len); 4363 4364 end = start + frag_iter->len; 4365 if ((copy = end - offset) > 0) { 4366 if (unlikely(elt && sg_is_last(&sg[elt - 1]))) 4367 return -EMSGSIZE; 4368 4369 if (copy > len) 4370 copy = len; 4371 ret = __skb_to_sgvec(frag_iter, sg+elt, offset - start, 4372 copy, recursion_level + 1); 4373 if (unlikely(ret < 0)) 4374 return ret; 4375 elt += ret; 4376 if ((len -= copy) == 0) 4377 return elt; 4378 offset += copy; 4379 } 4380 start = end; 4381 } 4382 BUG_ON(len); 4383 return elt; 4384 } 4385 4386 /** 4387 * skb_to_sgvec - Fill a scatter-gather list from a socket buffer 4388 * @skb: Socket buffer containing the buffers to be mapped 4389 * @sg: The scatter-gather list to map into 4390 * @offset: The offset into the buffer's contents to start mapping 4391 * @len: Length of buffer space to be mapped 4392 * 4393 * Fill the specified scatter-gather list with mappings/pointers into a 4394 * region of the buffer space attached to a socket buffer. Returns either 4395 * the number of scatterlist items used, or -EMSGSIZE if the contents 4396 * could not fit. 4397 */ 4398 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len) 4399 { 4400 int nsg = __skb_to_sgvec(skb, sg, offset, len, 0); 4401 4402 if (nsg <= 0) 4403 return nsg; 4404 4405 sg_mark_end(&sg[nsg - 1]); 4406 4407 return nsg; 4408 } 4409 EXPORT_SYMBOL_GPL(skb_to_sgvec); 4410 4411 /* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given 4412 * sglist without mark the sg which contain last skb data as the end. 4413 * So the caller can mannipulate sg list as will when padding new data after 4414 * the first call without calling sg_unmark_end to expend sg list. 4415 * 4416 * Scenario to use skb_to_sgvec_nomark: 4417 * 1. sg_init_table 4418 * 2. skb_to_sgvec_nomark(payload1) 4419 * 3. skb_to_sgvec_nomark(payload2) 4420 * 4421 * This is equivalent to: 4422 * 1. sg_init_table 4423 * 2. skb_to_sgvec(payload1) 4424 * 3. sg_unmark_end 4425 * 4. skb_to_sgvec(payload2) 4426 * 4427 * When mapping mutilple payload conditionally, skb_to_sgvec_nomark 4428 * is more preferable. 4429 */ 4430 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg, 4431 int offset, int len) 4432 { 4433 return __skb_to_sgvec(skb, sg, offset, len, 0); 4434 } 4435 EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark); 4436 4437 4438 4439 /** 4440 * skb_cow_data - Check that a socket buffer's data buffers are writable 4441 * @skb: The socket buffer to check. 4442 * @tailbits: Amount of trailing space to be added 4443 * @trailer: Returned pointer to the skb where the @tailbits space begins 4444 * 4445 * Make sure that the data buffers attached to a socket buffer are 4446 * writable. If they are not, private copies are made of the data buffers 4447 * and the socket buffer is set to use these instead. 4448 * 4449 * If @tailbits is given, make sure that there is space to write @tailbits 4450 * bytes of data beyond current end of socket buffer. @trailer will be 4451 * set to point to the skb in which this space begins. 4452 * 4453 * The number of scatterlist elements required to completely map the 4454 * COW'd and extended socket buffer will be returned. 4455 */ 4456 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer) 4457 { 4458 int copyflag; 4459 int elt; 4460 struct sk_buff *skb1, **skb_p; 4461 4462 /* If skb is cloned or its head is paged, reallocate 4463 * head pulling out all the pages (pages are considered not writable 4464 * at the moment even if they are anonymous). 4465 */ 4466 if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) && 4467 !__pskb_pull_tail(skb, __skb_pagelen(skb))) 4468 return -ENOMEM; 4469 4470 /* Easy case. Most of packets will go this way. */ 4471 if (!skb_has_frag_list(skb)) { 4472 /* A little of trouble, not enough of space for trailer. 4473 * This should not happen, when stack is tuned to generate 4474 * good frames. OK, on miss we reallocate and reserve even more 4475 * space, 128 bytes is fair. */ 4476 4477 if (skb_tailroom(skb) < tailbits && 4478 pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC)) 4479 return -ENOMEM; 4480 4481 /* Voila! */ 4482 *trailer = skb; 4483 return 1; 4484 } 4485 4486 /* Misery. We are in troubles, going to mincer fragments... */ 4487 4488 elt = 1; 4489 skb_p = &skb_shinfo(skb)->frag_list; 4490 copyflag = 0; 4491 4492 while ((skb1 = *skb_p) != NULL) { 4493 int ntail = 0; 4494 4495 /* The fragment is partially pulled by someone, 4496 * this can happen on input. Copy it and everything 4497 * after it. */ 4498 4499 if (skb_shared(skb1)) 4500 copyflag = 1; 4501 4502 /* If the skb is the last, worry about trailer. */ 4503 4504 if (skb1->next == NULL && tailbits) { 4505 if (skb_shinfo(skb1)->nr_frags || 4506 skb_has_frag_list(skb1) || 4507 skb_tailroom(skb1) < tailbits) 4508 ntail = tailbits + 128; 4509 } 4510 4511 if (copyflag || 4512 skb_cloned(skb1) || 4513 ntail || 4514 skb_shinfo(skb1)->nr_frags || 4515 skb_has_frag_list(skb1)) { 4516 struct sk_buff *skb2; 4517 4518 /* Fuck, we are miserable poor guys... */ 4519 if (ntail == 0) 4520 skb2 = skb_copy(skb1, GFP_ATOMIC); 4521 else 4522 skb2 = skb_copy_expand(skb1, 4523 skb_headroom(skb1), 4524 ntail, 4525 GFP_ATOMIC); 4526 if (unlikely(skb2 == NULL)) 4527 return -ENOMEM; 4528 4529 if (skb1->sk) 4530 skb_set_owner_w(skb2, skb1->sk); 4531 4532 /* Looking around. Are we still alive? 4533 * OK, link new skb, drop old one */ 4534 4535 skb2->next = skb1->next; 4536 *skb_p = skb2; 4537 kfree_skb(skb1); 4538 skb1 = skb2; 4539 } 4540 elt++; 4541 *trailer = skb1; 4542 skb_p = &skb1->next; 4543 } 4544 4545 return elt; 4546 } 4547 EXPORT_SYMBOL_GPL(skb_cow_data); 4548 4549 static void sock_rmem_free(struct sk_buff *skb) 4550 { 4551 struct sock *sk = skb->sk; 4552 4553 atomic_sub(skb->truesize, &sk->sk_rmem_alloc); 4554 } 4555 4556 static void skb_set_err_queue(struct sk_buff *skb) 4557 { 4558 /* pkt_type of skbs received on local sockets is never PACKET_OUTGOING. 4559 * So, it is safe to (mis)use it to mark skbs on the error queue. 4560 */ 4561 skb->pkt_type = PACKET_OUTGOING; 4562 BUILD_BUG_ON(PACKET_OUTGOING == 0); 4563 } 4564 4565 /* 4566 * Note: We dont mem charge error packets (no sk_forward_alloc changes) 4567 */ 4568 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb) 4569 { 4570 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >= 4571 (unsigned int)READ_ONCE(sk->sk_rcvbuf)) 4572 return -ENOMEM; 4573 4574 skb_orphan(skb); 4575 skb->sk = sk; 4576 skb->destructor = sock_rmem_free; 4577 atomic_add(skb->truesize, &sk->sk_rmem_alloc); 4578 skb_set_err_queue(skb); 4579 4580 /* before exiting rcu section, make sure dst is refcounted */ 4581 skb_dst_force(skb); 4582 4583 skb_queue_tail(&sk->sk_error_queue, skb); 4584 if (!sock_flag(sk, SOCK_DEAD)) 4585 sk->sk_error_report(sk); 4586 return 0; 4587 } 4588 EXPORT_SYMBOL(sock_queue_err_skb); 4589 4590 static bool is_icmp_err_skb(const struct sk_buff *skb) 4591 { 4592 return skb && (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP || 4593 SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP6); 4594 } 4595 4596 struct sk_buff *sock_dequeue_err_skb(struct sock *sk) 4597 { 4598 struct sk_buff_head *q = &sk->sk_error_queue; 