1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Routines having to do with the 'struct sk_buff' memory handlers. 4 * 5 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk> 6 * Florian La Roche <rzsfl@rz.uni-sb.de> 7 * 8 * Fixes: 9 * Alan Cox : Fixed the worst of the load 10 * balancer bugs. 11 * Dave Platt : Interrupt stacking fix. 12 * Richard Kooijman : Timestamp fixes. 13 * Alan Cox : Changed buffer format. 14 * Alan Cox : destructor hook for AF_UNIX etc. 15 * Linus Torvalds : Better skb_clone. 16 * Alan Cox : Added skb_copy. 17 * Alan Cox : Added all the changed routines Linus 18 * only put in the headers 19 * Ray VanTassle : Fixed --skb->lock in free 20 * Alan Cox : skb_copy copy arp field 21 * Andi Kleen : slabified it. 22 * Robert Olsson : Removed skb_head_pool 23 * 24 * NOTE: 25 * The __skb_ routines should be called with interrupts 26 * disabled, or you better be *real* sure that the operation is atomic 27 * with respect to whatever list is being frobbed (e.g. via lock_sock() 28 * or via disabling bottom half handlers, etc). 29 */ 30 31 /* 32 * The functions in this file will not compile correctly with gcc 2.4.x 33 */ 34 35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 36 37 #include <linux/module.h> 38 #include <linux/types.h> 39 #include <linux/kernel.h> 40 #include <linux/mm.h> 41 #include <linux/interrupt.h> 42 #include <linux/in.h> 43 #include <linux/inet.h> 44 #include <linux/slab.h> 45 #include <linux/tcp.h> 46 #include <linux/udp.h> 47 #include <linux/sctp.h> 48 #include <linux/netdevice.h> 49 #ifdef CONFIG_NET_CLS_ACT 50 #include <net/pkt_sched.h> 51 #endif 52 #include <linux/string.h> 53 #include <linux/skbuff.h> 54 #include <linux/splice.h> 55 #include <linux/cache.h> 56 #include <linux/rtnetlink.h> 57 #include <linux/init.h> 58 #include <linux/scatterlist.h> 59 #include <linux/errqueue.h> 60 #include <linux/prefetch.h> 61 #include <linux/if_vlan.h> 62 63 #include <net/protocol.h> 64 #include <net/dst.h> 65 #include <net/sock.h> 66 #include <net/checksum.h> 67 #include <net/ip6_checksum.h> 68 #include <net/xfrm.h> 69 70 #include <linux/uaccess.h> 71 #include <trace/events/skb.h> 72 #include <linux/highmem.h> 73 #include <linux/capability.h> 74 #include <linux/user_namespace.h> 75 76 #include "datagram.h" 77 78 struct kmem_cache *skbuff_head_cache __ro_after_init; 79 static struct kmem_cache *skbuff_fclone_cache __ro_after_init; 80 #ifdef CONFIG_SKB_EXTENSIONS 81 static struct kmem_cache *skbuff_ext_cache __ro_after_init; 82 #endif 83 int sysctl_max_skb_frags __read_mostly = MAX_SKB_FRAGS; 84 EXPORT_SYMBOL(sysctl_max_skb_frags); 85 86 /** 87 * skb_panic - private function for out-of-line support 88 * @skb: buffer 89 * @sz: size 90 * @addr: address 91 * @msg: skb_over_panic or skb_under_panic 92 * 93 * Out-of-line support for skb_put() and skb_push(). 94 * Called via the wrapper skb_over_panic() or skb_under_panic(). 95 * Keep out of line to prevent kernel bloat. 96 * __builtin_return_address is not used because it is not always reliable. 97 */ 98 static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr, 99 const char msg[]) 100 { 101 pr_emerg("%s: text:%p len:%d put:%d head:%p data:%p tail:%#lx end:%#lx dev:%s\n", 102 msg, addr, skb->len, sz, skb->head, skb->data, 103 (unsigned long)skb->tail, (unsigned long)skb->end, 104 skb->dev ? skb->dev->name : "<NULL>"); 105 BUG(); 106 } 107 108 static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr) 109 { 110 skb_panic(skb, sz, addr, __func__); 111 } 112 113 static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr) 114 { 115 skb_panic(skb, sz, addr, __func__); 116 } 117 118 /* 119 * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells 120 * the caller if emergency pfmemalloc reserves are being used. If it is and 121 * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves 122 * may be used. Otherwise, the packet data may be discarded until enough 123 * memory is free 124 */ 125 #define kmalloc_reserve(size, gfp, node, pfmemalloc) \ 126 __kmalloc_reserve(size, gfp, node, _RET_IP_, pfmemalloc) 127 128 static void *__kmalloc_reserve(size_t size, gfp_t flags, int node, 129 unsigned long ip, bool *pfmemalloc) 130 { 131 void *obj; 132 bool ret_pfmemalloc = false; 133 134 /* 135 * Try a regular allocation, when that fails and we're not entitled 136 * to the reserves, fail. 137 */ 138 obj = kmalloc_node_track_caller(size, 139 flags | __GFP_NOMEMALLOC | __GFP_NOWARN, 140 node); 141 if (obj || !(gfp_pfmemalloc_allowed(flags))) 142 goto out; 143 144 /* Try again but now we are using pfmemalloc reserves */ 145 ret_pfmemalloc = true; 146 obj = kmalloc_node_track_caller(size, flags, node); 147 148 out: 149 if (pfmemalloc) 150 *pfmemalloc = ret_pfmemalloc; 151 152 return obj; 153 } 154 155 /* Allocate a new skbuff. We do this ourselves so we can fill in a few 156 * 'private' fields and also do memory statistics to find all the 157 * [BEEP] leaks. 158 * 159 */ 160 161 /** 162 * __alloc_skb - allocate a network buffer 163 * @size: size to allocate 164 * @gfp_mask: allocation mask 165 * @flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache 166 * instead of head cache and allocate a cloned (child) skb. 167 * If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for 168 * allocations in case the data is required for writeback 169 * @node: numa node to allocate memory on 170 * 171 * Allocate a new &sk_buff. The returned buffer has no headroom and a 172 * tail room of at least size bytes. The object has a reference count 173 * of one. The return is the buffer. On a failure the return is %NULL. 174 * 175 * Buffers may only be allocated from interrupts using a @gfp_mask of 176 * %GFP_ATOMIC. 177 */ 178 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask, 179 int flags, int node) 180 { 181 struct kmem_cache *cache; 182 struct skb_shared_info *shinfo; 183 struct sk_buff *skb; 184 u8 *data; 185 bool pfmemalloc; 186 187 cache = (flags & SKB_ALLOC_FCLONE) 188 ? skbuff_fclone_cache : skbuff_head_cache; 189 190 if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX)) 191 gfp_mask |= __GFP_MEMALLOC; 192 193 /* Get the HEAD */ 194 skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node); 195 if (!skb) 196 goto out; 197 prefetchw(skb); 198 199 /* We do our best to align skb_shared_info on a separate cache 200 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives 201 * aligned memory blocks, unless SLUB/SLAB debug is enabled. 202 * Both skb->head and skb_shared_info are cache line aligned. 203 */ 204 size = SKB_DATA_ALIGN(size); 205 size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 206 data = kmalloc_reserve(size, gfp_mask, node, &pfmemalloc); 207 if (!data) 208 goto nodata; 209 /* kmalloc(size) might give us more room than requested. 210 * Put skb_shared_info exactly at the end of allocated zone, 211 * to allow max possible filling before reallocation. 212 */ 213 size = SKB_WITH_OVERHEAD(ksize(data)); 214 prefetchw(data + size); 215 216 /* 217 * Only clear those fields we need to clear, not those that we will 218 * actually initialise below. Hence, don't put any more fields after 219 * the tail pointer in struct sk_buff! 220 */ 221 memset(skb, 0, offsetof(struct sk_buff, tail)); 222 /* Account for allocated memory : skb + skb->head */ 223 skb->truesize = SKB_TRUESIZE(size); 224 skb->pfmemalloc = pfmemalloc; 225 refcount_set(&skb->users, 1); 226 skb->head = data; 227 skb->data = data; 228 skb_reset_tail_pointer(skb); 229 skb->end = skb->tail + size; 230 skb->mac_header = (typeof(skb->mac_header))~0U; 231 skb->transport_header = (typeof(skb->transport_header))~0U; 232 233 /* make sure we initialize shinfo sequentially */ 234 shinfo = skb_shinfo(skb); 235 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref)); 236 atomic_set(&shinfo->dataref, 1); 237 238 if (flags & SKB_ALLOC_FCLONE) { 239 struct sk_buff_fclones *fclones; 240 241 fclones = container_of(skb, struct sk_buff_fclones, skb1); 242 243 skb->fclone = SKB_FCLONE_ORIG; 244 refcount_set(&fclones->fclone_ref, 1); 245 246 fclones->skb2.fclone = SKB_FCLONE_CLONE; 247 } 248 out: 249 return skb; 250 nodata: 251 kmem_cache_free(cache, skb); 252 skb = NULL; 253 goto out; 254 } 255 EXPORT_SYMBOL(__alloc_skb); 256 257 /* Caller must provide SKB that is memset cleared */ 258 static struct sk_buff *__build_skb_around(struct sk_buff *skb, 259 void *data, unsigned int frag_size) 260 { 261 struct skb_shared_info *shinfo; 262 unsigned int size = frag_size ? : ksize(data); 263 264 size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 265 266 /* Assumes caller memset cleared SKB */ 267 skb->truesize = SKB_TRUESIZE(size); 268 refcount_set(&skb->users, 1); 269 skb->head = data; 270 skb->data = data; 271 skb_reset_tail_pointer(skb); 272 skb->end = skb->tail + size; 273 skb->mac_header = (typeof(skb->mac_header))~0U; 274 skb->transport_header = (typeof(skb->transport_header))~0U; 275 276 /* make sure we initialize shinfo sequentially */ 277 shinfo = skb_shinfo(skb); 278 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref)); 279 atomic_set(&shinfo->dataref, 1); 280 281 return skb; 282 } 283 284 /** 285 * __build_skb - build a network buffer 286 * @data: data buffer provided by caller 287 * @frag_size: size of data, or 0 if head was kmalloced 288 * 289 * Allocate a new &sk_buff. Caller provides space holding head and 290 * skb_shared_info. @data must have been allocated by kmalloc() only if 291 * @frag_size is 0, otherwise data should come from the page allocator 292 * or vmalloc() 293 * The return is the new skb buffer. 294 * On a failure the return is %NULL, and @data is not freed. 295 * Notes : 296 * Before IO, driver allocates only data buffer where NIC put incoming frame 297 * Driver should add room at head (NET_SKB_PAD) and 298 * MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info)) 299 * After IO, driver calls build_skb(), to allocate sk_buff and populate it 300 * before giving packet to stack. 301 * RX rings only contains data buffers, not full skbs. 302 */ 303 struct sk_buff *__build_skb(void *data, unsigned int frag_size) 304 { 305 struct sk_buff *skb; 306 307 skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC); 308 if (unlikely(!skb)) 309 return NULL; 310 311 memset(skb, 0, offsetof(struct sk_buff, tail)); 312 313 return __build_skb_around(skb, data, frag_size); 314 } 315 316 /* build_skb() is wrapper over __build_skb(), that specifically 317 * takes care of skb->head and skb->pfmemalloc 318 * This means that if @frag_size is not zero, then @data must be backed 319 * by a page fragment, not kmalloc() or vmalloc() 320 */ 321 struct sk_buff *build_skb(void *data, unsigned int frag_size) 322 { 323 struct sk_buff *skb = __build_skb(data, frag_size); 324 325 if (skb && frag_size) { 326 skb->head_frag = 1; 327 if (page_is_pfmemalloc(virt_to_head_page(data))) 328 skb->pfmemalloc = 1; 329 } 330 return skb; 331 } 332 EXPORT_SYMBOL(build_skb); 333 334 /** 335 * build_skb_around - build a network buffer around provided skb 336 * @skb: sk_buff provide by caller, must be memset cleared 337 * @data: data buffer provided by caller 338 * @frag_size: size of data, or 0 if head was kmalloced 339 */ 340 struct sk_buff *build_skb_around(struct sk_buff *skb, 341 void *data, unsigned int frag_size) 342 { 343 if (unlikely(!skb)) 344 return NULL; 345 346 skb = __build_skb_around(skb, data, frag_size); 347 348 if (skb && frag_size) { 349 skb->head_frag = 1; 350 if (page_is_pfmemalloc(virt_to_head_page(data))) 351 skb->pfmemalloc = 1; 352 } 353 return skb; 354 } 355 EXPORT_SYMBOL(build_skb_around); 356 357 #define NAPI_SKB_CACHE_SIZE 64 358 359 struct napi_alloc_cache { 360 struct page_frag_cache page; 361 unsigned int skb_count; 362 void *skb_cache[NAPI_SKB_CACHE_SIZE]; 363 }; 364 365 static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache); 366 static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache); 367 368 static void *__netdev_alloc_frag(unsigned int fragsz, gfp_t gfp_mask) 369 { 370 struct page_frag_cache *nc; 371 unsigned long flags; 372 void *data; 373 374 local_irq_save(flags); 375 nc = this_cpu_ptr(&netdev_alloc_cache); 376 data = page_frag_alloc(nc, fragsz, gfp_mask); 377 local_irq_restore(flags); 378 return data; 379 } 380 381 /** 382 * netdev_alloc_frag - allocate a page fragment 383 * @fragsz: fragment size 384 * 385 * Allocates a frag from a page for receive buffer. 386 * Uses GFP_ATOMIC allocations. 387 */ 388 void *netdev_alloc_frag(unsigned int fragsz) 389 { 390 fragsz = SKB_DATA_ALIGN(fragsz); 391 392 return __netdev_alloc_frag(fragsz, GFP_ATOMIC); 393 } 394 EXPORT_SYMBOL(netdev_alloc_frag); 395 396 static void *__napi_alloc_frag(unsigned int fragsz, gfp_t gfp_mask) 397 { 398 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 399 400 return page_frag_alloc(&nc->page, fragsz, gfp_mask); 401 } 402 403 void *napi_alloc_frag(unsigned int fragsz) 404 { 405 fragsz = SKB_DATA_ALIGN(fragsz); 406 407 return __napi_alloc_frag(fragsz, GFP_ATOMIC); 408 } 409 EXPORT_SYMBOL(napi_alloc_frag); 410 411 /** 412 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device 413 * @dev: network device to receive on 414 * @len: length to allocate 415 * @gfp_mask: get_free_pages mask, passed to alloc_skb 416 * 417 * Allocate a new &sk_buff and assign it a usage count of one. The 418 * buffer has NET_SKB_PAD headroom built in. Users should allocate 419 * the headroom they think they need without accounting for the 420 * built in space. The built in space is used for optimisations. 421 * 422 * %NULL is returned if there is no free memory. 423 */ 424 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len, 425 gfp_t gfp_mask) 426 { 427 struct page_frag_cache *nc; 428 unsigned long flags; 429 struct sk_buff *skb; 430 bool pfmemalloc; 431 void *data; 432 433 len += NET_SKB_PAD; 434 435 if ((len > SKB_WITH_OVERHEAD(PAGE_SIZE)) || 436 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) { 437 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE); 438 if (!skb) 439 goto skb_fail; 440 goto skb_success; 441 } 442 443 len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 444 len = SKB_DATA_ALIGN(len); 445 446 if (sk_memalloc_socks()) 447 gfp_mask |= __GFP_MEMALLOC; 448 449 local_irq_save(flags); 450 451 nc = this_cpu_ptr(&netdev_alloc_cache); 452 data = page_frag_alloc(nc, len, gfp_mask); 453 pfmemalloc = nc->pfmemalloc; 454 455 local_irq_restore(flags); 456 457 if (unlikely(!data)) 458 return NULL; 459 460 skb = __build_skb(data, len); 461 if (unlikely(!skb)) { 462 skb_free_frag(data); 463 return NULL; 464 } 465 466 /* use OR instead of assignment to avoid clearing of bits in mask */ 467 if (pfmemalloc) 468 skb->pfmemalloc = 1; 469 skb->head_frag = 1; 470 471 skb_success: 472 skb_reserve(skb, NET_SKB_PAD); 473 skb->dev = dev; 474 475 skb_fail: 476 return skb; 477 } 478 EXPORT_SYMBOL(__netdev_alloc_skb); 479 480 /** 481 * __napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance 482 * @napi: napi instance this buffer was allocated for 483 * @len: length to allocate 484 * @gfp_mask: get_free_pages mask, passed to alloc_skb and alloc_pages 485 * 486 * Allocate a new sk_buff for use in NAPI receive. This buffer will 487 * attempt to allocate the head from a special reserved region used 488 * only for NAPI Rx allocation. By doing this we can save several 489 * CPU cycles by avoiding having to disable and re-enable IRQs. 490 * 491 * %NULL is returned if there is no free memory. 492 */ 493 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, unsigned int len, 494 gfp_t gfp_mask) 495 { 496 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 497 struct sk_buff *skb; 498 void *data; 499 500 len += NET_SKB_PAD + NET_IP_ALIGN; 501 502 if ((len > SKB_WITH_OVERHEAD(PAGE_SIZE)) || 503 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) { 504 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE); 505 if (!skb) 506 goto skb_fail; 507 goto skb_success; 508 } 509 510 len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 511 len = SKB_DATA_ALIGN(len); 512 513 if (sk_memalloc_socks()) 514 gfp_mask |= __GFP_MEMALLOC; 515 516 data = page_frag_alloc(&nc->page, len, gfp_mask); 517 if (unlikely(!data)) 518 return NULL; 519 520 skb = __build_skb(data, len); 521 if (unlikely(!skb)) { 522 skb_free_frag(data); 523 return NULL; 524 } 525 526 /* use OR instead of assignment to avoid clearing of bits in mask */ 527 if (nc->page.pfmemalloc) 528 skb->pfmemalloc = 1; 529 skb->head_frag = 1; 530 531 skb_success: 532 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN); 533 skb->dev = napi->dev; 534 535 skb_fail: 536 return skb; 537 } 538 EXPORT_SYMBOL(__napi_alloc_skb); 539 540 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off, 541 int size, unsigned int truesize) 542 { 543 skb_fill_page_desc(skb, i, page, off, size); 544 skb->len += size; 545 skb->data_len += size; 546 skb->truesize += truesize; 547 } 548 EXPORT_SYMBOL(skb_add_rx_frag); 549 550 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size, 551 unsigned int truesize) 552 { 553 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 554 555 skb_frag_size_add(frag, size); 556 skb->len += size; 557 skb->data_len += size; 558 skb->truesize += truesize; 559 } 560 EXPORT_SYMBOL(skb_coalesce_rx_frag); 561 562 static void skb_drop_list(struct sk_buff **listp) 563 { 564 kfree_skb_list(*listp); 565 *listp = NULL; 566 } 567 568 static inline void skb_drop_fraglist(struct sk_buff *skb) 569 { 570 skb_drop_list(&skb_shinfo(skb)->frag_list); 571 } 572 573 static void skb_clone_fraglist(struct sk_buff *skb) 574 { 575 struct sk_buff *list; 576 577 skb_walk_frags(skb, list) 578 skb_get(list); 579 } 580 581 static void skb_free_head(struct sk_buff *skb) 582 { 583 unsigned char *head = skb->head; 584 585 if (skb->head_frag) 586 skb_free_frag(head); 587 else 588 kfree(head); 589 } 590 591 static void skb_release_data(struct sk_buff *skb) 592 { 593 struct skb_shared_info *shinfo = skb_shinfo(skb); 594 int i; 595 596 if (skb->cloned && 597 atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1, 598 &shinfo->dataref)) 599 return; 600 601 for (i = 0; i < shinfo->nr_frags; i++) 602 __skb_frag_unref(&shinfo->frags[i]); 603 604 if (shinfo->frag_list) 605 kfree_skb_list(shinfo->frag_list); 606 607 skb_zcopy_clear(skb, true); 608 skb_free_head(skb); 609 } 610 611 /* 612 * Free an skbuff by memory without cleaning the state. 613 */ 614 static void kfree_skbmem(struct sk_buff *skb) 615 { 616 struct sk_buff_fclones *fclones; 617 618 switch (skb->fclone) { 619 case SKB_FCLONE_UNAVAILABLE: 620 kmem_cache_free(skbuff_head_cache, skb); 621 return; 622 623 case SKB_FCLONE_ORIG: 624 fclones = container_of(skb, struct sk_buff_fclones, skb1); 625 626 /* We usually free the clone (TX completion) before original skb 627 * This test would have no chance to be true for the clone, 628 * while here, branch prediction will be good. 629 */ 630 if (refcount_read(&fclones->fclone_ref) == 1) 631 goto fastpath; 632 break; 633 634 default: /* SKB_FCLONE_CLONE */ 635 fclones = container_of(skb, struct sk_buff_fclones, skb2); 636 break; 637 } 638 if (!refcount_dec_and_test(&fclones->fclone_ref)) 639 return; 640 fastpath: 641 kmem_cache_free(skbuff_fclone_cache, fclones); 642 } 643 644 void skb_release_head_state(struct sk_buff *skb) 645 { 646 skb_dst_drop(skb); 647 if (skb->destructor) { 648 WARN_ON(in_irq()); 649 skb->destructor(skb); 650 } 651 #if IS_ENABLED(CONFIG_NF_CONNTRACK) 652 nf_conntrack_put(skb_nfct(skb)); 653 #endif 654 skb_ext_put(skb); 655 } 656 657 /* Free everything but the sk_buff shell. */ 658 static void skb_release_all(struct sk_buff *skb) 659 { 660 skb_release_head_state(skb); 661 if (likely(skb->head)) 662 skb_release_data(skb); 663 } 664 665 /** 666 * __kfree_skb - private function 667 * @skb: buffer 668 * 669 * Free an sk_buff. Release anything attached to the buffer. 670 * Clean the state. This is an internal helper function. Users should 671 * always call kfree_skb 672 */ 673 674 void __kfree_skb(struct sk_buff *skb) 675 { 676 skb_release_all(skb); 677 kfree_skbmem(skb); 678 } 679 EXPORT_SYMBOL(__kfree_skb); 680 681 /** 682 * kfree_skb - free an sk_buff 683 * @skb: buffer to free 684 * 685 * Drop a reference to the buffer and free it if the usage count has 686 * hit zero. 687 */ 688 void kfree_skb(struct sk_buff *skb) 689 { 690 if (!skb_unref(skb)) 691 return; 692 693 trace_kfree_skb(skb, __builtin_return_address(0)); 694 __kfree_skb(skb); 695 } 696 EXPORT_SYMBOL(kfree_skb); 697 698 void kfree_skb_list(struct sk_buff *segs) 699 { 700 while (segs) { 701 struct sk_buff *next = segs->next; 702 703 kfree_skb(segs); 704 segs = next; 705 } 706 } 707 EXPORT_SYMBOL(kfree_skb_list); 708 709 /** 710 * skb_tx_error - report an sk_buff xmit error 711 * @skb: buffer that triggered an error 712 * 713 * Report xmit error if a device callback is tracking this skb. 714 * skb must be freed afterwards. 