1 /* 2 * Routines having to do with the 'struct sk_buff' memory handlers. 3 * 4 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk> 5 * Florian La Roche <rzsfl@rz.uni-sb.de> 6 * 7 * Fixes: 8 * Alan Cox : Fixed the worst of the load 9 * balancer bugs. 10 * Dave Platt : Interrupt stacking fix. 11 * Richard Kooijman : Timestamp fixes. 12 * Alan Cox : Changed buffer format. 13 * Alan Cox : destructor hook for AF_UNIX etc. 14 * Linus Torvalds : Better skb_clone. 15 * Alan Cox : Added skb_copy. 16 * Alan Cox : Added all the changed routines Linus 17 * only put in the headers 18 * Ray VanTassle : Fixed --skb->lock in free 19 * Alan Cox : skb_copy copy arp field 20 * Andi Kleen : slabified it. 21 * Robert Olsson : Removed skb_head_pool 22 * 23 * NOTE: 24 * The __skb_ routines should be called with interrupts 25 * disabled, or you better be *real* sure that the operation is atomic 26 * with respect to whatever list is being frobbed (e.g. via lock_sock() 27 * or via disabling bottom half handlers, etc). 28 * 29 * This program is free software; you can redistribute it and/or 30 * modify it under the terms of the GNU General Public License 31 * as published by the Free Software Foundation; either version 32 * 2 of the License, or (at your option) any later version. 33 */ 34 35 /* 36 * The functions in this file will not compile correctly with gcc 2.4.x 37 */ 38 39 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 40 41 #include <linux/module.h> 42 #include <linux/types.h> 43 #include <linux/kernel.h> 44 #include <linux/mm.h> 45 #include <linux/interrupt.h> 46 #include <linux/in.h> 47 #include <linux/inet.h> 48 #include <linux/slab.h> 49 #include <linux/tcp.h> 50 #include <linux/udp.h> 51 #include <linux/sctp.h> 52 #include <linux/netdevice.h> 53 #ifdef CONFIG_NET_CLS_ACT 54 #include <net/pkt_sched.h> 55 #endif 56 #include <linux/string.h> 57 #include <linux/skbuff.h> 58 #include <linux/splice.h> 59 #include <linux/cache.h> 60 #include <linux/rtnetlink.h> 61 #include <linux/init.h> 62 #include <linux/scatterlist.h> 63 #include <linux/errqueue.h> 64 #include <linux/prefetch.h> 65 #include <linux/if_vlan.h> 66 67 #include <net/protocol.h> 68 #include <net/dst.h> 69 #include <net/sock.h> 70 #include <net/checksum.h> 71 #include <net/ip6_checksum.h> 72 #include <net/xfrm.h> 73 74 #include <linux/uaccess.h> 75 #include <trace/events/skb.h> 76 #include <linux/highmem.h> 77 #include <linux/capability.h> 78 #include <linux/user_namespace.h> 79 80 #include "datagram.h" 81 82 struct kmem_cache *skbuff_head_cache __ro_after_init; 83 static struct kmem_cache *skbuff_fclone_cache __ro_after_init; 84 #ifdef CONFIG_SKB_EXTENSIONS 85 static struct kmem_cache *skbuff_ext_cache __ro_after_init; 86 #endif 87 int sysctl_max_skb_frags __read_mostly = MAX_SKB_FRAGS; 88 EXPORT_SYMBOL(sysctl_max_skb_frags); 89 90 /** 91 * skb_panic - private function for out-of-line support 92 * @skb: buffer 93 * @sz: size 94 * @addr: address 95 * @msg: skb_over_panic or skb_under_panic 96 * 97 * Out-of-line support for skb_put() and skb_push(). 98 * Called via the wrapper skb_over_panic() or skb_under_panic(). 99 * Keep out of line to prevent kernel bloat. 100 * __builtin_return_address is not used because it is not always reliable. 101 */ 102 static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr, 103 const char msg[]) 104 { 105 pr_emerg("%s: text:%p len:%d put:%d head:%p data:%p tail:%#lx end:%#lx dev:%s\n", 106 msg, addr, skb->len, sz, skb->head, skb->data, 107 (unsigned long)skb->tail, (unsigned long)skb->end, 108 skb->dev ? skb->dev->name : "<NULL>"); 109 BUG(); 110 } 111 112 static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr) 113 { 114 skb_panic(skb, sz, addr, __func__); 115 } 116 117 static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr) 118 { 119 skb_panic(skb, sz, addr, __func__); 120 } 121 122 /* 123 * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells 124 * the caller if emergency pfmemalloc reserves are being used. If it is and 125 * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves 126 * may be used. Otherwise, the packet data may be discarded until enough 127 * memory is free 128 */ 129 #define kmalloc_reserve(size, gfp, node, pfmemalloc) \ 130 __kmalloc_reserve(size, gfp, node, _RET_IP_, pfmemalloc) 131 132 static void *__kmalloc_reserve(size_t size, gfp_t flags, int node, 133 unsigned long ip, bool *pfmemalloc) 134 { 135 void *obj; 136 bool ret_pfmemalloc = false; 137 138 /* 139 * Try a regular allocation, when that fails and we're not entitled 140 * to the reserves, fail. 141 */ 142 obj = kmalloc_node_track_caller(size, 143 flags | __GFP_NOMEMALLOC | __GFP_NOWARN, 144 node); 145 if (obj || !(gfp_pfmemalloc_allowed(flags))) 146 goto out; 147 148 /* Try again but now we are using pfmemalloc reserves */ 149 ret_pfmemalloc = true; 150 obj = kmalloc_node_track_caller(size, flags, node); 151 152 out: 153 if (pfmemalloc) 154 *pfmemalloc = ret_pfmemalloc; 155 156 return obj; 157 } 158 159 /* Allocate a new skbuff. We do this ourselves so we can fill in a few 160 * 'private' fields and also do memory statistics to find all the 161 * [BEEP] leaks. 162 * 163 */ 164 165 /** 166 * __alloc_skb - allocate a network buffer 167 * @size: size to allocate 168 * @gfp_mask: allocation mask 169 * @flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache 170 * instead of head cache and allocate a cloned (child) skb. 171 * If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for 172 * allocations in case the data is required for writeback 173 * @node: numa node to allocate memory on 174 * 175 * Allocate a new &sk_buff. The returned buffer has no headroom and a 176 * tail room of at least size bytes. The object has a reference count 177 * of one. The return is the buffer. On a failure the return is %NULL. 178 * 179 * Buffers may only be allocated from interrupts using a @gfp_mask of 180 * %GFP_ATOMIC. 181 */ 182 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask, 183 int flags, int node) 184 { 185 struct kmem_cache *cache; 186 struct skb_shared_info *shinfo; 187 struct sk_buff *skb; 188 u8 *data; 189 bool pfmemalloc; 190 191 cache = (flags & SKB_ALLOC_FCLONE) 192 ? skbuff_fclone_cache : skbuff_head_cache; 193 194 if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX)) 195 gfp_mask |= __GFP_MEMALLOC; 196 197 /* Get the HEAD */ 198 skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node); 199 if (!skb) 200 goto out; 201 prefetchw(skb); 202 203 /* We do our best to align skb_shared_info on a separate cache 204 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives 205 * aligned memory blocks, unless SLUB/SLAB debug is enabled. 206 * Both skb->head and skb_shared_info are cache line aligned. 207 */ 208 size = SKB_DATA_ALIGN(size); 209 size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 210 data = kmalloc_reserve(size, gfp_mask, node, &pfmemalloc); 211 if (!data) 212 goto nodata; 213 /* kmalloc(size) might give us more room than requested. 214 * Put skb_shared_info exactly at the end of allocated zone, 215 * to allow max possible filling before reallocation. 216 */ 217 size = SKB_WITH_OVERHEAD(ksize(data)); 218 prefetchw(data + size); 219 220 /* 221 * Only clear those fields we need to clear, not those that we will 222 * actually initialise below. Hence, don't put any more fields after 223 * the tail pointer in struct sk_buff! 224 */ 225 memset(skb, 0, offsetof(struct sk_buff, tail)); 226 /* Account for allocated memory : skb + skb->head */ 227 skb->truesize = SKB_TRUESIZE(size); 228 skb->pfmemalloc = pfmemalloc; 229 refcount_set(&skb->users, 1); 230 skb->head = data; 231 skb->data = data; 232 skb_reset_tail_pointer(skb); 233 skb->end = skb->tail + size; 234 skb->mac_header = (typeof(skb->mac_header))~0U; 235 skb->transport_header = (typeof(skb->transport_header))~0U; 236 237 /* make sure we initialize shinfo sequentially */ 238 shinfo = skb_shinfo(skb); 239 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref)); 240 atomic_set(&shinfo->dataref, 1); 241 242 if (flags & SKB_ALLOC_FCLONE) { 243 struct sk_buff_fclones *fclones; 244 245 fclones = container_of(skb, struct sk_buff_fclones, skb1); 246 247 skb->fclone = SKB_FCLONE_ORIG; 248 refcount_set(&fclones->fclone_ref, 1); 249 250 fclones->skb2.fclone = SKB_FCLONE_CLONE; 251 } 252 out: 253 return skb; 254 nodata: 255 kmem_cache_free(cache, skb); 256 skb = NULL; 257 goto out; 258 } 259 EXPORT_SYMBOL(__alloc_skb); 260 261 /** 262 * __build_skb - build a network buffer 263 * @data: data buffer provided by caller 264 * @frag_size: size of data, or 0 if head was kmalloced 265 * 266 * Allocate a new &sk_buff. Caller provides space holding head and 267 * skb_shared_info. @data must have been allocated by kmalloc() only if 268 * @frag_size is 0, otherwise data should come from the page allocator 269 * or vmalloc() 270 * The return is the new skb buffer. 271 * On a failure the return is %NULL, and @data is not freed. 272 * Notes : 273 * Before IO, driver allocates only data buffer where NIC put incoming frame 274 * Driver should add room at head (NET_SKB_PAD) and 275 * MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info)) 276 * After IO, driver calls build_skb(), to allocate sk_buff and populate it 277 * before giving packet to stack. 278 * RX rings only contains data buffers, not full skbs. 279 */ 280 struct sk_buff *__build_skb(void *data, unsigned int frag_size) 281 { 282 struct skb_shared_info *shinfo; 283 struct sk_buff *skb; 284 unsigned int size = frag_size ? : ksize(data); 285 286 skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC); 287 if (!skb) 288 return NULL; 289 290 size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 291 292 memset(skb, 0, offsetof(struct sk_buff, tail)); 293 skb->truesize = SKB_TRUESIZE(size); 294 refcount_set(&skb->users, 1); 295 skb->head = data; 296 skb->data = data; 297 skb_reset_tail_pointer(skb); 298 skb->end = skb->tail + size; 299 skb->mac_header = (typeof(skb->mac_header))~0U; 300 skb->transport_header = (typeof(skb->transport_header))~0U; 301 302 /* make sure we initialize shinfo sequentially */ 303 shinfo = skb_shinfo(skb); 304 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref)); 305 atomic_set(&shinfo->dataref, 1); 306 307 return skb; 308 } 309 310 /* build_skb() is wrapper over __build_skb(), that specifically 311 * takes care of skb->head and skb->pfmemalloc 312 * This means that if @frag_size is not zero, then @data must be backed 313 * by a page fragment, not kmalloc() or vmalloc() 314 */ 315 struct sk_buff *build_skb(void *data, unsigned int frag_size) 316 { 317 struct sk_buff *skb = __build_skb(data, frag_size); 318 319 if (skb && frag_size) { 320 skb->head_frag = 1; 321 if (page_is_pfmemalloc(virt_to_head_page(data))) 322 skb->pfmemalloc = 1; 323 } 324 return skb; 325 } 326 EXPORT_SYMBOL(build_skb); 327 328 #define NAPI_SKB_CACHE_SIZE 64 329 330 struct napi_alloc_cache { 331 struct page_frag_cache page; 332 unsigned int skb_count; 333 void *skb_cache[NAPI_SKB_CACHE_SIZE]; 334 }; 335 336 static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache); 337 static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache); 338 339 static void *__netdev_alloc_frag(unsigned int fragsz, gfp_t gfp_mask) 340 { 341 struct page_frag_cache *nc; 342 unsigned long flags; 343 void *data; 344 345 local_irq_save(flags); 346 nc = this_cpu_ptr(&netdev_alloc_cache); 347 data = page_frag_alloc(nc, fragsz, gfp_mask); 348 local_irq_restore(flags); 349 return data; 350 } 351 352 /** 353 * netdev_alloc_frag - allocate a page fragment 354 * @fragsz: fragment size 355 * 356 * Allocates a frag from a page for receive buffer. 357 * Uses GFP_ATOMIC allocations. 358 */ 359 void *netdev_alloc_frag(unsigned int fragsz) 360 { 361 fragsz = SKB_DATA_ALIGN(fragsz); 362 363 return __netdev_alloc_frag(fragsz, GFP_ATOMIC); 364 } 365 EXPORT_SYMBOL(netdev_alloc_frag); 366 367 static void *__napi_alloc_frag(unsigned int fragsz, gfp_t gfp_mask) 368 { 369 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 370 371 return page_frag_alloc(&nc->page, fragsz, gfp_mask); 372 } 373 374 void *napi_alloc_frag(unsigned int fragsz) 375 { 376 fragsz = SKB_DATA_ALIGN(fragsz); 377 378 return __napi_alloc_frag(fragsz, GFP_ATOMIC); 379 } 380 EXPORT_SYMBOL(napi_alloc_frag); 381 382 /** 383 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device 384 * @dev: network device to receive on 385 * @len: length to allocate 386 * @gfp_mask: get_free_pages mask, passed to alloc_skb 387 * 388 * Allocate a new &sk_buff and assign it a usage count of one. The 389 * buffer has NET_SKB_PAD headroom built in. Users should allocate 390 * the headroom they think they need without accounting for the 391 * built in space. The built in space is used for optimisations. 392 * 393 * %NULL is returned if there is no free memory. 394 */ 395 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len, 396 gfp_t gfp_mask) 397 { 398 struct page_frag_cache *nc; 399 unsigned long flags; 400 struct sk_buff *skb; 401 bool pfmemalloc; 402 void *data; 403 404 len += NET_SKB_PAD; 405 406 if ((len > SKB_WITH_OVERHEAD(PAGE_SIZE)) || 407 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) { 408 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE); 409 if (!skb) 410 goto skb_fail; 411 goto skb_success; 412 } 413 414 len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 415 len = SKB_DATA_ALIGN(len); 416 417 if (sk_memalloc_socks()) 418 gfp_mask |= __GFP_MEMALLOC; 419 420 local_irq_save(flags); 421 422 nc = this_cpu_ptr(&netdev_alloc_cache); 423 data = page_frag_alloc(nc, len, gfp_mask); 424 pfmemalloc = nc->pfmemalloc; 425 426 local_irq_restore(flags); 427 428 if (unlikely(!data)) 429 return NULL; 430 431 skb = __build_skb(data, len); 432 if (unlikely(!skb)) { 433 skb_free_frag(data); 434 return NULL; 435 } 436 437 /* use OR instead of assignment to avoid clearing of bits in mask */ 438 if (pfmemalloc) 439 skb->pfmemalloc = 1; 440 skb->head_frag = 1; 441 442 skb_success: 443 skb_reserve(skb, NET_SKB_PAD); 444 skb->dev = dev; 445 446 skb_fail: 447 return skb; 448 } 449 EXPORT_SYMBOL(__netdev_alloc_skb); 450 451 /** 452 * __napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance 453 * @napi: napi instance this buffer was allocated for 454 * @len: length to allocate 455 * @gfp_mask: get_free_pages mask, passed to alloc_skb and alloc_pages 456 * 457 * Allocate a new sk_buff for use in NAPI receive. This buffer will 458 * attempt to allocate the head from a special reserved region used 459 * only for NAPI Rx allocation. By doing this we can save several 460 * CPU cycles by avoiding having to disable and re-enable IRQs. 461 * 462 * %NULL is returned if there is no free memory. 463 */ 464 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, unsigned int len, 465 gfp_t gfp_mask) 466 { 467 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 468 struct sk_buff *skb; 469 void *data; 470 471 len += NET_SKB_PAD + NET_IP_ALIGN; 472 473 if ((len > SKB_WITH_OVERHEAD(PAGE_SIZE)) || 474 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) { 475 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE); 476 if (!skb) 477 goto skb_fail; 478 goto skb_success; 479 } 480 481 len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 482 len = SKB_DATA_ALIGN(len); 483 484 if (sk_memalloc_socks()) 485 gfp_mask |= __GFP_MEMALLOC; 486 487 data = page_frag_alloc(&nc->page, len, gfp_mask); 488 if (unlikely(!data)) 489 return NULL; 490 491 skb = __build_skb(data, len); 492 if (unlikely(!skb)) { 493 skb_free_frag(data); 494 return NULL; 495 } 496 497 /* use OR instead of assignment to avoid clearing of bits in mask */ 498 if (nc->page.pfmemalloc) 499 skb->pfmemalloc = 1; 500 skb->head_frag = 1; 501 502 skb_success: 503 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN); 504 skb->dev = napi->dev; 505 506 skb_fail: 507 return skb; 508 } 509 EXPORT_SYMBOL(__napi_alloc_skb); 510 511 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off, 512 int size, unsigned int truesize) 513 { 514 skb_fill_page_desc(skb, i, page, off, size); 515 skb->len += size; 516 skb->data_len += size; 517 skb->truesize += truesize; 518 } 519 EXPORT_SYMBOL(skb_add_rx_frag); 520 521 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size, 522 unsigned int truesize) 523 { 524 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 525 526 skb_frag_size_add(frag, size); 527 skb->len += size; 528 skb->data_len += size; 529 skb->truesize += truesize; 530 } 531 EXPORT_SYMBOL(skb_coalesce_rx_frag); 532 533 static void skb_drop_list(struct sk_buff **listp) 534 { 535 kfree_skb_list(*listp); 536 *listp = NULL; 537 } 538 539 static inline void skb_drop_fraglist(struct sk_buff *skb) 540 { 541 skb_drop_list(&skb_shinfo(skb)->frag_list); 542 } 543 544 static void skb_clone_fraglist(struct sk_buff *skb) 545 { 546 struct sk_buff *list; 547 548 skb_walk_frags(skb, list) 549 skb_get(list); 550 } 551 552 static void skb_free_head(struct sk_buff *skb) 553 { 554 unsigned char *head = skb->head; 555 556 if (skb->head_frag) 557 skb_free_frag(head); 558 else 559 kfree(head); 560 } 561 562 static void skb_release_data(struct sk_buff *skb) 563 { 564 struct skb_shared_info *shinfo = skb_shinfo(skb); 565 int i; 566 567 if (skb->cloned && 568 atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1, 569 &shinfo->dataref)) 570 return; 571 572 for (i = 0; i < shinfo->nr_frags; i++) 573 __skb_frag_unref(&shinfo->frags[i]); 574 575 if (shinfo->frag_list) 576 kfree_skb_list(shinfo->frag_list); 577 578 skb_zcopy_clear(skb, true); 579 skb_free_head(skb); 580 } 581 582 /* 583 * Free an skbuff by memory without cleaning the state. 584 */ 585 static void kfree_skbmem(struct sk_buff *skb) 586 { 587 struct sk_buff_fclones *fclones; 588 589 switch (skb->fclone) { 590 case SKB_FCLONE_UNAVAILABLE: 591 kmem_cache_free(skbuff_head_cache, skb); 592 return; 593 594 case SKB_FCLONE_ORIG: 595 fclones = container_of(skb, struct sk_buff_fclones, skb1); 596 597 /* We usually free the clone (TX completion) before original skb 598 * This test would have no chance to be true for the clone, 599 * while here, branch prediction will be good. 600 */ 601 if (refcount_read(&fclones->fclone_ref) == 1) 602 goto fastpath; 603 break; 604 605 default: /* SKB_FCLONE_CLONE */ 606 fclones = container_of(skb, struct sk_buff_fclones, skb2); 607 break; 608 } 609 if (!refcount_dec_and_test(&fclones->fclone_ref)) 610 return; 611 fastpath: 612 kmem_cache_free(skbuff_fclone_cache, fclones); 613 } 614 615 void skb_release_head_state(struct sk_buff *skb) 616 { 617 skb_dst_drop(skb); 618 if (skb->destructor) { 619 WARN_ON(in_irq()); 620 skb->destructor(skb); 621 } 622 #if IS_ENABLED(CONFIG_NF_CONNTRACK) 623 nf_conntrack_put(skb_nfct(skb)); 624 #endif 625 skb_ext_put(skb); 626 } 627 628 /* Free everything but the sk_buff shell. */ 629 static void skb_release_all(struct sk_buff *skb) 630 { 631 skb_release_head_state(skb); 632 if (likely(skb->head)) 633 skb_release_data(skb); 634 } 635 636 /** 637 * __kfree_skb - private function 638 * @skb: buffer 639 * 640 * Free an sk_buff. Release anything attached to the buffer. 641 * Clean the state. This is an internal helper function. Users should 642 * always call kfree_skb 643 */ 644 645 void __kfree_skb(struct sk_buff *skb) 646 { 647 skb_release_all(skb); 648 kfree_skbmem(skb); 649 } 650 EXPORT_SYMBOL(__kfree_skb); 651 652 /** 653 * kfree_skb - free an sk_buff 654 * @skb: buffer to free 655 * 656 * Drop a reference to the buffer and free it if the usage count has 657 * hit zero. 658 */ 659 void kfree_skb(struct sk_buff *skb) 660 { 661 if (!skb_unref(skb)) 662 return; 663 664 trace_kfree_skb(skb, __builtin_return_address(0)); 665 __kfree_skb(skb); 666 } 667 EXPORT_SYMBOL(kfree_skb); 668 669 void kfree_skb_list(struct sk_buff *segs) 670 { 671 while (segs) { 672 struct sk_buff *next = segs->next; 673 674 kfree_skb(segs); 675 segs = next; 676 } 677 } 678 EXPORT_SYMBOL(kfree_skb_list); 679 680 /** 681 * skb_tx_error - report an sk_buff xmit error 682 * @skb: buffer that triggered an error 683 * 684 * Report xmit error if a device callback is tracking this skb. 685 * skb must be freed afterwards. 