1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Routines having to do with the 'struct sk_buff' memory handlers. 4 * 5 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk> 6 * Florian La Roche <rzsfl@rz.uni-sb.de> 7 * 8 * Fixes: 9 * Alan Cox : Fixed the worst of the load 10 * balancer bugs. 11 * Dave Platt : Interrupt stacking fix. 12 * Richard Kooijman : Timestamp fixes. 13 * Alan Cox : Changed buffer format. 14 * Alan Cox : destructor hook for AF_UNIX etc. 15 * Linus Torvalds : Better skb_clone. 16 * Alan Cox : Added skb_copy. 17 * Alan Cox : Added all the changed routines Linus 18 * only put in the headers 19 * Ray VanTassle : Fixed --skb->lock in free 20 * Alan Cox : skb_copy copy arp field 21 * Andi Kleen : slabified it. 22 * Robert Olsson : Removed skb_head_pool 23 * 24 * NOTE: 25 * The __skb_ routines should be called with interrupts 26 * disabled, or you better be *real* sure that the operation is atomic 27 * with respect to whatever list is being frobbed (e.g. via lock_sock() 28 * or via disabling bottom half handlers, etc). 29 */ 30 31 /* 32 * The functions in this file will not compile correctly with gcc 2.4.x 33 */ 34 35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 36 37 #include <linux/module.h> 38 #include <linux/types.h> 39 #include <linux/kernel.h> 40 #include <linux/mm.h> 41 #include <linux/interrupt.h> 42 #include <linux/in.h> 43 #include <linux/inet.h> 44 #include <linux/slab.h> 45 #include <linux/tcp.h> 46 #include <linux/udp.h> 47 #include <linux/sctp.h> 48 #include <linux/netdevice.h> 49 #ifdef CONFIG_NET_CLS_ACT 50 #include <net/pkt_sched.h> 51 #endif 52 #include <linux/string.h> 53 #include <linux/skbuff.h> 54 #include <linux/splice.h> 55 #include <linux/cache.h> 56 #include <linux/rtnetlink.h> 57 #include <linux/init.h> 58 #include <linux/scatterlist.h> 59 #include <linux/errqueue.h> 60 #include <linux/prefetch.h> 61 #include <linux/if_vlan.h> 62 #include <linux/mpls.h> 63 #include <linux/kcov.h> 64 65 #include <net/protocol.h> 66 #include <net/dst.h> 67 #include <net/sock.h> 68 #include <net/checksum.h> 69 #include <net/ip6_checksum.h> 70 #include <net/xfrm.h> 71 #include <net/mpls.h> 72 #include <net/mptcp.h> 73 #include <net/mctp.h> 74 #include <net/page_pool.h> 75 76 #include <linux/uaccess.h> 77 #include <trace/events/skb.h> 78 #include <linux/highmem.h> 79 #include <linux/capability.h> 80 #include <linux/user_namespace.h> 81 #include <linux/indirect_call_wrapper.h> 82 83 #include "sock_destructor.h" 84 85 struct kmem_cache *skbuff_head_cache __ro_after_init; 86 static struct kmem_cache *skbuff_fclone_cache __ro_after_init; 87 #ifdef CONFIG_SKB_EXTENSIONS 88 static struct kmem_cache *skbuff_ext_cache __ro_after_init; 89 #endif 90 int sysctl_max_skb_frags __read_mostly = MAX_SKB_FRAGS; 91 EXPORT_SYMBOL(sysctl_max_skb_frags); 92 93 /** 94 * skb_panic - private function for out-of-line support 95 * @skb: buffer 96 * @sz: size 97 * @addr: address 98 * @msg: skb_over_panic or skb_under_panic 99 * 100 * Out-of-line support for skb_put() and skb_push(). 101 * Called via the wrapper skb_over_panic() or skb_under_panic(). 102 * Keep out of line to prevent kernel bloat. 103 * __builtin_return_address is not used because it is not always reliable. 104 */ 105 static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr, 106 const char msg[]) 107 { 108 pr_emerg("%s: text:%px len:%d put:%d head:%px data:%px tail:%#lx end:%#lx dev:%s\n", 109 msg, addr, skb->len, sz, skb->head, skb->data, 110 (unsigned long)skb->tail, (unsigned long)skb->end, 111 skb->dev ? skb->dev->name : "<NULL>"); 112 BUG(); 113 } 114 115 static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr) 116 { 117 skb_panic(skb, sz, addr, __func__); 118 } 119 120 static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr) 121 { 122 skb_panic(skb, sz, addr, __func__); 123 } 124 125 #define NAPI_SKB_CACHE_SIZE 64 126 #define NAPI_SKB_CACHE_BULK 16 127 #define NAPI_SKB_CACHE_HALF (NAPI_SKB_CACHE_SIZE / 2) 128 129 struct napi_alloc_cache { 130 struct page_frag_cache page; 131 unsigned int skb_count; 132 void *skb_cache[NAPI_SKB_CACHE_SIZE]; 133 }; 134 135 static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache); 136 static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache); 137 138 void *__napi_alloc_frag_align(unsigned int fragsz, unsigned int align_mask) 139 { 140 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 141 142 fragsz = SKB_DATA_ALIGN(fragsz); 143 144 return page_frag_alloc_align(&nc->page, fragsz, GFP_ATOMIC, align_mask); 145 } 146 EXPORT_SYMBOL(__napi_alloc_frag_align); 147 148 void *__netdev_alloc_frag_align(unsigned int fragsz, unsigned int align_mask) 149 { 150 void *data; 151 152 fragsz = SKB_DATA_ALIGN(fragsz); 153 if (in_hardirq() || irqs_disabled()) { 154 struct page_frag_cache *nc = this_cpu_ptr(&netdev_alloc_cache); 155 156 data = page_frag_alloc_align(nc, fragsz, GFP_ATOMIC, align_mask); 157 } else { 158 struct napi_alloc_cache *nc; 159 160 local_bh_disable(); 161 nc = this_cpu_ptr(&napi_alloc_cache); 162 data = page_frag_alloc_align(&nc->page, fragsz, GFP_ATOMIC, align_mask); 163 local_bh_enable(); 164 } 165 return data; 166 } 167 EXPORT_SYMBOL(__netdev_alloc_frag_align); 168 169 static struct sk_buff *napi_skb_cache_get(void) 170 { 171 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 172 struct sk_buff *skb; 173 174 if (unlikely(!nc->skb_count)) 175 nc->skb_count = kmem_cache_alloc_bulk(skbuff_head_cache, 176 GFP_ATOMIC, 177 NAPI_SKB_CACHE_BULK, 178 nc->skb_cache); 179 if (unlikely(!nc->skb_count)) 180 return NULL; 181 182 skb = nc->skb_cache[--nc->skb_count]; 183 kasan_unpoison_object_data(skbuff_head_cache, skb); 184 185 return skb; 186 } 187 188 /* Caller must provide SKB that is memset cleared */ 189 static void __build_skb_around(struct sk_buff *skb, void *data, 190 unsigned int frag_size) 191 { 192 struct skb_shared_info *shinfo; 193 unsigned int size = frag_size ? : ksize(data); 194 195 size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 196 197 /* Assumes caller memset cleared SKB */ 198 skb->truesize = SKB_TRUESIZE(size); 199 refcount_set(&skb->users, 1); 200 skb->head = data; 201 skb->data = data; 202 skb_reset_tail_pointer(skb); 203 skb_set_end_offset(skb, size); 204 skb->mac_header = (typeof(skb->mac_header))~0U; 205 skb->transport_header = (typeof(skb->transport_header))~0U; 206 skb->alloc_cpu = raw_smp_processor_id(); 207 /* make sure we initialize shinfo sequentially */ 208 shinfo = skb_shinfo(skb); 209 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref)); 210 atomic_set(&shinfo->dataref, 1); 211 212 skb_set_kcov_handle(skb, kcov_common_handle()); 213 } 214 215 /** 216 * __build_skb - build a network buffer 217 * @data: data buffer provided by caller 218 * @frag_size: size of data, or 0 if head was kmalloced 219 * 220 * Allocate a new &sk_buff. Caller provides space holding head and 221 * skb_shared_info. @data must have been allocated by kmalloc() only if 222 * @frag_size is 0, otherwise data should come from the page allocator 223 * or vmalloc() 224 * The return is the new skb buffer. 225 * On a failure the return is %NULL, and @data is not freed. 226 * Notes : 227 * Before IO, driver allocates only data buffer where NIC put incoming frame 228 * Driver should add room at head (NET_SKB_PAD) and 229 * MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info)) 230 * After IO, driver calls build_skb(), to allocate sk_buff and populate it 231 * before giving packet to stack. 232 * RX rings only contains data buffers, not full skbs. 233 */ 234 struct sk_buff *__build_skb(void *data, unsigned int frag_size) 235 { 236 struct sk_buff *skb; 237 238 skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC); 239 if (unlikely(!skb)) 240 return NULL; 241 242 memset(skb, 0, offsetof(struct sk_buff, tail)); 243 __build_skb_around(skb, data, frag_size); 244 245 return skb; 246 } 247 248 /* build_skb() is wrapper over __build_skb(), that specifically 249 * takes care of skb->head and skb->pfmemalloc 250 * This means that if @frag_size is not zero, then @data must be backed 251 * by a page fragment, not kmalloc() or vmalloc() 252 */ 253 struct sk_buff *build_skb(void *data, unsigned int frag_size) 254 { 255 struct sk_buff *skb = __build_skb(data, frag_size); 256 257 if (skb && frag_size) { 258 skb->head_frag = 1; 259 if (page_is_pfmemalloc(virt_to_head_page(data))) 260 skb->pfmemalloc = 1; 261 } 262 return skb; 263 } 264 EXPORT_SYMBOL(build_skb); 265 266 /** 267 * build_skb_around - build a network buffer around provided skb 268 * @skb: sk_buff provide by caller, must be memset cleared 269 * @data: data buffer provided by caller 270 * @frag_size: size of data, or 0 if head was kmalloced 271 */ 272 struct sk_buff *build_skb_around(struct sk_buff *skb, 273 void *data, unsigned int frag_size) 274 { 275 if (unlikely(!skb)) 276 return NULL; 277 278 __build_skb_around(skb, data, frag_size); 279 280 if (frag_size) { 281 skb->head_frag = 1; 282 if (page_is_pfmemalloc(virt_to_head_page(data))) 283 skb->pfmemalloc = 1; 284 } 285 return skb; 286 } 287 EXPORT_SYMBOL(build_skb_around); 288 289 /** 290 * __napi_build_skb - build a network buffer 291 * @data: data buffer provided by caller 292 * @frag_size: size of data, or 0 if head was kmalloced 293 * 294 * Version of __build_skb() that uses NAPI percpu caches to obtain 295 * skbuff_head instead of inplace allocation. 296 * 297 * Returns a new &sk_buff on success, %NULL on allocation failure. 298 */ 299 static struct sk_buff *__napi_build_skb(void *data, unsigned int frag_size) 300 { 301 struct sk_buff *skb; 302 303 skb = napi_skb_cache_get(); 304 if (unlikely(!skb)) 305 return NULL; 306 307 memset(skb, 0, offsetof(struct sk_buff, tail)); 308 __build_skb_around(skb, data, frag_size); 309 310 return skb; 311 } 312 313 /** 314 * napi_build_skb - build a network buffer 315 * @data: data buffer provided by caller 316 * @frag_size: size of data, or 0 if head was kmalloced 317 * 318 * Version of __napi_build_skb() that takes care of skb->head_frag 319 * and skb->pfmemalloc when the data is a page or page fragment. 320 * 321 * Returns a new &sk_buff on success, %NULL on allocation failure. 322 */ 323 struct sk_buff *napi_build_skb(void *data, unsigned int frag_size) 324 { 325 struct sk_buff *skb = __napi_build_skb(data, frag_size); 326 327 if (likely(skb) && frag_size) { 328 skb->head_frag = 1; 329 skb_propagate_pfmemalloc(virt_to_head_page(data), skb); 330 } 331 332 return skb; 333 } 334 EXPORT_SYMBOL(napi_build_skb); 335 336 /* 337 * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells 338 * the caller if emergency pfmemalloc reserves are being used. If it is and 339 * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves 340 * may be used. Otherwise, the packet data may be discarded until enough 341 * memory is free 342 */ 343 static void *kmalloc_reserve(size_t size, gfp_t flags, int node, 344 bool *pfmemalloc) 345 { 346 void *obj; 347 bool ret_pfmemalloc = false; 348 349 /* 350 * Try a regular allocation, when that fails and we're not entitled 351 * to the reserves, fail. 352 */ 353 obj = kmalloc_node_track_caller(size, 354 flags | __GFP_NOMEMALLOC | __GFP_NOWARN, 355 node); 356 if (obj || !(gfp_pfmemalloc_allowed(flags))) 357 goto out; 358 359 /* Try again but now we are using pfmemalloc reserves */ 360 ret_pfmemalloc = true; 361 obj = kmalloc_node_track_caller(size, flags, node); 362 363 out: 364 if (pfmemalloc) 365 *pfmemalloc = ret_pfmemalloc; 366 367 return obj; 368 } 369 370 /* Allocate a new skbuff. We do this ourselves so we can fill in a few 371 * 'private' fields and also do memory statistics to find all the 372 * [BEEP] leaks. 373 * 374 */ 375 376 /** 377 * __alloc_skb - allocate a network buffer 378 * @size: size to allocate 379 * @gfp_mask: allocation mask 380 * @flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache 381 * instead of head cache and allocate a cloned (child) skb. 382 * If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for 383 * allocations in case the data is required for writeback 384 * @node: numa node to allocate memory on 385 * 386 * Allocate a new &sk_buff. The returned buffer has no headroom and a 387 * tail room of at least size bytes. The object has a reference count 388 * of one. The return is the buffer. On a failure the return is %NULL. 389 * 390 * Buffers may only be allocated from interrupts using a @gfp_mask of 391 * %GFP_ATOMIC. 392 */ 393 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask, 394 int flags, int node) 395 { 396 struct kmem_cache *cache; 397 struct sk_buff *skb; 398 unsigned int osize; 399 bool pfmemalloc; 400 u8 *data; 401 402 cache = (flags & SKB_ALLOC_FCLONE) 403 ? skbuff_fclone_cache : skbuff_head_cache; 404 405 if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX)) 406 gfp_mask |= __GFP_MEMALLOC; 407 408 /* Get the HEAD */ 409 if ((flags & (SKB_ALLOC_FCLONE | SKB_ALLOC_NAPI)) == SKB_ALLOC_NAPI && 410 likely(node == NUMA_NO_NODE || node == numa_mem_id())) 411 skb = napi_skb_cache_get(); 412 else 413 skb = kmem_cache_alloc_node(cache, gfp_mask & ~GFP_DMA, node); 414 if (unlikely(!skb)) 415 return NULL; 416 prefetchw(skb); 417 418 /* We do our best to align skb_shared_info on a separate cache 419 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives 420 * aligned memory blocks, unless SLUB/SLAB debug is enabled. 421 * Both skb->head and skb_shared_info are cache line aligned. 422 */ 423 size = SKB_DATA_ALIGN(size); 424 size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 425 data = kmalloc_reserve(size, gfp_mask, node, &pfmemalloc); 426 if (unlikely(!data)) 427 goto nodata; 428 /* kmalloc(size) might give us more room than requested. 429 * Put skb_shared_info exactly at the end of allocated zone, 430 * to allow max possible filling before reallocation. 431 */ 432 osize = ksize(data); 433 size = SKB_WITH_OVERHEAD(osize); 434 prefetchw(data + size); 435 436 /* 437 * Only clear those fields we need to clear, not those that we will 438 * actually initialise below. Hence, don't put any more fields after 439 * the tail pointer in struct sk_buff! 440 */ 441 memset(skb, 0, offsetof(struct sk_buff, tail)); 442 __build_skb_around(skb, data, osize); 443 skb->pfmemalloc = pfmemalloc; 444 445 if (flags & SKB_ALLOC_FCLONE) { 446 struct sk_buff_fclones *fclones; 447 448 fclones = container_of(skb, struct sk_buff_fclones, skb1); 449 450 skb->fclone = SKB_FCLONE_ORIG; 451 refcount_set(&fclones->fclone_ref, 1); 452 453 fclones->skb2.fclone = SKB_FCLONE_CLONE; 454 } 455 456 return skb; 457 458 nodata: 459 kmem_cache_free(cache, skb); 460 return NULL; 461 } 462 EXPORT_SYMBOL(__alloc_skb); 463 464 /** 465 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device 466 * @dev: network device to receive on 467 * @len: length to allocate 468 * @gfp_mask: get_free_pages mask, passed to alloc_skb 469 * 470 * Allocate a new &sk_buff and assign it a usage count of one. The 471 * buffer has NET_SKB_PAD headroom built in. Users should allocate 472 * the headroom they think they need without accounting for the 473 * built in space. The built in space is used for optimisations. 474 * 475 * %NULL is returned if there is no free memory. 476 */ 477 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len, 478 gfp_t gfp_mask) 479 { 480 struct page_frag_cache *nc; 481 struct sk_buff *skb; 482 bool pfmemalloc; 483 void *data; 484 485 len += NET_SKB_PAD; 486 487 /* If requested length is either too small or too big, 488 * we use kmalloc() for skb->head allocation. 489 */ 490 if (len <= SKB_WITH_OVERHEAD(1024) || 491 len > SKB_WITH_OVERHEAD(PAGE_SIZE) || 492 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) { 493 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE); 494 if (!skb) 495 goto skb_fail; 496 goto skb_success; 497 } 498 499 len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 500 len = SKB_DATA_ALIGN(len); 501 502 if (sk_memalloc_socks()) 503 gfp_mask |= __GFP_MEMALLOC; 504 505 if (in_hardirq() || irqs_disabled()) { 506 nc = this_cpu_ptr(&netdev_alloc_cache); 507 data = page_frag_alloc(nc, len, gfp_mask); 508 pfmemalloc = nc->pfmemalloc; 509 } else { 510 local_bh_disable(); 511 nc = this_cpu_ptr(&napi_alloc_cache.page); 512 data = page_frag_alloc(nc, len, gfp_mask); 513 pfmemalloc = nc->pfmemalloc; 514 local_bh_enable(); 515 } 516 517 if (unlikely(!data)) 518 return NULL; 519 520 skb = __build_skb(data, len); 521 if (unlikely(!skb)) { 522 skb_free_frag(data); 523 return NULL; 524 } 525 526 if (pfmemalloc) 527 skb->pfmemalloc = 1; 528 skb->head_frag = 1; 529 530 skb_success: 531 skb_reserve(skb, NET_SKB_PAD); 532 skb->dev = dev; 533 534 skb_fail: 535 return skb; 536 } 537 EXPORT_SYMBOL(__netdev_alloc_skb); 538 539 /** 540 * __napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance 541 * @napi: napi instance this buffer was allocated for 542 * @len: length to allocate 543 * @gfp_mask: get_free_pages mask, passed to alloc_skb and alloc_pages 544 * 545 * Allocate a new sk_buff for use in NAPI receive. This buffer will 546 * attempt to allocate the head from a special reserved region used 547 * only for NAPI Rx allocation. By doing this we can save several 548 * CPU cycles by avoiding having to disable and re-enable IRQs. 549 * 550 * %NULL is returned if there is no free memory. 551 */ 552 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, unsigned int len, 553 gfp_t gfp_mask) 554 { 555 struct napi_alloc_cache *nc; 556 struct sk_buff *skb; 557 void *data; 558 559 len += NET_SKB_PAD + NET_IP_ALIGN; 560 561 /* If requested length is either too small or too big, 562 * we use kmalloc() for skb->head allocation. 563 */ 564 if (len <= SKB_WITH_OVERHEAD(1024) || 565 len > SKB_WITH_OVERHEAD(PAGE_SIZE) || 566 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) { 567 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX | SKB_ALLOC_NAPI, 568 NUMA_NO_NODE); 569 if (!skb) 570 goto skb_fail; 571 goto skb_success; 572 } 573 574 nc = this_cpu_ptr(&napi_alloc_cache); 575 len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 576 len = SKB_DATA_ALIGN(len); 577 578 if (sk_memalloc_socks()) 579 gfp_mask |= __GFP_MEMALLOC; 580 581 data = page_frag_alloc(&nc->page, len, gfp_mask); 582 if (unlikely(!data)) 583 return NULL; 584 585 skb = __napi_build_skb(data, len); 586 if (unlikely(!skb)) { 587 skb_free_frag(data); 588 return NULL; 589 } 590 591 if (nc->page.pfmemalloc) 592 skb->pfmemalloc = 1; 593 skb->head_frag = 1; 594 595 skb_success: 596 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN); 597 skb->dev = napi->dev; 598 599 skb_fail: 600 return skb; 601 } 602 EXPORT_SYMBOL(__napi_alloc_skb); 603 604 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off, 605 int size, unsigned int truesize) 606 { 607 skb_fill_page_desc(skb, i, page, off, size); 608 skb->len += size; 609 skb->data_len += size; 610 skb->truesize += truesize; 611 } 612 EXPORT_SYMBOL(skb_add_rx_frag); 613 614 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size, 615 unsigned int truesize) 616 { 617 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 618 619 skb_frag_size_add(frag, size); 620 skb->len += size; 621 skb->data_len += size; 622 skb->truesize += truesize; 623 } 624 EXPORT_SYMBOL(skb_coalesce_rx_frag); 625 626 static void skb_drop_list(struct sk_buff **listp) 627 { 628 kfree_skb_list(*listp); 629 *listp = NULL; 630 } 631 632 static inline void skb_drop_fraglist(struct sk_buff *skb) 633 { 634 skb_drop_list(&skb_shinfo(skb)->frag_list); 635 } 636 637 static void skb_clone_fraglist(struct sk_buff *skb) 638 { 639 struct sk_buff *list; 640 641 skb_walk_frags(skb, list) 642 skb_get(list); 643 } 644 645 static void skb_free_head(struct sk_buff *skb) 646 { 647 unsigned char *head = skb->head; 648 649 if (skb->head_frag) { 650 if (skb_pp_recycle(skb, head)) 651 return; 652 skb_free_frag(head); 653 } else { 654 kfree(head); 655 } 656 } 657 658 static void skb_release_data(struct sk_buff *skb) 659 { 660 struct skb_shared_info *shinfo = skb_shinfo(skb); 661 int i; 662 663 if (skb->cloned && 664 atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1, 665 &shinfo->dataref)) 666 goto exit; 667 668 skb_zcopy_clear(skb, true); 669 670 for (i = 0; i < shinfo->nr_frags; i++) 671 __skb_frag_unref(&shinfo->frags[i], skb->pp_recycle); 672 673 if (shinfo->frag_list) 674 kfree_skb_list(shinfo->frag_list); 675 676 skb_free_head(skb); 677 exit: 678 /* When we clone an SKB we copy the reycling bit. The pp_recycle 679 * bit is only set on the head though, so in order to avoid races 680 * while trying to recycle fragments on __skb_frag_unref() we need 681 * to make one SKB responsible for triggering the recycle path. 682 * So disable the recycling bit if an SKB is cloned and we have 683 * additional references to the fragmented part of the SKB. 684 * Eventually the last SKB will have the recycling bit set and it's 685 * dataref set to 0, which will trigger the recycling 686 */ 687 skb->pp_recycle = 0; 688 } 689 690 /* 691 * Free an skbuff by memory without cleaning the state. 692 */ 693 static void kfree_skbmem(struct sk_buff *skb) 694 { 695 struct sk_buff_fclones *fclones; 696 697 switch (skb->fclone) { 698 case SKB_FCLONE_UNAVAILABLE: 699 kmem_cache_free(skbuff_head_cache, skb); 700 return; 701 702 case SKB_FCLONE_ORIG: 703 fclones = container_of(skb, struct sk_buff_fclones, skb1); 704 705 /* We usually free the clone (TX completion) before original skb 706 * This test would have no chance to be true for the clone, 707 * while here, branch prediction will be good. 708 */ 709 if (refcount_read(&fclones->fclone_ref) == 1) 710 goto fastpath; 711 break; 712 713 default: /* SKB_FCLONE_CLONE */ 714 fclones = container_of(skb, struct sk_buff_fclones, skb2); 715 break; 716 } 717 if (!refcount_dec_and_test(&fclones->fclone_ref)) 718 return; 719 fastpath: 720 kmem_cache_free(skbuff_fclone_cache, fclones); 721 } 722 723 void skb_release_head_state(struct sk_buff *skb) 724 { 725 skb_dst_drop(skb); 726 if (skb->destructor) { 727 WARN_ON(in_hardirq()); 728 skb->destructor(skb); 729 } 730 #if IS_ENABLED(CONFIG_NF_CONNTRACK) 731 nf_conntrack_put(skb_nfct(skb)); 732 #endif 733 skb_ext_put(skb); 734 } 735 736 /* Free everything but the sk_buff shell. */ 737 static void skb_release_all(struct sk_buff *skb) 738 { 739 skb_release_head_state(skb); 740 if (likely(skb->head)) 741 skb_release_data(skb); 742 } 743 744 /** 745 * __kfree_skb - private function 746 * @skb: buffer 747 * 748 * Free an sk_buff. Release anything attached to the buffer. 749 * Clean the state. This is an internal helper function. Users should 750 * always call kfree_skb 751 */ 752 753 void __kfree_skb(struct sk_buff *skb) 754 { 755 skb_release_all(skb); 756 kfree_skbmem(skb); 757 } 758 EXPORT_SYMBOL(__kfree_skb); 759 760 /** 761 * kfree_skb_reason - free an sk_buff with special reason 762 * @skb: buffer to free 763 * @reason: reason why this skb is dropped 764 * 765 * Drop a reference to the buffer and free it if the usage count has 766 * hit zero. Meanwhile, pass the drop reason to 'kfree_skb' 767 * tracepoint. 