1 /* 2 * Routines having to do with the 'struct sk_buff' memory handlers. 3 * 4 * Authors: Alan Cox <iiitac@pyr.swan.ac.uk> 5 * Florian La Roche <rzsfl@rz.uni-sb.de> 6 * 7 * Version: $Id: skbuff.c,v 1.90 2001/11/07 05:56:19 davem Exp $ 8 * 9 * Fixes: 10 * Alan Cox : Fixed the worst of the load 11 * balancer bugs. 12 * Dave Platt : Interrupt stacking fix. 13 * Richard Kooijman : Timestamp fixes. 14 * Alan Cox : Changed buffer format. 15 * Alan Cox : destructor hook for AF_UNIX etc. 16 * Linus Torvalds : Better skb_clone. 17 * Alan Cox : Added skb_copy. 18 * Alan Cox : Added all the changed routines Linus 19 * only put in the headers 20 * Ray VanTassle : Fixed --skb->lock in free 21 * Alan Cox : skb_copy copy arp field 22 * Andi Kleen : slabified it. 23 * Robert Olsson : Removed skb_head_pool 24 * 25 * NOTE: 26 * The __skb_ routines should be called with interrupts 27 * disabled, or you better be *real* sure that the operation is atomic 28 * with respect to whatever list is being frobbed (e.g. via lock_sock() 29 * or via disabling bottom half handlers, etc). 30 * 31 * This program is free software; you can redistribute it and/or 32 * modify it under the terms of the GNU General Public License 33 * as published by the Free Software Foundation; either version 34 * 2 of the License, or (at your option) any later version. 35 */ 36 37 /* 38 * The functions in this file will not compile correctly with gcc 2.4.x 39 */ 40 41 #include <linux/module.h> 42 #include <linux/types.h> 43 #include <linux/kernel.h> 44 #include <linux/mm.h> 45 #include <linux/interrupt.h> 46 #include <linux/in.h> 47 #include <linux/inet.h> 48 #include <linux/slab.h> 49 #include <linux/netdevice.h> 50 #ifdef CONFIG_NET_CLS_ACT 51 #include <net/pkt_sched.h> 52 #endif 53 #include <linux/string.h> 54 #include <linux/skbuff.h> 55 #include <linux/cache.h> 56 #include <linux/rtnetlink.h> 57 #include <linux/init.h> 58 #include <linux/scatterlist.h> 59 60 #include <net/protocol.h> 61 #include <net/dst.h> 62 #include <net/sock.h> 63 #include <net/checksum.h> 64 #include <net/xfrm.h> 65 66 #include <asm/uaccess.h> 67 #include <asm/system.h> 68 69 #include "kmap_skb.h" 70 71 static struct kmem_cache *skbuff_head_cache __read_mostly; 72 static struct kmem_cache *skbuff_fclone_cache __read_mostly; 73 74 /* 75 * Keep out-of-line to prevent kernel bloat. 76 * __builtin_return_address is not used because it is not always 77 * reliable. 78 */ 79 80 /** 81 * skb_over_panic - private function 82 * @skb: buffer 83 * @sz: size 84 * @here: address 85 * 86 * Out of line support code for skb_put(). Not user callable. 87 */ 88 void skb_over_panic(struct sk_buff *skb, int sz, void *here) 89 { 90 printk(KERN_EMERG "skb_over_panic: text:%p len:%d put:%d head:%p " 91 "data:%p tail:%#lx end:%#lx dev:%s\n", 92 here, skb->len, sz, skb->head, skb->data, 93 (unsigned long)skb->tail, (unsigned long)skb->end, 94 skb->dev ? skb->dev->name : "<NULL>"); 95 BUG(); 96 } 97 98 /** 99 * skb_under_panic - private function 100 * @skb: buffer 101 * @sz: size 102 * @here: address 103 * 104 * Out of line support code for skb_push(). Not user callable. 105 */ 106 107 void skb_under_panic(struct sk_buff *skb, int sz, void *here) 108 { 109 printk(KERN_EMERG "skb_under_panic: text:%p len:%d put:%d head:%p " 110 "data:%p tail:%#lx end:%#lx dev:%s\n", 111 here, skb->len, sz, skb->head, skb->data, 112 (unsigned long)skb->tail, (unsigned long)skb->end, 113 skb->dev ? skb->dev->name : "<NULL>"); 114 BUG(); 115 } 116 117 void skb_truesize_bug(struct sk_buff *skb) 118 { 119 printk(KERN_ERR "SKB BUG: Invalid truesize (%u) " 120 "len=%u, sizeof(sk_buff)=%Zd\n", 121 skb->truesize, skb->len, sizeof(struct sk_buff)); 122 } 123 EXPORT_SYMBOL(skb_truesize_bug); 124 125 /* Allocate a new skbuff. We do this ourselves so we can fill in a few 126 * 'private' fields and also do memory statistics to find all the 127 * [BEEP] leaks. 128 * 129 */ 130 131 /** 132 * __alloc_skb - allocate a network buffer 133 * @size: size to allocate 134 * @gfp_mask: allocation mask 135 * @fclone: allocate from fclone cache instead of head cache 136 * and allocate a cloned (child) skb 137 * @node: numa node to allocate memory on 138 * 139 * Allocate a new &sk_buff. The returned buffer has no headroom and a 140 * tail room of size bytes. The object has a reference count of one. 141 * The return is the buffer. On a failure the return is %NULL. 142 * 143 * Buffers may only be allocated from interrupts using a @gfp_mask of 144 * %GFP_ATOMIC. 145 */ 146 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask, 147 int fclone, int node) 148 { 149 struct kmem_cache *cache; 150 struct skb_shared_info *shinfo; 151 struct sk_buff *skb; 152 u8 *data; 153 154 cache = fclone ? skbuff_fclone_cache : skbuff_head_cache; 155 156 /* Get the HEAD */ 157 skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node); 158 if (!skb) 159 goto out; 160 161 size = SKB_DATA_ALIGN(size); 162 data = kmalloc_node_track_caller(size + sizeof(struct skb_shared_info), 163 gfp_mask, node); 164 if (!data) 165 goto nodata; 166 167 /* 168 * See comment in sk_buff definition, just before the 'tail' member 169 */ 170 memset(skb, 0, offsetof(struct sk_buff, tail)); 171 skb->truesize = size + sizeof(struct sk_buff); 172 atomic_set(&skb->users, 1); 173 skb->head = data; 174 skb->data = data; 175 skb_reset_tail_pointer(skb); 176 skb->end = skb->tail + size; 177 /* make sure we initialize shinfo sequentially */ 178 shinfo = skb_shinfo(skb); 179 atomic_set(&shinfo->dataref, 1); 180 shinfo->nr_frags = 0; 181 shinfo->gso_size = 0; 182 shinfo->gso_segs = 0; 183 shinfo->gso_type = 0; 184 shinfo->ip6_frag_id = 0; 185 shinfo->frag_list = NULL; 186 187 if (fclone) { 188 struct sk_buff *child = skb + 1; 189 atomic_t *fclone_ref = (atomic_t *) (child + 1); 190 191 skb->fclone = SKB_FCLONE_ORIG; 192 atomic_set(fclone_ref, 1); 193 194 child->fclone = SKB_FCLONE_UNAVAILABLE; 195 } 196 out: 197 return skb; 198 nodata: 199 kmem_cache_free(cache, skb); 200 skb = NULL; 201 goto out; 202 } 203 204 /** 205 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device 206 * @dev: network device to receive on 207 * @length: length to allocate 208 * @gfp_mask: get_free_pages mask, passed to alloc_skb 209 * 210 * Allocate a new &sk_buff and assign it a usage count of one. The 211 * buffer has unspecified headroom built in. Users should allocate 212 * the headroom they think they need without accounting for the 213 * built in space. The built in space is used for optimisations. 214 * 215 * %NULL is returned if there is no free memory. 216 */ 217 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, 218 unsigned int length, gfp_t gfp_mask) 219 { 220 int node = dev->dev.parent ? dev_to_node(dev->dev.parent) : -1; 221 struct sk_buff *skb; 222 223 skb = __alloc_skb(length + NET_SKB_PAD, gfp_mask, 0, node); 224 if (likely(skb)) { 225 skb_reserve(skb, NET_SKB_PAD); 226 skb->dev = dev; 227 } 228 return skb; 229 } 230 231 static void skb_drop_list(struct sk_buff **listp) 232 { 233 struct sk_buff *list = *listp; 234 235 *listp = NULL; 236 237 do { 238 struct sk_buff *this = list; 239 list = list->next; 240 kfree_skb(this); 241 } while (list); 242 } 243 244 static inline void skb_drop_fraglist(struct sk_buff *skb) 245 { 246 skb_drop_list(&skb_shinfo(skb)->frag_list); 247 } 248 249 static void skb_clone_fraglist(struct sk_buff *skb) 250 { 251 struct sk_buff *list; 252 253 for (list = skb_shinfo(skb)->frag_list; list; list = list->next) 254 skb_get(list); 255 } 256 257 static void skb_release_data(struct sk_buff *skb) 258 { 259 if (!skb->cloned || 260 !atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1, 261 &skb_shinfo(skb)->dataref)) { 262 if (skb_shinfo(skb)->nr_frags) { 263 int i; 264 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 265 put_page(skb_shinfo(skb)->frags[i].page); 266 } 267 268 if (skb_shinfo(skb)->frag_list) 269 skb_drop_fraglist(skb); 270 271 kfree(skb->head); 272 } 273 } 274 275 /* 276 * Free an skbuff by memory without cleaning the state. 