1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Routines having to do with the 'struct sk_buff' memory handlers. 4 * 5 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk> 6 * Florian La Roche <rzsfl@rz.uni-sb.de> 7 * 8 * Fixes: 9 * Alan Cox : Fixed the worst of the load 10 * balancer bugs. 11 * Dave Platt : Interrupt stacking fix. 12 * Richard Kooijman : Timestamp fixes. 13 * Alan Cox : Changed buffer format. 14 * Alan Cox : destructor hook for AF_UNIX etc. 15 * Linus Torvalds : Better skb_clone. 16 * Alan Cox : Added skb_copy. 17 * Alan Cox : Added all the changed routines Linus 18 * only put in the headers 19 * Ray VanTassle : Fixed --skb->lock in free 20 * Alan Cox : skb_copy copy arp field 21 * Andi Kleen : slabified it. 22 * Robert Olsson : Removed skb_head_pool 23 * 24 * NOTE: 25 * The __skb_ routines should be called with interrupts 26 * disabled, or you better be *real* sure that the operation is atomic 27 * with respect to whatever list is being frobbed (e.g. via lock_sock() 28 * or via disabling bottom half handlers, etc). 29 */ 30 31 /* 32 * The functions in this file will not compile correctly with gcc 2.4.x 33 */ 34 35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 36 37 #include <linux/module.h> 38 #include <linux/types.h> 39 #include <linux/kernel.h> 40 #include <linux/mm.h> 41 #include <linux/interrupt.h> 42 #include <linux/in.h> 43 #include <linux/inet.h> 44 #include <linux/slab.h> 45 #include <linux/tcp.h> 46 #include <linux/udp.h> 47 #include <linux/sctp.h> 48 #include <linux/netdevice.h> 49 #ifdef CONFIG_NET_CLS_ACT 50 #include <net/pkt_sched.h> 51 #endif 52 #include <linux/string.h> 53 #include <linux/skbuff.h> 54 #include <linux/splice.h> 55 #include <linux/cache.h> 56 #include <linux/rtnetlink.h> 57 #include <linux/init.h> 58 #include <linux/scatterlist.h> 59 #include <linux/errqueue.h> 60 #include <linux/prefetch.h> 61 #include <linux/if_vlan.h> 62 #include <linux/mpls.h> 63 #include <linux/kcov.h> 64 65 #include <net/protocol.h> 66 #include <net/dst.h> 67 #include <net/sock.h> 68 #include <net/checksum.h> 69 #include <net/ip6_checksum.h> 70 #include <net/xfrm.h> 71 #include <net/mpls.h> 72 #include <net/mptcp.h> 73 74 #include <linux/uaccess.h> 75 #include <trace/events/skb.h> 76 #include <linux/highmem.h> 77 #include <linux/capability.h> 78 #include <linux/user_namespace.h> 79 #include <linux/indirect_call_wrapper.h> 80 81 #include "datagram.h" 82 83 struct kmem_cache *skbuff_head_cache __ro_after_init; 84 static struct kmem_cache *skbuff_fclone_cache __ro_after_init; 85 #ifdef CONFIG_SKB_EXTENSIONS 86 static struct kmem_cache *skbuff_ext_cache __ro_after_init; 87 #endif 88 int sysctl_max_skb_frags __read_mostly = MAX_SKB_FRAGS; 89 EXPORT_SYMBOL(sysctl_max_skb_frags); 90 91 /** 92 * skb_panic - private function for out-of-line support 93 * @skb: buffer 94 * @sz: size 95 * @addr: address 96 * @msg: skb_over_panic or skb_under_panic 97 * 98 * Out-of-line support for skb_put() and skb_push(). 99 * Called via the wrapper skb_over_panic() or skb_under_panic(). 100 * Keep out of line to prevent kernel bloat. 101 * __builtin_return_address is not used because it is not always reliable. 102 */ 103 static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr, 104 const char msg[]) 105 { 106 pr_emerg("%s: text:%px len:%d put:%d head:%px data:%px tail:%#lx end:%#lx dev:%s\n", 107 msg, addr, skb->len, sz, skb->head, skb->data, 108 (unsigned long)skb->tail, (unsigned long)skb->end, 109 skb->dev ? skb->dev->name : "<NULL>"); 110 BUG(); 111 } 112 113 static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr) 114 { 115 skb_panic(skb, sz, addr, __func__); 116 } 117 118 static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr) 119 { 120 skb_panic(skb, sz, addr, __func__); 121 } 122 123 #define NAPI_SKB_CACHE_SIZE 64 124 #define NAPI_SKB_CACHE_BULK 16 125 #define NAPI_SKB_CACHE_HALF (NAPI_SKB_CACHE_SIZE / 2) 126 127 struct napi_alloc_cache { 128 struct page_frag_cache page; 129 unsigned int skb_count; 130 void *skb_cache[NAPI_SKB_CACHE_SIZE]; 131 }; 132 133 static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache); 134 static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache); 135 136 static void *__alloc_frag_align(unsigned int fragsz, gfp_t gfp_mask, 137 unsigned int align_mask) 138 { 139 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 140 141 return page_frag_alloc_align(&nc->page, fragsz, gfp_mask, align_mask); 142 } 143 144 void *__napi_alloc_frag_align(unsigned int fragsz, unsigned int align_mask) 145 { 146 fragsz = SKB_DATA_ALIGN(fragsz); 147 148 return __alloc_frag_align(fragsz, GFP_ATOMIC, align_mask); 149 } 150 EXPORT_SYMBOL(__napi_alloc_frag_align); 151 152 void *__netdev_alloc_frag_align(unsigned int fragsz, unsigned int align_mask) 153 { 154 struct page_frag_cache *nc; 155 void *data; 156 157 fragsz = SKB_DATA_ALIGN(fragsz); 158 if (in_irq() || irqs_disabled()) { 159 nc = this_cpu_ptr(&netdev_alloc_cache); 160 data = page_frag_alloc_align(nc, fragsz, GFP_ATOMIC, align_mask); 161 } else { 162 local_bh_disable(); 163 data = __alloc_frag_align(fragsz, GFP_ATOMIC, align_mask); 164 local_bh_enable(); 165 } 166 return data; 167 } 168 EXPORT_SYMBOL(__netdev_alloc_frag_align); 169 170 static struct sk_buff *napi_skb_cache_get(void) 171 { 172 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 173 struct sk_buff *skb; 174 175 if (unlikely(!nc->skb_count)) 176 nc->skb_count = kmem_cache_alloc_bulk(skbuff_head_cache, 177 GFP_ATOMIC, 178 NAPI_SKB_CACHE_BULK, 179 nc->skb_cache); 180 if (unlikely(!nc->skb_count)) 181 return NULL; 182 183 skb = nc->skb_cache[--nc->skb_count]; 184 kasan_unpoison_object_data(skbuff_head_cache, skb); 185 186 return skb; 187 } 188 189 /* Caller must provide SKB that is memset cleared */ 190 static void __build_skb_around(struct sk_buff *skb, void *data, 191 unsigned int frag_size) 192 { 193 struct skb_shared_info *shinfo; 194 unsigned int size = frag_size ? : ksize(data); 195 196 size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 197 198 /* Assumes caller memset cleared SKB */ 199 skb->truesize = SKB_TRUESIZE(size); 200 refcount_set(&skb->users, 1); 201 skb->head = data; 202 skb->data = data; 203 skb_reset_tail_pointer(skb); 204 skb->end = skb->tail + size; 205 skb->mac_header = (typeof(skb->mac_header))~0U; 206 skb->transport_header = (typeof(skb->transport_header))~0U; 207 208 /* make sure we initialize shinfo sequentially */ 209 shinfo = skb_shinfo(skb); 210 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref)); 211 atomic_set(&shinfo->dataref, 1); 212 213 skb_set_kcov_handle(skb, kcov_common_handle()); 214 } 215 216 /** 217 * __build_skb - build a network buffer 218 * @data: data buffer provided by caller 219 * @frag_size: size of data, or 0 if head was kmalloced 220 * 221 * Allocate a new &sk_buff. Caller provides space holding head and 222 * skb_shared_info. @data must have been allocated by kmalloc() only if 223 * @frag_size is 0, otherwise data should come from the page allocator 224 * or vmalloc() 225 * The return is the new skb buffer. 226 * On a failure the return is %NULL, and @data is not freed. 227 * Notes : 228 * Before IO, driver allocates only data buffer where NIC put incoming frame 229 * Driver should add room at head (NET_SKB_PAD) and 230 * MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info)) 231 * After IO, driver calls build_skb(), to allocate sk_buff and populate it 232 * before giving packet to stack. 233 * RX rings only contains data buffers, not full skbs. 234 */ 235 struct sk_buff *__build_skb(void *data, unsigned int frag_size) 236 { 237 struct sk_buff *skb; 238 239 skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC); 240 if (unlikely(!skb)) 241 return NULL; 242 243 memset(skb, 0, offsetof(struct sk_buff, tail)); 244 __build_skb_around(skb, data, frag_size); 245 246 return skb; 247 } 248 249 /* build_skb() is wrapper over __build_skb(), that specifically 250 * takes care of skb->head and skb->pfmemalloc 251 * This means that if @frag_size is not zero, then @data must be backed 252 * by a page fragment, not kmalloc() or vmalloc() 253 */ 254 struct sk_buff *build_skb(void *data, unsigned int frag_size) 255 { 256 struct sk_buff *skb = __build_skb(data, frag_size); 257 258 if (skb && frag_size) { 259 skb->head_frag = 1; 260 if (page_is_pfmemalloc(virt_to_head_page(data))) 261 skb->pfmemalloc = 1; 262 } 263 return skb; 264 } 265 EXPORT_SYMBOL(build_skb); 266 267 /** 268 * build_skb_around - build a network buffer around provided skb 269 * @skb: sk_buff provide by caller, must be memset cleared 270 * @data: data buffer provided by caller 271 * @frag_size: size of data, or 0 if head was kmalloced 272 */ 273 struct sk_buff *build_skb_around(struct sk_buff *skb, 274 void *data, unsigned int frag_size) 275 { 276 if (unlikely(!skb)) 277 return NULL; 278 279 __build_skb_around(skb, data, frag_size); 280 281 if (frag_size) { 282 skb->head_frag = 1; 283 if (page_is_pfmemalloc(virt_to_head_page(data))) 284 skb->pfmemalloc = 1; 285 } 286 return skb; 287 } 288 EXPORT_SYMBOL(build_skb_around); 289 290 /** 291 * __napi_build_skb - build a network buffer 292 * @data: data buffer provided by caller 293 * @frag_size: size of data, or 0 if head was kmalloced 294 * 295 * Version of __build_skb() that uses NAPI percpu caches to obtain 296 * skbuff_head instead of inplace allocation. 297 * 298 * Returns a new &sk_buff on success, %NULL on allocation failure. 299 */ 300 static struct sk_buff *__napi_build_skb(void *data, unsigned int frag_size) 301 { 302 struct sk_buff *skb; 303 304 skb = napi_skb_cache_get(); 305 if (unlikely(!skb)) 306 return NULL; 307 308 memset(skb, 0, offsetof(struct sk_buff, tail)); 309 __build_skb_around(skb, data, frag_size); 310 311 return skb; 312 } 313 314 /** 315 * napi_build_skb - build a network buffer 316 * @data: data buffer provided by caller 317 * @frag_size: size of data, or 0 if head was kmalloced 318 * 319 * Version of __napi_build_skb() that takes care of skb->head_frag 320 * and skb->pfmemalloc when the data is a page or page fragment. 321 * 322 * Returns a new &sk_buff on success, %NULL on allocation failure. 323 */ 324 struct sk_buff *napi_build_skb(void *data, unsigned int frag_size) 325 { 326 struct sk_buff *skb = __napi_build_skb(data, frag_size); 327 328 if (likely(skb) && frag_size) { 329 skb->head_frag = 1; 330 skb_propagate_pfmemalloc(virt_to_head_page(data), skb); 331 } 332 333 return skb; 334 } 335 EXPORT_SYMBOL(napi_build_skb); 336 337 /* 338 * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells 339 * the caller if emergency pfmemalloc reserves are being used. If it is and 340 * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves 341 * may be used. Otherwise, the packet data may be discarded until enough 342 * memory is free 343 */ 344 static void *kmalloc_reserve(size_t size, gfp_t flags, int node, 345 bool *pfmemalloc) 346 { 347 void *obj; 348 bool ret_pfmemalloc = false; 349 350 /* 351 * Try a regular allocation, when that fails and we're not entitled 352 * to the reserves, fail. 353 */ 354 obj = kmalloc_node_track_caller(size, 355 flags | __GFP_NOMEMALLOC | __GFP_NOWARN, 356 node); 357 if (obj || !(gfp_pfmemalloc_allowed(flags))) 358 goto out; 359 360 /* Try again but now we are using pfmemalloc reserves */ 361 ret_pfmemalloc = true; 362 obj = kmalloc_node_track_caller(size, flags, node); 363 364 out: 365 if (pfmemalloc) 366 *pfmemalloc = ret_pfmemalloc; 367 368 return obj; 369 } 370 371 /* Allocate a new skbuff. We do this ourselves so we can fill in a few 372 * 'private' fields and also do memory statistics to find all the 373 * [BEEP] leaks. 374 * 375 */ 376 377 /** 378 * __alloc_skb - allocate a network buffer 379 * @size: size to allocate 380 * @gfp_mask: allocation mask 381 * @flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache 382 * instead of head cache and allocate a cloned (child) skb. 383 * If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for 384 * allocations in case the data is required for writeback 385 * @node: numa node to allocate memory on 386 * 387 * Allocate a new &sk_buff. The returned buffer has no headroom and a 388 * tail room of at least size bytes. The object has a reference count 389 * of one. The return is the buffer. On a failure the return is %NULL. 390 * 391 * Buffers may only be allocated from interrupts using a @gfp_mask of 392 * %GFP_ATOMIC. 