686 */ 687 void skb_tx_error(struct sk_buff *skb) 688 { 689 skb_zcopy_clear(skb, true); 690 } 691 EXPORT_SYMBOL(skb_tx_error); 692 693 /** 694 * consume_skb - free an skbuff 695 * @skb: buffer to free 696 * 697 * Drop a ref to the buffer and free it if the usage count has hit zero 698 * Functions identically to kfree_skb, but kfree_skb assumes that the frame 699 * is being dropped after a failure and notes that 700 */ 701 void consume_skb(struct sk_buff *skb) 702 { 703 if (!skb_unref(skb)) 704 return; 705 706 trace_consume_skb(skb); 707 __kfree_skb(skb); 708 } 709 EXPORT_SYMBOL(consume_skb); 710 711 /** 712 * consume_stateless_skb - free an skbuff, assuming it is stateless 713 * @skb: buffer to free 714 * 715 * Alike consume_skb(), but this variant assumes that this is the last 716 * skb reference and all the head states have been already dropped 717 */ 718 void __consume_stateless_skb(struct sk_buff *skb) 719 { 720 trace_consume_skb(skb); 721 skb_release_data(skb); 722 kfree_skbmem(skb); 723 } 724 725 void __kfree_skb_flush(void) 726 { 727 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 728 729 /* flush skb_cache if containing objects */ 730 if (nc->skb_count) { 731 kmem_cache_free_bulk(skbuff_head_cache, nc->skb_count, 732 nc->skb_cache); 733 nc->skb_count = 0; 734 } 735 } 736 737 static inline void _kfree_skb_defer(struct sk_buff *skb) 738 { 739 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 740 741 /* drop skb->head and call any destructors for packet */ 742 skb_release_all(skb); 743 744 /* record skb to CPU local list */ 745 nc->skb_cache[nc->skb_count++] = skb; 746 747 #ifdef CONFIG_SLUB 748 /* SLUB writes into objects when freeing */ 749 prefetchw(skb); 750 #endif 751 752 /* flush skb_cache if it is filled */ 753 if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) { 754 kmem_cache_free_bulk(skbuff_head_cache, NAPI_SKB_CACHE_SIZE, 755 nc->skb_cache); 756 nc->skb_count = 0; 757 } 758 } 759 void __kfree_skb_defer(struct sk_buff *skb) 760 { 761 _kfree_skb_defer(skb); 762 } 763 764 void napi_consume_skb(struct sk_buff *skb, int budget) 765 { 766 if (unlikely(!skb)) 767 return; 768 769 /* Zero budget indicate non-NAPI context called us, like netpoll */ 770 if (unlikely(!budget)) { 771 dev_consume_skb_any(skb); 772 return; 773 } 774 775 if (!skb_unref(skb)) 776 return; 777 778 /* if reaching here SKB is ready to free */ 779 trace_consume_skb(skb); 780 781 /* if SKB is a clone, don't handle this case */ 782 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) { 783 __kfree_skb(skb); 784 return; 785 } 786 787 _kfree_skb_defer(skb); 788 } 789 EXPORT_SYMBOL(napi_consume_skb); 790 791 /* Make sure a field is enclosed inside headers_start/headers_end section */ 792 #define CHECK_SKB_FIELD(field) \ 793 BUILD_BUG_ON(offsetof(struct sk_buff, field) < \ 794 offsetof(struct sk_buff, headers_start)); \ 795 BUILD_BUG_ON(offsetof(struct sk_buff, field) > \ 796 offsetof(struct sk_buff, headers_end)); \ 797 798 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old) 799 { 800 new->tstamp = old->tstamp; 801 /* We do not copy old->sk */ 802 new->dev = old->dev; 803 memcpy(new->cb, old->cb, sizeof(old->cb)); 804 skb_dst_copy(new, old); 805 __skb_ext_copy(new, old); 806 __nf_copy(new, old, false); 807 808 /* Note : this field could be in headers_start/headers_end section 809 * It is not yet because we do not want to have a 16 bit hole 810 */ 811 new->queue_mapping = old->queue_mapping; 812 813 memcpy(&new->headers_start, &old->headers_start, 814 offsetof(struct sk_buff, headers_end) - 815 offsetof(struct sk_buff, headers_start)); 816 CHECK_SKB_FIELD(protocol); 817 CHECK_SKB_FIELD(csum); 818 CHECK_SKB_FIELD(hash); 819 CHECK_SKB_FIELD(priority); 820 CHECK_SKB_FIELD(skb_iif); 821 CHECK_SKB_FIELD(vlan_proto); 822 CHECK_SKB_FIELD(vlan_tci); 823 CHECK_SKB_FIELD(transport_header); 824 CHECK_SKB_FIELD(network_header); 825 CHECK_SKB_FIELD(mac_header); 826 CHECK_SKB_FIELD(inner_protocol); 827 CHECK_SKB_FIELD(inner_transport_header); 828 CHECK_SKB_FIELD(inner_network_header); 829 CHECK_SKB_FIELD(inner_mac_header); 830 CHECK_SKB_FIELD(mark); 831 #ifdef CONFIG_NETWORK_SECMARK 832 CHECK_SKB_FIELD(secmark); 833 #endif 834 #ifdef CONFIG_NET_RX_BUSY_POLL 835 CHECK_SKB_FIELD(napi_id); 836 #endif 837 #ifdef CONFIG_XPS 838 CHECK_SKB_FIELD(sender_cpu); 839 #endif 840 #ifdef CONFIG_NET_SCHED 841 CHECK_SKB_FIELD(tc_index); 842 #endif 843 844 } 845 846 /* 847 * You should not add any new code to this function. Add it to 848 * __copy_skb_header above instead. 849 */ 850 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb) 851 { 852 #define C(x) n->x = skb->x 853 854 n->next = n->prev = NULL; 855 n->sk = NULL; 856 __copy_skb_header(n, skb); 857 858 C(len); 859 C(data_len); 860 C(mac_len); 861 n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len; 862 n->cloned = 1; 863 n->nohdr = 0; 864 n->peeked = 0; 865 C(pfmemalloc); 866 n->destructor = NULL; 867 C(tail); 868 C(end); 869 C(head); 870 C(head_frag); 871 C(data); 872 C(truesize); 873 refcount_set(&n->users, 1); 874 875 atomic_inc(&(skb_shinfo(skb)->dataref)); 876 skb->cloned = 1; 877 878 return n; 879 #undef C 880 } 881 882 /** 883 * skb_morph - morph one skb into another 884 * @dst: the skb to receive the contents 885 * @src: the skb to supply the contents 886 * 887 * This is identical to skb_clone except that the target skb is 888 * supplied by the user. 889 * 890 * The target skb is returned upon exit. 891 */ 892 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src) 893 { 894 skb_release_all(dst); 895 return __skb_clone(dst, src); 896 } 897 EXPORT_SYMBOL_GPL(skb_morph); 898 899 int mm_account_pinned_pages(struct mmpin *mmp, size_t size) 900 { 901 unsigned long max_pg, num_pg, new_pg, old_pg; 902 struct user_struct *user; 903 904 if (capable(CAP_IPC_LOCK) || !size) 905 return 0; 906 907 num_pg = (size >> PAGE_SHIFT) + 2; /* worst case */ 908 max_pg = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT; 909 user = mmp->user ? : current_user(); 910 911 do { 912 old_pg = atomic_long_read(&user->locked_vm); 913 new_pg = old_pg + num_pg; 914 if (new_pg > max_pg) 915 return -ENOBUFS; 916 } while (atomic_long_cmpxchg(&user->locked_vm, old_pg, new_pg) != 917 old_pg); 918 919 if (!mmp->user) { 920 mmp->user = get_uid(user); 921 mmp->num_pg = num_pg; 922 } else { 923 mmp->num_pg += num_pg; 924 } 925 926 return 0; 927 } 928 EXPORT_SYMBOL_GPL(mm_account_pinned_pages); 929 930 void mm_unaccount_pinned_pages(struct mmpin *mmp) 931 { 932 if (mmp->user) { 933 atomic_long_sub(mmp->num_pg, &mmp->user->locked_vm); 934 free_uid(mmp->user); 935 } 936 } 937 EXPORT_SYMBOL_GPL(mm_unaccount_pinned_pages); 938 939 struct ubuf_info *sock_zerocopy_alloc(struct sock *sk, size_t size) 940 { 941 struct ubuf_info *uarg; 942 struct sk_buff *skb; 943 944 WARN_ON_ONCE(!in_task()); 945 946 skb = sock_omalloc(sk, 0, GFP_KERNEL); 947 if (!skb) 948 return NULL; 949 950 BUILD_BUG_ON(sizeof(*uarg) > sizeof(skb->cb)); 951 uarg = (void *)skb->cb; 952 uarg->mmp.user = NULL; 953 954 if (mm_account_pinned_pages(&uarg->mmp, size)) { 955 kfree_skb(skb); 956 return NULL; 957 } 958 959 uarg->callback = sock_zerocopy_callback; 960 uarg->id = ((u32)atomic_inc_return(&sk->sk_zckey)) - 1; 961 uarg->len = 1; 962 uarg->bytelen = size; 963 uarg->zerocopy = 1; 964 refcount_set(&uarg->refcnt, 1); 965 sock_hold(sk); 966 967 return uarg; 968 } 969 EXPORT_SYMBOL_GPL(sock_zerocopy_alloc); 970 971 static inline struct sk_buff *skb_from_uarg(struct ubuf_info *uarg) 972 { 973 return container_of((void *)uarg, struct sk_buff, cb); 974 } 975 976 struct ubuf_info *sock_zerocopy_realloc(struct sock *sk, size_t size, 977 struct ubuf_info *uarg) 978 { 979 if (uarg) { 980 const u32 byte_limit = 1 << 19; /* limit to a few TSO */ 981 u32 bytelen, next; 982 983 /* realloc only when socket is locked (TCP, UDP cork), 984 * so uarg->len and sk_zckey access is serialized 985 */ 986 if (!sock_owned_by_user(sk)) { 987 WARN_ON_ONCE(1); 988 return NULL; 989 } 990 991 bytelen = uarg->bytelen + size; 992 if (uarg->len == USHRT_MAX - 1 || bytelen > byte_limit) { 993 /* TCP can create new skb to attach new uarg */ 994 if (sk->sk_type == SOCK_STREAM) 995 goto new_alloc; 996 return NULL; 997 } 998 999 next = (u32)atomic_read(&sk->sk_zckey); 1000 if ((u32)(uarg->id + uarg->len) == next) { 1001 if (mm_account_pinned_pages(&uarg->mmp, size)) 1002 return NULL; 1003 uarg->len++; 1004 uarg->bytelen = bytelen; 1005 atomic_set(&sk->sk_zckey, ++next); 1006 sock_zerocopy_get(uarg); 1007 return uarg; 1008 } 1009 } 1010 1011 new_alloc: 1012 return sock_zerocopy_alloc(sk, size); 1013 } 1014 EXPORT_SYMBOL_GPL(sock_zerocopy_realloc); 1015 1016 static bool skb_zerocopy_notify_extend(struct sk_buff *skb, u32 lo, u16 len) 1017 { 1018 struct sock_exterr_skb *serr = SKB_EXT_ERR(skb); 1019 u32 old_lo, old_hi; 1020 u64 sum_len; 1021 1022 old_lo = serr->ee.ee_info; 1023 old_hi = serr->ee.ee_data; 1024 sum_len = old_hi - old_lo + 1ULL + len; 1025 1026 if (sum_len >= (1ULL << 32)) 1027 return false; 1028 1029 if (lo != old_hi + 1) 1030 return false; 1031 1032 serr->ee.ee_data += len; 1033 return true; 1034 } 1035 1036 void sock_zerocopy_callback(struct ubuf_info *uarg, bool success) 1037 { 1038 struct sk_buff *tail, *skb = skb_from_uarg(uarg); 1039 struct sock_exterr_skb *serr; 1040 struct sock *sk = skb->sk; 1041 struct sk_buff_head *q; 1042 unsigned long flags; 1043 u32 lo, hi; 1044 u16 len; 1045 1046 mm_unaccount_pinned_pages(&uarg->mmp); 1047 1048 /* if !len, there was only 1 call, and it was aborted 1049 * so do not queue a completion notification 1050 */ 1051 if (!uarg->len || sock_flag(sk, SOCK_DEAD)) 1052 goto release; 1053 1054 len = uarg->len; 1055 lo = uarg->id; 1056 hi = uarg->id + len - 1; 1057 1058 serr = SKB_EXT_ERR(skb); 1059 memset(serr, 0, sizeof(*serr)); 1060 serr->ee.ee_errno = 0; 1061 serr->ee.ee_origin = SO_EE_ORIGIN_ZEROCOPY; 1062 serr->ee.ee_data = hi; 1063 serr->ee.ee_info = lo; 1064 if (!success) 1065 serr->ee.ee_code |= SO_EE_CODE_ZEROCOPY_COPIED; 1066 1067 q = &sk->sk_error_queue; 1068 spin_lock_irqsave(&q->lock, flags); 1069 tail = skb_peek_tail(q); 1070 if (!tail || SKB_EXT_ERR(tail)->ee.ee_origin != SO_EE_ORIGIN_ZEROCOPY || 1071 !skb_zerocopy_notify_extend(tail, lo, len)) { 1072 __skb_queue_tail(q, skb); 1073 skb = NULL; 1074 } 1075 spin_unlock_irqrestore(&q->lock, flags); 1076 1077 sk->sk_error_report(sk); 1078 1079 release: 1080 consume_skb(skb); 1081 sock_put(sk); 1082 } 1083 EXPORT_SYMBOL_GPL(sock_zerocopy_callback); 1084 1085 void sock_zerocopy_put(struct ubuf_info *uarg) 1086 { 1087 if (uarg && refcount_dec_and_test(&uarg->refcnt)) { 1088 if (uarg->callback) 1089 uarg->callback(uarg, uarg->zerocopy); 1090 else 1091 consume_skb(skb_from_uarg(uarg)); 1092 } 1093 } 1094 EXPORT_SYMBOL_GPL(sock_zerocopy_put); 1095 1096 void sock_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref) 1097 { 1098 if (uarg) { 1099 struct sock *sk = skb_from_uarg(uarg)->sk; 1100 1101 atomic_dec(&sk->sk_zckey); 1102 uarg->len--; 1103 1104 if (have_uref) 1105 sock_zerocopy_put(uarg); 1106 } 1107 } 1108 EXPORT_SYMBOL_GPL(sock_zerocopy_put_abort); 1109 1110 int skb_zerocopy_iter_dgram(struct sk_buff *skb, struct msghdr *msg, int len) 1111 { 1112 return __zerocopy_sg_from_iter(skb->sk, skb, &msg->msg_iter, len); 1113 } 1114 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_dgram); 1115 1116 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb, 1117 struct msghdr *msg, int len, 1118 struct ubuf_info *uarg) 1119 { 1120 struct ubuf_info *orig_uarg = skb_zcopy(skb); 1121 struct iov_iter orig_iter = msg->msg_iter; 1122 int err, orig_len = skb->len; 1123 1124 /* An skb can only point to one uarg. This edge case happens when 1125 * TCP appends to an skb, but zerocopy_realloc triggered a new alloc. 1126 */ 1127 if (orig_uarg && uarg != orig_uarg) 1128 return -EEXIST; 1129 1130 err = __zerocopy_sg_from_iter(sk, skb, &msg->msg_iter, len); 1131 if (err == -EFAULT || (err == -EMSGSIZE && skb->len == orig_len)) { 1132 struct sock *save_sk = skb->sk; 1133 1134 /* Streams do not free skb on error. Reset to prev state. */ 1135 msg->msg_iter = orig_iter; 1136 skb->sk = sk; 1137 ___pskb_trim(skb, orig_len); 1138 skb->sk = save_sk; 1139 return err; 1140 } 1141 1142 skb_zcopy_set(skb, uarg, NULL); 1143 return skb->len - orig_len; 1144 } 1145 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_stream); 1146 1147 static int skb_zerocopy_clone(struct sk_buff *nskb, struct sk_buff *orig, 1148 gfp_t gfp_mask) 1149 { 1150 if (skb_zcopy(orig)) { 1151 if (skb_zcopy(nskb)) { 1152 /* !gfp_mask callers are verified to !skb_zcopy(nskb) */ 1153 if (!gfp_mask) { 1154 WARN_ON_ONCE(1); 1155 return -ENOMEM; 1156 } 1157 if (skb_uarg(nskb) == skb_uarg(orig)) 1158 return 0; 1159 if (skb_copy_ubufs(nskb, GFP_ATOMIC)) 1160 return -EIO; 1161 } 1162 skb_zcopy_set(nskb, skb_uarg(orig), NULL); 1163 } 1164 return 0; 1165 } 1166 1167 /** 1168 * skb_copy_ubufs - copy userspace skb frags buffers to kernel 1169 * @skb: the skb to modify 1170 * @gfp_mask: allocation priority 1171 * 1172 * This must be called on SKBTX_DEV_ZEROCOPY skb. 1173 * It will copy all frags into kernel and drop the reference 1174 * to userspace pages. 1175 * 1176 * If this function is called from an interrupt gfp_mask() must be 1177 * %GFP_ATOMIC. 1178 * 1179 * Returns 0 on success or a negative error code on failure 1180 * to allocate kernel memory to copy to. 1181 */ 1182 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask) 1183 { 1184 int num_frags = skb_shinfo(skb)->nr_frags; 1185 struct page *page, *head = NULL; 1186 int i, new_frags; 1187 u32 d_off; 1188 1189 if (skb_shared(skb) || skb_unclone(skb, gfp_mask)) 1190 return -EINVAL; 1191 1192 if (!num_frags) 1193 goto release; 1194 1195 new_frags = (__skb_pagelen(skb) + PAGE_SIZE - 1) >> PAGE_SHIFT; 1196 for (i = 0; i < new_frags; i++) { 1197 page = alloc_page(gfp_mask); 1198 if (!page) { 1199 while (head) { 1200 struct page *next = (struct page *)page_private(head); 1201 put_page(head); 1202 head = next; 1203 } 1204 return -ENOMEM; 1205 } 1206 set_page_private(page, (unsigned long)head); 1207 head = page; 1208 } 1209 1210 page = head; 1211 d_off = 0; 1212 for (i = 0; i < num_frags; i++) { 1213 skb_frag_t *f = &skb_shinfo(skb)->frags[i]; 1214 u32 p_off, p_len, copied; 1215 struct page *p; 1216 u8 *vaddr; 1217 1218 skb_frag_foreach_page(f, f->page_offset, skb_frag_size(f), 1219 p, p_off, p_len, copied) { 1220 u32 copy, done = 0; 1221 vaddr = kmap_atomic(p); 1222 1223 while (done < p_len) { 1224 if (d_off == PAGE_SIZE) { 1225 d_off = 0; 1226 page = (struct page *)page_private(page); 1227 } 1228 copy = min_t(u32, PAGE_SIZE - d_off, p_len - done); 1229 memcpy(page_address(page) + d_off, 1230 vaddr + p_off + done, copy); 1231 done += copy; 1232 d_off += copy; 1233 } 1234 kunmap_atomic(vaddr); 1235 } 1236 } 1237 1238 /* skb frags release userspace buffers */ 1239 for (i = 0; i < num_frags; i++) 1240 skb_frag_unref(skb, i); 1241 1242 /* skb frags point to kernel buffers */ 1243 for (i = 0; i < new_frags - 1; i++) { 1244 __skb_fill_page_desc(skb, i, head, 0, PAGE_SIZE); 1245 head = (struct page *)page_private(head); 1246 } 1247 __skb_fill_page_desc(skb, new_frags - 1, head, 0, d_off); 1248 skb_shinfo(skb)->nr_frags = new_frags; 1249 1250 release: 1251 skb_zcopy_clear(skb, false); 1252 return 0; 1253 } 1254 EXPORT_SYMBOL_GPL(skb_copy_ubufs); 1255 1256 /** 1257 * skb_clone - duplicate an sk_buff 1258 * @skb: buffer to clone 1259 * @gfp_mask: allocation priority 1260 * 1261 * Duplicate an &sk_buff. The new one is not owned by a socket. Both 1262 * copies share the same packet data but not structure. The new 1263 * buffer has a reference count of 1. If the allocation fails the 1264 * function returns %NULL otherwise the new buffer is returned. 1265 * 1266 * If this function is called from an interrupt gfp_mask() must be 1267 * %GFP_ATOMIC. 1268 */ 1269 1270 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask) 1271 { 1272 struct sk_buff_fclones *fclones = container_of(skb, 1273 struct sk_buff_fclones, 1274 skb1); 1275 struct sk_buff *n; 1276 1277 if (skb_orphan_frags(skb, gfp_mask)) 1278 return NULL; 1279 1280 if (skb->fclone == SKB_FCLONE_ORIG && 1281 refcount_read(&fclones->fclone_ref) == 1) { 1282 n = &fclones->skb2; 1283 refcount_set(&fclones->fclone_ref, 2); 1284 } else { 1285 if (skb_pfmemalloc(skb)) 1286 gfp_mask |= __GFP_MEMALLOC; 1287 1288 n = kmem_cache_alloc(skbuff_head_cache, gfp_mask); 1289 if (!n) 1290 return NULL; 1291 1292 n->fclone = SKB_FCLONE_UNAVAILABLE; 1293 } 1294 1295 return __skb_clone(n, skb); 1296 } 1297 EXPORT_SYMBOL(skb_clone); 1298 1299 void skb_headers_offset_update(struct sk_buff *skb, int off) 1300 { 1301 /* Only adjust this if it actually is csum_start rather than csum */ 1302 if (skb->ip_summed == CHECKSUM_PARTIAL) 1303 skb->csum_start += off; 1304 /* {transport,network,mac}_header and tail are relative to skb->head */ 1305 skb->transport_header += off; 1306 skb->network_header += off; 1307 if (skb_mac_header_was_set(skb)) 1308 skb->mac_header += off; 1309 skb->inner_transport_header += off; 1310 skb->inner_network_header += off; 1311 skb->inner_mac_header += off; 1312 } 1313 EXPORT_SYMBOL(skb_headers_offset_update); 1314 1315 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old) 1316 { 1317 __copy_skb_header(new, old); 1318 1319 skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size; 1320 skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs; 1321 skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type; 1322 } 1323 EXPORT_SYMBOL(skb_copy_header); 1324 1325 static inline int skb_alloc_rx_flag(const struct sk_buff *skb) 1326 { 1327 if (skb_pfmemalloc(skb)) 1328 return SKB_ALLOC_RX; 1329 return 0; 1330 } 1331 1332 /** 1333 * skb_copy - create private copy of an sk_buff 1334 * @skb: buffer to copy 1335 * @gfp_mask: allocation priority 1336 * 1337 * Make a copy of both an &sk_buff and its data. This is used when the 1338 * caller wishes to modify the data and needs a private copy of the 1339 * data to alter. Returns %NULL on failure or the pointer to the buffer 1340 * on success. The returned buffer has a reference count of 1. 1341 * 1342 * As by-product this function converts non-linear &sk_buff to linear 1343 * one, so that &sk_buff becomes completely private and caller is allowed 1344 * to modify all the data of returned buffer. This means that this 1345 * function is not recommended for use in circumstances when only 1346 * header is going to be modified. Use pskb_copy() instead. 1347 */ 1348 1349 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask) 1350 { 1351 int headerlen = skb_headroom(skb); 1352 unsigned int size = skb_end_offset(skb) + skb->data_len; 1353 struct sk_buff *n = __alloc_skb(size, gfp_mask, 1354 skb_alloc_rx_flag(skb), NUMA_NO_NODE); 1355 1356 if (!n) 1357 return NULL; 1358 1359 /* Set the data pointer */ 1360 skb_reserve(n, headerlen); 1361 /* Set the tail pointer and length */ 1362 skb_put(n, skb->len); 1363 1364 BUG_ON(skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len)); 1365 1366 skb_copy_header(n, skb); 1367 return n; 1368 } 1369 EXPORT_SYMBOL(skb_copy); 1370 1371 /** 1372 * __pskb_copy_fclone - create copy of an sk_buff with private head. 1373 * @skb: buffer to copy 1374 * @headroom: headroom of new skb 1375 * @gfp_mask: allocation priority 1376 * @fclone: if true allocate the copy of the skb from the fclone 1377 * cache instead of the head cache; it is recommended to set this 1378 * to true for the cases where the copy will likely be cloned 1379 * 1380 * Make a copy of both an &sk_buff and part of its data, located 1381 * in header. Fragmented data remain shared. This is used when 1382 * the caller wishes to modify only header of &sk_buff and needs 1383 * private copy of the header to alter. Returns %NULL on failure 1384 * or the pointer to the buffer on success. 1385 * The returned buffer has a reference count of 1. 