xref: /openbmc/linux/net/core/skbuff.c (revision d0bd7f2a)
1 /*
2  *	Routines having to do with the 'struct sk_buff' memory handlers.
3  *
4  *	Authors:	Alan Cox <alan@lxorguk.ukuu.org.uk>
5  *			Florian La Roche <rzsfl@rz.uni-sb.de>
6  *
7  *	Fixes:
8  *		Alan Cox	:	Fixed the worst of the load
9  *					balancer bugs.
10  *		Dave Platt	:	Interrupt stacking fix.
11  *	Richard Kooijman	:	Timestamp fixes.
12  *		Alan Cox	:	Changed buffer format.
13  *		Alan Cox	:	destructor hook for AF_UNIX etc.
14  *		Linus Torvalds	:	Better skb_clone.
15  *		Alan Cox	:	Added skb_copy.
16  *		Alan Cox	:	Added all the changed routines Linus
17  *					only put in the headers
18  *		Ray VanTassle	:	Fixed --skb->lock in free
19  *		Alan Cox	:	skb_copy copy arp field
20  *		Andi Kleen	:	slabified it.
21  *		Robert Olsson	:	Removed skb_head_pool
22  *
23  *	NOTE:
24  *		The __skb_ routines should be called with interrupts
25  *	disabled, or you better be *real* sure that the operation is atomic
26  *	with respect to whatever list is being frobbed (e.g. via lock_sock()
27  *	or via disabling bottom half handlers, etc).
28  *
29  *	This program is free software; you can redistribute it and/or
30  *	modify it under the terms of the GNU General Public License
31  *	as published by the Free Software Foundation; either version
32  *	2 of the License, or (at your option) any later version.
33  */
34 
35 /*
36  *	The functions in this file will not compile correctly with gcc 2.4.x
37  */
38 
39 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
40 
41 #include <linux/module.h>
42 #include <linux/types.h>
43 #include <linux/kernel.h>
44 #include <linux/kmemcheck.h>
45 #include <linux/mm.h>
46 #include <linux/interrupt.h>
47 #include <linux/in.h>
48 #include <linux/inet.h>
49 #include <linux/slab.h>
50 #include <linux/tcp.h>
51 #include <linux/udp.h>
52 #include <linux/netdevice.h>
53 #ifdef CONFIG_NET_CLS_ACT
54 #include <net/pkt_sched.h>
55 #endif
56 #include <linux/string.h>
57 #include <linux/skbuff.h>
58 #include <linux/splice.h>
59 #include <linux/cache.h>
60 #include <linux/rtnetlink.h>
61 #include <linux/init.h>
62 #include <linux/scatterlist.h>
63 #include <linux/errqueue.h>
64 #include <linux/prefetch.h>
65 #include <linux/if_vlan.h>
66 
67 #include <net/protocol.h>
68 #include <net/dst.h>
69 #include <net/sock.h>
70 #include <net/checksum.h>
71 #include <net/ip6_checksum.h>
72 #include <net/xfrm.h>
73 
74 #include <asm/uaccess.h>
75 #include <trace/events/skb.h>
76 #include <linux/highmem.h>
77 #include <linux/capability.h>
78 #include <linux/user_namespace.h>
79 
80 struct kmem_cache *skbuff_head_cache __read_mostly;
81 static struct kmem_cache *skbuff_fclone_cache __read_mostly;
82 
83 /**
84  *	skb_panic - private function for out-of-line support
85  *	@skb:	buffer
86  *	@sz:	size
87  *	@addr:	address
88  *	@msg:	skb_over_panic or skb_under_panic
89  *
90  *	Out-of-line support for skb_put() and skb_push().
91  *	Called via the wrapper skb_over_panic() or skb_under_panic().
92  *	Keep out of line to prevent kernel bloat.
93  *	__builtin_return_address is not used because it is not always reliable.
94  */
95 static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr,
96 		      const char msg[])
97 {
98 	pr_emerg("%s: text:%p len:%d put:%d head:%p data:%p tail:%#lx end:%#lx dev:%s\n",
99 		 msg, addr, skb->len, sz, skb->head, skb->data,
100 		 (unsigned long)skb->tail, (unsigned long)skb->end,
101 		 skb->dev ? skb->dev->name : "<NULL>");
102 	BUG();
103 }
104 
105 static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr)
106 {
107 	skb_panic(skb, sz, addr, __func__);
108 }
109 
110 static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr)
111 {
112 	skb_panic(skb, sz, addr, __func__);
113 }
114 
115 /*
116  * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells
117  * the caller if emergency pfmemalloc reserves are being used. If it is and
118  * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves
119  * may be used. Otherwise, the packet data may be discarded until enough
120  * memory is free
121  */
122 #define kmalloc_reserve(size, gfp, node, pfmemalloc) \
123 	 __kmalloc_reserve(size, gfp, node, _RET_IP_, pfmemalloc)
124 
125 static void *__kmalloc_reserve(size_t size, gfp_t flags, int node,
126 			       unsigned long ip, bool *pfmemalloc)
127 {
128 	void *obj;
129 	bool ret_pfmemalloc = false;
130 
131 	/*
132 	 * Try a regular allocation, when that fails and we're not entitled
133 	 * to the reserves, fail.
134 	 */
135 	obj = kmalloc_node_track_caller(size,
136 					flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
137 					node);
138 	if (obj || !(gfp_pfmemalloc_allowed(flags)))
139 		goto out;
140 
141 	/* Try again but now we are using pfmemalloc reserves */
142 	ret_pfmemalloc = true;
143 	obj = kmalloc_node_track_caller(size, flags, node);
144 
145 out:
146 	if (pfmemalloc)
147 		*pfmemalloc = ret_pfmemalloc;
148 
149 	return obj;
150 }
151 
152 /* 	Allocate a new skbuff. We do this ourselves so we can fill in a few
153  *	'private' fields and also do memory statistics to find all the
154  *	[BEEP] leaks.
155  *
156  */
157 
158 struct sk_buff *__alloc_skb_head(gfp_t gfp_mask, int node)
159 {
160 	struct sk_buff *skb;
161 
162 	/* Get the HEAD */
163 	skb = kmem_cache_alloc_node(skbuff_head_cache,
164 				    gfp_mask & ~__GFP_DMA, node);
165 	if (!skb)
166 		goto out;
167 
168 	/*
169 	 * Only clear those fields we need to clear, not those that we will
170 	 * actually initialise below. Hence, don't put any more fields after
171 	 * the tail pointer in struct sk_buff!
172 	 */
173 	memset(skb, 0, offsetof(struct sk_buff, tail));
174 	skb->head = NULL;
175 	skb->truesize = sizeof(struct sk_buff);
176 	atomic_set(&skb->users, 1);
177 
178 	skb->mac_header = (typeof(skb->mac_header))~0U;
179 out:
180 	return skb;
181 }
182 
183 /**
184  *	__alloc_skb	-	allocate a network buffer
185  *	@size: size to allocate
186  *	@gfp_mask: allocation mask
187  *	@flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache
188  *		instead of head cache and allocate a cloned (child) skb.
189  *		If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for
190  *		allocations in case the data is required for writeback
191  *	@node: numa node to allocate memory on
192  *
193  *	Allocate a new &sk_buff. The returned buffer has no headroom and a
194  *	tail room of at least size bytes. The object has a reference count
195  *	of one. The return is the buffer. On a failure the return is %NULL.
196  *
197  *	Buffers may only be allocated from interrupts using a @gfp_mask of
198  *	%GFP_ATOMIC.
199  */
200 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
201 			    int flags, int node)
202 {
203 	struct kmem_cache *cache;
204 	struct skb_shared_info *shinfo;
205 	struct sk_buff *skb;
206 	u8 *data;
207 	bool pfmemalloc;
208 
209 	cache = (flags & SKB_ALLOC_FCLONE)
210 		? skbuff_fclone_cache : skbuff_head_cache;
211 
212 	if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX))
213 		gfp_mask |= __GFP_MEMALLOC;
214 
215 	/* Get the HEAD */
216 	skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node);
217 	if (!skb)
218 		goto out;
219 	prefetchw(skb);
220 
221 	/* We do our best to align skb_shared_info on a separate cache
222 	 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives
223 	 * aligned memory blocks, unless SLUB/SLAB debug is enabled.
224 	 * Both skb->head and skb_shared_info are cache line aligned.
225 	 */
226 	size = SKB_DATA_ALIGN(size);
227 	size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
228 	data = kmalloc_reserve(size, gfp_mask, node, &pfmemalloc);
229 	if (!data)
230 		goto nodata;
231 	/* kmalloc(size) might give us more room than requested.
232 	 * Put skb_shared_info exactly at the end of allocated zone,
233 	 * to allow max possible filling before reallocation.
234 	 */
235 	size = SKB_WITH_OVERHEAD(ksize(data));
236 	prefetchw(data + size);
237 
238 	/*
239 	 * Only clear those fields we need to clear, not those that we will
240 	 * actually initialise below. Hence, don't put any more fields after
241 	 * the tail pointer in struct sk_buff!
242 	 */
243 	memset(skb, 0, offsetof(struct sk_buff, tail));
244 	/* Account for allocated memory : skb + skb->head */
245 	skb->truesize = SKB_TRUESIZE(size);
246 	skb->pfmemalloc = pfmemalloc;
247 	atomic_set(&skb->users, 1);
248 	skb->head = data;
249 	skb->data = data;
250 	skb_reset_tail_pointer(skb);
251 	skb->end = skb->tail + size;
252 	skb->mac_header = (typeof(skb->mac_header))~0U;
253 	skb->transport_header = (typeof(skb->transport_header))~0U;
254 
255 	/* make sure we initialize shinfo sequentially */
256 	shinfo = skb_shinfo(skb);
257 	memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
258 	atomic_set(&shinfo->dataref, 1);
259 	kmemcheck_annotate_variable(shinfo->destructor_arg);
260 
261 	if (flags & SKB_ALLOC_FCLONE) {
262 		struct sk_buff_fclones *fclones;
263 
264 		fclones = container_of(skb, struct sk_buff_fclones, skb1);
265 
266 		kmemcheck_annotate_bitfield(&fclones->skb2, flags1);
267 		skb->fclone = SKB_FCLONE_ORIG;
268 		atomic_set(&fclones->fclone_ref, 1);
269 
270 		fclones->skb2.fclone = SKB_FCLONE_CLONE;
271 		fclones->skb2.pfmemalloc = pfmemalloc;
272 	}
273 out:
274 	return skb;
275 nodata:
276 	kmem_cache_free(cache, skb);
277 	skb = NULL;
278 	goto out;
279 }
280 EXPORT_SYMBOL(__alloc_skb);
281 
282 /**
283  * __build_skb - build a network buffer
284  * @data: data buffer provided by caller
285  * @frag_size: size of data, or 0 if head was kmalloced
286  *
287  * Allocate a new &sk_buff. Caller provides space holding head and
288  * skb_shared_info. @data must have been allocated by kmalloc() only if
289  * @frag_size is 0, otherwise data should come from the page allocator
290  *  or vmalloc()
291  * The return is the new skb buffer.
292  * On a failure the return is %NULL, and @data is not freed.
293  * Notes :
294  *  Before IO, driver allocates only data buffer where NIC put incoming frame
295  *  Driver should add room at head (NET_SKB_PAD) and
296  *  MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info))
297  *  After IO, driver calls build_skb(), to allocate sk_buff and populate it
298  *  before giving packet to stack.
299  *  RX rings only contains data buffers, not full skbs.
300  */
301 struct sk_buff *__build_skb(void *data, unsigned int frag_size)
302 {
303 	struct skb_shared_info *shinfo;
304 	struct sk_buff *skb;
305 	unsigned int size = frag_size ? : ksize(data);
306 
307 	skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC);
308 	if (!skb)
309 		return NULL;
310 
311 	size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
312 
313 	memset(skb, 0, offsetof(struct sk_buff, tail));
314 	skb->truesize = SKB_TRUESIZE(size);
315 	atomic_set(&skb->users, 1);
316 	skb->head = data;
317 	skb->data = data;
318 	skb_reset_tail_pointer(skb);
319 	skb->end = skb->tail + size;
320 	skb->mac_header = (typeof(skb->mac_header))~0U;
321 	skb->transport_header = (typeof(skb->transport_header))~0U;
322 
323 	/* make sure we initialize shinfo sequentially */
324 	shinfo = skb_shinfo(skb);
325 	memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
326 	atomic_set(&shinfo->dataref, 1);
327 	kmemcheck_annotate_variable(shinfo->destructor_arg);
328 
329 	return skb;
330 }
331 
332 /* build_skb() is wrapper over __build_skb(), that specifically
333  * takes care of skb->head and skb->pfmemalloc
334  * This means that if @frag_size is not zero, then @data must be backed
335  * by a page fragment, not kmalloc() or vmalloc()
336  */
337 struct sk_buff *build_skb(void *data, unsigned int frag_size)
338 {
339 	struct sk_buff *skb = __build_skb(data, frag_size);
340 
341 	if (skb && frag_size) {
342 		skb->head_frag = 1;
343 		if (virt_to_head_page(data)->pfmemalloc)
344 			skb->pfmemalloc = 1;
345 	}
346 	return skb;
347 }
348 EXPORT_SYMBOL(build_skb);
349 
350 struct netdev_alloc_cache {
351 	struct page_frag	frag;
352 	/* we maintain a pagecount bias, so that we dont dirty cache line
353 	 * containing page->_count every time we allocate a fragment.
354 	 */
355 	unsigned int		pagecnt_bias;
356 };
357 static DEFINE_PER_CPU(struct netdev_alloc_cache, netdev_alloc_cache);
358 static DEFINE_PER_CPU(struct netdev_alloc_cache, napi_alloc_cache);
359 
360 static struct page *__page_frag_refill(struct netdev_alloc_cache *nc,
361 				       gfp_t gfp_mask)
362 {
363 	const unsigned int order = NETDEV_FRAG_PAGE_MAX_ORDER;
364 	struct page *page = NULL;
365 	gfp_t gfp = gfp_mask;
366 
367 	if (order) {
368 		gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
369 			    __GFP_NOMEMALLOC;
370 		page = alloc_pages_node(NUMA_NO_NODE, gfp_mask, order);
371 		nc->frag.size = PAGE_SIZE << (page ? order : 0);
372 	}
373 
374 	if (unlikely(!page))
375 		page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
376 
377 	nc->frag.page = page;
378 
379 	return page;
380 }
381 
382 static void *__alloc_page_frag(struct netdev_alloc_cache __percpu *cache,
383 			       unsigned int fragsz, gfp_t gfp_mask)
384 {
385 	struct netdev_alloc_cache *nc = this_cpu_ptr(cache);
386 	struct page *page = nc->frag.page;
387 	unsigned int size;
388 	int offset;
389 
390 	if (unlikely(!page)) {
391 refill:
392 		page = __page_frag_refill(nc, gfp_mask);
393 		if (!page)
394 			return NULL;
395 
396 		/* if size can vary use frag.size else just use PAGE_SIZE */
397 		size = NETDEV_FRAG_PAGE_MAX_ORDER ? nc->frag.size : PAGE_SIZE;
398 
399 		/* Even if we own the page, we do not use atomic_set().
400 		 * This would break get_page_unless_zero() users.
401 		 */
402 		atomic_add(size - 1, &page->_count);
403 
404 		/* reset page count bias and offset to start of new frag */
405 		nc->pagecnt_bias = size;
406 		nc->frag.offset = size;
407 	}
408 
409 	offset = nc->frag.offset - fragsz;
410 	if (unlikely(offset < 0)) {
411 		if (!atomic_sub_and_test(nc->pagecnt_bias, &page->_count))
412 			goto refill;
413 
414 		/* if size can vary use frag.size else just use PAGE_SIZE */
415 		size = NETDEV_FRAG_PAGE_MAX_ORDER ? nc->frag.size : PAGE_SIZE;
416 
417 		/* OK, page count is 0, we can safely set it */
418 		atomic_set(&page->_count, size);
419 
420 		/* reset page count bias and offset to start of new frag */
421 		nc->pagecnt_bias = size;
422 		offset = size - fragsz;
423 	}
424 
425 	nc->pagecnt_bias--;
426 	nc->frag.offset = offset;
427 
428 	return page_address(page) + offset;
429 }
430 
431 static void *__netdev_alloc_frag(unsigned int fragsz, gfp_t gfp_mask)
432 {
433 	unsigned long flags;
434 	void *data;
435 
436 	local_irq_save(flags);
437 	data = __alloc_page_frag(&netdev_alloc_cache, fragsz, gfp_mask);
438 	local_irq_restore(flags);
439 	return data;
440 }
441 
442 /**
443  * netdev_alloc_frag - allocate a page fragment
444  * @fragsz: fragment size
445  *
446  * Allocates a frag from a page for receive buffer.
447  * Uses GFP_ATOMIC allocations.
448  */
449 void *netdev_alloc_frag(unsigned int fragsz)
450 {
451 	return __netdev_alloc_frag(fragsz, GFP_ATOMIC | __GFP_COLD);
452 }
453 EXPORT_SYMBOL(netdev_alloc_frag);
454 
455 static void *__napi_alloc_frag(unsigned int fragsz, gfp_t gfp_mask)
456 {
457 	return __alloc_page_frag(&napi_alloc_cache, fragsz, gfp_mask);
458 }
459 
460 void *napi_alloc_frag(unsigned int fragsz)
461 {
462 	return __napi_alloc_frag(fragsz, GFP_ATOMIC | __GFP_COLD);
463 }
464 EXPORT_SYMBOL(napi_alloc_frag);
465 
466 /**
467  *	__alloc_rx_skb - allocate an skbuff for rx
468  *	@length: length to allocate
469  *	@gfp_mask: get_free_pages mask, passed to alloc_skb
470  *	@flags:	If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for
471  *		allocations in case we have to fallback to __alloc_skb()
472  *		If SKB_ALLOC_NAPI is set, page fragment will be allocated
473  *		from napi_cache instead of netdev_cache.
474  *
475  *	Allocate a new &sk_buff and assign it a usage count of one. The
476  *	buffer has unspecified headroom built in. Users should allocate
477  *	the headroom they think they need without accounting for the
478  *	built in space. The built in space is used for optimisations.
479  *
480  *	%NULL is returned if there is no free memory.
481  */
482 static struct sk_buff *__alloc_rx_skb(unsigned int length, gfp_t gfp_mask,
483 				      int flags)
484 {
485 	struct sk_buff *skb = NULL;
486 	unsigned int fragsz = SKB_DATA_ALIGN(length) +
487 			      SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
488 
489 	if (fragsz <= PAGE_SIZE && !(gfp_mask & (__GFP_WAIT | GFP_DMA))) {
490 		void *data;
491 
492 		if (sk_memalloc_socks())
493 			gfp_mask |= __GFP_MEMALLOC;
494 
495 		data = (flags & SKB_ALLOC_NAPI) ?