768 */ 769 void kfree_skb_reason(struct sk_buff *skb, enum skb_drop_reason reason) 770 { 771 if (!skb_unref(skb)) 772 return; 773 774 trace_kfree_skb(skb, __builtin_return_address(0), reason); 775 __kfree_skb(skb); 776 } 777 EXPORT_SYMBOL(kfree_skb_reason); 778 779 void kfree_skb_list_reason(struct sk_buff *segs, 780 enum skb_drop_reason reason) 781 { 782 while (segs) { 783 struct sk_buff *next = segs->next; 784 785 kfree_skb_reason(segs, reason); 786 segs = next; 787 } 788 } 789 EXPORT_SYMBOL(kfree_skb_list_reason); 790 791 /* Dump skb information and contents. 792 * 793 * Must only be called from net_ratelimit()-ed paths. 794 * 795 * Dumps whole packets if full_pkt, only headers otherwise. 796 */ 797 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt) 798 { 799 struct skb_shared_info *sh = skb_shinfo(skb); 800 struct net_device *dev = skb->dev; 801 struct sock *sk = skb->sk; 802 struct sk_buff *list_skb; 803 bool has_mac, has_trans; 804 int headroom, tailroom; 805 int i, len, seg_len; 806 807 if (full_pkt) 808 len = skb->len; 809 else 810 len = min_t(int, skb->len, MAX_HEADER + 128); 811 812 headroom = skb_headroom(skb); 813 tailroom = skb_tailroom(skb); 814 815 has_mac = skb_mac_header_was_set(skb); 816 has_trans = skb_transport_header_was_set(skb); 817 818 printk("%sskb len=%u headroom=%u headlen=%u tailroom=%u\n" 819 "mac=(%d,%d) net=(%d,%d) trans=%d\n" 820 "shinfo(txflags=%u nr_frags=%u gso(size=%hu type=%u segs=%hu))\n" 821 "csum(0x%x ip_summed=%u complete_sw=%u valid=%u level=%u)\n" 822 "hash(0x%x sw=%u l4=%u) proto=0x%04x pkttype=%u iif=%d\n", 823 level, skb->len, headroom, skb_headlen(skb), tailroom, 824 has_mac ? skb->mac_header : -1, 825 has_mac ? skb_mac_header_len(skb) : -1, 826 skb->network_header, 827 has_trans ? skb_network_header_len(skb) : -1, 828 has_trans ? skb->transport_header : -1, 829 sh->tx_flags, sh->nr_frags, 830 sh->gso_size, sh->gso_type, sh->gso_segs, 831 skb->csum, skb->ip_summed, skb->csum_complete_sw, 832 skb->csum_valid, skb->csum_level, 833 skb->hash, skb->sw_hash, skb->l4_hash, 834 ntohs(skb->protocol), skb->pkt_type, skb->skb_iif); 835 836 if (dev) 837 printk("%sdev name=%s feat=%pNF\n", 838 level, dev->name, &dev->features); 839 if (sk) 840 printk("%ssk family=%hu type=%u proto=%u\n", 841 level, sk->sk_family, sk->sk_type, sk->sk_protocol); 842 843 if (full_pkt && headroom) 844 print_hex_dump(level, "skb headroom: ", DUMP_PREFIX_OFFSET, 845 16, 1, skb->head, headroom, false); 846 847 seg_len = min_t(int, skb_headlen(skb), len); 848 if (seg_len) 849 print_hex_dump(level, "skb linear: ", DUMP_PREFIX_OFFSET, 850 16, 1, skb->data, seg_len, false); 851 len -= seg_len; 852 853 if (full_pkt && tailroom) 854 print_hex_dump(level, "skb tailroom: ", DUMP_PREFIX_OFFSET, 855 16, 1, skb_tail_pointer(skb), tailroom, false); 856 857 for (i = 0; len && i < skb_shinfo(skb)->nr_frags; i++) { 858 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 859 u32 p_off, p_len, copied; 860 struct page *p; 861 u8 *vaddr; 862 863 skb_frag_foreach_page(frag, skb_frag_off(frag), 864 skb_frag_size(frag), p, p_off, p_len, 865 copied) { 866 seg_len = min_t(int, p_len, len); 867 vaddr = kmap_atomic(p); 868 print_hex_dump(level, "skb frag: ", 869 DUMP_PREFIX_OFFSET, 870 16, 1, vaddr + p_off, seg_len, false); 871 kunmap_atomic(vaddr); 872 len -= seg_len; 873 if (!len) 874 break; 875 } 876 } 877 878 if (full_pkt && skb_has_frag_list(skb)) { 879 printk("skb fraglist:\n"); 880 skb_walk_frags(skb, list_skb) 881 skb_dump(level, list_skb, true); 882 } 883 } 884 EXPORT_SYMBOL(skb_dump); 885 886 /** 887 * skb_tx_error - report an sk_buff xmit error 888 * @skb: buffer that triggered an error 889 * 890 * Report xmit error if a device callback is tracking this skb. 891 * skb must be freed afterwards. 892 */ 893 void skb_tx_error(struct sk_buff *skb) 894 { 895 skb_zcopy_clear(skb, true); 896 } 897 EXPORT_SYMBOL(skb_tx_error); 898 899 #ifdef CONFIG_TRACEPOINTS 900 /** 901 * consume_skb - free an skbuff 902 * @skb: buffer to free 903 * 904 * Drop a ref to the buffer and free it if the usage count has hit zero 905 * Functions identically to kfree_skb, but kfree_skb assumes that the frame 906 * is being dropped after a failure and notes that 907 */ 908 void consume_skb(struct sk_buff *skb) 909 { 910 if (!skb_unref(skb)) 911 return; 912 913 trace_consume_skb(skb); 914 __kfree_skb(skb); 915 } 916 EXPORT_SYMBOL(consume_skb); 917 #endif 918 919 /** 920 * __consume_stateless_skb - free an skbuff, assuming it is stateless 921 * @skb: buffer to free 922 * 923 * Alike consume_skb(), but this variant assumes that this is the last 924 * skb reference and all the head states have been already dropped 925 */ 926 void __consume_stateless_skb(struct sk_buff *skb) 927 { 928 trace_consume_skb(skb); 929 skb_release_data(skb); 930 kfree_skbmem(skb); 931 } 932 933 static void napi_skb_cache_put(struct sk_buff *skb) 934 { 935 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 936 u32 i; 937 938 kasan_poison_object_data(skbuff_head_cache, skb); 939 nc->skb_cache[nc->skb_count++] = skb; 940 941 if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) { 942 for (i = NAPI_SKB_CACHE_HALF; i < NAPI_SKB_CACHE_SIZE; i++) 943 kasan_unpoison_object_data(skbuff_head_cache, 944 nc->skb_cache[i]); 945 946 kmem_cache_free_bulk(skbuff_head_cache, NAPI_SKB_CACHE_HALF, 947 nc->skb_cache + NAPI_SKB_CACHE_HALF); 948 nc->skb_count = NAPI_SKB_CACHE_HALF; 949 } 950 } 951 952 void __kfree_skb_defer(struct sk_buff *skb) 953 { 954 skb_release_all(skb); 955 napi_skb_cache_put(skb); 956 } 957 958 void napi_skb_free_stolen_head(struct sk_buff *skb) 959 { 960 if (unlikely(skb->slow_gro)) { 961 nf_reset_ct(skb); 962 skb_dst_drop(skb); 963 skb_ext_put(skb); 964 skb_orphan(skb); 965 skb->slow_gro = 0; 966 } 967 napi_skb_cache_put(skb); 968 } 969 970 void napi_consume_skb(struct sk_buff *skb, int budget) 971 { 972 /* Zero budget indicate non-NAPI context called us, like netpoll */ 973 if (unlikely(!budget)) { 974 dev_consume_skb_any(skb); 975 return; 976 } 977 978 lockdep_assert_in_softirq(); 979 980 if (!skb_unref(skb)) 981 return; 982 983 /* if reaching here SKB is ready to free */ 984 trace_consume_skb(skb); 985 986 /* if SKB is a clone, don't handle this case */ 987 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) { 988 __kfree_skb(skb); 989 return; 990 } 991 992 skb_release_all(skb); 993 napi_skb_cache_put(skb); 994 } 995 EXPORT_SYMBOL(napi_consume_skb); 996 997 /* Make sure a field is contained by headers group */ 998 #define CHECK_SKB_FIELD(field) \ 999 BUILD_BUG_ON(offsetof(struct sk_buff, field) != \ 1000 offsetof(struct sk_buff, headers.field)); \ 1001 1002 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old) 1003 { 1004 new->tstamp = old->tstamp; 1005 /* We do not copy old->sk */ 1006 new->dev = old->dev; 1007 memcpy(new->cb, old->cb, sizeof(old->cb)); 1008 skb_dst_copy(new, old); 1009 __skb_ext_copy(new, old); 1010 __nf_copy(new, old, false); 1011 1012 /* Note : this field could be in the headers group. 1013 * It is not yet because we do not want to have a 16 bit hole 1014 */ 1015 new->queue_mapping = old->queue_mapping; 1016 1017 memcpy(&new->headers, &old->headers, sizeof(new->headers)); 1018 CHECK_SKB_FIELD(protocol); 1019 CHECK_SKB_FIELD(csum); 1020 CHECK_SKB_FIELD(hash); 1021 CHECK_SKB_FIELD(priority); 1022 CHECK_SKB_FIELD(skb_iif); 1023 CHECK_SKB_FIELD(vlan_proto); 1024 CHECK_SKB_FIELD(vlan_tci); 1025 CHECK_SKB_FIELD(transport_header); 1026 CHECK_SKB_FIELD(network_header); 1027 CHECK_SKB_FIELD(mac_header); 1028 CHECK_SKB_FIELD(inner_protocol); 1029 CHECK_SKB_FIELD(inner_transport_header); 1030 CHECK_SKB_FIELD(inner_network_header); 1031 CHECK_SKB_FIELD(inner_mac_header); 1032 CHECK_SKB_FIELD(mark); 1033 #ifdef CONFIG_NETWORK_SECMARK 1034 CHECK_SKB_FIELD(secmark); 1035 #endif 1036 #ifdef CONFIG_NET_RX_BUSY_POLL 1037 CHECK_SKB_FIELD(napi_id); 1038 #endif 1039 CHECK_SKB_FIELD(alloc_cpu); 1040 #ifdef CONFIG_XPS 1041 CHECK_SKB_FIELD(sender_cpu); 1042 #endif 1043 #ifdef CONFIG_NET_SCHED 1044 CHECK_SKB_FIELD(tc_index); 1045 #endif 1046 1047 } 1048 1049 /* 1050 * You should not add any new code to this function. Add it to 1051 * __copy_skb_header above instead. 1052 */ 1053 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb) 1054 { 1055 #define C(x) n->x = skb->x 1056 1057 n->next = n->prev = NULL; 1058 n->sk = NULL; 1059 __copy_skb_header(n, skb); 1060 1061 C(len); 1062 C(data_len); 1063 C(mac_len); 1064 n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len; 1065 n->cloned = 1; 1066 n->nohdr = 0; 1067 n->peeked = 0; 1068 C(pfmemalloc); 1069 C(pp_recycle); 1070 n->destructor = NULL; 1071 C(tail); 1072 C(end); 1073 C(head); 1074 C(head_frag); 1075 C(data); 1076 C(truesize); 1077 refcount_set(&n->users, 1); 1078 1079 atomic_inc(&(skb_shinfo(skb)->dataref)); 1080 skb->cloned = 1; 1081 1082 return n; 1083 #undef C 1084 } 1085 1086 /** 1087 * alloc_skb_for_msg() - allocate sk_buff to wrap frag list forming a msg 1088 * @first: first sk_buff of the msg 1089 */ 1090 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first) 1091 { 1092 struct sk_buff *n; 1093 1094 n = alloc_skb(0, GFP_ATOMIC); 1095 if (!n) 1096 return NULL; 1097 1098 n->len = first->len; 1099 n->data_len = first->len; 1100 n->truesize = first->truesize; 1101 1102 skb_shinfo(n)->frag_list = first; 1103 1104 __copy_skb_header(n, first); 1105 n->destructor = NULL; 1106 1107 return n; 1108 } 1109 EXPORT_SYMBOL_GPL(alloc_skb_for_msg); 1110 1111 /** 1112 * skb_morph - morph one skb into another 1113 * @dst: the skb to receive the contents 1114 * @src: the skb to supply the contents 1115 * 1116 * This is identical to skb_clone except that the target skb is 1117 * supplied by the user. 1118 * 1119 * The target skb is returned upon exit. 1120 */ 1121 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src) 1122 { 1123 skb_release_all(dst); 1124 return __skb_clone(dst, src); 1125 } 1126 EXPORT_SYMBOL_GPL(skb_morph); 1127 1128 int mm_account_pinned_pages(struct mmpin *mmp, size_t size) 1129 { 1130 unsigned long max_pg, num_pg, new_pg, old_pg; 1131 struct user_struct *user; 1132 1133 if (capable(CAP_IPC_LOCK) || !size) 1134 return 0; 1135 1136 num_pg = (size >> PAGE_SHIFT) + 2; /* worst case */ 1137 max_pg = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT; 1138 user = mmp->user ? : current_user(); 1139 1140 do { 1141 old_pg = atomic_long_read(&user->locked_vm); 1142 new_pg = old_pg + num_pg; 1143 if (new_pg > max_pg) 1144 return -ENOBUFS; 1145 } while (atomic_long_cmpxchg(&user->locked_vm, old_pg, new_pg) != 1146 old_pg); 1147 1148 if (!mmp->user) { 1149 mmp->user = get_uid(user); 1150 mmp->num_pg = num_pg; 1151 } else { 1152 mmp->num_pg += num_pg; 1153 } 1154 1155 return 0; 1156 } 1157 EXPORT_SYMBOL_GPL(mm_account_pinned_pages); 1158 1159 void mm_unaccount_pinned_pages(struct mmpin *mmp) 1160 { 1161 if (mmp->user) { 1162 atomic_long_sub(mmp->num_pg, &mmp->user->locked_vm); 1163 free_uid(mmp->user); 1164 } 1165 } 1166 EXPORT_SYMBOL_GPL(mm_unaccount_pinned_pages); 1167 1168 static struct ubuf_info *msg_zerocopy_alloc(struct sock *sk, size_t size) 1169 { 1170 struct ubuf_info *uarg; 1171 struct sk_buff *skb; 1172 1173 WARN_ON_ONCE(!in_task()); 1174 1175 skb = sock_omalloc(sk, 0, GFP_KERNEL); 1176 if (!skb) 1177 return NULL; 1178 1179 BUILD_BUG_ON(sizeof(*uarg) > sizeof(skb->cb)); 1180 uarg = (void *)skb->cb; 1181 uarg->mmp.user = NULL; 1182 1183 if (mm_account_pinned_pages(&uarg->mmp, size)) { 1184 kfree_skb(skb); 1185 return NULL; 1186 } 1187 1188 uarg->callback = msg_zerocopy_callback; 1189 uarg->id = ((u32)atomic_inc_return(&sk->sk_zckey)) - 1; 1190 uarg->len = 1; 1191 uarg->bytelen = size; 1192 uarg->zerocopy = 1; 1193 uarg->flags = SKBFL_ZEROCOPY_FRAG; 1194 refcount_set(&uarg->refcnt, 1); 1195 sock_hold(sk); 1196 1197 return uarg; 1198 } 1199 1200 static inline struct sk_buff *skb_from_uarg(struct ubuf_info *uarg) 1201 { 1202 return container_of((void *)uarg, struct sk_buff, cb); 1203 } 1204 1205 struct ubuf_info *msg_zerocopy_realloc(struct sock *sk, size_t size, 1206 struct ubuf_info *uarg) 1207 { 1208 if (uarg) { 1209 const u32 byte_limit = 1 << 19; /* limit to a few TSO */ 1210 u32 bytelen, next; 1211 1212 /* realloc only when socket is locked (TCP, UDP cork), 1213 * so uarg->len and sk_zckey access is serialized 1214 */ 1215 if (!sock_owned_by_user(sk)) { 1216 WARN_ON_ONCE(1); 1217 return NULL; 1218 } 1219 1220 bytelen = uarg->bytelen + size; 1221 if (uarg->len == USHRT_MAX - 1 || bytelen > byte_limit) { 1222 /* TCP can create new skb to attach new uarg */ 1223 if (sk->sk_type == SOCK_STREAM) 1224 goto new_alloc; 1225 return NULL; 1226 } 1227 1228 next = (u32)atomic_read(&sk->sk_zckey); 1229 if ((u32)(uarg->id + uarg->len) == next) { 1230 if (mm_account_pinned_pages(&uarg->mmp, size)) 1231 return NULL; 1232 uarg->len++; 1233 uarg->bytelen = bytelen; 1234 atomic_set(&sk->sk_zckey, ++next); 1235 1236 /* no extra ref when appending to datagram (MSG_MORE) */ 1237 if (sk->sk_type == SOCK_STREAM) 1238 net_zcopy_get(uarg); 1239 1240 return uarg; 1241 } 1242 } 1243 1244 new_alloc: 1245 return msg_zerocopy_alloc(sk, size); 1246 } 1247 EXPORT_SYMBOL_GPL(msg_zerocopy_realloc); 1248 1249 static bool skb_zerocopy_notify_extend(struct sk_buff *skb, u32 lo, u16 len) 1250 { 1251 struct sock_exterr_skb *serr = SKB_EXT_ERR(skb); 1252 u32 old_lo, old_hi; 1253 u64 sum_len; 1254 1255 old_lo = serr->ee.ee_info; 1256 old_hi = serr->ee.ee_data; 1257 sum_len = old_hi - old_lo + 1ULL + len; 1258 1259 if (sum_len >= (1ULL << 32)) 1260 return false; 1261 1262 if (lo != old_hi + 1) 1263 return false; 1264 1265 serr->ee.ee_data += len; 1266 return true; 1267 } 1268 1269 static void __msg_zerocopy_callback(struct ubuf_info *uarg) 1270 { 1271 struct sk_buff *tail, *skb = skb_from_uarg(uarg); 1272 struct sock_exterr_skb *serr; 1273 struct sock *sk = skb->sk; 1274 struct sk_buff_head *q; 1275 unsigned long flags; 1276 bool is_zerocopy; 1277 u32 lo, hi; 1278 u16 len; 1279 1280 mm_unaccount_pinned_pages(&uarg->mmp); 1281 1282 /* if !len, there was only 1 call, and it was aborted 1283 * so do not queue a completion notification 1284 */ 1285 if (!uarg->len || sock_flag(sk, SOCK_DEAD)) 1286 goto release; 1287 1288 len = uarg->len; 1289 lo = uarg->id; 1290 hi = uarg->id + len - 1; 1291 is_zerocopy = uarg->zerocopy; 1292 1293 serr = SKB_EXT_ERR(skb); 1294 memset(serr, 0, sizeof(*serr)); 1295 serr->ee.ee_errno = 0; 1296 serr->ee.ee_origin = SO_EE_ORIGIN_ZEROCOPY; 1297 serr->ee.ee_data = hi; 1298 serr->ee.ee_info = lo; 1299 if (!is_zerocopy) 1300 serr->ee.ee_code |= SO_EE_CODE_ZEROCOPY_COPIED; 1301 1302 q = &sk->sk_error_queue; 1303 spin_lock_irqsave(&q->lock, flags); 1304 tail = skb_peek_tail(q); 1305 if (!tail || SKB_EXT_ERR(tail)->ee.ee_origin != SO_EE_ORIGIN_ZEROCOPY || 1306 !skb_zerocopy_notify_extend(tail, lo, len)) { 1307 __skb_queue_tail(q, skb); 1308 skb = NULL; 1309 } 1310 spin_unlock_irqrestore(&q->lock, flags); 1311 1312 sk_error_report(sk); 1313 1314 release: 1315 consume_skb(skb); 1316 sock_put(sk); 1317 } 1318 1319 void msg_zerocopy_callback(struct sk_buff *skb, struct ubuf_info *uarg, 1320 bool success) 1321 { 1322 uarg->zerocopy = uarg->zerocopy & success; 1323 1324 if (refcount_dec_and_test(&uarg->refcnt)) 1325 __msg_zerocopy_callback(uarg); 1326 } 1327 EXPORT_SYMBOL_GPL(msg_zerocopy_callback); 1328 1329 void msg_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref) 1330 { 1331 struct sock *sk = skb_from_uarg(uarg)->sk; 1332 1333 atomic_dec(&sk->sk_zckey); 1334 uarg->len--; 1335 1336 if (have_uref) 1337 msg_zerocopy_callback(NULL, uarg, true); 1338 } 1339 EXPORT_SYMBOL_GPL(msg_zerocopy_put_abort); 1340 1341 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb, 1342 struct msghdr *msg, int len, 1343 struct ubuf_info *uarg) 1344 { 1345 struct ubuf_info *orig_uarg = skb_zcopy(skb); 1346 int err, orig_len = skb->len; 1347 1348 /* An skb can only point to one uarg. This edge case happens when 1349 * TCP appends to an skb, but zerocopy_realloc triggered a new alloc. 1350 */ 1351 if (orig_uarg && uarg != orig_uarg) 1352 return -EEXIST; 1353 1354 err = __zerocopy_sg_from_iter(sk, skb, &msg->msg_iter, len); 1355 if (err == -EFAULT || (err == -EMSGSIZE && skb->len == orig_len)) { 1356 struct sock *save_sk = skb->sk; 1357 1358 /* Streams do not free skb on error. Reset to prev state. */ 1359 iov_iter_revert(&msg->msg_iter, skb->len - orig_len); 1360 skb->sk = sk; 1361 ___pskb_trim(skb, orig_len); 1362 skb->sk = save_sk; 1363 return err; 1364 } 1365 1366 skb_zcopy_set(skb, uarg, NULL); 1367 return skb->len - orig_len; 1368 } 1369 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_stream); 1370 1371 static int skb_zerocopy_clone(struct sk_buff *nskb, struct sk_buff *orig, 1372 gfp_t gfp_mask) 1373 { 1374 if (skb_zcopy(orig)) { 1375 if (skb_zcopy(nskb)) { 1376 /* !gfp_mask callers are verified to !skb_zcopy(nskb) */ 1377 if (!gfp_mask) { 1378 WARN_ON_ONCE(1); 1379 return -ENOMEM; 1380 } 1381 if (skb_uarg(nskb) == skb_uarg(orig)) 1382 return 0; 1383 if (skb_copy_ubufs(nskb, GFP_ATOMIC)) 1384 return -EIO; 1385 } 1386 skb_zcopy_set(nskb, skb_uarg(orig), NULL); 1387 } 1388 return 0; 1389 } 1390 1391 /** 1392 * skb_copy_ubufs - copy userspace skb frags buffers to kernel 1393 * @skb: the skb to modify 1394 * @gfp_mask: allocation priority 1395 * 1396 * This must be called on skb with SKBFL_ZEROCOPY_ENABLE. 1397 * It will copy all frags into kernel and drop the reference 1398 * to userspace pages. 1399 * 1400 * If this function is called from an interrupt gfp_mask() must be 1401 * %GFP_ATOMIC. 1402 * 1403 * Returns 0 on success or a negative error code on failure 1404 * to allocate kernel memory to copy to. 1405 */ 1406 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask) 1407 { 1408 int num_frags = skb_shinfo(skb)->nr_frags; 1409 struct page *page, *head = NULL; 1410 int i, new_frags; 1411 u32 d_off; 1412 1413 if (skb_shared(skb) || skb_unclone(skb, gfp_mask)) 1414 return -EINVAL; 1415 1416 if (!num_frags) 1417 goto release; 1418 1419 new_frags = (__skb_pagelen(skb) + PAGE_SIZE - 1) >> PAGE_SHIFT; 1420 for (i = 0; i < new_frags; i++) { 1421 page = alloc_page(gfp_mask); 1422 if (!page) { 1423 while (head) { 1424 struct page *next = (struct page *)page_private(head); 1425 put_page(head); 1426 head = next; 1427 } 1428 return -ENOMEM; 1429 } 1430 set_page_private(page, (unsigned long)head); 1431 head = page; 1432 } 1433 1434 page = head; 1435 d_off = 0; 1436 for (i = 0; i < num_frags; i++) { 1437 skb_frag_t *f = &skb_shinfo(skb)->frags[i]; 1438 u32 p_off, p_len, copied; 1439 struct page *p; 1440 u8 *vaddr; 1441 1442 skb_frag_foreach_page(f, skb_frag_off(f), skb_frag_size(f), 1443 p, p_off, p_len, copied) { 1444 u32 copy, done = 0; 1445 vaddr = kmap_atomic(p); 1446 1447 while (done < p_len) { 1448 if (d_off == PAGE_SIZE) { 1449 d_off = 0; 1450 page = (struct page *)page_private(page); 1451 } 1452 copy = min_t(u32, PAGE_SIZE - d_off, p_len - done); 1453 memcpy(page_address(page) + d_off, 1454 vaddr + p_off + done, copy); 1455 done += copy; 1456 d_off += copy; 1457 } 1458 kunmap_atomic(vaddr); 1459 } 1460 } 1461 1462 /* skb frags release userspace buffers */ 1463 for (i = 0; i < num_frags; i++) 1464 skb_frag_unref(skb, i); 1465 1466 /* skb frags point to kernel buffers */ 1467 for (i = 0; i < new_frags - 1; i++) { 1468 __skb_fill_page_desc(skb, i, head, 0, PAGE_SIZE); 1469 head = (struct page *)page_private(head); 1470 } 1471 __skb_fill_page_desc(skb, new_frags - 1, head, 0, d_off); 1472 skb_shinfo(skb)->nr_frags = new_frags; 1473 1474 release: 1475 skb_zcopy_clear(skb, false); 1476 return 0; 1477 } 1478 EXPORT_SYMBOL_GPL(skb_copy_ubufs); 1479 1480 /** 1481 * skb_clone - duplicate an sk_buff 1482 * @skb: buffer to clone 1483 * @gfp_mask: allocation priority 1484 * 1485 * Duplicate an &sk_buff. The new one is not owned by a socket. Both 1486 * copies share the same packet data but not structure. The new 1487 * buffer has a reference count of 1. If the allocation fails the 1488 * function returns %NULL otherwise the new buffer is returned. 1489 * 1490 * If this function is called from an interrupt gfp_mask() must be 1491 * %GFP_ATOMIC. 1492 */ 1493 1494 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask) 1495 { 1496 struct sk_buff_fclones *fclones = container_of(skb, 1497 struct sk_buff_fclones, 1498 skb1); 1499 struct sk_buff *n; 1500 1501 if (skb_orphan_frags(skb, gfp_mask)) 1502 return NULL; 1503 1504 if (skb->fclone == SKB_FCLONE_ORIG && 1505 refcount_read(&fclones->fclone_ref) == 1) { 1506 n = &fclones->skb2; 1507 refcount_set(&fclones->fclone_ref, 2); 1508 } else { 1509 if (skb_pfmemalloc(skb)) 1510 gfp_mask |= __GFP_MEMALLOC; 1511 1512 n = kmem_cache_alloc(skbuff_head_cache, gfp_mask); 1513 if (!n) 1514 return NULL; 1515 1516 n->fclone = SKB_FCLONE_UNAVAILABLE; 1517 } 1518 1519 return __skb_clone(n, skb); 1520 } 1521 EXPORT_SYMBOL(skb_clone); 1522 1523 void skb_headers_offset_update(struct sk_buff *skb, int off) 1524 { 1525 /* Only adjust this if it actually is csum_start rather than csum */ 1526 if (skb->ip_summed == CHECKSUM_PARTIAL) 1527 skb->csum_start += off; 1528 /* {transport,network,mac}_header and tail are relative to skb->head */ 1529 skb->transport_header += off; 1530 skb->network_header += off; 1531 if (skb_mac_header_was_set(skb)) 1532 skb->mac_header += off; 1533 skb->inner_transport_header += off; 1534 skb->inner_network_header += off; 1535 skb->inner_mac_header += off; 1536 } 1537 EXPORT_SYMBOL(skb_headers_offset_update); 1538 1539 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old) 1540 { 1541 __copy_skb_header(new, old); 1542 1543 skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size; 1544 skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs; 1545 skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type; 1546 } 1547 EXPORT_SYMBOL(skb_copy_header); 1548 1549 static inline int skb_alloc_rx_flag(const struct sk_buff *skb) 1550 { 1551 if (skb_pfmemalloc(skb)) 1552 return SKB_ALLOC_RX; 1553 return 0; 1554 } 1555 1556 /** 1557 * skb_copy - create private copy of an sk_buff 1558 * @skb: buffer to copy 1559 * @gfp_mask: allocation priority 1560 * 1561 * Make a copy of both an &sk_buff and its data. This is used when the 1562 * caller wishes to modify the data and needs a private copy of the 1563 * data to alter. Returns %NULL on failure or the pointer to the buffer 1564 * on success. The returned buffer has a reference count of 1. 1565 * 1566 * As by-product this function converts non-linear &sk_buff to linear 1567 * one, so that &sk_buff becomes completely private and caller is allowed 1568 * to modify all the data of returned buffer. This means that this 1569 * function is not recommended for use in circumstances when only 1570 * header is going to be modified. Use pskb_copy() instead. 1571 */ 1572 1573 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask) 1574 { 1575 int headerlen = skb_headroom(skb); 1576 unsigned int size = skb_end_offset(skb) + skb->data_len; 1577 struct sk_buff *n = __alloc_skb(size, gfp_mask, 1578 skb_alloc_rx_flag(skb), NUMA_NO_NODE); 1579 1580 if (!n) 1581 return NULL; 1582 1583 /* Set the data pointer */ 1584 skb_reserve(n, headerlen); 1585 /* Set the tail pointer and length */ 1586 skb_put(n, skb->len); 1587 1588 BUG_ON(skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len)); 1589 1590 skb_copy_header(n, skb); 1591 return n; 1592 } 1593 EXPORT_SYMBOL(skb_copy); 1594 1595 /** 1596 * __pskb_copy_fclone - create copy of an sk_buff with private head. 1597 * @skb: buffer to copy 1598 * @headroom: headroom of new skb 1599 * @gfp_mask: allocation priority 1600 * @fclone: if true allocate the copy of the skb from the fclone 1601 * cache instead of the head cache; it is recommended to set this 1602 * to true for the cases where the copy will likely be cloned 1603 * 1604 * Make a copy of both an &sk_buff and part of its data, located 1605 * in header. Fragmented data remain shared. This is used when 1606 * the caller wishes to modify only header of &sk_buff and needs 1607 * private copy of the header to alter. Returns %NULL on failure 1608 * or the pointer to the buffer on success. 