277 */ 278 void kfree_skbmem(struct sk_buff *skb) 279 { 280 struct sk_buff *other; 281 atomic_t *fclone_ref; 282 283 skb_release_data(skb); 284 switch (skb->fclone) { 285 case SKB_FCLONE_UNAVAILABLE: 286 kmem_cache_free(skbuff_head_cache, skb); 287 break; 288 289 case SKB_FCLONE_ORIG: 290 fclone_ref = (atomic_t *) (skb + 2); 291 if (atomic_dec_and_test(fclone_ref)) 292 kmem_cache_free(skbuff_fclone_cache, skb); 293 break; 294 295 case SKB_FCLONE_CLONE: 296 fclone_ref = (atomic_t *) (skb + 1); 297 other = skb - 1; 298 299 /* The clone portion is available for 300 * fast-cloning again. 301 */ 302 skb->fclone = SKB_FCLONE_UNAVAILABLE; 303 304 if (atomic_dec_and_test(fclone_ref)) 305 kmem_cache_free(skbuff_fclone_cache, other); 306 break; 307 } 308 } 309 310 /** 311 * __kfree_skb - private function 312 * @skb: buffer 313 * 314 * Free an sk_buff. Release anything attached to the buffer. 315 * Clean the state. This is an internal helper function. Users should 316 * always call kfree_skb 317 */ 318 319 void __kfree_skb(struct sk_buff *skb) 320 { 321 dst_release(skb->dst); 322 #ifdef CONFIG_XFRM 323 secpath_put(skb->sp); 324 #endif 325 if (skb->destructor) { 326 WARN_ON(in_irq()); 327 skb->destructor(skb); 328 } 329 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 330 nf_conntrack_put(skb->nfct); 331 nf_conntrack_put_reasm(skb->nfct_reasm); 332 #endif 333 #ifdef CONFIG_BRIDGE_NETFILTER 334 nf_bridge_put(skb->nf_bridge); 335 #endif 336 /* XXX: IS this still necessary? - JHS */ 337 #ifdef CONFIG_NET_SCHED 338 skb->tc_index = 0; 339 #ifdef CONFIG_NET_CLS_ACT 340 skb->tc_verd = 0; 341 #endif 342 #endif 343 344 kfree_skbmem(skb); 345 } 346 347 /** 348 * kfree_skb - free an sk_buff 349 * @skb: buffer to free 350 * 351 * Drop a reference to the buffer and free it if the usage count has 352 * hit zero. 353 */ 354 void kfree_skb(struct sk_buff *skb) 355 { 356 if (unlikely(!skb)) 357 return; 358 if (likely(atomic_read(&skb->users) == 1)) 359 smp_rmb(); 360 else if (likely(!atomic_dec_and_test(&skb->users))) 361 return; 362 __kfree_skb(skb); 363 } 364 365 /** 366 * skb_clone - duplicate an sk_buff 367 * @skb: buffer to clone 368 * @gfp_mask: allocation priority 369 * 370 * Duplicate an &sk_buff. The new one is not owned by a socket. Both 371 * copies share the same packet data but not structure. The new 372 * buffer has a reference count of 1. If the allocation fails the 373 * function returns %NULL otherwise the new buffer is returned. 374 * 375 * If this function is called from an interrupt gfp_mask() must be 376 * %GFP_ATOMIC. 377 */ 378 379 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask) 380 { 381 struct sk_buff *n; 382 383 n = skb + 1; 384 if (skb->fclone == SKB_FCLONE_ORIG && 385 n->fclone == SKB_FCLONE_UNAVAILABLE) { 386 atomic_t *fclone_ref = (atomic_t *) (n + 1); 387 n->fclone = SKB_FCLONE_CLONE; 388 atomic_inc(fclone_ref); 389 } else { 390 n = kmem_cache_alloc(skbuff_head_cache, gfp_mask); 391 if (!n) 392 return NULL; 393 n->fclone = SKB_FCLONE_UNAVAILABLE; 394 } 395 396 #define C(x) n->x = skb->x 397 398 n->next = n->prev = NULL; 399 n->sk = NULL; 400 C(tstamp); 401 C(dev); 402 C(transport_header); 403 C(network_header); 404 C(mac_header); 405 C(dst); 406 dst_clone(skb->dst); 407 C(sp); 408 #ifdef CONFIG_INET 409 secpath_get(skb->sp); 410 #endif 411 memcpy(n->cb, skb->cb, sizeof(skb->cb)); 412 C(len); 413 C(data_len); 414 C(mac_len); 415 C(csum); 416 C(local_df); 417 n->cloned = 1; 418 n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len; 419 n->nohdr = 0; 420 C(pkt_type); 421 C(ip_summed); 422 skb_copy_queue_mapping(n, skb); 423 C(priority); 424 #if defined(CONFIG_IP_VS) || defined(CONFIG_IP_VS_MODULE) 425 C(ipvs_property); 426 #endif 427 C(protocol); 428 n->destructor = NULL; 429 C(mark); 430 __nf_copy(n, skb); 431 #if defined(CONFIG_NETFILTER_XT_TARGET_TRACE) || \ 432 defined(CONFIG_NETFILTER_XT_TARGET_TRACE_MODULE) 433 C(nf_trace); 434 #endif 435 #ifdef CONFIG_NET_SCHED 436 C(tc_index); 437 #ifdef CONFIG_NET_CLS_ACT 438 n->tc_verd = SET_TC_VERD(skb->tc_verd,0); 439 n->tc_verd = CLR_TC_OK2MUNGE(n->tc_verd); 440 n->tc_verd = CLR_TC_MUNGED(n->tc_verd); 441 C(iif); 442 #endif 443 #endif 444 skb_copy_secmark(n, skb); 445 C(truesize); 446 atomic_set(&n->users, 1); 447 C(head); 448 C(data); 449 C(tail); 450 C(end); 451 452 atomic_inc(&(skb_shinfo(skb)->dataref)); 453 skb->cloned = 1; 454 455 return n; 456 } 457 458 static void copy_skb_header(struct sk_buff *new, const struct sk_buff *old) 459 { 460 #ifndef NET_SKBUFF_DATA_USES_OFFSET 461 /* 462 * Shift between the two data areas in bytes 463 */ 464 unsigned long offset = new->data - old->data; 465 #endif 466 new->sk = NULL; 467 new->dev = old->dev; 468 skb_copy_queue_mapping(new, old); 469 new->priority = old->priority; 470 new->protocol = old->protocol; 471 new->dst = dst_clone(old->dst); 472 #ifdef CONFIG_INET 473 new->sp = secpath_get(old->sp); 474 #endif 475 new->transport_header = old->transport_header; 476 new->network_header = old->network_header; 477 new->mac_header = old->mac_header; 478 #ifndef NET_SKBUFF_DATA_USES_OFFSET 479 /* {transport,network,mac}_header are relative to skb->head */ 480 new->transport_header += offset; 481 new->network_header += offset; 482 new->mac_header += offset; 483 #endif 484 memcpy(new->cb, old->cb, sizeof(old->cb)); 485 new->local_df = old->local_df; 486 new->fclone = SKB_FCLONE_UNAVAILABLE; 487 new->pkt_type = old->pkt_type; 488 new->tstamp = old->tstamp; 489 new->destructor = NULL; 490 new->mark = old->mark; 491 __nf_copy(new, old); 492 #if defined(CONFIG_NETFILTER_XT_TARGET_TRACE) || \ 493 defined(CONFIG_NETFILTER_XT_TARGET_TRACE_MODULE) 494 new->nf_trace = old->nf_trace; 495 #endif 496 #if defined(CONFIG_IP_VS) || defined(CONFIG_IP_VS_MODULE) 497 new->ipvs_property = old->ipvs_property; 498 #endif 499 #ifdef CONFIG_NET_SCHED 500 #ifdef CONFIG_NET_CLS_ACT 501 new->tc_verd = old->tc_verd; 502 #endif 503 new->tc_index = old->tc_index; 504 #endif 505 skb_copy_secmark(new, old); 506 atomic_set(&new->users, 1); 507 skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size; 508 skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs; 509 skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type; 510 } 511 512 /** 513 * skb_copy - create private copy of an sk_buff 514 * @skb: buffer to copy 515 * @gfp_mask: allocation priority 516 * 517 * Make a copy of both an &sk_buff and its data. This is used when the 518 * caller wishes to modify the data and needs a private copy of the 519 * data to alter. Returns %NULL on failure or the pointer to the buffer 520 * on success. The returned buffer has a reference count of 1. 521 * 522 * As by-product this function converts non-linear &sk_buff to linear 523 * one, so that &sk_buff becomes completely private and caller is allowed 524 * to modify all the data of returned buffer. This means that this 525 * function is not recommended for use in circumstances when only 526 * header is going to be modified. Use pskb_copy() instead. 527 */ 528 529 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask) 530 { 531 int headerlen = skb->data - skb->head; 532 /* 533 * Allocate the copy buffer 534 */ 535 struct sk_buff *n; 536 #ifdef NET_SKBUFF_DATA_USES_OFFSET 537 n = alloc_skb(skb->end + skb->data_len, gfp_mask); 538 #else 539 n = alloc_skb(skb->end - skb->head + skb->data_len, gfp_mask); 540 #endif 541 if (!n) 542 return NULL; 543 544 /* Set the data pointer */ 545 skb_reserve(n, headerlen); 546 /* Set the tail pointer and length */ 547 skb_put(n, skb->len); 548 n->csum = skb->csum; 549 n->ip_summed = skb->ip_summed; 550 551 if (skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len)) 552 BUG(); 553 554 copy_skb_header(n, skb); 555 return n; 556 } 557 558 559 /** 560 * pskb_copy - create copy of an sk_buff with private head. 561 * @skb: buffer to copy 562 * @gfp_mask: allocation priority 563 * 564 * Make a copy of both an &sk_buff and part of its data, located 565 * in header. Fragmented data remain shared. This is used when 566 * the caller wishes to modify only header of &sk_buff and needs 567 * private copy of the header to alter. Returns %NULL on failure 568 * or the pointer to the buffer on success. 