xref: /openbmc/linux/net/core/skbuff.c (revision c64d01b3ceba873aa8e8605598cec4a6bc6d1601)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *	Routines having to do with the 'struct sk_buff' memory handlers.
4  *
5  *	Authors:	Alan Cox <alan@lxorguk.ukuu.org.uk>
6  *			Florian La Roche <rzsfl@rz.uni-sb.de>
7  *
8  *	Fixes:
9  *		Alan Cox	:	Fixed the worst of the load
10  *					balancer bugs.
11  *		Dave Platt	:	Interrupt stacking fix.
12  *	Richard Kooijman	:	Timestamp fixes.
13  *		Alan Cox	:	Changed buffer format.
14  *		Alan Cox	:	destructor hook for AF_UNIX etc.
15  *		Linus Torvalds	:	Better skb_clone.
16  *		Alan Cox	:	Added skb_copy.
17  *		Alan Cox	:	Added all the changed routines Linus
18  *					only put in the headers
19  *		Ray VanTassle	:	Fixed --skb->lock in free
20  *		Alan Cox	:	skb_copy copy arp field
21  *		Andi Kleen	:	slabified it.
22  *		Robert Olsson	:	Removed skb_head_pool
23  *
24  *	NOTE:
25  *		The __skb_ routines should be called with interrupts
26  *	disabled, or you better be *real* sure that the operation is atomic
27  *	with respect to whatever list is being frobbed (e.g. via lock_sock()
28  *	or via disabling bottom half handlers, etc).
29  */
30 
31 /*
32  *	The functions in this file will not compile correctly with gcc 2.4.x
33  */
34 
35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
36 
37 #include <linux/module.h>
38 #include <linux/types.h>
39 #include <linux/kernel.h>
40 #include <linux/mm.h>
41 #include <linux/interrupt.h>
42 #include <linux/in.h>
43 #include <linux/inet.h>
44 #include <linux/slab.h>
45 #include <linux/tcp.h>
46 #include <linux/udp.h>
47 #include <linux/sctp.h>
48 #include <linux/netdevice.h>
49 #ifdef CONFIG_NET_CLS_ACT
50 #include <net/pkt_sched.h>
51 #endif
52 #include <linux/string.h>
53 #include <linux/skbuff.h>
54 #include <linux/splice.h>
55 #include <linux/cache.h>
56 #include <linux/rtnetlink.h>
57 #include <linux/init.h>
58 #include <linux/scatterlist.h>
59 #include <linux/errqueue.h>
60 #include <linux/prefetch.h>
61 #include <linux/if_vlan.h>
62 #include <linux/mpls.h>
63 #include <linux/kcov.h>
64 
65 #include <net/protocol.h>
66 #include <net/dst.h>
67 #include <net/sock.h>
68 #include <net/checksum.h>
69 #include <net/ip6_checksum.h>
70 #include <net/xfrm.h>
71 #include <net/mpls.h>
72 #include <net/mptcp.h>
73 #include <net/mctp.h>
74 #include <net/page_pool.h>
75 
76 #include <linux/uaccess.h>
77 #include <trace/events/skb.h>
78 #include <linux/highmem.h>
79 #include <linux/capability.h>
80 #include <linux/user_namespace.h>
81 #include <linux/indirect_call_wrapper.h>
82 
83 #include "datagram.h"
84 #include "sock_destructor.h"
85 
86 struct kmem_cache *skbuff_head_cache __ro_after_init;
87 static struct kmem_cache *skbuff_fclone_cache __ro_after_init;
88 #ifdef CONFIG_SKB_EXTENSIONS
89 static struct kmem_cache *skbuff_ext_cache __ro_after_init;
90 #endif
91 int sysctl_max_skb_frags __read_mostly = MAX_SKB_FRAGS;
92 EXPORT_SYMBOL(sysctl_max_skb_frags);
93 
94 /**
95  *	skb_panic - private function for out-of-line support
96  *	@skb:	buffer
97  *	@sz:	size
98  *	@addr:	address
99  *	@msg:	skb_over_panic or skb_under_panic
100  *
101  *	Out-of-line support for skb_put() and skb_push().
102  *	Called via the wrapper skb_over_panic() or skb_under_panic().
103  *	Keep out of line to prevent kernel bloat.
104  *	__builtin_return_address is not used because it is not always reliable.
105  */
106 static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr,
107 		      const char msg[])
108 {
109 	pr_emerg("%s: text:%px len:%d put:%d head:%px data:%px tail:%#lx end:%#lx dev:%s\n",
110 		 msg, addr, skb->len, sz, skb->head, skb->data,
111 		 (unsigned long)skb->tail, (unsigned long)skb->end,
112 		 skb->dev ? skb->dev->name : "<NULL>");
113 	BUG();
114 }
115 
116 static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr)
117 {
118 	skb_panic(skb, sz, addr, __func__);
119 }
120 
121 static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr)
122 {
123 	skb_panic(skb, sz, addr, __func__);
124 }
125 
126 #define NAPI_SKB_CACHE_SIZE	64
127 #define NAPI_SKB_CACHE_BULK	16
128 #define NAPI_SKB_CACHE_HALF	(NAPI_SKB_CACHE_SIZE / 2)
129 
130 struct napi_alloc_cache {
131 	struct page_frag_cache page;
132 	unsigned int skb_count;
133 	void *skb_cache[NAPI_SKB_CACHE_SIZE];
134 };
135 
136 static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache);
137 static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache);
138 
139 void *__napi_alloc_frag_align(unsigned int fragsz, unsigned int align_mask)
140 {
141 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
142 
143 	fragsz = SKB_DATA_ALIGN(fragsz);
144 
145 	return page_frag_alloc_align(&nc->page, fragsz, GFP_ATOMIC, align_mask);
146 }
147 EXPORT_SYMBOL(__napi_alloc_frag_align);
148 
149 void *__netdev_alloc_frag_align(unsigned int fragsz, unsigned int align_mask)
150 {
151 	void *data;
152 
153 	fragsz = SKB_DATA_ALIGN(fragsz);
154 	if (in_hardirq() || irqs_disabled()) {
155 		struct page_frag_cache *nc = this_cpu_ptr(&netdev_alloc_cache);
156 
157 		data = page_frag_alloc_align(nc, fragsz, GFP_ATOMIC, align_mask);
158 	} else {
159 		struct napi_alloc_cache *nc;
160 
161 		local_bh_disable();
162 		nc = this_cpu_ptr(&napi_alloc_cache);
163 		data = page_frag_alloc_align(&nc->page, fragsz, GFP_ATOMIC, align_mask);
164 		local_bh_enable();
165 	}
166 	return data;
167 }
168 EXPORT_SYMBOL(__netdev_alloc_frag_align);
169 
170 static struct sk_buff *napi_skb_cache_get(void)
171 {
172 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
173 	struct sk_buff *skb;
174 
175 	if (unlikely(!nc->skb_count))
176 		nc->skb_count = kmem_cache_alloc_bulk(skbuff_head_cache,
177 						      GFP_ATOMIC,
178 						      NAPI_SKB_CACHE_BULK,
179 						      nc->skb_cache);
180 	if (unlikely(!nc->skb_count))
181 		return NULL;
182 
183 	skb = nc->skb_cache[--nc->skb_count];
184 	kasan_unpoison_object_data(skbuff_head_cache, skb);
185 
186 	return skb;
187 }
188 
189 /* Caller must provide SKB that is memset cleared */
190 static void __build_skb_around(struct sk_buff *skb, void *data,
191 			       unsigned int frag_size)
192 {
193 	struct skb_shared_info *shinfo;
194 	unsigned int size = frag_size ? : ksize(data);
195 
196 	size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
197 
198 	/* Assumes caller memset cleared SKB */
199 	skb->truesize = SKB_TRUESIZE(size);
200 	refcount_set(&skb->users, 1);
201 	skb->head = data;
202 	skb->data = data;
203 	skb_reset_tail_pointer(skb);
204 	skb->end = skb->tail + size;
205 	skb->mac_header = (typeof(skb->mac_header))~0U;
206 	skb->transport_header = (typeof(skb->transport_header))~0U;
207 
208 	/* make sure we initialize shinfo sequentially */
209 	shinfo = skb_shinfo(skb);
210 	memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
211 	atomic_set(&shinfo->dataref, 1);
212 
213 	skb_set_kcov_handle(skb, kcov_common_handle());
214 }
215 
216 /**
217  * __build_skb - build a network buffer
218  * @data: data buffer provided by caller
219  * @frag_size: size of data, or 0 if head was kmalloced
220  *
221  * Allocate a new &sk_buff. Caller provides space holding head and
222  * skb_shared_info. @data must have been allocated by kmalloc() only if
223  * @frag_size is 0, otherwise data should come from the page allocator
224  *  or vmalloc()
225  * The return is the new skb buffer.
226  * On a failure the return is %NULL, and @data is not freed.
227  * Notes :
228  *  Before IO, driver allocates only data buffer where NIC put incoming frame
229  *  Driver should add room at head (NET_SKB_PAD) and
230  *  MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info))
231  *  After IO, driver calls build_skb(), to allocate sk_buff and populate it
232  *  before giving packet to stack.
233  *  RX rings only contains data buffers, not full skbs.
234  */
235 struct sk_buff *__build_skb(void *data, unsigned int frag_size)
236 {
237 	struct sk_buff *skb;
238 
239 	skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC);
240 	if (unlikely(!skb))
241 		return NULL;
242 
243 	memset(skb, 0, offsetof(struct sk_buff, tail));
244 	__build_skb_around(skb, data, frag_size);
245 
246 	return skb;
247 }
248 
249 /* build_skb() is wrapper over __build_skb(), that specifically
250  * takes care of skb->head and skb->pfmemalloc
251  * This means that if @frag_size is not zero, then @data must be backed
252  * by a page fragment, not kmalloc() or vmalloc()
253  */
254 struct sk_buff *build_skb(void *data, unsigned int frag_size)
255 {
256 	struct sk_buff *skb = __build_skb(data, frag_size);
257 
258 	if (skb && frag_size) {
259 		skb->head_frag = 1;
260 		if (page_is_pfmemalloc(virt_to_head_page(data)))
261 			skb->pfmemalloc = 1;
262 	}
263 	return skb;
264 }
265 EXPORT_SYMBOL(build_skb);
266 
267 /**
268  * build_skb_around - build a network buffer around provided skb
269  * @skb: sk_buff provide by caller, must be memset cleared
270  * @data: data buffer provided by caller
271  * @frag_size: size of data, or 0 if head was kmalloced
272  */
273 struct sk_buff *build_skb_around(struct sk_buff *skb,
274 				 void *data, unsigned int frag_size)
275 {
276 	if (unlikely(!skb))
277 		return NULL;
278 
279 	__build_skb_around(skb, data, frag_size);
280 
281 	if (frag_size) {
282 		skb->head_frag = 1;
283 		if (page_is_pfmemalloc(virt_to_head_page(data)))
284 			skb->pfmemalloc = 1;
285 	}
286 	return skb;
287 }
288 EXPORT_SYMBOL(build_skb_around);
289 
290 /**
291  * __napi_build_skb - build a network buffer
292  * @data: data buffer provided by caller
293  * @frag_size: size of data, or 0 if head was kmalloced
294  *
295  * Version of __build_skb() that uses NAPI percpu caches to obtain
296  * skbuff_head instead of inplace allocation.
297  *
298  * Returns a new &sk_buff on success, %NULL on allocation failure.
299  */
300 static struct sk_buff *__napi_build_skb(void *data, unsigned int frag_size)
301 {
302 	struct sk_buff *skb;
303 
304 	skb = napi_skb_cache_get();
305 	if (unlikely(!skb))
306 		return NULL;
307 
308 	memset(skb, 0, offsetof(struct sk_buff, tail));
309 	__build_skb_around(skb, data, frag_size);
310 
311 	return skb;
312 }
313 
314 /**
315  * napi_build_skb - build a network buffer
316  * @data: data buffer provided by caller
317  * @frag_size: size of data, or 0 if head was kmalloced
318  *
319  * Version of __napi_build_skb() that takes care of skb->head_frag
320  * and skb->pfmemalloc when the data is a page or page fragment.
321  *
322  * Returns a new &sk_buff on success, %NULL on allocation failure.
323  */
324 struct sk_buff *napi_build_skb(void *data, unsigned int frag_size)
325 {
326 	struct sk_buff *skb = __napi_build_skb(data, frag_size);
327 
328 	if (likely(skb) && frag_size) {
329 		skb->head_frag = 1;
330 		skb_propagate_pfmemalloc(virt_to_head_page(data), skb);
331 	}
332 
333 	return skb;
334 }
335 EXPORT_SYMBOL(napi_build_skb);
336 
337 /*
338  * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells
339  * the caller if emergency pfmemalloc reserves are being used. If it is and
340  * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves
341  * may be used. Otherwise, the packet data may be discarded until enough
342  * memory is free
343  */
344 static void *kmalloc_reserve(size_t size, gfp_t flags, int node,
345 			     bool *pfmemalloc)
346 {
347 	void *obj;
348 	bool ret_pfmemalloc = false;
349 
350 	/*
351 	 * Try a regular allocation, when that fails and we're not entitled
352 	 * to the reserves, fail.
353 	 */
354 	obj = kmalloc_node_track_caller(size,
355 					flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
356 					node);
357 	if (obj || !(gfp_pfmemalloc_allowed(flags)))
358 		goto out;
359 
360 	/* Try again but now we are using pfmemalloc reserves */
361 	ret_pfmemalloc = true;
362 	obj = kmalloc_node_track_caller(size, flags, node);
363 
364 out:
365 	if (pfmemalloc)
366 		*pfmemalloc = ret_pfmemalloc;
367 
368 	return obj;
369 }
370 
371 /* 	Allocate a new skbuff. We do this ourselves so we can fill in a few
372  *	'private' fields and also do memory statistics to find all the
373  *	[BEEP] leaks.
374  *
375  */
376 
377 /**
378  *	__alloc_skb	-	allocate a network buffer
379  *	@size: size to allocate
380  *	@gfp_mask: allocation mask
381  *	@flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache
382  *		instead of head cache and allocate a cloned (child) skb.
383  *		If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for
384  *		allocations in case the data is required for writeback
385  *	@node: numa node to allocate memory on
386  *
387  *	Allocate a new &sk_buff. The returned buffer has no headroom and a
388  *	tail room of at least size bytes. The object has a reference count
389  *	of one. The return is the buffer. On a failure the return is %NULL.
390  *
391  *	Buffers may only be allocated from interrupts using a @gfp_mask of
392  *	%GFP_ATOMIC.
393  */
394 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
395 			    int flags, int node)
396 {
397 	struct kmem_cache *cache;
398 	struct sk_buff *skb;
399 	unsigned int osize;
400 	bool pfmemalloc;
401 	u8 *data;
402 
403 	cache = (flags & SKB_ALLOC_FCLONE)
404 		? skbuff_fclone_cache : skbuff_head_cache;
405 
406 	if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX))
407 		gfp_mask |= __GFP_MEMALLOC;
408 
409 	/* Get the HEAD */
410 	if ((flags & (SKB_ALLOC_FCLONE | SKB_ALLOC_NAPI)) == SKB_ALLOC_NAPI &&
411 	    likely(node == NUMA_NO_NODE || node == numa_mem_id()))
412 		skb = napi_skb_cache_get();
413 	else
414 		skb = kmem_cache_alloc_node(cache, gfp_mask & ~GFP_DMA, node);
415 	if (unlikely(!skb))
416 		return NULL;
417 	prefetchw(skb);
418 
419 	/* We do our best to align skb_shared_info on a separate cache
420 	 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives
421 	 * aligned memory blocks, unless SLUB/SLAB debug is enabled.
422 	 * Both skb->head and skb_shared_info are cache line aligned.
423 	 */
424 	size = SKB_DATA_ALIGN(size);
425 	size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
426 	data = kmalloc_reserve(size, gfp_mask, node, &pfmemalloc);
427 	if (unlikely(!data))
428 		goto nodata;
429 	/* kmalloc(size) might give us more room than requested.
430 	 * Put skb_shared_info exactly at the end of allocated zone,
431 	 * to allow max possible filling before reallocation.
432 	 */
433 	osize = ksize(data);
434 	size = SKB_WITH_OVERHEAD(osize);
435 	prefetchw(data + size);
436 
437 	/*
438 	 * Only clear those fields we need to clear, not those that we will
439 	 * actually initialise below. Hence, don't put any more fields after
440 	 * the tail pointer in struct sk_buff!
441 	 */
442 	memset(skb, 0, offsetof(struct sk_buff, tail));
443 	__build_skb_around(skb, data, osize);
444 	skb->pfmemalloc = pfmemalloc;
445 
446 	if (flags & SKB_ALLOC_FCLONE) {
447 		struct sk_buff_fclones *fclones;
448 
449 		fclones = container_of(skb, struct sk_buff_fclones, skb1);
450 
451 		skb->fclone = SKB_FCLONE_ORIG;
452 		refcount_set(&fclones->fclone_ref, 1);
453 
454 		fclones->skb2.fclone = SKB_FCLONE_CLONE;
455 	}
456 
457 	return skb;
458 
459 nodata:
460 	kmem_cache_free(cache, skb);
461 	return NULL;
462 }
463 EXPORT_SYMBOL(__alloc_skb);
464 
465 /**
466  *	__netdev_alloc_skb - allocate an skbuff for rx on a specific device
467  *	@dev: network device to receive on
468  *	@len: length to allocate
469  *	@gfp_mask: get_free_pages mask, passed to alloc_skb
470  *
471  *	Allocate a new &sk_buff and assign it a usage count of one. The
472  *	buffer has NET_SKB_PAD headroom built in. Users should allocate
473  *	the headroom they think they need without accounting for the
474  *	built in space. The built in space is used for optimisations.
475  *
476  *	%NULL is returned if there is no free memory.
477  */
478 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len,
479 				   gfp_t gfp_mask)
480 {
481 	struct page_frag_cache *nc;
482 	struct sk_buff *skb;
483 	bool pfmemalloc;
484 	void *data;
485 
486 	len += NET_SKB_PAD;
487 
488 	/* If requested length is either too small or too big,
489 	 * we use kmalloc() for skb->head allocation.
490 	 */
491 	if (len <= SKB_WITH_OVERHEAD(1024) ||
492 	    len > SKB_WITH_OVERHEAD(PAGE_SIZE) ||
493 	    (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
494 		skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
495 		if (!skb)
496 			goto skb_fail;
497 		goto skb_success;
498 	}
499 
500 	len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
501 	len = SKB_DATA_ALIGN(len);
502 
503 	if (sk_memalloc_socks())
504 		gfp_mask |= __GFP_MEMALLOC;
505 
506 	if (in_hardirq() || irqs_disabled()) {
507 		nc = this_cpu_ptr(&netdev_alloc_cache);
508 		data = page_frag_alloc(nc, len, gfp_mask);
509 		pfmemalloc = nc->pfmemalloc;
510 	} else {
511 		local_bh_disable();
512 		nc = this_cpu_ptr(&napi_alloc_cache.page);
513 		data = page_frag_alloc(nc, len, gfp_mask);
514 		pfmemalloc = nc->pfmemalloc;
515 		local_bh_enable();
516 	}
517 
518 	if (unlikely(!data))
519 		return NULL;
520 
521 	skb = __build_skb(data, len);
522 	if (unlikely(!skb)) {
523 		skb_free_frag(data);
524 		return NULL;
525 	}
526 
527 	if (pfmemalloc)
528 		skb->pfmemalloc = 1;
529 	skb->head_frag = 1;
530 
531 skb_success:
532 	skb_reserve(skb, NET_SKB_PAD);
533 	skb->dev = dev;
534 
535 skb_fail:
536 	return skb;
537 }
538 EXPORT_SYMBOL(__netdev_alloc_skb);
539 
540 /**
541  *	__napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance
542  *	@napi: napi instance this buffer was allocated for
543  *	@len: length to allocate
544  *	@gfp_mask: get_free_pages mask, passed to alloc_skb and alloc_pages
545  *
546  *	Allocate a new sk_buff for use in NAPI receive.  This buffer will
547  *	attempt to allocate the head from a special reserved region used
548  *	only for NAPI Rx allocation.  By doing this we can save several
549  *	CPU cycles by avoiding having to disable and re-enable IRQs.
550  *
551  *	%NULL is returned if there is no free memory.
552  */
553 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, unsigned int len,
554 				 gfp_t gfp_mask)
555 {
556 	struct napi_alloc_cache *nc;
557 	struct sk_buff *skb;
558 	void *data;
559 
560 	len += NET_SKB_PAD + NET_IP_ALIGN;
561 
562 	/* If requested length is either too small or too big,
563 	 * we use kmalloc() for skb->head allocation.
564 	 */
565 	if (len <= SKB_WITH_OVERHEAD(1024) ||
566 	    len > SKB_WITH_OVERHEAD(PAGE_SIZE) ||
567 	    (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
568 		skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX | SKB_ALLOC_NAPI,
569 				  NUMA_NO_NODE);
570 		if (!skb)
571 			goto skb_fail;
572 		goto skb_success;
573 	}
574 
575 	nc = this_cpu_ptr(&napi_alloc_cache);
576 	len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
577 	len = SKB_DATA_ALIGN(len);
578 
579 	if (sk_memalloc_socks())
580 		gfp_mask |= __GFP_MEMALLOC;
581 
582 	data = page_frag_alloc(&nc->page, len, gfp_mask);
583 	if (unlikely(!data))
584 		return NULL;
585 
586 	skb = __napi_build_skb(data, len);
587 	if (unlikely(!skb)) {
588 		skb_free_frag(data);
589 		return NULL;
590 	}
591 
592 	if (nc->page.pfmemalloc)
593 		skb->pfmemalloc = 1;
594 	skb->head_frag = 1;
595 
596 skb_success:
597 	skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN);
598 	skb->dev = napi->dev;
599 
600 skb_fail:
601 	return skb;
602 }
603 EXPORT_SYMBOL(__napi_alloc_skb);
604 
605 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
606 		     int size, unsigned int truesize)
607 {
608 	skb_fill_page_desc(skb, i, page, off, size);
609 	skb->len += size;
610 	skb->data_len += size;
611 	skb->truesize += truesize;
612 }
613 EXPORT_SYMBOL(skb_add_rx_frag);
614 
615 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
616 			  unsigned int truesize)
617 {
618 	skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
619 
620 	skb_frag_size_add(frag, size);
621 	skb->len += size;
622 	skb->data_len += size;
623 	skb->truesize += truesize;
624 }
625 EXPORT_SYMBOL(skb_coalesce_rx_frag);
626 
627 static void skb_drop_list(struct sk_buff **listp)
628 {
629 	kfree_skb_list(*listp);
630 	*listp = NULL;
631 }
632 
633 static inline void skb_drop_fraglist(struct sk_buff *skb)
634 {
635 	skb_drop_list(&skb_shinfo(skb)->frag_list);
636 }
637 
638 static void skb_clone_fraglist(struct sk_buff *skb)
639 {
640 	struct sk_buff *list;
641 
642 	skb_walk_frags(skb, list)
643 		skb_get(list);
644 }
645 
646 static void skb_free_head(struct sk_buff *skb)
647 {
648 	unsigned char *head = skb->head;
649 
650 	if (skb->head_frag) {
651 		if (skb_pp_recycle(skb, head))
652 			return;
653 		skb_free_frag(head);
654 	} else {
655 		kfree(head);
656 	}
657 }
658 
659 static void skb_release_data(struct sk_buff *skb)
660 {
661 	struct skb_shared_info *shinfo = skb_shinfo(skb);
662 	int i;
663 
664 	if (skb->cloned &&
665 	    atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
666 			      &shinfo->dataref))
667 		goto exit;
668 
669 	skb_zcopy_clear(skb, true);
670 
671 	for (i = 0; i < shinfo->nr_frags; i++)
672 		__skb_frag_unref(&shinfo->frags[i], skb->pp_recycle);
673 
674 	if (shinfo->frag_list)
675 		kfree_skb_list(shinfo->frag_list);
676 
677 	skb_free_head(skb);
678 exit:
679 	/* When we clone an SKB we copy the reycling bit. The pp_recycle
680 	 * bit is only set on the head though, so in order to avoid races
681 	 * while trying to recycle fragments on __skb_frag_unref() we need
682 	 * to make one SKB responsible for triggering the recycle path.
683 	 * So disable the recycling bit if an SKB is cloned and we have
684 	 * additional references to to the fragmented part of the SKB.
685 	 * Eventually the last SKB will have the recycling bit set and it's
686 	 * dataref set to 0, which will trigger the recycling
687 	 */
688 	skb->pp_recycle = 0;
689 }
690 
691 /*
692  *	Free an skbuff by memory without cleaning the state.
693  */
694 static void kfree_skbmem(struct sk_buff *skb)
695 {
696 	struct sk_buff_fclones *fclones;
697 
698 	switch (skb->fclone) {
699 	case SKB_FCLONE_UNAVAILABLE:
700 		kmem_cache_free(skbuff_head_cache, skb);
701 		return;
702 
703 	case SKB_FCLONE_ORIG:
704 		fclones = container_of(skb, struct sk_buff_fclones, skb1);
705 
706 		/* We usually free the clone (TX completion) before original skb
707 		 * This test would have no chance to be true for the clone,
708 		 * while here, branch prediction will be good.
709 		 */
710 		if (refcount_read(&fclones->fclone_ref) == 1)
711 			goto fastpath;
712 		break;
713 
714 	default: /* SKB_FCLONE_CLONE */
715 		fclones = container_of(skb, struct sk_buff_fclones, skb2);
716 		break;
717 	}
718 	if (!refcount_dec_and_test(&fclones->fclone_ref))
719 		return;
720 fastpath:
721 	kmem_cache_free(skbuff_fclone_cache, fclones);
722 }
723 
724 void skb_release_head_state(struct sk_buff *skb)
725 {
726 	skb_dst_drop(skb);
727 	if (skb->destructor) {
728 		WARN_ON(in_hardirq());
729 		skb->destructor(skb);
730 	}
731 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
732 	nf_conntrack_put(skb_nfct(skb));
733 #endif
734 	skb_ext_put(skb);
735 }
736 
737 /* Free everything but the sk_buff shell. */
738 static void skb_release_all(struct sk_buff *skb)
739 {
740 	skb_release_head_state(skb);
741 	if (likely(skb->head))
742 		skb_release_data(skb);
743 }
744 
745 /**
746  *	__kfree_skb - private function
747  *	@skb: buffer
748  *
749  *	Free an sk_buff. Release anything attached to the buffer.
750  *	Clean the state. This is an internal helper function. Users should
751  *	always call kfree_skb
752  */
753 
754 void __kfree_skb(struct sk_buff *skb)
755 {
756 	skb_release_all(skb);
757 	kfree_skbmem(skb);
758 }
759 EXPORT_SYMBOL(__kfree_skb);
760 
761 /**
762  *	kfree_skb - free an sk_buff
763  *	@skb: buffer to free
764  *
765  *	Drop a reference to the buffer and free it if the usage count has
766  *	hit zero.
767  */
768 void kfree_skb(struct sk_buff *skb)
769 {
770 	if (!skb_unref(skb))
771 		return;
772 
773 	trace_kfree_skb(skb, __builtin_return_address(0));
774 	__kfree_skb(skb);
775 }
776 EXPORT_SYMBOL(kfree_skb);
777 
778 void kfree_skb_list(struct sk_buff *segs)
779 {
780 	while (segs) {
781 		struct sk_buff *next = segs->next;
782 
783 		kfree_skb(segs);
784 		segs = next;
785 	}
786 }
787 EXPORT_SYMBOL(kfree_skb_list);
788 
789 /* Dump skb information and contents.
790  *
791  * Must only be called from net_ratelimit()-ed paths.
792  *
793  * Dumps whole packets if full_pkt, only headers otherwise.
