1 /* 2 * Routines having to do with the 'struct sk_buff' memory handlers. 3 * 4 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk> 5 * Florian La Roche <rzsfl@rz.uni-sb.de> 6 * 7 * Fixes: 8 * Alan Cox : Fixed the worst of the load 9 * balancer bugs. 10 * Dave Platt : Interrupt stacking fix. 11 * Richard Kooijman : Timestamp fixes. 12 * Alan Cox : Changed buffer format. 13 * Alan Cox : destructor hook for AF_UNIX etc. 14 * Linus Torvalds : Better skb_clone. 15 * Alan Cox : Added skb_copy. 16 * Alan Cox : Added all the changed routines Linus 17 * only put in the headers 18 * Ray VanTassle : Fixed --skb->lock in free 19 * Alan Cox : skb_copy copy arp field 20 * Andi Kleen : slabified it. 21 * Robert Olsson : Removed skb_head_pool 22 * 23 * NOTE: 24 * The __skb_ routines should be called with interrupts 25 * disabled, or you better be *real* sure that the operation is atomic 26 * with respect to whatever list is being frobbed (e.g. via lock_sock() 27 * or via disabling bottom half handlers, etc). 28 * 29 * This program is free software; you can redistribute it and/or 30 * modify it under the terms of the GNU General Public License 31 * as published by the Free Software Foundation; either version 32 * 2 of the License, or (at your option) any later version. 33 */ 34 35 /* 36 * The functions in this file will not compile correctly with gcc 2.4.x 37 */ 38 39 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 40 41 #include <linux/module.h> 42 #include <linux/types.h> 43 #include <linux/kernel.h> 44 #include <linux/kmemcheck.h> 45 #include <linux/mm.h> 46 #include <linux/interrupt.h> 47 #include <linux/in.h> 48 #include <linux/inet.h> 49 #include <linux/slab.h> 50 #include <linux/tcp.h> 51 #include <linux/udp.h> 52 #include <linux/netdevice.h> 53 #ifdef CONFIG_NET_CLS_ACT 54 #include <net/pkt_sched.h> 55 #endif 56 #include <linux/string.h> 57 #include <linux/skbuff.h> 58 #include <linux/splice.h> 59 #include <linux/cache.h> 60 #include <linux/rtnetlink.h> 61 #include <linux/init.h> 62 #include <linux/scatterlist.h> 63 #include <linux/errqueue.h> 64 #include <linux/prefetch.h> 65 #include <linux/if_vlan.h> 66 67 #include <net/protocol.h> 68 #include <net/dst.h> 69 #include <net/sock.h> 70 #include <net/checksum.h> 71 #include <net/ip6_checksum.h> 72 #include <net/xfrm.h> 73 74 #include <asm/uaccess.h> 75 #include <trace/events/skb.h> 76 #include <linux/highmem.h> 77 #include <linux/capability.h> 78 #include <linux/user_namespace.h> 79 80 struct kmem_cache *skbuff_head_cache __read_mostly; 81 static struct kmem_cache *skbuff_fclone_cache __read_mostly; 82 83 /** 84 * skb_panic - private function for out-of-line support 85 * @skb: buffer 86 * @sz: size 87 * @addr: address 88 * @msg: skb_over_panic or skb_under_panic 89 * 90 * Out-of-line support for skb_put() and skb_push(). 91 * Called via the wrapper skb_over_panic() or skb_under_panic(). 92 * Keep out of line to prevent kernel bloat. 93 * __builtin_return_address is not used because it is not always reliable. 94 */ 95 static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr, 96 const char msg[]) 97 { 98 pr_emerg("%s: text:%p len:%d put:%d head:%p data:%p tail:%#lx end:%#lx dev:%s\n", 99 msg, addr, skb->len, sz, skb->head, skb->data, 100 (unsigned long)skb->tail, (unsigned long)skb->end, 101 skb->dev ? skb->dev->name : "<NULL>"); 102 BUG(); 103 } 104 105 static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr) 106 { 107 skb_panic(skb, sz, addr, __func__); 108 } 109 110 static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr) 111 { 112 skb_panic(skb, sz, addr, __func__); 113 } 114 115 /* 116 * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells 117 * the caller if emergency pfmemalloc reserves are being used. If it is and 118 * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves 119 * may be used. Otherwise, the packet data may be discarded until enough 120 * memory is free 121 */ 122 #define kmalloc_reserve(size, gfp, node, pfmemalloc) \ 123 __kmalloc_reserve(size, gfp, node, _RET_IP_, pfmemalloc) 124 125 static void *__kmalloc_reserve(size_t size, gfp_t flags, int node, 126 unsigned long ip, bool *pfmemalloc) 127 { 128 void *obj; 129 bool ret_pfmemalloc = false; 130 131 /* 132 * Try a regular allocation, when that fails and we're not entitled 133 * to the reserves, fail. 134 */ 135 obj = kmalloc_node_track_caller(size, 136 flags | __GFP_NOMEMALLOC | __GFP_NOWARN, 137 node); 138 if (obj || !(gfp_pfmemalloc_allowed(flags))) 139 goto out; 140 141 /* Try again but now we are using pfmemalloc reserves */ 142 ret_pfmemalloc = true; 143 obj = kmalloc_node_track_caller(size, flags, node); 144 145 out: 146 if (pfmemalloc) 147 *pfmemalloc = ret_pfmemalloc; 148 149 return obj; 150 } 151 152 /* Allocate a new skbuff. We do this ourselves so we can fill in a few 153 * 'private' fields and also do memory statistics to find all the 154 * [BEEP] leaks. 155 * 156 */ 157 158 struct sk_buff *__alloc_skb_head(gfp_t gfp_mask, int node) 159 { 160 struct sk_buff *skb; 161 162 /* Get the HEAD */ 163 skb = kmem_cache_alloc_node(skbuff_head_cache, 164 gfp_mask & ~__GFP_DMA, node); 165 if (!skb) 166 goto out; 167 168 /* 169 * Only clear those fields we need to clear, not those that we will 170 * actually initialise below. Hence, don't put any more fields after 171 * the tail pointer in struct sk_buff! 172 */ 173 memset(skb, 0, offsetof(struct sk_buff, tail)); 174 skb->head = NULL; 175 skb->truesize = sizeof(struct sk_buff); 176 atomic_set(&skb->users, 1); 177 178 skb->mac_header = (typeof(skb->mac_header))~0U; 179 out: 180 return skb; 181 } 182 183 /** 184 * __alloc_skb - allocate a network buffer 185 * @size: size to allocate 186 * @gfp_mask: allocation mask 187 * @flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache 188 * instead of head cache and allocate a cloned (child) skb. 189 * If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for 190 * allocations in case the data is required for writeback 191 * @node: numa node to allocate memory on 192 * 193 * Allocate a new &sk_buff. The returned buffer has no headroom and a 194 * tail room of at least size bytes. The object has a reference count 195 * of one. The return is the buffer. On a failure the return is %NULL. 196 * 197 * Buffers may only be allocated from interrupts using a @gfp_mask of 198 * %GFP_ATOMIC. 199 */ 200 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask, 201 int flags, int node) 202 { 203 struct kmem_cache *cache; 204 struct skb_shared_info *shinfo; 205 struct sk_buff *skb; 206 u8 *data; 207 bool pfmemalloc; 208 209 cache = (flags & SKB_ALLOC_FCLONE) 210 ? skbuff_fclone_cache : skbuff_head_cache; 211 212 if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX)) 213 gfp_mask |= __GFP_MEMALLOC; 214 215 /* Get the HEAD */ 216 skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node); 217 if (!skb) 218 goto out; 219 prefetchw(skb); 220 221 /* We do our best to align skb_shared_info on a separate cache 222 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives 223 * aligned memory blocks, unless SLUB/SLAB debug is enabled. 224 * Both skb->head and skb_shared_info are cache line aligned. 225 */ 226 size = SKB_DATA_ALIGN(size); 227 size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 228 data = kmalloc_reserve(size, gfp_mask, node, &pfmemalloc); 229 if (!data) 230 goto nodata; 231 /* kmalloc(size) might give us more room than requested. 232 * Put skb_shared_info exactly at the end of allocated zone, 233 * to allow max possible filling before reallocation. 234 */ 235 size = SKB_WITH_OVERHEAD(ksize(data)); 236 prefetchw(data + size); 237 238 /* 239 * Only clear those fields we need to clear, not those that we will 240 * actually initialise below. Hence, don't put any more fields after 241 * the tail pointer in struct sk_buff! 242 */ 243 memset(skb, 0, offsetof(struct sk_buff, tail)); 244 /* Account for allocated memory : skb + skb->head */ 245 skb->truesize = SKB_TRUESIZE(size); 246 skb->pfmemalloc = pfmemalloc; 247 atomic_set(&skb->users, 1); 248 skb->head = data; 249 skb->data = data; 250 skb_reset_tail_pointer(skb); 251 skb->end = skb->tail + size; 252 skb->mac_header = (typeof(skb->mac_header))~0U; 253 skb->transport_header = (typeof(skb->transport_header))~0U; 254 255 /* make sure we initialize shinfo sequentially */ 256 shinfo = skb_shinfo(skb); 257 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref)); 258 atomic_set(&shinfo->dataref, 1); 259 kmemcheck_annotate_variable(shinfo->destructor_arg); 260 261 if (flags & SKB_ALLOC_FCLONE) { 262 struct sk_buff_fclones *fclones; 263 264 fclones = container_of(skb, struct sk_buff_fclones, skb1); 265 266 kmemcheck_annotate_bitfield(&fclones->skb2, flags1); 267 skb->fclone = SKB_FCLONE_ORIG; 268 atomic_set(&fclones->fclone_ref, 1); 269 270 fclones->skb2.fclone = SKB_FCLONE_CLONE; 271 fclones->skb2.pfmemalloc = pfmemalloc; 272 } 273 out: 274 return skb; 275 nodata: 276 kmem_cache_free(cache, skb); 277 skb = NULL; 278 goto out; 279 } 280 EXPORT_SYMBOL(__alloc_skb); 281 282 /** 283 * __build_skb - build a network buffer 284 * @data: data buffer provided by caller 285 * @frag_size: size of data, or 0 if head was kmalloced 286 * 287 * Allocate a new &sk_buff. Caller provides space holding head and 288 * skb_shared_info. @data must have been allocated by kmalloc() only if 289 * @frag_size is 0, otherwise data should come from the page allocator 290 * or vmalloc() 291 * The return is the new skb buffer. 292 * On a failure the return is %NULL, and @data is not freed. 293 * Notes : 294 * Before IO, driver allocates only data buffer where NIC put incoming frame 295 * Driver should add room at head (NET_SKB_PAD) and 296 * MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info)) 297 * After IO, driver calls build_skb(), to allocate sk_buff and populate it 298 * before giving packet to stack. 299 * RX rings only contains data buffers, not full skbs. 300 */ 301 struct sk_buff *__build_skb(void *data, unsigned int frag_size) 302 { 303 struct skb_shared_info *shinfo; 304 struct sk_buff *skb; 305 unsigned int size = frag_size ? : ksize(data); 306 307 skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC); 308 if (!skb) 309 return NULL; 310 311 size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 312 313 memset(skb, 0, offsetof(struct sk_buff, tail)); 314 skb->truesize = SKB_TRUESIZE(size); 315 atomic_set(&skb->users, 1); 316 skb->head = data; 317 skb->data = data; 318 skb_reset_tail_pointer(skb); 319 skb->end = skb->tail + size; 320 skb->mac_header = (typeof(skb->mac_header))~0U; 321 skb->transport_header = (typeof(skb->transport_header))~0U; 322 323 /* make sure we initialize shinfo sequentially */ 324 shinfo = skb_shinfo(skb); 325 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref)); 326 atomic_set(&shinfo->dataref, 1); 327 kmemcheck_annotate_variable(shinfo->destructor_arg); 328 329 return skb; 330 } 331 332 /* build_skb() is wrapper over __build_skb(), that specifically 333 * takes care of skb->head and skb->pfmemalloc 334 * This means that if @frag_size is not zero, then @data must be backed 335 * by a page fragment, not kmalloc() or vmalloc() 336 */ 337 struct sk_buff *build_skb(void *data, unsigned int frag_size) 338 { 339 struct sk_buff *skb = __build_skb(data, frag_size); 340 341 if (skb && frag_size) { 342 skb->head_frag = 1; 343 if (virt_to_head_page(data)->pfmemalloc) 344 skb->pfmemalloc = 1; 345 } 346 return skb; 347 } 348 EXPORT_SYMBOL(build_skb); 349 350 struct netdev_alloc_cache { 351 struct page_frag frag; 352 /* we maintain a pagecount bias, so that we dont dirty cache line 353 * containing page->_count every time we allocate a fragment. 354 */ 355 unsigned int pagecnt_bias; 356 }; 357 static DEFINE_PER_CPU(struct netdev_alloc_cache, netdev_alloc_cache); 358 static DEFINE_PER_CPU(struct netdev_alloc_cache, napi_alloc_cache); 359 360 static struct page *__page_frag_refill(struct netdev_alloc_cache *nc, 361 gfp_t gfp_mask) 362 { 363 const unsigned int order = NETDEV_FRAG_PAGE_MAX_ORDER; 364 struct page *page = NULL; 365 gfp_t gfp = gfp_mask; 366 367 if (order) { 368 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY | 369 __GFP_NOMEMALLOC; 370 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask, order); 371 nc->frag.size = PAGE_SIZE << (page ? order : 0); 372 } 373 374 if (unlikely(!page)) 375 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0); 376 377 nc->frag.page = page; 378 379 return page; 380 } 381 382 static void *__alloc_page_frag(struct netdev_alloc_cache __percpu *cache, 383 unsigned int fragsz, gfp_t gfp_mask) 384 { 385 struct netdev_alloc_cache *nc = this_cpu_ptr(cache); 386 struct page *page = nc->frag.page; 387 unsigned int size; 388 int offset; 389 390 if (unlikely(!page)) { 391 refill: 392 page = __page_frag_refill(nc, gfp_mask); 393 if (!page) 394 return NULL; 395 396 /* if size can vary use frag.size else just use PAGE_SIZE */ 397 size = NETDEV_FRAG_PAGE_MAX_ORDER ? nc->frag.size : PAGE_SIZE; 398 399 /* Even if we own the page, we do not use atomic_set(). 400 * This would break get_page_unless_zero() users. 401 */ 402 atomic_add(size - 1, &page->_count); 403 404 /* reset page count bias and offset to start of new frag */ 405 nc->pagecnt_bias = size; 406 nc->frag.offset = size; 407 } 408 409 offset = nc->frag.offset - fragsz; 410 if (unlikely(offset < 0)) { 411 if (!atomic_sub_and_test(nc->pagecnt_bias, &page->_count)) 412 goto refill; 413 414 /* if size can vary use frag.size else just use PAGE_SIZE */ 415 size = NETDEV_FRAG_PAGE_MAX_ORDER ? nc->frag.size : PAGE_SIZE; 416 417 /* OK, page count is 0, we can safely set it */ 418 atomic_set(&page->_count, size); 419 420 /* reset page count bias and offset to start of new frag */ 421 nc->pagecnt_bias = size; 422 offset = size - fragsz; 423 } 424 425 nc->pagecnt_bias--; 426 nc->frag.offset = offset; 427 428 return page_address(page) + offset; 429 } 430 431 static void *__netdev_alloc_frag(unsigned int fragsz, gfp_t gfp_mask) 432 { 433 unsigned long flags; 434 void *data; 435 436 local_irq_save(flags); 437 data = __alloc_page_frag(&netdev_alloc_cache, fragsz, gfp_mask); 438 local_irq_restore(flags); 439 return data; 440 } 441 442 /** 443 * netdev_alloc_frag - allocate a page fragment 444 * @fragsz: fragment size 445 * 446 * Allocates a frag from a page for receive buffer. 447 * Uses GFP_ATOMIC allocations. 448 */ 449 void *netdev_alloc_frag(unsigned int fragsz) 450 { 451 return __netdev_alloc_frag(fragsz, GFP_ATOMIC | __GFP_COLD); 452 } 453 EXPORT_SYMBOL(netdev_alloc_frag); 454 455 static void *__napi_alloc_frag(unsigned int fragsz, gfp_t gfp_mask) 456 { 457 return __alloc_page_frag(&napi_alloc_cache, fragsz, gfp_mask); 458 } 459 460 void *napi_alloc_frag(unsigned int fragsz) 461 { 462 return __napi_alloc_frag(fragsz, GFP_ATOMIC | __GFP_COLD); 463 } 464 EXPORT_SYMBOL(napi_alloc_frag); 465 466 /** 467 * __alloc_rx_skb - allocate an skbuff for rx 468 * @length: length to allocate 469 * @gfp_mask: get_free_pages mask, passed to alloc_skb 470 * @flags: If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for 471 * allocations in case we have to fallback to __alloc_skb() 472 * If SKB_ALLOC_NAPI is set, page fragment will be allocated 473 * from napi_cache instead of netdev_cache. 474 * 475 * Allocate a new &sk_buff and assign it a usage count of one. The 476 * buffer has unspecified headroom built in. Users should allocate 477 * the headroom they think they need without accounting for the 478 * built in space. The built in space is used for optimisations. 479 * 480 * %NULL is returned if there is no free memory. 481 */ 482 static struct sk_buff *__alloc_rx_skb(unsigned int length, gfp_t gfp_mask, 483 int flags) 484 { 485 struct sk_buff *skb = NULL; 486 unsigned int fragsz = SKB_DATA_ALIGN(length) + 487 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 488 489 if (fragsz <= PAGE_SIZE && !