xref: /openbmc/linux/net/core/skbuff.c (revision bf3608f3)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *	Routines having to do with the 'struct sk_buff' memory handlers.
4  *
5  *	Authors:	Alan Cox <alan@lxorguk.ukuu.org.uk>
6  *			Florian La Roche <rzsfl@rz.uni-sb.de>
7  *
8  *	Fixes:
9  *		Alan Cox	:	Fixed the worst of the load
10  *					balancer bugs.
11  *		Dave Platt	:	Interrupt stacking fix.
12  *	Richard Kooijman	:	Timestamp fixes.
13  *		Alan Cox	:	Changed buffer format.
14  *		Alan Cox	:	destructor hook for AF_UNIX etc.
15  *		Linus Torvalds	:	Better skb_clone.
16  *		Alan Cox	:	Added skb_copy.
17  *		Alan Cox	:	Added all the changed routines Linus
18  *					only put in the headers
19  *		Ray VanTassle	:	Fixed --skb->lock in free
20  *		Alan Cox	:	skb_copy copy arp field
21  *		Andi Kleen	:	slabified it.
22  *		Robert Olsson	:	Removed skb_head_pool
23  *
24  *	NOTE:
25  *		The __skb_ routines should be called with interrupts
26  *	disabled, or you better be *real* sure that the operation is atomic
27  *	with respect to whatever list is being frobbed (e.g. via lock_sock()
28  *	or via disabling bottom half handlers, etc).
29  */
30 
31 /*
32  *	The functions in this file will not compile correctly with gcc 2.4.x
33  */
34 
35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
36 
37 #include <linux/module.h>
38 #include <linux/types.h>
39 #include <linux/kernel.h>
40 #include <linux/mm.h>
41 #include <linux/interrupt.h>
42 #include <linux/in.h>
43 #include <linux/inet.h>
44 #include <linux/slab.h>
45 #include <linux/tcp.h>
46 #include <linux/udp.h>
47 #include <linux/sctp.h>
48 #include <linux/netdevice.h>
49 #ifdef CONFIG_NET_CLS_ACT
50 #include <net/pkt_sched.h>
51 #endif
52 #include <linux/string.h>
53 #include <linux/skbuff.h>
54 #include <linux/splice.h>
55 #include <linux/cache.h>
56 #include <linux/rtnetlink.h>
57 #include <linux/init.h>
58 #include <linux/scatterlist.h>
59 #include <linux/errqueue.h>
60 #include <linux/prefetch.h>
61 #include <linux/if_vlan.h>
62 #include <linux/mpls.h>
63 #include <linux/kcov.h>
64 
65 #include <net/protocol.h>
66 #include <net/dst.h>
67 #include <net/sock.h>
68 #include <net/checksum.h>
69 #include <net/ip6_checksum.h>
70 #include <net/xfrm.h>
71 #include <net/mpls.h>
72 #include <net/mptcp.h>
73 #include <net/mctp.h>
74 #include <net/page_pool.h>
75 
76 #include <linux/uaccess.h>
77 #include <trace/events/skb.h>
78 #include <linux/highmem.h>
79 #include <linux/capability.h>
80 #include <linux/user_namespace.h>
81 #include <linux/indirect_call_wrapper.h>
82 
83 #include "datagram.h"
84 #include "sock_destructor.h"
85 
86 struct kmem_cache *skbuff_head_cache __ro_after_init;
87 static struct kmem_cache *skbuff_fclone_cache __ro_after_init;
88 #ifdef CONFIG_SKB_EXTENSIONS
89 static struct kmem_cache *skbuff_ext_cache __ro_after_init;
90 #endif
91 int sysctl_max_skb_frags __read_mostly = MAX_SKB_FRAGS;
92 EXPORT_SYMBOL(sysctl_max_skb_frags);
93 
94 /**
95  *	skb_panic - private function for out-of-line support
96  *	@skb:	buffer
97  *	@sz:	size
98  *	@addr:	address
99  *	@msg:	skb_over_panic or skb_under_panic
100  *
101  *	Out-of-line support for skb_put() and skb_push().
102  *	Called via the wrapper skb_over_panic() or skb_under_panic().
103  *	Keep out of line to prevent kernel bloat.
104  *	__builtin_return_address is not used because it is not always reliable.
105  */
106 static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr,
107 		      const char msg[])
108 {
109 	pr_emerg("%s: text:%px len:%d put:%d head:%px data:%px tail:%#lx end:%#lx dev:%s\n",
110 		 msg, addr, skb->len, sz, skb->head, skb->data,
111 		 (unsigned long)skb->tail, (unsigned long)skb->end,
112 		 skb->dev ? skb->dev->name : "<NULL>");
113 	BUG();
114 }
115 
116 static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr)
117 {
118 	skb_panic(skb, sz, addr, __func__);
119 }
120 
121 static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr)
122 {
123 	skb_panic(skb, sz, addr, __func__);
124 }
125 
126 #define NAPI_SKB_CACHE_SIZE	64
127 #define NAPI_SKB_CACHE_BULK	16
128 #define NAPI_SKB_CACHE_HALF	(NAPI_SKB_CACHE_SIZE / 2)
129 
130 struct napi_alloc_cache {
131 	struct page_frag_cache page;
132 	unsigned int skb_count;
133 	void *skb_cache[NAPI_SKB_CACHE_SIZE];
134 };
135 
136 static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache);
137 static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache);
138 
139 void *__napi_alloc_frag_align(unsigned int fragsz, unsigned int align_mask)
140 {
141 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
142 
143 	fragsz = SKB_DATA_ALIGN(fragsz);
144 
145 	return page_frag_alloc_align(&nc->page, fragsz, GFP_ATOMIC, align_mask);
146 }
147 EXPORT_SYMBOL(__napi_alloc_frag_align);
148 
149 void *__netdev_alloc_frag_align(unsigned int fragsz, unsigned int align_mask)
150 {
151 	void *data;
152 
153 	fragsz = SKB_DATA_ALIGN(fragsz);
154 	if (in_hardirq() || irqs_disabled()) {
155 		struct page_frag_cache *nc = this_cpu_ptr(&netdev_alloc_cache);
156 
157 		data = page_frag_alloc_align(nc, fragsz, GFP_ATOMIC, align_mask);
158 	} else {
159 		struct napi_alloc_cache *nc;
160 
161 		local_bh_disable();
162 		nc = this_cpu_ptr(&napi_alloc_cache);
163 		data = page_frag_alloc_align(&nc->page, fragsz, GFP_ATOMIC, align_mask);
164 		local_bh_enable();
165 	}
166 	return data;
167 }
168 EXPORT_SYMBOL(__netdev_alloc_frag_align);
169 
170 static struct sk_buff *napi_skb_cache_get(void)
171 {
172 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
173 	struct sk_buff *skb;
174 
175 	if (unlikely(!nc->skb_count))
176 		nc->skb_count = kmem_cache_alloc_bulk(skbuff_head_cache,
177 						      GFP_ATOMIC,
178 						      NAPI_SKB_CACHE_BULK,
179 						      nc->skb_cache);
180 	if (unlikely(!nc->skb_count))
181 		return NULL;
182 
183 	skb = nc->skb_cache[--nc->skb_count];
184 	kasan_unpoison_object_data(skbuff_head_cache, skb);
185 
186 	return skb;
187 }
188 
189 /* Caller must provide SKB that is memset cleared */
190 static void __build_skb_around(struct sk_buff *skb, void *data,
191 			       unsigned int frag_size)
192 {
193 	struct skb_shared_info *shinfo;
194 	unsigned int size = frag_size ? : ksize(data);
195 
196 	size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
197 
198 	/* Assumes caller memset cleared SKB */
199 	skb->truesize = SKB_TRUESIZE(size);
200 	refcount_set(&skb->users, 1);
201 	skb->head = data;
202 	skb->data = data;
203 	skb_reset_tail_pointer(skb);
204 	skb->end = skb->tail + size;
205 	skb->mac_header = (typeof(skb->mac_header))~0U;
206 	skb->transport_header = (typeof(skb->transport_header))~0U;
207 
208 	/* make sure we initialize shinfo sequentially */
209 	shinfo = skb_shinfo(skb);
210 	memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
211 	atomic_set(&shinfo->dataref, 1);
212 
213 	skb_set_kcov_handle(skb, kcov_common_handle());
214 }
215 
216 /**
217  * __build_skb - build a network buffer
218  * @data: data buffer provided by caller
219  * @frag_size: size of data, or 0 if head was kmalloced
220  *
221  * Allocate a new &sk_buff. Caller provides space holding head and
222  * skb_shared_info. @data must have been allocated by kmalloc() only if
223  * @frag_size is 0, otherwise data should come from the page allocator
224  *  or vmalloc()
225  * The return is the new skb buffer.
226  * On a failure the return is %NULL, and @data is not freed.
227  * Notes :
228  *  Before IO, driver allocates only data buffer where NIC put incoming frame
229  *  Driver should add room at head (NET_SKB_PAD) and
230  *  MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info))
231  *  After IO, driver calls build_skb(), to allocate sk_buff and populate it
232  *  before giving packet to stack.
233  *  RX rings only contains data buffers, not full skbs.
234  */
235 struct sk_buff *__build_skb(void *data, unsigned int frag_size)
236 {
237 	struct sk_buff *skb;
238 
239 	skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC);
240 	if (unlikely(!skb))
241 		return NULL;
242 
243 	memset(skb, 0, offsetof(struct sk_buff, tail));
244 	__build_skb_around(skb, data, frag_size);
245 
246 	return skb;
247 }
248 
249 /* build_skb() is wrapper over __build_skb(), that specifically
250  * takes care of skb->head and skb->pfmemalloc
251  * This means that if @frag_size is not zero, then @data must be backed
252  * by a page fragment, not kmalloc() or vmalloc()
253  */
254 struct sk_buff *build_skb(void *data, unsigned int frag_size)
255 {
256 	struct sk_buff *skb = __build_skb(data, frag_size);
257 
258 	if (skb && frag_size) {
259 		skb->head_frag = 1;
260 		if (page_is_pfmemalloc(virt_to_head_page(data)))
261 			skb->pfmemalloc = 1;
262 	}
263 	return skb;
264 }
265 EXPORT_SYMBOL(build_skb);
266 
267 /**
268  * build_skb_around - build a network buffer around provided skb
269  * @skb: sk_buff provide by caller, must be memset cleared
270  * @data: data buffer provided by caller
271  * @frag_size: size of data, or 0 if head was kmalloced
272  */
273 struct sk_buff *build_skb_around(struct sk_buff *skb,
274 				 void *data, unsigned int frag_size)
275 {
276 	if (unlikely(!skb))
277 		return NULL;
278 
279 	__build_skb_around(skb, data, frag_size);
280 
281 	if (frag_size) {
282 		skb->head_frag = 1;
283 		if (page_is_pfmemalloc(virt_to_head_page(data)))
284 			skb->pfmemalloc = 1;
285 	}
286 	return skb;
287 }
288 EXPORT_SYMBOL(build_skb_around);
289 
290 /**
291  * __napi_build_skb - build a network buffer
292  * @data: data buffer provided by caller
293  * @frag_size: size of data, or 0 if head was kmalloced
294  *
295  * Version of __build_skb() that uses NAPI percpu caches to obtain
296  * skbuff_head instead of inplace allocation.
297  *
298  * Returns a new &sk_buff on success, %NULL on allocation failure.
299  */
300 static struct sk_buff *__napi_build_skb(void *data, unsigned int frag_size)
301 {
302 	struct sk_buff *skb;
303 
304 	skb = napi_skb_cache_get();
305 	if (unlikely(!skb))
306 		return NULL;
307 
308 	memset(skb, 0, offsetof(struct sk_buff, tail));
309 	__build_skb_around(skb, data, frag_size);
310 
311 	return skb;
312 }
313 
314 /**
315  * napi_build_skb - build a network buffer
316  * @data: data buffer provided by caller
317  * @frag_size: size of data, or 0 if head was kmalloced
318  *
319  * Version of __napi_build_skb() that takes care of skb->head_frag
320  * and skb->pfmemalloc when the data is a page or page fragment.
321  *
322  * Returns a new &sk_buff on success, %NULL on allocation failure.
323  */
324 struct sk_buff *napi_build_skb(void *data, unsigned int frag_size)
325 {
326 	struct sk_buff *skb = __napi_build_skb(data, frag_size);
327 
328 	if (likely(skb) && frag_size) {
329 		skb->head_frag = 1;
330 		skb_propagate_pfmemalloc(virt_to_head_page(data), skb);
331 	}
332 
333 	return skb;
334 }
335 EXPORT_SYMBOL(napi_build_skb);
336 
337 /*
338  * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells
339  * the caller if emergency pfmemalloc reserves are being used. If it is and
340  * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves
341  * may be used. Otherwise, the packet data may be discarded until enough
342  * memory is free
343  */
344 static void *kmalloc_reserve(size_t size, gfp_t flags, int node,
345 			     bool *pfmemalloc)
346 {
347 	void *obj;
348 	bool ret_pfmemalloc = false;
349 
350 	/*
351 	 * Try a regular allocation, when that fails and we're not entitled
352 	 * to the reserves, fail.
353 	 */
354 	obj = kmalloc_node_track_caller(size,
355 					flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
356 					node);
357 	if (obj || !(gfp_pfmemalloc_allowed(flags)))
358 		goto out;
359 
360 	/* Try again but now we are using pfmemalloc reserves */
361 	ret_pfmemalloc = true;
362 	obj = kmalloc_node_track_caller(size, flags, node);
363 
364 out:
365 	if (pfmemalloc)
366 		*pfmemalloc = ret_pfmemalloc;
367 
368 	return obj;
369 }
370 
371 /* 	Allocate a new skbuff. We do this ourselves so we can fill in a few
372  *	'private' fields and also do memory statistics to find all the
373  *	[BEEP] leaks.
374  *
375  */
376 
377 /**
378  *	__alloc_skb	-	allocate a network buffer
379  *	@size: size to allocate
380  *	@gfp_mask: allocation mask
381  *	@flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache
382  *		instead of head cache and allocate a cloned (child) skb.
383  *		If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for
384  *		allocations in case the data is required for writeback
385  *	@node: numa node to allocate memory on
386  *
387  *	Allocate a new &sk_buff. The returned buffer has no headroom and a
388  *	tail room of at least size bytes. The object has a reference count
389  *	of one. The return is the buffer. On a failure the return is %NULL.
390  *
391  *	Buffers may only be allocated from interrupts using a @gfp_mask of
392  *	%GFP_ATOMIC.
393  */
394 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
395 			    int flags, int node)
396 {
397 	struct kmem_cache *cache;
398 	struct sk_buff *skb;
399 	unsigned int osize;
400 	bool pfmemalloc;
401 	u8 *data;
402 
403 	cache = (flags & SKB_ALLOC_FCLONE)
404 		? skbuff_fclone_cache : skbuff_head_cache;
405 
406 	if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX))
407 		gfp_mask |= __GFP_MEMALLOC;
408 
409 	/* Get the HEAD */
410 	if ((flags & (SKB_ALLOC_FCLONE | SKB_ALLOC_NAPI)) == SKB_ALLOC_NAPI &&
411 	    likely(node == NUMA_NO_NODE || node == numa_mem_id()))
412 		skb = napi_skb_cache_get();
413 	else
414 		skb = kmem_cache_alloc_node(cache, gfp_mask & ~GFP_DMA, node);
415 	if (unlikely(!skb))
416 		return NULL;
417 	prefetchw(skb);
418 
419 	/* We do our best to align skb_shared_info on a separate cache
420 	 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives
421 	 * aligned memory blocks, unless SLUB/SLAB debug is enabled.
422 	 * Both skb->head and skb_shared_info are cache line aligned.
423 	 */
424 	size = SKB_DATA_ALIGN(size);
425 	size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
426 	data = kmalloc_reserve(size, gfp_mask, node, &pfmemalloc);
427 	if (unlikely(!data))
428 		goto nodata;
429 	/* kmalloc(size) might give us more room than requested.
430 	 * Put skb_shared_info exactly at the end of allocated zone,
431 	 * to allow max possible filling before reallocation.
432 	 */
433 	osize = ksize(data);
434 	size = SKB_WITH_OVERHEAD(osize);
435 	prefetchw(data + size);
436 
437 	/*
438 	 * Only clear those fields we need to clear, not those that we will
439 	 * actually initialise below. Hence, don't put any more fields after
440 	 * the tail pointer in struct sk_buff!
441 	 */
442 	memset(skb, 0, offsetof(struct sk_buff, tail));
443 	__build_skb_around(skb, data, osize);
444 	skb->pfmemalloc = pfmemalloc;
445 
446 	if (flags & SKB_ALLOC_FCLONE) {
447 		struct sk_buff_fclones *fclones;
448 
449 		fclones = container_of(skb, struct sk_buff_fclones, skb1);
450 
451 		skb->fclone = SKB_FCLONE_ORIG;
452 		refcount_set(&fclones->fclone_ref, 1);
453 
454 		fclones->skb2.fclone = SKB_FCLONE_CLONE;
455 	}
456 
457 	return skb;
458 
459 nodata:
460 	kmem_cache_free(cache, skb);
461 	return NULL;
462 }
463 EXPORT_SYMBOL(__alloc_skb);
464 
465 /**
466  *	__netdev_alloc_skb - allocate an skbuff for rx on a specific device
467  *	@dev: network device to receive on
468  *	@len: length to allocate
469  *	@gfp_mask: get_free_pages mask, passed to alloc_skb
470  *
471  *	Allocate a new &sk_buff and assign it a usage count of one. The
472  *	buffer has NET_SKB_PAD headroom built in. Users should allocate
473  *	the headroom they think they need without accounting for the
474  *	built in space. The built in space is used for optimisations.
475  *
476  *	%NULL is returned if there is no free memory.
477  */
478 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len,
479 				   gfp_t gfp_mask)
480 {
481 	struct page_frag_cache *nc;
482 	struct sk_buff *skb;
483 	bool pfmemalloc;
484 	void *data;
485 
486 	len += NET_SKB_PAD;
487 
488 	/* If requested length is either too small or too big,
489 	 * we use kmalloc() for skb->head allocation.
490 	 */
491 	if (len <= SKB_WITH_OVERHEAD(1024) ||
492 	    len > SKB_WITH_OVERHEAD(PAGE_SIZE) ||
493 	    (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
494 		skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
495 		if (!skb)
496 			goto skb_fail;
497 		goto skb_success;
498 	}
499 
500 	len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
501 	len = SKB_DATA_ALIGN(len);
502 
503 	if (sk_memalloc_socks())
504 		gfp_mask |= __GFP_MEMALLOC;
505 
506 	if (in_hardirq() || irqs_disabled()) {
507 		nc = this_cpu_ptr(&netdev_alloc_cache);
508 		data = page_frag_alloc(nc, len, gfp_mask);
509 		pfmemalloc = nc->pfmemalloc;
510 	} else {
511 		local_bh_disable();
512 		nc = this_cpu_ptr(&napi_alloc_cache.page);
513 		data = page_frag_alloc(nc, len, gfp_mask);
514 		pfmemalloc = nc->pfmemalloc;
515 		local_bh_enable();
516 	}
517 
518 	if (unlikely(!data))
519 		return NULL;
520 
521 	skb = __build_skb(data, len);
522 	if (unlikely(!skb)) {
523 		skb_free_frag(data);
524 		return NULL;
525 	}
526 
527 	if (pfmemalloc)
528 		skb->pfmemalloc = 1;
529 	skb->head_frag = 1;
530 
531 skb_success:
532 	skb_reserve(skb, NET_SKB_PAD);
533 	skb->dev = dev;
534 
535 skb_fail:
536 	return skb;
537 }
538 EXPORT_SYMBOL(__netdev_alloc_skb);
539 
540 /**
541  *	__napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance
542  *	@napi: napi instance this buffer was allocated for
543  *	@len: length to allocate
544  *	@gfp_mask: get_free_pages mask, passed to alloc_skb and alloc_pages
545  *
546  *	Allocate a new sk_buff for use in NAPI receive.  This buffer will
547  *	attempt to allocate the head from a special reserved region used
548  *	only for NAPI Rx allocation.  By doing this we can save several
549  *	CPU cycles by avoiding having to disable and re-enable IRQs.
550  *
551  *	%NULL is returned if there is no free memory.
552  */
553 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, unsigned int len,
554 				 gfp_t gfp_mask)
555 {
556 	struct napi_alloc_cache *nc;
557 	struct sk_buff *skb;
558 	void *data;
559 
560 	len += NET_SKB_PAD + NET_IP_ALIGN;
561 
562 	/* If requested length is either too small or too big,
563 	 * we use kmalloc() for skb->head allocation.
564 	 */
565 	if (len <= SKB_WITH_OVERHEAD(1024) ||
566 	    len > SKB_WITH_OVERHEAD(PAGE_SIZE) ||
567 	    (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
568 		skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX | SKB_ALLOC_NAPI,
569 				  NUMA_NO_NODE);
570 		if (!skb)
571 			goto skb_fail;
572 		goto skb_success;
573 	}
574 
575 	nc = this_cpu_ptr(&napi_alloc_cache);
576 	len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
577 	len = SKB_DATA_ALIGN(len);
578 
579 	if (sk_memalloc_socks())
580 		gfp_mask |= __GFP_MEMALLOC;
581 
582 	data = page_frag_alloc(&nc->page, len, gfp_mask);
583 	if (unlikely(!data))
584 		return NULL;
585 
586 	skb = __napi_build_skb(data, len);
587 	if (unlikely(!skb)) {
588 		skb_free_frag(data);
589 		return NULL;
590 	}
591 
592 	if (nc->page.pfmemalloc)
593 		skb->pfmemalloc = 1;
594 	skb->head_frag = 1;
595 
596 skb_success:
597 	skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN);
598 	skb->dev = napi->dev;
599 
600 skb_fail:
601 	return skb;
602 }
603 EXPORT_SYMBOL(__napi_alloc_skb);
604 
605 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
606 		     int size, unsigned int truesize)
607 {
608 	skb_fill_page_desc(skb, i, page, off, size);
609 	skb->len += size;
610 	skb->data_len += size;
611 	skb->truesize += truesize;
612 }
613 EXPORT_SYMBOL(skb_add_rx_frag);
614 
615 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
616 			  unsigned int truesize)
617 {
618 	skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
619 
620 	skb_frag_size_add(frag, size);
621 	skb->len += size;
622 	skb->data_len += size;
623 	skb->truesize += truesize;
624 }
625 EXPORT_SYMBOL(skb_coalesce_rx_frag);
626 
627 static void skb_drop_list(struct sk_buff **listp)
628 {
629 	kfree_skb_list(*listp);
630 	*listp = NULL;
631 }
632 
633 static inline void skb_drop_fraglist(struct sk_buff *skb)
634 {
635 	skb_drop_list(&skb_shinfo(skb)->frag_list);
636 }
637 
638 static void skb_clone_fraglist(struct sk_buff *skb)
639 {
640 	struct sk_buff *list;
641 
642 	skb_walk_frags(skb, list)
643 		skb_get(list);
644 }
645 
646 static void skb_free_head(struct sk_buff *skb)
647 {
648 	unsigned char *head = skb->head;
649 
650 	if (skb->head_frag) {
651 		if (skb_pp_recycle(skb, head))
652 			return;
653 		skb_free_frag(head);
654 	} else {
655 		kfree(head);
656 	}
657 }
658 
659 static void skb_release_data(struct sk_buff *skb)
660 {
661 	struct skb_shared_info *shinfo = skb_shinfo(skb);
662 	int i;
663 
664 	if (skb->cloned &&
665 	    atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
666 			      &shinfo->dataref))
667 		goto exit;
668 
669 	skb_zcopy_clear(skb, true);
670 
671 	for (i = 0; i < shinfo->nr_frags; i++)
672 		__skb_frag_unref(&shinfo->frags[i], skb->pp_recycle);
673 
674 	if (shinfo->frag_list)
675 		kfree_skb_list(shinfo->frag_list);
676 
677 	skb_free_head(skb);
678 exit:
679 	/* When we clone an SKB we copy the reycling bit. The pp_recycle
680 	 * bit is only set on the head though, so in order to avoid races
681 	 * while trying to recycle fragments on __skb_frag_unref() we need
682 	 * to make one SKB responsible for triggering the recycle path.
683 	 * So disable the recycling bit if an SKB is cloned and we have
684 	 * additional references to to the fragmented part of the SKB.
685 	 * Eventually the last SKB will have the recycling bit set and it's
686 	 * dataref set to 0, which will trigger the recycling
687 	 */
688 	skb->pp_recycle = 0;
689 }
690 
691 /*
692  *	Free an skbuff by memory without cleaning the state.
693  */
694 static void kfree_skbmem(struct sk_buff *skb)
695 {
696 	struct sk_buff_fclones *fclones;
697 
698 	switch (skb->fclone) {
699 	case SKB_FCLONE_UNAVAILABLE:
700 		kmem_cache_free(skbuff_head_cache, skb);
701 		return;
702 
703 	case SKB_FCLONE_ORIG:
704 		fclones = container_of(skb, struct sk_buff_fclones, skb1);
705 
706 		/* We usually free the clone (TX completion) before original skb
707 		 * This test would have no chance to be true for the clone,
708 		 * while here, branch prediction will be good.
709 		 */
710 		if (refcount_read(&fclones->fclone_ref) == 1)
711 			goto fastpath;
712 		break;
713 
714 	default: /* SKB_FCLONE_CLONE */
715 		fclones = container_of(skb, struct sk_buff_fclones, skb2);
716 		break;
717 	}
718 	if (!refcount_dec_and_test(&fclones->fclone_ref))
719 		return;
720 fastpath:
721 	kmem_cache_free(skbuff_fclone_cache, fclones);
722 }
723 
724 void skb_release_head_state(struct sk_buff *skb)
725 {
726 	skb_dst_drop(skb);
727 	if (skb->destructor) {
728 		WARN_ON(in_hardirq());
729 		skb->destructor(skb);
730 	}
731 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
732 	nf_conntrack_put(skb_nfct(skb));
733 #endif
734 	skb_ext_put(skb);
735 }
736 
737 /* Free everything but the sk_buff shell. */
738 static void skb_release_all(struct sk_buff *skb)
739 {
740 	skb_release_head_state(skb);
741 	if (likely(skb->head))
742 		skb_release_data(skb);
743 }
744 
745 /**
746  *	__kfree_skb - private function
747  *	@skb: buffer
748  *
749  *	Free an sk_buff. Release anything attached to the buffer.
750  *	Clean the state. This is an internal helper function. Users should
751  *	always call kfree_skb
752  */
753 
754 void __kfree_skb(struct sk_buff *skb)
755 {
756 	skb_release_all(skb);
757 	kfree_skbmem(skb);
758 }
759 EXPORT_SYMBOL(__kfree_skb);
760 
761 /**
762  *	kfree_skb_reason - free an sk_buff with special reason
763  *	@skb: buffer to free
764  *	@reason: reason why this skb is dropped
765  *
766  *	Drop a reference to the buffer and free it if the usage count has
767  *	hit zero. Meanwhile, pass the drop reason to 'kfree_skb'
768  *	tracepoint.
769  */
770 void kfree_skb_reason(struct sk_buff *skb, enum skb_drop_reason reason)
771 {
772 	if (!skb_unref(skb))
773 		return;
774 
775 	trace_kfree_skb(skb, __builtin_return_address(0), reason);
776 	__kfree_skb(skb);
777 }
778 EXPORT_SYMBOL(kfree_skb_reason);
779 
780 void kfree_skb_list(struct sk_buff *segs)
781 {
782 	while (segs) {
783 		struct sk_buff *next = segs->next;
784 
785 		kfree_skb(segs);
786 		segs = next;
787 	}
788 }
789 EXPORT_SYMBOL(kfree_skb_list);
790 
791 /* Dump skb information and contents.
792  *
793  * Must only be called from net_ratelimit()-ed paths.
794  *
795  * Dumps whole packets if full_pkt, only headers otherwise.
