1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Routines having to do with the 'struct sk_buff' memory handlers. 4 * 5 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk> 6 * Florian La Roche <rzsfl@rz.uni-sb.de> 7 * 8 * Fixes: 9 * Alan Cox : Fixed the worst of the load 10 * balancer bugs. 11 * Dave Platt : Interrupt stacking fix. 12 * Richard Kooijman : Timestamp fixes. 13 * Alan Cox : Changed buffer format. 14 * Alan Cox : destructor hook for AF_UNIX etc. 15 * Linus Torvalds : Better skb_clone. 16 * Alan Cox : Added skb_copy. 17 * Alan Cox : Added all the changed routines Linus 18 * only put in the headers 19 * Ray VanTassle : Fixed --skb->lock in free 20 * Alan Cox : skb_copy copy arp field 21 * Andi Kleen : slabified it. 22 * Robert Olsson : Removed skb_head_pool 23 * 24 * NOTE: 25 * The __skb_ routines should be called with interrupts 26 * disabled, or you better be *real* sure that the operation is atomic 27 * with respect to whatever list is being frobbed (e.g. via lock_sock() 28 * or via disabling bottom half handlers, etc). 29 */ 30 31 /* 32 * The functions in this file will not compile correctly with gcc 2.4.x 33 */ 34 35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 36 37 #include <linux/module.h> 38 #include <linux/types.h> 39 #include <linux/kernel.h> 40 #include <linux/mm.h> 41 #include <linux/interrupt.h> 42 #include <linux/in.h> 43 #include <linux/inet.h> 44 #include <linux/slab.h> 45 #include <linux/tcp.h> 46 #include <linux/udp.h> 47 #include <linux/sctp.h> 48 #include <linux/netdevice.h> 49 #ifdef CONFIG_NET_CLS_ACT 50 #include <net/pkt_sched.h> 51 #endif 52 #include <linux/string.h> 53 #include <linux/skbuff.h> 54 #include <linux/splice.h> 55 #include <linux/cache.h> 56 #include <linux/rtnetlink.h> 57 #include <linux/init.h> 58 #include <linux/scatterlist.h> 59 #include <linux/errqueue.h> 60 #include <linux/prefetch.h> 61 #include <linux/if_vlan.h> 62 #include <linux/mpls.h> 63 #include <linux/kcov.h> 64 65 #include <net/protocol.h> 66 #include <net/dst.h> 67 #include <net/sock.h> 68 #include <net/checksum.h> 69 #include <net/ip6_checksum.h> 70 #include <net/xfrm.h> 71 #include <net/mpls.h> 72 #include <net/mptcp.h> 73 #include <net/mctp.h> 74 #include <net/page_pool.h> 75 76 #include <linux/uaccess.h> 77 #include <trace/events/skb.h> 78 #include <linux/highmem.h> 79 #include <linux/capability.h> 80 #include <linux/user_namespace.h> 81 #include <linux/indirect_call_wrapper.h> 82 83 #include "dev.h" 84 #include "sock_destructor.h" 85 86 struct kmem_cache *skbuff_head_cache __ro_after_init; 87 static struct kmem_cache *skbuff_fclone_cache __ro_after_init; 88 #ifdef CONFIG_SKB_EXTENSIONS 89 static struct kmem_cache *skbuff_ext_cache __ro_after_init; 90 #endif 91 int sysctl_max_skb_frags __read_mostly = MAX_SKB_FRAGS; 92 EXPORT_SYMBOL(sysctl_max_skb_frags); 93 94 #undef FN 95 #define FN(reason) [SKB_DROP_REASON_##reason] = #reason, 96 const char * const drop_reasons[] = { 97 DEFINE_DROP_REASON(FN, FN) 98 }; 99 EXPORT_SYMBOL(drop_reasons); 100 101 /** 102 * skb_panic - private function for out-of-line support 103 * @skb: buffer 104 * @sz: size 105 * @addr: address 106 * @msg: skb_over_panic or skb_under_panic 107 * 108 * Out-of-line support for skb_put() and skb_push(). 109 * Called via the wrapper skb_over_panic() or skb_under_panic(). 110 * Keep out of line to prevent kernel bloat. 111 * __builtin_return_address is not used because it is not always reliable. 112 */ 113 static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr, 114 const char msg[]) 115 { 116 pr_emerg("%s: text:%px len:%d put:%d head:%px data:%px tail:%#lx end:%#lx dev:%s\n", 117 msg, addr, skb->len, sz, skb->head, skb->data, 118 (unsigned long)skb->tail, (unsigned long)skb->end, 119 skb->dev ? skb->dev->name : "<NULL>"); 120 BUG(); 121 } 122 123 static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr) 124 { 125 skb_panic(skb, sz, addr, __func__); 126 } 127 128 static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr) 129 { 130 skb_panic(skb, sz, addr, __func__); 131 } 132 133 #define NAPI_SKB_CACHE_SIZE 64 134 #define NAPI_SKB_CACHE_BULK 16 135 #define NAPI_SKB_CACHE_HALF (NAPI_SKB_CACHE_SIZE / 2) 136 137 #if PAGE_SIZE == SZ_4K 138 139 #define NAPI_HAS_SMALL_PAGE_FRAG 1 140 #define NAPI_SMALL_PAGE_PFMEMALLOC(nc) ((nc).pfmemalloc) 141 142 /* specialized page frag allocator using a single order 0 page 143 * and slicing it into 1K sized fragment. Constrained to systems 144 * with a very limited amount of 1K fragments fitting a single 145 * page - to avoid excessive truesize underestimation 146 */ 147 148 struct page_frag_1k { 149 void *va; 150 u16 offset; 151 bool pfmemalloc; 152 }; 153 154 static void *page_frag_alloc_1k(struct page_frag_1k *nc, gfp_t gfp) 155 { 156 struct page *page; 157 int offset; 158 159 offset = nc->offset - SZ_1K; 160 if (likely(offset >= 0)) 161 goto use_frag; 162 163 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0); 164 if (!page) 165 return NULL; 166 167 nc->va = page_address(page); 168 nc->pfmemalloc = page_is_pfmemalloc(page); 169 offset = PAGE_SIZE - SZ_1K; 170 page_ref_add(page, offset / SZ_1K); 171 172 use_frag: 173 nc->offset = offset; 174 return nc->va + offset; 175 } 176 #else 177 178 /* the small page is actually unused in this build; add dummy helpers 179 * to please the compiler and avoid later preprocessor's conditionals 180 */ 181 #define NAPI_HAS_SMALL_PAGE_FRAG 0 182 #define NAPI_SMALL_PAGE_PFMEMALLOC(nc) false 183 184 struct page_frag_1k { 185 }; 186 187 static void *page_frag_alloc_1k(struct page_frag_1k *nc, gfp_t gfp_mask) 188 { 189 return NULL; 190 } 191 192 #endif 193 194 struct napi_alloc_cache { 195 struct page_frag_cache page; 196 struct page_frag_1k page_small; 197 unsigned int skb_count; 198 void *skb_cache[NAPI_SKB_CACHE_SIZE]; 199 }; 200 201 static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache); 202 static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache); 203 204 /* Double check that napi_get_frags() allocates skbs with 205 * skb->head being backed by slab, not a page fragment. 206 * This is to make sure bug fixed in 3226b158e67c 207 * ("net: avoid 32 x truesize under-estimation for tiny skbs") 208 * does not accidentally come back. 209 */ 210 void napi_get_frags_check(struct napi_struct *napi) 211 { 212 struct sk_buff *skb; 213 214 local_bh_disable(); 215 skb = napi_get_frags(napi); 216 WARN_ON_ONCE(!NAPI_HAS_SMALL_PAGE_FRAG && skb && skb->head_frag); 217 napi_free_frags(napi); 218 local_bh_enable(); 219 } 220 221 void *__napi_alloc_frag_align(unsigned int fragsz, unsigned int align_mask) 222 { 223 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 224 225 fragsz = SKB_DATA_ALIGN(fragsz); 226 227 return page_frag_alloc_align(&nc->page, fragsz, GFP_ATOMIC, align_mask); 228 } 229 EXPORT_SYMBOL(__napi_alloc_frag_align); 230 231 void *__netdev_alloc_frag_align(unsigned int fragsz, unsigned int align_mask) 232 { 233 void *data; 234 235 fragsz = SKB_DATA_ALIGN(fragsz); 236 if (in_hardirq() || irqs_disabled()) { 237 struct page_frag_cache *nc = this_cpu_ptr(&netdev_alloc_cache); 238 239 data = page_frag_alloc_align(nc, fragsz, GFP_ATOMIC, align_mask); 240 } else { 241 struct napi_alloc_cache *nc; 242 243 local_bh_disable(); 244 nc = this_cpu_ptr(&napi_alloc_cache); 245 data = page_frag_alloc_align(&nc->page, fragsz, GFP_ATOMIC, align_mask); 246 local_bh_enable(); 247 } 248 return data; 249 } 250 EXPORT_SYMBOL(__netdev_alloc_frag_align); 251 252 static struct sk_buff *napi_skb_cache_get(void) 253 { 254 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 255 struct sk_buff *skb; 256 257 if (unlikely(!nc->skb_count)) { 258 nc->skb_count = kmem_cache_alloc_bulk(skbuff_head_cache, 259 GFP_ATOMIC, 260 NAPI_SKB_CACHE_BULK, 261 nc->skb_cache); 262 if (unlikely(!nc->skb_count)) 263 return NULL; 264 } 265 266 skb = nc->skb_cache[--nc->skb_count]; 267 kasan_unpoison_object_data(skbuff_head_cache, skb); 268 269 return skb; 270 } 271 272 /* Caller must provide SKB that is memset cleared */ 273 static void __build_skb_around(struct sk_buff *skb, void *data, 274 unsigned int frag_size) 275 { 276 struct skb_shared_info *shinfo; 277 unsigned int size = frag_size ? : ksize(data); 278 279 size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 280 281 /* Assumes caller memset cleared SKB */ 282 skb->truesize = SKB_TRUESIZE(size); 283 refcount_set(&skb->users, 1); 284 skb->head = data; 285 skb->data = data; 286 skb_reset_tail_pointer(skb); 287 skb_set_end_offset(skb, size); 288 skb->mac_header = (typeof(skb->mac_header))~0U; 289 skb->transport_header = (typeof(skb->transport_header))~0U; 290 skb->alloc_cpu = raw_smp_processor_id(); 291 /* make sure we initialize shinfo sequentially */ 292 shinfo = skb_shinfo(skb); 293 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref)); 294 atomic_set(&shinfo->dataref, 1); 295 296 skb_set_kcov_handle(skb, kcov_common_handle()); 297 } 298 299 /** 300 * __build_skb - build a network buffer 301 * @data: data buffer provided by caller 302 * @frag_size: size of data, or 0 if head was kmalloced 303 * 304 * Allocate a new &sk_buff. Caller provides space holding head and 305 * skb_shared_info. @data must have been allocated by kmalloc() only if 306 * @frag_size is 0, otherwise data should come from the page allocator 307 * or vmalloc() 308 * The return is the new skb buffer. 309 * On a failure the return is %NULL, and @data is not freed. 310 * Notes : 311 * Before IO, driver allocates only data buffer where NIC put incoming frame 312 * Driver should add room at head (NET_SKB_PAD) and 313 * MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info)) 314 * After IO, driver calls build_skb(), to allocate sk_buff and populate it 315 * before giving packet to stack. 316 * RX rings only contains data buffers, not full skbs. 317 */ 318 struct sk_buff *__build_skb(void *data, unsigned int frag_size) 319 { 320 struct sk_buff *skb; 321 322 skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC); 323 if (unlikely(!skb)) 324 return NULL; 325 326 memset(skb, 0, offsetof(struct sk_buff, tail)); 327 __build_skb_around(skb, data, frag_size); 328 329 return skb; 330 } 331 332 /* build_skb() is wrapper over __build_skb(), that specifically 333 * takes care of skb->head and skb->pfmemalloc 334 * This means that if @frag_size is not zero, then @data must be backed 335 * by a page fragment, not kmalloc() or vmalloc() 336 */ 337 struct sk_buff *build_skb(void *data, unsigned int frag_size) 338 { 339 struct sk_buff *skb = __build_skb(data, frag_size); 340 341 if (skb && frag_size) { 342 skb->head_frag = 1; 343 if (page_is_pfmemalloc(virt_to_head_page(data))) 344 skb->pfmemalloc = 1; 345 } 346 return skb; 347 } 348 EXPORT_SYMBOL(build_skb); 349 350 /** 351 * build_skb_around - build a network buffer around provided skb 352 * @skb: sk_buff provide by caller, must be memset cleared 353 * @data: data buffer provided by caller 354 * @frag_size: size of data, or 0 if head was kmalloced 355 */ 356 struct sk_buff *build_skb_around(struct sk_buff *skb, 357 void *data, unsigned int frag_size) 358 { 359 if (unlikely(!skb)) 360 return NULL; 361 362 __build_skb_around(skb, data, frag_size); 363 364 if (frag_size) { 365 skb->head_frag = 1; 366 if (page_is_pfmemalloc(virt_to_head_page(data))) 367 skb->pfmemalloc = 1; 368 } 369 return skb; 370 } 371 EXPORT_SYMBOL(build_skb_around); 372 373 /** 374 * __napi_build_skb - build a network buffer 375 * @data: data buffer provided by caller 376 * @frag_size: size of data, or 0 if head was kmalloced 377 * 378 * Version of __build_skb() that uses NAPI percpu caches to obtain 379 * skbuff_head instead of inplace allocation. 380 * 381 * Returns a new &sk_buff on success, %NULL on allocation failure. 382 */ 383 static struct sk_buff *__napi_build_skb(void *data, unsigned int frag_size) 384 { 385 struct sk_buff *skb; 386 387 skb = napi_skb_cache_get(); 388 if (unlikely(!skb)) 389 return NULL; 390 391 memset(skb, 0, offsetof(struct sk_buff, tail)); 392 __build_skb_around(skb, data, frag_size); 393 394 return skb; 395 } 396 397 /** 398 * napi_build_skb - build a network buffer 399 * @data: data buffer provided by caller 400 * @frag_size: size of data, or 0 if head was kmalloced 401 * 402 * Version of __napi_build_skb() that takes care of skb->head_frag 403 * and skb->pfmemalloc when the data is a page or page fragment. 404 * 405 * Returns a new &sk_buff on success, %NULL on allocation failure. 406 */ 407 struct sk_buff *napi_build_skb(void *data, unsigned int frag_size) 408 { 409 struct sk_buff *skb = __napi_build_skb(data, frag_size); 410 411 if (likely(skb) && frag_size) { 412 skb->head_frag = 1; 413 skb_propagate_pfmemalloc(virt_to_head_page(data), skb); 414 } 415 416 return skb; 417 } 418 EXPORT_SYMBOL(napi_build_skb); 419 420 /* 421 * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells 422 * the caller if emergency pfmemalloc reserves are being used. If it is and 423 * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves 424 * may be used. Otherwise, the packet data may be discarded until enough 425 * memory is free 426 */ 427 static void *kmalloc_reserve(size_t size, gfp_t flags, int node, 428 bool *pfmemalloc) 429 { 430 void *obj; 431 bool ret_pfmemalloc = false; 432 433 /* 434 * Try a regular allocation, when that fails and we're not entitled 435 * to the reserves, fail. 436 */ 437 obj = kmalloc_node_track_caller(size, 438 flags | __GFP_NOMEMALLOC | __GFP_NOWARN, 439 node); 440 if (obj || !(gfp_pfmemalloc_allowed(flags))) 441 goto out; 442 443 /* Try again but now we are using pfmemalloc reserves */ 444 ret_pfmemalloc = true; 445 obj = kmalloc_node_track_caller(size, flags, node); 446 447 out: 448 if (pfmemalloc) 449 *pfmemalloc = ret_pfmemalloc; 450 451 return obj; 452 } 453 454 /* Allocate a new skbuff. We do this ourselves so we can fill in a few 455 * 'private' fields and also do memory statistics to find all the 456 * [BEEP] leaks. 457 * 458 */ 459 460 /** 461 * __alloc_skb - allocate a network buffer 462 * @size: size to allocate 463 * @gfp_mask: allocation mask 464 * @flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache 465 * instead of head cache and allocate a cloned (child) skb. 466 * If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for 467 * allocations in case the data is required for writeback 468 * @node: numa node to allocate memory on 469 * 470 * Allocate a new &sk_buff. The returned buffer has no headroom and a 471 * tail room of at least size bytes. The object has a reference count 472 * of one. The return is the buffer. On a failure the return is %NULL. 473 * 474 * Buffers may only be allocated from interrupts using a @gfp_mask of 475 * %GFP_ATOMIC. 476 */ 477 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask, 478 int flags, int node) 479 { 480 struct kmem_cache *cache; 481 struct sk_buff *skb; 482 unsigned int osize; 483 bool pfmemalloc; 484 u8 *data; 485 486 cache = (flags & SKB_ALLOC_FCLONE) 487 ? skbuff_fclone_cache : skbuff_head_cache; 488 489 if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX)) 490 gfp_mask |= __GFP_MEMALLOC; 491 492 /* Get the HEAD */ 493 if ((flags & (SKB_ALLOC_FCLONE | SKB_ALLOC_NAPI)) == SKB_ALLOC_NAPI && 494 likely(node == NUMA_NO_NODE || node == numa_mem_id())) 495 skb = napi_skb_cache_get(); 496 else 497 skb = kmem_cache_alloc_node(cache, gfp_mask & ~GFP_DMA, node); 498 if (unlikely(!skb)) 499 return NULL; 500 prefetchw(skb); 501 502 /* We do our best to align skb_shared_info on a separate cache 503 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives 504 * aligned memory blocks, unless SLUB/SLAB debug is enabled. 505 * Both skb->head and skb_shared_info are cache line aligned. 506 */ 507 size = SKB_DATA_ALIGN(size); 508 size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 509 data = kmalloc_reserve(size, gfp_mask, node, &pfmemalloc); 510 if (unlikely(!data)) 511 goto nodata; 512 /* kmalloc(size) might give us more room than requested. 513 * Put skb_shared_info exactly at the end of allocated zone, 514 * to allow max possible filling before reallocation. 515 */ 516 osize = ksize(data); 517 size = SKB_WITH_OVERHEAD(osize); 518 prefetchw(data + size); 519 520 /* 521 * Only clear those fields we need to clear, not those that we will 522 * actually initialise below. Hence, don't put any more fields after 523 * the tail pointer in struct sk_buff! 524 */ 525 memset(skb, 0, offsetof(struct sk_buff, tail)); 526 __build_skb_around(skb, data, osize); 527 skb->pfmemalloc = pfmemalloc; 528 529 if (flags & SKB_ALLOC_FCLONE) { 530 struct sk_buff_fclones *fclones; 531 532 fclones = container_of(skb, struct sk_buff_fclones, skb1); 533 534 skb->fclone = SKB_FCLONE_ORIG; 535 refcount_set(&fclones->fclone_ref, 1); 536 } 537 538 return skb; 539 540 nodata: 541 kmem_cache_free(cache, skb); 542 return NULL; 543 } 544 EXPORT_SYMBOL(__alloc_skb); 545 546 /** 547 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device 548 * @dev: network device to receive on 549 * @len: length to allocate 550 * @gfp_mask: get_free_pages mask, passed to alloc_skb 551 * 552 * Allocate a new &sk_buff and assign it a usage count of one. The 553 * buffer has NET_SKB_PAD headroom built in. Users should allocate 554 * the headroom they think they need without accounting for the 555 * built in space. The built in space is used for optimisations. 556 * 557 * %NULL is returned if there is no free memory. 558 */ 559 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len, 560 gfp_t gfp_mask) 561 { 562 struct page_frag_cache *nc; 563 struct sk_buff *skb; 564 bool pfmemalloc; 565 void *data; 566 567 len += NET_SKB_PAD; 568 569 /* If requested length is either too small or too big, 570 * we use kmalloc() for skb->head allocation. 571 */ 572 if (len <= SKB_WITH_OVERHEAD(1024) || 573 len > SKB_WITH_OVERHEAD(PAGE_SIZE) || 574 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) { 575 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE); 576 if (!skb) 577 goto skb_fail; 578 goto skb_success; 579 } 580 581 len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 582 len = SKB_DATA_ALIGN(len); 583 584 if (sk_memalloc_socks()) 585 gfp_mask |= __GFP_MEMALLOC; 586 587 if (in_hardirq() || irqs_disabled()) { 588 nc = this_cpu_ptr(&netdev_alloc_cache); 589 data = page_frag_alloc(nc, len, gfp_mask); 590 pfmemalloc = nc->pfmemalloc; 591 } else { 592 local_bh_disable(); 593 nc = this_cpu_ptr(&napi_alloc_cache.page); 594 data = page_frag_alloc(nc, len, gfp_mask); 595 pfmemalloc = nc->pfmemalloc; 596 local_bh_enable(); 597 } 598 599 if (unlikely(!data)) 600 return NULL; 601 602 skb = __build_skb(data, len); 603 if (unlikely(!skb)) { 604 skb_free_frag(data); 605 return NULL; 606 } 607 608 if (pfmemalloc) 609 skb->pfmemalloc = 1; 610 skb->head_frag = 1; 611 612 skb_success: 613 skb_reserve(skb, NET_SKB_PAD); 614 skb->dev = dev; 615 616 skb_fail: 617 return skb; 618 } 619 EXPORT_SYMBOL(__netdev_alloc_skb); 620 621 /** 622 * __napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance 623 * @napi: napi instance this buffer was allocated for 624 * @len: length to allocate 625 * @gfp_mask: get_free_pages mask, passed to alloc_skb and alloc_pages 626 * 627 * Allocate a new sk_buff for use in NAPI receive. This buffer will 628 * attempt to allocate the head from a special reserved region used 629 * only for NAPI Rx allocation. By doing this we can save several 630 * CPU cycles by avoiding having to disable and re-enable IRQs. 631 * 632 * %NULL is returned if there is no free memory. 633 */ 634 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, unsigned int len, 635 gfp_t gfp_mask) 636 { 637 struct napi_alloc_cache *nc; 638 struct sk_buff *skb; 639 bool pfmemalloc; 640 void *data; 641 642 DEBUG_NET_WARN_ON_ONCE(!in_softirq()); 643 len += NET_SKB_PAD + NET_IP_ALIGN; 644 645 /* If requested length is either too small or too big, 646 * we use kmalloc() for skb->head allocation. 647 * When the small frag allocator is available, prefer it over kmalloc 648 * for small fragments 649 */ 650 if ((!NAPI_HAS_SMALL_PAGE_FRAG && len <= SKB_WITH_OVERHEAD(1024)) || 651 len > SKB_WITH_OVERHEAD(PAGE_SIZE) || 652 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) { 653 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX | SKB_ALLOC_NAPI, 654 NUMA_NO_NODE); 655 if (!skb) 656 goto skb_fail; 657 goto skb_success; 658 } 659 660 nc = this_cpu_ptr(&napi_alloc_cache); 661 662 if (sk_memalloc_socks()) 663 gfp_mask |= __GFP_MEMALLOC; 664 665 if (NAPI_HAS_SMALL_PAGE_FRAG && len <= SKB_WITH_OVERHEAD(1024)) { 666 /* we are artificially inflating the allocation size, but 667 * that is not as bad as it may look like, as: 668 * - 'len' less than GRO_MAX_HEAD makes little sense 669 * - On most systems, larger 'len' values lead to fragment 670 * size above 512 bytes 671 * - kmalloc would use the kmalloc-1k slab for such values 672 * - Builds with smaller GRO_MAX_HEAD will very likely do 673 * little networking, as that implies no WiFi and no 674 * tunnels support, and 32 bits arches. 675 */ 676 len = SZ_1K; 677 678 data = page_frag_alloc_1k(&nc->page_small, gfp_mask); 679 pfmemalloc = NAPI_SMALL_PAGE_PFMEMALLOC(nc->page_small); 680 } else { 681 len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 682 len = SKB_DATA_ALIGN(len); 683 684 data = page_frag_alloc(&nc->page, len, gfp_mask); 685 pfmemalloc = nc->page.pfmemalloc; 686 } 687 688 if (unlikely(!data)) 689 return NULL; 690 691 skb = __napi_build_skb(data, len); 692 if (unlikely(!skb)) { 693 skb_free_frag(data); 694 return NULL; 695 } 696 697 if (pfmemalloc) 698 skb->pfmemalloc = 1; 699 skb->head_frag = 1; 700 701 skb_success: 702 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN); 703 skb->dev = napi->dev; 704 705 skb_fail: 706 return skb; 707 } 708 EXPORT_SYMBOL(__napi_alloc_skb); 709 710 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off, 711 int size, unsigned int truesize) 712 { 713 skb_fill_page_desc(skb, i, page, off, size); 714 skb->len += size; 715 skb->data_len += size; 716 skb->truesize += truesize; 717 } 718 EXPORT_SYMBOL(skb_add_rx_frag); 719 720 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size, 721 unsigned int truesize) 722 { 723 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 724 725 skb_frag_size_add(frag, size); 726 skb->len += size; 727 skb->data_len += size; 728 skb->truesize += truesize; 729 } 730 EXPORT_SYMBOL(skb_coalesce_rx_frag); 731 732 static void skb_drop_list(struct sk_buff **listp) 733 { 734 kfree_skb_list(*listp); 735 *listp = NULL; 736 } 737 738 static inline void skb_drop_fraglist(struct sk_buff *skb) 739 { 740 skb_drop_list(&skb_shinfo(skb)->frag_list); 741 } 742 743 static void skb_clone_fraglist(struct sk_buff *skb) 744 { 745 struct sk_buff *list; 746 747 skb_walk_frags(skb, list) 748 skb_get(list); 749 } 750 751 static void skb_free_head(struct sk_buff *skb) 752 { 753 unsigned char *head = skb->head; 754 755 if (skb->head_frag) { 756 if (skb_pp_recycle(skb, head)) 757 return; 758 skb_free_frag(head); 759 } else { 760 kfree(head); 761 } 762 } 763 764 static void skb_release_data(struct sk_buff *skb) 765 { 766 struct skb_shared_info *shinfo = skb_shinfo(skb); 767 int i; 768 769 if (skb->cloned && 770 atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1, 771 &shinfo->dataref)) 772 goto exit; 773 774 if (skb_zcopy(skb)) { 775 bool skip_unref = shinfo->flags & SKBFL_MANAGED_FRAG_REFS; 776 777 skb_zcopy_clear(skb, true); 778 if (skip_unref) 779 goto free_head; 780 } 781 782 for (i = 0; i < shinfo->nr_frags; i++) 783 __skb_frag_unref(&shinfo->frags[i], skb->pp_recycle); 784 785 free_head: 786 if (shinfo->frag_list) 787 kfree_skb_list(shinfo->frag_list); 788 789 skb_free_head(skb); 790 exit: 791 /* When we clone an SKB we copy the reycling bit. The pp_recycle 792 * bit is only set on the head though, so in order to avoid races 793 * while trying to recycle fragments on __skb_frag_unref() we need 794 * to make one SKB responsible for triggering the recycle path. 795 * So disable the recycling bit if an SKB is cloned and we have 796 * additional references to the fragmented part of the SKB. 797 * Eventually the last SKB will have the recycling bit set and it's 798 * dataref set to 0, which will trigger the recycling 799 */ 800 skb->pp_recycle = 0; 801 } 802 803 /* 804 * Free an skbuff by memory without cleaning the state. 