1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Routines having to do with the 'struct sk_buff' memory handlers. 4 * 5 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk> 6 * Florian La Roche <rzsfl@rz.uni-sb.de> 7 * 8 * Fixes: 9 * Alan Cox : Fixed the worst of the load 10 * balancer bugs. 11 * Dave Platt : Interrupt stacking fix. 12 * Richard Kooijman : Timestamp fixes. 13 * Alan Cox : Changed buffer format. 14 * Alan Cox : destructor hook for AF_UNIX etc. 15 * Linus Torvalds : Better skb_clone. 16 * Alan Cox : Added skb_copy. 17 * Alan Cox : Added all the changed routines Linus 18 * only put in the headers 19 * Ray VanTassle : Fixed --skb->lock in free 20 * Alan Cox : skb_copy copy arp field 21 * Andi Kleen : slabified it. 22 * Robert Olsson : Removed skb_head_pool 23 * 24 * NOTE: 25 * The __skb_ routines should be called with interrupts 26 * disabled, or you better be *real* sure that the operation is atomic 27 * with respect to whatever list is being frobbed (e.g. via lock_sock() 28 * or via disabling bottom half handlers, etc). 29 */ 30 31 /* 32 * The functions in this file will not compile correctly with gcc 2.4.x 33 */ 34 35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 36 37 #include <linux/module.h> 38 #include <linux/types.h> 39 #include <linux/kernel.h> 40 #include <linux/mm.h> 41 #include <linux/interrupt.h> 42 #include <linux/in.h> 43 #include <linux/inet.h> 44 #include <linux/slab.h> 45 #include <linux/tcp.h> 46 #include <linux/udp.h> 47 #include <linux/sctp.h> 48 #include <linux/netdevice.h> 49 #ifdef CONFIG_NET_CLS_ACT 50 #include <net/pkt_sched.h> 51 #endif 52 #include <linux/string.h> 53 #include <linux/skbuff.h> 54 #include <linux/splice.h> 55 #include <linux/cache.h> 56 #include <linux/rtnetlink.h> 57 #include <linux/init.h> 58 #include <linux/scatterlist.h> 59 #include <linux/errqueue.h> 60 #include <linux/prefetch.h> 61 #include <linux/bitfield.h> 62 #include <linux/if_vlan.h> 63 #include <linux/mpls.h> 64 #include <linux/kcov.h> 65 66 #include <net/protocol.h> 67 #include <net/dst.h> 68 #include <net/sock.h> 69 #include <net/checksum.h> 70 #include <net/gso.h> 71 #include <net/ip6_checksum.h> 72 #include <net/xfrm.h> 73 #include <net/mpls.h> 74 #include <net/mptcp.h> 75 #include <net/mctp.h> 76 #include <net/page_pool/helpers.h> 77 #include <net/dropreason.h> 78 79 #include <linux/uaccess.h> 80 #include <trace/events/skb.h> 81 #include <linux/highmem.h> 82 #include <linux/capability.h> 83 #include <linux/user_namespace.h> 84 #include <linux/indirect_call_wrapper.h> 85 #include <linux/textsearch.h> 86 87 #include "dev.h" 88 #include "sock_destructor.h" 89 90 struct kmem_cache *skbuff_cache __ro_after_init; 91 static struct kmem_cache *skbuff_fclone_cache __ro_after_init; 92 #ifdef CONFIG_SKB_EXTENSIONS 93 static struct kmem_cache *skbuff_ext_cache __ro_after_init; 94 #endif 95 96 97 static struct kmem_cache *skb_small_head_cache __ro_after_init; 98 99 #define SKB_SMALL_HEAD_SIZE SKB_HEAD_ALIGN(MAX_TCP_HEADER) 100 101 /* We want SKB_SMALL_HEAD_CACHE_SIZE to not be a power of two. 102 * This should ensure that SKB_SMALL_HEAD_HEADROOM is a unique 103 * size, and we can differentiate heads from skb_small_head_cache 104 * vs system slabs by looking at their size (skb_end_offset()). 105 */ 106 #define SKB_SMALL_HEAD_CACHE_SIZE \ 107 (is_power_of_2(SKB_SMALL_HEAD_SIZE) ? \ 108 (SKB_SMALL_HEAD_SIZE + L1_CACHE_BYTES) : \ 109 SKB_SMALL_HEAD_SIZE) 110 111 #define SKB_SMALL_HEAD_HEADROOM \ 112 SKB_WITH_OVERHEAD(SKB_SMALL_HEAD_CACHE_SIZE) 113 114 int sysctl_max_skb_frags __read_mostly = MAX_SKB_FRAGS; 115 EXPORT_SYMBOL(sysctl_max_skb_frags); 116 117 #undef FN 118 #define FN(reason) [SKB_DROP_REASON_##reason] = #reason, 119 static const char * const drop_reasons[] = { 120 [SKB_CONSUMED] = "CONSUMED", 121 DEFINE_DROP_REASON(FN, FN) 122 }; 123 124 static const struct drop_reason_list drop_reasons_core = { 125 .reasons = drop_reasons, 126 .n_reasons = ARRAY_SIZE(drop_reasons), 127 }; 128 129 const struct drop_reason_list __rcu * 130 drop_reasons_by_subsys[SKB_DROP_REASON_SUBSYS_NUM] = { 131 [SKB_DROP_REASON_SUBSYS_CORE] = RCU_INITIALIZER(&drop_reasons_core), 132 }; 133 EXPORT_SYMBOL(drop_reasons_by_subsys); 134 135 /** 136 * drop_reasons_register_subsys - register another drop reason subsystem 137 * @subsys: the subsystem to register, must not be the core 138 * @list: the list of drop reasons within the subsystem, must point to 139 * a statically initialized list 140 */ 141 void drop_reasons_register_subsys(enum skb_drop_reason_subsys subsys, 142 const struct drop_reason_list *list) 143 { 144 if (WARN(subsys <= SKB_DROP_REASON_SUBSYS_CORE || 145 subsys >= ARRAY_SIZE(drop_reasons_by_subsys), 146 "invalid subsystem %d\n", subsys)) 147 return; 148 149 /* must point to statically allocated memory, so INIT is OK */ 150 RCU_INIT_POINTER(drop_reasons_by_subsys[subsys], list); 151 } 152 EXPORT_SYMBOL_GPL(drop_reasons_register_subsys); 153 154 /** 155 * drop_reasons_unregister_subsys - unregister a drop reason subsystem 156 * @subsys: the subsystem to remove, must not be the core 157 * 158 * Note: This will synchronize_rcu() to ensure no users when it returns. 159 */ 160 void drop_reasons_unregister_subsys(enum skb_drop_reason_subsys subsys) 161 { 162 if (WARN(subsys <= SKB_DROP_REASON_SUBSYS_CORE || 163 subsys >= ARRAY_SIZE(drop_reasons_by_subsys), 164 "invalid subsystem %d\n", subsys)) 165 return; 166 167 RCU_INIT_POINTER(drop_reasons_by_subsys[subsys], NULL); 168 169 synchronize_rcu(); 170 } 171 EXPORT_SYMBOL_GPL(drop_reasons_unregister_subsys); 172 173 /** 174 * skb_panic - private function for out-of-line support 175 * @skb: buffer 176 * @sz: size 177 * @addr: address 178 * @msg: skb_over_panic or skb_under_panic 179 * 180 * Out-of-line support for skb_put() and skb_push(). 181 * Called via the wrapper skb_over_panic() or skb_under_panic(). 182 * Keep out of line to prevent kernel bloat. 183 * __builtin_return_address is not used because it is not always reliable. 184 */ 185 static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr, 186 const char msg[]) 187 { 188 pr_emerg("%s: text:%px len:%d put:%d head:%px data:%px tail:%#lx end:%#lx dev:%s\n", 189 msg, addr, skb->len, sz, skb->head, skb->data, 190 (unsigned long)skb->tail, (unsigned long)skb->end, 191 skb->dev ? skb->dev->name : "<NULL>"); 192 BUG(); 193 } 194 195 static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr) 196 { 197 skb_panic(skb, sz, addr, __func__); 198 } 199 200 static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr) 201 { 202 skb_panic(skb, sz, addr, __func__); 203 } 204 205 #define NAPI_SKB_CACHE_SIZE 64 206 #define NAPI_SKB_CACHE_BULK 16 207 #define NAPI_SKB_CACHE_HALF (NAPI_SKB_CACHE_SIZE / 2) 208 209 #if PAGE_SIZE == SZ_4K 210 211 #define NAPI_HAS_SMALL_PAGE_FRAG 1 212 #define NAPI_SMALL_PAGE_PFMEMALLOC(nc) ((nc).pfmemalloc) 213 214 /* specialized page frag allocator using a single order 0 page 215 * and slicing it into 1K sized fragment. Constrained to systems 216 * with a very limited amount of 1K fragments fitting a single 217 * page - to avoid excessive truesize underestimation 218 */ 219 220 struct page_frag_1k { 221 void *va; 222 u16 offset; 223 bool pfmemalloc; 224 }; 225 226 static void *page_frag_alloc_1k(struct page_frag_1k *nc, gfp_t gfp) 227 { 228 struct page *page; 229 int offset; 230 231 offset = nc->offset - SZ_1K; 232 if (likely(offset >= 0)) 233 goto use_frag; 234 235 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0); 236 if (!page) 237 return NULL; 238 239 nc->va = page_address(page); 240 nc->pfmemalloc = page_is_pfmemalloc(page); 241 offset = PAGE_SIZE - SZ_1K; 242 page_ref_add(page, offset / SZ_1K); 243 244 use_frag: 245 nc->offset = offset; 246 return nc->va + offset; 247 } 248 #else 249 250 /* the small page is actually unused in this build; add dummy helpers 251 * to please the compiler and avoid later preprocessor's conditionals 252 */ 253 #define NAPI_HAS_SMALL_PAGE_FRAG 0 254 #define NAPI_SMALL_PAGE_PFMEMALLOC(nc) false 255 256 struct page_frag_1k { 257 }; 258 259 static void *page_frag_alloc_1k(struct page_frag_1k *nc, gfp_t gfp_mask) 260 { 261 return NULL; 262 } 263 264 #endif 265 266 struct napi_alloc_cache { 267 struct page_frag_cache page; 268 struct page_frag_1k page_small; 269 unsigned int skb_count; 270 void *skb_cache[NAPI_SKB_CACHE_SIZE]; 271 }; 272 273 static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache); 274 static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache); 275 276 /* Double check that napi_get_frags() allocates skbs with 277 * skb->head being backed by slab, not a page fragment. 278 * This is to make sure bug fixed in 3226b158e67c 279 * ("net: avoid 32 x truesize under-estimation for tiny skbs") 280 * does not accidentally come back. 281 */ 282 void napi_get_frags_check(struct napi_struct *napi) 283 { 284 struct sk_buff *skb; 285 286 local_bh_disable(); 287 skb = napi_get_frags(napi); 288 WARN_ON_ONCE(!NAPI_HAS_SMALL_PAGE_FRAG && skb && skb->head_frag); 289 napi_free_frags(napi); 290 local_bh_enable(); 291 } 292 293 void *__napi_alloc_frag_align(unsigned int fragsz, unsigned int align_mask) 294 { 295 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 296 297 fragsz = SKB_DATA_ALIGN(fragsz); 298 299 return page_frag_alloc_align(&nc->page, fragsz, GFP_ATOMIC, align_mask); 300 } 301 EXPORT_SYMBOL(__napi_alloc_frag_align); 302 303 void *__netdev_alloc_frag_align(unsigned int fragsz, unsigned int align_mask) 304 { 305 void *data; 306 307 fragsz = SKB_DATA_ALIGN(fragsz); 308 if (in_hardirq() || irqs_disabled()) { 309 struct page_frag_cache *nc = this_cpu_ptr(&netdev_alloc_cache); 310 311 data = page_frag_alloc_align(nc, fragsz, GFP_ATOMIC, align_mask); 312 } else { 313 struct napi_alloc_cache *nc; 314 315 local_bh_disable(); 316 nc = this_cpu_ptr(&napi_alloc_cache); 317 data = page_frag_alloc_align(&nc->page, fragsz, GFP_ATOMIC, align_mask); 318 local_bh_enable(); 319 } 320 return data; 321 } 322 EXPORT_SYMBOL(__netdev_alloc_frag_align); 323 324 static struct sk_buff *napi_skb_cache_get(void) 325 { 326 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 327 struct sk_buff *skb; 328 329 if (unlikely(!nc->skb_count)) { 330 nc->skb_count = kmem_cache_alloc_bulk(skbuff_cache, 331 GFP_ATOMIC, 332 NAPI_SKB_CACHE_BULK, 333 nc->skb_cache); 334 if (unlikely(!nc->skb_count)) 335 return NULL; 336 } 337 338 skb = nc->skb_cache[--nc->skb_count]; 339 kasan_unpoison_object_data(skbuff_cache, skb); 340 341 return skb; 342 } 343 344 static inline void __finalize_skb_around(struct sk_buff *skb, void *data, 345 unsigned int size) 346 { 347 struct skb_shared_info *shinfo; 348 349 size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 350 351 /* Assumes caller memset cleared SKB */ 352 skb->truesize = SKB_TRUESIZE(size); 353 refcount_set(&skb->users, 1); 354 skb->head = data; 355 skb->data = data; 356 skb_reset_tail_pointer(skb); 357 skb_set_end_offset(skb, size); 358 skb->mac_header = (typeof(skb->mac_header))~0U; 359 skb->transport_header = (typeof(skb->transport_header))~0U; 360 skb->alloc_cpu = raw_smp_processor_id(); 361 /* make sure we initialize shinfo sequentially */ 362 shinfo = skb_shinfo(skb); 363 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref)); 364 atomic_set(&shinfo->dataref, 1); 365 366 skb_set_kcov_handle(skb, kcov_common_handle()); 367 } 368 369 static inline void *__slab_build_skb(struct sk_buff *skb, void *data, 370 unsigned int *size) 371 { 372 void *resized; 373 374 /* Must find the allocation size (and grow it to match). */ 375 *size = ksize(data); 376 /* krealloc() will immediately return "data" when 377 * "ksize(data)" is requested: it is the existing upper 378 * bounds. As a result, GFP_ATOMIC will be ignored. Note 379 * that this "new" pointer needs to be passed back to the 380 * caller for use so the __alloc_size hinting will be 381 * tracked correctly. 382 */ 383 resized = krealloc(data, *size, GFP_ATOMIC); 384 WARN_ON_ONCE(resized != data); 385 return resized; 386 } 387 388 /* build_skb() variant which can operate on slab buffers. 389 * Note that this should be used sparingly as slab buffers 390 * cannot be combined efficiently by GRO! 391 */ 392 struct sk_buff *slab_build_skb(void *data) 393 { 394 struct sk_buff *skb; 395 unsigned int size; 396 397 skb = kmem_cache_alloc(skbuff_cache, GFP_ATOMIC); 398 if (unlikely(!skb)) 399 return NULL; 400 401 memset(skb, 0, offsetof(struct sk_buff, tail)); 402 data = __slab_build_skb(skb, data, &size); 403 __finalize_skb_around(skb, data, size); 404 405 return skb; 406 } 407 EXPORT_SYMBOL(slab_build_skb); 408 409 /* Caller must provide SKB that is memset cleared */ 410 static void __build_skb_around(struct sk_buff *skb, void *data, 411 unsigned int frag_size) 412 { 413 unsigned int size = frag_size; 414 415 /* frag_size == 0 is considered deprecated now. Callers 416 * using slab buffer should use slab_build_skb() instead. 417 */ 418 if (WARN_ONCE(size == 0, "Use slab_build_skb() instead")) 419 data = __slab_build_skb(skb, data, &size); 420 421 __finalize_skb_around(skb, data, size); 422 } 423 424 /** 425 * __build_skb - build a network buffer 426 * @data: data buffer provided by caller 427 * @frag_size: size of data (must not be 0) 428 * 429 * Allocate a new &sk_buff. Caller provides space holding head and 430 * skb_shared_info. @data must have been allocated from the page 431 * allocator or vmalloc(). (A @frag_size of 0 to indicate a kmalloc() 432 * allocation is deprecated, and callers should use slab_build_skb() 433 * instead.) 434 * The return is the new skb buffer. 435 * On a failure the return is %NULL, and @data is not freed. 436 * Notes : 437 * Before IO, driver allocates only data buffer where NIC put incoming frame 438 * Driver should add room at head (NET_SKB_PAD) and 439 * MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info)) 440 * After IO, driver calls build_skb(), to allocate sk_buff and populate it 441 * before giving packet to stack. 442 * RX rings only contains data buffers, not full skbs. 443 */ 444 struct sk_buff *__build_skb(void *data, unsigned int frag_size) 445 { 446 struct sk_buff *skb; 447 448 skb = kmem_cache_alloc(skbuff_cache, GFP_ATOMIC); 449 if (unlikely(!skb)) 450 return NULL; 451 452 memset(skb, 0, offsetof(struct sk_buff, tail)); 453 __build_skb_around(skb, data, frag_size); 454 455 return skb; 456 } 457 458 /* build_skb() is wrapper over __build_skb(), that specifically 459 * takes care of skb->head and skb->pfmemalloc 460 */ 461 struct sk_buff *build_skb(void *data, unsigned int frag_size) 462 { 463 struct sk_buff *skb = __build_skb(data, frag_size); 464 465 if (likely(skb && frag_size)) { 466 skb->head_frag = 1; 467 skb_propagate_pfmemalloc(virt_to_head_page(data), skb); 468 } 469 return skb; 470 } 471 EXPORT_SYMBOL(build_skb); 472 473 /** 474 * build_skb_around - build a network buffer around provided skb 475 * @skb: sk_buff provide by caller, must be memset cleared 476 * @data: data buffer provided by caller 477 * @frag_size: size of data 478 */ 479 struct sk_buff *build_skb_around(struct sk_buff *skb, 480 void *data, unsigned int frag_size) 481 { 482 if (unlikely(!skb)) 483 return NULL; 484 485 __build_skb_around(skb, data, frag_size); 486 487 if (frag_size) { 488 skb->head_frag = 1; 489 skb_propagate_pfmemalloc(virt_to_head_page(data), skb); 490 } 491 return skb; 492 } 493 EXPORT_SYMBOL(build_skb_around); 494 495 /** 496 * __napi_build_skb - build a network buffer 497 * @data: data buffer provided by caller 498 * @frag_size: size of data 499 * 500 * Version of __build_skb() that uses NAPI percpu caches to obtain 501 * skbuff_head instead of inplace allocation. 502 * 503 * Returns a new &sk_buff on success, %NULL on allocation failure. 504 */ 505 static struct sk_buff *__napi_build_skb(void *data, unsigned int frag_size) 506 { 507 struct sk_buff *skb; 508 509 skb = napi_skb_cache_get(); 510 if (unlikely(!skb)) 511 return NULL; 512 513 memset(skb, 0, offsetof(struct sk_buff, tail)); 514 __build_skb_around(skb, data, frag_size); 515 516 return skb; 517 } 518 519 /** 520 * napi_build_skb - build a network buffer 521 * @data: data buffer provided by caller 522 * @frag_size: size of data 523 * 524 * Version of __napi_build_skb() that takes care of skb->head_frag 525 * and skb->pfmemalloc when the data is a page or page fragment. 526 * 527 * Returns a new &sk_buff on success, %NULL on allocation failure. 528 */ 529 struct sk_buff *napi_build_skb(void *data, unsigned int frag_size) 530 { 531 struct sk_buff *skb = __napi_build_skb(data, frag_size); 532 533 if (likely(skb) && frag_size) { 534 skb->head_frag = 1; 535 skb_propagate_pfmemalloc(virt_to_head_page(data), skb); 536 } 537 538 return skb; 539 } 540 EXPORT_SYMBOL(napi_build_skb); 541 542 /* 543 * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells 544 * the caller if emergency pfmemalloc reserves are being used. If it is and 545 * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves 546 * may be used. Otherwise, the packet data may be discarded until enough 547 * memory is free 548 */ 549 static void *kmalloc_reserve(unsigned int *size, gfp_t flags, int node, 550 bool *pfmemalloc) 551 { 552 bool ret_pfmemalloc = false; 553 unsigned int obj_size; 554 void *obj; 555 556 obj_size = SKB_HEAD_ALIGN(*size); 557 if (obj_size <= SKB_SMALL_HEAD_CACHE_SIZE && 558 !(flags & KMALLOC_NOT_NORMAL_BITS)) { 559 obj = kmem_cache_alloc_node(skb_small_head_cache, 560 flags | __GFP_NOMEMALLOC | __GFP_NOWARN, 561 node); 562 *size = SKB_SMALL_HEAD_CACHE_SIZE; 563 if (obj || !(gfp_pfmemalloc_allowed(flags))) 564 goto out; 565 /* Try again but now we are using pfmemalloc reserves */ 566 ret_pfmemalloc = true; 567 obj = kmem_cache_alloc_node(skb_small_head_cache, flags, node); 568 goto out; 569 } 570 *size = obj_size = kmalloc_size_roundup(obj_size); 571 /* 572 * Try a regular allocation, when that fails and we're not entitled 573 * to the reserves, fail. 574 */ 575 obj = kmalloc_node_track_caller(obj_size, 576 flags | __GFP_NOMEMALLOC | __GFP_NOWARN, 577 node); 578 if (obj || !(gfp_pfmemalloc_allowed(flags))) 579 goto out; 580 581 /* Try again but now we are using pfmemalloc reserves */ 582 ret_pfmemalloc = true; 583 obj = kmalloc_node_track_caller(obj_size, flags, node); 584 585 out: 586 if (pfmemalloc) 587 *pfmemalloc = ret_pfmemalloc; 588 589 return obj; 590 } 591 592 /* Allocate a new skbuff. We do this ourselves so we can fill in a few 593 * 'private' fields and also do memory statistics to find all the 594 * [BEEP] leaks. 595 * 596 */ 597 598 /** 599 * __alloc_skb - allocate a network buffer 600 * @size: size to allocate 601 * @gfp_mask: allocation mask 602 * @flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache 603 * instead of head cache and allocate a cloned (child) skb. 604 * If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for 605 * allocations in case the data is required for writeback 606 * @node: numa node to allocate memory on 607 * 608 * Allocate a new &sk_buff. The returned buffer has no headroom and a 609 * tail room of at least size bytes. The object has a reference count 610 * of one. The return is the buffer. On a failure the return is %NULL. 611 * 612 * Buffers may only be allocated from interrupts using a @gfp_mask of 613 * %GFP_ATOMIC. 614 */ 615 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask, 616 int flags, int node) 617 { 618 struct kmem_cache *cache; 619 struct sk_buff *skb; 620 bool pfmemalloc; 621 u8 *data; 622 623 cache = (flags & SKB_ALLOC_FCLONE) 624 ? skbuff_fclone_cache : skbuff_cache; 625 626 if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX)) 627 gfp_mask |= __GFP_MEMALLOC; 628 629 /* Get the HEAD */ 630 if ((flags & (SKB_ALLOC_FCLONE | SKB_ALLOC_NAPI)) == SKB_ALLOC_NAPI && 631 likely(node == NUMA_NO_NODE || node == numa_mem_id())) 632 skb = napi_skb_cache_get(); 633 else 634 skb = kmem_cache_alloc_node(cache, gfp_mask & ~GFP_DMA, node); 635 if (unlikely(!skb)) 636 return NULL; 637 prefetchw(skb); 638 639 /* We do our best to align skb_shared_info on a separate cache 640 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives 641 * aligned memory blocks, unless SLUB/SLAB debug is enabled. 642 * Both skb->head and skb_shared_info are cache line aligned. 643 */ 644 data = kmalloc_reserve(&size, gfp_mask, node, &pfmemalloc); 645 if (unlikely(!data)) 646 goto nodata; 647 /* kmalloc_size_roundup() might give us more room than requested. 648 * Put skb_shared_info exactly at the end of allocated zone, 649 * to allow max possible filling before reallocation. 650 */ 651 prefetchw(data + SKB_WITH_OVERHEAD(size)); 652 653 /* 654 * Only clear those fields we need to clear, not those that we will 655 * actually initialise below. Hence, don't put any more fields after 656 * the tail pointer in struct sk_buff! 657 */ 658 memset(skb, 0, offsetof(struct sk_buff, tail)); 659 __build_skb_around(skb, data, size); 660 skb->pfmemalloc = pfmemalloc; 661 662 if (flags & SKB_ALLOC_FCLONE) { 663 struct sk_buff_fclones *fclones; 664 665 fclones = container_of(skb, struct sk_buff_fclones, skb1); 666 667 skb->fclone = SKB_FCLONE_ORIG; 668 refcount_set(&fclones->fclone_ref, 1); 669 } 670 671 return skb; 672 673 nodata: 674 kmem_cache_free(cache, skb); 675 return NULL; 676 } 677 EXPORT_SYMBOL(__alloc_skb); 678 679 /** 680 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device 681 * @dev: network device to receive on 682 * @len: length to allocate 683 * @gfp_mask: get_free_pages mask, passed to alloc_skb 684 * 685 * Allocate a new &sk_buff and assign it a usage count of one. The 686 * buffer has NET_SKB_PAD headroom built in. Users should allocate 687 * the headroom they think they need without accounting for the 688 * built in space. The built in space is used for optimisations. 689 * 690 * %NULL is returned if there is no free memory. 691 */ 692 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len, 693 gfp_t gfp_mask) 694 { 695 struct page_frag_cache *nc; 696 struct sk_buff *skb; 697 bool pfmemalloc; 698 void *data; 699 700 len += NET_SKB_PAD; 701 702 /* If requested length is either too small or too big, 703 * we use kmalloc() for skb->head allocation. 704 */ 705 if (len <= SKB_WITH_OVERHEAD(1024) || 706 len > SKB_WITH_OVERHEAD(PAGE_SIZE) || 707 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) { 708 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE); 709 if (!skb) 710 goto skb_fail; 711 goto skb_success; 712 } 713 714 len = SKB_HEAD_ALIGN(len); 715 716 if (sk_memalloc_socks()) 717 gfp_mask |= __GFP_MEMALLOC; 718 719 if (in_hardirq() || irqs_disabled()) { 720 nc = this_cpu_ptr(&netdev_alloc_cache); 721 data = page_frag_alloc(nc, len, gfp_mask); 722 pfmemalloc = nc->pfmemalloc; 723 } else { 724 local_bh_disable(); 725 nc = this_cpu_ptr(&napi_alloc_cache.page); 726 data = page_frag_alloc(nc, len, gfp_mask); 727 pfmemalloc = nc->pfmemalloc; 728 local_bh_enable(); 729 } 730 731 if (unlikely(!data)) 732 return NULL; 733 734 skb = __build_skb(data, len); 735 if (unlikely(!skb)) { 736 skb_free_frag(data); 737 return NULL; 738 } 739 740 if (pfmemalloc) 741 skb->pfmemalloc = 1; 742 skb->head_frag = 1; 743 744 skb_success: 745 skb_reserve(skb, NET_SKB_PAD); 746 skb->dev = dev; 747 748 skb_fail: 749 return skb; 750 } 751 EXPORT_SYMBOL(__netdev_alloc_skb); 752 753 /** 754 * __napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance 755 * @napi: napi instance this buffer was allocated for 756 * @len: length to allocate 757 * @gfp_mask: get_free_pages mask, passed to alloc_skb and alloc_pages 758 * 759 * Allocate a new sk_buff for use in NAPI receive. This buffer will 760 * attempt to allocate the head from a special reserved region used 761 * only for NAPI Rx allocation. By doing this we can save several 762 * CPU cycles by avoiding having to disable and re-enable IRQs. 763 * 764 * %NULL is returned if there is no free memory. 765 */ 766 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, unsigned int len, 767 gfp_t gfp_mask) 768 { 769 struct napi_alloc_cache *nc; 770 struct sk_buff *skb; 771 bool pfmemalloc; 772 void *data; 773 774 DEBUG_NET_WARN_ON_ONCE(!in_softirq()); 775 len += NET_SKB_PAD + NET_IP_ALIGN; 776 777 /* If requested length is either too small or too big, 778 * we use kmalloc() for skb->head allocation. 779 * When the small frag allocator is available, prefer it over kmalloc 780 * for small fragments 781 */ 782 if ((!NAPI_HAS_SMALL_PAGE_FRAG && len <= SKB_WITH_OVERHEAD(1024)) || 783 len > SKB_WITH_OVERHEAD(PAGE_SIZE) || 784 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) { 785 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX | SKB_ALLOC_NAPI, 786 NUMA_NO_NODE); 787 if (!skb) 788 goto skb_fail; 789 goto skb_success; 790 } 791 792 nc = this_cpu_ptr(&napi_alloc_cache); 793 794 if (sk_memalloc_socks()) 795 gfp_mask |= __GFP_MEMALLOC; 796 797 if (NAPI_HAS_SMALL_PAGE_FRAG && len <= SKB_WITH_OVERHEAD(1024)) { 798 /* we are artificially inflating the allocation size, but 799 * that is not as bad as it may look like, as: 800 * - 'len' less than GRO_MAX_HEAD makes little sense 801 * - On most systems, larger 'len' values lead to fragment 802 * size above 512 bytes 803 * - kmalloc would use the kmalloc-1k slab for such values 804 * - Builds with smaller GRO_MAX_HEAD will very likely do 805 * little networking, as that implies no WiFi and no 806 * tunnels support, and 32 bits arches. 