496 			__napi_alloc_frag(fragsz, gfp_mask) :
497 			__netdev_alloc_frag(fragsz, gfp_mask);
498 
499 		if (likely(data)) {
500 			skb = build_skb(data, fragsz);
501 			if (unlikely(!skb))
502 				put_page(virt_to_head_page(data));
503 		}
504 	} else {
505 		skb = __alloc_skb(length, gfp_mask,
506 				  SKB_ALLOC_RX, NUMA_NO_NODE);
507 	}
508 	return skb;
509 }
510 
511 /**
512  *	__netdev_alloc_skb - allocate an skbuff for rx on a specific device
513  *	@dev: network device to receive on
514  *	@length: length to allocate
515  *	@gfp_mask: get_free_pages mask, passed to alloc_skb
516  *
517  *	Allocate a new &sk_buff and assign it a usage count of one. The
518  *	buffer has NET_SKB_PAD headroom built in. Users should allocate
519  *	the headroom they think they need without accounting for the
520  *	built in space. The built in space is used for optimisations.
521  *
522  *	%NULL is returned if there is no free memory.
523  */
524 struct sk_buff *__netdev_alloc_skb(struct net_device *dev,
525 				   unsigned int length, gfp_t gfp_mask)
526 {
527 	struct sk_buff *skb;
528 
529 	length += NET_SKB_PAD;
530 	skb = __alloc_rx_skb(length, gfp_mask, 0);
531 
532 	if (likely(skb)) {
533 		skb_reserve(skb, NET_SKB_PAD);
534 		skb->dev = dev;
535 	}
536 
537 	return skb;
538 }
539 EXPORT_SYMBOL(__netdev_alloc_skb);
540 
541 /**
542  *	__napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance
543  *	@napi: napi instance this buffer was allocated for
544  *	@length: length to allocate
545  *	@gfp_mask: get_free_pages mask, passed to alloc_skb and alloc_pages
546  *
547  *	Allocate a new sk_buff for use in NAPI receive.  This buffer will
548  *	attempt to allocate the head from a special reserved region used
549  *	only for NAPI Rx allocation.  By doing this we can save several
550  *	CPU cycles by avoiding having to disable and re-enable IRQs.
551  *
552  *	%NULL is returned if there is no free memory.
553  */
554 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi,
555 				 unsigned int length, gfp_t gfp_mask)
556 {
557 	struct sk_buff *skb;
558 
559 	length += NET_SKB_PAD + NET_IP_ALIGN;
560 	skb = __alloc_rx_skb(length, gfp_mask, SKB_ALLOC_NAPI);
561 
562 	if (likely(skb)) {
563 		skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN);
564 		skb->dev = napi->dev;
565 	}
566 
567 	return skb;
568 }
569 EXPORT_SYMBOL(__napi_alloc_skb);
570 
571 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
572 		     int size, unsigned int truesize)
573 {
574 	skb_fill_page_desc(skb, i, page, off, size);
575 	skb->len += size;
576 	skb->data_len += size;
577 	skb->truesize += truesize;
578 }
579 EXPORT_SYMBOL(skb_add_rx_frag);
580 
581 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
582 			  unsigned int truesize)
583 {
584 	skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
585 
586 	skb_frag_size_add(frag, size);
587 	skb->len += size;
588 	skb->data_len += size;
589 	skb->truesize += truesize;
590 }
591 EXPORT_SYMBOL(skb_coalesce_rx_frag);
592 
593 static void skb_drop_list(struct sk_buff **listp)
594 {
595 	kfree_skb_list(*listp);
596 	*listp = NULL;
597 }
598 
599 static inline void skb_drop_fraglist(struct sk_buff *skb)
600 {
601 	skb_drop_list(&skb_shinfo(skb)->frag_list);
602 }
603 
604 static void skb_clone_fraglist(struct sk_buff *skb)
605 {
606 	struct sk_buff *list;
607 
608 	skb_walk_frags(skb, list)
609 		skb_get(list);
610 }
611 
612 static void skb_free_head(struct sk_buff *skb)
613 {
614 	if (skb->head_frag)
615 		put_page(virt_to_head_page(skb->head));
616 	else
617 		kfree(skb->head);
618 }
619 
620 static void skb_release_data(struct sk_buff *skb)
621 {
622 	struct skb_shared_info *shinfo = skb_shinfo(skb);
623 	int i;
624 
625 	if (skb->cloned &&
626 	    atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
627 			      &shinfo->dataref))
628 		return;
629 
630 	for (i = 0; i < shinfo->nr_frags; i++)
631 		__skb_frag_unref(&shinfo->frags[i]);
632 
633 	/*
634 	 * If skb buf is from userspace, we need to notify the caller
635 	 * the lower device DMA has done;
636 	 */
637 	if (shinfo->tx_flags & SKBTX_DEV_ZEROCOPY) {
638 		struct ubuf_info *uarg;
639 
640 		uarg = shinfo->destructor_arg;
641 		if (uarg->callback)
642 			uarg->callback(uarg, true);
643 	}
644 
645 	if (shinfo->frag_list)
646 		kfree_skb_list(shinfo->frag_list);
647 
648 	skb_free_head(skb);
649 }
650 
651 /*
652  *	Free an skbuff by memory without cleaning the state.
653  */
654 static void kfree_skbmem(struct sk_buff *skb)
655 {
656 	struct sk_buff_fclones *fclones;
657 
658 	switch (skb->fclone) {
659 	case SKB_FCLONE_UNAVAILABLE:
660 		kmem_cache_free(skbuff_head_cache, skb);
661 		return;
662 
663 	case SKB_FCLONE_ORIG:
664 		fclones = container_of(skb, struct sk_buff_fclones, skb1);
665 
666 		/* We usually free the clone (TX completion) before original skb
667 		 * This test would have no chance to be true for the clone,
668 		 * while here, branch prediction will be good.
669 		 */
670 		if (atomic_read(&fclones->fclone_ref) == 1)
671 			goto fastpath;
672 		break;
673 
674 	default: /* SKB_FCLONE_CLONE */
675 		fclones = container_of(skb, struct sk_buff_fclones, skb2);
676 		break;
677 	}
678 	if (!atomic_dec_and_test(&fclones->fclone_ref))
679 		return;
680 fastpath:
681 	kmem_cache_free(skbuff_fclone_cache, fclones);
682 }
683 
684 static void skb_release_head_state(struct sk_buff *skb)
685 {
686 	skb_dst_drop(skb);
687 #ifdef CONFIG_XFRM
688 	secpath_put(skb->sp);
689 #endif
690 	if (skb->destructor) {
691 		WARN_ON(in_irq());
692 		skb->destructor(skb);
693 	}
694 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
695 	nf_conntrack_put(skb->nfct);
696 #endif
697 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
698 	nf_bridge_put(skb->nf_bridge);
699 #endif
700 }
701 
702 /* Free everything but the sk_buff shell. */
703 static void skb_release_all(struct sk_buff *skb)
704 {
705 	skb_release_head_state(skb);
706 	if (likely(skb->head))
707 		skb_release_data(skb);
708 }
709 
710 /**
711  *	__kfree_skb - private function
712  *	@skb: buffer
713  *
714  *	Free an sk_buff. Release anything attached to the buffer.
715  *	Clean the state. This is an internal helper function. Users should
716  *	always call kfree_skb
717  */
718 
719 void __kfree_skb(struct sk_buff *skb)
720 {
721 	skb_release_all(skb);
722 	kfree_skbmem(skb);
723 }
724 EXPORT_SYMBOL(__kfree_skb);
725 
726 /**
727  *	kfree_skb - free an sk_buff
728  *	@skb: buffer to free
729  *
730  *	Drop a reference to the buffer and free it if the usage count has
731  *	hit zero.
732  */
733 void kfree_skb(struct sk_buff *skb)
734 {
735 	if (unlikely(!skb))
736 		return;
737 	if (likely(atomic_read(&skb->users) == 1))
738 		smp_rmb();
739 	else if (likely(!atomic_dec_and_test(&skb->users)))
740 		return;
741 	trace_kfree_skb(skb, __builtin_return_address(0));
742 	__kfree_skb(skb);
743 }
744 EXPORT_SYMBOL(kfree_skb);
745 
746 void kfree_skb_list(struct sk_buff *segs)
747 {
748 	while (segs) {
749 		struct sk_buff *next = segs->next;
750 
751 		kfree_skb(segs);
752 		segs = next;
753 	}
754 }
755 EXPORT_SYMBOL(kfree_skb_list);
756 
757 /**
758  *	skb_tx_error - report an sk_buff xmit error
759  *	@skb: buffer that triggered an error
760  *
761  *	Report xmit error if a device callback is tracking this skb.
762  *	skb must be freed afterwards.
763  */
764 void skb_tx_error(struct sk_buff *skb)
765 {
766 	if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
767 		struct ubuf_info *uarg;
768 
769 		uarg = skb_shinfo(skb)->destructor_arg;
770 		if (uarg->callback)
771 			uarg->callback(uarg, false);
772 		skb_shinfo(skb)->tx_flags &= ~SKBTX_DEV_ZEROCOPY;
773 	}
774 }
775 EXPORT_SYMBOL(skb_tx_error);
776 
777 /**
778  *	consume_skb - free an skbuff
779  *	@skb: buffer to free
780  *
781  *	Drop a ref to the buffer and free it if the usage count has hit zero
782  *	Functions identically to kfree_skb, but kfree_skb assumes that the frame
783  *	is being dropped after a failure and notes that
784  */
785 void consume_skb(struct sk_buff *skb)
786 {
787 	if (unlikely(!skb))
788 		return;
789 	if (likely(atomic_read(&skb->users) == 1))
790 		smp_rmb();
791 	else if (likely(!atomic_dec_and_test(&skb->users)))
792 		return;
793 	trace_consume_skb(skb);
794 	__kfree_skb(skb);
795 }
796 EXPORT_SYMBOL(consume_skb);
797 
798 /* Make sure a field is enclosed inside headers_start/headers_end section */
799 #define CHECK_SKB_FIELD(field) \
800 	BUILD_BUG_ON(offsetof(struct sk_buff, field) <		\
801 		     offsetof(struct sk_buff, headers_start));	\
802 	BUILD_BUG_ON(offsetof(struct sk_buff, field) >		\
803 		     offsetof(struct sk_buff, headers_end));	\
804 
805 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
806 {
807 	new->tstamp		= old->tstamp;
808 	/* We do not copy old->sk */
809 	new->dev		= old->dev;
810 	memcpy(new->cb, old->cb, sizeof(old->cb));
811 	skb_dst_copy(new, old);
812 #ifdef CONFIG_XFRM
813 	new->sp			= secpath_get(old->sp);
814 #endif
815 	__nf_copy(new, old, false);
816 
817 	/* Note : this field could be in headers_start/headers_end section
818 	 * It is not yet because we do not want to have a 16 bit hole
819 	 */
820 	new->queue_mapping = old->queue_mapping;
821 
822 	memcpy(&new->headers_start, &old->headers_start,
823 	       offsetof(struct sk_buff, headers_end) -
824 	       offsetof(struct sk_buff, headers_start));
825 	CHECK_SKB_FIELD(protocol);
826 	CHECK_SKB_FIELD(csum);
827 	CHECK_SKB_FIELD(hash);
828 	CHECK_SKB_FIELD(priority);
829 	CHECK_SKB_FIELD(skb_iif);
830 	CHECK_SKB_FIELD(vlan_proto);
831 	CHECK_SKB_FIELD(vlan_tci);
832 	CHECK_SKB_FIELD(transport_header);
833 	CHECK_SKB_FIELD(network_header);
834 	CHECK_SKB_FIELD(mac_header);
835 	CHECK_SKB_FIELD(inner_protocol);
836 	CHECK_SKB_FIELD(inner_transport_header);
837 	CHECK_SKB_FIELD(inner_network_header);
838 	CHECK_SKB_FIELD(inner_mac_header);
839 	CHECK_SKB_FIELD(mark);
840 #ifdef CONFIG_NETWORK_SECMARK
841 	CHECK_SKB_FIELD(secmark);
842 #endif
843 #ifdef CONFIG_NET_RX_BUSY_POLL
844 	CHECK_SKB_FIELD(napi_id);
845 #endif
846 #ifdef CONFIG_XPS
847 	CHECK_SKB_FIELD(sender_cpu);
848 #endif
849 #ifdef CONFIG_NET_SCHED
850 	CHECK_SKB_FIELD(tc_index);
851 #ifdef CONFIG_NET_CLS_ACT
852 	CHECK_SKB_FIELD(tc_verd);
853 #endif
854 #endif
855 
856 }
857 
858 /*
859  * You should not add any new code to this function.  Add it to
860  * __copy_skb_header above instead.
861  */
862 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
863 {
864 #define C(x) n->x = skb->x
865 
866 	n->next = n->prev = NULL;
867 	n->sk = NULL;
868 	__copy_skb_header(n, skb);
869 
870 	C(len);
871 	C(data_len);
872 	C(mac_len);
873 	n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
874 	n->cloned = 1;
875 	n->nohdr = 0;
876 	n->destructor = NULL;
877 	C(tail);
878 	C(end);
879 	C(head);
880 	C(head_frag);
881 	C(data);
882 	C(truesize);
883 	atomic_set(&n->users, 1);
884 
885 	atomic_inc(&(skb_shinfo(skb)->dataref));
886 	skb->cloned = 1;
887 
888 	return n;
889 #undef C
890 }
891 
892 /**
893  *	skb_morph	-	morph one skb into another
894  *	@dst: the skb to receive the contents
895  *	@src: the skb to supply the contents
896  *
897  *	This is identical to skb_clone except that the target skb is
898  *	supplied by the user.
899  *
900  *	The target skb is returned upon exit.
901  */
902 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
903 {
904 	skb_release_all(dst);
905 	return __skb_clone(dst, src);
906 }
907 EXPORT_SYMBOL_GPL(skb_morph);
908 
909 /**
910  *	skb_copy_ubufs	-	copy userspace skb frags buffers to kernel
911  *	@skb: the skb to modify
912  *	@gfp_mask: allocation priority
913  *
914  *	This must be called on SKBTX_DEV_ZEROCOPY skb.
915  *	It will copy all frags into kernel and drop the reference
916  *	to userspace pages.
917  *
918  *	If this function is called from an interrupt gfp_mask() must be
919  *	%GFP_ATOMIC.
920  *
921  *	Returns 0 on success or a negative error code on failure
922  *	to allocate kernel memory to copy to.
923  */
924 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask)
925 {
926 	int i;
927 	int num_frags = skb_shinfo(skb)->nr_frags;
928 	struct page *page, *head = NULL;
929 	struct ubuf_info *uarg = skb_shinfo(skb)->destructor_arg;
930 
931 	for (i = 0; i < num_frags; i++) {
932 		u8 *vaddr;
933 		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
934 
935 		page = alloc_page(gfp_mask);
936 		if (!page) {
937 			while (head) {
938 				struct page *next = (struct page *)page_private(head);
939 				put_page(head);
940 				head = next;
941 			}
942 			return -ENOMEM;
943 		}
944 		vaddr = kmap_atomic(skb_frag_page(f));
945 		memcpy(page_address(page),
946 		       vaddr + f->page_offset, skb_frag_size(f));
947 		kunmap_atomic(vaddr);
948 		set_page_private(page, (unsigned long)head);
949 		head = page;
950 	}
951 
952 	/* skb frags release userspace buffers */
953 	for (i = 0; i < num_frags; i++)
954 		skb_frag_unref(skb, i);
955 
956 	uarg->callback(uarg, false);
957 
958 	/* skb frags point to kernel buffers */
959 	for (i = num_frags - 1; i >= 0; i--) {
960 		__skb_fill_page_desc(skb, i, head, 0,
961 				     skb_shinfo(skb)->frags[i].size);
962 		head = (struct page *)page_private(head);
963 	}
964 
965 	skb_shinfo(skb)->tx_flags &= ~SKBTX_DEV_ZEROCOPY;
966 	return 0;
967 }
968 EXPORT_SYMBOL_GPL(skb_copy_ubufs);
969 
970 /**
971  *	skb_clone	-	duplicate an sk_buff
972  *	@skb: buffer to clone
973  *	@gfp_mask: allocation priority
974  *
975  *	Duplicate an &sk_buff. The new one is not owned by a socket. Both
976  *	copies share the same packet data but not structure. The new
977  *	buffer has a reference count of 1. If the allocation fails the
978  *	function returns %NULL otherwise the new buffer is returned.
979  *
980  *	If this function is called from an interrupt gfp_mask() must be
981  *	%GFP_ATOMIC.
982  */
983 
984 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
985 {
986 	struct sk_buff_fclones *fclones = container_of(skb,
987 						       struct sk_buff_fclones,
988 						       skb1);
989 	struct sk_buff *n;
990 
991 	if (skb_orphan_frags(skb, gfp_mask))
992 		return NULL;
993 
994 	if (skb->fclone == SKB_FCLONE_ORIG &&
995 	    atomic_read(&fclones->fclone_ref) == 1) {
996 		n = &fclones->skb2;
997 		atomic_set(&fclones->fclone_ref, 2);
998 	} else {
999 		if (skb_pfmemalloc(skb))
1000 			gfp_mask |= __GFP_MEMALLOC;
1001 
1002 		n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
1003 		if (!n)
1004 			return NULL;
1005 
1006 		kmemcheck_annotate_bitfield(n, flags1);
1007 		n->fclone = SKB_FCLONE_UNAVAILABLE;
1008 	}
1009 
1010 	return __skb_clone(n, skb);
1011 }
1012 EXPORT_SYMBOL(skb_clone);
1013 
1014 static void skb_headers_offset_update(struct sk_buff *skb, int off)
1015 {
1016 	/* Only adjust this if it actually is csum_start rather than csum */
1017 	if (skb->ip_summed == CHECKSUM_PARTIAL)
1018 		skb->csum_start += off;
1019 	/* {transport,network,mac}_header and tail are relative to skb->head */
1020 	skb->transport_header += off;
1021 	skb->network_header   += off;
1022 	if (skb_mac_header_was_set(skb))
1023 		skb->mac_header += off;
1024 	skb->inner_transport_header += off;
1025 	skb->inner_network_header += off;
1026 	skb->inner_mac_header += off;
1027 }
1028 
1029 static void copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
1030 {
1031 	__copy_skb_header(new, old);
1032 
1033 	skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
1034 	skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
1035 	skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
1036 }
1037 
1038 static inline int skb_alloc_rx_flag(const struct sk_buff *skb)
1039 {
1040 	if (skb_pfmemalloc(skb))
1041 		return SKB_ALLOC_RX;
1042 	return 0;
1043 }
1044 
1045 /**
1046  *	skb_copy	-	create private copy of an sk_buff
1047  *	@skb: buffer to copy
1048  *	@gfp_mask: allocation priority
1049  *
1050  *	Make a copy of both an &sk_buff and its data. This is used when the
1051  *	caller wishes to modify the data and needs a private copy of the
1052  *	data to alter. Returns %NULL on failure or the pointer to the buffer
1053  *	on success. The returned buffer has a reference count of 1.
1054  *
1055  *	As by-product this function converts non-linear &sk_buff to linear
1056  *	one, so that &sk_buff becomes completely private and caller is allowed
1057  *	to modify all the data of returned buffer. This means that this
1058  *	function is not recommended for use in circumstances when only
1059  *	header is going to be modified. Use pskb_copy() instead.