(gfp_mask & (__GFP_WAIT | GFP_DMA))) { 490 void *data; 491 492 if (sk_memalloc_socks()) 493 gfp_mask |= __GFP_MEMALLOC; 494 495 data = (flags & SKB_ALLOC_NAPI) ? 496 __napi_alloc_frag(fragsz, gfp_mask) : 497 __netdev_alloc_frag(fragsz, gfp_mask); 498 499 if (likely(data)) { 500 skb = build_skb(data, fragsz); 501 if (unlikely(!skb)) 502 put_page(virt_to_head_page(data)); 503 } 504 } else { 505 skb = __alloc_skb(length, gfp_mask, 506 SKB_ALLOC_RX, NUMA_NO_NODE); 507 } 508 return skb; 509 } 510 511 /** 512 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device 513 * @dev: network device to receive on 514 * @length: length to allocate 515 * @gfp_mask: get_free_pages mask, passed to alloc_skb 516 * 517 * Allocate a new &sk_buff and assign it a usage count of one. The 518 * buffer has NET_SKB_PAD headroom built in. Users should allocate 519 * the headroom they think they need without accounting for the 520 * built in space. The built in space is used for optimisations. 521 * 522 * %NULL is returned if there is no free memory. 523 */ 524 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, 525 unsigned int length, gfp_t gfp_mask) 526 { 527 struct sk_buff *skb; 528 529 length += NET_SKB_PAD; 530 skb = __alloc_rx_skb(length, gfp_mask, 0); 531 532 if (likely(skb)) { 533 skb_reserve(skb, NET_SKB_PAD); 534 skb->dev = dev; 535 } 536 537 return skb; 538 } 539 EXPORT_SYMBOL(__netdev_alloc_skb); 540 541 /** 542 * __napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance 543 * @napi: napi instance this buffer was allocated for 544 * @length: length to allocate 545 * @gfp_mask: get_free_pages mask, passed to alloc_skb and alloc_pages 546 * 547 * Allocate a new sk_buff for use in NAPI receive. This buffer will 548 * attempt to allocate the head from a special reserved region used 549 * only for NAPI Rx allocation. By doing this we can save several 550 * CPU cycles by avoiding having to disable and re-enable IRQs. 551 * 552 * %NULL is returned if there is no free memory. 553 */ 554 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, 555 unsigned int length, gfp_t gfp_mask) 556 { 557 struct sk_buff *skb; 558 559 length += NET_SKB_PAD + NET_IP_ALIGN; 560 skb = __alloc_rx_skb(length, gfp_mask, SKB_ALLOC_NAPI); 561 562 if (likely(skb)) { 563 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN); 564 skb->dev = napi->dev; 565 } 566 567 return skb; 568 } 569 EXPORT_SYMBOL(__napi_alloc_skb); 570 571 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off, 572 int size, unsigned int truesize) 573 { 574 skb_fill_page_desc(skb, i, page, off, size); 575 skb->len += size; 576 skb->data_len += size; 577 skb->truesize += truesize; 578 } 579 EXPORT_SYMBOL(skb_add_rx_frag); 580 581 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size, 582 unsigned int truesize) 583 { 584 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 585 586 skb_frag_size_add(frag, size); 587 skb->len += size; 588 skb->data_len += size; 589 skb->truesize += truesize; 590 } 591 EXPORT_SYMBOL(skb_coalesce_rx_frag); 592 593 static void skb_drop_list(struct sk_buff **listp) 594 { 595 kfree_skb_list(*listp); 596 *listp = NULL; 597 } 598 599 static inline void skb_drop_fraglist(struct sk_buff *skb) 600 { 601 skb_drop_list(&skb_shinfo(skb)->frag_list); 602 } 603 604 static void skb_clone_fraglist(struct sk_buff *skb) 605 { 606 struct sk_buff *list; 607 608 skb_walk_frags(skb, list) 609 skb_get(list); 610 } 611 612 static void skb_free_head(struct sk_buff *skb) 613 { 614 if (skb->head_frag) 615 put_page(virt_to_head_page(skb->head)); 616 else 617 kfree(skb->head); 618 } 619 620 static void skb_release_data(struct sk_buff *skb) 621 { 622 struct skb_shared_info *shinfo = skb_shinfo(skb); 623 int i; 624 625 if (skb->cloned && 626 atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1, 627 &shinfo->dataref)) 628 return; 629 630 for (i = 0; i < shinfo->nr_frags; i++) 631 __skb_frag_unref(&shinfo->frags[i]); 632 633 /* 634 * If skb buf is from userspace, we need to notify the caller 635 * the lower device DMA has done; 636 */ 637 if (shinfo->tx_flags & SKBTX_DEV_ZEROCOPY) { 638 struct ubuf_info *uarg; 639 640 uarg = shinfo->destructor_arg; 641 if (uarg->callback) 642 uarg->callback(uarg, true); 643 } 644 645 if (shinfo->frag_list) 646 kfree_skb_list(shinfo->frag_list); 647 648 skb_free_head(skb); 649 } 650 651 /* 652 * Free an skbuff by memory without cleaning the state. 653 */ 654 static void kfree_skbmem(struct sk_buff *skb) 655 { 656 struct sk_buff_fclones *fclones; 657 658 switch (skb->fclone) { 659 case SKB_FCLONE_UNAVAILABLE: 660 kmem_cache_free(skbuff_head_cache, skb); 661 return; 662 663 case SKB_FCLONE_ORIG: 664 fclones = container_of(skb, struct sk_buff_fclones, skb1); 665 666 /* We usually free the clone (TX completion) before original skb 667 * This test would have no chance to be true for the clone, 668 * while here, branch prediction will be good. 669 */ 670 if (atomic_read(&fclones->fclone_ref) == 1) 671 goto fastpath; 672 break; 673 674 default: /* SKB_FCLONE_CLONE */ 675 fclones = container_of(skb, struct sk_buff_fclones, skb2); 676 break; 677 } 678 if (!atomic_dec_and_test(&fclones->fclone_ref)) 679 return; 680 fastpath: 681 kmem_cache_free(skbuff_fclone_cache, fclones); 682 } 683 684 static void skb_release_head_state(struct sk_buff *skb) 685 { 686 skb_dst_drop(skb); 687 #ifdef CONFIG_XFRM 688 secpath_put(skb->sp); 689 #endif 690 if (skb->destructor) { 691 WARN_ON(in_irq()); 692 skb->destructor(skb); 693 } 694 #if IS_ENABLED(CONFIG_NF_CONNTRACK) 695 nf_conntrack_put(skb->nfct); 696 #endif 697 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 698 nf_bridge_put(skb->nf_bridge); 699 #endif 700 } 701 702 /* Free everything but the sk_buff shell. */ 703 static void skb_release_all(struct sk_buff *skb) 704 { 705 skb_release_head_state(skb); 706 if (likely(skb->head)) 707 skb_release_data(skb); 708 } 709 710 /** 711 * __kfree_skb - private function 712 * @skb: buffer 713 * 714 * Free an sk_buff. Release anything attached to the buffer. 715 * Clean the state. This is an internal helper function. Users should 716 * always call kfree_skb 717 */ 718 719 void __kfree_skb(struct sk_buff *skb) 720 { 721 skb_release_all(skb); 722 kfree_skbmem(skb); 723 } 724 EXPORT_SYMBOL(__kfree_skb); 725 726 /** 727 * kfree_skb - free an sk_buff 728 * @skb: buffer to free 729 * 730 * Drop a reference to the buffer and free it if the usage count has 731 * hit zero. 732 */ 733 void kfree_skb(struct sk_buff *skb) 734 { 735 if (unlikely(!skb)) 736 return; 737 if (likely(atomic_read(&skb->users) == 1)) 738 smp_rmb(); 739 else if (likely(!atomic_dec_and_test(&skb->users))) 740 return; 741 trace_kfree_skb(skb, __builtin_return_address(0)); 742 __kfree_skb(skb); 743 } 744 EXPORT_SYMBOL(kfree_skb); 745 746 void kfree_skb_list(struct sk_buff *segs) 747 { 748 while (segs) { 749 struct sk_buff *next = segs->next; 750 751 kfree_skb(segs); 752 segs = next; 753 } 754 } 755 EXPORT_SYMBOL(kfree_skb_list); 756 757 /** 758 * skb_tx_error - report an sk_buff xmit error 759 * @skb: buffer that triggered an error 760 * 761 * Report xmit error if a device callback is tracking this skb. 762 * skb must be freed afterwards. 763 */ 764 void skb_tx_error(struct sk_buff *skb) 765 { 766 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) { 767 struct ubuf_info *uarg; 768 769 uarg = skb_shinfo(skb)->destructor_arg; 770 if (uarg->callback) 771 uarg->callback(uarg, false); 772 skb_shinfo(skb)->tx_flags &= ~SKBTX_DEV_ZEROCOPY; 773 } 774 } 775 EXPORT_SYMBOL(skb_tx_error); 776 777 /** 778 * consume_skb - free an skbuff 779 * @skb: buffer to free 780 * 781 * Drop a ref to the buffer and free it if the usage count has hit zero 782 * Functions identically to kfree_skb, but kfree_skb assumes that the frame 783 * is being dropped after a failure and notes that 784 */ 785 void consume_skb(struct sk_buff *skb) 786 { 787 if (unlikely(!skb)) 788 return; 789 if (likely(atomic_read(&skb->users) == 1)) 790 smp_rmb(); 791 else if (likely(!atomic_dec_and_test(&skb->users))) 792 return; 793 trace_consume_skb(skb); 794 __kfree_skb(skb); 795 } 796 EXPORT_SYMBOL(consume_skb); 797 798 /* Make sure a field is enclosed inside headers_start/headers_end section */ 799 #define CHECK_SKB_FIELD(field) \ 800 BUILD_BUG_ON(offsetof(struct sk_buff, field) < \ 801 offsetof(struct sk_buff, headers_start)); \ 802 BUILD_BUG_ON(offsetof(struct sk_buff, field) > \ 803 offsetof(struct sk_buff, headers_end)); \ 804 805 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old) 806 { 807 new->tstamp = old->tstamp; 808 /* We do not copy old->sk */ 809 new->dev = old->dev; 810 memcpy(new->cb, old->cb, sizeof(old->cb)); 811 skb_dst_copy(new, old); 812 #ifdef CONFIG_XFRM 813 new->sp = secpath_get(old->sp); 814 #endif 815 __nf_copy(new, old, false); 816 817 /* Note : this field could be in headers_start/headers_end section 818 * It is not yet because we do not want to have a 16 bit hole 819 */ 820 new->queue_mapping = old->queue_mapping; 821 822 memcpy(&new->headers_start, &old->headers_start, 823 offsetof(struct sk_buff, headers_end) - 824 offsetof(struct sk_buff, headers_start)); 825 CHECK_SKB_FIELD(protocol); 826 CHECK_SKB_FIELD(csum); 827 CHECK_SKB_FIELD(hash); 828 CHECK_SKB_FIELD(priority); 829 CHECK_SKB_FIELD(skb_iif); 830 CHECK_SKB_FIELD(vlan_proto); 831 CHECK_SKB_FIELD(vlan_tci); 832 CHECK_SKB_FIELD(transport_header); 833 CHECK_SKB_FIELD(network_header); 834 CHECK_SKB_FIELD(mac_header); 835 CHECK_SKB_FIELD(inner_protocol); 836 CHECK_SKB_FIELD(inner_transport_header); 837 CHECK_SKB_FIELD(inner_network_header); 838 CHECK_SKB_FIELD(inner_mac_header); 839 CHECK_SKB_FIELD(mark); 840 #ifdef CONFIG_NETWORK_SECMARK 841 CHECK_SKB_FIELD(secmark); 842 #endif 843 #ifdef CONFIG_NET_RX_BUSY_POLL 844 CHECK_SKB_FIELD(napi_id); 845 #endif 846 #ifdef CONFIG_XPS 847 CHECK_SKB_FIELD(sender_cpu); 848 #endif 849 #ifdef CONFIG_NET_SCHED 850 CHECK_SKB_FIELD(tc_index); 851 #ifdef CONFIG_NET_CLS_ACT 852 CHECK_SKB_FIELD(tc_verd); 853 #endif 854 #endif 855 856 } 857 858 /* 859 * You should not add any new code to this function. Add it to 860 * __copy_skb_header above instead. 861 */ 862 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb) 863 { 864 #define C(x) n->x = skb->x 865 866 n->next = n->prev = NULL; 867 n->sk = NULL; 868 __copy_skb_header(n, skb); 869 870 C(len); 871 C(data_len); 872 C(mac_len); 873 n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len; 874 n->cloned = 1; 875 n->nohdr = 0; 876 n->destructor = NULL; 877 C(tail); 878 C(end); 879 C(head); 880 C(head_frag); 881 C(data); 882 C(truesize); 883 atomic_set(&n->users, 1); 884 885 atomic_inc(&(skb_shinfo(skb)->dataref)); 886 skb->cloned = 1; 887 888 return n; 889 #undef C 890 } 891 892 /** 893 * skb_morph - morph one skb into another 894 * @dst: the skb to receive the contents 895 * @src: the skb to supply the contents 896 * 897 * This is identical to skb_clone except that the target skb is 898 * supplied by the user. 899 * 900 * The target skb is returned upon exit. 901 */ 902 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src) 903 { 904 skb_release_all(dst); 905 return __skb_clone(dst, src); 906 } 907 EXPORT_SYMBOL_GPL(skb_morph); 908 909 /** 910 * skb_copy_ubufs - copy userspace skb frags buffers to kernel 911 * @skb: the skb to modify 912 * @gfp_mask: allocation priority 913 * 914 * This must be called on SKBTX_DEV_ZEROCOPY skb. 915 * It will copy all frags into kernel and drop the reference 916 * to userspace pages. 917 * 918 * If this function is called from an interrupt gfp_mask() must be 919 * %GFP_ATOMIC. 920 * 921 * Returns 0 on success or a negative error code on failure 922 * to allocate kernel memory to copy to. 923 */ 924 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask) 925 { 926 int i; 927 int num_frags = skb_shinfo(skb)->nr_frags; 928 struct page *page, *head = NULL; 929 struct ubuf_info *uarg = skb_shinfo(skb)->destructor_arg; 930 931 for (i = 0; i < num_frags; i++) { 932 u8 *vaddr; 933 skb_frag_t *f = &skb_shinfo(skb)->frags[i]; 934 935 page = alloc_page(gfp_mask); 936 if (!page) { 937 while (head) { 938 struct page *next = (struct page *)page_private(head); 939 put_page(head); 940 head = next; 941 } 942 return -ENOMEM; 943 } 944 vaddr = kmap_atomic(skb_frag_page(f)); 945 memcpy(page_address(page), 946 vaddr + f->page_offset, skb_frag_size(f)); 947 kunmap_atomic(vaddr); 948 set_page_private(page, (unsigned long)head); 949 head = page; 950 } 951 952 /* skb frags release userspace buffers */ 953 for (i = 0; i < num_frags; i++) 954 skb_frag_unref(skb, i); 955 956 uarg->callback(uarg, false); 957 958 /* skb frags point to kernel buffers */ 959 for (i = num_frags - 1; i >= 0; i--) { 960 __skb_fill_page_desc(skb, i, head, 0, 961 skb_shinfo(skb)->frags[i].size); 962 head = (struct page *)page_private(head); 963 } 964 965 skb_shinfo(skb)->tx_flags &= ~SKBTX_DEV_ZEROCOPY; 966 return 0; 967 } 968 EXPORT_SYMBOL_GPL(skb_copy_ubufs); 969 970 /** 971 * skb_clone - duplicate an sk_buff 972 * @skb: buffer to clone 973 * @gfp_mask: allocation priority 974 * 975 * Duplicate an &sk_buff. The new one is not owned by a socket. Both 976 * copies share the same packet data but not structure. The new 977 * buffer has a reference count of 1. If the allocation fails the 978 * function returns %NULL otherwise the new buffer is returned. 979 * 980 * If this function is called from an interrupt gfp_mask() must be 981 * %GFP_ATOMIC. 982 */ 983 984 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask) 985 { 986 struct sk_buff_fclones *fclones = container_of(skb, 987 struct sk_buff_fclones, 988 skb1); 989 struct sk_buff *n; 990 991 if (skb_orphan_frags(skb, gfp_mask)) 992 return NULL; 993 994 if (skb->fclone == SKB_FCLONE_ORIG && 995 atomic_read(&fclones->fclone_ref) == 1) { 996 n = &fclones->skb2; 997 atomic_set(&fclones->fclone_ref, 2); 998 } else { 999 if (skb_pfmemalloc(skb)) 1000 gfp_mask |= __GFP_MEMALLOC; 1001 1002 n = kmem_cache_alloc(skbuff_head_cache, gfp_mask); 1003 if (!n) 1004 return NULL; 1005 1006 kmemcheck_annotate_bitfield(n, flags1); 1007 n->fclone = SKB_FCLONE_UNAVAILABLE; 1008 } 1009 1010 return __skb_clone(n, skb); 1011 } 1012 EXPORT_SYMBOL(skb_clone); 1013 1014 static void skb_headers_offset_update(struct sk_buff *skb, int off) 1015 { 1016 /* Only adjust this if it actually is csum_start rather than csum */ 1017 if (skb->ip_summed == CHECKSUM_PARTIAL) 1018 skb->csum_start += off; 1019 /* {transport,network,mac}_header and tail are relative to skb->head */ 1020 skb->transport_header += off; 1021 skb->network_header += off; 1022 if (skb_mac_header_was_set(skb)) 1023 skb->mac_header += off; 1024 skb->inner_transport_header += off; 1025 skb->inner_network_header += off; 1026 skb->inner_mac_header += off; 1027 } 1028 1029 static void copy_skb_header(struct sk_buff *new, const struct sk_buff *old) 1030 { 1031 __copy_skb_header(new, old); 1032 1033 skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size; 1034 skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs; 1035 skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type; 1036 } 1037 1038 static inline int skb_alloc_rx_flag(const struct sk_buff *skb) 1039 { 1040 if (skb_pfmemalloc(skb)) 1041 return SKB_ALLOC_RX; 1042 return 0; 1043 } 1044 1045 /** 1046 * skb_copy - create private copy of an sk_buff 1047 * @skb: buffer to copy 1048 * @gfp_mask: allocation priority 1049 * 1050 * Make a copy of both an &sk_buff and its data. This is used when the 1051 * caller wishes to modify the data and needs a private copy of the 1052 * data to alter. Returns %NULL on failure or the pointer to the buffer 1053 * on success. The returned buffer has a reference count of 1. 