1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Routines having to do with the 'struct sk_buff' memory handlers. 4 * 5 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk> 6 * Florian La Roche <rzsfl@rz.uni-sb.de> 7 * 8 * Fixes: 9 * Alan Cox : Fixed the worst of the load 10 * balancer bugs. 11 * Dave Platt : Interrupt stacking fix. 12 * Richard Kooijman : Timestamp fixes. 13 * Alan Cox : Changed buffer format. 14 * Alan Cox : destructor hook for AF_UNIX etc. 15 * Linus Torvalds : Better skb_clone. 16 * Alan Cox : Added skb_copy. 17 * Alan Cox : Added all the changed routines Linus 18 * only put in the headers 19 * Ray VanTassle : Fixed --skb->lock in free 20 * Alan Cox : skb_copy copy arp field 21 * Andi Kleen : slabified it. 22 * Robert Olsson : Removed skb_head_pool 23 * 24 * NOTE: 25 * The __skb_ routines should be called with interrupts 26 * disabled, or you better be *real* sure that the operation is atomic 27 * with respect to whatever list is being frobbed (e.g. via lock_sock() 28 * or via disabling bottom half handlers, etc). 29 */ 30 31 /* 32 * The functions in this file will not compile correctly with gcc 2.4.x 33 */ 34 35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 36 37 #include <linux/module.h> 38 #include <linux/types.h> 39 #include <linux/kernel.h> 40 #include <linux/mm.h> 41 #include <linux/interrupt.h> 42 #include <linux/in.h> 43 #include <linux/inet.h> 44 #include <linux/slab.h> 45 #include <linux/tcp.h> 46 #include <linux/udp.h> 47 #include <linux/sctp.h> 48 #include <linux/netdevice.h> 49 #ifdef CONFIG_NET_CLS_ACT 50 #include <net/pkt_sched.h> 51 #endif 52 #include <linux/string.h> 53 #include <linux/skbuff.h> 54 #include <linux/splice.h> 55 #include <linux/cache.h> 56 #include <linux/rtnetlink.h> 57 #include <linux/init.h> 58 #include <linux/scatterlist.h> 59 #include <linux/errqueue.h> 60 #include <linux/prefetch.h> 61 #include <linux/if_vlan.h> 62 #include <linux/mpls.h> 63 64 #include <net/protocol.h> 65 #include <net/dst.h> 66 #include <net/sock.h> 67 #include <net/checksum.h> 68 #include <net/ip6_checksum.h> 69 #include <net/xfrm.h> 70 #include <net/mpls.h> 71 #include <net/mptcp.h> 72 73 #include <linux/uaccess.h> 74 #include <trace/events/skb.h> 75 #include <linux/highmem.h> 76 #include <linux/capability.h> 77 #include <linux/user_namespace.h> 78 #include <linux/indirect_call_wrapper.h> 79 80 #include "datagram.h" 81 82 struct kmem_cache *skbuff_head_cache __ro_after_init; 83 static struct kmem_cache *skbuff_fclone_cache __ro_after_init; 84 #ifdef CONFIG_SKB_EXTENSIONS 85 static struct kmem_cache *skbuff_ext_cache __ro_after_init; 86 #endif 87 int sysctl_max_skb_frags __read_mostly = MAX_SKB_FRAGS; 88 EXPORT_SYMBOL(sysctl_max_skb_frags); 89 90 /** 91 * skb_panic - private function for out-of-line support 92 * @skb: buffer 93 * @sz: size 94 * @addr: address 95 * @msg: skb_over_panic or skb_under_panic 96 * 97 * Out-of-line support for skb_put() and skb_push(). 98 * Called via the wrapper skb_over_panic() or skb_under_panic(). 99 * Keep out of line to prevent kernel bloat. 100 * __builtin_return_address is not used because it is not always reliable. 101 */ 102 static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr, 103 const char msg[]) 104 { 105 pr_emerg("%s: text:%px len:%d put:%d head:%px data:%px tail:%#lx end:%#lx dev:%s\n", 106 msg, addr, skb->len, sz, skb->head, skb->data, 107 (unsigned long)skb->tail, (unsigned long)skb->end, 108 skb->dev ? skb->dev->name : "<NULL>"); 109 BUG(); 110 } 111 112 static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr) 113 { 114 skb_panic(skb, sz, addr, __func__); 115 } 116 117 static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr) 118 { 119 skb_panic(skb, sz, addr, __func__); 120 } 121 122 #define NAPI_SKB_CACHE_SIZE 64 123 #define NAPI_SKB_CACHE_BULK 16 124 #define NAPI_SKB_CACHE_HALF (NAPI_SKB_CACHE_SIZE / 2) 125 126 struct napi_alloc_cache { 127 struct page_frag_cache page; 128 unsigned int skb_count; 129 void *skb_cache[NAPI_SKB_CACHE_SIZE]; 130 }; 131 132 static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache); 133 static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache); 134 135 static void *__alloc_frag_align(unsigned int fragsz, gfp_t gfp_mask, 136 unsigned int align_mask) 137 { 138 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 139 140 return page_frag_alloc_align(&nc->page, fragsz, gfp_mask, align_mask); 141 } 142 143 void *__napi_alloc_frag_align(unsigned int fragsz, unsigned int align_mask) 144 { 145 fragsz = SKB_DATA_ALIGN(fragsz); 146 147 return __alloc_frag_align(fragsz, GFP_ATOMIC, align_mask); 148 } 149 EXPORT_SYMBOL(__napi_alloc_frag_align); 150 151 void *__netdev_alloc_frag_align(unsigned int fragsz, unsigned int align_mask) 152 { 153 struct page_frag_cache *nc; 154 void *data; 155 156 fragsz = SKB_DATA_ALIGN(fragsz); 157 if (in_irq() || irqs_disabled()) { 158 nc = this_cpu_ptr(&netdev_alloc_cache); 159 data = page_frag_alloc_align(nc, fragsz, GFP_ATOMIC, align_mask); 160 } else { 161 local_bh_disable(); 162 data = __alloc_frag_align(fragsz, GFP_ATOMIC, align_mask); 163 local_bh_enable(); 164 } 165 return data; 166 } 167 EXPORT_SYMBOL(__netdev_alloc_frag_align); 168 169 static struct sk_buff *napi_skb_cache_get(void) 170 { 171 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 172 struct sk_buff *skb; 173 174 if (unlikely(!nc->skb_count)) 175 nc->skb_count = kmem_cache_alloc_bulk(skbuff_head_cache, 176 GFP_ATOMIC, 177 NAPI_SKB_CACHE_BULK, 178 nc->skb_cache); 179 if (unlikely(!nc->skb_count)) 180 return NULL; 181 182 skb = nc->skb_cache[--nc->skb_count]; 183 kasan_unpoison_object_data(skbuff_head_cache, skb); 184 185 return skb; 186 } 187 188 /* Caller must provide SKB that is memset cleared */ 189 static void __build_skb_around(struct sk_buff *skb, void *data, 190 unsigned int frag_size) 191 { 192 struct skb_shared_info *shinfo; 193 unsigned int size = frag_size ? : ksize(data); 194 195 size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 196 197 /* Assumes caller memset cleared SKB */ 198 skb->truesize = SKB_TRUESIZE(size); 199 refcount_set(&skb->users, 1); 200 skb->head = data; 201 skb->data = data; 202 skb_reset_tail_pointer(skb); 203 skb->end = skb->tail + size; 204 skb->mac_header = (typeof(skb->mac_header))~0U; 205 skb->transport_header = (typeof(skb->transport_header))~0U; 206 207 /* make sure we initialize shinfo sequentially */ 208 shinfo = skb_shinfo(skb); 209 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref)); 210 atomic_set(&shinfo->dataref, 1); 211 212 skb_set_kcov_handle(skb, kcov_common_handle()); 213 } 214 215 /** 216 * __build_skb - build a network buffer 217 * @data: data buffer provided by caller 218 * @frag_size: size of data, or 0 if head was kmalloced 219 * 220 * Allocate a new &sk_buff. Caller provides space holding head and 221 * skb_shared_info. @data must have been allocated by kmalloc() only if 222 * @frag_size is 0, otherwise data should come from the page allocator 223 * or vmalloc() 224 * The return is the new skb buffer. 225 * On a failure the return is %NULL, and @data is not freed. 226 * Notes : 227 * Before IO, driver allocates only data buffer where NIC put incoming frame 228 * Driver should add room at head (NET_SKB_PAD) and 229 * MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info)) 230 * After IO, driver calls build_skb(), to allocate sk_buff and populate it 231 * before giving packet to stack. 232 * RX rings only contains data buffers, not full skbs. 233 */ 234 struct sk_buff *__build_skb(void *data, unsigned int frag_size) 235 { 236 struct sk_buff *skb; 237 238 skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC); 239 if (unlikely(!skb)) 240 return NULL; 241 242 memset(skb, 0, offsetof(struct sk_buff, tail)); 243 __build_skb_around(skb, data, frag_size); 244 245 return skb; 246 } 247 248 /* build_skb() is wrapper over __build_skb(), that specifically 249 * takes care of skb->head and skb->pfmemalloc 250 * This means that if @frag_size is not zero, then @data must be backed 251 * by a page fragment, not kmalloc() or vmalloc() 252 */ 253 struct sk_buff *build_skb(void *data, unsigned int frag_size) 254 { 255 struct sk_buff *skb = __build_skb(data, frag_size); 256 257 if (skb && frag_size) { 258 skb->head_frag = 1; 259 if (page_is_pfmemalloc(virt_to_head_page(data))) 260 skb->pfmemalloc = 1; 261 } 262 return skb; 263 } 264 EXPORT_SYMBOL(build_skb); 265 266 /** 267 * build_skb_around - build a network buffer around provided skb 268 * @skb: sk_buff provide by caller, must be memset cleared 269 * @data: data buffer provided by caller 270 * @frag_size: size of data, or 0 if head was kmalloced 271 */ 272 struct sk_buff *build_skb_around(struct sk_buff *skb, 273 void *data, unsigned int frag_size) 274 { 275 if (unlikely(!skb)) 276 return NULL; 277 278 __build_skb_around(skb, data, frag_size); 279 280 if (frag_size) { 281 skb->head_frag = 1; 282 if (page_is_pfmemalloc(virt_to_head_page(data))) 283 skb->pfmemalloc = 1; 284 } 285 return skb; 286 } 287 EXPORT_SYMBOL(build_skb_around); 288 289 /** 290 * __napi_build_skb - build a network buffer 291 * @data: data buffer provided by caller 292 * @frag_size: size of data, or 0 if head was kmalloced 293 * 294 * Version of __build_skb() that uses NAPI percpu caches to obtain 295 * skbuff_head instead of inplace allocation. 296 * 297 * Returns a new &sk_buff on success, %NULL on allocation failure. 298 */ 299 static struct sk_buff *__napi_build_skb(void *data, unsigned int frag_size) 300 { 301 struct sk_buff *skb; 302 303 skb = napi_skb_cache_get(); 304 if (unlikely(!skb)) 305 return NULL; 306 307 memset(skb, 0, offsetof(struct sk_buff, tail)); 308 __build_skb_around(skb, data, frag_size); 309 310 return skb; 311 } 312 313 /** 314 * napi_build_skb - build a network buffer 315 * @data: data buffer provided by caller 316 * @frag_size: size of data, or 0 if head was kmalloced 317 * 318 * Version of __napi_build_skb() that takes care of skb->head_frag 319 * and skb->pfmemalloc when the data is a page or page fragment. 320 * 321 * Returns a new &sk_buff on success, %NULL on allocation failure. 322 */ 323 struct sk_buff *napi_build_skb(void *data, unsigned int frag_size) 324 { 325 struct sk_buff *skb = __napi_build_skb(data, frag_size); 326 327 if (likely(skb) && frag_size) { 328 skb->head_frag = 1; 329 skb_propagate_pfmemalloc(virt_to_head_page(data), skb); 330 } 331 332 return skb; 333 } 334 EXPORT_SYMBOL(napi_build_skb); 335 336 /* 337 * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells 338 * the caller if emergency pfmemalloc reserves are being used. If it is and 339 * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves 340 * may be used. Otherwise, the packet data may be discarded until enough 341 * memory is free 342 */ 343 static void *kmalloc_reserve(size_t size, gfp_t flags, int node, 344 bool *pfmemalloc) 345 { 346 void *obj; 347 bool ret_pfmemalloc = false; 348 349 /* 350 * Try a regular allocation, when that fails and we're not entitled 351 * to the reserves, fail. 352 */ 353 obj = kmalloc_node_track_caller(size, 354 flags | __GFP_NOMEMALLOC | __GFP_NOWARN, 355 node); 356 if (obj || !(gfp_pfmemalloc_allowed(flags))) 357 goto out; 358 359 /* Try again but now we are using pfmemalloc reserves */ 360 ret_pfmemalloc = true; 361 obj = kmalloc_node_track_caller(size, flags, node); 362 363 out: 364 if (pfmemalloc) 365 *pfmemalloc = ret_pfmemalloc; 366 367 return obj; 368 } 369 370 /* Allocate a new skbuff. We do this ourselves so we can fill in a few 371 * 'private' fields and also do memory statistics to find all the 372 * [BEEP] leaks. 373 * 374 */ 375 376 /** 377 * __alloc_skb - allocate a network buffer 378 * @size: size to allocate 379 * @gfp_mask: allocation mask 380 * @flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache 381 * instead of head cache and allocate a cloned (child) skb. 382 * If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for 383 * allocations in case the data is required for writeback 384 * @node: numa node to allocate memory on 385 * 386 * Allocate a new &sk_buff. The returned buffer has no headroom and a 387 * tail room of at least size bytes. The object has a reference count 388 * of one. The return is the buffer. On a failure the return is %NULL. 389 * 390 * Buffers may only be allocated from interrupts using a @gfp_mask of 391 * %GFP_ATOMIC. 392 */ 393 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask, 394 int flags, int node) 395 { 396 struct kmem_cache *cache; 397 struct sk_buff *skb; 398 u8 *data; 399 bool pfmemalloc; 400 401 cache = (flags & SKB_ALLOC_FCLONE) 402 ? skbuff_fclone_cache : skbuff_head_cache; 403 404 if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX)) 405 gfp_mask |= __GFP_MEMALLOC; 406 407 /* Get the HEAD */ 408 if ((flags & (SKB_ALLOC_FCLONE | SKB_ALLOC_NAPI)) == SKB_ALLOC_NAPI && 409 likely(node == NUMA_NO_NODE || node == numa_mem_id())) 410 skb = napi_skb_cache_get(); 411 else 412 skb = kmem_cache_alloc_node(cache, gfp_mask & ~GFP_DMA, node); 413 if (unlikely(!skb)) 414 return NULL; 415 prefetchw(skb); 416 417 /* We do our best to align skb_shared_info on a separate cache 418 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives 419 * aligned memory blocks, unless SLUB/SLAB debug is enabled. 420 * Both skb->head and skb_shared_info are cache line aligned. 421 */ 422 size = SKB_DATA_ALIGN(size); 423 size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 424 data = kmalloc_reserve(size, gfp_mask, node, &pfmemalloc); 425 if (unlikely(!data)) 426 goto nodata; 427 /* kmalloc(size) might give us more room than requested. 428 * Put skb_shared_info exactly at the end of allocated zone, 429 * to allow max possible filling before reallocation. 430 */ 431 size = SKB_WITH_OVERHEAD(ksize(data)); 432 prefetchw(data + size); 433 434 /* 435 * Only clear those fields we need to clear, not those that we will 436 * actually initialise below. Hence, don't put any more fields after 437 * the tail pointer in struct sk_buff! 438 */ 439 memset(skb, 0, offsetof(struct sk_buff, tail)); 440 __build_skb_around(skb, data, 0); 441 skb->pfmemalloc = pfmemalloc; 442 443 if (flags & SKB_ALLOC_FCLONE) { 444 struct sk_buff_fclones *fclones; 445 446 fclones = container_of(skb, struct sk_buff_fclones, skb1); 447 448 skb->fclone = SKB_FCLONE_ORIG; 449 refcount_set(&fclones->fclone_ref, 1); 450 451 fclones->skb2.fclone = SKB_FCLONE_CLONE; 452 } 453 454 return skb; 455 456 nodata: 457 kmem_cache_free(cache, skb); 458 return NULL; 459 } 460 EXPORT_SYMBOL(__alloc_skb); 461 462 /** 463 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device 464 * @dev: network device to receive on 465 * @len: length to allocate 466 * @gfp_mask: get_free_pages mask, passed to alloc_skb 467 * 468 * Allocate a new &sk_buff and assign it a usage count of one. The 469 * buffer has NET_SKB_PAD headroom built in. Users should allocate 470 * the headroom they think they need without accounting for the 471 * built in space. The built in space is used for optimisations. 472 * 473 * %NULL is returned if there is no free memory. 474 */ 475 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len, 476 gfp_t gfp_mask) 477 { 478 struct page_frag_cache *nc; 479 struct sk_buff *skb; 480 bool pfmemalloc; 481 void *data; 482 483 len += NET_SKB_PAD; 484 485 /* If requested length is either too small or too big, 486 * we use kmalloc() for skb->head allocation. 487 */ 488 if (len <= SKB_WITH_OVERHEAD(1024) || 489 len > SKB_WITH_OVERHEAD(PAGE_SIZE) || 490 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) { 491 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE); 492 if (!skb) 493 goto skb_fail; 494 goto skb_success; 495 } 496 497 len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 498 len = SKB_DATA_ALIGN(len); 499 500 if (sk_memalloc_socks()) 501 gfp_mask |= __GFP_MEMALLOC; 502 503 if (in_irq() || irqs_disabled()) { 504 nc = this_cpu_ptr(&netdev_alloc_cache); 505 data = page_frag_alloc(nc, len, gfp_mask); 506 pfmemalloc = nc->pfmemalloc; 507 } else { 508 local_bh_disable(); 509 nc = this_cpu_ptr(&napi_alloc_cache.page); 510 data = page_frag_alloc(nc, len, gfp_mask); 511 pfmemalloc = nc->pfmemalloc; 512 local_bh_enable(); 513 } 514 515 if (unlikely(!data)) 516 return NULL; 517 518 skb = __build_skb(data, len); 519 if (unlikely(!skb)) { 520 skb_free_frag(data); 521 return NULL; 522 } 523 524 if (pfmemalloc) 525 skb->pfmemalloc = 1; 526 skb->head_frag = 1; 527 528 skb_success: 529 skb_reserve(skb, NET_SKB_PAD); 530 skb->dev = dev; 531 532 skb_fail: 533 return skb; 534 } 535 EXPORT_SYMBOL(__netdev_alloc_skb); 536 537 /** 538 * __napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance 539 * @napi: napi instance this buffer was allocated for 540 * @len: length to allocate 541 * @gfp_mask: get_free_pages mask, passed to alloc_skb and alloc_pages 542 * 543 * Allocate a new sk_buff for use in NAPI receive. This buffer will 544 * attempt to allocate the head from a special reserved region used 545 * only for NAPI Rx allocation. By doing this we can save several 546 * CPU cycles by avoiding having to disable and re-enable IRQs. 547 * 548 * %NULL is returned if there is no free memory. 549 */ 550 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, unsigned int len, 551 gfp_t gfp_mask) 552 { 553 struct napi_alloc_cache *nc; 554 struct sk_buff *skb; 555 void *data; 556 557 len += NET_SKB_PAD + NET_IP_ALIGN; 558 559 /* If requested length is either too small or too big, 560 * we use kmalloc() for skb->head allocation. 561 */ 562 if (len <= SKB_WITH_OVERHEAD(1024) || 563 len > SKB_WITH_OVERHEAD(PAGE_SIZE) || 564 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) { 565 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX | SKB_ALLOC_NAPI, 566 NUMA_NO_NODE); 567 if (!skb) 568 goto skb_fail; 569 goto skb_success; 570 } 571 572 nc = this_cpu_ptr(&napi_alloc_cache); 573 len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 574 len = SKB_DATA_ALIGN(len); 575 576 if (sk_memalloc_socks()) 577 gfp_mask |= __GFP_MEMALLOC; 578 579 data = page_frag_alloc(&nc->page, len, gfp_mask); 580 if (unlikely(!data)) 581 return NULL; 582 583 skb = __napi_build_skb(data, len); 584 if (unlikely(!skb)) { 585 skb_free_frag(data); 586 return NULL; 587 } 588 589 if (nc->page.pfmemalloc) 590 skb->pfmemalloc = 1; 591 skb->head_frag = 1; 592 593 skb_success: 594 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN); 595 skb->dev = napi->dev; 596 597 skb_fail: 598 return skb; 599 } 600 EXPORT_SYMBOL(__napi_alloc_skb); 601 602 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off, 603 int size, unsigned int truesize) 604 { 605 skb_fill_page_desc(skb, i, page, off, size); 606 skb->len += size; 607 skb->data_len += size; 608 skb->truesize += truesize; 609 } 610 EXPORT_SYMBOL(skb_add_rx_frag); 611 612 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size, 613 unsigned int truesize) 614 { 615 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 616 617 skb_frag_size_add(frag, size); 618 skb->len += size; 619 skb->data_len += size; 620 skb->truesize += truesize; 621 } 622 EXPORT_SYMBOL(skb_coalesce_rx_frag); 623 624 static void skb_drop_list(struct sk_buff **listp) 625 { 626 kfree_skb_list(*listp); 627 *listp = NULL; 628 } 629 630 static inline void skb_drop_fraglist(struct sk_buff *skb) 631 { 632 skb_drop_list(&skb_shinfo(skb)->frag_list); 633 } 634 635 static void skb_clone_fraglist(struct sk_buff *skb) 636 { 637 struct sk_buff *list; 638 639 skb_walk_frags(skb, list) 640 skb_get(list); 641 } 642 643 static void skb_free_head(struct sk_buff *skb) 644 { 645 unsigned char *head = skb->head; 646 647 if (skb->head_frag) 648 skb_free_frag(head); 649 else 650 kfree(head); 651 } 652 653 static void skb_release_data(struct sk_buff *skb) 654 { 655 struct skb_shared_info *shinfo = skb_shinfo(skb); 656 int i; 657 658 if (skb->cloned && 659 atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1, 660 &shinfo->dataref)) 661 return; 662 663 skb_zcopy_clear(skb, true); 664 665 for (i = 0; i < shinfo->nr_frags; i++) 666 __skb_frag_unref(&shinfo->frags[i]); 667 668 if (shinfo->frag_list) 669 kfree_skb_list(shinfo->frag_list); 670 671 skb_free_head(skb); 672 } 673 674 /* 675 * Free an skbuff by memory without cleaning the state. 676 */ 677 static void kfree_skbmem(struct sk_buff *skb) 678 { 679 struct sk_buff_fclones *fclones; 680 681 switch (skb->fclone) { 682 case SKB_FCLONE_UNAVAILABLE: 683 kmem_cache_free(skbuff_head_cache, skb); 684 return; 685 686 case SKB_FCLONE_ORIG: 687 fclones = container_of(skb, struct sk_buff_fclones, skb1); 688 689 /* We usually free the clone (TX completion) before original skb 690 * This test would have no chance to be true for the clone, 691 * while here, branch prediction will be good. 692 */ 693 if (refcount_read(&fclones->fclone_ref) == 1) 694 goto fastpath; 695 break; 696 697 default: /* SKB_FCLONE_CLONE */ 698 fclones = container_of(skb, struct sk_buff_fclones, skb2); 699 break; 700 } 701 if (!refcount_dec_and_test(&fclones->fclone_ref)) 702 return; 703 fastpath: 704 kmem_cache_free(skbuff_fclone_cache, fclones); 705 } 706 707 void skb_release_head_state(struct sk_buff *skb) 708 { 709 skb_dst_drop(skb); 710 if (skb->destructor) { 711 WARN_ON(in_irq()); 712 skb->destructor(skb); 713 } 714 #if IS_ENABLED(CONFIG_NF_CONNTRACK) 715 nf_conntrack_put(skb_nfct(skb)); 716 #endif 717 skb_ext_put(skb); 718 } 719 720 /* Free everything but the sk_buff shell. */ 721 static void skb_release_all(struct sk_buff *skb) 722 { 723 skb_release_head_state(skb); 724 if (likely(skb->head)) 725 skb_release_data(skb); 726 } 727 728 /** 729 * __kfree_skb - private function 730 * @skb: buffer 731 * 732 * Free an sk_buff. Release anything attached to the buffer. 733 * Clean the state. This is an internal helper function. Users should 734 * always call kfree_skb 735 */ 736 737 void __kfree_skb(struct sk_buff *skb) 738 { 739 skb_release_all(skb); 740 kfree_skbmem(skb); 741 } 742 EXPORT_SYMBOL(__kfree_skb); 743 744 /** 745 * kfree_skb - free an sk_buff 746 * @skb: buffer to free 747 * 748 * Drop a reference to the buffer and free it if the usage count has 749 * hit zero. 750 */ 751 void kfree_skb(struct sk_buff *skb) 752 { 753 if (!skb_unref(skb)) 754 return; 755 756 trace_kfree_skb(skb, __builtin_return_address(0)); 757 __kfree_skb(skb); 758 } 759 EXPORT_SYMBOL(kfree_skb); 760 761 void kfree_skb_list(struct sk_buff *segs) 762 { 763 while (segs) { 764 struct sk_buff *next = segs->next; 765 766 kfree_skb(segs); 767 segs = next; 768 } 769 } 770 EXPORT_SYMBOL(kfree_skb_list); 771 772 /* Dump skb information and contents. 773 * 774 * Must only be called from net_ratelimit()-ed paths. 775 * 776 * Dumps whole packets if full_pkt, only headers otherwise. 