1386 */ 1387 1388 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom, 1389 gfp_t gfp_mask, bool fclone) 1390 { 1391 unsigned int size = skb_headlen(skb) + headroom; 1392 int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0); 1393 struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE); 1394 1395 if (!n) 1396 goto out; 1397 1398 /* Set the data pointer */ 1399 skb_reserve(n, headroom); 1400 /* Set the tail pointer and length */ 1401 skb_put(n, skb_headlen(skb)); 1402 /* Copy the bytes */ 1403 skb_copy_from_linear_data(skb, n->data, n->len); 1404 1405 n->truesize += skb->data_len; 1406 n->data_len = skb->data_len; 1407 n->len = skb->len; 1408 1409 if (skb_shinfo(skb)->nr_frags) { 1410 int i; 1411 1412 if (skb_orphan_frags(skb, gfp_mask) || 1413 skb_zerocopy_clone(n, skb, gfp_mask)) { 1414 kfree_skb(n); 1415 n = NULL; 1416 goto out; 1417 } 1418 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1419 skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i]; 1420 skb_frag_ref(skb, i); 1421 } 1422 skb_shinfo(n)->nr_frags = i; 1423 } 1424 1425 if (skb_has_frag_list(skb)) { 1426 skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list; 1427 skb_clone_fraglist(n); 1428 } 1429 1430 skb_copy_header(n, skb); 1431 out: 1432 return n; 1433 } 1434 EXPORT_SYMBOL(__pskb_copy_fclone); 1435 1436 /** 1437 * pskb_expand_head - reallocate header of &sk_buff 1438 * @skb: buffer to reallocate 1439 * @nhead: room to add at head 1440 * @ntail: room to add at tail 1441 * @gfp_mask: allocation priority 1442 * 1443 * Expands (or creates identical copy, if @nhead and @ntail are zero) 1444 * header of @skb. &sk_buff itself is not changed. &sk_buff MUST have 1445 * reference count of 1. Returns zero in the case of success or error, 1446 * if expansion failed. In the last case, &sk_buff is not changed. 1447 * 1448 * All the pointers pointing into skb header may change and must be 1449 * reloaded after call to this function. 1450 */ 1451 1452 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, 1453 gfp_t gfp_mask) 1454 { 1455 int i, osize = skb_end_offset(skb); 1456 int size = osize + nhead + ntail; 1457 long off; 1458 u8 *data; 1459 1460 BUG_ON(nhead < 0); 1461 1462 BUG_ON(skb_shared(skb)); 1463 1464 size = SKB_DATA_ALIGN(size); 1465 1466 if (skb_pfmemalloc(skb)) 1467 gfp_mask |= __GFP_MEMALLOC; 1468 data = kmalloc_reserve(size + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)), 1469 gfp_mask, NUMA_NO_NODE, NULL); 1470 if (!data) 1471 goto nodata; 1472 size = SKB_WITH_OVERHEAD(ksize(data)); 1473 1474 /* Copy only real data... and, alas, header. This should be 1475 * optimized for the cases when header is void. 1476 */ 1477 memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head); 1478 1479 memcpy((struct skb_shared_info *)(data + size), 1480 skb_shinfo(skb), 1481 offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags])); 1482 1483 /* 1484 * if shinfo is shared we must drop the old head gracefully, but if it 1485 * is not we can just drop the old head and let the existing refcount 1486 * be since all we did is relocate the values 1487 */ 1488 if (skb_cloned(skb)) { 1489 if (skb_orphan_frags(skb, gfp_mask)) 1490 goto nofrags; 1491 if (skb_zcopy(skb)) 1492 refcount_inc(&skb_uarg(skb)->refcnt); 1493 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 1494 skb_frag_ref(skb, i); 1495 1496 if (skb_has_frag_list(skb)) 1497 skb_clone_fraglist(skb); 1498 1499 skb_release_data(skb); 1500 } else { 1501 skb_free_head(skb); 1502 } 1503 off = (data + nhead) - skb->head; 1504 1505 skb->head = data; 1506 skb->head_frag = 0; 1507 skb->data += off; 1508 #ifdef NET_SKBUFF_DATA_USES_OFFSET 1509 skb->end = size; 1510 off = nhead; 1511 #else 1512 skb->end = skb->head + size; 1513 #endif 1514 skb->tail += off; 1515 skb_headers_offset_update(skb, nhead); 1516 skb->cloned = 0; 1517 skb->hdr_len = 0; 1518 skb->nohdr = 0; 1519 atomic_set(&skb_shinfo(skb)->dataref, 1); 1520 1521 skb_metadata_clear(skb); 1522 1523 /* It is not generally safe to change skb->truesize. 1524 * For the moment, we really care of rx path, or 1525 * when skb is orphaned (not attached to a socket). 1526 */ 1527 if (!skb->sk || skb->destructor == sock_edemux) 1528 skb->truesize += size - osize; 1529 1530 return 0; 1531 1532 nofrags: 1533 kfree(data); 1534 nodata: 1535 return -ENOMEM; 1536 } 1537 EXPORT_SYMBOL(pskb_expand_head); 1538 1539 /* Make private copy of skb with writable head and some headroom */ 1540 1541 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom) 1542 { 1543 struct sk_buff *skb2; 1544 int delta = headroom - skb_headroom(skb); 1545 1546 if (delta <= 0) 1547 skb2 = pskb_copy(skb, GFP_ATOMIC); 1548 else { 1549 skb2 = skb_clone(skb, GFP_ATOMIC); 1550 if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0, 1551 GFP_ATOMIC)) { 1552 kfree_skb(skb2); 1553 skb2 = NULL; 1554 } 1555 } 1556 return skb2; 1557 } 1558 EXPORT_SYMBOL(skb_realloc_headroom); 1559 1560 /** 1561 * skb_copy_expand - copy and expand sk_buff 1562 * @skb: buffer to copy 1563 * @newheadroom: new free bytes at head 1564 * @newtailroom: new free bytes at tail 1565 * @gfp_mask: allocation priority 1566 * 1567 * Make a copy of both an &sk_buff and its data and while doing so 1568 * allocate additional space. 1569 * 1570 * This is used when the caller wishes to modify the data and needs a 1571 * private copy of the data to alter as well as more space for new fields. 1572 * Returns %NULL on failure or the pointer to the buffer 1573 * on success. The returned buffer has a reference count of 1. 1574 * 1575 * You must pass %GFP_ATOMIC as the allocation priority if this function 1576 * is called from an interrupt. 1577 */ 1578 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, 1579 int newheadroom, int newtailroom, 1580 gfp_t gfp_mask) 1581 { 1582 /* 1583 * Allocate the copy buffer 1584 */ 1585 struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom, 1586 gfp_mask, skb_alloc_rx_flag(skb), 1587 NUMA_NO_NODE); 1588 int oldheadroom = skb_headroom(skb); 1589 int head_copy_len, head_copy_off; 1590 1591 if (!n) 1592 return NULL; 1593 1594 skb_reserve(n, newheadroom); 1595 1596 /* Set the tail pointer and length */ 1597 skb_put(n, skb->len); 1598 1599 head_copy_len = oldheadroom; 1600 head_copy_off = 0; 1601 if (newheadroom <= head_copy_len) 1602 head_copy_len = newheadroom; 1603 else 1604 head_copy_off = newheadroom - head_copy_len; 1605 1606 /* Copy the linear header and data. */ 1607 BUG_ON(skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off, 1608 skb->len + head_copy_len)); 1609 1610 skb_copy_header(n, skb); 1611 1612 skb_headers_offset_update(n, newheadroom - oldheadroom); 1613 1614 return n; 1615 } 1616 EXPORT_SYMBOL(skb_copy_expand); 1617 1618 /** 1619 * __skb_pad - zero pad the tail of an skb 1620 * @skb: buffer to pad 1621 * @pad: space to pad 1622 * @free_on_error: free buffer on error 1623 * 1624 * Ensure that a buffer is followed by a padding area that is zero 1625 * filled. Used by network drivers which may DMA or transfer data 1626 * beyond the buffer end onto the wire. 1627 * 1628 * May return error in out of memory cases. The skb is freed on error 1629 * if @free_on_error is true. 1630 */ 1631 1632 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error) 1633 { 1634 int err; 1635 int ntail; 1636 1637 /* If the skbuff is non linear tailroom is always zero.. */ 1638 if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) { 1639 memset(skb->data+skb->len, 0, pad); 1640 return 0; 1641 } 1642 1643 ntail = skb->data_len + pad - (skb->end - skb->tail); 1644 if (likely(skb_cloned(skb) || ntail > 0)) { 1645 err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC); 1646 if (unlikely(err)) 1647 goto free_skb; 1648 } 1649 1650 /* FIXME: The use of this function with non-linear skb's really needs 1651 * to be audited. 1652 */ 1653 err = skb_linearize(skb); 1654 if (unlikely(err)) 1655 goto free_skb; 1656 1657 memset(skb->data + skb->len, 0, pad); 1658 return 0; 1659 1660 free_skb: 1661 if (free_on_error) 1662 kfree_skb(skb); 1663 return err; 1664 } 1665 EXPORT_SYMBOL(__skb_pad); 1666 1667 /** 1668 * pskb_put - add data to the tail of a potentially fragmented buffer 1669 * @skb: start of the buffer to use 1670 * @tail: tail fragment of the buffer to use 1671 * @len: amount of data to add 1672 * 1673 * This function extends the used data area of the potentially 1674 * fragmented buffer. @tail must be the last fragment of @skb -- or 1675 * @skb itself. If this would exceed the total buffer size the kernel 1676 * will panic. A pointer to the first byte of the extra data is 1677 * returned. 1678 */ 1679 1680 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len) 1681 { 1682 if (tail != skb) { 1683 skb->data_len += len; 1684 skb->len += len; 1685 } 1686 return skb_put(tail, len); 1687 } 1688 EXPORT_SYMBOL_GPL(pskb_put); 1689 1690 /** 1691 * skb_put - add data to a buffer 1692 * @skb: buffer to use 1693 * @len: amount of data to add 1694 * 1695 * This function extends the used data area of the buffer. If this would 1696 * exceed the total buffer size the kernel will panic. A pointer to the 1697 * first byte of the extra data is returned. 1698 */ 1699 void *skb_put(struct sk_buff *skb, unsigned int len) 1700 { 1701 void *tmp = skb_tail_pointer(skb); 1702 SKB_LINEAR_ASSERT(skb); 1703 skb->tail += len; 1704 skb->len += len; 1705 if (unlikely(skb->tail > skb->end)) 1706 skb_over_panic(skb, len, __builtin_return_address(0)); 1707 return tmp; 1708 } 1709 EXPORT_SYMBOL(skb_put); 1710 1711 /** 1712 * skb_push - add data to the start of a buffer 1713 * @skb: buffer to use 1714 * @len: amount of data to add 1715 * 1716 * This function extends the used data area of the buffer at the buffer 1717 * start. If this would exceed the total buffer headroom the kernel will 1718 * panic. A pointer to the first byte of the extra data is returned. 1719 */ 1720 void *skb_push(struct sk_buff *skb, unsigned int len) 1721 { 1722 skb->data -= len; 1723 skb->len += len; 1724 if (unlikely(skb->data < skb->head)) 1725 skb_under_panic(skb, len, __builtin_return_address(0)); 1726 return skb->data; 1727 } 1728 EXPORT_SYMBOL(skb_push); 1729 1730 /** 1731 * skb_pull - remove data from the start of a buffer 1732 * @skb: buffer to use 1733 * @len: amount of data to remove 1734 * 1735 * This function removes data from the start of a buffer, returning 1736 * the memory to the headroom. A pointer to the next data in the buffer 1737 * is returned. Once the data has been pulled future pushes will overwrite 1738 * the old data. 1739 */ 1740 void *skb_pull(struct sk_buff *skb, unsigned int len) 1741 { 1742 return skb_pull_inline(skb, len); 1743 } 1744 EXPORT_SYMBOL(skb_pull); 1745 1746 /** 1747 * skb_trim - remove end from a buffer 1748 * @skb: buffer to alter 1749 * @len: new length 1750 * 1751 * Cut the length of a buffer down by removing data from the tail. If 1752 * the buffer is already under the length specified it is not modified. 1753 * The skb must be linear. 1754 */ 1755 void skb_trim(struct sk_buff *skb, unsigned int len) 1756 { 1757 if (skb->len > len) 1758 __skb_trim(skb, len); 1759 } 1760 EXPORT_SYMBOL(skb_trim); 1761 1762 /* Trims skb to length len. It can change skb pointers. 1763 */ 1764 1765 int ___pskb_trim(struct sk_buff *skb, unsigned int len) 1766 { 1767 struct sk_buff **fragp; 1768 struct sk_buff *frag; 1769 int offset = skb_headlen(skb); 1770 int nfrags = skb_shinfo(skb)->nr_frags; 1771 int i; 1772 int err; 1773 1774 if (skb_cloned(skb) && 1775 unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))) 1776 return err; 1777 1778 i = 0; 1779 if (offset >= len) 1780 goto drop_pages; 1781 1782 for (; i < nfrags; i++) { 1783 int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]); 1784 1785 if (end < len) { 1786 offset = end; 1787 continue; 1788 } 1789 1790 skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset); 1791 1792 drop_pages: 1793 skb_shinfo(skb)->nr_frags = i; 1794 1795 for (; i < nfrags; i++) 1796 skb_frag_unref(skb, i); 1797 1798 if (skb_has_frag_list(skb)) 1799 skb_drop_fraglist(skb); 1800 goto done; 1801 } 1802 1803 for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp); 1804 fragp = &frag->next) { 1805 int end = offset + frag->len; 1806 1807 if (skb_shared(frag)) { 1808 struct sk_buff *nfrag; 1809 1810 nfrag = skb_clone(frag, GFP_ATOMIC); 1811 if (unlikely(!nfrag)) 1812 return -ENOMEM; 1813 1814 nfrag->next = frag->next; 1815 consume_skb(frag); 1816 frag = nfrag; 1817 *fragp = frag; 1818 } 1819 1820 if (end < len) { 1821 offset = end; 1822 continue; 1823 } 1824 1825 if (end > len && 1826 unlikely((err = pskb_trim(frag, len - offset)))) 1827 return err; 1828 1829 if (frag->next) 1830 skb_drop_list(&frag->next); 1831 break; 1832 } 1833 1834 done: 1835 if (len > skb_headlen(skb)) { 1836 skb->data_len -= skb->len - len; 1837 skb->len = len; 1838 } else { 1839 skb->len = len; 1840 skb->data_len = 0; 1841 skb_set_tail_pointer(skb, len); 1842 } 1843 1844 if (!skb->sk || skb->destructor == sock_edemux) 1845 skb_condense(skb); 1846 return 0; 1847 } 1848 EXPORT_SYMBOL(___pskb_trim); 1849 1850 /* Note : use pskb_trim_rcsum() instead of calling this directly 1851 */ 1852 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len) 1853 { 1854 if (skb->ip_summed == CHECKSUM_COMPLETE) { 1855 int delta = skb->len - len; 1856 1857 skb->csum = csum_block_sub(skb->csum, 1858 skb_checksum(skb, len, delta, 0), 1859 len); 1860 } 1861 return __pskb_trim(skb, len); 1862 } 1863 EXPORT_SYMBOL(pskb_trim_rcsum_slow); 1864 1865 /** 1866 * __pskb_pull_tail - advance tail of skb header 1867 * @skb: buffer to reallocate 1868 * @delta: number of bytes to advance tail 1869 * 1870 * The function makes a sense only on a fragmented &sk_buff, 1871 * it expands header moving its tail forward and copying necessary 1872 * data from fragmented part. 1873 * 1874 * &sk_buff MUST have reference count of 1. 1875 * 1876 * Returns %NULL (and &sk_buff does not change) if pull failed 1877 * or value of new tail of skb in the case of success. 1878 * 1879 * All the pointers pointing into skb header may change and must be 1880 * reloaded after call to this function. 1881 */ 1882 1883 /* Moves tail of skb head forward, copying data from fragmented part, 1884 * when it is necessary. 1885 * 1. It may fail due to malloc failure. 1886 * 2. It may change skb pointers. 1887 * 1888 * It is pretty complicated. Luckily, it is called only in exceptional cases. 1889 */ 1890 void *__pskb_pull_tail(struct sk_buff *skb, int delta) 1891 { 1892 /* If skb has not enough free space at tail, get new one 1893 * plus 128 bytes for future expansions. If we have enough 1894 * room at tail, reallocate without expansion only if skb is cloned. 1895 */ 1896 int i, k, eat = (skb->tail + delta) - skb->end; 1897 1898 if (eat > 0 || skb_cloned(skb)) { 1899 if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0, 1900 GFP_ATOMIC)) 1901 return NULL; 1902 } 1903 1904 BUG_ON(skb_copy_bits(skb, skb_headlen(skb), 1905 skb_tail_pointer(skb), delta)); 1906 1907 /* Optimization: no fragments, no reasons to preestimate 1908 * size of pulled pages. Superb. 1909 */ 1910 if (!skb_has_frag_list(skb)) 1911 goto pull_pages; 1912 1913 /* Estimate size of pulled pages. */ 1914 eat = delta; 1915 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1916 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 1917 1918 if (size >= eat) 1919 goto pull_pages; 1920 eat -= size; 1921 } 1922 1923 /* If we need update frag list, we are in troubles. 1924 * Certainly, it is possible to add an offset to skb data, 1925 * but taking into account that pulling is expected to 1926 * be very rare operation, it is worth to fight against 1927 * further bloating skb head and crucify ourselves here instead. 1928 * Pure masohism, indeed. 8)8) 1929 */ 1930 if (eat) { 1931 struct sk_buff *list = skb_shinfo(skb)->frag_list; 1932 struct sk_buff *clone = NULL; 1933 struct sk_buff *insp = NULL; 1934 1935 do { 1936 if (list->len <= eat) { 1937 /* Eaten as whole. */ 1938 eat -= list->len; 1939 list = list->next; 1940 insp = list; 1941 } else { 1942 /* Eaten partially. */ 1943 1944 if (skb_shared(list)) { 1945 /* Sucks! We need to fork list. :-( */ 1946 clone = skb_clone(list, GFP_ATOMIC); 1947 if (!clone) 1948 return NULL; 1949 insp = list->next; 1950 list = clone; 1951 } else { 1952 /* This may be pulled without 1953 * problems. */ 1954 insp = list; 1955 } 1956 if (!pskb_pull(list, eat)) { 1957 kfree_skb(clone); 1958 return NULL; 1959 } 1960 break; 1961 } 1962 } while (eat); 1963 1964 /* Free pulled out fragments. */ 1965 while ((list = skb_shinfo(skb)->frag_list) != insp) { 1966 skb_shinfo(skb)->frag_list = list->next; 1967 kfree_skb(list); 1968 } 1969 /* And insert new clone at head. */ 1970 if (clone) { 1971 clone->next = list; 1972 skb_shinfo(skb)->frag_list = clone; 1973 } 1974 } 1975 /* Success! Now we may commit changes to skb data. */ 1976 1977 pull_pages: 1978 eat = delta; 1979 k = 0; 1980 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1981 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 1982 1983 if (size <= eat) { 1984 skb_frag_unref(skb, i); 1985 eat -= size; 1986 } else { 1987 skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i]; 1988 if (eat) { 1989 skb_shinfo(skb)->frags[k].page_offset += eat; 1990 skb_frag_size_sub(&skb_shinfo(skb)->frags[k], eat); 1991 if (!i) 1992 goto end; 1993 eat = 0; 1994 } 1995 k++; 1996 } 1997 } 1998 skb_shinfo(skb)->nr_frags = k; 1999 2000 end: 2001 skb->tail += delta; 2002 skb->data_len -= delta; 2003 2004 if (!skb->data_len) 2005 skb_zcopy_clear(skb, false); 2006 2007 return skb_tail_pointer(skb); 2008 } 2009 EXPORT_SYMBOL(__pskb_pull_tail); 2010 2011 /** 2012 * skb_copy_bits - copy bits from skb to kernel buffer 2013 * @skb: source skb 2014 * @offset: offset in source 2015 * @to: destination buffer 2016 * @len: number of bytes to copy 2017 * 2018 * Copy the specified number of bytes from the source skb to the 2019 * destination buffer. 2020 * 2021 * CAUTION ! : 2022 * If its prototype is ever changed, 2023 * check arch/{*}/net/{*}.S files, 2024 * since it is called from BPF assembly code. 2025 */ 2026 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len) 2027 { 2028 int start = skb_headlen(skb); 2029 struct sk_buff *frag_iter; 2030 int i, copy; 2031 2032 if (offset > (int)skb->len - len) 2033 goto fault; 2034 2035 /* Copy header. */ 2036 if ((copy = start - offset) > 0) { 2037 if (copy > len) 2038 copy = len; 2039 skb_copy_from_linear_data_offset(skb, offset, to, copy); 2040 if ((len -= copy) == 0) 2041 return 0; 2042 offset += copy; 2043 to += copy; 2044 } 2045 2046 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2047 int end; 2048 skb_frag_t *f = &skb_shinfo(skb)->frags[i]; 2049 2050 WARN_ON(start > offset + len); 2051 2052 end = start + skb_frag_size(f); 2053 if ((copy = end - offset) > 0) { 2054 u32 p_off, p_len, copied; 2055 struct page *p; 2056 u8 *vaddr; 2057 2058 if (copy > len) 2059 copy = len; 2060 2061 skb_frag_foreach_page(f, 2062 f->page_offset + offset - start, 2063 copy, p, p_off, p_len, copied) { 2064 vaddr = kmap_atomic(p); 2065 memcpy(to + copied, vaddr + p_off, p_len); 2066 kunmap_atomic(vaddr); 2067 } 2068 2069 if ((len -= copy) == 0) 2070 return 0; 2071 offset += copy; 2072 to += copy; 2073 } 2074 start = end; 2075 } 2076 2077 skb_walk_frags(skb, frag_iter) { 2078 int end; 2079 2080 WARN_ON(start > offset + len); 2081 2082 end = start + frag_iter->len; 2083 if ((copy = end - offset) > 0) { 2084 if (copy > len) 2085 copy = len; 2086 if (skb_copy_bits(frag_iter, offset - start, to, copy)) 2087 goto fault; 2088 if ((len -= copy) == 0) 2089 return 0; 2090 offset += copy; 2091 to += copy; 2092 } 2093 start = end; 2094 } 2095 2096 if (!len) 2097 return 0; 2098 2099 fault: 2100 return -EFAULT; 2101 } 2102 EXPORT_SYMBOL(skb_copy_bits); 2103 2104 /* 2105 * Callback from splice_to_pipe(), if we need to release some pages 2106 * at the end of the spd in case we error'ed out in filling the pipe. 2107 */ 2108 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i) 2109 { 2110 put_page(spd->pages[i]); 2111 } 2112 2113 static struct page *linear_to_page(struct page *page, unsigned int *len, 2114 unsigned int *offset, 2115 struct sock *sk) 2116 { 2117 struct page_frag *pfrag = sk_page_frag(sk); 2118 2119 if (!sk_page_frag_refill(sk, pfrag)) 2120 return NULL; 2121 2122 *len = min_t(unsigned int, *len, pfrag->size - pfrag->offset); 2123 2124 memcpy(page_address(pfrag->page) + pfrag->offset, 2125 page_address(page) + *offset, *len); 2126 *offset = pfrag->offset; 2127 pfrag->offset += *len; 2128 2129 return pfrag->page; 2130 } 2131 2132 static bool spd_can_coalesce(const struct splice_pipe_desc *spd, 2133 struct page *page, 2134 unsigned int offset) 2135 { 2136 return spd->nr_pages && 2137 spd->pages[spd->nr_pages - 1] == page && 2138 (spd->partial[spd->nr_pages - 1].offset + 2139 spd->partial[spd->nr_pages - 1].len == offset); 2140 } 2141 2142 /* 2143 * Fill page/offset/length into spd, if it can hold more pages. 