715 */ 716 void skb_tx_error(struct sk_buff *skb) 717 { 718 skb_zcopy_clear(skb, true); 719 } 720 EXPORT_SYMBOL(skb_tx_error); 721 722 /** 723 * consume_skb - free an skbuff 724 * @skb: buffer to free 725 * 726 * Drop a ref to the buffer and free it if the usage count has hit zero 727 * Functions identically to kfree_skb, but kfree_skb assumes that the frame 728 * is being dropped after a failure and notes that 729 */ 730 void consume_skb(struct sk_buff *skb) 731 { 732 if (!skb_unref(skb)) 733 return; 734 735 trace_consume_skb(skb); 736 __kfree_skb(skb); 737 } 738 EXPORT_SYMBOL(consume_skb); 739 740 /** 741 * consume_stateless_skb - free an skbuff, assuming it is stateless 742 * @skb: buffer to free 743 * 744 * Alike consume_skb(), but this variant assumes that this is the last 745 * skb reference and all the head states have been already dropped 746 */ 747 void __consume_stateless_skb(struct sk_buff *skb) 748 { 749 trace_consume_skb(skb); 750 skb_release_data(skb); 751 kfree_skbmem(skb); 752 } 753 754 void __kfree_skb_flush(void) 755 { 756 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 757 758 /* flush skb_cache if containing objects */ 759 if (nc->skb_count) { 760 kmem_cache_free_bulk(skbuff_head_cache, nc->skb_count, 761 nc->skb_cache); 762 nc->skb_count = 0; 763 } 764 } 765 766 static inline void _kfree_skb_defer(struct sk_buff *skb) 767 { 768 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 769 770 /* drop skb->head and call any destructors for packet */ 771 skb_release_all(skb); 772 773 /* record skb to CPU local list */ 774 nc->skb_cache[nc->skb_count++] = skb; 775 776 #ifdef CONFIG_SLUB 777 /* SLUB writes into objects when freeing */ 778 prefetchw(skb); 779 #endif 780 781 /* flush skb_cache if it is filled */ 782 if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) { 783 kmem_cache_free_bulk(skbuff_head_cache, NAPI_SKB_CACHE_SIZE, 784 nc->skb_cache); 785 nc->skb_count = 0; 786 } 787 } 788 void __kfree_skb_defer(struct sk_buff *skb) 789 { 790 _kfree_skb_defer(skb); 791 } 792 793 void napi_consume_skb(struct sk_buff *skb, int budget) 794 { 795 if (unlikely(!skb)) 796 return; 797 798 /* Zero budget indicate non-NAPI context called us, like netpoll */ 799 if (unlikely(!budget)) { 800 dev_consume_skb_any(skb); 801 return; 802 } 803 804 if (!skb_unref(skb)) 805 return; 806 807 /* if reaching here SKB is ready to free */ 808 trace_consume_skb(skb); 809 810 /* if SKB is a clone, don't handle this case */ 811 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) { 812 __kfree_skb(skb); 813 return; 814 } 815 816 _kfree_skb_defer(skb); 817 } 818 EXPORT_SYMBOL(napi_consume_skb); 819 820 /* Make sure a field is enclosed inside headers_start/headers_end section */ 821 #define CHECK_SKB_FIELD(field) \ 822 BUILD_BUG_ON(offsetof(struct sk_buff, field) < \ 823 offsetof(struct sk_buff, headers_start)); \ 824 BUILD_BUG_ON(offsetof(struct sk_buff, field) > \ 825 offsetof(struct sk_buff, headers_end)); \ 826 827 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old) 828 { 829 new->tstamp = old->tstamp; 830 /* We do not copy old->sk */ 831 new->dev = old->dev; 832 memcpy(new->cb, old->cb, sizeof(old->cb)); 833 skb_dst_copy(new, old); 834 __skb_ext_copy(new, old); 835 __nf_copy(new, old, false); 836 837 /* Note : this field could be in headers_start/headers_end section 838 * It is not yet because we do not want to have a 16 bit hole 839 */ 840 new->queue_mapping = old->queue_mapping; 841 842 memcpy(&new->headers_start, &old->headers_start, 843 offsetof(struct sk_buff, headers_end) - 844 offsetof(struct sk_buff, headers_start)); 845 CHECK_SKB_FIELD(protocol); 846 CHECK_SKB_FIELD(csum); 847 CHECK_SKB_FIELD(hash); 848 CHECK_SKB_FIELD(priority); 849 CHECK_SKB_FIELD(skb_iif); 850 CHECK_SKB_FIELD(vlan_proto); 851 CHECK_SKB_FIELD(vlan_tci); 852 CHECK_SKB_FIELD(transport_header); 853 CHECK_SKB_FIELD(network_header); 854 CHECK_SKB_FIELD(mac_header); 855 CHECK_SKB_FIELD(inner_protocol); 856 CHECK_SKB_FIELD(inner_transport_header); 857 CHECK_SKB_FIELD(inner_network_header); 858 CHECK_SKB_FIELD(inner_mac_header); 859 CHECK_SKB_FIELD(mark); 860 #ifdef CONFIG_NETWORK_SECMARK 861 CHECK_SKB_FIELD(secmark); 862 #endif 863 #ifdef CONFIG_NET_RX_BUSY_POLL 864 CHECK_SKB_FIELD(napi_id); 865 #endif 866 #ifdef CONFIG_XPS 867 CHECK_SKB_FIELD(sender_cpu); 868 #endif 869 #ifdef CONFIG_NET_SCHED 870 CHECK_SKB_FIELD(tc_index); 871 #endif 872 873 } 874 875 /* 876 * You should not add any new code to this function. Add it to 877 * __copy_skb_header above instead. 878 */ 879 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb) 880 { 881 #define C(x) n->x = skb->x 882 883 n->next = n->prev = NULL; 884 n->sk = NULL; 885 __copy_skb_header(n, skb); 886 887 C(len); 888 C(data_len); 889 C(mac_len); 890 n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len; 891 n->cloned = 1; 892 n->nohdr = 0; 893 n->peeked = 0; 894 C(pfmemalloc); 895 n->destructor = NULL; 896 C(tail); 897 C(end); 898 C(head); 899 C(head_frag); 900 C(data); 901 C(truesize); 902 refcount_set(&n->users, 1); 903 904 atomic_inc(&(skb_shinfo(skb)->dataref)); 905 skb->cloned = 1; 906 907 return n; 908 #undef C 909 } 910 911 /** 912 * skb_morph - morph one skb into another 913 * @dst: the skb to receive the contents 914 * @src: the skb to supply the contents 915 * 916 * This is identical to skb_clone except that the target skb is 917 * supplied by the user. 918 * 919 * The target skb is returned upon exit. 920 */ 921 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src) 922 { 923 skb_release_all(dst); 924 return __skb_clone(dst, src); 925 } 926 EXPORT_SYMBOL_GPL(skb_morph); 927 928 int mm_account_pinned_pages(struct mmpin *mmp, size_t size) 929 { 930 unsigned long max_pg, num_pg, new_pg, old_pg; 931 struct user_struct *user; 932 933 if (capable(CAP_IPC_LOCK) || !size) 934 return 0; 935 936 num_pg = (size >> PAGE_SHIFT) + 2; /* worst case */ 937 max_pg = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT; 938 user = mmp->user ? : current_user(); 939 940 do { 941 old_pg = atomic_long_read(&user->locked_vm); 942 new_pg = old_pg + num_pg; 943 if (new_pg > max_pg) 944 return -ENOBUFS; 945 } while (atomic_long_cmpxchg(&user->locked_vm, old_pg, new_pg) != 946 old_pg); 947 948 if (!mmp->user) { 949 mmp->user = get_uid(user); 950 mmp->num_pg = num_pg; 951 } else { 952 mmp->num_pg += num_pg; 953 } 954 955 return 0; 956 } 957 EXPORT_SYMBOL_GPL(mm_account_pinned_pages); 958 959 void mm_unaccount_pinned_pages(struct mmpin *mmp) 960 { 961 if (mmp->user) { 962 atomic_long_sub(mmp->num_pg, &mmp->user->locked_vm); 963 free_uid(mmp->user); 964 } 965 } 966 EXPORT_SYMBOL_GPL(mm_unaccount_pinned_pages); 967 968 struct ubuf_info *sock_zerocopy_alloc(struct sock *sk, size_t size) 969 { 970 struct ubuf_info *uarg; 971 struct sk_buff *skb; 972 973 WARN_ON_ONCE(!in_task()); 974 975 skb = sock_omalloc(sk, 0, GFP_KERNEL); 976 if (!skb) 977 return NULL; 978 979 BUILD_BUG_ON(sizeof(*uarg) > sizeof(skb->cb)); 980 uarg = (void *)skb->cb; 981 uarg->mmp.user = NULL; 982 983 if (mm_account_pinned_pages(&uarg->mmp, size)) { 984 kfree_skb(skb); 985 return NULL; 986 } 987 988 uarg->callback = sock_zerocopy_callback; 989 uarg->id = ((u32)atomic_inc_return(&sk->sk_zckey)) - 1; 990 uarg->len = 1; 991 uarg->bytelen = size; 992 uarg->zerocopy = 1; 993 refcount_set(&uarg->refcnt, 1); 994 sock_hold(sk); 995 996 return uarg; 997 } 998 EXPORT_SYMBOL_GPL(sock_zerocopy_alloc); 999 1000 static inline struct sk_buff *skb_from_uarg(struct ubuf_info *uarg) 1001 { 1002 return container_of((void *)uarg, struct sk_buff, cb); 1003 } 1004 1005 struct ubuf_info *sock_zerocopy_realloc(struct sock *sk, size_t size, 1006 struct ubuf_info *uarg) 1007 { 1008 if (uarg) { 1009 const u32 byte_limit = 1 << 19; /* limit to a few TSO */ 1010 u32 bytelen, next; 1011 1012 /* realloc only when socket is locked (TCP, UDP cork), 1013 * so uarg->len and sk_zckey access is serialized 1014 */ 1015 if (!sock_owned_by_user(sk)) { 1016 WARN_ON_ONCE(1); 1017 return NULL; 1018 } 1019 1020 bytelen = uarg->bytelen + size; 1021 if (uarg->len == USHRT_MAX - 1 || bytelen > byte_limit) { 1022 /* TCP can create new skb to attach new uarg */ 1023 if (sk->sk_type == SOCK_STREAM) 1024 goto new_alloc; 1025 return NULL; 1026 } 1027 1028 next = (u32)atomic_read(&sk->sk_zckey); 1029 if ((u32)(uarg->id + uarg->len) == next) { 1030 if (mm_account_pinned_pages(&uarg->mmp, size)) 1031 return NULL; 1032 uarg->len++; 1033 uarg->bytelen = bytelen; 1034 atomic_set(&sk->sk_zckey, ++next); 1035 1036 /* no extra ref when appending to datagram (MSG_MORE) */ 1037 if (sk->sk_type == SOCK_STREAM) 1038 sock_zerocopy_get(uarg); 1039 1040 return uarg; 1041 } 1042 } 1043 1044 new_alloc: 1045 return sock_zerocopy_alloc(sk, size); 1046 } 1047 EXPORT_SYMBOL_GPL(sock_zerocopy_realloc); 1048 1049 static bool skb_zerocopy_notify_extend(struct sk_buff *skb, u32 lo, u16 len) 1050 { 1051 struct sock_exterr_skb *serr = SKB_EXT_ERR(skb); 1052 u32 old_lo, old_hi; 1053 u64 sum_len; 1054 1055 old_lo = serr->ee.ee_info; 1056 old_hi = serr->ee.ee_data; 1057 sum_len = old_hi - old_lo + 1ULL + len; 1058 1059 if (sum_len >= (1ULL << 32)) 1060 return false; 1061 1062 if (lo != old_hi + 1) 1063 return false; 1064 1065 serr->ee.ee_data += len; 1066 return true; 1067 } 1068 1069 void sock_zerocopy_callback(struct ubuf_info *uarg, bool success) 1070 { 1071 struct sk_buff *tail, *skb = skb_from_uarg(uarg); 1072 struct sock_exterr_skb *serr; 1073 struct sock *sk = skb->sk; 1074 struct sk_buff_head *q; 1075 unsigned long flags; 1076 u32 lo, hi; 1077 u16 len; 1078 1079 mm_unaccount_pinned_pages(&uarg->mmp); 1080 1081 /* if !len, there was only 1 call, and it was aborted 1082 * so do not queue a completion notification 1083 */ 1084 if (!uarg->len || sock_flag(sk, SOCK_DEAD)) 1085 goto release; 1086 1087 len = uarg->len; 1088 lo = uarg->id; 1089 hi = uarg->id + len - 1; 1090 1091 serr = SKB_EXT_ERR(skb); 1092 memset(serr, 0, sizeof(*serr)); 1093 serr->ee.ee_errno = 0; 1094 serr->ee.ee_origin = SO_EE_ORIGIN_ZEROCOPY; 1095 serr->ee.ee_data = hi; 1096 serr->ee.ee_info = lo; 1097 if (!success) 1098 serr->ee.ee_code |= SO_EE_CODE_ZEROCOPY_COPIED; 1099 1100 q = &sk->sk_error_queue; 1101 spin_lock_irqsave(&q->lock, flags); 1102 tail = skb_peek_tail(q); 1103 if (!tail || SKB_EXT_ERR(tail)->ee.ee_origin != SO_EE_ORIGIN_ZEROCOPY || 1104 !skb_zerocopy_notify_extend(tail, lo, len)) { 1105 __skb_queue_tail(q, skb); 1106 skb = NULL; 1107 } 1108 spin_unlock_irqrestore(&q->lock, flags); 1109 1110 sk->sk_error_report(sk); 1111 1112 release: 1113 consume_skb(skb); 1114 sock_put(sk); 1115 } 1116 EXPORT_SYMBOL_GPL(sock_zerocopy_callback); 1117 1118 void sock_zerocopy_put(struct ubuf_info *uarg) 1119 { 1120 if (uarg && refcount_dec_and_test(&uarg->refcnt)) { 1121 if (uarg->callback) 1122 uarg->callback(uarg, uarg->zerocopy); 1123 else 1124 consume_skb(skb_from_uarg(uarg)); 1125 } 1126 } 1127 EXPORT_SYMBOL_GPL(sock_zerocopy_put); 1128 1129 void sock_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref) 1130 { 1131 if (uarg) { 1132 struct sock *sk = skb_from_uarg(uarg)->sk; 1133 1134 atomic_dec(&sk->sk_zckey); 1135 uarg->len--; 1136 1137 if (have_uref) 1138 sock_zerocopy_put(uarg); 1139 } 1140 } 1141 EXPORT_SYMBOL_GPL(sock_zerocopy_put_abort); 1142 1143 int skb_zerocopy_iter_dgram(struct sk_buff *skb, struct msghdr *msg, int len) 1144 { 1145 return __zerocopy_sg_from_iter(skb->sk, skb, &msg->msg_iter, len); 1146 } 1147 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_dgram); 1148 1149 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb, 1150 struct msghdr *msg, int len, 1151 struct ubuf_info *uarg) 1152 { 1153 struct ubuf_info *orig_uarg = skb_zcopy(skb); 1154 struct iov_iter orig_iter = msg->msg_iter; 1155 int err, orig_len = skb->len; 1156 1157 /* An skb can only point to one uarg. This edge case happens when 1158 * TCP appends to an skb, but zerocopy_realloc triggered a new alloc. 1159 */ 1160 if (orig_uarg && uarg != orig_uarg) 1161 return -EEXIST; 1162 1163 err = __zerocopy_sg_from_iter(sk, skb, &msg->msg_iter, len); 1164 if (err == -EFAULT || (err == -EMSGSIZE && skb->len == orig_len)) { 1165 struct sock *save_sk = skb->sk; 1166 1167 /* Streams do not free skb on error. Reset to prev state. */ 1168 msg->msg_iter = orig_iter; 1169 skb->sk = sk; 1170 ___pskb_trim(skb, orig_len); 1171 skb->sk = save_sk; 1172 return err; 1173 } 1174 1175 skb_zcopy_set(skb, uarg, NULL); 1176 return skb->len - orig_len; 1177 } 1178 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_stream); 1179 1180 static int skb_zerocopy_clone(struct sk_buff *nskb, struct sk_buff *orig, 1181 gfp_t gfp_mask) 1182 { 1183 if (skb_zcopy(orig)) { 1184 if (skb_zcopy(nskb)) { 1185 /* !gfp_mask callers are verified to !skb_zcopy(nskb) */ 1186 if (!gfp_mask) { 1187 WARN_ON_ONCE(1); 1188 return -ENOMEM; 1189 } 1190 if (skb_uarg(nskb) == skb_uarg(orig)) 1191 return 0; 1192 if (skb_copy_ubufs(nskb, GFP_ATOMIC)) 1193 return -EIO; 1194 } 1195 skb_zcopy_set(nskb, skb_uarg(orig), NULL); 1196 } 1197 return 0; 1198 } 1199 1200 /** 1201 * skb_copy_ubufs - copy userspace skb frags buffers to kernel 1202 * @skb: the skb to modify 1203 * @gfp_mask: allocation priority 1204 * 1205 * This must be called on SKBTX_DEV_ZEROCOPY skb. 1206 * It will copy all frags into kernel and drop the reference 1207 * to userspace pages. 1208 * 1209 * If this function is called from an interrupt gfp_mask() must be 1210 * %GFP_ATOMIC. 1211 * 1212 * Returns 0 on success or a negative error code on failure 1213 * to allocate kernel memory to copy to. 1214 */ 1215 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask) 1216 { 1217 int num_frags = skb_shinfo(skb)->nr_frags; 1218 struct page *page, *head = NULL; 1219 int i, new_frags; 1220 u32 d_off; 1221 1222 if (skb_shared(skb) || skb_unclone(skb, gfp_mask)) 1223 return -EINVAL; 1224 1225 if (!num_frags) 1226 goto release; 1227 1228 new_frags = (__skb_pagelen(skb) + PAGE_SIZE - 1) >> PAGE_SHIFT; 1229 for (i = 0; i < new_frags; i++) { 1230 page = alloc_page(gfp_mask); 1231 if (!page) { 1232 while (head) { 1233 struct page *next = (struct page *)page_private(head); 1234 put_page(head); 1235 head = next; 1236 } 1237 return -ENOMEM; 1238 } 1239 set_page_private(page, (unsigned long)head); 1240 head = page; 1241 } 1242 1243 page = head; 1244 d_off = 0; 1245 for (i = 0; i < num_frags; i++) { 1246 skb_frag_t *f = &skb_shinfo(skb)->frags[i]; 1247 u32 p_off, p_len, copied; 1248 struct page *p; 1249 u8 *vaddr; 1250 1251 skb_frag_foreach_page(f, f->page_offset, skb_frag_size(f), 1252 p, p_off, p_len, copied) { 1253 u32 copy, done = 0; 1254 vaddr = kmap_atomic(p); 1255 1256 while (done < p_len) { 1257 if (d_off == PAGE_SIZE) { 1258 d_off = 0; 1259 page = (struct page *)page_private(page); 1260 } 1261 copy = min_t(u32, PAGE_SIZE - d_off, p_len - done); 1262 memcpy(page_address(page) + d_off, 1263 vaddr + p_off + done, copy); 1264 done += copy; 1265 d_off += copy; 1266 } 1267 kunmap_atomic(vaddr); 1268 } 1269 } 1270 1271 /* skb frags release userspace buffers */ 1272 for (i = 0; i < num_frags; i++) 1273 skb_frag_unref(skb, i); 1274 1275 /* skb frags point to kernel buffers */ 1276 for (i = 0; i < new_frags - 1; i++) { 1277 __skb_fill_page_desc(skb, i, head, 0, PAGE_SIZE); 1278 head = (struct page *)page_private(head); 1279 } 1280 __skb_fill_page_desc(skb, new_frags - 1, head, 0, d_off); 1281 skb_shinfo(skb)->nr_frags = new_frags; 1282 1283 release: 1284 skb_zcopy_clear(skb, false); 1285 return 0; 1286 } 1287 EXPORT_SYMBOL_GPL(skb_copy_ubufs); 1288 1289 /** 1290 * skb_clone - duplicate an sk_buff 1291 * @skb: buffer to clone 1292 * @gfp_mask: allocation priority 1293 * 1294 * Duplicate an &sk_buff. The new one is not owned by a socket. Both 1295 * copies share the same packet data but not structure. The new 1296 * buffer has a reference count of 1. If the allocation fails the 1297 * function returns %NULL otherwise the new buffer is returned. 1298 * 1299 * If this function is called from an interrupt gfp_mask() must be 1300 * %GFP_ATOMIC. 1301 */ 1302 1303 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask) 1304 { 1305 struct sk_buff_fclones *fclones = container_of(skb, 1306 struct sk_buff_fclones, 1307 skb1); 1308 struct sk_buff *n; 1309 1310 if (skb_orphan_frags(skb, gfp_mask)) 1311 return NULL; 1312 1313 if (skb->fclone == SKB_FCLONE_ORIG && 1314 refcount_read(&fclones->fclone_ref) == 1) { 1315 n = &fclones->skb2; 1316 refcount_set(&fclones->fclone_ref, 2); 1317 } else { 1318 if (skb_pfmemalloc(skb)) 1319 gfp_mask |= __GFP_MEMALLOC; 1320 1321 n = kmem_cache_alloc(skbuff_head_cache, gfp_mask); 1322 if (!n) 1323 return NULL; 1324 1325 n->fclone = SKB_FCLONE_UNAVAILABLE; 1326 } 1327 1328 return __skb_clone(n, skb); 1329 } 1330 EXPORT_SYMBOL(skb_clone); 1331 1332 void skb_headers_offset_update(struct sk_buff *skb, int off) 1333 { 1334 /* Only adjust this if it actually is csum_start rather than csum */ 1335 if (skb->ip_summed == CHECKSUM_PARTIAL) 1336 skb->csum_start += off; 1337 /* {transport,network,mac}_header and tail are relative to skb->head */ 1338 skb->transport_header += off; 1339 skb->network_header += off; 1340 if (skb_mac_header_was_set(skb)) 1341 skb->mac_header += off; 1342 skb->inner_transport_header += off; 1343 skb->inner_network_header += off; 1344 skb->inner_mac_header += off; 1345 } 1346 EXPORT_SYMBOL(skb_headers_offset_update); 1347 1348 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old) 1349 { 1350 __copy_skb_header(new, old); 1351 1352 skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size; 1353 skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs; 1354 skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type; 1355 } 1356 EXPORT_SYMBOL(skb_copy_header); 1357 1358 static inline int skb_alloc_rx_flag(const struct sk_buff *skb) 1359 { 1360 if (skb_pfmemalloc(skb)) 1361 return SKB_ALLOC_RX; 1362 return 0; 1363 } 1364 1365 /** 1366 * skb_copy - create private copy of an sk_buff 1367 * @skb: buffer to copy 1368 * @gfp_mask: allocation priority 1369 * 1370 * Make a copy of both an &sk_buff and its data. This is used when the 1371 * caller wishes to modify the data and needs a private copy of the 1372 * data to alter. Returns %NULL on failure or the pointer to the buffer 1373 * on success. The returned buffer has a reference count of 1. 1374 * 1375 * As by-product this function converts non-linear &sk_buff to linear 1376 * one, so that &sk_buff becomes completely private and caller is allowed 1377 * to modify all the data of returned buffer. This means that this 1378 * function is not recommended for use in circumstances when only 1379 * header is going to be modified. Use pskb_copy() instead. 1380 */ 1381 1382 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask) 1383 { 1384 int headerlen = skb_headroom(skb); 1385 unsigned int size = skb_end_offset(skb) + skb->data_len; 1386 struct sk_buff *n = __alloc_skb(size, gfp_mask, 1387 skb_alloc_rx_flag(skb), NUMA_NO_NODE); 1388 1389 if (!n) 1390 return NULL; 1391 1392 /* Set the data pointer */ 1393 skb_reserve(n, headerlen); 1394 /* Set the tail pointer and length */ 1395 skb_put(n, skb->len); 1396 1397 BUG_ON(skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len)); 1398 1399 skb_copy_header(n, skb); 1400 return n; 1401 } 1402 EXPORT_SYMBOL(skb_copy); 1403 1404 /** 1405 * __pskb_copy_fclone - create copy of an sk_buff with private head. 1406 * @skb: buffer to copy 1407 * @headroom: headroom of new skb 1408 * @gfp_mask: allocation priority 1409 * @fclone: if true allocate the copy of the skb from the fclone 1410 * cache instead of the head cache; it is recommended to set this 1411 * to true for the cases where the copy will likely be cloned 1412 * 1413 * Make a copy of both an &sk_buff and part of its data, located 1414 * in header. Fragmented data remain shared. This is used when 1415 * the caller wishes to modify only header of &sk_buff and needs 1416 * private copy of the header to alter. Returns %NULL on failure 1417 * or the pointer to the buffer on success. 1418 * The returned buffer has a reference count of 1. 