1054 * 1055 * As by-product this function converts non-linear &sk_buff to linear 1056 * one, so that &sk_buff becomes completely private and caller is allowed 1057 * to modify all the data of returned buffer. This means that this 1058 * function is not recommended for use in circumstances when only 1059 * header is going to be modified. Use pskb_copy() instead. 1060 */ 1061 1062 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask) 1063 { 1064 int headerlen = skb_headroom(skb); 1065 unsigned int size = skb_end_offset(skb) + skb->data_len; 1066 struct sk_buff *n = __alloc_skb(size, gfp_mask, 1067 skb_alloc_rx_flag(skb), NUMA_NO_NODE); 1068 1069 if (!n) 1070 return NULL; 1071 1072 /* Set the data pointer */ 1073 skb_reserve(n, headerlen); 1074 /* Set the tail pointer and length */ 1075 skb_put(n, skb->len); 1076 1077 if (skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len)) 1078 BUG(); 1079 1080 copy_skb_header(n, skb); 1081 return n; 1082 } 1083 EXPORT_SYMBOL(skb_copy); 1084 1085 /** 1086 * __pskb_copy_fclone - create copy of an sk_buff with private head. 1087 * @skb: buffer to copy 1088 * @headroom: headroom of new skb 1089 * @gfp_mask: allocation priority 1090 * @fclone: if true allocate the copy of the skb from the fclone 1091 * cache instead of the head cache; it is recommended to set this 1092 * to true for the cases where the copy will likely be cloned 1093 * 1094 * Make a copy of both an &sk_buff and part of its data, located 1095 * in header. Fragmented data remain shared. This is used when 1096 * the caller wishes to modify only header of &sk_buff and needs 1097 * private copy of the header to alter. Returns %NULL on failure 1098 * or the pointer to the buffer on success. 1099 * The returned buffer has a reference count of 1. 1100 */ 1101 1102 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom, 1103 gfp_t gfp_mask, bool fclone) 1104 { 1105 unsigned int size = skb_headlen(skb) + headroom; 1106 int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0); 1107 struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE); 1108 1109 if (!n) 1110 goto out; 1111 1112 /* Set the data pointer */ 1113 skb_reserve(n, headroom); 1114 /* Set the tail pointer and length */ 1115 skb_put(n, skb_headlen(skb)); 1116 /* Copy the bytes */ 1117 skb_copy_from_linear_data(skb, n->data, n->len); 1118 1119 n->truesize += skb->data_len; 1120 n->data_len = skb->data_len; 1121 n->len = skb->len; 1122 1123 if (skb_shinfo(skb)->nr_frags) { 1124 int i; 1125 1126 if (skb_orphan_frags(skb, gfp_mask)) { 1127 kfree_skb(n); 1128 n = NULL; 1129 goto out; 1130 } 1131 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1132 skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i]; 1133 skb_frag_ref(skb, i); 1134 } 1135 skb_shinfo(n)->nr_frags = i; 1136 } 1137 1138 if (skb_has_frag_list(skb)) { 1139 skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list; 1140 skb_clone_fraglist(n); 1141 } 1142 1143 copy_skb_header(n, skb); 1144 out: 1145 return n; 1146 } 1147 EXPORT_SYMBOL(__pskb_copy_fclone); 1148 1149 /** 1150 * pskb_expand_head - reallocate header of &sk_buff 1151 * @skb: buffer to reallocate 1152 * @nhead: room to add at head 1153 * @ntail: room to add at tail 1154 * @gfp_mask: allocation priority 1155 * 1156 * Expands (or creates identical copy, if @nhead and @ntail are zero) 1157 * header of @skb. &sk_buff itself is not changed. &sk_buff MUST have 1158 * reference count of 1. Returns zero in the case of success or error, 1159 * if expansion failed. In the last case, &sk_buff is not changed. 1160 * 1161 * All the pointers pointing into skb header may change and must be 1162 * reloaded after call to this function. 1163 */ 1164 1165 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, 1166 gfp_t gfp_mask) 1167 { 1168 int i; 1169 u8 *data; 1170 int size = nhead + skb_end_offset(skb) + ntail; 1171 long off; 1172 1173 BUG_ON(nhead < 0); 1174 1175 if (skb_shared(skb)) 1176 BUG(); 1177 1178 size = SKB_DATA_ALIGN(size); 1179 1180 if (skb_pfmemalloc(skb)) 1181 gfp_mask |= __GFP_MEMALLOC; 1182 data = kmalloc_reserve(size + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)), 1183 gfp_mask, NUMA_NO_NODE, NULL); 1184 if (!data) 1185 goto nodata; 1186 size = SKB_WITH_OVERHEAD(ksize(data)); 1187 1188 /* Copy only real data... and, alas, header. This should be 1189 * optimized for the cases when header is void. 1190 */ 1191 memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head); 1192 1193 memcpy((struct skb_shared_info *)(data + size), 1194 skb_shinfo(skb), 1195 offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags])); 1196 1197 /* 1198 * if shinfo is shared we must drop the old head gracefully, but if it 1199 * is not we can just drop the old head and let the existing refcount 1200 * be since all we did is relocate the values 1201 */ 1202 if (skb_cloned(skb)) { 1203 /* copy this zero copy skb frags */ 1204 if (skb_orphan_frags(skb, gfp_mask)) 1205 goto nofrags; 1206 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 1207 skb_frag_ref(skb, i); 1208 1209 if (skb_has_frag_list(skb)) 1210 skb_clone_fraglist(skb); 1211 1212 skb_release_data(skb); 1213 } else { 1214 skb_free_head(skb); 1215 } 1216 off = (data + nhead) - skb->head; 1217 1218 skb->head = data; 1219 skb->head_frag = 0; 1220 skb->data += off; 1221 #ifdef NET_SKBUFF_DATA_USES_OFFSET 1222 skb->end = size; 1223 off = nhead; 1224 #else 1225 skb->end = skb->head + size; 1226 #endif 1227 skb->tail += off; 1228 skb_headers_offset_update(skb, nhead); 1229 skb->cloned = 0; 1230 skb->hdr_len = 0; 1231 skb->nohdr = 0; 1232 atomic_set(&skb_shinfo(skb)->dataref, 1); 1233 return 0; 1234 1235 nofrags: 1236 kfree(data); 1237 nodata: 1238 return -ENOMEM; 1239 } 1240 EXPORT_SYMBOL(pskb_expand_head); 1241 1242 /* Make private copy of skb with writable head and some headroom */ 1243 1244 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom) 1245 { 1246 struct sk_buff *skb2; 1247 int delta = headroom - skb_headroom(skb); 1248 1249 if (delta <= 0) 1250 skb2 = pskb_copy(skb, GFP_ATOMIC); 1251 else { 1252 skb2 = skb_clone(skb, GFP_ATOMIC); 1253 if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0, 1254 GFP_ATOMIC)) { 1255 kfree_skb(skb2); 1256 skb2 = NULL; 1257 } 1258 } 1259 return skb2; 1260 } 1261 EXPORT_SYMBOL(skb_realloc_headroom); 1262 1263 /** 1264 * skb_copy_expand - copy and expand sk_buff 1265 * @skb: buffer to copy 1266 * @newheadroom: new free bytes at head 1267 * @newtailroom: new free bytes at tail 1268 * @gfp_mask: allocation priority 1269 * 1270 * Make a copy of both an &sk_buff and its data and while doing so 1271 * allocate additional space. 1272 * 1273 * This is used when the caller wishes to modify the data and needs a 1274 * private copy of the data to alter as well as more space for new fields. 1275 * Returns %NULL on failure or the pointer to the buffer 1276 * on success. The returned buffer has a reference count of 1. 1277 * 1278 * You must pass %GFP_ATOMIC as the allocation priority if this function 1279 * is called from an interrupt. 1280 */ 1281 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, 1282 int newheadroom, int newtailroom, 1283 gfp_t gfp_mask) 1284 { 1285 /* 1286 * Allocate the copy buffer 1287 */ 1288 struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom, 1289 gfp_mask, skb_alloc_rx_flag(skb), 1290 NUMA_NO_NODE); 1291 int oldheadroom = skb_headroom(skb); 1292 int head_copy_len, head_copy_off; 1293 1294 if (!n) 1295 return NULL; 1296 1297 skb_reserve(n, newheadroom); 1298 1299 /* Set the tail pointer and length */ 1300 skb_put(n, skb->len); 1301 1302 head_copy_len = oldheadroom; 1303 head_copy_off = 0; 1304 if (newheadroom <= head_copy_len) 1305 head_copy_len = newheadroom; 1306 else 1307 head_copy_off = newheadroom - head_copy_len; 1308 1309 /* Copy the linear header and data. */ 1310 if (skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off, 1311 skb->len + head_copy_len)) 1312 BUG(); 1313 1314 copy_skb_header(n, skb); 1315 1316 skb_headers_offset_update(n, newheadroom - oldheadroom); 1317 1318 return n; 1319 } 1320 EXPORT_SYMBOL(skb_copy_expand); 1321 1322 /** 1323 * skb_pad - zero pad the tail of an skb 1324 * @skb: buffer to pad 1325 * @pad: space to pad 1326 * 1327 * Ensure that a buffer is followed by a padding area that is zero 1328 * filled. Used by network drivers which may DMA or transfer data 1329 * beyond the buffer end onto the wire. 1330 * 1331 * May return error in out of memory cases. The skb is freed on error. 1332 */ 1333 1334 int skb_pad(struct sk_buff *skb, int pad) 1335 { 1336 int err; 1337 int ntail; 1338 1339 /* If the skbuff is non linear tailroom is always zero.. */ 1340 if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) { 1341 memset(skb->data+skb->len, 0, pad); 1342 return 0; 1343 } 1344 1345 ntail = skb->data_len + pad - (skb->end - skb->tail); 1346 if (likely(skb_cloned(skb) || ntail > 0)) { 1347 err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC); 1348 if (unlikely(err)) 1349 goto free_skb; 1350 } 1351 1352 /* FIXME: The use of this function with non-linear skb's really needs 1353 * to be audited. 1354 */ 1355 err = skb_linearize(skb); 1356 if (unlikely(err)) 1357 goto free_skb; 1358 1359 memset(skb->data + skb->len, 0, pad); 1360 return 0; 1361 1362 free_skb: 1363 kfree_skb(skb); 1364 return err; 1365 } 1366 EXPORT_SYMBOL(skb_pad); 1367 1368 /** 1369 * pskb_put - add data to the tail of a potentially fragmented buffer 1370 * @skb: start of the buffer to use 1371 * @tail: tail fragment of the buffer to use 1372 * @len: amount of data to add 1373 * 1374 * This function extends the used data area of the potentially 1375 * fragmented buffer. @tail must be the last fragment of @skb -- or 1376 * @skb itself. If this would exceed the total buffer size the kernel 1377 * will panic. A pointer to the first byte of the extra data is 1378 * returned. 1379 */ 1380 1381 unsigned char *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len) 1382 { 1383 if (tail != skb) { 1384 skb->data_len += len; 1385 skb->len += len; 1386 } 1387 return skb_put(tail, len); 1388 } 1389 EXPORT_SYMBOL_GPL(pskb_put); 1390 1391 /** 1392 * skb_put - add data to a buffer 1393 * @skb: buffer to use 1394 * @len: amount of data to add 1395 * 1396 * This function extends the used data area of the buffer. If this would 1397 * exceed the total buffer size the kernel will panic. A pointer to the 1398 * first byte of the extra data is returned. 1399 */ 1400 unsigned char *skb_put(struct sk_buff *skb, unsigned int len) 1401 { 1402 unsigned char *tmp = skb_tail_pointer(skb); 1403 SKB_LINEAR_ASSERT(skb); 1404 skb->tail += len; 1405 skb->len += len; 1406 if (unlikely(skb->tail > skb->end)) 1407 skb_over_panic(skb, len, __builtin_return_address(0)); 1408 return tmp; 1409 } 1410 EXPORT_SYMBOL(skb_put); 1411 1412 /** 1413 * skb_push - add data to the start of a buffer 1414 * @skb: buffer to use 1415 * @len: amount of data to add 1416 * 1417 * This function extends the used data area of the buffer at the buffer 1418 * start. If this would exceed the total buffer headroom the kernel will 1419 * panic. A pointer to the first byte of the extra data is returned. 1420 */ 1421 unsigned char *skb_push(struct sk_buff *skb, unsigned int len) 1422 { 1423 skb->data -= len; 1424 skb->len += len; 1425 if (unlikely(skb->data<skb->head)) 1426 skb_under_panic(skb, len, __builtin_return_address(0)); 1427 return skb->data; 1428 } 1429 EXPORT_SYMBOL(skb_push); 1430 1431 /** 1432 * skb_pull - remove data from the start of a buffer 1433 * @skb: buffer to use 1434 * @len: amount of data to remove 1435 * 1436 * This function removes data from the start of a buffer, returning 1437 * the memory to the headroom. A pointer to the next data in the buffer 1438 * is returned. Once the data has been pulled future pushes will overwrite 1439 * the old data. 1440 */ 1441 unsigned char *skb_pull(struct sk_buff *skb, unsigned int len) 1442 { 1443 return skb_pull_inline(skb, len); 1444 } 1445 EXPORT_SYMBOL(skb_pull); 1446 1447 /** 1448 * skb_trim - remove end from a buffer 1449 * @skb: buffer to alter 1450 * @len: new length 1451 * 1452 * Cut the length of a buffer down by removing data from the tail. If 1453 * the buffer is already under the length specified it is not modified. 1454 * The skb must be linear. 1455 */ 1456 void skb_trim(struct sk_buff *skb, unsigned int len) 1457 { 1458 if (skb->len > len) 1459 __skb_trim(skb, len); 1460 } 1461 EXPORT_SYMBOL(skb_trim); 1462 1463 /* Trims skb to length len. It can change skb pointers. 1464 */ 1465 1466 int ___pskb_trim(struct sk_buff *skb, unsigned int len) 1467 { 1468 struct sk_buff **fragp; 1469 struct sk_buff *frag; 1470 int offset = skb_headlen(skb); 1471 int nfrags = skb_shinfo(skb)->nr_frags; 1472 int i; 1473 int err; 1474 1475 if (skb_cloned(skb) && 1476 unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))) 1477 return err; 1478 1479 i = 0; 1480 if (offset >= len) 1481 goto drop_pages; 1482 1483 for (; i < nfrags; i++) { 1484 int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]); 1485 1486 if (end < len) { 1487 offset = end; 1488 continue; 1489 } 1490 1491 skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset); 1492 1493 drop_pages: 1494 skb_shinfo(skb)->nr_frags = i; 1495 1496 for (; i < nfrags; i++) 1497 skb_frag_unref(skb, i); 1498 1499 if (skb_has_frag_list(skb)) 1500 skb_drop_fraglist(skb); 1501 goto done; 1502 } 1503 1504 for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp); 1505 fragp = &frag->next) { 1506 int end = offset + frag->len; 1507 1508 if (skb_shared(frag)) { 1509 struct sk_buff *nfrag; 1510 1511 nfrag = skb_clone(frag, GFP_ATOMIC); 1512 if (unlikely(!nfrag)) 1513 return -ENOMEM; 1514 1515 nfrag->next = frag->next; 1516 consume_skb(frag); 1517 frag = nfrag; 1518 *fragp = frag; 1519 } 1520 1521 if (end < len) { 1522 offset = end; 1523 continue; 1524 } 1525 1526 if (end > len && 1527 unlikely((err = pskb_trim(frag, len - offset)))) 1528 return err; 1529 1530 if (frag->next) 1531 skb_drop_list(&frag->next); 1532 break; 1533 } 1534 1535 done: 1536 if (len > skb_headlen(skb)) { 1537 skb->data_len -= skb->len - len; 1538 skb->len = len; 1539 } else { 1540 skb->len = len; 1541 skb->data_len = 0; 1542 skb_set_tail_pointer(skb, len); 1543 } 1544 1545 return 0; 1546 } 1547 EXPORT_SYMBOL(___pskb_trim); 1548 1549 /** 1550 * __pskb_pull_tail - advance tail of skb header 1551 * @skb: buffer to reallocate 1552 * @delta: number of bytes to advance tail 1553 * 1554 * The function makes a sense only on a fragmented &sk_buff, 1555 * it expands header moving its tail forward and copying necessary 1556 * data from fragmented part. 1557 * 1558 * &sk_buff MUST have reference count of 1. 1559 * 1560 * Returns %NULL (and &sk_buff does not change) if pull failed 1561 * or value of new tail of skb in the case of success. 1562 * 1563 * All the pointers pointing into skb header may change and must be 1564 * reloaded after call to this function. 1565 */ 1566 1567 /* Moves tail of skb head forward, copying data from fragmented part, 1568 * when it is necessary. 1569 * 1. It may fail due to malloc failure. 1570 * 2. It may change skb pointers. 1571 * 1572 * It is pretty complicated. Luckily, it is called only in exceptional cases. 1573 */ 1574 unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta) 1575 { 1576 /* If skb has not enough free space at tail, get new one 1577 * plus 128 bytes for future expansions. If we have enough 1578 * room at tail, reallocate without expansion only if skb is cloned. 1579 */ 1580 int i, k, eat = (skb->tail + delta) - skb->end; 1581 1582 if (eat > 0 || skb_cloned(skb)) { 1583 if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0, 1584 GFP_ATOMIC)) 1585 return NULL; 1586 } 1587 1588 if (skb_copy_bits(skb, skb_headlen(skb), skb_tail_pointer(skb), delta)) 1589 BUG(); 1590 1591 /* Optimization: no fragments, no reasons to preestimate 1592 * size of pulled pages. Superb. 