4599 struct sk_buff *skb, *skb_next = NULL; 4600 bool icmp_next = false; 4601 unsigned long flags; 4602 4603 spin_lock_irqsave(&q->lock, flags); 4604 skb = __skb_dequeue(q); 4605 if (skb && (skb_next = skb_peek(q))) { 4606 icmp_next = is_icmp_err_skb(skb_next); 4607 if (icmp_next) 4608 sk->sk_err = SKB_EXT_ERR(skb_next)->ee.ee_errno; 4609 } 4610 spin_unlock_irqrestore(&q->lock, flags); 4611 4612 if (is_icmp_err_skb(skb) && !icmp_next) 4613 sk->sk_err = 0; 4614 4615 if (skb_next) 4616 sk->sk_error_report(sk); 4617 4618 return skb; 4619 } 4620 EXPORT_SYMBOL(sock_dequeue_err_skb); 4621 4622 /** 4623 * skb_clone_sk - create clone of skb, and take reference to socket 4624 * @skb: the skb to clone 4625 * 4626 * This function creates a clone of a buffer that holds a reference on 4627 * sk_refcnt. Buffers created via this function are meant to be 4628 * returned using sock_queue_err_skb, or free via kfree_skb. 4629 * 4630 * When passing buffers allocated with this function to sock_queue_err_skb 4631 * it is necessary to wrap the call with sock_hold/sock_put in order to 4632 * prevent the socket from being released prior to being enqueued on 4633 * the sk_error_queue. 4634 */ 4635 struct sk_buff *skb_clone_sk(struct sk_buff *skb) 4636 { 4637 struct sock *sk = skb->sk; 4638 struct sk_buff *clone; 4639 4640 if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt)) 4641 return NULL; 4642 4643 clone = skb_clone(skb, GFP_ATOMIC); 4644 if (!clone) { 4645 sock_put(sk); 4646 return NULL; 4647 } 4648 4649 clone->sk = sk; 4650 clone->destructor = sock_efree; 4651 4652 return clone; 4653 } 4654 EXPORT_SYMBOL(skb_clone_sk); 4655 4656 static void __skb_complete_tx_timestamp(struct sk_buff *skb, 4657 struct sock *sk, 4658 int tstype, 4659 bool opt_stats) 4660 { 4661 struct sock_exterr_skb *serr; 4662 int err; 4663 4664 BUILD_BUG_ON(sizeof(struct sock_exterr_skb) > sizeof(skb->cb)); 4665 4666 serr = SKB_EXT_ERR(skb); 4667 memset(serr, 0, sizeof(*serr)); 4668 serr->ee.ee_errno = ENOMSG; 4669 serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING; 4670 serr->ee.ee_info = tstype; 4671 serr->opt_stats = opt_stats; 4672 serr->header.h4.iif = skb->dev ? skb->dev->ifindex : 0; 4673 if (sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID) { 4674 serr->ee.ee_data = skb_shinfo(skb)->tskey; 4675 if (sk->sk_protocol == IPPROTO_TCP && 4676 sk->sk_type == SOCK_STREAM) 4677 serr->ee.ee_data -= sk->sk_tskey; 4678 } 4679 4680 err = sock_queue_err_skb(sk, skb); 4681 4682 if (err) 4683 kfree_skb(skb); 4684 } 4685 4686 static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly) 4687 { 4688 bool ret; 4689 4690 if (likely(sysctl_tstamp_allow_data || tsonly)) 4691 return true; 4692 4693 read_lock_bh(&sk->sk_callback_lock); 4694 ret = sk->sk_socket && sk->sk_socket->file && 4695 file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW); 4696 read_unlock_bh(&sk->sk_callback_lock); 4697 return ret; 4698 } 4699 4700 void skb_complete_tx_timestamp(struct sk_buff *skb, 4701 struct skb_shared_hwtstamps *hwtstamps) 4702 { 4703 struct sock *sk = skb->sk; 4704 4705 if (!skb_may_tx_timestamp(sk, false)) 4706 goto err; 4707 4708 /* Take a reference to prevent skb_orphan() from freeing the socket, 4709 * but only if the socket refcount is not zero. 4710 */ 4711 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) { 4712 *skb_hwtstamps(skb) = *hwtstamps; 4713 __skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND, false); 4714 sock_put(sk); 4715 return; 4716 } 4717 4718 err: 4719 kfree_skb(skb); 4720 } 4721 EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp); 4722 4723 void __skb_tstamp_tx(struct sk_buff *orig_skb, 4724 const struct sk_buff *ack_skb, 4725 struct skb_shared_hwtstamps *hwtstamps, 4726 struct sock *sk, int tstype) 4727 { 4728 struct sk_buff *skb; 4729 bool tsonly, opt_stats = false; 4730 4731 if (!sk) 4732 return; 4733 4734 if (!hwtstamps && !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TX_SWHW) && 4735 skb_shinfo(orig_skb)->tx_flags & SKBTX_IN_PROGRESS) 4736 return; 4737 4738 tsonly = sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TSONLY; 4739 if (!skb_may_tx_timestamp(sk, tsonly)) 4740 return; 4741 4742 if (tsonly) { 4743 #ifdef CONFIG_INET 4744 if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_STATS) && 4745 sk->sk_protocol == IPPROTO_TCP && 4746 sk->sk_type == SOCK_STREAM) { 4747 skb = tcp_get_timestamping_opt_stats(sk, orig_skb, 4748 ack_skb); 4749 opt_stats = true; 4750 } else 4751 #endif 4752 skb = alloc_skb(0, GFP_ATOMIC); 4753 } else { 4754 skb = skb_clone(orig_skb, GFP_ATOMIC); 4755 } 4756 if (!skb) 4757 return; 4758 4759 if (tsonly) { 4760 skb_shinfo(skb)->tx_flags |= skb_shinfo(orig_skb)->tx_flags & 4761 SKBTX_ANY_TSTAMP; 4762 skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey; 4763 } 4764 4765 if (hwtstamps) 4766 *skb_hwtstamps(skb) = *hwtstamps; 4767 else 4768 skb->tstamp = ktime_get_real(); 4769 4770 __skb_complete_tx_timestamp(skb, sk, tstype, opt_stats); 4771 } 4772 EXPORT_SYMBOL_GPL(__skb_tstamp_tx); 4773 4774 void skb_tstamp_tx(struct sk_buff *orig_skb, 4775 struct skb_shared_hwtstamps *hwtstamps) 4776 { 4777 return __skb_tstamp_tx(orig_skb, NULL, hwtstamps, orig_skb->sk, 4778 SCM_TSTAMP_SND); 4779 } 4780 EXPORT_SYMBOL_GPL(skb_tstamp_tx); 4781 4782 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked) 4783 { 4784 struct sock *sk = skb->sk; 4785 struct sock_exterr_skb *serr; 4786 int err = 1; 4787 4788 skb->wifi_acked_valid = 1; 4789 skb->wifi_acked = acked; 4790 4791 serr = SKB_EXT_ERR(skb); 4792 memset(serr, 0, sizeof(*serr)); 4793 serr->ee.ee_errno = ENOMSG; 4794 serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS; 4795 4796 /* Take a reference to prevent skb_orphan() from freeing the socket, 4797 * but only if the socket refcount is not zero. 4798 */ 4799 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) { 4800 err = sock_queue_err_skb(sk, skb); 4801 sock_put(sk); 4802 } 4803 if (err) 4804 kfree_skb(skb); 4805 } 4806 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack); 4807 4808 /** 4809 * skb_partial_csum_set - set up and verify partial csum values for packet 4810 * @skb: the skb to set 4811 * @start: the number of bytes after skb->data to start checksumming. 4812 * @off: the offset from start to place the checksum. 4813 * 4814 * For untrusted partially-checksummed packets, we need to make sure the values 4815 * for skb->csum_start and skb->csum_offset are valid so we don't oops. 4816 * 4817 * This function checks and sets those values and skb->ip_summed: if this 4818 * returns false you should drop the packet. 4819 */ 4820 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off) 4821 { 4822 u32 csum_end = (u32)start + (u32)off + sizeof(__sum16); 4823 u32 csum_start = skb_headroom(skb) + (u32)start; 4824 4825 if (unlikely(csum_start > U16_MAX || csum_end > skb_headlen(skb))) { 4826 net_warn_ratelimited("bad partial csum: csum=%u/%u headroom=%u headlen=%u\n", 4827 start, off, skb_headroom(skb), skb_headlen(skb)); 4828 return false; 4829 } 4830 skb->ip_summed = CHECKSUM_PARTIAL; 4831 skb->csum_start = csum_start; 4832 skb->csum_offset = off; 4833 skb_set_transport_header(skb, start); 4834 return true; 4835 } 4836 EXPORT_SYMBOL_GPL(skb_partial_csum_set); 4837 4838 static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len, 4839 unsigned int max) 4840 { 4841 if (skb_headlen(skb) >= len) 4842 return 0; 4843 4844 /* If we need to pullup then pullup to the max, so we 4845 * won't need to do it again. 