1419 */ 1420 1421 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom, 1422 gfp_t gfp_mask, bool fclone) 1423 { 1424 unsigned int size = skb_headlen(skb) + headroom; 1425 int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0); 1426 struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE); 1427 1428 if (!n) 1429 goto out; 1430 1431 /* Set the data pointer */ 1432 skb_reserve(n, headroom); 1433 /* Set the tail pointer and length */ 1434 skb_put(n, skb_headlen(skb)); 1435 /* Copy the bytes */ 1436 skb_copy_from_linear_data(skb, n->data, n->len); 1437 1438 n->truesize += skb->data_len; 1439 n->data_len = skb->data_len; 1440 n->len = skb->len; 1441 1442 if (skb_shinfo(skb)->nr_frags) { 1443 int i; 1444 1445 if (skb_orphan_frags(skb, gfp_mask) || 1446 skb_zerocopy_clone(n, skb, gfp_mask)) { 1447 kfree_skb(n); 1448 n = NULL; 1449 goto out; 1450 } 1451 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1452 skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i]; 1453 skb_frag_ref(skb, i); 1454 } 1455 skb_shinfo(n)->nr_frags = i; 1456 } 1457 1458 if (skb_has_frag_list(skb)) { 1459 skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list; 1460 skb_clone_fraglist(n); 1461 } 1462 1463 skb_copy_header(n, skb); 1464 out: 1465 return n; 1466 } 1467 EXPORT_SYMBOL(__pskb_copy_fclone); 1468 1469 /** 1470 * pskb_expand_head - reallocate header of &sk_buff 1471 * @skb: buffer to reallocate 1472 * @nhead: room to add at head 1473 * @ntail: room to add at tail 1474 * @gfp_mask: allocation priority 1475 * 1476 * Expands (or creates identical copy, if @nhead and @ntail are zero) 1477 * header of @skb. &sk_buff itself is not changed. &sk_buff MUST have 1478 * reference count of 1. Returns zero in the case of success or error, 1479 * if expansion failed. In the last case, &sk_buff is not changed. 1480 * 1481 * All the pointers pointing into skb header may change and must be 1482 * reloaded after call to this function. 1483 */ 1484 1485 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, 1486 gfp_t gfp_mask) 1487 { 1488 int i, osize = skb_end_offset(skb); 1489 int size = osize + nhead + ntail; 1490 long off; 1491 u8 *data; 1492 1493 BUG_ON(nhead < 0); 1494 1495 BUG_ON(skb_shared(skb)); 1496 1497 size = SKB_DATA_ALIGN(size); 1498 1499 if (skb_pfmemalloc(skb)) 1500 gfp_mask |= __GFP_MEMALLOC; 1501 data = kmalloc_reserve(size + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)), 1502 gfp_mask, NUMA_NO_NODE, NULL); 1503 if (!data) 1504 goto nodata; 1505 size = SKB_WITH_OVERHEAD(ksize(data)); 1506 1507 /* Copy only real data... and, alas, header. This should be 1508 * optimized for the cases when header is void. 1509 */ 1510 memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head); 1511 1512 memcpy((struct skb_shared_info *)(data + size), 1513 skb_shinfo(skb), 1514 offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags])); 1515 1516 /* 1517 * if shinfo is shared we must drop the old head gracefully, but if it 1518 * is not we can just drop the old head and let the existing refcount 1519 * be since all we did is relocate the values 1520 */ 1521 if (skb_cloned(skb)) { 1522 if (skb_orphan_frags(skb, gfp_mask)) 1523 goto nofrags; 1524 if (skb_zcopy(skb)) 1525 refcount_inc(&skb_uarg(skb)->refcnt); 1526 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 1527 skb_frag_ref(skb, i); 1528 1529 if (skb_has_frag_list(skb)) 1530 skb_clone_fraglist(skb); 1531 1532 skb_release_data(skb); 1533 } else { 1534 skb_free_head(skb); 1535 } 1536 off = (data + nhead) - skb->head; 1537 1538 skb->head = data; 1539 skb->head_frag = 0; 1540 skb->data += off; 1541 #ifdef NET_SKBUFF_DATA_USES_OFFSET 1542 skb->end = size; 1543 off = nhead; 1544 #else 1545 skb->end = skb->head + size; 1546 #endif 1547 skb->tail += off; 1548 skb_headers_offset_update(skb, nhead); 1549 skb->cloned = 0; 1550 skb->hdr_len = 0; 1551 skb->nohdr = 0; 1552 atomic_set(&skb_shinfo(skb)->dataref, 1); 1553 1554 skb_metadata_clear(skb); 1555 1556 /* It is not generally safe to change skb->truesize. 1557 * For the moment, we really care of rx path, or 1558 * when skb is orphaned (not attached to a socket). 1559 */ 1560 if (!skb->sk || skb->destructor == sock_edemux) 1561 skb->truesize += size - osize; 1562 1563 return 0; 1564 1565 nofrags: 1566 kfree(data); 1567 nodata: 1568 return -ENOMEM; 1569 } 1570 EXPORT_SYMBOL(pskb_expand_head); 1571 1572 /* Make private copy of skb with writable head and some headroom */ 1573 1574 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom) 1575 { 1576 struct sk_buff *skb2; 1577 int delta = headroom - skb_headroom(skb); 1578 1579 if (delta <= 0) 1580 skb2 = pskb_copy(skb, GFP_ATOMIC); 1581 else { 1582 skb2 = skb_clone(skb, GFP_ATOMIC); 1583 if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0, 1584 GFP_ATOMIC)) { 1585 kfree_skb(skb2); 1586 skb2 = NULL; 1587 } 1588 } 1589 return skb2; 1590 } 1591 EXPORT_SYMBOL(skb_realloc_headroom); 1592 1593 /** 1594 * skb_copy_expand - copy and expand sk_buff 1595 * @skb: buffer to copy 1596 * @newheadroom: new free bytes at head 1597 * @newtailroom: new free bytes at tail 1598 * @gfp_mask: allocation priority 1599 * 1600 * Make a copy of both an &sk_buff and its data and while doing so 1601 * allocate additional space. 1602 * 1603 * This is used when the caller wishes to modify the data and needs a 1604 * private copy of the data to alter as well as more space for new fields. 1605 * Returns %NULL on failure or the pointer to the buffer 1606 * on success. The returned buffer has a reference count of 1. 1607 * 1608 * You must pass %GFP_ATOMIC as the allocation priority if this function 1609 * is called from an interrupt. 1610 */ 1611 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, 1612 int newheadroom, int newtailroom, 1613 gfp_t gfp_mask) 1614 { 1615 /* 1616 * Allocate the copy buffer 1617 */ 1618 struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom, 1619 gfp_mask, skb_alloc_rx_flag(skb), 1620 NUMA_NO_NODE); 1621 int oldheadroom = skb_headroom(skb); 1622 int head_copy_len, head_copy_off; 1623 1624 if (!n) 1625 return NULL; 1626 1627 skb_reserve(n, newheadroom); 1628 1629 /* Set the tail pointer and length */ 1630 skb_put(n, skb->len); 1631 1632 head_copy_len = oldheadroom; 1633 head_copy_off = 0; 1634 if (newheadroom <= head_copy_len) 1635 head_copy_len = newheadroom; 1636 else 1637 head_copy_off = newheadroom - head_copy_len; 1638 1639 /* Copy the linear header and data. */ 1640 BUG_ON(skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off, 1641 skb->len + head_copy_len)); 1642 1643 skb_copy_header(n, skb); 1644 1645 skb_headers_offset_update(n, newheadroom - oldheadroom); 1646 1647 return n; 1648 } 1649 EXPORT_SYMBOL(skb_copy_expand); 1650 1651 /** 1652 * __skb_pad - zero pad the tail of an skb 1653 * @skb: buffer to pad 1654 * @pad: space to pad 1655 * @free_on_error: free buffer on error 1656 * 1657 * Ensure that a buffer is followed by a padding area that is zero 1658 * filled. Used by network drivers which may DMA or transfer data 1659 * beyond the buffer end onto the wire. 1660 * 1661 * May return error in out of memory cases. The skb is freed on error 1662 * if @free_on_error is true. 1663 */ 1664 1665 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error) 1666 { 1667 int err; 1668 int ntail; 1669 1670 /* If the skbuff is non linear tailroom is always zero.. */ 1671 if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) { 1672 memset(skb->data+skb->len, 0, pad); 1673 return 0; 1674 } 1675 1676 ntail = skb->data_len + pad - (skb->end - skb->tail); 1677 if (likely(skb_cloned(skb) || ntail > 0)) { 1678 err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC); 1679 if (unlikely(err)) 1680 goto free_skb; 1681 } 1682 1683 /* FIXME: The use of this function with non-linear skb's really needs 1684 * to be audited. 1685 */ 1686 err = skb_linearize(skb); 1687 if (unlikely(err)) 1688 goto free_skb; 1689 1690 memset(skb->data + skb->len, 0, pad); 1691 return 0; 1692 1693 free_skb: 1694 if (free_on_error) 1695 kfree_skb(skb); 1696 return err; 1697 } 1698 EXPORT_SYMBOL(__skb_pad); 1699 1700 /** 1701 * pskb_put - add data to the tail of a potentially fragmented buffer 1702 * @skb: start of the buffer to use 1703 * @tail: tail fragment of the buffer to use 1704 * @len: amount of data to add 1705 * 1706 * This function extends the used data area of the potentially 1707 * fragmented buffer. @tail must be the last fragment of @skb -- or 1708 * @skb itself. If this would exceed the total buffer size the kernel 1709 * will panic. A pointer to the first byte of the extra data is 1710 * returned. 1711 */ 1712 1713 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len) 1714 { 1715 if (tail != skb) { 1716 skb->data_len += len; 1717 skb->len += len; 1718 } 1719 return skb_put(tail, len); 1720 } 1721 EXPORT_SYMBOL_GPL(pskb_put); 1722 1723 /** 1724 * skb_put - add data to a buffer 1725 * @skb: buffer to use 1726 * @len: amount of data to add 1727 * 1728 * This function extends the used data area of the buffer. If this would 1729 * exceed the total buffer size the kernel will panic. A pointer to the 1730 * first byte of the extra data is returned. 1731 */ 1732 void *skb_put(struct sk_buff *skb, unsigned int len) 1733 { 1734 void *tmp = skb_tail_pointer(skb); 1735 SKB_LINEAR_ASSERT(skb); 1736 skb->tail += len; 1737 skb->len += len; 1738 if (unlikely(skb->tail > skb->end)) 1739 skb_over_panic(skb, len, __builtin_return_address(0)); 1740 return tmp; 1741 } 1742 EXPORT_SYMBOL(skb_put); 1743 1744 /** 1745 * skb_push - add data to the start of a buffer 1746 * @skb: buffer to use 1747 * @len: amount of data to add 1748 * 1749 * This function extends the used data area of the buffer at the buffer 1750 * start. If this would exceed the total buffer headroom the kernel will 1751 * panic. A pointer to the first byte of the extra data is returned. 1752 */ 1753 void *skb_push(struct sk_buff *skb, unsigned int len) 1754 { 1755 skb->data -= len; 1756 skb->len += len; 1757 if (unlikely(skb->data < skb->head)) 1758 skb_under_panic(skb, len, __builtin_return_address(0)); 1759 return skb->data; 1760 } 1761 EXPORT_SYMBOL(skb_push); 1762 1763 /** 1764 * skb_pull - remove data from the start of a buffer 1765 * @skb: buffer to use 1766 * @len: amount of data to remove 1767 * 1768 * This function removes data from the start of a buffer, returning 1769 * the memory to the headroom. A pointer to the next data in the buffer 1770 * is returned. Once the data has been pulled future pushes will overwrite 1771 * the old data. 1772 */ 1773 void *skb_pull(struct sk_buff *skb, unsigned int len) 1774 { 1775 return skb_pull_inline(skb, len); 1776 } 1777 EXPORT_SYMBOL(skb_pull); 1778 1779 /** 1780 * skb_trim - remove end from a buffer 1781 * @skb: buffer to alter 1782 * @len: new length 1783 * 1784 * Cut the length of a buffer down by removing data from the tail. If 1785 * the buffer is already under the length specified it is not modified. 1786 * The skb must be linear. 1787 */ 1788 void skb_trim(struct sk_buff *skb, unsigned int len) 1789 { 1790 if (skb->len > len) 1791 __skb_trim(skb, len); 1792 } 1793 EXPORT_SYMBOL(skb_trim); 1794 1795 /* Trims skb to length len. It can change skb pointers. 1796 */ 1797 1798 int ___pskb_trim(struct sk_buff *skb, unsigned int len) 1799 { 1800 struct sk_buff **fragp; 1801 struct sk_buff *frag; 1802 int offset = skb_headlen(skb); 1803 int nfrags = skb_shinfo(skb)->nr_frags; 1804 int i; 1805 int err; 1806 1807 if (skb_cloned(skb) && 1808 unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))) 1809 return err; 1810 1811 i = 0; 1812 if (offset >= len) 1813 goto drop_pages; 1814 1815 for (; i < nfrags; i++) { 1816 int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]); 1817 1818 if (end < len) { 1819 offset = end; 1820 continue; 1821 } 1822 1823 skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset); 1824 1825 drop_pages: 1826 skb_shinfo(skb)->nr_frags = i; 1827 1828 for (; i < nfrags; i++) 1829 skb_frag_unref(skb, i); 1830 1831 if (skb_has_frag_list(skb)) 1832 skb_drop_fraglist(skb); 1833 goto done; 1834 } 1835 1836 for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp); 1837 fragp = &frag->next) { 1838 int end = offset + frag->len; 1839 1840 if (skb_shared(frag)) { 1841 struct sk_buff *nfrag; 1842 1843 nfrag = skb_clone(frag, GFP_ATOMIC); 1844 if (unlikely(!nfrag)) 1845 return -ENOMEM; 1846 1847 nfrag->next = frag->next; 1848 consume_skb(frag); 1849 frag = nfrag; 1850 *fragp = frag; 1851 } 1852 1853 if (end < len) { 1854 offset = end; 1855 continue; 1856 } 1857 1858 if (end > len && 1859 unlikely((err = pskb_trim(frag, len - offset)))) 1860 return err; 1861 1862 if (frag->next) 1863 skb_drop_list(&frag->next); 1864 break; 1865 } 1866 1867 done: 1868 if (len > skb_headlen(skb)) { 1869 skb->data_len -= skb->len - len; 1870 skb->len = len; 1871 } else { 1872 skb->len = len; 1873 skb->data_len = 0; 1874 skb_set_tail_pointer(skb, len); 1875 } 1876 1877 if (!skb->sk || skb->destructor == sock_edemux) 1878 skb_condense(skb); 1879 return 0; 1880 } 1881 EXPORT_SYMBOL(___pskb_trim); 1882 1883 /* Note : use pskb_trim_rcsum() instead of calling this directly 1884 */ 1885 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len) 1886 { 1887 if (skb->ip_summed == CHECKSUM_COMPLETE) { 1888 int delta = skb->len - len; 1889 1890 skb->csum = csum_block_sub(skb->csum, 1891 skb_checksum(skb, len, delta, 0), 1892 len); 1893 } 1894 return __pskb_trim(skb, len); 1895 } 1896 EXPORT_SYMBOL(pskb_trim_rcsum_slow); 1897 1898 /** 1899 * __pskb_pull_tail - advance tail of skb header 1900 * @skb: buffer to reallocate 1901 * @delta: number of bytes to advance tail 1902 * 1903 * The function makes a sense only on a fragmented &sk_buff, 1904 * it expands header moving its tail forward and copying necessary 1905 * data from fragmented part. 1906 * 1907 * &sk_buff MUST have reference count of 1. 1908 * 1909 * Returns %NULL (and &sk_buff does not change) if pull failed 1910 * or value of new tail of skb in the case of success. 1911 * 1912 * All the pointers pointing into skb header may change and must be 1913 * reloaded after call to this function. 1914 */ 1915 1916 /* Moves tail of skb head forward, copying data from fragmented part, 1917 * when it is necessary. 1918 * 1. It may fail due to malloc failure. 1919 * 2. It may change skb pointers. 1920 * 1921 * It is pretty complicated. Luckily, it is called only in exceptional cases. 1922 */ 1923 void *__pskb_pull_tail(struct sk_buff *skb, int delta) 1924 { 1925 /* If skb has not enough free space at tail, get new one 1926 * plus 128 bytes for future expansions. If we have enough 1927 * room at tail, reallocate without expansion only if skb is cloned. 1928 */ 1929 int i, k, eat = (skb->tail + delta) - skb->end; 1930 1931 if (eat > 0 || skb_cloned(skb)) { 1932 if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0, 1933 GFP_ATOMIC)) 1934 return NULL; 1935 } 1936 1937 BUG_ON(skb_copy_bits(skb, skb_headlen(skb), 1938 skb_tail_pointer(skb), delta)); 1939 1940 /* Optimization: no fragments, no reasons to preestimate 1941 * size of pulled pages. Superb. 1942 */ 1943 if (!skb_has_frag_list(skb)) 1944 goto pull_pages; 1945 1946 /* Estimate size of pulled pages. */ 1947 eat = delta; 1948 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1949 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 1950 1951 if (size >= eat) 1952 goto pull_pages; 1953 eat -= size; 1954 } 1955 1956 /* If we need update frag list, we are in troubles. 1957 * Certainly, it is possible to add an offset to skb data, 1958 * but taking into account that pulling is expected to 1959 * be very rare operation, it is worth to fight against 1960 * further bloating skb head and crucify ourselves here instead. 1961 * Pure masohism, indeed. 8)8) 1962 */ 1963 if (eat) { 1964 struct sk_buff *list = skb_shinfo(skb)->frag_list; 1965 struct sk_buff *clone = NULL; 1966 struct sk_buff *insp = NULL; 1967 1968 do { 1969 if (list->len <= eat) { 1970 /* Eaten as whole. */ 1971 eat -= list->len; 1972 list = list->next; 1973 insp = list; 1974 } else { 1975 /* Eaten partially. */ 1976 1977 if (skb_shared(list)) { 1978 /* Sucks! We need to fork list. :-( */ 1979 clone = skb_clone(list, GFP_ATOMIC); 1980 if (!clone) 1981 return NULL; 1982 insp = list->next; 1983 list = clone; 1984 } else { 1985 /* This may be pulled without 1986 * problems. */ 1987 insp = list; 1988 } 1989 if (!pskb_pull(list, eat)) { 1990 kfree_skb(clone); 1991 return NULL; 1992 } 1993 break; 1994 } 1995 } while (eat); 1996 1997 /* Free pulled out fragments. */ 1998 while ((list = skb_shinfo(skb)->frag_list) != insp) { 1999 skb_shinfo(skb)->frag_list = list->next; 2000 kfree_skb(list); 2001 } 2002 /* And insert new clone at head. */ 2003 if (clone) { 2004 clone->next = list; 2005 skb_shinfo(skb)->frag_list = clone; 2006 } 2007 } 2008 /* Success! Now we may commit changes to skb data. */ 2009 2010 pull_pages: 2011 eat = delta; 2012 k = 0; 2013 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2014 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 2015 2016 if (size <= eat) { 2017 skb_frag_unref(skb, i); 2018 eat -= size; 2019 } else { 2020 skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i]; 2021 if (eat) { 2022 skb_shinfo(skb)->frags[k].page_offset += eat; 2023 skb_frag_size_sub(&skb_shinfo(skb)->frags[k], eat); 2024 if (!i) 2025 goto end; 2026 eat = 0; 2027 } 2028 k++; 2029 } 2030 } 2031 skb_shinfo(skb)->nr_frags = k; 2032 2033 end: 2034 skb->tail += delta; 2035 skb->data_len -= delta; 2036 2037 if (!skb->data_len) 2038 skb_zcopy_clear(skb, false); 2039 2040 return skb_tail_pointer(skb); 2041 } 2042 EXPORT_SYMBOL(__pskb_pull_tail); 2043 2044 /** 2045 * skb_copy_bits - copy bits from skb to kernel buffer 2046 * @skb: source skb 2047 * @offset: offset in source 2048 * @to: destination buffer 2049 * @len: number of bytes to copy 2050 * 2051 * Copy the specified number of bytes from the source skb to the 2052 * destination buffer. 2053 * 2054 * CAUTION ! : 2055 * If its prototype is ever changed, 2056 * check arch/{*}/net/{*}.S files, 2057 * since it is called from BPF assembly code. 2058 */ 2059 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len) 2060 { 2061 int start = skb_headlen(skb); 2062 struct sk_buff *frag_iter; 2063 int i, copy; 2064 2065 if (offset > (int)skb->len - len) 2066 goto fault; 2067 2068 /* Copy header. */ 2069 if ((copy = start - offset) > 0) { 2070 if (copy > len) 2071 copy = len; 2072 skb_copy_from_linear_data_offset(skb, offset, to, copy); 2073 if ((len -= copy) == 0) 2074 return 0; 2075 offset += copy; 2076 to += copy; 2077 } 2078 2079 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2080 int end; 2081 skb_frag_t *f = &skb_shinfo(skb)->frags[i]; 2082 2083 WARN_ON(start > offset + len); 2084 2085 end = start + skb_frag_size(f); 2086 if ((copy = end - offset) > 0) { 2087 u32 p_off, p_len, copied; 2088 struct page *p; 2089 u8 *vaddr; 2090 2091 if (copy > len) 2092 copy = len; 2093 2094 skb_frag_foreach_page(f, 2095 f->page_offset + offset - start, 2096 copy, p, p_off, p_len, copied) { 2097 vaddr = kmap_atomic(p); 2098 memcpy(to + copied, vaddr + p_off, p_len); 2099 kunmap_atomic(vaddr); 2100 } 2101 2102 if ((len -= copy) == 0) 2103 return 0; 2104 offset += copy; 2105 to += copy; 2106 } 2107 start = end; 2108 } 2109 2110 skb_walk_frags(skb, frag_iter) { 2111 int end; 2112 2113 WARN_ON(start > offset + len); 2114 2115 end = start + frag_iter->len; 2116 if ((copy = end - offset) > 0) { 2117 if (copy > len) 2118 copy = len; 2119 if (skb_copy_bits(frag_iter, offset - start, to, copy)) 2120 goto fault; 2121 if ((len -= copy) == 0) 2122 return 0; 2123 offset += copy; 2124 to += copy; 2125 } 2126 start = end; 2127 } 2128 2129 if (!len) 2130 return 0; 2131 2132 fault: 2133 return -EFAULT; 2134 } 2135 EXPORT_SYMBOL(skb_copy_bits); 2136 2137 /* 2138 * Callback from splice_to_pipe(), if we need to release some pages 2139 * at the end of the spd in case we error'ed out in filling the pipe. 2140 */ 2141 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i) 2142 { 2143 put_page(spd->pages[i]); 2144 } 2145 2146 static struct page *linear_to_page(struct page *page, unsigned int *len, 2147 unsigned int *offset, 2148 struct sock *sk) 2149 { 2150 struct page_frag *pfrag = sk_page_frag(sk); 2151 2152 if (!sk_page_frag_refill(sk, pfrag)) 2153 return NULL; 2154 2155 *len = min_t(unsigned int, *len, pfrag->size - pfrag->offset); 2156 2157 memcpy(page_address(pfrag->page) + pfrag->offset, 2158 page_address(page) + *offset, *len); 2159 *offset = pfrag->offset; 2160 pfrag->offset += *len; 2161 2162 return pfrag->page; 2163 } 2164 2165 static bool spd_can_coalesce(const struct splice_pipe_desc *spd, 2166 struct page *page, 2167 unsigned int offset) 2168 { 2169 return spd->nr_pages && 2170 spd->pages[spd->nr_pages - 1] == page && 2171 (spd->partial[spd->nr_pages - 1].offset + 2172 spd->partial[spd->nr_pages - 1].len == offset); 2173 } 2174 2175 /* 2176 * Fill page/offset/length into spd, if it can hold more pages. 