1609 * The returned buffer has a reference count of 1. 1610 */ 1611 1612 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom, 1613 gfp_t gfp_mask, bool fclone) 1614 { 1615 unsigned int size = skb_headlen(skb) + headroom; 1616 int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0); 1617 struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE); 1618 1619 if (!n) 1620 goto out; 1621 1622 /* Set the data pointer */ 1623 skb_reserve(n, headroom); 1624 /* Set the tail pointer and length */ 1625 skb_put(n, skb_headlen(skb)); 1626 /* Copy the bytes */ 1627 skb_copy_from_linear_data(skb, n->data, n->len); 1628 1629 n->truesize += skb->data_len; 1630 n->data_len = skb->data_len; 1631 n->len = skb->len; 1632 1633 if (skb_shinfo(skb)->nr_frags) { 1634 int i; 1635 1636 if (skb_orphan_frags(skb, gfp_mask) || 1637 skb_zerocopy_clone(n, skb, gfp_mask)) { 1638 kfree_skb(n); 1639 n = NULL; 1640 goto out; 1641 } 1642 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1643 skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i]; 1644 skb_frag_ref(skb, i); 1645 } 1646 skb_shinfo(n)->nr_frags = i; 1647 } 1648 1649 if (skb_has_frag_list(skb)) { 1650 skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list; 1651 skb_clone_fraglist(n); 1652 } 1653 1654 skb_copy_header(n, skb); 1655 out: 1656 return n; 1657 } 1658 EXPORT_SYMBOL(__pskb_copy_fclone); 1659 1660 /** 1661 * pskb_expand_head - reallocate header of &sk_buff 1662 * @skb: buffer to reallocate 1663 * @nhead: room to add at head 1664 * @ntail: room to add at tail 1665 * @gfp_mask: allocation priority 1666 * 1667 * Expands (or creates identical copy, if @nhead and @ntail are zero) 1668 * header of @skb. &sk_buff itself is not changed. &sk_buff MUST have 1669 * reference count of 1. Returns zero in the case of success or error, 1670 * if expansion failed. In the last case, &sk_buff is not changed. 1671 * 1672 * All the pointers pointing into skb header may change and must be 1673 * reloaded after call to this function. 1674 */ 1675 1676 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, 1677 gfp_t gfp_mask) 1678 { 1679 int i, osize = skb_end_offset(skb); 1680 int size = osize + nhead + ntail; 1681 long off; 1682 u8 *data; 1683 1684 BUG_ON(nhead < 0); 1685 1686 BUG_ON(skb_shared(skb)); 1687 1688 size = SKB_DATA_ALIGN(size); 1689 1690 if (skb_pfmemalloc(skb)) 1691 gfp_mask |= __GFP_MEMALLOC; 1692 data = kmalloc_reserve(size + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)), 1693 gfp_mask, NUMA_NO_NODE, NULL); 1694 if (!data) 1695 goto nodata; 1696 size = SKB_WITH_OVERHEAD(ksize(data)); 1697 1698 /* Copy only real data... and, alas, header. This should be 1699 * optimized for the cases when header is void. 1700 */ 1701 memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head); 1702 1703 memcpy((struct skb_shared_info *)(data + size), 1704 skb_shinfo(skb), 1705 offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags])); 1706 1707 /* 1708 * if shinfo is shared we must drop the old head gracefully, but if it 1709 * is not we can just drop the old head and let the existing refcount 1710 * be since all we did is relocate the values 1711 */ 1712 if (skb_cloned(skb)) { 1713 if (skb_orphan_frags(skb, gfp_mask)) 1714 goto nofrags; 1715 if (skb_zcopy(skb)) 1716 refcount_inc(&skb_uarg(skb)->refcnt); 1717 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 1718 skb_frag_ref(skb, i); 1719 1720 if (skb_has_frag_list(skb)) 1721 skb_clone_fraglist(skb); 1722 1723 skb_release_data(skb); 1724 } else { 1725 skb_free_head(skb); 1726 } 1727 off = (data + nhead) - skb->head; 1728 1729 skb->head = data; 1730 skb->head_frag = 0; 1731 skb->data += off; 1732 1733 skb_set_end_offset(skb, size); 1734 #ifdef NET_SKBUFF_DATA_USES_OFFSET 1735 off = nhead; 1736 #endif 1737 skb->tail += off; 1738 skb_headers_offset_update(skb, nhead); 1739 skb->cloned = 0; 1740 skb->hdr_len = 0; 1741 skb->nohdr = 0; 1742 atomic_set(&skb_shinfo(skb)->dataref, 1); 1743 1744 skb_metadata_clear(skb); 1745 1746 /* It is not generally safe to change skb->truesize. 1747 * For the moment, we really care of rx path, or 1748 * when skb is orphaned (not attached to a socket). 1749 */ 1750 if (!skb->sk || skb->destructor == sock_edemux) 1751 skb->truesize += size - osize; 1752 1753 return 0; 1754 1755 nofrags: 1756 kfree(data); 1757 nodata: 1758 return -ENOMEM; 1759 } 1760 EXPORT_SYMBOL(pskb_expand_head); 1761 1762 /* Make private copy of skb with writable head and some headroom */ 1763 1764 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom) 1765 { 1766 struct sk_buff *skb2; 1767 int delta = headroom - skb_headroom(skb); 1768 1769 if (delta <= 0) 1770 skb2 = pskb_copy(skb, GFP_ATOMIC); 1771 else { 1772 skb2 = skb_clone(skb, GFP_ATOMIC); 1773 if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0, 1774 GFP_ATOMIC)) { 1775 kfree_skb(skb2); 1776 skb2 = NULL; 1777 } 1778 } 1779 return skb2; 1780 } 1781 EXPORT_SYMBOL(skb_realloc_headroom); 1782 1783 int __skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri) 1784 { 1785 unsigned int saved_end_offset, saved_truesize; 1786 struct skb_shared_info *shinfo; 1787 int res; 1788 1789 saved_end_offset = skb_end_offset(skb); 1790 saved_truesize = skb->truesize; 1791 1792 res = pskb_expand_head(skb, 0, 0, pri); 1793 if (res) 1794 return res; 1795 1796 skb->truesize = saved_truesize; 1797 1798 if (likely(skb_end_offset(skb) == saved_end_offset)) 1799 return 0; 1800 1801 shinfo = skb_shinfo(skb); 1802 1803 /* We are about to change back skb->end, 1804 * we need to move skb_shinfo() to its new location. 1805 */ 1806 memmove(skb->head + saved_end_offset, 1807 shinfo, 1808 offsetof(struct skb_shared_info, frags[shinfo->nr_frags])); 1809 1810 skb_set_end_offset(skb, saved_end_offset); 1811 1812 return 0; 1813 } 1814 1815 /** 1816 * skb_expand_head - reallocate header of &sk_buff 1817 * @skb: buffer to reallocate 1818 * @headroom: needed headroom 1819 * 1820 * Unlike skb_realloc_headroom, this one does not allocate a new skb 1821 * if possible; copies skb->sk to new skb as needed 1822 * and frees original skb in case of failures. 1823 * 1824 * It expect increased headroom and generates warning otherwise. 1825 */ 1826 1827 struct sk_buff *skb_expand_head(struct sk_buff *skb, unsigned int headroom) 1828 { 1829 int delta = headroom - skb_headroom(skb); 1830 int osize = skb_end_offset(skb); 1831 struct sock *sk = skb->sk; 1832 1833 if (WARN_ONCE(delta <= 0, 1834 "%s is expecting an increase in the headroom", __func__)) 1835 return skb; 1836 1837 delta = SKB_DATA_ALIGN(delta); 1838 /* pskb_expand_head() might crash, if skb is shared. */ 1839 if (skb_shared(skb) || !is_skb_wmem(skb)) { 1840 struct sk_buff *nskb = skb_clone(skb, GFP_ATOMIC); 1841 1842 if (unlikely(!nskb)) 1843 goto fail; 1844 1845 if (sk) 1846 skb_set_owner_w(nskb, sk); 1847 consume_skb(skb); 1848 skb = nskb; 1849 } 1850 if (pskb_expand_head(skb, delta, 0, GFP_ATOMIC)) 1851 goto fail; 1852 1853 if (sk && is_skb_wmem(skb)) { 1854 delta = skb_end_offset(skb) - osize; 1855 refcount_add(delta, &sk->sk_wmem_alloc); 1856 skb->truesize += delta; 1857 } 1858 return skb; 1859 1860 fail: 1861 kfree_skb(skb); 1862 return NULL; 1863 } 1864 EXPORT_SYMBOL(skb_expand_head); 1865 1866 /** 1867 * skb_copy_expand - copy and expand sk_buff 1868 * @skb: buffer to copy 1869 * @newheadroom: new free bytes at head 1870 * @newtailroom: new free bytes at tail 1871 * @gfp_mask: allocation priority 1872 * 1873 * Make a copy of both an &sk_buff and its data and while doing so 1874 * allocate additional space. 1875 * 1876 * This is used when the caller wishes to modify the data and needs a 1877 * private copy of the data to alter as well as more space for new fields. 1878 * Returns %NULL on failure or the pointer to the buffer 1879 * on success. The returned buffer has a reference count of 1. 1880 * 1881 * You must pass %GFP_ATOMIC as the allocation priority if this function 1882 * is called from an interrupt. 1883 */ 1884 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, 1885 int newheadroom, int newtailroom, 1886 gfp_t gfp_mask) 1887 { 1888 /* 1889 * Allocate the copy buffer 1890 */ 1891 struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom, 1892 gfp_mask, skb_alloc_rx_flag(skb), 1893 NUMA_NO_NODE); 1894 int oldheadroom = skb_headroom(skb); 1895 int head_copy_len, head_copy_off; 1896 1897 if (!n) 1898 return NULL; 1899 1900 skb_reserve(n, newheadroom); 1901 1902 /* Set the tail pointer and length */ 1903 skb_put(n, skb->len); 1904 1905 head_copy_len = oldheadroom; 1906 head_copy_off = 0; 1907 if (newheadroom <= head_copy_len) 1908 head_copy_len = newheadroom; 1909 else 1910 head_copy_off = newheadroom - head_copy_len; 1911 1912 /* Copy the linear header and data. */ 1913 BUG_ON(skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off, 1914 skb->len + head_copy_len)); 1915 1916 skb_copy_header(n, skb); 1917 1918 skb_headers_offset_update(n, newheadroom - oldheadroom); 1919 1920 return n; 1921 } 1922 EXPORT_SYMBOL(skb_copy_expand); 1923 1924 /** 1925 * __skb_pad - zero pad the tail of an skb 1926 * @skb: buffer to pad 1927 * @pad: space to pad 1928 * @free_on_error: free buffer on error 1929 * 1930 * Ensure that a buffer is followed by a padding area that is zero 1931 * filled. Used by network drivers which may DMA or transfer data 1932 * beyond the buffer end onto the wire. 1933 * 1934 * May return error in out of memory cases. The skb is freed on error 1935 * if @free_on_error is true. 1936 */ 1937 1938 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error) 1939 { 1940 int err; 1941 int ntail; 1942 1943 /* If the skbuff is non linear tailroom is always zero.. */ 1944 if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) { 1945 memset(skb->data+skb->len, 0, pad); 1946 return 0; 1947 } 1948 1949 ntail = skb->data_len + pad - (skb->end - skb->tail); 1950 if (likely(skb_cloned(skb) || ntail > 0)) { 1951 err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC); 1952 if (unlikely(err)) 1953 goto free_skb; 1954 } 1955 1956 /* FIXME: The use of this function with non-linear skb's really needs 1957 * to be audited. 1958 */ 1959 err = skb_linearize(skb); 1960 if (unlikely(err)) 1961 goto free_skb; 1962 1963 memset(skb->data + skb->len, 0, pad); 1964 return 0; 1965 1966 free_skb: 1967 if (free_on_error) 1968 kfree_skb(skb); 1969 return err; 1970 } 1971 EXPORT_SYMBOL(__skb_pad); 1972 1973 /** 1974 * pskb_put - add data to the tail of a potentially fragmented buffer 1975 * @skb: start of the buffer to use 1976 * @tail: tail fragment of the buffer to use 1977 * @len: amount of data to add 1978 * 1979 * This function extends the used data area of the potentially 1980 * fragmented buffer. @tail must be the last fragment of @skb -- or 1981 * @skb itself. If this would exceed the total buffer size the kernel 1982 * will panic. A pointer to the first byte of the extra data is 1983 * returned. 1984 */ 1985 1986 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len) 1987 { 1988 if (tail != skb) { 1989 skb->data_len += len; 1990 skb->len += len; 1991 } 1992 return skb_put(tail, len); 1993 } 1994 EXPORT_SYMBOL_GPL(pskb_put); 1995 1996 /** 1997 * skb_put - add data to a buffer 1998 * @skb: buffer to use 1999 * @len: amount of data to add 2000 * 2001 * This function extends the used data area of the buffer. If this would 2002 * exceed the total buffer size the kernel will panic. A pointer to the 2003 * first byte of the extra data is returned. 2004 */ 2005 void *skb_put(struct sk_buff *skb, unsigned int len) 2006 { 2007 void *tmp = skb_tail_pointer(skb); 2008 SKB_LINEAR_ASSERT(skb); 2009 skb->tail += len; 2010 skb->len += len; 2011 if (unlikely(skb->tail > skb->end)) 2012 skb_over_panic(skb, len, __builtin_return_address(0)); 2013 return tmp; 2014 } 2015 EXPORT_SYMBOL(skb_put); 2016 2017 /** 2018 * skb_push - add data to the start of a buffer 2019 * @skb: buffer to use 2020 * @len: amount of data to add 2021 * 2022 * This function extends the used data area of the buffer at the buffer 2023 * start. If this would exceed the total buffer headroom the kernel will 2024 * panic. A pointer to the first byte of the extra data is returned. 2025 */ 2026 void *skb_push(struct sk_buff *skb, unsigned int len) 2027 { 2028 skb->data -= len; 2029 skb->len += len; 2030 if (unlikely(skb->data < skb->head)) 2031 skb_under_panic(skb, len, __builtin_return_address(0)); 2032 return skb->data; 2033 } 2034 EXPORT_SYMBOL(skb_push); 2035 2036 /** 2037 * skb_pull - remove data from the start of a buffer 2038 * @skb: buffer to use 2039 * @len: amount of data to remove 2040 * 2041 * This function removes data from the start of a buffer, returning 2042 * the memory to the headroom. A pointer to the next data in the buffer 2043 * is returned. Once the data has been pulled future pushes will overwrite 2044 * the old data. 2045 */ 2046 void *skb_pull(struct sk_buff *skb, unsigned int len) 2047 { 2048 return skb_pull_inline(skb, len); 2049 } 2050 EXPORT_SYMBOL(skb_pull); 2051 2052 /** 2053 * skb_pull_data - remove data from the start of a buffer returning its 2054 * original position. 2055 * @skb: buffer to use 2056 * @len: amount of data to remove 2057 * 2058 * This function removes data from the start of a buffer, returning 2059 * the memory to the headroom. A pointer to the original data in the buffer 2060 * is returned after checking if there is enough data to pull. Once the 2061 * data has been pulled future pushes will overwrite the old data. 2062 */ 2063 void *skb_pull_data(struct sk_buff *skb, size_t len) 2064 { 2065 void *data = skb->data; 2066 2067 if (skb->len < len) 2068 return NULL; 2069 2070 skb_pull(skb, len); 2071 2072 return data; 2073 } 2074 EXPORT_SYMBOL(skb_pull_data); 2075 2076 /** 2077 * skb_trim - remove end from a buffer 2078 * @skb: buffer to alter 2079 * @len: new length 2080 * 2081 * Cut the length of a buffer down by removing data from the tail. If 2082 * the buffer is already under the length specified it is not modified. 2083 * The skb must be linear. 2084 */ 2085 void skb_trim(struct sk_buff *skb, unsigned int len) 2086 { 2087 if (skb->len > len) 2088 __skb_trim(skb, len); 2089 } 2090 EXPORT_SYMBOL(skb_trim); 2091 2092 /* Trims skb to length len. It can change skb pointers. 2093 */ 2094 2095 int ___pskb_trim(struct sk_buff *skb, unsigned int len) 2096 { 2097 struct sk_buff **fragp; 2098 struct sk_buff *frag; 2099 int offset = skb_headlen(skb); 2100 int nfrags = skb_shinfo(skb)->nr_frags; 2101 int i; 2102 int err; 2103 2104 if (skb_cloned(skb) && 2105 unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))) 2106 return err; 2107 2108 i = 0; 2109 if (offset >= len) 2110 goto drop_pages; 2111 2112 for (; i < nfrags; i++) { 2113 int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]); 2114 2115 if (end < len) { 2116 offset = end; 2117 continue; 2118 } 2119 2120 skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset); 2121 2122 drop_pages: 2123 skb_shinfo(skb)->nr_frags = i; 2124 2125 for (; i < nfrags; i++) 2126 skb_frag_unref(skb, i); 2127 2128 if (skb_has_frag_list(skb)) 2129 skb_drop_fraglist(skb); 2130 goto done; 2131 } 2132 2133 for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp); 2134 fragp = &frag->next) { 2135 int end = offset + frag->len; 2136 2137 if (skb_shared(frag)) { 2138 struct sk_buff *nfrag; 2139 2140 nfrag = skb_clone(frag, GFP_ATOMIC); 2141 if (unlikely(!nfrag)) 2142 return -ENOMEM; 2143 2144 nfrag->next = frag->next; 2145 consume_skb(frag); 2146 frag = nfrag; 2147 *fragp = frag; 2148 } 2149 2150 if (end < len) { 2151 offset = end; 2152 continue; 2153 } 2154 2155 if (end > len && 2156 unlikely((err = pskb_trim(frag, len - offset)))) 2157 return err; 2158 2159 if (frag->next) 2160 skb_drop_list(&frag->next); 2161 break; 2162 } 2163 2164 done: 2165 if (len > skb_headlen(skb)) { 2166 skb->data_len -= skb->len - len; 2167 skb->len = len; 2168 } else { 2169 skb->len = len; 2170 skb->data_len = 0; 2171 skb_set_tail_pointer(skb, len); 2172 } 2173 2174 if (!skb->sk || skb->destructor == sock_edemux) 2175 skb_condense(skb); 2176 return 0; 2177 } 2178 EXPORT_SYMBOL(___pskb_trim); 2179 2180 /* Note : use pskb_trim_rcsum() instead of calling this directly 2181 */ 2182 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len) 2183 { 2184 if (skb->ip_summed == CHECKSUM_COMPLETE) { 2185 int delta = skb->len - len; 2186 2187 skb->csum = csum_block_sub(skb->csum, 2188 skb_checksum(skb, len, delta, 0), 2189 len); 2190 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { 2191 int hdlen = (len > skb_headlen(skb)) ? skb_headlen(skb) : len; 2192 int offset = skb_checksum_start_offset(skb) + skb->csum_offset; 2193 2194 if (offset + sizeof(__sum16) > hdlen) 2195 return -EINVAL; 2196 } 2197 return __pskb_trim(skb, len); 2198 } 2199 EXPORT_SYMBOL(pskb_trim_rcsum_slow); 2200 2201 /** 2202 * __pskb_pull_tail - advance tail of skb header 2203 * @skb: buffer to reallocate 2204 * @delta: number of bytes to advance tail 2205 * 2206 * The function makes a sense only on a fragmented &sk_buff, 2207 * it expands header moving its tail forward and copying necessary 2208 * data from fragmented part. 2209 * 2210 * &sk_buff MUST have reference count of 1. 2211 * 2212 * Returns %NULL (and &sk_buff does not change) if pull failed 2213 * or value of new tail of skb in the case of success. 2214 * 2215 * All the pointers pointing into skb header may change and must be 2216 * reloaded after call to this function. 2217 */ 2218 2219 /* Moves tail of skb head forward, copying data from fragmented part, 2220 * when it is necessary. 2221 * 1. It may fail due to malloc failure. 2222 * 2. It may change skb pointers. 2223 * 2224 * It is pretty complicated. Luckily, it is called only in exceptional cases. 2225 */ 2226 void *__pskb_pull_tail(struct sk_buff *skb, int delta) 2227 { 2228 /* If skb has not enough free space at tail, get new one 2229 * plus 128 bytes for future expansions. If we have enough 2230 * room at tail, reallocate without expansion only if skb is cloned. 2231 */ 2232 int i, k, eat = (skb->tail + delta) - skb->end; 2233 2234 if (eat > 0 || skb_cloned(skb)) { 2235 if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0, 2236 GFP_ATOMIC)) 2237 return NULL; 2238 } 2239 2240 BUG_ON(skb_copy_bits(skb, skb_headlen(skb), 2241 skb_tail_pointer(skb), delta)); 2242 2243 /* Optimization: no fragments, no reasons to preestimate 2244 * size of pulled pages. Superb. 2245 */ 2246 if (!skb_has_frag_list(skb)) 2247 goto pull_pages; 2248 2249 /* Estimate size of pulled pages. */ 2250 eat = delta; 2251 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2252 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 2253 2254 if (size >= eat) 2255 goto pull_pages; 2256 eat -= size; 2257 } 2258 2259 /* If we need update frag list, we are in troubles. 2260 * Certainly, it is possible to add an offset to skb data, 2261 * but taking into account that pulling is expected to 2262 * be very rare operation, it is worth to fight against 2263 * further bloating skb head and crucify ourselves here instead. 2264 * Pure masohism, indeed. 8)8) 2265 */ 2266 if (eat) { 2267 struct sk_buff *list = skb_shinfo(skb)->frag_list; 2268 struct sk_buff *clone = NULL; 2269 struct sk_buff *insp = NULL; 2270 2271 do { 2272 if (list->len <= eat) { 2273 /* Eaten as whole. */ 2274 eat -= list->len; 2275 list = list->next; 2276 insp = list; 2277 } else { 2278 /* Eaten partially. */ 2279 2280 if (skb_shared(list)) { 2281 /* Sucks! We need to fork list. :-( */ 2282 clone = skb_clone(list, GFP_ATOMIC); 2283 if (!clone) 2284 return NULL; 2285 insp = list->next; 2286 list = clone; 2287 } else { 2288 /* This may be pulled without 2289 * problems. */ 2290 insp = list; 2291 } 2292 if (!pskb_pull(list, eat)) { 2293 kfree_skb(clone); 2294 return NULL; 2295 } 2296 break; 2297 } 2298 } while (eat); 2299 2300 /* Free pulled out fragments. */ 2301 while ((list = skb_shinfo(skb)->frag_list) != insp) { 2302 skb_shinfo(skb)->frag_list = list->next; 2303 consume_skb(list); 2304 } 2305 /* And insert new clone at head. */ 2306 if (clone) { 2307 clone->next = list; 2308 skb_shinfo(skb)->frag_list = clone; 2309 } 2310 } 2311 /* Success! Now we may commit changes to skb data. */ 2312 2313 pull_pages: 2314 eat = delta; 2315 k = 0; 2316 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2317 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 2318 2319 if (size <= eat) { 2320 skb_frag_unref(skb, i); 2321 eat -= size; 2322 } else { 2323 skb_frag_t *frag = &skb_shinfo(skb)->frags[k]; 2324 2325 *frag = skb_shinfo(skb)->frags[i]; 2326 if (eat) { 2327 skb_frag_off_add(frag, eat); 2328 skb_frag_size_sub(frag, eat); 2329 if (!i) 2330 goto end; 2331 eat = 0; 2332 } 2333 k++; 2334 } 2335 } 2336 skb_shinfo(skb)->nr_frags = k; 2337 2338 end: 2339 skb->tail += delta; 2340 skb->data_len -= delta; 2341 2342 if (!skb->data_len) 2343 skb_zcopy_clear(skb, false); 2344 2345 return skb_tail_pointer(skb); 2346 } 2347 EXPORT_SYMBOL(__pskb_pull_tail); 2348 2349 /** 2350 * skb_copy_bits - copy bits from skb to kernel buffer 2351 * @skb: source skb 2352 * @offset: offset in source 2353 * @to: destination buffer 2354 * @len: number of bytes to copy 2355 * 2356 * Copy the specified number of bytes from the source skb to the 2357 * destination buffer. 2358 * 2359 * CAUTION ! : 2360 * If its prototype is ever changed, 2361 * check arch/{*}/net/{*}.S files, 2362 * since it is called from BPF assembly code. 2363 */ 2364 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len) 2365 { 2366 int start = skb_headlen(skb); 2367 struct sk_buff *frag_iter; 2368 int i, copy; 2369 2370 if (offset > (int)skb->len - len) 2371 goto fault; 2372 2373 /* Copy header. */ 2374 if ((copy = start - offset) > 0) { 2375 if (copy > len) 2376 copy = len; 2377 skb_copy_from_linear_data_offset(skb, offset, to, copy); 2378 if ((len -= copy) == 0) 2379 return 0; 2380 offset += copy; 2381 to += copy; 2382 } 2383 2384 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2385 int end; 2386 skb_frag_t *f = &skb_shinfo(skb)->frags[i]; 2387 2388 WARN_ON(start > offset + len); 2389 2390 end = start + skb_frag_size(f); 2391 if ((copy = end - offset) > 0) { 2392 u32 p_off, p_len, copied; 2393 struct page *p; 2394 u8 *vaddr; 2395 2396 if (copy > len) 2397 copy = len; 2398 2399 skb_frag_foreach_page(f, 2400 skb_frag_off(f) + offset - start, 2401 copy, p, p_off, p_len, copied) { 2402 vaddr = kmap_atomic(p); 2403 memcpy(to + copied, vaddr + p_off, p_len); 2404 kunmap_atomic(vaddr); 2405 } 2406 2407 if ((len -= copy) == 0) 2408 return 0; 2409 offset += copy; 2410 to += copy; 2411 } 2412 start = end; 2413 } 2414 2415 skb_walk_frags(skb, frag_iter) { 2416 int end; 2417 2418 WARN_ON(start > offset + len); 2419 2420 end = start + frag_iter->len; 2421 if ((copy = end - offset) > 0) { 2422 if (copy > len) 2423 copy = len; 2424 if (skb_copy_bits(frag_iter, offset - start, to, copy)) 2425 goto fault; 2426 if ((len -= copy) == 0) 2427 return 0; 2428 offset += copy; 2429 to += copy; 2430 } 2431 start = end; 2432 } 2433 2434 if (!len) 2435 return 0; 2436 2437 fault: 2438 return -EFAULT; 2439 } 2440 EXPORT_SYMBOL(skb_copy_bits); 2441 2442 /* 2443 * Callback from splice_to_pipe(), if we need to release some pages 2444 * at the end of the spd in case we error'ed out in filling the pipe. 2445 */ 2446 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i) 2447 { 2448 put_page(spd->pages[i]); 2449 } 2450 2451 static struct page *linear_to_page(struct page *page, unsigned int *len, 2452 unsigned int *offset, 2453 struct sock *sk) 2454 { 2455 struct page_frag *pfrag = sk_page_frag(sk); 2456 2457 if (!sk_page_frag_refill(sk, pfrag)) 2458 return NULL; 2459 2460 *len = min_t(unsigned int, *len, pfrag->size - pfrag->offset); 2461 2462 memcpy(page_address(pfrag->page) + pfrag->offset, 2463 page_address(page) + *offset, *len); 2464 *offset = pfrag->offset; 2465 pfrag->offset += *len; 2466 2467 return pfrag->page; 2468 } 2469 2470 static bool spd_can_coalesce(const struct splice_pipe_desc *spd, 2471 struct page *page, 2472 unsigned int offset) 2473 { 2474 return spd->nr_pages && 2475 spd->pages[spd->nr_pages - 1] == page && 2476 (spd->partial[spd->nr_pages - 1].offset + 2477 spd->partial[spd->nr_pages - 1].len == offset); 2478 } 2479 2480 /* 2481 * Fill page/offset/length into spd, if it can hold more pages. 