2144 */ 2145 static bool spd_fill_page(struct splice_pipe_desc *spd, 2146 struct pipe_inode_info *pipe, struct page *page, 2147 unsigned int *len, unsigned int offset, 2148 bool linear, 2149 struct sock *sk) 2150 { 2151 if (unlikely(spd->nr_pages == MAX_SKB_FRAGS)) 2152 return true; 2153 2154 if (linear) { 2155 page = linear_to_page(page, len, &offset, sk); 2156 if (!page) 2157 return true; 2158 } 2159 if (spd_can_coalesce(spd, page, offset)) { 2160 spd->partial[spd->nr_pages - 1].len += *len; 2161 return false; 2162 } 2163 get_page(page); 2164 spd->pages[spd->nr_pages] = page; 2165 spd->partial[spd->nr_pages].len = *len; 2166 spd->partial[spd->nr_pages].offset = offset; 2167 spd->nr_pages++; 2168 2169 return false; 2170 } 2171 2172 static bool __splice_segment(struct page *page, unsigned int poff, 2173 unsigned int plen, unsigned int *off, 2174 unsigned int *len, 2175 struct splice_pipe_desc *spd, bool linear, 2176 struct sock *sk, 2177 struct pipe_inode_info *pipe) 2178 { 2179 if (!*len) 2180 return true; 2181 2182 /* skip this segment if already processed */ 2183 if (*off >= plen) { 2184 *off -= plen; 2185 return false; 2186 } 2187 2188 /* ignore any bits we already processed */ 2189 poff += *off; 2190 plen -= *off; 2191 *off = 0; 2192 2193 do { 2194 unsigned int flen = min(*len, plen); 2195 2196 if (spd_fill_page(spd, pipe, page, &flen, poff, 2197 linear, sk)) 2198 return true; 2199 poff += flen; 2200 plen -= flen; 2201 *len -= flen; 2202 } while (*len && plen); 2203 2204 return false; 2205 } 2206 2207 /* 2208 * Map linear and fragment data from the skb to spd. It reports true if the 2209 * pipe is full or if we already spliced the requested length. 2210 */ 2211 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe, 2212 unsigned int *offset, unsigned int *len, 2213 struct splice_pipe_desc *spd, struct sock *sk) 2214 { 2215 int seg; 2216 struct sk_buff *iter; 2217 2218 /* map the linear part : 2219 * If skb->head_frag is set, this 'linear' part is backed by a 2220 * fragment, and if the head is not shared with any clones then 2221 * we can avoid a copy since we own the head portion of this page. 2222 */ 2223 if (__splice_segment(virt_to_page(skb->data), 2224 (unsigned long) skb->data & (PAGE_SIZE - 1), 2225 skb_headlen(skb), 2226 offset, len, spd, 2227 skb_head_is_locked(skb), 2228 sk, pipe)) 2229 return true; 2230 2231 /* 2232 * then map the fragments 2233 */ 2234 for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) { 2235 const skb_frag_t *f = &skb_shinfo(skb)->frags[seg]; 2236 2237 if (__splice_segment(skb_frag_page(f), 2238 f->page_offset, skb_frag_size(f), 2239 offset, len, spd, false, sk, pipe)) 2240 return true; 2241 } 2242 2243 skb_walk_frags(skb, iter) { 2244 if (*offset >= iter->len) { 2245 *offset -= iter->len; 2246 continue; 2247 } 2248 /* __skb_splice_bits() only fails if the output has no room 2249 * left, so no point in going over the frag_list for the error 2250 * case. 2251 */ 2252 if (__skb_splice_bits(iter, pipe, offset, len, spd, sk)) 2253 return true; 2254 } 2255 2256 return false; 2257 } 2258 2259 /* 2260 * Map data from the skb to a pipe. Should handle both the linear part, 2261 * the fragments, and the frag list. 2262 */ 2263 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset, 2264 struct pipe_inode_info *pipe, unsigned int tlen, 2265 unsigned int flags) 2266 { 2267 struct partial_page partial[MAX_SKB_FRAGS]; 2268 struct page *pages[MAX_SKB_FRAGS]; 2269 struct splice_pipe_desc spd = { 2270 .pages = pages, 2271 .partial = partial, 2272 .nr_pages_max = MAX_SKB_FRAGS, 2273 .ops = &nosteal_pipe_buf_ops, 2274 .spd_release = sock_spd_release, 2275 }; 2276 int ret = 0; 2277 2278 __skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk); 2279 2280 if (spd.nr_pages) 2281 ret = splice_to_pipe(pipe, &spd); 2282 2283 return ret; 2284 } 2285 EXPORT_SYMBOL_GPL(skb_splice_bits); 2286 2287 /* Send skb data on a socket. Socket must be locked. */ 2288 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset, 2289 int len) 2290 { 2291 unsigned int orig_len = len; 2292 struct sk_buff *head = skb; 2293 unsigned short fragidx; 2294 int slen, ret; 2295 2296 do_frag_list: 2297 2298 /* Deal with head data */ 2299 while (offset < skb_headlen(skb) && len) { 2300 struct kvec kv; 2301 struct msghdr msg; 2302 2303 slen = min_t(int, len, skb_headlen(skb) - offset); 2304 kv.iov_base = skb->data + offset; 2305 kv.iov_len = slen; 2306 memset(&msg, 0, sizeof(msg)); 2307 2308 ret = kernel_sendmsg_locked(sk, &msg, &kv, 1, slen); 2309 if (ret <= 0) 2310 goto error; 2311 2312 offset += ret; 2313 len -= ret; 2314 } 2315 2316 /* All the data was skb head? */ 2317 if (!len) 2318 goto out; 2319 2320 /* Make offset relative to start of frags */ 2321 offset -= skb_headlen(skb); 2322 2323 /* Find where we are in frag list */ 2324 for (fragidx = 0; fragidx < skb_shinfo(skb)->nr_frags; fragidx++) { 2325 skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx]; 2326 2327 if (offset < frag->size) 2328 break; 2329 2330 offset -= frag->size; 2331 } 2332 2333 for (; len && fragidx < skb_shinfo(skb)->nr_frags; fragidx++) { 2334 skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx]; 2335 2336 slen = min_t(size_t, len, frag->size - offset); 2337 2338 while (slen) { 2339 ret = kernel_sendpage_locked(sk, frag->page.p, 2340 frag->page_offset + offset, 2341 slen, MSG_DONTWAIT); 2342 if (ret <= 0) 2343 goto error; 2344 2345 len -= ret; 2346 offset += ret; 2347 slen -= ret; 2348 } 2349 2350 offset = 0; 2351 } 2352 2353 if (len) { 2354 /* Process any frag lists */ 2355 2356 if (skb == head) { 2357 if (skb_has_frag_list(skb)) { 2358 skb = skb_shinfo(skb)->frag_list; 2359 goto do_frag_list; 2360 } 2361 } else if (skb->next) { 2362 skb = skb->next; 2363 goto do_frag_list; 2364 } 2365 } 2366 2367 out: 2368 return orig_len - len; 2369 2370 error: 2371 return orig_len == len ? ret : orig_len - len; 2372 } 2373 EXPORT_SYMBOL_GPL(skb_send_sock_locked); 2374 2375 /** 2376 * skb_store_bits - store bits from kernel buffer to skb 2377 * @skb: destination buffer 2378 * @offset: offset in destination 2379 * @from: source buffer 2380 * @len: number of bytes to copy 2381 * 2382 * Copy the specified number of bytes from the source buffer to the 2383 * destination skb. This function handles all the messy bits of 2384 * traversing fragment lists and such. 2385 */ 2386 2387 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len) 2388 { 2389 int start = skb_headlen(skb); 2390 struct sk_buff *frag_iter; 2391 int i, copy; 2392 2393 if (offset > (int)skb->len - len) 2394 goto fault; 2395 2396 if ((copy = start - offset) > 0) { 2397 if (copy > len) 2398 copy = len; 2399 skb_copy_to_linear_data_offset(skb, offset, from, copy); 2400 if ((len -= copy) == 0) 2401 return 0; 2402 offset += copy; 2403 from += copy; 2404 } 2405 2406 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2407 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2408 int end; 2409 2410 WARN_ON(start > offset + len); 2411 2412 end = start + skb_frag_size(frag); 2413 if ((copy = end - offset) > 0) { 2414 u32 p_off, p_len, copied; 2415 struct page *p; 2416 u8 *vaddr; 2417 2418 if (copy > len) 2419 copy = len; 2420 2421 skb_frag_foreach_page(frag, 2422 frag->page_offset + offset - start, 2423 copy, p, p_off, p_len, copied) { 2424 vaddr = kmap_atomic(p); 2425 memcpy(vaddr + p_off, from + copied, p_len); 2426 kunmap_atomic(vaddr); 2427 } 2428 2429 if ((len -= copy) == 0) 2430 return 0; 2431 offset += copy; 2432 from += copy; 2433 } 2434 start = end; 2435 } 2436 2437 skb_walk_frags(skb, frag_iter) { 2438 int end; 2439 2440 WARN_ON(start > offset + len); 2441 2442 end = start + frag_iter->len; 2443 if ((copy = end - offset) > 0) { 2444 if (copy > len) 2445 copy = len; 2446 if (skb_store_bits(frag_iter, offset - start, 2447 from, copy)) 2448 goto fault; 2449 if ((len -= copy) == 0) 2450 return 0; 2451 offset += copy; 2452 from += copy; 2453 } 2454 start = end; 2455 } 2456 if (!len) 2457 return 0; 2458 2459 fault: 2460 return -EFAULT; 2461 } 2462 EXPORT_SYMBOL(skb_store_bits); 2463 2464 /* Checksum skb data. */ 2465 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len, 2466 __wsum csum, const struct skb_checksum_ops *ops) 2467 { 2468 int start = skb_headlen(skb); 2469 int i, copy = start - offset; 2470 struct sk_buff *frag_iter; 2471 int pos = 0; 2472 2473 /* Checksum header. */ 2474 if (copy > 0) { 2475 if (copy > len) 2476 copy = len; 2477 csum = ops->update(skb->data + offset, copy, csum); 2478 if ((len -= copy) == 0) 2479 return csum; 2480 offset += copy; 2481 pos = copy; 2482 } 2483 2484 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2485 int end; 2486 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2487 2488 WARN_ON(start > offset + len); 2489 2490 end = start + skb_frag_size(frag); 2491 if ((copy = end - offset) > 0) { 2492 u32 p_off, p_len, copied; 2493 struct page *p; 2494 __wsum csum2; 2495 u8 *vaddr; 2496 2497 if (copy > len) 2498 copy = len; 2499 2500 skb_frag_foreach_page(frag, 2501 frag->page_offset + offset - start, 2502 copy, p, p_off, p_len, copied) { 2503 vaddr = kmap_atomic(p); 2504 csum2 = ops->update(vaddr + p_off, p_len, 0); 2505 kunmap_atomic(vaddr); 2506 csum = ops->combine(csum, csum2, pos, p_len); 2507 pos += p_len; 2508 } 2509 2510 if (!(len -= copy)) 2511 return csum; 2512 offset += copy; 2513 } 2514 start = end; 2515 } 2516 2517 skb_walk_frags(skb, frag_iter) { 2518 int end; 2519 2520 WARN_ON(start > offset + len); 2521 2522 end = start + frag_iter->len; 2523 if ((copy = end - offset) > 0) { 2524 __wsum csum2; 2525 if (copy > len) 2526 copy = len; 2527 csum2 = __skb_checksum(frag_iter, offset - start, 2528 copy, 0, ops); 2529 csum = ops->combine(csum, csum2, pos, copy); 2530 if ((len -= copy) == 0) 2531 return csum; 2532 offset += copy; 2533 pos += copy; 2534 } 2535 start = end; 2536 } 2537 BUG_ON(len); 2538 2539 return csum; 2540 } 2541 EXPORT_SYMBOL(__skb_checksum); 2542 2543 __wsum skb_checksum(const struct sk_buff *skb, int offset, 2544 int len, __wsum csum) 2545 { 2546 const struct skb_checksum_ops ops = { 2547 .update = csum_partial_ext, 2548 .combine = csum_block_add_ext, 2549 }; 2550 2551 return __skb_checksum(skb, offset, len, csum, &ops); 2552 } 2553 EXPORT_SYMBOL(skb_checksum); 2554 2555 /* Both of above in one bottle. */ 2556 2557 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, 2558 u8 *to, int len, __wsum csum) 2559 { 2560 int start = skb_headlen(skb); 2561 int i, copy = start - offset; 2562 struct sk_buff *frag_iter; 2563 int pos = 0; 2564 2565 /* Copy header. */ 2566 if (copy > 0) { 2567 if (copy > len) 2568 copy = len; 2569 csum = csum_partial_copy_nocheck(skb->data + offset, to, 2570 copy, csum); 2571 if ((len -= copy) == 0) 2572 return csum; 2573 offset += copy; 2574 to += copy; 2575 pos = copy; 2576 } 2577 2578 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2579 int end; 2580 2581 WARN_ON(start > offset + len); 2582 2583 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]); 2584 if ((copy = end - offset) > 0) { 2585 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2586 u32 p_off, p_len, copied; 2587 struct page *p; 2588 __wsum csum2; 2589 u8 *vaddr; 2590 2591 if (copy > len) 2592 copy = len; 2593 2594 skb_frag_foreach_page(frag, 2595 frag->page_offset + offset - start, 2596 copy, p, p_off, p_len, copied) { 2597 vaddr = kmap_atomic(p); 2598 csum2 = csum_partial_copy_nocheck(vaddr + p_off, 2599 to + copied, 2600 p_len, 0); 2601 kunmap_atomic(vaddr); 2602 csum = csum_block_add(csum, csum2, pos); 2603 pos += p_len; 2604 } 2605 2606 if (!(len -= copy)) 2607 return csum; 2608 offset += copy; 2609 to += copy; 2610 } 2611 start = end; 2612 } 2613 2614 skb_walk_frags(skb, frag_iter) { 2615 __wsum csum2; 2616 int end; 2617 2618 WARN_ON(start > offset + len); 2619 2620 end = start + frag_iter->len; 2621 if ((copy = end - offset) > 0) { 2622 if (copy > len) 2623 copy = len; 2624 csum2 = skb_copy_and_csum_bits(frag_iter, 2625 offset - start, 2626 to, copy, 0); 2627 csum = csum_block_add(csum, csum2, pos); 2628 if ((len -= copy) == 0) 2629 return csum; 2630 offset += copy; 2631 to += copy; 2632 pos += copy; 2633 } 2634 start = end; 2635 } 2636 BUG_ON(len); 2637 return csum; 2638 } 2639 EXPORT_SYMBOL(skb_copy_and_csum_bits); 2640 2641 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len) 2642 { 2643 __sum16 sum; 2644 2645 sum = csum_fold(skb_checksum(skb, 0, len, skb->csum)); 2646 /* See comments in __skb_checksum_complete(). */ 2647 if (likely(!sum)) { 2648 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) && 2649 !skb->csum_complete_sw) 2650 netdev_rx_csum_fault(skb->dev, skb); 2651 } 2652 if (!skb_shared(skb)) 2653 skb->csum_valid = !sum; 2654 return sum; 2655 } 2656 EXPORT_SYMBOL(__skb_checksum_complete_head); 2657 2658 /* This function assumes skb->csum already holds pseudo header's checksum, 2659 * which has been changed from the hardware checksum, for example, by 2660 * __skb_checksum_validate_complete(). And, the original skb->csum must 2661 * have been validated unsuccessfully for CHECKSUM_COMPLETE case. 2662 * 2663 * It returns non-zero if the recomputed checksum is still invalid, otherwise 2664 * zero. The new checksum is stored back into skb->csum unless the skb is 2665 * shared. 2666 */ 2667 __sum16 __skb_checksum_complete(struct sk_buff *skb) 2668 { 2669 __wsum csum; 2670 __sum16 sum; 2671 2672 csum = skb_checksum(skb, 0, skb->len, 0); 2673 2674 sum = csum_fold(csum_add(skb->csum, csum)); 2675 /* This check is inverted, because we already knew the hardware 2676 * checksum is invalid before calling this function. So, if the 2677 * re-computed checksum is valid instead, then we have a mismatch 2678 * between the original skb->csum and skb_checksum(). This means either 2679 * the original hardware checksum is incorrect or we screw up skb->csum 2680 * when moving skb->data around. 2681 */ 2682 if (likely(!sum)) { 2683 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) && 2684 !skb->csum_complete_sw) 2685 netdev_rx_csum_fault(skb->dev, skb); 2686 } 2687 2688 if (!skb_shared(skb)) { 2689 /* Save full packet checksum */ 2690 skb->csum = csum; 2691 skb->ip_summed = CHECKSUM_COMPLETE; 2692 skb->csum_complete_sw = 1; 2693 skb->csum_valid = !sum; 2694 } 2695 2696 return sum; 2697 } 2698 EXPORT_SYMBOL(__skb_checksum_complete); 2699 2700 static __wsum warn_crc32c_csum_update(const void *buff, int len, __wsum sum) 2701 { 2702 net_warn_ratelimited( 2703 "%s: attempt to compute crc32c without libcrc32c.ko\n", 2704 __func__); 2705 return 0; 2706 } 2707 2708 static __wsum warn_crc32c_csum_combine(__wsum csum, __wsum csum2, 2709 int offset, int len) 2710 { 2711 net_warn_ratelimited( 2712 "%s: attempt to compute crc32c without libcrc32c.ko\n", 2713 __func__); 2714 return 0; 2715 } 2716 2717 static const struct skb_checksum_ops default_crc32c_ops = { 2718 .update = warn_crc32c_csum_update, 2719 .combine = warn_crc32c_csum_combine, 2720 }; 2721 2722 const struct skb_checksum_ops *crc32c_csum_stub __read_mostly = 2723 &default_crc32c_ops; 2724 EXPORT_SYMBOL(crc32c_csum_stub); 2725 2726 /** 2727 * skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy() 2728 * @from: source buffer 2729 * 2730 * Calculates the amount of linear headroom needed in the 'to' skb passed 2731 * into skb_zerocopy(). 2732 */ 2733 unsigned int 2734 skb_zerocopy_headlen(const struct sk_buff *from) 2735 { 2736 unsigned int hlen = 0; 2737 2738 if (!from->head_frag || 2739 skb_headlen(from) < L1_CACHE_BYTES || 2740 skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS) 2741 hlen = skb_headlen(from); 2742 2743 if (skb_has_frag_list(from)) 2744 hlen = from->len; 2745 2746 return hlen; 2747 } 2748 EXPORT_SYMBOL_GPL(skb_zerocopy_headlen); 2749 2750 /** 2751 * skb_zerocopy - Zero copy skb to skb 2752 * @to: destination buffer 2753 * @from: source buffer 2754 * @len: number of bytes to copy from source buffer 2755 * @hlen: size of linear headroom in destination buffer 2756 * 2757 * Copies up to `len` bytes from `from` to `to` by creating references 2758 * to the frags in the source buffer. 2759 * 2760 * The `hlen` as calculated by skb_zerocopy_headlen() specifies the 2761 * headroom in the `to` buffer. 2762 * 2763 * Return value: 2764 * 0: everything is OK 2765 * -ENOMEM: couldn't orphan frags of @from due to lack of memory 2766 * -EFAULT: skb_copy_bits() found some problem with skb geometry 2767 */ 2768 int 2769 skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen) 2770 { 2771 int i, j = 0; 2772 int plen = 0; /* length of skb->head fragment */ 2773 int ret; 2774 struct page *page; 2775 unsigned int offset; 2776 2777 BUG_ON(!from->head_frag && !hlen); 2778 2779 /* dont bother with small payloads */ 2780 if (len <= skb_tailroom(to)) 2781 return skb_copy_bits(from, 0, skb_put(to, len), len); 2782 2783 if (hlen) { 2784 ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen); 2785 if (unlikely(ret)) 2786 return ret; 2787 len -= hlen; 2788 } else { 2789 plen = min_t(int, skb_headlen(from), len); 2790 if (plen) { 2791 page = virt_to_head_page(from->head); 2792 offset = from->data - (unsigned char *)page_address(page); 2793 __skb_fill_page_desc(to, 0, page, offset, plen); 2794 get_page(page); 2795 j = 1; 2796 len -= plen; 2797 } 2798 } 2799 2800 to->truesize += len + plen; 2801 to->len += len + plen; 2802 to->data_len += len + plen; 2803 2804 if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) { 2805 skb_tx_error(from); 2806 return -ENOMEM; 2807 } 2808 skb_zerocopy_clone(to, from, GFP_ATOMIC); 2809 2810 for (i = 0; i < skb_shinfo(from)->nr_frags; i++) { 2811 if (!len) 2812 break; 2813 skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i]; 2814 skb_shinfo(to)->frags[j].size = min_t(int, skb_shinfo(to)->frags[j].size, len); 2815 len -= skb_shinfo(to)->frags[j].size; 2816 skb_frag_ref(to, j); 2817 j++; 2818 } 2819 skb_shinfo(to)->nr_frags = j; 2820 2821 return 0; 2822 } 2823 EXPORT_SYMBOL_GPL(skb_zerocopy); 2824 2825 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to) 2826 { 2827 __wsum csum; 2828 long csstart; 2829 2830 if (skb->ip_summed == CHECKSUM_PARTIAL) 2831 csstart = skb_checksum_start_offset(skb); 2832 else 2833 csstart = skb_headlen(skb); 2834 2835 BUG_ON(csstart > skb_headlen(skb)); 2836 2837 skb_copy_from_linear_data(skb, to, csstart); 2838 2839 csum = 0; 2840 if (csstart != skb->len) 2841 csum = skb_copy_and_csum_bits(skb, csstart, to + csstart, 2842 skb->len - csstart, 0); 2843 2844 if (skb->ip_summed == CHECKSUM_PARTIAL) { 2845 long csstuff = csstart + skb->csum_offset; 2846 2847 *((__sum16 *)(to + csstuff)) = csum_fold(csum); 2848 } 2849 } 2850 EXPORT_SYMBOL(skb_copy_and_csum_dev); 2851 2852 /** 2853 * skb_dequeue - remove from the head of the queue 2854 * @list: list to dequeue from 2855 * 2856 * Remove the head of the list. The list lock is taken so the function 2857 * may be used safely with other locking list functions. The head item is 2858 * returned or %NULL if the list is empty. 2859 */ 2860 2861 struct sk_buff *skb_dequeue(struct sk_buff_head *list) 2862 { 2863 unsigned long flags; 2864 struct sk_buff *result; 2865 2866 spin_lock_irqsave(&list->lock, flags); 2867 result = __skb_dequeue(list); 2868 spin_unlock_irqrestore(&list->lock, flags); 2869 return result; 2870 } 2871 EXPORT_SYMBOL(skb_dequeue); 2872 2873 /** 2874 * skb_dequeue_tail - remove from the tail of the queue 2875 * @list: list to dequeue from 2876 * 2877 * Remove the tail of the list. The list lock is taken so the function 2878 * may be used safely with other locking list functions. The tail item is 2879 * returned or %NULL if the list is empty. 2880 */ 2881 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list) 2882 { 2883 unsigned long flags; 2884 struct sk_buff *result; 2885 2886 spin_lock_irqsave(&list->lock, flags); 2887 result = __skb_dequeue_tail(list); 2888 spin_unlock_irqrestore(&list->lock, flags); 2889 return result; 2890 } 2891 EXPORT_SYMBOL(skb_dequeue_tail); 2892 2893 /** 2894 * skb_queue_purge - empty a list 2895 * @list: list to empty 2896 * 2897 * Delete all buffers on an &sk_buff list. Each buffer is removed from 2898 * the list and one reference dropped. This function takes the list 2899 * lock and is atomic with respect to other list locking functions. 