393 */ 394 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask, 395 int flags, int node) 396 { 397 struct kmem_cache *cache; 398 struct sk_buff *skb; 399 u8 *data; 400 bool pfmemalloc; 401 402 cache = (flags & SKB_ALLOC_FCLONE) 403 ? skbuff_fclone_cache : skbuff_head_cache; 404 405 if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX)) 406 gfp_mask |= __GFP_MEMALLOC; 407 408 /* Get the HEAD */ 409 if ((flags & (SKB_ALLOC_FCLONE | SKB_ALLOC_NAPI)) == SKB_ALLOC_NAPI && 410 likely(node == NUMA_NO_NODE || node == numa_mem_id())) 411 skb = napi_skb_cache_get(); 412 else 413 skb = kmem_cache_alloc_node(cache, gfp_mask & ~GFP_DMA, node); 414 if (unlikely(!skb)) 415 return NULL; 416 prefetchw(skb); 417 418 /* We do our best to align skb_shared_info on a separate cache 419 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives 420 * aligned memory blocks, unless SLUB/SLAB debug is enabled. 421 * Both skb->head and skb_shared_info are cache line aligned. 422 */ 423 size = SKB_DATA_ALIGN(size); 424 size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 425 data = kmalloc_reserve(size, gfp_mask, node, &pfmemalloc); 426 if (unlikely(!data)) 427 goto nodata; 428 /* kmalloc(size) might give us more room than requested. 429 * Put skb_shared_info exactly at the end of allocated zone, 430 * to allow max possible filling before reallocation. 431 */ 432 size = SKB_WITH_OVERHEAD(ksize(data)); 433 prefetchw(data + size); 434 435 /* 436 * Only clear those fields we need to clear, not those that we will 437 * actually initialise below. Hence, don't put any more fields after 438 * the tail pointer in struct sk_buff! 439 */ 440 memset(skb, 0, offsetof(struct sk_buff, tail)); 441 __build_skb_around(skb, data, 0); 442 skb->pfmemalloc = pfmemalloc; 443 444 if (flags & SKB_ALLOC_FCLONE) { 445 struct sk_buff_fclones *fclones; 446 447 fclones = container_of(skb, struct sk_buff_fclones, skb1); 448 449 skb->fclone = SKB_FCLONE_ORIG; 450 refcount_set(&fclones->fclone_ref, 1); 451 452 fclones->skb2.fclone = SKB_FCLONE_CLONE; 453 } 454 455 return skb; 456 457 nodata: 458 kmem_cache_free(cache, skb); 459 return NULL; 460 } 461 EXPORT_SYMBOL(__alloc_skb); 462 463 /** 464 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device 465 * @dev: network device to receive on 466 * @len: length to allocate 467 * @gfp_mask: get_free_pages mask, passed to alloc_skb 468 * 469 * Allocate a new &sk_buff and assign it a usage count of one. The 470 * buffer has NET_SKB_PAD headroom built in. Users should allocate 471 * the headroom they think they need without accounting for the 472 * built in space. The built in space is used for optimisations. 473 * 474 * %NULL is returned if there is no free memory. 475 */ 476 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len, 477 gfp_t gfp_mask) 478 { 479 struct page_frag_cache *nc; 480 struct sk_buff *skb; 481 bool pfmemalloc; 482 void *data; 483 484 len += NET_SKB_PAD; 485 486 /* If requested length is either too small or too big, 487 * we use kmalloc() for skb->head allocation. 488 */ 489 if (len <= SKB_WITH_OVERHEAD(1024) || 490 len > SKB_WITH_OVERHEAD(PAGE_SIZE) || 491 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) { 492 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE); 493 if (!skb) 494 goto skb_fail; 495 goto skb_success; 496 } 497 498 len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 499 len = SKB_DATA_ALIGN(len); 500 501 if (sk_memalloc_socks()) 502 gfp_mask |= __GFP_MEMALLOC; 503 504 if (in_irq() || irqs_disabled()) { 505 nc = this_cpu_ptr(&netdev_alloc_cache); 506 data = page_frag_alloc(nc, len, gfp_mask); 507 pfmemalloc = nc->pfmemalloc; 508 } else { 509 local_bh_disable(); 510 nc = this_cpu_ptr(&napi_alloc_cache.page); 511 data = page_frag_alloc(nc, len, gfp_mask); 512 pfmemalloc = nc->pfmemalloc; 513 local_bh_enable(); 514 } 515 516 if (unlikely(!data)) 517 return NULL; 518 519 skb = __build_skb(data, len); 520 if (unlikely(!skb)) { 521 skb_free_frag(data); 522 return NULL; 523 } 524 525 if (pfmemalloc) 526 skb->pfmemalloc = 1; 527 skb->head_frag = 1; 528 529 skb_success: 530 skb_reserve(skb, NET_SKB_PAD); 531 skb->dev = dev; 532 533 skb_fail: 534 return skb; 535 } 536 EXPORT_SYMBOL(__netdev_alloc_skb); 537 538 /** 539 * __napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance 540 * @napi: napi instance this buffer was allocated for 541 * @len: length to allocate 542 * @gfp_mask: get_free_pages mask, passed to alloc_skb and alloc_pages 543 * 544 * Allocate a new sk_buff for use in NAPI receive. This buffer will 545 * attempt to allocate the head from a special reserved region used 546 * only for NAPI Rx allocation. By doing this we can save several 547 * CPU cycles by avoiding having to disable and re-enable IRQs. 548 * 549 * %NULL is returned if there is no free memory. 550 */ 551 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, unsigned int len, 552 gfp_t gfp_mask) 553 { 554 struct napi_alloc_cache *nc; 555 struct sk_buff *skb; 556 void *data; 557 558 len += NET_SKB_PAD + NET_IP_ALIGN; 559 560 /* If requested length is either too small or too big, 561 * we use kmalloc() for skb->head allocation. 562 */ 563 if (len <= SKB_WITH_OVERHEAD(1024) || 564 len > SKB_WITH_OVERHEAD(PAGE_SIZE) || 565 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) { 566 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX | SKB_ALLOC_NAPI, 567 NUMA_NO_NODE); 568 if (!skb) 569 goto skb_fail; 570 goto skb_success; 571 } 572 573 nc = this_cpu_ptr(&napi_alloc_cache); 574 len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 575 len = SKB_DATA_ALIGN(len); 576 577 if (sk_memalloc_socks()) 578 gfp_mask |= __GFP_MEMALLOC; 579 580 data = page_frag_alloc(&nc->page, len, gfp_mask); 581 if (unlikely(!data)) 582 return NULL; 583 584 skb = __napi_build_skb(data, len); 585 if (unlikely(!skb)) { 586 skb_free_frag(data); 587 return NULL; 588 } 589 590 if (nc->page.pfmemalloc) 591 skb->pfmemalloc = 1; 592 skb->head_frag = 1; 593 594 skb_success: 595 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN); 596 skb->dev = napi->dev; 597 598 skb_fail: 599 return skb; 600 } 601 EXPORT_SYMBOL(__napi_alloc_skb); 602 603 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off, 604 int size, unsigned int truesize) 605 { 606 skb_fill_page_desc(skb, i, page, off, size); 607 skb->len += size; 608 skb->data_len += size; 609 skb->truesize += truesize; 610 } 611 EXPORT_SYMBOL(skb_add_rx_frag); 612 613 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size, 614 unsigned int truesize) 615 { 616 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 617 618 skb_frag_size_add(frag, size); 619 skb->len += size; 620 skb->data_len += size; 621 skb->truesize += truesize; 622 } 623 EXPORT_SYMBOL(skb_coalesce_rx_frag); 624 625 static void skb_drop_list(struct sk_buff **listp) 626 { 627 kfree_skb_list(*listp); 628 *listp = NULL; 629 } 630 631 static inline void skb_drop_fraglist(struct sk_buff *skb) 632 { 633 skb_drop_list(&skb_shinfo(skb)->frag_list); 634 } 635 636 static void skb_clone_fraglist(struct sk_buff *skb) 637 { 638 struct sk_buff *list; 639 640 skb_walk_frags(skb, list) 641 skb_get(list); 642 } 643 644 static void skb_free_head(struct sk_buff *skb) 645 { 646 unsigned char *head = skb->head; 647 648 if (skb->head_frag) 649 skb_free_frag(head); 650 else 651 kfree(head); 652 } 653 654 static void skb_release_data(struct sk_buff *skb) 655 { 656 struct skb_shared_info *shinfo = skb_shinfo(skb); 657 int i; 658 659 if (skb->cloned && 660 atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1, 661 &shinfo->dataref)) 662 return; 663 664 skb_zcopy_clear(skb, true); 665 666 for (i = 0; i < shinfo->nr_frags; i++) 667 __skb_frag_unref(&shinfo->frags[i]); 668 669 if (shinfo->frag_list) 670 kfree_skb_list(shinfo->frag_list); 671 672 skb_free_head(skb); 673 } 674 675 /* 676 * Free an skbuff by memory without cleaning the state. 677 */ 678 static void kfree_skbmem(struct sk_buff *skb) 679 { 680 struct sk_buff_fclones *fclones; 681 682 switch (skb->fclone) { 683 case SKB_FCLONE_UNAVAILABLE: 684 kmem_cache_free(skbuff_head_cache, skb); 685 return; 686 687 case SKB_FCLONE_ORIG: 688 fclones = container_of(skb, struct sk_buff_fclones, skb1); 689 690 /* We usually free the clone (TX completion) before original skb 691 * This test would have no chance to be true for the clone, 692 * while here, branch prediction will be good. 693 */ 694 if (refcount_read(&fclones->fclone_ref) == 1) 695 goto fastpath; 696 break; 697 698 default: /* SKB_FCLONE_CLONE */ 699 fclones = container_of(skb, struct sk_buff_fclones, skb2); 700 break; 701 } 702 if (!refcount_dec_and_test(&fclones->fclone_ref)) 703 return; 704 fastpath: 705 kmem_cache_free(skbuff_fclone_cache, fclones); 706 } 707 708 void skb_release_head_state(struct sk_buff *skb) 709 { 710 skb_dst_drop(skb); 711 if (skb->destructor) { 712 WARN_ON(in_irq()); 713 skb->destructor(skb); 714 } 715 #if IS_ENABLED(CONFIG_NF_CONNTRACK) 716 nf_conntrack_put(skb_nfct(skb)); 717 #endif 718 skb_ext_put(skb); 719 } 720 721 /* Free everything but the sk_buff shell. */ 722 static void skb_release_all(struct sk_buff *skb) 723 { 724 skb_release_head_state(skb); 725 if (likely(skb->head)) 726 skb_release_data(skb); 727 } 728 729 /** 730 * __kfree_skb - private function 731 * @skb: buffer 732 * 733 * Free an sk_buff. Release anything attached to the buffer. 734 * Clean the state. This is an internal helper function. Users should 735 * always call kfree_skb 736 */ 737 738 void __kfree_skb(struct sk_buff *skb) 739 { 740 skb_release_all(skb); 741 kfree_skbmem(skb); 742 } 743 EXPORT_SYMBOL(__kfree_skb); 744 745 /** 746 * kfree_skb - free an sk_buff 747 * @skb: buffer to free 748 * 749 * Drop a reference to the buffer and free it if the usage count has 750 * hit zero. 751 */ 752 void kfree_skb(struct sk_buff *skb) 753 { 754 if (!skb_unref(skb)) 755 return; 756 757 trace_kfree_skb(skb, __builtin_return_address(0)); 758 __kfree_skb(skb); 759 } 760 EXPORT_SYMBOL(kfree_skb); 761 762 void kfree_skb_list(struct sk_buff *segs) 763 { 764 while (segs) { 765 struct sk_buff *next = segs->next; 766 767 kfree_skb(segs); 768 segs = next; 769 } 770 } 771 EXPORT_SYMBOL(kfree_skb_list); 772 773 /* Dump skb information and contents. 774 * 775 * Must only be called from net_ratelimit()-ed paths. 776 * 777 * Dumps whole packets if full_pkt, only headers otherwise. 778 */ 779 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt) 780 { 781 struct skb_shared_info *sh = skb_shinfo(skb); 782 struct net_device *dev = skb->dev; 783 struct sock *sk = skb->sk; 784 struct sk_buff *list_skb; 785 bool has_mac, has_trans; 786 int headroom, tailroom; 787 int i, len, seg_len; 788 789 if (full_pkt) 790 len = skb->len; 791 else 792 len = min_t(int, skb->len, MAX_HEADER + 128); 793 794 headroom = skb_headroom(skb); 795 tailroom = skb_tailroom(skb); 796 797 has_mac = skb_mac_header_was_set(skb); 798 has_trans = skb_transport_header_was_set(skb); 799 800 printk("%sskb len=%u headroom=%u headlen=%u tailroom=%u\n" 801 "mac=(%d,%d) net=(%d,%d) trans=%d\n" 802 "shinfo(txflags=%u nr_frags=%u gso(size=%hu type=%u segs=%hu))\n" 803 "csum(0x%x ip_summed=%u complete_sw=%u valid=%u level=%u)\n" 804 "hash(0x%x sw=%u l4=%u) proto=0x%04x pkttype=%u iif=%d\n", 805 level, skb->len, headroom, skb_headlen(skb), tailroom, 806 has_mac ? skb->mac_header : -1, 807 has_mac ? skb_mac_header_len(skb) : -1, 808 skb->network_header, 809 has_trans ? skb_network_header_len(skb) : -1, 810 has_trans ? skb->transport_header : -1, 811 sh->tx_flags, sh->nr_frags, 812 sh->gso_size, sh->gso_type, sh->gso_segs, 813 skb->csum, skb->ip_summed, skb->csum_complete_sw, 814 skb->csum_valid, skb->csum_level, 815 skb->hash, skb->sw_hash, skb->l4_hash, 816 ntohs(skb->protocol), skb->pkt_type, skb->skb_iif); 817 818 if (dev) 819 printk("%sdev name=%s feat=0x%pNF\n", 820 level, dev->name, &dev->features); 821 if (sk) 822 printk("%ssk family=%hu type=%u proto=%u\n", 823 level, sk->sk_family, sk->sk_type, sk->sk_protocol); 824 825 if (full_pkt && headroom) 826 print_hex_dump(level, "skb headroom: ", DUMP_PREFIX_OFFSET, 827 16, 1, skb->head, headroom, false); 828 829 seg_len = min_t(int, skb_headlen(skb), len); 830 if (seg_len) 831 print_hex_dump(level, "skb linear: ", DUMP_PREFIX_OFFSET, 832 16, 1, skb->data, seg_len, false); 833 len -= seg_len; 834 835 if (full_pkt && tailroom) 836 print_hex_dump(level, "skb tailroom: ", DUMP_PREFIX_OFFSET, 837 16, 1, skb_tail_pointer(skb), tailroom, false); 838 839 for (i = 0; len && i < skb_shinfo(skb)->nr_frags; i++) { 840 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 841 u32 p_off, p_len, copied; 842 struct page *p; 843 u8 *vaddr; 844 845 skb_frag_foreach_page(frag, skb_frag_off(frag), 846 skb_frag_size(frag), p, p_off, p_len, 847 copied) { 848 seg_len = min_t(int, p_len, len); 849 vaddr = kmap_atomic(p); 850 print_hex_dump(level, "skb frag: ", 851 DUMP_PREFIX_OFFSET, 852 16, 1, vaddr + p_off, seg_len, false); 853 kunmap_atomic(vaddr); 854 len -= seg_len; 855 if (!len) 856 break; 857 } 858 } 859 860 if (full_pkt && skb_has_frag_list(skb)) { 861 printk("skb fraglist:\n"); 862 skb_walk_frags(skb, list_skb) 863 skb_dump(level, list_skb, true); 864 } 865 } 866 EXPORT_SYMBOL(skb_dump); 867 868 /** 869 * skb_tx_error - report an sk_buff xmit error 870 * @skb: buffer that triggered an error 871 * 872 * Report xmit error if a device callback is tracking this skb. 873 * skb must be freed afterwards. 