4846 */ 4847 if (max > skb->len) 4848 max = skb->len; 4849 4850 if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL) 4851 return -ENOMEM; 4852 4853 if (skb_headlen(skb) < len) 4854 return -EPROTO; 4855 4856 return 0; 4857 } 4858 4859 #define MAX_TCP_HDR_LEN (15 * 4) 4860 4861 static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb, 4862 typeof(IPPROTO_IP) proto, 4863 unsigned int off) 4864 { 4865 int err; 4866 4867 switch (proto) { 4868 case IPPROTO_TCP: 4869 err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr), 4870 off + MAX_TCP_HDR_LEN); 4871 if (!err && !skb_partial_csum_set(skb, off, 4872 offsetof(struct tcphdr, 4873 check))) 4874 err = -EPROTO; 4875 return err ? ERR_PTR(err) : &tcp_hdr(skb)->check; 4876 4877 case IPPROTO_UDP: 4878 err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr), 4879 off + sizeof(struct udphdr)); 4880 if (!err && !skb_partial_csum_set(skb, off, 4881 offsetof(struct udphdr, 4882 check))) 4883 err = -EPROTO; 4884 return err ? ERR_PTR(err) : &udp_hdr(skb)->check; 4885 } 4886 4887 return ERR_PTR(-EPROTO); 4888 } 4889 4890 /* This value should be large enough to cover a tagged ethernet header plus 4891 * maximally sized IP and TCP or UDP headers. 4892 */ 4893 #define MAX_IP_HDR_LEN 128 4894 4895 static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate) 4896 { 4897 unsigned int off; 4898 bool fragment; 4899 __sum16 *csum; 4900 int err; 4901 4902 fragment = false; 4903 4904 err = skb_maybe_pull_tail(skb, 4905 sizeof(struct iphdr), 4906 MAX_IP_HDR_LEN); 4907 if (err < 0) 4908 goto out; 4909 4910 if (ip_is_fragment(ip_hdr(skb))) 4911 fragment = true; 4912 4913 off = ip_hdrlen(skb); 4914 4915 err = -EPROTO; 4916 4917 if (fragment) 4918 goto out; 4919 4920 csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off); 4921 if (IS_ERR(csum)) 4922 return PTR_ERR(csum); 4923 4924 if (recalculate) 4925 *csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr, 4926 ip_hdr(skb)->daddr, 4927 skb->len - off, 4928 ip_hdr(skb)->protocol, 0); 4929 err = 0; 4930 4931 out: 4932 return err; 4933 } 4934 4935 /* This value should be large enough to cover a tagged ethernet header plus 4936 * an IPv6 header, all options, and a maximal TCP or UDP header. 4937 */ 4938 #define MAX_IPV6_HDR_LEN 256 4939 4940 #define OPT_HDR(type, skb, off) \ 4941 (type *)(skb_network_header(skb) + (off)) 4942 4943 static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate) 4944 { 4945 int err; 4946 u8 nexthdr; 4947 unsigned int off; 4948 unsigned int len; 4949 bool fragment; 4950 bool done; 4951 __sum16 *csum; 4952 4953 fragment = false; 4954 done = false; 4955 4956 off = sizeof(struct ipv6hdr); 4957 4958 err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN); 4959 if (err < 0) 4960 goto out; 4961 4962 nexthdr = ipv6_hdr(skb)->nexthdr; 4963 4964 len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len); 4965 while (off <= len && !done) { 4966 switch (nexthdr) { 4967 case IPPROTO_DSTOPTS: 4968 case IPPROTO_HOPOPTS: 4969 case IPPROTO_ROUTING: { 4970 struct ipv6_opt_hdr *hp; 4971 4972 err = skb_maybe_pull_tail(skb, 4973 off + 4974 sizeof(struct ipv6_opt_hdr), 4975 MAX_IPV6_HDR_LEN); 4976 if (err < 0) 4977 goto out; 4978 4979 hp = OPT_HDR(struct ipv6_opt_hdr, skb, off); 4980 nexthdr = hp->nexthdr; 4981 off += ipv6_optlen(hp); 4982 break; 4983 } 4984 case IPPROTO_AH: { 4985 struct ip_auth_hdr *hp; 4986 4987 err = skb_maybe_pull_tail(skb, 4988 off + 4989 sizeof(struct ip_auth_hdr), 4990 MAX_IPV6_HDR_LEN); 4991 if (err < 0) 4992 goto out; 4993 4994 hp = OPT_HDR(struct ip_auth_hdr, skb, off); 4995 nexthdr = hp->nexthdr; 4996 off += ipv6_authlen(hp); 4997 break; 4998 } 4999 case IPPROTO_FRAGMENT: { 5000 struct frag_hdr *hp; 5001 5002 err = skb_maybe_pull_tail(skb, 5003 off + 5004 sizeof(struct frag_hdr), 5005 MAX_IPV6_HDR_LEN); 5006 if (err < 0) 5007 goto out; 5008 5009 hp = OPT_HDR(struct frag_hdr, skb, off); 5010 5011 if (hp->frag_off & htons(IP6_OFFSET | IP6_MF)) 5012 fragment = true; 5013 5014 nexthdr = hp->nexthdr; 5015 off += sizeof(struct frag_hdr); 5016 break; 5017 } 5018 default: 5019 done = true; 5020 break; 5021 } 5022 } 5023 5024 err = -EPROTO; 5025 5026 if (!done || fragment) 5027 goto out; 5028 5029 csum = skb_checksum_setup_ip(skb, nexthdr, off); 5030 if (IS_ERR(csum)) 5031 return PTR_ERR(csum); 5032 5033 if (recalculate) 5034 *csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr, 5035 &ipv6_hdr(skb)->daddr, 5036 skb->len - off, nexthdr, 0); 5037 err = 0; 5038 5039 out: 5040 return err; 5041 } 5042 5043 /** 5044 * skb_checksum_setup - set up partial checksum offset 5045 * @skb: the skb to set up 5046 * @recalculate: if true the pseudo-header checksum will be recalculated 5047 */ 5048 int skb_checksum_setup(struct sk_buff *skb, bool recalculate) 5049 { 5050 int err; 5051 5052 switch (skb->protocol) { 5053 case htons(ETH_P_IP): 5054 err = skb_checksum_setup_ipv4(skb, recalculate); 5055 break; 5056 5057 case htons(ETH_P_IPV6): 5058 err = skb_checksum_setup_ipv6(skb, recalculate); 5059 break; 5060 5061 default: 5062 err = -EPROTO; 5063 break; 5064 } 5065 5066 return err; 5067 } 5068 EXPORT_SYMBOL(skb_checksum_setup); 5069 5070 /** 5071 * skb_checksum_maybe_trim - maybe trims the given skb 5072 * @skb: the skb to check 5073 * @transport_len: the data length beyond the network header 5074 * 5075 * Checks whether the given skb has data beyond the given transport length. 5076 * If so, returns a cloned skb trimmed to this transport length. 5077 * Otherwise returns the provided skb. Returns NULL in error cases 5078 * (e.g. transport_len exceeds skb length or out-of-memory). 5079 * 5080 * Caller needs to set the skb transport header and free any returned skb if it 5081 * differs from the provided skb. 5082 */ 5083 static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb, 5084 unsigned int transport_len) 5085 { 5086 struct sk_buff *skb_chk; 5087 unsigned int len = skb_transport_offset(skb) + transport_len; 5088 int ret; 5089 5090 if (skb->len < len) 5091 return NULL; 5092 else if (skb->len == len) 5093 return skb; 5094 5095 skb_chk = skb_clone(skb, GFP_ATOMIC); 5096 if (!skb_chk) 5097 return NULL; 5098 5099 ret = pskb_trim_rcsum(skb_chk, len); 5100 if (ret) { 5101 kfree_skb(skb_chk); 5102 return NULL; 5103 } 5104 5105 return skb_chk; 5106 } 5107 5108 /** 5109 * skb_checksum_trimmed - validate checksum of an skb 5110 * @skb: the skb to check 5111 * @transport_len: the data length beyond the network header 5112 * @skb_chkf: checksum function to use 5113 * 5114 * Applies the given checksum function skb_chkf to the provided skb. 5115 * Returns a checked and maybe trimmed skb. Returns NULL on error. 5116 * 5117 * If the skb has data beyond the given transport length, then a 5118 * trimmed & cloned skb is checked and returned. 