794  */
795 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt)
796 {
797 	struct skb_shared_info *sh = skb_shinfo(skb);
798 	struct net_device *dev = skb->dev;
799 	struct sock *sk = skb->sk;
800 	struct sk_buff *list_skb;
801 	bool has_mac, has_trans;
802 	int headroom, tailroom;
803 	int i, len, seg_len;
804 
805 	if (full_pkt)
806 		len = skb->len;
807 	else
808 		len = min_t(int, skb->len, MAX_HEADER + 128);
809 
810 	headroom = skb_headroom(skb);
811 	tailroom = skb_tailroom(skb);
812 
813 	has_mac = skb_mac_header_was_set(skb);
814 	has_trans = skb_transport_header_was_set(skb);
815 
816 	printk("%sskb len=%u headroom=%u headlen=%u tailroom=%u\n"
817 	       "mac=(%d,%d) net=(%d,%d) trans=%d\n"
818 	       "shinfo(txflags=%u nr_frags=%u gso(size=%hu type=%u segs=%hu))\n"
819 	       "csum(0x%x ip_summed=%u complete_sw=%u valid=%u level=%u)\n"
820 	       "hash(0x%x sw=%u l4=%u) proto=0x%04x pkttype=%u iif=%d\n",
821 	       level, skb->len, headroom, skb_headlen(skb), tailroom,
822 	       has_mac ? skb->mac_header : -1,
823 	       has_mac ? skb_mac_header_len(skb) : -1,
824 	       skb->network_header,
825 	       has_trans ? skb_network_header_len(skb) : -1,
826 	       has_trans ? skb->transport_header : -1,
827 	       sh->tx_flags, sh->nr_frags,
828 	       sh->gso_size, sh->gso_type, sh->gso_segs,
829 	       skb->csum, skb->ip_summed, skb->csum_complete_sw,
830 	       skb->csum_valid, skb->csum_level,
831 	       skb->hash, skb->sw_hash, skb->l4_hash,
832 	       ntohs(skb->protocol), skb->pkt_type, skb->skb_iif);
833 
834 	if (dev)
835 		printk("%sdev name=%s feat=0x%pNF\n",
836 		       level, dev->name, &dev->features);
837 	if (sk)
838 		printk("%ssk family=%hu type=%u proto=%u\n",
839 		       level, sk->sk_family, sk->sk_type, sk->sk_protocol);
840 
841 	if (full_pkt && headroom)
842 		print_hex_dump(level, "skb headroom: ", DUMP_PREFIX_OFFSET,
843 			       16, 1, skb->head, headroom, false);
844 
845 	seg_len = min_t(int, skb_headlen(skb), len);
846 	if (seg_len)
847 		print_hex_dump(level, "skb linear:   ", DUMP_PREFIX_OFFSET,
848 			       16, 1, skb->data, seg_len, false);
849 	len -= seg_len;
850 
851 	if (full_pkt && tailroom)
852 		print_hex_dump(level, "skb tailroom: ", DUMP_PREFIX_OFFSET,
853 			       16, 1, skb_tail_pointer(skb), tailroom, false);
854 
855 	for (i = 0; len && i < skb_shinfo(skb)->nr_frags; i++) {
856 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
857 		u32 p_off, p_len, copied;
858 		struct page *p;
859 		u8 *vaddr;
860 
861 		skb_frag_foreach_page(frag, skb_frag_off(frag),
862 				      skb_frag_size(frag), p, p_off, p_len,
863 				      copied) {
864 			seg_len = min_t(int, p_len, len);
865 			vaddr = kmap_atomic(p);
866 			print_hex_dump(level, "skb frag:     ",
867 				       DUMP_PREFIX_OFFSET,
868 				       16, 1, vaddr + p_off, seg_len, false);
869 			kunmap_atomic(vaddr);
870 			len -= seg_len;
871 			if (!len)
872 				break;
873 		}
874 	}
875 
876 	if (full_pkt && skb_has_frag_list(skb)) {
877 		printk("skb fraglist:\n");
878 		skb_walk_frags(skb, list_skb)
879 			skb_dump(level, list_skb, true);
880 	}
881 }
882 EXPORT_SYMBOL(skb_dump);
883 
884 /**
885  *	skb_tx_error - report an sk_buff xmit error
886  *	@skb: buffer that triggered an error
887  *
888  *	Report xmit error if a device callback is tracking this skb.
889  *	skb must be freed afterwards.
890  */
891 void skb_tx_error(struct sk_buff *skb)
892 {
893 	skb_zcopy_clear(skb, true);
894 }
895 EXPORT_SYMBOL(skb_tx_error);
896 
897 #ifdef CONFIG_TRACEPOINTS
898 /**
899  *	consume_skb - free an skbuff
900  *	@skb: buffer to free
901  *
902  *	Drop a ref to the buffer and free it if the usage count has hit zero
903  *	Functions identically to kfree_skb, but kfree_skb assumes that the frame
904  *	is being dropped after a failure and notes that
905  */
906 void consume_skb(struct sk_buff *skb)
907 {
908 	if (!skb_unref(skb))
909 		return;
910 
911 	trace_consume_skb(skb);
912 	__kfree_skb(skb);
913 }
914 EXPORT_SYMBOL(consume_skb);
915 #endif
916 
917 /**
918  *	__consume_stateless_skb - free an skbuff, assuming it is stateless
919  *	@skb: buffer to free
920  *
921  *	Alike consume_skb(), but this variant assumes that this is the last
922  *	skb reference and all the head states have been already dropped
923  */
924 void __consume_stateless_skb(struct sk_buff *skb)
925 {
926 	trace_consume_skb(skb);
927 	skb_release_data(skb);
928 	kfree_skbmem(skb);
929 }
930 
931 static void napi_skb_cache_put(struct sk_buff *skb)
932 {
933 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
934 	u32 i;
935 
936 	kasan_poison_object_data(skbuff_head_cache, skb);
937 	nc->skb_cache[nc->skb_count++] = skb;
938 
939 	if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) {
940 		for (i = NAPI_SKB_CACHE_HALF; i < NAPI_SKB_CACHE_SIZE; i++)
941 			kasan_unpoison_object_data(skbuff_head_cache,
942 						   nc->skb_cache[i]);
943 
944 		kmem_cache_free_bulk(skbuff_head_cache, NAPI_SKB_CACHE_HALF,
945 				     nc->skb_cache + NAPI_SKB_CACHE_HALF);
946 		nc->skb_count = NAPI_SKB_CACHE_HALF;
947 	}
948 }
949 
950 void __kfree_skb_defer(struct sk_buff *skb)
951 {
952 	skb_release_all(skb);
953 	napi_skb_cache_put(skb);
954 }
955 
956 void napi_skb_free_stolen_head(struct sk_buff *skb)
957 {
958 	if (unlikely(skb->slow_gro)) {
959 		nf_reset_ct(skb);
960 		skb_dst_drop(skb);
961 		skb_ext_put(skb);
962 		skb_orphan(skb);
963 		skb->slow_gro = 0;
964 	}
965 	napi_skb_cache_put(skb);
966 }
967 
968 void napi_consume_skb(struct sk_buff *skb, int budget)
969 {
970 	/* Zero budget indicate non-NAPI context called us, like netpoll */
971 	if (unlikely(!budget)) {
972 		dev_consume_skb_any(skb);
973 		return;
974 	}
975 
976 	lockdep_assert_in_softirq();
977 
978 	if (!skb_unref(skb))
979 		return;
980 
981 	/* if reaching here SKB is ready to free */
982 	trace_consume_skb(skb);
983 
984 	/* if SKB is a clone, don't handle this case */
985 	if (skb->fclone != SKB_FCLONE_UNAVAILABLE) {
986 		__kfree_skb(skb);
987 		return;
988 	}
989 
990 	skb_release_all(skb);
991 	napi_skb_cache_put(skb);
992 }
993 EXPORT_SYMBOL(napi_consume_skb);
994 
995 /* Make sure a field is contained by headers group */
996 #define CHECK_SKB_FIELD(field) \
997 	BUILD_BUG_ON(offsetof(struct sk_buff, field) !=		\
998 		     offsetof(struct sk_buff, headers.field));	\
999 
1000 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
1001 {
1002 	new->tstamp		= old->tstamp;
1003 	/* We do not copy old->sk */
1004 	new->dev		= old->dev;
1005 	memcpy(new->cb, old->cb, sizeof(old->cb));
1006 	skb_dst_copy(new, old);
1007 	__skb_ext_copy(new, old);
1008 	__nf_copy(new, old, false);
1009 
1010 	/* Note : this field could be in the headers group.
1011 	 * It is not yet because we do not want to have a 16 bit hole
1012 	 */
1013 	new->queue_mapping = old->queue_mapping;
1014 
1015 	memcpy(&new->headers, &old->headers, sizeof(new->headers));
1016 	CHECK_SKB_FIELD(protocol);
1017 	CHECK_SKB_FIELD(csum);
1018 	CHECK_SKB_FIELD(hash);
1019 	CHECK_SKB_FIELD(priority);
1020 	CHECK_SKB_FIELD(skb_iif);
1021 	CHECK_SKB_FIELD(vlan_proto);
1022 	CHECK_SKB_FIELD(vlan_tci);
1023 	CHECK_SKB_FIELD(transport_header);
1024 	CHECK_SKB_FIELD(network_header);
1025 	CHECK_SKB_FIELD(mac_header);
1026 	CHECK_SKB_FIELD(inner_protocol);
1027 	CHECK_SKB_FIELD(inner_transport_header);
1028 	CHECK_SKB_FIELD(inner_network_header);
1029 	CHECK_SKB_FIELD(inner_mac_header);
1030 	CHECK_SKB_FIELD(mark);
1031 #ifdef CONFIG_NETWORK_SECMARK
1032 	CHECK_SKB_FIELD(secmark);
1033 #endif
1034 #ifdef CONFIG_NET_RX_BUSY_POLL
1035 	CHECK_SKB_FIELD(napi_id);
1036 #endif
1037 #ifdef CONFIG_XPS
1038 	CHECK_SKB_FIELD(sender_cpu);
1039 #endif
1040 #ifdef CONFIG_NET_SCHED
1041 	CHECK_SKB_FIELD(tc_index);
1042 #endif
1043 
1044 }
1045 
1046 /*
1047  * You should not add any new code to this function.  Add it to
1048  * __copy_skb_header above instead.
1049  */
1050 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
1051 {
1052 #define C(x) n->x = skb->x
1053 
1054 	n->next = n->prev = NULL;
1055 	n->sk = NULL;
1056 	__copy_skb_header(n, skb);
1057 
1058 	C(len);
1059 	C(data_len);
1060 	C(mac_len);
1061 	n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
1062 	n->cloned = 1;
1063 	n->nohdr = 0;
1064 	n->peeked = 0;
1065 	C(pfmemalloc);
1066 	C(pp_recycle);
1067 	n->destructor = NULL;
1068 	C(tail);
1069 	C(end);
1070 	C(head);
1071 	C(head_frag);
1072 	C(data);
1073 	C(truesize);
1074 	refcount_set(&n->users, 1);
1075 
1076 	atomic_inc(&(skb_shinfo(skb)->dataref));
1077 	skb->cloned = 1;
1078 
1079 	return n;
1080 #undef C
1081 }
1082 
1083 /**
1084  * alloc_skb_for_msg() - allocate sk_buff to wrap frag list forming a msg
1085  * @first: first sk_buff of the msg
1086  */
1087 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first)
1088 {
1089 	struct sk_buff *n;
1090 
1091 	n = alloc_skb(0, GFP_ATOMIC);
1092 	if (!n)
1093 		return NULL;
1094 
1095 	n->len = first->len;
1096 	n->data_len = first->len;
1097 	n->truesize = first->truesize;
1098 
1099 	skb_shinfo(n)->frag_list = first;
1100 
1101 	__copy_skb_header(n, first);
1102 	n->destructor = NULL;
1103 
1104 	return n;
1105 }
1106 EXPORT_SYMBOL_GPL(alloc_skb_for_msg);
1107 
1108 /**
1109  *	skb_morph	-	morph one skb into another
1110  *	@dst: the skb to receive the contents
1111  *	@src: the skb to supply the contents
1112  *
1113  *	This is identical to skb_clone except that the target skb is
1114  *	supplied by the user.
1115  *
1116  *	The target skb is returned upon exit.
1117  */
1118 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
1119 {
1120 	skb_release_all(dst);
1121 	return __skb_clone(dst, src);
1122 }
1123 EXPORT_SYMBOL_GPL(skb_morph);
1124 
1125 int mm_account_pinned_pages(struct mmpin *mmp, size_t size)
1126 {
1127 	unsigned long max_pg, num_pg, new_pg, old_pg;
1128 	struct user_struct *user;
1129 
1130 	if (capable(CAP_IPC_LOCK) || !size)
1131 		return 0;
1132 
1133 	num_pg = (size >> PAGE_SHIFT) + 2;	/* worst case */
1134 	max_pg = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
1135 	user = mmp->user ? : current_user();
1136 
1137 	do {
1138 		old_pg = atomic_long_read(&user->locked_vm);
1139 		new_pg = old_pg + num_pg;
1140 		if (new_pg > max_pg)
1141 			return -ENOBUFS;
1142 	} while (atomic_long_cmpxchg(&user->locked_vm, old_pg, new_pg) !=
1143 		 old_pg);
1144 
1145 	if (!mmp->user) {
1146 		mmp->user = get_uid(user);
1147 		mmp->num_pg = num_pg;
1148 	} else {
1149 		mmp->num_pg += num_pg;
1150 	}
1151 
1152 	return 0;
1153 }
1154 EXPORT_SYMBOL_GPL(mm_account_pinned_pages);
1155 
1156 void mm_unaccount_pinned_pages(struct mmpin *mmp)
1157 {
1158 	if (mmp->user) {
1159 		atomic_long_sub(mmp->num_pg, &mmp->user->locked_vm);
1160 		free_uid(mmp->user);
1161 	}
1162 }
1163 EXPORT_SYMBOL_GPL(mm_unaccount_pinned_pages);
1164 
1165 struct ubuf_info *msg_zerocopy_alloc(struct sock *sk, size_t size)
1166 {
1167 	struct ubuf_info *uarg;
1168 	struct sk_buff *skb;
1169 
1170 	WARN_ON_ONCE(!in_task());
1171 
1172 	skb = sock_omalloc(sk, 0, GFP_KERNEL);
1173 	if (!skb)
1174 		return NULL;
1175 
1176 	BUILD_BUG_ON(sizeof(*uarg) > sizeof(skb->cb));
1177 	uarg = (void *)skb->cb;
1178 	uarg->mmp.user = NULL;
1179 
1180 	if (mm_account_pinned_pages(&uarg->mmp, size)) {
1181 		kfree_skb(skb);
1182 		return NULL;
1183 	}
1184 
1185 	uarg->callback = msg_zerocopy_callback;
1186 	uarg->id = ((u32)atomic_inc_return(&sk->sk_zckey)) - 1;
1187 	uarg->len = 1;
1188 	uarg->bytelen = size;
1189 	uarg->zerocopy = 1;
1190 	uarg->flags = SKBFL_ZEROCOPY_FRAG;
1191 	refcount_set(&uarg->refcnt, 1);
1192 	sock_hold(sk);
1193 
1194 	return uarg;
1195 }
1196 EXPORT_SYMBOL_GPL(msg_zerocopy_alloc);
1197 
1198 static inline struct sk_buff *skb_from_uarg(struct ubuf_info *uarg)
1199 {
1200 	return container_of((void *)uarg, struct sk_buff, cb);
1201 }
1202 
1203 struct ubuf_info *msg_zerocopy_realloc(struct sock *sk, size_t size,
1204 				       struct ubuf_info *uarg)
1205 {
1206 	if (uarg) {
1207 		const u32 byte_limit = 1 << 19;		/* limit to a few TSO */
1208 		u32 bytelen, next;
1209 
1210 		/* realloc only when socket is locked (TCP, UDP cork),
1211 		 * so uarg->len and sk_zckey access is serialized
1212 		 */
1213 		if (!sock_owned_by_user(sk)) {
1214 			WARN_ON_ONCE(1);
1215 			return NULL;
1216 		}
1217 
1218 		bytelen = uarg->bytelen + size;
1219 		if (uarg->len == USHRT_MAX - 1 || bytelen > byte_limit) {
1220 			/* TCP can create new skb to attach new uarg */
1221 			if (sk->sk_type == SOCK_STREAM)
1222 				goto new_alloc;
1223 			return NULL;
1224 		}
1225 
1226 		next = (u32)atomic_read(&sk->sk_zckey);
1227 		if ((u32)(uarg->id + uarg->len) == next) {
1228 			if (mm_account_pinned_pages(&uarg->mmp, size))
1229 				return NULL;
1230 			uarg->len++;
1231 			uarg->bytelen = bytelen;
1232 			atomic_set(&sk->sk_zckey, ++next);
1233 
1234 			/* no extra ref when appending to datagram (MSG_MORE) */
1235 			if (sk->sk_type == SOCK_STREAM)
1236 				net_zcopy_get(uarg);
1237 
1238 			return uarg;
1239 		}
1240 	}
1241 
1242 new_alloc:
1243 	return msg_zerocopy_alloc(sk, size);
1244 }
1245 EXPORT_SYMBOL_GPL(msg_zerocopy_realloc);
1246 
1247 static bool skb_zerocopy_notify_extend(struct sk_buff *skb, u32 lo, u16 len)
1248 {
1249 	struct sock_exterr_skb *serr = SKB_EXT_ERR(skb);
1250 	u32 old_lo, old_hi;
1251 	u64 sum_len;
1252 
1253 	old_lo = serr->ee.ee_info;
1254 	old_hi = serr->ee.ee_data;
1255 	sum_len = old_hi - old_lo + 1ULL + len;
1256 
1257 	if (sum_len >= (1ULL << 32))
1258 		return false;
1259 
1260 	if (lo != old_hi + 1)
1261 		return false;
1262 
1263 	serr->ee.ee_data += len;
1264 	return true;
1265 }
1266 
1267 static void __msg_zerocopy_callback(struct ubuf_info *uarg)
1268 {
1269 	struct sk_buff *tail, *skb = skb_from_uarg(uarg);
1270 	struct sock_exterr_skb *serr;
1271 	struct sock *sk = skb->sk;
1272 	struct sk_buff_head *q;
1273 	unsigned long flags;
1274 	bool is_zerocopy;
1275 	u32 lo, hi;
1276 	u16 len;
1277 
1278 	mm_unaccount_pinned_pages(&uarg->mmp);
1279 
1280 	/* if !len, there was only 1 call, and it was aborted
1281 	 * so do not queue a completion notification
1282 	 */
1283 	if (!uarg->len || sock_flag(sk, SOCK_DEAD))
1284 		goto release;
1285 
1286 	len = uarg->len;
1287 	lo = uarg->id;
1288 	hi = uarg->id + len - 1;
1289 	is_zerocopy = uarg->zerocopy;
1290 
1291 	serr = SKB_EXT_ERR(skb);
1292 	memset(serr, 0, sizeof(*serr));
1293 	serr->ee.ee_errno = 0;
1294 	serr->ee.ee_origin = SO_EE_ORIGIN_ZEROCOPY;
1295 	serr->ee.ee_data = hi;
1296 	serr->ee.ee_info = lo;
1297 	if (!is_zerocopy)
1298 		serr->ee.ee_code |= SO_EE_CODE_ZEROCOPY_COPIED;
1299 
1300 	q = &sk->sk_error_queue;
1301 	spin_lock_irqsave(&q->lock, flags);
1302 	tail = skb_peek_tail(q);
1303 	if (!tail || SKB_EXT_ERR(tail)->ee.ee_origin != SO_EE_ORIGIN_ZEROCOPY ||
1304 	    !skb_zerocopy_notify_extend(tail, lo, len)) {
1305 		__skb_queue_tail(q, skb);
1306 		skb = NULL;
1307 	}
1308 	spin_unlock_irqrestore(&q->lock, flags);
1309 
1310 	sk_error_report(sk);
1311 
1312 release:
1313 	consume_skb(skb);
1314 	sock_put(sk);
1315 }
1316 
1317 void msg_zerocopy_callback(struct sk_buff *skb, struct ubuf_info *uarg,
1318 			   bool success)
1319 {
1320 	uarg->zerocopy = uarg->zerocopy & success;
1321 
1322 	if (refcount_dec_and_test(&uarg->refcnt))
1323 		__msg_zerocopy_callback(uarg);
1324 }
1325 EXPORT_SYMBOL_GPL(msg_zerocopy_callback);
1326 
1327 void msg_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref)
1328 {
1329 	struct sock *sk = skb_from_uarg(uarg)->sk;
1330 
1331 	atomic_dec(&sk->sk_zckey);
1332 	uarg->len--;
1333 
1334 	if (have_uref)
1335 		msg_zerocopy_callback(NULL, uarg, true);
1336 }
1337 EXPORT_SYMBOL_GPL(msg_zerocopy_put_abort);
1338 
1339 int skb_zerocopy_iter_dgram(struct sk_buff *skb, struct msghdr *msg, int len)
1340 {
1341 	return __zerocopy_sg_from_iter(skb->sk, skb, &msg->msg_iter, len);
1342 }
1343 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_dgram);
1344 
1345 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
1346 			     struct msghdr *msg, int len,
1347 			     struct ubuf_info *uarg)
1348 {
1349 	struct ubuf_info *orig_uarg = skb_zcopy(skb);
1350 	struct iov_iter orig_iter = msg->msg_iter;
1351 	int err, orig_len = skb->len;
1352 
1353 	/* An skb can only point to one uarg. This edge case happens when
1354 	 * TCP appends to an skb, but zerocopy_realloc triggered a new alloc.
1355 	 */
1356 	if (orig_uarg && uarg != orig_uarg)
1357 		return -EEXIST;
1358 
1359 	err = __zerocopy_sg_from_iter(sk, skb, &msg->msg_iter, len);
1360 	if (err == -EFAULT || (err == -EMSGSIZE && skb->len == orig_len)) {
1361 		struct sock *save_sk = skb->sk;
1362 
1363 		/* Streams do not free skb on error. Reset to prev state. */
1364 		msg->msg_iter = orig_iter;
1365 		skb->sk = sk;
1366 		___pskb_trim(skb, orig_len);
1367 		skb->sk = save_sk;
1368 		return err;
1369 	}
1370 
1371 	skb_zcopy_set(skb, uarg, NULL);
1372 	return skb->len - orig_len;
1373 }
1374 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_stream);
1375 
1376 static int skb_zerocopy_clone(struct sk_buff *nskb, struct sk_buff *orig,
1377 			      gfp_t gfp_mask)
1378 {
1379 	if (skb_zcopy(orig)) {
1380 		if (skb_zcopy(nskb)) {
1381 			/* !gfp_mask callers are verified to !skb_zcopy(nskb) */
1382 			if (!gfp_mask) {
1383 				WARN_ON_ONCE(1);
1384 				return -ENOMEM;
1385 			}
1386 			if (skb_uarg(nskb) == skb_uarg(orig))
1387 				return 0;
1388 			if (skb_copy_ubufs(nskb, GFP_ATOMIC))
1389 				return -EIO;
1390 		}
1391 		skb_zcopy_set(nskb, skb_uarg(orig), NULL);
1392 	}
1393 	return 0;
1394 }
1395 
1396 /**
1397  *	skb_copy_ubufs	-	copy userspace skb frags buffers to kernel
1398  *	@skb: the skb to modify
1399  *	@gfp_mask: allocation priority
1400  *
1401  *	This must be called on skb with SKBFL_ZEROCOPY_ENABLE.
1402  *	It will copy all frags into kernel and drop the reference
1403  *	to userspace pages.
1404  *
1405  *	If this function is called from an interrupt gfp_mask() must be
1406  *	%GFP_ATOMIC.
1407  *
1408  *	Returns 0 on success or a negative error code on failure
1409  *	to allocate kernel memory to copy to.
1410  */
1411 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask)
1412 {
1413 	int num_frags = skb_shinfo(skb)->nr_frags;
1414 	struct page *page, *head = NULL;
1415 	int i, new_frags;
1416 	u32 d_off;
1417 
1418 	if (skb_shared(skb) || skb_unclone(skb, gfp_mask))
1419 		return -EINVAL;
1420 
1421 	if (!num_frags)
1422 		goto release;
1423 
1424 	new_frags = (__skb_pagelen(skb) + PAGE_SIZE - 1) >> PAGE_SHIFT;
1425 	for (i = 0; i < new_frags; i++) {
1426 		page = alloc_page(gfp_mask);
1427 		if (!page) {
1428 			while (head) {
1429 				struct page *next = (struct page *)page_private(head);
1430 				put_page(head);
1431 				head = next;
1432 			}
1433 			return -ENOMEM;
1434 		}
1435 		set_page_private(page, (unsigned long)head);
1436 		head = page;
1437 	}
1438 
1439 	page = head;
1440 	d_off = 0;
1441 	for (i = 0; i < num_frags; i++) {
1442 		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
1443 		u32 p_off, p_len, copied;
1444 		struct page *p;
1445 		u8 *vaddr;
1446 
1447 		skb_frag_foreach_page(f, skb_frag_off(f), skb_frag_size(f),
1448 				      p, p_off, p_len, copied) {
1449 			u32 copy, done = 0;
1450 			vaddr = kmap_atomic(p);
1451 
1452 			while (done < p_len) {
1453 				if (d_off == PAGE_SIZE) {
1454 					d_off = 0;
1455 					page = (struct page *)page_private(page);
1456 				}
1457 				copy = min_t(u32, PAGE_SIZE - d_off, p_len - done);
1458 				memcpy(page_address(page) + d_off,
1459 				       vaddr + p_off + done, copy);
1460 				done += copy;
1461 				d_off += copy;
1462 			}
1463 			kunmap_atomic(vaddr);
1464 		}
1465 	}
1466 
1467 	/* skb frags release userspace buffers */
1468 	for (i = 0; i < num_frags; i++)
1469 		skb_frag_unref(skb, i);
1470 
1471 	/* skb frags point to kernel buffers */
1472 	for (i = 0; i < new_frags - 1; i++) {
1473 		__skb_fill_page_desc(skb, i, head, 0, PAGE_SIZE);
1474 		head = (struct page *)page_private(head);
1475 	}
1476 	__skb_fill_page_desc(skb, new_frags - 1, head, 0, d_off);
1477 	skb_shinfo(skb)->nr_frags = new_frags;
1478 
1479 release:
1480 	skb_zcopy_clear(skb, false);
1481 	return 0;
1482 }
1483 EXPORT_SYMBOL_GPL(skb_copy_ubufs);
1484 
1485 /**
1486  *	skb_clone	-	duplicate an sk_buff
1487  *	@skb: buffer to clone
1488  *	@gfp_mask: allocation priority
1489  *
1490  *	Duplicate an &sk_buff. The new one is not owned by a socket. Both
1491  *	copies share the same packet data but not structure. The new
1492  *	buffer has a reference count of 1. If the allocation fails the
1493  *	function returns %NULL otherwise the new buffer is returned.
1494  *
1495  *	If this function is called from an interrupt gfp_mask() must be
1496  *	%GFP_ATOMIC.
1497  */
1498 
1499 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
1500 {
1501 	struct sk_buff_fclones *fclones = container_of(skb,
1502 						       struct sk_buff_fclones,
1503 						       skb1);
1504 	struct sk_buff *n;
1505 
1506 	if (skb_orphan_frags(skb, gfp_mask))
1507 		return NULL;
1508 
1509 	if (skb->fclone == SKB_FCLONE_ORIG &&
1510 	    refcount_read(&fclones->fclone_ref) == 1) {
1511 		n = &fclones->skb2;
1512 		refcount_set(&fclones->fclone_ref, 2);
1513 	} else {
1514 		if (skb_pfmemalloc(skb))
1515 			gfp_mask |= __GFP_MEMALLOC;
1516 
1517 		n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
1518 		if (!n)
1519 			return NULL;
1520 
1521 		n->fclone = SKB_FCLONE_UNAVAILABLE;
1522 	}
1523 
1524 	return __skb_clone(n, skb);
1525 }
1526 EXPORT_SYMBOL(skb_clone);
1527 
1528 void skb_headers_offset_update(struct sk_buff *skb, int off)
1529 {
1530 	/* Only adjust this if it actually is csum_start rather than csum */
1531 	if (skb->ip_summed == CHECKSUM_PARTIAL)
1532 		skb->csum_start += off;
1533 	/* {transport,network,mac}_header and tail are relative to skb->head */
1534 	skb->transport_header += off;
1535 	skb->network_header   += off;
1536 	if (skb_mac_header_was_set(skb))
1537 		skb->mac_header += off;
1538 	skb->inner_transport_header += off;
1539 	skb->inner_network_header += off;
1540 	skb->inner_mac_header += off;
1541 }
1542 EXPORT_SYMBOL(skb_headers_offset_update);
1543 
1544 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old)
1545 {
1546 	__copy_skb_header(new, old);
1547 
1548 	skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
1549 	skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
1550 	skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
1551 }
1552 EXPORT_SYMBOL(skb_copy_header);
1553 
1554 static inline int skb_alloc_rx_flag(const struct sk_buff *skb)
1555 {
1556 	if (skb_pfmemalloc(skb))
1557 		return SKB_ALLOC_RX;
1558 	return 0;
1559 }
1560 
1561 /**
1562  *	skb_copy	-	create private copy of an sk_buff
1563  *	@skb: buffer to copy
1564  *	@gfp_mask: allocation priority
1565  *
1566  *	Make a copy of both an &sk_buff and its data. This is used when the
1567  *	caller wishes to modify the data and needs a private copy of the
1568  *	data to alter. Returns %NULL on failure or the pointer to the buffer
1569  *	on success. The returned buffer has a reference count of 1.
