xref: /openbmc/linux/net/core/skbuff.c (revision d32f834cd6873d9a5ed18ad028700f60d1688cf3)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *	Routines having to do with the 'struct sk_buff' memory handlers.
4  *
5  *	Authors:	Alan Cox <alan@lxorguk.ukuu.org.uk>
6  *			Florian La Roche <rzsfl@rz.uni-sb.de>
7  *
8  *	Fixes:
9  *		Alan Cox	:	Fixed the worst of the load
10  *					balancer bugs.
11  *		Dave Platt	:	Interrupt stacking fix.
12  *	Richard Kooijman	:	Timestamp fixes.
13  *		Alan Cox	:	Changed buffer format.
14  *		Alan Cox	:	destructor hook for AF_UNIX etc.
15  *		Linus Torvalds	:	Better skb_clone.
16  *		Alan Cox	:	Added skb_copy.
17  *		Alan Cox	:	Added all the changed routines Linus
18  *					only put in the headers
19  *		Ray VanTassle	:	Fixed --skb->lock in free
20  *		Alan Cox	:	skb_copy copy arp field
21  *		Andi Kleen	:	slabified it.
22  *		Robert Olsson	:	Removed skb_head_pool
23  *
24  *	NOTE:
25  *		The __skb_ routines should be called with interrupts
26  *	disabled, or you better be *real* sure that the operation is atomic
27  *	with respect to whatever list is being frobbed (e.g. via lock_sock()
28  *	or via disabling bottom half handlers, etc).
29  */
30 
31 /*
32  *	The functions in this file will not compile correctly with gcc 2.4.x
33  */
34 
35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
36 
37 #include <linux/module.h>
38 #include <linux/types.h>
39 #include <linux/kernel.h>
40 #include <linux/mm.h>
41 #include <linux/interrupt.h>
42 #include <linux/in.h>
43 #include <linux/inet.h>
44 #include <linux/slab.h>
45 #include <linux/tcp.h>
46 #include <linux/udp.h>
47 #include <linux/sctp.h>
48 #include <linux/netdevice.h>
49 #ifdef CONFIG_NET_CLS_ACT
50 #include <net/pkt_sched.h>
51 #endif
52 #include <linux/string.h>
53 #include <linux/skbuff.h>
54 #include <linux/splice.h>
55 #include <linux/cache.h>
56 #include <linux/rtnetlink.h>
57 #include <linux/init.h>
58 #include <linux/scatterlist.h>
59 #include <linux/errqueue.h>
60 #include <linux/prefetch.h>
61 #include <linux/if_vlan.h>
62 #include <linux/mpls.h>
63 
64 #include <net/protocol.h>
65 #include <net/dst.h>
66 #include <net/sock.h>
67 #include <net/checksum.h>
68 #include <net/ip6_checksum.h>
69 #include <net/xfrm.h>
70 #include <net/mpls.h>
71 #include <net/mptcp.h>
72 
73 #include <linux/uaccess.h>
74 #include <trace/events/skb.h>
75 #include <linux/highmem.h>
76 #include <linux/capability.h>
77 #include <linux/user_namespace.h>
78 #include <linux/indirect_call_wrapper.h>
79 
80 #include "datagram.h"
81 
82 struct kmem_cache *skbuff_head_cache __ro_after_init;
83 static struct kmem_cache *skbuff_fclone_cache __ro_after_init;
84 #ifdef CONFIG_SKB_EXTENSIONS
85 static struct kmem_cache *skbuff_ext_cache __ro_after_init;
86 #endif
87 int sysctl_max_skb_frags __read_mostly = MAX_SKB_FRAGS;
88 EXPORT_SYMBOL(sysctl_max_skb_frags);
89 
90 /**
91  *	skb_panic - private function for out-of-line support
92  *	@skb:	buffer
93  *	@sz:	size
94  *	@addr:	address
95  *	@msg:	skb_over_panic or skb_under_panic
96  *
97  *	Out-of-line support for skb_put() and skb_push().
98  *	Called via the wrapper skb_over_panic() or skb_under_panic().
99  *	Keep out of line to prevent kernel bloat.
100  *	__builtin_return_address is not used because it is not always reliable.
101  */
102 static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr,
103 		      const char msg[])
104 {
105 	pr_emerg("%s: text:%px len:%d put:%d head:%px data:%px tail:%#lx end:%#lx dev:%s\n",
106 		 msg, addr, skb->len, sz, skb->head, skb->data,
107 		 (unsigned long)skb->tail, (unsigned long)skb->end,
108 		 skb->dev ? skb->dev->name : "<NULL>");
109 	BUG();
110 }
111 
112 static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr)
113 {
114 	skb_panic(skb, sz, addr, __func__);
115 }
116 
117 static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr)
118 {
119 	skb_panic(skb, sz, addr, __func__);
120 }
121 
122 /*
123  * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells
124  * the caller if emergency pfmemalloc reserves are being used. If it is and
125  * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves
126  * may be used. Otherwise, the packet data may be discarded until enough
127  * memory is free
128  */
129 #define kmalloc_reserve(size, gfp, node, pfmemalloc) \
130 	 __kmalloc_reserve(size, gfp, node, _RET_IP_, pfmemalloc)
131 
132 static void *__kmalloc_reserve(size_t size, gfp_t flags, int node,
133 			       unsigned long ip, bool *pfmemalloc)
134 {
135 	void *obj;
136 	bool ret_pfmemalloc = false;
137 
138 	/*
139 	 * Try a regular allocation, when that fails and we're not entitled
140 	 * to the reserves, fail.
141 	 */
142 	obj = kmalloc_node_track_caller(size,
143 					flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
144 					node);
145 	if (obj || !(gfp_pfmemalloc_allowed(flags)))
146 		goto out;
147 
148 	/* Try again but now we are using pfmemalloc reserves */
149 	ret_pfmemalloc = true;
150 	obj = kmalloc_node_track_caller(size, flags, node);
151 
152 out:
153 	if (pfmemalloc)
154 		*pfmemalloc = ret_pfmemalloc;
155 
156 	return obj;
157 }
158 
159 /* 	Allocate a new skbuff. We do this ourselves so we can fill in a few
160  *	'private' fields and also do memory statistics to find all the
161  *	[BEEP] leaks.
162  *
163  */
164 
165 /**
166  *	__alloc_skb	-	allocate a network buffer
167  *	@size: size to allocate
168  *	@gfp_mask: allocation mask
169  *	@flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache
170  *		instead of head cache and allocate a cloned (child) skb.
171  *		If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for
172  *		allocations in case the data is required for writeback
173  *	@node: numa node to allocate memory on
174  *
175  *	Allocate a new &sk_buff. The returned buffer has no headroom and a
176  *	tail room of at least size bytes. The object has a reference count
177  *	of one. The return is the buffer. On a failure the return is %NULL.
178  *
179  *	Buffers may only be allocated from interrupts using a @gfp_mask of
180  *	%GFP_ATOMIC.
181  */
182 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
183 			    int flags, int node)
184 {
185 	struct kmem_cache *cache;
186 	struct skb_shared_info *shinfo;
187 	struct sk_buff *skb;
188 	u8 *data;
189 	bool pfmemalloc;
190 
191 	cache = (flags & SKB_ALLOC_FCLONE)
192 		? skbuff_fclone_cache : skbuff_head_cache;
193 
194 	if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX))
195 		gfp_mask |= __GFP_MEMALLOC;
196 
197 	/* Get the HEAD */
198 	skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node);
199 	if (!skb)
200 		goto out;
201 	prefetchw(skb);
202 
203 	/* We do our best to align skb_shared_info on a separate cache
204 	 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives
205 	 * aligned memory blocks, unless SLUB/SLAB debug is enabled.
206 	 * Both skb->head and skb_shared_info are cache line aligned.
207 	 */
208 	size = SKB_DATA_ALIGN(size);
209 	size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
210 	data = kmalloc_reserve(size, gfp_mask, node, &pfmemalloc);
211 	if (!data)
212 		goto nodata;
213 	/* kmalloc(size) might give us more room than requested.
214 	 * Put skb_shared_info exactly at the end of allocated zone,
215 	 * to allow max possible filling before reallocation.
216 	 */
217 	size = SKB_WITH_OVERHEAD(ksize(data));
218 	prefetchw(data + size);
219 
220 	/*
221 	 * Only clear those fields we need to clear, not those that we will
222 	 * actually initialise below. Hence, don't put any more fields after
223 	 * the tail pointer in struct sk_buff!
224 	 */
225 	memset(skb, 0, offsetof(struct sk_buff, tail));
226 	/* Account for allocated memory : skb + skb->head */
227 	skb->truesize = SKB_TRUESIZE(size);
228 	skb->pfmemalloc = pfmemalloc;
229 	refcount_set(&skb->users, 1);
230 	skb->head = data;
231 	skb->data = data;
232 	skb_reset_tail_pointer(skb);
233 	skb->end = skb->tail + size;
234 	skb->mac_header = (typeof(skb->mac_header))~0U;
235 	skb->transport_header = (typeof(skb->transport_header))~0U;
236 
237 	/* make sure we initialize shinfo sequentially */
238 	shinfo = skb_shinfo(skb);
239 	memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
240 	atomic_set(&shinfo->dataref, 1);
241 
242 	if (flags & SKB_ALLOC_FCLONE) {
243 		struct sk_buff_fclones *fclones;
244 
245 		fclones = container_of(skb, struct sk_buff_fclones, skb1);
246 
247 		skb->fclone = SKB_FCLONE_ORIG;
248 		refcount_set(&fclones->fclone_ref, 1);
249 
250 		fclones->skb2.fclone = SKB_FCLONE_CLONE;
251 	}
252 
253 	skb_set_kcov_handle(skb, kcov_common_handle());
254 
255 out:
256 	return skb;
257 nodata:
258 	kmem_cache_free(cache, skb);
259 	skb = NULL;
260 	goto out;
261 }
262 EXPORT_SYMBOL(__alloc_skb);
263 
264 /* Caller must provide SKB that is memset cleared */
265 static struct sk_buff *__build_skb_around(struct sk_buff *skb,
266 					  void *data, unsigned int frag_size)
267 {
268 	struct skb_shared_info *shinfo;
269 	unsigned int size = frag_size ? : ksize(data);
270 
271 	size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
272 
273 	/* Assumes caller memset cleared SKB */
274 	skb->truesize = SKB_TRUESIZE(size);
275 	refcount_set(&skb->users, 1);
276 	skb->head = data;
277 	skb->data = data;
278 	skb_reset_tail_pointer(skb);
279 	skb->end = skb->tail + size;
280 	skb->mac_header = (typeof(skb->mac_header))~0U;
281 	skb->transport_header = (typeof(skb->transport_header))~0U;
282 
283 	/* make sure we initialize shinfo sequentially */
284 	shinfo = skb_shinfo(skb);
285 	memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
286 	atomic_set(&shinfo->dataref, 1);
287 
288 	skb_set_kcov_handle(skb, kcov_common_handle());
289 
290 	return skb;
291 }
292 
293 /**
294  * __build_skb - build a network buffer
295  * @data: data buffer provided by caller
296  * @frag_size: size of data, or 0 if head was kmalloced
297  *
298  * Allocate a new &sk_buff. Caller provides space holding head and
299  * skb_shared_info. @data must have been allocated by kmalloc() only if
300  * @frag_size is 0, otherwise data should come from the page allocator
301  *  or vmalloc()
302  * The return is the new skb buffer.
303  * On a failure the return is %NULL, and @data is not freed.
304  * Notes :
305  *  Before IO, driver allocates only data buffer where NIC put incoming frame
306  *  Driver should add room at head (NET_SKB_PAD) and
307  *  MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info))
308  *  After IO, driver calls build_skb(), to allocate sk_buff and populate it
309  *  before giving packet to stack.
310  *  RX rings only contains data buffers, not full skbs.
311  */
312 struct sk_buff *__build_skb(void *data, unsigned int frag_size)
313 {
314 	struct sk_buff *skb;
315 
316 	skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC);
317 	if (unlikely(!skb))
318 		return NULL;
319 
320 	memset(skb, 0, offsetof(struct sk_buff, tail));
321 
322 	return __build_skb_around(skb, data, frag_size);
323 }
324 
325 /* build_skb() is wrapper over __build_skb(), that specifically
326  * takes care of skb->head and skb->pfmemalloc
327  * This means that if @frag_size is not zero, then @data must be backed
328  * by a page fragment, not kmalloc() or vmalloc()
329  */
330 struct sk_buff *build_skb(void *data, unsigned int frag_size)
331 {
332 	struct sk_buff *skb = __build_skb(data, frag_size);
333 
334 	if (skb && frag_size) {
335 		skb->head_frag = 1;
336 		if (page_is_pfmemalloc(virt_to_head_page(data)))
337 			skb->pfmemalloc = 1;
338 	}
339 	return skb;
340 }
341 EXPORT_SYMBOL(build_skb);
342 
343 /**
344  * build_skb_around - build a network buffer around provided skb
345  * @skb: sk_buff provide by caller, must be memset cleared
346  * @data: data buffer provided by caller
347  * @frag_size: size of data, or 0 if head was kmalloced
348  */
349 struct sk_buff *build_skb_around(struct sk_buff *skb,
350 				 void *data, unsigned int frag_size)
351 {
352 	if (unlikely(!skb))
353 		return NULL;
354 
355 	skb = __build_skb_around(skb, data, frag_size);
356 
357 	if (skb && frag_size) {
358 		skb->head_frag = 1;
359 		if (page_is_pfmemalloc(virt_to_head_page(data)))
360 			skb->pfmemalloc = 1;
361 	}
362 	return skb;
363 }
364 EXPORT_SYMBOL(build_skb_around);
365 
366 #define NAPI_SKB_CACHE_SIZE	64
367 
368 struct napi_alloc_cache {
369 	struct page_frag_cache page;
370 	unsigned int skb_count;
371 	void *skb_cache[NAPI_SKB_CACHE_SIZE];
372 };
373 
374 static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache);
375 static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache);
376 
377 static void *__napi_alloc_frag(unsigned int fragsz, gfp_t gfp_mask)
378 {
379 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
380 
381 	return page_frag_alloc(&nc->page, fragsz, gfp_mask);
382 }
383 
384 void *napi_alloc_frag(unsigned int fragsz)
385 {
386 	fragsz = SKB_DATA_ALIGN(fragsz);
387 
388 	return __napi_alloc_frag(fragsz, GFP_ATOMIC);
389 }
390 EXPORT_SYMBOL(napi_alloc_frag);
391 
392 /**
393  * netdev_alloc_frag - allocate a page fragment
394  * @fragsz: fragment size
395  *
396  * Allocates a frag from a page for receive buffer.
397  * Uses GFP_ATOMIC allocations.
398  */
399 void *netdev_alloc_frag(unsigned int fragsz)
400 {
401 	struct page_frag_cache *nc;
402 	void *data;
403 
404 	fragsz = SKB_DATA_ALIGN(fragsz);
405 	if (in_irq() || irqs_disabled()) {
406 		nc = this_cpu_ptr(&netdev_alloc_cache);
407 		data = page_frag_alloc(nc, fragsz, GFP_ATOMIC);
408 	} else {
409 		local_bh_disable();
410 		data = __napi_alloc_frag(fragsz, GFP_ATOMIC);
411 		local_bh_enable();
412 	}
413 	return data;
414 }
415 EXPORT_SYMBOL(netdev_alloc_frag);
416 
417 /**
418  *	__netdev_alloc_skb - allocate an skbuff for rx on a specific device
419  *	@dev: network device to receive on
420  *	@len: length to allocate
421  *	@gfp_mask: get_free_pages mask, passed to alloc_skb
422  *
423  *	Allocate a new &sk_buff and assign it a usage count of one. The
424  *	buffer has NET_SKB_PAD headroom built in. Users should allocate
425  *	the headroom they think they need without accounting for the
426  *	built in space. The built in space is used for optimisations.
427  *
428  *	%NULL is returned if there is no free memory.
429  */
430 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len,
431 				   gfp_t gfp_mask)
432 {
433 	struct page_frag_cache *nc;
434 	struct sk_buff *skb;
435 	bool pfmemalloc;
436 	void *data;
437 
438 	len += NET_SKB_PAD;
439 
440 	/* If requested length is either too small or too big,
441 	 * we use kmalloc() for skb->head allocation.
442 	 */
443 	if (len <= SKB_WITH_OVERHEAD(1024) ||
444 	    len > SKB_WITH_OVERHEAD(PAGE_SIZE) ||
445 	    (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
446 		skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
447 		if (!skb)
448 			goto skb_fail;
449 		goto skb_success;
450 	}
451 
452 	len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
453 	len = SKB_DATA_ALIGN(len);
454 
455 	if (sk_memalloc_socks())
456 		gfp_mask |= __GFP_MEMALLOC;
457 
458 	if (in_irq() || irqs_disabled()) {
459 		nc = this_cpu_ptr(&netdev_alloc_cache);
460 		data = page_frag_alloc(nc, len, gfp_mask);
461 		pfmemalloc = nc->pfmemalloc;
462 	} else {
463 		local_bh_disable();
464 		nc = this_cpu_ptr(&napi_alloc_cache.page);
465 		data = page_frag_alloc(nc, len, gfp_mask);
466 		pfmemalloc = nc->pfmemalloc;
467 		local_bh_enable();
468 	}
469 
470 	if (unlikely(!data))
471 		return NULL;
472 
473 	skb = __build_skb(data, len);
474 	if (unlikely(!skb)) {
475 		skb_free_frag(data);
476 		return NULL;
477 	}
478 
479 	if (pfmemalloc)
480 		skb->pfmemalloc = 1;
481 	skb->head_frag = 1;
482 
483 skb_success:
484 	skb_reserve(skb, NET_SKB_PAD);
485 	skb->dev = dev;
486 
487 skb_fail:
488 	return skb;
489 }
490 EXPORT_SYMBOL(__netdev_alloc_skb);
491 
492 /**
493  *	__napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance
494  *	@napi: napi instance this buffer was allocated for
495  *	@len: length to allocate
496  *	@gfp_mask: get_free_pages mask, passed to alloc_skb and alloc_pages
497  *
498  *	Allocate a new sk_buff for use in NAPI receive.  This buffer will
499  *	attempt to allocate the head from a special reserved region used
500  *	only for NAPI Rx allocation.  By doing this we can save several
501  *	CPU cycles by avoiding having to disable and re-enable IRQs.
502  *
503  *	%NULL is returned if there is no free memory.
504  */
505 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, unsigned int len,
506 				 gfp_t gfp_mask)
507 {
508 	struct napi_alloc_cache *nc;
509 	struct sk_buff *skb;
510 	void *data;
511 
512 	len += NET_SKB_PAD + NET_IP_ALIGN;
513 
514 	/* If requested length is either too small or too big,
515 	 * we use kmalloc() for skb->head allocation.
516 	 */
517 	if (len <= SKB_WITH_OVERHEAD(1024) ||
518 	    len > SKB_WITH_OVERHEAD(PAGE_SIZE) ||
519 	    (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
520 		skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
521 		if (!skb)
522 			goto skb_fail;
523 		goto skb_success;
524 	}
525 
526 	nc = this_cpu_ptr(&napi_alloc_cache);
527 	len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
528 	len = SKB_DATA_ALIGN(len);
529 
530 	if (sk_memalloc_socks())
531 		gfp_mask |= __GFP_MEMALLOC;
532 
533 	data = page_frag_alloc(&nc->page, len, gfp_mask);
534 	if (unlikely(!data))
535 		return NULL;
536 
537 	skb = __build_skb(data, len);
538 	if (unlikely(!skb)) {
539 		skb_free_frag(data);
540 		return NULL;
541 	}
542 
543 	if (nc->page.pfmemalloc)
544 		skb->pfmemalloc = 1;
545 	skb->head_frag = 1;
546 
547 skb_success:
548 	skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN);
549 	skb->dev = napi->dev;
550 
551 skb_fail:
552 	return skb;
553 }
554 EXPORT_SYMBOL(__napi_alloc_skb);
555 
556 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
557 		     int size, unsigned int truesize)
558 {
559 	skb_fill_page_desc(skb, i, page, off, size);
560 	skb->len += size;
561 	skb->data_len += size;
562 	skb->truesize += truesize;
563 }
564 EXPORT_SYMBOL(skb_add_rx_frag);
565 
566 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
567 			  unsigned int truesize)
568 {
569 	skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
570 
571 	skb_frag_size_add(frag, size);
572 	skb->len += size;
573 	skb->data_len += size;
574 	skb->truesize += truesize;
575 }
576 EXPORT_SYMBOL(skb_coalesce_rx_frag);
577 
578 static void skb_drop_list(struct sk_buff **listp)
579 {
580 	kfree_skb_list(*listp);
581 	*listp = NULL;
582 }
583 
584 static inline void skb_drop_fraglist(struct sk_buff *skb)
585 {
586 	skb_drop_list(&skb_shinfo(skb)->frag_list);
587 }
588 
589 static void skb_clone_fraglist(struct sk_buff *skb)
590 {
591 	struct sk_buff *list;
592 
593 	skb_walk_frags(skb, list)
594 		skb_get(list);
595 }
596 
597 static void skb_free_head(struct sk_buff *skb)
598 {
599 	unsigned char *head = skb->head;
600 
601 	if (skb->head_frag)
602 		skb_free_frag(head);
603 	else
604 		kfree(head);
605 }
606 
607 static void skb_release_data(struct sk_buff *skb)
608 {
609 	struct skb_shared_info *shinfo = skb_shinfo(skb);
610 	int i;
611 
612 	if (skb->cloned &&
613 	    atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
614 			      &shinfo->dataref))
615 		return;
616 
617 	skb_zcopy_clear(skb, true);
618 
619 	for (i = 0; i < shinfo->nr_frags; i++)
620 		__skb_frag_unref(&shinfo->frags[i]);
621 
622 	if (shinfo->frag_list)
623 		kfree_skb_list(shinfo->frag_list);
624 
625 	skb_free_head(skb);
626 }
627 
628 /*
629  *	Free an skbuff by memory without cleaning the state.
630  */
631 static void kfree_skbmem(struct sk_buff *skb)
632 {
633 	struct sk_buff_fclones *fclones;
634 
635 	switch (skb->fclone) {
636 	case SKB_FCLONE_UNAVAILABLE:
637 		kmem_cache_free(skbuff_head_cache, skb);
638 		return;
639 
640 	case SKB_FCLONE_ORIG:
641 		fclones = container_of(skb, struct sk_buff_fclones, skb1);
642 
643 		/* We usually free the clone (TX completion) before original skb
644 		 * This test would have no chance to be true for the clone,
645 		 * while here, branch prediction will be good.
646 		 */
647 		if (refcount_read(&fclones->fclone_ref) == 1)
648 			goto fastpath;
649 		break;
650 
651 	default: /* SKB_FCLONE_CLONE */
652 		fclones = container_of(skb, struct sk_buff_fclones, skb2);
653 		break;
654 	}
655 	if (!refcount_dec_and_test(&fclones->fclone_ref))
656 		return;
657 fastpath:
658 	kmem_cache_free(skbuff_fclone_cache, fclones);
659 }
660 
661 void skb_release_head_state(struct sk_buff *skb)
662 {
663 	skb_dst_drop(skb);
664 	if (skb->destructor) {
665 		WARN_ON(in_irq());
666 		skb->destructor(skb);
667 	}
668 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
669 	nf_conntrack_put(skb_nfct(skb));
670 #endif
671 	skb_ext_put(skb);
672 }
673 
674 /* Free everything but the sk_buff shell. */
675 static void skb_release_all(struct sk_buff *skb)
676 {
677 	skb_release_head_state(skb);
678 	if (likely(skb->head))
679 		skb_release_data(skb);
680 }
681 
682 /**
683  *	__kfree_skb - private function
684  *	@skb: buffer
685  *
686  *	Free an sk_buff. Release anything attached to the buffer.
687  *	Clean the state. This is an internal helper function. Users should
688  *	always call kfree_skb
689  */
690 
691 void __kfree_skb(struct sk_buff *skb)
692 {
693 	skb_release_all(skb);
694 	kfree_skbmem(skb);
695 }
696 EXPORT_SYMBOL(__kfree_skb);
697 
698 /**
699  *	kfree_skb - free an sk_buff
700  *	@skb: buffer to free
701  *
702  *	Drop a reference to the buffer and free it if the usage count has
703  *	hit zero.
704  */
705 void kfree_skb(struct sk_buff *skb)
706 {
707 	if (!skb_unref(skb))
708 		return;
709 
710 	trace_kfree_skb(skb, __builtin_return_address(0));
711 	__kfree_skb(skb);
712 }
713 EXPORT_SYMBOL(kfree_skb);
714 
715 void kfree_skb_list(struct sk_buff *segs)
716 {
717 	while (segs) {
718 		struct sk_buff *next = segs->next;
719 
720 		kfree_skb(segs);
721 		segs = next;
722 	}
723 }
724 EXPORT_SYMBOL(kfree_skb_list);
725 
726 /* Dump skb information and contents.
727  *
728  * Must only be called from net_ratelimit()-ed paths.
729  *
730  * Dumps whole packets if full_pkt, only headers otherwise.
731  */
732 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt)
733 {
734 	struct skb_shared_info *sh = skb_shinfo(skb);
735 	struct net_device *dev = skb->dev;
736 	struct sock *sk = skb->sk;
737 	struct sk_buff *list_skb;
738 	bool has_mac, has_trans;
739 	int headroom, tailroom;
740 	int i, len, seg_len;
741 
742 	if (full_pkt)
743 		len = skb->len;
744 	else
745 		len = min_t(int, skb->len, MAX_HEADER + 128);
746 
747 	headroom = skb_headroom(skb);
748 	tailroom = skb_tailroom(skb);
749 
750 	has_mac = skb_mac_header_was_set(skb);
751 	has_trans = skb_transport_header_was_set(skb);
752 
753 	printk("%sskb len=%u headroom=%u headlen=%u tailroom=%u\n"
754 	       "mac=(%d,%d) net=(%d,%d) trans=%d\n"
755 	       "shinfo(txflags=%u nr_frags=%u gso(size=%hu type=%u segs=%hu))\n"
756 	       "csum(0x%x ip_summed=%u complete_sw=%u valid=%u level=%u)\n"
757 	       "hash(0x%x sw=%u l4=%u) proto=0x%04x pkttype=%u iif=%d\n",
758 	       level, skb->len, headroom, skb_headlen(skb), tailroom,
759 	       has_mac ? skb->mac_header : -1,
760 	       has_mac ? skb_mac_header_len(skb) : -1,
761 	       skb->network_header,
762 	       has_trans ? skb_network_header_len(skb) : -1,
763 	       has_trans ? skb->transport_header : -1,
764 	       sh->tx_flags, sh->nr_frags,
765 	       sh->gso_size, sh->gso_type, sh->gso_segs,
766 	       skb->csum, skb->ip_summed, skb->csum_complete_sw,
767 	       skb->csum_valid, skb->csum_level,
768 	       skb->hash, skb->sw_hash, skb->l4_hash,
769 	       ntohs(skb->protocol), skb->pkt_type, skb->skb_iif);
770 
771 	if (dev)
772 		printk("%sdev name=%s feat=0x%pNF\n",
773 		       level, dev->name, &dev->features);
774 	if (sk)
775 		printk("%ssk family=%hu type=%u proto=%u\n",
776 		       level, sk->sk_family, sk->sk_type, sk->sk_protocol);
777 
778 	if (full_pkt && headroom)
779 		print_hex_dump(level, "skb headroom: ", DUMP_PREFIX_OFFSET,
780 			       16, 1, skb->head, headroom, false);
781 
782 	seg_len = min_t(int, skb_headlen(skb), len);
783 	if (seg_len)
784 		print_hex_dump(level, "skb linear:   ", DUMP_PREFIX_OFFSET,
785 			       16, 1, skb->data, seg_len, false);
786 	len -= seg_len;
787 
788 	if (full_pkt && tailroom)
789 		print_hex_dump(level, "skb tailroom: ", DUMP_PREFIX_OFFSET,
790 			       16, 1, skb_tail_pointer(skb), tailroom, false);
791 
792 	for (i = 0; len && i < skb_shinfo(skb)->nr_frags; i++) {
793 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
794 		u32 p_off, p_len, copied;
795 		struct page *p;
796 		u8 *vaddr;
797 
798 		skb_frag_foreach_page(frag, skb_frag_off(frag),
799 				      skb_frag_size(frag), p, p_off, p_len,
800 				      copied) {
801 			seg_len = min_t(int, p_len, len);
802 			vaddr = kmap_atomic(p);
803 			print_hex_dump(level, "skb frag:     ",
804 				       DUMP_PREFIX_OFFSET,
805 				       16, 1, vaddr + p_off, seg_len, false);
806 			kunmap_atomic(vaddr);
807 			len -= seg_len;
808 			if (!len)
809 				break;
810 		}
811 	}
812 
813 	if (full_pkt && skb_has_frag_list(skb)) {
814 		printk("skb fraglist:\n");
815 		skb_walk_frags(skb, list_skb)
816 			skb_dump(level, list_skb, true);
817 	}
818 }
819 EXPORT_SYMBOL(skb_dump);
820 
821 /**
822  *	skb_tx_error - report an sk_buff xmit error
823  *	@skb: buffer that triggered an error
824  *
825  *	Report xmit error if a device callback is tracking this skb.