874 */ 875 void skb_tx_error(struct sk_buff *skb) 876 { 877 skb_zcopy_clear(skb, true); 878 } 879 EXPORT_SYMBOL(skb_tx_error); 880 881 #ifdef CONFIG_TRACEPOINTS 882 /** 883 * consume_skb - free an skbuff 884 * @skb: buffer to free 885 * 886 * Drop a ref to the buffer and free it if the usage count has hit zero 887 * Functions identically to kfree_skb, but kfree_skb assumes that the frame 888 * is being dropped after a failure and notes that 889 */ 890 void consume_skb(struct sk_buff *skb) 891 { 892 if (!skb_unref(skb)) 893 return; 894 895 trace_consume_skb(skb); 896 __kfree_skb(skb); 897 } 898 EXPORT_SYMBOL(consume_skb); 899 #endif 900 901 /** 902 * __consume_stateless_skb - free an skbuff, assuming it is stateless 903 * @skb: buffer to free 904 * 905 * Alike consume_skb(), but this variant assumes that this is the last 906 * skb reference and all the head states have been already dropped 907 */ 908 void __consume_stateless_skb(struct sk_buff *skb) 909 { 910 trace_consume_skb(skb); 911 skb_release_data(skb); 912 kfree_skbmem(skb); 913 } 914 915 static void napi_skb_cache_put(struct sk_buff *skb) 916 { 917 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 918 u32 i; 919 920 kasan_poison_object_data(skbuff_head_cache, skb); 921 nc->skb_cache[nc->skb_count++] = skb; 922 923 if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) { 924 for (i = NAPI_SKB_CACHE_HALF; i < NAPI_SKB_CACHE_SIZE; i++) 925 kasan_unpoison_object_data(skbuff_head_cache, 926 nc->skb_cache[i]); 927 928 kmem_cache_free_bulk(skbuff_head_cache, NAPI_SKB_CACHE_HALF, 929 nc->skb_cache + NAPI_SKB_CACHE_HALF); 930 nc->skb_count = NAPI_SKB_CACHE_HALF; 931 } 932 } 933 934 void __kfree_skb_defer(struct sk_buff *skb) 935 { 936 skb_release_all(skb); 937 napi_skb_cache_put(skb); 938 } 939 940 void napi_skb_free_stolen_head(struct sk_buff *skb) 941 { 942 skb_dst_drop(skb); 943 skb_ext_put(skb); 944 napi_skb_cache_put(skb); 945 } 946 947 void napi_consume_skb(struct sk_buff *skb, int budget) 948 { 949 /* Zero budget indicate non-NAPI context called us, like netpoll */ 950 if (unlikely(!budget)) { 951 dev_consume_skb_any(skb); 952 return; 953 } 954 955 lockdep_assert_in_softirq(); 956 957 if (!skb_unref(skb)) 958 return; 959 960 /* if reaching here SKB is ready to free */ 961 trace_consume_skb(skb); 962 963 /* if SKB is a clone, don't handle this case */ 964 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) { 965 __kfree_skb(skb); 966 return; 967 } 968 969 skb_release_all(skb); 970 napi_skb_cache_put(skb); 971 } 972 EXPORT_SYMBOL(napi_consume_skb); 973 974 /* Make sure a field is enclosed inside headers_start/headers_end section */ 975 #define CHECK_SKB_FIELD(field) \ 976 BUILD_BUG_ON(offsetof(struct sk_buff, field) < \ 977 offsetof(struct sk_buff, headers_start)); \ 978 BUILD_BUG_ON(offsetof(struct sk_buff, field) > \ 979 offsetof(struct sk_buff, headers_end)); \ 980 981 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old) 982 { 983 new->tstamp = old->tstamp; 984 /* We do not copy old->sk */ 985 new->dev = old->dev; 986 memcpy(new->cb, old->cb, sizeof(old->cb)); 987 skb_dst_copy(new, old); 988 __skb_ext_copy(new, old); 989 __nf_copy(new, old, false); 990 991 /* Note : this field could be in headers_start/headers_end section 992 * It is not yet because we do not want to have a 16 bit hole 993 */ 994 new->queue_mapping = old->queue_mapping; 995 996 memcpy(&new->headers_start, &old->headers_start, 997 offsetof(struct sk_buff, headers_end) - 998 offsetof(struct sk_buff, headers_start)); 999 CHECK_SKB_FIELD(protocol); 1000 CHECK_SKB_FIELD(csum); 1001 CHECK_SKB_FIELD(hash); 1002 CHECK_SKB_FIELD(priority); 1003 CHECK_SKB_FIELD(skb_iif); 1004 CHECK_SKB_FIELD(vlan_proto); 1005 CHECK_SKB_FIELD(vlan_tci); 1006 CHECK_SKB_FIELD(transport_header); 1007 CHECK_SKB_FIELD(network_header); 1008 CHECK_SKB_FIELD(mac_header); 1009 CHECK_SKB_FIELD(inner_protocol); 1010 CHECK_SKB_FIELD(inner_transport_header); 1011 CHECK_SKB_FIELD(inner_network_header); 1012 CHECK_SKB_FIELD(inner_mac_header); 1013 CHECK_SKB_FIELD(mark); 1014 #ifdef CONFIG_NETWORK_SECMARK 1015 CHECK_SKB_FIELD(secmark); 1016 #endif 1017 #ifdef CONFIG_NET_RX_BUSY_POLL 1018 CHECK_SKB_FIELD(napi_id); 1019 #endif 1020 #ifdef CONFIG_XPS 1021 CHECK_SKB_FIELD(sender_cpu); 1022 #endif 1023 #ifdef CONFIG_NET_SCHED 1024 CHECK_SKB_FIELD(tc_index); 1025 #endif 1026 1027 } 1028 1029 /* 1030 * You should not add any new code to this function. Add it to 1031 * __copy_skb_header above instead. 1032 */ 1033 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb) 1034 { 1035 #define C(x) n->x = skb->x 1036 1037 n->next = n->prev = NULL; 1038 n->sk = NULL; 1039 __copy_skb_header(n, skb); 1040 1041 C(len); 1042 C(data_len); 1043 C(mac_len); 1044 n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len; 1045 n->cloned = 1; 1046 n->nohdr = 0; 1047 n->peeked = 0; 1048 C(pfmemalloc); 1049 n->destructor = NULL; 1050 C(tail); 1051 C(end); 1052 C(head); 1053 C(head_frag); 1054 C(data); 1055 C(truesize); 1056 refcount_set(&n->users, 1); 1057 1058 atomic_inc(&(skb_shinfo(skb)->dataref)); 1059 skb->cloned = 1; 1060 1061 return n; 1062 #undef C 1063 } 1064 1065 /** 1066 * alloc_skb_for_msg() - allocate sk_buff to wrap frag list forming a msg 1067 * @first: first sk_buff of the msg 1068 */ 1069 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first) 1070 { 1071 struct sk_buff *n; 1072 1073 n = alloc_skb(0, GFP_ATOMIC); 1074 if (!n) 1075 return NULL; 1076 1077 n->len = first->len; 1078 n->data_len = first->len; 1079 n->truesize = first->truesize; 1080 1081 skb_shinfo(n)->frag_list = first; 1082 1083 __copy_skb_header(n, first); 1084 n->destructor = NULL; 1085 1086 return n; 1087 } 1088 EXPORT_SYMBOL_GPL(alloc_skb_for_msg); 1089 1090 /** 1091 * skb_morph - morph one skb into another 1092 * @dst: the skb to receive the contents 1093 * @src: the skb to supply the contents 1094 * 1095 * This is identical to skb_clone except that the target skb is 1096 * supplied by the user. 1097 * 1098 * The target skb is returned upon exit. 1099 */ 1100 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src) 1101 { 1102 skb_release_all(dst); 1103 return __skb_clone(dst, src); 1104 } 1105 EXPORT_SYMBOL_GPL(skb_morph); 1106 1107 int mm_account_pinned_pages(struct mmpin *mmp, size_t size) 1108 { 1109 unsigned long max_pg, num_pg, new_pg, old_pg; 1110 struct user_struct *user; 1111 1112 if (capable(CAP_IPC_LOCK) || !size) 1113 return 0; 1114 1115 num_pg = (size >> PAGE_SHIFT) + 2; /* worst case */ 1116 max_pg = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT; 1117 user = mmp->user ? : current_user(); 1118 1119 do { 1120 old_pg = atomic_long_read(&user->locked_vm); 1121 new_pg = old_pg + num_pg; 1122 if (new_pg > max_pg) 1123 return -ENOBUFS; 1124 } while (atomic_long_cmpxchg(&user->locked_vm, old_pg, new_pg) != 1125 old_pg); 1126 1127 if (!mmp->user) { 1128 mmp->user = get_uid(user); 1129 mmp->num_pg = num_pg; 1130 } else { 1131 mmp->num_pg += num_pg; 1132 } 1133 1134 return 0; 1135 } 1136 EXPORT_SYMBOL_GPL(mm_account_pinned_pages); 1137 1138 void mm_unaccount_pinned_pages(struct mmpin *mmp) 1139 { 1140 if (mmp->user) { 1141 atomic_long_sub(mmp->num_pg, &mmp->user->locked_vm); 1142 free_uid(mmp->user); 1143 } 1144 } 1145 EXPORT_SYMBOL_GPL(mm_unaccount_pinned_pages); 1146 1147 struct ubuf_info *msg_zerocopy_alloc(struct sock *sk, size_t size) 1148 { 1149 struct ubuf_info *uarg; 1150 struct sk_buff *skb; 1151 1152 WARN_ON_ONCE(!in_task()); 1153 1154 skb = sock_omalloc(sk, 0, GFP_KERNEL); 1155 if (!skb) 1156 return NULL; 1157 1158 BUILD_BUG_ON(sizeof(*uarg) > sizeof(skb->cb)); 1159 uarg = (void *)skb->cb; 1160 uarg->mmp.user = NULL; 1161 1162 if (mm_account_pinned_pages(&uarg->mmp, size)) { 1163 kfree_skb(skb); 1164 return NULL; 1165 } 1166 1167 uarg->callback = msg_zerocopy_callback; 1168 uarg->id = ((u32)atomic_inc_return(&sk->sk_zckey)) - 1; 1169 uarg->len = 1; 1170 uarg->bytelen = size; 1171 uarg->zerocopy = 1; 1172 uarg->flags = SKBFL_ZEROCOPY_FRAG; 1173 refcount_set(&uarg->refcnt, 1); 1174 sock_hold(sk); 1175 1176 return uarg; 1177 } 1178 EXPORT_SYMBOL_GPL(msg_zerocopy_alloc); 1179 1180 static inline struct sk_buff *skb_from_uarg(struct ubuf_info *uarg) 1181 { 1182 return container_of((void *)uarg, struct sk_buff, cb); 1183 } 1184 1185 struct ubuf_info *msg_zerocopy_realloc(struct sock *sk, size_t size, 1186 struct ubuf_info *uarg) 1187 { 1188 if (uarg) { 1189 const u32 byte_limit = 1 << 19; /* limit to a few TSO */ 1190 u32 bytelen, next; 1191 1192 /* realloc only when socket is locked (TCP, UDP cork), 1193 * so uarg->len and sk_zckey access is serialized 1194 */ 1195 if (!sock_owned_by_user(sk)) { 1196 WARN_ON_ONCE(1); 1197 return NULL; 1198 } 1199 1200 bytelen = uarg->bytelen + size; 1201 if (uarg->len == USHRT_MAX - 1 || bytelen > byte_limit) { 1202 /* TCP can create new skb to attach new uarg */ 1203 if (sk->sk_type == SOCK_STREAM) 1204 goto new_alloc; 1205 return NULL; 1206 } 1207 1208 next = (u32)atomic_read(&sk->sk_zckey); 1209 if ((u32)(uarg->id + uarg->len) == next) { 1210 if (mm_account_pinned_pages(&uarg->mmp, size)) 1211 return NULL; 1212 uarg->len++; 1213 uarg->bytelen = bytelen; 1214 atomic_set(&sk->sk_zckey, ++next); 1215 1216 /* no extra ref when appending to datagram (MSG_MORE) */ 1217 if (sk->sk_type == SOCK_STREAM) 1218 net_zcopy_get(uarg); 1219 1220 return uarg; 1221 } 1222 } 1223 1224 new_alloc: 1225 return msg_zerocopy_alloc(sk, size); 1226 } 1227 EXPORT_SYMBOL_GPL(msg_zerocopy_realloc); 1228 1229 static bool skb_zerocopy_notify_extend(struct sk_buff *skb, u32 lo, u16 len) 1230 { 1231 struct sock_exterr_skb *serr = SKB_EXT_ERR(skb); 1232 u32 old_lo, old_hi; 1233 u64 sum_len; 1234 1235 old_lo = serr->ee.ee_info; 1236 old_hi = serr->ee.ee_data; 1237 sum_len = old_hi - old_lo + 1ULL + len; 1238 1239 if (sum_len >= (1ULL << 32)) 1240 return false; 1241 1242 if (lo != old_hi + 1) 1243 return false; 1244 1245 serr->ee.ee_data += len; 1246 return true; 1247 } 1248 1249 static void __msg_zerocopy_callback(struct ubuf_info *uarg) 1250 { 1251 struct sk_buff *tail, *skb = skb_from_uarg(uarg); 1252 struct sock_exterr_skb *serr; 1253 struct sock *sk = skb->sk; 1254 struct sk_buff_head *q; 1255 unsigned long flags; 1256 bool is_zerocopy; 1257 u32 lo, hi; 1258 u16 len; 1259 1260 mm_unaccount_pinned_pages(&uarg->mmp); 1261 1262 /* if !len, there was only 1 call, and it was aborted 1263 * so do not queue a completion notification 1264 */ 1265 if (!uarg->len || sock_flag(sk, SOCK_DEAD)) 1266 goto release; 1267 1268 len = uarg->len; 1269 lo = uarg->id; 1270 hi = uarg->id + len - 1; 1271 is_zerocopy = uarg->zerocopy; 1272 1273 serr = SKB_EXT_ERR(skb); 1274 memset(serr, 0, sizeof(*serr)); 1275 serr->ee.ee_errno = 0; 1276 serr->ee.ee_origin = SO_EE_ORIGIN_ZEROCOPY; 1277 serr->ee.ee_data = hi; 1278 serr->ee.ee_info = lo; 1279 if (!is_zerocopy) 1280 serr->ee.ee_code |= SO_EE_CODE_ZEROCOPY_COPIED; 1281 1282 q = &sk->sk_error_queue; 1283 spin_lock_irqsave(&q->lock, flags); 1284 tail = skb_peek_tail(q); 1285 if (!tail || SKB_EXT_ERR(tail)->ee.ee_origin != SO_EE_ORIGIN_ZEROCOPY || 1286 !skb_zerocopy_notify_extend(tail, lo, len)) { 1287 __skb_queue_tail(q, skb); 1288 skb = NULL; 1289 } 1290 spin_unlock_irqrestore(&q->lock, flags); 1291 1292 sk->sk_error_report(sk); 1293 1294 release: 1295 consume_skb(skb); 1296 sock_put(sk); 1297 } 1298 1299 void msg_zerocopy_callback(struct sk_buff *skb, struct ubuf_info *uarg, 1300 bool success) 1301 { 1302 uarg->zerocopy = uarg->zerocopy & success; 1303 1304 if (refcount_dec_and_test(&uarg->refcnt)) 1305 __msg_zerocopy_callback(uarg); 1306 } 1307 EXPORT_SYMBOL_GPL(msg_zerocopy_callback); 1308 1309 void msg_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref) 1310 { 1311 struct sock *sk = skb_from_uarg(uarg)->sk; 1312 1313 atomic_dec(&sk->sk_zckey); 1314 uarg->len--; 1315 1316 if (have_uref) 1317 msg_zerocopy_callback(NULL, uarg, true); 1318 } 1319 EXPORT_SYMBOL_GPL(msg_zerocopy_put_abort); 1320 1321 int skb_zerocopy_iter_dgram(struct sk_buff *skb, struct msghdr *msg, int len) 1322 { 1323 return __zerocopy_sg_from_iter(skb->sk, skb, &msg->msg_iter, len); 1324 } 1325 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_dgram); 1326 1327 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb, 1328 struct msghdr *msg, int len, 1329 struct ubuf_info *uarg) 1330 { 1331 struct ubuf_info *orig_uarg = skb_zcopy(skb); 1332 struct iov_iter orig_iter = msg->msg_iter; 1333 int err, orig_len = skb->len; 1334 1335 /* An skb can only point to one uarg. This edge case happens when 1336 * TCP appends to an skb, but zerocopy_realloc triggered a new alloc. 