796  */
797 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt)
798 {
799 	struct skb_shared_info *sh = skb_shinfo(skb);
800 	struct net_device *dev = skb->dev;
801 	struct sock *sk = skb->sk;
802 	struct sk_buff *list_skb;
803 	bool has_mac, has_trans;
804 	int headroom, tailroom;
805 	int i, len, seg_len;
806 
807 	if (full_pkt)
808 		len = skb->len;
809 	else
810 		len = min_t(int, skb->len, MAX_HEADER + 128);
811 
812 	headroom = skb_headroom(skb);
813 	tailroom = skb_tailroom(skb);
814 
815 	has_mac = skb_mac_header_was_set(skb);
816 	has_trans = skb_transport_header_was_set(skb);
817 
818 	printk("%sskb len=%u headroom=%u headlen=%u tailroom=%u\n"
819 	       "mac=(%d,%d) net=(%d,%d) trans=%d\n"
820 	       "shinfo(txflags=%u nr_frags=%u gso(size=%hu type=%u segs=%hu))\n"
821 	       "csum(0x%x ip_summed=%u complete_sw=%u valid=%u level=%u)\n"
822 	       "hash(0x%x sw=%u l4=%u) proto=0x%04x pkttype=%u iif=%d\n",
823 	       level, skb->len, headroom, skb_headlen(skb), tailroom,
824 	       has_mac ? skb->mac_header : -1,
825 	       has_mac ? skb_mac_header_len(skb) : -1,
826 	       skb->network_header,
827 	       has_trans ? skb_network_header_len(skb) : -1,
828 	       has_trans ? skb->transport_header : -1,
829 	       sh->tx_flags, sh->nr_frags,
830 	       sh->gso_size, sh->gso_type, sh->gso_segs,
831 	       skb->csum, skb->ip_summed, skb->csum_complete_sw,
832 	       skb->csum_valid, skb->csum_level,
833 	       skb->hash, skb->sw_hash, skb->l4_hash,
834 	       ntohs(skb->protocol), skb->pkt_type, skb->skb_iif);
835 
836 	if (dev)
837 		printk("%sdev name=%s feat=%pNF\n",
838 		       level, dev->name, &dev->features);
839 	if (sk)
840 		printk("%ssk family=%hu type=%u proto=%u\n",
841 		       level, sk->sk_family, sk->sk_type, sk->sk_protocol);
842 
843 	if (full_pkt && headroom)
844 		print_hex_dump(level, "skb headroom: ", DUMP_PREFIX_OFFSET,
845 			       16, 1, skb->head, headroom, false);
846 
847 	seg_len = min_t(int, skb_headlen(skb), len);
848 	if (seg_len)
849 		print_hex_dump(level, "skb linear:   ", DUMP_PREFIX_OFFSET,
850 			       16, 1, skb->data, seg_len, false);
851 	len -= seg_len;
852 
853 	if (full_pkt && tailroom)
854 		print_hex_dump(level, "skb tailroom: ", DUMP_PREFIX_OFFSET,
855 			       16, 1, skb_tail_pointer(skb), tailroom, false);
856 
857 	for (i = 0; len && i < skb_shinfo(skb)->nr_frags; i++) {
858 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
859 		u32 p_off, p_len, copied;
860 		struct page *p;
861 		u8 *vaddr;
862 
863 		skb_frag_foreach_page(frag, skb_frag_off(frag),
864 				      skb_frag_size(frag), p, p_off, p_len,
865 				      copied) {
866 			seg_len = min_t(int, p_len, len);
867 			vaddr = kmap_atomic(p);
868 			print_hex_dump(level, "skb frag:     ",
869 				       DUMP_PREFIX_OFFSET,
870 				       16, 1, vaddr + p_off, seg_len, false);
871 			kunmap_atomic(vaddr);
872 			len -= seg_len;
873 			if (!len)
874 				break;
875 		}
876 	}
877 
878 	if (full_pkt && skb_has_frag_list(skb)) {
879 		printk("skb fraglist:\n");
880 		skb_walk_frags(skb, list_skb)
881 			skb_dump(level, list_skb, true);
882 	}
883 }
884 EXPORT_SYMBOL(skb_dump);
885 
886 /**
887  *	skb_tx_error - report an sk_buff xmit error
888  *	@skb: buffer that triggered an error
889  *
890  *	Report xmit error if a device callback is tracking this skb.
891  *	skb must be freed afterwards.
892  */
893 void skb_tx_error(struct sk_buff *skb)
894 {
895 	skb_zcopy_clear(skb, true);
896 }
897 EXPORT_SYMBOL(skb_tx_error);
898 
899 #ifdef CONFIG_TRACEPOINTS
900 /**
901  *	consume_skb - free an skbuff
902  *	@skb: buffer to free
903  *
904  *	Drop a ref to the buffer and free it if the usage count has hit zero
905  *	Functions identically to kfree_skb, but kfree_skb assumes that the frame
906  *	is being dropped after a failure and notes that
907  */
908 void consume_skb(struct sk_buff *skb)
909 {
910 	if (!skb_unref(skb))
911 		return;
912 
913 	trace_consume_skb(skb);
914 	__kfree_skb(skb);
915 }
916 EXPORT_SYMBOL(consume_skb);
917 #endif
918 
919 /**
920  *	__consume_stateless_skb - free an skbuff, assuming it is stateless
921  *	@skb: buffer to free
922  *
923  *	Alike consume_skb(), but this variant assumes that this is the last
924  *	skb reference and all the head states have been already dropped
925  */
926 void __consume_stateless_skb(struct sk_buff *skb)
927 {
928 	trace_consume_skb(skb);
929 	skb_release_data(skb);
930 	kfree_skbmem(skb);
931 }
932 
933 static void napi_skb_cache_put(struct sk_buff *skb)
934 {
935 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
936 	u32 i;
937 
938 	kasan_poison_object_data(skbuff_head_cache, skb);
939 	nc->skb_cache[nc->skb_count++] = skb;
940 
941 	if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) {
942 		for (i = NAPI_SKB_CACHE_HALF; i < NAPI_SKB_CACHE_SIZE; i++)
943 			kasan_unpoison_object_data(skbuff_head_cache,
944 						   nc->skb_cache[i]);
945 
946 		kmem_cache_free_bulk(skbuff_head_cache, NAPI_SKB_CACHE_HALF,
947 				     nc->skb_cache + NAPI_SKB_CACHE_HALF);
948 		nc->skb_count = NAPI_SKB_CACHE_HALF;
949 	}
950 }
951 
952 void __kfree_skb_defer(struct sk_buff *skb)
953 {
954 	skb_release_all(skb);
955 	napi_skb_cache_put(skb);
956 }
957 
958 void napi_skb_free_stolen_head(struct sk_buff *skb)
959 {
960 	if (unlikely(skb->slow_gro)) {
961 		nf_reset_ct(skb);
962 		skb_dst_drop(skb);
963 		skb_ext_put(skb);
964 		skb_orphan(skb);
965 		skb->slow_gro = 0;
966 	}
967 	napi_skb_cache_put(skb);
968 }
969 
970 void napi_consume_skb(struct sk_buff *skb, int budget)
971 {
972 	/* Zero budget indicate non-NAPI context called us, like netpoll */
973 	if (unlikely(!budget)) {
974 		dev_consume_skb_any(skb);
975 		return;
976 	}
977 
978 	lockdep_assert_in_softirq();
979 
980 	if (!skb_unref(skb))
981 		return;
982 
983 	/* if reaching here SKB is ready to free */
984 	trace_consume_skb(skb);
985 
986 	/* if SKB is a clone, don't handle this case */
987 	if (skb->fclone != SKB_FCLONE_UNAVAILABLE) {
988 		__kfree_skb(skb);
989 		return;
990 	}
991 
992 	skb_release_all(skb);
993 	napi_skb_cache_put(skb);
994 }
995 EXPORT_SYMBOL(napi_consume_skb);
996 
997 /* Make sure a field is contained by headers group */
998 #define CHECK_SKB_FIELD(field) \
999 	BUILD_BUG_ON(offsetof(struct sk_buff, field) !=		\
1000 		     offsetof(struct sk_buff, headers.field));	\
1001 
1002 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
1003 {
1004 	new->tstamp		= old->tstamp;
1005 	/* We do not copy old->sk */
1006 	new->dev		= old->dev;
1007 	memcpy(new->cb, old->cb, sizeof(old->cb));
1008 	skb_dst_copy(new, old);
1009 	__skb_ext_copy(new, old);
1010 	__nf_copy(new, old, false);
1011 
1012 	/* Note : this field could be in the headers group.
1013 	 * It is not yet because we do not want to have a 16 bit hole
1014 	 */
1015 	new->queue_mapping = old->queue_mapping;
1016 
1017 	memcpy(&new->headers, &old->headers, sizeof(new->headers));
1018 	CHECK_SKB_FIELD(protocol);
1019 	CHECK_SKB_FIELD(csum);
1020 	CHECK_SKB_FIELD(hash);
1021 	CHECK_SKB_FIELD(priority);
1022 	CHECK_SKB_FIELD(skb_iif);
1023 	CHECK_SKB_FIELD(vlan_proto);
1024 	CHECK_SKB_FIELD(vlan_tci);
1025 	CHECK_SKB_FIELD(transport_header);
1026 	CHECK_SKB_FIELD(network_header);
1027 	CHECK_SKB_FIELD(mac_header);
1028 	CHECK_SKB_FIELD(inner_protocol);
1029 	CHECK_SKB_FIELD(inner_transport_header);
1030 	CHECK_SKB_FIELD(inner_network_header);
1031 	CHECK_SKB_FIELD(inner_mac_header);
1032 	CHECK_SKB_FIELD(mark);
1033 #ifdef CONFIG_NETWORK_SECMARK
1034 	CHECK_SKB_FIELD(secmark);
1035 #endif
1036 #ifdef CONFIG_NET_RX_BUSY_POLL
1037 	CHECK_SKB_FIELD(napi_id);
1038 #endif
1039 #ifdef CONFIG_XPS
1040 	CHECK_SKB_FIELD(sender_cpu);
1041 #endif
1042 #ifdef CONFIG_NET_SCHED
1043 	CHECK_SKB_FIELD(tc_index);
1044 #endif
1045 
1046 }
1047 
1048 /*
1049  * You should not add any new code to this function.  Add it to
1050  * __copy_skb_header above instead.
1051  */
1052 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
1053 {
1054 #define C(x) n->x = skb->x
1055 
1056 	n->next = n->prev = NULL;
1057 	n->sk = NULL;
1058 	__copy_skb_header(n, skb);
1059 
1060 	C(len);
1061 	C(data_len);
1062 	C(mac_len);
1063 	n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
1064 	n->cloned = 1;
1065 	n->nohdr = 0;
1066 	n->peeked = 0;
1067 	C(pfmemalloc);
1068 	C(pp_recycle);
1069 	n->destructor = NULL;
1070 	C(tail);
1071 	C(end);
1072 	C(head);
1073 	C(head_frag);
1074 	C(data);
1075 	C(truesize);
1076 	refcount_set(&n->users, 1);
1077 
1078 	atomic_inc(&(skb_shinfo(skb)->dataref));
1079 	skb->cloned = 1;
1080 
1081 	return n;
1082 #undef C
1083 }
1084 
1085 /**
1086  * alloc_skb_for_msg() - allocate sk_buff to wrap frag list forming a msg
1087  * @first: first sk_buff of the msg
1088  */
1089 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first)
1090 {
1091 	struct sk_buff *n;
1092 
1093 	n = alloc_skb(0, GFP_ATOMIC);
1094 	if (!n)
1095 		return NULL;
1096 
1097 	n->len = first->len;
1098 	n->data_len = first->len;
1099 	n->truesize = first->truesize;
1100 
1101 	skb_shinfo(n)->frag_list = first;
1102 
1103 	__copy_skb_header(n, first);
1104 	n->destructor = NULL;
1105 
1106 	return n;
1107 }
1108 EXPORT_SYMBOL_GPL(alloc_skb_for_msg);
1109 
1110 /**
1111  *	skb_morph	-	morph one skb into another
1112  *	@dst: the skb to receive the contents
1113  *	@src: the skb to supply the contents
1114  *
1115  *	This is identical to skb_clone except that the target skb is
1116  *	supplied by the user.
1117  *
1118  *	The target skb is returned upon exit.
1119  */
1120 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
1121 {
1122 	skb_release_all(dst);
1123 	return __skb_clone(dst, src);
1124 }
1125 EXPORT_SYMBOL_GPL(skb_morph);
1126 
1127 int mm_account_pinned_pages(struct mmpin *mmp, size_t size)
1128 {
1129 	unsigned long max_pg, num_pg, new_pg, old_pg;
1130 	struct user_struct *user;
1131 
1132 	if (capable(CAP_IPC_LOCK) || !size)
1133 		return 0;
1134 
1135 	num_pg = (size >> PAGE_SHIFT) + 2;	/* worst case */
1136 	max_pg = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
1137 	user = mmp->user ? : current_user();
1138 
1139 	do {
1140 		old_pg = atomic_long_read(&user->locked_vm);
1141 		new_pg = old_pg + num_pg;
1142 		if (new_pg > max_pg)
1143 			return -ENOBUFS;
1144 	} while (atomic_long_cmpxchg(&user->locked_vm, old_pg, new_pg) !=
1145 		 old_pg);
1146 
1147 	if (!mmp->user) {
1148 		mmp->user = get_uid(user);
1149 		mmp->num_pg = num_pg;
1150 	} else {
1151 		mmp->num_pg += num_pg;
1152 	}
1153 
1154 	return 0;
1155 }
1156 EXPORT_SYMBOL_GPL(mm_account_pinned_pages);
1157 
1158 void mm_unaccount_pinned_pages(struct mmpin *mmp)
1159 {
1160 	if (mmp->user) {
1161 		atomic_long_sub(mmp->num_pg, &mmp->user->locked_vm);
1162 		free_uid(mmp->user);
1163 	}
1164 }
1165 EXPORT_SYMBOL_GPL(mm_unaccount_pinned_pages);
1166 
1167 struct ubuf_info *msg_zerocopy_alloc(struct sock *sk, size_t size)
1168 {
1169 	struct ubuf_info *uarg;
1170 	struct sk_buff *skb;
1171 
1172 	WARN_ON_ONCE(!in_task());
1173 
1174 	skb = sock_omalloc(sk, 0, GFP_KERNEL);
1175 	if (!skb)
1176 		return NULL;
1177 
1178 	BUILD_BUG_ON(sizeof(*uarg) > sizeof(skb->cb));
1179 	uarg = (void *)skb->cb;
1180 	uarg->mmp.user = NULL;
1181 
1182 	if (mm_account_pinned_pages(&uarg->mmp, size)) {
1183 		kfree_skb(skb);
1184 		return NULL;
1185 	}
1186 
1187 	uarg->callback = msg_zerocopy_callback;
1188 	uarg->id = ((u32)atomic_inc_return(&sk->sk_zckey)) - 1;
1189 	uarg->len = 1;
1190 	uarg->bytelen = size;
1191 	uarg->zerocopy = 1;
1192 	uarg->flags = SKBFL_ZEROCOPY_FRAG;
1193 	refcount_set(&uarg->refcnt, 1);
1194 	sock_hold(sk);
1195 
1196 	return uarg;
1197 }
1198 EXPORT_SYMBOL_GPL(msg_zerocopy_alloc);
1199 
1200 static inline struct sk_buff *skb_from_uarg(struct ubuf_info *uarg)
1201 {
1202 	return container_of((void *)uarg, struct sk_buff, cb);
1203 }
1204 
1205 struct ubuf_info *msg_zerocopy_realloc(struct sock *sk, size_t size,
1206 				       struct ubuf_info *uarg)
1207 {
1208 	if (uarg) {
1209 		const u32 byte_limit = 1 << 19;		/* limit to a few TSO */
1210 		u32 bytelen, next;
1211 
1212 		/* realloc only when socket is locked (TCP, UDP cork),
1213 		 * so uarg->len and sk_zckey access is serialized
1214 		 */
1215 		if (!sock_owned_by_user(sk)) {
1216 			WARN_ON_ONCE(1);
1217 			return NULL;
1218 		}
1219 
1220 		bytelen = uarg->bytelen + size;
1221 		if (uarg->len == USHRT_MAX - 1 || bytelen > byte_limit) {
1222 			/* TCP can create new skb to attach new uarg */
1223 			if (sk->sk_type == SOCK_STREAM)
1224 				goto new_alloc;
1225 			return NULL;
1226 		}
1227 
1228 		next = (u32)atomic_read(&sk->sk_zckey);
1229 		if ((u32)(uarg->id + uarg->len) == next) {
1230 			if (mm_account_pinned_pages(&uarg->mmp, size))
1231 				return NULL;
1232 			uarg->len++;
1233 			uarg->bytelen = bytelen;
1234 			atomic_set(&sk->sk_zckey, ++next);
1235 
1236 			/* no extra ref when appending to datagram (MSG_MORE) */
1237 			if (sk->sk_type == SOCK_STREAM)
1238 				net_zcopy_get(uarg);
1239 
1240 			return uarg;
1241 		}
1242 	}
1243 
1244 new_alloc:
1245 	return msg_zerocopy_alloc(sk, size);
1246 }
1247 EXPORT_SYMBOL_GPL(msg_zerocopy_realloc);
1248 
1249 static bool skb_zerocopy_notify_extend(struct sk_buff *skb, u32 lo, u16 len)
1250 {
1251 	struct sock_exterr_skb *serr = SKB_EXT_ERR(skb);
1252 	u32 old_lo, old_hi;
1253 	u64 sum_len;
1254 
1255 	old_lo = serr->ee.ee_info;
1256 	old_hi = serr->ee.ee_data;
1257 	sum_len = old_hi - old_lo + 1ULL + len;
1258 
1259 	if (sum_len >= (1ULL << 32))
1260 		return false;
1261 
1262 	if (lo != old_hi + 1)
1263 		return false;
1264 
1265 	serr->ee.ee_data += len;
1266 	return true;
1267 }
1268 
1269 static void __msg_zerocopy_callback(struct ubuf_info *uarg)
1270 {
1271 	struct sk_buff *tail, *skb = skb_from_uarg(uarg);
1272 	struct sock_exterr_skb *serr;
1273 	struct sock *sk = skb->sk;
1274 	struct sk_buff_head *q;
1275 	unsigned long flags;
1276 	bool is_zerocopy;
1277 	u32 lo, hi;
1278 	u16 len;
1279 
1280 	mm_unaccount_pinned_pages(&uarg->mmp);
1281 
1282 	/* if !len, there was only 1 call, and it was aborted
1283 	 * so do not queue a completion notification
1284 	 */
1285 	if (!uarg->len || sock_flag(sk, SOCK_DEAD))
1286 		goto release;
1287 
1288 	len = uarg->len;
1289 	lo = uarg->id;
1290 	hi = uarg->id + len - 1;
1291 	is_zerocopy = uarg->zerocopy;
1292 
1293 	serr = SKB_EXT_ERR(skb);
1294 	memset(serr, 0, sizeof(*serr));
1295 	serr->ee.ee_errno = 0;
1296 	serr->ee.ee_origin = SO_EE_ORIGIN_ZEROCOPY;
1297 	serr->ee.ee_data = hi;
1298 	serr->ee.ee_info = lo;
1299 	if (!is_zerocopy)
1300 		serr->ee.ee_code |= SO_EE_CODE_ZEROCOPY_COPIED;
1301 
1302 	q = &sk->sk_error_queue;
1303 	spin_lock_irqsave(&q->lock, flags);
1304 	tail = skb_peek_tail(q);
1305 	if (!tail || SKB_EXT_ERR(tail)->ee.ee_origin != SO_EE_ORIGIN_ZEROCOPY ||
1306 	    !skb_zerocopy_notify_extend(tail, lo, len)) {
1307 		__skb_queue_tail(q, skb);
1308 		skb = NULL;
1309 	}
1310 	spin_unlock_irqrestore(&q->lock, flags);
1311 
1312 	sk_error_report(sk);
1313 
1314 release:
1315 	consume_skb(skb);
1316 	sock_put(sk);
1317 }
1318 
1319 void msg_zerocopy_callback(struct sk_buff *skb, struct ubuf_info *uarg,
1320 			   bool success)
1321 {
1322 	uarg->zerocopy = uarg->zerocopy & success;
1323 
1324 	if (refcount_dec_and_test(&uarg->refcnt))
1325 		__msg_zerocopy_callback(uarg);
1326 }
1327 EXPORT_SYMBOL_GPL(msg_zerocopy_callback);
1328 
1329 void msg_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref)
1330 {
1331 	struct sock *sk = skb_from_uarg(uarg)->sk;
1332 
1333 	atomic_dec(&sk->sk_zckey);
1334 	uarg->len--;
1335 
1336 	if (have_uref)
1337 		msg_zerocopy_callback(NULL, uarg, true);
1338 }
1339 EXPORT_SYMBOL_GPL(msg_zerocopy_put_abort);
1340 
1341 int skb_zerocopy_iter_dgram(struct sk_buff *skb, struct msghdr *msg, int len)
1342 {
1343 	return __zerocopy_sg_from_iter(skb->sk, skb, &msg->msg_iter, len);
1344 }
1345 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_dgram);
1346 
1347 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
1348 			     struct msghdr *msg, int len,
1349 			     struct ubuf_info *uarg)
1350 {
1351 	struct ubuf_info *orig_uarg = skb_zcopy(skb);
1352 	struct iov_iter orig_iter = msg->msg_iter;
1353 	int err, orig_len = skb->len;
1354 
1355 	/* An skb can only point to one uarg. This edge case happens when
1356 	 * TCP appends to an skb, but zerocopy_realloc triggered a new alloc.
1357 	 */
1358 	if (orig_uarg && uarg != orig_uarg)
1359 		return -EEXIST;
1360 
1361 	err = __zerocopy_sg_from_iter(sk, skb, &msg->msg_iter, len);
1362 	if (err == -EFAULT || (err == -EMSGSIZE && skb->len == orig_len)) {
1363 		struct sock *save_sk = skb->sk;
1364 
1365 		/* Streams do not free skb on error. Reset to prev state. */
1366 		msg->msg_iter = orig_iter;
1367 		skb->sk = sk;
1368 		___pskb_trim(skb, orig_len);
1369 		skb->sk = save_sk;
1370 		return err;
1371 	}
1372 
1373 	skb_zcopy_set(skb, uarg, NULL);
1374 	return skb->len - orig_len;
1375 }
1376 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_stream);
1377 
1378 static int skb_zerocopy_clone(struct sk_buff *nskb, struct sk_buff *orig,
1379 			      gfp_t gfp_mask)
1380 {
1381 	if (skb_zcopy(orig)) {
1382 		if (skb_zcopy(nskb)) {
1383 			/* !gfp_mask callers are verified to !skb_zcopy(nskb) */
1384 			if (!gfp_mask) {
1385 				WARN_ON_ONCE(1);
1386 				return -ENOMEM;
1387 			}
1388 			if (skb_uarg(nskb) == skb_uarg(orig))
1389 				return 0;
1390 			if (skb_copy_ubufs(nskb, GFP_ATOMIC))
1391 				return -EIO;
1392 		}
1393 		skb_zcopy_set(nskb, skb_uarg(orig), NULL);
1394 	}
1395 	return 0;
1396 }
1397 
1398 /**
1399  *	skb_copy_ubufs	-	copy userspace skb frags buffers to kernel
1400  *	@skb: the skb to modify
1401  *	@gfp_mask: allocation priority
1402  *
1403  *	This must be called on skb with SKBFL_ZEROCOPY_ENABLE.
1404  *	It will copy all frags into kernel and drop the reference
1405  *	to userspace pages.
1406  *
1407  *	If this function is called from an interrupt gfp_mask() must be
1408  *	%GFP_ATOMIC.
1409  *
1410  *	Returns 0 on success or a negative error code on failure
1411  *	to allocate kernel memory to copy to.
1412  */
1413 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask)
1414 {
1415 	int num_frags = skb_shinfo(skb)->nr_frags;
1416 	struct page *page, *head = NULL;
1417 	int i, new_frags;
1418 	u32 d_off;
1419 
1420 	if (skb_shared(skb) || skb_unclone(skb, gfp_mask))
1421 		return -EINVAL;
1422 
1423 	if (!num_frags)
1424 		goto release;
1425 
1426 	new_frags = (__skb_pagelen(skb) + PAGE_SIZE - 1) >> PAGE_SHIFT;
1427 	for (i = 0; i < new_frags; i++) {
1428 		page = alloc_page(gfp_mask);
1429 		if (!page) {
1430 			while (head) {
1431 				struct page *next = (struct page *)page_private(head);
1432 				put_page(head);
1433 				head = next;
1434 			}
1435 			return -ENOMEM;
1436 		}
1437 		set_page_private(page, (unsigned long)head);
1438 		head = page;
1439 	}
1440 
1441 	page = head;
1442 	d_off = 0;
1443 	for (i = 0; i < num_frags; i++) {
1444 		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
1445 		u32 p_off, p_len, copied;
1446 		struct page *p;
1447 		u8 *vaddr;
1448 
1449 		skb_frag_foreach_page(f, skb_frag_off(f), skb_frag_size(f),
1450 				      p, p_off, p_len, copied) {
1451 			u32 copy, done = 0;
1452 			vaddr = kmap_atomic(p);
1453 
1454 			while (done < p_len) {
1455 				if (d_off == PAGE_SIZE) {
1456 					d_off = 0;
1457 					page = (struct page *)page_private(page);
1458 				}
1459 				copy = min_t(u32, PAGE_SIZE - d_off, p_len - done);
1460 				memcpy(page_address(page) + d_off,
1461 				       vaddr + p_off + done, copy);
1462 				done += copy;
1463 				d_off += copy;
1464 			}
1465 			kunmap_atomic(vaddr);
1466 		}
1467 	}
1468 
1469 	/* skb frags release userspace buffers */
1470 	for (i = 0; i < num_frags; i++)
1471 		skb_frag_unref(skb, i);
1472 
1473 	/* skb frags point to kernel buffers */
1474 	for (i = 0; i < new_frags - 1; i++) {
1475 		__skb_fill_page_desc(skb, i, head, 0, PAGE_SIZE);
1476 		head = (struct page *)page_private(head);
1477 	}
1478 	__skb_fill_page_desc(skb, new_frags - 1, head, 0, d_off);
1479 	skb_shinfo(skb)->nr_frags = new_frags;
1480 
1481 release:
1482 	skb_zcopy_clear(skb, false);
1483 	return 0;
1484 }
1485 EXPORT_SYMBOL_GPL(skb_copy_ubufs);
1486 
1487 /**
1488  *	skb_clone	-	duplicate an sk_buff
1489  *	@skb: buffer to clone
1490  *	@gfp_mask: allocation priority
1491  *
1492  *	Duplicate an &sk_buff. The new one is not owned by a socket. Both
1493  *	copies share the same packet data but not structure. The new
1494  *	buffer has a reference count of 1. If the allocation fails the
1495  *	function returns %NULL otherwise the new buffer is returned.
1496  *
1497  *	If this function is called from an interrupt gfp_mask() must be
1498  *	%GFP_ATOMIC.
1499  */
1500 
1501 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
1502 {
1503 	struct sk_buff_fclones *fclones = container_of(skb,
1504 						       struct sk_buff_fclones,
1505 						       skb1);
1506 	struct sk_buff *n;
1507 
1508 	if (skb_orphan_frags(skb, gfp_mask))
1509 		return NULL;
1510 
1511 	if (skb->fclone == SKB_FCLONE_ORIG &&
1512 	    refcount_read(&fclones->fclone_ref) == 1) {
1513 		n = &fclones->skb2;
1514 		refcount_set(&fclones->fclone_ref, 2);
1515 	} else {
1516 		if (skb_pfmemalloc(skb))
1517 			gfp_mask |= __GFP_MEMALLOC;
1518 
1519 		n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
1520 		if (!n)
1521 			return NULL;
1522 
1523 		n->fclone = SKB_FCLONE_UNAVAILABLE;
1524 	}
1525 
1526 	return __skb_clone(n, skb);
1527 }
1528 EXPORT_SYMBOL(skb_clone);
1529 
1530 void skb_headers_offset_update(struct sk_buff *skb, int off)
1531 {
1532 	/* Only adjust this if it actually is csum_start rather than csum */
1533 	if (skb->ip_summed == CHECKSUM_PARTIAL)
1534 		skb->csum_start += off;
1535 	/* {transport,network,mac}_header and tail are relative to skb->head */
1536 	skb->transport_header += off;
1537 	skb->network_header   += off;
1538 	if (skb_mac_header_was_set(skb))
1539 		skb->mac_header += off;
1540 	skb->inner_transport_header += off;
1541 	skb->inner_network_header += off;
1542 	skb->inner_mac_header += off;
1543 }
1544 EXPORT_SYMBOL(skb_headers_offset_update);
1545 
1546 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old)
1547 {
1548 	__copy_skb_header(new, old);
1549 
1550 	skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
1551 	skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
1552 	skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
1553 }
1554 EXPORT_SYMBOL(skb_copy_header);
1555 
1556 static inline int skb_alloc_rx_flag(const struct sk_buff *skb)
1557 {
1558 	if (skb_pfmemalloc(skb))
1559 		return SKB_ALLOC_RX;
1560 	return 0;
1561 }
1562 
1563 /**
1564  *	skb_copy	-	create private copy of an sk_buff
1565  *	@skb: buffer to copy
1566  *	@gfp_mask: allocation priority
1567  *
1568  *	Make a copy of both an &sk_buff and its data. This is used when the
1569  *	caller wishes to modify the data and needs a private copy of the
1570  *	data to alter. Returns %NULL on failure or the pointer to the buffer
1571  *	on success. The returned buffer has a reference count of 1.