2900 */ 2901 void skb_queue_purge(struct sk_buff_head *list) 2902 { 2903 struct sk_buff *skb; 2904 while ((skb = skb_dequeue(list)) != NULL) 2905 kfree_skb(skb); 2906 } 2907 EXPORT_SYMBOL(skb_queue_purge); 2908 2909 /** 2910 * skb_rbtree_purge - empty a skb rbtree 2911 * @root: root of the rbtree to empty 2912 * Return value: the sum of truesizes of all purged skbs. 2913 * 2914 * Delete all buffers on an &sk_buff rbtree. Each buffer is removed from 2915 * the list and one reference dropped. This function does not take 2916 * any lock. Synchronization should be handled by the caller (e.g., TCP 2917 * out-of-order queue is protected by the socket lock). 2918 */ 2919 unsigned int skb_rbtree_purge(struct rb_root *root) 2920 { 2921 struct rb_node *p = rb_first(root); 2922 unsigned int sum = 0; 2923 2924 while (p) { 2925 struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode); 2926 2927 p = rb_next(p); 2928 rb_erase(&skb->rbnode, root); 2929 sum += skb->truesize; 2930 kfree_skb(skb); 2931 } 2932 return sum; 2933 } 2934 2935 /** 2936 * skb_queue_head - queue a buffer at the list head 2937 * @list: list to use 2938 * @newsk: buffer to queue 2939 * 2940 * Queue a buffer at the start of the list. This function takes the 2941 * list lock and can be used safely with other locking &sk_buff functions 2942 * safely. 2943 * 2944 * A buffer cannot be placed on two lists at the same time. 2945 */ 2946 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk) 2947 { 2948 unsigned long flags; 2949 2950 spin_lock_irqsave(&list->lock, flags); 2951 __skb_queue_head(list, newsk); 2952 spin_unlock_irqrestore(&list->lock, flags); 2953 } 2954 EXPORT_SYMBOL(skb_queue_head); 2955 2956 /** 2957 * skb_queue_tail - queue a buffer at the list tail 2958 * @list: list to use 2959 * @newsk: buffer to queue 2960 * 2961 * Queue a buffer at the tail of the list. This function takes the 2962 * list lock and can be used safely with other locking &sk_buff functions 2963 * safely. 2964 * 2965 * A buffer cannot be placed on two lists at the same time. 2966 */ 2967 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk) 2968 { 2969 unsigned long flags; 2970 2971 spin_lock_irqsave(&list->lock, flags); 2972 __skb_queue_tail(list, newsk); 2973 spin_unlock_irqrestore(&list->lock, flags); 2974 } 2975 EXPORT_SYMBOL(skb_queue_tail); 2976 2977 /** 2978 * skb_unlink - remove a buffer from a list 2979 * @skb: buffer to remove 2980 * @list: list to use 2981 * 2982 * Remove a packet from a list. The list locks are taken and this 2983 * function is atomic with respect to other list locked calls 2984 * 2985 * You must know what list the SKB is on. 2986 */ 2987 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list) 2988 { 2989 unsigned long flags; 2990 2991 spin_lock_irqsave(&list->lock, flags); 2992 __skb_unlink(skb, list); 2993 spin_unlock_irqrestore(&list->lock, flags); 2994 } 2995 EXPORT_SYMBOL(skb_unlink); 2996 2997 /** 2998 * skb_append - append a buffer 2999 * @old: buffer to insert after 3000 * @newsk: buffer to insert 3001 * @list: list to use 3002 * 3003 * Place a packet after a given packet in a list. The list locks are taken 3004 * and this function is atomic with respect to other list locked calls. 3005 * A buffer cannot be placed on two lists at the same time. 3006 */ 3007 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list) 3008 { 3009 unsigned long flags; 3010 3011 spin_lock_irqsave(&list->lock, flags); 3012 __skb_queue_after(list, old, newsk); 3013 spin_unlock_irqrestore(&list->lock, flags); 3014 } 3015 EXPORT_SYMBOL(skb_append); 3016 3017 static inline void skb_split_inside_header(struct sk_buff *skb, 3018 struct sk_buff* skb1, 3019 const u32 len, const int pos) 3020 { 3021 int i; 3022 3023 skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len), 3024 pos - len); 3025 /* And move data appendix as is. */ 3026 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 3027 skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i]; 3028 3029 skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags; 3030 skb_shinfo(skb)->nr_frags = 0; 3031 skb1->data_len = skb->data_len; 3032 skb1->len += skb1->data_len; 3033 skb->data_len = 0; 3034 skb->len = len; 3035 skb_set_tail_pointer(skb, len); 3036 } 3037 3038 static inline void skb_split_no_header(struct sk_buff *skb, 3039 struct sk_buff* skb1, 3040 const u32 len, int pos) 3041 { 3042 int i, k = 0; 3043 const int nfrags = skb_shinfo(skb)->nr_frags; 3044 3045 skb_shinfo(skb)->nr_frags = 0; 3046 skb1->len = skb1->data_len = skb->len - len; 3047 skb->len = len; 3048 skb->data_len = len - pos; 3049 3050 for (i = 0; i < nfrags; i++) { 3051 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 3052 3053 if (pos + size > len) { 3054 skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i]; 3055 3056 if (pos < len) { 3057 /* Split frag. 3058 * We have two variants in this case: 3059 * 1. Move all the frag to the second 3060 * part, if it is possible. F.e. 3061 * this approach is mandatory for TUX, 3062 * where splitting is expensive. 3063 * 2. Split is accurately. We make this. 3064 */ 3065 skb_frag_ref(skb, i); 3066 skb_shinfo(skb1)->frags[0].page_offset += len - pos; 3067 skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos); 3068 skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos); 3069 skb_shinfo(skb)->nr_frags++; 3070 } 3071 k++; 3072 } else 3073 skb_shinfo(skb)->nr_frags++; 3074 pos += size; 3075 } 3076 skb_shinfo(skb1)->nr_frags = k; 3077 } 3078 3079 /** 3080 * skb_split - Split fragmented skb to two parts at length len. 3081 * @skb: the buffer to split 3082 * @skb1: the buffer to receive the second part 3083 * @len: new length for skb 3084 */ 3085 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len) 3086 { 3087 int pos = skb_headlen(skb); 3088 3089 skb_shinfo(skb1)->tx_flags |= skb_shinfo(skb)->tx_flags & 3090 SKBTX_SHARED_FRAG; 3091 skb_zerocopy_clone(skb1, skb, 0); 3092 if (len < pos) /* Split line is inside header. */ 3093 skb_split_inside_header(skb, skb1, len, pos); 3094 else /* Second chunk has no header, nothing to copy. */ 3095 skb_split_no_header(skb, skb1, len, pos); 3096 } 3097 EXPORT_SYMBOL(skb_split); 3098 3099 /* Shifting from/to a cloned skb is a no-go. 3100 * 3101 * Caller cannot keep skb_shinfo related pointers past calling here! 3102 */ 3103 static int skb_prepare_for_shift(struct sk_buff *skb) 3104 { 3105 return skb_cloned(skb) && pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 3106 } 3107 3108 /** 3109 * skb_shift - Shifts paged data partially from skb to another 3110 * @tgt: buffer into which tail data gets added 3111 * @skb: buffer from which the paged data comes from 3112 * @shiftlen: shift up to this many bytes 3113 * 3114 * Attempts to shift up to shiftlen worth of bytes, which may be less than 3115 * the length of the skb, from skb to tgt. Returns number bytes shifted. 3116 * It's up to caller to free skb if everything was shifted. 3117 * 3118 * If @tgt runs out of frags, the whole operation is aborted. 3119 * 3120 * Skb cannot include anything else but paged data while tgt is allowed 3121 * to have non-paged data as well. 3122 * 3123 * TODO: full sized shift could be optimized but that would need 3124 * specialized skb free'er to handle frags without up-to-date nr_frags. 3125 */ 3126 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen) 3127 { 3128 int from, to, merge, todo; 3129 struct skb_frag_struct *fragfrom, *fragto; 3130 3131 BUG_ON(shiftlen > skb->len); 3132 3133 if (skb_headlen(skb)) 3134 return 0; 3135 if (skb_zcopy(tgt) || skb_zcopy(skb)) 3136 return 0; 3137 3138 todo = shiftlen; 3139 from = 0; 3140 to = skb_shinfo(tgt)->nr_frags; 3141 fragfrom = &skb_shinfo(skb)->frags[from]; 3142 3143 /* Actual merge is delayed until the point when we know we can 3144 * commit all, so that we don't have to undo partial changes 3145 */ 3146 if (!to || 3147 !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom), 3148 fragfrom->page_offset)) { 3149 merge = -1; 3150 } else { 3151 merge = to - 1; 3152 3153 todo -= skb_frag_size(fragfrom); 3154 if (todo < 0) { 3155 if (skb_prepare_for_shift(skb) || 3156 skb_prepare_for_shift(tgt)) 3157 return 0; 3158 3159 /* All previous frag pointers might be stale! */ 3160 fragfrom = &skb_shinfo(skb)->frags[from]; 3161 fragto = &skb_shinfo(tgt)->frags[merge]; 3162 3163 skb_frag_size_add(fragto, shiftlen); 3164 skb_frag_size_sub(fragfrom, shiftlen); 3165 fragfrom->page_offset += shiftlen; 3166 3167 goto onlymerged; 3168 } 3169 3170 from++; 3171 } 3172 3173 /* Skip full, not-fitting skb to avoid expensive operations */ 3174 if ((shiftlen == skb->len) && 3175 (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to)) 3176 return 0; 3177 3178 if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt)) 3179 return 0; 3180 3181 while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) { 3182 if (to == MAX_SKB_FRAGS) 3183 return 0; 3184 3185 fragfrom = &skb_shinfo(skb)->frags[from]; 3186 fragto = &skb_shinfo(tgt)->frags[to]; 3187 3188 if (todo >= skb_frag_size(fragfrom)) { 3189 *fragto = *fragfrom; 3190 todo -= skb_frag_size(fragfrom); 3191 from++; 3192 to++; 3193 3194 } else { 3195 __skb_frag_ref(fragfrom); 3196 fragto->page = fragfrom->page; 3197 fragto->page_offset = fragfrom->page_offset; 3198 skb_frag_size_set(fragto, todo); 3199 3200 fragfrom->page_offset += todo; 3201 skb_frag_size_sub(fragfrom, todo); 3202 todo = 0; 3203 3204 to++; 3205 break; 3206 } 3207 } 3208 3209 /* Ready to "commit" this state change to tgt */ 3210 skb_shinfo(tgt)->nr_frags = to; 3211 3212 if (merge >= 0) { 3213 fragfrom = &skb_shinfo(skb)->frags[0]; 3214 fragto = &skb_shinfo(tgt)->frags[merge]; 3215 3216 skb_frag_size_add(fragto, skb_frag_size(fragfrom)); 3217 __skb_frag_unref(fragfrom); 3218 } 3219 3220 /* Reposition in the original skb */ 3221 to = 0; 3222 while (from < skb_shinfo(skb)->nr_frags) 3223 skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++]; 3224 skb_shinfo(skb)->nr_frags = to; 3225 3226 BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags); 3227 3228 onlymerged: 3229 /* Most likely the tgt won't ever need its checksum anymore, skb on 3230 * the other hand might need it if it needs to be resent 3231 */ 3232 tgt->ip_summed = CHECKSUM_PARTIAL; 3233 skb->ip_summed = CHECKSUM_PARTIAL; 3234 3235 /* Yak, is it really working this way? Some helper please? */ 3236 skb->len -= shiftlen; 3237 skb->data_len -= shiftlen; 3238 skb->truesize -= shiftlen; 3239 tgt->len += shiftlen; 3240 tgt->data_len += shiftlen; 3241 tgt->truesize += shiftlen; 3242 3243 return shiftlen; 3244 } 3245 3246 /** 3247 * skb_prepare_seq_read - Prepare a sequential read of skb data 3248 * @skb: the buffer to read 3249 * @from: lower offset of data to be read 3250 * @to: upper offset of data to be read 3251 * @st: state variable 3252 * 3253 * Initializes the specified state variable. Must be called before 3254 * invoking skb_seq_read() for the first time. 3255 */ 3256 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from, 3257 unsigned int to, struct skb_seq_state *st) 3258 { 3259 st->lower_offset = from; 3260 st->upper_offset = to; 3261 st->root_skb = st->cur_skb = skb; 3262 st->frag_idx = st->stepped_offset = 0; 3263 st->frag_data = NULL; 3264 } 3265 EXPORT_SYMBOL(skb_prepare_seq_read); 3266 3267 /** 3268 * skb_seq_read - Sequentially read skb data 3269 * @consumed: number of bytes consumed by the caller so far 3270 * @data: destination pointer for data to be returned 3271 * @st: state variable 3272 * 3273 * Reads a block of skb data at @consumed relative to the 3274 * lower offset specified to skb_prepare_seq_read(). Assigns 3275 * the head of the data block to @data and returns the length 3276 * of the block or 0 if the end of the skb data or the upper 3277 * offset has been reached. 3278 * 3279 * The caller is not required to consume all of the data 3280 * returned, i.e. @consumed is typically set to the number 3281 * of bytes already consumed and the next call to 3282 * skb_seq_read() will return the remaining part of the block. 3283 * 3284 * Note 1: The size of each block of data returned can be arbitrary, 3285 * this limitation is the cost for zerocopy sequential 3286 * reads of potentially non linear data. 3287 * 3288 * Note 2: Fragment lists within fragments are not implemented 3289 * at the moment, state->root_skb could be replaced with 3290 * a stack for this purpose. 3291 */ 3292 unsigned int skb_seq_read(unsigned int consumed, const u8 **data, 3293 struct skb_seq_state *st) 3294 { 3295 unsigned int block_limit, abs_offset = consumed + st->lower_offset; 3296 skb_frag_t *frag; 3297 3298 if (unlikely(abs_offset >= st->upper_offset)) { 3299 if (st->frag_data) { 3300 kunmap_atomic(st->frag_data); 3301 st->frag_data = NULL; 3302 } 3303 return 0; 3304 } 3305 3306 next_skb: 3307 block_limit = skb_headlen(st->cur_skb) + st->stepped_offset; 3308 3309 if (abs_offset < block_limit && !st->frag_data) { 3310 *data = st->cur_skb->data + (abs_offset - st->stepped_offset); 3311 return block_limit - abs_offset; 3312 } 3313 3314 if (st->frag_idx == 0 && !st->frag_data) 3315 st->stepped_offset += skb_headlen(st->cur_skb); 3316 3317 while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) { 3318 frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx]; 3319 block_limit = skb_frag_size(frag) + st->stepped_offset; 3320 3321 if (abs_offset < block_limit) { 3322 if (!st->frag_data) 3323 st->frag_data = kmap_atomic(skb_frag_page(frag)); 3324 3325 *data = (u8 *) st->frag_data + frag->page_offset + 3326 (abs_offset - st->stepped_offset); 3327 3328 return block_limit - abs_offset; 3329 } 3330 3331 if (st->frag_data) { 3332 kunmap_atomic(st->frag_data); 3333 st->frag_data = NULL; 3334 } 3335 3336 st->frag_idx++; 3337 st->stepped_offset += skb_frag_size(frag); 3338 } 3339 3340 if (st->frag_data) { 3341 kunmap_atomic(st->frag_data); 3342 st->frag_data = NULL; 3343 } 3344 3345 if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) { 3346 st->cur_skb = skb_shinfo(st->root_skb)->frag_list; 3347 st->frag_idx = 0; 3348 goto next_skb; 3349 } else if (st->cur_skb->next) { 3350 st->cur_skb = st->cur_skb->next; 3351 st->frag_idx = 0; 3352 goto next_skb; 3353 } 3354 3355 return 0; 3356 } 3357 EXPORT_SYMBOL(skb_seq_read); 3358 3359 /** 3360 * skb_abort_seq_read - Abort a sequential read of skb data 3361 * @st: state variable 3362 * 3363 * Must be called if skb_seq_read() was not called until it 3364 * returned 0. 3365 */ 3366 void skb_abort_seq_read(struct skb_seq_state *st) 3367 { 3368 if (st->frag_data) 3369 kunmap_atomic(st->frag_data); 3370 } 3371 EXPORT_SYMBOL(skb_abort_seq_read); 3372 3373 #define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb)) 3374 3375 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text, 3376 struct ts_config *conf, 3377 struct ts_state *state) 3378 { 3379 return skb_seq_read(offset, text, TS_SKB_CB(state)); 3380 } 3381 3382 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state) 3383 { 3384 skb_abort_seq_read(TS_SKB_CB(state)); 3385 } 3386 3387 /** 3388 * skb_find_text - Find a text pattern in skb data 3389 * @skb: the buffer to look in 3390 * @from: search offset 3391 * @to: search limit 3392 * @config: textsearch configuration 3393 * 3394 * Finds a pattern in the skb data according to the specified 3395 * textsearch configuration. Use textsearch_next() to retrieve 3396 * subsequent occurrences of the pattern. Returns the offset 3397 * to the first occurrence or UINT_MAX if no match was found. 3398 */ 3399 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from, 3400 unsigned int to, struct ts_config *config) 3401 { 3402 struct ts_state state; 3403 unsigned int ret; 3404 3405 config->get_next_block = skb_ts_get_next_block; 3406 config->finish = skb_ts_finish; 3407 3408 skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state)); 3409 3410 ret = textsearch_find(config, &state); 3411 return (ret <= to - from ? ret : UINT_MAX); 3412 } 3413 EXPORT_SYMBOL(skb_find_text); 3414 3415 int skb_append_pagefrags(struct sk_buff *skb, struct page *page, 3416 int offset, size_t size) 3417 { 3418 int i = skb_shinfo(skb)->nr_frags; 3419 3420 if (skb_can_coalesce(skb, i, page, offset)) { 3421 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size); 3422 } else if (i < MAX_SKB_FRAGS) { 3423 get_page(page); 3424 skb_fill_page_desc(skb, i, page, offset, size); 3425 } else { 3426 return -EMSGSIZE; 3427 } 3428 3429 return 0; 3430 } 3431 EXPORT_SYMBOL_GPL(skb_append_pagefrags); 3432 3433 /** 3434 * skb_pull_rcsum - pull skb and update receive checksum 3435 * @skb: buffer to update 3436 * @len: length of data pulled 3437 * 3438 * This function performs an skb_pull on the packet and updates 3439 * the CHECKSUM_COMPLETE checksum. It should be used on 3440 * receive path processing instead of skb_pull unless you know 3441 * that the checksum difference is zero (e.g., a valid IP header) 3442 * or you are setting ip_summed to CHECKSUM_NONE. 3443 */ 3444 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len) 3445 { 3446 unsigned char *data = skb->data; 3447 3448 BUG_ON(len > skb->len); 3449 __skb_pull(skb, len); 3450 skb_postpull_rcsum(skb, data, len); 3451 return skb->data; 3452 } 3453 EXPORT_SYMBOL_GPL(skb_pull_rcsum); 3454 3455 static inline skb_frag_t skb_head_frag_to_page_desc(struct sk_buff *frag_skb) 3456 { 3457 skb_frag_t head_frag; 3458 struct page *page; 3459 3460 page = virt_to_head_page(frag_skb->head); 3461 head_frag.page.p = page; 3462 head_frag.page_offset = frag_skb->data - 3463 (unsigned char *)page_address(page); 3464 head_frag.size = skb_headlen(frag_skb); 3465 return head_frag; 3466 } 3467 3468 /** 3469 * skb_segment - Perform protocol segmentation on skb. 3470 * @head_skb: buffer to segment 3471 * @features: features for the output path (see dev->features) 3472 * 3473 * This function performs segmentation on the given skb. It returns 3474 * a pointer to the first in a list of new skbs for the segments. 3475 * In case of error it returns ERR_PTR(err). 3476 */ 3477 struct sk_buff *skb_segment(struct sk_buff *head_skb, 3478 netdev_features_t features) 3479 { 3480 struct sk_buff *segs = NULL; 3481 struct sk_buff *tail = NULL; 3482 struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list; 3483 skb_frag_t *frag = skb_shinfo(head_skb)->frags; 3484 unsigned int mss = skb_shinfo(head_skb)->gso_size; 3485 unsigned int doffset = head_skb->data - skb_mac_header(head_skb); 3486 struct sk_buff *frag_skb = head_skb; 3487 unsigned int offset = doffset; 3488 unsigned int tnl_hlen = skb_tnl_header_len(head_skb); 3489 unsigned int partial_segs = 0; 3490 unsigned int headroom; 3491 unsigned int len = head_skb->len; 3492 __be16 proto; 3493 bool csum, sg; 3494 int nfrags = skb_shinfo(head_skb)->nr_frags; 3495 int err = -ENOMEM; 3496 int i = 0; 3497 int pos; 3498 int dummy; 3499 3500 __skb_push(head_skb, doffset); 3501 proto = skb_network_protocol(head_skb, &dummy); 3502 if (unlikely(!proto)) 3503 return ERR_PTR(-EINVAL); 3504 3505 sg = !!(features & NETIF_F_SG); 3506 csum = !!can_checksum_protocol(features, proto); 3507 3508 if (sg && csum && (mss != GSO_BY_FRAGS)) { 3509 if (!(features & NETIF_F_GSO_PARTIAL)) { 3510 struct sk_buff *iter; 3511 unsigned int frag_len; 3512 3513 if (!list_skb || 3514 !net_gso_ok(features, skb_shinfo(head_skb)->gso_type)) 3515 goto normal; 3516 3517 /* If we get here then all the required 3518 * GSO features except frag_list are supported. 3519 * Try to split the SKB to multiple GSO SKBs 3520 * with no frag_list. 3521 * Currently we can do that only when the buffers don't 3522 * have a linear part and all the buffers except 3523 * the last are of the same length. 