1593 */ 1594 if (!skb_has_frag_list(skb)) 1595 goto pull_pages; 1596 1597 /* Estimate size of pulled pages. */ 1598 eat = delta; 1599 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1600 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 1601 1602 if (size >= eat) 1603 goto pull_pages; 1604 eat -= size; 1605 } 1606 1607 /* If we need update frag list, we are in troubles. 1608 * Certainly, it possible to add an offset to skb data, 1609 * but taking into account that pulling is expected to 1610 * be very rare operation, it is worth to fight against 1611 * further bloating skb head and crucify ourselves here instead. 1612 * Pure masohism, indeed. 8)8) 1613 */ 1614 if (eat) { 1615 struct sk_buff *list = skb_shinfo(skb)->frag_list; 1616 struct sk_buff *clone = NULL; 1617 struct sk_buff *insp = NULL; 1618 1619 do { 1620 BUG_ON(!list); 1621 1622 if (list->len <= eat) { 1623 /* Eaten as whole. */ 1624 eat -= list->len; 1625 list = list->next; 1626 insp = list; 1627 } else { 1628 /* Eaten partially. */ 1629 1630 if (skb_shared(list)) { 1631 /* Sucks! We need to fork list. :-( */ 1632 clone = skb_clone(list, GFP_ATOMIC); 1633 if (!clone) 1634 return NULL; 1635 insp = list->next; 1636 list = clone; 1637 } else { 1638 /* This may be pulled without 1639 * problems. */ 1640 insp = list; 1641 } 1642 if (!pskb_pull(list, eat)) { 1643 kfree_skb(clone); 1644 return NULL; 1645 } 1646 break; 1647 } 1648 } while (eat); 1649 1650 /* Free pulled out fragments. */ 1651 while ((list = skb_shinfo(skb)->frag_list) != insp) { 1652 skb_shinfo(skb)->frag_list = list->next; 1653 kfree_skb(list); 1654 } 1655 /* And insert new clone at head. */ 1656 if (clone) { 1657 clone->next = list; 1658 skb_shinfo(skb)->frag_list = clone; 1659 } 1660 } 1661 /* Success! Now we may commit changes to skb data. */ 1662 1663 pull_pages: 1664 eat = delta; 1665 k = 0; 1666 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1667 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 1668 1669 if (size <= eat) { 1670 skb_frag_unref(skb, i); 1671 eat -= size; 1672 } else { 1673 skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i]; 1674 if (eat) { 1675 skb_shinfo(skb)->frags[k].page_offset += eat; 1676 skb_frag_size_sub(&skb_shinfo(skb)->frags[k], eat); 1677 eat = 0; 1678 } 1679 k++; 1680 } 1681 } 1682 skb_shinfo(skb)->nr_frags = k; 1683 1684 skb->tail += delta; 1685 skb->data_len -= delta; 1686 1687 return skb_tail_pointer(skb); 1688 } 1689 EXPORT_SYMBOL(__pskb_pull_tail); 1690 1691 /** 1692 * skb_copy_bits - copy bits from skb to kernel buffer 1693 * @skb: source skb 1694 * @offset: offset in source 1695 * @to: destination buffer 1696 * @len: number of bytes to copy 1697 * 1698 * Copy the specified number of bytes from the source skb to the 1699 * destination buffer. 1700 * 1701 * CAUTION ! : 1702 * If its prototype is ever changed, 1703 * check arch/{*}/net/{*}.S files, 1704 * since it is called from BPF assembly code. 1705 */ 1706 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len) 1707 { 1708 int start = skb_headlen(skb); 1709 struct sk_buff *frag_iter; 1710 int i, copy; 1711 1712 if (offset > (int)skb->len - len) 1713 goto fault; 1714 1715 /* Copy header. */ 1716 if ((copy = start - offset) > 0) { 1717 if (copy > len) 1718 copy = len; 1719 skb_copy_from_linear_data_offset(skb, offset, to, copy); 1720 if ((len -= copy) == 0) 1721 return 0; 1722 offset += copy; 1723 to += copy; 1724 } 1725 1726 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1727 int end; 1728 skb_frag_t *f = &skb_shinfo(skb)->frags[i]; 1729 1730 WARN_ON(start > offset + len); 1731 1732 end = start + skb_frag_size(f); 1733 if ((copy = end - offset) > 0) { 1734 u8 *vaddr; 1735 1736 if (copy > len) 1737 copy = len; 1738 1739 vaddr = kmap_atomic(skb_frag_page(f)); 1740 memcpy(to, 1741 vaddr + f->page_offset + offset - start, 1742 copy); 1743 kunmap_atomic(vaddr); 1744 1745 if ((len -= copy) == 0) 1746 return 0; 1747 offset += copy; 1748 to += copy; 1749 } 1750 start = end; 1751 } 1752 1753 skb_walk_frags(skb, frag_iter) { 1754 int end; 1755 1756 WARN_ON(start > offset + len); 1757 1758 end = start + frag_iter->len; 1759 if ((copy = end - offset) > 0) { 1760 if (copy > len) 1761 copy = len; 1762 if (skb_copy_bits(frag_iter, offset - start, to, copy)) 1763 goto fault; 1764 if ((len -= copy) == 0) 1765 return 0; 1766 offset += copy; 1767 to += copy; 1768 } 1769 start = end; 1770 } 1771 1772 if (!len) 1773 return 0; 1774 1775 fault: 1776 return -EFAULT; 1777 } 1778 EXPORT_SYMBOL(skb_copy_bits); 1779 1780 /* 1781 * Callback from splice_to_pipe(), if we need to release some pages 1782 * at the end of the spd in case we error'ed out in filling the pipe. 1783 */ 1784 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i) 1785 { 1786 put_page(spd->pages[i]); 1787 } 1788 1789 static struct page *linear_to_page(struct page *page, unsigned int *len, 1790 unsigned int *offset, 1791 struct sock *sk) 1792 { 1793 struct page_frag *pfrag = sk_page_frag(sk); 1794 1795 if (!sk_page_frag_refill(sk, pfrag)) 1796 return NULL; 1797 1798 *len = min_t(unsigned int, *len, pfrag->size - pfrag->offset); 1799 1800 memcpy(page_address(pfrag->page) + pfrag->offset, 1801 page_address(page) + *offset, *len); 1802 *offset = pfrag->offset; 1803 pfrag->offset += *len; 1804 1805 return pfrag->page; 1806 } 1807 1808 static bool spd_can_coalesce(const struct splice_pipe_desc *spd, 1809 struct page *page, 1810 unsigned int offset) 1811 { 1812 return spd->nr_pages && 1813 spd->pages[spd->nr_pages - 1] == page && 1814 (spd->partial[spd->nr_pages - 1].offset + 1815 spd->partial[spd->nr_pages - 1].len == offset); 1816 } 1817 1818 /* 1819 * Fill page/offset/length into spd, if it can hold more pages. 1820 */ 1821 static bool spd_fill_page(struct splice_pipe_desc *spd, 1822 struct pipe_inode_info *pipe, struct page *page, 1823 unsigned int *len, unsigned int offset, 1824 bool linear, 1825 struct sock *sk) 1826 { 1827 if (unlikely(spd->nr_pages == MAX_SKB_FRAGS)) 1828 return true; 1829 1830 if (linear) { 1831 page = linear_to_page(page, len, &offset, sk); 1832 if (!page) 1833 return true; 1834 } 1835 if (spd_can_coalesce(spd, page, offset)) { 1836 spd->partial[spd->nr_pages - 1].len += *len; 1837 return false; 1838 } 1839 get_page(page); 1840 spd->pages[spd->nr_pages] = page; 1841 spd->partial[spd->nr_pages].len = *len; 1842 spd->partial[spd->nr_pages].offset = offset; 1843 spd->nr_pages++; 1844 1845 return false; 1846 } 1847 1848 static bool __splice_segment(struct page *page, unsigned int poff, 1849 unsigned int plen, unsigned int *off, 1850 unsigned int *len, 1851 struct splice_pipe_desc *spd, bool linear, 1852 struct sock *sk, 1853 struct pipe_inode_info *pipe) 1854 { 1855 if (!*len) 1856 return true; 1857 1858 /* skip this segment if already processed */ 1859 if (*off >= plen) { 1860 *off -= plen; 1861 return false; 1862 } 1863 1864 /* ignore any bits we already processed */ 1865 poff += *off; 1866 plen -= *off; 1867 *off = 0; 1868 1869 do { 1870 unsigned int flen = min(*len, plen); 1871 1872 if (spd_fill_page(spd, pipe, page, &flen, poff, 1873 linear, sk)) 1874 return true; 1875 poff += flen; 1876 plen -= flen; 1877 *len -= flen; 1878 } while (*len && plen); 1879 1880 return false; 1881 } 1882 1883 /* 1884 * Map linear and fragment data from the skb to spd. It reports true if the 1885 * pipe is full or if we already spliced the requested length. 1886 */ 1887 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe, 1888 unsigned int *offset, unsigned int *len, 1889 struct splice_pipe_desc *spd, struct sock *sk) 1890 { 1891 int seg; 1892 1893 /* map the linear part : 1894 * If skb->head_frag is set, this 'linear' part is backed by a 1895 * fragment, and if the head is not shared with any clones then 1896 * we can avoid a copy since we own the head portion of this page. 1897 */ 1898 if (__splice_segment(virt_to_page(skb->data), 1899 (unsigned long) skb->data & (PAGE_SIZE - 1), 1900 skb_headlen(skb), 1901 offset, len, spd, 1902 skb_head_is_locked(skb), 1903 sk, pipe)) 1904 return true; 1905 1906 /* 1907 * then map the fragments 1908 */ 1909 for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) { 1910 const skb_frag_t *f = &skb_shinfo(skb)->frags[seg]; 1911 1912 if (__splice_segment(skb_frag_page(f), 1913 f->page_offset, skb_frag_size(f), 1914 offset, len, spd, false, sk, pipe)) 1915 return true; 1916 } 1917 1918 return false; 1919 } 1920 1921 /* 1922 * Map data from the skb to a pipe. Should handle both the linear part, 1923 * the fragments, and the frag list. It does NOT handle frag lists within 1924 * the frag list, if such a thing exists. We'd probably need to recurse to 1925 * handle that cleanly. 1926 */ 1927 int skb_splice_bits(struct sk_buff *skb, unsigned int offset, 1928 struct pipe_inode_info *pipe, unsigned int tlen, 1929 unsigned int flags) 1930 { 1931 struct partial_page partial[MAX_SKB_FRAGS]; 1932 struct page *pages[MAX_SKB_FRAGS]; 1933 struct splice_pipe_desc spd = { 1934 .pages = pages, 1935 .partial = partial, 1936 .nr_pages_max = MAX_SKB_FRAGS, 1937 .flags = flags, 1938 .ops = &nosteal_pipe_buf_ops, 1939 .spd_release = sock_spd_release, 1940 }; 1941 struct sk_buff *frag_iter; 1942 struct sock *sk = skb->sk; 1943 int ret = 0; 1944 1945 /* 1946 * __skb_splice_bits() only fails if the output has no room left, 1947 * so no point in going over the frag_list for the error case. 1948 */ 1949 if (__skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk)) 1950 goto done; 1951 else if (!tlen) 1952 goto done; 1953 1954 /* 1955 * now see if we have a frag_list to map 1956 */ 1957 skb_walk_frags(skb, frag_iter) { 1958 if (!tlen) 1959 break; 1960 if (__skb_splice_bits(frag_iter, pipe, &offset, &tlen, &spd, sk)) 1961 break; 1962 } 1963 1964 done: 1965 if (spd.nr_pages) { 1966 /* 1967 * Drop the socket lock, otherwise we have reverse 1968 * locking dependencies between sk_lock and i_mutex 1969 * here as compared to sendfile(). We enter here 1970 * with the socket lock held, and splice_to_pipe() will 1971 * grab the pipe inode lock. For sendfile() emulation, 1972 * we call into ->sendpage() with the i_mutex lock held 1973 * and networking will grab the socket lock. 1974 */ 1975 release_sock(sk); 1976 ret = splice_to_pipe(pipe, &spd); 1977 lock_sock(sk); 1978 } 1979 1980 return ret; 1981 } 1982 1983 /** 1984 * skb_store_bits - store bits from kernel buffer to skb 1985 * @skb: destination buffer 1986 * @offset: offset in destination 1987 * @from: source buffer 1988 * @len: number of bytes to copy 1989 * 1990 * Copy the specified number of bytes from the source buffer to the 1991 * destination skb. This function handles all the messy bits of 1992 * traversing fragment lists and such. 1993 */ 1994 1995 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len) 1996 { 1997 int start = skb_headlen(skb); 1998 struct sk_buff *frag_iter; 1999 int i, copy; 2000 2001 if (offset > (int)skb->len - len) 2002 goto fault; 2003 2004 if ((copy = start - offset) > 0) { 2005 if (copy > len) 2006 copy = len; 2007 skb_copy_to_linear_data_offset(skb, offset, from, copy); 2008 if ((len -= copy) == 0) 2009 return 0; 2010 offset += copy; 2011 from += copy; 2012 } 2013 2014 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2015 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2016 int end; 2017 2018 WARN_ON(start > offset + len); 2019 2020 end = start + skb_frag_size(frag); 2021 if ((copy = end - offset) > 0) { 2022 u8 *vaddr; 2023 2024 if (copy > len) 2025 copy = len; 2026 2027 vaddr = kmap_atomic(skb_frag_page(frag)); 2028 memcpy(vaddr + frag->page_offset + offset - start, 2029 from, copy); 2030 kunmap_atomic(vaddr); 2031 2032 if ((len -= copy) == 0) 2033 return 0; 2034 offset += copy; 2035 from += copy; 2036 } 2037 start = end; 2038 } 2039 2040 skb_walk_frags(skb, frag_iter) { 2041 int end; 2042 2043 WARN_ON(start > offset + len); 2044 2045 end = start + frag_iter->len; 2046 if ((copy = end - offset) > 0) { 2047 if (copy > len) 2048 copy = len; 2049 if (skb_store_bits(frag_iter, offset - start, 2050 from, copy)) 2051 goto fault; 2052 if ((len -= copy) == 0) 2053 return 0; 2054 offset += copy; 2055 from += copy; 2056 } 2057 start = end; 2058 } 2059 if (!len) 2060 return 0; 2061 2062 fault: 2063 return -EFAULT; 2064 } 2065 EXPORT_SYMBOL(skb_store_bits); 2066 2067 /* Checksum skb data. */ 2068 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len, 2069 __wsum csum, const struct skb_checksum_ops *ops) 2070 { 2071 int start = skb_headlen(skb); 2072 int i, copy = start - offset; 2073 struct sk_buff *frag_iter; 2074 int pos = 0; 2075 2076 /* Checksum header. */ 2077 if (copy > 0) { 2078 if (copy > len) 2079 copy = len; 2080 csum = ops->update(skb->data + offset, copy, csum); 2081 if ((len -= copy) == 0) 2082 return csum; 2083 offset += copy; 2084 pos = copy; 2085 } 2086 2087 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2088 int end; 2089 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2090 2091 WARN_ON(start > offset + len); 2092 2093 end = start + skb_frag_size(frag); 2094 if ((copy = end - offset) > 0) { 2095 __wsum csum2; 2096 u8 *vaddr; 2097 2098 if (copy > len) 2099 copy = len; 2100 vaddr = kmap_atomic(skb_frag_page(frag)); 2101 csum2 = ops->update(vaddr + frag->page_offset + 2102 offset - start, copy, 0); 2103 kunmap_atomic(vaddr); 2104 csum = ops->combine(csum, csum2, pos, copy); 2105 if (!(len -= copy)) 2106 return csum; 2107 offset += copy; 2108 pos += copy; 2109 } 2110 start = end; 2111 } 2112 2113 skb_walk_frags(skb, frag_iter) { 2114 int end; 2115 2116 WARN_ON(start > offset + len); 2117 2118 end = start + frag_iter->len; 2119 if ((copy = end - offset) > 0) { 2120 __wsum csum2; 2121 if (copy > len) 2122 copy = len; 2123 csum2 = __skb_checksum(frag_iter, offset - start, 2124 copy, 0, ops); 2125 csum = ops->combine(csum, csum2, pos, copy); 2126 if ((len -= copy) == 0) 2127 return csum; 2128 offset += copy; 2129 pos += copy; 2130 } 2131 start = end; 2132 } 2133 BUG_ON(len); 2134 2135 return csum; 2136 } 2137 EXPORT_SYMBOL(__skb_checksum); 2138 2139 __wsum skb_checksum(const struct sk_buff *skb, int offset, 2140 int len, __wsum csum) 2141 { 2142 const struct skb_checksum_ops ops = { 2143 .update = csum_partial_ext, 2144 .combine = csum_block_add_ext, 2145 }; 2146 2147 return __skb_checksum(skb, offset, len, csum, &ops); 2148 } 2149 EXPORT_SYMBOL(skb_checksum); 2150 2151 /* Both of above in one bottle. */ 2152 2153 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, 2154 u8 *to, int len, __wsum csum) 2155 { 2156 int start = skb_headlen(skb); 2157 int i, copy = start - offset; 2158 struct sk_buff *frag_iter; 2159 int pos = 0; 2160 2161 /* Copy header. */ 2162 if (copy > 0) { 2163 if (copy > len) 2164 copy = len; 2165 csum = csum_partial_copy_nocheck(skb->data + offset, to, 2166 copy, csum); 2167 if ((len -= copy) == 0) 2168 return csum; 2169 offset += copy; 2170 to += copy; 2171 pos = copy; 2172 } 2173 2174 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2175 int end; 2176 2177 WARN_ON(start > offset + len); 2178 2179 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]); 2180 if ((copy = end - offset) > 0) { 2181 __wsum csum2; 2182 u8 *vaddr; 2183 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2184 2185 if (copy > len) 2186 copy = len; 2187 vaddr = kmap_atomic(skb_frag_page(frag)); 2188 csum2 = csum_partial_copy_nocheck(vaddr + 2189 frag->page_offset + 2190 offset - start, to, 2191 copy, 0); 2192 kunmap_atomic(vaddr); 2193 csum = csum_block_add(csum, csum2, pos); 2194 if (!