2177 */ 2178 static bool spd_fill_page(struct splice_pipe_desc *spd, 2179 struct pipe_inode_info *pipe, struct page *page, 2180 unsigned int *len, unsigned int offset, 2181 bool linear, 2182 struct sock *sk) 2183 { 2184 if (unlikely(spd->nr_pages == MAX_SKB_FRAGS)) 2185 return true; 2186 2187 if (linear) { 2188 page = linear_to_page(page, len, &offset, sk); 2189 if (!page) 2190 return true; 2191 } 2192 if (spd_can_coalesce(spd, page, offset)) { 2193 spd->partial[spd->nr_pages - 1].len += *len; 2194 return false; 2195 } 2196 get_page(page); 2197 spd->pages[spd->nr_pages] = page; 2198 spd->partial[spd->nr_pages].len = *len; 2199 spd->partial[spd->nr_pages].offset = offset; 2200 spd->nr_pages++; 2201 2202 return false; 2203 } 2204 2205 static bool __splice_segment(struct page *page, unsigned int poff, 2206 unsigned int plen, unsigned int *off, 2207 unsigned int *len, 2208 struct splice_pipe_desc *spd, bool linear, 2209 struct sock *sk, 2210 struct pipe_inode_info *pipe) 2211 { 2212 if (!*len) 2213 return true; 2214 2215 /* skip this segment if already processed */ 2216 if (*off >= plen) { 2217 *off -= plen; 2218 return false; 2219 } 2220 2221 /* ignore any bits we already processed */ 2222 poff += *off; 2223 plen -= *off; 2224 *off = 0; 2225 2226 do { 2227 unsigned int flen = min(*len, plen); 2228 2229 if (spd_fill_page(spd, pipe, page, &flen, poff, 2230 linear, sk)) 2231 return true; 2232 poff += flen; 2233 plen -= flen; 2234 *len -= flen; 2235 } while (*len && plen); 2236 2237 return false; 2238 } 2239 2240 /* 2241 * Map linear and fragment data from the skb to spd. It reports true if the 2242 * pipe is full or if we already spliced the requested length. 2243 */ 2244 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe, 2245 unsigned int *offset, unsigned int *len, 2246 struct splice_pipe_desc *spd, struct sock *sk) 2247 { 2248 int seg; 2249 struct sk_buff *iter; 2250 2251 /* map the linear part : 2252 * If skb->head_frag is set, this 'linear' part is backed by a 2253 * fragment, and if the head is not shared with any clones then 2254 * we can avoid a copy since we own the head portion of this page. 2255 */ 2256 if (__splice_segment(virt_to_page(skb->data), 2257 (unsigned long) skb->data & (PAGE_SIZE - 1), 2258 skb_headlen(skb), 2259 offset, len, spd, 2260 skb_head_is_locked(skb), 2261 sk, pipe)) 2262 return true; 2263 2264 /* 2265 * then map the fragments 2266 */ 2267 for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) { 2268 const skb_frag_t *f = &skb_shinfo(skb)->frags[seg]; 2269 2270 if (__splice_segment(skb_frag_page(f), 2271 f->page_offset, skb_frag_size(f), 2272 offset, len, spd, false, sk, pipe)) 2273 return true; 2274 } 2275 2276 skb_walk_frags(skb, iter) { 2277 if (*offset >= iter->len) { 2278 *offset -= iter->len; 2279 continue; 2280 } 2281 /* __skb_splice_bits() only fails if the output has no room 2282 * left, so no point in going over the frag_list for the error 2283 * case. 2284 */ 2285 if (__skb_splice_bits(iter, pipe, offset, len, spd, sk)) 2286 return true; 2287 } 2288 2289 return false; 2290 } 2291 2292 /* 2293 * Map data from the skb to a pipe. Should handle both the linear part, 2294 * the fragments, and the frag list. 2295 */ 2296 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset, 2297 struct pipe_inode_info *pipe, unsigned int tlen, 2298 unsigned int flags) 2299 { 2300 struct partial_page partial[MAX_SKB_FRAGS]; 2301 struct page *pages[MAX_SKB_FRAGS]; 2302 struct splice_pipe_desc spd = { 2303 .pages = pages, 2304 .partial = partial, 2305 .nr_pages_max = MAX_SKB_FRAGS, 2306 .ops = &nosteal_pipe_buf_ops, 2307 .spd_release = sock_spd_release, 2308 }; 2309 int ret = 0; 2310 2311 __skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk); 2312 2313 if (spd.nr_pages) 2314 ret = splice_to_pipe(pipe, &spd); 2315 2316 return ret; 2317 } 2318 EXPORT_SYMBOL_GPL(skb_splice_bits); 2319 2320 /* Send skb data on a socket. Socket must be locked. */ 2321 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset, 2322 int len) 2323 { 2324 unsigned int orig_len = len; 2325 struct sk_buff *head = skb; 2326 unsigned short fragidx; 2327 int slen, ret; 2328 2329 do_frag_list: 2330 2331 /* Deal with head data */ 2332 while (offset < skb_headlen(skb) && len) { 2333 struct kvec kv; 2334 struct msghdr msg; 2335 2336 slen = min_t(int, len, skb_headlen(skb) - offset); 2337 kv.iov_base = skb->data + offset; 2338 kv.iov_len = slen; 2339 memset(&msg, 0, sizeof(msg)); 2340 2341 ret = kernel_sendmsg_locked(sk, &msg, &kv, 1, slen); 2342 if (ret <= 0) 2343 goto error; 2344 2345 offset += ret; 2346 len -= ret; 2347 } 2348 2349 /* All the data was skb head? */ 2350 if (!len) 2351 goto out; 2352 2353 /* Make offset relative to start of frags */ 2354 offset -= skb_headlen(skb); 2355 2356 /* Find where we are in frag list */ 2357 for (fragidx = 0; fragidx < skb_shinfo(skb)->nr_frags; fragidx++) { 2358 skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx]; 2359 2360 if (offset < frag->size) 2361 break; 2362 2363 offset -= frag->size; 2364 } 2365 2366 for (; len && fragidx < skb_shinfo(skb)->nr_frags; fragidx++) { 2367 skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx]; 2368 2369 slen = min_t(size_t, len, frag->size - offset); 2370 2371 while (slen) { 2372 ret = kernel_sendpage_locked(sk, frag->page.p, 2373 frag->page_offset + offset, 2374 slen, MSG_DONTWAIT); 2375 if (ret <= 0) 2376 goto error; 2377 2378 len -= ret; 2379 offset += ret; 2380 slen -= ret; 2381 } 2382 2383 offset = 0; 2384 } 2385 2386 if (len) { 2387 /* Process any frag lists */ 2388 2389 if (skb == head) { 2390 if (skb_has_frag_list(skb)) { 2391 skb = skb_shinfo(skb)->frag_list; 2392 goto do_frag_list; 2393 } 2394 } else if (skb->next) { 2395 skb = skb->next; 2396 goto do_frag_list; 2397 } 2398 } 2399 2400 out: 2401 return orig_len - len; 2402 2403 error: 2404 return orig_len == len ? ret : orig_len - len; 2405 } 2406 EXPORT_SYMBOL_GPL(skb_send_sock_locked); 2407 2408 /** 2409 * skb_store_bits - store bits from kernel buffer to skb 2410 * @skb: destination buffer 2411 * @offset: offset in destination 2412 * @from: source buffer 2413 * @len: number of bytes to copy 2414 * 2415 * Copy the specified number of bytes from the source buffer to the 2416 * destination skb. This function handles all the messy bits of 2417 * traversing fragment lists and such. 2418 */ 2419 2420 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len) 2421 { 2422 int start = skb_headlen(skb); 2423 struct sk_buff *frag_iter; 2424 int i, copy; 2425 2426 if (offset > (int)skb->len - len) 2427 goto fault; 2428 2429 if ((copy = start - offset) > 0) { 2430 if (copy > len) 2431 copy = len; 2432 skb_copy_to_linear_data_offset(skb, offset, from, copy); 2433 if ((len -= copy) == 0) 2434 return 0; 2435 offset += copy; 2436 from += copy; 2437 } 2438 2439 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2440 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2441 int end; 2442 2443 WARN_ON(start > offset + len); 2444 2445 end = start + skb_frag_size(frag); 2446 if ((copy = end - offset) > 0) { 2447 u32 p_off, p_len, copied; 2448 struct page *p; 2449 u8 *vaddr; 2450 2451 if (copy > len) 2452 copy = len; 2453 2454 skb_frag_foreach_page(frag, 2455 frag->page_offset + offset - start, 2456 copy, p, p_off, p_len, copied) { 2457 vaddr = kmap_atomic(p); 2458 memcpy(vaddr + p_off, from + copied, p_len); 2459 kunmap_atomic(vaddr); 2460 } 2461 2462 if ((len -= copy) == 0) 2463 return 0; 2464 offset += copy; 2465 from += copy; 2466 } 2467 start = end; 2468 } 2469 2470 skb_walk_frags(skb, frag_iter) { 2471 int end; 2472 2473 WARN_ON(start > offset + len); 2474 2475 end = start + frag_iter->len; 2476 if ((copy = end - offset) > 0) { 2477 if (copy > len) 2478 copy = len; 2479 if (skb_store_bits(frag_iter, offset - start, 2480 from, copy)) 2481 goto fault; 2482 if ((len -= copy) == 0) 2483 return 0; 2484 offset += copy; 2485 from += copy; 2486 } 2487 start = end; 2488 } 2489 if (!len) 2490 return 0; 2491 2492 fault: 2493 return -EFAULT; 2494 } 2495 EXPORT_SYMBOL(skb_store_bits); 2496 2497 /* Checksum skb data. */ 2498 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len, 2499 __wsum csum, const struct skb_checksum_ops *ops) 2500 { 2501 int start = skb_headlen(skb); 2502 int i, copy = start - offset; 2503 struct sk_buff *frag_iter; 2504 int pos = 0; 2505 2506 /* Checksum header. */ 2507 if (copy > 0) { 2508 if (copy > len) 2509 copy = len; 2510 csum = ops->update(skb->data + offset, copy, csum); 2511 if ((len -= copy) == 0) 2512 return csum; 2513 offset += copy; 2514 pos = copy; 2515 } 2516 2517 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2518 int end; 2519 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2520 2521 WARN_ON(start > offset + len); 2522 2523 end = start + skb_frag_size(frag); 2524 if ((copy = end - offset) > 0) { 2525 u32 p_off, p_len, copied; 2526 struct page *p; 2527 __wsum csum2; 2528 u8 *vaddr; 2529 2530 if (copy > len) 2531 copy = len; 2532 2533 skb_frag_foreach_page(frag, 2534 frag->page_offset + offset - start, 2535 copy, p, p_off, p_len, copied) { 2536 vaddr = kmap_atomic(p); 2537 csum2 = ops->update(vaddr + p_off, p_len, 0); 2538 kunmap_atomic(vaddr); 2539 csum = ops->combine(csum, csum2, pos, p_len); 2540 pos += p_len; 2541 } 2542 2543 if (!(len -= copy)) 2544 return csum; 2545 offset += copy; 2546 } 2547 start = end; 2548 } 2549 2550 skb_walk_frags(skb, frag_iter) { 2551 int end; 2552 2553 WARN_ON(start > offset + len); 2554 2555 end = start + frag_iter->len; 2556 if ((copy = end - offset) > 0) { 2557 __wsum csum2; 2558 if (copy > len) 2559 copy = len; 2560 csum2 = __skb_checksum(frag_iter, offset - start, 2561 copy, 0, ops); 2562 csum = ops->combine(csum, csum2, pos, copy); 2563 if ((len -= copy) == 0) 2564 return csum; 2565 offset += copy; 2566 pos += copy; 2567 } 2568 start = end; 2569 } 2570 BUG_ON(len); 2571 2572 return csum; 2573 } 2574 EXPORT_SYMBOL(__skb_checksum); 2575 2576 __wsum skb_checksum(const struct sk_buff *skb, int offset, 2577 int len, __wsum csum) 2578 { 2579 const struct skb_checksum_ops ops = { 2580 .update = csum_partial_ext, 2581 .combine = csum_block_add_ext, 2582 }; 2583 2584 return __skb_checksum(skb, offset, len, csum, &ops); 2585 } 2586 EXPORT_SYMBOL(skb_checksum); 2587 2588 /* Both of above in one bottle. */ 2589 2590 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, 2591 u8 *to, int len, __wsum csum) 2592 { 2593 int start = skb_headlen(skb); 2594 int i, copy = start - offset; 2595 struct sk_buff *frag_iter; 2596 int pos = 0; 2597 2598 /* Copy header. */ 2599 if (copy > 0) { 2600 if (copy > len) 2601 copy = len; 2602 csum = csum_partial_copy_nocheck(skb->data + offset, to, 2603 copy, csum); 2604 if ((len -= copy) == 0) 2605 return csum; 2606 offset += copy; 2607 to += copy; 2608 pos = copy; 2609 } 2610 2611 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2612 int end; 2613 2614 WARN_ON(start > offset + len); 2615 2616 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]); 2617 if ((copy = end - offset) > 0) { 2618 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2619 u32 p_off, p_len, copied; 2620 struct page *p; 2621 __wsum csum2; 2622 u8 *vaddr; 2623 2624 if (copy > len) 2625 copy = len; 2626 2627 skb_frag_foreach_page(frag, 2628 frag->page_offset + offset - start, 2629 copy, p, p_off, p_len, copied) { 2630 vaddr = kmap_atomic(p); 2631 csum2 = csum_partial_copy_nocheck(vaddr + p_off, 2632 to + copied, 2633 p_len, 0); 2634 kunmap_atomic(vaddr); 2635 csum = csum_block_add(csum, csum2, pos); 2636 pos += p_len; 2637 } 2638 2639 if (!(len -= copy)) 2640 return csum; 2641 offset += copy; 2642 to += copy; 2643 } 2644 start = end; 2645 } 2646 2647 skb_walk_frags(skb, frag_iter) { 2648 __wsum csum2; 2649 int end; 2650 2651 WARN_ON(start > offset + len); 2652 2653 end = start + frag_iter->len; 2654 if ((copy = end - offset) > 0) { 2655 if (copy > len) 2656 copy = len; 2657 csum2 = skb_copy_and_csum_bits(frag_iter, 2658 offset - start, 2659 to, copy, 0); 2660 csum = csum_block_add(csum, csum2, pos); 2661 if ((len -= copy) == 0) 2662 return csum; 2663 offset += copy; 2664 to += copy; 2665 pos += copy; 2666 } 2667 start = end; 2668 } 2669 BUG_ON(len); 2670 return csum; 2671 } 2672 EXPORT_SYMBOL(skb_copy_and_csum_bits); 2673 2674 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len) 2675 { 2676 __sum16 sum; 2677 2678 sum = csum_fold(skb_checksum(skb, 0, len, skb->csum)); 2679 /* See comments in __skb_checksum_complete(). */ 2680 if (likely(!sum)) { 2681 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) && 2682 !skb->csum_complete_sw) 2683 netdev_rx_csum_fault(skb->dev, skb); 2684 } 2685 if (!skb_shared(skb)) 2686 skb->csum_valid = !sum; 2687 return sum; 2688 } 2689 EXPORT_SYMBOL(__skb_checksum_complete_head); 2690 2691 /* This function assumes skb->csum already holds pseudo header's checksum, 2692 * which has been changed from the hardware checksum, for example, by 2693 * __skb_checksum_validate_complete(). And, the original skb->csum must 2694 * have been validated unsuccessfully for CHECKSUM_COMPLETE case. 2695 * 2696 * It returns non-zero if the recomputed checksum is still invalid, otherwise 2697 * zero. The new checksum is stored back into skb->csum unless the skb is 2698 * shared. 2699 */ 2700 __sum16 __skb_checksum_complete(struct sk_buff *skb) 2701 { 2702 __wsum csum; 2703 __sum16 sum; 2704 2705 csum = skb_checksum(skb, 0, skb->len, 0); 2706 2707 sum = csum_fold(csum_add(skb->csum, csum)); 2708 /* This check is inverted, because we already knew the hardware 2709 * checksum is invalid before calling this function. So, if the 2710 * re-computed checksum is valid instead, then we have a mismatch 2711 * between the original skb->csum and skb_checksum(). This means either 2712 * the original hardware checksum is incorrect or we screw up skb->csum 2713 * when moving skb->data around. 2714 */ 2715 if (likely(!sum)) { 2716 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) && 2717 !skb->csum_complete_sw) 2718 netdev_rx_csum_fault(skb->dev, skb); 2719 } 2720 2721 if (!skb_shared(skb)) { 2722 /* Save full packet checksum */ 2723 skb->csum = csum; 2724 skb->ip_summed = CHECKSUM_COMPLETE; 2725 skb->csum_complete_sw = 1; 2726 skb->csum_valid = !sum; 2727 } 2728 2729 return sum; 2730 } 2731 EXPORT_SYMBOL(__skb_checksum_complete); 2732 2733 static __wsum warn_crc32c_csum_update(const void *buff, int len, __wsum sum) 2734 { 2735 net_warn_ratelimited( 2736 "%s: attempt to compute crc32c without libcrc32c.ko\n", 2737 __func__); 2738 return 0; 2739 } 2740 2741 static __wsum warn_crc32c_csum_combine(__wsum csum, __wsum csum2, 2742 int offset, int len) 2743 { 2744 net_warn_ratelimited( 2745 "%s: attempt to compute crc32c without libcrc32c.ko\n", 2746 __func__); 2747 return 0; 2748 } 2749 2750 static const struct skb_checksum_ops default_crc32c_ops = { 2751 .update = warn_crc32c_csum_update, 2752 .combine = warn_crc32c_csum_combine, 2753 }; 2754 2755 const struct skb_checksum_ops *crc32c_csum_stub __read_mostly = 2756 &default_crc32c_ops; 2757 EXPORT_SYMBOL(crc32c_csum_stub); 2758 2759 /** 2760 * skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy() 2761 * @from: source buffer 2762 * 2763 * Calculates the amount of linear headroom needed in the 'to' skb passed 2764 * into skb_zerocopy(). 2765 */ 2766 unsigned int 2767 skb_zerocopy_headlen(const struct sk_buff *from) 2768 { 2769 unsigned int hlen = 0; 2770 2771 if (!from->head_frag || 2772 skb_headlen(from) < L1_CACHE_BYTES || 2773 skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS) 2774 hlen = skb_headlen(from); 2775 2776 if (skb_has_frag_list(from)) 2777 hlen = from->len; 2778 2779 return hlen; 2780 } 2781 EXPORT_SYMBOL_GPL(skb_zerocopy_headlen); 2782 2783 /** 2784 * skb_zerocopy - Zero copy skb to skb 2785 * @to: destination buffer 2786 * @from: source buffer 2787 * @len: number of bytes to copy from source buffer 2788 * @hlen: size of linear headroom in destination buffer 2789 * 2790 * Copies up to `len` bytes from `from` to `to` by creating references 2791 * to the frags in the source buffer. 2792 * 2793 * The `hlen` as calculated by skb_zerocopy_headlen() specifies the 2794 * headroom in the `to` buffer. 2795 * 2796 * Return value: 2797 * 0: everything is OK 2798 * -ENOMEM: couldn't orphan frags of @from due to lack of memory 2799 * -EFAULT: skb_copy_bits() found some problem with skb geometry 2800 */ 2801 int 2802 skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen) 2803 { 2804 int i, j = 0; 2805 int plen = 0; /* length of skb->head fragment */ 2806 int ret; 2807 struct page *page; 2808 unsigned int offset; 2809 2810 BUG_ON(!from->head_frag && !hlen); 2811 2812 /* dont bother with small payloads */ 2813 if (len <= skb_tailroom(to)) 2814 return skb_copy_bits(from, 0, skb_put(to, len), len); 2815 2816 if (hlen) { 2817 ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen); 2818 if (unlikely(ret)) 2819 return ret; 2820 len -= hlen; 2821 } else { 2822 plen = min_t(int, skb_headlen(from), len); 2823 if (plen) { 2824 page = virt_to_head_page(from->head); 2825 offset = from->data - (unsigned char *)page_address(page); 2826 __skb_fill_page_desc(to, 0, page, offset, plen); 2827 get_page(page); 2828 j = 1; 2829 len -= plen; 2830 } 2831 } 2832 2833 to->truesize += len + plen; 2834 to->len += len + plen; 2835 to->data_len += len + plen; 2836 2837 if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) { 2838 skb_tx_error(from); 2839 return -ENOMEM; 2840 } 2841 skb_zerocopy_clone(to, from, GFP_ATOMIC); 2842 2843 for (i = 0; i < skb_shinfo(from)->nr_frags; i++) { 2844 if (!len) 2845 break; 2846 skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i]; 2847 skb_shinfo(to)->frags[j].size = min_t(int, skb_shinfo(to)->frags[j].size, len); 2848 len -= skb_shinfo(to)->frags[j].size; 2849 skb_frag_ref(to, j); 2850 j++; 2851 } 2852 skb_shinfo(to)->nr_frags = j; 2853 2854 return 0; 2855 } 2856 EXPORT_SYMBOL_GPL(skb_zerocopy); 2857 2858 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to) 2859 { 2860 __wsum csum; 2861 long csstart; 2862 2863 if (skb->ip_summed == CHECKSUM_PARTIAL) 2864 csstart = skb_checksum_start_offset(skb); 2865 else 2866 csstart = skb_headlen(skb); 2867 2868 BUG_ON(csstart > skb_headlen(skb)); 2869 2870 skb_copy_from_linear_data(skb, to, csstart); 2871 2872 csum = 0; 2873 if (csstart != skb->len) 2874 csum = skb_copy_and_csum_bits(skb, csstart, to + csstart, 2875 skb->len - csstart, 0); 2876 2877 if (skb->ip_summed == CHECKSUM_PARTIAL) { 2878 long csstuff = csstart + skb->csum_offset; 2879 2880 *((__sum16 *)(to + csstuff)) = csum_fold(csum); 2881 } 2882 } 2883 EXPORT_SYMBOL(skb_copy_and_csum_dev); 2884 2885 /** 2886 * skb_dequeue - remove from the head of the queue 2887 * @list: list to dequeue from 2888 * 2889 * Remove the head of the list. The list lock is taken so the function 2890 * may be used safely with other locking list functions. The head item is 2891 * returned or %NULL if the list is empty. 2892 */ 2893 2894 struct sk_buff *skb_dequeue(struct sk_buff_head *list) 2895 { 2896 unsigned long flags; 2897 struct sk_buff *result; 2898 2899 spin_lock_irqsave(&list->lock, flags); 2900 result = __skb_dequeue(list); 2901 spin_unlock_irqrestore(&list->lock, flags); 2902 return result; 2903 } 2904 EXPORT_SYMBOL(skb_dequeue); 2905 2906 /** 2907 * skb_dequeue_tail - remove from the tail of the queue 2908 * @list: list to dequeue from 2909 * 2910 * Remove the tail of the list. The list lock is taken so the function 2911 * may be used safely with other locking list functions. The tail item is 2912 * returned or %NULL if the list is empty. 2913 */ 2914 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list) 2915 { 2916 unsigned long flags; 2917 struct sk_buff *result; 2918 2919 spin_lock_irqsave(&list->lock, flags); 2920 result = __skb_dequeue_tail(list); 2921 spin_unlock_irqrestore(&list->lock, flags); 2922 return result; 2923 } 2924 EXPORT_SYMBOL(skb_dequeue_tail); 2925 2926 /** 2927 * skb_queue_purge - empty a list 2928 * @list: list to empty 2929 * 2930 * Delete all buffers on an &sk_buff list. Each buffer is removed from 2931 * the list and one reference dropped. This function takes the list 2932 * lock and is atomic with respect to other list locking functions. 