3524 */ 3525 frag_len = list_skb->len; 3526 skb_walk_frags(head_skb, iter) { 3527 if (frag_len != iter->len && iter->next) 3528 goto normal; 3529 if (skb_headlen(iter) && !iter->head_frag) 3530 goto normal; 3531 3532 len -= iter->len; 3533 } 3534 3535 if (len != frag_len) 3536 goto normal; 3537 } 3538 3539 /* GSO partial only requires that we trim off any excess that 3540 * doesn't fit into an MSS sized block, so take care of that 3541 * now. 3542 */ 3543 partial_segs = len / mss; 3544 if (partial_segs > 1) 3545 mss *= partial_segs; 3546 else 3547 partial_segs = 0; 3548 } 3549 3550 normal: 3551 headroom = skb_headroom(head_skb); 3552 pos = skb_headlen(head_skb); 3553 3554 do { 3555 struct sk_buff *nskb; 3556 skb_frag_t *nskb_frag; 3557 int hsize; 3558 int size; 3559 3560 if (unlikely(mss == GSO_BY_FRAGS)) { 3561 len = list_skb->len; 3562 } else { 3563 len = head_skb->len - offset; 3564 if (len > mss) 3565 len = mss; 3566 } 3567 3568 hsize = skb_headlen(head_skb) - offset; 3569 if (hsize < 0) 3570 hsize = 0; 3571 if (hsize > len || !sg) 3572 hsize = len; 3573 3574 if (!hsize && i >= nfrags && skb_headlen(list_skb) && 3575 (skb_headlen(list_skb) == len || sg)) { 3576 BUG_ON(skb_headlen(list_skb) > len); 3577 3578 i = 0; 3579 nfrags = skb_shinfo(list_skb)->nr_frags; 3580 frag = skb_shinfo(list_skb)->frags; 3581 frag_skb = list_skb; 3582 pos += skb_headlen(list_skb); 3583 3584 while (pos < offset + len) { 3585 BUG_ON(i >= nfrags); 3586 3587 size = skb_frag_size(frag); 3588 if (pos + size > offset + len) 3589 break; 3590 3591 i++; 3592 pos += size; 3593 frag++; 3594 } 3595 3596 nskb = skb_clone(list_skb, GFP_ATOMIC); 3597 list_skb = list_skb->next; 3598 3599 if (unlikely(!nskb)) 3600 goto err; 3601 3602 if (unlikely(pskb_trim(nskb, len))) { 3603 kfree_skb(nskb); 3604 goto err; 3605 } 3606 3607 hsize = skb_end_offset(nskb); 3608 if (skb_cow_head(nskb, doffset + headroom)) { 3609 kfree_skb(nskb); 3610 goto err; 3611 } 3612 3613 nskb->truesize += skb_end_offset(nskb) - hsize; 3614 skb_release_head_state(nskb); 3615 __skb_push(nskb, doffset); 3616 } else { 3617 nskb = __alloc_skb(hsize + doffset + headroom, 3618 GFP_ATOMIC, skb_alloc_rx_flag(head_skb), 3619 NUMA_NO_NODE); 3620 3621 if (unlikely(!nskb)) 3622 goto err; 3623 3624 skb_reserve(nskb, headroom); 3625 __skb_put(nskb, doffset); 3626 } 3627 3628 if (segs) 3629 tail->next = nskb; 3630 else 3631 segs = nskb; 3632 tail = nskb; 3633 3634 __copy_skb_header(nskb, head_skb); 3635 3636 skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom); 3637 skb_reset_mac_len(nskb); 3638 3639 skb_copy_from_linear_data_offset(head_skb, -tnl_hlen, 3640 nskb->data - tnl_hlen, 3641 doffset + tnl_hlen); 3642 3643 if (nskb->len == len + doffset) 3644 goto perform_csum_check; 3645 3646 if (!sg) { 3647 if (!nskb->remcsum_offload) 3648 nskb->ip_summed = CHECKSUM_NONE; 3649 SKB_GSO_CB(nskb)->csum = 3650 skb_copy_and_csum_bits(head_skb, offset, 3651 skb_put(nskb, len), 3652 len, 0); 3653 SKB_GSO_CB(nskb)->csum_start = 3654 skb_headroom(nskb) + doffset; 3655 continue; 3656 } 3657 3658 nskb_frag = skb_shinfo(nskb)->frags; 3659 3660 skb_copy_from_linear_data_offset(head_skb, offset, 3661 skb_put(nskb, hsize), hsize); 3662 3663 skb_shinfo(nskb)->tx_flags |= skb_shinfo(head_skb)->tx_flags & 3664 SKBTX_SHARED_FRAG; 3665 3666 if (skb_orphan_frags(frag_skb, GFP_ATOMIC) || 3667 skb_zerocopy_clone(nskb, frag_skb, GFP_ATOMIC)) 3668 goto err; 3669 3670 while (pos < offset + len) { 3671 if (i >= nfrags) { 3672 i = 0; 3673 nfrags = skb_shinfo(list_skb)->nr_frags; 3674 frag = skb_shinfo(list_skb)->frags; 3675 frag_skb = list_skb; 3676 if (!skb_headlen(list_skb)) { 3677 BUG_ON(!nfrags); 3678 } else { 3679 BUG_ON(!list_skb->head_frag); 3680 3681 /* to make room for head_frag. */ 3682 i--; 3683 frag--; 3684 } 3685 if (skb_orphan_frags(frag_skb, GFP_ATOMIC) || 3686 skb_zerocopy_clone(nskb, frag_skb, 3687 GFP_ATOMIC)) 3688 goto err; 3689 3690 list_skb = list_skb->next; 3691 } 3692 3693 if (unlikely(skb_shinfo(nskb)->nr_frags >= 3694 MAX_SKB_FRAGS)) { 3695 net_warn_ratelimited( 3696 "skb_segment: too many frags: %u %u\n", 3697 pos, mss); 3698 err = -EINVAL; 3699 goto err; 3700 } 3701 3702 *nskb_frag = (i < 0) ? skb_head_frag_to_page_desc(frag_skb) : *frag; 3703 __skb_frag_ref(nskb_frag); 3704 size = skb_frag_size(nskb_frag); 3705 3706 if (pos < offset) { 3707 nskb_frag->page_offset += offset - pos; 3708 skb_frag_size_sub(nskb_frag, offset - pos); 3709 } 3710 3711 skb_shinfo(nskb)->nr_frags++; 3712 3713 if (pos + size <= offset + len) { 3714 i++; 3715 frag++; 3716 pos += size; 3717 } else { 3718 skb_frag_size_sub(nskb_frag, pos + size - (offset + len)); 3719 goto skip_fraglist; 3720 } 3721 3722 nskb_frag++; 3723 } 3724 3725 skip_fraglist: 3726 nskb->data_len = len - hsize; 3727 nskb->len += nskb->data_len; 3728 nskb->truesize += nskb->data_len; 3729 3730 perform_csum_check: 3731 if (!csum) { 3732 if (skb_has_shared_frag(nskb) && 3733 __skb_linearize(nskb)) 3734 goto err; 3735 3736 if (!nskb->remcsum_offload) 3737 nskb->ip_summed = CHECKSUM_NONE; 3738 SKB_GSO_CB(nskb)->csum = 3739 skb_checksum(nskb, doffset, 3740 nskb->len - doffset, 0); 3741 SKB_GSO_CB(nskb)->csum_start = 3742 skb_headroom(nskb) + doffset; 3743 } 3744 } while ((offset += len) < head_skb->len); 3745 3746 /* Some callers want to get the end of the list. 3747 * Put it in segs->prev to avoid walking the list. 3748 * (see validate_xmit_skb_list() for example) 3749 */ 3750 segs->prev = tail; 3751 3752 if (partial_segs) { 3753 struct sk_buff *iter; 3754 int type = skb_shinfo(head_skb)->gso_type; 3755 unsigned short gso_size = skb_shinfo(head_skb)->gso_size; 3756 3757 /* Update type to add partial and then remove dodgy if set */ 3758 type |= (features & NETIF_F_GSO_PARTIAL) / NETIF_F_GSO_PARTIAL * SKB_GSO_PARTIAL; 3759 type &= ~SKB_GSO_DODGY; 3760 3761 /* Update GSO info and prepare to start updating headers on 3762 * our way back down the stack of protocols. 3763 */ 3764 for (iter = segs; iter; iter = iter->next) { 3765 skb_shinfo(iter)->gso_size = gso_size; 3766 skb_shinfo(iter)->gso_segs = partial_segs; 3767 skb_shinfo(iter)->gso_type = type; 3768 SKB_GSO_CB(iter)->data_offset = skb_headroom(iter) + doffset; 3769 } 3770 3771 if (tail->len - doffset <= gso_size) 3772 skb_shinfo(tail)->gso_size = 0; 3773 else if (tail != segs) 3774 skb_shinfo(tail)->gso_segs = DIV_ROUND_UP(tail->len - doffset, gso_size); 3775 } 3776 3777 /* Following permits correct backpressure, for protocols 3778 * using skb_set_owner_w(). 3779 * Idea is to tranfert ownership from head_skb to last segment. 3780 */ 3781 if (head_skb->destructor == sock_wfree) { 3782 swap(tail->truesize, head_skb->truesize); 3783 swap(tail->destructor, head_skb->destructor); 3784 swap(tail->sk, head_skb->sk); 3785 } 3786 return segs; 3787 3788 err: 3789 kfree_skb_list(segs); 3790 return ERR_PTR(err); 3791 } 3792 EXPORT_SYMBOL_GPL(skb_segment); 3793 3794 int skb_gro_receive(struct sk_buff *p, struct sk_buff *skb) 3795 { 3796 struct skb_shared_info *pinfo, *skbinfo = skb_shinfo(skb); 3797 unsigned int offset = skb_gro_offset(skb); 3798 unsigned int headlen = skb_headlen(skb); 3799 unsigned int len = skb_gro_len(skb); 3800 unsigned int delta_truesize; 3801 struct sk_buff *lp; 3802 3803 if (unlikely(p->len + len >= 65536 || NAPI_GRO_CB(skb)->flush)) 3804 return -E2BIG; 3805 3806 lp = NAPI_GRO_CB(p)->last; 3807 pinfo = skb_shinfo(lp); 3808 3809 if (headlen <= offset) { 3810 skb_frag_t *frag; 3811 skb_frag_t *frag2; 3812 int i = skbinfo->nr_frags; 3813 int nr_frags = pinfo->nr_frags + i; 3814 3815 if (nr_frags > MAX_SKB_FRAGS) 3816 goto merge; 3817 3818 offset -= headlen; 3819 pinfo->nr_frags = nr_frags; 3820 skbinfo->nr_frags = 0; 3821 3822 frag = pinfo->frags + nr_frags; 3823 frag2 = skbinfo->frags + i; 3824 do { 3825 *--frag = *--frag2; 3826 } while (--i); 3827 3828 frag->page_offset += offset; 3829 skb_frag_size_sub(frag, offset); 3830 3831 /* all fragments truesize : remove (head size + sk_buff) */ 3832 delta_truesize = skb->truesize - 3833 SKB_TRUESIZE(skb_end_offset(skb)); 3834 3835 skb->truesize -= skb->data_len; 3836 skb->len -= skb->data_len; 3837 skb->data_len = 0; 3838 3839 NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE; 3840 goto done; 3841 } else if (skb->head_frag) { 3842 int nr_frags = pinfo->nr_frags; 3843 skb_frag_t *frag = pinfo->frags + nr_frags; 3844 struct page *page = virt_to_head_page(skb->head); 3845 unsigned int first_size = headlen - offset; 3846 unsigned int first_offset; 3847 3848 if (nr_frags + 1 + skbinfo->nr_frags > MAX_SKB_FRAGS) 3849 goto merge; 3850 3851 first_offset = skb->data - 3852 (unsigned char *)page_address(page) + 3853 offset; 3854 3855 pinfo->nr_frags = nr_frags + 1 + skbinfo->nr_frags; 3856 3857 frag->page.p = page; 3858 frag->page_offset = first_offset; 3859 skb_frag_size_set(frag, first_size); 3860 3861 memcpy(frag + 1, skbinfo->frags, sizeof(*frag) * skbinfo->nr_frags); 3862 /* We dont need to clear skbinfo->nr_frags here */ 3863 3864 delta_truesize = skb->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff)); 3865 NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE_STOLEN_HEAD; 3866 goto done; 3867 } 3868 3869 merge: 3870 delta_truesize = skb->truesize; 3871 if (offset > headlen) { 3872 unsigned int eat = offset - headlen; 3873 3874 skbinfo->frags[0].page_offset += eat; 3875 skb_frag_size_sub(&skbinfo->frags[0], eat); 3876 skb->data_len -= eat; 3877 skb->len -= eat; 3878 offset = headlen; 3879 } 3880 3881 __skb_pull(skb, offset); 3882 3883 if (NAPI_GRO_CB(p)->last == p) 3884 skb_shinfo(p)->frag_list = skb; 3885 else 3886 NAPI_GRO_CB(p)->last->next = skb; 3887 NAPI_GRO_CB(p)->last = skb; 3888 __skb_header_release(skb); 3889 lp = p; 3890 3891 done: 3892 NAPI_GRO_CB(p)->count++; 3893 p->data_len += len; 3894 p->truesize += delta_truesize; 3895 p->len += len; 3896 if (lp != p) { 3897 lp->data_len += len; 3898 lp->truesize += delta_truesize; 3899 lp->len += len; 3900 } 3901 NAPI_GRO_CB(skb)->same_flow = 1; 3902 return 0; 3903 } 3904 EXPORT_SYMBOL_GPL(skb_gro_receive); 3905 3906 #ifdef CONFIG_SKB_EXTENSIONS 3907 #define SKB_EXT_ALIGN_VALUE 8 3908 #define SKB_EXT_CHUNKSIZEOF(x) (ALIGN((sizeof(x)), SKB_EXT_ALIGN_VALUE) / SKB_EXT_ALIGN_VALUE) 3909 3910 static const u8 skb_ext_type_len[] = { 3911 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 3912 [SKB_EXT_BRIDGE_NF] = SKB_EXT_CHUNKSIZEOF(struct nf_bridge_info), 3913 #endif 3914 #ifdef CONFIG_XFRM 3915 [SKB_EXT_SEC_PATH] = SKB_EXT_CHUNKSIZEOF(struct sec_path), 3916 #endif 3917 }; 3918 3919 static __always_inline unsigned int skb_ext_total_length(void) 3920 { 3921 return SKB_EXT_CHUNKSIZEOF(struct skb_ext) + 3922 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 3923 skb_ext_type_len[SKB_EXT_BRIDGE_NF] + 3924 #endif 3925 #ifdef CONFIG_XFRM 3926 skb_ext_type_len[SKB_EXT_SEC_PATH] + 3927 #endif 3928 0; 3929 } 3930 3931 static void skb_extensions_init(void) 3932 { 3933 BUILD_BUG_ON(SKB_EXT_NUM >= 8); 3934 BUILD_BUG_ON(skb_ext_total_length() > 255); 3935 3936 skbuff_ext_cache = kmem_cache_create("skbuff_ext_cache", 3937 SKB_EXT_ALIGN_VALUE * skb_ext_total_length(), 3938 0, 3939 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 3940 NULL); 3941 } 3942 #else 3943 static void skb_extensions_init(void) {} 3944 #endif 3945 3946 void __init skb_init(void) 3947 { 3948 skbuff_head_cache = kmem_cache_create_usercopy("skbuff_head_cache", 3949 sizeof(struct sk_buff), 3950 0, 3951 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 3952 offsetof(struct sk_buff, cb), 3953 sizeof_field(struct sk_buff, cb), 3954 NULL); 3955 skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache", 3956 sizeof(struct sk_buff_fclones), 3957 0, 3958 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 3959 NULL); 3960 skb_extensions_init(); 3961 } 3962 3963 static int 3964 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len, 3965 unsigned int recursion_level) 3966 { 3967 int start = skb_headlen(skb); 3968 int i, copy = start - offset; 3969 struct sk_buff *frag_iter; 3970 int elt = 0; 3971 3972 if (unlikely(recursion_level >= 24)) 3973 return -EMSGSIZE; 3974 3975 if (copy > 0) { 3976 if (copy > len) 3977 copy = len; 3978 sg_set_buf(sg, skb->data + offset, copy); 3979 elt++; 3980 if ((len -= copy) == 0) 3981 return elt; 3982 offset += copy; 3983 } 3984 3985 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 3986 int end; 3987 3988 WARN_ON(start > offset + len); 3989 3990 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]); 3991 if ((copy = end - offset) > 0) { 3992 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 3993 if (unlikely(elt && sg_is_last(&sg[elt - 1]))) 3994 return -EMSGSIZE; 3995 3996 if (copy > len) 3997 copy = len; 3998 sg_set_page(&sg[elt], skb_frag_page(frag), copy, 3999 frag->page_offset+offset-start); 4000 elt++; 4001 if (!(len -= copy)) 4002 return elt; 4003 offset += copy; 4004 } 4005 start = end; 4006 } 4007 4008 skb_walk_frags(skb, frag_iter) { 4009 int end, ret; 4010 4011 WARN_ON(start > offset + len); 4012 4013 end = start + frag_iter->len; 4014 if ((copy = end - offset) > 0) { 4015 if (unlikely(elt && sg_is_last(&sg[elt - 1]))) 4016 return -EMSGSIZE; 4017 4018 if (copy > len) 4019 copy = len; 4020 ret = __skb_to_sgvec(frag_iter, sg+elt, offset - start, 4021 copy, recursion_level + 1); 4022 if (unlikely(ret < 0)) 4023 return ret; 4024 elt += ret; 4025 if ((len -= copy) == 0) 4026 return elt; 4027 offset += copy; 4028 } 4029 start = end; 4030 } 4031 BUG_ON(len); 4032 return elt; 4033 } 4034 4035 /** 4036 * skb_to_sgvec - Fill a scatter-gather list from a socket buffer 4037 * @skb: Socket buffer containing the buffers to be mapped 4038 * @sg: The scatter-gather list to map into 4039 * @offset: The offset into the buffer's contents to start mapping 4040 * @len: Length of buffer space to be mapped 4041 * 4042 * Fill the specified scatter-gather list with mappings/pointers into a 4043 * region of the buffer space attached to a socket buffer. Returns either 4044 * the number of scatterlist items used, or -EMSGSIZE if the contents 4045 * could not fit. 4046 */ 4047 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len) 4048 { 4049 int nsg = __skb_to_sgvec(skb, sg, offset, len, 0); 4050 4051 if (nsg <= 0) 4052 return nsg; 4053 4054 sg_mark_end(&sg[nsg - 1]); 4055 4056 return nsg; 4057 } 4058 EXPORT_SYMBOL_GPL(skb_to_sgvec); 4059 4060 /* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given 4061 * sglist without mark the sg which contain last skb data as the end. 4062 * So the caller can mannipulate sg list as will when padding new data after 4063 * the first call without calling sg_unmark_end to expend sg list. 4064 * 4065 * Scenario to use skb_to_sgvec_nomark: 4066 * 1. sg_init_table 4067 * 2. skb_to_sgvec_nomark(payload1) 4068 * 3. skb_to_sgvec_nomark(payload2) 4069 * 4070 * This is equivalent to: 4071 * 1. sg_init_table 4072 * 2. skb_to_sgvec(payload1) 4073 * 3. sg_unmark_end 4074 * 4. skb_to_sgvec(payload2) 4075 * 4076 * When mapping mutilple payload conditionally, skb_to_sgvec_nomark 4077 * is more preferable. 4078 */ 4079 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg, 4080 int offset, int len) 4081 { 4082 return __skb_to_sgvec(skb, sg, offset, len, 0); 4083 } 4084 EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark); 4085 4086 4087 4088 /** 4089 * skb_cow_data - Check that a socket buffer's data buffers are writable 4090 * @skb: The socket buffer to check. 4091 * @tailbits: Amount of trailing space to be added 4092 * @trailer: Returned pointer to the skb where the @tailbits space begins 4093 * 4094 * Make sure that the data buffers attached to a socket buffer are 4095 * writable. If they are not, private copies are made of the data buffers 4096 * and the socket buffer is set to use these instead. 4097 * 4098 * If @tailbits is given, make sure that there is space to write @tailbits 4099 * bytes of data beyond current end of socket buffer. @trailer will be 4100 * set to point to the skb in which this space begins. 4101 * 4102 * The number of scatterlist elements required to completely map the 4103 * COW'd and extended socket buffer will be returned. 4104 */ 4105 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer) 4106 { 4107 int copyflag; 4108 int elt; 4109 struct sk_buff *skb1, **skb_p; 4110 4111 /* If skb is cloned or its head is paged, reallocate 4112 * head pulling out all the pages (pages are considered not writable 4113 * at the moment even if they are anonymous). 4114 */ 4115 if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) && 4116 __pskb_pull_tail(skb, skb_pagelen(skb)-skb_headlen(skb)) == NULL) 4117 return -ENOMEM; 4118 4119 /* Easy case. Most of packets will go this way. */ 4120 if (!skb_has_frag_list(skb)) { 4121 /* A little of trouble, not enough of space for trailer. 4122 * This should not happen, when stack is tuned to generate 4123 * good frames. OK, on miss we reallocate and reserve even more 4124 * space, 128 bytes is fair. */ 4125 4126 if (skb_tailroom(skb) < tailbits && 4127 pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC)) 4128 return -ENOMEM; 4129 4130 /* Voila! */ 4131 *trailer = skb; 4132 return 1; 4133 } 4134 4135 /* Misery. We are in troubles, going to mincer fragments... */ 4136 4137 elt = 1; 4138 skb_p = &skb_shinfo(skb)->frag_list; 4139 copyflag = 0; 4140 4141 while ((skb1 = *skb_p) != NULL) { 4142 int ntail = 0; 4143 4144 /* The fragment is partially pulled by someone, 4145 * this can happen on input. Copy it and everything 4146 * after it. */ 4147 4148 if (skb_shared(skb1)) 4149 copyflag = 1; 4150 4151 /* If the skb is the last, worry about trailer. */ 4152 4153 if (skb1->next == NULL && tailbits) { 4154 if (skb_shinfo(skb1)->nr_frags || 4155 skb_has_frag_list(skb1) || 4156 skb_tailroom(skb1) < tailbits) 4157 ntail = tailbits + 128; 4158 } 4159 4160 if (copyflag || 4161 skb_cloned(skb1) || 4162 ntail || 4163 skb_shinfo(skb1)->nr_frags || 4164 skb_has_frag_list(skb1)) { 4165 struct sk_buff *skb2; 4166 4167 /* Fuck, we are miserable poor guys... */ 4168 if (ntail == 0) 4169 skb2 = skb_copy(skb1, GFP_ATOMIC); 4170 else 4171 skb2 = skb_copy_expand(skb1, 4172 skb_headroom(skb1), 4173 ntail, 4174 GFP_ATOMIC); 4175 if (unlikely(skb2 == NULL)) 4176 return -ENOMEM; 4177 4178 if (skb1->sk) 4179 skb_set_owner_w(skb2, skb1->sk); 4180 4181 /* Looking around. Are we still alive? 4182 * OK, link new skb, drop old one */ 4183 4184 skb2->next = skb1->next; 4185 *skb_p = skb2; 4186 kfree_skb(skb1); 4187 skb1 = skb2; 4188 } 4189 elt++; 4190 *trailer = skb1; 4191 skb_p = &skb1->next; 4192 } 4193 4194 return elt; 4195 } 4196 EXPORT_SYMBOL_GPL(skb_cow_data); 4197 4198 static void sock_rmem_free(struct sk_buff *skb) 4199 { 4200 struct sock *sk = skb->sk; 4201 4202 atomic_sub(skb->truesize, &sk->sk_rmem_alloc); 4203 } 4204 4205 static void skb_set_err_queue(struct sk_buff *skb) 4206 { 4207 /* pkt_type of skbs received on local sockets is never PACKET_OUTGOING. 4208 * So, it is safe to (mis)use it to mark skbs on the error queue. 4209 */ 4210 skb->pkt_type = PACKET_OUTGOING; 4211 BUILD_BUG_ON(PACKET_OUTGOING == 0); 4212 } 4213 4214 /* 4215 * Note: We dont mem charge error packets (no sk_forward_alloc changes) 4216 */ 4217 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb) 4218 { 4219 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >= 4220 (unsigned int)sk->sk_rcvbuf) 4221 return -ENOMEM; 4222 4223 skb_orphan(skb); 4224 skb->sk = sk; 4225 skb->destructor = sock_rmem_free; 4226 atomic_add(skb->truesize, &sk->sk_rmem_alloc); 4227 skb_set_err_queue(skb); 4228 4229 /* before exiting rcu section, make sure dst is refcounted */ 4230 skb_dst_force(skb); 4231 4232 skb_queue_tail(&sk->sk_error_queue, skb); 4233 if (!sock_flag(sk, SOCK_DEAD)) 4234 sk->sk_error_report(sk); 4235 return 0; 4236 } 4237 EXPORT_SYMBOL(sock_queue_err_skb); 4238 4239 static bool is_icmp_err_skb(const struct sk_buff *skb) 4240 { 4241 return skb && (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP || 4242 SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP6); 4243 } 4244 4245 struct sk_buff *sock_dequeue_err_skb(struct sock *sk) 4246 { 4247 struct sk_buff_head *q = &sk->sk_error_queue; 4248 struct sk_buff *skb, *skb_next = NULL; 4249 bool icmp_next = false; 4250 unsigned long flags; 4251 4252 spin_lock_irqsave(&q->lock, flags); 4253 skb = __skb_dequeue(q); 4254 if (skb && (skb_next = skb_peek(q))) { 4255 icmp_next = is_icmp_err_skb(skb_next); 4256 if (icmp_next) 4257 sk->sk_err = SKB_EXT_ERR(skb_next)->ee.ee_origin; 4258 } 4259 spin_unlock_irqrestore(&q->lock, flags); 4260 4261 if (is_icmp_err_skb(skb) && !icmp_next) 4262 sk->sk_err = 0; 4263 4264 if (skb_next) 4265 sk->sk_error_report(sk); 4266 4267 return skb; 4268 } 4269 EXPORT_SYMBOL(sock_dequeue_err_skb); 4270 4271 /** 4272 * skb_clone_sk - create clone of skb, and take reference to socket 4273 * @skb: the skb to clone 4274 * 4275 * This function creates a clone of a buffer that holds a reference on 4276 * sk_refcnt. Buffers created via this function are meant to be 4277 * returned using sock_queue_err_skb, or free via kfree_skb. 4278 * 4279 * When passing buffers allocated with this function to sock_queue_err_skb 4280 * it is necessary to wrap the call with sock_hold/sock_put in order to 4281 * prevent the socket from being released prior to being enqueued on 4282 * the sk_error_queue. 