(len -= copy)) 2195 return csum; 2196 offset += copy; 2197 to += copy; 2198 pos += copy; 2199 } 2200 start = end; 2201 } 2202 2203 skb_walk_frags(skb, frag_iter) { 2204 __wsum csum2; 2205 int end; 2206 2207 WARN_ON(start > offset + len); 2208 2209 end = start + frag_iter->len; 2210 if ((copy = end - offset) > 0) { 2211 if (copy > len) 2212 copy = len; 2213 csum2 = skb_copy_and_csum_bits(frag_iter, 2214 offset - start, 2215 to, copy, 0); 2216 csum = csum_block_add(csum, csum2, pos); 2217 if ((len -= copy) == 0) 2218 return csum; 2219 offset += copy; 2220 to += copy; 2221 pos += copy; 2222 } 2223 start = end; 2224 } 2225 BUG_ON(len); 2226 return csum; 2227 } 2228 EXPORT_SYMBOL(skb_copy_and_csum_bits); 2229 2230 /** 2231 * skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy() 2232 * @from: source buffer 2233 * 2234 * Calculates the amount of linear headroom needed in the 'to' skb passed 2235 * into skb_zerocopy(). 2236 */ 2237 unsigned int 2238 skb_zerocopy_headlen(const struct sk_buff *from) 2239 { 2240 unsigned int hlen = 0; 2241 2242 if (!from->head_frag || 2243 skb_headlen(from) < L1_CACHE_BYTES || 2244 skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS) 2245 hlen = skb_headlen(from); 2246 2247 if (skb_has_frag_list(from)) 2248 hlen = from->len; 2249 2250 return hlen; 2251 } 2252 EXPORT_SYMBOL_GPL(skb_zerocopy_headlen); 2253 2254 /** 2255 * skb_zerocopy - Zero copy skb to skb 2256 * @to: destination buffer 2257 * @from: source buffer 2258 * @len: number of bytes to copy from source buffer 2259 * @hlen: size of linear headroom in destination buffer 2260 * 2261 * Copies up to `len` bytes from `from` to `to` by creating references 2262 * to the frags in the source buffer. 2263 * 2264 * The `hlen` as calculated by skb_zerocopy_headlen() specifies the 2265 * headroom in the `to` buffer. 2266 * 2267 * Return value: 2268 * 0: everything is OK 2269 * -ENOMEM: couldn't orphan frags of @from due to lack of memory 2270 * -EFAULT: skb_copy_bits() found some problem with skb geometry 2271 */ 2272 int 2273 skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen) 2274 { 2275 int i, j = 0; 2276 int plen = 0; /* length of skb->head fragment */ 2277 int ret; 2278 struct page *page; 2279 unsigned int offset; 2280 2281 BUG_ON(!from->head_frag && !hlen); 2282 2283 /* dont bother with small payloads */ 2284 if (len <= skb_tailroom(to)) 2285 return skb_copy_bits(from, 0, skb_put(to, len), len); 2286 2287 if (hlen) { 2288 ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen); 2289 if (unlikely(ret)) 2290 return ret; 2291 len -= hlen; 2292 } else { 2293 plen = min_t(int, skb_headlen(from), len); 2294 if (plen) { 2295 page = virt_to_head_page(from->head); 2296 offset = from->data - (unsigned char *)page_address(page); 2297 __skb_fill_page_desc(to, 0, page, offset, plen); 2298 get_page(page); 2299 j = 1; 2300 len -= plen; 2301 } 2302 } 2303 2304 to->truesize += len + plen; 2305 to->len += len + plen; 2306 to->data_len += len + plen; 2307 2308 if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) { 2309 skb_tx_error(from); 2310 return -ENOMEM; 2311 } 2312 2313 for (i = 0; i < skb_shinfo(from)->nr_frags; i++) { 2314 if (!len) 2315 break; 2316 skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i]; 2317 skb_shinfo(to)->frags[j].size = min_t(int, skb_shinfo(to)->frags[j].size, len); 2318 len -= skb_shinfo(to)->frags[j].size; 2319 skb_frag_ref(to, j); 2320 j++; 2321 } 2322 skb_shinfo(to)->nr_frags = j; 2323 2324 return 0; 2325 } 2326 EXPORT_SYMBOL_GPL(skb_zerocopy); 2327 2328 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to) 2329 { 2330 __wsum csum; 2331 long csstart; 2332 2333 if (skb->ip_summed == CHECKSUM_PARTIAL) 2334 csstart = skb_checksum_start_offset(skb); 2335 else 2336 csstart = skb_headlen(skb); 2337 2338 BUG_ON(csstart > skb_headlen(skb)); 2339 2340 skb_copy_from_linear_data(skb, to, csstart); 2341 2342 csum = 0; 2343 if (csstart != skb->len) 2344 csum = skb_copy_and_csum_bits(skb, csstart, to + csstart, 2345 skb->len - csstart, 0); 2346 2347 if (skb->ip_summed == CHECKSUM_PARTIAL) { 2348 long csstuff = csstart + skb->csum_offset; 2349 2350 *((__sum16 *)(to + csstuff)) = csum_fold(csum); 2351 } 2352 } 2353 EXPORT_SYMBOL(skb_copy_and_csum_dev); 2354 2355 /** 2356 * skb_dequeue - remove from the head of the queue 2357 * @list: list to dequeue from 2358 * 2359 * Remove the head of the list. The list lock is taken so the function 2360 * may be used safely with other locking list functions. The head item is 2361 * returned or %NULL if the list is empty. 2362 */ 2363 2364 struct sk_buff *skb_dequeue(struct sk_buff_head *list) 2365 { 2366 unsigned long flags; 2367 struct sk_buff *result; 2368 2369 spin_lock_irqsave(&list->lock, flags); 2370 result = __skb_dequeue(list); 2371 spin_unlock_irqrestore(&list->lock, flags); 2372 return result; 2373 } 2374 EXPORT_SYMBOL(skb_dequeue); 2375 2376 /** 2377 * skb_dequeue_tail - remove from the tail of the queue 2378 * @list: list to dequeue from 2379 * 2380 * Remove the tail of the list. The list lock is taken so the function 2381 * may be used safely with other locking list functions. The tail item is 2382 * returned or %NULL if the list is empty. 2383 */ 2384 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list) 2385 { 2386 unsigned long flags; 2387 struct sk_buff *result; 2388 2389 spin_lock_irqsave(&list->lock, flags); 2390 result = __skb_dequeue_tail(list); 2391 spin_unlock_irqrestore(&list->lock, flags); 2392 return result; 2393 } 2394 EXPORT_SYMBOL(skb_dequeue_tail); 2395 2396 /** 2397 * skb_queue_purge - empty a list 2398 * @list: list to empty 2399 * 2400 * Delete all buffers on an &sk_buff list. Each buffer is removed from 2401 * the list and one reference dropped. This function takes the list 2402 * lock and is atomic with respect to other list locking functions. 2403 */ 2404 void skb_queue_purge(struct sk_buff_head *list) 2405 { 2406 struct sk_buff *skb; 2407 while ((skb = skb_dequeue(list)) != NULL) 2408 kfree_skb(skb); 2409 } 2410 EXPORT_SYMBOL(skb_queue_purge); 2411 2412 /** 2413 * skb_queue_head - queue a buffer at the list head 2414 * @list: list to use 2415 * @newsk: buffer to queue 2416 * 2417 * Queue a buffer at the start of the list. This function takes the 2418 * list lock and can be used safely with other locking &sk_buff functions 2419 * safely. 2420 * 2421 * A buffer cannot be placed on two lists at the same time. 2422 */ 2423 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk) 2424 { 2425 unsigned long flags; 2426 2427 spin_lock_irqsave(&list->lock, flags); 2428 __skb_queue_head(list, newsk); 2429 spin_unlock_irqrestore(&list->lock, flags); 2430 } 2431 EXPORT_SYMBOL(skb_queue_head); 2432 2433 /** 2434 * skb_queue_tail - queue a buffer at the list tail 2435 * @list: list to use 2436 * @newsk: buffer to queue 2437 * 2438 * Queue a buffer at the tail of the list. This function takes the 2439 * list lock and can be used safely with other locking &sk_buff functions 2440 * safely. 2441 * 2442 * A buffer cannot be placed on two lists at the same time. 2443 */ 2444 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk) 2445 { 2446 unsigned long flags; 2447 2448 spin_lock_irqsave(&list->lock, flags); 2449 __skb_queue_tail(list, newsk); 2450 spin_unlock_irqrestore(&list->lock, flags); 2451 } 2452 EXPORT_SYMBOL(skb_queue_tail); 2453 2454 /** 2455 * skb_unlink - remove a buffer from a list 2456 * @skb: buffer to remove 2457 * @list: list to use 2458 * 2459 * Remove a packet from a list. The list locks are taken and this 2460 * function is atomic with respect to other list locked calls 2461 * 2462 * You must know what list the SKB is on. 2463 */ 2464 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list) 2465 { 2466 unsigned long flags; 2467 2468 spin_lock_irqsave(&list->lock, flags); 2469 __skb_unlink(skb, list); 2470 spin_unlock_irqrestore(&list->lock, flags); 2471 } 2472 EXPORT_SYMBOL(skb_unlink); 2473 2474 /** 2475 * skb_append - append a buffer 2476 * @old: buffer to insert after 2477 * @newsk: buffer to insert 2478 * @list: list to use 2479 * 2480 * Place a packet after a given packet in a list. The list locks are taken 2481 * and this function is atomic with respect to other list locked calls. 2482 * A buffer cannot be placed on two lists at the same time. 2483 */ 2484 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list) 2485 { 2486 unsigned long flags; 2487 2488 spin_lock_irqsave(&list->lock, flags); 2489 __skb_queue_after(list, old, newsk); 2490 spin_unlock_irqrestore(&list->lock, flags); 2491 } 2492 EXPORT_SYMBOL(skb_append); 2493 2494 /** 2495 * skb_insert - insert a buffer 2496 * @old: buffer to insert before 2497 * @newsk: buffer to insert 2498 * @list: list to use 2499 * 2500 * Place a packet before a given packet in a list. The list locks are 2501 * taken and this function is atomic with respect to other list locked 2502 * calls. 2503 * 2504 * A buffer cannot be placed on two lists at the same time. 2505 */ 2506 void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list) 2507 { 2508 unsigned long flags; 2509 2510 spin_lock_irqsave(&list->lock, flags); 2511 __skb_insert(newsk, old->prev, old, list); 2512 spin_unlock_irqrestore(&list->lock, flags); 2513 } 2514 EXPORT_SYMBOL(skb_insert); 2515 2516 static inline void skb_split_inside_header(struct sk_buff *skb, 2517 struct sk_buff* skb1, 2518 const u32 len, const int pos) 2519 { 2520 int i; 2521 2522 skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len), 2523 pos - len); 2524 /* And move data appendix as is. */ 2525 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 2526 skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i]; 2527 2528 skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags; 2529 skb_shinfo(skb)->nr_frags = 0; 2530 skb1->data_len = skb->data_len; 2531 skb1->len += skb1->data_len; 2532 skb->data_len = 0; 2533 skb->len = len; 2534 skb_set_tail_pointer(skb, len); 2535 } 2536 2537 static inline void skb_split_no_header(struct sk_buff *skb, 2538 struct sk_buff* skb1, 2539 const u32 len, int pos) 2540 { 2541 int i, k = 0; 2542 const int nfrags = skb_shinfo(skb)->nr_frags; 2543 2544 skb_shinfo(skb)->nr_frags = 0; 2545 skb1->len = skb1->data_len = skb->len - len; 2546 skb->len = len; 2547 skb->data_len = len - pos; 2548 2549 for (i = 0; i < nfrags; i++) { 2550 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 2551 2552 if (pos + size > len) { 2553 skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i]; 2554 2555 if (pos < len) { 2556 /* Split frag. 2557 * We have two variants in this case: 2558 * 1. Move all the frag to the second 2559 * part, if it is possible. F.e. 2560 * this approach is mandatory for TUX, 2561 * where splitting is expensive. 2562 * 2. Split is accurately. We make this. 2563 */ 2564 skb_frag_ref(skb, i); 2565 skb_shinfo(skb1)->frags[0].page_offset += len - pos; 2566 skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos); 2567 skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos); 2568 skb_shinfo(skb)->nr_frags++; 2569 } 2570 k++; 2571 } else 2572 skb_shinfo(skb)->nr_frags++; 2573 pos += size; 2574 } 2575 skb_shinfo(skb1)->nr_frags = k; 2576 } 2577 2578 /** 2579 * skb_split - Split fragmented skb to two parts at length len. 2580 * @skb: the buffer to split 2581 * @skb1: the buffer to receive the second part 2582 * @len: new length for skb 2583 */ 2584 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len) 2585 { 2586 int pos = skb_headlen(skb); 2587 2588 skb_shinfo(skb1)->tx_flags = skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG; 2589 if (len < pos) /* Split line is inside header. */ 2590 skb_split_inside_header(skb, skb1, len, pos); 2591 else /* Second chunk has no header, nothing to copy. */ 2592 skb_split_no_header(skb, skb1, len, pos); 2593 } 2594 EXPORT_SYMBOL(skb_split); 2595 2596 /* Shifting from/to a cloned skb is a no-go. 2597 * 2598 * Caller cannot keep skb_shinfo related pointers past calling here! 2599 */ 2600 static int skb_prepare_for_shift(struct sk_buff *skb) 2601 { 2602 return skb_cloned(skb) && pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 2603 } 2604 2605 /** 2606 * skb_shift - Shifts paged data partially from skb to another 2607 * @tgt: buffer into which tail data gets added 2608 * @skb: buffer from which the paged data comes from 2609 * @shiftlen: shift up to this many bytes 2610 * 2611 * Attempts to shift up to shiftlen worth of bytes, which may be less than 2612 * the length of the skb, from skb to tgt. Returns number bytes shifted. 2613 * It's up to caller to free skb if everything was shifted. 2614 * 2615 * If @tgt runs out of frags, the whole operation is aborted. 2616 * 2617 * Skb cannot include anything else but paged data while tgt is allowed 2618 * to have non-paged data as well. 2619 * 2620 * TODO: full sized shift could be optimized but that would need 2621 * specialized skb free'er to handle frags without up-to-date nr_frags. 2622 */ 2623 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen) 2624 { 2625 int from, to, merge, todo; 2626 struct skb_frag_struct *fragfrom, *fragto; 2627 2628 BUG_ON(shiftlen > skb->len); 2629 BUG_ON(skb_headlen(skb)); /* Would corrupt stream */ 2630 2631 todo = shiftlen; 2632 from = 0; 2633 to = skb_shinfo(tgt)->nr_frags; 2634 fragfrom = &skb_shinfo(skb)->frags[from]; 2635 2636 /* Actual merge is delayed until the point when we know we can 2637 * commit all, so that we don't have to undo partial changes 2638 */ 2639 if (!to || 2640 !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom), 2641 fragfrom->page_offset)) { 2642 merge = -1; 2643 } else { 2644 merge = to - 1; 2645 2646 todo -= skb_frag_size(fragfrom); 2647 if (todo < 0) { 2648 if (skb_prepare_for_shift(skb) || 2649 skb_prepare_for_shift(tgt)) 2650 return 0; 2651 2652 /* All previous frag pointers might be stale! */ 2653 fragfrom = &skb_shinfo(skb)->frags[from]; 2654 fragto = &skb_shinfo(tgt)->frags[merge]; 2655 2656 skb_frag_size_add(fragto, shiftlen); 2657 skb_frag_size_sub(fragfrom, shiftlen); 2658 fragfrom->page_offset += shiftlen; 2659 2660 goto onlymerged; 2661 } 2662 2663 from++; 2664 } 2665 2666 /* Skip full, not-fitting skb to avoid expensive operations */ 2667 if ((shiftlen == skb->len) && 2668 (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to)) 2669 return 0; 2670 2671 if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt)) 2672 return 0; 2673 2674 while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) { 2675 if (to == MAX_SKB_FRAGS) 2676 return 0; 2677 2678 fragfrom = &skb_shinfo(skb)->frags[from]; 2679 fragto = &skb_shinfo(tgt)->frags[to]; 2680 2681 if (todo >= skb_frag_size(fragfrom)) { 2682 *fragto = *fragfrom; 2683 todo -= skb_frag_size(fragfrom); 2684 from++; 2685 to++; 2686 2687 } else { 2688 __skb_frag_ref(fragfrom); 2689 fragto->page = fragfrom->page; 2690 fragto->page_offset = fragfrom->page_offset; 2691 skb_frag_size_set(fragto, todo); 2692 2693 fragfrom->page_offset += todo; 2694 skb_frag_size_sub(fragfrom, todo); 2695 todo = 0; 2696 2697 to++; 2698 break; 2699 } 2700 } 2701 2702 /* Ready to "commit" this state change to tgt */ 2703 skb_shinfo(tgt)->nr_frags = to; 2704 2705 if (merge >= 0) { 2706 fragfrom = &skb_shinfo(skb)->frags[0]; 2707 fragto = &skb_shinfo(tgt)->frags[merge]; 2708 2709 skb_frag_size_add(fragto, skb_frag_size(fragfrom)); 2710 __skb_frag_unref(fragfrom); 2711 } 2712 2713 /* Reposition in the original skb */ 2714 to = 0; 2715 while (from < skb_shinfo(skb)->nr_frags) 2716 skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++]; 2717 skb_shinfo(skb)->nr_frags = to; 2718 2719 BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags); 2720 2721 onlymerged: 2722 /* Most likely the tgt won't ever need its checksum anymore, skb on 2723 * the other hand might need it if it needs to be resent 2724 */ 2725 tgt->ip_summed = CHECKSUM_PARTIAL; 2726 skb->ip_summed = CHECKSUM_PARTIAL; 2727 2728 /* Yak, is it really working this way? Some helper please? */ 2729 skb->len -= shiftlen; 2730 skb->data_len -= shiftlen; 2731 skb->truesize -= shiftlen; 2732 tgt->len += shiftlen; 2733 tgt->data_len += shiftlen; 2734 tgt->truesize += shiftlen; 2735 2736 return shiftlen; 2737 } 2738 2739 /** 2740 * skb_prepare_seq_read - Prepare a sequential read of skb data 2741 * @skb: the buffer to read 2742 * @from: lower offset of data to be read 2743 * @to: upper offset of data to be read 2744 * @st: state variable 2745 * 2746 * Initializes the specified state variable. Must be called before 2747 * invoking skb_seq_read() for the first time. 2748 */ 2749 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from, 2750 unsigned int to, struct skb_seq_state *st) 2751 { 2752 st->lower_offset = from; 2753 st->upper_offset = to; 2754 st->root_skb = st->cur_skb = skb; 2755 st->frag_idx = st->stepped_offset = 0; 2756 st->frag_data = NULL; 2757 } 2758 EXPORT_SYMBOL(skb_prepare_seq_read); 2759 2760 /** 2761 * skb_seq_read - Sequentially read skb data 2762 * @consumed: number of bytes consumed by the caller so far 2763 * @data: destination pointer for data to be returned 2764 * @st: state variable 2765 * 2766 * Reads a block of skb data at @consumed relative to the 2767 * lower offset specified to skb_prepare_seq_read(). Assigns 2768 * the head of the data block to @data and returns the length 2769 * of the block or 0 if the end of the skb data or the upper 2770 * offset has been reached. 