xref: /openbmc/linux/net/core/skbuff.c (revision ca79522c)
1 /*
2  *	Routines having to do with the 'struct sk_buff' memory handlers.
3  *
4  *	Authors:	Alan Cox <alan@lxorguk.ukuu.org.uk>
5  *			Florian La Roche <rzsfl@rz.uni-sb.de>
6  *
7  *	Fixes:
8  *		Alan Cox	:	Fixed the worst of the load
9  *					balancer bugs.
10  *		Dave Platt	:	Interrupt stacking fix.
11  *	Richard Kooijman	:	Timestamp fixes.
12  *		Alan Cox	:	Changed buffer format.
13  *		Alan Cox	:	destructor hook for AF_UNIX etc.
14  *		Linus Torvalds	:	Better skb_clone.
15  *		Alan Cox	:	Added skb_copy.
16  *		Alan Cox	:	Added all the changed routines Linus
17  *					only put in the headers
18  *		Ray VanTassle	:	Fixed --skb->lock in free
19  *		Alan Cox	:	skb_copy copy arp field
20  *		Andi Kleen	:	slabified it.
21  *		Robert Olsson	:	Removed skb_head_pool
22  *
23  *	NOTE:
24  *		The __skb_ routines should be called with interrupts
25  *	disabled, or you better be *real* sure that the operation is atomic
26  *	with respect to whatever list is being frobbed (e.g. via lock_sock()
27  *	or via disabling bottom half handlers, etc).
28  *
29  *	This program is free software; you can redistribute it and/or
30  *	modify it under the terms of the GNU General Public License
31  *	as published by the Free Software Foundation; either version
32  *	2 of the License, or (at your option) any later version.
33  */
34 
35 /*
36  *	The functions in this file will not compile correctly with gcc 2.4.x
37  */
38 
39 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
40 
41 #include <linux/module.h>
42 #include <linux/types.h>
43 #include <linux/kernel.h>
44 #include <linux/kmemcheck.h>
45 #include <linux/mm.h>
46 #include <linux/interrupt.h>
47 #include <linux/in.h>
48 #include <linux/inet.h>
49 #include <linux/slab.h>
50 #include <linux/netdevice.h>
51 #ifdef CONFIG_NET_CLS_ACT
52 #include <net/pkt_sched.h>
53 #endif
54 #include <linux/string.h>
55 #include <linux/skbuff.h>
56 #include <linux/splice.h>
57 #include <linux/cache.h>
58 #include <linux/rtnetlink.h>
59 #include <linux/init.h>
60 #include <linux/scatterlist.h>
61 #include <linux/errqueue.h>
62 #include <linux/prefetch.h>
63 
64 #include <net/protocol.h>
65 #include <net/dst.h>
66 #include <net/sock.h>
67 #include <net/checksum.h>
68 #include <net/xfrm.h>
69 
70 #include <asm/uaccess.h>
71 #include <trace/events/skb.h>
72 #include <linux/highmem.h>
73 
74 struct kmem_cache *skbuff_head_cache __read_mostly;
75 static struct kmem_cache *skbuff_fclone_cache __read_mostly;
76 
77 static void sock_pipe_buf_release(struct pipe_inode_info *pipe,
78 				  struct pipe_buffer *buf)
79 {
80 	put_page(buf->page);
81 }
82 
83 static void sock_pipe_buf_get(struct pipe_inode_info *pipe,
84 				struct pipe_buffer *buf)
85 {
86 	get_page(buf->page);
87 }
88 
89 static int sock_pipe_buf_steal(struct pipe_inode_info *pipe,
90 			       struct pipe_buffer *buf)
91 {
92 	return 1;
93 }
94 
95 
96 /* Pipe buffer operations for a socket. */
97 static const struct pipe_buf_operations sock_pipe_buf_ops = {
98 	.can_merge = 0,
99 	.map = generic_pipe_buf_map,
100 	.unmap = generic_pipe_buf_unmap,
101 	.confirm = generic_pipe_buf_confirm,
102 	.release = sock_pipe_buf_release,
103 	.steal = sock_pipe_buf_steal,
104 	.get = sock_pipe_buf_get,
105 };
106 
107 /**
108  *	skb_panic - private function for out-of-line support
109  *	@skb:	buffer
110  *	@sz:	size
111  *	@addr:	address
112  *	@msg:	skb_over_panic or skb_under_panic
113  *
114  *	Out-of-line support for skb_put() and skb_push().
115  *	Called via the wrapper skb_over_panic() or skb_under_panic().
116  *	Keep out of line to prevent kernel bloat.
117  *	__builtin_return_address is not used because it is not always reliable.
118  */
119 static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr,
120 		      const char msg[])
121 {
122 	pr_emerg("%s: text:%p len:%d put:%d head:%p data:%p tail:%#lx end:%#lx dev:%s\n",
123 		 msg, addr, skb->len, sz, skb->head, skb->data,
124 		 (unsigned long)skb->tail, (unsigned long)skb->end,
125 		 skb->dev ? skb->dev->name : "<NULL>");
126 	BUG();
127 }
128 
129 static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr)
130 {
131 	skb_panic(skb, sz, addr, __func__);
132 }
133 
134 static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr)
135 {
136 	skb_panic(skb, sz, addr, __func__);
137 }
138 
139 /*
140  * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells
141  * the caller if emergency pfmemalloc reserves are being used. If it is and
142  * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves
143  * may be used. Otherwise, the packet data may be discarded until enough
144  * memory is free
145  */
146 #define kmalloc_reserve(size, gfp, node, pfmemalloc) \
147 	 __kmalloc_reserve(size, gfp, node, _RET_IP_, pfmemalloc)
148 
149 static void *__kmalloc_reserve(size_t size, gfp_t flags, int node,
150 			       unsigned long ip, bool *pfmemalloc)
151 {
152 	void *obj;
153 	bool ret_pfmemalloc = false;
154 
155 	/*
156 	 * Try a regular allocation, when that fails and we're not entitled
157 	 * to the reserves, fail.
158 	 */
159 	obj = kmalloc_node_track_caller(size,
160 					flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
161 					node);
162 	if (obj || !(gfp_pfmemalloc_allowed(flags)))
163 		goto out;
164 
165 	/* Try again but now we are using pfmemalloc reserves */
166 	ret_pfmemalloc = true;
167 	obj = kmalloc_node_track_caller(size, flags, node);
168 
169 out:
170 	if (pfmemalloc)
171 		*pfmemalloc = ret_pfmemalloc;
172 
173 	return obj;
174 }
175 
176 /* 	Allocate a new skbuff. We do this ourselves so we can fill in a few
177  *	'private' fields and also do memory statistics to find all the
178  *	[BEEP] leaks.
179  *
180  */
181 
182 struct sk_buff *__alloc_skb_head(gfp_t gfp_mask, int node)
183 {
184 	struct sk_buff *skb;
185 
186 	/* Get the HEAD */
187 	skb = kmem_cache_alloc_node(skbuff_head_cache,
188 				    gfp_mask & ~__GFP_DMA, node);
189 	if (!skb)
190 		goto out;
191 
192 	/*
193 	 * Only clear those fields we need to clear, not those that we will
194 	 * actually initialise below. Hence, don't put any more fields after
195 	 * the tail pointer in struct sk_buff!
196 	 */
197 	memset(skb, 0, offsetof(struct sk_buff, tail));
198 	skb->data = NULL;
199 	skb->truesize = sizeof(struct sk_buff);
200 	atomic_set(&skb->users, 1);
201 
202 #ifdef NET_SKBUFF_DATA_USES_OFFSET
203 	skb->mac_header = ~0U;
204 #endif
205 out:
206 	return skb;
207 }
208 
209 /**
210  *	__alloc_skb	-	allocate a network buffer
211  *	@size: size to allocate
212  *	@gfp_mask: allocation mask
213  *	@flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache
214  *		instead of head cache and allocate a cloned (child) skb.
215  *		If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for
216  *		allocations in case the data is required for writeback
217  *	@node: numa node to allocate memory on
218  *
219  *	Allocate a new &sk_buff. The returned buffer has no headroom and a
220  *	tail room of at least size bytes. The object has a reference count
221  *	of one. The return is the buffer. On a failure the return is %NULL.
222  *
223  *	Buffers may only be allocated from interrupts using a @gfp_mask of
224  *	%GFP_ATOMIC.
225  */
226 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
227 			    int flags, int node)
228 {
229 	struct kmem_cache *cache;
230 	struct skb_shared_info *shinfo;
231 	struct sk_buff *skb;
232 	u8 *data;
233 	bool pfmemalloc;
234 
235 	cache = (flags & SKB_ALLOC_FCLONE)
236 		? skbuff_fclone_cache : skbuff_head_cache;
237 
238 	if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX))
239 		gfp_mask |= __GFP_MEMALLOC;
240 
241 	/* Get the HEAD */
242 	skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node);
243 	if (!skb)
244 		goto out;
245 	prefetchw(skb);
246 
247 	/* We do our best to align skb_shared_info on a separate cache
248 	 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives
249 	 * aligned memory blocks, unless SLUB/SLAB debug is enabled.
250 	 * Both skb->head and skb_shared_info are cache line aligned.
251 	 */
252 	size = SKB_DATA_ALIGN(size);
253 	size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
254 	data = kmalloc_reserve(size, gfp_mask, node, &pfmemalloc);
255 	if (!data)
256 		goto nodata;
257 	/* kmalloc(size) might give us more room than requested.
258 	 * Put skb_shared_info exactly at the end of allocated zone,
259 	 * to allow max possible filling before reallocation.
260 	 */
261 	size = SKB_WITH_OVERHEAD(ksize(data));
262 	prefetchw(data + size);
263 
264 	/*
265 	 * Only clear those fields we need to clear, not those that we will
266 	 * actually initialise below. Hence, don't put any more fields after
267 	 * the tail pointer in struct sk_buff!
268 	 */
269 	memset(skb, 0, offsetof(struct sk_buff, tail));
270 	/* Account for allocated memory : skb + skb->head */
271 	skb->truesize = SKB_TRUESIZE(size);
272 	skb->pfmemalloc = pfmemalloc;
273 	atomic_set(&skb->users, 1);
274 	skb->head = data;
275 	skb->data = data;
276 	skb_reset_tail_pointer(skb);
277 	skb->end = skb->tail + size;
278 #ifdef NET_SKBUFF_DATA_USES_OFFSET
279 	skb->mac_header = ~0U;
280 	skb->transport_header = ~0U;
281 #endif
282 
283 	/* make sure we initialize shinfo sequentially */
284 	shinfo = skb_shinfo(skb);
285 	memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
286 	atomic_set(&shinfo->dataref, 1);
287 	kmemcheck_annotate_variable(shinfo->destructor_arg);
288 
289 	if (flags & SKB_ALLOC_FCLONE) {
290 		struct sk_buff *child = skb + 1;
291 		atomic_t *fclone_ref = (atomic_t *) (child + 1);
292 
293 		kmemcheck_annotate_bitfield(child, flags1);
294 		kmemcheck_annotate_bitfield(child, flags2);
295 		skb->fclone = SKB_FCLONE_ORIG;
296 		atomic_set(fclone_ref, 1);
297 
298 		child->fclone = SKB_FCLONE_UNAVAILABLE;
299 		child->pfmemalloc = pfmemalloc;
300 	}
301 out:
302 	return skb;
303 nodata:
304 	kmem_cache_free(cache, skb);
305 	skb = NULL;
306 	goto out;
307 }
308 EXPORT_SYMBOL(__alloc_skb);
309 
310 /**
311  * build_skb - build a network buffer
312  * @data: data buffer provided by caller
313  * @frag_size: size of fragment, or 0 if head was kmalloced
314  *
315  * Allocate a new &sk_buff. Caller provides space holding head and
316  * skb_shared_info. @data must have been allocated by kmalloc()
317  * The return is the new skb buffer.
318  * On a failure the return is %NULL, and @data is not freed.
319  * Notes :
320  *  Before IO, driver allocates only data buffer where NIC put incoming frame
321  *  Driver should add room at head (NET_SKB_PAD) and
322  *  MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info))
323  *  After IO, driver calls build_skb(), to allocate sk_buff and populate it
324  *  before giving packet to stack.
325  *  RX rings only contains data buffers, not full skbs.
326  */
327 struct sk_buff *build_skb(void *data, unsigned int frag_size)
328 {
329 	struct skb_shared_info *shinfo;
330 	struct sk_buff *skb;
331 	unsigned int size = frag_size ? : ksize(data);
332 
333 	skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC);
334 	if (!skb)
335 		return NULL;
336 
337 	size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
338 
339 	memset(skb, 0, offsetof(struct sk_buff, tail));
340 	skb->truesize = SKB_TRUESIZE(size);
341 	skb->head_frag = frag_size != 0;
342 	atomic_set(&skb->users, 1);
343 	skb->head = data;
344 	skb->data = data;
345 	skb_reset_tail_pointer(skb);
346 	skb->end = skb->tail + size;
347 #ifdef NET_SKBUFF_DATA_USES_OFFSET
348 	skb->mac_header = ~0U;
349 	skb->transport_header = ~0U;
350 #endif
351 
352 	/* make sure we initialize shinfo sequentially */
353 	shinfo = skb_shinfo(skb);
354 	memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
355 	atomic_set(&shinfo->dataref, 1);
356 	kmemcheck_annotate_variable(shinfo->destructor_arg);
357 
358 	return skb;
359 }
360 EXPORT_SYMBOL(build_skb);
361 
362 struct netdev_alloc_cache {
363 	struct page_frag	frag;
364 	/* we maintain a pagecount bias, so that we dont dirty cache line
365 	 * containing page->_count every time we allocate a fragment.
366 	 */
367 	unsigned int		pagecnt_bias;
368 };
369 static DEFINE_PER_CPU(struct netdev_alloc_cache, netdev_alloc_cache);
370 
371 static void *__netdev_alloc_frag(unsigned int fragsz, gfp_t gfp_mask)
372 {
373 	struct netdev_alloc_cache *nc;
374 	void *data = NULL;
375 	int order;
376 	unsigned long flags;
377 
378 	local_irq_save(flags);
379 	nc = &__get_cpu_var(netdev_alloc_cache);
380 	if (unlikely(!nc->frag.page)) {
381 refill:
382 		for (order = NETDEV_FRAG_PAGE_MAX_ORDER; ;) {
383 			gfp_t gfp = gfp_mask;
384 
385 			if (order)
386 				gfp |= __GFP_COMP | __GFP_NOWARN;
387 			nc->frag.page = alloc_pages(gfp, order);
388 			if (likely(nc->frag.page))
389 				break;
390 			if (--order < 0)
391 				goto end;
392 		}
393 		nc->frag.size = PAGE_SIZE << order;
394 recycle:
395 		atomic_set(&nc->frag.page->_count, NETDEV_PAGECNT_MAX_BIAS);
396 		nc->pagecnt_bias = NETDEV_PAGECNT_MAX_BIAS;
397 		nc->frag.offset = 0;
398 	}
399 
400 	if (nc->frag.offset + fragsz > nc->frag.size) {
401 		/* avoid unnecessary locked operations if possible */
402 		if ((atomic_read(&nc->frag.page->_count) == nc->pagecnt_bias) ||
403 		    atomic_sub_and_test(nc->pagecnt_bias, &nc->frag.page->_count))
404 			goto recycle;
405 		goto refill;
406 	}
407 
408 	data = page_address(nc->frag.page) + nc->frag.offset;
409 	nc->frag.offset += fragsz;
410 	nc->pagecnt_bias--;
411 end:
412 	local_irq_restore(flags);
413 	return data;
414 }
415 
416 /**
417  * netdev_alloc_frag - allocate a page fragment
418  * @fragsz: fragment size
419  *
420  * Allocates a frag from a page for receive buffer.