4283 */ 4284 struct sk_buff *skb_clone_sk(struct sk_buff *skb) 4285 { 4286 struct sock *sk = skb->sk; 4287 struct sk_buff *clone; 4288 4289 if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt)) 4290 return NULL; 4291 4292 clone = skb_clone(skb, GFP_ATOMIC); 4293 if (!clone) { 4294 sock_put(sk); 4295 return NULL; 4296 } 4297 4298 clone->sk = sk; 4299 clone->destructor = sock_efree; 4300 4301 return clone; 4302 } 4303 EXPORT_SYMBOL(skb_clone_sk); 4304 4305 static void __skb_complete_tx_timestamp(struct sk_buff *skb, 4306 struct sock *sk, 4307 int tstype, 4308 bool opt_stats) 4309 { 4310 struct sock_exterr_skb *serr; 4311 int err; 4312 4313 BUILD_BUG_ON(sizeof(struct sock_exterr_skb) > sizeof(skb->cb)); 4314 4315 serr = SKB_EXT_ERR(skb); 4316 memset(serr, 0, sizeof(*serr)); 4317 serr->ee.ee_errno = ENOMSG; 4318 serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING; 4319 serr->ee.ee_info = tstype; 4320 serr->opt_stats = opt_stats; 4321 serr->header.h4.iif = skb->dev ? skb->dev->ifindex : 0; 4322 if (sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID) { 4323 serr->ee.ee_data = skb_shinfo(skb)->tskey; 4324 if (sk->sk_protocol == IPPROTO_TCP && 4325 sk->sk_type == SOCK_STREAM) 4326 serr->ee.ee_data -= sk->sk_tskey; 4327 } 4328 4329 err = sock_queue_err_skb(sk, skb); 4330 4331 if (err) 4332 kfree_skb(skb); 4333 } 4334 4335 static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly) 4336 { 4337 bool ret; 4338 4339 if (likely(sysctl_tstamp_allow_data || tsonly)) 4340 return true; 4341 4342 read_lock_bh(&sk->sk_callback_lock); 4343 ret = sk->sk_socket && sk->sk_socket->file && 4344 file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW); 4345 read_unlock_bh(&sk->sk_callback_lock); 4346 return ret; 4347 } 4348 4349 void skb_complete_tx_timestamp(struct sk_buff *skb, 4350 struct skb_shared_hwtstamps *hwtstamps) 4351 { 4352 struct sock *sk = skb->sk; 4353 4354 if (!skb_may_tx_timestamp(sk, false)) 4355 goto err; 4356 4357 /* Take a reference to prevent skb_orphan() from freeing the socket, 4358 * but only if the socket refcount is not zero. 4359 */ 4360 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) { 4361 *skb_hwtstamps(skb) = *hwtstamps; 4362 __skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND, false); 4363 sock_put(sk); 4364 return; 4365 } 4366 4367 err: 4368 kfree_skb(skb); 4369 } 4370 EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp); 4371 4372 void __skb_tstamp_tx(struct sk_buff *orig_skb, 4373 struct skb_shared_hwtstamps *hwtstamps, 4374 struct sock *sk, int tstype) 4375 { 4376 struct sk_buff *skb; 4377 bool tsonly, opt_stats = false; 4378 4379 if (!sk) 4380 return; 4381 4382 if (!hwtstamps && !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TX_SWHW) && 4383 skb_shinfo(orig_skb)->tx_flags & SKBTX_IN_PROGRESS) 4384 return; 4385 4386 tsonly = sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TSONLY; 4387 if (!skb_may_tx_timestamp(sk, tsonly)) 4388 return; 4389 4390 if (tsonly) { 4391 #ifdef CONFIG_INET 4392 if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_STATS) && 4393 sk->sk_protocol == IPPROTO_TCP && 4394 sk->sk_type == SOCK_STREAM) { 4395 skb = tcp_get_timestamping_opt_stats(sk); 4396 opt_stats = true; 4397 } else 4398 #endif 4399 skb = alloc_skb(0, GFP_ATOMIC); 4400 } else { 4401 skb = skb_clone(orig_skb, GFP_ATOMIC); 4402 } 4403 if (!skb) 4404 return; 4405 4406 if (tsonly) { 4407 skb_shinfo(skb)->tx_flags |= skb_shinfo(orig_skb)->tx_flags & 4408 SKBTX_ANY_TSTAMP; 4409 skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey; 4410 } 4411 4412 if (hwtstamps) 4413 *skb_hwtstamps(skb) = *hwtstamps; 4414 else 4415 skb->tstamp = ktime_get_real(); 4416 4417 __skb_complete_tx_timestamp(skb, sk, tstype, opt_stats); 4418 } 4419 EXPORT_SYMBOL_GPL(__skb_tstamp_tx); 4420 4421 void skb_tstamp_tx(struct sk_buff *orig_skb, 4422 struct skb_shared_hwtstamps *hwtstamps) 4423 { 4424 return __skb_tstamp_tx(orig_skb, hwtstamps, orig_skb->sk, 4425 SCM_TSTAMP_SND); 4426 } 4427 EXPORT_SYMBOL_GPL(skb_tstamp_tx); 4428 4429 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked) 4430 { 4431 struct sock *sk = skb->sk; 4432 struct sock_exterr_skb *serr; 4433 int err = 1; 4434 4435 skb->wifi_acked_valid = 1; 4436 skb->wifi_acked = acked; 4437 4438 serr = SKB_EXT_ERR(skb); 4439 memset(serr, 0, sizeof(*serr)); 4440 serr->ee.ee_errno = ENOMSG; 4441 serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS; 4442 4443 /* Take a reference to prevent skb_orphan() from freeing the socket, 4444 * but only if the socket refcount is not zero. 4445 */ 4446 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) { 4447 err = sock_queue_err_skb(sk, skb); 4448 sock_put(sk); 4449 } 4450 if (err) 4451 kfree_skb(skb); 4452 } 4453 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack); 4454 4455 /** 4456 * skb_partial_csum_set - set up and verify partial csum values for packet 4457 * @skb: the skb to set 4458 * @start: the number of bytes after skb->data to start checksumming. 4459 * @off: the offset from start to place the checksum. 4460 * 4461 * For untrusted partially-checksummed packets, we need to make sure the values 4462 * for skb->csum_start and skb->csum_offset are valid so we don't oops. 4463 * 4464 * This function checks and sets those values and skb->ip_summed: if this 4465 * returns false you should drop the packet. 4466 */ 4467 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off) 4468 { 4469 u32 csum_end = (u32)start + (u32)off + sizeof(__sum16); 4470 u32 csum_start = skb_headroom(skb) + (u32)start; 4471 4472 if (unlikely(csum_start > U16_MAX || csum_end > skb_headlen(skb))) { 4473 net_warn_ratelimited("bad partial csum: csum=%u/%u headroom=%u headlen=%u\n", 4474 start, off, skb_headroom(skb), skb_headlen(skb)); 4475 return false; 4476 } 4477 skb->ip_summed = CHECKSUM_PARTIAL; 4478 skb->csum_start = csum_start; 4479 skb->csum_offset = off; 4480 skb_set_transport_header(skb, start); 4481 return true; 4482 } 4483 EXPORT_SYMBOL_GPL(skb_partial_csum_set); 4484 4485 static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len, 4486 unsigned int max) 4487 { 4488 if (skb_headlen(skb) >= len) 4489 return 0; 4490 4491 /* If we need to pullup then pullup to the max, so we 4492 * won't need to do it again. 4493 */ 4494 if (max > skb->len) 4495 max = skb->len; 4496 4497 if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL) 4498 return -ENOMEM; 4499 4500 if (skb_headlen(skb) < len) 4501 return -EPROTO; 4502 4503 return 0; 4504 } 4505 4506 #define MAX_TCP_HDR_LEN (15 * 4) 4507 4508 static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb, 4509 typeof(IPPROTO_IP) proto, 4510 unsigned int off) 4511 { 4512 switch (proto) { 4513 int err; 4514 4515 case IPPROTO_TCP: 4516 err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr), 4517 off + MAX_TCP_HDR_LEN); 4518 if (!err && !skb_partial_csum_set(skb, off, 4519 offsetof(struct tcphdr, 4520 check))) 4521 err = -EPROTO; 4522 return err ? ERR_PTR(err) : &tcp_hdr(skb)->check; 4523 4524 case IPPROTO_UDP: 4525 err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr), 4526 off + sizeof(struct udphdr)); 4527 if (!err && !skb_partial_csum_set(skb, off, 4528 offsetof(struct udphdr, 4529 check))) 4530 err = -EPROTO; 4531 return err ? ERR_PTR(err) : &udp_hdr(skb)->check; 4532 } 4533 4534 return ERR_PTR(-EPROTO); 4535 } 4536 4537 /* This value should be large enough to cover a tagged ethernet header plus 4538 * maximally sized IP and TCP or UDP headers. 4539 */ 4540 #define MAX_IP_HDR_LEN 128 4541 4542 static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate) 4543 { 4544 unsigned int off; 4545 bool fragment; 4546 __sum16 *csum; 4547 int err; 4548 4549 fragment = false; 4550 4551 err = skb_maybe_pull_tail(skb, 4552 sizeof(struct iphdr), 4553 MAX_IP_HDR_LEN); 4554 if (err < 0) 4555 goto out; 4556 4557 if (ip_hdr(skb)->frag_off & htons(IP_OFFSET | IP_MF)) 4558 fragment = true; 4559 4560 off = ip_hdrlen(skb); 4561 4562 err = -EPROTO; 4563 4564 if (fragment) 4565 goto out; 4566 4567 csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off); 4568 if (IS_ERR(csum)) 4569 return PTR_ERR(csum); 4570 4571 if (recalculate) 4572 *csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr, 4573 ip_hdr(skb)->daddr, 4574 skb->len - off, 4575 ip_hdr(skb)->protocol, 0); 4576 err = 0; 4577 4578 out: 4579 return err; 4580 } 4581 4582 /* This value should be large enough to cover a tagged ethernet header plus 4583 * an IPv6 header, all options, and a maximal TCP or UDP header. 4584 */ 4585 #define MAX_IPV6_HDR_LEN 256 4586 4587 #define OPT_HDR(type, skb, off) \ 4588 (type *)(skb_network_header(skb) + (off)) 4589 4590 static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate) 4591 { 4592 int err; 4593 u8 nexthdr; 4594 unsigned int off; 4595 unsigned int len; 4596 bool fragment; 4597 bool done; 4598 __sum16 *csum; 4599 4600 fragment = false; 4601 done = false; 4602 4603 off = sizeof(struct ipv6hdr); 4604 4605 err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN); 4606 if (err < 0) 4607 goto out; 4608 4609 nexthdr = ipv6_hdr(skb)->nexthdr; 4610 4611 len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len); 4612 while (off <= len && !done) { 4613 switch (nexthdr) { 4614 case IPPROTO_DSTOPTS: 4615 case IPPROTO_HOPOPTS: 4616 case IPPROTO_ROUTING: { 4617 struct ipv6_opt_hdr *hp; 4618 4619 err = skb_maybe_pull_tail(skb, 4620 off + 4621 sizeof(struct ipv6_opt_hdr), 4622 MAX_IPV6_HDR_LEN); 4623 if (err < 0) 4624 goto out; 4625 4626 hp = OPT_HDR(struct ipv6_opt_hdr, skb, off); 4627 nexthdr = hp->nexthdr; 4628 off += ipv6_optlen(hp); 4629 break; 4630 } 4631 case IPPROTO_AH: { 4632 struct ip_auth_hdr *hp; 4633 4634 err = skb_maybe_pull_tail(skb, 4635 off + 4636 sizeof(struct ip_auth_hdr), 4637 MAX_IPV6_HDR_LEN); 4638 if (err < 0) 4639 goto out; 4640 4641 hp = OPT_HDR(struct ip_auth_hdr, skb, off); 4642 nexthdr = hp->nexthdr; 4643 off += ipv6_authlen(hp); 4644 break; 4645 } 4646 case IPPROTO_FRAGMENT: { 4647 struct frag_hdr *hp; 4648 4649 err = skb_maybe_pull_tail(skb, 4650 off + 4651 sizeof(struct frag_hdr), 4652 MAX_IPV6_HDR_LEN); 4653 if (err < 0) 4654 goto out; 4655 4656 hp = OPT_HDR(struct frag_hdr, skb, off); 4657 4658 if (hp->frag_off & htons(IP6_OFFSET | IP6_MF)) 4659 fragment = true; 4660 4661 nexthdr = hp->nexthdr; 4662 off += sizeof(struct frag_hdr); 4663 break; 4664 } 4665 default: 4666 done = true; 4667 break; 4668 } 4669 } 4670 4671 err = -EPROTO; 4672 4673 if (!done || fragment) 4674 goto out; 4675 4676 csum = skb_checksum_setup_ip(skb, nexthdr, off); 4677 if (IS_ERR(csum)) 4678 return PTR_ERR(csum); 4679 4680 if (recalculate) 4681 *csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr, 4682 &ipv6_hdr(skb)->daddr, 4683 skb->len - off, nexthdr, 0); 4684 err = 0; 4685 4686 out: 4687 return err; 4688 } 4689 4690 /** 4691 * skb_checksum_setup - set up partial checksum offset 4692 * @skb: the skb to set up 4693 * @recalculate: if true the pseudo-header checksum will be recalculated 4694 */ 4695 int skb_checksum_setup(struct sk_buff *skb, bool recalculate) 4696 { 4697 int err; 4698 4699 switch (skb->protocol) { 4700 case htons(ETH_P_IP): 4701 err = skb_checksum_setup_ipv4(skb, recalculate); 4702 break; 4703 4704 case htons(ETH_P_IPV6): 4705 err = skb_checksum_setup_ipv6(skb, recalculate); 4706 break; 4707 4708 default: 4709 err = -EPROTO; 4710 break; 4711 } 4712 4713 return err; 4714 } 4715 EXPORT_SYMBOL(skb_checksum_setup); 4716 4717 /** 4718 * skb_checksum_maybe_trim - maybe trims the given skb 4719 * @skb: the skb to check 4720 * @transport_len: the data length beyond the network header 4721 * 4722 * Checks whether the given skb has data beyond the given transport length. 4723 * If so, returns a cloned skb trimmed to this transport length. 4724 * Otherwise returns the provided skb. Returns NULL in error cases 4725 * (e.g. transport_len exceeds skb length or out-of-memory). 4726 * 4727 * Caller needs to set the skb transport header and free any returned skb if it 4728 * differs from the provided skb. 4729 */ 4730 static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb, 4731 unsigned int transport_len) 4732 { 4733 struct sk_buff *skb_chk; 4734 unsigned int len = skb_transport_offset(skb) + transport_len; 4735 int ret; 4736 4737 if (skb->len < len) 4738 return NULL; 4739 else if (skb->len == len) 4740 return skb; 4741 4742 skb_chk = skb_clone(skb, GFP_ATOMIC); 4743 if (!skb_chk) 4744 return NULL; 4745 4746 ret = pskb_trim_rcsum(skb_chk, len); 4747 if (ret) { 4748 kfree_skb(skb_chk); 4749 return NULL; 4750 } 4751 4752 return skb_chk; 4753 } 4754 4755 /** 4756 * skb_checksum_trimmed - validate checksum of an skb 4757 * @skb: the skb to check 4758 * @transport_len: the data length beyond the network header 4759 * @skb_chkf: checksum function to use 4760 * 4761 * Applies the given checksum function skb_chkf to the provided skb. 4762 * Returns a checked and maybe trimmed skb. Returns NULL on error. 4763 * 4764 * If the skb has data beyond the given transport length, then a 4765 * trimmed & cloned skb is checked and returned. 4766 * 4767 * Caller needs to set the skb transport header and free any returned skb if it 4768 * differs from the provided skb. 4769 */ 4770 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb, 4771 unsigned int transport_len, 4772 __sum16(*skb_chkf)(struct sk_buff *skb)) 4773 { 4774 struct sk_buff *skb_chk; 4775 unsigned int offset = skb_transport_offset(skb); 4776 __sum16 ret; 4777 4778 skb_chk = skb_checksum_maybe_trim(skb, transport_len); 4779 if (!skb_chk) 4780 goto err; 4781 4782 if (!pskb_may_pull(skb_chk, offset)) 4783 goto err; 4784 4785 skb_pull_rcsum(skb_chk, offset); 4786 ret = skb_chkf(skb_chk); 4787 skb_push_rcsum(skb_chk, offset); 4788 4789 if (ret) 4790 goto err; 4791 4792 return skb_chk; 4793 4794 err: 4795 if (skb_chk && skb_chk != skb) 4796 kfree_skb(skb_chk); 4797 4798 return NULL; 4799 4800 } 4801 EXPORT_SYMBOL(skb_checksum_trimmed); 4802 4803 void __skb_warn_lro_forwarding(const struct sk_buff *skb) 4804 { 4805 net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n", 4806 skb->dev->name); 4807 } 4808 EXPORT_SYMBOL(__skb_warn_lro_forwarding); 4809 4810 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen) 4811 { 4812 if (head_stolen) { 4813 skb_release_head_state(skb); 4814 kmem_cache_free(skbuff_head_cache, skb); 4815 } else { 4816 __kfree_skb(skb); 4817 } 4818 } 4819 EXPORT_SYMBOL(kfree_skb_partial); 4820 4821 /** 4822 * skb_try_coalesce - try to merge skb to prior one 4823 * @to: prior buffer 4824 * @from: buffer to add 4825 * @fragstolen: pointer to boolean 4826 * @delta_truesize: how much more was allocated than was requested 4827 */ 4828 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from, 4829 bool *fragstolen, int *delta_truesize) 4830 { 4831 struct skb_shared_info *to_shinfo, *from_shinfo; 4832 int i, delta, len = from->len; 4833 4834 *fragstolen = false; 4835 4836 if (skb_cloned(to)) 4837 return false; 4838 4839 if (len <= skb_tailroom(to)) { 4840 if (len) 4841 BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len)); 4842 *delta_truesize = 0; 4843 return true; 4844 } 4845 4846 to_shinfo = skb_shinfo(to); 4847 from_shinfo = skb_shinfo(from); 4848 if (to_shinfo->frag_list || from_shinfo->frag_list) 4849 return false; 4850 if (skb_zcopy(to) || skb_zcopy(from)) 4851 return false; 4852 4853 if (skb_headlen(from) != 0) { 4854 struct page *page; 4855 unsigned int offset; 4856 4857 if (to_shinfo->nr_frags + 4858 from_shinfo->nr_frags >= MAX_SKB_FRAGS) 4859 return false; 4860 4861 if (skb_head_is_locked(from)) 4862 return false; 4863 4864 delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff)); 4865 4866 page = virt_to_head_page(from->head); 4867 offset = from->data - (unsigned char *)page_address(page); 4868 4869 skb_fill_page_desc(to, to_shinfo->nr_frags, 4870 page, offset, skb_headlen(from)); 4871 *fragstolen = true; 4872 } else { 4873 if (to_shinfo->nr_frags + 4874 from_shinfo->nr_frags > MAX_SKB_FRAGS) 4875 return false; 4876 4877 delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from)); 4878 } 4879 4880 WARN_ON_ONCE(delta < len); 4881 4882 memcpy(to_shinfo->frags + to_shinfo->nr_frags, 4883 from_shinfo->frags, 4884 from_shinfo->nr_frags * sizeof(skb_frag_t)); 4885 to_shinfo->nr_frags += from_shinfo->nr_frags; 4886 4887 if (!skb_cloned(from)) 4888 from_shinfo->nr_frags = 0; 4889 4890 /* if the skb is not cloned this does nothing 4891 * since we set nr_frags to 0. 4892 */ 4893 for (i = 0; i < from_shinfo->nr_frags; i++) 4894 __skb_frag_ref(&from_shinfo->frags[i]); 4895 4896 to->truesize += delta; 4897 to->len += len; 4898 to->data_len += len; 4899 4900 *delta_truesize = delta; 4901 return true; 4902 } 4903 EXPORT_SYMBOL(skb_try_coalesce); 4904 4905 /** 4906 * skb_scrub_packet - scrub an skb 4907 * 4908 * @skb: buffer to clean 4909 * @xnet: packet is crossing netns 4910 * 4911 * skb_scrub_packet can be used after encapsulating or decapsulting a packet 4912 * into/from a tunnel. Some information have to be cleared during these 4913 * operations. 4914 * skb_scrub_packet can also be used to clean a skb before injecting it in 4915 * another namespace (@xnet == true). We have to clear all information in the 4916 * skb that could impact namespace isolation. 4917 */ 4918 void skb_scrub_packet(struct sk_buff *skb, bool xnet) 4919 { 4920 skb->pkt_type = PACKET_HOST; 4921 skb->skb_iif = 0; 4922 skb->ignore_df = 0; 4923 skb_dst_drop(skb); 4924 secpath_reset(skb); 4925 nf_reset(skb); 4926 nf_reset_trace(skb); 4927 4928 #ifdef CONFIG_NET_SWITCHDEV 4929 skb->offload_fwd_mark = 0; 4930 skb->offload_l3_fwd_mark = 0; 4931 #endif 4932 4933 if (!xnet) 4934 return; 4935 4936 ipvs_reset(skb); 4937 skb->mark = 0; 4938 skb->tstamp = 0; 4939 } 4940 EXPORT_SYMBOL_GPL(skb_scrub_packet); 4941 4942 /** 4943 * skb_gso_transport_seglen - Return length of individual segments of a gso packet 4944 * 4945 * @skb: GSO skb 4946 * 4947 * skb_gso_transport_seglen is used to determine the real size of the 4948 * individual segments, including Layer4 headers (TCP/UDP). 4949 * 4950 * The MAC/L2 or network (IP, IPv6) headers are not accounted for. 4951 */ 4952 static unsigned int skb_gso_transport_seglen(const struct sk_buff *skb) 4953 { 4954 const struct skb_shared_info *shinfo = skb_shinfo(skb); 4955 unsigned int thlen = 0; 4956 4957 if (skb->encapsulation) { 4958 thlen = skb_inner_transport_header(skb) - 4959 skb_transport_header(skb); 4960 4961 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) 4962 thlen += inner_tcp_hdrlen(skb); 4963 } else if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) { 4964 thlen = tcp_hdrlen(skb); 4965 } else if (unlikely(skb_is_gso_sctp(skb))) { 4966 thlen = sizeof(struct sctphdr); 4967 } else if (shinfo->gso_type & SKB_GSO_UDP_L4) { 4968 thlen = sizeof(struct udphdr); 4969 } 4970 /* UFO sets gso_size to the size of the fragmentation 4971 * payload, i.e. the size of the L4 (UDP) header is already 4972 * accounted for. 4973 */ 4974 return thlen + shinfo->gso_size; 4975 } 4976 4977 /** 4978 * skb_gso_network_seglen - Return length of individual segments of a gso packet 4979 * 4980 * @skb: GSO skb 4981 * 4982 * skb_gso_network_seglen is used to determine the real size of the 4983 * individual segments, including Layer3 (IP, IPv6) and L4 headers (TCP/UDP). 4984 * 4985 * The MAC/L2 header is not accounted for. 4986 */ 4987 static unsigned int skb_gso_network_seglen(const struct sk_buff *skb) 4988 { 4989 unsigned int hdr_len = skb_transport_header(skb) - 4990 skb_network_header(skb); 4991 4992 return hdr_len + skb_gso_transport_seglen(skb); 4993 } 4994 4995 /** 4996 * skb_gso_mac_seglen - Return length of individual segments of a gso packet 4997 * 4998 * @skb: GSO skb 4999 * 5000 * skb_gso_mac_seglen is used to determine the real size of the 5001 * individual segments, including MAC/L2, Layer3 (IP, IPv6) and L4 5002 * headers (TCP/UDP). 