xref: /openbmc/linux/net/core/skbuff.c (revision c21b37f6)
1 /*
2  *	Routines having to do with the 'struct sk_buff' memory handlers.
3  *
4  *	Authors:	Alan Cox <iiitac@pyr.swan.ac.uk>
5  *			Florian La Roche <rzsfl@rz.uni-sb.de>
6  *
7  *	Version:	$Id: skbuff.c,v 1.90 2001/11/07 05:56:19 davem Exp $
8  *
9  *	Fixes:
10  *		Alan Cox	:	Fixed the worst of the load
11  *					balancer bugs.
12  *		Dave Platt	:	Interrupt stacking fix.
13  *	Richard Kooijman	:	Timestamp fixes.
14  *		Alan Cox	:	Changed buffer format.
15  *		Alan Cox	:	destructor hook for AF_UNIX etc.
16  *		Linus Torvalds	:	Better skb_clone.
17  *		Alan Cox	:	Added skb_copy.
18  *		Alan Cox	:	Added all the changed routines Linus
19  *					only put in the headers
20  *		Ray VanTassle	:	Fixed --skb->lock in free
21  *		Alan Cox	:	skb_copy copy arp field
22  *		Andi Kleen	:	slabified it.
23  *		Robert Olsson	:	Removed skb_head_pool
24  *
25  *	NOTE:
26  *		The __skb_ routines should be called with interrupts
27  *	disabled, or you better be *real* sure that the operation is atomic
28  *	with respect to whatever list is being frobbed (e.g. via lock_sock()
29  *	or via disabling bottom half handlers, etc).
30  *
31  *	This program is free software; you can redistribute it and/or
32  *	modify it under the terms of the GNU General Public License
33  *	as published by the Free Software Foundation; either version
34  *	2 of the License, or (at your option) any later version.
35  */
36 
37 /*
38  *	The functions in this file will not compile correctly with gcc 2.4.x
39  */
40 
41 #include <linux/module.h>
42 #include <linux/types.h>
43 #include <linux/kernel.h>
44 #include <linux/mm.h>
45 #include <linux/interrupt.h>
46 #include <linux/in.h>
47 #include <linux/inet.h>
48 #include <linux/slab.h>
49 #include <linux/netdevice.h>
50 #ifdef CONFIG_NET_CLS_ACT
51 #include <net/pkt_sched.h>
52 #endif
53 #include <linux/string.h>
54 #include <linux/skbuff.h>
55 #include <linux/cache.h>
56 #include <linux/rtnetlink.h>
57 #include <linux/init.h>
58 #include <linux/scatterlist.h>
59 
60 #include <net/protocol.h>
61 #include <net/dst.h>
62 #include <net/sock.h>
63 #include <net/checksum.h>
64 #include <net/xfrm.h>
65 
66 #include <asm/uaccess.h>
67 #include <asm/system.h>
68 
69 #include "kmap_skb.h"
70 
71 static struct kmem_cache *skbuff_head_cache __read_mostly;
72 static struct kmem_cache *skbuff_fclone_cache __read_mostly;
73 
74 /*
75  *	Keep out-of-line to prevent kernel bloat.
76  *	__builtin_return_address is not used because it is not always
77  *	reliable.
78  */
79 
80 /**
81  *	skb_over_panic	- 	private function
82  *	@skb: buffer
83  *	@sz: size
84  *	@here: address
85  *
86  *	Out of line support code for skb_put(). Not user callable.
87  */
88 void skb_over_panic(struct sk_buff *skb, int sz, void *here)
89 {
90 	printk(KERN_EMERG "skb_over_panic: text:%p len:%d put:%d head:%p "
91 			  "data:%p tail:%#lx end:%#lx dev:%s\n",
92 	       here, skb->len, sz, skb->head, skb->data,
93 	       (unsigned long)skb->tail, (unsigned long)skb->end,
94 	       skb->dev ? skb->dev->name : "<NULL>");
95 	BUG();
96 }
97 
98 /**
99  *	skb_under_panic	- 	private function
100  *	@skb: buffer
101  *	@sz: size
102  *	@here: address
103  *
104  *	Out of line support code for skb_push(). Not user callable.
105  */
106 
107 void skb_under_panic(struct sk_buff *skb, int sz, void *here)
108 {
109 	printk(KERN_EMERG "skb_under_panic: text:%p len:%d put:%d head:%p "
110 			  "data:%p tail:%#lx end:%#lx dev:%s\n",
111 	       here, skb->len, sz, skb->head, skb->data,
112 	       (unsigned long)skb->tail, (unsigned long)skb->end,
113 	       skb->dev ? skb->dev->name : "<NULL>");
114 	BUG();
115 }
116 
117 void skb_truesize_bug(struct sk_buff *skb)
118 {
119 	printk(KERN_ERR "SKB BUG: Invalid truesize (%u) "
120 	       "len=%u, sizeof(sk_buff)=%Zd\n",
121 	       skb->truesize, skb->len, sizeof(struct sk_buff));
122 }
123 EXPORT_SYMBOL(skb_truesize_bug);
124 
125 /* 	Allocate a new skbuff. We do this ourselves so we can fill in a few
126  *	'private' fields and also do memory statistics to find all the
127  *	[BEEP] leaks.
128  *
129  */
130 
131 /**
132  *	__alloc_skb	-	allocate a network buffer
133  *	@size: size to allocate
134  *	@gfp_mask: allocation mask
135  *	@fclone: allocate from fclone cache instead of head cache
136  *		and allocate a cloned (child) skb
137  *	@node: numa node to allocate memory on
138  *
139  *	Allocate a new &sk_buff. The returned buffer has no headroom and a
140  *	tail room of size bytes. The object has a reference count of one.
141  *	The return is the buffer. On a failure the return is %NULL.
142  *
143  *	Buffers may only be allocated from interrupts using a @gfp_mask of
144  *	%GFP_ATOMIC.
145  */
146 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
147 			    int fclone, int node)
148 {
149 	struct kmem_cache *cache;
150 	struct skb_shared_info *shinfo;
151 	struct sk_buff *skb;
152 	u8 *data;
153 
154 	cache = fclone ? skbuff_fclone_cache : skbuff_head_cache;
155 
156 	/* Get the HEAD */
157 	skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node);
158 	if (!skb)
159 		goto out;
160 
161 	size = SKB_DATA_ALIGN(size);
162 	data = kmalloc_node_track_caller(size + sizeof(struct skb_shared_info),
163 			gfp_mask, node);
164 	if (!data)
165 		goto nodata;
166 
167 	/*
168 	 * See comment in sk_buff definition, just before the 'tail' member
169 	 */
170 	memset(skb, 0, offsetof(struct sk_buff, tail));
171 	skb->truesize = size + sizeof(struct sk_buff);
172 	atomic_set(&skb->users, 1);
173 	skb->head = data;
174 	skb->data = data;
175 	skb_reset_tail_pointer(skb);
176 	skb->end = skb->tail + size;
177 	/* make sure we initialize shinfo sequentially */
178 	shinfo = skb_shinfo(skb);
179 	atomic_set(&shinfo->dataref, 1);
180 	shinfo->nr_frags  = 0;
181 	shinfo->gso_size = 0;
182 	shinfo->gso_segs = 0;
183 	shinfo->gso_type = 0;
184 	shinfo->ip6_frag_id = 0;
185 	shinfo->frag_list = NULL;
186 
187 	if (fclone) {
188 		struct sk_buff *child = skb + 1;
189 		atomic_t *fclone_ref = (atomic_t *) (child + 1);
190 
191 		skb->fclone = SKB_FCLONE_ORIG;
192 		atomic_set(fclone_ref, 1);
193 
194 		child->fclone = SKB_FCLONE_UNAVAILABLE;
195 	}
196 out:
197 	return skb;
198 nodata:
199 	kmem_cache_free(cache, skb);
200 	skb = NULL;
201 	goto out;
202 }
203 
204 /**
205  *	__netdev_alloc_skb - allocate an skbuff for rx on a specific device
206  *	@dev: network device to receive on
207  *	@length: length to allocate
208  *	@gfp_mask: get_free_pages mask, passed to alloc_skb
209  *
210  *	Allocate a new &sk_buff and assign it a usage count of one. The
211  *	buffer has unspecified headroom built in. Users should allocate
212  *	the headroom they think they need without accounting for the
213  *	built in space. The built in space is used for optimisations.
214  *
215  *	%NULL is returned if there is no free memory.
216  */
217 struct sk_buff *__netdev_alloc_skb(struct net_device *dev,
218 		unsigned int length, gfp_t gfp_mask)
219 {
220 	int node = dev->dev.parent ? dev_to_node(dev->dev.parent) : -1;
221 	struct sk_buff *skb;
222 
223 	skb = __alloc_skb(length + NET_SKB_PAD, gfp_mask, 0, node);
224 	if (likely(skb)) {
225 		skb_reserve(skb, NET_SKB_PAD);
226 		skb->dev = dev;
227 	}
228 	return skb;
229 }
230 
231 static void skb_drop_list(struct sk_buff **listp)
232 {
233 	struct sk_buff *list = *listp;
234 
235 	*listp = NULL;
236 
237 	do {
238 		struct sk_buff *this = list;
239 		list = list->next;
240 		kfree_skb(this);
241 	} while (list);
242 }
243 
244 static inline void skb_drop_fraglist(struct sk_buff *skb)
245 {
246 	skb_drop_list(&skb_shinfo(skb)->frag_list);
247 }
248 
249 static void skb_clone_fraglist(struct sk_buff *skb)
250 {
251 	struct sk_buff *list;
252 
253 	for (list = skb_shinfo(skb)->frag_list; list; list = list->next)
254 		skb_get(list);
255 }
256 
257 static void skb_release_data(struct sk_buff *skb)
258 {
259 	if (!skb->cloned ||
260 	    !atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
261 			       &skb_shinfo(skb)->dataref)) {
262 		if (skb_shinfo(skb)->nr_frags) {
263 			int i;
264 			for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
265 				put_page(skb_shinfo(skb)->frags[i].page);
266 		}
267 
268 		if (skb_shinfo(skb)->frag_list)
269 			skb_drop_fraglist(skb);
270 
271 		kfree(skb->head);
272 	}
273 }
274 
275 /*
276  *	Free an skbuff by memory without cleaning the state.