569 * The returned buffer has a reference count of 1. 570 */ 571 572 struct sk_buff *pskb_copy(struct sk_buff *skb, gfp_t gfp_mask) 573 { 574 /* 575 * Allocate the copy buffer 576 */ 577 struct sk_buff *n; 578 #ifdef NET_SKBUFF_DATA_USES_OFFSET 579 n = alloc_skb(skb->end, gfp_mask); 580 #else 581 n = alloc_skb(skb->end - skb->head, gfp_mask); 582 #endif 583 if (!n) 584 goto out; 585 586 /* Set the data pointer */ 587 skb_reserve(n, skb->data - skb->head); 588 /* Set the tail pointer and length */ 589 skb_put(n, skb_headlen(skb)); 590 /* Copy the bytes */ 591 skb_copy_from_linear_data(skb, n->data, n->len); 592 n->csum = skb->csum; 593 n->ip_summed = skb->ip_summed; 594 595 n->truesize += skb->data_len; 596 n->data_len = skb->data_len; 597 n->len = skb->len; 598 599 if (skb_shinfo(skb)->nr_frags) { 600 int i; 601 602 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 603 skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i]; 604 get_page(skb_shinfo(n)->frags[i].page); 605 } 606 skb_shinfo(n)->nr_frags = i; 607 } 608 609 if (skb_shinfo(skb)->frag_list) { 610 skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list; 611 skb_clone_fraglist(n); 612 } 613 614 copy_skb_header(n, skb); 615 out: 616 return n; 617 } 618 619 /** 620 * pskb_expand_head - reallocate header of &sk_buff 621 * @skb: buffer to reallocate 622 * @nhead: room to add at head 623 * @ntail: room to add at tail 624 * @gfp_mask: allocation priority 625 * 626 * Expands (or creates identical copy, if &nhead and &ntail are zero) 627 * header of skb. &sk_buff itself is not changed. &sk_buff MUST have 628 * reference count of 1. Returns zero in the case of success or error, 629 * if expansion failed. In the last case, &sk_buff is not changed. 630 * 631 * All the pointers pointing into skb header may change and must be 632 * reloaded after call to this function. 633 */ 634 635 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, 636 gfp_t gfp_mask) 637 { 638 int i; 639 u8 *data; 640 #ifdef NET_SKBUFF_DATA_USES_OFFSET 641 int size = nhead + skb->end + ntail; 642 #else 643 int size = nhead + (skb->end - skb->head) + ntail; 644 #endif 645 long off; 646 647 if (skb_shared(skb)) 648 BUG(); 649 650 size = SKB_DATA_ALIGN(size); 651 652 data = kmalloc(size + sizeof(struct skb_shared_info), gfp_mask); 653 if (!data) 654 goto nodata; 655 656 /* Copy only real data... and, alas, header. This should be 657 * optimized for the cases when header is void. */ 658 #ifdef NET_SKBUFF_DATA_USES_OFFSET 659 memcpy(data + nhead, skb->head, skb->tail); 660 #else 661 memcpy(data + nhead, skb->head, skb->tail - skb->head); 662 #endif 663 memcpy(data + size, skb_end_pointer(skb), 664 sizeof(struct skb_shared_info)); 665 666 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 667 get_page(skb_shinfo(skb)->frags[i].page); 668 669 if (skb_shinfo(skb)->frag_list) 670 skb_clone_fraglist(skb); 671 672 skb_release_data(skb); 673 674 off = (data + nhead) - skb->head; 675 676 skb->head = data; 677 skb->data += off; 678 #ifdef NET_SKBUFF_DATA_USES_OFFSET 679 skb->end = size; 680 off = nhead; 681 #else 682 skb->end = skb->head + size; 683 #endif 684 /* {transport,network,mac}_header and tail are relative to skb->head */ 685 skb->tail += off; 686 skb->transport_header += off; 687 skb->network_header += off; 688 skb->mac_header += off; 689 skb->cloned = 0; 690 skb->hdr_len = 0; 691 skb->nohdr = 0; 692 atomic_set(&skb_shinfo(skb)->dataref, 1); 693 return 0; 694 695 nodata: 696 return -ENOMEM; 697 } 698 699 /* Make private copy of skb with writable head and some headroom */ 700 701 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom) 702 { 703 struct sk_buff *skb2; 704 int delta = headroom - skb_headroom(skb); 705 706 if (delta <= 0) 707 skb2 = pskb_copy(skb, GFP_ATOMIC); 708 else { 709 skb2 = skb_clone(skb, GFP_ATOMIC); 710 if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0, 711 GFP_ATOMIC)) { 712 kfree_skb(skb2); 713 skb2 = NULL; 714 } 715 } 716 return skb2; 717 } 718 719 720 /** 721 * skb_copy_expand - copy and expand sk_buff 722 * @skb: buffer to copy 723 * @newheadroom: new free bytes at head 724 * @newtailroom: new free bytes at tail 725 * @gfp_mask: allocation priority 726 * 727 * Make a copy of both an &sk_buff and its data and while doing so 728 * allocate additional space. 729 * 730 * This is used when the caller wishes to modify the data and needs a 731 * private copy of the data to alter as well as more space for new fields. 732 * Returns %NULL on failure or the pointer to the buffer 733 * on success. The returned buffer has a reference count of 1. 734 * 735 * You must pass %GFP_ATOMIC as the allocation priority if this function 736 * is called from an interrupt. 737 * 738 * BUG ALERT: ip_summed is not copied. Why does this work? Is it used 739 * only by netfilter in the cases when checksum is recalculated? --ANK 740 */ 741 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, 742 int newheadroom, int newtailroom, 743 gfp_t gfp_mask) 744 { 745 /* 746 * Allocate the copy buffer 747 */ 748 struct sk_buff *n = alloc_skb(newheadroom + skb->len + newtailroom, 749 gfp_mask); 750 int oldheadroom = skb_headroom(skb); 751 int head_copy_len, head_copy_off; 752 int off = 0; 753 754 if (!n) 755 return NULL; 756 757 skb_reserve(n, newheadroom); 758 759 /* Set the tail pointer and length */ 760 skb_put(n, skb->len); 761 762 head_copy_len = oldheadroom; 763 head_copy_off = 0; 764 if (newheadroom <= head_copy_len) 765 head_copy_len = newheadroom; 766 else 767 head_copy_off = newheadroom - head_copy_len; 768 769 /* Copy the linear header and data. */ 770 if (skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off, 771 skb->len + head_copy_len)) 772 BUG(); 773 774 copy_skb_header(n, skb); 775 776 #ifdef NET_SKBUFF_DATA_USES_OFFSET 777 off = newheadroom - oldheadroom; 778 #endif 779 n->transport_header += off; 780 n->network_header += off; 781 n->mac_header += off; 782 783 return n; 784 } 785 786 /** 787 * skb_pad - zero pad the tail of an skb 788 * @skb: buffer to pad 789 * @pad: space to pad 790 * 791 * Ensure that a buffer is followed by a padding area that is zero 792 * filled. Used by network drivers which may DMA or transfer data 793 * beyond the buffer end onto the wire. 794 * 795 * May return error in out of memory cases. The skb is freed on error. 796 */ 797 798 int skb_pad(struct sk_buff *skb, int pad) 799 { 800 int err; 801 int ntail; 802 803 /* If the skbuff is non linear tailroom is always zero.. */ 804 if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) { 805 memset(skb->data+skb->len, 0, pad); 806 return 0; 807 } 808 809 ntail = skb->data_len + pad - (skb->end - skb->tail); 810 if (likely(skb_cloned(skb) || ntail > 0)) { 811 err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC); 812 if (unlikely(err)) 813 goto free_skb; 814 } 815 816 /* FIXME: The use of this function with non-linear skb's really needs 817 * to be audited. 818 */ 819 err = skb_linearize(skb); 820 if (unlikely(err)) 821 goto free_skb; 822 823 memset(skb->data + skb->len, 0, pad); 824 return 0; 825 826 free_skb: 827 kfree_skb(skb); 828 return err; 829 } 830 831 /* Trims skb to length len. It can change skb pointers. 