5119 * 5120 * Caller needs to set the skb transport header and free any returned skb if it 5121 * differs from the provided skb. 5122 */ 5123 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb, 5124 unsigned int transport_len, 5125 __sum16(*skb_chkf)(struct sk_buff *skb)) 5126 { 5127 struct sk_buff *skb_chk; 5128 unsigned int offset = skb_transport_offset(skb); 5129 __sum16 ret; 5130 5131 skb_chk = skb_checksum_maybe_trim(skb, transport_len); 5132 if (!skb_chk) 5133 goto err; 5134 5135 if (!pskb_may_pull(skb_chk, offset)) 5136 goto err; 5137 5138 skb_pull_rcsum(skb_chk, offset); 5139 ret = skb_chkf(skb_chk); 5140 skb_push_rcsum(skb_chk, offset); 5141 5142 if (ret) 5143 goto err; 5144 5145 return skb_chk; 5146 5147 err: 5148 if (skb_chk && skb_chk != skb) 5149 kfree_skb(skb_chk); 5150 5151 return NULL; 5152 5153 } 5154 EXPORT_SYMBOL(skb_checksum_trimmed); 5155 5156 void __skb_warn_lro_forwarding(const struct sk_buff *skb) 5157 { 5158 net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n", 5159 skb->dev->name); 5160 } 5161 EXPORT_SYMBOL(__skb_warn_lro_forwarding); 5162 5163 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen) 5164 { 5165 if (head_stolen) { 5166 skb_release_head_state(skb); 5167 kmem_cache_free(skbuff_head_cache, skb); 5168 } else { 5169 __kfree_skb(skb); 5170 } 5171 } 5172 EXPORT_SYMBOL(kfree_skb_partial); 5173 5174 /** 5175 * skb_try_coalesce - try to merge skb to prior one 5176 * @to: prior buffer 5177 * @from: buffer to add 5178 * @fragstolen: pointer to boolean 5179 * @delta_truesize: how much more was allocated than was requested 5180 */ 5181 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from, 5182 bool *fragstolen, int *delta_truesize) 5183 { 5184 struct skb_shared_info *to_shinfo, *from_shinfo; 5185 int i, delta, len = from->len; 5186 5187 *fragstolen = false; 5188 5189 if (skb_cloned(to)) 5190 return false; 5191 5192 if (len <= skb_tailroom(to)) { 5193 if (len) 5194 BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len)); 5195 *delta_truesize = 0; 5196 return true; 5197 } 5198 5199 to_shinfo = skb_shinfo(to); 5200 from_shinfo = skb_shinfo(from); 5201 if (to_shinfo->frag_list || from_shinfo->frag_list) 5202 return false; 5203 if (skb_zcopy(to) || skb_zcopy(from)) 5204 return false; 5205 5206 if (skb_headlen(from) != 0) { 5207 struct page *page; 5208 unsigned int offset; 5209 5210 if (to_shinfo->nr_frags + 5211 from_shinfo->nr_frags >= MAX_SKB_FRAGS) 5212 return false; 5213 5214 if (skb_head_is_locked(from)) 5215 return false; 5216 5217 delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff)); 5218 5219 page = virt_to_head_page(from->head); 5220 offset = from->data - (unsigned char *)page_address(page); 5221 5222 skb_fill_page_desc(to, to_shinfo->nr_frags, 5223 page, offset, skb_headlen(from)); 5224 *fragstolen = true; 5225 } else { 5226 if (to_shinfo->nr_frags + 5227 from_shinfo->nr_frags > MAX_SKB_FRAGS) 5228 return false; 5229 5230 delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from)); 5231 } 5232 5233 WARN_ON_ONCE(delta < len); 5234 5235 memcpy(to_shinfo->frags + to_shinfo->nr_frags, 5236 from_shinfo->frags, 5237 from_shinfo->nr_frags * sizeof(skb_frag_t)); 5238 to_shinfo->nr_frags += from_shinfo->nr_frags; 5239 5240 if (!skb_cloned(from)) 5241 from_shinfo->nr_frags = 0; 5242 5243 /* if the skb is not cloned this does nothing 5244 * since we set nr_frags to 0. 5245 */ 5246 for (i = 0; i < from_shinfo->nr_frags; i++) 5247 __skb_frag_ref(&from_shinfo->frags[i]); 5248 5249 to->truesize += delta; 5250 to->len += len; 5251 to->data_len += len; 5252 5253 *delta_truesize = delta; 5254 return true; 5255 } 5256 EXPORT_SYMBOL(skb_try_coalesce); 5257 5258 /** 5259 * skb_scrub_packet - scrub an skb 5260 * 5261 * @skb: buffer to clean 5262 * @xnet: packet is crossing netns 5263 * 5264 * skb_scrub_packet can be used after encapsulating or decapsulting a packet 5265 * into/from a tunnel. Some information have to be cleared during these 5266 * operations. 5267 * skb_scrub_packet can also be used to clean a skb before injecting it in 5268 * another namespace (@xnet == true). We have to clear all information in the 5269 * skb that could impact namespace isolation. 5270 */ 5271 void skb_scrub_packet(struct sk_buff *skb, bool xnet) 5272 { 5273 skb->pkt_type = PACKET_HOST; 5274 skb->skb_iif = 0; 5275 skb->ignore_df = 0; 5276 skb_dst_drop(skb); 5277 skb_ext_reset(skb); 5278 nf_reset_ct(skb); 5279 nf_reset_trace(skb); 5280 5281 #ifdef CONFIG_NET_SWITCHDEV 5282 skb->offload_fwd_mark = 0; 5283 skb->offload_l3_fwd_mark = 0; 5284 #endif 5285 5286 if (!xnet) 5287 return; 5288 5289 ipvs_reset(skb); 5290 skb->mark = 0; 5291 skb->tstamp = 0; 5292 } 5293 EXPORT_SYMBOL_GPL(skb_scrub_packet); 5294 5295 /** 5296 * skb_gso_transport_seglen - Return length of individual segments of a gso packet 5297 * 5298 * @skb: GSO skb 5299 * 5300 * skb_gso_transport_seglen is used to determine the real size of the 5301 * individual segments, including Layer4 headers (TCP/UDP). 5302 * 5303 * The MAC/L2 or network (IP, IPv6) headers are not accounted for. 5304 */ 5305 static unsigned int skb_gso_transport_seglen(const struct sk_buff *skb) 5306 { 5307 const struct skb_shared_info *shinfo = skb_shinfo(skb); 5308 unsigned int thlen = 0; 5309 5310 if (skb->encapsulation) { 5311 thlen = skb_inner_transport_header(skb) - 5312 skb_transport_header(skb); 5313 5314 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) 5315 thlen += inner_tcp_hdrlen(skb); 5316 } else if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) { 5317 thlen = tcp_hdrlen(skb); 5318 } else if (unlikely(skb_is_gso_sctp(skb))) { 5319 thlen = sizeof(struct sctphdr); 5320 } else if (shinfo->gso_type & SKB_GSO_UDP_L4) { 5321 thlen = sizeof(struct udphdr); 5322 } 5323 /* UFO sets gso_size to the size of the fragmentation 5324 * payload, i.e. the size of the L4 (UDP) header is already 5325 * accounted for. 5326 */ 5327 return thlen + shinfo->gso_size; 5328 } 5329 5330 /** 5331 * skb_gso_network_seglen - Return length of individual segments of a gso packet 5332 * 5333 * @skb: GSO skb 5334 * 5335 * skb_gso_network_seglen is used to determine the real size of the 5336 * individual segments, including Layer3 (IP, IPv6) and L4 headers (TCP/UDP). 5337 * 5338 * The MAC/L2 header is not accounted for. 5339 */ 5340 static unsigned int skb_gso_network_seglen(const struct sk_buff *skb) 5341 { 5342 unsigned int hdr_len = skb_transport_header(skb) - 5343 skb_network_header(skb); 5344 5345 return hdr_len + skb_gso_transport_seglen(skb); 5346 } 5347 5348 /** 5349 * skb_gso_mac_seglen - Return length of individual segments of a gso packet 5350 * 5351 * @skb: GSO skb 5352 * 5353 * skb_gso_mac_seglen is used to determine the real size of the 5354 * individual segments, including MAC/L2, Layer3 (IP, IPv6) and L4 5355 * headers (TCP/UDP). 5356 */ 5357 static unsigned int skb_gso_mac_seglen(const struct sk_buff *skb) 5358 { 5359 unsigned int hdr_len = skb_transport_header(skb) - skb_mac_header(skb); 5360 5361 return hdr_len + skb_gso_transport_seglen(skb); 5362 } 5363 5364 /** 5365 * skb_gso_size_check - check the skb size, considering GSO_BY_FRAGS 5366 * 5367 * There are a couple of instances where we have a GSO skb, and we 5368 * want to determine what size it would be after it is segmented. 