1060  */
1061 
1062 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
1063 {
1064 	int headerlen = skb_headroom(skb);
1065 	unsigned int size = skb_end_offset(skb) + skb->data_len;
1066 	struct sk_buff *n = __alloc_skb(size, gfp_mask,
1067 					skb_alloc_rx_flag(skb), NUMA_NO_NODE);
1068 
1069 	if (!n)
1070 		return NULL;
1071 
1072 	/* Set the data pointer */
1073 	skb_reserve(n, headerlen);
1074 	/* Set the tail pointer and length */
1075 	skb_put(n, skb->len);
1076 
1077 	if (skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len))
1078 		BUG();
1079 
1080 	copy_skb_header(n, skb);
1081 	return n;
1082 }
1083 EXPORT_SYMBOL(skb_copy);
1084 
1085 /**
1086  *	__pskb_copy_fclone	-  create copy of an sk_buff with private head.
1087  *	@skb: buffer to copy
1088  *	@headroom: headroom of new skb
1089  *	@gfp_mask: allocation priority
1090  *	@fclone: if true allocate the copy of the skb from the fclone
1091  *	cache instead of the head cache; it is recommended to set this
1092  *	to true for the cases where the copy will likely be cloned
1093  *
1094  *	Make a copy of both an &sk_buff and part of its data, located
1095  *	in header. Fragmented data remain shared. This is used when
1096  *	the caller wishes to modify only header of &sk_buff and needs
1097  *	private copy of the header to alter. Returns %NULL on failure
1098  *	or the pointer to the buffer on success.
1099  *	The returned buffer has a reference count of 1.
1100  */
1101 
1102 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1103 				   gfp_t gfp_mask, bool fclone)
1104 {
1105 	unsigned int size = skb_headlen(skb) + headroom;
1106 	int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0);
1107 	struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE);
1108 
1109 	if (!n)
1110 		goto out;
1111 
1112 	/* Set the data pointer */
1113 	skb_reserve(n, headroom);
1114 	/* Set the tail pointer and length */
1115 	skb_put(n, skb_headlen(skb));
1116 	/* Copy the bytes */
1117 	skb_copy_from_linear_data(skb, n->data, n->len);
1118 
1119 	n->truesize += skb->data_len;
1120 	n->data_len  = skb->data_len;
1121 	n->len	     = skb->len;
1122 
1123 	if (skb_shinfo(skb)->nr_frags) {
1124 		int i;
1125 
1126 		if (skb_orphan_frags(skb, gfp_mask)) {
1127 			kfree_skb(n);
1128 			n = NULL;
1129 			goto out;
1130 		}
1131 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1132 			skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
1133 			skb_frag_ref(skb, i);
1134 		}
1135 		skb_shinfo(n)->nr_frags = i;
1136 	}
1137 
1138 	if (skb_has_frag_list(skb)) {
1139 		skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
1140 		skb_clone_fraglist(n);
1141 	}
1142 
1143 	copy_skb_header(n, skb);
1144 out:
1145 	return n;
1146 }
1147 EXPORT_SYMBOL(__pskb_copy_fclone);
1148 
1149 /**
1150  *	pskb_expand_head - reallocate header of &sk_buff
1151  *	@skb: buffer to reallocate
1152  *	@nhead: room to add at head
1153  *	@ntail: room to add at tail
1154  *	@gfp_mask: allocation priority
1155  *
1156  *	Expands (or creates identical copy, if @nhead and @ntail are zero)
1157  *	header of @skb. &sk_buff itself is not changed. &sk_buff MUST have
1158  *	reference count of 1. Returns zero in the case of success or error,
1159  *	if expansion failed. In the last case, &sk_buff is not changed.
1160  *
1161  *	All the pointers pointing into skb header may change and must be
1162  *	reloaded after call to this function.
1163  */
1164 
1165 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
1166 		     gfp_t gfp_mask)
1167 {
1168 	int i;
1169 	u8 *data;
1170 	int size = nhead + skb_end_offset(skb) + ntail;
1171 	long off;
1172 
1173 	BUG_ON(nhead < 0);
1174 
1175 	if (skb_shared(skb))
1176 		BUG();
1177 
1178 	size = SKB_DATA_ALIGN(size);
1179 
1180 	if (skb_pfmemalloc(skb))
1181 		gfp_mask |= __GFP_MEMALLOC;
1182 	data = kmalloc_reserve(size + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
1183 			       gfp_mask, NUMA_NO_NODE, NULL);
1184 	if (!data)
1185 		goto nodata;
1186 	size = SKB_WITH_OVERHEAD(ksize(data));
1187 
1188 	/* Copy only real data... and, alas, header. This should be
1189 	 * optimized for the cases when header is void.
1190 	 */
1191 	memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head);
1192 
1193 	memcpy((struct skb_shared_info *)(data + size),
1194 	       skb_shinfo(skb),
1195 	       offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags]));
1196 
1197 	/*
1198 	 * if shinfo is shared we must drop the old head gracefully, but if it
1199 	 * is not we can just drop the old head and let the existing refcount
1200 	 * be since all we did is relocate the values
1201 	 */
1202 	if (skb_cloned(skb)) {
1203 		/* copy this zero copy skb frags */
1204 		if (skb_orphan_frags(skb, gfp_mask))
1205 			goto nofrags;
1206 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1207 			skb_frag_ref(skb, i);
1208 
1209 		if (skb_has_frag_list(skb))
1210 			skb_clone_fraglist(skb);
1211 
1212 		skb_release_data(skb);
1213 	} else {
1214 		skb_free_head(skb);
1215 	}
1216 	off = (data + nhead) - skb->head;
1217 
1218 	skb->head     = data;
1219 	skb->head_frag = 0;
1220 	skb->data    += off;
1221 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1222 	skb->end      = size;
1223 	off           = nhead;
1224 #else
1225 	skb->end      = skb->head + size;
1226 #endif
1227 	skb->tail	      += off;
1228 	skb_headers_offset_update(skb, nhead);
1229 	skb->cloned   = 0;
1230 	skb->hdr_len  = 0;
1231 	skb->nohdr    = 0;
1232 	atomic_set(&skb_shinfo(skb)->dataref, 1);
1233 	return 0;
1234 
1235 nofrags:
1236 	kfree(data);
1237 nodata:
1238 	return -ENOMEM;
1239 }
1240 EXPORT_SYMBOL(pskb_expand_head);
1241 
1242 /* Make private copy of skb with writable head and some headroom */
1243 
1244 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
1245 {
1246 	struct sk_buff *skb2;
1247 	int delta = headroom - skb_headroom(skb);
1248 
1249 	if (delta <= 0)
1250 		skb2 = pskb_copy(skb, GFP_ATOMIC);
1251 	else {
1252 		skb2 = skb_clone(skb, GFP_ATOMIC);
1253 		if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
1254 					     GFP_ATOMIC)) {
1255 			kfree_skb(skb2);
1256 			skb2 = NULL;
1257 		}
1258 	}
1259 	return skb2;
1260 }
1261 EXPORT_SYMBOL(skb_realloc_headroom);
1262 
1263 /**
1264  *	skb_copy_expand	-	copy and expand sk_buff
1265  *	@skb: buffer to copy
1266  *	@newheadroom: new free bytes at head
1267  *	@newtailroom: new free bytes at tail
1268  *	@gfp_mask: allocation priority
1269  *
1270  *	Make a copy of both an &sk_buff and its data and while doing so
1271  *	allocate additional space.
1272  *
1273  *	This is used when the caller wishes to modify the data and needs a
1274  *	private copy of the data to alter as well as more space for new fields.
1275  *	Returns %NULL on failure or the pointer to the buffer
1276  *	on success. The returned buffer has a reference count of 1.
1277  *
1278  *	You must pass %GFP_ATOMIC as the allocation priority if this function
1279  *	is called from an interrupt.
1280  */
1281 struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
1282 				int newheadroom, int newtailroom,
1283 				gfp_t gfp_mask)
1284 {
1285 	/*
1286 	 *	Allocate the copy buffer
1287 	 */
1288 	struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom,
1289 					gfp_mask, skb_alloc_rx_flag(skb),
1290 					NUMA_NO_NODE);
1291 	int oldheadroom = skb_headroom(skb);
1292 	int head_copy_len, head_copy_off;
1293 
1294 	if (!n)
1295 		return NULL;
1296 
1297 	skb_reserve(n, newheadroom);
1298 
1299 	/* Set the tail pointer and length */
1300 	skb_put(n, skb->len);
1301 
1302 	head_copy_len = oldheadroom;
1303 	head_copy_off = 0;
1304 	if (newheadroom <= head_copy_len)
1305 		head_copy_len = newheadroom;
1306 	else
1307 		head_copy_off = newheadroom - head_copy_len;
1308 
1309 	/* Copy the linear header and data. */
1310 	if (skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
1311 			  skb->len + head_copy_len))
1312 		BUG();
1313 
1314 	copy_skb_header(n, skb);
1315 
1316 	skb_headers_offset_update(n, newheadroom - oldheadroom);
1317 
1318 	return n;
1319 }
1320 EXPORT_SYMBOL(skb_copy_expand);
1321 
1322 /**
1323  *	skb_pad			-	zero pad the tail of an skb
1324  *	@skb: buffer to pad
1325  *	@pad: space to pad
1326  *
1327  *	Ensure that a buffer is followed by a padding area that is zero
1328  *	filled. Used by network drivers which may DMA or transfer data
1329  *	beyond the buffer end onto the wire.
1330  *
1331  *	May return error in out of memory cases. The skb is freed on error.
1332  */
1333 
1334 int skb_pad(struct sk_buff *skb, int pad)
1335 {
1336 	int err;
1337 	int ntail;
1338 
1339 	/* If the skbuff is non linear tailroom is always zero.. */
1340 	if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
1341 		memset(skb->data+skb->len, 0, pad);
1342 		return 0;
1343 	}
1344 
1345 	ntail = skb->data_len + pad - (skb->end - skb->tail);
1346 	if (likely(skb_cloned(skb) || ntail > 0)) {
1347 		err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
1348 		if (unlikely(err))
1349 			goto free_skb;
1350 	}
1351 
1352 	/* FIXME: The use of this function with non-linear skb's really needs
1353 	 * to be audited.
1354 	 */
1355 	err = skb_linearize(skb);
1356 	if (unlikely(err))
1357 		goto free_skb;
1358 
1359 	memset(skb->data + skb->len, 0, pad);
1360 	return 0;
1361 
1362 free_skb:
1363 	kfree_skb(skb);
1364 	return err;
1365 }
1366 EXPORT_SYMBOL(skb_pad);
1367 
1368 /**
1369  *	pskb_put - add data to the tail of a potentially fragmented buffer
1370  *	@skb: start of the buffer to use
1371  *	@tail: tail fragment of the buffer to use
1372  *	@len: amount of data to add
1373  *
1374  *	This function extends the used data area of the potentially
1375  *	fragmented buffer. @tail must be the last fragment of @skb -- or
1376  *	@skb itself. If this would exceed the total buffer size the kernel
1377  *	will panic. A pointer to the first byte of the extra data is
1378  *	returned.
1379  */
1380 
1381 unsigned char *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len)
1382 {
1383 	if (tail != skb) {
1384 		skb->data_len += len;
1385 		skb->len += len;
1386 	}
1387 	return skb_put(tail, len);
1388 }
1389 EXPORT_SYMBOL_GPL(pskb_put);
1390 
1391 /**
1392  *	skb_put - add data to a buffer
1393  *	@skb: buffer to use
1394  *	@len: amount of data to add
1395  *
1396  *	This function extends the used data area of the buffer. If this would
1397  *	exceed the total buffer size the kernel will panic. A pointer to the
1398  *	first byte of the extra data is returned.
1399  */
1400 unsigned char *skb_put(struct sk_buff *skb, unsigned int len)
1401 {
1402 	unsigned char *tmp = skb_tail_pointer(skb);
1403 	SKB_LINEAR_ASSERT(skb);
1404 	skb->tail += len;
1405 	skb->len  += len;
1406 	if (unlikely(skb->tail > skb->end))
1407 		skb_over_panic(skb, len, __builtin_return_address(0));
1408 	return tmp;
1409 }
1410 EXPORT_SYMBOL(skb_put);
1411 
1412 /**
1413  *	skb_push - add data to the start of a buffer
1414  *	@skb: buffer to use
1415  *	@len: amount of data to add
1416  *
1417  *	This function extends the used data area of the buffer at the buffer
1418  *	start. If this would exceed the total buffer headroom the kernel will
1419  *	panic. A pointer to the first byte of the extra data is returned.
1420  */
1421 unsigned char *skb_push(struct sk_buff *skb, unsigned int len)
1422 {
1423 	skb->data -= len;
1424 	skb->len  += len;
1425 	if (unlikely(skb->data<skb->head))
1426 		skb_under_panic(skb, len, __builtin_return_address(0));
1427 	return skb->data;
1428 }
1429 EXPORT_SYMBOL(skb_push);
1430 
1431 /**
1432  *	skb_pull - remove data from the start of a buffer
1433  *	@skb: buffer to use
1434  *	@len: amount of data to remove
1435  *
1436  *	This function removes data from the start of a buffer, returning
1437  *	the memory to the headroom. A pointer to the next data in the buffer
1438  *	is returned. Once the data has been pulled future pushes will overwrite
1439  *	the old data.
1440  */
1441 unsigned char *skb_pull(struct sk_buff *skb, unsigned int len)
1442 {
1443 	return skb_pull_inline(skb, len);
1444 }
1445 EXPORT_SYMBOL(skb_pull);
1446 
1447 /**
1448  *	skb_trim - remove end from a buffer
1449  *	@skb: buffer to alter
1450  *	@len: new length
1451  *
1452  *	Cut the length of a buffer down by removing data from the tail. If
1453  *	the buffer is already under the length specified it is not modified.
1454  *	The skb must be linear.
1455  */
1456 void skb_trim(struct sk_buff *skb, unsigned int len)
1457 {
1458 	if (skb->len > len)
1459 		__skb_trim(skb, len);
1460 }
1461 EXPORT_SYMBOL(skb_trim);
1462 
1463 /* Trims skb to length len. It can change skb pointers.
1464  */
1465 
1466 int ___pskb_trim(struct sk_buff *skb, unsigned int len)
1467 {
1468 	struct sk_buff **fragp;
1469 	struct sk_buff *frag;
1470 	int offset = skb_headlen(skb);
1471 	int nfrags = skb_shinfo(skb)->nr_frags;
1472 	int i;
1473 	int err;
1474 
1475 	if (skb_cloned(skb) &&
1476 	    unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
1477 		return err;
1478 
1479 	i = 0;
1480 	if (offset >= len)
1481 		goto drop_pages;
1482 
1483 	for (; i < nfrags; i++) {
1484 		int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]);
1485 
1486 		if (end < len) {
1487 			offset = end;
1488 			continue;
1489 		}
1490 
1491 		skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset);
1492 
1493 drop_pages:
1494 		skb_shinfo(skb)->nr_frags = i;
1495 
1496 		for (; i < nfrags; i++)
1497 			skb_frag_unref(skb, i);
1498 
1499 		if (skb_has_frag_list(skb))
1500 			skb_drop_fraglist(skb);
1501 		goto done;
1502 	}
1503 
1504 	for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
1505 	     fragp = &frag->next) {
1506 		int end = offset + frag->len;
1507 
1508 		if (skb_shared(frag)) {
1509 			struct sk_buff *nfrag;
1510 
1511 			nfrag = skb_clone(frag, GFP_ATOMIC);
1512 			if (unlikely(!nfrag))
1513 				return -ENOMEM;
1514 
1515 			nfrag->next = frag->next;
1516 			consume_skb(frag);
1517 			frag = nfrag;
1518 			*fragp = frag;
1519 		}
1520 
1521 		if (end < len) {
1522 			offset = end;
1523 			continue;
1524 		}
1525 
1526 		if (end > len &&
1527 		    unlikely((err = pskb_trim(frag, len - offset))))
1528 			return err;
1529 
1530 		if (frag->next)
1531 			skb_drop_list(&frag->next);
1532 		break;
1533 	}
1534 
1535 done:
1536 	if (len > skb_headlen(skb)) {
1537 		skb->data_len -= skb->len - len;
1538 		skb->len       = len;
1539 	} else {
1540 		skb->len       = len;
1541 		skb->data_len  = 0;
1542 		skb_set_tail_pointer(skb, len);
1543 	}
1544 
1545 	return 0;
1546 }
1547 EXPORT_SYMBOL(___pskb_trim);
1548 
1549 /**
1550  *	__pskb_pull_tail - advance tail of skb header
1551  *	@skb: buffer to reallocate
1552  *	@delta: number of bytes to advance tail
1553  *
1554  *	The function makes a sense only on a fragmented &sk_buff,
1555  *	it expands header moving its tail forward and copying necessary
1556  *	data from fragmented part.
1557  *
1558  *	&sk_buff MUST have reference count of 1.
1559  *
1560  *	Returns %NULL (and &sk_buff does not change) if pull failed
1561  *	or value of new tail of skb in the case of success.
1562  *
1563  *	All the pointers pointing into skb header may change and must be
1564  *	reloaded after call to this function.
1565  */
1566 
1567 /* Moves tail of skb head forward, copying data from fragmented part,
1568  * when it is necessary.
1569  * 1. It may fail due to malloc failure.
1570  * 2. It may change skb pointers.
1571  *
1572  * It is pretty complicated. Luckily, it is called only in exceptional cases.
1573  */
1574 unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta)
1575 {
1576 	/* If skb has not enough free space at tail, get new one
1577 	 * plus 128 bytes for future expansions. If we have enough
1578 	 * room at tail, reallocate without expansion only if skb is cloned.
1579 	 */
1580 	int i, k, eat = (skb->tail + delta) - skb->end;
1581 
1582 	if (eat > 0 || skb_cloned(skb)) {
1583 		if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
1584 				     GFP_ATOMIC))
1585 			return NULL;
1586 	}
1587 
1588 	if (skb_copy_bits(skb, skb_headlen(skb), skb_tail_pointer(skb), delta))
1589 		BUG();
1590 
1591 	/* Optimization: no fragments, no reasons to preestimate
1592 	 * size of pulled pages. Superb.
1593 	 */
1594 	if (!skb_has_frag_list(skb))
1595 		goto pull_pages;
1596 
1597 	/* Estimate size of pulled pages. */
1598 	eat = delta;
1599 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1600 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
1601 
1602 		if (size >= eat)
1603 			goto pull_pages;
1604 		eat -= size;
1605 	}
1606 
1607 	/* If we need update frag list, we are in troubles.
1608 	 * Certainly, it possible to add an offset to skb data,
1609 	 * but taking into account that pulling is expected to
1610 	 * be very rare operation, it is worth to fight against
1611 	 * further bloating skb head and crucify ourselves here instead.