277  */
278 void kfree_skbmem(struct sk_buff *skb)
279 {
280 	struct sk_buff *other;
281 	atomic_t *fclone_ref;
282 
283 	skb_release_data(skb);
284 	switch (skb->fclone) {
285 	case SKB_FCLONE_UNAVAILABLE:
286 		kmem_cache_free(skbuff_head_cache, skb);
287 		break;
288 
289 	case SKB_FCLONE_ORIG:
290 		fclone_ref = (atomic_t *) (skb + 2);
291 		if (atomic_dec_and_test(fclone_ref))
292 			kmem_cache_free(skbuff_fclone_cache, skb);
293 		break;
294 
295 	case SKB_FCLONE_CLONE:
296 		fclone_ref = (atomic_t *) (skb + 1);
297 		other = skb - 1;
298 
299 		/* The clone portion is available for
300 		 * fast-cloning again.
301 		 */
302 		skb->fclone = SKB_FCLONE_UNAVAILABLE;
303 
304 		if (atomic_dec_and_test(fclone_ref))
305 			kmem_cache_free(skbuff_fclone_cache, other);
306 		break;
307 	}
308 }
309 
310 /**
311  *	__kfree_skb - private function
312  *	@skb: buffer
313  *
314  *	Free an sk_buff. Release anything attached to the buffer.
315  *	Clean the state. This is an internal helper function. Users should
316  *	always call kfree_skb
317  */
318 
319 void __kfree_skb(struct sk_buff *skb)
320 {
321 	dst_release(skb->dst);
322 #ifdef CONFIG_XFRM
323 	secpath_put(skb->sp);
324 #endif
325 	if (skb->destructor) {
326 		WARN_ON(in_irq());
327 		skb->destructor(skb);
328 	}
329 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
330 	nf_conntrack_put(skb->nfct);
331 	nf_conntrack_put_reasm(skb->nfct_reasm);
332 #endif
333 #ifdef CONFIG_BRIDGE_NETFILTER
334 	nf_bridge_put(skb->nf_bridge);
335 #endif
336 /* XXX: IS this still necessary? - JHS */
337 #ifdef CONFIG_NET_SCHED
338 	skb->tc_index = 0;
339 #ifdef CONFIG_NET_CLS_ACT
340 	skb->tc_verd = 0;
341 #endif
342 #endif
343 
344 	kfree_skbmem(skb);
345 }
346 
347 /**
348  *	kfree_skb - free an sk_buff
349  *	@skb: buffer to free
350  *
351  *	Drop a reference to the buffer and free it if the usage count has
352  *	hit zero.
353  */
354 void kfree_skb(struct sk_buff *skb)
355 {
356 	if (unlikely(!skb))
357 		return;
358 	if (likely(atomic_read(&skb->users) == 1))
359 		smp_rmb();
360 	else if (likely(!atomic_dec_and_test(&skb->users)))
361 		return;
362 	__kfree_skb(skb);
363 }
364 
365 /**
366  *	skb_clone	-	duplicate an sk_buff
367  *	@skb: buffer to clone
368  *	@gfp_mask: allocation priority
369  *
370  *	Duplicate an &sk_buff. The new one is not owned by a socket. Both
371  *	copies share the same packet data but not structure. The new
372  *	buffer has a reference count of 1. If the allocation fails the
373  *	function returns %NULL otherwise the new buffer is returned.
374  *
375  *	If this function is called from an interrupt gfp_mask() must be
376  *	%GFP_ATOMIC.
377  */
378 
379 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
380 {
381 	struct sk_buff *n;
382 
383 	n = skb + 1;
384 	if (skb->fclone == SKB_FCLONE_ORIG &&
385 	    n->fclone == SKB_FCLONE_UNAVAILABLE) {
386 		atomic_t *fclone_ref = (atomic_t *) (n + 1);
387 		n->fclone = SKB_FCLONE_CLONE;
388 		atomic_inc(fclone_ref);
389 	} else {
390 		n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
391 		if (!n)
392 			return NULL;
393 		n->fclone = SKB_FCLONE_UNAVAILABLE;
394 	}
395 
396 #define C(x) n->x = skb->x
397 
398 	n->next = n->prev = NULL;
399 	n->sk = NULL;
400 	C(tstamp);
401 	C(dev);
402 	C(transport_header);
403 	C(network_header);
404 	C(mac_header);
405 	C(dst);
406 	dst_clone(skb->dst);
407 	C(sp);
408 #ifdef CONFIG_INET
409 	secpath_get(skb->sp);
410 #endif
411 	memcpy(n->cb, skb->cb, sizeof(skb->cb));
412 	C(len);
413 	C(data_len);
414 	C(mac_len);
415 	C(csum);
416 	C(local_df);
417 	n->cloned = 1;
418 	n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
419 	n->nohdr = 0;
420 	C(pkt_type);
421 	C(ip_summed);
422 	skb_copy_queue_mapping(n, skb);
423 	C(priority);
424 #if defined(CONFIG_IP_VS) || defined(CONFIG_IP_VS_MODULE)
425 	C(ipvs_property);
426 #endif
427 	C(protocol);
428 	n->destructor = NULL;
429 	C(mark);
430 	__nf_copy(n, skb);
431 #if defined(CONFIG_NETFILTER_XT_TARGET_TRACE) || \
432     defined(CONFIG_NETFILTER_XT_TARGET_TRACE_MODULE)
433 	C(nf_trace);
434 #endif
435 #ifdef CONFIG_NET_SCHED
436 	C(tc_index);
437 #ifdef CONFIG_NET_CLS_ACT
438 	n->tc_verd = SET_TC_VERD(skb->tc_verd,0);
439 	n->tc_verd = CLR_TC_OK2MUNGE(n->tc_verd);
440 	n->tc_verd = CLR_TC_MUNGED(n->tc_verd);
441 	C(iif);
442 #endif
443 #endif
444 	skb_copy_secmark(n, skb);
445 	C(truesize);
446 	atomic_set(&n->users, 1);
447 	C(head);
448 	C(data);
449 	C(tail);
450 	C(end);
451 
452 	atomic_inc(&(skb_shinfo(skb)->dataref));
453 	skb->cloned = 1;
454 
455 	return n;
456 }
457 
458 static void copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
459 {
460 #ifndef NET_SKBUFF_DATA_USES_OFFSET
461 	/*
462 	 *	Shift between the two data areas in bytes
463 	 */
464 	unsigned long offset = new->data - old->data;
465 #endif
466 	new->sk		= NULL;
467 	new->dev	= old->dev;
468 	skb_copy_queue_mapping(new, old);
469 	new->priority	= old->priority;
470 	new->protocol	= old->protocol;
471 	new->dst	= dst_clone(old->dst);
472 #ifdef CONFIG_INET
473 	new->sp		= secpath_get(old->sp);
474 #endif
475 	new->transport_header = old->transport_header;
476 	new->network_header   = old->network_header;
477 	new->mac_header	      = old->mac_header;
478 #ifndef NET_SKBUFF_DATA_USES_OFFSET
479 	/* {transport,network,mac}_header are relative to skb->head */
480 	new->transport_header += offset;
481 	new->network_header   += offset;
482 	new->mac_header	      += offset;
483 #endif
484 	memcpy(new->cb, old->cb, sizeof(old->cb));
485 	new->local_df	= old->local_df;
486 	new->fclone	= SKB_FCLONE_UNAVAILABLE;
487 	new->pkt_type	= old->pkt_type;
488 	new->tstamp	= old->tstamp;
489 	new->destructor = NULL;
490 	new->mark	= old->mark;
491 	__nf_copy(new, old);
492 #if defined(CONFIG_NETFILTER_XT_TARGET_TRACE) || \
493     defined(CONFIG_NETFILTER_XT_TARGET_TRACE_MODULE)
494 	new->nf_trace	= old->nf_trace;
495 #endif
496 #if defined(CONFIG_IP_VS) || defined(CONFIG_IP_VS_MODULE)
497 	new->ipvs_property = old->ipvs_property;
498 #endif
499 #ifdef CONFIG_NET_SCHED
500 #ifdef CONFIG_NET_CLS_ACT
501 	new->tc_verd = old->tc_verd;
502 #endif
503 	new->tc_index	= old->tc_index;
504 #endif
505 	skb_copy_secmark(new, old);
506 	atomic_set(&new->users, 1);
507 	skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
508 	skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
509 	skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
510 }
511 
512 /**
513  *	skb_copy	-	create private copy of an sk_buff
514  *	@skb: buffer to copy
515  *	@gfp_mask: allocation priority
516  *
517  *	Make a copy of both an &sk_buff and its data. This is used when the
518  *	caller wishes to modify the data and needs a private copy of the
519  *	data to alter. Returns %NULL on failure or the pointer to the buffer
520  *	on success. The returned buffer has a reference count of 1.
521  *
522  *	As by-product this function converts non-linear &sk_buff to linear
523  *	one, so that &sk_buff becomes completely private and caller is allowed
524  *	to modify all the data of returned buffer. This means that this
525  *	function is not recommended for use in circumstances when only
526  *	header is going to be modified. Use pskb_copy() instead.