1572  *
1573  *	As by-product this function converts non-linear &sk_buff to linear
1574  *	one, so that &sk_buff becomes completely private and caller is allowed
1575  *	to modify all the data of returned buffer. This means that this
1576  *	function is not recommended for use in circumstances when only
1577  *	header is going to be modified. Use pskb_copy() instead.
1578  */
1579 
1580 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
1581 {
1582 	int headerlen = skb_headroom(skb);
1583 	unsigned int size = skb_end_offset(skb) + skb->data_len;
1584 	struct sk_buff *n = __alloc_skb(size, gfp_mask,
1585 					skb_alloc_rx_flag(skb), NUMA_NO_NODE);
1586 
1587 	if (!n)
1588 		return NULL;
1589 
1590 	/* Set the data pointer */
1591 	skb_reserve(n, headerlen);
1592 	/* Set the tail pointer and length */
1593 	skb_put(n, skb->len);
1594 
1595 	BUG_ON(skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len));
1596 
1597 	skb_copy_header(n, skb);
1598 	return n;
1599 }
1600 EXPORT_SYMBOL(skb_copy);
1601 
1602 /**
1603  *	__pskb_copy_fclone	-  create copy of an sk_buff with private head.
1604  *	@skb: buffer to copy
1605  *	@headroom: headroom of new skb
1606  *	@gfp_mask: allocation priority
1607  *	@fclone: if true allocate the copy of the skb from the fclone
1608  *	cache instead of the head cache; it is recommended to set this
1609  *	to true for the cases where the copy will likely be cloned
1610  *
1611  *	Make a copy of both an &sk_buff and part of its data, located
1612  *	in header. Fragmented data remain shared. This is used when
1613  *	the caller wishes to modify only header of &sk_buff and needs
1614  *	private copy of the header to alter. Returns %NULL on failure
1615  *	or the pointer to the buffer on success.
1616  *	The returned buffer has a reference count of 1.
1617  */
1618 
1619 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1620 				   gfp_t gfp_mask, bool fclone)
1621 {
1622 	unsigned int size = skb_headlen(skb) + headroom;
1623 	int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0);
1624 	struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE);
1625 
1626 	if (!n)
1627 		goto out;
1628 
1629 	/* Set the data pointer */
1630 	skb_reserve(n, headroom);
1631 	/* Set the tail pointer and length */
1632 	skb_put(n, skb_headlen(skb));
1633 	/* Copy the bytes */
1634 	skb_copy_from_linear_data(skb, n->data, n->len);
1635 
1636 	n->truesize += skb->data_len;
1637 	n->data_len  = skb->data_len;
1638 	n->len	     = skb->len;
1639 
1640 	if (skb_shinfo(skb)->nr_frags) {
1641 		int i;
1642 
1643 		if (skb_orphan_frags(skb, gfp_mask) ||
1644 		    skb_zerocopy_clone(n, skb, gfp_mask)) {
1645 			kfree_skb(n);
1646 			n = NULL;
1647 			goto out;
1648 		}
1649 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1650 			skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
1651 			skb_frag_ref(skb, i);
1652 		}
1653 		skb_shinfo(n)->nr_frags = i;
1654 	}
1655 
1656 	if (skb_has_frag_list(skb)) {
1657 		skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
1658 		skb_clone_fraglist(n);
1659 	}
1660 
1661 	skb_copy_header(n, skb);
1662 out:
1663 	return n;
1664 }
1665 EXPORT_SYMBOL(__pskb_copy_fclone);
1666 
1667 /**
1668  *	pskb_expand_head - reallocate header of &sk_buff
1669  *	@skb: buffer to reallocate
1670  *	@nhead: room to add at head
1671  *	@ntail: room to add at tail
1672  *	@gfp_mask: allocation priority
1673  *
1674  *	Expands (or creates identical copy, if @nhead and @ntail are zero)
1675  *	header of @skb. &sk_buff itself is not changed. &sk_buff MUST have
1676  *	reference count of 1. Returns zero in the case of success or error,
1677  *	if expansion failed. In the last case, &sk_buff is not changed.
1678  *
1679  *	All the pointers pointing into skb header may change and must be
1680  *	reloaded after call to this function.
1681  */
1682 
1683 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
1684 		     gfp_t gfp_mask)
1685 {
1686 	int i, osize = skb_end_offset(skb);
1687 	int size = osize + nhead + ntail;
1688 	long off;
1689 	u8 *data;
1690 
1691 	BUG_ON(nhead < 0);
1692 
1693 	BUG_ON(skb_shared(skb));
1694 
1695 	size = SKB_DATA_ALIGN(size);
1696 
1697 	if (skb_pfmemalloc(skb))
1698 		gfp_mask |= __GFP_MEMALLOC;
1699 	data = kmalloc_reserve(size + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
1700 			       gfp_mask, NUMA_NO_NODE, NULL);
1701 	if (!data)
1702 		goto nodata;
1703 	size = SKB_WITH_OVERHEAD(ksize(data));
1704 
1705 	/* Copy only real data... and, alas, header. This should be
1706 	 * optimized for the cases when header is void.
1707 	 */
1708 	memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head);
1709 
1710 	memcpy((struct skb_shared_info *)(data + size),
1711 	       skb_shinfo(skb),
1712 	       offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags]));
1713 
1714 	/*
1715 	 * if shinfo is shared we must drop the old head gracefully, but if it
1716 	 * is not we can just drop the old head and let the existing refcount
1717 	 * be since all we did is relocate the values
1718 	 */
1719 	if (skb_cloned(skb)) {
1720 		if (skb_orphan_frags(skb, gfp_mask))
1721 			goto nofrags;
1722 		if (skb_zcopy(skb))
1723 			refcount_inc(&skb_uarg(skb)->refcnt);
1724 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1725 			skb_frag_ref(skb, i);
1726 
1727 		if (skb_has_frag_list(skb))
1728 			skb_clone_fraglist(skb);
1729 
1730 		skb_release_data(skb);
1731 	} else {
1732 		skb_free_head(skb);
1733 	}
1734 	off = (data + nhead) - skb->head;
1735 
1736 	skb->head     = data;
1737 	skb->head_frag = 0;
1738 	skb->data    += off;
1739 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1740 	skb->end      = size;
1741 	off           = nhead;
1742 #else
1743 	skb->end      = skb->head + size;
1744 #endif
1745 	skb->tail	      += off;
1746 	skb_headers_offset_update(skb, nhead);
1747 	skb->cloned   = 0;
1748 	skb->hdr_len  = 0;
1749 	skb->nohdr    = 0;
1750 	atomic_set(&skb_shinfo(skb)->dataref, 1);
1751 
1752 	skb_metadata_clear(skb);
1753 
1754 	/* It is not generally safe to change skb->truesize.
1755 	 * For the moment, we really care of rx path, or
1756 	 * when skb is orphaned (not attached to a socket).
1757 	 */
1758 	if (!skb->sk || skb->destructor == sock_edemux)
1759 		skb->truesize += size - osize;
1760 
1761 	return 0;
1762 
1763 nofrags:
1764 	kfree(data);
1765 nodata:
1766 	return -ENOMEM;
1767 }
1768 EXPORT_SYMBOL(pskb_expand_head);
1769 
1770 /* Make private copy of skb with writable head and some headroom */
1771 
1772 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
1773 {
1774 	struct sk_buff *skb2;
1775 	int delta = headroom - skb_headroom(skb);
1776 
1777 	if (delta <= 0)
1778 		skb2 = pskb_copy(skb, GFP_ATOMIC);
1779 	else {
1780 		skb2 = skb_clone(skb, GFP_ATOMIC);
1781 		if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
1782 					     GFP_ATOMIC)) {
1783 			kfree_skb(skb2);
1784 			skb2 = NULL;
1785 		}
1786 	}
1787 	return skb2;
1788 }
1789 EXPORT_SYMBOL(skb_realloc_headroom);
1790 
1791 /**
1792  *	skb_expand_head - reallocate header of &sk_buff
1793  *	@skb: buffer to reallocate
1794  *	@headroom: needed headroom
1795  *
1796  *	Unlike skb_realloc_headroom, this one does not allocate a new skb
1797  *	if possible; copies skb->sk to new skb as needed
1798  *	and frees original skb in case of failures.
1799  *
1800  *	It expect increased headroom and generates warning otherwise.
1801  */
1802 
1803 struct sk_buff *skb_expand_head(struct sk_buff *skb, unsigned int headroom)
1804 {
1805 	int delta = headroom - skb_headroom(skb);
1806 	int osize = skb_end_offset(skb);
1807 	struct sock *sk = skb->sk;
1808 
1809 	if (WARN_ONCE(delta <= 0,
1810 		      "%s is expecting an increase in the headroom", __func__))
1811 		return skb;
1812 
1813 	delta = SKB_DATA_ALIGN(delta);
1814 	/* pskb_expand_head() might crash, if skb is shared. */
1815 	if (skb_shared(skb) || !is_skb_wmem(skb)) {
1816 		struct sk_buff *nskb = skb_clone(skb, GFP_ATOMIC);
1817 
1818 		if (unlikely(!nskb))
1819 			goto fail;
1820 
1821 		if (sk)
1822 			skb_set_owner_w(nskb, sk);
1823 		consume_skb(skb);
1824 		skb = nskb;
1825 	}
1826 	if (pskb_expand_head(skb, delta, 0, GFP_ATOMIC))
1827 		goto fail;
1828 
1829 	if (sk && is_skb_wmem(skb)) {
1830 		delta = skb_end_offset(skb) - osize;
1831 		refcount_add(delta, &sk->sk_wmem_alloc);
1832 		skb->truesize += delta;
1833 	}
1834 	return skb;
1835 
1836 fail:
1837 	kfree_skb(skb);
1838 	return NULL;
1839 }
1840 EXPORT_SYMBOL(skb_expand_head);
1841 
1842 /**
1843  *	skb_copy_expand	-	copy and expand sk_buff
1844  *	@skb: buffer to copy
1845  *	@newheadroom: new free bytes at head
1846  *	@newtailroom: new free bytes at tail
1847  *	@gfp_mask: allocation priority
1848  *
1849  *	Make a copy of both an &sk_buff and its data and while doing so
1850  *	allocate additional space.
1851  *
1852  *	This is used when the caller wishes to modify the data and needs a
1853  *	private copy of the data to alter as well as more space for new fields.
1854  *	Returns %NULL on failure or the pointer to the buffer
1855  *	on success. The returned buffer has a reference count of 1.
1856  *
1857  *	You must pass %GFP_ATOMIC as the allocation priority if this function
1858  *	is called from an interrupt.
1859  */
1860 struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
1861 				int newheadroom, int newtailroom,
1862 				gfp_t gfp_mask)
1863 {
1864 	/*
1865 	 *	Allocate the copy buffer
1866 	 */
1867 	struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom,
1868 					gfp_mask, skb_alloc_rx_flag(skb),
1869 					NUMA_NO_NODE);
1870 	int oldheadroom = skb_headroom(skb);
1871 	int head_copy_len, head_copy_off;
1872 
1873 	if (!n)
1874 		return NULL;
1875 
1876 	skb_reserve(n, newheadroom);
1877 
1878 	/* Set the tail pointer and length */
1879 	skb_put(n, skb->len);
1880 
1881 	head_copy_len = oldheadroom;
1882 	head_copy_off = 0;
1883 	if (newheadroom <= head_copy_len)
1884 		head_copy_len = newheadroom;
1885 	else
1886 		head_copy_off = newheadroom - head_copy_len;
1887 
1888 	/* Copy the linear header and data. */
1889 	BUG_ON(skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
1890 			     skb->len + head_copy_len));
1891 
1892 	skb_copy_header(n, skb);
1893 
1894 	skb_headers_offset_update(n, newheadroom - oldheadroom);
1895 
1896 	return n;
1897 }
1898 EXPORT_SYMBOL(skb_copy_expand);
1899 
1900 /**
1901  *	__skb_pad		-	zero pad the tail of an skb
1902  *	@skb: buffer to pad
1903  *	@pad: space to pad
1904  *	@free_on_error: free buffer on error
1905  *
1906  *	Ensure that a buffer is followed by a padding area that is zero
1907  *	filled. Used by network drivers which may DMA or transfer data
1908  *	beyond the buffer end onto the wire.
1909  *
1910  *	May return error in out of memory cases. The skb is freed on error
1911  *	if @free_on_error is true.
1912  */
1913 
1914 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error)
1915 {
1916 	int err;
1917 	int ntail;
1918 
1919 	/* If the skbuff is non linear tailroom is always zero.. */
1920 	if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
1921 		memset(skb->data+skb->len, 0, pad);
1922 		return 0;
1923 	}
1924 
1925 	ntail = skb->data_len + pad - (skb->end - skb->tail);
1926 	if (likely(skb_cloned(skb) || ntail > 0)) {
1927 		err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
1928 		if (unlikely(err))
1929 			goto free_skb;
1930 	}
1931 
1932 	/* FIXME: The use of this function with non-linear skb's really needs
1933 	 * to be audited.
1934 	 */
1935 	err = skb_linearize(skb);
1936 	if (unlikely(err))
1937 		goto free_skb;
1938 
1939 	memset(skb->data + skb->len, 0, pad);
1940 	return 0;
1941 
1942 free_skb:
1943 	if (free_on_error)
1944 		kfree_skb(skb);
1945 	return err;
1946 }
1947 EXPORT_SYMBOL(__skb_pad);
1948 
1949 /**
1950  *	pskb_put - add data to the tail of a potentially fragmented buffer
1951  *	@skb: start of the buffer to use
1952  *	@tail: tail fragment of the buffer to use
1953  *	@len: amount of data to add
1954  *
1955  *	This function extends the used data area of the potentially
1956  *	fragmented buffer. @tail must be the last fragment of @skb -- or
1957  *	@skb itself. If this would exceed the total buffer size the kernel
1958  *	will panic. A pointer to the first byte of the extra data is
1959  *	returned.
1960  */
1961 
1962 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len)
1963 {
1964 	if (tail != skb) {
1965 		skb->data_len += len;
1966 		skb->len += len;
1967 	}
1968 	return skb_put(tail, len);
1969 }
1970 EXPORT_SYMBOL_GPL(pskb_put);
1971 
1972 /**
1973  *	skb_put - add data to a buffer
1974  *	@skb: buffer to use
1975  *	@len: amount of data to add
1976  *
1977  *	This function extends the used data area of the buffer. If this would
1978  *	exceed the total buffer size the kernel will panic. A pointer to the
1979  *	first byte of the extra data is returned.
1980  */
1981 void *skb_put(struct sk_buff *skb, unsigned int len)
1982 {
1983 	void *tmp = skb_tail_pointer(skb);
1984 	SKB_LINEAR_ASSERT(skb);
1985 	skb->tail += len;
1986 	skb->len  += len;
1987 	if (unlikely(skb->tail > skb->end))
1988 		skb_over_panic(skb, len, __builtin_return_address(0));
1989 	return tmp;
1990 }
1991 EXPORT_SYMBOL(skb_put);
1992 
1993 /**
1994  *	skb_push - add data to the start of a buffer
1995  *	@skb: buffer to use
1996  *	@len: amount of data to add
1997  *
1998  *	This function extends the used data area of the buffer at the buffer
1999  *	start. If this would exceed the total buffer headroom the kernel will
2000  *	panic. A pointer to the first byte of the extra data is returned.
2001  */
2002 void *skb_push(struct sk_buff *skb, unsigned int len)
2003 {
2004 	skb->data -= len;
2005 	skb->len  += len;
2006 	if (unlikely(skb->data < skb->head))
2007 		skb_under_panic(skb, len, __builtin_return_address(0));
2008 	return skb->data;
2009 }
2010 EXPORT_SYMBOL(skb_push);
2011 
2012 /**
2013  *	skb_pull - remove data from the start of a buffer
2014  *	@skb: buffer to use
2015  *	@len: amount of data to remove
2016  *
2017  *	This function removes data from the start of a buffer, returning
2018  *	the memory to the headroom. A pointer to the next data in the buffer
2019  *	is returned. Once the data has been pulled future pushes will overwrite
2020  *	the old data.
2021  */
2022 void *skb_pull(struct sk_buff *skb, unsigned int len)
2023 {
2024 	return skb_pull_inline(skb, len);
2025 }
2026 EXPORT_SYMBOL(skb_pull);
2027 
2028 /**
2029  *	skb_pull_data - remove data from the start of a buffer returning its
2030  *	original position.
2031  *	@skb: buffer to use
2032  *	@len: amount of data to remove
2033  *
2034  *	This function removes data from the start of a buffer, returning
2035  *	the memory to the headroom. A pointer to the original data in the buffer
2036  *	is returned after checking if there is enough data to pull. Once the
2037  *	data has been pulled future pushes will overwrite the old data.
2038  */
2039 void *skb_pull_data(struct sk_buff *skb, size_t len)
2040 {
2041 	void *data = skb->data;
2042 
2043 	if (skb->len < len)
2044 		return NULL;
2045 
2046 	skb_pull(skb, len);
2047 
2048 	return data;
2049 }
2050 EXPORT_SYMBOL(skb_pull_data);
2051 
2052 /**
2053  *	skb_trim - remove end from a buffer
2054  *	@skb: buffer to alter
2055  *	@len: new length
2056  *
2057  *	Cut the length of a buffer down by removing data from the tail. If
2058  *	the buffer is already under the length specified it is not modified.
2059  *	The skb must be linear.
2060  */
2061 void skb_trim(struct sk_buff *skb, unsigned int len)
2062 {
2063 	if (skb->len > len)
2064 		__skb_trim(skb, len);
2065 }
2066 EXPORT_SYMBOL(skb_trim);
2067 
2068 /* Trims skb to length len. It can change skb pointers.
2069  */
2070 
2071 int ___pskb_trim(struct sk_buff *skb, unsigned int len)
2072 {
2073 	struct sk_buff **fragp;
2074 	struct sk_buff *frag;
2075 	int offset = skb_headlen(skb);
2076 	int nfrags = skb_shinfo(skb)->nr_frags;
2077 	int i;
2078 	int err;
2079 
2080 	if (skb_cloned(skb) &&
2081 	    unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
2082 		return err;
2083 
2084 	i = 0;
2085 	if (offset >= len)
2086 		goto drop_pages;
2087 
2088 	for (; i < nfrags; i++) {
2089 		int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]);
2090 
2091 		if (end < len) {
2092 			offset = end;
2093 			continue;
2094 		}
2095 
2096 		skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset);
2097 
2098 drop_pages:
2099 		skb_shinfo(skb)->nr_frags = i;
2100 
2101 		for (; i < nfrags; i++)
2102 			skb_frag_unref(skb, i);
2103 
2104 		if (skb_has_frag_list(skb))
2105 			skb_drop_fraglist(skb);
2106 		goto done;
2107 	}
2108 
2109 	for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
2110 	     fragp = &frag->next) {
2111 		int end = offset + frag->len;
2112 
2113 		if (skb_shared(frag)) {
2114 			struct sk_buff *nfrag;
2115 
2116 			nfrag = skb_clone(frag, GFP_ATOMIC);
2117 			if (unlikely(!nfrag))
2118 				return -ENOMEM;
2119 
2120 			nfrag->next = frag->next;
2121 			consume_skb(frag);
2122 			frag = nfrag;
2123 			*fragp = frag;
2124 		}
2125 
2126 		if (end < len) {
2127 			offset = end;
2128 			continue;
2129 		}
2130 
2131 		if (end > len &&
2132 		    unlikely((err = pskb_trim(frag, len - offset))))
2133 			return err;
2134 
2135 		if (frag->next)
2136 			skb_drop_list(&frag->next);
2137 		break;
2138 	}
2139 
2140 done:
2141 	if (len > skb_headlen(skb)) {
2142 		skb->data_len -= skb->len - len;
2143 		skb->len       = len;
2144 	} else {
2145 		skb->len       = len;
2146 		skb->data_len  = 0;
2147 		skb_set_tail_pointer(skb, len);
2148 	}
2149 
2150 	if (!skb->sk || skb->destructor == sock_edemux)
2151 		skb_condense(skb);
2152 	return 0;
2153 }
2154 EXPORT_SYMBOL(___pskb_trim);
2155 
2156 /* Note : use pskb_trim_rcsum() instead of calling this directly
2157  */
2158 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len)
2159 {
2160 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
2161 		int delta = skb->len - len;
2162 
2163 		skb->csum = csum_block_sub(skb->csum,
2164 					   skb_checksum(skb, len, delta, 0),
2165 					   len);
2166 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
2167 		int hdlen = (len > skb_headlen(skb)) ? skb_headlen(skb) : len;
2168 		int offset = skb_checksum_start_offset(skb) + skb->csum_offset;
2169 
2170 		if (offset + sizeof(__sum16) > hdlen)
2171 			return -EINVAL;
2172 	}
2173 	return __pskb_trim(skb, len);
2174 }
2175 EXPORT_SYMBOL(pskb_trim_rcsum_slow);
2176 
2177 /**
2178  *	__pskb_pull_tail - advance tail of skb header
2179  *	@skb: buffer to reallocate
2180  *	@delta: number of bytes to advance tail
2181  *
2182  *	The function makes a sense only on a fragmented &sk_buff,
2183  *	it expands header moving its tail forward and copying necessary
2184  *	data from fragmented part.
2185  *
2186  *	&sk_buff MUST have reference count of 1.
2187  *
2188  *	Returns %NULL (and &sk_buff does not change) if pull failed
2189  *	or value of new tail of skb in the case of success.
2190  *
2191  *	All the pointers pointing into skb header may change and must be
2192  *	reloaded after call to this function.
2193  */
2194 
2195 /* Moves tail of skb head forward, copying data from fragmented part,
2196  * when it is necessary.
2197  * 1. It may fail due to malloc failure.
2198  * 2. It may change skb pointers.
2199  *
2200  * It is pretty complicated. Luckily, it is called only in exceptional cases.
2201  */
2202 void *__pskb_pull_tail(struct sk_buff *skb, int delta)
2203 {
2204 	/* If skb has not enough free space at tail, get new one
2205 	 * plus 128 bytes for future expansions. If we have enough
2206 	 * room at tail, reallocate without expansion only if skb is cloned.
2207 	 */
2208 	int i, k, eat = (skb->tail + delta) - skb->end;
2209 
2210 	if (eat > 0 || skb_cloned(skb)) {
2211 		if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
2212 				     GFP_ATOMIC))
2213 			return NULL;
2214 	}
2215 
2216 	BUG_ON(skb_copy_bits(skb, skb_headlen(skb),
2217 			     skb_tail_pointer(skb), delta));
2218 
2219 	/* Optimization: no fragments, no reasons to preestimate
2220 	 * size of pulled pages. Superb.
2221 	 */
2222 	if (!skb_has_frag_list(skb))
2223 		goto pull_pages;
2224 
2225 	/* Estimate size of pulled pages. */
2226 	eat = delta;
2227 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2228 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2229 
2230 		if (size >= eat)
2231 			goto pull_pages;
2232 		eat -= size;
2233 	}
2234 
2235 	/* If we need update frag list, we are in troubles.
2236 	 * Certainly, it is possible to add an offset to skb data,
2237 	 * but taking into account that pulling is expected to
2238 	 * be very rare operation, it is worth to fight against
2239 	 * further bloating skb head and crucify ourselves here instead.
2240 	 * Pure masohism, indeed. 8)8)
2241 	 */
2242 	if (eat) {
2243 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
2244 		struct sk_buff *clone = NULL;
2245 		struct sk_buff *insp = NULL;
2246 
2247 		do {
2248 			if (list->len <= eat) {
2249 				/* Eaten as whole. */
2250 				eat -= list->len;
2251 				list = list->next;
2252 				insp = list;
2253 			} else {
2254 				/* Eaten partially. */
2255 
2256 				if (skb_shared(list)) {
2257 					/* Sucks! We need to fork list. :-( */
2258 					clone = skb_clone(list, GFP_ATOMIC);
2259 					if (!clone)
2260 						return NULL;
2261 					insp = list->next;
2262 					list = clone;
2263 				} else {
2264 					/* This may be pulled without
2265 					 * problems. */
2266 					insp = list;
2267 				}
2268 				if (!pskb_pull(list, eat)) {
2269 					kfree_skb(clone);
2270 					return NULL;
2271 				}
2272 				break;
2273 			}
2274 		} while (eat);
2275 
2276 		/* Free pulled out fragments. */
2277 		while ((list = skb_shinfo(skb)->frag_list) != insp) {
2278 			skb_shinfo(skb)->frag_list = list->next;
2279 			kfree_skb(list);
2280 		}
2281 		/* And insert new clone at head. */
2282 		if (clone) {
2283 			clone->next = list;
2284 			skb_shinfo(skb)->frag_list = clone;
2285 		}
2286 	}
2287 	/* Success! Now we may commit changes to skb data. */
2288 
2289 pull_pages:
2290 	eat = delta;
2291 	k = 0;
2292 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2293 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2294 
2295 		if (size <= eat) {
2296 			skb_frag_unref(skb, i);
2297 			eat -= size;
2298 		} else {
2299 			skb_frag_t *frag = &skb_shinfo(skb)->frags[k];
2300 
2301 			*frag = skb_shinfo(skb)->frags[i];
2302 			if (eat) {
2303 				skb_frag_off_add(frag, eat);
2304 				skb_frag_size_sub(frag, eat);
2305 				if (!i)
2306 					goto end;
2307 				eat = 0;
2308 			}
2309 			k++;
2310 		}
2311 	}
2312 	skb_shinfo(skb)->nr_frags = k;
2313 
2314 end:
2315 	skb->tail     += delta;
2316 	skb->data_len -= delta;
2317 
2318 	if (!skb->data_len)
2319 		skb_zcopy_clear(skb, false);
2320 
2321 	return skb_tail_pointer(skb);
2322 }
2323 EXPORT_SYMBOL(__pskb_pull_tail);
2324 
2325 /**
2326  *	skb_copy_bits - copy bits from skb to kernel buffer
2327  *	@skb: source skb
2328  *	@offset: offset in source
2329  *	@to: destination buffer
2330  *	@len: number of bytes to copy
2331  *
2332  *	Copy the specified number of bytes from the source skb to the
2333  *	destination buffer.
2334  *
2335  *	CAUTION ! :
2336  *		If its prototype is ever changed,
2337  *		check arch/{*}/net/{*}.S files,
2338  *		since it is called from BPF assembly code.
2339  */
2340 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
2341 {
2342 	int start = skb_headlen(skb);
2343 	struct sk_buff *frag_iter;
2344 	int i, copy;
2345 
2346 	if (offset > (int)skb->len - len)
2347 		goto fault;
2348 
2349 	/* Copy header. */
2350 	if ((copy = start - offset) > 0) {
2351 		if (copy > len)
2352 			copy = len;
2353 		skb_copy_from_linear_data_offset(skb, offset, to, copy);
2354 		if ((len -= copy) == 0)
2355 			return 0;
2356 		offset += copy;
2357 		to     += copy;
2358 	}
2359 
2360 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2361 		int end;
2362 		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
2363 
2364 		WARN_ON(start > offset + len);
2365 
2366 		end = start + skb_frag_size(f);
2367 		if ((copy = end - offset) > 0) {
2368 			u32 p_off, p_len, copied;
2369 			struct page *p;
2370 			u8 *vaddr;
2371 
2372 			if (copy > len)
2373 				copy = len;
2374 
2375 			skb_frag_foreach_page(f,
2376 					      skb_frag_off(f) + offset - start,
2377 					      copy, p, p_off, p_len, copied) {
2378 				vaddr = kmap_atomic(p);
2379 				memcpy(to + copied, vaddr + p_off, p_len);
2380 				kunmap_atomic(vaddr);
2381 			}
2382 
2383 			if ((len -= copy) == 0)
2384 				return 0;
2385 			offset += copy;
2386 			to     += copy;
2387 		}
2388 		start = end;
2389 	}
2390 
2391 	skb_walk_frags(skb, frag_iter) {
2392 		int end;
2393 
2394 		WARN_ON(start > offset + len);
2395 
2396 		end = start + frag_iter->len;
2397 		if ((copy = end - offset) > 0) {
2398 			if (copy > len)
2399 				copy = len;
2400 			if (skb_copy_bits(frag_iter, offset - start, to, copy))
2401 				goto fault;
2402 			if ((len -= copy) == 0)
2403 				return 0;
2404 			offset += copy;
2405 			to     += copy;
2406 		}
2407 		start = end;
2408 	}
2409 
2410 	if (!len)
2411 		return 0;
2412 
2413 fault:
2414 	return -EFAULT;
2415 }
2416 EXPORT_SYMBOL(skb_copy_bits);
2417 
2418 /*
2419  * Callback from splice_to_pipe(), if we need to release some pages
2420  * at the end of the spd in case we error'ed out in filling the pipe.