5369 * 5370 * We might want to check: 5371 * - L3+L4+payload size (e.g. IP forwarding) 5372 * - L2+L3+L4+payload size (e.g. sanity check before passing to driver) 5373 * 5374 * This is a helper to do that correctly considering GSO_BY_FRAGS. 5375 * 5376 * @skb: GSO skb 5377 * 5378 * @seg_len: The segmented length (from skb_gso_*_seglen). In the 5379 * GSO_BY_FRAGS case this will be [header sizes + GSO_BY_FRAGS]. 5380 * 5381 * @max_len: The maximum permissible length. 5382 * 5383 * Returns true if the segmented length <= max length. 5384 */ 5385 static inline bool skb_gso_size_check(const struct sk_buff *skb, 5386 unsigned int seg_len, 5387 unsigned int max_len) { 5388 const struct skb_shared_info *shinfo = skb_shinfo(skb); 5389 const struct sk_buff *iter; 5390 5391 if (shinfo->gso_size != GSO_BY_FRAGS) 5392 return seg_len <= max_len; 5393 5394 /* Undo this so we can re-use header sizes */ 5395 seg_len -= GSO_BY_FRAGS; 5396 5397 skb_walk_frags(skb, iter) { 5398 if (seg_len + skb_headlen(iter) > max_len) 5399 return false; 5400 } 5401 5402 return true; 5403 } 5404 5405 /** 5406 * skb_gso_validate_network_len - Will a split GSO skb fit into a given MTU? 5407 * 5408 * @skb: GSO skb 5409 * @mtu: MTU to validate against 5410 * 5411 * skb_gso_validate_network_len validates if a given skb will fit a 5412 * wanted MTU once split. It considers L3 headers, L4 headers, and the 5413 * payload. 5414 */ 5415 bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu) 5416 { 5417 return skb_gso_size_check(skb, skb_gso_network_seglen(skb), mtu); 5418 } 5419 EXPORT_SYMBOL_GPL(skb_gso_validate_network_len); 5420 5421 /** 5422 * skb_gso_validate_mac_len - Will a split GSO skb fit in a given length? 5423 * 5424 * @skb: GSO skb 5425 * @len: length to validate against 5426 * 5427 * skb_gso_validate_mac_len validates if a given skb will fit a wanted 5428 * length once split, including L2, L3 and L4 headers and the payload. 5429 */ 5430 bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len) 5431 { 5432 return skb_gso_size_check(skb, skb_gso_mac_seglen(skb), len); 5433 } 5434 EXPORT_SYMBOL_GPL(skb_gso_validate_mac_len); 5435 5436 static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb) 5437 { 5438 int mac_len, meta_len; 5439 void *meta; 5440 5441 if (skb_cow(skb, skb_headroom(skb)) < 0) { 5442 kfree_skb(skb); 5443 return NULL; 5444 } 5445 5446 mac_len = skb->data - skb_mac_header(skb); 5447 if (likely(mac_len > VLAN_HLEN + ETH_TLEN)) { 5448 memmove(skb_mac_header(skb) + VLAN_HLEN, skb_mac_header(skb), 5449 mac_len - VLAN_HLEN - ETH_TLEN); 5450 } 5451 5452 meta_len = skb_metadata_len(skb); 5453 if (meta_len) { 5454 meta = skb_metadata_end(skb) - meta_len; 5455 memmove(meta + VLAN_HLEN, meta, meta_len); 5456 } 5457 5458 skb->mac_header += VLAN_HLEN; 5459 return skb; 5460 } 5461 5462 struct sk_buff *skb_vlan_untag(struct sk_buff *skb) 5463 { 5464 struct vlan_hdr *vhdr; 5465 u16 vlan_tci; 5466 5467 if (unlikely(skb_vlan_tag_present(skb))) { 5468 /* vlan_tci is already set-up so leave this for another time */ 5469 return skb; 5470 } 5471 5472 skb = skb_share_check(skb, GFP_ATOMIC); 5473 if (unlikely(!skb)) 5474 goto err_free; 5475 /* We may access the two bytes after vlan_hdr in vlan_set_encap_proto(). */ 5476 if (unlikely(!pskb_may_pull(skb, VLAN_HLEN + sizeof(unsigned short)))) 5477 goto err_free; 5478 5479 vhdr = (struct vlan_hdr *)skb->data; 5480 vlan_tci = ntohs(vhdr->h_vlan_TCI); 5481 __vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci); 5482 5483 skb_pull_rcsum(skb, VLAN_HLEN); 5484 vlan_set_encap_proto(skb, vhdr); 5485 5486 skb = skb_reorder_vlan_header(skb); 5487 if (unlikely(!skb)) 5488 goto err_free; 5489 5490 skb_reset_network_header(skb); 5491 if (!skb_transport_header_was_set(skb)) 5492 skb_reset_transport_header(skb); 5493 skb_reset_mac_len(skb); 5494 5495 return skb; 5496 5497 err_free: 5498 kfree_skb(skb); 5499 return NULL; 5500 } 5501 EXPORT_SYMBOL(skb_vlan_untag); 5502 5503 int skb_ensure_writable(struct sk_buff *skb, int write_len) 5504 { 5505 if (!pskb_may_pull(skb, write_len)) 5506 return -ENOMEM; 5507 5508 if (!skb_cloned(skb) || skb_clone_writable(skb, write_len)) 5509 return 0; 5510 5511 return pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 5512 } 5513 EXPORT_SYMBOL(skb_ensure_writable); 5514 5515 /* remove VLAN header from packet and update csum accordingly. 5516 * expects a non skb_vlan_tag_present skb with a vlan tag payload 5517 */ 5518 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci) 5519 { 5520 struct vlan_hdr *vhdr; 5521 int offset = skb->data - skb_mac_header(skb); 5522 int err; 5523 5524 if (WARN_ONCE(offset, 5525 "__skb_vlan_pop got skb with skb->data not at mac header (offset %d)\n", 5526 offset)) { 5527 return -EINVAL; 5528 } 5529 5530 err = skb_ensure_writable(skb, VLAN_ETH_HLEN); 5531 if (unlikely(err)) 5532 return err; 5533 5534 skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN); 5535 5536 vhdr = (struct vlan_hdr *)(skb->data + ETH_HLEN); 5537 *vlan_tci = ntohs(vhdr->h_vlan_TCI); 5538 5539 memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN); 5540 __skb_pull(skb, VLAN_HLEN); 5541 5542 vlan_set_encap_proto(skb, vhdr); 5543 skb->mac_header += VLAN_HLEN; 5544 5545 if (skb_network_offset(skb) < ETH_HLEN) 5546 skb_set_network_header(skb, ETH_HLEN); 5547 5548 skb_reset_mac_len(skb); 5549 5550 return err; 5551 } 5552 EXPORT_SYMBOL(__skb_vlan_pop); 5553 5554 /* Pop a vlan tag either from hwaccel or from payload. 5555 * Expects skb->data at mac header. 5556 */ 5557 int skb_vlan_pop(struct sk_buff *skb) 5558 { 5559 u16 vlan_tci; 5560 __be16 vlan_proto; 5561 int err; 5562 5563 if (likely(skb_vlan_tag_present(skb))) { 5564 __vlan_hwaccel_clear_tag(skb); 5565 } else { 5566 if (unlikely(!eth_type_vlan(skb->protocol))) 5567 return 0; 5568 5569 err = __skb_vlan_pop(skb, &vlan_tci); 5570 if (err) 5571 return err; 5572 } 5573 /* move next vlan tag to hw accel tag */ 5574 if (likely(!eth_type_vlan(skb->protocol))) 5575 return 0; 5576 5577 vlan_proto = skb->protocol; 5578 err = __skb_vlan_pop(skb, &vlan_tci); 5579 if (unlikely(err)) 5580 return err; 5581 5582 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci); 5583 return 0; 5584 } 5585 EXPORT_SYMBOL(skb_vlan_pop); 5586 5587 /* Push a vlan tag either into hwaccel or into payload (if hwaccel tag present). 5588 * Expects skb->data at mac header. 5589 */ 5590 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci) 5591 { 5592 if (skb_vlan_tag_present(skb)) { 5593 int offset = skb->data - skb_mac_header(skb); 5594 int err; 5595 5596 if (WARN_ONCE(offset, 5597 "skb_vlan_push got skb with skb->data not at mac header (offset %d)\n", 5598 offset)) { 5599 return -EINVAL; 5600 } 5601 5602 err = __vlan_insert_tag(skb, skb->vlan_proto, 5603 skb_vlan_tag_get(skb)); 5604 if (err) 5605 return err; 5606 5607 skb->protocol = skb->vlan_proto; 5608 skb->mac_len += VLAN_HLEN; 5609 5610 skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN); 5611 } 5612 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci); 5613 return 0; 5614 } 5615 EXPORT_SYMBOL(skb_vlan_push); 5616 5617 /** 5618 * skb_eth_pop() - Drop the Ethernet header at the head of a packet 5619 * 5620 * @skb: Socket buffer to modify 5621 * 5622 * Drop the Ethernet header of @skb. 5623 * 5624 * Expects that skb->data points to the mac header and that no VLAN tags are 5625 * present. 