807 */ 808 len = SZ_1K; 809 810 data = page_frag_alloc_1k(&nc->page_small, gfp_mask); 811 pfmemalloc = NAPI_SMALL_PAGE_PFMEMALLOC(nc->page_small); 812 } else { 813 len = SKB_HEAD_ALIGN(len); 814 815 data = page_frag_alloc(&nc->page, len, gfp_mask); 816 pfmemalloc = nc->page.pfmemalloc; 817 } 818 819 if (unlikely(!data)) 820 return NULL; 821 822 skb = __napi_build_skb(data, len); 823 if (unlikely(!skb)) { 824 skb_free_frag(data); 825 return NULL; 826 } 827 828 if (pfmemalloc) 829 skb->pfmemalloc = 1; 830 skb->head_frag = 1; 831 832 skb_success: 833 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN); 834 skb->dev = napi->dev; 835 836 skb_fail: 837 return skb; 838 } 839 EXPORT_SYMBOL(__napi_alloc_skb); 840 841 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off, 842 int size, unsigned int truesize) 843 { 844 skb_fill_page_desc(skb, i, page, off, size); 845 skb->len += size; 846 skb->data_len += size; 847 skb->truesize += truesize; 848 } 849 EXPORT_SYMBOL(skb_add_rx_frag); 850 851 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size, 852 unsigned int truesize) 853 { 854 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 855 856 skb_frag_size_add(frag, size); 857 skb->len += size; 858 skb->data_len += size; 859 skb->truesize += truesize; 860 } 861 EXPORT_SYMBOL(skb_coalesce_rx_frag); 862 863 static void skb_drop_list(struct sk_buff **listp) 864 { 865 kfree_skb_list(*listp); 866 *listp = NULL; 867 } 868 869 static inline void skb_drop_fraglist(struct sk_buff *skb) 870 { 871 skb_drop_list(&skb_shinfo(skb)->frag_list); 872 } 873 874 static void skb_clone_fraglist(struct sk_buff *skb) 875 { 876 struct sk_buff *list; 877 878 skb_walk_frags(skb, list) 879 skb_get(list); 880 } 881 882 #if IS_ENABLED(CONFIG_PAGE_POOL) 883 bool napi_pp_put_page(struct page *page, bool napi_safe) 884 { 885 bool allow_direct = false; 886 struct page_pool *pp; 887 888 page = compound_head(page); 889 890 /* page->pp_magic is OR'ed with PP_SIGNATURE after the allocation 891 * in order to preserve any existing bits, such as bit 0 for the 892 * head page of compound page and bit 1 for pfmemalloc page, so 893 * mask those bits for freeing side when doing below checking, 894 * and page_is_pfmemalloc() is checked in __page_pool_put_page() 895 * to avoid recycling the pfmemalloc page. 896 */ 897 if (unlikely((page->pp_magic & ~0x3UL) != PP_SIGNATURE)) 898 return false; 899 900 pp = page->pp; 901 902 /* Allow direct recycle if we have reasons to believe that we are 903 * in the same context as the consumer would run, so there's 904 * no possible race. 905 * __page_pool_put_page() makes sure we're not in hardirq context 906 * and interrupts are enabled prior to accessing the cache. 907 */ 908 if (napi_safe || in_softirq()) { 909 const struct napi_struct *napi = READ_ONCE(pp->p.napi); 910 911 allow_direct = napi && 912 READ_ONCE(napi->list_owner) == smp_processor_id(); 913 } 914 915 /* Driver set this to memory recycling info. Reset it on recycle. 916 * This will *not* work for NIC using a split-page memory model. 917 * The page will be returned to the pool here regardless of the 918 * 'flipped' fragment being in use or not. 919 */ 920 page_pool_put_full_page(pp, page, allow_direct); 921 922 return true; 923 } 924 EXPORT_SYMBOL(napi_pp_put_page); 925 #endif 926 927 static bool skb_pp_recycle(struct sk_buff *skb, void *data, bool napi_safe) 928 { 929 if (!IS_ENABLED(CONFIG_PAGE_POOL) || !skb->pp_recycle) 930 return false; 931 return napi_pp_put_page(virt_to_page(data), napi_safe); 932 } 933 934 static void skb_kfree_head(void *head, unsigned int end_offset) 935 { 936 if (end_offset == SKB_SMALL_HEAD_HEADROOM) 937 kmem_cache_free(skb_small_head_cache, head); 938 else 939 kfree(head); 940 } 941 942 static void skb_free_head(struct sk_buff *skb, bool napi_safe) 943 { 944 unsigned char *head = skb->head; 945 946 if (skb->head_frag) { 947 if (skb_pp_recycle(skb, head, napi_safe)) 948 return; 949 skb_free_frag(head); 950 } else { 951 skb_kfree_head(head, skb_end_offset(skb)); 952 } 953 } 954 955 static void skb_release_data(struct sk_buff *skb, enum skb_drop_reason reason, 956 bool napi_safe) 957 { 958 struct skb_shared_info *shinfo = skb_shinfo(skb); 959 int i; 960 961 if (skb->cloned && 962 atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1, 963 &shinfo->dataref)) 964 goto exit; 965 966 if (skb_zcopy(skb)) { 967 bool skip_unref = shinfo->flags & SKBFL_MANAGED_FRAG_REFS; 968 969 skb_zcopy_clear(skb, true); 970 if (skip_unref) 971 goto free_head; 972 } 973 974 for (i = 0; i < shinfo->nr_frags; i++) 975 napi_frag_unref(&shinfo->frags[i], skb->pp_recycle, napi_safe); 976 977 free_head: 978 if (shinfo->frag_list) 979 kfree_skb_list_reason(shinfo->frag_list, reason); 980 981 skb_free_head(skb, napi_safe); 982 exit: 983 /* When we clone an SKB we copy the reycling bit. The pp_recycle 984 * bit is only set on the head though, so in order to avoid races 985 * while trying to recycle fragments on __skb_frag_unref() we need 986 * to make one SKB responsible for triggering the recycle path. 987 * So disable the recycling bit if an SKB is cloned and we have 988 * additional references to the fragmented part of the SKB. 989 * Eventually the last SKB will have the recycling bit set and it's 990 * dataref set to 0, which will trigger the recycling 991 */ 992 skb->pp_recycle = 0; 993 } 994 995 /* 996 * Free an skbuff by memory without cleaning the state. 997 */ 998 static void kfree_skbmem(struct sk_buff *skb) 999 { 1000 struct sk_buff_fclones *fclones; 1001 1002 switch (skb->fclone) { 1003 case SKB_FCLONE_UNAVAILABLE: 1004 kmem_cache_free(skbuff_cache, skb); 1005 return; 1006 1007 case SKB_FCLONE_ORIG: 1008 fclones = container_of(skb, struct sk_buff_fclones, skb1); 1009 1010 /* We usually free the clone (TX completion) before original skb 1011 * This test would have no chance to be true for the clone, 1012 * while here, branch prediction will be good. 1013 */ 1014 if (refcount_read(&fclones->fclone_ref) == 1) 1015 goto fastpath; 1016 break; 1017 1018 default: /* SKB_FCLONE_CLONE */ 1019 fclones = container_of(skb, struct sk_buff_fclones, skb2); 1020 break; 1021 } 1022 if (!refcount_dec_and_test(&fclones->fclone_ref)) 1023 return; 1024 fastpath: 1025 kmem_cache_free(skbuff_fclone_cache, fclones); 1026 } 1027 1028 void skb_release_head_state(struct sk_buff *skb) 1029 { 1030 skb_dst_drop(skb); 1031 if (skb->destructor) { 1032 DEBUG_NET_WARN_ON_ONCE(in_hardirq()); 1033 skb->destructor(skb); 1034 } 1035 #if IS_ENABLED(CONFIG_NF_CONNTRACK) 1036 nf_conntrack_put(skb_nfct(skb)); 1037 #endif 1038 skb_ext_put(skb); 1039 } 1040 1041 /* Free everything but the sk_buff shell. */ 1042 static void skb_release_all(struct sk_buff *skb, enum skb_drop_reason reason, 1043 bool napi_safe) 1044 { 1045 skb_release_head_state(skb); 1046 if (likely(skb->head)) 1047 skb_release_data(skb, reason, napi_safe); 1048 } 1049 1050 /** 1051 * __kfree_skb - private function 1052 * @skb: buffer 1053 * 1054 * Free an sk_buff. Release anything attached to the buffer. 1055 * Clean the state. This is an internal helper function. Users should 1056 * always call kfree_skb 1057 */ 1058 1059 void __kfree_skb(struct sk_buff *skb) 1060 { 1061 skb_release_all(skb, SKB_DROP_REASON_NOT_SPECIFIED, false); 1062 kfree_skbmem(skb); 1063 } 1064 EXPORT_SYMBOL(__kfree_skb); 1065 1066 static __always_inline 1067 bool __kfree_skb_reason(struct sk_buff *skb, enum skb_drop_reason reason) 1068 { 1069 if (unlikely(!skb_unref(skb))) 1070 return false; 1071 1072 DEBUG_NET_WARN_ON_ONCE(reason == SKB_NOT_DROPPED_YET || 1073 u32_get_bits(reason, 1074 SKB_DROP_REASON_SUBSYS_MASK) >= 1075 SKB_DROP_REASON_SUBSYS_NUM); 1076 1077 if (reason == SKB_CONSUMED) 1078 trace_consume_skb(skb, __builtin_return_address(0)); 1079 else 1080 trace_kfree_skb(skb, __builtin_return_address(0), reason); 1081 return true; 1082 } 1083 1084 /** 1085 * kfree_skb_reason - free an sk_buff with special reason 1086 * @skb: buffer to free 1087 * @reason: reason why this skb is dropped 1088 * 1089 * Drop a reference to the buffer and free it if the usage count has 1090 * hit zero. Meanwhile, pass the drop reason to 'kfree_skb' 1091 * tracepoint. 1092 */ 1093 void __fix_address 1094 kfree_skb_reason(struct sk_buff *skb, enum skb_drop_reason reason) 1095 { 1096 if (__kfree_skb_reason(skb, reason)) 1097 __kfree_skb(skb); 1098 } 1099 EXPORT_SYMBOL(kfree_skb_reason); 1100 1101 #define KFREE_SKB_BULK_SIZE 16 1102 1103 struct skb_free_array { 1104 unsigned int skb_count; 1105 void *skb_array[KFREE_SKB_BULK_SIZE]; 1106 }; 1107 1108 static void kfree_skb_add_bulk(struct sk_buff *skb, 1109 struct skb_free_array *sa, 1110 enum skb_drop_reason reason) 1111 { 1112 /* if SKB is a clone, don't handle this case */ 1113 if (unlikely(skb->fclone != SKB_FCLONE_UNAVAILABLE)) { 1114 __kfree_skb(skb); 1115 return; 1116 } 1117 1118 skb_release_all(skb, reason, false); 1119 sa->skb_array[sa->skb_count++] = skb; 1120 1121 if (unlikely(sa->skb_count == KFREE_SKB_BULK_SIZE)) { 1122 kmem_cache_free_bulk(skbuff_cache, KFREE_SKB_BULK_SIZE, 1123 sa->skb_array); 1124 sa->skb_count = 0; 1125 } 1126 } 1127 1128 void __fix_address 1129 kfree_skb_list_reason(struct sk_buff *segs, enum skb_drop_reason reason) 1130 { 1131 struct skb_free_array sa; 1132 1133 sa.skb_count = 0; 1134 1135 while (segs) { 1136 struct sk_buff *next = segs->next; 1137 1138 if (__kfree_skb_reason(segs, reason)) { 1139 skb_poison_list(segs); 1140 kfree_skb_add_bulk(segs, &sa, reason); 1141 } 1142 1143 segs = next; 1144 } 1145 1146 if (sa.skb_count) 1147 kmem_cache_free_bulk(skbuff_cache, sa.skb_count, sa.skb_array); 1148 } 1149 EXPORT_SYMBOL(kfree_skb_list_reason); 1150 1151 /* Dump skb information and contents. 1152 * 1153 * Must only be called from net_ratelimit()-ed paths. 1154 * 1155 * Dumps whole packets if full_pkt, only headers otherwise. 1156 */ 1157 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt) 1158 { 1159 struct skb_shared_info *sh = skb_shinfo(skb); 1160 struct net_device *dev = skb->dev; 1161 struct sock *sk = skb->sk; 1162 struct sk_buff *list_skb; 1163 bool has_mac, has_trans; 1164 int headroom, tailroom; 1165 int i, len, seg_len; 1166 1167 if (full_pkt) 1168 len = skb->len; 1169 else 1170 len = min_t(int, skb->len, MAX_HEADER + 128); 1171 1172 headroom = skb_headroom(skb); 1173 tailroom = skb_tailroom(skb); 1174 1175 has_mac = skb_mac_header_was_set(skb); 1176 has_trans = skb_transport_header_was_set(skb); 1177 1178 printk("%sskb len=%u headroom=%u headlen=%u tailroom=%u\n" 1179 "mac=(%d,%d) net=(%d,%d) trans=%d\n" 1180 "shinfo(txflags=%u nr_frags=%u gso(size=%hu type=%u segs=%hu))\n" 1181 "csum(0x%x ip_summed=%u complete_sw=%u valid=%u level=%u)\n" 1182 "hash(0x%x sw=%u l4=%u) proto=0x%04x pkttype=%u iif=%d\n", 1183 level, skb->len, headroom, skb_headlen(skb), tailroom, 1184 has_mac ? skb->mac_header : -1, 1185 has_mac ? skb_mac_header_len(skb) : -1, 1186 skb->network_header, 1187 has_trans ? skb_network_header_len(skb) : -1, 1188 has_trans ? skb->transport_header : -1, 1189 sh->tx_flags, sh->nr_frags, 1190 sh->gso_size, sh->gso_type, sh->gso_segs, 1191 skb->csum, skb->ip_summed, skb->csum_complete_sw, 1192 skb->csum_valid, skb->csum_level, 1193 skb->hash, skb->sw_hash, skb->l4_hash, 1194 ntohs(skb->protocol), skb->pkt_type, skb->skb_iif); 1195 1196 if (dev) 1197 printk("%sdev name=%s feat=%pNF\n", 1198 level, dev->name, &dev->features); 1199 if (sk) 1200 printk("%ssk family=%hu type=%u proto=%u\n", 1201 level, sk->sk_family, sk->sk_type, sk->sk_protocol); 1202 1203 if (full_pkt && headroom) 1204 print_hex_dump(level, "skb headroom: ", DUMP_PREFIX_OFFSET, 1205 16, 1, skb->head, headroom, false); 1206 1207 seg_len = min_t(int, skb_headlen(skb), len); 1208 if (seg_len) 1209 print_hex_dump(level, "skb linear: ", DUMP_PREFIX_OFFSET, 1210 16, 1, skb->data, seg_len, false); 1211 len -= seg_len; 1212 1213 if (full_pkt && tailroom) 1214 print_hex_dump(level, "skb tailroom: ", DUMP_PREFIX_OFFSET, 1215 16, 1, skb_tail_pointer(skb), tailroom, false); 1216 1217 for (i = 0; len && i < skb_shinfo(skb)->nr_frags; i++) { 1218 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 1219 u32 p_off, p_len, copied; 1220 struct page *p; 1221 u8 *vaddr; 1222 1223 skb_frag_foreach_page(frag, skb_frag_off(frag), 1224 skb_frag_size(frag), p, p_off, p_len, 1225 copied) { 1226 seg_len = min_t(int, p_len, len); 1227 vaddr = kmap_atomic(p); 1228 print_hex_dump(level, "skb frag: ", 1229 DUMP_PREFIX_OFFSET, 1230 16, 1, vaddr + p_off, seg_len, false); 1231 kunmap_atomic(vaddr); 1232 len -= seg_len; 1233 if (!len) 1234 break; 1235 } 1236 } 1237 1238 if (full_pkt && skb_has_frag_list(skb)) { 1239 printk("skb fraglist:\n"); 1240 skb_walk_frags(skb, list_skb) 1241 skb_dump(level, list_skb, true); 1242 } 1243 } 1244 EXPORT_SYMBOL(skb_dump); 1245 1246 /** 1247 * skb_tx_error - report an sk_buff xmit error 1248 * @skb: buffer that triggered an error 1249 * 1250 * Report xmit error if a device callback is tracking this skb. 1251 * skb must be freed afterwards. 1252 */ 1253 void skb_tx_error(struct sk_buff *skb) 1254 { 1255 if (skb) { 1256 skb_zcopy_downgrade_managed(skb); 1257 skb_zcopy_clear(skb, true); 1258 } 1259 } 1260 EXPORT_SYMBOL(skb_tx_error); 1261 1262 #ifdef CONFIG_TRACEPOINTS 1263 /** 1264 * consume_skb - free an skbuff 1265 * @skb: buffer to free 1266 * 1267 * Drop a ref to the buffer and free it if the usage count has hit zero 1268 * Functions identically to kfree_skb, but kfree_skb assumes that the frame 1269 * is being dropped after a failure and notes that 1270 */ 1271 void consume_skb(struct sk_buff *skb) 1272 { 1273 if (!skb_unref(skb)) 1274 return; 1275 1276 trace_consume_skb(skb, __builtin_return_address(0)); 1277 __kfree_skb(skb); 1278 } 1279 EXPORT_SYMBOL(consume_skb); 1280 #endif 1281 1282 /** 1283 * __consume_stateless_skb - free an skbuff, assuming it is stateless 1284 * @skb: buffer to free 1285 * 1286 * Alike consume_skb(), but this variant assumes that this is the last 1287 * skb reference and all the head states have been already dropped 1288 */ 1289 void __consume_stateless_skb(struct sk_buff *skb) 1290 { 1291 trace_consume_skb(skb, __builtin_return_address(0)); 1292 skb_release_data(skb, SKB_CONSUMED, false); 1293 kfree_skbmem(skb); 1294 } 1295 1296 static void napi_skb_cache_put(struct sk_buff *skb) 1297 { 1298 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 1299 u32 i; 1300 1301 kasan_poison_object_data(skbuff_cache, skb); 1302 nc->skb_cache[nc->skb_count++] = skb; 1303 1304 if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) { 1305 for (i = NAPI_SKB_CACHE_HALF; i < NAPI_SKB_CACHE_SIZE; i++) 1306 kasan_unpoison_object_data(skbuff_cache, 1307 nc->skb_cache[i]); 1308 1309 kmem_cache_free_bulk(skbuff_cache, NAPI_SKB_CACHE_HALF, 1310 nc->skb_cache + NAPI_SKB_CACHE_HALF); 1311 nc->skb_count = NAPI_SKB_CACHE_HALF; 1312 } 1313 } 1314 1315 void __napi_kfree_skb(struct sk_buff *skb, enum skb_drop_reason reason) 1316 { 1317 skb_release_all(skb, reason, true); 1318 napi_skb_cache_put(skb); 1319 } 1320 1321 void napi_skb_free_stolen_head(struct sk_buff *skb) 1322 { 1323 if (unlikely(skb->slow_gro)) { 1324 nf_reset_ct(skb); 1325 skb_dst_drop(skb); 1326 skb_ext_put(skb); 1327 skb_orphan(skb); 1328 skb->slow_gro = 0; 1329 } 1330 napi_skb_cache_put(skb); 1331 } 1332 1333 void napi_consume_skb(struct sk_buff *skb, int budget) 1334 { 1335 /* Zero budget indicate non-NAPI context called us, like netpoll */ 1336 if (unlikely(!budget)) { 1337 dev_consume_skb_any(skb); 1338 return; 1339 } 1340 1341 DEBUG_NET_WARN_ON_ONCE(!in_softirq()); 1342 1343 if (!skb_unref(skb)) 1344 return; 1345 1346 /* if reaching here SKB is ready to free */ 1347 trace_consume_skb(skb, __builtin_return_address(0)); 1348 1349 /* if SKB is a clone, don't handle this case */ 1350 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) { 1351 __kfree_skb(skb); 1352 return; 1353 } 1354 1355 skb_release_all(skb, SKB_CONSUMED, !!budget); 1356 napi_skb_cache_put(skb); 1357 } 1358 EXPORT_SYMBOL(napi_consume_skb); 1359 1360 /* Make sure a field is contained by headers group */ 1361 #define CHECK_SKB_FIELD(field) \ 1362 BUILD_BUG_ON(offsetof(struct sk_buff, field) != \ 1363 offsetof(struct sk_buff, headers.field)); \ 1364 1365 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old) 1366 { 1367 new->tstamp = old->tstamp; 1368 /* We do not copy old->sk */ 1369 new->dev = old->dev; 1370 memcpy(new->cb, old->cb, sizeof(old->cb)); 1371 skb_dst_copy(new, old); 1372 __skb_ext_copy(new, old); 1373 __nf_copy(new, old, false); 1374 1375 /* Note : this field could be in the headers group. 1376 * It is not yet because we do not want to have a 16 bit hole 1377 */ 1378 new->queue_mapping = old->queue_mapping; 1379 1380 memcpy(&new->headers, &old->headers, sizeof(new->headers)); 1381 CHECK_SKB_FIELD(protocol); 1382 CHECK_SKB_FIELD(csum); 1383 CHECK_SKB_FIELD(hash); 1384 CHECK_SKB_FIELD(priority); 1385 CHECK_SKB_FIELD(skb_iif); 1386 CHECK_SKB_FIELD(vlan_proto); 1387 CHECK_SKB_FIELD(vlan_tci); 1388 CHECK_SKB_FIELD(transport_header); 1389 CHECK_SKB_FIELD(network_header); 1390 CHECK_SKB_FIELD(mac_header); 1391 CHECK_SKB_FIELD(inner_protocol); 1392 CHECK_SKB_FIELD(inner_transport_header); 1393 CHECK_SKB_FIELD(inner_network_header); 1394 CHECK_SKB_FIELD(inner_mac_header); 1395 CHECK_SKB_FIELD(mark); 1396 #ifdef CONFIG_NETWORK_SECMARK 1397 CHECK_SKB_FIELD(secmark); 1398 #endif 1399 #ifdef CONFIG_NET_RX_BUSY_POLL 1400 CHECK_SKB_FIELD(napi_id); 1401 #endif 1402 CHECK_SKB_FIELD(alloc_cpu); 1403 #ifdef CONFIG_XPS 1404 CHECK_SKB_FIELD(sender_cpu); 1405 #endif 1406 #ifdef CONFIG_NET_SCHED 1407 CHECK_SKB_FIELD(tc_index); 1408 #endif 1409 1410 } 1411 1412 /* 1413 * You should not add any new code to this function. Add it to 1414 * __copy_skb_header above instead. 1415 */ 1416 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb) 1417 { 1418 #define C(x) n->x = skb->x 1419 1420 n->next = n->prev = NULL; 1421 n->sk = NULL; 1422 __copy_skb_header(n, skb); 1423 1424 C(len); 1425 C(data_len); 1426 C(mac_len); 1427 n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len; 1428 n->cloned = 1; 1429 n->nohdr = 0; 1430 n->peeked = 0; 1431 C(pfmemalloc); 1432 C(pp_recycle); 1433 n->destructor = NULL; 1434 C(tail); 1435 C(end); 1436 C(head); 1437 C(head_frag); 1438 C(data); 1439 C(truesize); 1440 refcount_set(&n->users, 1); 1441 1442 atomic_inc(&(skb_shinfo(skb)->dataref)); 1443 skb->cloned = 1; 1444 1445 return n; 1446 #undef C 1447 } 1448 1449 /** 1450 * alloc_skb_for_msg() - allocate sk_buff to wrap frag list forming a msg 1451 * @first: first sk_buff of the msg 1452 */ 1453 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first) 1454 { 1455 struct sk_buff *n; 1456 1457 n = alloc_skb(0, GFP_ATOMIC); 1458 if (!n) 1459 return NULL; 1460 1461 n->len = first->len; 1462 n->data_len = first->len; 1463 n->truesize = first->truesize; 1464 1465 skb_shinfo(n)->frag_list = first; 1466 1467 __copy_skb_header(n, first); 1468 n->destructor = NULL; 1469 1470 return n; 1471 } 1472 EXPORT_SYMBOL_GPL(alloc_skb_for_msg); 1473 1474 /** 1475 * skb_morph - morph one skb into another 1476 * @dst: the skb to receive the contents 1477 * @src: the skb to supply the contents 1478 * 1479 * This is identical to skb_clone except that the target skb is 1480 * supplied by the user. 1481 * 1482 * The target skb is returned upon exit. 1483 */ 1484 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src) 1485 { 1486 skb_release_all(dst, SKB_CONSUMED, false); 1487 return __skb_clone(dst, src); 1488 } 1489 EXPORT_SYMBOL_GPL(skb_morph); 1490 1491 int mm_account_pinned_pages(struct mmpin *mmp, size_t size) 1492 { 1493 unsigned long max_pg, num_pg, new_pg, old_pg, rlim; 1494 struct user_struct *user; 1495 1496 if (capable(CAP_IPC_LOCK) || !size) 1497 return 0; 1498 1499 rlim = rlimit(RLIMIT_MEMLOCK); 1500 if (rlim == RLIM_INFINITY) 1501 return 0; 1502 1503 num_pg = (size >> PAGE_SHIFT) + 2; /* worst case */ 1504 max_pg = rlim >> PAGE_SHIFT; 1505 user = mmp->user ? : current_user(); 1506 1507 old_pg = atomic_long_read(&user->locked_vm); 1508 do { 1509 new_pg = old_pg + num_pg; 1510 if (new_pg > max_pg) 1511 return -ENOBUFS; 1512 } while (!atomic_long_try_cmpxchg(&user->locked_vm, &old_pg, new_pg)); 1513 1514 if (!mmp->user) { 1515 mmp->user = get_uid(user); 1516 mmp->num_pg = num_pg; 1517 } else { 1518 mmp->num_pg += num_pg; 1519 } 1520 1521 return 0; 1522 } 1523 EXPORT_SYMBOL_GPL(mm_account_pinned_pages); 1524 1525 void mm_unaccount_pinned_pages(struct mmpin *mmp) 1526 { 1527 if (mmp->user) { 1528 atomic_long_sub(mmp->num_pg, &mmp->user->locked_vm); 1529 free_uid(mmp->user); 1530 } 1531 } 1532 EXPORT_SYMBOL_GPL(mm_unaccount_pinned_pages); 1533 1534 static struct ubuf_info *msg_zerocopy_alloc(struct sock *sk, size_t size) 1535 { 1536 struct ubuf_info_msgzc *uarg; 1537 struct sk_buff *skb; 1538 1539 WARN_ON_ONCE(!in_task()); 1540 1541 skb = sock_omalloc(sk, 0, GFP_KERNEL); 1542 if (!skb) 1543 return NULL; 1544 1545 BUILD_BUG_ON(sizeof(*uarg) > sizeof(skb->cb)); 1546 uarg = (void *)skb->cb; 1547 uarg->mmp.user = NULL; 1548 1549 if (mm_account_pinned_pages(&uarg->mmp, size)) { 1550 kfree_skb(skb); 1551 return NULL; 1552 } 1553 1554 uarg->ubuf.callback = msg_zerocopy_callback; 1555 uarg->id = ((u32)atomic_inc_return(&sk->sk_zckey)) - 1; 1556 uarg->len = 1; 1557 uarg->bytelen = size; 1558 uarg->zerocopy = 1; 1559 uarg->ubuf.flags = SKBFL_ZEROCOPY_FRAG | SKBFL_DONT_ORPHAN; 1560 refcount_set(&uarg->ubuf.refcnt, 1); 1561 sock_hold(sk); 1562 1563 return &uarg->ubuf; 1564 } 1565 1566 static inline struct sk_buff *skb_from_uarg(struct ubuf_info_msgzc *uarg) 1567 { 1568 return container_of((void *)uarg, struct sk_buff, cb); 1569 } 1570 1571 struct ubuf_info *msg_zerocopy_realloc(struct sock *sk, size_t size, 1572 struct ubuf_info *uarg) 1573 { 1574 if (uarg) { 1575 struct ubuf_info_msgzc *uarg_zc; 1576 const u32 byte_limit = 1 << 19; /* limit to a few TSO */ 1577 u32 bytelen, next; 1578 1579 /* there might be non MSG_ZEROCOPY users */ 1580 if (uarg->callback != msg_zerocopy_callback) 1581 return NULL; 1582 1583 /* realloc only when socket is locked (TCP, UDP cork), 1584 * so uarg->len and sk_zckey access is serialized 1585 */ 1586 if (!sock_owned_by_user(sk)) { 1587 WARN_ON_ONCE(1); 1588 return NULL; 1589 } 1590 1591 uarg_zc = uarg_to_msgzc(uarg); 1592 bytelen = uarg_zc->bytelen + size; 1593 if (uarg_zc->len == USHRT_MAX - 1 || bytelen > byte_limit) { 1594 /* TCP can create new skb to attach new uarg */ 1595 if (sk->sk_type == SOCK_STREAM) 1596 goto new_alloc; 1597 return NULL; 1598 } 1599 1600 next = (u32)atomic_read(&sk->sk_zckey); 1601 if ((u32)(uarg_zc->id + uarg_zc->len) == next) { 1602 if (mm_account_pinned_pages(&uarg_zc->mmp, size)) 1603 return NULL; 1604 uarg_zc->len++; 1605 uarg_zc->bytelen = bytelen; 1606 atomic_set(&sk->sk_zckey, ++next); 1607 1608 /* no extra ref when appending to datagram (MSG_MORE) */ 1609 if (sk->sk_type == SOCK_STREAM) 1610 net_zcopy_get(uarg); 1611 1612 return uarg; 1613 } 1614 } 1615 1616 new_alloc: 1617 return msg_zerocopy_alloc(sk, size); 1618 } 1619 EXPORT_SYMBOL_GPL(msg_zerocopy_realloc); 1620 1621 static bool skb_zerocopy_notify_extend(struct sk_buff *skb, u32 lo, u16 len) 1622 { 1623 struct sock_exterr_skb *serr = SKB_EXT_ERR(skb); 1624 u32 old_lo, old_hi; 1625 u64 sum_len; 1626 1627 old_lo = serr->ee.ee_info; 1628 old_hi = serr->ee.ee_data; 1629 sum_len = old_hi - old_lo + 1ULL + len; 1630 1631 if (sum_len >= (1ULL << 32)) 1632 return false; 1633 1634 if (lo != old_hi + 1) 1635 return false; 1636 1637 serr->ee.ee_data += len; 1638 return true; 1639 } 1640 1641 static void __msg_zerocopy_callback(struct ubuf_info_msgzc *uarg) 1642 { 1643 struct sk_buff *tail, *skb = skb_from_uarg(uarg); 1644 struct sock_exterr_skb *serr; 1645 struct sock *sk = skb->sk; 1646 struct sk_buff_head *q; 1647 unsigned long flags; 1648 bool is_zerocopy; 1649 u32 lo, hi; 1650 u16 len; 1651 1652 mm_unaccount_pinned_pages(&uarg->mmp); 1653 1654 /* if !len, there was only 1 call, and it was aborted 1655 * so do not queue a completion notification 1656 */ 1657 if (!uarg->len || sock_flag(sk, SOCK_DEAD)) 1658 goto release; 1659 1660 len = uarg->len; 1661 lo = uarg->id; 1662 hi = uarg->id + len - 1; 1663 is_zerocopy = uarg->zerocopy; 1664 1665 serr = SKB_EXT_ERR(skb); 1666 memset(serr, 0, sizeof(*serr)); 1667 serr->ee.ee_errno = 0; 1668 serr->ee.ee_origin = SO_EE_ORIGIN_ZEROCOPY; 1669 serr->ee.ee_data = hi; 1670 serr->ee.ee_info = lo; 1671 if (!is_zerocopy) 1672 serr->ee.ee_code |= SO_EE_CODE_ZEROCOPY_COPIED; 1673 1674 q = &sk->sk_error_queue; 1675 spin_lock_irqsave(&q->lock, flags); 1676 tail = skb_peek_tail(q); 1677 if (!tail || SKB_EXT_ERR(tail)->ee.ee_origin != SO_EE_ORIGIN_ZEROCOPY || 1678 !skb_zerocopy_notify_extend(tail, lo, len)) { 1679 __skb_queue_tail(q, skb); 1680 skb = NULL; 1681 } 1682 spin_unlock_irqrestore(&q->lock, flags); 1683 1684 sk_error_report(sk); 1685 1686 release: 1687 consume_skb(skb); 1688 sock_put(sk); 1689 } 1690 1691 void msg_zerocopy_callback(struct sk_buff *skb, struct ubuf_info *uarg, 1692 bool success) 1693 { 1694 struct ubuf_info_msgzc *uarg_zc = uarg_to_msgzc(uarg); 1695 1696 uarg_zc->zerocopy = uarg_zc->zerocopy & success; 1697 1698 if (refcount_dec_and_test(&uarg->refcnt)) 1699 __msg_zerocopy_callback(uarg_zc); 1700 } 1701 EXPORT_SYMBOL_GPL(msg_zerocopy_callback); 1702 1703 void msg_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref) 1704 { 1705 struct sock *sk = skb_from_uarg(uarg_to_msgzc(uarg))->sk; 1706 1707 atomic_dec(&sk->sk_zckey); 1708 uarg_to_msgzc(uarg)->len--; 1709 1710 if (have_uref) 1711 msg_zerocopy_callback(NULL, uarg, true); 1712 } 1713 EXPORT_SYMBOL_GPL(msg_zerocopy_put_abort); 1714 1715 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb, 1716 struct msghdr *msg, int len, 1717 struct ubuf_info *uarg) 1718 { 1719 struct ubuf_info *orig_uarg = skb_zcopy(skb); 1720 int err, orig_len = skb->len; 1721 1722 /* An skb can only point to one uarg. This edge case happens when 1723 * TCP appends to an skb, but zerocopy_realloc triggered a new alloc. 