527  */
528 
529 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
530 {
531 	int headerlen = skb->data - skb->head;
532 	/*
533 	 *	Allocate the copy buffer
534 	 */
535 	struct sk_buff *n;
536 #ifdef NET_SKBUFF_DATA_USES_OFFSET
537 	n = alloc_skb(skb->end + skb->data_len, gfp_mask);
538 #else
539 	n = alloc_skb(skb->end - skb->head + skb->data_len, gfp_mask);
540 #endif
541 	if (!n)
542 		return NULL;
543 
544 	/* Set the data pointer */
545 	skb_reserve(n, headerlen);
546 	/* Set the tail pointer and length */
547 	skb_put(n, skb->len);
548 	n->csum	     = skb->csum;
549 	n->ip_summed = skb->ip_summed;
550 
551 	if (skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len))
552 		BUG();
553 
554 	copy_skb_header(n, skb);
555 	return n;
556 }
557 
558 
559 /**
560  *	pskb_copy	-	create copy of an sk_buff with private head.
561  *	@skb: buffer to copy
562  *	@gfp_mask: allocation priority
563  *
564  *	Make a copy of both an &sk_buff and part of its data, located
565  *	in header. Fragmented data remain shared. This is used when
566  *	the caller wishes to modify only header of &sk_buff and needs
567  *	private copy of the header to alter. Returns %NULL on failure
568  *	or the pointer to the buffer on success.
569  *	The returned buffer has a reference count of 1.
570  */
571 
572 struct sk_buff *pskb_copy(struct sk_buff *skb, gfp_t gfp_mask)
573 {
574 	/*
575 	 *	Allocate the copy buffer
576 	 */
577 	struct sk_buff *n;
578 #ifdef NET_SKBUFF_DATA_USES_OFFSET
579 	n = alloc_skb(skb->end, gfp_mask);
580 #else
581 	n = alloc_skb(skb->end - skb->head, gfp_mask);
582 #endif
583 	if (!n)
584 		goto out;
585 
586 	/* Set the data pointer */
587 	skb_reserve(n, skb->data - skb->head);
588 	/* Set the tail pointer and length */
589 	skb_put(n, skb_headlen(skb));
590 	/* Copy the bytes */
591 	skb_copy_from_linear_data(skb, n->data, n->len);
592 	n->csum	     = skb->csum;
593 	n->ip_summed = skb->ip_summed;
594 
595 	n->truesize += skb->data_len;
596 	n->data_len  = skb->data_len;
597 	n->len	     = skb->len;
598 
599 	if (skb_shinfo(skb)->nr_frags) {
600 		int i;
601 
602 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
603 			skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
604 			get_page(skb_shinfo(n)->frags[i].page);
605 		}
606 		skb_shinfo(n)->nr_frags = i;
607 	}
608 
609 	if (skb_shinfo(skb)->frag_list) {
610 		skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
611 		skb_clone_fraglist(n);
612 	}
613 
614 	copy_skb_header(n, skb);
615 out:
616 	return n;
617 }
618 
619 /**
620  *	pskb_expand_head - reallocate header of &sk_buff
621  *	@skb: buffer to reallocate
622  *	@nhead: room to add at head
623  *	@ntail: room to add at tail
624  *	@gfp_mask: allocation priority
625  *
626  *	Expands (or creates identical copy, if &nhead and &ntail are zero)
627  *	header of skb. &sk_buff itself is not changed. &sk_buff MUST have
628  *	reference count of 1. Returns zero in the case of success or error,
629  *	if expansion failed. In the last case, &sk_buff is not changed.
630  *
631  *	All the pointers pointing into skb header may change and must be
632  *	reloaded after call to this function.
633  */
634 
635 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
636 		     gfp_t gfp_mask)
637 {
638 	int i;
639 	u8 *data;
640 #ifdef NET_SKBUFF_DATA_USES_OFFSET
641 	int size = nhead + skb->end + ntail;
642 #else
643 	int size = nhead + (skb->end - skb->head) + ntail;
644 #endif
645 	long off;
646 
647 	if (skb_shared(skb))
648 		BUG();
649 
650 	size = SKB_DATA_ALIGN(size);
651 
652 	data = kmalloc(size + sizeof(struct skb_shared_info), gfp_mask);
653 	if (!data)
654 		goto nodata;
655 
656 	/* Copy only real data... and, alas, header. This should be
657 	 * optimized for the cases when header is void. */
658 #ifdef NET_SKBUFF_DATA_USES_OFFSET
659 	memcpy(data + nhead, skb->head, skb->tail);
660 #else
661 	memcpy(data + nhead, skb->head, skb->tail - skb->head);
662 #endif
663 	memcpy(data + size, skb_end_pointer(skb),
664 	       sizeof(struct skb_shared_info));
665 
666 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
667 		get_page(skb_shinfo(skb)->frags[i].page);
668 
669 	if (skb_shinfo(skb)->frag_list)
670 		skb_clone_fraglist(skb);
671 
672 	skb_release_data(skb);
673 
674 	off = (data + nhead) - skb->head;
675 
676 	skb->head     = data;
677 	skb->data    += off;
678 #ifdef NET_SKBUFF_DATA_USES_OFFSET
679 	skb->end      = size;
680 	off           = nhead;
681 #else
682 	skb->end      = skb->head + size;
683 #endif
684 	/* {transport,network,mac}_header and tail are relative to skb->head */
685 	skb->tail	      += off;
686 	skb->transport_header += off;
687 	skb->network_header   += off;
688 	skb->mac_header	      += off;
689 	skb->cloned   = 0;
690 	skb->hdr_len  = 0;
691 	skb->nohdr    = 0;
692 	atomic_set(&skb_shinfo(skb)->dataref, 1);
693 	return 0;
694 
695 nodata:
696 	return -ENOMEM;
697 }
698 
699 /* Make private copy of skb with writable head and some headroom */
700 
701 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
702 {
703 	struct sk_buff *skb2;
704 	int delta = headroom - skb_headroom(skb);
705 
706 	if (delta <= 0)
707 		skb2 = pskb_copy(skb, GFP_ATOMIC);
708 	else {
709 		skb2 = skb_clone(skb, GFP_ATOMIC);
710 		if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
711 					     GFP_ATOMIC)) {
712 			kfree_skb(skb2);
713 			skb2 = NULL;
714 		}
715 	}
716 	return skb2;
717 }
718 
719 
720 /**
721  *	skb_copy_expand	-	copy and expand sk_buff
722  *	@skb: buffer to copy
723  *	@newheadroom: new free bytes at head
724  *	@newtailroom: new free bytes at tail
725  *	@gfp_mask: allocation priority
726  *
727  *	Make a copy of both an &sk_buff and its data and while doing so
728  *	allocate additional space.
729  *
730  *	This is used when the caller wishes to modify the data and needs a
731  *	private copy of the data to alter as well as more space for new fields.
732  *	Returns %NULL on failure or the pointer to the buffer
733  *	on success. The returned buffer has a reference count of 1.
734  *
735  *	You must pass %GFP_ATOMIC as the allocation priority if this function
736  *	is called from an interrupt.
737  *
738  *	BUG ALERT: ip_summed is not copied. Why does this work? Is it used
739  *	only by netfilter in the cases when checksum is recalculated? --ANK
740  */
741 struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
742 				int newheadroom, int newtailroom,
743 				gfp_t gfp_mask)
744 {
745 	/*
746 	 *	Allocate the copy buffer
747 	 */
748 	struct sk_buff *n = alloc_skb(newheadroom + skb->len + newtailroom,
749 				      gfp_mask);
750 	int oldheadroom = skb_headroom(skb);
751 	int head_copy_len, head_copy_off;
752 	int off = 0;
753 
754 	if (!n)
755 		return NULL;
756 
757 	skb_reserve(n, newheadroom);
758 
759 	/* Set the tail pointer and length */
760 	skb_put(n, skb->len);
761 
762 	head_copy_len = oldheadroom;
763 	head_copy_off = 0;
764 	if (newheadroom <= head_copy_len)
765 		head_copy_len = newheadroom;
766 	else
767 		head_copy_off = newheadroom - head_copy_len;
768 
769 	/* Copy the linear header and data. */
770 	if (skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
771 			  skb->len + head_copy_len))
772 		BUG();
773 
774 	copy_skb_header(n, skb);
775 
776 #ifdef NET_SKBUFF_DATA_USES_OFFSET
777 	off                  = newheadroom - oldheadroom;
778 #endif
779 	n->transport_header += off;
780 	n->network_header   += off;
781 	n->mac_header	    += off;
782 
783 	return n;
784 }
785 
786 /**
787  *	skb_pad			-	zero pad the tail of an skb
788  *	@skb: buffer to pad
789  *	@pad: space to pad
790  *
791  *	Ensure that a buffer is followed by a padding area that is zero
792  *	filled. Used by network drivers which may DMA or transfer data
793  *	beyond the buffer end onto the wire.
794  *
795  *	May return error in out of memory cases. The skb is freed on error.
796  */
797 
798 int skb_pad(struct sk_buff *skb, int pad)
799 {
800 	int err;
801 	int ntail;
802 
803 	/* If the skbuff is non linear tailroom is always zero.. */
804 	if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
805 		memset(skb->data+skb->len, 0, pad);
806 		return 0;
807 	}
808 
809 	ntail = skb->data_len + pad - (skb->end - skb->tail);
810 	if (likely(skb_cloned(skb) || ntail > 0)) {
811 		err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
812 		if (unlikely(err))
813 			goto free_skb;
814 	}
815 
816 	/* FIXME: The use of this function with non-linear skb's really needs
817 	 * to be audited.