2482 */ 2483 static bool spd_fill_page(struct splice_pipe_desc *spd, 2484 struct pipe_inode_info *pipe, struct page *page, 2485 unsigned int *len, unsigned int offset, 2486 bool linear, 2487 struct sock *sk) 2488 { 2489 if (unlikely(spd->nr_pages == MAX_SKB_FRAGS)) 2490 return true; 2491 2492 if (linear) { 2493 page = linear_to_page(page, len, &offset, sk); 2494 if (!page) 2495 return true; 2496 } 2497 if (spd_can_coalesce(spd, page, offset)) { 2498 spd->partial[spd->nr_pages - 1].len += *len; 2499 return false; 2500 } 2501 get_page(page); 2502 spd->pages[spd->nr_pages] = page; 2503 spd->partial[spd->nr_pages].len = *len; 2504 spd->partial[spd->nr_pages].offset = offset; 2505 spd->nr_pages++; 2506 2507 return false; 2508 } 2509 2510 static bool __splice_segment(struct page *page, unsigned int poff, 2511 unsigned int plen, unsigned int *off, 2512 unsigned int *len, 2513 struct splice_pipe_desc *spd, bool linear, 2514 struct sock *sk, 2515 struct pipe_inode_info *pipe) 2516 { 2517 if (!*len) 2518 return true; 2519 2520 /* skip this segment if already processed */ 2521 if (*off >= plen) { 2522 *off -= plen; 2523 return false; 2524 } 2525 2526 /* ignore any bits we already processed */ 2527 poff += *off; 2528 plen -= *off; 2529 *off = 0; 2530 2531 do { 2532 unsigned int flen = min(*len, plen); 2533 2534 if (spd_fill_page(spd, pipe, page, &flen, poff, 2535 linear, sk)) 2536 return true; 2537 poff += flen; 2538 plen -= flen; 2539 *len -= flen; 2540 } while (*len && plen); 2541 2542 return false; 2543 } 2544 2545 /* 2546 * Map linear and fragment data from the skb to spd. It reports true if the 2547 * pipe is full or if we already spliced the requested length. 2548 */ 2549 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe, 2550 unsigned int *offset, unsigned int *len, 2551 struct splice_pipe_desc *spd, struct sock *sk) 2552 { 2553 int seg; 2554 struct sk_buff *iter; 2555 2556 /* map the linear part : 2557 * If skb->head_frag is set, this 'linear' part is backed by a 2558 * fragment, and if the head is not shared with any clones then 2559 * we can avoid a copy since we own the head portion of this page. 2560 */ 2561 if (__splice_segment(virt_to_page(skb->data), 2562 (unsigned long) skb->data & (PAGE_SIZE - 1), 2563 skb_headlen(skb), 2564 offset, len, spd, 2565 skb_head_is_locked(skb), 2566 sk, pipe)) 2567 return true; 2568 2569 /* 2570 * then map the fragments 2571 */ 2572 for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) { 2573 const skb_frag_t *f = &skb_shinfo(skb)->frags[seg]; 2574 2575 if (__splice_segment(skb_frag_page(f), 2576 skb_frag_off(f), skb_frag_size(f), 2577 offset, len, spd, false, sk, pipe)) 2578 return true; 2579 } 2580 2581 skb_walk_frags(skb, iter) { 2582 if (*offset >= iter->len) { 2583 *offset -= iter->len; 2584 continue; 2585 } 2586 /* __skb_splice_bits() only fails if the output has no room 2587 * left, so no point in going over the frag_list for the error 2588 * case. 2589 */ 2590 if (__skb_splice_bits(iter, pipe, offset, len, spd, sk)) 2591 return true; 2592 } 2593 2594 return false; 2595 } 2596 2597 /* 2598 * Map data from the skb to a pipe. Should handle both the linear part, 2599 * the fragments, and the frag list. 2600 */ 2601 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset, 2602 struct pipe_inode_info *pipe, unsigned int tlen, 2603 unsigned int flags) 2604 { 2605 struct partial_page partial[MAX_SKB_FRAGS]; 2606 struct page *pages[MAX_SKB_FRAGS]; 2607 struct splice_pipe_desc spd = { 2608 .pages = pages, 2609 .partial = partial, 2610 .nr_pages_max = MAX_SKB_FRAGS, 2611 .ops = &nosteal_pipe_buf_ops, 2612 .spd_release = sock_spd_release, 2613 }; 2614 int ret = 0; 2615 2616 __skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk); 2617 2618 if (spd.nr_pages) 2619 ret = splice_to_pipe(pipe, &spd); 2620 2621 return ret; 2622 } 2623 EXPORT_SYMBOL_GPL(skb_splice_bits); 2624 2625 static int sendmsg_unlocked(struct sock *sk, struct msghdr *msg, 2626 struct kvec *vec, size_t num, size_t size) 2627 { 2628 struct socket *sock = sk->sk_socket; 2629 2630 if (!sock) 2631 return -EINVAL; 2632 return kernel_sendmsg(sock, msg, vec, num, size); 2633 } 2634 2635 static int sendpage_unlocked(struct sock *sk, struct page *page, int offset, 2636 size_t size, int flags) 2637 { 2638 struct socket *sock = sk->sk_socket; 2639 2640 if (!sock) 2641 return -EINVAL; 2642 return kernel_sendpage(sock, page, offset, size, flags); 2643 } 2644 2645 typedef int (*sendmsg_func)(struct sock *sk, struct msghdr *msg, 2646 struct kvec *vec, size_t num, size_t size); 2647 typedef int (*sendpage_func)(struct sock *sk, struct page *page, int offset, 2648 size_t size, int flags); 2649 static int __skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, 2650 int len, sendmsg_func sendmsg, sendpage_func sendpage) 2651 { 2652 unsigned int orig_len = len; 2653 struct sk_buff *head = skb; 2654 unsigned short fragidx; 2655 int slen, ret; 2656 2657 do_frag_list: 2658 2659 /* Deal with head data */ 2660 while (offset < skb_headlen(skb) && len) { 2661 struct kvec kv; 2662 struct msghdr msg; 2663 2664 slen = min_t(int, len, skb_headlen(skb) - offset); 2665 kv.iov_base = skb->data + offset; 2666 kv.iov_len = slen; 2667 memset(&msg, 0, sizeof(msg)); 2668 msg.msg_flags = MSG_DONTWAIT; 2669 2670 ret = INDIRECT_CALL_2(sendmsg, kernel_sendmsg_locked, 2671 sendmsg_unlocked, sk, &msg, &kv, 1, slen); 2672 if (ret <= 0) 2673 goto error; 2674 2675 offset += ret; 2676 len -= ret; 2677 } 2678 2679 /* All the data was skb head? */ 2680 if (!len) 2681 goto out; 2682 2683 /* Make offset relative to start of frags */ 2684 offset -= skb_headlen(skb); 2685 2686 /* Find where we are in frag list */ 2687 for (fragidx = 0; fragidx < skb_shinfo(skb)->nr_frags; fragidx++) { 2688 skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx]; 2689 2690 if (offset < skb_frag_size(frag)) 2691 break; 2692 2693 offset -= skb_frag_size(frag); 2694 } 2695 2696 for (; len && fragidx < skb_shinfo(skb)->nr_frags; fragidx++) { 2697 skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx]; 2698 2699 slen = min_t(size_t, len, skb_frag_size(frag) - offset); 2700 2701 while (slen) { 2702 ret = INDIRECT_CALL_2(sendpage, kernel_sendpage_locked, 2703 sendpage_unlocked, sk, 2704 skb_frag_page(frag), 2705 skb_frag_off(frag) + offset, 2706 slen, MSG_DONTWAIT); 2707 if (ret <= 0) 2708 goto error; 2709 2710 len -= ret; 2711 offset += ret; 2712 slen -= ret; 2713 } 2714 2715 offset = 0; 2716 } 2717 2718 if (len) { 2719 /* Process any frag lists */ 2720 2721 if (skb == head) { 2722 if (skb_has_frag_list(skb)) { 2723 skb = skb_shinfo(skb)->frag_list; 2724 goto do_frag_list; 2725 } 2726 } else if (skb->next) { 2727 skb = skb->next; 2728 goto do_frag_list; 2729 } 2730 } 2731 2732 out: 2733 return orig_len - len; 2734 2735 error: 2736 return orig_len == len ? ret : orig_len - len; 2737 } 2738 2739 /* Send skb data on a socket. Socket must be locked. */ 2740 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset, 2741 int len) 2742 { 2743 return __skb_send_sock(sk, skb, offset, len, kernel_sendmsg_locked, 2744 kernel_sendpage_locked); 2745 } 2746 EXPORT_SYMBOL_GPL(skb_send_sock_locked); 2747 2748 /* Send skb data on a socket. Socket must be unlocked. */ 2749 int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len) 2750 { 2751 return __skb_send_sock(sk, skb, offset, len, sendmsg_unlocked, 2752 sendpage_unlocked); 2753 } 2754 2755 /** 2756 * skb_store_bits - store bits from kernel buffer to skb 2757 * @skb: destination buffer 2758 * @offset: offset in destination 2759 * @from: source buffer 2760 * @len: number of bytes to copy 2761 * 2762 * Copy the specified number of bytes from the source buffer to the 2763 * destination skb. This function handles all the messy bits of 2764 * traversing fragment lists and such. 2765 */ 2766 2767 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len) 2768 { 2769 int start = skb_headlen(skb); 2770 struct sk_buff *frag_iter; 2771 int i, copy; 2772 2773 if (offset > (int)skb->len - len) 2774 goto fault; 2775 2776 if ((copy = start - offset) > 0) { 2777 if (copy > len) 2778 copy = len; 2779 skb_copy_to_linear_data_offset(skb, offset, from, copy); 2780 if ((len -= copy) == 0) 2781 return 0; 2782 offset += copy; 2783 from += copy; 2784 } 2785 2786 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2787 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2788 int end; 2789 2790 WARN_ON(start > offset + len); 2791 2792 end = start + skb_frag_size(frag); 2793 if ((copy = end - offset) > 0) { 2794 u32 p_off, p_len, copied; 2795 struct page *p; 2796 u8 *vaddr; 2797 2798 if (copy > len) 2799 copy = len; 2800 2801 skb_frag_foreach_page(frag, 2802 skb_frag_off(frag) + offset - start, 2803 copy, p, p_off, p_len, copied) { 2804 vaddr = kmap_atomic(p); 2805 memcpy(vaddr + p_off, from + copied, p_len); 2806 kunmap_atomic(vaddr); 2807 } 2808 2809 if ((len -= copy) == 0) 2810 return 0; 2811 offset += copy; 2812 from += copy; 2813 } 2814 start = end; 2815 } 2816 2817 skb_walk_frags(skb, frag_iter) { 2818 int end; 2819 2820 WARN_ON(start > offset + len); 2821 2822 end = start + frag_iter->len; 2823 if ((copy = end - offset) > 0) { 2824 if (copy > len) 2825 copy = len; 2826 if (skb_store_bits(frag_iter, offset - start, 2827 from, copy)) 2828 goto fault; 2829 if ((len -= copy) == 0) 2830 return 0; 2831 offset += copy; 2832 from += copy; 2833 } 2834 start = end; 2835 } 2836 if (!len) 2837 return 0; 2838 2839 fault: 2840 return -EFAULT; 2841 } 2842 EXPORT_SYMBOL(skb_store_bits); 2843 2844 /* Checksum skb data. */ 2845 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len, 2846 __wsum csum, const struct skb_checksum_ops *ops) 2847 { 2848 int start = skb_headlen(skb); 2849 int i, copy = start - offset; 2850 struct sk_buff *frag_iter; 2851 int pos = 0; 2852 2853 /* Checksum header. */ 2854 if (copy > 0) { 2855 if (copy > len) 2856 copy = len; 2857 csum = INDIRECT_CALL_1(ops->update, csum_partial_ext, 2858 skb->data + offset, copy, csum); 2859 if ((len -= copy) == 0) 2860 return csum; 2861 offset += copy; 2862 pos = copy; 2863 } 2864 2865 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2866 int end; 2867 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2868 2869 WARN_ON(start > offset + len); 2870 2871 end = start + skb_frag_size(frag); 2872 if ((copy = end - offset) > 0) { 2873 u32 p_off, p_len, copied; 2874 struct page *p; 2875 __wsum csum2; 2876 u8 *vaddr; 2877 2878 if (copy > len) 2879 copy = len; 2880 2881 skb_frag_foreach_page(frag, 2882 skb_frag_off(frag) + offset - start, 2883 copy, p, p_off, p_len, copied) { 2884 vaddr = kmap_atomic(p); 2885 csum2 = INDIRECT_CALL_1(ops->update, 2886 csum_partial_ext, 2887 vaddr + p_off, p_len, 0); 2888 kunmap_atomic(vaddr); 2889 csum = INDIRECT_CALL_1(ops->combine, 2890 csum_block_add_ext, csum, 2891 csum2, pos, p_len); 2892 pos += p_len; 2893 } 2894 2895 if (!(len -= copy)) 2896 return csum; 2897 offset += copy; 2898 } 2899 start = end; 2900 } 2901 2902 skb_walk_frags(skb, frag_iter) { 2903 int end; 2904 2905 WARN_ON(start > offset + len); 2906 2907 end = start + frag_iter->len; 2908 if ((copy = end - offset) > 0) { 2909 __wsum csum2; 2910 if (copy > len) 2911 copy = len; 2912 csum2 = __skb_checksum(frag_iter, offset - start, 2913 copy, 0, ops); 2914 csum = INDIRECT_CALL_1(ops->combine, csum_block_add_ext, 2915 csum, csum2, pos, copy); 2916 if ((len -= copy) == 0) 2917 return csum; 2918 offset += copy; 2919 pos += copy; 2920 } 2921 start = end; 2922 } 2923 BUG_ON(len); 2924 2925 return csum; 2926 } 2927 EXPORT_SYMBOL(__skb_checksum); 2928 2929 __wsum skb_checksum(const struct sk_buff *skb, int offset, 2930 int len, __wsum csum) 2931 { 2932 const struct skb_checksum_ops ops = { 2933 .update = csum_partial_ext, 2934 .combine = csum_block_add_ext, 2935 }; 2936 2937 return __skb_checksum(skb, offset, len, csum, &ops); 2938 } 2939 EXPORT_SYMBOL(skb_checksum); 2940 2941 /* Both of above in one bottle. */ 2942 2943 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, 2944 u8 *to, int len) 2945 { 2946 int start = skb_headlen(skb); 2947 int i, copy = start - offset; 2948 struct sk_buff *frag_iter; 2949 int pos = 0; 2950 __wsum csum = 0; 2951 2952 /* Copy header. */ 2953 if (copy > 0) { 2954 if (copy > len) 2955 copy = len; 2956 csum = csum_partial_copy_nocheck(skb->data + offset, to, 2957 copy); 2958 if ((len -= copy) == 0) 2959 return csum; 2960 offset += copy; 2961 to += copy; 2962 pos = copy; 2963 } 2964 2965 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2966 int end; 2967 2968 WARN_ON(start > offset + len); 2969 2970 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]); 2971 if ((copy = end - offset) > 0) { 2972 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2973 u32 p_off, p_len, copied; 2974 struct page *p; 2975 __wsum csum2; 2976 u8 *vaddr; 2977 2978 if (copy > len) 2979 copy = len; 2980 2981 skb_frag_foreach_page(frag, 2982 skb_frag_off(frag) + offset - start, 2983 copy, p, p_off, p_len, copied) { 2984 vaddr = kmap_atomic(p); 2985 csum2 = csum_partial_copy_nocheck(vaddr + p_off, 2986 to + copied, 2987 p_len); 2988 kunmap_atomic(vaddr); 2989 csum = csum_block_add(csum, csum2, pos); 2990 pos += p_len; 2991 } 2992 2993 if (!(len -= copy)) 2994 return csum; 2995 offset += copy; 2996 to += copy; 2997 } 2998 start = end; 2999 } 3000 3001 skb_walk_frags(skb, frag_iter) { 3002 __wsum csum2; 3003 int end; 3004 3005 WARN_ON(start > offset + len); 3006 3007 end = start + frag_iter->len; 3008 if ((copy = end - offset) > 0) { 3009 if (copy > len) 3010 copy = len; 3011 csum2 = skb_copy_and_csum_bits(frag_iter, 3012 offset - start, 3013 to, copy); 3014 csum = csum_block_add(csum, csum2, pos); 3015 if ((len -= copy) == 0) 3016 return csum; 3017 offset += copy; 3018 to += copy; 3019 pos += copy; 3020 } 3021 start = end; 3022 } 3023 BUG_ON(len); 3024 return csum; 3025 } 3026 EXPORT_SYMBOL(skb_copy_and_csum_bits); 3027 3028 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len) 3029 { 3030 __sum16 sum; 3031 3032 sum = csum_fold(skb_checksum(skb, 0, len, skb->csum)); 3033 /* See comments in __skb_checksum_complete(). */ 3034 if (likely(!sum)) { 3035 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) && 3036 !skb->csum_complete_sw) 3037 netdev_rx_csum_fault(skb->dev, skb); 3038 } 3039 if (!skb_shared(skb)) 3040 skb->csum_valid = !sum; 3041 return sum; 3042 } 3043 EXPORT_SYMBOL(__skb_checksum_complete_head); 3044 3045 /* This function assumes skb->csum already holds pseudo header's checksum, 3046 * which has been changed from the hardware checksum, for example, by 3047 * __skb_checksum_validate_complete(). And, the original skb->csum must 3048 * have been validated unsuccessfully for CHECKSUM_COMPLETE case. 3049 * 3050 * It returns non-zero if the recomputed checksum is still invalid, otherwise 3051 * zero. The new checksum is stored back into skb->csum unless the skb is 3052 * shared. 3053 */ 3054 __sum16 __skb_checksum_complete(struct sk_buff *skb) 3055 { 3056 __wsum csum; 3057 __sum16 sum; 3058 3059 csum = skb_checksum(skb, 0, skb->len, 0); 3060 3061 sum = csum_fold(csum_add(skb->csum, csum)); 3062 /* This check is inverted, because we already knew the hardware 3063 * checksum is invalid before calling this function. So, if the 3064 * re-computed checksum is valid instead, then we have a mismatch 3065 * between the original skb->csum and skb_checksum(). This means either 3066 * the original hardware checksum is incorrect or we screw up skb->csum 3067 * when moving skb->data around. 3068 */ 3069 if (likely(!sum)) { 3070 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) && 3071 !skb->csum_complete_sw) 3072 netdev_rx_csum_fault(skb->dev, skb); 3073 } 3074 3075 if (!skb_shared(skb)) { 3076 /* Save full packet checksum */ 3077 skb->csum = csum; 3078 skb->ip_summed = CHECKSUM_COMPLETE; 3079 skb->csum_complete_sw = 1; 3080 skb->csum_valid = !sum; 3081 } 3082 3083 return sum; 3084 } 3085 EXPORT_SYMBOL(__skb_checksum_complete); 3086 3087 static __wsum warn_crc32c_csum_update(const void *buff, int len, __wsum sum) 3088 { 3089 net_warn_ratelimited( 3090 "%s: attempt to compute crc32c without libcrc32c.ko\n", 3091 __func__); 3092 return 0; 3093 } 3094 3095 static __wsum warn_crc32c_csum_combine(__wsum csum, __wsum csum2, 3096 int offset, int len) 3097 { 3098 net_warn_ratelimited( 3099 "%s: attempt to compute crc32c without libcrc32c.ko\n", 3100 __func__); 3101 return 0; 3102 } 3103 3104 static const struct skb_checksum_ops default_crc32c_ops = { 3105 .update = warn_crc32c_csum_update, 3106 .combine = warn_crc32c_csum_combine, 3107 }; 3108 3109 const struct skb_checksum_ops *crc32c_csum_stub __read_mostly = 3110 &default_crc32c_ops; 3111 EXPORT_SYMBOL(crc32c_csum_stub); 3112 3113 /** 3114 * skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy() 3115 * @from: source buffer 3116 * 3117 * Calculates the amount of linear headroom needed in the 'to' skb passed 3118 * into skb_zerocopy(). 3119 */ 3120 unsigned int 3121 skb_zerocopy_headlen(const struct sk_buff *from) 3122 { 3123 unsigned int hlen = 0; 3124 3125 if (!from->head_frag || 3126 skb_headlen(from) < L1_CACHE_BYTES || 3127 skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS) { 3128 hlen = skb_headlen(from); 3129 if (!hlen) 3130 hlen = from->len; 3131 } 3132 3133 if (skb_has_frag_list(from)) 3134 hlen = from->len; 3135 3136 return hlen; 3137 } 3138 EXPORT_SYMBOL_GPL(skb_zerocopy_headlen); 3139 3140 /** 3141 * skb_zerocopy - Zero copy skb to skb 3142 * @to: destination buffer 3143 * @from: source buffer 3144 * @len: number of bytes to copy from source buffer 3145 * @hlen: size of linear headroom in destination buffer 3146 * 3147 * Copies up to `len` bytes from `from` to `to` by creating references 3148 * to the frags in the source buffer. 3149 * 3150 * The `hlen` as calculated by skb_zerocopy_headlen() specifies the 3151 * headroom in the `to` buffer. 3152 * 3153 * Return value: 3154 * 0: everything is OK 3155 * -ENOMEM: couldn't orphan frags of @from due to lack of memory 3156 * -EFAULT: skb_copy_bits() found some problem with skb geometry 3157 */ 3158 int 3159 skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen) 3160 { 3161 int i, j = 0; 3162 int plen = 0; /* length of skb->head fragment */ 3163 int ret; 3164 struct page *page; 3165 unsigned int offset; 3166 3167 BUG_ON(!from->head_frag && !hlen); 3168 3169 /* dont bother with small payloads */ 3170 if (len <= skb_tailroom(to)) 3171 return skb_copy_bits(from, 0, skb_put(to, len), len); 3172 3173 if (hlen) { 3174 ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen); 3175 if (unlikely(ret)) 3176 return ret; 3177 len -= hlen; 3178 } else { 3179 plen = min_t(int, skb_headlen(from), len); 3180 if (plen) { 3181 page = virt_to_head_page(from->head); 3182 offset = from->data - (unsigned char *)page_address(page); 3183 __skb_fill_page_desc(to, 0, page, offset, plen); 3184 get_page(page); 3185 j = 1; 3186 len -= plen; 3187 } 3188 } 3189 3190 to->truesize += len + plen; 3191 to->len += len + plen; 3192 to->data_len += len + plen; 3193 3194 if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) { 3195 skb_tx_error(from); 3196 return -ENOMEM; 3197 } 3198 skb_zerocopy_clone(to, from, GFP_ATOMIC); 3199 3200 for (i = 0; i < skb_shinfo(from)->nr_frags; i++) { 3201 int size; 3202 3203 if (!len) 3204 break; 3205 skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i]; 3206 size = min_t(int, skb_frag_size(&skb_shinfo(to)->frags[j]), 3207 len); 3208 skb_frag_size_set(&skb_shinfo(to)->frags[j], size); 3209 len -= size; 3210 skb_frag_ref(to, j); 3211 j++; 3212 } 3213 skb_shinfo(to)->nr_frags = j; 3214 3215 return 0; 3216 } 3217 EXPORT_SYMBOL_GPL(skb_zerocopy); 3218 3219 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to) 3220 { 3221 __wsum csum; 3222 long csstart; 3223 3224 if (skb->ip_summed == CHECKSUM_PARTIAL) 3225 csstart = skb_checksum_start_offset(skb); 3226 else 3227 csstart = skb_headlen(skb); 3228 3229 BUG_ON(csstart > skb_headlen(skb)); 3230 3231 skb_copy_from_linear_data(skb, to, csstart); 3232 3233 csum = 0; 3234 if (csstart != skb->len) 3235 csum = skb_copy_and_csum_bits(skb, csstart, to + csstart, 3236 skb->len - csstart); 3237 3238 if (skb->ip_summed == CHECKSUM_PARTIAL) { 3239 long csstuff = csstart + skb->csum_offset; 3240 3241 *((__sum16 *)(to + csstuff)) = csum_fold(csum); 3242 } 3243 } 3244 EXPORT_SYMBOL(skb_copy_and_csum_dev); 3245 3246 /** 3247 * skb_dequeue - remove from the head of the queue 3248 * @list: list to dequeue from 3249 * 3250 * Remove the head of the list. The list lock is taken so the function 3251 * may be used safely with other locking list functions. The head item is 3252 * returned or %NULL if the list is empty. 3253 */ 3254 3255 struct sk_buff *skb_dequeue(struct sk_buff_head *list) 3256 { 3257 unsigned long flags; 3258 struct sk_buff *result; 3259 3260 spin_lock_irqsave(&list->lock, flags); 3261 result = __skb_dequeue(list); 3262 spin_unlock_irqrestore(&list->lock, flags); 3263 return result; 3264 } 3265 EXPORT_SYMBOL(skb_dequeue); 3266 3267 /** 3268 * skb_dequeue_tail - remove from the tail of the queue 3269 * @list: list to dequeue from 3270 * 3271 * Remove the tail of the list. The list lock is taken so the function 3272 * may be used safely with other locking list functions. The tail item is 3273 * returned or %NULL if the list is empty. 3274 */ 3275 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list) 3276 { 3277 unsigned long flags; 3278 struct sk_buff *result; 3279 3280 spin_lock_irqsave(&list->lock, flags); 3281 result = __skb_dequeue_tail(list); 3282 spin_unlock_irqrestore(&list->lock, flags); 3283 return result; 3284 } 3285 EXPORT_SYMBOL(skb_dequeue_tail); 3286 3287 /** 3288 * skb_queue_purge - empty a list 3289 * @list: list to empty 3290 * 3291 * Delete all buffers on an &sk_buff list. Each buffer is removed from 3292 * the list and one reference dropped. This function takes the list 3293 * lock and is atomic with respect to other list locking functions. 