1724 */ 1725 if (orig_uarg && uarg != orig_uarg) 1726 return -EEXIST; 1727 1728 err = __zerocopy_sg_from_iter(msg, sk, skb, &msg->msg_iter, len); 1729 if (err == -EFAULT || (err == -EMSGSIZE && skb->len == orig_len)) { 1730 struct sock *save_sk = skb->sk; 1731 1732 /* Streams do not free skb on error. Reset to prev state. */ 1733 iov_iter_revert(&msg->msg_iter, skb->len - orig_len); 1734 skb->sk = sk; 1735 ___pskb_trim(skb, orig_len); 1736 skb->sk = save_sk; 1737 return err; 1738 } 1739 1740 skb_zcopy_set(skb, uarg, NULL); 1741 return skb->len - orig_len; 1742 } 1743 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_stream); 1744 1745 void __skb_zcopy_downgrade_managed(struct sk_buff *skb) 1746 { 1747 int i; 1748 1749 skb_shinfo(skb)->flags &= ~SKBFL_MANAGED_FRAG_REFS; 1750 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 1751 skb_frag_ref(skb, i); 1752 } 1753 EXPORT_SYMBOL_GPL(__skb_zcopy_downgrade_managed); 1754 1755 static int skb_zerocopy_clone(struct sk_buff *nskb, struct sk_buff *orig, 1756 gfp_t gfp_mask) 1757 { 1758 if (skb_zcopy(orig)) { 1759 if (skb_zcopy(nskb)) { 1760 /* !gfp_mask callers are verified to !skb_zcopy(nskb) */ 1761 if (!gfp_mask) { 1762 WARN_ON_ONCE(1); 1763 return -ENOMEM; 1764 } 1765 if (skb_uarg(nskb) == skb_uarg(orig)) 1766 return 0; 1767 if (skb_copy_ubufs(nskb, GFP_ATOMIC)) 1768 return -EIO; 1769 } 1770 skb_zcopy_set(nskb, skb_uarg(orig), NULL); 1771 } 1772 return 0; 1773 } 1774 1775 /** 1776 * skb_copy_ubufs - copy userspace skb frags buffers to kernel 1777 * @skb: the skb to modify 1778 * @gfp_mask: allocation priority 1779 * 1780 * This must be called on skb with SKBFL_ZEROCOPY_ENABLE. 1781 * It will copy all frags into kernel and drop the reference 1782 * to userspace pages. 1783 * 1784 * If this function is called from an interrupt gfp_mask() must be 1785 * %GFP_ATOMIC. 1786 * 1787 * Returns 0 on success or a negative error code on failure 1788 * to allocate kernel memory to copy to. 1789 */ 1790 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask) 1791 { 1792 int num_frags = skb_shinfo(skb)->nr_frags; 1793 struct page *page, *head = NULL; 1794 int i, order, psize, new_frags; 1795 u32 d_off; 1796 1797 if (skb_shared(skb) || skb_unclone(skb, gfp_mask)) 1798 return -EINVAL; 1799 1800 if (!num_frags) 1801 goto release; 1802 1803 /* We might have to allocate high order pages, so compute what minimum 1804 * page order is needed. 1805 */ 1806 order = 0; 1807 while ((PAGE_SIZE << order) * MAX_SKB_FRAGS < __skb_pagelen(skb)) 1808 order++; 1809 psize = (PAGE_SIZE << order); 1810 1811 new_frags = (__skb_pagelen(skb) + psize - 1) >> (PAGE_SHIFT + order); 1812 for (i = 0; i < new_frags; i++) { 1813 page = alloc_pages(gfp_mask | __GFP_COMP, order); 1814 if (!page) { 1815 while (head) { 1816 struct page *next = (struct page *)page_private(head); 1817 put_page(head); 1818 head = next; 1819 } 1820 return -ENOMEM; 1821 } 1822 set_page_private(page, (unsigned long)head); 1823 head = page; 1824 } 1825 1826 page = head; 1827 d_off = 0; 1828 for (i = 0; i < num_frags; i++) { 1829 skb_frag_t *f = &skb_shinfo(skb)->frags[i]; 1830 u32 p_off, p_len, copied; 1831 struct page *p; 1832 u8 *vaddr; 1833 1834 skb_frag_foreach_page(f, skb_frag_off(f), skb_frag_size(f), 1835 p, p_off, p_len, copied) { 1836 u32 copy, done = 0; 1837 vaddr = kmap_atomic(p); 1838 1839 while (done < p_len) { 1840 if (d_off == psize) { 1841 d_off = 0; 1842 page = (struct page *)page_private(page); 1843 } 1844 copy = min_t(u32, psize - d_off, p_len - done); 1845 memcpy(page_address(page) + d_off, 1846 vaddr + p_off + done, copy); 1847 done += copy; 1848 d_off += copy; 1849 } 1850 kunmap_atomic(vaddr); 1851 } 1852 } 1853 1854 /* skb frags release userspace buffers */ 1855 for (i = 0; i < num_frags; i++) 1856 skb_frag_unref(skb, i); 1857 1858 /* skb frags point to kernel buffers */ 1859 for (i = 0; i < new_frags - 1; i++) { 1860 __skb_fill_page_desc(skb, i, head, 0, psize); 1861 head = (struct page *)page_private(head); 1862 } 1863 __skb_fill_page_desc(skb, new_frags - 1, head, 0, d_off); 1864 skb_shinfo(skb)->nr_frags = new_frags; 1865 1866 release: 1867 skb_zcopy_clear(skb, false); 1868 return 0; 1869 } 1870 EXPORT_SYMBOL_GPL(skb_copy_ubufs); 1871 1872 /** 1873 * skb_clone - duplicate an sk_buff 1874 * @skb: buffer to clone 1875 * @gfp_mask: allocation priority 1876 * 1877 * Duplicate an &sk_buff. The new one is not owned by a socket. Both 1878 * copies share the same packet data but not structure. The new 1879 * buffer has a reference count of 1. If the allocation fails the 1880 * function returns %NULL otherwise the new buffer is returned. 1881 * 1882 * If this function is called from an interrupt gfp_mask() must be 1883 * %GFP_ATOMIC. 1884 */ 1885 1886 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask) 1887 { 1888 struct sk_buff_fclones *fclones = container_of(skb, 1889 struct sk_buff_fclones, 1890 skb1); 1891 struct sk_buff *n; 1892 1893 if (skb_orphan_frags(skb, gfp_mask)) 1894 return NULL; 1895 1896 if (skb->fclone == SKB_FCLONE_ORIG && 1897 refcount_read(&fclones->fclone_ref) == 1) { 1898 n = &fclones->skb2; 1899 refcount_set(&fclones->fclone_ref, 2); 1900 n->fclone = SKB_FCLONE_CLONE; 1901 } else { 1902 if (skb_pfmemalloc(skb)) 1903 gfp_mask |= __GFP_MEMALLOC; 1904 1905 n = kmem_cache_alloc(skbuff_cache, gfp_mask); 1906 if (!n) 1907 return NULL; 1908 1909 n->fclone = SKB_FCLONE_UNAVAILABLE; 1910 } 1911 1912 return __skb_clone(n, skb); 1913 } 1914 EXPORT_SYMBOL(skb_clone); 1915 1916 void skb_headers_offset_update(struct sk_buff *skb, int off) 1917 { 1918 /* Only adjust this if it actually is csum_start rather than csum */ 1919 if (skb->ip_summed == CHECKSUM_PARTIAL) 1920 skb->csum_start += off; 1921 /* {transport,network,mac}_header and tail are relative to skb->head */ 1922 skb->transport_header += off; 1923 skb->network_header += off; 1924 if (skb_mac_header_was_set(skb)) 1925 skb->mac_header += off; 1926 skb->inner_transport_header += off; 1927 skb->inner_network_header += off; 1928 skb->inner_mac_header += off; 1929 } 1930 EXPORT_SYMBOL(skb_headers_offset_update); 1931 1932 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old) 1933 { 1934 __copy_skb_header(new, old); 1935 1936 skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size; 1937 skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs; 1938 skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type; 1939 } 1940 EXPORT_SYMBOL(skb_copy_header); 1941 1942 static inline int skb_alloc_rx_flag(const struct sk_buff *skb) 1943 { 1944 if (skb_pfmemalloc(skb)) 1945 return SKB_ALLOC_RX; 1946 return 0; 1947 } 1948 1949 /** 1950 * skb_copy - create private copy of an sk_buff 1951 * @skb: buffer to copy 1952 * @gfp_mask: allocation priority 1953 * 1954 * Make a copy of both an &sk_buff and its data. This is used when the 1955 * caller wishes to modify the data and needs a private copy of the 1956 * data to alter. Returns %NULL on failure or the pointer to the buffer 1957 * on success. The returned buffer has a reference count of 1. 1958 * 1959 * As by-product this function converts non-linear &sk_buff to linear 1960 * one, so that &sk_buff becomes completely private and caller is allowed 1961 * to modify all the data of returned buffer. This means that this 1962 * function is not recommended for use in circumstances when only 1963 * header is going to be modified. Use pskb_copy() instead. 1964 */ 1965 1966 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask) 1967 { 1968 int headerlen = skb_headroom(skb); 1969 unsigned int size = skb_end_offset(skb) + skb->data_len; 1970 struct sk_buff *n = __alloc_skb(size, gfp_mask, 1971 skb_alloc_rx_flag(skb), NUMA_NO_NODE); 1972 1973 if (!n) 1974 return NULL; 1975 1976 /* Set the data pointer */ 1977 skb_reserve(n, headerlen); 1978 /* Set the tail pointer and length */ 1979 skb_put(n, skb->len); 1980 1981 BUG_ON(skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len)); 1982 1983 skb_copy_header(n, skb); 1984 return n; 1985 } 1986 EXPORT_SYMBOL(skb_copy); 1987 1988 /** 1989 * __pskb_copy_fclone - create copy of an sk_buff with private head. 1990 * @skb: buffer to copy 1991 * @headroom: headroom of new skb 1992 * @gfp_mask: allocation priority 1993 * @fclone: if true allocate the copy of the skb from the fclone 1994 * cache instead of the head cache; it is recommended to set this 1995 * to true for the cases where the copy will likely be cloned 1996 * 1997 * Make a copy of both an &sk_buff and part of its data, located 1998 * in header. Fragmented data remain shared. This is used when 1999 * the caller wishes to modify only header of &sk_buff and needs 2000 * private copy of the header to alter. Returns %NULL on failure 2001 * or the pointer to the buffer on success. 2002 * The returned buffer has a reference count of 1. 2003 */ 2004 2005 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom, 2006 gfp_t gfp_mask, bool fclone) 2007 { 2008 unsigned int size = skb_headlen(skb) + headroom; 2009 int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0); 2010 struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE); 2011 2012 if (!n) 2013 goto out; 2014 2015 /* Set the data pointer */ 2016 skb_reserve(n, headroom); 2017 /* Set the tail pointer and length */ 2018 skb_put(n, skb_headlen(skb)); 2019 /* Copy the bytes */ 2020 skb_copy_from_linear_data(skb, n->data, n->len); 2021 2022 n->truesize += skb->data_len; 2023 n->data_len = skb->data_len; 2024 n->len = skb->len; 2025 2026 if (skb_shinfo(skb)->nr_frags) { 2027 int i; 2028 2029 if (skb_orphan_frags(skb, gfp_mask) || 2030 skb_zerocopy_clone(n, skb, gfp_mask)) { 2031 kfree_skb(n); 2032 n = NULL; 2033 goto out; 2034 } 2035 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2036 skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i]; 2037 skb_frag_ref(skb, i); 2038 } 2039 skb_shinfo(n)->nr_frags = i; 2040 } 2041 2042 if (skb_has_frag_list(skb)) { 2043 skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list; 2044 skb_clone_fraglist(n); 2045 } 2046 2047 skb_copy_header(n, skb); 2048 out: 2049 return n; 2050 } 2051 EXPORT_SYMBOL(__pskb_copy_fclone); 2052 2053 /** 2054 * pskb_expand_head - reallocate header of &sk_buff 2055 * @skb: buffer to reallocate 2056 * @nhead: room to add at head 2057 * @ntail: room to add at tail 2058 * @gfp_mask: allocation priority 2059 * 2060 * Expands (or creates identical copy, if @nhead and @ntail are zero) 2061 * header of @skb. &sk_buff itself is not changed. &sk_buff MUST have 2062 * reference count of 1. Returns zero in the case of success or error, 2063 * if expansion failed. In the last case, &sk_buff is not changed. 2064 * 2065 * All the pointers pointing into skb header may change and must be 2066 * reloaded after call to this function. 2067 */ 2068 2069 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, 2070 gfp_t gfp_mask) 2071 { 2072 unsigned int osize = skb_end_offset(skb); 2073 unsigned int size = osize + nhead + ntail; 2074 long off; 2075 u8 *data; 2076 int i; 2077 2078 BUG_ON(nhead < 0); 2079 2080 BUG_ON(skb_shared(skb)); 2081 2082 skb_zcopy_downgrade_managed(skb); 2083 2084 if (skb_pfmemalloc(skb)) 2085 gfp_mask |= __GFP_MEMALLOC; 2086 2087 data = kmalloc_reserve(&size, gfp_mask, NUMA_NO_NODE, NULL); 2088 if (!data) 2089 goto nodata; 2090 size = SKB_WITH_OVERHEAD(size); 2091 2092 /* Copy only real data... and, alas, header. This should be 2093 * optimized for the cases when header is void. 2094 */ 2095 memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head); 2096 2097 memcpy((struct skb_shared_info *)(data + size), 2098 skb_shinfo(skb), 2099 offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags])); 2100 2101 /* 2102 * if shinfo is shared we must drop the old head gracefully, but if it 2103 * is not we can just drop the old head and let the existing refcount 2104 * be since all we did is relocate the values 2105 */ 2106 if (skb_cloned(skb)) { 2107 if (skb_orphan_frags(skb, gfp_mask)) 2108 goto nofrags; 2109 if (skb_zcopy(skb)) 2110 refcount_inc(&skb_uarg(skb)->refcnt); 2111 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 2112 skb_frag_ref(skb, i); 2113 2114 if (skb_has_frag_list(skb)) 2115 skb_clone_fraglist(skb); 2116 2117 skb_release_data(skb, SKB_CONSUMED, false); 2118 } else { 2119 skb_free_head(skb, false); 2120 } 2121 off = (data + nhead) - skb->head; 2122 2123 skb->head = data; 2124 skb->head_frag = 0; 2125 skb->data += off; 2126 2127 skb_set_end_offset(skb, size); 2128 #ifdef NET_SKBUFF_DATA_USES_OFFSET 2129 off = nhead; 2130 #endif 2131 skb->tail += off; 2132 skb_headers_offset_update(skb, nhead); 2133 skb->cloned = 0; 2134 skb->hdr_len = 0; 2135 skb->nohdr = 0; 2136 atomic_set(&skb_shinfo(skb)->dataref, 1); 2137 2138 skb_metadata_clear(skb); 2139 2140 /* It is not generally safe to change skb->truesize. 2141 * For the moment, we really care of rx path, or 2142 * when skb is orphaned (not attached to a socket). 2143 */ 2144 if (!skb->sk || skb->destructor == sock_edemux) 2145 skb->truesize += size - osize; 2146 2147 return 0; 2148 2149 nofrags: 2150 skb_kfree_head(data, size); 2151 nodata: 2152 return -ENOMEM; 2153 } 2154 EXPORT_SYMBOL(pskb_expand_head); 2155 2156 /* Make private copy of skb with writable head and some headroom */ 2157 2158 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom) 2159 { 2160 struct sk_buff *skb2; 2161 int delta = headroom - skb_headroom(skb); 2162 2163 if (delta <= 0) 2164 skb2 = pskb_copy(skb, GFP_ATOMIC); 2165 else { 2166 skb2 = skb_clone(skb, GFP_ATOMIC); 2167 if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0, 2168 GFP_ATOMIC)) { 2169 kfree_skb(skb2); 2170 skb2 = NULL; 2171 } 2172 } 2173 return skb2; 2174 } 2175 EXPORT_SYMBOL(skb_realloc_headroom); 2176 2177 /* Note: We plan to rework this in linux-6.4 */ 2178 int __skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri) 2179 { 2180 unsigned int saved_end_offset, saved_truesize; 2181 struct skb_shared_info *shinfo; 2182 int res; 2183 2184 saved_end_offset = skb_end_offset(skb); 2185 saved_truesize = skb->truesize; 2186 2187 res = pskb_expand_head(skb, 0, 0, pri); 2188 if (res) 2189 return res; 2190 2191 skb->truesize = saved_truesize; 2192 2193 if (likely(skb_end_offset(skb) == saved_end_offset)) 2194 return 0; 2195 2196 /* We can not change skb->end if the original or new value 2197 * is SKB_SMALL_HEAD_HEADROOM, as it might break skb_kfree_head(). 2198 */ 2199 if (saved_end_offset == SKB_SMALL_HEAD_HEADROOM || 2200 skb_end_offset(skb) == SKB_SMALL_HEAD_HEADROOM) { 2201 /* We think this path should not be taken. 2202 * Add a temporary trace to warn us just in case. 2203 */ 2204 pr_err_once("__skb_unclone_keeptruesize() skb_end_offset() %u -> %u\n", 2205 saved_end_offset, skb_end_offset(skb)); 2206 WARN_ON_ONCE(1); 2207 return 0; 2208 } 2209 2210 shinfo = skb_shinfo(skb); 2211 2212 /* We are about to change back skb->end, 2213 * we need to move skb_shinfo() to its new location. 2214 */ 2215 memmove(skb->head + saved_end_offset, 2216 shinfo, 2217 offsetof(struct skb_shared_info, frags[shinfo->nr_frags])); 2218 2219 skb_set_end_offset(skb, saved_end_offset); 2220 2221 return 0; 2222 } 2223 2224 /** 2225 * skb_expand_head - reallocate header of &sk_buff 2226 * @skb: buffer to reallocate 2227 * @headroom: needed headroom 2228 * 2229 * Unlike skb_realloc_headroom, this one does not allocate a new skb 2230 * if possible; copies skb->sk to new skb as needed 2231 * and frees original skb in case of failures. 2232 * 2233 * It expect increased headroom and generates warning otherwise. 2234 */ 2235 2236 struct sk_buff *skb_expand_head(struct sk_buff *skb, unsigned int headroom) 2237 { 2238 int delta = headroom - skb_headroom(skb); 2239 int osize = skb_end_offset(skb); 2240 struct sock *sk = skb->sk; 2241 2242 if (WARN_ONCE(delta <= 0, 2243 "%s is expecting an increase in the headroom", __func__)) 2244 return skb; 2245 2246 delta = SKB_DATA_ALIGN(delta); 2247 /* pskb_expand_head() might crash, if skb is shared. */ 2248 if (skb_shared(skb) || !is_skb_wmem(skb)) { 2249 struct sk_buff *nskb = skb_clone(skb, GFP_ATOMIC); 2250 2251 if (unlikely(!nskb)) 2252 goto fail; 2253 2254 if (sk) 2255 skb_set_owner_w(nskb, sk); 2256 consume_skb(skb); 2257 skb = nskb; 2258 } 2259 if (pskb_expand_head(skb, delta, 0, GFP_ATOMIC)) 2260 goto fail; 2261 2262 if (sk && is_skb_wmem(skb)) { 2263 delta = skb_end_offset(skb) - osize; 2264 refcount_add(delta, &sk->sk_wmem_alloc); 2265 skb->truesize += delta; 2266 } 2267 return skb; 2268 2269 fail: 2270 kfree_skb(skb); 2271 return NULL; 2272 } 2273 EXPORT_SYMBOL(skb_expand_head); 2274 2275 /** 2276 * skb_copy_expand - copy and expand sk_buff 2277 * @skb: buffer to copy 2278 * @newheadroom: new free bytes at head 2279 * @newtailroom: new free bytes at tail 2280 * @gfp_mask: allocation priority 2281 * 2282 * Make a copy of both an &sk_buff and its data and while doing so 2283 * allocate additional space. 2284 * 2285 * This is used when the caller wishes to modify the data and needs a 2286 * private copy of the data to alter as well as more space for new fields. 2287 * Returns %NULL on failure or the pointer to the buffer 2288 * on success. The returned buffer has a reference count of 1. 2289 * 2290 * You must pass %GFP_ATOMIC as the allocation priority if this function 2291 * is called from an interrupt. 2292 */ 2293 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, 2294 int newheadroom, int newtailroom, 2295 gfp_t gfp_mask) 2296 { 2297 /* 2298 * Allocate the copy buffer 2299 */ 2300 struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom, 2301 gfp_mask, skb_alloc_rx_flag(skb), 2302 NUMA_NO_NODE); 2303 int oldheadroom = skb_headroom(skb); 2304 int head_copy_len, head_copy_off; 2305 2306 if (!n) 2307 return NULL; 2308 2309 skb_reserve(n, newheadroom); 2310 2311 /* Set the tail pointer and length */ 2312 skb_put(n, skb->len); 2313 2314 head_copy_len = oldheadroom; 2315 head_copy_off = 0; 2316 if (newheadroom <= head_copy_len) 2317 head_copy_len = newheadroom; 2318 else 2319 head_copy_off = newheadroom - head_copy_len; 2320 2321 /* Copy the linear header and data. */ 2322 BUG_ON(skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off, 2323 skb->len + head_copy_len)); 2324 2325 skb_copy_header(n, skb); 2326 2327 skb_headers_offset_update(n, newheadroom - oldheadroom); 2328 2329 return n; 2330 } 2331 EXPORT_SYMBOL(skb_copy_expand); 2332 2333 /** 2334 * __skb_pad - zero pad the tail of an skb 2335 * @skb: buffer to pad 2336 * @pad: space to pad 2337 * @free_on_error: free buffer on error 2338 * 2339 * Ensure that a buffer is followed by a padding area that is zero 2340 * filled. Used by network drivers which may DMA or transfer data 2341 * beyond the buffer end onto the wire. 2342 * 2343 * May return error in out of memory cases. The skb is freed on error 2344 * if @free_on_error is true. 2345 */ 2346 2347 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error) 2348 { 2349 int err; 2350 int ntail; 2351 2352 /* If the skbuff is non linear tailroom is always zero.. */ 2353 if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) { 2354 memset(skb->data+skb->len, 0, pad); 2355 return 0; 2356 } 2357 2358 ntail = skb->data_len + pad - (skb->end - skb->tail); 2359 if (likely(skb_cloned(skb) || ntail > 0)) { 2360 err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC); 2361 if (unlikely(err)) 2362 goto free_skb; 2363 } 2364 2365 /* FIXME: The use of this function with non-linear skb's really needs 2366 * to be audited. 2367 */ 2368 err = skb_linearize(skb); 2369 if (unlikely(err)) 2370 goto free_skb; 2371 2372 memset(skb->data + skb->len, 0, pad); 2373 return 0; 2374 2375 free_skb: 2376 if (free_on_error) 2377 kfree_skb(skb); 2378 return err; 2379 } 2380 EXPORT_SYMBOL(__skb_pad); 2381 2382 /** 2383 * pskb_put - add data to the tail of a potentially fragmented buffer 2384 * @skb: start of the buffer to use 2385 * @tail: tail fragment of the buffer to use 2386 * @len: amount of data to add 2387 * 2388 * This function extends the used data area of the potentially 2389 * fragmented buffer. @tail must be the last fragment of @skb -- or 2390 * @skb itself. If this would exceed the total buffer size the kernel 2391 * will panic. A pointer to the first byte of the extra data is 2392 * returned. 2393 */ 2394 2395 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len) 2396 { 2397 if (tail != skb) { 2398 skb->data_len += len; 2399 skb->len += len; 2400 } 2401 return skb_put(tail, len); 2402 } 2403 EXPORT_SYMBOL_GPL(pskb_put); 2404 2405 /** 2406 * skb_put - add data to a buffer 2407 * @skb: buffer to use 2408 * @len: amount of data to add 2409 * 2410 * This function extends the used data area of the buffer. If this would 2411 * exceed the total buffer size the kernel will panic. A pointer to the 2412 * first byte of the extra data is returned. 2413 */ 2414 void *skb_put(struct sk_buff *skb, unsigned int len) 2415 { 2416 void *tmp = skb_tail_pointer(skb); 2417 SKB_LINEAR_ASSERT(skb); 2418 skb->tail += len; 2419 skb->len += len; 2420 if (unlikely(skb->tail > skb->end)) 2421 skb_over_panic(skb, len, __builtin_return_address(0)); 2422 return tmp; 2423 } 2424 EXPORT_SYMBOL(skb_put); 2425 2426 /** 2427 * skb_push - add data to the start of a buffer 2428 * @skb: buffer to use 2429 * @len: amount of data to add 2430 * 2431 * This function extends the used data area of the buffer at the buffer 2432 * start. If this would exceed the total buffer headroom the kernel will 2433 * panic. A pointer to the first byte of the extra data is returned. 2434 */ 2435 void *skb_push(struct sk_buff *skb, unsigned int len) 2436 { 2437 skb->data -= len; 2438 skb->len += len; 2439 if (unlikely(skb->data < skb->head)) 2440 skb_under_panic(skb, len, __builtin_return_address(0)); 2441 return skb->data; 2442 } 2443 EXPORT_SYMBOL(skb_push); 2444 2445 /** 2446 * skb_pull - remove data from the start of a buffer 2447 * @skb: buffer to use 2448 * @len: amount of data to remove 2449 * 2450 * This function removes data from the start of a buffer, returning 2451 * the memory to the headroom. A pointer to the next data in the buffer 2452 * is returned. Once the data has been pulled future pushes will overwrite 2453 * the old data. 2454 */ 2455 void *skb_pull(struct sk_buff *skb, unsigned int len) 2456 { 2457 return skb_pull_inline(skb, len); 2458 } 2459 EXPORT_SYMBOL(skb_pull); 2460 2461 /** 2462 * skb_pull_data - remove data from the start of a buffer returning its 2463 * original position. 2464 * @skb: buffer to use 2465 * @len: amount of data to remove 2466 * 2467 * This function removes data from the start of a buffer, returning 2468 * the memory to the headroom. A pointer to the original data in the buffer 2469 * is returned after checking if there is enough data to pull. Once the 2470 * data has been pulled future pushes will overwrite the old data. 2471 */ 2472 void *skb_pull_data(struct sk_buff *skb, size_t len) 2473 { 2474 void *data = skb->data; 2475 2476 if (skb->len < len) 2477 return NULL; 2478 2479 skb_pull(skb, len); 2480 2481 return data; 2482 } 2483 EXPORT_SYMBOL(skb_pull_data); 2484 2485 /** 2486 * skb_trim - remove end from a buffer 2487 * @skb: buffer to alter 2488 * @len: new length 2489 * 2490 * Cut the length of a buffer down by removing data from the tail. If 2491 * the buffer is already under the length specified it is not modified. 