777 */ 778 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt) 779 { 780 struct skb_shared_info *sh = skb_shinfo(skb); 781 struct net_device *dev = skb->dev; 782 struct sock *sk = skb->sk; 783 struct sk_buff *list_skb; 784 bool has_mac, has_trans; 785 int headroom, tailroom; 786 int i, len, seg_len; 787 788 if (full_pkt) 789 len = skb->len; 790 else 791 len = min_t(int, skb->len, MAX_HEADER + 128); 792 793 headroom = skb_headroom(skb); 794 tailroom = skb_tailroom(skb); 795 796 has_mac = skb_mac_header_was_set(skb); 797 has_trans = skb_transport_header_was_set(skb); 798 799 printk("%sskb len=%u headroom=%u headlen=%u tailroom=%u\n" 800 "mac=(%d,%d) net=(%d,%d) trans=%d\n" 801 "shinfo(txflags=%u nr_frags=%u gso(size=%hu type=%u segs=%hu))\n" 802 "csum(0x%x ip_summed=%u complete_sw=%u valid=%u level=%u)\n" 803 "hash(0x%x sw=%u l4=%u) proto=0x%04x pkttype=%u iif=%d\n", 804 level, skb->len, headroom, skb_headlen(skb), tailroom, 805 has_mac ? skb->mac_header : -1, 806 has_mac ? skb_mac_header_len(skb) : -1, 807 skb->network_header, 808 has_trans ? skb_network_header_len(skb) : -1, 809 has_trans ? skb->transport_header : -1, 810 sh->tx_flags, sh->nr_frags, 811 sh->gso_size, sh->gso_type, sh->gso_segs, 812 skb->csum, skb->ip_summed, skb->csum_complete_sw, 813 skb->csum_valid, skb->csum_level, 814 skb->hash, skb->sw_hash, skb->l4_hash, 815 ntohs(skb->protocol), skb->pkt_type, skb->skb_iif); 816 817 if (dev) 818 printk("%sdev name=%s feat=0x%pNF\n", 819 level, dev->name, &dev->features); 820 if (sk) 821 printk("%ssk family=%hu type=%u proto=%u\n", 822 level, sk->sk_family, sk->sk_type, sk->sk_protocol); 823 824 if (full_pkt && headroom) 825 print_hex_dump(level, "skb headroom: ", DUMP_PREFIX_OFFSET, 826 16, 1, skb->head, headroom, false); 827 828 seg_len = min_t(int, skb_headlen(skb), len); 829 if (seg_len) 830 print_hex_dump(level, "skb linear: ", DUMP_PREFIX_OFFSET, 831 16, 1, skb->data, seg_len, false); 832 len -= seg_len; 833 834 if (full_pkt && tailroom) 835 print_hex_dump(level, "skb tailroom: ", DUMP_PREFIX_OFFSET, 836 16, 1, skb_tail_pointer(skb), tailroom, false); 837 838 for (i = 0; len && i < skb_shinfo(skb)->nr_frags; i++) { 839 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 840 u32 p_off, p_len, copied; 841 struct page *p; 842 u8 *vaddr; 843 844 skb_frag_foreach_page(frag, skb_frag_off(frag), 845 skb_frag_size(frag), p, p_off, p_len, 846 copied) { 847 seg_len = min_t(int, p_len, len); 848 vaddr = kmap_atomic(p); 849 print_hex_dump(level, "skb frag: ", 850 DUMP_PREFIX_OFFSET, 851 16, 1, vaddr + p_off, seg_len, false); 852 kunmap_atomic(vaddr); 853 len -= seg_len; 854 if (!len) 855 break; 856 } 857 } 858 859 if (full_pkt && skb_has_frag_list(skb)) { 860 printk("skb fraglist:\n"); 861 skb_walk_frags(skb, list_skb) 862 skb_dump(level, list_skb, true); 863 } 864 } 865 EXPORT_SYMBOL(skb_dump); 866 867 /** 868 * skb_tx_error - report an sk_buff xmit error 869 * @skb: buffer that triggered an error 870 * 871 * Report xmit error if a device callback is tracking this skb. 872 * skb must be freed afterwards. 873 */ 874 void skb_tx_error(struct sk_buff *skb) 875 { 876 skb_zcopy_clear(skb, true); 877 } 878 EXPORT_SYMBOL(skb_tx_error); 879 880 #ifdef CONFIG_TRACEPOINTS 881 /** 882 * consume_skb - free an skbuff 883 * @skb: buffer to free 884 * 885 * Drop a ref to the buffer and free it if the usage count has hit zero 886 * Functions identically to kfree_skb, but kfree_skb assumes that the frame 887 * is being dropped after a failure and notes that 888 */ 889 void consume_skb(struct sk_buff *skb) 890 { 891 if (!skb_unref(skb)) 892 return; 893 894 trace_consume_skb(skb); 895 __kfree_skb(skb); 896 } 897 EXPORT_SYMBOL(consume_skb); 898 #endif 899 900 /** 901 * __consume_stateless_skb - free an skbuff, assuming it is stateless 902 * @skb: buffer to free 903 * 904 * Alike consume_skb(), but this variant assumes that this is the last 905 * skb reference and all the head states have been already dropped 906 */ 907 void __consume_stateless_skb(struct sk_buff *skb) 908 { 909 trace_consume_skb(skb); 910 skb_release_data(skb); 911 kfree_skbmem(skb); 912 } 913 914 static void napi_skb_cache_put(struct sk_buff *skb) 915 { 916 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 917 u32 i; 918 919 kasan_poison_object_data(skbuff_head_cache, skb); 920 nc->skb_cache[nc->skb_count++] = skb; 921 922 if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) { 923 for (i = NAPI_SKB_CACHE_HALF; i < NAPI_SKB_CACHE_SIZE; i++) 924 kasan_unpoison_object_data(skbuff_head_cache, 925 nc->skb_cache[i]); 926 927 kmem_cache_free_bulk(skbuff_head_cache, NAPI_SKB_CACHE_HALF, 928 nc->skb_cache + NAPI_SKB_CACHE_HALF); 929 nc->skb_count = NAPI_SKB_CACHE_HALF; 930 } 931 } 932 933 void __kfree_skb_defer(struct sk_buff *skb) 934 { 935 skb_release_all(skb); 936 napi_skb_cache_put(skb); 937 } 938 939 void napi_skb_free_stolen_head(struct sk_buff *skb) 940 { 941 skb_dst_drop(skb); 942 skb_ext_put(skb); 943 napi_skb_cache_put(skb); 944 } 945 946 void napi_consume_skb(struct sk_buff *skb, int budget) 947 { 948 /* Zero budget indicate non-NAPI context called us, like netpoll */ 949 if (unlikely(!budget)) { 950 dev_consume_skb_any(skb); 951 return; 952 } 953 954 lockdep_assert_in_softirq(); 955 956 if (!skb_unref(skb)) 957 return; 958 959 /* if reaching here SKB is ready to free */ 960 trace_consume_skb(skb); 961 962 /* if SKB is a clone, don't handle this case */ 963 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) { 964 __kfree_skb(skb); 965 return; 966 } 967 968 skb_release_all(skb); 969 napi_skb_cache_put(skb); 970 } 971 EXPORT_SYMBOL(napi_consume_skb); 972 973 /* Make sure a field is enclosed inside headers_start/headers_end section */ 974 #define CHECK_SKB_FIELD(field) \ 975 BUILD_BUG_ON(offsetof(struct sk_buff, field) < \ 976 offsetof(struct sk_buff, headers_start)); \ 977 BUILD_BUG_ON(offsetof(struct sk_buff, field) > \ 978 offsetof(struct sk_buff, headers_end)); \ 979 980 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old) 981 { 982 new->tstamp = old->tstamp; 983 /* We do not copy old->sk */ 984 new->dev = old->dev; 985 memcpy(new->cb, old->cb, sizeof(old->cb)); 986 skb_dst_copy(new, old); 987 __skb_ext_copy(new, old); 988 __nf_copy(new, old, false); 989 990 /* Note : this field could be in headers_start/headers_end section 991 * It is not yet because we do not want to have a 16 bit hole 992 */ 993 new->queue_mapping = old->queue_mapping; 994 995 memcpy(&new->headers_start, &old->headers_start, 996 offsetof(struct sk_buff, headers_end) - 997 offsetof(struct sk_buff, headers_start)); 998 CHECK_SKB_FIELD(protocol); 999 CHECK_SKB_FIELD(csum); 1000 CHECK_SKB_FIELD(hash); 1001 CHECK_SKB_FIELD(priority); 1002 CHECK_SKB_FIELD(skb_iif); 1003 CHECK_SKB_FIELD(vlan_proto); 1004 CHECK_SKB_FIELD(vlan_tci); 1005 CHECK_SKB_FIELD(transport_header); 1006 CHECK_SKB_FIELD(network_header); 1007 CHECK_SKB_FIELD(mac_header); 1008 CHECK_SKB_FIELD(inner_protocol); 1009 CHECK_SKB_FIELD(inner_transport_header); 1010 CHECK_SKB_FIELD(inner_network_header); 1011 CHECK_SKB_FIELD(inner_mac_header); 1012 CHECK_SKB_FIELD(mark); 1013 #ifdef CONFIG_NETWORK_SECMARK 1014 CHECK_SKB_FIELD(secmark); 1015 #endif 1016 #ifdef CONFIG_NET_RX_BUSY_POLL 1017 CHECK_SKB_FIELD(napi_id); 1018 #endif 1019 #ifdef CONFIG_XPS 1020 CHECK_SKB_FIELD(sender_cpu); 1021 #endif 1022 #ifdef CONFIG_NET_SCHED 1023 CHECK_SKB_FIELD(tc_index); 1024 #endif 1025 1026 } 1027 1028 /* 1029 * You should not add any new code to this function. Add it to 1030 * __copy_skb_header above instead. 1031 */ 1032 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb) 1033 { 1034 #define C(x) n->x = skb->x 1035 1036 n->next = n->prev = NULL; 1037 n->sk = NULL; 1038 __copy_skb_header(n, skb); 1039 1040 C(len); 1041 C(data_len); 1042 C(mac_len); 1043 n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len; 1044 n->cloned = 1; 1045 n->nohdr = 0; 1046 n->peeked = 0; 1047 C(pfmemalloc); 1048 n->destructor = NULL; 1049 C(tail); 1050 C(end); 1051 C(head); 1052 C(head_frag); 1053 C(data); 1054 C(truesize); 1055 refcount_set(&n->users, 1); 1056 1057 atomic_inc(&(skb_shinfo(skb)->dataref)); 1058 skb->cloned = 1; 1059 1060 return n; 1061 #undef C 1062 } 1063 1064 /** 1065 * alloc_skb_for_msg() - allocate sk_buff to wrap frag list forming a msg 1066 * @first: first sk_buff of the msg 1067 */ 1068 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first) 1069 { 1070 struct sk_buff *n; 1071 1072 n = alloc_skb(0, GFP_ATOMIC); 1073 if (!n) 1074 return NULL; 1075 1076 n->len = first->len; 1077 n->data_len = first->len; 1078 n->truesize = first->truesize; 1079 1080 skb_shinfo(n)->frag_list = first; 1081 1082 __copy_skb_header(n, first); 1083 n->destructor = NULL; 1084 1085 return n; 1086 } 1087 EXPORT_SYMBOL_GPL(alloc_skb_for_msg); 1088 1089 /** 1090 * skb_morph - morph one skb into another 1091 * @dst: the skb to receive the contents 1092 * @src: the skb to supply the contents 1093 * 1094 * This is identical to skb_clone except that the target skb is 1095 * supplied by the user. 1096 * 1097 * The target skb is returned upon exit. 1098 */ 1099 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src) 1100 { 1101 skb_release_all(dst); 1102 return __skb_clone(dst, src); 1103 } 1104 EXPORT_SYMBOL_GPL(skb_morph); 1105 1106 int mm_account_pinned_pages(struct mmpin *mmp, size_t size) 1107 { 1108 unsigned long max_pg, num_pg, new_pg, old_pg; 1109 struct user_struct *user; 1110 1111 if (capable(CAP_IPC_LOCK) || !size) 1112 return 0; 1113 1114 num_pg = (size >> PAGE_SHIFT) + 2; /* worst case */ 1115 max_pg = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT; 1116 user = mmp->user ? : current_user(); 1117 1118 do { 1119 old_pg = atomic_long_read(&user->locked_vm); 1120 new_pg = old_pg + num_pg; 1121 if (new_pg > max_pg) 1122 return -ENOBUFS; 1123 } while (atomic_long_cmpxchg(&user->locked_vm, old_pg, new_pg) != 1124 old_pg); 1125 1126 if (!mmp->user) { 1127 mmp->user = get_uid(user); 1128 mmp->num_pg = num_pg; 1129 } else { 1130 mmp->num_pg += num_pg; 1131 } 1132 1133 return 0; 1134 } 1135 EXPORT_SYMBOL_GPL(mm_account_pinned_pages); 1136 1137 void mm_unaccount_pinned_pages(struct mmpin *mmp) 1138 { 1139 if (mmp->user) { 1140 atomic_long_sub(mmp->num_pg, &mmp->user->locked_vm); 1141 free_uid(mmp->user); 1142 } 1143 } 1144 EXPORT_SYMBOL_GPL(mm_unaccount_pinned_pages); 1145 1146 struct ubuf_info *msg_zerocopy_alloc(struct sock *sk, size_t size) 1147 { 1148 struct ubuf_info *uarg; 1149 struct sk_buff *skb; 1150 1151 WARN_ON_ONCE(!in_task()); 1152 1153 skb = sock_omalloc(sk, 0, GFP_KERNEL); 1154 if (!skb) 1155 return NULL; 1156 1157 BUILD_BUG_ON(sizeof(*uarg) > sizeof(skb->cb)); 1158 uarg = (void *)skb->cb; 1159 uarg->mmp.user = NULL; 1160 1161 if (mm_account_pinned_pages(&uarg->mmp, size)) { 1162 kfree_skb(skb); 1163 return NULL; 1164 } 1165 1166 uarg->callback = msg_zerocopy_callback; 1167 uarg->id = ((u32)atomic_inc_return(&sk->sk_zckey)) - 1; 1168 uarg->len = 1; 1169 uarg->bytelen = size; 1170 uarg->zerocopy = 1; 1171 uarg->flags = SKBFL_ZEROCOPY_FRAG; 1172 refcount_set(&uarg->refcnt, 1); 1173 sock_hold(sk); 1174 1175 return uarg; 1176 } 1177 EXPORT_SYMBOL_GPL(msg_zerocopy_alloc); 1178 1179 static inline struct sk_buff *skb_from_uarg(struct ubuf_info *uarg) 1180 { 1181 return container_of((void *)uarg, struct sk_buff, cb); 1182 } 1183 1184 struct ubuf_info *msg_zerocopy_realloc(struct sock *sk, size_t size, 1185 struct ubuf_info *uarg) 1186 { 1187 if (uarg) { 1188 const u32 byte_limit = 1 << 19; /* limit to a few TSO */ 1189 u32 bytelen, next; 1190 1191 /* realloc only when socket is locked (TCP, UDP cork), 1192 * so uarg->len and sk_zckey access is serialized 1193 */ 1194 if (!sock_owned_by_user(sk)) { 1195 WARN_ON_ONCE(1); 1196 return NULL; 1197 } 1198 1199 bytelen = uarg->bytelen + size; 1200 if (uarg->len == USHRT_MAX - 1 || bytelen > byte_limit) { 1201 /* TCP can create new skb to attach new uarg */ 1202 if (sk->sk_type == SOCK_STREAM) 1203 goto new_alloc; 1204 return NULL; 1205 } 1206 1207 next = (u32)atomic_read(&sk->sk_zckey); 1208 if ((u32)(uarg->id + uarg->len) == next) { 1209 if (mm_account_pinned_pages(&uarg->mmp, size)) 1210 return NULL; 1211 uarg->len++; 1212 uarg->bytelen = bytelen; 1213 atomic_set(&sk->sk_zckey, ++next); 1214 1215 /* no extra ref when appending to datagram (MSG_MORE) */ 1216 if (sk->sk_type == SOCK_STREAM) 1217 net_zcopy_get(uarg); 1218 1219 return uarg; 1220 } 1221 } 1222 1223 new_alloc: 1224 return msg_zerocopy_alloc(sk, size); 1225 } 1226 EXPORT_SYMBOL_GPL(msg_zerocopy_realloc); 1227 1228 static bool skb_zerocopy_notify_extend(struct sk_buff *skb, u32 lo, u16 len) 1229 { 1230 struct sock_exterr_skb *serr = SKB_EXT_ERR(skb); 1231 u32 old_lo, old_hi; 1232 u64 sum_len; 1233 1234 old_lo = serr->ee.ee_info; 1235 old_hi = serr->ee.ee_data; 1236 sum_len = old_hi - old_lo + 1ULL + len; 1237 1238 if (sum_len >= (1ULL << 32)) 1239 return false; 1240 1241 if (lo != old_hi + 1) 1242 return false; 1243 1244 serr->ee.ee_data += len; 1245 return true; 1246 } 1247 1248 static void __msg_zerocopy_callback(struct ubuf_info *uarg) 1249 { 1250 struct sk_buff *tail, *skb = skb_from_uarg(uarg); 1251 struct sock_exterr_skb *serr; 1252 struct sock *sk = skb->sk; 1253 struct sk_buff_head *q; 1254 unsigned long flags; 1255 u32 lo, hi; 1256 u16 len; 1257 1258 mm_unaccount_pinned_pages(&uarg->mmp); 1259 1260 /* if !len, there was only 1 call, and it was aborted 1261 * so do not queue a completion notification 1262 */ 1263 if (!uarg->len || sock_flag(sk, SOCK_DEAD)) 1264 goto release; 1265 1266 len = uarg->len; 1267 lo = uarg->id; 1268 hi = uarg->id + len - 1; 1269 1270 serr = SKB_EXT_ERR(skb); 1271 memset(serr, 0, sizeof(*serr)); 1272 serr->ee.ee_errno = 0; 1273 serr->ee.ee_origin = SO_EE_ORIGIN_ZEROCOPY; 1274 serr->ee.ee_data = hi; 1275 serr->ee.ee_info = lo; 1276 if (!uarg->zerocopy) 1277 serr->ee.ee_code |= SO_EE_CODE_ZEROCOPY_COPIED; 1278 1279 q = &sk->sk_error_queue; 1280 spin_lock_irqsave(&q->lock, flags); 1281 tail = skb_peek_tail(q); 1282 if (!tail || SKB_EXT_ERR(tail)->ee.ee_origin != SO_EE_ORIGIN_ZEROCOPY || 1283 !skb_zerocopy_notify_extend(tail, lo, len)) { 1284 __skb_queue_tail(q, skb); 1285 skb = NULL; 1286 } 1287 spin_unlock_irqrestore(&q->lock, flags); 1288 1289 sk->sk_error_report(sk); 1290 1291 release: 1292 consume_skb(skb); 1293 sock_put(sk); 1294 } 1295 1296 void msg_zerocopy_callback(struct sk_buff *skb, struct ubuf_info *uarg, 1297 bool success) 1298 { 1299 uarg->zerocopy = uarg->zerocopy & success; 1300 1301 if (refcount_dec_and_test(&uarg->refcnt)) 1302 __msg_zerocopy_callback(uarg); 1303 } 1304 EXPORT_SYMBOL_GPL(msg_zerocopy_callback); 1305 1306 void msg_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref) 1307 { 1308 struct sock *sk = skb_from_uarg(uarg)->sk; 1309 1310 atomic_dec(&sk->sk_zckey); 1311 uarg->len--; 1312 1313 if (have_uref) 1314 msg_zerocopy_callback(NULL, uarg, true); 1315 } 1316 EXPORT_SYMBOL_GPL(msg_zerocopy_put_abort); 1317 1318 int skb_zerocopy_iter_dgram(struct sk_buff *skb, struct msghdr *msg, int len) 1319 { 1320 return __zerocopy_sg_from_iter(skb->sk, skb, &msg->msg_iter, len); 1321 } 1322 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_dgram); 1323 1324 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb, 1325 struct msghdr *msg, int len, 1326 struct ubuf_info *uarg) 1327 { 1328 struct ubuf_info *orig_uarg = skb_zcopy(skb); 1329 struct iov_iter orig_iter = msg->msg_iter; 1330 int err, orig_len = skb->len; 1331 1332 /* An skb can only point to one uarg. This edge case happens when 1333 * TCP appends to an skb, but zerocopy_realloc triggered a new alloc. 1334 */ 1335 if (orig_uarg && uarg != orig_uarg) 1336 return -EEXIST; 1337 1338 err = __zerocopy_sg_from_iter(sk, skb, &msg->msg_iter, len); 1339 if (err == -EFAULT || (err == -EMSGSIZE && skb->len == orig_len)) { 1340 struct sock *save_sk = skb->sk; 1341 1342 /* Streams do not free skb on error. Reset to prev state. */ 1343 msg->msg_iter = orig_iter; 1344 skb->sk = sk; 1345 ___pskb_trim(skb, orig_len); 1346 skb->sk = save_sk; 1347 return err; 1348 } 1349 1350 skb_zcopy_set(skb, uarg, NULL); 1351 return skb->len - orig_len; 1352 } 1353 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_stream); 1354 1355 static int skb_zerocopy_clone(struct sk_buff *nskb, struct sk_buff *orig, 1356 gfp_t gfp_mask) 1357 { 1358 if (skb_zcopy(orig)) { 1359 if (skb_zcopy(nskb)) { 1360 /* !gfp_mask callers are verified to !skb_zcopy(nskb) */ 1361 if (!gfp_mask) { 1362 WARN_ON_ONCE(1); 1363 return -ENOMEM; 1364 } 1365 if (skb_uarg(nskb) == skb_uarg(orig)) 1366 return 0; 1367 if (skb_copy_ubufs(nskb, GFP_ATOMIC)) 1368 return -EIO; 1369 } 1370 skb_zcopy_set(nskb, skb_uarg(orig), NULL); 1371 } 1372 return 0; 1373 } 1374 1375 /** 1376 * skb_copy_ubufs - copy userspace skb frags buffers to kernel 1377 * @skb: the skb to modify 1378 * @gfp_mask: allocation priority 1379 * 1380 * This must be called on skb with SKBFL_ZEROCOPY_ENABLE. 1381 * It will copy all frags into kernel and drop the reference 1382 * to userspace pages. 1383 * 1384 * If this function is called from an interrupt gfp_mask() must be 1385 * %GFP_ATOMIC. 1386 * 1387 * Returns 0 on success or a negative error code on failure 1388 * to allocate kernel memory to copy to. 1389 */ 1390 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask) 1391 { 1392 int num_frags = skb_shinfo(skb)->nr_frags; 1393 struct page *page, *head = NULL; 1394 int i, new_frags; 1395 u32 d_off; 1396 1397 if (skb_shared(skb) || skb_unclone(skb, gfp_mask)) 1398 return -EINVAL; 1399 1400 if (!num_frags) 1401 goto release; 1402 1403 new_frags = (__skb_pagelen(skb) + PAGE_SIZE - 1) >> PAGE_SHIFT; 1404 for (i = 0; i < new_frags; i++) { 1405 page = alloc_page(gfp_mask); 1406 if (!page) { 1407 while (head) { 1408 struct page *next = (struct page *)page_private(head); 1409 put_page(head); 1410 head = next; 1411 } 1412 return -ENOMEM; 1413 } 1414 set_page_private(page, (unsigned long)head); 1415 head = page; 1416 } 1417 1418 page = head; 1419 d_off = 0; 1420 for (i = 0; i < num_frags; i++) { 1421 skb_frag_t *f = &skb_shinfo(skb)->frags[i]; 1422 u32 p_off, p_len, copied; 1423 struct page *p; 1424 u8 *vaddr; 1425 1426 skb_frag_foreach_page(f, skb_frag_off(f), skb_frag_size(f), 1427 p, p_off, p_len, copied) { 1428 u32 copy, done = 0; 1429 vaddr = kmap_atomic(p); 1430 1431 while (done < p_len) { 1432 if (d_off == PAGE_SIZE) { 1433 d_off = 0; 1434 page = (struct page *)page_private(page); 1435 } 1436 copy = min_t(u32, PAGE_SIZE - d_off, p_len - done); 1437 memcpy(page_address(page) + d_off, 1438 vaddr + p_off + done, copy); 1439 done += copy; 1440 d_off += copy; 1441 } 1442 kunmap_atomic(vaddr); 1443 } 1444 } 1445 1446 /* skb frags release userspace buffers */ 1447 for (i = 0; i < num_frags; i++) 1448 skb_frag_unref(skb, i); 1449 1450 /* skb frags point to kernel buffers */ 1451 for (i = 0; i < new_frags - 1; i++) { 1452 __skb_fill_page_desc(skb, i, head, 0, PAGE_SIZE); 1453 head = (struct page *)page_private(head); 1454 } 1455 __skb_fill_page_desc(skb, new_frags - 1, head, 0, d_off); 1456 skb_shinfo(skb)->nr_frags = new_frags; 1457 1458 release: 1459 skb_zcopy_clear(skb, false); 1460 return 0; 1461 } 1462 EXPORT_SYMBOL_GPL(skb_copy_ubufs); 1463 1464 /** 1465 * skb_clone - duplicate an sk_buff 1466 * @skb: buffer to clone 1467 * @gfp_mask: allocation priority 1468 * 1469 * Duplicate an &sk_buff. The new one is not owned by a socket. Both 1470 * copies share the same packet data but not structure. The new 1471 * buffer has a reference count of 1. If the allocation fails the 1472 * function returns %NULL otherwise the new buffer is returned. 1473 * 1474 * If this function is called from an interrupt gfp_mask() must be 1475 * %GFP_ATOMIC. 1476 */ 1477 1478 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask) 1479 { 1480 struct sk_buff_fclones *fclones = container_of(skb, 1481 struct sk_buff_fclones, 1482 skb1); 1483 struct sk_buff *n; 1484 1485 if (skb_orphan_frags(skb, gfp_mask)) 1486 return NULL; 1487 1488 if (skb->fclone == SKB_FCLONE_ORIG && 1489 refcount_read(&fclones->fclone_ref) == 1) { 1490 n = &fclones->skb2; 1491 refcount_set(&fclones->fclone_ref, 2); 1492 } else { 1493 if (skb_pfmemalloc(skb)) 1494 gfp_mask |= __GFP_MEMALLOC; 1495 1496 n = kmem_cache_alloc(skbuff_head_cache, gfp_mask); 1497 if (!n) 1498 return NULL; 1499 1500 n->fclone = SKB_FCLONE_UNAVAILABLE; 1501 } 1502 1503 return __skb_clone(n, skb); 1504 } 1505 EXPORT_SYMBOL(skb_clone); 1506 1507 void skb_headers_offset_update(struct sk_buff *skb, int off) 1508 { 1509 /* Only adjust this if it actually is csum_start rather than csum */ 1510 if (skb->ip_summed == CHECKSUM_PARTIAL) 1511 skb->csum_start += off; 1512 /* {transport,network,mac}_header and tail are relative to skb->head */ 1513 skb->transport_header += off; 1514 skb->network_header += off; 1515 if (skb_mac_header_was_set(skb)) 1516 skb->mac_header += off; 1517 skb->inner_transport_header += off; 1518 skb->inner_network_header += off; 1519 skb->inner_mac_header += off; 1520 } 1521 EXPORT_SYMBOL(skb_headers_offset_update); 1522 1523 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old) 1524 { 1525 __copy_skb_header(new, old); 1526 1527 skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size; 1528 skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs; 1529 skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type; 1530 } 1531 EXPORT_SYMBOL(skb_copy_header); 1532 1533 static inline int skb_alloc_rx_flag(const struct sk_buff *skb) 1534 { 1535 if (skb_pfmemalloc(skb)) 1536 return SKB_ALLOC_RX; 1537 return 0; 1538 } 1539 1540 /** 1541 * skb_copy - create private copy of an sk_buff 1542 * @skb: buffer to copy 1543 * @gfp_mask: allocation priority 1544 * 1545 * Make a copy of both an &sk_buff and its data. This is used when the 1546 * caller wishes to modify the data and needs a private copy of the 1547 * data to alter. Returns %NULL on failure or the pointer to the buffer 1548 * on success. The returned buffer has a reference count of 1. 1549 * 1550 * As by-product this function converts non-linear &sk_buff to linear 1551 * one, so that &sk_buff becomes completely private and caller is allowed 1552 * to modify all the data of returned buffer. This means that this 1553 * function is not recommended for use in circumstances when only 1554 * header is going to be modified. Use pskb_copy() instead. 