818 	 */
819 	err = skb_linearize(skb);
820 	if (unlikely(err))
821 		goto free_skb;
822 
823 	memset(skb->data + skb->len, 0, pad);
824 	return 0;
825 
826 free_skb:
827 	kfree_skb(skb);
828 	return err;
829 }
830 
831 /* Trims skb to length len. It can change skb pointers.
832  */
833 
834 int ___pskb_trim(struct sk_buff *skb, unsigned int len)
835 {
836 	struct sk_buff **fragp;
837 	struct sk_buff *frag;
838 	int offset = skb_headlen(skb);
839 	int nfrags = skb_shinfo(skb)->nr_frags;
840 	int i;
841 	int err;
842 
843 	if (skb_cloned(skb) &&
844 	    unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
845 		return err;
846 
847 	i = 0;
848 	if (offset >= len)
849 		goto drop_pages;
850 
851 	for (; i < nfrags; i++) {
852 		int end = offset + skb_shinfo(skb)->frags[i].size;
853 
854 		if (end < len) {
855 			offset = end;
856 			continue;
857 		}
858 
859 		skb_shinfo(skb)->frags[i++].size = len - offset;
860 
861 drop_pages:
862 		skb_shinfo(skb)->nr_frags = i;
863 
864 		for (; i < nfrags; i++)
865 			put_page(skb_shinfo(skb)->frags[i].page);
866 
867 		if (skb_shinfo(skb)->frag_list)
868 			skb_drop_fraglist(skb);
869 		goto done;
870 	}
871 
872 	for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
873 	     fragp = &frag->next) {
874 		int end = offset + frag->len;
875 
876 		if (skb_shared(frag)) {
877 			struct sk_buff *nfrag;
878 
879 			nfrag = skb_clone(frag, GFP_ATOMIC);
880 			if (unlikely(!nfrag))
881 				return -ENOMEM;
882 
883 			nfrag->next = frag->next;
884 			kfree_skb(frag);
885 			frag = nfrag;
886 			*fragp = frag;
887 		}
888 
889 		if (end < len) {
890 			offset = end;
891 			continue;
892 		}
893 
894 		if (end > len &&
895 		    unlikely((err = pskb_trim(frag, len - offset))))
896 			return err;
897 
898 		if (frag->next)
899 			skb_drop_list(&frag->next);
900 		break;
901 	}
902 
903 done:
904 	if (len > skb_headlen(skb)) {
905 		skb->data_len -= skb->len - len;
906 		skb->len       = len;
907 	} else {
908 		skb->len       = len;
909 		skb->data_len  = 0;
910 		skb_set_tail_pointer(skb, len);
911 	}
912 
913 	return 0;
914 }
915 
916 /**
917  *	__pskb_pull_tail - advance tail of skb header
918  *	@skb: buffer to reallocate
919  *	@delta: number of bytes to advance tail
920  *
921  *	The function makes a sense only on a fragmented &sk_buff,
922  *	it expands header moving its tail forward and copying necessary
923  *	data from fragmented part.
924  *
925  *	&sk_buff MUST have reference count of 1.
926  *
927  *	Returns %NULL (and &sk_buff does not change) if pull failed
928  *	or value of new tail of skb in the case of success.
929  *
930  *	All the pointers pointing into skb header may change and must be
931  *	reloaded after call to this function.
932  */
933 
934 /* Moves tail of skb head forward, copying data from fragmented part,
935  * when it is necessary.
936  * 1. It may fail due to malloc failure.
937  * 2. It may change skb pointers.
938  *
939  * It is pretty complicated. Luckily, it is called only in exceptional cases.
940  */
941 unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta)
942 {
943 	/* If skb has not enough free space at tail, get new one
944 	 * plus 128 bytes for future expansions. If we have enough
945 	 * room at tail, reallocate without expansion only if skb is cloned.
946 	 */
947 	int i, k, eat = (skb->tail + delta) - skb->end;
948 
949 	if (eat > 0 || skb_cloned(skb)) {
950 		if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
951 				     GFP_ATOMIC))
952 			return NULL;
953 	}
954 
955 	if (skb_copy_bits(skb, skb_headlen(skb), skb_tail_pointer(skb), delta))
956 		BUG();
957 
958 	/* Optimization: no fragments, no reasons to preestimate
959 	 * size of pulled pages. Superb.
960 	 */
961 	if (!skb_shinfo(skb)->frag_list)
962 		goto pull_pages;
963 
964 	/* Estimate size of pulled pages. */
965 	eat = delta;
966 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
967 		if (skb_shinfo(skb)->frags[i].size >= eat)
968 			goto pull_pages;
969 		eat -= skb_shinfo(skb)->frags[i].size;
970 	}
971 
972 	/* If we need update frag list, we are in troubles.
973 	 * Certainly, it possible to add an offset to skb data,
974 	 * but taking into account that pulling is expected to
975 	 * be very rare operation, it is worth to fight against
976 	 * further bloating skb head and crucify ourselves here instead.
977 	 * Pure masohism, indeed. 8)8)
978 	 */
979 	if (eat) {
980 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
981 		struct sk_buff *clone = NULL;
982 		struct sk_buff *insp = NULL;
983 
984 		do {
985 			BUG_ON(!list);
986 
987 			if (list->len <= eat) {
988 				/* Eaten as whole. */
989 				eat -= list->len;
990 				list = list->next;
991 				insp = list;
992 			} else {
993 				/* Eaten partially. */
994 
995 				if (skb_shared(list)) {
996 					/* Sucks! We need to fork list. :-( */
997 					clone = skb_clone(list, GFP_ATOMIC);
998 					if (!clone)
999 						return NULL;
1000 					insp = list->next;
1001 					list = clone;
1002 				} else {
1003 					/* This may be pulled without
1004 					 * problems. */
1005 					insp = list;
1006 				}
1007 				if (!pskb_pull(list, eat)) {
1008 					if (clone)
1009 						kfree_skb(clone);
1010 					return NULL;
1011 				}
1012 				break;
1013 			}
1014 		} while (eat);
1015 
1016 		/* Free pulled out fragments. */
1017 		while ((list = skb_shinfo(skb)->frag_list) != insp) {
1018 			skb_shinfo(skb)->frag_list = list->next;
1019 			kfree_skb(list);
1020 		}
1021 		/* And insert new clone at head. */
1022 		if (clone) {
1023 			clone->next = list;
1024 			skb_shinfo(skb)->frag_list = clone;
1025 		}
1026 	}
1027 	/* Success! Now we may commit changes to skb data. */
1028 
1029 pull_pages:
1030 	eat = delta;
1031 	k = 0;
1032 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1033 		if (skb_shinfo(skb)->frags[i].size <= eat) {
1034 			put_page(skb_shinfo(skb)->frags[i].page);
1035 			eat -= skb_shinfo(skb)->frags[i].size;
1036 		} else {
1037 			skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i];
1038 			if (eat) {
1039 				skb_shinfo(skb)->frags[k].page_offset += eat;
1040 				skb_shinfo(skb)->frags[k].size -= eat;
1041 				eat = 0;
1042 			}
1043 			k++;
1044 		}
1045 	}
1046 	skb_shinfo(skb)->nr_frags = k;
1047 
1048 	skb->tail     += delta;
1049 	skb->data_len -= delta;
1050 
1051 	return skb_tail_pointer(skb);
1052 }
1053 
1054 /* Copy some data bits from skb to kernel buffer. */
1055 
1056 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
1057 {
1058 	int i, copy;
1059 	int start = skb_headlen(skb);
1060 
1061 	if (offset > (int)skb->len - len)
1062 		goto fault;
1063 
1064 	/* Copy header. */
1065 	if ((copy = start - offset) > 0) {
1066 		if (copy > len)
1067 			copy = len;
1068 		skb_copy_from_linear_data_offset(skb, offset, to, copy);
1069 		if ((len -= copy) == 0)
1070 			return 0;
1071 		offset += copy;
1072 		to     += copy;
1073 	}
1074 
1075 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1076 		int end;
1077 
1078 		BUG_TRAP(start <= offset + len);
1079 
1080 		end = start + skb_shinfo(skb)->frags[i].size;
1081 		if ((copy = end - offset) > 0) {
1082 			u8 *vaddr;
1083 
1084 			if (copy > len)
1085 				copy = len;
1086 
1087 			vaddr = kmap_skb_frag(&skb_shinfo(skb)->frags[i]);
1088 			memcpy(to,
1089 			       vaddr + skb_shinfo(skb)->frags[i].page_offset+
1090 			       offset - start, copy);
1091 			kunmap_skb_frag(vaddr);
1092 
1093 			if ((len -= copy) == 0)
1094 				return 0;
1095 			offset += copy;
1096 			to     += copy;
1097 		}
1098 		start = end;
1099 	}
1100 
1101 	if (skb_shinfo(skb)->frag_list) {
1102 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
1103 
1104 		for (; list; list = list->next) {
1105 			int end;
1106 
1107 			BUG_TRAP(start <= offset + len);
1108 
1109 			end = start + list->len;
1110 			if ((copy = end - offset) > 0) {
1111 				if (copy > len)
1112 					copy = len;
1113 				if (skb_copy_bits(list, offset - start,
1114 						  to, copy))
1115 					goto fault;
1116 				if ((len -= copy) == 0)
1117 					return 0;
1118 				offset += copy;
1119 				to     += copy;
1120 			}
1121 			start = end;
1122 		}
1123 	}
1124 	if (!len)
1125 		return 0;
1126 
1127 fault:
1128 	return -EFAULT;
1129 }
1130 
1131 /**
1132  *	skb_store_bits - store bits from kernel buffer to skb
1133  *	@skb: destination buffer
1134  *	@offset: offset in destination
1135  *	@from: source buffer
1136  *	@len: number of bytes to copy
1137  *
1138  *	Copy the specified number of bytes from the source buffer to the
1139  *	destination skb.  This function handles all the messy bits of
1140  *	traversing fragment lists and such.