2933 */ 2934 void skb_queue_purge(struct sk_buff_head *list) 2935 { 2936 struct sk_buff *skb; 2937 while ((skb = skb_dequeue(list)) != NULL) 2938 kfree_skb(skb); 2939 } 2940 EXPORT_SYMBOL(skb_queue_purge); 2941 2942 /** 2943 * skb_rbtree_purge - empty a skb rbtree 2944 * @root: root of the rbtree to empty 2945 * Return value: the sum of truesizes of all purged skbs. 2946 * 2947 * Delete all buffers on an &sk_buff rbtree. Each buffer is removed from 2948 * the list and one reference dropped. This function does not take 2949 * any lock. Synchronization should be handled by the caller (e.g., TCP 2950 * out-of-order queue is protected by the socket lock). 2951 */ 2952 unsigned int skb_rbtree_purge(struct rb_root *root) 2953 { 2954 struct rb_node *p = rb_first(root); 2955 unsigned int sum = 0; 2956 2957 while (p) { 2958 struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode); 2959 2960 p = rb_next(p); 2961 rb_erase(&skb->rbnode, root); 2962 sum += skb->truesize; 2963 kfree_skb(skb); 2964 } 2965 return sum; 2966 } 2967 2968 /** 2969 * skb_queue_head - queue a buffer at the list head 2970 * @list: list to use 2971 * @newsk: buffer to queue 2972 * 2973 * Queue a buffer at the start of the list. This function takes the 2974 * list lock and can be used safely with other locking &sk_buff functions 2975 * safely. 2976 * 2977 * A buffer cannot be placed on two lists at the same time. 2978 */ 2979 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk) 2980 { 2981 unsigned long flags; 2982 2983 spin_lock_irqsave(&list->lock, flags); 2984 __skb_queue_head(list, newsk); 2985 spin_unlock_irqrestore(&list->lock, flags); 2986 } 2987 EXPORT_SYMBOL(skb_queue_head); 2988 2989 /** 2990 * skb_queue_tail - queue a buffer at the list tail 2991 * @list: list to use 2992 * @newsk: buffer to queue 2993 * 2994 * Queue a buffer at the tail of the list. This function takes the 2995 * list lock and can be used safely with other locking &sk_buff functions 2996 * safely. 2997 * 2998 * A buffer cannot be placed on two lists at the same time. 2999 */ 3000 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk) 3001 { 3002 unsigned long flags; 3003 3004 spin_lock_irqsave(&list->lock, flags); 3005 __skb_queue_tail(list, newsk); 3006 spin_unlock_irqrestore(&list->lock, flags); 3007 } 3008 EXPORT_SYMBOL(skb_queue_tail); 3009 3010 /** 3011 * skb_unlink - remove a buffer from a list 3012 * @skb: buffer to remove 3013 * @list: list to use 3014 * 3015 * Remove a packet from a list. The list locks are taken and this 3016 * function is atomic with respect to other list locked calls 3017 * 3018 * You must know what list the SKB is on. 3019 */ 3020 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list) 3021 { 3022 unsigned long flags; 3023 3024 spin_lock_irqsave(&list->lock, flags); 3025 __skb_unlink(skb, list); 3026 spin_unlock_irqrestore(&list->lock, flags); 3027 } 3028 EXPORT_SYMBOL(skb_unlink); 3029 3030 /** 3031 * skb_append - append a buffer 3032 * @old: buffer to insert after 3033 * @newsk: buffer to insert 3034 * @list: list to use 3035 * 3036 * Place a packet after a given packet in a list. The list locks are taken 3037 * and this function is atomic with respect to other list locked calls. 3038 * A buffer cannot be placed on two lists at the same time. 3039 */ 3040 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list) 3041 { 3042 unsigned long flags; 3043 3044 spin_lock_irqsave(&list->lock, flags); 3045 __skb_queue_after(list, old, newsk); 3046 spin_unlock_irqrestore(&list->lock, flags); 3047 } 3048 EXPORT_SYMBOL(skb_append); 3049 3050 static inline void skb_split_inside_header(struct sk_buff *skb, 3051 struct sk_buff* skb1, 3052 const u32 len, const int pos) 3053 { 3054 int i; 3055 3056 skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len), 3057 pos - len); 3058 /* And move data appendix as is. */ 3059 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 3060 skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i]; 3061 3062 skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags; 3063 skb_shinfo(skb)->nr_frags = 0; 3064 skb1->data_len = skb->data_len; 3065 skb1->len += skb1->data_len; 3066 skb->data_len = 0; 3067 skb->len = len; 3068 skb_set_tail_pointer(skb, len); 3069 } 3070 3071 static inline void skb_split_no_header(struct sk_buff *skb, 3072 struct sk_buff* skb1, 3073 const u32 len, int pos) 3074 { 3075 int i, k = 0; 3076 const int nfrags = skb_shinfo(skb)->nr_frags; 3077 3078 skb_shinfo(skb)->nr_frags = 0; 3079 skb1->len = skb1->data_len = skb->len - len; 3080 skb->len = len; 3081 skb->data_len = len - pos; 3082 3083 for (i = 0; i < nfrags; i++) { 3084 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 3085 3086 if (pos + size > len) { 3087 skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i]; 3088 3089 if (pos < len) { 3090 /* Split frag. 3091 * We have two variants in this case: 3092 * 1. Move all the frag to the second 3093 * part, if it is possible. F.e. 3094 * this approach is mandatory for TUX, 3095 * where splitting is expensive. 3096 * 2. Split is accurately. We make this. 3097 */ 3098 skb_frag_ref(skb, i); 3099 skb_shinfo(skb1)->frags[0].page_offset += len - pos; 3100 skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos); 3101 skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos); 3102 skb_shinfo(skb)->nr_frags++; 3103 } 3104 k++; 3105 } else 3106 skb_shinfo(skb)->nr_frags++; 3107 pos += size; 3108 } 3109 skb_shinfo(skb1)->nr_frags = k; 3110 } 3111 3112 /** 3113 * skb_split - Split fragmented skb to two parts at length len. 3114 * @skb: the buffer to split 3115 * @skb1: the buffer to receive the second part 3116 * @len: new length for skb 3117 */ 3118 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len) 3119 { 3120 int pos = skb_headlen(skb); 3121 3122 skb_shinfo(skb1)->tx_flags |= skb_shinfo(skb)->tx_flags & 3123 SKBTX_SHARED_FRAG; 3124 skb_zerocopy_clone(skb1, skb, 0); 3125 if (len < pos) /* Split line is inside header. */ 3126 skb_split_inside_header(skb, skb1, len, pos); 3127 else /* Second chunk has no header, nothing to copy. */ 3128 skb_split_no_header(skb, skb1, len, pos); 3129 } 3130 EXPORT_SYMBOL(skb_split); 3131 3132 /* Shifting from/to a cloned skb is a no-go. 3133 * 3134 * Caller cannot keep skb_shinfo related pointers past calling here! 3135 */ 3136 static int skb_prepare_for_shift(struct sk_buff *skb) 3137 { 3138 return skb_cloned(skb) && pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 3139 } 3140 3141 /** 3142 * skb_shift - Shifts paged data partially from skb to another 3143 * @tgt: buffer into which tail data gets added 3144 * @skb: buffer from which the paged data comes from 3145 * @shiftlen: shift up to this many bytes 3146 * 3147 * Attempts to shift up to shiftlen worth of bytes, which may be less than 3148 * the length of the skb, from skb to tgt. Returns number bytes shifted. 3149 * It's up to caller to free skb if everything was shifted. 3150 * 3151 * If @tgt runs out of frags, the whole operation is aborted. 3152 * 3153 * Skb cannot include anything else but paged data while tgt is allowed 3154 * to have non-paged data as well. 3155 * 3156 * TODO: full sized shift could be optimized but that would need 3157 * specialized skb free'er to handle frags without up-to-date nr_frags. 3158 */ 3159 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen) 3160 { 3161 int from, to, merge, todo; 3162 struct skb_frag_struct *fragfrom, *fragto; 3163 3164 BUG_ON(shiftlen > skb->len); 3165 3166 if (skb_headlen(skb)) 3167 return 0; 3168 if (skb_zcopy(tgt) || skb_zcopy(skb)) 3169 return 0; 3170 3171 todo = shiftlen; 3172 from = 0; 3173 to = skb_shinfo(tgt)->nr_frags; 3174 fragfrom = &skb_shinfo(skb)->frags[from]; 3175 3176 /* Actual merge is delayed until the point when we know we can 3177 * commit all, so that we don't have to undo partial changes 3178 */ 3179 if (!to || 3180 !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom), 3181 fragfrom->page_offset)) { 3182 merge = -1; 3183 } else { 3184 merge = to - 1; 3185 3186 todo -= skb_frag_size(fragfrom); 3187 if (todo < 0) { 3188 if (skb_prepare_for_shift(skb) || 3189 skb_prepare_for_shift(tgt)) 3190 return 0; 3191 3192 /* All previous frag pointers might be stale! */ 3193 fragfrom = &skb_shinfo(skb)->frags[from]; 3194 fragto = &skb_shinfo(tgt)->frags[merge]; 3195 3196 skb_frag_size_add(fragto, shiftlen); 3197 skb_frag_size_sub(fragfrom, shiftlen); 3198 fragfrom->page_offset += shiftlen; 3199 3200 goto onlymerged; 3201 } 3202 3203 from++; 3204 } 3205 3206 /* Skip full, not-fitting skb to avoid expensive operations */ 3207 if ((shiftlen == skb->len) && 3208 (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to)) 3209 return 0; 3210 3211 if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt)) 3212 return 0; 3213 3214 while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) { 3215 if (to == MAX_SKB_FRAGS) 3216 return 0; 3217 3218 fragfrom = &skb_shinfo(skb)->frags[from]; 3219 fragto = &skb_shinfo(tgt)->frags[to]; 3220 3221 if (todo >= skb_frag_size(fragfrom)) { 3222 *fragto = *fragfrom; 3223 todo -= skb_frag_size(fragfrom); 3224 from++; 3225 to++; 3226 3227 } else { 3228 __skb_frag_ref(fragfrom); 3229 fragto->page = fragfrom->page; 3230 fragto->page_offset = fragfrom->page_offset; 3231 skb_frag_size_set(fragto, todo); 3232 3233 fragfrom->page_offset += todo; 3234 skb_frag_size_sub(fragfrom, todo); 3235 todo = 0; 3236 3237 to++; 3238 break; 3239 } 3240 } 3241 3242 /* Ready to "commit" this state change to tgt */ 3243 skb_shinfo(tgt)->nr_frags = to; 3244 3245 if (merge >= 0) { 3246 fragfrom = &skb_shinfo(skb)->frags[0]; 3247 fragto = &skb_shinfo(tgt)->frags[merge]; 3248 3249 skb_frag_size_add(fragto, skb_frag_size(fragfrom)); 3250 __skb_frag_unref(fragfrom); 3251 } 3252 3253 /* Reposition in the original skb */ 3254 to = 0; 3255 while (from < skb_shinfo(skb)->nr_frags) 3256 skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++]; 3257 skb_shinfo(skb)->nr_frags = to; 3258 3259 BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags); 3260 3261 onlymerged: 3262 /* Most likely the tgt won't ever need its checksum anymore, skb on 3263 * the other hand might need it if it needs to be resent 3264 */ 3265 tgt->ip_summed = CHECKSUM_PARTIAL; 3266 skb->ip_summed = CHECKSUM_PARTIAL; 3267 3268 /* Yak, is it really working this way? Some helper please? */ 3269 skb->len -= shiftlen; 3270 skb->data_len -= shiftlen; 3271 skb->truesize -= shiftlen; 3272 tgt->len += shiftlen; 3273 tgt->data_len += shiftlen; 3274 tgt->truesize += shiftlen; 3275 3276 return shiftlen; 3277 } 3278 3279 /** 3280 * skb_prepare_seq_read - Prepare a sequential read of skb data 3281 * @skb: the buffer to read 3282 * @from: lower offset of data to be read 3283 * @to: upper offset of data to be read 3284 * @st: state variable 3285 * 3286 * Initializes the specified state variable. Must be called before 3287 * invoking skb_seq_read() for the first time. 3288 */ 3289 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from, 3290 unsigned int to, struct skb_seq_state *st) 3291 { 3292 st->lower_offset = from; 3293 st->upper_offset = to; 3294 st->root_skb = st->cur_skb = skb; 3295 st->frag_idx = st->stepped_offset = 0; 3296 st->frag_data = NULL; 3297 } 3298 EXPORT_SYMBOL(skb_prepare_seq_read); 3299 3300 /** 3301 * skb_seq_read - Sequentially read skb data 3302 * @consumed: number of bytes consumed by the caller so far 3303 * @data: destination pointer for data to be returned 3304 * @st: state variable 3305 * 3306 * Reads a block of skb data at @consumed relative to the 3307 * lower offset specified to skb_prepare_seq_read(). Assigns 3308 * the head of the data block to @data and returns the length 3309 * of the block or 0 if the end of the skb data or the upper 3310 * offset has been reached. 3311 * 3312 * The caller is not required to consume all of the data 3313 * returned, i.e. @consumed is typically set to the number 3314 * of bytes already consumed and the next call to 3315 * skb_seq_read() will return the remaining part of the block. 3316 * 3317 * Note 1: The size of each block of data returned can be arbitrary, 3318 * this limitation is the cost for zerocopy sequential 3319 * reads of potentially non linear data. 3320 * 3321 * Note 2: Fragment lists within fragments are not implemented 3322 * at the moment, state->root_skb could be replaced with 3323 * a stack for this purpose. 3324 */ 3325 unsigned int skb_seq_read(unsigned int consumed, const u8 **data, 3326 struct skb_seq_state *st) 3327 { 3328 unsigned int block_limit, abs_offset = consumed + st->lower_offset; 3329 skb_frag_t *frag; 3330 3331 if (unlikely(abs_offset >= st->upper_offset)) { 3332 if (st->frag_data) { 3333 kunmap_atomic(st->frag_data); 3334 st->frag_data = NULL; 3335 } 3336 return 0; 3337 } 3338 3339 next_skb: 3340 block_limit = skb_headlen(st->cur_skb) + st->stepped_offset; 3341 3342 if (abs_offset < block_limit && !st->frag_data) { 3343 *data = st->cur_skb->data + (abs_offset - st->stepped_offset); 3344 return block_limit - abs_offset; 3345 } 3346 3347 if (st->frag_idx == 0 && !st->frag_data) 3348 st->stepped_offset += skb_headlen(st->cur_skb); 3349 3350 while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) { 3351 frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx]; 3352 block_limit = skb_frag_size(frag) + st->stepped_offset; 3353 3354 if (abs_offset < block_limit) { 3355 if (!st->frag_data) 3356 st->frag_data = kmap_atomic(skb_frag_page(frag)); 3357 3358 *data = (u8 *) st->frag_data + frag->page_offset + 3359 (abs_offset - st->stepped_offset); 3360 3361 return block_limit - abs_offset; 3362 } 3363 3364 if (st->frag_data) { 3365 kunmap_atomic(st->frag_data); 3366 st->frag_data = NULL; 3367 } 3368 3369 st->frag_idx++; 3370 st->stepped_offset += skb_frag_size(frag); 3371 } 3372 3373 if (st->frag_data) { 3374 kunmap_atomic(st->frag_data); 3375 st->frag_data = NULL; 3376 } 3377 3378 if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) { 3379 st->cur_skb = skb_shinfo(st->root_skb)->frag_list; 3380 st->frag_idx = 0; 3381 goto next_skb; 3382 } else if (st->cur_skb->next) { 3383 st->cur_skb = st->cur_skb->next; 3384 st->frag_idx = 0; 3385 goto next_skb; 3386 } 3387 3388 return 0; 3389 } 3390 EXPORT_SYMBOL(skb_seq_read); 3391 3392 /** 3393 * skb_abort_seq_read - Abort a sequential read of skb data 3394 * @st: state variable 3395 * 3396 * Must be called if skb_seq_read() was not called until it 3397 * returned 0. 3398 */ 3399 void skb_abort_seq_read(struct skb_seq_state *st) 3400 { 3401 if (st->frag_data) 3402 kunmap_atomic(st->frag_data); 3403 } 3404 EXPORT_SYMBOL(skb_abort_seq_read); 3405 3406 #define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb)) 3407 3408 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text, 3409 struct ts_config *conf, 3410 struct ts_state *state) 3411 { 3412 return skb_seq_read(offset, text, TS_SKB_CB(state)); 3413 } 3414 3415 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state) 3416 { 3417 skb_abort_seq_read(TS_SKB_CB(state)); 3418 } 3419 3420 /** 3421 * skb_find_text - Find a text pattern in skb data 3422 * @skb: the buffer to look in 3423 * @from: search offset 3424 * @to: search limit 3425 * @config: textsearch configuration 3426 * 3427 * Finds a pattern in the skb data according to the specified 3428 * textsearch configuration. Use textsearch_next() to retrieve 3429 * subsequent occurrences of the pattern. Returns the offset 3430 * to the first occurrence or UINT_MAX if no match was found. 3431 */ 3432 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from, 3433 unsigned int to, struct ts_config *config) 3434 { 3435 struct ts_state state; 3436 unsigned int ret; 3437 3438 config->get_next_block = skb_ts_get_next_block; 3439 config->finish = skb_ts_finish; 3440 3441 skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state)); 3442 3443 ret = textsearch_find(config, &state); 3444 return (ret <= to - from ? ret : UINT_MAX); 3445 } 3446 EXPORT_SYMBOL(skb_find_text); 3447 3448 int skb_append_pagefrags(struct sk_buff *skb, struct page *page, 3449 int offset, size_t size) 3450 { 3451 int i = skb_shinfo(skb)->nr_frags; 3452 3453 if (skb_can_coalesce(skb, i, page, offset)) { 3454 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size); 3455 } else if (i < MAX_SKB_FRAGS) { 3456 get_page(page); 3457 skb_fill_page_desc(skb, i, page, offset, size); 3458 } else { 3459 return -EMSGSIZE; 3460 } 3461 3462 return 0; 3463 } 3464 EXPORT_SYMBOL_GPL(skb_append_pagefrags); 3465 3466 /** 3467 * skb_pull_rcsum - pull skb and update receive checksum 3468 * @skb: buffer to update 3469 * @len: length of data pulled 3470 * 3471 * This function performs an skb_pull on the packet and updates 3472 * the CHECKSUM_COMPLETE checksum. It should be used on 3473 * receive path processing instead of skb_pull unless you know 3474 * that the checksum difference is zero (e.g., a valid IP header) 3475 * or you are setting ip_summed to CHECKSUM_NONE. 3476 */ 3477 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len) 3478 { 3479 unsigned char *data = skb->data; 3480 3481 BUG_ON(len > skb->len); 3482 __skb_pull(skb, len); 3483 skb_postpull_rcsum(skb, data, len); 3484 return skb->data; 3485 } 3486 EXPORT_SYMBOL_GPL(skb_pull_rcsum); 3487 3488 static inline skb_frag_t skb_head_frag_to_page_desc(struct sk_buff *frag_skb) 3489 { 3490 skb_frag_t head_frag; 3491 struct page *page; 3492 3493 page = virt_to_head_page(frag_skb->head); 3494 head_frag.page.p = page; 3495 head_frag.page_offset = frag_skb->data - 3496 (unsigned char *)page_address(page); 3497 head_frag.size = skb_headlen(frag_skb); 3498 return head_frag; 3499 } 3500 3501 /** 3502 * skb_segment - Perform protocol segmentation on skb. 3503 * @head_skb: buffer to segment 3504 * @features: features for the output path (see dev->features) 3505 * 3506 * This function performs segmentation on the given skb. It returns 3507 * a pointer to the first in a list of new skbs for the segments. 3508 * In case of error it returns ERR_PTR(err). 3509 */ 3510 struct sk_buff *skb_segment(struct sk_buff *head_skb, 3511 netdev_features_t features) 3512 { 3513 struct sk_buff *segs = NULL; 3514 struct sk_buff *tail = NULL; 3515 struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list; 3516 skb_frag_t *frag = skb_shinfo(head_skb)->frags; 3517 unsigned int mss = skb_shinfo(head_skb)->gso_size; 3518 unsigned int doffset = head_skb->data - skb_mac_header(head_skb); 3519 struct sk_buff *frag_skb = head_skb; 3520 unsigned int offset = doffset; 3521 unsigned int tnl_hlen = skb_tnl_header_len(head_skb); 3522 unsigned int partial_segs = 0; 3523 unsigned int headroom; 3524 unsigned int len = head_skb->len; 3525 __be16 proto; 3526 bool csum, sg; 3527 int nfrags = skb_shinfo(head_skb)->nr_frags; 3528 int err = -ENOMEM; 3529 int i = 0; 3530 int pos; 3531 int dummy; 3532 3533 __skb_push(head_skb, doffset); 3534 proto = skb_network_protocol(head_skb, &dummy); 3535 if (unlikely(!proto)) 3536 return ERR_PTR(-EINVAL); 3537 3538 sg = !!(features & NETIF_F_SG); 3539 csum = !!can_checksum_protocol(features, proto); 3540 3541 if (sg && csum && (mss != GSO_BY_FRAGS)) { 3542 if (!(features & NETIF_F_GSO_PARTIAL)) { 3543 struct sk_buff *iter; 3544 unsigned int frag_len; 3545 3546 if (!list_skb || 3547 !net_gso_ok(features, skb_shinfo(head_skb)->gso_type)) 3548 goto normal; 3549 3550 /* If we get here then all the required 3551 * GSO features except frag_list are supported. 3552 * Try to split the SKB to multiple GSO SKBs 3553 * with no frag_list. 3554 * Currently we can do that only when the buffers don't 3555 * have a linear part and all the buffers except 3556 * the last are of the same length. 