1555 */ 1556 1557 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask) 1558 { 1559 int headerlen = skb_headroom(skb); 1560 unsigned int size = skb_end_offset(skb) + skb->data_len; 1561 struct sk_buff *n = __alloc_skb(size, gfp_mask, 1562 skb_alloc_rx_flag(skb), NUMA_NO_NODE); 1563 1564 if (!n) 1565 return NULL; 1566 1567 /* Set the data pointer */ 1568 skb_reserve(n, headerlen); 1569 /* Set the tail pointer and length */ 1570 skb_put(n, skb->len); 1571 1572 BUG_ON(skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len)); 1573 1574 skb_copy_header(n, skb); 1575 return n; 1576 } 1577 EXPORT_SYMBOL(skb_copy); 1578 1579 /** 1580 * __pskb_copy_fclone - create copy of an sk_buff with private head. 1581 * @skb: buffer to copy 1582 * @headroom: headroom of new skb 1583 * @gfp_mask: allocation priority 1584 * @fclone: if true allocate the copy of the skb from the fclone 1585 * cache instead of the head cache; it is recommended to set this 1586 * to true for the cases where the copy will likely be cloned 1587 * 1588 * Make a copy of both an &sk_buff and part of its data, located 1589 * in header. Fragmented data remain shared. This is used when 1590 * the caller wishes to modify only header of &sk_buff and needs 1591 * private copy of the header to alter. Returns %NULL on failure 1592 * or the pointer to the buffer on success. 1593 * The returned buffer has a reference count of 1. 1594 */ 1595 1596 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom, 1597 gfp_t gfp_mask, bool fclone) 1598 { 1599 unsigned int size = skb_headlen(skb) + headroom; 1600 int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0); 1601 struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE); 1602 1603 if (!n) 1604 goto out; 1605 1606 /* Set the data pointer */ 1607 skb_reserve(n, headroom); 1608 /* Set the tail pointer and length */ 1609 skb_put(n, skb_headlen(skb)); 1610 /* Copy the bytes */ 1611 skb_copy_from_linear_data(skb, n->data, n->len); 1612 1613 n->truesize += skb->data_len; 1614 n->data_len = skb->data_len; 1615 n->len = skb->len; 1616 1617 if (skb_shinfo(skb)->nr_frags) { 1618 int i; 1619 1620 if (skb_orphan_frags(skb, gfp_mask) || 1621 skb_zerocopy_clone(n, skb, gfp_mask)) { 1622 kfree_skb(n); 1623 n = NULL; 1624 goto out; 1625 } 1626 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1627 skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i]; 1628 skb_frag_ref(skb, i); 1629 } 1630 skb_shinfo(n)->nr_frags = i; 1631 } 1632 1633 if (skb_has_frag_list(skb)) { 1634 skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list; 1635 skb_clone_fraglist(n); 1636 } 1637 1638 skb_copy_header(n, skb); 1639 out: 1640 return n; 1641 } 1642 EXPORT_SYMBOL(__pskb_copy_fclone); 1643 1644 /** 1645 * pskb_expand_head - reallocate header of &sk_buff 1646 * @skb: buffer to reallocate 1647 * @nhead: room to add at head 1648 * @ntail: room to add at tail 1649 * @gfp_mask: allocation priority 1650 * 1651 * Expands (or creates identical copy, if @nhead and @ntail are zero) 1652 * header of @skb. &sk_buff itself is not changed. &sk_buff MUST have 1653 * reference count of 1. Returns zero in the case of success or error, 1654 * if expansion failed. In the last case, &sk_buff is not changed. 1655 * 1656 * All the pointers pointing into skb header may change and must be 1657 * reloaded after call to this function. 1658 */ 1659 1660 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, 1661 gfp_t gfp_mask) 1662 { 1663 int i, osize = skb_end_offset(skb); 1664 int size = osize + nhead + ntail; 1665 long off; 1666 u8 *data; 1667 1668 BUG_ON(nhead < 0); 1669 1670 BUG_ON(skb_shared(skb)); 1671 1672 size = SKB_DATA_ALIGN(size); 1673 1674 if (skb_pfmemalloc(skb)) 1675 gfp_mask |= __GFP_MEMALLOC; 1676 data = kmalloc_reserve(size + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)), 1677 gfp_mask, NUMA_NO_NODE, NULL); 1678 if (!data) 1679 goto nodata; 1680 size = SKB_WITH_OVERHEAD(ksize(data)); 1681 1682 /* Copy only real data... and, alas, header. This should be 1683 * optimized for the cases when header is void. 1684 */ 1685 memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head); 1686 1687 memcpy((struct skb_shared_info *)(data + size), 1688 skb_shinfo(skb), 1689 offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags])); 1690 1691 /* 1692 * if shinfo is shared we must drop the old head gracefully, but if it 1693 * is not we can just drop the old head and let the existing refcount 1694 * be since all we did is relocate the values 1695 */ 1696 if (skb_cloned(skb)) { 1697 if (skb_orphan_frags(skb, gfp_mask)) 1698 goto nofrags; 1699 if (skb_zcopy(skb)) 1700 refcount_inc(&skb_uarg(skb)->refcnt); 1701 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 1702 skb_frag_ref(skb, i); 1703 1704 if (skb_has_frag_list(skb)) 1705 skb_clone_fraglist(skb); 1706 1707 skb_release_data(skb); 1708 } else { 1709 skb_free_head(skb); 1710 } 1711 off = (data + nhead) - skb->head; 1712 1713 skb->head = data; 1714 skb->head_frag = 0; 1715 skb->data += off; 1716 #ifdef NET_SKBUFF_DATA_USES_OFFSET 1717 skb->end = size; 1718 off = nhead; 1719 #else 1720 skb->end = skb->head + size; 1721 #endif 1722 skb->tail += off; 1723 skb_headers_offset_update(skb, nhead); 1724 skb->cloned = 0; 1725 skb->hdr_len = 0; 1726 skb->nohdr = 0; 1727 atomic_set(&skb_shinfo(skb)->dataref, 1); 1728 1729 skb_metadata_clear(skb); 1730 1731 /* It is not generally safe to change skb->truesize. 1732 * For the moment, we really care of rx path, or 1733 * when skb is orphaned (not attached to a socket). 1734 */ 1735 if (!skb->sk || skb->destructor == sock_edemux) 1736 skb->truesize += size - osize; 1737 1738 return 0; 1739 1740 nofrags: 1741 kfree(data); 1742 nodata: 1743 return -ENOMEM; 1744 } 1745 EXPORT_SYMBOL(pskb_expand_head); 1746 1747 /* Make private copy of skb with writable head and some headroom */ 1748 1749 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom) 1750 { 1751 struct sk_buff *skb2; 1752 int delta = headroom - skb_headroom(skb); 1753 1754 if (delta <= 0) 1755 skb2 = pskb_copy(skb, GFP_ATOMIC); 1756 else { 1757 skb2 = skb_clone(skb, GFP_ATOMIC); 1758 if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0, 1759 GFP_ATOMIC)) { 1760 kfree_skb(skb2); 1761 skb2 = NULL; 1762 } 1763 } 1764 return skb2; 1765 } 1766 EXPORT_SYMBOL(skb_realloc_headroom); 1767 1768 /** 1769 * skb_copy_expand - copy and expand sk_buff 1770 * @skb: buffer to copy 1771 * @newheadroom: new free bytes at head 1772 * @newtailroom: new free bytes at tail 1773 * @gfp_mask: allocation priority 1774 * 1775 * Make a copy of both an &sk_buff and its data and while doing so 1776 * allocate additional space. 1777 * 1778 * This is used when the caller wishes to modify the data and needs a 1779 * private copy of the data to alter as well as more space for new fields. 1780 * Returns %NULL on failure or the pointer to the buffer 1781 * on success. The returned buffer has a reference count of 1. 1782 * 1783 * You must pass %GFP_ATOMIC as the allocation priority if this function 1784 * is called from an interrupt. 1785 */ 1786 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, 1787 int newheadroom, int newtailroom, 1788 gfp_t gfp_mask) 1789 { 1790 /* 1791 * Allocate the copy buffer 1792 */ 1793 struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom, 1794 gfp_mask, skb_alloc_rx_flag(skb), 1795 NUMA_NO_NODE); 1796 int oldheadroom = skb_headroom(skb); 1797 int head_copy_len, head_copy_off; 1798 1799 if (!n) 1800 return NULL; 1801 1802 skb_reserve(n, newheadroom); 1803 1804 /* Set the tail pointer and length */ 1805 skb_put(n, skb->len); 1806 1807 head_copy_len = oldheadroom; 1808 head_copy_off = 0; 1809 if (newheadroom <= head_copy_len) 1810 head_copy_len = newheadroom; 1811 else 1812 head_copy_off = newheadroom - head_copy_len; 1813 1814 /* Copy the linear header and data. */ 1815 BUG_ON(skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off, 1816 skb->len + head_copy_len)); 1817 1818 skb_copy_header(n, skb); 1819 1820 skb_headers_offset_update(n, newheadroom - oldheadroom); 1821 1822 return n; 1823 } 1824 EXPORT_SYMBOL(skb_copy_expand); 1825 1826 /** 1827 * __skb_pad - zero pad the tail of an skb 1828 * @skb: buffer to pad 1829 * @pad: space to pad 1830 * @free_on_error: free buffer on error 1831 * 1832 * Ensure that a buffer is followed by a padding area that is zero 1833 * filled. Used by network drivers which may DMA or transfer data 1834 * beyond the buffer end onto the wire. 1835 * 1836 * May return error in out of memory cases. The skb is freed on error 1837 * if @free_on_error is true. 1838 */ 1839 1840 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error) 1841 { 1842 int err; 1843 int ntail; 1844 1845 /* If the skbuff is non linear tailroom is always zero.. */ 1846 if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) { 1847 memset(skb->data+skb->len, 0, pad); 1848 return 0; 1849 } 1850 1851 ntail = skb->data_len + pad - (skb->end - skb->tail); 1852 if (likely(skb_cloned(skb) || ntail > 0)) { 1853 err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC); 1854 if (unlikely(err)) 1855 goto free_skb; 1856 } 1857 1858 /* FIXME: The use of this function with non-linear skb's really needs 1859 * to be audited. 1860 */ 1861 err = skb_linearize(skb); 1862 if (unlikely(err)) 1863 goto free_skb; 1864 1865 memset(skb->data + skb->len, 0, pad); 1866 return 0; 1867 1868 free_skb: 1869 if (free_on_error) 1870 kfree_skb(skb); 1871 return err; 1872 } 1873 EXPORT_SYMBOL(__skb_pad); 1874 1875 /** 1876 * pskb_put - add data to the tail of a potentially fragmented buffer 1877 * @skb: start of the buffer to use 1878 * @tail: tail fragment of the buffer to use 1879 * @len: amount of data to add 1880 * 1881 * This function extends the used data area of the potentially 1882 * fragmented buffer. @tail must be the last fragment of @skb -- or 1883 * @skb itself. If this would exceed the total buffer size the kernel 1884 * will panic. A pointer to the first byte of the extra data is 1885 * returned. 1886 */ 1887 1888 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len) 1889 { 1890 if (tail != skb) { 1891 skb->data_len += len; 1892 skb->len += len; 1893 } 1894 return skb_put(tail, len); 1895 } 1896 EXPORT_SYMBOL_GPL(pskb_put); 1897 1898 /** 1899 * skb_put - add data to a buffer 1900 * @skb: buffer to use 1901 * @len: amount of data to add 1902 * 1903 * This function extends the used data area of the buffer. If this would 1904 * exceed the total buffer size the kernel will panic. A pointer to the 1905 * first byte of the extra data is returned. 1906 */ 1907 void *skb_put(struct sk_buff *skb, unsigned int len) 1908 { 1909 void *tmp = skb_tail_pointer(skb); 1910 SKB_LINEAR_ASSERT(skb); 1911 skb->tail += len; 1912 skb->len += len; 1913 if (unlikely(skb->tail > skb->end)) 1914 skb_over_panic(skb, len, __builtin_return_address(0)); 1915 return tmp; 1916 } 1917 EXPORT_SYMBOL(skb_put); 1918 1919 /** 1920 * skb_push - add data to the start of a buffer 1921 * @skb: buffer to use 1922 * @len: amount of data to add 1923 * 1924 * This function extends the used data area of the buffer at the buffer 1925 * start. If this would exceed the total buffer headroom the kernel will 1926 * panic. A pointer to the first byte of the extra data is returned. 1927 */ 1928 void *skb_push(struct sk_buff *skb, unsigned int len) 1929 { 1930 skb->data -= len; 1931 skb->len += len; 1932 if (unlikely(skb->data < skb->head)) 1933 skb_under_panic(skb, len, __builtin_return_address(0)); 1934 return skb->data; 1935 } 1936 EXPORT_SYMBOL(skb_push); 1937 1938 /** 1939 * skb_pull - remove data from the start of a buffer 1940 * @skb: buffer to use 1941 * @len: amount of data to remove 1942 * 1943 * This function removes data from the start of a buffer, returning 1944 * the memory to the headroom. A pointer to the next data in the buffer 1945 * is returned. Once the data has been pulled future pushes will overwrite 1946 * the old data. 1947 */ 1948 void *skb_pull(struct sk_buff *skb, unsigned int len) 1949 { 1950 return skb_pull_inline(skb, len); 1951 } 1952 EXPORT_SYMBOL(skb_pull); 1953 1954 /** 1955 * skb_trim - remove end from a buffer 1956 * @skb: buffer to alter 1957 * @len: new length 1958 * 1959 * Cut the length of a buffer down by removing data from the tail. If 1960 * the buffer is already under the length specified it is not modified. 1961 * The skb must be linear. 1962 */ 1963 void skb_trim(struct sk_buff *skb, unsigned int len) 1964 { 1965 if (skb->len > len) 1966 __skb_trim(skb, len); 1967 } 1968 EXPORT_SYMBOL(skb_trim); 1969 1970 /* Trims skb to length len. It can change skb pointers. 1971 */ 1972 1973 int ___pskb_trim(struct sk_buff *skb, unsigned int len) 1974 { 1975 struct sk_buff **fragp; 1976 struct sk_buff *frag; 1977 int offset = skb_headlen(skb); 1978 int nfrags = skb_shinfo(skb)->nr_frags; 1979 int i; 1980 int err; 1981 1982 if (skb_cloned(skb) && 1983 unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))) 1984 return err; 1985 1986 i = 0; 1987 if (offset >= len) 1988 goto drop_pages; 1989 1990 for (; i < nfrags; i++) { 1991 int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]); 1992 1993 if (end < len) { 1994 offset = end; 1995 continue; 1996 } 1997 1998 skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset); 1999 2000 drop_pages: 2001 skb_shinfo(skb)->nr_frags = i; 2002 2003 for (; i < nfrags; i++) 2004 skb_frag_unref(skb, i); 2005 2006 if (skb_has_frag_list(skb)) 2007 skb_drop_fraglist(skb); 2008 goto done; 2009 } 2010 2011 for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp); 2012 fragp = &frag->next) { 2013 int end = offset + frag->len; 2014 2015 if (skb_shared(frag)) { 2016 struct sk_buff *nfrag; 2017 2018 nfrag = skb_clone(frag, GFP_ATOMIC); 2019 if (unlikely(!nfrag)) 2020 return -ENOMEM; 2021 2022 nfrag->next = frag->next; 2023 consume_skb(frag); 2024 frag = nfrag; 2025 *fragp = frag; 2026 } 2027 2028 if (end < len) { 2029 offset = end; 2030 continue; 2031 } 2032 2033 if (end > len && 2034 unlikely((err = pskb_trim(frag, len - offset)))) 2035 return err; 2036 2037 if (frag->next) 2038 skb_drop_list(&frag->next); 2039 break; 2040 } 2041 2042 done: 2043 if (len > skb_headlen(skb)) { 2044 skb->data_len -= skb->len - len; 2045 skb->len = len; 2046 } else { 2047 skb->len = len; 2048 skb->data_len = 0; 2049 skb_set_tail_pointer(skb, len); 2050 } 2051 2052 if (!skb->sk || skb->destructor == sock_edemux) 2053 skb_condense(skb); 2054 return 0; 2055 } 2056 EXPORT_SYMBOL(___pskb_trim); 2057 2058 /* Note : use pskb_trim_rcsum() instead of calling this directly 2059 */ 2060 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len) 2061 { 2062 if (skb->ip_summed == CHECKSUM_COMPLETE) { 2063 int delta = skb->len - len; 2064 2065 skb->csum = csum_block_sub(skb->csum, 2066 skb_checksum(skb, len, delta, 0), 2067 len); 2068 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { 2069 int hdlen = (len > skb_headlen(skb)) ? skb_headlen(skb) : len; 2070 int offset = skb_checksum_start_offset(skb) + skb->csum_offset; 2071 2072 if (offset + sizeof(__sum16) > hdlen) 2073 return -EINVAL; 2074 } 2075 return __pskb_trim(skb, len); 2076 } 2077 EXPORT_SYMBOL(pskb_trim_rcsum_slow); 2078 2079 /** 2080 * __pskb_pull_tail - advance tail of skb header 2081 * @skb: buffer to reallocate 2082 * @delta: number of bytes to advance tail 2083 * 2084 * The function makes a sense only on a fragmented &sk_buff, 2085 * it expands header moving its tail forward and copying necessary 2086 * data from fragmented part. 2087 * 2088 * &sk_buff MUST have reference count of 1. 2089 * 2090 * Returns %NULL (and &sk_buff does not change) if pull failed 2091 * or value of new tail of skb in the case of success. 2092 * 2093 * All the pointers pointing into skb header may change and must be 2094 * reloaded after call to this function. 2095 */ 2096 2097 /* Moves tail of skb head forward, copying data from fragmented part, 2098 * when it is necessary. 2099 * 1. It may fail due to malloc failure. 2100 * 2. It may change skb pointers. 2101 * 2102 * It is pretty complicated. Luckily, it is called only in exceptional cases. 2103 */ 2104 void *__pskb_pull_tail(struct sk_buff *skb, int delta) 2105 { 2106 /* If skb has not enough free space at tail, get new one 2107 * plus 128 bytes for future expansions. If we have enough 2108 * room at tail, reallocate without expansion only if skb is cloned. 2109 */ 2110 int i, k, eat = (skb->tail + delta) - skb->end; 2111 2112 if (eat > 0 || skb_cloned(skb)) { 2113 if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0, 2114 GFP_ATOMIC)) 2115 return NULL; 2116 } 2117 2118 BUG_ON(skb_copy_bits(skb, skb_headlen(skb), 2119 skb_tail_pointer(skb), delta)); 2120 2121 /* Optimization: no fragments, no reasons to preestimate 2122 * size of pulled pages. Superb. 2123 */ 2124 if (!skb_has_frag_list(skb)) 2125 goto pull_pages; 2126 2127 /* Estimate size of pulled pages. */ 2128 eat = delta; 2129 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2130 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 2131 2132 if (size >= eat) 2133 goto pull_pages; 2134 eat -= size; 2135 } 2136 2137 /* If we need update frag list, we are in troubles. 2138 * Certainly, it is possible to add an offset to skb data, 2139 * but taking into account that pulling is expected to 2140 * be very rare operation, it is worth to fight against 2141 * further bloating skb head and crucify ourselves here instead. 2142 * Pure masohism, indeed. 8)8) 2143 */ 2144 if (eat) { 2145 struct sk_buff *list = skb_shinfo(skb)->frag_list; 2146 struct sk_buff *clone = NULL; 2147 struct sk_buff *insp = NULL; 2148 2149 do { 2150 if (list->len <= eat) { 2151 /* Eaten as whole. */ 2152 eat -= list->len; 2153 list = list->next; 2154 insp = list; 2155 } else { 2156 /* Eaten partially. */ 2157 2158 if (skb_shared(list)) { 2159 /* Sucks! We need to fork list. :-( */ 2160 clone = skb_clone(list, GFP_ATOMIC); 2161 if (!clone) 2162 return NULL; 2163 insp = list->next; 2164 list = clone; 2165 } else { 2166 /* This may be pulled without 2167 * problems. */ 2168 insp = list; 2169 } 2170 if (!pskb_pull(list, eat)) { 2171 kfree_skb(clone); 2172 return NULL; 2173 } 2174 break; 2175 } 2176 } while (eat); 2177 2178 /* Free pulled out fragments. */ 2179 while ((list = skb_shinfo(skb)->frag_list) != insp) { 2180 skb_shinfo(skb)->frag_list = list->next; 2181 kfree_skb(list); 2182 } 2183 /* And insert new clone at head. */ 2184 if (clone) { 2185 clone->next = list; 2186 skb_shinfo(skb)->frag_list = clone; 2187 } 2188 } 2189 /* Success! Now we may commit changes to skb data. */ 2190 2191 pull_pages: 2192 eat = delta; 2193 k = 0; 2194 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2195 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 2196 2197 if (size <= eat) { 2198 skb_frag_unref(skb, i); 2199 eat -= size; 2200 } else { 2201 skb_frag_t *frag = &skb_shinfo(skb)->frags[k]; 2202 2203 *frag = skb_shinfo(skb)->frags[i]; 2204 if (eat) { 2205 skb_frag_off_add(frag, eat); 2206 skb_frag_size_sub(frag, eat); 2207 if (!i) 2208 goto end; 2209 eat = 0; 2210 } 2211 k++; 2212 } 2213 } 2214 skb_shinfo(skb)->nr_frags = k; 2215 2216 end: 2217 skb->tail += delta; 2218 skb->data_len -= delta; 2219 2220 if (!skb->data_len) 2221 skb_zcopy_clear(skb, false); 2222 2223 return skb_tail_pointer(skb); 2224 } 2225 EXPORT_SYMBOL(__pskb_pull_tail); 2226 2227 /** 2228 * skb_copy_bits - copy bits from skb to kernel buffer 2229 * @skb: source skb 2230 * @offset: offset in source 2231 * @to: destination buffer 2232 * @len: number of bytes to copy 2233 * 2234 * Copy the specified number of bytes from the source skb to the 2235 * destination buffer. 2236 * 2237 * CAUTION ! : 2238 * If its prototype is ever changed, 2239 * check arch/{*}/net/{*}.S files, 2240 * since it is called from BPF assembly code. 2241 */ 2242 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len) 2243 { 2244 int start = skb_headlen(skb); 2245 struct sk_buff *frag_iter; 2246 int i, copy; 2247 2248 if (offset > (int)skb->len - len) 2249 goto fault; 2250 2251 /* Copy header. */ 2252 if ((copy = start - offset) > 0) { 2253 if (copy > len) 2254 copy = len; 2255 skb_copy_from_linear_data_offset(skb, offset, to, copy); 2256 if ((len -= copy) == 0) 2257 return 0; 2258 offset += copy; 2259 to += copy; 2260 } 2261 2262 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2263 int end; 2264 skb_frag_t *f = &skb_shinfo(skb)->frags[i]; 2265 2266 WARN_ON(start > offset + len); 2267 2268 end = start + skb_frag_size(f); 2269 if ((copy = end - offset) > 0) { 2270 u32 p_off, p_len, copied; 2271 struct page *p; 2272 u8 *vaddr; 2273 2274 if (copy > len) 2275 copy = len; 2276 2277 skb_frag_foreach_page(f, 2278 skb_frag_off(f) + offset - start, 2279 copy, p, p_off, p_len, copied) { 2280 vaddr = kmap_atomic(p); 2281 memcpy(to + copied, vaddr + p_off, p_len); 2282 kunmap_atomic(vaddr); 2283 } 2284 2285 if ((len -= copy) == 0) 2286 return 0; 2287 offset += copy; 2288 to += copy; 2289 } 2290 start = end; 2291 } 2292 2293 skb_walk_frags(skb, frag_iter) { 2294 int end; 2295 2296 WARN_ON(start > offset + len); 2297 2298 end = start + frag_iter->len; 2299 if ((copy = end - offset) > 0) { 2300 if (copy > len) 2301 copy = len; 2302 if (skb_copy_bits(frag_iter, offset - start, to, copy)) 2303 goto fault; 2304 if ((len -= copy) == 0) 2305 return 0; 2306 offset += copy; 2307 to += copy; 2308 } 2309 start = end; 2310 } 2311 2312 if (!len) 2313 return 0; 2314 2315 fault: 2316 return -EFAULT; 2317 } 2318 EXPORT_SYMBOL(skb_copy_bits); 2319 2320 /* 2321 * Callback from splice_to_pipe(), if we need to release some pages 2322 * at the end of the spd in case we error'ed out in filling the pipe. 2323 */ 2324 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i) 2325 { 2326 put_page(spd->pages[i]); 2327 } 2328 2329 static struct page *linear_to_page(struct page *page, unsigned int *len, 2330 unsigned int *offset, 2331 struct sock *sk) 2332 { 2333 struct page_frag *pfrag = sk_page_frag(sk); 2334 2335 if (!sk_page_frag_refill(sk, pfrag)) 2336 return NULL; 2337 2338 *len = min_t(unsigned int, *len, pfrag->size - pfrag->offset); 2339 2340 memcpy(page_address(pfrag->page) + pfrag->offset, 2341 page_address(page) + *offset, *len); 2342 *offset = pfrag->offset; 2343 pfrag->offset += *len; 2344 2345 return pfrag->page; 2346 } 2347 2348 static bool spd_can_coalesce(const struct splice_pipe_desc *spd, 2349 struct page *page, 2350 unsigned int offset) 2351 { 2352 return spd->nr_pages && 2353 spd->pages[spd->nr_pages - 1] == page && 2354 (spd->partial[spd->nr_pages - 1].offset + 2355 spd->partial[spd->nr_pages - 1].len == offset); 2356 } 2357 2358 /* 2359 * Fill page/offset/length into spd, if it can hold more pages. 2360 */ 2361 static bool spd_fill_page(struct splice_pipe_desc *spd, 2362 struct pipe_inode_info *pipe, struct page *page, 2363 unsigned int *len, unsigned int offset, 2364 bool linear, 2365 struct sock *sk) 2366 { 2367 if (unlikely(spd->nr_pages == MAX_SKB_FRAGS)) 2368 return true; 2369 2370 if (linear) { 2371 page = linear_to_page(page, len, &offset, sk); 2372 if (!page) 2373 return true; 2374 } 2375 if (spd_can_coalesce(spd, page, offset)) { 2376 spd->partial[spd->nr_pages - 1].len += *len; 2377 return false; 2378 } 2379 get_page(page); 2380 spd->pages[spd->nr_pages] = page; 2381 spd->partial[spd->nr_pages].len = *len; 2382 spd->partial[spd->nr_pages].offset = offset; 2383 spd->nr_pages++; 2384 2385 return false; 2386 } 2387 2388 static bool __splice_segment(struct page *page, unsigned int poff, 2389 unsigned int plen, unsigned int *off, 2390 unsigned int *len, 2391 struct splice_pipe_desc *spd, bool linear, 2392 struct sock *sk, 2393 struct pipe_inode_info *pipe) 2394 { 2395 if (!