421  * Uses GFP_ATOMIC allocations.
422  */
423 void *netdev_alloc_frag(unsigned int fragsz)
424 {
425 	return __netdev_alloc_frag(fragsz, GFP_ATOMIC | __GFP_COLD);
426 }
427 EXPORT_SYMBOL(netdev_alloc_frag);
428 
429 /**
430  *	__netdev_alloc_skb - allocate an skbuff for rx on a specific device
431  *	@dev: network device to receive on
432  *	@length: length to allocate
433  *	@gfp_mask: get_free_pages mask, passed to alloc_skb
434  *
435  *	Allocate a new &sk_buff and assign it a usage count of one. The
436  *	buffer has unspecified headroom built in. Users should allocate
437  *	the headroom they think they need without accounting for the
438  *	built in space. The built in space is used for optimisations.
439  *
440  *	%NULL is returned if there is no free memory.
441  */
442 struct sk_buff *__netdev_alloc_skb(struct net_device *dev,
443 				   unsigned int length, gfp_t gfp_mask)
444 {
445 	struct sk_buff *skb = NULL;
446 	unsigned int fragsz = SKB_DATA_ALIGN(length + NET_SKB_PAD) +
447 			      SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
448 
449 	if (fragsz <= PAGE_SIZE && !(gfp_mask & (__GFP_WAIT | GFP_DMA))) {
450 		void *data;
451 
452 		if (sk_memalloc_socks())
453 			gfp_mask |= __GFP_MEMALLOC;
454 
455 		data = __netdev_alloc_frag(fragsz, gfp_mask);
456 
457 		if (likely(data)) {
458 			skb = build_skb(data, fragsz);
459 			if (unlikely(!skb))
460 				put_page(virt_to_head_page(data));
461 		}
462 	} else {
463 		skb = __alloc_skb(length + NET_SKB_PAD, gfp_mask,
464 				  SKB_ALLOC_RX, NUMA_NO_NODE);
465 	}
466 	if (likely(skb)) {
467 		skb_reserve(skb, NET_SKB_PAD);
468 		skb->dev = dev;
469 	}
470 	return skb;
471 }
472 EXPORT_SYMBOL(__netdev_alloc_skb);
473 
474 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
475 		     int size, unsigned int truesize)
476 {
477 	skb_fill_page_desc(skb, i, page, off, size);
478 	skb->len += size;
479 	skb->data_len += size;
480 	skb->truesize += truesize;
481 }
482 EXPORT_SYMBOL(skb_add_rx_frag);
483 
484 static void skb_drop_list(struct sk_buff **listp)
485 {
486 	struct sk_buff *list = *listp;
487 
488 	*listp = NULL;
489 
490 	do {
491 		struct sk_buff *this = list;
492 		list = list->next;
493 		kfree_skb(this);
494 	} while (list);
495 }
496 
497 static inline void skb_drop_fraglist(struct sk_buff *skb)
498 {
499 	skb_drop_list(&skb_shinfo(skb)->frag_list);
500 }
501 
502 static void skb_clone_fraglist(struct sk_buff *skb)
503 {
504 	struct sk_buff *list;
505 
506 	skb_walk_frags(skb, list)
507 		skb_get(list);
508 }
509 
510 static void skb_free_head(struct sk_buff *skb)
511 {
512 	if (skb->head_frag)
513 		put_page(virt_to_head_page(skb->head));
514 	else
515 		kfree(skb->head);
516 }
517 
518 static void skb_release_data(struct sk_buff *skb)
519 {
520 	if (!skb->cloned ||
521 	    !atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
522 			       &skb_shinfo(skb)->dataref)) {
523 		if (skb_shinfo(skb)->nr_frags) {
524 			int i;
525 			for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
526 				skb_frag_unref(skb, i);
527 		}
528 
529 		/*
530 		 * If skb buf is from userspace, we need to notify the caller
531 		 * the lower device DMA has done;
532 		 */
533 		if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
534 			struct ubuf_info *uarg;
535 
536 			uarg = skb_shinfo(skb)->destructor_arg;
537 			if (uarg->callback)
538 				uarg->callback(uarg, true);
539 		}
540 
541 		if (skb_has_frag_list(skb))
542 			skb_drop_fraglist(skb);
543 
544 		skb_free_head(skb);
545 	}
546 }
547 
548 /*
549  *	Free an skbuff by memory without cleaning the state.
550  */
551 static void kfree_skbmem(struct sk_buff *skb)
552 {
553 	struct sk_buff *other;
554 	atomic_t *fclone_ref;
555 
556 	switch (skb->fclone) {
557 	case SKB_FCLONE_UNAVAILABLE:
558 		kmem_cache_free(skbuff_head_cache, skb);
559 		break;
560 
561 	case SKB_FCLONE_ORIG:
562 		fclone_ref = (atomic_t *) (skb + 2);
563 		if (atomic_dec_and_test(fclone_ref))
564 			kmem_cache_free(skbuff_fclone_cache, skb);
565 		break;
566 
567 	case SKB_FCLONE_CLONE:
568 		fclone_ref = (atomic_t *) (skb + 1);
569 		other = skb - 1;
570 
571 		/* The clone portion is available for
572 		 * fast-cloning again.
573 		 */
574 		skb->fclone = SKB_FCLONE_UNAVAILABLE;
575 
576 		if (atomic_dec_and_test(fclone_ref))
577 			kmem_cache_free(skbuff_fclone_cache, other);
578 		break;
579 	}
580 }
581 
582 static void skb_release_head_state(struct sk_buff *skb)
583 {
584 	skb_dst_drop(skb);
585 #ifdef CONFIG_XFRM
586 	secpath_put(skb->sp);
587 #endif
588 	if (skb->destructor) {
589 		WARN_ON(in_irq());
590 		skb->destructor(skb);
591 	}
592 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
593 	nf_conntrack_put(skb->nfct);
594 #endif
595 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
596 	nf_conntrack_put_reasm(skb->nfct_reasm);
597 #endif
598 #ifdef CONFIG_BRIDGE_NETFILTER
599 	nf_bridge_put(skb->nf_bridge);
600 #endif
601 /* XXX: IS this still necessary? - JHS */
602 #ifdef CONFIG_NET_SCHED
603 	skb->tc_index = 0;
604 #ifdef CONFIG_NET_CLS_ACT
605 	skb->tc_verd = 0;
606 #endif
607 #endif
608 }
609 
610 /* Free everything but the sk_buff shell. */
611 static void skb_release_all(struct sk_buff *skb)
612 {
613 	skb_release_head_state(skb);
614 	if (likely(skb->data))
615 		skb_release_data(skb);
616 }
617 
618 /**
619  *	__kfree_skb - private function
620  *	@skb: buffer
621  *
622  *	Free an sk_buff. Release anything attached to the buffer.
623  *	Clean the state. This is an internal helper function. Users should
624  *	always call kfree_skb
625  */
626 
627 void __kfree_skb(struct sk_buff *skb)
628 {
629 	skb_release_all(skb);
630 	kfree_skbmem(skb);
631 }
632 EXPORT_SYMBOL(__kfree_skb);
633 
634 /**
635  *	kfree_skb - free an sk_buff
636  *	@skb: buffer to free
637  *
638  *	Drop a reference to the buffer and free it if the usage count has
639  *	hit zero.
640  */
641 void kfree_skb(struct sk_buff *skb)
642 {
643 	if (unlikely(!skb))
644 		return;
645 	if (likely(atomic_read(&skb->users) == 1))
646 		smp_rmb();
647 	else if (likely(!atomic_dec_and_test(&skb->users)))
648 		return;
649 	trace_kfree_skb(skb, __builtin_return_address(0));
650 	__kfree_skb(skb);
651 }
652 EXPORT_SYMBOL(kfree_skb);
653 
654 /**
655  *	skb_tx_error - report an sk_buff xmit error
656  *	@skb: buffer that triggered an error
657  *
658  *	Report xmit error if a device callback is tracking this skb.
659  *	skb must be freed afterwards.
660  */
661 void skb_tx_error(struct sk_buff *skb)
662 {
663 	if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
664 		struct ubuf_info *uarg;
665 
666 		uarg = skb_shinfo(skb)->destructor_arg;
667 		if (uarg->callback)
668 			uarg->callback(uarg, false);
669 		skb_shinfo(skb)->tx_flags &= ~SKBTX_DEV_ZEROCOPY;
670 	}
671 }
672 EXPORT_SYMBOL(skb_tx_error);
673 
674 /**
675  *	consume_skb - free an skbuff
676  *	@skb: buffer to free
677  *
678  *	Drop a ref to the buffer and free it if the usage count has hit zero
679  *	Functions identically to kfree_skb, but kfree_skb assumes that the frame
680  *	is being dropped after a failure and notes that
681  */
682 void consume_skb(struct sk_buff *skb)
683 {
684 	if (unlikely(!skb))
685 		return;
686 	if (likely(atomic_read(&skb->users) == 1))
687 		smp_rmb();
688 	else if (likely(!atomic_dec_and_test(&skb->users)))
689 		return;
690 	trace_consume_skb(skb);
691 	__kfree_skb(skb);
692 }
693 EXPORT_SYMBOL(consume_skb);
694 
695 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
696 {
697 	new->tstamp		= old->tstamp;
698 	new->dev		= old->dev;
699 	new->transport_header	= old->transport_header;
700 	new->network_header	= old->network_header;
701 	new->mac_header		= old->mac_header;
702 	new->inner_transport_header = old->inner_transport_header;
703 	new->inner_network_header = old->inner_network_header;
704 	new->inner_mac_header = old->inner_mac_header;
705 	skb_dst_copy(new, old);
706 	new->rxhash		= old->rxhash;
707 	new->ooo_okay		= old->ooo_okay;
708 	new->l4_rxhash		= old->l4_rxhash;
709 	new->no_fcs		= old->no_fcs;
710 	new->encapsulation	= old->encapsulation;
711 #ifdef CONFIG_XFRM
712 	new->sp			= secpath_get(old->sp);
713 #endif
714 	memcpy(new->cb, old->cb, sizeof(old->cb));
715 	new->csum		= old->csum;
716 	new->local_df		= old->local_df;
717 	new->pkt_type		= old->pkt_type;
718 	new->ip_summed		= old->ip_summed;
719 	skb_copy_queue_mapping(new, old);
720 	new->priority		= old->priority;
721 #if IS_ENABLED(CONFIG_IP_VS)
722 	new->ipvs_property	= old->ipvs_property;
723 #endif
724 	new->pfmemalloc		= old->pfmemalloc;
725 	new->protocol		= old->protocol;
726 	new->mark		= old->mark;
727 	new->skb_iif		= old->skb_iif;
728 	__nf_copy(new, old);
729 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE)
730 	new->nf_trace		= old->nf_trace;
731 #endif
732 #ifdef CONFIG_NET_SCHED
733 	new->tc_index		= old->tc_index;
734 #ifdef CONFIG_NET_CLS_ACT
735 	new->tc_verd		= old->tc_verd;
736 #endif
737 #endif
738 	new->vlan_proto		= old->vlan_proto;
739 	new->vlan_tci		= old->vlan_tci;
740 
741 	skb_copy_secmark(new, old);
742 }
743 
744 /*
745  * You should not add any new code to this function.  Add it to
746  * __copy_skb_header above instead.
747  */
748 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
749 {
750 #define C(x) n->x = skb->x
751 
752 	n->next = n->prev = NULL;
753 	n->sk = NULL;
754 	__copy_skb_header(n, skb);
755 
756 	C(len);
757 	C(data_len);
758 	C(mac_len);
759 	n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
760 	n->cloned = 1;
761 	n->nohdr = 0;
762 	n->destructor = NULL;
763 	C(tail);
764 	C(end);
765 	C(head);
766 	C(head_frag);
767 	C(data);
768 	C(truesize);
769 	atomic_set(&n->users, 1);
770 
771 	atomic_inc(&(skb_shinfo(skb)->dataref));
772 	skb->cloned = 1;
773 
774 	return n;
775 #undef C
776 }
777 
778 /**
779  *	skb_morph	-	morph one skb into another
780  *	@dst: the skb to receive the contents
781  *	@src: the skb to supply the contents
782  *
783  *	This is identical to skb_clone except that the target skb is
784  *	supplied by the user.
785  *
786  *	The target skb is returned upon exit.
787  */
788 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
789 {
790 	skb_release_all(dst);
791 	return __skb_clone(dst, src);
792 }
793 EXPORT_SYMBOL_GPL(skb_morph);
794 
795 /**
796  *	skb_copy_ubufs	-	copy userspace skb frags buffers to kernel
797  *	@skb: the skb to modify
798  *	@gfp_mask: allocation priority
799  *
800  *	This must be called on SKBTX_DEV_ZEROCOPY skb.
801  *	It will copy all frags into kernel and drop the reference
802  *	to userspace pages.
803  *
804  *	If this function is called from an interrupt gfp_mask() must be
805  *	%GFP_ATOMIC.
806  *
807  *	Returns 0 on success or a negative error code on failure
808  *	to allocate kernel memory to copy to.
809  */
810 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask)
811 {
812 	int i;
813 	int num_frags = skb_shinfo(skb)->nr_frags;
814 	struct page *page, *head = NULL;
815 	struct ubuf_info *uarg = skb_shinfo(skb)->destructor_arg;
816 
817 	for (i = 0; i < num_frags; i++) {
818 		u8 *vaddr;
819 		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
820 
821 		page = alloc_page(gfp_mask);
822 		if (!page) {
823 			while (head) {
824 				struct page *next = (struct page *)head->private;
825 				put_page(head);
826 				head = next;
827 			}
828 			return -ENOMEM;
829 		}
830 		vaddr = kmap_atomic(skb_frag_page(f));
831 		memcpy(page_address(page),
832 		       vaddr + f->page_offset, skb_frag_size(f));
833 		kunmap_atomic(vaddr);
834 		page->private = (unsigned long)head;
835 		head = page;
836 	}
837 
838 	/* skb frags release userspace buffers */
839 	for (i = 0; i < num_frags; i++)
840 		skb_frag_unref(skb, i);
841 
842 	uarg->callback(uarg, false);
843 
844 	/* skb frags point to kernel buffers */
845 	for (i = num_frags - 1; i >= 0; i--) {
846 		__skb_fill_page_desc(skb, i, head, 0,
847 				     skb_shinfo(skb)->frags[i].size);
848 		head = (struct page *)head->private;
849 	}
850 
851 	skb_shinfo(skb)->tx_flags &= ~SKBTX_DEV_ZEROCOPY;
852 	return 0;
853 }
854 EXPORT_SYMBOL_GPL(skb_copy_ubufs);
855 
856 /**
857  *	skb_clone	-	duplicate an sk_buff
858  *	@skb: buffer to clone
859  *	@gfp_mask: allocation priority
860  *
861  *	Duplicate an &sk_buff. The new one is not owned by a socket. Both
862  *	copies share the same packet data but not structure. The new
863  *	buffer has a reference count of 1. If the allocation fails the
864  *	function returns %NULL otherwise the new buffer is returned.