3557 */ 3558 frag_len = list_skb->len; 3559 skb_walk_frags(head_skb, iter) { 3560 if (frag_len != iter->len && iter->next) 3561 goto normal; 3562 if (skb_headlen(iter) && !iter->head_frag) 3563 goto normal; 3564 3565 len -= iter->len; 3566 } 3567 3568 if (len != frag_len) 3569 goto normal; 3570 } 3571 3572 /* GSO partial only requires that we trim off any excess that 3573 * doesn't fit into an MSS sized block, so take care of that 3574 * now. 3575 */ 3576 partial_segs = len / mss; 3577 if (partial_segs > 1) 3578 mss *= partial_segs; 3579 else 3580 partial_segs = 0; 3581 } 3582 3583 normal: 3584 headroom = skb_headroom(head_skb); 3585 pos = skb_headlen(head_skb); 3586 3587 do { 3588 struct sk_buff *nskb; 3589 skb_frag_t *nskb_frag; 3590 int hsize; 3591 int size; 3592 3593 if (unlikely(mss == GSO_BY_FRAGS)) { 3594 len = list_skb->len; 3595 } else { 3596 len = head_skb->len - offset; 3597 if (len > mss) 3598 len = mss; 3599 } 3600 3601 hsize = skb_headlen(head_skb) - offset; 3602 if (hsize < 0) 3603 hsize = 0; 3604 if (hsize > len || !sg) 3605 hsize = len; 3606 3607 if (!hsize && i >= nfrags && skb_headlen(list_skb) && 3608 (skb_headlen(list_skb) == len || sg)) { 3609 BUG_ON(skb_headlen(list_skb) > len); 3610 3611 i = 0; 3612 nfrags = skb_shinfo(list_skb)->nr_frags; 3613 frag = skb_shinfo(list_skb)->frags; 3614 frag_skb = list_skb; 3615 pos += skb_headlen(list_skb); 3616 3617 while (pos < offset + len) { 3618 BUG_ON(i >= nfrags); 3619 3620 size = skb_frag_size(frag); 3621 if (pos + size > offset + len) 3622 break; 3623 3624 i++; 3625 pos += size; 3626 frag++; 3627 } 3628 3629 nskb = skb_clone(list_skb, GFP_ATOMIC); 3630 list_skb = list_skb->next; 3631 3632 if (unlikely(!nskb)) 3633 goto err; 3634 3635 if (unlikely(pskb_trim(nskb, len))) { 3636 kfree_skb(nskb); 3637 goto err; 3638 } 3639 3640 hsize = skb_end_offset(nskb); 3641 if (skb_cow_head(nskb, doffset + headroom)) { 3642 kfree_skb(nskb); 3643 goto err; 3644 } 3645 3646 nskb->truesize += skb_end_offset(nskb) - hsize; 3647 skb_release_head_state(nskb); 3648 __skb_push(nskb, doffset); 3649 } else { 3650 nskb = __alloc_skb(hsize + doffset + headroom, 3651 GFP_ATOMIC, skb_alloc_rx_flag(head_skb), 3652 NUMA_NO_NODE); 3653 3654 if (unlikely(!nskb)) 3655 goto err; 3656 3657 skb_reserve(nskb, headroom); 3658 __skb_put(nskb, doffset); 3659 } 3660 3661 if (segs) 3662 tail->next = nskb; 3663 else 3664 segs = nskb; 3665 tail = nskb; 3666 3667 __copy_skb_header(nskb, head_skb); 3668 3669 skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom); 3670 skb_reset_mac_len(nskb); 3671 3672 skb_copy_from_linear_data_offset(head_skb, -tnl_hlen, 3673 nskb->data - tnl_hlen, 3674 doffset + tnl_hlen); 3675 3676 if (nskb->len == len + doffset) 3677 goto perform_csum_check; 3678 3679 if (!sg) { 3680 if (!nskb->remcsum_offload) 3681 nskb->ip_summed = CHECKSUM_NONE; 3682 SKB_GSO_CB(nskb)->csum = 3683 skb_copy_and_csum_bits(head_skb, offset, 3684 skb_put(nskb, len), 3685 len, 0); 3686 SKB_GSO_CB(nskb)->csum_start = 3687 skb_headroom(nskb) + doffset; 3688 continue; 3689 } 3690 3691 nskb_frag = skb_shinfo(nskb)->frags; 3692 3693 skb_copy_from_linear_data_offset(head_skb, offset, 3694 skb_put(nskb, hsize), hsize); 3695 3696 skb_shinfo(nskb)->tx_flags |= skb_shinfo(head_skb)->tx_flags & 3697 SKBTX_SHARED_FRAG; 3698 3699 if (skb_orphan_frags(frag_skb, GFP_ATOMIC) || 3700 skb_zerocopy_clone(nskb, frag_skb, GFP_ATOMIC)) 3701 goto err; 3702 3703 while (pos < offset + len) { 3704 if (i >= nfrags) { 3705 i = 0; 3706 nfrags = skb_shinfo(list_skb)->nr_frags; 3707 frag = skb_shinfo(list_skb)->frags; 3708 frag_skb = list_skb; 3709 if (!skb_headlen(list_skb)) { 3710 BUG_ON(!nfrags); 3711 } else { 3712 BUG_ON(!list_skb->head_frag); 3713 3714 /* to make room for head_frag. */ 3715 i--; 3716 frag--; 3717 } 3718 if (skb_orphan_frags(frag_skb, GFP_ATOMIC) || 3719 skb_zerocopy_clone(nskb, frag_skb, 3720 GFP_ATOMIC)) 3721 goto err; 3722 3723 list_skb = list_skb->next; 3724 } 3725 3726 if (unlikely(skb_shinfo(nskb)->nr_frags >= 3727 MAX_SKB_FRAGS)) { 3728 net_warn_ratelimited( 3729 "skb_segment: too many frags: %u %u\n", 3730 pos, mss); 3731 err = -EINVAL; 3732 goto err; 3733 } 3734 3735 *nskb_frag = (i < 0) ? skb_head_frag_to_page_desc(frag_skb) : *frag; 3736 __skb_frag_ref(nskb_frag); 3737 size = skb_frag_size(nskb_frag); 3738 3739 if (pos < offset) { 3740 nskb_frag->page_offset += offset - pos; 3741 skb_frag_size_sub(nskb_frag, offset - pos); 3742 } 3743 3744 skb_shinfo(nskb)->nr_frags++; 3745 3746 if (pos + size <= offset + len) { 3747 i++; 3748 frag++; 3749 pos += size; 3750 } else { 3751 skb_frag_size_sub(nskb_frag, pos + size - (offset + len)); 3752 goto skip_fraglist; 3753 } 3754 3755 nskb_frag++; 3756 } 3757 3758 skip_fraglist: 3759 nskb->data_len = len - hsize; 3760 nskb->len += nskb->data_len; 3761 nskb->truesize += nskb->data_len; 3762 3763 perform_csum_check: 3764 if (!csum) { 3765 if (skb_has_shared_frag(nskb) && 3766 __skb_linearize(nskb)) 3767 goto err; 3768 3769 if (!nskb->remcsum_offload) 3770 nskb->ip_summed = CHECKSUM_NONE; 3771 SKB_GSO_CB(nskb)->csum = 3772 skb_checksum(nskb, doffset, 3773 nskb->len - doffset, 0); 3774 SKB_GSO_CB(nskb)->csum_start = 3775 skb_headroom(nskb) + doffset; 3776 } 3777 } while ((offset += len) < head_skb->len); 3778 3779 /* Some callers want to get the end of the list. 3780 * Put it in segs->prev to avoid walking the list. 3781 * (see validate_xmit_skb_list() for example) 3782 */ 3783 segs->prev = tail; 3784 3785 if (partial_segs) { 3786 struct sk_buff *iter; 3787 int type = skb_shinfo(head_skb)->gso_type; 3788 unsigned short gso_size = skb_shinfo(head_skb)->gso_size; 3789 3790 /* Update type to add partial and then remove dodgy if set */ 3791 type |= (features & NETIF_F_GSO_PARTIAL) / NETIF_F_GSO_PARTIAL * SKB_GSO_PARTIAL; 3792 type &= ~SKB_GSO_DODGY; 3793 3794 /* Update GSO info and prepare to start updating headers on 3795 * our way back down the stack of protocols. 3796 */ 3797 for (iter = segs; iter; iter = iter->next) { 3798 skb_shinfo(iter)->gso_size = gso_size; 3799 skb_shinfo(iter)->gso_segs = partial_segs; 3800 skb_shinfo(iter)->gso_type = type; 3801 SKB_GSO_CB(iter)->data_offset = skb_headroom(iter) + doffset; 3802 } 3803 3804 if (tail->len - doffset <= gso_size) 3805 skb_shinfo(tail)->gso_size = 0; 3806 else if (tail != segs) 3807 skb_shinfo(tail)->gso_segs = DIV_ROUND_UP(tail->len - doffset, gso_size); 3808 } 3809 3810 /* Following permits correct backpressure, for protocols 3811 * using skb_set_owner_w(). 3812 * Idea is to tranfert ownership from head_skb to last segment. 3813 */ 3814 if (head_skb->destructor == sock_wfree) { 3815 swap(tail->truesize, head_skb->truesize); 3816 swap(tail->destructor, head_skb->destructor); 3817 swap(tail->sk, head_skb->sk); 3818 } 3819 return segs; 3820 3821 err: 3822 kfree_skb_list(segs); 3823 return ERR_PTR(err); 3824 } 3825 EXPORT_SYMBOL_GPL(skb_segment); 3826 3827 int skb_gro_receive(struct sk_buff *p, struct sk_buff *skb) 3828 { 3829 struct skb_shared_info *pinfo, *skbinfo = skb_shinfo(skb); 3830 unsigned int offset = skb_gro_offset(skb); 3831 unsigned int headlen = skb_headlen(skb); 3832 unsigned int len = skb_gro_len(skb); 3833 unsigned int delta_truesize; 3834 struct sk_buff *lp; 3835 3836 if (unlikely(p->len + len >= 65536 || NAPI_GRO_CB(skb)->flush)) 3837 return -E2BIG; 3838 3839 lp = NAPI_GRO_CB(p)->last; 3840 pinfo = skb_shinfo(lp); 3841 3842 if (headlen <= offset) { 3843 skb_frag_t *frag; 3844 skb_frag_t *frag2; 3845 int i = skbinfo->nr_frags; 3846 int nr_frags = pinfo->nr_frags + i; 3847 3848 if (nr_frags > MAX_SKB_FRAGS) 3849 goto merge; 3850 3851 offset -= headlen; 3852 pinfo->nr_frags = nr_frags; 3853 skbinfo->nr_frags = 0; 3854 3855 frag = pinfo->frags + nr_frags; 3856 frag2 = skbinfo->frags + i; 3857 do { 3858 *--frag = *--frag2; 3859 } while (--i); 3860 3861 frag->page_offset += offset; 3862 skb_frag_size_sub(frag, offset); 3863 3864 /* all fragments truesize : remove (head size + sk_buff) */ 3865 delta_truesize = skb->truesize - 3866 SKB_TRUESIZE(skb_end_offset(skb)); 3867 3868 skb->truesize -= skb->data_len; 3869 skb->len -= skb->data_len; 3870 skb->data_len = 0; 3871 3872 NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE; 3873 goto done; 3874 } else if (skb->head_frag) { 3875 int nr_frags = pinfo->nr_frags; 3876 skb_frag_t *frag = pinfo->frags + nr_frags; 3877 struct page *page = virt_to_head_page(skb->head); 3878 unsigned int first_size = headlen - offset; 3879 unsigned int first_offset; 3880 3881 if (nr_frags + 1 + skbinfo->nr_frags > MAX_SKB_FRAGS) 3882 goto merge; 3883 3884 first_offset = skb->data - 3885 (unsigned char *)page_address(page) + 3886 offset; 3887 3888 pinfo->nr_frags = nr_frags + 1 + skbinfo->nr_frags; 3889 3890 frag->page.p = page; 3891 frag->page_offset = first_offset; 3892 skb_frag_size_set(frag, first_size); 3893 3894 memcpy(frag + 1, skbinfo->frags, sizeof(*frag) * skbinfo->nr_frags); 3895 /* We dont need to clear skbinfo->nr_frags here */ 3896 3897 delta_truesize = skb->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff)); 3898 NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE_STOLEN_HEAD; 3899 goto done; 3900 } 3901 3902 merge: 3903 delta_truesize = skb->truesize; 3904 if (offset > headlen) { 3905 unsigned int eat = offset - headlen; 3906 3907 skbinfo->frags[0].page_offset += eat; 3908 skb_frag_size_sub(&skbinfo->frags[0], eat); 3909 skb->data_len -= eat; 3910 skb->len -= eat; 3911 offset = headlen; 3912 } 3913 3914 __skb_pull(skb, offset); 3915 3916 if (NAPI_GRO_CB(p)->last == p) 3917 skb_shinfo(p)->frag_list = skb; 3918 else 3919 NAPI_GRO_CB(p)->last->next = skb; 3920 NAPI_GRO_CB(p)->last = skb; 3921 __skb_header_release(skb); 3922 lp = p; 3923 3924 done: 3925 NAPI_GRO_CB(p)->count++; 3926 p->data_len += len; 3927 p->truesize += delta_truesize; 3928 p->len += len; 3929 if (lp != p) { 3930 lp->data_len += len; 3931 lp->truesize += delta_truesize; 3932 lp->len += len; 3933 } 3934 NAPI_GRO_CB(skb)->same_flow = 1; 3935 return 0; 3936 } 3937 EXPORT_SYMBOL_GPL(skb_gro_receive); 3938 3939 #ifdef CONFIG_SKB_EXTENSIONS 3940 #define SKB_EXT_ALIGN_VALUE 8 3941 #define SKB_EXT_CHUNKSIZEOF(x) (ALIGN((sizeof(x)), SKB_EXT_ALIGN_VALUE) / SKB_EXT_ALIGN_VALUE) 3942 3943 static const u8 skb_ext_type_len[] = { 3944 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 3945 [SKB_EXT_BRIDGE_NF] = SKB_EXT_CHUNKSIZEOF(struct nf_bridge_info), 3946 #endif 3947 #ifdef CONFIG_XFRM 3948 [SKB_EXT_SEC_PATH] = SKB_EXT_CHUNKSIZEOF(struct sec_path), 3949 #endif 3950 }; 3951 3952 static __always_inline unsigned int skb_ext_total_length(void) 3953 { 3954 return SKB_EXT_CHUNKSIZEOF(struct skb_ext) + 3955 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 3956 skb_ext_type_len[SKB_EXT_BRIDGE_NF] + 3957 #endif 3958 #ifdef CONFIG_XFRM 3959 skb_ext_type_len[SKB_EXT_SEC_PATH] + 3960 #endif 3961 0; 3962 } 3963 3964 static void skb_extensions_init(void) 3965 { 3966 BUILD_BUG_ON(SKB_EXT_NUM >= 8); 3967 BUILD_BUG_ON(skb_ext_total_length() > 255); 3968 3969 skbuff_ext_cache = kmem_cache_create("skbuff_ext_cache", 3970 SKB_EXT_ALIGN_VALUE * skb_ext_total_length(), 3971 0, 3972 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 3973 NULL); 3974 } 3975 #else 3976 static void skb_extensions_init(void) {} 3977 #endif 3978 3979 void __init skb_init(void) 3980 { 3981 skbuff_head_cache = kmem_cache_create_usercopy("skbuff_head_cache", 3982 sizeof(struct sk_buff), 3983 0, 3984 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 3985 offsetof(struct sk_buff, cb), 3986 sizeof_field(struct sk_buff, cb), 3987 NULL); 3988 skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache", 3989 sizeof(struct sk_buff_fclones), 3990 0, 3991 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 3992 NULL); 3993 skb_extensions_init(); 3994 } 3995 3996 static int 3997 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len, 3998 unsigned int recursion_level) 3999 { 4000 int start = skb_headlen(skb); 4001 int i, copy = start - offset; 4002 struct sk_buff *frag_iter; 4003 int elt = 0; 4004 4005 if (unlikely(recursion_level >= 24)) 4006 return -EMSGSIZE; 4007 4008 if (copy > 0) { 4009 if (copy > len) 4010 copy = len; 4011 sg_set_buf(sg, skb->data + offset, copy); 4012 elt++; 4013 if ((len -= copy) == 0) 4014 return elt; 4015 offset += copy; 4016 } 4017 4018 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 4019 int end; 4020 4021 WARN_ON(start > offset + len); 4022 4023 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]); 4024 if ((copy = end - offset) > 0) { 4025 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 4026 if (unlikely(elt && sg_is_last(&sg[elt - 1]))) 4027 return -EMSGSIZE; 4028 4029 if (copy > len) 4030 copy = len; 4031 sg_set_page(&sg[elt], skb_frag_page(frag), copy, 4032 frag->page_offset+offset-start); 4033 elt++; 4034 if (!(len -= copy)) 4035 return elt; 4036 offset += copy; 4037 } 4038 start = end; 4039 } 4040 4041 skb_walk_frags(skb, frag_iter) { 4042 int end, ret; 4043 4044 WARN_ON(start > offset + len); 4045 4046 end = start + frag_iter->len; 4047 if ((copy = end - offset) > 0) { 4048 if (unlikely(elt && sg_is_last(&sg[elt - 1]))) 4049 return -EMSGSIZE; 4050 4051 if (copy > len) 4052 copy = len; 4053 ret = __skb_to_sgvec(frag_iter, sg+elt, offset - start, 4054 copy, recursion_level + 1); 4055 if (unlikely(ret < 0)) 4056 return ret; 4057 elt += ret; 4058 if ((len -= copy) == 0) 4059 return elt; 4060 offset += copy; 4061 } 4062 start = end; 4063 } 4064 BUG_ON(len); 4065 return elt; 4066 } 4067 4068 /** 4069 * skb_to_sgvec - Fill a scatter-gather list from a socket buffer 4070 * @skb: Socket buffer containing the buffers to be mapped 4071 * @sg: The scatter-gather list to map into 4072 * @offset: The offset into the buffer's contents to start mapping 4073 * @len: Length of buffer space to be mapped 4074 * 4075 * Fill the specified scatter-gather list with mappings/pointers into a 4076 * region of the buffer space attached to a socket buffer. Returns either 4077 * the number of scatterlist items used, or -EMSGSIZE if the contents 4078 * could not fit. 4079 */ 4080 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len) 4081 { 4082 int nsg = __skb_to_sgvec(skb, sg, offset, len, 0); 4083 4084 if (nsg <= 0) 4085 return nsg; 4086 4087 sg_mark_end(&sg[nsg - 1]); 4088 4089 return nsg; 4090 } 4091 EXPORT_SYMBOL_GPL(skb_to_sgvec); 4092 4093 /* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given 4094 * sglist without mark the sg which contain last skb data as the end. 4095 * So the caller can mannipulate sg list as will when padding new data after 4096 * the first call without calling sg_unmark_end to expend sg list. 4097 * 4098 * Scenario to use skb_to_sgvec_nomark: 4099 * 1. sg_init_table 4100 * 2. skb_to_sgvec_nomark(payload1) 4101 * 3. skb_to_sgvec_nomark(payload2) 4102 * 4103 * This is equivalent to: 4104 * 1. sg_init_table 4105 * 2. skb_to_sgvec(payload1) 4106 * 3. sg_unmark_end 4107 * 4. skb_to_sgvec(payload2) 4108 * 4109 * When mapping mutilple payload conditionally, skb_to_sgvec_nomark 4110 * is more preferable. 4111 */ 4112 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg, 4113 int offset, int len) 4114 { 4115 return __skb_to_sgvec(skb, sg, offset, len, 0); 4116 } 4117 EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark); 4118 4119 4120 4121 /** 4122 * skb_cow_data - Check that a socket buffer's data buffers are writable 4123 * @skb: The socket buffer to check. 4124 * @tailbits: Amount of trailing space to be added 4125 * @trailer: Returned pointer to the skb where the @tailbits space begins 4126 * 4127 * Make sure that the data buffers attached to a socket buffer are 4128 * writable. If they are not, private copies are made of the data buffers 4129 * and the socket buffer is set to use these instead. 4130 * 4131 * If @tailbits is given, make sure that there is space to write @tailbits 4132 * bytes of data beyond current end of socket buffer. @trailer will be 4133 * set to point to the skb in which this space begins. 4134 * 4135 * The number of scatterlist elements required to completely map the 4136 * COW'd and extended socket buffer will be returned. 4137 */ 4138 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer) 4139 { 4140 int copyflag; 4141 int elt; 4142 struct sk_buff *skb1, **skb_p; 4143 4144 /* If skb is cloned or its head is paged, reallocate 4145 * head pulling out all the pages (pages are considered not writable 4146 * at the moment even if they are anonymous). 4147 */ 4148 if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) && 4149 __pskb_pull_tail(skb, skb_pagelen(skb)-skb_headlen(skb)) == NULL) 4150 return -ENOMEM; 4151 4152 /* Easy case. Most of packets will go this way. */ 4153 if (!skb_has_frag_list(skb)) { 4154 /* A little of trouble, not enough of space for trailer. 4155 * This should not happen, when stack is tuned to generate 4156 * good frames. OK, on miss we reallocate and reserve even more 4157 * space, 128 bytes is fair. */ 4158 4159 if (skb_tailroom(skb) < tailbits && 4160 pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC)) 4161 return -ENOMEM; 4162 4163 /* Voila! */ 4164 *trailer = skb; 4165 return 1; 4166 } 4167 4168 /* Misery. We are in troubles, going to mincer fragments... */ 4169 4170 elt = 1; 4171 skb_p = &skb_shinfo(skb)->frag_list; 4172 copyflag = 0; 4173 4174 while ((skb1 = *skb_p) != NULL) { 4175 int ntail = 0; 4176 4177 /* The fragment is partially pulled by someone, 4178 * this can happen on input. Copy it and everything 4179 * after it. */ 4180 4181 if (skb_shared(skb1)) 4182 copyflag = 1; 4183 4184 /* If the skb is the last, worry about trailer. */ 4185 4186 if (skb1->next == NULL && tailbits) { 4187 if (skb_shinfo(skb1)->nr_frags || 4188 skb_has_frag_list(skb1) || 4189 skb_tailroom(skb1) < tailbits) 4190 ntail = tailbits + 128; 4191 } 4192 4193 if (copyflag || 4194 skb_cloned(skb1) || 4195 ntail || 4196 skb_shinfo(skb1)->nr_frags || 4197 skb_has_frag_list(skb1)) { 4198 struct sk_buff *skb2; 4199 4200 /* Fuck, we are miserable poor guys... */ 4201 if (ntail == 0) 4202 skb2 = skb_copy(skb1, GFP_ATOMIC); 4203 else 4204 skb2 = skb_copy_expand(skb1, 4205 skb_headroom(skb1), 4206 ntail, 4207 GFP_ATOMIC); 4208 if (unlikely(skb2 == NULL)) 4209 return -ENOMEM; 4210 4211 if (skb1->sk) 4212 skb_set_owner_w(skb2, skb1->sk); 4213 4214 /* Looking around. Are we still alive? 4215 * OK, link new skb, drop old one */ 4216 4217 skb2->next = skb1->next; 4218 *skb_p = skb2; 4219 kfree_skb(skb1); 4220 skb1 = skb2; 4221 } 4222 elt++; 4223 *trailer = skb1; 4224 skb_p = &skb1->next; 4225 } 4226 4227 return elt; 4228 } 4229 EXPORT_SYMBOL_GPL(skb_cow_data); 4230 4231 static void sock_rmem_free(struct sk_buff *skb) 4232 { 4233 struct sock *sk = skb->sk; 4234 4235 atomic_sub(skb->truesize, &sk->sk_rmem_alloc); 4236 } 4237 4238 static void skb_set_err_queue(struct sk_buff *skb) 4239 { 4240 /* pkt_type of skbs received on local sockets is never PACKET_OUTGOING. 4241 * So, it is safe to (mis)use it to mark skbs on the error queue. 4242 */ 4243 skb->pkt_type = PACKET_OUTGOING; 4244 BUILD_BUG_ON(PACKET_OUTGOING == 0); 4245 } 4246 4247 /* 4248 * Note: We dont mem charge error packets (no sk_forward_alloc changes) 4249 */ 4250 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb) 4251 { 4252 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >= 4253 (unsigned int)sk->sk_rcvbuf) 4254 return -ENOMEM; 4255 4256 skb_orphan(skb); 4257 skb->sk = sk; 4258 skb->destructor = sock_rmem_free; 4259 atomic_add(skb->truesize, &sk->sk_rmem_alloc); 4260 skb_set_err_queue(skb); 4261 4262 /* before exiting rcu section, make sure dst is refcounted */ 4263 skb_dst_force(skb); 4264 4265 skb_queue_tail(&sk->sk_error_queue, skb); 4266 if (!sock_flag(sk, SOCK_DEAD)) 4267 sk->sk_error_report(sk); 4268 return 0; 4269 } 4270 EXPORT_SYMBOL(sock_queue_err_skb); 4271 4272 static bool is_icmp_err_skb(const struct sk_buff *skb) 4273 { 4274 return skb && (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP || 4275 SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP6); 4276 } 4277 4278 struct sk_buff *sock_dequeue_err_skb(struct sock *sk) 4279 { 4280 struct sk_buff_head *q = &sk->sk_error_queue; 4281 struct sk_buff *skb, *skb_next = NULL; 4282 bool icmp_next = false; 4283 unsigned long flags; 4284 4285 spin_lock_irqsave(&q->lock, flags); 4286 skb = __skb_dequeue(q); 4287 if (skb && (skb_next = skb_peek(q))) { 4288 icmp_next = is_icmp_err_skb(skb_next); 4289 if (icmp_next) 4290 sk->sk_err = SKB_EXT_ERR(skb_next)->ee.ee_origin; 4291 } 4292 spin_unlock_irqrestore(&q->lock, flags); 4293 4294 if (is_icmp_err_skb(skb) && !icmp_next) 4295 sk->sk_err = 0; 4296 4297 if (skb_next) 4298 sk->sk_error_report(sk); 4299 4300 return skb; 4301 } 4302 EXPORT_SYMBOL(sock_dequeue_err_skb); 4303 4304 /** 4305 * skb_clone_sk - create clone of skb, and take reference to socket 4306 * @skb: the skb to clone 4307 * 4308 * This function creates a clone of a buffer that holds a reference on 4309 * sk_refcnt. Buffers created via this function are meant to be 4310 * returned using sock_queue_err_skb, or free via kfree_skb. 4311 * 4312 * When passing buffers allocated with this function to sock_queue_err_skb 4313 * it is necessary to wrap the call with sock_hold/sock_put in order to 4314 * prevent the socket from being released prior to being enqueued on 4315 * the sk_error_queue. 