805 */ 806 static void kfree_skbmem(struct sk_buff *skb) 807 { 808 struct sk_buff_fclones *fclones; 809 810 switch (skb->fclone) { 811 case SKB_FCLONE_UNAVAILABLE: 812 kmem_cache_free(skbuff_head_cache, skb); 813 return; 814 815 case SKB_FCLONE_ORIG: 816 fclones = container_of(skb, struct sk_buff_fclones, skb1); 817 818 /* We usually free the clone (TX completion) before original skb 819 * This test would have no chance to be true for the clone, 820 * while here, branch prediction will be good. 821 */ 822 if (refcount_read(&fclones->fclone_ref) == 1) 823 goto fastpath; 824 break; 825 826 default: /* SKB_FCLONE_CLONE */ 827 fclones = container_of(skb, struct sk_buff_fclones, skb2); 828 break; 829 } 830 if (!refcount_dec_and_test(&fclones->fclone_ref)) 831 return; 832 fastpath: 833 kmem_cache_free(skbuff_fclone_cache, fclones); 834 } 835 836 void skb_release_head_state(struct sk_buff *skb) 837 { 838 skb_dst_drop(skb); 839 if (skb->destructor) { 840 DEBUG_NET_WARN_ON_ONCE(in_hardirq()); 841 skb->destructor(skb); 842 } 843 #if IS_ENABLED(CONFIG_NF_CONNTRACK) 844 nf_conntrack_put(skb_nfct(skb)); 845 #endif 846 skb_ext_put(skb); 847 } 848 849 /* Free everything but the sk_buff shell. */ 850 static void skb_release_all(struct sk_buff *skb) 851 { 852 skb_release_head_state(skb); 853 if (likely(skb->head)) 854 skb_release_data(skb); 855 } 856 857 /** 858 * __kfree_skb - private function 859 * @skb: buffer 860 * 861 * Free an sk_buff. Release anything attached to the buffer. 862 * Clean the state. This is an internal helper function. Users should 863 * always call kfree_skb 864 */ 865 866 void __kfree_skb(struct sk_buff *skb) 867 { 868 skb_release_all(skb); 869 kfree_skbmem(skb); 870 } 871 EXPORT_SYMBOL(__kfree_skb); 872 873 /** 874 * kfree_skb_reason - free an sk_buff with special reason 875 * @skb: buffer to free 876 * @reason: reason why this skb is dropped 877 * 878 * Drop a reference to the buffer and free it if the usage count has 879 * hit zero. Meanwhile, pass the drop reason to 'kfree_skb' 880 * tracepoint. 881 */ 882 void __fix_address 883 kfree_skb_reason(struct sk_buff *skb, enum skb_drop_reason reason) 884 { 885 if (unlikely(!skb_unref(skb))) 886 return; 887 888 DEBUG_NET_WARN_ON_ONCE(reason <= 0 || reason >= SKB_DROP_REASON_MAX); 889 890 trace_kfree_skb(skb, __builtin_return_address(0), reason); 891 __kfree_skb(skb); 892 } 893 EXPORT_SYMBOL(kfree_skb_reason); 894 895 void kfree_skb_list_reason(struct sk_buff *segs, 896 enum skb_drop_reason reason) 897 { 898 while (segs) { 899 struct sk_buff *next = segs->next; 900 901 kfree_skb_reason(segs, reason); 902 segs = next; 903 } 904 } 905 EXPORT_SYMBOL(kfree_skb_list_reason); 906 907 /* Dump skb information and contents. 908 * 909 * Must only be called from net_ratelimit()-ed paths. 910 * 911 * Dumps whole packets if full_pkt, only headers otherwise. 912 */ 913 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt) 914 { 915 struct skb_shared_info *sh = skb_shinfo(skb); 916 struct net_device *dev = skb->dev; 917 struct sock *sk = skb->sk; 918 struct sk_buff *list_skb; 919 bool has_mac, has_trans; 920 int headroom, tailroom; 921 int i, len, seg_len; 922 923 if (full_pkt) 924 len = skb->len; 925 else 926 len = min_t(int, skb->len, MAX_HEADER + 128); 927 928 headroom = skb_headroom(skb); 929 tailroom = skb_tailroom(skb); 930 931 has_mac = skb_mac_header_was_set(skb); 932 has_trans = skb_transport_header_was_set(skb); 933 934 printk("%sskb len=%u headroom=%u headlen=%u tailroom=%u\n" 935 "mac=(%d,%d) net=(%d,%d) trans=%d\n" 936 "shinfo(txflags=%u nr_frags=%u gso(size=%hu type=%u segs=%hu))\n" 937 "csum(0x%x ip_summed=%u complete_sw=%u valid=%u level=%u)\n" 938 "hash(0x%x sw=%u l4=%u) proto=0x%04x pkttype=%u iif=%d\n", 939 level, skb->len, headroom, skb_headlen(skb), tailroom, 940 has_mac ? skb->mac_header : -1, 941 has_mac ? skb_mac_header_len(skb) : -1, 942 skb->network_header, 943 has_trans ? skb_network_header_len(skb) : -1, 944 has_trans ? skb->transport_header : -1, 945 sh->tx_flags, sh->nr_frags, 946 sh->gso_size, sh->gso_type, sh->gso_segs, 947 skb->csum, skb->ip_summed, skb->csum_complete_sw, 948 skb->csum_valid, skb->csum_level, 949 skb->hash, skb->sw_hash, skb->l4_hash, 950 ntohs(skb->protocol), skb->pkt_type, skb->skb_iif); 951 952 if (dev) 953 printk("%sdev name=%s feat=%pNF\n", 954 level, dev->name, &dev->features); 955 if (sk) 956 printk("%ssk family=%hu type=%u proto=%u\n", 957 level, sk->sk_family, sk->sk_type, sk->sk_protocol); 958 959 if (full_pkt && headroom) 960 print_hex_dump(level, "skb headroom: ", DUMP_PREFIX_OFFSET, 961 16, 1, skb->head, headroom, false); 962 963 seg_len = min_t(int, skb_headlen(skb), len); 964 if (seg_len) 965 print_hex_dump(level, "skb linear: ", DUMP_PREFIX_OFFSET, 966 16, 1, skb->data, seg_len, false); 967 len -= seg_len; 968 969 if (full_pkt && tailroom) 970 print_hex_dump(level, "skb tailroom: ", DUMP_PREFIX_OFFSET, 971 16, 1, skb_tail_pointer(skb), tailroom, false); 972 973 for (i = 0; len && i < skb_shinfo(skb)->nr_frags; i++) { 974 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 975 u32 p_off, p_len, copied; 976 struct page *p; 977 u8 *vaddr; 978 979 skb_frag_foreach_page(frag, skb_frag_off(frag), 980 skb_frag_size(frag), p, p_off, p_len, 981 copied) { 982 seg_len = min_t(int, p_len, len); 983 vaddr = kmap_atomic(p); 984 print_hex_dump(level, "skb frag: ", 985 DUMP_PREFIX_OFFSET, 986 16, 1, vaddr + p_off, seg_len, false); 987 kunmap_atomic(vaddr); 988 len -= seg_len; 989 if (!len) 990 break; 991 } 992 } 993 994 if (full_pkt && skb_has_frag_list(skb)) { 995 printk("skb fraglist:\n"); 996 skb_walk_frags(skb, list_skb) 997 skb_dump(level, list_skb, true); 998 } 999 } 1000 EXPORT_SYMBOL(skb_dump); 1001 1002 /** 1003 * skb_tx_error - report an sk_buff xmit error 1004 * @skb: buffer that triggered an error 1005 * 1006 * Report xmit error if a device callback is tracking this skb. 1007 * skb must be freed afterwards. 1008 */ 1009 void skb_tx_error(struct sk_buff *skb) 1010 { 1011 if (skb) { 1012 skb_zcopy_downgrade_managed(skb); 1013 skb_zcopy_clear(skb, true); 1014 } 1015 } 1016 EXPORT_SYMBOL(skb_tx_error); 1017 1018 #ifdef CONFIG_TRACEPOINTS 1019 /** 1020 * consume_skb - free an skbuff 1021 * @skb: buffer to free 1022 * 1023 * Drop a ref to the buffer and free it if the usage count has hit zero 1024 * Functions identically to kfree_skb, but kfree_skb assumes that the frame 1025 * is being dropped after a failure and notes that 1026 */ 1027 void consume_skb(struct sk_buff *skb) 1028 { 1029 if (!skb_unref(skb)) 1030 return; 1031 1032 trace_consume_skb(skb); 1033 __kfree_skb(skb); 1034 } 1035 EXPORT_SYMBOL(consume_skb); 1036 #endif 1037 1038 /** 1039 * __consume_stateless_skb - free an skbuff, assuming it is stateless 1040 * @skb: buffer to free 1041 * 1042 * Alike consume_skb(), but this variant assumes that this is the last 1043 * skb reference and all the head states have been already dropped 1044 */ 1045 void __consume_stateless_skb(struct sk_buff *skb) 1046 { 1047 trace_consume_skb(skb); 1048 skb_release_data(skb); 1049 kfree_skbmem(skb); 1050 } 1051 1052 static void napi_skb_cache_put(struct sk_buff *skb) 1053 { 1054 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 1055 u32 i; 1056 1057 kasan_poison_object_data(skbuff_head_cache, skb); 1058 nc->skb_cache[nc->skb_count++] = skb; 1059 1060 if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) { 1061 for (i = NAPI_SKB_CACHE_HALF; i < NAPI_SKB_CACHE_SIZE; i++) 1062 kasan_unpoison_object_data(skbuff_head_cache, 1063 nc->skb_cache[i]); 1064 1065 kmem_cache_free_bulk(skbuff_head_cache, NAPI_SKB_CACHE_HALF, 1066 nc->skb_cache + NAPI_SKB_CACHE_HALF); 1067 nc->skb_count = NAPI_SKB_CACHE_HALF; 1068 } 1069 } 1070 1071 void __kfree_skb_defer(struct sk_buff *skb) 1072 { 1073 skb_release_all(skb); 1074 napi_skb_cache_put(skb); 1075 } 1076 1077 void napi_skb_free_stolen_head(struct sk_buff *skb) 1078 { 1079 if (unlikely(skb->slow_gro)) { 1080 nf_reset_ct(skb); 1081 skb_dst_drop(skb); 1082 skb_ext_put(skb); 1083 skb_orphan(skb); 1084 skb->slow_gro = 0; 1085 } 1086 napi_skb_cache_put(skb); 1087 } 1088 1089 void napi_consume_skb(struct sk_buff *skb, int budget) 1090 { 1091 /* Zero budget indicate non-NAPI context called us, like netpoll */ 1092 if (unlikely(!budget)) { 1093 dev_consume_skb_any(skb); 1094 return; 1095 } 1096 1097 DEBUG_NET_WARN_ON_ONCE(!in_softirq()); 1098 1099 if (!skb_unref(skb)) 1100 return; 1101 1102 /* if reaching here SKB is ready to free */ 1103 trace_consume_skb(skb); 1104 1105 /* if SKB is a clone, don't handle this case */ 1106 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) { 1107 __kfree_skb(skb); 1108 return; 1109 } 1110 1111 skb_release_all(skb); 1112 napi_skb_cache_put(skb); 1113 } 1114 EXPORT_SYMBOL(napi_consume_skb); 1115 1116 /* Make sure a field is contained by headers group */ 1117 #define CHECK_SKB_FIELD(field) \ 1118 BUILD_BUG_ON(offsetof(struct sk_buff, field) != \ 1119 offsetof(struct sk_buff, headers.field)); \ 1120 1121 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old) 1122 { 1123 new->tstamp = old->tstamp; 1124 /* We do not copy old->sk */ 1125 new->dev = old->dev; 1126 memcpy(new->cb, old->cb, sizeof(old->cb)); 1127 skb_dst_copy(new, old); 1128 __skb_ext_copy(new, old); 1129 __nf_copy(new, old, false); 1130 1131 /* Note : this field could be in the headers group. 1132 * It is not yet because we do not want to have a 16 bit hole 1133 */ 1134 new->queue_mapping = old->queue_mapping; 1135 1136 memcpy(&new->headers, &old->headers, sizeof(new->headers)); 1137 CHECK_SKB_FIELD(protocol); 1138 CHECK_SKB_FIELD(csum); 1139 CHECK_SKB_FIELD(hash); 1140 CHECK_SKB_FIELD(priority); 1141 CHECK_SKB_FIELD(skb_iif); 1142 CHECK_SKB_FIELD(vlan_proto); 1143 CHECK_SKB_FIELD(vlan_tci); 1144 CHECK_SKB_FIELD(transport_header); 1145 CHECK_SKB_FIELD(network_header); 1146 CHECK_SKB_FIELD(mac_header); 1147 CHECK_SKB_FIELD(inner_protocol); 1148 CHECK_SKB_FIELD(inner_transport_header); 1149 CHECK_SKB_FIELD(inner_network_header); 1150 CHECK_SKB_FIELD(inner_mac_header); 1151 CHECK_SKB_FIELD(mark); 1152 #ifdef CONFIG_NETWORK_SECMARK 1153 CHECK_SKB_FIELD(secmark); 1154 #endif 1155 #ifdef CONFIG_NET_RX_BUSY_POLL 1156 CHECK_SKB_FIELD(napi_id); 1157 #endif 1158 CHECK_SKB_FIELD(alloc_cpu); 1159 #ifdef CONFIG_XPS 1160 CHECK_SKB_FIELD(sender_cpu); 1161 #endif 1162 #ifdef CONFIG_NET_SCHED 1163 CHECK_SKB_FIELD(tc_index); 1164 #endif 1165 1166 } 1167 1168 /* 1169 * You should not add any new code to this function. Add it to 1170 * __copy_skb_header above instead. 1171 */ 1172 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb) 1173 { 1174 #define C(x) n->x = skb->x 1175 1176 n->next = n->prev = NULL; 1177 n->sk = NULL; 1178 __copy_skb_header(n, skb); 1179 1180 C(len); 1181 C(data_len); 1182 C(mac_len); 1183 n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len; 1184 n->cloned = 1; 1185 n->nohdr = 0; 1186 n->peeked = 0; 1187 C(pfmemalloc); 1188 C(pp_recycle); 1189 n->destructor = NULL; 1190 C(tail); 1191 C(end); 1192 C(head); 1193 C(head_frag); 1194 C(data); 1195 C(truesize); 1196 refcount_set(&n->users, 1); 1197 1198 atomic_inc(&(skb_shinfo(skb)->dataref)); 1199 skb->cloned = 1; 1200 1201 return n; 1202 #undef C 1203 } 1204 1205 /** 1206 * alloc_skb_for_msg() - allocate sk_buff to wrap frag list forming a msg 1207 * @first: first sk_buff of the msg 1208 */ 1209 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first) 1210 { 1211 struct sk_buff *n; 1212 1213 n = alloc_skb(0, GFP_ATOMIC); 1214 if (!n) 1215 return NULL; 1216 1217 n->len = first->len; 1218 n->data_len = first->len; 1219 n->truesize = first->truesize; 1220 1221 skb_shinfo(n)->frag_list = first; 1222 1223 __copy_skb_header(n, first); 1224 n->destructor = NULL; 1225 1226 return n; 1227 } 1228 EXPORT_SYMBOL_GPL(alloc_skb_for_msg); 1229 1230 /** 1231 * skb_morph - morph one skb into another 1232 * @dst: the skb to receive the contents 1233 * @src: the skb to supply the contents 1234 * 1235 * This is identical to skb_clone except that the target skb is 1236 * supplied by the user. 1237 * 1238 * The target skb is returned upon exit. 1239 */ 1240 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src) 1241 { 1242 skb_release_all(dst); 1243 return __skb_clone(dst, src); 1244 } 1245 EXPORT_SYMBOL_GPL(skb_morph); 1246 1247 int mm_account_pinned_pages(struct mmpin *mmp, size_t size) 1248 { 1249 unsigned long max_pg, num_pg, new_pg, old_pg; 1250 struct user_struct *user; 1251 1252 if (capable(CAP_IPC_LOCK) || !size) 1253 return 0; 1254 1255 num_pg = (size >> PAGE_SHIFT) + 2; /* worst case */ 1256 max_pg = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT; 1257 user = mmp->user ? : current_user(); 1258 1259 do { 1260 old_pg = atomic_long_read(&user->locked_vm); 1261 new_pg = old_pg + num_pg; 1262 if (new_pg > max_pg) 1263 return -ENOBUFS; 1264 } while (atomic_long_cmpxchg(&user->locked_vm, old_pg, new_pg) != 1265 old_pg); 1266 1267 if (!mmp->user) { 1268 mmp->user = get_uid(user); 1269 mmp->num_pg = num_pg; 1270 } else { 1271 mmp->num_pg += num_pg; 1272 } 1273 1274 return 0; 1275 } 1276 EXPORT_SYMBOL_GPL(mm_account_pinned_pages); 1277 1278 void mm_unaccount_pinned_pages(struct mmpin *mmp) 1279 { 1280 if (mmp->user) { 1281 atomic_long_sub(mmp->num_pg, &mmp->user->locked_vm); 1282 free_uid(mmp->user); 1283 } 1284 } 1285 EXPORT_SYMBOL_GPL(mm_unaccount_pinned_pages); 1286 1287 static struct ubuf_info *msg_zerocopy_alloc(struct sock *sk, size_t size) 1288 { 1289 struct ubuf_info_msgzc *uarg; 1290 struct sk_buff *skb; 1291 1292 WARN_ON_ONCE(!in_task()); 1293 1294 skb = sock_omalloc(sk, 0, GFP_KERNEL); 1295 if (!skb) 1296 return NULL; 1297 1298 BUILD_BUG_ON(sizeof(*uarg) > sizeof(skb->cb)); 1299 uarg = (void *)skb->cb; 1300 uarg->mmp.user = NULL; 1301 1302 if (mm_account_pinned_pages(&uarg->mmp, size)) { 1303 kfree_skb(skb); 1304 return NULL; 1305 } 1306 1307 uarg->ubuf.callback = msg_zerocopy_callback; 1308 uarg->id = ((u32)atomic_inc_return(&sk->sk_zckey)) - 1; 1309 uarg->len = 1; 1310 uarg->bytelen = size; 1311 uarg->zerocopy = 1; 1312 uarg->ubuf.flags = SKBFL_ZEROCOPY_FRAG | SKBFL_DONT_ORPHAN; 1313 refcount_set(&uarg->ubuf.refcnt, 1); 1314 sock_hold(sk); 1315 1316 return &uarg->ubuf; 1317 } 1318 1319 static inline struct sk_buff *skb_from_uarg(struct ubuf_info_msgzc *uarg) 1320 { 1321 return container_of((void *)uarg, struct sk_buff, cb); 1322 } 1323 1324 struct ubuf_info *msg_zerocopy_realloc(struct sock *sk, size_t size, 1325 struct ubuf_info *uarg) 1326 { 1327 if (uarg) { 1328 struct ubuf_info_msgzc *uarg_zc; 1329 const u32 byte_limit = 1 << 19; /* limit to a few TSO */ 1330 u32 bytelen, next; 1331 1332 /* there might be non MSG_ZEROCOPY users */ 1333 if (uarg->callback != msg_zerocopy_callback) 1334 return NULL; 1335 1336 /* realloc only when socket is locked (TCP, UDP cork), 1337 * so uarg->len and sk_zckey access is serialized 1338 */ 1339 if (!sock_owned_by_user(sk)) { 1340 WARN_ON_ONCE(1); 1341 return NULL; 1342 } 1343 1344 uarg_zc = uarg_to_msgzc(uarg); 1345 bytelen = uarg_zc->bytelen + size; 1346 if (uarg_zc->len == USHRT_MAX - 1 || bytelen > byte_limit) { 1347 /* TCP can create new skb to attach new uarg */ 1348 if (sk->sk_type == SOCK_STREAM) 1349 goto new_alloc; 1350 return NULL; 1351 } 1352 1353 next = (u32)atomic_read(&sk->sk_zckey); 1354 if ((u32)(uarg_zc->id + uarg_zc->len) == next) { 1355 if (mm_account_pinned_pages(&uarg_zc->mmp, size)) 1356 return NULL; 1357 uarg_zc->len++; 1358 uarg_zc->bytelen = bytelen; 1359 atomic_set(&sk->sk_zckey, ++next); 1360 1361 /* no extra ref when appending to datagram (MSG_MORE) */ 1362 if (sk->sk_type == SOCK_STREAM) 1363 net_zcopy_get(uarg); 1364 1365 return uarg; 1366 } 1367 } 1368 1369 new_alloc: 1370 return msg_zerocopy_alloc(sk, size); 1371 } 1372 EXPORT_SYMBOL_GPL(msg_zerocopy_realloc); 1373 1374 static bool skb_zerocopy_notify_extend(struct sk_buff *skb, u32 lo, u16 len) 1375 { 1376 struct sock_exterr_skb *serr = SKB_EXT_ERR(skb); 1377 u32 old_lo, old_hi; 1378 u64 sum_len; 1379 1380 old_lo = serr->ee.ee_info; 1381 old_hi = serr->ee.ee_data; 1382 sum_len = old_hi - old_lo + 1ULL + len; 1383 1384 if (sum_len >= (1ULL << 32)) 1385 return false; 1386 1387 if (lo != old_hi + 1) 1388 return false; 1389 1390 serr->ee.ee_data += len; 1391 return true; 1392 } 1393 1394 static void __msg_zerocopy_callback(struct ubuf_info_msgzc *uarg) 1395 { 1396 struct sk_buff *tail, *skb = skb_from_uarg(uarg); 1397 struct sock_exterr_skb *serr; 1398 struct sock *sk = skb->sk; 1399 struct sk_buff_head *q; 1400 unsigned long flags; 1401 bool is_zerocopy; 1402 u32 lo, hi; 1403 u16 len; 1404 1405 mm_unaccount_pinned_pages(&uarg->mmp); 1406 1407 /* if !len, there was only 1 call, and it was aborted 1408 * so do not queue a completion notification 1409 */ 1410 if (!uarg->len || sock_flag(sk, SOCK_DEAD)) 1411 goto release; 1412 1413 len = uarg->len; 1414 lo = uarg->id; 1415 hi = uarg->id + len - 1; 1416 is_zerocopy = uarg->zerocopy; 1417 1418 serr = SKB_EXT_ERR(skb); 1419 memset(serr, 0, sizeof(*serr)); 1420 serr->ee.ee_errno = 0; 1421 serr->ee.ee_origin = SO_EE_ORIGIN_ZEROCOPY; 1422 serr->ee.ee_data = hi; 1423 serr->ee.ee_info = lo; 1424 if (!is_zerocopy) 1425 serr->ee.ee_code |= SO_EE_CODE_ZEROCOPY_COPIED; 1426 1427 q = &sk->sk_error_queue; 1428 spin_lock_irqsave(&q->lock, flags); 1429 tail = skb_peek_tail(q); 1430 if (!tail || SKB_EXT_ERR(tail)->ee.ee_origin != SO_EE_ORIGIN_ZEROCOPY || 1431 !skb_zerocopy_notify_extend(tail, lo, len)) { 1432 __skb_queue_tail(q, skb); 1433 skb = NULL; 1434 } 1435 spin_unlock_irqrestore(&q->lock, flags); 1436 1437 sk_error_report(sk); 1438 1439 release: 1440 consume_skb(skb); 1441 sock_put(sk); 1442 } 1443 1444 void msg_zerocopy_callback(struct sk_buff *skb, struct ubuf_info *uarg, 1445 bool success) 1446 { 1447 struct ubuf_info_msgzc *uarg_zc = uarg_to_msgzc(uarg); 1448 1449 uarg_zc->zerocopy = uarg_zc->zerocopy & success; 1450 1451 if (refcount_dec_and_test(&uarg->refcnt)) 1452 __msg_zerocopy_callback(uarg_zc); 1453 } 1454 EXPORT_SYMBOL_GPL(msg_zerocopy_callback); 1455 1456 void msg_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref) 1457 { 1458 struct sock *sk = skb_from_uarg(uarg_to_msgzc(uarg))->sk; 1459 1460 atomic_dec(&sk->sk_zckey); 1461 uarg_to_msgzc(uarg)->len--; 1462 1463 if (have_uref) 1464 msg_zerocopy_callback(NULL, uarg, true); 1465 } 1466 EXPORT_SYMBOL_GPL(msg_zerocopy_put_abort); 1467 1468 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb, 1469 struct msghdr *msg, int len, 1470 struct ubuf_info *uarg) 1471 { 1472 struct ubuf_info *orig_uarg = skb_zcopy(skb); 1473 int err, orig_len = skb->len; 1474 1475 /* An skb can only point to one uarg. This edge case happens when 1476 * TCP appends to an skb, but zerocopy_realloc triggered a new alloc. 1477 */ 1478 if (orig_uarg && uarg != orig_uarg) 1479 return -EEXIST; 1480 1481 err = __zerocopy_sg_from_iter(msg, sk, skb, &msg->msg_iter, len); 1482 if (err == -EFAULT || (err == -EMSGSIZE && skb->len == orig_len)) { 1483 struct sock *save_sk = skb->sk; 1484 1485 /* Streams do not free skb on error. Reset to prev state. */ 1486 iov_iter_revert(&msg->msg_iter, skb->len - orig_len); 1487 skb->sk = sk; 1488 ___pskb_trim(skb, orig_len); 1489 skb->sk = save_sk; 1490 return err; 1491 } 1492 1493 skb_zcopy_set(skb, uarg, NULL); 1494 return skb->len - orig_len; 1495 } 1496 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_stream); 1497 1498 void __skb_zcopy_downgrade_managed(struct sk_buff *skb) 1499 { 1500 int i; 1501 1502 skb_shinfo(skb)->flags &= ~SKBFL_MANAGED_FRAG_REFS; 1503 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 1504 skb_frag_ref(skb, i); 1505 } 1506 EXPORT_SYMBOL_GPL(__skb_zcopy_downgrade_managed); 1507 1508 static int skb_zerocopy_clone(struct sk_buff *nskb, struct sk_buff *orig, 1509 gfp_t gfp_mask) 1510 { 1511 if (skb_zcopy(orig)) { 1512 if (skb_zcopy(nskb)) { 1513 /* !gfp_mask callers are verified to !skb_zcopy(nskb) */ 1514 if (!gfp_mask) { 1515 WARN_ON_ONCE(1); 1516 return -ENOMEM; 1517 } 1518 if (skb_uarg(nskb) == skb_uarg(orig)) 1519 return 0; 1520 if (skb_copy_ubufs(nskb, GFP_ATOMIC)) 1521 return -EIO; 1522 } 1523 skb_zcopy_set(nskb, skb_uarg(orig), NULL); 1524 } 1525 return 0; 1526 } 1527 1528 /** 1529 * skb_copy_ubufs - copy userspace skb frags buffers to kernel 1530 * @skb: the skb to modify 1531 * @gfp_mask: allocation priority 1532 * 1533 * This must be called on skb with SKBFL_ZEROCOPY_ENABLE. 1534 * It will copy all frags into kernel and drop the reference 1535 * to userspace pages. 1536 * 1537 * If this function is called from an interrupt gfp_mask() must be 1538 * %GFP_ATOMIC. 1539 * 1540 * Returns 0 on success or a negative error code on failure 1541 * to allocate kernel memory to copy to. 1542 */ 1543 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask) 1544 { 1545 int num_frags = skb_shinfo(skb)->nr_frags; 1546 struct page *page, *head = NULL; 1547 int i, new_frags; 1548 u32 d_off; 1549 1550 if (skb_shared(skb) || skb_unclone(skb, gfp_mask)) 1551 return -EINVAL; 1552 1553 if (!num_frags) 1554 goto release; 1555 1556 new_frags = (__skb_pagelen(skb) + PAGE_SIZE - 1) >> PAGE_SHIFT; 1557 for (i = 0; i < new_frags; i++) { 1558 page = alloc_page(gfp_mask); 1559 if (!page) { 1560 while (head) { 1561 struct page *next = (struct page *)page_private(head); 1562 put_page(head); 1563 head = next; 1564 } 1565 return -ENOMEM; 1566 } 1567 set_page_private(page, (unsigned long)head); 1568 head = page; 1569 } 1570 1571 page = head; 1572 d_off = 0; 1573 for (i = 0; i < num_frags; i++) { 1574 skb_frag_t *f = &skb_shinfo(skb)->frags[i]; 1575 u32 p_off, p_len, copied; 1576 struct page *p; 1577 u8 *vaddr; 1578 1579 skb_frag_foreach_page(f, skb_frag_off(f), skb_frag_size(f), 1580 p, p_off, p_len, copied) { 1581 u32 copy, done = 0; 1582 vaddr = kmap_atomic(p); 1583 1584 while (done < p_len) { 1585 if (d_off == PAGE_SIZE) { 1586 d_off = 0; 1587 page = (struct page *)page_private(page); 1588 } 1589 copy = min_t(u32, PAGE_SIZE - d_off, p_len - done); 1590 memcpy(page_address(page) + d_off, 1591 vaddr + p_off + done, copy); 1592 done += copy; 1593 d_off += copy; 1594 } 1595 kunmap_atomic(vaddr); 1596 } 1597 } 1598 1599 /* skb frags release userspace buffers */ 1600 for (i = 0; i < num_frags; i++) 1601 skb_frag_unref(skb, i); 1602 1603 /* skb frags point to kernel buffers */ 1604 for (i = 0; i < new_frags - 1; i++) { 1605 __skb_fill_page_desc(skb, i, head, 0, PAGE_SIZE); 1606 head = (struct page *)page_private(head); 1607 } 1608 __skb_fill_page_desc(skb, new_frags - 1, head, 0, d_off); 1609 skb_shinfo(skb)->nr_frags = new_frags; 1610 1611 release: 1612 skb_zcopy_clear(skb, false); 1613 return 0; 1614 } 1615 EXPORT_SYMBOL_GPL(skb_copy_ubufs); 1616 1617 /** 1618 * skb_clone - duplicate an sk_buff 1619 * @skb: buffer to clone 1620 * @gfp_mask: allocation priority 1621 * 1622 * Duplicate an &sk_buff. The new one is not owned by a socket. Both 1623 * copies share the same packet data but not structure. The new 1624 * buffer has a reference count of 1. If the allocation fails the 1625 * function returns %NULL otherwise the new buffer is returned. 1626 * 1627 * If this function is called from an interrupt gfp_mask() must be 1628 * %GFP_ATOMIC. 