865  *
866  *	If this function is called from an interrupt gfp_mask() must be
867  *	%GFP_ATOMIC.
868  */
869 
870 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
871 {
872 	struct sk_buff *n;
873 
874 	if (skb_orphan_frags(skb, gfp_mask))
875 		return NULL;
876 
877 	n = skb + 1;
878 	if (skb->fclone == SKB_FCLONE_ORIG &&
879 	    n->fclone == SKB_FCLONE_UNAVAILABLE) {
880 		atomic_t *fclone_ref = (atomic_t *) (n + 1);
881 		n->fclone = SKB_FCLONE_CLONE;
882 		atomic_inc(fclone_ref);
883 	} else {
884 		if (skb_pfmemalloc(skb))
885 			gfp_mask |= __GFP_MEMALLOC;
886 
887 		n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
888 		if (!n)
889 			return NULL;
890 
891 		kmemcheck_annotate_bitfield(n, flags1);
892 		kmemcheck_annotate_bitfield(n, flags2);
893 		n->fclone = SKB_FCLONE_UNAVAILABLE;
894 	}
895 
896 	return __skb_clone(n, skb);
897 }
898 EXPORT_SYMBOL(skb_clone);
899 
900 static void skb_headers_offset_update(struct sk_buff *skb, int off)
901 {
902 	/* {transport,network,mac}_header and tail are relative to skb->head */
903 	skb->transport_header += off;
904 	skb->network_header   += off;
905 	if (skb_mac_header_was_set(skb))
906 		skb->mac_header += off;
907 	skb->inner_transport_header += off;
908 	skb->inner_network_header += off;
909 	skb->inner_mac_header += off;
910 }
911 
912 static void copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
913 {
914 #ifndef NET_SKBUFF_DATA_USES_OFFSET
915 	/*
916 	 *	Shift between the two data areas in bytes
917 	 */
918 	unsigned long offset = new->data - old->data;
919 #endif
920 
921 	__copy_skb_header(new, old);
922 
923 #ifndef NET_SKBUFF_DATA_USES_OFFSET
924 	skb_headers_offset_update(new, offset);
925 #endif
926 	skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
927 	skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
928 	skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
929 }
930 
931 static inline int skb_alloc_rx_flag(const struct sk_buff *skb)
932 {
933 	if (skb_pfmemalloc(skb))
934 		return SKB_ALLOC_RX;
935 	return 0;
936 }
937 
938 /**
939  *	skb_copy	-	create private copy of an sk_buff
940  *	@skb: buffer to copy
941  *	@gfp_mask: allocation priority
942  *
943  *	Make a copy of both an &sk_buff and its data. This is used when the
944  *	caller wishes to modify the data and needs a private copy of the
945  *	data to alter. Returns %NULL on failure or the pointer to the buffer
946  *	on success. The returned buffer has a reference count of 1.
947  *
948  *	As by-product this function converts non-linear &sk_buff to linear
949  *	one, so that &sk_buff becomes completely private and caller is allowed
950  *	to modify all the data of returned buffer. This means that this
951  *	function is not recommended for use in circumstances when only
952  *	header is going to be modified. Use pskb_copy() instead.
953  */
954 
955 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
956 {
957 	int headerlen = skb_headroom(skb);
958 	unsigned int size = skb_end_offset(skb) + skb->data_len;
959 	struct sk_buff *n = __alloc_skb(size, gfp_mask,
960 					skb_alloc_rx_flag(skb), NUMA_NO_NODE);
961 
962 	if (!n)
963 		return NULL;
964 
965 	/* Set the data pointer */
966 	skb_reserve(n, headerlen);
967 	/* Set the tail pointer and length */
968 	skb_put(n, skb->len);
969 
970 	if (skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len))
971 		BUG();
972 
973 	copy_skb_header(n, skb);
974 	return n;
975 }
976 EXPORT_SYMBOL(skb_copy);
977 
978 /**
979  *	__pskb_copy	-	create copy of an sk_buff with private head.
980  *	@skb: buffer to copy
981  *	@headroom: headroom of new skb
982  *	@gfp_mask: allocation priority
983  *
984  *	Make a copy of both an &sk_buff and part of its data, located
985  *	in header. Fragmented data remain shared. This is used when
986  *	the caller wishes to modify only header of &sk_buff and needs
987  *	private copy of the header to alter. Returns %NULL on failure
988  *	or the pointer to the buffer on success.
989  *	The returned buffer has a reference count of 1.
990  */
991 
992 struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom, gfp_t gfp_mask)
993 {
994 	unsigned int size = skb_headlen(skb) + headroom;
995 	struct sk_buff *n = __alloc_skb(size, gfp_mask,
996 					skb_alloc_rx_flag(skb), NUMA_NO_NODE);
997 
998 	if (!n)
999 		goto out;
1000 
1001 	/* Set the data pointer */
1002 	skb_reserve(n, headroom);
1003 	/* Set the tail pointer and length */
1004 	skb_put(n, skb_headlen(skb));
1005 	/* Copy the bytes */
1006 	skb_copy_from_linear_data(skb, n->data, n->len);
1007 
1008 	n->truesize += skb->data_len;
1009 	n->data_len  = skb->data_len;
1010 	n->len	     = skb->len;
1011 
1012 	if (skb_shinfo(skb)->nr_frags) {
1013 		int i;
1014 
1015 		if (skb_orphan_frags(skb, gfp_mask)) {
1016 			kfree_skb(n);
1017 			n = NULL;
1018 			goto out;
1019 		}
1020 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1021 			skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
1022 			skb_frag_ref(skb, i);
1023 		}
1024 		skb_shinfo(n)->nr_frags = i;
1025 	}
1026 
1027 	if (skb_has_frag_list(skb)) {
1028 		skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
1029 		skb_clone_fraglist(n);
1030 	}
1031 
1032 	copy_skb_header(n, skb);
1033 out:
1034 	return n;
1035 }
1036 EXPORT_SYMBOL(__pskb_copy);
1037 
1038 /**
1039  *	pskb_expand_head - reallocate header of &sk_buff
1040  *	@skb: buffer to reallocate
1041  *	@nhead: room to add at head
1042  *	@ntail: room to add at tail
1043  *	@gfp_mask: allocation priority
1044  *
1045  *	Expands (or creates identical copy, if &nhead and &ntail are zero)
1046  *	header of skb. &sk_buff itself is not changed. &sk_buff MUST have
1047  *	reference count of 1. Returns zero in the case of success or error,
1048  *	if expansion failed. In the last case, &sk_buff is not changed.
1049  *
1050  *	All the pointers pointing into skb header may change and must be
1051  *	reloaded after call to this function.
1052  */
1053 
1054 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
1055 		     gfp_t gfp_mask)
1056 {
1057 	int i;
1058 	u8 *data;
1059 	int size = nhead + skb_end_offset(skb) + ntail;
1060 	long off;
1061 
1062 	BUG_ON(nhead < 0);
1063 
1064 	if (skb_shared(skb))
1065 		BUG();
1066 
1067 	size = SKB_DATA_ALIGN(size);
1068 
1069 	if (skb_pfmemalloc(skb))
1070 		gfp_mask |= __GFP_MEMALLOC;
1071 	data = kmalloc_reserve(size + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
1072 			       gfp_mask, NUMA_NO_NODE, NULL);
1073 	if (!data)
1074 		goto nodata;
1075 	size = SKB_WITH_OVERHEAD(ksize(data));
1076 
1077 	/* Copy only real data... and, alas, header. This should be
1078 	 * optimized for the cases when header is void.
1079 	 */
1080 	memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head);
1081 
1082 	memcpy((struct skb_shared_info *)(data + size),
1083 	       skb_shinfo(skb),
1084 	       offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags]));
1085 
1086 	/*
1087 	 * if shinfo is shared we must drop the old head gracefully, but if it
1088 	 * is not we can just drop the old head and let the existing refcount
1089 	 * be since all we did is relocate the values
1090 	 */
1091 	if (skb_cloned(skb)) {
1092 		/* copy this zero copy skb frags */
1093 		if (skb_orphan_frags(skb, gfp_mask))
1094 			goto nofrags;
1095 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1096 			skb_frag_ref(skb, i);
1097 
1098 		if (skb_has_frag_list(skb))
1099 			skb_clone_fraglist(skb);
1100 
1101 		skb_release_data(skb);
1102 	} else {
1103 		skb_free_head(skb);
1104 	}
1105 	off = (data + nhead) - skb->head;
1106 
1107 	skb->head     = data;
1108 	skb->head_frag = 0;
1109 	skb->data    += off;
1110 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1111 	skb->end      = size;
1112 	off           = nhead;
1113 #else
1114 	skb->end      = skb->head + size;
1115 #endif
1116 	skb->tail	      += off;
1117 	skb_headers_offset_update(skb, off);
1118 	/* Only adjust this if it actually is csum_start rather than csum */
1119 	if (skb->ip_summed == CHECKSUM_PARTIAL)
1120 		skb->csum_start += nhead;
1121 	skb->cloned   = 0;
1122 	skb->hdr_len  = 0;
1123 	skb->nohdr    = 0;
1124 	atomic_set(&skb_shinfo(skb)->dataref, 1);
1125 	return 0;
1126 
1127 nofrags:
1128 	kfree(data);
1129 nodata:
1130 	return -ENOMEM;
1131 }
1132 EXPORT_SYMBOL(pskb_expand_head);
1133 
1134 /* Make private copy of skb with writable head and some headroom */
1135 
1136 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
1137 {
1138 	struct sk_buff *skb2;
1139 	int delta = headroom - skb_headroom(skb);
1140 
1141 	if (delta <= 0)
1142 		skb2 = pskb_copy(skb, GFP_ATOMIC);
1143 	else {
1144 		skb2 = skb_clone(skb, GFP_ATOMIC);
1145 		if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
1146 					     GFP_ATOMIC)) {
1147 			kfree_skb(skb2);
1148 			skb2 = NULL;
1149 		}
1150 	}
1151 	return skb2;
1152 }
1153 EXPORT_SYMBOL(skb_realloc_headroom);
1154 
1155 /**
1156  *	skb_copy_expand	-	copy and expand sk_buff
1157  *	@skb: buffer to copy
1158  *	@newheadroom: new free bytes at head
1159  *	@newtailroom: new free bytes at tail
1160  *	@gfp_mask: allocation priority
1161  *
1162  *	Make a copy of both an &sk_buff and its data and while doing so
1163  *	allocate additional space.
1164  *
1165  *	This is used when the caller wishes to modify the data and needs a
1166  *	private copy of the data to alter as well as more space for new fields.
1167  *	Returns %NULL on failure or the pointer to the buffer
1168  *	on success. The returned buffer has a reference count of 1.
1169  *
1170  *	You must pass %GFP_ATOMIC as the allocation priority if this function
1171  *	is called from an interrupt.
1172  */
1173 struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
1174 				int newheadroom, int newtailroom,
1175 				gfp_t gfp_mask)
1176 {
1177 	/*
1178 	 *	Allocate the copy buffer
1179 	 */
1180 	struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom,
1181 					gfp_mask, skb_alloc_rx_flag(skb),
1182 					NUMA_NO_NODE);
1183 	int oldheadroom = skb_headroom(skb);
1184 	int head_copy_len, head_copy_off;
1185 	int off;
1186 
1187 	if (!n)
1188 		return NULL;
1189 
1190 	skb_reserve(n, newheadroom);
1191 
1192 	/* Set the tail pointer and length */
1193 	skb_put(n, skb->len);
1194 
1195 	head_copy_len = oldheadroom;
1196 	head_copy_off = 0;
1197 	if (newheadroom <= head_copy_len)
1198 		head_copy_len = newheadroom;
1199 	else
1200 		head_copy_off = newheadroom - head_copy_len;
1201 
1202 	/* Copy the linear header and data. */
1203 	if (skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
1204 			  skb->len + head_copy_len))
1205 		BUG();
1206 
1207 	copy_skb_header(n, skb);
1208 
1209 	off                  = newheadroom - oldheadroom;
1210 	if (n->ip_summed == CHECKSUM_PARTIAL)
1211 		n->csum_start += off;
1212 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1213 	skb_headers_offset_update(n, off);
1214 #endif
1215 
1216 	return n;
1217 }
1218 EXPORT_SYMBOL(skb_copy_expand);
1219 
1220 /**
1221  *	skb_pad			-	zero pad the tail of an skb
1222  *	@skb: buffer to pad
1223  *	@pad: space to pad
1224  *
1225  *	Ensure that a buffer is followed by a padding area that is zero
1226  *	filled. Used by network drivers which may DMA or transfer data
1227  *	beyond the buffer end onto the wire.
1228  *
1229  *	May return error in out of memory cases. The skb is freed on error.
1230  */
1231 
1232 int skb_pad(struct sk_buff *skb, int pad)
1233 {
1234 	int err;
1235 	int ntail;
1236 
1237 	/* If the skbuff is non linear tailroom is always zero.. */
1238 	if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
1239 		memset(skb->data+skb->len, 0, pad);
1240 		return 0;
1241 	}
1242 
1243 	ntail = skb->data_len + pad - (skb->end - skb->tail);
1244 	if (likely(skb_cloned(skb) || ntail > 0)) {
1245 		err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
1246 		if (unlikely(err))
1247 			goto free_skb;
1248 	}
1249 
1250 	/* FIXME: The use of this function with non-linear skb's really needs
1251 	 * to be audited.
1252 	 */
1253 	err = skb_linearize(skb);
1254 	if (unlikely(err))
1255 		goto free_skb;
1256 
1257 	memset(skb->data + skb->len, 0, pad);
1258 	return 0;
1259 
1260 free_skb:
1261 	kfree_skb(skb);
1262 	return err;
1263 }
1264 EXPORT_SYMBOL(skb_pad);
1265 
1266 /**
1267  *	skb_put - add data to a buffer
1268  *	@skb: buffer to use
1269  *	@len: amount of data to add
1270  *
1271  *	This function extends the used data area of the buffer. If this would
1272  *	exceed the total buffer size the kernel will panic. A pointer to the
1273  *	first byte of the extra data is returned.
1274  */
1275 unsigned char *skb_put(struct sk_buff *skb, unsigned int len)
1276 {
1277 	unsigned char *tmp = skb_tail_pointer(skb);
1278 	SKB_LINEAR_ASSERT(skb);
1279 	skb->tail += len;
1280 	skb->len  += len;
1281 	if (unlikely(skb->tail > skb->end))
1282 		skb_over_panic(skb, len, __builtin_return_address(0));
1283 	return tmp;
1284 }
1285 EXPORT_SYMBOL(skb_put);
1286 
1287 /**
1288  *	skb_push - add data to the start of a buffer
1289  *	@skb: buffer to use
1290  *	@len: amount of data to add
1291  *
1292  *	This function extends the used data area of the buffer at the buffer
1293  *	start. If this would exceed the total buffer headroom the kernel will
1294  *	panic. A pointer to the first byte of the extra data is returned.