1141  */
1142 
1143 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
1144 {
1145 	int i, copy;
1146 	int start = skb_headlen(skb);
1147 
1148 	if (offset > (int)skb->len - len)
1149 		goto fault;
1150 
1151 	if ((copy = start - offset) > 0) {
1152 		if (copy > len)
1153 			copy = len;
1154 		skb_copy_to_linear_data_offset(skb, offset, from, copy);
1155 		if ((len -= copy) == 0)
1156 			return 0;
1157 		offset += copy;
1158 		from += copy;
1159 	}
1160 
1161 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1162 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1163 		int end;
1164 
1165 		BUG_TRAP(start <= offset + len);
1166 
1167 		end = start + frag->size;
1168 		if ((copy = end - offset) > 0) {
1169 			u8 *vaddr;
1170 
1171 			if (copy > len)
1172 				copy = len;
1173 
1174 			vaddr = kmap_skb_frag(frag);
1175 			memcpy(vaddr + frag->page_offset + offset - start,
1176 			       from, copy);
1177 			kunmap_skb_frag(vaddr);
1178 
1179 			if ((len -= copy) == 0)
1180 				return 0;
1181 			offset += copy;
1182 			from += copy;
1183 		}
1184 		start = end;
1185 	}
1186 
1187 	if (skb_shinfo(skb)->frag_list) {
1188 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
1189 
1190 		for (; list; list = list->next) {
1191 			int end;
1192 
1193 			BUG_TRAP(start <= offset + len);
1194 
1195 			end = start + list->len;
1196 			if ((copy = end - offset) > 0) {
1197 				if (copy > len)
1198 					copy = len;
1199 				if (skb_store_bits(list, offset - start,
1200 						   from, copy))
1201 					goto fault;
1202 				if ((len -= copy) == 0)
1203 					return 0;
1204 				offset += copy;
1205 				from += copy;
1206 			}
1207 			start = end;
1208 		}
1209 	}
1210 	if (!len)
1211 		return 0;
1212 
1213 fault:
1214 	return -EFAULT;
1215 }
1216 
1217 EXPORT_SYMBOL(skb_store_bits);
1218 
1219 /* Checksum skb data. */
1220 
1221 __wsum skb_checksum(const struct sk_buff *skb, int offset,
1222 			  int len, __wsum csum)
1223 {
1224 	int start = skb_headlen(skb);
1225 	int i, copy = start - offset;
1226 	int pos = 0;
1227 
1228 	/* Checksum header. */
1229 	if (copy > 0) {
1230 		if (copy > len)
1231 			copy = len;
1232 		csum = csum_partial(skb->data + offset, copy, csum);
1233 		if ((len -= copy) == 0)
1234 			return csum;
1235 		offset += copy;
1236 		pos	= copy;
1237 	}
1238 
1239 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1240 		int end;
1241 
1242 		BUG_TRAP(start <= offset + len);
1243 
1244 		end = start + skb_shinfo(skb)->frags[i].size;
1245 		if ((copy = end - offset) > 0) {
1246 			__wsum csum2;
1247 			u8 *vaddr;
1248 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1249 
1250 			if (copy > len)
1251 				copy = len;
1252 			vaddr = kmap_skb_frag(frag);
1253 			csum2 = csum_partial(vaddr + frag->page_offset +
1254 					     offset - start, copy, 0);
1255 			kunmap_skb_frag(vaddr);
1256 			csum = csum_block_add(csum, csum2, pos);
1257 			if (!(len -= copy))
1258 				return csum;
1259 			offset += copy;
1260 			pos    += copy;
1261 		}
1262 		start = end;
1263 	}
1264 
1265 	if (skb_shinfo(skb)->frag_list) {
1266 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
1267 
1268 		for (; list; list = list->next) {
1269 			int end;
1270 
1271 			BUG_TRAP(start <= offset + len);
1272 
1273 			end = start + list->len;
1274 			if ((copy = end - offset) > 0) {
1275 				__wsum csum2;
1276 				if (copy > len)
1277 					copy = len;
1278 				csum2 = skb_checksum(list, offset - start,
1279 						     copy, 0);
1280 				csum = csum_block_add(csum, csum2, pos);
1281 				if ((len -= copy) == 0)
1282 					return csum;
1283 				offset += copy;
1284 				pos    += copy;
1285 			}
1286 			start = end;
1287 		}
1288 	}
1289 	BUG_ON(len);
1290 
1291 	return csum;
1292 }
1293 
1294 /* Both of above in one bottle. */
1295 
1296 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
1297 				    u8 *to, int len, __wsum csum)
1298 {
1299 	int start = skb_headlen(skb);
1300 	int i, copy = start - offset;
1301 	int pos = 0;
1302 
1303 	/* Copy header. */
1304 	if (copy > 0) {
1305 		if (copy > len)
1306 			copy = len;
1307 		csum = csum_partial_copy_nocheck(skb->data + offset, to,
1308 						 copy, csum);
1309 		if ((len -= copy) == 0)
1310 			return csum;
1311 		offset += copy;
1312 		to     += copy;
1313 		pos	= copy;
1314 	}
1315 
1316 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1317 		int end;
1318 
1319 		BUG_TRAP(start <= offset + len);
1320 
1321 		end = start + skb_shinfo(skb)->frags[i].size;
1322 		if ((copy = end - offset) > 0) {
1323 			__wsum csum2;
1324 			u8 *vaddr;
1325 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1326 
1327 			if (copy > len)
1328 				copy = len;
1329 			vaddr = kmap_skb_frag(frag);
1330 			csum2 = csum_partial_copy_nocheck(vaddr +
1331 							  frag->page_offset +
1332 							  offset - start, to,
1333 							  copy, 0);
1334 			kunmap_skb_frag(vaddr);
1335 			csum = csum_block_add(csum, csum2, pos);
1336 			if (!(len -= copy))
1337 				return csum;
1338 			offset += copy;
1339 			to     += copy;
1340 			pos    += copy;
1341 		}
1342 		start = end;
1343 	}
1344 
1345 	if (skb_shinfo(skb)->frag_list) {
1346 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
1347 
1348 		for (; list; list = list->next) {
1349 			__wsum csum2;
1350 			int end;
1351 
1352 			BUG_TRAP(start <= offset + len);
1353 
1354 			end = start + list->len;
1355 			if ((copy = end - offset) > 0) {
1356 				if (copy > len)
1357 					copy = len;
1358 				csum2 = skb_copy_and_csum_bits(list,
1359 							       offset - start,
1360 							       to, copy, 0);
1361 				csum = csum_block_add(csum, csum2, pos);
1362 				if ((len -= copy) == 0)
1363 					return csum;
1364 				offset += copy;
1365 				to     += copy;
1366 				pos    += copy;
1367 			}
1368 			start = end;
1369 		}
1370 	}
1371 	BUG_ON(len);
1372 	return csum;
1373 }
1374 
1375 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
1376 {
1377 	__wsum csum;
1378 	long csstart;
1379 
1380 	if (skb->ip_summed == CHECKSUM_PARTIAL)
1381 		csstart = skb->csum_start - skb_headroom(skb);
1382 	else
1383 		csstart = skb_headlen(skb);
1384 
1385 	BUG_ON(csstart > skb_headlen(skb));
1386 
1387 	skb_copy_from_linear_data(skb, to, csstart);
1388 
1389 	csum = 0;
1390 	if (csstart != skb->len)
1391 		csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
1392 					      skb->len - csstart, 0);
1393 
1394 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
1395 		long csstuff = csstart + skb->csum_offset;
1396 
1397 		*((__sum16 *)(to + csstuff)) = csum_fold(csum);
1398 	}
1399 }
1400 
1401 /**
1402  *	skb_dequeue - remove from the head of the queue
1403  *	@list: list to dequeue from
1404  *
1405  *	Remove the head of the list. The list lock is taken so the function
1406  *	may be used safely with other locking list functions. The head item is
1407  *	returned or %NULL if the list is empty.
1408  */
1409 
1410 struct sk_buff *skb_dequeue(struct sk_buff_head *list)
1411 {
1412 	unsigned long flags;
1413 	struct sk_buff *result;
1414 
1415 	spin_lock_irqsave(&list->lock, flags);
1416 	result = __skb_dequeue(list);
1417 	spin_unlock_irqrestore(&list->lock, flags);
1418 	return result;
1419 }
1420 
1421 /**
1422  *	skb_dequeue_tail - remove from the tail of the queue
1423  *	@list: list to dequeue from
1424  *
1425  *	Remove the tail of the list. The list lock is taken so the function
1426  *	may be used safely with other locking list functions. The tail item is
1427  *	returned or %NULL if the list is empty.
1428  */
1429 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
1430 {
1431 	unsigned long flags;
1432 	struct sk_buff *result;
1433 
1434 	spin_lock_irqsave(&list->lock, flags);
1435 	result = __skb_dequeue_tail(list);
1436 	spin_unlock_irqrestore(&list->lock, flags);
1437 	return result;
1438 }
1439 
1440 /**
1441  *	skb_queue_purge - empty a list
1442  *	@list: list to empty
1443  *
1444  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
1445  *	the list and one reference dropped. This function takes the list
1446  *	lock and is atomic with respect to other list locking functions.
1447  */
1448 void skb_queue_purge(struct sk_buff_head *list)
1449 {
1450 	struct sk_buff *skb;
1451 	while ((skb = skb_dequeue(list)) != NULL)
1452 		kfree_skb(skb);
1453 }
1454 
1455 /**
1456  *	skb_queue_head - queue a buffer at the list head
1457  *	@list: list to use
1458  *	@newsk: buffer to queue
1459  *
1460  *	Queue a buffer at the start of the list. This function takes the
1461  *	list lock and can be used safely with other locking &sk_buff functions
1462  *	safely.