1337 */ 1338 if (orig_uarg && uarg != orig_uarg) 1339 return -EEXIST; 1340 1341 err = __zerocopy_sg_from_iter(sk, skb, &msg->msg_iter, len); 1342 if (err == -EFAULT || (err == -EMSGSIZE && skb->len == orig_len)) { 1343 struct sock *save_sk = skb->sk; 1344 1345 /* Streams do not free skb on error. Reset to prev state. */ 1346 msg->msg_iter = orig_iter; 1347 skb->sk = sk; 1348 ___pskb_trim(skb, orig_len); 1349 skb->sk = save_sk; 1350 return err; 1351 } 1352 1353 skb_zcopy_set(skb, uarg, NULL); 1354 return skb->len - orig_len; 1355 } 1356 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_stream); 1357 1358 static int skb_zerocopy_clone(struct sk_buff *nskb, struct sk_buff *orig, 1359 gfp_t gfp_mask) 1360 { 1361 if (skb_zcopy(orig)) { 1362 if (skb_zcopy(nskb)) { 1363 /* !gfp_mask callers are verified to !skb_zcopy(nskb) */ 1364 if (!gfp_mask) { 1365 WARN_ON_ONCE(1); 1366 return -ENOMEM; 1367 } 1368 if (skb_uarg(nskb) == skb_uarg(orig)) 1369 return 0; 1370 if (skb_copy_ubufs(nskb, GFP_ATOMIC)) 1371 return -EIO; 1372 } 1373 skb_zcopy_set(nskb, skb_uarg(orig), NULL); 1374 } 1375 return 0; 1376 } 1377 1378 /** 1379 * skb_copy_ubufs - copy userspace skb frags buffers to kernel 1380 * @skb: the skb to modify 1381 * @gfp_mask: allocation priority 1382 * 1383 * This must be called on skb with SKBFL_ZEROCOPY_ENABLE. 1384 * It will copy all frags into kernel and drop the reference 1385 * to userspace pages. 1386 * 1387 * If this function is called from an interrupt gfp_mask() must be 1388 * %GFP_ATOMIC. 1389 * 1390 * Returns 0 on success or a negative error code on failure 1391 * to allocate kernel memory to copy to. 1392 */ 1393 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask) 1394 { 1395 int num_frags = skb_shinfo(skb)->nr_frags; 1396 struct page *page, *head = NULL; 1397 int i, new_frags; 1398 u32 d_off; 1399 1400 if (skb_shared(skb) || skb_unclone(skb, gfp_mask)) 1401 return -EINVAL; 1402 1403 if (!num_frags) 1404 goto release; 1405 1406 new_frags = (__skb_pagelen(skb) + PAGE_SIZE - 1) >> PAGE_SHIFT; 1407 for (i = 0; i < new_frags; i++) { 1408 page = alloc_page(gfp_mask); 1409 if (!page) { 1410 while (head) { 1411 struct page *next = (struct page *)page_private(head); 1412 put_page(head); 1413 head = next; 1414 } 1415 return -ENOMEM; 1416 } 1417 set_page_private(page, (unsigned long)head); 1418 head = page; 1419 } 1420 1421 page = head; 1422 d_off = 0; 1423 for (i = 0; i < num_frags; i++) { 1424 skb_frag_t *f = &skb_shinfo(skb)->frags[i]; 1425 u32 p_off, p_len, copied; 1426 struct page *p; 1427 u8 *vaddr; 1428 1429 skb_frag_foreach_page(f, skb_frag_off(f), skb_frag_size(f), 1430 p, p_off, p_len, copied) { 1431 u32 copy, done = 0; 1432 vaddr = kmap_atomic(p); 1433 1434 while (done < p_len) { 1435 if (d_off == PAGE_SIZE) { 1436 d_off = 0; 1437 page = (struct page *)page_private(page); 1438 } 1439 copy = min_t(u32, PAGE_SIZE - d_off, p_len - done); 1440 memcpy(page_address(page) + d_off, 1441 vaddr + p_off + done, copy); 1442 done += copy; 1443 d_off += copy; 1444 } 1445 kunmap_atomic(vaddr); 1446 } 1447 } 1448 1449 /* skb frags release userspace buffers */ 1450 for (i = 0; i < num_frags; i++) 1451 skb_frag_unref(skb, i); 1452 1453 /* skb frags point to kernel buffers */ 1454 for (i = 0; i < new_frags - 1; i++) { 1455 __skb_fill_page_desc(skb, i, head, 0, PAGE_SIZE); 1456 head = (struct page *)page_private(head); 1457 } 1458 __skb_fill_page_desc(skb, new_frags - 1, head, 0, d_off); 1459 skb_shinfo(skb)->nr_frags = new_frags; 1460 1461 release: 1462 skb_zcopy_clear(skb, false); 1463 return 0; 1464 } 1465 EXPORT_SYMBOL_GPL(skb_copy_ubufs); 1466 1467 /** 1468 * skb_clone - duplicate an sk_buff 1469 * @skb: buffer to clone 1470 * @gfp_mask: allocation priority 1471 * 1472 * Duplicate an &sk_buff. The new one is not owned by a socket. Both 1473 * copies share the same packet data but not structure. The new 1474 * buffer has a reference count of 1. If the allocation fails the 1475 * function returns %NULL otherwise the new buffer is returned. 1476 * 1477 * If this function is called from an interrupt gfp_mask() must be 1478 * %GFP_ATOMIC. 1479 */ 1480 1481 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask) 1482 { 1483 struct sk_buff_fclones *fclones = container_of(skb, 1484 struct sk_buff_fclones, 1485 skb1); 1486 struct sk_buff *n; 1487 1488 if (skb_orphan_frags(skb, gfp_mask)) 1489 return NULL; 1490 1491 if (skb->fclone == SKB_FCLONE_ORIG && 1492 refcount_read(&fclones->fclone_ref) == 1) { 1493 n = &fclones->skb2; 1494 refcount_set(&fclones->fclone_ref, 2); 1495 } else { 1496 if (skb_pfmemalloc(skb)) 1497 gfp_mask |= __GFP_MEMALLOC; 1498 1499 n = kmem_cache_alloc(skbuff_head_cache, gfp_mask); 1500 if (!n) 1501 return NULL; 1502 1503 n->fclone = SKB_FCLONE_UNAVAILABLE; 1504 } 1505 1506 return __skb_clone(n, skb); 1507 } 1508 EXPORT_SYMBOL(skb_clone); 1509 1510 void skb_headers_offset_update(struct sk_buff *skb, int off) 1511 { 1512 /* Only adjust this if it actually is csum_start rather than csum */ 1513 if (skb->ip_summed == CHECKSUM_PARTIAL) 1514 skb->csum_start += off; 1515 /* {transport,network,mac}_header and tail are relative to skb->head */ 1516 skb->transport_header += off; 1517 skb->network_header += off; 1518 if (skb_mac_header_was_set(skb)) 1519 skb->mac_header += off; 1520 skb->inner_transport_header += off; 1521 skb->inner_network_header += off; 1522 skb->inner_mac_header += off; 1523 } 1524 EXPORT_SYMBOL(skb_headers_offset_update); 1525 1526 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old) 1527 { 1528 __copy_skb_header(new, old); 1529 1530 skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size; 1531 skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs; 1532 skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type; 1533 } 1534 EXPORT_SYMBOL(skb_copy_header); 1535 1536 static inline int skb_alloc_rx_flag(const struct sk_buff *skb) 1537 { 1538 if (skb_pfmemalloc(skb)) 1539 return SKB_ALLOC_RX; 1540 return 0; 1541 } 1542 1543 /** 1544 * skb_copy - create private copy of an sk_buff 1545 * @skb: buffer to copy 1546 * @gfp_mask: allocation priority 1547 * 1548 * Make a copy of both an &sk_buff and its data. This is used when the 1549 * caller wishes to modify the data and needs a private copy of the 1550 * data to alter. Returns %NULL on failure or the pointer to the buffer 1551 * on success. The returned buffer has a reference count of 1. 1552 * 1553 * As by-product this function converts non-linear &sk_buff to linear 1554 * one, so that &sk_buff becomes completely private and caller is allowed 1555 * to modify all the data of returned buffer. This means that this 1556 * function is not recommended for use in circumstances when only 1557 * header is going to be modified. Use pskb_copy() instead. 1558 */ 1559 1560 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask) 1561 { 1562 int headerlen = skb_headroom(skb); 1563 unsigned int size = skb_end_offset(skb) + skb->data_len; 1564 struct sk_buff *n = __alloc_skb(size, gfp_mask, 1565 skb_alloc_rx_flag(skb), NUMA_NO_NODE); 1566 1567 if (!n) 1568 return NULL; 1569 1570 /* Set the data pointer */ 1571 skb_reserve(n, headerlen); 1572 /* Set the tail pointer and length */ 1573 skb_put(n, skb->len); 1574 1575 BUG_ON(skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len)); 1576 1577 skb_copy_header(n, skb); 1578 return n; 1579 } 1580 EXPORT_SYMBOL(skb_copy); 1581 1582 /** 1583 * __pskb_copy_fclone - create copy of an sk_buff with private head. 1584 * @skb: buffer to copy 1585 * @headroom: headroom of new skb 1586 * @gfp_mask: allocation priority 1587 * @fclone: if true allocate the copy of the skb from the fclone 1588 * cache instead of the head cache; it is recommended to set this 1589 * to true for the cases where the copy will likely be cloned 1590 * 1591 * Make a copy of both an &sk_buff and part of its data, located 1592 * in header. Fragmented data remain shared. This is used when 1593 * the caller wishes to modify only header of &sk_buff and needs 1594 * private copy of the header to alter. Returns %NULL on failure 1595 * or the pointer to the buffer on success. 1596 * The returned buffer has a reference count of 1. 1597 */ 1598 1599 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom, 1600 gfp_t gfp_mask, bool fclone) 1601 { 1602 unsigned int size = skb_headlen(skb) + headroom; 1603 int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0); 1604 struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE); 1605 1606 if (!n) 1607 goto out; 1608 1609 /* Set the data pointer */ 1610 skb_reserve(n, headroom); 1611 /* Set the tail pointer and length */ 1612 skb_put(n, skb_headlen(skb)); 1613 /* Copy the bytes */ 1614 skb_copy_from_linear_data(skb, n->data, n->len); 1615 1616 n->truesize += skb->data_len; 1617 n->data_len = skb->data_len; 1618 n->len = skb->len; 1619 1620 if (skb_shinfo(skb)->nr_frags) { 1621 int i; 1622 1623 if (skb_orphan_frags(skb, gfp_mask) || 1624 skb_zerocopy_clone(n, skb, gfp_mask)) { 1625 kfree_skb(n); 1626 n = NULL; 1627 goto out; 1628 } 1629 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1630 skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i]; 1631 skb_frag_ref(skb, i); 1632 } 1633 skb_shinfo(n)->nr_frags = i; 1634 } 1635 1636 if (skb_has_frag_list(skb)) { 1637 skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list; 1638 skb_clone_fraglist(n); 1639 } 1640 1641 skb_copy_header(n, skb); 1642 out: 1643 return n; 1644 } 1645 EXPORT_SYMBOL(__pskb_copy_fclone); 1646 1647 /** 1648 * pskb_expand_head - reallocate header of &sk_buff 1649 * @skb: buffer to reallocate 1650 * @nhead: room to add at head 1651 * @ntail: room to add at tail 1652 * @gfp_mask: allocation priority 1653 * 1654 * Expands (or creates identical copy, if @nhead and @ntail are zero) 1655 * header of @skb. &sk_buff itself is not changed. &sk_buff MUST have 1656 * reference count of 1. Returns zero in the case of success or error, 1657 * if expansion failed. In the last case, &sk_buff is not changed. 1658 * 1659 * All the pointers pointing into skb header may change and must be 1660 * reloaded after call to this function. 1661 */ 1662 1663 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, 1664 gfp_t gfp_mask) 1665 { 1666 int i, osize = skb_end_offset(skb); 1667 int size = osize + nhead + ntail; 1668 long off; 1669 u8 *data; 1670 1671 BUG_ON(nhead < 0); 1672 1673 BUG_ON(skb_shared(skb)); 1674 1675 size = SKB_DATA_ALIGN(size); 1676 1677 if (skb_pfmemalloc(skb)) 1678 gfp_mask |= __GFP_MEMALLOC; 1679 data = kmalloc_reserve(size + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)), 1680 gfp_mask, NUMA_NO_NODE, NULL); 1681 if (!data) 1682 goto nodata; 1683 size = SKB_WITH_OVERHEAD(ksize(data)); 1684 1685 /* Copy only real data... and, alas, header. This should be 1686 * optimized for the cases when header is void. 1687 */ 1688 memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head); 1689 1690 memcpy((struct skb_shared_info *)(data + size), 1691 skb_shinfo(skb), 1692 offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags])); 1693 1694 /* 1695 * if shinfo is shared we must drop the old head gracefully, but if it 1696 * is not we can just drop the old head and let the existing refcount 1697 * be since all we did is relocate the values 1698 */ 1699 if (skb_cloned(skb)) { 1700 if (skb_orphan_frags(skb, gfp_mask)) 1701 goto nofrags; 1702 if (skb_zcopy(skb)) 1703 refcount_inc(&skb_uarg(skb)->refcnt); 1704 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 1705 skb_frag_ref(skb, i); 1706 1707 if (skb_has_frag_list(skb)) 1708 skb_clone_fraglist(skb); 1709 1710 skb_release_data(skb); 1711 } else { 1712 skb_free_head(skb); 1713 } 1714 off = (data + nhead) - skb->head; 1715 1716 skb->head = data; 1717 skb->head_frag = 0; 1718 skb->data += off; 1719 #ifdef NET_SKBUFF_DATA_USES_OFFSET 1720 skb->end = size; 1721 off = nhead; 1722 #else 1723 skb->end = skb->head + size; 1724 #endif 1725 skb->tail += off; 1726 skb_headers_offset_update(skb, nhead); 1727 skb->cloned = 0; 1728 skb->hdr_len = 0; 1729 skb->nohdr = 0; 1730 atomic_set(&skb_shinfo(skb)->dataref, 1); 1731 1732 skb_metadata_clear(skb); 1733 1734 /* It is not generally safe to change skb->truesize. 