1295  */
1296 unsigned char *skb_push(struct sk_buff *skb, unsigned int len)
1297 {
1298 	skb->data -= len;
1299 	skb->len  += len;
1300 	if (unlikely(skb->data<skb->head))
1301 		skb_under_panic(skb, len, __builtin_return_address(0));
1302 	return skb->data;
1303 }
1304 EXPORT_SYMBOL(skb_push);
1305 
1306 /**
1307  *	skb_pull - remove data from the start of a buffer
1308  *	@skb: buffer to use
1309  *	@len: amount of data to remove
1310  *
1311  *	This function removes data from the start of a buffer, returning
1312  *	the memory to the headroom. A pointer to the next data in the buffer
1313  *	is returned. Once the data has been pulled future pushes will overwrite
1314  *	the old data.
1315  */
1316 unsigned char *skb_pull(struct sk_buff *skb, unsigned int len)
1317 {
1318 	return skb_pull_inline(skb, len);
1319 }
1320 EXPORT_SYMBOL(skb_pull);
1321 
1322 /**
1323  *	skb_trim - remove end from a buffer
1324  *	@skb: buffer to alter
1325  *	@len: new length
1326  *
1327  *	Cut the length of a buffer down by removing data from the tail. If
1328  *	the buffer is already under the length specified it is not modified.
1329  *	The skb must be linear.
1330  */
1331 void skb_trim(struct sk_buff *skb, unsigned int len)
1332 {
1333 	if (skb->len > len)
1334 		__skb_trim(skb, len);
1335 }
1336 EXPORT_SYMBOL(skb_trim);
1337 
1338 /* Trims skb to length len. It can change skb pointers.
1339  */
1340 
1341 int ___pskb_trim(struct sk_buff *skb, unsigned int len)
1342 {
1343 	struct sk_buff **fragp;
1344 	struct sk_buff *frag;
1345 	int offset = skb_headlen(skb);
1346 	int nfrags = skb_shinfo(skb)->nr_frags;
1347 	int i;
1348 	int err;
1349 
1350 	if (skb_cloned(skb) &&
1351 	    unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
1352 		return err;
1353 
1354 	i = 0;
1355 	if (offset >= len)
1356 		goto drop_pages;
1357 
1358 	for (; i < nfrags; i++) {
1359 		int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]);
1360 
1361 		if (end < len) {
1362 			offset = end;
1363 			continue;
1364 		}
1365 
1366 		skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset);
1367 
1368 drop_pages:
1369 		skb_shinfo(skb)->nr_frags = i;
1370 
1371 		for (; i < nfrags; i++)
1372 			skb_frag_unref(skb, i);
1373 
1374 		if (skb_has_frag_list(skb))
1375 			skb_drop_fraglist(skb);
1376 		goto done;
1377 	}
1378 
1379 	for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
1380 	     fragp = &frag->next) {
1381 		int end = offset + frag->len;
1382 
1383 		if (skb_shared(frag)) {
1384 			struct sk_buff *nfrag;
1385 
1386 			nfrag = skb_clone(frag, GFP_ATOMIC);
1387 			if (unlikely(!nfrag))
1388 				return -ENOMEM;
1389 
1390 			nfrag->next = frag->next;
1391 			consume_skb(frag);
1392 			frag = nfrag;
1393 			*fragp = frag;
1394 		}
1395 
1396 		if (end < len) {
1397 			offset = end;
1398 			continue;
1399 		}
1400 
1401 		if (end > len &&
1402 		    unlikely((err = pskb_trim(frag, len - offset))))
1403 			return err;
1404 
1405 		if (frag->next)
1406 			skb_drop_list(&frag->next);
1407 		break;
1408 	}
1409 
1410 done:
1411 	if (len > skb_headlen(skb)) {
1412 		skb->data_len -= skb->len - len;
1413 		skb->len       = len;
1414 	} else {
1415 		skb->len       = len;
1416 		skb->data_len  = 0;
1417 		skb_set_tail_pointer(skb, len);
1418 	}
1419 
1420 	return 0;
1421 }
1422 EXPORT_SYMBOL(___pskb_trim);
1423 
1424 /**
1425  *	__pskb_pull_tail - advance tail of skb header
1426  *	@skb: buffer to reallocate
1427  *	@delta: number of bytes to advance tail
1428  *
1429  *	The function makes a sense only on a fragmented &sk_buff,
1430  *	it expands header moving its tail forward and copying necessary
1431  *	data from fragmented part.
1432  *
1433  *	&sk_buff MUST have reference count of 1.
1434  *
1435  *	Returns %NULL (and &sk_buff does not change) if pull failed
1436  *	or value of new tail of skb in the case of success.
1437  *
1438  *	All the pointers pointing into skb header may change and must be
1439  *	reloaded after call to this function.
1440  */
1441 
1442 /* Moves tail of skb head forward, copying data from fragmented part,
1443  * when it is necessary.
1444  * 1. It may fail due to malloc failure.
1445  * 2. It may change skb pointers.
1446  *
1447  * It is pretty complicated. Luckily, it is called only in exceptional cases.
1448  */
1449 unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta)
1450 {
1451 	/* If skb has not enough free space at tail, get new one
1452 	 * plus 128 bytes for future expansions. If we have enough
1453 	 * room at tail, reallocate without expansion only if skb is cloned.
1454 	 */
1455 	int i, k, eat = (skb->tail + delta) - skb->end;
1456 
1457 	if (eat > 0 || skb_cloned(skb)) {
1458 		if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
1459 				     GFP_ATOMIC))
1460 			return NULL;
1461 	}
1462 
1463 	if (skb_copy_bits(skb, skb_headlen(skb), skb_tail_pointer(skb), delta))
1464 		BUG();
1465 
1466 	/* Optimization: no fragments, no reasons to preestimate
1467 	 * size of pulled pages. Superb.
1468 	 */
1469 	if (!skb_has_frag_list(skb))
1470 		goto pull_pages;
1471 
1472 	/* Estimate size of pulled pages. */
1473 	eat = delta;
1474 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1475 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
1476 
1477 		if (size >= eat)
1478 			goto pull_pages;
1479 		eat -= size;
1480 	}
1481 
1482 	/* If we need update frag list, we are in troubles.
1483 	 * Certainly, it possible to add an offset to skb data,
1484 	 * but taking into account that pulling is expected to
1485 	 * be very rare operation, it is worth to fight against
1486 	 * further bloating skb head and crucify ourselves here instead.
1487 	 * Pure masohism, indeed. 8)8)
1488 	 */
1489 	if (eat) {
1490 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
1491 		struct sk_buff *clone = NULL;
1492 		struct sk_buff *insp = NULL;
1493 
1494 		do {
1495 			BUG_ON(!list);
1496 
1497 			if (list->len <= eat) {
1498 				/* Eaten as whole. */
1499 				eat -= list->len;
1500 				list = list->next;
1501 				insp = list;
1502 			} else {
1503 				/* Eaten partially. */
1504 
1505 				if (skb_shared(list)) {
1506 					/* Sucks! We need to fork list. :-( */
1507 					clone = skb_clone(list, GFP_ATOMIC);
1508 					if (!clone)
1509 						return NULL;
1510 					insp = list->next;
1511 					list = clone;
1512 				} else {
1513 					/* This may be pulled without
1514 					 * problems. */
1515 					insp = list;
1516 				}
1517 				if (!pskb_pull(list, eat)) {
1518 					kfree_skb(clone);
1519 					return NULL;
1520 				}
1521 				break;
1522 			}
1523 		} while (eat);
1524 
1525 		/* Free pulled out fragments. */
1526 		while ((list = skb_shinfo(skb)->frag_list) != insp) {
1527 			skb_shinfo(skb)->frag_list = list->next;
1528 			kfree_skb(list);
1529 		}
1530 		/* And insert new clone at head. */
1531 		if (clone) {
1532 			clone->next = list;
1533 			skb_shinfo(skb)->frag_list = clone;
1534 		}
1535 	}
1536 	/* Success! Now we may commit changes to skb data. */
1537 
1538 pull_pages:
1539 	eat = delta;
1540 	k = 0;
1541 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1542 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
1543 
1544 		if (size <= eat) {
1545 			skb_frag_unref(skb, i);
1546 			eat -= size;
1547 		} else {
1548 			skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i];
1549 			if (eat) {
1550 				skb_shinfo(skb)->frags[k].page_offset += eat;
1551 				skb_frag_size_sub(&skb_shinfo(skb)->frags[k], eat);
1552 				eat = 0;
1553 			}
1554 			k++;
1555 		}
1556 	}
1557 	skb_shinfo(skb)->nr_frags = k;
1558 
1559 	skb->tail     += delta;
1560 	skb->data_len -= delta;
1561 
1562 	return skb_tail_pointer(skb);
1563 }
1564 EXPORT_SYMBOL(__pskb_pull_tail);
1565 
1566 /**
1567  *	skb_copy_bits - copy bits from skb to kernel buffer
1568  *	@skb: source skb
1569  *	@offset: offset in source
1570  *	@to: destination buffer
1571  *	@len: number of bytes to copy
1572  *
1573  *	Copy the specified number of bytes from the source skb to the
1574  *	destination buffer.
1575  *
1576  *	CAUTION ! :
1577  *		If its prototype is ever changed,
1578  *		check arch/{*}/net/{*}.S files,
1579  *		since it is called from BPF assembly code.
1580  */
1581 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
1582 {
1583 	int start = skb_headlen(skb);
1584 	struct sk_buff *frag_iter;
1585 	int i, copy;
1586 
1587 	if (offset > (int)skb->len - len)
1588 		goto fault;
1589 
1590 	/* Copy header. */
1591 	if ((copy = start - offset) > 0) {
1592 		if (copy > len)
1593 			copy = len;
1594 		skb_copy_from_linear_data_offset(skb, offset, to, copy);
1595 		if ((len -= copy) == 0)
1596 			return 0;
1597 		offset += copy;
1598 		to     += copy;
1599 	}
1600 
1601 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1602 		int end;
1603 		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
1604 
1605 		WARN_ON(start > offset + len);
1606 
1607 		end = start + skb_frag_size(f);
1608 		if ((copy = end - offset) > 0) {
1609 			u8 *vaddr;
1610 
1611 			if (copy > len)
1612 				copy = len;
1613 
1614 			vaddr = kmap_atomic(skb_frag_page(f));
1615 			memcpy(to,
1616 			       vaddr + f->page_offset + offset - start,
1617 			       copy);
1618 			kunmap_atomic(vaddr);
1619 
1620 			if ((len -= copy) == 0)
1621 				return 0;
1622 			offset += copy;
1623 			to     += copy;
1624 		}
1625 		start = end;
1626 	}
1627 
1628 	skb_walk_frags(skb, frag_iter) {
1629 		int end;
1630 
1631 		WARN_ON(start > offset + len);
1632 
1633 		end = start + frag_iter->len;
1634 		if ((copy = end - offset) > 0) {
1635 			if (copy > len)
1636 				copy = len;
1637 			if (skb_copy_bits(frag_iter, offset - start, to, copy))
1638 				goto fault;
1639 			if ((len -= copy) == 0)
1640 				return 0;
1641 			offset += copy;
1642 			to     += copy;
1643 		}
1644 		start = end;
1645 	}
1646 
1647 	if (!len)
1648 		return 0;
1649 
1650 fault:
1651 	return -EFAULT;
1652 }
1653 EXPORT_SYMBOL(skb_copy_bits);
1654 
1655 /*
1656  * Callback from splice_to_pipe(), if we need to release some pages
1657  * at the end of the spd in case we error'ed out in filling the pipe.
1658  */
1659 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
1660 {
1661 	put_page(spd->pages[i]);
1662 }
1663 
1664 static struct page *linear_to_page(struct page *page, unsigned int *len,
1665 				   unsigned int *offset,
1666 				   struct sock *sk)
1667 {
1668 	struct page_frag *pfrag = sk_page_frag(sk);
1669 
1670 	if (!sk_page_frag_refill(sk, pfrag))
1671 		return NULL;
1672 
1673 	*len = min_t(unsigned int, *len, pfrag->size - pfrag->offset);
1674 
1675 	memcpy(page_address(pfrag->page) + pfrag->offset,
1676 	       page_address(page) + *offset, *len);
1677 	*offset = pfrag->offset;
1678 	pfrag->offset += *len;
1679 
1680 	return pfrag->page;
1681 }
1682 
1683 static bool spd_can_coalesce(const struct splice_pipe_desc *spd,
1684 			     struct page *page,
1685 			     unsigned int offset)
1686 {
1687 	return	spd->nr_pages &&
1688 		spd->pages[spd->nr_pages - 1] == page &&
1689 		(spd->partial[spd->nr_pages - 1].offset +
1690 		 spd->partial[spd->nr_pages - 1].len == offset);
1691 }
1692 
1693 /*
1694  * Fill page/offset/length into spd, if it can hold more pages.
1695  */
1696 static bool spd_fill_page(struct splice_pipe_desc *spd,
1697 			  struct pipe_inode_info *pipe, struct page *page,
1698 			  unsigned int *len, unsigned int offset,
1699 			  bool linear,
1700 			  struct sock *sk)
1701 {
1702 	if (unlikely(spd->nr_pages == MAX_SKB_FRAGS))
1703 		return true;
1704 
1705 	if (linear) {
1706 		page = linear_to_page(page, len, &offset, sk);
1707 		if (!page)
1708 			return true;
1709 	}
1710 	if (spd_can_coalesce(spd, page, offset)) {
1711 		spd->partial[spd->nr_pages - 1].len += *len;
1712 		return false;
1713 	}
1714 	get_page(page);
1715 	spd->pages[spd->nr_pages] = page;
1716 	spd->partial[spd->nr_pages].len = *len;
1717 	spd->partial[spd->nr_pages].offset = offset;
1718 	spd->nr_pages++;
1719 
1720 	return false;
1721 }
1722 
1723 static bool __splice_segment(struct page *page, unsigned int poff,
1724 			     unsigned int plen, unsigned int *off,
1725 			     unsigned int *len,
1726 			     struct splice_pipe_desc *spd, bool linear,
1727 			     struct sock *sk,
1728 			     struct pipe_inode_info *pipe)
1729 {
1730 	if (!*len)
1731 		return true;
1732 
1733 	/* skip this segment if already processed */
1734 	if (*off >= plen) {
1735 		*off -= plen;
1736 		return false;
1737 	}
1738 
1739 	/* ignore any bits we already processed */
1740 	poff += *off;
1741 	plen -= *off;
1742 	*off = 0;
1743 
1744 	do {
1745 		unsigned int flen = min(*len, plen);
1746 
1747 		if (spd_fill_page(spd, pipe, page, &flen, poff,
1748 				  linear, sk))
1749 			return true;
1750 		poff += flen;
1751 		plen -= flen;
1752 		*len -= flen;
1753 	} while (*len && plen);
1754 
1755 	return false;
1756 }
1757 
1758 /*
1759  * Map linear and fragment data from the skb to spd. It reports true if the
1760  * pipe is full or if we already spliced the requested length.