1463  *
1464  *	A buffer cannot be placed on two lists at the same time.
1465  */
1466 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
1467 {
1468 	unsigned long flags;
1469 
1470 	spin_lock_irqsave(&list->lock, flags);
1471 	__skb_queue_head(list, newsk);
1472 	spin_unlock_irqrestore(&list->lock, flags);
1473 }
1474 
1475 /**
1476  *	skb_queue_tail - queue a buffer at the list tail
1477  *	@list: list to use
1478  *	@newsk: buffer to queue
1479  *
1480  *	Queue a buffer at the tail of the list. This function takes the
1481  *	list lock and can be used safely with other locking &sk_buff functions
1482  *	safely.
1483  *
1484  *	A buffer cannot be placed on two lists at the same time.
1485  */
1486 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
1487 {
1488 	unsigned long flags;
1489 
1490 	spin_lock_irqsave(&list->lock, flags);
1491 	__skb_queue_tail(list, newsk);
1492 	spin_unlock_irqrestore(&list->lock, flags);
1493 }
1494 
1495 /**
1496  *	skb_unlink	-	remove a buffer from a list
1497  *	@skb: buffer to remove
1498  *	@list: list to use
1499  *
1500  *	Remove a packet from a list. The list locks are taken and this
1501  *	function is atomic with respect to other list locked calls
1502  *
1503  *	You must know what list the SKB is on.
1504  */
1505 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
1506 {
1507 	unsigned long flags;
1508 
1509 	spin_lock_irqsave(&list->lock, flags);
1510 	__skb_unlink(skb, list);
1511 	spin_unlock_irqrestore(&list->lock, flags);
1512 }
1513 
1514 /**
1515  *	skb_append	-	append a buffer
1516  *	@old: buffer to insert after
1517  *	@newsk: buffer to insert
1518  *	@list: list to use
1519  *
1520  *	Place a packet after a given packet in a list. The list locks are taken
1521  *	and this function is atomic with respect to other list locked calls.
1522  *	A buffer cannot be placed on two lists at the same time.
1523  */
1524 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
1525 {
1526 	unsigned long flags;
1527 
1528 	spin_lock_irqsave(&list->lock, flags);
1529 	__skb_append(old, newsk, list);
1530 	spin_unlock_irqrestore(&list->lock, flags);
1531 }
1532 
1533 
1534 /**
1535  *	skb_insert	-	insert a buffer
1536  *	@old: buffer to insert before
1537  *	@newsk: buffer to insert
1538  *	@list: list to use
1539  *
1540  *	Place a packet before a given packet in a list. The list locks are
1541  * 	taken and this function is atomic with respect to other list locked
1542  *	calls.
1543  *
1544  *	A buffer cannot be placed on two lists at the same time.
1545  */
1546 void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
1547 {
1548 	unsigned long flags;
1549 
1550 	spin_lock_irqsave(&list->lock, flags);
1551 	__skb_insert(newsk, old->prev, old, list);
1552 	spin_unlock_irqrestore(&list->lock, flags);
1553 }
1554 
1555 static inline void skb_split_inside_header(struct sk_buff *skb,
1556 					   struct sk_buff* skb1,
1557 					   const u32 len, const int pos)
1558 {
1559 	int i;
1560 
1561 	skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
1562 					 pos - len);
1563 	/* And move data appendix as is. */
1564 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1565 		skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
1566 
1567 	skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
1568 	skb_shinfo(skb)->nr_frags  = 0;
1569 	skb1->data_len		   = skb->data_len;
1570 	skb1->len		   += skb1->data_len;
1571 	skb->data_len		   = 0;
1572 	skb->len		   = len;
1573 	skb_set_tail_pointer(skb, len);
1574 }
1575 
1576 static inline void skb_split_no_header(struct sk_buff *skb,
1577 				       struct sk_buff* skb1,
1578 				       const u32 len, int pos)
1579 {
1580 	int i, k = 0;
1581 	const int nfrags = skb_shinfo(skb)->nr_frags;
1582 
1583 	skb_shinfo(skb)->nr_frags = 0;
1584 	skb1->len		  = skb1->data_len = skb->len - len;
1585 	skb->len		  = len;
1586 	skb->data_len		  = len - pos;
1587 
1588 	for (i = 0; i < nfrags; i++) {
1589 		int size = skb_shinfo(skb)->frags[i].size;
1590 
1591 		if (pos + size > len) {
1592 			skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
1593 
1594 			if (pos < len) {
1595 				/* Split frag.
1596 				 * We have two variants in this case:
1597 				 * 1. Move all the frag to the second
1598 				 *    part, if it is possible. F.e.
1599 				 *    this approach is mandatory for TUX,
1600 				 *    where splitting is expensive.
1601 				 * 2. Split is accurately. We make this.
1602 				 */
1603 				get_page(skb_shinfo(skb)->frags[i].page);
1604 				skb_shinfo(skb1)->frags[0].page_offset += len - pos;
1605 				skb_shinfo(skb1)->frags[0].size -= len - pos;
1606 				skb_shinfo(skb)->frags[i].size	= len - pos;
1607 				skb_shinfo(skb)->nr_frags++;
1608 			}
1609 			k++;
1610 		} else
1611 			skb_shinfo(skb)->nr_frags++;
1612 		pos += size;
1613 	}
1614 	skb_shinfo(skb1)->nr_frags = k;
1615 }
1616 
1617 /**
1618  * skb_split - Split fragmented skb to two parts at length len.
1619  * @skb: the buffer to split
1620  * @skb1: the buffer to receive the second part
1621  * @len: new length for skb
1622  */
1623 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
1624 {
1625 	int pos = skb_headlen(skb);
1626 
1627 	if (len < pos)	/* Split line is inside header. */
1628 		skb_split_inside_header(skb, skb1, len, pos);
1629 	else		/* Second chunk has no header, nothing to copy. */
1630 		skb_split_no_header(skb, skb1, len, pos);
1631 }
1632 
1633 /**
1634  * skb_prepare_seq_read - Prepare a sequential read of skb data
1635  * @skb: the buffer to read
1636  * @from: lower offset of data to be read
1637  * @to: upper offset of data to be read
1638  * @st: state variable
1639  *
1640  * Initializes the specified state variable. Must be called before
1641  * invoking skb_seq_read() for the first time.
1642  */
1643 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
1644 			  unsigned int to, struct skb_seq_state *st)
1645 {
1646 	st->lower_offset = from;
1647 	st->upper_offset = to;
1648 	st->root_skb = st->cur_skb = skb;
1649 	st->frag_idx = st->stepped_offset = 0;
1650 	st->frag_data = NULL;
1651 }
1652 
1653 /**
1654  * skb_seq_read - Sequentially read skb data
1655  * @consumed: number of bytes consumed by the caller so far
1656  * @data: destination pointer for data to be returned
1657  * @st: state variable
1658  *
1659  * Reads a block of skb data at &consumed relative to the
1660  * lower offset specified to skb_prepare_seq_read(). Assigns
1661  * the head of the data block to &data and returns the length
1662  * of the block or 0 if the end of the skb data or the upper
1663  * offset has been reached.
1664  *
1665  * The caller is not required to consume all of the data
1666  * returned, i.e. &consumed is typically set to the number
1667  * of bytes already consumed and the next call to
1668  * skb_seq_read() will return the remaining part of the block.
1669  *
1670  * Note: The size of each block of data returned can be arbitary,
1671  *       this limitation is the cost for zerocopy seqeuental
1672  *       reads of potentially non linear data.
1673  *
1674  * Note: Fragment lists within fragments are not implemented
1675  *       at the moment, state->root_skb could be replaced with
1676  *       a stack for this purpose.
1677  */
1678 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
1679 			  struct skb_seq_state *st)
1680 {
1681 	unsigned int block_limit, abs_offset = consumed + st->lower_offset;
1682 	skb_frag_t *frag;
1683 
1684 	if (unlikely(abs_offset >= st->upper_offset))
1685 		return 0;
1686 
1687 next_skb:
1688 	block_limit = skb_headlen(st->cur_skb);
1689 
1690 	if (abs_offset < block_limit) {
1691 		*data = st->cur_skb->data + abs_offset;
1692 		return block_limit - abs_offset;
1693 	}
1694 
1695 	if (st->frag_idx == 0 && !st->frag_data)
1696 		st->stepped_offset += skb_headlen(st->cur_skb);
1697 
1698 	while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
1699 		frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
1700 		block_limit = frag->size + st->stepped_offset;
1701 
1702 		if (abs_offset < block_limit) {
1703 			if (!st->frag_data)
1704 				st->frag_data = kmap_skb_frag(frag);
1705 
1706 			*data = (u8 *) st->frag_data + frag->page_offset +
1707 				(abs_offset - st->stepped_offset);
1708 
1709 			return block_limit - abs_offset;
1710 		}
1711 
1712 		if (st->frag_data) {
1713 			kunmap_skb_frag(st->frag_data);
1714 			st->frag_data = NULL;
1715 		}
1716 
1717 		st->frag_idx++;
1718 		st->stepped_offset += frag->size;
1719 	}
1720 
1721 	if (st->frag_data) {
1722 		kunmap_skb_frag(st->frag_data);
1723 		st->frag_data = NULL;
1724 	}
1725 
1726 	if (st->cur_skb->next) {
1727 		st->cur_skb = st->cur_skb->next;
1728 		st->frag_idx = 0;
1729 		goto next_skb;
1730 	} else if (st->root_skb == st->cur_skb &&
1731 		   skb_shinfo(st->root_skb)->frag_list) {
1732 		st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
1733 		goto next_skb;
1734 	}
1735 
1736 	return 0;
1737 }
1738 
1739 /**
1740  * skb_abort_seq_read - Abort a sequential read of skb data
1741  * @st: state variable
1742  *
1743  * Must be called if skb_seq_read() was not called until it
1744  * returned 0.