1612 	 * Pure masohism, indeed. 8)8)
1613 	 */
1614 	if (eat) {
1615 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
1616 		struct sk_buff *clone = NULL;
1617 		struct sk_buff *insp = NULL;
1618 
1619 		do {
1620 			BUG_ON(!list);
1621 
1622 			if (list->len <= eat) {
1623 				/* Eaten as whole. */
1624 				eat -= list->len;
1625 				list = list->next;
1626 				insp = list;
1627 			} else {
1628 				/* Eaten partially. */
1629 
1630 				if (skb_shared(list)) {
1631 					/* Sucks! We need to fork list. :-( */
1632 					clone = skb_clone(list, GFP_ATOMIC);
1633 					if (!clone)
1634 						return NULL;
1635 					insp = list->next;
1636 					list = clone;
1637 				} else {
1638 					/* This may be pulled without
1639 					 * problems. */
1640 					insp = list;
1641 				}
1642 				if (!pskb_pull(list, eat)) {
1643 					kfree_skb(clone);
1644 					return NULL;
1645 				}
1646 				break;
1647 			}
1648 		} while (eat);
1649 
1650 		/* Free pulled out fragments. */
1651 		while ((list = skb_shinfo(skb)->frag_list) != insp) {
1652 			skb_shinfo(skb)->frag_list = list->next;
1653 			kfree_skb(list);
1654 		}
1655 		/* And insert new clone at head. */
1656 		if (clone) {
1657 			clone->next = list;
1658 			skb_shinfo(skb)->frag_list = clone;
1659 		}
1660 	}
1661 	/* Success! Now we may commit changes to skb data. */
1662 
1663 pull_pages:
1664 	eat = delta;
1665 	k = 0;
1666 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1667 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
1668 
1669 		if (size <= eat) {
1670 			skb_frag_unref(skb, i);
1671 			eat -= size;
1672 		} else {
1673 			skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i];
1674 			if (eat) {
1675 				skb_shinfo(skb)->frags[k].page_offset += eat;
1676 				skb_frag_size_sub(&skb_shinfo(skb)->frags[k], eat);
1677 				eat = 0;
1678 			}
1679 			k++;
1680 		}
1681 	}
1682 	skb_shinfo(skb)->nr_frags = k;
1683 
1684 	skb->tail     += delta;
1685 	skb->data_len -= delta;
1686 
1687 	return skb_tail_pointer(skb);
1688 }
1689 EXPORT_SYMBOL(__pskb_pull_tail);
1690 
1691 /**
1692  *	skb_copy_bits - copy bits from skb to kernel buffer
1693  *	@skb: source skb
1694  *	@offset: offset in source
1695  *	@to: destination buffer
1696  *	@len: number of bytes to copy
1697  *
1698  *	Copy the specified number of bytes from the source skb to the
1699  *	destination buffer.
1700  *
1701  *	CAUTION ! :
1702  *		If its prototype is ever changed,
1703  *		check arch/{*}/net/{*}.S files,
1704  *		since it is called from BPF assembly code.
1705  */
1706 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
1707 {
1708 	int start = skb_headlen(skb);
1709 	struct sk_buff *frag_iter;
1710 	int i, copy;
1711 
1712 	if (offset > (int)skb->len - len)
1713 		goto fault;
1714 
1715 	/* Copy header. */
1716 	if ((copy = start - offset) > 0) {
1717 		if (copy > len)
1718 			copy = len;
1719 		skb_copy_from_linear_data_offset(skb, offset, to, copy);
1720 		if ((len -= copy) == 0)
1721 			return 0;
1722 		offset += copy;
1723 		to     += copy;
1724 	}
1725 
1726 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1727 		int end;
1728 		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
1729 
1730 		WARN_ON(start > offset + len);
1731 
1732 		end = start + skb_frag_size(f);
1733 		if ((copy = end - offset) > 0) {
1734 			u8 *vaddr;
1735 
1736 			if (copy > len)
1737 				copy = len;
1738 
1739 			vaddr = kmap_atomic(skb_frag_page(f));
1740 			memcpy(to,
1741 			       vaddr + f->page_offset + offset - start,
1742 			       copy);
1743 			kunmap_atomic(vaddr);
1744 
1745 			if ((len -= copy) == 0)
1746 				return 0;
1747 			offset += copy;
1748 			to     += copy;
1749 		}
1750 		start = end;
1751 	}
1752 
1753 	skb_walk_frags(skb, frag_iter) {
1754 		int end;
1755 
1756 		WARN_ON(start > offset + len);
1757 
1758 		end = start + frag_iter->len;
1759 		if ((copy = end - offset) > 0) {
1760 			if (copy > len)
1761 				copy = len;
1762 			if (skb_copy_bits(frag_iter, offset - start, to, copy))
1763 				goto fault;
1764 			if ((len -= copy) == 0)
1765 				return 0;
1766 			offset += copy;
1767 			to     += copy;
1768 		}
1769 		start = end;
1770 	}
1771 
1772 	if (!len)
1773 		return 0;
1774 
1775 fault:
1776 	return -EFAULT;
1777 }
1778 EXPORT_SYMBOL(skb_copy_bits);
1779 
1780 /*
1781  * Callback from splice_to_pipe(), if we need to release some pages
1782  * at the end of the spd in case we error'ed out in filling the pipe.
1783  */
1784 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
1785 {
1786 	put_page(spd->pages[i]);
1787 }
1788 
1789 static struct page *linear_to_page(struct page *page, unsigned int *len,
1790 				   unsigned int *offset,
1791 				   struct sock *sk)
1792 {
1793 	struct page_frag *pfrag = sk_page_frag(sk);
1794 
1795 	if (!sk_page_frag_refill(sk, pfrag))
1796 		return NULL;
1797 
1798 	*len = min_t(unsigned int, *len, pfrag->size - pfrag->offset);
1799 
1800 	memcpy(page_address(pfrag->page) + pfrag->offset,
1801 	       page_address(page) + *offset, *len);
1802 	*offset = pfrag->offset;
1803 	pfrag->offset += *len;
1804 
1805 	return pfrag->page;
1806 }
1807 
1808 static bool spd_can_coalesce(const struct splice_pipe_desc *spd,
1809 			     struct page *page,
1810 			     unsigned int offset)
1811 {
1812 	return	spd->nr_pages &&
1813 		spd->pages[spd->nr_pages - 1] == page &&
1814 		(spd->partial[spd->nr_pages - 1].offset +
1815 		 spd->partial[spd->nr_pages - 1].len == offset);
1816 }
1817 
1818 /*
1819  * Fill page/offset/length into spd, if it can hold more pages.
1820  */
1821 static bool spd_fill_page(struct splice_pipe_desc *spd,
1822 			  struct pipe_inode_info *pipe, struct page *page,
1823 			  unsigned int *len, unsigned int offset,
1824 			  bool linear,
1825 			  struct sock *sk)
1826 {
1827 	if (unlikely(spd->nr_pages == MAX_SKB_FRAGS))
1828 		return true;
1829 
1830 	if (linear) {
1831 		page = linear_to_page(page, len, &offset, sk);
1832 		if (!page)
1833 			return true;
1834 	}
1835 	if (spd_can_coalesce(spd, page, offset)) {
1836 		spd->partial[spd->nr_pages - 1].len += *len;
1837 		return false;
1838 	}
1839 	get_page(page);
1840 	spd->pages[spd->nr_pages] = page;
1841 	spd->partial[spd->nr_pages].len = *len;
1842 	spd->partial[spd->nr_pages].offset = offset;
1843 	spd->nr_pages++;
1844 
1845 	return false;
1846 }
1847 
1848 static bool __splice_segment(struct page *page, unsigned int poff,
1849 			     unsigned int plen, unsigned int *off,
1850 			     unsigned int *len,
1851 			     struct splice_pipe_desc *spd, bool linear,
1852 			     struct sock *sk,
1853 			     struct pipe_inode_info *pipe)
1854 {
1855 	if (!*len)
1856 		return true;
1857 
1858 	/* skip this segment if already processed */
1859 	if (*off >= plen) {
1860 		*off -= plen;
1861 		return false;
1862 	}
1863 
1864 	/* ignore any bits we already processed */
1865 	poff += *off;
1866 	plen -= *off;
1867 	*off = 0;
1868 
1869 	do {
1870 		unsigned int flen = min(*len, plen);
1871 
1872 		if (spd_fill_page(spd, pipe, page, &flen, poff,
1873 				  linear, sk))
1874 			return true;
1875 		poff += flen;
1876 		plen -= flen;
1877 		*len -= flen;
1878 	} while (*len && plen);
1879 
1880 	return false;
1881 }
1882 
1883 /*
1884  * Map linear and fragment data from the skb to spd. It reports true if the
1885  * pipe is full or if we already spliced the requested length.
1886  */
1887 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe,
1888 			      unsigned int *offset, unsigned int *len,
1889 			      struct splice_pipe_desc *spd, struct sock *sk)
1890 {
1891 	int seg;
1892 
1893 	/* map the linear part :
1894 	 * If skb->head_frag is set, this 'linear' part is backed by a
1895 	 * fragment, and if the head is not shared with any clones then
1896 	 * we can avoid a copy since we own the head portion of this page.
1897 	 */
1898 	if (__splice_segment(virt_to_page(skb->data),
1899 			     (unsigned long) skb->data & (PAGE_SIZE - 1),
1900 			     skb_headlen(skb),
1901 			     offset, len, spd,
1902 			     skb_head_is_locked(skb),
1903 			     sk, pipe))
1904 		return true;
1905 
1906 	/*
1907 	 * then map the fragments
1908 	 */
1909 	for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
1910 		const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
1911 
1912 		if (__splice_segment(skb_frag_page(f),
1913 				     f->page_offset, skb_frag_size(f),
1914 				     offset, len, spd, false, sk, pipe))
1915 			return true;
1916 	}
1917 
1918 	return false;
1919 }
1920 
1921 /*
1922  * Map data from the skb to a pipe. Should handle both the linear part,
1923  * the fragments, and the frag list. It does NOT handle frag lists within
1924  * the frag list, if such a thing exists. We'd probably need to recurse to
1925  * handle that cleanly.
1926  */
1927 int skb_splice_bits(struct sk_buff *skb, unsigned int offset,
1928 		    struct pipe_inode_info *pipe, unsigned int tlen,
1929 		    unsigned int flags)
1930 {
1931 	struct partial_page partial[MAX_SKB_FRAGS];
1932 	struct page *pages[MAX_SKB_FRAGS];
1933 	struct splice_pipe_desc spd = {
1934 		.pages = pages,
1935 		.partial = partial,
1936 		.nr_pages_max = MAX_SKB_FRAGS,
1937 		.flags = flags,
1938 		.ops = &nosteal_pipe_buf_ops,
1939 		.spd_release = sock_spd_release,
1940 	};
1941 	struct sk_buff *frag_iter;
1942 	struct sock *sk = skb->sk;
1943 	int ret = 0;
1944 
1945 	/*
1946 	 * __skb_splice_bits() only fails if the output has no room left,
1947 	 * so no point in going over the frag_list for the error case.
1948 	 */
1949 	if (__skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk))
1950 		goto done;
1951 	else if (!tlen)
1952 		goto done;
1953 
1954 	/*
1955 	 * now see if we have a frag_list to map
1956 	 */
1957 	skb_walk_frags(skb, frag_iter) {
1958 		if (!tlen)
1959 			break;
1960 		if (__skb_splice_bits(frag_iter, pipe, &offset, &tlen, &spd, sk))
1961 			break;
1962 	}
1963 
1964 done:
1965 	if (spd.nr_pages) {
1966 		/*
1967 		 * Drop the socket lock, otherwise we have reverse
1968 		 * locking dependencies between sk_lock and i_mutex
1969 		 * here as compared to sendfile(). We enter here
1970 		 * with the socket lock held, and splice_to_pipe() will
1971 		 * grab the pipe inode lock. For sendfile() emulation,
1972 		 * we call into ->sendpage() with the i_mutex lock held
1973 		 * and networking will grab the socket lock.
1974 		 */
1975 		release_sock(sk);
1976 		ret = splice_to_pipe(pipe, &spd);
1977 		lock_sock(sk);
1978 	}
1979 
1980 	return ret;
1981 }
1982 
1983 /**
1984  *	skb_store_bits - store bits from kernel buffer to skb
1985  *	@skb: destination buffer
1986  *	@offset: offset in destination
1987  *	@from: source buffer
1988  *	@len: number of bytes to copy
1989  *
1990  *	Copy the specified number of bytes from the source buffer to the
1991  *	destination skb.  This function handles all the messy bits of
1992  *	traversing fragment lists and such.
1993  */
1994 
1995 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
1996 {
1997 	int start = skb_headlen(skb);
1998 	struct sk_buff *frag_iter;
1999 	int i, copy;
2000 
2001 	if (offset > (int)skb->len - len)
2002 		goto fault;
2003 
2004 	if ((copy = start - offset) > 0) {
2005 		if (copy > len)
2006 			copy = len;
2007 		skb_copy_to_linear_data_offset(skb, offset, from, copy);
2008 		if ((len -= copy) == 0)
2009 			return 0;
2010 		offset += copy;
2011 		from += copy;
2012 	}
2013 
2014 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2015 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2016 		int end;
2017 
2018 		WARN_ON(start > offset + len);
2019 
2020 		end = start + skb_frag_size(frag);
2021 		if ((copy = end - offset) > 0) {
2022 			u8 *vaddr;
2023 
2024 			if (copy > len)
2025 				copy = len;
2026 
2027 			vaddr = kmap_atomic(skb_frag_page(frag));
2028 			memcpy(vaddr + frag->page_offset + offset - start,
2029 			       from, copy);
2030 			kunmap_atomic(vaddr);
2031 
2032 			if ((len -= copy) == 0)
2033 				return 0;
2034 			offset += copy;
2035 			from += copy;
2036 		}
2037 		start = end;
2038 	}
2039 
2040 	skb_walk_frags(skb, frag_iter) {
2041 		int end;
2042 
2043 		WARN_ON(start > offset + len);
2044 
2045 		end = start + frag_iter->len;
2046 		if ((copy = end - offset) > 0) {
2047 			if (copy > len)
2048 				copy = len;
2049 			if (skb_store_bits(frag_iter, offset - start,
2050 					   from, copy))
2051 				goto fault;
2052 			if ((len -= copy) == 0)
2053 				return 0;
2054 			offset += copy;
2055 			from += copy;
2056 		}
2057 		start = end;
2058 	}
2059 	if (!len)
2060 		return 0;
2061 
2062 fault:
2063 	return -EFAULT;
2064 }
2065 EXPORT_SYMBOL(skb_store_bits);
2066 
2067 /* Checksum skb data. */
2068 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
2069 		      __wsum csum, const struct skb_checksum_ops *ops)
2070 {
2071 	int start = skb_headlen(skb);
2072 	int i, copy = start - offset;
2073 	struct sk_buff *frag_iter;
2074 	int pos = 0;
2075 
2076 	/* Checksum header. */
2077 	if (copy > 0) {
2078 		if (copy > len)
2079 			copy = len;
2080 		csum = ops->update(skb->data + offset, copy, csum);
2081 		if ((len -= copy) == 0)
2082 			return csum;
2083 		offset += copy;
2084 		pos	= copy;
2085 	}
2086 
2087 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2088 		int end;
2089 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2090 
2091 		WARN_ON(start > offset + len);
2092 
2093 		end = start + skb_frag_size(frag);
2094 		if ((copy = end - offset) > 0) {
2095 			__wsum csum2;
2096 			u8 *vaddr;
2097 
2098 			if (copy > len)
2099 				copy = len;
2100 			vaddr = kmap_atomic(skb_frag_page(frag));
2101 			csum2 = ops->update(vaddr + frag->page_offset +
2102 					    offset - start, copy, 0);
2103 			kunmap_atomic(vaddr);
2104 			csum = ops->combine(csum, csum2, pos, copy);
2105 			if (!(len -= copy))
2106 				return csum;
2107 			offset += copy;
2108 			pos    += copy;
2109 		}
2110 		start = end;
2111 	}
2112 
2113 	skb_walk_frags(skb, frag_iter) {
2114 		int end;
2115 
2116 		WARN_ON(start > offset + len);
2117 
2118 		end = start + frag_iter->len;
2119 		if ((copy = end - offset) > 0) {
2120 			__wsum csum2;
2121 			if (copy > len)
2122 				copy = len;
2123 			csum2 = __skb_checksum(frag_iter, offset - start,
2124 					       copy, 0, ops);
2125 			csum = ops->combine(csum, csum2, pos, copy);
2126 			if ((len -= copy) == 0)
2127 				return csum;
2128 			offset += copy;
2129 			pos    += copy;
2130 		}
2131 		start = end;
2132 	}
2133 	BUG_ON(len);
2134 
2135 	return csum;
2136 }
2137 EXPORT_SYMBOL(__skb_checksum);
2138 
2139 __wsum skb_checksum(const struct sk_buff *skb, int offset,
2140 		    int len, __wsum csum)
2141 {
2142 	const struct skb_checksum_ops ops = {
2143 		.update  = csum_partial_ext,
2144 		.combine = csum_block_add_ext,
2145 	};
2146 
2147 	return __skb_checksum(skb, offset, len, csum, &ops);
2148 }
2149 EXPORT_SYMBOL(skb_checksum);
2150 
2151 /* Both of above in one bottle. */
2152 
2153 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
2154 				    u8 *to, int len, __wsum csum)
2155 {
2156 	int start = skb_headlen(skb);
2157 	int i, copy = start - offset;
2158 	struct sk_buff *frag_iter;
2159 	int pos = 0;
2160 
2161 	/* Copy header. */
2162 	if (copy > 0) {
2163 		if (copy > len)
2164 			copy = len;
2165 		csum = csum_partial_copy_nocheck(skb->data + offset, to,
2166 						 copy, csum);
2167 		if ((len -= copy) == 0)
2168 			return csum;
2169 		offset += copy;
2170 		to     += copy;
2171 		pos	= copy;
2172 	}
2173 
2174 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2175 		int end;
2176 
2177 		WARN_ON(start > offset + len);
2178 
2179 		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
2180 		if ((copy = end - offset) > 0) {
2181 			__wsum csum2;
2182 			u8 *vaddr;
2183 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2184 
2185 			if (copy > len)
2186 				copy = len;
2187 			vaddr = kmap_atomic(skb_frag_page(frag));
2188 			csum2 = csum_partial_copy_nocheck(vaddr +
2189 							  frag->page_offset +
2190 							  offset - start, to,
2191 							  copy, 0);
2192 			kunmap_atomic(vaddr);
2193 			csum = csum_block_add(csum, csum2, pos);
2194 			if (!(len -= copy))
2195 				return csum;
2196 			offset += copy;
2197 			to     += copy;
2198 			pos    += copy;
2199 		}
2200 		start = end;
2201 	}
2202 
2203 	skb_walk_frags(skb, frag_iter) {
2204 		__wsum csum2;
2205 		int end;
2206 
2207 		WARN_ON(start > offset + len);
2208 
2209 		end = start + frag_iter->len;
2210 		if ((copy = end - offset) > 0) {
2211 			if (copy > len)
2212 				copy = len;
2213 			csum2 = skb_copy_and_csum_bits(frag_iter,
2214 						       offset - start,
2215 						       to, copy, 0);
2216 			csum = csum_block_add(csum, csum2, pos);
2217 			if ((len -= copy) == 0)
2218 				return csum;
2219 			offset += copy;
2220 			to     += copy;
2221 			pos    += copy;
2222 		}
2223 		start = end;
2224 	}
2225 	BUG_ON(len);
2226 	return csum;
2227 }
2228 EXPORT_SYMBOL(skb_copy_and_csum_bits);
2229 
2230  /**
2231  *	skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy()
2232  *	@from: source buffer
2233  *
2234  *	Calculates the amount of linear headroom needed in the 'to' skb passed
2235  *	into skb_zerocopy().