1570  *
1571  *	As by-product this function converts non-linear &sk_buff to linear
1572  *	one, so that &sk_buff becomes completely private and caller is allowed
1573  *	to modify all the data of returned buffer. This means that this
1574  *	function is not recommended for use in circumstances when only
1575  *	header is going to be modified. Use pskb_copy() instead.
1576  */
1577 
1578 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
1579 {
1580 	int headerlen = skb_headroom(skb);
1581 	unsigned int size = skb_end_offset(skb) + skb->data_len;
1582 	struct sk_buff *n = __alloc_skb(size, gfp_mask,
1583 					skb_alloc_rx_flag(skb), NUMA_NO_NODE);
1584 
1585 	if (!n)
1586 		return NULL;
1587 
1588 	/* Set the data pointer */
1589 	skb_reserve(n, headerlen);
1590 	/* Set the tail pointer and length */
1591 	skb_put(n, skb->len);
1592 
1593 	BUG_ON(skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len));
1594 
1595 	skb_copy_header(n, skb);
1596 	return n;
1597 }
1598 EXPORT_SYMBOL(skb_copy);
1599 
1600 /**
1601  *	__pskb_copy_fclone	-  create copy of an sk_buff with private head.
1602  *	@skb: buffer to copy
1603  *	@headroom: headroom of new skb
1604  *	@gfp_mask: allocation priority
1605  *	@fclone: if true allocate the copy of the skb from the fclone
1606  *	cache instead of the head cache; it is recommended to set this
1607  *	to true for the cases where the copy will likely be cloned
1608  *
1609  *	Make a copy of both an &sk_buff and part of its data, located
1610  *	in header. Fragmented data remain shared. This is used when
1611  *	the caller wishes to modify only header of &sk_buff and needs
1612  *	private copy of the header to alter. Returns %NULL on failure
1613  *	or the pointer to the buffer on success.
1614  *	The returned buffer has a reference count of 1.
1615  */
1616 
1617 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1618 				   gfp_t gfp_mask, bool fclone)
1619 {
1620 	unsigned int size = skb_headlen(skb) + headroom;
1621 	int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0);
1622 	struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE);
1623 
1624 	if (!n)
1625 		goto out;
1626 
1627 	/* Set the data pointer */
1628 	skb_reserve(n, headroom);
1629 	/* Set the tail pointer and length */
1630 	skb_put(n, skb_headlen(skb));
1631 	/* Copy the bytes */
1632 	skb_copy_from_linear_data(skb, n->data, n->len);
1633 
1634 	n->truesize += skb->data_len;
1635 	n->data_len  = skb->data_len;
1636 	n->len	     = skb->len;
1637 
1638 	if (skb_shinfo(skb)->nr_frags) {
1639 		int i;
1640 
1641 		if (skb_orphan_frags(skb, gfp_mask) ||
1642 		    skb_zerocopy_clone(n, skb, gfp_mask)) {
1643 			kfree_skb(n);
1644 			n = NULL;
1645 			goto out;
1646 		}
1647 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1648 			skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
1649 			skb_frag_ref(skb, i);
1650 		}
1651 		skb_shinfo(n)->nr_frags = i;
1652 	}
1653 
1654 	if (skb_has_frag_list(skb)) {
1655 		skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
1656 		skb_clone_fraglist(n);
1657 	}
1658 
1659 	skb_copy_header(n, skb);
1660 out:
1661 	return n;
1662 }
1663 EXPORT_SYMBOL(__pskb_copy_fclone);
1664 
1665 /**
1666  *	pskb_expand_head - reallocate header of &sk_buff
1667  *	@skb: buffer to reallocate
1668  *	@nhead: room to add at head
1669  *	@ntail: room to add at tail
1670  *	@gfp_mask: allocation priority
1671  *
1672  *	Expands (or creates identical copy, if @nhead and @ntail are zero)
1673  *	header of @skb. &sk_buff itself is not changed. &sk_buff MUST have
1674  *	reference count of 1. Returns zero in the case of success or error,
1675  *	if expansion failed. In the last case, &sk_buff is not changed.
1676  *
1677  *	All the pointers pointing into skb header may change and must be
1678  *	reloaded after call to this function.
1679  */
1680 
1681 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
1682 		     gfp_t gfp_mask)
1683 {
1684 	int i, osize = skb_end_offset(skb);
1685 	int size = osize + nhead + ntail;
1686 	long off;
1687 	u8 *data;
1688 
1689 	BUG_ON(nhead < 0);
1690 
1691 	BUG_ON(skb_shared(skb));
1692 
1693 	size = SKB_DATA_ALIGN(size);
1694 
1695 	if (skb_pfmemalloc(skb))
1696 		gfp_mask |= __GFP_MEMALLOC;
1697 	data = kmalloc_reserve(size + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
1698 			       gfp_mask, NUMA_NO_NODE, NULL);
1699 	if (!data)
1700 		goto nodata;
1701 	size = SKB_WITH_OVERHEAD(ksize(data));
1702 
1703 	/* Copy only real data... and, alas, header. This should be
1704 	 * optimized for the cases when header is void.
1705 	 */
1706 	memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head);
1707 
1708 	memcpy((struct skb_shared_info *)(data + size),
1709 	       skb_shinfo(skb),
1710 	       offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags]));
1711 
1712 	/*
1713 	 * if shinfo is shared we must drop the old head gracefully, but if it
1714 	 * is not we can just drop the old head and let the existing refcount
1715 	 * be since all we did is relocate the values
1716 	 */
1717 	if (skb_cloned(skb)) {
1718 		if (skb_orphan_frags(skb, gfp_mask))
1719 			goto nofrags;
1720 		if (skb_zcopy(skb))
1721 			refcount_inc(&skb_uarg(skb)->refcnt);
1722 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1723 			skb_frag_ref(skb, i);
1724 
1725 		if (skb_has_frag_list(skb))
1726 			skb_clone_fraglist(skb);
1727 
1728 		skb_release_data(skb);
1729 	} else {
1730 		skb_free_head(skb);
1731 	}
1732 	off = (data + nhead) - skb->head;
1733 
1734 	skb->head     = data;
1735 	skb->head_frag = 0;
1736 	skb->data    += off;
1737 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1738 	skb->end      = size;
1739 	off           = nhead;
1740 #else
1741 	skb->end      = skb->head + size;
1742 #endif
1743 	skb->tail	      += off;
1744 	skb_headers_offset_update(skb, nhead);
1745 	skb->cloned   = 0;
1746 	skb->hdr_len  = 0;
1747 	skb->nohdr    = 0;
1748 	atomic_set(&skb_shinfo(skb)->dataref, 1);
1749 
1750 	skb_metadata_clear(skb);
1751 
1752 	/* It is not generally safe to change skb->truesize.
1753 	 * For the moment, we really care of rx path, or
1754 	 * when skb is orphaned (not attached to a socket).
1755 	 */
1756 	if (!skb->sk || skb->destructor == sock_edemux)
1757 		skb->truesize += size - osize;
1758 
1759 	return 0;
1760 
1761 nofrags:
1762 	kfree(data);
1763 nodata:
1764 	return -ENOMEM;
1765 }
1766 EXPORT_SYMBOL(pskb_expand_head);
1767 
1768 /* Make private copy of skb with writable head and some headroom */
1769 
1770 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
1771 {
1772 	struct sk_buff *skb2;
1773 	int delta = headroom - skb_headroom(skb);
1774 
1775 	if (delta <= 0)
1776 		skb2 = pskb_copy(skb, GFP_ATOMIC);
1777 	else {
1778 		skb2 = skb_clone(skb, GFP_ATOMIC);
1779 		if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
1780 					     GFP_ATOMIC)) {
1781 			kfree_skb(skb2);
1782 			skb2 = NULL;
1783 		}
1784 	}
1785 	return skb2;
1786 }
1787 EXPORT_SYMBOL(skb_realloc_headroom);
1788 
1789 /**
1790  *	skb_expand_head - reallocate header of &sk_buff
1791  *	@skb: buffer to reallocate
1792  *	@headroom: needed headroom
1793  *
1794  *	Unlike skb_realloc_headroom, this one does not allocate a new skb
1795  *	if possible; copies skb->sk to new skb as needed
1796  *	and frees original skb in case of failures.
1797  *
1798  *	It expect increased headroom and generates warning otherwise.
1799  */
1800 
1801 struct sk_buff *skb_expand_head(struct sk_buff *skb, unsigned int headroom)
1802 {
1803 	int delta = headroom - skb_headroom(skb);
1804 	int osize = skb_end_offset(skb);
1805 	struct sock *sk = skb->sk;
1806 
1807 	if (WARN_ONCE(delta <= 0,
1808 		      "%s is expecting an increase in the headroom", __func__))
1809 		return skb;
1810 
1811 	delta = SKB_DATA_ALIGN(delta);
1812 	/* pskb_expand_head() might crash, if skb is shared. */
1813 	if (skb_shared(skb) || !is_skb_wmem(skb)) {
1814 		struct sk_buff *nskb = skb_clone(skb, GFP_ATOMIC);
1815 
1816 		if (unlikely(!nskb))
1817 			goto fail;
1818 
1819 		if (sk)
1820 			skb_set_owner_w(nskb, sk);
1821 		consume_skb(skb);
1822 		skb = nskb;
1823 	}
1824 	if (pskb_expand_head(skb, delta, 0, GFP_ATOMIC))
1825 		goto fail;
1826 
1827 	if (sk && is_skb_wmem(skb)) {
1828 		delta = skb_end_offset(skb) - osize;
1829 		refcount_add(delta, &sk->sk_wmem_alloc);
1830 		skb->truesize += delta;
1831 	}
1832 	return skb;
1833 
1834 fail:
1835 	kfree_skb(skb);
1836 	return NULL;
1837 }
1838 EXPORT_SYMBOL(skb_expand_head);
1839 
1840 /**
1841  *	skb_copy_expand	-	copy and expand sk_buff
1842  *	@skb: buffer to copy
1843  *	@newheadroom: new free bytes at head
1844  *	@newtailroom: new free bytes at tail
1845  *	@gfp_mask: allocation priority
1846  *
1847  *	Make a copy of both an &sk_buff and its data and while doing so
1848  *	allocate additional space.
1849  *
1850  *	This is used when the caller wishes to modify the data and needs a
1851  *	private copy of the data to alter as well as more space for new fields.
1852  *	Returns %NULL on failure or the pointer to the buffer
1853  *	on success. The returned buffer has a reference count of 1.
1854  *
1855  *	You must pass %GFP_ATOMIC as the allocation priority if this function
1856  *	is called from an interrupt.
1857  */
1858 struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
1859 				int newheadroom, int newtailroom,
1860 				gfp_t gfp_mask)
1861 {
1862 	/*
1863 	 *	Allocate the copy buffer
1864 	 */
1865 	struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom,
1866 					gfp_mask, skb_alloc_rx_flag(skb),
1867 					NUMA_NO_NODE);
1868 	int oldheadroom = skb_headroom(skb);
1869 	int head_copy_len, head_copy_off;
1870 
1871 	if (!n)
1872 		return NULL;
1873 
1874 	skb_reserve(n, newheadroom);
1875 
1876 	/* Set the tail pointer and length */
1877 	skb_put(n, skb->len);
1878 
1879 	head_copy_len = oldheadroom;
1880 	head_copy_off = 0;
1881 	if (newheadroom <= head_copy_len)
1882 		head_copy_len = newheadroom;
1883 	else
1884 		head_copy_off = newheadroom - head_copy_len;
1885 
1886 	/* Copy the linear header and data. */
1887 	BUG_ON(skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
1888 			     skb->len + head_copy_len));
1889 
1890 	skb_copy_header(n, skb);
1891 
1892 	skb_headers_offset_update(n, newheadroom - oldheadroom);
1893 
1894 	return n;
1895 }
1896 EXPORT_SYMBOL(skb_copy_expand);
1897 
1898 /**
1899  *	__skb_pad		-	zero pad the tail of an skb
1900  *	@skb: buffer to pad
1901  *	@pad: space to pad
1902  *	@free_on_error: free buffer on error
1903  *
1904  *	Ensure that a buffer is followed by a padding area that is zero
1905  *	filled. Used by network drivers which may DMA or transfer data
1906  *	beyond the buffer end onto the wire.
1907  *
1908  *	May return error in out of memory cases. The skb is freed on error
1909  *	if @free_on_error is true.
1910  */
1911 
1912 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error)
1913 {
1914 	int err;
1915 	int ntail;
1916 
1917 	/* If the skbuff is non linear tailroom is always zero.. */
1918 	if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
1919 		memset(skb->data+skb->len, 0, pad);
1920 		return 0;
1921 	}
1922 
1923 	ntail = skb->data_len + pad - (skb->end - skb->tail);
1924 	if (likely(skb_cloned(skb) || ntail > 0)) {
1925 		err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
1926 		if (unlikely(err))
1927 			goto free_skb;
1928 	}
1929 
1930 	/* FIXME: The use of this function with non-linear skb's really needs
1931 	 * to be audited.
1932 	 */
1933 	err = skb_linearize(skb);
1934 	if (unlikely(err))
1935 		goto free_skb;
1936 
1937 	memset(skb->data + skb->len, 0, pad);
1938 	return 0;
1939 
1940 free_skb:
1941 	if (free_on_error)
1942 		kfree_skb(skb);
1943 	return err;
1944 }
1945 EXPORT_SYMBOL(__skb_pad);
1946 
1947 /**
1948  *	pskb_put - add data to the tail of a potentially fragmented buffer
1949  *	@skb: start of the buffer to use
1950  *	@tail: tail fragment of the buffer to use
1951  *	@len: amount of data to add
1952  *
1953  *	This function extends the used data area of the potentially
1954  *	fragmented buffer. @tail must be the last fragment of @skb -- or
1955  *	@skb itself. If this would exceed the total buffer size the kernel
1956  *	will panic. A pointer to the first byte of the extra data is
1957  *	returned.
1958  */
1959 
1960 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len)
1961 {
1962 	if (tail != skb) {
1963 		skb->data_len += len;
1964 		skb->len += len;
1965 	}
1966 	return skb_put(tail, len);
1967 }
1968 EXPORT_SYMBOL_GPL(pskb_put);
1969 
1970 /**
1971  *	skb_put - add data to a buffer
1972  *	@skb: buffer to use
1973  *	@len: amount of data to add
1974  *
1975  *	This function extends the used data area of the buffer. If this would
1976  *	exceed the total buffer size the kernel will panic. A pointer to the
1977  *	first byte of the extra data is returned.
1978  */
1979 void *skb_put(struct sk_buff *skb, unsigned int len)
1980 {
1981 	void *tmp = skb_tail_pointer(skb);
1982 	SKB_LINEAR_ASSERT(skb);
1983 	skb->tail += len;
1984 	skb->len  += len;
1985 	if (unlikely(skb->tail > skb->end))
1986 		skb_over_panic(skb, len, __builtin_return_address(0));
1987 	return tmp;
1988 }
1989 EXPORT_SYMBOL(skb_put);
1990 
1991 /**
1992  *	skb_push - add data to the start of a buffer
1993  *	@skb: buffer to use
1994  *	@len: amount of data to add
1995  *
1996  *	This function extends the used data area of the buffer at the buffer
1997  *	start. If this would exceed the total buffer headroom the kernel will
1998  *	panic. A pointer to the first byte of the extra data is returned.
1999  */
2000 void *skb_push(struct sk_buff *skb, unsigned int len)
2001 {
2002 	skb->data -= len;
2003 	skb->len  += len;
2004 	if (unlikely(skb->data < skb->head))
2005 		skb_under_panic(skb, len, __builtin_return_address(0));
2006 	return skb->data;
2007 }
2008 EXPORT_SYMBOL(skb_push);
2009 
2010 /**
2011  *	skb_pull - remove data from the start of a buffer
2012  *	@skb: buffer to use
2013  *	@len: amount of data to remove
2014  *
2015  *	This function removes data from the start of a buffer, returning
2016  *	the memory to the headroom. A pointer to the next data in the buffer
2017  *	is returned. Once the data has been pulled future pushes will overwrite
2018  *	the old data.
2019  */
2020 void *skb_pull(struct sk_buff *skb, unsigned int len)
2021 {
2022 	return skb_pull_inline(skb, len);
2023 }
2024 EXPORT_SYMBOL(skb_pull);
2025 
2026 /**
2027  *	skb_trim - remove end from a buffer
2028  *	@skb: buffer to alter
2029  *	@len: new length
2030  *
2031  *	Cut the length of a buffer down by removing data from the tail. If
2032  *	the buffer is already under the length specified it is not modified.
2033  *	The skb must be linear.
2034  */
2035 void skb_trim(struct sk_buff *skb, unsigned int len)
2036 {
2037 	if (skb->len > len)
2038 		__skb_trim(skb, len);
2039 }
2040 EXPORT_SYMBOL(skb_trim);
2041 
2042 /* Trims skb to length len. It can change skb pointers.
2043  */
2044 
2045 int ___pskb_trim(struct sk_buff *skb, unsigned int len)
2046 {
2047 	struct sk_buff **fragp;
2048 	struct sk_buff *frag;
2049 	int offset = skb_headlen(skb);
2050 	int nfrags = skb_shinfo(skb)->nr_frags;
2051 	int i;
2052 	int err;
2053 
2054 	if (skb_cloned(skb) &&
2055 	    unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
2056 		return err;
2057 
2058 	i = 0;
2059 	if (offset >= len)
2060 		goto drop_pages;
2061 
2062 	for (; i < nfrags; i++) {
2063 		int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]);
2064 
2065 		if (end < len) {
2066 			offset = end;
2067 			continue;
2068 		}
2069 
2070 		skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset);
2071 
2072 drop_pages:
2073 		skb_shinfo(skb)->nr_frags = i;
2074 
2075 		for (; i < nfrags; i++)
2076 			skb_frag_unref(skb, i);
2077 
2078 		if (skb_has_frag_list(skb))
2079 			skb_drop_fraglist(skb);
2080 		goto done;
2081 	}
2082 
2083 	for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
2084 	     fragp = &frag->next) {
2085 		int end = offset + frag->len;
2086 
2087 		if (skb_shared(frag)) {
2088 			struct sk_buff *nfrag;
2089 
2090 			nfrag = skb_clone(frag, GFP_ATOMIC);
2091 			if (unlikely(!nfrag))
2092 				return -ENOMEM;
2093 
2094 			nfrag->next = frag->next;
2095 			consume_skb(frag);
2096 			frag = nfrag;
2097 			*fragp = frag;
2098 		}
2099 
2100 		if (end < len) {
2101 			offset = end;
2102 			continue;
2103 		}
2104 
2105 		if (end > len &&
2106 		    unlikely((err = pskb_trim(frag, len - offset))))
2107 			return err;
2108 
2109 		if (frag->next)
2110 			skb_drop_list(&frag->next);
2111 		break;
2112 	}
2113 
2114 done:
2115 	if (len > skb_headlen(skb)) {
2116 		skb->data_len -= skb->len - len;
2117 		skb->len       = len;
2118 	} else {
2119 		skb->len       = len;
2120 		skb->data_len  = 0;
2121 		skb_set_tail_pointer(skb, len);
2122 	}
2123 
2124 	if (!skb->sk || skb->destructor == sock_edemux)
2125 		skb_condense(skb);
2126 	return 0;
2127 }
2128 EXPORT_SYMBOL(___pskb_trim);
2129 
2130 /* Note : use pskb_trim_rcsum() instead of calling this directly
2131  */
2132 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len)
2133 {
2134 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
2135 		int delta = skb->len - len;
2136 
2137 		skb->csum = csum_block_sub(skb->csum,
2138 					   skb_checksum(skb, len, delta, 0),
2139 					   len);
2140 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
2141 		int hdlen = (len > skb_headlen(skb)) ? skb_headlen(skb) : len;
2142 		int offset = skb_checksum_start_offset(skb) + skb->csum_offset;
2143 
2144 		if (offset + sizeof(__sum16) > hdlen)
2145 			return -EINVAL;
2146 	}
2147 	return __pskb_trim(skb, len);
2148 }
2149 EXPORT_SYMBOL(pskb_trim_rcsum_slow);
2150 
2151 /**
2152  *	__pskb_pull_tail - advance tail of skb header
2153  *	@skb: buffer to reallocate
2154  *	@delta: number of bytes to advance tail
2155  *
2156  *	The function makes a sense only on a fragmented &sk_buff,
2157  *	it expands header moving its tail forward and copying necessary
2158  *	data from fragmented part.
2159  *
2160  *	&sk_buff MUST have reference count of 1.
2161  *
2162  *	Returns %NULL (and &sk_buff does not change) if pull failed
2163  *	or value of new tail of skb in the case of success.
2164  *
2165  *	All the pointers pointing into skb header may change and must be
2166  *	reloaded after call to this function.
2167  */
2168 
2169 /* Moves tail of skb head forward, copying data from fragmented part,
2170  * when it is necessary.
2171  * 1. It may fail due to malloc failure.
2172  * 2. It may change skb pointers.
2173  *
2174  * It is pretty complicated. Luckily, it is called only in exceptional cases.
2175  */
2176 void *__pskb_pull_tail(struct sk_buff *skb, int delta)
2177 {
2178 	/* If skb has not enough free space at tail, get new one
2179 	 * plus 128 bytes for future expansions. If we have enough
2180 	 * room at tail, reallocate without expansion only if skb is cloned.
2181 	 */
2182 	int i, k, eat = (skb->tail + delta) - skb->end;
2183 
2184 	if (eat > 0 || skb_cloned(skb)) {
2185 		if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
2186 				     GFP_ATOMIC))
2187 			return NULL;
2188 	}
2189 
2190 	BUG_ON(skb_copy_bits(skb, skb_headlen(skb),
2191 			     skb_tail_pointer(skb), delta));
2192 
2193 	/* Optimization: no fragments, no reasons to preestimate
2194 	 * size of pulled pages. Superb.
2195 	 */
2196 	if (!skb_has_frag_list(skb))
2197 		goto pull_pages;
2198 
2199 	/* Estimate size of pulled pages. */
2200 	eat = delta;
2201 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2202 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2203 
2204 		if (size >= eat)
2205 			goto pull_pages;
2206 		eat -= size;
2207 	}
2208 
2209 	/* If we need update frag list, we are in troubles.
2210 	 * Certainly, it is possible to add an offset to skb data,
2211 	 * but taking into account that pulling is expected to
2212 	 * be very rare operation, it is worth to fight against
2213 	 * further bloating skb head and crucify ourselves here instead.
2214 	 * Pure masohism, indeed. 8)8)
2215 	 */
2216 	if (eat) {
2217 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
2218 		struct sk_buff *clone = NULL;
2219 		struct sk_buff *insp = NULL;
2220 
2221 		do {
2222 			if (list->len <= eat) {
2223 				/* Eaten as whole. */
2224 				eat -= list->len;
2225 				list = list->next;
2226 				insp = list;
2227 			} else {
2228 				/* Eaten partially. */
2229 
2230 				if (skb_shared(list)) {
2231 					/* Sucks! We need to fork list. :-( */
2232 					clone = skb_clone(list, GFP_ATOMIC);
2233 					if (!clone)
2234 						return NULL;
2235 					insp = list->next;
2236 					list = clone;
2237 				} else {
2238 					/* This may be pulled without
2239 					 * problems. */
2240 					insp = list;
2241 				}
2242 				if (!pskb_pull(list, eat)) {
2243 					kfree_skb(clone);
2244 					return NULL;
2245 				}
2246 				break;
2247 			}
2248 		} while (eat);
2249 
2250 		/* Free pulled out fragments. */
2251 		while ((list = skb_shinfo(skb)->frag_list) != insp) {
2252 			skb_shinfo(skb)->frag_list = list->next;
2253 			kfree_skb(list);
2254 		}
2255 		/* And insert new clone at head. */
2256 		if (clone) {
2257 			clone->next = list;
2258 			skb_shinfo(skb)->frag_list = clone;
2259 		}
2260 	}
2261 	/* Success! Now we may commit changes to skb data. */
2262 
2263 pull_pages:
2264 	eat = delta;
2265 	k = 0;
2266 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2267 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2268 
2269 		if (size <= eat) {
2270 			skb_frag_unref(skb, i);
2271 			eat -= size;
2272 		} else {
2273 			skb_frag_t *frag = &skb_shinfo(skb)->frags[k];
2274 
2275 			*frag = skb_shinfo(skb)->frags[i];
2276 			if (eat) {
2277 				skb_frag_off_add(frag, eat);
2278 				skb_frag_size_sub(frag, eat);
2279 				if (!i)
2280 					goto end;
2281 				eat = 0;
2282 			}
2283 			k++;
2284 		}
2285 	}
2286 	skb_shinfo(skb)->nr_frags = k;
2287 
2288 end:
2289 	skb->tail     += delta;
2290 	skb->data_len -= delta;
2291 
2292 	if (!skb->data_len)
2293 		skb_zcopy_clear(skb, false);
2294 
2295 	return skb_tail_pointer(skb);
2296 }
2297 EXPORT_SYMBOL(__pskb_pull_tail);
2298 
2299 /**
2300  *	skb_copy_bits - copy bits from skb to kernel buffer
2301  *	@skb: source skb
2302  *	@offset: offset in source
2303  *	@to: destination buffer
2304  *	@len: number of bytes to copy
2305  *
2306  *	Copy the specified number of bytes from the source skb to the
2307  *	destination buffer.
2308  *
2309  *	CAUTION ! :
2310  *		If its prototype is ever changed,
2311  *		check arch/{*}/net/{*}.S files,
2312  *		since it is called from BPF assembly code.
2313  */
2314 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
2315 {
2316 	int start = skb_headlen(skb);
2317 	struct sk_buff *frag_iter;
2318 	int i, copy;
2319 
2320 	if (offset > (int)skb->len - len)
2321 		goto fault;
2322 
2323 	/* Copy header. */
2324 	if ((copy = start - offset) > 0) {
2325 		if (copy > len)
2326 			copy = len;
2327 		skb_copy_from_linear_data_offset(skb, offset, to, copy);
2328 		if ((len -= copy) == 0)
2329 			return 0;
2330 		offset += copy;
2331 		to     += copy;
2332 	}
2333 
2334 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2335 		int end;
2336 		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
2337 
2338 		WARN_ON(start > offset + len);
2339 
2340 		end = start + skb_frag_size(f);
2341 		if ((copy = end - offset) > 0) {
2342 			u32 p_off, p_len, copied;
2343 			struct page *p;
2344 			u8 *vaddr;
2345 
2346 			if (copy > len)
2347 				copy = len;
2348 
2349 			skb_frag_foreach_page(f,
2350 					      skb_frag_off(f) + offset - start,
2351 					      copy, p, p_off, p_len, copied) {
2352 				vaddr = kmap_atomic(p);
2353 				memcpy(to + copied, vaddr + p_off, p_len);
2354 				kunmap_atomic(vaddr);
2355 			}
2356 
2357 			if ((len -= copy) == 0)
2358 				return 0;
2359 			offset += copy;
2360 			to     += copy;
2361 		}
2362 		start = end;
2363 	}
2364 
2365 	skb_walk_frags(skb, frag_iter) {
2366 		int end;
2367 
2368 		WARN_ON(start > offset + len);
2369 
2370 		end = start + frag_iter->len;
2371 		if ((copy = end - offset) > 0) {
2372 			if (copy > len)
2373 				copy = len;
2374 			if (skb_copy_bits(frag_iter, offset - start, to, copy))
2375 				goto fault;
2376 			if ((len -= copy) == 0)
2377 				return 0;
2378 			offset += copy;
2379 			to     += copy;
2380 		}
2381 		start = end;
2382 	}
2383 
2384 	if (!len)
2385 		return 0;
2386 
2387 fault:
2388 	return -EFAULT;
2389 }
2390 EXPORT_SYMBOL(skb_copy_bits);
2391 
2392 /*
2393  * Callback from splice_to_pipe(), if we need to release some pages
2394  * at the end of the spd in case we error'ed out in filling the pipe.
2395  */
2396 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
2397 {
2398 	put_page(spd->pages[i]);
2399 }
2400 
2401 static struct page *linear_to_page(struct page *page, unsigned int *len,
2402 				   unsigned int *offset,
2403 				   struct sock *sk)
2404 {
2405 	struct page_frag *pfrag = sk_page_frag(sk);
2406 
2407 	if (!sk_page_frag_refill(sk, pfrag))
2408 		return NULL;
2409 
2410 	*len = min_t(unsigned int, *len, pfrag->size - pfrag->offset);
2411 
2412 	memcpy(page_address(pfrag->page) + pfrag->offset,
2413 	       page_address(page) + *offset, *len);
2414 	*offset = pfrag->offset;
2415 	pfrag->offset += *len;
2416 
2417 	return pfrag->page;
2418 }
2419 
2420 static bool spd_can_coalesce(const struct splice_pipe_desc *spd,
2421 			     struct page *page,
2422 			     unsigned int offset)
2423 {
2424 	return	spd->nr_pages &&
2425 		spd->pages[spd->nr_pages - 1] == page &&
2426 		(spd->partial[spd->nr_pages - 1].offset +
2427 		 spd->partial[spd->nr_pages - 1].len == offset);
2428 }
2429 
2430 /*
2431  * Fill page/offset/length into spd, if it can hold more pages.