832 */ 833 834 int ___pskb_trim(struct sk_buff *skb, unsigned int len) 835 { 836 struct sk_buff **fragp; 837 struct sk_buff *frag; 838 int offset = skb_headlen(skb); 839 int nfrags = skb_shinfo(skb)->nr_frags; 840 int i; 841 int err; 842 843 if (skb_cloned(skb) && 844 unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))) 845 return err; 846 847 i = 0; 848 if (offset >= len) 849 goto drop_pages; 850 851 for (; i < nfrags; i++) { 852 int end = offset + skb_shinfo(skb)->frags[i].size; 853 854 if (end < len) { 855 offset = end; 856 continue; 857 } 858 859 skb_shinfo(skb)->frags[i++].size = len - offset; 860 861 drop_pages: 862 skb_shinfo(skb)->nr_frags = i; 863 864 for (; i < nfrags; i++) 865 put_page(skb_shinfo(skb)->frags[i].page); 866 867 if (skb_shinfo(skb)->frag_list) 868 skb_drop_fraglist(skb); 869 goto done; 870 } 871 872 for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp); 873 fragp = &frag->next) { 874 int end = offset + frag->len; 875 876 if (skb_shared(frag)) { 877 struct sk_buff *nfrag; 878 879 nfrag = skb_clone(frag, GFP_ATOMIC); 880 if (unlikely(!nfrag)) 881 return -ENOMEM; 882 883 nfrag->next = frag->next; 884 kfree_skb(frag); 885 frag = nfrag; 886 *fragp = frag; 887 } 888 889 if (end < len) { 890 offset = end; 891 continue; 892 } 893 894 if (end > len && 895 unlikely((err = pskb_trim(frag, len - offset)))) 896 return err; 897 898 if (frag->next) 899 skb_drop_list(&frag->next); 900 break; 901 } 902 903 done: 904 if (len > skb_headlen(skb)) { 905 skb->data_len -= skb->len - len; 906 skb->len = len; 907 } else { 908 skb->len = len; 909 skb->data_len = 0; 910 skb_set_tail_pointer(skb, len); 911 } 912 913 return 0; 914 } 915 916 /** 917 * __pskb_pull_tail - advance tail of skb header 918 * @skb: buffer to reallocate 919 * @delta: number of bytes to advance tail 920 * 921 * The function makes a sense only on a fragmented &sk_buff, 922 * it expands header moving its tail forward and copying necessary 923 * data from fragmented part. 924 * 925 * &sk_buff MUST have reference count of 1. 926 * 927 * Returns %NULL (and &sk_buff does not change) if pull failed 928 * or value of new tail of skb in the case of success. 929 * 930 * All the pointers pointing into skb header may change and must be 931 * reloaded after call to this function. 932 */ 933 934 /* Moves tail of skb head forward, copying data from fragmented part, 935 * when it is necessary. 936 * 1. It may fail due to malloc failure. 937 * 2. It may change skb pointers. 938 * 939 * It is pretty complicated. Luckily, it is called only in exceptional cases. 940 */ 941 unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta) 942 { 943 /* If skb has not enough free space at tail, get new one 944 * plus 128 bytes for future expansions. If we have enough 945 * room at tail, reallocate without expansion only if skb is cloned. 946 */ 947 int i, k, eat = (skb->tail + delta) - skb->end; 948 949 if (eat > 0 || skb_cloned(skb)) { 950 if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0, 951 GFP_ATOMIC)) 952 return NULL; 953 } 954 955 if (skb_copy_bits(skb, skb_headlen(skb), skb_tail_pointer(skb), delta)) 956 BUG(); 957 958 /* Optimization: no fragments, no reasons to preestimate 959 * size of pulled pages. Superb. 960 */ 961 if (!skb_shinfo(skb)->frag_list) 962 goto pull_pages; 963 964 /* Estimate size of pulled pages. */ 965 eat = delta; 966 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 967 if (skb_shinfo(skb)->frags[i].size >= eat) 968 goto pull_pages; 969 eat -= skb_shinfo(skb)->frags[i].size; 970 } 971 972 /* If we need update frag list, we are in troubles. 973 * Certainly, it possible to add an offset to skb data, 974 * but taking into account that pulling is expected to 975 * be very rare operation, it is worth to fight against 976 * further bloating skb head and crucify ourselves here instead. 977 * Pure masohism, indeed. 8)8) 978 */ 979 if (eat) { 980 struct sk_buff *list = skb_shinfo(skb)->frag_list; 981 struct sk_buff *clone = NULL; 982 struct sk_buff *insp = NULL; 983 984 do { 985 BUG_ON(!list); 986 987 if (list->len <= eat) { 988 /* Eaten as whole. */ 989 eat -= list->len; 990 list = list->next; 991 insp = list; 992 } else { 993 /* Eaten partially. */ 994 995 if (skb_shared(list)) { 996 /* Sucks! We need to fork list. :-( */ 997 clone = skb_clone(list, GFP_ATOMIC); 998 if (!clone) 999 return NULL; 1000 insp = list->next; 1001 list = clone; 1002 } else { 1003 /* This may be pulled without 1004 * problems. */ 1005 insp = list; 1006 } 1007 if (!pskb_pull(list, eat)) { 1008 if (clone) 1009 kfree_skb(clone); 1010 return NULL; 1011 } 1012 break; 1013 } 1014 } while (eat); 1015 1016 /* Free pulled out fragments. */ 1017 while ((list = skb_shinfo(skb)->frag_list) != insp) { 1018 skb_shinfo(skb)->frag_list = list->next; 1019 kfree_skb(list); 1020 } 1021 /* And insert new clone at head. */ 1022 if (clone) { 1023 clone->next = list; 1024 skb_shinfo(skb)->frag_list = clone; 1025 } 1026 } 1027 /* Success! Now we may commit changes to skb data. */ 1028 1029 pull_pages: 1030 eat = delta; 1031 k = 0; 1032 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1033 if (skb_shinfo(skb)->frags[i].size <= eat) { 1034 put_page(skb_shinfo(skb)->frags[i].page); 1035 eat -= skb_shinfo(skb)->frags[i].size; 1036 } else { 1037 skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i]; 1038 if (eat) { 1039 skb_shinfo(skb)->frags[k].page_offset += eat; 1040 skb_shinfo(skb)->frags[k].size -= eat; 1041 eat = 0; 1042 } 1043 k++; 1044 } 1045 } 1046 skb_shinfo(skb)->nr_frags = k; 1047 1048 skb->tail += delta; 1049 skb->data_len -= delta; 1050 1051 return skb_tail_pointer(skb); 1052 } 1053 1054 /* Copy some data bits from skb to kernel buffer. */ 1055 1056 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len) 1057 { 1058 int i, copy; 1059 int start = skb_headlen(skb); 1060 1061 if (offset > (int)skb->len - len) 1062 goto fault; 1063 1064 /* Copy header. */ 1065 if ((copy = start - offset) > 0) { 1066 if (copy > len) 1067 copy = len; 1068 skb_copy_from_linear_data_offset(skb, offset, to, copy); 1069 if ((len -= copy) == 0) 1070 return 0; 1071 offset += copy; 1072 to += copy; 1073 } 1074 1075 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1076 int end; 1077 1078 BUG_TRAP(start <= offset + len); 1079 1080 end = start + skb_shinfo(skb)->frags[i].size; 1081 if ((copy = end - offset) > 0) { 1082 u8 *vaddr; 1083 1084 if (copy > len) 1085 copy = len; 1086 1087 vaddr = kmap_skb_frag(&skb_shinfo(skb)->frags[i]); 1088 memcpy(to, 1089 vaddr + skb_shinfo(skb)->frags[i].page_offset+ 1090 offset - start, copy); 1091 kunmap_skb_frag(vaddr); 1092 1093 if ((len -= copy) == 0) 1094 return 0; 1095 offset += copy; 1096 to += copy; 1097 } 1098 start = end; 1099 } 1100 1101 if (skb_shinfo(skb)->frag_list) { 1102 struct sk_buff *list = skb_shinfo(skb)->frag_list; 1103 1104 for (; list; list = list->next) { 1105 int end; 1106 1107 BUG_TRAP(start <= offset + len); 1108 1109 end = start + list->len; 1110 if ((copy = end - offset) > 0) { 1111 if (copy > len) 1112 copy = len; 1113 if (skb_copy_bits(list, offset - start, 1114 to, copy)) 1115 goto fault; 1116 if ((len -= copy) == 0) 1117 return 0; 1118 offset += copy; 1119 to += copy; 1120 } 1121 start = end; 1122 } 1123 } 1124 if (!len) 1125 return 0; 1126 1127 fault: 1128 return -EFAULT; 1129 } 1130 1131 /** 1132 * skb_store_bits - store bits from kernel buffer to skb 1133 * @skb: destination buffer 1134 * @offset: offset in destination 1135 * @from: source buffer 1136 * @len: number of bytes to copy 1137 * 1138 * Copy the specified number of bytes from the source buffer to the 1139 * destination skb. This function handles all the messy bits of 1140 * traversing fragment lists and such. 1141 */ 1142 1143 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len) 1144 { 1145 int i, copy; 1146 int start = skb_headlen(skb); 1147 1148 if (offset > (int)skb->len - len) 