826  *	skb must be freed afterwards.
827  */
828 void skb_tx_error(struct sk_buff *skb)
829 {
830 	skb_zcopy_clear(skb, true);
831 }
832 EXPORT_SYMBOL(skb_tx_error);
833 
834 #ifdef CONFIG_TRACEPOINTS
835 /**
836  *	consume_skb - free an skbuff
837  *	@skb: buffer to free
838  *
839  *	Drop a ref to the buffer and free it if the usage count has hit zero
840  *	Functions identically to kfree_skb, but kfree_skb assumes that the frame
841  *	is being dropped after a failure and notes that
842  */
843 void consume_skb(struct sk_buff *skb)
844 {
845 	if (!skb_unref(skb))
846 		return;
847 
848 	trace_consume_skb(skb);
849 	__kfree_skb(skb);
850 }
851 EXPORT_SYMBOL(consume_skb);
852 #endif
853 
854 /**
855  *	__consume_stateless_skb - free an skbuff, assuming it is stateless
856  *	@skb: buffer to free
857  *
858  *	Alike consume_skb(), but this variant assumes that this is the last
859  *	skb reference and all the head states have been already dropped
860  */
861 void __consume_stateless_skb(struct sk_buff *skb)
862 {
863 	trace_consume_skb(skb);
864 	skb_release_data(skb);
865 	kfree_skbmem(skb);
866 }
867 
868 void __kfree_skb_flush(void)
869 {
870 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
871 
872 	/* flush skb_cache if containing objects */
873 	if (nc->skb_count) {
874 		kmem_cache_free_bulk(skbuff_head_cache, nc->skb_count,
875 				     nc->skb_cache);
876 		nc->skb_count = 0;
877 	}
878 }
879 
880 static inline void _kfree_skb_defer(struct sk_buff *skb)
881 {
882 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
883 
884 	/* drop skb->head and call any destructors for packet */
885 	skb_release_all(skb);
886 
887 	/* record skb to CPU local list */
888 	nc->skb_cache[nc->skb_count++] = skb;
889 
890 #ifdef CONFIG_SLUB
891 	/* SLUB writes into objects when freeing */
892 	prefetchw(skb);
893 #endif
894 
895 	/* flush skb_cache if it is filled */
896 	if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) {
897 		kmem_cache_free_bulk(skbuff_head_cache, NAPI_SKB_CACHE_SIZE,
898 				     nc->skb_cache);
899 		nc->skb_count = 0;
900 	}
901 }
902 void __kfree_skb_defer(struct sk_buff *skb)
903 {
904 	_kfree_skb_defer(skb);
905 }
906 
907 void napi_consume_skb(struct sk_buff *skb, int budget)
908 {
909 	/* Zero budget indicate non-NAPI context called us, like netpoll */
910 	if (unlikely(!budget)) {
911 		dev_consume_skb_any(skb);
912 		return;
913 	}
914 
915 	lockdep_assert_in_softirq();
916 
917 	if (!skb_unref(skb))
918 		return;
919 
920 	/* if reaching here SKB is ready to free */
921 	trace_consume_skb(skb);
922 
923 	/* if SKB is a clone, don't handle this case */
924 	if (skb->fclone != SKB_FCLONE_UNAVAILABLE) {
925 		__kfree_skb(skb);
926 		return;
927 	}
928 
929 	_kfree_skb_defer(skb);
930 }
931 EXPORT_SYMBOL(napi_consume_skb);
932 
933 /* Make sure a field is enclosed inside headers_start/headers_end section */
934 #define CHECK_SKB_FIELD(field) \
935 	BUILD_BUG_ON(offsetof(struct sk_buff, field) <		\
936 		     offsetof(struct sk_buff, headers_start));	\
937 	BUILD_BUG_ON(offsetof(struct sk_buff, field) >		\
938 		     offsetof(struct sk_buff, headers_end));	\
939 
940 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
941 {
942 	new->tstamp		= old->tstamp;
943 	/* We do not copy old->sk */
944 	new->dev		= old->dev;
945 	memcpy(new->cb, old->cb, sizeof(old->cb));
946 	skb_dst_copy(new, old);
947 	__skb_ext_copy(new, old);
948 	__nf_copy(new, old, false);
949 
950 	/* Note : this field could be in headers_start/headers_end section
951 	 * It is not yet because we do not want to have a 16 bit hole
952 	 */
953 	new->queue_mapping = old->queue_mapping;
954 
955 	memcpy(&new->headers_start, &old->headers_start,
956 	       offsetof(struct sk_buff, headers_end) -
957 	       offsetof(struct sk_buff, headers_start));
958 	CHECK_SKB_FIELD(protocol);
959 	CHECK_SKB_FIELD(csum);
960 	CHECK_SKB_FIELD(hash);
961 	CHECK_SKB_FIELD(priority);
962 	CHECK_SKB_FIELD(skb_iif);
963 	CHECK_SKB_FIELD(vlan_proto);
964 	CHECK_SKB_FIELD(vlan_tci);
965 	CHECK_SKB_FIELD(transport_header);
966 	CHECK_SKB_FIELD(network_header);
967 	CHECK_SKB_FIELD(mac_header);
968 	CHECK_SKB_FIELD(inner_protocol);
969 	CHECK_SKB_FIELD(inner_transport_header);
970 	CHECK_SKB_FIELD(inner_network_header);
971 	CHECK_SKB_FIELD(inner_mac_header);
972 	CHECK_SKB_FIELD(mark);
973 #ifdef CONFIG_NETWORK_SECMARK
974 	CHECK_SKB_FIELD(secmark);
975 #endif
976 #ifdef CONFIG_NET_RX_BUSY_POLL
977 	CHECK_SKB_FIELD(napi_id);
978 #endif
979 #ifdef CONFIG_XPS
980 	CHECK_SKB_FIELD(sender_cpu);
981 #endif
982 #ifdef CONFIG_NET_SCHED
983 	CHECK_SKB_FIELD(tc_index);
984 #endif
985 
986 }
987 
988 /*
989  * You should not add any new code to this function.  Add it to
990  * __copy_skb_header above instead.
991  */
992 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
993 {
994 #define C(x) n->x = skb->x
995 
996 	n->next = n->prev = NULL;
997 	n->sk = NULL;
998 	__copy_skb_header(n, skb);
999 
1000 	C(len);
1001 	C(data_len);
1002 	C(mac_len);
1003 	n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
1004 	n->cloned = 1;
1005 	n->nohdr = 0;
1006 	n->peeked = 0;
1007 	C(pfmemalloc);
1008 	n->destructor = NULL;
1009 	C(tail);
1010 	C(end);
1011 	C(head);
1012 	C(head_frag);
1013 	C(data);
1014 	C(truesize);
1015 	refcount_set(&n->users, 1);
1016 
1017 	atomic_inc(&(skb_shinfo(skb)->dataref));
1018 	skb->cloned = 1;
1019 
1020 	return n;
1021 #undef C
1022 }
1023 
1024 /**
1025  * alloc_skb_for_msg() - allocate sk_buff to wrap frag list forming a msg
1026  * @first: first sk_buff of the msg
1027  */
1028 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first)
1029 {
1030 	struct sk_buff *n;
1031 
1032 	n = alloc_skb(0, GFP_ATOMIC);
1033 	if (!n)
1034 		return NULL;
1035 
1036 	n->len = first->len;
1037 	n->data_len = first->len;
1038 	n->truesize = first->truesize;
1039 
1040 	skb_shinfo(n)->frag_list = first;
1041 
1042 	__copy_skb_header(n, first);
1043 	n->destructor = NULL;
1044 
1045 	return n;
1046 }
1047 EXPORT_SYMBOL_GPL(alloc_skb_for_msg);
1048 
1049 /**
1050  *	skb_morph	-	morph one skb into another
1051  *	@dst: the skb to receive the contents
1052  *	@src: the skb to supply the contents
1053  *
1054  *	This is identical to skb_clone except that the target skb is
1055  *	supplied by the user.
1056  *
1057  *	The target skb is returned upon exit.
1058  */
1059 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
1060 {
1061 	skb_release_all(dst);
1062 	return __skb_clone(dst, src);
1063 }
1064 EXPORT_SYMBOL_GPL(skb_morph);
1065 
1066 int mm_account_pinned_pages(struct mmpin *mmp, size_t size)
1067 {
1068 	unsigned long max_pg, num_pg, new_pg, old_pg;
1069 	struct user_struct *user;
1070 
1071 	if (capable(CAP_IPC_LOCK) || !size)
1072 		return 0;
1073 
1074 	num_pg = (size >> PAGE_SHIFT) + 2;	/* worst case */
1075 	max_pg = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
1076 	user = mmp->user ? : current_user();
1077 
1078 	do {
1079 		old_pg = atomic_long_read(&user->locked_vm);
1080 		new_pg = old_pg + num_pg;
1081 		if (new_pg > max_pg)
1082 			return -ENOBUFS;
1083 	} while (atomic_long_cmpxchg(&user->locked_vm, old_pg, new_pg) !=
1084 		 old_pg);
1085 
1086 	if (!mmp->user) {
1087 		mmp->user = get_uid(user);
1088 		mmp->num_pg = num_pg;
1089 	} else {
1090 		mmp->num_pg += num_pg;
1091 	}
1092 
1093 	return 0;
1094 }
1095 EXPORT_SYMBOL_GPL(mm_account_pinned_pages);
1096 
1097 void mm_unaccount_pinned_pages(struct mmpin *mmp)
1098 {
1099 	if (mmp->user) {
1100 		atomic_long_sub(mmp->num_pg, &mmp->user->locked_vm);
1101 		free_uid(mmp->user);
1102 	}
1103 }
1104 EXPORT_SYMBOL_GPL(mm_unaccount_pinned_pages);
1105 
1106 struct ubuf_info *msg_zerocopy_alloc(struct sock *sk, size_t size)
1107 {
1108 	struct ubuf_info *uarg;
1109 	struct sk_buff *skb;
1110 
1111 	WARN_ON_ONCE(!in_task());
1112 
1113 	skb = sock_omalloc(sk, 0, GFP_KERNEL);
1114 	if (!skb)
1115 		return NULL;
1116 
1117 	BUILD_BUG_ON(sizeof(*uarg) > sizeof(skb->cb));
1118 	uarg = (void *)skb->cb;
1119 	uarg->mmp.user = NULL;
1120 
1121 	if (mm_account_pinned_pages(&uarg->mmp, size)) {
1122 		kfree_skb(skb);
1123 		return NULL;
1124 	}
1125 
1126 	uarg->callback = msg_zerocopy_callback;
1127 	uarg->id = ((u32)atomic_inc_return(&sk->sk_zckey)) - 1;
1128 	uarg->len = 1;
1129 	uarg->bytelen = size;
1130 	uarg->zerocopy = 1;
1131 	uarg->flags = SKBFL_ZEROCOPY_FRAG;
1132 	refcount_set(&uarg->refcnt, 1);
1133 	sock_hold(sk);
1134 
1135 	return uarg;
1136 }
1137 EXPORT_SYMBOL_GPL(msg_zerocopy_alloc);
1138 
1139 static inline struct sk_buff *skb_from_uarg(struct ubuf_info *uarg)
1140 {
1141 	return container_of((void *)uarg, struct sk_buff, cb);
1142 }
1143 
1144 struct ubuf_info *msg_zerocopy_realloc(struct sock *sk, size_t size,
1145 				       struct ubuf_info *uarg)
1146 {
1147 	if (uarg) {
1148 		const u32 byte_limit = 1 << 19;		/* limit to a few TSO */
1149 		u32 bytelen, next;
1150 
1151 		/* realloc only when socket is locked (TCP, UDP cork),
1152 		 * so uarg->len and sk_zckey access is serialized
1153 		 */
1154 		if (!sock_owned_by_user(sk)) {
1155 			WARN_ON_ONCE(1);
1156 			return NULL;
1157 		}
1158 
1159 		bytelen = uarg->bytelen + size;
1160 		if (uarg->len == USHRT_MAX - 1 || bytelen > byte_limit) {
1161 			/* TCP can create new skb to attach new uarg */
1162 			if (sk->sk_type == SOCK_STREAM)
1163 				goto new_alloc;
1164 			return NULL;
1165 		}
1166 
1167 		next = (u32)atomic_read(&sk->sk_zckey);
1168 		if ((u32)(uarg->id + uarg->len) == next) {
1169 			if (mm_account_pinned_pages(&uarg->mmp, size))
1170 				return NULL;
1171 			uarg->len++;
1172 			uarg->bytelen = bytelen;
1173 			atomic_set(&sk->sk_zckey, ++next);
1174 
1175 			/* no extra ref when appending to datagram (MSG_MORE) */
1176 			if (sk->sk_type == SOCK_STREAM)
1177 				net_zcopy_get(uarg);
1178 
1179 			return uarg;
1180 		}
1181 	}
1182 
1183 new_alloc:
1184 	return msg_zerocopy_alloc(sk, size);
1185 }
1186 EXPORT_SYMBOL_GPL(msg_zerocopy_realloc);
1187 
1188 static bool skb_zerocopy_notify_extend(struct sk_buff *skb, u32 lo, u16 len)
1189 {
1190 	struct sock_exterr_skb *serr = SKB_EXT_ERR(skb);
1191 	u32 old_lo, old_hi;
1192 	u64 sum_len;
1193 
1194 	old_lo = serr->ee.ee_info;
1195 	old_hi = serr->ee.ee_data;
1196 	sum_len = old_hi - old_lo + 1ULL + len;
1197 
1198 	if (sum_len >= (1ULL << 32))
1199 		return false;
1200 
1201 	if (lo != old_hi + 1)
1202 		return false;
1203 
1204 	serr->ee.ee_data += len;
1205 	return true;
1206 }
1207 
1208 static void __msg_zerocopy_callback(struct ubuf_info *uarg)
1209 {
1210 	struct sk_buff *tail, *skb = skb_from_uarg(uarg);
1211 	struct sock_exterr_skb *serr;
1212 	struct sock *sk = skb->sk;
1213 	struct sk_buff_head *q;
1214 	unsigned long flags;
1215 	u32 lo, hi;
1216 	u16 len;
1217 
1218 	mm_unaccount_pinned_pages(&uarg->mmp);
1219 
1220 	/* if !len, there was only 1 call, and it was aborted
1221 	 * so do not queue a completion notification
1222 	 */
1223 	if (!uarg->len || sock_flag(sk, SOCK_DEAD))
1224 		goto release;
1225 
1226 	len = uarg->len;
1227 	lo = uarg->id;
1228 	hi = uarg->id + len - 1;
1229 
1230 	serr = SKB_EXT_ERR(skb);
1231 	memset(serr, 0, sizeof(*serr));
1232 	serr->ee.ee_errno = 0;
1233 	serr->ee.ee_origin = SO_EE_ORIGIN_ZEROCOPY;
1234 	serr->ee.ee_data = hi;
1235 	serr->ee.ee_info = lo;
1236 	if (!uarg->zerocopy)
1237 		serr->ee.ee_code |= SO_EE_CODE_ZEROCOPY_COPIED;
1238 
1239 	q = &sk->sk_error_queue;
1240 	spin_lock_irqsave(&q->lock, flags);
1241 	tail = skb_peek_tail(q);
1242 	if (!tail || SKB_EXT_ERR(tail)->ee.ee_origin != SO_EE_ORIGIN_ZEROCOPY ||
1243 	    !skb_zerocopy_notify_extend(tail, lo, len)) {
1244 		__skb_queue_tail(q, skb);
1245 		skb = NULL;
1246 	}
1247 	spin_unlock_irqrestore(&q->lock, flags);
1248 
1249 	sk->sk_error_report(sk);
1250 
1251 release:
1252 	consume_skb(skb);
1253 	sock_put(sk);
1254 }
1255 
1256 void msg_zerocopy_callback(struct sk_buff *skb, struct ubuf_info *uarg,
1257 			   bool success)
1258 {
1259 	uarg->zerocopy = uarg->zerocopy & success;
1260 
1261 	if (refcount_dec_and_test(&uarg->refcnt))
1262 		__msg_zerocopy_callback(uarg);
1263 }
1264 EXPORT_SYMBOL_GPL(msg_zerocopy_callback);
1265 
1266 void msg_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref)
1267 {
1268 	struct sock *sk = skb_from_uarg(uarg)->sk;
1269 
1270 	atomic_dec(&sk->sk_zckey);
1271 	uarg->len--;
1272 
1273 	if (have_uref)
1274 		msg_zerocopy_callback(NULL, uarg, true);
1275 }
1276 EXPORT_SYMBOL_GPL(msg_zerocopy_put_abort);
1277 
1278 int skb_zerocopy_iter_dgram(struct sk_buff *skb, struct msghdr *msg, int len)
1279 {
1280 	return __zerocopy_sg_from_iter(skb->sk, skb, &msg->msg_iter, len);
1281 }
1282 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_dgram);
1283 
1284 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
1285 			     struct msghdr *msg, int len,
1286 			     struct ubuf_info *uarg)
1287 {
1288 	struct ubuf_info *orig_uarg = skb_zcopy(skb);
1289 	struct iov_iter orig_iter = msg->msg_iter;
1290 	int err, orig_len = skb->len;
1291 
1292 	/* An skb can only point to one uarg. This edge case happens when
1293 	 * TCP appends to an skb, but zerocopy_realloc triggered a new alloc.
1294 	 */
1295 	if (orig_uarg && uarg != orig_uarg)
1296 		return -EEXIST;
1297 
1298 	err = __zerocopy_sg_from_iter(sk, skb, &msg->msg_iter, len);
1299 	if (err == -EFAULT || (err == -EMSGSIZE && skb->len == orig_len)) {
1300 		struct sock *save_sk = skb->sk;
1301 
1302 		/* Streams do not free skb on error. Reset to prev state. */
1303 		msg->msg_iter = orig_iter;
1304 		skb->sk = sk;
1305 		___pskb_trim(skb, orig_len);
1306 		skb->sk = save_sk;
1307 		return err;
1308 	}
1309 
1310 	skb_zcopy_set(skb, uarg, NULL);
1311 	return skb->len - orig_len;
1312 }
1313 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_stream);
1314 
1315 static int skb_zerocopy_clone(struct sk_buff *nskb, struct sk_buff *orig,
1316 			      gfp_t gfp_mask)
1317 {
1318 	if (skb_zcopy(orig)) {
1319 		if (skb_zcopy(nskb)) {
1320 			/* !gfp_mask callers are verified to !skb_zcopy(nskb) */
1321 			if (!gfp_mask) {
1322 				WARN_ON_ONCE(1);
1323 				return -ENOMEM;
1324 			}
1325 			if (skb_uarg(nskb) == skb_uarg(orig))
1326 				return 0;
1327 			if (skb_copy_ubufs(nskb, GFP_ATOMIC))
1328 				return -EIO;
1329 		}
1330 		skb_zcopy_set(nskb, skb_uarg(orig), NULL);
1331 	}
1332 	return 0;
1333 }
1334 
1335 /**
1336  *	skb_copy_ubufs	-	copy userspace skb frags buffers to kernel
1337  *	@skb: the skb to modify
1338  *	@gfp_mask: allocation priority
1339  *
1340  *	This must be called on skb with SKBFL_ZEROCOPY_ENABLE.
1341  *	It will copy all frags into kernel and drop the reference
1342  *	to userspace pages.
1343  *
1344  *	If this function is called from an interrupt gfp_mask() must be
1345  *	%GFP_ATOMIC.
1346  *
1347  *	Returns 0 on success or a negative error code on failure
1348  *	to allocate kernel memory to copy to.
1349  */
1350 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask)
1351 {
1352 	int num_frags = skb_shinfo(skb)->nr_frags;
1353 	struct page *page, *head = NULL;
1354 	int i, new_frags;
1355 	u32 d_off;
1356 
1357 	if (skb_shared(skb) || skb_unclone(skb, gfp_mask))
1358 		return -EINVAL;
1359 
1360 	if (!num_frags)
1361 		goto release;
1362 
1363 	new_frags = (__skb_pagelen(skb) + PAGE_SIZE - 1) >> PAGE_SHIFT;
1364 	for (i = 0; i < new_frags; i++) {
1365 		page = alloc_page(gfp_mask);
1366 		if (!page) {
1367 			while (head) {
1368 				struct page *next = (struct page *)page_private(head);
1369 				put_page(head);
1370 				head = next;
1371 			}
1372 			return -ENOMEM;
1373 		}
1374 		set_page_private(page, (unsigned long)head);
1375 		head = page;
1376 	}
1377 
1378 	page = head;
1379 	d_off = 0;
1380 	for (i = 0; i < num_frags; i++) {
1381 		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
1382 		u32 p_off, p_len, copied;
1383 		struct page *p;
1384 		u8 *vaddr;
1385 
1386 		skb_frag_foreach_page(f, skb_frag_off(f), skb_frag_size(f),
1387 				      p, p_off, p_len, copied) {
1388 			u32 copy, done = 0;
1389 			vaddr = kmap_atomic(p);
1390 
1391 			while (done < p_len) {
1392 				if (d_off == PAGE_SIZE) {
1393 					d_off = 0;
1394 					page = (struct page *)page_private(page);
1395 				}
1396 				copy = min_t(u32, PAGE_SIZE - d_off, p_len - done);
1397 				memcpy(page_address(page) + d_off,
1398 				       vaddr + p_off + done, copy);
1399 				done += copy;
1400 				d_off += copy;
1401 			}
1402 			kunmap_atomic(vaddr);
1403 		}
1404 	}
1405 
1406 	/* skb frags release userspace buffers */
1407 	for (i = 0; i < num_frags; i++)
1408 		skb_frag_unref(skb, i);
1409 
1410 	/* skb frags point to kernel buffers */
1411 	for (i = 0; i < new_frags - 1; i++) {
1412 		__skb_fill_page_desc(skb, i, head, 0, PAGE_SIZE);
1413 		head = (struct page *)page_private(head);
1414 	}
1415 	__skb_fill_page_desc(skb, new_frags - 1, head, 0, d_off);
1416 	skb_shinfo(skb)->nr_frags = new_frags;
1417 
1418 release:
1419 	skb_zcopy_clear(skb, false);
1420 	return 0;
1421 }
1422 EXPORT_SYMBOL_GPL(skb_copy_ubufs);
1423 
1424 /**
1425  *	skb_clone	-	duplicate an sk_buff
1426  *	@skb: buffer to clone
1427  *	@gfp_mask: allocation priority
1428  *
1429  *	Duplicate an &sk_buff. The new one is not owned by a socket. Both
1430  *	copies share the same packet data but not structure. The new
1431  *	buffer has a reference count of 1. If the allocation fails the
1432  *	function returns %NULL otherwise the new buffer is returned.
1433  *
1434  *	If this function is called from an interrupt gfp_mask() must be
1435  *	%GFP_ATOMIC.
1436  */
1437 
1438 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
1439 {
1440 	struct sk_buff_fclones *fclones = container_of(skb,
1441 						       struct sk_buff_fclones,
1442 						       skb1);
1443 	struct sk_buff *n;
1444 
1445 	if (skb_orphan_frags(skb, gfp_mask))
1446 		return NULL;
1447 
1448 	if (skb->fclone == SKB_FCLONE_ORIG &&
1449 	    refcount_read(&fclones->fclone_ref) == 1) {
1450 		n = &fclones->skb2;
1451 		refcount_set(&fclones->fclone_ref, 2);
1452 	} else {
1453 		if (skb_pfmemalloc(skb))
1454 			gfp_mask |= __GFP_MEMALLOC;
1455 
1456 		n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
1457 		if (!n)
1458 			return NULL;
1459 
1460 		n->fclone = SKB_FCLONE_UNAVAILABLE;
1461 	}
1462 
1463 	return __skb_clone(n, skb);
1464 }
1465 EXPORT_SYMBOL(skb_clone);
1466 
1467 void skb_headers_offset_update(struct sk_buff *skb, int off)
1468 {
1469 	/* Only adjust this if it actually is csum_start rather than csum */
1470 	if (skb->ip_summed == CHECKSUM_PARTIAL)
1471 		skb->csum_start += off;
1472 	/* {transport,network,mac}_header and tail are relative to skb->head */
1473 	skb->transport_header += off;
1474 	skb->network_header   += off;
1475 	if (skb_mac_header_was_set(skb))
1476 		skb->mac_header += off;
1477 	skb->inner_transport_header += off;
1478 	skb->inner_network_header += off;
1479 	skb->inner_mac_header += off;
1480 }
1481 EXPORT_SYMBOL(skb_headers_offset_update);
1482 
1483 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old)
1484 {
1485 	__copy_skb_header(new, old);
1486 
1487 	skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
1488 	skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
1489 	skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
1490 }
1491 EXPORT_SYMBOL(skb_copy_header);
1492 
1493 static inline int skb_alloc_rx_flag(const struct sk_buff *skb)
1494 {
1495 	if (skb_pfmemalloc(skb))
1496 		return SKB_ALLOC_RX;
1497 	return 0;
1498 }
1499 
1500 /**
1501  *	skb_copy	-	create private copy of an sk_buff
1502  *	@skb: buffer to copy
1503  *	@gfp_mask: allocation priority
1504  *
1505  *	Make a copy of both an &sk_buff and its data. This is used when the
1506  *	caller wishes to modify the data and needs a private copy of the
1507  *	data to alter. Returns %NULL on failure or the pointer to the buffer
1508  *	on success. The returned buffer has a reference count of 1.
1509  *
1510  *	As by-product this function converts non-linear &sk_buff to linear
1511  *	one, so that &sk_buff becomes completely private and caller is allowed
1512  *	to modify all the data of returned buffer. This means that this
1513  *	function is not recommended for use in circumstances when only
1514  *	header is going to be modified. Use pskb_copy() instead.
1515  */
1516 
1517 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
1518 {
1519 	int headerlen = skb_headroom(skb);
1520 	unsigned int size = skb_end_offset(skb) + skb->data_len;
1521 	struct sk_buff *n = __alloc_skb(size, gfp_mask,
1522 					skb_alloc_rx_flag(skb), NUMA_NO_NODE);
1523 
1524 	if (!n)
1525 		return NULL;
1526 
1527 	/* Set the data pointer */
1528 	skb_reserve(n, headerlen);
1529 	/* Set the tail pointer and length */
1530 	skb_put(n, skb->len);
1531 
1532 	BUG_ON(skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len));
1533 
1534 	skb_copy_header(n, skb);
1535 	return n;
1536 }
1537 EXPORT_SYMBOL(skb_copy);
1538 
1539 /**
1540  *	__pskb_copy_fclone	-  create copy of an sk_buff with private head.
1541  *	@skb: buffer to copy
1542  *	@headroom: headroom of new skb
1543  *	@gfp_mask: allocation priority
1544  *	@fclone: if true allocate the copy of the skb from the fclone
1545  *	cache instead of the head cache; it is recommended to set this
1546  *	to true for the cases where the copy will likely be cloned
1547  *
1548  *	Make a copy of both an &sk_buff and part of its data, located
1549  *	in header. Fragmented data remain shared. This is used when
1550  *	the caller wishes to modify only header of &sk_buff and needs
1551  *	private copy of the header to alter. Returns %NULL on failure
1552  *	or the pointer to the buffer on success.
1553  *	The returned buffer has a reference count of 1.