1629 */ 1630 1631 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask) 1632 { 1633 struct sk_buff_fclones *fclones = container_of(skb, 1634 struct sk_buff_fclones, 1635 skb1); 1636 struct sk_buff *n; 1637 1638 if (skb_orphan_frags(skb, gfp_mask)) 1639 return NULL; 1640 1641 if (skb->fclone == SKB_FCLONE_ORIG && 1642 refcount_read(&fclones->fclone_ref) == 1) { 1643 n = &fclones->skb2; 1644 refcount_set(&fclones->fclone_ref, 2); 1645 n->fclone = SKB_FCLONE_CLONE; 1646 } else { 1647 if (skb_pfmemalloc(skb)) 1648 gfp_mask |= __GFP_MEMALLOC; 1649 1650 n = kmem_cache_alloc(skbuff_head_cache, gfp_mask); 1651 if (!n) 1652 return NULL; 1653 1654 n->fclone = SKB_FCLONE_UNAVAILABLE; 1655 } 1656 1657 return __skb_clone(n, skb); 1658 } 1659 EXPORT_SYMBOL(skb_clone); 1660 1661 void skb_headers_offset_update(struct sk_buff *skb, int off) 1662 { 1663 /* Only adjust this if it actually is csum_start rather than csum */ 1664 if (skb->ip_summed == CHECKSUM_PARTIAL) 1665 skb->csum_start += off; 1666 /* {transport,network,mac}_header and tail are relative to skb->head */ 1667 skb->transport_header += off; 1668 skb->network_header += off; 1669 if (skb_mac_header_was_set(skb)) 1670 skb->mac_header += off; 1671 skb->inner_transport_header += off; 1672 skb->inner_network_header += off; 1673 skb->inner_mac_header += off; 1674 } 1675 EXPORT_SYMBOL(skb_headers_offset_update); 1676 1677 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old) 1678 { 1679 __copy_skb_header(new, old); 1680 1681 skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size; 1682 skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs; 1683 skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type; 1684 } 1685 EXPORT_SYMBOL(skb_copy_header); 1686 1687 static inline int skb_alloc_rx_flag(const struct sk_buff *skb) 1688 { 1689 if (skb_pfmemalloc(skb)) 1690 return SKB_ALLOC_RX; 1691 return 0; 1692 } 1693 1694 /** 1695 * skb_copy - create private copy of an sk_buff 1696 * @skb: buffer to copy 1697 * @gfp_mask: allocation priority 1698 * 1699 * Make a copy of both an &sk_buff and its data. This is used when the 1700 * caller wishes to modify the data and needs a private copy of the 1701 * data to alter. Returns %NULL on failure or the pointer to the buffer 1702 * on success. The returned buffer has a reference count of 1. 1703 * 1704 * As by-product this function converts non-linear &sk_buff to linear 1705 * one, so that &sk_buff becomes completely private and caller is allowed 1706 * to modify all the data of returned buffer. This means that this 1707 * function is not recommended for use in circumstances when only 1708 * header is going to be modified. Use pskb_copy() instead. 1709 */ 1710 1711 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask) 1712 { 1713 int headerlen = skb_headroom(skb); 1714 unsigned int size = skb_end_offset(skb) + skb->data_len; 1715 struct sk_buff *n = __alloc_skb(size, gfp_mask, 1716 skb_alloc_rx_flag(skb), NUMA_NO_NODE); 1717 1718 if (!n) 1719 return NULL; 1720 1721 /* Set the data pointer */ 1722 skb_reserve(n, headerlen); 1723 /* Set the tail pointer and length */ 1724 skb_put(n, skb->len); 1725 1726 BUG_ON(skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len)); 1727 1728 skb_copy_header(n, skb); 1729 return n; 1730 } 1731 EXPORT_SYMBOL(skb_copy); 1732 1733 /** 1734 * __pskb_copy_fclone - create copy of an sk_buff with private head. 1735 * @skb: buffer to copy 1736 * @headroom: headroom of new skb 1737 * @gfp_mask: allocation priority 1738 * @fclone: if true allocate the copy of the skb from the fclone 1739 * cache instead of the head cache; it is recommended to set this 1740 * to true for the cases where the copy will likely be cloned 1741 * 1742 * Make a copy of both an &sk_buff and part of its data, located 1743 * in header. Fragmented data remain shared. This is used when 1744 * the caller wishes to modify only header of &sk_buff and needs 1745 * private copy of the header to alter. Returns %NULL on failure 1746 * or the pointer to the buffer on success. 1747 * The returned buffer has a reference count of 1. 1748 */ 1749 1750 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom, 1751 gfp_t gfp_mask, bool fclone) 1752 { 1753 unsigned int size = skb_headlen(skb) + headroom; 1754 int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0); 1755 struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE); 1756 1757 if (!n) 1758 goto out; 1759 1760 /* Set the data pointer */ 1761 skb_reserve(n, headroom); 1762 /* Set the tail pointer and length */ 1763 skb_put(n, skb_headlen(skb)); 1764 /* Copy the bytes */ 1765 skb_copy_from_linear_data(skb, n->data, n->len); 1766 1767 n->truesize += skb->data_len; 1768 n->data_len = skb->data_len; 1769 n->len = skb->len; 1770 1771 if (skb_shinfo(skb)->nr_frags) { 1772 int i; 1773 1774 if (skb_orphan_frags(skb, gfp_mask) || 1775 skb_zerocopy_clone(n, skb, gfp_mask)) { 1776 kfree_skb(n); 1777 n = NULL; 1778 goto out; 1779 } 1780 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1781 skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i]; 1782 skb_frag_ref(skb, i); 1783 } 1784 skb_shinfo(n)->nr_frags = i; 1785 } 1786 1787 if (skb_has_frag_list(skb)) { 1788 skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list; 1789 skb_clone_fraglist(n); 1790 } 1791 1792 skb_copy_header(n, skb); 1793 out: 1794 return n; 1795 } 1796 EXPORT_SYMBOL(__pskb_copy_fclone); 1797 1798 /** 1799 * pskb_expand_head - reallocate header of &sk_buff 1800 * @skb: buffer to reallocate 1801 * @nhead: room to add at head 1802 * @ntail: room to add at tail 1803 * @gfp_mask: allocation priority 1804 * 1805 * Expands (or creates identical copy, if @nhead and @ntail are zero) 1806 * header of @skb. &sk_buff itself is not changed. &sk_buff MUST have 1807 * reference count of 1. Returns zero in the case of success or error, 1808 * if expansion failed. In the last case, &sk_buff is not changed. 1809 * 1810 * All the pointers pointing into skb header may change and must be 1811 * reloaded after call to this function. 1812 */ 1813 1814 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, 1815 gfp_t gfp_mask) 1816 { 1817 int i, osize = skb_end_offset(skb); 1818 int size = osize + nhead + ntail; 1819 long off; 1820 u8 *data; 1821 1822 BUG_ON(nhead < 0); 1823 1824 BUG_ON(skb_shared(skb)); 1825 1826 skb_zcopy_downgrade_managed(skb); 1827 1828 size = SKB_DATA_ALIGN(size); 1829 1830 if (skb_pfmemalloc(skb)) 1831 gfp_mask |= __GFP_MEMALLOC; 1832 data = kmalloc_reserve(size + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)), 1833 gfp_mask, NUMA_NO_NODE, NULL); 1834 if (!data) 1835 goto nodata; 1836 size = SKB_WITH_OVERHEAD(ksize(data)); 1837 1838 /* Copy only real data... and, alas, header. This should be 1839 * optimized for the cases when header is void. 1840 */ 1841 memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head); 1842 1843 memcpy((struct skb_shared_info *)(data + size), 1844 skb_shinfo(skb), 1845 offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags])); 1846 1847 /* 1848 * if shinfo is shared we must drop the old head gracefully, but if it 1849 * is not we can just drop the old head and let the existing refcount 1850 * be since all we did is relocate the values 1851 */ 1852 if (skb_cloned(skb)) { 1853 if (skb_orphan_frags(skb, gfp_mask)) 1854 goto nofrags; 1855 if (skb_zcopy(skb)) 1856 refcount_inc(&skb_uarg(skb)->refcnt); 1857 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 1858 skb_frag_ref(skb, i); 1859 1860 if (skb_has_frag_list(skb)) 1861 skb_clone_fraglist(skb); 1862 1863 skb_release_data(skb); 1864 } else { 1865 skb_free_head(skb); 1866 } 1867 off = (data + nhead) - skb->head; 1868 1869 skb->head = data; 1870 skb->head_frag = 0; 1871 skb->data += off; 1872 1873 skb_set_end_offset(skb, size); 1874 #ifdef NET_SKBUFF_DATA_USES_OFFSET 1875 off = nhead; 1876 #endif 1877 skb->tail += off; 1878 skb_headers_offset_update(skb, nhead); 1879 skb->cloned = 0; 1880 skb->hdr_len = 0; 1881 skb->nohdr = 0; 1882 atomic_set(&skb_shinfo(skb)->dataref, 1); 1883 1884 skb_metadata_clear(skb); 1885 1886 /* It is not generally safe to change skb->truesize. 1887 * For the moment, we really care of rx path, or 1888 * when skb is orphaned (not attached to a socket). 1889 */ 1890 if (!skb->sk || skb->destructor == sock_edemux) 1891 skb->truesize += size - osize; 1892 1893 return 0; 1894 1895 nofrags: 1896 kfree(data); 1897 nodata: 1898 return -ENOMEM; 1899 } 1900 EXPORT_SYMBOL(pskb_expand_head); 1901 1902 /* Make private copy of skb with writable head and some headroom */ 1903 1904 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom) 1905 { 1906 struct sk_buff *skb2; 1907 int delta = headroom - skb_headroom(skb); 1908 1909 if (delta <= 0) 1910 skb2 = pskb_copy(skb, GFP_ATOMIC); 1911 else { 1912 skb2 = skb_clone(skb, GFP_ATOMIC); 1913 if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0, 1914 GFP_ATOMIC)) { 1915 kfree_skb(skb2); 1916 skb2 = NULL; 1917 } 1918 } 1919 return skb2; 1920 } 1921 EXPORT_SYMBOL(skb_realloc_headroom); 1922 1923 int __skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri) 1924 { 1925 unsigned int saved_end_offset, saved_truesize; 1926 struct skb_shared_info *shinfo; 1927 int res; 1928 1929 saved_end_offset = skb_end_offset(skb); 1930 saved_truesize = skb->truesize; 1931 1932 res = pskb_expand_head(skb, 0, 0, pri); 1933 if (res) 1934 return res; 1935 1936 skb->truesize = saved_truesize; 1937 1938 if (likely(skb_end_offset(skb) == saved_end_offset)) 1939 return 0; 1940 1941 shinfo = skb_shinfo(skb); 1942 1943 /* We are about to change back skb->end, 1944 * we need to move skb_shinfo() to its new location. 1945 */ 1946 memmove(skb->head + saved_end_offset, 1947 shinfo, 1948 offsetof(struct skb_shared_info, frags[shinfo->nr_frags])); 1949 1950 skb_set_end_offset(skb, saved_end_offset); 1951 1952 return 0; 1953 } 1954 1955 /** 1956 * skb_expand_head - reallocate header of &sk_buff 1957 * @skb: buffer to reallocate 1958 * @headroom: needed headroom 1959 * 1960 * Unlike skb_realloc_headroom, this one does not allocate a new skb 1961 * if possible; copies skb->sk to new skb as needed 1962 * and frees original skb in case of failures. 1963 * 1964 * It expect increased headroom and generates warning otherwise. 1965 */ 1966 1967 struct sk_buff *skb_expand_head(struct sk_buff *skb, unsigned int headroom) 1968 { 1969 int delta = headroom - skb_headroom(skb); 1970 int osize = skb_end_offset(skb); 1971 struct sock *sk = skb->sk; 1972 1973 if (WARN_ONCE(delta <= 0, 1974 "%s is expecting an increase in the headroom", __func__)) 1975 return skb; 1976 1977 delta = SKB_DATA_ALIGN(delta); 1978 /* pskb_expand_head() might crash, if skb is shared. */ 1979 if (skb_shared(skb) || !is_skb_wmem(skb)) { 1980 struct sk_buff *nskb = skb_clone(skb, GFP_ATOMIC); 1981 1982 if (unlikely(!nskb)) 1983 goto fail; 1984 1985 if (sk) 1986 skb_set_owner_w(nskb, sk); 1987 consume_skb(skb); 1988 skb = nskb; 1989 } 1990 if (pskb_expand_head(skb, delta, 0, GFP_ATOMIC)) 1991 goto fail; 1992 1993 if (sk && is_skb_wmem(skb)) { 1994 delta = skb_end_offset(skb) - osize; 1995 refcount_add(delta, &sk->sk_wmem_alloc); 1996 skb->truesize += delta; 1997 } 1998 return skb; 1999 2000 fail: 2001 kfree_skb(skb); 2002 return NULL; 2003 } 2004 EXPORT_SYMBOL(skb_expand_head); 2005 2006 /** 2007 * skb_copy_expand - copy and expand sk_buff 2008 * @skb: buffer to copy 2009 * @newheadroom: new free bytes at head 2010 * @newtailroom: new free bytes at tail 2011 * @gfp_mask: allocation priority 2012 * 2013 * Make a copy of both an &sk_buff and its data and while doing so 2014 * allocate additional space. 2015 * 2016 * This is used when the caller wishes to modify the data and needs a 2017 * private copy of the data to alter as well as more space for new fields. 2018 * Returns %NULL on failure or the pointer to the buffer 2019 * on success. The returned buffer has a reference count of 1. 2020 * 2021 * You must pass %GFP_ATOMIC as the allocation priority if this function 2022 * is called from an interrupt. 2023 */ 2024 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, 2025 int newheadroom, int newtailroom, 2026 gfp_t gfp_mask) 2027 { 2028 /* 2029 * Allocate the copy buffer 2030 */ 2031 struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom, 2032 gfp_mask, skb_alloc_rx_flag(skb), 2033 NUMA_NO_NODE); 2034 int oldheadroom = skb_headroom(skb); 2035 int head_copy_len, head_copy_off; 2036 2037 if (!n) 2038 return NULL; 2039 2040 skb_reserve(n, newheadroom); 2041 2042 /* Set the tail pointer and length */ 2043 skb_put(n, skb->len); 2044 2045 head_copy_len = oldheadroom; 2046 head_copy_off = 0; 2047 if (newheadroom <= head_copy_len) 2048 head_copy_len = newheadroom; 2049 else 2050 head_copy_off = newheadroom - head_copy_len; 2051 2052 /* Copy the linear header and data. */ 2053 BUG_ON(skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off, 2054 skb->len + head_copy_len)); 2055 2056 skb_copy_header(n, skb); 2057 2058 skb_headers_offset_update(n, newheadroom - oldheadroom); 2059 2060 return n; 2061 } 2062 EXPORT_SYMBOL(skb_copy_expand); 2063 2064 /** 2065 * __skb_pad - zero pad the tail of an skb 2066 * @skb: buffer to pad 2067 * @pad: space to pad 2068 * @free_on_error: free buffer on error 2069 * 2070 * Ensure that a buffer is followed by a padding area that is zero 2071 * filled. Used by network drivers which may DMA or transfer data 2072 * beyond the buffer end onto the wire. 2073 * 2074 * May return error in out of memory cases. The skb is freed on error 2075 * if @free_on_error is true. 2076 */ 2077 2078 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error) 2079 { 2080 int err; 2081 int ntail; 2082 2083 /* If the skbuff is non linear tailroom is always zero.. */ 2084 if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) { 2085 memset(skb->data+skb->len, 0, pad); 2086 return 0; 2087 } 2088 2089 ntail = skb->data_len + pad - (skb->end - skb->tail); 2090 if (likely(skb_cloned(skb) || ntail > 0)) { 2091 err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC); 2092 if (unlikely(err)) 2093 goto free_skb; 2094 } 2095 2096 /* FIXME: The use of this function with non-linear skb's really needs 2097 * to be audited. 2098 */ 2099 err = skb_linearize(skb); 2100 if (unlikely(err)) 2101 goto free_skb; 2102 2103 memset(skb->data + skb->len, 0, pad); 2104 return 0; 2105 2106 free_skb: 2107 if (free_on_error) 2108 kfree_skb(skb); 2109 return err; 2110 } 2111 EXPORT_SYMBOL(__skb_pad); 2112 2113 /** 2114 * pskb_put - add data to the tail of a potentially fragmented buffer 2115 * @skb: start of the buffer to use 2116 * @tail: tail fragment of the buffer to use 2117 * @len: amount of data to add 2118 * 2119 * This function extends the used data area of the potentially 2120 * fragmented buffer. @tail must be the last fragment of @skb -- or 2121 * @skb itself. If this would exceed the total buffer size the kernel 2122 * will panic. A pointer to the first byte of the extra data is 2123 * returned. 2124 */ 2125 2126 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len) 2127 { 2128 if (tail != skb) { 2129 skb->data_len += len; 2130 skb->len += len; 2131 } 2132 return skb_put(tail, len); 2133 } 2134 EXPORT_SYMBOL_GPL(pskb_put); 2135 2136 /** 2137 * skb_put - add data to a buffer 2138 * @skb: buffer to use 2139 * @len: amount of data to add 2140 * 2141 * This function extends the used data area of the buffer. If this would 2142 * exceed the total buffer size the kernel will panic. A pointer to the 2143 * first byte of the extra data is returned. 2144 */ 2145 void *skb_put(struct sk_buff *skb, unsigned int len) 2146 { 2147 void *tmp = skb_tail_pointer(skb); 2148 SKB_LINEAR_ASSERT(skb); 2149 skb->tail += len; 2150 skb->len += len; 2151 if (unlikely(skb->tail > skb->end)) 2152 skb_over_panic(skb, len, __builtin_return_address(0)); 2153 return tmp; 2154 } 2155 EXPORT_SYMBOL(skb_put); 2156 2157 /** 2158 * skb_push - add data to the start of a buffer 2159 * @skb: buffer to use 2160 * @len: amount of data to add 2161 * 2162 * This function extends the used data area of the buffer at the buffer 2163 * start. If this would exceed the total buffer headroom the kernel will 2164 * panic. A pointer to the first byte of the extra data is returned. 2165 */ 2166 void *skb_push(struct sk_buff *skb, unsigned int len) 2167 { 2168 skb->data -= len; 2169 skb->len += len; 2170 if (unlikely(skb->data < skb->head)) 2171 skb_under_panic(skb, len, __builtin_return_address(0)); 2172 return skb->data; 2173 } 2174 EXPORT_SYMBOL(skb_push); 2175 2176 /** 2177 * skb_pull - remove data from the start of a buffer 2178 * @skb: buffer to use 2179 * @len: amount of data to remove 2180 * 2181 * This function removes data from the start of a buffer, returning 2182 * the memory to the headroom. A pointer to the next data in the buffer 2183 * is returned. Once the data has been pulled future pushes will overwrite 2184 * the old data. 2185 */ 2186 void *skb_pull(struct sk_buff *skb, unsigned int len) 2187 { 2188 return skb_pull_inline(skb, len); 2189 } 2190 EXPORT_SYMBOL(skb_pull); 2191 2192 /** 2193 * skb_pull_data - remove data from the start of a buffer returning its 2194 * original position. 2195 * @skb: buffer to use 2196 * @len: amount of data to remove 2197 * 2198 * This function removes data from the start of a buffer, returning 2199 * the memory to the headroom. A pointer to the original data in the buffer 2200 * is returned after checking if there is enough data to pull. Once the 2201 * data has been pulled future pushes will overwrite the old data. 2202 */ 2203 void *skb_pull_data(struct sk_buff *skb, size_t len) 2204 { 2205 void *data = skb->data; 2206 2207 if (skb->len < len) 2208 return NULL; 2209 2210 skb_pull(skb, len); 2211 2212 return data; 2213 } 2214 EXPORT_SYMBOL(skb_pull_data); 2215 2216 /** 2217 * skb_trim - remove end from a buffer 2218 * @skb: buffer to alter 2219 * @len: new length 2220 * 2221 * Cut the length of a buffer down by removing data from the tail. If 2222 * the buffer is already under the length specified it is not modified. 2223 * The skb must be linear. 2224 */ 2225 void skb_trim(struct sk_buff *skb, unsigned int len) 2226 { 2227 if (skb->len > len) 2228 __skb_trim(skb, len); 2229 } 2230 EXPORT_SYMBOL(skb_trim); 2231 2232 /* Trims skb to length len. It can change skb pointers. 2233 */ 2234 2235 int ___pskb_trim(struct sk_buff *skb, unsigned int len) 2236 { 2237 struct sk_buff **fragp; 2238 struct sk_buff *frag; 2239 int offset = skb_headlen(skb); 2240 int nfrags = skb_shinfo(skb)->nr_frags; 2241 int i; 2242 int err; 2243 2244 if (skb_cloned(skb) && 2245 unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))) 2246 return err; 2247 2248 i = 0; 2249 if (offset >= len) 2250 goto drop_pages; 2251 2252 for (; i < nfrags; i++) { 2253 int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]); 2254 2255 if (end < len) { 2256 offset = end; 2257 continue; 2258 } 2259 2260 skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset); 2261 2262 drop_pages: 2263 skb_shinfo(skb)->nr_frags = i; 2264 2265 for (; i < nfrags; i++) 2266 skb_frag_unref(skb, i); 2267 2268 if (skb_has_frag_list(skb)) 2269 skb_drop_fraglist(skb); 2270 goto done; 2271 } 2272 2273 for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp); 2274 fragp = &frag->next) { 2275 int end = offset + frag->len; 2276 2277 if (skb_shared(frag)) { 2278 struct sk_buff *nfrag; 2279 2280 nfrag = skb_clone(frag, GFP_ATOMIC); 2281 if (unlikely(!nfrag)) 2282 return -ENOMEM; 2283 2284 nfrag->next = frag->next; 2285 consume_skb(frag); 2286 frag = nfrag; 2287 *fragp = frag; 2288 } 2289 2290 if (end < len) { 2291 offset = end; 2292 continue; 2293 } 2294 2295 if (end > len && 2296 unlikely((err = pskb_trim(frag, len - offset)))) 2297 return err; 2298 2299 if (frag->next) 2300 skb_drop_list(&frag->next); 2301 break; 2302 } 2303 2304 done: 2305 if (len > skb_headlen(skb)) { 2306 skb->data_len -= skb->len - len; 2307 skb->len = len; 2308 } else { 2309 skb->len = len; 2310 skb->data_len = 0; 2311 skb_set_tail_pointer(skb, len); 2312 } 2313 2314 if (!skb->sk || skb->destructor == sock_edemux) 2315 skb_condense(skb); 2316 return 0; 2317 } 2318 EXPORT_SYMBOL(___pskb_trim); 2319 2320 /* Note : use pskb_trim_rcsum() instead of calling this directly 2321 */ 2322 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len) 2323 { 2324 if (skb->ip_summed == CHECKSUM_COMPLETE) { 2325 int delta = skb->len - len; 2326 2327 skb->csum = csum_block_sub(skb->csum, 2328 skb_checksum(skb, len, delta, 0), 2329 len); 2330 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { 2331 int hdlen = (len > skb_headlen(skb)) ? skb_headlen(skb) : len; 2332 int offset = skb_checksum_start_offset(skb) + skb->csum_offset; 2333 2334 if (offset + sizeof(__sum16) > hdlen) 2335 return -EINVAL; 2336 } 2337 return __pskb_trim(skb, len); 2338 } 2339 EXPORT_SYMBOL(pskb_trim_rcsum_slow); 2340 2341 /** 2342 * __pskb_pull_tail - advance tail of skb header 2343 * @skb: buffer to reallocate 2344 * @delta: number of bytes to advance tail 2345 * 2346 * The function makes a sense only on a fragmented &sk_buff, 2347 * it expands header moving its tail forward and copying necessary 2348 * data from fragmented part. 2349 * 2350 * &sk_buff MUST have reference count of 1. 2351 * 2352 * Returns %NULL (and &sk_buff does not change) if pull failed 2353 * or value of new tail of skb in the case of success. 2354 * 2355 * All the pointers pointing into skb header may change and must be 2356 * reloaded after call to this function. 2357 */ 2358 2359 /* Moves tail of skb head forward, copying data from fragmented part, 2360 * when it is necessary. 2361 * 1. It may fail due to malloc failure. 2362 * 2. It may change skb pointers. 2363 * 2364 * It is pretty complicated. Luckily, it is called only in exceptional cases. 2365 */ 2366 void *__pskb_pull_tail(struct sk_buff *skb, int delta) 2367 { 2368 /* If skb has not enough free space at tail, get new one 2369 * plus 128 bytes for future expansions. If we have enough 2370 * room at tail, reallocate without expansion only if skb is cloned. 2371 */ 2372 int i, k, eat = (skb->tail + delta) - skb->end; 2373 2374 if (eat > 0 || skb_cloned(skb)) { 2375 if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0, 2376 GFP_ATOMIC)) 2377 return NULL; 2378 } 2379 2380 BUG_ON(skb_copy_bits(skb, skb_headlen(skb), 2381 skb_tail_pointer(skb), delta)); 2382 2383 /* Optimization: no fragments, no reasons to preestimate 2384 * size of pulled pages. Superb. 2385 */ 2386 if (!skb_has_frag_list(skb)) 2387 goto pull_pages; 2388 2389 /* Estimate size of pulled pages. */ 2390 eat = delta; 2391 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2392 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 2393 2394 if (size >= eat) 2395 goto pull_pages; 2396 eat -= size; 2397 } 2398 2399 /* If we need update frag list, we are in troubles. 2400 * Certainly, it is possible to add an offset to skb data, 2401 * but taking into account that pulling is expected to 2402 * be very rare operation, it is worth to fight against 2403 * further bloating skb head and crucify ourselves here instead. 2404 * Pure masohism, indeed. 