2432  */
2433 static bool spd_fill_page(struct splice_pipe_desc *spd,
2434 			  struct pipe_inode_info *pipe, struct page *page,
2435 			  unsigned int *len, unsigned int offset,
2436 			  bool linear,
2437 			  struct sock *sk)
2438 {
2439 	if (unlikely(spd->nr_pages == MAX_SKB_FRAGS))
2440 		return true;
2441 
2442 	if (linear) {
2443 		page = linear_to_page(page, len, &offset, sk);
2444 		if (!page)
2445 			return true;
2446 	}
2447 	if (spd_can_coalesce(spd, page, offset)) {
2448 		spd->partial[spd->nr_pages - 1].len += *len;
2449 		return false;
2450 	}
2451 	get_page(page);
2452 	spd->pages[spd->nr_pages] = page;
2453 	spd->partial[spd->nr_pages].len = *len;
2454 	spd->partial[spd->nr_pages].offset = offset;
2455 	spd->nr_pages++;
2456 
2457 	return false;
2458 }
2459 
2460 static bool __splice_segment(struct page *page, unsigned int poff,
2461 			     unsigned int plen, unsigned int *off,
2462 			     unsigned int *len,
2463 			     struct splice_pipe_desc *spd, bool linear,
2464 			     struct sock *sk,
2465 			     struct pipe_inode_info *pipe)
2466 {
2467 	if (!*len)
2468 		return true;
2469 
2470 	/* skip this segment if already processed */
2471 	if (*off >= plen) {
2472 		*off -= plen;
2473 		return false;
2474 	}
2475 
2476 	/* ignore any bits we already processed */
2477 	poff += *off;
2478 	plen -= *off;
2479 	*off = 0;
2480 
2481 	do {
2482 		unsigned int flen = min(*len, plen);
2483 
2484 		if (spd_fill_page(spd, pipe, page, &flen, poff,
2485 				  linear, sk))
2486 			return true;
2487 		poff += flen;
2488 		plen -= flen;
2489 		*len -= flen;
2490 	} while (*len && plen);
2491 
2492 	return false;
2493 }
2494 
2495 /*
2496  * Map linear and fragment data from the skb to spd. It reports true if the
2497  * pipe is full or if we already spliced the requested length.
2498  */
2499 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe,
2500 			      unsigned int *offset, unsigned int *len,
2501 			      struct splice_pipe_desc *spd, struct sock *sk)
2502 {
2503 	int seg;
2504 	struct sk_buff *iter;
2505 
2506 	/* map the linear part :
2507 	 * If skb->head_frag is set, this 'linear' part is backed by a
2508 	 * fragment, and if the head is not shared with any clones then
2509 	 * we can avoid a copy since we own the head portion of this page.
2510 	 */
2511 	if (__splice_segment(virt_to_page(skb->data),
2512 			     (unsigned long) skb->data & (PAGE_SIZE - 1),
2513 			     skb_headlen(skb),
2514 			     offset, len, spd,
2515 			     skb_head_is_locked(skb),
2516 			     sk, pipe))
2517 		return true;
2518 
2519 	/*
2520 	 * then map the fragments
2521 	 */
2522 	for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
2523 		const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
2524 
2525 		if (__splice_segment(skb_frag_page(f),
2526 				     skb_frag_off(f), skb_frag_size(f),
2527 				     offset, len, spd, false, sk, pipe))
2528 			return true;
2529 	}
2530 
2531 	skb_walk_frags(skb, iter) {
2532 		if (*offset >= iter->len) {
2533 			*offset -= iter->len;
2534 			continue;
2535 		}
2536 		/* __skb_splice_bits() only fails if the output has no room
2537 		 * left, so no point in going over the frag_list for the error
2538 		 * case.
2539 		 */
2540 		if (__skb_splice_bits(iter, pipe, offset, len, spd, sk))
2541 			return true;
2542 	}
2543 
2544 	return false;
2545 }
2546 
2547 /*
2548  * Map data from the skb to a pipe. Should handle both the linear part,
2549  * the fragments, and the frag list.
2550  */
2551 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
2552 		    struct pipe_inode_info *pipe, unsigned int tlen,
2553 		    unsigned int flags)
2554 {
2555 	struct partial_page partial[MAX_SKB_FRAGS];
2556 	struct page *pages[MAX_SKB_FRAGS];
2557 	struct splice_pipe_desc spd = {
2558 		.pages = pages,
2559 		.partial = partial,
2560 		.nr_pages_max = MAX_SKB_FRAGS,
2561 		.ops = &nosteal_pipe_buf_ops,
2562 		.spd_release = sock_spd_release,
2563 	};
2564 	int ret = 0;
2565 
2566 	__skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk);
2567 
2568 	if (spd.nr_pages)
2569 		ret = splice_to_pipe(pipe, &spd);
2570 
2571 	return ret;
2572 }
2573 EXPORT_SYMBOL_GPL(skb_splice_bits);
2574 
2575 static int sendmsg_unlocked(struct sock *sk, struct msghdr *msg,
2576 			    struct kvec *vec, size_t num, size_t size)
2577 {
2578 	struct socket *sock = sk->sk_socket;
2579 
2580 	if (!sock)
2581 		return -EINVAL;
2582 	return kernel_sendmsg(sock, msg, vec, num, size);
2583 }
2584 
2585 static int sendpage_unlocked(struct sock *sk, struct page *page, int offset,
2586 			     size_t size, int flags)
2587 {
2588 	struct socket *sock = sk->sk_socket;
2589 
2590 	if (!sock)
2591 		return -EINVAL;
2592 	return kernel_sendpage(sock, page, offset, size, flags);
2593 }
2594 
2595 typedef int (*sendmsg_func)(struct sock *sk, struct msghdr *msg,
2596 			    struct kvec *vec, size_t num, size_t size);
2597 typedef int (*sendpage_func)(struct sock *sk, struct page *page, int offset,
2598 			     size_t size, int flags);
2599 static int __skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset,
2600 			   int len, sendmsg_func sendmsg, sendpage_func sendpage)
2601 {
2602 	unsigned int orig_len = len;
2603 	struct sk_buff *head = skb;
2604 	unsigned short fragidx;
2605 	int slen, ret;
2606 
2607 do_frag_list:
2608 
2609 	/* Deal with head data */
2610 	while (offset < skb_headlen(skb) && len) {
2611 		struct kvec kv;
2612 		struct msghdr msg;
2613 
2614 		slen = min_t(int, len, skb_headlen(skb) - offset);
2615 		kv.iov_base = skb->data + offset;
2616 		kv.iov_len = slen;
2617 		memset(&msg, 0, sizeof(msg));
2618 		msg.msg_flags = MSG_DONTWAIT;
2619 
2620 		ret = INDIRECT_CALL_2(sendmsg, kernel_sendmsg_locked,
2621 				      sendmsg_unlocked, sk, &msg, &kv, 1, slen);
2622 		if (ret <= 0)
2623 			goto error;
2624 
2625 		offset += ret;
2626 		len -= ret;
2627 	}
2628 
2629 	/* All the data was skb head? */
2630 	if (!len)
2631 		goto out;
2632 
2633 	/* Make offset relative to start of frags */
2634 	offset -= skb_headlen(skb);
2635 
2636 	/* Find where we are in frag list */
2637 	for (fragidx = 0; fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
2638 		skb_frag_t *frag  = &skb_shinfo(skb)->frags[fragidx];
2639 
2640 		if (offset < skb_frag_size(frag))
2641 			break;
2642 
2643 		offset -= skb_frag_size(frag);
2644 	}
2645 
2646 	for (; len && fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
2647 		skb_frag_t *frag  = &skb_shinfo(skb)->frags[fragidx];
2648 
2649 		slen = min_t(size_t, len, skb_frag_size(frag) - offset);
2650 
2651 		while (slen) {
2652 			ret = INDIRECT_CALL_2(sendpage, kernel_sendpage_locked,
2653 					      sendpage_unlocked, sk,
2654 					      skb_frag_page(frag),
2655 					      skb_frag_off(frag) + offset,
2656 					      slen, MSG_DONTWAIT);
2657 			if (ret <= 0)
2658 				goto error;
2659 
2660 			len -= ret;
2661 			offset += ret;
2662 			slen -= ret;
2663 		}
2664 
2665 		offset = 0;
2666 	}
2667 
2668 	if (len) {
2669 		/* Process any frag lists */
2670 
2671 		if (skb == head) {
2672 			if (skb_has_frag_list(skb)) {
2673 				skb = skb_shinfo(skb)->frag_list;
2674 				goto do_frag_list;
2675 			}
2676 		} else if (skb->next) {
2677 			skb = skb->next;
2678 			goto do_frag_list;
2679 		}
2680 	}
2681 
2682 out:
2683 	return orig_len - len;
2684 
2685 error:
2686 	return orig_len == len ? ret : orig_len - len;
2687 }
2688 
2689 /* Send skb data on a socket. Socket must be locked. */
2690 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
2691 			 int len)
2692 {
2693 	return __skb_send_sock(sk, skb, offset, len, kernel_sendmsg_locked,
2694 			       kernel_sendpage_locked);
2695 }
2696 EXPORT_SYMBOL_GPL(skb_send_sock_locked);
2697 
2698 /* Send skb data on a socket. Socket must be unlocked. */
2699 int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len)
2700 {
2701 	return __skb_send_sock(sk, skb, offset, len, sendmsg_unlocked,
2702 			       sendpage_unlocked);
2703 }
2704 
2705 /**
2706  *	skb_store_bits - store bits from kernel buffer to skb
2707  *	@skb: destination buffer
2708  *	@offset: offset in destination
2709  *	@from: source buffer
2710  *	@len: number of bytes to copy
2711  *
2712  *	Copy the specified number of bytes from the source buffer to the
2713  *	destination skb.  This function handles all the messy bits of
2714  *	traversing fragment lists and such.
2715  */
2716 
2717 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
2718 {
2719 	int start = skb_headlen(skb);
2720 	struct sk_buff *frag_iter;
2721 	int i, copy;
2722 
2723 	if (offset > (int)skb->len - len)
2724 		goto fault;
2725 
2726 	if ((copy = start - offset) > 0) {
2727 		if (copy > len)
2728 			copy = len;
2729 		skb_copy_to_linear_data_offset(skb, offset, from, copy);
2730 		if ((len -= copy) == 0)
2731 			return 0;
2732 		offset += copy;
2733 		from += copy;
2734 	}
2735 
2736 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2737 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2738 		int end;
2739 
2740 		WARN_ON(start > offset + len);
2741 
2742 		end = start + skb_frag_size(frag);
2743 		if ((copy = end - offset) > 0) {
2744 			u32 p_off, p_len, copied;
2745 			struct page *p;
2746 			u8 *vaddr;
2747 
2748 			if (copy > len)
2749 				copy = len;
2750 
2751 			skb_frag_foreach_page(frag,
2752 					      skb_frag_off(frag) + offset - start,
2753 					      copy, p, p_off, p_len, copied) {
2754 				vaddr = kmap_atomic(p);
2755 				memcpy(vaddr + p_off, from + copied, p_len);
2756 				kunmap_atomic(vaddr);
2757 			}
2758 
2759 			if ((len -= copy) == 0)
2760 				return 0;
2761 			offset += copy;
2762 			from += copy;
2763 		}
2764 		start = end;
2765 	}
2766 
2767 	skb_walk_frags(skb, frag_iter) {
2768 		int end;
2769 
2770 		WARN_ON(start > offset + len);
2771 
2772 		end = start + frag_iter->len;
2773 		if ((copy = end - offset) > 0) {
2774 			if (copy > len)
2775 				copy = len;
2776 			if (skb_store_bits(frag_iter, offset - start,
2777 					   from, copy))
2778 				goto fault;
2779 			if ((len -= copy) == 0)
2780 				return 0;
2781 			offset += copy;
2782 			from += copy;
2783 		}
2784 		start = end;
2785 	}
2786 	if (!len)
2787 		return 0;
2788 
2789 fault:
2790 	return -EFAULT;
2791 }
2792 EXPORT_SYMBOL(skb_store_bits);
2793 
2794 /* Checksum skb data. */
2795 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
2796 		      __wsum csum, const struct skb_checksum_ops *ops)
2797 {
2798 	int start = skb_headlen(skb);
2799 	int i, copy = start - offset;
2800 	struct sk_buff *frag_iter;
2801 	int pos = 0;
2802 
2803 	/* Checksum header. */
2804 	if (copy > 0) {
2805 		if (copy > len)
2806 			copy = len;
2807 		csum = INDIRECT_CALL_1(ops->update, csum_partial_ext,
2808 				       skb->data + offset, copy, csum);
2809 		if ((len -= copy) == 0)
2810 			return csum;
2811 		offset += copy;
2812 		pos	= copy;
2813 	}
2814 
2815 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2816 		int end;
2817 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2818 
2819 		WARN_ON(start > offset + len);
2820 
2821 		end = start + skb_frag_size(frag);
2822 		if ((copy = end - offset) > 0) {
2823 			u32 p_off, p_len, copied;
2824 			struct page *p;
2825 			__wsum csum2;
2826 			u8 *vaddr;
2827 
2828 			if (copy > len)
2829 				copy = len;
2830 
2831 			skb_frag_foreach_page(frag,
2832 					      skb_frag_off(frag) + offset - start,
2833 					      copy, p, p_off, p_len, copied) {
2834 				vaddr = kmap_atomic(p);
2835 				csum2 = INDIRECT_CALL_1(ops->update,
2836 							csum_partial_ext,
2837 							vaddr + p_off, p_len, 0);
2838 				kunmap_atomic(vaddr);
2839 				csum = INDIRECT_CALL_1(ops->combine,
2840 						       csum_block_add_ext, csum,
2841 						       csum2, pos, p_len);
2842 				pos += p_len;
2843 			}
2844 
2845 			if (!(len -= copy))
2846 				return csum;
2847 			offset += copy;
2848 		}
2849 		start = end;
2850 	}
2851 
2852 	skb_walk_frags(skb, frag_iter) {
2853 		int end;
2854 
2855 		WARN_ON(start > offset + len);
2856 
2857 		end = start + frag_iter->len;
2858 		if ((copy = end - offset) > 0) {
2859 			__wsum csum2;
2860 			if (copy > len)
2861 				copy = len;
2862 			csum2 = __skb_checksum(frag_iter, offset - start,
2863 					       copy, 0, ops);
2864 			csum = INDIRECT_CALL_1(ops->combine, csum_block_add_ext,
2865 					       csum, csum2, pos, copy);
2866 			if ((len -= copy) == 0)
2867 				return csum;
2868 			offset += copy;
2869 			pos    += copy;
2870 		}
2871 		start = end;
2872 	}
2873 	BUG_ON(len);
2874 
2875 	return csum;
2876 }
2877 EXPORT_SYMBOL(__skb_checksum);
2878 
2879 __wsum skb_checksum(const struct sk_buff *skb, int offset,
2880 		    int len, __wsum csum)
2881 {
2882 	const struct skb_checksum_ops ops = {
2883 		.update  = csum_partial_ext,
2884 		.combine = csum_block_add_ext,
2885 	};
2886 
2887 	return __skb_checksum(skb, offset, len, csum, &ops);
2888 }
2889 EXPORT_SYMBOL(skb_checksum);
2890 
2891 /* Both of above in one bottle. */
2892 
2893 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
2894 				    u8 *to, int len)
2895 {
2896 	int start = skb_headlen(skb);
2897 	int i, copy = start - offset;
2898 	struct sk_buff *frag_iter;
2899 	int pos = 0;
2900 	__wsum csum = 0;
2901 
2902 	/* Copy header. */
2903 	if (copy > 0) {
2904 		if (copy > len)
2905 			copy = len;
2906 		csum = csum_partial_copy_nocheck(skb->data + offset, to,
2907 						 copy);
2908 		if ((len -= copy) == 0)
2909 			return csum;
2910 		offset += copy;
2911 		to     += copy;
2912 		pos	= copy;
2913 	}
2914 
2915 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2916 		int end;
2917 
2918 		WARN_ON(start > offset + len);
2919 
2920 		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
2921 		if ((copy = end - offset) > 0) {
2922 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2923 			u32 p_off, p_len, copied;
2924 			struct page *p;
2925 			__wsum csum2;
2926 			u8 *vaddr;
2927 
2928 			if (copy > len)
2929 				copy = len;
2930 
2931 			skb_frag_foreach_page(frag,
2932 					      skb_frag_off(frag) + offset - start,
2933 					      copy, p, p_off, p_len, copied) {
2934 				vaddr = kmap_atomic(p);
2935 				csum2 = csum_partial_copy_nocheck(vaddr + p_off,
2936 								  to + copied,
2937 								  p_len);
2938 				kunmap_atomic(vaddr);
2939 				csum = csum_block_add(csum, csum2, pos);
2940 				pos += p_len;
2941 			}
2942 
2943 			if (!(len -= copy))
2944 				return csum;
2945 			offset += copy;
2946 			to     += copy;
2947 		}
2948 		start = end;
2949 	}
2950 
2951 	skb_walk_frags(skb, frag_iter) {
2952 		__wsum csum2;
2953 		int end;
2954 
2955 		WARN_ON(start > offset + len);
2956 
2957 		end = start + frag_iter->len;
2958 		if ((copy = end - offset) > 0) {
2959 			if (copy > len)
2960 				copy = len;
2961 			csum2 = skb_copy_and_csum_bits(frag_iter,
2962 						       offset - start,
2963 						       to, copy);
2964 			csum = csum_block_add(csum, csum2, pos);
2965 			if ((len -= copy) == 0)
2966 				return csum;
2967 			offset += copy;
2968 			to     += copy;
2969 			pos    += copy;
2970 		}
2971 		start = end;
2972 	}
2973 	BUG_ON(len);
2974 	return csum;
2975 }
2976 EXPORT_SYMBOL(skb_copy_and_csum_bits);
2977 
2978 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len)
2979 {
2980 	__sum16 sum;
2981 
2982 	sum = csum_fold(skb_checksum(skb, 0, len, skb->csum));
2983 	/* See comments in __skb_checksum_complete(). */
2984 	if (likely(!sum)) {
2985 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
2986 		    !skb->csum_complete_sw)
2987 			netdev_rx_csum_fault(skb->dev, skb);
2988 	}
2989 	if (!skb_shared(skb))
2990 		skb->csum_valid = !sum;
2991 	return sum;
2992 }
2993 EXPORT_SYMBOL(__skb_checksum_complete_head);
2994 
2995 /* This function assumes skb->csum already holds pseudo header's checksum,
2996  * which has been changed from the hardware checksum, for example, by
2997  * __skb_checksum_validate_complete(). And, the original skb->csum must
2998  * have been validated unsuccessfully for CHECKSUM_COMPLETE case.
2999  *
3000  * It returns non-zero if the recomputed checksum is still invalid, otherwise
3001  * zero. The new checksum is stored back into skb->csum unless the skb is
3002  * shared.
3003  */
3004 __sum16 __skb_checksum_complete(struct sk_buff *skb)
3005 {
3006 	__wsum csum;
3007 	__sum16 sum;
3008 
3009 	csum = skb_checksum(skb, 0, skb->len, 0);
3010 
3011 	sum = csum_fold(csum_add(skb->csum, csum));
3012 	/* This check is inverted, because we already knew the hardware
3013 	 * checksum is invalid before calling this function. So, if the
3014 	 * re-computed checksum is valid instead, then we have a mismatch
3015 	 * between the original skb->csum and skb_checksum(). This means either
3016 	 * the original hardware checksum is incorrect or we screw up skb->csum
3017 	 * when moving skb->data around.
3018 	 */
3019 	if (likely(!sum)) {
3020 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
3021 		    !skb->csum_complete_sw)
3022 			netdev_rx_csum_fault(skb->dev, skb);
3023 	}
3024 
3025 	if (!skb_shared(skb)) {
3026 		/* Save full packet checksum */
3027 		skb->csum = csum;
3028 		skb->ip_summed = CHECKSUM_COMPLETE;
3029 		skb->csum_complete_sw = 1;
3030 		skb->csum_valid = !sum;
3031 	}
3032 
3033 	return sum;
3034 }
3035 EXPORT_SYMBOL(__skb_checksum_complete);
3036 
3037 static __wsum warn_crc32c_csum_update(const void *buff, int len, __wsum sum)
3038 {
3039 	net_warn_ratelimited(
3040 		"%s: attempt to compute crc32c without libcrc32c.ko\n",
3041 		__func__);
3042 	return 0;
3043 }
3044 
3045 static __wsum warn_crc32c_csum_combine(__wsum csum, __wsum csum2,
3046 				       int offset, int len)
3047 {
3048 	net_warn_ratelimited(
3049 		"%s: attempt to compute crc32c without libcrc32c.ko\n",
3050 		__func__);
3051 	return 0;
3052 }
3053 
3054 static const struct skb_checksum_ops default_crc32c_ops = {
3055 	.update  = warn_crc32c_csum_update,
3056 	.combine = warn_crc32c_csum_combine,
3057 };
3058 
3059 const struct skb_checksum_ops *crc32c_csum_stub __read_mostly =
3060 	&default_crc32c_ops;
3061 EXPORT_SYMBOL(crc32c_csum_stub);
3062 
3063  /**
3064  *	skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy()
3065  *	@from: source buffer
3066  *
3067  *	Calculates the amount of linear headroom needed in the 'to' skb passed
3068  *	into skb_zerocopy().
3069  */
3070 unsigned int
3071 skb_zerocopy_headlen(const struct sk_buff *from)
3072 {
3073 	unsigned int hlen = 0;
3074 
3075 	if (!from->head_frag ||
3076 	    skb_headlen(from) < L1_CACHE_BYTES ||
3077 	    skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS) {
3078 		hlen = skb_headlen(from);
3079 		if (!hlen)
3080 			hlen = from->len;
3081 	}
3082 
3083 	if (skb_has_frag_list(from))
3084 		hlen = from->len;
3085 
3086 	return hlen;
3087 }
3088 EXPORT_SYMBOL_GPL(skb_zerocopy_headlen);
3089 
3090 /**
3091  *	skb_zerocopy - Zero copy skb to skb
3092  *	@to: destination buffer
3093  *	@from: source buffer
3094  *	@len: number of bytes to copy from source buffer
3095  *	@hlen: size of linear headroom in destination buffer
3096  *
3097  *	Copies up to `len` bytes from `from` to `to` by creating references
3098  *	to the frags in the source buffer.
3099  *
3100  *	The `hlen` as calculated by skb_zerocopy_headlen() specifies the
3101  *	headroom in the `to` buffer.
3102  *
3103  *	Return value:
3104  *	0: everything is OK
3105  *	-ENOMEM: couldn't orphan frags of @from due to lack of memory
3106  *	-EFAULT: skb_copy_bits() found some problem with skb geometry
3107  */
3108 int
3109 skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen)
3110 {
3111 	int i, j = 0;
3112 	int plen = 0; /* length of skb->head fragment */
3113 	int ret;
3114 	struct page *page;
3115 	unsigned int offset;
3116 
3117 	BUG_ON(!from->head_frag && !hlen);
3118 
3119 	/* dont bother with small payloads */
3120 	if (len <= skb_tailroom(to))
3121 		return skb_copy_bits(from, 0, skb_put(to, len), len);
3122 
3123 	if (hlen) {
3124 		ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen);
3125 		if (unlikely(ret))
3126 			return ret;
3127 		len -= hlen;
3128 	} else {
3129 		plen = min_t(int, skb_headlen(from), len);
3130 		if (plen) {
3131 			page = virt_to_head_page(from->head);
3132 			offset = from->data - (unsigned char *)page_address(page);
3133 			__skb_fill_page_desc(to, 0, page, offset, plen);
3134 			get_page(page);
3135 			j = 1;
3136 			len -= plen;
3137 		}
3138 	}
3139 
3140 	to->truesize += len + plen;
3141 	to->len += len + plen;
3142 	to->data_len += len + plen;
3143 
3144 	if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) {
3145 		skb_tx_error(from);
3146 		return -ENOMEM;
3147 	}
3148 	skb_zerocopy_clone(to, from, GFP_ATOMIC);
3149 
3150 	for (i = 0; i < skb_shinfo(from)->nr_frags; i++) {
3151 		int size;
3152 
3153 		if (!len)
3154 			break;
3155 		skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i];
3156 		size = min_t(int, skb_frag_size(&skb_shinfo(to)->frags[j]),
3157 					len);
3158 		skb_frag_size_set(&skb_shinfo(to)->frags[j], size);
3159 		len -= size;
3160 		skb_frag_ref(to, j);
3161 		j++;
3162 	}
3163 	skb_shinfo(to)->nr_frags = j;
3164 
3165 	return 0;
3166 }
3167 EXPORT_SYMBOL_GPL(skb_zerocopy);
3168 
3169 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
3170 {
3171 	__wsum csum;
3172 	long csstart;
3173 
3174 	if (skb->ip_summed == CHECKSUM_PARTIAL)
3175 		csstart = skb_checksum_start_offset(skb);
3176 	else
3177 		csstart = skb_headlen(skb);
3178 
3179 	BUG_ON(csstart > skb_headlen(skb));
3180 
3181 	skb_copy_from_linear_data(skb, to, csstart);
3182 
3183 	csum = 0;
3184 	if (csstart != skb->len)
3185 		csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
3186 					      skb->len - csstart);
3187 
3188 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
3189 		long csstuff = csstart + skb->csum_offset;
3190 
3191 		*((__sum16 *)(to + csstuff)) = csum_fold(csum);
3192 	}
3193 }
3194 EXPORT_SYMBOL(skb_copy_and_csum_dev);
3195 
3196 /**
3197  *	skb_dequeue - remove from the head of the queue
3198  *	@list: list to dequeue from
3199  *
3200  *	Remove the head of the list. The list lock is taken so the function
3201  *	may be used safely with other locking list functions. The head item is
3202  *	returned or %NULL if the list is empty.
3203  */
3204 
3205 struct sk_buff *skb_dequeue(struct sk_buff_head *list)
3206 {
3207 	unsigned long flags;
3208 	struct sk_buff *result;
3209 
3210 	spin_lock_irqsave(&list->lock, flags);
3211 	result = __skb_dequeue(list);
3212 	spin_unlock_irqrestore(&list->lock, flags);
3213 	return result;
3214 }
3215 EXPORT_SYMBOL(skb_dequeue);
3216 
3217 /**
3218  *	skb_dequeue_tail - remove from the tail of the queue
3219  *	@list: list to dequeue from
3220  *
3221  *	Remove the tail of the list. The list lock is taken so the function
3222  *	may be used safely with other locking list functions. The tail item is
3223  *	returned or %NULL if the list is empty.
3224  */
3225 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
3226 {
3227 	unsigned long flags;
3228 	struct sk_buff *result;
3229 
3230 	spin_lock_irqsave(&list->lock, flags);
3231 	result = __skb_dequeue_tail(list);
3232 	spin_unlock_irqrestore(&list->lock, flags);
3233 	return result;
3234 }
3235 EXPORT_SYMBOL(skb_dequeue_tail);
3236 
3237 /**
3238  *	skb_queue_purge - empty a list
3239  *	@list: list to empty
3240  *
3241  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
3242  *	the list and one reference dropped. This function takes the list
3243  *	lock and is atomic with respect to other list locking functions.
3244  */
3245 void skb_queue_purge(struct sk_buff_head *list)
3246 {
3247 	struct sk_buff *skb;
3248 	while ((skb = skb_dequeue(list)) != NULL)
3249 		kfree_skb(skb);
3250 }
3251 EXPORT_SYMBOL(skb_queue_purge);
3252 
3253 /**
3254  *	skb_rbtree_purge - empty a skb rbtree
3255  *	@root: root of the rbtree to empty
3256  *	Return value: the sum of truesizes of all purged skbs.
3257  *
3258  *	Delete all buffers on an &sk_buff rbtree. Each buffer is removed from
3259  *	the list and one reference dropped. This function does not take
3260  *	any lock. Synchronization should be handled by the caller (e.g., TCP
3261  *	out-of-order queue is protected by the socket lock).