5626 * 5627 * Returns 0 on success, -errno otherwise. 5628 */ 5629 int skb_eth_pop(struct sk_buff *skb) 5630 { 5631 if (!pskb_may_pull(skb, ETH_HLEN) || skb_vlan_tagged(skb) || 5632 skb_network_offset(skb) < ETH_HLEN) 5633 return -EPROTO; 5634 5635 skb_pull_rcsum(skb, ETH_HLEN); 5636 skb_reset_mac_header(skb); 5637 skb_reset_mac_len(skb); 5638 5639 return 0; 5640 } 5641 EXPORT_SYMBOL(skb_eth_pop); 5642 5643 /** 5644 * skb_eth_push() - Add a new Ethernet header at the head of a packet 5645 * 5646 * @skb: Socket buffer to modify 5647 * @dst: Destination MAC address of the new header 5648 * @src: Source MAC address of the new header 5649 * 5650 * Prepend @skb with a new Ethernet header. 5651 * 5652 * Expects that skb->data points to the mac header, which must be empty. 5653 * 5654 * Returns 0 on success, -errno otherwise. 5655 */ 5656 int skb_eth_push(struct sk_buff *skb, const unsigned char *dst, 5657 const unsigned char *src) 5658 { 5659 struct ethhdr *eth; 5660 int err; 5661 5662 if (skb_network_offset(skb) || skb_vlan_tag_present(skb)) 5663 return -EPROTO; 5664 5665 err = skb_cow_head(skb, sizeof(*eth)); 5666 if (err < 0) 5667 return err; 5668 5669 skb_push(skb, sizeof(*eth)); 5670 skb_reset_mac_header(skb); 5671 skb_reset_mac_len(skb); 5672 5673 eth = eth_hdr(skb); 5674 ether_addr_copy(eth->h_dest, dst); 5675 ether_addr_copy(eth->h_source, src); 5676 eth->h_proto = skb->protocol; 5677 5678 skb_postpush_rcsum(skb, eth, sizeof(*eth)); 5679 5680 return 0; 5681 } 5682 EXPORT_SYMBOL(skb_eth_push); 5683 5684 /* Update the ethertype of hdr and the skb csum value if required. */ 5685 static void skb_mod_eth_type(struct sk_buff *skb, struct ethhdr *hdr, 5686 __be16 ethertype) 5687 { 5688 if (skb->ip_summed == CHECKSUM_COMPLETE) { 5689 __be16 diff[] = { ~hdr->h_proto, ethertype }; 5690 5691 skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum); 5692 } 5693 5694 hdr->h_proto = ethertype; 5695 } 5696 5697 /** 5698 * skb_mpls_push() - push a new MPLS header after mac_len bytes from start of 5699 * the packet 5700 * 5701 * @skb: buffer 5702 * @mpls_lse: MPLS label stack entry to push 5703 * @mpls_proto: ethertype of the new MPLS header (expects 0x8847 or 0x8848) 5704 * @mac_len: length of the MAC header 5705 * @ethernet: flag to indicate if the resulting packet after skb_mpls_push is 5706 * ethernet 5707 * 5708 * Expects skb->data at mac header. 5709 * 5710 * Returns 0 on success, -errno otherwise. 5711 */ 5712 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto, 5713 int mac_len, bool ethernet) 5714 { 5715 struct mpls_shim_hdr *lse; 5716 int err; 5717 5718 if (unlikely(!eth_p_mpls(mpls_proto))) 5719 return -EINVAL; 5720 5721 /* Networking stack does not allow simultaneous Tunnel and MPLS GSO. */ 5722 if (skb->encapsulation) 5723 return -EINVAL; 5724 5725 err = skb_cow_head(skb, MPLS_HLEN); 5726 if (unlikely(err)) 5727 return err; 5728 5729 if (!skb->inner_protocol) { 5730 skb_set_inner_network_header(skb, skb_network_offset(skb)); 5731 skb_set_inner_protocol(skb, skb->protocol); 5732 } 5733 5734 skb_push(skb, MPLS_HLEN); 5735 memmove(skb_mac_header(skb) - MPLS_HLEN, skb_mac_header(skb), 5736 mac_len); 5737 skb_reset_mac_header(skb); 5738 skb_set_network_header(skb, mac_len); 5739 skb_reset_mac_len(skb); 5740 5741 lse = mpls_hdr(skb); 5742 lse->label_stack_entry = mpls_lse; 5743 skb_postpush_rcsum(skb, lse, MPLS_HLEN); 5744 5745 if (ethernet && mac_len >= ETH_HLEN) 5746 skb_mod_eth_type(skb, eth_hdr(skb), mpls_proto); 5747 skb->protocol = mpls_proto; 5748 5749 return 0; 5750 } 5751 EXPORT_SYMBOL_GPL(skb_mpls_push); 5752 5753 /** 5754 * skb_mpls_pop() - pop the outermost MPLS header 5755 * 5756 * @skb: buffer 5757 * @next_proto: ethertype of header after popped MPLS header 5758 * @mac_len: length of the MAC header 5759 * @ethernet: flag to indicate if the packet is ethernet 5760 * 5761 * Expects skb->data at mac header. 5762 * 5763 * Returns 0 on success, -errno otherwise. 5764 */ 5765 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len, 5766 bool ethernet) 5767 { 5768 int err; 5769 5770 if (unlikely(!eth_p_mpls(skb->protocol))) 5771 return 0; 5772 5773 err = skb_ensure_writable(skb, mac_len + MPLS_HLEN); 5774 if (unlikely(err)) 5775 return err; 5776 5777 skb_postpull_rcsum(skb, mpls_hdr(skb), MPLS_HLEN); 5778 memmove(skb_mac_header(skb) + MPLS_HLEN, skb_mac_header(skb), 5779 mac_len); 5780 5781 __skb_pull(skb, MPLS_HLEN); 5782 skb_reset_mac_header(skb); 5783 skb_set_network_header(skb, mac_len); 5784 5785 if (ethernet && mac_len >= ETH_HLEN) { 5786 struct ethhdr *hdr; 5787 5788 /* use mpls_hdr() to get ethertype to account for VLANs. */ 5789 hdr = (struct ethhdr *)((void *)mpls_hdr(skb) - ETH_HLEN); 5790 skb_mod_eth_type(skb, hdr, next_proto); 5791 } 5792 skb->protocol = next_proto; 5793 5794 return 0; 5795 } 5796 EXPORT_SYMBOL_GPL(skb_mpls_pop); 5797 5798 /** 5799 * skb_mpls_update_lse() - modify outermost MPLS header and update csum 5800 * 5801 * @skb: buffer 5802 * @mpls_lse: new MPLS label stack entry to update to 5803 * 5804 * Expects skb->data at mac header. 5805 * 5806 * Returns 0 on success, -errno otherwise. 5807 */ 5808 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse) 5809 { 5810 int err; 5811 5812 if (unlikely(!eth_p_mpls(skb->protocol))) 5813 return -EINVAL; 5814 5815 err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN); 5816 if (unlikely(err)) 5817 return err; 5818 5819 if (skb->ip_summed == CHECKSUM_COMPLETE) { 5820 __be32 diff[] = { ~mpls_hdr(skb)->label_stack_entry, mpls_lse }; 5821 5822 skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum); 5823 } 5824 5825 mpls_hdr(skb)->label_stack_entry = mpls_lse; 5826 5827 return 0; 5828 } 5829 EXPORT_SYMBOL_GPL(skb_mpls_update_lse); 5830 5831 /** 5832 * skb_mpls_dec_ttl() - decrement the TTL of the outermost MPLS header 5833 * 5834 * @skb: buffer 5835 * 5836 * Expects skb->data at mac header. 5837 * 5838 * Returns 0 on success, -errno otherwise. 5839 */ 5840 int skb_mpls_dec_ttl(struct sk_buff *skb) 5841 { 5842 u32 lse; 5843 u8 ttl; 5844 5845 if (unlikely(!eth_p_mpls(skb->protocol))) 5846 return -EINVAL; 5847 5848 if (!pskb_may_pull(skb, skb_network_offset(skb) + MPLS_HLEN)) 5849 return -ENOMEM; 5850 5851 lse = be32_to_cpu(mpls_hdr(skb)->label_stack_entry); 5852 ttl = (lse & MPLS_LS_TTL_MASK) >> MPLS_LS_TTL_SHIFT; 5853 if (!--ttl) 5854 return -EINVAL; 5855 5856 lse &= ~MPLS_LS_TTL_MASK; 5857 lse |= ttl << MPLS_LS_TTL_SHIFT; 5858 5859 return skb_mpls_update_lse(skb, cpu_to_be32(lse)); 5860 } 5861 EXPORT_SYMBOL_GPL(skb_mpls_dec_ttl); 5862 5863 /** 5864 * alloc_skb_with_frags - allocate skb with page frags 5865 * 5866 * @header_len: size of linear part 5867 * @data_len: needed length in frags 5868 * @max_page_order: max page order desired. 