8)8) 2405 */ 2406 if (eat) { 2407 struct sk_buff *list = skb_shinfo(skb)->frag_list; 2408 struct sk_buff *clone = NULL; 2409 struct sk_buff *insp = NULL; 2410 2411 do { 2412 if (list->len <= eat) { 2413 /* Eaten as whole. */ 2414 eat -= list->len; 2415 list = list->next; 2416 insp = list; 2417 } else { 2418 /* Eaten partially. */ 2419 2420 if (skb_shared(list)) { 2421 /* Sucks! We need to fork list. :-( */ 2422 clone = skb_clone(list, GFP_ATOMIC); 2423 if (!clone) 2424 return NULL; 2425 insp = list->next; 2426 list = clone; 2427 } else { 2428 /* This may be pulled without 2429 * problems. */ 2430 insp = list; 2431 } 2432 if (!pskb_pull(list, eat)) { 2433 kfree_skb(clone); 2434 return NULL; 2435 } 2436 break; 2437 } 2438 } while (eat); 2439 2440 /* Free pulled out fragments. */ 2441 while ((list = skb_shinfo(skb)->frag_list) != insp) { 2442 skb_shinfo(skb)->frag_list = list->next; 2443 consume_skb(list); 2444 } 2445 /* And insert new clone at head. */ 2446 if (clone) { 2447 clone->next = list; 2448 skb_shinfo(skb)->frag_list = clone; 2449 } 2450 } 2451 /* Success! Now we may commit changes to skb data. */ 2452 2453 pull_pages: 2454 eat = delta; 2455 k = 0; 2456 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2457 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 2458 2459 if (size <= eat) { 2460 skb_frag_unref(skb, i); 2461 eat -= size; 2462 } else { 2463 skb_frag_t *frag = &skb_shinfo(skb)->frags[k]; 2464 2465 *frag = skb_shinfo(skb)->frags[i]; 2466 if (eat) { 2467 skb_frag_off_add(frag, eat); 2468 skb_frag_size_sub(frag, eat); 2469 if (!i) 2470 goto end; 2471 eat = 0; 2472 } 2473 k++; 2474 } 2475 } 2476 skb_shinfo(skb)->nr_frags = k; 2477 2478 end: 2479 skb->tail += delta; 2480 skb->data_len -= delta; 2481 2482 if (!skb->data_len) 2483 skb_zcopy_clear(skb, false); 2484 2485 return skb_tail_pointer(skb); 2486 } 2487 EXPORT_SYMBOL(__pskb_pull_tail); 2488 2489 /** 2490 * skb_copy_bits - copy bits from skb to kernel buffer 2491 * @skb: source skb 2492 * @offset: offset in source 2493 * @to: destination buffer 2494 * @len: number of bytes to copy 2495 * 2496 * Copy the specified number of bytes from the source skb to the 2497 * destination buffer. 2498 * 2499 * CAUTION ! : 2500 * If its prototype is ever changed, 2501 * check arch/{*}/net/{*}.S files, 2502 * since it is called from BPF assembly code. 2503 */ 2504 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len) 2505 { 2506 int start = skb_headlen(skb); 2507 struct sk_buff *frag_iter; 2508 int i, copy; 2509 2510 if (offset > (int)skb->len - len) 2511 goto fault; 2512 2513 /* Copy header. */ 2514 if ((copy = start - offset) > 0) { 2515 if (copy > len) 2516 copy = len; 2517 skb_copy_from_linear_data_offset(skb, offset, to, copy); 2518 if ((len -= copy) == 0) 2519 return 0; 2520 offset += copy; 2521 to += copy; 2522 } 2523 2524 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2525 int end; 2526 skb_frag_t *f = &skb_shinfo(skb)->frags[i]; 2527 2528 WARN_ON(start > offset + len); 2529 2530 end = start + skb_frag_size(f); 2531 if ((copy = end - offset) > 0) { 2532 u32 p_off, p_len, copied; 2533 struct page *p; 2534 u8 *vaddr; 2535 2536 if (copy > len) 2537 copy = len; 2538 2539 skb_frag_foreach_page(f, 2540 skb_frag_off(f) + offset - start, 2541 copy, p, p_off, p_len, copied) { 2542 vaddr = kmap_atomic(p); 2543 memcpy(to + copied, vaddr + p_off, p_len); 2544 kunmap_atomic(vaddr); 2545 } 2546 2547 if ((len -= copy) == 0) 2548 return 0; 2549 offset += copy; 2550 to += copy; 2551 } 2552 start = end; 2553 } 2554 2555 skb_walk_frags(skb, frag_iter) { 2556 int end; 2557 2558 WARN_ON(start > offset + len); 2559 2560 end = start + frag_iter->len; 2561 if ((copy = end - offset) > 0) { 2562 if (copy > len) 2563 copy = len; 2564 if (skb_copy_bits(frag_iter, offset - start, to, copy)) 2565 goto fault; 2566 if ((len -= copy) == 0) 2567 return 0; 2568 offset += copy; 2569 to += copy; 2570 } 2571 start = end; 2572 } 2573 2574 if (!len) 2575 return 0; 2576 2577 fault: 2578 return -EFAULT; 2579 } 2580 EXPORT_SYMBOL(skb_copy_bits); 2581 2582 /* 2583 * Callback from splice_to_pipe(), if we need to release some pages 2584 * at the end of the spd in case we error'ed out in filling the pipe. 2585 */ 2586 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i) 2587 { 2588 put_page(spd->pages[i]); 2589 } 2590 2591 static struct page *linear_to_page(struct page *page, unsigned int *len, 2592 unsigned int *offset, 2593 struct sock *sk) 2594 { 2595 struct page_frag *pfrag = sk_page_frag(sk); 2596 2597 if (!sk_page_frag_refill(sk, pfrag)) 2598 return NULL; 2599 2600 *len = min_t(unsigned int, *len, pfrag->size - pfrag->offset); 2601 2602 memcpy(page_address(pfrag->page) + pfrag->offset, 2603 page_address(page) + *offset, *len); 2604 *offset = pfrag->offset; 2605 pfrag->offset += *len; 2606 2607 return pfrag->page; 2608 } 2609 2610 static bool spd_can_coalesce(const struct splice_pipe_desc *spd, 2611 struct page *page, 2612 unsigned int offset) 2613 { 2614 return spd->nr_pages && 2615 spd->pages[spd->nr_pages - 1] == page && 2616 (spd->partial[spd->nr_pages - 1].offset + 2617 spd->partial[spd->nr_pages - 1].len == offset); 2618 } 2619 2620 /* 2621 * Fill page/offset/length into spd, if it can hold more pages. 2622 */ 2623 static bool spd_fill_page(struct splice_pipe_desc *spd, 2624 struct pipe_inode_info *pipe, struct page *page, 2625 unsigned int *len, unsigned int offset, 2626 bool linear, 2627 struct sock *sk) 2628 { 2629 if (unlikely(spd->nr_pages == MAX_SKB_FRAGS)) 2630 return true; 2631 2632 if (linear) { 2633 page = linear_to_page(page, len, &offset, sk); 2634 if (!page) 2635 return true; 2636 } 2637 if (spd_can_coalesce(spd, page, offset)) { 2638 spd->partial[spd->nr_pages - 1].len += *len; 2639 return false; 2640 } 2641 get_page(page); 2642 spd->pages[spd->nr_pages] = page; 2643 spd->partial[spd->nr_pages].len = *len; 2644 spd->partial[spd->nr_pages].offset = offset; 2645 spd->nr_pages++; 2646 2647 return false; 2648 } 2649 2650 static bool __splice_segment(struct page *page, unsigned int poff, 2651 unsigned int plen, unsigned int *off, 2652 unsigned int *len, 2653 struct splice_pipe_desc *spd, bool linear, 2654 struct sock *sk, 2655 struct pipe_inode_info *pipe) 2656 { 2657 if (!*len) 2658 return true; 2659 2660 /* skip this segment if already processed */ 2661 if (*off >= plen) { 2662 *off -= plen; 2663 return false; 2664 } 2665 2666 /* ignore any bits we already processed */ 2667 poff += *off; 2668 plen -= *off; 2669 *off = 0; 2670 2671 do { 2672 unsigned int flen = min(*len, plen); 2673 2674 if (spd_fill_page(spd, pipe, page, &flen, poff, 2675 linear, sk)) 2676 return true; 2677 poff += flen; 2678 plen -= flen; 2679 *len -= flen; 2680 } while (*len && plen); 2681 2682 return false; 2683 } 2684 2685 /* 2686 * Map linear and fragment data from the skb to spd. It reports true if the 2687 * pipe is full or if we already spliced the requested length. 2688 */ 2689 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe, 2690 unsigned int *offset, unsigned int *len, 2691 struct splice_pipe_desc *spd, struct sock *sk) 2692 { 2693 int seg; 2694 struct sk_buff *iter; 2695 2696 /* map the linear part : 2697 * If skb->head_frag is set, this 'linear' part is backed by a 2698 * fragment, and if the head is not shared with any clones then 2699 * we can avoid a copy since we own the head portion of this page. 2700 */ 2701 if (__splice_segment(virt_to_page(skb->data), 2702 (unsigned long) skb->data & (PAGE_SIZE - 1), 2703 skb_headlen(skb), 2704 offset, len, spd, 2705 skb_head_is_locked(skb), 2706 sk, pipe)) 2707 return true; 2708 2709 /* 2710 * then map the fragments 2711 */ 2712 for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) { 2713 const skb_frag_t *f = &skb_shinfo(skb)->frags[seg]; 2714 2715 if (__splice_segment(skb_frag_page(f), 2716 skb_frag_off(f), skb_frag_size(f), 2717 offset, len, spd, false, sk, pipe)) 2718 return true; 2719 } 2720 2721 skb_walk_frags(skb, iter) { 2722 if (*offset >= iter->len) { 2723 *offset -= iter->len; 2724 continue; 2725 } 2726 /* __skb_splice_bits() only fails if the output has no room 2727 * left, so no point in going over the frag_list for the error 2728 * case. 2729 */ 2730 if (__skb_splice_bits(iter, pipe, offset, len, spd, sk)) 2731 return true; 2732 } 2733 2734 return false; 2735 } 2736 2737 /* 2738 * Map data from the skb to a pipe. Should handle both the linear part, 2739 * the fragments, and the frag list. 2740 */ 2741 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset, 2742 struct pipe_inode_info *pipe, unsigned int tlen, 2743 unsigned int flags) 2744 { 2745 struct partial_page partial[MAX_SKB_FRAGS]; 2746 struct page *pages[MAX_SKB_FRAGS]; 2747 struct splice_pipe_desc spd = { 2748 .pages = pages, 2749 .partial = partial, 2750 .nr_pages_max = MAX_SKB_FRAGS, 2751 .ops = &nosteal_pipe_buf_ops, 2752 .spd_release = sock_spd_release, 2753 }; 2754 int ret = 0; 2755 2756 __skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk); 2757 2758 if (spd.nr_pages) 2759 ret = splice_to_pipe(pipe, &spd); 2760 2761 return ret; 2762 } 2763 EXPORT_SYMBOL_GPL(skb_splice_bits); 2764 2765 static int sendmsg_unlocked(struct sock *sk, struct msghdr *msg, 2766 struct kvec *vec, size_t num, size_t size) 2767 { 2768 struct socket *sock = sk->sk_socket; 2769 2770 if (!sock) 2771 return -EINVAL; 2772 return kernel_sendmsg(sock, msg, vec, num, size); 2773 } 2774 2775 static int sendpage_unlocked(struct sock *sk, struct page *page, int offset, 2776 size_t size, int flags) 2777 { 2778 struct socket *sock = sk->sk_socket; 2779 2780 if (!sock) 2781 return -EINVAL; 2782 return kernel_sendpage(sock, page, offset, size, flags); 2783 } 2784 2785 typedef int (*sendmsg_func)(struct sock *sk, struct msghdr *msg, 2786 struct kvec *vec, size_t num, size_t size); 2787 typedef int (*sendpage_func)(struct sock *sk, struct page *page, int offset, 2788 size_t size, int flags); 2789 static int __skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, 2790 int len, sendmsg_func sendmsg, sendpage_func sendpage) 2791 { 2792 unsigned int orig_len = len; 2793 struct sk_buff *head = skb; 2794 unsigned short fragidx; 2795 int slen, ret; 2796 2797 do_frag_list: 2798 2799 /* Deal with head data */ 2800 while (offset < skb_headlen(skb) && len) { 2801 struct kvec kv; 2802 struct msghdr msg; 2803 2804 slen = min_t(int, len, skb_headlen(skb) - offset); 2805 kv.iov_base = skb->data + offset; 2806 kv.iov_len = slen; 2807 memset(&msg, 0, sizeof(msg)); 2808 msg.msg_flags = MSG_DONTWAIT; 2809 2810 ret = INDIRECT_CALL_2(sendmsg, kernel_sendmsg_locked, 2811 sendmsg_unlocked, sk, &msg, &kv, 1, slen); 2812 if (ret <= 0) 2813 goto error; 2814 2815 offset += ret; 2816 len -= ret; 2817 } 2818 2819 /* All the data was skb head? */ 2820 if (!len) 2821 goto out; 2822 2823 /* Make offset relative to start of frags */ 2824 offset -= skb_headlen(skb); 2825 2826 /* Find where we are in frag list */ 2827 for (fragidx = 0; fragidx < skb_shinfo(skb)->nr_frags; fragidx++) { 2828 skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx]; 2829 2830 if (offset < skb_frag_size(frag)) 2831 break; 2832 2833 offset -= skb_frag_size(frag); 2834 } 2835 2836 for (; len && fragidx < skb_shinfo(skb)->nr_frags; fragidx++) { 2837 skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx]; 2838 2839 slen = min_t(size_t, len, skb_frag_size(frag) - offset); 2840 2841 while (slen) { 2842 ret = INDIRECT_CALL_2(sendpage, kernel_sendpage_locked, 2843 sendpage_unlocked, sk, 2844 skb_frag_page(frag), 2845 skb_frag_off(frag) + offset, 2846 slen, MSG_DONTWAIT); 2847 if (ret <= 0) 2848 goto error; 2849 2850 len -= ret; 2851 offset += ret; 2852 slen -= ret; 2853 } 2854 2855 offset = 0; 2856 } 2857 2858 if (len) { 2859 /* Process any frag lists */ 2860 2861 if (skb == head) { 2862 if (skb_has_frag_list(skb)) { 2863 skb = skb_shinfo(skb)->frag_list; 2864 goto do_frag_list; 2865 } 2866 } else if (skb->next) { 2867 skb = skb->next; 2868 goto do_frag_list; 2869 } 2870 } 2871 2872 out: 2873 return orig_len - len; 2874 2875 error: 2876 return orig_len == len ? ret : orig_len - len; 2877 } 2878 2879 /* Send skb data on a socket. Socket must be locked. */ 2880 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset, 2881 int len) 2882 { 2883 return __skb_send_sock(sk, skb, offset, len, kernel_sendmsg_locked, 2884 kernel_sendpage_locked); 2885 } 2886 EXPORT_SYMBOL_GPL(skb_send_sock_locked); 2887 2888 /* Send skb data on a socket. Socket must be unlocked. */ 2889 int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len) 2890 { 2891 return __skb_send_sock(sk, skb, offset, len, sendmsg_unlocked, 2892 sendpage_unlocked); 2893 } 2894 2895 /** 2896 * skb_store_bits - store bits from kernel buffer to skb 2897 * @skb: destination buffer 2898 * @offset: offset in destination 2899 * @from: source buffer 2900 * @len: number of bytes to copy 2901 * 2902 * Copy the specified number of bytes from the source buffer to the 2903 * destination skb. This function handles all the messy bits of 2904 * traversing fragment lists and such. 2905 */ 2906 2907 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len) 2908 { 2909 int start = skb_headlen(skb); 2910 struct sk_buff *frag_iter; 2911 int i, copy; 2912 2913 if (offset > (int)skb->len - len) 2914 goto fault; 2915 2916 if ((copy = start - offset) > 0) { 2917 if (copy > len) 2918 copy = len; 2919 skb_copy_to_linear_data_offset(skb, offset, from, copy); 2920 if ((len -= copy) == 0) 2921 return 0; 2922 offset += copy; 2923 from += copy; 2924 } 2925 2926 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2927 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2928 int end; 2929 2930 WARN_ON(start > offset + len); 2931 2932 end = start + skb_frag_size(frag); 2933 if ((copy = end - offset) > 0) { 2934 u32 p_off, p_len, copied; 2935 struct page *p; 2936 u8 *vaddr; 2937 2938 if (copy > len) 2939 copy = len; 2940 2941 skb_frag_foreach_page(frag, 2942 skb_frag_off(frag) + offset - start, 2943 copy, p, p_off, p_len, copied) { 2944 vaddr = kmap_atomic(p); 2945 memcpy(vaddr + p_off, from + copied, p_len); 2946 kunmap_atomic(vaddr); 2947 } 2948 2949 if ((len -= copy) == 0) 2950 return 0; 2951 offset += copy; 2952 from += copy; 2953 } 2954 start = end; 2955 } 2956 2957 skb_walk_frags(skb, frag_iter) { 2958 int end; 2959 2960 WARN_ON(start > offset + len); 2961 2962 end = start + frag_iter->len; 2963 if ((copy = end - offset) > 0) { 2964 if (copy > len) 2965 copy = len; 2966 if (skb_store_bits(frag_iter, offset - start, 2967 from, copy)) 2968 goto fault; 2969 if ((len -= copy) == 0) 2970 return 0; 2971 offset += copy; 2972 from += copy; 2973 } 2974 start = end; 2975 } 2976 if (!len) 2977 return 0; 2978 2979 fault: 2980 return -EFAULT; 2981 } 2982 EXPORT_SYMBOL(skb_store_bits); 2983 2984 /* Checksum skb data. */ 2985 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len, 2986 __wsum csum, const struct skb_checksum_ops *ops) 2987 { 2988 int start = skb_headlen(skb); 2989 int i, copy = start - offset; 2990 struct sk_buff *frag_iter; 2991 int pos = 0; 2992 2993 /* Checksum header. */ 2994 if (copy > 0) { 2995 if (copy > len) 2996 copy = len; 2997 csum = INDIRECT_CALL_1(ops->update, csum_partial_ext, 2998 skb->data + offset, copy, csum); 2999 if ((len -= copy) == 0) 3000 return csum; 3001 offset += copy; 3002 pos = copy; 3003 } 3004 3005 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 3006 int end; 3007 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 3008 3009 WARN_ON(start > offset + len); 3010 3011 end = start + skb_frag_size(frag); 3012 if ((copy = end - offset) > 0) { 3013 u32 p_off, p_len, copied; 3014 struct page *p; 3015 __wsum csum2; 3016 u8 *vaddr; 3017 3018 if (copy > len) 3019 copy = len; 3020 3021 skb_frag_foreach_page(frag, 3022 skb_frag_off(frag) + offset - start, 3023 copy, p, p_off, p_len, copied) { 3024 vaddr = kmap_atomic(p); 3025 csum2 = INDIRECT_CALL_1(ops->update, 3026 csum_partial_ext, 3027 vaddr + p_off, p_len, 0); 3028 kunmap_atomic(vaddr); 3029 csum = INDIRECT_CALL_1(ops->combine, 3030 csum_block_add_ext, csum, 3031 csum2, pos, p_len); 3032 pos += p_len; 3033 } 3034 3035 if (!(len -= copy)) 3036 return csum; 3037 offset += copy; 3038 } 3039 start = end; 3040 } 3041 3042 skb_walk_frags(skb, frag_iter) { 3043 int end; 3044 3045 WARN_ON(start > offset + len); 3046 3047 end = start + frag_iter->len; 3048 if ((copy = end - offset) > 0) { 3049 __wsum csum2; 3050 if (copy > len) 3051 copy = len; 3052 csum2 = __skb_checksum(frag_iter, offset - start, 3053 copy, 0, ops); 3054 csum = INDIRECT_CALL_1(ops->combine, csum_block_add_ext, 3055 csum, csum2, pos, copy); 3056 if ((len -= copy) == 0) 3057 return csum; 3058 offset += copy; 3059 pos += copy; 3060 } 3061 start = end; 3062 } 3063 BUG_ON(len); 3064 3065 return csum; 3066 } 3067 EXPORT_SYMBOL(__skb_checksum); 3068 3069 __wsum skb_checksum(const struct sk_buff *skb, int offset, 3070 int len, __wsum csum) 3071 { 3072 const struct skb_checksum_ops ops = { 3073 .update = csum_partial_ext, 3074 .combine = csum_block_add_ext, 3075 }; 3076 3077 return __skb_checksum(skb, offset, len, csum, &ops); 3078 } 3079 EXPORT_SYMBOL(skb_checksum); 3080 3081 /* Both of above in one bottle. */ 3082 3083 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, 3084 u8 *to, int len) 3085 { 3086 int start = skb_headlen(skb); 3087 int i, copy = start - offset; 3088 struct sk_buff *frag_iter; 3089 int pos = 0; 3090 __wsum csum = 0; 3091 3092 /* Copy header. */ 3093 if (copy > 0) { 3094 if (copy > len) 3095 copy = len; 3096 csum = csum_partial_copy_nocheck(skb->data + offset, to, 3097 copy); 3098 if ((len -= copy) == 0) 3099 return csum; 3100 offset += copy; 3101 to += copy; 3102 pos = copy; 3103 } 3104 3105 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 3106 int end; 3107 3108 WARN_ON(start > offset + len); 3109 3110 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]); 3111 if ((copy = end - offset) > 0) { 3112 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 3113 u32 p_off, p_len, copied; 3114 struct page *p; 3115 __wsum csum2; 3116 u8 *vaddr; 3117 3118 if (copy > len) 3119 copy = len; 3120 3121 skb_frag_foreach_page(frag, 3122 skb_frag_off(frag) + offset - start, 3123 copy, p, p_off, p_len, copied) { 3124 vaddr = kmap_atomic(p); 3125 csum2 = csum_partial_copy_nocheck(vaddr + p_off, 3126 to + copied, 3127 p_len); 3128 kunmap_atomic(vaddr); 3129 csum = csum_block_add(csum, csum2, pos); 3130 pos += p_len; 3131 } 3132 3133 if (!(len -= copy)) 3134 return csum; 3135 offset += copy; 3136 to += copy; 3137 } 3138 start = end; 3139 } 3140 3141 skb_walk_frags(skb, frag_iter) { 3142 __wsum csum2; 3143 int end; 3144 3145 WARN_ON(start > offset + len); 3146 3147 end = start + frag_iter->len; 3148 if ((copy = end - offset) > 0) { 3149 if (copy > len) 3150 copy = len; 3151 csum2 = skb_copy_and_csum_bits(frag_iter, 3152 offset - start, 3153 to, copy); 3154 csum = csum_block_add(csum, csum2, pos); 3155 if ((len -= copy) == 0) 3156 return csum; 3157 offset += copy; 3158 to += copy; 3159 pos += copy; 3160 } 3161 start = end; 3162 } 3163 BUG_ON(len); 3164 return csum; 3165 } 3166 EXPORT_SYMBOL(skb_copy_and_csum_bits); 3167 3168 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len) 3169 { 3170 __sum16 sum; 3171 3172 sum = csum_fold(skb_checksum(skb, 0, len, skb->csum)); 3173 /* See comments in __skb_checksum_complete(). */ 3174 if (likely(!sum)) { 3175 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) && 3176 !skb->csum_complete_sw) 3177 netdev_rx_csum_fault(skb->dev, skb); 3178 } 3179 if (!skb_shared(skb)) 3180 skb->csum_valid = !sum; 3181 return sum; 3182 } 3183 EXPORT_SYMBOL(__skb_checksum_complete_head); 3184 3185 /* This function assumes skb->csum already holds pseudo header's checksum, 3186 * which has been changed from the hardware checksum, for example, by 3187 * __skb_checksum_validate_complete(). And, the original skb->csum must 3188 * have been validated unsuccessfully for CHECKSUM_COMPLETE case. 3189 * 3190 * It returns non-zero if the recomputed checksum is still invalid, otherwise 3191 * zero. The new checksum is stored back into skb->csum unless the skb is 3192 * shared. 3193 */ 3194 __sum16 __skb_checksum_complete(struct sk_buff *skb) 3195 { 3196 __wsum csum; 3197 __sum16 sum; 3198 3199 csum = skb_checksum(skb, 0, skb->len, 0); 3200 3201 sum = csum_fold(csum_add(skb->csum, csum)); 3202 /* This check is inverted, because we already knew the hardware 3203 * checksum is invalid before calling this function. So, if the 3204 * re-computed checksum is valid instead, then we have a mismatch 3205 * between the original skb->csum and skb_checksum(). This means either 3206 * the original hardware checksum is incorrect or we screw up skb->csum 3207 * when moving skb->data around. 3208 */ 3209 if (likely(!sum)) { 3210 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) && 3211 !skb->csum_complete_sw) 3212 netdev_rx_csum_fault(skb->dev, skb); 3213 } 3214 3215 if (!skb_shared(skb)) { 3216 /* Save full packet checksum */ 3217 skb->csum = csum; 3218 skb->ip_summed = CHECKSUM_COMPLETE; 3219 skb->csum_complete_sw = 1; 3220 skb->csum_valid = !sum; 3221 } 3222 3223 return sum; 3224 } 3225 EXPORT_SYMBOL(__skb_checksum_complete); 3226 3227 static __wsum warn_crc32c_csum_update(const void *buff, int len, __wsum sum) 3228 { 3229 net_warn_ratelimited( 3230 "%s: attempt to compute crc32c without libcrc32c.ko\n", 3231 __func__); 3232 return 0; 3233 } 3234 3235 static __wsum warn_crc32c_csum_combine(__wsum csum, __wsum csum2, 3236 int offset, int len) 3237 { 3238 net_warn_ratelimited( 3239 "%s: attempt to compute crc32c without libcrc32c.ko\n", 3240 __func__); 3241 return 0; 3242 } 3243 3244 static const struct skb_checksum_ops default_crc32c_ops = { 3245 .update = warn_crc32c_csum_update, 3246 .combine = warn_crc32c_csum_combine, 3247 }; 3248 3249 const struct skb_checksum_ops *crc32c_csum_stub __read_mostly = 3250 &default_crc32c_ops; 3251 EXPORT_SYMBOL(crc32c_csum_stub); 3252 3253 /** 3254 * skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy() 3255 * @from: source buffer 3256 * 3257 * Calculates the amount of linear headroom needed in the 'to' skb passed 3258 * into skb_zerocopy(). 3259 */ 3260 unsigned int 3261 skb_zerocopy_headlen(const struct sk_buff *from) 3262 { 3263 unsigned int hlen = 0; 3264 3265 if (!from->head_frag || 3266 skb_headlen(from) < L1_CACHE_BYTES || 3267 skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS) { 3268 hlen = skb_headlen(from); 3269 if (!hlen) 3270 hlen = from->len; 3271 } 3272 3273 if (skb_has_frag_list(from)) 3274 hlen = from->len; 3275 3276 return hlen; 3277 } 3278 EXPORT_SYMBOL_GPL(skb_zerocopy_headlen); 3279 3280 /** 3281 * skb_zerocopy - Zero copy skb to skb 3282 * @to: destination buffer 3283 * @from: source buffer 3284 * @len: number of bytes to copy from source buffer 3285 * @hlen: size of linear headroom in destination buffer 3286 * 3287 * Copies up to `len` bytes from `from` to `to` by creating references 3288 * to the frags in the source buffer. 3289 * 3290 * The `hlen` as calculated by skb_zerocopy_headlen() specifies the 3291 * headroom in the `to` buffer. 3292 * 3293 * Return value: 3294 * 0: everything is OK 3295 * -ENOMEM: couldn't orphan frags of @from due to lack of memory 3296 * -EFAULT: skb_copy_bits() found some problem with skb geometry 3297 */ 3298 int 3299 skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen) 3300 { 3301 int i, j = 0; 3302 int plen = 0; /* length of skb->head fragment */ 3303 int ret; 3304 struct page *page; 3305 unsigned int offset; 3306 3307 BUG_ON(!from->head_frag && !hlen); 3308 3309 /* dont bother with small payloads */ 3310 if (len <= skb_tailroom(to)) 3311 return skb_copy_bits(from, 0, skb_put(to, len), len); 3312 3313 if (hlen) { 3314 ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen); 3315 if (unlikely(ret)) 3316 return ret; 3317 len -= hlen; 3318 } else { 3319 plen = min_t(int, skb_headlen(from), len); 3320 if (plen) { 3321 page = virt_to_head_page(from->head); 3322 offset = from->data - (unsigned char *)page_address(page); 3323 __skb_fill_page_desc(to, 0, page, offset, plen); 3324 get_page(page); 3325 j = 1; 3326 len -= plen; 3327 } 3328 } 3329 3330 skb_len_add(to, len + plen); 3331 3332 if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) { 3333 skb_tx_error(from); 3334 return -ENOMEM; 3335 } 3336 skb_zerocopy_clone(to, from, GFP_ATOMIC); 3337 3338 for (i = 0; i < skb_shinfo(from)->nr_frags; i++) { 3339 int size; 3340 3341 if (!len) 3342 break; 3343 skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i]; 3344 size = min_t(int, skb_frag_size(&skb_shinfo(to)->frags[j]), 3345 len); 3346 skb_frag_size_set(&skb_shinfo(to)->frags[j], size); 3347 len -= size; 3348 skb_frag_ref(to, j); 3349 j++; 3350 } 3351 skb_shinfo(to)->nr_frags = j; 3352 3353 return 0; 3354 } 3355 EXPORT_SYMBOL_GPL(skb_zerocopy); 3356 3357 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to) 3358 { 3359 __wsum csum; 3360 long csstart; 3361 3362 if (skb->ip_summed == CHECKSUM_PARTIAL) 3363 csstart = skb_checksum_start_offset(skb); 3364 else 3365 csstart = skb_headlen(skb); 3366 3367 BUG_ON(csstart > skb_headlen(skb)); 3368 3369 skb_copy_from_linear_data(skb, to, csstart); 3370 3371 csum = 0; 3372 if (csstart != skb->len) 3373 csum = skb_copy_and_csum_bits(skb, csstart, to + csstart, 3374 skb->len - csstart); 3375 3376 if (skb->ip_summed == CHECKSUM_PARTIAL) { 3377 long csstuff = csstart + skb->csum_offset; 3378 3379 *((__sum16 *)(to + csstuff)) = csum_fold(csum); 3380 } 3381 } 3382 EXPORT_SYMBOL(skb_copy_and_csum_dev); 3383 3384 /** 3385 * skb_dequeue - remove from the head of the queue 3386 * @list: list to dequeue from 3387 * 3388 * Remove the head of the list. The list lock is taken so the function 3389 * may be used safely with other locking list functions. The head item is 3390 * returned or %NULL if the list is empty. 