3262  */
3263 unsigned int skb_rbtree_purge(struct rb_root *root)
3264 {
3265 	struct rb_node *p = rb_first(root);
3266 	unsigned int sum = 0;
3267 
3268 	while (p) {
3269 		struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode);
3270 
3271 		p = rb_next(p);
3272 		rb_erase(&skb->rbnode, root);
3273 		sum += skb->truesize;
3274 		kfree_skb(skb);
3275 	}
3276 	return sum;
3277 }
3278 
3279 /**
3280  *	skb_queue_head - queue a buffer at the list head
3281  *	@list: list to use
3282  *	@newsk: buffer to queue
3283  *
3284  *	Queue a buffer at the start of the list. This function takes the
3285  *	list lock and can be used safely with other locking &sk_buff functions
3286  *	safely.
3287  *
3288  *	A buffer cannot be placed on two lists at the same time.
3289  */
3290 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
3291 {
3292 	unsigned long flags;
3293 
3294 	spin_lock_irqsave(&list->lock, flags);
3295 	__skb_queue_head(list, newsk);
3296 	spin_unlock_irqrestore(&list->lock, flags);
3297 }
3298 EXPORT_SYMBOL(skb_queue_head);
3299 
3300 /**
3301  *	skb_queue_tail - queue a buffer at the list tail
3302  *	@list: list to use
3303  *	@newsk: buffer to queue
3304  *
3305  *	Queue a buffer at the tail of the list. This function takes the
3306  *	list lock and can be used safely with other locking &sk_buff functions
3307  *	safely.
3308  *
3309  *	A buffer cannot be placed on two lists at the same time.
3310  */
3311 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
3312 {
3313 	unsigned long flags;
3314 
3315 	spin_lock_irqsave(&list->lock, flags);
3316 	__skb_queue_tail(list, newsk);
3317 	spin_unlock_irqrestore(&list->lock, flags);
3318 }
3319 EXPORT_SYMBOL(skb_queue_tail);
3320 
3321 /**
3322  *	skb_unlink	-	remove a buffer from a list
3323  *	@skb: buffer to remove
3324  *	@list: list to use
3325  *
3326  *	Remove a packet from a list. The list locks are taken and this
3327  *	function is atomic with respect to other list locked calls
3328  *
3329  *	You must know what list the SKB is on.
3330  */
3331 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
3332 {
3333 	unsigned long flags;
3334 
3335 	spin_lock_irqsave(&list->lock, flags);
3336 	__skb_unlink(skb, list);
3337 	spin_unlock_irqrestore(&list->lock, flags);
3338 }
3339 EXPORT_SYMBOL(skb_unlink);
3340 
3341 /**
3342  *	skb_append	-	append a buffer
3343  *	@old: buffer to insert after
3344  *	@newsk: buffer to insert
3345  *	@list: list to use
3346  *
3347  *	Place a packet after a given packet in a list. The list locks are taken
3348  *	and this function is atomic with respect to other list locked calls.
3349  *	A buffer cannot be placed on two lists at the same time.
3350  */
3351 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
3352 {
3353 	unsigned long flags;
3354 
3355 	spin_lock_irqsave(&list->lock, flags);
3356 	__skb_queue_after(list, old, newsk);
3357 	spin_unlock_irqrestore(&list->lock, flags);
3358 }
3359 EXPORT_SYMBOL(skb_append);
3360 
3361 static inline void skb_split_inside_header(struct sk_buff *skb,
3362 					   struct sk_buff* skb1,
3363 					   const u32 len, const int pos)
3364 {
3365 	int i;
3366 
3367 	skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
3368 					 pos - len);
3369 	/* And move data appendix as is. */
3370 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
3371 		skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
3372 
3373 	skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
3374 	skb_shinfo(skb)->nr_frags  = 0;
3375 	skb1->data_len		   = skb->data_len;
3376 	skb1->len		   += skb1->data_len;
3377 	skb->data_len		   = 0;
3378 	skb->len		   = len;
3379 	skb_set_tail_pointer(skb, len);
3380 }
3381 
3382 static inline void skb_split_no_header(struct sk_buff *skb,
3383 				       struct sk_buff* skb1,
3384 				       const u32 len, int pos)
3385 {
3386 	int i, k = 0;
3387 	const int nfrags = skb_shinfo(skb)->nr_frags;
3388 
3389 	skb_shinfo(skb)->nr_frags = 0;
3390 	skb1->len		  = skb1->data_len = skb->len - len;
3391 	skb->len		  = len;
3392 	skb->data_len		  = len - pos;
3393 
3394 	for (i = 0; i < nfrags; i++) {
3395 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
3396 
3397 		if (pos + size > len) {
3398 			skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
3399 
3400 			if (pos < len) {
3401 				/* Split frag.
3402 				 * We have two variants in this case:
3403 				 * 1. Move all the frag to the second
3404 				 *    part, if it is possible. F.e.
3405 				 *    this approach is mandatory for TUX,
3406 				 *    where splitting is expensive.
3407 				 * 2. Split is accurately. We make this.
3408 				 */
3409 				skb_frag_ref(skb, i);
3410 				skb_frag_off_add(&skb_shinfo(skb1)->frags[0], len - pos);
3411 				skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos);
3412 				skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos);
3413 				skb_shinfo(skb)->nr_frags++;
3414 			}
3415 			k++;
3416 		} else
3417 			skb_shinfo(skb)->nr_frags++;
3418 		pos += size;
3419 	}
3420 	skb_shinfo(skb1)->nr_frags = k;
3421 }
3422 
3423 /**
3424  * skb_split - Split fragmented skb to two parts at length len.
3425  * @skb: the buffer to split
3426  * @skb1: the buffer to receive the second part
3427  * @len: new length for skb
3428  */
3429 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
3430 {
3431 	int pos = skb_headlen(skb);
3432 	const int zc_flags = SKBFL_SHARED_FRAG | SKBFL_PURE_ZEROCOPY;
3433 
3434 	skb_shinfo(skb1)->flags |= skb_shinfo(skb)->flags & zc_flags;
3435 	skb_zerocopy_clone(skb1, skb, 0);
3436 	if (len < pos)	/* Split line is inside header. */
3437 		skb_split_inside_header(skb, skb1, len, pos);
3438 	else		/* Second chunk has no header, nothing to copy. */
3439 		skb_split_no_header(skb, skb1, len, pos);
3440 }
3441 EXPORT_SYMBOL(skb_split);
3442 
3443 /* Shifting from/to a cloned skb is a no-go.
3444  *
3445  * Caller cannot keep skb_shinfo related pointers past calling here!
3446  */
3447 static int skb_prepare_for_shift(struct sk_buff *skb)
3448 {
3449 	return skb_unclone_keeptruesize(skb, GFP_ATOMIC);
3450 }
3451 
3452 /**
3453  * skb_shift - Shifts paged data partially from skb to another
3454  * @tgt: buffer into which tail data gets added
3455  * @skb: buffer from which the paged data comes from
3456  * @shiftlen: shift up to this many bytes
3457  *
3458  * Attempts to shift up to shiftlen worth of bytes, which may be less than
3459  * the length of the skb, from skb to tgt. Returns number bytes shifted.
3460  * It's up to caller to free skb if everything was shifted.
3461  *
3462  * If @tgt runs out of frags, the whole operation is aborted.
3463  *
3464  * Skb cannot include anything else but paged data while tgt is allowed
3465  * to have non-paged data as well.
3466  *
3467  * TODO: full sized shift could be optimized but that would need
3468  * specialized skb free'er to handle frags without up-to-date nr_frags.
3469  */
3470 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
3471 {
3472 	int from, to, merge, todo;
3473 	skb_frag_t *fragfrom, *fragto;
3474 
3475 	BUG_ON(shiftlen > skb->len);
3476 
3477 	if (skb_headlen(skb))
3478 		return 0;
3479 	if (skb_zcopy(tgt) || skb_zcopy(skb))
3480 		return 0;
3481 
3482 	todo = shiftlen;
3483 	from = 0;
3484 	to = skb_shinfo(tgt)->nr_frags;
3485 	fragfrom = &skb_shinfo(skb)->frags[from];
3486 
3487 	/* Actual merge is delayed until the point when we know we can
3488 	 * commit all, so that we don't have to undo partial changes
3489 	 */
3490 	if (!to ||
3491 	    !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom),
3492 			      skb_frag_off(fragfrom))) {
3493 		merge = -1;
3494 	} else {
3495 		merge = to - 1;
3496 
3497 		todo -= skb_frag_size(fragfrom);
3498 		if (todo < 0) {
3499 			if (skb_prepare_for_shift(skb) ||
3500 			    skb_prepare_for_shift(tgt))
3501 				return 0;
3502 
3503 			/* All previous frag pointers might be stale! */
3504 			fragfrom = &skb_shinfo(skb)->frags[from];
3505 			fragto = &skb_shinfo(tgt)->frags[merge];
3506 
3507 			skb_frag_size_add(fragto, shiftlen);
3508 			skb_frag_size_sub(fragfrom, shiftlen);
3509 			skb_frag_off_add(fragfrom, shiftlen);
3510 
3511 			goto onlymerged;
3512 		}
3513 
3514 		from++;
3515 	}
3516 
3517 	/* Skip full, not-fitting skb to avoid expensive operations */
3518 	if ((shiftlen == skb->len) &&
3519 	    (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
3520 		return 0;
3521 
3522 	if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
3523 		return 0;
3524 
3525 	while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
3526 		if (to == MAX_SKB_FRAGS)
3527 			return 0;
3528 
3529 		fragfrom = &skb_shinfo(skb)->frags[from];
3530 		fragto = &skb_shinfo(tgt)->frags[to];
3531 
3532 		if (todo >= skb_frag_size(fragfrom)) {
3533 			*fragto = *fragfrom;
3534 			todo -= skb_frag_size(fragfrom);
3535 			from++;
3536 			to++;
3537 
3538 		} else {
3539 			__skb_frag_ref(fragfrom);
3540 			skb_frag_page_copy(fragto, fragfrom);
3541 			skb_frag_off_copy(fragto, fragfrom);
3542 			skb_frag_size_set(fragto, todo);
3543 
3544 			skb_frag_off_add(fragfrom, todo);
3545 			skb_frag_size_sub(fragfrom, todo);
3546 			todo = 0;
3547 
3548 			to++;
3549 			break;
3550 		}
3551 	}
3552 
3553 	/* Ready to "commit" this state change to tgt */
3554 	skb_shinfo(tgt)->nr_frags = to;
3555 
3556 	if (merge >= 0) {
3557 		fragfrom = &skb_shinfo(skb)->frags[0];
3558 		fragto = &skb_shinfo(tgt)->frags[merge];
3559 
3560 		skb_frag_size_add(fragto, skb_frag_size(fragfrom));
3561 		__skb_frag_unref(fragfrom, skb->pp_recycle);
3562 	}
3563 
3564 	/* Reposition in the original skb */
3565 	to = 0;
3566 	while (from < skb_shinfo(skb)->nr_frags)
3567 		skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
3568 	skb_shinfo(skb)->nr_frags = to;
3569 
3570 	BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
3571 
3572 onlymerged:
3573 	/* Most likely the tgt won't ever need its checksum anymore, skb on
3574 	 * the other hand might need it if it needs to be resent
3575 	 */
3576 	tgt->ip_summed = CHECKSUM_PARTIAL;
3577 	skb->ip_summed = CHECKSUM_PARTIAL;
3578 
3579 	/* Yak, is it really working this way? Some helper please? */
3580 	skb->len -= shiftlen;
3581 	skb->data_len -= shiftlen;
3582 	skb->truesize -= shiftlen;
3583 	tgt->len += shiftlen;
3584 	tgt->data_len += shiftlen;
3585 	tgt->truesize += shiftlen;
3586 
3587 	return shiftlen;
3588 }
3589 
3590 /**
3591  * skb_prepare_seq_read - Prepare a sequential read of skb data
3592  * @skb: the buffer to read
3593  * @from: lower offset of data to be read
3594  * @to: upper offset of data to be read
3595  * @st: state variable
3596  *
3597  * Initializes the specified state variable. Must be called before
3598  * invoking skb_seq_read() for the first time.
3599  */
3600 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
3601 			  unsigned int to, struct skb_seq_state *st)
3602 {
3603 	st->lower_offset = from;
3604 	st->upper_offset = to;
3605 	st->root_skb = st->cur_skb = skb;
3606 	st->frag_idx = st->stepped_offset = 0;
3607 	st->frag_data = NULL;
3608 	st->frag_off = 0;
3609 }
3610 EXPORT_SYMBOL(skb_prepare_seq_read);
3611 
3612 /**
3613  * skb_seq_read - Sequentially read skb data
3614  * @consumed: number of bytes consumed by the caller so far
3615  * @data: destination pointer for data to be returned
3616  * @st: state variable
3617  *
3618  * Reads a block of skb data at @consumed relative to the
3619  * lower offset specified to skb_prepare_seq_read(). Assigns
3620  * the head of the data block to @data and returns the length
3621  * of the block or 0 if the end of the skb data or the upper
3622  * offset has been reached.
3623  *
3624  * The caller is not required to consume all of the data
3625  * returned, i.e. @consumed is typically set to the number
3626  * of bytes already consumed and the next call to
3627  * skb_seq_read() will return the remaining part of the block.
3628  *
3629  * Note 1: The size of each block of data returned can be arbitrary,
3630  *       this limitation is the cost for zerocopy sequential
3631  *       reads of potentially non linear data.
3632  *
3633  * Note 2: Fragment lists within fragments are not implemented
3634  *       at the moment, state->root_skb could be replaced with
3635  *       a stack for this purpose.
3636  */
3637 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
3638 			  struct skb_seq_state *st)
3639 {
3640 	unsigned int block_limit, abs_offset = consumed + st->lower_offset;
3641 	skb_frag_t *frag;
3642 
3643 	if (unlikely(abs_offset >= st->upper_offset)) {
3644 		if (st->frag_data) {
3645 			kunmap_atomic(st->frag_data);
3646 			st->frag_data = NULL;
3647 		}
3648 		return 0;
3649 	}
3650 
3651 next_skb:
3652 	block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
3653 
3654 	if (abs_offset < block_limit && !st->frag_data) {
3655 		*data = st->cur_skb->data + (abs_offset - st->stepped_offset);
3656 		return block_limit - abs_offset;
3657 	}
3658 
3659 	if (st->frag_idx == 0 && !st->frag_data)
3660 		st->stepped_offset += skb_headlen(st->cur_skb);
3661 
3662 	while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
3663 		unsigned int pg_idx, pg_off, pg_sz;
3664 
3665 		frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
3666 
3667 		pg_idx = 0;
3668 		pg_off = skb_frag_off(frag);
3669 		pg_sz = skb_frag_size(frag);
3670 
3671 		if (skb_frag_must_loop(skb_frag_page(frag))) {
3672 			pg_idx = (pg_off + st->frag_off) >> PAGE_SHIFT;
3673 			pg_off = offset_in_page(pg_off + st->frag_off);
3674 			pg_sz = min_t(unsigned int, pg_sz - st->frag_off,
3675 						    PAGE_SIZE - pg_off);
3676 		}
3677 
3678 		block_limit = pg_sz + st->stepped_offset;
3679 		if (abs_offset < block_limit) {
3680 			if (!st->frag_data)
3681 				st->frag_data = kmap_atomic(skb_frag_page(frag) + pg_idx);
3682 
3683 			*data = (u8 *)st->frag_data + pg_off +
3684 				(abs_offset - st->stepped_offset);
3685 
3686 			return block_limit - abs_offset;
3687 		}
3688 
3689 		if (st->frag_data) {
3690 			kunmap_atomic(st->frag_data);
3691 			st->frag_data = NULL;
3692 		}
3693 
3694 		st->stepped_offset += pg_sz;
3695 		st->frag_off += pg_sz;
3696 		if (st->frag_off == skb_frag_size(frag)) {
3697 			st->frag_off = 0;
3698 			st->frag_idx++;
3699 		}
3700 	}
3701 
3702 	if (st->frag_data) {
3703 		kunmap_atomic(st->frag_data);
3704 		st->frag_data = NULL;
3705 	}
3706 
3707 	if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) {
3708 		st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
3709 		st->frag_idx = 0;
3710 		goto next_skb;
3711 	} else if (st->cur_skb->next) {
3712 		st->cur_skb = st->cur_skb->next;
3713 		st->frag_idx = 0;
3714 		goto next_skb;
3715 	}
3716 
3717 	return 0;
3718 }
3719 EXPORT_SYMBOL(skb_seq_read);
3720 
3721 /**
3722  * skb_abort_seq_read - Abort a sequential read of skb data
3723  * @st: state variable
3724  *
3725  * Must be called if skb_seq_read() was not called until it
3726  * returned 0.
3727  */
3728 void skb_abort_seq_read(struct skb_seq_state *st)
3729 {
3730 	if (st->frag_data)
3731 		kunmap_atomic(st->frag_data);
3732 }
3733 EXPORT_SYMBOL(skb_abort_seq_read);
3734 
3735 #define TS_SKB_CB(state)	((struct skb_seq_state *) &((state)->cb))
3736 
3737 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
3738 					  struct ts_config *conf,
3739 					  struct ts_state *state)
3740 {
3741 	return skb_seq_read(offset, text, TS_SKB_CB(state));
3742 }
3743 
3744 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
3745 {
3746 	skb_abort_seq_read(TS_SKB_CB(state));
3747 }
3748 
3749 /**
3750  * skb_find_text - Find a text pattern in skb data
3751  * @skb: the buffer to look in
3752  * @from: search offset
3753  * @to: search limit
3754  * @config: textsearch configuration
3755  *
3756  * Finds a pattern in the skb data according to the specified
3757  * textsearch configuration. Use textsearch_next() to retrieve
3758  * subsequent occurrences of the pattern. Returns the offset
3759  * to the first occurrence or UINT_MAX if no match was found.
3760  */
3761 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
3762 			   unsigned int to, struct ts_config *config)
3763 {
3764 	struct ts_state state;
3765 	unsigned int ret;
3766 
3767 	BUILD_BUG_ON(sizeof(struct skb_seq_state) > sizeof(state.cb));
3768 
3769 	config->get_next_block = skb_ts_get_next_block;
3770 	config->finish = skb_ts_finish;
3771 
3772 	skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state));
3773 
3774 	ret = textsearch_find(config, &state);
3775 	return (ret <= to - from ? ret : UINT_MAX);
3776 }
3777 EXPORT_SYMBOL(skb_find_text);
3778 
3779 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
3780 			 int offset, size_t size)
3781 {
3782 	int i = skb_shinfo(skb)->nr_frags;
3783 
3784 	if (skb_can_coalesce(skb, i, page, offset)) {
3785 		skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size);
3786 	} else if (i < MAX_SKB_FRAGS) {
3787 		get_page(page);
3788 		skb_fill_page_desc(skb, i, page, offset, size);
3789 	} else {
3790 		return -EMSGSIZE;
3791 	}
3792 
3793 	return 0;
3794 }
3795 EXPORT_SYMBOL_GPL(skb_append_pagefrags);
3796 
3797 /**
3798  *	skb_pull_rcsum - pull skb and update receive checksum
3799  *	@skb: buffer to update
3800  *	@len: length of data pulled
3801  *
3802  *	This function performs an skb_pull on the packet and updates
3803  *	the CHECKSUM_COMPLETE checksum.  It should be used on
3804  *	receive path processing instead of skb_pull unless you know
3805  *	that the checksum difference is zero (e.g., a valid IP header)
3806  *	or you are setting ip_summed to CHECKSUM_NONE.
3807  */
3808 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
3809 {
3810 	unsigned char *data = skb->data;
3811 
3812 	BUG_ON(len > skb->len);
3813 	__skb_pull(skb, len);
3814 	skb_postpull_rcsum(skb, data, len);
3815 	return skb->data;
3816 }
3817 EXPORT_SYMBOL_GPL(skb_pull_rcsum);
3818 
3819 static inline skb_frag_t skb_head_frag_to_page_desc(struct sk_buff *frag_skb)
3820 {
3821 	skb_frag_t head_frag;
3822 	struct page *page;
3823 
3824 	page = virt_to_head_page(frag_skb->head);
3825 	__skb_frag_set_page(&head_frag, page);
3826 	skb_frag_off_set(&head_frag, frag_skb->data -
3827 			 (unsigned char *)page_address(page));
3828 	skb_frag_size_set(&head_frag, skb_headlen(frag_skb));
3829 	return head_frag;
3830 }
3831 
3832 struct sk_buff *skb_segment_list(struct sk_buff *skb,
3833 				 netdev_features_t features,
3834 				 unsigned int offset)
3835 {
3836 	struct sk_buff *list_skb = skb_shinfo(skb)->frag_list;
3837 	unsigned int tnl_hlen = skb_tnl_header_len(skb);
3838 	unsigned int delta_truesize = 0;
3839 	unsigned int delta_len = 0;
3840 	struct sk_buff *tail = NULL;
3841 	struct sk_buff *nskb, *tmp;
3842 	int err;
3843 
3844 	skb_push(skb, -skb_network_offset(skb) + offset);
3845 
3846 	skb_shinfo(skb)->frag_list = NULL;
3847 
3848 	do {
3849 		nskb = list_skb;
3850 		list_skb = list_skb->next;
3851 
3852 		err = 0;
3853 		if (skb_shared(nskb)) {
3854 			tmp = skb_clone(nskb, GFP_ATOMIC);
3855 			if (tmp) {
3856 				consume_skb(nskb);
3857 				nskb = tmp;
3858 				err = skb_unclone(nskb, GFP_ATOMIC);
3859 			} else {
3860 				err = -ENOMEM;
3861 			}
3862 		}
3863 
3864 		if (!tail)
3865 			skb->next = nskb;
3866 		else
3867 			tail->next = nskb;
3868 
3869 		if (unlikely(err)) {
3870 			nskb->next = list_skb;
3871 			goto err_linearize;
3872 		}
3873 
3874 		tail = nskb;
3875 
3876 		delta_len += nskb->len;
3877 		delta_truesize += nskb->truesize;
3878 
3879 		skb_push(nskb, -skb_network_offset(nskb) + offset);
3880 
3881 		skb_release_head_state(nskb);
3882 		__copy_skb_header(nskb, skb);
3883 
3884 		skb_headers_offset_update(nskb, skb_headroom(nskb) - skb_headroom(skb));
3885 		skb_copy_from_linear_data_offset(skb, -tnl_hlen,
3886 						 nskb->data - tnl_hlen,
3887 						 offset + tnl_hlen);
3888 
3889 		if (skb_needs_linearize(nskb, features) &&
3890 		    __skb_linearize(nskb))
3891 			goto err_linearize;
3892 
3893 	} while (list_skb);
3894 
3895 	skb->truesize = skb->truesize - delta_truesize;
3896 	skb->data_len = skb->data_len - delta_len;
3897 	skb->len = skb->len - delta_len;
3898 
3899 	skb_gso_reset(skb);
3900 
3901 	skb->prev = tail;
3902 
3903 	if (skb_needs_linearize(skb, features) &&
3904 	    __skb_linearize(skb))
3905 		goto err_linearize;
3906 
3907 	skb_get(skb);
3908 
3909 	return skb;
3910 
3911 err_linearize:
3912 	kfree_skb_list(skb->next);
3913 	skb->next = NULL;
3914 	return ERR_PTR(-ENOMEM);
3915 }
3916 EXPORT_SYMBOL_GPL(skb_segment_list);
3917 
3918 /**
3919  *	skb_segment - Perform protocol segmentation on skb.
3920  *	@head_skb: buffer to segment
3921  *	@features: features for the output path (see dev->features)
3922  *
3923  *	This function performs segmentation on the given skb.  It returns
3924  *	a pointer to the first in a list of new skbs for the segments.
3925  *	In case of error it returns ERR_PTR(err).
3926  */
3927 struct sk_buff *skb_segment(struct sk_buff *head_skb,
3928 			    netdev_features_t features)
3929 {
3930 	struct sk_buff *segs = NULL;
3931 	struct sk_buff *tail = NULL;
3932 	struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list;
3933 	skb_frag_t *frag = skb_shinfo(head_skb)->frags;
3934 	unsigned int mss = skb_shinfo(head_skb)->gso_size;
3935 	unsigned int doffset = head_skb->data - skb_mac_header(head_skb);
3936 	struct sk_buff *frag_skb = head_skb;
3937 	unsigned int offset = doffset;
3938 	unsigned int tnl_hlen = skb_tnl_header_len(head_skb);
3939 	unsigned int partial_segs = 0;
3940 	unsigned int headroom;
3941 	unsigned int len = head_skb->len;
3942 	__be16 proto;
3943 	bool csum, sg;
3944 	int nfrags = skb_shinfo(head_skb)->nr_frags;
3945 	int err = -ENOMEM;
3946 	int i = 0;
3947 	int pos;
3948 
3949 	if (list_skb && !list_skb->head_frag && skb_headlen(list_skb) &&
3950 	    (skb_shinfo(head_skb)->gso_type & SKB_GSO_DODGY)) {
3951 		/* gso_size is untrusted, and we have a frag_list with a linear
3952 		 * non head_frag head.
3953 		 *
3954 		 * (we assume checking the first list_skb member suffices;
3955 		 * i.e if either of the list_skb members have non head_frag
3956 		 * head, then the first one has too).
3957 		 *
3958 		 * If head_skb's headlen does not fit requested gso_size, it
3959 		 * means that the frag_list members do NOT terminate on exact
3960 		 * gso_size boundaries. Hence we cannot perform skb_frag_t page
3961 		 * sharing. Therefore we must fallback to copying the frag_list
3962 		 * skbs; we do so by disabling SG.
3963 		 */
3964 		if (mss != GSO_BY_FRAGS && mss != skb_headlen(head_skb))
3965 			features &= ~NETIF_F_SG;
3966 	}
3967 
3968 	__skb_push(head_skb, doffset);
3969 	proto = skb_network_protocol(head_skb, NULL);
3970 	if (unlikely(!proto))
3971 		return ERR_PTR(-EINVAL);
3972 
3973 	sg = !!(features & NETIF_F_SG);
3974 	csum = !!can_checksum_protocol(features, proto);
3975 
3976 	if (sg && csum && (mss != GSO_BY_FRAGS))  {
3977 		if (!(features & NETIF_F_GSO_PARTIAL)) {
3978 			struct sk_buff *iter;
3979 			unsigned int frag_len;
3980 
3981 			if (!list_skb ||
3982 			    !net_gso_ok(features, skb_shinfo(head_skb)->gso_type))
3983 				goto normal;
3984 
3985 			/* If we get here then all the required
3986 			 * GSO features except frag_list are supported.
3987 			 * Try to split the SKB to multiple GSO SKBs
3988 			 * with no frag_list.
3989 			 * Currently we can do that only when the buffers don't
3990 			 * have a linear part and all the buffers except
3991 			 * the last are of the same length.
3992 			 */
3993 			frag_len = list_skb->len;
3994 			skb_walk_frags(head_skb, iter) {
3995 				if (frag_len != iter->len && iter->next)
3996 					goto normal;
3997 				if (skb_headlen(iter) && !iter->head_frag)
3998 					goto normal;
3999 
4000 				len -= iter->len;
4001 			}
4002 
4003 			if (len != frag_len)
4004 				goto normal;
4005 		}
4006 
4007 		/* GSO partial only requires that we trim off any excess that
4008 		 * doesn't fit into an MSS sized block, so take care of that
4009 		 * now.