1554  */
1555 
1556 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1557 				   gfp_t gfp_mask, bool fclone)
1558 {
1559 	unsigned int size = skb_headlen(skb) + headroom;
1560 	int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0);
1561 	struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE);
1562 
1563 	if (!n)
1564 		goto out;
1565 
1566 	/* Set the data pointer */
1567 	skb_reserve(n, headroom);
1568 	/* Set the tail pointer and length */
1569 	skb_put(n, skb_headlen(skb));
1570 	/* Copy the bytes */
1571 	skb_copy_from_linear_data(skb, n->data, n->len);
1572 
1573 	n->truesize += skb->data_len;
1574 	n->data_len  = skb->data_len;
1575 	n->len	     = skb->len;
1576 
1577 	if (skb_shinfo(skb)->nr_frags) {
1578 		int i;
1579 
1580 		if (skb_orphan_frags(skb, gfp_mask) ||
1581 		    skb_zerocopy_clone(n, skb, gfp_mask)) {
1582 			kfree_skb(n);
1583 			n = NULL;
1584 			goto out;
1585 		}
1586 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1587 			skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
1588 			skb_frag_ref(skb, i);
1589 		}
1590 		skb_shinfo(n)->nr_frags = i;
1591 	}
1592 
1593 	if (skb_has_frag_list(skb)) {
1594 		skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
1595 		skb_clone_fraglist(n);
1596 	}
1597 
1598 	skb_copy_header(n, skb);
1599 out:
1600 	return n;
1601 }
1602 EXPORT_SYMBOL(__pskb_copy_fclone);
1603 
1604 /**
1605  *	pskb_expand_head - reallocate header of &sk_buff
1606  *	@skb: buffer to reallocate
1607  *	@nhead: room to add at head
1608  *	@ntail: room to add at tail
1609  *	@gfp_mask: allocation priority
1610  *
1611  *	Expands (or creates identical copy, if @nhead and @ntail are zero)
1612  *	header of @skb. &sk_buff itself is not changed. &sk_buff MUST have
1613  *	reference count of 1. Returns zero in the case of success or error,
1614  *	if expansion failed. In the last case, &sk_buff is not changed.
1615  *
1616  *	All the pointers pointing into skb header may change and must be
1617  *	reloaded after call to this function.
1618  */
1619 
1620 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
1621 		     gfp_t gfp_mask)
1622 {
1623 	int i, osize = skb_end_offset(skb);
1624 	int size = osize + nhead + ntail;
1625 	long off;
1626 	u8 *data;
1627 
1628 	BUG_ON(nhead < 0);
1629 
1630 	BUG_ON(skb_shared(skb));
1631 
1632 	size = SKB_DATA_ALIGN(size);
1633 
1634 	if (skb_pfmemalloc(skb))
1635 		gfp_mask |= __GFP_MEMALLOC;
1636 	data = kmalloc_reserve(size + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
1637 			       gfp_mask, NUMA_NO_NODE, NULL);
1638 	if (!data)
1639 		goto nodata;
1640 	size = SKB_WITH_OVERHEAD(ksize(data));
1641 
1642 	/* Copy only real data... and, alas, header. This should be
1643 	 * optimized for the cases when header is void.
1644 	 */
1645 	memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head);
1646 
1647 	memcpy((struct skb_shared_info *)(data + size),
1648 	       skb_shinfo(skb),
1649 	       offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags]));
1650 
1651 	/*
1652 	 * if shinfo is shared we must drop the old head gracefully, but if it
1653 	 * is not we can just drop the old head and let the existing refcount
1654 	 * be since all we did is relocate the values
1655 	 */
1656 	if (skb_cloned(skb)) {
1657 		if (skb_orphan_frags(skb, gfp_mask))
1658 			goto nofrags;
1659 		if (skb_zcopy(skb))
1660 			refcount_inc(&skb_uarg(skb)->refcnt);
1661 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1662 			skb_frag_ref(skb, i);
1663 
1664 		if (skb_has_frag_list(skb))
1665 			skb_clone_fraglist(skb);
1666 
1667 		skb_release_data(skb);
1668 	} else {
1669 		skb_free_head(skb);
1670 	}
1671 	off = (data + nhead) - skb->head;
1672 
1673 	skb->head     = data;
1674 	skb->head_frag = 0;
1675 	skb->data    += off;
1676 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1677 	skb->end      = size;
1678 	off           = nhead;
1679 #else
1680 	skb->end      = skb->head + size;
1681 #endif
1682 	skb->tail	      += off;
1683 	skb_headers_offset_update(skb, nhead);
1684 	skb->cloned   = 0;
1685 	skb->hdr_len  = 0;
1686 	skb->nohdr    = 0;
1687 	atomic_set(&skb_shinfo(skb)->dataref, 1);
1688 
1689 	skb_metadata_clear(skb);
1690 
1691 	/* It is not generally safe to change skb->truesize.
1692 	 * For the moment, we really care of rx path, or
1693 	 * when skb is orphaned (not attached to a socket).
1694 	 */
1695 	if (!skb->sk || skb->destructor == sock_edemux)
1696 		skb->truesize += size - osize;
1697 
1698 	return 0;
1699 
1700 nofrags:
1701 	kfree(data);
1702 nodata:
1703 	return -ENOMEM;
1704 }
1705 EXPORT_SYMBOL(pskb_expand_head);
1706 
1707 /* Make private copy of skb with writable head and some headroom */
1708 
1709 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
1710 {
1711 	struct sk_buff *skb2;
1712 	int delta = headroom - skb_headroom(skb);
1713 
1714 	if (delta <= 0)
1715 		skb2 = pskb_copy(skb, GFP_ATOMIC);
1716 	else {
1717 		skb2 = skb_clone(skb, GFP_ATOMIC);
1718 		if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
1719 					     GFP_ATOMIC)) {
1720 			kfree_skb(skb2);
1721 			skb2 = NULL;
1722 		}
1723 	}
1724 	return skb2;
1725 }
1726 EXPORT_SYMBOL(skb_realloc_headroom);
1727 
1728 /**
1729  *	skb_copy_expand	-	copy and expand sk_buff
1730  *	@skb: buffer to copy
1731  *	@newheadroom: new free bytes at head
1732  *	@newtailroom: new free bytes at tail
1733  *	@gfp_mask: allocation priority
1734  *
1735  *	Make a copy of both an &sk_buff and its data and while doing so
1736  *	allocate additional space.
1737  *
1738  *	This is used when the caller wishes to modify the data and needs a
1739  *	private copy of the data to alter as well as more space for new fields.
1740  *	Returns %NULL on failure or the pointer to the buffer
1741  *	on success. The returned buffer has a reference count of 1.
1742  *
1743  *	You must pass %GFP_ATOMIC as the allocation priority if this function
1744  *	is called from an interrupt.
1745  */
1746 struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
1747 				int newheadroom, int newtailroom,
1748 				gfp_t gfp_mask)
1749 {
1750 	/*
1751 	 *	Allocate the copy buffer
1752 	 */
1753 	struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom,
1754 					gfp_mask, skb_alloc_rx_flag(skb),
1755 					NUMA_NO_NODE);
1756 	int oldheadroom = skb_headroom(skb);
1757 	int head_copy_len, head_copy_off;
1758 
1759 	if (!n)
1760 		return NULL;
1761 
1762 	skb_reserve(n, newheadroom);
1763 
1764 	/* Set the tail pointer and length */
1765 	skb_put(n, skb->len);
1766 
1767 	head_copy_len = oldheadroom;
1768 	head_copy_off = 0;
1769 	if (newheadroom <= head_copy_len)
1770 		head_copy_len = newheadroom;
1771 	else
1772 		head_copy_off = newheadroom - head_copy_len;
1773 
1774 	/* Copy the linear header and data. */
1775 	BUG_ON(skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
1776 			     skb->len + head_copy_len));
1777 
1778 	skb_copy_header(n, skb);
1779 
1780 	skb_headers_offset_update(n, newheadroom - oldheadroom);
1781 
1782 	return n;
1783 }
1784 EXPORT_SYMBOL(skb_copy_expand);
1785 
1786 /**
1787  *	__skb_pad		-	zero pad the tail of an skb
1788  *	@skb: buffer to pad
1789  *	@pad: space to pad
1790  *	@free_on_error: free buffer on error
1791  *
1792  *	Ensure that a buffer is followed by a padding area that is zero
1793  *	filled. Used by network drivers which may DMA or transfer data
1794  *	beyond the buffer end onto the wire.
1795  *
1796  *	May return error in out of memory cases. The skb is freed on error
1797  *	if @free_on_error is true.
1798  */
1799 
1800 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error)
1801 {
1802 	int err;
1803 	int ntail;
1804 
1805 	/* If the skbuff is non linear tailroom is always zero.. */
1806 	if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
1807 		memset(skb->data+skb->len, 0, pad);
1808 		return 0;
1809 	}
1810 
1811 	ntail = skb->data_len + pad - (skb->end - skb->tail);
1812 	if (likely(skb_cloned(skb) || ntail > 0)) {
1813 		err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
1814 		if (unlikely(err))
1815 			goto free_skb;
1816 	}
1817 
1818 	/* FIXME: The use of this function with non-linear skb's really needs
1819 	 * to be audited.
1820 	 */
1821 	err = skb_linearize(skb);
1822 	if (unlikely(err))
1823 		goto free_skb;
1824 
1825 	memset(skb->data + skb->len, 0, pad);
1826 	return 0;
1827 
1828 free_skb:
1829 	if (free_on_error)
1830 		kfree_skb(skb);
1831 	return err;
1832 }
1833 EXPORT_SYMBOL(__skb_pad);
1834 
1835 /**
1836  *	pskb_put - add data to the tail of a potentially fragmented buffer
1837  *	@skb: start of the buffer to use
1838  *	@tail: tail fragment of the buffer to use
1839  *	@len: amount of data to add
1840  *
1841  *	This function extends the used data area of the potentially
1842  *	fragmented buffer. @tail must be the last fragment of @skb -- or
1843  *	@skb itself. If this would exceed the total buffer size the kernel
1844  *	will panic. A pointer to the first byte of the extra data is
1845  *	returned.
1846  */
1847 
1848 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len)
1849 {
1850 	if (tail != skb) {
1851 		skb->data_len += len;
1852 		skb->len += len;
1853 	}
1854 	return skb_put(tail, len);
1855 }
1856 EXPORT_SYMBOL_GPL(pskb_put);
1857 
1858 /**
1859  *	skb_put - add data to a buffer
1860  *	@skb: buffer to use
1861  *	@len: amount of data to add
1862  *
1863  *	This function extends the used data area of the buffer. If this would
1864  *	exceed the total buffer size the kernel will panic. A pointer to the
1865  *	first byte of the extra data is returned.
1866  */
1867 void *skb_put(struct sk_buff *skb, unsigned int len)
1868 {
1869 	void *tmp = skb_tail_pointer(skb);
1870 	SKB_LINEAR_ASSERT(skb);
1871 	skb->tail += len;
1872 	skb->len  += len;
1873 	if (unlikely(skb->tail > skb->end))
1874 		skb_over_panic(skb, len, __builtin_return_address(0));
1875 	return tmp;
1876 }
1877 EXPORT_SYMBOL(skb_put);
1878 
1879 /**
1880  *	skb_push - add data to the start of a buffer
1881  *	@skb: buffer to use
1882  *	@len: amount of data to add
1883  *
1884  *	This function extends the used data area of the buffer at the buffer
1885  *	start. If this would exceed the total buffer headroom the kernel will
1886  *	panic. A pointer to the first byte of the extra data is returned.
1887  */
1888 void *skb_push(struct sk_buff *skb, unsigned int len)
1889 {
1890 	skb->data -= len;
1891 	skb->len  += len;
1892 	if (unlikely(skb->data < skb->head))
1893 		skb_under_panic(skb, len, __builtin_return_address(0));
1894 	return skb->data;
1895 }
1896 EXPORT_SYMBOL(skb_push);
1897 
1898 /**
1899  *	skb_pull - remove data from the start of a buffer
1900  *	@skb: buffer to use
1901  *	@len: amount of data to remove
1902  *
1903  *	This function removes data from the start of a buffer, returning
1904  *	the memory to the headroom. A pointer to the next data in the buffer
1905  *	is returned. Once the data has been pulled future pushes will overwrite
1906  *	the old data.
1907  */
1908 void *skb_pull(struct sk_buff *skb, unsigned int len)
1909 {
1910 	return skb_pull_inline(skb, len);
1911 }
1912 EXPORT_SYMBOL(skb_pull);
1913 
1914 /**
1915  *	skb_trim - remove end from a buffer
1916  *	@skb: buffer to alter
1917  *	@len: new length
1918  *
1919  *	Cut the length of a buffer down by removing data from the tail. If
1920  *	the buffer is already under the length specified it is not modified.
1921  *	The skb must be linear.
1922  */
1923 void skb_trim(struct sk_buff *skb, unsigned int len)
1924 {
1925 	if (skb->len > len)
1926 		__skb_trim(skb, len);
1927 }
1928 EXPORT_SYMBOL(skb_trim);
1929 
1930 /* Trims skb to length len. It can change skb pointers.
1931  */
1932 
1933 int ___pskb_trim(struct sk_buff *skb, unsigned int len)
1934 {
1935 	struct sk_buff **fragp;
1936 	struct sk_buff *frag;
1937 	int offset = skb_headlen(skb);
1938 	int nfrags = skb_shinfo(skb)->nr_frags;
1939 	int i;
1940 	int err;
1941 
1942 	if (skb_cloned(skb) &&
1943 	    unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
1944 		return err;
1945 
1946 	i = 0;
1947 	if (offset >= len)
1948 		goto drop_pages;
1949 
1950 	for (; i < nfrags; i++) {
1951 		int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]);
1952 
1953 		if (end < len) {
1954 			offset = end;
1955 			continue;
1956 		}
1957 
1958 		skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset);
1959 
1960 drop_pages:
1961 		skb_shinfo(skb)->nr_frags = i;
1962 
1963 		for (; i < nfrags; i++)
1964 			skb_frag_unref(skb, i);
1965 
1966 		if (skb_has_frag_list(skb))
1967 			skb_drop_fraglist(skb);
1968 		goto done;
1969 	}
1970 
1971 	for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
1972 	     fragp = &frag->next) {
1973 		int end = offset + frag->len;
1974 
1975 		if (skb_shared(frag)) {
1976 			struct sk_buff *nfrag;
1977 
1978 			nfrag = skb_clone(frag, GFP_ATOMIC);
1979 			if (unlikely(!nfrag))
1980 				return -ENOMEM;
1981 
1982 			nfrag->next = frag->next;
1983 			consume_skb(frag);
1984 			frag = nfrag;
1985 			*fragp = frag;
1986 		}
1987 
1988 		if (end < len) {
1989 			offset = end;
1990 			continue;
1991 		}
1992 
1993 		if (end > len &&
1994 		    unlikely((err = pskb_trim(frag, len - offset))))
1995 			return err;
1996 
1997 		if (frag->next)
1998 			skb_drop_list(&frag->next);
1999 		break;
2000 	}
2001 
2002 done:
2003 	if (len > skb_headlen(skb)) {
2004 		skb->data_len -= skb->len - len;
2005 		skb->len       = len;
2006 	} else {
2007 		skb->len       = len;
2008 		skb->data_len  = 0;
2009 		skb_set_tail_pointer(skb, len);
2010 	}
2011 
2012 	if (!skb->sk || skb->destructor == sock_edemux)
2013 		skb_condense(skb);
2014 	return 0;
2015 }
2016 EXPORT_SYMBOL(___pskb_trim);
2017 
2018 /* Note : use pskb_trim_rcsum() instead of calling this directly
2019  */
2020 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len)
2021 {
2022 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
2023 		int delta = skb->len - len;
2024 
2025 		skb->csum = csum_block_sub(skb->csum,
2026 					   skb_checksum(skb, len, delta, 0),
2027 					   len);
2028 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
2029 		int hdlen = (len > skb_headlen(skb)) ? skb_headlen(skb) : len;
2030 		int offset = skb_checksum_start_offset(skb) + skb->csum_offset;
2031 
2032 		if (offset + sizeof(__sum16) > hdlen)
2033 			return -EINVAL;
2034 	}
2035 	return __pskb_trim(skb, len);
2036 }
2037 EXPORT_SYMBOL(pskb_trim_rcsum_slow);
2038 
2039 /**
2040  *	__pskb_pull_tail - advance tail of skb header
2041  *	@skb: buffer to reallocate
2042  *	@delta: number of bytes to advance tail
2043  *
2044  *	The function makes a sense only on a fragmented &sk_buff,
2045  *	it expands header moving its tail forward and copying necessary
2046  *	data from fragmented part.
2047  *
2048  *	&sk_buff MUST have reference count of 1.
2049  *
2050  *	Returns %NULL (and &sk_buff does not change) if pull failed
2051  *	or value of new tail of skb in the case of success.
2052  *
2053  *	All the pointers pointing into skb header may change and must be
2054  *	reloaded after call to this function.
2055  */
2056 
2057 /* Moves tail of skb head forward, copying data from fragmented part,
2058  * when it is necessary.
2059  * 1. It may fail due to malloc failure.
2060  * 2. It may change skb pointers.
2061  *
2062  * It is pretty complicated. Luckily, it is called only in exceptional cases.
2063  */
2064 void *__pskb_pull_tail(struct sk_buff *skb, int delta)
2065 {
2066 	/* If skb has not enough free space at tail, get new one
2067 	 * plus 128 bytes for future expansions. If we have enough
2068 	 * room at tail, reallocate without expansion only if skb is cloned.
2069 	 */
2070 	int i, k, eat = (skb->tail + delta) - skb->end;
2071 
2072 	if (eat > 0 || skb_cloned(skb)) {
2073 		if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
2074 				     GFP_ATOMIC))
2075 			return NULL;
2076 	}
2077 
2078 	BUG_ON(skb_copy_bits(skb, skb_headlen(skb),
2079 			     skb_tail_pointer(skb), delta));
2080 
2081 	/* Optimization: no fragments, no reasons to preestimate
2082 	 * size of pulled pages. Superb.
2083 	 */
2084 	if (!skb_has_frag_list(skb))
2085 		goto pull_pages;
2086 
2087 	/* Estimate size of pulled pages. */
2088 	eat = delta;
2089 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2090 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2091 
2092 		if (size >= eat)
2093 			goto pull_pages;
2094 		eat -= size;
2095 	}
2096 
2097 	/* If we need update frag list, we are in troubles.
2098 	 * Certainly, it is possible to add an offset to skb data,
2099 	 * but taking into account that pulling is expected to
2100 	 * be very rare operation, it is worth to fight against
2101 	 * further bloating skb head and crucify ourselves here instead.
2102 	 * Pure masohism, indeed. 8)8)
2103 	 */
2104 	if (eat) {
2105 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
2106 		struct sk_buff *clone = NULL;
2107 		struct sk_buff *insp = NULL;
2108 
2109 		do {
2110 			if (list->len <= eat) {
2111 				/* Eaten as whole. */
2112 				eat -= list->len;
2113 				list = list->next;
2114 				insp = list;
2115 			} else {
2116 				/* Eaten partially. */
2117 
2118 				if (skb_shared(list)) {
2119 					/* Sucks! We need to fork list. :-( */
2120 					clone = skb_clone(list, GFP_ATOMIC);
2121 					if (!clone)
2122 						return NULL;
2123 					insp = list->next;
2124 					list = clone;
2125 				} else {
2126 					/* This may be pulled without
2127 					 * problems. */
2128 					insp = list;
2129 				}
2130 				if (!pskb_pull(list, eat)) {
2131 					kfree_skb(clone);
2132 					return NULL;
2133 				}
2134 				break;
2135 			}
2136 		} while (eat);
2137 
2138 		/* Free pulled out fragments. */
2139 		while ((list = skb_shinfo(skb)->frag_list) != insp) {
2140 			skb_shinfo(skb)->frag_list = list->next;
2141 			kfree_skb(list);
2142 		}
2143 		/* And insert new clone at head. */
2144 		if (clone) {
2145 			clone->next = list;
2146 			skb_shinfo(skb)->frag_list = clone;
2147 		}
2148 	}
2149 	/* Success! Now we may commit changes to skb data. */
2150 
2151 pull_pages:
2152 	eat = delta;
2153 	k = 0;
2154 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2155 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2156 
2157 		if (size <= eat) {
2158 			skb_frag_unref(skb, i);
2159 			eat -= size;
2160 		} else {
2161 			skb_frag_t *frag = &skb_shinfo(skb)->frags[k];
2162 
2163 			*frag = skb_shinfo(skb)->frags[i];
2164 			if (eat) {
2165 				skb_frag_off_add(frag, eat);
2166 				skb_frag_size_sub(frag, eat);
2167 				if (!i)
2168 					goto end;
2169 				eat = 0;
2170 			}
2171 			k++;
2172 		}
2173 	}
2174 	skb_shinfo(skb)->nr_frags = k;
2175 
2176 end:
2177 	skb->tail     += delta;
2178 	skb->data_len -= delta;
2179 
2180 	if (!skb->data_len)
2181 		skb_zcopy_clear(skb, false);
2182 
2183 	return skb_tail_pointer(skb);
2184 }
2185 EXPORT_SYMBOL(__pskb_pull_tail);
2186 
2187 /**
2188  *	skb_copy_bits - copy bits from skb to kernel buffer
2189  *	@skb: source skb
2190  *	@offset: offset in source
2191  *	@to: destination buffer
2192  *	@len: number of bytes to copy
2193  *
2194  *	Copy the specified number of bytes from the source skb to the
2195  *	destination buffer.
2196  *
2197  *	CAUTION ! :
2198  *		If its prototype is ever changed,
2199  *		check arch/{*}/net/{*}.S files,
2200  *		since it is called from BPF assembly code.
2201  */
2202 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
2203 {
2204 	int start = skb_headlen(skb);
2205 	struct sk_buff *frag_iter;
2206 	int i, copy;
2207 
2208 	if (offset > (int)skb->len - len)
2209 		goto fault;
2210 
2211 	/* Copy header. */
2212 	if ((copy = start - offset) > 0) {
2213 		if (copy > len)
2214 			copy = len;
2215 		skb_copy_from_linear_data_offset(skb, offset, to, copy);
2216 		if ((len -= copy) == 0)
2217 			return 0;
2218 		offset += copy;
2219 		to     += copy;
2220 	}
2221 
2222 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2223 		int end;
2224 		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
2225 
2226 		WARN_ON(start > offset + len);
2227 
2228 		end = start + skb_frag_size(f);
2229 		if ((copy = end - offset) > 0) {
2230 			u32 p_off, p_len, copied;
2231 			struct page *p;
2232 			u8 *vaddr;
2233 
2234 			if (copy > len)
2235 				copy = len;
2236 
2237 			skb_frag_foreach_page(f,
2238 					      skb_frag_off(f) + offset - start,
2239 					      copy, p, p_off, p_len, copied) {
2240 				vaddr = kmap_atomic(p);
2241 				memcpy(to + copied, vaddr + p_off, p_len);
2242 				kunmap_atomic(vaddr);
2243 			}
2244 
2245 			if ((len -= copy) == 0)
2246 				return 0;
2247 			offset += copy;
2248 			to     += copy;
2249 		}
2250 		start = end;
2251 	}
2252 
2253 	skb_walk_frags(skb, frag_iter) {
2254 		int end;
2255 
2256 		WARN_ON(start > offset + len);
2257 
2258 		end = start + frag_iter->len;
2259 		if ((copy = end - offset) > 0) {
2260 			if (copy > len)
2261 				copy = len;
2262 			if (skb_copy_bits(frag_iter, offset - start, to, copy))
2263 				goto fault;
2264 			if ((len -= copy) == 0)
2265 				return 0;
2266 			offset += copy;
2267 			to     += copy;
2268 		}
2269 		start = end;
2270 	}
2271 
2272 	if (!len)
2273 		return 0;
2274 
2275 fault:
2276 	return -EFAULT;
2277 }
2278 EXPORT_SYMBOL(skb_copy_bits);
2279 
2280 /*
2281  * Callback from splice_to_pipe(), if we need to release some pages
2282  * at the end of the spd in case we error'ed out in filling the pipe.
2283  */
2284 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
2285 {
2286 	put_page(spd->pages[i]);
2287 }
2288 
2289 static struct page *linear_to_page(struct page *page, unsigned int *len,
2290 				   unsigned int *offset,
2291 				   struct sock *sk)
2292 {
2293 	struct page_frag *pfrag = sk_page_frag(sk);
2294 
2295 	if (!sk_page_frag_refill(sk, pfrag))
2296 		return NULL;
2297 
2298 	*len = min_t(unsigned int, *len, pfrag->size - pfrag->offset);
2299 
2300 	memcpy(page_address(pfrag->page) + pfrag->offset,
2301 	       page_address(page) + *offset, *len);
2302 	*offset = pfrag->offset;
2303 	pfrag->offset += *len;
2304 
2305 	return pfrag->page;
2306 }
2307 
2308 static bool spd_can_coalesce(const struct splice_pipe_desc *spd,
2309 			     struct page *page,
2310 			     unsigned int offset)
2311 {
2312 	return	spd->nr_pages &&
2313 		spd->pages[spd->nr_pages - 1] == page &&
2314 		(spd->partial[spd->nr_pages - 1].offset +
2315 		 spd->partial[spd->nr_pages - 1].len == offset);
2316 }
2317 
2318 /*
2319  * Fill page/offset/length into spd, if it can hold more pages.
2320  */
2321 static bool spd_fill_page(struct splice_pipe_desc *spd,
2322 			  struct pipe_inode_info *pipe, struct page *page,
2323 			  unsigned int *len, unsigned int offset,
2324 			  bool linear,
2325 			  struct sock *sk)
2326 {
2327 	if (unlikely(spd->nr_pages == MAX_SKB_FRAGS))
2328 		return true;
2329 
2330 	if (linear) {
2331 		page = linear_to_page(page, len, &offset, sk);
2332 		if (!page)
2333 			return true;
2334 	}
2335 	if (spd_can_coalesce(spd, page, offset)) {
2336 		spd->partial[spd->nr_pages - 1].len += *len;
2337 		return false;
2338 	}
2339 	get_page(page);
2340 	spd->pages[spd->nr_pages] = page;
2341 	spd->partial[spd->nr_pages].len = *len;
2342 	spd->partial[spd->nr_pages].offset = offset;
2343 	spd->nr_pages++;
2344 
2345 	return false;
2346 }
2347 
2348 static bool __splice_segment(struct page *page, unsigned int poff,
2349 			     unsigned int plen, unsigned int *off,
2350 			     unsigned int *len,
2351 			     struct splice_pipe_desc *spd, bool linear,
2352 			     struct sock *sk,
2353 			     struct pipe_inode_info *pipe)
2354 {
2355 	if (!*len)
2356 		return true;
2357 
2358 	/* skip this segment if already processed */
2359 	if (*off >= plen) {
2360 		*off -= plen;
2361 		return false;
2362 	}
2363 
2364 	/* ignore any bits we already processed */
2365 	poff += *off;
2366 	plen -= *off;
2367 	*off = 0;
2368 
2369 	do {
2370 		unsigned int flen = min(*len, plen);
2371 
2372 		if (spd_fill_page(spd, pipe, page, &flen, poff,
2373 				  linear, sk))
2374 			return true;
2375 		poff += flen;
2376 		plen -= flen;
2377 		*len -= flen;
2378 	} while (*len && plen);
2379 
2380 	return false;
2381 }
2382 
2383 /*
2384  * Map linear and fragment data from the skb to spd. It reports true if the
2385  * pipe is full or if we already spliced the requested length.
2386  */
2387 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe,
2388 			      unsigned int *offset, unsigned int *len,
2389 			      struct splice_pipe_desc *spd, struct sock *sk)
2390 {
2391 	int seg;
2392 	struct sk_buff *iter;
2393 
2394 	/* map the linear part :
2395 	 * If skb->head_frag is set, this 'linear' part is backed by a
2396 	 * fragment, and if the head is not shared with any clones then
2397 	 * we can avoid a copy since we own the head portion of this page.
2398 	 */
2399 	if (__splice_segment(virt_to_page(skb->data),
2400 			     (unsigned long) skb->data & (PAGE_SIZE - 1),
2401 			     skb_headlen(skb),
2402 			     offset, len, spd,
2403 			     skb_head_is_locked(skb),
2404 			     sk, pipe))
2405 		return true;
2406 
2407 	/*
2408 	 * then map the fragments
2409 	 */
2410 	for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
2411 		const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
2412 
2413 		if (__splice_segment(skb_frag_page(f),
2414 				     skb_frag_off(f), skb_frag_size(f),
2415 				     offset, len, spd, false, sk, pipe))
2416 			return true;
2417 	}
2418 
2419 	skb_walk_frags(skb, iter) {
2420 		if (*offset >= iter->len) {
2421 			*offset -= iter->len;
2422 			continue;
2423 		}
2424 		/* __skb_splice_bits() only fails if the output has no room
2425 		 * left, so no point in going over the frag_list for the error
2426 		 * case.