2492 * The skb must be linear. 2493 */ 2494 void skb_trim(struct sk_buff *skb, unsigned int len) 2495 { 2496 if (skb->len > len) 2497 __skb_trim(skb, len); 2498 } 2499 EXPORT_SYMBOL(skb_trim); 2500 2501 /* Trims skb to length len. It can change skb pointers. 2502 */ 2503 2504 int ___pskb_trim(struct sk_buff *skb, unsigned int len) 2505 { 2506 struct sk_buff **fragp; 2507 struct sk_buff *frag; 2508 int offset = skb_headlen(skb); 2509 int nfrags = skb_shinfo(skb)->nr_frags; 2510 int i; 2511 int err; 2512 2513 if (skb_cloned(skb) && 2514 unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))) 2515 return err; 2516 2517 i = 0; 2518 if (offset >= len) 2519 goto drop_pages; 2520 2521 for (; i < nfrags; i++) { 2522 int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]); 2523 2524 if (end < len) { 2525 offset = end; 2526 continue; 2527 } 2528 2529 skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset); 2530 2531 drop_pages: 2532 skb_shinfo(skb)->nr_frags = i; 2533 2534 for (; i < nfrags; i++) 2535 skb_frag_unref(skb, i); 2536 2537 if (skb_has_frag_list(skb)) 2538 skb_drop_fraglist(skb); 2539 goto done; 2540 } 2541 2542 for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp); 2543 fragp = &frag->next) { 2544 int end = offset + frag->len; 2545 2546 if (skb_shared(frag)) { 2547 struct sk_buff *nfrag; 2548 2549 nfrag = skb_clone(frag, GFP_ATOMIC); 2550 if (unlikely(!nfrag)) 2551 return -ENOMEM; 2552 2553 nfrag->next = frag->next; 2554 consume_skb(frag); 2555 frag = nfrag; 2556 *fragp = frag; 2557 } 2558 2559 if (end < len) { 2560 offset = end; 2561 continue; 2562 } 2563 2564 if (end > len && 2565 unlikely((err = pskb_trim(frag, len - offset)))) 2566 return err; 2567 2568 if (frag->next) 2569 skb_drop_list(&frag->next); 2570 break; 2571 } 2572 2573 done: 2574 if (len > skb_headlen(skb)) { 2575 skb->data_len -= skb->len - len; 2576 skb->len = len; 2577 } else { 2578 skb->len = len; 2579 skb->data_len = 0; 2580 skb_set_tail_pointer(skb, len); 2581 } 2582 2583 if (!skb->sk || skb->destructor == sock_edemux) 2584 skb_condense(skb); 2585 return 0; 2586 } 2587 EXPORT_SYMBOL(___pskb_trim); 2588 2589 /* Note : use pskb_trim_rcsum() instead of calling this directly 2590 */ 2591 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len) 2592 { 2593 if (skb->ip_summed == CHECKSUM_COMPLETE) { 2594 int delta = skb->len - len; 2595 2596 skb->csum = csum_block_sub(skb->csum, 2597 skb_checksum(skb, len, delta, 0), 2598 len); 2599 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { 2600 int hdlen = (len > skb_headlen(skb)) ? skb_headlen(skb) : len; 2601 int offset = skb_checksum_start_offset(skb) + skb->csum_offset; 2602 2603 if (offset + sizeof(__sum16) > hdlen) 2604 return -EINVAL; 2605 } 2606 return __pskb_trim(skb, len); 2607 } 2608 EXPORT_SYMBOL(pskb_trim_rcsum_slow); 2609 2610 /** 2611 * __pskb_pull_tail - advance tail of skb header 2612 * @skb: buffer to reallocate 2613 * @delta: number of bytes to advance tail 2614 * 2615 * The function makes a sense only on a fragmented &sk_buff, 2616 * it expands header moving its tail forward and copying necessary 2617 * data from fragmented part. 2618 * 2619 * &sk_buff MUST have reference count of 1. 2620 * 2621 * Returns %NULL (and &sk_buff does not change) if pull failed 2622 * or value of new tail of skb in the case of success. 2623 * 2624 * All the pointers pointing into skb header may change and must be 2625 * reloaded after call to this function. 2626 */ 2627 2628 /* Moves tail of skb head forward, copying data from fragmented part, 2629 * when it is necessary. 2630 * 1. It may fail due to malloc failure. 2631 * 2. It may change skb pointers. 2632 * 2633 * It is pretty complicated. Luckily, it is called only in exceptional cases. 2634 */ 2635 void *__pskb_pull_tail(struct sk_buff *skb, int delta) 2636 { 2637 /* If skb has not enough free space at tail, get new one 2638 * plus 128 bytes for future expansions. If we have enough 2639 * room at tail, reallocate without expansion only if skb is cloned. 2640 */ 2641 int i, k, eat = (skb->tail + delta) - skb->end; 2642 2643 if (eat > 0 || skb_cloned(skb)) { 2644 if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0, 2645 GFP_ATOMIC)) 2646 return NULL; 2647 } 2648 2649 BUG_ON(skb_copy_bits(skb, skb_headlen(skb), 2650 skb_tail_pointer(skb), delta)); 2651 2652 /* Optimization: no fragments, no reasons to preestimate 2653 * size of pulled pages. Superb. 2654 */ 2655 if (!skb_has_frag_list(skb)) 2656 goto pull_pages; 2657 2658 /* Estimate size of pulled pages. */ 2659 eat = delta; 2660 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2661 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 2662 2663 if (size >= eat) 2664 goto pull_pages; 2665 eat -= size; 2666 } 2667 2668 /* If we need update frag list, we are in troubles. 2669 * Certainly, it is possible to add an offset to skb data, 2670 * but taking into account that pulling is expected to 2671 * be very rare operation, it is worth to fight against 2672 * further bloating skb head and crucify ourselves here instead. 2673 * Pure masohism, indeed. 8)8) 2674 */ 2675 if (eat) { 2676 struct sk_buff *list = skb_shinfo(skb)->frag_list; 2677 struct sk_buff *clone = NULL; 2678 struct sk_buff *insp = NULL; 2679 2680 do { 2681 if (list->len <= eat) { 2682 /* Eaten as whole. */ 2683 eat -= list->len; 2684 list = list->next; 2685 insp = list; 2686 } else { 2687 /* Eaten partially. */ 2688 if (skb_is_gso(skb) && !list->head_frag && 2689 skb_headlen(list)) 2690 skb_shinfo(skb)->gso_type |= SKB_GSO_DODGY; 2691 2692 if (skb_shared(list)) { 2693 /* Sucks! We need to fork list. :-( */ 2694 clone = skb_clone(list, GFP_ATOMIC); 2695 if (!clone) 2696 return NULL; 2697 insp = list->next; 2698 list = clone; 2699 } else { 2700 /* This may be pulled without 2701 * problems. */ 2702 insp = list; 2703 } 2704 if (!pskb_pull(list, eat)) { 2705 kfree_skb(clone); 2706 return NULL; 2707 } 2708 break; 2709 } 2710 } while (eat); 2711 2712 /* Free pulled out fragments. */ 2713 while ((list = skb_shinfo(skb)->frag_list) != insp) { 2714 skb_shinfo(skb)->frag_list = list->next; 2715 consume_skb(list); 2716 } 2717 /* And insert new clone at head. */ 2718 if (clone) { 2719 clone->next = list; 2720 skb_shinfo(skb)->frag_list = clone; 2721 } 2722 } 2723 /* Success! Now we may commit changes to skb data. */ 2724 2725 pull_pages: 2726 eat = delta; 2727 k = 0; 2728 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2729 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 2730 2731 if (size <= eat) { 2732 skb_frag_unref(skb, i); 2733 eat -= size; 2734 } else { 2735 skb_frag_t *frag = &skb_shinfo(skb)->frags[k]; 2736 2737 *frag = skb_shinfo(skb)->frags[i]; 2738 if (eat) { 2739 skb_frag_off_add(frag, eat); 2740 skb_frag_size_sub(frag, eat); 2741 if (!i) 2742 goto end; 2743 eat = 0; 2744 } 2745 k++; 2746 } 2747 } 2748 skb_shinfo(skb)->nr_frags = k; 2749 2750 end: 2751 skb->tail += delta; 2752 skb->data_len -= delta; 2753 2754 if (!skb->data_len) 2755 skb_zcopy_clear(skb, false); 2756 2757 return skb_tail_pointer(skb); 2758 } 2759 EXPORT_SYMBOL(__pskb_pull_tail); 2760 2761 /** 2762 * skb_copy_bits - copy bits from skb to kernel buffer 2763 * @skb: source skb 2764 * @offset: offset in source 2765 * @to: destination buffer 2766 * @len: number of bytes to copy 2767 * 2768 * Copy the specified number of bytes from the source skb to the 2769 * destination buffer. 2770 * 2771 * CAUTION ! : 2772 * If its prototype is ever changed, 2773 * check arch/{*}/net/{*}.S files, 2774 * since it is called from BPF assembly code. 2775 */ 2776 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len) 2777 { 2778 int start = skb_headlen(skb); 2779 struct sk_buff *frag_iter; 2780 int i, copy; 2781 2782 if (offset > (int)skb->len - len) 2783 goto fault; 2784 2785 /* Copy header. */ 2786 if ((copy = start - offset) > 0) { 2787 if (copy > len) 2788 copy = len; 2789 skb_copy_from_linear_data_offset(skb, offset, to, copy); 2790 if ((len -= copy) == 0) 2791 return 0; 2792 offset += copy; 2793 to += copy; 2794 } 2795 2796 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2797 int end; 2798 skb_frag_t *f = &skb_shinfo(skb)->frags[i]; 2799 2800 WARN_ON(start > offset + len); 2801 2802 end = start + skb_frag_size(f); 2803 if ((copy = end - offset) > 0) { 2804 u32 p_off, p_len, copied; 2805 struct page *p; 2806 u8 *vaddr; 2807 2808 if (copy > len) 2809 copy = len; 2810 2811 skb_frag_foreach_page(f, 2812 skb_frag_off(f) + offset - start, 2813 copy, p, p_off, p_len, copied) { 2814 vaddr = kmap_atomic(p); 2815 memcpy(to + copied, vaddr + p_off, p_len); 2816 kunmap_atomic(vaddr); 2817 } 2818 2819 if ((len -= copy) == 0) 2820 return 0; 2821 offset += copy; 2822 to += copy; 2823 } 2824 start = end; 2825 } 2826 2827 skb_walk_frags(skb, frag_iter) { 2828 int end; 2829 2830 WARN_ON(start > offset + len); 2831 2832 end = start + frag_iter->len; 2833 if ((copy = end - offset) > 0) { 2834 if (copy > len) 2835 copy = len; 2836 if (skb_copy_bits(frag_iter, offset - start, to, copy)) 2837 goto fault; 2838 if ((len -= copy) == 0) 2839 return 0; 2840 offset += copy; 2841 to += copy; 2842 } 2843 start = end; 2844 } 2845 2846 if (!len) 2847 return 0; 2848 2849 fault: 2850 return -EFAULT; 2851 } 2852 EXPORT_SYMBOL(skb_copy_bits); 2853 2854 /* 2855 * Callback from splice_to_pipe(), if we need to release some pages 2856 * at the end of the spd in case we error'ed out in filling the pipe. 2857 */ 2858 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i) 2859 { 2860 put_page(spd->pages[i]); 2861 } 2862 2863 static struct page *linear_to_page(struct page *page, unsigned int *len, 2864 unsigned int *offset, 2865 struct sock *sk) 2866 { 2867 struct page_frag *pfrag = sk_page_frag(sk); 2868 2869 if (!sk_page_frag_refill(sk, pfrag)) 2870 return NULL; 2871 2872 *len = min_t(unsigned int, *len, pfrag->size - pfrag->offset); 2873 2874 memcpy(page_address(pfrag->page) + pfrag->offset, 2875 page_address(page) + *offset, *len); 2876 *offset = pfrag->offset; 2877 pfrag->offset += *len; 2878 2879 return pfrag->page; 2880 } 2881 2882 static bool spd_can_coalesce(const struct splice_pipe_desc *spd, 2883 struct page *page, 2884 unsigned int offset) 2885 { 2886 return spd->nr_pages && 2887 spd->pages[spd->nr_pages - 1] == page && 2888 (spd->partial[spd->nr_pages - 1].offset + 2889 spd->partial[spd->nr_pages - 1].len == offset); 2890 } 2891 2892 /* 2893 * Fill page/offset/length into spd, if it can hold more pages. 2894 */ 2895 static bool spd_fill_page(struct splice_pipe_desc *spd, 2896 struct pipe_inode_info *pipe, struct page *page, 2897 unsigned int *len, unsigned int offset, 2898 bool linear, 2899 struct sock *sk) 2900 { 2901 if (unlikely(spd->nr_pages == MAX_SKB_FRAGS)) 2902 return true; 2903 2904 if (linear) { 2905 page = linear_to_page(page, len, &offset, sk); 2906 if (!page) 2907 return true; 2908 } 2909 if (spd_can_coalesce(spd, page, offset)) { 2910 spd->partial[spd->nr_pages - 1].len += *len; 2911 return false; 2912 } 2913 get_page(page); 2914 spd->pages[spd->nr_pages] = page; 2915 spd->partial[spd->nr_pages].len = *len; 2916 spd->partial[spd->nr_pages].offset = offset; 2917 spd->nr_pages++; 2918 2919 return false; 2920 } 2921 2922 static bool __splice_segment(struct page *page, unsigned int poff, 2923 unsigned int plen, unsigned int *off, 2924 unsigned int *len, 2925 struct splice_pipe_desc *spd, bool linear, 2926 struct sock *sk, 2927 struct pipe_inode_info *pipe) 2928 { 2929 if (!*len) 2930 return true; 2931 2932 /* skip this segment if already processed */ 2933 if (*off >= plen) { 2934 *off -= plen; 2935 return false; 2936 } 2937 2938 /* ignore any bits we already processed */ 2939 poff += *off; 2940 plen -= *off; 2941 *off = 0; 2942 2943 do { 2944 unsigned int flen = min(*len, plen); 2945 2946 if (spd_fill_page(spd, pipe, page, &flen, poff, 2947 linear, sk)) 2948 return true; 2949 poff += flen; 2950 plen -= flen; 2951 *len -= flen; 2952 } while (*len && plen); 2953 2954 return false; 2955 } 2956 2957 /* 2958 * Map linear and fragment data from the skb to spd. It reports true if the 2959 * pipe is full or if we already spliced the requested length. 2960 */ 2961 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe, 2962 unsigned int *offset, unsigned int *len, 2963 struct splice_pipe_desc *spd, struct sock *sk) 2964 { 2965 int seg; 2966 struct sk_buff *iter; 2967 2968 /* map the linear part : 2969 * If skb->head_frag is set, this 'linear' part is backed by a 2970 * fragment, and if the head is not shared with any clones then 2971 * we can avoid a copy since we own the head portion of this page. 2972 */ 2973 if (__splice_segment(virt_to_page(skb->data), 2974 (unsigned long) skb->data & (PAGE_SIZE - 1), 2975 skb_headlen(skb), 2976 offset, len, spd, 2977 skb_head_is_locked(skb), 2978 sk, pipe)) 2979 return true; 2980 2981 /* 2982 * then map the fragments 2983 */ 2984 for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) { 2985 const skb_frag_t *f = &skb_shinfo(skb)->frags[seg]; 2986 2987 if (__splice_segment(skb_frag_page(f), 2988 skb_frag_off(f), skb_frag_size(f), 2989 offset, len, spd, false, sk, pipe)) 2990 return true; 2991 } 2992 2993 skb_walk_frags(skb, iter) { 2994 if (*offset >= iter->len) { 2995 *offset -= iter->len; 2996 continue; 2997 } 2998 /* __skb_splice_bits() only fails if the output has no room 2999 * left, so no point in going over the frag_list for the error 3000 * case. 3001 */ 3002 if (__skb_splice_bits(iter, pipe, offset, len, spd, sk)) 3003 return true; 3004 } 3005 3006 return false; 3007 } 3008 3009 /* 3010 * Map data from the skb to a pipe. Should handle both the linear part, 3011 * the fragments, and the frag list. 3012 */ 3013 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset, 3014 struct pipe_inode_info *pipe, unsigned int tlen, 3015 unsigned int flags) 3016 { 3017 struct partial_page partial[MAX_SKB_FRAGS]; 3018 struct page *pages[MAX_SKB_FRAGS]; 3019 struct splice_pipe_desc spd = { 3020 .pages = pages, 3021 .partial = partial, 3022 .nr_pages_max = MAX_SKB_FRAGS, 3023 .ops = &nosteal_pipe_buf_ops, 3024 .spd_release = sock_spd_release, 3025 }; 3026 int ret = 0; 3027 3028 __skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk); 3029 3030 if (spd.nr_pages) 3031 ret = splice_to_pipe(pipe, &spd); 3032 3033 return ret; 3034 } 3035 EXPORT_SYMBOL_GPL(skb_splice_bits); 3036 3037 static int sendmsg_locked(struct sock *sk, struct msghdr *msg) 3038 { 3039 struct socket *sock = sk->sk_socket; 3040 size_t size = msg_data_left(msg); 3041 3042 if (!sock) 3043 return -EINVAL; 3044 3045 if (!sock->ops->sendmsg_locked) 3046 return sock_no_sendmsg_locked(sk, msg, size); 3047 3048 return sock->ops->sendmsg_locked(sk, msg, size); 3049 } 3050 3051 static int sendmsg_unlocked(struct sock *sk, struct msghdr *msg) 3052 { 3053 struct socket *sock = sk->sk_socket; 3054 3055 if (!sock) 3056 return -EINVAL; 3057 return sock_sendmsg(sock, msg); 3058 } 3059 3060 typedef int (*sendmsg_func)(struct sock *sk, struct msghdr *msg); 3061 static int __skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, 3062 int len, sendmsg_func sendmsg) 3063 { 3064 unsigned int orig_len = len; 3065 struct sk_buff *head = skb; 3066 unsigned short fragidx; 3067 int slen, ret; 3068 3069 do_frag_list: 3070 3071 /* Deal with head data */ 3072 while (offset < skb_headlen(skb) && len) { 3073 struct kvec kv; 3074 struct msghdr msg; 3075 3076 slen = min_t(int, len, skb_headlen(skb) - offset); 3077 kv.iov_base = skb->data + offset; 3078 kv.iov_len = slen; 3079 memset(&msg, 0, sizeof(msg)); 3080 msg.msg_flags = MSG_DONTWAIT; 3081 3082 iov_iter_kvec(&msg.msg_iter, ITER_SOURCE, &kv, 1, slen); 3083 ret = INDIRECT_CALL_2(sendmsg, sendmsg_locked, 3084 sendmsg_unlocked, sk, &msg); 3085 if (ret <= 0) 3086 goto error; 3087 3088 offset += ret; 3089 len -= ret; 3090 } 3091 3092 /* All the data was skb head? */ 3093 if (!len) 3094 goto out; 3095 3096 /* Make offset relative to start of frags */ 3097 offset -= skb_headlen(skb); 3098 3099 /* Find where we are in frag list */ 3100 for (fragidx = 0; fragidx < skb_shinfo(skb)->nr_frags; fragidx++) { 3101 skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx]; 3102 3103 if (offset < skb_frag_size(frag)) 3104 break; 3105 3106 offset -= skb_frag_size(frag); 3107 } 3108 3109 for (; len && fragidx < skb_shinfo(skb)->nr_frags; fragidx++) { 3110 skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx]; 3111 3112 slen = min_t(size_t, len, skb_frag_size(frag) - offset); 3113 3114 while (slen) { 3115 struct bio_vec bvec; 3116 struct msghdr msg = { 3117 .msg_flags = MSG_SPLICE_PAGES | MSG_DONTWAIT, 3118 }; 3119 3120 bvec_set_page(&bvec, skb_frag_page(frag), slen, 3121 skb_frag_off(frag) + offset); 3122 iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, 3123 slen); 3124 3125 ret = INDIRECT_CALL_2(sendmsg, sendmsg_locked, 3126 sendmsg_unlocked, sk, &msg); 3127 if (ret <= 0) 3128 goto error; 3129 3130 len -= ret; 3131 offset += ret; 3132 slen -= ret; 3133 } 3134 3135 offset = 0; 3136 } 3137 3138 if (len) { 3139 /* Process any frag lists */ 3140 3141 if (skb == head) { 3142 if (skb_has_frag_list(skb)) { 3143 skb = skb_shinfo(skb)->frag_list; 3144 goto do_frag_list; 3145 } 3146 } else if (skb->next) { 3147 skb = skb->next; 3148 goto do_frag_list; 3149 } 3150 } 3151 3152 out: 3153 return orig_len - len; 3154 3155 error: 3156 return orig_len == len ? ret : orig_len - len; 3157 } 3158 3159 /* Send skb data on a socket. Socket must be locked. */ 3160 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset, 3161 int len) 3162 { 3163 return __skb_send_sock(sk, skb, offset, len, sendmsg_locked); 3164 } 3165 EXPORT_SYMBOL_GPL(skb_send_sock_locked); 3166 3167 /* Send skb data on a socket. Socket must be unlocked. */ 3168 int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len) 3169 { 3170 return __skb_send_sock(sk, skb, offset, len, sendmsg_unlocked); 3171 } 3172 3173 /** 3174 * skb_store_bits - store bits from kernel buffer to skb 3175 * @skb: destination buffer 3176 * @offset: offset in destination 3177 * @from: source buffer 3178 * @len: number of bytes to copy 3179 * 3180 * Copy the specified number of bytes from the source buffer to the 3181 * destination skb. This function handles all the messy bits of 3182 * traversing fragment lists and such. 3183 */ 3184 3185 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len) 3186 { 3187 int start = skb_headlen(skb); 3188 struct sk_buff *frag_iter; 3189 int i, copy; 3190 3191 if (offset > (int)skb->len - len) 3192 goto fault; 3193 3194 if ((copy = start - offset) > 0) { 3195 if (copy > len) 3196 copy = len; 3197 skb_copy_to_linear_data_offset(skb, offset, from, copy); 3198 if ((len -= copy) == 0) 3199 return 0; 3200 offset += copy; 3201 from += copy; 3202 } 3203 3204 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 3205 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 3206 int end; 3207 3208 WARN_ON(start > offset + len); 3209 3210 end = start + skb_frag_size(frag); 3211 if ((copy = end - offset) > 0) { 3212 u32 p_off, p_len, copied; 3213 struct page *p; 3214 u8 *vaddr; 3215 3216 if (copy > len) 3217 copy = len; 3218 3219 skb_frag_foreach_page(frag, 3220 skb_frag_off(frag) + offset - start, 3221 copy, p, p_off, p_len, copied) { 3222 vaddr = kmap_atomic(p); 3223 memcpy(vaddr + p_off, from + copied, p_len); 3224 kunmap_atomic(vaddr); 3225 } 3226 3227 if ((len -= copy) == 0) 3228 return 0; 3229 offset += copy; 3230 from += copy; 3231 } 3232 start = end; 3233 } 3234 3235 skb_walk_frags(skb, frag_iter) { 3236 int end; 3237 3238 WARN_ON(start > offset + len); 3239 3240 end = start + frag_iter->len; 3241 if ((copy = end - offset) > 0) { 3242 if (copy > len) 3243 copy = len; 3244 if (skb_store_bits(frag_iter, offset - start, 3245 from, copy)) 3246 goto fault; 3247 if ((len -= copy) == 0) 3248 return 0; 3249 offset += copy; 3250 from += copy; 3251 } 3252 start = end; 3253 } 3254 if (!len) 3255 return 0; 3256 3257 fault: 3258 return -EFAULT; 3259 } 3260 EXPORT_SYMBOL(skb_store_bits); 3261 3262 /* Checksum skb data. */ 3263 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len, 3264 __wsum csum, const struct skb_checksum_ops *ops) 3265 { 3266 int start = skb_headlen(skb); 3267 int i, copy = start - offset; 3268 struct sk_buff *frag_iter; 3269 int pos = 0; 3270 3271 /* Checksum header. */ 3272 if (copy > 0) { 3273 if (copy > len) 3274 copy = len; 3275 csum = INDIRECT_CALL_1(ops->update, csum_partial_ext, 3276 skb->data + offset, copy, csum); 3277 if ((len -= copy) == 0) 3278 return csum; 3279 offset += copy; 3280 pos = copy; 3281 } 3282 3283 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 3284 int end; 3285 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 3286 3287 WARN_ON(start > offset + len); 3288 3289 end = start + skb_frag_size(frag); 3290 if ((copy = end - offset) > 0) { 3291 u32 p_off, p_len, copied; 3292 struct page *p; 3293 __wsum csum2; 3294 u8 *vaddr; 3295 3296 if (copy > len) 3297 copy = len; 3298 3299 skb_frag_foreach_page(frag, 3300 skb_frag_off(frag) + offset - start, 3301 copy, p, p_off, p_len, copied) { 3302 vaddr = kmap_atomic(p); 3303 csum2 = INDIRECT_CALL_1(ops->update, 3304 csum_partial_ext, 3305 vaddr + p_off, p_len, 0); 3306 kunmap_atomic(vaddr); 3307 csum = INDIRECT_CALL_1(ops->combine, 3308 csum_block_add_ext, csum, 3309 csum2, pos, p_len); 3310 pos += p_len; 3311 } 3312 3313 if (!(len -= copy)) 3314 return csum; 3315 offset += copy; 3316 } 3317 start = end; 3318 } 3319 3320 skb_walk_frags(skb, frag_iter) { 3321 int end; 3322 3323 WARN_ON(start > offset + len); 3324 3325 end = start + frag_iter->len; 3326 if ((copy = end - offset) > 0) { 3327 __wsum csum2; 3328 if (copy > len) 3329 copy = len; 3330 csum2 = __skb_checksum(frag_iter, offset - start, 3331 copy, 0, ops); 3332 csum = INDIRECT_CALL_1(ops->combine, csum_block_add_ext, 3333 csum, csum2, pos, copy); 3334 if ((len -= copy) == 0) 3335 return csum; 3336 offset += copy; 3337 pos += copy; 3338 } 3339 start = end; 3340 } 3341 BUG_ON(len); 3342 3343 return csum; 3344 } 3345 EXPORT_SYMBOL(__skb_checksum); 3346 3347 __wsum skb_checksum(const struct sk_buff *skb, int offset, 3348 int len, __wsum csum) 3349 { 3350 const struct skb_checksum_ops ops = { 3351 .update = csum_partial_ext, 3352 .combine = csum_block_add_ext, 3353 }; 3354 3355 return __skb_checksum(skb, offset, len, csum, &ops); 3356 } 3357 EXPORT_SYMBOL(skb_checksum); 3358 3359 /* Both of above in one bottle. */ 3360 3361 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, 3362 u8 *to, int len) 3363 { 3364 int start = skb_headlen(skb); 3365 int i, copy = start - offset; 3366 struct sk_buff *frag_iter; 3367 int pos = 0; 3368 __wsum csum = 0; 3369 3370 /* Copy header. */ 3371 if (copy > 0) { 3372 if (copy > len) 3373 copy = len; 3374 csum = csum_partial_copy_nocheck(skb->data + offset, to, 3375 copy); 3376 if ((len -= copy) == 0) 3377 return csum; 3378 offset += copy; 3379 to += copy; 3380 pos = copy; 3381 } 3382 3383 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 3384 int end; 3385 3386 WARN_ON(start > offset + len); 3387 3388 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]); 3389 if ((copy = end - offset) > 0) { 3390 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 3391 u32 p_off, p_len, copied; 3392 struct page *p; 3393 __wsum csum2; 3394 u8 *vaddr; 3395 3396 if (copy > len) 3397 copy = len; 3398 3399 skb_frag_foreach_page(frag, 3400 skb_frag_off(frag) + offset - start, 3401 copy, p, p_off, p_len, copied) { 3402 vaddr = kmap_atomic(p); 3403 csum2 = csum_partial_copy_nocheck(vaddr + p_off, 3404 to + copied, 3405 p_len); 3406 kunmap_atomic(vaddr); 3407 csum = csum_block_add(csum, csum2, pos); 3408 pos += p_len; 3409 } 3410 3411 if (!(len -= copy)) 3412 return csum; 3413 offset += copy; 3414 to += copy; 3415 } 3416 start = end; 3417 } 3418 3419 skb_walk_frags(skb, frag_iter) { 3420 __wsum csum2; 3421 int end; 3422 3423 WARN_ON(start > offset + len); 3424 3425 end = start + frag_iter->len; 3426 if ((copy = end - offset) > 0) { 3427 if (copy > len) 3428 copy = len; 3429 csum2 = skb_copy_and_csum_bits(frag_iter, 3430 offset - start, 3431 to, copy); 3432 csum = csum_block_add(csum, csum2, pos); 3433 if ((len -= copy) == 0) 3434 return csum; 3435 offset += copy; 3436 to += copy; 3437 pos += copy; 3438 } 3439 start = end; 3440 } 3441 BUG_ON(len); 3442 return csum; 3443 } 3444 EXPORT_SYMBOL(skb_copy_and_csum_bits); 3445 3446 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len) 3447 { 3448 __sum16 sum; 3449 3450 sum = csum_fold(skb_checksum(skb, 0, len, skb->csum)); 3451 /* See comments in __skb_checksum_complete(). */ 3452 if (likely(!sum)) { 3453 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) && 3454 !skb->csum_complete_sw) 3455 netdev_rx_csum_fault(skb->dev, skb); 3456 } 3457 if (!skb_shared(skb)) 3458 skb->csum_valid = !sum; 3459 return sum; 3460 } 3461 EXPORT_SYMBOL(__skb_checksum_complete_head); 3462 3463 /* This function assumes skb->csum already holds pseudo header's checksum, 3464 * which has been changed from the hardware checksum, for example, by 3465 * __skb_checksum_validate_complete(). And, the original skb->csum must 3466 * have been validated unsuccessfully for CHECKSUM_COMPLETE case. 3467 * 3468 * It returns non-zero if the recomputed checksum is still invalid, otherwise 3469 * zero. The new checksum is stored back into skb->csum unless the skb is 3470 * shared. 