5869 * @errcode: pointer to error code if any 5870 * @gfp_mask: allocation mask 5871 * 5872 * This can be used to allocate a paged skb, given a maximal order for frags. 5873 */ 5874 struct sk_buff *alloc_skb_with_frags(unsigned long header_len, 5875 unsigned long data_len, 5876 int max_page_order, 5877 int *errcode, 5878 gfp_t gfp_mask) 5879 { 5880 int npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT; 5881 unsigned long chunk; 5882 struct sk_buff *skb; 5883 struct page *page; 5884 int i; 5885 5886 *errcode = -EMSGSIZE; 5887 /* Note this test could be relaxed, if we succeed to allocate 5888 * high order pages... 5889 */ 5890 if (npages > MAX_SKB_FRAGS) 5891 return NULL; 5892 5893 *errcode = -ENOBUFS; 5894 skb = alloc_skb(header_len, gfp_mask); 5895 if (!skb) 5896 return NULL; 5897 5898 skb->truesize += npages << PAGE_SHIFT; 5899 5900 for (i = 0; npages > 0; i++) { 5901 int order = max_page_order; 5902 5903 while (order) { 5904 if (npages >= 1 << order) { 5905 page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) | 5906 __GFP_COMP | 5907 __GFP_NOWARN, 5908 order); 5909 if (page) 5910 goto fill_page; 5911 /* Do not retry other high order allocations */ 5912 order = 1; 5913 max_page_order = 0; 5914 } 5915 order--; 5916 } 5917 page = alloc_page(gfp_mask); 5918 if (!page) 5919 goto failure; 5920 fill_page: 5921 chunk = min_t(unsigned long, data_len, 5922 PAGE_SIZE << order); 5923 skb_fill_page_desc(skb, i, page, 0, chunk); 5924 data_len -= chunk; 5925 npages -= 1 << order; 5926 } 5927 return skb; 5928 5929 failure: 5930 kfree_skb(skb); 5931 return NULL; 5932 } 5933 EXPORT_SYMBOL(alloc_skb_with_frags); 5934 5935 /* carve out the first off bytes from skb when off < headlen */ 5936 static int pskb_carve_inside_header(struct sk_buff *skb, const u32 off, 5937 const int headlen, gfp_t gfp_mask) 5938 { 5939 int i; 5940 int size = skb_end_offset(skb); 5941 int new_hlen = headlen - off; 5942 u8 *data; 5943 5944 size = SKB_DATA_ALIGN(size); 5945 5946 if (skb_pfmemalloc(skb)) 5947 gfp_mask |= __GFP_MEMALLOC; 5948 data = kmalloc_reserve(size + 5949 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)), 5950 gfp_mask, NUMA_NO_NODE, NULL); 5951 if (!data) 5952 return -ENOMEM; 5953 5954 size = SKB_WITH_OVERHEAD(ksize(data)); 5955 5956 /* Copy real data, and all frags */ 5957 skb_copy_from_linear_data_offset(skb, off, data, new_hlen); 5958 skb->len -= off; 5959 5960 memcpy((struct skb_shared_info *)(data + size), 5961 skb_shinfo(skb), 5962 offsetof(struct skb_shared_info, 5963 frags[skb_shinfo(skb)->nr_frags])); 5964 if (skb_cloned(skb)) { 5965 /* drop the old head gracefully */ 5966 if (skb_orphan_frags(skb, gfp_mask)) { 5967 kfree(data); 5968 return -ENOMEM; 5969 } 5970 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 5971 skb_frag_ref(skb, i); 5972 if (skb_has_frag_list(skb)) 5973 skb_clone_fraglist(skb); 5974 skb_release_data(skb); 5975 } else { 5976 /* we can reuse existing recount- all we did was 5977 * relocate values 5978 */ 5979 skb_free_head(skb); 5980 } 5981 5982 skb->head = data; 5983 skb->data = data; 5984 skb->head_frag = 0; 5985 #ifdef NET_SKBUFF_DATA_USES_OFFSET 5986 skb->end = size; 5987 #else 5988 skb->end = skb->head + size; 5989 #endif 5990 skb_set_tail_pointer(skb, skb_headlen(skb)); 5991 skb_headers_offset_update(skb, 0); 5992 skb->cloned = 0; 5993 skb->hdr_len = 0; 5994 skb->nohdr = 0; 5995 atomic_set(&skb_shinfo(skb)->dataref, 1); 5996 5997 return 0; 5998 } 5999 6000 static int pskb_carve(struct sk_buff *skb, const u32 off, gfp_t gfp); 6001 6002 /* carve out the first eat bytes from skb's frag_list. May recurse into 6003 * pskb_carve() 6004 */ 6005 static int pskb_carve_frag_list(struct sk_buff *skb, 6006 struct skb_shared_info *shinfo, int eat, 6007 gfp_t gfp_mask) 6008 { 6009 struct sk_buff *list = shinfo->frag_list; 6010 struct sk_buff *clone = NULL; 6011 struct sk_buff *insp = NULL; 6012 6013 do { 6014 if (!list) { 6015 pr_err("Not enough bytes to eat. Want %d\n", eat); 6016 return -EFAULT; 6017 } 6018 if (list->len <= eat) { 6019 /* Eaten as whole. */ 6020 eat -= list->len; 6021 list = list->next; 6022 insp = list; 6023 } else { 6024 /* Eaten partially. */ 6025 if (skb_shared(list)) { 6026 clone = skb_clone(list, gfp_mask); 6027 if (!clone) 6028 return -ENOMEM; 6029 insp = list->next; 6030 list = clone; 6031 } else { 6032 /* This may be pulled without problems. */ 6033 insp = list; 6034 } 6035 if (pskb_carve(list, eat, gfp_mask) < 0) { 6036 kfree_skb(clone); 6037 return -ENOMEM; 6038 } 6039 break; 6040 } 6041 } while (eat); 6042 6043 /* Free pulled out fragments. */ 6044 while ((list = shinfo->frag_list) != insp) { 6045 shinfo->frag_list = list->next; 6046 kfree_skb(list); 6047 } 6048 /* And insert new clone at head. */ 6049 if (clone) { 6050 clone->next = list; 6051 shinfo->frag_list = clone; 6052 } 6053 return 0; 6054 } 6055 6056 /* carve off first len bytes from skb. Split line (off) is in the 6057 * non-linear part of skb 6058 */ 6059 static int pskb_carve_inside_nonlinear(struct sk_buff *skb, const u32 off, 6060 int pos, gfp_t gfp_mask) 6061 { 6062 int i, k = 0; 6063 int size = skb_end_offset(skb); 6064 u8 *data; 6065 const int nfrags = skb_shinfo(skb)->nr_frags; 6066 struct skb_shared_info *shinfo; 6067 6068 size = SKB_DATA_ALIGN(size); 6069 6070 if (skb_pfmemalloc(skb)) 6071 gfp_mask |= __GFP_MEMALLOC; 6072 data = kmalloc_reserve(size + 6073 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)), 6074 gfp_mask, NUMA_NO_NODE, NULL); 6075 if (!data) 6076 return -ENOMEM; 6077 6078 size = SKB_WITH_OVERHEAD(ksize(data)); 6079 6080 memcpy((struct skb_shared_info *)(data + size), 6081 skb_shinfo(skb), offsetof(struct skb_shared_info, frags[0])); 6082 if (skb_orphan_frags(skb, gfp_mask)) { 6083 kfree(data); 6084 return -ENOMEM; 6085 } 6086 shinfo = (struct skb_shared_info *)(data + size); 6087 for (i = 0; i < nfrags; i++) { 6088 int fsize = skb_frag_size(&skb_shinfo(skb)->frags[i]); 6089 6090 if (pos + fsize > off) { 6091 shinfo->frags[k] = skb_shinfo(skb)->frags[i]; 6092 6093 if (pos < off) { 6094 /* Split frag. 6095 * We have two variants in this case: 6096 * 1. Move all the frag to the second 6097 * part, if it is possible. F.e. 6098 * this approach is mandatory for TUX, 6099 * where splitting is expensive. 