1761  */
1762 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe,
1763 			      unsigned int *offset, unsigned int *len,
1764 			      struct splice_pipe_desc *spd, struct sock *sk)
1765 {
1766 	int seg;
1767 
1768 	/* map the linear part :
1769 	 * If skb->head_frag is set, this 'linear' part is backed by a
1770 	 * fragment, and if the head is not shared with any clones then
1771 	 * we can avoid a copy since we own the head portion of this page.
1772 	 */
1773 	if (__splice_segment(virt_to_page(skb->data),
1774 			     (unsigned long) skb->data & (PAGE_SIZE - 1),
1775 			     skb_headlen(skb),
1776 			     offset, len, spd,
1777 			     skb_head_is_locked(skb),
1778 			     sk, pipe))
1779 		return true;
1780 
1781 	/*
1782 	 * then map the fragments
1783 	 */
1784 	for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
1785 		const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
1786 
1787 		if (__splice_segment(skb_frag_page(f),
1788 				     f->page_offset, skb_frag_size(f),
1789 				     offset, len, spd, false, sk, pipe))
1790 			return true;
1791 	}
1792 
1793 	return false;
1794 }
1795 
1796 /*
1797  * Map data from the skb to a pipe. Should handle both the linear part,
1798  * the fragments, and the frag list. It does NOT handle frag lists within
1799  * the frag list, if such a thing exists. We'd probably need to recurse to
1800  * handle that cleanly.
1801  */
1802 int skb_splice_bits(struct sk_buff *skb, unsigned int offset,
1803 		    struct pipe_inode_info *pipe, unsigned int tlen,
1804 		    unsigned int flags)
1805 {
1806 	struct partial_page partial[MAX_SKB_FRAGS];
1807 	struct page *pages[MAX_SKB_FRAGS];
1808 	struct splice_pipe_desc spd = {
1809 		.pages = pages,
1810 		.partial = partial,
1811 		.nr_pages_max = MAX_SKB_FRAGS,
1812 		.flags = flags,
1813 		.ops = &sock_pipe_buf_ops,
1814 		.spd_release = sock_spd_release,
1815 	};
1816 	struct sk_buff *frag_iter;
1817 	struct sock *sk = skb->sk;
1818 	int ret = 0;
1819 
1820 	/*
1821 	 * __skb_splice_bits() only fails if the output has no room left,
1822 	 * so no point in going over the frag_list for the error case.
1823 	 */
1824 	if (__skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk))
1825 		goto done;
1826 	else if (!tlen)
1827 		goto done;
1828 
1829 	/*
1830 	 * now see if we have a frag_list to map
1831 	 */
1832 	skb_walk_frags(skb, frag_iter) {
1833 		if (!tlen)
1834 			break;
1835 		if (__skb_splice_bits(frag_iter, pipe, &offset, &tlen, &spd, sk))
1836 			break;
1837 	}
1838 
1839 done:
1840 	if (spd.nr_pages) {
1841 		/*
1842 		 * Drop the socket lock, otherwise we have reverse
1843 		 * locking dependencies between sk_lock and i_mutex
1844 		 * here as compared to sendfile(). We enter here
1845 		 * with the socket lock held, and splice_to_pipe() will
1846 		 * grab the pipe inode lock. For sendfile() emulation,
1847 		 * we call into ->sendpage() with the i_mutex lock held
1848 		 * and networking will grab the socket lock.
1849 		 */
1850 		release_sock(sk);
1851 		ret = splice_to_pipe(pipe, &spd);
1852 		lock_sock(sk);
1853 	}
1854 
1855 	return ret;
1856 }
1857 
1858 /**
1859  *	skb_store_bits - store bits from kernel buffer to skb
1860  *	@skb: destination buffer
1861  *	@offset: offset in destination
1862  *	@from: source buffer
1863  *	@len: number of bytes to copy
1864  *
1865  *	Copy the specified number of bytes from the source buffer to the
1866  *	destination skb.  This function handles all the messy bits of
1867  *	traversing fragment lists and such.
1868  */
1869 
1870 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
1871 {
1872 	int start = skb_headlen(skb);
1873 	struct sk_buff *frag_iter;
1874 	int i, copy;
1875 
1876 	if (offset > (int)skb->len - len)
1877 		goto fault;
1878 
1879 	if ((copy = start - offset) > 0) {
1880 		if (copy > len)
1881 			copy = len;
1882 		skb_copy_to_linear_data_offset(skb, offset, from, copy);
1883 		if ((len -= copy) == 0)
1884 			return 0;
1885 		offset += copy;
1886 		from += copy;
1887 	}
1888 
1889 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1890 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1891 		int end;
1892 
1893 		WARN_ON(start > offset + len);
1894 
1895 		end = start + skb_frag_size(frag);
1896 		if ((copy = end - offset) > 0) {
1897 			u8 *vaddr;
1898 
1899 			if (copy > len)
1900 				copy = len;
1901 
1902 			vaddr = kmap_atomic(skb_frag_page(frag));
1903 			memcpy(vaddr + frag->page_offset + offset - start,
1904 			       from, copy);
1905 			kunmap_atomic(vaddr);
1906 
1907 			if ((len -= copy) == 0)
1908 				return 0;
1909 			offset += copy;
1910 			from += copy;
1911 		}
1912 		start = end;
1913 	}
1914 
1915 	skb_walk_frags(skb, frag_iter) {
1916 		int end;
1917 
1918 		WARN_ON(start > offset + len);
1919 
1920 		end = start + frag_iter->len;
1921 		if ((copy = end - offset) > 0) {
1922 			if (copy > len)
1923 				copy = len;
1924 			if (skb_store_bits(frag_iter, offset - start,
1925 					   from, copy))
1926 				goto fault;
1927 			if ((len -= copy) == 0)
1928 				return 0;
1929 			offset += copy;
1930 			from += copy;
1931 		}
1932 		start = end;
1933 	}
1934 	if (!len)
1935 		return 0;
1936 
1937 fault:
1938 	return -EFAULT;
1939 }
1940 EXPORT_SYMBOL(skb_store_bits);
1941 
1942 /* Checksum skb data. */
1943 
1944 __wsum skb_checksum(const struct sk_buff *skb, int offset,
1945 			  int len, __wsum csum)
1946 {
1947 	int start = skb_headlen(skb);
1948 	int i, copy = start - offset;
1949 	struct sk_buff *frag_iter;
1950 	int pos = 0;
1951 
1952 	/* Checksum header. */
1953 	if (copy > 0) {
1954 		if (copy > len)
1955 			copy = len;
1956 		csum = csum_partial(skb->data + offset, copy, csum);
1957 		if ((len -= copy) == 0)
1958 			return csum;
1959 		offset += copy;
1960 		pos	= copy;
1961 	}
1962 
1963 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1964 		int end;
1965 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1966 
1967 		WARN_ON(start > offset + len);
1968 
1969 		end = start + skb_frag_size(frag);
1970 		if ((copy = end - offset) > 0) {
1971 			__wsum csum2;
1972 			u8 *vaddr;
1973 
1974 			if (copy > len)
1975 				copy = len;
1976 			vaddr = kmap_atomic(skb_frag_page(frag));
1977 			csum2 = csum_partial(vaddr + frag->page_offset +
1978 					     offset - start, copy, 0);
1979 			kunmap_atomic(vaddr);
1980 			csum = csum_block_add(csum, csum2, pos);
1981 			if (!(len -= copy))
1982 				return csum;
1983 			offset += copy;
1984 			pos    += copy;
1985 		}
1986 		start = end;
1987 	}
1988 
1989 	skb_walk_frags(skb, frag_iter) {
1990 		int end;
1991 
1992 		WARN_ON(start > offset + len);
1993 
1994 		end = start + frag_iter->len;
1995 		if ((copy = end - offset) > 0) {
1996 			__wsum csum2;
1997 			if (copy > len)
1998 				copy = len;
1999 			csum2 = skb_checksum(frag_iter, offset - start,
2000 					     copy, 0);
2001 			csum = csum_block_add(csum, csum2, pos);
2002 			if ((len -= copy) == 0)
2003 				return csum;
2004 			offset += copy;
2005 			pos    += copy;
2006 		}
2007 		start = end;
2008 	}
2009 	BUG_ON(len);
2010 
2011 	return csum;
2012 }
2013 EXPORT_SYMBOL(skb_checksum);
2014 
2015 /* Both of above in one bottle. */
2016 
2017 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
2018 				    u8 *to, int len, __wsum csum)
2019 {
2020 	int start = skb_headlen(skb);
2021 	int i, copy = start - offset;
2022 	struct sk_buff *frag_iter;
2023 	int pos = 0;
2024 
2025 	/* Copy header. */
2026 	if (copy > 0) {
2027 		if (copy > len)
2028 			copy = len;
2029 		csum = csum_partial_copy_nocheck(skb->data + offset, to,
2030 						 copy, csum);
2031 		if ((len -= copy) == 0)
2032 			return csum;
2033 		offset += copy;
2034 		to     += copy;
2035 		pos	= copy;
2036 	}
2037 
2038 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2039 		int end;
2040 
2041 		WARN_ON(start > offset + len);
2042 
2043 		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
2044 		if ((copy = end - offset) > 0) {
2045 			__wsum csum2;
2046 			u8 *vaddr;
2047 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2048 
2049 			if (copy > len)
2050 				copy = len;
2051 			vaddr = kmap_atomic(skb_frag_page(frag));
2052 			csum2 = csum_partial_copy_nocheck(vaddr +
2053 							  frag->page_offset +
2054 							  offset - start, to,
2055 							  copy, 0);
2056 			kunmap_atomic(vaddr);
2057 			csum = csum_block_add(csum, csum2, pos);
2058 			if (!(len -= copy))
2059 				return csum;
2060 			offset += copy;
2061 			to     += copy;
2062 			pos    += copy;
2063 		}
2064 		start = end;
2065 	}
2066 
2067 	skb_walk_frags(skb, frag_iter) {
2068 		__wsum csum2;
2069 		int end;
2070 
2071 		WARN_ON(start > offset + len);
2072 
2073 		end = start + frag_iter->len;
2074 		if ((copy = end - offset) > 0) {
2075 			if (copy > len)
2076 				copy = len;
2077 			csum2 = skb_copy_and_csum_bits(frag_iter,
2078 						       offset - start,
2079 						       to, copy, 0);
2080 			csum = csum_block_add(csum, csum2, pos);
2081 			if ((len -= copy) == 0)
2082 				return csum;
2083 			offset += copy;
2084 			to     += copy;
2085 			pos    += copy;
2086 		}
2087 		start = end;
2088 	}
2089 	BUG_ON(len);
2090 	return csum;
2091 }
2092 EXPORT_SYMBOL(skb_copy_and_csum_bits);
2093 
2094 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
2095 {
2096 	__wsum csum;
2097 	long csstart;
2098 
2099 	if (skb->ip_summed == CHECKSUM_PARTIAL)
2100 		csstart = skb_checksum_start_offset(skb);
2101 	else
2102 		csstart = skb_headlen(skb);
2103 
2104 	BUG_ON(csstart > skb_headlen(skb));
2105 
2106 	skb_copy_from_linear_data(skb, to, csstart);
2107 
2108 	csum = 0;
2109 	if (csstart != skb->len)
2110 		csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
2111 					      skb->len - csstart, 0);
2112 
2113 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
2114 		long csstuff = csstart + skb->csum_offset;
2115 
2116 		*((__sum16 *)(to + csstuff)) = csum_fold(csum);
2117 	}
2118 }
2119 EXPORT_SYMBOL(skb_copy_and_csum_dev);
2120 
2121 /**
2122  *	skb_dequeue - remove from the head of the queue
2123  *	@list: list to dequeue from
2124  *
2125  *	Remove the head of the list. The list lock is taken so the function
2126  *	may be used safely with other locking list functions. The head item is
2127  *	returned or %NULL if the list is empty.
2128  */
2129 
2130 struct sk_buff *skb_dequeue(struct sk_buff_head *list)
2131 {
2132 	unsigned long flags;
2133 	struct sk_buff *result;
2134 
2135 	spin_lock_irqsave(&list->lock, flags);
2136 	result = __skb_dequeue(list);
2137 	spin_unlock_irqrestore(&list->lock, flags);
2138 	return result;
2139 }
2140 EXPORT_SYMBOL(skb_dequeue);
2141 
2142 /**
2143  *	skb_dequeue_tail - remove from the tail of the queue
2144  *	@list: list to dequeue from
2145  *
2146  *	Remove the tail of the list. The list lock is taken so the function
2147  *	may be used safely with other locking list functions. The tail item is
2148  *	returned or %NULL if the list is empty.
2149  */
2150 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
2151 {
2152 	unsigned long flags;
2153 	struct sk_buff *result;
2154 
2155 	spin_lock_irqsave(&list->lock, flags);
2156 	result = __skb_dequeue_tail(list);
2157 	spin_unlock_irqrestore(&list->lock, flags);
2158 	return result;
2159 }
2160 EXPORT_SYMBOL(skb_dequeue_tail);
2161 
2162 /**
2163  *	skb_queue_purge - empty a list
2164  *	@list: list to empty
2165  *
2166  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
2167  *	the list and one reference dropped. This function takes the list
2168  *	lock and is atomic with respect to other list locking functions.
2169  */
2170 void skb_queue_purge(struct sk_buff_head *list)
2171 {
2172 	struct sk_buff *skb;
2173 	while ((skb = skb_dequeue(list)) != NULL)
2174 		kfree_skb(skb);
2175 }
2176 EXPORT_SYMBOL(skb_queue_purge);
2177 
2178 /**
2179  *	skb_queue_head - queue a buffer at the list head
2180  *	@list: list to use
2181  *	@newsk: buffer to queue
2182  *
2183  *	Queue a buffer at the start of the list. This function takes the
2184  *	list lock and can be used safely with other locking &sk_buff functions
2185  *	safely.
2186  *
2187  *	A buffer cannot be placed on two lists at the same time.
2188  */
2189 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
2190 {
2191 	unsigned long flags;
2192 
2193 	spin_lock_irqsave(&list->lock, flags);
2194 	__skb_queue_head(list, newsk);
2195 	spin_unlock_irqrestore(&list->lock, flags);
2196 }
2197 EXPORT_SYMBOL(skb_queue_head);
2198 
2199 /**
2200  *	skb_queue_tail - queue a buffer at the list tail
2201  *	@list: list to use
2202  *	@newsk: buffer to queue
2203  *
2204  *	Queue a buffer at the tail of the list. This function takes the
2205  *	list lock and can be used safely with other locking &sk_buff functions
2206  *	safely.
2207  *
2208  *	A buffer cannot be placed on two lists at the same time.
2209  */
2210 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
2211 {
2212 	unsigned long flags;
2213 
2214 	spin_lock_irqsave(&list->lock, flags);
2215 	__skb_queue_tail(list, newsk);
2216 	spin_unlock_irqrestore(&list->lock, flags);
2217 }
2218 EXPORT_SYMBOL(skb_queue_tail);
2219 
2220 /**
2221  *	skb_unlink	-	remove a buffer from a list
2222  *	@skb: buffer to remove
2223  *	@list: list to use
2224  *
2225  *	Remove a packet from a list. The list locks are taken and this
2226  *	function is atomic with respect to other list locked calls
2227  *
2228  *	You must know what list the SKB is on.