*len) 2396 return true; 2397 2398 /* skip this segment if already processed */ 2399 if (*off >= plen) { 2400 *off -= plen; 2401 return false; 2402 } 2403 2404 /* ignore any bits we already processed */ 2405 poff += *off; 2406 plen -= *off; 2407 *off = 0; 2408 2409 do { 2410 unsigned int flen = min(*len, plen); 2411 2412 if (spd_fill_page(spd, pipe, page, &flen, poff, 2413 linear, sk)) 2414 return true; 2415 poff += flen; 2416 plen -= flen; 2417 *len -= flen; 2418 } while (*len && plen); 2419 2420 return false; 2421 } 2422 2423 /* 2424 * Map linear and fragment data from the skb to spd. It reports true if the 2425 * pipe is full or if we already spliced the requested length. 2426 */ 2427 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe, 2428 unsigned int *offset, unsigned int *len, 2429 struct splice_pipe_desc *spd, struct sock *sk) 2430 { 2431 int seg; 2432 struct sk_buff *iter; 2433 2434 /* map the linear part : 2435 * If skb->head_frag is set, this 'linear' part is backed by a 2436 * fragment, and if the head is not shared with any clones then 2437 * we can avoid a copy since we own the head portion of this page. 2438 */ 2439 if (__splice_segment(virt_to_page(skb->data), 2440 (unsigned long) skb->data & (PAGE_SIZE - 1), 2441 skb_headlen(skb), 2442 offset, len, spd, 2443 skb_head_is_locked(skb), 2444 sk, pipe)) 2445 return true; 2446 2447 /* 2448 * then map the fragments 2449 */ 2450 for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) { 2451 const skb_frag_t *f = &skb_shinfo(skb)->frags[seg]; 2452 2453 if (__splice_segment(skb_frag_page(f), 2454 skb_frag_off(f), skb_frag_size(f), 2455 offset, len, spd, false, sk, pipe)) 2456 return true; 2457 } 2458 2459 skb_walk_frags(skb, iter) { 2460 if (*offset >= iter->len) { 2461 *offset -= iter->len; 2462 continue; 2463 } 2464 /* __skb_splice_bits() only fails if the output has no room 2465 * left, so no point in going over the frag_list for the error 2466 * case. 2467 */ 2468 if (__skb_splice_bits(iter, pipe, offset, len, spd, sk)) 2469 return true; 2470 } 2471 2472 return false; 2473 } 2474 2475 /* 2476 * Map data from the skb to a pipe. Should handle both the linear part, 2477 * the fragments, and the frag list. 2478 */ 2479 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset, 2480 struct pipe_inode_info *pipe, unsigned int tlen, 2481 unsigned int flags) 2482 { 2483 struct partial_page partial[MAX_SKB_FRAGS]; 2484 struct page *pages[MAX_SKB_FRAGS]; 2485 struct splice_pipe_desc spd = { 2486 .pages = pages, 2487 .partial = partial, 2488 .nr_pages_max = MAX_SKB_FRAGS, 2489 .ops = &nosteal_pipe_buf_ops, 2490 .spd_release = sock_spd_release, 2491 }; 2492 int ret = 0; 2493 2494 __skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk); 2495 2496 if (spd.nr_pages) 2497 ret = splice_to_pipe(pipe, &spd); 2498 2499 return ret; 2500 } 2501 EXPORT_SYMBOL_GPL(skb_splice_bits); 2502 2503 /* Send skb data on a socket. Socket must be locked. */ 2504 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset, 2505 int len) 2506 { 2507 unsigned int orig_len = len; 2508 struct sk_buff *head = skb; 2509 unsigned short fragidx; 2510 int slen, ret; 2511 2512 do_frag_list: 2513 2514 /* Deal with head data */ 2515 while (offset < skb_headlen(skb) && len) { 2516 struct kvec kv; 2517 struct msghdr msg; 2518 2519 slen = min_t(int, len, skb_headlen(skb) - offset); 2520 kv.iov_base = skb->data + offset; 2521 kv.iov_len = slen; 2522 memset(&msg, 0, sizeof(msg)); 2523 msg.msg_flags = MSG_DONTWAIT; 2524 2525 ret = kernel_sendmsg_locked(sk, &msg, &kv, 1, slen); 2526 if (ret <= 0) 2527 goto error; 2528 2529 offset += ret; 2530 len -= ret; 2531 } 2532 2533 /* All the data was skb head? */ 2534 if (!len) 2535 goto out; 2536 2537 /* Make offset relative to start of frags */ 2538 offset -= skb_headlen(skb); 2539 2540 /* Find where we are in frag list */ 2541 for (fragidx = 0; fragidx < skb_shinfo(skb)->nr_frags; fragidx++) { 2542 skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx]; 2543 2544 if (offset < skb_frag_size(frag)) 2545 break; 2546 2547 offset -= skb_frag_size(frag); 2548 } 2549 2550 for (; len && fragidx < skb_shinfo(skb)->nr_frags; fragidx++) { 2551 skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx]; 2552 2553 slen = min_t(size_t, len, skb_frag_size(frag) - offset); 2554 2555 while (slen) { 2556 ret = kernel_sendpage_locked(sk, skb_frag_page(frag), 2557 skb_frag_off(frag) + offset, 2558 slen, MSG_DONTWAIT); 2559 if (ret <= 0) 2560 goto error; 2561 2562 len -= ret; 2563 offset += ret; 2564 slen -= ret; 2565 } 2566 2567 offset = 0; 2568 } 2569 2570 if (len) { 2571 /* Process any frag lists */ 2572 2573 if (skb == head) { 2574 if (skb_has_frag_list(skb)) { 2575 skb = skb_shinfo(skb)->frag_list; 2576 goto do_frag_list; 2577 } 2578 } else if (skb->next) { 2579 skb = skb->next; 2580 goto do_frag_list; 2581 } 2582 } 2583 2584 out: 2585 return orig_len - len; 2586 2587 error: 2588 return orig_len == len ? ret : orig_len - len; 2589 } 2590 EXPORT_SYMBOL_GPL(skb_send_sock_locked); 2591 2592 /** 2593 * skb_store_bits - store bits from kernel buffer to skb 2594 * @skb: destination buffer 2595 * @offset: offset in destination 2596 * @from: source buffer 2597 * @len: number of bytes to copy 2598 * 2599 * Copy the specified number of bytes from the source buffer to the 2600 * destination skb. This function handles all the messy bits of 2601 * traversing fragment lists and such. 2602 */ 2603 2604 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len) 2605 { 2606 int start = skb_headlen(skb); 2607 struct sk_buff *frag_iter; 2608 int i, copy; 2609 2610 if (offset > (int)skb->len - len) 2611 goto fault; 2612 2613 if ((copy = start - offset) > 0) { 2614 if (copy > len) 2615 copy = len; 2616 skb_copy_to_linear_data_offset(skb, offset, from, copy); 2617 if ((len -= copy) == 0) 2618 return 0; 2619 offset += copy; 2620 from += copy; 2621 } 2622 2623 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2624 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2625 int end; 2626 2627 WARN_ON(start > offset + len); 2628 2629 end = start + skb_frag_size(frag); 2630 if ((copy = end - offset) > 0) { 2631 u32 p_off, p_len, copied; 2632 struct page *p; 2633 u8 *vaddr; 2634 2635 if (copy > len) 2636 copy = len; 2637 2638 skb_frag_foreach_page(frag, 2639 skb_frag_off(frag) + offset - start, 2640 copy, p, p_off, p_len, copied) { 2641 vaddr = kmap_atomic(p); 2642 memcpy(vaddr + p_off, from + copied, p_len); 2643 kunmap_atomic(vaddr); 2644 } 2645 2646 if ((len -= copy) == 0) 2647 return 0; 2648 offset += copy; 2649 from += copy; 2650 } 2651 start = end; 2652 } 2653 2654 skb_walk_frags(skb, frag_iter) { 2655 int end; 2656 2657 WARN_ON(start > offset + len); 2658 2659 end = start + frag_iter->len; 2660 if ((copy = end - offset) > 0) { 2661 if (copy > len) 2662 copy = len; 2663 if (skb_store_bits(frag_iter, offset - start, 2664 from, copy)) 2665 goto fault; 2666 if ((len -= copy) == 0) 2667 return 0; 2668 offset += copy; 2669 from += copy; 2670 } 2671 start = end; 2672 } 2673 if (!len) 2674 return 0; 2675 2676 fault: 2677 return -EFAULT; 2678 } 2679 EXPORT_SYMBOL(skb_store_bits); 2680 2681 /* Checksum skb data. */ 2682 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len, 2683 __wsum csum, const struct skb_checksum_ops *ops) 2684 { 2685 int start = skb_headlen(skb); 2686 int i, copy = start - offset; 2687 struct sk_buff *frag_iter; 2688 int pos = 0; 2689 2690 /* Checksum header. */ 2691 if (copy > 0) { 2692 if (copy > len) 2693 copy = len; 2694 csum = INDIRECT_CALL_1(ops->update, csum_partial_ext, 2695 skb->data + offset, copy, csum); 2696 if ((len -= copy) == 0) 2697 return csum; 2698 offset += copy; 2699 pos = copy; 2700 } 2701 2702 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2703 int end; 2704 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2705 2706 WARN_ON(start > offset + len); 2707 2708 end = start + skb_frag_size(frag); 2709 if ((copy = end - offset) > 0) { 2710 u32 p_off, p_len, copied; 2711 struct page *p; 2712 __wsum csum2; 2713 u8 *vaddr; 2714 2715 if (copy > len) 2716 copy = len; 2717 2718 skb_frag_foreach_page(frag, 2719 skb_frag_off(frag) + offset - start, 2720 copy, p, p_off, p_len, copied) { 2721 vaddr = kmap_atomic(p); 2722 csum2 = INDIRECT_CALL_1(ops->update, 2723 csum_partial_ext, 2724 vaddr + p_off, p_len, 0); 2725 kunmap_atomic(vaddr); 2726 csum = INDIRECT_CALL_1(ops->combine, 2727 csum_block_add_ext, csum, 2728 csum2, pos, p_len); 2729 pos += p_len; 2730 } 2731 2732 if (!(len -= copy)) 2733 return csum; 2734 offset += copy; 2735 } 2736 start = end; 2737 } 2738 2739 skb_walk_frags(skb, frag_iter) { 2740 int end; 2741 2742 WARN_ON(start > offset + len); 2743 2744 end = start + frag_iter->len; 2745 if ((copy = end - offset) > 0) { 2746 __wsum csum2; 2747 if (copy > len) 2748 copy = len; 2749 csum2 = __skb_checksum(frag_iter, offset - start, 2750 copy, 0, ops); 2751 csum = INDIRECT_CALL_1(ops->combine, csum_block_add_ext, 2752 csum, csum2, pos, copy); 2753 if ((len -= copy) == 0) 2754 return csum; 2755 offset += copy; 2756 pos += copy; 2757 } 2758 start = end; 2759 } 2760 BUG_ON(len); 2761 2762 return csum; 2763 } 2764 EXPORT_SYMBOL(__skb_checksum); 2765 2766 __wsum skb_checksum(const struct sk_buff *skb, int offset, 2767 int len, __wsum csum) 2768 { 2769 const struct skb_checksum_ops ops = { 2770 .update = csum_partial_ext, 2771 .combine = csum_block_add_ext, 2772 }; 2773 2774 return __skb_checksum(skb, offset, len, csum, &ops); 2775 } 2776 EXPORT_SYMBOL(skb_checksum); 2777 2778 /* Both of above in one bottle. */ 2779 2780 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, 2781 u8 *to, int len) 2782 { 2783 int start = skb_headlen(skb); 2784 int i, copy = start - offset; 2785 struct sk_buff *frag_iter; 2786 int pos = 0; 2787 __wsum csum = 0; 2788 2789 /* Copy header. */ 2790 if (copy > 0) { 2791 if (copy > len) 2792 copy = len; 2793 csum = csum_partial_copy_nocheck(skb->data + offset, to, 2794 copy); 2795 if ((len -= copy) == 0) 2796 return csum; 2797 offset += copy; 2798 to += copy; 2799 pos = copy; 2800 } 2801 2802 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2803 int end; 2804 2805 WARN_ON(start > offset + len); 2806 2807 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]); 2808 if ((copy = end - offset) > 0) { 2809 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2810 u32 p_off, p_len, copied; 2811 struct page *p; 2812 __wsum csum2; 2813 u8 *vaddr; 2814 2815 if (copy > len) 2816 copy = len; 2817 2818 skb_frag_foreach_page(frag, 2819 skb_frag_off(frag) + offset - start, 2820 copy, p, p_off, p_len, copied) { 2821 vaddr = kmap_atomic(p); 2822 csum2 = csum_partial_copy_nocheck(vaddr + p_off, 2823 to + copied, 2824 p_len); 2825 kunmap_atomic(vaddr); 2826 csum = csum_block_add(csum, csum2, pos); 2827 pos += p_len; 2828 } 2829 2830 if (!(len -= copy)) 2831 return csum; 2832 offset += copy; 2833 to += copy; 2834 } 2835 start = end; 2836 } 2837 2838 skb_walk_frags(skb, frag_iter) { 2839 __wsum csum2; 2840 int end; 2841 2842 WARN_ON(start > offset + len); 2843 2844 end = start + frag_iter->len; 2845 if ((copy = end - offset) > 0) { 2846 if (copy > len) 2847 copy = len; 2848 csum2 = skb_copy_and_csum_bits(frag_iter, 2849 offset - start, 2850 to, copy); 2851 csum = csum_block_add(csum, csum2, pos); 2852 if ((len -= copy) == 0) 2853 return csum; 2854 offset += copy; 2855 to += copy; 2856 pos += copy; 2857 } 2858 start = end; 2859 } 2860 BUG_ON(len); 2861 return csum; 2862 } 2863 EXPORT_SYMBOL(skb_copy_and_csum_bits); 2864 2865 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len) 2866 { 2867 __sum16 sum; 2868 2869 sum = csum_fold(skb_checksum(skb, 0, len, skb->csum)); 2870 /* See comments in __skb_checksum_complete(). */ 2871 if (likely(!sum)) { 2872 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) && 2873 !skb->csum_complete_sw) 2874 netdev_rx_csum_fault(skb->dev, skb); 2875 } 2876 if (!skb_shared(skb)) 2877 skb->csum_valid = !sum; 2878 return sum; 2879 } 2880 EXPORT_SYMBOL(__skb_checksum_complete_head); 2881 2882 /* This function assumes skb->csum already holds pseudo header's checksum, 2883 * which has been changed from the hardware checksum, for example, by 2884 * __skb_checksum_validate_complete(). And, the original skb->csum must 2885 * have been validated unsuccessfully for CHECKSUM_COMPLETE case. 2886 * 2887 * It returns non-zero if the recomputed checksum is still invalid, otherwise 2888 * zero. The new checksum is stored back into skb->csum unless the skb is 2889 * shared. 2890 */ 2891 __sum16 __skb_checksum_complete(struct sk_buff *skb) 2892 { 2893 __wsum csum; 2894 __sum16 sum; 2895 2896 csum = skb_checksum(skb, 0, skb->len, 0); 2897 2898 sum = csum_fold(csum_add(skb->csum, csum)); 2899 /* This check is inverted, because we already knew the hardware 2900 * checksum is invalid before calling this function. So, if the 2901 * re-computed checksum is valid instead, then we have a mismatch 2902 * between the original skb->csum and skb_checksum(). This means either 2903 * the original hardware checksum is incorrect or we screw up skb->csum 2904 * when moving skb->data around. 2905 */ 2906 if (likely(!sum)) { 2907 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) && 2908 !skb->csum_complete_sw) 2909 netdev_rx_csum_fault(skb->dev, skb); 2910 } 2911 2912 if (!skb_shared(skb)) { 2913 /* Save full packet checksum */ 2914 skb->csum = csum; 2915 skb->ip_summed = CHECKSUM_COMPLETE; 2916 skb->csum_complete_sw = 1; 2917 skb->csum_valid = !sum; 2918 } 2919 2920 return sum; 2921 } 2922 EXPORT_SYMBOL(__skb_checksum_complete); 2923 2924 static __wsum warn_crc32c_csum_update(const void *buff, int len, __wsum sum) 2925 { 2926 net_warn_ratelimited( 2927 "%s: attempt to compute crc32c without libcrc32c.ko\n", 2928 __func__); 2929 return 0; 2930 } 2931 2932 static __wsum warn_crc32c_csum_combine(__wsum csum, __wsum csum2, 2933 int offset, int len) 2934 { 2935 net_warn_ratelimited( 2936 "%s: attempt to compute crc32c without libcrc32c.ko\n", 2937 __func__); 2938 return 0; 2939 } 2940 2941 static const struct skb_checksum_ops default_crc32c_ops = { 2942 .update = warn_crc32c_csum_update, 2943 .combine = warn_crc32c_csum_combine, 2944 }; 2945 2946 const struct skb_checksum_ops *crc32c_csum_stub __read_mostly = 2947 &default_crc32c_ops; 2948 EXPORT_SYMBOL(crc32c_csum_stub); 2949 2950 /** 2951 * skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy() 2952 * @from: source buffer 2953 * 2954 * Calculates the amount of linear headroom needed in the 'to' skb passed 2955 * into skb_zerocopy(). 2956 */ 2957 unsigned int 2958 skb_zerocopy_headlen(const struct sk_buff *from) 2959 { 2960 unsigned int hlen = 0; 2961 2962 if (!from->head_frag || 2963 skb_headlen(from) < L1_CACHE_BYTES || 2964 skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS) 2965 hlen = skb_headlen(from); 2966 2967 if (skb_has_frag_list(from)) 2968 hlen = from->len; 2969 2970 return hlen; 2971 } 2972 EXPORT_SYMBOL_GPL(skb_zerocopy_headlen); 2973 2974 /** 2975 * skb_zerocopy - Zero copy skb to skb 2976 * @to: destination buffer 2977 * @from: source buffer 2978 * @len: number of bytes to copy from source buffer 2979 * @hlen: size of linear headroom in destination buffer 2980 * 2981 * Copies up to `len` bytes from `from` to `to` by creating references 2982 * to the frags in the source buffer. 2983 * 2984 * The `hlen` as calculated by skb_zerocopy_headlen() specifies the 2985 * headroom in the `to` buffer. 2986 * 2987 * Return value: 2988 * 0: everything is OK 2989 * -ENOMEM: couldn't orphan frags of @from due to lack of memory 2990 * -EFAULT: skb_copy_bits() found some problem with skb geometry 2991 */ 2992 int 2993 skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen) 2994 { 2995 int i, j = 0; 2996 int plen = 0; /* length of skb->head fragment */ 2997 int ret; 2998 struct page *page; 2999 unsigned int offset; 3000 3001 BUG_ON(!from->head_frag && !hlen); 3002 3003 /* dont bother with small payloads */ 3004 if (len <= skb_tailroom(to)) 3005 return skb_copy_bits(from, 0, skb_put(to, len), len); 3006 3007 if (hlen) { 3008 ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen); 3009 if (unlikely(ret)) 3010 return ret; 3011 len -= hlen; 3012 } else { 3013 plen = min_t(int, skb_headlen(from), len); 3014 if (plen) { 3015 page = virt_to_head_page(from->head); 3016 offset = from->data - (unsigned char *)page_address(page); 3017 __skb_fill_page_desc(to, 0, page, offset, plen); 3018 get_page(page); 3019 j = 1; 3020 len -= plen; 3021 } 3022 } 3023 3024 to->truesize += len + plen; 3025 to->len += len + plen; 3026 to->data_len += len + plen; 3027 3028 if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) { 3029 skb_tx_error(from); 3030 return -ENOMEM; 3031 } 3032 skb_zerocopy_clone(to, from, GFP_ATOMIC); 3033 3034 for (i = 0; i < skb_shinfo(from)->nr_frags; i++) { 3035 int size; 3036 3037 if (!len) 3038 break; 3039 skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i]; 3040 size = min_t(int, skb_frag_size(&skb_shinfo(to)->frags[j]), 3041 len); 3042 skb_frag_size_set(&skb_shinfo(to)->frags[j], size); 3043 len -= size; 3044 skb_frag_ref(to, j); 3045 j++; 3046 } 3047 skb_shinfo(to)->nr_frags = j; 3048 3049 return 0; 3050 } 3051 EXPORT_SYMBOL_GPL(skb_zerocopy); 3052 3053 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to) 3054 { 3055 __wsum csum; 3056 long csstart; 3057 3058 if (skb->ip_summed == CHECKSUM_PARTIAL) 3059 csstart = skb_checksum_start_offset(skb); 3060 else 3061 csstart = skb_headlen(skb); 3062 3063 BUG_ON(csstart > skb_headlen(skb)); 3064 3065 skb_copy_from_linear_data(skb, to, csstart); 3066 3067 csum = 0; 3068 if (csstart != skb->len) 3069 csum = skb_copy_and_csum_bits(skb, csstart, to + csstart, 3070 skb->len - csstart); 3071 3072 if (skb->ip_summed == CHECKSUM_PARTIAL) { 3073 long csstuff = csstart + skb->csum_offset; 3074 3075 *((__sum16 *)(to + csstuff)) = csum_fold(csum); 3076 } 3077 } 3078 EXPORT_SYMBOL(skb_copy_and_csum_dev); 3079 3080 /** 3081 * skb_dequeue - remove from the head of the queue 3082 * @list: list to dequeue from 3083 * 3084 * Remove the head of the list. The list lock is taken so the function 3085 * may be used safely with other locking list functions. The head item is 3086 * returned or %NULL if the list is empty. 3087 */ 3088 3089 struct sk_buff *skb_dequeue(struct sk_buff_head *list) 3090 { 3091 unsigned long flags; 3092 struct sk_buff *result; 3093 3094 spin_lock_irqsave(&list->lock, flags); 3095 result = __skb_dequeue(list); 3096 spin_unlock_irqrestore(&list->lock, flags); 3097 return result; 3098 } 3099 EXPORT_SYMBOL(skb_dequeue); 3100 3101 /** 3102 * skb_dequeue_tail - remove from the tail of the queue 3103 * @list: list to dequeue from 3104 * 3105 * Remove the tail of the list. The list lock is taken so the function 3106 * may be used safely with other locking list functions. The tail item is 3107 * returned or %NULL if the list is empty. 3108 */ 3109 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list) 3110 { 3111 unsigned long flags; 3112 struct sk_buff *result; 3113 3114 spin_lock_irqsave(&list->lock, flags); 3115 result = __skb_dequeue_tail(list); 3116 spin_unlock_irqrestore(&list->lock, flags); 3117 return result; 3118 } 3119 EXPORT_SYMBOL(skb_dequeue_tail); 3120 3121 /** 3122 * skb_queue_purge - empty a list 3123 * @list: list to empty 3124 * 3125 * Delete all buffers on an &sk_buff list. Each buffer is removed from 3126 * the list and one reference dropped. This function takes the list 3127 * lock and is atomic with respect to other list locking functions. 3128 */ 3129 void skb_queue_purge(struct sk_buff_head *list) 3130 { 3131 struct sk_buff *skb; 3132 while ((skb = skb_dequeue(list)) != NULL) 3133 kfree_skb(skb); 3134 } 3135 EXPORT_SYMBOL(skb_queue_purge); 3136 3137 /** 3138 * skb_rbtree_purge - empty a skb rbtree 3139 * @root: root of the rbtree to empty 3140 * Return value: the sum of truesizes of all purged skbs. 3141 * 3142 * Delete all buffers on an &sk_buff rbtree. Each buffer is removed from 3143 * the list and one reference dropped. This function does not take 3144 * any lock. Synchronization should be handled by the caller (e.g., TCP 3145 * out-of-order queue is protected by the socket lock). 3146 */ 3147 unsigned int skb_rbtree_purge(struct rb_root *root) 3148 { 3149 struct rb_node *p = rb_first(root); 3150 unsigned int sum = 0; 3151 3152 while (p) { 3153 struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode); 3154 3155 p = rb_next(p); 3156 rb_erase(&skb->rbnode, root); 3157 sum += skb->truesize; 3158 kfree_skb(skb); 3159 } 3160 return sum; 3161 } 3162 3163 /** 3164 * skb_queue_head - queue a buffer at the list head 3165 * @list: list to use 3166 * @newsk: buffer to queue 3167 * 3168 * Queue a buffer at the start of the list. This function takes the 3169 * list lock and can be used safely with other locking &sk_buff functions 3170 * safely. 3171 * 3172 * A buffer cannot be placed on two lists at the same time. 3173 */ 3174 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk) 3175 { 3176 unsigned long flags; 3177 3178 spin_lock_irqsave(&list->lock, flags); 3179 __skb_queue_head(list, newsk); 3180 spin_unlock_irqrestore(&list->lock, flags); 3181 } 3182 EXPORT_SYMBOL(skb_queue_head); 3183 3184 /** 3185 * skb_queue_tail - queue a buffer at the list tail 3186 * @list: list to use 3187 * @newsk: buffer to queue 3188 * 3189 * Queue a buffer at the tail of the list. This function takes the 3190 * list lock and can be used safely with other locking &sk_buff functions 3191 * safely. 3192 * 3193 * A buffer cannot be placed on two lists at the same time. 3194 */ 3195 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk) 3196 { 3197 unsigned long flags; 3198 3199 spin_lock_irqsave(&list->lock, flags); 3200 __skb_queue_tail(list, newsk); 3201 spin_unlock_irqrestore(&list->lock, flags); 3202 } 3203 EXPORT_SYMBOL(skb_queue_tail); 3204 3205 /** 3206 * skb_unlink - remove a buffer from a list 3207 * @skb: buffer to remove 3208 * @list: list to use 3209 * 3210 * Remove a packet from a list. The list locks are taken and this 3211 * function is atomic with respect to other list locked calls 3212 * 3213 * You must know what list the SKB is on. 3214 */ 3215 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list) 3216 { 3217 unsigned long flags; 3218 3219 spin_lock_irqsave(&list->lock, flags); 3220 __skb_unlink(skb, list); 3221 spin_unlock_irqrestore(&list->lock, flags); 3222 } 3223 EXPORT_SYMBOL(skb_unlink); 3224 3225 /** 3226 * skb_append - append a buffer 3227 * @old: buffer to insert after 3228 * @newsk: buffer to insert 3229 * @list: list to use 3230 * 3231 * Place a packet after a given packet in a list. The list locks are taken 3232 * and this function is atomic with respect to other list locked calls. 