3294 */ 3295 void skb_queue_purge(struct sk_buff_head *list) 3296 { 3297 struct sk_buff *skb; 3298 while ((skb = skb_dequeue(list)) != NULL) 3299 kfree_skb(skb); 3300 } 3301 EXPORT_SYMBOL(skb_queue_purge); 3302 3303 /** 3304 * skb_rbtree_purge - empty a skb rbtree 3305 * @root: root of the rbtree to empty 3306 * Return value: the sum of truesizes of all purged skbs. 3307 * 3308 * Delete all buffers on an &sk_buff rbtree. Each buffer is removed from 3309 * the list and one reference dropped. This function does not take 3310 * any lock. Synchronization should be handled by the caller (e.g., TCP 3311 * out-of-order queue is protected by the socket lock). 3312 */ 3313 unsigned int skb_rbtree_purge(struct rb_root *root) 3314 { 3315 struct rb_node *p = rb_first(root); 3316 unsigned int sum = 0; 3317 3318 while (p) { 3319 struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode); 3320 3321 p = rb_next(p); 3322 rb_erase(&skb->rbnode, root); 3323 sum += skb->truesize; 3324 kfree_skb(skb); 3325 } 3326 return sum; 3327 } 3328 3329 /** 3330 * skb_queue_head - queue a buffer at the list head 3331 * @list: list to use 3332 * @newsk: buffer to queue 3333 * 3334 * Queue a buffer at the start of the list. This function takes the 3335 * list lock and can be used safely with other locking &sk_buff functions 3336 * safely. 3337 * 3338 * A buffer cannot be placed on two lists at the same time. 3339 */ 3340 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk) 3341 { 3342 unsigned long flags; 3343 3344 spin_lock_irqsave(&list->lock, flags); 3345 __skb_queue_head(list, newsk); 3346 spin_unlock_irqrestore(&list->lock, flags); 3347 } 3348 EXPORT_SYMBOL(skb_queue_head); 3349 3350 /** 3351 * skb_queue_tail - queue a buffer at the list tail 3352 * @list: list to use 3353 * @newsk: buffer to queue 3354 * 3355 * Queue a buffer at the tail of the list. This function takes the 3356 * list lock and can be used safely with other locking &sk_buff functions 3357 * safely. 3358 * 3359 * A buffer cannot be placed on two lists at the same time. 3360 */ 3361 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk) 3362 { 3363 unsigned long flags; 3364 3365 spin_lock_irqsave(&list->lock, flags); 3366 __skb_queue_tail(list, newsk); 3367 spin_unlock_irqrestore(&list->lock, flags); 3368 } 3369 EXPORT_SYMBOL(skb_queue_tail); 3370 3371 /** 3372 * skb_unlink - remove a buffer from a list 3373 * @skb: buffer to remove 3374 * @list: list to use 3375 * 3376 * Remove a packet from a list. The list locks are taken and this 3377 * function is atomic with respect to other list locked calls 3378 * 3379 * You must know what list the SKB is on. 3380 */ 3381 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list) 3382 { 3383 unsigned long flags; 3384 3385 spin_lock_irqsave(&list->lock, flags); 3386 __skb_unlink(skb, list); 3387 spin_unlock_irqrestore(&list->lock, flags); 3388 } 3389 EXPORT_SYMBOL(skb_unlink); 3390 3391 /** 3392 * skb_append - append a buffer 3393 * @old: buffer to insert after 3394 * @newsk: buffer to insert 3395 * @list: list to use 3396 * 3397 * Place a packet after a given packet in a list. The list locks are taken 3398 * and this function is atomic with respect to other list locked calls. 3399 * A buffer cannot be placed on two lists at the same time. 3400 */ 3401 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list) 3402 { 3403 unsigned long flags; 3404 3405 spin_lock_irqsave(&list->lock, flags); 3406 __skb_queue_after(list, old, newsk); 3407 spin_unlock_irqrestore(&list->lock, flags); 3408 } 3409 EXPORT_SYMBOL(skb_append); 3410 3411 static inline void skb_split_inside_header(struct sk_buff *skb, 3412 struct sk_buff* skb1, 3413 const u32 len, const int pos) 3414 { 3415 int i; 3416 3417 skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len), 3418 pos - len); 3419 /* And move data appendix as is. */ 3420 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 3421 skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i]; 3422 3423 skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags; 3424 skb_shinfo(skb)->nr_frags = 0; 3425 skb1->data_len = skb->data_len; 3426 skb1->len += skb1->data_len; 3427 skb->data_len = 0; 3428 skb->len = len; 3429 skb_set_tail_pointer(skb, len); 3430 } 3431 3432 static inline void skb_split_no_header(struct sk_buff *skb, 3433 struct sk_buff* skb1, 3434 const u32 len, int pos) 3435 { 3436 int i, k = 0; 3437 const int nfrags = skb_shinfo(skb)->nr_frags; 3438 3439 skb_shinfo(skb)->nr_frags = 0; 3440 skb1->len = skb1->data_len = skb->len - len; 3441 skb->len = len; 3442 skb->data_len = len - pos; 3443 3444 for (i = 0; i < nfrags; i++) { 3445 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 3446 3447 if (pos + size > len) { 3448 skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i]; 3449 3450 if (pos < len) { 3451 /* Split frag. 3452 * We have two variants in this case: 3453 * 1. Move all the frag to the second 3454 * part, if it is possible. F.e. 3455 * this approach is mandatory for TUX, 3456 * where splitting is expensive. 3457 * 2. Split is accurately. We make this. 3458 */ 3459 skb_frag_ref(skb, i); 3460 skb_frag_off_add(&skb_shinfo(skb1)->frags[0], len - pos); 3461 skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos); 3462 skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos); 3463 skb_shinfo(skb)->nr_frags++; 3464 } 3465 k++; 3466 } else 3467 skb_shinfo(skb)->nr_frags++; 3468 pos += size; 3469 } 3470 skb_shinfo(skb1)->nr_frags = k; 3471 } 3472 3473 /** 3474 * skb_split - Split fragmented skb to two parts at length len. 3475 * @skb: the buffer to split 3476 * @skb1: the buffer to receive the second part 3477 * @len: new length for skb 3478 */ 3479 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len) 3480 { 3481 int pos = skb_headlen(skb); 3482 const int zc_flags = SKBFL_SHARED_FRAG | SKBFL_PURE_ZEROCOPY; 3483 3484 skb_shinfo(skb1)->flags |= skb_shinfo(skb)->flags & zc_flags; 3485 skb_zerocopy_clone(skb1, skb, 0); 3486 if (len < pos) /* Split line is inside header. */ 3487 skb_split_inside_header(skb, skb1, len, pos); 3488 else /* Second chunk has no header, nothing to copy. */ 3489 skb_split_no_header(skb, skb1, len, pos); 3490 } 3491 EXPORT_SYMBOL(skb_split); 3492 3493 /* Shifting from/to a cloned skb is a no-go. 3494 * 3495 * Caller cannot keep skb_shinfo related pointers past calling here! 3496 */ 3497 static int skb_prepare_for_shift(struct sk_buff *skb) 3498 { 3499 return skb_unclone_keeptruesize(skb, GFP_ATOMIC); 3500 } 3501 3502 /** 3503 * skb_shift - Shifts paged data partially from skb to another 3504 * @tgt: buffer into which tail data gets added 3505 * @skb: buffer from which the paged data comes from 3506 * @shiftlen: shift up to this many bytes 3507 * 3508 * Attempts to shift up to shiftlen worth of bytes, which may be less than 3509 * the length of the skb, from skb to tgt. Returns number bytes shifted. 3510 * It's up to caller to free skb if everything was shifted. 3511 * 3512 * If @tgt runs out of frags, the whole operation is aborted. 3513 * 3514 * Skb cannot include anything else but paged data while tgt is allowed 3515 * to have non-paged data as well. 3516 * 3517 * TODO: full sized shift could be optimized but that would need 3518 * specialized skb free'er to handle frags without up-to-date nr_frags. 3519 */ 3520 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen) 3521 { 3522 int from, to, merge, todo; 3523 skb_frag_t *fragfrom, *fragto; 3524 3525 BUG_ON(shiftlen > skb->len); 3526 3527 if (skb_headlen(skb)) 3528 return 0; 3529 if (skb_zcopy(tgt) || skb_zcopy(skb)) 3530 return 0; 3531 3532 todo = shiftlen; 3533 from = 0; 3534 to = skb_shinfo(tgt)->nr_frags; 3535 fragfrom = &skb_shinfo(skb)->frags[from]; 3536 3537 /* Actual merge is delayed until the point when we know we can 3538 * commit all, so that we don't have to undo partial changes 3539 */ 3540 if (!to || 3541 !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom), 3542 skb_frag_off(fragfrom))) { 3543 merge = -1; 3544 } else { 3545 merge = to - 1; 3546 3547 todo -= skb_frag_size(fragfrom); 3548 if (todo < 0) { 3549 if (skb_prepare_for_shift(skb) || 3550 skb_prepare_for_shift(tgt)) 3551 return 0; 3552 3553 /* All previous frag pointers might be stale! */ 3554 fragfrom = &skb_shinfo(skb)->frags[from]; 3555 fragto = &skb_shinfo(tgt)->frags[merge]; 3556 3557 skb_frag_size_add(fragto, shiftlen); 3558 skb_frag_size_sub(fragfrom, shiftlen); 3559 skb_frag_off_add(fragfrom, shiftlen); 3560 3561 goto onlymerged; 3562 } 3563 3564 from++; 3565 } 3566 3567 /* Skip full, not-fitting skb to avoid expensive operations */ 3568 if ((shiftlen == skb->len) && 3569 (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to)) 3570 return 0; 3571 3572 if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt)) 3573 return 0; 3574 3575 while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) { 3576 if (to == MAX_SKB_FRAGS) 3577 return 0; 3578 3579 fragfrom = &skb_shinfo(skb)->frags[from]; 3580 fragto = &skb_shinfo(tgt)->frags[to]; 3581 3582 if (todo >= skb_frag_size(fragfrom)) { 3583 *fragto = *fragfrom; 3584 todo -= skb_frag_size(fragfrom); 3585 from++; 3586 to++; 3587 3588 } else { 3589 __skb_frag_ref(fragfrom); 3590 skb_frag_page_copy(fragto, fragfrom); 3591 skb_frag_off_copy(fragto, fragfrom); 3592 skb_frag_size_set(fragto, todo); 3593 3594 skb_frag_off_add(fragfrom, todo); 3595 skb_frag_size_sub(fragfrom, todo); 3596 todo = 0; 3597 3598 to++; 3599 break; 3600 } 3601 } 3602 3603 /* Ready to "commit" this state change to tgt */ 3604 skb_shinfo(tgt)->nr_frags = to; 3605 3606 if (merge >= 0) { 3607 fragfrom = &skb_shinfo(skb)->frags[0]; 3608 fragto = &skb_shinfo(tgt)->frags[merge]; 3609 3610 skb_frag_size_add(fragto, skb_frag_size(fragfrom)); 3611 __skb_frag_unref(fragfrom, skb->pp_recycle); 3612 } 3613 3614 /* Reposition in the original skb */ 3615 to = 0; 3616 while (from < skb_shinfo(skb)->nr_frags) 3617 skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++]; 3618 skb_shinfo(skb)->nr_frags = to; 3619 3620 BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags); 3621 3622 onlymerged: 3623 /* Most likely the tgt won't ever need its checksum anymore, skb on 3624 * the other hand might need it if it needs to be resent 3625 */ 3626 tgt->ip_summed = CHECKSUM_PARTIAL; 3627 skb->ip_summed = CHECKSUM_PARTIAL; 3628 3629 /* Yak, is it really working this way? Some helper please? */ 3630 skb->len -= shiftlen; 3631 skb->data_len -= shiftlen; 3632 skb->truesize -= shiftlen; 3633 tgt->len += shiftlen; 3634 tgt->data_len += shiftlen; 3635 tgt->truesize += shiftlen; 3636 3637 return shiftlen; 3638 } 3639 3640 /** 3641 * skb_prepare_seq_read - Prepare a sequential read of skb data 3642 * @skb: the buffer to read 3643 * @from: lower offset of data to be read 3644 * @to: upper offset of data to be read 3645 * @st: state variable 3646 * 3647 * Initializes the specified state variable. Must be called before 3648 * invoking skb_seq_read() for the first time. 3649 */ 3650 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from, 3651 unsigned int to, struct skb_seq_state *st) 3652 { 3653 st->lower_offset = from; 3654 st->upper_offset = to; 3655 st->root_skb = st->cur_skb = skb; 3656 st->frag_idx = st->stepped_offset = 0; 3657 st->frag_data = NULL; 3658 st->frag_off = 0; 3659 } 3660 EXPORT_SYMBOL(skb_prepare_seq_read); 3661 3662 /** 3663 * skb_seq_read - Sequentially read skb data 3664 * @consumed: number of bytes consumed by the caller so far 3665 * @data: destination pointer for data to be returned 3666 * @st: state variable 3667 * 3668 * Reads a block of skb data at @consumed relative to the 3669 * lower offset specified to skb_prepare_seq_read(). Assigns 3670 * the head of the data block to @data and returns the length 3671 * of the block or 0 if the end of the skb data or the upper 3672 * offset has been reached. 3673 * 3674 * The caller is not required to consume all of the data 3675 * returned, i.e. @consumed is typically set to the number 3676 * of bytes already consumed and the next call to 3677 * skb_seq_read() will return the remaining part of the block. 3678 * 3679 * Note 1: The size of each block of data returned can be arbitrary, 3680 * this limitation is the cost for zerocopy sequential 3681 * reads of potentially non linear data. 3682 * 3683 * Note 2: Fragment lists within fragments are not implemented 3684 * at the moment, state->root_skb could be replaced with 3685 * a stack for this purpose. 3686 */ 3687 unsigned int skb_seq_read(unsigned int consumed, const u8 **data, 3688 struct skb_seq_state *st) 3689 { 3690 unsigned int block_limit, abs_offset = consumed + st->lower_offset; 3691 skb_frag_t *frag; 3692 3693 if (unlikely(abs_offset >= st->upper_offset)) { 3694 if (st->frag_data) { 3695 kunmap_atomic(st->frag_data); 3696 st->frag_data = NULL; 3697 } 3698 return 0; 3699 } 3700 3701 next_skb: 3702 block_limit = skb_headlen(st->cur_skb) + st->stepped_offset; 3703 3704 if (abs_offset < block_limit && !st->frag_data) { 3705 *data = st->cur_skb->data + (abs_offset - st->stepped_offset); 3706 return block_limit - abs_offset; 3707 } 3708 3709 if (st->frag_idx == 0 && !st->frag_data) 3710 st->stepped_offset += skb_headlen(st->cur_skb); 3711 3712 while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) { 3713 unsigned int pg_idx, pg_off, pg_sz; 3714 3715 frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx]; 3716 3717 pg_idx = 0; 3718 pg_off = skb_frag_off(frag); 3719 pg_sz = skb_frag_size(frag); 3720 3721 if (skb_frag_must_loop(skb_frag_page(frag))) { 3722 pg_idx = (pg_off + st->frag_off) >> PAGE_SHIFT; 3723 pg_off = offset_in_page(pg_off + st->frag_off); 3724 pg_sz = min_t(unsigned int, pg_sz - st->frag_off, 3725 PAGE_SIZE - pg_off); 3726 } 3727 3728 block_limit = pg_sz + st->stepped_offset; 3729 if (abs_offset < block_limit) { 3730 if (!st->frag_data) 3731 st->frag_data = kmap_atomic(skb_frag_page(frag) + pg_idx); 3732 3733 *data = (u8 *)st->frag_data + pg_off + 3734 (abs_offset - st->stepped_offset); 3735 3736 return block_limit - abs_offset; 3737 } 3738 3739 if (st->frag_data) { 3740 kunmap_atomic(st->frag_data); 3741 st->frag_data = NULL; 3742 } 3743 3744 st->stepped_offset += pg_sz; 3745 st->frag_off += pg_sz; 3746 if (st->frag_off == skb_frag_size(frag)) { 3747 st->frag_off = 0; 3748 st->frag_idx++; 3749 } 3750 } 3751 3752 if (st->frag_data) { 3753 kunmap_atomic(st->frag_data); 3754 st->frag_data = NULL; 3755 } 3756 3757 if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) { 3758 st->cur_skb = skb_shinfo(st->root_skb)->frag_list; 3759 st->frag_idx = 0; 3760 goto next_skb; 3761 } else if (st->cur_skb->next) { 3762 st->cur_skb = st->cur_skb->next; 3763 st->frag_idx = 0; 3764 goto next_skb; 3765 } 3766 3767 return 0; 3768 } 3769 EXPORT_SYMBOL(skb_seq_read); 3770 3771 /** 3772 * skb_abort_seq_read - Abort a sequential read of skb data 3773 * @st: state variable 3774 * 3775 * Must be called if skb_seq_read() was not called until it 3776 * returned 0. 3777 */ 3778 void skb_abort_seq_read(struct skb_seq_state *st) 3779 { 3780 if (st->frag_data) 3781 kunmap_atomic(st->frag_data); 3782 } 3783 EXPORT_SYMBOL(skb_abort_seq_read); 3784 3785 #define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb)) 3786 3787 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text, 3788 struct ts_config *conf, 3789 struct ts_state *state) 3790 { 3791 return skb_seq_read(offset, text, TS_SKB_CB(state)); 3792 } 3793 3794 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state) 3795 { 3796 skb_abort_seq_read(TS_SKB_CB(state)); 3797 } 3798 3799 /** 3800 * skb_find_text - Find a text pattern in skb data 3801 * @skb: the buffer to look in 3802 * @from: search offset 3803 * @to: search limit 3804 * @config: textsearch configuration 3805 * 3806 * Finds a pattern in the skb data according to the specified 3807 * textsearch configuration. Use textsearch_next() to retrieve 3808 * subsequent occurrences of the pattern. Returns the offset 3809 * to the first occurrence or UINT_MAX if no match was found. 3810 */ 3811 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from, 3812 unsigned int to, struct ts_config *config) 3813 { 3814 struct ts_state state; 3815 unsigned int ret; 3816 3817 BUILD_BUG_ON(sizeof(struct skb_seq_state) > sizeof(state.cb)); 3818 3819 config->get_next_block = skb_ts_get_next_block; 3820 config->finish = skb_ts_finish; 3821 3822 skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state)); 3823 3824 ret = textsearch_find(config, &state); 3825 return (ret <= to - from ? ret : UINT_MAX); 3826 } 3827 EXPORT_SYMBOL(skb_find_text); 3828 3829 int skb_append_pagefrags(struct sk_buff *skb, struct page *page, 3830 int offset, size_t size) 3831 { 3832 int i = skb_shinfo(skb)->nr_frags; 3833 3834 if (skb_can_coalesce(skb, i, page, offset)) { 3835 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size); 3836 } else if (i < MAX_SKB_FRAGS) { 3837 get_page(page); 3838 skb_fill_page_desc(skb, i, page, offset, size); 3839 } else { 3840 return -EMSGSIZE; 3841 } 3842 3843 return 0; 3844 } 3845 EXPORT_SYMBOL_GPL(skb_append_pagefrags); 3846 3847 /** 3848 * skb_pull_rcsum - pull skb and update receive checksum 3849 * @skb: buffer to update 3850 * @len: length of data pulled 3851 * 3852 * This function performs an skb_pull on the packet and updates 3853 * the CHECKSUM_COMPLETE checksum. It should be used on 3854 * receive path processing instead of skb_pull unless you know 3855 * that the checksum difference is zero (e.g., a valid IP header) 3856 * or you are setting ip_summed to CHECKSUM_NONE. 3857 */ 3858 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len) 3859 { 3860 unsigned char *data = skb->data; 3861 3862 BUG_ON(len > skb->len); 3863 __skb_pull(skb, len); 3864 skb_postpull_rcsum(skb, data, len); 3865 return skb->data; 3866 } 3867 EXPORT_SYMBOL_GPL(skb_pull_rcsum); 3868 3869 static inline skb_frag_t skb_head_frag_to_page_desc(struct sk_buff *frag_skb) 3870 { 3871 skb_frag_t head_frag; 3872 struct page *page; 3873 3874 page = virt_to_head_page(frag_skb->head); 3875 __skb_frag_set_page(&head_frag, page); 3876 skb_frag_off_set(&head_frag, frag_skb->data - 3877 (unsigned char *)page_address(page)); 3878 skb_frag_size_set(&head_frag, skb_headlen(frag_skb)); 3879 return head_frag; 3880 } 3881 3882 struct sk_buff *skb_segment_list(struct sk_buff *skb, 3883 netdev_features_t features, 3884 unsigned int offset) 3885 { 3886 struct sk_buff *list_skb = skb_shinfo(skb)->frag_list; 3887 unsigned int tnl_hlen = skb_tnl_header_len(skb); 3888 unsigned int delta_truesize = 0; 3889 unsigned int delta_len = 0; 3890 struct sk_buff *tail = NULL; 3891 struct sk_buff *nskb, *tmp; 3892 int err; 3893 3894 skb_push(skb, -skb_network_offset(skb) + offset); 3895 3896 skb_shinfo(skb)->frag_list = NULL; 3897 3898 do { 3899 nskb = list_skb; 3900 list_skb = list_skb->next; 3901 3902 err = 0; 3903 delta_truesize += nskb->truesize; 3904 if (skb_shared(nskb)) { 3905 tmp = skb_clone(nskb, GFP_ATOMIC); 3906 if (tmp) { 3907 consume_skb(nskb); 3908 nskb = tmp; 3909 err = skb_unclone(nskb, GFP_ATOMIC); 3910 } else { 3911 err = -ENOMEM; 3912 } 3913 } 3914 3915 if (!tail) 3916 skb->next = nskb; 3917 else 3918 tail->next = nskb; 3919 3920 if (unlikely(err)) { 3921 nskb->next = list_skb; 3922 goto err_linearize; 3923 } 3924 3925 tail = nskb; 3926 3927 delta_len += nskb->len; 3928 3929 skb_push(nskb, -skb_network_offset(nskb) + offset); 3930 3931 skb_release_head_state(nskb); 3932 __copy_skb_header(nskb, skb); 3933 3934 skb_headers_offset_update(nskb, skb_headroom(nskb) - skb_headroom(skb)); 3935 skb_copy_from_linear_data_offset(skb, -tnl_hlen, 3936 nskb->data - tnl_hlen, 3937 offset + tnl_hlen); 3938 3939 if (skb_needs_linearize(nskb, features) && 3940 __skb_linearize(nskb)) 3941 goto err_linearize; 3942 3943 } while (list_skb); 3944 3945 skb->truesize = skb->truesize - delta_truesize; 3946 skb->data_len = skb->data_len - delta_len; 3947 skb->len = skb->len - delta_len; 3948 3949 skb_gso_reset(skb); 3950 3951 skb->prev = tail; 3952 3953 if (skb_needs_linearize(skb, features) && 3954 __skb_linearize(skb)) 3955 goto err_linearize; 3956 3957 skb_get(skb); 3958 3959 return skb; 3960 3961 err_linearize: 3962 kfree_skb_list(skb->next); 3963 skb->next = NULL; 3964 return ERR_PTR(-ENOMEM); 3965 } 3966 EXPORT_SYMBOL_GPL(skb_segment_list); 3967 3968 /** 3969 * skb_segment - Perform protocol segmentation on skb. 3970 * @head_skb: buffer to segment 3971 * @features: features for the output path (see dev->features) 3972 * 3973 * This function performs segmentation on the given skb. It returns 3974 * a pointer to the first in a list of new skbs for the segments. 3975 * In case of error it returns ERR_PTR(err). 3976 */ 3977 struct sk_buff *skb_segment(struct sk_buff *head_skb, 3978 netdev_features_t features) 3979 { 3980 struct sk_buff *segs = NULL; 3981 struct sk_buff *tail = NULL; 3982 struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list; 3983 skb_frag_t *frag = skb_shinfo(head_skb)->frags; 3984 unsigned int mss = skb_shinfo(head_skb)->gso_size; 3985 unsigned int doffset = head_skb->data - skb_mac_header(head_skb); 3986 struct sk_buff *frag_skb = head_skb; 3987 unsigned int offset = doffset; 3988 unsigned int tnl_hlen = skb_tnl_header_len(head_skb); 3989 unsigned int partial_segs = 0; 3990 unsigned int headroom; 3991 unsigned int len = head_skb->len; 3992 __be16 proto; 3993 bool csum, sg; 3994 int nfrags = skb_shinfo(head_skb)->nr_frags; 3995 int err = -ENOMEM; 3996 int i = 0; 3997 int pos; 3998 3999 if (list_skb && !list_skb->head_frag && skb_headlen(list_skb) && 4000 (skb_shinfo(head_skb)->gso_type & SKB_GSO_DODGY)) { 4001 /* gso_size is untrusted, and we have a frag_list with a linear 4002 * non head_frag head. 4003 * 4004 * (we assume checking the first list_skb member suffices; 4005 * i.e if either of the list_skb members have non head_frag 4006 * head, then the first one has too). 4007 * 4008 * If head_skb's headlen does not fit requested gso_size, it 4009 * means that the frag_list members do NOT terminate on exact 4010 * gso_size boundaries. Hence we cannot perform skb_frag_t page 4011 * sharing. Therefore we must fallback to copying the frag_list 4012 * skbs; we do so by disabling SG. 4013 */ 4014 if (mss != GSO_BY_FRAGS && mss != skb_headlen(head_skb)) 4015 features &= ~NETIF_F_SG; 4016 } 4017 4018 __skb_push(head_skb, doffset); 4019 proto = skb_network_protocol(head_skb, NULL); 4020 if (unlikely(!proto)) 4021 return ERR_PTR(-EINVAL); 4022 4023 sg = !!(features & NETIF_F_SG); 4024 csum = !!can_checksum_protocol(features, proto); 4025 4026 if (sg && csum && (mss != GSO_BY_FRAGS)) { 4027 if (!(features & NETIF_F_GSO_PARTIAL)) { 4028 struct sk_buff *iter; 4029 unsigned int frag_len; 4030 4031 if (!list_skb || 4032 !net_gso_ok(features, skb_shinfo(head_skb)->gso_type)) 4033 goto normal; 4034 4035 /* If we get here then all the required 4036 * GSO features except frag_list are supported. 4037 * Try to split the SKB to multiple GSO SKBs 4038 * with no frag_list. 4039 * Currently we can do that only when the buffers don't 4040 * have a linear part and all the buffers except 4041 * the last are of the same length. 