1745  */
1746 void skb_abort_seq_read(struct skb_seq_state *st)
1747 {
1748 	if (st->frag_data)
1749 		kunmap_skb_frag(st->frag_data);
1750 }
1751 
1752 #define TS_SKB_CB(state)	((struct skb_seq_state *) &((state)->cb))
1753 
1754 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
1755 					  struct ts_config *conf,
1756 					  struct ts_state *state)
1757 {
1758 	return skb_seq_read(offset, text, TS_SKB_CB(state));
1759 }
1760 
1761 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
1762 {
1763 	skb_abort_seq_read(TS_SKB_CB(state));
1764 }
1765 
1766 /**
1767  * skb_find_text - Find a text pattern in skb data
1768  * @skb: the buffer to look in
1769  * @from: search offset
1770  * @to: search limit
1771  * @config: textsearch configuration
1772  * @state: uninitialized textsearch state variable
1773  *
1774  * Finds a pattern in the skb data according to the specified
1775  * textsearch configuration. Use textsearch_next() to retrieve
1776  * subsequent occurrences of the pattern. Returns the offset
1777  * to the first occurrence or UINT_MAX if no match was found.
1778  */
1779 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
1780 			   unsigned int to, struct ts_config *config,
1781 			   struct ts_state *state)
1782 {
1783 	unsigned int ret;
1784 
1785 	config->get_next_block = skb_ts_get_next_block;
1786 	config->finish = skb_ts_finish;
1787 
1788 	skb_prepare_seq_read(skb, from, to, TS_SKB_CB(state));
1789 
1790 	ret = textsearch_find(config, state);
1791 	return (ret <= to - from ? ret : UINT_MAX);
1792 }
1793 
1794 /**
1795  * skb_append_datato_frags: - append the user data to a skb
1796  * @sk: sock  structure
1797  * @skb: skb structure to be appened with user data.
1798  * @getfrag: call back function to be used for getting the user data
1799  * @from: pointer to user message iov
1800  * @length: length of the iov message
1801  *
1802  * Description: This procedure append the user data in the fragment part
1803  * of the skb if any page alloc fails user this procedure returns  -ENOMEM
1804  */
1805 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
1806 			int (*getfrag)(void *from, char *to, int offset,
1807 					int len, int odd, struct sk_buff *skb),
1808 			void *from, int length)
1809 {
1810 	int frg_cnt = 0;
1811 	skb_frag_t *frag = NULL;
1812 	struct page *page = NULL;
1813 	int copy, left;
1814 	int offset = 0;
1815 	int ret;
1816 
1817 	do {
1818 		/* Return error if we don't have space for new frag */
1819 		frg_cnt = skb_shinfo(skb)->nr_frags;
1820 		if (frg_cnt >= MAX_SKB_FRAGS)
1821 			return -EFAULT;
1822 
1823 		/* allocate a new page for next frag */
1824 		page = alloc_pages(sk->sk_allocation, 0);
1825 
1826 		/* If alloc_page fails just return failure and caller will
1827 		 * free previous allocated pages by doing kfree_skb()
1828 		 */
1829 		if (page == NULL)
1830 			return -ENOMEM;
1831 
1832 		/* initialize the next frag */
1833 		sk->sk_sndmsg_page = page;
1834 		sk->sk_sndmsg_off = 0;
1835 		skb_fill_page_desc(skb, frg_cnt, page, 0, 0);
1836 		skb->truesize += PAGE_SIZE;
1837 		atomic_add(PAGE_SIZE, &sk->sk_wmem_alloc);
1838 
1839 		/* get the new initialized frag */
1840 		frg_cnt = skb_shinfo(skb)->nr_frags;
1841 		frag = &skb_shinfo(skb)->frags[frg_cnt - 1];
1842 
1843 		/* copy the user data to page */
1844 		left = PAGE_SIZE - frag->page_offset;
1845 		copy = (length > left)? left : length;
1846 
1847 		ret = getfrag(from, (page_address(frag->page) +
1848 			    frag->page_offset + frag->size),
1849 			    offset, copy, 0, skb);
1850 		if (ret < 0)
1851 			return -EFAULT;
1852 
1853 		/* copy was successful so update the size parameters */
1854 		sk->sk_sndmsg_off += copy;
1855 		frag->size += copy;
1856 		skb->len += copy;
1857 		skb->data_len += copy;
1858 		offset += copy;
1859 		length -= copy;
1860 
1861 	} while (length > 0);
1862 
1863 	return 0;
1864 }
1865 
1866 /**
1867  *	skb_pull_rcsum - pull skb and update receive checksum
1868  *	@skb: buffer to update
1869  *	@start: start of data before pull
1870  *	@len: length of data pulled
1871  *
1872  *	This function performs an skb_pull on the packet and updates
1873  *	update the CHECKSUM_COMPLETE checksum.  It should be used on
1874  *	receive path processing instead of skb_pull unless you know
1875  *	that the checksum difference is zero (e.g., a valid IP header)
1876  *	or you are setting ip_summed to CHECKSUM_NONE.
1877  */
1878 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
1879 {
1880 	BUG_ON(len > skb->len);
1881 	skb->len -= len;
1882 	BUG_ON(skb->len < skb->data_len);
1883 	skb_postpull_rcsum(skb, skb->data, len);
1884 	return skb->data += len;
1885 }
1886 
1887 EXPORT_SYMBOL_GPL(skb_pull_rcsum);
1888 
1889 /**
1890  *	skb_segment - Perform protocol segmentation on skb.
1891  *	@skb: buffer to segment
1892  *	@features: features for the output path (see dev->features)
1893  *
1894  *	This function performs segmentation on the given skb.  It returns
1895  *	the segment at the given position.  It returns NULL if there are
1896  *	no more segments to generate, or when an error is encountered.
1897  */
1898 struct sk_buff *skb_segment(struct sk_buff *skb, int features)
1899 {
1900 	struct sk_buff *segs = NULL;
1901 	struct sk_buff *tail = NULL;
1902 	unsigned int mss = skb_shinfo(skb)->gso_size;
1903 	unsigned int doffset = skb->data - skb_mac_header(skb);
1904 	unsigned int offset = doffset;
1905 	unsigned int headroom;
1906 	unsigned int len;
1907 	int sg = features & NETIF_F_SG;
1908 	int nfrags = skb_shinfo(skb)->nr_frags;
1909 	int err = -ENOMEM;
1910 	int i = 0;
1911 	int pos;
1912 
1913 	__skb_push(skb, doffset);
1914 	headroom = skb_headroom(skb);
1915 	pos = skb_headlen(skb);
1916 
1917 	do {
1918 		struct sk_buff *nskb;
1919 		skb_frag_t *frag;
1920 		int hsize;
1921 		int k;
1922 		int size;
1923 
1924 		len = skb->len - offset;
1925 		if (len > mss)
1926 			len = mss;
1927 
1928 		hsize = skb_headlen(skb) - offset;
1929 		if (hsize < 0)
1930 			hsize = 0;
1931 		if (hsize > len || !sg)
1932 			hsize = len;
1933 
1934 		nskb = alloc_skb(hsize + doffset + headroom, GFP_ATOMIC);
1935 		if (unlikely(!nskb))
1936 			goto err;
1937 
1938 		if (segs)
1939 			tail->next = nskb;
1940 		else
1941 			segs = nskb;
1942 		tail = nskb;
1943 
1944 		nskb->dev = skb->dev;
1945 		skb_copy_queue_mapping(nskb, skb);
1946 		nskb->priority = skb->priority;
1947 		nskb->protocol = skb->protocol;
1948 		nskb->dst = dst_clone(skb->dst);
1949 		memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
1950 		nskb->pkt_type = skb->pkt_type;
1951 		nskb->mac_len = skb->mac_len;
1952 
1953 		skb_reserve(nskb, headroom);
1954 		skb_reset_mac_header(nskb);
1955 		skb_set_network_header(nskb, skb->mac_len);
1956 		nskb->transport_header = (nskb->network_header +
1957 					  skb_network_header_len(skb));
1958 		skb_copy_from_linear_data(skb, skb_put(nskb, doffset),
1959 					  doffset);
1960 		if (!sg) {
1961 			nskb->csum = skb_copy_and_csum_bits(skb, offset,
1962 							    skb_put(nskb, len),
1963 							    len, 0);
1964 			continue;
1965 		}
1966 
1967 		frag = skb_shinfo(nskb)->frags;
1968 		k = 0;
1969 
1970 		nskb->ip_summed = CHECKSUM_PARTIAL;
1971 		nskb->csum = skb->csum;
1972 		skb_copy_from_linear_data_offset(skb, offset,
1973 						 skb_put(nskb, hsize), hsize);
1974 
1975 		while (pos < offset + len) {
1976 			BUG_ON(i >= nfrags);
1977 
1978 			*frag = skb_shinfo(skb)->frags[i];
1979 			get_page(frag->page);
1980 			size = frag->size;
1981 
1982 			if (pos < offset) {
1983 				frag->page_offset += offset - pos;
1984 				frag->size -= offset - pos;
1985 			}
1986 
1987 			k++;
1988 
1989 			if (pos + size <= offset + len) {
1990 				i++;
1991 				pos += size;
1992 			} else {
1993 				frag->size -= pos + size - (offset + len);
1994 				break;
1995 			}
1996 
1997 			frag++;
1998 		}
1999 
2000 		skb_shinfo(nskb)->nr_frags = k;
2001 		nskb->data_len = len - hsize;
2002 		nskb->len += nskb->data_len;
2003 		nskb->truesize += nskb->data_len;
2004 	} while ((offset += len) < skb->len);
2005 
2006 	return segs;
2007 
2008 err:
2009 	while ((skb = segs)) {
2010 		segs = skb->next;
2011 		kfree_skb(skb);
2012 	}
2013 	return ERR_PTR(err);
2014 }
2015 
2016 EXPORT_SYMBOL_GPL(skb_segment);
2017 
2018 void __init skb_init(void)
2019 {
2020 	skbuff_head_cache = kmem_cache_create("skbuff_head_cache",
2021 					      sizeof(struct sk_buff),
2022 					      0,
2023 					      SLAB_HWCACHE_ALIGN|SLAB_PANIC,
2024 					      NULL);
2025 	skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
2026 						(2*sizeof(struct sk_buff)) +
2027 						sizeof(atomic_t),
2028 						0,
2029 						SLAB_HWCACHE_ALIGN|SLAB_PANIC,
2030 						NULL);
2031 }
2032 
2033 /**
2034  *	skb_to_sgvec - Fill a scatter-gather list from a socket buffer
2035  *	@skb: Socket buffer containing the buffers to be mapped
2036  *	@sg: The scatter-gather list to map into
2037  *	@offset: The offset into the buffer's contents to start mapping
2038  *	@len: Length of buffer space to be mapped
2039  *
2040  *	Fill the specified scatter-gather list with mappings/pointers into a
2041  *	region of the buffer space attached to a socket buffer.