1735 * For the moment, we really care of rx path, or 1736 * when skb is orphaned (not attached to a socket). 1737 */ 1738 if (!skb->sk || skb->destructor == sock_edemux) 1739 skb->truesize += size - osize; 1740 1741 return 0; 1742 1743 nofrags: 1744 kfree(data); 1745 nodata: 1746 return -ENOMEM; 1747 } 1748 EXPORT_SYMBOL(pskb_expand_head); 1749 1750 /* Make private copy of skb with writable head and some headroom */ 1751 1752 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom) 1753 { 1754 struct sk_buff *skb2; 1755 int delta = headroom - skb_headroom(skb); 1756 1757 if (delta <= 0) 1758 skb2 = pskb_copy(skb, GFP_ATOMIC); 1759 else { 1760 skb2 = skb_clone(skb, GFP_ATOMIC); 1761 if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0, 1762 GFP_ATOMIC)) { 1763 kfree_skb(skb2); 1764 skb2 = NULL; 1765 } 1766 } 1767 return skb2; 1768 } 1769 EXPORT_SYMBOL(skb_realloc_headroom); 1770 1771 /** 1772 * skb_copy_expand - copy and expand sk_buff 1773 * @skb: buffer to copy 1774 * @newheadroom: new free bytes at head 1775 * @newtailroom: new free bytes at tail 1776 * @gfp_mask: allocation priority 1777 * 1778 * Make a copy of both an &sk_buff and its data and while doing so 1779 * allocate additional space. 1780 * 1781 * This is used when the caller wishes to modify the data and needs a 1782 * private copy of the data to alter as well as more space for new fields. 1783 * Returns %NULL on failure or the pointer to the buffer 1784 * on success. The returned buffer has a reference count of 1. 1785 * 1786 * You must pass %GFP_ATOMIC as the allocation priority if this function 1787 * is called from an interrupt. 1788 */ 1789 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, 1790 int newheadroom, int newtailroom, 1791 gfp_t gfp_mask) 1792 { 1793 /* 1794 * Allocate the copy buffer 1795 */ 1796 struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom, 1797 gfp_mask, skb_alloc_rx_flag(skb), 1798 NUMA_NO_NODE); 1799 int oldheadroom = skb_headroom(skb); 1800 int head_copy_len, head_copy_off; 1801 1802 if (!n) 1803 return NULL; 1804 1805 skb_reserve(n, newheadroom); 1806 1807 /* Set the tail pointer and length */ 1808 skb_put(n, skb->len); 1809 1810 head_copy_len = oldheadroom; 1811 head_copy_off = 0; 1812 if (newheadroom <= head_copy_len) 1813 head_copy_len = newheadroom; 1814 else 1815 head_copy_off = newheadroom - head_copy_len; 1816 1817 /* Copy the linear header and data. */ 1818 BUG_ON(skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off, 1819 skb->len + head_copy_len)); 1820 1821 skb_copy_header(n, skb); 1822 1823 skb_headers_offset_update(n, newheadroom - oldheadroom); 1824 1825 return n; 1826 } 1827 EXPORT_SYMBOL(skb_copy_expand); 1828 1829 /** 1830 * __skb_pad - zero pad the tail of an skb 1831 * @skb: buffer to pad 1832 * @pad: space to pad 1833 * @free_on_error: free buffer on error 1834 * 1835 * Ensure that a buffer is followed by a padding area that is zero 1836 * filled. Used by network drivers which may DMA or transfer data 1837 * beyond the buffer end onto the wire. 1838 * 1839 * May return error in out of memory cases. The skb is freed on error 1840 * if @free_on_error is true. 1841 */ 1842 1843 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error) 1844 { 1845 int err; 1846 int ntail; 1847 1848 /* If the skbuff is non linear tailroom is always zero.. */ 1849 if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) { 1850 memset(skb->data+skb->len, 0, pad); 1851 return 0; 1852 } 1853 1854 ntail = skb->data_len + pad - (skb->end - skb->tail); 1855 if (likely(skb_cloned(skb) || ntail > 0)) { 1856 err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC); 1857 if (unlikely(err)) 1858 goto free_skb; 1859 } 1860 1861 /* FIXME: The use of this function with non-linear skb's really needs 1862 * to be audited. 1863 */ 1864 err = skb_linearize(skb); 1865 if (unlikely(err)) 1866 goto free_skb; 1867 1868 memset(skb->data + skb->len, 0, pad); 1869 return 0; 1870 1871 free_skb: 1872 if (free_on_error) 1873 kfree_skb(skb); 1874 return err; 1875 } 1876 EXPORT_SYMBOL(__skb_pad); 1877 1878 /** 1879 * pskb_put - add data to the tail of a potentially fragmented buffer 1880 * @skb: start of the buffer to use 1881 * @tail: tail fragment of the buffer to use 1882 * @len: amount of data to add 1883 * 1884 * This function extends the used data area of the potentially 1885 * fragmented buffer. @tail must be the last fragment of @skb -- or 1886 * @skb itself. If this would exceed the total buffer size the kernel 1887 * will panic. A pointer to the first byte of the extra data is 1888 * returned. 1889 */ 1890 1891 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len) 1892 { 1893 if (tail != skb) { 1894 skb->data_len += len; 1895 skb->len += len; 1896 } 1897 return skb_put(tail, len); 1898 } 1899 EXPORT_SYMBOL_GPL(pskb_put); 1900 1901 /** 1902 * skb_put - add data to a buffer 1903 * @skb: buffer to use 1904 * @len: amount of data to add 1905 * 1906 * This function extends the used data area of the buffer. If this would 1907 * exceed the total buffer size the kernel will panic. A pointer to the 1908 * first byte of the extra data is returned. 1909 */ 1910 void *skb_put(struct sk_buff *skb, unsigned int len) 1911 { 1912 void *tmp = skb_tail_pointer(skb); 1913 SKB_LINEAR_ASSERT(skb); 1914 skb->tail += len; 1915 skb->len += len; 1916 if (unlikely(skb->tail > skb->end)) 1917 skb_over_panic(skb, len, __builtin_return_address(0)); 1918 return tmp; 1919 } 1920 EXPORT_SYMBOL(skb_put); 1921 1922 /** 1923 * skb_push - add data to the start of a buffer 1924 * @skb: buffer to use 1925 * @len: amount of data to add 1926 * 1927 * This function extends the used data area of the buffer at the buffer 1928 * start. If this would exceed the total buffer headroom the kernel will 1929 * panic. A pointer to the first byte of the extra data is returned. 1930 */ 1931 void *skb_push(struct sk_buff *skb, unsigned int len) 1932 { 1933 skb->data -= len; 1934 skb->len += len; 1935 if (unlikely(skb->data < skb->head)) 1936 skb_under_panic(skb, len, __builtin_return_address(0)); 1937 return skb->data; 1938 } 1939 EXPORT_SYMBOL(skb_push); 1940 1941 /** 1942 * skb_pull - remove data from the start of a buffer 1943 * @skb: buffer to use 1944 * @len: amount of data to remove 1945 * 1946 * This function removes data from the start of a buffer, returning 1947 * the memory to the headroom. A pointer to the next data in the buffer 1948 * is returned. Once the data has been pulled future pushes will overwrite 1949 * the old data. 1950 */ 1951 void *skb_pull(struct sk_buff *skb, unsigned int len) 1952 { 1953 return skb_pull_inline(skb, len); 1954 } 1955 EXPORT_SYMBOL(skb_pull); 1956 1957 /** 1958 * skb_trim - remove end from a buffer 1959 * @skb: buffer to alter 1960 * @len: new length 1961 * 1962 * Cut the length of a buffer down by removing data from the tail. If 1963 * the buffer is already under the length specified it is not modified. 1964 * The skb must be linear. 1965 */ 1966 void skb_trim(struct sk_buff *skb, unsigned int len) 1967 { 1968 if (skb->len > len) 1969 __skb_trim(skb, len); 1970 } 1971 EXPORT_SYMBOL(skb_trim); 1972 1973 /* Trims skb to length len. It can change skb pointers. 1974 */ 1975 1976 int ___pskb_trim(struct sk_buff *skb, unsigned int len) 1977 { 1978 struct sk_buff **fragp; 1979 struct sk_buff *frag; 1980 int offset = skb_headlen(skb); 1981 int nfrags = skb_shinfo(skb)->nr_frags; 1982 int i; 1983 int err; 1984 1985 if (skb_cloned(skb) && 1986 unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))) 1987 return err; 1988 1989 i = 0; 1990 if (offset >= len) 1991 goto drop_pages; 1992 1993 for (; i < nfrags; i++) { 1994 int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]); 1995 1996 if (end < len) { 1997 offset = end; 1998 continue; 1999 } 2000 2001 skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset); 2002 2003 drop_pages: 2004 skb_shinfo(skb)->nr_frags = i; 2005 2006 for (; i < nfrags; i++) 2007 skb_frag_unref(skb, i); 2008 2009 if (skb_has_frag_list(skb)) 2010 skb_drop_fraglist(skb); 2011 goto done; 2012 } 2013 2014 for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp); 2015 fragp = &frag->next) { 2016 int end = offset + frag->len; 2017 2018 if (skb_shared(frag)) { 2019 struct sk_buff *nfrag; 2020 2021 nfrag = skb_clone(frag, GFP_ATOMIC); 2022 if (unlikely(!nfrag)) 2023 return -ENOMEM; 2024 2025 nfrag->next = frag->next; 2026 consume_skb(frag); 2027 frag = nfrag; 2028 *fragp = frag; 2029 } 2030 2031 if (end < len) { 2032 offset = end; 2033 continue; 2034 } 2035 2036 if (end > len && 2037 unlikely((err = pskb_trim(frag, len - offset)))) 2038 return err; 2039 2040 if (frag->next) 2041 skb_drop_list(&frag->next); 2042 break; 2043 } 2044 2045 done: 2046 if (len > skb_headlen(skb)) { 2047 skb->data_len -= skb->len - len; 2048 skb->len = len; 2049 } else { 2050 skb->len = len; 2051 skb->data_len = 0; 2052 skb_set_tail_pointer(skb, len); 2053 } 2054 2055 if (!skb->sk || skb->destructor == sock_edemux) 2056 skb_condense(skb); 2057 return 0; 2058 } 2059 EXPORT_SYMBOL(___pskb_trim); 2060 2061 /* Note : use pskb_trim_rcsum() instead of calling this directly 2062 */ 2063 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len) 2064 { 2065 if (skb->ip_summed == CHECKSUM_COMPLETE) { 2066 int delta = skb->len - len; 2067 2068 skb->csum = csum_block_sub(skb->csum, 2069 skb_checksum(skb, len, delta, 0), 2070 len); 2071 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { 2072 int hdlen = (len > skb_headlen(skb)) ? skb_headlen(skb) : len; 2073 int offset = skb_checksum_start_offset(skb) + skb->csum_offset; 2074 2075 if (offset + sizeof(__sum16) > hdlen) 2076 return -EINVAL; 2077 } 2078 return __pskb_trim(skb, len); 2079 } 2080 EXPORT_SYMBOL(pskb_trim_rcsum_slow); 2081 2082 /** 2083 * __pskb_pull_tail - advance tail of skb header 2084 * @skb: buffer to reallocate 2085 * @delta: number of bytes to advance tail 2086 * 2087 * The function makes a sense only on a fragmented &sk_buff, 2088 * it expands header moving its tail forward and copying necessary 2089 * data from fragmented part. 2090 * 2091 * &sk_buff MUST have reference count of 1. 2092 * 2093 * Returns %NULL (and &sk_buff does not change) if pull failed 2094 * or value of new tail of skb in the case of success. 2095 * 2096 * All the pointers pointing into skb header may change and must be 2097 * reloaded after call to this function. 2098 */ 2099 2100 /* Moves tail of skb head forward, copying data from fragmented part, 2101 * when it is necessary. 2102 * 1. It may fail due to malloc failure. 2103 * 2. It may change skb pointers. 2104 * 2105 * It is pretty complicated. Luckily, it is called only in exceptional cases. 2106 */ 2107 void *__pskb_pull_tail(struct sk_buff *skb, int delta) 2108 { 2109 /* If skb has not enough free space at tail, get new one 2110 * plus 128 bytes for future expansions. If we have enough 2111 * room at tail, reallocate without expansion only if skb is cloned. 2112 */ 2113 int i, k, eat = (skb->tail + delta) - skb->end; 2114 2115 if (eat > 0 || skb_cloned(skb)) { 2116 if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0, 2117 GFP_ATOMIC)) 2118 return NULL; 2119 } 2120 2121 BUG_ON(skb_copy_bits(skb, skb_headlen(skb), 2122 skb_tail_pointer(skb), delta)); 2123 2124 /* Optimization: no fragments, no reasons to preestimate 2125 * size of pulled pages. Superb. 