4010 		 */
4011 		partial_segs = len / mss;
4012 		if (partial_segs > 1)
4013 			mss *= partial_segs;
4014 		else
4015 			partial_segs = 0;
4016 	}
4017 
4018 normal:
4019 	headroom = skb_headroom(head_skb);
4020 	pos = skb_headlen(head_skb);
4021 
4022 	do {
4023 		struct sk_buff *nskb;
4024 		skb_frag_t *nskb_frag;
4025 		int hsize;
4026 		int size;
4027 
4028 		if (unlikely(mss == GSO_BY_FRAGS)) {
4029 			len = list_skb->len;
4030 		} else {
4031 			len = head_skb->len - offset;
4032 			if (len > mss)
4033 				len = mss;
4034 		}
4035 
4036 		hsize = skb_headlen(head_skb) - offset;
4037 
4038 		if (hsize <= 0 && i >= nfrags && skb_headlen(list_skb) &&
4039 		    (skb_headlen(list_skb) == len || sg)) {
4040 			BUG_ON(skb_headlen(list_skb) > len);
4041 
4042 			i = 0;
4043 			nfrags = skb_shinfo(list_skb)->nr_frags;
4044 			frag = skb_shinfo(list_skb)->frags;
4045 			frag_skb = list_skb;
4046 			pos += skb_headlen(list_skb);
4047 
4048 			while (pos < offset + len) {
4049 				BUG_ON(i >= nfrags);
4050 
4051 				size = skb_frag_size(frag);
4052 				if (pos + size > offset + len)
4053 					break;
4054 
4055 				i++;
4056 				pos += size;
4057 				frag++;
4058 			}
4059 
4060 			nskb = skb_clone(list_skb, GFP_ATOMIC);
4061 			list_skb = list_skb->next;
4062 
4063 			if (unlikely(!nskb))
4064 				goto err;
4065 
4066 			if (unlikely(pskb_trim(nskb, len))) {
4067 				kfree_skb(nskb);
4068 				goto err;
4069 			}
4070 
4071 			hsize = skb_end_offset(nskb);
4072 			if (skb_cow_head(nskb, doffset + headroom)) {
4073 				kfree_skb(nskb);
4074 				goto err;
4075 			}
4076 
4077 			nskb->truesize += skb_end_offset(nskb) - hsize;
4078 			skb_release_head_state(nskb);
4079 			__skb_push(nskb, doffset);
4080 		} else {
4081 			if (hsize < 0)
4082 				hsize = 0;
4083 			if (hsize > len || !sg)
4084 				hsize = len;
4085 
4086 			nskb = __alloc_skb(hsize + doffset + headroom,
4087 					   GFP_ATOMIC, skb_alloc_rx_flag(head_skb),
4088 					   NUMA_NO_NODE);
4089 
4090 			if (unlikely(!nskb))
4091 				goto err;
4092 
4093 			skb_reserve(nskb, headroom);
4094 			__skb_put(nskb, doffset);
4095 		}
4096 
4097 		if (segs)
4098 			tail->next = nskb;
4099 		else
4100 			segs = nskb;
4101 		tail = nskb;
4102 
4103 		__copy_skb_header(nskb, head_skb);
4104 
4105 		skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom);
4106 		skb_reset_mac_len(nskb);
4107 
4108 		skb_copy_from_linear_data_offset(head_skb, -tnl_hlen,
4109 						 nskb->data - tnl_hlen,
4110 						 doffset + tnl_hlen);
4111 
4112 		if (nskb->len == len + doffset)
4113 			goto perform_csum_check;
4114 
4115 		if (!sg) {
4116 			if (!csum) {
4117 				if (!nskb->remcsum_offload)
4118 					nskb->ip_summed = CHECKSUM_NONE;
4119 				SKB_GSO_CB(nskb)->csum =
4120 					skb_copy_and_csum_bits(head_skb, offset,
4121 							       skb_put(nskb,
4122 								       len),
4123 							       len);
4124 				SKB_GSO_CB(nskb)->csum_start =
4125 					skb_headroom(nskb) + doffset;
4126 			} else {
4127 				skb_copy_bits(head_skb, offset,
4128 					      skb_put(nskb, len),
4129 					      len);
4130 			}
4131 			continue;
4132 		}
4133 
4134 		nskb_frag = skb_shinfo(nskb)->frags;
4135 
4136 		skb_copy_from_linear_data_offset(head_skb, offset,
4137 						 skb_put(nskb, hsize), hsize);
4138 
4139 		skb_shinfo(nskb)->flags |= skb_shinfo(head_skb)->flags &
4140 					   SKBFL_SHARED_FRAG;
4141 
4142 		if (skb_orphan_frags(frag_skb, GFP_ATOMIC) ||
4143 		    skb_zerocopy_clone(nskb, frag_skb, GFP_ATOMIC))
4144 			goto err;
4145 
4146 		while (pos < offset + len) {
4147 			if (i >= nfrags) {
4148 				i = 0;
4149 				nfrags = skb_shinfo(list_skb)->nr_frags;
4150 				frag = skb_shinfo(list_skb)->frags;
4151 				frag_skb = list_skb;
4152 				if (!skb_headlen(list_skb)) {
4153 					BUG_ON(!nfrags);
4154 				} else {
4155 					BUG_ON(!list_skb->head_frag);
4156 
4157 					/* to make room for head_frag. */
4158 					i--;
4159 					frag--;
4160 				}
4161 				if (skb_orphan_frags(frag_skb, GFP_ATOMIC) ||
4162 				    skb_zerocopy_clone(nskb, frag_skb,
4163 						       GFP_ATOMIC))
4164 					goto err;
4165 
4166 				list_skb = list_skb->next;
4167 			}
4168 
4169 			if (unlikely(skb_shinfo(nskb)->nr_frags >=
4170 				     MAX_SKB_FRAGS)) {
4171 				net_warn_ratelimited(
4172 					"skb_segment: too many frags: %u %u\n",
4173 					pos, mss);
4174 				err = -EINVAL;
4175 				goto err;
4176 			}
4177 
4178 			*nskb_frag = (i < 0) ? skb_head_frag_to_page_desc(frag_skb) : *frag;
4179 			__skb_frag_ref(nskb_frag);
4180 			size = skb_frag_size(nskb_frag);
4181 
4182 			if (pos < offset) {
4183 				skb_frag_off_add(nskb_frag, offset - pos);
4184 				skb_frag_size_sub(nskb_frag, offset - pos);
4185 			}
4186 
4187 			skb_shinfo(nskb)->nr_frags++;
4188 
4189 			if (pos + size <= offset + len) {
4190 				i++;
4191 				frag++;
4192 				pos += size;
4193 			} else {
4194 				skb_frag_size_sub(nskb_frag, pos + size - (offset + len));
4195 				goto skip_fraglist;
4196 			}
4197 
4198 			nskb_frag++;
4199 		}
4200 
4201 skip_fraglist:
4202 		nskb->data_len = len - hsize;
4203 		nskb->len += nskb->data_len;
4204 		nskb->truesize += nskb->data_len;
4205 
4206 perform_csum_check:
4207 		if (!csum) {
4208 			if (skb_has_shared_frag(nskb) &&
4209 			    __skb_linearize(nskb))
4210 				goto err;
4211 
4212 			if (!nskb->remcsum_offload)
4213 				nskb->ip_summed = CHECKSUM_NONE;
4214 			SKB_GSO_CB(nskb)->csum =
4215 				skb_checksum(nskb, doffset,
4216 					     nskb->len - doffset, 0);
4217 			SKB_GSO_CB(nskb)->csum_start =
4218 				skb_headroom(nskb) + doffset;
4219 		}
4220 	} while ((offset += len) < head_skb->len);
4221 
4222 	/* Some callers want to get the end of the list.
4223 	 * Put it in segs->prev to avoid walking the list.
4224 	 * (see validate_xmit_skb_list() for example)
4225 	 */
4226 	segs->prev = tail;
4227 
4228 	if (partial_segs) {
4229 		struct sk_buff *iter;
4230 		int type = skb_shinfo(head_skb)->gso_type;
4231 		unsigned short gso_size = skb_shinfo(head_skb)->gso_size;
4232 
4233 		/* Update type to add partial and then remove dodgy if set */
4234 		type |= (features & NETIF_F_GSO_PARTIAL) / NETIF_F_GSO_PARTIAL * SKB_GSO_PARTIAL;
4235 		type &= ~SKB_GSO_DODGY;
4236 
4237 		/* Update GSO info and prepare to start updating headers on
4238 		 * our way back down the stack of protocols.
4239 		 */
4240 		for (iter = segs; iter; iter = iter->next) {
4241 			skb_shinfo(iter)->gso_size = gso_size;
4242 			skb_shinfo(iter)->gso_segs = partial_segs;
4243 			skb_shinfo(iter)->gso_type = type;
4244 			SKB_GSO_CB(iter)->data_offset = skb_headroom(iter) + doffset;
4245 		}
4246 
4247 		if (tail->len - doffset <= gso_size)
4248 			skb_shinfo(tail)->gso_size = 0;
4249 		else if (tail != segs)
4250 			skb_shinfo(tail)->gso_segs = DIV_ROUND_UP(tail->len - doffset, gso_size);
4251 	}
4252 
4253 	/* Following permits correct backpressure, for protocols
4254 	 * using skb_set_owner_w().
4255 	 * Idea is to tranfert ownership from head_skb to last segment.
4256 	 */
4257 	if (head_skb->destructor == sock_wfree) {
4258 		swap(tail->truesize, head_skb->truesize);
4259 		swap(tail->destructor, head_skb->destructor);
4260 		swap(tail->sk, head_skb->sk);
4261 	}
4262 	return segs;
4263 
4264 err:
4265 	kfree_skb_list(segs);
4266 	return ERR_PTR(err);
4267 }
4268 EXPORT_SYMBOL_GPL(skb_segment);
4269 
4270 #ifdef CONFIG_SKB_EXTENSIONS
4271 #define SKB_EXT_ALIGN_VALUE	8
4272 #define SKB_EXT_CHUNKSIZEOF(x)	(ALIGN((sizeof(x)), SKB_EXT_ALIGN_VALUE) / SKB_EXT_ALIGN_VALUE)
4273 
4274 static const u8 skb_ext_type_len[] = {
4275 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4276 	[SKB_EXT_BRIDGE_NF] = SKB_EXT_CHUNKSIZEOF(struct nf_bridge_info),
4277 #endif
4278 #ifdef CONFIG_XFRM
4279 	[SKB_EXT_SEC_PATH] = SKB_EXT_CHUNKSIZEOF(struct sec_path),
4280 #endif
4281 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4282 	[TC_SKB_EXT] = SKB_EXT_CHUNKSIZEOF(struct tc_skb_ext),
4283 #endif
4284 #if IS_ENABLED(CONFIG_MPTCP)
4285 	[SKB_EXT_MPTCP] = SKB_EXT_CHUNKSIZEOF(struct mptcp_ext),
4286 #endif
4287 #if IS_ENABLED(CONFIG_MCTP_FLOWS)
4288 	[SKB_EXT_MCTP] = SKB_EXT_CHUNKSIZEOF(struct mctp_flow),
4289 #endif
4290 };
4291 
4292 static __always_inline unsigned int skb_ext_total_length(void)
4293 {
4294 	return SKB_EXT_CHUNKSIZEOF(struct skb_ext) +
4295 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4296 		skb_ext_type_len[SKB_EXT_BRIDGE_NF] +
4297 #endif
4298 #ifdef CONFIG_XFRM
4299 		skb_ext_type_len[SKB_EXT_SEC_PATH] +
4300 #endif
4301 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4302 		skb_ext_type_len[TC_SKB_EXT] +
4303 #endif
4304 #if IS_ENABLED(CONFIG_MPTCP)
4305 		skb_ext_type_len[SKB_EXT_MPTCP] +
4306 #endif
4307 #if IS_ENABLED(CONFIG_MCTP_FLOWS)
4308 		skb_ext_type_len[SKB_EXT_MCTP] +
4309 #endif
4310 		0;
4311 }
4312 
4313 static void skb_extensions_init(void)
4314 {
4315 	BUILD_BUG_ON(SKB_EXT_NUM >= 8);
4316 	BUILD_BUG_ON(skb_ext_total_length() > 255);
4317 
4318 	skbuff_ext_cache = kmem_cache_create("skbuff_ext_cache",
4319 					     SKB_EXT_ALIGN_VALUE * skb_ext_total_length(),
4320 					     0,
4321 					     SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4322 					     NULL);
4323 }
4324 #else
4325 static void skb_extensions_init(void) {}
4326 #endif
4327 
4328 void __init skb_init(void)
4329 {
4330 	skbuff_head_cache = kmem_cache_create_usercopy("skbuff_head_cache",
4331 					      sizeof(struct sk_buff),
4332 					      0,
4333 					      SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4334 					      offsetof(struct sk_buff, cb),
4335 					      sizeof_field(struct sk_buff, cb),
4336 					      NULL);
4337 	skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
4338 						sizeof(struct sk_buff_fclones),
4339 						0,
4340 						SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4341 						NULL);
4342 	skb_extensions_init();
4343 }
4344 
4345 static int
4346 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len,
4347 	       unsigned int recursion_level)
4348 {
4349 	int start = skb_headlen(skb);
4350 	int i, copy = start - offset;
4351 	struct sk_buff *frag_iter;
4352 	int elt = 0;
4353 
4354 	if (unlikely(recursion_level >= 24))
4355 		return -EMSGSIZE;
4356 
4357 	if (copy > 0) {
4358 		if (copy > len)
4359 			copy = len;
4360 		sg_set_buf(sg, skb->data + offset, copy);
4361 		elt++;
4362 		if ((len -= copy) == 0)
4363 			return elt;
4364 		offset += copy;
4365 	}
4366 
4367 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
4368 		int end;
4369 
4370 		WARN_ON(start > offset + len);
4371 
4372 		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
4373 		if ((copy = end - offset) > 0) {
4374 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4375 			if (unlikely(elt && sg_is_last(&sg[elt - 1])))
4376 				return -EMSGSIZE;
4377 
4378 			if (copy > len)
4379 				copy = len;
4380 			sg_set_page(&sg[elt], skb_frag_page(frag), copy,
4381 				    skb_frag_off(frag) + offset - start);
4382 			elt++;
4383 			if (!(len -= copy))
4384 				return elt;
4385 			offset += copy;
4386 		}
4387 		start = end;
4388 	}
4389 
4390 	skb_walk_frags(skb, frag_iter) {
4391 		int end, ret;
4392 
4393 		WARN_ON(start > offset + len);
4394 
4395 		end = start + frag_iter->len;
4396 		if ((copy = end - offset) > 0) {
4397 			if (unlikely(elt && sg_is_last(&sg[elt - 1])))
4398 				return -EMSGSIZE;
4399 
4400 			if (copy > len)
4401 				copy = len;
4402 			ret = __skb_to_sgvec(frag_iter, sg+elt, offset - start,
4403 					      copy, recursion_level + 1);
4404 			if (unlikely(ret < 0))
4405 				return ret;
4406 			elt += ret;
4407 			if ((len -= copy) == 0)
4408 				return elt;
4409 			offset += copy;
4410 		}
4411 		start = end;
4412 	}
4413 	BUG_ON(len);
4414 	return elt;
4415 }
4416 
4417 /**
4418  *	skb_to_sgvec - Fill a scatter-gather list from a socket buffer
4419  *	@skb: Socket buffer containing the buffers to be mapped
4420  *	@sg: The scatter-gather list to map into
4421  *	@offset: The offset into the buffer's contents to start mapping
4422  *	@len: Length of buffer space to be mapped
4423  *
4424  *	Fill the specified scatter-gather list with mappings/pointers into a
4425  *	region of the buffer space attached to a socket buffer. Returns either
4426  *	the number of scatterlist items used, or -EMSGSIZE if the contents
4427  *	could not fit.
4428  */
4429 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
4430 {
4431 	int nsg = __skb_to_sgvec(skb, sg, offset, len, 0);
4432 
4433 	if (nsg <= 0)
4434 		return nsg;
4435 
4436 	sg_mark_end(&sg[nsg - 1]);
4437 
4438 	return nsg;
4439 }
4440 EXPORT_SYMBOL_GPL(skb_to_sgvec);
4441 
4442 /* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given
4443  * sglist without mark the sg which contain last skb data as the end.
4444  * So the caller can mannipulate sg list as will when padding new data after
4445  * the first call without calling sg_unmark_end to expend sg list.
4446  *
4447  * Scenario to use skb_to_sgvec_nomark:
4448  * 1. sg_init_table
4449  * 2. skb_to_sgvec_nomark(payload1)
4450  * 3. skb_to_sgvec_nomark(payload2)
4451  *
4452  * This is equivalent to:
4453  * 1. sg_init_table
4454  * 2. skb_to_sgvec(payload1)
4455  * 3. sg_unmark_end
4456  * 4. skb_to_sgvec(payload2)
4457  *
4458  * When mapping mutilple payload conditionally, skb_to_sgvec_nomark
4459  * is more preferable.
4460  */
4461 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
4462 			int offset, int len)
4463 {
4464 	return __skb_to_sgvec(skb, sg, offset, len, 0);
4465 }
4466 EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark);
4467 
4468 
4469 
4470 /**
4471  *	skb_cow_data - Check that a socket buffer's data buffers are writable
4472  *	@skb: The socket buffer to check.
4473  *	@tailbits: Amount of trailing space to be added
4474  *	@trailer: Returned pointer to the skb where the @tailbits space begins
4475  *
4476  *	Make sure that the data buffers attached to a socket buffer are
4477  *	writable. If they are not, private copies are made of the data buffers
4478  *	and the socket buffer is set to use these instead.
4479  *
4480  *	If @tailbits is given, make sure that there is space to write @tailbits
4481  *	bytes of data beyond current end of socket buffer.  @trailer will be
4482  *	set to point to the skb in which this space begins.
4483  *
4484  *	The number of scatterlist elements required to completely map the
4485  *	COW'd and extended socket buffer will be returned.
4486  */
4487 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
4488 {
4489 	int copyflag;
4490 	int elt;
4491 	struct sk_buff *skb1, **skb_p;
4492 
4493 	/* If skb is cloned or its head is paged, reallocate
4494 	 * head pulling out all the pages (pages are considered not writable
4495 	 * at the moment even if they are anonymous).
4496 	 */
4497 	if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
4498 	    !__pskb_pull_tail(skb, __skb_pagelen(skb)))
4499 		return -ENOMEM;
4500 
4501 	/* Easy case. Most of packets will go this way. */
4502 	if (!skb_has_frag_list(skb)) {
4503 		/* A little of trouble, not enough of space for trailer.
4504 		 * This should not happen, when stack is tuned to generate
4505 		 * good frames. OK, on miss we reallocate and reserve even more
4506 		 * space, 128 bytes is fair. */
4507 
4508 		if (skb_tailroom(skb) < tailbits &&
4509 		    pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
4510 			return -ENOMEM;
4511 
4512 		/* Voila! */
4513 		*trailer = skb;
4514 		return 1;
4515 	}
4516 
4517 	/* Misery. We are in troubles, going to mincer fragments... */
4518 
4519 	elt = 1;
4520 	skb_p = &skb_shinfo(skb)->frag_list;
4521 	copyflag = 0;
4522 
4523 	while ((skb1 = *skb_p) != NULL) {
4524 		int ntail = 0;
4525 
4526 		/* The fragment is partially pulled by someone,
4527 		 * this can happen on input. Copy it and everything
4528 		 * after it. */
4529 
4530 		if (skb_shared(skb1))
4531 			copyflag = 1;
4532 
4533 		/* If the skb is the last, worry about trailer. */
4534 
4535 		if (skb1->next == NULL && tailbits) {
4536 			if (skb_shinfo(skb1)->nr_frags ||
4537 			    skb_has_frag_list(skb1) ||
4538 			    skb_tailroom(skb1) < tailbits)
4539 				ntail = tailbits + 128;
4540 		}
4541 
4542 		if (copyflag ||
4543 		    skb_cloned(skb1) ||
4544 		    ntail ||
4545 		    skb_shinfo(skb1)->nr_frags ||
4546 		    skb_has_frag_list(skb1)) {
4547 			struct sk_buff *skb2;
4548 
4549 			/* Fuck, we are miserable poor guys... */
4550 			if (ntail == 0)
4551 				skb2 = skb_copy(skb1, GFP_ATOMIC);
4552 			else
4553 				skb2 = skb_copy_expand(skb1,
4554 						       skb_headroom(skb1),
4555 						       ntail,
4556 						       GFP_ATOMIC);
4557 			if (unlikely(skb2 == NULL))
4558 				return -ENOMEM;
4559 
4560 			if (skb1->sk)
4561 				skb_set_owner_w(skb2, skb1->sk);
4562 
4563 			/* Looking around. Are we still alive?
4564 			 * OK, link new skb, drop old one */
4565 
4566 			skb2->next = skb1->next;
4567 			*skb_p = skb2;
4568 			kfree_skb(skb1);
4569 			skb1 = skb2;
4570 		}
4571 		elt++;
4572 		*trailer = skb1;
4573 		skb_p = &skb1->next;
4574 	}
4575 
4576 	return elt;
4577 }
4578 EXPORT_SYMBOL_GPL(skb_cow_data);
4579 
4580 static void sock_rmem_free(struct sk_buff *skb)
4581 {
4582 	struct sock *sk = skb->sk;
4583 
4584 	atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
4585 }
4586 
4587 static void skb_set_err_queue(struct sk_buff *skb)
4588 {
4589 	/* pkt_type of skbs received on local sockets is never PACKET_OUTGOING.
4590 	 * So, it is safe to (mis)use it to mark skbs on the error queue.
4591 	 */
4592 	skb->pkt_type = PACKET_OUTGOING;
4593 	BUILD_BUG_ON(PACKET_OUTGOING == 0);
4594 }
4595 
4596 /*
4597  * Note: We dont mem charge error packets (no sk_forward_alloc changes)
4598  */
4599 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
4600 {
4601 	if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
4602 	    (unsigned int)READ_ONCE(sk->sk_rcvbuf))
4603 		return -ENOMEM;
4604 
4605 	skb_orphan(skb);
4606 	skb->sk = sk;
4607 	skb->destructor = sock_rmem_free;
4608 	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
4609 	skb_set_err_queue(skb);
4610 
4611 	/* before exiting rcu section, make sure dst is refcounted */
4612 	skb_dst_force(skb);
4613 
4614 	skb_queue_tail(&sk->sk_error_queue, skb);
4615 	if (!sock_flag(sk, SOCK_DEAD))
4616 		sk_error_report(sk);
4617 	return 0;
4618 }
4619 EXPORT_SYMBOL(sock_queue_err_skb);
4620 
4621 static bool is_icmp_err_skb(const struct sk_buff *skb)
4622 {
4623 	return skb && (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP ||
4624 		       SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP6);
4625 }
4626 
4627 struct sk_buff *sock_dequeue_err_skb(struct sock *sk)
4628 {
4629 	struct sk_buff_head *q = &sk->sk_error_queue;
4630 	struct sk_buff *skb, *skb_next = NULL;
4631 	bool icmp_next = false;
4632 	unsigned long flags;
4633 
4634 	spin_lock_irqsave(&q->lock, flags);
4635 	skb = __skb_dequeue(q);
4636 	if (skb && (skb_next = skb_peek(q))) {
4637 		icmp_next = is_icmp_err_skb(skb_next);
4638 		if (icmp_next)
4639 			sk->sk_err = SKB_EXT_ERR(skb_next)->ee.ee_errno;
4640 	}
4641 	spin_unlock_irqrestore(&q->lock, flags);
4642 
4643 	if (is_icmp_err_skb(skb) && !icmp_next)
4644 		sk->sk_err = 0;
4645 
4646 	if (skb_next)
4647 		sk_error_report(sk);
4648 
4649 	return skb;
4650 }
4651 EXPORT_SYMBOL(sock_dequeue_err_skb);
4652 
4653 /**
4654  * skb_clone_sk - create clone of skb, and take reference to socket
4655  * @skb: the skb to clone
4656  *
4657  * This function creates a clone of a buffer that holds a reference on
4658  * sk_refcnt.  Buffers created via this function are meant to be
4659  * returned using sock_queue_err_skb, or free via kfree_skb.
4660  *
4661  * When passing buffers allocated with this function to sock_queue_err_skb
4662  * it is necessary to wrap the call with sock_hold/sock_put in order to
4663  * prevent the socket from being released prior to being enqueued on
4664  * the sk_error_queue.
4665  */
4666 struct sk_buff *skb_clone_sk(struct sk_buff *skb)
4667 {
4668 	struct sock *sk = skb->sk;
4669 	struct sk_buff *clone;
4670 
4671 	if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt))
4672 		return NULL;
4673 
4674 	clone = skb_clone(skb, GFP_ATOMIC);
4675 	if (!clone) {
4676 		sock_put(sk);
4677 		return NULL;
4678 	}
4679 
4680 	clone->sk = sk;
4681 	clone->destructor = sock_efree;
4682 
4683 	return clone;
4684 }
4685 EXPORT_SYMBOL(skb_clone_sk);
4686 
4687 static void __skb_complete_tx_timestamp(struct sk_buff *skb,
4688 					struct sock *sk,
4689 					int tstype,
4690 					bool opt_stats)
4691 {
4692 	struct sock_exterr_skb *serr;
4693 	int err;
4694 
4695 	BUILD_BUG_ON(sizeof(struct sock_exterr_skb) > sizeof(skb->cb));
4696 
4697 	serr = SKB_EXT_ERR(skb);
4698 	memset(serr, 0, sizeof(*serr));
4699 	serr->ee.ee_errno = ENOMSG;
4700 	serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
4701 	serr->ee.ee_info = tstype;
4702 	serr->opt_stats = opt_stats;
4703 	serr->header.h4.iif = skb->dev ? skb->dev->ifindex : 0;
4704 	if (sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID) {
4705 		serr->ee.ee_data = skb_shinfo(skb)->tskey;
4706 		if (sk_is_tcp(sk))
4707 			serr->ee.ee_data -= sk->sk_tskey;
4708 	}
4709 
4710 	err = sock_queue_err_skb(sk, skb);
4711 
4712 	if (err)
4713 		kfree_skb(skb);
4714 }
4715 
4716 static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly)
4717 {
4718 	bool ret;
4719 
4720 	if (likely(sysctl_tstamp_allow_data || tsonly))
4721 		return true;
4722 
4723 	read_lock_bh(&sk->sk_callback_lock);
4724 	ret = sk->sk_socket && sk->sk_socket->file &&
4725 	      file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW);
4726 	read_unlock_bh(&sk->sk_callback_lock);
4727 	return ret;
4728 }
4729 
4730 void skb_complete_tx_timestamp(struct sk_buff *skb,
4731 			       struct skb_shared_hwtstamps *hwtstamps)
4732 {
4733 	struct sock *sk = skb->sk;
4734 
4735 	if (!skb_may_tx_timestamp(sk, false))
4736 		goto err;
4737 
4738 	/* Take a reference to prevent skb_orphan() from freeing the socket,
4739 	 * but only if the socket refcount is not zero.
4740 	 */
4741 	if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
4742 		*skb_hwtstamps(skb) = *hwtstamps;
4743 		__skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND, false);
4744 		sock_put(sk);
4745 		return;
4746 	}
4747 
4748 err:
4749 	kfree_skb(skb);
4750 }
4751 EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp);
4752 
4753 void __skb_tstamp_tx(struct sk_buff *orig_skb,
4754 		     const struct sk_buff *ack_skb,
4755 		     struct skb_shared_hwtstamps *hwtstamps,
4756 		     struct sock *sk, int tstype)
4757 {
4758 	struct sk_buff *skb;
4759 	bool tsonly, opt_stats = false;
4760 
4761 	if (!sk)
4762 		return;
4763 
4764 	if (!hwtstamps && !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TX_SWHW) &&
4765 	    skb_shinfo(orig_skb)->tx_flags & SKBTX_IN_PROGRESS)
4766 		return;
4767 
4768 	tsonly = sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TSONLY;
4769 	if (!skb_may_tx_timestamp(sk, tsonly))
4770 		return;
4771 
4772 	if (tsonly) {
4773 #ifdef CONFIG_INET
4774 		if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_STATS) &&
4775 		    sk_is_tcp(sk)) {
4776 			skb = tcp_get_timestamping_opt_stats(sk, orig_skb,
4777 							     ack_skb);
4778 			opt_stats = true;
4779 		} else
4780 #endif
4781 			skb = alloc_skb(0, GFP_ATOMIC);
4782 	} else {
4783 		skb = skb_clone(orig_skb, GFP_ATOMIC);
4784 	}
4785 	if (!skb)
4786 		return;
4787 
4788 	if (tsonly) {
4789 		skb_shinfo(skb)->tx_flags |= skb_shinfo(orig_skb)->tx_flags &
4790 					     SKBTX_ANY_TSTAMP;
4791 		skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey;
4792 	}
4793 
4794 	if (hwtstamps)
4795 		*skb_hwtstamps(skb) = *hwtstamps;
4796 	else
4797 		skb->tstamp = ktime_get_real();
4798 
4799 	__skb_complete_tx_timestamp(skb, sk, tstype, opt_stats);
4800 }
4801 EXPORT_SYMBOL_GPL(__skb_tstamp_tx);
4802 
4803 void skb_tstamp_tx(struct sk_buff *orig_skb,
4804 		   struct skb_shared_hwtstamps *hwtstamps)
4805 {
4806 	return __skb_tstamp_tx(orig_skb, NULL, hwtstamps, orig_skb->sk,
4807 			       SCM_TSTAMP_SND);
4808 }
4809 EXPORT_SYMBOL_GPL(skb_tstamp_tx);
4810 
4811 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked)
4812 {
4813 	struct sock *sk = skb->sk;
4814 	struct sock_exterr_skb *serr;
4815 	int err = 1;
4816 
4817 	skb->wifi_acked_valid = 1;
4818 	skb->wifi_acked = acked;
4819 
4820 	serr = SKB_EXT_ERR(skb);
4821 	memset(serr, 0, sizeof(*serr));
4822 	serr->ee.ee_errno = ENOMSG;
4823 	serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS;
4824 
4825 	/* Take a reference to prevent skb_orphan() from freeing the socket,
4826 	 * but only if the socket refcount is not zero.