3471 */ 3472 __sum16 __skb_checksum_complete(struct sk_buff *skb) 3473 { 3474 __wsum csum; 3475 __sum16 sum; 3476 3477 csum = skb_checksum(skb, 0, skb->len, 0); 3478 3479 sum = csum_fold(csum_add(skb->csum, csum)); 3480 /* This check is inverted, because we already knew the hardware 3481 * checksum is invalid before calling this function. So, if the 3482 * re-computed checksum is valid instead, then we have a mismatch 3483 * between the original skb->csum and skb_checksum(). This means either 3484 * the original hardware checksum is incorrect or we screw up skb->csum 3485 * when moving skb->data around. 3486 */ 3487 if (likely(!sum)) { 3488 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) && 3489 !skb->csum_complete_sw) 3490 netdev_rx_csum_fault(skb->dev, skb); 3491 } 3492 3493 if (!skb_shared(skb)) { 3494 /* Save full packet checksum */ 3495 skb->csum = csum; 3496 skb->ip_summed = CHECKSUM_COMPLETE; 3497 skb->csum_complete_sw = 1; 3498 skb->csum_valid = !sum; 3499 } 3500 3501 return sum; 3502 } 3503 EXPORT_SYMBOL(__skb_checksum_complete); 3504 3505 static __wsum warn_crc32c_csum_update(const void *buff, int len, __wsum sum) 3506 { 3507 net_warn_ratelimited( 3508 "%s: attempt to compute crc32c without libcrc32c.ko\n", 3509 __func__); 3510 return 0; 3511 } 3512 3513 static __wsum warn_crc32c_csum_combine(__wsum csum, __wsum csum2, 3514 int offset, int len) 3515 { 3516 net_warn_ratelimited( 3517 "%s: attempt to compute crc32c without libcrc32c.ko\n", 3518 __func__); 3519 return 0; 3520 } 3521 3522 static const struct skb_checksum_ops default_crc32c_ops = { 3523 .update = warn_crc32c_csum_update, 3524 .combine = warn_crc32c_csum_combine, 3525 }; 3526 3527 const struct skb_checksum_ops *crc32c_csum_stub __read_mostly = 3528 &default_crc32c_ops; 3529 EXPORT_SYMBOL(crc32c_csum_stub); 3530 3531 /** 3532 * skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy() 3533 * @from: source buffer 3534 * 3535 * Calculates the amount of linear headroom needed in the 'to' skb passed 3536 * into skb_zerocopy(). 3537 */ 3538 unsigned int 3539 skb_zerocopy_headlen(const struct sk_buff *from) 3540 { 3541 unsigned int hlen = 0; 3542 3543 if (!from->head_frag || 3544 skb_headlen(from) < L1_CACHE_BYTES || 3545 skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS) { 3546 hlen = skb_headlen(from); 3547 if (!hlen) 3548 hlen = from->len; 3549 } 3550 3551 if (skb_has_frag_list(from)) 3552 hlen = from->len; 3553 3554 return hlen; 3555 } 3556 EXPORT_SYMBOL_GPL(skb_zerocopy_headlen); 3557 3558 /** 3559 * skb_zerocopy - Zero copy skb to skb 3560 * @to: destination buffer 3561 * @from: source buffer 3562 * @len: number of bytes to copy from source buffer 3563 * @hlen: size of linear headroom in destination buffer 3564 * 3565 * Copies up to `len` bytes from `from` to `to` by creating references 3566 * to the frags in the source buffer. 3567 * 3568 * The `hlen` as calculated by skb_zerocopy_headlen() specifies the 3569 * headroom in the `to` buffer. 3570 * 3571 * Return value: 3572 * 0: everything is OK 3573 * -ENOMEM: couldn't orphan frags of @from due to lack of memory 3574 * -EFAULT: skb_copy_bits() found some problem with skb geometry 3575 */ 3576 int 3577 skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen) 3578 { 3579 int i, j = 0; 3580 int plen = 0; /* length of skb->head fragment */ 3581 int ret; 3582 struct page *page; 3583 unsigned int offset; 3584 3585 BUG_ON(!from->head_frag && !hlen); 3586 3587 /* dont bother with small payloads */ 3588 if (len <= skb_tailroom(to)) 3589 return skb_copy_bits(from, 0, skb_put(to, len), len); 3590 3591 if (hlen) { 3592 ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen); 3593 if (unlikely(ret)) 3594 return ret; 3595 len -= hlen; 3596 } else { 3597 plen = min_t(int, skb_headlen(from), len); 3598 if (plen) { 3599 page = virt_to_head_page(from->head); 3600 offset = from->data - (unsigned char *)page_address(page); 3601 __skb_fill_page_desc(to, 0, page, offset, plen); 3602 get_page(page); 3603 j = 1; 3604 len -= plen; 3605 } 3606 } 3607 3608 skb_len_add(to, len + plen); 3609 3610 if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) { 3611 skb_tx_error(from); 3612 return -ENOMEM; 3613 } 3614 skb_zerocopy_clone(to, from, GFP_ATOMIC); 3615 3616 for (i = 0; i < skb_shinfo(from)->nr_frags; i++) { 3617 int size; 3618 3619 if (!len) 3620 break; 3621 skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i]; 3622 size = min_t(int, skb_frag_size(&skb_shinfo(to)->frags[j]), 3623 len); 3624 skb_frag_size_set(&skb_shinfo(to)->frags[j], size); 3625 len -= size; 3626 skb_frag_ref(to, j); 3627 j++; 3628 } 3629 skb_shinfo(to)->nr_frags = j; 3630 3631 return 0; 3632 } 3633 EXPORT_SYMBOL_GPL(skb_zerocopy); 3634 3635 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to) 3636 { 3637 __wsum csum; 3638 long csstart; 3639 3640 if (skb->ip_summed == CHECKSUM_PARTIAL) 3641 csstart = skb_checksum_start_offset(skb); 3642 else 3643 csstart = skb_headlen(skb); 3644 3645 BUG_ON(csstart > skb_headlen(skb)); 3646 3647 skb_copy_from_linear_data(skb, to, csstart); 3648 3649 csum = 0; 3650 if (csstart != skb->len) 3651 csum = skb_copy_and_csum_bits(skb, csstart, to + csstart, 3652 skb->len - csstart); 3653 3654 if (skb->ip_summed == CHECKSUM_PARTIAL) { 3655 long csstuff = csstart + skb->csum_offset; 3656 3657 *((__sum16 *)(to + csstuff)) = csum_fold(csum); 3658 } 3659 } 3660 EXPORT_SYMBOL(skb_copy_and_csum_dev); 3661 3662 /** 3663 * skb_dequeue - remove from the head of the queue 3664 * @list: list to dequeue from 3665 * 3666 * Remove the head of the list. The list lock is taken so the function 3667 * may be used safely with other locking list functions. The head item is 3668 * returned or %NULL if the list is empty. 3669 */ 3670 3671 struct sk_buff *skb_dequeue(struct sk_buff_head *list) 3672 { 3673 unsigned long flags; 3674 struct sk_buff *result; 3675 3676 spin_lock_irqsave(&list->lock, flags); 3677 result = __skb_dequeue(list); 3678 spin_unlock_irqrestore(&list->lock, flags); 3679 return result; 3680 } 3681 EXPORT_SYMBOL(skb_dequeue); 3682 3683 /** 3684 * skb_dequeue_tail - remove from the tail of the queue 3685 * @list: list to dequeue from 3686 * 3687 * Remove the tail of the list. The list lock is taken so the function 3688 * may be used safely with other locking list functions. The tail item is 3689 * returned or %NULL if the list is empty. 3690 */ 3691 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list) 3692 { 3693 unsigned long flags; 3694 struct sk_buff *result; 3695 3696 spin_lock_irqsave(&list->lock, flags); 3697 result = __skb_dequeue_tail(list); 3698 spin_unlock_irqrestore(&list->lock, flags); 3699 return result; 3700 } 3701 EXPORT_SYMBOL(skb_dequeue_tail); 3702 3703 /** 3704 * skb_queue_purge_reason - empty a list 3705 * @list: list to empty 3706 * @reason: drop reason 3707 * 3708 * Delete all buffers on an &sk_buff list. Each buffer is removed from 3709 * the list and one reference dropped. This function takes the list 3710 * lock and is atomic with respect to other list locking functions. 3711 */ 3712 void skb_queue_purge_reason(struct sk_buff_head *list, 3713 enum skb_drop_reason reason) 3714 { 3715 struct sk_buff *skb; 3716 3717 while ((skb = skb_dequeue(list)) != NULL) 3718 kfree_skb_reason(skb, reason); 3719 } 3720 EXPORT_SYMBOL(skb_queue_purge_reason); 3721 3722 /** 3723 * skb_rbtree_purge - empty a skb rbtree 3724 * @root: root of the rbtree to empty 3725 * Return value: the sum of truesizes of all purged skbs. 3726 * 3727 * Delete all buffers on an &sk_buff rbtree. Each buffer is removed from 3728 * the list and one reference dropped. This function does not take 3729 * any lock. Synchronization should be handled by the caller (e.g., TCP 3730 * out-of-order queue is protected by the socket lock). 3731 */ 3732 unsigned int skb_rbtree_purge(struct rb_root *root) 3733 { 3734 struct rb_node *p = rb_first(root); 3735 unsigned int sum = 0; 3736 3737 while (p) { 3738 struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode); 3739 3740 p = rb_next(p); 3741 rb_erase(&skb->rbnode, root); 3742 sum += skb->truesize; 3743 kfree_skb(skb); 3744 } 3745 return sum; 3746 } 3747 3748 void skb_errqueue_purge(struct sk_buff_head *list) 3749 { 3750 struct sk_buff *skb, *next; 3751 struct sk_buff_head kill; 3752 unsigned long flags; 3753 3754 __skb_queue_head_init(&kill); 3755 3756 spin_lock_irqsave(&list->lock, flags); 3757 skb_queue_walk_safe(list, skb, next) { 3758 if (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ZEROCOPY || 3759 SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_TIMESTAMPING) 3760 continue; 3761 __skb_unlink(skb, list); 3762 __skb_queue_tail(&kill, skb); 3763 } 3764 spin_unlock_irqrestore(&list->lock, flags); 3765 __skb_queue_purge(&kill); 3766 } 3767 EXPORT_SYMBOL(skb_errqueue_purge); 3768 3769 /** 3770 * skb_queue_head - queue a buffer at the list head 3771 * @list: list to use 3772 * @newsk: buffer to queue 3773 * 3774 * Queue a buffer at the start of the list. This function takes the 3775 * list lock and can be used safely with other locking &sk_buff functions 3776 * safely. 3777 * 3778 * A buffer cannot be placed on two lists at the same time. 3779 */ 3780 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk) 3781 { 3782 unsigned long flags; 3783 3784 spin_lock_irqsave(&list->lock, flags); 3785 __skb_queue_head(list, newsk); 3786 spin_unlock_irqrestore(&list->lock, flags); 3787 } 3788 EXPORT_SYMBOL(skb_queue_head); 3789 3790 /** 3791 * skb_queue_tail - queue a buffer at the list tail 3792 * @list: list to use 3793 * @newsk: buffer to queue 3794 * 3795 * Queue a buffer at the tail of the list. This function takes the 3796 * list lock and can be used safely with other locking &sk_buff functions 3797 * safely. 3798 * 3799 * A buffer cannot be placed on two lists at the same time. 3800 */ 3801 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk) 3802 { 3803 unsigned long flags; 3804 3805 spin_lock_irqsave(&list->lock, flags); 3806 __skb_queue_tail(list, newsk); 3807 spin_unlock_irqrestore(&list->lock, flags); 3808 } 3809 EXPORT_SYMBOL(skb_queue_tail); 3810 3811 /** 3812 * skb_unlink - remove a buffer from a list 3813 * @skb: buffer to remove 3814 * @list: list to use 3815 * 3816 * Remove a packet from a list. The list locks are taken and this 3817 * function is atomic with respect to other list locked calls 3818 * 3819 * You must know what list the SKB is on. 3820 */ 3821 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list) 3822 { 3823 unsigned long flags; 3824 3825 spin_lock_irqsave(&list->lock, flags); 3826 __skb_unlink(skb, list); 3827 spin_unlock_irqrestore(&list->lock, flags); 3828 } 3829 EXPORT_SYMBOL(skb_unlink); 3830 3831 /** 3832 * skb_append - append a buffer 3833 * @old: buffer to insert after 3834 * @newsk: buffer to insert 3835 * @list: list to use 3836 * 3837 * Place a packet after a given packet in a list. The list locks are taken 3838 * and this function is atomic with respect to other list locked calls. 3839 * A buffer cannot be placed on two lists at the same time. 3840 */ 3841 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list) 3842 { 3843 unsigned long flags; 3844 3845 spin_lock_irqsave(&list->lock, flags); 3846 __skb_queue_after(list, old, newsk); 3847 spin_unlock_irqrestore(&list->lock, flags); 3848 } 3849 EXPORT_SYMBOL(skb_append); 3850 3851 static inline void skb_split_inside_header(struct sk_buff *skb, 3852 struct sk_buff* skb1, 3853 const u32 len, const int pos) 3854 { 3855 int i; 3856 3857 skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len), 3858 pos - len); 3859 /* And move data appendix as is. */ 3860 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 3861 skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i]; 3862 3863 skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags; 3864 skb_shinfo(skb)->nr_frags = 0; 3865 skb1->data_len = skb->data_len; 3866 skb1->len += skb1->data_len; 3867 skb->data_len = 0; 3868 skb->len = len; 3869 skb_set_tail_pointer(skb, len); 3870 } 3871 3872 static inline void skb_split_no_header(struct sk_buff *skb, 3873 struct sk_buff* skb1, 3874 const u32 len, int pos) 3875 { 3876 int i, k = 0; 3877 const int nfrags = skb_shinfo(skb)->nr_frags; 3878 3879 skb_shinfo(skb)->nr_frags = 0; 3880 skb1->len = skb1->data_len = skb->len - len; 3881 skb->len = len; 3882 skb->data_len = len - pos; 3883 3884 for (i = 0; i < nfrags; i++) { 3885 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 3886 3887 if (pos + size > len) { 3888 skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i]; 3889 3890 if (pos < len) { 3891 /* Split frag. 3892 * We have two variants in this case: 3893 * 1. Move all the frag to the second 3894 * part, if it is possible. F.e. 3895 * this approach is mandatory for TUX, 3896 * where splitting is expensive. 3897 * 2. Split is accurately. We make this. 3898 */ 3899 skb_frag_ref(skb, i); 3900 skb_frag_off_add(&skb_shinfo(skb1)->frags[0], len - pos); 3901 skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos); 3902 skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos); 3903 skb_shinfo(skb)->nr_frags++; 3904 } 3905 k++; 3906 } else 3907 skb_shinfo(skb)->nr_frags++; 3908 pos += size; 3909 } 3910 skb_shinfo(skb1)->nr_frags = k; 3911 } 3912 3913 /** 3914 * skb_split - Split fragmented skb to two parts at length len. 3915 * @skb: the buffer to split 3916 * @skb1: the buffer to receive the second part 3917 * @len: new length for skb 3918 */ 3919 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len) 3920 { 3921 int pos = skb_headlen(skb); 3922 const int zc_flags = SKBFL_SHARED_FRAG | SKBFL_PURE_ZEROCOPY; 3923 3924 skb_zcopy_downgrade_managed(skb); 3925 3926 skb_shinfo(skb1)->flags |= skb_shinfo(skb)->flags & zc_flags; 3927 skb_zerocopy_clone(skb1, skb, 0); 3928 if (len < pos) /* Split line is inside header. */ 3929 skb_split_inside_header(skb, skb1, len, pos); 3930 else /* Second chunk has no header, nothing to copy. */ 3931 skb_split_no_header(skb, skb1, len, pos); 3932 } 3933 EXPORT_SYMBOL(skb_split); 3934 3935 /* Shifting from/to a cloned skb is a no-go. 3936 * 3937 * Caller cannot keep skb_shinfo related pointers past calling here! 3938 */ 3939 static int skb_prepare_for_shift(struct sk_buff *skb) 3940 { 3941 return skb_unclone_keeptruesize(skb, GFP_ATOMIC); 3942 } 3943 3944 /** 3945 * skb_shift - Shifts paged data partially from skb to another 3946 * @tgt: buffer into which tail data gets added 3947 * @skb: buffer from which the paged data comes from 3948 * @shiftlen: shift up to this many bytes 3949 * 3950 * Attempts to shift up to shiftlen worth of bytes, which may be less than 3951 * the length of the skb, from skb to tgt. Returns number bytes shifted. 3952 * It's up to caller to free skb if everything was shifted. 3953 * 3954 * If @tgt runs out of frags, the whole operation is aborted. 3955 * 3956 * Skb cannot include anything else but paged data while tgt is allowed 3957 * to have non-paged data as well. 3958 * 3959 * TODO: full sized shift could be optimized but that would need 3960 * specialized skb free'er to handle frags without up-to-date nr_frags. 3961 */ 3962 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen) 3963 { 3964 int from, to, merge, todo; 3965 skb_frag_t *fragfrom, *fragto; 3966 3967 BUG_ON(shiftlen > skb->len); 3968 3969 if (skb_headlen(skb)) 3970 return 0; 3971 if (skb_zcopy(tgt) || skb_zcopy(skb)) 3972 return 0; 3973 3974 todo = shiftlen; 3975 from = 0; 3976 to = skb_shinfo(tgt)->nr_frags; 3977 fragfrom = &skb_shinfo(skb)->frags[from]; 3978 3979 /* Actual merge is delayed until the point when we know we can 3980 * commit all, so that we don't have to undo partial changes 3981 */ 3982 if (!to || 3983 !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom), 3984 skb_frag_off(fragfrom))) { 3985 merge = -1; 3986 } else { 3987 merge = to - 1; 3988 3989 todo -= skb_frag_size(fragfrom); 3990 if (todo < 0) { 3991 if (skb_prepare_for_shift(skb) || 3992 skb_prepare_for_shift(tgt)) 3993 return 0; 3994 3995 /* All previous frag pointers might be stale! */ 3996 fragfrom = &skb_shinfo(skb)->frags[from]; 3997 fragto = &skb_shinfo(tgt)->frags[merge]; 3998 3999 skb_frag_size_add(fragto, shiftlen); 4000 skb_frag_size_sub(fragfrom, shiftlen); 4001 skb_frag_off_add(fragfrom, shiftlen); 4002 4003 goto onlymerged; 4004 } 4005 4006 from++; 4007 } 4008 4009 /* Skip full, not-fitting skb to avoid expensive operations */ 4010 if ((shiftlen == skb->len) && 4011 (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to)) 4012 return 0; 4013 4014 if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt)) 4015 return 0; 4016 4017 while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) { 4018 if (to == MAX_SKB_FRAGS) 4019 return 0; 4020 4021 fragfrom = &skb_shinfo(skb)->frags[from]; 4022 fragto = &skb_shinfo(tgt)->frags[to]; 4023 4024 if (todo >= skb_frag_size(fragfrom)) { 4025 *fragto = *fragfrom; 4026 todo -= skb_frag_size(fragfrom); 4027 from++; 4028 to++; 4029 4030 } else { 4031 __skb_frag_ref(fragfrom); 4032 skb_frag_page_copy(fragto, fragfrom); 4033 skb_frag_off_copy(fragto, fragfrom); 4034 skb_frag_size_set(fragto, todo); 4035 4036 skb_frag_off_add(fragfrom, todo); 4037 skb_frag_size_sub(fragfrom, todo); 4038 todo = 0; 4039 4040 to++; 4041 break; 4042 } 4043 } 4044 4045 /* Ready to "commit" this state change to tgt */ 4046 skb_shinfo(tgt)->nr_frags = to; 4047 4048 if (merge >= 0) { 4049 fragfrom = &skb_shinfo(skb)->frags[0]; 4050 fragto = &skb_shinfo(tgt)->frags[merge]; 4051 4052 skb_frag_size_add(fragto, skb_frag_size(fragfrom)); 4053 __skb_frag_unref(fragfrom, skb->pp_recycle); 4054 } 4055 4056 /* Reposition in the original skb */ 4057 to = 0; 4058 while (from < skb_shinfo(skb)->nr_frags) 4059 skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++]; 4060 skb_shinfo(skb)->nr_frags = to; 4061 4062 BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags); 4063 4064 onlymerged: 4065 /* Most likely the tgt won't ever need its checksum anymore, skb on 4066 * the other hand might need it if it needs to be resent 4067 */ 4068 tgt->ip_summed = CHECKSUM_PARTIAL; 4069 skb->ip_summed = CHECKSUM_PARTIAL; 4070 4071 skb_len_add(skb, -shiftlen); 4072 skb_len_add(tgt, shiftlen); 4073 4074 return shiftlen; 4075 } 4076 4077 /** 4078 * skb_prepare_seq_read - Prepare a sequential read of skb data 4079 * @skb: the buffer to read 4080 * @from: lower offset of data to be read 4081 * @to: upper offset of data to be read 4082 * @st: state variable 4083 * 4084 * Initializes the specified state variable. Must be called before 4085 * invoking skb_seq_read() for the first time. 4086 */ 4087 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from, 4088 unsigned int to, struct skb_seq_state *st) 4089 { 4090 st->lower_offset = from; 4091 st->upper_offset = to; 4092 st->root_skb = st->cur_skb = skb; 4093 st->frag_idx = st->stepped_offset = 0; 4094 st->frag_data = NULL; 4095 st->frag_off = 0; 4096 } 4097 EXPORT_SYMBOL(skb_prepare_seq_read); 4098 4099 /** 4100 * skb_seq_read - Sequentially read skb data 4101 * @consumed: number of bytes consumed by the caller so far 4102 * @data: destination pointer for data to be returned 4103 * @st: state variable 4104 * 4105 * Reads a block of skb data at @consumed relative to the 4106 * lower offset specified to skb_prepare_seq_read(). Assigns 4107 * the head of the data block to @data and returns the length 4108 * of the block or 0 if the end of the skb data or the upper 4109 * offset has been reached. 4110 * 4111 * The caller is not required to consume all of the data 4112 * returned, i.e. @consumed is typically set to the number 4113 * of bytes already consumed and the next call to 4114 * skb_seq_read() will return the remaining part of the block. 4115 * 4116 * Note 1: The size of each block of data returned can be arbitrary, 4117 * this limitation is the cost for zerocopy sequential 4118 * reads of potentially non linear data. 4119 * 4120 * Note 2: Fragment lists within fragments are not implemented 4121 * at the moment, state->root_skb could be replaced with 4122 * a stack for this purpose. 4123 */ 4124 unsigned int skb_seq_read(unsigned int consumed, const u8 **data, 4125 struct skb_seq_state *st) 4126 { 4127 unsigned int block_limit, abs_offset = consumed + st->lower_offset; 4128 skb_frag_t *frag; 4129 4130 if (unlikely(abs_offset >= st->upper_offset)) { 4131 if (st->frag_data) { 4132 kunmap_atomic(st->frag_data); 4133 st->frag_data = NULL; 4134 } 4135 return 0; 4136 } 4137 4138 next_skb: 4139 block_limit = skb_headlen(st->cur_skb) + st->stepped_offset; 4140 4141 if (abs_offset < block_limit && !st->frag_data) { 4142 *data = st->cur_skb->data + (abs_offset - st->stepped_offset); 4143 return block_limit - abs_offset; 4144 } 4145 4146 if (st->frag_idx == 0 && !st->frag_data) 4147 st->stepped_offset += skb_headlen(st->cur_skb); 4148 4149 while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) { 4150 unsigned int pg_idx, pg_off, pg_sz; 4151 4152 frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx]; 4153 4154 pg_idx = 0; 4155 pg_off = skb_frag_off(frag); 4156 pg_sz = skb_frag_size(frag); 4157 4158 if (skb_frag_must_loop(skb_frag_page(frag))) { 4159 pg_idx = (pg_off + st->frag_off) >> PAGE_SHIFT; 4160 pg_off = offset_in_page(pg_off + st->frag_off); 4161 pg_sz = min_t(unsigned int, pg_sz - st->frag_off, 4162 PAGE_SIZE - pg_off); 4163 } 4164 4165 block_limit = pg_sz + st->stepped_offset; 4166 if (abs_offset < block_limit) { 4167 if (!st->frag_data) 4168 st->frag_data = kmap_atomic(skb_frag_page(frag) + pg_idx); 4169 4170 *data = (u8 *)st->frag_data + pg_off + 4171 (abs_offset - st->stepped_offset); 4172 4173 return block_limit - abs_offset; 4174 } 4175 4176 if (st->frag_data) { 4177 kunmap_atomic(st->frag_data); 4178 st->frag_data = NULL; 4179 } 4180 4181 st->stepped_offset += pg_sz; 4182 st->frag_off += pg_sz; 4183 if (st->frag_off == skb_frag_size(frag)) { 4184 st->frag_off = 0; 4185 st->frag_idx++; 4186 } 4187 } 4188 4189 if (st->frag_data) { 4190 kunmap_atomic(st->frag_data); 4191 st->frag_data = NULL; 4192 } 4193 4194 if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) { 4195 st->cur_skb = skb_shinfo(st->root_skb)->frag_list; 4196 st->frag_idx = 0; 4197 goto next_skb; 4198 } else if (st->cur_skb->next) { 4199 st->cur_skb = st->cur_skb->next; 4200 st->frag_idx = 0; 4201 goto next_skb; 4202 } 4203 4204 return 0; 4205 } 4206 EXPORT_SYMBOL(skb_seq_read); 4207 4208 /** 4209 * skb_abort_seq_read - Abort a sequential read of skb data 4210 * @st: state variable 4211 * 4212 * Must be called if skb_seq_read() was not called until it 4213 * returned 0. 4214 */ 4215 void skb_abort_seq_read(struct skb_seq_state *st) 4216 { 4217 if (st->frag_data) 4218 kunmap_atomic(st->frag_data); 4219 } 4220 EXPORT_SYMBOL(skb_abort_seq_read); 4221 4222 #define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb)) 4223 4224 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text, 4225 struct ts_config *conf, 4226 struct ts_state *state) 4227 { 4228 return skb_seq_read(offset, text, TS_SKB_CB(state)); 4229 } 4230 4231 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state) 4232 { 4233 skb_abort_seq_read(TS_SKB_CB(state)); 4234 } 4235 4236 /** 4237 * skb_find_text - Find a text pattern in skb data 4238 * @skb: the buffer to look in 4239 * @from: search offset 4240 * @to: search limit 4241 * @config: textsearch configuration 4242 * 4243 * Finds a pattern in the skb data according to the specified 4244 * textsearch configuration. Use textsearch_next() to retrieve 4245 * subsequent occurrences of the pattern. Returns the offset 4246 * to the first occurrence or UINT_MAX if no match was found. 