2427 		 */
2428 		if (__skb_splice_bits(iter, pipe, offset, len, spd, sk))
2429 			return true;
2430 	}
2431 
2432 	return false;
2433 }
2434 
2435 /*
2436  * Map data from the skb to a pipe. Should handle both the linear part,
2437  * the fragments, and the frag list.
2438  */
2439 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
2440 		    struct pipe_inode_info *pipe, unsigned int tlen,
2441 		    unsigned int flags)
2442 {
2443 	struct partial_page partial[MAX_SKB_FRAGS];
2444 	struct page *pages[MAX_SKB_FRAGS];
2445 	struct splice_pipe_desc spd = {
2446 		.pages = pages,
2447 		.partial = partial,
2448 		.nr_pages_max = MAX_SKB_FRAGS,
2449 		.ops = &nosteal_pipe_buf_ops,
2450 		.spd_release = sock_spd_release,
2451 	};
2452 	int ret = 0;
2453 
2454 	__skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk);
2455 
2456 	if (spd.nr_pages)
2457 		ret = splice_to_pipe(pipe, &spd);
2458 
2459 	return ret;
2460 }
2461 EXPORT_SYMBOL_GPL(skb_splice_bits);
2462 
2463 /* Send skb data on a socket. Socket must be locked. */
2464 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
2465 			 int len)
2466 {
2467 	unsigned int orig_len = len;
2468 	struct sk_buff *head = skb;
2469 	unsigned short fragidx;
2470 	int slen, ret;
2471 
2472 do_frag_list:
2473 
2474 	/* Deal with head data */
2475 	while (offset < skb_headlen(skb) && len) {
2476 		struct kvec kv;
2477 		struct msghdr msg;
2478 
2479 		slen = min_t(int, len, skb_headlen(skb) - offset);
2480 		kv.iov_base = skb->data + offset;
2481 		kv.iov_len = slen;
2482 		memset(&msg, 0, sizeof(msg));
2483 		msg.msg_flags = MSG_DONTWAIT;
2484 
2485 		ret = kernel_sendmsg_locked(sk, &msg, &kv, 1, slen);
2486 		if (ret <= 0)
2487 			goto error;
2488 
2489 		offset += ret;
2490 		len -= ret;
2491 	}
2492 
2493 	/* All the data was skb head? */
2494 	if (!len)
2495 		goto out;
2496 
2497 	/* Make offset relative to start of frags */
2498 	offset -= skb_headlen(skb);
2499 
2500 	/* Find where we are in frag list */
2501 	for (fragidx = 0; fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
2502 		skb_frag_t *frag  = &skb_shinfo(skb)->frags[fragidx];
2503 
2504 		if (offset < skb_frag_size(frag))
2505 			break;
2506 
2507 		offset -= skb_frag_size(frag);
2508 	}
2509 
2510 	for (; len && fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
2511 		skb_frag_t *frag  = &skb_shinfo(skb)->frags[fragidx];
2512 
2513 		slen = min_t(size_t, len, skb_frag_size(frag) - offset);
2514 
2515 		while (slen) {
2516 			ret = kernel_sendpage_locked(sk, skb_frag_page(frag),
2517 						     skb_frag_off(frag) + offset,
2518 						     slen, MSG_DONTWAIT);
2519 			if (ret <= 0)
2520 				goto error;
2521 
2522 			len -= ret;
2523 			offset += ret;
2524 			slen -= ret;
2525 		}
2526 
2527 		offset = 0;
2528 	}
2529 
2530 	if (len) {
2531 		/* Process any frag lists */
2532 
2533 		if (skb == head) {
2534 			if (skb_has_frag_list(skb)) {
2535 				skb = skb_shinfo(skb)->frag_list;
2536 				goto do_frag_list;
2537 			}
2538 		} else if (skb->next) {
2539 			skb = skb->next;
2540 			goto do_frag_list;
2541 		}
2542 	}
2543 
2544 out:
2545 	return orig_len - len;
2546 
2547 error:
2548 	return orig_len == len ? ret : orig_len - len;
2549 }
2550 EXPORT_SYMBOL_GPL(skb_send_sock_locked);
2551 
2552 /**
2553  *	skb_store_bits - store bits from kernel buffer to skb
2554  *	@skb: destination buffer
2555  *	@offset: offset in destination
2556  *	@from: source buffer
2557  *	@len: number of bytes to copy
2558  *
2559  *	Copy the specified number of bytes from the source buffer to the
2560  *	destination skb.  This function handles all the messy bits of
2561  *	traversing fragment lists and such.
2562  */
2563 
2564 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
2565 {
2566 	int start = skb_headlen(skb);
2567 	struct sk_buff *frag_iter;
2568 	int i, copy;
2569 
2570 	if (offset > (int)skb->len - len)
2571 		goto fault;
2572 
2573 	if ((copy = start - offset) > 0) {
2574 		if (copy > len)
2575 			copy = len;
2576 		skb_copy_to_linear_data_offset(skb, offset, from, copy);
2577 		if ((len -= copy) == 0)
2578 			return 0;
2579 		offset += copy;
2580 		from += copy;
2581 	}
2582 
2583 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2584 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2585 		int end;
2586 
2587 		WARN_ON(start > offset + len);
2588 
2589 		end = start + skb_frag_size(frag);
2590 		if ((copy = end - offset) > 0) {
2591 			u32 p_off, p_len, copied;
2592 			struct page *p;
2593 			u8 *vaddr;
2594 
2595 			if (copy > len)
2596 				copy = len;
2597 
2598 			skb_frag_foreach_page(frag,
2599 					      skb_frag_off(frag) + offset - start,
2600 					      copy, p, p_off, p_len, copied) {
2601 				vaddr = kmap_atomic(p);
2602 				memcpy(vaddr + p_off, from + copied, p_len);
2603 				kunmap_atomic(vaddr);
2604 			}
2605 
2606 			if ((len -= copy) == 0)
2607 				return 0;
2608 			offset += copy;
2609 			from += copy;
2610 		}
2611 		start = end;
2612 	}
2613 
2614 	skb_walk_frags(skb, frag_iter) {
2615 		int end;
2616 
2617 		WARN_ON(start > offset + len);
2618 
2619 		end = start + frag_iter->len;
2620 		if ((copy = end - offset) > 0) {
2621 			if (copy > len)
2622 				copy = len;
2623 			if (skb_store_bits(frag_iter, offset - start,
2624 					   from, copy))
2625 				goto fault;
2626 			if ((len -= copy) == 0)
2627 				return 0;
2628 			offset += copy;
2629 			from += copy;
2630 		}
2631 		start = end;
2632 	}
2633 	if (!len)
2634 		return 0;
2635 
2636 fault:
2637 	return -EFAULT;
2638 }
2639 EXPORT_SYMBOL(skb_store_bits);
2640 
2641 /* Checksum skb data. */
2642 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
2643 		      __wsum csum, const struct skb_checksum_ops *ops)
2644 {
2645 	int start = skb_headlen(skb);
2646 	int i, copy = start - offset;
2647 	struct sk_buff *frag_iter;
2648 	int pos = 0;
2649 
2650 	/* Checksum header. */
2651 	if (copy > 0) {
2652 		if (copy > len)
2653 			copy = len;
2654 		csum = INDIRECT_CALL_1(ops->update, csum_partial_ext,
2655 				       skb->data + offset, copy, csum);
2656 		if ((len -= copy) == 0)
2657 			return csum;
2658 		offset += copy;
2659 		pos	= copy;
2660 	}
2661 
2662 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2663 		int end;
2664 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2665 
2666 		WARN_ON(start > offset + len);
2667 
2668 		end = start + skb_frag_size(frag);
2669 		if ((copy = end - offset) > 0) {
2670 			u32 p_off, p_len, copied;
2671 			struct page *p;
2672 			__wsum csum2;
2673 			u8 *vaddr;
2674 
2675 			if (copy > len)
2676 				copy = len;
2677 
2678 			skb_frag_foreach_page(frag,
2679 					      skb_frag_off(frag) + offset - start,
2680 					      copy, p, p_off, p_len, copied) {
2681 				vaddr = kmap_atomic(p);
2682 				csum2 = INDIRECT_CALL_1(ops->update,
2683 							csum_partial_ext,
2684 							vaddr + p_off, p_len, 0);
2685 				kunmap_atomic(vaddr);
2686 				csum = INDIRECT_CALL_1(ops->combine,
2687 						       csum_block_add_ext, csum,
2688 						       csum2, pos, p_len);
2689 				pos += p_len;
2690 			}
2691 
2692 			if (!(len -= copy))
2693 				return csum;
2694 			offset += copy;
2695 		}
2696 		start = end;
2697 	}
2698 
2699 	skb_walk_frags(skb, frag_iter) {
2700 		int end;
2701 
2702 		WARN_ON(start > offset + len);
2703 
2704 		end = start + frag_iter->len;
2705 		if ((copy = end - offset) > 0) {
2706 			__wsum csum2;
2707 			if (copy > len)
2708 				copy = len;
2709 			csum2 = __skb_checksum(frag_iter, offset - start,
2710 					       copy, 0, ops);
2711 			csum = INDIRECT_CALL_1(ops->combine, csum_block_add_ext,
2712 					       csum, csum2, pos, copy);
2713 			if ((len -= copy) == 0)
2714 				return csum;
2715 			offset += copy;
2716 			pos    += copy;
2717 		}
2718 		start = end;
2719 	}
2720 	BUG_ON(len);
2721 
2722 	return csum;
2723 }
2724 EXPORT_SYMBOL(__skb_checksum);
2725 
2726 __wsum skb_checksum(const struct sk_buff *skb, int offset,
2727 		    int len, __wsum csum)
2728 {
2729 	const struct skb_checksum_ops ops = {
2730 		.update  = csum_partial_ext,
2731 		.combine = csum_block_add_ext,
2732 	};
2733 
2734 	return __skb_checksum(skb, offset, len, csum, &ops);
2735 }
2736 EXPORT_SYMBOL(skb_checksum);
2737 
2738 /* Both of above in one bottle. */
2739 
2740 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
2741 				    u8 *to, int len)
2742 {
2743 	int start = skb_headlen(skb);
2744 	int i, copy = start - offset;
2745 	struct sk_buff *frag_iter;
2746 	int pos = 0;
2747 	__wsum csum = 0;
2748 
2749 	/* Copy header. */
2750 	if (copy > 0) {
2751 		if (copy > len)
2752 			copy = len;
2753 		csum = csum_partial_copy_nocheck(skb->data + offset, to,
2754 						 copy);
2755 		if ((len -= copy) == 0)
2756 			return csum;
2757 		offset += copy;
2758 		to     += copy;
2759 		pos	= copy;
2760 	}
2761 
2762 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2763 		int end;
2764 
2765 		WARN_ON(start > offset + len);
2766 
2767 		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
2768 		if ((copy = end - offset) > 0) {
2769 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2770 			u32 p_off, p_len, copied;
2771 			struct page *p;
2772 			__wsum csum2;
2773 			u8 *vaddr;
2774 
2775 			if (copy > len)
2776 				copy = len;
2777 
2778 			skb_frag_foreach_page(frag,
2779 					      skb_frag_off(frag) + offset - start,
2780 					      copy, p, p_off, p_len, copied) {
2781 				vaddr = kmap_atomic(p);
2782 				csum2 = csum_partial_copy_nocheck(vaddr + p_off,
2783 								  to + copied,
2784 								  p_len);
2785 				kunmap_atomic(vaddr);
2786 				csum = csum_block_add(csum, csum2, pos);
2787 				pos += p_len;
2788 			}
2789 
2790 			if (!(len -= copy))
2791 				return csum;
2792 			offset += copy;
2793 			to     += copy;
2794 		}
2795 		start = end;
2796 	}
2797 
2798 	skb_walk_frags(skb, frag_iter) {
2799 		__wsum csum2;
2800 		int end;
2801 
2802 		WARN_ON(start > offset + len);
2803 
2804 		end = start + frag_iter->len;
2805 		if ((copy = end - offset) > 0) {
2806 			if (copy > len)
2807 				copy = len;
2808 			csum2 = skb_copy_and_csum_bits(frag_iter,
2809 						       offset - start,
2810 						       to, copy);
2811 			csum = csum_block_add(csum, csum2, pos);
2812 			if ((len -= copy) == 0)
2813 				return csum;
2814 			offset += copy;
2815 			to     += copy;
2816 			pos    += copy;
2817 		}
2818 		start = end;
2819 	}
2820 	BUG_ON(len);
2821 	return csum;
2822 }
2823 EXPORT_SYMBOL(skb_copy_and_csum_bits);
2824 
2825 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len)
2826 {
2827 	__sum16 sum;
2828 
2829 	sum = csum_fold(skb_checksum(skb, 0, len, skb->csum));
2830 	/* See comments in __skb_checksum_complete(). */
2831 	if (likely(!sum)) {
2832 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
2833 		    !skb->csum_complete_sw)
2834 			netdev_rx_csum_fault(skb->dev, skb);
2835 	}
2836 	if (!skb_shared(skb))
2837 		skb->csum_valid = !sum;
2838 	return sum;
2839 }
2840 EXPORT_SYMBOL(__skb_checksum_complete_head);
2841 
2842 /* This function assumes skb->csum already holds pseudo header's checksum,
2843  * which has been changed from the hardware checksum, for example, by
2844  * __skb_checksum_validate_complete(). And, the original skb->csum must
2845  * have been validated unsuccessfully for CHECKSUM_COMPLETE case.
2846  *
2847  * It returns non-zero if the recomputed checksum is still invalid, otherwise
2848  * zero. The new checksum is stored back into skb->csum unless the skb is
2849  * shared.
2850  */
2851 __sum16 __skb_checksum_complete(struct sk_buff *skb)
2852 {
2853 	__wsum csum;
2854 	__sum16 sum;
2855 
2856 	csum = skb_checksum(skb, 0, skb->len, 0);
2857 
2858 	sum = csum_fold(csum_add(skb->csum, csum));
2859 	/* This check is inverted, because we already knew the hardware
2860 	 * checksum is invalid before calling this function. So, if the
2861 	 * re-computed checksum is valid instead, then we have a mismatch
2862 	 * between the original skb->csum and skb_checksum(). This means either
2863 	 * the original hardware checksum is incorrect or we screw up skb->csum
2864 	 * when moving skb->data around.
2865 	 */
2866 	if (likely(!sum)) {
2867 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
2868 		    !skb->csum_complete_sw)
2869 			netdev_rx_csum_fault(skb->dev, skb);
2870 	}
2871 
2872 	if (!skb_shared(skb)) {
2873 		/* Save full packet checksum */
2874 		skb->csum = csum;
2875 		skb->ip_summed = CHECKSUM_COMPLETE;
2876 		skb->csum_complete_sw = 1;
2877 		skb->csum_valid = !sum;
2878 	}
2879 
2880 	return sum;
2881 }
2882 EXPORT_SYMBOL(__skb_checksum_complete);
2883 
2884 static __wsum warn_crc32c_csum_update(const void *buff, int len, __wsum sum)
2885 {
2886 	net_warn_ratelimited(
2887 		"%s: attempt to compute crc32c without libcrc32c.ko\n",
2888 		__func__);
2889 	return 0;
2890 }
2891 
2892 static __wsum warn_crc32c_csum_combine(__wsum csum, __wsum csum2,
2893 				       int offset, int len)
2894 {
2895 	net_warn_ratelimited(
2896 		"%s: attempt to compute crc32c without libcrc32c.ko\n",
2897 		__func__);
2898 	return 0;
2899 }
2900 
2901 static const struct skb_checksum_ops default_crc32c_ops = {
2902 	.update  = warn_crc32c_csum_update,
2903 	.combine = warn_crc32c_csum_combine,
2904 };
2905 
2906 const struct skb_checksum_ops *crc32c_csum_stub __read_mostly =
2907 	&default_crc32c_ops;
2908 EXPORT_SYMBOL(crc32c_csum_stub);
2909 
2910  /**
2911  *	skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy()
2912  *	@from: source buffer
2913  *
2914  *	Calculates the amount of linear headroom needed in the 'to' skb passed
2915  *	into skb_zerocopy().
2916  */
2917 unsigned int
2918 skb_zerocopy_headlen(const struct sk_buff *from)
2919 {
2920 	unsigned int hlen = 0;
2921 
2922 	if (!from->head_frag ||
2923 	    skb_headlen(from) < L1_CACHE_BYTES ||
2924 	    skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS)
2925 		hlen = skb_headlen(from);
2926 
2927 	if (skb_has_frag_list(from))
2928 		hlen = from->len;
2929 
2930 	return hlen;
2931 }
2932 EXPORT_SYMBOL_GPL(skb_zerocopy_headlen);
2933 
2934 /**
2935  *	skb_zerocopy - Zero copy skb to skb
2936  *	@to: destination buffer
2937  *	@from: source buffer
2938  *	@len: number of bytes to copy from source buffer
2939  *	@hlen: size of linear headroom in destination buffer
2940  *
2941  *	Copies up to `len` bytes from `from` to `to` by creating references
2942  *	to the frags in the source buffer.
2943  *
2944  *	The `hlen` as calculated by skb_zerocopy_headlen() specifies the
2945  *	headroom in the `to` buffer.
2946  *
2947  *	Return value:
2948  *	0: everything is OK
2949  *	-ENOMEM: couldn't orphan frags of @from due to lack of memory
2950  *	-EFAULT: skb_copy_bits() found some problem with skb geometry
2951  */
2952 int
2953 skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen)
2954 {
2955 	int i, j = 0;
2956 	int plen = 0; /* length of skb->head fragment */
2957 	int ret;
2958 	struct page *page;
2959 	unsigned int offset;
2960 
2961 	BUG_ON(!from->head_frag && !hlen);
2962 
2963 	/* dont bother with small payloads */
2964 	if (len <= skb_tailroom(to))
2965 		return skb_copy_bits(from, 0, skb_put(to, len), len);
2966 
2967 	if (hlen) {
2968 		ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen);
2969 		if (unlikely(ret))
2970 			return ret;
2971 		len -= hlen;
2972 	} else {
2973 		plen = min_t(int, skb_headlen(from), len);
2974 		if (plen) {
2975 			page = virt_to_head_page(from->head);
2976 			offset = from->data - (unsigned char *)page_address(page);
2977 			__skb_fill_page_desc(to, 0, page, offset, plen);
2978 			get_page(page);
2979 			j = 1;
2980 			len -= plen;
2981 		}
2982 	}
2983 
2984 	to->truesize += len + plen;
2985 	to->len += len + plen;
2986 	to->data_len += len + plen;
2987 
2988 	if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) {
2989 		skb_tx_error(from);
2990 		return -ENOMEM;
2991 	}
2992 	skb_zerocopy_clone(to, from, GFP_ATOMIC);
2993 
2994 	for (i = 0; i < skb_shinfo(from)->nr_frags; i++) {
2995 		int size;
2996 
2997 		if (!len)
2998 			break;
2999 		skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i];
3000 		size = min_t(int, skb_frag_size(&skb_shinfo(to)->frags[j]),
3001 					len);
3002 		skb_frag_size_set(&skb_shinfo(to)->frags[j], size);
3003 		len -= size;
3004 		skb_frag_ref(to, j);
3005 		j++;
3006 	}
3007 	skb_shinfo(to)->nr_frags = j;
3008 
3009 	return 0;
3010 }
3011 EXPORT_SYMBOL_GPL(skb_zerocopy);
3012 
3013 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
3014 {
3015 	__wsum csum;
3016 	long csstart;
3017 
3018 	if (skb->ip_summed == CHECKSUM_PARTIAL)
3019 		csstart = skb_checksum_start_offset(skb);
3020 	else
3021 		csstart = skb_headlen(skb);
3022 
3023 	BUG_ON(csstart > skb_headlen(skb));
3024 
3025 	skb_copy_from_linear_data(skb, to, csstart);
3026 
3027 	csum = 0;
3028 	if (csstart != skb->len)
3029 		csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
3030 					      skb->len - csstart);
3031 
3032 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
3033 		long csstuff = csstart + skb->csum_offset;
3034 
3035 		*((__sum16 *)(to + csstuff)) = csum_fold(csum);
3036 	}
3037 }
3038 EXPORT_SYMBOL(skb_copy_and_csum_dev);
3039 
3040 /**
3041  *	skb_dequeue - remove from the head of the queue
3042  *	@list: list to dequeue from
3043  *
3044  *	Remove the head of the list. The list lock is taken so the function
3045  *	may be used safely with other locking list functions. The head item is
3046  *	returned or %NULL if the list is empty.
3047  */
3048 
3049 struct sk_buff *skb_dequeue(struct sk_buff_head *list)
3050 {
3051 	unsigned long flags;
3052 	struct sk_buff *result;
3053 
3054 	spin_lock_irqsave(&list->lock, flags);
3055 	result = __skb_dequeue(list);
3056 	spin_unlock_irqrestore(&list->lock, flags);
3057 	return result;
3058 }
3059 EXPORT_SYMBOL(skb_dequeue);
3060 
3061 /**
3062  *	skb_dequeue_tail - remove from the tail of the queue
3063  *	@list: list to dequeue from
3064  *
3065  *	Remove the tail of the list. The list lock is taken so the function
3066  *	may be used safely with other locking list functions. The tail item is
3067  *	returned or %NULL if the list is empty.
3068  */
3069 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
3070 {
3071 	unsigned long flags;
3072 	struct sk_buff *result;
3073 
3074 	spin_lock_irqsave(&list->lock, flags);
3075 	result = __skb_dequeue_tail(list);
3076 	spin_unlock_irqrestore(&list->lock, flags);
3077 	return result;
3078 }
3079 EXPORT_SYMBOL(skb_dequeue_tail);
3080 
3081 /**
3082  *	skb_queue_purge - empty a list
3083  *	@list: list to empty
3084  *
3085  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
3086  *	the list and one reference dropped. This function takes the list
3087  *	lock and is atomic with respect to other list locking functions.
3088  */
3089 void skb_queue_purge(struct sk_buff_head *list)
3090 {
3091 	struct sk_buff *skb;
3092 	while ((skb = skb_dequeue(list)) != NULL)
3093 		kfree_skb(skb);
3094 }
3095 EXPORT_SYMBOL(skb_queue_purge);
3096 
3097 /**
3098  *	skb_rbtree_purge - empty a skb rbtree
3099  *	@root: root of the rbtree to empty
3100  *	Return value: the sum of truesizes of all purged skbs.
3101  *
3102  *	Delete all buffers on an &sk_buff rbtree. Each buffer is removed from
3103  *	the list and one reference dropped. This function does not take
3104  *	any lock. Synchronization should be handled by the caller (e.g., TCP
3105  *	out-of-order queue is protected by the socket lock).
3106  */
3107 unsigned int skb_rbtree_purge(struct rb_root *root)
3108 {
3109 	struct rb_node *p = rb_first(root);
3110 	unsigned int sum = 0;
3111 
3112 	while (p) {
3113 		struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode);
3114 
3115 		p = rb_next(p);
3116 		rb_erase(&skb->rbnode, root);
3117 		sum += skb->truesize;
3118 		kfree_skb(skb);
3119 	}
3120 	return sum;
3121 }
3122 
3123 /**
3124  *	skb_queue_head - queue a buffer at the list head
3125  *	@list: list to use
3126  *	@newsk: buffer to queue
3127  *
3128  *	Queue a buffer at the start of the list. This function takes the
3129  *	list lock and can be used safely with other locking &sk_buff functions
3130  *	safely.
3131  *
3132  *	A buffer cannot be placed on two lists at the same time.
3133  */
3134 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
3135 {
3136 	unsigned long flags;
3137 
3138 	spin_lock_irqsave(&list->lock, flags);
3139 	__skb_queue_head(list, newsk);
3140 	spin_unlock_irqrestore(&list->lock, flags);
3141 }
3142 EXPORT_SYMBOL(skb_queue_head);
3143 
3144 /**
3145  *	skb_queue_tail - queue a buffer at the list tail
3146  *	@list: list to use
3147  *	@newsk: buffer to queue
3148  *
3149  *	Queue a buffer at the tail of the list. This function takes the
3150  *	list lock and can be used safely with other locking &sk_buff functions
3151  *	safely.
3152  *
3153  *	A buffer cannot be placed on two lists at the same time.
3154  */
3155 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
3156 {
3157 	unsigned long flags;
3158 
3159 	spin_lock_irqsave(&list->lock, flags);
3160 	__skb_queue_tail(list, newsk);
3161 	spin_unlock_irqrestore(&list->lock, flags);
3162 }
3163 EXPORT_SYMBOL(skb_queue_tail);
3164 
3165 /**
3166  *	skb_unlink	-	remove a buffer from a list
3167  *	@skb: buffer to remove
3168  *	@list: list to use
3169  *
3170  *	Remove a packet from a list. The list locks are taken and this
3171  *	function is atomic with respect to other list locked calls
3172  *
3173  *	You must know what list the SKB is on.
3174  */
3175 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
3176 {
3177 	unsigned long flags;
3178 
3179 	spin_lock_irqsave(&list->lock, flags);
3180 	__skb_unlink(skb, list);
3181 	spin_unlock_irqrestore(&list->lock, flags);
3182 }
3183 EXPORT_SYMBOL(skb_unlink);
3184 
3185 /**
3186  *	skb_append	-	append a buffer
3187  *	@old: buffer to insert after
3188  *	@newsk: buffer to insert
3189  *	@list: list to use
3190  *
3191  *	Place a packet after a given packet in a list. The list locks are taken
3192  *	and this function is atomic with respect to other list locked calls.
3193  *	A buffer cannot be placed on two lists at the same time.
3194  */
3195 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
3196 {
3197 	unsigned long flags;
3198 
3199 	spin_lock_irqsave(&list->lock, flags);
3200 	__skb_queue_after(list, old, newsk);
3201 	spin_unlock_irqrestore(&list->lock, flags);
3202 }
3203 EXPORT_SYMBOL(skb_append);
3204 
3205 static inline void skb_split_inside_header(struct sk_buff *skb,
3206 					   struct sk_buff* skb1,
3207 					   const u32 len, const int pos)
3208 {
3209 	int i;
3210 
3211 	skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
3212 					 pos - len);
3213 	/* And move data appendix as is. */
3214 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
3215 		skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
3216 
3217 	skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
3218 	skb_shinfo(skb)->nr_frags  = 0;
3219 	skb1->data_len		   = skb->data_len;
3220 	skb1->len		   += skb1->data_len;
3221 	skb->data_len		   = 0;
3222 	skb->len		   = len;
3223 	skb_set_tail_pointer(skb, len);
3224 }
3225 
3226 static inline void skb_split_no_header(struct sk_buff *skb,
3227 				       struct sk_buff* skb1,
3228 				       const u32 len, int pos)
3229 {
3230 	int i, k = 0;
3231 	const int nfrags = skb_shinfo(skb)->nr_frags;
3232 
3233 	skb_shinfo(skb)->nr_frags = 0;
3234 	skb1->len		  = skb1->data_len = skb->len - len;
3235 	skb->len		  = len;
3236 	skb->data_len		  = len - pos;
3237 
3238 	for (i = 0; i < nfrags; i++) {
3239 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
3240 
3241 		if (pos + size > len) {
3242 			skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
3243 
3244 			if (pos < len) {
3245 				/* Split frag.
3246 				 * We have two variants in this case:
3247 				 * 1. Move all the frag to the second
3248 				 *    part, if it is possible. F.e.
3249 				 *    this approach is mandatory for TUX,
3250 				 *    where splitting is expensive.
3251 				 * 2. Split is accurately. We make this.
3252 				 */
3253 				skb_frag_ref(skb, i);
3254 				skb_frag_off_add(&skb_shinfo(skb1)->frags[0], len - pos);
3255 				skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos);
3256 				skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos);
3257 				skb_shinfo(skb)->nr_frags++;
3258 			}
3259 			k++;
3260 		} else
3261 			skb_shinfo(skb)->nr_frags++;
3262 		pos += size;
3263 	}
3264 	skb_shinfo(skb1)->nr_frags = k;
3265 }
3266 
3267 /**
3268  * skb_split - Split fragmented skb to two parts at length len.