4827 	 */
4828 	if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
4829 		err = sock_queue_err_skb(sk, skb);
4830 		sock_put(sk);
4831 	}
4832 	if (err)
4833 		kfree_skb(skb);
4834 }
4835 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack);
4836 
4837 /**
4838  * skb_partial_csum_set - set up and verify partial csum values for packet
4839  * @skb: the skb to set
4840  * @start: the number of bytes after skb->data to start checksumming.
4841  * @off: the offset from start to place the checksum.
4842  *
4843  * For untrusted partially-checksummed packets, we need to make sure the values
4844  * for skb->csum_start and skb->csum_offset are valid so we don't oops.
4845  *
4846  * This function checks and sets those values and skb->ip_summed: if this
4847  * returns false you should drop the packet.
4848  */
4849 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
4850 {
4851 	u32 csum_end = (u32)start + (u32)off + sizeof(__sum16);
4852 	u32 csum_start = skb_headroom(skb) + (u32)start;
4853 
4854 	if (unlikely(csum_start > U16_MAX || csum_end > skb_headlen(skb))) {
4855 		net_warn_ratelimited("bad partial csum: csum=%u/%u headroom=%u headlen=%u\n",
4856 				     start, off, skb_headroom(skb), skb_headlen(skb));
4857 		return false;
4858 	}
4859 	skb->ip_summed = CHECKSUM_PARTIAL;
4860 	skb->csum_start = csum_start;
4861 	skb->csum_offset = off;
4862 	skb_set_transport_header(skb, start);
4863 	return true;
4864 }
4865 EXPORT_SYMBOL_GPL(skb_partial_csum_set);
4866 
4867 static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len,
4868 			       unsigned int max)
4869 {
4870 	if (skb_headlen(skb) >= len)
4871 		return 0;
4872 
4873 	/* If we need to pullup then pullup to the max, so we
4874 	 * won't need to do it again.
4875 	 */
4876 	if (max > skb->len)
4877 		max = skb->len;
4878 
4879 	if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL)
4880 		return -ENOMEM;
4881 
4882 	if (skb_headlen(skb) < len)
4883 		return -EPROTO;
4884 
4885 	return 0;
4886 }
4887 
4888 #define MAX_TCP_HDR_LEN (15 * 4)
4889 
4890 static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb,
4891 				      typeof(IPPROTO_IP) proto,
4892 				      unsigned int off)
4893 {
4894 	int err;
4895 
4896 	switch (proto) {
4897 	case IPPROTO_TCP:
4898 		err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr),
4899 					  off + MAX_TCP_HDR_LEN);
4900 		if (!err && !skb_partial_csum_set(skb, off,
4901 						  offsetof(struct tcphdr,
4902 							   check)))
4903 			err = -EPROTO;
4904 		return err ? ERR_PTR(err) : &tcp_hdr(skb)->check;
4905 
4906 	case IPPROTO_UDP:
4907 		err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr),
4908 					  off + sizeof(struct udphdr));
4909 		if (!err && !skb_partial_csum_set(skb, off,
4910 						  offsetof(struct udphdr,
4911 							   check)))
4912 			err = -EPROTO;
4913 		return err ? ERR_PTR(err) : &udp_hdr(skb)->check;
4914 	}
4915 
4916 	return ERR_PTR(-EPROTO);
4917 }
4918 
4919 /* This value should be large enough to cover a tagged ethernet header plus
4920  * maximally sized IP and TCP or UDP headers.
4921  */
4922 #define MAX_IP_HDR_LEN 128
4923 
4924 static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate)
4925 {
4926 	unsigned int off;
4927 	bool fragment;
4928 	__sum16 *csum;
4929 	int err;
4930 
4931 	fragment = false;
4932 
4933 	err = skb_maybe_pull_tail(skb,
4934 				  sizeof(struct iphdr),
4935 				  MAX_IP_HDR_LEN);
4936 	if (err < 0)
4937 		goto out;
4938 
4939 	if (ip_is_fragment(ip_hdr(skb)))
4940 		fragment = true;
4941 
4942 	off = ip_hdrlen(skb);
4943 
4944 	err = -EPROTO;
4945 
4946 	if (fragment)
4947 		goto out;
4948 
4949 	csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off);
4950 	if (IS_ERR(csum))
4951 		return PTR_ERR(csum);
4952 
4953 	if (recalculate)
4954 		*csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
4955 					   ip_hdr(skb)->daddr,
4956 					   skb->len - off,
4957 					   ip_hdr(skb)->protocol, 0);
4958 	err = 0;
4959 
4960 out:
4961 	return err;
4962 }
4963 
4964 /* This value should be large enough to cover a tagged ethernet header plus
4965  * an IPv6 header, all options, and a maximal TCP or UDP header.
4966  */
4967 #define MAX_IPV6_HDR_LEN 256
4968 
4969 #define OPT_HDR(type, skb, off) \
4970 	(type *)(skb_network_header(skb) + (off))
4971 
4972 static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate)
4973 {
4974 	int err;
4975 	u8 nexthdr;
4976 	unsigned int off;
4977 	unsigned int len;
4978 	bool fragment;
4979 	bool done;
4980 	__sum16 *csum;
4981 
4982 	fragment = false;
4983 	done = false;
4984 
4985 	off = sizeof(struct ipv6hdr);
4986 
4987 	err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN);
4988 	if (err < 0)
4989 		goto out;
4990 
4991 	nexthdr = ipv6_hdr(skb)->nexthdr;
4992 
4993 	len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len);
4994 	while (off <= len && !done) {
4995 		switch (nexthdr) {
4996 		case IPPROTO_DSTOPTS:
4997 		case IPPROTO_HOPOPTS:
4998 		case IPPROTO_ROUTING: {
4999 			struct ipv6_opt_hdr *hp;
5000 
5001 			err = skb_maybe_pull_tail(skb,
5002 						  off +
5003 						  sizeof(struct ipv6_opt_hdr),
5004 						  MAX_IPV6_HDR_LEN);
5005 			if (err < 0)
5006 				goto out;
5007 
5008 			hp = OPT_HDR(struct ipv6_opt_hdr, skb, off);
5009 			nexthdr = hp->nexthdr;
5010 			off += ipv6_optlen(hp);
5011 			break;
5012 		}
5013 		case IPPROTO_AH: {
5014 			struct ip_auth_hdr *hp;
5015 
5016 			err = skb_maybe_pull_tail(skb,
5017 						  off +
5018 						  sizeof(struct ip_auth_hdr),
5019 						  MAX_IPV6_HDR_LEN);
5020 			if (err < 0)
5021 				goto out;
5022 
5023 			hp = OPT_HDR(struct ip_auth_hdr, skb, off);
5024 			nexthdr = hp->nexthdr;
5025 			off += ipv6_authlen(hp);
5026 			break;
5027 		}
5028 		case IPPROTO_FRAGMENT: {
5029 			struct frag_hdr *hp;
5030 
5031 			err = skb_maybe_pull_tail(skb,
5032 						  off +
5033 						  sizeof(struct frag_hdr),
5034 						  MAX_IPV6_HDR_LEN);
5035 			if (err < 0)
5036 				goto out;
5037 
5038 			hp = OPT_HDR(struct frag_hdr, skb, off);
5039 
5040 			if (hp->frag_off & htons(IP6_OFFSET | IP6_MF))
5041 				fragment = true;
5042 
5043 			nexthdr = hp->nexthdr;
5044 			off += sizeof(struct frag_hdr);
5045 			break;
5046 		}
5047 		default:
5048 			done = true;
5049 			break;
5050 		}
5051 	}
5052 
5053 	err = -EPROTO;
5054 
5055 	if (!done || fragment)
5056 		goto out;
5057 
5058 	csum = skb_checksum_setup_ip(skb, nexthdr, off);
5059 	if (IS_ERR(csum))
5060 		return PTR_ERR(csum);
5061 
5062 	if (recalculate)
5063 		*csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
5064 					 &ipv6_hdr(skb)->daddr,
5065 					 skb->len - off, nexthdr, 0);
5066 	err = 0;
5067 
5068 out:
5069 	return err;
5070 }
5071 
5072 /**
5073  * skb_checksum_setup - set up partial checksum offset
5074  * @skb: the skb to set up
5075  * @recalculate: if true the pseudo-header checksum will be recalculated
5076  */
5077 int skb_checksum_setup(struct sk_buff *skb, bool recalculate)
5078 {
5079 	int err;
5080 
5081 	switch (skb->protocol) {
5082 	case htons(ETH_P_IP):
5083 		err = skb_checksum_setup_ipv4(skb, recalculate);
5084 		break;
5085 
5086 	case htons(ETH_P_IPV6):
5087 		err = skb_checksum_setup_ipv6(skb, recalculate);
5088 		break;
5089 
5090 	default:
5091 		err = -EPROTO;
5092 		break;
5093 	}
5094 
5095 	return err;
5096 }
5097 EXPORT_SYMBOL(skb_checksum_setup);
5098 
5099 /**
5100  * skb_checksum_maybe_trim - maybe trims the given skb
5101  * @skb: the skb to check
5102  * @transport_len: the data length beyond the network header
5103  *
5104  * Checks whether the given skb has data beyond the given transport length.
5105  * If so, returns a cloned skb trimmed to this transport length.
5106  * Otherwise returns the provided skb. Returns NULL in error cases
5107  * (e.g. transport_len exceeds skb length or out-of-memory).
5108  *
5109  * Caller needs to set the skb transport header and free any returned skb if it
5110  * differs from the provided skb.
5111  */
5112 static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb,
5113 					       unsigned int transport_len)
5114 {
5115 	struct sk_buff *skb_chk;
5116 	unsigned int len = skb_transport_offset(skb) + transport_len;
5117 	int ret;
5118 
5119 	if (skb->len < len)
5120 		return NULL;
5121 	else if (skb->len == len)
5122 		return skb;
5123 
5124 	skb_chk = skb_clone(skb, GFP_ATOMIC);
5125 	if (!skb_chk)
5126 		return NULL;
5127 
5128 	ret = pskb_trim_rcsum(skb_chk, len);
5129 	if (ret) {
5130 		kfree_skb(skb_chk);
5131 		return NULL;
5132 	}
5133 
5134 	return skb_chk;
5135 }
5136 
5137 /**
5138  * skb_checksum_trimmed - validate checksum of an skb
5139  * @skb: the skb to check
5140  * @transport_len: the data length beyond the network header
5141  * @skb_chkf: checksum function to use
5142  *
5143  * Applies the given checksum function skb_chkf to the provided skb.
5144  * Returns a checked and maybe trimmed skb. Returns NULL on error.
5145  *
5146  * If the skb has data beyond the given transport length, then a
5147  * trimmed & cloned skb is checked and returned.
5148  *
5149  * Caller needs to set the skb transport header and free any returned skb if it
5150  * differs from the provided skb.
5151  */
5152 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
5153 				     unsigned int transport_len,
5154 				     __sum16(*skb_chkf)(struct sk_buff *skb))
5155 {
5156 	struct sk_buff *skb_chk;
5157 	unsigned int offset = skb_transport_offset(skb);
5158 	__sum16 ret;
5159 
5160 	skb_chk = skb_checksum_maybe_trim(skb, transport_len);
5161 	if (!skb_chk)
5162 		goto err;
5163 
5164 	if (!pskb_may_pull(skb_chk, offset))
5165 		goto err;
5166 
5167 	skb_pull_rcsum(skb_chk, offset);
5168 	ret = skb_chkf(skb_chk);
5169 	skb_push_rcsum(skb_chk, offset);
5170 
5171 	if (ret)
5172 		goto err;
5173 
5174 	return skb_chk;
5175 
5176 err:
5177 	if (skb_chk && skb_chk != skb)
5178 		kfree_skb(skb_chk);
5179 
5180 	return NULL;
5181 
5182 }
5183 EXPORT_SYMBOL(skb_checksum_trimmed);
5184 
5185 void __skb_warn_lro_forwarding(const struct sk_buff *skb)
5186 {
5187 	net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n",
5188 			     skb->dev->name);
5189 }
5190 EXPORT_SYMBOL(__skb_warn_lro_forwarding);
5191 
5192 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen)
5193 {
5194 	if (head_stolen) {
5195 		skb_release_head_state(skb);
5196 		kmem_cache_free(skbuff_head_cache, skb);
5197 	} else {
5198 		__kfree_skb(skb);
5199 	}
5200 }
5201 EXPORT_SYMBOL(kfree_skb_partial);
5202 
5203 /**
5204  * skb_try_coalesce - try to merge skb to prior one
5205  * @to: prior buffer
5206  * @from: buffer to add
5207  * @fragstolen: pointer to boolean
5208  * @delta_truesize: how much more was allocated than was requested
5209  */
5210 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
5211 		      bool *fragstolen, int *delta_truesize)
5212 {
5213 	struct skb_shared_info *to_shinfo, *from_shinfo;
5214 	int i, delta, len = from->len;
5215 
5216 	*fragstolen = false;
5217 
5218 	if (skb_cloned(to))
5219 		return false;
5220 
5221 	/* The page pool signature of struct page will eventually figure out
5222 	 * which pages can be recycled or not but for now let's prohibit slab
5223 	 * allocated and page_pool allocated SKBs from being coalesced.
5224 	 */
5225 	if (to->pp_recycle != from->pp_recycle)
5226 		return false;
5227 
5228 	if (len <= skb_tailroom(to)) {
5229 		if (len)
5230 			BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len));
5231 		*delta_truesize = 0;
5232 		return true;
5233 	}
5234 
5235 	to_shinfo = skb_shinfo(to);
5236 	from_shinfo = skb_shinfo(from);
5237 	if (to_shinfo->frag_list || from_shinfo->frag_list)
5238 		return false;
5239 	if (skb_zcopy(to) || skb_zcopy(from))
5240 		return false;
5241 
5242 	if (skb_headlen(from) != 0) {
5243 		struct page *page;
5244 		unsigned int offset;
5245 
5246 		if (to_shinfo->nr_frags +
5247 		    from_shinfo->nr_frags >= MAX_SKB_FRAGS)
5248 			return false;
5249 
5250 		if (skb_head_is_locked(from))
5251 			return false;
5252 
5253 		delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
5254 
5255 		page = virt_to_head_page(from->head);
5256 		offset = from->data - (unsigned char *)page_address(page);
5257 
5258 		skb_fill_page_desc(to, to_shinfo->nr_frags,
5259 				   page, offset, skb_headlen(from));
5260 		*fragstolen = true;
5261 	} else {
5262 		if (to_shinfo->nr_frags +
5263 		    from_shinfo->nr_frags > MAX_SKB_FRAGS)
5264 			return false;
5265 
5266 		delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from));
5267 	}
5268 
5269 	WARN_ON_ONCE(delta < len);
5270 
5271 	memcpy(to_shinfo->frags + to_shinfo->nr_frags,
5272 	       from_shinfo->frags,
5273 	       from_shinfo->nr_frags * sizeof(skb_frag_t));
5274 	to_shinfo->nr_frags += from_shinfo->nr_frags;
5275 
5276 	if (!skb_cloned(from))
5277 		from_shinfo->nr_frags = 0;
5278 
5279 	/* if the skb is not cloned this does nothing
5280 	 * since we set nr_frags to 0.
5281 	 */
5282 	for (i = 0; i < from_shinfo->nr_frags; i++)
5283 		__skb_frag_ref(&from_shinfo->frags[i]);
5284 
5285 	to->truesize += delta;
5286 	to->len += len;
5287 	to->data_len += len;
5288 
5289 	*delta_truesize = delta;
5290 	return true;
5291 }
5292 EXPORT_SYMBOL(skb_try_coalesce);
5293 
5294 /**
5295  * skb_scrub_packet - scrub an skb
5296  *
5297  * @skb: buffer to clean
5298  * @xnet: packet is crossing netns
5299  *
5300  * skb_scrub_packet can be used after encapsulating or decapsulting a packet
5301  * into/from a tunnel. Some information have to be cleared during these
5302  * operations.
5303  * skb_scrub_packet can also be used to clean a skb before injecting it in
5304  * another namespace (@xnet == true). We have to clear all information in the
5305  * skb that could impact namespace isolation.
5306  */
5307 void skb_scrub_packet(struct sk_buff *skb, bool xnet)
5308 {
5309 	skb->pkt_type = PACKET_HOST;
5310 	skb->skb_iif = 0;
5311 	skb->ignore_df = 0;
5312 	skb_dst_drop(skb);
5313 	skb_ext_reset(skb);
5314 	nf_reset_ct(skb);
5315 	nf_reset_trace(skb);
5316 
5317 #ifdef CONFIG_NET_SWITCHDEV
5318 	skb->offload_fwd_mark = 0;
5319 	skb->offload_l3_fwd_mark = 0;
5320 #endif
5321 
5322 	if (!xnet)
5323 		return;
5324 
5325 	ipvs_reset(skb);
5326 	skb->mark = 0;
5327 	skb->tstamp = 0;
5328 }
5329 EXPORT_SYMBOL_GPL(skb_scrub_packet);
5330 
5331 /**
5332  * skb_gso_transport_seglen - Return length of individual segments of a gso packet
5333  *
5334  * @skb: GSO skb
5335  *
5336  * skb_gso_transport_seglen is used to determine the real size of the
5337  * individual segments, including Layer4 headers (TCP/UDP).
5338  *
5339  * The MAC/L2 or network (IP, IPv6) headers are not accounted for.
5340  */
5341 static unsigned int skb_gso_transport_seglen(const struct sk_buff *skb)
5342 {
5343 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
5344 	unsigned int thlen = 0;
5345 
5346 	if (skb->encapsulation) {
5347 		thlen = skb_inner_transport_header(skb) -
5348 			skb_transport_header(skb);
5349 
5350 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
5351 			thlen += inner_tcp_hdrlen(skb);
5352 	} else if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
5353 		thlen = tcp_hdrlen(skb);
5354 	} else if (unlikely(skb_is_gso_sctp(skb))) {
5355 		thlen = sizeof(struct sctphdr);
5356 	} else if (shinfo->gso_type & SKB_GSO_UDP_L4) {
5357 		thlen = sizeof(struct udphdr);
5358 	}
5359 	/* UFO sets gso_size to the size of the fragmentation
5360 	 * payload, i.e. the size of the L4 (UDP) header is already
5361 	 * accounted for.
5362 	 */
5363 	return thlen + shinfo->gso_size;
5364 }
5365 
5366 /**
5367  * skb_gso_network_seglen - Return length of individual segments of a gso packet
5368  *
5369  * @skb: GSO skb
5370  *
5371  * skb_gso_network_seglen is used to determine the real size of the
5372  * individual segments, including Layer3 (IP, IPv6) and L4 headers (TCP/UDP).
5373  *
5374  * The MAC/L2 header is not accounted for.
5375  */
5376 static unsigned int skb_gso_network_seglen(const struct sk_buff *skb)
5377 {
5378 	unsigned int hdr_len = skb_transport_header(skb) -
5379 			       skb_network_header(skb);
5380 
5381 	return hdr_len + skb_gso_transport_seglen(skb);
5382 }
5383 
5384 /**
5385  * skb_gso_mac_seglen - Return length of individual segments of a gso packet
5386  *
5387  * @skb: GSO skb
5388  *
5389  * skb_gso_mac_seglen is used to determine the real size of the
5390  * individual segments, including MAC/L2, Layer3 (IP, IPv6) and L4
5391  * headers (TCP/UDP).
5392  */
5393 static unsigned int skb_gso_mac_seglen(const struct sk_buff *skb)
5394 {
5395 	unsigned int hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
5396 
5397 	return hdr_len + skb_gso_transport_seglen(skb);
5398 }
5399 
5400 /**
5401  * skb_gso_size_check - check the skb size, considering GSO_BY_FRAGS
5402  *
5403  * There are a couple of instances where we have a GSO skb, and we
5404  * want to determine what size it would be after it is segmented.
5405  *
5406  * We might want to check:
5407  * -    L3+L4+payload size (e.g. IP forwarding)
5408  * - L2+L3+L4+payload size (e.g. sanity check before passing to driver)
5409  *
5410  * This is a helper to do that correctly considering GSO_BY_FRAGS.
5411  *
5412  * @skb: GSO skb
5413  *
5414  * @seg_len: The segmented length (from skb_gso_*_seglen). In the
5415  *           GSO_BY_FRAGS case this will be [header sizes + GSO_BY_FRAGS].
5416  *
5417  * @max_len: The maximum permissible length.
5418  *
5419  * Returns true if the segmented length <= max length.
5420  */
5421 static inline bool skb_gso_size_check(const struct sk_buff *skb,
5422 				      unsigned int seg_len,
5423 				      unsigned int max_len) {
5424 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
5425 	const struct sk_buff *iter;
5426 
5427 	if (shinfo->gso_size != GSO_BY_FRAGS)
5428 		return seg_len <= max_len;
5429 
5430 	/* Undo this so we can re-use header sizes */
5431 	seg_len -= GSO_BY_FRAGS;
5432 
5433 	skb_walk_frags(skb, iter) {
5434 		if (seg_len + skb_headlen(iter) > max_len)
5435 			return false;
5436 	}
5437 
5438 	return true;
5439 }
5440 
5441 /**
5442  * skb_gso_validate_network_len - Will a split GSO skb fit into a given MTU?
5443  *
5444  * @skb: GSO skb
5445  * @mtu: MTU to validate against
5446  *
5447  * skb_gso_validate_network_len validates if a given skb will fit a
5448  * wanted MTU once split. It considers L3 headers, L4 headers, and the
5449  * payload.
5450  */
5451 bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu)
5452 {
5453 	return skb_gso_size_check(skb, skb_gso_network_seglen(skb), mtu);
5454 }
5455 EXPORT_SYMBOL_GPL(skb_gso_validate_network_len);
5456 
5457 /**
5458  * skb_gso_validate_mac_len - Will a split GSO skb fit in a given length?
5459  *
5460  * @skb: GSO skb
5461  * @len: length to validate against
5462  *
5463  * skb_gso_validate_mac_len validates if a given skb will fit a wanted
5464  * length once split, including L2, L3 and L4 headers and the payload.
5465  */
5466 bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len)
5467 {
5468 	return skb_gso_size_check(skb, skb_gso_mac_seglen(skb), len);
5469 }
5470 EXPORT_SYMBOL_GPL(skb_gso_validate_mac_len);
5471 
5472 static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb)
5473 {
5474 	int mac_len, meta_len;
5475 	void *meta;
5476 
5477 	if (skb_cow(skb, skb_headroom(skb)) < 0) {
5478 		kfree_skb(skb);
5479 		return NULL;
5480 	}
5481 
5482 	mac_len = skb->data - skb_mac_header(skb);
5483 	if (likely(mac_len > VLAN_HLEN + ETH_TLEN)) {
5484 		memmove(skb_mac_header(skb) + VLAN_HLEN, skb_mac_header(skb),
5485 			mac_len - VLAN_HLEN - ETH_TLEN);
5486 	}
5487 
5488 	meta_len = skb_metadata_len(skb);
5489 	if (meta_len) {
5490 		meta = skb_metadata_end(skb) - meta_len;
5491 		memmove(meta + VLAN_HLEN, meta, meta_len);
5492 	}
5493 
5494 	skb->mac_header += VLAN_HLEN;
5495 	return skb;
5496 }
5497 
5498 struct sk_buff *skb_vlan_untag(struct sk_buff *skb)
5499 {
5500 	struct vlan_hdr *vhdr;
5501 	u16 vlan_tci;
5502 
5503 	if (unlikely(skb_vlan_tag_present(skb))) {
5504 		/* vlan_tci is already set-up so leave this for another time */
5505 		return skb;
5506 	}
5507 
5508 	skb = skb_share_check(skb, GFP_ATOMIC);
5509 	if (unlikely(!skb))
5510 		goto err_free;
5511 	/* We may access the two bytes after vlan_hdr in vlan_set_encap_proto(). */
5512 	if (unlikely(!pskb_may_pull(skb, VLAN_HLEN + sizeof(unsigned short))))
5513 		goto err_free;
5514 
5515 	vhdr = (struct vlan_hdr *)skb->data;
5516 	vlan_tci = ntohs(vhdr->h_vlan_TCI);
5517 	__vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci);
5518 
5519 	skb_pull_rcsum(skb, VLAN_HLEN);
5520 	vlan_set_encap_proto(skb, vhdr);
5521 
5522 	skb = skb_reorder_vlan_header(skb);
5523 	if (unlikely(!skb))
5524 		goto err_free;
5525 
5526 	skb_reset_network_header(skb);
5527 	if (!skb_transport_header_was_set(skb))
5528 		skb_reset_transport_header(skb);
5529 	skb_reset_mac_len(skb);
5530 
5531 	return skb;
5532 
5533 err_free:
5534 	kfree_skb(skb);
5535 	return NULL;
5536 }
5537 EXPORT_SYMBOL(skb_vlan_untag);
5538 
5539 int skb_ensure_writable(struct sk_buff *skb, int write_len)
5540 {
5541 	if (!pskb_may_pull(skb, write_len))
5542 		return -ENOMEM;
5543 
5544 	if (!skb_cloned(skb) || skb_clone_writable(skb, write_len))
5545 		return 0;
5546 
5547 	return pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
5548 }
5549 EXPORT_SYMBOL(skb_ensure_writable);
5550 
5551 /* remove VLAN header from packet and update csum accordingly.
5552  * expects a non skb_vlan_tag_present skb with a vlan tag payload
5553  */
5554 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci)
5555 {
5556 	struct vlan_hdr *vhdr;
5557 	int offset = skb->data - skb_mac_header(skb);
5558 	int err;
5559 
5560 	if (WARN_ONCE(offset,
5561 		      "__skb_vlan_pop got skb with skb->data not at mac header (offset %d)\n",
5562 		      offset)) {
5563 		return -EINVAL;
5564 	}
5565 
5566 	err = skb_ensure_writable(skb, VLAN_ETH_HLEN);
5567 	if (unlikely(err))
5568 		return err;
5569 
5570 	skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
5571 
5572 	vhdr = (struct vlan_hdr *)(skb->data + ETH_HLEN);
5573 	*vlan_tci = ntohs(vhdr->h_vlan_TCI);
5574 
5575 	memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN);
5576 	__skb_pull(skb, VLAN_HLEN);
5577 
5578 	vlan_set_encap_proto(skb, vhdr);
5579 	skb->mac_header += VLAN_HLEN;
5580 
5581 	if (skb_network_offset(skb) < ETH_HLEN)
5582 		skb_set_network_header(skb, ETH_HLEN);
5583 
5584 	skb_reset_mac_len(skb);
5585 
5586 	return err;
5587 }
5588 EXPORT_SYMBOL(__skb_vlan_pop);
5589 
5590 /* Pop a vlan tag either from hwaccel or from payload.
5591  * Expects skb->data at mac header.
5592  */
5593 int skb_vlan_pop(struct sk_buff *skb)
5594 {
5595 	u16 vlan_tci;
5596 	__be16 vlan_proto;
5597 	int err;
5598 
5599 	if (likely(skb_vlan_tag_present(skb))) {
5600 		__vlan_hwaccel_clear_tag(skb);
5601 	} else {
5602 		if (unlikely(!eth_type_vlan(skb->protocol)))
5603 			return 0;
5604 
5605 		err = __skb_vlan_pop(skb, &vlan_tci);
5606 		if (err)
5607 			return err;
5608 	}
5609 	/* move next vlan tag to hw accel tag */
5610 	if (likely(!eth_type_vlan(skb->protocol)))
5611 		return 0;
5612 
5613 	vlan_proto = skb->protocol;
5614 	err = __skb_vlan_pop(skb, &vlan_tci);
5615 	if (unlikely(err))
5616 		return err;
5617 
5618 	__vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
5619 	return 0;
5620 }
5621 EXPORT_SYMBOL(skb_vlan_pop);
5622 
5623 /* Push a vlan tag either into hwaccel or into payload (if hwaccel tag present).
5624  * Expects skb->data at mac header.
5625  */
5626 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci)
5627 {
5628 	if (skb_vlan_tag_present(skb)) {
5629 		int offset = skb->data - skb_mac_header(skb);
5630 		int err;
5631 
5632 		if (WARN_ONCE(offset,
5633 			      "skb_vlan_push got skb with skb->data not at mac header (offset %d)\n",
5634 			      offset)) {
5635 			return -EINVAL;
5636 		}
5637 
5638 		err = __vlan_insert_tag(skb, skb->vlan_proto,
5639 					skb_vlan_tag_get(skb));
5640 		if (err)
5641 			return err;
5642 
5643 		skb->protocol = skb->vlan_proto;
5644 		skb->mac_len += VLAN_HLEN;
5645 
5646 		skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
5647 	}
5648 	__vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
5649 	return 0;
5650 }
5651 EXPORT_SYMBOL(skb_vlan_push);
5652 
5653 /**
5654  * skb_eth_pop() - Drop the Ethernet header at the head of a packet
5655  *
5656  * @skb: Socket buffer to modify
5657  *
5658  * Drop the Ethernet header of @skb.