4042 */ 4043 frag_len = list_skb->len; 4044 skb_walk_frags(head_skb, iter) { 4045 if (frag_len != iter->len && iter->next) 4046 goto normal; 4047 if (skb_headlen(iter) && !iter->head_frag) 4048 goto normal; 4049 4050 len -= iter->len; 4051 } 4052 4053 if (len != frag_len) 4054 goto normal; 4055 } 4056 4057 /* GSO partial only requires that we trim off any excess that 4058 * doesn't fit into an MSS sized block, so take care of that 4059 * now. 4060 */ 4061 partial_segs = len / mss; 4062 if (partial_segs > 1) 4063 mss *= partial_segs; 4064 else 4065 partial_segs = 0; 4066 } 4067 4068 normal: 4069 headroom = skb_headroom(head_skb); 4070 pos = skb_headlen(head_skb); 4071 4072 do { 4073 struct sk_buff *nskb; 4074 skb_frag_t *nskb_frag; 4075 int hsize; 4076 int size; 4077 4078 if (unlikely(mss == GSO_BY_FRAGS)) { 4079 len = list_skb->len; 4080 } else { 4081 len = head_skb->len - offset; 4082 if (len > mss) 4083 len = mss; 4084 } 4085 4086 hsize = skb_headlen(head_skb) - offset; 4087 4088 if (hsize <= 0 && i >= nfrags && skb_headlen(list_skb) && 4089 (skb_headlen(list_skb) == len || sg)) { 4090 BUG_ON(skb_headlen(list_skb) > len); 4091 4092 i = 0; 4093 nfrags = skb_shinfo(list_skb)->nr_frags; 4094 frag = skb_shinfo(list_skb)->frags; 4095 frag_skb = list_skb; 4096 pos += skb_headlen(list_skb); 4097 4098 while (pos < offset + len) { 4099 BUG_ON(i >= nfrags); 4100 4101 size = skb_frag_size(frag); 4102 if (pos + size > offset + len) 4103 break; 4104 4105 i++; 4106 pos += size; 4107 frag++; 4108 } 4109 4110 nskb = skb_clone(list_skb, GFP_ATOMIC); 4111 list_skb = list_skb->next; 4112 4113 if (unlikely(!nskb)) 4114 goto err; 4115 4116 if (unlikely(pskb_trim(nskb, len))) { 4117 kfree_skb(nskb); 4118 goto err; 4119 } 4120 4121 hsize = skb_end_offset(nskb); 4122 if (skb_cow_head(nskb, doffset + headroom)) { 4123 kfree_skb(nskb); 4124 goto err; 4125 } 4126 4127 nskb->truesize += skb_end_offset(nskb) - hsize; 4128 skb_release_head_state(nskb); 4129 __skb_push(nskb, doffset); 4130 } else { 4131 if (hsize < 0) 4132 hsize = 0; 4133 if (hsize > len || !sg) 4134 hsize = len; 4135 4136 nskb = __alloc_skb(hsize + doffset + headroom, 4137 GFP_ATOMIC, skb_alloc_rx_flag(head_skb), 4138 NUMA_NO_NODE); 4139 4140 if (unlikely(!nskb)) 4141 goto err; 4142 4143 skb_reserve(nskb, headroom); 4144 __skb_put(nskb, doffset); 4145 } 4146 4147 if (segs) 4148 tail->next = nskb; 4149 else 4150 segs = nskb; 4151 tail = nskb; 4152 4153 __copy_skb_header(nskb, head_skb); 4154 4155 skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom); 4156 skb_reset_mac_len(nskb); 4157 4158 skb_copy_from_linear_data_offset(head_skb, -tnl_hlen, 4159 nskb->data - tnl_hlen, 4160 doffset + tnl_hlen); 4161 4162 if (nskb->len == len + doffset) 4163 goto perform_csum_check; 4164 4165 if (!sg) { 4166 if (!csum) { 4167 if (!nskb->remcsum_offload) 4168 nskb->ip_summed = CHECKSUM_NONE; 4169 SKB_GSO_CB(nskb)->csum = 4170 skb_copy_and_csum_bits(head_skb, offset, 4171 skb_put(nskb, 4172 len), 4173 len); 4174 SKB_GSO_CB(nskb)->csum_start = 4175 skb_headroom(nskb) + doffset; 4176 } else { 4177 skb_copy_bits(head_skb, offset, 4178 skb_put(nskb, len), 4179 len); 4180 } 4181 continue; 4182 } 4183 4184 nskb_frag = skb_shinfo(nskb)->frags; 4185 4186 skb_copy_from_linear_data_offset(head_skb, offset, 4187 skb_put(nskb, hsize), hsize); 4188 4189 skb_shinfo(nskb)->flags |= skb_shinfo(head_skb)->flags & 4190 SKBFL_SHARED_FRAG; 4191 4192 if (skb_orphan_frags(frag_skb, GFP_ATOMIC) || 4193 skb_zerocopy_clone(nskb, frag_skb, GFP_ATOMIC)) 4194 goto err; 4195 4196 while (pos < offset + len) { 4197 if (i >= nfrags) { 4198 i = 0; 4199 nfrags = skb_shinfo(list_skb)->nr_frags; 4200 frag = skb_shinfo(list_skb)->frags; 4201 frag_skb = list_skb; 4202 if (!skb_headlen(list_skb)) { 4203 BUG_ON(!nfrags); 4204 } else { 4205 BUG_ON(!list_skb->head_frag); 4206 4207 /* to make room for head_frag. */ 4208 i--; 4209 frag--; 4210 } 4211 if (skb_orphan_frags(frag_skb, GFP_ATOMIC) || 4212 skb_zerocopy_clone(nskb, frag_skb, 4213 GFP_ATOMIC)) 4214 goto err; 4215 4216 list_skb = list_skb->next; 4217 } 4218 4219 if (unlikely(skb_shinfo(nskb)->nr_frags >= 4220 MAX_SKB_FRAGS)) { 4221 net_warn_ratelimited( 4222 "skb_segment: too many frags: %u %u\n", 4223 pos, mss); 4224 err = -EINVAL; 4225 goto err; 4226 } 4227 4228 *nskb_frag = (i < 0) ? skb_head_frag_to_page_desc(frag_skb) : *frag; 4229 __skb_frag_ref(nskb_frag); 4230 size = skb_frag_size(nskb_frag); 4231 4232 if (pos < offset) { 4233 skb_frag_off_add(nskb_frag, offset - pos); 4234 skb_frag_size_sub(nskb_frag, offset - pos); 4235 } 4236 4237 skb_shinfo(nskb)->nr_frags++; 4238 4239 if (pos + size <= offset + len) { 4240 i++; 4241 frag++; 4242 pos += size; 4243 } else { 4244 skb_frag_size_sub(nskb_frag, pos + size - (offset + len)); 4245 goto skip_fraglist; 4246 } 4247 4248 nskb_frag++; 4249 } 4250 4251 skip_fraglist: 4252 nskb->data_len = len - hsize; 4253 nskb->len += nskb->data_len; 4254 nskb->truesize += nskb->data_len; 4255 4256 perform_csum_check: 4257 if (!csum) { 4258 if (skb_has_shared_frag(nskb) && 4259 __skb_linearize(nskb)) 4260 goto err; 4261 4262 if (!nskb->remcsum_offload) 4263 nskb->ip_summed = CHECKSUM_NONE; 4264 SKB_GSO_CB(nskb)->csum = 4265 skb_checksum(nskb, doffset, 4266 nskb->len - doffset, 0); 4267 SKB_GSO_CB(nskb)->csum_start = 4268 skb_headroom(nskb) + doffset; 4269 } 4270 } while ((offset += len) < head_skb->len); 4271 4272 /* Some callers want to get the end of the list. 4273 * Put it in segs->prev to avoid walking the list. 4274 * (see validate_xmit_skb_list() for example) 4275 */ 4276 segs->prev = tail; 4277 4278 if (partial_segs) { 4279 struct sk_buff *iter; 4280 int type = skb_shinfo(head_skb)->gso_type; 4281 unsigned short gso_size = skb_shinfo(head_skb)->gso_size; 4282 4283 /* Update type to add partial and then remove dodgy if set */ 4284 type |= (features & NETIF_F_GSO_PARTIAL) / NETIF_F_GSO_PARTIAL * SKB_GSO_PARTIAL; 4285 type &= ~SKB_GSO_DODGY; 4286 4287 /* Update GSO info and prepare to start updating headers on 4288 * our way back down the stack of protocols. 4289 */ 4290 for (iter = segs; iter; iter = iter->next) { 4291 skb_shinfo(iter)->gso_size = gso_size; 4292 skb_shinfo(iter)->gso_segs = partial_segs; 4293 skb_shinfo(iter)->gso_type = type; 4294 SKB_GSO_CB(iter)->data_offset = skb_headroom(iter) + doffset; 4295 } 4296 4297 if (tail->len - doffset <= gso_size) 4298 skb_shinfo(tail)->gso_size = 0; 4299 else if (tail != segs) 4300 skb_shinfo(tail)->gso_segs = DIV_ROUND_UP(tail->len - doffset, gso_size); 4301 } 4302 4303 /* Following permits correct backpressure, for protocols 4304 * using skb_set_owner_w(). 4305 * Idea is to tranfert ownership from head_skb to last segment. 4306 */ 4307 if (head_skb->destructor == sock_wfree) { 4308 swap(tail->truesize, head_skb->truesize); 4309 swap(tail->destructor, head_skb->destructor); 4310 swap(tail->sk, head_skb->sk); 4311 } 4312 return segs; 4313 4314 err: 4315 kfree_skb_list(segs); 4316 return ERR_PTR(err); 4317 } 4318 EXPORT_SYMBOL_GPL(skb_segment); 4319 4320 #ifdef CONFIG_SKB_EXTENSIONS 4321 #define SKB_EXT_ALIGN_VALUE 8 4322 #define SKB_EXT_CHUNKSIZEOF(x) (ALIGN((sizeof(x)), SKB_EXT_ALIGN_VALUE) / SKB_EXT_ALIGN_VALUE) 4323 4324 static const u8 skb_ext_type_len[] = { 4325 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 4326 [SKB_EXT_BRIDGE_NF] = SKB_EXT_CHUNKSIZEOF(struct nf_bridge_info), 4327 #endif 4328 #ifdef CONFIG_XFRM 4329 [SKB_EXT_SEC_PATH] = SKB_EXT_CHUNKSIZEOF(struct sec_path), 4330 #endif 4331 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT) 4332 [TC_SKB_EXT] = SKB_EXT_CHUNKSIZEOF(struct tc_skb_ext), 4333 #endif 4334 #if IS_ENABLED(CONFIG_MPTCP) 4335 [SKB_EXT_MPTCP] = SKB_EXT_CHUNKSIZEOF(struct mptcp_ext), 4336 #endif 4337 #if IS_ENABLED(CONFIG_MCTP_FLOWS) 4338 [SKB_EXT_MCTP] = SKB_EXT_CHUNKSIZEOF(struct mctp_flow), 4339 #endif 4340 }; 4341 4342 static __always_inline unsigned int skb_ext_total_length(void) 4343 { 4344 return SKB_EXT_CHUNKSIZEOF(struct skb_ext) + 4345 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 4346 skb_ext_type_len[SKB_EXT_BRIDGE_NF] + 4347 #endif 4348 #ifdef CONFIG_XFRM 4349 skb_ext_type_len[SKB_EXT_SEC_PATH] + 4350 #endif 4351 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT) 4352 skb_ext_type_len[TC_SKB_EXT] + 4353 #endif 4354 #if IS_ENABLED(CONFIG_MPTCP) 4355 skb_ext_type_len[SKB_EXT_MPTCP] + 4356 #endif 4357 #if IS_ENABLED(CONFIG_MCTP_FLOWS) 4358 skb_ext_type_len[SKB_EXT_MCTP] + 4359 #endif 4360 0; 4361 } 4362 4363 static void skb_extensions_init(void) 4364 { 4365 BUILD_BUG_ON(SKB_EXT_NUM >= 8); 4366 BUILD_BUG_ON(skb_ext_total_length() > 255); 4367 4368 skbuff_ext_cache = kmem_cache_create("skbuff_ext_cache", 4369 SKB_EXT_ALIGN_VALUE * skb_ext_total_length(), 4370 0, 4371 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 4372 NULL); 4373 } 4374 #else 4375 static void skb_extensions_init(void) {} 4376 #endif 4377 4378 void __init skb_init(void) 4379 { 4380 skbuff_head_cache = kmem_cache_create_usercopy("skbuff_head_cache", 4381 sizeof(struct sk_buff), 4382 0, 4383 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 4384 offsetof(struct sk_buff, cb), 4385 sizeof_field(struct sk_buff, cb), 4386 NULL); 4387 skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache", 4388 sizeof(struct sk_buff_fclones), 4389 0, 4390 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 4391 NULL); 4392 skb_extensions_init(); 4393 } 4394 4395 static int 4396 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len, 4397 unsigned int recursion_level) 4398 { 4399 int start = skb_headlen(skb); 4400 int i, copy = start - offset; 4401 struct sk_buff *frag_iter; 4402 int elt = 0; 4403 4404 if (unlikely(recursion_level >= 24)) 4405 return -EMSGSIZE; 4406 4407 if (copy > 0) { 4408 if (copy > len) 4409 copy = len; 4410 sg_set_buf(sg, skb->data + offset, copy); 4411 elt++; 4412 if ((len -= copy) == 0) 4413 return elt; 4414 offset += copy; 4415 } 4416 4417 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 4418 int end; 4419 4420 WARN_ON(start > offset + len); 4421 4422 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]); 4423 if ((copy = end - offset) > 0) { 4424 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 4425 if (unlikely(elt && sg_is_last(&sg[elt - 1]))) 4426 return -EMSGSIZE; 4427 4428 if (copy > len) 4429 copy = len; 4430 sg_set_page(&sg[elt], skb_frag_page(frag), copy, 4431 skb_frag_off(frag) + offset - start); 4432 elt++; 4433 if (!(len -= copy)) 4434 return elt; 4435 offset += copy; 4436 } 4437 start = end; 4438 } 4439 4440 skb_walk_frags(skb, frag_iter) { 4441 int end, ret; 4442 4443 WARN_ON(start > offset + len); 4444 4445 end = start + frag_iter->len; 4446 if ((copy = end - offset) > 0) { 4447 if (unlikely(elt && sg_is_last(&sg[elt - 1]))) 4448 return -EMSGSIZE; 4449 4450 if (copy > len) 4451 copy = len; 4452 ret = __skb_to_sgvec(frag_iter, sg+elt, offset - start, 4453 copy, recursion_level + 1); 4454 if (unlikely(ret < 0)) 4455 return ret; 4456 elt += ret; 4457 if ((len -= copy) == 0) 4458 return elt; 4459 offset += copy; 4460 } 4461 start = end; 4462 } 4463 BUG_ON(len); 4464 return elt; 4465 } 4466 4467 /** 4468 * skb_to_sgvec - Fill a scatter-gather list from a socket buffer 4469 * @skb: Socket buffer containing the buffers to be mapped 4470 * @sg: The scatter-gather list to map into 4471 * @offset: The offset into the buffer's contents to start mapping 4472 * @len: Length of buffer space to be mapped 4473 * 4474 * Fill the specified scatter-gather list with mappings/pointers into a 4475 * region of the buffer space attached to a socket buffer. Returns either 4476 * the number of scatterlist items used, or -EMSGSIZE if the contents 4477 * could not fit. 4478 */ 4479 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len) 4480 { 4481 int nsg = __skb_to_sgvec(skb, sg, offset, len, 0); 4482 4483 if (nsg <= 0) 4484 return nsg; 4485 4486 sg_mark_end(&sg[nsg - 1]); 4487 4488 return nsg; 4489 } 4490 EXPORT_SYMBOL_GPL(skb_to_sgvec); 4491 4492 /* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given 4493 * sglist without mark the sg which contain last skb data as the end. 4494 * So the caller can mannipulate sg list as will when padding new data after 4495 * the first call without calling sg_unmark_end to expend sg list. 4496 * 4497 * Scenario to use skb_to_sgvec_nomark: 4498 * 1. sg_init_table 4499 * 2. skb_to_sgvec_nomark(payload1) 4500 * 3. skb_to_sgvec_nomark(payload2) 4501 * 4502 * This is equivalent to: 4503 * 1. sg_init_table 4504 * 2. skb_to_sgvec(payload1) 4505 * 3. sg_unmark_end 4506 * 4. skb_to_sgvec(payload2) 4507 * 4508 * When mapping mutilple payload conditionally, skb_to_sgvec_nomark 4509 * is more preferable. 4510 */ 4511 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg, 4512 int offset, int len) 4513 { 4514 return __skb_to_sgvec(skb, sg, offset, len, 0); 4515 } 4516 EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark); 4517 4518 4519 4520 /** 4521 * skb_cow_data - Check that a socket buffer's data buffers are writable 4522 * @skb: The socket buffer to check. 4523 * @tailbits: Amount of trailing space to be added 4524 * @trailer: Returned pointer to the skb where the @tailbits space begins 4525 * 4526 * Make sure that the data buffers attached to a socket buffer are 4527 * writable. If they are not, private copies are made of the data buffers 4528 * and the socket buffer is set to use these instead. 4529 * 4530 * If @tailbits is given, make sure that there is space to write @tailbits 4531 * bytes of data beyond current end of socket buffer. @trailer will be 4532 * set to point to the skb in which this space begins. 4533 * 4534 * The number of scatterlist elements required to completely map the 4535 * COW'd and extended socket buffer will be returned. 4536 */ 4537 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer) 4538 { 4539 int copyflag; 4540 int elt; 4541 struct sk_buff *skb1, **skb_p; 4542 4543 /* If skb is cloned or its head is paged, reallocate 4544 * head pulling out all the pages (pages are considered not writable 4545 * at the moment even if they are anonymous). 4546 */ 4547 if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) && 4548 !__pskb_pull_tail(skb, __skb_pagelen(skb))) 4549 return -ENOMEM; 4550 4551 /* Easy case. Most of packets will go this way. */ 4552 if (!skb_has_frag_list(skb)) { 4553 /* A little of trouble, not enough of space for trailer. 4554 * This should not happen, when stack is tuned to generate 4555 * good frames. OK, on miss we reallocate and reserve even more 4556 * space, 128 bytes is fair. */ 4557 4558 if (skb_tailroom(skb) < tailbits && 4559 pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC)) 4560 return -ENOMEM; 4561 4562 /* Voila! */ 4563 *trailer = skb; 4564 return 1; 4565 } 4566 4567 /* Misery. We are in troubles, going to mincer fragments... */ 4568 4569 elt = 1; 4570 skb_p = &skb_shinfo(skb)->frag_list; 4571 copyflag = 0; 4572 4573 while ((skb1 = *skb_p) != NULL) { 4574 int ntail = 0; 4575 4576 /* The fragment is partially pulled by someone, 4577 * this can happen on input. Copy it and everything 4578 * after it. */ 4579 4580 if (skb_shared(skb1)) 4581 copyflag = 1; 4582 4583 /* If the skb is the last, worry about trailer. */ 4584 4585 if (skb1->next == NULL && tailbits) { 4586 if (skb_shinfo(skb1)->nr_frags || 4587 skb_has_frag_list(skb1) || 4588 skb_tailroom(skb1) < tailbits) 4589 ntail = tailbits + 128; 4590 } 4591 4592 if (copyflag || 4593 skb_cloned(skb1) || 4594 ntail || 4595 skb_shinfo(skb1)->nr_frags || 4596 skb_has_frag_list(skb1)) { 4597 struct sk_buff *skb2; 4598 4599 /* Fuck, we are miserable poor guys... */ 4600 if (ntail == 0) 4601 skb2 = skb_copy(skb1, GFP_ATOMIC); 4602 else 4603 skb2 = skb_copy_expand(skb1, 4604 skb_headroom(skb1), 4605 ntail, 4606 GFP_ATOMIC); 4607 if (unlikely(skb2 == NULL)) 4608 return -ENOMEM; 4609 4610 if (skb1->sk) 4611 skb_set_owner_w(skb2, skb1->sk); 4612 4613 /* Looking around. Are we still alive? 4614 * OK, link new skb, drop old one */ 4615 4616 skb2->next = skb1->next; 4617 *skb_p = skb2; 4618 kfree_skb(skb1); 4619 skb1 = skb2; 4620 } 4621 elt++; 4622 *trailer = skb1; 4623 skb_p = &skb1->next; 4624 } 4625 4626 return elt; 4627 } 4628 EXPORT_SYMBOL_GPL(skb_cow_data); 4629 4630 static void sock_rmem_free(struct sk_buff *skb) 4631 { 4632 struct sock *sk = skb->sk; 4633 4634 atomic_sub(skb->truesize, &sk->sk_rmem_alloc); 4635 } 4636 4637 static void skb_set_err_queue(struct sk_buff *skb) 4638 { 4639 /* pkt_type of skbs received on local sockets is never PACKET_OUTGOING. 4640 * So, it is safe to (mis)use it to mark skbs on the error queue. 4641 */ 4642 skb->pkt_type = PACKET_OUTGOING; 4643 BUILD_BUG_ON(PACKET_OUTGOING == 0); 4644 } 4645 4646 /* 4647 * Note: We dont mem charge error packets (no sk_forward_alloc changes) 4648 */ 4649 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb) 4650 { 4651 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >= 4652 (unsigned int)READ_ONCE(sk->sk_rcvbuf)) 4653 return -ENOMEM; 4654 4655 skb_orphan(skb); 4656 skb->sk = sk; 4657 skb->destructor = sock_rmem_free; 4658 atomic_add(skb->truesize, &sk->sk_rmem_alloc); 4659 skb_set_err_queue(skb); 4660 4661 /* before exiting rcu section, make sure dst is refcounted */ 4662 skb_dst_force(skb); 4663 4664 skb_queue_tail(&sk->sk_error_queue, skb); 4665 if (!sock_flag(sk, SOCK_DEAD)) 4666 sk_error_report(sk); 4667 return 0; 4668 } 4669 EXPORT_SYMBOL(sock_queue_err_skb); 4670 4671 static bool is_icmp_err_skb(const struct sk_buff *skb) 4672 { 4673 return skb && (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP || 4674 SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP6); 4675 } 4676 4677 struct sk_buff *sock_dequeue_err_skb(struct sock *sk) 4678 { 4679 struct sk_buff_head *q = &sk->sk_error_queue; 4680 struct sk_buff *skb, *skb_next = NULL; 4681 bool icmp_next = false; 4682 unsigned long flags; 4683 4684 spin_lock_irqsave(&q->lock, flags); 4685 skb = __skb_dequeue(q); 4686 if (skb && (skb_next = skb_peek(q))) { 4687 icmp_next = is_icmp_err_skb(skb_next); 4688 if (icmp_next) 4689 sk->sk_err = SKB_EXT_ERR(skb_next)->ee.ee_errno; 4690 } 4691 spin_unlock_irqrestore(&q->lock, flags); 4692 4693 if (is_icmp_err_skb(skb) && !icmp_next) 4694 sk->sk_err = 0; 4695 4696 if (skb_next) 4697 sk_error_report(sk); 4698 4699 return skb; 4700 } 4701 EXPORT_SYMBOL(sock_dequeue_err_skb); 4702 4703 /** 4704 * skb_clone_sk - create clone of skb, and take reference to socket 4705 * @skb: the skb to clone 4706 * 4707 * This function creates a clone of a buffer that holds a reference on 4708 * sk_refcnt. Buffers created via this function are meant to be 4709 * returned using sock_queue_err_skb, or free via kfree_skb. 4710 * 4711 * When passing buffers allocated with this function to sock_queue_err_skb 4712 * it is necessary to wrap the call with sock_hold/sock_put in order to 4713 * prevent the socket from being released prior to being enqueued on 4714 * the sk_error_queue. 4715 */ 4716 struct sk_buff *skb_clone_sk(struct sk_buff *skb) 4717 { 4718 struct sock *sk = skb->sk; 4719 struct sk_buff *clone; 4720 4721 if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt)) 4722 return NULL; 4723 4724 clone = skb_clone(skb, GFP_ATOMIC); 4725 if (!clone) { 4726 sock_put(sk); 4727 return NULL; 4728 } 4729 4730 clone->sk = sk; 4731 clone->destructor = sock_efree; 4732 4733 return clone; 4734 } 4735 EXPORT_SYMBOL(skb_clone_sk); 4736 4737 static void __skb_complete_tx_timestamp(struct sk_buff *skb, 4738 struct sock *sk, 4739 int tstype, 4740 bool opt_stats) 4741 { 4742 struct sock_exterr_skb *serr; 4743 int err; 4744 4745 BUILD_BUG_ON(sizeof(struct sock_exterr_skb) > sizeof(skb->cb)); 4746 4747 serr = SKB_EXT_ERR(skb); 4748 memset(serr, 0, sizeof(*serr)); 4749 serr->ee.ee_errno = ENOMSG; 4750 serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING; 4751 serr->ee.ee_info = tstype; 4752 serr->opt_stats = opt_stats; 4753 serr->header.h4.iif = skb->dev ? skb->dev->ifindex : 0; 4754 if (sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID) { 4755 serr->ee.ee_data = skb_shinfo(skb)->tskey; 4756 if (sk_is_tcp(sk)) 4757 serr->ee.ee_data -= atomic_read(&sk->sk_tskey); 4758 } 4759 4760 err = sock_queue_err_skb(sk, skb); 4761 4762 if (err) 4763 kfree_skb(skb); 4764 } 4765 4766 static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly) 4767 { 4768 bool ret; 4769 4770 if (likely(sysctl_tstamp_allow_data || tsonly)) 4771 return true; 4772 4773 read_lock_bh(&sk->sk_callback_lock); 4774 ret = sk->sk_socket && sk->sk_socket->file && 4775 file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW); 4776 read_unlock_bh(&sk->sk_callback_lock); 4777 return ret; 4778 } 4779 4780 void skb_complete_tx_timestamp(struct sk_buff *skb, 4781 struct skb_shared_hwtstamps *hwtstamps) 4782 { 4783 struct sock *sk = skb->sk; 4784 4785 if (!skb_may_tx_timestamp(sk, false)) 4786 goto err; 4787 4788 /* Take a reference to prevent skb_orphan() from freeing the socket, 4789 * but only if the socket refcount is not zero. 4790 */ 4791 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) { 4792 *skb_hwtstamps(skb) = *hwtstamps; 4793 __skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND, false); 4794 sock_put(sk); 4795 return; 4796 } 4797 4798 err: 4799 kfree_skb(skb); 4800 } 4801 EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp); 4802 4803 void __skb_tstamp_tx(struct sk_buff *orig_skb, 4804 const struct sk_buff *ack_skb, 4805 struct skb_shared_hwtstamps *hwtstamps, 4806 struct sock *sk, int tstype) 4807 { 4808 struct sk_buff *skb; 4809 bool tsonly, opt_stats = false; 4810 4811 if (!sk) 4812 return; 4813 4814 if (!hwtstamps && !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TX_SWHW) && 4815 skb_shinfo(orig_skb)->tx_flags & SKBTX_IN_PROGRESS) 4816 return; 4817 4818 tsonly = sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TSONLY; 4819 if (!skb_may_tx_timestamp(sk, tsonly)) 4820 return; 4821 4822 if (tsonly) { 4823 #ifdef CONFIG_INET 4824 if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_STATS) && 4825 sk_is_tcp(sk)) { 4826 skb = tcp_get_timestamping_opt_stats(sk, orig_skb, 4827 ack_skb); 4828 opt_stats = true; 4829 } else 4830 #endif 4831 skb = alloc_skb(0, GFP_ATOMIC); 4832 } else { 4833 skb = skb_clone(orig_skb, GFP_ATOMIC); 4834 } 4835 if (!skb) 4836 return; 4837 4838 if (tsonly) { 4839 skb_shinfo(skb)->tx_flags |= skb_shinfo(orig_skb)->tx_flags & 4840 SKBTX_ANY_TSTAMP; 4841 skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey; 4842 } 4843 4844 if (hwtstamps) 4845 *skb_hwtstamps(skb) = *hwtstamps; 4846 else 4847 __net_timestamp(skb); 4848 4849 __skb_complete_tx_timestamp(skb, sk, tstype, opt_stats); 4850 } 4851 EXPORT_SYMBOL_GPL(__skb_tstamp_tx); 4852 4853 void skb_tstamp_tx(struct sk_buff *orig_skb, 4854 struct skb_shared_hwtstamps *hwtstamps) 4855 { 4856 return __skb_tstamp_tx(orig_skb, NULL, hwtstamps, orig_skb->sk, 4857 SCM_TSTAMP_SND); 4858 } 4859 EXPORT_SYMBOL_GPL(skb_tstamp_tx); 4860 4861 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked) 4862 { 4863 struct sock *sk = skb->sk; 4864 struct sock_exterr_skb *serr; 4865 int err = 1; 4866 4867 skb->wifi_acked_valid = 1; 4868 skb->wifi_acked = acked; 4869 4870 serr = SKB_EXT_ERR(skb); 4871 memset(serr, 0, sizeof(*serr)); 4872 serr->ee.ee_errno = ENOMSG; 4873 serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS; 4874 4875 /* Take a reference to prevent skb_orphan() from freeing the socket, 4876 * but only if the socket refcount is not zero. 4877 */ 4878 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) { 4879 err = sock_queue_err_skb(sk, skb); 4880 sock_put(sk); 4881 } 4882 if (err) 4883 kfree_skb(skb); 4884 } 4885 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack); 4886 4887 /** 4888 * skb_partial_csum_set - set up and verify partial csum values for packet 4889 * @skb: the skb to set 4890 * @start: the number of bytes after skb->data to start checksumming. 