1149 goto fault; 1150 1151 if ((copy = start - offset) > 0) { 1152 if (copy > len) 1153 copy = len; 1154 skb_copy_to_linear_data_offset(skb, offset, from, copy); 1155 if ((len -= copy) == 0) 1156 return 0; 1157 offset += copy; 1158 from += copy; 1159 } 1160 1161 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1162 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 1163 int end; 1164 1165 BUG_TRAP(start <= offset + len); 1166 1167 end = start + frag->size; 1168 if ((copy = end - offset) > 0) { 1169 u8 *vaddr; 1170 1171 if (copy > len) 1172 copy = len; 1173 1174 vaddr = kmap_skb_frag(frag); 1175 memcpy(vaddr + frag->page_offset + offset - start, 1176 from, copy); 1177 kunmap_skb_frag(vaddr); 1178 1179 if ((len -= copy) == 0) 1180 return 0; 1181 offset += copy; 1182 from += copy; 1183 } 1184 start = end; 1185 } 1186 1187 if (skb_shinfo(skb)->frag_list) { 1188 struct sk_buff *list = skb_shinfo(skb)->frag_list; 1189 1190 for (; list; list = list->next) { 1191 int end; 1192 1193 BUG_TRAP(start <= offset + len); 1194 1195 end = start + list->len; 1196 if ((copy = end - offset) > 0) { 1197 if (copy > len) 1198 copy = len; 1199 if (skb_store_bits(list, offset - start, 1200 from, copy)) 1201 goto fault; 1202 if ((len -= copy) == 0) 1203 return 0; 1204 offset += copy; 1205 from += copy; 1206 } 1207 start = end; 1208 } 1209 } 1210 if (!len) 1211 return 0; 1212 1213 fault: 1214 return -EFAULT; 1215 } 1216 1217 EXPORT_SYMBOL(skb_store_bits); 1218 1219 /* Checksum skb data. */ 1220 1221 __wsum skb_checksum(const struct sk_buff *skb, int offset, 1222 int len, __wsum csum) 1223 { 1224 int start = skb_headlen(skb); 1225 int i, copy = start - offset; 1226 int pos = 0; 1227 1228 /* Checksum header. */ 1229 if (copy > 0) { 1230 if (copy > len) 1231 copy = len; 1232 csum = csum_partial(skb->data + offset, copy, csum); 1233 if ((len -= copy) == 0) 1234 return csum; 1235 offset += copy; 1236 pos = copy; 1237 } 1238 1239 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1240 int end; 1241 1242 BUG_TRAP(start <= offset + len); 1243 1244 end = start + skb_shinfo(skb)->frags[i].size; 1245 if ((copy = end - offset) > 0) { 1246 __wsum csum2; 1247 u8 *vaddr; 1248 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 1249 1250 if (copy > len) 1251 copy = len; 1252 vaddr = kmap_skb_frag(frag); 1253 csum2 = csum_partial(vaddr + frag->page_offset + 1254 offset - start, copy, 0); 1255 kunmap_skb_frag(vaddr); 1256 csum = csum_block_add(csum, csum2, pos); 1257 if (!(len -= copy)) 1258 return csum; 1259 offset += copy; 1260 pos += copy; 1261 } 1262 start = end; 1263 } 1264 1265 if (skb_shinfo(skb)->frag_list) { 1266 struct sk_buff *list = skb_shinfo(skb)->frag_list; 1267 1268 for (; list; list = list->next) { 1269 int end; 1270 1271 BUG_TRAP(start <= offset + len); 1272 1273 end = start + list->len; 1274 if ((copy = end - offset) > 0) { 1275 __wsum csum2; 1276 if (copy > len) 1277 copy = len; 1278 csum2 = skb_checksum(list, offset - start, 1279 copy, 0); 1280 csum = csum_block_add(csum, csum2, pos); 1281 if ((len -= copy) == 0) 1282 return csum; 1283 offset += copy; 1284 pos += copy; 1285 } 1286 start = end; 1287 } 1288 } 1289 BUG_ON(len); 1290 1291 return csum; 1292 } 1293 1294 /* Both of above in one bottle. */ 1295 1296 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, 1297 u8 *to, int len, __wsum csum) 1298 { 1299 int start = skb_headlen(skb); 1300 int i, copy = start - offset; 1301 int pos = 0; 1302 1303 /* Copy header. */ 1304 if (copy > 0) { 1305 if (copy > len) 1306 copy = len; 1307 csum = csum_partial_copy_nocheck(skb->data + offset, to, 1308 copy, csum); 1309 if ((len -= copy) == 0) 1310 return csum; 1311 offset += copy; 1312 to += copy; 1313 pos = copy; 1314 } 1315 1316 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1317 int end; 1318 1319 BUG_TRAP(start <= offset + len); 1320 1321 end = start + skb_shinfo(skb)->frags[i].size; 1322 if ((copy = end - offset) > 0) { 1323 __wsum csum2; 1324 u8 *vaddr; 1325 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 1326 1327 if (copy > len) 1328 copy = len; 1329 vaddr = kmap_skb_frag(frag); 1330 csum2 = csum_partial_copy_nocheck(vaddr + 1331 frag->page_offset + 1332 offset - start, to, 1333 copy, 0); 1334 kunmap_skb_frag(vaddr); 1335 csum = csum_block_add(csum, csum2, pos); 1336 if (!(len -= copy)) 1337 return csum; 1338 offset += copy; 1339 to += copy; 1340 pos += copy; 1341 } 1342 start = end; 1343 } 1344 1345 if (skb_shinfo(skb)->frag_list) { 1346 struct sk_buff *list = skb_shinfo(skb)->frag_list; 1347 1348 for (; list; list = list->next) { 1349 __wsum csum2; 1350 int end; 1351 1352 BUG_TRAP(start <= offset + len); 1353 1354 end = start + list->len; 1355 if ((copy = end - offset) > 0) { 1356 if (copy > len) 1357 copy = len; 1358 csum2 = skb_copy_and_csum_bits(list, 1359 offset - start, 1360 to, copy, 0); 1361 csum = csum_block_add(csum, csum2, pos); 1362 if ((len -= copy) == 0) 1363 return csum; 1364 offset += copy; 1365 to += copy; 1366 pos += copy; 1367 } 1368 start = end; 1369 } 1370 } 1371 BUG_ON(len); 1372 return csum; 1373 } 1374 1375 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to) 1376 { 1377 __wsum csum; 1378 long csstart; 1379 1380 if (skb->ip_summed == CHECKSUM_PARTIAL) 1381 csstart = skb->csum_start - skb_headroom(skb); 1382 else 1383 csstart = skb_headlen(skb); 1384 1385 BUG_ON(csstart > skb_headlen(skb)); 1386 1387 skb_copy_from_linear_data(skb, to, csstart); 1388 1389 csum = 0; 1390 if (csstart != skb->len) 1391 csum = skb_copy_and_csum_bits(skb, csstart, to + csstart, 1392 skb->len - csstart, 0); 1393 1394 if (skb->ip_summed == CHECKSUM_PARTIAL) { 1395 long csstuff = csstart + skb->csum_offset; 1396 1397 *((__sum16 *)(to + csstuff)) = csum_fold(csum); 1398 } 1399 } 1400 1401 /** 1402 * skb_dequeue - remove from the head of the queue 1403 * @list: list to dequeue from 1404 * 1405 * Remove the head of the list. The list lock is taken so the function 1406 * may be used safely with other locking list functions. The head item is 1407 * returned or %NULL if the list is empty. 1408 */ 1409 1410 struct sk_buff *skb_dequeue(struct sk_buff_head *list) 1411 { 1412 unsigned long flags; 1413 struct sk_buff *result; 1414 1415 spin_lock_irqsave(&list->lock, flags); 1416 result = __skb_dequeue(list); 1417 spin_unlock_irqrestore(&list->lock, flags); 1418 return result; 1419 } 1420 1421 /** 1422 * skb_dequeue_tail - remove from the tail of the queue 1423 * @list: list to dequeue from 1424 * 1425 * Remove the tail of the list. The list lock is taken so the function 1426 * may be used safely with other locking list functions. The tail item is 1427 * returned or %NULL if the list is empty. 1428 */ 1429 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list) 1430 { 1431 unsigned long flags; 1432 struct sk_buff *result; 1433 1434 spin_lock_irqsave(&list->lock, flags); 1435 result = __skb_dequeue_tail(list); 1436 spin_unlock_irqrestore(&list->lock, flags); 1437 return result; 1438 } 1439 1440 /** 1441 * skb_queue_purge - empty a list 1442 * @list: list to empty 1443 * 1444 * Delete all buffers on an &sk_buff list. Each buffer is removed from 1445 * the list and one reference dropped. This function takes the list 1446 * lock and is atomic with respect to other list locking functions. 1447 */ 1448 void skb_queue_purge(struct sk_buff_head *list) 1449 { 1450 struct sk_buff *skb; 1451 while ((skb = skb_dequeue(list)) != NULL) 1452 kfree_skb(skb); 1453 } 1454 1455 /** 1456 * skb_queue_head - queue a buffer at the list head 1457 * @list: list to use 1458 * @newsk: buffer to queue 1459 * 1460 * Queue a buffer at the start of the list. This function takes the 1461 * list lock and can be used safely with other locking &sk_buff functions 1462 * safely. 