3269  * @skb: the buffer to split
3270  * @skb1: the buffer to receive the second part
3271  * @len: new length for skb
3272  */
3273 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
3274 {
3275 	int pos = skb_headlen(skb);
3276 
3277 	skb_shinfo(skb1)->flags |= skb_shinfo(skb)->flags & SKBFL_SHARED_FRAG;
3278 	skb_zerocopy_clone(skb1, skb, 0);
3279 	if (len < pos)	/* Split line is inside header. */
3280 		skb_split_inside_header(skb, skb1, len, pos);
3281 	else		/* Second chunk has no header, nothing to copy. */
3282 		skb_split_no_header(skb, skb1, len, pos);
3283 }
3284 EXPORT_SYMBOL(skb_split);
3285 
3286 /* Shifting from/to a cloned skb is a no-go.
3287  *
3288  * Caller cannot keep skb_shinfo related pointers past calling here!
3289  */
3290 static int skb_prepare_for_shift(struct sk_buff *skb)
3291 {
3292 	return skb_cloned(skb) && pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3293 }
3294 
3295 /**
3296  * skb_shift - Shifts paged data partially from skb to another
3297  * @tgt: buffer into which tail data gets added
3298  * @skb: buffer from which the paged data comes from
3299  * @shiftlen: shift up to this many bytes
3300  *
3301  * Attempts to shift up to shiftlen worth of bytes, which may be less than
3302  * the length of the skb, from skb to tgt. Returns number bytes shifted.
3303  * It's up to caller to free skb if everything was shifted.
3304  *
3305  * If @tgt runs out of frags, the whole operation is aborted.
3306  *
3307  * Skb cannot include anything else but paged data while tgt is allowed
3308  * to have non-paged data as well.
3309  *
3310  * TODO: full sized shift could be optimized but that would need
3311  * specialized skb free'er to handle frags without up-to-date nr_frags.
3312  */
3313 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
3314 {
3315 	int from, to, merge, todo;
3316 	skb_frag_t *fragfrom, *fragto;
3317 
3318 	BUG_ON(shiftlen > skb->len);
3319 
3320 	if (skb_headlen(skb))
3321 		return 0;
3322 	if (skb_zcopy(tgt) || skb_zcopy(skb))
3323 		return 0;
3324 
3325 	todo = shiftlen;
3326 	from = 0;
3327 	to = skb_shinfo(tgt)->nr_frags;
3328 	fragfrom = &skb_shinfo(skb)->frags[from];
3329 
3330 	/* Actual merge is delayed until the point when we know we can
3331 	 * commit all, so that we don't have to undo partial changes
3332 	 */
3333 	if (!to ||
3334 	    !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom),
3335 			      skb_frag_off(fragfrom))) {
3336 		merge = -1;
3337 	} else {
3338 		merge = to - 1;
3339 
3340 		todo -= skb_frag_size(fragfrom);
3341 		if (todo < 0) {
3342 			if (skb_prepare_for_shift(skb) ||
3343 			    skb_prepare_for_shift(tgt))
3344 				return 0;
3345 
3346 			/* All previous frag pointers might be stale! */
3347 			fragfrom = &skb_shinfo(skb)->frags[from];
3348 			fragto = &skb_shinfo(tgt)->frags[merge];
3349 
3350 			skb_frag_size_add(fragto, shiftlen);
3351 			skb_frag_size_sub(fragfrom, shiftlen);
3352 			skb_frag_off_add(fragfrom, shiftlen);
3353 
3354 			goto onlymerged;
3355 		}
3356 
3357 		from++;
3358 	}
3359 
3360 	/* Skip full, not-fitting skb to avoid expensive operations */
3361 	if ((shiftlen == skb->len) &&
3362 	    (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
3363 		return 0;
3364 
3365 	if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
3366 		return 0;
3367 
3368 	while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
3369 		if (to == MAX_SKB_FRAGS)
3370 			return 0;
3371 
3372 		fragfrom = &skb_shinfo(skb)->frags[from];
3373 		fragto = &skb_shinfo(tgt)->frags[to];
3374 
3375 		if (todo >= skb_frag_size(fragfrom)) {
3376 			*fragto = *fragfrom;
3377 			todo -= skb_frag_size(fragfrom);
3378 			from++;
3379 			to++;
3380 
3381 		} else {
3382 			__skb_frag_ref(fragfrom);
3383 			skb_frag_page_copy(fragto, fragfrom);
3384 			skb_frag_off_copy(fragto, fragfrom);
3385 			skb_frag_size_set(fragto, todo);
3386 
3387 			skb_frag_off_add(fragfrom, todo);
3388 			skb_frag_size_sub(fragfrom, todo);
3389 			todo = 0;
3390 
3391 			to++;
3392 			break;
3393 		}
3394 	}
3395 
3396 	/* Ready to "commit" this state change to tgt */
3397 	skb_shinfo(tgt)->nr_frags = to;
3398 
3399 	if (merge >= 0) {
3400 		fragfrom = &skb_shinfo(skb)->frags[0];
3401 		fragto = &skb_shinfo(tgt)->frags[merge];
3402 
3403 		skb_frag_size_add(fragto, skb_frag_size(fragfrom));
3404 		__skb_frag_unref(fragfrom);
3405 	}
3406 
3407 	/* Reposition in the original skb */
3408 	to = 0;
3409 	while (from < skb_shinfo(skb)->nr_frags)
3410 		skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
3411 	skb_shinfo(skb)->nr_frags = to;
3412 
3413 	BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
3414 
3415 onlymerged:
3416 	/* Most likely the tgt won't ever need its checksum anymore, skb on
3417 	 * the other hand might need it if it needs to be resent
3418 	 */
3419 	tgt->ip_summed = CHECKSUM_PARTIAL;
3420 	skb->ip_summed = CHECKSUM_PARTIAL;
3421 
3422 	/* Yak, is it really working this way? Some helper please? */
3423 	skb->len -= shiftlen;
3424 	skb->data_len -= shiftlen;
3425 	skb->truesize -= shiftlen;
3426 	tgt->len += shiftlen;
3427 	tgt->data_len += shiftlen;
3428 	tgt->truesize += shiftlen;
3429 
3430 	return shiftlen;
3431 }
3432 
3433 /**
3434  * skb_prepare_seq_read - Prepare a sequential read of skb data
3435  * @skb: the buffer to read
3436  * @from: lower offset of data to be read
3437  * @to: upper offset of data to be read
3438  * @st: state variable
3439  *
3440  * Initializes the specified state variable. Must be called before
3441  * invoking skb_seq_read() for the first time.
3442  */
3443 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
3444 			  unsigned int to, struct skb_seq_state *st)
3445 {
3446 	st->lower_offset = from;
3447 	st->upper_offset = to;
3448 	st->root_skb = st->cur_skb = skb;
3449 	st->frag_idx = st->stepped_offset = 0;
3450 	st->frag_data = NULL;
3451 	st->frag_off = 0;
3452 }
3453 EXPORT_SYMBOL(skb_prepare_seq_read);
3454 
3455 /**
3456  * skb_seq_read - Sequentially read skb data
3457  * @consumed: number of bytes consumed by the caller so far
3458  * @data: destination pointer for data to be returned
3459  * @st: state variable
3460  *
3461  * Reads a block of skb data at @consumed relative to the
3462  * lower offset specified to skb_prepare_seq_read(). Assigns
3463  * the head of the data block to @data and returns the length
3464  * of the block or 0 if the end of the skb data or the upper
3465  * offset has been reached.
3466  *
3467  * The caller is not required to consume all of the data
3468  * returned, i.e. @consumed is typically set to the number
3469  * of bytes already consumed and the next call to
3470  * skb_seq_read() will return the remaining part of the block.
3471  *
3472  * Note 1: The size of each block of data returned can be arbitrary,
3473  *       this limitation is the cost for zerocopy sequential
3474  *       reads of potentially non linear data.
3475  *
3476  * Note 2: Fragment lists within fragments are not implemented
3477  *       at the moment, state->root_skb could be replaced with
3478  *       a stack for this purpose.
3479  */
3480 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
3481 			  struct skb_seq_state *st)
3482 {
3483 	unsigned int block_limit, abs_offset = consumed + st->lower_offset;
3484 	skb_frag_t *frag;
3485 
3486 	if (unlikely(abs_offset >= st->upper_offset)) {
3487 		if (st->frag_data) {
3488 			kunmap_atomic(st->frag_data);
3489 			st->frag_data = NULL;
3490 		}
3491 		return 0;
3492 	}
3493 
3494 next_skb:
3495 	block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
3496 
3497 	if (abs_offset < block_limit && !st->frag_data) {
3498 		*data = st->cur_skb->data + (abs_offset - st->stepped_offset);
3499 		return block_limit - abs_offset;
3500 	}
3501 
3502 	if (st->frag_idx == 0 && !st->frag_data)
3503 		st->stepped_offset += skb_headlen(st->cur_skb);
3504 
3505 	while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
3506 		unsigned int pg_idx, pg_off, pg_sz;
3507 
3508 		frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
3509 
3510 		pg_idx = 0;
3511 		pg_off = skb_frag_off(frag);
3512 		pg_sz = skb_frag_size(frag);
3513 
3514 		if (skb_frag_must_loop(skb_frag_page(frag))) {
3515 			pg_idx = (pg_off + st->frag_off) >> PAGE_SHIFT;
3516 			pg_off = offset_in_page(pg_off + st->frag_off);
3517 			pg_sz = min_t(unsigned int, pg_sz - st->frag_off,
3518 						    PAGE_SIZE - pg_off);
3519 		}
3520 
3521 		block_limit = pg_sz + st->stepped_offset;
3522 		if (abs_offset < block_limit) {
3523 			if (!st->frag_data)
3524 				st->frag_data = kmap_atomic(skb_frag_page(frag) + pg_idx);
3525 
3526 			*data = (u8 *)st->frag_data + pg_off +
3527 				(abs_offset - st->stepped_offset);
3528 
3529 			return block_limit - abs_offset;
3530 		}
3531 
3532 		if (st->frag_data) {
3533 			kunmap_atomic(st->frag_data);
3534 			st->frag_data = NULL;
3535 		}
3536 
3537 		st->stepped_offset += pg_sz;
3538 		st->frag_off += pg_sz;
3539 		if (st->frag_off == skb_frag_size(frag)) {
3540 			st->frag_off = 0;
3541 			st->frag_idx++;
3542 		}
3543 	}
3544 
3545 	if (st->frag_data) {
3546 		kunmap_atomic(st->frag_data);
3547 		st->frag_data = NULL;
3548 	}
3549 
3550 	if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) {
3551 		st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
3552 		st->frag_idx = 0;
3553 		goto next_skb;
3554 	} else if (st->cur_skb->next) {
3555 		st->cur_skb = st->cur_skb->next;
3556 		st->frag_idx = 0;
3557 		goto next_skb;
3558 	}
3559 
3560 	return 0;
3561 }
3562 EXPORT_SYMBOL(skb_seq_read);
3563 
3564 /**
3565  * skb_abort_seq_read - Abort a sequential read of skb data
3566  * @st: state variable
3567  *
3568  * Must be called if skb_seq_read() was not called until it
3569  * returned 0.
3570  */
3571 void skb_abort_seq_read(struct skb_seq_state *st)
3572 {
3573 	if (st->frag_data)
3574 		kunmap_atomic(st->frag_data);
3575 }
3576 EXPORT_SYMBOL(skb_abort_seq_read);
3577 
3578 #define TS_SKB_CB(state)	((struct skb_seq_state *) &((state)->cb))
3579 
3580 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
3581 					  struct ts_config *conf,
3582 					  struct ts_state *state)
3583 {
3584 	return skb_seq_read(offset, text, TS_SKB_CB(state));
3585 }
3586 
3587 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
3588 {
3589 	skb_abort_seq_read(TS_SKB_CB(state));
3590 }
3591 
3592 /**
3593  * skb_find_text - Find a text pattern in skb data
3594  * @skb: the buffer to look in
3595  * @from: search offset
3596  * @to: search limit
3597  * @config: textsearch configuration
3598  *
3599  * Finds a pattern in the skb data according to the specified
3600  * textsearch configuration. Use textsearch_next() to retrieve
3601  * subsequent occurrences of the pattern. Returns the offset
3602  * to the first occurrence or UINT_MAX if no match was found.
3603  */
3604 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
3605 			   unsigned int to, struct ts_config *config)
3606 {
3607 	struct ts_state state;
3608 	unsigned int ret;
3609 
3610 	config->get_next_block = skb_ts_get_next_block;
3611 	config->finish = skb_ts_finish;
3612 
3613 	skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state));
3614 
3615 	ret = textsearch_find(config, &state);
3616 	return (ret <= to - from ? ret : UINT_MAX);
3617 }
3618 EXPORT_SYMBOL(skb_find_text);
3619 
3620 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
3621 			 int offset, size_t size)
3622 {
3623 	int i = skb_shinfo(skb)->nr_frags;
3624 
3625 	if (skb_can_coalesce(skb, i, page, offset)) {
3626 		skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size);
3627 	} else if (i < MAX_SKB_FRAGS) {
3628 		get_page(page);
3629 		skb_fill_page_desc(skb, i, page, offset, size);
3630 	} else {
3631 		return -EMSGSIZE;
3632 	}
3633 
3634 	return 0;
3635 }
3636 EXPORT_SYMBOL_GPL(skb_append_pagefrags);
3637 
3638 /**
3639  *	skb_pull_rcsum - pull skb and update receive checksum
3640  *	@skb: buffer to update
3641  *	@len: length of data pulled
3642  *
3643  *	This function performs an skb_pull on the packet and updates
3644  *	the CHECKSUM_COMPLETE checksum.  It should be used on
3645  *	receive path processing instead of skb_pull unless you know
3646  *	that the checksum difference is zero (e.g., a valid IP header)
3647  *	or you are setting ip_summed to CHECKSUM_NONE.
3648  */
3649 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
3650 {
3651 	unsigned char *data = skb->data;
3652 
3653 	BUG_ON(len > skb->len);
3654 	__skb_pull(skb, len);
3655 	skb_postpull_rcsum(skb, data, len);
3656 	return skb->data;
3657 }
3658 EXPORT_SYMBOL_GPL(skb_pull_rcsum);
3659 
3660 static inline skb_frag_t skb_head_frag_to_page_desc(struct sk_buff *frag_skb)
3661 {
3662 	skb_frag_t head_frag;
3663 	struct page *page;
3664 
3665 	page = virt_to_head_page(frag_skb->head);
3666 	__skb_frag_set_page(&head_frag, page);
3667 	skb_frag_off_set(&head_frag, frag_skb->data -
3668 			 (unsigned char *)page_address(page));
3669 	skb_frag_size_set(&head_frag, skb_headlen(frag_skb));
3670 	return head_frag;
3671 }
3672 
3673 struct sk_buff *skb_segment_list(struct sk_buff *skb,
3674 				 netdev_features_t features,
3675 				 unsigned int offset)
3676 {
3677 	struct sk_buff *list_skb = skb_shinfo(skb)->frag_list;
3678 	unsigned int tnl_hlen = skb_tnl_header_len(skb);
3679 	unsigned int delta_truesize = 0;
3680 	unsigned int delta_len = 0;
3681 	struct sk_buff *tail = NULL;
3682 	struct sk_buff *nskb, *tmp;
3683 	int err;
3684 
3685 	skb_push(skb, -skb_network_offset(skb) + offset);
3686 
3687 	skb_shinfo(skb)->frag_list = NULL;
3688 
3689 	do {
3690 		nskb = list_skb;
3691 		list_skb = list_skb->next;
3692 
3693 		err = 0;
3694 		if (skb_shared(nskb)) {
3695 			tmp = skb_clone(nskb, GFP_ATOMIC);
3696 			if (tmp) {
3697 				consume_skb(nskb);
3698 				nskb = tmp;
3699 				err = skb_unclone(nskb, GFP_ATOMIC);
3700 			} else {
3701 				err = -ENOMEM;
3702 			}
3703 		}
3704 
3705 		if (!tail)
3706 			skb->next = nskb;
3707 		else
3708 			tail->next = nskb;
3709 
3710 		if (unlikely(err)) {
3711 			nskb->next = list_skb;
3712 			goto err_linearize;
3713 		}
3714 
3715 		tail = nskb;
3716 
3717 		delta_len += nskb->len;
3718 		delta_truesize += nskb->truesize;
3719 
3720 		skb_push(nskb, -skb_network_offset(nskb) + offset);
3721 
3722 		skb_release_head_state(nskb);
3723 		 __copy_skb_header(nskb, skb);
3724 
3725 		skb_headers_offset_update(nskb, skb_headroom(nskb) - skb_headroom(skb));
3726 		skb_copy_from_linear_data_offset(skb, -tnl_hlen,
3727 						 nskb->data - tnl_hlen,
3728 						 offset + tnl_hlen);
3729 
3730 		if (skb_needs_linearize(nskb, features) &&
3731 		    __skb_linearize(nskb))
3732 			goto err_linearize;
3733 
3734 	} while (list_skb);
3735 
3736 	skb->truesize = skb->truesize - delta_truesize;
3737 	skb->data_len = skb->data_len - delta_len;
3738 	skb->len = skb->len - delta_len;
3739 
3740 	skb_gso_reset(skb);
3741 
3742 	skb->prev = tail;
3743 
3744 	if (skb_needs_linearize(skb, features) &&
3745 	    __skb_linearize(skb))
3746 		goto err_linearize;
3747 
3748 	skb_get(skb);
3749 
3750 	return skb;
3751 
3752 err_linearize:
3753 	kfree_skb_list(skb->next);
3754 	skb->next = NULL;
3755 	return ERR_PTR(-ENOMEM);
3756 }
3757 EXPORT_SYMBOL_GPL(skb_segment_list);
3758 
3759 int skb_gro_receive_list(struct sk_buff *p, struct sk_buff *skb)
3760 {
3761 	if (unlikely(p->len + skb->len >= 65536))
3762 		return -E2BIG;
3763 
3764 	if (NAPI_GRO_CB(p)->last == p)
3765 		skb_shinfo(p)->frag_list = skb;
3766 	else
3767 		NAPI_GRO_CB(p)->last->next = skb;
3768 
3769 	skb_pull(skb, skb_gro_offset(skb));
3770 
3771 	NAPI_GRO_CB(p)->last = skb;
3772 	NAPI_GRO_CB(p)->count++;
3773 	p->data_len += skb->len;
3774 	p->truesize += skb->truesize;
3775 	p->len += skb->len;
3776 
3777 	NAPI_GRO_CB(skb)->same_flow = 1;
3778 
3779 	return 0;
3780 }
3781 
3782 /**
3783  *	skb_segment - Perform protocol segmentation on skb.
3784  *	@head_skb: buffer to segment
3785  *	@features: features for the output path (see dev->features)
3786  *
3787  *	This function performs segmentation on the given skb.  It returns
3788  *	a pointer to the first in a list of new skbs for the segments.
3789  *	In case of error it returns ERR_PTR(err).
3790  */
3791 struct sk_buff *skb_segment(struct sk_buff *head_skb,
3792 			    netdev_features_t features)
3793 {
3794 	struct sk_buff *segs = NULL;
3795 	struct sk_buff *tail = NULL;
3796 	struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list;
3797 	skb_frag_t *frag = skb_shinfo(head_skb)->frags;
3798 	unsigned int mss = skb_shinfo(head_skb)->gso_size;
3799 	unsigned int doffset = head_skb->data - skb_mac_header(head_skb);
3800 	struct sk_buff *frag_skb = head_skb;
3801 	unsigned int offset = doffset;
3802 	unsigned int tnl_hlen = skb_tnl_header_len(head_skb);
3803 	unsigned int partial_segs = 0;
3804 	unsigned int headroom;
3805 	unsigned int len = head_skb->len;
3806 	__be16 proto;
3807 	bool csum, sg;
3808 	int nfrags = skb_shinfo(head_skb)->nr_frags;
3809 	int err = -ENOMEM;
3810 	int i = 0;
3811 	int pos;
3812 
3813 	if (list_skb && !list_skb->head_frag && skb_headlen(list_skb) &&
3814 	    (skb_shinfo(head_skb)->gso_type & SKB_GSO_DODGY)) {
3815 		/* gso_size is untrusted, and we have a frag_list with a linear
3816 		 * non head_frag head.
3817 		 *
3818 		 * (we assume checking the first list_skb member suffices;
3819 		 * i.e if either of the list_skb members have non head_frag
3820 		 * head, then the first one has too).
3821 		 *
3822 		 * If head_skb's headlen does not fit requested gso_size, it
3823 		 * means that the frag_list members do NOT terminate on exact
3824 		 * gso_size boundaries. Hence we cannot perform skb_frag_t page
3825 		 * sharing. Therefore we must fallback to copying the frag_list
3826 		 * skbs; we do so by disabling SG.
3827 		 */
3828 		if (mss != GSO_BY_FRAGS && mss != skb_headlen(head_skb))
3829 			features &= ~NETIF_F_SG;
3830 	}
3831 
3832 	__skb_push(head_skb, doffset);
3833 	proto = skb_network_protocol(head_skb, NULL);
3834 	if (unlikely(!proto))
3835 		return ERR_PTR(-EINVAL);
3836 
3837 	sg = !!(features & NETIF_F_SG);
3838 	csum = !!can_checksum_protocol(features, proto);
3839 
3840 	if (sg && csum && (mss != GSO_BY_FRAGS))  {
3841 		if (!(features & NETIF_F_GSO_PARTIAL)) {
3842 			struct sk_buff *iter;
3843 			unsigned int frag_len;
3844 
3845 			if (!list_skb ||
3846 			    !net_gso_ok(features, skb_shinfo(head_skb)->gso_type))
3847 				goto normal;
3848 
3849 			/* If we get here then all the required
3850 			 * GSO features except frag_list are supported.
3851 			 * Try to split the SKB to multiple GSO SKBs
3852 			 * with no frag_list.
3853 			 * Currently we can do that only when the buffers don't
3854 			 * have a linear part and all the buffers except
3855 			 * the last are of the same length.
3856 			 */
3857 			frag_len = list_skb->len;
3858 			skb_walk_frags(head_skb, iter) {
3859 				if (frag_len != iter->len && iter->next)
3860 					goto normal;
3861 				if (skb_headlen(iter) && !iter->head_frag)
3862 					goto normal;
3863 
3864 				len -= iter->len;
3865 			}
3866 
3867 			if (len != frag_len)
3868 				goto normal;
3869 		}
3870 
3871 		/* GSO partial only requires that we trim off any excess that
3872 		 * doesn't fit into an MSS sized block, so take care of that
3873 		 * now.
3874 		 */
3875 		partial_segs = len / mss;
3876 		if (partial_segs > 1)
3877 			mss *= partial_segs;
3878 		else
3879 			partial_segs = 0;
3880 	}
3881 
3882 normal:
3883 	headroom = skb_headroom(head_skb);
3884 	pos = skb_headlen(head_skb);
3885 
3886 	do {
3887 		struct sk_buff *nskb;
3888 		skb_frag_t *nskb_frag;
3889 		int hsize;
3890 		int size;
3891 
3892 		if (unlikely(mss == GSO_BY_FRAGS)) {
3893 			len = list_skb->len;
3894 		} else {
3895 			len = head_skb->len - offset;
3896 			if (len > mss)
3897 				len = mss;
3898 		}
3899 
3900 		hsize = skb_headlen(head_skb) - offset;
3901 
3902 		if (hsize <= 0 && i >= nfrags && skb_headlen(list_skb) &&
3903 		    (skb_headlen(list_skb) == len || sg)) {
3904 			BUG_ON(skb_headlen(list_skb) > len);
3905 
3906 			i = 0;
3907 			nfrags = skb_shinfo(list_skb)->nr_frags;
3908 			frag = skb_shinfo(list_skb)->frags;
3909 			frag_skb = list_skb;
3910 			pos += skb_headlen(list_skb);
3911 
3912 			while (pos < offset + len) {
3913 				BUG_ON(i >= nfrags);
3914 
3915 				size = skb_frag_size(frag);
3916 				if (pos + size > offset + len)
3917 					break;
3918 
3919 				i++;
3920 				pos += size;
3921 				frag++;
3922 			}
3923 
3924 			nskb = skb_clone(list_skb, GFP_ATOMIC);
3925 			list_skb = list_skb->next;
3926 
3927 			if (unlikely(!nskb))
3928 				goto err;
3929 
3930 			if (unlikely(pskb_trim(nskb, len))) {
3931 				kfree_skb(nskb);
3932 				goto err;
3933 			}
3934 
3935 			hsize = skb_end_offset(nskb);
3936 			if (skb_cow_head(nskb, doffset + headroom)) {
3937 				kfree_skb(nskb);
3938 				goto err;
3939 			}
3940 
3941 			nskb->truesize += skb_end_offset(nskb) - hsize;
3942 			skb_release_head_state(nskb);
3943 			__skb_push(nskb, doffset);
3944 		} else {
3945 			if (hsize < 0)
3946 				hsize = 0;
3947 			if (hsize > len || !sg)
3948 				hsize = len;
3949 
3950 			nskb = __alloc_skb(hsize + doffset + headroom,
3951 					   GFP_ATOMIC, skb_alloc_rx_flag(head_skb),
3952 					   NUMA_NO_NODE);
3953 
3954 			if (unlikely(!nskb))
3955 				goto err;
3956 
3957 			skb_reserve(nskb, headroom);
3958 			__skb_put(nskb, doffset);
3959 		}
3960 
3961 		if (segs)
3962 			tail->next = nskb;
3963 		else
3964 			segs = nskb;
3965 		tail = nskb;
3966 
3967 		__copy_skb_header(nskb, head_skb);
3968 
3969 		skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom);
3970 		skb_reset_mac_len(nskb);
3971 
3972 		skb_copy_from_linear_data_offset(head_skb, -tnl_hlen,
3973 						 nskb->data - tnl_hlen,
3974 						 doffset + tnl_hlen);
3975 
3976 		if (nskb->len == len + doffset)
3977 			goto perform_csum_check;
3978 
3979 		if (!sg) {
3980 			if (!csum) {
3981 				if (!nskb->remcsum_offload)
3982 					nskb->ip_summed = CHECKSUM_NONE;
3983 				SKB_GSO_CB(nskb)->csum =
3984 					skb_copy_and_csum_bits(head_skb, offset,
3985 							       skb_put(nskb,
3986 								       len),
3987 							       len);
3988 				SKB_GSO_CB(nskb)->csum_start =
3989 					skb_headroom(nskb) + doffset;
3990 			} else {
3991 				skb_copy_bits(head_skb, offset,
3992 					      skb_put(nskb, len),
3993 					      len);
3994 			}
3995 			continue;
3996 		}
3997 
3998 		nskb_frag = skb_shinfo(nskb)->frags;
3999 
4000 		skb_copy_from_linear_data_offset(head_skb, offset,
4001 						 skb_put(nskb, hsize), hsize);
4002 
4003 		skb_shinfo(nskb)->flags |= skb_shinfo(head_skb)->flags &
4004 					   SKBFL_SHARED_FRAG;
4005 
4006 		if (skb_orphan_frags(frag_skb, GFP_ATOMIC) ||
4007 		    skb_zerocopy_clone(nskb, frag_skb, GFP_ATOMIC))
4008 			goto err;
4009 
4010 		while (pos < offset + len) {
4011 			if (i >= nfrags) {
4012 				i = 0;
4013 				nfrags = skb_shinfo(list_skb)->nr_frags;
4014 				frag = skb_shinfo(list_skb)->frags;
4015 				frag_skb = list_skb;
4016 				if (!skb_headlen(list_skb)) {
4017 					BUG_ON(!nfrags);
4018 				} else {
4019 					BUG_ON(!list_skb->head_frag);
4020 
4021 					/* to make room for head_frag. */
4022 					i--;
4023 					frag--;
4024 				}
4025 				if (skb_orphan_frags(frag_skb, GFP_ATOMIC) ||
4026 				    skb_zerocopy_clone(nskb, frag_skb,
4027 						       GFP_ATOMIC))
4028 					goto err;
4029 
4030 				list_skb = list_skb->next;
4031 			}
4032 
4033 			if (unlikely(skb_shinfo(nskb)->nr_frags >=
4034 				     MAX_SKB_FRAGS)) {
4035 				net_warn_ratelimited(
4036 					"skb_segment: too many frags: %u %u\n",
4037 					pos, mss);
4038 				err = -EINVAL;
4039 				goto err;
4040 			}
4041 
4042 			*nskb_frag = (i < 0) ? skb_head_frag_to_page_desc(frag_skb) : *frag;
4043 			__skb_frag_ref(nskb_frag);
4044 			size = skb_frag_size(nskb_frag);
4045 
4046 			if (pos < offset) {
4047 				skb_frag_off_add(nskb_frag, offset - pos);
4048 				skb_frag_size_sub(nskb_frag, offset - pos);
4049 			}
4050 
4051 			skb_shinfo(nskb)->nr_frags++;
4052 
4053 			if (pos + size <= offset + len) {
4054 				i++;
4055 				frag++;
4056 				pos += size;
4057 			} else {
4058 				skb_frag_size_sub(nskb_frag, pos + size - (offset + len));
4059 				goto skip_fraglist;
4060 			}
4061 
4062 			nskb_frag++;
4063 		}
4064 
4065 skip_fraglist:
4066 		nskb->data_len = len - hsize;
4067 		nskb->len += nskb->data_len;
4068 		nskb->truesize += nskb->data_len;
4069 
4070 perform_csum_check:
4071 		if (!csum) {
4072 			if (skb_has_shared_frag(nskb) &&
4073 			    __skb_linearize(nskb))
4074 				goto err;
4075 
4076 			if (!nskb->remcsum_offload)
4077 				nskb->ip_summed = CHECKSUM_NONE;
4078 			SKB_GSO_CB(nskb)->csum =
4079 				skb_checksum(nskb, doffset,
4080 					     nskb->len - doffset, 0);
4081 			SKB_GSO_CB(nskb)->csum_start =
4082 				skb_headroom(nskb) + doffset;
4083 		}
4084 	} while ((offset += len) < head_skb->len);
4085 
4086 	/* Some callers want to get the end of the list.