3233 * A buffer cannot be placed on two lists at the same time. 3234 */ 3235 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list) 3236 { 3237 unsigned long flags; 3238 3239 spin_lock_irqsave(&list->lock, flags); 3240 __skb_queue_after(list, old, newsk); 3241 spin_unlock_irqrestore(&list->lock, flags); 3242 } 3243 EXPORT_SYMBOL(skb_append); 3244 3245 static inline void skb_split_inside_header(struct sk_buff *skb, 3246 struct sk_buff* skb1, 3247 const u32 len, const int pos) 3248 { 3249 int i; 3250 3251 skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len), 3252 pos - len); 3253 /* And move data appendix as is. */ 3254 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 3255 skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i]; 3256 3257 skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags; 3258 skb_shinfo(skb)->nr_frags = 0; 3259 skb1->data_len = skb->data_len; 3260 skb1->len += skb1->data_len; 3261 skb->data_len = 0; 3262 skb->len = len; 3263 skb_set_tail_pointer(skb, len); 3264 } 3265 3266 static inline void skb_split_no_header(struct sk_buff *skb, 3267 struct sk_buff* skb1, 3268 const u32 len, int pos) 3269 { 3270 int i, k = 0; 3271 const int nfrags = skb_shinfo(skb)->nr_frags; 3272 3273 skb_shinfo(skb)->nr_frags = 0; 3274 skb1->len = skb1->data_len = skb->len - len; 3275 skb->len = len; 3276 skb->data_len = len - pos; 3277 3278 for (i = 0; i < nfrags; i++) { 3279 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 3280 3281 if (pos + size > len) { 3282 skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i]; 3283 3284 if (pos < len) { 3285 /* Split frag. 3286 * We have two variants in this case: 3287 * 1. Move all the frag to the second 3288 * part, if it is possible. F.e. 3289 * this approach is mandatory for TUX, 3290 * where splitting is expensive. 3291 * 2. Split is accurately. We make this. 3292 */ 3293 skb_frag_ref(skb, i); 3294 skb_frag_off_add(&skb_shinfo(skb1)->frags[0], len - pos); 3295 skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos); 3296 skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos); 3297 skb_shinfo(skb)->nr_frags++; 3298 } 3299 k++; 3300 } else 3301 skb_shinfo(skb)->nr_frags++; 3302 pos += size; 3303 } 3304 skb_shinfo(skb1)->nr_frags = k; 3305 } 3306 3307 /** 3308 * skb_split - Split fragmented skb to two parts at length len. 3309 * @skb: the buffer to split 3310 * @skb1: the buffer to receive the second part 3311 * @len: new length for skb 3312 */ 3313 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len) 3314 { 3315 int pos = skb_headlen(skb); 3316 3317 skb_shinfo(skb1)->flags |= skb_shinfo(skb)->flags & SKBFL_SHARED_FRAG; 3318 skb_zerocopy_clone(skb1, skb, 0); 3319 if (len < pos) /* Split line is inside header. */ 3320 skb_split_inside_header(skb, skb1, len, pos); 3321 else /* Second chunk has no header, nothing to copy. */ 3322 skb_split_no_header(skb, skb1, len, pos); 3323 } 3324 EXPORT_SYMBOL(skb_split); 3325 3326 /* Shifting from/to a cloned skb is a no-go. 3327 * 3328 * Caller cannot keep skb_shinfo related pointers past calling here! 3329 */ 3330 static int skb_prepare_for_shift(struct sk_buff *skb) 3331 { 3332 int ret = 0; 3333 3334 if (skb_cloned(skb)) { 3335 /* Save and restore truesize: pskb_expand_head() may reallocate 3336 * memory where ksize(kmalloc(S)) != ksize(kmalloc(S)), but we 3337 * cannot change truesize at this point. 3338 */ 3339 unsigned int save_truesize = skb->truesize; 3340 3341 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 3342 skb->truesize = save_truesize; 3343 } 3344 return ret; 3345 } 3346 3347 /** 3348 * skb_shift - Shifts paged data partially from skb to another 3349 * @tgt: buffer into which tail data gets added 3350 * @skb: buffer from which the paged data comes from 3351 * @shiftlen: shift up to this many bytes 3352 * 3353 * Attempts to shift up to shiftlen worth of bytes, which may be less than 3354 * the length of the skb, from skb to tgt. Returns number bytes shifted. 3355 * It's up to caller to free skb if everything was shifted. 3356 * 3357 * If @tgt runs out of frags, the whole operation is aborted. 3358 * 3359 * Skb cannot include anything else but paged data while tgt is allowed 3360 * to have non-paged data as well. 3361 * 3362 * TODO: full sized shift could be optimized but that would need 3363 * specialized skb free'er to handle frags without up-to-date nr_frags. 3364 */ 3365 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen) 3366 { 3367 int from, to, merge, todo; 3368 skb_frag_t *fragfrom, *fragto; 3369 3370 BUG_ON(shiftlen > skb->len); 3371 3372 if (skb_headlen(skb)) 3373 return 0; 3374 if (skb_zcopy(tgt) || skb_zcopy(skb)) 3375 return 0; 3376 3377 todo = shiftlen; 3378 from = 0; 3379 to = skb_shinfo(tgt)->nr_frags; 3380 fragfrom = &skb_shinfo(skb)->frags[from]; 3381 3382 /* Actual merge is delayed until the point when we know we can 3383 * commit all, so that we don't have to undo partial changes 3384 */ 3385 if (!to || 3386 !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom), 3387 skb_frag_off(fragfrom))) { 3388 merge = -1; 3389 } else { 3390 merge = to - 1; 3391 3392 todo -= skb_frag_size(fragfrom); 3393 if (todo < 0) { 3394 if (skb_prepare_for_shift(skb) || 3395 skb_prepare_for_shift(tgt)) 3396 return 0; 3397 3398 /* All previous frag pointers might be stale! */ 3399 fragfrom = &skb_shinfo(skb)->frags[from]; 3400 fragto = &skb_shinfo(tgt)->frags[merge]; 3401 3402 skb_frag_size_add(fragto, shiftlen); 3403 skb_frag_size_sub(fragfrom, shiftlen); 3404 skb_frag_off_add(fragfrom, shiftlen); 3405 3406 goto onlymerged; 3407 } 3408 3409 from++; 3410 } 3411 3412 /* Skip full, not-fitting skb to avoid expensive operations */ 3413 if ((shiftlen == skb->len) && 3414 (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to)) 3415 return 0; 3416 3417 if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt)) 3418 return 0; 3419 3420 while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) { 3421 if (to == MAX_SKB_FRAGS) 3422 return 0; 3423 3424 fragfrom = &skb_shinfo(skb)->frags[from]; 3425 fragto = &skb_shinfo(tgt)->frags[to]; 3426 3427 if (todo >= skb_frag_size(fragfrom)) { 3428 *fragto = *fragfrom; 3429 todo -= skb_frag_size(fragfrom); 3430 from++; 3431 to++; 3432 3433 } else { 3434 __skb_frag_ref(fragfrom); 3435 skb_frag_page_copy(fragto, fragfrom); 3436 skb_frag_off_copy(fragto, fragfrom); 3437 skb_frag_size_set(fragto, todo); 3438 3439 skb_frag_off_add(fragfrom, todo); 3440 skb_frag_size_sub(fragfrom, todo); 3441 todo = 0; 3442 3443 to++; 3444 break; 3445 } 3446 } 3447 3448 /* Ready to "commit" this state change to tgt */ 3449 skb_shinfo(tgt)->nr_frags = to; 3450 3451 if (merge >= 0) { 3452 fragfrom = &skb_shinfo(skb)->frags[0]; 3453 fragto = &skb_shinfo(tgt)->frags[merge]; 3454 3455 skb_frag_size_add(fragto, skb_frag_size(fragfrom)); 3456 __skb_frag_unref(fragfrom); 3457 } 3458 3459 /* Reposition in the original skb */ 3460 to = 0; 3461 while (from < skb_shinfo(skb)->nr_frags) 3462 skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++]; 3463 skb_shinfo(skb)->nr_frags = to; 3464 3465 BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags); 3466 3467 onlymerged: 3468 /* Most likely the tgt won't ever need its checksum anymore, skb on 3469 * the other hand might need it if it needs to be resent 3470 */ 3471 tgt->ip_summed = CHECKSUM_PARTIAL; 3472 skb->ip_summed = CHECKSUM_PARTIAL; 3473 3474 /* Yak, is it really working this way? Some helper please? */ 3475 skb->len -= shiftlen; 3476 skb->data_len -= shiftlen; 3477 skb->truesize -= shiftlen; 3478 tgt->len += shiftlen; 3479 tgt->data_len += shiftlen; 3480 tgt->truesize += shiftlen; 3481 3482 return shiftlen; 3483 } 3484 3485 /** 3486 * skb_prepare_seq_read - Prepare a sequential read of skb data 3487 * @skb: the buffer to read 3488 * @from: lower offset of data to be read 3489 * @to: upper offset of data to be read 3490 * @st: state variable 3491 * 3492 * Initializes the specified state variable. Must be called before 3493 * invoking skb_seq_read() for the first time. 3494 */ 3495 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from, 3496 unsigned int to, struct skb_seq_state *st) 3497 { 3498 st->lower_offset = from; 3499 st->upper_offset = to; 3500 st->root_skb = st->cur_skb = skb; 3501 st->frag_idx = st->stepped_offset = 0; 3502 st->frag_data = NULL; 3503 st->frag_off = 0; 3504 } 3505 EXPORT_SYMBOL(skb_prepare_seq_read); 3506 3507 /** 3508 * skb_seq_read - Sequentially read skb data 3509 * @consumed: number of bytes consumed by the caller so far 3510 * @data: destination pointer for data to be returned 3511 * @st: state variable 3512 * 3513 * Reads a block of skb data at @consumed relative to the 3514 * lower offset specified to skb_prepare_seq_read(). Assigns 3515 * the head of the data block to @data and returns the length 3516 * of the block or 0 if the end of the skb data or the upper 3517 * offset has been reached. 3518 * 3519 * The caller is not required to consume all of the data 3520 * returned, i.e. @consumed is typically set to the number 3521 * of bytes already consumed and the next call to 3522 * skb_seq_read() will return the remaining part of the block. 3523 * 3524 * Note 1: The size of each block of data returned can be arbitrary, 3525 * this limitation is the cost for zerocopy sequential 3526 * reads of potentially non linear data. 3527 * 3528 * Note 2: Fragment lists within fragments are not implemented 3529 * at the moment, state->root_skb could be replaced with 3530 * a stack for this purpose. 3531 */ 3532 unsigned int skb_seq_read(unsigned int consumed, const u8 **data, 3533 struct skb_seq_state *st) 3534 { 3535 unsigned int block_limit, abs_offset = consumed + st->lower_offset; 3536 skb_frag_t *frag; 3537 3538 if (unlikely(abs_offset >= st->upper_offset)) { 3539 if (st->frag_data) { 3540 kunmap_atomic(st->frag_data); 3541 st->frag_data = NULL; 3542 } 3543 return 0; 3544 } 3545 3546 next_skb: 3547 block_limit = skb_headlen(st->cur_skb) + st->stepped_offset; 3548 3549 if (abs_offset < block_limit && !st->frag_data) { 3550 *data = st->cur_skb->data + (abs_offset - st->stepped_offset); 3551 return block_limit - abs_offset; 3552 } 3553 3554 if (st->frag_idx == 0 && !st->frag_data) 3555 st->stepped_offset += skb_headlen(st->cur_skb); 3556 3557 while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) { 3558 unsigned int pg_idx, pg_off, pg_sz; 3559 3560 frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx]; 3561 3562 pg_idx = 0; 3563 pg_off = skb_frag_off(frag); 3564 pg_sz = skb_frag_size(frag); 3565 3566 if (skb_frag_must_loop(skb_frag_page(frag))) { 3567 pg_idx = (pg_off + st->frag_off) >> PAGE_SHIFT; 3568 pg_off = offset_in_page(pg_off + st->frag_off); 3569 pg_sz = min_t(unsigned int, pg_sz - st->frag_off, 3570 PAGE_SIZE - pg_off); 3571 } 3572 3573 block_limit = pg_sz + st->stepped_offset; 3574 if (abs_offset < block_limit) { 3575 if (!st->frag_data) 3576 st->frag_data = kmap_atomic(skb_frag_page(frag) + pg_idx); 3577 3578 *data = (u8 *)st->frag_data + pg_off + 3579 (abs_offset - st->stepped_offset); 3580 3581 return block_limit - abs_offset; 3582 } 3583 3584 if (st->frag_data) { 3585 kunmap_atomic(st->frag_data); 3586 st->frag_data = NULL; 3587 } 3588 3589 st->stepped_offset += pg_sz; 3590 st->frag_off += pg_sz; 3591 if (st->frag_off == skb_frag_size(frag)) { 3592 st->frag_off = 0; 3593 st->frag_idx++; 3594 } 3595 } 3596 3597 if (st->frag_data) { 3598 kunmap_atomic(st->frag_data); 3599 st->frag_data = NULL; 3600 } 3601 3602 if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) { 3603 st->cur_skb = skb_shinfo(st->root_skb)->frag_list; 3604 st->frag_idx = 0; 3605 goto next_skb; 3606 } else if (st->cur_skb->next) { 3607 st->cur_skb = st->cur_skb->next; 3608 st->frag_idx = 0; 3609 goto next_skb; 3610 } 3611 3612 return 0; 3613 } 3614 EXPORT_SYMBOL(skb_seq_read); 3615 3616 /** 3617 * skb_abort_seq_read - Abort a sequential read of skb data 3618 * @st: state variable 3619 * 3620 * Must be called if skb_seq_read() was not called until it 3621 * returned 0. 3622 */ 3623 void skb_abort_seq_read(struct skb_seq_state *st) 3624 { 3625 if (st->frag_data) 3626 kunmap_atomic(st->frag_data); 3627 } 3628 EXPORT_SYMBOL(skb_abort_seq_read); 3629 3630 #define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb)) 3631 3632 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text, 3633 struct ts_config *conf, 3634 struct ts_state *state) 3635 { 3636 return skb_seq_read(offset, text, TS_SKB_CB(state)); 3637 } 3638 3639 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state) 3640 { 3641 skb_abort_seq_read(TS_SKB_CB(state)); 3642 } 3643 3644 /** 3645 * skb_find_text - Find a text pattern in skb data 3646 * @skb: the buffer to look in 3647 * @from: search offset 3648 * @to: search limit 3649 * @config: textsearch configuration 3650 * 3651 * Finds a pattern in the skb data according to the specified 3652 * textsearch configuration. Use textsearch_next() to retrieve 3653 * subsequent occurrences of the pattern. Returns the offset 3654 * to the first occurrence or UINT_MAX if no match was found. 3655 */ 3656 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from, 3657 unsigned int to, struct ts_config *config) 3658 { 3659 struct ts_state state; 3660 unsigned int ret; 3661 3662 config->get_next_block = skb_ts_get_next_block; 3663 config->finish = skb_ts_finish; 3664 3665 skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state)); 3666 3667 ret = textsearch_find(config, &state); 3668 return (ret <= to - from ? ret : UINT_MAX); 3669 } 3670 EXPORT_SYMBOL(skb_find_text); 3671 3672 int skb_append_pagefrags(struct sk_buff *skb, struct page *page, 3673 int offset, size_t size) 3674 { 3675 int i = skb_shinfo(skb)->nr_frags; 3676 3677 if (skb_can_coalesce(skb, i, page, offset)) { 3678 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size); 3679 } else if (i < MAX_SKB_FRAGS) { 3680 get_page(page); 3681 skb_fill_page_desc(skb, i, page, offset, size); 3682 } else { 3683 return -EMSGSIZE; 3684 } 3685 3686 return 0; 3687 } 3688 EXPORT_SYMBOL_GPL(skb_append_pagefrags); 3689 3690 /** 3691 * skb_pull_rcsum - pull skb and update receive checksum 3692 * @skb: buffer to update 3693 * @len: length of data pulled 3694 * 3695 * This function performs an skb_pull on the packet and updates 3696 * the CHECKSUM_COMPLETE checksum. It should be used on 3697 * receive path processing instead of skb_pull unless you know 3698 * that the checksum difference is zero (e.g., a valid IP header) 3699 * or you are setting ip_summed to CHECKSUM_NONE. 3700 */ 3701 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len) 3702 { 3703 unsigned char *data = skb->data; 3704 3705 BUG_ON(len > skb->len); 3706 __skb_pull(skb, len); 3707 skb_postpull_rcsum(skb, data, len); 3708 return skb->data; 3709 } 3710 EXPORT_SYMBOL_GPL(skb_pull_rcsum); 3711 3712 static inline skb_frag_t skb_head_frag_to_page_desc(struct sk_buff *frag_skb) 3713 { 3714 skb_frag_t head_frag; 3715 struct page *page; 3716 3717 page = virt_to_head_page(frag_skb->head); 3718 __skb_frag_set_page(&head_frag, page); 3719 skb_frag_off_set(&head_frag, frag_skb->data - 3720 (unsigned char *)page_address(page)); 3721 skb_frag_size_set(&head_frag, skb_headlen(frag_skb)); 3722 return head_frag; 3723 } 3724 3725 struct sk_buff *skb_segment_list(struct sk_buff *skb, 3726 netdev_features_t features, 3727 unsigned int offset) 3728 { 3729 struct sk_buff *list_skb = skb_shinfo(skb)->frag_list; 3730 unsigned int tnl_hlen = skb_tnl_header_len(skb); 3731 unsigned int delta_truesize = 0; 3732 unsigned int delta_len = 0; 3733 struct sk_buff *tail = NULL; 3734 struct sk_buff *nskb, *tmp; 3735 int err; 3736 3737 skb_push(skb, -skb_network_offset(skb) + offset); 3738 3739 skb_shinfo(skb)->frag_list = NULL; 3740 3741 do { 3742 nskb = list_skb; 3743 list_skb = list_skb->next; 3744 3745 err = 0; 3746 if (skb_shared(nskb)) { 3747 tmp = skb_clone(nskb, GFP_ATOMIC); 3748 if (tmp) { 3749 consume_skb(nskb); 3750 nskb = tmp; 3751 err = skb_unclone(nskb, GFP_ATOMIC); 3752 } else { 3753 err = -ENOMEM; 3754 } 3755 } 3756 3757 if (!tail) 3758 skb->next = nskb; 3759 else 3760 tail->next = nskb; 3761 3762 if (unlikely(err)) { 3763 nskb->next = list_skb; 3764 goto err_linearize; 3765 } 3766 3767 tail = nskb; 3768 3769 delta_len += nskb->len; 3770 delta_truesize += nskb->truesize; 3771 3772 skb_push(nskb, -skb_network_offset(nskb) + offset); 3773 3774 skb_release_head_state(nskb); 3775 __copy_skb_header(nskb, skb); 3776 3777 skb_headers_offset_update(nskb, skb_headroom(nskb) - skb_headroom(skb)); 3778 skb_copy_from_linear_data_offset(skb, -tnl_hlen, 3779 nskb->data - tnl_hlen, 3780 offset + tnl_hlen); 3781 3782 if (skb_needs_linearize(nskb, features) && 3783 __skb_linearize(nskb)) 3784 goto err_linearize; 3785 3786 } while (list_skb); 3787 3788 skb->truesize = skb->truesize - delta_truesize; 3789 skb->data_len = skb->data_len - delta_len; 3790 skb->len = skb->len - delta_len; 3791 3792 skb_gso_reset(skb); 3793 3794 skb->prev = tail; 3795 3796 if (skb_needs_linearize(skb, features) && 3797 __skb_linearize(skb)) 3798 goto err_linearize; 3799 3800 skb_get(skb); 3801 3802 return skb; 3803 3804 err_linearize: 3805 kfree_skb_list(skb->next); 3806 skb->next = NULL; 3807 return ERR_PTR(-ENOMEM); 3808 } 3809 EXPORT_SYMBOL_GPL(skb_segment_list); 3810 3811 int skb_gro_receive_list(struct sk_buff *p, struct sk_buff *skb) 3812 { 3813 if (unlikely(p->len + skb->len >= 65536)) 3814 return -E2BIG; 3815 3816 if (NAPI_GRO_CB(p)->last == p) 3817 skb_shinfo(p)->frag_list = skb; 3818 else 3819 NAPI_GRO_CB(p)->last->next = skb; 3820 3821 skb_pull(skb, skb_gro_offset(skb)); 3822 3823 NAPI_GRO_CB(p)->last = skb; 3824 NAPI_GRO_CB(p)->count++; 3825 p->data_len += skb->len; 3826 p->truesize += skb->truesize; 3827 p->len += skb->len; 3828 3829 NAPI_GRO_CB(skb)->same_flow = 1; 3830 3831 return 0; 3832 } 3833 3834 /** 3835 * skb_segment - Perform protocol segmentation on skb. 3836 * @head_skb: buffer to segment 3837 * @features: features for the output path (see dev->features) 3838 * 3839 * This function performs segmentation on the given skb. It returns 3840 * a pointer to the first in a list of new skbs for the segments. 3841 * In case of error it returns ERR_PTR(err). 3842 */ 3843 struct sk_buff *skb_segment(struct sk_buff *head_skb, 3844 netdev_features_t features) 3845 { 3846 struct sk_buff *segs = NULL; 3847 struct sk_buff *tail = NULL; 3848 struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list; 3849 skb_frag_t *frag = skb_shinfo(head_skb)->frags; 3850 unsigned int mss = skb_shinfo(head_skb)->gso_size; 3851 unsigned int doffset = head_skb->data - skb_mac_header(head_skb); 3852 struct sk_buff *frag_skb = head_skb; 3853 unsigned int offset = doffset; 3854 unsigned int tnl_hlen = skb_tnl_header_len(head_skb); 3855 unsigned int partial_segs = 0; 3856 unsigned int headroom; 3857 unsigned int len = head_skb->len; 3858 __be16 proto; 3859 bool csum, sg; 3860 int nfrags = skb_shinfo(head_skb)->nr_frags; 3861 int err = -ENOMEM; 3862 int i = 0; 3863 int pos; 3864 3865 if (list_skb && !list_skb->head_frag && skb_headlen(list_skb) && 3866 (skb_shinfo(head_skb)->gso_type & SKB_GSO_DODGY)) { 3867 /* gso_size is untrusted, and we have a frag_list with a linear 3868 * non head_frag head. 3869 * 3870 * (we assume checking the first list_skb member suffices; 3871 * i.e if either of the list_skb members have non head_frag 3872 * head, then the first one has too). 3873 * 3874 * If head_skb's headlen does not fit requested gso_size, it 3875 * means that the frag_list members do NOT terminate on exact 3876 * gso_size boundaries. Hence we cannot perform skb_frag_t page 3877 * sharing. Therefore we must fallback to copying the frag_list 3878 * skbs; we do so by disabling SG. 3879 */ 3880 if (mss != GSO_BY_FRAGS && mss != skb_headlen(head_skb)) 3881 features &= ~NETIF_F_SG; 3882 } 3883 3884 __skb_push(head_skb, doffset); 3885 proto = skb_network_protocol(head_skb, NULL); 3886 if (unlikely(!proto)) 3887 return ERR_PTR(-EINVAL); 3888 3889 sg = !!(features & NETIF_F_SG); 3890 csum = !!can_checksum_protocol(features, proto); 3891 3892 if (sg && csum && (mss != GSO_BY_FRAGS)) { 3893 if (!(features & NETIF_F_GSO_PARTIAL)) { 3894 struct sk_buff *iter; 3895 unsigned int frag_len; 3896 3897 if (!list_skb || 3898 !net_gso_ok(features, skb_shinfo(head_skb)->gso_type)) 3899 goto normal; 3900 3901 /* If we get here then all the required 3902 * GSO features except frag_list are supported. 3903 * Try to split the SKB to multiple GSO SKBs 3904 * with no frag_list. 3905 * Currently we can do that only when the buffers don't 3906 * have a linear part and all the buffers except 3907 * the last are of the same length. 