1463 * 1464 * A buffer cannot be placed on two lists at the same time. 1465 */ 1466 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk) 1467 { 1468 unsigned long flags; 1469 1470 spin_lock_irqsave(&list->lock, flags); 1471 __skb_queue_head(list, newsk); 1472 spin_unlock_irqrestore(&list->lock, flags); 1473 } 1474 1475 /** 1476 * skb_queue_tail - queue a buffer at the list tail 1477 * @list: list to use 1478 * @newsk: buffer to queue 1479 * 1480 * Queue a buffer at the tail of the list. This function takes the 1481 * list lock and can be used safely with other locking &sk_buff functions 1482 * safely. 1483 * 1484 * A buffer cannot be placed on two lists at the same time. 1485 */ 1486 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk) 1487 { 1488 unsigned long flags; 1489 1490 spin_lock_irqsave(&list->lock, flags); 1491 __skb_queue_tail(list, newsk); 1492 spin_unlock_irqrestore(&list->lock, flags); 1493 } 1494 1495 /** 1496 * skb_unlink - remove a buffer from a list 1497 * @skb: buffer to remove 1498 * @list: list to use 1499 * 1500 * Remove a packet from a list. The list locks are taken and this 1501 * function is atomic with respect to other list locked calls 1502 * 1503 * You must know what list the SKB is on. 1504 */ 1505 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list) 1506 { 1507 unsigned long flags; 1508 1509 spin_lock_irqsave(&list->lock, flags); 1510 __skb_unlink(skb, list); 1511 spin_unlock_irqrestore(&list->lock, flags); 1512 } 1513 1514 /** 1515 * skb_append - append a buffer 1516 * @old: buffer to insert after 1517 * @newsk: buffer to insert 1518 * @list: list to use 1519 * 1520 * Place a packet after a given packet in a list. The list locks are taken 1521 * and this function is atomic with respect to other list locked calls. 1522 * A buffer cannot be placed on two lists at the same time. 1523 */ 1524 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list) 1525 { 1526 unsigned long flags; 1527 1528 spin_lock_irqsave(&list->lock, flags); 1529 __skb_append(old, newsk, list); 1530 spin_unlock_irqrestore(&list->lock, flags); 1531 } 1532 1533 1534 /** 1535 * skb_insert - insert a buffer 1536 * @old: buffer to insert before 1537 * @newsk: buffer to insert 1538 * @list: list to use 1539 * 1540 * Place a packet before a given packet in a list. The list locks are 1541 * taken and this function is atomic with respect to other list locked 1542 * calls. 1543 * 1544 * A buffer cannot be placed on two lists at the same time. 1545 */ 1546 void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list) 1547 { 1548 unsigned long flags; 1549 1550 spin_lock_irqsave(&list->lock, flags); 1551 __skb_insert(newsk, old->prev, old, list); 1552 spin_unlock_irqrestore(&list->lock, flags); 1553 } 1554 1555 static inline void skb_split_inside_header(struct sk_buff *skb, 1556 struct sk_buff* skb1, 1557 const u32 len, const int pos) 1558 { 1559 int i; 1560 1561 skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len), 1562 pos - len); 1563 /* And move data appendix as is. */ 1564 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 1565 skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i]; 1566 1567 skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags; 1568 skb_shinfo(skb)->nr_frags = 0; 1569 skb1->data_len = skb->data_len; 1570 skb1->len += skb1->data_len; 1571 skb->data_len = 0; 1572 skb->len = len; 1573 skb_set_tail_pointer(skb, len); 1574 } 1575 1576 static inline void skb_split_no_header(struct sk_buff *skb, 1577 struct sk_buff* skb1, 1578 const u32 len, int pos) 1579 { 1580 int i, k = 0; 1581 const int nfrags = skb_shinfo(skb)->nr_frags; 1582 1583 skb_shinfo(skb)->nr_frags = 0; 1584 skb1->len = skb1->data_len = skb->len - len; 1585 skb->len = len; 1586 skb->data_len = len - pos; 1587 1588 for (i = 0; i < nfrags; i++) { 1589 int size = skb_shinfo(skb)->frags[i].size; 1590 1591 if (pos + size > len) { 1592 skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i]; 1593 1594 if (pos < len) { 1595 /* Split frag. 1596 * We have two variants in this case: 1597 * 1. Move all the frag to the second 1598 * part, if it is possible. F.e. 1599 * this approach is mandatory for TUX, 1600 * where splitting is expensive. 1601 * 2. Split is accurately. We make this. 1602 */ 1603 get_page(skb_shinfo(skb)->frags[i].page); 1604 skb_shinfo(skb1)->frags[0].page_offset += len - pos; 1605 skb_shinfo(skb1)->frags[0].size -= len - pos; 1606 skb_shinfo(skb)->frags[i].size = len - pos; 1607 skb_shinfo(skb)->nr_frags++; 1608 } 1609 k++; 1610 } else 1611 skb_shinfo(skb)->nr_frags++; 1612 pos += size; 1613 } 1614 skb_shinfo(skb1)->nr_frags = k; 1615 } 1616 1617 /** 1618 * skb_split - Split fragmented skb to two parts at length len. 1619 * @skb: the buffer to split 1620 * @skb1: the buffer to receive the second part 1621 * @len: new length for skb 1622 */ 1623 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len) 1624 { 1625 int pos = skb_headlen(skb); 1626 1627 if (len < pos) /* Split line is inside header. */ 1628 skb_split_inside_header(skb, skb1, len, pos); 1629 else /* Second chunk has no header, nothing to copy. */ 1630 skb_split_no_header(skb, skb1, len, pos); 1631 } 1632 1633 /** 1634 * skb_prepare_seq_read - Prepare a sequential read of skb data 1635 * @skb: the buffer to read 1636 * @from: lower offset of data to be read 1637 * @to: upper offset of data to be read 1638 * @st: state variable 1639 * 1640 * Initializes the specified state variable. Must be called before 1641 * invoking skb_seq_read() for the first time. 1642 */ 1643 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from, 1644 unsigned int to, struct skb_seq_state *st) 1645 { 1646 st->lower_offset = from; 1647 st->upper_offset = to; 1648 st->root_skb = st->cur_skb = skb; 1649 st->frag_idx = st->stepped_offset = 0; 1650 st->frag_data = NULL; 1651 } 1652 1653 /** 1654 * skb_seq_read - Sequentially read skb data 1655 * @consumed: number of bytes consumed by the caller so far 1656 * @data: destination pointer for data to be returned 1657 * @st: state variable 1658 * 1659 * Reads a block of skb data at &consumed relative to the 1660 * lower offset specified to skb_prepare_seq_read(). Assigns 1661 * the head of the data block to &data and returns the length 1662 * of the block or 0 if the end of the skb data or the upper 1663 * offset has been reached. 1664 * 1665 * The caller is not required to consume all of the data 1666 * returned, i.e. &consumed is typically set to the number 1667 * of bytes already consumed and the next call to 1668 * skb_seq_read() will return the remaining part of the block. 1669 * 1670 * Note: The size of each block of data returned can be arbitary, 1671 * this limitation is the cost for zerocopy seqeuental 1672 * reads of potentially non linear data. 1673 * 1674 * Note: Fragment lists within fragments are not implemented 1675 * at the moment, state->root_skb could be replaced with 1676 * a stack for this purpose. 1677 */ 1678 unsigned int skb_seq_read(unsigned int consumed, const u8 **data, 1679 struct skb_seq_state *st) 1680 { 1681 unsigned int block_limit, abs_offset = consumed + st->lower_offset; 1682 skb_frag_t *frag; 1683 1684 if (unlikely(abs_offset >= st->upper_offset)) 1685 return 0; 1686 1687 next_skb: 1688 block_limit = skb_headlen(st->cur_skb); 1689 1690 if (abs_offset < block_limit) { 1691 *data = st->cur_skb->data + abs_offset; 1692 return block_limit - abs_offset; 1693 } 1694 1695 if (st->frag_idx == 0 && !st->frag_data) 1696 st->stepped_offset += skb_headlen(st->cur_skb); 1697 1698 while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) { 1699 frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx]; 1700 block_limit = frag->size + st->stepped_offset; 1701 1702 if (abs_offset < block_limit) { 1703 if (!st->frag_data) 1704 st->frag_data = kmap_skb_frag(frag); 1705 1706 *data = (u8 *) st->frag_data + frag->page_offset + 1707 (abs_offset - st->stepped_offset); 1708 1709 return block_limit - abs_offset; 1710 } 1711 1712 if (st->frag_data) { 1713 kunmap_skb_frag(st->frag_data); 1714 st->frag_data = NULL; 1715 } 1716 1717 st->frag_idx++; 1718 st->stepped_offset += frag->size; 1719 } 1720 1721 if (st->frag_data) { 1722 kunmap_skb_frag(st->frag_data); 1723 st->frag_data = NULL; 1724 } 1725 1726 if (st->cur_skb->next) { 1727 st->cur_skb = st->cur_skb->next; 1728 st->frag_idx = 0; 1729 goto next_skb; 1730 } else if (st->root_skb == st->cur_skb && 1731 skb_shinfo(st->root_skb)->frag_list) { 1732 st->cur_skb = skb_shinfo(st->root_skb)->frag_list; 1733 goto next_skb; 1734 } 1735 1736 return 0; 1737 } 1738 1739 /** 1740 * skb_abort_seq_read - Abort a sequential read of skb data 1741 * @st: state variable 1742 * 1743 * Must be called if skb_seq_read() was not called until it 1744 * returned 0. 