2421  */
2422 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
2423 {
2424 	put_page(spd->pages[i]);
2425 }
2426 
2427 static struct page *linear_to_page(struct page *page, unsigned int *len,
2428 				   unsigned int *offset,
2429 				   struct sock *sk)
2430 {
2431 	struct page_frag *pfrag = sk_page_frag(sk);
2432 
2433 	if (!sk_page_frag_refill(sk, pfrag))
2434 		return NULL;
2435 
2436 	*len = min_t(unsigned int, *len, pfrag->size - pfrag->offset);
2437 
2438 	memcpy(page_address(pfrag->page) + pfrag->offset,
2439 	       page_address(page) + *offset, *len);
2440 	*offset = pfrag->offset;
2441 	pfrag->offset += *len;
2442 
2443 	return pfrag->page;
2444 }
2445 
2446 static bool spd_can_coalesce(const struct splice_pipe_desc *spd,
2447 			     struct page *page,
2448 			     unsigned int offset)
2449 {
2450 	return	spd->nr_pages &&
2451 		spd->pages[spd->nr_pages - 1] == page &&
2452 		(spd->partial[spd->nr_pages - 1].offset +
2453 		 spd->partial[spd->nr_pages - 1].len == offset);
2454 }
2455 
2456 /*
2457  * Fill page/offset/length into spd, if it can hold more pages.
2458  */
2459 static bool spd_fill_page(struct splice_pipe_desc *spd,
2460 			  struct pipe_inode_info *pipe, struct page *page,
2461 			  unsigned int *len, unsigned int offset,
2462 			  bool linear,
2463 			  struct sock *sk)
2464 {
2465 	if (unlikely(spd->nr_pages == MAX_SKB_FRAGS))
2466 		return true;
2467 
2468 	if (linear) {
2469 		page = linear_to_page(page, len, &offset, sk);
2470 		if (!page)
2471 			return true;
2472 	}
2473 	if (spd_can_coalesce(spd, page, offset)) {
2474 		spd->partial[spd->nr_pages - 1].len += *len;
2475 		return false;
2476 	}
2477 	get_page(page);
2478 	spd->pages[spd->nr_pages] = page;
2479 	spd->partial[spd->nr_pages].len = *len;
2480 	spd->partial[spd->nr_pages].offset = offset;
2481 	spd->nr_pages++;
2482 
2483 	return false;
2484 }
2485 
2486 static bool __splice_segment(struct page *page, unsigned int poff,
2487 			     unsigned int plen, unsigned int *off,
2488 			     unsigned int *len,
2489 			     struct splice_pipe_desc *spd, bool linear,
2490 			     struct sock *sk,
2491 			     struct pipe_inode_info *pipe)
2492 {
2493 	if (!*len)
2494 		return true;
2495 
2496 	/* skip this segment if already processed */
2497 	if (*off >= plen) {
2498 		*off -= plen;
2499 		return false;
2500 	}
2501 
2502 	/* ignore any bits we already processed */
2503 	poff += *off;
2504 	plen -= *off;
2505 	*off = 0;
2506 
2507 	do {
2508 		unsigned int flen = min(*len, plen);
2509 
2510 		if (spd_fill_page(spd, pipe, page, &flen, poff,
2511 				  linear, sk))
2512 			return true;
2513 		poff += flen;
2514 		plen -= flen;
2515 		*len -= flen;
2516 	} while (*len && plen);
2517 
2518 	return false;
2519 }
2520 
2521 /*
2522  * Map linear and fragment data from the skb to spd. It reports true if the
2523  * pipe is full or if we already spliced the requested length.
2524  */
2525 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe,
2526 			      unsigned int *offset, unsigned int *len,
2527 			      struct splice_pipe_desc *spd, struct sock *sk)
2528 {
2529 	int seg;
2530 	struct sk_buff *iter;
2531 
2532 	/* map the linear part :
2533 	 * If skb->head_frag is set, this 'linear' part is backed by a
2534 	 * fragment, and if the head is not shared with any clones then
2535 	 * we can avoid a copy since we own the head portion of this page.
2536 	 */
2537 	if (__splice_segment(virt_to_page(skb->data),
2538 			     (unsigned long) skb->data & (PAGE_SIZE - 1),
2539 			     skb_headlen(skb),
2540 			     offset, len, spd,
2541 			     skb_head_is_locked(skb),
2542 			     sk, pipe))
2543 		return true;
2544 
2545 	/*
2546 	 * then map the fragments
2547 	 */
2548 	for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
2549 		const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
2550 
2551 		if (__splice_segment(skb_frag_page(f),
2552 				     skb_frag_off(f), skb_frag_size(f),
2553 				     offset, len, spd, false, sk, pipe))
2554 			return true;
2555 	}
2556 
2557 	skb_walk_frags(skb, iter) {
2558 		if (*offset >= iter->len) {
2559 			*offset -= iter->len;
2560 			continue;
2561 		}
2562 		/* __skb_splice_bits() only fails if the output has no room
2563 		 * left, so no point in going over the frag_list for the error
2564 		 * case.
2565 		 */
2566 		if (__skb_splice_bits(iter, pipe, offset, len, spd, sk))
2567 			return true;
2568 	}
2569 
2570 	return false;
2571 }
2572 
2573 /*
2574  * Map data from the skb to a pipe. Should handle both the linear part,
2575  * the fragments, and the frag list.
2576  */
2577 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
2578 		    struct pipe_inode_info *pipe, unsigned int tlen,
2579 		    unsigned int flags)
2580 {
2581 	struct partial_page partial[MAX_SKB_FRAGS];
2582 	struct page *pages[MAX_SKB_FRAGS];
2583 	struct splice_pipe_desc spd = {
2584 		.pages = pages,
2585 		.partial = partial,
2586 		.nr_pages_max = MAX_SKB_FRAGS,
2587 		.ops = &nosteal_pipe_buf_ops,
2588 		.spd_release = sock_spd_release,
2589 	};
2590 	int ret = 0;
2591 
2592 	__skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk);
2593 
2594 	if (spd.nr_pages)
2595 		ret = splice_to_pipe(pipe, &spd);
2596 
2597 	return ret;
2598 }
2599 EXPORT_SYMBOL_GPL(skb_splice_bits);
2600 
2601 static int sendmsg_unlocked(struct sock *sk, struct msghdr *msg,
2602 			    struct kvec *vec, size_t num, size_t size)
2603 {
2604 	struct socket *sock = sk->sk_socket;
2605 
2606 	if (!sock)
2607 		return -EINVAL;
2608 	return kernel_sendmsg(sock, msg, vec, num, size);
2609 }
2610 
2611 static int sendpage_unlocked(struct sock *sk, struct page *page, int offset,
2612 			     size_t size, int flags)
2613 {
2614 	struct socket *sock = sk->sk_socket;
2615 
2616 	if (!sock)
2617 		return -EINVAL;
2618 	return kernel_sendpage(sock, page, offset, size, flags);
2619 }
2620 
2621 typedef int (*sendmsg_func)(struct sock *sk, struct msghdr *msg,
2622 			    struct kvec *vec, size_t num, size_t size);
2623 typedef int (*sendpage_func)(struct sock *sk, struct page *page, int offset,
2624 			     size_t size, int flags);
2625 static int __skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset,
2626 			   int len, sendmsg_func sendmsg, sendpage_func sendpage)
2627 {
2628 	unsigned int orig_len = len;
2629 	struct sk_buff *head = skb;
2630 	unsigned short fragidx;
2631 	int slen, ret;
2632 
2633 do_frag_list:
2634 
2635 	/* Deal with head data */
2636 	while (offset < skb_headlen(skb) && len) {
2637 		struct kvec kv;
2638 		struct msghdr msg;
2639 
2640 		slen = min_t(int, len, skb_headlen(skb) - offset);
2641 		kv.iov_base = skb->data + offset;
2642 		kv.iov_len = slen;
2643 		memset(&msg, 0, sizeof(msg));
2644 		msg.msg_flags = MSG_DONTWAIT;
2645 
2646 		ret = INDIRECT_CALL_2(sendmsg, kernel_sendmsg_locked,
2647 				      sendmsg_unlocked, sk, &msg, &kv, 1, slen);
2648 		if (ret <= 0)
2649 			goto error;
2650 
2651 		offset += ret;
2652 		len -= ret;
2653 	}
2654 
2655 	/* All the data was skb head? */
2656 	if (!len)
2657 		goto out;
2658 
2659 	/* Make offset relative to start of frags */
2660 	offset -= skb_headlen(skb);
2661 
2662 	/* Find where we are in frag list */
2663 	for (fragidx = 0; fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
2664 		skb_frag_t *frag  = &skb_shinfo(skb)->frags[fragidx];
2665 
2666 		if (offset < skb_frag_size(frag))
2667 			break;
2668 
2669 		offset -= skb_frag_size(frag);
2670 	}
2671 
2672 	for (; len && fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
2673 		skb_frag_t *frag  = &skb_shinfo(skb)->frags[fragidx];
2674 
2675 		slen = min_t(size_t, len, skb_frag_size(frag) - offset);
2676 
2677 		while (slen) {
2678 			ret = INDIRECT_CALL_2(sendpage, kernel_sendpage_locked,
2679 					      sendpage_unlocked, sk,
2680 					      skb_frag_page(frag),
2681 					      skb_frag_off(frag) + offset,
2682 					      slen, MSG_DONTWAIT);
2683 			if (ret <= 0)
2684 				goto error;
2685 
2686 			len -= ret;
2687 			offset += ret;
2688 			slen -= ret;
2689 		}
2690 
2691 		offset = 0;
2692 	}
2693 
2694 	if (len) {
2695 		/* Process any frag lists */
2696 
2697 		if (skb == head) {
2698 			if (skb_has_frag_list(skb)) {
2699 				skb = skb_shinfo(skb)->frag_list;
2700 				goto do_frag_list;
2701 			}
2702 		} else if (skb->next) {
2703 			skb = skb->next;
2704 			goto do_frag_list;
2705 		}
2706 	}
2707 
2708 out:
2709 	return orig_len - len;
2710 
2711 error:
2712 	return orig_len == len ? ret : orig_len - len;
2713 }
2714 
2715 /* Send skb data on a socket. Socket must be locked. */
2716 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
2717 			 int len)
2718 {
2719 	return __skb_send_sock(sk, skb, offset, len, kernel_sendmsg_locked,
2720 			       kernel_sendpage_locked);
2721 }
2722 EXPORT_SYMBOL_GPL(skb_send_sock_locked);
2723 
2724 /* Send skb data on a socket. Socket must be unlocked. */
2725 int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len)
2726 {
2727 	return __skb_send_sock(sk, skb, offset, len, sendmsg_unlocked,
2728 			       sendpage_unlocked);
2729 }
2730 
2731 /**
2732  *	skb_store_bits - store bits from kernel buffer to skb
2733  *	@skb: destination buffer
2734  *	@offset: offset in destination
2735  *	@from: source buffer
2736  *	@len: number of bytes to copy
2737  *
2738  *	Copy the specified number of bytes from the source buffer to the
2739  *	destination skb.  This function handles all the messy bits of
2740  *	traversing fragment lists and such.
2741  */
2742 
2743 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
2744 {
2745 	int start = skb_headlen(skb);
2746 	struct sk_buff *frag_iter;
2747 	int i, copy;
2748 
2749 	if (offset > (int)skb->len - len)
2750 		goto fault;
2751 
2752 	if ((copy = start - offset) > 0) {
2753 		if (copy > len)
2754 			copy = len;
2755 		skb_copy_to_linear_data_offset(skb, offset, from, copy);
2756 		if ((len -= copy) == 0)
2757 			return 0;
2758 		offset += copy;
2759 		from += copy;
2760 	}
2761 
2762 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2763 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2764 		int end;
2765 
2766 		WARN_ON(start > offset + len);
2767 
2768 		end = start + skb_frag_size(frag);
2769 		if ((copy = end - offset) > 0) {
2770 			u32 p_off, p_len, copied;
2771 			struct page *p;
2772 			u8 *vaddr;
2773 
2774 			if (copy > len)
2775 				copy = len;
2776 
2777 			skb_frag_foreach_page(frag,
2778 					      skb_frag_off(frag) + offset - start,
2779 					      copy, p, p_off, p_len, copied) {
2780 				vaddr = kmap_atomic(p);
2781 				memcpy(vaddr + p_off, from + copied, p_len);
2782 				kunmap_atomic(vaddr);
2783 			}
2784 
2785 			if ((len -= copy) == 0)
2786 				return 0;
2787 			offset += copy;
2788 			from += copy;
2789 		}
2790 		start = end;
2791 	}
2792 
2793 	skb_walk_frags(skb, frag_iter) {
2794 		int end;
2795 
2796 		WARN_ON(start > offset + len);
2797 
2798 		end = start + frag_iter->len;
2799 		if ((copy = end - offset) > 0) {
2800 			if (copy > len)
2801 				copy = len;
2802 			if (skb_store_bits(frag_iter, offset - start,
2803 					   from, copy))
2804 				goto fault;
2805 			if ((len -= copy) == 0)
2806 				return 0;
2807 			offset += copy;
2808 			from += copy;
2809 		}
2810 		start = end;
2811 	}
2812 	if (!len)
2813 		return 0;
2814 
2815 fault:
2816 	return -EFAULT;
2817 }
2818 EXPORT_SYMBOL(skb_store_bits);
2819 
2820 /* Checksum skb data. */
2821 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
2822 		      __wsum csum, const struct skb_checksum_ops *ops)
2823 {
2824 	int start = skb_headlen(skb);
2825 	int i, copy = start - offset;
2826 	struct sk_buff *frag_iter;
2827 	int pos = 0;
2828 
2829 	/* Checksum header. */
2830 	if (copy > 0) {
2831 		if (copy > len)
2832 			copy = len;
2833 		csum = INDIRECT_CALL_1(ops->update, csum_partial_ext,
2834 				       skb->data + offset, copy, csum);
2835 		if ((len -= copy) == 0)
2836 			return csum;
2837 		offset += copy;
2838 		pos	= copy;
2839 	}
2840 
2841 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2842 		int end;
2843 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2844 
2845 		WARN_ON(start > offset + len);
2846 
2847 		end = start + skb_frag_size(frag);
2848 		if ((copy = end - offset) > 0) {
2849 			u32 p_off, p_len, copied;
2850 			struct page *p;
2851 			__wsum csum2;
2852 			u8 *vaddr;
2853 
2854 			if (copy > len)
2855 				copy = len;
2856 
2857 			skb_frag_foreach_page(frag,
2858 					      skb_frag_off(frag) + offset - start,
2859 					      copy, p, p_off, p_len, copied) {
2860 				vaddr = kmap_atomic(p);
2861 				csum2 = INDIRECT_CALL_1(ops->update,
2862 							csum_partial_ext,
2863 							vaddr + p_off, p_len, 0);
2864 				kunmap_atomic(vaddr);
2865 				csum = INDIRECT_CALL_1(ops->combine,
2866 						       csum_block_add_ext, csum,
2867 						       csum2, pos, p_len);
2868 				pos += p_len;
2869 			}
2870 
2871 			if (!(len -= copy))
2872 				return csum;
2873 			offset += copy;
2874 		}
2875 		start = end;
2876 	}
2877 
2878 	skb_walk_frags(skb, frag_iter) {
2879 		int end;
2880 
2881 		WARN_ON(start > offset + len);
2882 
2883 		end = start + frag_iter->len;
2884 		if ((copy = end - offset) > 0) {
2885 			__wsum csum2;
2886 			if (copy > len)
2887 				copy = len;
2888 			csum2 = __skb_checksum(frag_iter, offset - start,
2889 					       copy, 0, ops);
2890 			csum = INDIRECT_CALL_1(ops->combine, csum_block_add_ext,
2891 					       csum, csum2, pos, copy);
2892 			if ((len -= copy) == 0)
2893 				return csum;
2894 			offset += copy;
2895 			pos    += copy;
2896 		}
2897 		start = end;
2898 	}
2899 	BUG_ON(len);
2900 
2901 	return csum;
2902 }
2903 EXPORT_SYMBOL(__skb_checksum);
2904 
2905 __wsum skb_checksum(const struct sk_buff *skb, int offset,
2906 		    int len, __wsum csum)
2907 {
2908 	const struct skb_checksum_ops ops = {
2909 		.update  = csum_partial_ext,
2910 		.combine = csum_block_add_ext,
2911 	};
2912 
2913 	return __skb_checksum(skb, offset, len, csum, &ops);
2914 }
2915 EXPORT_SYMBOL(skb_checksum);
2916 
2917 /* Both of above in one bottle. */
2918 
2919 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
2920 				    u8 *to, int len)
2921 {
2922 	int start = skb_headlen(skb);
2923 	int i, copy = start - offset;
2924 	struct sk_buff *frag_iter;
2925 	int pos = 0;
2926 	__wsum csum = 0;
2927 
2928 	/* Copy header. */
2929 	if (copy > 0) {
2930 		if (copy > len)
2931 			copy = len;
2932 		csum = csum_partial_copy_nocheck(skb->data + offset, to,
2933 						 copy);
2934 		if ((len -= copy) == 0)
2935 			return csum;
2936 		offset += copy;
2937 		to     += copy;
2938 		pos	= copy;
2939 	}
2940 
2941 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2942 		int end;
2943 
2944 		WARN_ON(start > offset + len);
2945 
2946 		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
2947 		if ((copy = end - offset) > 0) {
2948 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2949 			u32 p_off, p_len, copied;
2950 			struct page *p;
2951 			__wsum csum2;
2952 			u8 *vaddr;
2953 
2954 			if (copy > len)
2955 				copy = len;
2956 
2957 			skb_frag_foreach_page(frag,
2958 					      skb_frag_off(frag) + offset - start,
2959 					      copy, p, p_off, p_len, copied) {
2960 				vaddr = kmap_atomic(p);
2961 				csum2 = csum_partial_copy_nocheck(vaddr + p_off,
2962 								  to + copied,
2963 								  p_len);
2964 				kunmap_atomic(vaddr);
2965 				csum = csum_block_add(csum, csum2, pos);
2966 				pos += p_len;
2967 			}
2968 
2969 			if (!(len -= copy))
2970 				return csum;
2971 			offset += copy;
2972 			to     += copy;
2973 		}
2974 		start = end;
2975 	}
2976 
2977 	skb_walk_frags(skb, frag_iter) {
2978 		__wsum csum2;
2979 		int end;
2980 
2981 		WARN_ON(start > offset + len);
2982 
2983 		end = start + frag_iter->len;
2984 		if ((copy = end - offset) > 0) {
2985 			if (copy > len)
2986 				copy = len;
2987 			csum2 = skb_copy_and_csum_bits(frag_iter,
2988 						       offset - start,
2989 						       to, copy);
2990 			csum = csum_block_add(csum, csum2, pos);
2991 			if ((len -= copy) == 0)
2992 				return csum;
2993 			offset += copy;
2994 			to     += copy;
2995 			pos    += copy;
2996 		}
2997 		start = end;
2998 	}
2999 	BUG_ON(len);
3000 	return csum;
3001 }
3002 EXPORT_SYMBOL(skb_copy_and_csum_bits);
3003 
3004 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len)
3005 {
3006 	__sum16 sum;
3007 
3008 	sum = csum_fold(skb_checksum(skb, 0, len, skb->csum));
3009 	/* See comments in __skb_checksum_complete(). */
3010 	if (likely(!sum)) {
3011 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
3012 		    !skb->csum_complete_sw)
3013 			netdev_rx_csum_fault(skb->dev, skb);
3014 	}
3015 	if (!skb_shared(skb))
3016 		skb->csum_valid = !sum;
3017 	return sum;
3018 }
3019 EXPORT_SYMBOL(__skb_checksum_complete_head);
3020 
3021 /* This function assumes skb->csum already holds pseudo header's checksum,
3022  * which has been changed from the hardware checksum, for example, by
3023  * __skb_checksum_validate_complete(). And, the original skb->csum must
3024  * have been validated unsuccessfully for CHECKSUM_COMPLETE case.
3025  *
3026  * It returns non-zero if the recomputed checksum is still invalid, otherwise
3027  * zero. The new checksum is stored back into skb->csum unless the skb is
3028  * shared.
3029  */
3030 __sum16 __skb_checksum_complete(struct sk_buff *skb)
3031 {
3032 	__wsum csum;
3033 	__sum16 sum;
3034 
3035 	csum = skb_checksum(skb, 0, skb->len, 0);
3036 
3037 	sum = csum_fold(csum_add(skb->csum, csum));
3038 	/* This check is inverted, because we already knew the hardware
3039 	 * checksum is invalid before calling this function. So, if the
3040 	 * re-computed checksum is valid instead, then we have a mismatch
3041 	 * between the original skb->csum and skb_checksum(). This means either
3042 	 * the original hardware checksum is incorrect or we screw up skb->csum
3043 	 * when moving skb->data around.
3044 	 */
3045 	if (likely(!sum)) {
3046 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
3047 		    !skb->csum_complete_sw)
3048 			netdev_rx_csum_fault(skb->dev, skb);
3049 	}
3050 
3051 	if (!skb_shared(skb)) {
3052 		/* Save full packet checksum */
3053 		skb->csum = csum;
3054 		skb->ip_summed = CHECKSUM_COMPLETE;
3055 		skb->csum_complete_sw = 1;
3056 		skb->csum_valid = !sum;
3057 	}
3058 
3059 	return sum;
3060 }
3061 EXPORT_SYMBOL(__skb_checksum_complete);
3062 
3063 static __wsum warn_crc32c_csum_update(const void *buff, int len, __wsum sum)
3064 {
3065 	net_warn_ratelimited(
3066 		"%s: attempt to compute crc32c without libcrc32c.ko\n",
3067 		__func__);
3068 	return 0;
3069 }
3070 
3071 static __wsum warn_crc32c_csum_combine(__wsum csum, __wsum csum2,
3072 				       int offset, int len)
3073 {
3074 	net_warn_ratelimited(
3075 		"%s: attempt to compute crc32c without libcrc32c.ko\n",
3076 		__func__);
3077 	return 0;
3078 }
3079 
3080 static const struct skb_checksum_ops default_crc32c_ops = {
3081 	.update  = warn_crc32c_csum_update,
3082 	.combine = warn_crc32c_csum_combine,
3083 };
3084 
3085 const struct skb_checksum_ops *crc32c_csum_stub __read_mostly =
3086 	&default_crc32c_ops;
3087 EXPORT_SYMBOL(crc32c_csum_stub);
3088 
3089  /**
3090  *	skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy()
3091  *	@from: source buffer
3092  *
3093  *	Calculates the amount of linear headroom needed in the 'to' skb passed
3094  *	into skb_zerocopy().
3095  */
3096 unsigned int
3097 skb_zerocopy_headlen(const struct sk_buff *from)
3098 {
3099 	unsigned int hlen = 0;
3100 
3101 	if (!from->head_frag ||
3102 	    skb_headlen(from) < L1_CACHE_BYTES ||
3103 	    skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS) {
3104 		hlen = skb_headlen(from);
3105 		if (!hlen)
3106 			hlen = from->len;
3107 	}
3108 
3109 	if (skb_has_frag_list(from))
3110 		hlen = from->len;
3111 
3112 	return hlen;
3113 }
3114 EXPORT_SYMBOL_GPL(skb_zerocopy_headlen);
3115 
3116 /**
3117  *	skb_zerocopy - Zero copy skb to skb
3118  *	@to: destination buffer
3119  *	@from: source buffer
3120  *	@len: number of bytes to copy from source buffer
3121  *	@hlen: size of linear headroom in destination buffer
3122  *
3123  *	Copies up to `len` bytes from `from` to `to` by creating references
3124  *	to the frags in the source buffer.
3125  *
3126  *	The `hlen` as calculated by skb_zerocopy_headlen() specifies the
3127  *	headroom in the `to` buffer.
3128  *
3129  *	Return value:
3130  *	0: everything is OK
3131  *	-ENOMEM: couldn't orphan frags of @from due to lack of memory
3132  *	-EFAULT: skb_copy_bits() found some problem with skb geometry
3133  */
3134 int
3135 skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen)
3136 {
3137 	int i, j = 0;
3138 	int plen = 0; /* length of skb->head fragment */
3139 	int ret;
3140 	struct page *page;
3141 	unsigned int offset;
3142 
3143 	BUG_ON(!from->head_frag && !hlen);
3144 
3145 	/* dont bother with small payloads */
3146 	if (len <= skb_tailroom(to))
3147 		return skb_copy_bits(from, 0, skb_put(to, len), len);
3148 
3149 	if (hlen) {
3150 		ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen);
3151 		if (unlikely(ret))
3152 			return ret;
3153 		len -= hlen;
3154 	} else {
3155 		plen = min_t(int, skb_headlen(from), len);
3156 		if (plen) {
3157 			page = virt_to_head_page(from->head);
3158 			offset = from->data - (unsigned char *)page_address(page);
3159 			__skb_fill_page_desc(to, 0, page, offset, plen);
3160 			get_page(page);
3161 			j = 1;
3162 			len -= plen;
3163 		}
3164 	}
3165 
3166 	to->truesize += len + plen;
3167 	to->len += len + plen;
3168 	to->data_len += len + plen;
3169 
3170 	if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) {
3171 		skb_tx_error(from);
3172 		return -ENOMEM;
3173 	}
3174 	skb_zerocopy_clone(to, from, GFP_ATOMIC);
3175 
3176 	for (i = 0; i < skb_shinfo(from)->nr_frags; i++) {
3177 		int size;
3178 
3179 		if (!len)
3180 			break;
3181 		skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i];
3182 		size = min_t(int, skb_frag_size(&skb_shinfo(to)->frags[j]),
3183 					len);
3184 		skb_frag_size_set(&skb_shinfo(to)->frags[j], size);
3185 		len -= size;
3186 		skb_frag_ref(to, j);
3187 		j++;
3188 	}
3189 	skb_shinfo(to)->nr_frags = j;
3190 
3191 	return 0;
3192 }
3193 EXPORT_SYMBOL_GPL(skb_zerocopy);
3194 
3195 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
3196 {
3197 	__wsum csum;
3198 	long csstart;
3199 
3200 	if (skb->ip_summed == CHECKSUM_PARTIAL)
3201 		csstart = skb_checksum_start_offset(skb);
3202 	else
3203 		csstart = skb_headlen(skb);
3204 
3205 	BUG_ON(csstart > skb_headlen(skb));
3206 
3207 	skb_copy_from_linear_data(skb, to, csstart);
3208 
3209 	csum = 0;
3210 	if (csstart != skb->len)
3211 		csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
3212 					      skb->len - csstart);
3213 
3214 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
3215 		long csstuff = csstart + skb->csum_offset;
3216 
3217 		*((__sum16 *)(to + csstuff)) = csum_fold(csum);
3218 	}
3219 }
3220 EXPORT_SYMBOL(skb_copy_and_csum_dev);
3221 
3222 /**
3223  *	skb_dequeue - remove from the head of the queue
3224  *	@list: list to dequeue from
3225  *
3226  *	Remove the head of the list. The list lock is taken so the function
3227  *	may be used safely with other locking list functions. The head item is
3228  *	returned or %NULL if the list is empty.
3229  */
3230 
3231 struct sk_buff *skb_dequeue(struct sk_buff_head *list)
3232 {
3233 	unsigned long flags;
3234 	struct sk_buff *result;
3235 
3236 	spin_lock_irqsave(&list->lock, flags);
3237 	result = __skb_dequeue(list);
3238 	spin_unlock_irqrestore(&list->lock, flags);
3239 	return result;
3240 }
3241 EXPORT_SYMBOL(skb_dequeue);
3242 
3243 /**
3244  *	skb_dequeue_tail - remove from the tail of the queue
3245  *	@list: list to dequeue from
3246  *
3247  *	Remove the tail of the list. The list lock is taken so the function
3248  *	may be used safely with other locking list functions. The tail item is
3249  *	returned or %NULL if the list is empty.
3250  */
3251 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
3252 {
3253 	unsigned long flags;
3254 	struct sk_buff *result;
3255 
3256 	spin_lock_irqsave(&list->lock, flags);
3257 	result = __skb_dequeue_tail(list);
3258 	spin_unlock_irqrestore(&list->lock, flags);
3259 	return result;
3260 }
3261 EXPORT_SYMBOL(skb_dequeue_tail);
3262 
3263 /**
3264  *	skb_queue_purge - empty a list
3265  *	@list: list to empty
3266  *
3267  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
3268  *	the list and one reference dropped. This function takes the list
3269  *	lock and is atomic with respect to other list locking functions.
3270  */
3271 void skb_queue_purge(struct sk_buff_head *list)
3272 {
3273 	struct sk_buff *skb;
3274 	while ((skb = skb_dequeue(list)) != NULL)
3275 		kfree_skb(skb);
3276 }
3277 EXPORT_SYMBOL(skb_queue_purge);
3278 
3279 /**
3280  *	skb_rbtree_purge - empty a skb rbtree
3281  *	@root: root of the rbtree to empty
3282  *	Return value: the sum of truesizes of all purged skbs.