2229  */
2230 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
2231 {
2232 	unsigned long flags;
2233 
2234 	spin_lock_irqsave(&list->lock, flags);
2235 	__skb_unlink(skb, list);
2236 	spin_unlock_irqrestore(&list->lock, flags);
2237 }
2238 EXPORT_SYMBOL(skb_unlink);
2239 
2240 /**
2241  *	skb_append	-	append a buffer
2242  *	@old: buffer to insert after
2243  *	@newsk: buffer to insert
2244  *	@list: list to use
2245  *
2246  *	Place a packet after a given packet in a list. The list locks are taken
2247  *	and this function is atomic with respect to other list locked calls.
2248  *	A buffer cannot be placed on two lists at the same time.
2249  */
2250 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
2251 {
2252 	unsigned long flags;
2253 
2254 	spin_lock_irqsave(&list->lock, flags);
2255 	__skb_queue_after(list, old, newsk);
2256 	spin_unlock_irqrestore(&list->lock, flags);
2257 }
2258 EXPORT_SYMBOL(skb_append);
2259 
2260 /**
2261  *	skb_insert	-	insert a buffer
2262  *	@old: buffer to insert before
2263  *	@newsk: buffer to insert
2264  *	@list: list to use
2265  *
2266  *	Place a packet before a given packet in a list. The list locks are
2267  * 	taken and this function is atomic with respect to other list locked
2268  *	calls.
2269  *
2270  *	A buffer cannot be placed on two lists at the same time.
2271  */
2272 void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
2273 {
2274 	unsigned long flags;
2275 
2276 	spin_lock_irqsave(&list->lock, flags);
2277 	__skb_insert(newsk, old->prev, old, list);
2278 	spin_unlock_irqrestore(&list->lock, flags);
2279 }
2280 EXPORT_SYMBOL(skb_insert);
2281 
2282 static inline void skb_split_inside_header(struct sk_buff *skb,
2283 					   struct sk_buff* skb1,
2284 					   const u32 len, const int pos)
2285 {
2286 	int i;
2287 
2288 	skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
2289 					 pos - len);
2290 	/* And move data appendix as is. */
2291 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
2292 		skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
2293 
2294 	skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
2295 	skb_shinfo(skb)->nr_frags  = 0;
2296 	skb1->data_len		   = skb->data_len;
2297 	skb1->len		   += skb1->data_len;
2298 	skb->data_len		   = 0;
2299 	skb->len		   = len;
2300 	skb_set_tail_pointer(skb, len);
2301 }
2302 
2303 static inline void skb_split_no_header(struct sk_buff *skb,
2304 				       struct sk_buff* skb1,
2305 				       const u32 len, int pos)
2306 {
2307 	int i, k = 0;
2308 	const int nfrags = skb_shinfo(skb)->nr_frags;
2309 
2310 	skb_shinfo(skb)->nr_frags = 0;
2311 	skb1->len		  = skb1->data_len = skb->len - len;
2312 	skb->len		  = len;
2313 	skb->data_len		  = len - pos;
2314 
2315 	for (i = 0; i < nfrags; i++) {
2316 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2317 
2318 		if (pos + size > len) {
2319 			skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
2320 
2321 			if (pos < len) {
2322 				/* Split frag.
2323 				 * We have two variants in this case:
2324 				 * 1. Move all the frag to the second
2325 				 *    part, if it is possible. F.e.
2326 				 *    this approach is mandatory for TUX,
2327 				 *    where splitting is expensive.
2328 				 * 2. Split is accurately. We make this.
2329 				 */
2330 				skb_frag_ref(skb, i);
2331 				skb_shinfo(skb1)->frags[0].page_offset += len - pos;
2332 				skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos);
2333 				skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos);
2334 				skb_shinfo(skb)->nr_frags++;
2335 			}
2336 			k++;
2337 		} else
2338 			skb_shinfo(skb)->nr_frags++;
2339 		pos += size;
2340 	}
2341 	skb_shinfo(skb1)->nr_frags = k;
2342 }
2343 
2344 /**
2345  * skb_split - Split fragmented skb to two parts at length len.
2346  * @skb: the buffer to split
2347  * @skb1: the buffer to receive the second part
2348  * @len: new length for skb
2349  */
2350 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
2351 {
2352 	int pos = skb_headlen(skb);
2353 
2354 	skb_shinfo(skb1)->tx_flags = skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG;
2355 	if (len < pos)	/* Split line is inside header. */
2356 		skb_split_inside_header(skb, skb1, len, pos);
2357 	else		/* Second chunk has no header, nothing to copy. */
2358 		skb_split_no_header(skb, skb1, len, pos);
2359 }
2360 EXPORT_SYMBOL(skb_split);
2361 
2362 /* Shifting from/to a cloned skb is a no-go.
2363  *
2364  * Caller cannot keep skb_shinfo related pointers past calling here!
2365  */
2366 static int skb_prepare_for_shift(struct sk_buff *skb)
2367 {
2368 	return skb_cloned(skb) && pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2369 }
2370 
2371 /**
2372  * skb_shift - Shifts paged data partially from skb to another
2373  * @tgt: buffer into which tail data gets added
2374  * @skb: buffer from which the paged data comes from
2375  * @shiftlen: shift up to this many bytes
2376  *
2377  * Attempts to shift up to shiftlen worth of bytes, which may be less than
2378  * the length of the skb, from skb to tgt. Returns number bytes shifted.
2379  * It's up to caller to free skb if everything was shifted.
2380  *
2381  * If @tgt runs out of frags, the whole operation is aborted.
2382  *
2383  * Skb cannot include anything else but paged data while tgt is allowed
2384  * to have non-paged data as well.
2385  *
2386  * TODO: full sized shift could be optimized but that would need
2387  * specialized skb free'er to handle frags without up-to-date nr_frags.
2388  */
2389 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
2390 {
2391 	int from, to, merge, todo;
2392 	struct skb_frag_struct *fragfrom, *fragto;
2393 
2394 	BUG_ON(shiftlen > skb->len);
2395 	BUG_ON(skb_headlen(skb));	/* Would corrupt stream */
2396 
2397 	todo = shiftlen;
2398 	from = 0;
2399 	to = skb_shinfo(tgt)->nr_frags;
2400 	fragfrom = &skb_shinfo(skb)->frags[from];
2401 
2402 	/* Actual merge is delayed until the point when we know we can
2403 	 * commit all, so that we don't have to undo partial changes
2404 	 */
2405 	if (!to ||
2406 	    !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom),
2407 			      fragfrom->page_offset)) {
2408 		merge = -1;
2409 	} else {
2410 		merge = to - 1;
2411 
2412 		todo -= skb_frag_size(fragfrom);
2413 		if (todo < 0) {
2414 			if (skb_prepare_for_shift(skb) ||
2415 			    skb_prepare_for_shift(tgt))
2416 				return 0;
2417 
2418 			/* All previous frag pointers might be stale! */
2419 			fragfrom = &skb_shinfo(skb)->frags[from];
2420 			fragto = &skb_shinfo(tgt)->frags[merge];
2421 
2422 			skb_frag_size_add(fragto, shiftlen);
2423 			skb_frag_size_sub(fragfrom, shiftlen);
2424 			fragfrom->page_offset += shiftlen;
2425 
2426 			goto onlymerged;
2427 		}
2428 
2429 		from++;
2430 	}
2431 
2432 	/* Skip full, not-fitting skb to avoid expensive operations */
2433 	if ((shiftlen == skb->len) &&
2434 	    (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
2435 		return 0;
2436 
2437 	if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
2438 		return 0;
2439 
2440 	while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
2441 		if (to == MAX_SKB_FRAGS)
2442 			return 0;
2443 
2444 		fragfrom = &skb_shinfo(skb)->frags[from];
2445 		fragto = &skb_shinfo(tgt)->frags[to];
2446 
2447 		if (todo >= skb_frag_size(fragfrom)) {
2448 			*fragto = *fragfrom;
2449 			todo -= skb_frag_size(fragfrom);
2450 			from++;
2451 			to++;
2452 
2453 		} else {
2454 			__skb_frag_ref(fragfrom);
2455 			fragto->page = fragfrom->page;
2456 			fragto->page_offset = fragfrom->page_offset;
2457 			skb_frag_size_set(fragto, todo);
2458 
2459 			fragfrom->page_offset += todo;
2460 			skb_frag_size_sub(fragfrom, todo);
2461 			todo = 0;
2462 
2463 			to++;
2464 			break;
2465 		}
2466 	}
2467 
2468 	/* Ready to "commit" this state change to tgt */
2469 	skb_shinfo(tgt)->nr_frags = to;
2470 
2471 	if (merge >= 0) {
2472 		fragfrom = &skb_shinfo(skb)->frags[0];
2473 		fragto = &skb_shinfo(tgt)->frags[merge];
2474 
2475 		skb_frag_size_add(fragto, skb_frag_size(fragfrom));
2476 		__skb_frag_unref(fragfrom);
2477 	}
2478 
2479 	/* Reposition in the original skb */
2480 	to = 0;
2481 	while (from < skb_shinfo(skb)->nr_frags)
2482 		skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
2483 	skb_shinfo(skb)->nr_frags = to;
2484 
2485 	BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
2486 
2487 onlymerged:
2488 	/* Most likely the tgt won't ever need its checksum anymore, skb on
2489 	 * the other hand might need it if it needs to be resent
2490 	 */
2491 	tgt->ip_summed = CHECKSUM_PARTIAL;
2492 	skb->ip_summed = CHECKSUM_PARTIAL;
2493 
2494 	/* Yak, is it really working this way? Some helper please? */
2495 	skb->len -= shiftlen;
2496 	skb->data_len -= shiftlen;
2497 	skb->truesize -= shiftlen;
2498 	tgt->len += shiftlen;
2499 	tgt->data_len += shiftlen;
2500 	tgt->truesize += shiftlen;
2501 
2502 	return shiftlen;
2503 }
2504 
2505 /**
2506  * skb_prepare_seq_read - Prepare a sequential read of skb data
2507  * @skb: the buffer to read
2508  * @from: lower offset of data to be read
2509  * @to: upper offset of data to be read
2510  * @st: state variable
2511  *
2512  * Initializes the specified state variable. Must be called before
2513  * invoking skb_seq_read() for the first time.
2514  */
2515 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
2516 			  unsigned int to, struct skb_seq_state *st)
2517 {
2518 	st->lower_offset = from;
2519 	st->upper_offset = to;
2520 	st->root_skb = st->cur_skb = skb;
2521 	st->frag_idx = st->stepped_offset = 0;
2522 	st->frag_data = NULL;
2523 }
2524 EXPORT_SYMBOL(skb_prepare_seq_read);
2525 
2526 /**
2527  * skb_seq_read - Sequentially read skb data
2528  * @consumed: number of bytes consumed by the caller so far
2529  * @data: destination pointer for data to be returned
2530  * @st: state variable
2531  *
2532  * Reads a block of skb data at &consumed relative to the
2533  * lower offset specified to skb_prepare_seq_read(). Assigns
2534  * the head of the data block to &data and returns the length
2535  * of the block or 0 if the end of the skb data or the upper
2536  * offset has been reached.
2537  *
2538  * The caller is not required to consume all of the data
2539  * returned, i.e. &consumed is typically set to the number
2540  * of bytes already consumed and the next call to
2541  * skb_seq_read() will return the remaining part of the block.
2542  *
2543  * Note 1: The size of each block of data returned can be arbitrary,
2544  *       this limitation is the cost for zerocopy seqeuental
2545  *       reads of potentially non linear data.
2546  *
2547  * Note 2: Fragment lists within fragments are not implemented
2548  *       at the moment, state->root_skb could be replaced with
2549  *       a stack for this purpose.
2550  */
2551 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
2552 			  struct skb_seq_state *st)
2553 {
2554 	unsigned int block_limit, abs_offset = consumed + st->lower_offset;
2555 	skb_frag_t *frag;
2556 
2557 	if (unlikely(abs_offset >= st->upper_offset))
2558 		return 0;
2559 
2560 next_skb:
2561 	block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
2562 
2563 	if (abs_offset < block_limit && !st->frag_data) {
2564 		*data = st->cur_skb->data + (abs_offset - st->stepped_offset);
2565 		return block_limit - abs_offset;
2566 	}
2567 
2568 	if (st->frag_idx == 0 && !st->frag_data)
2569 		st->stepped_offset += skb_headlen(st->cur_skb);
2570 
2571 	while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
2572 		frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
2573 		block_limit = skb_frag_size(frag) + st->stepped_offset;
2574 
2575 		if (abs_offset < block_limit) {
2576 			if (!st->frag_data)
2577 				st->frag_data = kmap_atomic(skb_frag_page(frag));
2578 
2579 			*data = (u8 *) st->frag_data + frag->page_offset +
2580 				(abs_offset - st->stepped_offset);
2581 
2582 			return block_limit - abs_offset;
2583 		}
2584 
2585 		if (st->frag_data) {
2586 			kunmap_atomic(st->frag_data);
2587 			st->frag_data = NULL;
2588 		}
2589 
2590 		st->frag_idx++;
2591 		st->stepped_offset += skb_frag_size(frag);
2592 	}
2593 
2594 	if (st->frag_data) {
2595 		kunmap_atomic(st->frag_data);
2596 		st->frag_data = NULL;
2597 	}
2598 
2599 	if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) {
2600 		st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
2601 		st->frag_idx = 0;
2602 		goto next_skb;
2603 	} else if (st->cur_skb->next) {
2604 		st->cur_skb = st->cur_skb->next;
2605 		st->frag_idx = 0;
2606 		goto next_skb;
2607 	}
2608 
2609 	return 0;
2610 }
2611 EXPORT_SYMBOL(skb_seq_read);
2612 
2613 /**
2614  * skb_abort_seq_read - Abort a sequential read of skb data
2615  * @st: state variable
2616  *
2617  * Must be called if skb_seq_read() was not called until it
2618  * returned 0.
2619  */
2620 void skb_abort_seq_read(struct skb_seq_state *st)
2621 {
2622 	if (st->frag_data)
2623 		kunmap_atomic(st->frag_data);
2624 }
2625 EXPORT_SYMBOL(skb_abort_seq_read);
2626 
2627 #define TS_SKB_CB(state)	((struct skb_seq_state *) &((state)->cb))
2628 
2629 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
2630 					  struct ts_config *conf,
2631 					  struct ts_state *state)
2632 {
2633 	return skb_seq_read(offset, text, TS_SKB_CB(state));
2634 }
2635 
2636 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
2637 {
2638 	skb_abort_seq_read(TS_SKB_CB(state));
2639 }
2640 
2641 /**
2642  * skb_find_text - Find a text pattern in skb data
2643  * @skb: the buffer to look in
2644  * @from: search offset
2645  * @to: search limit
2646  * @config: textsearch configuration
2647  * @state: uninitialized textsearch state variable
2648  *
2649  * Finds a pattern in the skb data according to the specified
2650  * textsearch configuration. Use textsearch_next() to retrieve
2651  * subsequent occurrences of the pattern. Returns the offset
2652  * to the first occurrence or UINT_MAX if no match was found.