3391 */ 3392 3393 struct sk_buff *skb_dequeue(struct sk_buff_head *list) 3394 { 3395 unsigned long flags; 3396 struct sk_buff *result; 3397 3398 spin_lock_irqsave(&list->lock, flags); 3399 result = __skb_dequeue(list); 3400 spin_unlock_irqrestore(&list->lock, flags); 3401 return result; 3402 } 3403 EXPORT_SYMBOL(skb_dequeue); 3404 3405 /** 3406 * skb_dequeue_tail - remove from the tail of the queue 3407 * @list: list to dequeue from 3408 * 3409 * Remove the tail of the list. The list lock is taken so the function 3410 * may be used safely with other locking list functions. The tail item is 3411 * returned or %NULL if the list is empty. 3412 */ 3413 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list) 3414 { 3415 unsigned long flags; 3416 struct sk_buff *result; 3417 3418 spin_lock_irqsave(&list->lock, flags); 3419 result = __skb_dequeue_tail(list); 3420 spin_unlock_irqrestore(&list->lock, flags); 3421 return result; 3422 } 3423 EXPORT_SYMBOL(skb_dequeue_tail); 3424 3425 /** 3426 * skb_queue_purge - empty a list 3427 * @list: list to empty 3428 * 3429 * Delete all buffers on an &sk_buff list. Each buffer is removed from 3430 * the list and one reference dropped. This function takes the list 3431 * lock and is atomic with respect to other list locking functions. 3432 */ 3433 void skb_queue_purge(struct sk_buff_head *list) 3434 { 3435 struct sk_buff *skb; 3436 while ((skb = skb_dequeue(list)) != NULL) 3437 kfree_skb(skb); 3438 } 3439 EXPORT_SYMBOL(skb_queue_purge); 3440 3441 /** 3442 * skb_rbtree_purge - empty a skb rbtree 3443 * @root: root of the rbtree to empty 3444 * Return value: the sum of truesizes of all purged skbs. 3445 * 3446 * Delete all buffers on an &sk_buff rbtree. Each buffer is removed from 3447 * the list and one reference dropped. This function does not take 3448 * any lock. Synchronization should be handled by the caller (e.g., TCP 3449 * out-of-order queue is protected by the socket lock). 3450 */ 3451 unsigned int skb_rbtree_purge(struct rb_root *root) 3452 { 3453 struct rb_node *p = rb_first(root); 3454 unsigned int sum = 0; 3455 3456 while (p) { 3457 struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode); 3458 3459 p = rb_next(p); 3460 rb_erase(&skb->rbnode, root); 3461 sum += skb->truesize; 3462 kfree_skb(skb); 3463 } 3464 return sum; 3465 } 3466 3467 /** 3468 * skb_queue_head - queue a buffer at the list head 3469 * @list: list to use 3470 * @newsk: buffer to queue 3471 * 3472 * Queue a buffer at the start of the list. This function takes the 3473 * list lock and can be used safely with other locking &sk_buff functions 3474 * safely. 3475 * 3476 * A buffer cannot be placed on two lists at the same time. 3477 */ 3478 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk) 3479 { 3480 unsigned long flags; 3481 3482 spin_lock_irqsave(&list->lock, flags); 3483 __skb_queue_head(list, newsk); 3484 spin_unlock_irqrestore(&list->lock, flags); 3485 } 3486 EXPORT_SYMBOL(skb_queue_head); 3487 3488 /** 3489 * skb_queue_tail - queue a buffer at the list tail 3490 * @list: list to use 3491 * @newsk: buffer to queue 3492 * 3493 * Queue a buffer at the tail of the list. This function takes the 3494 * list lock and can be used safely with other locking &sk_buff functions 3495 * safely. 3496 * 3497 * A buffer cannot be placed on two lists at the same time. 3498 */ 3499 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk) 3500 { 3501 unsigned long flags; 3502 3503 spin_lock_irqsave(&list->lock, flags); 3504 __skb_queue_tail(list, newsk); 3505 spin_unlock_irqrestore(&list->lock, flags); 3506 } 3507 EXPORT_SYMBOL(skb_queue_tail); 3508 3509 /** 3510 * skb_unlink - remove a buffer from a list 3511 * @skb: buffer to remove 3512 * @list: list to use 3513 * 3514 * Remove a packet from a list. The list locks are taken and this 3515 * function is atomic with respect to other list locked calls 3516 * 3517 * You must know what list the SKB is on. 3518 */ 3519 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list) 3520 { 3521 unsigned long flags; 3522 3523 spin_lock_irqsave(&list->lock, flags); 3524 __skb_unlink(skb, list); 3525 spin_unlock_irqrestore(&list->lock, flags); 3526 } 3527 EXPORT_SYMBOL(skb_unlink); 3528 3529 /** 3530 * skb_append - append a buffer 3531 * @old: buffer to insert after 3532 * @newsk: buffer to insert 3533 * @list: list to use 3534 * 3535 * Place a packet after a given packet in a list. The list locks are taken 3536 * and this function is atomic with respect to other list locked calls. 3537 * A buffer cannot be placed on two lists at the same time. 3538 */ 3539 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list) 3540 { 3541 unsigned long flags; 3542 3543 spin_lock_irqsave(&list->lock, flags); 3544 __skb_queue_after(list, old, newsk); 3545 spin_unlock_irqrestore(&list->lock, flags); 3546 } 3547 EXPORT_SYMBOL(skb_append); 3548 3549 static inline void skb_split_inside_header(struct sk_buff *skb, 3550 struct sk_buff* skb1, 3551 const u32 len, const int pos) 3552 { 3553 int i; 3554 3555 skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len), 3556 pos - len); 3557 /* And move data appendix as is. */ 3558 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 3559 skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i]; 3560 3561 skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags; 3562 skb_shinfo(skb)->nr_frags = 0; 3563 skb1->data_len = skb->data_len; 3564 skb1->len += skb1->data_len; 3565 skb->data_len = 0; 3566 skb->len = len; 3567 skb_set_tail_pointer(skb, len); 3568 } 3569 3570 static inline void skb_split_no_header(struct sk_buff *skb, 3571 struct sk_buff* skb1, 3572 const u32 len, int pos) 3573 { 3574 int i, k = 0; 3575 const int nfrags = skb_shinfo(skb)->nr_frags; 3576 3577 skb_shinfo(skb)->nr_frags = 0; 3578 skb1->len = skb1->data_len = skb->len - len; 3579 skb->len = len; 3580 skb->data_len = len - pos; 3581 3582 for (i = 0; i < nfrags; i++) { 3583 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 3584 3585 if (pos + size > len) { 3586 skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i]; 3587 3588 if (pos < len) { 3589 /* Split frag. 3590 * We have two variants in this case: 3591 * 1. Move all the frag to the second 3592 * part, if it is possible. F.e. 3593 * this approach is mandatory for TUX, 3594 * where splitting is expensive. 3595 * 2. Split is accurately. We make this. 3596 */ 3597 skb_frag_ref(skb, i); 3598 skb_frag_off_add(&skb_shinfo(skb1)->frags[0], len - pos); 3599 skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos); 3600 skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos); 3601 skb_shinfo(skb)->nr_frags++; 3602 } 3603 k++; 3604 } else 3605 skb_shinfo(skb)->nr_frags++; 3606 pos += size; 3607 } 3608 skb_shinfo(skb1)->nr_frags = k; 3609 } 3610 3611 /** 3612 * skb_split - Split fragmented skb to two parts at length len. 3613 * @skb: the buffer to split 3614 * @skb1: the buffer to receive the second part 3615 * @len: new length for skb 3616 */ 3617 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len) 3618 { 3619 int pos = skb_headlen(skb); 3620 const int zc_flags = SKBFL_SHARED_FRAG | SKBFL_PURE_ZEROCOPY; 3621 3622 skb_zcopy_downgrade_managed(skb); 3623 3624 skb_shinfo(skb1)->flags |= skb_shinfo(skb)->flags & zc_flags; 3625 skb_zerocopy_clone(skb1, skb, 0); 3626 if (len < pos) /* Split line is inside header. */ 3627 skb_split_inside_header(skb, skb1, len, pos); 3628 else /* Second chunk has no header, nothing to copy. */ 3629 skb_split_no_header(skb, skb1, len, pos); 3630 } 3631 EXPORT_SYMBOL(skb_split); 3632 3633 /* Shifting from/to a cloned skb is a no-go. 3634 * 3635 * Caller cannot keep skb_shinfo related pointers past calling here! 3636 */ 3637 static int skb_prepare_for_shift(struct sk_buff *skb) 3638 { 3639 return skb_unclone_keeptruesize(skb, GFP_ATOMIC); 3640 } 3641 3642 /** 3643 * skb_shift - Shifts paged data partially from skb to another 3644 * @tgt: buffer into which tail data gets added 3645 * @skb: buffer from which the paged data comes from 3646 * @shiftlen: shift up to this many bytes 3647 * 3648 * Attempts to shift up to shiftlen worth of bytes, which may be less than 3649 * the length of the skb, from skb to tgt. Returns number bytes shifted. 3650 * It's up to caller to free skb if everything was shifted. 3651 * 3652 * If @tgt runs out of frags, the whole operation is aborted. 3653 * 3654 * Skb cannot include anything else but paged data while tgt is allowed 3655 * to have non-paged data as well. 3656 * 3657 * TODO: full sized shift could be optimized but that would need 3658 * specialized skb free'er to handle frags without up-to-date nr_frags. 3659 */ 3660 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen) 3661 { 3662 int from, to, merge, todo; 3663 skb_frag_t *fragfrom, *fragto; 3664 3665 BUG_ON(shiftlen > skb->len); 3666 3667 if (skb_headlen(skb)) 3668 return 0; 3669 if (skb_zcopy(tgt) || skb_zcopy(skb)) 3670 return 0; 3671 3672 todo = shiftlen; 3673 from = 0; 3674 to = skb_shinfo(tgt)->nr_frags; 3675 fragfrom = &skb_shinfo(skb)->frags[from]; 3676 3677 /* Actual merge is delayed until the point when we know we can 3678 * commit all, so that we don't have to undo partial changes 3679 */ 3680 if (!to || 3681 !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom), 3682 skb_frag_off(fragfrom))) { 3683 merge = -1; 3684 } else { 3685 merge = to - 1; 3686 3687 todo -= skb_frag_size(fragfrom); 3688 if (todo < 0) { 3689 if (skb_prepare_for_shift(skb) || 3690 skb_prepare_for_shift(tgt)) 3691 return 0; 3692 3693 /* All previous frag pointers might be stale! */ 3694 fragfrom = &skb_shinfo(skb)->frags[from]; 3695 fragto = &skb_shinfo(tgt)->frags[merge]; 3696 3697 skb_frag_size_add(fragto, shiftlen); 3698 skb_frag_size_sub(fragfrom, shiftlen); 3699 skb_frag_off_add(fragfrom, shiftlen); 3700 3701 goto onlymerged; 3702 } 3703 3704 from++; 3705 } 3706 3707 /* Skip full, not-fitting skb to avoid expensive operations */ 3708 if ((shiftlen == skb->len) && 3709 (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to)) 3710 return 0; 3711 3712 if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt)) 3713 return 0; 3714 3715 while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) { 3716 if (to == MAX_SKB_FRAGS) 3717 return 0; 3718 3719 fragfrom = &skb_shinfo(skb)->frags[from]; 3720 fragto = &skb_shinfo(tgt)->frags[to]; 3721 3722 if (todo >= skb_frag_size(fragfrom)) { 3723 *fragto = *fragfrom; 3724 todo -= skb_frag_size(fragfrom); 3725 from++; 3726 to++; 3727 3728 } else { 3729 __skb_frag_ref(fragfrom); 3730 skb_frag_page_copy(fragto, fragfrom); 3731 skb_frag_off_copy(fragto, fragfrom); 3732 skb_frag_size_set(fragto, todo); 3733 3734 skb_frag_off_add(fragfrom, todo); 3735 skb_frag_size_sub(fragfrom, todo); 3736 todo = 0; 3737 3738 to++; 3739 break; 3740 } 3741 } 3742 3743 /* Ready to "commit" this state change to tgt */ 3744 skb_shinfo(tgt)->nr_frags = to; 3745 3746 if (merge >= 0) { 3747 fragfrom = &skb_shinfo(skb)->frags[0]; 3748 fragto = &skb_shinfo(tgt)->frags[merge]; 3749 3750 skb_frag_size_add(fragto, skb_frag_size(fragfrom)); 3751 __skb_frag_unref(fragfrom, skb->pp_recycle); 3752 } 3753 3754 /* Reposition in the original skb */ 3755 to = 0; 3756 while (from < skb_shinfo(skb)->nr_frags) 3757 skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++]; 3758 skb_shinfo(skb)->nr_frags = to; 3759 3760 BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags); 3761 3762 onlymerged: 3763 /* Most likely the tgt won't ever need its checksum anymore, skb on 3764 * the other hand might need it if it needs to be resent 3765 */ 3766 tgt->ip_summed = CHECKSUM_PARTIAL; 3767 skb->ip_summed = CHECKSUM_PARTIAL; 3768 3769 skb_len_add(skb, -shiftlen); 3770 skb_len_add(tgt, shiftlen); 3771 3772 return shiftlen; 3773 } 3774 3775 /** 3776 * skb_prepare_seq_read - Prepare a sequential read of skb data 3777 * @skb: the buffer to read 3778 * @from: lower offset of data to be read 3779 * @to: upper offset of data to be read 3780 * @st: state variable 3781 * 3782 * Initializes the specified state variable. Must be called before 3783 * invoking skb_seq_read() for the first time. 3784 */ 3785 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from, 3786 unsigned int to, struct skb_seq_state *st) 3787 { 3788 st->lower_offset = from; 3789 st->upper_offset = to; 3790 st->root_skb = st->cur_skb = skb; 3791 st->frag_idx = st->stepped_offset = 0; 3792 st->frag_data = NULL; 3793 st->frag_off = 0; 3794 } 3795 EXPORT_SYMBOL(skb_prepare_seq_read); 3796 3797 /** 3798 * skb_seq_read - Sequentially read skb data 3799 * @consumed: number of bytes consumed by the caller so far 3800 * @data: destination pointer for data to be returned 3801 * @st: state variable 3802 * 3803 * Reads a block of skb data at @consumed relative to the 3804 * lower offset specified to skb_prepare_seq_read(). Assigns 3805 * the head of the data block to @data and returns the length 3806 * of the block or 0 if the end of the skb data or the upper 3807 * offset has been reached. 3808 * 3809 * The caller is not required to consume all of the data 3810 * returned, i.e. @consumed is typically set to the number 3811 * of bytes already consumed and the next call to 3812 * skb_seq_read() will return the remaining part of the block. 3813 * 3814 * Note 1: The size of each block of data returned can be arbitrary, 3815 * this limitation is the cost for zerocopy sequential 3816 * reads of potentially non linear data. 3817 * 3818 * Note 2: Fragment lists within fragments are not implemented 3819 * at the moment, state->root_skb could be replaced with 3820 * a stack for this purpose. 3821 */ 3822 unsigned int skb_seq_read(unsigned int consumed, const u8 **data, 3823 struct skb_seq_state *st) 3824 { 3825 unsigned int block_limit, abs_offset = consumed + st->lower_offset; 3826 skb_frag_t *frag; 3827 3828 if (unlikely(abs_offset >= st->upper_offset)) { 3829 if (st->frag_data) { 3830 kunmap_atomic(st->frag_data); 3831 st->frag_data = NULL; 3832 } 3833 return 0; 3834 } 3835 3836 next_skb: 3837 block_limit = skb_headlen(st->cur_skb) + st->stepped_offset; 3838 3839 if (abs_offset < block_limit && !st->frag_data) { 3840 *data = st->cur_skb->data + (abs_offset - st->stepped_offset); 3841 return block_limit - abs_offset; 3842 } 3843 3844 if (st->frag_idx == 0 && !st->frag_data) 3845 st->stepped_offset += skb_headlen(st->cur_skb); 3846 3847 while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) { 3848 unsigned int pg_idx, pg_off, pg_sz; 3849 3850 frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx]; 3851 3852 pg_idx = 0; 3853 pg_off = skb_frag_off(frag); 3854 pg_sz = skb_frag_size(frag); 3855 3856 if (skb_frag_must_loop(skb_frag_page(frag))) { 3857 pg_idx = (pg_off + st->frag_off) >> PAGE_SHIFT; 3858 pg_off = offset_in_page(pg_off + st->frag_off); 3859 pg_sz = min_t(unsigned int, pg_sz - st->frag_off, 3860 PAGE_SIZE - pg_off); 3861 } 3862 3863 block_limit = pg_sz + st->stepped_offset; 3864 if (abs_offset < block_limit) { 3865 if (!st->frag_data) 3866 st->frag_data = kmap_atomic(skb_frag_page(frag) + pg_idx); 3867 3868 *data = (u8 *)st->frag_data + pg_off + 3869 (abs_offset - st->stepped_offset); 3870 3871 return block_limit - abs_offset; 3872 } 3873 3874 if (st->frag_data) { 3875 kunmap_atomic(st->frag_data); 3876 st->frag_data = NULL; 3877 } 3878 3879 st->stepped_offset += pg_sz; 3880 st->frag_off += pg_sz; 3881 if (st->frag_off == skb_frag_size(frag)) { 3882 st->frag_off = 0; 3883 st->frag_idx++; 3884 } 3885 } 3886 3887 if (st->frag_data) { 3888 kunmap_atomic(st->frag_data); 3889 st->frag_data = NULL; 3890 } 3891 3892 if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) { 3893 st->cur_skb = skb_shinfo(st->root_skb)->frag_list; 3894 st->frag_idx = 0; 3895 goto next_skb; 3896 } else if (st->cur_skb->next) { 3897 st->cur_skb = st->cur_skb->next; 3898 st->frag_idx = 0; 3899 goto next_skb; 3900 } 3901 3902 return 0; 3903 } 3904 EXPORT_SYMBOL(skb_seq_read); 3905 3906 /** 3907 * skb_abort_seq_read - Abort a sequential read of skb data 3908 * @st: state variable 3909 * 3910 * Must be called if skb_seq_read() was not called until it 3911 * returned 0. 3912 */ 3913 void skb_abort_seq_read(struct skb_seq_state *st) 3914 { 3915 if (st->frag_data) 3916 kunmap_atomic(st->frag_data); 3917 } 3918 EXPORT_SYMBOL(skb_abort_seq_read); 3919 3920 #define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb)) 3921 3922 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text, 3923 struct ts_config *conf, 3924 struct ts_state *state) 3925 { 3926 return skb_seq_read(offset, text, TS_SKB_CB(state)); 3927 } 3928 3929 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state) 3930 { 3931 skb_abort_seq_read(TS_SKB_CB(state)); 3932 } 3933 3934 /** 3935 * skb_find_text - Find a text pattern in skb data 3936 * @skb: the buffer to look in 3937 * @from: search offset 3938 * @to: search limit 3939 * @config: textsearch configuration 3940 * 3941 * Finds a pattern in the skb data according to the specified 3942 * textsearch configuration. Use textsearch_next() to retrieve 3943 * subsequent occurrences of the pattern. Returns the offset 3944 * to the first occurrence or UINT_MAX if no match was found. 3945 */ 3946 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from, 3947 unsigned int to, struct ts_config *config) 3948 { 3949 struct ts_state state; 3950 unsigned int ret; 3951 3952 BUILD_BUG_ON(sizeof(struct skb_seq_state) > sizeof(state.cb)); 3953 3954 config->get_next_block = skb_ts_get_next_block; 3955 config->finish = skb_ts_finish; 3956 3957 skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state)); 3958 3959 ret = textsearch_find(config, &state); 3960 return (ret <= to - from ? ret : UINT_MAX); 3961 } 3962 EXPORT_SYMBOL(skb_find_text); 3963 3964 int skb_append_pagefrags(struct sk_buff *skb, struct page *page, 3965 int offset, size_t size) 3966 { 3967 int i = skb_shinfo(skb)->nr_frags; 3968 3969 if (skb_can_coalesce(skb, i, page, offset)) { 3970 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size); 3971 } else if (i < MAX_SKB_FRAGS) { 3972 skb_zcopy_downgrade_managed(skb); 3973 get_page(page); 3974 skb_fill_page_desc_noacc(skb, i, page, offset, size); 3975 } else { 3976 return -EMSGSIZE; 3977 } 3978 3979 return 0; 3980 } 3981 EXPORT_SYMBOL_GPL(skb_append_pagefrags); 3982 3983 /** 3984 * skb_pull_rcsum - pull skb and update receive checksum 3985 * @skb: buffer to update 3986 * @len: length of data pulled 3987 * 3988 * This function performs an skb_pull on the packet and updates 3989 * the CHECKSUM_COMPLETE checksum. It should be used on 3990 * receive path processing instead of skb_pull unless you know 3991 * that the checksum difference is zero (e.g., a valid IP header) 3992 * or you are setting ip_summed to CHECKSUM_NONE. 3993 */ 3994 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len) 3995 { 3996 unsigned char *data = skb->data; 3997 3998 BUG_ON(len > skb->len); 3999 __skb_pull(skb, len); 4000 skb_postpull_rcsum(skb, data, len); 4001 return skb->data; 4002 } 4003 EXPORT_SYMBOL_GPL(skb_pull_rcsum); 4004 4005 static inline skb_frag_t skb_head_frag_to_page_desc(struct sk_buff *frag_skb) 4006 { 4007 skb_frag_t head_frag; 4008 struct page *page; 4009 4010 page = virt_to_head_page(frag_skb->head); 4011 __skb_frag_set_page(&head_frag, page); 4012 skb_frag_off_set(&head_frag, frag_skb->data - 4013 (unsigned char *)page_address(page)); 4014 skb_frag_size_set(&head_frag, skb_headlen(frag_skb)); 4015 return head_frag; 4016 } 4017 4018 struct sk_buff *skb_segment_list(struct sk_buff *skb, 4019 netdev_features_t features, 4020 unsigned int offset) 4021 { 4022 struct sk_buff *list_skb = skb_shinfo(skb)->frag_list; 4023 unsigned int tnl_hlen = skb_tnl_header_len(skb); 4024 unsigned int delta_truesize = 0; 4025 unsigned int delta_len = 0; 4026 struct sk_buff *tail = NULL; 4027 struct sk_buff *nskb, *tmp; 4028 int len_diff, err; 4029 4030 skb_push(skb, -skb_network_offset(skb) + offset); 4031 4032 skb_shinfo(skb)->frag_list = NULL; 4033 4034 do { 4035 nskb = list_skb; 4036 list_skb = list_skb->next; 4037 4038 err = 0; 4039 delta_truesize += nskb->truesize; 4040 if (skb_shared(nskb)) { 4041 tmp = skb_clone(nskb, GFP_ATOMIC); 4042 if (tmp) { 4043 consume_skb(nskb); 4044 nskb = tmp; 4045 err = skb_unclone(nskb, GFP_ATOMIC); 4046 } else { 4047 err = -ENOMEM; 4048 } 4049 } 4050 4051 if (!tail) 4052 skb->next = nskb; 4053 else 4054 tail->next = nskb; 4055 4056 if (unlikely(err)) { 4057 nskb->next = list_skb; 4058 goto err_linearize; 4059 } 4060 4061 tail = nskb; 4062 4063 delta_len += nskb->len; 4064 4065 skb_push(nskb, -skb_network_offset(nskb) + offset); 4066 4067 skb_release_head_state(nskb); 4068 len_diff = skb_network_header_len(nskb) - skb_network_header_len(skb); 4069 __copy_skb_header(nskb, skb); 4070 4071 skb_headers_offset_update(nskb, skb_headroom(nskb) - skb_headroom(skb)); 4072 nskb->transport_header += len_diff; 4073 skb_copy_from_linear_data_offset(skb, -tnl_hlen, 4074 nskb->data - tnl_hlen, 4075 offset + tnl_hlen); 4076 4077 if (skb_needs_linearize(nskb, features) && 4078 __skb_linearize(nskb)) 4079 goto err_linearize; 4080 4081 } while (list_skb); 4082 4083 skb->truesize = skb->truesize - delta_truesize; 4084 skb->data_len = skb->data_len - delta_len; 4085 skb->len = skb->len - delta_len; 4086 4087 skb_gso_reset(skb); 4088 4089 skb->prev = tail; 4090 4091 if (skb_needs_linearize(skb, features) && 4092 __skb_linearize(skb)) 4093 goto err_linearize; 4094 4095 skb_get(skb); 4096 4097 return skb; 4098 4099 err_linearize: 4100 kfree_skb_list(skb->next); 4101 skb->next = NULL; 4102 return ERR_PTR(-ENOMEM); 4103 } 4104 EXPORT_SYMBOL_GPL(skb_segment_list); 4105 4106 /** 4107 * skb_segment - Perform protocol segmentation on skb. 4108 * @head_skb: buffer to segment 4109 * @features: features for the output path (see dev->features) 4110 * 4111 * This function performs segmentation on the given skb. It returns 4112 * a pointer to the first in a list of new skbs for the segments. 4113 * In case of error it returns ERR_PTR(err). 