2126 */ 2127 if (!skb_has_frag_list(skb)) 2128 goto pull_pages; 2129 2130 /* Estimate size of pulled pages. */ 2131 eat = delta; 2132 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2133 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 2134 2135 if (size >= eat) 2136 goto pull_pages; 2137 eat -= size; 2138 } 2139 2140 /* If we need update frag list, we are in troubles. 2141 * Certainly, it is possible to add an offset to skb data, 2142 * but taking into account that pulling is expected to 2143 * be very rare operation, it is worth to fight against 2144 * further bloating skb head and crucify ourselves here instead. 2145 * Pure masohism, indeed. 8)8) 2146 */ 2147 if (eat) { 2148 struct sk_buff *list = skb_shinfo(skb)->frag_list; 2149 struct sk_buff *clone = NULL; 2150 struct sk_buff *insp = NULL; 2151 2152 do { 2153 if (list->len <= eat) { 2154 /* Eaten as whole. */ 2155 eat -= list->len; 2156 list = list->next; 2157 insp = list; 2158 } else { 2159 /* Eaten partially. */ 2160 2161 if (skb_shared(list)) { 2162 /* Sucks! We need to fork list. :-( */ 2163 clone = skb_clone(list, GFP_ATOMIC); 2164 if (!clone) 2165 return NULL; 2166 insp = list->next; 2167 list = clone; 2168 } else { 2169 /* This may be pulled without 2170 * problems. */ 2171 insp = list; 2172 } 2173 if (!pskb_pull(list, eat)) { 2174 kfree_skb(clone); 2175 return NULL; 2176 } 2177 break; 2178 } 2179 } while (eat); 2180 2181 /* Free pulled out fragments. */ 2182 while ((list = skb_shinfo(skb)->frag_list) != insp) { 2183 skb_shinfo(skb)->frag_list = list->next; 2184 kfree_skb(list); 2185 } 2186 /* And insert new clone at head. */ 2187 if (clone) { 2188 clone->next = list; 2189 skb_shinfo(skb)->frag_list = clone; 2190 } 2191 } 2192 /* Success! Now we may commit changes to skb data. */ 2193 2194 pull_pages: 2195 eat = delta; 2196 k = 0; 2197 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2198 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 2199 2200 if (size <= eat) { 2201 skb_frag_unref(skb, i); 2202 eat -= size; 2203 } else { 2204 skb_frag_t *frag = &skb_shinfo(skb)->frags[k]; 2205 2206 *frag = skb_shinfo(skb)->frags[i]; 2207 if (eat) { 2208 skb_frag_off_add(frag, eat); 2209 skb_frag_size_sub(frag, eat); 2210 if (!i) 2211 goto end; 2212 eat = 0; 2213 } 2214 k++; 2215 } 2216 } 2217 skb_shinfo(skb)->nr_frags = k; 2218 2219 end: 2220 skb->tail += delta; 2221 skb->data_len -= delta; 2222 2223 if (!skb->data_len) 2224 skb_zcopy_clear(skb, false); 2225 2226 return skb_tail_pointer(skb); 2227 } 2228 EXPORT_SYMBOL(__pskb_pull_tail); 2229 2230 /** 2231 * skb_copy_bits - copy bits from skb to kernel buffer 2232 * @skb: source skb 2233 * @offset: offset in source 2234 * @to: destination buffer 2235 * @len: number of bytes to copy 2236 * 2237 * Copy the specified number of bytes from the source skb to the 2238 * destination buffer. 2239 * 2240 * CAUTION ! : 2241 * If its prototype is ever changed, 2242 * check arch/{*}/net/{*}.S files, 2243 * since it is called from BPF assembly code. 2244 */ 2245 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len) 2246 { 2247 int start = skb_headlen(skb); 2248 struct sk_buff *frag_iter; 2249 int i, copy; 2250 2251 if (offset > (int)skb->len - len) 2252 goto fault; 2253 2254 /* Copy header. */ 2255 if ((copy = start - offset) > 0) { 2256 if (copy > len) 2257 copy = len; 2258 skb_copy_from_linear_data_offset(skb, offset, to, copy); 2259 if ((len -= copy) == 0) 2260 return 0; 2261 offset += copy; 2262 to += copy; 2263 } 2264 2265 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2266 int end; 2267 skb_frag_t *f = &skb_shinfo(skb)->frags[i]; 2268 2269 WARN_ON(start > offset + len); 2270 2271 end = start + skb_frag_size(f); 2272 if ((copy = end - offset) > 0) { 2273 u32 p_off, p_len, copied; 2274 struct page *p; 2275 u8 *vaddr; 2276 2277 if (copy > len) 2278 copy = len; 2279 2280 skb_frag_foreach_page(f, 2281 skb_frag_off(f) + offset - start, 2282 copy, p, p_off, p_len, copied) { 2283 vaddr = kmap_atomic(p); 2284 memcpy(to + copied, vaddr + p_off, p_len); 2285 kunmap_atomic(vaddr); 2286 } 2287 2288 if ((len -= copy) == 0) 2289 return 0; 2290 offset += copy; 2291 to += copy; 2292 } 2293 start = end; 2294 } 2295 2296 skb_walk_frags(skb, frag_iter) { 2297 int end; 2298 2299 WARN_ON(start > offset + len); 2300 2301 end = start + frag_iter->len; 2302 if ((copy = end - offset) > 0) { 2303 if (copy > len) 2304 copy = len; 2305 if (skb_copy_bits(frag_iter, offset - start, to, copy)) 2306 goto fault; 2307 if ((len -= copy) == 0) 2308 return 0; 2309 offset += copy; 2310 to += copy; 2311 } 2312 start = end; 2313 } 2314 2315 if (!len) 2316 return 0; 2317 2318 fault: 2319 return -EFAULT; 2320 } 2321 EXPORT_SYMBOL(skb_copy_bits); 2322 2323 /* 2324 * Callback from splice_to_pipe(), if we need to release some pages 2325 * at the end of the spd in case we error'ed out in filling the pipe. 2326 */ 2327 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i) 2328 { 2329 put_page(spd->pages[i]); 2330 } 2331 2332 static struct page *linear_to_page(struct page *page, unsigned int *len, 2333 unsigned int *offset, 2334 struct sock *sk) 2335 { 2336 struct page_frag *pfrag = sk_page_frag(sk); 2337 2338 if (!sk_page_frag_refill(sk, pfrag)) 2339 return NULL; 2340 2341 *len = min_t(unsigned int, *len, pfrag->size - pfrag->offset); 2342 2343 memcpy(page_address(pfrag->page) + pfrag->offset, 2344 page_address(page) + *offset, *len); 2345 *offset = pfrag->offset; 2346 pfrag->offset += *len; 2347 2348 return pfrag->page; 2349 } 2350 2351 static bool spd_can_coalesce(const struct splice_pipe_desc *spd, 2352 struct page *page, 2353 unsigned int offset) 2354 { 2355 return spd->nr_pages && 2356 spd->pages[spd->nr_pages - 1] == page && 2357 (spd->partial[spd->nr_pages - 1].offset + 2358 spd->partial[spd->nr_pages - 1].len == offset); 2359 } 2360 2361 /* 2362 * Fill page/offset/length into spd, if it can hold more pages. 2363 */ 2364 static bool spd_fill_page(struct splice_pipe_desc *spd, 2365 struct pipe_inode_info *pipe, struct page *page, 2366 unsigned int *len, unsigned int offset, 2367 bool linear, 2368 struct sock *sk) 2369 { 2370 if (unlikely(spd->nr_pages == MAX_SKB_FRAGS)) 2371 return true; 2372 2373 if (linear) { 2374 page = linear_to_page(page, len, &offset, sk); 2375 if (!page) 2376 return true; 2377 } 2378 if (spd_can_coalesce(spd, page, offset)) { 2379 spd->partial[spd->nr_pages - 1].len += *len; 2380 return false; 2381 } 2382 get_page(page); 2383 spd->pages[spd->nr_pages] = page; 2384 spd->partial[spd->nr_pages].len = *len; 2385 spd->partial[spd->nr_pages].offset = offset; 2386 spd->nr_pages++; 2387 2388 return false; 2389 } 2390 2391 static bool __splice_segment(struct page *page, unsigned int poff, 2392 unsigned int plen, unsigned int *off, 2393 unsigned int *len, 2394 struct splice_pipe_desc *spd, bool linear, 2395 struct sock *sk, 2396 struct pipe_inode_info *pipe) 2397 { 2398 if (!*len) 2399 return true; 2400 2401 /* skip this segment if already processed */ 2402 if (*off >= plen) { 2403 *off -= plen; 2404 return false; 2405 } 2406 2407 /* ignore any bits we already processed */ 2408 poff += *off; 2409 plen -= *off; 2410 *off = 0; 2411 2412 do { 2413 unsigned int flen = min(*len, plen); 2414 2415 if (spd_fill_page(spd, pipe, page, &flen, poff, 2416 linear, sk)) 2417 return true; 2418 poff += flen; 2419 plen -= flen; 2420 *len -= flen; 2421 } while (*len && plen); 2422 2423 return false; 2424 } 2425 2426 /* 2427 * Map linear and fragment data from the skb to spd. It reports true if the 2428 * pipe is full or if we already spliced the requested length. 2429 */ 2430 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe, 2431 unsigned int *offset, unsigned int *len, 2432 struct splice_pipe_desc *spd, struct sock *sk) 2433 { 2434 int seg; 2435 struct sk_buff *iter; 2436 2437 /* map the linear part : 2438 * If skb->head_frag is set, this 'linear' part is backed by a 2439 * fragment, and if the head is not shared with any clones then 2440 * we can avoid a copy since we own the head portion of this page. 2441 */ 2442 if (__splice_segment(virt_to_page(skb->data), 2443 (unsigned long) skb->data & (PAGE_SIZE - 1), 2444 skb_headlen(skb), 2445 offset, len, spd, 2446 skb_head_is_locked(skb), 2447 sk, pipe)) 2448 return true; 2449 2450 /* 2451 * then map the fragments 2452 */ 2453 for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) { 2454 const skb_frag_t *f = &skb_shinfo(skb)->frags[seg]; 2455 2456 if (__splice_segment(skb_frag_page(f), 2457 skb_frag_off(f), skb_frag_size(f), 2458 offset, len, spd, false, sk, pipe)) 2459 return true; 2460 } 2461 2462 skb_walk_frags(skb, iter) { 2463 if (*offset >= iter->len) { 2464 *offset -= iter->len; 2465 continue; 2466 } 2467 /* __skb_splice_bits() only fails if the output has no room 2468 * left, so no point in going over the frag_list for the error 2469 * case. 2470 */ 2471 if (__skb_splice_bits(iter, pipe, offset, len, spd, sk)) 2472 return true; 2473 } 2474 2475 return false; 2476 } 2477 2478 /* 2479 * Map data from the skb to a pipe. Should handle both the linear part, 2480 * the fragments, and the frag list. 2481 */ 2482 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset, 2483 struct pipe_inode_info *pipe, unsigned int tlen, 2484 unsigned int flags) 2485 { 2486 struct partial_page partial[MAX_SKB_FRAGS]; 2487 struct page *pages[MAX_SKB_FRAGS]; 2488 struct splice_pipe_desc spd = { 2489 .pages = pages, 2490 .partial = partial, 2491 .nr_pages_max = MAX_SKB_FRAGS, 2492 .ops = &nosteal_pipe_buf_ops, 2493 .spd_release = sock_spd_release, 2494 }; 2495 int ret = 0; 2496 2497 __skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk); 2498 2499 if (spd.nr_pages) 2500 ret = splice_to_pipe(pipe, &spd); 2501 2502 return ret; 2503 } 2504 EXPORT_SYMBOL_GPL(skb_splice_bits); 2505 2506 static int sendmsg_unlocked(struct sock *sk, struct msghdr *msg, 2507 struct kvec *vec, size_t num, size_t size) 2508 { 2509 struct socket *sock = sk->sk_socket; 2510 2511 if (!sock) 2512 return -EINVAL; 2513 return kernel_sendmsg(sock, msg, vec, num, size); 2514 } 2515 2516 static int sendpage_unlocked(struct sock *sk, struct page *page, int offset, 2517 size_t size, int flags) 2518 { 2519 struct socket *sock = sk->sk_socket; 2520 2521 if (!sock) 2522 return -EINVAL; 2523 return kernel_sendpage(sock, page, offset, size, flags); 2524 } 2525 2526 typedef int (*sendmsg_func)(struct sock *sk, struct msghdr *msg, 2527 struct kvec *vec, size_t num, size_t size); 2528 typedef int (*sendpage_func)(struct sock *sk, struct page *page, int offset, 2529 size_t size, int flags); 2530 static int __skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, 2531 int len, sendmsg_func sendmsg, sendpage_func sendpage) 2532 { 2533 unsigned int orig_len = len; 2534 struct sk_buff *head = skb; 2535 unsigned short fragidx; 2536 int slen, ret; 2537 2538 do_frag_list: 2539 2540 /* Deal with head data */ 2541 while (offset < skb_headlen(skb) && len) { 2542 struct kvec kv; 2543 struct msghdr msg; 2544 2545 slen = min_t(int, len, skb_headlen(skb) - offset); 2546 kv.iov_base = skb->data + offset; 2547 kv.iov_len = slen; 2548 memset(&msg, 0, sizeof(msg)); 2549 msg.msg_flags = MSG_DONTWAIT; 2550 2551 ret = INDIRECT_CALL_2(sendmsg, kernel_sendmsg_locked, 2552 sendmsg_unlocked, sk, &msg, &kv, 1, slen); 2553 if (ret <= 0) 2554 goto error; 2555 2556 offset += ret; 2557 len -= ret; 2558 } 2559 2560 /* All the data was skb head? */ 2561 if (!len) 2562 goto out; 2563 2564 /* Make offset relative to start of frags */ 2565 offset -= skb_headlen(skb); 2566 2567 /* Find where we are in frag list */ 2568 for (fragidx = 0; fragidx < skb_shinfo(skb)->nr_frags; fragidx++) { 2569 skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx]; 2570 2571 if (offset < skb_frag_size(frag)) 2572 break; 2573 2574 offset -= skb_frag_size(frag); 2575 } 2576 2577 for (; len && fragidx < skb_shinfo(skb)->nr_frags; fragidx++) { 2578 skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx]; 2579 2580 slen = min_t(size_t, len, skb_frag_size(frag) - offset); 2581 2582 while (slen) { 2583 ret = INDIRECT_CALL_2(sendpage, kernel_sendpage_locked, 2584 sendpage_unlocked, sk, 2585 skb_frag_page(frag), 2586 skb_frag_off(frag) + offset, 2587 slen, MSG_DONTWAIT); 2588 if (ret <= 0) 2589 goto error; 2590 2591 len -= ret; 2592 offset += ret; 2593 slen -= ret; 2594 } 2595 2596 offset = 0; 2597 } 2598 2599 if (len) { 2600 /* Process any frag lists */ 2601 2602 if (skb == head) { 2603 if (skb_has_frag_list(skb)) { 