2042  */
2043 int
2044 skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
2045 {
2046 	int start = skb_headlen(skb);
2047 	int i, copy = start - offset;
2048 	int elt = 0;
2049 
2050 	if (copy > 0) {
2051 		if (copy > len)
2052 			copy = len;
2053 		sg[elt].page = virt_to_page(skb->data + offset);
2054 		sg[elt].offset = (unsigned long)(skb->data + offset) % PAGE_SIZE;
2055 		sg[elt].length = copy;
2056 		elt++;
2057 		if ((len -= copy) == 0)
2058 			return elt;
2059 		offset += copy;
2060 	}
2061 
2062 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2063 		int end;
2064 
2065 		BUG_TRAP(start <= offset + len);
2066 
2067 		end = start + skb_shinfo(skb)->frags[i].size;
2068 		if ((copy = end - offset) > 0) {
2069 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2070 
2071 			if (copy > len)
2072 				copy = len;
2073 			sg[elt].page = frag->page;
2074 			sg[elt].offset = frag->page_offset+offset-start;
2075 			sg[elt].length = copy;
2076 			elt++;
2077 			if (!(len -= copy))
2078 				return elt;
2079 			offset += copy;
2080 		}
2081 		start = end;
2082 	}
2083 
2084 	if (skb_shinfo(skb)->frag_list) {
2085 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
2086 
2087 		for (; list; list = list->next) {
2088 			int end;
2089 
2090 			BUG_TRAP(start <= offset + len);
2091 
2092 			end = start + list->len;
2093 			if ((copy = end - offset) > 0) {
2094 				if (copy > len)
2095 					copy = len;
2096 				elt += skb_to_sgvec(list, sg+elt, offset - start, copy);
2097 				if ((len -= copy) == 0)
2098 					return elt;
2099 				offset += copy;
2100 			}
2101 			start = end;
2102 		}
2103 	}
2104 	BUG_ON(len);
2105 	return elt;
2106 }
2107 
2108 /**
2109  *	skb_cow_data - Check that a socket buffer's data buffers are writable
2110  *	@skb: The socket buffer to check.
2111  *	@tailbits: Amount of trailing space to be added
2112  *	@trailer: Returned pointer to the skb where the @tailbits space begins
2113  *
2114  *	Make sure that the data buffers attached to a socket buffer are
2115  *	writable. If they are not, private copies are made of the data buffers
2116  *	and the socket buffer is set to use these instead.
2117  *
2118  *	If @tailbits is given, make sure that there is space to write @tailbits
2119  *	bytes of data beyond current end of socket buffer.  @trailer will be
2120  *	set to point to the skb in which this space begins.
2121  *
2122  *	The number of scatterlist elements required to completely map the
2123  *	COW'd and extended socket buffer will be returned.
2124  */
2125 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
2126 {
2127 	int copyflag;
2128 	int elt;
2129 	struct sk_buff *skb1, **skb_p;
2130 
2131 	/* If skb is cloned or its head is paged, reallocate
2132 	 * head pulling out all the pages (pages are considered not writable
2133 	 * at the moment even if they are anonymous).
2134 	 */
2135 	if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
2136 	    __pskb_pull_tail(skb, skb_pagelen(skb)-skb_headlen(skb)) == NULL)
2137 		return -ENOMEM;
2138 
2139 	/* Easy case. Most of packets will go this way. */
2140 	if (!skb_shinfo(skb)->frag_list) {
2141 		/* A little of trouble, not enough of space for trailer.
2142 		 * This should not happen, when stack is tuned to generate
2143 		 * good frames. OK, on miss we reallocate and reserve even more
2144 		 * space, 128 bytes is fair. */
2145 
2146 		if (skb_tailroom(skb) < tailbits &&
2147 		    pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
2148 			return -ENOMEM;
2149 
2150 		/* Voila! */
2151 		*trailer = skb;
2152 		return 1;
2153 	}
2154 
2155 	/* Misery. We are in troubles, going to mincer fragments... */
2156 
2157 	elt = 1;
2158 	skb_p = &skb_shinfo(skb)->frag_list;
2159 	copyflag = 0;
2160 
2161 	while ((skb1 = *skb_p) != NULL) {
2162 		int ntail = 0;
2163 
2164 		/* The fragment is partially pulled by someone,
2165 		 * this can happen on input. Copy it and everything
2166 		 * after it. */
2167 
2168 		if (skb_shared(skb1))
2169 			copyflag = 1;
2170 
2171 		/* If the skb is the last, worry about trailer. */
2172 
2173 		if (skb1->next == NULL && tailbits) {
2174 			if (skb_shinfo(skb1)->nr_frags ||
2175 			    skb_shinfo(skb1)->frag_list ||
2176 			    skb_tailroom(skb1) < tailbits)
2177 				ntail = tailbits + 128;
2178 		}
2179 
2180 		if (copyflag ||
2181 		    skb_cloned(skb1) ||
2182 		    ntail ||
2183 		    skb_shinfo(skb1)->nr_frags ||
2184 		    skb_shinfo(skb1)->frag_list) {
2185 			struct sk_buff *skb2;
2186 
2187 			/* Fuck, we are miserable poor guys... */
2188 			if (ntail == 0)
2189 				skb2 = skb_copy(skb1, GFP_ATOMIC);
2190 			else
2191 				skb2 = skb_copy_expand(skb1,
2192 						       skb_headroom(skb1),
2193 						       ntail,
2194 						       GFP_ATOMIC);
2195 			if (unlikely(skb2 == NULL))
2196 				return -ENOMEM;
2197 
2198 			if (skb1->sk)
2199 				skb_set_owner_w(skb2, skb1->sk);
2200 
2201 			/* Looking around. Are we still alive?
2202 			 * OK, link new skb, drop old one */
2203 
2204 			skb2->next = skb1->next;
2205 			*skb_p = skb2;
2206 			kfree_skb(skb1);
2207 			skb1 = skb2;
2208 		}
2209 		elt++;
2210 		*trailer = skb1;
2211 		skb_p = &skb1->next;
2212 	}
2213 
2214 	return elt;
2215 }
2216 
2217 EXPORT_SYMBOL(___pskb_trim);
2218 EXPORT_SYMBOL(__kfree_skb);
2219 EXPORT_SYMBOL(kfree_skb);
2220 EXPORT_SYMBOL(__pskb_pull_tail);
2221 EXPORT_SYMBOL(__alloc_skb);
2222 EXPORT_SYMBOL(__netdev_alloc_skb);
2223 EXPORT_SYMBOL(pskb_copy);
2224 EXPORT_SYMBOL(pskb_expand_head);
2225 EXPORT_SYMBOL(skb_checksum);
2226 EXPORT_SYMBOL(skb_clone);
2227 EXPORT_SYMBOL(skb_copy);
2228 EXPORT_SYMBOL(skb_copy_and_csum_bits);
2229 EXPORT_SYMBOL(skb_copy_and_csum_dev);
2230 EXPORT_SYMBOL(skb_copy_bits);
2231 EXPORT_SYMBOL(skb_copy_expand);
2232 EXPORT_SYMBOL(skb_over_panic);
2233 EXPORT_SYMBOL(skb_pad);
2234 EXPORT_SYMBOL(skb_realloc_headroom);
2235 EXPORT_SYMBOL(skb_under_panic);
2236 EXPORT_SYMBOL(skb_dequeue);
2237 EXPORT_SYMBOL(skb_dequeue_tail);
2238 EXPORT_SYMBOL(skb_insert);
2239 EXPORT_SYMBOL(skb_queue_purge);
2240 EXPORT_SYMBOL(skb_queue_head);
2241 EXPORT_SYMBOL(skb_queue_tail);
2242 EXPORT_SYMBOL(skb_unlink);
2243 EXPORT_SYMBOL(skb_append);
2244 EXPORT_SYMBOL(skb_split);
2245 EXPORT_SYMBOL(skb_prepare_seq_read);
2246 EXPORT_SYMBOL(skb_seq_read);
2247 EXPORT_SYMBOL(skb_abort_seq_read);
2248 EXPORT_SYMBOL(skb_find_text);
2249 EXPORT_SYMBOL(skb_append_datato_frags);
2250 
2251 EXPORT_SYMBOL_GPL(skb_to_sgvec);
2252 EXPORT_SYMBOL_GPL(skb_cow_data);
2253