3908 */ 3909 frag_len = list_skb->len; 3910 skb_walk_frags(head_skb, iter) { 3911 if (frag_len != iter->len && iter->next) 3912 goto normal; 3913 if (skb_headlen(iter) && !iter->head_frag) 3914 goto normal; 3915 3916 len -= iter->len; 3917 } 3918 3919 if (len != frag_len) 3920 goto normal; 3921 } 3922 3923 /* GSO partial only requires that we trim off any excess that 3924 * doesn't fit into an MSS sized block, so take care of that 3925 * now. 3926 */ 3927 partial_segs = len / mss; 3928 if (partial_segs > 1) 3929 mss *= partial_segs; 3930 else 3931 partial_segs = 0; 3932 } 3933 3934 normal: 3935 headroom = skb_headroom(head_skb); 3936 pos = skb_headlen(head_skb); 3937 3938 do { 3939 struct sk_buff *nskb; 3940 skb_frag_t *nskb_frag; 3941 int hsize; 3942 int size; 3943 3944 if (unlikely(mss == GSO_BY_FRAGS)) { 3945 len = list_skb->len; 3946 } else { 3947 len = head_skb->len - offset; 3948 if (len > mss) 3949 len = mss; 3950 } 3951 3952 hsize = skb_headlen(head_skb) - offset; 3953 3954 if (hsize <= 0 && i >= nfrags && skb_headlen(list_skb) && 3955 (skb_headlen(list_skb) == len || sg)) { 3956 BUG_ON(skb_headlen(list_skb) > len); 3957 3958 i = 0; 3959 nfrags = skb_shinfo(list_skb)->nr_frags; 3960 frag = skb_shinfo(list_skb)->frags; 3961 frag_skb = list_skb; 3962 pos += skb_headlen(list_skb); 3963 3964 while (pos < offset + len) { 3965 BUG_ON(i >= nfrags); 3966 3967 size = skb_frag_size(frag); 3968 if (pos + size > offset + len) 3969 break; 3970 3971 i++; 3972 pos += size; 3973 frag++; 3974 } 3975 3976 nskb = skb_clone(list_skb, GFP_ATOMIC); 3977 list_skb = list_skb->next; 3978 3979 if (unlikely(!nskb)) 3980 goto err; 3981 3982 if (unlikely(pskb_trim(nskb, len))) { 3983 kfree_skb(nskb); 3984 goto err; 3985 } 3986 3987 hsize = skb_end_offset(nskb); 3988 if (skb_cow_head(nskb, doffset + headroom)) { 3989 kfree_skb(nskb); 3990 goto err; 3991 } 3992 3993 nskb->truesize += skb_end_offset(nskb) - hsize; 3994 skb_release_head_state(nskb); 3995 __skb_push(nskb, doffset); 3996 } else { 3997 if (hsize < 0) 3998 hsize = 0; 3999 if (hsize > len || !sg) 4000 hsize = len; 4001 4002 nskb = __alloc_skb(hsize + doffset + headroom, 4003 GFP_ATOMIC, skb_alloc_rx_flag(head_skb), 4004 NUMA_NO_NODE); 4005 4006 if (unlikely(!nskb)) 4007 goto err; 4008 4009 skb_reserve(nskb, headroom); 4010 __skb_put(nskb, doffset); 4011 } 4012 4013 if (segs) 4014 tail->next = nskb; 4015 else 4016 segs = nskb; 4017 tail = nskb; 4018 4019 __copy_skb_header(nskb, head_skb); 4020 4021 skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom); 4022 skb_reset_mac_len(nskb); 4023 4024 skb_copy_from_linear_data_offset(head_skb, -tnl_hlen, 4025 nskb->data - tnl_hlen, 4026 doffset + tnl_hlen); 4027 4028 if (nskb->len == len + doffset) 4029 goto perform_csum_check; 4030 4031 if (!sg) { 4032 if (!csum) { 4033 if (!nskb->remcsum_offload) 4034 nskb->ip_summed = CHECKSUM_NONE; 4035 SKB_GSO_CB(nskb)->csum = 4036 skb_copy_and_csum_bits(head_skb, offset, 4037 skb_put(nskb, 4038 len), 4039 len); 4040 SKB_GSO_CB(nskb)->csum_start = 4041 skb_headroom(nskb) + doffset; 4042 } else { 4043 skb_copy_bits(head_skb, offset, 4044 skb_put(nskb, len), 4045 len); 4046 } 4047 continue; 4048 } 4049 4050 nskb_frag = skb_shinfo(nskb)->frags; 4051 4052 skb_copy_from_linear_data_offset(head_skb, offset, 4053 skb_put(nskb, hsize), hsize); 4054 4055 skb_shinfo(nskb)->flags |= skb_shinfo(head_skb)->flags & 4056 SKBFL_SHARED_FRAG; 4057 4058 if (skb_orphan_frags(frag_skb, GFP_ATOMIC) || 4059 skb_zerocopy_clone(nskb, frag_skb, GFP_ATOMIC)) 4060 goto err; 4061 4062 while (pos < offset + len) { 4063 if (i >= nfrags) { 4064 i = 0; 4065 nfrags = skb_shinfo(list_skb)->nr_frags; 4066 frag = skb_shinfo(list_skb)->frags; 4067 frag_skb = list_skb; 4068 if (!skb_headlen(list_skb)) { 4069 BUG_ON(!nfrags); 4070 } else { 4071 BUG_ON(!list_skb->head_frag); 4072 4073 /* to make room for head_frag. */ 4074 i--; 4075 frag--; 4076 } 4077 if (skb_orphan_frags(frag_skb, GFP_ATOMIC) || 4078 skb_zerocopy_clone(nskb, frag_skb, 4079 GFP_ATOMIC)) 4080 goto err; 4081 4082 list_skb = list_skb->next; 4083 } 4084 4085 if (unlikely(skb_shinfo(nskb)->nr_frags >= 4086 MAX_SKB_FRAGS)) { 4087 net_warn_ratelimited( 4088 "skb_segment: too many frags: %u %u\n", 4089 pos, mss); 4090 err = -EINVAL; 4091 goto err; 4092 } 4093 4094 *nskb_frag = (i < 0) ? skb_head_frag_to_page_desc(frag_skb) : *frag; 4095 __skb_frag_ref(nskb_frag); 4096 size = skb_frag_size(nskb_frag); 4097 4098 if (pos < offset) { 4099 skb_frag_off_add(nskb_frag, offset - pos); 4100 skb_frag_size_sub(nskb_frag, offset - pos); 4101 } 4102 4103 skb_shinfo(nskb)->nr_frags++; 4104 4105 if (pos + size <= offset + len) { 4106 i++; 4107 frag++; 4108 pos += size; 4109 } else { 4110 skb_frag_size_sub(nskb_frag, pos + size - (offset + len)); 4111 goto skip_fraglist; 4112 } 4113 4114 nskb_frag++; 4115 } 4116 4117 skip_fraglist: 4118 nskb->data_len = len - hsize; 4119 nskb->len += nskb->data_len; 4120 nskb->truesize += nskb->data_len; 4121 4122 perform_csum_check: 4123 if (!csum) { 4124 if (skb_has_shared_frag(nskb) && 4125 __skb_linearize(nskb)) 4126 goto err; 4127 4128 if (!nskb->remcsum_offload) 4129 nskb->ip_summed = CHECKSUM_NONE; 4130 SKB_GSO_CB(nskb)->csum = 4131 skb_checksum(nskb, doffset, 4132 nskb->len - doffset, 0); 4133 SKB_GSO_CB(nskb)->csum_start = 4134 skb_headroom(nskb) + doffset; 4135 } 4136 } while ((offset += len) < head_skb->len); 4137 4138 /* Some callers want to get the end of the list. 4139 * Put it in segs->prev to avoid walking the list. 4140 * (see validate_xmit_skb_list() for example) 4141 */ 4142 segs->prev = tail; 4143 4144 if (partial_segs) { 4145 struct sk_buff *iter; 4146 int type = skb_shinfo(head_skb)->gso_type; 4147 unsigned short gso_size = skb_shinfo(head_skb)->gso_size; 4148 4149 /* Update type to add partial and then remove dodgy if set */ 4150 type |= (features & NETIF_F_GSO_PARTIAL) / NETIF_F_GSO_PARTIAL * SKB_GSO_PARTIAL; 4151 type &= ~SKB_GSO_DODGY; 4152 4153 /* Update GSO info and prepare to start updating headers on 4154 * our way back down the stack of protocols. 4155 */ 4156 for (iter = segs; iter; iter = iter->next) { 4157 skb_shinfo(iter)->gso_size = gso_size; 4158 skb_shinfo(iter)->gso_segs = partial_segs; 4159 skb_shinfo(iter)->gso_type = type; 4160 SKB_GSO_CB(iter)->data_offset = skb_headroom(iter) + doffset; 4161 } 4162 4163 if (tail->len - doffset <= gso_size) 4164 skb_shinfo(tail)->gso_size = 0; 4165 else if (tail != segs) 4166 skb_shinfo(tail)->gso_segs = DIV_ROUND_UP(tail->len - doffset, gso_size); 4167 } 4168 4169 /* Following permits correct backpressure, for protocols 4170 * using skb_set_owner_w(). 4171 * Idea is to tranfert ownership from head_skb to last segment. 4172 */ 4173 if (head_skb->destructor == sock_wfree) { 4174 swap(tail->truesize, head_skb->truesize); 4175 swap(tail->destructor, head_skb->destructor); 4176 swap(tail->sk, head_skb->sk); 4177 } 4178 return segs; 4179 4180 err: 4181 kfree_skb_list(segs); 4182 return ERR_PTR(err); 4183 } 4184 EXPORT_SYMBOL_GPL(skb_segment); 4185 4186 int skb_gro_receive(struct sk_buff *p, struct sk_buff *skb) 4187 { 4188 struct skb_shared_info *pinfo, *skbinfo = skb_shinfo(skb); 4189 unsigned int offset = skb_gro_offset(skb); 4190 unsigned int headlen = skb_headlen(skb); 4191 unsigned int len = skb_gro_len(skb); 4192 unsigned int delta_truesize; 4193 struct sk_buff *lp; 4194 4195 if (unlikely(p->len + len >= 65536 || NAPI_GRO_CB(skb)->flush)) 4196 return -E2BIG; 4197 4198 lp = NAPI_GRO_CB(p)->last; 4199 pinfo = skb_shinfo(lp); 4200 4201 if (headlen <= offset) { 4202 skb_frag_t *frag; 4203 skb_frag_t *frag2; 4204 int i = skbinfo->nr_frags; 4205 int nr_frags = pinfo->nr_frags + i; 4206 4207 if (nr_frags > MAX_SKB_FRAGS) 4208 goto merge; 4209 4210 offset -= headlen; 4211 pinfo->nr_frags = nr_frags; 4212 skbinfo->nr_frags = 0; 4213 4214 frag = pinfo->frags + nr_frags; 4215 frag2 = skbinfo->frags + i; 4216 do { 4217 *--frag = *--frag2; 4218 } while (--i); 4219 4220 skb_frag_off_add(frag, offset); 4221 skb_frag_size_sub(frag, offset); 4222 4223 /* all fragments truesize : remove (head size + sk_buff) */ 4224 delta_truesize = skb->truesize - 4225 SKB_TRUESIZE(skb_end_offset(skb)); 4226 4227 skb->truesize -= skb->data_len; 4228 skb->len -= skb->data_len; 4229 skb->data_len = 0; 4230 4231 NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE; 4232 goto done; 4233 } else if (skb->head_frag) { 4234 int nr_frags = pinfo->nr_frags; 4235 skb_frag_t *frag = pinfo->frags + nr_frags; 4236 struct page *page = virt_to_head_page(skb->head); 4237 unsigned int first_size = headlen - offset; 4238 unsigned int first_offset; 4239 4240 if (nr_frags + 1 + skbinfo->nr_frags > MAX_SKB_FRAGS) 4241 goto merge; 4242 4243 first_offset = skb->data - 4244 (unsigned char *)page_address(page) + 4245 offset; 4246 4247 pinfo->nr_frags = nr_frags + 1 + skbinfo->nr_frags; 4248 4249 __skb_frag_set_page(frag, page); 4250 skb_frag_off_set(frag, first_offset); 4251 skb_frag_size_set(frag, first_size); 4252 4253 memcpy(frag + 1, skbinfo->frags, sizeof(*frag) * skbinfo->nr_frags); 4254 /* We dont need to clear skbinfo->nr_frags here */ 4255 4256 delta_truesize = skb->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff)); 4257 NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE_STOLEN_HEAD; 4258 goto done; 4259 } 4260 4261 merge: 4262 delta_truesize = skb->truesize; 4263 if (offset > headlen) { 4264 unsigned int eat = offset - headlen; 4265 4266 skb_frag_off_add(&skbinfo->frags[0], eat); 4267 skb_frag_size_sub(&skbinfo->frags[0], eat); 4268 skb->data_len -= eat; 4269 skb->len -= eat; 4270 offset = headlen; 4271 } 4272 4273 __skb_pull(skb, offset); 4274 4275 if (NAPI_GRO_CB(p)->last == p) 4276 skb_shinfo(p)->frag_list = skb; 4277 else 4278 NAPI_GRO_CB(p)->last->next = skb; 4279 NAPI_GRO_CB(p)->last = skb; 4280 __skb_header_release(skb); 4281 lp = p; 4282 4283 done: 4284 NAPI_GRO_CB(p)->count++; 4285 p->data_len += len; 4286 p->truesize += delta_truesize; 4287 p->len += len; 4288 if (lp != p) { 4289 lp->data_len += len; 4290 lp->truesize += delta_truesize; 4291 lp->len += len; 4292 } 4293 NAPI_GRO_CB(skb)->same_flow = 1; 4294 return 0; 4295 } 4296 4297 #ifdef CONFIG_SKB_EXTENSIONS 4298 #define SKB_EXT_ALIGN_VALUE 8 4299 #define SKB_EXT_CHUNKSIZEOF(x) (ALIGN((sizeof(x)), SKB_EXT_ALIGN_VALUE) / SKB_EXT_ALIGN_VALUE) 4300 4301 static const u8 skb_ext_type_len[] = { 4302 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 4303 [SKB_EXT_BRIDGE_NF] = SKB_EXT_CHUNKSIZEOF(struct nf_bridge_info), 4304 #endif 4305 #ifdef CONFIG_XFRM 4306 [SKB_EXT_SEC_PATH] = SKB_EXT_CHUNKSIZEOF(struct sec_path), 4307 #endif 4308 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT) 4309 [TC_SKB_EXT] = SKB_EXT_CHUNKSIZEOF(struct tc_skb_ext), 4310 #endif 4311 #if IS_ENABLED(CONFIG_MPTCP) 4312 [SKB_EXT_MPTCP] = SKB_EXT_CHUNKSIZEOF(struct mptcp_ext), 4313 #endif 4314 }; 4315 4316 static __always_inline unsigned int skb_ext_total_length(void) 4317 { 4318 return SKB_EXT_CHUNKSIZEOF(struct skb_ext) + 4319 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 4320 skb_ext_type_len[SKB_EXT_BRIDGE_NF] + 4321 #endif 4322 #ifdef CONFIG_XFRM 4323 skb_ext_type_len[SKB_EXT_SEC_PATH] + 4324 #endif 4325 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT) 4326 skb_ext_type_len[TC_SKB_EXT] + 4327 #endif 4328 #if IS_ENABLED(CONFIG_MPTCP) 4329 skb_ext_type_len[SKB_EXT_MPTCP] + 4330 #endif 4331 0; 4332 } 4333 4334 static void skb_extensions_init(void) 4335 { 4336 BUILD_BUG_ON(SKB_EXT_NUM >= 8); 4337 BUILD_BUG_ON(skb_ext_total_length() > 255); 4338 4339 skbuff_ext_cache = kmem_cache_create("skbuff_ext_cache", 4340 SKB_EXT_ALIGN_VALUE * skb_ext_total_length(), 4341 0, 4342 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 4343 NULL); 4344 } 4345 #else 4346 static void skb_extensions_init(void) {} 4347 #endif 4348 4349 void __init skb_init(void) 4350 { 4351 skbuff_head_cache = kmem_cache_create_usercopy("skbuff_head_cache", 4352 sizeof(struct sk_buff), 4353 0, 4354 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 4355 offsetof(struct sk_buff, cb), 4356 sizeof_field(struct sk_buff, cb), 4357 NULL); 4358 skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache", 4359 sizeof(struct sk_buff_fclones), 4360 0, 4361 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 4362 NULL); 4363 skb_extensions_init(); 4364 } 4365 4366 static int 4367 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len, 4368 unsigned int recursion_level) 4369 { 4370 int start = skb_headlen(skb); 4371 int i, copy = start - offset; 4372 struct sk_buff *frag_iter; 4373 int elt = 0; 4374 4375 if (unlikely(recursion_level >= 24)) 4376 return -EMSGSIZE; 4377 4378 if (copy > 0) { 4379 if (copy > len) 4380 copy = len; 4381 sg_set_buf(sg, skb->data + offset, copy); 4382 elt++; 4383 if ((len -= copy) == 0) 4384 return elt; 4385 offset += copy; 4386 } 4387 4388 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 4389 int end; 4390 4391 WARN_ON(start > offset + len); 4392 4393 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]); 4394 if ((copy = end - offset) > 0) { 4395 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 4396 if (unlikely(elt && sg_is_last(&sg[elt - 1]))) 4397 return -EMSGSIZE; 4398 4399 if (copy > len) 4400 copy = len; 4401 sg_set_page(&sg[elt], skb_frag_page(frag), copy, 4402 skb_frag_off(frag) + offset - start); 4403 elt++; 4404 if (!(len -= copy)) 4405 return elt; 4406 offset += copy; 4407 } 4408 start = end; 4409 } 4410 4411 skb_walk_frags(skb, frag_iter) { 4412 int end, ret; 4413 4414 WARN_ON(start > offset + len); 4415 4416 end = start + frag_iter->len; 4417 if ((copy = end - offset) > 0) { 4418 if (unlikely(elt && sg_is_last(&sg[elt - 1]))) 4419 return -EMSGSIZE; 4420 4421 if (copy > len) 4422 copy = len; 4423 ret = __skb_to_sgvec(frag_iter, sg+elt, offset - start, 4424 copy, recursion_level + 1); 4425 if (unlikely(ret < 0)) 4426 return ret; 4427 elt += ret; 4428 if ((len -= copy) == 0) 4429 return elt; 4430 offset += copy; 4431 } 4432 start = end; 4433 } 4434 BUG_ON(len); 4435 return elt; 4436 } 4437 4438 /** 4439 * skb_to_sgvec - Fill a scatter-gather list from a socket buffer 4440 * @skb: Socket buffer containing the buffers to be mapped 4441 * @sg: The scatter-gather list to map into 4442 * @offset: The offset into the buffer's contents to start mapping 4443 * @len: Length of buffer space to be mapped 4444 * 4445 * Fill the specified scatter-gather list with mappings/pointers into a 4446 * region of the buffer space attached to a socket buffer. Returns either 4447 * the number of scatterlist items used, or -EMSGSIZE if the contents 4448 * could not fit. 4449 */ 4450 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len) 4451 { 4452 int nsg = __skb_to_sgvec(skb, sg, offset, len, 0); 4453 4454 if (nsg <= 0) 4455 return nsg; 4456 4457 sg_mark_end(&sg[nsg - 1]); 4458 4459 return nsg; 4460 } 4461 EXPORT_SYMBOL_GPL(skb_to_sgvec); 4462 4463 /* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given 4464 * sglist without mark the sg which contain last skb data as the end. 4465 * So the caller can mannipulate sg list as will when padding new data after 4466 * the first call without calling sg_unmark_end to expend sg list. 4467 * 4468 * Scenario to use skb_to_sgvec_nomark: 4469 * 1. sg_init_table 4470 * 2. skb_to_sgvec_nomark(payload1) 4471 * 3. skb_to_sgvec_nomark(payload2) 4472 * 4473 * This is equivalent to: 4474 * 1. sg_init_table 4475 * 2. skb_to_sgvec(payload1) 4476 * 3. sg_unmark_end 4477 * 4. skb_to_sgvec(payload2) 4478 * 4479 * When mapping mutilple payload conditionally, skb_to_sgvec_nomark 4480 * is more preferable. 4481 */ 4482 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg, 4483 int offset, int len) 4484 { 4485 return __skb_to_sgvec(skb, sg, offset, len, 0); 4486 } 4487 EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark); 4488 4489 4490 4491 /** 4492 * skb_cow_data - Check that a socket buffer's data buffers are writable 4493 * @skb: The socket buffer to check. 4494 * @tailbits: Amount of trailing space to be added 4495 * @trailer: Returned pointer to the skb where the @tailbits space begins 4496 * 4497 * Make sure that the data buffers attached to a socket buffer are 4498 * writable. If they are not, private copies are made of the data buffers 4499 * and the socket buffer is set to use these instead. 4500 * 4501 * If @tailbits is given, make sure that there is space to write @tailbits 4502 * bytes of data beyond current end of socket buffer. @trailer will be 4503 * set to point to the skb in which this space begins. 4504 * 4505 * The number of scatterlist elements required to completely map the 4506 * COW'd and extended socket buffer will be returned. 4507 */ 4508 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer) 4509 { 4510 int copyflag; 4511 int elt; 4512 struct sk_buff *skb1, **skb_p; 4513 4514 /* If skb is cloned or its head is paged, reallocate 4515 * head pulling out all the pages (pages are considered not writable 4516 * at the moment even if they are anonymous). 4517 */ 4518 if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) && 4519 !__pskb_pull_tail(skb, __skb_pagelen(skb))) 4520 return -ENOMEM; 4521 4522 /* Easy case. Most of packets will go this way. */ 4523 if (!skb_has_frag_list(skb)) { 4524 /* A little of trouble, not enough of space for trailer. 4525 * This should not happen, when stack is tuned to generate 4526 * good frames. OK, on miss we reallocate and reserve even more 4527 * space, 128 bytes is fair. */ 4528 4529 if (skb_tailroom(skb) < tailbits && 4530 pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC)) 4531 return -ENOMEM; 4532 4533 /* Voila! */ 4534 *trailer = skb; 4535 return 1; 4536 } 4537 4538 /* Misery. We are in troubles, going to mincer fragments... */ 4539 4540 elt = 1; 4541 skb_p = &skb_shinfo(skb)->frag_list; 4542 copyflag = 0; 4543 4544 while ((skb1 = *skb_p) != NULL) { 4545 int ntail = 0; 4546 4547 /* The fragment is partially pulled by someone, 4548 * this can happen on input. Copy it and everything 4549 * after it. */ 4550 4551 if (skb_shared(skb1)) 4552 copyflag = 1; 4553 4554 /* If the skb is the last, worry about trailer. */ 4555 4556 if (skb1->next == NULL && tailbits) { 4557 if (skb_shinfo(skb1)->nr_frags || 4558 skb_has_frag_list(skb1) || 4559 skb_tailroom(skb1) < tailbits) 4560 ntail = tailbits + 128; 4561 } 4562 4563 if (copyflag || 4564 skb_cloned(skb1) || 4565 ntail || 4566 skb_shinfo(skb1)->nr_frags || 4567 skb_has_frag_list(skb1)) { 4568 struct sk_buff *skb2; 4569 4570 /* Fuck, we are miserable poor guys... */ 4571 if (ntail == 0) 4572 skb2 = skb_copy(skb1, GFP_ATOMIC); 4573 else 4574 skb2 = skb_copy_expand(skb1, 4575 skb_headroom(skb1), 4576 ntail, 4577 GFP_ATOMIC); 4578 if (unlikely(skb2 == NULL)) 4579 return -ENOMEM; 4580 4581 if (skb1->sk) 4582 skb_set_owner_w(skb2, skb1->sk); 4583 4584 /* Looking around. Are we still alive? 4585 * OK, link new skb, drop old one */ 4586 4587 skb2->next = skb1->next; 4588 *skb_p = skb2; 4589 kfree_skb(skb1); 4590 skb1 = skb2; 4591 } 4592 elt++; 4593 *trailer = skb1; 4594 skb_p = &skb1->next; 4595 } 4596 4597 return elt; 4598 } 4599 EXPORT_SYMBOL_GPL(skb_cow_data); 4600 4601 static void sock_rmem_free(struct sk_buff *skb) 4602 { 4603 struct sock *sk = skb->sk; 4604 4605 atomic_sub(skb->truesize, &sk->sk_rmem_alloc); 4606 } 4607 4608 static void skb_set_err_queue(struct sk_buff *skb) 4609 { 4610 /* pkt_type of skbs received on local sockets is never PACKET_OUTGOING. 4611 * So, it is safe to (mis)use it to mark skbs on the error queue. 4612 */ 4613 skb->pkt_type = PACKET_OUTGOING; 4614 BUILD_BUG_ON(PACKET_OUTGOING == 0); 4615 } 4616 4617 /* 4618 * Note: We dont mem charge error packets (no sk_forward_alloc changes) 4619 */ 4620 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb) 4621 { 4622 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >= 4623 (unsigned int)READ_ONCE(sk->sk_rcvbuf)) 4624 return -ENOMEM; 4625 4626 skb_orphan(skb); 4627 skb->sk = sk; 4628 skb->destructor = sock_rmem_free; 4629 atomic_add(skb->truesize, &sk->sk_rmem_alloc); 4630 skb_set_err_queue(skb); 4631 4632 /* before exiting rcu section, make sure dst is refcounted */ 4633 skb_dst_force(skb); 4634 4635 skb_queue_tail(&sk->sk_error_queue, skb); 4636 if (!sock_flag(sk, SOCK_DEAD)) 4637 sk->sk_error_report(sk); 4638 return 0; 4639 } 4640 EXPORT_SYMBOL(sock_queue_err_skb); 4641 4642 static bool is_icmp_err_skb(const struct sk_buff *skb) 4643 { 4644 return skb && (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP || 4645 SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP6); 4646 } 4647 4648 struct sk_buff *sock_dequeue_err_skb(struct sock *sk) 4649 { 4650 struct sk_buff_head *q = &sk->sk_error_queue; 4651 struct sk_buff *skb, *skb_next = NULL; 4652 bool icmp_next = false; 4653 unsigned long flags; 4654 4655 spin_lock_irqsave(&q->lock, flags); 4656 skb = __skb_dequeue(q); 4657 if (skb && (skb_next = skb_peek(q))) { 4658 icmp_next = is_icmp_err_skb(skb_next); 4659 if (icmp_next) 4660 sk->sk_err = SKB_EXT_ERR(skb_next)->ee.ee_errno; 4661 } 4662 spin_unlock_irqrestore(&q->lock, flags); 4663 4664 if (is_icmp_err_skb(skb) && !icmp_next) 4665 sk->sk_err = 0; 4666 4667 if (skb_next) 4668 sk->sk_error_report(sk); 4669 4670 return skb; 4671 } 4672 EXPORT_SYMBOL(sock_dequeue_err_skb); 4673 4674 /** 4675 * skb_clone_sk - create clone of skb, and take reference to socket 4676 * @skb: the skb to clone 4677 * 4678 * This function creates a clone of a buffer that holds a reference on 4679 * sk_refcnt. Buffers created via this function are meant to be 4680 * returned using sock_queue_err_skb, or free via kfree_skb. 4681 * 4682 * When passing buffers allocated with this function to sock_queue_err_skb 4683 * it is necessary to wrap the call with sock_hold/sock_put in order to 4684 * prevent the socket from being released prior to being enqueued on 4685 * the sk_error_queue. 4686 */ 4687 struct sk_buff *skb_clone_sk(struct sk_buff *skb) 4688 { 4689 struct sock *sk = skb->sk; 4690 struct sk_buff *clone; 4691 4692 if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt)) 4693 return NULL; 4694 4695 clone = skb_clone(skb, GFP_ATOMIC); 4696 if (!clone) { 4697 sock_put(sk); 4698 return NULL; 4699 } 4700 4701 clone->sk = sk; 4702 clone->destructor = sock_efree; 4703 4704 return clone; 4705 } 4706 EXPORT_SYMBOL(skb_clone_sk); 4707 4708 static void __skb_complete_tx_timestamp(struct sk_buff *skb, 4709 struct sock *sk, 4710 int tstype, 4711 bool opt_stats) 4712 { 4713 struct sock_exterr_skb *serr; 4714 int err; 4715 4716 BUILD_BUG_ON(sizeof(struct sock_exterr_skb) > sizeof(skb->cb)); 4717 4718 serr = SKB_EXT_ERR(skb); 4719 memset(serr, 0, sizeof(*serr)); 4720 serr->ee.ee_errno = ENOMSG; 4721 serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING; 4722 serr->ee.ee_info = tstype; 4723 serr->opt_stats = opt_stats; 4724 serr->header.h4.iif = skb->dev ? skb->dev->ifindex : 0; 4725 if (sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID) { 4726 serr->ee.ee_data = skb_shinfo(skb)->tskey; 4727 if (sk->sk_protocol == IPPROTO_TCP && 4728 sk->sk_type == SOCK_STREAM) 4729 serr->ee.ee_data -= sk->sk_tskey; 4730 } 4731 4732 err = sock_queue_err_skb(sk, skb); 4733 4734 if (err) 4735 kfree_skb(skb); 4736 } 4737 4738 static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly) 4739 { 4740 bool ret; 4741 4742 if (likely(sysctl_tstamp_allow_data || tsonly)) 4743 return true; 4744 4745 read_lock_bh(&sk->sk_callback_lock); 4746 ret = sk->sk_socket && sk->sk_socket->file && 4747 file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW); 4748 read_unlock_bh(&sk->sk_callback_lock); 4749 return ret; 4750 } 4751 4752 void skb_complete_tx_timestamp(struct sk_buff *skb, 4753 struct skb_shared_hwtstamps *hwtstamps) 4754 { 4755 struct sock *sk = skb->sk; 4756 4757 if (!skb_may_tx_timestamp(sk, false)) 4758 goto err; 4759 4760 /* Take a reference to prevent skb_orphan() from freeing the socket, 4761 * but only if the socket refcount is not zero. 4762 */ 4763 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) { 4764 *skb_hwtstamps(skb) = *hwtstamps; 4765 __skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND, false); 4766 sock_put(sk); 4767 return; 4768 } 4769 4770 err: 4771 kfree_skb(skb); 4772 } 4773 EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp); 4774 4775 void __skb_tstamp_tx(struct sk_buff *orig_skb, 4776 const struct sk_buff *ack_skb, 4777 struct skb_shared_hwtstamps *hwtstamps, 4778 struct sock *sk, int tstype) 4779 { 4780 struct sk_buff *skb; 4781 bool tsonly, opt_stats = false; 4782 4783 if (!sk) 4784 return; 4785 4786 if (!hwtstamps && !