4247 */ 4248 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from, 4249 unsigned int to, struct ts_config *config) 4250 { 4251 struct ts_state state; 4252 unsigned int ret; 4253 4254 BUILD_BUG_ON(sizeof(struct skb_seq_state) > sizeof(state.cb)); 4255 4256 config->get_next_block = skb_ts_get_next_block; 4257 config->finish = skb_ts_finish; 4258 4259 skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state)); 4260 4261 ret = textsearch_find(config, &state); 4262 return (ret <= to - from ? ret : UINT_MAX); 4263 } 4264 EXPORT_SYMBOL(skb_find_text); 4265 4266 int skb_append_pagefrags(struct sk_buff *skb, struct page *page, 4267 int offset, size_t size, size_t max_frags) 4268 { 4269 int i = skb_shinfo(skb)->nr_frags; 4270 4271 if (skb_can_coalesce(skb, i, page, offset)) { 4272 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size); 4273 } else if (i < max_frags) { 4274 skb_zcopy_downgrade_managed(skb); 4275 get_page(page); 4276 skb_fill_page_desc_noacc(skb, i, page, offset, size); 4277 } else { 4278 return -EMSGSIZE; 4279 } 4280 4281 return 0; 4282 } 4283 EXPORT_SYMBOL_GPL(skb_append_pagefrags); 4284 4285 /** 4286 * skb_pull_rcsum - pull skb and update receive checksum 4287 * @skb: buffer to update 4288 * @len: length of data pulled 4289 * 4290 * This function performs an skb_pull on the packet and updates 4291 * the CHECKSUM_COMPLETE checksum. It should be used on 4292 * receive path processing instead of skb_pull unless you know 4293 * that the checksum difference is zero (e.g., a valid IP header) 4294 * or you are setting ip_summed to CHECKSUM_NONE. 4295 */ 4296 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len) 4297 { 4298 unsigned char *data = skb->data; 4299 4300 BUG_ON(len > skb->len); 4301 __skb_pull(skb, len); 4302 skb_postpull_rcsum(skb, data, len); 4303 return skb->data; 4304 } 4305 EXPORT_SYMBOL_GPL(skb_pull_rcsum); 4306 4307 static inline skb_frag_t skb_head_frag_to_page_desc(struct sk_buff *frag_skb) 4308 { 4309 skb_frag_t head_frag; 4310 struct page *page; 4311 4312 page = virt_to_head_page(frag_skb->head); 4313 skb_frag_fill_page_desc(&head_frag, page, frag_skb->data - 4314 (unsigned char *)page_address(page), 4315 skb_headlen(frag_skb)); 4316 return head_frag; 4317 } 4318 4319 struct sk_buff *skb_segment_list(struct sk_buff *skb, 4320 netdev_features_t features, 4321 unsigned int offset) 4322 { 4323 struct sk_buff *list_skb = skb_shinfo(skb)->frag_list; 4324 unsigned int tnl_hlen = skb_tnl_header_len(skb); 4325 unsigned int delta_truesize = 0; 4326 unsigned int delta_len = 0; 4327 struct sk_buff *tail = NULL; 4328 struct sk_buff *nskb, *tmp; 4329 int len_diff, err; 4330 4331 skb_push(skb, -skb_network_offset(skb) + offset); 4332 4333 /* Ensure the head is writeable before touching the shared info */ 4334 err = skb_unclone(skb, GFP_ATOMIC); 4335 if (err) 4336 goto err_linearize; 4337 4338 skb_shinfo(skb)->frag_list = NULL; 4339 4340 while (list_skb) { 4341 nskb = list_skb; 4342 list_skb = list_skb->next; 4343 4344 err = 0; 4345 delta_truesize += nskb->truesize; 4346 if (skb_shared(nskb)) { 4347 tmp = skb_clone(nskb, GFP_ATOMIC); 4348 if (tmp) { 4349 consume_skb(nskb); 4350 nskb = tmp; 4351 err = skb_unclone(nskb, GFP_ATOMIC); 4352 } else { 4353 err = -ENOMEM; 4354 } 4355 } 4356 4357 if (!tail) 4358 skb->next = nskb; 4359 else 4360 tail->next = nskb; 4361 4362 if (unlikely(err)) { 4363 nskb->next = list_skb; 4364 goto err_linearize; 4365 } 4366 4367 tail = nskb; 4368 4369 delta_len += nskb->len; 4370 4371 skb_push(nskb, -skb_network_offset(nskb) + offset); 4372 4373 skb_release_head_state(nskb); 4374 len_diff = skb_network_header_len(nskb) - skb_network_header_len(skb); 4375 __copy_skb_header(nskb, skb); 4376 4377 skb_headers_offset_update(nskb, skb_headroom(nskb) - skb_headroom(skb)); 4378 nskb->transport_header += len_diff; 4379 skb_copy_from_linear_data_offset(skb, -tnl_hlen, 4380 nskb->data - tnl_hlen, 4381 offset + tnl_hlen); 4382 4383 if (skb_needs_linearize(nskb, features) && 4384 __skb_linearize(nskb)) 4385 goto err_linearize; 4386 } 4387 4388 skb->truesize = skb->truesize - delta_truesize; 4389 skb->data_len = skb->data_len - delta_len; 4390 skb->len = skb->len - delta_len; 4391 4392 skb_gso_reset(skb); 4393 4394 skb->prev = tail; 4395 4396 if (skb_needs_linearize(skb, features) && 4397 __skb_linearize(skb)) 4398 goto err_linearize; 4399 4400 skb_get(skb); 4401 4402 return skb; 4403 4404 err_linearize: 4405 kfree_skb_list(skb->next); 4406 skb->next = NULL; 4407 return ERR_PTR(-ENOMEM); 4408 } 4409 EXPORT_SYMBOL_GPL(skb_segment_list); 4410 4411 /** 4412 * skb_segment - Perform protocol segmentation on skb. 4413 * @head_skb: buffer to segment 4414 * @features: features for the output path (see dev->features) 4415 * 4416 * This function performs segmentation on the given skb. It returns 4417 * a pointer to the first in a list of new skbs for the segments. 4418 * In case of error it returns ERR_PTR(err). 4419 */ 4420 struct sk_buff *skb_segment(struct sk_buff *head_skb, 4421 netdev_features_t features) 4422 { 4423 struct sk_buff *segs = NULL; 4424 struct sk_buff *tail = NULL; 4425 struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list; 4426 skb_frag_t *frag = skb_shinfo(head_skb)->frags; 4427 unsigned int mss = skb_shinfo(head_skb)->gso_size; 4428 unsigned int doffset = head_skb->data - skb_mac_header(head_skb); 4429 struct sk_buff *frag_skb = head_skb; 4430 unsigned int offset = doffset; 4431 unsigned int tnl_hlen = skb_tnl_header_len(head_skb); 4432 unsigned int partial_segs = 0; 4433 unsigned int headroom; 4434 unsigned int len = head_skb->len; 4435 __be16 proto; 4436 bool csum, sg; 4437 int nfrags = skb_shinfo(head_skb)->nr_frags; 4438 int err = -ENOMEM; 4439 int i = 0; 4440 int pos; 4441 4442 if ((skb_shinfo(head_skb)->gso_type & SKB_GSO_DODGY) && 4443 mss != GSO_BY_FRAGS && mss != skb_headlen(head_skb)) { 4444 struct sk_buff *check_skb; 4445 4446 for (check_skb = list_skb; check_skb; check_skb = check_skb->next) { 4447 if (skb_headlen(check_skb) && !check_skb->head_frag) { 4448 /* gso_size is untrusted, and we have a frag_list with 4449 * a linear non head_frag item. 4450 * 4451 * If head_skb's headlen does not fit requested gso_size, 4452 * it means that the frag_list members do NOT terminate 4453 * on exact gso_size boundaries. Hence we cannot perform 4454 * skb_frag_t page sharing. Therefore we must fallback to 4455 * copying the frag_list skbs; we do so by disabling SG. 4456 */ 4457 features &= ~NETIF_F_SG; 4458 break; 4459 } 4460 } 4461 } 4462 4463 __skb_push(head_skb, doffset); 4464 proto = skb_network_protocol(head_skb, NULL); 4465 if (unlikely(!proto)) 4466 return ERR_PTR(-EINVAL); 4467 4468 sg = !!(features & NETIF_F_SG); 4469 csum = !!can_checksum_protocol(features, proto); 4470 4471 if (sg && csum && (mss != GSO_BY_FRAGS)) { 4472 if (!(features & NETIF_F_GSO_PARTIAL)) { 4473 struct sk_buff *iter; 4474 unsigned int frag_len; 4475 4476 if (!list_skb || 4477 !net_gso_ok(features, skb_shinfo(head_skb)->gso_type)) 4478 goto normal; 4479 4480 /* If we get here then all the required 4481 * GSO features except frag_list are supported. 4482 * Try to split the SKB to multiple GSO SKBs 4483 * with no frag_list. 4484 * Currently we can do that only when the buffers don't 4485 * have a linear part and all the buffers except 4486 * the last are of the same length. 4487 */ 4488 frag_len = list_skb->len; 4489 skb_walk_frags(head_skb, iter) { 4490 if (frag_len != iter->len && iter->next) 4491 goto normal; 4492 if (skb_headlen(iter) && !iter->head_frag) 4493 goto normal; 4494 4495 len -= iter->len; 4496 } 4497 4498 if (len != frag_len) 4499 goto normal; 4500 } 4501 4502 /* GSO partial only requires that we trim off any excess that 4503 * doesn't fit into an MSS sized block, so take care of that 4504 * now. 4505 */ 4506 partial_segs = len / mss; 4507 if (partial_segs > 1) 4508 mss *= partial_segs; 4509 else 4510 partial_segs = 0; 4511 } 4512 4513 normal: 4514 headroom = skb_headroom(head_skb); 4515 pos = skb_headlen(head_skb); 4516 4517 do { 4518 struct sk_buff *nskb; 4519 skb_frag_t *nskb_frag; 4520 int hsize; 4521 int size; 4522 4523 if (unlikely(mss == GSO_BY_FRAGS)) { 4524 len = list_skb->len; 4525 } else { 4526 len = head_skb->len - offset; 4527 if (len > mss) 4528 len = mss; 4529 } 4530 4531 hsize = skb_headlen(head_skb) - offset; 4532 4533 if (hsize <= 0 && i >= nfrags && skb_headlen(list_skb) && 4534 (skb_headlen(list_skb) == len || sg)) { 4535 BUG_ON(skb_headlen(list_skb) > len); 4536 4537 i = 0; 4538 nfrags = skb_shinfo(list_skb)->nr_frags; 4539 frag = skb_shinfo(list_skb)->frags; 4540 frag_skb = list_skb; 4541 pos += skb_headlen(list_skb); 4542 4543 while (pos < offset + len) { 4544 BUG_ON(i >= nfrags); 4545 4546 size = skb_frag_size(frag); 4547 if (pos + size > offset + len) 4548 break; 4549 4550 i++; 4551 pos += size; 4552 frag++; 4553 } 4554 4555 nskb = skb_clone(list_skb, GFP_ATOMIC); 4556 list_skb = list_skb->next; 4557 4558 if (unlikely(!nskb)) 4559 goto err; 4560 4561 if (unlikely(pskb_trim(nskb, len))) { 4562 kfree_skb(nskb); 4563 goto err; 4564 } 4565 4566 hsize = skb_end_offset(nskb); 4567 if (skb_cow_head(nskb, doffset + headroom)) { 4568 kfree_skb(nskb); 4569 goto err; 4570 } 4571 4572 nskb->truesize += skb_end_offset(nskb) - hsize; 4573 skb_release_head_state(nskb); 4574 __skb_push(nskb, doffset); 4575 } else { 4576 if (hsize < 0) 4577 hsize = 0; 4578 if (hsize > len || !sg) 4579 hsize = len; 4580 4581 nskb = __alloc_skb(hsize + doffset + headroom, 4582 GFP_ATOMIC, skb_alloc_rx_flag(head_skb), 4583 NUMA_NO_NODE); 4584 4585 if (unlikely(!nskb)) 4586 goto err; 4587 4588 skb_reserve(nskb, headroom); 4589 __skb_put(nskb, doffset); 4590 } 4591 4592 if (segs) 4593 tail->next = nskb; 4594 else 4595 segs = nskb; 4596 tail = nskb; 4597 4598 __copy_skb_header(nskb, head_skb); 4599 4600 skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom); 4601 skb_reset_mac_len(nskb); 4602 4603 skb_copy_from_linear_data_offset(head_skb, -tnl_hlen, 4604 nskb->data - tnl_hlen, 4605 doffset + tnl_hlen); 4606 4607 if (nskb->len == len + doffset) 4608 goto perform_csum_check; 4609 4610 if (!sg) { 4611 if (!csum) { 4612 if (!nskb->remcsum_offload) 4613 nskb->ip_summed = CHECKSUM_NONE; 4614 SKB_GSO_CB(nskb)->csum = 4615 skb_copy_and_csum_bits(head_skb, offset, 4616 skb_put(nskb, 4617 len), 4618 len); 4619 SKB_GSO_CB(nskb)->csum_start = 4620 skb_headroom(nskb) + doffset; 4621 } else { 4622 if (skb_copy_bits(head_skb, offset, skb_put(nskb, len), len)) 4623 goto err; 4624 } 4625 continue; 4626 } 4627 4628 nskb_frag = skb_shinfo(nskb)->frags; 4629 4630 skb_copy_from_linear_data_offset(head_skb, offset, 4631 skb_put(nskb, hsize), hsize); 4632 4633 skb_shinfo(nskb)->flags |= skb_shinfo(head_skb)->flags & 4634 SKBFL_SHARED_FRAG; 4635 4636 if (skb_orphan_frags(frag_skb, GFP_ATOMIC) || 4637 skb_zerocopy_clone(nskb, frag_skb, GFP_ATOMIC)) 4638 goto err; 4639 4640 while (pos < offset + len) { 4641 if (i >= nfrags) { 4642 i = 0; 4643 nfrags = skb_shinfo(list_skb)->nr_frags; 4644 frag = skb_shinfo(list_skb)->frags; 4645 frag_skb = list_skb; 4646 if (!skb_headlen(list_skb)) { 4647 BUG_ON(!nfrags); 4648 } else { 4649 BUG_ON(!list_skb->head_frag); 4650 4651 /* to make room for head_frag. */ 4652 i--; 4653 frag--; 4654 } 4655 if (skb_orphan_frags(frag_skb, GFP_ATOMIC) || 4656 skb_zerocopy_clone(nskb, frag_skb, 4657 GFP_ATOMIC)) 4658 goto err; 4659 4660 list_skb = list_skb->next; 4661 } 4662 4663 if (unlikely(skb_shinfo(nskb)->nr_frags >= 4664 MAX_SKB_FRAGS)) { 4665 net_warn_ratelimited( 4666 "skb_segment: too many frags: %u %u\n", 4667 pos, mss); 4668 err = -EINVAL; 4669 goto err; 4670 } 4671 4672 *nskb_frag = (i < 0) ? skb_head_frag_to_page_desc(frag_skb) : *frag; 4673 __skb_frag_ref(nskb_frag); 4674 size = skb_frag_size(nskb_frag); 4675 4676 if (pos < offset) { 4677 skb_frag_off_add(nskb_frag, offset - pos); 4678 skb_frag_size_sub(nskb_frag, offset - pos); 4679 } 4680 4681 skb_shinfo(nskb)->nr_frags++; 4682 4683 if (pos + size <= offset + len) { 4684 i++; 4685 frag++; 4686 pos += size; 4687 } else { 4688 skb_frag_size_sub(nskb_frag, pos + size - (offset + len)); 4689 goto skip_fraglist; 4690 } 4691 4692 nskb_frag++; 4693 } 4694 4695 skip_fraglist: 4696 nskb->data_len = len - hsize; 4697 nskb->len += nskb->data_len; 4698 nskb->truesize += nskb->data_len; 4699 4700 perform_csum_check: 4701 if (!csum) { 4702 if (skb_has_shared_frag(nskb) && 4703 __skb_linearize(nskb)) 4704 goto err; 4705 4706 if (!nskb->remcsum_offload) 4707 nskb->ip_summed = CHECKSUM_NONE; 4708 SKB_GSO_CB(nskb)->csum = 4709 skb_checksum(nskb, doffset, 4710 nskb->len - doffset, 0); 4711 SKB_GSO_CB(nskb)->csum_start = 4712 skb_headroom(nskb) + doffset; 4713 } 4714 } while ((offset += len) < head_skb->len); 4715 4716 /* Some callers want to get the end of the list. 4717 * Put it in segs->prev to avoid walking the list. 4718 * (see validate_xmit_skb_list() for example) 4719 */ 4720 segs->prev = tail; 4721 4722 if (partial_segs) { 4723 struct sk_buff *iter; 4724 int type = skb_shinfo(head_skb)->gso_type; 4725 unsigned short gso_size = skb_shinfo(head_skb)->gso_size; 4726 4727 /* Update type to add partial and then remove dodgy if set */ 4728 type |= (features & NETIF_F_GSO_PARTIAL) / NETIF_F_GSO_PARTIAL * SKB_GSO_PARTIAL; 4729 type &= ~SKB_GSO_DODGY; 4730 4731 /* Update GSO info and prepare to start updating headers on 4732 * our way back down the stack of protocols. 4733 */ 4734 for (iter = segs; iter; iter = iter->next) { 4735 skb_shinfo(iter)->gso_size = gso_size; 4736 skb_shinfo(iter)->gso_segs = partial_segs; 4737 skb_shinfo(iter)->gso_type = type; 4738 SKB_GSO_CB(iter)->data_offset = skb_headroom(iter) + doffset; 4739 } 4740 4741 if (tail->len - doffset <= gso_size) 4742 skb_shinfo(tail)->gso_size = 0; 4743 else if (tail != segs) 4744 skb_shinfo(tail)->gso_segs = DIV_ROUND_UP(tail->len - doffset, gso_size); 4745 } 4746 4747 /* Following permits correct backpressure, for protocols 4748 * using skb_set_owner_w(). 4749 * Idea is to tranfert ownership from head_skb to last segment. 4750 */ 4751 if (head_skb->destructor == sock_wfree) { 4752 swap(tail->truesize, head_skb->truesize); 4753 swap(tail->destructor, head_skb->destructor); 4754 swap(tail->sk, head_skb->sk); 4755 } 4756 return segs; 4757 4758 err: 4759 kfree_skb_list(segs); 4760 return ERR_PTR(err); 4761 } 4762 EXPORT_SYMBOL_GPL(skb_segment); 4763 4764 #ifdef CONFIG_SKB_EXTENSIONS 4765 #define SKB_EXT_ALIGN_VALUE 8 4766 #define SKB_EXT_CHUNKSIZEOF(x) (ALIGN((sizeof(x)), SKB_EXT_ALIGN_VALUE) / SKB_EXT_ALIGN_VALUE) 4767 4768 static const u8 skb_ext_type_len[] = { 4769 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 4770 [SKB_EXT_BRIDGE_NF] = SKB_EXT_CHUNKSIZEOF(struct nf_bridge_info), 4771 #endif 4772 #ifdef CONFIG_XFRM 4773 [SKB_EXT_SEC_PATH] = SKB_EXT_CHUNKSIZEOF(struct sec_path), 4774 #endif 4775 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT) 4776 [TC_SKB_EXT] = SKB_EXT_CHUNKSIZEOF(struct tc_skb_ext), 4777 #endif 4778 #if IS_ENABLED(CONFIG_MPTCP) 4779 [SKB_EXT_MPTCP] = SKB_EXT_CHUNKSIZEOF(struct mptcp_ext), 4780 #endif 4781 #if IS_ENABLED(CONFIG_MCTP_FLOWS) 4782 [SKB_EXT_MCTP] = SKB_EXT_CHUNKSIZEOF(struct mctp_flow), 4783 #endif 4784 }; 4785 4786 static __always_inline unsigned int skb_ext_total_length(void) 4787 { 4788 unsigned int l = SKB_EXT_CHUNKSIZEOF(struct skb_ext); 4789 int i; 4790 4791 for (i = 0; i < ARRAY_SIZE(skb_ext_type_len); i++) 4792 l += skb_ext_type_len[i]; 4793 4794 return l; 4795 } 4796 4797 static void skb_extensions_init(void) 4798 { 4799 BUILD_BUG_ON(SKB_EXT_NUM >= 8); 4800 BUILD_BUG_ON(skb_ext_total_length() > 255); 4801 4802 skbuff_ext_cache = kmem_cache_create("skbuff_ext_cache", 4803 SKB_EXT_ALIGN_VALUE * skb_ext_total_length(), 4804 0, 4805 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 4806 NULL); 4807 } 4808 #else 4809 static void skb_extensions_init(void) {} 4810 #endif 4811 4812 /* The SKB kmem_cache slab is critical for network performance. Never 4813 * merge/alias the slab with similar sized objects. This avoids fragmentation 4814 * that hurts performance of kmem_cache_{alloc,free}_bulk APIs. 4815 */ 4816 #ifndef CONFIG_SLUB_TINY 4817 #define FLAG_SKB_NO_MERGE SLAB_NO_MERGE 4818 #else /* CONFIG_SLUB_TINY - simple loop in kmem_cache_alloc_bulk */ 4819 #define FLAG_SKB_NO_MERGE 0 4820 #endif 4821 4822 void __init skb_init(void) 4823 { 4824 skbuff_cache = kmem_cache_create_usercopy("skbuff_head_cache", 4825 sizeof(struct sk_buff), 4826 0, 4827 SLAB_HWCACHE_ALIGN|SLAB_PANIC| 4828 FLAG_SKB_NO_MERGE, 4829 offsetof(struct sk_buff, cb), 4830 sizeof_field(struct sk_buff, cb), 4831 NULL); 4832 skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache", 4833 sizeof(struct sk_buff_fclones), 4834 0, 4835 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 4836 NULL); 4837 /* usercopy should only access first SKB_SMALL_HEAD_HEADROOM bytes. 4838 * struct skb_shared_info is located at the end of skb->head, 4839 * and should not be copied to/from user. 4840 */ 4841 skb_small_head_cache = kmem_cache_create_usercopy("skbuff_small_head", 4842 SKB_SMALL_HEAD_CACHE_SIZE, 4843 0, 4844 SLAB_HWCACHE_ALIGN | SLAB_PANIC, 4845 0, 4846 SKB_SMALL_HEAD_HEADROOM, 4847 NULL); 4848 skb_extensions_init(); 4849 } 4850 4851 static int 4852 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len, 4853 unsigned int recursion_level) 4854 { 4855 int start = skb_headlen(skb); 4856 int i, copy = start - offset; 4857 struct sk_buff *frag_iter; 4858 int elt = 0; 4859 4860 if (unlikely(recursion_level >= 24)) 4861 return -EMSGSIZE; 4862 4863 if (copy > 0) { 4864 if (copy > len) 4865 copy = len; 4866 sg_set_buf(sg, skb->data + offset, copy); 4867 elt++; 4868 if ((len -= copy) == 0) 4869 return elt; 4870 offset += copy; 4871 } 4872 4873 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 4874 int end; 4875 4876 WARN_ON(start > offset + len); 4877 4878 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]); 4879 if ((copy = end - offset) > 0) { 4880 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 4881 if (unlikely(elt && sg_is_last(&sg[elt - 1]))) 4882 return -EMSGSIZE; 4883 4884 if (copy > len) 4885 copy = len; 4886 sg_set_page(&sg[elt], skb_frag_page(frag), copy, 4887 skb_frag_off(frag) + offset - start); 4888 elt++; 4889 if (!(len -= copy)) 4890 return elt; 4891 offset += copy; 4892 } 4893 start = end; 4894 } 4895 4896 skb_walk_frags(skb, frag_iter) { 4897 int end, ret; 4898 4899 WARN_ON(start > offset + len); 4900 4901 end = start + frag_iter->len; 4902 if ((copy = end - offset) > 0) { 4903 if (unlikely(elt && sg_is_last(&sg[elt - 1]))) 4904 return -EMSGSIZE; 4905 4906 if (copy > len) 4907 copy = len; 4908 ret = __skb_to_sgvec(frag_iter, sg+elt, offset - start, 4909 copy, recursion_level + 1); 4910 if (unlikely(ret < 0)) 4911 return ret; 4912 elt += ret; 4913 if ((len -= copy) == 0) 4914 return elt; 4915 offset += copy; 4916 } 4917 start = end; 4918 } 4919 BUG_ON(len); 4920 return elt; 4921 } 4922 4923 /** 4924 * skb_to_sgvec - Fill a scatter-gather list from a socket buffer 4925 * @skb: Socket buffer containing the buffers to be mapped 4926 * @sg: The scatter-gather list to map into 4927 * @offset: The offset into the buffer's contents to start mapping 4928 * @len: Length of buffer space to be mapped 4929 * 4930 * Fill the specified scatter-gather list with mappings/pointers into a 4931 * region of the buffer space attached to a socket buffer. Returns either 4932 * the number of scatterlist items used, or -EMSGSIZE if the contents 4933 * could not fit. 4934 */ 4935 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len) 4936 { 4937 int nsg = __skb_to_sgvec(skb, sg, offset, len, 0); 4938 4939 if (nsg <= 0) 4940 return nsg; 4941 4942 sg_mark_end(&sg[nsg - 1]); 4943 4944 return nsg; 4945 } 4946 EXPORT_SYMBOL_GPL(skb_to_sgvec); 4947 4948 /* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given 4949 * sglist without mark the sg which contain last skb data as the end. 4950 * So the caller can mannipulate sg list as will when padding new data after 4951 * the first call without calling sg_unmark_end to expend sg list. 4952 * 4953 * Scenario to use skb_to_sgvec_nomark: 4954 * 1. sg_init_table 4955 * 2. skb_to_sgvec_nomark(payload1) 4956 * 3. skb_to_sgvec_nomark(payload2) 4957 * 4958 * This is equivalent to: 4959 * 1. sg_init_table 4960 * 2. skb_to_sgvec(payload1) 4961 * 3. sg_unmark_end 4962 * 4. skb_to_sgvec(payload2) 4963 * 4964 * When mapping mutilple payload conditionally, skb_to_sgvec_nomark 4965 * is more preferable. 4966 */ 4967 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg, 4968 int offset, int len) 4969 { 4970 return __skb_to_sgvec(skb, sg, offset, len, 0); 4971 } 4972 EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark); 4973 4974 4975 4976 /** 4977 * skb_cow_data - Check that a socket buffer's data buffers are writable 4978 * @skb: The socket buffer to check. 4979 * @tailbits: Amount of trailing space to be added 4980 * @trailer: Returned pointer to the skb where the @tailbits space begins 4981 * 4982 * Make sure that the data buffers attached to a socket buffer are 4983 * writable. If they are not, private copies are made of the data buffers 4984 * and the socket buffer is set to use these instead. 4985 * 4986 * If @tailbits is given, make sure that there is space to write @tailbits 4987 * bytes of data beyond current end of socket buffer. @trailer will be 4988 * set to point to the skb in which this space begins. 4989 * 4990 * The number of scatterlist elements required to completely map the 4991 * COW'd and extended socket buffer will be returned. 4992 */ 4993 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer) 4994 { 4995 int copyflag; 4996 int elt; 4997 struct sk_buff *skb1, **skb_p; 4998 4999 /* If skb is cloned or its head is paged, reallocate 5000 * head pulling out all the pages (pages are considered not writable 5001 * at the moment even if they are anonymous). 5002 */ 5003 if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) && 5004 !__pskb_pull_tail(skb, __skb_pagelen(skb))) 5005 return -ENOMEM; 5006 5007 /* Easy case. Most of packets will go this way. */ 5008 if (!skb_has_frag_list(skb)) { 5009 /* A little of trouble, not enough of space for trailer. 5010 * This should not happen, when stack is tuned to generate 5011 * good frames. OK, on miss we reallocate and reserve even more 5012 * space, 128 bytes is fair. */ 5013 5014 if (skb_tailroom(skb) < tailbits && 5015 pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC)) 5016 return -ENOMEM; 5017 5018 /* Voila! */ 5019 *trailer = skb; 5020 return 1; 5021 } 5022 5023 /* Misery. We are in troubles, going to mincer fragments... */ 5024 5025 elt = 1; 5026 skb_p = &skb_shinfo(skb)->frag_list; 5027 copyflag = 0; 5028 5029 while ((skb1 = *skb_p) != NULL) { 5030 int ntail = 0; 5031 5032 /* The fragment is partially pulled by someone, 5033 * this can happen on input. Copy it and everything 5034 * after it. */ 5035 5036 if (skb_shared(skb1)) 5037 copyflag = 1; 5038 5039 /* If the skb is the last, worry about trailer. */ 5040 5041 if (skb1->next == NULL && tailbits) { 5042 if (skb_shinfo(skb1)->nr_frags || 5043 skb_has_frag_list(skb1) || 5044 skb_tailroom(skb1) < tailbits) 5045 ntail = tailbits + 128; 5046 } 5047 5048 if (copyflag || 5049 skb_cloned(skb1) || 5050 ntail || 5051 skb_shinfo(skb1)->nr_frags || 5052 skb_has_frag_list(skb1)) { 5053 struct sk_buff *skb2; 5054 5055 /* Fuck, we are miserable poor guys... */ 5056 if (ntail == 0) 5057 skb2 = skb_copy(skb1, GFP_ATOMIC); 5058 else 5059 skb2 = skb_copy_expand(skb1, 5060 skb_headroom(skb1), 5061 ntail, 5062 GFP_ATOMIC); 5063 if (unlikely(skb2 == NULL)) 5064 return -ENOMEM; 5065 5066 if (skb1->sk) 5067 skb_set_owner_w(skb2, skb1->sk); 5068 5069 /* Looking around. Are we still alive? 5070 * OK, link new skb, drop old one */ 5071 5072 skb2->next = skb1->next; 5073 *skb_p = skb2; 5074 kfree_skb(skb1); 5075 skb1 = skb2; 5076 } 5077 elt++; 5078 *trailer = skb1; 5079 skb_p = &skb1->next; 5080 } 5081 5082 return elt; 5083 } 5084 EXPORT_SYMBOL_GPL(skb_cow_data); 5085 5086 static void sock_rmem_free(struct sk_buff *skb) 5087 { 5088 struct sock *sk = skb->sk; 5089 5090 atomic_sub(skb->truesize, &sk->sk_rmem_alloc); 5091 } 5092 5093 static void skb_set_err_queue(struct sk_buff *skb) 5094 { 5095 /* pkt_type of skbs received on local sockets is never PACKET_OUTGOING. 5096 * So, it is safe to (mis)use it to mark skbs on the error queue. 5097 */ 5098 skb->pkt_type = PACKET_OUTGOING; 5099 BUILD_BUG_ON(PACKET_OUTGOING == 0); 5100 } 5101 5102 /* 5103 * Note: We dont mem charge error packets (no sk_forward_alloc changes) 5104 */ 5105 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb) 5106 { 5107 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >= 5108 (unsigned int)READ_ONCE(sk->sk_rcvbuf)) 5109 return -ENOMEM; 5110 5111 skb_orphan(skb); 5112 skb->sk = sk; 5113 skb->destructor = sock_rmem_free; 5114 atomic_add(skb->truesize, &sk->sk_rmem_alloc); 5115 skb_set_err_queue(skb); 5116 5117 /* before exiting rcu section, make sure dst is refcounted */ 5118 skb_dst_force(skb); 5119 5120 skb_queue_tail(&sk->sk_error_queue, skb); 5121 if (!sock_flag(sk, SOCK_DEAD)) 5122 sk_error_report(sk); 5123 return 0; 5124 } 5125 EXPORT_SYMBOL(sock_queue_err_skb); 5126 5127 static bool is_icmp_err_skb(const struct sk_buff *skb) 5128 { 5129 return skb && (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP || 5130 SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP6); 5131 } 5132 5133 struct sk_buff *sock_dequeue_err_skb(struct sock *sk) 5134 { 5135 struct sk_buff_head *q = &sk->sk_error_queue; 5136 struct sk_buff *skb, *skb_next = NULL; 5137 bool icmp_next = false; 5138 unsigned long flags; 5139 5140 spin_lock_irqsave(&q->lock, flags); 5141 skb = __skb_dequeue(q); 5142 if (skb && (skb_next = skb_peek(q))) { 5143 icmp_next = is_icmp_err_skb(skb_next); 5144 if (icmp_next) 5145 sk->sk_err = SKB_EXT_ERR(skb_next)->ee.ee_errno; 5146 } 5147 spin_unlock_irqrestore(&q->lock, flags); 5148 5149 if (is_icmp_err_skb(skb) && !icmp_next) 5150 sk->sk_err = 0; 5151 5152 if (skb_next) 5153 sk_error_report(sk); 5154 5155 return skb; 5156 } 5157 EXPORT_SYMBOL(sock_dequeue_err_skb); 5158 5159 /** 5160 * skb_clone_sk - create clone of skb, and take reference to socket 5161 * @skb: the skb to clone 5162 * 5163 * This function creates a clone of a buffer that holds a reference on 5164 * sk_refcnt. Buffers created via this function are meant to be 5165 * returned using sock_queue_err_skb, or free via kfree_skb. 5166 * 5167 * When passing buffers allocated with this function to sock_queue_err_skb 5168 * it is necessary to wrap the call with sock_hold/sock_put in order to 5169 * prevent the socket from being released prior to being enqueued on 5170 * the sk_error_queue. 