1745 */ 1746 void skb_abort_seq_read(struct skb_seq_state *st) 1747 { 1748 if (st->frag_data) 1749 kunmap_skb_frag(st->frag_data); 1750 } 1751 1752 #define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb)) 1753 1754 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text, 1755 struct ts_config *conf, 1756 struct ts_state *state) 1757 { 1758 return skb_seq_read(offset, text, TS_SKB_CB(state)); 1759 } 1760 1761 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state) 1762 { 1763 skb_abort_seq_read(TS_SKB_CB(state)); 1764 } 1765 1766 /** 1767 * skb_find_text - Find a text pattern in skb data 1768 * @skb: the buffer to look in 1769 * @from: search offset 1770 * @to: search limit 1771 * @config: textsearch configuration 1772 * @state: uninitialized textsearch state variable 1773 * 1774 * Finds a pattern in the skb data according to the specified 1775 * textsearch configuration. Use textsearch_next() to retrieve 1776 * subsequent occurrences of the pattern. Returns the offset 1777 * to the first occurrence or UINT_MAX if no match was found. 1778 */ 1779 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from, 1780 unsigned int to, struct ts_config *config, 1781 struct ts_state *state) 1782 { 1783 unsigned int ret; 1784 1785 config->get_next_block = skb_ts_get_next_block; 1786 config->finish = skb_ts_finish; 1787 1788 skb_prepare_seq_read(skb, from, to, TS_SKB_CB(state)); 1789 1790 ret = textsearch_find(config, state); 1791 return (ret <= to - from ? ret : UINT_MAX); 1792 } 1793 1794 /** 1795 * skb_append_datato_frags: - append the user data to a skb 1796 * @sk: sock structure 1797 * @skb: skb structure to be appened with user data. 1798 * @getfrag: call back function to be used for getting the user data 1799 * @from: pointer to user message iov 1800 * @length: length of the iov message 1801 * 1802 * Description: This procedure append the user data in the fragment part 1803 * of the skb if any page alloc fails user this procedure returns -ENOMEM 1804 */ 1805 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb, 1806 int (*getfrag)(void *from, char *to, int offset, 1807 int len, int odd, struct sk_buff *skb), 1808 void *from, int length) 1809 { 1810 int frg_cnt = 0; 1811 skb_frag_t *frag = NULL; 1812 struct page *page = NULL; 1813 int copy, left; 1814 int offset = 0; 1815 int ret; 1816 1817 do { 1818 /* Return error if we don't have space for new frag */ 1819 frg_cnt = skb_shinfo(skb)->nr_frags; 1820 if (frg_cnt >= MAX_SKB_FRAGS) 1821 return -EFAULT; 1822 1823 /* allocate a new page for next frag */ 1824 page = alloc_pages(sk->sk_allocation, 0); 1825 1826 /* If alloc_page fails just return failure and caller will 1827 * free previous allocated pages by doing kfree_skb() 1828 */ 1829 if (page == NULL) 1830 return -ENOMEM; 1831 1832 /* initialize the next frag */ 1833 sk->sk_sndmsg_page = page; 1834 sk->sk_sndmsg_off = 0; 1835 skb_fill_page_desc(skb, frg_cnt, page, 0, 0); 1836 skb->truesize += PAGE_SIZE; 1837 atomic_add(PAGE_SIZE, &sk->sk_wmem_alloc); 1838 1839 /* get the new initialized frag */ 1840 frg_cnt = skb_shinfo(skb)->nr_frags; 1841 frag = &skb_shinfo(skb)->frags[frg_cnt - 1]; 1842 1843 /* copy the user data to page */ 1844 left = PAGE_SIZE - frag->page_offset; 1845 copy = (length > left)? left : length; 1846 1847 ret = getfrag(from, (page_address(frag->page) + 1848 frag->page_offset + frag->size), 1849 offset, copy, 0, skb); 1850 if (ret < 0) 1851 return -EFAULT; 1852 1853 /* copy was successful so update the size parameters */ 1854 sk->sk_sndmsg_off += copy; 1855 frag->size += copy; 1856 skb->len += copy; 1857 skb->data_len += copy; 1858 offset += copy; 1859 length -= copy; 1860 1861 } while (length > 0); 1862 1863 return 0; 1864 } 1865 1866 /** 1867 * skb_pull_rcsum - pull skb and update receive checksum 1868 * @skb: buffer to update 1869 * @start: start of data before pull 1870 * @len: length of data pulled 1871 * 1872 * This function performs an skb_pull on the packet and updates 1873 * update the CHECKSUM_COMPLETE checksum. It should be used on 1874 * receive path processing instead of skb_pull unless you know 1875 * that the checksum difference is zero (e.g., a valid IP header) 1876 * or you are setting ip_summed to CHECKSUM_NONE. 1877 */ 1878 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len) 1879 { 1880 BUG_ON(len > skb->len); 1881 skb->len -= len; 1882 BUG_ON(skb->len < skb->data_len); 1883 skb_postpull_rcsum(skb, skb->data, len); 1884 return skb->data += len; 1885 } 1886 1887 EXPORT_SYMBOL_GPL(skb_pull_rcsum); 1888 1889 /** 1890 * skb_segment - Perform protocol segmentation on skb. 1891 * @skb: buffer to segment 1892 * @features: features for the output path (see dev->features) 1893 * 1894 * This function performs segmentation on the given skb. It returns 1895 * the segment at the given position. It returns NULL if there are 1896 * no more segments to generate, or when an error is encountered. 1897 */ 1898 struct sk_buff *skb_segment(struct sk_buff *skb, int features) 1899 { 1900 struct sk_buff *segs = NULL; 1901 struct sk_buff *tail = NULL; 1902 unsigned int mss = skb_shinfo(skb)->gso_size; 1903 unsigned int doffset = skb->data - skb_mac_header(skb); 1904 unsigned int offset = doffset; 1905 unsigned int headroom; 1906 unsigned int len; 1907 int sg = features & NETIF_F_SG; 1908 int nfrags = skb_shinfo(skb)->nr_frags; 1909 int err = -ENOMEM; 1910 int i = 0; 1911 int pos; 1912 1913 __skb_push(skb, doffset); 1914 headroom = skb_headroom(skb); 1915 pos = skb_headlen(skb); 1916 1917 do { 1918 struct sk_buff *nskb; 1919 skb_frag_t *frag; 1920 int hsize; 1921 int k; 1922 int size; 1923 1924 len = skb->len - offset; 1925 if (len > mss) 1926 len = mss; 1927 1928 hsize = skb_headlen(skb) - offset; 1929 if (hsize < 0) 1930 hsize = 0; 1931 if (hsize > len || !sg) 1932 hsize = len; 1933 1934 nskb = alloc_skb(hsize + doffset + headroom, GFP_ATOMIC); 1935 if (unlikely(!nskb)) 1936 goto err; 1937 1938 if (segs) 1939 tail->next = nskb; 1940 else 1941 segs = nskb; 1942 tail = nskb; 1943 1944 nskb->dev = skb->dev; 1945 skb_copy_queue_mapping(nskb, skb); 1946 nskb->priority = skb->priority; 1947 nskb->protocol = skb->protocol; 1948 nskb->dst = dst_clone(skb->dst); 1949 memcpy(nskb->cb, skb->cb, sizeof(skb->cb)); 1950 nskb->pkt_type = skb->pkt_type; 1951 nskb->mac_len = skb->mac_len; 1952 1953 skb_reserve(nskb, headroom); 1954 skb_reset_mac_header(nskb); 1955 skb_set_network_header(nskb, skb->mac_len); 1956 nskb->transport_header = (nskb->network_header + 1957 skb_network_header_len(skb)); 1958 skb_copy_from_linear_data(skb, skb_put(nskb, doffset), 1959 doffset); 1960 if (!sg) { 1961 nskb->csum = skb_copy_and_csum_bits(skb, offset, 1962 skb_put(nskb, len), 1963 len, 0); 1964 continue; 1965 } 1966 1967 frag = skb_shinfo(nskb)->frags; 1968 k = 0; 1969 1970 nskb->ip_summed = CHECKSUM_PARTIAL; 1971 nskb->csum = skb->csum; 1972 skb_copy_from_linear_data_offset(skb, offset, 1973 skb_put(nskb, hsize), hsize); 1974 1975 while (pos < offset + len) { 1976 BUG_ON(i >= nfrags); 1977 1978 *frag = skb_shinfo(skb)->frags[i]; 1979 get_page(frag->page); 1980 size = frag->size; 1981 1982 if (pos < offset) { 1983 frag->page_offset += offset - pos; 1984 frag->size -= offset - pos; 1985 } 1986 1987 k++; 1988 1989 if (pos + size <= offset + len) { 1990 i++; 1991 pos += size; 1992 } else { 1993 frag->size -= pos + size - (offset + len); 1994 break; 1995 } 1996 1997 frag++; 1998 } 1999 2000 skb_shinfo(nskb)->nr_frags = k; 2001 nskb->data_len = len - hsize; 2002 nskb->len += nskb->data_len; 2003 nskb->truesize += nskb->data_len; 2004 } while ((offset += len) < skb->len); 2005 2006 return segs; 2007 2008 err: 2009 while ((skb = segs)) { 2010 segs = skb->next; 2011 kfree_skb(skb); 2012 } 2013 return ERR_PTR(err); 2014 } 2015 2016 EXPORT_SYMBOL_GPL(skb_segment); 2017 2018 void __init skb_init(void) 2019 { 2020 skbuff_head_cache = kmem_cache_create("skbuff_head_cache", 2021 sizeof(struct sk_buff), 2022 0, 2023 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 2024 NULL); 2025 skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache", 2026 (2*sizeof(struct sk_buff)) + 2027 sizeof(atomic_t), 2028 0, 2029 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 2030 NULL); 2031 } 2032 2033 /** 2034 * skb_to_sgvec - Fill a scatter-gather list from a socket buffer 2035 * @skb: Socket buffer containing the buffers to be mapped 2036 * @sg: The scatter-gather list to map into 2037 * @offset: The offset into the buffer's contents to start mapping 2038 * @len: Length of buffer space to be mapped 2039 * 2040 * Fill the specified scatter-gather list with mappings/pointers into a 2041 * region of the buffer space attached to a socket buffer. 2042 */ 2043 int 2044 skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len) 2045 { 2046 int start = skb_headlen(skb); 2047 int i, copy = start - offset; 2048 int elt = 0; 2049 2050 if (copy > 0) { 2051 if (copy > len) 2052 copy = len; 2053 sg[elt].page = virt_to_page(skb->data + offset); 2054 sg[elt].offset = (unsigned long)(skb->data + offset) % PAGE_SIZE; 2055 sg[elt].length = copy; 2056 elt++; 2057 if ((len -= copy) == 0) 2058 return elt; 2059 offset += copy; 2060 } 2061 2062 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2063 int end; 2064 2065 BUG_TRAP(start <= offset + len); 2066 2067 end = start + skb_shinfo(skb)->frags[i].size; 2068 if ((copy = end - offset) > 0) { 2069 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2070 2071 if (copy > len) 2072 copy = len; 2073 sg[elt].page = frag->page; 2074 sg[elt].offset = frag->page_offset+offset-start; 2075 sg[elt].length = copy; 2076 elt++; 2077 if (!(len -= copy)) 2078 return elt; 2079 offset += copy; 2080 } 2081 start = end; 2082 } 2083 2084 if (skb_shinfo(skb)->frag_list) { 2085 struct sk_buff *list = skb_shinfo(skb)->frag_list; 2086 2087 for (; list; list = list->next) { 2088 int end; 2089 2090 BUG_TRAP(start <= offset + len); 2091 2092 end = start + list->len; 2093 if ((copy = end - offset) > 0) { 2094 if (copy > len) 2095 copy = len; 2096 elt += skb_to_sgvec(list, sg+elt, offset - start, copy); 2097 if ((len -= copy) == 0) 2098 return elt; 2099 offset += copy; 2100 } 2101 start = end; 2102 } 2103 } 2104 BUG_ON(len); 2105 return elt; 2106 } 2107 2108 /** 2109 * skb_cow_data - Check that a socket buffer's data buffers are writable 2110 * @skb: The socket buffer to check. 2111 * @tailbits: Amount of trailing space to be added 2112 * @trailer: Returned pointer to the skb where the @tailbits space begins 2113 * 2114 * Make sure that the data buffers attached to a socket buffer are 2115 * writable. If they are not, private copies are made of the data buffers 2116 * and the socket buffer is set to use these instead. 2117 * 2118 * If @tailbits is given, make sure that there is space to write @tailbits 2119 * bytes of data beyond current end of socket buffer. @trailer will be 2120 * set to point to the skb in which this space begins. 2121 * 2122 * The number of scatterlist elements required to completely map the 2123 * COW'd and extended socket buffer will be returned. 2124 */ 2125 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer) 2126 { 2127 int copyflag; 2128 int elt; 2129 struct sk_buff *skb1, **skb_p; 2130 2131 /* If skb is cloned or its head is paged, reallocate 2132 * head pulling out all the pages (pages are considered not writable 2133 * at the moment even if they are anonymous). 2134 */ 2135 if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) && 2136 __pskb_pull_tail(skb, skb_pagelen(skb)-skb_headlen(skb)) == NULL) 2137 return -ENOMEM; 2138 2139 /* Easy case. Most of packets will go this way. */ 2140 if (!skb_shinfo(skb)->frag_list) { 2141 /* A little of trouble, not enough of space for trailer. 2142 * This should not happen, when stack is tuned to generate 2143 * good frames. OK, on miss we reallocate and reserve even more 2144 * space, 128 bytes is fair. */ 2145 2146 if (skb_tailroom(skb) < tailbits && 2147 pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC)) 2148 return -ENOMEM; 2149 2150 /* Voila! */ 2151 *trailer = skb; 2152 return 1; 2153 } 2154 2155 /* Misery. We are in troubles, going to mincer fragments... */ 2156 2157 elt = 1; 2158 skb_p = &skb_shinfo(skb)->frag_list; 2159 copyflag = 0; 2160 2161 while ((skb1 = *skb_p) != NULL) { 2162 int ntail = 0; 2163 2164 /* The fragment is partially pulled by someone, 2165 * this can happen on input. Copy it and everything 2166 * after it. */ 2167 2168 if (skb_shared(skb1)) 2169 copyflag = 1; 2170 2171 /* If the skb is the last, worry about trailer. */ 2172 2173 if (skb1->next == NULL && tailbits) { 2174 if (skb_shinfo(skb1)->nr_frags || 2175 skb_shinfo(skb1)->frag_list || 2176 skb_tailroom(skb1) < tailbits) 2177 ntail = tailbits + 128; 2178 } 2179 2180 if (copyflag || 2181 skb_cloned(skb1) || 2182 ntail || 2183 skb_shinfo(skb1)->nr_frags || 2184 skb_shinfo(skb1)->frag_list) { 2185 struct sk_buff *skb2; 2186 2187 /* Fuck, we are miserable poor guys... */ 2188 if (ntail == 0) 2189 skb2 = skb_copy(skb1, GFP_ATOMIC); 2190 else 2191 skb2 = skb_copy_expand(skb1, 2192 skb_headroom(skb1), 2193 ntail, 2194 GFP_ATOMIC); 2195 if (unlikely(skb2 == NULL)) 2196 return -ENOMEM; 2197 2198 if (skb1->sk) 2199 skb_set_owner_w(skb2, skb1->sk); 2200 2201 /* Looking around. Are we still alive? 2202 * OK, link new skb, drop old one */ 2203 2204 skb2->next = skb1->next; 2205 *skb_p = skb2; 2206 kfree_skb(skb1); 2207 skb1 = skb2; 2208 } 2209 elt++; 2210 *trailer = skb1; 2211 skb_p = &skb1->next; 2212 } 2213 2214 return elt; 2215 } 2216 2217 EXPORT_SYMBOL(___pskb_trim); 2218 EXPORT_SYMBOL(__kfree_skb); 2219 EXPORT_SYMBOL(kfree_skb); 2220 EXPORT_SYMBOL(__pskb_pull_tail); 2221 EXPORT_SYMBOL(__alloc_skb); 2222 EXPORT_SYMBOL(__netdev_alloc_skb); 2223 EXPORT_SYMBOL(pskb_copy); 2224 EXPORT_SYMBOL(pskb_expand_head); 2225 EXPORT_SYMBOL(skb_checksum); 2226 EXPORT_SYMBOL(skb_clone); 2227 EXPORT_SYMBOL(skb_copy); 2228 EXPORT_SYMBOL(skb_copy_and_csum_bits); 2229 EXPORT_SYMBOL(skb_copy_and_csum_dev); 2230 EXPORT_SYMBOL(skb_copy_bits); 2231 EXPORT_SYMBOL(skb_copy_expand); 2232 EXPORT_SYMBOL(skb_over_panic); 2233 EXPORT_SYMBOL(skb_pad); 2234 EXPORT_SYMBOL(skb_realloc_headroom); 2235 EXPORT_SYMBOL(skb_under_panic); 2236 EXPORT_SYMBOL(skb_dequeue); 2237 EXPORT_SYMBOL(skb_dequeue_tail); 2238 EXPORT_SYMBOL(skb_insert); 2239 EXPORT_SYMBOL(skb_queue_purge); 2240 EXPORT_SYMBOL(skb_queue_head); 2241 EXPORT_SYMBOL(skb_queue_tail); 2242 EXPORT_SYMBOL(skb_unlink); 2243 EXPORT_SYMBOL(skb_append); 2244 EXPORT_SYMBOL(skb_split); 2245 EXPORT_SYMBOL(skb_prepare_seq_read); 2246 EXPORT_SYMBOL(skb_seq_read); 2247 EXPORT_SYMBOL(skb_abort_seq_read); 2248 EXPORT_SYMBOL(skb_find_text); 2249 EXPORT_SYMBOL(skb_append_datato_frags); 2250 2251 EXPORT_SYMBOL_GPL(skb_to_sgvec); 2252 EXPORT_SYMBOL_GPL(skb_cow_data); 2253