4114 */ 4115 struct sk_buff *skb_segment(struct sk_buff *head_skb, 4116 netdev_features_t features) 4117 { 4118 struct sk_buff *segs = NULL; 4119 struct sk_buff *tail = NULL; 4120 struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list; 4121 skb_frag_t *frag = skb_shinfo(head_skb)->frags; 4122 unsigned int mss = skb_shinfo(head_skb)->gso_size; 4123 unsigned int doffset = head_skb->data - skb_mac_header(head_skb); 4124 struct sk_buff *frag_skb = head_skb; 4125 unsigned int offset = doffset; 4126 unsigned int tnl_hlen = skb_tnl_header_len(head_skb); 4127 unsigned int partial_segs = 0; 4128 unsigned int headroom; 4129 unsigned int len = head_skb->len; 4130 __be16 proto; 4131 bool csum, sg; 4132 int nfrags = skb_shinfo(head_skb)->nr_frags; 4133 int err = -ENOMEM; 4134 int i = 0; 4135 int pos; 4136 4137 if ((skb_shinfo(head_skb)->gso_type & SKB_GSO_DODGY) && 4138 mss != GSO_BY_FRAGS && mss != skb_headlen(head_skb)) { 4139 struct sk_buff *check_skb; 4140 4141 for (check_skb = list_skb; check_skb; check_skb = check_skb->next) { 4142 if (skb_headlen(check_skb) && !check_skb->head_frag) { 4143 /* gso_size is untrusted, and we have a frag_list with 4144 * a linear non head_frag item. 4145 * 4146 * If head_skb's headlen does not fit requested gso_size, 4147 * it means that the frag_list members do NOT terminate 4148 * on exact gso_size boundaries. Hence we cannot perform 4149 * skb_frag_t page sharing. Therefore we must fallback to 4150 * copying the frag_list skbs; we do so by disabling SG. 4151 */ 4152 features &= ~NETIF_F_SG; 4153 break; 4154 } 4155 } 4156 } 4157 4158 __skb_push(head_skb, doffset); 4159 proto = skb_network_protocol(head_skb, NULL); 4160 if (unlikely(!proto)) 4161 return ERR_PTR(-EINVAL); 4162 4163 sg = !!(features & NETIF_F_SG); 4164 csum = !!can_checksum_protocol(features, proto); 4165 4166 if (sg && csum && (mss != GSO_BY_FRAGS)) { 4167 if (!(features & NETIF_F_GSO_PARTIAL)) { 4168 struct sk_buff *iter; 4169 unsigned int frag_len; 4170 4171 if (!list_skb || 4172 !net_gso_ok(features, skb_shinfo(head_skb)->gso_type)) 4173 goto normal; 4174 4175 /* If we get here then all the required 4176 * GSO features except frag_list are supported. 4177 * Try to split the SKB to multiple GSO SKBs 4178 * with no frag_list. 4179 * Currently we can do that only when the buffers don't 4180 * have a linear part and all the buffers except 4181 * the last are of the same length. 4182 */ 4183 frag_len = list_skb->len; 4184 skb_walk_frags(head_skb, iter) { 4185 if (frag_len != iter->len && iter->next) 4186 goto normal; 4187 if (skb_headlen(iter) && !iter->head_frag) 4188 goto normal; 4189 4190 len -= iter->len; 4191 } 4192 4193 if (len != frag_len) 4194 goto normal; 4195 } 4196 4197 /* GSO partial only requires that we trim off any excess that 4198 * doesn't fit into an MSS sized block, so take care of that 4199 * now. 4200 */ 4201 partial_segs = len / mss; 4202 if (partial_segs > 1) 4203 mss *= partial_segs; 4204 else 4205 partial_segs = 0; 4206 } 4207 4208 normal: 4209 headroom = skb_headroom(head_skb); 4210 pos = skb_headlen(head_skb); 4211 4212 do { 4213 struct sk_buff *nskb; 4214 skb_frag_t *nskb_frag; 4215 int hsize; 4216 int size; 4217 4218 if (unlikely(mss == GSO_BY_FRAGS)) { 4219 len = list_skb->len; 4220 } else { 4221 len = head_skb->len - offset; 4222 if (len > mss) 4223 len = mss; 4224 } 4225 4226 hsize = skb_headlen(head_skb) - offset; 4227 4228 if (hsize <= 0 && i >= nfrags && skb_headlen(list_skb) && 4229 (skb_headlen(list_skb) == len || sg)) { 4230 BUG_ON(skb_headlen(list_skb) > len); 4231 4232 i = 0; 4233 nfrags = skb_shinfo(list_skb)->nr_frags; 4234 frag = skb_shinfo(list_skb)->frags; 4235 frag_skb = list_skb; 4236 pos += skb_headlen(list_skb); 4237 4238 while (pos < offset + len) { 4239 BUG_ON(i >= nfrags); 4240 4241 size = skb_frag_size(frag); 4242 if (pos + size > offset + len) 4243 break; 4244 4245 i++; 4246 pos += size; 4247 frag++; 4248 } 4249 4250 nskb = skb_clone(list_skb, GFP_ATOMIC); 4251 list_skb = list_skb->next; 4252 4253 if (unlikely(!nskb)) 4254 goto err; 4255 4256 if (unlikely(pskb_trim(nskb, len))) { 4257 kfree_skb(nskb); 4258 goto err; 4259 } 4260 4261 hsize = skb_end_offset(nskb); 4262 if (skb_cow_head(nskb, doffset + headroom)) { 4263 kfree_skb(nskb); 4264 goto err; 4265 } 4266 4267 nskb->truesize += skb_end_offset(nskb) - hsize; 4268 skb_release_head_state(nskb); 4269 __skb_push(nskb, doffset); 4270 } else { 4271 if (hsize < 0) 4272 hsize = 0; 4273 if (hsize > len || !sg) 4274 hsize = len; 4275 4276 nskb = __alloc_skb(hsize + doffset + headroom, 4277 GFP_ATOMIC, skb_alloc_rx_flag(head_skb), 4278 NUMA_NO_NODE); 4279 4280 if (unlikely(!nskb)) 4281 goto err; 4282 4283 skb_reserve(nskb, headroom); 4284 __skb_put(nskb, doffset); 4285 } 4286 4287 if (segs) 4288 tail->next = nskb; 4289 else 4290 segs = nskb; 4291 tail = nskb; 4292 4293 __copy_skb_header(nskb, head_skb); 4294 4295 skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom); 4296 skb_reset_mac_len(nskb); 4297 4298 skb_copy_from_linear_data_offset(head_skb, -tnl_hlen, 4299 nskb->data - tnl_hlen, 4300 doffset + tnl_hlen); 4301 4302 if (nskb->len == len + doffset) 4303 goto perform_csum_check; 4304 4305 if (!sg) { 4306 if (!csum) { 4307 if (!nskb->remcsum_offload) 4308 nskb->ip_summed = CHECKSUM_NONE; 4309 SKB_GSO_CB(nskb)->csum = 4310 skb_copy_and_csum_bits(head_skb, offset, 4311 skb_put(nskb, 4312 len), 4313 len); 4314 SKB_GSO_CB(nskb)->csum_start = 4315 skb_headroom(nskb) + doffset; 4316 } else { 4317 if (skb_copy_bits(head_skb, offset, skb_put(nskb, len), len)) 4318 goto err; 4319 } 4320 continue; 4321 } 4322 4323 nskb_frag = skb_shinfo(nskb)->frags; 4324 4325 skb_copy_from_linear_data_offset(head_skb, offset, 4326 skb_put(nskb, hsize), hsize); 4327 4328 skb_shinfo(nskb)->flags |= skb_shinfo(head_skb)->flags & 4329 SKBFL_SHARED_FRAG; 4330 4331 if (skb_orphan_frags(frag_skb, GFP_ATOMIC) || 4332 skb_zerocopy_clone(nskb, frag_skb, GFP_ATOMIC)) 4333 goto err; 4334 4335 while (pos < offset + len) { 4336 if (i >= nfrags) { 4337 i = 0; 4338 nfrags = skb_shinfo(list_skb)->nr_frags; 4339 frag = skb_shinfo(list_skb)->frags; 4340 frag_skb = list_skb; 4341 if (!skb_headlen(list_skb)) { 4342 BUG_ON(!nfrags); 4343 } else { 4344 BUG_ON(!list_skb->head_frag); 4345 4346 /* to make room for head_frag. */ 4347 i--; 4348 frag--; 4349 } 4350 if (skb_orphan_frags(frag_skb, GFP_ATOMIC) || 4351 skb_zerocopy_clone(nskb, frag_skb, 4352 GFP_ATOMIC)) 4353 goto err; 4354 4355 list_skb = list_skb->next; 4356 } 4357 4358 if (unlikely(skb_shinfo(nskb)->nr_frags >= 4359 MAX_SKB_FRAGS)) { 4360 net_warn_ratelimited( 4361 "skb_segment: too many frags: %u %u\n", 4362 pos, mss); 4363 err = -EINVAL; 4364 goto err; 4365 } 4366 4367 *nskb_frag = (i < 0) ? skb_head_frag_to_page_desc(frag_skb) : *frag; 4368 __skb_frag_ref(nskb_frag); 4369 size = skb_frag_size(nskb_frag); 4370 4371 if (pos < offset) { 4372 skb_frag_off_add(nskb_frag, offset - pos); 4373 skb_frag_size_sub(nskb_frag, offset - pos); 4374 } 4375 4376 skb_shinfo(nskb)->nr_frags++; 4377 4378 if (pos + size <= offset + len) { 4379 i++; 4380 frag++; 4381 pos += size; 4382 } else { 4383 skb_frag_size_sub(nskb_frag, pos + size - (offset + len)); 4384 goto skip_fraglist; 4385 } 4386 4387 nskb_frag++; 4388 } 4389 4390 skip_fraglist: 4391 nskb->data_len = len - hsize; 4392 nskb->len += nskb->data_len; 4393 nskb->truesize += nskb->data_len; 4394 4395 perform_csum_check: 4396 if (!csum) { 4397 if (skb_has_shared_frag(nskb) && 4398 __skb_linearize(nskb)) 4399 goto err; 4400 4401 if (!nskb->remcsum_offload) 4402 nskb->ip_summed = CHECKSUM_NONE; 4403 SKB_GSO_CB(nskb)->csum = 4404 skb_checksum(nskb, doffset, 4405 nskb->len - doffset, 0); 4406 SKB_GSO_CB(nskb)->csum_start = 4407 skb_headroom(nskb) + doffset; 4408 } 4409 } while ((offset += len) < head_skb->len); 4410 4411 /* Some callers want to get the end of the list. 4412 * Put it in segs->prev to avoid walking the list. 4413 * (see validate_xmit_skb_list() for example) 4414 */ 4415 segs->prev = tail; 4416 4417 if (partial_segs) { 4418 struct sk_buff *iter; 4419 int type = skb_shinfo(head_skb)->gso_type; 4420 unsigned short gso_size = skb_shinfo(head_skb)->gso_size; 4421 4422 /* Update type to add partial and then remove dodgy if set */ 4423 type |= (features & NETIF_F_GSO_PARTIAL) / NETIF_F_GSO_PARTIAL * SKB_GSO_PARTIAL; 4424 type &= ~SKB_GSO_DODGY; 4425 4426 /* Update GSO info and prepare to start updating headers on 4427 * our way back down the stack of protocols. 4428 */ 4429 for (iter = segs; iter; iter = iter->next) { 4430 skb_shinfo(iter)->gso_size = gso_size; 4431 skb_shinfo(iter)->gso_segs = partial_segs; 4432 skb_shinfo(iter)->gso_type = type; 4433 SKB_GSO_CB(iter)->data_offset = skb_headroom(iter) + doffset; 4434 } 4435 4436 if (tail->len - doffset <= gso_size) 4437 skb_shinfo(tail)->gso_size = 0; 4438 else if (tail != segs) 4439 skb_shinfo(tail)->gso_segs = DIV_ROUND_UP(tail->len - doffset, gso_size); 4440 } 4441 4442 /* Following permits correct backpressure, for protocols 4443 * using skb_set_owner_w(). 4444 * Idea is to tranfert ownership from head_skb to last segment. 4445 */ 4446 if (head_skb->destructor == sock_wfree) { 4447 swap(tail->truesize, head_skb->truesize); 4448 swap(tail->destructor, head_skb->destructor); 4449 swap(tail->sk, head_skb->sk); 4450 } 4451 return segs; 4452 4453 err: 4454 kfree_skb_list(segs); 4455 return ERR_PTR(err); 4456 } 4457 EXPORT_SYMBOL_GPL(skb_segment); 4458 4459 #ifdef CONFIG_SKB_EXTENSIONS 4460 #define SKB_EXT_ALIGN_VALUE 8 4461 #define SKB_EXT_CHUNKSIZEOF(x) (ALIGN((sizeof(x)), SKB_EXT_ALIGN_VALUE) / SKB_EXT_ALIGN_VALUE) 4462 4463 static const u8 skb_ext_type_len[] = { 4464 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 4465 [SKB_EXT_BRIDGE_NF] = SKB_EXT_CHUNKSIZEOF(struct nf_bridge_info), 4466 #endif 4467 #ifdef CONFIG_XFRM 4468 [SKB_EXT_SEC_PATH] = SKB_EXT_CHUNKSIZEOF(struct sec_path), 4469 #endif 4470 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT) 4471 [TC_SKB_EXT] = SKB_EXT_CHUNKSIZEOF(struct tc_skb_ext), 4472 #endif 4473 #if IS_ENABLED(CONFIG_MPTCP) 4474 [SKB_EXT_MPTCP] = SKB_EXT_CHUNKSIZEOF(struct mptcp_ext), 4475 #endif 4476 #if IS_ENABLED(CONFIG_MCTP_FLOWS) 4477 [SKB_EXT_MCTP] = SKB_EXT_CHUNKSIZEOF(struct mctp_flow), 4478 #endif 4479 }; 4480 4481 static __always_inline unsigned int skb_ext_total_length(void) 4482 { 4483 return SKB_EXT_CHUNKSIZEOF(struct skb_ext) + 4484 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 4485 skb_ext_type_len[SKB_EXT_BRIDGE_NF] + 4486 #endif 4487 #ifdef CONFIG_XFRM 4488 skb_ext_type_len[SKB_EXT_SEC_PATH] + 4489 #endif 4490 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT) 4491 skb_ext_type_len[TC_SKB_EXT] + 4492 #endif 4493 #if IS_ENABLED(CONFIG_MPTCP) 4494 skb_ext_type_len[SKB_EXT_MPTCP] + 4495 #endif 4496 #if IS_ENABLED(CONFIG_MCTP_FLOWS) 4497 skb_ext_type_len[SKB_EXT_MCTP] + 4498 #endif 4499 0; 4500 } 4501 4502 static void skb_extensions_init(void) 4503 { 4504 BUILD_BUG_ON(SKB_EXT_NUM >= 8); 4505 BUILD_BUG_ON(skb_ext_total_length() > 255); 4506 4507 skbuff_ext_cache = kmem_cache_create("skbuff_ext_cache", 4508 SKB_EXT_ALIGN_VALUE * skb_ext_total_length(), 4509 0, 4510 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 4511 NULL); 4512 } 4513 #else 4514 static void skb_extensions_init(void) {} 4515 #endif 4516 4517 void __init skb_init(void) 4518 { 4519 skbuff_head_cache = kmem_cache_create_usercopy("skbuff_head_cache", 4520 sizeof(struct sk_buff), 4521 0, 4522 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 4523 offsetof(struct sk_buff, cb), 4524 sizeof_field(struct sk_buff, cb), 4525 NULL); 4526 skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache", 4527 sizeof(struct sk_buff_fclones), 4528 0, 4529 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 4530 NULL); 4531 skb_extensions_init(); 4532 } 4533 4534 static int 4535 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len, 4536 unsigned int recursion_level) 4537 { 4538 int start = skb_headlen(skb); 4539 int i, copy = start - offset; 4540 struct sk_buff *frag_iter; 4541 int elt = 0; 4542 4543 if (unlikely(recursion_level >= 24)) 4544 return -EMSGSIZE; 4545 4546 if (copy > 0) { 4547 if (copy > len) 4548 copy = len; 4549 sg_set_buf(sg, skb->data + offset, copy); 4550 elt++; 4551 if ((len -= copy) == 0) 4552 return elt; 4553 offset += copy; 4554 } 4555 4556 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 4557 int end; 4558 4559 WARN_ON(start > offset + len); 4560 4561 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]); 4562 if ((copy = end - offset) > 0) { 4563 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 4564 if (unlikely(elt && sg_is_last(&sg[elt - 1]))) 4565 return -EMSGSIZE; 4566 4567 if (copy > len) 4568 copy = len; 4569 sg_set_page(&sg[elt], skb_frag_page(frag), copy, 4570 skb_frag_off(frag) + offset - start); 4571 elt++; 4572 if (!(len -= copy)) 4573 return elt; 4574 offset += copy; 4575 } 4576 start = end; 4577 } 4578 4579 skb_walk_frags(skb, frag_iter) { 4580 int end, ret; 4581 4582 WARN_ON(start > offset + len); 4583 4584 end = start + frag_iter->len; 4585 if ((copy = end - offset) > 0) { 4586 if (unlikely(elt && sg_is_last(&sg[elt - 1]))) 4587 return -EMSGSIZE; 4588 4589 if (copy > len) 4590 copy = len; 4591 ret = __skb_to_sgvec(frag_iter, sg+elt, offset - start, 4592 copy, recursion_level + 1); 4593 if (unlikely(ret < 0)) 4594 return ret; 4595 elt += ret; 4596 if ((len -= copy) == 0) 4597 return elt; 4598 offset += copy; 4599 } 4600 start = end; 4601 } 4602 BUG_ON(len); 4603 return elt; 4604 } 4605 4606 /** 4607 * skb_to_sgvec - Fill a scatter-gather list from a socket buffer 4608 * @skb: Socket buffer containing the buffers to be mapped 4609 * @sg: The scatter-gather list to map into 4610 * @offset: The offset into the buffer's contents to start mapping 4611 * @len: Length of buffer space to be mapped 4612 * 4613 * Fill the specified scatter-gather list with mappings/pointers into a 4614 * region of the buffer space attached to a socket buffer. Returns either 4615 * the number of scatterlist items used, or -EMSGSIZE if the contents 4616 * could not fit. 4617 */ 4618 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len) 4619 { 4620 int nsg = __skb_to_sgvec(skb, sg, offset, len, 0); 4621 4622 if (nsg <= 0) 4623 return nsg; 4624 4625 sg_mark_end(&sg[nsg - 1]); 4626 4627 return nsg; 4628 } 4629 EXPORT_SYMBOL_GPL(skb_to_sgvec); 4630 4631 /* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given 4632 * sglist without mark the sg which contain last skb data as the end. 4633 * So the caller can mannipulate sg list as will when padding new data after 4634 * the first call without calling sg_unmark_end to expend sg list. 4635 * 4636 * Scenario to use skb_to_sgvec_nomark: 4637 * 1. sg_init_table 4638 * 2. skb_to_sgvec_nomark(payload1) 4639 * 3. skb_to_sgvec_nomark(payload2) 4640 * 4641 * This is equivalent to: 4642 * 1. sg_init_table 4643 * 2. skb_to_sgvec(payload1) 4644 * 3. sg_unmark_end 4645 * 4. skb_to_sgvec(payload2) 4646 * 4647 * When mapping mutilple payload conditionally, skb_to_sgvec_nomark 4648 * is more preferable. 4649 */ 4650 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg, 4651 int offset, int len) 4652 { 4653 return __skb_to_sgvec(skb, sg, offset, len, 0); 4654 } 4655 EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark); 4656 4657 4658 4659 /** 4660 * skb_cow_data - Check that a socket buffer's data buffers are writable 4661 * @skb: The socket buffer to check. 4662 * @tailbits: Amount of trailing space to be added 4663 * @trailer: Returned pointer to the skb where the @tailbits space begins 4664 * 4665 * Make sure that the data buffers attached to a socket buffer are 4666 * writable. If they are not, private copies are made of the data buffers 4667 * and the socket buffer is set to use these instead. 4668 * 4669 * If @tailbits is given, make sure that there is space to write @tailbits 4670 * bytes of data beyond current end of socket buffer. @trailer will be 4671 * set to point to the skb in which this space begins. 4672 * 4673 * The number of scatterlist elements required to completely map the 4674 * COW'd and extended socket buffer will be returned. 4675 */ 4676 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer) 4677 { 4678 int copyflag; 4679 int elt; 4680 struct sk_buff *skb1, **skb_p; 4681 4682 /* If skb is cloned or its head is paged, reallocate 4683 * head pulling out all the pages (pages are considered not writable 4684 * at the moment even if they are anonymous). 4685 */ 4686 if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) && 4687 !__pskb_pull_tail(skb, __skb_pagelen(skb))) 4688 return -ENOMEM; 4689 4690 /* Easy case. Most of packets will go this way. */ 4691 if (!skb_has_frag_list(skb)) { 4692 /* A little of trouble, not enough of space for trailer. 4693 * This should not happen, when stack is tuned to generate 4694 * good frames. OK, on miss we reallocate and reserve even more 4695 * space, 128 bytes is fair. */ 4696 4697 if (skb_tailroom(skb) < tailbits && 4698 pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC)) 4699 return -ENOMEM; 4700 4701 /* Voila! */ 4702 *trailer = skb; 4703 return 1; 4704 } 4705 4706 /* Misery. We are in troubles, going to mincer fragments... */ 4707 4708 elt = 1; 4709 skb_p = &skb_shinfo(skb)->frag_list; 4710 copyflag = 0; 4711 4712 while ((skb1 = *skb_p) != NULL) { 4713 int ntail = 0; 4714 4715 /* The fragment is partially pulled by someone, 4716 * this can happen on input. Copy it and everything 4717 * after it. */ 4718 4719 if (skb_shared(skb1)) 4720 copyflag = 1; 4721 4722 /* If the skb is the last, worry about trailer. */ 4723 4724 if (skb1->next == NULL && tailbits) { 4725 if (skb_shinfo(skb1)->nr_frags || 4726 skb_has_frag_list(skb1) || 4727 skb_tailroom(skb1) < tailbits) 4728 ntail = tailbits + 128; 4729 } 4730 4731 if (copyflag || 4732 skb_cloned(skb1) || 4733 ntail || 4734 skb_shinfo(skb1)->nr_frags || 4735 skb_has_frag_list(skb1)) { 4736 struct sk_buff *skb2; 4737 4738 /* Fuck, we are miserable poor guys... */ 4739 if (ntail == 0) 4740 skb2 = skb_copy(skb1, GFP_ATOMIC); 4741 else 4742 skb2 = skb_copy_expand(skb1, 4743 skb_headroom(skb1), 4744 ntail, 4745 GFP_ATOMIC); 4746 if (unlikely(skb2 == NULL)) 4747 return -ENOMEM; 4748 4749 if (skb1->sk) 4750 skb_set_owner_w(skb2, skb1->sk); 4751 4752 /* Looking around. Are we still alive? 4753 * OK, link new skb, drop old one */ 4754 4755 skb2->next = skb1->next; 4756 *skb_p = skb2; 4757 kfree_skb(skb1); 4758 skb1 = skb2; 4759 } 4760 elt++; 4761 *trailer = skb1; 4762 skb_p = &skb1->next; 4763 } 4764 4765 return elt; 4766 } 4767 EXPORT_SYMBOL_GPL(skb_cow_data); 4768 4769 static void sock_rmem_free(struct sk_buff *skb) 4770 { 4771 struct sock *sk = skb->sk; 4772 4773 atomic_sub(skb->truesize, &sk->sk_rmem_alloc); 4774 } 4775 4776 static void skb_set_err_queue(struct sk_buff *skb) 4777 { 4778 /* pkt_type of skbs received on local sockets is never PACKET_OUTGOING. 4779 * So, it is safe to (mis)use it to mark skbs on the error queue. 4780 */ 4781 skb->pkt_type = PACKET_OUTGOING; 4782 BUILD_BUG_ON(PACKET_OUTGOING == 0); 4783 } 4784 4785 /* 4786 * Note: We dont mem charge error packets (no sk_forward_alloc changes) 4787 */ 4788 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb) 4789 { 4790 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >= 4791 (unsigned int)READ_ONCE(sk->sk_rcvbuf)) 4792 return -ENOMEM; 4793 4794 skb_orphan(skb); 4795 skb->sk = sk; 4796 skb->destructor = sock_rmem_free; 4797 atomic_add(skb->truesize, &sk->sk_rmem_alloc); 4798 skb_set_err_queue(skb); 4799 4800 /* before exiting rcu section, make sure dst is refcounted */ 4801 skb_dst_force(skb); 4802 4803 skb_queue_tail(&sk->sk_error_queue, skb); 4804 if (!sock_flag(sk, SOCK_DEAD)) 4805 sk_error_report(sk); 4806 return 0; 4807 } 4808 EXPORT_SYMBOL(sock_queue_err_skb); 4809 4810 static bool is_icmp_err_skb(const struct sk_buff *skb) 4811 { 4812 return skb && (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP || 4813 SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP6); 4814 } 4815 4816 struct sk_buff *sock_dequeue_err_skb(struct sock *sk) 4817 { 4818 struct sk_buff_head *q = &sk->sk_error_queue; 4819 struct sk_buff *skb, *skb_next = NULL; 4820 bool icmp_next = false; 4821 unsigned long flags; 4822 4823 spin_lock_irqsave(&q->lock, flags); 4824 skb = __skb_dequeue(q); 4825 if (skb && (skb_next = skb_peek(q))) { 4826 icmp_next = is_icmp_err_skb(skb_next); 4827 if (icmp_next) 4828 sk->sk_err = SKB_EXT_ERR(skb_next)->ee.ee_errno; 4829 } 4830 spin_unlock_irqrestore(&q->lock, flags); 4831 4832 if (is_icmp_err_skb(skb) && !icmp_next) 4833 sk->sk_err = 0; 4834 4835 if (skb_next) 4836 sk_error_report(sk); 4837 4838 return skb; 4839 } 4840 EXPORT_SYMBOL(sock_dequeue_err_skb); 4841 4842 /** 4843 * skb_clone_sk - create clone of skb, and take reference to socket 4844 * @skb: the skb to clone 4845 * 4846 * This function creates a clone of a buffer that holds a reference on 4847 * sk_refcnt. Buffers created via this function are meant to be 4848 * returned using sock_queue_err_skb, or free via kfree_skb. 4849 * 4850 * When passing buffers allocated with this function to sock_queue_err_skb 4851 * it is necessary to wrap the call with sock_hold/sock_put in order to 4852 * prevent the socket from being released prior to being enqueued on 4853 * the sk_error_queue. 4854 */ 4855 struct sk_buff *skb_clone_sk(struct sk_buff *skb) 4856 { 4857 struct sock *sk = skb->sk; 4858 struct sk_buff *clone; 4859 4860 if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt)) 4861 return NULL; 4862 4863 clone = skb_clone(skb, GFP_ATOMIC); 4864 if (!clone) { 4865 sock_put(sk); 4866 return NULL; 4867 } 4868 4869 clone->sk = sk; 4870 clone->destructor = sock_efree; 4871 4872 return clone; 4873 } 4874 EXPORT_SYMBOL(skb_clone_sk); 4875 4876 static void __skb_complete_tx_timestamp(struct sk_buff *skb, 4877 struct sock *sk, 4878 int tstype, 4879 bool opt_stats) 4880 { 4881 struct sock_exterr_skb *serr; 4882 int err; 4883 4884 BUILD_BUG_ON(sizeof(struct sock_exterr_skb) > sizeof(skb->cb)); 4885 4886 serr = SKB_EXT_ERR(skb); 4887 memset(serr, 0, sizeof(*serr)); 4888 serr->ee.ee_errno = ENOMSG; 4889 serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING; 4890 serr->ee.ee_info = tstype; 4891 serr->opt_stats = opt_stats; 4892 serr->header.h4.iif = skb->dev ? skb->dev->ifindex : 0; 4893 if (sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID) { 4894 serr->ee.ee_data = skb_shinfo(skb)->tskey; 4895 if (sk_is_tcp(sk)) 4896 serr->ee.ee_data -= atomic_read(&sk->sk_tskey); 4897 } 4898 4899 err = sock_queue_err_skb(sk, skb); 4900 4901 if (err) 4902 kfree_skb(skb); 4903 } 4904 4905 static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly) 4906 { 4907 bool ret; 4908 4909 if (likely(READ_ONCE(sysctl_tstamp_allow_data) || tsonly)) 4910 return true; 4911 4912 read_lock_bh(&sk->sk_callback_lock); 4913 ret = sk->sk_socket && sk->sk_socket->file && 4914 file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW); 4915 read_unlock_bh(&sk->sk_callback_lock); 4916 return ret; 4917 } 4918 4919 void skb_complete_tx_timestamp(struct sk_buff *skb, 4920 struct skb_shared_hwtstamps *hwtstamps) 4921 { 4922 struct sock *sk = skb->sk; 4923 4924 if (!skb_may_tx_timestamp(sk, false)) 4925 goto err; 4926 4927 /* Take a reference to prevent skb_orphan() from freeing the socket, 4928 * but only if the socket refcount is not zero. 4929 */ 4930 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) { 4931 *skb_hwtstamps(skb) = *hwtstamps; 4932 __skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND, false); 4933 sock_put(sk); 4934 return; 4935 } 4936 4937 err: 4938 kfree_skb(skb); 4939 } 4940 EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp); 4941 4942 void __skb_tstamp_tx(struct sk_buff *orig_skb, 4943 const struct sk_buff *ack_skb, 4944 struct skb_shared_hwtstamps *hwtstamps, 4945 struct sock *sk, int tstype) 4946 { 4947 struct sk_buff *skb; 4948 bool tsonly, opt_stats = false; 4949 4950 if (!sk) 4951 return; 4952 4953 if (!hwtstamps && !