2236  */
2237 unsigned int
2238 skb_zerocopy_headlen(const struct sk_buff *from)
2239 {
2240 	unsigned int hlen = 0;
2241 
2242 	if (!from->head_frag ||
2243 	    skb_headlen(from) < L1_CACHE_BYTES ||
2244 	    skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS)
2245 		hlen = skb_headlen(from);
2246 
2247 	if (skb_has_frag_list(from))
2248 		hlen = from->len;
2249 
2250 	return hlen;
2251 }
2252 EXPORT_SYMBOL_GPL(skb_zerocopy_headlen);
2253 
2254 /**
2255  *	skb_zerocopy - Zero copy skb to skb
2256  *	@to: destination buffer
2257  *	@from: source buffer
2258  *	@len: number of bytes to copy from source buffer
2259  *	@hlen: size of linear headroom in destination buffer
2260  *
2261  *	Copies up to `len` bytes from `from` to `to` by creating references
2262  *	to the frags in the source buffer.
2263  *
2264  *	The `hlen` as calculated by skb_zerocopy_headlen() specifies the
2265  *	headroom in the `to` buffer.
2266  *
2267  *	Return value:
2268  *	0: everything is OK
2269  *	-ENOMEM: couldn't orphan frags of @from due to lack of memory
2270  *	-EFAULT: skb_copy_bits() found some problem with skb geometry
2271  */
2272 int
2273 skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen)
2274 {
2275 	int i, j = 0;
2276 	int plen = 0; /* length of skb->head fragment */
2277 	int ret;
2278 	struct page *page;
2279 	unsigned int offset;
2280 
2281 	BUG_ON(!from->head_frag && !hlen);
2282 
2283 	/* dont bother with small payloads */
2284 	if (len <= skb_tailroom(to))
2285 		return skb_copy_bits(from, 0, skb_put(to, len), len);
2286 
2287 	if (hlen) {
2288 		ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen);
2289 		if (unlikely(ret))
2290 			return ret;
2291 		len -= hlen;
2292 	} else {
2293 		plen = min_t(int, skb_headlen(from), len);
2294 		if (plen) {
2295 			page = virt_to_head_page(from->head);
2296 			offset = from->data - (unsigned char *)page_address(page);
2297 			__skb_fill_page_desc(to, 0, page, offset, plen);
2298 			get_page(page);
2299 			j = 1;
2300 			len -= plen;
2301 		}
2302 	}
2303 
2304 	to->truesize += len + plen;
2305 	to->len += len + plen;
2306 	to->data_len += len + plen;
2307 
2308 	if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) {
2309 		skb_tx_error(from);
2310 		return -ENOMEM;
2311 	}
2312 
2313 	for (i = 0; i < skb_shinfo(from)->nr_frags; i++) {
2314 		if (!len)
2315 			break;
2316 		skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i];
2317 		skb_shinfo(to)->frags[j].size = min_t(int, skb_shinfo(to)->frags[j].size, len);
2318 		len -= skb_shinfo(to)->frags[j].size;
2319 		skb_frag_ref(to, j);
2320 		j++;
2321 	}
2322 	skb_shinfo(to)->nr_frags = j;
2323 
2324 	return 0;
2325 }
2326 EXPORT_SYMBOL_GPL(skb_zerocopy);
2327 
2328 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
2329 {
2330 	__wsum csum;
2331 	long csstart;
2332 
2333 	if (skb->ip_summed == CHECKSUM_PARTIAL)
2334 		csstart = skb_checksum_start_offset(skb);
2335 	else
2336 		csstart = skb_headlen(skb);
2337 
2338 	BUG_ON(csstart > skb_headlen(skb));
2339 
2340 	skb_copy_from_linear_data(skb, to, csstart);
2341 
2342 	csum = 0;
2343 	if (csstart != skb->len)
2344 		csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
2345 					      skb->len - csstart, 0);
2346 
2347 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
2348 		long csstuff = csstart + skb->csum_offset;
2349 
2350 		*((__sum16 *)(to + csstuff)) = csum_fold(csum);
2351 	}
2352 }
2353 EXPORT_SYMBOL(skb_copy_and_csum_dev);
2354 
2355 /**
2356  *	skb_dequeue - remove from the head of the queue
2357  *	@list: list to dequeue from
2358  *
2359  *	Remove the head of the list. The list lock is taken so the function
2360  *	may be used safely with other locking list functions. The head item is
2361  *	returned or %NULL if the list is empty.
2362  */
2363 
2364 struct sk_buff *skb_dequeue(struct sk_buff_head *list)
2365 {
2366 	unsigned long flags;
2367 	struct sk_buff *result;
2368 
2369 	spin_lock_irqsave(&list->lock, flags);
2370 	result = __skb_dequeue(list);
2371 	spin_unlock_irqrestore(&list->lock, flags);
2372 	return result;
2373 }
2374 EXPORT_SYMBOL(skb_dequeue);
2375 
2376 /**
2377  *	skb_dequeue_tail - remove from the tail of the queue
2378  *	@list: list to dequeue from
2379  *
2380  *	Remove the tail of the list. The list lock is taken so the function
2381  *	may be used safely with other locking list functions. The tail item is
2382  *	returned or %NULL if the list is empty.
2383  */
2384 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
2385 {
2386 	unsigned long flags;
2387 	struct sk_buff *result;
2388 
2389 	spin_lock_irqsave(&list->lock, flags);
2390 	result = __skb_dequeue_tail(list);
2391 	spin_unlock_irqrestore(&list->lock, flags);
2392 	return result;
2393 }
2394 EXPORT_SYMBOL(skb_dequeue_tail);
2395 
2396 /**
2397  *	skb_queue_purge - empty a list
2398  *	@list: list to empty
2399  *
2400  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
2401  *	the list and one reference dropped. This function takes the list
2402  *	lock and is atomic with respect to other list locking functions.
2403  */
2404 void skb_queue_purge(struct sk_buff_head *list)
2405 {
2406 	struct sk_buff *skb;
2407 	while ((skb = skb_dequeue(list)) != NULL)
2408 		kfree_skb(skb);
2409 }
2410 EXPORT_SYMBOL(skb_queue_purge);
2411 
2412 /**
2413  *	skb_queue_head - queue a buffer at the list head
2414  *	@list: list to use
2415  *	@newsk: buffer to queue
2416  *
2417  *	Queue a buffer at the start of the list. This function takes the
2418  *	list lock and can be used safely with other locking &sk_buff functions
2419  *	safely.
2420  *
2421  *	A buffer cannot be placed on two lists at the same time.
2422  */
2423 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
2424 {
2425 	unsigned long flags;
2426 
2427 	spin_lock_irqsave(&list->lock, flags);
2428 	__skb_queue_head(list, newsk);
2429 	spin_unlock_irqrestore(&list->lock, flags);
2430 }
2431 EXPORT_SYMBOL(skb_queue_head);
2432 
2433 /**
2434  *	skb_queue_tail - queue a buffer at the list tail
2435  *	@list: list to use
2436  *	@newsk: buffer to queue
2437  *
2438  *	Queue a buffer at the tail of the list. This function takes the
2439  *	list lock and can be used safely with other locking &sk_buff functions
2440  *	safely.
2441  *
2442  *	A buffer cannot be placed on two lists at the same time.
2443  */
2444 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
2445 {
2446 	unsigned long flags;
2447 
2448 	spin_lock_irqsave(&list->lock, flags);
2449 	__skb_queue_tail(list, newsk);
2450 	spin_unlock_irqrestore(&list->lock, flags);
2451 }
2452 EXPORT_SYMBOL(skb_queue_tail);
2453 
2454 /**
2455  *	skb_unlink	-	remove a buffer from a list
2456  *	@skb: buffer to remove
2457  *	@list: list to use
2458  *
2459  *	Remove a packet from a list. The list locks are taken and this
2460  *	function is atomic with respect to other list locked calls
2461  *
2462  *	You must know what list the SKB is on.
2463  */
2464 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
2465 {
2466 	unsigned long flags;
2467 
2468 	spin_lock_irqsave(&list->lock, flags);
2469 	__skb_unlink(skb, list);
2470 	spin_unlock_irqrestore(&list->lock, flags);
2471 }
2472 EXPORT_SYMBOL(skb_unlink);
2473 
2474 /**
2475  *	skb_append	-	append a buffer
2476  *	@old: buffer to insert after
2477  *	@newsk: buffer to insert
2478  *	@list: list to use
2479  *
2480  *	Place a packet after a given packet in a list. The list locks are taken
2481  *	and this function is atomic with respect to other list locked calls.
2482  *	A buffer cannot be placed on two lists at the same time.
2483  */
2484 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
2485 {
2486 	unsigned long flags;
2487 
2488 	spin_lock_irqsave(&list->lock, flags);
2489 	__skb_queue_after(list, old, newsk);
2490 	spin_unlock_irqrestore(&list->lock, flags);
2491 }
2492 EXPORT_SYMBOL(skb_append);
2493 
2494 /**
2495  *	skb_insert	-	insert a buffer
2496  *	@old: buffer to insert before
2497  *	@newsk: buffer to insert
2498  *	@list: list to use
2499  *
2500  *	Place a packet before a given packet in a list. The list locks are
2501  * 	taken and this function is atomic with respect to other list locked
2502  *	calls.
2503  *
2504  *	A buffer cannot be placed on two lists at the same time.
2505  */
2506 void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
2507 {
2508 	unsigned long flags;
2509 
2510 	spin_lock_irqsave(&list->lock, flags);
2511 	__skb_insert(newsk, old->prev, old, list);
2512 	spin_unlock_irqrestore(&list->lock, flags);
2513 }
2514 EXPORT_SYMBOL(skb_insert);
2515 
2516 static inline void skb_split_inside_header(struct sk_buff *skb,
2517 					   struct sk_buff* skb1,
2518 					   const u32 len, const int pos)
2519 {
2520 	int i;
2521 
2522 	skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
2523 					 pos - len);
2524 	/* And move data appendix as is. */
2525 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
2526 		skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
2527 
2528 	skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
2529 	skb_shinfo(skb)->nr_frags  = 0;
2530 	skb1->data_len		   = skb->data_len;
2531 	skb1->len		   += skb1->data_len;
2532 	skb->data_len		   = 0;
2533 	skb->len		   = len;
2534 	skb_set_tail_pointer(skb, len);
2535 }
2536 
2537 static inline void skb_split_no_header(struct sk_buff *skb,
2538 				       struct sk_buff* skb1,
2539 				       const u32 len, int pos)
2540 {
2541 	int i, k = 0;
2542 	const int nfrags = skb_shinfo(skb)->nr_frags;
2543 
2544 	skb_shinfo(skb)->nr_frags = 0;
2545 	skb1->len		  = skb1->data_len = skb->len - len;
2546 	skb->len		  = len;
2547 	skb->data_len		  = len - pos;
2548 
2549 	for (i = 0; i < nfrags; i++) {
2550 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2551 
2552 		if (pos + size > len) {
2553 			skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
2554 
2555 			if (pos < len) {
2556 				/* Split frag.
2557 				 * We have two variants in this case:
2558 				 * 1. Move all the frag to the second
2559 				 *    part, if it is possible. F.e.
2560 				 *    this approach is mandatory for TUX,
2561 				 *    where splitting is expensive.
2562 				 * 2. Split is accurately. We make this.
2563 				 */
2564 				skb_frag_ref(skb, i);
2565 				skb_shinfo(skb1)->frags[0].page_offset += len - pos;
2566 				skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos);
2567 				skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos);
2568 				skb_shinfo(skb)->nr_frags++;
2569 			}
2570 			k++;
2571 		} else
2572 			skb_shinfo(skb)->nr_frags++;
2573 		pos += size;
2574 	}
2575 	skb_shinfo(skb1)->nr_frags = k;
2576 }
2577 
2578 /**
2579  * skb_split - Split fragmented skb to two parts at length len.
2580  * @skb: the buffer to split
2581  * @skb1: the buffer to receive the second part
2582  * @len: new length for skb
2583  */
2584 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
2585 {
2586 	int pos = skb_headlen(skb);
2587 
2588 	skb_shinfo(skb1)->tx_flags = skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG;
2589 	if (len < pos)	/* Split line is inside header. */
2590 		skb_split_inside_header(skb, skb1, len, pos);
2591 	else		/* Second chunk has no header, nothing to copy. */
2592 		skb_split_no_header(skb, skb1, len, pos);
2593 }
2594 EXPORT_SYMBOL(skb_split);
2595 
2596 /* Shifting from/to a cloned skb is a no-go.
2597  *
2598  * Caller cannot keep skb_shinfo related pointers past calling here!
2599  */
2600 static int skb_prepare_for_shift(struct sk_buff *skb)
2601 {
2602 	return skb_cloned(skb) && pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2603 }
2604 
2605 /**
2606  * skb_shift - Shifts paged data partially from skb to another
2607  * @tgt: buffer into which tail data gets added
2608  * @skb: buffer from which the paged data comes from
2609  * @shiftlen: shift up to this many bytes
2610  *
2611  * Attempts to shift up to shiftlen worth of bytes, which may be less than
2612  * the length of the skb, from skb to tgt. Returns number bytes shifted.
2613  * It's up to caller to free skb if everything was shifted.
2614  *
2615  * If @tgt runs out of frags, the whole operation is aborted.
2616  *
2617  * Skb cannot include anything else but paged data while tgt is allowed
2618  * to have non-paged data as well.
2619  *
2620  * TODO: full sized shift could be optimized but that would need
2621  * specialized skb free'er to handle frags without up-to-date nr_frags.
2622  */
2623 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
2624 {
2625 	int from, to, merge, todo;
2626 	struct skb_frag_struct *fragfrom, *fragto;
2627 
2628 	BUG_ON(shiftlen > skb->len);
2629 	BUG_ON(skb_headlen(skb));	/* Would corrupt stream */
2630 
2631 	todo = shiftlen;
2632 	from = 0;
2633 	to = skb_shinfo(tgt)->nr_frags;
2634 	fragfrom = &skb_shinfo(skb)->frags[from];
2635 
2636 	/* Actual merge is delayed until the point when we know we can
2637 	 * commit all, so that we don't have to undo partial changes
2638 	 */
2639 	if (!to ||
2640 	    !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom),
2641 			      fragfrom->page_offset)) {
2642 		merge = -1;
2643 	} else {
2644 		merge = to - 1;
2645 
2646 		todo -= skb_frag_size(fragfrom);
2647 		if (todo < 0) {
2648 			if (skb_prepare_for_shift(skb) ||
2649 			    skb_prepare_for_shift(tgt))
2650 				return 0;
2651 
2652 			/* All previous frag pointers might be stale! */
2653 			fragfrom = &skb_shinfo(skb)->frags[from];
2654 			fragto = &skb_shinfo(tgt)->frags[merge];
2655 
2656 			skb_frag_size_add(fragto, shiftlen);
2657 			skb_frag_size_sub(fragfrom, shiftlen);
2658 			fragfrom->page_offset += shiftlen;
2659 
2660 			goto onlymerged;
2661 		}
2662 
2663 		from++;
2664 	}
2665 
2666 	/* Skip full, not-fitting skb to avoid expensive operations */
2667 	if ((shiftlen == skb->len) &&
2668 	    (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
2669 		return 0;
2670 
2671 	if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
2672 		return 0;
2673 
2674 	while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
2675 		if (to == MAX_SKB_FRAGS)
2676 			return 0;
2677 
2678 		fragfrom = &skb_shinfo(skb)->frags[from];
2679 		fragto = &skb_shinfo(tgt)->frags[to];
2680 
2681 		if (todo >= skb_frag_size(fragfrom)) {
2682 			*fragto = *fragfrom;
2683 			todo -= skb_frag_size(fragfrom);
2684 			from++;
2685 			to++;
2686 
2687 		} else {
2688 			__skb_frag_ref(fragfrom);
2689 			fragto->page = fragfrom->page;
2690 			fragto->page_offset = fragfrom->page_offset;
2691 			skb_frag_size_set(fragto, todo);
2692 
2693 			fragfrom->page_offset += todo;
2694 			skb_frag_size_sub(fragfrom, todo);
2695 			todo = 0;
2696 
2697 			to++;
2698 			break;
2699 		}
2700 	}
2701 
2702 	/* Ready to "commit" this state change to tgt */
2703 	skb_shinfo(tgt)->nr_frags = to;
2704 
2705 	if (merge >= 0) {
2706 		fragfrom = &skb_shinfo(skb)->frags[0];
2707 		fragto = &skb_shinfo(tgt)->frags[merge];
2708 
2709 		skb_frag_size_add(fragto, skb_frag_size(fragfrom));
2710 		__skb_frag_unref(fragfrom);
2711 	}
2712 
2713 	/* Reposition in the original skb */
2714 	to = 0;
2715 	while (from < skb_shinfo(skb)->nr_frags)
2716 		skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
2717 	skb_shinfo(skb)->nr_frags = to;
2718 
2719 	BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
2720 
2721 onlymerged:
2722 	/* Most likely the tgt won't ever need its checksum anymore, skb on
2723 	 * the other hand might need it if it needs to be resent
2724 	 */
2725 	tgt->ip_summed = CHECKSUM_PARTIAL;
2726 	skb->ip_summed = CHECKSUM_PARTIAL;
2727 
2728 	/* Yak, is it really working this way? Some helper please? */
2729 	skb->len -= shiftlen;
2730 	skb->data_len -= shiftlen;
2731 	skb->truesize -= shiftlen;
2732 	tgt->len += shiftlen;
2733 	tgt->data_len += shiftlen;
2734 	tgt->truesize += shiftlen;
2735 
2736 	return shiftlen;
2737 }
2738 
2739 /**
2740  * skb_prepare_seq_read - Prepare a sequential read of skb data
2741  * @skb: the buffer to read
2742  * @from: lower offset of data to be read
2743  * @to: upper offset of data to be read
2744  * @st: state variable
2745  *
2746  * Initializes the specified state variable. Must be called before
2747  * invoking skb_seq_read() for the first time.
2748  */
2749 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
2750 			  unsigned int to, struct skb_seq_state *st)
2751 {
2752 	st->lower_offset = from;
2753 	st->upper_offset = to;
2754 	st->root_skb = st->cur_skb = skb;
2755 	st->frag_idx = st->stepped_offset = 0;
2756 	st->frag_data = NULL;
2757 }
2758 EXPORT_SYMBOL(skb_prepare_seq_read);
2759 
2760 /**
2761  * skb_seq_read - Sequentially read skb data
2762  * @consumed: number of bytes consumed by the caller so far
2763  * @data: destination pointer for data to be returned
2764  * @st: state variable
2765  *
2766  * Reads a block of skb data at @consumed relative to the
2767  * lower offset specified to skb_prepare_seq_read(). Assigns
2768  * the head of the data block to @data and returns the length
2769  * of the block or 0 if the end of the skb data or the upper
2770  * offset has been reached.
2771  *
2772  * The caller is not required to consume all of the data
2773  * returned, i.e. @consumed is typically set to the number
2774  * of bytes already consumed and the next call to
2775  * skb_seq_read() will return the remaining part of the block.
2776  *
2777  * Note 1: The size of each block of data returned can be arbitrary,
2778  *       this limitation is the cost for zerocopy sequential
2779  *       reads of potentially non linear data.
2780  *
2781  * Note 2: Fragment lists within fragments are not implemented
2782  *       at the moment, state->root_skb could be replaced with
2783  *       a stack for this purpose.