2604 skb = skb_shinfo(skb)->frag_list; 2605 goto do_frag_list; 2606 } 2607 } else if (skb->next) { 2608 skb = skb->next; 2609 goto do_frag_list; 2610 } 2611 } 2612 2613 out: 2614 return orig_len - len; 2615 2616 error: 2617 return orig_len == len ? ret : orig_len - len; 2618 } 2619 2620 /* Send skb data on a socket. Socket must be locked. */ 2621 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset, 2622 int len) 2623 { 2624 return __skb_send_sock(sk, skb, offset, len, kernel_sendmsg_locked, 2625 kernel_sendpage_locked); 2626 } 2627 EXPORT_SYMBOL_GPL(skb_send_sock_locked); 2628 2629 /* Send skb data on a socket. Socket must be unlocked. */ 2630 int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len) 2631 { 2632 return __skb_send_sock(sk, skb, offset, len, sendmsg_unlocked, 2633 sendpage_unlocked); 2634 } 2635 2636 /** 2637 * skb_store_bits - store bits from kernel buffer to skb 2638 * @skb: destination buffer 2639 * @offset: offset in destination 2640 * @from: source buffer 2641 * @len: number of bytes to copy 2642 * 2643 * Copy the specified number of bytes from the source buffer to the 2644 * destination skb. This function handles all the messy bits of 2645 * traversing fragment lists and such. 2646 */ 2647 2648 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len) 2649 { 2650 int start = skb_headlen(skb); 2651 struct sk_buff *frag_iter; 2652 int i, copy; 2653 2654 if (offset > (int)skb->len - len) 2655 goto fault; 2656 2657 if ((copy = start - offset) > 0) { 2658 if (copy > len) 2659 copy = len; 2660 skb_copy_to_linear_data_offset(skb, offset, from, copy); 2661 if ((len -= copy) == 0) 2662 return 0; 2663 offset += copy; 2664 from += copy; 2665 } 2666 2667 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2668 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2669 int end; 2670 2671 WARN_ON(start > offset + len); 2672 2673 end = start + skb_frag_size(frag); 2674 if ((copy = end - offset) > 0) { 2675 u32 p_off, p_len, copied; 2676 struct page *p; 2677 u8 *vaddr; 2678 2679 if (copy > len) 2680 copy = len; 2681 2682 skb_frag_foreach_page(frag, 2683 skb_frag_off(frag) + offset - start, 2684 copy, p, p_off, p_len, copied) { 2685 vaddr = kmap_atomic(p); 2686 memcpy(vaddr + p_off, from + copied, p_len); 2687 kunmap_atomic(vaddr); 2688 } 2689 2690 if ((len -= copy) == 0) 2691 return 0; 2692 offset += copy; 2693 from += copy; 2694 } 2695 start = end; 2696 } 2697 2698 skb_walk_frags(skb, frag_iter) { 2699 int end; 2700 2701 WARN_ON(start > offset + len); 2702 2703 end = start + frag_iter->len; 2704 if ((copy = end - offset) > 0) { 2705 if (copy > len) 2706 copy = len; 2707 if (skb_store_bits(frag_iter, offset - start, 2708 from, copy)) 2709 goto fault; 2710 if ((len -= copy) == 0) 2711 return 0; 2712 offset += copy; 2713 from += copy; 2714 } 2715 start = end; 2716 } 2717 if (!len) 2718 return 0; 2719 2720 fault: 2721 return -EFAULT; 2722 } 2723 EXPORT_SYMBOL(skb_store_bits); 2724 2725 /* Checksum skb data. */ 2726 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len, 2727 __wsum csum, const struct skb_checksum_ops *ops) 2728 { 2729 int start = skb_headlen(skb); 2730 int i, copy = start - offset; 2731 struct sk_buff *frag_iter; 2732 int pos = 0; 2733 2734 /* Checksum header. */ 2735 if (copy > 0) { 2736 if (copy > len) 2737 copy = len; 2738 csum = INDIRECT_CALL_1(ops->update, csum_partial_ext, 2739 skb->data + offset, copy, csum); 2740 if ((len -= copy) == 0) 2741 return csum; 2742 offset += copy; 2743 pos = copy; 2744 } 2745 2746 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2747 int end; 2748 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2749 2750 WARN_ON(start > offset + len); 2751 2752 end = start + skb_frag_size(frag); 2753 if ((copy = end - offset) > 0) { 2754 u32 p_off, p_len, copied; 2755 struct page *p; 2756 __wsum csum2; 2757 u8 *vaddr; 2758 2759 if (copy > len) 2760 copy = len; 2761 2762 skb_frag_foreach_page(frag, 2763 skb_frag_off(frag) + offset - start, 2764 copy, p, p_off, p_len, copied) { 2765 vaddr = kmap_atomic(p); 2766 csum2 = INDIRECT_CALL_1(ops->update, 2767 csum_partial_ext, 2768 vaddr + p_off, p_len, 0); 2769 kunmap_atomic(vaddr); 2770 csum = INDIRECT_CALL_1(ops->combine, 2771 csum_block_add_ext, csum, 2772 csum2, pos, p_len); 2773 pos += p_len; 2774 } 2775 2776 if (!(len -= copy)) 2777 return csum; 2778 offset += copy; 2779 } 2780 start = end; 2781 } 2782 2783 skb_walk_frags(skb, frag_iter) { 2784 int end; 2785 2786 WARN_ON(start > offset + len); 2787 2788 end = start + frag_iter->len; 2789 if ((copy = end - offset) > 0) { 2790 __wsum csum2; 2791 if (copy > len) 2792 copy = len; 2793 csum2 = __skb_checksum(frag_iter, offset - start, 2794 copy, 0, ops); 2795 csum = INDIRECT_CALL_1(ops->combine, csum_block_add_ext, 2796 csum, csum2, pos, copy); 2797 if ((len -= copy) == 0) 2798 return csum; 2799 offset += copy; 2800 pos += copy; 2801 } 2802 start = end; 2803 } 2804 BUG_ON(len); 2805 2806 return csum; 2807 } 2808 EXPORT_SYMBOL(__skb_checksum); 2809 2810 __wsum skb_checksum(const struct sk_buff *skb, int offset, 2811 int len, __wsum csum) 2812 { 2813 const struct skb_checksum_ops ops = { 2814 .update = csum_partial_ext, 2815 .combine = csum_block_add_ext, 2816 }; 2817 2818 return __skb_checksum(skb, offset, len, csum, &ops); 2819 } 2820 EXPORT_SYMBOL(skb_checksum); 2821 2822 /* Both of above in one bottle. */ 2823 2824 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, 2825 u8 *to, int len) 2826 { 2827 int start = skb_headlen(skb); 2828 int i, copy = start - offset; 2829 struct sk_buff *frag_iter; 2830 int pos = 0; 2831 __wsum csum = 0; 2832 2833 /* Copy header. */ 2834 if (copy > 0) { 2835 if (copy > len) 2836 copy = len; 2837 csum = csum_partial_copy_nocheck(skb->data + offset, to, 2838 copy); 2839 if ((len -= copy) == 0) 2840 return csum; 2841 offset += copy; 2842 to += copy; 2843 pos = copy; 2844 } 2845 2846 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2847 int end; 2848 2849 WARN_ON(start > offset + len); 2850 2851 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]); 2852 if ((copy = end - offset) > 0) { 2853 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2854 u32 p_off, p_len, copied; 2855 struct page *p; 2856 __wsum csum2; 2857 u8 *vaddr; 2858 2859 if (copy > len) 2860 copy = len; 2861 2862 skb_frag_foreach_page(frag, 2863 skb_frag_off(frag) + offset - start, 2864 copy, p, p_off, p_len, copied) { 2865 vaddr = kmap_atomic(p); 2866 csum2 = csum_partial_copy_nocheck(vaddr + p_off, 2867 to + copied, 2868 p_len); 2869 kunmap_atomic(vaddr); 2870 csum = csum_block_add(csum, csum2, pos); 2871 pos += p_len; 2872 } 2873 2874 if (!(len -= copy)) 2875 return csum; 2876 offset += copy; 2877 to += copy; 2878 } 2879 start = end; 2880 } 2881 2882 skb_walk_frags(skb, frag_iter) { 2883 __wsum csum2; 2884 int end; 2885 2886 WARN_ON(start > offset + len); 2887 2888 end = start + frag_iter->len; 2889 if ((copy = end - offset) > 0) { 2890 if (copy > len) 2891 copy = len; 2892 csum2 = skb_copy_and_csum_bits(frag_iter, 2893 offset - start, 2894 to, copy); 2895 csum = csum_block_add(csum, csum2, pos); 2896 if ((len -= copy) == 0) 2897 return csum; 2898 offset += copy; 2899 to += copy; 2900 pos += copy; 2901 } 2902 start = end; 2903 } 2904 BUG_ON(len); 2905 return csum; 2906 } 2907 EXPORT_SYMBOL(skb_copy_and_csum_bits); 2908 2909 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len) 2910 { 2911 __sum16 sum; 2912 2913 sum = csum_fold(skb_checksum(skb, 0, len, skb->csum)); 2914 /* See comments in __skb_checksum_complete(). */ 2915 if (likely(!sum)) { 2916 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) && 2917 !skb->csum_complete_sw) 2918 netdev_rx_csum_fault(skb->dev, skb); 2919 } 2920 if (!skb_shared(skb)) 2921 skb->csum_valid = !sum; 2922 return sum; 2923 } 2924 EXPORT_SYMBOL(__skb_checksum_complete_head); 2925 2926 /* This function assumes skb->csum already holds pseudo header's checksum, 2927 * which has been changed from the hardware checksum, for example, by 2928 * __skb_checksum_validate_complete(). And, the original skb->csum must 2929 * have been validated unsuccessfully for CHECKSUM_COMPLETE case. 2930 * 2931 * It returns non-zero if the recomputed checksum is still invalid, otherwise 2932 * zero. The new checksum is stored back into skb->csum unless the skb is 2933 * shared. 2934 */ 2935 __sum16 __skb_checksum_complete(struct sk_buff *skb) 2936 { 2937 __wsum csum; 2938 __sum16 sum; 2939 2940 csum = skb_checksum(skb, 0, skb->len, 0); 2941 2942 sum = csum_fold(csum_add(skb->csum, csum)); 2943 /* This check is inverted, because we already knew the hardware 2944 * checksum is invalid before calling this function. So, if the 2945 * re-computed checksum is valid instead, then we have a mismatch 2946 * between the original skb->csum and skb_checksum(). This means either 2947 * the original hardware checksum is incorrect or we screw up skb->csum 2948 * when moving skb->data around. 2949 */ 2950 if (likely(!sum)) { 2951 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) && 2952 !skb->csum_complete_sw) 2953 netdev_rx_csum_fault(skb->dev, skb); 2954 } 2955 2956 if (!skb_shared(skb)) { 2957 /* Save full packet checksum */ 2958 skb->csum = csum; 2959 skb->ip_summed = CHECKSUM_COMPLETE; 2960 skb->csum_complete_sw = 1; 2961 skb->csum_valid = !sum; 2962 } 2963 2964 return sum; 2965 } 2966 EXPORT_SYMBOL(__skb_checksum_complete); 2967 2968 static __wsum warn_crc32c_csum_update(const void *buff, int len, __wsum sum) 2969 { 2970 net_warn_ratelimited( 2971 "%s: attempt to compute crc32c without libcrc32c.ko\n", 2972 __func__); 2973 return 0; 2974 } 2975 2976 static __wsum warn_crc32c_csum_combine(__wsum csum, __wsum csum2, 2977 int offset, int len) 2978 { 2979 net_warn_ratelimited( 2980 "%s: attempt to compute crc32c without libcrc32c.ko\n", 2981 __func__); 2982 return 0; 2983 } 2984 2985 static const struct skb_checksum_ops default_crc32c_ops = { 2986 .update = warn_crc32c_csum_update, 2987 .combine = warn_crc32c_csum_combine, 2988 }; 2989 2990 const struct skb_checksum_ops *crc32c_csum_stub __read_mostly = 2991 &default_crc32c_ops; 2992 EXPORT_SYMBOL(crc32c_csum_stub); 2993 2994 /** 2995 * skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy() 2996 * @from: source buffer 2997 * 2998 * Calculates the amount of linear headroom needed in the 'to' skb passed 2999 * into skb_zerocopy(). 3000 */ 3001 unsigned int 3002 skb_zerocopy_headlen(const struct sk_buff *from) 3003 { 3004 unsigned int hlen = 0; 3005 3006 if (!from->head_frag || 3007 skb_headlen(from) < L1_CACHE_BYTES || 3008 skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS) 3009 hlen = skb_headlen(from); 3010 3011 if (skb_has_frag_list(from)) 3012 hlen = from->len; 3013 3014 return hlen; 3015 } 3016 EXPORT_SYMBOL_GPL(skb_zerocopy_headlen); 3017 3018 /** 3019 * skb_zerocopy - Zero copy skb to skb 3020 * @to: destination buffer 3021 * @from: source buffer 3022 * @len: number of bytes to copy from source buffer 3023 * @hlen: size of linear headroom in destination buffer 3024 * 3025 * Copies up to `len` bytes from `from` to `to` by creating references 3026 * to the frags in the source buffer. 3027 * 3028 * The `hlen` as calculated by skb_zerocopy_headlen() specifies the 3029 * headroom in the `to` buffer. 