3283  *
3284  *	Delete all buffers on an &sk_buff rbtree. Each buffer is removed from
3285  *	the list and one reference dropped. This function does not take
3286  *	any lock. Synchronization should be handled by the caller (e.g., TCP
3287  *	out-of-order queue is protected by the socket lock).
3288  */
3289 unsigned int skb_rbtree_purge(struct rb_root *root)
3290 {
3291 	struct rb_node *p = rb_first(root);
3292 	unsigned int sum = 0;
3293 
3294 	while (p) {
3295 		struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode);
3296 
3297 		p = rb_next(p);
3298 		rb_erase(&skb->rbnode, root);
3299 		sum += skb->truesize;
3300 		kfree_skb(skb);
3301 	}
3302 	return sum;
3303 }
3304 
3305 /**
3306  *	skb_queue_head - queue a buffer at the list head
3307  *	@list: list to use
3308  *	@newsk: buffer to queue
3309  *
3310  *	Queue a buffer at the start of the list. This function takes the
3311  *	list lock and can be used safely with other locking &sk_buff functions
3312  *	safely.
3313  *
3314  *	A buffer cannot be placed on two lists at the same time.
3315  */
3316 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
3317 {
3318 	unsigned long flags;
3319 
3320 	spin_lock_irqsave(&list->lock, flags);
3321 	__skb_queue_head(list, newsk);
3322 	spin_unlock_irqrestore(&list->lock, flags);
3323 }
3324 EXPORT_SYMBOL(skb_queue_head);
3325 
3326 /**
3327  *	skb_queue_tail - queue a buffer at the list tail
3328  *	@list: list to use
3329  *	@newsk: buffer to queue
3330  *
3331  *	Queue a buffer at the tail of the list. This function takes the
3332  *	list lock and can be used safely with other locking &sk_buff functions
3333  *	safely.
3334  *
3335  *	A buffer cannot be placed on two lists at the same time.
3336  */
3337 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
3338 {
3339 	unsigned long flags;
3340 
3341 	spin_lock_irqsave(&list->lock, flags);
3342 	__skb_queue_tail(list, newsk);
3343 	spin_unlock_irqrestore(&list->lock, flags);
3344 }
3345 EXPORT_SYMBOL(skb_queue_tail);
3346 
3347 /**
3348  *	skb_unlink	-	remove a buffer from a list
3349  *	@skb: buffer to remove
3350  *	@list: list to use
3351  *
3352  *	Remove a packet from a list. The list locks are taken and this
3353  *	function is atomic with respect to other list locked calls
3354  *
3355  *	You must know what list the SKB is on.
3356  */
3357 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
3358 {
3359 	unsigned long flags;
3360 
3361 	spin_lock_irqsave(&list->lock, flags);
3362 	__skb_unlink(skb, list);
3363 	spin_unlock_irqrestore(&list->lock, flags);
3364 }
3365 EXPORT_SYMBOL(skb_unlink);
3366 
3367 /**
3368  *	skb_append	-	append a buffer
3369  *	@old: buffer to insert after
3370  *	@newsk: buffer to insert
3371  *	@list: list to use
3372  *
3373  *	Place a packet after a given packet in a list. The list locks are taken
3374  *	and this function is atomic with respect to other list locked calls.
3375  *	A buffer cannot be placed on two lists at the same time.
3376  */
3377 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
3378 {
3379 	unsigned long flags;
3380 
3381 	spin_lock_irqsave(&list->lock, flags);
3382 	__skb_queue_after(list, old, newsk);
3383 	spin_unlock_irqrestore(&list->lock, flags);
3384 }
3385 EXPORT_SYMBOL(skb_append);
3386 
3387 static inline void skb_split_inside_header(struct sk_buff *skb,
3388 					   struct sk_buff* skb1,
3389 					   const u32 len, const int pos)
3390 {
3391 	int i;
3392 
3393 	skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
3394 					 pos - len);
3395 	/* And move data appendix as is. */
3396 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
3397 		skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
3398 
3399 	skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
3400 	skb_shinfo(skb)->nr_frags  = 0;
3401 	skb1->data_len		   = skb->data_len;
3402 	skb1->len		   += skb1->data_len;
3403 	skb->data_len		   = 0;
3404 	skb->len		   = len;
3405 	skb_set_tail_pointer(skb, len);
3406 }
3407 
3408 static inline void skb_split_no_header(struct sk_buff *skb,
3409 				       struct sk_buff* skb1,
3410 				       const u32 len, int pos)
3411 {
3412 	int i, k = 0;
3413 	const int nfrags = skb_shinfo(skb)->nr_frags;
3414 
3415 	skb_shinfo(skb)->nr_frags = 0;
3416 	skb1->len		  = skb1->data_len = skb->len - len;
3417 	skb->len		  = len;
3418 	skb->data_len		  = len - pos;
3419 
3420 	for (i = 0; i < nfrags; i++) {
3421 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
3422 
3423 		if (pos + size > len) {
3424 			skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
3425 
3426 			if (pos < len) {
3427 				/* Split frag.
3428 				 * We have two variants in this case:
3429 				 * 1. Move all the frag to the second
3430 				 *    part, if it is possible. F.e.
3431 				 *    this approach is mandatory for TUX,
3432 				 *    where splitting is expensive.
3433 				 * 2. Split is accurately. We make this.
3434 				 */
3435 				skb_frag_ref(skb, i);
3436 				skb_frag_off_add(&skb_shinfo(skb1)->frags[0], len - pos);
3437 				skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos);
3438 				skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos);
3439 				skb_shinfo(skb)->nr_frags++;
3440 			}
3441 			k++;
3442 		} else
3443 			skb_shinfo(skb)->nr_frags++;
3444 		pos += size;
3445 	}
3446 	skb_shinfo(skb1)->nr_frags = k;
3447 }
3448 
3449 /**
3450  * skb_split - Split fragmented skb to two parts at length len.
3451  * @skb: the buffer to split
3452  * @skb1: the buffer to receive the second part
3453  * @len: new length for skb
3454  */
3455 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
3456 {
3457 	int pos = skb_headlen(skb);
3458 	const int zc_flags = SKBFL_SHARED_FRAG | SKBFL_PURE_ZEROCOPY;
3459 
3460 	skb_shinfo(skb1)->flags |= skb_shinfo(skb)->flags & zc_flags;
3461 	skb_zerocopy_clone(skb1, skb, 0);
3462 	if (len < pos)	/* Split line is inside header. */
3463 		skb_split_inside_header(skb, skb1, len, pos);
3464 	else		/* Second chunk has no header, nothing to copy. */
3465 		skb_split_no_header(skb, skb1, len, pos);
3466 }
3467 EXPORT_SYMBOL(skb_split);
3468 
3469 /* Shifting from/to a cloned skb is a no-go.
3470  *
3471  * Caller cannot keep skb_shinfo related pointers past calling here!
3472  */
3473 static int skb_prepare_for_shift(struct sk_buff *skb)
3474 {
3475 	return skb_unclone_keeptruesize(skb, GFP_ATOMIC);
3476 }
3477 
3478 /**
3479  * skb_shift - Shifts paged data partially from skb to another
3480  * @tgt: buffer into which tail data gets added
3481  * @skb: buffer from which the paged data comes from
3482  * @shiftlen: shift up to this many bytes
3483  *
3484  * Attempts to shift up to shiftlen worth of bytes, which may be less than
3485  * the length of the skb, from skb to tgt. Returns number bytes shifted.
3486  * It's up to caller to free skb if everything was shifted.
3487  *
3488  * If @tgt runs out of frags, the whole operation is aborted.
3489  *
3490  * Skb cannot include anything else but paged data while tgt is allowed
3491  * to have non-paged data as well.
3492  *
3493  * TODO: full sized shift could be optimized but that would need
3494  * specialized skb free'er to handle frags without up-to-date nr_frags.
3495  */
3496 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
3497 {
3498 	int from, to, merge, todo;
3499 	skb_frag_t *fragfrom, *fragto;
3500 
3501 	BUG_ON(shiftlen > skb->len);
3502 
3503 	if (skb_headlen(skb))
3504 		return 0;
3505 	if (skb_zcopy(tgt) || skb_zcopy(skb))
3506 		return 0;
3507 
3508 	todo = shiftlen;
3509 	from = 0;
3510 	to = skb_shinfo(tgt)->nr_frags;
3511 	fragfrom = &skb_shinfo(skb)->frags[from];
3512 
3513 	/* Actual merge is delayed until the point when we know we can
3514 	 * commit all, so that we don't have to undo partial changes
3515 	 */
3516 	if (!to ||
3517 	    !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom),
3518 			      skb_frag_off(fragfrom))) {
3519 		merge = -1;
3520 	} else {
3521 		merge = to - 1;
3522 
3523 		todo -= skb_frag_size(fragfrom);
3524 		if (todo < 0) {
3525 			if (skb_prepare_for_shift(skb) ||
3526 			    skb_prepare_for_shift(tgt))
3527 				return 0;
3528 
3529 			/* All previous frag pointers might be stale! */
3530 			fragfrom = &skb_shinfo(skb)->frags[from];
3531 			fragto = &skb_shinfo(tgt)->frags[merge];
3532 
3533 			skb_frag_size_add(fragto, shiftlen);
3534 			skb_frag_size_sub(fragfrom, shiftlen);
3535 			skb_frag_off_add(fragfrom, shiftlen);
3536 
3537 			goto onlymerged;
3538 		}
3539 
3540 		from++;
3541 	}
3542 
3543 	/* Skip full, not-fitting skb to avoid expensive operations */
3544 	if ((shiftlen == skb->len) &&
3545 	    (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
3546 		return 0;
3547 
3548 	if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
3549 		return 0;
3550 
3551 	while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
3552 		if (to == MAX_SKB_FRAGS)
3553 			return 0;
3554 
3555 		fragfrom = &skb_shinfo(skb)->frags[from];
3556 		fragto = &skb_shinfo(tgt)->frags[to];
3557 
3558 		if (todo >= skb_frag_size(fragfrom)) {
3559 			*fragto = *fragfrom;
3560 			todo -= skb_frag_size(fragfrom);
3561 			from++;
3562 			to++;
3563 
3564 		} else {
3565 			__skb_frag_ref(fragfrom);
3566 			skb_frag_page_copy(fragto, fragfrom);
3567 			skb_frag_off_copy(fragto, fragfrom);
3568 			skb_frag_size_set(fragto, todo);
3569 
3570 			skb_frag_off_add(fragfrom, todo);
3571 			skb_frag_size_sub(fragfrom, todo);
3572 			todo = 0;
3573 
3574 			to++;
3575 			break;
3576 		}
3577 	}
3578 
3579 	/* Ready to "commit" this state change to tgt */
3580 	skb_shinfo(tgt)->nr_frags = to;
3581 
3582 	if (merge >= 0) {
3583 		fragfrom = &skb_shinfo(skb)->frags[0];
3584 		fragto = &skb_shinfo(tgt)->frags[merge];
3585 
3586 		skb_frag_size_add(fragto, skb_frag_size(fragfrom));
3587 		__skb_frag_unref(fragfrom, skb->pp_recycle);
3588 	}
3589 
3590 	/* Reposition in the original skb */
3591 	to = 0;
3592 	while (from < skb_shinfo(skb)->nr_frags)
3593 		skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
3594 	skb_shinfo(skb)->nr_frags = to;
3595 
3596 	BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
3597 
3598 onlymerged:
3599 	/* Most likely the tgt won't ever need its checksum anymore, skb on
3600 	 * the other hand might need it if it needs to be resent
3601 	 */
3602 	tgt->ip_summed = CHECKSUM_PARTIAL;
3603 	skb->ip_summed = CHECKSUM_PARTIAL;
3604 
3605 	/* Yak, is it really working this way? Some helper please? */
3606 	skb->len -= shiftlen;
3607 	skb->data_len -= shiftlen;
3608 	skb->truesize -= shiftlen;
3609 	tgt->len += shiftlen;
3610 	tgt->data_len += shiftlen;
3611 	tgt->truesize += shiftlen;
3612 
3613 	return shiftlen;
3614 }
3615 
3616 /**
3617  * skb_prepare_seq_read - Prepare a sequential read of skb data
3618  * @skb: the buffer to read
3619  * @from: lower offset of data to be read
3620  * @to: upper offset of data to be read
3621  * @st: state variable
3622  *
3623  * Initializes the specified state variable. Must be called before
3624  * invoking skb_seq_read() for the first time.
3625  */
3626 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
3627 			  unsigned int to, struct skb_seq_state *st)
3628 {
3629 	st->lower_offset = from;
3630 	st->upper_offset = to;
3631 	st->root_skb = st->cur_skb = skb;
3632 	st->frag_idx = st->stepped_offset = 0;
3633 	st->frag_data = NULL;
3634 	st->frag_off = 0;
3635 }
3636 EXPORT_SYMBOL(skb_prepare_seq_read);
3637 
3638 /**
3639  * skb_seq_read - Sequentially read skb data
3640  * @consumed: number of bytes consumed by the caller so far
3641  * @data: destination pointer for data to be returned
3642  * @st: state variable
3643  *
3644  * Reads a block of skb data at @consumed relative to the
3645  * lower offset specified to skb_prepare_seq_read(). Assigns
3646  * the head of the data block to @data and returns the length
3647  * of the block or 0 if the end of the skb data or the upper
3648  * offset has been reached.
3649  *
3650  * The caller is not required to consume all of the data
3651  * returned, i.e. @consumed is typically set to the number
3652  * of bytes already consumed and the next call to
3653  * skb_seq_read() will return the remaining part of the block.
3654  *
3655  * Note 1: The size of each block of data returned can be arbitrary,
3656  *       this limitation is the cost for zerocopy sequential
3657  *       reads of potentially non linear data.
3658  *
3659  * Note 2: Fragment lists within fragments are not implemented
3660  *       at the moment, state->root_skb could be replaced with
3661  *       a stack for this purpose.
3662  */
3663 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
3664 			  struct skb_seq_state *st)
3665 {
3666 	unsigned int block_limit, abs_offset = consumed + st->lower_offset;
3667 	skb_frag_t *frag;
3668 
3669 	if (unlikely(abs_offset >= st->upper_offset)) {
3670 		if (st->frag_data) {
3671 			kunmap_atomic(st->frag_data);
3672 			st->frag_data = NULL;
3673 		}
3674 		return 0;
3675 	}
3676 
3677 next_skb:
3678 	block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
3679 
3680 	if (abs_offset < block_limit && !st->frag_data) {
3681 		*data = st->cur_skb->data + (abs_offset - st->stepped_offset);
3682 		return block_limit - abs_offset;
3683 	}
3684 
3685 	if (st->frag_idx == 0 && !st->frag_data)
3686 		st->stepped_offset += skb_headlen(st->cur_skb);
3687 
3688 	while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
3689 		unsigned int pg_idx, pg_off, pg_sz;
3690 
3691 		frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
3692 
3693 		pg_idx = 0;
3694 		pg_off = skb_frag_off(frag);
3695 		pg_sz = skb_frag_size(frag);
3696 
3697 		if (skb_frag_must_loop(skb_frag_page(frag))) {
3698 			pg_idx = (pg_off + st->frag_off) >> PAGE_SHIFT;
3699 			pg_off = offset_in_page(pg_off + st->frag_off);
3700 			pg_sz = min_t(unsigned int, pg_sz - st->frag_off,
3701 						    PAGE_SIZE - pg_off);
3702 		}
3703 
3704 		block_limit = pg_sz + st->stepped_offset;
3705 		if (abs_offset < block_limit) {
3706 			if (!st->frag_data)
3707 				st->frag_data = kmap_atomic(skb_frag_page(frag) + pg_idx);
3708 
3709 			*data = (u8 *)st->frag_data + pg_off +
3710 				(abs_offset - st->stepped_offset);
3711 
3712 			return block_limit - abs_offset;
3713 		}
3714 
3715 		if (st->frag_data) {
3716 			kunmap_atomic(st->frag_data);
3717 			st->frag_data = NULL;
3718 		}
3719 
3720 		st->stepped_offset += pg_sz;
3721 		st->frag_off += pg_sz;
3722 		if (st->frag_off == skb_frag_size(frag)) {
3723 			st->frag_off = 0;
3724 			st->frag_idx++;
3725 		}
3726 	}
3727 
3728 	if (st->frag_data) {
3729 		kunmap_atomic(st->frag_data);
3730 		st->frag_data = NULL;
3731 	}
3732 
3733 	if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) {
3734 		st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
3735 		st->frag_idx = 0;
3736 		goto next_skb;
3737 	} else if (st->cur_skb->next) {
3738 		st->cur_skb = st->cur_skb->next;
3739 		st->frag_idx = 0;
3740 		goto next_skb;
3741 	}
3742 
3743 	return 0;
3744 }
3745 EXPORT_SYMBOL(skb_seq_read);
3746 
3747 /**
3748  * skb_abort_seq_read - Abort a sequential read of skb data
3749  * @st: state variable
3750  *
3751  * Must be called if skb_seq_read() was not called until it
3752  * returned 0.
3753  */
3754 void skb_abort_seq_read(struct skb_seq_state *st)
3755 {
3756 	if (st->frag_data)
3757 		kunmap_atomic(st->frag_data);
3758 }
3759 EXPORT_SYMBOL(skb_abort_seq_read);
3760 
3761 #define TS_SKB_CB(state)	((struct skb_seq_state *) &((state)->cb))
3762 
3763 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
3764 					  struct ts_config *conf,
3765 					  struct ts_state *state)
3766 {
3767 	return skb_seq_read(offset, text, TS_SKB_CB(state));
3768 }
3769 
3770 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
3771 {
3772 	skb_abort_seq_read(TS_SKB_CB(state));
3773 }
3774 
3775 /**
3776  * skb_find_text - Find a text pattern in skb data
3777  * @skb: the buffer to look in
3778  * @from: search offset
3779  * @to: search limit
3780  * @config: textsearch configuration
3781  *
3782  * Finds a pattern in the skb data according to the specified
3783  * textsearch configuration. Use textsearch_next() to retrieve
3784  * subsequent occurrences of the pattern. Returns the offset
3785  * to the first occurrence or UINT_MAX if no match was found.
3786  */
3787 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
3788 			   unsigned int to, struct ts_config *config)
3789 {
3790 	struct ts_state state;
3791 	unsigned int ret;
3792 
3793 	BUILD_BUG_ON(sizeof(struct skb_seq_state) > sizeof(state.cb));
3794 
3795 	config->get_next_block = skb_ts_get_next_block;
3796 	config->finish = skb_ts_finish;
3797 
3798 	skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state));
3799 
3800 	ret = textsearch_find(config, &state);
3801 	return (ret <= to - from ? ret : UINT_MAX);
3802 }
3803 EXPORT_SYMBOL(skb_find_text);
3804 
3805 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
3806 			 int offset, size_t size)
3807 {
3808 	int i = skb_shinfo(skb)->nr_frags;
3809 
3810 	if (skb_can_coalesce(skb, i, page, offset)) {
3811 		skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size);
3812 	} else if (i < MAX_SKB_FRAGS) {
3813 		get_page(page);
3814 		skb_fill_page_desc(skb, i, page, offset, size);
3815 	} else {
3816 		return -EMSGSIZE;
3817 	}
3818 
3819 	return 0;
3820 }
3821 EXPORT_SYMBOL_GPL(skb_append_pagefrags);
3822 
3823 /**
3824  *	skb_pull_rcsum - pull skb and update receive checksum
3825  *	@skb: buffer to update
3826  *	@len: length of data pulled
3827  *
3828  *	This function performs an skb_pull on the packet and updates
3829  *	the CHECKSUM_COMPLETE checksum.  It should be used on
3830  *	receive path processing instead of skb_pull unless you know
3831  *	that the checksum difference is zero (e.g., a valid IP header)
3832  *	or you are setting ip_summed to CHECKSUM_NONE.
3833  */
3834 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
3835 {
3836 	unsigned char *data = skb->data;
3837 
3838 	BUG_ON(len > skb->len);
3839 	__skb_pull(skb, len);
3840 	skb_postpull_rcsum(skb, data, len);
3841 	return skb->data;
3842 }
3843 EXPORT_SYMBOL_GPL(skb_pull_rcsum);
3844 
3845 static inline skb_frag_t skb_head_frag_to_page_desc(struct sk_buff *frag_skb)
3846 {
3847 	skb_frag_t head_frag;
3848 	struct page *page;
3849 
3850 	page = virt_to_head_page(frag_skb->head);
3851 	__skb_frag_set_page(&head_frag, page);
3852 	skb_frag_off_set(&head_frag, frag_skb->data -
3853 			 (unsigned char *)page_address(page));
3854 	skb_frag_size_set(&head_frag, skb_headlen(frag_skb));
3855 	return head_frag;
3856 }
3857 
3858 struct sk_buff *skb_segment_list(struct sk_buff *skb,
3859 				 netdev_features_t features,
3860 				 unsigned int offset)
3861 {
3862 	struct sk_buff *list_skb = skb_shinfo(skb)->frag_list;
3863 	unsigned int tnl_hlen = skb_tnl_header_len(skb);
3864 	unsigned int delta_truesize = 0;
3865 	unsigned int delta_len = 0;
3866 	struct sk_buff *tail = NULL;
3867 	struct sk_buff *nskb, *tmp;
3868 	int err;
3869 
3870 	skb_push(skb, -skb_network_offset(skb) + offset);
3871 
3872 	skb_shinfo(skb)->frag_list = NULL;
3873 
3874 	do {
3875 		nskb = list_skb;
3876 		list_skb = list_skb->next;
3877 
3878 		err = 0;
3879 		if (skb_shared(nskb)) {
3880 			tmp = skb_clone(nskb, GFP_ATOMIC);
3881 			if (tmp) {
3882 				consume_skb(nskb);
3883 				nskb = tmp;
3884 				err = skb_unclone(nskb, GFP_ATOMIC);
3885 			} else {
3886 				err = -ENOMEM;
3887 			}
3888 		}
3889 
3890 		if (!tail)
3891 			skb->next = nskb;
3892 		else
3893 			tail->next = nskb;
3894 
3895 		if (unlikely(err)) {
3896 			nskb->next = list_skb;
3897 			goto err_linearize;
3898 		}
3899 
3900 		tail = nskb;
3901 
3902 		delta_len += nskb->len;
3903 		delta_truesize += nskb->truesize;
3904 
3905 		skb_push(nskb, -skb_network_offset(nskb) + offset);
3906 
3907 		skb_release_head_state(nskb);
3908 		__copy_skb_header(nskb, skb);
3909 
3910 		skb_headers_offset_update(nskb, skb_headroom(nskb) - skb_headroom(skb));
3911 		skb_copy_from_linear_data_offset(skb, -tnl_hlen,
3912 						 nskb->data - tnl_hlen,
3913 						 offset + tnl_hlen);
3914 
3915 		if (skb_needs_linearize(nskb, features) &&
3916 		    __skb_linearize(nskb))
3917 			goto err_linearize;
3918 
3919 	} while (list_skb);
3920 
3921 	skb->truesize = skb->truesize - delta_truesize;
3922 	skb->data_len = skb->data_len - delta_len;
3923 	skb->len = skb->len - delta_len;
3924 
3925 	skb_gso_reset(skb);
3926 
3927 	skb->prev = tail;
3928 
3929 	if (skb_needs_linearize(skb, features) &&
3930 	    __skb_linearize(skb))
3931 		goto err_linearize;
3932 
3933 	skb_get(skb);
3934 
3935 	return skb;
3936 
3937 err_linearize:
3938 	kfree_skb_list(skb->next);
3939 	skb->next = NULL;
3940 	return ERR_PTR(-ENOMEM);
3941 }
3942 EXPORT_SYMBOL_GPL(skb_segment_list);
3943 
3944 /**
3945  *	skb_segment - Perform protocol segmentation on skb.
3946  *	@head_skb: buffer to segment
3947  *	@features: features for the output path (see dev->features)
3948  *
3949  *	This function performs segmentation on the given skb.  It returns
3950  *	a pointer to the first in a list of new skbs for the segments.
3951  *	In case of error it returns ERR_PTR(err).
3952  */
3953 struct sk_buff *skb_segment(struct sk_buff *head_skb,
3954 			    netdev_features_t features)
3955 {
3956 	struct sk_buff *segs = NULL;
3957 	struct sk_buff *tail = NULL;
3958 	struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list;
3959 	skb_frag_t *frag = skb_shinfo(head_skb)->frags;
3960 	unsigned int mss = skb_shinfo(head_skb)->gso_size;
3961 	unsigned int doffset = head_skb->data - skb_mac_header(head_skb);
3962 	struct sk_buff *frag_skb = head_skb;
3963 	unsigned int offset = doffset;
3964 	unsigned int tnl_hlen = skb_tnl_header_len(head_skb);
3965 	unsigned int partial_segs = 0;
3966 	unsigned int headroom;
3967 	unsigned int len = head_skb->len;
3968 	__be16 proto;
3969 	bool csum, sg;
3970 	int nfrags = skb_shinfo(head_skb)->nr_frags;
3971 	int err = -ENOMEM;
3972 	int i = 0;
3973 	int pos;
3974 
3975 	if (list_skb && !list_skb->head_frag && skb_headlen(list_skb) &&
3976 	    (skb_shinfo(head_skb)->gso_type & SKB_GSO_DODGY)) {
3977 		/* gso_size is untrusted, and we have a frag_list with a linear
3978 		 * non head_frag head.
3979 		 *
3980 		 * (we assume checking the first list_skb member suffices;
3981 		 * i.e if either of the list_skb members have non head_frag
3982 		 * head, then the first one has too).
3983 		 *
3984 		 * If head_skb's headlen does not fit requested gso_size, it
3985 		 * means that the frag_list members do NOT terminate on exact
3986 		 * gso_size boundaries. Hence we cannot perform skb_frag_t page
3987 		 * sharing. Therefore we must fallback to copying the frag_list
3988 		 * skbs; we do so by disabling SG.
3989 		 */
3990 		if (mss != GSO_BY_FRAGS && mss != skb_headlen(head_skb))
3991 			features &= ~NETIF_F_SG;
3992 	}
3993 
3994 	__skb_push(head_skb, doffset);
3995 	proto = skb_network_protocol(head_skb, NULL);
3996 	if (unlikely(!proto))
3997 		return ERR_PTR(-EINVAL);
3998 
3999 	sg = !!(features & NETIF_F_SG);
4000 	csum = !!can_checksum_protocol(features, proto);
4001 
4002 	if (sg && csum && (mss != GSO_BY_FRAGS))  {
4003 		if (!(features & NETIF_F_GSO_PARTIAL)) {
4004 			struct sk_buff *iter;
4005 			unsigned int frag_len;
4006 
4007 			if (!list_skb ||
4008 			    !net_gso_ok(features, skb_shinfo(head_skb)->gso_type))
4009 				goto normal;
4010 
4011 			/* If we get here then all the required
4012 			 * GSO features except frag_list are supported.
4013 			 * Try to split the SKB to multiple GSO SKBs
4014 			 * with no frag_list.
4015 			 * Currently we can do that only when the buffers don't
4016 			 * have a linear part and all the buffers except
4017 			 * the last are of the same length.
4018 			 */
4019 			frag_len = list_skb->len;
4020 			skb_walk_frags(head_skb, iter) {
4021 				if (frag_len != iter->len && iter->next)
4022 					goto normal;
4023 				if (skb_headlen(iter) && !iter->head_frag)
4024 					goto normal;
4025 
4026 				len -= iter->len;
4027 			}
4028 
4029 			if (len != frag_len)
4030 				goto normal;
4031 		}
4032 
4033 		/* GSO partial only requires that we trim off any excess that
4034 		 * doesn't fit into an MSS sized block, so take care of that
4035 		 * now.