4087 	 * Put it in segs->prev to avoid walking the list.
4088 	 * (see validate_xmit_skb_list() for example)
4089 	 */
4090 	segs->prev = tail;
4091 
4092 	if (partial_segs) {
4093 		struct sk_buff *iter;
4094 		int type = skb_shinfo(head_skb)->gso_type;
4095 		unsigned short gso_size = skb_shinfo(head_skb)->gso_size;
4096 
4097 		/* Update type to add partial and then remove dodgy if set */
4098 		type |= (features & NETIF_F_GSO_PARTIAL) / NETIF_F_GSO_PARTIAL * SKB_GSO_PARTIAL;
4099 		type &= ~SKB_GSO_DODGY;
4100 
4101 		/* Update GSO info and prepare to start updating headers on
4102 		 * our way back down the stack of protocols.
4103 		 */
4104 		for (iter = segs; iter; iter = iter->next) {
4105 			skb_shinfo(iter)->gso_size = gso_size;
4106 			skb_shinfo(iter)->gso_segs = partial_segs;
4107 			skb_shinfo(iter)->gso_type = type;
4108 			SKB_GSO_CB(iter)->data_offset = skb_headroom(iter) + doffset;
4109 		}
4110 
4111 		if (tail->len - doffset <= gso_size)
4112 			skb_shinfo(tail)->gso_size = 0;
4113 		else if (tail != segs)
4114 			skb_shinfo(tail)->gso_segs = DIV_ROUND_UP(tail->len - doffset, gso_size);
4115 	}
4116 
4117 	/* Following permits correct backpressure, for protocols
4118 	 * using skb_set_owner_w().
4119 	 * Idea is to tranfert ownership from head_skb to last segment.
4120 	 */
4121 	if (head_skb->destructor == sock_wfree) {
4122 		swap(tail->truesize, head_skb->truesize);
4123 		swap(tail->destructor, head_skb->destructor);
4124 		swap(tail->sk, head_skb->sk);
4125 	}
4126 	return segs;
4127 
4128 err:
4129 	kfree_skb_list(segs);
4130 	return ERR_PTR(err);
4131 }
4132 EXPORT_SYMBOL_GPL(skb_segment);
4133 
4134 int skb_gro_receive(struct sk_buff *p, struct sk_buff *skb)
4135 {
4136 	struct skb_shared_info *pinfo, *skbinfo = skb_shinfo(skb);
4137 	unsigned int offset = skb_gro_offset(skb);
4138 	unsigned int headlen = skb_headlen(skb);
4139 	unsigned int len = skb_gro_len(skb);
4140 	unsigned int delta_truesize;
4141 	struct sk_buff *lp;
4142 
4143 	if (unlikely(p->len + len >= 65536 || NAPI_GRO_CB(skb)->flush))
4144 		return -E2BIG;
4145 
4146 	lp = NAPI_GRO_CB(p)->last;
4147 	pinfo = skb_shinfo(lp);
4148 
4149 	if (headlen <= offset) {
4150 		skb_frag_t *frag;
4151 		skb_frag_t *frag2;
4152 		int i = skbinfo->nr_frags;
4153 		int nr_frags = pinfo->nr_frags + i;
4154 
4155 		if (nr_frags > MAX_SKB_FRAGS)
4156 			goto merge;
4157 
4158 		offset -= headlen;
4159 		pinfo->nr_frags = nr_frags;
4160 		skbinfo->nr_frags = 0;
4161 
4162 		frag = pinfo->frags + nr_frags;
4163 		frag2 = skbinfo->frags + i;
4164 		do {
4165 			*--frag = *--frag2;
4166 		} while (--i);
4167 
4168 		skb_frag_off_add(frag, offset);
4169 		skb_frag_size_sub(frag, offset);
4170 
4171 		/* all fragments truesize : remove (head size + sk_buff) */
4172 		delta_truesize = skb->truesize -
4173 				 SKB_TRUESIZE(skb_end_offset(skb));
4174 
4175 		skb->truesize -= skb->data_len;
4176 		skb->len -= skb->data_len;
4177 		skb->data_len = 0;
4178 
4179 		NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE;
4180 		goto done;
4181 	} else if (skb->head_frag) {
4182 		int nr_frags = pinfo->nr_frags;
4183 		skb_frag_t *frag = pinfo->frags + nr_frags;
4184 		struct page *page = virt_to_head_page(skb->head);
4185 		unsigned int first_size = headlen - offset;
4186 		unsigned int first_offset;
4187 
4188 		if (nr_frags + 1 + skbinfo->nr_frags > MAX_SKB_FRAGS)
4189 			goto merge;
4190 
4191 		first_offset = skb->data -
4192 			       (unsigned char *)page_address(page) +
4193 			       offset;
4194 
4195 		pinfo->nr_frags = nr_frags + 1 + skbinfo->nr_frags;
4196 
4197 		__skb_frag_set_page(frag, page);
4198 		skb_frag_off_set(frag, first_offset);
4199 		skb_frag_size_set(frag, first_size);
4200 
4201 		memcpy(frag + 1, skbinfo->frags, sizeof(*frag) * skbinfo->nr_frags);
4202 		/* We dont need to clear skbinfo->nr_frags here */
4203 
4204 		delta_truesize = skb->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
4205 		NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE_STOLEN_HEAD;
4206 		goto done;
4207 	}
4208 
4209 merge:
4210 	delta_truesize = skb->truesize;
4211 	if (offset > headlen) {
4212 		unsigned int eat = offset - headlen;
4213 
4214 		skb_frag_off_add(&skbinfo->frags[0], eat);
4215 		skb_frag_size_sub(&skbinfo->frags[0], eat);
4216 		skb->data_len -= eat;
4217 		skb->len -= eat;
4218 		offset = headlen;
4219 	}
4220 
4221 	__skb_pull(skb, offset);
4222 
4223 	if (NAPI_GRO_CB(p)->last == p)
4224 		skb_shinfo(p)->frag_list = skb;
4225 	else
4226 		NAPI_GRO_CB(p)->last->next = skb;
4227 	NAPI_GRO_CB(p)->last = skb;
4228 	__skb_header_release(skb);
4229 	lp = p;
4230 
4231 done:
4232 	NAPI_GRO_CB(p)->count++;
4233 	p->data_len += len;
4234 	p->truesize += delta_truesize;
4235 	p->len += len;
4236 	if (lp != p) {
4237 		lp->data_len += len;
4238 		lp->truesize += delta_truesize;
4239 		lp->len += len;
4240 	}
4241 	NAPI_GRO_CB(skb)->same_flow = 1;
4242 	return 0;
4243 }
4244 
4245 #ifdef CONFIG_SKB_EXTENSIONS
4246 #define SKB_EXT_ALIGN_VALUE	8
4247 #define SKB_EXT_CHUNKSIZEOF(x)	(ALIGN((sizeof(x)), SKB_EXT_ALIGN_VALUE) / SKB_EXT_ALIGN_VALUE)
4248 
4249 static const u8 skb_ext_type_len[] = {
4250 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4251 	[SKB_EXT_BRIDGE_NF] = SKB_EXT_CHUNKSIZEOF(struct nf_bridge_info),
4252 #endif
4253 #ifdef CONFIG_XFRM
4254 	[SKB_EXT_SEC_PATH] = SKB_EXT_CHUNKSIZEOF(struct sec_path),
4255 #endif
4256 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4257 	[TC_SKB_EXT] = SKB_EXT_CHUNKSIZEOF(struct tc_skb_ext),
4258 #endif
4259 #if IS_ENABLED(CONFIG_MPTCP)
4260 	[SKB_EXT_MPTCP] = SKB_EXT_CHUNKSIZEOF(struct mptcp_ext),
4261 #endif
4262 };
4263 
4264 static __always_inline unsigned int skb_ext_total_length(void)
4265 {
4266 	return SKB_EXT_CHUNKSIZEOF(struct skb_ext) +
4267 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4268 		skb_ext_type_len[SKB_EXT_BRIDGE_NF] +
4269 #endif
4270 #ifdef CONFIG_XFRM
4271 		skb_ext_type_len[SKB_EXT_SEC_PATH] +
4272 #endif
4273 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4274 		skb_ext_type_len[TC_SKB_EXT] +
4275 #endif
4276 #if IS_ENABLED(CONFIG_MPTCP)
4277 		skb_ext_type_len[SKB_EXT_MPTCP] +
4278 #endif
4279 		0;
4280 }
4281 
4282 static void skb_extensions_init(void)
4283 {
4284 	BUILD_BUG_ON(SKB_EXT_NUM >= 8);
4285 	BUILD_BUG_ON(skb_ext_total_length() > 255);
4286 
4287 	skbuff_ext_cache = kmem_cache_create("skbuff_ext_cache",
4288 					     SKB_EXT_ALIGN_VALUE * skb_ext_total_length(),
4289 					     0,
4290 					     SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4291 					     NULL);
4292 }
4293 #else
4294 static void skb_extensions_init(void) {}
4295 #endif
4296 
4297 void __init skb_init(void)
4298 {
4299 	skbuff_head_cache = kmem_cache_create_usercopy("skbuff_head_cache",
4300 					      sizeof(struct sk_buff),
4301 					      0,
4302 					      SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4303 					      offsetof(struct sk_buff, cb),
4304 					      sizeof_field(struct sk_buff, cb),
4305 					      NULL);
4306 	skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
4307 						sizeof(struct sk_buff_fclones),
4308 						0,
4309 						SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4310 						NULL);
4311 	skb_extensions_init();
4312 }
4313 
4314 static int
4315 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len,
4316 	       unsigned int recursion_level)
4317 {
4318 	int start = skb_headlen(skb);
4319 	int i, copy = start - offset;
4320 	struct sk_buff *frag_iter;
4321 	int elt = 0;
4322 
4323 	if (unlikely(recursion_level >= 24))
4324 		return -EMSGSIZE;
4325 
4326 	if (copy > 0) {
4327 		if (copy > len)
4328 			copy = len;
4329 		sg_set_buf(sg, skb->data + offset, copy);
4330 		elt++;
4331 		if ((len -= copy) == 0)
4332 			return elt;
4333 		offset += copy;
4334 	}
4335 
4336 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
4337 		int end;
4338 
4339 		WARN_ON(start > offset + len);
4340 
4341 		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
4342 		if ((copy = end - offset) > 0) {
4343 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4344 			if (unlikely(elt && sg_is_last(&sg[elt - 1])))
4345 				return -EMSGSIZE;
4346 
4347 			if (copy > len)
4348 				copy = len;
4349 			sg_set_page(&sg[elt], skb_frag_page(frag), copy,
4350 				    skb_frag_off(frag) + offset - start);
4351 			elt++;
4352 			if (!(len -= copy))
4353 				return elt;
4354 			offset += copy;
4355 		}
4356 		start = end;
4357 	}
4358 
4359 	skb_walk_frags(skb, frag_iter) {
4360 		int end, ret;
4361 
4362 		WARN_ON(start > offset + len);
4363 
4364 		end = start + frag_iter->len;
4365 		if ((copy = end - offset) > 0) {
4366 			if (unlikely(elt && sg_is_last(&sg[elt - 1])))
4367 				return -EMSGSIZE;
4368 
4369 			if (copy > len)
4370 				copy = len;
4371 			ret = __skb_to_sgvec(frag_iter, sg+elt, offset - start,
4372 					      copy, recursion_level + 1);
4373 			if (unlikely(ret < 0))
4374 				return ret;
4375 			elt += ret;
4376 			if ((len -= copy) == 0)
4377 				return elt;
4378 			offset += copy;
4379 		}
4380 		start = end;
4381 	}
4382 	BUG_ON(len);
4383 	return elt;
4384 }
4385 
4386 /**
4387  *	skb_to_sgvec - Fill a scatter-gather list from a socket buffer
4388  *	@skb: Socket buffer containing the buffers to be mapped
4389  *	@sg: The scatter-gather list to map into
4390  *	@offset: The offset into the buffer's contents to start mapping
4391  *	@len: Length of buffer space to be mapped
4392  *
4393  *	Fill the specified scatter-gather list with mappings/pointers into a
4394  *	region of the buffer space attached to a socket buffer. Returns either
4395  *	the number of scatterlist items used, or -EMSGSIZE if the contents
4396  *	could not fit.
4397  */
4398 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
4399 {
4400 	int nsg = __skb_to_sgvec(skb, sg, offset, len, 0);
4401 
4402 	if (nsg <= 0)
4403 		return nsg;
4404 
4405 	sg_mark_end(&sg[nsg - 1]);
4406 
4407 	return nsg;
4408 }
4409 EXPORT_SYMBOL_GPL(skb_to_sgvec);
4410 
4411 /* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given
4412  * sglist without mark the sg which contain last skb data as the end.
4413  * So the caller can mannipulate sg list as will when padding new data after
4414  * the first call without calling sg_unmark_end to expend sg list.
4415  *
4416  * Scenario to use skb_to_sgvec_nomark:
4417  * 1. sg_init_table
4418  * 2. skb_to_sgvec_nomark(payload1)
4419  * 3. skb_to_sgvec_nomark(payload2)
4420  *
4421  * This is equivalent to:
4422  * 1. sg_init_table
4423  * 2. skb_to_sgvec(payload1)
4424  * 3. sg_unmark_end
4425  * 4. skb_to_sgvec(payload2)
4426  *
4427  * When mapping mutilple payload conditionally, skb_to_sgvec_nomark
4428  * is more preferable.
4429  */
4430 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
4431 			int offset, int len)
4432 {
4433 	return __skb_to_sgvec(skb, sg, offset, len, 0);
4434 }
4435 EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark);
4436 
4437 
4438 
4439 /**
4440  *	skb_cow_data - Check that a socket buffer's data buffers are writable
4441  *	@skb: The socket buffer to check.
4442  *	@tailbits: Amount of trailing space to be added
4443  *	@trailer: Returned pointer to the skb where the @tailbits space begins
4444  *
4445  *	Make sure that the data buffers attached to a socket buffer are
4446  *	writable. If they are not, private copies are made of the data buffers
4447  *	and the socket buffer is set to use these instead.
4448  *
4449  *	If @tailbits is given, make sure that there is space to write @tailbits
4450  *	bytes of data beyond current end of socket buffer.  @trailer will be
4451  *	set to point to the skb in which this space begins.
4452  *
4453  *	The number of scatterlist elements required to completely map the
4454  *	COW'd and extended socket buffer will be returned.
4455  */
4456 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
4457 {
4458 	int copyflag;
4459 	int elt;
4460 	struct sk_buff *skb1, **skb_p;
4461 
4462 	/* If skb is cloned or its head is paged, reallocate
4463 	 * head pulling out all the pages (pages are considered not writable
4464 	 * at the moment even if they are anonymous).
4465 	 */
4466 	if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
4467 	    !__pskb_pull_tail(skb, __skb_pagelen(skb)))
4468 		return -ENOMEM;
4469 
4470 	/* Easy case. Most of packets will go this way. */
4471 	if (!skb_has_frag_list(skb)) {
4472 		/* A little of trouble, not enough of space for trailer.
4473 		 * This should not happen, when stack is tuned to generate
4474 		 * good frames. OK, on miss we reallocate and reserve even more
4475 		 * space, 128 bytes is fair. */
4476 
4477 		if (skb_tailroom(skb) < tailbits &&
4478 		    pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
4479 			return -ENOMEM;
4480 
4481 		/* Voila! */
4482 		*trailer = skb;
4483 		return 1;
4484 	}
4485 
4486 	/* Misery. We are in troubles, going to mincer fragments... */
4487 
4488 	elt = 1;
4489 	skb_p = &skb_shinfo(skb)->frag_list;
4490 	copyflag = 0;
4491 
4492 	while ((skb1 = *skb_p) != NULL) {
4493 		int ntail = 0;
4494 
4495 		/* The fragment is partially pulled by someone,
4496 		 * this can happen on input. Copy it and everything
4497 		 * after it. */
4498 
4499 		if (skb_shared(skb1))
4500 			copyflag = 1;
4501 
4502 		/* If the skb is the last, worry about trailer. */
4503 
4504 		if (skb1->next == NULL && tailbits) {
4505 			if (skb_shinfo(skb1)->nr_frags ||
4506 			    skb_has_frag_list(skb1) ||
4507 			    skb_tailroom(skb1) < tailbits)
4508 				ntail = tailbits + 128;
4509 		}
4510 
4511 		if (copyflag ||
4512 		    skb_cloned(skb1) ||
4513 		    ntail ||
4514 		    skb_shinfo(skb1)->nr_frags ||
4515 		    skb_has_frag_list(skb1)) {
4516 			struct sk_buff *skb2;
4517 
4518 			/* Fuck, we are miserable poor guys... */
4519 			if (ntail == 0)
4520 				skb2 = skb_copy(skb1, GFP_ATOMIC);
4521 			else
4522 				skb2 = skb_copy_expand(skb1,
4523 						       skb_headroom(skb1),
4524 						       ntail,
4525 						       GFP_ATOMIC);
4526 			if (unlikely(skb2 == NULL))
4527 				return -ENOMEM;
4528 
4529 			if (skb1->sk)
4530 				skb_set_owner_w(skb2, skb1->sk);
4531 
4532 			/* Looking around. Are we still alive?
4533 			 * OK, link new skb, drop old one */
4534 
4535 			skb2->next = skb1->next;
4536 			*skb_p = skb2;
4537 			kfree_skb(skb1);
4538 			skb1 = skb2;
4539 		}
4540 		elt++;
4541 		*trailer = skb1;
4542 		skb_p = &skb1->next;
4543 	}
4544 
4545 	return elt;
4546 }
4547 EXPORT_SYMBOL_GPL(skb_cow_data);
4548 
4549 static void sock_rmem_free(struct sk_buff *skb)
4550 {
4551 	struct sock *sk = skb->sk;
4552 
4553 	atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
4554 }
4555 
4556 static void skb_set_err_queue(struct sk_buff *skb)
4557 {
4558 	/* pkt_type of skbs received on local sockets is never PACKET_OUTGOING.
4559 	 * So, it is safe to (mis)use it to mark skbs on the error queue.
4560 	 */
4561 	skb->pkt_type = PACKET_OUTGOING;
4562 	BUILD_BUG_ON(PACKET_OUTGOING == 0);
4563 }
4564 
4565 /*
4566  * Note: We dont mem charge error packets (no sk_forward_alloc changes)
4567  */
4568 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
4569 {
4570 	if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
4571 	    (unsigned int)READ_ONCE(sk->sk_rcvbuf))
4572 		return -ENOMEM;
4573 
4574 	skb_orphan(skb);
4575 	skb->sk = sk;
4576 	skb->destructor = sock_rmem_free;
4577 	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
4578 	skb_set_err_queue(skb);
4579 
4580 	/* before exiting rcu section, make sure dst is refcounted */
4581 	skb_dst_force(skb);
4582 
4583 	skb_queue_tail(&sk->sk_error_queue, skb);
4584 	if (!sock_flag(sk, SOCK_DEAD))
4585 		sk->sk_error_report(sk);
4586 	return 0;
4587 }
4588 EXPORT_SYMBOL(sock_queue_err_skb);
4589 
4590 static bool is_icmp_err_skb(const struct sk_buff *skb)
4591 {
4592 	return skb && (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP ||
4593 		       SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP6);
4594 }
4595 
4596 struct sk_buff *sock_dequeue_err_skb(struct sock *sk)
4597 {
4598 	struct sk_buff_head *q = &sk->sk_error_queue;
4599 	struct sk_buff *skb, *skb_next = NULL;
4600 	bool icmp_next = false;
4601 	unsigned long flags;
4602 
4603 	spin_lock_irqsave(&q->lock, flags);
4604 	skb = __skb_dequeue(q);
4605 	if (skb && (skb_next = skb_peek(q))) {
4606 		icmp_next = is_icmp_err_skb(skb_next);
4607 		if (icmp_next)
4608 			sk->sk_err = SKB_EXT_ERR(skb_next)->ee.ee_errno;
4609 	}
4610 	spin_unlock_irqrestore(&q->lock, flags);
4611 
4612 	if (is_icmp_err_skb(skb) && !icmp_next)
4613 		sk->sk_err = 0;
4614 
4615 	if (skb_next)
4616 		sk->sk_error_report(sk);
4617 
4618 	return skb;
4619 }
4620 EXPORT_SYMBOL(sock_dequeue_err_skb);
4621 
4622 /**
4623  * skb_clone_sk - create clone of skb, and take reference to socket
4624  * @skb: the skb to clone
4625  *
4626  * This function creates a clone of a buffer that holds a reference on
4627  * sk_refcnt.  Buffers created via this function are meant to be
4628  * returned using sock_queue_err_skb, or free via kfree_skb.
4629  *
4630  * When passing buffers allocated with this function to sock_queue_err_skb
4631  * it is necessary to wrap the call with sock_hold/sock_put in order to
4632  * prevent the socket from being released prior to being enqueued on
4633  * the sk_error_queue.
4634  */
4635 struct sk_buff *skb_clone_sk(struct sk_buff *skb)
4636 {
4637 	struct sock *sk = skb->sk;
4638 	struct sk_buff *clone;
4639 
4640 	if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt))
4641 		return NULL;
4642 
4643 	clone = skb_clone(skb, GFP_ATOMIC);
4644 	if (!clone) {
4645 		sock_put(sk);
4646 		return NULL;
4647 	}
4648 
4649 	clone->sk = sk;
4650 	clone->destructor = sock_efree;
4651 
4652 	return clone;
4653 }
4654 EXPORT_SYMBOL(skb_clone_sk);
4655 
4656 static void __skb_complete_tx_timestamp(struct sk_buff *skb,
4657 					struct sock *sk,
4658 					int tstype,
4659 					bool opt_stats)
4660 {
4661 	struct sock_exterr_skb *serr;
4662 	int err;
4663 
4664 	BUILD_BUG_ON(sizeof(struct sock_exterr_skb) > sizeof(skb->cb));
4665 
4666 	serr = SKB_EXT_ERR(skb);
4667 	memset(serr, 0, sizeof(*serr));
4668 	serr->ee.ee_errno = ENOMSG;
4669 	serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
4670 	serr->ee.ee_info = tstype;
4671 	serr->opt_stats = opt_stats;
4672 	serr->header.h4.iif = skb->dev ? skb->dev->ifindex : 0;
4673 	if (sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID) {
4674 		serr->ee.ee_data = skb_shinfo(skb)->tskey;
4675 		if (sk->sk_protocol == IPPROTO_TCP &&
4676 		    sk->sk_type == SOCK_STREAM)
4677 			serr->ee.ee_data -= sk->sk_tskey;
4678 	}
4679 
4680 	err = sock_queue_err_skb(sk, skb);
4681 
4682 	if (err)
4683 		kfree_skb(skb);
4684 }
4685 
4686 static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly)
4687 {
4688 	bool ret;
4689 
4690 	if (likely(sysctl_tstamp_allow_data || tsonly))
4691 		return true;
4692 
4693 	read_lock_bh(&sk->sk_callback_lock);
4694 	ret = sk->sk_socket && sk->sk_socket->file &&
4695 	      file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW);
4696 	read_unlock_bh(&sk->sk_callback_lock);
4697 	return ret;
4698 }
4699 
4700 void skb_complete_tx_timestamp(struct sk_buff *skb,
4701 			       struct skb_shared_hwtstamps *hwtstamps)
4702 {
4703 	struct sock *sk = skb->sk;
4704 
4705 	if (!skb_may_tx_timestamp(sk, false))
4706 		goto err;
4707 
4708 	/* Take a reference to prevent skb_orphan() from freeing the socket,
4709 	 * but only if the socket refcount is not zero.
4710 	 */
4711 	if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
4712 		*skb_hwtstamps(skb) = *hwtstamps;
4713 		__skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND, false);
4714 		sock_put(sk);
4715 		return;
4716 	}
4717 
4718 err:
4719 	kfree_skb(skb);
4720 }
4721 EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp);
4722 
4723 void __skb_tstamp_tx(struct sk_buff *orig_skb,
4724 		     const struct sk_buff *ack_skb,
4725 		     struct skb_shared_hwtstamps *hwtstamps,
4726 		     struct sock *sk, int tstype)
4727 {
4728 	struct sk_buff *skb;
4729 	bool tsonly, opt_stats = false;
4730 
4731 	if (!sk)
4732 		return;
4733 
4734 	if (!hwtstamps && !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TX_SWHW) &&
4735 	    skb_shinfo(orig_skb)->tx_flags & SKBTX_IN_PROGRESS)
4736 		return;
4737 
4738 	tsonly = sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TSONLY;
4739 	if (!skb_may_tx_timestamp(sk, tsonly))
4740 		return;
4741 
4742 	if (tsonly) {
4743 #ifdef CONFIG_INET
4744 		if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_STATS) &&
4745 		    sk->sk_protocol == IPPROTO_TCP &&
4746 		    sk->sk_type == SOCK_STREAM) {
4747 			skb = tcp_get_timestamping_opt_stats(sk, orig_skb,
4748 							     ack_skb);
4749 			opt_stats = true;
4750 		} else
4751 #endif
4752 			skb = alloc_skb(0, GFP_ATOMIC);
4753 	} else {
4754 		skb = skb_clone(orig_skb, GFP_ATOMIC);
4755 	}
4756 	if (!skb)
4757 		return;
4758 
4759 	if (tsonly) {
4760 		skb_shinfo(skb)->tx_flags |= skb_shinfo(orig_skb)->tx_flags &
4761 					     SKBTX_ANY_TSTAMP;
4762 		skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey;
4763 	}
4764 
4765 	if (hwtstamps)
4766 		*skb_hwtstamps(skb) = *hwtstamps;
4767 	else
4768 		skb->tstamp = ktime_get_real();
4769 
4770 	__skb_complete_tx_timestamp(skb, sk, tstype, opt_stats);
4771 }
4772 EXPORT_SYMBOL_GPL(__skb_tstamp_tx);
4773 
4774 void skb_tstamp_tx(struct sk_buff *orig_skb,
4775 		   struct skb_shared_hwtstamps *hwtstamps)
4776 {
4777 	return __skb_tstamp_tx(orig_skb, NULL, hwtstamps, orig_skb->sk,
4778 			       SCM_TSTAMP_SND);
4779 }
4780 EXPORT_SYMBOL_GPL(skb_tstamp_tx);
4781 
4782 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked)
4783 {
4784 	struct sock *sk = skb->sk;
4785 	struct sock_exterr_skb *serr;
4786 	int err = 1;
4787 
4788 	skb->wifi_acked_valid = 1;
4789 	skb->wifi_acked = acked;
4790 
4791 	serr = SKB_EXT_ERR(skb);
4792 	memset(serr, 0, sizeof(*serr));
4793 	serr->ee.ee_errno = ENOMSG;
4794 	serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS;
4795 
4796 	/* Take a reference to prevent skb_orphan() from freeing the socket,
4797 	 * but only if the socket refcount is not zero.