2771 * 2772 * The caller is not required to consume all of the data 2773 * returned, i.e. @consumed is typically set to the number 2774 * of bytes already consumed and the next call to 2775 * skb_seq_read() will return the remaining part of the block. 2776 * 2777 * Note 1: The size of each block of data returned can be arbitrary, 2778 * this limitation is the cost for zerocopy sequential 2779 * reads of potentially non linear data. 2780 * 2781 * Note 2: Fragment lists within fragments are not implemented 2782 * at the moment, state->root_skb could be replaced with 2783 * a stack for this purpose. 2784 */ 2785 unsigned int skb_seq_read(unsigned int consumed, const u8 **data, 2786 struct skb_seq_state *st) 2787 { 2788 unsigned int block_limit, abs_offset = consumed + st->lower_offset; 2789 skb_frag_t *frag; 2790 2791 if (unlikely(abs_offset >= st->upper_offset)) { 2792 if (st->frag_data) { 2793 kunmap_atomic(st->frag_data); 2794 st->frag_data = NULL; 2795 } 2796 return 0; 2797 } 2798 2799 next_skb: 2800 block_limit = skb_headlen(st->cur_skb) + st->stepped_offset; 2801 2802 if (abs_offset < block_limit && !st->frag_data) { 2803 *data = st->cur_skb->data + (abs_offset - st->stepped_offset); 2804 return block_limit - abs_offset; 2805 } 2806 2807 if (st->frag_idx == 0 && !st->frag_data) 2808 st->stepped_offset += skb_headlen(st->cur_skb); 2809 2810 while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) { 2811 frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx]; 2812 block_limit = skb_frag_size(frag) + st->stepped_offset; 2813 2814 if (abs_offset < block_limit) { 2815 if (!st->frag_data) 2816 st->frag_data = kmap_atomic(skb_frag_page(frag)); 2817 2818 *data = (u8 *) st->frag_data + frag->page_offset + 2819 (abs_offset - st->stepped_offset); 2820 2821 return block_limit - abs_offset; 2822 } 2823 2824 if (st->frag_data) { 2825 kunmap_atomic(st->frag_data); 2826 st->frag_data = NULL; 2827 } 2828 2829 st->frag_idx++; 2830 st->stepped_offset += skb_frag_size(frag); 2831 } 2832 2833 if (st->frag_data) { 2834 kunmap_atomic(st->frag_data); 2835 st->frag_data = NULL; 2836 } 2837 2838 if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) { 2839 st->cur_skb = skb_shinfo(st->root_skb)->frag_list; 2840 st->frag_idx = 0; 2841 goto next_skb; 2842 } else if (st->cur_skb->next) { 2843 st->cur_skb = st->cur_skb->next; 2844 st->frag_idx = 0; 2845 goto next_skb; 2846 } 2847 2848 return 0; 2849 } 2850 EXPORT_SYMBOL(skb_seq_read); 2851 2852 /** 2853 * skb_abort_seq_read - Abort a sequential read of skb data 2854 * @st: state variable 2855 * 2856 * Must be called if skb_seq_read() was not called until it 2857 * returned 0. 2858 */ 2859 void skb_abort_seq_read(struct skb_seq_state *st) 2860 { 2861 if (st->frag_data) 2862 kunmap_atomic(st->frag_data); 2863 } 2864 EXPORT_SYMBOL(skb_abort_seq_read); 2865 2866 #define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb)) 2867 2868 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text, 2869 struct ts_config *conf, 2870 struct ts_state *state) 2871 { 2872 return skb_seq_read(offset, text, TS_SKB_CB(state)); 2873 } 2874 2875 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state) 2876 { 2877 skb_abort_seq_read(TS_SKB_CB(state)); 2878 } 2879 2880 /** 2881 * skb_find_text - Find a text pattern in skb data 2882 * @skb: the buffer to look in 2883 * @from: search offset 2884 * @to: search limit 2885 * @config: textsearch configuration 2886 * 2887 * Finds a pattern in the skb data according to the specified 2888 * textsearch configuration. Use textsearch_next() to retrieve 2889 * subsequent occurrences of the pattern. Returns the offset 2890 * to the first occurrence or UINT_MAX if no match was found. 2891 */ 2892 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from, 2893 unsigned int to, struct ts_config *config) 2894 { 2895 struct ts_state state; 2896 unsigned int ret; 2897 2898 config->get_next_block = skb_ts_get_next_block; 2899 config->finish = skb_ts_finish; 2900 2901 skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state)); 2902 2903 ret = textsearch_find(config, &state); 2904 return (ret <= to - from ? ret : UINT_MAX); 2905 } 2906 EXPORT_SYMBOL(skb_find_text); 2907 2908 /** 2909 * skb_append_datato_frags - append the user data to a skb 2910 * @sk: sock structure 2911 * @skb: skb structure to be appended with user data. 2912 * @getfrag: call back function to be used for getting the user data 2913 * @from: pointer to user message iov 2914 * @length: length of the iov message 2915 * 2916 * Description: This procedure append the user data in the fragment part 2917 * of the skb if any page alloc fails user this procedure returns -ENOMEM 2918 */ 2919 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb, 2920 int (*getfrag)(void *from, char *to, int offset, 2921 int len, int odd, struct sk_buff *skb), 2922 void *from, int length) 2923 { 2924 int frg_cnt = skb_shinfo(skb)->nr_frags; 2925 int copy; 2926 int offset = 0; 2927 int ret; 2928 struct page_frag *pfrag = ¤t->task_frag; 2929 2930 do { 2931 /* Return error if we don't have space for new frag */ 2932 if (frg_cnt >= MAX_SKB_FRAGS) 2933 return -EMSGSIZE; 2934 2935 if (!sk_page_frag_refill(sk, pfrag)) 2936 return -ENOMEM; 2937 2938 /* copy the user data to page */ 2939 copy = min_t(int, length, pfrag->size - pfrag->offset); 2940 2941 ret = getfrag(from, page_address(pfrag->page) + pfrag->offset, 2942 offset, copy, 0, skb); 2943 if (ret < 0) 2944 return -EFAULT; 2945 2946 /* copy was successful so update the size parameters */ 2947 skb_fill_page_desc(skb, frg_cnt, pfrag->page, pfrag->offset, 2948 copy); 2949 frg_cnt++; 2950 pfrag->offset += copy; 2951 get_page(pfrag->page); 2952 2953 skb->truesize += copy; 2954 atomic_add(copy, &sk->sk_wmem_alloc); 2955 skb->len += copy; 2956 skb->data_len += copy; 2957 offset += copy; 2958 length -= copy; 2959 2960 } while (length > 0); 2961 2962 return 0; 2963 } 2964 EXPORT_SYMBOL(skb_append_datato_frags); 2965 2966 /** 2967 * skb_pull_rcsum - pull skb and update receive checksum 2968 * @skb: buffer to update 2969 * @len: length of data pulled 2970 * 2971 * This function performs an skb_pull on the packet and updates 2972 * the CHECKSUM_COMPLETE checksum. It should be used on 2973 * receive path processing instead of skb_pull unless you know 2974 * that the checksum difference is zero (e.g., a valid IP header) 2975 * or you are setting ip_summed to CHECKSUM_NONE. 2976 */ 2977 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len) 2978 { 2979 BUG_ON(len > skb->len); 2980 skb->len -= len; 2981 BUG_ON(skb->len < skb->data_len); 2982 skb_postpull_rcsum(skb, skb->data, len); 2983 return skb->data += len; 2984 } 2985 EXPORT_SYMBOL_GPL(skb_pull_rcsum); 2986 2987 /** 2988 * skb_segment - Perform protocol segmentation on skb. 2989 * @head_skb: buffer to segment 2990 * @features: features for the output path (see dev->features) 2991 * 2992 * This function performs segmentation on the given skb. It returns 2993 * a pointer to the first in a list of new skbs for the segments. 2994 * In case of error it returns ERR_PTR(err). 2995 */ 2996 struct sk_buff *skb_segment(struct sk_buff *head_skb, 2997 netdev_features_t features) 2998 { 2999 struct sk_buff *segs = NULL; 3000 struct sk_buff *tail = NULL; 3001 struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list; 3002 skb_frag_t *frag = skb_shinfo(head_skb)->frags; 3003 unsigned int mss = skb_shinfo(head_skb)->gso_size; 3004 unsigned int doffset = head_skb->data - skb_mac_header(head_skb); 3005 struct sk_buff *frag_skb = head_skb; 3006 unsigned int offset = doffset; 3007 unsigned int tnl_hlen = skb_tnl_header_len(head_skb); 3008 unsigned int headroom; 3009 unsigned int len; 3010 __be16 proto; 3011 bool csum; 3012 int sg = !!(features & NETIF_F_SG); 3013 int nfrags = skb_shinfo(head_skb)->nr_frags; 3014 int err = -ENOMEM; 3015 int i = 0; 3016 int pos; 3017 int dummy; 3018 3019 __skb_push(head_skb, doffset); 3020 proto = skb_network_protocol(head_skb, &dummy); 3021 if (unlikely(!proto)) 3022 return ERR_PTR(-EINVAL); 3023 3024 csum = !head_skb->encap_hdr_csum && 3025 !!can_checksum_protocol(features, proto); 3026 3027 headroom = skb_headroom(head_skb); 3028 pos = skb_headlen(head_skb); 3029 3030 do { 3031 struct sk_buff *nskb; 3032 skb_frag_t *nskb_frag; 3033 int hsize; 3034 int size; 3035 3036 len = head_skb->len - offset; 3037 if (len > mss) 3038 len = mss; 3039 3040 hsize = skb_headlen(head_skb) - offset; 3041 if (hsize < 0) 3042 hsize = 0; 3043 if (hsize > len || !sg) 3044 hsize = len; 3045 3046 if (!hsize && i >= nfrags && skb_headlen(list_skb) && 3047 (skb_headlen(list_skb) == len || sg)) { 3048 BUG_ON(skb_headlen(list_skb) > len); 3049 3050 i = 0; 3051 nfrags = skb_shinfo(list_skb)->nr_frags; 3052 frag = skb_shinfo(list_skb)->frags; 3053 frag_skb = list_skb; 3054 pos += skb_headlen(list_skb); 3055 3056 while (pos < offset + len) { 3057 BUG_ON(i >= nfrags); 3058 3059 size = skb_frag_size(frag); 3060 if (pos + size > offset + len) 3061 break; 3062 3063 i++; 3064 pos += size; 3065 frag++; 3066 } 3067 3068 nskb = skb_clone(list_skb, GFP_ATOMIC); 3069 list_skb = list_skb->next; 3070 3071 if (unlikely(!nskb)) 3072 goto err; 3073 3074 if (unlikely(pskb_trim(nskb, len))) { 3075 kfree_skb(nskb); 3076 goto err; 3077 } 3078 3079 hsize = skb_end_offset(nskb); 3080 if (skb_cow_head(nskb, doffset + headroom)) { 3081 kfree_skb(nskb); 3082 goto err; 3083 } 3084 3085 nskb->truesize += skb_end_offset(nskb) - hsize; 3086 skb_release_head_state(nskb); 3087 __skb_push(nskb, doffset); 3088 } else { 3089 nskb = __alloc_skb(hsize + doffset + headroom, 3090 GFP_ATOMIC, skb_alloc_rx_flag(head_skb), 3091 NUMA_NO_NODE); 3092 3093 if (unlikely(!nskb)) 3094 goto err; 3095 3096 skb_reserve(nskb, headroom); 3097 __skb_put(nskb, doffset); 3098 } 3099 3100 if (segs) 3101 tail->next = nskb; 3102 else 3103 segs = nskb; 3104 tail = nskb; 3105 3106 __copy_skb_header(nskb, head_skb); 3107 3108 skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom); 3109 skb_reset_mac_len(nskb); 3110 3111 skb_copy_from_linear_data_offset(head_skb, -tnl_hlen, 3112 nskb->data - tnl_hlen, 3113 doffset + tnl_hlen); 3114 3115 if (nskb->len == len + doffset) 3116 goto perform_csum_check; 3117 3118 if (!sg && !nskb->remcsum_offload) { 3119 nskb->ip_summed = CHECKSUM_NONE; 3120 nskb->csum = skb_copy_and_csum_bits(head_skb, offset, 3121 skb_put(nskb, len), 3122 len, 0); 3123 SKB_GSO_CB(nskb)->csum_start = 3124 skb_headroom(nskb) + doffset; 3125 continue; 3126 } 3127 3128 nskb_frag = skb_shinfo(nskb)->frags; 3129 3130 skb_copy_from_linear_data_offset(head_skb, offset, 3131 skb_put(nskb, hsize), hsize); 3132 3133 skb_shinfo(nskb)->tx_flags = skb_shinfo(head_skb)->tx_flags & 3134 SKBTX_SHARED_FRAG; 3135 3136 while (pos < offset + len) { 3137 if (i >= nfrags) { 3138 BUG_ON(skb_headlen(list_skb)); 3139 3140 i = 0; 3141 nfrags = skb_shinfo(list_skb)->nr_frags; 3142 frag = skb_shinfo(list_skb)->frags; 3143 frag_skb = list_skb; 3144 3145 BUG_ON(!nfrags); 3146 3147 list_skb = list_skb->next; 3148 } 3149 3150 if (unlikely(skb_shinfo(nskb)->nr_frags >= 3151 MAX_SKB_FRAGS)) { 3152 net_warn_ratelimited( 3153 "skb_segment: too many frags: %u %u\n", 3154 pos, mss); 3155 goto err; 3156 } 3157 3158 if (unlikely(skb_orphan_frags(frag_skb, GFP_ATOMIC))) 3159 goto err; 3160 3161 *nskb_frag = *frag; 3162 __skb_frag_ref(nskb_frag); 3163 size = skb_frag_size(nskb_frag); 3164 3165 if (pos < offset) { 3166 nskb_frag->page_offset += offset - pos; 3167 skb_frag_size_sub(nskb_frag, offset - pos); 3168 } 3169 3170 skb_shinfo(nskb)->nr_frags++; 3171 3172 if (pos + size <= offset + len) { 3173 i++; 3174 frag++; 3175 pos += size; 3176 } else { 3177 skb_frag_size_sub(nskb_frag, pos + size - (offset + len)); 3178 goto skip_fraglist; 3179 } 3180 3181 nskb_frag++; 3182 } 3183 3184 skip_fraglist: 3185 nskb->data_len = len - hsize; 3186 nskb->len += nskb->data_len; 3187 nskb->truesize += nskb->data_len; 3188 3189 perform_csum_check: 3190 if (!csum && !nskb->remcsum_offload) { 3191 nskb->csum = skb_checksum(nskb, doffset, 3192 nskb->len - doffset, 0); 3193 nskb->ip_summed = CHECKSUM_NONE; 3194 SKB_GSO_CB(nskb)->csum_start = 3195 skb_headroom(nskb) + doffset; 3196 } 3197 } while ((offset += len) < head_skb->len); 3198 3199 /* Some callers want to get the end of the list. 3200 * Put it in segs->prev to avoid walking the list. 3201 * (see validate_xmit_skb_list() for example) 3202 */ 3203 segs->prev = tail; 3204 3205 /* Following permits correct backpressure, for protocols 3206 * using skb_set_owner_w(). 3207 * Idea is to tranfert ownership from head_skb to last segment. 