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TX_SWHW) && 4787 skb_shinfo(orig_skb)->tx_flags & SKBTX_IN_PROGRESS) 4788 return; 4789 4790 tsonly = sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TSONLY; 4791 if (!skb_may_tx_timestamp(sk, tsonly)) 4792 return; 4793 4794 if (tsonly) { 4795 #ifdef CONFIG_INET 4796 if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_STATS) && 4797 sk->sk_protocol == IPPROTO_TCP && 4798 sk->sk_type == SOCK_STREAM) { 4799 skb = tcp_get_timestamping_opt_stats(sk, orig_skb, 4800 ack_skb); 4801 opt_stats = true; 4802 } else 4803 #endif 4804 skb = alloc_skb(0, GFP_ATOMIC); 4805 } else { 4806 skb = skb_clone(orig_skb, GFP_ATOMIC); 4807 } 4808 if (!skb) 4809 return; 4810 4811 if (tsonly) { 4812 skb_shinfo(skb)->tx_flags |= skb_shinfo(orig_skb)->tx_flags & 4813 SKBTX_ANY_TSTAMP; 4814 skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey; 4815 } 4816 4817 if (hwtstamps) 4818 *skb_hwtstamps(skb) = *hwtstamps; 4819 else 4820 skb->tstamp = ktime_get_real(); 4821 4822 __skb_complete_tx_timestamp(skb, sk, tstype, opt_stats); 4823 } 4824 EXPORT_SYMBOL_GPL(__skb_tstamp_tx); 4825 4826 void skb_tstamp_tx(struct sk_buff *orig_skb, 4827 struct skb_shared_hwtstamps *hwtstamps) 4828 { 4829 return __skb_tstamp_tx(orig_skb, NULL, hwtstamps, orig_skb->sk, 4830 SCM_TSTAMP_SND); 4831 } 4832 EXPORT_SYMBOL_GPL(skb_tstamp_tx); 4833 4834 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked) 4835 { 4836 struct sock *sk = skb->sk; 4837 struct sock_exterr_skb *serr; 4838 int err = 1; 4839 4840 skb->wifi_acked_valid = 1; 4841 skb->wifi_acked = acked; 4842 4843 serr = SKB_EXT_ERR(skb); 4844 memset(serr, 0, sizeof(*serr)); 4845 serr->ee.ee_errno = ENOMSG; 4846 serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS; 4847 4848 /* Take a reference to prevent skb_orphan() from freeing the socket, 4849 * but only if the socket refcount is not zero. 4850 */ 4851 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) { 4852 err = sock_queue_err_skb(sk, skb); 4853 sock_put(sk); 4854 } 4855 if (err) 4856 kfree_skb(skb); 4857 } 4858 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack); 4859 4860 /** 4861 * skb_partial_csum_set - set up and verify partial csum values for packet 4862 * @skb: the skb to set 4863 * @start: the number of bytes after skb->data to start checksumming. 4864 * @off: the offset from start to place the checksum. 4865 * 4866 * For untrusted partially-checksummed packets, we need to make sure the values 4867 * for skb->csum_start and skb->csum_offset are valid so we don't oops. 4868 * 4869 * This function checks and sets those values and skb->ip_summed: if this 4870 * returns false you should drop the packet. 4871 */ 4872 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off) 4873 { 4874 u32 csum_end = (u32)start + (u32)off + sizeof(__sum16); 4875 u32 csum_start = skb_headroom(skb) + (u32)start; 4876 4877 if (unlikely(csum_start > U16_MAX || csum_end > skb_headlen(skb))) { 4878 net_warn_ratelimited("bad partial csum: csum=%u/%u headroom=%u headlen=%u\n", 4879 start, off, skb_headroom(skb), skb_headlen(skb)); 4880 return false; 4881 } 4882 skb->ip_summed = CHECKSUM_PARTIAL; 4883 skb->csum_start = csum_start; 4884 skb->csum_offset = off; 4885 skb_set_transport_header(skb, start); 4886 return true; 4887 } 4888 EXPORT_SYMBOL_GPL(skb_partial_csum_set); 4889 4890 static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len, 4891 unsigned int max) 4892 { 4893 if (skb_headlen(skb) >= len) 4894 return 0; 4895 4896 /* If we need to pullup then pullup to the max, so we 4897 * won't need to do it again. 4898 */ 4899 if (max > skb->len) 4900 max = skb->len; 4901 4902 if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL) 4903 return -ENOMEM; 4904 4905 if (skb_headlen(skb) < len) 4906 return -EPROTO; 4907 4908 return 0; 4909 } 4910 4911 #define MAX_TCP_HDR_LEN (15 * 4) 4912 4913 static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb, 4914 typeof(IPPROTO_IP) proto, 4915 unsigned int off) 4916 { 4917 int err; 4918 4919 switch (proto) { 4920 case IPPROTO_TCP: 4921 err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr), 4922 off + MAX_TCP_HDR_LEN); 4923 if (!err && !skb_partial_csum_set(skb, off, 4924 offsetof(struct tcphdr, 4925 check))) 4926 err = -EPROTO; 4927 return err ? ERR_PTR(err) : &tcp_hdr(skb)->check; 4928 4929 case IPPROTO_UDP: 4930 err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr), 4931 off + sizeof(struct udphdr)); 4932 if (!err && !skb_partial_csum_set(skb, off, 4933 offsetof(struct udphdr, 4934 check))) 4935 err = -EPROTO; 4936 return err ? ERR_PTR(err) : &udp_hdr(skb)->check; 4937 } 4938 4939 return ERR_PTR(-EPROTO); 4940 } 4941 4942 /* This value should be large enough to cover a tagged ethernet header plus 4943 * maximally sized IP and TCP or UDP headers. 4944 */ 4945 #define MAX_IP_HDR_LEN 128 4946 4947 static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate) 4948 { 4949 unsigned int off; 4950 bool fragment; 4951 __sum16 *csum; 4952 int err; 4953 4954 fragment = false; 4955 4956 err = skb_maybe_pull_tail(skb, 4957 sizeof(struct iphdr), 4958 MAX_IP_HDR_LEN); 4959 if (err < 0) 4960 goto out; 4961 4962 if (ip_is_fragment(ip_hdr(skb))) 4963 fragment = true; 4964 4965 off = ip_hdrlen(skb); 4966 4967 err = -EPROTO; 4968 4969 if (fragment) 4970 goto out; 4971 4972 csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off); 4973 if (IS_ERR(csum)) 4974 return PTR_ERR(csum); 4975 4976 if (recalculate) 4977 *csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr, 4978 ip_hdr(skb)->daddr, 4979 skb->len - off, 4980 ip_hdr(skb)->protocol, 0); 4981 err = 0; 4982 4983 out: 4984 return err; 4985 } 4986 4987 /* This value should be large enough to cover a tagged ethernet header plus 4988 * an IPv6 header, all options, and a maximal TCP or UDP header. 4989 */ 4990 #define MAX_IPV6_HDR_LEN 256 4991 4992 #define OPT_HDR(type, skb, off) \ 4993 (type *)(skb_network_header(skb) + (off)) 4994 4995 static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate) 4996 { 4997 int err; 4998 u8 nexthdr; 4999 unsigned int off; 5000 unsigned int len; 5001 bool fragment; 5002 bool done; 5003 __sum16 *csum; 5004 5005 fragment = false; 5006 done = false; 5007 5008 off = sizeof(struct ipv6hdr); 5009 5010 err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN); 5011 if (err < 0) 5012 goto out; 5013 5014 nexthdr = ipv6_hdr(skb)->nexthdr; 5015 5016 len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len); 5017 while (off <= len && !done) { 5018 switch (nexthdr) { 5019 case IPPROTO_DSTOPTS: 5020 case IPPROTO_HOPOPTS: 5021 case IPPROTO_ROUTING: { 5022 struct ipv6_opt_hdr *hp; 5023 5024 err = skb_maybe_pull_tail(skb, 5025 off + 5026 sizeof(struct ipv6_opt_hdr), 5027 MAX_IPV6_HDR_LEN); 5028 if (err < 0) 5029 goto out; 5030 5031 hp = OPT_HDR(struct ipv6_opt_hdr, skb, off); 5032 nexthdr = hp->nexthdr; 5033 off += ipv6_optlen(hp); 5034 break; 5035 } 5036 case IPPROTO_AH: { 5037 struct ip_auth_hdr *hp; 5038 5039 err = skb_maybe_pull_tail(skb, 5040 off + 5041 sizeof(struct ip_auth_hdr), 5042 MAX_IPV6_HDR_LEN); 5043 if (err < 0) 5044 goto out; 5045 5046 hp = OPT_HDR(struct ip_auth_hdr, skb, off); 5047 nexthdr = hp->nexthdr; 5048 off += ipv6_authlen(hp); 5049 break; 5050 } 5051 case IPPROTO_FRAGMENT: { 5052 struct frag_hdr *hp; 5053 5054 err = skb_maybe_pull_tail(skb, 5055 off + 5056 sizeof(struct frag_hdr), 5057 MAX_IPV6_HDR_LEN); 5058 if (err < 0) 5059 goto out; 5060 5061 hp = OPT_HDR(struct frag_hdr, skb, off); 5062 5063 if (hp->frag_off & htons(IP6_OFFSET | IP6_MF)) 5064 fragment = true; 5065 5066 nexthdr = hp->nexthdr; 5067 off += sizeof(struct frag_hdr); 5068 break; 5069 } 5070 default: 5071 done = true; 5072 break; 5073 } 5074 } 5075 5076 err = -EPROTO; 5077 5078 if (!done || fragment) 5079 goto out; 5080 5081 csum = skb_checksum_setup_ip(skb, nexthdr, off); 5082 if (IS_ERR(csum)) 5083 return PTR_ERR(csum); 5084 5085 if (recalculate) 5086 *csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr, 5087 &ipv6_hdr(skb)->daddr, 5088 skb->len - off, nexthdr, 0); 5089 err = 0; 5090 5091 out: 5092 return err; 5093 } 5094 5095 /** 5096 * skb_checksum_setup - set up partial checksum offset 5097 * @skb: the skb to set up 5098 * @recalculate: if true the pseudo-header checksum will be recalculated 5099 */ 5100 int skb_checksum_setup(struct sk_buff *skb, bool recalculate) 5101 { 5102 int err; 5103 5104 switch (skb->protocol) { 5105 case htons(ETH_P_IP): 5106 err = skb_checksum_setup_ipv4(skb, recalculate); 5107 break; 5108 5109 case htons(ETH_P_IPV6): 5110 err = skb_checksum_setup_ipv6(skb, recalculate); 5111 break; 5112 5113 default: 5114 err = -EPROTO; 5115 break; 5116 } 5117 5118 return err; 5119 } 5120 EXPORT_SYMBOL(skb_checksum_setup); 5121 5122 /** 5123 * skb_checksum_maybe_trim - maybe trims the given skb 5124 * @skb: the skb to check 5125 * @transport_len: the data length beyond the network header 5126 * 5127 * Checks whether the given skb has data beyond the given transport length. 5128 * If so, returns a cloned skb trimmed to this transport length. 5129 * Otherwise returns the provided skb. Returns NULL in error cases 5130 * (e.g. transport_len exceeds skb length or out-of-memory). 5131 * 5132 * Caller needs to set the skb transport header and free any returned skb if it 5133 * differs from the provided skb. 5134 */ 5135 static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb, 5136 unsigned int transport_len) 5137 { 5138 struct sk_buff *skb_chk; 5139 unsigned int len = skb_transport_offset(skb) + transport_len; 5140 int ret; 5141 5142 if (skb->len < len) 5143 return NULL; 5144 else if (skb->len == len) 5145 return skb; 5146 5147 skb_chk = skb_clone(skb, GFP_ATOMIC); 5148 if (!skb_chk) 5149 return NULL; 5150 5151 ret = pskb_trim_rcsum(skb_chk, len); 5152 if (ret) { 5153 kfree_skb(skb_chk); 5154 return NULL; 5155 } 5156 5157 return skb_chk; 5158 } 5159 5160 /** 5161 * skb_checksum_trimmed - validate checksum of an skb 5162 * @skb: the skb to check 5163 * @transport_len: the data length beyond the network header 5164 * @skb_chkf: checksum function to use 5165 * 5166 * Applies the given checksum function skb_chkf to the provided skb. 5167 * Returns a checked and maybe trimmed skb. Returns NULL on error. 5168 * 5169 * If the skb has data beyond the given transport length, then a 5170 * trimmed & cloned skb is checked and returned. 5171 * 5172 * Caller needs to set the skb transport header and free any returned skb if it 5173 * differs from the provided skb. 5174 */ 5175 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb, 5176 unsigned int transport_len, 5177 __sum16(*skb_chkf)(struct sk_buff *skb)) 5178 { 5179 struct sk_buff *skb_chk; 5180 unsigned int offset = skb_transport_offset(skb); 5181 __sum16 ret; 5182 5183 skb_chk = skb_checksum_maybe_trim(skb, transport_len); 5184 if (!skb_chk) 5185 goto err; 5186 5187 if (!pskb_may_pull(skb_chk, offset)) 5188 goto err; 5189 5190 skb_pull_rcsum(skb_chk, offset); 5191 ret = skb_chkf(skb_chk); 5192 skb_push_rcsum(skb_chk, offset); 5193 5194 if (ret) 5195 goto err; 5196 5197 return skb_chk; 5198 5199 err: 5200 if (skb_chk && skb_chk != skb) 5201 kfree_skb(skb_chk); 5202 5203 return NULL; 5204 5205 } 5206 EXPORT_SYMBOL(skb_checksum_trimmed); 5207 5208 void __skb_warn_lro_forwarding(const struct sk_buff *skb) 5209 { 5210 net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n", 5211 skb->dev->name); 5212 } 5213 EXPORT_SYMBOL(__skb_warn_lro_forwarding); 5214 5215 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen) 5216 { 5217 if (head_stolen) { 5218 skb_release_head_state(skb); 5219 kmem_cache_free(skbuff_head_cache, skb); 5220 } else { 5221 __kfree_skb(skb); 5222 } 5223 } 5224 EXPORT_SYMBOL(kfree_skb_partial); 5225 5226 /** 5227 * skb_try_coalesce - try to merge skb to prior one 5228 * @to: prior buffer 5229 * @from: buffer to add 5230 * @fragstolen: pointer to boolean 5231 * @delta_truesize: how much more was allocated than was requested 5232 */ 5233 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from, 5234 bool *fragstolen, int *delta_truesize) 5235 { 5236 struct skb_shared_info *to_shinfo, *from_shinfo; 5237 int i, delta, len = from->len; 5238 5239 *fragstolen = false; 5240 5241 if (skb_cloned(to)) 5242 return false; 5243 5244 if (len <= skb_tailroom(to)) { 5245 if (len) 5246 BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len)); 5247 *delta_truesize = 0; 5248 return true; 5249 } 5250 5251 to_shinfo = skb_shinfo(to); 5252 from_shinfo = skb_shinfo(from); 5253 if (to_shinfo->frag_list || from_shinfo->frag_list) 5254 return false; 5255 if (skb_zcopy(to) || skb_zcopy(from)) 5256 return false; 5257 5258 if (skb_headlen(from) != 0) { 5259 struct page *page; 5260 unsigned int offset; 5261 5262 if (to_shinfo->nr_frags + 5263 from_shinfo->nr_frags >= MAX_SKB_FRAGS) 5264 return false; 5265 5266 if (skb_head_is_locked(from)) 5267 return false; 5268 5269 delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff)); 5270 5271 page = virt_to_head_page(from->head); 5272 offset = from->data - (unsigned char *)page_address(page); 5273 5274 skb_fill_page_desc(to, to_shinfo->nr_frags, 5275 page, offset, skb_headlen(from)); 5276 *fragstolen = true; 5277 } else { 5278 if (to_shinfo->nr_frags + 5279 from_shinfo->nr_frags > MAX_SKB_FRAGS) 5280 return false; 5281 5282 delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from)); 5283 } 5284 5285 WARN_ON_ONCE(delta < len); 5286 5287 memcpy(to_shinfo->frags + to_shinfo->nr_frags, 5288 from_shinfo->frags, 5289 from_shinfo->nr_frags * sizeof(skb_frag_t)); 5290 to_shinfo->nr_frags += from_shinfo->nr_frags; 5291 5292 if (!skb_cloned(from)) 5293 from_shinfo->nr_frags = 0; 5294 5295 /* if the skb is not cloned this does nothing 5296 * since we set nr_frags to 0. 5297 */ 5298 for (i = 0; i < from_shinfo->nr_frags; i++) 5299 __skb_frag_ref(&from_shinfo->frags[i]); 5300 5301 to->truesize += delta; 5302 to->len += len; 5303 to->data_len += len; 5304 5305 *delta_truesize = delta; 5306 return true; 5307 } 5308 EXPORT_SYMBOL(skb_try_coalesce); 5309 5310 /** 5311 * skb_scrub_packet - scrub an skb 5312 * 5313 * @skb: buffer to clean 5314 * @xnet: packet is crossing netns 5315 * 5316 * skb_scrub_packet can be used after encapsulating or decapsulting a packet 5317 * into/from a tunnel. Some information have to be cleared during these 5318 * operations. 5319 * skb_scrub_packet can also be used to clean a skb before injecting it in 5320 * another namespace (@xnet == true). We have to clear all information in the 5321 * skb that could impact namespace isolation. 5322 */ 5323 void skb_scrub_packet(struct sk_buff *skb, bool xnet) 5324 { 5325 skb->pkt_type = PACKET_HOST; 5326 skb->skb_iif = 0; 5327 skb->ignore_df = 0; 5328 skb_dst_drop(skb); 5329 skb_ext_reset(skb); 5330 nf_reset_ct(skb); 5331 nf_reset_trace(skb); 5332 5333 #ifdef CONFIG_NET_SWITCHDEV 5334 skb->offload_fwd_mark = 0; 5335 skb->offload_l3_fwd_mark = 0; 5336 #endif 5337 5338 if (!xnet) 5339 return; 5340 5341 ipvs_reset(skb); 5342 skb->mark = 0; 5343 skb->tstamp = 0; 5344 } 5345 EXPORT_SYMBOL_GPL(skb_scrub_packet); 5346 5347 /** 5348 * skb_gso_transport_seglen - Return length of individual segments of a gso packet 5349 * 5350 * @skb: GSO skb 5351 * 5352 * skb_gso_transport_seglen is used to determine the real size of the 5353 * individual segments, including Layer4 headers (TCP/UDP). 5354 * 5355 * The MAC/L2 or network (IP, IPv6) headers are not accounted for. 5356 */ 5357 static unsigned int skb_gso_transport_seglen(const struct sk_buff *skb) 5358 { 5359 const struct skb_shared_info *shinfo = skb_shinfo(skb); 5360 unsigned int thlen = 0; 5361 5362 if (skb->encapsulation) { 5363 thlen = skb_inner_transport_header(skb) - 5364 skb_transport_header(skb); 5365 5366 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) 5367 thlen += inner_tcp_hdrlen(skb); 5368 } else if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) { 5369 thlen = tcp_hdrlen(skb); 5370 } else if (unlikely(skb_is_gso_sctp(skb))) { 5371 thlen = sizeof(struct sctphdr); 5372 } else if (shinfo->gso_type & SKB_GSO_UDP_L4) { 5373 thlen = sizeof(struct udphdr); 5374 } 5375 /* UFO sets gso_size to the size of the fragmentation 5376 * payload, i.e. the size of the L4 (UDP) header is already 5377 * accounted for. 5378 */ 5379 return thlen + shinfo->gso_size; 5380 } 5381 5382 /** 5383 * skb_gso_network_seglen - Return length of individual segments of a gso packet 5384 * 5385 * @skb: GSO skb 5386 * 5387 * skb_gso_network_seglen is used to determine the real size of the 5388 * individual segments, including Layer3 (IP, IPv6) and L4 headers (TCP/UDP). 5389 * 5390 * The MAC/L2 header is not accounted for. 5391 */ 5392 static unsigned int skb_gso_network_seglen(const struct sk_buff *skb) 5393 { 5394 unsigned int hdr_len = skb_transport_header(skb) - 5395 skb_network_header(skb); 5396 5397 return hdr_len + skb_gso_transport_seglen(skb); 5398 } 5399 5400 /** 5401 * skb_gso_mac_seglen - Return length of individual segments of a gso packet 5402 * 5403 * @skb: GSO skb 5404 * 5405 * skb_gso_mac_seglen is used to determine the real size of the 5406 * individual segments, including MAC/L2, Layer3 (IP, IPv6) and L4 5407 * headers (TCP/UDP). 5408 */ 5409 static unsigned int skb_gso_mac_seglen(const struct sk_buff *skb) 5410 { 5411 unsigned int hdr_len = skb_transport_header(skb) - skb_mac_header(skb); 5412 5413 return hdr_len + skb_gso_transport_seglen(skb); 5414 } 5415 5416 /** 5417 * skb_gso_size_check - check the skb size, considering GSO_BY_FRAGS 5418 * 5419 * There are a couple of instances where we have a GSO skb, and we 5420 * want to determine what size it would be after it is segmented. 5421 * 5422 * We might want to check: 5423 * - L3+L4+payload size (e.g. IP forwarding) 5424 * - L2+L3+L4+payload size (e.g. sanity check before passing to driver) 5425 * 5426 * This is a helper to do that correctly considering GSO_BY_FRAGS. 5427 * 5428 * @skb: GSO skb 5429 * 5430 * @seg_len: The segmented length (from skb_gso_*_seglen). In the 5431 * GSO_BY_FRAGS case this will be [header sizes + GSO_BY_FRAGS]. 5432 * 5433 * @max_len: The maximum permissible length. 5434 * 5435 * Returns true if the segmented length <= max length. 5436 */ 5437 static inline bool skb_gso_size_check(const struct sk_buff *skb, 5438 unsigned int seg_len, 5439 unsigned int max_len) { 5440 const struct skb_shared_info *shinfo = skb_shinfo(skb); 5441 const struct sk_buff *iter; 5442 5443 if (shinfo->gso_size != GSO_BY_FRAGS) 5444 return seg_len <= max_len; 5445 5446 /* Undo this so we can re-use header sizes */ 5447 seg_len -= GSO_BY_FRAGS; 5448 5449 skb_walk_frags(skb, iter) { 5450 if (seg_len + skb_headlen(iter) > max_len) 5451 return false; 5452 } 5453 5454 return true; 5455 } 5456 5457 /** 5458 * skb_gso_validate_network_len - Will a split GSO skb fit into a given MTU? 5459 * 5460 * @skb: GSO skb 5461 * @mtu: MTU to validate against 5462 * 5463 * skb_gso_validate_network_len validates if a given skb will fit a 5464 * wanted MTU once split. It considers L3 headers, L4 headers, and the 5465 * payload. 5466 */ 5467 bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu) 5468 { 5469 return skb_gso_size_check(skb, skb_gso_network_seglen(skb), mtu); 5470 } 5471 EXPORT_SYMBOL_GPL(skb_gso_validate_network_len); 5472 5473 /** 5474 * skb_gso_validate_mac_len - Will a split GSO skb fit in a given length? 5475 * 5476 * @skb: GSO skb 5477 * @len: length to validate against 5478 * 5479 * skb_gso_validate_mac_len validates if a given skb will fit a wanted 5480 * length once split, including L2, L3 and L4 headers and the payload. 5481 */ 5482 bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len) 5483 { 5484 return skb_gso_size_check(skb, skb_gso_mac_seglen(skb), len); 5485 } 5486 EXPORT_SYMBOL_GPL(skb_gso_validate_mac_len); 5487 5488 static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb) 5489 { 5490 int mac_len, meta_len; 5491 void *meta; 5492 5493 if (skb_cow(skb, skb_headroom(skb)) < 0) { 5494 kfree_skb(skb); 5495 return NULL; 5496 } 5497 5498 mac_len = skb->data - skb_mac_header(skb); 5499 if (likely(mac_len > VLAN_HLEN + ETH_TLEN)) { 5500 memmove(skb_mac_header(skb) + VLAN_HLEN, skb_mac_header(skb), 5501 mac_len - VLAN_HLEN - ETH_TLEN); 5502 } 5503 5504 meta_len = skb_metadata_len(skb); 5505 if (meta_len) { 5506 meta = skb_metadata_end(skb) - meta_len; 5507 memmove(meta + VLAN_HLEN, meta, meta_len); 5508 } 5509 5510 skb->mac_header += VLAN_HLEN; 5511 return skb; 5512 } 5513 5514 struct sk_buff *skb_vlan_untag(struct sk_buff *skb) 5515 { 5516 struct vlan_hdr *vhdr; 5517 u16 vlan_tci; 5518 5519 if (unlikely(skb_vlan_tag_present(skb))) { 5520 /* vlan_tci is already set-up so leave this for another time */ 5521 return skb; 5522 } 5523 5524 skb = skb_share_check(skb, GFP_ATOMIC); 5525 if (unlikely(!skb)) 5526 goto err_free; 5527 /* We may access the two bytes after vlan_hdr in vlan_set_encap_proto(). */ 5528 if (unlikely(!pskb_may_pull(skb, VLAN_HLEN + sizeof(unsigned short)))) 5529 goto err_free; 5530 5531 vhdr = (struct vlan_hdr *)skb->data; 5532 vlan_tci = ntohs(vhdr->h_vlan_TCI); 5533 __vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci); 5534 5535 skb_pull_rcsum(skb, VLAN_HLEN); 5536 vlan_set_encap_proto(skb, vhdr); 5537 5538 skb = skb_reorder_vlan_header(skb); 5539 if (unlikely(!skb)) 5540 goto err_free; 5541 5542 skb_reset_network_header(skb); 5543 if (!skb_transport_header_was_set(skb)) 5544 skb_reset_transport_header(skb); 5545 skb_reset_mac_len(skb); 5546 5547 return skb; 5548 5549 err_free: 5550 kfree_skb(skb); 5551 return NULL; 5552 } 5553 EXPORT_SYMBOL(skb_vlan_untag); 5554 5555 int skb_ensure_writable(struct sk_buff *skb, int write_len) 5556 { 5557 if (!pskb_may_pull(skb, write_len)) 5558 return -ENOMEM; 5559 5560 if (!skb_cloned(skb) || skb_clone_writable(skb, write_len)) 5561 return 0; 5562 5563 return pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 5564 } 5565 EXPORT_SYMBOL(skb_ensure_writable); 5566 5567 /* remove VLAN header from packet and update csum accordingly. 5568 * expects a non skb_vlan_tag_present skb with a vlan tag payload 5569 */ 5570 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci) 5571 { 5572 struct vlan_hdr *vhdr; 5573 int offset = skb->data - skb_mac_header(skb); 5574 int err; 5575 5576 if (WARN_ONCE(offset, 5577 "__skb_vlan_pop got skb with skb->data not at mac header (offset %d)\n", 5578 offset)) { 5579 return -EINVAL; 5580 } 5581 5582 err = skb_ensure_writable(skb, VLAN_ETH_HLEN); 5583 if (unlikely(err)) 5584 return err; 5585 5586 skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN); 5587 5588 vhdr = (struct vlan_hdr *)(skb->data + ETH_HLEN); 5589 *vlan_tci = ntohs(vhdr->h_vlan_TCI); 5590 5591 memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN); 5592 __skb_pull(skb, VLAN_HLEN); 5593 5594 vlan_set_encap_proto(skb, vhdr); 5595 skb->mac_header += VLAN_HLEN; 5596 5597 if (skb_network_offset(skb) < ETH_HLEN) 5598 skb_set_network_header(skb, ETH_HLEN); 5599 5600 skb_reset_mac_len(skb); 5601 5602 return err; 5603 } 5604 EXPORT_SYMBOL(__skb_vlan_pop); 5605 5606 /* Pop a vlan tag either from hwaccel or from payload. 5607 * Expects skb->data at mac header. 