4036 		 */
4037 		partial_segs = len / mss;
4038 		if (partial_segs > 1)
4039 			mss *= partial_segs;
4040 		else
4041 			partial_segs = 0;
4042 	}
4043 
4044 normal:
4045 	headroom = skb_headroom(head_skb);
4046 	pos = skb_headlen(head_skb);
4047 
4048 	do {
4049 		struct sk_buff *nskb;
4050 		skb_frag_t *nskb_frag;
4051 		int hsize;
4052 		int size;
4053 
4054 		if (unlikely(mss == GSO_BY_FRAGS)) {
4055 			len = list_skb->len;
4056 		} else {
4057 			len = head_skb->len - offset;
4058 			if (len > mss)
4059 				len = mss;
4060 		}
4061 
4062 		hsize = skb_headlen(head_skb) - offset;
4063 
4064 		if (hsize <= 0 && i >= nfrags && skb_headlen(list_skb) &&
4065 		    (skb_headlen(list_skb) == len || sg)) {
4066 			BUG_ON(skb_headlen(list_skb) > len);
4067 
4068 			i = 0;
4069 			nfrags = skb_shinfo(list_skb)->nr_frags;
4070 			frag = skb_shinfo(list_skb)->frags;
4071 			frag_skb = list_skb;
4072 			pos += skb_headlen(list_skb);
4073 
4074 			while (pos < offset + len) {
4075 				BUG_ON(i >= nfrags);
4076 
4077 				size = skb_frag_size(frag);
4078 				if (pos + size > offset + len)
4079 					break;
4080 
4081 				i++;
4082 				pos += size;
4083 				frag++;
4084 			}
4085 
4086 			nskb = skb_clone(list_skb, GFP_ATOMIC);
4087 			list_skb = list_skb->next;
4088 
4089 			if (unlikely(!nskb))
4090 				goto err;
4091 
4092 			if (unlikely(pskb_trim(nskb, len))) {
4093 				kfree_skb(nskb);
4094 				goto err;
4095 			}
4096 
4097 			hsize = skb_end_offset(nskb);
4098 			if (skb_cow_head(nskb, doffset + headroom)) {
4099 				kfree_skb(nskb);
4100 				goto err;
4101 			}
4102 
4103 			nskb->truesize += skb_end_offset(nskb) - hsize;
4104 			skb_release_head_state(nskb);
4105 			__skb_push(nskb, doffset);
4106 		} else {
4107 			if (hsize < 0)
4108 				hsize = 0;
4109 			if (hsize > len || !sg)
4110 				hsize = len;
4111 
4112 			nskb = __alloc_skb(hsize + doffset + headroom,
4113 					   GFP_ATOMIC, skb_alloc_rx_flag(head_skb),
4114 					   NUMA_NO_NODE);
4115 
4116 			if (unlikely(!nskb))
4117 				goto err;
4118 
4119 			skb_reserve(nskb, headroom);
4120 			__skb_put(nskb, doffset);
4121 		}
4122 
4123 		if (segs)
4124 			tail->next = nskb;
4125 		else
4126 			segs = nskb;
4127 		tail = nskb;
4128 
4129 		__copy_skb_header(nskb, head_skb);
4130 
4131 		skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom);
4132 		skb_reset_mac_len(nskb);
4133 
4134 		skb_copy_from_linear_data_offset(head_skb, -tnl_hlen,
4135 						 nskb->data - tnl_hlen,
4136 						 doffset + tnl_hlen);
4137 
4138 		if (nskb->len == len + doffset)
4139 			goto perform_csum_check;
4140 
4141 		if (!sg) {
4142 			if (!csum) {
4143 				if (!nskb->remcsum_offload)
4144 					nskb->ip_summed = CHECKSUM_NONE;
4145 				SKB_GSO_CB(nskb)->csum =
4146 					skb_copy_and_csum_bits(head_skb, offset,
4147 							       skb_put(nskb,
4148 								       len),
4149 							       len);
4150 				SKB_GSO_CB(nskb)->csum_start =
4151 					skb_headroom(nskb) + doffset;
4152 			} else {
4153 				skb_copy_bits(head_skb, offset,
4154 					      skb_put(nskb, len),
4155 					      len);
4156 			}
4157 			continue;
4158 		}
4159 
4160 		nskb_frag = skb_shinfo(nskb)->frags;
4161 
4162 		skb_copy_from_linear_data_offset(head_skb, offset,
4163 						 skb_put(nskb, hsize), hsize);
4164 
4165 		skb_shinfo(nskb)->flags |= skb_shinfo(head_skb)->flags &
4166 					   SKBFL_SHARED_FRAG;
4167 
4168 		if (skb_orphan_frags(frag_skb, GFP_ATOMIC) ||
4169 		    skb_zerocopy_clone(nskb, frag_skb, GFP_ATOMIC))
4170 			goto err;
4171 
4172 		while (pos < offset + len) {
4173 			if (i >= nfrags) {
4174 				i = 0;
4175 				nfrags = skb_shinfo(list_skb)->nr_frags;
4176 				frag = skb_shinfo(list_skb)->frags;
4177 				frag_skb = list_skb;
4178 				if (!skb_headlen(list_skb)) {
4179 					BUG_ON(!nfrags);
4180 				} else {
4181 					BUG_ON(!list_skb->head_frag);
4182 
4183 					/* to make room for head_frag. */
4184 					i--;
4185 					frag--;
4186 				}
4187 				if (skb_orphan_frags(frag_skb, GFP_ATOMIC) ||
4188 				    skb_zerocopy_clone(nskb, frag_skb,
4189 						       GFP_ATOMIC))
4190 					goto err;
4191 
4192 				list_skb = list_skb->next;
4193 			}
4194 
4195 			if (unlikely(skb_shinfo(nskb)->nr_frags >=
4196 				     MAX_SKB_FRAGS)) {
4197 				net_warn_ratelimited(
4198 					"skb_segment: too many frags: %u %u\n",
4199 					pos, mss);
4200 				err = -EINVAL;
4201 				goto err;
4202 			}
4203 
4204 			*nskb_frag = (i < 0) ? skb_head_frag_to_page_desc(frag_skb) : *frag;
4205 			__skb_frag_ref(nskb_frag);
4206 			size = skb_frag_size(nskb_frag);
4207 
4208 			if (pos < offset) {
4209 				skb_frag_off_add(nskb_frag, offset - pos);
4210 				skb_frag_size_sub(nskb_frag, offset - pos);
4211 			}
4212 
4213 			skb_shinfo(nskb)->nr_frags++;
4214 
4215 			if (pos + size <= offset + len) {
4216 				i++;
4217 				frag++;
4218 				pos += size;
4219 			} else {
4220 				skb_frag_size_sub(nskb_frag, pos + size - (offset + len));
4221 				goto skip_fraglist;
4222 			}
4223 
4224 			nskb_frag++;
4225 		}
4226 
4227 skip_fraglist:
4228 		nskb->data_len = len - hsize;
4229 		nskb->len += nskb->data_len;
4230 		nskb->truesize += nskb->data_len;
4231 
4232 perform_csum_check:
4233 		if (!csum) {
4234 			if (skb_has_shared_frag(nskb) &&
4235 			    __skb_linearize(nskb))
4236 				goto err;
4237 
4238 			if (!nskb->remcsum_offload)
4239 				nskb->ip_summed = CHECKSUM_NONE;
4240 			SKB_GSO_CB(nskb)->csum =
4241 				skb_checksum(nskb, doffset,
4242 					     nskb->len - doffset, 0);
4243 			SKB_GSO_CB(nskb)->csum_start =
4244 				skb_headroom(nskb) + doffset;
4245 		}
4246 	} while ((offset += len) < head_skb->len);
4247 
4248 	/* Some callers want to get the end of the list.
4249 	 * Put it in segs->prev to avoid walking the list.
4250 	 * (see validate_xmit_skb_list() for example)
4251 	 */
4252 	segs->prev = tail;
4253 
4254 	if (partial_segs) {
4255 		struct sk_buff *iter;
4256 		int type = skb_shinfo(head_skb)->gso_type;
4257 		unsigned short gso_size = skb_shinfo(head_skb)->gso_size;
4258 
4259 		/* Update type to add partial and then remove dodgy if set */
4260 		type |= (features & NETIF_F_GSO_PARTIAL) / NETIF_F_GSO_PARTIAL * SKB_GSO_PARTIAL;
4261 		type &= ~SKB_GSO_DODGY;
4262 
4263 		/* Update GSO info and prepare to start updating headers on
4264 		 * our way back down the stack of protocols.
4265 		 */
4266 		for (iter = segs; iter; iter = iter->next) {
4267 			skb_shinfo(iter)->gso_size = gso_size;
4268 			skb_shinfo(iter)->gso_segs = partial_segs;
4269 			skb_shinfo(iter)->gso_type = type;
4270 			SKB_GSO_CB(iter)->data_offset = skb_headroom(iter) + doffset;
4271 		}
4272 
4273 		if (tail->len - doffset <= gso_size)
4274 			skb_shinfo(tail)->gso_size = 0;
4275 		else if (tail != segs)
4276 			skb_shinfo(tail)->gso_segs = DIV_ROUND_UP(tail->len - doffset, gso_size);
4277 	}
4278 
4279 	/* Following permits correct backpressure, for protocols
4280 	 * using skb_set_owner_w().
4281 	 * Idea is to tranfert ownership from head_skb to last segment.
4282 	 */
4283 	if (head_skb->destructor == sock_wfree) {
4284 		swap(tail->truesize, head_skb->truesize);
4285 		swap(tail->destructor, head_skb->destructor);
4286 		swap(tail->sk, head_skb->sk);
4287 	}
4288 	return segs;
4289 
4290 err:
4291 	kfree_skb_list(segs);
4292 	return ERR_PTR(err);
4293 }
4294 EXPORT_SYMBOL_GPL(skb_segment);
4295 
4296 #ifdef CONFIG_SKB_EXTENSIONS
4297 #define SKB_EXT_ALIGN_VALUE	8
4298 #define SKB_EXT_CHUNKSIZEOF(x)	(ALIGN((sizeof(x)), SKB_EXT_ALIGN_VALUE) / SKB_EXT_ALIGN_VALUE)
4299 
4300 static const u8 skb_ext_type_len[] = {
4301 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4302 	[SKB_EXT_BRIDGE_NF] = SKB_EXT_CHUNKSIZEOF(struct nf_bridge_info),
4303 #endif
4304 #ifdef CONFIG_XFRM
4305 	[SKB_EXT_SEC_PATH] = SKB_EXT_CHUNKSIZEOF(struct sec_path),
4306 #endif
4307 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4308 	[TC_SKB_EXT] = SKB_EXT_CHUNKSIZEOF(struct tc_skb_ext),
4309 #endif
4310 #if IS_ENABLED(CONFIG_MPTCP)
4311 	[SKB_EXT_MPTCP] = SKB_EXT_CHUNKSIZEOF(struct mptcp_ext),
4312 #endif
4313 #if IS_ENABLED(CONFIG_MCTP_FLOWS)
4314 	[SKB_EXT_MCTP] = SKB_EXT_CHUNKSIZEOF(struct mctp_flow),
4315 #endif
4316 };
4317 
4318 static __always_inline unsigned int skb_ext_total_length(void)
4319 {
4320 	return SKB_EXT_CHUNKSIZEOF(struct skb_ext) +
4321 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4322 		skb_ext_type_len[SKB_EXT_BRIDGE_NF] +
4323 #endif
4324 #ifdef CONFIG_XFRM
4325 		skb_ext_type_len[SKB_EXT_SEC_PATH] +
4326 #endif
4327 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4328 		skb_ext_type_len[TC_SKB_EXT] +
4329 #endif
4330 #if IS_ENABLED(CONFIG_MPTCP)
4331 		skb_ext_type_len[SKB_EXT_MPTCP] +
4332 #endif
4333 #if IS_ENABLED(CONFIG_MCTP_FLOWS)
4334 		skb_ext_type_len[SKB_EXT_MCTP] +
4335 #endif
4336 		0;
4337 }
4338 
4339 static void skb_extensions_init(void)
4340 {
4341 	BUILD_BUG_ON(SKB_EXT_NUM >= 8);
4342 	BUILD_BUG_ON(skb_ext_total_length() > 255);
4343 
4344 	skbuff_ext_cache = kmem_cache_create("skbuff_ext_cache",
4345 					     SKB_EXT_ALIGN_VALUE * skb_ext_total_length(),
4346 					     0,
4347 					     SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4348 					     NULL);
4349 }
4350 #else
4351 static void skb_extensions_init(void) {}
4352 #endif
4353 
4354 void __init skb_init(void)
4355 {
4356 	skbuff_head_cache = kmem_cache_create_usercopy("skbuff_head_cache",
4357 					      sizeof(struct sk_buff),
4358 					      0,
4359 					      SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4360 					      offsetof(struct sk_buff, cb),
4361 					      sizeof_field(struct sk_buff, cb),
4362 					      NULL);
4363 	skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
4364 						sizeof(struct sk_buff_fclones),
4365 						0,
4366 						SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4367 						NULL);
4368 	skb_extensions_init();
4369 }
4370 
4371 static int
4372 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len,
4373 	       unsigned int recursion_level)
4374 {
4375 	int start = skb_headlen(skb);
4376 	int i, copy = start - offset;
4377 	struct sk_buff *frag_iter;
4378 	int elt = 0;
4379 
4380 	if (unlikely(recursion_level >= 24))
4381 		return -EMSGSIZE;
4382 
4383 	if (copy > 0) {
4384 		if (copy > len)
4385 			copy = len;
4386 		sg_set_buf(sg, skb->data + offset, copy);
4387 		elt++;
4388 		if ((len -= copy) == 0)
4389 			return elt;
4390 		offset += copy;
4391 	}
4392 
4393 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
4394 		int end;
4395 
4396 		WARN_ON(start > offset + len);
4397 
4398 		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
4399 		if ((copy = end - offset) > 0) {
4400 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4401 			if (unlikely(elt && sg_is_last(&sg[elt - 1])))
4402 				return -EMSGSIZE;
4403 
4404 			if (copy > len)
4405 				copy = len;
4406 			sg_set_page(&sg[elt], skb_frag_page(frag), copy,
4407 				    skb_frag_off(frag) + offset - start);
4408 			elt++;
4409 			if (!(len -= copy))
4410 				return elt;
4411 			offset += copy;
4412 		}
4413 		start = end;
4414 	}
4415 
4416 	skb_walk_frags(skb, frag_iter) {
4417 		int end, ret;
4418 
4419 		WARN_ON(start > offset + len);
4420 
4421 		end = start + frag_iter->len;
4422 		if ((copy = end - offset) > 0) {
4423 			if (unlikely(elt && sg_is_last(&sg[elt - 1])))
4424 				return -EMSGSIZE;
4425 
4426 			if (copy > len)
4427 				copy = len;
4428 			ret = __skb_to_sgvec(frag_iter, sg+elt, offset - start,
4429 					      copy, recursion_level + 1);
4430 			if (unlikely(ret < 0))
4431 				return ret;
4432 			elt += ret;
4433 			if ((len -= copy) == 0)
4434 				return elt;
4435 			offset += copy;
4436 		}
4437 		start = end;
4438 	}
4439 	BUG_ON(len);
4440 	return elt;
4441 }
4442 
4443 /**
4444  *	skb_to_sgvec - Fill a scatter-gather list from a socket buffer
4445  *	@skb: Socket buffer containing the buffers to be mapped
4446  *	@sg: The scatter-gather list to map into
4447  *	@offset: The offset into the buffer's contents to start mapping
4448  *	@len: Length of buffer space to be mapped
4449  *
4450  *	Fill the specified scatter-gather list with mappings/pointers into a
4451  *	region of the buffer space attached to a socket buffer. Returns either
4452  *	the number of scatterlist items used, or -EMSGSIZE if the contents
4453  *	could not fit.
4454  */
4455 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
4456 {
4457 	int nsg = __skb_to_sgvec(skb, sg, offset, len, 0);
4458 
4459 	if (nsg <= 0)
4460 		return nsg;
4461 
4462 	sg_mark_end(&sg[nsg - 1]);
4463 
4464 	return nsg;
4465 }
4466 EXPORT_SYMBOL_GPL(skb_to_sgvec);
4467 
4468 /* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given
4469  * sglist without mark the sg which contain last skb data as the end.
4470  * So the caller can mannipulate sg list as will when padding new data after
4471  * the first call without calling sg_unmark_end to expend sg list.
4472  *
4473  * Scenario to use skb_to_sgvec_nomark:
4474  * 1. sg_init_table
4475  * 2. skb_to_sgvec_nomark(payload1)
4476  * 3. skb_to_sgvec_nomark(payload2)
4477  *
4478  * This is equivalent to:
4479  * 1. sg_init_table
4480  * 2. skb_to_sgvec(payload1)
4481  * 3. sg_unmark_end
4482  * 4. skb_to_sgvec(payload2)
4483  *
4484  * When mapping mutilple payload conditionally, skb_to_sgvec_nomark
4485  * is more preferable.
4486  */
4487 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
4488 			int offset, int len)
4489 {
4490 	return __skb_to_sgvec(skb, sg, offset, len, 0);
4491 }
4492 EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark);
4493 
4494 
4495 
4496 /**
4497  *	skb_cow_data - Check that a socket buffer's data buffers are writable
4498  *	@skb: The socket buffer to check.
4499  *	@tailbits: Amount of trailing space to be added
4500  *	@trailer: Returned pointer to the skb where the @tailbits space begins
4501  *
4502  *	Make sure that the data buffers attached to a socket buffer are
4503  *	writable. If they are not, private copies are made of the data buffers
4504  *	and the socket buffer is set to use these instead.
4505  *
4506  *	If @tailbits is given, make sure that there is space to write @tailbits
4507  *	bytes of data beyond current end of socket buffer.  @trailer will be
4508  *	set to point to the skb in which this space begins.
4509  *
4510  *	The number of scatterlist elements required to completely map the
4511  *	COW'd and extended socket buffer will be returned.
4512  */
4513 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
4514 {
4515 	int copyflag;
4516 	int elt;
4517 	struct sk_buff *skb1, **skb_p;
4518 
4519 	/* If skb is cloned or its head is paged, reallocate
4520 	 * head pulling out all the pages (pages are considered not writable
4521 	 * at the moment even if they are anonymous).
4522 	 */
4523 	if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
4524 	    !__pskb_pull_tail(skb, __skb_pagelen(skb)))
4525 		return -ENOMEM;
4526 
4527 	/* Easy case. Most of packets will go this way. */
4528 	if (!skb_has_frag_list(skb)) {
4529 		/* A little of trouble, not enough of space for trailer.
4530 		 * This should not happen, when stack is tuned to generate
4531 		 * good frames. OK, on miss we reallocate and reserve even more
4532 		 * space, 128 bytes is fair. */
4533 
4534 		if (skb_tailroom(skb) < tailbits &&
4535 		    pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
4536 			return -ENOMEM;
4537 
4538 		/* Voila! */
4539 		*trailer = skb;
4540 		return 1;
4541 	}
4542 
4543 	/* Misery. We are in troubles, going to mincer fragments... */
4544 
4545 	elt = 1;
4546 	skb_p = &skb_shinfo(skb)->frag_list;
4547 	copyflag = 0;
4548 
4549 	while ((skb1 = *skb_p) != NULL) {
4550 		int ntail = 0;
4551 
4552 		/* The fragment is partially pulled by someone,
4553 		 * this can happen on input. Copy it and everything
4554 		 * after it. */
4555 
4556 		if (skb_shared(skb1))
4557 			copyflag = 1;
4558 
4559 		/* If the skb is the last, worry about trailer. */
4560 
4561 		if (skb1->next == NULL && tailbits) {
4562 			if (skb_shinfo(skb1)->nr_frags ||
4563 			    skb_has_frag_list(skb1) ||
4564 			    skb_tailroom(skb1) < tailbits)
4565 				ntail = tailbits + 128;
4566 		}
4567 
4568 		if (copyflag ||
4569 		    skb_cloned(skb1) ||
4570 		    ntail ||
4571 		    skb_shinfo(skb1)->nr_frags ||
4572 		    skb_has_frag_list(skb1)) {
4573 			struct sk_buff *skb2;
4574 
4575 			/* Fuck, we are miserable poor guys... */
4576 			if (ntail == 0)
4577 				skb2 = skb_copy(skb1, GFP_ATOMIC);
4578 			else
4579 				skb2 = skb_copy_expand(skb1,
4580 						       skb_headroom(skb1),
4581 						       ntail,
4582 						       GFP_ATOMIC);
4583 			if (unlikely(skb2 == NULL))
4584 				return -ENOMEM;
4585 
4586 			if (skb1->sk)
4587 				skb_set_owner_w(skb2, skb1->sk);
4588 
4589 			/* Looking around. Are we still alive?
4590 			 * OK, link new skb, drop old one */
4591 
4592 			skb2->next = skb1->next;
4593 			*skb_p = skb2;
4594 			kfree_skb(skb1);
4595 			skb1 = skb2;
4596 		}
4597 		elt++;
4598 		*trailer = skb1;
4599 		skb_p = &skb1->next;
4600 	}
4601 
4602 	return elt;
4603 }
4604 EXPORT_SYMBOL_GPL(skb_cow_data);
4605 
4606 static void sock_rmem_free(struct sk_buff *skb)
4607 {
4608 	struct sock *sk = skb->sk;
4609 
4610 	atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
4611 }
4612 
4613 static void skb_set_err_queue(struct sk_buff *skb)
4614 {
4615 	/* pkt_type of skbs received on local sockets is never PACKET_OUTGOING.
4616 	 * So, it is safe to (mis)use it to mark skbs on the error queue.
4617 	 */
4618 	skb->pkt_type = PACKET_OUTGOING;
4619 	BUILD_BUG_ON(PACKET_OUTGOING == 0);
4620 }
4621 
4622 /*
4623  * Note: We dont mem charge error packets (no sk_forward_alloc changes)
4624  */
4625 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
4626 {
4627 	if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
4628 	    (unsigned int)READ_ONCE(sk->sk_rcvbuf))
4629 		return -ENOMEM;
4630 
4631 	skb_orphan(skb);
4632 	skb->sk = sk;
4633 	skb->destructor = sock_rmem_free;
4634 	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
4635 	skb_set_err_queue(skb);
4636 
4637 	/* before exiting rcu section, make sure dst is refcounted */
4638 	skb_dst_force(skb);
4639 
4640 	skb_queue_tail(&sk->sk_error_queue, skb);
4641 	if (!sock_flag(sk, SOCK_DEAD))
4642 		sk_error_report(sk);
4643 	return 0;
4644 }
4645 EXPORT_SYMBOL(sock_queue_err_skb);
4646 
4647 static bool is_icmp_err_skb(const struct sk_buff *skb)
4648 {
4649 	return skb && (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP ||
4650 		       SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP6);
4651 }
4652 
4653 struct sk_buff *sock_dequeue_err_skb(struct sock *sk)
4654 {
4655 	struct sk_buff_head *q = &sk->sk_error_queue;
4656 	struct sk_buff *skb, *skb_next = NULL;
4657 	bool icmp_next = false;
4658 	unsigned long flags;
4659 
4660 	spin_lock_irqsave(&q->lock, flags);
4661 	skb = __skb_dequeue(q);
4662 	if (skb && (skb_next = skb_peek(q))) {
4663 		icmp_next = is_icmp_err_skb(skb_next);
4664 		if (icmp_next)
4665 			sk->sk_err = SKB_EXT_ERR(skb_next)->ee.ee_errno;
4666 	}
4667 	spin_unlock_irqrestore(&q->lock, flags);
4668 
4669 	if (is_icmp_err_skb(skb) && !icmp_next)
4670 		sk->sk_err = 0;
4671 
4672 	if (skb_next)
4673 		sk_error_report(sk);
4674 
4675 	return skb;
4676 }
4677 EXPORT_SYMBOL(sock_dequeue_err_skb);
4678 
4679 /**
4680  * skb_clone_sk - create clone of skb, and take reference to socket
4681  * @skb: the skb to clone
4682  *
4683  * This function creates a clone of a buffer that holds a reference on
4684  * sk_refcnt.  Buffers created via this function are meant to be
4685  * returned using sock_queue_err_skb, or free via kfree_skb.
4686  *
4687  * When passing buffers allocated with this function to sock_queue_err_skb
4688  * it is necessary to wrap the call with sock_hold/sock_put in order to
4689  * prevent the socket from being released prior to being enqueued on
4690  * the sk_error_queue.
4691  */
4692 struct sk_buff *skb_clone_sk(struct sk_buff *skb)
4693 {
4694 	struct sock *sk = skb->sk;
4695 	struct sk_buff *clone;
4696 
4697 	if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt))
4698 		return NULL;
4699 
4700 	clone = skb_clone(skb, GFP_ATOMIC);
4701 	if (!clone) {
4702 		sock_put(sk);
4703 		return NULL;
4704 	}
4705 
4706 	clone->sk = sk;
4707 	clone->destructor = sock_efree;
4708 
4709 	return clone;
4710 }
4711 EXPORT_SYMBOL(skb_clone_sk);
4712 
4713 static void __skb_complete_tx_timestamp(struct sk_buff *skb,
4714 					struct sock *sk,
4715 					int tstype,
4716 					bool opt_stats)
4717 {
4718 	struct sock_exterr_skb *serr;
4719 	int err;
4720 
4721 	BUILD_BUG_ON(sizeof(struct sock_exterr_skb) > sizeof(skb->cb));
4722 
4723 	serr = SKB_EXT_ERR(skb);
4724 	memset(serr, 0, sizeof(*serr));
4725 	serr->ee.ee_errno = ENOMSG;
4726 	serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
4727 	serr->ee.ee_info = tstype;
4728 	serr->opt_stats = opt_stats;
4729 	serr->header.h4.iif = skb->dev ? skb->dev->ifindex : 0;
4730 	if (sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID) {
4731 		serr->ee.ee_data = skb_shinfo(skb)->tskey;
4732 		if (sk_is_tcp(sk))
4733 			serr->ee.ee_data -= sk->sk_tskey;
4734 	}
4735 
4736 	err = sock_queue_err_skb(sk, skb);
4737 
4738 	if (err)
4739 		kfree_skb(skb);
4740 }
4741 
4742 static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly)
4743 {
4744 	bool ret;
4745 
4746 	if (likely(sysctl_tstamp_allow_data || tsonly))
4747 		return true;
4748 
4749 	read_lock_bh(&sk->sk_callback_lock);
4750 	ret = sk->sk_socket && sk->sk_socket->file &&
4751 	      file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW);
4752 	read_unlock_bh(&sk->sk_callback_lock);
4753 	return ret;
4754 }
4755 
4756 void skb_complete_tx_timestamp(struct sk_buff *skb,
4757 			       struct skb_shared_hwtstamps *hwtstamps)
4758 {
4759 	struct sock *sk = skb->sk;
4760 
4761 	if (!skb_may_tx_timestamp(sk, false))
4762 		goto err;
4763 
4764 	/* Take a reference to prevent skb_orphan() from freeing the socket,
4765 	 * but only if the socket refcount is not zero.
4766 	 */
4767 	if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
4768 		*skb_hwtstamps(skb) = *hwtstamps;
4769 		__skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND, false);
4770 		sock_put(sk);
4771 		return;
4772 	}
4773 
4774 err:
4775 	kfree_skb(skb);
4776 }
4777 EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp);
4778 
4779 void __skb_tstamp_tx(struct sk_buff *orig_skb,
4780 		     const struct sk_buff *ack_skb,
4781 		     struct skb_shared_hwtstamps *hwtstamps,
4782 		     struct sock *sk, int tstype)
4783 {
4784 	struct sk_buff *skb;
4785 	bool tsonly, opt_stats = false;
4786 
4787 	if (!sk)
4788 		return;
4789 
4790 	if (!hwtstamps && !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TX_SWHW) &&
4791 	    skb_shinfo(orig_skb)->tx_flags & SKBTX_IN_PROGRESS)
4792 		return;
4793 
4794 	tsonly = sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TSONLY;
4795 	if (!skb_may_tx_timestamp(sk, tsonly))
4796 		return;
4797 
4798 	if (tsonly) {
4799 #ifdef CONFIG_INET
4800 		if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_STATS) &&
4801 		    sk_is_tcp(sk)) {
4802 			skb = tcp_get_timestamping_opt_stats(sk, orig_skb,
4803 							     ack_skb);
4804 			opt_stats = true;
4805 		} else
4806 #endif
4807 			skb = alloc_skb(0, GFP_ATOMIC);
4808 	} else {
4809 		skb = skb_clone(orig_skb, GFP_ATOMIC);
4810 	}
4811 	if (!skb)
4812 		return;
4813 
4814 	if (tsonly) {
4815 		skb_shinfo(skb)->tx_flags |= skb_shinfo(orig_skb)->tx_flags &
4816 					     SKBTX_ANY_TSTAMP;
4817 		skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey;
4818 	}
4819 
4820 	if (hwtstamps)
4821 		*skb_hwtstamps(skb) = *hwtstamps;
4822 	else
4823 		skb->tstamp = ktime_get_real();
4824 
4825 	__skb_complete_tx_timestamp(skb, sk, tstype, opt_stats);
4826 }
4827 EXPORT_SYMBOL_GPL(__skb_tstamp_tx);
4828 
4829 void skb_tstamp_tx(struct sk_buff *orig_skb,
4830 		   struct skb_shared_hwtstamps *hwtstamps)
4831 {
4832 	return __skb_tstamp_tx(orig_skb, NULL, hwtstamps, orig_skb->sk,
4833 			       SCM_TSTAMP_SND);
4834 }
4835 EXPORT_SYMBOL_GPL(skb_tstamp_tx);
4836 
4837 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked)
4838 {
4839 	struct sock *sk = skb->sk;
4840 	struct sock_exterr_skb *serr;
4841 	int err = 1;
4842 
4843 	skb->wifi_acked_valid = 1;
4844 	skb->wifi_acked = acked;
4845 
4846 	serr = SKB_EXT_ERR(skb);
4847 	memset(serr, 0, sizeof(*serr));
4848 	serr->ee.ee_errno = ENOMSG;
4849 	serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS;
4850 
4851 	/* Take a reference to prevent skb_orphan() from freeing the socket,
4852 	 * but only if the socket refcount is not zero.