3208 */ 3209 if (head_skb->destructor == sock_wfree) { 3210 swap(tail->truesize, head_skb->truesize); 3211 swap(tail->destructor, head_skb->destructor); 3212 swap(tail->sk, head_skb->sk); 3213 } 3214 return segs; 3215 3216 err: 3217 kfree_skb_list(segs); 3218 return ERR_PTR(err); 3219 } 3220 EXPORT_SYMBOL_GPL(skb_segment); 3221 3222 int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb) 3223 { 3224 struct skb_shared_info *pinfo, *skbinfo = skb_shinfo(skb); 3225 unsigned int offset = skb_gro_offset(skb); 3226 unsigned int headlen = skb_headlen(skb); 3227 unsigned int len = skb_gro_len(skb); 3228 struct sk_buff *lp, *p = *head; 3229 unsigned int delta_truesize; 3230 3231 if (unlikely(p->len + len >= 65536)) 3232 return -E2BIG; 3233 3234 lp = NAPI_GRO_CB(p)->last; 3235 pinfo = skb_shinfo(lp); 3236 3237 if (headlen <= offset) { 3238 skb_frag_t *frag; 3239 skb_frag_t *frag2; 3240 int i = skbinfo->nr_frags; 3241 int nr_frags = pinfo->nr_frags + i; 3242 3243 if (nr_frags > MAX_SKB_FRAGS) 3244 goto merge; 3245 3246 offset -= headlen; 3247 pinfo->nr_frags = nr_frags; 3248 skbinfo->nr_frags = 0; 3249 3250 frag = pinfo->frags + nr_frags; 3251 frag2 = skbinfo->frags + i; 3252 do { 3253 *--frag = *--frag2; 3254 } while (--i); 3255 3256 frag->page_offset += offset; 3257 skb_frag_size_sub(frag, offset); 3258 3259 /* all fragments truesize : remove (head size + sk_buff) */ 3260 delta_truesize = skb->truesize - 3261 SKB_TRUESIZE(skb_end_offset(skb)); 3262 3263 skb->truesize -= skb->data_len; 3264 skb->len -= skb->data_len; 3265 skb->data_len = 0; 3266 3267 NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE; 3268 goto done; 3269 } else if (skb->head_frag) { 3270 int nr_frags = pinfo->nr_frags; 3271 skb_frag_t *frag = pinfo->frags + nr_frags; 3272 struct page *page = virt_to_head_page(skb->head); 3273 unsigned int first_size = headlen - offset; 3274 unsigned int first_offset; 3275 3276 if (nr_frags + 1 + skbinfo->nr_frags > MAX_SKB_FRAGS) 3277 goto merge; 3278 3279 first_offset = skb->data - 3280 (unsigned char *)page_address(page) + 3281 offset; 3282 3283 pinfo->nr_frags = nr_frags + 1 + skbinfo->nr_frags; 3284 3285 frag->page.p = page; 3286 frag->page_offset = first_offset; 3287 skb_frag_size_set(frag, first_size); 3288 3289 memcpy(frag + 1, skbinfo->frags, sizeof(*frag) * skbinfo->nr_frags); 3290 /* We dont need to clear skbinfo->nr_frags here */ 3291 3292 delta_truesize = skb->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff)); 3293 NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE_STOLEN_HEAD; 3294 goto done; 3295 } 3296 3297 merge: 3298 delta_truesize = skb->truesize; 3299 if (offset > headlen) { 3300 unsigned int eat = offset - headlen; 3301 3302 skbinfo->frags[0].page_offset += eat; 3303 skb_frag_size_sub(&skbinfo->frags[0], eat); 3304 skb->data_len -= eat; 3305 skb->len -= eat; 3306 offset = headlen; 3307 } 3308 3309 __skb_pull(skb, offset); 3310 3311 if (NAPI_GRO_CB(p)->last == p) 3312 skb_shinfo(p)->frag_list = skb; 3313 else 3314 NAPI_GRO_CB(p)->last->next = skb; 3315 NAPI_GRO_CB(p)->last = skb; 3316 __skb_header_release(skb); 3317 lp = p; 3318 3319 done: 3320 NAPI_GRO_CB(p)->count++; 3321 p->data_len += len; 3322 p->truesize += delta_truesize; 3323 p->len += len; 3324 if (lp != p) { 3325 lp->data_len += len; 3326 lp->truesize += delta_truesize; 3327 lp->len += len; 3328 } 3329 NAPI_GRO_CB(skb)->same_flow = 1; 3330 return 0; 3331 } 3332 3333 void __init skb_init(void) 3334 { 3335 skbuff_head_cache = kmem_cache_create("skbuff_head_cache", 3336 sizeof(struct sk_buff), 3337 0, 3338 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 3339 NULL); 3340 skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache", 3341 sizeof(struct sk_buff_fclones), 3342 0, 3343 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 3344 NULL); 3345 } 3346 3347 /** 3348 * skb_to_sgvec - Fill a scatter-gather list from a socket buffer 3349 * @skb: Socket buffer containing the buffers to be mapped 3350 * @sg: The scatter-gather list to map into 3351 * @offset: The offset into the buffer's contents to start mapping 3352 * @len: Length of buffer space to be mapped 3353 * 3354 * Fill the specified scatter-gather list with mappings/pointers into a 3355 * region of the buffer space attached to a socket buffer. 3356 */ 3357 static int 3358 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len) 3359 { 3360 int start = skb_headlen(skb); 3361 int i, copy = start - offset; 3362 struct sk_buff *frag_iter; 3363 int elt = 0; 3364 3365 if (copy > 0) { 3366 if (copy > len) 3367 copy = len; 3368 sg_set_buf(sg, skb->data + offset, copy); 3369 elt++; 3370 if ((len -= copy) == 0) 3371 return elt; 3372 offset += copy; 3373 } 3374 3375 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 3376 int end; 3377 3378 WARN_ON(start > offset + len); 3379 3380 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]); 3381 if ((copy = end - offset) > 0) { 3382 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 3383 3384 if (copy > len) 3385 copy = len; 3386 sg_set_page(&sg[elt], skb_frag_page(frag), copy, 3387 frag->page_offset+offset-start); 3388 elt++; 3389 if (!(len -= copy)) 3390 return elt; 3391 offset += copy; 3392 } 3393 start = end; 3394 } 3395 3396 skb_walk_frags(skb, frag_iter) { 3397 int end; 3398 3399 WARN_ON(start > offset + len); 3400 3401 end = start + frag_iter->len; 3402 if ((copy = end - offset) > 0) { 3403 if (copy > len) 3404 copy = len; 3405 elt += __skb_to_sgvec(frag_iter, sg+elt, offset - start, 3406 copy); 3407 if ((len -= copy) == 0) 3408 return elt; 3409 offset += copy; 3410 } 3411 start = end; 3412 } 3413 BUG_ON(len); 3414 return elt; 3415 } 3416 3417 /* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given 3418 * sglist without mark the sg which contain last skb data as the end. 3419 * So the caller can mannipulate sg list as will when padding new data after 3420 * the first call without calling sg_unmark_end to expend sg list. 3421 * 3422 * Scenario to use skb_to_sgvec_nomark: 3423 * 1. sg_init_table 3424 * 2. skb_to_sgvec_nomark(payload1) 3425 * 3. skb_to_sgvec_nomark(payload2) 3426 * 3427 * This is equivalent to: 3428 * 1. sg_init_table 3429 * 2. skb_to_sgvec(payload1) 3430 * 3. sg_unmark_end 3431 * 4. skb_to_sgvec(payload2) 3432 * 3433 * When mapping mutilple payload conditionally, skb_to_sgvec_nomark 3434 * is more preferable. 3435 */ 3436 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg, 3437 int offset, int len) 3438 { 3439 return __skb_to_sgvec(skb, sg, offset, len); 3440 } 3441 EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark); 3442 3443 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len) 3444 { 3445 int nsg = __skb_to_sgvec(skb, sg, offset, len); 3446 3447 sg_mark_end(&sg[nsg - 1]); 3448 3449 return nsg; 3450 } 3451 EXPORT_SYMBOL_GPL(skb_to_sgvec); 3452 3453 /** 3454 * skb_cow_data - Check that a socket buffer's data buffers are writable 3455 * @skb: The socket buffer to check. 3456 * @tailbits: Amount of trailing space to be added 3457 * @trailer: Returned pointer to the skb where the @tailbits space begins 3458 * 3459 * Make sure that the data buffers attached to a socket buffer are 3460 * writable. If they are not, private copies are made of the data buffers 3461 * and the socket buffer is set to use these instead. 3462 * 3463 * If @tailbits is given, make sure that there is space to write @tailbits 3464 * bytes of data beyond current end of socket buffer. @trailer will be 3465 * set to point to the skb in which this space begins. 3466 * 3467 * The number of scatterlist elements required to completely map the 3468 * COW'd and extended socket buffer will be returned. 3469 */ 3470 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer) 3471 { 3472 int copyflag; 3473 int elt; 3474 struct sk_buff *skb1, **skb_p; 3475 3476 /* If skb is cloned or its head is paged, reallocate 3477 * head pulling out all the pages (pages are considered not writable 3478 * at the moment even if they are anonymous). 3479 */ 3480 if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) && 3481 __pskb_pull_tail(skb, skb_pagelen(skb)-skb_headlen(skb)) == NULL) 3482 return -ENOMEM; 3483 3484 /* Easy case. Most of packets will go this way. */ 3485 if (!skb_has_frag_list(skb)) { 3486 /* A little of trouble, not enough of space for trailer. 3487 * This should not happen, when stack is tuned to generate 3488 * good frames. OK, on miss we reallocate and reserve even more 3489 * space, 128 bytes is fair. */ 3490 3491 if (skb_tailroom(skb) < tailbits && 3492 pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC)) 3493 return -ENOMEM; 3494 3495 /* Voila! */ 3496 *trailer = skb; 3497 return 1; 3498 } 3499 3500 /* Misery. We are in troubles, going to mincer fragments... */ 3501 3502 elt = 1; 3503 skb_p = &skb_shinfo(skb)->frag_list; 3504 copyflag = 0; 3505 3506 while ((skb1 = *skb_p) != NULL) { 3507 int ntail = 0; 3508 3509 /* The fragment is partially pulled by someone, 3510 * this can happen on input. Copy it and everything 3511 * after it. */ 3512 3513 if (skb_shared(skb1)) 3514 copyflag = 1; 3515 3516 /* If the skb is the last, worry about trailer. */ 3517 3518 if (skb1->next == NULL && tailbits) { 3519 if (skb_shinfo(skb1)->nr_frags || 3520 skb_has_frag_list(skb1) || 3521 skb_tailroom(skb1) < tailbits) 3522 ntail = tailbits + 128; 3523 } 3524 3525 if (copyflag || 3526 skb_cloned(skb1) || 3527 ntail || 3528 skb_shinfo(skb1)->nr_frags || 3529 skb_has_frag_list(skb1)) { 3530 struct sk_buff *skb2; 3531 3532 /* Fuck, we are miserable poor guys... */ 3533 if (ntail == 0) 3534 skb2 = skb_copy(skb1, GFP_ATOMIC); 3535 else 3536 skb2 = skb_copy_expand(skb1, 3537 skb_headroom(skb1), 3538 ntail, 3539 GFP_ATOMIC); 3540 if (unlikely(skb2 == NULL)) 3541 return -ENOMEM; 3542 3543 if (skb1->sk) 3544 skb_set_owner_w(skb2, skb1->sk); 3545 3546 /* Looking around. Are we still alive? 3547 * OK, link new skb, drop old one */ 3548 3549 skb2->next = skb1->next; 3550 *skb_p = skb2; 3551 kfree_skb(skb1); 3552 skb1 = skb2; 3553 } 3554 elt++; 3555 *trailer = skb1; 3556 skb_p = &skb1->next; 3557 } 3558 3559 return elt; 3560 } 3561 EXPORT_SYMBOL_GPL(skb_cow_data); 3562 3563 static void sock_rmem_free(struct sk_buff *skb) 3564 { 3565 struct sock *sk = skb->sk; 3566 3567 atomic_sub(skb->truesize, &sk->sk_rmem_alloc); 3568 } 3569 3570 /* 3571 * Note: We dont mem charge error packets (no sk_forward_alloc changes) 3572 */ 3573 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb) 3574 { 3575 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >= 3576 (unsigned int)sk->sk_rcvbuf) 3577 return -ENOMEM; 3578 3579 skb_orphan(skb); 3580 skb->sk = sk; 3581 skb->destructor = sock_rmem_free; 3582 atomic_add(skb->truesize, &sk->sk_rmem_alloc); 3583 3584 /* before exiting rcu section, make sure dst is refcounted */ 3585 skb_dst_force(skb); 3586 3587 skb_queue_tail(&sk->sk_error_queue, skb); 3588 if (!sock_flag(sk, SOCK_DEAD)) 3589 sk->sk_data_ready(sk); 3590 return 0; 3591 } 3592 EXPORT_SYMBOL(sock_queue_err_skb); 3593 3594 struct sk_buff *sock_dequeue_err_skb(struct sock *sk) 3595 { 3596 struct sk_buff_head *q = &sk->sk_error_queue; 3597 struct sk_buff *skb, *skb_next; 3598 unsigned long flags; 3599 int err = 0; 3600 3601 spin_lock_irqsave(&q->lock, flags); 3602 skb = __skb_dequeue(q); 3603 if (skb && (skb_next = skb_peek(q))) 3604 err = SKB_EXT_ERR(skb_next)->ee.ee_errno; 3605 spin_unlock_irqrestore(&q->lock, flags); 3606 3607 sk->sk_err = err; 3608 if (err) 3609 sk->sk_error_report(sk); 3610 3611 return skb; 3612 } 3613 EXPORT_SYMBOL(sock_dequeue_err_skb); 3614 3615 /** 3616 * skb_clone_sk - create clone of skb, and take reference to socket 3617 * @skb: the skb to clone 3618 * 3619 * This function creates a clone of a buffer that holds a reference on 3620 * sk_refcnt. Buffers created via this function are meant to be 3621 * returned using sock_queue_err_skb, or free via kfree_skb. 3622 * 3623 * When passing buffers allocated with this function to sock_queue_err_skb 3624 * it is necessary to wrap the call with sock_hold/sock_put in order to 3625 * prevent the socket from being released prior to being enqueued on 3626 * the sk_error_queue. 3627 */ 3628 struct sk_buff *skb_clone_sk(struct sk_buff *skb) 3629 { 3630 struct sock *sk = skb->sk; 3631 struct sk_buff *clone; 3632 3633 if (!sk || !atomic_inc_not_zero(&sk->sk_refcnt)) 3634 return NULL; 3635 3636 clone = skb_clone(skb, GFP_ATOMIC); 3637 if (!clone) { 3638 sock_put(sk); 3639 return NULL; 3640 } 3641 3642 clone->sk = sk; 3643 clone->destructor = sock_efree; 3644 3645 return clone; 3646 } 3647 EXPORT_SYMBOL(skb_clone_sk); 3648 3649 static void __skb_complete_tx_timestamp(struct sk_buff *skb, 3650 struct sock *sk, 3651 int tstype) 3652 { 3653 struct sock_exterr_skb *serr; 3654 int err; 3655 3656 serr = SKB_EXT_ERR(skb); 3657 memset(serr, 0, sizeof(*serr)); 3658 serr->ee.ee_errno = ENOMSG; 3659 serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING; 3660 serr->ee.ee_info = tstype; 3661 if (sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID) { 3662 serr->ee.ee_data = skb_shinfo(skb)->tskey; 3663 if (sk->sk_protocol == IPPROTO_TCP) 3664 serr->ee.ee_data -= sk->sk_tskey; 3665 } 3666 3667 err = sock_queue_err_skb(sk, skb); 3668 3669 if (err) 3670 kfree_skb(skb); 3671 } 3672 3673 static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly) 3674 { 3675 bool ret; 3676 3677 if (likely(sysctl_tstamp_allow_data || tsonly)) 3678 return true; 3679 3680 read_lock_bh(&sk->sk_callback_lock); 3681 ret = sk->sk_socket && sk->sk_socket->file && 3682 file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW); 3683 read_unlock_bh(&sk->sk_callback_lock); 3684 return ret; 3685 } 3686 3687 void skb_complete_tx_timestamp(struct sk_buff *skb, 3688 struct skb_shared_hwtstamps *hwtstamps) 3689 { 3690 struct sock *sk = skb->sk; 3691 3692 if (!skb_may_tx_timestamp(sk, false)) 3693 return; 3694 3695 /* take a reference to prevent skb_orphan() from freeing the socket */ 3696 sock_hold(sk); 3697 3698 *skb_hwtstamps(skb) = *hwtstamps; 3699 __skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND); 3700 3701 sock_put(sk); 3702 } 3703 EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp); 3704 3705 void __skb_tstamp_tx(struct sk_buff *orig_skb, 3706 struct skb_shared_hwtstamps *hwtstamps, 3707 struct sock *sk, int tstype) 3708 { 3709 struct sk_buff *skb; 3710 bool tsonly; 3711 3712 if (!sk) 3713 return; 3714 3715 tsonly = sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TSONLY; 3716 if (!skb_may_tx_timestamp(sk, tsonly)) 3717 return; 3718 3719 if (tsonly) 3720 skb = alloc_skb(0, GFP_ATOMIC); 3721 else 3722 skb = skb_clone(orig_skb, GFP_ATOMIC); 3723 if (!skb) 3724 return; 3725 3726 if (tsonly) { 3727 skb_shinfo(skb)->tx_flags = skb_shinfo(orig_skb)->tx_flags; 3728 skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey; 3729 } 3730 3731 if (hwtstamps) 3732 *skb_hwtstamps(skb) = *hwtstamps; 3733 else 3734 skb->tstamp = ktime_get_real(); 3735 3736 __skb_complete_tx_timestamp(skb, sk, tstype); 3737 } 3738 EXPORT_SYMBOL_GPL(__skb_tstamp_tx); 3739 3740 void skb_tstamp_tx(struct sk_buff *orig_skb, 3741 struct skb_shared_hwtstamps *hwtstamps) 3742 { 3743 return __skb_tstamp_tx(orig_skb, hwtstamps, orig_skb->sk, 3744 SCM_TSTAMP_SND); 3745 } 3746 EXPORT_SYMBOL_GPL(skb_tstamp_tx); 3747 3748 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked) 3749 { 3750 struct sock *sk = skb->sk; 3751 struct sock_exterr_skb *serr; 3752 int err; 3753 3754 skb->wifi_acked_valid = 1; 3755 skb->wifi_acked = acked; 3756 3757 serr = SKB_EXT_ERR(skb); 3758 memset(serr, 0, sizeof(*serr)); 3759 serr->ee.ee_errno = ENOMSG; 3760 serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS; 3761 3762 /* take a reference to prevent skb_orphan() from freeing the socket */ 3763 sock_hold(sk); 3764 3765 err = sock_queue_err_skb(sk, skb); 3766 if (err) 3767 kfree_skb(skb); 3768 3769 sock_put(sk); 3770 } 3771 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack); 3772 3773 /** 3774 * skb_partial_csum_set - set up and verify partial csum values for packet 3775 * @skb: the skb to set 3776 * @start: the number of bytes after skb->data to start checksumming. 3777 * @off: the offset from start to place the checksum. 3778 * 3779 * For untrusted partially-checksummed packets, we need to make sure the values 3780 * for skb->csum_start and skb->csum_offset are valid so we don't oops. 3781 * 3782 * This function checks and sets those values and skb->ip_summed: if this 3783 * returns false you should drop the packet. 3784 */ 3785 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off) 3786 { 3787 if (unlikely(start > skb_headlen(skb)) || 3788 unlikely((int)start + off > skb_headlen(skb) - 2)) { 3789 net_warn_ratelimited("bad partial csum: csum=%u/%u len=%u\n", 3790 start, off, skb_headlen(skb)); 3791 return false; 3792 } 3793 skb->ip_summed = CHECKSUM_PARTIAL; 3794 skb->csum_start = skb_headroom(skb) + start; 3795 skb->csum_offset = off; 3796 skb_set_transport_header(skb, start); 3797 return true; 3798 } 3799 EXPORT_SYMBOL_GPL(skb_partial_csum_set); 3800 3801 static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len, 3802 unsigned int max) 3803 { 3804 if (skb_headlen(skb) >= len) 3805 return 0; 3806 3807 /* If we need to pullup then pullup to the max, so we 3808 * won't need to do it again. 