5608 */ 5609 int skb_vlan_pop(struct sk_buff *skb) 5610 { 5611 u16 vlan_tci; 5612 __be16 vlan_proto; 5613 int err; 5614 5615 if (likely(skb_vlan_tag_present(skb))) { 5616 __vlan_hwaccel_clear_tag(skb); 5617 } else { 5618 if (unlikely(!eth_type_vlan(skb->protocol))) 5619 return 0; 5620 5621 err = __skb_vlan_pop(skb, &vlan_tci); 5622 if (err) 5623 return err; 5624 } 5625 /* move next vlan tag to hw accel tag */ 5626 if (likely(!eth_type_vlan(skb->protocol))) 5627 return 0; 5628 5629 vlan_proto = skb->protocol; 5630 err = __skb_vlan_pop(skb, &vlan_tci); 5631 if (unlikely(err)) 5632 return err; 5633 5634 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci); 5635 return 0; 5636 } 5637 EXPORT_SYMBOL(skb_vlan_pop); 5638 5639 /* Push a vlan tag either into hwaccel or into payload (if hwaccel tag present). 5640 * Expects skb->data at mac header. 5641 */ 5642 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci) 5643 { 5644 if (skb_vlan_tag_present(skb)) { 5645 int offset = skb->data - skb_mac_header(skb); 5646 int err; 5647 5648 if (WARN_ONCE(offset, 5649 "skb_vlan_push got skb with skb->data not at mac header (offset %d)\n", 5650 offset)) { 5651 return -EINVAL; 5652 } 5653 5654 err = __vlan_insert_tag(skb, skb->vlan_proto, 5655 skb_vlan_tag_get(skb)); 5656 if (err) 5657 return err; 5658 5659 skb->protocol = skb->vlan_proto; 5660 skb->mac_len += VLAN_HLEN; 5661 5662 skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN); 5663 } 5664 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci); 5665 return 0; 5666 } 5667 EXPORT_SYMBOL(skb_vlan_push); 5668 5669 /** 5670 * skb_eth_pop() - Drop the Ethernet header at the head of a packet 5671 * 5672 * @skb: Socket buffer to modify 5673 * 5674 * Drop the Ethernet header of @skb. 5675 * 5676 * Expects that skb->data points to the mac header and that no VLAN tags are 5677 * present. 5678 * 5679 * Returns 0 on success, -errno otherwise. 5680 */ 5681 int skb_eth_pop(struct sk_buff *skb) 5682 { 5683 if (!pskb_may_pull(skb, ETH_HLEN) || skb_vlan_tagged(skb) || 5684 skb_network_offset(skb) < ETH_HLEN) 5685 return -EPROTO; 5686 5687 skb_pull_rcsum(skb, ETH_HLEN); 5688 skb_reset_mac_header(skb); 5689 skb_reset_mac_len(skb); 5690 5691 return 0; 5692 } 5693 EXPORT_SYMBOL(skb_eth_pop); 5694 5695 /** 5696 * skb_eth_push() - Add a new Ethernet header at the head of a packet 5697 * 5698 * @skb: Socket buffer to modify 5699 * @dst: Destination MAC address of the new header 5700 * @src: Source MAC address of the new header 5701 * 5702 * Prepend @skb with a new Ethernet header. 5703 * 5704 * Expects that skb->data points to the mac header, which must be empty. 5705 * 5706 * Returns 0 on success, -errno otherwise. 5707 */ 5708 int skb_eth_push(struct sk_buff *skb, const unsigned char *dst, 5709 const unsigned char *src) 5710 { 5711 struct ethhdr *eth; 5712 int err; 5713 5714 if (skb_network_offset(skb) || skb_vlan_tag_present(skb)) 5715 return -EPROTO; 5716 5717 err = skb_cow_head(skb, sizeof(*eth)); 5718 if (err < 0) 5719 return err; 5720 5721 skb_push(skb, sizeof(*eth)); 5722 skb_reset_mac_header(skb); 5723 skb_reset_mac_len(skb); 5724 5725 eth = eth_hdr(skb); 5726 ether_addr_copy(eth->h_dest, dst); 5727 ether_addr_copy(eth->h_source, src); 5728 eth->h_proto = skb->protocol; 5729 5730 skb_postpush_rcsum(skb, eth, sizeof(*eth)); 5731 5732 return 0; 5733 } 5734 EXPORT_SYMBOL(skb_eth_push); 5735 5736 /* Update the ethertype of hdr and the skb csum value if required. */ 5737 static void skb_mod_eth_type(struct sk_buff *skb, struct ethhdr *hdr, 5738 __be16 ethertype) 5739 { 5740 if (skb->ip_summed == CHECKSUM_COMPLETE) { 5741 __be16 diff[] = { ~hdr->h_proto, ethertype }; 5742 5743 skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum); 5744 } 5745 5746 hdr->h_proto = ethertype; 5747 } 5748 5749 /** 5750 * skb_mpls_push() - push a new MPLS header after mac_len bytes from start of 5751 * the packet 5752 * 5753 * @skb: buffer 5754 * @mpls_lse: MPLS label stack entry to push 5755 * @mpls_proto: ethertype of the new MPLS header (expects 0x8847 or 0x8848) 5756 * @mac_len: length of the MAC header 5757 * @ethernet: flag to indicate if the resulting packet after skb_mpls_push is 5758 * ethernet 5759 * 5760 * Expects skb->data at mac header. 5761 * 5762 * Returns 0 on success, -errno otherwise. 5763 */ 5764 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto, 5765 int mac_len, bool ethernet) 5766 { 5767 struct mpls_shim_hdr *lse; 5768 int err; 5769 5770 if (unlikely(!eth_p_mpls(mpls_proto))) 5771 return -EINVAL; 5772 5773 /* Networking stack does not allow simultaneous Tunnel and MPLS GSO. */ 5774 if (skb->encapsulation) 5775 return -EINVAL; 5776 5777 err = skb_cow_head(skb, MPLS_HLEN); 5778 if (unlikely(err)) 5779 return err; 5780 5781 if (!skb->inner_protocol) { 5782 skb_set_inner_network_header(skb, skb_network_offset(skb)); 5783 skb_set_inner_protocol(skb, skb->protocol); 5784 } 5785 5786 skb_push(skb, MPLS_HLEN); 5787 memmove(skb_mac_header(skb) - MPLS_HLEN, skb_mac_header(skb), 5788 mac_len); 5789 skb_reset_mac_header(skb); 5790 skb_set_network_header(skb, mac_len); 5791 skb_reset_mac_len(skb); 5792 5793 lse = mpls_hdr(skb); 5794 lse->label_stack_entry = mpls_lse; 5795 skb_postpush_rcsum(skb, lse, MPLS_HLEN); 5796 5797 if (ethernet && mac_len >= ETH_HLEN) 5798 skb_mod_eth_type(skb, eth_hdr(skb), mpls_proto); 5799 skb->protocol = mpls_proto; 5800 5801 return 0; 5802 } 5803 EXPORT_SYMBOL_GPL(skb_mpls_push); 5804 5805 /** 5806 * skb_mpls_pop() - pop the outermost MPLS header 5807 * 5808 * @skb: buffer 5809 * @next_proto: ethertype of header after popped MPLS header 5810 * @mac_len: length of the MAC header 5811 * @ethernet: flag to indicate if the packet is ethernet 5812 * 5813 * Expects skb->data at mac header. 5814 * 5815 * Returns 0 on success, -errno otherwise. 5816 */ 5817 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len, 5818 bool ethernet) 5819 { 5820 int err; 5821 5822 if (unlikely(!eth_p_mpls(skb->protocol))) 5823 return 0; 5824 5825 err = skb_ensure_writable(skb, mac_len + MPLS_HLEN); 5826 if (unlikely(err)) 5827 return err; 5828 5829 skb_postpull_rcsum(skb, mpls_hdr(skb), MPLS_HLEN); 5830 memmove(skb_mac_header(skb) + MPLS_HLEN, skb_mac_header(skb), 5831 mac_len); 5832 5833 __skb_pull(skb, MPLS_HLEN); 5834 skb_reset_mac_header(skb); 5835 skb_set_network_header(skb, mac_len); 5836 5837 if (ethernet && mac_len >= ETH_HLEN) { 5838 struct ethhdr *hdr; 5839 5840 /* use mpls_hdr() to get ethertype to account for VLANs. */ 5841 hdr = (struct ethhdr *)((void *)mpls_hdr(skb) - ETH_HLEN); 5842 skb_mod_eth_type(skb, hdr, next_proto); 5843 } 5844 skb->protocol = next_proto; 5845 5846 return 0; 5847 } 5848 EXPORT_SYMBOL_GPL(skb_mpls_pop); 5849 5850 /** 5851 * skb_mpls_update_lse() - modify outermost MPLS header and update csum 5852 * 5853 * @skb: buffer 5854 * @mpls_lse: new MPLS label stack entry to update to 5855 * 5856 * Expects skb->data at mac header. 5857 * 5858 * Returns 0 on success, -errno otherwise. 5859 */ 5860 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse) 5861 { 5862 int err; 5863 5864 if (unlikely(!eth_p_mpls(skb->protocol))) 5865 return -EINVAL; 5866 5867 err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN); 5868 if (unlikely(err)) 5869 return err; 5870 5871 if (skb->ip_summed == CHECKSUM_COMPLETE) { 5872 __be32 diff[] = { ~mpls_hdr(skb)->label_stack_entry, mpls_lse }; 5873 5874 skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum); 5875 } 5876 5877 mpls_hdr(skb)->label_stack_entry = mpls_lse; 5878 5879 return 0; 5880 } 5881 EXPORT_SYMBOL_GPL(skb_mpls_update_lse); 5882 5883 /** 5884 * skb_mpls_dec_ttl() - decrement the TTL of the outermost MPLS header 5885 * 5886 * @skb: buffer 5887 * 5888 * Expects skb->data at mac header. 5889 * 5890 * Returns 0 on success, -errno otherwise. 5891 */ 5892 int skb_mpls_dec_ttl(struct sk_buff *skb) 5893 { 5894 u32 lse; 5895 u8 ttl; 5896 5897 if (unlikely(!eth_p_mpls(skb->protocol))) 5898 return -EINVAL; 5899 5900 if (!pskb_may_pull(skb, skb_network_offset(skb) + MPLS_HLEN)) 5901 return -ENOMEM; 5902 5903 lse = be32_to_cpu(mpls_hdr(skb)->label_stack_entry); 5904 ttl = (lse & MPLS_LS_TTL_MASK) >> MPLS_LS_TTL_SHIFT; 5905 if (!--ttl) 5906 return -EINVAL; 5907 5908 lse &= ~MPLS_LS_TTL_MASK; 5909 lse |= ttl << MPLS_LS_TTL_SHIFT; 5910 5911 return skb_mpls_update_lse(skb, cpu_to_be32(lse)); 5912 } 5913 EXPORT_SYMBOL_GPL(skb_mpls_dec_ttl); 5914 5915 /** 5916 * alloc_skb_with_frags - allocate skb with page frags 5917 * 5918 * @header_len: size of linear part 5919 * @data_len: needed length in frags 5920 * @max_page_order: max page order desired. 5921 * @errcode: pointer to error code if any 5922 * @gfp_mask: allocation mask 5923 * 5924 * This can be used to allocate a paged skb, given a maximal order for frags. 5925 */ 5926 struct sk_buff *alloc_skb_with_frags(unsigned long header_len, 5927 unsigned long data_len, 5928 int max_page_order, 5929 int *errcode, 5930 gfp_t gfp_mask) 5931 { 5932 int npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT; 5933 unsigned long chunk; 5934 struct sk_buff *skb; 5935 struct page *page; 5936 int i; 5937 5938 *errcode = -EMSGSIZE; 5939 /* Note this test could be relaxed, if we succeed to allocate 5940 * high order pages... 5941 */ 5942 if (npages > MAX_SKB_FRAGS) 5943 return NULL; 5944 5945 *errcode = -ENOBUFS; 5946 skb = alloc_skb(header_len, gfp_mask); 5947 if (!skb) 5948 return NULL; 5949 5950 skb->truesize += npages << PAGE_SHIFT; 5951 5952 for (i = 0; npages > 0; i++) { 5953 int order = max_page_order; 5954 5955 while (order) { 5956 if (npages >= 1 << order) { 5957 page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) | 5958 __GFP_COMP | 5959 __GFP_NOWARN, 5960 order); 5961 if (page) 5962 goto fill_page; 5963 /* Do not retry other high order allocations */ 5964 order = 1; 5965 max_page_order = 0; 5966 } 5967 order--; 5968 } 5969 page = alloc_page(gfp_mask); 5970 if (!page) 5971 goto failure; 5972 fill_page: 5973 chunk = min_t(unsigned long, data_len, 5974 PAGE_SIZE << order); 5975 skb_fill_page_desc(skb, i, page, 0, chunk); 5976 data_len -= chunk; 5977 npages -= 1 << order; 5978 } 5979 return skb; 5980 5981 failure: 5982 kfree_skb(skb); 5983 return NULL; 5984 } 5985 EXPORT_SYMBOL(alloc_skb_with_frags); 5986 5987 /* carve out the first off bytes from skb when off < headlen */ 5988 static int pskb_carve_inside_header(struct sk_buff *skb, const u32 off, 5989 const int headlen, gfp_t gfp_mask) 5990 { 5991 int i; 5992 int size = skb_end_offset(skb); 5993 int new_hlen = headlen - off; 5994 u8 *data; 5995 5996 size = SKB_DATA_ALIGN(size); 5997 5998 if (skb_pfmemalloc(skb)) 5999 gfp_mask |= __GFP_MEMALLOC; 6000 data = kmalloc_reserve(size + 6001 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)), 6002 gfp_mask, NUMA_NO_NODE, NULL); 6003 if (!data) 6004 return -ENOMEM; 6005 6006 size = SKB_WITH_OVERHEAD(ksize(data)); 6007 6008 /* Copy real data, and all frags */ 6009 skb_copy_from_linear_data_offset(skb, off, data, new_hlen); 6010 skb->len -= off; 6011 6012 memcpy((struct skb_shared_info *)(data + size), 6013 skb_shinfo(skb), 6014 offsetof(struct skb_shared_info, 6015 frags[skb_shinfo(skb)->nr_frags])); 6016 if (skb_cloned(skb)) { 6017 /* drop the old head gracefully */ 6018 if (skb_orphan_frags(skb, gfp_mask)) { 6019 kfree(data); 6020 return -ENOMEM; 6021 } 6022 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 6023 skb_frag_ref(skb, i); 6024 if (skb_has_frag_list(skb)) 6025 skb_clone_fraglist(skb); 6026 skb_release_data(skb); 6027 } else { 6028 /* we can reuse existing recount- all we did was 6029 * relocate values 6030 */ 6031 skb_free_head(skb); 6032 } 6033 6034 skb->head = data; 6035 skb->data = data; 6036 skb->head_frag = 0; 6037 #ifdef NET_SKBUFF_DATA_USES_OFFSET 6038 skb->end = size; 6039 #else 6040 skb->end = skb->head + size; 6041 #endif 6042 skb_set_tail_pointer(skb, skb_headlen(skb)); 6043 skb_headers_offset_update(skb, 0); 6044 skb->cloned = 0; 6045 skb->hdr_len = 0; 6046 skb->nohdr = 0; 6047 atomic_set(&skb_shinfo(skb)->dataref, 1); 6048 6049 return 0; 6050 } 6051 6052 static int pskb_carve(struct sk_buff *skb, const u32 off, gfp_t gfp); 6053 6054 /* carve out the first eat bytes from skb's frag_list. May recurse into 6055 * pskb_carve() 6056 */ 6057 static int pskb_carve_frag_list(struct sk_buff *skb, 6058 struct skb_shared_info *shinfo, int eat, 6059 gfp_t gfp_mask) 6060 { 6061 struct sk_buff *list = shinfo->frag_list; 6062 struct sk_buff *clone = NULL; 6063 struct sk_buff *insp = NULL; 6064 6065 do { 6066 if (!list) { 6067 pr_err("Not enough bytes to eat. Want %d\n", eat); 6068 return -EFAULT; 6069 } 6070 if (list->len <= eat) { 6071 /* Eaten as whole. */ 6072 eat -= list->len; 6073 list = list->next; 6074 insp = list; 6075 } else { 6076 /* Eaten partially. */ 6077 if (skb_shared(list)) { 6078 clone = skb_clone(list, gfp_mask); 6079 if (!clone) 6080 return -ENOMEM; 6081 insp = list->next; 6082 list = clone; 6083 } else { 6084 /* This may be pulled without problems. */ 6085 insp = list; 6086 } 6087 if (pskb_carve(list, eat, gfp_mask) < 0) { 6088 kfree_skb(clone); 6089 return -ENOMEM; 6090 } 6091 break; 6092 } 6093 } while (eat); 6094 6095 /* Free pulled out fragments. */ 6096 while ((list = shinfo->frag_list) != insp) { 6097 shinfo->frag_list = list->next; 6098 kfree_skb(list); 6099 } 6100 /* And insert new clone at head. */ 6101 if (clone) { 6102 clone->next = list; 6103 shinfo->frag_list = clone; 6104 } 6105 return 0; 6106 } 6107 6108 /* carve off first len bytes from skb. Split line (off) is in the 6109 * non-linear part of skb 6110 */ 6111 static int pskb_carve_inside_nonlinear(struct sk_buff *skb, const u32 off, 6112 int pos, gfp_t gfp_mask) 6113 { 6114 int i, k = 0; 6115 int size = skb_end_offset(skb); 6116 u8 *data; 6117 const int nfrags = skb_shinfo(skb)->nr_frags; 6118 struct skb_shared_info *shinfo; 6119 6120 size = SKB_DATA_ALIGN(size); 6121 6122 if (skb_pfmemalloc(skb)) 6123 gfp_mask |= __GFP_MEMALLOC; 6124 data = kmalloc_reserve(size + 6125 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)), 6126 gfp_mask, NUMA_NO_NODE, NULL); 6127 if (!data) 6128 return -ENOMEM; 6129 6130 size = SKB_WITH_OVERHEAD(ksize(data)); 6131 6132 memcpy((struct skb_shared_info *)(data + size), 6133 skb_shinfo(skb), offsetof(struct skb_shared_info, frags[0])); 6134 if (skb_orphan_frags(skb, gfp_mask)) { 6135 kfree(data); 6136 return -ENOMEM; 6137 } 6138 shinfo = (struct skb_shared_info *)(data + size); 6139 for (i = 0; i < nfrags; i++) { 6140 int fsize = skb_frag_size(&skb_shinfo(skb)->frags[i]); 6141 6142 if (pos + fsize > off) { 6143 shinfo->frags[k] = skb_shinfo(skb)->frags[i]; 6144 6145 if (pos < off) { 6146 /* Split frag. 6147 * We have two variants in this case: 6148 * 1. Move all the frag to the second 6149 * part, if it is possible. F.e. 6150 * this approach is mandatory for TUX, 6151 * where splitting is expensive. 6152 * 2. Split is accurately. We make this. 6153 */ 6154 skb_frag_off_add(&shinfo->frags[0], off - pos); 6155 skb_frag_size_sub(&shinfo->frags[0], off - pos); 6156 } 6157 skb_frag_ref(skb, i); 6158 k++; 6159 } 6160 pos += fsize; 6161 } 6162 shinfo->nr_frags = k; 6163 if (skb_has_frag_list(skb)) 6164 skb_clone_fraglist(skb); 6165 6166 /* split line is in frag list */ 6167 if (k == 0 && pskb_carve_frag_list(skb, shinfo, off - pos, gfp_mask)) { 6168 /* skb_frag_unref() is not needed here as shinfo->nr_frags = 0. */ 6169 if (skb_has_frag_list(skb)) 6170 kfree_skb_list(skb_shinfo(skb)->frag_list); 6171 kfree(data); 6172 return -ENOMEM; 6173 } 6174 skb_release_data(skb); 6175 6176 skb->head = data; 6177 skb->head_frag = 0; 6178 skb->data = data; 6179 #ifdef NET_SKBUFF_DATA_USES_OFFSET 6180 skb->end = size; 6181 #else 6182 skb->end = skb->head + size; 6183 #endif 6184 skb_reset_tail_pointer(skb); 6185 skb_headers_offset_update(skb, 0); 6186 skb->cloned = 0; 6187 skb->hdr_len = 0; 6188 skb->nohdr = 0; 6189 skb->len -= off; 6190 skb->data_len = skb->len; 6191 atomic_set(&skb_shinfo(skb)->dataref, 1); 6192 return 0; 6193 } 6194 6195 /* remove len bytes from the beginning of the skb */ 6196 static int pskb_carve(struct sk_buff *skb, const u32 len, gfp_t gfp) 6197 { 6198 int headlen = skb_headlen(skb); 6199 6200 if (len < headlen) 6201 return pskb_carve_inside_header(skb, len, headlen, gfp); 6202 else 6203 return pskb_carve_inside_nonlinear(skb, len, headlen, gfp); 6204 } 6205 6206 /* Extract to_copy bytes starting at off from skb, and return this in 6207 * a new skb 6208 */ 6209 struct sk_buff *pskb_extract(struct sk_buff *skb, int off, 6210 int to_copy, gfp_t gfp) 6211 { 6212 struct sk_buff *clone = skb_clone(skb, gfp); 6213 6214 if (!clone) 6215 return NULL; 6216 6217 if (pskb_carve(clone, off, gfp) < 0 || 6218 pskb_trim(clone, to_copy)) { 6219 kfree_skb(clone); 6220 return NULL; 6221 } 6222 return clone; 6223 } 6224 EXPORT_SYMBOL(pskb_extract); 6225 6226 /** 6227 * skb_condense - try to get rid of fragments/frag_list if possible 6228 * @skb: buffer 6229 * 6230 * Can be used to save memory before skb is added to a busy queue. 6231 * If packet has bytes in frags and enough tail room in skb->head, 6232 * pull all of them, so that we can free the frags right now and adjust 6233 * truesize. 6234 * Notes: 6235 * We do not reallocate skb->head thus can not fail. 6236 * Caller must re-evaluate skb->truesize if needed. 6237 */ 6238 void skb_condense(struct sk_buff *skb) 6239 { 6240 if (skb->data_len) { 6241 if (skb->data_len > skb->end - skb->tail || 6242 skb_cloned(skb)) 6243 return; 6244 6245 /* Nice, we can free page frag(s) right now */ 6246 __pskb_pull_tail(skb, skb->data_len); 6247 } 6248 /* At this point, skb->truesize might be over estimated, 6249 * because skb had a fragment, and fragments do not tell 6250 * their truesize. 6251 * When we pulled its content into skb->head, fragment 6252 * was freed, but __pskb_pull_tail() could not possibly 6253 * adjust skb->truesize, not knowing the frag truesize. 6254 */ 6255 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb)); 6256 } 6257 6258 #ifdef CONFIG_SKB_EXTENSIONS 6259 static void *skb_ext_get_ptr(struct skb_ext *ext, enum skb_ext_id id) 6260 { 6261 return (void *)ext + (ext->offset[id] * SKB_EXT_ALIGN_VALUE); 6262 } 6263 6264 /** 6265 * __skb_ext_alloc - allocate a new skb extensions storage 6266 * 6267 * @flags: See kmalloc(). 6268 * 6269 * Returns the newly allocated pointer. The pointer can later attached to a 6270 * skb via __skb_ext_set(). 6271 * Note: caller must handle the skb_ext as an opaque data. 6272 */ 6273 struct skb_ext *__skb_ext_alloc(gfp_t flags) 6274 { 6275 struct skb_ext *new = kmem_cache_alloc(skbuff_ext_cache, flags); 6276 6277 if (new) { 6278 memset(new->offset, 0, sizeof(new->offset)); 6279 refcount_set(&new->refcnt, 1); 6280 } 6281 6282 return new; 6283 } 6284 6285 static struct skb_ext *skb_ext_maybe_cow(struct skb_ext *old, 6286 unsigned int old_active) 6287 { 6288 struct skb_ext *new; 6289 6290 if (refcount_read(&old->refcnt) == 1) 6291 return old; 6292 6293 new = kmem_cache_alloc(skbuff_ext_cache, GFP_ATOMIC); 6294 if (!new) 6295 return NULL; 6296 6297 memcpy(new, old, old->chunks * SKB_EXT_ALIGN_VALUE); 6298 refcount_set(&new->refcnt, 1); 6299 6300 #ifdef CONFIG_XFRM 6301 if (old_active & (1 << SKB_EXT_SEC_PATH)) { 6302 struct sec_path *sp = skb_ext_get_ptr(old, SKB_EXT_SEC_PATH); 6303 unsigned int i; 6304 6305 for (i = 0; i < sp->len; i++) 6306 xfrm_state_hold(sp->xvec[i]); 6307 } 6308 #endif 6309 __skb_ext_put(old); 6310 return new; 6311 } 6312 6313 /** 6314 * __skb_ext_set - attach the specified extension storage to this skb 6315 * @skb: buffer 6316 * @id: extension id 6317 * @ext: extension storage previously allocated via __skb_ext_alloc() 6318 * 6319 * Existing extensions, if any, are cleared. 6320 * 6321 * Returns the pointer to the extension. 6322 */ 6323 void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id, 6324 struct skb_ext *ext) 6325 { 6326 unsigned int newlen, newoff = SKB_EXT_CHUNKSIZEOF(*ext); 6327 6328 skb_ext_put(skb); 6329 newlen = newoff + skb_ext_type_len[id]; 6330 ext->chunks = newlen; 6331 ext->offset[id] = newoff; 6332 skb->extensions = ext; 6333 skb->active_extensions = 1 << id; 6334 return skb_ext_get_ptr(ext, id); 6335 } 6336 6337 /** 6338 * skb_ext_add - allocate space for given extension, COW if needed 6339 * @skb: buffer 6340 * @id: extension to allocate space for 6341 * 6342 * Allocates enough space for the given extension. 6343 * If the extension is already present, a pointer to that extension 6344 * is returned. 6345 * 6346 * If the skb was cloned, COW applies and the returned memory can be 6347 * modified without changing the extension space of clones buffers. 6348 * 6349 * Returns pointer to the extension or NULL on allocation failure. 6350 */ 6351 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id) 6352 { 6353 struct skb_ext *new, *old = NULL; 6354 unsigned int newlen, newoff; 6355 6356 if (skb->active_extensions) { 6357 old = skb->extensions; 6358 6359 new = skb_ext_maybe_cow(old, skb->active_extensions); 6360 if (!new) 6361 return NULL; 6362 6363 if (__skb_ext_exist(new, id)) 6364 goto set_active; 6365 6366 newoff = new->chunks; 6367 } else { 6368 newoff = SKB_EXT_CHUNKSIZEOF(*new); 6369 6370 new = __skb_ext_alloc(GFP_ATOMIC); 6371 if (!new) 6372 return NULL; 6373 } 6374 6375 newlen = newoff + skb_ext_type_len[id]; 6376 new->chunks = newlen; 6377 new->offset[id] = newoff; 6378 set_active: 6379 skb->extensions = new; 6380 skb->active_extensions |= 1 << id; 6381 return skb_ext_get_ptr(new, id); 6382 } 6383 EXPORT_SYMBOL(skb_ext_add); 6384 6385 #ifdef CONFIG_XFRM 6386 static void skb_ext_put_sp(struct sec_path *sp) 6387 { 6388 unsigned int i; 6389 6390 for (i = 0; i < sp->len; i++) 6391 xfrm_state_put(sp->xvec[i]); 6392 } 6393 #endif 6394 6395 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id) 6396 { 6397 struct skb_ext *ext = skb->extensions; 6398 6399 skb->active_extensions &= ~(1 << id); 6400 if (skb->active_extensions == 0) { 6401 skb->extensions = NULL; 6402 __skb_ext_put(ext); 6403 #ifdef CONFIG_XFRM 6404 } else if (id == SKB_EXT_SEC_PATH && 6405 refcount_read(&ext->refcnt) == 1) { 6406 struct sec_path *sp = skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH); 6407 6408 skb_ext_put_sp(sp); 6409 sp->len = 0; 6410 #endif 6411 } 6412 } 6413 EXPORT_SYMBOL(__skb_ext_del); 6414 6415 void __skb_ext_put(struct skb_ext *ext) 6416 { 6417 /* If this is last clone, nothing can increment 6418 * it after check passes. Avoids one atomic op. 6419 */ 6420 if (refcount_read(&ext->refcnt) == 1) 6421 goto free_now; 6422 6423 if (!refcount_dec_and_test(&ext->refcnt)) 6424 return; 6425 free_now: 6426 #ifdef CONFIG_XFRM 6427 if (__skb_ext_exist(ext, SKB_EXT_SEC_PATH)) 6428 skb_ext_put_sp(skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH)); 6429 #endif 6430 6431 kmem_cache_free(skbuff_ext_cache, ext); 6432 } 6433 EXPORT_SYMBOL(__skb_ext_put); 6434 #endif /* CONFIG_SKB_EXTENSIONS */ 6435