2784  */
2785 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
2786 			  struct skb_seq_state *st)
2787 {
2788 	unsigned int block_limit, abs_offset = consumed + st->lower_offset;
2789 	skb_frag_t *frag;
2790 
2791 	if (unlikely(abs_offset >= st->upper_offset)) {
2792 		if (st->frag_data) {
2793 			kunmap_atomic(st->frag_data);
2794 			st->frag_data = NULL;
2795 		}
2796 		return 0;
2797 	}
2798 
2799 next_skb:
2800 	block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
2801 
2802 	if (abs_offset < block_limit && !st->frag_data) {
2803 		*data = st->cur_skb->data + (abs_offset - st->stepped_offset);
2804 		return block_limit - abs_offset;
2805 	}
2806 
2807 	if (st->frag_idx == 0 && !st->frag_data)
2808 		st->stepped_offset += skb_headlen(st->cur_skb);
2809 
2810 	while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
2811 		frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
2812 		block_limit = skb_frag_size(frag) + st->stepped_offset;
2813 
2814 		if (abs_offset < block_limit) {
2815 			if (!st->frag_data)
2816 				st->frag_data = kmap_atomic(skb_frag_page(frag));
2817 
2818 			*data = (u8 *) st->frag_data + frag->page_offset +
2819 				(abs_offset - st->stepped_offset);
2820 
2821 			return block_limit - abs_offset;
2822 		}
2823 
2824 		if (st->frag_data) {
2825 			kunmap_atomic(st->frag_data);
2826 			st->frag_data = NULL;
2827 		}
2828 
2829 		st->frag_idx++;
2830 		st->stepped_offset += skb_frag_size(frag);
2831 	}
2832 
2833 	if (st->frag_data) {
2834 		kunmap_atomic(st->frag_data);
2835 		st->frag_data = NULL;
2836 	}
2837 
2838 	if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) {
2839 		st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
2840 		st->frag_idx = 0;
2841 		goto next_skb;
2842 	} else if (st->cur_skb->next) {
2843 		st->cur_skb = st->cur_skb->next;
2844 		st->frag_idx = 0;
2845 		goto next_skb;
2846 	}
2847 
2848 	return 0;
2849 }
2850 EXPORT_SYMBOL(skb_seq_read);
2851 
2852 /**
2853  * skb_abort_seq_read - Abort a sequential read of skb data
2854  * @st: state variable
2855  *
2856  * Must be called if skb_seq_read() was not called until it
2857  * returned 0.
2858  */
2859 void skb_abort_seq_read(struct skb_seq_state *st)
2860 {
2861 	if (st->frag_data)
2862 		kunmap_atomic(st->frag_data);
2863 }
2864 EXPORT_SYMBOL(skb_abort_seq_read);
2865 
2866 #define TS_SKB_CB(state)	((struct skb_seq_state *) &((state)->cb))
2867 
2868 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
2869 					  struct ts_config *conf,
2870 					  struct ts_state *state)
2871 {
2872 	return skb_seq_read(offset, text, TS_SKB_CB(state));
2873 }
2874 
2875 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
2876 {
2877 	skb_abort_seq_read(TS_SKB_CB(state));
2878 }
2879 
2880 /**
2881  * skb_find_text - Find a text pattern in skb data
2882  * @skb: the buffer to look in
2883  * @from: search offset
2884  * @to: search limit
2885  * @config: textsearch configuration
2886  *
2887  * Finds a pattern in the skb data according to the specified
2888  * textsearch configuration. Use textsearch_next() to retrieve
2889  * subsequent occurrences of the pattern. Returns the offset
2890  * to the first occurrence or UINT_MAX if no match was found.
2891  */
2892 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
2893 			   unsigned int to, struct ts_config *config)
2894 {
2895 	struct ts_state state;
2896 	unsigned int ret;
2897 
2898 	config->get_next_block = skb_ts_get_next_block;
2899 	config->finish = skb_ts_finish;
2900 
2901 	skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state));
2902 
2903 	ret = textsearch_find(config, &state);
2904 	return (ret <= to - from ? ret : UINT_MAX);
2905 }
2906 EXPORT_SYMBOL(skb_find_text);
2907 
2908 /**
2909  * skb_append_datato_frags - append the user data to a skb
2910  * @sk: sock  structure
2911  * @skb: skb structure to be appended with user data.
2912  * @getfrag: call back function to be used for getting the user data
2913  * @from: pointer to user message iov
2914  * @length: length of the iov message
2915  *
2916  * Description: This procedure append the user data in the fragment part
2917  * of the skb if any page alloc fails user this procedure returns  -ENOMEM
2918  */
2919 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
2920 			int (*getfrag)(void *from, char *to, int offset,
2921 					int len, int odd, struct sk_buff *skb),
2922 			void *from, int length)
2923 {
2924 	int frg_cnt = skb_shinfo(skb)->nr_frags;
2925 	int copy;
2926 	int offset = 0;
2927 	int ret;
2928 	struct page_frag *pfrag = &current->task_frag;
2929 
2930 	do {
2931 		/* Return error if we don't have space for new frag */
2932 		if (frg_cnt >= MAX_SKB_FRAGS)
2933 			return -EMSGSIZE;
2934 
2935 		if (!sk_page_frag_refill(sk, pfrag))
2936 			return -ENOMEM;
2937 
2938 		/* copy the user data to page */
2939 		copy = min_t(int, length, pfrag->size - pfrag->offset);
2940 
2941 		ret = getfrag(from, page_address(pfrag->page) + pfrag->offset,
2942 			      offset, copy, 0, skb);
2943 		if (ret < 0)
2944 			return -EFAULT;
2945 
2946 		/* copy was successful so update the size parameters */
2947 		skb_fill_page_desc(skb, frg_cnt, pfrag->page, pfrag->offset,
2948 				   copy);
2949 		frg_cnt++;
2950 		pfrag->offset += copy;
2951 		get_page(pfrag->page);
2952 
2953 		skb->truesize += copy;
2954 		atomic_add(copy, &sk->sk_wmem_alloc);
2955 		skb->len += copy;
2956 		skb->data_len += copy;
2957 		offset += copy;
2958 		length -= copy;
2959 
2960 	} while (length > 0);
2961 
2962 	return 0;
2963 }
2964 EXPORT_SYMBOL(skb_append_datato_frags);
2965 
2966 /**
2967  *	skb_pull_rcsum - pull skb and update receive checksum
2968  *	@skb: buffer to update
2969  *	@len: length of data pulled
2970  *
2971  *	This function performs an skb_pull on the packet and updates
2972  *	the CHECKSUM_COMPLETE checksum.  It should be used on
2973  *	receive path processing instead of skb_pull unless you know
2974  *	that the checksum difference is zero (e.g., a valid IP header)
2975  *	or you are setting ip_summed to CHECKSUM_NONE.
2976  */
2977 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
2978 {
2979 	BUG_ON(len > skb->len);
2980 	skb->len -= len;
2981 	BUG_ON(skb->len < skb->data_len);
2982 	skb_postpull_rcsum(skb, skb->data, len);
2983 	return skb->data += len;
2984 }
2985 EXPORT_SYMBOL_GPL(skb_pull_rcsum);
2986 
2987 /**
2988  *	skb_segment - Perform protocol segmentation on skb.
2989  *	@head_skb: buffer to segment
2990  *	@features: features for the output path (see dev->features)
2991  *
2992  *	This function performs segmentation on the given skb.  It returns
2993  *	a pointer to the first in a list of new skbs for the segments.
2994  *	In case of error it returns ERR_PTR(err).
2995  */
2996 struct sk_buff *skb_segment(struct sk_buff *head_skb,
2997 			    netdev_features_t features)
2998 {
2999 	struct sk_buff *segs = NULL;
3000 	struct sk_buff *tail = NULL;
3001 	struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list;
3002 	skb_frag_t *frag = skb_shinfo(head_skb)->frags;
3003 	unsigned int mss = skb_shinfo(head_skb)->gso_size;
3004 	unsigned int doffset = head_skb->data - skb_mac_header(head_skb);
3005 	struct sk_buff *frag_skb = head_skb;
3006 	unsigned int offset = doffset;
3007 	unsigned int tnl_hlen = skb_tnl_header_len(head_skb);
3008 	unsigned int headroom;
3009 	unsigned int len;
3010 	__be16 proto;
3011 	bool csum;
3012 	int sg = !!(features & NETIF_F_SG);
3013 	int nfrags = skb_shinfo(head_skb)->nr_frags;
3014 	int err = -ENOMEM;
3015 	int i = 0;
3016 	int pos;
3017 	int dummy;
3018 
3019 	__skb_push(head_skb, doffset);
3020 	proto = skb_network_protocol(head_skb, &dummy);
3021 	if (unlikely(!proto))
3022 		return ERR_PTR(-EINVAL);
3023 
3024 	csum = !head_skb->encap_hdr_csum &&
3025 	    !!can_checksum_protocol(features, proto);
3026 
3027 	headroom = skb_headroom(head_skb);
3028 	pos = skb_headlen(head_skb);
3029 
3030 	do {
3031 		struct sk_buff *nskb;
3032 		skb_frag_t *nskb_frag;
3033 		int hsize;
3034 		int size;
3035 
3036 		len = head_skb->len - offset;
3037 		if (len > mss)
3038 			len = mss;
3039 
3040 		hsize = skb_headlen(head_skb) - offset;
3041 		if (hsize < 0)
3042 			hsize = 0;
3043 		if (hsize > len || !sg)
3044 			hsize = len;
3045 
3046 		if (!hsize && i >= nfrags && skb_headlen(list_skb) &&
3047 		    (skb_headlen(list_skb) == len || sg)) {
3048 			BUG_ON(skb_headlen(list_skb) > len);
3049 
3050 			i = 0;
3051 			nfrags = skb_shinfo(list_skb)->nr_frags;
3052 			frag = skb_shinfo(list_skb)->frags;
3053 			frag_skb = list_skb;
3054 			pos += skb_headlen(list_skb);
3055 
3056 			while (pos < offset + len) {
3057 				BUG_ON(i >= nfrags);
3058 
3059 				size = skb_frag_size(frag);
3060 				if (pos + size > offset + len)
3061 					break;
3062 
3063 				i++;
3064 				pos += size;
3065 				frag++;
3066 			}
3067 
3068 			nskb = skb_clone(list_skb, GFP_ATOMIC);
3069 			list_skb = list_skb->next;
3070 
3071 			if (unlikely(!nskb))
3072 				goto err;
3073 
3074 			if (unlikely(pskb_trim(nskb, len))) {
3075 				kfree_skb(nskb);
3076 				goto err;
3077 			}
3078 
3079 			hsize = skb_end_offset(nskb);
3080 			if (skb_cow_head(nskb, doffset + headroom)) {
3081 				kfree_skb(nskb);
3082 				goto err;
3083 			}
3084 
3085 			nskb->truesize += skb_end_offset(nskb) - hsize;
3086 			skb_release_head_state(nskb);
3087 			__skb_push(nskb, doffset);
3088 		} else {
3089 			nskb = __alloc_skb(hsize + doffset + headroom,
3090 					   GFP_ATOMIC, skb_alloc_rx_flag(head_skb),
3091 					   NUMA_NO_NODE);
3092 
3093 			if (unlikely(!nskb))
3094 				goto err;
3095 
3096 			skb_reserve(nskb, headroom);
3097 			__skb_put(nskb, doffset);
3098 		}
3099 
3100 		if (segs)
3101 			tail->next = nskb;
3102 		else
3103 			segs = nskb;
3104 		tail = nskb;
3105 
3106 		__copy_skb_header(nskb, head_skb);
3107 
3108 		skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom);
3109 		skb_reset_mac_len(nskb);
3110 
3111 		skb_copy_from_linear_data_offset(head_skb, -tnl_hlen,
3112 						 nskb->data - tnl_hlen,
3113 						 doffset + tnl_hlen);
3114 
3115 		if (nskb->len == len + doffset)
3116 			goto perform_csum_check;
3117 
3118 		if (!sg && !nskb->remcsum_offload) {
3119 			nskb->ip_summed = CHECKSUM_NONE;
3120 			nskb->csum = skb_copy_and_csum_bits(head_skb, offset,
3121 							    skb_put(nskb, len),
3122 							    len, 0);
3123 			SKB_GSO_CB(nskb)->csum_start =
3124 			    skb_headroom(nskb) + doffset;
3125 			continue;
3126 		}
3127 
3128 		nskb_frag = skb_shinfo(nskb)->frags;
3129 
3130 		skb_copy_from_linear_data_offset(head_skb, offset,
3131 						 skb_put(nskb, hsize), hsize);
3132 
3133 		skb_shinfo(nskb)->tx_flags = skb_shinfo(head_skb)->tx_flags &
3134 			SKBTX_SHARED_FRAG;
3135 
3136 		while (pos < offset + len) {
3137 			if (i >= nfrags) {
3138 				BUG_ON(skb_headlen(list_skb));
3139 
3140 				i = 0;
3141 				nfrags = skb_shinfo(list_skb)->nr_frags;
3142 				frag = skb_shinfo(list_skb)->frags;
3143 				frag_skb = list_skb;
3144 
3145 				BUG_ON(!nfrags);
3146 
3147 				list_skb = list_skb->next;
3148 			}
3149 
3150 			if (unlikely(skb_shinfo(nskb)->nr_frags >=
3151 				     MAX_SKB_FRAGS)) {
3152 				net_warn_ratelimited(
3153 					"skb_segment: too many frags: %u %u\n",
3154 					pos, mss);
3155 				goto err;
3156 			}
3157 
3158 			if (unlikely(skb_orphan_frags(frag_skb, GFP_ATOMIC)))
3159 				goto err;
3160 
3161 			*nskb_frag = *frag;
3162 			__skb_frag_ref(nskb_frag);
3163 			size = skb_frag_size(nskb_frag);
3164 
3165 			if (pos < offset) {
3166 				nskb_frag->page_offset += offset - pos;
3167 				skb_frag_size_sub(nskb_frag, offset - pos);
3168 			}
3169 
3170 			skb_shinfo(nskb)->nr_frags++;
3171 
3172 			if (pos + size <= offset + len) {
3173 				i++;
3174 				frag++;
3175 				pos += size;
3176 			} else {
3177 				skb_frag_size_sub(nskb_frag, pos + size - (offset + len));
3178 				goto skip_fraglist;
3179 			}
3180 
3181 			nskb_frag++;
3182 		}
3183 
3184 skip_fraglist:
3185 		nskb->data_len = len - hsize;
3186 		nskb->len += nskb->data_len;
3187 		nskb->truesize += nskb->data_len;
3188 
3189 perform_csum_check:
3190 		if (!csum && !nskb->remcsum_offload) {
3191 			nskb->csum = skb_checksum(nskb, doffset,
3192 						  nskb->len - doffset, 0);
3193 			nskb->ip_summed = CHECKSUM_NONE;
3194 			SKB_GSO_CB(nskb)->csum_start =
3195 			    skb_headroom(nskb) + doffset;
3196 		}
3197 	} while ((offset += len) < head_skb->len);
3198 
3199 	/* Some callers want to get the end of the list.
3200 	 * Put it in segs->prev to avoid walking the list.
3201 	 * (see validate_xmit_skb_list() for example)
3202 	 */
3203 	segs->prev = tail;
3204 
3205 	/* Following permits correct backpressure, for protocols
3206 	 * using skb_set_owner_w().
3207 	 * Idea is to tranfert ownership from head_skb to last segment.
3208 	 */
3209 	if (head_skb->destructor == sock_wfree) {
3210 		swap(tail->truesize, head_skb->truesize);
3211 		swap(tail->destructor, head_skb->destructor);
3212 		swap(tail->sk, head_skb->sk);
3213 	}
3214 	return segs;
3215 
3216 err:
3217 	kfree_skb_list(segs);
3218 	return ERR_PTR(err);
3219 }
3220 EXPORT_SYMBOL_GPL(skb_segment);
3221 
3222 int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb)
3223 {
3224 	struct skb_shared_info *pinfo, *skbinfo = skb_shinfo(skb);
3225 	unsigned int offset = skb_gro_offset(skb);
3226 	unsigned int headlen = skb_headlen(skb);
3227 	unsigned int len = skb_gro_len(skb);
3228 	struct sk_buff *lp, *p = *head;
3229 	unsigned int delta_truesize;
3230 
3231 	if (unlikely(p->len + len >= 65536))
3232 		return -E2BIG;
3233 
3234 	lp = NAPI_GRO_CB(p)->last;
3235 	pinfo = skb_shinfo(lp);
3236 
3237 	if (headlen <= offset) {
3238 		skb_frag_t *frag;
3239 		skb_frag_t *frag2;
3240 		int i = skbinfo->nr_frags;
3241 		int nr_frags = pinfo->nr_frags + i;
3242 
3243 		if (nr_frags > MAX_SKB_FRAGS)
3244 			goto merge;
3245 
3246 		offset -= headlen;
3247 		pinfo->nr_frags = nr_frags;
3248 		skbinfo->nr_frags = 0;
3249 
3250 		frag = pinfo->frags + nr_frags;
3251 		frag2 = skbinfo->frags + i;
3252 		do {
3253 			*--frag = *--frag2;
3254 		} while (--i);
3255 
3256 		frag->page_offset += offset;
3257 		skb_frag_size_sub(frag, offset);
3258 
3259 		/* all fragments truesize : remove (head size + sk_buff) */
3260 		delta_truesize = skb->truesize -
3261 				 SKB_TRUESIZE(skb_end_offset(skb));
3262 
3263 		skb->truesize -= skb->data_len;
3264 		skb->len -= skb->data_len;
3265 		skb->data_len = 0;
3266 
3267 		NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE;
3268 		goto done;
3269 	} else if (skb->head_frag) {
3270 		int nr_frags = pinfo->nr_frags;
3271 		skb_frag_t *frag = pinfo->frags + nr_frags;
3272 		struct page *page = virt_to_head_page(skb->head);
3273 		unsigned int first_size = headlen - offset;
3274 		unsigned int first_offset;
3275 
3276 		if (nr_frags + 1 + skbinfo->nr_frags > MAX_SKB_FRAGS)
3277 			goto merge;
3278 
3279 		first_offset = skb->data -
3280 			       (unsigned char *)page_address(page) +
3281 			       offset;
3282 
3283 		pinfo->nr_frags = nr_frags + 1 + skbinfo->nr_frags;
3284 
3285 		frag->page.p	  = page;
3286 		frag->page_offset = first_offset;
3287 		skb_frag_size_set(frag, first_size);
3288 
3289 		memcpy(frag + 1, skbinfo->frags, sizeof(*frag) * skbinfo->nr_frags);
3290 		/* We dont need to clear skbinfo->nr_frags here */
3291 
3292 		delta_truesize = skb->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
3293 		NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE_STOLEN_HEAD;
3294 		goto done;
3295 	}
3296 
3297 merge:
3298 	delta_truesize = skb->truesize;
3299 	if (offset > headlen) {
3300 		unsigned int eat = offset - headlen;
3301 
3302 		skbinfo->frags[0].page_offset += eat;
3303 		skb_frag_size_sub(&skbinfo->frags[0], eat);
3304 		skb->data_len -= eat;
3305 		skb->len -= eat;
3306 		offset = headlen;
3307 	}
3308 
3309 	__skb_pull(skb, offset);
3310 
3311 	if (NAPI_GRO_CB(p)->last == p)
3312 		skb_shinfo(p)->frag_list = skb;
3313 	else
3314 		NAPI_GRO_CB(p)->last->next = skb;
3315 	NAPI_GRO_CB(p)->last = skb;
3316 	__skb_header_release(skb);
3317 	lp = p;
3318 
3319 done:
3320 	NAPI_GRO_CB(p)->count++;
3321 	p->data_len += len;
3322 	p->truesize += delta_truesize;
3323 	p->len += len;
3324 	if (lp != p) {
3325 		lp->data_len += len;
3326 		lp->truesize += delta_truesize;
3327 		lp->len += len;
3328 	}
3329 	NAPI_GRO_CB(skb)->same_flow = 1;
3330 	return 0;
3331 }
3332 
3333 void __init skb_init(void)
3334 {
3335 	skbuff_head_cache = kmem_cache_create("skbuff_head_cache",
3336 					      sizeof(struct sk_buff),
3337 					      0,
3338 					      SLAB_HWCACHE_ALIGN|SLAB_PANIC,
3339 					      NULL);
3340 	skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
3341 						sizeof(struct sk_buff_fclones),
3342 						0,
3343 						SLAB_HWCACHE_ALIGN|SLAB_PANIC,
3344 						NULL);
3345 }
3346 
3347 /**
3348  *	skb_to_sgvec - Fill a scatter-gather list from a socket buffer
3349  *	@skb: Socket buffer containing the buffers to be mapped
3350  *	@sg: The scatter-gather list to map into
3351  *	@offset: The offset into the buffer's contents to start mapping
3352  *	@len: Length of buffer space to be mapped
3353  *
3354  *	Fill the specified scatter-gather list with mappings/pointers into a
3355  *	region of the buffer space attached to a socket buffer.