5659  *
5660  * Expects that skb->data points to the mac header and that no VLAN tags are
5661  * present.
5662  *
5663  * Returns 0 on success, -errno otherwise.
5664  */
5665 int skb_eth_pop(struct sk_buff *skb)
5666 {
5667 	if (!pskb_may_pull(skb, ETH_HLEN) || skb_vlan_tagged(skb) ||
5668 	    skb_network_offset(skb) < ETH_HLEN)
5669 		return -EPROTO;
5670 
5671 	skb_pull_rcsum(skb, ETH_HLEN);
5672 	skb_reset_mac_header(skb);
5673 	skb_reset_mac_len(skb);
5674 
5675 	return 0;
5676 }
5677 EXPORT_SYMBOL(skb_eth_pop);
5678 
5679 /**
5680  * skb_eth_push() - Add a new Ethernet header at the head of a packet
5681  *
5682  * @skb: Socket buffer to modify
5683  * @dst: Destination MAC address of the new header
5684  * @src: Source MAC address of the new header
5685  *
5686  * Prepend @skb with a new Ethernet header.
5687  *
5688  * Expects that skb->data points to the mac header, which must be empty.
5689  *
5690  * Returns 0 on success, -errno otherwise.
5691  */
5692 int skb_eth_push(struct sk_buff *skb, const unsigned char *dst,
5693 		 const unsigned char *src)
5694 {
5695 	struct ethhdr *eth;
5696 	int err;
5697 
5698 	if (skb_network_offset(skb) || skb_vlan_tag_present(skb))
5699 		return -EPROTO;
5700 
5701 	err = skb_cow_head(skb, sizeof(*eth));
5702 	if (err < 0)
5703 		return err;
5704 
5705 	skb_push(skb, sizeof(*eth));
5706 	skb_reset_mac_header(skb);
5707 	skb_reset_mac_len(skb);
5708 
5709 	eth = eth_hdr(skb);
5710 	ether_addr_copy(eth->h_dest, dst);
5711 	ether_addr_copy(eth->h_source, src);
5712 	eth->h_proto = skb->protocol;
5713 
5714 	skb_postpush_rcsum(skb, eth, sizeof(*eth));
5715 
5716 	return 0;
5717 }
5718 EXPORT_SYMBOL(skb_eth_push);
5719 
5720 /* Update the ethertype of hdr and the skb csum value if required. */
5721 static void skb_mod_eth_type(struct sk_buff *skb, struct ethhdr *hdr,
5722 			     __be16 ethertype)
5723 {
5724 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
5725 		__be16 diff[] = { ~hdr->h_proto, ethertype };
5726 
5727 		skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum);
5728 	}
5729 
5730 	hdr->h_proto = ethertype;
5731 }
5732 
5733 /**
5734  * skb_mpls_push() - push a new MPLS header after mac_len bytes from start of
5735  *                   the packet
5736  *
5737  * @skb: buffer
5738  * @mpls_lse: MPLS label stack entry to push
5739  * @mpls_proto: ethertype of the new MPLS header (expects 0x8847 or 0x8848)
5740  * @mac_len: length of the MAC header
5741  * @ethernet: flag to indicate if the resulting packet after skb_mpls_push is
5742  *            ethernet
5743  *
5744  * Expects skb->data at mac header.
5745  *
5746  * Returns 0 on success, -errno otherwise.
5747  */
5748 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto,
5749 		  int mac_len, bool ethernet)
5750 {
5751 	struct mpls_shim_hdr *lse;
5752 	int err;
5753 
5754 	if (unlikely(!eth_p_mpls(mpls_proto)))
5755 		return -EINVAL;
5756 
5757 	/* Networking stack does not allow simultaneous Tunnel and MPLS GSO. */
5758 	if (skb->encapsulation)
5759 		return -EINVAL;
5760 
5761 	err = skb_cow_head(skb, MPLS_HLEN);
5762 	if (unlikely(err))
5763 		return err;
5764 
5765 	if (!skb->inner_protocol) {
5766 		skb_set_inner_network_header(skb, skb_network_offset(skb));
5767 		skb_set_inner_protocol(skb, skb->protocol);
5768 	}
5769 
5770 	skb_push(skb, MPLS_HLEN);
5771 	memmove(skb_mac_header(skb) - MPLS_HLEN, skb_mac_header(skb),
5772 		mac_len);
5773 	skb_reset_mac_header(skb);
5774 	skb_set_network_header(skb, mac_len);
5775 	skb_reset_mac_len(skb);
5776 
5777 	lse = mpls_hdr(skb);
5778 	lse->label_stack_entry = mpls_lse;
5779 	skb_postpush_rcsum(skb, lse, MPLS_HLEN);
5780 
5781 	if (ethernet && mac_len >= ETH_HLEN)
5782 		skb_mod_eth_type(skb, eth_hdr(skb), mpls_proto);
5783 	skb->protocol = mpls_proto;
5784 
5785 	return 0;
5786 }
5787 EXPORT_SYMBOL_GPL(skb_mpls_push);
5788 
5789 /**
5790  * skb_mpls_pop() - pop the outermost MPLS header
5791  *
5792  * @skb: buffer
5793  * @next_proto: ethertype of header after popped MPLS header
5794  * @mac_len: length of the MAC header
5795  * @ethernet: flag to indicate if the packet is ethernet
5796  *
5797  * Expects skb->data at mac header.
5798  *
5799  * Returns 0 on success, -errno otherwise.
5800  */
5801 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len,
5802 		 bool ethernet)
5803 {
5804 	int err;
5805 
5806 	if (unlikely(!eth_p_mpls(skb->protocol)))
5807 		return 0;
5808 
5809 	err = skb_ensure_writable(skb, mac_len + MPLS_HLEN);
5810 	if (unlikely(err))
5811 		return err;
5812 
5813 	skb_postpull_rcsum(skb, mpls_hdr(skb), MPLS_HLEN);
5814 	memmove(skb_mac_header(skb) + MPLS_HLEN, skb_mac_header(skb),
5815 		mac_len);
5816 
5817 	__skb_pull(skb, MPLS_HLEN);
5818 	skb_reset_mac_header(skb);
5819 	skb_set_network_header(skb, mac_len);
5820 
5821 	if (ethernet && mac_len >= ETH_HLEN) {
5822 		struct ethhdr *hdr;
5823 
5824 		/* use mpls_hdr() to get ethertype to account for VLANs. */
5825 		hdr = (struct ethhdr *)((void *)mpls_hdr(skb) - ETH_HLEN);
5826 		skb_mod_eth_type(skb, hdr, next_proto);
5827 	}
5828 	skb->protocol = next_proto;
5829 
5830 	return 0;
5831 }
5832 EXPORT_SYMBOL_GPL(skb_mpls_pop);
5833 
5834 /**
5835  * skb_mpls_update_lse() - modify outermost MPLS header and update csum
5836  *
5837  * @skb: buffer
5838  * @mpls_lse: new MPLS label stack entry to update to
5839  *
5840  * Expects skb->data at mac header.
5841  *
5842  * Returns 0 on success, -errno otherwise.
5843  */
5844 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse)
5845 {
5846 	int err;
5847 
5848 	if (unlikely(!eth_p_mpls(skb->protocol)))
5849 		return -EINVAL;
5850 
5851 	err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN);
5852 	if (unlikely(err))
5853 		return err;
5854 
5855 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
5856 		__be32 diff[] = { ~mpls_hdr(skb)->label_stack_entry, mpls_lse };
5857 
5858 		skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum);
5859 	}
5860 
5861 	mpls_hdr(skb)->label_stack_entry = mpls_lse;
5862 
5863 	return 0;
5864 }
5865 EXPORT_SYMBOL_GPL(skb_mpls_update_lse);
5866 
5867 /**
5868  * skb_mpls_dec_ttl() - decrement the TTL of the outermost MPLS header
5869  *
5870  * @skb: buffer
5871  *
5872  * Expects skb->data at mac header.
5873  *
5874  * Returns 0 on success, -errno otherwise.
5875  */
5876 int skb_mpls_dec_ttl(struct sk_buff *skb)
5877 {
5878 	u32 lse;
5879 	u8 ttl;
5880 
5881 	if (unlikely(!eth_p_mpls(skb->protocol)))
5882 		return -EINVAL;
5883 
5884 	if (!pskb_may_pull(skb, skb_network_offset(skb) + MPLS_HLEN))
5885 		return -ENOMEM;
5886 
5887 	lse = be32_to_cpu(mpls_hdr(skb)->label_stack_entry);
5888 	ttl = (lse & MPLS_LS_TTL_MASK) >> MPLS_LS_TTL_SHIFT;
5889 	if (!--ttl)
5890 		return -EINVAL;
5891 
5892 	lse &= ~MPLS_LS_TTL_MASK;
5893 	lse |= ttl << MPLS_LS_TTL_SHIFT;
5894 
5895 	return skb_mpls_update_lse(skb, cpu_to_be32(lse));
5896 }
5897 EXPORT_SYMBOL_GPL(skb_mpls_dec_ttl);
5898 
5899 /**
5900  * alloc_skb_with_frags - allocate skb with page frags
5901  *
5902  * @header_len: size of linear part
5903  * @data_len: needed length in frags
5904  * @max_page_order: max page order desired.
5905  * @errcode: pointer to error code if any
5906  * @gfp_mask: allocation mask
5907  *
5908  * This can be used to allocate a paged skb, given a maximal order for frags.
5909  */
5910 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
5911 				     unsigned long data_len,
5912 				     int max_page_order,
5913 				     int *errcode,
5914 				     gfp_t gfp_mask)
5915 {
5916 	int npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
5917 	unsigned long chunk;
5918 	struct sk_buff *skb;
5919 	struct page *page;
5920 	int i;
5921 
5922 	*errcode = -EMSGSIZE;
5923 	/* Note this test could be relaxed, if we succeed to allocate
5924 	 * high order pages...
5925 	 */
5926 	if (npages > MAX_SKB_FRAGS)
5927 		return NULL;
5928 
5929 	*errcode = -ENOBUFS;
5930 	skb = alloc_skb(header_len, gfp_mask);
5931 	if (!skb)
5932 		return NULL;
5933 
5934 	skb->truesize += npages << PAGE_SHIFT;
5935 
5936 	for (i = 0; npages > 0; i++) {
5937 		int order = max_page_order;
5938 
5939 		while (order) {
5940 			if (npages >= 1 << order) {
5941 				page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) |
5942 						   __GFP_COMP |
5943 						   __GFP_NOWARN,
5944 						   order);
5945 				if (page)
5946 					goto fill_page;
5947 				/* Do not retry other high order allocations */
5948 				order = 1;
5949 				max_page_order = 0;
5950 			}
5951 			order--;
5952 		}
5953 		page = alloc_page(gfp_mask);
5954 		if (!page)
5955 			goto failure;
5956 fill_page:
5957 		chunk = min_t(unsigned long, data_len,
5958 			      PAGE_SIZE << order);
5959 		skb_fill_page_desc(skb, i, page, 0, chunk);
5960 		data_len -= chunk;
5961 		npages -= 1 << order;
5962 	}
5963 	return skb;
5964 
5965 failure:
5966 	kfree_skb(skb);
5967 	return NULL;
5968 }
5969 EXPORT_SYMBOL(alloc_skb_with_frags);
5970 
5971 /* carve out the first off bytes from skb when off < headlen */
5972 static int pskb_carve_inside_header(struct sk_buff *skb, const u32 off,
5973 				    const int headlen, gfp_t gfp_mask)
5974 {
5975 	int i;
5976 	int size = skb_end_offset(skb);
5977 	int new_hlen = headlen - off;
5978 	u8 *data;
5979 
5980 	size = SKB_DATA_ALIGN(size);
5981 
5982 	if (skb_pfmemalloc(skb))
5983 		gfp_mask |= __GFP_MEMALLOC;
5984 	data = kmalloc_reserve(size +
5985 			       SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
5986 			       gfp_mask, NUMA_NO_NODE, NULL);
5987 	if (!data)
5988 		return -ENOMEM;
5989 
5990 	size = SKB_WITH_OVERHEAD(ksize(data));
5991 
5992 	/* Copy real data, and all frags */
5993 	skb_copy_from_linear_data_offset(skb, off, data, new_hlen);
5994 	skb->len -= off;
5995 
5996 	memcpy((struct skb_shared_info *)(data + size),
5997 	       skb_shinfo(skb),
5998 	       offsetof(struct skb_shared_info,
5999 			frags[skb_shinfo(skb)->nr_frags]));
6000 	if (skb_cloned(skb)) {
6001 		/* drop the old head gracefully */
6002 		if (skb_orphan_frags(skb, gfp_mask)) {
6003 			kfree(data);
6004 			return -ENOMEM;
6005 		}
6006 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
6007 			skb_frag_ref(skb, i);
6008 		if (skb_has_frag_list(skb))
6009 			skb_clone_fraglist(skb);
6010 		skb_release_data(skb);
6011 	} else {
6012 		/* we can reuse existing recount- all we did was
6013 		 * relocate values
6014 		 */
6015 		skb_free_head(skb);
6016 	}
6017 
6018 	skb->head = data;
6019 	skb->data = data;
6020 	skb->head_frag = 0;
6021 #ifdef NET_SKBUFF_DATA_USES_OFFSET
6022 	skb->end = size;
6023 #else
6024 	skb->end = skb->head + size;
6025 #endif
6026 	skb_set_tail_pointer(skb, skb_headlen(skb));
6027 	skb_headers_offset_update(skb, 0);
6028 	skb->cloned = 0;
6029 	skb->hdr_len = 0;
6030 	skb->nohdr = 0;
6031 	atomic_set(&skb_shinfo(skb)->dataref, 1);
6032 
6033 	return 0;
6034 }
6035 
6036 static int pskb_carve(struct sk_buff *skb, const u32 off, gfp_t gfp);
6037 
6038 /* carve out the first eat bytes from skb's frag_list. May recurse into
6039  * pskb_carve()
6040  */
6041 static int pskb_carve_frag_list(struct sk_buff *skb,
6042 				struct skb_shared_info *shinfo, int eat,
6043 				gfp_t gfp_mask)
6044 {
6045 	struct sk_buff *list = shinfo->frag_list;
6046 	struct sk_buff *clone = NULL;
6047 	struct sk_buff *insp = NULL;
6048 
6049 	do {
6050 		if (!list) {
6051 			pr_err("Not enough bytes to eat. Want %d\n", eat);
6052 			return -EFAULT;
6053 		}
6054 		if (list->len <= eat) {
6055 			/* Eaten as whole. */
6056 			eat -= list->len;
6057 			list = list->next;
6058 			insp = list;
6059 		} else {
6060 			/* Eaten partially. */
6061 			if (skb_shared(list)) {
6062 				clone = skb_clone(list, gfp_mask);
6063 				if (!clone)
6064 					return -ENOMEM;
6065 				insp = list->next;
6066 				list = clone;
6067 			} else {
6068 				/* This may be pulled without problems. */
6069 				insp = list;
6070 			}
6071 			if (pskb_carve(list, eat, gfp_mask) < 0) {
6072 				kfree_skb(clone);
6073 				return -ENOMEM;
6074 			}
6075 			break;
6076 		}
6077 	} while (eat);
6078 
6079 	/* Free pulled out fragments. */
6080 	while ((list = shinfo->frag_list) != insp) {
6081 		shinfo->frag_list = list->next;
6082 		kfree_skb(list);
6083 	}
6084 	/* And insert new clone at head. */
6085 	if (clone) {
6086 		clone->next = list;
6087 		shinfo->frag_list = clone;
6088 	}
6089 	return 0;
6090 }
6091 
6092 /* carve off first len bytes from skb. Split line (off) is in the
6093  * non-linear part of skb
6094  */
6095 static int pskb_carve_inside_nonlinear(struct sk_buff *skb, const u32 off,
6096 				       int pos, gfp_t gfp_mask)
6097 {
6098 	int i, k = 0;
6099 	int size = skb_end_offset(skb);
6100 	u8 *data;
6101 	const int nfrags = skb_shinfo(skb)->nr_frags;
6102 	struct skb_shared_info *shinfo;
6103 
6104 	size = SKB_DATA_ALIGN(size);
6105 
6106 	if (skb_pfmemalloc(skb))
6107 		gfp_mask |= __GFP_MEMALLOC;
6108 	data = kmalloc_reserve(size +
6109 			       SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
6110 			       gfp_mask, NUMA_NO_NODE, NULL);
6111 	if (!data)
6112 		return -ENOMEM;
6113 
6114 	size = SKB_WITH_OVERHEAD(ksize(data));
6115 
6116 	memcpy((struct skb_shared_info *)(data + size),
6117 	       skb_shinfo(skb), offsetof(struct skb_shared_info, frags[0]));
6118 	if (skb_orphan_frags(skb, gfp_mask)) {
6119 		kfree(data);
6120 		return -ENOMEM;
6121 	}
6122 	shinfo = (struct skb_shared_info *)(data + size);
6123 	for (i = 0; i < nfrags; i++) {
6124 		int fsize = skb_frag_size(&skb_shinfo(skb)->frags[i]);
6125 
6126 		if (pos + fsize > off) {
6127 			shinfo->frags[k] = skb_shinfo(skb)->frags[i];
6128 
6129 			if (pos < off) {
6130 				/* Split frag.
6131 				 * We have two variants in this case:
6132 				 * 1. Move all the frag to the second
6133 				 *    part, if it is possible. F.e.
6134 				 *    this approach is mandatory for TUX,
6135 				 *    where splitting is expensive.
6136 				 * 2. Split is accurately. We make this.
6137 				 */
6138 				skb_frag_off_add(&shinfo->frags[0], off - pos);
6139 				skb_frag_size_sub(&shinfo->frags[0], off - pos);
6140 			}
6141 			skb_frag_ref(skb, i);
6142 			k++;
6143 		}
6144 		pos += fsize;
6145 	}
6146 	shinfo->nr_frags = k;
6147 	if (skb_has_frag_list(skb))
6148 		skb_clone_fraglist(skb);
6149 
6150 	/* split line is in frag list */
6151 	if (k == 0 && pskb_carve_frag_list(skb, shinfo, off - pos, gfp_mask)) {
6152 		/* skb_frag_unref() is not needed here as shinfo->nr_frags = 0. */
6153 		if (skb_has_frag_list(skb))
6154 			kfree_skb_list(skb_shinfo(skb)->frag_list);
6155 		kfree(data);
6156 		return -ENOMEM;
6157 	}
6158 	skb_release_data(skb);
6159 
6160 	skb->head = data;
6161 	skb->head_frag = 0;
6162 	skb->data = data;
6163 #ifdef NET_SKBUFF_DATA_USES_OFFSET
6164 	skb->end = size;
6165 #else
6166 	skb->end = skb->head + size;
6167 #endif
6168 	skb_reset_tail_pointer(skb);
6169 	skb_headers_offset_update(skb, 0);
6170 	skb->cloned   = 0;
6171 	skb->hdr_len  = 0;
6172 	skb->nohdr    = 0;
6173 	skb->len -= off;
6174 	skb->data_len = skb->len;
6175 	atomic_set(&skb_shinfo(skb)->dataref, 1);
6176 	return 0;
6177 }
6178 
6179 /* remove len bytes from the beginning of the skb */
6180 static int pskb_carve(struct sk_buff *skb, const u32 len, gfp_t gfp)
6181 {
6182 	int headlen = skb_headlen(skb);
6183 
6184 	if (len < headlen)
6185 		return pskb_carve_inside_header(skb, len, headlen, gfp);
6186 	else
6187 		return pskb_carve_inside_nonlinear(skb, len, headlen, gfp);
6188 }
6189 
6190 /* Extract to_copy bytes starting at off from skb, and return this in
6191  * a new skb
6192  */
6193 struct sk_buff *pskb_extract(struct sk_buff *skb, int off,
6194 			     int to_copy, gfp_t gfp)
6195 {
6196 	struct sk_buff  *clone = skb_clone(skb, gfp);
6197 
6198 	if (!clone)
6199 		return NULL;
6200 
6201 	if (pskb_carve(clone, off, gfp) < 0 ||
6202 	    pskb_trim(clone, to_copy)) {
6203 		kfree_skb(clone);
6204 		return NULL;
6205 	}
6206 	return clone;
6207 }
6208 EXPORT_SYMBOL(pskb_extract);
6209 
6210 /**
6211  * skb_condense - try to get rid of fragments/frag_list if possible
6212  * @skb: buffer
6213  *
6214  * Can be used to save memory before skb is added to a busy queue.
6215  * If packet has bytes in frags and enough tail room in skb->head,
6216  * pull all of them, so that we can free the frags right now and adjust
6217  * truesize.
6218  * Notes:
6219  *	We do not reallocate skb->head thus can not fail.
6220  *	Caller must re-evaluate skb->truesize if needed.
6221  */
6222 void skb_condense(struct sk_buff *skb)
6223 {
6224 	if (skb->data_len) {
6225 		if (skb->data_len > skb->end - skb->tail ||
6226 		    skb_cloned(skb))
6227 			return;
6228 
6229 		/* Nice, we can free page frag(s) right now */
6230 		__pskb_pull_tail(skb, skb->data_len);
6231 	}
6232 	/* At this point, skb->truesize might be over estimated,
6233 	 * because skb had a fragment, and fragments do not tell
6234 	 * their truesize.
6235 	 * When we pulled its content into skb->head, fragment
6236 	 * was freed, but __pskb_pull_tail() could not possibly
6237 	 * adjust skb->truesize, not knowing the frag truesize.
6238 	 */
6239 	skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
6240 }
6241 
6242 #ifdef CONFIG_SKB_EXTENSIONS
6243 static void *skb_ext_get_ptr(struct skb_ext *ext, enum skb_ext_id id)
6244 {
6245 	return (void *)ext + (ext->offset[id] * SKB_EXT_ALIGN_VALUE);
6246 }
6247 
6248 /**
6249  * __skb_ext_alloc - allocate a new skb extensions storage
6250  *
6251  * @flags: See kmalloc().
6252  *
6253  * Returns the newly allocated pointer. The pointer can later attached to a
6254  * skb via __skb_ext_set().
6255  * Note: caller must handle the skb_ext as an opaque data.
6256  */
6257 struct skb_ext *__skb_ext_alloc(gfp_t flags)
6258 {
6259 	struct skb_ext *new = kmem_cache_alloc(skbuff_ext_cache, flags);
6260 
6261 	if (new) {
6262 		memset(new->offset, 0, sizeof(new->offset));
6263 		refcount_set(&new->refcnt, 1);
6264 	}
6265 
6266 	return new;
6267 }
6268 
6269 static struct skb_ext *skb_ext_maybe_cow(struct skb_ext *old,
6270 					 unsigned int old_active)
6271 {
6272 	struct skb_ext *new;
6273 
6274 	if (refcount_read(&old->refcnt) == 1)
6275 		return old;
6276 
6277 	new = kmem_cache_alloc(skbuff_ext_cache, GFP_ATOMIC);
6278 	if (!new)
6279 		return NULL;
6280 
6281 	memcpy(new, old, old->chunks * SKB_EXT_ALIGN_VALUE);
6282 	refcount_set(&new->refcnt, 1);
6283 
6284 #ifdef CONFIG_XFRM
6285 	if (old_active & (1 << SKB_EXT_SEC_PATH)) {
6286 		struct sec_path *sp = skb_ext_get_ptr(old, SKB_EXT_SEC_PATH);
6287 		unsigned int i;
6288 
6289 		for (i = 0; i < sp->len; i++)
6290 			xfrm_state_hold(sp->xvec[i]);
6291 	}
6292 #endif
6293 	__skb_ext_put(old);
6294 	return new;
6295 }
6296 
6297 /**
6298  * __skb_ext_set - attach the specified extension storage to this skb
6299  * @skb: buffer
6300  * @id: extension id
6301  * @ext: extension storage previously allocated via __skb_ext_alloc()
6302  *
6303  * Existing extensions, if any, are cleared.
6304  *
6305  * Returns the pointer to the extension.
6306  */
6307 void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id,
6308 		    struct skb_ext *ext)
6309 {
6310 	unsigned int newlen, newoff = SKB_EXT_CHUNKSIZEOF(*ext);
6311 
6312 	skb_ext_put(skb);
6313 	newlen = newoff + skb_ext_type_len[id];
6314 	ext->chunks = newlen;
6315 	ext->offset[id] = newoff;
6316 	skb->extensions = ext;
6317 	skb->active_extensions = 1 << id;
6318 	return skb_ext_get_ptr(ext, id);
6319 }
6320 
6321 /**
6322  * skb_ext_add - allocate space for given extension, COW if needed
6323  * @skb: buffer
6324  * @id: extension to allocate space for
6325  *
6326  * Allocates enough space for the given extension.
6327  * If the extension is already present, a pointer to that extension
6328  * is returned.
6329  *
6330  * If the skb was cloned, COW applies and the returned memory can be
6331  * modified without changing the extension space of clones buffers.
6332  *
6333  * Returns pointer to the extension or NULL on allocation failure.
6334  */
6335 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id)
6336 {
6337 	struct skb_ext *new, *old = NULL;
6338 	unsigned int newlen, newoff;
6339 
6340 	if (skb->active_extensions) {
6341 		old = skb->extensions;
6342 
6343 		new = skb_ext_maybe_cow(old, skb->active_extensions);
6344 		if (!new)
6345 			return NULL;
6346 
6347 		if (__skb_ext_exist(new, id))
6348 			goto set_active;
6349 
6350 		newoff = new->chunks;
6351 	} else {
6352 		newoff = SKB_EXT_CHUNKSIZEOF(*new);
6353 
6354 		new = __skb_ext_alloc(GFP_ATOMIC);
6355 		if (!new)
6356 			return NULL;
6357 	}
6358 
6359 	newlen = newoff + skb_ext_type_len[id];
6360 	new->chunks = newlen;
6361 	new->offset[id] = newoff;
6362 set_active:
6363 	skb->slow_gro = 1;
6364 	skb->extensions = new;
6365 	skb->active_extensions |= 1 << id;
6366 	return skb_ext_get_ptr(new, id);
6367 }
6368 EXPORT_SYMBOL(skb_ext_add);
6369 
6370 #ifdef CONFIG_XFRM
6371 static void skb_ext_put_sp(struct sec_path *sp)
6372 {
6373 	unsigned int i;
6374 
6375 	for (i = 0; i < sp->len; i++)
6376 		xfrm_state_put(sp->xvec[i]);
6377 }
6378 #endif
6379 
6380 #ifdef CONFIG_MCTP_FLOWS
6381 static void skb_ext_put_mctp(struct mctp_flow *flow)
6382 {
6383 	if (flow->key)
6384 		mctp_key_unref(flow->key);
6385 }
6386 #endif
6387 
6388 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id)
6389 {
6390 	struct skb_ext *ext = skb->extensions;
6391 
6392 	skb->active_extensions &= ~(1 << id);
6393 	if (skb->active_extensions == 0) {
6394 		skb->extensions = NULL;
6395 		__skb_ext_put(ext);
6396 #ifdef CONFIG_XFRM
6397 	} else if (id == SKB_EXT_SEC_PATH &&
6398 		   refcount_read(&ext->refcnt) == 1) {
6399 		struct sec_path *sp = skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH);
6400 
6401 		skb_ext_put_sp(sp);
6402 		sp->len = 0;
6403 #endif
6404 	}
6405 }
6406 EXPORT_SYMBOL(__skb_ext_del);
6407 
6408 void __skb_ext_put(struct skb_ext *ext)
6409 {
6410 	/* If this is last clone, nothing can increment
6411 	 * it after check passes.  Avoids one atomic op.
6412 	 */
6413 	if (refcount_read(&ext->refcnt) == 1)
6414 		goto free_now;
6415 
6416 	if (!refcount_dec_and_test(&ext->refcnt))
6417 		return;
6418 free_now:
6419 #ifdef CONFIG_XFRM
6420 	if (__skb_ext_exist(ext, SKB_EXT_SEC_PATH))
6421 		skb_ext_put_sp(skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH));
6422 #endif
6423 #ifdef CONFIG_MCTP_FLOWS
6424 	if (__skb_ext_exist(ext, SKB_EXT_MCTP))
6425 		skb_ext_put_mctp(skb_ext_get_ptr(ext, SKB_EXT_MCTP));
6426 #endif
6427 
6428 	kmem_cache_free(skbuff_ext_cache, ext);
6429 }
6430 EXPORT_SYMBOL(__skb_ext_put);
6431 #endif /* CONFIG_SKB_EXTENSIONS */
6432