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TX_SWHW) && 4954 skb_shinfo(orig_skb)->tx_flags & SKBTX_IN_PROGRESS) 4955 return; 4956 4957 tsonly = sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TSONLY; 4958 if (!skb_may_tx_timestamp(sk, tsonly)) 4959 return; 4960 4961 if (tsonly) { 4962 #ifdef CONFIG_INET 4963 if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_STATS) && 4964 sk_is_tcp(sk)) { 4965 skb = tcp_get_timestamping_opt_stats(sk, orig_skb, 4966 ack_skb); 4967 opt_stats = true; 4968 } else 4969 #endif 4970 skb = alloc_skb(0, GFP_ATOMIC); 4971 } else { 4972 skb = skb_clone(orig_skb, GFP_ATOMIC); 4973 } 4974 if (!skb) 4975 return; 4976 4977 if (tsonly) { 4978 skb_shinfo(skb)->tx_flags |= skb_shinfo(orig_skb)->tx_flags & 4979 SKBTX_ANY_TSTAMP; 4980 skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey; 4981 } 4982 4983 if (hwtstamps) 4984 *skb_hwtstamps(skb) = *hwtstamps; 4985 else 4986 __net_timestamp(skb); 4987 4988 __skb_complete_tx_timestamp(skb, sk, tstype, opt_stats); 4989 } 4990 EXPORT_SYMBOL_GPL(__skb_tstamp_tx); 4991 4992 void skb_tstamp_tx(struct sk_buff *orig_skb, 4993 struct skb_shared_hwtstamps *hwtstamps) 4994 { 4995 return __skb_tstamp_tx(orig_skb, NULL, hwtstamps, orig_skb->sk, 4996 SCM_TSTAMP_SND); 4997 } 4998 EXPORT_SYMBOL_GPL(skb_tstamp_tx); 4999 5000 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked) 5001 { 5002 struct sock *sk = skb->sk; 5003 struct sock_exterr_skb *serr; 5004 int err = 1; 5005 5006 skb->wifi_acked_valid = 1; 5007 skb->wifi_acked = acked; 5008 5009 serr = SKB_EXT_ERR(skb); 5010 memset(serr, 0, sizeof(*serr)); 5011 serr->ee.ee_errno = ENOMSG; 5012 serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS; 5013 5014 /* Take a reference to prevent skb_orphan() from freeing the socket, 5015 * but only if the socket refcount is not zero. 5016 */ 5017 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) { 5018 err = sock_queue_err_skb(sk, skb); 5019 sock_put(sk); 5020 } 5021 if (err) 5022 kfree_skb(skb); 5023 } 5024 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack); 5025 5026 /** 5027 * skb_partial_csum_set - set up and verify partial csum values for packet 5028 * @skb: the skb to set 5029 * @start: the number of bytes after skb->data to start checksumming. 5030 * @off: the offset from start to place the checksum. 5031 * 5032 * For untrusted partially-checksummed packets, we need to make sure the values 5033 * for skb->csum_start and skb->csum_offset are valid so we don't oops. 5034 * 5035 * This function checks and sets those values and skb->ip_summed: if this 5036 * returns false you should drop the packet. 5037 */ 5038 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off) 5039 { 5040 u32 csum_end = (u32)start + (u32)off + sizeof(__sum16); 5041 u32 csum_start = skb_headroom(skb) + (u32)start; 5042 5043 if (unlikely(csum_start > U16_MAX || csum_end > skb_headlen(skb))) { 5044 net_warn_ratelimited("bad partial csum: csum=%u/%u headroom=%u headlen=%u\n", 5045 start, off, skb_headroom(skb), skb_headlen(skb)); 5046 return false; 5047 } 5048 skb->ip_summed = CHECKSUM_PARTIAL; 5049 skb->csum_start = csum_start; 5050 skb->csum_offset = off; 5051 skb_set_transport_header(skb, start); 5052 return true; 5053 } 5054 EXPORT_SYMBOL_GPL(skb_partial_csum_set); 5055 5056 static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len, 5057 unsigned int max) 5058 { 5059 if (skb_headlen(skb) >= len) 5060 return 0; 5061 5062 /* If we need to pullup then pullup to the max, so we 5063 * won't need to do it again. 5064 */ 5065 if (max > skb->len) 5066 max = skb->len; 5067 5068 if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL) 5069 return -ENOMEM; 5070 5071 if (skb_headlen(skb) < len) 5072 return -EPROTO; 5073 5074 return 0; 5075 } 5076 5077 #define MAX_TCP_HDR_LEN (15 * 4) 5078 5079 static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb, 5080 typeof(IPPROTO_IP) proto, 5081 unsigned int off) 5082 { 5083 int err; 5084 5085 switch (proto) { 5086 case IPPROTO_TCP: 5087 err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr), 5088 off + MAX_TCP_HDR_LEN); 5089 if (!err && !skb_partial_csum_set(skb, off, 5090 offsetof(struct tcphdr, 5091 check))) 5092 err = -EPROTO; 5093 return err ? ERR_PTR(err) : &tcp_hdr(skb)->check; 5094 5095 case IPPROTO_UDP: 5096 err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr), 5097 off + sizeof(struct udphdr)); 5098 if (!err && !skb_partial_csum_set(skb, off, 5099 offsetof(struct udphdr, 5100 check))) 5101 err = -EPROTO; 5102 return err ? ERR_PTR(err) : &udp_hdr(skb)->check; 5103 } 5104 5105 return ERR_PTR(-EPROTO); 5106 } 5107 5108 /* This value should be large enough to cover a tagged ethernet header plus 5109 * maximally sized IP and TCP or UDP headers. 5110 */ 5111 #define MAX_IP_HDR_LEN 128 5112 5113 static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate) 5114 { 5115 unsigned int off; 5116 bool fragment; 5117 __sum16 *csum; 5118 int err; 5119 5120 fragment = false; 5121 5122 err = skb_maybe_pull_tail(skb, 5123 sizeof(struct iphdr), 5124 MAX_IP_HDR_LEN); 5125 if (err < 0) 5126 goto out; 5127 5128 if (ip_is_fragment(ip_hdr(skb))) 5129 fragment = true; 5130 5131 off = ip_hdrlen(skb); 5132 5133 err = -EPROTO; 5134 5135 if (fragment) 5136 goto out; 5137 5138 csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off); 5139 if (IS_ERR(csum)) 5140 return PTR_ERR(csum); 5141 5142 if (recalculate) 5143 *csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr, 5144 ip_hdr(skb)->daddr, 5145 skb->len - off, 5146 ip_hdr(skb)->protocol, 0); 5147 err = 0; 5148 5149 out: 5150 return err; 5151 } 5152 5153 /* This value should be large enough to cover a tagged ethernet header plus 5154 * an IPv6 header, all options, and a maximal TCP or UDP header. 5155 */ 5156 #define MAX_IPV6_HDR_LEN 256 5157 5158 #define OPT_HDR(type, skb, off) \ 5159 (type *)(skb_network_header(skb) + (off)) 5160 5161 static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate) 5162 { 5163 int err; 5164 u8 nexthdr; 5165 unsigned int off; 5166 unsigned int len; 5167 bool fragment; 5168 bool done; 5169 __sum16 *csum; 5170 5171 fragment = false; 5172 done = false; 5173 5174 off = sizeof(struct ipv6hdr); 5175 5176 err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN); 5177 if (err < 0) 5178 goto out; 5179 5180 nexthdr = ipv6_hdr(skb)->nexthdr; 5181 5182 len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len); 5183 while (off <= len && !done) { 5184 switch (nexthdr) { 5185 case IPPROTO_DSTOPTS: 5186 case IPPROTO_HOPOPTS: 5187 case IPPROTO_ROUTING: { 5188 struct ipv6_opt_hdr *hp; 5189 5190 err = skb_maybe_pull_tail(skb, 5191 off + 5192 sizeof(struct ipv6_opt_hdr), 5193 MAX_IPV6_HDR_LEN); 5194 if (err < 0) 5195 goto out; 5196 5197 hp = OPT_HDR(struct ipv6_opt_hdr, skb, off); 5198 nexthdr = hp->nexthdr; 5199 off += ipv6_optlen(hp); 5200 break; 5201 } 5202 case IPPROTO_AH: { 5203 struct ip_auth_hdr *hp; 5204 5205 err = skb_maybe_pull_tail(skb, 5206 off + 5207 sizeof(struct ip_auth_hdr), 5208 MAX_IPV6_HDR_LEN); 5209 if (err < 0) 5210 goto out; 5211 5212 hp = OPT_HDR(struct ip_auth_hdr, skb, off); 5213 nexthdr = hp->nexthdr; 5214 off += ipv6_authlen(hp); 5215 break; 5216 } 5217 case IPPROTO_FRAGMENT: { 5218 struct frag_hdr *hp; 5219 5220 err = skb_maybe_pull_tail(skb, 5221 off + 5222 sizeof(struct frag_hdr), 5223 MAX_IPV6_HDR_LEN); 5224 if (err < 0) 5225 goto out; 5226 5227 hp = OPT_HDR(struct frag_hdr, skb, off); 5228 5229 if (hp->frag_off & htons(IP6_OFFSET | IP6_MF)) 5230 fragment = true; 5231 5232 nexthdr = hp->nexthdr; 5233 off += sizeof(struct frag_hdr); 5234 break; 5235 } 5236 default: 5237 done = true; 5238 break; 5239 } 5240 } 5241 5242 err = -EPROTO; 5243 5244 if (!done || fragment) 5245 goto out; 5246 5247 csum = skb_checksum_setup_ip(skb, nexthdr, off); 5248 if (IS_ERR(csum)) 5249 return PTR_ERR(csum); 5250 5251 if (recalculate) 5252 *csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr, 5253 &ipv6_hdr(skb)->daddr, 5254 skb->len - off, nexthdr, 0); 5255 err = 0; 5256 5257 out: 5258 return err; 5259 } 5260 5261 /** 5262 * skb_checksum_setup - set up partial checksum offset 5263 * @skb: the skb to set up 5264 * @recalculate: if true the pseudo-header checksum will be recalculated 5265 */ 5266 int skb_checksum_setup(struct sk_buff *skb, bool recalculate) 5267 { 5268 int err; 5269 5270 switch (skb->protocol) { 5271 case htons(ETH_P_IP): 5272 err = skb_checksum_setup_ipv4(skb, recalculate); 5273 break; 5274 5275 case htons(ETH_P_IPV6): 5276 err = skb_checksum_setup_ipv6(skb, recalculate); 5277 break; 5278 5279 default: 5280 err = -EPROTO; 5281 break; 5282 } 5283 5284 return err; 5285 } 5286 EXPORT_SYMBOL(skb_checksum_setup); 5287 5288 /** 5289 * skb_checksum_maybe_trim - maybe trims the given skb 5290 * @skb: the skb to check 5291 * @transport_len: the data length beyond the network header 5292 * 5293 * Checks whether the given skb has data beyond the given transport length. 5294 * If so, returns a cloned skb trimmed to this transport length. 5295 * Otherwise returns the provided skb. Returns NULL in error cases 5296 * (e.g. transport_len exceeds skb length or out-of-memory). 5297 * 5298 * Caller needs to set the skb transport header and free any returned skb if it 5299 * differs from the provided skb. 5300 */ 5301 static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb, 5302 unsigned int transport_len) 5303 { 5304 struct sk_buff *skb_chk; 5305 unsigned int len = skb_transport_offset(skb) + transport_len; 5306 int ret; 5307 5308 if (skb->len < len) 5309 return NULL; 5310 else if (skb->len == len) 5311 return skb; 5312 5313 skb_chk = skb_clone(skb, GFP_ATOMIC); 5314 if (!skb_chk) 5315 return NULL; 5316 5317 ret = pskb_trim_rcsum(skb_chk, len); 5318 if (ret) { 5319 kfree_skb(skb_chk); 5320 return NULL; 5321 } 5322 5323 return skb_chk; 5324 } 5325 5326 /** 5327 * skb_checksum_trimmed - validate checksum of an skb 5328 * @skb: the skb to check 5329 * @transport_len: the data length beyond the network header 5330 * @skb_chkf: checksum function to use 5331 * 5332 * Applies the given checksum function skb_chkf to the provided skb. 5333 * Returns a checked and maybe trimmed skb. Returns NULL on error. 5334 * 5335 * If the skb has data beyond the given transport length, then a 5336 * trimmed & cloned skb is checked and returned. 5337 * 5338 * Caller needs to set the skb transport header and free any returned skb if it 5339 * differs from the provided skb. 5340 */ 5341 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb, 5342 unsigned int transport_len, 5343 __sum16(*skb_chkf)(struct sk_buff *skb)) 5344 { 5345 struct sk_buff *skb_chk; 5346 unsigned int offset = skb_transport_offset(skb); 5347 __sum16 ret; 5348 5349 skb_chk = skb_checksum_maybe_trim(skb, transport_len); 5350 if (!skb_chk) 5351 goto err; 5352 5353 if (!pskb_may_pull(skb_chk, offset)) 5354 goto err; 5355 5356 skb_pull_rcsum(skb_chk, offset); 5357 ret = skb_chkf(skb_chk); 5358 skb_push_rcsum(skb_chk, offset); 5359 5360 if (ret) 5361 goto err; 5362 5363 return skb_chk; 5364 5365 err: 5366 if (skb_chk && skb_chk != skb) 5367 kfree_skb(skb_chk); 5368 5369 return NULL; 5370 5371 } 5372 EXPORT_SYMBOL(skb_checksum_trimmed); 5373 5374 void __skb_warn_lro_forwarding(const struct sk_buff *skb) 5375 { 5376 net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n", 5377 skb->dev->name); 5378 } 5379 EXPORT_SYMBOL(__skb_warn_lro_forwarding); 5380 5381 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen) 5382 { 5383 if (head_stolen) { 5384 skb_release_head_state(skb); 5385 kmem_cache_free(skbuff_head_cache, skb); 5386 } else { 5387 __kfree_skb(skb); 5388 } 5389 } 5390 EXPORT_SYMBOL(kfree_skb_partial); 5391 5392 /** 5393 * skb_try_coalesce - try to merge skb to prior one 5394 * @to: prior buffer 5395 * @from: buffer to add 5396 * @fragstolen: pointer to boolean 5397 * @delta_truesize: how much more was allocated than was requested 5398 */ 5399 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from, 5400 bool *fragstolen, int *delta_truesize) 5401 { 5402 struct skb_shared_info *to_shinfo, *from_shinfo; 5403 int i, delta, len = from->len; 5404 5405 *fragstolen = false; 5406 5407 if (skb_cloned(to)) 5408 return false; 5409 5410 /* In general, avoid mixing slab allocated and page_pool allocated 5411 * pages within the same SKB. However when @to is not pp_recycle and 5412 * @from is cloned, we can transition frag pages from page_pool to 5413 * reference counted. 5414 * 5415 * On the other hand, don't allow coalescing two pp_recycle SKBs if 5416 * @from is cloned, in case the SKB is using page_pool fragment 5417 * references (PP_FLAG_PAGE_FRAG). Since we only take full page 5418 * references for cloned SKBs at the moment that would result in 5419 * inconsistent reference counts. 5420 */ 5421 if (to->pp_recycle != (from->pp_recycle && !skb_cloned(from))) 5422 return false; 5423 5424 if (len <= skb_tailroom(to)) { 5425 if (len) 5426 BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len)); 5427 *delta_truesize = 0; 5428 return true; 5429 } 5430 5431 to_shinfo = skb_shinfo(to); 5432 from_shinfo = skb_shinfo(from); 5433 if (to_shinfo->frag_list || from_shinfo->frag_list) 5434 return false; 5435 if (skb_zcopy(to) || skb_zcopy(from)) 5436 return false; 5437 5438 if (skb_headlen(from) != 0) { 5439 struct page *page; 5440 unsigned int offset; 5441 5442 if (to_shinfo->nr_frags + 5443 from_shinfo->nr_frags >= MAX_SKB_FRAGS) 5444 return false; 5445 5446 if (skb_head_is_locked(from)) 5447 return false; 5448 5449 delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff)); 5450 5451 page = virt_to_head_page(from->head); 5452 offset = from->data - (unsigned char *)page_address(page); 5453 5454 skb_fill_page_desc(to, to_shinfo->nr_frags, 5455 page, offset, skb_headlen(from)); 5456 *fragstolen = true; 5457 } else { 5458 if (to_shinfo->nr_frags + 5459 from_shinfo->nr_frags > MAX_SKB_FRAGS) 5460 return false; 5461 5462 delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from)); 5463 } 5464 5465 WARN_ON_ONCE(delta < len); 5466 5467 memcpy(to_shinfo->frags + to_shinfo->nr_frags, 5468 from_shinfo->frags, 5469 from_shinfo->nr_frags * sizeof(skb_frag_t)); 5470 to_shinfo->nr_frags += from_shinfo->nr_frags; 5471 5472 if (!skb_cloned(from)) 5473 from_shinfo->nr_frags = 0; 5474 5475 /* if the skb is not cloned this does nothing 5476 * since we set nr_frags to 0. 5477 */ 5478 for (i = 0; i < from_shinfo->nr_frags; i++) 5479 __skb_frag_ref(&from_shinfo->frags[i]); 5480 5481 to->truesize += delta; 5482 to->len += len; 5483 to->data_len += len; 5484 5485 *delta_truesize = delta; 5486 return true; 5487 } 5488 EXPORT_SYMBOL(skb_try_coalesce); 5489 5490 /** 5491 * skb_scrub_packet - scrub an skb 5492 * 5493 * @skb: buffer to clean 5494 * @xnet: packet is crossing netns 5495 * 5496 * skb_scrub_packet can be used after encapsulating or decapsulting a packet 5497 * into/from a tunnel. Some information have to be cleared during these 5498 * operations. 5499 * skb_scrub_packet can also be used to clean a skb before injecting it in 5500 * another namespace (@xnet == true). We have to clear all information in the 5501 * skb that could impact namespace isolation. 5502 */ 5503 void skb_scrub_packet(struct sk_buff *skb, bool xnet) 5504 { 5505 skb->pkt_type = PACKET_HOST; 5506 skb->skb_iif = 0; 5507 skb->ignore_df = 0; 5508 skb_dst_drop(skb); 5509 skb_ext_reset(skb); 5510 nf_reset_ct(skb); 5511 nf_reset_trace(skb); 5512 5513 #ifdef CONFIG_NET_SWITCHDEV 5514 skb->offload_fwd_mark = 0; 5515 skb->offload_l3_fwd_mark = 0; 5516 #endif 5517 5518 if (!xnet) 5519 return; 5520 5521 ipvs_reset(skb); 5522 skb->mark = 0; 5523 skb_clear_tstamp(skb); 5524 } 5525 EXPORT_SYMBOL_GPL(skb_scrub_packet); 5526 5527 /** 5528 * skb_gso_transport_seglen - Return length of individual segments of a gso packet 5529 * 5530 * @skb: GSO skb 5531 * 5532 * skb_gso_transport_seglen is used to determine the real size of the 5533 * individual segments, including Layer4 headers (TCP/UDP). 5534 * 5535 * The MAC/L2 or network (IP, IPv6) headers are not accounted for. 5536 */ 5537 static unsigned int skb_gso_transport_seglen(const struct sk_buff *skb) 5538 { 5539 const struct skb_shared_info *shinfo = skb_shinfo(skb); 5540 unsigned int thlen = 0; 5541 5542 if (skb->encapsulation) { 5543 thlen = skb_inner_transport_header(skb) - 5544 skb_transport_header(skb); 5545 5546 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) 5547 thlen += inner_tcp_hdrlen(skb); 5548 } else if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) { 5549 thlen = tcp_hdrlen(skb); 5550 } else if (unlikely(skb_is_gso_sctp(skb))) { 5551 thlen = sizeof(struct sctphdr); 5552 } else if (shinfo->gso_type & SKB_GSO_UDP_L4) { 5553 thlen = sizeof(struct udphdr); 5554 } 5555 /* UFO sets gso_size to the size of the fragmentation 5556 * payload, i.e. the size of the L4 (UDP) header is already 5557 * accounted for. 5558 */ 5559 return thlen + shinfo->gso_size; 5560 } 5561 5562 /** 5563 * skb_gso_network_seglen - Return length of individual segments of a gso packet 5564 * 5565 * @skb: GSO skb 5566 * 5567 * skb_gso_network_seglen is used to determine the real size of the 5568 * individual segments, including Layer3 (IP, IPv6) and L4 headers (TCP/UDP). 5569 * 5570 * The MAC/L2 header is not accounted for. 5571 */ 5572 static unsigned int skb_gso_network_seglen(const struct sk_buff *skb) 5573 { 5574 unsigned int hdr_len = skb_transport_header(skb) - 5575 skb_network_header(skb); 5576 5577 return hdr_len + skb_gso_transport_seglen(skb); 5578 } 5579 5580 /** 5581 * skb_gso_mac_seglen - Return length of individual segments of a gso packet 5582 * 5583 * @skb: GSO skb 5584 * 5585 * skb_gso_mac_seglen is used to determine the real size of the 5586 * individual segments, including MAC/L2, Layer3 (IP, IPv6) and L4 5587 * headers (TCP/UDP). 5588 */ 5589 static unsigned int skb_gso_mac_seglen(const struct sk_buff *skb) 5590 { 5591 unsigned int hdr_len = skb_transport_header(skb) - skb_mac_header(skb); 5592 5593 return hdr_len + skb_gso_transport_seglen(skb); 5594 } 5595 5596 /** 5597 * skb_gso_size_check - check the skb size, considering GSO_BY_FRAGS 5598 * 5599 * There are a couple of instances where we have a GSO skb, and we 5600 * want to determine what size it would be after it is segmented. 5601 * 5602 * We might want to check: 5603 * - L3+L4+payload size (e.g. IP forwarding) 5604 * - L2+L3+L4+payload size (e.g. sanity check before passing to driver) 5605 * 5606 * This is a helper to do that correctly considering GSO_BY_FRAGS. 5607 * 5608 * @skb: GSO skb 5609 * 5610 * @seg_len: The segmented length (from skb_gso_*_seglen). In the 5611 * GSO_BY_FRAGS case this will be [header sizes + GSO_BY_FRAGS]. 5612 * 5613 * @max_len: The maximum permissible length. 5614 * 5615 * Returns true if the segmented length <= max length. 5616 */ 5617 static inline bool skb_gso_size_check(const struct sk_buff *skb, 5618 unsigned int seg_len, 5619 unsigned int max_len) { 5620 const struct skb_shared_info *shinfo = skb_shinfo(skb); 5621 const struct sk_buff *iter; 5622 5623 if (shinfo->gso_size != GSO_BY_FRAGS) 5624 return seg_len <= max_len; 5625 5626 /* Undo this so we can re-use header sizes */ 5627 seg_len -= GSO_BY_FRAGS; 5628 5629 skb_walk_frags(skb, iter) { 5630 if (seg_len + skb_headlen(iter) > max_len) 5631 return false; 5632 } 5633 5634 return true; 5635 } 5636 5637 /** 5638 * skb_gso_validate_network_len - Will a split GSO skb fit into a given MTU? 5639 * 5640 * @skb: GSO skb 5641 * @mtu: MTU to validate against 5642 * 5643 * skb_gso_validate_network_len validates if a given skb will fit a 5644 * wanted MTU once split. It considers L3 headers, L4 headers, and the 5645 * payload. 5646 */ 5647 bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu) 5648 { 5649 return skb_gso_size_check(skb, skb_gso_network_seglen(skb), mtu); 5650 } 5651 EXPORT_SYMBOL_GPL(skb_gso_validate_network_len); 5652 5653 /** 5654 * skb_gso_validate_mac_len - Will a split GSO skb fit in a given length? 5655 * 5656 * @skb: GSO skb 5657 * @len: length to validate against 5658 * 5659 * skb_gso_validate_mac_len validates if a given skb will fit a wanted 5660 * length once split, including L2, L3 and L4 headers and the payload. 5661 */ 5662 bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len) 5663 { 5664 return skb_gso_size_check(skb, skb_gso_mac_seglen(skb), len); 5665 } 5666 EXPORT_SYMBOL_GPL(skb_gso_validate_mac_len); 5667 5668 static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb) 5669 { 5670 int mac_len, meta_len; 5671 void *meta; 5672 5673 if (skb_cow(skb, skb_headroom(skb)) < 0) { 5674 kfree_skb(skb); 5675 return NULL; 5676 } 5677 5678 mac_len = skb->data - skb_mac_header(skb); 5679 if (likely(mac_len > VLAN_HLEN + ETH_TLEN)) { 5680 memmove(skb_mac_header(skb) + VLAN_HLEN, skb_mac_header(skb), 5681 mac_len - VLAN_HLEN - ETH_TLEN); 5682 } 5683 5684 meta_len = skb_metadata_len(skb); 5685 if (meta_len) { 5686 meta = skb_metadata_end(skb) - meta_len; 5687 memmove(meta + VLAN_HLEN, meta, meta_len); 5688 } 5689 5690 skb->mac_header += VLAN_HLEN; 5691 return skb; 5692 } 5693 5694 struct sk_buff *skb_vlan_untag(struct sk_buff *skb) 5695 { 5696 struct vlan_hdr *vhdr; 5697 u16 vlan_tci; 5698 5699 if (unlikely(skb_vlan_tag_present(skb))) { 5700 /* vlan_tci is already set-up so leave this for another time */ 5701 return skb; 5702 } 5703 5704 skb = skb_share_check(skb, GFP_ATOMIC); 5705 if (unlikely(!skb)) 5706 goto err_free; 5707 /* We may access the two bytes after vlan_hdr in vlan_set_encap_proto(). */ 5708 if (unlikely(!pskb_may_pull(skb, VLAN_HLEN + sizeof(unsigned short)))) 5709 goto err_free; 5710 5711 vhdr = (struct vlan_hdr *)skb->data; 5712 vlan_tci = ntohs(vhdr->h_vlan_TCI); 5713 __vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci); 5714 5715 skb_pull_rcsum(skb, VLAN_HLEN); 5716 vlan_set_encap_proto(skb, vhdr); 5717 5718 skb = skb_reorder_vlan_header(skb); 5719 if (unlikely(!skb)) 5720 goto err_free; 5721 5722 skb_reset_network_header(skb); 5723 if (!skb_transport_header_was_set(skb)) 5724 skb_reset_transport_header(skb); 5725 skb_reset_mac_len(skb); 5726 5727 return skb; 5728 5729 err_free: 5730 kfree_skb(skb); 5731 return NULL; 5732 } 5733 EXPORT_SYMBOL(skb_vlan_untag); 5734 5735 int skb_ensure_writable(struct sk_buff *skb, unsigned int write_len) 5736 { 5737 if (!pskb_may_pull(skb, write_len)) 5738 return -ENOMEM; 5739 5740 if (!skb_cloned(skb) || skb_clone_writable(skb, write_len)) 5741 return 0; 5742 5743 return pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 5744 } 5745 EXPORT_SYMBOL(skb_ensure_writable); 5746 5747 /* remove VLAN header from packet and update csum accordingly. 5748 * expects a non skb_vlan_tag_present skb with a vlan tag payload 5749 */ 5750 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci) 5751 { 5752 struct vlan_hdr *vhdr; 5753 int offset = skb->data - skb_mac_header(skb); 5754 int err; 5755 5756 if (WARN_ONCE(offset, 5757 "__skb_vlan_pop got skb with skb->data not at mac header (offset %d)\n", 5758 offset)) { 5759 return -EINVAL; 5760 } 5761 5762 err = skb_ensure_writable(skb, VLAN_ETH_HLEN); 5763 if (unlikely(err)) 5764 return err; 5765 5766 skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN); 5767 5768 vhdr = (struct vlan_hdr *)(skb->data + ETH_HLEN); 5769 *vlan_tci = ntohs(vhdr->h_vlan_TCI); 5770 5771 memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN); 5772 __skb_pull(skb, VLAN_HLEN); 5773 5774 vlan_set_encap_proto(skb, vhdr); 5775 skb->mac_header += VLAN_HLEN; 5776 5777 if (skb_network_offset(skb) < ETH_HLEN) 5778 skb_set_network_header(skb, ETH_HLEN); 5779 5780 skb_reset_mac_len(skb); 5781 5782 return err; 5783 } 5784 EXPORT_SYMBOL(__skb_vlan_pop); 5785 5786 /* Pop a vlan tag either from hwaccel or from payload. 5787 * Expects skb->data at mac header. 5788 */ 5789 int skb_vlan_pop(struct sk_buff *skb) 5790 { 5791 u16 vlan_tci; 5792 __be16 vlan_proto; 5793 int err; 5794 5795 if (likely(skb_vlan_tag_present(skb))) { 5796 __vlan_hwaccel_clear_tag(skb); 5797 } else { 5798 if (unlikely(!eth_type_vlan(skb->protocol))) 5799 return 0; 5800 5801 err = __skb_vlan_pop(skb, &vlan_tci); 5802 if (err) 5803 return err; 5804 } 5805 /* move next vlan tag to hw accel tag */ 5806 if (likely(!eth_type_vlan(skb->protocol))) 5807 return 0; 5808 5809 vlan_proto = skb->protocol; 5810 err = __skb_vlan_pop(skb, &vlan_tci); 5811 if (unlikely(err)) 5812 return err; 5813 5814 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci); 5815 return 0; 5816 } 5817 EXPORT_SYMBOL(skb_vlan_pop); 5818 5819 /* Push a vlan tag either into hwaccel or into payload (if hwaccel tag present). 