5171 */ 5172 struct sk_buff *skb_clone_sk(struct sk_buff *skb) 5173 { 5174 struct sock *sk = skb->sk; 5175 struct sk_buff *clone; 5176 5177 if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt)) 5178 return NULL; 5179 5180 clone = skb_clone(skb, GFP_ATOMIC); 5181 if (!clone) { 5182 sock_put(sk); 5183 return NULL; 5184 } 5185 5186 clone->sk = sk; 5187 clone->destructor = sock_efree; 5188 5189 return clone; 5190 } 5191 EXPORT_SYMBOL(skb_clone_sk); 5192 5193 static void __skb_complete_tx_timestamp(struct sk_buff *skb, 5194 struct sock *sk, 5195 int tstype, 5196 bool opt_stats) 5197 { 5198 struct sock_exterr_skb *serr; 5199 int err; 5200 5201 BUILD_BUG_ON(sizeof(struct sock_exterr_skb) > sizeof(skb->cb)); 5202 5203 serr = SKB_EXT_ERR(skb); 5204 memset(serr, 0, sizeof(*serr)); 5205 serr->ee.ee_errno = ENOMSG; 5206 serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING; 5207 serr->ee.ee_info = tstype; 5208 serr->opt_stats = opt_stats; 5209 serr->header.h4.iif = skb->dev ? skb->dev->ifindex : 0; 5210 if (sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID) { 5211 serr->ee.ee_data = skb_shinfo(skb)->tskey; 5212 if (sk_is_tcp(sk)) 5213 serr->ee.ee_data -= atomic_read(&sk->sk_tskey); 5214 } 5215 5216 err = sock_queue_err_skb(sk, skb); 5217 5218 if (err) 5219 kfree_skb(skb); 5220 } 5221 5222 static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly) 5223 { 5224 bool ret; 5225 5226 if (likely(READ_ONCE(sysctl_tstamp_allow_data) || tsonly)) 5227 return true; 5228 5229 read_lock_bh(&sk->sk_callback_lock); 5230 ret = sk->sk_socket && sk->sk_socket->file && 5231 file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW); 5232 read_unlock_bh(&sk->sk_callback_lock); 5233 return ret; 5234 } 5235 5236 void skb_complete_tx_timestamp(struct sk_buff *skb, 5237 struct skb_shared_hwtstamps *hwtstamps) 5238 { 5239 struct sock *sk = skb->sk; 5240 5241 if (!skb_may_tx_timestamp(sk, false)) 5242 goto err; 5243 5244 /* Take a reference to prevent skb_orphan() from freeing the socket, 5245 * but only if the socket refcount is not zero. 5246 */ 5247 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) { 5248 *skb_hwtstamps(skb) = *hwtstamps; 5249 __skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND, false); 5250 sock_put(sk); 5251 return; 5252 } 5253 5254 err: 5255 kfree_skb(skb); 5256 } 5257 EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp); 5258 5259 void __skb_tstamp_tx(struct sk_buff *orig_skb, 5260 const struct sk_buff *ack_skb, 5261 struct skb_shared_hwtstamps *hwtstamps, 5262 struct sock *sk, int tstype) 5263 { 5264 struct sk_buff *skb; 5265 bool tsonly, opt_stats = false; 5266 5267 if (!sk) 5268 return; 5269 5270 if (!hwtstamps && !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TX_SWHW) && 5271 skb_shinfo(orig_skb)->tx_flags & SKBTX_IN_PROGRESS) 5272 return; 5273 5274 tsonly = sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TSONLY; 5275 if (!skb_may_tx_timestamp(sk, tsonly)) 5276 return; 5277 5278 if (tsonly) { 5279 #ifdef CONFIG_INET 5280 if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_STATS) && 5281 sk_is_tcp(sk)) { 5282 skb = tcp_get_timestamping_opt_stats(sk, orig_skb, 5283 ack_skb); 5284 opt_stats = true; 5285 } else 5286 #endif 5287 skb = alloc_skb(0, GFP_ATOMIC); 5288 } else { 5289 skb = skb_clone(orig_skb, GFP_ATOMIC); 5290 5291 if (skb_orphan_frags_rx(skb, GFP_ATOMIC)) { 5292 kfree_skb(skb); 5293 return; 5294 } 5295 } 5296 if (!skb) 5297 return; 5298 5299 if (tsonly) { 5300 skb_shinfo(skb)->tx_flags |= skb_shinfo(orig_skb)->tx_flags & 5301 SKBTX_ANY_TSTAMP; 5302 skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey; 5303 } 5304 5305 if (hwtstamps) 5306 *skb_hwtstamps(skb) = *hwtstamps; 5307 else 5308 __net_timestamp(skb); 5309 5310 __skb_complete_tx_timestamp(skb, sk, tstype, opt_stats); 5311 } 5312 EXPORT_SYMBOL_GPL(__skb_tstamp_tx); 5313 5314 void skb_tstamp_tx(struct sk_buff *orig_skb, 5315 struct skb_shared_hwtstamps *hwtstamps) 5316 { 5317 return __skb_tstamp_tx(orig_skb, NULL, hwtstamps, orig_skb->sk, 5318 SCM_TSTAMP_SND); 5319 } 5320 EXPORT_SYMBOL_GPL(skb_tstamp_tx); 5321 5322 #ifdef CONFIG_WIRELESS 5323 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked) 5324 { 5325 struct sock *sk = skb->sk; 5326 struct sock_exterr_skb *serr; 5327 int err = 1; 5328 5329 skb->wifi_acked_valid = 1; 5330 skb->wifi_acked = acked; 5331 5332 serr = SKB_EXT_ERR(skb); 5333 memset(serr, 0, sizeof(*serr)); 5334 serr->ee.ee_errno = ENOMSG; 5335 serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS; 5336 5337 /* Take a reference to prevent skb_orphan() from freeing the socket, 5338 * but only if the socket refcount is not zero. 5339 */ 5340 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) { 5341 err = sock_queue_err_skb(sk, skb); 5342 sock_put(sk); 5343 } 5344 if (err) 5345 kfree_skb(skb); 5346 } 5347 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack); 5348 #endif /* CONFIG_WIRELESS */ 5349 5350 /** 5351 * skb_partial_csum_set - set up and verify partial csum values for packet 5352 * @skb: the skb to set 5353 * @start: the number of bytes after skb->data to start checksumming. 5354 * @off: the offset from start to place the checksum. 5355 * 5356 * For untrusted partially-checksummed packets, we need to make sure the values 5357 * for skb->csum_start and skb->csum_offset are valid so we don't oops. 5358 * 5359 * This function checks and sets those values and skb->ip_summed: if this 5360 * returns false you should drop the packet. 5361 */ 5362 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off) 5363 { 5364 u32 csum_end = (u32)start + (u32)off + sizeof(__sum16); 5365 u32 csum_start = skb_headroom(skb) + (u32)start; 5366 5367 if (unlikely(csum_start >= U16_MAX || csum_end > skb_headlen(skb))) { 5368 net_warn_ratelimited("bad partial csum: csum=%u/%u headroom=%u headlen=%u\n", 5369 start, off, skb_headroom(skb), skb_headlen(skb)); 5370 return false; 5371 } 5372 skb->ip_summed = CHECKSUM_PARTIAL; 5373 skb->csum_start = csum_start; 5374 skb->csum_offset = off; 5375 skb->transport_header = csum_start; 5376 return true; 5377 } 5378 EXPORT_SYMBOL_GPL(skb_partial_csum_set); 5379 5380 static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len, 5381 unsigned int max) 5382 { 5383 if (skb_headlen(skb) >= len) 5384 return 0; 5385 5386 /* If we need to pullup then pullup to the max, so we 5387 * won't need to do it again. 5388 */ 5389 if (max > skb->len) 5390 max = skb->len; 5391 5392 if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL) 5393 return -ENOMEM; 5394 5395 if (skb_headlen(skb) < len) 5396 return -EPROTO; 5397 5398 return 0; 5399 } 5400 5401 #define MAX_TCP_HDR_LEN (15 * 4) 5402 5403 static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb, 5404 typeof(IPPROTO_IP) proto, 5405 unsigned int off) 5406 { 5407 int err; 5408 5409 switch (proto) { 5410 case IPPROTO_TCP: 5411 err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr), 5412 off + MAX_TCP_HDR_LEN); 5413 if (!err && !skb_partial_csum_set(skb, off, 5414 offsetof(struct tcphdr, 5415 check))) 5416 err = -EPROTO; 5417 return err ? ERR_PTR(err) : &tcp_hdr(skb)->check; 5418 5419 case IPPROTO_UDP: 5420 err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr), 5421 off + sizeof(struct udphdr)); 5422 if (!err && !skb_partial_csum_set(skb, off, 5423 offsetof(struct udphdr, 5424 check))) 5425 err = -EPROTO; 5426 return err ? ERR_PTR(err) : &udp_hdr(skb)->check; 5427 } 5428 5429 return ERR_PTR(-EPROTO); 5430 } 5431 5432 /* This value should be large enough to cover a tagged ethernet header plus 5433 * maximally sized IP and TCP or UDP headers. 5434 */ 5435 #define MAX_IP_HDR_LEN 128 5436 5437 static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate) 5438 { 5439 unsigned int off; 5440 bool fragment; 5441 __sum16 *csum; 5442 int err; 5443 5444 fragment = false; 5445 5446 err = skb_maybe_pull_tail(skb, 5447 sizeof(struct iphdr), 5448 MAX_IP_HDR_LEN); 5449 if (err < 0) 5450 goto out; 5451 5452 if (ip_is_fragment(ip_hdr(skb))) 5453 fragment = true; 5454 5455 off = ip_hdrlen(skb); 5456 5457 err = -EPROTO; 5458 5459 if (fragment) 5460 goto out; 5461 5462 csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off); 5463 if (IS_ERR(csum)) 5464 return PTR_ERR(csum); 5465 5466 if (recalculate) 5467 *csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr, 5468 ip_hdr(skb)->daddr, 5469 skb->len - off, 5470 ip_hdr(skb)->protocol, 0); 5471 err = 0; 5472 5473 out: 5474 return err; 5475 } 5476 5477 /* This value should be large enough to cover a tagged ethernet header plus 5478 * an IPv6 header, all options, and a maximal TCP or UDP header. 5479 */ 5480 #define MAX_IPV6_HDR_LEN 256 5481 5482 #define OPT_HDR(type, skb, off) \ 5483 (type *)(skb_network_header(skb) + (off)) 5484 5485 static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate) 5486 { 5487 int err; 5488 u8 nexthdr; 5489 unsigned int off; 5490 unsigned int len; 5491 bool fragment; 5492 bool done; 5493 __sum16 *csum; 5494 5495 fragment = false; 5496 done = false; 5497 5498 off = sizeof(struct ipv6hdr); 5499 5500 err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN); 5501 if (err < 0) 5502 goto out; 5503 5504 nexthdr = ipv6_hdr(skb)->nexthdr; 5505 5506 len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len); 5507 while (off <= len && !done) { 5508 switch (nexthdr) { 5509 case IPPROTO_DSTOPTS: 5510 case IPPROTO_HOPOPTS: 5511 case IPPROTO_ROUTING: { 5512 struct ipv6_opt_hdr *hp; 5513 5514 err = skb_maybe_pull_tail(skb, 5515 off + 5516 sizeof(struct ipv6_opt_hdr), 5517 MAX_IPV6_HDR_LEN); 5518 if (err < 0) 5519 goto out; 5520 5521 hp = OPT_HDR(struct ipv6_opt_hdr, skb, off); 5522 nexthdr = hp->nexthdr; 5523 off += ipv6_optlen(hp); 5524 break; 5525 } 5526 case IPPROTO_AH: { 5527 struct ip_auth_hdr *hp; 5528 5529 err = skb_maybe_pull_tail(skb, 5530 off + 5531 sizeof(struct ip_auth_hdr), 5532 MAX_IPV6_HDR_LEN); 5533 if (err < 0) 5534 goto out; 5535 5536 hp = OPT_HDR(struct ip_auth_hdr, skb, off); 5537 nexthdr = hp->nexthdr; 5538 off += ipv6_authlen(hp); 5539 break; 5540 } 5541 case IPPROTO_FRAGMENT: { 5542 struct frag_hdr *hp; 5543 5544 err = skb_maybe_pull_tail(skb, 5545 off + 5546 sizeof(struct frag_hdr), 5547 MAX_IPV6_HDR_LEN); 5548 if (err < 0) 5549 goto out; 5550 5551 hp = OPT_HDR(struct frag_hdr, skb, off); 5552 5553 if (hp->frag_off & htons(IP6_OFFSET | IP6_MF)) 5554 fragment = true; 5555 5556 nexthdr = hp->nexthdr; 5557 off += sizeof(struct frag_hdr); 5558 break; 5559 } 5560 default: 5561 done = true; 5562 break; 5563 } 5564 } 5565 5566 err = -EPROTO; 5567 5568 if (!done || fragment) 5569 goto out; 5570 5571 csum = skb_checksum_setup_ip(skb, nexthdr, off); 5572 if (IS_ERR(csum)) 5573 return PTR_ERR(csum); 5574 5575 if (recalculate) 5576 *csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr, 5577 &ipv6_hdr(skb)->daddr, 5578 skb->len - off, nexthdr, 0); 5579 err = 0; 5580 5581 out: 5582 return err; 5583 } 5584 5585 /** 5586 * skb_checksum_setup - set up partial checksum offset 5587 * @skb: the skb to set up 5588 * @recalculate: if true the pseudo-header checksum will be recalculated 5589 */ 5590 int skb_checksum_setup(struct sk_buff *skb, bool recalculate) 5591 { 5592 int err; 5593 5594 switch (skb->protocol) { 5595 case htons(ETH_P_IP): 5596 err = skb_checksum_setup_ipv4(skb, recalculate); 5597 break; 5598 5599 case htons(ETH_P_IPV6): 5600 err = skb_checksum_setup_ipv6(skb, recalculate); 5601 break; 5602 5603 default: 5604 err = -EPROTO; 5605 break; 5606 } 5607 5608 return err; 5609 } 5610 EXPORT_SYMBOL(skb_checksum_setup); 5611 5612 /** 5613 * skb_checksum_maybe_trim - maybe trims the given skb 5614 * @skb: the skb to check 5615 * @transport_len: the data length beyond the network header 5616 * 5617 * Checks whether the given skb has data beyond the given transport length. 5618 * If so, returns a cloned skb trimmed to this transport length. 5619 * Otherwise returns the provided skb. Returns NULL in error cases 5620 * (e.g. transport_len exceeds skb length or out-of-memory). 5621 * 5622 * Caller needs to set the skb transport header and free any returned skb if it 5623 * differs from the provided skb. 5624 */ 5625 static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb, 5626 unsigned int transport_len) 5627 { 5628 struct sk_buff *skb_chk; 5629 unsigned int len = skb_transport_offset(skb) + transport_len; 5630 int ret; 5631 5632 if (skb->len < len) 5633 return NULL; 5634 else if (skb->len == len) 5635 return skb; 5636 5637 skb_chk = skb_clone(skb, GFP_ATOMIC); 5638 if (!skb_chk) 5639 return NULL; 5640 5641 ret = pskb_trim_rcsum(skb_chk, len); 5642 if (ret) { 5643 kfree_skb(skb_chk); 5644 return NULL; 5645 } 5646 5647 return skb_chk; 5648 } 5649 5650 /** 5651 * skb_checksum_trimmed - validate checksum of an skb 5652 * @skb: the skb to check 5653 * @transport_len: the data length beyond the network header 5654 * @skb_chkf: checksum function to use 5655 * 5656 * Applies the given checksum function skb_chkf to the provided skb. 5657 * Returns a checked and maybe trimmed skb. Returns NULL on error. 5658 * 5659 * If the skb has data beyond the given transport length, then a 5660 * trimmed & cloned skb is checked and returned. 5661 * 5662 * Caller needs to set the skb transport header and free any returned skb if it 5663 * differs from the provided skb. 5664 */ 5665 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb, 5666 unsigned int transport_len, 5667 __sum16(*skb_chkf)(struct sk_buff *skb)) 5668 { 5669 struct sk_buff *skb_chk; 5670 unsigned int offset = skb_transport_offset(skb); 5671 __sum16 ret; 5672 5673 skb_chk = skb_checksum_maybe_trim(skb, transport_len); 5674 if (!skb_chk) 5675 goto err; 5676 5677 if (!pskb_may_pull(skb_chk, offset)) 5678 goto err; 5679 5680 skb_pull_rcsum(skb_chk, offset); 5681 ret = skb_chkf(skb_chk); 5682 skb_push_rcsum(skb_chk, offset); 5683 5684 if (ret) 5685 goto err; 5686 5687 return skb_chk; 5688 5689 err: 5690 if (skb_chk && skb_chk != skb) 5691 kfree_skb(skb_chk); 5692 5693 return NULL; 5694 5695 } 5696 EXPORT_SYMBOL(skb_checksum_trimmed); 5697 5698 void __skb_warn_lro_forwarding(const struct sk_buff *skb) 5699 { 5700 net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n", 5701 skb->dev->name); 5702 } 5703 EXPORT_SYMBOL(__skb_warn_lro_forwarding); 5704 5705 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen) 5706 { 5707 if (head_stolen) { 5708 skb_release_head_state(skb); 5709 kmem_cache_free(skbuff_cache, skb); 5710 } else { 5711 __kfree_skb(skb); 5712 } 5713 } 5714 EXPORT_SYMBOL(kfree_skb_partial); 5715 5716 /** 5717 * skb_try_coalesce - try to merge skb to prior one 5718 * @to: prior buffer 5719 * @from: buffer to add 5720 * @fragstolen: pointer to boolean 5721 * @delta_truesize: how much more was allocated than was requested 5722 */ 5723 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from, 5724 bool *fragstolen, int *delta_truesize) 5725 { 5726 struct skb_shared_info *to_shinfo, *from_shinfo; 5727 int i, delta, len = from->len; 5728 5729 *fragstolen = false; 5730 5731 if (skb_cloned(to)) 5732 return false; 5733 5734 /* In general, avoid mixing page_pool and non-page_pool allocated 5735 * pages within the same SKB. Additionally avoid dealing with clones 5736 * with page_pool pages, in case the SKB is using page_pool fragment 5737 * references (PP_FLAG_PAGE_FRAG). Since we only take full page 5738 * references for cloned SKBs at the moment that would result in 5739 * inconsistent reference counts. 5740 * In theory we could take full references if @from is cloned and 5741 * !@to->pp_recycle but its tricky (due to potential race with 5742 * the clone disappearing) and rare, so not worth dealing with. 5743 */ 5744 if (to->pp_recycle != from->pp_recycle || 5745 (from->pp_recycle && skb_cloned(from))) 5746 return false; 5747 5748 if (len <= skb_tailroom(to)) { 5749 if (len) 5750 BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len)); 5751 *delta_truesize = 0; 5752 return true; 5753 } 5754 5755 to_shinfo = skb_shinfo(to); 5756 from_shinfo = skb_shinfo(from); 5757 if (to_shinfo->frag_list || from_shinfo->frag_list) 5758 return false; 5759 if (skb_zcopy(to) || skb_zcopy(from)) 5760 return false; 5761 5762 if (skb_headlen(from) != 0) { 5763 struct page *page; 5764 unsigned int offset; 5765 5766 if (to_shinfo->nr_frags + 5767 from_shinfo->nr_frags >= MAX_SKB_FRAGS) 5768 return false; 5769 5770 if (skb_head_is_locked(from)) 5771 return false; 5772 5773 delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff)); 5774 5775 page = virt_to_head_page(from->head); 5776 offset = from->data - (unsigned char *)page_address(page); 5777 5778 skb_fill_page_desc(to, to_shinfo->nr_frags, 5779 page, offset, skb_headlen(from)); 5780 *fragstolen = true; 5781 } else { 5782 if (to_shinfo->nr_frags + 5783 from_shinfo->nr_frags > MAX_SKB_FRAGS) 5784 return false; 5785 5786 delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from)); 5787 } 5788 5789 WARN_ON_ONCE(delta < len); 5790 5791 memcpy(to_shinfo->frags + to_shinfo->nr_frags, 5792 from_shinfo->frags, 5793 from_shinfo->nr_frags * sizeof(skb_frag_t)); 5794 to_shinfo->nr_frags += from_shinfo->nr_frags; 5795 5796 if (!skb_cloned(from)) 5797 from_shinfo->nr_frags = 0; 5798 5799 /* if the skb is not cloned this does nothing 5800 * since we set nr_frags to 0. 5801 */ 5802 for (i = 0; i < from_shinfo->nr_frags; i++) 5803 __skb_frag_ref(&from_shinfo->frags[i]); 5804 5805 to->truesize += delta; 5806 to->len += len; 5807 to->data_len += len; 5808 5809 *delta_truesize = delta; 5810 return true; 5811 } 5812 EXPORT_SYMBOL(skb_try_coalesce); 5813 5814 /** 5815 * skb_scrub_packet - scrub an skb 5816 * 5817 * @skb: buffer to clean 5818 * @xnet: packet is crossing netns 5819 * 5820 * skb_scrub_packet can be used after encapsulating or decapsulting a packet 5821 * into/from a tunnel. Some information have to be cleared during these 5822 * operations. 5823 * skb_scrub_packet can also be used to clean a skb before injecting it in 5824 * another namespace (@xnet == true). We have to clear all information in the 5825 * skb that could impact namespace isolation. 5826 */ 5827 void skb_scrub_packet(struct sk_buff *skb, bool xnet) 5828 { 5829 skb->pkt_type = PACKET_HOST; 5830 skb->skb_iif = 0; 5831 skb->ignore_df = 0; 5832 skb_dst_drop(skb); 5833 skb_ext_reset(skb); 5834 nf_reset_ct(skb); 5835 nf_reset_trace(skb); 5836 5837 #ifdef CONFIG_NET_SWITCHDEV 5838 skb->offload_fwd_mark = 0; 5839 skb->offload_l3_fwd_mark = 0; 5840 #endif 5841 5842 if (!xnet) 5843 return; 5844 5845 ipvs_reset(skb); 5846 skb->mark = 0; 5847 skb_clear_tstamp(skb); 5848 } 5849 EXPORT_SYMBOL_GPL(skb_scrub_packet); 5850 5851 static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb) 5852 { 5853 int mac_len, meta_len; 5854 void *meta; 5855 5856 if (skb_cow(skb, skb_headroom(skb)) < 0) { 5857 kfree_skb(skb); 5858 return NULL; 5859 } 5860 5861 mac_len = skb->data - skb_mac_header(skb); 5862 if (likely(mac_len > VLAN_HLEN + ETH_TLEN)) { 5863 memmove(skb_mac_header(skb) + VLAN_HLEN, skb_mac_header(skb), 5864 mac_len - VLAN_HLEN - ETH_TLEN); 5865 } 5866 5867 meta_len = skb_metadata_len(skb); 5868 if (meta_len) { 5869 meta = skb_metadata_end(skb) - meta_len; 5870 memmove(meta + VLAN_HLEN, meta, meta_len); 5871 } 5872 5873 skb->mac_header += VLAN_HLEN; 5874 return skb; 5875 } 5876 5877 struct sk_buff *skb_vlan_untag(struct sk_buff *skb) 5878 { 5879 struct vlan_hdr *vhdr; 5880 u16 vlan_tci; 5881 5882 if (unlikely(skb_vlan_tag_present(skb))) { 5883 /* vlan_tci is already set-up so leave this for another time */ 5884 return skb; 5885 } 5886 5887 skb = skb_share_check(skb, GFP_ATOMIC); 5888 if (unlikely(!skb)) 5889 goto err_free; 5890 /* We may access the two bytes after vlan_hdr in vlan_set_encap_proto(). */ 5891 if (unlikely(!pskb_may_pull(skb, VLAN_HLEN + sizeof(unsigned short)))) 5892 goto err_free; 5893 5894 vhdr = (struct vlan_hdr *)skb->data; 5895 vlan_tci = ntohs(vhdr->h_vlan_TCI); 5896 __vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci); 5897 5898 skb_pull_rcsum(skb, VLAN_HLEN); 5899 vlan_set_encap_proto(skb, vhdr); 5900 5901 skb = skb_reorder_vlan_header(skb); 5902 if (unlikely(!skb)) 5903 goto err_free; 5904 5905 skb_reset_network_header(skb); 5906 if (!skb_transport_header_was_set(skb)) 5907 skb_reset_transport_header(skb); 5908 skb_reset_mac_len(skb); 5909 5910 return skb; 5911 5912 err_free: 5913 kfree_skb(skb); 5914 return NULL; 5915 } 5916 EXPORT_SYMBOL(skb_vlan_untag); 5917 5918 int skb_ensure_writable(struct sk_buff *skb, unsigned int write_len) 5919 { 5920 if (!pskb_may_pull(skb, write_len)) 5921 return -ENOMEM; 5922 5923 if (!skb_cloned(skb) || skb_clone_writable(skb, write_len)) 5924 return 0; 5925 5926 return pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 5927 } 5928 EXPORT_SYMBOL(skb_ensure_writable); 5929 5930 /* remove VLAN header from packet and update csum accordingly. 5931 * expects a non skb_vlan_tag_present skb with a vlan tag payload 5932 */ 5933 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci) 5934 { 5935 int offset = skb->data - skb_mac_header(skb); 5936 int err; 5937 5938 if (WARN_ONCE(offset, 5939 "__skb_vlan_pop got skb with skb->data not at mac header (offset %d)\n", 5940 offset)) { 5941 return -EINVAL; 5942 } 5943 5944 err = skb_ensure_writable(skb, VLAN_ETH_HLEN); 5945 if (unlikely(err)) 5946 return err; 5947 5948 skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN); 5949 5950 vlan_remove_tag(skb, vlan_tci); 5951 5952 skb->mac_header += VLAN_HLEN; 5953 5954 if (skb_network_offset(skb) < ETH_HLEN) 5955 skb_set_network_header(skb, ETH_HLEN); 5956 5957 skb_reset_mac_len(skb); 5958 5959 return err; 5960 } 5961 EXPORT_SYMBOL(__skb_vlan_pop); 5962 5963 /* Pop a vlan tag either from hwaccel or from payload. 5964 * Expects skb->data at mac header. 5965 */ 5966 int skb_vlan_pop(struct sk_buff *skb) 5967 { 5968 u16 vlan_tci; 5969 __be16 vlan_proto; 5970 int err; 5971 5972 if (likely(skb_vlan_tag_present(skb))) { 5973 __vlan_hwaccel_clear_tag(skb); 5974 } else { 5975 if (unlikely(!eth_type_vlan(skb->protocol))) 5976 return 0; 5977 5978 err = __skb_vlan_pop(skb, &vlan_tci); 5979 if (err) 5980 return err; 5981 } 5982 /* move next vlan tag to hw accel tag */ 5983 if (likely(!eth_type_vlan(skb->protocol))) 5984 return 0; 5985 5986 vlan_proto = skb->protocol; 5987 err = __skb_vlan_pop(skb, &vlan_tci); 5988 if (unlikely(err)) 5989 return err; 5990 5991 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci); 5992 return 0; 5993 } 5994 EXPORT_SYMBOL(skb_vlan_pop); 5995 5996 /* Push a vlan tag either into hwaccel or into payload (if hwaccel tag present). 5997 * Expects skb->data at mac header. 5998 */ 5999 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci) 6000 { 6001 if (skb_vlan_tag_present(skb)) { 6002 int offset = skb->data - skb_mac_header(skb); 6003 int err; 6004 6005 if (WARN_ONCE(offset, 6006 "skb_vlan_push got skb with skb->data not at mac header (offset %d)\n", 6007 offset)) { 6008 return -EINVAL; 6009 } 6010 6011 err = __vlan_insert_tag(skb, skb->vlan_proto, 6012 skb_vlan_tag_get(skb)); 6013 if (err) 6014 return err; 6015 6016 skb->protocol = skb->vlan_proto; 6017 skb->mac_len += VLAN_HLEN; 6018 6019 skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN); 6020 } 6021 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci); 6022 return 0; 6023 } 6024 EXPORT_SYMBOL(skb_vlan_push); 6025 6026 /** 6027 * skb_eth_pop() - Drop the Ethernet header at the head of a packet 6028 * 6029 * @skb: Socket buffer to modify 6030 * 6031 * Drop the Ethernet header of @skb. 6032 * 6033 * Expects that skb->data points to the mac header and that no VLAN tags are 6034 * present. 6035 * 6036 * Returns 0 on success, -errno otherwise. 