4316 */ 4317 struct sk_buff *skb_clone_sk(struct sk_buff *skb) 4318 { 4319 struct sock *sk = skb->sk; 4320 struct sk_buff *clone; 4321 4322 if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt)) 4323 return NULL; 4324 4325 clone = skb_clone(skb, GFP_ATOMIC); 4326 if (!clone) { 4327 sock_put(sk); 4328 return NULL; 4329 } 4330 4331 clone->sk = sk; 4332 clone->destructor = sock_efree; 4333 4334 return clone; 4335 } 4336 EXPORT_SYMBOL(skb_clone_sk); 4337 4338 static void __skb_complete_tx_timestamp(struct sk_buff *skb, 4339 struct sock *sk, 4340 int tstype, 4341 bool opt_stats) 4342 { 4343 struct sock_exterr_skb *serr; 4344 int err; 4345 4346 BUILD_BUG_ON(sizeof(struct sock_exterr_skb) > sizeof(skb->cb)); 4347 4348 serr = SKB_EXT_ERR(skb); 4349 memset(serr, 0, sizeof(*serr)); 4350 serr->ee.ee_errno = ENOMSG; 4351 serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING; 4352 serr->ee.ee_info = tstype; 4353 serr->opt_stats = opt_stats; 4354 serr->header.h4.iif = skb->dev ? skb->dev->ifindex : 0; 4355 if (sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID) { 4356 serr->ee.ee_data = skb_shinfo(skb)->tskey; 4357 if (sk->sk_protocol == IPPROTO_TCP && 4358 sk->sk_type == SOCK_STREAM) 4359 serr->ee.ee_data -= sk->sk_tskey; 4360 } 4361 4362 err = sock_queue_err_skb(sk, skb); 4363 4364 if (err) 4365 kfree_skb(skb); 4366 } 4367 4368 static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly) 4369 { 4370 bool ret; 4371 4372 if (likely(sysctl_tstamp_allow_data || tsonly)) 4373 return true; 4374 4375 read_lock_bh(&sk->sk_callback_lock); 4376 ret = sk->sk_socket && sk->sk_socket->file && 4377 file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW); 4378 read_unlock_bh(&sk->sk_callback_lock); 4379 return ret; 4380 } 4381 4382 void skb_complete_tx_timestamp(struct sk_buff *skb, 4383 struct skb_shared_hwtstamps *hwtstamps) 4384 { 4385 struct sock *sk = skb->sk; 4386 4387 if (!skb_may_tx_timestamp(sk, false)) 4388 goto err; 4389 4390 /* Take a reference to prevent skb_orphan() from freeing the socket, 4391 * but only if the socket refcount is not zero. 4392 */ 4393 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) { 4394 *skb_hwtstamps(skb) = *hwtstamps; 4395 __skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND, false); 4396 sock_put(sk); 4397 return; 4398 } 4399 4400 err: 4401 kfree_skb(skb); 4402 } 4403 EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp); 4404 4405 void __skb_tstamp_tx(struct sk_buff *orig_skb, 4406 struct skb_shared_hwtstamps *hwtstamps, 4407 struct sock *sk, int tstype) 4408 { 4409 struct sk_buff *skb; 4410 bool tsonly, opt_stats = false; 4411 4412 if (!sk) 4413 return; 4414 4415 if (!hwtstamps && !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TX_SWHW) && 4416 skb_shinfo(orig_skb)->tx_flags & SKBTX_IN_PROGRESS) 4417 return; 4418 4419 tsonly = sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TSONLY; 4420 if (!skb_may_tx_timestamp(sk, tsonly)) 4421 return; 4422 4423 if (tsonly) { 4424 #ifdef CONFIG_INET 4425 if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_STATS) && 4426 sk->sk_protocol == IPPROTO_TCP && 4427 sk->sk_type == SOCK_STREAM) { 4428 skb = tcp_get_timestamping_opt_stats(sk); 4429 opt_stats = true; 4430 } else 4431 #endif 4432 skb = alloc_skb(0, GFP_ATOMIC); 4433 } else { 4434 skb = skb_clone(orig_skb, GFP_ATOMIC); 4435 } 4436 if (!skb) 4437 return; 4438 4439 if (tsonly) { 4440 skb_shinfo(skb)->tx_flags |= skb_shinfo(orig_skb)->tx_flags & 4441 SKBTX_ANY_TSTAMP; 4442 skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey; 4443 } 4444 4445 if (hwtstamps) 4446 *skb_hwtstamps(skb) = *hwtstamps; 4447 else 4448 skb->tstamp = ktime_get_real(); 4449 4450 __skb_complete_tx_timestamp(skb, sk, tstype, opt_stats); 4451 } 4452 EXPORT_SYMBOL_GPL(__skb_tstamp_tx); 4453 4454 void skb_tstamp_tx(struct sk_buff *orig_skb, 4455 struct skb_shared_hwtstamps *hwtstamps) 4456 { 4457 return __skb_tstamp_tx(orig_skb, hwtstamps, orig_skb->sk, 4458 SCM_TSTAMP_SND); 4459 } 4460 EXPORT_SYMBOL_GPL(skb_tstamp_tx); 4461 4462 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked) 4463 { 4464 struct sock *sk = skb->sk; 4465 struct sock_exterr_skb *serr; 4466 int err = 1; 4467 4468 skb->wifi_acked_valid = 1; 4469 skb->wifi_acked = acked; 4470 4471 serr = SKB_EXT_ERR(skb); 4472 memset(serr, 0, sizeof(*serr)); 4473 serr->ee.ee_errno = ENOMSG; 4474 serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS; 4475 4476 /* Take a reference to prevent skb_orphan() from freeing the socket, 4477 * but only if the socket refcount is not zero. 4478 */ 4479 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) { 4480 err = sock_queue_err_skb(sk, skb); 4481 sock_put(sk); 4482 } 4483 if (err) 4484 kfree_skb(skb); 4485 } 4486 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack); 4487 4488 /** 4489 * skb_partial_csum_set - set up and verify partial csum values for packet 4490 * @skb: the skb to set 4491 * @start: the number of bytes after skb->data to start checksumming. 4492 * @off: the offset from start to place the checksum. 4493 * 4494 * For untrusted partially-checksummed packets, we need to make sure the values 4495 * for skb->csum_start and skb->csum_offset are valid so we don't oops. 4496 * 4497 * This function checks and sets those values and skb->ip_summed: if this 4498 * returns false you should drop the packet. 4499 */ 4500 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off) 4501 { 4502 u32 csum_end = (u32)start + (u32)off + sizeof(__sum16); 4503 u32 csum_start = skb_headroom(skb) + (u32)start; 4504 4505 if (unlikely(csum_start > U16_MAX || csum_end > skb_headlen(skb))) { 4506 net_warn_ratelimited("bad partial csum: csum=%u/%u headroom=%u headlen=%u\n", 4507 start, off, skb_headroom(skb), skb_headlen(skb)); 4508 return false; 4509 } 4510 skb->ip_summed = CHECKSUM_PARTIAL; 4511 skb->csum_start = csum_start; 4512 skb->csum_offset = off; 4513 skb_set_transport_header(skb, start); 4514 return true; 4515 } 4516 EXPORT_SYMBOL_GPL(skb_partial_csum_set); 4517 4518 static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len, 4519 unsigned int max) 4520 { 4521 if (skb_headlen(skb) >= len) 4522 return 0; 4523 4524 /* If we need to pullup then pullup to the max, so we 4525 * won't need to do it again. 4526 */ 4527 if (max > skb->len) 4528 max = skb->len; 4529 4530 if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL) 4531 return -ENOMEM; 4532 4533 if (skb_headlen(skb) < len) 4534 return -EPROTO; 4535 4536 return 0; 4537 } 4538 4539 #define MAX_TCP_HDR_LEN (15 * 4) 4540 4541 static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb, 4542 typeof(IPPROTO_IP) proto, 4543 unsigned int off) 4544 { 4545 switch (proto) { 4546 int err; 4547 4548 case IPPROTO_TCP: 4549 err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr), 4550 off + MAX_TCP_HDR_LEN); 4551 if (!err && !skb_partial_csum_set(skb, off, 4552 offsetof(struct tcphdr, 4553 check))) 4554 err = -EPROTO; 4555 return err ? ERR_PTR(err) : &tcp_hdr(skb)->check; 4556 4557 case IPPROTO_UDP: 4558 err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr), 4559 off + sizeof(struct udphdr)); 4560 if (!err && !skb_partial_csum_set(skb, off, 4561 offsetof(struct udphdr, 4562 check))) 4563 err = -EPROTO; 4564 return err ? ERR_PTR(err) : &udp_hdr(skb)->check; 4565 } 4566 4567 return ERR_PTR(-EPROTO); 4568 } 4569 4570 /* This value should be large enough to cover a tagged ethernet header plus 4571 * maximally sized IP and TCP or UDP headers. 4572 */ 4573 #define MAX_IP_HDR_LEN 128 4574 4575 static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate) 4576 { 4577 unsigned int off; 4578 bool fragment; 4579 __sum16 *csum; 4580 int err; 4581 4582 fragment = false; 4583 4584 err = skb_maybe_pull_tail(skb, 4585 sizeof(struct iphdr), 4586 MAX_IP_HDR_LEN); 4587 if (err < 0) 4588 goto out; 4589 4590 if (ip_hdr(skb)->frag_off & htons(IP_OFFSET | IP_MF)) 4591 fragment = true; 4592 4593 off = ip_hdrlen(skb); 4594 4595 err = -EPROTO; 4596 4597 if (fragment) 4598 goto out; 4599 4600 csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off); 4601 if (IS_ERR(csum)) 4602 return PTR_ERR(csum); 4603 4604 if (recalculate) 4605 *csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr, 4606 ip_hdr(skb)->daddr, 4607 skb->len - off, 4608 ip_hdr(skb)->protocol, 0); 4609 err = 0; 4610 4611 out: 4612 return err; 4613 } 4614 4615 /* This value should be large enough to cover a tagged ethernet header plus 4616 * an IPv6 header, all options, and a maximal TCP or UDP header. 4617 */ 4618 #define MAX_IPV6_HDR_LEN 256 4619 4620 #define OPT_HDR(type, skb, off) \ 4621 (type *)(skb_network_header(skb) + (off)) 4622 4623 static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate) 4624 { 4625 int err; 4626 u8 nexthdr; 4627 unsigned int off; 4628 unsigned int len; 4629 bool fragment; 4630 bool done; 4631 __sum16 *csum; 4632 4633 fragment = false; 4634 done = false; 4635 4636 off = sizeof(struct ipv6hdr); 4637 4638 err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN); 4639 if (err < 0) 4640 goto out; 4641 4642 nexthdr = ipv6_hdr(skb)->nexthdr; 4643 4644 len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len); 4645 while (off <= len && !done) { 4646 switch (nexthdr) { 4647 case IPPROTO_DSTOPTS: 4648 case IPPROTO_HOPOPTS: 4649 case IPPROTO_ROUTING: { 4650 struct ipv6_opt_hdr *hp; 4651 4652 err = skb_maybe_pull_tail(skb, 4653 off + 4654 sizeof(struct ipv6_opt_hdr), 4655 MAX_IPV6_HDR_LEN); 4656 if (err < 0) 4657 goto out; 4658 4659 hp = OPT_HDR(struct ipv6_opt_hdr, skb, off); 4660 nexthdr = hp->nexthdr; 4661 off += ipv6_optlen(hp); 4662 break; 4663 } 4664 case IPPROTO_AH: { 4665 struct ip_auth_hdr *hp; 4666 4667 err = skb_maybe_pull_tail(skb, 4668 off + 4669 sizeof(struct ip_auth_hdr), 4670 MAX_IPV6_HDR_LEN); 4671 if (err < 0) 4672 goto out; 4673 4674 hp = OPT_HDR(struct ip_auth_hdr, skb, off); 4675 nexthdr = hp->nexthdr; 4676 off += ipv6_authlen(hp); 4677 break; 4678 } 4679 case IPPROTO_FRAGMENT: { 4680 struct frag_hdr *hp; 4681 4682 err = skb_maybe_pull_tail(skb, 4683 off + 4684 sizeof(struct frag_hdr), 4685 MAX_IPV6_HDR_LEN); 4686 if (err < 0) 4687 goto out; 4688 4689 hp = OPT_HDR(struct frag_hdr, skb, off); 4690 4691 if (hp->frag_off & htons(IP6_OFFSET | IP6_MF)) 4692 fragment = true; 4693 4694 nexthdr = hp->nexthdr; 4695 off += sizeof(struct frag_hdr); 4696 break; 4697 } 4698 default: 4699 done = true; 4700 break; 4701 } 4702 } 4703 4704 err = -EPROTO; 4705 4706 if (!done || fragment) 4707 goto out; 4708 4709 csum = skb_checksum_setup_ip(skb, nexthdr, off); 4710 if (IS_ERR(csum)) 4711 return PTR_ERR(csum); 4712 4713 if (recalculate) 4714 *csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr, 4715 &ipv6_hdr(skb)->daddr, 4716 skb->len - off, nexthdr, 0); 4717 err = 0; 4718 4719 out: 4720 return err; 4721 } 4722 4723 /** 4724 * skb_checksum_setup - set up partial checksum offset 4725 * @skb: the skb to set up 4726 * @recalculate: if true the pseudo-header checksum will be recalculated 4727 */ 4728 int skb_checksum_setup(struct sk_buff *skb, bool recalculate) 4729 { 4730 int err; 4731 4732 switch (skb->protocol) { 4733 case htons(ETH_P_IP): 4734 err = skb_checksum_setup_ipv4(skb, recalculate); 4735 break; 4736 4737 case htons(ETH_P_IPV6): 4738 err = skb_checksum_setup_ipv6(skb, recalculate); 4739 break; 4740 4741 default: 4742 err = -EPROTO; 4743 break; 4744 } 4745 4746 return err; 4747 } 4748 EXPORT_SYMBOL(skb_checksum_setup); 4749 4750 /** 4751 * skb_checksum_maybe_trim - maybe trims the given skb 4752 * @skb: the skb to check 4753 * @transport_len: the data length beyond the network header 4754 * 4755 * Checks whether the given skb has data beyond the given transport length. 4756 * If so, returns a cloned skb trimmed to this transport length. 4757 * Otherwise returns the provided skb. Returns NULL in error cases 4758 * (e.g. transport_len exceeds skb length or out-of-memory). 4759 * 4760 * Caller needs to set the skb transport header and free any returned skb if it 4761 * differs from the provided skb. 4762 */ 4763 static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb, 4764 unsigned int transport_len) 4765 { 4766 struct sk_buff *skb_chk; 4767 unsigned int len = skb_transport_offset(skb) + transport_len; 4768 int ret; 4769 4770 if (skb->len < len) 4771 return NULL; 4772 else if (skb->len == len) 4773 return skb; 4774 4775 skb_chk = skb_clone(skb, GFP_ATOMIC); 4776 if (!skb_chk) 4777 return NULL; 4778 4779 ret = pskb_trim_rcsum(skb_chk, len); 4780 if (ret) { 4781 kfree_skb(skb_chk); 4782 return NULL; 4783 } 4784 4785 return skb_chk; 4786 } 4787 4788 /** 4789 * skb_checksum_trimmed - validate checksum of an skb 4790 * @skb: the skb to check 4791 * @transport_len: the data length beyond the network header 4792 * @skb_chkf: checksum function to use 4793 * 4794 * Applies the given checksum function skb_chkf to the provided skb. 4795 * Returns a checked and maybe trimmed skb. Returns NULL on error. 4796 * 4797 * If the skb has data beyond the given transport length, then a 4798 * trimmed & cloned skb is checked and returned. 4799 * 4800 * Caller needs to set the skb transport header and free any returned skb if it 4801 * differs from the provided skb. 4802 */ 4803 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb, 4804 unsigned int transport_len, 4805 __sum16(*skb_chkf)(struct sk_buff *skb)) 4806 { 4807 struct sk_buff *skb_chk; 4808 unsigned int offset = skb_transport_offset(skb); 4809 __sum16 ret; 4810 4811 skb_chk = skb_checksum_maybe_trim(skb, transport_len); 4812 if (!skb_chk) 4813 goto err; 4814 4815 if (!pskb_may_pull(skb_chk, offset)) 4816 goto err; 4817 4818 skb_pull_rcsum(skb_chk, offset); 4819 ret = skb_chkf(skb_chk); 4820 skb_push_rcsum(skb_chk, offset); 4821 4822 if (ret) 4823 goto err; 4824 4825 return skb_chk; 4826 4827 err: 4828 if (skb_chk && skb_chk != skb) 4829 kfree_skb(skb_chk); 4830 4831 return NULL; 4832 4833 } 4834 EXPORT_SYMBOL(skb_checksum_trimmed); 4835 4836 void __skb_warn_lro_forwarding(const struct sk_buff *skb) 4837 { 4838 net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n", 4839 skb->dev->name); 4840 } 4841 EXPORT_SYMBOL(__skb_warn_lro_forwarding); 4842 4843 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen) 4844 { 4845 if (head_stolen) { 4846 skb_release_head_state(skb); 4847 kmem_cache_free(skbuff_head_cache, skb); 4848 } else { 4849 __kfree_skb(skb); 4850 } 4851 } 4852 EXPORT_SYMBOL(kfree_skb_partial); 4853 4854 /** 4855 * skb_try_coalesce - try to merge skb to prior one 4856 * @to: prior buffer 4857 * @from: buffer to add 4858 * @fragstolen: pointer to boolean 4859 * @delta_truesize: how much more was allocated than was requested 4860 */ 4861 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from, 4862 bool *fragstolen, int *delta_truesize) 4863 { 4864 struct skb_shared_info *to_shinfo, *from_shinfo; 4865 int i, delta, len = from->len; 4866 4867 *fragstolen = false; 4868 4869 if (skb_cloned(to)) 4870 return false; 4871 4872 if (len <= skb_tailroom(to)) { 4873 if (len) 4874 BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len)); 4875 *delta_truesize = 0; 4876 return true; 4877 } 4878 4879 to_shinfo = skb_shinfo(to); 4880 from_shinfo = skb_shinfo(from); 4881 if (to_shinfo->frag_list || from_shinfo->frag_list) 4882 return false; 4883 if (skb_zcopy(to) || skb_zcopy(from)) 4884 return false; 4885 4886 if (skb_headlen(from) != 0) { 4887 struct page *page; 4888 unsigned int offset; 4889 4890 if (to_shinfo->nr_frags + 4891 from_shinfo->nr_frags >= MAX_SKB_FRAGS) 4892 return false; 4893 4894 if (skb_head_is_locked(from)) 4895 return false; 4896 4897 delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff)); 4898 4899 page = virt_to_head_page(from->head); 4900 offset = from->data - (unsigned char *)page_address(page); 4901 4902 skb_fill_page_desc(to, to_shinfo->nr_frags, 4903 page, offset, skb_headlen(from)); 4904 *fragstolen = true; 4905 } else { 4906 if (to_shinfo->nr_frags + 4907 from_shinfo->nr_frags > MAX_SKB_FRAGS) 4908 return false; 4909 4910 delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from)); 4911 } 4912 4913 WARN_ON_ONCE(delta < len); 4914 4915 memcpy(to_shinfo->frags + to_shinfo->nr_frags, 4916 from_shinfo->frags, 4917 from_shinfo->nr_frags * sizeof(skb_frag_t)); 4918 to_shinfo->nr_frags += from_shinfo->nr_frags; 4919 4920 if (!skb_cloned(from)) 4921 from_shinfo->nr_frags = 0; 4922 4923 /* if the skb is not cloned this does nothing 4924 * since we set nr_frags to 0. 4925 */ 4926 for (i = 0; i < from_shinfo->nr_frags; i++) 4927 __skb_frag_ref(&from_shinfo->frags[i]); 4928 4929 to->truesize += delta; 4930 to->len += len; 4931 to->data_len += len; 4932 4933 *delta_truesize = delta; 4934 return true; 4935 } 4936 EXPORT_SYMBOL(skb_try_coalesce); 4937 4938 /** 4939 * skb_scrub_packet - scrub an skb 4940 * 4941 * @skb: buffer to clean 4942 * @xnet: packet is crossing netns 4943 * 4944 * skb_scrub_packet can be used after encapsulating or decapsulting a packet 4945 * into/from a tunnel. Some information have to be cleared during these 4946 * operations. 4947 * skb_scrub_packet can also be used to clean a skb before injecting it in 4948 * another namespace (@xnet == true). We have to clear all information in the 4949 * skb that could impact namespace isolation. 4950 */ 4951 void skb_scrub_packet(struct sk_buff *skb, bool xnet) 4952 { 4953 skb->pkt_type = PACKET_HOST; 4954 skb->skb_iif = 0; 4955 skb->ignore_df = 0; 4956 skb_dst_drop(skb); 4957 secpath_reset(skb); 4958 nf_reset(skb); 4959 nf_reset_trace(skb); 4960 4961 #ifdef CONFIG_NET_SWITCHDEV 4962 skb->offload_fwd_mark = 0; 4963 skb->offload_l3_fwd_mark = 0; 4964 #endif 4965 4966 if (!xnet) 4967 return; 4968 4969 ipvs_reset(skb); 4970 skb->mark = 0; 4971 skb->tstamp = 0; 4972 } 4973 EXPORT_SYMBOL_GPL(skb_scrub_packet); 4974 4975 /** 4976 * skb_gso_transport_seglen - Return length of individual segments of a gso packet 4977 * 4978 * @skb: GSO skb 4979 * 4980 * skb_gso_transport_seglen is used to determine the real size of the 4981 * individual segments, including Layer4 headers (TCP/UDP). 4982 * 4983 * The MAC/L2 or network (IP, IPv6) headers are not accounted for. 4984 */ 4985 static unsigned int skb_gso_transport_seglen(const struct sk_buff *skb) 4986 { 4987 const struct skb_shared_info *shinfo = skb_shinfo(skb); 4988 unsigned int thlen = 0; 4989 4990 if (skb->encapsulation) { 4991 thlen = skb_inner_transport_header(skb) - 4992 skb_transport_header(skb); 4993 4994 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) 4995 thlen += inner_tcp_hdrlen(skb); 4996 } else if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) { 4997 thlen = tcp_hdrlen(skb); 4998 } else if (unlikely(skb_is_gso_sctp(skb))) { 4999 thlen = sizeof(struct sctphdr); 5000 } else if (shinfo->gso_type & SKB_GSO_UDP_L4) { 5001 thlen = sizeof(struct udphdr); 5002 } 5003 /* UFO sets gso_size to the size of the fragmentation 5004 * payload, i.e. the size of the L4 (UDP) header is already 5005 * accounted for. 5006 */ 5007 return thlen + shinfo->gso_size; 5008 } 5009 5010 /** 5011 * skb_gso_network_seglen - Return length of individual segments of a gso packet 5012 * 5013 * @skb: GSO skb 5014 * 5015 * skb_gso_network_seglen is used to determine the real size of the 5016 * individual segments, including Layer3 (IP, IPv6) and L4 headers (TCP/UDP). 5017 * 5018 * The MAC/L2 header is not accounted for. 5019 */ 5020 static unsigned int skb_gso_network_seglen(const struct sk_buff *skb) 5021 { 5022 unsigned int hdr_len = skb_transport_header(skb) - 5023 skb_network_header(skb); 5024 5025 return hdr_len + skb_gso_transport_seglen(skb); 5026 } 5027 5028 /** 5029 * skb_gso_mac_seglen - Return length of individual segments of a gso packet 5030 * 5031 * @skb: GSO skb 5032 * 5033 * skb_gso_mac_seglen is used to determine the real size of the 5034 * individual segments, including MAC/L2, Layer3 (IP, IPv6) and L4 5035 * headers (TCP/UDP). 5036 */ 5037 static unsigned int skb_gso_mac_seglen(const struct sk_buff *skb) 5038 { 5039 unsigned int hdr_len = skb_transport_header(skb) - skb_mac_header(skb); 5040 5041 return hdr_len + skb_gso_transport_seglen(skb); 5042 } 5043 5044 /** 5045 * skb_gso_size_check - check the skb size, considering GSO_BY_FRAGS 5046 * 5047 * There are a couple of instances where we have a GSO skb, and we 5048 * want to determine what size it would be after it is segmented. 