6100 * 2. Split is accurately. We make this. 6101 */ 6102 skb_frag_off_add(&shinfo->frags[0], off - pos); 6103 skb_frag_size_sub(&shinfo->frags[0], off - pos); 6104 } 6105 skb_frag_ref(skb, i); 6106 k++; 6107 } 6108 pos += fsize; 6109 } 6110 shinfo->nr_frags = k; 6111 if (skb_has_frag_list(skb)) 6112 skb_clone_fraglist(skb); 6113 6114 /* split line is in frag list */ 6115 if (k == 0 && pskb_carve_frag_list(skb, shinfo, off - pos, gfp_mask)) { 6116 /* skb_frag_unref() is not needed here as shinfo->nr_frags = 0. */ 6117 if (skb_has_frag_list(skb)) 6118 kfree_skb_list(skb_shinfo(skb)->frag_list); 6119 kfree(data); 6120 return -ENOMEM; 6121 } 6122 skb_release_data(skb); 6123 6124 skb->head = data; 6125 skb->head_frag = 0; 6126 skb->data = data; 6127 #ifdef NET_SKBUFF_DATA_USES_OFFSET 6128 skb->end = size; 6129 #else 6130 skb->end = skb->head + size; 6131 #endif 6132 skb_reset_tail_pointer(skb); 6133 skb_headers_offset_update(skb, 0); 6134 skb->cloned = 0; 6135 skb->hdr_len = 0; 6136 skb->nohdr = 0; 6137 skb->len -= off; 6138 skb->data_len = skb->len; 6139 atomic_set(&skb_shinfo(skb)->dataref, 1); 6140 return 0; 6141 } 6142 6143 /* remove len bytes from the beginning of the skb */ 6144 static int pskb_carve(struct sk_buff *skb, const u32 len, gfp_t gfp) 6145 { 6146 int headlen = skb_headlen(skb); 6147 6148 if (len < headlen) 6149 return pskb_carve_inside_header(skb, len, headlen, gfp); 6150 else 6151 return pskb_carve_inside_nonlinear(skb, len, headlen, gfp); 6152 } 6153 6154 /* Extract to_copy bytes starting at off from skb, and return this in 6155 * a new skb 6156 */ 6157 struct sk_buff *pskb_extract(struct sk_buff *skb, int off, 6158 int to_copy, gfp_t gfp) 6159 { 6160 struct sk_buff *clone = skb_clone(skb, gfp); 6161 6162 if (!clone) 6163 return NULL; 6164 6165 if (pskb_carve(clone, off, gfp) < 0 || 6166 pskb_trim(clone, to_copy)) { 6167 kfree_skb(clone); 6168 return NULL; 6169 } 6170 return clone; 6171 } 6172 EXPORT_SYMBOL(pskb_extract); 6173 6174 /** 6175 * skb_condense - try to get rid of fragments/frag_list if possible 6176 * @skb: buffer 6177 * 6178 * Can be used to save memory before skb is added to a busy queue. 6179 * If packet has bytes in frags and enough tail room in skb->head, 6180 * pull all of them, so that we can free the frags right now and adjust 6181 * truesize. 6182 * Notes: 6183 * We do not reallocate skb->head thus can not fail. 6184 * Caller must re-evaluate skb->truesize if needed. 6185 */ 6186 void skb_condense(struct sk_buff *skb) 6187 { 6188 if (skb->data_len) { 6189 if (skb->data_len > skb->end - skb->tail || 6190 skb_cloned(skb)) 6191 return; 6192 6193 /* Nice, we can free page frag(s) right now */ 6194 __pskb_pull_tail(skb, skb->data_len); 6195 } 6196 /* At this point, skb->truesize might be over estimated, 6197 * because skb had a fragment, and fragments do not tell 6198 * their truesize. 6199 * When we pulled its content into skb->head, fragment 6200 * was freed, but __pskb_pull_tail() could not possibly 6201 * adjust skb->truesize, not knowing the frag truesize. 6202 */ 6203 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb)); 6204 } 6205 6206 #ifdef CONFIG_SKB_EXTENSIONS 6207 static void *skb_ext_get_ptr(struct skb_ext *ext, enum skb_ext_id id) 6208 { 6209 return (void *)ext + (ext->offset[id] * SKB_EXT_ALIGN_VALUE); 6210 } 6211 6212 /** 6213 * __skb_ext_alloc - allocate a new skb extensions storage 6214 * 6215 * @flags: See kmalloc(). 6216 * 6217 * Returns the newly allocated pointer. The pointer can later attached to a 6218 * skb via __skb_ext_set(). 6219 * Note: caller must handle the skb_ext as an opaque data. 6220 */ 6221 struct skb_ext *__skb_ext_alloc(gfp_t flags) 6222 { 6223 struct skb_ext *new = kmem_cache_alloc(skbuff_ext_cache, flags); 6224 6225 if (new) { 6226 memset(new->offset, 0, sizeof(new->offset)); 6227 refcount_set(&new->refcnt, 1); 6228 } 6229 6230 return new; 6231 } 6232 6233 static struct skb_ext *skb_ext_maybe_cow(struct skb_ext *old, 6234 unsigned int old_active) 6235 { 6236 struct skb_ext *new; 6237 6238 if (refcount_read(&old->refcnt) == 1) 6239 return old; 6240 6241 new = kmem_cache_alloc(skbuff_ext_cache, GFP_ATOMIC); 6242 if (!new) 6243 return NULL; 6244 6245 memcpy(new, old, old->chunks * SKB_EXT_ALIGN_VALUE); 6246 refcount_set(&new->refcnt, 1); 6247 6248 #ifdef CONFIG_XFRM 6249 if (old_active & (1 << SKB_EXT_SEC_PATH)) { 6250 struct sec_path *sp = skb_ext_get_ptr(old, SKB_EXT_SEC_PATH); 6251 unsigned int i; 6252 6253 for (i = 0; i < sp->len; i++) 6254 xfrm_state_hold(sp->xvec[i]); 6255 } 6256 #endif 6257 __skb_ext_put(old); 6258 return new; 6259 } 6260 6261 /** 6262 * __skb_ext_set - attach the specified extension storage to this skb 6263 * @skb: buffer 6264 * @id: extension id 6265 * @ext: extension storage previously allocated via __skb_ext_alloc() 6266 * 6267 * Existing extensions, if any, are cleared. 6268 * 6269 * Returns the pointer to the extension. 6270 */ 6271 void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id, 6272 struct skb_ext *ext) 6273 { 6274 unsigned int newlen, newoff = SKB_EXT_CHUNKSIZEOF(*ext); 6275 6276 skb_ext_put(skb); 6277 newlen = newoff + skb_ext_type_len[id]; 6278 ext->chunks = newlen; 6279 ext->offset[id] = newoff; 6280 skb->extensions = ext; 6281 skb->active_extensions = 1 << id; 6282 return skb_ext_get_ptr(ext, id); 6283 } 6284 6285 /** 6286 * skb_ext_add - allocate space for given extension, COW if needed 6287 * @skb: buffer 6288 * @id: extension to allocate space for 6289 * 6290 * Allocates enough space for the given extension. 6291 * If the extension is already present, a pointer to that extension 6292 * is returned. 6293 * 6294 * If the skb was cloned, COW applies and the returned memory can be 6295 * modified without changing the extension space of clones buffers. 6296 * 6297 * Returns pointer to the extension or NULL on allocation failure. 6298 */ 6299 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id) 6300 { 6301 struct skb_ext *new, *old = NULL; 6302 unsigned int newlen, newoff; 6303 6304 if (skb->active_extensions) { 6305 old = skb->extensions; 6306 6307 new = skb_ext_maybe_cow(old, skb->active_extensions); 6308 if (!new) 6309 return NULL; 6310 6311 if (__skb_ext_exist(new, id)) 6312 goto set_active; 6313 6314 newoff = new->chunks; 6315 } else { 6316 newoff = SKB_EXT_CHUNKSIZEOF(*new); 6317 6318 new = __skb_ext_alloc(GFP_ATOMIC); 6319 if (!new) 6320 return NULL; 6321 } 6322 6323 newlen = newoff + skb_ext_type_len[id]; 6324 new->chunks = newlen; 6325 new->offset[id] = newoff; 6326 set_active: 6327 skb->extensions = new; 6328 skb->active_extensions |= 1 << id; 6329 return skb_ext_get_ptr(new, id); 6330 } 6331 EXPORT_SYMBOL(skb_ext_add); 6332 6333 #ifdef CONFIG_XFRM 6334 static void skb_ext_put_sp(struct sec_path *sp) 6335 { 6336 unsigned int i; 6337 6338 for (i = 0; i < sp->len; i++) 6339 xfrm_state_put(sp->xvec[i]); 6340 } 6341 #endif 6342 6343 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id) 6344 { 6345 struct skb_ext *ext = skb->extensions; 6346 6347 skb->active_extensions &= ~(1 << id); 6348 if (skb->active_extensions == 0) { 6349 skb->extensions = NULL; 6350 __skb_ext_put(ext); 6351 #ifdef CONFIG_XFRM 6352 } else if (id == SKB_EXT_SEC_PATH && 6353 refcount_read(&ext->refcnt) == 1) { 6354 struct sec_path *sp = skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH); 6355 6356 skb_ext_put_sp(sp); 6357 sp->len = 0; 6358 #endif 6359 } 6360 } 6361 EXPORT_SYMBOL(__skb_ext_del); 6362 6363 void __skb_ext_put(struct skb_ext *ext) 6364 { 6365 /* If this is last clone, nothing can increment 6366 * it after check passes. Avoids one atomic op. 6367 */ 6368 if (refcount_read(&ext->refcnt) == 1) 6369 goto free_now; 6370 6371 if (!refcount_dec_and_test(&ext->refcnt)) 6372 return; 6373 free_now: 6374 #ifdef CONFIG_XFRM 6375 if (__skb_ext_exist(ext, SKB_EXT_SEC_PATH)) 6376 skb_ext_put_sp(skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH)); 6377 #endif 6378 6379 kmem_cache_free(skbuff_ext_cache, ext); 6380 } 6381 EXPORT_SYMBOL(__skb_ext_put); 6382 #endif /* CONFIG_SKB_EXTENSIONS */ 6383