4891 * @off: the offset from start to place the checksum. 4892 * 4893 * For untrusted partially-checksummed packets, we need to make sure the values 4894 * for skb->csum_start and skb->csum_offset are valid so we don't oops. 4895 * 4896 * This function checks and sets those values and skb->ip_summed: if this 4897 * returns false you should drop the packet. 4898 */ 4899 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off) 4900 { 4901 u32 csum_end = (u32)start + (u32)off + sizeof(__sum16); 4902 u32 csum_start = skb_headroom(skb) + (u32)start; 4903 4904 if (unlikely(csum_start > U16_MAX || csum_end > skb_headlen(skb))) { 4905 net_warn_ratelimited("bad partial csum: csum=%u/%u headroom=%u headlen=%u\n", 4906 start, off, skb_headroom(skb), skb_headlen(skb)); 4907 return false; 4908 } 4909 skb->ip_summed = CHECKSUM_PARTIAL; 4910 skb->csum_start = csum_start; 4911 skb->csum_offset = off; 4912 skb_set_transport_header(skb, start); 4913 return true; 4914 } 4915 EXPORT_SYMBOL_GPL(skb_partial_csum_set); 4916 4917 static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len, 4918 unsigned int max) 4919 { 4920 if (skb_headlen(skb) >= len) 4921 return 0; 4922 4923 /* If we need to pullup then pullup to the max, so we 4924 * won't need to do it again. 4925 */ 4926 if (max > skb->len) 4927 max = skb->len; 4928 4929 if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL) 4930 return -ENOMEM; 4931 4932 if (skb_headlen(skb) < len) 4933 return -EPROTO; 4934 4935 return 0; 4936 } 4937 4938 #define MAX_TCP_HDR_LEN (15 * 4) 4939 4940 static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb, 4941 typeof(IPPROTO_IP) proto, 4942 unsigned int off) 4943 { 4944 int err; 4945 4946 switch (proto) { 4947 case IPPROTO_TCP: 4948 err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr), 4949 off + MAX_TCP_HDR_LEN); 4950 if (!err && !skb_partial_csum_set(skb, off, 4951 offsetof(struct tcphdr, 4952 check))) 4953 err = -EPROTO; 4954 return err ? ERR_PTR(err) : &tcp_hdr(skb)->check; 4955 4956 case IPPROTO_UDP: 4957 err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr), 4958 off + sizeof(struct udphdr)); 4959 if (!err && !skb_partial_csum_set(skb, off, 4960 offsetof(struct udphdr, 4961 check))) 4962 err = -EPROTO; 4963 return err ? ERR_PTR(err) : &udp_hdr(skb)->check; 4964 } 4965 4966 return ERR_PTR(-EPROTO); 4967 } 4968 4969 /* This value should be large enough to cover a tagged ethernet header plus 4970 * maximally sized IP and TCP or UDP headers. 4971 */ 4972 #define MAX_IP_HDR_LEN 128 4973 4974 static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate) 4975 { 4976 unsigned int off; 4977 bool fragment; 4978 __sum16 *csum; 4979 int err; 4980 4981 fragment = false; 4982 4983 err = skb_maybe_pull_tail(skb, 4984 sizeof(struct iphdr), 4985 MAX_IP_HDR_LEN); 4986 if (err < 0) 4987 goto out; 4988 4989 if (ip_is_fragment(ip_hdr(skb))) 4990 fragment = true; 4991 4992 off = ip_hdrlen(skb); 4993 4994 err = -EPROTO; 4995 4996 if (fragment) 4997 goto out; 4998 4999 csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off); 5000 if (IS_ERR(csum)) 5001 return PTR_ERR(csum); 5002 5003 if (recalculate) 5004 *csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr, 5005 ip_hdr(skb)->daddr, 5006 skb->len - off, 5007 ip_hdr(skb)->protocol, 0); 5008 err = 0; 5009 5010 out: 5011 return err; 5012 } 5013 5014 /* This value should be large enough to cover a tagged ethernet header plus 5015 * an IPv6 header, all options, and a maximal TCP or UDP header. 5016 */ 5017 #define MAX_IPV6_HDR_LEN 256 5018 5019 #define OPT_HDR(type, skb, off) \ 5020 (type *)(skb_network_header(skb) + (off)) 5021 5022 static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate) 5023 { 5024 int err; 5025 u8 nexthdr; 5026 unsigned int off; 5027 unsigned int len; 5028 bool fragment; 5029 bool done; 5030 __sum16 *csum; 5031 5032 fragment = false; 5033 done = false; 5034 5035 off = sizeof(struct ipv6hdr); 5036 5037 err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN); 5038 if (err < 0) 5039 goto out; 5040 5041 nexthdr = ipv6_hdr(skb)->nexthdr; 5042 5043 len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len); 5044 while (off <= len && !done) { 5045 switch (nexthdr) { 5046 case IPPROTO_DSTOPTS: 5047 case IPPROTO_HOPOPTS: 5048 case IPPROTO_ROUTING: { 5049 struct ipv6_opt_hdr *hp; 5050 5051 err = skb_maybe_pull_tail(skb, 5052 off + 5053 sizeof(struct ipv6_opt_hdr), 5054 MAX_IPV6_HDR_LEN); 5055 if (err < 0) 5056 goto out; 5057 5058 hp = OPT_HDR(struct ipv6_opt_hdr, skb, off); 5059 nexthdr = hp->nexthdr; 5060 off += ipv6_optlen(hp); 5061 break; 5062 } 5063 case IPPROTO_AH: { 5064 struct ip_auth_hdr *hp; 5065 5066 err = skb_maybe_pull_tail(skb, 5067 off + 5068 sizeof(struct ip_auth_hdr), 5069 MAX_IPV6_HDR_LEN); 5070 if (err < 0) 5071 goto out; 5072 5073 hp = OPT_HDR(struct ip_auth_hdr, skb, off); 5074 nexthdr = hp->nexthdr; 5075 off += ipv6_authlen(hp); 5076 break; 5077 } 5078 case IPPROTO_FRAGMENT: { 5079 struct frag_hdr *hp; 5080 5081 err = skb_maybe_pull_tail(skb, 5082 off + 5083 sizeof(struct frag_hdr), 5084 MAX_IPV6_HDR_LEN); 5085 if (err < 0) 5086 goto out; 5087 5088 hp = OPT_HDR(struct frag_hdr, skb, off); 5089 5090 if (hp->frag_off & htons(IP6_OFFSET | IP6_MF)) 5091 fragment = true; 5092 5093 nexthdr = hp->nexthdr; 5094 off += sizeof(struct frag_hdr); 5095 break; 5096 } 5097 default: 5098 done = true; 5099 break; 5100 } 5101 } 5102 5103 err = -EPROTO; 5104 5105 if (!done || fragment) 5106 goto out; 5107 5108 csum = skb_checksum_setup_ip(skb, nexthdr, off); 5109 if (IS_ERR(csum)) 5110 return PTR_ERR(csum); 5111 5112 if (recalculate) 5113 *csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr, 5114 &ipv6_hdr(skb)->daddr, 5115 skb->len - off, nexthdr, 0); 5116 err = 0; 5117 5118 out: 5119 return err; 5120 } 5121 5122 /** 5123 * skb_checksum_setup - set up partial checksum offset 5124 * @skb: the skb to set up 5125 * @recalculate: if true the pseudo-header checksum will be recalculated 5126 */ 5127 int skb_checksum_setup(struct sk_buff *skb, bool recalculate) 5128 { 5129 int err; 5130 5131 switch (skb->protocol) { 5132 case htons(ETH_P_IP): 5133 err = skb_checksum_setup_ipv4(skb, recalculate); 5134 break; 5135 5136 case htons(ETH_P_IPV6): 5137 err = skb_checksum_setup_ipv6(skb, recalculate); 5138 break; 5139 5140 default: 5141 err = -EPROTO; 5142 break; 5143 } 5144 5145 return err; 5146 } 5147 EXPORT_SYMBOL(skb_checksum_setup); 5148 5149 /** 5150 * skb_checksum_maybe_trim - maybe trims the given skb 5151 * @skb: the skb to check 5152 * @transport_len: the data length beyond the network header 5153 * 5154 * Checks whether the given skb has data beyond the given transport length. 5155 * If so, returns a cloned skb trimmed to this transport length. 5156 * Otherwise returns the provided skb. Returns NULL in error cases 5157 * (e.g. transport_len exceeds skb length or out-of-memory). 5158 * 5159 * Caller needs to set the skb transport header and free any returned skb if it 5160 * differs from the provided skb. 5161 */ 5162 static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb, 5163 unsigned int transport_len) 5164 { 5165 struct sk_buff *skb_chk; 5166 unsigned int len = skb_transport_offset(skb) + transport_len; 5167 int ret; 5168 5169 if (skb->len < len) 5170 return NULL; 5171 else if (skb->len == len) 5172 return skb; 5173 5174 skb_chk = skb_clone(skb, GFP_ATOMIC); 5175 if (!skb_chk) 5176 return NULL; 5177 5178 ret = pskb_trim_rcsum(skb_chk, len); 5179 if (ret) { 5180 kfree_skb(skb_chk); 5181 return NULL; 5182 } 5183 5184 return skb_chk; 5185 } 5186 5187 /** 5188 * skb_checksum_trimmed - validate checksum of an skb 5189 * @skb: the skb to check 5190 * @transport_len: the data length beyond the network header 5191 * @skb_chkf: checksum function to use 5192 * 5193 * Applies the given checksum function skb_chkf to the provided skb. 5194 * Returns a checked and maybe trimmed skb. Returns NULL on error. 5195 * 5196 * If the skb has data beyond the given transport length, then a 5197 * trimmed & cloned skb is checked and returned. 5198 * 5199 * Caller needs to set the skb transport header and free any returned skb if it 5200 * differs from the provided skb. 5201 */ 5202 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb, 5203 unsigned int transport_len, 5204 __sum16(*skb_chkf)(struct sk_buff *skb)) 5205 { 5206 struct sk_buff *skb_chk; 5207 unsigned int offset = skb_transport_offset(skb); 5208 __sum16 ret; 5209 5210 skb_chk = skb_checksum_maybe_trim(skb, transport_len); 5211 if (!skb_chk) 5212 goto err; 5213 5214 if (!pskb_may_pull(skb_chk, offset)) 5215 goto err; 5216 5217 skb_pull_rcsum(skb_chk, offset); 5218 ret = skb_chkf(skb_chk); 5219 skb_push_rcsum(skb_chk, offset); 5220 5221 if (ret) 5222 goto err; 5223 5224 return skb_chk; 5225 5226 err: 5227 if (skb_chk && skb_chk != skb) 5228 kfree_skb(skb_chk); 5229 5230 return NULL; 5231 5232 } 5233 EXPORT_SYMBOL(skb_checksum_trimmed); 5234 5235 void __skb_warn_lro_forwarding(const struct sk_buff *skb) 5236 { 5237 net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n", 5238 skb->dev->name); 5239 } 5240 EXPORT_SYMBOL(__skb_warn_lro_forwarding); 5241 5242 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen) 5243 { 5244 if (head_stolen) { 5245 skb_release_head_state(skb); 5246 kmem_cache_free(skbuff_head_cache, skb); 5247 } else { 5248 __kfree_skb(skb); 5249 } 5250 } 5251 EXPORT_SYMBOL(kfree_skb_partial); 5252 5253 /** 5254 * skb_try_coalesce - try to merge skb to prior one 5255 * @to: prior buffer 5256 * @from: buffer to add 5257 * @fragstolen: pointer to boolean 5258 * @delta_truesize: how much more was allocated than was requested 5259 */ 5260 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from, 5261 bool *fragstolen, int *delta_truesize) 5262 { 5263 struct skb_shared_info *to_shinfo, *from_shinfo; 5264 int i, delta, len = from->len; 5265 5266 *fragstolen = false; 5267 5268 if (skb_cloned(to)) 5269 return false; 5270 5271 /* In general, avoid mixing slab allocated and page_pool allocated 5272 * pages within the same SKB. However when @to is not pp_recycle and 5273 * @from is cloned, we can transition frag pages from page_pool to 5274 * reference counted. 5275 * 5276 * On the other hand, don't allow coalescing two pp_recycle SKBs if 5277 * @from is cloned, in case the SKB is using page_pool fragment 5278 * references (PP_FLAG_PAGE_FRAG). Since we only take full page 5279 * references for cloned SKBs at the moment that would result in 5280 * inconsistent reference counts. 5281 */ 5282 if (to->pp_recycle != (from->pp_recycle && !skb_cloned(from))) 5283 return false; 5284 5285 if (len <= skb_tailroom(to)) { 5286 if (len) 5287 BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len)); 5288 *delta_truesize = 0; 5289 return true; 5290 } 5291 5292 to_shinfo = skb_shinfo(to); 5293 from_shinfo = skb_shinfo(from); 5294 if (to_shinfo->frag_list || from_shinfo->frag_list) 5295 return false; 5296 if (skb_zcopy(to) || skb_zcopy(from)) 5297 return false; 5298 5299 if (skb_headlen(from) != 0) { 5300 struct page *page; 5301 unsigned int offset; 5302 5303 if (to_shinfo->nr_frags + 5304 from_shinfo->nr_frags >= MAX_SKB_FRAGS) 5305 return false; 5306 5307 if (skb_head_is_locked(from)) 5308 return false; 5309 5310 delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff)); 5311 5312 page = virt_to_head_page(from->head); 5313 offset = from->data - (unsigned char *)page_address(page); 5314 5315 skb_fill_page_desc(to, to_shinfo->nr_frags, 5316 page, offset, skb_headlen(from)); 5317 *fragstolen = true; 5318 } else { 5319 if (to_shinfo->nr_frags + 5320 from_shinfo->nr_frags > MAX_SKB_FRAGS) 5321 return false; 5322 5323 delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from)); 5324 } 5325 5326 WARN_ON_ONCE(delta < len); 5327 5328 memcpy(to_shinfo->frags + to_shinfo->nr_frags, 5329 from_shinfo->frags, 5330 from_shinfo->nr_frags * sizeof(skb_frag_t)); 5331 to_shinfo->nr_frags += from_shinfo->nr_frags; 5332 5333 if (!skb_cloned(from)) 5334 from_shinfo->nr_frags = 0; 5335 5336 /* if the skb is not cloned this does nothing 5337 * since we set nr_frags to 0. 5338 */ 5339 for (i = 0; i < from_shinfo->nr_frags; i++) 5340 __skb_frag_ref(&from_shinfo->frags[i]); 5341 5342 to->truesize += delta; 5343 to->len += len; 5344 to->data_len += len; 5345 5346 *delta_truesize = delta; 5347 return true; 5348 } 5349 EXPORT_SYMBOL(skb_try_coalesce); 5350 5351 /** 5352 * skb_scrub_packet - scrub an skb 5353 * 5354 * @skb: buffer to clean 5355 * @xnet: packet is crossing netns 5356 * 5357 * skb_scrub_packet can be used after encapsulating or decapsulting a packet 5358 * into/from a tunnel. Some information have to be cleared during these 5359 * operations. 5360 * skb_scrub_packet can also be used to clean a skb before injecting it in 5361 * another namespace (@xnet == true). We have to clear all information in the 5362 * skb that could impact namespace isolation. 5363 */ 5364 void skb_scrub_packet(struct sk_buff *skb, bool xnet) 5365 { 5366 skb->pkt_type = PACKET_HOST; 5367 skb->skb_iif = 0; 5368 skb->ignore_df = 0; 5369 skb_dst_drop(skb); 5370 skb_ext_reset(skb); 5371 nf_reset_ct(skb); 5372 nf_reset_trace(skb); 5373 5374 #ifdef CONFIG_NET_SWITCHDEV 5375 skb->offload_fwd_mark = 0; 5376 skb->offload_l3_fwd_mark = 0; 5377 #endif 5378 5379 if (!xnet) 5380 return; 5381 5382 ipvs_reset(skb); 5383 skb->mark = 0; 5384 skb_clear_tstamp(skb); 5385 } 5386 EXPORT_SYMBOL_GPL(skb_scrub_packet); 5387 5388 /** 5389 * skb_gso_transport_seglen - Return length of individual segments of a gso packet 5390 * 5391 * @skb: GSO skb 5392 * 5393 * skb_gso_transport_seglen is used to determine the real size of the 5394 * individual segments, including Layer4 headers (TCP/UDP). 5395 * 5396 * The MAC/L2 or network (IP, IPv6) headers are not accounted for. 5397 */ 5398 static unsigned int skb_gso_transport_seglen(const struct sk_buff *skb) 5399 { 5400 const struct skb_shared_info *shinfo = skb_shinfo(skb); 5401 unsigned int thlen = 0; 5402 5403 if (skb->encapsulation) { 5404 thlen = skb_inner_transport_header(skb) - 5405 skb_transport_header(skb); 5406 5407 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) 5408 thlen += inner_tcp_hdrlen(skb); 5409 } else if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) { 5410 thlen = tcp_hdrlen(skb); 5411 } else if (unlikely(skb_is_gso_sctp(skb))) { 5412 thlen = sizeof(struct sctphdr); 5413 } else if (shinfo->gso_type & SKB_GSO_UDP_L4) { 5414 thlen = sizeof(struct udphdr); 5415 } 5416 /* UFO sets gso_size to the size of the fragmentation 5417 * payload, i.e. the size of the L4 (UDP) header is already 5418 * accounted for. 5419 */ 5420 return thlen + shinfo->gso_size; 5421 } 5422 5423 /** 5424 * skb_gso_network_seglen - Return length of individual segments of a gso packet 5425 * 5426 * @skb: GSO skb 5427 * 5428 * skb_gso_network_seglen is used to determine the real size of the 5429 * individual segments, including Layer3 (IP, IPv6) and L4 headers (TCP/UDP). 5430 * 5431 * The MAC/L2 header is not accounted for. 5432 */ 5433 static unsigned int skb_gso_network_seglen(const struct sk_buff *skb) 5434 { 5435 unsigned int hdr_len = skb_transport_header(skb) - 5436 skb_network_header(skb); 5437 5438 return hdr_len + skb_gso_transport_seglen(skb); 5439 } 5440 5441 /** 5442 * skb_gso_mac_seglen - Return length of individual segments of a gso packet 5443 * 5444 * @skb: GSO skb 5445 * 5446 * skb_gso_mac_seglen is used to determine the real size of the 5447 * individual segments, including MAC/L2, Layer3 (IP, IPv6) and L4 5448 * headers (TCP/UDP). 5449 */ 5450 static unsigned int skb_gso_mac_seglen(const struct sk_buff *skb) 5451 { 5452 unsigned int hdr_len = skb_transport_header(skb) - skb_mac_header(skb); 5453 5454 return hdr_len + skb_gso_transport_seglen(skb); 5455 } 5456 5457 /** 5458 * skb_gso_size_check - check the skb size, considering GSO_BY_FRAGS 5459 * 5460 * There are a couple of instances where we have a GSO skb, and we 5461 * want to determine what size it would be after it is segmented. 5462 * 5463 * We might want to check: 5464 * - L3+L4+payload size (e.g. IP forwarding) 5465 * - L2+L3+L4+payload size (e.g. sanity check before passing to driver) 5466 * 5467 * This is a helper to do that correctly considering GSO_BY_FRAGS. 5468 * 5469 * @skb: GSO skb 5470 * 5471 * @seg_len: The segmented length (from skb_gso_*_seglen). In the 5472 * GSO_BY_FRAGS case this will be [header sizes + GSO_BY_FRAGS]. 5473 * 5474 * @max_len: The maximum permissible length. 5475 * 5476 * Returns true if the segmented length <= max length. 5477 */ 5478 static inline bool skb_gso_size_check(const struct sk_buff *skb, 5479 unsigned int seg_len, 5480 unsigned int max_len) { 5481 const struct skb_shared_info *shinfo = skb_shinfo(skb); 5482 const struct sk_buff *iter; 5483 5484 if (shinfo->gso_size != GSO_BY_FRAGS) 5485 return seg_len <= max_len; 5486 5487 /* Undo this so we can re-use header sizes */ 5488 seg_len -= GSO_BY_FRAGS; 5489 5490 skb_walk_frags(skb, iter) { 5491 if (seg_len + skb_headlen(iter) > max_len) 5492 return false; 5493 } 5494 5495 return true; 5496 } 5497 5498 /** 5499 * skb_gso_validate_network_len - Will a split GSO skb fit into a given MTU? 5500 * 5501 * @skb: GSO skb 5502 * @mtu: MTU to validate against 5503 * 5504 * skb_gso_validate_network_len validates if a given skb will fit a 5505 * wanted MTU once split. It considers L3 headers, L4 headers, and the 5506 * payload. 5507 */ 5508 bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu) 5509 { 5510 return skb_gso_size_check(skb, skb_gso_network_seglen(skb), mtu); 5511 } 5512 EXPORT_SYMBOL_GPL(skb_gso_validate_network_len); 5513 5514 /** 5515 * skb_gso_validate_mac_len - Will a split GSO skb fit in a given length? 5516 * 5517 * @skb: GSO skb 5518 * @len: length to validate against 5519 * 5520 * skb_gso_validate_mac_len validates if a given skb will fit a wanted 5521 * length once split, including L2, L3 and L4 headers and the payload. 5522 */ 5523 bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len) 5524 { 5525 return skb_gso_size_check(skb, skb_gso_mac_seglen(skb), len); 5526 } 5527 EXPORT_SYMBOL_GPL(skb_gso_validate_mac_len); 5528 5529 static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb) 5530 { 5531 int mac_len, meta_len; 5532 void *meta; 5533 5534 if (skb_cow(skb, skb_headroom(skb)) < 0) { 5535 kfree_skb(skb); 5536 return NULL; 5537 } 5538 5539 mac_len = skb->data - skb_mac_header(skb); 5540 if (likely(mac_len > VLAN_HLEN + ETH_TLEN)) { 5541 memmove(skb_mac_header(skb) + VLAN_HLEN, skb_mac_header(skb), 5542 mac_len - VLAN_HLEN - ETH_TLEN); 5543 } 5544 5545 meta_len = skb_metadata_len(skb); 5546 if (meta_len) { 5547 meta = skb_metadata_end(skb) - meta_len; 5548 memmove(meta + VLAN_HLEN, meta, meta_len); 5549 } 5550 5551 skb->mac_header += VLAN_HLEN; 5552 return skb; 5553 } 5554 5555 struct sk_buff *skb_vlan_untag(struct sk_buff *skb) 5556 { 5557 struct vlan_hdr *vhdr; 5558 u16 vlan_tci; 5559 5560 if (unlikely(skb_vlan_tag_present(skb))) { 5561 /* vlan_tci is already set-up so leave this for another time */ 5562 return skb; 5563 } 5564 5565 skb = skb_share_check(skb, GFP_ATOMIC); 5566 if (unlikely(!skb)) 5567 goto err_free; 5568 /* We may access the two bytes after vlan_hdr in vlan_set_encap_proto(). */ 5569 if (unlikely(!pskb_may_pull(skb, VLAN_HLEN + sizeof(unsigned short)))) 5570 goto err_free; 5571 5572 vhdr = (struct vlan_hdr *)skb->data; 5573 vlan_tci = ntohs(vhdr->h_vlan_TCI); 5574 __vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci); 5575 5576 skb_pull_rcsum(skb, VLAN_HLEN); 5577 vlan_set_encap_proto(skb, vhdr); 5578 5579 skb = skb_reorder_vlan_header(skb); 5580 if (unlikely(!skb)) 5581 goto err_free; 5582 5583 skb_reset_network_header(skb); 5584 if (!skb_transport_header_was_set(skb)) 5585 skb_reset_transport_header(skb); 5586 skb_reset_mac_len(skb); 5587 5588 return skb; 5589 5590 err_free: 5591 kfree_skb(skb); 5592 return NULL; 5593 } 5594 EXPORT_SYMBOL(skb_vlan_untag); 5595 5596 int skb_ensure_writable(struct sk_buff *skb, unsigned int write_len) 5597 { 5598 if (!pskb_may_pull(skb, write_len)) 5599 return -ENOMEM; 5600 5601 if (!skb_cloned(skb) || skb_clone_writable(skb, write_len)) 5602 return 0; 5603 5604 return pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 5605 } 5606 EXPORT_SYMBOL(skb_ensure_writable); 5607 5608 /* remove VLAN header from packet and update csum accordingly. 5609 * expects a non skb_vlan_tag_present skb with a vlan tag payload 5610 */ 5611 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci) 5612 { 5613 struct vlan_hdr *vhdr; 5614 int offset = skb->data - skb_mac_header(skb); 5615 int err; 5616 5617 if (WARN_ONCE(offset, 5618 "__skb_vlan_pop got skb with skb->data not at mac header (offset %d)\n", 5619 offset)) { 5620 return -EINVAL; 5621 } 5622 5623 err = skb_ensure_writable(skb, VLAN_ETH_HLEN); 5624 if (unlikely(err)) 5625 return err; 5626 5627 skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN); 5628 5629 vhdr = (struct vlan_hdr *)(skb->data + ETH_HLEN); 5630 *vlan_tci = ntohs(vhdr->h_vlan_TCI); 5631 5632 memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN); 5633 __skb_pull(skb, VLAN_HLEN); 5634 5635 vlan_set_encap_proto(skb, vhdr); 5636 skb->mac_header += VLAN_HLEN; 5637 5638 if (skb_network_offset(skb) < ETH_HLEN) 5639 skb_set_network_header(skb, ETH_HLEN); 5640 5641 skb_reset_mac_len(skb); 5642 5643 return err; 5644 } 5645 EXPORT_SYMBOL(__skb_vlan_pop); 5646 5647 /* Pop a vlan tag either from hwaccel or from payload. 5648 * Expects skb->data at mac header. 5649 */ 5650 int skb_vlan_pop(struct sk_buff *skb) 5651 { 5652 u16 vlan_tci; 5653 __be16 vlan_proto; 5654 int err; 5655 5656 if (likely(skb_vlan_tag_present(skb))) { 5657 __vlan_hwaccel_clear_tag(skb); 5658 } else { 5659 if (unlikely(!eth_type_vlan(skb->protocol))) 5660 return 0; 5661 5662 err = __skb_vlan_pop(skb, &vlan_tci); 5663 if (err) 5664 return err; 5665 } 5666 /* move next vlan tag to hw accel tag */ 5667 if (likely(!eth_type_vlan(skb->protocol))) 5668 return 0; 5669 5670 vlan_proto = skb->protocol; 5671 err = __skb_vlan_pop(skb, &vlan_tci); 5672 if (unlikely(err)) 5673 return err; 5674 5675 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci); 5676 return 0; 5677 } 5678 EXPORT_SYMBOL(skb_vlan_pop); 5679 5680 /* Push a vlan tag either into hwaccel or into payload (if hwaccel tag present). 5681 * Expects skb->data at mac header. 