5003 */ 5004 static unsigned int skb_gso_mac_seglen(const struct sk_buff *skb) 5005 { 5006 unsigned int hdr_len = skb_transport_header(skb) - skb_mac_header(skb); 5007 5008 return hdr_len + skb_gso_transport_seglen(skb); 5009 } 5010 5011 /** 5012 * skb_gso_size_check - check the skb size, considering GSO_BY_FRAGS 5013 * 5014 * There are a couple of instances where we have a GSO skb, and we 5015 * want to determine what size it would be after it is segmented. 5016 * 5017 * We might want to check: 5018 * - L3+L4+payload size (e.g. IP forwarding) 5019 * - L2+L3+L4+payload size (e.g. sanity check before passing to driver) 5020 * 5021 * This is a helper to do that correctly considering GSO_BY_FRAGS. 5022 * 5023 * @skb: GSO skb 5024 * 5025 * @seg_len: The segmented length (from skb_gso_*_seglen). In the 5026 * GSO_BY_FRAGS case this will be [header sizes + GSO_BY_FRAGS]. 5027 * 5028 * @max_len: The maximum permissible length. 5029 * 5030 * Returns true if the segmented length <= max length. 5031 */ 5032 static inline bool skb_gso_size_check(const struct sk_buff *skb, 5033 unsigned int seg_len, 5034 unsigned int max_len) { 5035 const struct skb_shared_info *shinfo = skb_shinfo(skb); 5036 const struct sk_buff *iter; 5037 5038 if (shinfo->gso_size != GSO_BY_FRAGS) 5039 return seg_len <= max_len; 5040 5041 /* Undo this so we can re-use header sizes */ 5042 seg_len -= GSO_BY_FRAGS; 5043 5044 skb_walk_frags(skb, iter) { 5045 if (seg_len + skb_headlen(iter) > max_len) 5046 return false; 5047 } 5048 5049 return true; 5050 } 5051 5052 /** 5053 * skb_gso_validate_network_len - Will a split GSO skb fit into a given MTU? 5054 * 5055 * @skb: GSO skb 5056 * @mtu: MTU to validate against 5057 * 5058 * skb_gso_validate_network_len validates if a given skb will fit a 5059 * wanted MTU once split. It considers L3 headers, L4 headers, and the 5060 * payload. 5061 */ 5062 bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu) 5063 { 5064 return skb_gso_size_check(skb, skb_gso_network_seglen(skb), mtu); 5065 } 5066 EXPORT_SYMBOL_GPL(skb_gso_validate_network_len); 5067 5068 /** 5069 * skb_gso_validate_mac_len - Will a split GSO skb fit in a given length? 5070 * 5071 * @skb: GSO skb 5072 * @len: length to validate against 5073 * 5074 * skb_gso_validate_mac_len validates if a given skb will fit a wanted 5075 * length once split, including L2, L3 and L4 headers and the payload. 5076 */ 5077 bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len) 5078 { 5079 return skb_gso_size_check(skb, skb_gso_mac_seglen(skb), len); 5080 } 5081 EXPORT_SYMBOL_GPL(skb_gso_validate_mac_len); 5082 5083 static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb) 5084 { 5085 int mac_len; 5086 5087 if (skb_cow(skb, skb_headroom(skb)) < 0) { 5088 kfree_skb(skb); 5089 return NULL; 5090 } 5091 5092 mac_len = skb->data - skb_mac_header(skb); 5093 if (likely(mac_len > VLAN_HLEN + ETH_TLEN)) { 5094 memmove(skb_mac_header(skb) + VLAN_HLEN, skb_mac_header(skb), 5095 mac_len - VLAN_HLEN - ETH_TLEN); 5096 } 5097 skb->mac_header += VLAN_HLEN; 5098 return skb; 5099 } 5100 5101 struct sk_buff *skb_vlan_untag(struct sk_buff *skb) 5102 { 5103 struct vlan_hdr *vhdr; 5104 u16 vlan_tci; 5105 5106 if (unlikely(skb_vlan_tag_present(skb))) { 5107 /* vlan_tci is already set-up so leave this for another time */ 5108 return skb; 5109 } 5110 5111 skb = skb_share_check(skb, GFP_ATOMIC); 5112 if (unlikely(!skb)) 5113 goto err_free; 5114 5115 if (unlikely(!pskb_may_pull(skb, VLAN_HLEN))) 5116 goto err_free; 5117 5118 vhdr = (struct vlan_hdr *)skb->data; 5119 vlan_tci = ntohs(vhdr->h_vlan_TCI); 5120 __vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci); 5121 5122 skb_pull_rcsum(skb, VLAN_HLEN); 5123 vlan_set_encap_proto(skb, vhdr); 5124 5125 skb = skb_reorder_vlan_header(skb); 5126 if (unlikely(!skb)) 5127 goto err_free; 5128 5129 skb_reset_network_header(skb); 5130 skb_reset_transport_header(skb); 5131 skb_reset_mac_len(skb); 5132 5133 return skb; 5134 5135 err_free: 5136 kfree_skb(skb); 5137 return NULL; 5138 } 5139 EXPORT_SYMBOL(skb_vlan_untag); 5140 5141 int skb_ensure_writable(struct sk_buff *skb, int write_len) 5142 { 5143 if (!pskb_may_pull(skb, write_len)) 5144 return -ENOMEM; 5145 5146 if (!skb_cloned(skb) || skb_clone_writable(skb, write_len)) 5147 return 0; 5148 5149 return pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 5150 } 5151 EXPORT_SYMBOL(skb_ensure_writable); 5152 5153 /* remove VLAN header from packet and update csum accordingly. 5154 * expects a non skb_vlan_tag_present skb with a vlan tag payload 5155 */ 5156 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci) 5157 { 5158 struct vlan_hdr *vhdr; 5159 int offset = skb->data - skb_mac_header(skb); 5160 int err; 5161 5162 if (WARN_ONCE(offset, 5163 "__skb_vlan_pop got skb with skb->data not at mac header (offset %d)\n", 5164 offset)) { 5165 return -EINVAL; 5166 } 5167 5168 err = skb_ensure_writable(skb, VLAN_ETH_HLEN); 5169 if (unlikely(err)) 5170 return err; 5171 5172 skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN); 5173 5174 vhdr = (struct vlan_hdr *)(skb->data + ETH_HLEN); 5175 *vlan_tci = ntohs(vhdr->h_vlan_TCI); 5176 5177 memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN); 5178 __skb_pull(skb, VLAN_HLEN); 5179 5180 vlan_set_encap_proto(skb, vhdr); 5181 skb->mac_header += VLAN_HLEN; 5182 5183 if (skb_network_offset(skb) < ETH_HLEN) 5184 skb_set_network_header(skb, ETH_HLEN); 5185 5186 skb_reset_mac_len(skb); 5187 5188 return err; 5189 } 5190 EXPORT_SYMBOL(__skb_vlan_pop); 5191 5192 /* Pop a vlan tag either from hwaccel or from payload. 5193 * Expects skb->data at mac header. 5194 */ 5195 int skb_vlan_pop(struct sk_buff *skb) 5196 { 5197 u16 vlan_tci; 5198 __be16 vlan_proto; 5199 int err; 5200 5201 if (likely(skb_vlan_tag_present(skb))) { 5202 __vlan_hwaccel_clear_tag(skb); 5203 } else { 5204 if (unlikely(!eth_type_vlan(skb->protocol))) 5205 return 0; 5206 5207 err = __skb_vlan_pop(skb, &vlan_tci); 5208 if (err) 5209 return err; 5210 } 5211 /* move next vlan tag to hw accel tag */ 5212 if (likely(!eth_type_vlan(skb->protocol))) 5213 return 0; 5214 5215 vlan_proto = skb->protocol; 5216 err = __skb_vlan_pop(skb, &vlan_tci); 5217 if (unlikely(err)) 5218 return err; 5219 5220 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci); 5221 return 0; 5222 } 5223 EXPORT_SYMBOL(skb_vlan_pop); 5224 5225 /* Push a vlan tag either into hwaccel or into payload (if hwaccel tag present). 5226 * Expects skb->data at mac header. 5227 */ 5228 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci) 5229 { 5230 if (skb_vlan_tag_present(skb)) { 5231 int offset = skb->data - skb_mac_header(skb); 5232 int err; 5233 5234 if (WARN_ONCE(offset, 5235 "skb_vlan_push got skb with skb->data not at mac header (offset %d)\n", 5236 offset)) { 5237 return -EINVAL; 5238 } 5239 5240 err = __vlan_insert_tag(skb, skb->vlan_proto, 5241 skb_vlan_tag_get(skb)); 5242 if (err) 5243 return err; 5244 5245 skb->protocol = skb->vlan_proto; 5246 skb->mac_len += VLAN_HLEN; 5247 5248 skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN); 5249 } 5250 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci); 5251 return 0; 5252 } 5253 EXPORT_SYMBOL(skb_vlan_push); 5254 5255 /** 5256 * alloc_skb_with_frags - allocate skb with page frags 5257 * 5258 * @header_len: size of linear part 5259 * @data_len: needed length in frags 5260 * @max_page_order: max page order desired. 5261 * @errcode: pointer to error code if any 5262 * @gfp_mask: allocation mask 5263 * 5264 * This can be used to allocate a paged skb, given a maximal order for frags. 5265 */ 5266 struct sk_buff *alloc_skb_with_frags(unsigned long header_len, 5267 unsigned long data_len, 5268 int max_page_order, 5269 int *errcode, 5270 gfp_t gfp_mask) 5271 { 5272 int npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT; 5273 unsigned long chunk; 5274 struct sk_buff *skb; 5275 struct page *page; 5276 int i; 5277 5278 *errcode = -EMSGSIZE; 5279 /* Note this test could be relaxed, if we succeed to allocate 5280 * high order pages... 5281 */ 5282 if (npages > MAX_SKB_FRAGS) 5283 return NULL; 5284 5285 *errcode = -ENOBUFS; 5286 skb = alloc_skb(header_len, gfp_mask); 5287 if (!skb) 5288 return NULL; 5289 5290 skb->truesize += npages << PAGE_SHIFT; 5291 5292 for (i = 0; npages > 0; i++) { 5293 int order = max_page_order; 5294 5295 while (order) { 5296 if (npages >= 1 << order) { 5297 page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) | 5298 __GFP_COMP | 5299 __GFP_NOWARN, 5300 order); 5301 if (page) 5302 goto fill_page; 5303 /* Do not retry other high order allocations */ 5304 order = 1; 5305 max_page_order = 0; 5306 } 5307 order--; 5308 } 5309 page = alloc_page(gfp_mask); 5310 if (!page) 5311 goto failure; 5312 fill_page: 5313 chunk = min_t(unsigned long, data_len, 5314 PAGE_SIZE << order); 5315 skb_fill_page_desc(skb, i, page, 0, chunk); 5316 data_len -= chunk; 5317 npages -= 1 << order; 5318 } 5319 return skb; 5320 5321 failure: 5322 kfree_skb(skb); 5323 return NULL; 5324 } 5325 EXPORT_SYMBOL(alloc_skb_with_frags); 5326 5327 /* carve out the first off bytes from skb when off < headlen */ 5328 static int pskb_carve_inside_header(struct sk_buff *skb, const u32 off, 5329 const int headlen, gfp_t gfp_mask) 5330 { 5331 int i; 5332 int size = skb_end_offset(skb); 5333 int new_hlen = headlen - off; 5334 u8 *data; 5335 5336 size = SKB_DATA_ALIGN(size); 5337 5338 if (skb_pfmemalloc(skb)) 5339 gfp_mask |= __GFP_MEMALLOC; 5340 data = kmalloc_reserve(size + 5341 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)), 5342 gfp_mask, NUMA_NO_NODE, NULL); 5343 if (!data) 5344 return -ENOMEM; 5345 5346 size = SKB_WITH_OVERHEAD(ksize(data)); 5347 5348 /* Copy real data, and all frags */ 5349 skb_copy_from_linear_data_offset(skb, off, data, new_hlen); 5350 skb->len -= off; 5351 5352 memcpy((struct skb_shared_info *)(data + size), 5353 skb_shinfo(skb), 5354 offsetof(struct skb_shared_info, 5355 frags[skb_shinfo(skb)->nr_frags])); 5356 if (skb_cloned(skb)) { 5357 /* drop the old head gracefully */ 5358 if (skb_orphan_frags(skb, gfp_mask)) { 5359 kfree(data); 5360 return -ENOMEM; 5361 } 5362 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 5363 skb_frag_ref(skb, i); 5364 if (skb_has_frag_list(skb)) 5365 skb_clone_fraglist(skb); 5366 skb_release_data(skb); 5367 } else { 5368 /* we can reuse existing recount- all we did was 5369 * relocate values 5370 */ 5371 skb_free_head(skb); 5372 } 5373 5374 skb->head = data; 5375 skb->data = data; 5376 skb->head_frag = 0; 5377 #ifdef NET_SKBUFF_DATA_USES_OFFSET 5378 skb->end = size; 5379 #else 5380 skb->end = skb->head + size; 5381 #endif 5382 skb_set_tail_pointer(skb, skb_headlen(skb)); 5383 skb_headers_offset_update(skb, 0); 5384 skb->cloned = 0; 5385 skb->hdr_len = 0; 5386 skb->nohdr = 0; 5387 atomic_set(&skb_shinfo(skb)->dataref, 1); 5388 5389 return 0; 5390 } 5391 5392 static int pskb_carve(struct sk_buff *skb, const u32 off, gfp_t gfp); 5393 5394 /* carve out the first eat bytes from skb's frag_list. May recurse into 5395 * pskb_carve() 5396 */ 5397 static int pskb_carve_frag_list(struct sk_buff *skb, 5398 struct skb_shared_info *shinfo, int eat, 5399 gfp_t gfp_mask) 5400 { 5401 struct sk_buff *list = shinfo->frag_list; 5402 struct sk_buff *clone = NULL; 5403 struct sk_buff *insp = NULL; 5404 5405 do { 5406 if (!list) { 5407 pr_err("Not enough bytes to eat. Want %d\n", eat); 5408 return -EFAULT; 5409 } 5410 if (list->len <= eat) { 5411 /* Eaten as whole. */ 5412 eat -= list->len; 5413 list = list->next; 5414 insp = list; 5415 } else { 5416 /* Eaten partially. */ 5417 if (skb_shared(list)) { 5418 clone = skb_clone(list, gfp_mask); 5419 if (!clone) 5420 return -ENOMEM; 5421 insp = list->next; 5422 list = clone; 5423 } else { 5424 /* This may be pulled without problems. */ 5425 insp = list; 5426 } 5427 if (pskb_carve(list, eat, gfp_mask) < 0) { 5428 kfree_skb(clone); 5429 return -ENOMEM; 5430 } 5431 break; 5432 } 5433 } while (eat); 5434 5435 /* Free pulled out fragments. */ 5436 while ((list = shinfo->frag_list) != insp) { 5437 shinfo->frag_list = list->next; 5438 kfree_skb(list); 5439 } 5440 /* And insert new clone at head. */ 5441 if (clone) { 5442 clone->next = list; 5443 shinfo->frag_list = clone; 5444 } 5445 return 0; 5446 } 5447 5448 /* carve off first len bytes from skb. Split line (off) is in the 5449 * non-linear part of skb 5450 */ 5451 static int pskb_carve_inside_nonlinear(struct sk_buff *skb, const u32 off, 5452 int pos, gfp_t gfp_mask) 5453 { 5454 int i, k = 0; 5455 int size = skb_end_offset(skb); 5456 u8 *data; 5457 const int nfrags = skb_shinfo(skb)->nr_frags; 5458 struct skb_shared_info *shinfo; 5459 5460 size = SKB_DATA_ALIGN(size); 5461 5462 if (skb_pfmemalloc(skb)) 5463 gfp_mask |= __GFP_MEMALLOC; 5464 data = kmalloc_reserve(size + 5465 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)), 5466 gfp_mask, NUMA_NO_NODE, NULL); 5467 if (!data) 5468 return -ENOMEM; 5469 5470 size = SKB_WITH_OVERHEAD(ksize(data)); 5471 5472 memcpy((struct skb_shared_info *)(data + size), 5473 skb_shinfo(skb), offsetof(struct skb_shared_info, 5474 frags[skb_shinfo(skb)->nr_frags])); 5475 if (skb_orphan_frags(skb, gfp_mask)) { 5476 kfree(data); 5477 return -ENOMEM; 5478 } 5479 shinfo = (struct skb_shared_info *)(data + size); 5480 for (i = 0; i < nfrags; i++) { 5481 int fsize = skb_frag_size(&skb_shinfo(skb)->frags[i]); 5482 5483 if (pos + fsize > off) { 5484 shinfo->frags[k] = skb_shinfo(skb)->frags[i]; 5485 5486 if (pos < off) { 5487 /* Split frag. 5488 * We have two variants in this case: 5489 * 1. Move all the frag to the second 5490 * part, if it is possible. F.e. 5491 * this approach is mandatory for TUX, 5492 * where splitting is expensive. 5493 * 2. Split is accurately. We make this. 5494 */ 5495 shinfo->frags[0].page_offset += off - pos; 5496 skb_frag_size_sub(&shinfo->frags[0], off - pos); 5497 } 5498 skb_frag_ref(skb, i); 5499 k++; 5500 } 5501 pos += fsize; 5502 } 5503 shinfo->nr_frags = k; 5504 if (skb_has_frag_list(skb)) 5505 skb_clone_fraglist(skb); 5506 5507 if (k == 0) { 5508 /* split line is in frag list */ 5509 pskb_carve_frag_list(skb, shinfo, off - pos, gfp_mask); 5510 } 5511 skb_release_data(skb); 5512 5513 skb->head = data; 5514 skb->head_frag = 0; 5515 skb->data = data; 5516 #ifdef NET_SKBUFF_DATA_USES_OFFSET 5517 skb->end = size; 5518 #else 5519 skb->end = skb->head + size; 5520 #endif 5521 skb_reset_tail_pointer(skb); 5522 skb_headers_offset_update(skb, 0); 5523 skb->cloned = 0; 5524 skb->hdr_len = 0; 5525 skb->nohdr = 0; 5526 skb->len -= off; 5527 skb->data_len = skb->len; 5528 atomic_set(&skb_shinfo(skb)->dataref, 1); 5529 return 0; 5530 } 5531 5532 /* remove len bytes from the beginning of the skb */ 5533 static int pskb_carve(struct sk_buff *skb, const u32 len, gfp_t gfp) 5534 { 5535 int headlen = skb_headlen(skb); 5536 5537 if (len < headlen) 5538 return pskb_carve_inside_header(skb, len, headlen, gfp); 5539 else 5540 return pskb_carve_inside_nonlinear(skb, len, headlen, gfp); 5541 } 5542 5543 /* Extract to_copy bytes starting at off from skb, and return this in 5544 * a new skb 5545 */ 5546 struct sk_buff *pskb_extract(struct sk_buff *skb, int off, 5547 int to_copy, gfp_t gfp) 5548 { 5549 struct sk_buff *clone = skb_clone(skb, gfp); 5550 5551 if (!clone) 5552 return NULL; 5553 5554 if (pskb_carve(clone, off, gfp) < 0 || 5555 pskb_trim(clone, to_copy)) { 5556 kfree_skb(clone); 5557 return NULL; 5558 } 5559 return clone; 5560 } 5561 EXPORT_SYMBOL(pskb_extract); 5562 5563 /** 5564 * skb_condense - try to get rid of fragments/frag_list if possible 5565 * @skb: buffer 5566 * 5567 * Can be used to save memory before skb is added to a busy queue. 5568 * If packet has bytes in frags and enough tail room in skb->head, 5569 * pull all of them, so that we can free the frags right now and adjust 5570 * truesize. 5571 * Notes: 5572 * We do not reallocate skb->head thus can not fail. 5573 * Caller must re-evaluate skb->truesize if needed. 5574 */ 5575 void skb_condense(struct sk_buff *skb) 5576 { 5577 if (skb->data_len) { 5578 if (skb->data_len > skb->end - skb->tail || 5579 skb_cloned(skb)) 5580 return; 5581 5582 /* Nice, we can free page frag(s) right now */ 5583 __pskb_pull_tail(skb, skb->data_len); 5584 } 5585 /* At this point, skb->truesize might be over estimated, 5586 * because skb had a fragment, and fragments do not tell 5587 * their truesize. 5588 * When we pulled its content into skb->head, fragment 5589 * was freed, but __pskb_pull_tail() could not possibly 5590 * adjust skb->truesize, not knowing the frag truesize. 5591 */ 5592 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb)); 5593 } 5594 5595 #ifdef CONFIG_SKB_EXTENSIONS 5596 static void *skb_ext_get_ptr(struct skb_ext *ext, enum skb_ext_id id) 5597 { 5598 return (void *)ext + (ext->offset[id] * SKB_EXT_ALIGN_VALUE); 5599 } 5600 5601 static struct skb_ext *skb_ext_alloc(void) 5602 { 5603 struct skb_ext *new = kmem_cache_alloc(skbuff_ext_cache, GFP_ATOMIC); 5604 5605 if (new) { 5606 memset(new->offset, 0, sizeof(new->offset)); 5607 refcount_set(&new->refcnt, 1); 5608 } 5609 5610 return new; 5611 } 5612 5613 static struct skb_ext *skb_ext_maybe_cow(struct skb_ext *old, 5614 unsigned int old_active) 5615 { 5616 struct skb_ext *new; 5617 5618 if (refcount_read(&old->refcnt) == 1) 5619 return old; 5620 5621 new = kmem_cache_alloc(skbuff_ext_cache, GFP_ATOMIC); 5622 if (!new) 5623 return NULL; 5624 5625 memcpy(new, old, old->chunks * SKB_EXT_ALIGN_VALUE); 5626 refcount_set(&new->refcnt, 1); 5627 5628 #ifdef CONFIG_XFRM 5629 if (old_active & (1 << SKB_EXT_SEC_PATH)) { 5630 struct sec_path *sp = skb_ext_get_ptr(old, SKB_EXT_SEC_PATH); 5631 unsigned int i; 5632 5633 for (i = 0; i < sp->len; i++) 5634 xfrm_state_hold(sp->xvec[i]); 5635 } 5636 #endif 5637 __skb_ext_put(old); 5638 return new; 5639 } 5640 5641 /** 5642 * skb_ext_add - allocate space for given extension, COW if needed 5643 * @skb: buffer 5644 * @id: extension to allocate space for 5645 * 5646 * Allocates enough space for the given extension. 5647 * If the extension is already present, a pointer to that extension 5648 * is returned. 5649 * 5650 * If the skb was cloned, COW applies and the returned memory can be 5651 * modified without changing the extension space of clones buffers. 5652 * 5653 * Returns pointer to the extension or NULL on allocation failure. 5654 */ 5655 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id) 5656 { 5657 struct skb_ext *new, *old = NULL; 5658 unsigned int newlen, newoff; 5659 5660 if (skb->active_extensions) { 5661 old = skb->extensions; 5662 5663 new = skb_ext_maybe_cow(old, skb->active_extensions); 5664 if (!new) 5665 return NULL; 5666 5667 if (__skb_ext_exist(new, id)) 5668 goto set_active; 5669 5670 newoff = new->chunks; 5671 } else { 5672 newoff = SKB_EXT_CHUNKSIZEOF(*new); 5673 5674 new = skb_ext_alloc(); 5675 if (!new) 5676 return NULL; 5677 } 5678 5679 newlen = newoff + skb_ext_type_len[id]; 5680 new->chunks = newlen; 5681 new->offset[id] = newoff; 5682 set_active: 5683 skb->extensions = new; 5684 skb->active_extensions |= 1 << id; 5685 return skb_ext_get_ptr(new, id); 5686 } 5687 EXPORT_SYMBOL(skb_ext_add); 5688 5689 #ifdef CONFIG_XFRM 5690 static void skb_ext_put_sp(struct sec_path *sp) 5691 { 5692 unsigned int i; 5693 5694 for (i = 0; i < sp->len; i++) 5695 xfrm_state_put(sp->xvec[i]); 5696 } 5697 #endif 5698 5699 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id) 5700 { 5701 struct skb_ext *ext = skb->extensions; 5702 5703 skb->active_extensions &= ~(1 << id); 5704 if (skb->active_extensions == 0) { 5705 skb->extensions = NULL; 5706 __skb_ext_put(ext); 5707 #ifdef CONFIG_XFRM 5708 } else if (id == SKB_EXT_SEC_PATH && 5709 refcount_read(&ext->refcnt) == 1) { 5710 struct sec_path *sp = skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH); 5711 5712 skb_ext_put_sp(sp); 5713 sp->len = 0; 5714 #endif 5715 } 5716 } 5717 EXPORT_SYMBOL(__skb_ext_del); 5718 5719 void __skb_ext_put(struct skb_ext *ext) 5720 { 5721 /* If this is last clone, nothing can increment 5722 * it after check passes. Avoids one atomic op. 5723 */ 5724 if (refcount_read(&ext->refcnt) == 1) 5725 goto free_now; 5726 5727 if (!refcount_dec_and_test(&ext->refcnt)) 5728 return; 5729 free_now: 5730 #ifdef CONFIG_XFRM 5731 if (__skb_ext_exist(ext, SKB_EXT_SEC_PATH)) 5732 skb_ext_put_sp(skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH)); 5733 #endif 5734 5735 kmem_cache_free(skbuff_ext_cache, ext); 5736 } 5737 EXPORT_SYMBOL(__skb_ext_put); 5738 #endif /* CONFIG_SKB_EXTENSIONS */ 5739