2653  */
2654 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
2655 			   unsigned int to, struct ts_config *config,
2656 			   struct ts_state *state)
2657 {
2658 	unsigned int ret;
2659 
2660 	config->get_next_block = skb_ts_get_next_block;
2661 	config->finish = skb_ts_finish;
2662 
2663 	skb_prepare_seq_read(skb, from, to, TS_SKB_CB(state));
2664 
2665 	ret = textsearch_find(config, state);
2666 	return (ret <= to - from ? ret : UINT_MAX);
2667 }
2668 EXPORT_SYMBOL(skb_find_text);
2669 
2670 /**
2671  * skb_append_datato_frags - append the user data to a skb
2672  * @sk: sock  structure
2673  * @skb: skb structure to be appened with user data.
2674  * @getfrag: call back function to be used for getting the user data
2675  * @from: pointer to user message iov
2676  * @length: length of the iov message
2677  *
2678  * Description: This procedure append the user data in the fragment part
2679  * of the skb if any page alloc fails user this procedure returns  -ENOMEM
2680  */
2681 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
2682 			int (*getfrag)(void *from, char *to, int offset,
2683 					int len, int odd, struct sk_buff *skb),
2684 			void *from, int length)
2685 {
2686 	int frg_cnt = skb_shinfo(skb)->nr_frags;
2687 	int copy;
2688 	int offset = 0;
2689 	int ret;
2690 	struct page_frag *pfrag = &current->task_frag;
2691 
2692 	do {
2693 		/* Return error if we don't have space for new frag */
2694 		if (frg_cnt >= MAX_SKB_FRAGS)
2695 			return -EMSGSIZE;
2696 
2697 		if (!sk_page_frag_refill(sk, pfrag))
2698 			return -ENOMEM;
2699 
2700 		/* copy the user data to page */
2701 		copy = min_t(int, length, pfrag->size - pfrag->offset);
2702 
2703 		ret = getfrag(from, page_address(pfrag->page) + pfrag->offset,
2704 			      offset, copy, 0, skb);
2705 		if (ret < 0)
2706 			return -EFAULT;
2707 
2708 		/* copy was successful so update the size parameters */
2709 		skb_fill_page_desc(skb, frg_cnt, pfrag->page, pfrag->offset,
2710 				   copy);
2711 		frg_cnt++;
2712 		pfrag->offset += copy;
2713 		get_page(pfrag->page);
2714 
2715 		skb->truesize += copy;
2716 		atomic_add(copy, &sk->sk_wmem_alloc);
2717 		skb->len += copy;
2718 		skb->data_len += copy;
2719 		offset += copy;
2720 		length -= copy;
2721 
2722 	} while (length > 0);
2723 
2724 	return 0;
2725 }
2726 EXPORT_SYMBOL(skb_append_datato_frags);
2727 
2728 /**
2729  *	skb_pull_rcsum - pull skb and update receive checksum
2730  *	@skb: buffer to update
2731  *	@len: length of data pulled
2732  *
2733  *	This function performs an skb_pull on the packet and updates
2734  *	the CHECKSUM_COMPLETE checksum.  It should be used on
2735  *	receive path processing instead of skb_pull unless you know
2736  *	that the checksum difference is zero (e.g., a valid IP header)
2737  *	or you are setting ip_summed to CHECKSUM_NONE.
2738  */
2739 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
2740 {
2741 	BUG_ON(len > skb->len);
2742 	skb->len -= len;
2743 	BUG_ON(skb->len < skb->data_len);
2744 	skb_postpull_rcsum(skb, skb->data, len);
2745 	return skb->data += len;
2746 }
2747 EXPORT_SYMBOL_GPL(skb_pull_rcsum);
2748 
2749 /**
2750  *	skb_segment - Perform protocol segmentation on skb.
2751  *	@skb: buffer to segment
2752  *	@features: features for the output path (see dev->features)
2753  *
2754  *	This function performs segmentation on the given skb.  It returns
2755  *	a pointer to the first in a list of new skbs for the segments.
2756  *	In case of error it returns ERR_PTR(err).
2757  */
2758 struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features)
2759 {
2760 	struct sk_buff *segs = NULL;
2761 	struct sk_buff *tail = NULL;
2762 	struct sk_buff *fskb = skb_shinfo(skb)->frag_list;
2763 	unsigned int mss = skb_shinfo(skb)->gso_size;
2764 	unsigned int doffset = skb->data - skb_mac_header(skb);
2765 	unsigned int offset = doffset;
2766 	unsigned int tnl_hlen = skb_tnl_header_len(skb);
2767 	unsigned int headroom;
2768 	unsigned int len;
2769 	__be16 proto;
2770 	bool csum;
2771 	int sg = !!(features & NETIF_F_SG);
2772 	int nfrags = skb_shinfo(skb)->nr_frags;
2773 	int err = -ENOMEM;
2774 	int i = 0;
2775 	int pos;
2776 
2777 	proto = skb_network_protocol(skb);
2778 	if (unlikely(!proto))
2779 		return ERR_PTR(-EINVAL);
2780 
2781 	csum = !!can_checksum_protocol(features, proto);
2782 	__skb_push(skb, doffset);
2783 	headroom = skb_headroom(skb);
2784 	pos = skb_headlen(skb);
2785 
2786 	do {
2787 		struct sk_buff *nskb;
2788 		skb_frag_t *frag;
2789 		int hsize;
2790 		int size;
2791 
2792 		len = skb->len - offset;
2793 		if (len > mss)
2794 			len = mss;
2795 
2796 		hsize = skb_headlen(skb) - offset;
2797 		if (hsize < 0)
2798 			hsize = 0;
2799 		if (hsize > len || !sg)
2800 			hsize = len;
2801 
2802 		if (!hsize && i >= nfrags) {
2803 			BUG_ON(fskb->len != len);
2804 
2805 			pos += len;
2806 			nskb = skb_clone(fskb, GFP_ATOMIC);
2807 			fskb = fskb->next;
2808 
2809 			if (unlikely(!nskb))
2810 				goto err;
2811 
2812 			hsize = skb_end_offset(nskb);
2813 			if (skb_cow_head(nskb, doffset + headroom)) {
2814 				kfree_skb(nskb);
2815 				goto err;
2816 			}
2817 
2818 			nskb->truesize += skb_end_offset(nskb) - hsize;
2819 			skb_release_head_state(nskb);
2820 			__skb_push(nskb, doffset);
2821 		} else {
2822 			nskb = __alloc_skb(hsize + doffset + headroom,
2823 					   GFP_ATOMIC, skb_alloc_rx_flag(skb),
2824 					   NUMA_NO_NODE);
2825 
2826 			if (unlikely(!nskb))
2827 				goto err;
2828 
2829 			skb_reserve(nskb, headroom);
2830 			__skb_put(nskb, doffset);
2831 		}
2832 
2833 		if (segs)
2834 			tail->next = nskb;
2835 		else
2836 			segs = nskb;
2837 		tail = nskb;
2838 
2839 		__copy_skb_header(nskb, skb);
2840 		nskb->mac_len = skb->mac_len;
2841 
2842 		/* nskb and skb might have different headroom */
2843 		if (nskb->ip_summed == CHECKSUM_PARTIAL)
2844 			nskb->csum_start += skb_headroom(nskb) - headroom;
2845 
2846 		skb_reset_mac_header(nskb);
2847 		skb_set_network_header(nskb, skb->mac_len);
2848 		nskb->transport_header = (nskb->network_header +
2849 					  skb_network_header_len(skb));
2850 
2851 		skb_copy_from_linear_data_offset(skb, -tnl_hlen,
2852 						 nskb->data - tnl_hlen,
2853 						 doffset + tnl_hlen);
2854 
2855 		if (fskb != skb_shinfo(skb)->frag_list)
2856 			continue;
2857 
2858 		if (!sg) {
2859 			nskb->ip_summed = CHECKSUM_NONE;
2860 			nskb->csum = skb_copy_and_csum_bits(skb, offset,
2861 							    skb_put(nskb, len),
2862 							    len, 0);
2863 			continue;
2864 		}
2865 
2866 		frag = skb_shinfo(nskb)->frags;
2867 
2868 		skb_copy_from_linear_data_offset(skb, offset,
2869 						 skb_put(nskb, hsize), hsize);
2870 
2871 		skb_shinfo(nskb)->tx_flags = skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG;
2872 
2873 		while (pos < offset + len && i < nfrags) {
2874 			*frag = skb_shinfo(skb)->frags[i];
2875 			__skb_frag_ref(frag);
2876 			size = skb_frag_size(frag);
2877 
2878 			if (pos < offset) {
2879 				frag->page_offset += offset - pos;
2880 				skb_frag_size_sub(frag, offset - pos);
2881 			}
2882 
2883 			skb_shinfo(nskb)->nr_frags++;
2884 
2885 			if (pos + size <= offset + len) {
2886 				i++;
2887 				pos += size;
2888 			} else {
2889 				skb_frag_size_sub(frag, pos + size - (offset + len));
2890 				goto skip_fraglist;
2891 			}
2892 
2893 			frag++;
2894 		}
2895 
2896 		if (pos < offset + len) {
2897 			struct sk_buff *fskb2 = fskb;
2898 
2899 			BUG_ON(pos + fskb->len != offset + len);
2900 
2901 			pos += fskb->len;
2902 			fskb = fskb->next;
2903 
2904 			if (fskb2->next) {
2905 				fskb2 = skb_clone(fskb2, GFP_ATOMIC);
2906 				if (!fskb2)
2907 					goto err;
2908 			} else
2909 				skb_get(fskb2);
2910 
2911 			SKB_FRAG_ASSERT(nskb);
2912 			skb_shinfo(nskb)->frag_list = fskb2;
2913 		}
2914 
2915 skip_fraglist:
2916 		nskb->data_len = len - hsize;
2917 		nskb->len += nskb->data_len;
2918 		nskb->truesize += nskb->data_len;
2919 
2920 		if (!csum) {
2921 			nskb->csum = skb_checksum(nskb, doffset,
2922 						  nskb->len - doffset, 0);
2923 			nskb->ip_summed = CHECKSUM_NONE;
2924 		}
2925 	} while ((offset += len) < skb->len);
2926 
2927 	return segs;
2928 
2929 err:
2930 	while ((skb = segs)) {
2931 		segs = skb->next;
2932 		kfree_skb(skb);
2933 	}
2934 	return ERR_PTR(err);
2935 }
2936 EXPORT_SYMBOL_GPL(skb_segment);
2937 
2938 int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb)
2939 {
2940 	struct sk_buff *p = *head;
2941 	struct sk_buff *nskb;
2942 	struct skb_shared_info *skbinfo = skb_shinfo(skb);
2943 	struct skb_shared_info *pinfo = skb_shinfo(p);
2944 	unsigned int headroom;
2945 	unsigned int len = skb_gro_len(skb);
2946 	unsigned int offset = skb_gro_offset(skb);
2947 	unsigned int headlen = skb_headlen(skb);
2948 	unsigned int delta_truesize;
2949 
2950 	if (p->len + len >= 65536)
2951 		return -E2BIG;
2952 
2953 	if (pinfo->frag_list)
2954 		goto merge;
2955 	else if (headlen <= offset) {
2956 		skb_frag_t *frag;
2957 		skb_frag_t *frag2;
2958 		int i = skbinfo->nr_frags;
2959 		int nr_frags = pinfo->nr_frags + i;
2960 
2961 		offset -= headlen;
2962 
2963 		if (nr_frags > MAX_SKB_FRAGS)
2964 			return -E2BIG;
2965 
2966 		pinfo->nr_frags = nr_frags;
2967 		skbinfo->nr_frags = 0;
2968 
2969 		frag = pinfo->frags + nr_frags;
2970 		frag2 = skbinfo->frags + i;
2971 		do {
2972 			*--frag = *--frag2;
2973 		} while (--i);
2974 
2975 		frag->page_offset += offset;
2976 		skb_frag_size_sub(frag, offset);
2977 
2978 		/* all fragments truesize : remove (head size + sk_buff) */
2979 		delta_truesize = skb->truesize -
2980 				 SKB_TRUESIZE(skb_end_offset(skb));
2981 
2982 		skb->truesize -= skb->data_len;
2983 		skb->len -= skb->data_len;
2984 		skb->data_len = 0;
2985 
2986 		NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE;
2987 		goto done;
2988 	} else if (skb->head_frag) {
2989 		int nr_frags = pinfo->nr_frags;
2990 		skb_frag_t *frag = pinfo->frags + nr_frags;
2991 		struct page *page = virt_to_head_page(skb->head);
2992 		unsigned int first_size = headlen - offset;
2993 		unsigned int first_offset;
2994 
2995 		if (nr_frags + 1 + skbinfo->nr_frags > MAX_SKB_FRAGS)
2996 			return -E2BIG;
2997 
2998 		first_offset = skb->data -
2999 			       (unsigned char *)page_address(page) +
3000 			       offset;
3001 
3002 		pinfo->nr_frags = nr_frags + 1 + skbinfo->nr_frags;
3003 
3004 		frag->page.p	  = page;
3005 		frag->page_offset = first_offset;
3006 		skb_frag_size_set(frag, first_size);
3007 
3008 		memcpy(frag + 1, skbinfo->frags, sizeof(*frag) * skbinfo->nr_frags);
3009 		/* We dont need to clear skbinfo->nr_frags here */
3010 
3011 		delta_truesize = skb->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
3012 		NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE_STOLEN_HEAD;
3013 		goto done;
3014 	} else if (skb_gro_len(p) != pinfo->gso_size)
3015 		return -E2BIG;
3016 
3017 	headroom = skb_headroom(p);
3018 	nskb = alloc_skb(headroom + skb_gro_offset(p), GFP_ATOMIC);
3019 	if (unlikely(!nskb))
3020 		return -ENOMEM;
3021 
3022 	__copy_skb_header(nskb, p);
3023 	nskb->mac_len = p->mac_len;
3024 
3025 	skb_reserve(nskb, headroom);
3026 	__skb_put(nskb, skb_gro_offset(p));
3027 
3028 	skb_set_mac_header(nskb, skb_mac_header(p) - p->data);
3029 	skb_set_network_header(nskb, skb_network_offset(p));
3030 	skb_set_transport_header(nskb, skb_transport_offset(p));
3031 
3032 	__skb_pull(p, skb_gro_offset(p));
3033 	memcpy(skb_mac_header(nskb), skb_mac_header(p),
3034 	       p->data - skb_mac_header(p));
3035 
3036 	skb_shinfo(nskb)->frag_list = p;
3037 	skb_shinfo(nskb)->gso_size = pinfo->gso_size;
3038 	pinfo->gso_size = 0;
3039 	skb_header_release(p);
3040 	NAPI_GRO_CB(nskb)->last = p;
3041 
3042 	nskb->data_len += p->len;
3043 	nskb->truesize += p->truesize;
3044 	nskb->len += p->len;
3045 
3046 	*head = nskb;
3047 	nskb->next = p->next;
3048 	p->next = NULL;
3049 
3050 	p = nskb;
3051 
3052 merge:
3053 	delta_truesize = skb->truesize;
3054 	if (offset > headlen) {
3055 		unsigned int eat = offset - headlen;
3056 
3057 		skbinfo->frags[0].page_offset += eat;
3058 		skb_frag_size_sub(&skbinfo->frags[0], eat);
3059 		skb->data_len -= eat;
3060 		skb->len -= eat;
3061 		offset = headlen;
3062 	}
3063 
3064 	__skb_pull(skb, offset);
3065 
3066 	NAPI_GRO_CB(p)->last->next = skb;
3067 	NAPI_GRO_CB(p)->last = skb;
3068 	skb_header_release(skb);
3069 
3070 done:
3071 	NAPI_GRO_CB(p)->count++;
3072 	p->data_len += len;
3073 	p->truesize += delta_truesize;
3074 	p->len += len;
3075 
3076 	NAPI_GRO_CB(skb)->same_flow = 1;
3077 	return 0;
3078 }
3079 EXPORT_SYMBOL_GPL(skb_gro_receive);
3080 
3081 void __init skb_init(void)
3082 {
3083 	skbuff_head_cache = kmem_cache_create("skbuff_head_cache",
3084 					      sizeof(struct sk_buff),
3085 					      0,
3086 					      SLAB_HWCACHE_ALIGN|SLAB_PANIC,
3087 					      NULL);
3088 	skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
3089 						(2*sizeof(struct sk_buff)) +
3090 						sizeof(atomic_t),
3091 						0,
3092 						SLAB_HWCACHE_ALIGN|SLAB_PANIC,
3093 						NULL);
3094 }
3095 
3096 /**
3097  *	skb_to_sgvec - Fill a scatter-gather list from a socket buffer
3098  *	@skb: Socket buffer containing the buffers to be mapped
3099  *	@sg: The scatter-gather list to map into
3100  *	@offset: The offset into the buffer's contents to start mapping
3101  *	@len: Length of buffer space to be mapped
3102  *
3103  *	Fill the specified scatter-gather list with mappings/pointers into a
3104  *	region of the buffer space attached to a socket buffer.