5049 * 5050 * We might want to check: 5051 * - L3+L4+payload size (e.g. IP forwarding) 5052 * - L2+L3+L4+payload size (e.g. sanity check before passing to driver) 5053 * 5054 * This is a helper to do that correctly considering GSO_BY_FRAGS. 5055 * 5056 * @skb: GSO skb 5057 * 5058 * @seg_len: The segmented length (from skb_gso_*_seglen). In the 5059 * GSO_BY_FRAGS case this will be [header sizes + GSO_BY_FRAGS]. 5060 * 5061 * @max_len: The maximum permissible length. 5062 * 5063 * Returns true if the segmented length <= max length. 5064 */ 5065 static inline bool skb_gso_size_check(const struct sk_buff *skb, 5066 unsigned int seg_len, 5067 unsigned int max_len) { 5068 const struct skb_shared_info *shinfo = skb_shinfo(skb); 5069 const struct sk_buff *iter; 5070 5071 if (shinfo->gso_size != GSO_BY_FRAGS) 5072 return seg_len <= max_len; 5073 5074 /* Undo this so we can re-use header sizes */ 5075 seg_len -= GSO_BY_FRAGS; 5076 5077 skb_walk_frags(skb, iter) { 5078 if (seg_len + skb_headlen(iter) > max_len) 5079 return false; 5080 } 5081 5082 return true; 5083 } 5084 5085 /** 5086 * skb_gso_validate_network_len - Will a split GSO skb fit into a given MTU? 5087 * 5088 * @skb: GSO skb 5089 * @mtu: MTU to validate against 5090 * 5091 * skb_gso_validate_network_len validates if a given skb will fit a 5092 * wanted MTU once split. It considers L3 headers, L4 headers, and the 5093 * payload. 5094 */ 5095 bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu) 5096 { 5097 return skb_gso_size_check(skb, skb_gso_network_seglen(skb), mtu); 5098 } 5099 EXPORT_SYMBOL_GPL(skb_gso_validate_network_len); 5100 5101 /** 5102 * skb_gso_validate_mac_len - Will a split GSO skb fit in a given length? 5103 * 5104 * @skb: GSO skb 5105 * @len: length to validate against 5106 * 5107 * skb_gso_validate_mac_len validates if a given skb will fit a wanted 5108 * length once split, including L2, L3 and L4 headers and the payload. 5109 */ 5110 bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len) 5111 { 5112 return skb_gso_size_check(skb, skb_gso_mac_seglen(skb), len); 5113 } 5114 EXPORT_SYMBOL_GPL(skb_gso_validate_mac_len); 5115 5116 static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb) 5117 { 5118 int mac_len, meta_len; 5119 void *meta; 5120 5121 if (skb_cow(skb, skb_headroom(skb)) < 0) { 5122 kfree_skb(skb); 5123 return NULL; 5124 } 5125 5126 mac_len = skb->data - skb_mac_header(skb); 5127 if (likely(mac_len > VLAN_HLEN + ETH_TLEN)) { 5128 memmove(skb_mac_header(skb) + VLAN_HLEN, skb_mac_header(skb), 5129 mac_len - VLAN_HLEN - ETH_TLEN); 5130 } 5131 5132 meta_len = skb_metadata_len(skb); 5133 if (meta_len) { 5134 meta = skb_metadata_end(skb) - meta_len; 5135 memmove(meta + VLAN_HLEN, meta, meta_len); 5136 } 5137 5138 skb->mac_header += VLAN_HLEN; 5139 return skb; 5140 } 5141 5142 struct sk_buff *skb_vlan_untag(struct sk_buff *skb) 5143 { 5144 struct vlan_hdr *vhdr; 5145 u16 vlan_tci; 5146 5147 if (unlikely(skb_vlan_tag_present(skb))) { 5148 /* vlan_tci is already set-up so leave this for another time */ 5149 return skb; 5150 } 5151 5152 skb = skb_share_check(skb, GFP_ATOMIC); 5153 if (unlikely(!skb)) 5154 goto err_free; 5155 5156 if (unlikely(!pskb_may_pull(skb, VLAN_HLEN))) 5157 goto err_free; 5158 5159 vhdr = (struct vlan_hdr *)skb->data; 5160 vlan_tci = ntohs(vhdr->h_vlan_TCI); 5161 __vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci); 5162 5163 skb_pull_rcsum(skb, VLAN_HLEN); 5164 vlan_set_encap_proto(skb, vhdr); 5165 5166 skb = skb_reorder_vlan_header(skb); 5167 if (unlikely(!skb)) 5168 goto err_free; 5169 5170 skb_reset_network_header(skb); 5171 skb_reset_transport_header(skb); 5172 skb_reset_mac_len(skb); 5173 5174 return skb; 5175 5176 err_free: 5177 kfree_skb(skb); 5178 return NULL; 5179 } 5180 EXPORT_SYMBOL(skb_vlan_untag); 5181 5182 int skb_ensure_writable(struct sk_buff *skb, int write_len) 5183 { 5184 if (!pskb_may_pull(skb, write_len)) 5185 return -ENOMEM; 5186 5187 if (!skb_cloned(skb) || skb_clone_writable(skb, write_len)) 5188 return 0; 5189 5190 return pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 5191 } 5192 EXPORT_SYMBOL(skb_ensure_writable); 5193 5194 /* remove VLAN header from packet and update csum accordingly. 5195 * expects a non skb_vlan_tag_present skb with a vlan tag payload 5196 */ 5197 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci) 5198 { 5199 struct vlan_hdr *vhdr; 5200 int offset = skb->data - skb_mac_header(skb); 5201 int err; 5202 5203 if (WARN_ONCE(offset, 5204 "__skb_vlan_pop got skb with skb->data not at mac header (offset %d)\n", 5205 offset)) { 5206 return -EINVAL; 5207 } 5208 5209 err = skb_ensure_writable(skb, VLAN_ETH_HLEN); 5210 if (unlikely(err)) 5211 return err; 5212 5213 skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN); 5214 5215 vhdr = (struct vlan_hdr *)(skb->data + ETH_HLEN); 5216 *vlan_tci = ntohs(vhdr->h_vlan_TCI); 5217 5218 memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN); 5219 __skb_pull(skb, VLAN_HLEN); 5220 5221 vlan_set_encap_proto(skb, vhdr); 5222 skb->mac_header += VLAN_HLEN; 5223 5224 if (skb_network_offset(skb) < ETH_HLEN) 5225 skb_set_network_header(skb, ETH_HLEN); 5226 5227 skb_reset_mac_len(skb); 5228 5229 return err; 5230 } 5231 EXPORT_SYMBOL(__skb_vlan_pop); 5232 5233 /* Pop a vlan tag either from hwaccel or from payload. 5234 * Expects skb->data at mac header. 5235 */ 5236 int skb_vlan_pop(struct sk_buff *skb) 5237 { 5238 u16 vlan_tci; 5239 __be16 vlan_proto; 5240 int err; 5241 5242 if (likely(skb_vlan_tag_present(skb))) { 5243 __vlan_hwaccel_clear_tag(skb); 5244 } else { 5245 if (unlikely(!eth_type_vlan(skb->protocol))) 5246 return 0; 5247 5248 err = __skb_vlan_pop(skb, &vlan_tci); 5249 if (err) 5250 return err; 5251 } 5252 /* move next vlan tag to hw accel tag */ 5253 if (likely(!eth_type_vlan(skb->protocol))) 5254 return 0; 5255 5256 vlan_proto = skb->protocol; 5257 err = __skb_vlan_pop(skb, &vlan_tci); 5258 if (unlikely(err)) 5259 return err; 5260 5261 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci); 5262 return 0; 5263 } 5264 EXPORT_SYMBOL(skb_vlan_pop); 5265 5266 /* Push a vlan tag either into hwaccel or into payload (if hwaccel tag present). 5267 * Expects skb->data at mac header. 5268 */ 5269 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci) 5270 { 5271 if (skb_vlan_tag_present(skb)) { 5272 int offset = skb->data - skb_mac_header(skb); 5273 int err; 5274 5275 if (WARN_ONCE(offset, 5276 "skb_vlan_push got skb with skb->data not at mac header (offset %d)\n", 5277 offset)) { 5278 return -EINVAL; 5279 } 5280 5281 err = __vlan_insert_tag(skb, skb->vlan_proto, 5282 skb_vlan_tag_get(skb)); 5283 if (err) 5284 return err; 5285 5286 skb->protocol = skb->vlan_proto; 5287 skb->mac_len += VLAN_HLEN; 5288 5289 skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN); 5290 } 5291 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci); 5292 return 0; 5293 } 5294 EXPORT_SYMBOL(skb_vlan_push); 5295 5296 /** 5297 * alloc_skb_with_frags - allocate skb with page frags 5298 * 5299 * @header_len: size of linear part 5300 * @data_len: needed length in frags 5301 * @max_page_order: max page order desired. 5302 * @errcode: pointer to error code if any 5303 * @gfp_mask: allocation mask 5304 * 5305 * This can be used to allocate a paged skb, given a maximal order for frags. 5306 */ 5307 struct sk_buff *alloc_skb_with_frags(unsigned long header_len, 5308 unsigned long data_len, 5309 int max_page_order, 5310 int *errcode, 5311 gfp_t gfp_mask) 5312 { 5313 int npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT; 5314 unsigned long chunk; 5315 struct sk_buff *skb; 5316 struct page *page; 5317 int i; 5318 5319 *errcode = -EMSGSIZE; 5320 /* Note this test could be relaxed, if we succeed to allocate 5321 * high order pages... 5322 */ 5323 if (npages > MAX_SKB_FRAGS) 5324 return NULL; 5325 5326 *errcode = -ENOBUFS; 5327 skb = alloc_skb(header_len, gfp_mask); 5328 if (!skb) 5329 return NULL; 5330 5331 skb->truesize += npages << PAGE_SHIFT; 5332 5333 for (i = 0; npages > 0; i++) { 5334 int order = max_page_order; 5335 5336 while (order) { 5337 if (npages >= 1 << order) { 5338 page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) | 5339 __GFP_COMP | 5340 __GFP_NOWARN, 5341 order); 5342 if (page) 5343 goto fill_page; 5344 /* Do not retry other high order allocations */ 5345 order = 1; 5346 max_page_order = 0; 5347 } 5348 order--; 5349 } 5350 page = alloc_page(gfp_mask); 5351 if (!page) 5352 goto failure; 5353 fill_page: 5354 chunk = min_t(unsigned long, data_len, 5355 PAGE_SIZE << order); 5356 skb_fill_page_desc(skb, i, page, 0, chunk); 5357 data_len -= chunk; 5358 npages -= 1 << order; 5359 } 5360 return skb; 5361 5362 failure: 5363 kfree_skb(skb); 5364 return NULL; 5365 } 5366 EXPORT_SYMBOL(alloc_skb_with_frags); 5367 5368 /* carve out the first off bytes from skb when off < headlen */ 5369 static int pskb_carve_inside_header(struct sk_buff *skb, const u32 off, 5370 const int headlen, gfp_t gfp_mask) 5371 { 5372 int i; 5373 int size = skb_end_offset(skb); 5374 int new_hlen = headlen - off; 5375 u8 *data; 5376 5377 size = SKB_DATA_ALIGN(size); 5378 5379 if (skb_pfmemalloc(skb)) 5380 gfp_mask |= __GFP_MEMALLOC; 5381 data = kmalloc_reserve(size + 5382 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)), 5383 gfp_mask, NUMA_NO_NODE, NULL); 5384 if (!data) 5385 return -ENOMEM; 5386 5387 size = SKB_WITH_OVERHEAD(ksize(data)); 5388 5389 /* Copy real data, and all frags */ 5390 skb_copy_from_linear_data_offset(skb, off, data, new_hlen); 5391 skb->len -= off; 5392 5393 memcpy((struct skb_shared_info *)(data + size), 5394 skb_shinfo(skb), 5395 offsetof(struct skb_shared_info, 5396 frags[skb_shinfo(skb)->nr_frags])); 5397 if (skb_cloned(skb)) { 5398 /* drop the old head gracefully */ 5399 if (skb_orphan_frags(skb, gfp_mask)) { 5400 kfree(data); 5401 return -ENOMEM; 5402 } 5403 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 5404 skb_frag_ref(skb, i); 5405 if (skb_has_frag_list(skb)) 5406 skb_clone_fraglist(skb); 5407 skb_release_data(skb); 5408 } else { 5409 /* we can reuse existing recount- all we did was 5410 * relocate values 5411 */ 5412 skb_free_head(skb); 5413 } 5414 5415 skb->head = data; 5416 skb->data = data; 5417 skb->head_frag = 0; 5418 #ifdef NET_SKBUFF_DATA_USES_OFFSET 5419 skb->end = size; 5420 #else 5421 skb->end = skb->head + size; 5422 #endif 5423 skb_set_tail_pointer(skb, skb_headlen(skb)); 5424 skb_headers_offset_update(skb, 0); 5425 skb->cloned = 0; 5426 skb->hdr_len = 0; 5427 skb->nohdr = 0; 5428 atomic_set(&skb_shinfo(skb)->dataref, 1); 5429 5430 return 0; 5431 } 5432 5433 static int pskb_carve(struct sk_buff *skb, const u32 off, gfp_t gfp); 5434 5435 /* carve out the first eat bytes from skb's frag_list. May recurse into 5436 * pskb_carve() 5437 */ 5438 static int pskb_carve_frag_list(struct sk_buff *skb, 5439 struct skb_shared_info *shinfo, int eat, 5440 gfp_t gfp_mask) 5441 { 5442 struct sk_buff *list = shinfo->frag_list; 5443 struct sk_buff *clone = NULL; 5444 struct sk_buff *insp = NULL; 5445 5446 do { 5447 if (!list) { 5448 pr_err("Not enough bytes to eat. Want %d\n", eat); 5449 return -EFAULT; 5450 } 5451 if (list->len <= eat) { 5452 /* Eaten as whole. */ 5453 eat -= list->len; 5454 list = list->next; 5455 insp = list; 5456 } else { 5457 /* Eaten partially. */ 5458 if (skb_shared(list)) { 5459 clone = skb_clone(list, gfp_mask); 5460 if (!clone) 5461 return -ENOMEM; 5462 insp = list->next; 5463 list = clone; 5464 } else { 5465 /* This may be pulled without problems. */ 5466 insp = list; 5467 } 5468 if (pskb_carve(list, eat, gfp_mask) < 0) { 5469 kfree_skb(clone); 5470 return -ENOMEM; 5471 } 5472 break; 5473 } 5474 } while (eat); 5475 5476 /* Free pulled out fragments. */ 5477 while ((list = shinfo->frag_list) != insp) { 5478 shinfo->frag_list = list->next; 5479 kfree_skb(list); 5480 } 5481 /* And insert new clone at head. */ 5482 if (clone) { 5483 clone->next = list; 5484 shinfo->frag_list = clone; 5485 } 5486 return 0; 5487 } 5488 5489 /* carve off first len bytes from skb. Split line (off) is in the 5490 * non-linear part of skb 5491 */ 5492 static int pskb_carve_inside_nonlinear(struct sk_buff *skb, const u32 off, 5493 int pos, gfp_t gfp_mask) 5494 { 5495 int i, k = 0; 5496 int size = skb_end_offset(skb); 5497 u8 *data; 5498 const int nfrags = skb_shinfo(skb)->nr_frags; 5499 struct skb_shared_info *shinfo; 5500 5501 size = SKB_DATA_ALIGN(size); 5502 5503 if (skb_pfmemalloc(skb)) 5504 gfp_mask |= __GFP_MEMALLOC; 5505 data = kmalloc_reserve(size + 5506 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)), 5507 gfp_mask, NUMA_NO_NODE, NULL); 5508 if (!data) 5509 return -ENOMEM; 5510 5511 size = SKB_WITH_OVERHEAD(ksize(data)); 5512 5513 memcpy((struct skb_shared_info *)(data + size), 5514 skb_shinfo(skb), offsetof(struct skb_shared_info, 5515 frags[skb_shinfo(skb)->nr_frags])); 5516 if (skb_orphan_frags(skb, gfp_mask)) { 5517 kfree(data); 5518 return -ENOMEM; 5519 } 5520 shinfo = (struct skb_shared_info *)(data + size); 5521 for (i = 0; i < nfrags; i++) { 5522 int fsize = skb_frag_size(&skb_shinfo(skb)->frags[i]); 5523 5524 if (pos + fsize > off) { 5525 shinfo->frags[k] = skb_shinfo(skb)->frags[i]; 5526 5527 if (pos < off) { 5528 /* Split frag. 5529 * We have two variants in this case: 5530 * 1. Move all the frag to the second 5531 * part, if it is possible. F.e. 5532 * this approach is mandatory for TUX, 5533 * where splitting is expensive. 5534 * 2. Split is accurately. We make this. 5535 */ 5536 shinfo->frags[0].page_offset += off - pos; 5537 skb_frag_size_sub(&shinfo->frags[0], off - pos); 5538 } 5539 skb_frag_ref(skb, i); 5540 k++; 5541 } 5542 pos += fsize; 5543 } 5544 shinfo->nr_frags = k; 5545 if (skb_has_frag_list(skb)) 5546 skb_clone_fraglist(skb); 5547 5548 if (k == 0) { 5549 /* split line is in frag list */ 5550 pskb_carve_frag_list(skb, shinfo, off - pos, gfp_mask); 5551 } 5552 skb_release_data(skb); 5553 5554 skb->head = data; 5555 skb->head_frag = 0; 5556 skb->data = data; 5557 #ifdef NET_SKBUFF_DATA_USES_OFFSET 5558 skb->end = size; 5559 #else 5560 skb->end = skb->head + size; 5561 #endif 5562 skb_reset_tail_pointer(skb); 5563 skb_headers_offset_update(skb, 0); 5564 skb->cloned = 0; 5565 skb->hdr_len = 0; 5566 skb->nohdr = 0; 5567 skb->len -= off; 5568 skb->data_len = skb->len; 5569 atomic_set(&skb_shinfo(skb)->dataref, 1); 5570 return 0; 5571 } 5572 5573 /* remove len bytes from the beginning of the skb */ 5574 static int pskb_carve(struct sk_buff *skb, const u32 len, gfp_t gfp) 5575 { 5576 int headlen = skb_headlen(skb); 5577 5578 if (len < headlen) 5579 return pskb_carve_inside_header(skb, len, headlen, gfp); 5580 else 5581 return pskb_carve_inside_nonlinear(skb, len, headlen, gfp); 5582 } 5583 5584 /* Extract to_copy bytes starting at off from skb, and return this in 5585 * a new skb 5586 */ 5587 struct sk_buff *pskb_extract(struct sk_buff *skb, int off, 5588 int to_copy, gfp_t gfp) 5589 { 5590 struct sk_buff *clone = skb_clone(skb, gfp); 5591 5592 if (!clone) 5593 return NULL; 5594 5595 if (pskb_carve(clone, off, gfp) < 0 || 5596 pskb_trim(clone, to_copy)) { 5597 kfree_skb(clone); 5598 return NULL; 5599 } 5600 return clone; 5601 } 5602 EXPORT_SYMBOL(pskb_extract); 5603 5604 /** 5605 * skb_condense - try to get rid of fragments/frag_list if possible 5606 * @skb: buffer 5607 * 5608 * Can be used to save memory before skb is added to a busy queue. 5609 * If packet has bytes in frags and enough tail room in skb->head, 5610 * pull all of them, so that we can free the frags right now and adjust 5611 * truesize. 5612 * Notes: 5613 * We do not reallocate skb->head thus can not fail. 5614 * Caller must re-evaluate skb->truesize if needed. 5615 */ 5616 void skb_condense(struct sk_buff *skb) 5617 { 5618 if (skb->data_len) { 5619 if (skb->data_len > skb->end - skb->tail || 5620 skb_cloned(skb)) 5621 return; 5622 5623 /* Nice, we can free page frag(s) right now */ 5624 __pskb_pull_tail(skb, skb->data_len); 5625 } 5626 /* At this point, skb->truesize might be over estimated, 5627 * because skb had a fragment, and fragments do not tell 5628 * their truesize. 5629 * When we pulled its content into skb->head, fragment 5630 * was freed, but __pskb_pull_tail() could not possibly 5631 * adjust skb->truesize, not knowing the frag truesize. 5632 */ 5633 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb)); 5634 } 5635 5636 #ifdef CONFIG_SKB_EXTENSIONS 5637 static void *skb_ext_get_ptr(struct skb_ext *ext, enum skb_ext_id id) 5638 { 5639 return (void *)ext + (ext->offset[id] * SKB_EXT_ALIGN_VALUE); 5640 } 5641 5642 static struct skb_ext *skb_ext_alloc(void) 5643 { 5644 struct skb_ext *new = kmem_cache_alloc(skbuff_ext_cache, GFP_ATOMIC); 5645 5646 if (new) { 5647 memset(new->offset, 0, sizeof(new->offset)); 5648 refcount_set(&new->refcnt, 1); 5649 } 5650 5651 return new; 5652 } 5653 5654 static struct skb_ext *skb_ext_maybe_cow(struct skb_ext *old, 5655 unsigned int old_active) 5656 { 5657 struct skb_ext *new; 5658 5659 if (refcount_read(&old->refcnt) == 1) 5660 return old; 5661 5662 new = kmem_cache_alloc(skbuff_ext_cache, GFP_ATOMIC); 5663 if (!new) 5664 return NULL; 5665 5666 memcpy(new, old, old->chunks * SKB_EXT_ALIGN_VALUE); 5667 refcount_set(&new->refcnt, 1); 5668 5669 #ifdef CONFIG_XFRM 5670 if (old_active & (1 << SKB_EXT_SEC_PATH)) { 5671 struct sec_path *sp = skb_ext_get_ptr(old, SKB_EXT_SEC_PATH); 5672 unsigned int i; 5673 5674 for (i = 0; i < sp->len; i++) 5675 xfrm_state_hold(sp->xvec[i]); 5676 } 5677 #endif 5678 __skb_ext_put(old); 5679 return new; 5680 } 5681 5682 /** 5683 * skb_ext_add - allocate space for given extension, COW if needed 5684 * @skb: buffer 5685 * @id: extension to allocate space for 5686 * 5687 * Allocates enough space for the given extension. 5688 * If the extension is already present, a pointer to that extension 5689 * is returned. 5690 * 5691 * If the skb was cloned, COW applies and the returned memory can be 5692 * modified without changing the extension space of clones buffers. 5693 * 5694 * Returns pointer to the extension or NULL on allocation failure. 5695 */ 5696 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id) 5697 { 5698 struct skb_ext *new, *old = NULL; 5699 unsigned int newlen, newoff; 5700 5701 if (skb->active_extensions) { 5702 old = skb->extensions; 5703 5704 new = skb_ext_maybe_cow(old, skb->active_extensions); 5705 if (!new) 5706 return NULL; 5707 5708 if (__skb_ext_exist(new, id)) 5709 goto set_active; 5710 5711 newoff = new->chunks; 5712 } else { 5713 newoff = SKB_EXT_CHUNKSIZEOF(*new); 5714 5715 new = skb_ext_alloc(); 5716 if (!new) 5717 return NULL; 5718 } 5719 5720 newlen = newoff + skb_ext_type_len[id]; 5721 new->chunks = newlen; 5722 new->offset[id] = newoff; 5723 set_active: 5724 skb->extensions = new; 5725 skb->active_extensions |= 1 << id; 5726 return skb_ext_get_ptr(new, id); 5727 } 5728 EXPORT_SYMBOL(skb_ext_add); 5729 5730 #ifdef CONFIG_XFRM 5731 static void skb_ext_put_sp(struct sec_path *sp) 5732 { 5733 unsigned int i; 5734 5735 for (i = 0; i < sp->len; i++) 5736 xfrm_state_put(sp->xvec[i]); 5737 } 5738 #endif 5739 5740 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id) 5741 { 5742 struct skb_ext *ext = skb->extensions; 5743 5744 skb->active_extensions &= ~(1 << id); 5745 if (skb->active_extensions == 0) { 5746 skb->extensions = NULL; 5747 __skb_ext_put(ext); 5748 #ifdef CONFIG_XFRM 5749 } else if (id == SKB_EXT_SEC_PATH && 5750 refcount_read(&ext->refcnt) == 1) { 5751 struct sec_path *sp = skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH); 5752 5753 skb_ext_put_sp(sp); 5754 sp->len = 0; 5755 #endif 5756 } 5757 } 5758 EXPORT_SYMBOL(__skb_ext_del); 5759 5760 void __skb_ext_put(struct skb_ext *ext) 5761 { 5762 /* If this is last clone, nothing can increment 5763 * it after check passes. Avoids one atomic op. 5764 */ 5765 if (refcount_read(&ext->refcnt) == 1) 5766 goto free_now; 5767 5768 if (!refcount_dec_and_test(&ext->refcnt)) 5769 return; 5770 free_now: 5771 #ifdef CONFIG_XFRM 5772 if (__skb_ext_exist(ext, SKB_EXT_SEC_PATH)) 5773 skb_ext_put_sp(skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH)); 5774 #endif 5775 5776 kmem_cache_free(skbuff_ext_cache, ext); 5777 } 5778 EXPORT_SYMBOL(__skb_ext_put); 5779 #endif /* CONFIG_SKB_EXTENSIONS */ 5780