3356  */
3357 static int
3358 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
3359 {
3360 	int start = skb_headlen(skb);
3361 	int i, copy = start - offset;
3362 	struct sk_buff *frag_iter;
3363 	int elt = 0;
3364 
3365 	if (copy > 0) {
3366 		if (copy > len)
3367 			copy = len;
3368 		sg_set_buf(sg, skb->data + offset, copy);
3369 		elt++;
3370 		if ((len -= copy) == 0)
3371 			return elt;
3372 		offset += copy;
3373 	}
3374 
3375 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3376 		int end;
3377 
3378 		WARN_ON(start > offset + len);
3379 
3380 		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
3381 		if ((copy = end - offset) > 0) {
3382 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3383 
3384 			if (copy > len)
3385 				copy = len;
3386 			sg_set_page(&sg[elt], skb_frag_page(frag), copy,
3387 					frag->page_offset+offset-start);
3388 			elt++;
3389 			if (!(len -= copy))
3390 				return elt;
3391 			offset += copy;
3392 		}
3393 		start = end;
3394 	}
3395 
3396 	skb_walk_frags(skb, frag_iter) {
3397 		int end;
3398 
3399 		WARN_ON(start > offset + len);
3400 
3401 		end = start + frag_iter->len;
3402 		if ((copy = end - offset) > 0) {
3403 			if (copy > len)
3404 				copy = len;
3405 			elt += __skb_to_sgvec(frag_iter, sg+elt, offset - start,
3406 					      copy);
3407 			if ((len -= copy) == 0)
3408 				return elt;
3409 			offset += copy;
3410 		}
3411 		start = end;
3412 	}
3413 	BUG_ON(len);
3414 	return elt;
3415 }
3416 
3417 /* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given
3418  * sglist without mark the sg which contain last skb data as the end.
3419  * So the caller can mannipulate sg list as will when padding new data after
3420  * the first call without calling sg_unmark_end to expend sg list.
3421  *
3422  * Scenario to use skb_to_sgvec_nomark:
3423  * 1. sg_init_table
3424  * 2. skb_to_sgvec_nomark(payload1)
3425  * 3. skb_to_sgvec_nomark(payload2)
3426  *
3427  * This is equivalent to:
3428  * 1. sg_init_table
3429  * 2. skb_to_sgvec(payload1)
3430  * 3. sg_unmark_end
3431  * 4. skb_to_sgvec(payload2)
3432  *
3433  * When mapping mutilple payload conditionally, skb_to_sgvec_nomark
3434  * is more preferable.
3435  */
3436 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
3437 			int offset, int len)
3438 {
3439 	return __skb_to_sgvec(skb, sg, offset, len);
3440 }
3441 EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark);
3442 
3443 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
3444 {
3445 	int nsg = __skb_to_sgvec(skb, sg, offset, len);
3446 
3447 	sg_mark_end(&sg[nsg - 1]);
3448 
3449 	return nsg;
3450 }
3451 EXPORT_SYMBOL_GPL(skb_to_sgvec);
3452 
3453 /**
3454  *	skb_cow_data - Check that a socket buffer's data buffers are writable
3455  *	@skb: The socket buffer to check.
3456  *	@tailbits: Amount of trailing space to be added
3457  *	@trailer: Returned pointer to the skb where the @tailbits space begins
3458  *
3459  *	Make sure that the data buffers attached to a socket buffer are
3460  *	writable. If they are not, private copies are made of the data buffers
3461  *	and the socket buffer is set to use these instead.
3462  *
3463  *	If @tailbits is given, make sure that there is space to write @tailbits
3464  *	bytes of data beyond current end of socket buffer.  @trailer will be
3465  *	set to point to the skb in which this space begins.
3466  *
3467  *	The number of scatterlist elements required to completely map the
3468  *	COW'd and extended socket buffer will be returned.
3469  */
3470 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
3471 {
3472 	int copyflag;
3473 	int elt;
3474 	struct sk_buff *skb1, **skb_p;
3475 
3476 	/* If skb is cloned or its head is paged, reallocate
3477 	 * head pulling out all the pages (pages are considered not writable
3478 	 * at the moment even if they are anonymous).
3479 	 */
3480 	if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
3481 	    __pskb_pull_tail(skb, skb_pagelen(skb)-skb_headlen(skb)) == NULL)
3482 		return -ENOMEM;
3483 
3484 	/* Easy case. Most of packets will go this way. */
3485 	if (!skb_has_frag_list(skb)) {
3486 		/* A little of trouble, not enough of space for trailer.
3487 		 * This should not happen, when stack is tuned to generate
3488 		 * good frames. OK, on miss we reallocate and reserve even more
3489 		 * space, 128 bytes is fair. */
3490 
3491 		if (skb_tailroom(skb) < tailbits &&
3492 		    pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
3493 			return -ENOMEM;
3494 
3495 		/* Voila! */
3496 		*trailer = skb;
3497 		return 1;
3498 	}
3499 
3500 	/* Misery. We are in troubles, going to mincer fragments... */
3501 
3502 	elt = 1;
3503 	skb_p = &skb_shinfo(skb)->frag_list;
3504 	copyflag = 0;
3505 
3506 	while ((skb1 = *skb_p) != NULL) {
3507 		int ntail = 0;
3508 
3509 		/* The fragment is partially pulled by someone,
3510 		 * this can happen on input. Copy it and everything
3511 		 * after it. */
3512 
3513 		if (skb_shared(skb1))
3514 			copyflag = 1;
3515 
3516 		/* If the skb is the last, worry about trailer. */
3517 
3518 		if (skb1->next == NULL && tailbits) {
3519 			if (skb_shinfo(skb1)->nr_frags ||
3520 			    skb_has_frag_list(skb1) ||
3521 			    skb_tailroom(skb1) < tailbits)
3522 				ntail = tailbits + 128;
3523 		}
3524 
3525 		if (copyflag ||
3526 		    skb_cloned(skb1) ||
3527 		    ntail ||
3528 		    skb_shinfo(skb1)->nr_frags ||
3529 		    skb_has_frag_list(skb1)) {
3530 			struct sk_buff *skb2;
3531 
3532 			/* Fuck, we are miserable poor guys... */
3533 			if (ntail == 0)
3534 				skb2 = skb_copy(skb1, GFP_ATOMIC);
3535 			else
3536 				skb2 = skb_copy_expand(skb1,
3537 						       skb_headroom(skb1),
3538 						       ntail,
3539 						       GFP_ATOMIC);
3540 			if (unlikely(skb2 == NULL))
3541 				return -ENOMEM;
3542 
3543 			if (skb1->sk)
3544 				skb_set_owner_w(skb2, skb1->sk);
3545 
3546 			/* Looking around. Are we still alive?
3547 			 * OK, link new skb, drop old one */
3548 
3549 			skb2->next = skb1->next;
3550 			*skb_p = skb2;
3551 			kfree_skb(skb1);
3552 			skb1 = skb2;
3553 		}
3554 		elt++;
3555 		*trailer = skb1;
3556 		skb_p = &skb1->next;
3557 	}
3558 
3559 	return elt;
3560 }
3561 EXPORT_SYMBOL_GPL(skb_cow_data);
3562 
3563 static void sock_rmem_free(struct sk_buff *skb)
3564 {
3565 	struct sock *sk = skb->sk;
3566 
3567 	atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
3568 }
3569 
3570 /*
3571  * Note: We dont mem charge error packets (no sk_forward_alloc changes)
3572  */
3573 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
3574 {
3575 	if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
3576 	    (unsigned int)sk->sk_rcvbuf)
3577 		return -ENOMEM;
3578 
3579 	skb_orphan(skb);
3580 	skb->sk = sk;
3581 	skb->destructor = sock_rmem_free;
3582 	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
3583 
3584 	/* before exiting rcu section, make sure dst is refcounted */
3585 	skb_dst_force(skb);
3586 
3587 	skb_queue_tail(&sk->sk_error_queue, skb);
3588 	if (!sock_flag(sk, SOCK_DEAD))
3589 		sk->sk_data_ready(sk);
3590 	return 0;
3591 }
3592 EXPORT_SYMBOL(sock_queue_err_skb);
3593 
3594 struct sk_buff *sock_dequeue_err_skb(struct sock *sk)
3595 {
3596 	struct sk_buff_head *q = &sk->sk_error_queue;
3597 	struct sk_buff *skb, *skb_next;
3598 	unsigned long flags;
3599 	int err = 0;
3600 
3601 	spin_lock_irqsave(&q->lock, flags);
3602 	skb = __skb_dequeue(q);
3603 	if (skb && (skb_next = skb_peek(q)))
3604 		err = SKB_EXT_ERR(skb_next)->ee.ee_errno;
3605 	spin_unlock_irqrestore(&q->lock, flags);
3606 
3607 	sk->sk_err = err;
3608 	if (err)
3609 		sk->sk_error_report(sk);
3610 
3611 	return skb;
3612 }
3613 EXPORT_SYMBOL(sock_dequeue_err_skb);
3614 
3615 /**
3616  * skb_clone_sk - create clone of skb, and take reference to socket
3617  * @skb: the skb to clone
3618  *
3619  * This function creates a clone of a buffer that holds a reference on
3620  * sk_refcnt.  Buffers created via this function are meant to be
3621  * returned using sock_queue_err_skb, or free via kfree_skb.
3622  *
3623  * When passing buffers allocated with this function to sock_queue_err_skb
3624  * it is necessary to wrap the call with sock_hold/sock_put in order to
3625  * prevent the socket from being released prior to being enqueued on
3626  * the sk_error_queue.
3627  */
3628 struct sk_buff *skb_clone_sk(struct sk_buff *skb)
3629 {
3630 	struct sock *sk = skb->sk;
3631 	struct sk_buff *clone;
3632 
3633 	if (!sk || !atomic_inc_not_zero(&sk->sk_refcnt))
3634 		return NULL;
3635 
3636 	clone = skb_clone(skb, GFP_ATOMIC);
3637 	if (!clone) {
3638 		sock_put(sk);
3639 		return NULL;
3640 	}
3641 
3642 	clone->sk = sk;
3643 	clone->destructor = sock_efree;
3644 
3645 	return clone;
3646 }
3647 EXPORT_SYMBOL(skb_clone_sk);
3648 
3649 static void __skb_complete_tx_timestamp(struct sk_buff *skb,
3650 					struct sock *sk,
3651 					int tstype)
3652 {
3653 	struct sock_exterr_skb *serr;
3654 	int err;
3655 
3656 	serr = SKB_EXT_ERR(skb);
3657 	memset(serr, 0, sizeof(*serr));
3658 	serr->ee.ee_errno = ENOMSG;
3659 	serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
3660 	serr->ee.ee_info = tstype;
3661 	if (sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID) {
3662 		serr->ee.ee_data = skb_shinfo(skb)->tskey;
3663 		if (sk->sk_protocol == IPPROTO_TCP)
3664 			serr->ee.ee_data -= sk->sk_tskey;
3665 	}
3666 
3667 	err = sock_queue_err_skb(sk, skb);
3668 
3669 	if (err)
3670 		kfree_skb(skb);
3671 }
3672 
3673 static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly)
3674 {
3675 	bool ret;
3676 
3677 	if (likely(sysctl_tstamp_allow_data || tsonly))
3678 		return true;
3679 
3680 	read_lock_bh(&sk->sk_callback_lock);
3681 	ret = sk->sk_socket && sk->sk_socket->file &&
3682 	      file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW);
3683 	read_unlock_bh(&sk->sk_callback_lock);
3684 	return ret;
3685 }
3686 
3687 void skb_complete_tx_timestamp(struct sk_buff *skb,
3688 			       struct skb_shared_hwtstamps *hwtstamps)
3689 {
3690 	struct sock *sk = skb->sk;
3691 
3692 	if (!skb_may_tx_timestamp(sk, false))
3693 		return;
3694 
3695 	/* take a reference to prevent skb_orphan() from freeing the socket */
3696 	sock_hold(sk);
3697 
3698 	*skb_hwtstamps(skb) = *hwtstamps;
3699 	__skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND);
3700 
3701 	sock_put(sk);
3702 }
3703 EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp);
3704 
3705 void __skb_tstamp_tx(struct sk_buff *orig_skb,
3706 		     struct skb_shared_hwtstamps *hwtstamps,
3707 		     struct sock *sk, int tstype)
3708 {
3709 	struct sk_buff *skb;
3710 	bool tsonly;
3711 
3712 	if (!sk)
3713 		return;
3714 
3715 	tsonly = sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TSONLY;
3716 	if (!skb_may_tx_timestamp(sk, tsonly))
3717 		return;
3718 
3719 	if (tsonly)
3720 		skb = alloc_skb(0, GFP_ATOMIC);
3721 	else
3722 		skb = skb_clone(orig_skb, GFP_ATOMIC);
3723 	if (!skb)
3724 		return;
3725 
3726 	if (tsonly) {
3727 		skb_shinfo(skb)->tx_flags = skb_shinfo(orig_skb)->tx_flags;
3728 		skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey;
3729 	}
3730 
3731 	if (hwtstamps)
3732 		*skb_hwtstamps(skb) = *hwtstamps;
3733 	else
3734 		skb->tstamp = ktime_get_real();
3735 
3736 	__skb_complete_tx_timestamp(skb, sk, tstype);
3737 }
3738 EXPORT_SYMBOL_GPL(__skb_tstamp_tx);
3739 
3740 void skb_tstamp_tx(struct sk_buff *orig_skb,
3741 		   struct skb_shared_hwtstamps *hwtstamps)
3742 {
3743 	return __skb_tstamp_tx(orig_skb, hwtstamps, orig_skb->sk,
3744 			       SCM_TSTAMP_SND);
3745 }
3746 EXPORT_SYMBOL_GPL(skb_tstamp_tx);
3747 
3748 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked)
3749 {
3750 	struct sock *sk = skb->sk;
3751 	struct sock_exterr_skb *serr;
3752 	int err;
3753 
3754 	skb->wifi_acked_valid = 1;
3755 	skb->wifi_acked = acked;
3756 
3757 	serr = SKB_EXT_ERR(skb);
3758 	memset(serr, 0, sizeof(*serr));
3759 	serr->ee.ee_errno = ENOMSG;
3760 	serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS;
3761 
3762 	/* take a reference to prevent skb_orphan() from freeing the socket */
3763 	sock_hold(sk);
3764 
3765 	err = sock_queue_err_skb(sk, skb);
3766 	if (err)
3767 		kfree_skb(skb);
3768 
3769 	sock_put(sk);
3770 }
3771 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack);
3772 
3773 /**
3774  * skb_partial_csum_set - set up and verify partial csum values for packet
3775  * @skb: the skb to set
3776  * @start: the number of bytes after skb->data to start checksumming.
3777  * @off: the offset from start to place the checksum.
3778  *
3779  * For untrusted partially-checksummed packets, we need to make sure the values
3780  * for skb->csum_start and skb->csum_offset are valid so we don't oops.
3781  *
3782  * This function checks and sets those values and skb->ip_summed: if this
3783  * returns false you should drop the packet.
3784  */
3785 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
3786 {
3787 	if (unlikely(start > skb_headlen(skb)) ||
3788 	    unlikely((int)start + off > skb_headlen(skb) - 2)) {
3789 		net_warn_ratelimited("bad partial csum: csum=%u/%u len=%u\n",
3790 				     start, off, skb_headlen(skb));
3791 		return false;
3792 	}
3793 	skb->ip_summed = CHECKSUM_PARTIAL;
3794 	skb->csum_start = skb_headroom(skb) + start;
3795 	skb->csum_offset = off;
3796 	skb_set_transport_header(skb, start);
3797 	return true;
3798 }
3799 EXPORT_SYMBOL_GPL(skb_partial_csum_set);
3800 
3801 static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len,
3802 			       unsigned int max)
3803 {
3804 	if (skb_headlen(skb) >= len)
3805 		return 0;
3806 
3807 	/* If we need to pullup then pullup to the max, so we
3808 	 * won't need to do it again.
3809 	 */
3810 	if (max > skb->len)
3811 		max = skb->len;
3812 
3813 	if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL)
3814 		return -ENOMEM;
3815 
3816 	if (skb_headlen(skb) < len)
3817 		return -EPROTO;
3818 
3819 	return 0;
3820 }
3821 
3822 #define MAX_TCP_HDR_LEN (15 * 4)
3823 
3824 static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb,
3825 				      typeof(IPPROTO_IP) proto,
3826 				      unsigned int off)
3827 {
3828 	switch (proto) {
3829 		int err;
3830 
3831 	case IPPROTO_TCP:
3832 		err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr),
3833 					  off + MAX_TCP_HDR_LEN);
3834 		if (!err && !skb_partial_csum_set(skb, off,
3835 						  offsetof(struct tcphdr,
3836 							   check)))
3837 			err = -EPROTO;
3838 		return err ? ERR_PTR(err) : &tcp_hdr(skb)->check;
3839 
3840 	case IPPROTO_UDP:
3841 		err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr),
3842 					  off + sizeof(struct udphdr));
3843 		if (!err && !skb_partial_csum_set(skb, off,
3844 						  offsetof(struct udphdr,
3845 							   check)))
3846 			err = -EPROTO;
3847 		return err ? ERR_PTR(err) : &udp_hdr(skb)->check;
3848 	}
3849 
3850 	return ERR_PTR(-EPROTO);
3851 }
3852 
3853 /* This value should be large enough to cover a tagged ethernet header plus
3854  * maximally sized IP and TCP or UDP headers.