3105  */
3106 static int
3107 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
3108 {
3109 	int start = skb_headlen(skb);
3110 	int i, copy = start - offset;
3111 	struct sk_buff *frag_iter;
3112 	int elt = 0;
3113 
3114 	if (copy > 0) {
3115 		if (copy > len)
3116 			copy = len;
3117 		sg_set_buf(sg, skb->data + offset, copy);
3118 		elt++;
3119 		if ((len -= copy) == 0)
3120 			return elt;
3121 		offset += copy;
3122 	}
3123 
3124 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3125 		int end;
3126 
3127 		WARN_ON(start > offset + len);
3128 
3129 		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
3130 		if ((copy = end - offset) > 0) {
3131 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3132 
3133 			if (copy > len)
3134 				copy = len;
3135 			sg_set_page(&sg[elt], skb_frag_page(frag), copy,
3136 					frag->page_offset+offset-start);
3137 			elt++;
3138 			if (!(len -= copy))
3139 				return elt;
3140 			offset += copy;
3141 		}
3142 		start = end;
3143 	}
3144 
3145 	skb_walk_frags(skb, frag_iter) {
3146 		int end;
3147 
3148 		WARN_ON(start > offset + len);
3149 
3150 		end = start + frag_iter->len;
3151 		if ((copy = end - offset) > 0) {
3152 			if (copy > len)
3153 				copy = len;
3154 			elt += __skb_to_sgvec(frag_iter, sg+elt, offset - start,
3155 					      copy);
3156 			if ((len -= copy) == 0)
3157 				return elt;
3158 			offset += copy;
3159 		}
3160 		start = end;
3161 	}
3162 	BUG_ON(len);
3163 	return elt;
3164 }
3165 
3166 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
3167 {
3168 	int nsg = __skb_to_sgvec(skb, sg, offset, len);
3169 
3170 	sg_mark_end(&sg[nsg - 1]);
3171 
3172 	return nsg;
3173 }
3174 EXPORT_SYMBOL_GPL(skb_to_sgvec);
3175 
3176 /**
3177  *	skb_cow_data - Check that a socket buffer's data buffers are writable
3178  *	@skb: The socket buffer to check.
3179  *	@tailbits: Amount of trailing space to be added
3180  *	@trailer: Returned pointer to the skb where the @tailbits space begins
3181  *
3182  *	Make sure that the data buffers attached to a socket buffer are
3183  *	writable. If they are not, private copies are made of the data buffers
3184  *	and the socket buffer is set to use these instead.
3185  *
3186  *	If @tailbits is given, make sure that there is space to write @tailbits
3187  *	bytes of data beyond current end of socket buffer.  @trailer will be
3188  *	set to point to the skb in which this space begins.
3189  *
3190  *	The number of scatterlist elements required to completely map the
3191  *	COW'd and extended socket buffer will be returned.
3192  */
3193 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
3194 {
3195 	int copyflag;
3196 	int elt;
3197 	struct sk_buff *skb1, **skb_p;
3198 
3199 	/* If skb is cloned or its head is paged, reallocate
3200 	 * head pulling out all the pages (pages are considered not writable
3201 	 * at the moment even if they are anonymous).
3202 	 */
3203 	if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
3204 	    __pskb_pull_tail(skb, skb_pagelen(skb)-skb_headlen(skb)) == NULL)
3205 		return -ENOMEM;
3206 
3207 	/* Easy case. Most of packets will go this way. */
3208 	if (!skb_has_frag_list(skb)) {
3209 		/* A little of trouble, not enough of space for trailer.
3210 		 * This should not happen, when stack is tuned to generate
3211 		 * good frames. OK, on miss we reallocate and reserve even more
3212 		 * space, 128 bytes is fair. */
3213 
3214 		if (skb_tailroom(skb) < tailbits &&
3215 		    pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
3216 			return -ENOMEM;
3217 
3218 		/* Voila! */
3219 		*trailer = skb;
3220 		return 1;
3221 	}
3222 
3223 	/* Misery. We are in troubles, going to mincer fragments... */
3224 
3225 	elt = 1;
3226 	skb_p = &skb_shinfo(skb)->frag_list;
3227 	copyflag = 0;
3228 
3229 	while ((skb1 = *skb_p) != NULL) {
3230 		int ntail = 0;
3231 
3232 		/* The fragment is partially pulled by someone,
3233 		 * this can happen on input. Copy it and everything
3234 		 * after it. */
3235 
3236 		if (skb_shared(skb1))
3237 			copyflag = 1;
3238 
3239 		/* If the skb is the last, worry about trailer. */
3240 
3241 		if (skb1->next == NULL && tailbits) {
3242 			if (skb_shinfo(skb1)->nr_frags ||
3243 			    skb_has_frag_list(skb1) ||
3244 			    skb_tailroom(skb1) < tailbits)
3245 				ntail = tailbits + 128;
3246 		}
3247 
3248 		if (copyflag ||
3249 		    skb_cloned(skb1) ||
3250 		    ntail ||
3251 		    skb_shinfo(skb1)->nr_frags ||
3252 		    skb_has_frag_list(skb1)) {
3253 			struct sk_buff *skb2;
3254 
3255 			/* Fuck, we are miserable poor guys... */
3256 			if (ntail == 0)
3257 				skb2 = skb_copy(skb1, GFP_ATOMIC);
3258 			else
3259 				skb2 = skb_copy_expand(skb1,
3260 						       skb_headroom(skb1),
3261 						       ntail,
3262 						       GFP_ATOMIC);
3263 			if (unlikely(skb2 == NULL))
3264 				return -ENOMEM;
3265 
3266 			if (skb1->sk)
3267 				skb_set_owner_w(skb2, skb1->sk);
3268 
3269 			/* Looking around. Are we still alive?
3270 			 * OK, link new skb, drop old one */
3271 
3272 			skb2->next = skb1->next;
3273 			*skb_p = skb2;
3274 			kfree_skb(skb1);
3275 			skb1 = skb2;
3276 		}
3277 		elt++;
3278 		*trailer = skb1;
3279 		skb_p = &skb1->next;
3280 	}
3281 
3282 	return elt;
3283 }
3284 EXPORT_SYMBOL_GPL(skb_cow_data);
3285 
3286 static void sock_rmem_free(struct sk_buff *skb)
3287 {
3288 	struct sock *sk = skb->sk;
3289 
3290 	atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
3291 }
3292 
3293 /*
3294  * Note: We dont mem charge error packets (no sk_forward_alloc changes)
3295  */
3296 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
3297 {
3298 	int len = skb->len;
3299 
3300 	if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
3301 	    (unsigned int)sk->sk_rcvbuf)
3302 		return -ENOMEM;
3303 
3304 	skb_orphan(skb);
3305 	skb->sk = sk;
3306 	skb->destructor = sock_rmem_free;
3307 	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
3308 
3309 	/* before exiting rcu section, make sure dst is refcounted */
3310 	skb_dst_force(skb);
3311 
3312 	skb_queue_tail(&sk->sk_error_queue, skb);
3313 	if (!sock_flag(sk, SOCK_DEAD))
3314 		sk->sk_data_ready(sk, len);
3315 	return 0;
3316 }
3317 EXPORT_SYMBOL(sock_queue_err_skb);
3318 
3319 void skb_tstamp_tx(struct sk_buff *orig_skb,
3320 		struct skb_shared_hwtstamps *hwtstamps)
3321 {
3322 	struct sock *sk = orig_skb->sk;
3323 	struct sock_exterr_skb *serr;
3324 	struct sk_buff *skb;
3325 	int err;
3326 
3327 	if (!sk)
3328 		return;
3329 
3330 	if (hwtstamps) {
3331 		*skb_hwtstamps(orig_skb) =
3332 			*hwtstamps;
3333 	} else {
3334 		/*
3335 		 * no hardware time stamps available,
3336 		 * so keep the shared tx_flags and only
3337 		 * store software time stamp
3338 		 */
3339 		orig_skb->tstamp = ktime_get_real();
3340 	}
3341 
3342 	skb = skb_clone(orig_skb, GFP_ATOMIC);
3343 	if (!skb)
3344 		return;
3345 
3346 	serr = SKB_EXT_ERR(skb);
3347 	memset(serr, 0, sizeof(*serr));
3348 	serr->ee.ee_errno = ENOMSG;
3349 	serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
3350 
3351 	err = sock_queue_err_skb(sk, skb);
3352 
3353 	if (err)
3354 		kfree_skb(skb);
3355 }
3356 EXPORT_SYMBOL_GPL(skb_tstamp_tx);
3357 
3358 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked)
3359 {
3360 	struct sock *sk = skb->sk;
3361 	struct sock_exterr_skb *serr;
3362 	int err;
3363 
3364 	skb->wifi_acked_valid = 1;
3365 	skb->wifi_acked = acked;
3366 
3367 	serr = SKB_EXT_ERR(skb);
3368 	memset(serr, 0, sizeof(*serr));
3369 	serr->ee.ee_errno = ENOMSG;
3370 	serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS;
3371 
3372 	err = sock_queue_err_skb(sk, skb);
3373 	if (err)
3374 		kfree_skb(skb);
3375 }
3376 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack);
3377 
3378 
3379 /**
3380  * skb_partial_csum_set - set up and verify partial csum values for packet
3381  * @skb: the skb to set
3382  * @start: the number of bytes after skb->data to start checksumming.
3383  * @off: the offset from start to place the checksum.
3384  *
3385  * For untrusted partially-checksummed packets, we need to make sure the values
3386  * for skb->csum_start and skb->csum_offset are valid so we don't oops.
3387  *
3388  * This function checks and sets those values and skb->ip_summed: if this
3389  * returns false you should drop the packet.
3390  */
3391 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
3392 {
3393 	if (unlikely(start > skb_headlen(skb)) ||
3394 	    unlikely((int)start + off > skb_headlen(skb) - 2)) {
3395 		net_warn_ratelimited("bad partial csum: csum=%u/%u len=%u\n",
3396 				     start, off, skb_headlen(skb));
3397 		return false;
3398 	}
3399 	skb->ip_summed = CHECKSUM_PARTIAL;
3400 	skb->csum_start = skb_headroom(skb) + start;
3401 	skb->csum_offset = off;
3402 	skb_set_transport_header(skb, start);
3403 	return true;
3404 }
3405 EXPORT_SYMBOL_GPL(skb_partial_csum_set);
3406 
3407 void __skb_warn_lro_forwarding(const struct sk_buff *skb)
3408 {
3409 	net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n",
3410 			     skb->dev->name);
3411 }
3412 EXPORT_SYMBOL(__skb_warn_lro_forwarding);
3413 
3414 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen)
3415 {
3416 	if (head_stolen) {
3417 		skb_release_head_state(skb);
3418 		kmem_cache_free(skbuff_head_cache, skb);
3419 	} else {
3420 		__kfree_skb(skb);
3421 	}
3422 }
3423 EXPORT_SYMBOL(kfree_skb_partial);
3424 
3425 /**
3426  * skb_try_coalesce - try to merge skb to prior one
3427  * @to: prior buffer
3428  * @from: buffer to add
3429  * @fragstolen: pointer to boolean
3430  * @delta_truesize: how much more was allocated than was requested
3431  */
3432 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
3433 		      bool *fragstolen, int *delta_truesize)
3434 {
3435 	int i, delta, len = from->len;
3436 
3437 	*fragstolen = false;
3438 
3439 	if (skb_cloned(to))
3440 		return false;
3441 
3442 	if (len <= skb_tailroom(to)) {
3443 		BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len));
3444 		*delta_truesize = 0;
3445 		return true;
3446 	}
3447 
3448 	if (skb_has_frag_list(to) || skb_has_frag_list(from))
3449 		return false;
3450 
3451 	if (skb_headlen(from) != 0) {
3452 		struct page *page;
3453 		unsigned int offset;
3454 
3455 		if (skb_shinfo(to)->nr_frags +
3456 		    skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS)
3457 			return false;
3458 
3459 		if (skb_head_is_locked(from))
3460 			return false;
3461 
3462 		delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
3463 
3464 		page = virt_to_head_page(from->head);
3465 		offset = from->data - (unsigned char *)page_address(page);
3466 
3467 		skb_fill_page_desc(to, skb_shinfo(to)->nr_frags,
3468 				   page, offset, skb_headlen(from));
3469 		*fragstolen = true;
3470 	} else {
3471 		if (skb_shinfo(to)->nr_frags +
3472 		    skb_shinfo(from)->nr_frags > MAX_SKB_FRAGS)
3473 			return false;
3474 
3475 		delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from));
3476 	}
3477 
3478 	WARN_ON_ONCE(delta < len);
3479 
3480 	memcpy(skb_shinfo(to)->frags + skb_shinfo(to)->nr_frags,
3481 	       skb_shinfo(from)->frags,
3482 	       skb_shinfo(from)->nr_frags * sizeof(skb_frag_t));
3483 	skb_shinfo(to)->nr_frags += skb_shinfo(from)->nr_frags;
3484 
3485 	if (!skb_cloned(from))
3486 		skb_shinfo(from)->nr_frags = 0;
3487 
3488 	/* if the skb is not cloned this does nothing
3489 	 * since we set nr_frags to 0.
3490 	 */
3491 	for (i = 0; i < skb_shinfo(from)->nr_frags; i++)
3492 		skb_frag_ref(from, i);
3493 
3494 	to->truesize += delta;
3495 	to->len += len;
3496 	to->data_len += len;
3497 
3498 	*delta_truesize = delta;
3499 	return true;
3500 }
3501 EXPORT_SYMBOL(skb_try_coalesce);
3502