4798 	 */
4799 	if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
4800 		err = sock_queue_err_skb(sk, skb);
4801 		sock_put(sk);
4802 	}
4803 	if (err)
4804 		kfree_skb(skb);
4805 }
4806 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack);
4807 
4808 /**
4809  * skb_partial_csum_set - set up and verify partial csum values for packet
4810  * @skb: the skb to set
4811  * @start: the number of bytes after skb->data to start checksumming.
4812  * @off: the offset from start to place the checksum.
4813  *
4814  * For untrusted partially-checksummed packets, we need to make sure the values
4815  * for skb->csum_start and skb->csum_offset are valid so we don't oops.
4816  *
4817  * This function checks and sets those values and skb->ip_summed: if this
4818  * returns false you should drop the packet.
4819  */
4820 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
4821 {
4822 	u32 csum_end = (u32)start + (u32)off + sizeof(__sum16);
4823 	u32 csum_start = skb_headroom(skb) + (u32)start;
4824 
4825 	if (unlikely(csum_start > U16_MAX || csum_end > skb_headlen(skb))) {
4826 		net_warn_ratelimited("bad partial csum: csum=%u/%u headroom=%u headlen=%u\n",
4827 				     start, off, skb_headroom(skb), skb_headlen(skb));
4828 		return false;
4829 	}
4830 	skb->ip_summed = CHECKSUM_PARTIAL;
4831 	skb->csum_start = csum_start;
4832 	skb->csum_offset = off;
4833 	skb_set_transport_header(skb, start);
4834 	return true;
4835 }
4836 EXPORT_SYMBOL_GPL(skb_partial_csum_set);
4837 
4838 static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len,
4839 			       unsigned int max)
4840 {
4841 	if (skb_headlen(skb) >= len)
4842 		return 0;
4843 
4844 	/* If we need to pullup then pullup to the max, so we
4845 	 * won't need to do it again.
4846 	 */
4847 	if (max > skb->len)
4848 		max = skb->len;
4849 
4850 	if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL)
4851 		return -ENOMEM;
4852 
4853 	if (skb_headlen(skb) < len)
4854 		return -EPROTO;
4855 
4856 	return 0;
4857 }
4858 
4859 #define MAX_TCP_HDR_LEN (15 * 4)
4860 
4861 static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb,
4862 				      typeof(IPPROTO_IP) proto,
4863 				      unsigned int off)
4864 {
4865 	int err;
4866 
4867 	switch (proto) {
4868 	case IPPROTO_TCP:
4869 		err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr),
4870 					  off + MAX_TCP_HDR_LEN);
4871 		if (!err && !skb_partial_csum_set(skb, off,
4872 						  offsetof(struct tcphdr,
4873 							   check)))
4874 			err = -EPROTO;
4875 		return err ? ERR_PTR(err) : &tcp_hdr(skb)->check;
4876 
4877 	case IPPROTO_UDP:
4878 		err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr),
4879 					  off + sizeof(struct udphdr));
4880 		if (!err && !skb_partial_csum_set(skb, off,
4881 						  offsetof(struct udphdr,
4882 							   check)))
4883 			err = -EPROTO;
4884 		return err ? ERR_PTR(err) : &udp_hdr(skb)->check;
4885 	}
4886 
4887 	return ERR_PTR(-EPROTO);
4888 }
4889 
4890 /* This value should be large enough to cover a tagged ethernet header plus
4891  * maximally sized IP and TCP or UDP headers.
4892  */
4893 #define MAX_IP_HDR_LEN 128
4894 
4895 static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate)
4896 {
4897 	unsigned int off;
4898 	bool fragment;
4899 	__sum16 *csum;
4900 	int err;
4901 
4902 	fragment = false;
4903 
4904 	err = skb_maybe_pull_tail(skb,
4905 				  sizeof(struct iphdr),
4906 				  MAX_IP_HDR_LEN);
4907 	if (err < 0)
4908 		goto out;
4909 
4910 	if (ip_is_fragment(ip_hdr(skb)))
4911 		fragment = true;
4912 
4913 	off = ip_hdrlen(skb);
4914 
4915 	err = -EPROTO;
4916 
4917 	if (fragment)
4918 		goto out;
4919 
4920 	csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off);
4921 	if (IS_ERR(csum))
4922 		return PTR_ERR(csum);
4923 
4924 	if (recalculate)
4925 		*csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
4926 					   ip_hdr(skb)->daddr,
4927 					   skb->len - off,
4928 					   ip_hdr(skb)->protocol, 0);
4929 	err = 0;
4930 
4931 out:
4932 	return err;
4933 }
4934 
4935 /* This value should be large enough to cover a tagged ethernet header plus
4936  * an IPv6 header, all options, and a maximal TCP or UDP header.
4937  */
4938 #define MAX_IPV6_HDR_LEN 256
4939 
4940 #define OPT_HDR(type, skb, off) \
4941 	(type *)(skb_network_header(skb) + (off))
4942 
4943 static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate)
4944 {
4945 	int err;
4946 	u8 nexthdr;
4947 	unsigned int off;
4948 	unsigned int len;
4949 	bool fragment;
4950 	bool done;
4951 	__sum16 *csum;
4952 
4953 	fragment = false;
4954 	done = false;
4955 
4956 	off = sizeof(struct ipv6hdr);
4957 
4958 	err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN);
4959 	if (err < 0)
4960 		goto out;
4961 
4962 	nexthdr = ipv6_hdr(skb)->nexthdr;
4963 
4964 	len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len);
4965 	while (off <= len && !done) {
4966 		switch (nexthdr) {
4967 		case IPPROTO_DSTOPTS:
4968 		case IPPROTO_HOPOPTS:
4969 		case IPPROTO_ROUTING: {
4970 			struct ipv6_opt_hdr *hp;
4971 
4972 			err = skb_maybe_pull_tail(skb,
4973 						  off +
4974 						  sizeof(struct ipv6_opt_hdr),
4975 						  MAX_IPV6_HDR_LEN);
4976 			if (err < 0)
4977 				goto out;
4978 
4979 			hp = OPT_HDR(struct ipv6_opt_hdr, skb, off);
4980 			nexthdr = hp->nexthdr;
4981 			off += ipv6_optlen(hp);
4982 			break;
4983 		}
4984 		case IPPROTO_AH: {
4985 			struct ip_auth_hdr *hp;
4986 
4987 			err = skb_maybe_pull_tail(skb,
4988 						  off +
4989 						  sizeof(struct ip_auth_hdr),
4990 						  MAX_IPV6_HDR_LEN);
4991 			if (err < 0)
4992 				goto out;
4993 
4994 			hp = OPT_HDR(struct ip_auth_hdr, skb, off);
4995 			nexthdr = hp->nexthdr;
4996 			off += ipv6_authlen(hp);
4997 			break;
4998 		}
4999 		case IPPROTO_FRAGMENT: {
5000 			struct frag_hdr *hp;
5001 
5002 			err = skb_maybe_pull_tail(skb,
5003 						  off +
5004 						  sizeof(struct frag_hdr),
5005 						  MAX_IPV6_HDR_LEN);
5006 			if (err < 0)
5007 				goto out;
5008 
5009 			hp = OPT_HDR(struct frag_hdr, skb, off);
5010 
5011 			if (hp->frag_off & htons(IP6_OFFSET | IP6_MF))
5012 				fragment = true;
5013 
5014 			nexthdr = hp->nexthdr;
5015 			off += sizeof(struct frag_hdr);
5016 			break;
5017 		}
5018 		default:
5019 			done = true;
5020 			break;
5021 		}
5022 	}
5023 
5024 	err = -EPROTO;
5025 
5026 	if (!done || fragment)
5027 		goto out;
5028 
5029 	csum = skb_checksum_setup_ip(skb, nexthdr, off);
5030 	if (IS_ERR(csum))
5031 		return PTR_ERR(csum);
5032 
5033 	if (recalculate)
5034 		*csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
5035 					 &ipv6_hdr(skb)->daddr,
5036 					 skb->len - off, nexthdr, 0);
5037 	err = 0;
5038 
5039 out:
5040 	return err;
5041 }
5042 
5043 /**
5044  * skb_checksum_setup - set up partial checksum offset
5045  * @skb: the skb to set up
5046  * @recalculate: if true the pseudo-header checksum will be recalculated
5047  */
5048 int skb_checksum_setup(struct sk_buff *skb, bool recalculate)
5049 {
5050 	int err;
5051 
5052 	switch (skb->protocol) {
5053 	case htons(ETH_P_IP):
5054 		err = skb_checksum_setup_ipv4(skb, recalculate);
5055 		break;
5056 
5057 	case htons(ETH_P_IPV6):
5058 		err = skb_checksum_setup_ipv6(skb, recalculate);
5059 		break;
5060 
5061 	default:
5062 		err = -EPROTO;
5063 		break;
5064 	}
5065 
5066 	return err;
5067 }
5068 EXPORT_SYMBOL(skb_checksum_setup);
5069 
5070 /**
5071  * skb_checksum_maybe_trim - maybe trims the given skb
5072  * @skb: the skb to check
5073  * @transport_len: the data length beyond the network header
5074  *
5075  * Checks whether the given skb has data beyond the given transport length.
5076  * If so, returns a cloned skb trimmed to this transport length.
5077  * Otherwise returns the provided skb. Returns NULL in error cases
5078  * (e.g. transport_len exceeds skb length or out-of-memory).
5079  *
5080  * Caller needs to set the skb transport header and free any returned skb if it
5081  * differs from the provided skb.
5082  */
5083 static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb,
5084 					       unsigned int transport_len)
5085 {
5086 	struct sk_buff *skb_chk;
5087 	unsigned int len = skb_transport_offset(skb) + transport_len;
5088 	int ret;
5089 
5090 	if (skb->len < len)
5091 		return NULL;
5092 	else if (skb->len == len)
5093 		return skb;
5094 
5095 	skb_chk = skb_clone(skb, GFP_ATOMIC);
5096 	if (!skb_chk)
5097 		return NULL;
5098 
5099 	ret = pskb_trim_rcsum(skb_chk, len);
5100 	if (ret) {
5101 		kfree_skb(skb_chk);
5102 		return NULL;
5103 	}
5104 
5105 	return skb_chk;
5106 }
5107 
5108 /**
5109  * skb_checksum_trimmed - validate checksum of an skb
5110  * @skb: the skb to check
5111  * @transport_len: the data length beyond the network header
5112  * @skb_chkf: checksum function to use
5113  *
5114  * Applies the given checksum function skb_chkf to the provided skb.
5115  * Returns a checked and maybe trimmed skb. Returns NULL on error.
5116  *
5117  * If the skb has data beyond the given transport length, then a
5118  * trimmed & cloned skb is checked and returned.
5119  *
5120  * Caller needs to set the skb transport header and free any returned skb if it
5121  * differs from the provided skb.
5122  */
5123 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
5124 				     unsigned int transport_len,
5125 				     __sum16(*skb_chkf)(struct sk_buff *skb))
5126 {
5127 	struct sk_buff *skb_chk;
5128 	unsigned int offset = skb_transport_offset(skb);
5129 	__sum16 ret;
5130 
5131 	skb_chk = skb_checksum_maybe_trim(skb, transport_len);
5132 	if (!skb_chk)
5133 		goto err;
5134 
5135 	if (!pskb_may_pull(skb_chk, offset))
5136 		goto err;
5137 
5138 	skb_pull_rcsum(skb_chk, offset);
5139 	ret = skb_chkf(skb_chk);
5140 	skb_push_rcsum(skb_chk, offset);
5141 
5142 	if (ret)
5143 		goto err;
5144 
5145 	return skb_chk;
5146 
5147 err:
5148 	if (skb_chk && skb_chk != skb)
5149 		kfree_skb(skb_chk);
5150 
5151 	return NULL;
5152 
5153 }
5154 EXPORT_SYMBOL(skb_checksum_trimmed);
5155 
5156 void __skb_warn_lro_forwarding(const struct sk_buff *skb)
5157 {
5158 	net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n",
5159 			     skb->dev->name);
5160 }
5161 EXPORT_SYMBOL(__skb_warn_lro_forwarding);
5162 
5163 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen)
5164 {
5165 	if (head_stolen) {
5166 		skb_release_head_state(skb);
5167 		kmem_cache_free(skbuff_head_cache, skb);
5168 	} else {
5169 		__kfree_skb(skb);
5170 	}
5171 }
5172 EXPORT_SYMBOL(kfree_skb_partial);
5173 
5174 /**
5175  * skb_try_coalesce - try to merge skb to prior one
5176  * @to: prior buffer
5177  * @from: buffer to add
5178  * @fragstolen: pointer to boolean
5179  * @delta_truesize: how much more was allocated than was requested
5180  */
5181 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
5182 		      bool *fragstolen, int *delta_truesize)
5183 {
5184 	struct skb_shared_info *to_shinfo, *from_shinfo;
5185 	int i, delta, len = from->len;
5186 
5187 	*fragstolen = false;
5188 
5189 	if (skb_cloned(to))
5190 		return false;
5191 
5192 	if (len <= skb_tailroom(to)) {
5193 		if (len)
5194 			BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len));
5195 		*delta_truesize = 0;
5196 		return true;
5197 	}
5198 
5199 	to_shinfo = skb_shinfo(to);
5200 	from_shinfo = skb_shinfo(from);
5201 	if (to_shinfo->frag_list || from_shinfo->frag_list)
5202 		return false;
5203 	if (skb_zcopy(to) || skb_zcopy(from))
5204 		return false;
5205 
5206 	if (skb_headlen(from) != 0) {
5207 		struct page *page;
5208 		unsigned int offset;
5209 
5210 		if (to_shinfo->nr_frags +
5211 		    from_shinfo->nr_frags >= MAX_SKB_FRAGS)
5212 			return false;
5213 
5214 		if (skb_head_is_locked(from))
5215 			return false;
5216 
5217 		delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
5218 
5219 		page = virt_to_head_page(from->head);
5220 		offset = from->data - (unsigned char *)page_address(page);
5221 
5222 		skb_fill_page_desc(to, to_shinfo->nr_frags,
5223 				   page, offset, skb_headlen(from));
5224 		*fragstolen = true;
5225 	} else {
5226 		if (to_shinfo->nr_frags +
5227 		    from_shinfo->nr_frags > MAX_SKB_FRAGS)
5228 			return false;
5229 
5230 		delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from));
5231 	}
5232 
5233 	WARN_ON_ONCE(delta < len);
5234 
5235 	memcpy(to_shinfo->frags + to_shinfo->nr_frags,
5236 	       from_shinfo->frags,
5237 	       from_shinfo->nr_frags * sizeof(skb_frag_t));
5238 	to_shinfo->nr_frags += from_shinfo->nr_frags;
5239 
5240 	if (!skb_cloned(from))
5241 		from_shinfo->nr_frags = 0;
5242 
5243 	/* if the skb is not cloned this does nothing
5244 	 * since we set nr_frags to 0.
5245 	 */
5246 	for (i = 0; i < from_shinfo->nr_frags; i++)
5247 		__skb_frag_ref(&from_shinfo->frags[i]);
5248 
5249 	to->truesize += delta;
5250 	to->len += len;
5251 	to->data_len += len;
5252 
5253 	*delta_truesize = delta;
5254 	return true;
5255 }
5256 EXPORT_SYMBOL(skb_try_coalesce);
5257 
5258 /**
5259  * skb_scrub_packet - scrub an skb
5260  *
5261  * @skb: buffer to clean
5262  * @xnet: packet is crossing netns
5263  *
5264  * skb_scrub_packet can be used after encapsulating or decapsulting a packet
5265  * into/from a tunnel. Some information have to be cleared during these
5266  * operations.
5267  * skb_scrub_packet can also be used to clean a skb before injecting it in
5268  * another namespace (@xnet == true). We have to clear all information in the
5269  * skb that could impact namespace isolation.
5270  */
5271 void skb_scrub_packet(struct sk_buff *skb, bool xnet)
5272 {
5273 	skb->pkt_type = PACKET_HOST;
5274 	skb->skb_iif = 0;
5275 	skb->ignore_df = 0;
5276 	skb_dst_drop(skb);
5277 	skb_ext_reset(skb);
5278 	nf_reset_ct(skb);
5279 	nf_reset_trace(skb);
5280 
5281 #ifdef CONFIG_NET_SWITCHDEV
5282 	skb->offload_fwd_mark = 0;
5283 	skb->offload_l3_fwd_mark = 0;
5284 #endif
5285 
5286 	if (!xnet)
5287 		return;
5288 
5289 	ipvs_reset(skb);
5290 	skb->mark = 0;
5291 	skb->tstamp = 0;
5292 }
5293 EXPORT_SYMBOL_GPL(skb_scrub_packet);
5294 
5295 /**
5296  * skb_gso_transport_seglen - Return length of individual segments of a gso packet
5297  *
5298  * @skb: GSO skb
5299  *
5300  * skb_gso_transport_seglen is used to determine the real size of the
5301  * individual segments, including Layer4 headers (TCP/UDP).
5302  *
5303  * The MAC/L2 or network (IP, IPv6) headers are not accounted for.
5304  */
5305 static unsigned int skb_gso_transport_seglen(const struct sk_buff *skb)
5306 {
5307 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
5308 	unsigned int thlen = 0;
5309 
5310 	if (skb->encapsulation) {
5311 		thlen = skb_inner_transport_header(skb) -
5312 			skb_transport_header(skb);
5313 
5314 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
5315 			thlen += inner_tcp_hdrlen(skb);
5316 	} else if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
5317 		thlen = tcp_hdrlen(skb);
5318 	} else if (unlikely(skb_is_gso_sctp(skb))) {
5319 		thlen = sizeof(struct sctphdr);
5320 	} else if (shinfo->gso_type & SKB_GSO_UDP_L4) {
5321 		thlen = sizeof(struct udphdr);
5322 	}
5323 	/* UFO sets gso_size to the size of the fragmentation
5324 	 * payload, i.e. the size of the L4 (UDP) header is already
5325 	 * accounted for.
5326 	 */
5327 	return thlen + shinfo->gso_size;
5328 }
5329 
5330 /**
5331  * skb_gso_network_seglen - Return length of individual segments of a gso packet
5332  *
5333  * @skb: GSO skb
5334  *
5335  * skb_gso_network_seglen is used to determine the real size of the
5336  * individual segments, including Layer3 (IP, IPv6) and L4 headers (TCP/UDP).
5337  *
5338  * The MAC/L2 header is not accounted for.
5339  */
5340 static unsigned int skb_gso_network_seglen(const struct sk_buff *skb)
5341 {
5342 	unsigned int hdr_len = skb_transport_header(skb) -
5343 			       skb_network_header(skb);
5344 
5345 	return hdr_len + skb_gso_transport_seglen(skb);
5346 }
5347 
5348 /**
5349  * skb_gso_mac_seglen - Return length of individual segments of a gso packet
5350  *
5351  * @skb: GSO skb
5352  *
5353  * skb_gso_mac_seglen is used to determine the real size of the
5354  * individual segments, including MAC/L2, Layer3 (IP, IPv6) and L4
5355  * headers (TCP/UDP).
5356  */
5357 static unsigned int skb_gso_mac_seglen(const struct sk_buff *skb)
5358 {
5359 	unsigned int hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
5360 
5361 	return hdr_len + skb_gso_transport_seglen(skb);
5362 }
5363 
5364 /**
5365  * skb_gso_size_check - check the skb size, considering GSO_BY_FRAGS
5366  *
5367  * There are a couple of instances where we have a GSO skb, and we
5368  * want to determine what size it would be after it is segmented.
5369  *
5370  * We might want to check:
5371  * -    L3+L4+payload size (e.g. IP forwarding)
5372  * - L2+L3+L4+payload size (e.g. sanity check before passing to driver)
5373  *
5374  * This is a helper to do that correctly considering GSO_BY_FRAGS.
5375  *
5376  * @skb: GSO skb
5377  *
5378  * @seg_len: The segmented length (from skb_gso_*_seglen). In the
5379  *           GSO_BY_FRAGS case this will be [header sizes + GSO_BY_FRAGS].
5380  *
5381  * @max_len: The maximum permissible length.
5382  *
5383  * Returns true if the segmented length <= max length.
5384  */
5385 static inline bool skb_gso_size_check(const struct sk_buff *skb,
5386 				      unsigned int seg_len,
5387 				      unsigned int max_len) {
5388 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
5389 	const struct sk_buff *iter;
5390 
5391 	if (shinfo->gso_size != GSO_BY_FRAGS)
5392 		return seg_len <= max_len;
5393 
5394 	/* Undo this so we can re-use header sizes */
5395 	seg_len -= GSO_BY_FRAGS;
5396 
5397 	skb_walk_frags(skb, iter) {
5398 		if (seg_len + skb_headlen(iter) > max_len)
5399 			return false;
5400 	}
5401 
5402 	return true;
5403 }
5404 
5405 /**
5406  * skb_gso_validate_network_len - Will a split GSO skb fit into a given MTU?
5407  *
5408  * @skb: GSO skb
5409  * @mtu: MTU to validate against
5410  *
5411  * skb_gso_validate_network_len validates if a given skb will fit a
5412  * wanted MTU once split. It considers L3 headers, L4 headers, and the
5413  * payload.
5414  */
5415 bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu)
5416 {
5417 	return skb_gso_size_check(skb, skb_gso_network_seglen(skb), mtu);
5418 }
5419 EXPORT_SYMBOL_GPL(skb_gso_validate_network_len);
5420 
5421 /**
5422  * skb_gso_validate_mac_len - Will a split GSO skb fit in a given length?
5423  *
5424  * @skb: GSO skb
5425  * @len: length to validate against
5426  *
5427  * skb_gso_validate_mac_len validates if a given skb will fit a wanted
5428  * length once split, including L2, L3 and L4 headers and the payload.
5429  */
5430 bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len)
5431 {
5432 	return skb_gso_size_check(skb, skb_gso_mac_seglen(skb), len);
5433 }
5434 EXPORT_SYMBOL_GPL(skb_gso_validate_mac_len);
5435 
5436 static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb)
5437 {
5438 	int mac_len, meta_len;
5439 	void *meta;
5440 
5441 	if (skb_cow(skb, skb_headroom(skb)) < 0) {
5442 		kfree_skb(skb);
5443 		return NULL;
5444 	}
5445 
5446 	mac_len = skb->data - skb_mac_header(skb);
5447 	if (likely(mac_len > VLAN_HLEN + ETH_TLEN)) {
5448 		memmove(skb_mac_header(skb) + VLAN_HLEN, skb_mac_header(skb),
5449 			mac_len - VLAN_HLEN - ETH_TLEN);
5450 	}
5451 
5452 	meta_len = skb_metadata_len(skb);
5453 	if (meta_len) {
5454 		meta = skb_metadata_end(skb) - meta_len;
5455 		memmove(meta + VLAN_HLEN, meta, meta_len);
5456 	}
5457 
5458 	skb->mac_header += VLAN_HLEN;
5459 	return skb;
5460 }
5461 
5462 struct sk_buff *skb_vlan_untag(struct sk_buff *skb)
5463 {
5464 	struct vlan_hdr *vhdr;
5465 	u16 vlan_tci;
5466 
5467 	if (unlikely(skb_vlan_tag_present(skb))) {
5468 		/* vlan_tci is already set-up so leave this for another time */
5469 		return skb;
5470 	}
5471 
5472 	skb = skb_share_check(skb, GFP_ATOMIC);
5473 	if (unlikely(!skb))
5474 		goto err_free;
5475 	/* We may access the two bytes after vlan_hdr in vlan_set_encap_proto(). */
5476 	if (unlikely(!pskb_may_pull(skb, VLAN_HLEN + sizeof(unsigned short))))
5477 		goto err_free;
5478 
5479 	vhdr = (struct vlan_hdr *)skb->data;
5480 	vlan_tci = ntohs(vhdr->h_vlan_TCI);
5481 	__vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci);
5482 
5483 	skb_pull_rcsum(skb, VLAN_HLEN);
5484 	vlan_set_encap_proto(skb, vhdr);
5485 
5486 	skb = skb_reorder_vlan_header(skb);
5487 	if (unlikely(!skb))
5488 		goto err_free;
5489 
5490 	skb_reset_network_header(skb);
5491 	if (!skb_transport_header_was_set(skb))
5492 		skb_reset_transport_header(skb);
5493 	skb_reset_mac_len(skb);
5494 
5495 	return skb;
5496 
5497 err_free:
5498 	kfree_skb(skb);
5499 	return NULL;
5500 }
5501 EXPORT_SYMBOL(skb_vlan_untag);
5502 
5503 int skb_ensure_writable(struct sk_buff *skb, int write_len)
5504 {
5505 	if (!pskb_may_pull(skb, write_len))
5506 		return -ENOMEM;
5507 
5508 	if (!skb_cloned(skb) || skb_clone_writable(skb, write_len))
5509 		return 0;
5510 
5511 	return pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
5512 }
5513 EXPORT_SYMBOL(skb_ensure_writable);
5514 
5515 /* remove VLAN header from packet and update csum accordingly.
5516  * expects a non skb_vlan_tag_present skb with a vlan tag payload
5517  */
5518 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci)
5519 {
5520 	struct vlan_hdr *vhdr;
5521 	int offset = skb->data - skb_mac_header(skb);
5522 	int err;
5523 
5524 	if (WARN_ONCE(offset,
5525 		      "__skb_vlan_pop got skb with skb->data not at mac header (offset %d)\n",
5526 		      offset)) {
5527 		return -EINVAL;
5528 	}
5529 
5530 	err = skb_ensure_writable(skb, VLAN_ETH_HLEN);
5531 	if (unlikely(err))
5532 		return err;
5533 
5534 	skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
5535 
5536 	vhdr = (struct vlan_hdr *)(skb->data + ETH_HLEN);
5537 	*vlan_tci = ntohs(vhdr->h_vlan_TCI);
5538 
5539 	memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN);
5540 	__skb_pull(skb, VLAN_HLEN);
5541 
5542 	vlan_set_encap_proto(skb, vhdr);
5543 	skb->mac_header += VLAN_HLEN;
5544 
5545 	if (skb_network_offset(skb) < ETH_HLEN)
5546 		skb_set_network_header(skb, ETH_HLEN);
5547 
5548 	skb_reset_mac_len(skb);
5549 
5550 	return err;
5551 }
5552 EXPORT_SYMBOL(__skb_vlan_pop);
5553 
5554 /* Pop a vlan tag either from hwaccel or from payload.
5555  * Expects skb->data at mac header.
5556  */
5557 int skb_vlan_pop(struct sk_buff *skb)
5558 {
5559 	u16 vlan_tci;
5560 	__be16 vlan_proto;
5561 	int err;
5562 
5563 	if (likely(skb_vlan_tag_present(skb))) {
5564 		__vlan_hwaccel_clear_tag(skb);
5565 	} else {
5566 		if (unlikely(!eth_type_vlan(skb->protocol)))
5567 			return 0;
5568 
5569 		err = __skb_vlan_pop(skb, &vlan_tci);
5570 		if (err)
5571 			return err;
5572 	}
5573 	/* move next vlan tag to hw accel tag */
5574 	if (likely(!eth_type_vlan(skb->protocol)))
5575 		return 0;
5576 
5577 	vlan_proto = skb->protocol;
5578 	err = __skb_vlan_pop(skb, &vlan_tci);
5579 	if (unlikely(err))
5580 		return err;
5581 
5582 	__vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
5583 	return 0;
5584 }
5585 EXPORT_SYMBOL(skb_vlan_pop);
5586 
5587 /* Push a vlan tag either into hwaccel or into payload (if hwaccel tag present).
5588  * Expects skb->data at mac header.
5589  */
5590 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci)
5591 {
5592 	if (skb_vlan_tag_present(skb)) {
5593 		int offset = skb->data - skb_mac_header(skb);
5594 		int err;
5595 
5596 		if (WARN_ONCE(offset,
5597 			      "skb_vlan_push got skb with skb->data not at mac header (offset %d)\n",
5598 			      offset)) {
5599 			return -EINVAL;
5600 		}
5601 
5602 		err = __vlan_insert_tag(skb, skb->vlan_proto,
5603 					skb_vlan_tag_get(skb));
5604 		if (err)
5605 			return err;
5606 
5607 		skb->protocol = skb->vlan_proto;
5608 		skb->mac_len += VLAN_HLEN;
5609 
5610 		skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
5611 	}
5612 	__vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
5613 	return 0;
5614 }
5615 EXPORT_SYMBOL(skb_vlan_push);
5616 
5617 /**
5618  * skb_eth_pop() - Drop the Ethernet header at the head of a packet
5619  *
5620  * @skb: Socket buffer to modify
5621  *
5622  * Drop the Ethernet header of @skb.