3855  */
3856 #define MAX_IP_HDR_LEN 128
3857 
3858 static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate)
3859 {
3860 	unsigned int off;
3861 	bool fragment;
3862 	__sum16 *csum;
3863 	int err;
3864 
3865 	fragment = false;
3866 
3867 	err = skb_maybe_pull_tail(skb,
3868 				  sizeof(struct iphdr),
3869 				  MAX_IP_HDR_LEN);
3870 	if (err < 0)
3871 		goto out;
3872 
3873 	if (ip_hdr(skb)->frag_off & htons(IP_OFFSET | IP_MF))
3874 		fragment = true;
3875 
3876 	off = ip_hdrlen(skb);
3877 
3878 	err = -EPROTO;
3879 
3880 	if (fragment)
3881 		goto out;
3882 
3883 	csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off);
3884 	if (IS_ERR(csum))
3885 		return PTR_ERR(csum);
3886 
3887 	if (recalculate)
3888 		*csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
3889 					   ip_hdr(skb)->daddr,
3890 					   skb->len - off,
3891 					   ip_hdr(skb)->protocol, 0);
3892 	err = 0;
3893 
3894 out:
3895 	return err;
3896 }
3897 
3898 /* This value should be large enough to cover a tagged ethernet header plus
3899  * an IPv6 header, all options, and a maximal TCP or UDP header.
3900  */
3901 #define MAX_IPV6_HDR_LEN 256
3902 
3903 #define OPT_HDR(type, skb, off) \
3904 	(type *)(skb_network_header(skb) + (off))
3905 
3906 static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate)
3907 {
3908 	int err;
3909 	u8 nexthdr;
3910 	unsigned int off;
3911 	unsigned int len;
3912 	bool fragment;
3913 	bool done;
3914 	__sum16 *csum;
3915 
3916 	fragment = false;
3917 	done = false;
3918 
3919 	off = sizeof(struct ipv6hdr);
3920 
3921 	err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN);
3922 	if (err < 0)
3923 		goto out;
3924 
3925 	nexthdr = ipv6_hdr(skb)->nexthdr;
3926 
3927 	len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len);
3928 	while (off <= len && !done) {
3929 		switch (nexthdr) {
3930 		case IPPROTO_DSTOPTS:
3931 		case IPPROTO_HOPOPTS:
3932 		case IPPROTO_ROUTING: {
3933 			struct ipv6_opt_hdr *hp;
3934 
3935 			err = skb_maybe_pull_tail(skb,
3936 						  off +
3937 						  sizeof(struct ipv6_opt_hdr),
3938 						  MAX_IPV6_HDR_LEN);
3939 			if (err < 0)
3940 				goto out;
3941 
3942 			hp = OPT_HDR(struct ipv6_opt_hdr, skb, off);
3943 			nexthdr = hp->nexthdr;
3944 			off += ipv6_optlen(hp);
3945 			break;
3946 		}
3947 		case IPPROTO_AH: {
3948 			struct ip_auth_hdr *hp;
3949 
3950 			err = skb_maybe_pull_tail(skb,
3951 						  off +
3952 						  sizeof(struct ip_auth_hdr),
3953 						  MAX_IPV6_HDR_LEN);
3954 			if (err < 0)
3955 				goto out;
3956 
3957 			hp = OPT_HDR(struct ip_auth_hdr, skb, off);
3958 			nexthdr = hp->nexthdr;
3959 			off += ipv6_authlen(hp);
3960 			break;
3961 		}
3962 		case IPPROTO_FRAGMENT: {
3963 			struct frag_hdr *hp;
3964 
3965 			err = skb_maybe_pull_tail(skb,
3966 						  off +
3967 						  sizeof(struct frag_hdr),
3968 						  MAX_IPV6_HDR_LEN);
3969 			if (err < 0)
3970 				goto out;
3971 
3972 			hp = OPT_HDR(struct frag_hdr, skb, off);
3973 
3974 			if (hp->frag_off & htons(IP6_OFFSET | IP6_MF))
3975 				fragment = true;
3976 
3977 			nexthdr = hp->nexthdr;
3978 			off += sizeof(struct frag_hdr);
3979 			break;
3980 		}
3981 		default:
3982 			done = true;
3983 			break;
3984 		}
3985 	}
3986 
3987 	err = -EPROTO;
3988 
3989 	if (!done || fragment)
3990 		goto out;
3991 
3992 	csum = skb_checksum_setup_ip(skb, nexthdr, off);
3993 	if (IS_ERR(csum))
3994 		return PTR_ERR(csum);
3995 
3996 	if (recalculate)
3997 		*csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
3998 					 &ipv6_hdr(skb)->daddr,
3999 					 skb->len - off, nexthdr, 0);
4000 	err = 0;
4001 
4002 out:
4003 	return err;
4004 }
4005 
4006 /**
4007  * skb_checksum_setup - set up partial checksum offset
4008  * @skb: the skb to set up
4009  * @recalculate: if true the pseudo-header checksum will be recalculated
4010  */
4011 int skb_checksum_setup(struct sk_buff *skb, bool recalculate)
4012 {
4013 	int err;
4014 
4015 	switch (skb->protocol) {
4016 	case htons(ETH_P_IP):
4017 		err = skb_checksum_setup_ipv4(skb, recalculate);
4018 		break;
4019 
4020 	case htons(ETH_P_IPV6):
4021 		err = skb_checksum_setup_ipv6(skb, recalculate);
4022 		break;
4023 
4024 	default:
4025 		err = -EPROTO;
4026 		break;
4027 	}
4028 
4029 	return err;
4030 }
4031 EXPORT_SYMBOL(skb_checksum_setup);
4032 
4033 void __skb_warn_lro_forwarding(const struct sk_buff *skb)
4034 {
4035 	net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n",
4036 			     skb->dev->name);
4037 }
4038 EXPORT_SYMBOL(__skb_warn_lro_forwarding);
4039 
4040 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen)
4041 {
4042 	if (head_stolen) {
4043 		skb_release_head_state(skb);
4044 		kmem_cache_free(skbuff_head_cache, skb);
4045 	} else {
4046 		__kfree_skb(skb);
4047 	}
4048 }
4049 EXPORT_SYMBOL(kfree_skb_partial);
4050 
4051 /**
4052  * skb_try_coalesce - try to merge skb to prior one
4053  * @to: prior buffer
4054  * @from: buffer to add
4055  * @fragstolen: pointer to boolean
4056  * @delta_truesize: how much more was allocated than was requested
4057  */
4058 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
4059 		      bool *fragstolen, int *delta_truesize)
4060 {
4061 	int i, delta, len = from->len;
4062 
4063 	*fragstolen = false;
4064 
4065 	if (skb_cloned(to))
4066 		return false;
4067 
4068 	if (len <= skb_tailroom(to)) {
4069 		if (len)
4070 			BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len));
4071 		*delta_truesize = 0;
4072 		return true;
4073 	}
4074 
4075 	if (skb_has_frag_list(to) || skb_has_frag_list(from))
4076 		return false;
4077 
4078 	if (skb_headlen(from) != 0) {
4079 		struct page *page;
4080 		unsigned int offset;
4081 
4082 		if (skb_shinfo(to)->nr_frags +
4083 		    skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS)
4084 			return false;
4085 
4086 		if (skb_head_is_locked(from))
4087 			return false;
4088 
4089 		delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
4090 
4091 		page = virt_to_head_page(from->head);
4092 		offset = from->data - (unsigned char *)page_address(page);
4093 
4094 		skb_fill_page_desc(to, skb_shinfo(to)->nr_frags,
4095 				   page, offset, skb_headlen(from));
4096 		*fragstolen = true;
4097 	} else {
4098 		if (skb_shinfo(to)->nr_frags +
4099 		    skb_shinfo(from)->nr_frags > MAX_SKB_FRAGS)
4100 			return false;
4101 
4102 		delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from));
4103 	}
4104 
4105 	WARN_ON_ONCE(delta < len);
4106 
4107 	memcpy(skb_shinfo(to)->frags + skb_shinfo(to)->nr_frags,
4108 	       skb_shinfo(from)->frags,
4109 	       skb_shinfo(from)->nr_frags * sizeof(skb_frag_t));
4110 	skb_shinfo(to)->nr_frags += skb_shinfo(from)->nr_frags;
4111 
4112 	if (!skb_cloned(from))
4113 		skb_shinfo(from)->nr_frags = 0;
4114 
4115 	/* if the skb is not cloned this does nothing
4116 	 * since we set nr_frags to 0.
4117 	 */
4118 	for (i = 0; i < skb_shinfo(from)->nr_frags; i++)
4119 		skb_frag_ref(from, i);
4120 
4121 	to->truesize += delta;
4122 	to->len += len;
4123 	to->data_len += len;
4124 
4125 	*delta_truesize = delta;
4126 	return true;
4127 }
4128 EXPORT_SYMBOL(skb_try_coalesce);
4129 
4130 /**
4131  * skb_scrub_packet - scrub an skb
4132  *
4133  * @skb: buffer to clean
4134  * @xnet: packet is crossing netns
4135  *
4136  * skb_scrub_packet can be used after encapsulating or decapsulting a packet
4137  * into/from a tunnel. Some information have to be cleared during these
4138  * operations.
4139  * skb_scrub_packet can also be used to clean a skb before injecting it in
4140  * another namespace (@xnet == true). We have to clear all information in the
4141  * skb that could impact namespace isolation.
4142  */
4143 void skb_scrub_packet(struct sk_buff *skb, bool xnet)
4144 {
4145 	skb->tstamp.tv64 = 0;
4146 	skb->pkt_type = PACKET_HOST;
4147 	skb->skb_iif = 0;
4148 	skb->ignore_df = 0;
4149 	skb_dst_drop(skb);
4150 	skb_sender_cpu_clear(skb);
4151 	secpath_reset(skb);
4152 	nf_reset(skb);
4153 	nf_reset_trace(skb);
4154 
4155 	if (!xnet)
4156 		return;
4157 
4158 	skb_orphan(skb);
4159 	skb->mark = 0;
4160 }
4161 EXPORT_SYMBOL_GPL(skb_scrub_packet);
4162 
4163 /**
4164  * skb_gso_transport_seglen - Return length of individual segments of a gso packet
4165  *
4166  * @skb: GSO skb
4167  *
4168  * skb_gso_transport_seglen is used to determine the real size of the
4169  * individual segments, including Layer4 headers (TCP/UDP).
4170  *
4171  * The MAC/L2 or network (IP, IPv6) headers are not accounted for.
4172  */
4173 unsigned int skb_gso_transport_seglen(const struct sk_buff *skb)
4174 {
4175 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
4176 	unsigned int thlen = 0;
4177 
4178 	if (skb->encapsulation) {
4179 		thlen = skb_inner_transport_header(skb) -
4180 			skb_transport_header(skb);
4181 
4182 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
4183 			thlen += inner_tcp_hdrlen(skb);
4184 	} else if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
4185 		thlen = tcp_hdrlen(skb);
4186 	}
4187 	/* UFO sets gso_size to the size of the fragmentation
4188 	 * payload, i.e. the size of the L4 (UDP) header is already
4189 	 * accounted for.
4190 	 */
4191 	return thlen + shinfo->gso_size;
4192 }
4193 EXPORT_SYMBOL_GPL(skb_gso_transport_seglen);
4194 
4195 static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb)
4196 {
4197 	if (skb_cow(skb, skb_headroom(skb)) < 0) {
4198 		kfree_skb(skb);
4199 		return NULL;
4200 	}
4201 
4202 	memmove(skb->data - ETH_HLEN, skb->data - VLAN_ETH_HLEN, 2 * ETH_ALEN);
4203 	skb->mac_header += VLAN_HLEN;
4204 	return skb;
4205 }
4206 
4207 struct sk_buff *skb_vlan_untag(struct sk_buff *skb)
4208 {
4209 	struct vlan_hdr *vhdr;
4210 	u16 vlan_tci;
4211 
4212 	if (unlikely(skb_vlan_tag_present(skb))) {
4213 		/* vlan_tci is already set-up so leave this for another time */
4214 		return skb;
4215 	}
4216 
4217 	skb = skb_share_check(skb, GFP_ATOMIC);
4218 	if (unlikely(!skb))
4219 		goto err_free;
4220 
4221 	if (unlikely(!pskb_may_pull(skb, VLAN_HLEN)))
4222 		goto err_free;
4223 
4224 	vhdr = (struct vlan_hdr *)skb->data;
4225 	vlan_tci = ntohs(vhdr->h_vlan_TCI);
4226 	__vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci);
4227 
4228 	skb_pull_rcsum(skb, VLAN_HLEN);
4229 	vlan_set_encap_proto(skb, vhdr);
4230 
4231 	skb = skb_reorder_vlan_header(skb);
4232 	if (unlikely(!skb))
4233 		goto err_free;
4234 
4235 	skb_reset_network_header(skb);
4236 	skb_reset_transport_header(skb);
4237 	skb_reset_mac_len(skb);
4238 
4239 	return skb;
4240 
4241 err_free:
4242 	kfree_skb(skb);
4243 	return NULL;
4244 }
4245 EXPORT_SYMBOL(skb_vlan_untag);
4246 
4247 int skb_ensure_writable(struct sk_buff *skb, int write_len)
4248 {
4249 	if (!pskb_may_pull(skb, write_len))
4250 		return -ENOMEM;
4251 
4252 	if (!skb_cloned(skb) || skb_clone_writable(skb, write_len))
4253 		return 0;
4254 
4255 	return pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
4256 }
4257 EXPORT_SYMBOL(skb_ensure_writable);
4258 
4259 /* remove VLAN header from packet and update csum accordingly. */
4260 static int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci)
4261 {
4262 	struct vlan_hdr *vhdr;
4263 	unsigned int offset = skb->data - skb_mac_header(skb);
4264 	int err;
4265 
4266 	__skb_push(skb, offset);
4267 	err = skb_ensure_writable(skb, VLAN_ETH_HLEN);
4268 	if (unlikely(err))
4269 		goto pull;
4270 
4271 	skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
4272 
4273 	vhdr = (struct vlan_hdr *)(skb->data + ETH_HLEN);
4274 	*vlan_tci = ntohs(vhdr->h_vlan_TCI);
4275 
4276 	memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN);
4277 	__skb_pull(skb, VLAN_HLEN);
4278 
4279 	vlan_set_encap_proto(skb, vhdr);
4280 	skb->mac_header += VLAN_HLEN;
4281 
4282 	if (skb_network_offset(skb) < ETH_HLEN)
4283 		skb_set_network_header(skb, ETH_HLEN);
4284 
4285 	skb_reset_mac_len(skb);
4286 pull:
4287 	__skb_pull(skb, offset);
4288 
4289 	return err;
4290 }
4291 
4292 int skb_vlan_pop(struct sk_buff *skb)
4293 {
4294 	u16 vlan_tci;
4295 	__be16 vlan_proto;
4296 	int err;
4297 
4298 	if (likely(skb_vlan_tag_present(skb))) {
4299 		skb->vlan_tci = 0;
4300 	} else {
4301 		if (unlikely((skb->protocol != htons(ETH_P_8021Q) &&
4302 			      skb->protocol != htons(ETH_P_8021AD)) ||
4303 			     skb->len < VLAN_ETH_HLEN))
4304 			return 0;
4305 
4306 		err = __skb_vlan_pop(skb, &vlan_tci);
4307 		if (err)
4308 			return err;
4309 	}
4310 	/* move next vlan tag to hw accel tag */
4311 	if (likely((skb->protocol != htons(ETH_P_8021Q) &&
4312 		    skb->protocol != htons(ETH_P_8021AD)) ||
4313 		   skb->len < VLAN_ETH_HLEN))
4314 		return 0;
4315 
4316 	vlan_proto = skb->protocol;
4317 	err = __skb_vlan_pop(skb, &vlan_tci);
4318 	if (unlikely(err))
4319 		return err;
4320 
4321 	__vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
4322 	return 0;
4323 }
4324 EXPORT_SYMBOL(skb_vlan_pop);
4325 
4326 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci)
4327 {
4328 	if (skb_vlan_tag_present(skb)) {
4329 		unsigned int offset = skb->data - skb_mac_header(skb);
4330 		int err;
4331 
4332 		/* __vlan_insert_tag expect skb->data pointing to mac header.
4333 		 * So change skb->data before calling it and change back to
4334 		 * original position later
4335 		 */
4336 		__skb_push(skb, offset);
4337 		err = __vlan_insert_tag(skb, skb->vlan_proto,
4338 					skb_vlan_tag_get(skb));
4339 		if (err)
4340 			return err;
4341 		skb->protocol = skb->vlan_proto;
4342 		skb->mac_len += VLAN_HLEN;
4343 		__skb_pull(skb, offset);
4344 
4345 		if (skb->ip_summed == CHECKSUM_COMPLETE)
4346 			skb->csum = csum_add(skb->csum, csum_partial(skb->data
4347 					+ (2 * ETH_ALEN), VLAN_HLEN, 0));
4348 	}
4349 	__vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
4350 	return 0;
4351 }
4352 EXPORT_SYMBOL(skb_vlan_push);
4353 
4354 /**
4355  * alloc_skb_with_frags - allocate skb with page frags
4356  *
4357  * @header_len: size of linear part
4358  * @data_len: needed length in frags
4359  * @max_page_order: max page order desired.
4360  * @errcode: pointer to error code if any
4361  * @gfp_mask: allocation mask
4362  *
4363  * This can be used to allocate a paged skb, given a maximal order for frags.
4364  */
4365 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
4366 				     unsigned long data_len,
4367 				     int max_page_order,
4368 				     int *errcode,
4369 				     gfp_t gfp_mask)
4370 {
4371 	int npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
4372 	unsigned long chunk;
4373 	struct sk_buff *skb;
4374 	struct page *page;
4375 	gfp_t gfp_head;
4376 	int i;
4377 
4378 	*errcode = -EMSGSIZE;
4379 	/* Note this test could be relaxed, if we succeed to allocate
4380 	 * high order pages...
4381 	 */
4382 	if (npages > MAX_SKB_FRAGS)
4383 		return NULL;
4384 
4385 	gfp_head = gfp_mask;
4386 	if (gfp_head & __GFP_WAIT)
4387 		gfp_head |= __GFP_REPEAT;
4388 
4389 	*errcode = -ENOBUFS;
4390 	skb = alloc_skb(header_len, gfp_head);
4391 	if (!skb)
4392 		return NULL;
4393 
4394 	skb->truesize += npages << PAGE_SHIFT;
4395 
4396 	for (i = 0; npages > 0; i++) {
4397 		int order = max_page_order;
4398 
4399 		while (order) {
4400 			if (npages >= 1 << order) {
4401 				page = alloc_pages(gfp_mask |
4402 						   __GFP_COMP |
4403 						   __GFP_NOWARN |
4404 						   __GFP_NORETRY,
4405 						   order);
4406 				if (page)
4407 					goto fill_page;
4408 				/* Do not retry other high order allocations */
4409 				order = 1;
4410 				max_page_order = 0;
4411 			}
4412 			order--;
4413 		}
4414 		page = alloc_page(gfp_mask);
4415 		if (!page)
4416 			goto failure;
4417 fill_page:
4418 		chunk = min_t(unsigned long, data_len,
4419 			      PAGE_SIZE << order);
4420 		skb_fill_page_desc(skb, i, page, 0, chunk);
4421 		data_len -= chunk;
4422 		npages -= 1 << order;
4423 	}
4424 	return skb;
4425 
4426 failure:
4427 	kfree_skb(skb);
4428 	return NULL;
4429 }
4430 EXPORT_SYMBOL(alloc_skb_with_frags);
4431