5820 * Expects skb->data at mac header. 5821 */ 5822 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci) 5823 { 5824 if (skb_vlan_tag_present(skb)) { 5825 int offset = skb->data - skb_mac_header(skb); 5826 int err; 5827 5828 if (WARN_ONCE(offset, 5829 "skb_vlan_push got skb with skb->data not at mac header (offset %d)\n", 5830 offset)) { 5831 return -EINVAL; 5832 } 5833 5834 err = __vlan_insert_tag(skb, skb->vlan_proto, 5835 skb_vlan_tag_get(skb)); 5836 if (err) 5837 return err; 5838 5839 skb->protocol = skb->vlan_proto; 5840 skb->mac_len += VLAN_HLEN; 5841 5842 skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN); 5843 } 5844 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci); 5845 return 0; 5846 } 5847 EXPORT_SYMBOL(skb_vlan_push); 5848 5849 /** 5850 * skb_eth_pop() - Drop the Ethernet header at the head of a packet 5851 * 5852 * @skb: Socket buffer to modify 5853 * 5854 * Drop the Ethernet header of @skb. 5855 * 5856 * Expects that skb->data points to the mac header and that no VLAN tags are 5857 * present. 5858 * 5859 * Returns 0 on success, -errno otherwise. 5860 */ 5861 int skb_eth_pop(struct sk_buff *skb) 5862 { 5863 if (!pskb_may_pull(skb, ETH_HLEN) || skb_vlan_tagged(skb) || 5864 skb_network_offset(skb) < ETH_HLEN) 5865 return -EPROTO; 5866 5867 skb_pull_rcsum(skb, ETH_HLEN); 5868 skb_reset_mac_header(skb); 5869 skb_reset_mac_len(skb); 5870 5871 return 0; 5872 } 5873 EXPORT_SYMBOL(skb_eth_pop); 5874 5875 /** 5876 * skb_eth_push() - Add a new Ethernet header at the head of a packet 5877 * 5878 * @skb: Socket buffer to modify 5879 * @dst: Destination MAC address of the new header 5880 * @src: Source MAC address of the new header 5881 * 5882 * Prepend @skb with a new Ethernet header. 5883 * 5884 * Expects that skb->data points to the mac header, which must be empty. 5885 * 5886 * Returns 0 on success, -errno otherwise. 5887 */ 5888 int skb_eth_push(struct sk_buff *skb, const unsigned char *dst, 5889 const unsigned char *src) 5890 { 5891 struct ethhdr *eth; 5892 int err; 5893 5894 if (skb_network_offset(skb) || skb_vlan_tag_present(skb)) 5895 return -EPROTO; 5896 5897 err = skb_cow_head(skb, sizeof(*eth)); 5898 if (err < 0) 5899 return err; 5900 5901 skb_push(skb, sizeof(*eth)); 5902 skb_reset_mac_header(skb); 5903 skb_reset_mac_len(skb); 5904 5905 eth = eth_hdr(skb); 5906 ether_addr_copy(eth->h_dest, dst); 5907 ether_addr_copy(eth->h_source, src); 5908 eth->h_proto = skb->protocol; 5909 5910 skb_postpush_rcsum(skb, eth, sizeof(*eth)); 5911 5912 return 0; 5913 } 5914 EXPORT_SYMBOL(skb_eth_push); 5915 5916 /* Update the ethertype of hdr and the skb csum value if required. */ 5917 static void skb_mod_eth_type(struct sk_buff *skb, struct ethhdr *hdr, 5918 __be16 ethertype) 5919 { 5920 if (skb->ip_summed == CHECKSUM_COMPLETE) { 5921 __be16 diff[] = { ~hdr->h_proto, ethertype }; 5922 5923 skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum); 5924 } 5925 5926 hdr->h_proto = ethertype; 5927 } 5928 5929 /** 5930 * skb_mpls_push() - push a new MPLS header after mac_len bytes from start of 5931 * the packet 5932 * 5933 * @skb: buffer 5934 * @mpls_lse: MPLS label stack entry to push 5935 * @mpls_proto: ethertype of the new MPLS header (expects 0x8847 or 0x8848) 5936 * @mac_len: length of the MAC header 5937 * @ethernet: flag to indicate if the resulting packet after skb_mpls_push is 5938 * ethernet 5939 * 5940 * Expects skb->data at mac header. 5941 * 5942 * Returns 0 on success, -errno otherwise. 5943 */ 5944 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto, 5945 int mac_len, bool ethernet) 5946 { 5947 struct mpls_shim_hdr *lse; 5948 int err; 5949 5950 if (unlikely(!eth_p_mpls(mpls_proto))) 5951 return -EINVAL; 5952 5953 /* Networking stack does not allow simultaneous Tunnel and MPLS GSO. */ 5954 if (skb->encapsulation) 5955 return -EINVAL; 5956 5957 err = skb_cow_head(skb, MPLS_HLEN); 5958 if (unlikely(err)) 5959 return err; 5960 5961 if (!skb->inner_protocol) { 5962 skb_set_inner_network_header(skb, skb_network_offset(skb)); 5963 skb_set_inner_protocol(skb, skb->protocol); 5964 } 5965 5966 skb_push(skb, MPLS_HLEN); 5967 memmove(skb_mac_header(skb) - MPLS_HLEN, skb_mac_header(skb), 5968 mac_len); 5969 skb_reset_mac_header(skb); 5970 skb_set_network_header(skb, mac_len); 5971 skb_reset_mac_len(skb); 5972 5973 lse = mpls_hdr(skb); 5974 lse->label_stack_entry = mpls_lse; 5975 skb_postpush_rcsum(skb, lse, MPLS_HLEN); 5976 5977 if (ethernet && mac_len >= ETH_HLEN) 5978 skb_mod_eth_type(skb, eth_hdr(skb), mpls_proto); 5979 skb->protocol = mpls_proto; 5980 5981 return 0; 5982 } 5983 EXPORT_SYMBOL_GPL(skb_mpls_push); 5984 5985 /** 5986 * skb_mpls_pop() - pop the outermost MPLS header 5987 * 5988 * @skb: buffer 5989 * @next_proto: ethertype of header after popped MPLS header 5990 * @mac_len: length of the MAC header 5991 * @ethernet: flag to indicate if the packet is ethernet 5992 * 5993 * Expects skb->data at mac header. 5994 * 5995 * Returns 0 on success, -errno otherwise. 5996 */ 5997 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len, 5998 bool ethernet) 5999 { 6000 int err; 6001 6002 if (unlikely(!eth_p_mpls(skb->protocol))) 6003 return 0; 6004 6005 err = skb_ensure_writable(skb, mac_len + MPLS_HLEN); 6006 if (unlikely(err)) 6007 return err; 6008 6009 skb_postpull_rcsum(skb, mpls_hdr(skb), MPLS_HLEN); 6010 memmove(skb_mac_header(skb) + MPLS_HLEN, skb_mac_header(skb), 6011 mac_len); 6012 6013 __skb_pull(skb, MPLS_HLEN); 6014 skb_reset_mac_header(skb); 6015 skb_set_network_header(skb, mac_len); 6016 6017 if (ethernet && mac_len >= ETH_HLEN) { 6018 struct ethhdr *hdr; 6019 6020 /* use mpls_hdr() to get ethertype to account for VLANs. */ 6021 hdr = (struct ethhdr *)((void *)mpls_hdr(skb) - ETH_HLEN); 6022 skb_mod_eth_type(skb, hdr, next_proto); 6023 } 6024 skb->protocol = next_proto; 6025 6026 return 0; 6027 } 6028 EXPORT_SYMBOL_GPL(skb_mpls_pop); 6029 6030 /** 6031 * skb_mpls_update_lse() - modify outermost MPLS header and update csum 6032 * 6033 * @skb: buffer 6034 * @mpls_lse: new MPLS label stack entry to update to 6035 * 6036 * Expects skb->data at mac header. 6037 * 6038 * Returns 0 on success, -errno otherwise. 6039 */ 6040 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse) 6041 { 6042 int err; 6043 6044 if (unlikely(!eth_p_mpls(skb->protocol))) 6045 return -EINVAL; 6046 6047 err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN); 6048 if (unlikely(err)) 6049 return err; 6050 6051 if (skb->ip_summed == CHECKSUM_COMPLETE) { 6052 __be32 diff[] = { ~mpls_hdr(skb)->label_stack_entry, mpls_lse }; 6053 6054 skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum); 6055 } 6056 6057 mpls_hdr(skb)->label_stack_entry = mpls_lse; 6058 6059 return 0; 6060 } 6061 EXPORT_SYMBOL_GPL(skb_mpls_update_lse); 6062 6063 /** 6064 * skb_mpls_dec_ttl() - decrement the TTL of the outermost MPLS header 6065 * 6066 * @skb: buffer 6067 * 6068 * Expects skb->data at mac header. 6069 * 6070 * Returns 0 on success, -errno otherwise. 6071 */ 6072 int skb_mpls_dec_ttl(struct sk_buff *skb) 6073 { 6074 u32 lse; 6075 u8 ttl; 6076 6077 if (unlikely(!eth_p_mpls(skb->protocol))) 6078 return -EINVAL; 6079 6080 if (!pskb_may_pull(skb, skb_network_offset(skb) + MPLS_HLEN)) 6081 return -ENOMEM; 6082 6083 lse = be32_to_cpu(mpls_hdr(skb)->label_stack_entry); 6084 ttl = (lse & MPLS_LS_TTL_MASK) >> MPLS_LS_TTL_SHIFT; 6085 if (!--ttl) 6086 return -EINVAL; 6087 6088 lse &= ~MPLS_LS_TTL_MASK; 6089 lse |= ttl << MPLS_LS_TTL_SHIFT; 6090 6091 return skb_mpls_update_lse(skb, cpu_to_be32(lse)); 6092 } 6093 EXPORT_SYMBOL_GPL(skb_mpls_dec_ttl); 6094 6095 /** 6096 * alloc_skb_with_frags - allocate skb with page frags 6097 * 6098 * @header_len: size of linear part 6099 * @data_len: needed length in frags 6100 * @max_page_order: max page order desired. 6101 * @errcode: pointer to error code if any 6102 * @gfp_mask: allocation mask 6103 * 6104 * This can be used to allocate a paged skb, given a maximal order for frags. 6105 */ 6106 struct sk_buff *alloc_skb_with_frags(unsigned long header_len, 6107 unsigned long data_len, 6108 int max_page_order, 6109 int *errcode, 6110 gfp_t gfp_mask) 6111 { 6112 int npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT; 6113 unsigned long chunk; 6114 struct sk_buff *skb; 6115 struct page *page; 6116 int i; 6117 6118 *errcode = -EMSGSIZE; 6119 /* Note this test could be relaxed, if we succeed to allocate 6120 * high order pages... 6121 */ 6122 if (npages > MAX_SKB_FRAGS) 6123 return NULL; 6124 6125 *errcode = -ENOBUFS; 6126 skb = alloc_skb(header_len, gfp_mask); 6127 if (!skb) 6128 return NULL; 6129 6130 skb->truesize += npages << PAGE_SHIFT; 6131 6132 for (i = 0; npages > 0; i++) { 6133 int order = max_page_order; 6134 6135 while (order) { 6136 if (npages >= 1 << order) { 6137 page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) | 6138 __GFP_COMP | 6139 __GFP_NOWARN, 6140 order); 6141 if (page) 6142 goto fill_page; 6143 /* Do not retry other high order allocations */ 6144 order = 1; 6145 max_page_order = 0; 6146 } 6147 order--; 6148 } 6149 page = alloc_page(gfp_mask); 6150 if (!page) 6151 goto failure; 6152 fill_page: 6153 chunk = min_t(unsigned long, data_len, 6154 PAGE_SIZE << order); 6155 skb_fill_page_desc(skb, i, page, 0, chunk); 6156 data_len -= chunk; 6157 npages -= 1 << order; 6158 } 6159 return skb; 6160 6161 failure: 6162 kfree_skb(skb); 6163 return NULL; 6164 } 6165 EXPORT_SYMBOL(alloc_skb_with_frags); 6166 6167 /* carve out the first off bytes from skb when off < headlen */ 6168 static int pskb_carve_inside_header(struct sk_buff *skb, const u32 off, 6169 const int headlen, gfp_t gfp_mask) 6170 { 6171 int i; 6172 int size = skb_end_offset(skb); 6173 int new_hlen = headlen - off; 6174 u8 *data; 6175 6176 size = SKB_DATA_ALIGN(size); 6177 6178 if (skb_pfmemalloc(skb)) 6179 gfp_mask |= __GFP_MEMALLOC; 6180 data = kmalloc_reserve(size + 6181 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)), 6182 gfp_mask, NUMA_NO_NODE, NULL); 6183 if (!data) 6184 return -ENOMEM; 6185 6186 size = SKB_WITH_OVERHEAD(ksize(data)); 6187 6188 /* Copy real data, and all frags */ 6189 skb_copy_from_linear_data_offset(skb, off, data, new_hlen); 6190 skb->len -= off; 6191 6192 memcpy((struct skb_shared_info *)(data + size), 6193 skb_shinfo(skb), 6194 offsetof(struct skb_shared_info, 6195 frags[skb_shinfo(skb)->nr_frags])); 6196 if (skb_cloned(skb)) { 6197 /* drop the old head gracefully */ 6198 if (skb_orphan_frags(skb, gfp_mask)) { 6199 kfree(data); 6200 return -ENOMEM; 6201 } 6202 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 6203 skb_frag_ref(skb, i); 6204 if (skb_has_frag_list(skb)) 6205 skb_clone_fraglist(skb); 6206 skb_release_data(skb); 6207 } else { 6208 /* we can reuse existing recount- all we did was 6209 * relocate values 6210 */ 6211 skb_free_head(skb); 6212 } 6213 6214 skb->head = data; 6215 skb->data = data; 6216 skb->head_frag = 0; 6217 skb_set_end_offset(skb, size); 6218 skb_set_tail_pointer(skb, skb_headlen(skb)); 6219 skb_headers_offset_update(skb, 0); 6220 skb->cloned = 0; 6221 skb->hdr_len = 0; 6222 skb->nohdr = 0; 6223 atomic_set(&skb_shinfo(skb)->dataref, 1); 6224 6225 return 0; 6226 } 6227 6228 static int pskb_carve(struct sk_buff *skb, const u32 off, gfp_t gfp); 6229 6230 /* carve out the first eat bytes from skb's frag_list. May recurse into 6231 * pskb_carve() 6232 */ 6233 static int pskb_carve_frag_list(struct sk_buff *skb, 6234 struct skb_shared_info *shinfo, int eat, 6235 gfp_t gfp_mask) 6236 { 6237 struct sk_buff *list = shinfo->frag_list; 6238 struct sk_buff *clone = NULL; 6239 struct sk_buff *insp = NULL; 6240 6241 do { 6242 if (!list) { 6243 pr_err("Not enough bytes to eat. Want %d\n", eat); 6244 return -EFAULT; 6245 } 6246 if (list->len <= eat) { 6247 /* Eaten as whole. */ 6248 eat -= list->len; 6249 list = list->next; 6250 insp = list; 6251 } else { 6252 /* Eaten partially. */ 6253 if (skb_shared(list)) { 6254 clone = skb_clone(list, gfp_mask); 6255 if (!clone) 6256 return -ENOMEM; 6257 insp = list->next; 6258 list = clone; 6259 } else { 6260 /* This may be pulled without problems. */ 6261 insp = list; 6262 } 6263 if (pskb_carve(list, eat, gfp_mask) < 0) { 6264 kfree_skb(clone); 6265 return -ENOMEM; 6266 } 6267 break; 6268 } 6269 } while (eat); 6270 6271 /* Free pulled out fragments. */ 6272 while ((list = shinfo->frag_list) != insp) { 6273 shinfo->frag_list = list->next; 6274 consume_skb(list); 6275 } 6276 /* And insert new clone at head. */ 6277 if (clone) { 6278 clone->next = list; 6279 shinfo->frag_list = clone; 6280 } 6281 return 0; 6282 } 6283 6284 /* carve off first len bytes from skb. Split line (off) is in the 6285 * non-linear part of skb 6286 */ 6287 static int pskb_carve_inside_nonlinear(struct sk_buff *skb, const u32 off, 6288 int pos, gfp_t gfp_mask) 6289 { 6290 int i, k = 0; 6291 int size = skb_end_offset(skb); 6292 u8 *data; 6293 const int nfrags = skb_shinfo(skb)->nr_frags; 6294 struct skb_shared_info *shinfo; 6295 6296 size = SKB_DATA_ALIGN(size); 6297 6298 if (skb_pfmemalloc(skb)) 6299 gfp_mask |= __GFP_MEMALLOC; 6300 data = kmalloc_reserve(size + 6301 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)), 6302 gfp_mask, NUMA_NO_NODE, NULL); 6303 if (!data) 6304 return -ENOMEM; 6305 6306 size = SKB_WITH_OVERHEAD(ksize(data)); 6307 6308 memcpy((struct skb_shared_info *)(data + size), 6309 skb_shinfo(skb), offsetof(struct skb_shared_info, frags[0])); 6310 if (skb_orphan_frags(skb, gfp_mask)) { 6311 kfree(data); 6312 return -ENOMEM; 6313 } 6314 shinfo = (struct skb_shared_info *)(data + size); 6315 for (i = 0; i < nfrags; i++) { 6316 int fsize = skb_frag_size(&skb_shinfo(skb)->frags[i]); 6317 6318 if (pos + fsize > off) { 6319 shinfo->frags[k] = skb_shinfo(skb)->frags[i]; 6320 6321 if (pos < off) { 6322 /* Split frag. 6323 * We have two variants in this case: 6324 * 1. Move all the frag to the second 6325 * part, if it is possible. F.e. 6326 * this approach is mandatory for TUX, 6327 * where splitting is expensive. 6328 * 2. Split is accurately. We make this. 6329 */ 6330 skb_frag_off_add(&shinfo->frags[0], off - pos); 6331 skb_frag_size_sub(&shinfo->frags[0], off - pos); 6332 } 6333 skb_frag_ref(skb, i); 6334 k++; 6335 } 6336 pos += fsize; 6337 } 6338 shinfo->nr_frags = k; 6339 if (skb_has_frag_list(skb)) 6340 skb_clone_fraglist(skb); 6341 6342 /* split line is in frag list */ 6343 if (k == 0 && pskb_carve_frag_list(skb, shinfo, off - pos, gfp_mask)) { 6344 /* skb_frag_unref() is not needed here as shinfo->nr_frags = 0. */ 6345 if (skb_has_frag_list(skb)) 6346 kfree_skb_list(skb_shinfo(skb)->frag_list); 6347 kfree(data); 6348 return -ENOMEM; 6349 } 6350 skb_release_data(skb); 6351 6352 skb->head = data; 6353 skb->head_frag = 0; 6354 skb->data = data; 6355 skb_set_end_offset(skb, size); 6356 skb_reset_tail_pointer(skb); 6357 skb_headers_offset_update(skb, 0); 6358 skb->cloned = 0; 6359 skb->hdr_len = 0; 6360 skb->nohdr = 0; 6361 skb->len -= off; 6362 skb->data_len = skb->len; 6363 atomic_set(&skb_shinfo(skb)->dataref, 1); 6364 return 0; 6365 } 6366 6367 /* remove len bytes from the beginning of the skb */ 6368 static int pskb_carve(struct sk_buff *skb, const u32 len, gfp_t gfp) 6369 { 6370 int headlen = skb_headlen(skb); 6371 6372 if (len < headlen) 6373 return pskb_carve_inside_header(skb, len, headlen, gfp); 6374 else 6375 return pskb_carve_inside_nonlinear(skb, len, headlen, gfp); 6376 } 6377 6378 /* Extract to_copy bytes starting at off from skb, and return this in 6379 * a new skb 6380 */ 6381 struct sk_buff *pskb_extract(struct sk_buff *skb, int off, 6382 int to_copy, gfp_t gfp) 6383 { 6384 struct sk_buff *clone = skb_clone(skb, gfp); 6385 6386 if (!clone) 6387 return NULL; 6388 6389 if (pskb_carve(clone, off, gfp) < 0 || 6390 pskb_trim(clone, to_copy)) { 6391 kfree_skb(clone); 6392 return NULL; 6393 } 6394 return clone; 6395 } 6396 EXPORT_SYMBOL(pskb_extract); 6397 6398 /** 6399 * skb_condense - try to get rid of fragments/frag_list if possible 6400 * @skb: buffer 6401 * 6402 * Can be used to save memory before skb is added to a busy queue. 6403 * If packet has bytes in frags and enough tail room in skb->head, 6404 * pull all of them, so that we can free the frags right now and adjust 6405 * truesize. 6406 * Notes: 6407 * We do not reallocate skb->head thus can not fail. 6408 * Caller must re-evaluate skb->truesize if needed. 6409 */ 6410 void skb_condense(struct sk_buff *skb) 6411 { 6412 if (skb->data_len) { 6413 if (skb->data_len > skb->end - skb->tail || 6414 skb_cloned(skb)) 6415 return; 6416 6417 /* Nice, we can free page frag(s) right now */ 6418 __pskb_pull_tail(skb, skb->data_len); 6419 } 6420 /* At this point, skb->truesize might be over estimated, 6421 * because skb had a fragment, and fragments do not tell 6422 * their truesize. 6423 * When we pulled its content into skb->head, fragment 6424 * was freed, but __pskb_pull_tail() could not possibly 6425 * adjust skb->truesize, not knowing the frag truesize. 6426 */ 6427 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb)); 6428 } 6429 6430 #ifdef CONFIG_SKB_EXTENSIONS 6431 static void *skb_ext_get_ptr(struct skb_ext *ext, enum skb_ext_id id) 6432 { 6433 return (void *)ext + (ext->offset[id] * SKB_EXT_ALIGN_VALUE); 6434 } 6435 6436 /** 6437 * __skb_ext_alloc - allocate a new skb extensions storage 6438 * 6439 * @flags: See kmalloc(). 6440 * 6441 * Returns the newly allocated pointer. The pointer can later attached to a 6442 * skb via __skb_ext_set(). 6443 * Note: caller must handle the skb_ext as an opaque data. 6444 */ 6445 struct skb_ext *__skb_ext_alloc(gfp_t flags) 6446 { 6447 struct skb_ext *new = kmem_cache_alloc(skbuff_ext_cache, flags); 6448 6449 if (new) { 6450 memset(new->offset, 0, sizeof(new->offset)); 6451 refcount_set(&new->refcnt, 1); 6452 } 6453 6454 return new; 6455 } 6456 6457 static struct skb_ext *skb_ext_maybe_cow(struct skb_ext *old, 6458 unsigned int old_active) 6459 { 6460 struct skb_ext *new; 6461 6462 if (refcount_read(&old->refcnt) == 1) 6463 return old; 6464 6465 new = kmem_cache_alloc(skbuff_ext_cache, GFP_ATOMIC); 6466 if (!new) 6467 return NULL; 6468 6469 memcpy(new, old, old->chunks * SKB_EXT_ALIGN_VALUE); 6470 refcount_set(&new->refcnt, 1); 6471 6472 #ifdef CONFIG_XFRM 6473 if (old_active & (1 << SKB_EXT_SEC_PATH)) { 6474 struct sec_path *sp = skb_ext_get_ptr(old, SKB_EXT_SEC_PATH); 6475 unsigned int i; 6476 6477 for (i = 0; i < sp->len; i++) 6478 xfrm_state_hold(sp->xvec[i]); 6479 } 6480 #endif 6481 __skb_ext_put(old); 6482 return new; 6483 } 6484 6485 /** 6486 * __skb_ext_set - attach the specified extension storage to this skb 6487 * @skb: buffer 6488 * @id: extension id 6489 * @ext: extension storage previously allocated via __skb_ext_alloc() 6490 * 6491 * Existing extensions, if any, are cleared. 6492 * 6493 * Returns the pointer to the extension. 6494 */ 6495 void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id, 6496 struct skb_ext *ext) 6497 { 6498 unsigned int newlen, newoff = SKB_EXT_CHUNKSIZEOF(*ext); 6499 6500 skb_ext_put(skb); 6501 newlen = newoff + skb_ext_type_len[id]; 6502 ext->chunks = newlen; 6503 ext->offset[id] = newoff; 6504 skb->extensions = ext; 6505 skb->active_extensions = 1 << id; 6506 return skb_ext_get_ptr(ext, id); 6507 } 6508 6509 /** 6510 * skb_ext_add - allocate space for given extension, COW if needed 6511 * @skb: buffer 6512 * @id: extension to allocate space for 6513 * 6514 * Allocates enough space for the given extension. 6515 * If the extension is already present, a pointer to that extension 6516 * is returned. 6517 * 6518 * If the skb was cloned, COW applies and the returned memory can be 6519 * modified without changing the extension space of clones buffers. 6520 * 6521 * Returns pointer to the extension or NULL on allocation failure. 6522 */ 6523 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id) 6524 { 6525 struct skb_ext *new, *old = NULL; 6526 unsigned int newlen, newoff; 6527 6528 if (skb->active_extensions) { 6529 old = skb->extensions; 6530 6531 new = skb_ext_maybe_cow(old, skb->active_extensions); 6532 if (!new) 6533 return NULL; 6534 6535 if (__skb_ext_exist(new, id)) 6536 goto set_active; 6537 6538 newoff = new->chunks; 6539 } else { 6540 newoff = SKB_EXT_CHUNKSIZEOF(*new); 6541 6542 new = __skb_ext_alloc(GFP_ATOMIC); 6543 if (!new) 6544 return NULL; 6545 } 6546 6547 newlen = newoff + skb_ext_type_len[id]; 6548 new->chunks = newlen; 6549 new->offset[id] = newoff; 6550 set_active: 6551 skb->slow_gro = 1; 6552 skb->extensions = new; 6553 skb->active_extensions |= 1 << id; 6554 return skb_ext_get_ptr(new, id); 6555 } 6556 EXPORT_SYMBOL(skb_ext_add); 6557 6558 #ifdef CONFIG_XFRM 6559 static void skb_ext_put_sp(struct sec_path *sp) 6560 { 6561 unsigned int i; 6562 6563 for (i = 0; i < sp->len; i++) 6564 xfrm_state_put(sp->xvec[i]); 6565 } 6566 #endif 6567 6568 #ifdef CONFIG_MCTP_FLOWS 6569 static void skb_ext_put_mctp(struct mctp_flow *flow) 6570 { 6571 if (flow->key) 6572 mctp_key_unref(flow->key); 6573 } 6574 #endif 6575 6576 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id) 6577 { 6578 struct skb_ext *ext = skb->extensions; 6579 6580 skb->active_extensions &= ~(1 << id); 6581 if (skb->active_extensions == 0) { 6582 skb->extensions = NULL; 6583 __skb_ext_put(ext); 6584 #ifdef CONFIG_XFRM 6585 } else if (id == SKB_EXT_SEC_PATH && 6586 refcount_read(&ext->refcnt) == 1) { 6587 struct sec_path *sp = skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH); 6588 6589 skb_ext_put_sp(sp); 6590 sp->len = 0; 6591 #endif 6592 } 6593 } 6594 EXPORT_SYMBOL(__skb_ext_del); 6595 6596 void __skb_ext_put(struct skb_ext *ext) 6597 { 6598 /* If this is last clone, nothing can increment 6599 * it after check passes. Avoids one atomic op. 6600 */ 6601 if (refcount_read(&ext->refcnt) == 1) 6602 goto free_now; 6603 6604 if (!refcount_dec_and_test(&ext->refcnt)) 6605 return; 6606 free_now: 6607 #ifdef CONFIG_XFRM 6608 if (__skb_ext_exist(ext, SKB_EXT_SEC_PATH)) 6609 skb_ext_put_sp(skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH)); 6610 #endif 6611 #ifdef CONFIG_MCTP_FLOWS 6612 if (__skb_ext_exist(ext, SKB_EXT_MCTP)) 6613 skb_ext_put_mctp(skb_ext_get_ptr(ext, SKB_EXT_MCTP)); 6614 #endif 6615 6616 kmem_cache_free(skbuff_ext_cache, ext); 6617 } 6618 EXPORT_SYMBOL(__skb_ext_put); 6619 #endif /* CONFIG_SKB_EXTENSIONS */ 6620 6621 /** 6622 * skb_attempt_defer_free - queue skb for remote freeing 6623 * @skb: buffer 6624 * 6625 * Put @skb in a per-cpu list, using the cpu which 6626 * allocated the skb/pages to reduce false sharing 6627 * and memory zone spinlock contention. 6628 */ 6629 void skb_attempt_defer_free(struct sk_buff *skb) 6630 { 6631 int cpu = skb->alloc_cpu; 6632 struct softnet_data *sd; 6633 unsigned long flags; 6634 unsigned int defer_max; 6635 bool kick; 6636 6637 if (WARN_ON_ONCE(cpu >= nr_cpu_ids) || 6638 !cpu_online(cpu) || 6639 cpu == raw_smp_processor_id()) { 6640 nodefer: __kfree_skb(skb); 6641 return; 6642 } 6643 6644 sd = &per_cpu(softnet_data, cpu); 6645 defer_max = READ_ONCE(sysctl_skb_defer_max); 6646 if (READ_ONCE(sd->defer_count) >= defer_max) 6647 goto nodefer; 6648 6649 spin_lock_irqsave(&sd->defer_lock, flags); 6650 /* Send an IPI every time queue reaches half capacity. */ 6651 kick = sd->defer_count == (defer_max >> 1); 6652 /* Paired with the READ_ONCE() few lines above */ 6653 WRITE_ONCE(sd->defer_count, sd->defer_count + 1); 6654 6655 skb->next = sd->defer_list; 6656 /* Paired with READ_ONCE() in skb_defer_free_flush() */ 6657 WRITE_ONCE(sd->defer_list, skb); 6658 spin_unlock_irqrestore(&sd->defer_lock, flags); 6659 6660 /* Make sure to trigger NET_RX_SOFTIRQ on the remote CPU 6661 * if we are unlucky enough (this seems very unlikely). 6662 */ 6663 if (unlikely(kick) && !cmpxchg(&sd->defer_ipi_scheduled, 0, 1)) 6664 smp_call_function_single_async(cpu, &sd->defer_csd); 6665 } 6666