5623  *
5624  * Expects that skb->data points to the mac header and that no VLAN tags are
5625  * present.
5626  *
5627  * Returns 0 on success, -errno otherwise.
5628  */
5629 int skb_eth_pop(struct sk_buff *skb)
5630 {
5631 	if (!pskb_may_pull(skb, ETH_HLEN) || skb_vlan_tagged(skb) ||
5632 	    skb_network_offset(skb) < ETH_HLEN)
5633 		return -EPROTO;
5634 
5635 	skb_pull_rcsum(skb, ETH_HLEN);
5636 	skb_reset_mac_header(skb);
5637 	skb_reset_mac_len(skb);
5638 
5639 	return 0;
5640 }
5641 EXPORT_SYMBOL(skb_eth_pop);
5642 
5643 /**
5644  * skb_eth_push() - Add a new Ethernet header at the head of a packet
5645  *
5646  * @skb: Socket buffer to modify
5647  * @dst: Destination MAC address of the new header
5648  * @src: Source MAC address of the new header
5649  *
5650  * Prepend @skb with a new Ethernet header.
5651  *
5652  * Expects that skb->data points to the mac header, which must be empty.
5653  *
5654  * Returns 0 on success, -errno otherwise.
5655  */
5656 int skb_eth_push(struct sk_buff *skb, const unsigned char *dst,
5657 		 const unsigned char *src)
5658 {
5659 	struct ethhdr *eth;
5660 	int err;
5661 
5662 	if (skb_network_offset(skb) || skb_vlan_tag_present(skb))
5663 		return -EPROTO;
5664 
5665 	err = skb_cow_head(skb, sizeof(*eth));
5666 	if (err < 0)
5667 		return err;
5668 
5669 	skb_push(skb, sizeof(*eth));
5670 	skb_reset_mac_header(skb);
5671 	skb_reset_mac_len(skb);
5672 
5673 	eth = eth_hdr(skb);
5674 	ether_addr_copy(eth->h_dest, dst);
5675 	ether_addr_copy(eth->h_source, src);
5676 	eth->h_proto = skb->protocol;
5677 
5678 	skb_postpush_rcsum(skb, eth, sizeof(*eth));
5679 
5680 	return 0;
5681 }
5682 EXPORT_SYMBOL(skb_eth_push);
5683 
5684 /* Update the ethertype of hdr and the skb csum value if required. */
5685 static void skb_mod_eth_type(struct sk_buff *skb, struct ethhdr *hdr,
5686 			     __be16 ethertype)
5687 {
5688 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
5689 		__be16 diff[] = { ~hdr->h_proto, ethertype };
5690 
5691 		skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum);
5692 	}
5693 
5694 	hdr->h_proto = ethertype;
5695 }
5696 
5697 /**
5698  * skb_mpls_push() - push a new MPLS header after mac_len bytes from start of
5699  *                   the packet
5700  *
5701  * @skb: buffer
5702  * @mpls_lse: MPLS label stack entry to push
5703  * @mpls_proto: ethertype of the new MPLS header (expects 0x8847 or 0x8848)
5704  * @mac_len: length of the MAC header
5705  * @ethernet: flag to indicate if the resulting packet after skb_mpls_push is
5706  *            ethernet
5707  *
5708  * Expects skb->data at mac header.
5709  *
5710  * Returns 0 on success, -errno otherwise.
5711  */
5712 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto,
5713 		  int mac_len, bool ethernet)
5714 {
5715 	struct mpls_shim_hdr *lse;
5716 	int err;
5717 
5718 	if (unlikely(!eth_p_mpls(mpls_proto)))
5719 		return -EINVAL;
5720 
5721 	/* Networking stack does not allow simultaneous Tunnel and MPLS GSO. */
5722 	if (skb->encapsulation)
5723 		return -EINVAL;
5724 
5725 	err = skb_cow_head(skb, MPLS_HLEN);
5726 	if (unlikely(err))
5727 		return err;
5728 
5729 	if (!skb->inner_protocol) {
5730 		skb_set_inner_network_header(skb, skb_network_offset(skb));
5731 		skb_set_inner_protocol(skb, skb->protocol);
5732 	}
5733 
5734 	skb_push(skb, MPLS_HLEN);
5735 	memmove(skb_mac_header(skb) - MPLS_HLEN, skb_mac_header(skb),
5736 		mac_len);
5737 	skb_reset_mac_header(skb);
5738 	skb_set_network_header(skb, mac_len);
5739 	skb_reset_mac_len(skb);
5740 
5741 	lse = mpls_hdr(skb);
5742 	lse->label_stack_entry = mpls_lse;
5743 	skb_postpush_rcsum(skb, lse, MPLS_HLEN);
5744 
5745 	if (ethernet && mac_len >= ETH_HLEN)
5746 		skb_mod_eth_type(skb, eth_hdr(skb), mpls_proto);
5747 	skb->protocol = mpls_proto;
5748 
5749 	return 0;
5750 }
5751 EXPORT_SYMBOL_GPL(skb_mpls_push);
5752 
5753 /**
5754  * skb_mpls_pop() - pop the outermost MPLS header
5755  *
5756  * @skb: buffer
5757  * @next_proto: ethertype of header after popped MPLS header
5758  * @mac_len: length of the MAC header
5759  * @ethernet: flag to indicate if the packet is ethernet
5760  *
5761  * Expects skb->data at mac header.
5762  *
5763  * Returns 0 on success, -errno otherwise.
5764  */
5765 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len,
5766 		 bool ethernet)
5767 {
5768 	int err;
5769 
5770 	if (unlikely(!eth_p_mpls(skb->protocol)))
5771 		return 0;
5772 
5773 	err = skb_ensure_writable(skb, mac_len + MPLS_HLEN);
5774 	if (unlikely(err))
5775 		return err;
5776 
5777 	skb_postpull_rcsum(skb, mpls_hdr(skb), MPLS_HLEN);
5778 	memmove(skb_mac_header(skb) + MPLS_HLEN, skb_mac_header(skb),
5779 		mac_len);
5780 
5781 	__skb_pull(skb, MPLS_HLEN);
5782 	skb_reset_mac_header(skb);
5783 	skb_set_network_header(skb, mac_len);
5784 
5785 	if (ethernet && mac_len >= ETH_HLEN) {
5786 		struct ethhdr *hdr;
5787 
5788 		/* use mpls_hdr() to get ethertype to account for VLANs. */
5789 		hdr = (struct ethhdr *)((void *)mpls_hdr(skb) - ETH_HLEN);
5790 		skb_mod_eth_type(skb, hdr, next_proto);
5791 	}
5792 	skb->protocol = next_proto;
5793 
5794 	return 0;
5795 }
5796 EXPORT_SYMBOL_GPL(skb_mpls_pop);
5797 
5798 /**
5799  * skb_mpls_update_lse() - modify outermost MPLS header and update csum
5800  *
5801  * @skb: buffer
5802  * @mpls_lse: new MPLS label stack entry to update to
5803  *
5804  * Expects skb->data at mac header.
5805  *
5806  * Returns 0 on success, -errno otherwise.
5807  */
5808 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse)
5809 {
5810 	int err;
5811 
5812 	if (unlikely(!eth_p_mpls(skb->protocol)))
5813 		return -EINVAL;
5814 
5815 	err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN);
5816 	if (unlikely(err))
5817 		return err;
5818 
5819 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
5820 		__be32 diff[] = { ~mpls_hdr(skb)->label_stack_entry, mpls_lse };
5821 
5822 		skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum);
5823 	}
5824 
5825 	mpls_hdr(skb)->label_stack_entry = mpls_lse;
5826 
5827 	return 0;
5828 }
5829 EXPORT_SYMBOL_GPL(skb_mpls_update_lse);
5830 
5831 /**
5832  * skb_mpls_dec_ttl() - decrement the TTL of the outermost MPLS header
5833  *
5834  * @skb: buffer
5835  *
5836  * Expects skb->data at mac header.
5837  *
5838  * Returns 0 on success, -errno otherwise.
5839  */
5840 int skb_mpls_dec_ttl(struct sk_buff *skb)
5841 {
5842 	u32 lse;
5843 	u8 ttl;
5844 
5845 	if (unlikely(!eth_p_mpls(skb->protocol)))
5846 		return -EINVAL;
5847 
5848 	if (!pskb_may_pull(skb, skb_network_offset(skb) + MPLS_HLEN))
5849 		return -ENOMEM;
5850 
5851 	lse = be32_to_cpu(mpls_hdr(skb)->label_stack_entry);
5852 	ttl = (lse & MPLS_LS_TTL_MASK) >> MPLS_LS_TTL_SHIFT;
5853 	if (!--ttl)
5854 		return -EINVAL;
5855 
5856 	lse &= ~MPLS_LS_TTL_MASK;
5857 	lse |= ttl << MPLS_LS_TTL_SHIFT;
5858 
5859 	return skb_mpls_update_lse(skb, cpu_to_be32(lse));
5860 }
5861 EXPORT_SYMBOL_GPL(skb_mpls_dec_ttl);
5862 
5863 /**
5864  * alloc_skb_with_frags - allocate skb with page frags
5865  *
5866  * @header_len: size of linear part
5867  * @data_len: needed length in frags
5868  * @max_page_order: max page order desired.
5869  * @errcode: pointer to error code if any
5870  * @gfp_mask: allocation mask
5871  *
5872  * This can be used to allocate a paged skb, given a maximal order for frags.
5873  */
5874 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
5875 				     unsigned long data_len,
5876 				     int max_page_order,
5877 				     int *errcode,
5878 				     gfp_t gfp_mask)
5879 {
5880 	int npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
5881 	unsigned long chunk;
5882 	struct sk_buff *skb;
5883 	struct page *page;
5884 	int i;
5885 
5886 	*errcode = -EMSGSIZE;
5887 	/* Note this test could be relaxed, if we succeed to allocate
5888 	 * high order pages...
5889 	 */
5890 	if (npages > MAX_SKB_FRAGS)
5891 		return NULL;
5892 
5893 	*errcode = -ENOBUFS;
5894 	skb = alloc_skb(header_len, gfp_mask);
5895 	if (!skb)
5896 		return NULL;
5897 
5898 	skb->truesize += npages << PAGE_SHIFT;
5899 
5900 	for (i = 0; npages > 0; i++) {
5901 		int order = max_page_order;
5902 
5903 		while (order) {
5904 			if (npages >= 1 << order) {
5905 				page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) |
5906 						   __GFP_COMP |
5907 						   __GFP_NOWARN,
5908 						   order);
5909 				if (page)
5910 					goto fill_page;
5911 				/* Do not retry other high order allocations */
5912 				order = 1;
5913 				max_page_order = 0;
5914 			}
5915 			order--;
5916 		}
5917 		page = alloc_page(gfp_mask);
5918 		if (!page)
5919 			goto failure;
5920 fill_page:
5921 		chunk = min_t(unsigned long, data_len,
5922 			      PAGE_SIZE << order);
5923 		skb_fill_page_desc(skb, i, page, 0, chunk);
5924 		data_len -= chunk;
5925 		npages -= 1 << order;
5926 	}
5927 	return skb;
5928 
5929 failure:
5930 	kfree_skb(skb);
5931 	return NULL;
5932 }
5933 EXPORT_SYMBOL(alloc_skb_with_frags);
5934 
5935 /* carve out the first off bytes from skb when off < headlen */
5936 static int pskb_carve_inside_header(struct sk_buff *skb, const u32 off,
5937 				    const int headlen, gfp_t gfp_mask)
5938 {
5939 	int i;
5940 	int size = skb_end_offset(skb);
5941 	int new_hlen = headlen - off;
5942 	u8 *data;
5943 
5944 	size = SKB_DATA_ALIGN(size);
5945 
5946 	if (skb_pfmemalloc(skb))
5947 		gfp_mask |= __GFP_MEMALLOC;
5948 	data = kmalloc_reserve(size +
5949 			       SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
5950 			       gfp_mask, NUMA_NO_NODE, NULL);
5951 	if (!data)
5952 		return -ENOMEM;
5953 
5954 	size = SKB_WITH_OVERHEAD(ksize(data));
5955 
5956 	/* Copy real data, and all frags */
5957 	skb_copy_from_linear_data_offset(skb, off, data, new_hlen);
5958 	skb->len -= off;
5959 
5960 	memcpy((struct skb_shared_info *)(data + size),
5961 	       skb_shinfo(skb),
5962 	       offsetof(struct skb_shared_info,
5963 			frags[skb_shinfo(skb)->nr_frags]));
5964 	if (skb_cloned(skb)) {
5965 		/* drop the old head gracefully */
5966 		if (skb_orphan_frags(skb, gfp_mask)) {
5967 			kfree(data);
5968 			return -ENOMEM;
5969 		}
5970 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
5971 			skb_frag_ref(skb, i);
5972 		if (skb_has_frag_list(skb))
5973 			skb_clone_fraglist(skb);
5974 		skb_release_data(skb);
5975 	} else {
5976 		/* we can reuse existing recount- all we did was
5977 		 * relocate values
5978 		 */
5979 		skb_free_head(skb);
5980 	}
5981 
5982 	skb->head = data;
5983 	skb->data = data;
5984 	skb->head_frag = 0;
5985 #ifdef NET_SKBUFF_DATA_USES_OFFSET
5986 	skb->end = size;
5987 #else
5988 	skb->end = skb->head + size;
5989 #endif
5990 	skb_set_tail_pointer(skb, skb_headlen(skb));
5991 	skb_headers_offset_update(skb, 0);
5992 	skb->cloned = 0;
5993 	skb->hdr_len = 0;
5994 	skb->nohdr = 0;
5995 	atomic_set(&skb_shinfo(skb)->dataref, 1);
5996 
5997 	return 0;
5998 }
5999 
6000 static int pskb_carve(struct sk_buff *skb, const u32 off, gfp_t gfp);
6001 
6002 /* carve out the first eat bytes from skb's frag_list. May recurse into
6003  * pskb_carve()
6004  */
6005 static int pskb_carve_frag_list(struct sk_buff *skb,
6006 				struct skb_shared_info *shinfo, int eat,
6007 				gfp_t gfp_mask)
6008 {
6009 	struct sk_buff *list = shinfo->frag_list;
6010 	struct sk_buff *clone = NULL;
6011 	struct sk_buff *insp = NULL;
6012 
6013 	do {
6014 		if (!list) {
6015 			pr_err("Not enough bytes to eat. Want %d\n", eat);
6016 			return -EFAULT;
6017 		}
6018 		if (list->len <= eat) {
6019 			/* Eaten as whole. */
6020 			eat -= list->len;
6021 			list = list->next;
6022 			insp = list;
6023 		} else {
6024 			/* Eaten partially. */
6025 			if (skb_shared(list)) {
6026 				clone = skb_clone(list, gfp_mask);
6027 				if (!clone)
6028 					return -ENOMEM;
6029 				insp = list->next;
6030 				list = clone;
6031 			} else {
6032 				/* This may be pulled without problems. */
6033 				insp = list;
6034 			}
6035 			if (pskb_carve(list, eat, gfp_mask) < 0) {
6036 				kfree_skb(clone);
6037 				return -ENOMEM;
6038 			}
6039 			break;
6040 		}
6041 	} while (eat);
6042 
6043 	/* Free pulled out fragments. */
6044 	while ((list = shinfo->frag_list) != insp) {
6045 		shinfo->frag_list = list->next;
6046 		kfree_skb(list);
6047 	}
6048 	/* And insert new clone at head. */
6049 	if (clone) {
6050 		clone->next = list;
6051 		shinfo->frag_list = clone;
6052 	}
6053 	return 0;
6054 }
6055 
6056 /* carve off first len bytes from skb. Split line (off) is in the
6057  * non-linear part of skb
6058  */
6059 static int pskb_carve_inside_nonlinear(struct sk_buff *skb, const u32 off,
6060 				       int pos, gfp_t gfp_mask)
6061 {
6062 	int i, k = 0;
6063 	int size = skb_end_offset(skb);
6064 	u8 *data;
6065 	const int nfrags = skb_shinfo(skb)->nr_frags;
6066 	struct skb_shared_info *shinfo;
6067 
6068 	size = SKB_DATA_ALIGN(size);
6069 
6070 	if (skb_pfmemalloc(skb))
6071 		gfp_mask |= __GFP_MEMALLOC;
6072 	data = kmalloc_reserve(size +
6073 			       SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
6074 			       gfp_mask, NUMA_NO_NODE, NULL);
6075 	if (!data)
6076 		return -ENOMEM;
6077 
6078 	size = SKB_WITH_OVERHEAD(ksize(data));
6079 
6080 	memcpy((struct skb_shared_info *)(data + size),
6081 	       skb_shinfo(skb), offsetof(struct skb_shared_info, frags[0]));
6082 	if (skb_orphan_frags(skb, gfp_mask)) {
6083 		kfree(data);
6084 		return -ENOMEM;
6085 	}
6086 	shinfo = (struct skb_shared_info *)(data + size);
6087 	for (i = 0; i < nfrags; i++) {
6088 		int fsize = skb_frag_size(&skb_shinfo(skb)->frags[i]);
6089 
6090 		if (pos + fsize > off) {
6091 			shinfo->frags[k] = skb_shinfo(skb)->frags[i];
6092 
6093 			if (pos < off) {
6094 				/* Split frag.
6095 				 * We have two variants in this case:
6096 				 * 1. Move all the frag to the second
6097 				 *    part, if it is possible. F.e.
6098 				 *    this approach is mandatory for TUX,
6099 				 *    where splitting is expensive.
6100 				 * 2. Split is accurately. We make this.
6101 				 */
6102 				skb_frag_off_add(&shinfo->frags[0], off - pos);
6103 				skb_frag_size_sub(&shinfo->frags[0], off - pos);
6104 			}
6105 			skb_frag_ref(skb, i);
6106 			k++;
6107 		}
6108 		pos += fsize;
6109 	}
6110 	shinfo->nr_frags = k;
6111 	if (skb_has_frag_list(skb))
6112 		skb_clone_fraglist(skb);
6113 
6114 	/* split line is in frag list */
6115 	if (k == 0 && pskb_carve_frag_list(skb, shinfo, off - pos, gfp_mask)) {
6116 		/* skb_frag_unref() is not needed here as shinfo->nr_frags = 0. */
6117 		if (skb_has_frag_list(skb))
6118 			kfree_skb_list(skb_shinfo(skb)->frag_list);
6119 		kfree(data);
6120 		return -ENOMEM;
6121 	}
6122 	skb_release_data(skb);
6123 
6124 	skb->head = data;
6125 	skb->head_frag = 0;
6126 	skb->data = data;
6127 #ifdef NET_SKBUFF_DATA_USES_OFFSET
6128 	skb->end = size;
6129 #else
6130 	skb->end = skb->head + size;
6131 #endif
6132 	skb_reset_tail_pointer(skb);
6133 	skb_headers_offset_update(skb, 0);
6134 	skb->cloned   = 0;
6135 	skb->hdr_len  = 0;
6136 	skb->nohdr    = 0;
6137 	skb->len -= off;
6138 	skb->data_len = skb->len;
6139 	atomic_set(&skb_shinfo(skb)->dataref, 1);
6140 	return 0;
6141 }
6142 
6143 /* remove len bytes from the beginning of the skb */
6144 static int pskb_carve(struct sk_buff *skb, const u32 len, gfp_t gfp)
6145 {
6146 	int headlen = skb_headlen(skb);
6147 
6148 	if (len < headlen)
6149 		return pskb_carve_inside_header(skb, len, headlen, gfp);
6150 	else
6151 		return pskb_carve_inside_nonlinear(skb, len, headlen, gfp);
6152 }
6153 
6154 /* Extract to_copy bytes starting at off from skb, and return this in
6155  * a new skb
6156  */
6157 struct sk_buff *pskb_extract(struct sk_buff *skb, int off,
6158 			     int to_copy, gfp_t gfp)
6159 {
6160 	struct sk_buff  *clone = skb_clone(skb, gfp);
6161 
6162 	if (!clone)
6163 		return NULL;
6164 
6165 	if (pskb_carve(clone, off, gfp) < 0 ||
6166 	    pskb_trim(clone, to_copy)) {
6167 		kfree_skb(clone);
6168 		return NULL;
6169 	}
6170 	return clone;
6171 }
6172 EXPORT_SYMBOL(pskb_extract);
6173 
6174 /**
6175  * skb_condense - try to get rid of fragments/frag_list if possible
6176  * @skb: buffer
6177  *
6178  * Can be used to save memory before skb is added to a busy queue.
6179  * If packet has bytes in frags and enough tail room in skb->head,
6180  * pull all of them, so that we can free the frags right now and adjust
6181  * truesize.
6182  * Notes:
6183  *	We do not reallocate skb->head thus can not fail.
6184  *	Caller must re-evaluate skb->truesize if needed.
6185  */
6186 void skb_condense(struct sk_buff *skb)
6187 {
6188 	if (skb->data_len) {
6189 		if (skb->data_len > skb->end - skb->tail ||
6190 		    skb_cloned(skb))
6191 			return;
6192 
6193 		/* Nice, we can free page frag(s) right now */
6194 		__pskb_pull_tail(skb, skb->data_len);
6195 	}
6196 	/* At this point, skb->truesize might be over estimated,
6197 	 * because skb had a fragment, and fragments do not tell
6198 	 * their truesize.
6199 	 * When we pulled its content into skb->head, fragment
6200 	 * was freed, but __pskb_pull_tail() could not possibly
6201 	 * adjust skb->truesize, not knowing the frag truesize.
6202 	 */
6203 	skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
6204 }
6205 
6206 #ifdef CONFIG_SKB_EXTENSIONS
6207 static void *skb_ext_get_ptr(struct skb_ext *ext, enum skb_ext_id id)
6208 {
6209 	return (void *)ext + (ext->offset[id] * SKB_EXT_ALIGN_VALUE);
6210 }
6211 
6212 /**
6213  * __skb_ext_alloc - allocate a new skb extensions storage
6214  *
6215  * @flags: See kmalloc().
6216  *
6217  * Returns the newly allocated pointer. The pointer can later attached to a
6218  * skb via __skb_ext_set().
6219  * Note: caller must handle the skb_ext as an opaque data.
6220  */
6221 struct skb_ext *__skb_ext_alloc(gfp_t flags)
6222 {
6223 	struct skb_ext *new = kmem_cache_alloc(skbuff_ext_cache, flags);
6224 
6225 	if (new) {
6226 		memset(new->offset, 0, sizeof(new->offset));
6227 		refcount_set(&new->refcnt, 1);
6228 	}
6229 
6230 	return new;
6231 }
6232 
6233 static struct skb_ext *skb_ext_maybe_cow(struct skb_ext *old,
6234 					 unsigned int old_active)
6235 {
6236 	struct skb_ext *new;
6237 
6238 	if (refcount_read(&old->refcnt) == 1)
6239 		return old;
6240 
6241 	new = kmem_cache_alloc(skbuff_ext_cache, GFP_ATOMIC);
6242 	if (!new)
6243 		return NULL;
6244 
6245 	memcpy(new, old, old->chunks * SKB_EXT_ALIGN_VALUE);
6246 	refcount_set(&new->refcnt, 1);
6247 
6248 #ifdef CONFIG_XFRM
6249 	if (old_active & (1 << SKB_EXT_SEC_PATH)) {
6250 		struct sec_path *sp = skb_ext_get_ptr(old, SKB_EXT_SEC_PATH);
6251 		unsigned int i;
6252 
6253 		for (i = 0; i < sp->len; i++)
6254 			xfrm_state_hold(sp->xvec[i]);
6255 	}
6256 #endif
6257 	__skb_ext_put(old);
6258 	return new;
6259 }
6260 
6261 /**
6262  * __skb_ext_set - attach the specified extension storage to this skb
6263  * @skb: buffer
6264  * @id: extension id
6265  * @ext: extension storage previously allocated via __skb_ext_alloc()
6266  *
6267  * Existing extensions, if any, are cleared.
6268  *
6269  * Returns the pointer to the extension.
6270  */
6271 void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id,
6272 		    struct skb_ext *ext)
6273 {
6274 	unsigned int newlen, newoff = SKB_EXT_CHUNKSIZEOF(*ext);
6275 
6276 	skb_ext_put(skb);
6277 	newlen = newoff + skb_ext_type_len[id];
6278 	ext->chunks = newlen;
6279 	ext->offset[id] = newoff;
6280 	skb->extensions = ext;
6281 	skb->active_extensions = 1 << id;
6282 	return skb_ext_get_ptr(ext, id);
6283 }
6284 
6285 /**
6286  * skb_ext_add - allocate space for given extension, COW if needed
6287  * @skb: buffer
6288  * @id: extension to allocate space for
6289  *
6290  * Allocates enough space for the given extension.
6291  * If the extension is already present, a pointer to that extension
6292  * is returned.
6293  *
6294  * If the skb was cloned, COW applies and the returned memory can be
6295  * modified without changing the extension space of clones buffers.
6296  *
6297  * Returns pointer to the extension or NULL on allocation failure.
6298  */
6299 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id)
6300 {
6301 	struct skb_ext *new, *old = NULL;
6302 	unsigned int newlen, newoff;
6303 
6304 	if (skb->active_extensions) {
6305 		old = skb->extensions;
6306 
6307 		new = skb_ext_maybe_cow(old, skb->active_extensions);
6308 		if (!new)
6309 			return NULL;
6310 
6311 		if (__skb_ext_exist(new, id))
6312 			goto set_active;
6313 
6314 		newoff = new->chunks;
6315 	} else {
6316 		newoff = SKB_EXT_CHUNKSIZEOF(*new);
6317 
6318 		new = __skb_ext_alloc(GFP_ATOMIC);
6319 		if (!new)
6320 			return NULL;
6321 	}
6322 
6323 	newlen = newoff + skb_ext_type_len[id];
6324 	new->chunks = newlen;
6325 	new->offset[id] = newoff;
6326 set_active:
6327 	skb->extensions = new;
6328 	skb->active_extensions |= 1 << id;
6329 	return skb_ext_get_ptr(new, id);
6330 }
6331 EXPORT_SYMBOL(skb_ext_add);
6332 
6333 #ifdef CONFIG_XFRM
6334 static void skb_ext_put_sp(struct sec_path *sp)
6335 {
6336 	unsigned int i;
6337 
6338 	for (i = 0; i < sp->len; i++)
6339 		xfrm_state_put(sp->xvec[i]);
6340 }
6341 #endif
6342 
6343 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id)
6344 {
6345 	struct skb_ext *ext = skb->extensions;
6346 
6347 	skb->active_extensions &= ~(1 << id);
6348 	if (skb->active_extensions == 0) {
6349 		skb->extensions = NULL;
6350 		__skb_ext_put(ext);
6351 #ifdef CONFIG_XFRM
6352 	} else if (id == SKB_EXT_SEC_PATH &&
6353 		   refcount_read(&ext->refcnt) == 1) {
6354 		struct sec_path *sp = skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH);
6355 
6356 		skb_ext_put_sp(sp);
6357 		sp->len = 0;
6358 #endif
6359 	}
6360 }
6361 EXPORT_SYMBOL(__skb_ext_del);
6362 
6363 void __skb_ext_put(struct skb_ext *ext)
6364 {
6365 	/* If this is last clone, nothing can increment
6366 	 * it after check passes.  Avoids one atomic op.
6367 	 */
6368 	if (refcount_read(&ext->refcnt) == 1)
6369 		goto free_now;
6370 
6371 	if (!refcount_dec_and_test(&ext->refcnt))
6372 		return;
6373 free_now:
6374 #ifdef CONFIG_XFRM
6375 	if (__skb_ext_exist(ext, SKB_EXT_SEC_PATH))
6376 		skb_ext_put_sp(skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH));
6377 #endif
6378 
6379 	kmem_cache_free(skbuff_ext_cache, ext);
6380 }
6381 EXPORT_SYMBOL(__skb_ext_put);
6382 #endif /* CONFIG_SKB_EXTENSIONS */
6383