6037 */ 6038 int skb_eth_pop(struct sk_buff *skb) 6039 { 6040 if (!pskb_may_pull(skb, ETH_HLEN) || skb_vlan_tagged(skb) || 6041 skb_network_offset(skb) < ETH_HLEN) 6042 return -EPROTO; 6043 6044 skb_pull_rcsum(skb, ETH_HLEN); 6045 skb_reset_mac_header(skb); 6046 skb_reset_mac_len(skb); 6047 6048 return 0; 6049 } 6050 EXPORT_SYMBOL(skb_eth_pop); 6051 6052 /** 6053 * skb_eth_push() - Add a new Ethernet header at the head of a packet 6054 * 6055 * @skb: Socket buffer to modify 6056 * @dst: Destination MAC address of the new header 6057 * @src: Source MAC address of the new header 6058 * 6059 * Prepend @skb with a new Ethernet header. 6060 * 6061 * Expects that skb->data points to the mac header, which must be empty. 6062 * 6063 * Returns 0 on success, -errno otherwise. 6064 */ 6065 int skb_eth_push(struct sk_buff *skb, const unsigned char *dst, 6066 const unsigned char *src) 6067 { 6068 struct ethhdr *eth; 6069 int err; 6070 6071 if (skb_network_offset(skb) || skb_vlan_tag_present(skb)) 6072 return -EPROTO; 6073 6074 err = skb_cow_head(skb, sizeof(*eth)); 6075 if (err < 0) 6076 return err; 6077 6078 skb_push(skb, sizeof(*eth)); 6079 skb_reset_mac_header(skb); 6080 skb_reset_mac_len(skb); 6081 6082 eth = eth_hdr(skb); 6083 ether_addr_copy(eth->h_dest, dst); 6084 ether_addr_copy(eth->h_source, src); 6085 eth->h_proto = skb->protocol; 6086 6087 skb_postpush_rcsum(skb, eth, sizeof(*eth)); 6088 6089 return 0; 6090 } 6091 EXPORT_SYMBOL(skb_eth_push); 6092 6093 /* Update the ethertype of hdr and the skb csum value if required. */ 6094 static void skb_mod_eth_type(struct sk_buff *skb, struct ethhdr *hdr, 6095 __be16 ethertype) 6096 { 6097 if (skb->ip_summed == CHECKSUM_COMPLETE) { 6098 __be16 diff[] = { ~hdr->h_proto, ethertype }; 6099 6100 skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum); 6101 } 6102 6103 hdr->h_proto = ethertype; 6104 } 6105 6106 /** 6107 * skb_mpls_push() - push a new MPLS header after mac_len bytes from start of 6108 * the packet 6109 * 6110 * @skb: buffer 6111 * @mpls_lse: MPLS label stack entry to push 6112 * @mpls_proto: ethertype of the new MPLS header (expects 0x8847 or 0x8848) 6113 * @mac_len: length of the MAC header 6114 * @ethernet: flag to indicate if the resulting packet after skb_mpls_push is 6115 * ethernet 6116 * 6117 * Expects skb->data at mac header. 6118 * 6119 * Returns 0 on success, -errno otherwise. 6120 */ 6121 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto, 6122 int mac_len, bool ethernet) 6123 { 6124 struct mpls_shim_hdr *lse; 6125 int err; 6126 6127 if (unlikely(!eth_p_mpls(mpls_proto))) 6128 return -EINVAL; 6129 6130 /* Networking stack does not allow simultaneous Tunnel and MPLS GSO. */ 6131 if (skb->encapsulation) 6132 return -EINVAL; 6133 6134 err = skb_cow_head(skb, MPLS_HLEN); 6135 if (unlikely(err)) 6136 return err; 6137 6138 if (!skb->inner_protocol) { 6139 skb_set_inner_network_header(skb, skb_network_offset(skb)); 6140 skb_set_inner_protocol(skb, skb->protocol); 6141 } 6142 6143 skb_push(skb, MPLS_HLEN); 6144 memmove(skb_mac_header(skb) - MPLS_HLEN, skb_mac_header(skb), 6145 mac_len); 6146 skb_reset_mac_header(skb); 6147 skb_set_network_header(skb, mac_len); 6148 skb_reset_mac_len(skb); 6149 6150 lse = mpls_hdr(skb); 6151 lse->label_stack_entry = mpls_lse; 6152 skb_postpush_rcsum(skb, lse, MPLS_HLEN); 6153 6154 if (ethernet && mac_len >= ETH_HLEN) 6155 skb_mod_eth_type(skb, eth_hdr(skb), mpls_proto); 6156 skb->protocol = mpls_proto; 6157 6158 return 0; 6159 } 6160 EXPORT_SYMBOL_GPL(skb_mpls_push); 6161 6162 /** 6163 * skb_mpls_pop() - pop the outermost MPLS header 6164 * 6165 * @skb: buffer 6166 * @next_proto: ethertype of header after popped MPLS header 6167 * @mac_len: length of the MAC header 6168 * @ethernet: flag to indicate if the packet is ethernet 6169 * 6170 * Expects skb->data at mac header. 6171 * 6172 * Returns 0 on success, -errno otherwise. 6173 */ 6174 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len, 6175 bool ethernet) 6176 { 6177 int err; 6178 6179 if (unlikely(!eth_p_mpls(skb->protocol))) 6180 return 0; 6181 6182 err = skb_ensure_writable(skb, mac_len + MPLS_HLEN); 6183 if (unlikely(err)) 6184 return err; 6185 6186 skb_postpull_rcsum(skb, mpls_hdr(skb), MPLS_HLEN); 6187 memmove(skb_mac_header(skb) + MPLS_HLEN, skb_mac_header(skb), 6188 mac_len); 6189 6190 __skb_pull(skb, MPLS_HLEN); 6191 skb_reset_mac_header(skb); 6192 skb_set_network_header(skb, mac_len); 6193 6194 if (ethernet && mac_len >= ETH_HLEN) { 6195 struct ethhdr *hdr; 6196 6197 /* use mpls_hdr() to get ethertype to account for VLANs. */ 6198 hdr = (struct ethhdr *)((void *)mpls_hdr(skb) - ETH_HLEN); 6199 skb_mod_eth_type(skb, hdr, next_proto); 6200 } 6201 skb->protocol = next_proto; 6202 6203 return 0; 6204 } 6205 EXPORT_SYMBOL_GPL(skb_mpls_pop); 6206 6207 /** 6208 * skb_mpls_update_lse() - modify outermost MPLS header and update csum 6209 * 6210 * @skb: buffer 6211 * @mpls_lse: new MPLS label stack entry to update to 6212 * 6213 * Expects skb->data at mac header. 6214 * 6215 * Returns 0 on success, -errno otherwise. 6216 */ 6217 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse) 6218 { 6219 int err; 6220 6221 if (unlikely(!eth_p_mpls(skb->protocol))) 6222 return -EINVAL; 6223 6224 err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN); 6225 if (unlikely(err)) 6226 return err; 6227 6228 if (skb->ip_summed == CHECKSUM_COMPLETE) { 6229 __be32 diff[] = { ~mpls_hdr(skb)->label_stack_entry, mpls_lse }; 6230 6231 skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum); 6232 } 6233 6234 mpls_hdr(skb)->label_stack_entry = mpls_lse; 6235 6236 return 0; 6237 } 6238 EXPORT_SYMBOL_GPL(skb_mpls_update_lse); 6239 6240 /** 6241 * skb_mpls_dec_ttl() - decrement the TTL of the outermost MPLS header 6242 * 6243 * @skb: buffer 6244 * 6245 * Expects skb->data at mac header. 6246 * 6247 * Returns 0 on success, -errno otherwise. 6248 */ 6249 int skb_mpls_dec_ttl(struct sk_buff *skb) 6250 { 6251 u32 lse; 6252 u8 ttl; 6253 6254 if (unlikely(!eth_p_mpls(skb->protocol))) 6255 return -EINVAL; 6256 6257 if (!pskb_may_pull(skb, skb_network_offset(skb) + MPLS_HLEN)) 6258 return -ENOMEM; 6259 6260 lse = be32_to_cpu(mpls_hdr(skb)->label_stack_entry); 6261 ttl = (lse & MPLS_LS_TTL_MASK) >> MPLS_LS_TTL_SHIFT; 6262 if (!--ttl) 6263 return -EINVAL; 6264 6265 lse &= ~MPLS_LS_TTL_MASK; 6266 lse |= ttl << MPLS_LS_TTL_SHIFT; 6267 6268 return skb_mpls_update_lse(skb, cpu_to_be32(lse)); 6269 } 6270 EXPORT_SYMBOL_GPL(skb_mpls_dec_ttl); 6271 6272 /** 6273 * alloc_skb_with_frags - allocate skb with page frags 6274 * 6275 * @header_len: size of linear part 6276 * @data_len: needed length in frags 6277 * @order: max page order desired. 6278 * @errcode: pointer to error code if any 6279 * @gfp_mask: allocation mask 6280 * 6281 * This can be used to allocate a paged skb, given a maximal order for frags. 6282 */ 6283 struct sk_buff *alloc_skb_with_frags(unsigned long header_len, 6284 unsigned long data_len, 6285 int order, 6286 int *errcode, 6287 gfp_t gfp_mask) 6288 { 6289 unsigned long chunk; 6290 struct sk_buff *skb; 6291 struct page *page; 6292 int nr_frags = 0; 6293 6294 *errcode = -EMSGSIZE; 6295 if (unlikely(data_len > MAX_SKB_FRAGS * (PAGE_SIZE << order))) 6296 return NULL; 6297 6298 *errcode = -ENOBUFS; 6299 skb = alloc_skb(header_len, gfp_mask); 6300 if (!skb) 6301 return NULL; 6302 6303 while (data_len) { 6304 if (nr_frags == MAX_SKB_FRAGS - 1) 6305 goto failure; 6306 while (order && PAGE_ALIGN(data_len) < (PAGE_SIZE << order)) 6307 order--; 6308 6309 if (order) { 6310 page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) | 6311 __GFP_COMP | 6312 __GFP_NOWARN, 6313 order); 6314 if (!page) { 6315 order--; 6316 continue; 6317 } 6318 } else { 6319 page = alloc_page(gfp_mask); 6320 if (!page) 6321 goto failure; 6322 } 6323 chunk = min_t(unsigned long, data_len, 6324 PAGE_SIZE << order); 6325 skb_fill_page_desc(skb, nr_frags, page, 0, chunk); 6326 nr_frags++; 6327 skb->truesize += (PAGE_SIZE << order); 6328 data_len -= chunk; 6329 } 6330 return skb; 6331 6332 failure: 6333 kfree_skb(skb); 6334 return NULL; 6335 } 6336 EXPORT_SYMBOL(alloc_skb_with_frags); 6337 6338 /* carve out the first off bytes from skb when off < headlen */ 6339 static int pskb_carve_inside_header(struct sk_buff *skb, const u32 off, 6340 const int headlen, gfp_t gfp_mask) 6341 { 6342 int i; 6343 unsigned int size = skb_end_offset(skb); 6344 int new_hlen = headlen - off; 6345 u8 *data; 6346 6347 if (skb_pfmemalloc(skb)) 6348 gfp_mask |= __GFP_MEMALLOC; 6349 6350 data = kmalloc_reserve(&size, gfp_mask, NUMA_NO_NODE, NULL); 6351 if (!data) 6352 return -ENOMEM; 6353 size = SKB_WITH_OVERHEAD(size); 6354 6355 /* Copy real data, and all frags */ 6356 skb_copy_from_linear_data_offset(skb, off, data, new_hlen); 6357 skb->len -= off; 6358 6359 memcpy((struct skb_shared_info *)(data + size), 6360 skb_shinfo(skb), 6361 offsetof(struct skb_shared_info, 6362 frags[skb_shinfo(skb)->nr_frags])); 6363 if (skb_cloned(skb)) { 6364 /* drop the old head gracefully */ 6365 if (skb_orphan_frags(skb, gfp_mask)) { 6366 skb_kfree_head(data, size); 6367 return -ENOMEM; 6368 } 6369 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 6370 skb_frag_ref(skb, i); 6371 if (skb_has_frag_list(skb)) 6372 skb_clone_fraglist(skb); 6373 skb_release_data(skb, SKB_CONSUMED, false); 6374 } else { 6375 /* we can reuse existing recount- all we did was 6376 * relocate values 6377 */ 6378 skb_free_head(skb, false); 6379 } 6380 6381 skb->head = data; 6382 skb->data = data; 6383 skb->head_frag = 0; 6384 skb_set_end_offset(skb, size); 6385 skb_set_tail_pointer(skb, skb_headlen(skb)); 6386 skb_headers_offset_update(skb, 0); 6387 skb->cloned = 0; 6388 skb->hdr_len = 0; 6389 skb->nohdr = 0; 6390 atomic_set(&skb_shinfo(skb)->dataref, 1); 6391 6392 return 0; 6393 } 6394 6395 static int pskb_carve(struct sk_buff *skb, const u32 off, gfp_t gfp); 6396 6397 /* carve out the first eat bytes from skb's frag_list. May recurse into 6398 * pskb_carve() 6399 */ 6400 static int pskb_carve_frag_list(struct sk_buff *skb, 6401 struct skb_shared_info *shinfo, int eat, 6402 gfp_t gfp_mask) 6403 { 6404 struct sk_buff *list = shinfo->frag_list; 6405 struct sk_buff *clone = NULL; 6406 struct sk_buff *insp = NULL; 6407 6408 do { 6409 if (!list) { 6410 pr_err("Not enough bytes to eat. Want %d\n", eat); 6411 return -EFAULT; 6412 } 6413 if (list->len <= eat) { 6414 /* Eaten as whole. */ 6415 eat -= list->len; 6416 list = list->next; 6417 insp = list; 6418 } else { 6419 /* Eaten partially. */ 6420 if (skb_shared(list)) { 6421 clone = skb_clone(list, gfp_mask); 6422 if (!clone) 6423 return -ENOMEM; 6424 insp = list->next; 6425 list = clone; 6426 } else { 6427 /* This may be pulled without problems. */ 6428 insp = list; 6429 } 6430 if (pskb_carve(list, eat, gfp_mask) < 0) { 6431 kfree_skb(clone); 6432 return -ENOMEM; 6433 } 6434 break; 6435 } 6436 } while (eat); 6437 6438 /* Free pulled out fragments. */ 6439 while ((list = shinfo->frag_list) != insp) { 6440 shinfo->frag_list = list->next; 6441 consume_skb(list); 6442 } 6443 /* And insert new clone at head. */ 6444 if (clone) { 6445 clone->next = list; 6446 shinfo->frag_list = clone; 6447 } 6448 return 0; 6449 } 6450 6451 /* carve off first len bytes from skb. Split line (off) is in the 6452 * non-linear part of skb 6453 */ 6454 static int pskb_carve_inside_nonlinear(struct sk_buff *skb, const u32 off, 6455 int pos, gfp_t gfp_mask) 6456 { 6457 int i, k = 0; 6458 unsigned int size = skb_end_offset(skb); 6459 u8 *data; 6460 const int nfrags = skb_shinfo(skb)->nr_frags; 6461 struct skb_shared_info *shinfo; 6462 6463 if (skb_pfmemalloc(skb)) 6464 gfp_mask |= __GFP_MEMALLOC; 6465 6466 data = kmalloc_reserve(&size, gfp_mask, NUMA_NO_NODE, NULL); 6467 if (!data) 6468 return -ENOMEM; 6469 size = SKB_WITH_OVERHEAD(size); 6470 6471 memcpy((struct skb_shared_info *)(data + size), 6472 skb_shinfo(skb), offsetof(struct skb_shared_info, frags[0])); 6473 if (skb_orphan_frags(skb, gfp_mask)) { 6474 skb_kfree_head(data, size); 6475 return -ENOMEM; 6476 } 6477 shinfo = (struct skb_shared_info *)(data + size); 6478 for (i = 0; i < nfrags; i++) { 6479 int fsize = skb_frag_size(&skb_shinfo(skb)->frags[i]); 6480 6481 if (pos + fsize > off) { 6482 shinfo->frags[k] = skb_shinfo(skb)->frags[i]; 6483 6484 if (pos < off) { 6485 /* Split frag. 6486 * We have two variants in this case: 6487 * 1. Move all the frag to the second 6488 * part, if it is possible. F.e. 6489 * this approach is mandatory for TUX, 6490 * where splitting is expensive. 6491 * 2. Split is accurately. We make this. 6492 */ 6493 skb_frag_off_add(&shinfo->frags[0], off - pos); 6494 skb_frag_size_sub(&shinfo->frags[0], off - pos); 6495 } 6496 skb_frag_ref(skb, i); 6497 k++; 6498 } 6499 pos += fsize; 6500 } 6501 shinfo->nr_frags = k; 6502 if (skb_has_frag_list(skb)) 6503 skb_clone_fraglist(skb); 6504 6505 /* split line is in frag list */ 6506 if (k == 0 && pskb_carve_frag_list(skb, shinfo, off - pos, gfp_mask)) { 6507 /* skb_frag_unref() is not needed here as shinfo->nr_frags = 0. */ 6508 if (skb_has_frag_list(skb)) 6509 kfree_skb_list(skb_shinfo(skb)->frag_list); 6510 skb_kfree_head(data, size); 6511 return -ENOMEM; 6512 } 6513 skb_release_data(skb, SKB_CONSUMED, false); 6514 6515 skb->head = data; 6516 skb->head_frag = 0; 6517 skb->data = data; 6518 skb_set_end_offset(skb, size); 6519 skb_reset_tail_pointer(skb); 6520 skb_headers_offset_update(skb, 0); 6521 skb->cloned = 0; 6522 skb->hdr_len = 0; 6523 skb->nohdr = 0; 6524 skb->len -= off; 6525 skb->data_len = skb->len; 6526 atomic_set(&skb_shinfo(skb)->dataref, 1); 6527 return 0; 6528 } 6529 6530 /* remove len bytes from the beginning of the skb */ 6531 static int pskb_carve(struct sk_buff *skb, const u32 len, gfp_t gfp) 6532 { 6533 int headlen = skb_headlen(skb); 6534 6535 if (len < headlen) 6536 return pskb_carve_inside_header(skb, len, headlen, gfp); 6537 else 6538 return pskb_carve_inside_nonlinear(skb, len, headlen, gfp); 6539 } 6540 6541 /* Extract to_copy bytes starting at off from skb, and return this in 6542 * a new skb 6543 */ 6544 struct sk_buff *pskb_extract(struct sk_buff *skb, int off, 6545 int to_copy, gfp_t gfp) 6546 { 6547 struct sk_buff *clone = skb_clone(skb, gfp); 6548 6549 if (!clone) 6550 return NULL; 6551 6552 if (pskb_carve(clone, off, gfp) < 0 || 6553 pskb_trim(clone, to_copy)) { 6554 kfree_skb(clone); 6555 return NULL; 6556 } 6557 return clone; 6558 } 6559 EXPORT_SYMBOL(pskb_extract); 6560 6561 /** 6562 * skb_condense - try to get rid of fragments/frag_list if possible 6563 * @skb: buffer 6564 * 6565 * Can be used to save memory before skb is added to a busy queue. 6566 * If packet has bytes in frags and enough tail room in skb->head, 6567 * pull all of them, so that we can free the frags right now and adjust 6568 * truesize. 6569 * Notes: 6570 * We do not reallocate skb->head thus can not fail. 6571 * Caller must re-evaluate skb->truesize if needed. 6572 */ 6573 void skb_condense(struct sk_buff *skb) 6574 { 6575 if (skb->data_len) { 6576 if (skb->data_len > skb->end - skb->tail || 6577 skb_cloned(skb)) 6578 return; 6579 6580 /* Nice, we can free page frag(s) right now */ 6581 __pskb_pull_tail(skb, skb->data_len); 6582 } 6583 /* At this point, skb->truesize might be over estimated, 6584 * because skb had a fragment, and fragments do not tell 6585 * their truesize. 6586 * When we pulled its content into skb->head, fragment 6587 * was freed, but __pskb_pull_tail() could not possibly 6588 * adjust skb->truesize, not knowing the frag truesize. 6589 */ 6590 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb)); 6591 } 6592 EXPORT_SYMBOL(skb_condense); 6593 6594 #ifdef CONFIG_SKB_EXTENSIONS 6595 static void *skb_ext_get_ptr(struct skb_ext *ext, enum skb_ext_id id) 6596 { 6597 return (void *)ext + (ext->offset[id] * SKB_EXT_ALIGN_VALUE); 6598 } 6599 6600 /** 6601 * __skb_ext_alloc - allocate a new skb extensions storage 6602 * 6603 * @flags: See kmalloc(). 6604 * 6605 * Returns the newly allocated pointer. The pointer can later attached to a 6606 * skb via __skb_ext_set(). 6607 * Note: caller must handle the skb_ext as an opaque data. 6608 */ 6609 struct skb_ext *__skb_ext_alloc(gfp_t flags) 6610 { 6611 struct skb_ext *new = kmem_cache_alloc(skbuff_ext_cache, flags); 6612 6613 if (new) { 6614 memset(new->offset, 0, sizeof(new->offset)); 6615 refcount_set(&new->refcnt, 1); 6616 } 6617 6618 return new; 6619 } 6620 6621 static struct skb_ext *skb_ext_maybe_cow(struct skb_ext *old, 6622 unsigned int old_active) 6623 { 6624 struct skb_ext *new; 6625 6626 if (refcount_read(&old->refcnt) == 1) 6627 return old; 6628 6629 new = kmem_cache_alloc(skbuff_ext_cache, GFP_ATOMIC); 6630 if (!new) 6631 return NULL; 6632 6633 memcpy(new, old, old->chunks * SKB_EXT_ALIGN_VALUE); 6634 refcount_set(&new->refcnt, 1); 6635 6636 #ifdef CONFIG_XFRM 6637 if (old_active & (1 << SKB_EXT_SEC_PATH)) { 6638 struct sec_path *sp = skb_ext_get_ptr(old, SKB_EXT_SEC_PATH); 6639 unsigned int i; 6640 6641 for (i = 0; i < sp->len; i++) 6642 xfrm_state_hold(sp->xvec[i]); 6643 } 6644 #endif 6645 __skb_ext_put(old); 6646 return new; 6647 } 6648 6649 /** 6650 * __skb_ext_set - attach the specified extension storage to this skb 6651 * @skb: buffer 6652 * @id: extension id 6653 * @ext: extension storage previously allocated via __skb_ext_alloc() 6654 * 6655 * Existing extensions, if any, are cleared. 6656 * 6657 * Returns the pointer to the extension. 6658 */ 6659 void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id, 6660 struct skb_ext *ext) 6661 { 6662 unsigned int newlen, newoff = SKB_EXT_CHUNKSIZEOF(*ext); 6663 6664 skb_ext_put(skb); 6665 newlen = newoff + skb_ext_type_len[id]; 6666 ext->chunks = newlen; 6667 ext->offset[id] = newoff; 6668 skb->extensions = ext; 6669 skb->active_extensions = 1 << id; 6670 return skb_ext_get_ptr(ext, id); 6671 } 6672 6673 /** 6674 * skb_ext_add - allocate space for given extension, COW if needed 6675 * @skb: buffer 6676 * @id: extension to allocate space for 6677 * 6678 * Allocates enough space for the given extension. 6679 * If the extension is already present, a pointer to that extension 6680 * is returned. 6681 * 6682 * If the skb was cloned, COW applies and the returned memory can be 6683 * modified without changing the extension space of clones buffers. 6684 * 6685 * Returns pointer to the extension or NULL on allocation failure. 6686 */ 6687 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id) 6688 { 6689 struct skb_ext *new, *old = NULL; 6690 unsigned int newlen, newoff; 6691 6692 if (skb->active_extensions) { 6693 old = skb->extensions; 6694 6695 new = skb_ext_maybe_cow(old, skb->active_extensions); 6696 if (!new) 6697 return NULL; 6698 6699 if (__skb_ext_exist(new, id)) 6700 goto set_active; 6701 6702 newoff = new->chunks; 6703 } else { 6704 newoff = SKB_EXT_CHUNKSIZEOF(*new); 6705 6706 new = __skb_ext_alloc(GFP_ATOMIC); 6707 if (!new) 6708 return NULL; 6709 } 6710 6711 newlen = newoff + skb_ext_type_len[id]; 6712 new->chunks = newlen; 6713 new->offset[id] = newoff; 6714 set_active: 6715 skb->slow_gro = 1; 6716 skb->extensions = new; 6717 skb->active_extensions |= 1 << id; 6718 return skb_ext_get_ptr(new, id); 6719 } 6720 EXPORT_SYMBOL(skb_ext_add); 6721 6722 #ifdef CONFIG_XFRM 6723 static void skb_ext_put_sp(struct sec_path *sp) 6724 { 6725 unsigned int i; 6726 6727 for (i = 0; i < sp->len; i++) 6728 xfrm_state_put(sp->xvec[i]); 6729 } 6730 #endif 6731 6732 #ifdef CONFIG_MCTP_FLOWS 6733 static void skb_ext_put_mctp(struct mctp_flow *flow) 6734 { 6735 if (flow->key) 6736 mctp_key_unref(flow->key); 6737 } 6738 #endif 6739 6740 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id) 6741 { 6742 struct skb_ext *ext = skb->extensions; 6743 6744 skb->active_extensions &= ~(1 << id); 6745 if (skb->active_extensions == 0) { 6746 skb->extensions = NULL; 6747 __skb_ext_put(ext); 6748 #ifdef CONFIG_XFRM 6749 } else if (id == SKB_EXT_SEC_PATH && 6750 refcount_read(&ext->refcnt) == 1) { 6751 struct sec_path *sp = skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH); 6752 6753 skb_ext_put_sp(sp); 6754 sp->len = 0; 6755 #endif 6756 } 6757 } 6758 EXPORT_SYMBOL(__skb_ext_del); 6759 6760 void __skb_ext_put(struct skb_ext *ext) 6761 { 6762 /* If this is last clone, nothing can increment 6763 * it after check passes. Avoids one atomic op. 6764 */ 6765 if (refcount_read(&ext->refcnt) == 1) 6766 goto free_now; 6767 6768 if (!refcount_dec_and_test(&ext->refcnt)) 6769 return; 6770 free_now: 6771 #ifdef CONFIG_XFRM 6772 if (__skb_ext_exist(ext, SKB_EXT_SEC_PATH)) 6773 skb_ext_put_sp(skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH)); 6774 #endif 6775 #ifdef CONFIG_MCTP_FLOWS 6776 if (__skb_ext_exist(ext, SKB_EXT_MCTP)) 6777 skb_ext_put_mctp(skb_ext_get_ptr(ext, SKB_EXT_MCTP)); 6778 #endif 6779 6780 kmem_cache_free(skbuff_ext_cache, ext); 6781 } 6782 EXPORT_SYMBOL(__skb_ext_put); 6783 #endif /* CONFIG_SKB_EXTENSIONS */ 6784 6785 /** 6786 * skb_attempt_defer_free - queue skb for remote freeing 6787 * @skb: buffer 6788 * 6789 * Put @skb in a per-cpu list, using the cpu which 6790 * allocated the skb/pages to reduce false sharing 6791 * and memory zone spinlock contention. 6792 */ 6793 void skb_attempt_defer_free(struct sk_buff *skb) 6794 { 6795 int cpu = skb->alloc_cpu; 6796 struct softnet_data *sd; 6797 unsigned int defer_max; 6798 bool kick; 6799 6800 if (WARN_ON_ONCE(cpu >= nr_cpu_ids) || 6801 !cpu_online(cpu) || 6802 cpu == raw_smp_processor_id()) { 6803 nodefer: __kfree_skb(skb); 6804 return; 6805 } 6806 6807 DEBUG_NET_WARN_ON_ONCE(skb_dst(skb)); 6808 DEBUG_NET_WARN_ON_ONCE(skb->destructor); 6809 6810 sd = &per_cpu(softnet_data, cpu); 6811 defer_max = READ_ONCE(sysctl_skb_defer_max); 6812 if (READ_ONCE(sd->defer_count) >= defer_max) 6813 goto nodefer; 6814 6815 spin_lock_bh(&sd->defer_lock); 6816 /* Send an IPI every time queue reaches half capacity. */ 6817 kick = sd->defer_count == (defer_max >> 1); 6818 /* Paired with the READ_ONCE() few lines above */ 6819 WRITE_ONCE(sd->defer_count, sd->defer_count + 1); 6820 6821 skb->next = sd->defer_list; 6822 /* Paired with READ_ONCE() in skb_defer_free_flush() */ 6823 WRITE_ONCE(sd->defer_list, skb); 6824 spin_unlock_bh(&sd->defer_lock); 6825 6826 /* Make sure to trigger NET_RX_SOFTIRQ on the remote CPU 6827 * if we are unlucky enough (this seems very unlikely). 6828 */ 6829 if (unlikely(kick) && !cmpxchg(&sd->defer_ipi_scheduled, 0, 1)) 6830 smp_call_function_single_async(cpu, &sd->defer_csd); 6831 } 6832 6833 static void skb_splice_csum_page(struct sk_buff *skb, struct page *page, 6834 size_t offset, size_t len) 6835 { 6836 const char *kaddr; 6837 __wsum csum; 6838 6839 kaddr = kmap_local_page(page); 6840 csum = csum_partial(kaddr + offset, len, 0); 6841 kunmap_local(kaddr); 6842 skb->csum = csum_block_add(skb->csum, csum, skb->len); 6843 } 6844 6845 /** 6846 * skb_splice_from_iter - Splice (or copy) pages to skbuff 6847 * @skb: The buffer to add pages to 6848 * @iter: Iterator representing the pages to be added 6849 * @maxsize: Maximum amount of pages to be added 6850 * @gfp: Allocation flags 6851 * 6852 * This is a common helper function for supporting MSG_SPLICE_PAGES. It 6853 * extracts pages from an iterator and adds them to the socket buffer if 6854 * possible, copying them to fragments if not possible (such as if they're slab 6855 * pages). 6856 * 6857 * Returns the amount of data spliced/copied or -EMSGSIZE if there's 6858 * insufficient space in the buffer to transfer anything. 6859 */ 6860 ssize_t skb_splice_from_iter(struct sk_buff *skb, struct iov_iter *iter, 6861 ssize_t maxsize, gfp_t gfp) 6862 { 6863 size_t frag_limit = READ_ONCE(sysctl_max_skb_frags); 6864 struct page *pages[8], **ppages = pages; 6865 ssize_t spliced = 0, ret = 0; 6866 unsigned int i; 6867 6868 while (iter->count > 0) { 6869 ssize_t space, nr, len; 6870 size_t off; 6871 6872 ret = -EMSGSIZE; 6873 space = frag_limit - skb_shinfo(skb)->nr_frags; 6874 if (space < 0) 6875 break; 6876 6877 /* We might be able to coalesce without increasing nr_frags */ 6878 nr = clamp_t(size_t, space, 1, ARRAY_SIZE(pages)); 6879 6880 len = iov_iter_extract_pages(iter, &ppages, maxsize, nr, 0, &off); 6881 if (len <= 0) { 6882 ret = len ?: -EIO; 6883 break; 6884 } 6885 6886 i = 0; 6887 do { 6888 struct page *page = pages[i++]; 6889 size_t part = min_t(size_t, PAGE_SIZE - off, len); 6890 6891 ret = -EIO; 6892 if (WARN_ON_ONCE(!sendpage_ok(page))) 6893 goto out; 6894 6895 ret = skb_append_pagefrags(skb, page, off, part, 6896 frag_limit); 6897 if (ret < 0) { 6898 iov_iter_revert(iter, len); 6899 goto out; 6900 } 6901 6902 if (skb->ip_summed == CHECKSUM_NONE) 6903 skb_splice_csum_page(skb, page, off, part); 6904 6905 off = 0; 6906 spliced += part; 6907 maxsize -= part; 6908 len -= part; 6909 } while (len > 0); 6910 6911 if (maxsize <= 0) 6912 break; 6913 } 6914 6915 out: 6916 skb_len_add(skb, spliced); 6917 return spliced ?: ret; 6918 } 6919 EXPORT_SYMBOL(skb_splice_from_iter); 6920