4853 	 */
4854 	if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
4855 		err = sock_queue_err_skb(sk, skb);
4856 		sock_put(sk);
4857 	}
4858 	if (err)
4859 		kfree_skb(skb);
4860 }
4861 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack);
4862 
4863 /**
4864  * skb_partial_csum_set - set up and verify partial csum values for packet
4865  * @skb: the skb to set
4866  * @start: the number of bytes after skb->data to start checksumming.
4867  * @off: the offset from start to place the checksum.
4868  *
4869  * For untrusted partially-checksummed packets, we need to make sure the values
4870  * for skb->csum_start and skb->csum_offset are valid so we don't oops.
4871  *
4872  * This function checks and sets those values and skb->ip_summed: if this
4873  * returns false you should drop the packet.
4874  */
4875 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
4876 {
4877 	u32 csum_end = (u32)start + (u32)off + sizeof(__sum16);
4878 	u32 csum_start = skb_headroom(skb) + (u32)start;
4879 
4880 	if (unlikely(csum_start > U16_MAX || csum_end > skb_headlen(skb))) {
4881 		net_warn_ratelimited("bad partial csum: csum=%u/%u headroom=%u headlen=%u\n",
4882 				     start, off, skb_headroom(skb), skb_headlen(skb));
4883 		return false;
4884 	}
4885 	skb->ip_summed = CHECKSUM_PARTIAL;
4886 	skb->csum_start = csum_start;
4887 	skb->csum_offset = off;
4888 	skb_set_transport_header(skb, start);
4889 	return true;
4890 }
4891 EXPORT_SYMBOL_GPL(skb_partial_csum_set);
4892 
4893 static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len,
4894 			       unsigned int max)
4895 {
4896 	if (skb_headlen(skb) >= len)
4897 		return 0;
4898 
4899 	/* If we need to pullup then pullup to the max, so we
4900 	 * won't need to do it again.
4901 	 */
4902 	if (max > skb->len)
4903 		max = skb->len;
4904 
4905 	if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL)
4906 		return -ENOMEM;
4907 
4908 	if (skb_headlen(skb) < len)
4909 		return -EPROTO;
4910 
4911 	return 0;
4912 }
4913 
4914 #define MAX_TCP_HDR_LEN (15 * 4)
4915 
4916 static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb,
4917 				      typeof(IPPROTO_IP) proto,
4918 				      unsigned int off)
4919 {
4920 	int err;
4921 
4922 	switch (proto) {
4923 	case IPPROTO_TCP:
4924 		err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr),
4925 					  off + MAX_TCP_HDR_LEN);
4926 		if (!err && !skb_partial_csum_set(skb, off,
4927 						  offsetof(struct tcphdr,
4928 							   check)))
4929 			err = -EPROTO;
4930 		return err ? ERR_PTR(err) : &tcp_hdr(skb)->check;
4931 
4932 	case IPPROTO_UDP:
4933 		err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr),
4934 					  off + sizeof(struct udphdr));
4935 		if (!err && !skb_partial_csum_set(skb, off,
4936 						  offsetof(struct udphdr,
4937 							   check)))
4938 			err = -EPROTO;
4939 		return err ? ERR_PTR(err) : &udp_hdr(skb)->check;
4940 	}
4941 
4942 	return ERR_PTR(-EPROTO);
4943 }
4944 
4945 /* This value should be large enough to cover a tagged ethernet header plus
4946  * maximally sized IP and TCP or UDP headers.
4947  */
4948 #define MAX_IP_HDR_LEN 128
4949 
4950 static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate)
4951 {
4952 	unsigned int off;
4953 	bool fragment;
4954 	__sum16 *csum;
4955 	int err;
4956 
4957 	fragment = false;
4958 
4959 	err = skb_maybe_pull_tail(skb,
4960 				  sizeof(struct iphdr),
4961 				  MAX_IP_HDR_LEN);
4962 	if (err < 0)
4963 		goto out;
4964 
4965 	if (ip_is_fragment(ip_hdr(skb)))
4966 		fragment = true;
4967 
4968 	off = ip_hdrlen(skb);
4969 
4970 	err = -EPROTO;
4971 
4972 	if (fragment)
4973 		goto out;
4974 
4975 	csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off);
4976 	if (IS_ERR(csum))
4977 		return PTR_ERR(csum);
4978 
4979 	if (recalculate)
4980 		*csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
4981 					   ip_hdr(skb)->daddr,
4982 					   skb->len - off,
4983 					   ip_hdr(skb)->protocol, 0);
4984 	err = 0;
4985 
4986 out:
4987 	return err;
4988 }
4989 
4990 /* This value should be large enough to cover a tagged ethernet header plus
4991  * an IPv6 header, all options, and a maximal TCP or UDP header.
4992  */
4993 #define MAX_IPV6_HDR_LEN 256
4994 
4995 #define OPT_HDR(type, skb, off) \
4996 	(type *)(skb_network_header(skb) + (off))
4997 
4998 static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate)
4999 {
5000 	int err;
5001 	u8 nexthdr;
5002 	unsigned int off;
5003 	unsigned int len;
5004 	bool fragment;
5005 	bool done;
5006 	__sum16 *csum;
5007 
5008 	fragment = false;
5009 	done = false;
5010 
5011 	off = sizeof(struct ipv6hdr);
5012 
5013 	err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN);
5014 	if (err < 0)
5015 		goto out;
5016 
5017 	nexthdr = ipv6_hdr(skb)->nexthdr;
5018 
5019 	len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len);
5020 	while (off <= len && !done) {
5021 		switch (nexthdr) {
5022 		case IPPROTO_DSTOPTS:
5023 		case IPPROTO_HOPOPTS:
5024 		case IPPROTO_ROUTING: {
5025 			struct ipv6_opt_hdr *hp;
5026 
5027 			err = skb_maybe_pull_tail(skb,
5028 						  off +
5029 						  sizeof(struct ipv6_opt_hdr),
5030 						  MAX_IPV6_HDR_LEN);
5031 			if (err < 0)
5032 				goto out;
5033 
5034 			hp = OPT_HDR(struct ipv6_opt_hdr, skb, off);
5035 			nexthdr = hp->nexthdr;
5036 			off += ipv6_optlen(hp);
5037 			break;
5038 		}
5039 		case IPPROTO_AH: {
5040 			struct ip_auth_hdr *hp;
5041 
5042 			err = skb_maybe_pull_tail(skb,
5043 						  off +
5044 						  sizeof(struct ip_auth_hdr),
5045 						  MAX_IPV6_HDR_LEN);
5046 			if (err < 0)
5047 				goto out;
5048 
5049 			hp = OPT_HDR(struct ip_auth_hdr, skb, off);
5050 			nexthdr = hp->nexthdr;
5051 			off += ipv6_authlen(hp);
5052 			break;
5053 		}
5054 		case IPPROTO_FRAGMENT: {
5055 			struct frag_hdr *hp;
5056 
5057 			err = skb_maybe_pull_tail(skb,
5058 						  off +
5059 						  sizeof(struct frag_hdr),
5060 						  MAX_IPV6_HDR_LEN);
5061 			if (err < 0)
5062 				goto out;
5063 
5064 			hp = OPT_HDR(struct frag_hdr, skb, off);
5065 
5066 			if (hp->frag_off & htons(IP6_OFFSET | IP6_MF))
5067 				fragment = true;
5068 
5069 			nexthdr = hp->nexthdr;
5070 			off += sizeof(struct frag_hdr);
5071 			break;
5072 		}
5073 		default:
5074 			done = true;
5075 			break;
5076 		}
5077 	}
5078 
5079 	err = -EPROTO;
5080 
5081 	if (!done || fragment)
5082 		goto out;
5083 
5084 	csum = skb_checksum_setup_ip(skb, nexthdr, off);
5085 	if (IS_ERR(csum))
5086 		return PTR_ERR(csum);
5087 
5088 	if (recalculate)
5089 		*csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
5090 					 &ipv6_hdr(skb)->daddr,
5091 					 skb->len - off, nexthdr, 0);
5092 	err = 0;
5093 
5094 out:
5095 	return err;
5096 }
5097 
5098 /**
5099  * skb_checksum_setup - set up partial checksum offset
5100  * @skb: the skb to set up
5101  * @recalculate: if true the pseudo-header checksum will be recalculated
5102  */
5103 int skb_checksum_setup(struct sk_buff *skb, bool recalculate)
5104 {
5105 	int err;
5106 
5107 	switch (skb->protocol) {
5108 	case htons(ETH_P_IP):
5109 		err = skb_checksum_setup_ipv4(skb, recalculate);
5110 		break;
5111 
5112 	case htons(ETH_P_IPV6):
5113 		err = skb_checksum_setup_ipv6(skb, recalculate);
5114 		break;
5115 
5116 	default:
5117 		err = -EPROTO;
5118 		break;
5119 	}
5120 
5121 	return err;
5122 }
5123 EXPORT_SYMBOL(skb_checksum_setup);
5124 
5125 /**
5126  * skb_checksum_maybe_trim - maybe trims the given skb
5127  * @skb: the skb to check
5128  * @transport_len: the data length beyond the network header
5129  *
5130  * Checks whether the given skb has data beyond the given transport length.
5131  * If so, returns a cloned skb trimmed to this transport length.
5132  * Otherwise returns the provided skb. Returns NULL in error cases
5133  * (e.g. transport_len exceeds skb length or out-of-memory).
5134  *
5135  * Caller needs to set the skb transport header and free any returned skb if it
5136  * differs from the provided skb.
5137  */
5138 static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb,
5139 					       unsigned int transport_len)
5140 {
5141 	struct sk_buff *skb_chk;
5142 	unsigned int len = skb_transport_offset(skb) + transport_len;
5143 	int ret;
5144 
5145 	if (skb->len < len)
5146 		return NULL;
5147 	else if (skb->len == len)
5148 		return skb;
5149 
5150 	skb_chk = skb_clone(skb, GFP_ATOMIC);
5151 	if (!skb_chk)
5152 		return NULL;
5153 
5154 	ret = pskb_trim_rcsum(skb_chk, len);
5155 	if (ret) {
5156 		kfree_skb(skb_chk);
5157 		return NULL;
5158 	}
5159 
5160 	return skb_chk;
5161 }
5162 
5163 /**
5164  * skb_checksum_trimmed - validate checksum of an skb
5165  * @skb: the skb to check
5166  * @transport_len: the data length beyond the network header
5167  * @skb_chkf: checksum function to use
5168  *
5169  * Applies the given checksum function skb_chkf to the provided skb.
5170  * Returns a checked and maybe trimmed skb. Returns NULL on error.
5171  *
5172  * If the skb has data beyond the given transport length, then a
5173  * trimmed & cloned skb is checked and returned.
5174  *
5175  * Caller needs to set the skb transport header and free any returned skb if it
5176  * differs from the provided skb.
5177  */
5178 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
5179 				     unsigned int transport_len,
5180 				     __sum16(*skb_chkf)(struct sk_buff *skb))
5181 {
5182 	struct sk_buff *skb_chk;
5183 	unsigned int offset = skb_transport_offset(skb);
5184 	__sum16 ret;
5185 
5186 	skb_chk = skb_checksum_maybe_trim(skb, transport_len);
5187 	if (!skb_chk)
5188 		goto err;
5189 
5190 	if (!pskb_may_pull(skb_chk, offset))
5191 		goto err;
5192 
5193 	skb_pull_rcsum(skb_chk, offset);
5194 	ret = skb_chkf(skb_chk);
5195 	skb_push_rcsum(skb_chk, offset);
5196 
5197 	if (ret)
5198 		goto err;
5199 
5200 	return skb_chk;
5201 
5202 err:
5203 	if (skb_chk && skb_chk != skb)
5204 		kfree_skb(skb_chk);
5205 
5206 	return NULL;
5207 
5208 }
5209 EXPORT_SYMBOL(skb_checksum_trimmed);
5210 
5211 void __skb_warn_lro_forwarding(const struct sk_buff *skb)
5212 {
5213 	net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n",
5214 			     skb->dev->name);
5215 }
5216 EXPORT_SYMBOL(__skb_warn_lro_forwarding);
5217 
5218 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen)
5219 {
5220 	if (head_stolen) {
5221 		skb_release_head_state(skb);
5222 		kmem_cache_free(skbuff_head_cache, skb);
5223 	} else {
5224 		__kfree_skb(skb);
5225 	}
5226 }
5227 EXPORT_SYMBOL(kfree_skb_partial);
5228 
5229 /**
5230  * skb_try_coalesce - try to merge skb to prior one
5231  * @to: prior buffer
5232  * @from: buffer to add
5233  * @fragstolen: pointer to boolean
5234  * @delta_truesize: how much more was allocated than was requested
5235  */
5236 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
5237 		      bool *fragstolen, int *delta_truesize)
5238 {
5239 	struct skb_shared_info *to_shinfo, *from_shinfo;
5240 	int i, delta, len = from->len;
5241 
5242 	*fragstolen = false;
5243 
5244 	if (skb_cloned(to))
5245 		return false;
5246 
5247 	/* The page pool signature of struct page will eventually figure out
5248 	 * which pages can be recycled or not but for now let's prohibit slab
5249 	 * allocated and page_pool allocated SKBs from being coalesced.
5250 	 */
5251 	if (to->pp_recycle != from->pp_recycle)
5252 		return false;
5253 
5254 	if (len <= skb_tailroom(to)) {
5255 		if (len)
5256 			BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len));
5257 		*delta_truesize = 0;
5258 		return true;
5259 	}
5260 
5261 	to_shinfo = skb_shinfo(to);
5262 	from_shinfo = skb_shinfo(from);
5263 	if (to_shinfo->frag_list || from_shinfo->frag_list)
5264 		return false;
5265 	if (skb_zcopy(to) || skb_zcopy(from))
5266 		return false;
5267 
5268 	if (skb_headlen(from) != 0) {
5269 		struct page *page;
5270 		unsigned int offset;
5271 
5272 		if (to_shinfo->nr_frags +
5273 		    from_shinfo->nr_frags >= MAX_SKB_FRAGS)
5274 			return false;
5275 
5276 		if (skb_head_is_locked(from))
5277 			return false;
5278 
5279 		delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
5280 
5281 		page = virt_to_head_page(from->head);
5282 		offset = from->data - (unsigned char *)page_address(page);
5283 
5284 		skb_fill_page_desc(to, to_shinfo->nr_frags,
5285 				   page, offset, skb_headlen(from));
5286 		*fragstolen = true;
5287 	} else {
5288 		if (to_shinfo->nr_frags +
5289 		    from_shinfo->nr_frags > MAX_SKB_FRAGS)
5290 			return false;
5291 
5292 		delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from));
5293 	}
5294 
5295 	WARN_ON_ONCE(delta < len);
5296 
5297 	memcpy(to_shinfo->frags + to_shinfo->nr_frags,
5298 	       from_shinfo->frags,
5299 	       from_shinfo->nr_frags * sizeof(skb_frag_t));
5300 	to_shinfo->nr_frags += from_shinfo->nr_frags;
5301 
5302 	if (!skb_cloned(from))
5303 		from_shinfo->nr_frags = 0;
5304 
5305 	/* if the skb is not cloned this does nothing
5306 	 * since we set nr_frags to 0.
5307 	 */
5308 	for (i = 0; i < from_shinfo->nr_frags; i++)
5309 		__skb_frag_ref(&from_shinfo->frags[i]);
5310 
5311 	to->truesize += delta;
5312 	to->len += len;
5313 	to->data_len += len;
5314 
5315 	*delta_truesize = delta;
5316 	return true;
5317 }
5318 EXPORT_SYMBOL(skb_try_coalesce);
5319 
5320 /**
5321  * skb_scrub_packet - scrub an skb
5322  *
5323  * @skb: buffer to clean
5324  * @xnet: packet is crossing netns
5325  *
5326  * skb_scrub_packet can be used after encapsulating or decapsulting a packet
5327  * into/from a tunnel. Some information have to be cleared during these
5328  * operations.
5329  * skb_scrub_packet can also be used to clean a skb before injecting it in
5330  * another namespace (@xnet == true). We have to clear all information in the
5331  * skb that could impact namespace isolation.
5332  */
5333 void skb_scrub_packet(struct sk_buff *skb, bool xnet)
5334 {
5335 	skb->pkt_type = PACKET_HOST;
5336 	skb->skb_iif = 0;
5337 	skb->ignore_df = 0;
5338 	skb_dst_drop(skb);
5339 	skb_ext_reset(skb);
5340 	nf_reset_ct(skb);
5341 	nf_reset_trace(skb);
5342 
5343 #ifdef CONFIG_NET_SWITCHDEV
5344 	skb->offload_fwd_mark = 0;
5345 	skb->offload_l3_fwd_mark = 0;
5346 #endif
5347 
5348 	if (!xnet)
5349 		return;
5350 
5351 	ipvs_reset(skb);
5352 	skb->mark = 0;
5353 	skb->tstamp = 0;
5354 }
5355 EXPORT_SYMBOL_GPL(skb_scrub_packet);
5356 
5357 /**
5358  * skb_gso_transport_seglen - Return length of individual segments of a gso packet
5359  *
5360  * @skb: GSO skb
5361  *
5362  * skb_gso_transport_seglen is used to determine the real size of the
5363  * individual segments, including Layer4 headers (TCP/UDP).
5364  *
5365  * The MAC/L2 or network (IP, IPv6) headers are not accounted for.
5366  */
5367 static unsigned int skb_gso_transport_seglen(const struct sk_buff *skb)
5368 {
5369 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
5370 	unsigned int thlen = 0;
5371 
5372 	if (skb->encapsulation) {
5373 		thlen = skb_inner_transport_header(skb) -
5374 			skb_transport_header(skb);
5375 
5376 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
5377 			thlen += inner_tcp_hdrlen(skb);
5378 	} else if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
5379 		thlen = tcp_hdrlen(skb);
5380 	} else if (unlikely(skb_is_gso_sctp(skb))) {
5381 		thlen = sizeof(struct sctphdr);
5382 	} else if (shinfo->gso_type & SKB_GSO_UDP_L4) {
5383 		thlen = sizeof(struct udphdr);
5384 	}
5385 	/* UFO sets gso_size to the size of the fragmentation
5386 	 * payload, i.e. the size of the L4 (UDP) header is already
5387 	 * accounted for.
5388 	 */
5389 	return thlen + shinfo->gso_size;
5390 }
5391 
5392 /**
5393  * skb_gso_network_seglen - Return length of individual segments of a gso packet
5394  *
5395  * @skb: GSO skb
5396  *
5397  * skb_gso_network_seglen is used to determine the real size of the
5398  * individual segments, including Layer3 (IP, IPv6) and L4 headers (TCP/UDP).
5399  *
5400  * The MAC/L2 header is not accounted for.
5401  */
5402 static unsigned int skb_gso_network_seglen(const struct sk_buff *skb)
5403 {
5404 	unsigned int hdr_len = skb_transport_header(skb) -
5405 			       skb_network_header(skb);
5406 
5407 	return hdr_len + skb_gso_transport_seglen(skb);
5408 }
5409 
5410 /**
5411  * skb_gso_mac_seglen - Return length of individual segments of a gso packet
5412  *
5413  * @skb: GSO skb
5414  *
5415  * skb_gso_mac_seglen is used to determine the real size of the
5416  * individual segments, including MAC/L2, Layer3 (IP, IPv6) and L4
5417  * headers (TCP/UDP).
5418  */
5419 static unsigned int skb_gso_mac_seglen(const struct sk_buff *skb)
5420 {
5421 	unsigned int hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
5422 
5423 	return hdr_len + skb_gso_transport_seglen(skb);
5424 }
5425 
5426 /**
5427  * skb_gso_size_check - check the skb size, considering GSO_BY_FRAGS
5428  *
5429  * There are a couple of instances where we have a GSO skb, and we
5430  * want to determine what size it would be after it is segmented.
5431  *
5432  * We might want to check:
5433  * -    L3+L4+payload size (e.g. IP forwarding)
5434  * - L2+L3+L4+payload size (e.g. sanity check before passing to driver)
5435  *
5436  * This is a helper to do that correctly considering GSO_BY_FRAGS.
5437  *
5438  * @skb: GSO skb
5439  *
5440  * @seg_len: The segmented length (from skb_gso_*_seglen). In the
5441  *           GSO_BY_FRAGS case this will be [header sizes + GSO_BY_FRAGS].
5442  *
5443  * @max_len: The maximum permissible length.
5444  *
5445  * Returns true if the segmented length <= max length.
5446  */
5447 static inline bool skb_gso_size_check(const struct sk_buff *skb,
5448 				      unsigned int seg_len,
5449 				      unsigned int max_len) {
5450 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
5451 	const struct sk_buff *iter;
5452 
5453 	if (shinfo->gso_size != GSO_BY_FRAGS)
5454 		return seg_len <= max_len;
5455 
5456 	/* Undo this so we can re-use header sizes */
5457 	seg_len -= GSO_BY_FRAGS;
5458 
5459 	skb_walk_frags(skb, iter) {
5460 		if (seg_len + skb_headlen(iter) > max_len)
5461 			return false;
5462 	}
5463 
5464 	return true;
5465 }
5466 
5467 /**
5468  * skb_gso_validate_network_len - Will a split GSO skb fit into a given MTU?
5469  *
5470  * @skb: GSO skb
5471  * @mtu: MTU to validate against
5472  *
5473  * skb_gso_validate_network_len validates if a given skb will fit a
5474  * wanted MTU once split. It considers L3 headers, L4 headers, and the
5475  * payload.
5476  */
5477 bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu)
5478 {
5479 	return skb_gso_size_check(skb, skb_gso_network_seglen(skb), mtu);
5480 }
5481 EXPORT_SYMBOL_GPL(skb_gso_validate_network_len);
5482 
5483 /**
5484  * skb_gso_validate_mac_len - Will a split GSO skb fit in a given length?
5485  *
5486  * @skb: GSO skb
5487  * @len: length to validate against
5488  *
5489  * skb_gso_validate_mac_len validates if a given skb will fit a wanted
5490  * length once split, including L2, L3 and L4 headers and the payload.
5491  */
5492 bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len)
5493 {
5494 	return skb_gso_size_check(skb, skb_gso_mac_seglen(skb), len);
5495 }
5496 EXPORT_SYMBOL_GPL(skb_gso_validate_mac_len);
5497 
5498 static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb)
5499 {
5500 	int mac_len, meta_len;
5501 	void *meta;
5502 
5503 	if (skb_cow(skb, skb_headroom(skb)) < 0) {
5504 		kfree_skb(skb);
5505 		return NULL;
5506 	}
5507 
5508 	mac_len = skb->data - skb_mac_header(skb);
5509 	if (likely(mac_len > VLAN_HLEN + ETH_TLEN)) {
5510 		memmove(skb_mac_header(skb) + VLAN_HLEN, skb_mac_header(skb),
5511 			mac_len - VLAN_HLEN - ETH_TLEN);
5512 	}
5513 
5514 	meta_len = skb_metadata_len(skb);
5515 	if (meta_len) {
5516 		meta = skb_metadata_end(skb) - meta_len;
5517 		memmove(meta + VLAN_HLEN, meta, meta_len);
5518 	}
5519 
5520 	skb->mac_header += VLAN_HLEN;
5521 	return skb;
5522 }
5523 
5524 struct sk_buff *skb_vlan_untag(struct sk_buff *skb)
5525 {
5526 	struct vlan_hdr *vhdr;
5527 	u16 vlan_tci;
5528 
5529 	if (unlikely(skb_vlan_tag_present(skb))) {
5530 		/* vlan_tci is already set-up so leave this for another time */
5531 		return skb;
5532 	}
5533 
5534 	skb = skb_share_check(skb, GFP_ATOMIC);
5535 	if (unlikely(!skb))
5536 		goto err_free;
5537 	/* We may access the two bytes after vlan_hdr in vlan_set_encap_proto(). */
5538 	if (unlikely(!pskb_may_pull(skb, VLAN_HLEN + sizeof(unsigned short))))
5539 		goto err_free;
5540 
5541 	vhdr = (struct vlan_hdr *)skb->data;
5542 	vlan_tci = ntohs(vhdr->h_vlan_TCI);
5543 	__vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci);
5544 
5545 	skb_pull_rcsum(skb, VLAN_HLEN);
5546 	vlan_set_encap_proto(skb, vhdr);
5547 
5548 	skb = skb_reorder_vlan_header(skb);
5549 	if (unlikely(!skb))
5550 		goto err_free;
5551 
5552 	skb_reset_network_header(skb);
5553 	if (!skb_transport_header_was_set(skb))
5554 		skb_reset_transport_header(skb);
5555 	skb_reset_mac_len(skb);
5556 
5557 	return skb;
5558 
5559 err_free:
5560 	kfree_skb(skb);
5561 	return NULL;
5562 }
5563 EXPORT_SYMBOL(skb_vlan_untag);
5564 
5565 int skb_ensure_writable(struct sk_buff *skb, int write_len)
5566 {
5567 	if (!pskb_may_pull(skb, write_len))
5568 		return -ENOMEM;
5569 
5570 	if (!skb_cloned(skb) || skb_clone_writable(skb, write_len))
5571 		return 0;
5572 
5573 	return pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
5574 }
5575 EXPORT_SYMBOL(skb_ensure_writable);
5576 
5577 /* remove VLAN header from packet and update csum accordingly.
5578  * expects a non skb_vlan_tag_present skb with a vlan tag payload
5579  */
5580 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci)
5581 {
5582 	struct vlan_hdr *vhdr;
5583 	int offset = skb->data - skb_mac_header(skb);
5584 	int err;
5585 
5586 	if (WARN_ONCE(offset,
5587 		      "__skb_vlan_pop got skb with skb->data not at mac header (offset %d)\n",
5588 		      offset)) {
5589 		return -EINVAL;
5590 	}
5591 
5592 	err = skb_ensure_writable(skb, VLAN_ETH_HLEN);
5593 	if (unlikely(err))
5594 		return err;
5595 
5596 	skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
5597 
5598 	vhdr = (struct vlan_hdr *)(skb->data + ETH_HLEN);
5599 	*vlan_tci = ntohs(vhdr->h_vlan_TCI);
5600 
5601 	memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN);
5602 	__skb_pull(skb, VLAN_HLEN);
5603 
5604 	vlan_set_encap_proto(skb, vhdr);
5605 	skb->mac_header += VLAN_HLEN;
5606 
5607 	if (skb_network_offset(skb) < ETH_HLEN)
5608 		skb_set_network_header(skb, ETH_HLEN);
5609 
5610 	skb_reset_mac_len(skb);
5611 
5612 	return err;
5613 }
5614 EXPORT_SYMBOL(__skb_vlan_pop);
5615 
5616 /* Pop a vlan tag either from hwaccel or from payload.
5617  * Expects skb->data at mac header.
5618  */
5619 int skb_vlan_pop(struct sk_buff *skb)
5620 {
5621 	u16 vlan_tci;
5622 	__be16 vlan_proto;
5623 	int err;
5624 
5625 	if (likely(skb_vlan_tag_present(skb))) {
5626 		__vlan_hwaccel_clear_tag(skb);
5627 	} else {
5628 		if (unlikely(!eth_type_vlan(skb->protocol)))
5629 			return 0;
5630 
5631 		err = __skb_vlan_pop(skb, &vlan_tci);
5632 		if (err)
5633 			return err;
5634 	}
5635 	/* move next vlan tag to hw accel tag */
5636 	if (likely(!eth_type_vlan(skb->protocol)))
5637 		return 0;
5638 
5639 	vlan_proto = skb->protocol;
5640 	err = __skb_vlan_pop(skb, &vlan_tci);
5641 	if (unlikely(err))
5642 		return err;
5643 
5644 	__vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
5645 	return 0;
5646 }
5647 EXPORT_SYMBOL(skb_vlan_pop);
5648 
5649 /* Push a vlan tag either into hwaccel or into payload (if hwaccel tag present).
5650  * Expects skb->data at mac header.
5651  */
5652 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci)
5653 {
5654 	if (skb_vlan_tag_present(skb)) {
5655 		int offset = skb->data - skb_mac_header(skb);
5656 		int err;
5657 
5658 		if (WARN_ONCE(offset,
5659 			      "skb_vlan_push got skb with skb->data not at mac header (offset %d)\n",
5660 			      offset)) {
5661 			return -EINVAL;
5662 		}
5663 
5664 		err = __vlan_insert_tag(skb, skb->vlan_proto,
5665 					skb_vlan_tag_get(skb));
5666 		if (err)
5667 			return err;
5668 
5669 		skb->protocol = skb->vlan_proto;
5670 		skb->mac_len += VLAN_HLEN;
5671 
5672 		skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
5673 	}
5674 	__vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
5675 	return 0;
5676 }
5677 EXPORT_SYMBOL(skb_vlan_push);
5678 
5679 /**
5680  * skb_eth_pop() - Drop the Ethernet header at the head of a packet
5681  *
5682  * @skb: Socket buffer to modify
5683  *
5684  * Drop the Ethernet header of @skb.