5682 */ 5683 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci) 5684 { 5685 if (skb_vlan_tag_present(skb)) { 5686 int offset = skb->data - skb_mac_header(skb); 5687 int err; 5688 5689 if (WARN_ONCE(offset, 5690 "skb_vlan_push got skb with skb->data not at mac header (offset %d)\n", 5691 offset)) { 5692 return -EINVAL; 5693 } 5694 5695 err = __vlan_insert_tag(skb, skb->vlan_proto, 5696 skb_vlan_tag_get(skb)); 5697 if (err) 5698 return err; 5699 5700 skb->protocol = skb->vlan_proto; 5701 skb->mac_len += VLAN_HLEN; 5702 5703 skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN); 5704 } 5705 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci); 5706 return 0; 5707 } 5708 EXPORT_SYMBOL(skb_vlan_push); 5709 5710 /** 5711 * skb_eth_pop() - Drop the Ethernet header at the head of a packet 5712 * 5713 * @skb: Socket buffer to modify 5714 * 5715 * Drop the Ethernet header of @skb. 5716 * 5717 * Expects that skb->data points to the mac header and that no VLAN tags are 5718 * present. 5719 * 5720 * Returns 0 on success, -errno otherwise. 5721 */ 5722 int skb_eth_pop(struct sk_buff *skb) 5723 { 5724 if (!pskb_may_pull(skb, ETH_HLEN) || skb_vlan_tagged(skb) || 5725 skb_network_offset(skb) < ETH_HLEN) 5726 return -EPROTO; 5727 5728 skb_pull_rcsum(skb, ETH_HLEN); 5729 skb_reset_mac_header(skb); 5730 skb_reset_mac_len(skb); 5731 5732 return 0; 5733 } 5734 EXPORT_SYMBOL(skb_eth_pop); 5735 5736 /** 5737 * skb_eth_push() - Add a new Ethernet header at the head of a packet 5738 * 5739 * @skb: Socket buffer to modify 5740 * @dst: Destination MAC address of the new header 5741 * @src: Source MAC address of the new header 5742 * 5743 * Prepend @skb with a new Ethernet header. 5744 * 5745 * Expects that skb->data points to the mac header, which must be empty. 5746 * 5747 * Returns 0 on success, -errno otherwise. 5748 */ 5749 int skb_eth_push(struct sk_buff *skb, const unsigned char *dst, 5750 const unsigned char *src) 5751 { 5752 struct ethhdr *eth; 5753 int err; 5754 5755 if (skb_network_offset(skb) || skb_vlan_tag_present(skb)) 5756 return -EPROTO; 5757 5758 err = skb_cow_head(skb, sizeof(*eth)); 5759 if (err < 0) 5760 return err; 5761 5762 skb_push(skb, sizeof(*eth)); 5763 skb_reset_mac_header(skb); 5764 skb_reset_mac_len(skb); 5765 5766 eth = eth_hdr(skb); 5767 ether_addr_copy(eth->h_dest, dst); 5768 ether_addr_copy(eth->h_source, src); 5769 eth->h_proto = skb->protocol; 5770 5771 skb_postpush_rcsum(skb, eth, sizeof(*eth)); 5772 5773 return 0; 5774 } 5775 EXPORT_SYMBOL(skb_eth_push); 5776 5777 /* Update the ethertype of hdr and the skb csum value if required. */ 5778 static void skb_mod_eth_type(struct sk_buff *skb, struct ethhdr *hdr, 5779 __be16 ethertype) 5780 { 5781 if (skb->ip_summed == CHECKSUM_COMPLETE) { 5782 __be16 diff[] = { ~hdr->h_proto, ethertype }; 5783 5784 skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum); 5785 } 5786 5787 hdr->h_proto = ethertype; 5788 } 5789 5790 /** 5791 * skb_mpls_push() - push a new MPLS header after mac_len bytes from start of 5792 * the packet 5793 * 5794 * @skb: buffer 5795 * @mpls_lse: MPLS label stack entry to push 5796 * @mpls_proto: ethertype of the new MPLS header (expects 0x8847 or 0x8848) 5797 * @mac_len: length of the MAC header 5798 * @ethernet: flag to indicate if the resulting packet after skb_mpls_push is 5799 * ethernet 5800 * 5801 * Expects skb->data at mac header. 5802 * 5803 * Returns 0 on success, -errno otherwise. 5804 */ 5805 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto, 5806 int mac_len, bool ethernet) 5807 { 5808 struct mpls_shim_hdr *lse; 5809 int err; 5810 5811 if (unlikely(!eth_p_mpls(mpls_proto))) 5812 return -EINVAL; 5813 5814 /* Networking stack does not allow simultaneous Tunnel and MPLS GSO. */ 5815 if (skb->encapsulation) 5816 return -EINVAL; 5817 5818 err = skb_cow_head(skb, MPLS_HLEN); 5819 if (unlikely(err)) 5820 return err; 5821 5822 if (!skb->inner_protocol) { 5823 skb_set_inner_network_header(skb, skb_network_offset(skb)); 5824 skb_set_inner_protocol(skb, skb->protocol); 5825 } 5826 5827 skb_push(skb, MPLS_HLEN); 5828 memmove(skb_mac_header(skb) - MPLS_HLEN, skb_mac_header(skb), 5829 mac_len); 5830 skb_reset_mac_header(skb); 5831 skb_set_network_header(skb, mac_len); 5832 skb_reset_mac_len(skb); 5833 5834 lse = mpls_hdr(skb); 5835 lse->label_stack_entry = mpls_lse; 5836 skb_postpush_rcsum(skb, lse, MPLS_HLEN); 5837 5838 if (ethernet && mac_len >= ETH_HLEN) 5839 skb_mod_eth_type(skb, eth_hdr(skb), mpls_proto); 5840 skb->protocol = mpls_proto; 5841 5842 return 0; 5843 } 5844 EXPORT_SYMBOL_GPL(skb_mpls_push); 5845 5846 /** 5847 * skb_mpls_pop() - pop the outermost MPLS header 5848 * 5849 * @skb: buffer 5850 * @next_proto: ethertype of header after popped MPLS header 5851 * @mac_len: length of the MAC header 5852 * @ethernet: flag to indicate if the packet is ethernet 5853 * 5854 * Expects skb->data at mac header. 5855 * 5856 * Returns 0 on success, -errno otherwise. 5857 */ 5858 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len, 5859 bool ethernet) 5860 { 5861 int err; 5862 5863 if (unlikely(!eth_p_mpls(skb->protocol))) 5864 return 0; 5865 5866 err = skb_ensure_writable(skb, mac_len + MPLS_HLEN); 5867 if (unlikely(err)) 5868 return err; 5869 5870 skb_postpull_rcsum(skb, mpls_hdr(skb), MPLS_HLEN); 5871 memmove(skb_mac_header(skb) + MPLS_HLEN, skb_mac_header(skb), 5872 mac_len); 5873 5874 __skb_pull(skb, MPLS_HLEN); 5875 skb_reset_mac_header(skb); 5876 skb_set_network_header(skb, mac_len); 5877 5878 if (ethernet && mac_len >= ETH_HLEN) { 5879 struct ethhdr *hdr; 5880 5881 /* use mpls_hdr() to get ethertype to account for VLANs. */ 5882 hdr = (struct ethhdr *)((void *)mpls_hdr(skb) - ETH_HLEN); 5883 skb_mod_eth_type(skb, hdr, next_proto); 5884 } 5885 skb->protocol = next_proto; 5886 5887 return 0; 5888 } 5889 EXPORT_SYMBOL_GPL(skb_mpls_pop); 5890 5891 /** 5892 * skb_mpls_update_lse() - modify outermost MPLS header and update csum 5893 * 5894 * @skb: buffer 5895 * @mpls_lse: new MPLS label stack entry to update to 5896 * 5897 * Expects skb->data at mac header. 5898 * 5899 * Returns 0 on success, -errno otherwise. 5900 */ 5901 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse) 5902 { 5903 int err; 5904 5905 if (unlikely(!eth_p_mpls(skb->protocol))) 5906 return -EINVAL; 5907 5908 err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN); 5909 if (unlikely(err)) 5910 return err; 5911 5912 if (skb->ip_summed == CHECKSUM_COMPLETE) { 5913 __be32 diff[] = { ~mpls_hdr(skb)->label_stack_entry, mpls_lse }; 5914 5915 skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum); 5916 } 5917 5918 mpls_hdr(skb)->label_stack_entry = mpls_lse; 5919 5920 return 0; 5921 } 5922 EXPORT_SYMBOL_GPL(skb_mpls_update_lse); 5923 5924 /** 5925 * skb_mpls_dec_ttl() - decrement the TTL of the outermost MPLS header 5926 * 5927 * @skb: buffer 5928 * 5929 * Expects skb->data at mac header. 5930 * 5931 * Returns 0 on success, -errno otherwise. 5932 */ 5933 int skb_mpls_dec_ttl(struct sk_buff *skb) 5934 { 5935 u32 lse; 5936 u8 ttl; 5937 5938 if (unlikely(!eth_p_mpls(skb->protocol))) 5939 return -EINVAL; 5940 5941 if (!pskb_may_pull(skb, skb_network_offset(skb) + MPLS_HLEN)) 5942 return -ENOMEM; 5943 5944 lse = be32_to_cpu(mpls_hdr(skb)->label_stack_entry); 5945 ttl = (lse & MPLS_LS_TTL_MASK) >> MPLS_LS_TTL_SHIFT; 5946 if (!--ttl) 5947 return -EINVAL; 5948 5949 lse &= ~MPLS_LS_TTL_MASK; 5950 lse |= ttl << MPLS_LS_TTL_SHIFT; 5951 5952 return skb_mpls_update_lse(skb, cpu_to_be32(lse)); 5953 } 5954 EXPORT_SYMBOL_GPL(skb_mpls_dec_ttl); 5955 5956 /** 5957 * alloc_skb_with_frags - allocate skb with page frags 5958 * 5959 * @header_len: size of linear part 5960 * @data_len: needed length in frags 5961 * @max_page_order: max page order desired. 5962 * @errcode: pointer to error code if any 5963 * @gfp_mask: allocation mask 5964 * 5965 * This can be used to allocate a paged skb, given a maximal order for frags. 5966 */ 5967 struct sk_buff *alloc_skb_with_frags(unsigned long header_len, 5968 unsigned long data_len, 5969 int max_page_order, 5970 int *errcode, 5971 gfp_t gfp_mask) 5972 { 5973 int npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT; 5974 unsigned long chunk; 5975 struct sk_buff *skb; 5976 struct page *page; 5977 int i; 5978 5979 *errcode = -EMSGSIZE; 5980 /* Note this test could be relaxed, if we succeed to allocate 5981 * high order pages... 5982 */ 5983 if (npages > MAX_SKB_FRAGS) 5984 return NULL; 5985 5986 *errcode = -ENOBUFS; 5987 skb = alloc_skb(header_len, gfp_mask); 5988 if (!skb) 5989 return NULL; 5990 5991 skb->truesize += npages << PAGE_SHIFT; 5992 5993 for (i = 0; npages > 0; i++) { 5994 int order = max_page_order; 5995 5996 while (order) { 5997 if (npages >= 1 << order) { 5998 page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) | 5999 __GFP_COMP | 6000 __GFP_NOWARN, 6001 order); 6002 if (page) 6003 goto fill_page; 6004 /* Do not retry other high order allocations */ 6005 order = 1; 6006 max_page_order = 0; 6007 } 6008 order--; 6009 } 6010 page = alloc_page(gfp_mask); 6011 if (!page) 6012 goto failure; 6013 fill_page: 6014 chunk = min_t(unsigned long, data_len, 6015 PAGE_SIZE << order); 6016 skb_fill_page_desc(skb, i, page, 0, chunk); 6017 data_len -= chunk; 6018 npages -= 1 << order; 6019 } 6020 return skb; 6021 6022 failure: 6023 kfree_skb(skb); 6024 return NULL; 6025 } 6026 EXPORT_SYMBOL(alloc_skb_with_frags); 6027 6028 /* carve out the first off bytes from skb when off < headlen */ 6029 static int pskb_carve_inside_header(struct sk_buff *skb, const u32 off, 6030 const int headlen, gfp_t gfp_mask) 6031 { 6032 int i; 6033 int size = skb_end_offset(skb); 6034 int new_hlen = headlen - off; 6035 u8 *data; 6036 6037 size = SKB_DATA_ALIGN(size); 6038 6039 if (skb_pfmemalloc(skb)) 6040 gfp_mask |= __GFP_MEMALLOC; 6041 data = kmalloc_reserve(size + 6042 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)), 6043 gfp_mask, NUMA_NO_NODE, NULL); 6044 if (!data) 6045 return -ENOMEM; 6046 6047 size = SKB_WITH_OVERHEAD(ksize(data)); 6048 6049 /* Copy real data, and all frags */ 6050 skb_copy_from_linear_data_offset(skb, off, data, new_hlen); 6051 skb->len -= off; 6052 6053 memcpy((struct skb_shared_info *)(data + size), 6054 skb_shinfo(skb), 6055 offsetof(struct skb_shared_info, 6056 frags[skb_shinfo(skb)->nr_frags])); 6057 if (skb_cloned(skb)) { 6058 /* drop the old head gracefully */ 6059 if (skb_orphan_frags(skb, gfp_mask)) { 6060 kfree(data); 6061 return -ENOMEM; 6062 } 6063 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 6064 skb_frag_ref(skb, i); 6065 if (skb_has_frag_list(skb)) 6066 skb_clone_fraglist(skb); 6067 skb_release_data(skb); 6068 } else { 6069 /* we can reuse existing recount- all we did was 6070 * relocate values 6071 */ 6072 skb_free_head(skb); 6073 } 6074 6075 skb->head = data; 6076 skb->data = data; 6077 skb->head_frag = 0; 6078 skb_set_end_offset(skb, size); 6079 skb_set_tail_pointer(skb, skb_headlen(skb)); 6080 skb_headers_offset_update(skb, 0); 6081 skb->cloned = 0; 6082 skb->hdr_len = 0; 6083 skb->nohdr = 0; 6084 atomic_set(&skb_shinfo(skb)->dataref, 1); 6085 6086 return 0; 6087 } 6088 6089 static int pskb_carve(struct sk_buff *skb, const u32 off, gfp_t gfp); 6090 6091 /* carve out the first eat bytes from skb's frag_list. May recurse into 6092 * pskb_carve() 6093 */ 6094 static int pskb_carve_frag_list(struct sk_buff *skb, 6095 struct skb_shared_info *shinfo, int eat, 6096 gfp_t gfp_mask) 6097 { 6098 struct sk_buff *list = shinfo->frag_list; 6099 struct sk_buff *clone = NULL; 6100 struct sk_buff *insp = NULL; 6101 6102 do { 6103 if (!list) { 6104 pr_err("Not enough bytes to eat. Want %d\n", eat); 6105 return -EFAULT; 6106 } 6107 if (list->len <= eat) { 6108 /* Eaten as whole. */ 6109 eat -= list->len; 6110 list = list->next; 6111 insp = list; 6112 } else { 6113 /* Eaten partially. */ 6114 if (skb_shared(list)) { 6115 clone = skb_clone(list, gfp_mask); 6116 if (!clone) 6117 return -ENOMEM; 6118 insp = list->next; 6119 list = clone; 6120 } else { 6121 /* This may be pulled without problems. */ 6122 insp = list; 6123 } 6124 if (pskb_carve(list, eat, gfp_mask) < 0) { 6125 kfree_skb(clone); 6126 return -ENOMEM; 6127 } 6128 break; 6129 } 6130 } while (eat); 6131 6132 /* Free pulled out fragments. */ 6133 while ((list = shinfo->frag_list) != insp) { 6134 shinfo->frag_list = list->next; 6135 consume_skb(list); 6136 } 6137 /* And insert new clone at head. */ 6138 if (clone) { 6139 clone->next = list; 6140 shinfo->frag_list = clone; 6141 } 6142 return 0; 6143 } 6144 6145 /* carve off first len bytes from skb. Split line (off) is in the 6146 * non-linear part of skb 6147 */ 6148 static int pskb_carve_inside_nonlinear(struct sk_buff *skb, const u32 off, 6149 int pos, gfp_t gfp_mask) 6150 { 6151 int i, k = 0; 6152 int size = skb_end_offset(skb); 6153 u8 *data; 6154 const int nfrags = skb_shinfo(skb)->nr_frags; 6155 struct skb_shared_info *shinfo; 6156 6157 size = SKB_DATA_ALIGN(size); 6158 6159 if (skb_pfmemalloc(skb)) 6160 gfp_mask |= __GFP_MEMALLOC; 6161 data = kmalloc_reserve(size + 6162 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)), 6163 gfp_mask, NUMA_NO_NODE, NULL); 6164 if (!data) 6165 return -ENOMEM; 6166 6167 size = SKB_WITH_OVERHEAD(ksize(data)); 6168 6169 memcpy((struct skb_shared_info *)(data + size), 6170 skb_shinfo(skb), offsetof(struct skb_shared_info, frags[0])); 6171 if (skb_orphan_frags(skb, gfp_mask)) { 6172 kfree(data); 6173 return -ENOMEM; 6174 } 6175 shinfo = (struct skb_shared_info *)(data + size); 6176 for (i = 0; i < nfrags; i++) { 6177 int fsize = skb_frag_size(&skb_shinfo(skb)->frags[i]); 6178 6179 if (pos + fsize > off) { 6180 shinfo->frags[k] = skb_shinfo(skb)->frags[i]; 6181 6182 if (pos < off) { 6183 /* Split frag. 6184 * We have two variants in this case: 6185 * 1. Move all the frag to the second 6186 * part, if it is possible. F.e. 6187 * this approach is mandatory for TUX, 6188 * where splitting is expensive. 6189 * 2. Split is accurately. We make this. 6190 */ 6191 skb_frag_off_add(&shinfo->frags[0], off - pos); 6192 skb_frag_size_sub(&shinfo->frags[0], off - pos); 6193 } 6194 skb_frag_ref(skb, i); 6195 k++; 6196 } 6197 pos += fsize; 6198 } 6199 shinfo->nr_frags = k; 6200 if (skb_has_frag_list(skb)) 6201 skb_clone_fraglist(skb); 6202 6203 /* split line is in frag list */ 6204 if (k == 0 && pskb_carve_frag_list(skb, shinfo, off - pos, gfp_mask)) { 6205 /* skb_frag_unref() is not needed here as shinfo->nr_frags = 0. */ 6206 if (skb_has_frag_list(skb)) 6207 kfree_skb_list(skb_shinfo(skb)->frag_list); 6208 kfree(data); 6209 return -ENOMEM; 6210 } 6211 skb_release_data(skb); 6212 6213 skb->head = data; 6214 skb->head_frag = 0; 6215 skb->data = data; 6216 skb_set_end_offset(skb, size); 6217 skb_reset_tail_pointer(skb); 6218 skb_headers_offset_update(skb, 0); 6219 skb->cloned = 0; 6220 skb->hdr_len = 0; 6221 skb->nohdr = 0; 6222 skb->len -= off; 6223 skb->data_len = skb->len; 6224 atomic_set(&skb_shinfo(skb)->dataref, 1); 6225 return 0; 6226 } 6227 6228 /* remove len bytes from the beginning of the skb */ 6229 static int pskb_carve(struct sk_buff *skb, const u32 len, gfp_t gfp) 6230 { 6231 int headlen = skb_headlen(skb); 6232 6233 if (len < headlen) 6234 return pskb_carve_inside_header(skb, len, headlen, gfp); 6235 else 6236 return pskb_carve_inside_nonlinear(skb, len, headlen, gfp); 6237 } 6238 6239 /* Extract to_copy bytes starting at off from skb, and return this in 6240 * a new skb 6241 */ 6242 struct sk_buff *pskb_extract(struct sk_buff *skb, int off, 6243 int to_copy, gfp_t gfp) 6244 { 6245 struct sk_buff *clone = skb_clone(skb, gfp); 6246 6247 if (!clone) 6248 return NULL; 6249 6250 if (pskb_carve(clone, off, gfp) < 0 || 6251 pskb_trim(clone, to_copy)) { 6252 kfree_skb(clone); 6253 return NULL; 6254 } 6255 return clone; 6256 } 6257 EXPORT_SYMBOL(pskb_extract); 6258 6259 /** 6260 * skb_condense - try to get rid of fragments/frag_list if possible 6261 * @skb: buffer 6262 * 6263 * Can be used to save memory before skb is added to a busy queue. 6264 * If packet has bytes in frags and enough tail room in skb->head, 6265 * pull all of them, so that we can free the frags right now and adjust 6266 * truesize. 6267 * Notes: 6268 * We do not reallocate skb->head thus can not fail. 6269 * Caller must re-evaluate skb->truesize if needed. 6270 */ 6271 void skb_condense(struct sk_buff *skb) 6272 { 6273 if (skb->data_len) { 6274 if (skb->data_len > skb->end - skb->tail || 6275 skb_cloned(skb)) 6276 return; 6277 6278 /* Nice, we can free page frag(s) right now */ 6279 __pskb_pull_tail(skb, skb->data_len); 6280 } 6281 /* At this point, skb->truesize might be over estimated, 6282 * because skb had a fragment, and fragments do not tell 6283 * their truesize. 6284 * When we pulled its content into skb->head, fragment 6285 * was freed, but __pskb_pull_tail() could not possibly 6286 * adjust skb->truesize, not knowing the frag truesize. 6287 */ 6288 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb)); 6289 } 6290 6291 #ifdef CONFIG_SKB_EXTENSIONS 6292 static void *skb_ext_get_ptr(struct skb_ext *ext, enum skb_ext_id id) 6293 { 6294 return (void *)ext + (ext->offset[id] * SKB_EXT_ALIGN_VALUE); 6295 } 6296 6297 /** 6298 * __skb_ext_alloc - allocate a new skb extensions storage 6299 * 6300 * @flags: See kmalloc(). 6301 * 6302 * Returns the newly allocated pointer. The pointer can later attached to a 6303 * skb via __skb_ext_set(). 6304 * Note: caller must handle the skb_ext as an opaque data. 6305 */ 6306 struct skb_ext *__skb_ext_alloc(gfp_t flags) 6307 { 6308 struct skb_ext *new = kmem_cache_alloc(skbuff_ext_cache, flags); 6309 6310 if (new) { 6311 memset(new->offset, 0, sizeof(new->offset)); 6312 refcount_set(&new->refcnt, 1); 6313 } 6314 6315 return new; 6316 } 6317 6318 static struct skb_ext *skb_ext_maybe_cow(struct skb_ext *old, 6319 unsigned int old_active) 6320 { 6321 struct skb_ext *new; 6322 6323 if (refcount_read(&old->refcnt) == 1) 6324 return old; 6325 6326 new = kmem_cache_alloc(skbuff_ext_cache, GFP_ATOMIC); 6327 if (!new) 6328 return NULL; 6329 6330 memcpy(new, old, old->chunks * SKB_EXT_ALIGN_VALUE); 6331 refcount_set(&new->refcnt, 1); 6332 6333 #ifdef CONFIG_XFRM 6334 if (old_active & (1 << SKB_EXT_SEC_PATH)) { 6335 struct sec_path *sp = skb_ext_get_ptr(old, SKB_EXT_SEC_PATH); 6336 unsigned int i; 6337 6338 for (i = 0; i < sp->len; i++) 6339 xfrm_state_hold(sp->xvec[i]); 6340 } 6341 #endif 6342 __skb_ext_put(old); 6343 return new; 6344 } 6345 6346 /** 6347 * __skb_ext_set - attach the specified extension storage to this skb 6348 * @skb: buffer 6349 * @id: extension id 6350 * @ext: extension storage previously allocated via __skb_ext_alloc() 6351 * 6352 * Existing extensions, if any, are cleared. 6353 * 6354 * Returns the pointer to the extension. 6355 */ 6356 void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id, 6357 struct skb_ext *ext) 6358 { 6359 unsigned int newlen, newoff = SKB_EXT_CHUNKSIZEOF(*ext); 6360 6361 skb_ext_put(skb); 6362 newlen = newoff + skb_ext_type_len[id]; 6363 ext->chunks = newlen; 6364 ext->offset[id] = newoff; 6365 skb->extensions = ext; 6366 skb->active_extensions = 1 << id; 6367 return skb_ext_get_ptr(ext, id); 6368 } 6369 6370 /** 6371 * skb_ext_add - allocate space for given extension, COW if needed 6372 * @skb: buffer 6373 * @id: extension to allocate space for 6374 * 6375 * Allocates enough space for the given extension. 6376 * If the extension is already present, a pointer to that extension 6377 * is returned. 6378 * 6379 * If the skb was cloned, COW applies and the returned memory can be 6380 * modified without changing the extension space of clones buffers. 6381 * 6382 * Returns pointer to the extension or NULL on allocation failure. 6383 */ 6384 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id) 6385 { 6386 struct skb_ext *new, *old = NULL; 6387 unsigned int newlen, newoff; 6388 6389 if (skb->active_extensions) { 6390 old = skb->extensions; 6391 6392 new = skb_ext_maybe_cow(old, skb->active_extensions); 6393 if (!new) 6394 return NULL; 6395 6396 if (__skb_ext_exist(new, id)) 6397 goto set_active; 6398 6399 newoff = new->chunks; 6400 } else { 6401 newoff = SKB_EXT_CHUNKSIZEOF(*new); 6402 6403 new = __skb_ext_alloc(GFP_ATOMIC); 6404 if (!new) 6405 return NULL; 6406 } 6407 6408 newlen = newoff + skb_ext_type_len[id]; 6409 new->chunks = newlen; 6410 new->offset[id] = newoff; 6411 set_active: 6412 skb->slow_gro = 1; 6413 skb->extensions = new; 6414 skb->active_extensions |= 1 << id; 6415 return skb_ext_get_ptr(new, id); 6416 } 6417 EXPORT_SYMBOL(skb_ext_add); 6418 6419 #ifdef CONFIG_XFRM 6420 static void skb_ext_put_sp(struct sec_path *sp) 6421 { 6422 unsigned int i; 6423 6424 for (i = 0; i < sp->len; i++) 6425 xfrm_state_put(sp->xvec[i]); 6426 } 6427 #endif 6428 6429 #ifdef CONFIG_MCTP_FLOWS 6430 static void skb_ext_put_mctp(struct mctp_flow *flow) 6431 { 6432 if (flow->key) 6433 mctp_key_unref(flow->key); 6434 } 6435 #endif 6436 6437 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id) 6438 { 6439 struct skb_ext *ext = skb->extensions; 6440 6441 skb->active_extensions &= ~(1 << id); 6442 if (skb->active_extensions == 0) { 6443 skb->extensions = NULL; 6444 __skb_ext_put(ext); 6445 #ifdef CONFIG_XFRM 6446 } else if (id == SKB_EXT_SEC_PATH && 6447 refcount_read(&ext->refcnt) == 1) { 6448 struct sec_path *sp = skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH); 6449 6450 skb_ext_put_sp(sp); 6451 sp->len = 0; 6452 #endif 6453 } 6454 } 6455 EXPORT_SYMBOL(__skb_ext_del); 6456 6457 void __skb_ext_put(struct skb_ext *ext) 6458 { 6459 /* If this is last clone, nothing can increment 6460 * it after check passes. Avoids one atomic op. 6461 */ 6462 if (refcount_read(&ext->refcnt) == 1) 6463 goto free_now; 6464 6465 if (!refcount_dec_and_test(&ext->refcnt)) 6466 return; 6467 free_now: 6468 #ifdef CONFIG_XFRM 6469 if (__skb_ext_exist(ext, SKB_EXT_SEC_PATH)) 6470 skb_ext_put_sp(skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH)); 6471 #endif 6472 #ifdef CONFIG_MCTP_FLOWS 6473 if (__skb_ext_exist(ext, SKB_EXT_MCTP)) 6474 skb_ext_put_mctp(skb_ext_get_ptr(ext, SKB_EXT_MCTP)); 6475 #endif 6476 6477 kmem_cache_free(skbuff_ext_cache, ext); 6478 } 6479 EXPORT_SYMBOL(__skb_ext_put); 6480 #endif /* CONFIG_SKB_EXTENSIONS */ 6481 6482 /** 6483 * skb_attempt_defer_free - queue skb for remote freeing 6484 * @skb: buffer 6485 * 6486 * Put @skb in a per-cpu list, using the cpu which 6487 * allocated the skb/pages to reduce false sharing 6488 * and memory zone spinlock contention. 6489 */ 6490 void skb_attempt_defer_free(struct sk_buff *skb) 6491 { 6492 int cpu = skb->alloc_cpu; 6493 struct softnet_data *sd; 6494 unsigned long flags; 6495 bool kick; 6496 6497 if (WARN_ON_ONCE(cpu >= nr_cpu_ids) || 6498 !cpu_online(cpu) || 6499 cpu == raw_smp_processor_id()) { 6500 __kfree_skb(skb); 6501 return; 6502 } 6503 6504 sd = &per_cpu(softnet_data, cpu); 6505 /* We do not send an IPI or any signal. 6506 * Remote cpu will eventually call skb_defer_free_flush() 6507 */ 6508 spin_lock_irqsave(&sd->defer_lock, flags); 6509 skb->next = sd->defer_list; 6510 /* Paired with READ_ONCE() in skb_defer_free_flush() */ 6511 WRITE_ONCE(sd->defer_list, skb); 6512 sd->defer_count++; 6513 6514 /* kick every time queue length reaches 128. 6515 * This should avoid blocking in smp_call_function_single_async(). 6516 * This condition should hardly be bit under normal conditions, 6517 * unless cpu suddenly stopped to receive NIC interrupts. 6518 */ 6519 kick = sd->defer_count == 128; 6520 6521 spin_unlock_irqrestore(&sd->defer_lock, flags); 6522 6523 /* Make sure to trigger NET_RX_SOFTIRQ on the remote CPU 6524 * if we are unlucky enough (this seems very unlikely). 6525 */ 6526 if (unlikely(kick)) 6527 smp_call_function_single_async(cpu, &sd->defer_csd); 6528 } 6529