3809 */ 3810 if (max > skb->len) 3811 max = skb->len; 3812 3813 if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL) 3814 return -ENOMEM; 3815 3816 if (skb_headlen(skb) < len) 3817 return -EPROTO; 3818 3819 return 0; 3820 } 3821 3822 #define MAX_TCP_HDR_LEN (15 * 4) 3823 3824 static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb, 3825 typeof(IPPROTO_IP) proto, 3826 unsigned int off) 3827 { 3828 switch (proto) { 3829 int err; 3830 3831 case IPPROTO_TCP: 3832 err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr), 3833 off + MAX_TCP_HDR_LEN); 3834 if (!err && !skb_partial_csum_set(skb, off, 3835 offsetof(struct tcphdr, 3836 check))) 3837 err = -EPROTO; 3838 return err ? ERR_PTR(err) : &tcp_hdr(skb)->check; 3839 3840 case IPPROTO_UDP: 3841 err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr), 3842 off + sizeof(struct udphdr)); 3843 if (!err && !skb_partial_csum_set(skb, off, 3844 offsetof(struct udphdr, 3845 check))) 3846 err = -EPROTO; 3847 return err ? ERR_PTR(err) : &udp_hdr(skb)->check; 3848 } 3849 3850 return ERR_PTR(-EPROTO); 3851 } 3852 3853 /* This value should be large enough to cover a tagged ethernet header plus 3854 * maximally sized IP and TCP or UDP headers. 3855 */ 3856 #define MAX_IP_HDR_LEN 128 3857 3858 static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate) 3859 { 3860 unsigned int off; 3861 bool fragment; 3862 __sum16 *csum; 3863 int err; 3864 3865 fragment = false; 3866 3867 err = skb_maybe_pull_tail(skb, 3868 sizeof(struct iphdr), 3869 MAX_IP_HDR_LEN); 3870 if (err < 0) 3871 goto out; 3872 3873 if (ip_hdr(skb)->frag_off & htons(IP_OFFSET | IP_MF)) 3874 fragment = true; 3875 3876 off = ip_hdrlen(skb); 3877 3878 err = -EPROTO; 3879 3880 if (fragment) 3881 goto out; 3882 3883 csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off); 3884 if (IS_ERR(csum)) 3885 return PTR_ERR(csum); 3886 3887 if (recalculate) 3888 *csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr, 3889 ip_hdr(skb)->daddr, 3890 skb->len - off, 3891 ip_hdr(skb)->protocol, 0); 3892 err = 0; 3893 3894 out: 3895 return err; 3896 } 3897 3898 /* This value should be large enough to cover a tagged ethernet header plus 3899 * an IPv6 header, all options, and a maximal TCP or UDP header. 3900 */ 3901 #define MAX_IPV6_HDR_LEN 256 3902 3903 #define OPT_HDR(type, skb, off) \ 3904 (type *)(skb_network_header(skb) + (off)) 3905 3906 static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate) 3907 { 3908 int err; 3909 u8 nexthdr; 3910 unsigned int off; 3911 unsigned int len; 3912 bool fragment; 3913 bool done; 3914 __sum16 *csum; 3915 3916 fragment = false; 3917 done = false; 3918 3919 off = sizeof(struct ipv6hdr); 3920 3921 err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN); 3922 if (err < 0) 3923 goto out; 3924 3925 nexthdr = ipv6_hdr(skb)->nexthdr; 3926 3927 len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len); 3928 while (off <= len && !done) { 3929 switch (nexthdr) { 3930 case IPPROTO_DSTOPTS: 3931 case IPPROTO_HOPOPTS: 3932 case IPPROTO_ROUTING: { 3933 struct ipv6_opt_hdr *hp; 3934 3935 err = skb_maybe_pull_tail(skb, 3936 off + 3937 sizeof(struct ipv6_opt_hdr), 3938 MAX_IPV6_HDR_LEN); 3939 if (err < 0) 3940 goto out; 3941 3942 hp = OPT_HDR(struct ipv6_opt_hdr, skb, off); 3943 nexthdr = hp->nexthdr; 3944 off += ipv6_optlen(hp); 3945 break; 3946 } 3947 case IPPROTO_AH: { 3948 struct ip_auth_hdr *hp; 3949 3950 err = skb_maybe_pull_tail(skb, 3951 off + 3952 sizeof(struct ip_auth_hdr), 3953 MAX_IPV6_HDR_LEN); 3954 if (err < 0) 3955 goto out; 3956 3957 hp = OPT_HDR(struct ip_auth_hdr, skb, off); 3958 nexthdr = hp->nexthdr; 3959 off += ipv6_authlen(hp); 3960 break; 3961 } 3962 case IPPROTO_FRAGMENT: { 3963 struct frag_hdr *hp; 3964 3965 err = skb_maybe_pull_tail(skb, 3966 off + 3967 sizeof(struct frag_hdr), 3968 MAX_IPV6_HDR_LEN); 3969 if (err < 0) 3970 goto out; 3971 3972 hp = OPT_HDR(struct frag_hdr, skb, off); 3973 3974 if (hp->frag_off & htons(IP6_OFFSET | IP6_MF)) 3975 fragment = true; 3976 3977 nexthdr = hp->nexthdr; 3978 off += sizeof(struct frag_hdr); 3979 break; 3980 } 3981 default: 3982 done = true; 3983 break; 3984 } 3985 } 3986 3987 err = -EPROTO; 3988 3989 if (!done || fragment) 3990 goto out; 3991 3992 csum = skb_checksum_setup_ip(skb, nexthdr, off); 3993 if (IS_ERR(csum)) 3994 return PTR_ERR(csum); 3995 3996 if (recalculate) 3997 *csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr, 3998 &ipv6_hdr(skb)->daddr, 3999 skb->len - off, nexthdr, 0); 4000 err = 0; 4001 4002 out: 4003 return err; 4004 } 4005 4006 /** 4007 * skb_checksum_setup - set up partial checksum offset 4008 * @skb: the skb to set up 4009 * @recalculate: if true the pseudo-header checksum will be recalculated 4010 */ 4011 int skb_checksum_setup(struct sk_buff *skb, bool recalculate) 4012 { 4013 int err; 4014 4015 switch (skb->protocol) { 4016 case htons(ETH_P_IP): 4017 err = skb_checksum_setup_ipv4(skb, recalculate); 4018 break; 4019 4020 case htons(ETH_P_IPV6): 4021 err = skb_checksum_setup_ipv6(skb, recalculate); 4022 break; 4023 4024 default: 4025 err = -EPROTO; 4026 break; 4027 } 4028 4029 return err; 4030 } 4031 EXPORT_SYMBOL(skb_checksum_setup); 4032 4033 void __skb_warn_lro_forwarding(const struct sk_buff *skb) 4034 { 4035 net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n", 4036 skb->dev->name); 4037 } 4038 EXPORT_SYMBOL(__skb_warn_lro_forwarding); 4039 4040 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen) 4041 { 4042 if (head_stolen) { 4043 skb_release_head_state(skb); 4044 kmem_cache_free(skbuff_head_cache, skb); 4045 } else { 4046 __kfree_skb(skb); 4047 } 4048 } 4049 EXPORT_SYMBOL(kfree_skb_partial); 4050 4051 /** 4052 * skb_try_coalesce - try to merge skb to prior one 4053 * @to: prior buffer 4054 * @from: buffer to add 4055 * @fragstolen: pointer to boolean 4056 * @delta_truesize: how much more was allocated than was requested 4057 */ 4058 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from, 4059 bool *fragstolen, int *delta_truesize) 4060 { 4061 int i, delta, len = from->len; 4062 4063 *fragstolen = false; 4064 4065 if (skb_cloned(to)) 4066 return false; 4067 4068 if (len <= skb_tailroom(to)) { 4069 if (len) 4070 BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len)); 4071 *delta_truesize = 0; 4072 return true; 4073 } 4074 4075 if (skb_has_frag_list(to) || skb_has_frag_list(from)) 4076 return false; 4077 4078 if (skb_headlen(from) != 0) { 4079 struct page *page; 4080 unsigned int offset; 4081 4082 if (skb_shinfo(to)->nr_frags + 4083 skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS) 4084 return false; 4085 4086 if (skb_head_is_locked(from)) 4087 return false; 4088 4089 delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff)); 4090 4091 page = virt_to_head_page(from->head); 4092 offset = from->data - (unsigned char *)page_address(page); 4093 4094 skb_fill_page_desc(to, skb_shinfo(to)->nr_frags, 4095 page, offset, skb_headlen(from)); 4096 *fragstolen = true; 4097 } else { 4098 if (skb_shinfo(to)->nr_frags + 4099 skb_shinfo(from)->nr_frags > MAX_SKB_FRAGS) 4100 return false; 4101 4102 delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from)); 4103 } 4104 4105 WARN_ON_ONCE(delta < len); 4106 4107 memcpy(skb_shinfo(to)->frags + skb_shinfo(to)->nr_frags, 4108 skb_shinfo(from)->frags, 4109 skb_shinfo(from)->nr_frags * sizeof(skb_frag_t)); 4110 skb_shinfo(to)->nr_frags += skb_shinfo(from)->nr_frags; 4111 4112 if (!skb_cloned(from)) 4113 skb_shinfo(from)->nr_frags = 0; 4114 4115 /* if the skb is not cloned this does nothing 4116 * since we set nr_frags to 0. 4117 */ 4118 for (i = 0; i < skb_shinfo(from)->nr_frags; i++) 4119 skb_frag_ref(from, i); 4120 4121 to->truesize += delta; 4122 to->len += len; 4123 to->data_len += len; 4124 4125 *delta_truesize = delta; 4126 return true; 4127 } 4128 EXPORT_SYMBOL(skb_try_coalesce); 4129 4130 /** 4131 * skb_scrub_packet - scrub an skb 4132 * 4133 * @skb: buffer to clean 4134 * @xnet: packet is crossing netns 4135 * 4136 * skb_scrub_packet can be used after encapsulating or decapsulting a packet 4137 * into/from a tunnel. Some information have to be cleared during these 4138 * operations. 4139 * skb_scrub_packet can also be used to clean a skb before injecting it in 4140 * another namespace (@xnet == true). We have to clear all information in the 4141 * skb that could impact namespace isolation. 4142 */ 4143 void skb_scrub_packet(struct sk_buff *skb, bool xnet) 4144 { 4145 skb->tstamp.tv64 = 0; 4146 skb->pkt_type = PACKET_HOST; 4147 skb->skb_iif = 0; 4148 skb->ignore_df = 0; 4149 skb_dst_drop(skb); 4150 skb_sender_cpu_clear(skb); 4151 secpath_reset(skb); 4152 nf_reset(skb); 4153 nf_reset_trace(skb); 4154 4155 if (!xnet) 4156 return; 4157 4158 skb_orphan(skb); 4159 skb->mark = 0; 4160 } 4161 EXPORT_SYMBOL_GPL(skb_scrub_packet); 4162 4163 /** 4164 * skb_gso_transport_seglen - Return length of individual segments of a gso packet 4165 * 4166 * @skb: GSO skb 4167 * 4168 * skb_gso_transport_seglen is used to determine the real size of the 4169 * individual segments, including Layer4 headers (TCP/UDP). 4170 * 4171 * The MAC/L2 or network (IP, IPv6) headers are not accounted for. 4172 */ 4173 unsigned int skb_gso_transport_seglen(const struct sk_buff *skb) 4174 { 4175 const struct skb_shared_info *shinfo = skb_shinfo(skb); 4176 unsigned int thlen = 0; 4177 4178 if (skb->encapsulation) { 4179 thlen = skb_inner_transport_header(skb) - 4180 skb_transport_header(skb); 4181 4182 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) 4183 thlen += inner_tcp_hdrlen(skb); 4184 } else if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) { 4185 thlen = tcp_hdrlen(skb); 4186 } 4187 /* UFO sets gso_size to the size of the fragmentation 4188 * payload, i.e. the size of the L4 (UDP) header is already 4189 * accounted for. 4190 */ 4191 return thlen + shinfo->gso_size; 4192 } 4193 EXPORT_SYMBOL_GPL(skb_gso_transport_seglen); 4194 4195 static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb) 4196 { 4197 if (skb_cow(skb, skb_headroom(skb)) < 0) { 4198 kfree_skb(skb); 4199 return NULL; 4200 } 4201 4202 memmove(skb->data - ETH_HLEN, skb->data - VLAN_ETH_HLEN, 2 * ETH_ALEN); 4203 skb->mac_header += VLAN_HLEN; 4204 return skb; 4205 } 4206 4207 struct sk_buff *skb_vlan_untag(struct sk_buff *skb) 4208 { 4209 struct vlan_hdr *vhdr; 4210 u16 vlan_tci; 4211 4212 if (unlikely(skb_vlan_tag_present(skb))) { 4213 /* vlan_tci is already set-up so leave this for another time */ 4214 return skb; 4215 } 4216 4217 skb = skb_share_check(skb, GFP_ATOMIC); 4218 if (unlikely(!skb)) 4219 goto err_free; 4220 4221 if (unlikely(!pskb_may_pull(skb, VLAN_HLEN))) 4222 goto err_free; 4223 4224 vhdr = (struct vlan_hdr *)skb->data; 4225 vlan_tci = ntohs(vhdr->h_vlan_TCI); 4226 __vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci); 4227 4228 skb_pull_rcsum(skb, VLAN_HLEN); 4229 vlan_set_encap_proto(skb, vhdr); 4230 4231 skb = skb_reorder_vlan_header(skb); 4232 if (unlikely(!skb)) 4233 goto err_free; 4234 4235 skb_reset_network_header(skb); 4236 skb_reset_transport_header(skb); 4237 skb_reset_mac_len(skb); 4238 4239 return skb; 4240 4241 err_free: 4242 kfree_skb(skb); 4243 return NULL; 4244 } 4245 EXPORT_SYMBOL(skb_vlan_untag); 4246 4247 int skb_ensure_writable(struct sk_buff *skb, int write_len) 4248 { 4249 if (!pskb_may_pull(skb, write_len)) 4250 return -ENOMEM; 4251 4252 if (!skb_cloned(skb) || skb_clone_writable(skb, write_len)) 4253 return 0; 4254 4255 return pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 4256 } 4257 EXPORT_SYMBOL(skb_ensure_writable); 4258 4259 /* remove VLAN header from packet and update csum accordingly. */ 4260 static int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci) 4261 { 4262 struct vlan_hdr *vhdr; 4263 unsigned int offset = skb->data - skb_mac_header(skb); 4264 int err; 4265 4266 __skb_push(skb, offset); 4267 err = skb_ensure_writable(skb, VLAN_ETH_HLEN); 4268 if (unlikely(err)) 4269 goto pull; 4270 4271 skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN); 4272 4273 vhdr = (struct vlan_hdr *)(skb->data + ETH_HLEN); 4274 *vlan_tci = ntohs(vhdr->h_vlan_TCI); 4275 4276 memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN); 4277 __skb_pull(skb, VLAN_HLEN); 4278 4279 vlan_set_encap_proto(skb, vhdr); 4280 skb->mac_header += VLAN_HLEN; 4281 4282 if (skb_network_offset(skb) < ETH_HLEN) 4283 skb_set_network_header(skb, ETH_HLEN); 4284 4285 skb_reset_mac_len(skb); 4286 pull: 4287 __skb_pull(skb, offset); 4288 4289 return err; 4290 } 4291 4292 int skb_vlan_pop(struct sk_buff *skb) 4293 { 4294 u16 vlan_tci; 4295 __be16 vlan_proto; 4296 int err; 4297 4298 if (likely(skb_vlan_tag_present(skb))) { 4299 skb->vlan_tci = 0; 4300 } else { 4301 if (unlikely((skb->protocol != htons(ETH_P_8021Q) && 4302 skb->protocol != htons(ETH_P_8021AD)) || 4303 skb->len < VLAN_ETH_HLEN)) 4304 return 0; 4305 4306 err = __skb_vlan_pop(skb, &vlan_tci); 4307 if (err) 4308 return err; 4309 } 4310 /* move next vlan tag to hw accel tag */ 4311 if (likely((skb->protocol != htons(ETH_P_8021Q) && 4312 skb->protocol != htons(ETH_P_8021AD)) || 4313 skb->len < VLAN_ETH_HLEN)) 4314 return 0; 4315 4316 vlan_proto = skb->protocol; 4317 err = __skb_vlan_pop(skb, &vlan_tci); 4318 if (unlikely(err)) 4319 return err; 4320 4321 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci); 4322 return 0; 4323 } 4324 EXPORT_SYMBOL(skb_vlan_pop); 4325 4326 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci) 4327 { 4328 if (skb_vlan_tag_present(skb)) { 4329 unsigned int offset = skb->data - skb_mac_header(skb); 4330 int err; 4331 4332 /* __vlan_insert_tag expect skb->data pointing to mac header. 4333 * So change skb->data before calling it and change back to 4334 * original position later 4335 */ 4336 __skb_push(skb, offset); 4337 err = __vlan_insert_tag(skb, skb->vlan_proto, 4338 skb_vlan_tag_get(skb)); 4339 if (err) 4340 return err; 4341 skb->protocol = skb->vlan_proto; 4342 skb->mac_len += VLAN_HLEN; 4343 __skb_pull(skb, offset); 4344 4345 if (skb->ip_summed == CHECKSUM_COMPLETE) 4346 skb->csum = csum_add(skb->csum, csum_partial(skb->data 4347 + (2 * ETH_ALEN), VLAN_HLEN, 0)); 4348 } 4349 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci); 4350 return 0; 4351 } 4352 EXPORT_SYMBOL(skb_vlan_push); 4353 4354 /** 4355 * alloc_skb_with_frags - allocate skb with page frags 4356 * 4357 * @header_len: size of linear part 4358 * @data_len: needed length in frags 4359 * @max_page_order: max page order desired. 4360 * @errcode: pointer to error code if any 4361 * @gfp_mask: allocation mask 4362 * 4363 * This can be used to allocate a paged skb, given a maximal order for frags. 4364 */ 4365 struct sk_buff *alloc_skb_with_frags(unsigned long header_len, 4366 unsigned long data_len, 4367 int max_page_order, 4368 int *errcode, 4369 gfp_t gfp_mask) 4370 { 4371 int npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT; 4372 unsigned long chunk; 4373 struct sk_buff *skb; 4374 struct page *page; 4375 gfp_t gfp_head; 4376 int i; 4377 4378 *errcode = -EMSGSIZE; 4379 /* Note this test could be relaxed, if we succeed to allocate 4380 * high order pages... 4381 */ 4382 if (npages > MAX_SKB_FRAGS) 4383 return NULL; 4384 4385 gfp_head = gfp_mask; 4386 if (gfp_head & __GFP_WAIT) 4387 gfp_head |= __GFP_REPEAT; 4388 4389 *errcode = -ENOBUFS; 4390 skb = alloc_skb(header_len, gfp_head); 4391 if (!skb) 4392 return NULL; 4393 4394 skb->truesize += npages << PAGE_SHIFT; 4395 4396 for (i = 0; npages > 0; i++) { 4397 int order = max_page_order; 4398 4399 while (order) { 4400 if (npages >= 1 << order) { 4401 page = alloc_pages(gfp_mask | 4402 __GFP_COMP | 4403 __GFP_NOWARN | 4404 __GFP_NORETRY, 4405 order); 4406 if (page) 4407 goto fill_page; 4408 /* Do not retry other high order allocations */ 4409 order = 1; 4410 max_page_order = 0; 4411 } 4412 order--; 4413 } 4414 page = alloc_page(gfp_mask); 4415 if (!page) 4416 goto failure; 4417 fill_page: 4418 chunk = min_t(unsigned long, data_len, 4419 PAGE_SIZE << order); 4420 skb_fill_page_desc(skb, i, page, 0, chunk); 4421 data_len -= chunk; 4422 npages -= 1 << order; 4423 } 4424 return skb; 4425 4426 failure: 4427 kfree_skb(skb); 4428 return NULL; 4429 } 4430 EXPORT_SYMBOL(alloc_skb_with_frags); 4431