5685  *
5686  * Expects that skb->data points to the mac header and that no VLAN tags are
5687  * present.
5688  *
5689  * Returns 0 on success, -errno otherwise.
5690  */
5691 int skb_eth_pop(struct sk_buff *skb)
5692 {
5693 	if (!pskb_may_pull(skb, ETH_HLEN) || skb_vlan_tagged(skb) ||
5694 	    skb_network_offset(skb) < ETH_HLEN)
5695 		return -EPROTO;
5696 
5697 	skb_pull_rcsum(skb, ETH_HLEN);
5698 	skb_reset_mac_header(skb);
5699 	skb_reset_mac_len(skb);
5700 
5701 	return 0;
5702 }
5703 EXPORT_SYMBOL(skb_eth_pop);
5704 
5705 /**
5706  * skb_eth_push() - Add a new Ethernet header at the head of a packet
5707  *
5708  * @skb: Socket buffer to modify
5709  * @dst: Destination MAC address of the new header
5710  * @src: Source MAC address of the new header
5711  *
5712  * Prepend @skb with a new Ethernet header.
5713  *
5714  * Expects that skb->data points to the mac header, which must be empty.
5715  *
5716  * Returns 0 on success, -errno otherwise.
5717  */
5718 int skb_eth_push(struct sk_buff *skb, const unsigned char *dst,
5719 		 const unsigned char *src)
5720 {
5721 	struct ethhdr *eth;
5722 	int err;
5723 
5724 	if (skb_network_offset(skb) || skb_vlan_tag_present(skb))
5725 		return -EPROTO;
5726 
5727 	err = skb_cow_head(skb, sizeof(*eth));
5728 	if (err < 0)
5729 		return err;
5730 
5731 	skb_push(skb, sizeof(*eth));
5732 	skb_reset_mac_header(skb);
5733 	skb_reset_mac_len(skb);
5734 
5735 	eth = eth_hdr(skb);
5736 	ether_addr_copy(eth->h_dest, dst);
5737 	ether_addr_copy(eth->h_source, src);
5738 	eth->h_proto = skb->protocol;
5739 
5740 	skb_postpush_rcsum(skb, eth, sizeof(*eth));
5741 
5742 	return 0;
5743 }
5744 EXPORT_SYMBOL(skb_eth_push);
5745 
5746 /* Update the ethertype of hdr and the skb csum value if required. */
5747 static void skb_mod_eth_type(struct sk_buff *skb, struct ethhdr *hdr,
5748 			     __be16 ethertype)
5749 {
5750 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
5751 		__be16 diff[] = { ~hdr->h_proto, ethertype };
5752 
5753 		skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum);
5754 	}
5755 
5756 	hdr->h_proto = ethertype;
5757 }
5758 
5759 /**
5760  * skb_mpls_push() - push a new MPLS header after mac_len bytes from start of
5761  *                   the packet
5762  *
5763  * @skb: buffer
5764  * @mpls_lse: MPLS label stack entry to push
5765  * @mpls_proto: ethertype of the new MPLS header (expects 0x8847 or 0x8848)
5766  * @mac_len: length of the MAC header
5767  * @ethernet: flag to indicate if the resulting packet after skb_mpls_push is
5768  *            ethernet
5769  *
5770  * Expects skb->data at mac header.
5771  *
5772  * Returns 0 on success, -errno otherwise.
5773  */
5774 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto,
5775 		  int mac_len, bool ethernet)
5776 {
5777 	struct mpls_shim_hdr *lse;
5778 	int err;
5779 
5780 	if (unlikely(!eth_p_mpls(mpls_proto)))
5781 		return -EINVAL;
5782 
5783 	/* Networking stack does not allow simultaneous Tunnel and MPLS GSO. */
5784 	if (skb->encapsulation)
5785 		return -EINVAL;
5786 
5787 	err = skb_cow_head(skb, MPLS_HLEN);
5788 	if (unlikely(err))
5789 		return err;
5790 
5791 	if (!skb->inner_protocol) {
5792 		skb_set_inner_network_header(skb, skb_network_offset(skb));
5793 		skb_set_inner_protocol(skb, skb->protocol);
5794 	}
5795 
5796 	skb_push(skb, MPLS_HLEN);
5797 	memmove(skb_mac_header(skb) - MPLS_HLEN, skb_mac_header(skb),
5798 		mac_len);
5799 	skb_reset_mac_header(skb);
5800 	skb_set_network_header(skb, mac_len);
5801 	skb_reset_mac_len(skb);
5802 
5803 	lse = mpls_hdr(skb);
5804 	lse->label_stack_entry = mpls_lse;
5805 	skb_postpush_rcsum(skb, lse, MPLS_HLEN);
5806 
5807 	if (ethernet && mac_len >= ETH_HLEN)
5808 		skb_mod_eth_type(skb, eth_hdr(skb), mpls_proto);
5809 	skb->protocol = mpls_proto;
5810 
5811 	return 0;
5812 }
5813 EXPORT_SYMBOL_GPL(skb_mpls_push);
5814 
5815 /**
5816  * skb_mpls_pop() - pop the outermost MPLS header
5817  *
5818  * @skb: buffer
5819  * @next_proto: ethertype of header after popped MPLS header
5820  * @mac_len: length of the MAC header
5821  * @ethernet: flag to indicate if the packet is ethernet
5822  *
5823  * Expects skb->data at mac header.
5824  *
5825  * Returns 0 on success, -errno otherwise.
5826  */
5827 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len,
5828 		 bool ethernet)
5829 {
5830 	int err;
5831 
5832 	if (unlikely(!eth_p_mpls(skb->protocol)))
5833 		return 0;
5834 
5835 	err = skb_ensure_writable(skb, mac_len + MPLS_HLEN);
5836 	if (unlikely(err))
5837 		return err;
5838 
5839 	skb_postpull_rcsum(skb, mpls_hdr(skb), MPLS_HLEN);
5840 	memmove(skb_mac_header(skb) + MPLS_HLEN, skb_mac_header(skb),
5841 		mac_len);
5842 
5843 	__skb_pull(skb, MPLS_HLEN);
5844 	skb_reset_mac_header(skb);
5845 	skb_set_network_header(skb, mac_len);
5846 
5847 	if (ethernet && mac_len >= ETH_HLEN) {
5848 		struct ethhdr *hdr;
5849 
5850 		/* use mpls_hdr() to get ethertype to account for VLANs. */
5851 		hdr = (struct ethhdr *)((void *)mpls_hdr(skb) - ETH_HLEN);
5852 		skb_mod_eth_type(skb, hdr, next_proto);
5853 	}
5854 	skb->protocol = next_proto;
5855 
5856 	return 0;
5857 }
5858 EXPORT_SYMBOL_GPL(skb_mpls_pop);
5859 
5860 /**
5861  * skb_mpls_update_lse() - modify outermost MPLS header and update csum
5862  *
5863  * @skb: buffer
5864  * @mpls_lse: new MPLS label stack entry to update to
5865  *
5866  * Expects skb->data at mac header.
5867  *
5868  * Returns 0 on success, -errno otherwise.
5869  */
5870 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse)
5871 {
5872 	int err;
5873 
5874 	if (unlikely(!eth_p_mpls(skb->protocol)))
5875 		return -EINVAL;
5876 
5877 	err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN);
5878 	if (unlikely(err))
5879 		return err;
5880 
5881 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
5882 		__be32 diff[] = { ~mpls_hdr(skb)->label_stack_entry, mpls_lse };
5883 
5884 		skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum);
5885 	}
5886 
5887 	mpls_hdr(skb)->label_stack_entry = mpls_lse;
5888 
5889 	return 0;
5890 }
5891 EXPORT_SYMBOL_GPL(skb_mpls_update_lse);
5892 
5893 /**
5894  * skb_mpls_dec_ttl() - decrement the TTL of the outermost MPLS header
5895  *
5896  * @skb: buffer
5897  *
5898  * Expects skb->data at mac header.
5899  *
5900  * Returns 0 on success, -errno otherwise.
5901  */
5902 int skb_mpls_dec_ttl(struct sk_buff *skb)
5903 {
5904 	u32 lse;
5905 	u8 ttl;
5906 
5907 	if (unlikely(!eth_p_mpls(skb->protocol)))
5908 		return -EINVAL;
5909 
5910 	if (!pskb_may_pull(skb, skb_network_offset(skb) + MPLS_HLEN))
5911 		return -ENOMEM;
5912 
5913 	lse = be32_to_cpu(mpls_hdr(skb)->label_stack_entry);
5914 	ttl = (lse & MPLS_LS_TTL_MASK) >> MPLS_LS_TTL_SHIFT;
5915 	if (!--ttl)
5916 		return -EINVAL;
5917 
5918 	lse &= ~MPLS_LS_TTL_MASK;
5919 	lse |= ttl << MPLS_LS_TTL_SHIFT;
5920 
5921 	return skb_mpls_update_lse(skb, cpu_to_be32(lse));
5922 }
5923 EXPORT_SYMBOL_GPL(skb_mpls_dec_ttl);
5924 
5925 /**
5926  * alloc_skb_with_frags - allocate skb with page frags
5927  *
5928  * @header_len: size of linear part
5929  * @data_len: needed length in frags
5930  * @max_page_order: max page order desired.
5931  * @errcode: pointer to error code if any
5932  * @gfp_mask: allocation mask
5933  *
5934  * This can be used to allocate a paged skb, given a maximal order for frags.
5935  */
5936 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
5937 				     unsigned long data_len,
5938 				     int max_page_order,
5939 				     int *errcode,
5940 				     gfp_t gfp_mask)
5941 {
5942 	int npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
5943 	unsigned long chunk;
5944 	struct sk_buff *skb;
5945 	struct page *page;
5946 	int i;
5947 
5948 	*errcode = -EMSGSIZE;
5949 	/* Note this test could be relaxed, if we succeed to allocate
5950 	 * high order pages...
5951 	 */
5952 	if (npages > MAX_SKB_FRAGS)
5953 		return NULL;
5954 
5955 	*errcode = -ENOBUFS;
5956 	skb = alloc_skb(header_len, gfp_mask);
5957 	if (!skb)
5958 		return NULL;
5959 
5960 	skb->truesize += npages << PAGE_SHIFT;
5961 
5962 	for (i = 0; npages > 0; i++) {
5963 		int order = max_page_order;
5964 
5965 		while (order) {
5966 			if (npages >= 1 << order) {
5967 				page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) |
5968 						   __GFP_COMP |
5969 						   __GFP_NOWARN,
5970 						   order);
5971 				if (page)
5972 					goto fill_page;
5973 				/* Do not retry other high order allocations */
5974 				order = 1;
5975 				max_page_order = 0;
5976 			}
5977 			order--;
5978 		}
5979 		page = alloc_page(gfp_mask);
5980 		if (!page)
5981 			goto failure;
5982 fill_page:
5983 		chunk = min_t(unsigned long, data_len,
5984 			      PAGE_SIZE << order);
5985 		skb_fill_page_desc(skb, i, page, 0, chunk);
5986 		data_len -= chunk;
5987 		npages -= 1 << order;
5988 	}
5989 	return skb;
5990 
5991 failure:
5992 	kfree_skb(skb);
5993 	return NULL;
5994 }
5995 EXPORT_SYMBOL(alloc_skb_with_frags);
5996 
5997 /* carve out the first off bytes from skb when off < headlen */
5998 static int pskb_carve_inside_header(struct sk_buff *skb, const u32 off,
5999 				    const int headlen, gfp_t gfp_mask)
6000 {
6001 	int i;
6002 	int size = skb_end_offset(skb);
6003 	int new_hlen = headlen - off;
6004 	u8 *data;
6005 
6006 	size = SKB_DATA_ALIGN(size);
6007 
6008 	if (skb_pfmemalloc(skb))
6009 		gfp_mask |= __GFP_MEMALLOC;
6010 	data = kmalloc_reserve(size +
6011 			       SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
6012 			       gfp_mask, NUMA_NO_NODE, NULL);
6013 	if (!data)
6014 		return -ENOMEM;
6015 
6016 	size = SKB_WITH_OVERHEAD(ksize(data));
6017 
6018 	/* Copy real data, and all frags */
6019 	skb_copy_from_linear_data_offset(skb, off, data, new_hlen);
6020 	skb->len -= off;
6021 
6022 	memcpy((struct skb_shared_info *)(data + size),
6023 	       skb_shinfo(skb),
6024 	       offsetof(struct skb_shared_info,
6025 			frags[skb_shinfo(skb)->nr_frags]));
6026 	if (skb_cloned(skb)) {
6027 		/* drop the old head gracefully */
6028 		if (skb_orphan_frags(skb, gfp_mask)) {
6029 			kfree(data);
6030 			return -ENOMEM;
6031 		}
6032 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
6033 			skb_frag_ref(skb, i);
6034 		if (skb_has_frag_list(skb))
6035 			skb_clone_fraglist(skb);
6036 		skb_release_data(skb);
6037 	} else {
6038 		/* we can reuse existing recount- all we did was
6039 		 * relocate values
6040 		 */
6041 		skb_free_head(skb);
6042 	}
6043 
6044 	skb->head = data;
6045 	skb->data = data;
6046 	skb->head_frag = 0;
6047 #ifdef NET_SKBUFF_DATA_USES_OFFSET
6048 	skb->end = size;
6049 #else
6050 	skb->end = skb->head + size;
6051 #endif
6052 	skb_set_tail_pointer(skb, skb_headlen(skb));
6053 	skb_headers_offset_update(skb, 0);
6054 	skb->cloned = 0;
6055 	skb->hdr_len = 0;
6056 	skb->nohdr = 0;
6057 	atomic_set(&skb_shinfo(skb)->dataref, 1);
6058 
6059 	return 0;
6060 }
6061 
6062 static int pskb_carve(struct sk_buff *skb, const u32 off, gfp_t gfp);
6063 
6064 /* carve out the first eat bytes from skb's frag_list. May recurse into
6065  * pskb_carve()
6066  */
6067 static int pskb_carve_frag_list(struct sk_buff *skb,
6068 				struct skb_shared_info *shinfo, int eat,
6069 				gfp_t gfp_mask)
6070 {
6071 	struct sk_buff *list = shinfo->frag_list;
6072 	struct sk_buff *clone = NULL;
6073 	struct sk_buff *insp = NULL;
6074 
6075 	do {
6076 		if (!list) {
6077 			pr_err("Not enough bytes to eat. Want %d\n", eat);
6078 			return -EFAULT;
6079 		}
6080 		if (list->len <= eat) {
6081 			/* Eaten as whole. */
6082 			eat -= list->len;
6083 			list = list->next;
6084 			insp = list;
6085 		} else {
6086 			/* Eaten partially. */
6087 			if (skb_shared(list)) {
6088 				clone = skb_clone(list, gfp_mask);
6089 				if (!clone)
6090 					return -ENOMEM;
6091 				insp = list->next;
6092 				list = clone;
6093 			} else {
6094 				/* This may be pulled without problems. */
6095 				insp = list;
6096 			}
6097 			if (pskb_carve(list, eat, gfp_mask) < 0) {
6098 				kfree_skb(clone);
6099 				return -ENOMEM;
6100 			}
6101 			break;
6102 		}
6103 	} while (eat);
6104 
6105 	/* Free pulled out fragments. */
6106 	while ((list = shinfo->frag_list) != insp) {
6107 		shinfo->frag_list = list->next;
6108 		kfree_skb(list);
6109 	}
6110 	/* And insert new clone at head. */
6111 	if (clone) {
6112 		clone->next = list;
6113 		shinfo->frag_list = clone;
6114 	}
6115 	return 0;
6116 }
6117 
6118 /* carve off first len bytes from skb. Split line (off) is in the
6119  * non-linear part of skb
6120  */
6121 static int pskb_carve_inside_nonlinear(struct sk_buff *skb, const u32 off,
6122 				       int pos, gfp_t gfp_mask)
6123 {
6124 	int i, k = 0;
6125 	int size = skb_end_offset(skb);
6126 	u8 *data;
6127 	const int nfrags = skb_shinfo(skb)->nr_frags;
6128 	struct skb_shared_info *shinfo;
6129 
6130 	size = SKB_DATA_ALIGN(size);
6131 
6132 	if (skb_pfmemalloc(skb))
6133 		gfp_mask |= __GFP_MEMALLOC;
6134 	data = kmalloc_reserve(size +
6135 			       SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
6136 			       gfp_mask, NUMA_NO_NODE, NULL);
6137 	if (!data)
6138 		return -ENOMEM;
6139 
6140 	size = SKB_WITH_OVERHEAD(ksize(data));
6141 
6142 	memcpy((struct skb_shared_info *)(data + size),
6143 	       skb_shinfo(skb), offsetof(struct skb_shared_info, frags[0]));
6144 	if (skb_orphan_frags(skb, gfp_mask)) {
6145 		kfree(data);
6146 		return -ENOMEM;
6147 	}
6148 	shinfo = (struct skb_shared_info *)(data + size);
6149 	for (i = 0; i < nfrags; i++) {
6150 		int fsize = skb_frag_size(&skb_shinfo(skb)->frags[i]);
6151 
6152 		if (pos + fsize > off) {
6153 			shinfo->frags[k] = skb_shinfo(skb)->frags[i];
6154 
6155 			if (pos < off) {
6156 				/* Split frag.
6157 				 * We have two variants in this case:
6158 				 * 1. Move all the frag to the second
6159 				 *    part, if it is possible. F.e.
6160 				 *    this approach is mandatory for TUX,
6161 				 *    where splitting is expensive.
6162 				 * 2. Split is accurately. We make this.
6163 				 */
6164 				skb_frag_off_add(&shinfo->frags[0], off - pos);
6165 				skb_frag_size_sub(&shinfo->frags[0], off - pos);
6166 			}
6167 			skb_frag_ref(skb, i);
6168 			k++;
6169 		}
6170 		pos += fsize;
6171 	}
6172 	shinfo->nr_frags = k;
6173 	if (skb_has_frag_list(skb))
6174 		skb_clone_fraglist(skb);
6175 
6176 	/* split line is in frag list */
6177 	if (k == 0 && pskb_carve_frag_list(skb, shinfo, off - pos, gfp_mask)) {
6178 		/* skb_frag_unref() is not needed here as shinfo->nr_frags = 0. */
6179 		if (skb_has_frag_list(skb))
6180 			kfree_skb_list(skb_shinfo(skb)->frag_list);
6181 		kfree(data);
6182 		return -ENOMEM;
6183 	}
6184 	skb_release_data(skb);
6185 
6186 	skb->head = data;
6187 	skb->head_frag = 0;
6188 	skb->data = data;
6189 #ifdef NET_SKBUFF_DATA_USES_OFFSET
6190 	skb->end = size;
6191 #else
6192 	skb->end = skb->head + size;
6193 #endif
6194 	skb_reset_tail_pointer(skb);
6195 	skb_headers_offset_update(skb, 0);
6196 	skb->cloned   = 0;
6197 	skb->hdr_len  = 0;
6198 	skb->nohdr    = 0;
6199 	skb->len -= off;
6200 	skb->data_len = skb->len;
6201 	atomic_set(&skb_shinfo(skb)->dataref, 1);
6202 	return 0;
6203 }
6204 
6205 /* remove len bytes from the beginning of the skb */
6206 static int pskb_carve(struct sk_buff *skb, const u32 len, gfp_t gfp)
6207 {
6208 	int headlen = skb_headlen(skb);
6209 
6210 	if (len < headlen)
6211 		return pskb_carve_inside_header(skb, len, headlen, gfp);
6212 	else
6213 		return pskb_carve_inside_nonlinear(skb, len, headlen, gfp);
6214 }
6215 
6216 /* Extract to_copy bytes starting at off from skb, and return this in
6217  * a new skb
6218  */
6219 struct sk_buff *pskb_extract(struct sk_buff *skb, int off,
6220 			     int to_copy, gfp_t gfp)
6221 {
6222 	struct sk_buff  *clone = skb_clone(skb, gfp);
6223 
6224 	if (!clone)
6225 		return NULL;
6226 
6227 	if (pskb_carve(clone, off, gfp) < 0 ||
6228 	    pskb_trim(clone, to_copy)) {
6229 		kfree_skb(clone);
6230 		return NULL;
6231 	}
6232 	return clone;
6233 }
6234 EXPORT_SYMBOL(pskb_extract);
6235 
6236 /**
6237  * skb_condense - try to get rid of fragments/frag_list if possible
6238  * @skb: buffer
6239  *
6240  * Can be used to save memory before skb is added to a busy queue.
6241  * If packet has bytes in frags and enough tail room in skb->head,
6242  * pull all of them, so that we can free the frags right now and adjust
6243  * truesize.
6244  * Notes:
6245  *	We do not reallocate skb->head thus can not fail.
6246  *	Caller must re-evaluate skb->truesize if needed.
6247  */
6248 void skb_condense(struct sk_buff *skb)
6249 {
6250 	if (skb->data_len) {
6251 		if (skb->data_len > skb->end - skb->tail ||
6252 		    skb_cloned(skb))
6253 			return;
6254 
6255 		/* Nice, we can free page frag(s) right now */
6256 		__pskb_pull_tail(skb, skb->data_len);
6257 	}
6258 	/* At this point, skb->truesize might be over estimated,
6259 	 * because skb had a fragment, and fragments do not tell
6260 	 * their truesize.
6261 	 * When we pulled its content into skb->head, fragment
6262 	 * was freed, but __pskb_pull_tail() could not possibly
6263 	 * adjust skb->truesize, not knowing the frag truesize.
6264 	 */
6265 	skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
6266 }
6267 
6268 #ifdef CONFIG_SKB_EXTENSIONS
6269 static void *skb_ext_get_ptr(struct skb_ext *ext, enum skb_ext_id id)
6270 {
6271 	return (void *)ext + (ext->offset[id] * SKB_EXT_ALIGN_VALUE);
6272 }
6273 
6274 /**
6275  * __skb_ext_alloc - allocate a new skb extensions storage
6276  *
6277  * @flags: See kmalloc().
6278  *
6279  * Returns the newly allocated pointer. The pointer can later attached to a
6280  * skb via __skb_ext_set().
6281  * Note: caller must handle the skb_ext as an opaque data.
6282  */
6283 struct skb_ext *__skb_ext_alloc(gfp_t flags)
6284 {
6285 	struct skb_ext *new = kmem_cache_alloc(skbuff_ext_cache, flags);
6286 
6287 	if (new) {
6288 		memset(new->offset, 0, sizeof(new->offset));
6289 		refcount_set(&new->refcnt, 1);
6290 	}
6291 
6292 	return new;
6293 }
6294 
6295 static struct skb_ext *skb_ext_maybe_cow(struct skb_ext *old,
6296 					 unsigned int old_active)
6297 {
6298 	struct skb_ext *new;
6299 
6300 	if (refcount_read(&old->refcnt) == 1)
6301 		return old;
6302 
6303 	new = kmem_cache_alloc(skbuff_ext_cache, GFP_ATOMIC);
6304 	if (!new)
6305 		return NULL;
6306 
6307 	memcpy(new, old, old->chunks * SKB_EXT_ALIGN_VALUE);
6308 	refcount_set(&new->refcnt, 1);
6309 
6310 #ifdef CONFIG_XFRM
6311 	if (old_active & (1 << SKB_EXT_SEC_PATH)) {
6312 		struct sec_path *sp = skb_ext_get_ptr(old, SKB_EXT_SEC_PATH);
6313 		unsigned int i;
6314 
6315 		for (i = 0; i < sp->len; i++)
6316 			xfrm_state_hold(sp->xvec[i]);
6317 	}
6318 #endif
6319 	__skb_ext_put(old);
6320 	return new;
6321 }
6322 
6323 /**
6324  * __skb_ext_set - attach the specified extension storage to this skb
6325  * @skb: buffer
6326  * @id: extension id
6327  * @ext: extension storage previously allocated via __skb_ext_alloc()
6328  *
6329  * Existing extensions, if any, are cleared.
6330  *
6331  * Returns the pointer to the extension.
6332  */
6333 void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id,
6334 		    struct skb_ext *ext)
6335 {
6336 	unsigned int newlen, newoff = SKB_EXT_CHUNKSIZEOF(*ext);
6337 
6338 	skb_ext_put(skb);
6339 	newlen = newoff + skb_ext_type_len[id];
6340 	ext->chunks = newlen;
6341 	ext->offset[id] = newoff;
6342 	skb->extensions = ext;
6343 	skb->active_extensions = 1 << id;
6344 	return skb_ext_get_ptr(ext, id);
6345 }
6346 
6347 /**
6348  * skb_ext_add - allocate space for given extension, COW if needed
6349  * @skb: buffer
6350  * @id: extension to allocate space for
6351  *
6352  * Allocates enough space for the given extension.
6353  * If the extension is already present, a pointer to that extension
6354  * is returned.
6355  *
6356  * If the skb was cloned, COW applies and the returned memory can be
6357  * modified without changing the extension space of clones buffers.
6358  *
6359  * Returns pointer to the extension or NULL on allocation failure.
6360  */
6361 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id)
6362 {
6363 	struct skb_ext *new, *old = NULL;
6364 	unsigned int newlen, newoff;
6365 
6366 	if (skb->active_extensions) {
6367 		old = skb->extensions;
6368 
6369 		new = skb_ext_maybe_cow(old, skb->active_extensions);
6370 		if (!new)
6371 			return NULL;
6372 
6373 		if (__skb_ext_exist(new, id))
6374 			goto set_active;
6375 
6376 		newoff = new->chunks;
6377 	} else {
6378 		newoff = SKB_EXT_CHUNKSIZEOF(*new);
6379 
6380 		new = __skb_ext_alloc(GFP_ATOMIC);
6381 		if (!new)
6382 			return NULL;
6383 	}
6384 
6385 	newlen = newoff + skb_ext_type_len[id];
6386 	new->chunks = newlen;
6387 	new->offset[id] = newoff;
6388 set_active:
6389 	skb->slow_gro = 1;
6390 	skb->extensions = new;
6391 	skb->active_extensions |= 1 << id;
6392 	return skb_ext_get_ptr(new, id);
6393 }
6394 EXPORT_SYMBOL(skb_ext_add);
6395 
6396 #ifdef CONFIG_XFRM
6397 static void skb_ext_put_sp(struct sec_path *sp)
6398 {
6399 	unsigned int i;
6400 
6401 	for (i = 0; i < sp->len; i++)
6402 		xfrm_state_put(sp->xvec[i]);
6403 }
6404 #endif
6405 
6406 #ifdef CONFIG_MCTP_FLOWS
6407 static void skb_ext_put_mctp(struct mctp_flow *flow)
6408 {
6409 	if (flow->key)
6410 		mctp_key_unref(flow->key);
6411 }
6412 #endif
6413 
6414 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id)
6415 {
6416 	struct skb_ext *ext = skb->extensions;
6417 
6418 	skb->active_extensions &= ~(1 << id);
6419 	if (skb->active_extensions == 0) {
6420 		skb->extensions = NULL;
6421 		__skb_ext_put(ext);
6422 #ifdef CONFIG_XFRM
6423 	} else if (id == SKB_EXT_SEC_PATH &&
6424 		   refcount_read(&ext->refcnt) == 1) {
6425 		struct sec_path *sp = skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH);
6426 
6427 		skb_ext_put_sp(sp);
6428 		sp->len = 0;
6429 #endif
6430 	}
6431 }
6432 EXPORT_SYMBOL(__skb_ext_del);
6433 
6434 void __skb_ext_put(struct skb_ext *ext)
6435 {
6436 	/* If this is last clone, nothing can increment
6437 	 * it after check passes.  Avoids one atomic op.
6438 	 */
6439 	if (refcount_read(&ext->refcnt) == 1)
6440 		goto free_now;
6441 
6442 	if (!refcount_dec_and_test(&ext->refcnt))
6443 		return;
6444 free_now:
6445 #ifdef CONFIG_XFRM
6446 	if (__skb_ext_exist(ext, SKB_EXT_SEC_PATH))
6447 		skb_ext_put_sp(skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH));
6448 #endif
6449 #ifdef CONFIG_MCTP_FLOWS
6450 	if (__skb_ext_exist(ext, SKB_EXT_MCTP))
6451 		skb_ext_put_mctp(skb_ext_get_ptr(ext, SKB_EXT_MCTP));
6452 #endif
6453 
6454 	kmem_cache_free(skbuff_ext_cache, ext);
6455 }
6456 EXPORT_SYMBOL(__skb_ext_put);
6457 #endif /* CONFIG_SKB_EXTENSIONS */
6458