3030 * 3031 * Return value: 3032 * 0: everything is OK 3033 * -ENOMEM: couldn't orphan frags of @from due to lack of memory 3034 * -EFAULT: skb_copy_bits() found some problem with skb geometry 3035 */ 3036 int 3037 skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen) 3038 { 3039 int i, j = 0; 3040 int plen = 0; /* length of skb->head fragment */ 3041 int ret; 3042 struct page *page; 3043 unsigned int offset; 3044 3045 BUG_ON(!from->head_frag && !hlen); 3046 3047 /* dont bother with small payloads */ 3048 if (len <= skb_tailroom(to)) 3049 return skb_copy_bits(from, 0, skb_put(to, len), len); 3050 3051 if (hlen) { 3052 ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen); 3053 if (unlikely(ret)) 3054 return ret; 3055 len -= hlen; 3056 } else { 3057 plen = min_t(int, skb_headlen(from), len); 3058 if (plen) { 3059 page = virt_to_head_page(from->head); 3060 offset = from->data - (unsigned char *)page_address(page); 3061 __skb_fill_page_desc(to, 0, page, offset, plen); 3062 get_page(page); 3063 j = 1; 3064 len -= plen; 3065 } 3066 } 3067 3068 to->truesize += len + plen; 3069 to->len += len + plen; 3070 to->data_len += len + plen; 3071 3072 if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) { 3073 skb_tx_error(from); 3074 return -ENOMEM; 3075 } 3076 skb_zerocopy_clone(to, from, GFP_ATOMIC); 3077 3078 for (i = 0; i < skb_shinfo(from)->nr_frags; i++) { 3079 int size; 3080 3081 if (!len) 3082 break; 3083 skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i]; 3084 size = min_t(int, skb_frag_size(&skb_shinfo(to)->frags[j]), 3085 len); 3086 skb_frag_size_set(&skb_shinfo(to)->frags[j], size); 3087 len -= size; 3088 skb_frag_ref(to, j); 3089 j++; 3090 } 3091 skb_shinfo(to)->nr_frags = j; 3092 3093 return 0; 3094 } 3095 EXPORT_SYMBOL_GPL(skb_zerocopy); 3096 3097 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to) 3098 { 3099 __wsum csum; 3100 long csstart; 3101 3102 if (skb->ip_summed == CHECKSUM_PARTIAL) 3103 csstart = skb_checksum_start_offset(skb); 3104 else 3105 csstart = skb_headlen(skb); 3106 3107 BUG_ON(csstart > skb_headlen(skb)); 3108 3109 skb_copy_from_linear_data(skb, to, csstart); 3110 3111 csum = 0; 3112 if (csstart != skb->len) 3113 csum = skb_copy_and_csum_bits(skb, csstart, to + csstart, 3114 skb->len - csstart); 3115 3116 if (skb->ip_summed == CHECKSUM_PARTIAL) { 3117 long csstuff = csstart + skb->csum_offset; 3118 3119 *((__sum16 *)(to + csstuff)) = csum_fold(csum); 3120 } 3121 } 3122 EXPORT_SYMBOL(skb_copy_and_csum_dev); 3123 3124 /** 3125 * skb_dequeue - remove from the head of the queue 3126 * @list: list to dequeue from 3127 * 3128 * Remove the head of the list. The list lock is taken so the function 3129 * may be used safely with other locking list functions. The head item is 3130 * returned or %NULL if the list is empty. 3131 */ 3132 3133 struct sk_buff *skb_dequeue(struct sk_buff_head *list) 3134 { 3135 unsigned long flags; 3136 struct sk_buff *result; 3137 3138 spin_lock_irqsave(&list->lock, flags); 3139 result = __skb_dequeue(list); 3140 spin_unlock_irqrestore(&list->lock, flags); 3141 return result; 3142 } 3143 EXPORT_SYMBOL(skb_dequeue); 3144 3145 /** 3146 * skb_dequeue_tail - remove from the tail of the queue 3147 * @list: list to dequeue from 3148 * 3149 * Remove the tail of the list. The list lock is taken so the function 3150 * may be used safely with other locking list functions. The tail item is 3151 * returned or %NULL if the list is empty. 3152 */ 3153 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list) 3154 { 3155 unsigned long flags; 3156 struct sk_buff *result; 3157 3158 spin_lock_irqsave(&list->lock, flags); 3159 result = __skb_dequeue_tail(list); 3160 spin_unlock_irqrestore(&list->lock, flags); 3161 return result; 3162 } 3163 EXPORT_SYMBOL(skb_dequeue_tail); 3164 3165 /** 3166 * skb_queue_purge - empty a list 3167 * @list: list to empty 3168 * 3169 * Delete all buffers on an &sk_buff list. Each buffer is removed from 3170 * the list and one reference dropped. This function takes the list 3171 * lock and is atomic with respect to other list locking functions. 3172 */ 3173 void skb_queue_purge(struct sk_buff_head *list) 3174 { 3175 struct sk_buff *skb; 3176 while ((skb = skb_dequeue(list)) != NULL) 3177 kfree_skb(skb); 3178 } 3179 EXPORT_SYMBOL(skb_queue_purge); 3180 3181 /** 3182 * skb_rbtree_purge - empty a skb rbtree 3183 * @root: root of the rbtree to empty 3184 * Return value: the sum of truesizes of all purged skbs. 3185 * 3186 * Delete all buffers on an &sk_buff rbtree. Each buffer is removed from 3187 * the list and one reference dropped. This function does not take 3188 * any lock. Synchronization should be handled by the caller (e.g., TCP 3189 * out-of-order queue is protected by the socket lock). 3190 */ 3191 unsigned int skb_rbtree_purge(struct rb_root *root) 3192 { 3193 struct rb_node *p = rb_first(root); 3194 unsigned int sum = 0; 3195 3196 while (p) { 3197 struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode); 3198 3199 p = rb_next(p); 3200 rb_erase(&skb->rbnode, root); 3201 sum += skb->truesize; 3202 kfree_skb(skb); 3203 } 3204 return sum; 3205 } 3206 3207 /** 3208 * skb_queue_head - queue a buffer at the list head 3209 * @list: list to use 3210 * @newsk: buffer to queue 3211 * 3212 * Queue a buffer at the start of the list. This function takes the 3213 * list lock and can be used safely with other locking &sk_buff functions 3214 * safely. 3215 * 3216 * A buffer cannot be placed on two lists at the same time. 3217 */ 3218 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk) 3219 { 3220 unsigned long flags; 3221 3222 spin_lock_irqsave(&list->lock, flags); 3223 __skb_queue_head(list, newsk); 3224 spin_unlock_irqrestore(&list->lock, flags); 3225 } 3226 EXPORT_SYMBOL(skb_queue_head); 3227 3228 /** 3229 * skb_queue_tail - queue a buffer at the list tail 3230 * @list: list to use 3231 * @newsk: buffer to queue 3232 * 3233 * Queue a buffer at the tail of the list. This function takes the 3234 * list lock and can be used safely with other locking &sk_buff functions 3235 * safely. 3236 * 3237 * A buffer cannot be placed on two lists at the same time. 3238 */ 3239 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk) 3240 { 3241 unsigned long flags; 3242 3243 spin_lock_irqsave(&list->lock, flags); 3244 __skb_queue_tail(list, newsk); 3245 spin_unlock_irqrestore(&list->lock, flags); 3246 } 3247 EXPORT_SYMBOL(skb_queue_tail); 3248 3249 /** 3250 * skb_unlink - remove a buffer from a list 3251 * @skb: buffer to remove 3252 * @list: list to use 3253 * 3254 * Remove a packet from a list. The list locks are taken and this 3255 * function is atomic with respect to other list locked calls 3256 * 3257 * You must know what list the SKB is on. 3258 */ 3259 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list) 3260 { 3261 unsigned long flags; 3262 3263 spin_lock_irqsave(&list->lock, flags); 3264 __skb_unlink(skb, list); 3265 spin_unlock_irqrestore(&list->lock, flags); 3266 } 3267 EXPORT_SYMBOL(skb_unlink); 3268 3269 /** 3270 * skb_append - append a buffer 3271 * @old: buffer to insert after 3272 * @newsk: buffer to insert 3273 * @list: list to use 3274 * 3275 * Place a packet after a given packet in a list. The list locks are taken 3276 * and this function is atomic with respect to other list locked calls. 3277 * A buffer cannot be placed on two lists at the same time. 3278 */ 3279 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list) 3280 { 3281 unsigned long flags; 3282 3283 spin_lock_irqsave(&list->lock, flags); 3284 __skb_queue_after(list, old, newsk); 3285 spin_unlock_irqrestore(&list->lock, flags); 3286 } 3287 EXPORT_SYMBOL(skb_append); 3288 3289 static inline void skb_split_inside_header(struct sk_buff *skb, 3290 struct sk_buff* skb1, 3291 const u32 len, const int pos) 3292 { 3293 int i; 3294 3295 skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len), 3296 pos - len); 3297 /* And move data appendix as is. */ 3298 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 3299 skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i]; 3300 3301 skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags; 3302 skb_shinfo(skb)->nr_frags = 0; 3303 skb1->data_len = skb->data_len; 3304 skb1->len += skb1->data_len; 3305 skb->data_len = 0; 3306 skb->len = len; 3307 skb_set_tail_pointer(skb, len); 3308 } 3309 3310 static inline void skb_split_no_header(struct sk_buff *skb, 3311 struct sk_buff* skb1, 3312 const u32 len, int pos) 3313 { 3314 int i, k = 0; 3315 const int nfrags = skb_shinfo(skb)->nr_frags; 3316 3317 skb_shinfo(skb)->nr_frags = 0; 3318 skb1->len = skb1->data_len = skb->len - len; 3319 skb->len = len; 3320 skb->data_len = len - pos; 3321 3322 for (i = 0; i < nfrags; i++) { 3323 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 3324 3325 if (pos + size > len) { 3326 skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i]; 3327 3328 if (pos < len) { 3329 /* Split frag. 3330 * We have two variants in this case: 3331 * 1. Move all the frag to the second 3332 * part, if it is possible. F.e. 3333 * this approach is mandatory for TUX, 3334 * where splitting is expensive. 3335 * 2. Split is accurately. We make this. 3336 */ 3337 skb_frag_ref(skb, i); 3338 skb_frag_off_add(&skb_shinfo(skb1)->frags[0], len - pos); 3339 skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos); 3340 skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos); 3341 skb_shinfo(skb)->nr_frags++; 3342 } 3343 k++; 3344 } else 3345 skb_shinfo(skb)->nr_frags++; 3346 pos += size; 3347 } 3348 skb_shinfo(skb1)->nr_frags = k; 3349 } 3350 3351 /** 3352 * skb_split - Split fragmented skb to two parts at length len. 3353 * @skb: the buffer to split 3354 * @skb1: the buffer to receive the second part 3355 * @len: new length for skb 3356 */ 3357 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len) 3358 { 3359 int pos = skb_headlen(skb); 3360 3361 skb_shinfo(skb1)->flags |= skb_shinfo(skb)->flags & SKBFL_SHARED_FRAG; 3362 skb_zerocopy_clone(skb1, skb, 0); 3363 if (len < pos) /* Split line is inside header. */ 3364 skb_split_inside_header(skb, skb1, len, pos); 3365 else /* Second chunk has no header, nothing to copy. */ 3366 skb_split_no_header(skb, skb1, len, pos); 3367 } 3368 EXPORT_SYMBOL(skb_split); 3369 3370 /* Shifting from/to a cloned skb is a no-go. 3371 * 3372 * Caller cannot keep skb_shinfo related pointers past calling here! 3373 */ 3374 static int skb_prepare_for_shift(struct sk_buff *skb) 3375 { 3376 int ret = 0; 3377 3378 if (skb_cloned(skb)) { 3379 /* Save and restore truesize: pskb_expand_head() may reallocate 3380 * memory where ksize(kmalloc(S)) != ksize(kmalloc(S)), but we 3381 * cannot change truesize at this point. 3382 */ 3383 unsigned int save_truesize = skb->truesize; 3384 3385 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 3386 skb->truesize = save_truesize; 3387 } 3388 return ret; 3389 } 3390 3391 /** 3392 * skb_shift - Shifts paged data partially from skb to another 3393 * @tgt: buffer into which tail data gets added 3394 * @skb: buffer from which the paged data comes from 3395 * @shiftlen: shift up to this many bytes 3396 * 3397 * Attempts to shift up to shiftlen worth of bytes, which may be less than 3398 * the length of the skb, from skb to tgt. Returns number bytes shifted. 3399 * It's up to caller to free skb if everything was shifted. 3400 * 3401 * If @tgt runs out of frags, the whole operation is aborted. 3402 * 3403 * Skb cannot include anything else but paged data while tgt is allowed 3404 * to have non-paged data as well. 3405 * 3406 * TODO: full sized shift could be optimized but that would need 3407 * specialized skb free'er to handle frags without up-to-date nr_frags. 3408 */ 3409 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen) 3410 { 3411 int from, to, merge, todo; 3412 skb_frag_t *fragfrom, *fragto; 3413 3414 BUG_ON(shiftlen > skb->len); 3415 3416 if (skb_headlen(skb)) 3417 return 0; 3418 if (skb_zcopy(tgt) || skb_zcopy(skb)) 3419 return 0; 3420 3421 todo = shiftlen; 3422 from = 0; 3423 to = skb_shinfo(tgt)->nr_frags; 3424 fragfrom = &skb_shinfo(skb)->frags[from]; 3425 3426 /* Actual merge is delayed until the point when we know we can 3427 * commit all, so that we don't have to undo partial changes 3428 */ 3429 if (!to || 3430 !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom), 3431 skb_frag_off(fragfrom))) { 3432 merge = -1; 3433 } else { 3434 merge = to - 1; 3435 3436 todo -= skb_frag_size(fragfrom); 3437 if (todo < 0) { 3438 if (skb_prepare_for_shift(skb) || 3439 skb_prepare_for_shift(tgt)) 3440 return 0; 3441 3442 /* All previous frag pointers might be stale! */ 3443 fragfrom = &skb_shinfo(skb)->frags[from]; 3444 fragto = &skb_shinfo(tgt)->frags[merge]; 3445 3446 skb_frag_size_add(fragto, shiftlen); 3447 skb_frag_size_sub(fragfrom, shiftlen); 3448 skb_frag_off_add(fragfrom, shiftlen); 3449 3450 goto onlymerged; 3451 } 3452 3453 from++; 3454 } 3455 3456 /* Skip full, not-fitting skb to avoid expensive operations */ 3457 if ((shiftlen == skb->len) && 3458 (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to)) 3459 return 0; 3460 3461 if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt)) 3462 return 0; 3463 3464 while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) { 3465 if (to == MAX_SKB_FRAGS) 3466 return 0; 3467 3468 fragfrom = &skb_shinfo(skb)->frags[from]; 3469 fragto = &skb_shinfo(tgt)->frags[to]; 3470 3471 if (todo >= skb_frag_size(fragfrom)) { 3472 *fragto = *fragfrom; 3473 todo -= skb_frag_size(fragfrom); 3474 from++; 3475 to++; 3476 3477 } else { 3478 __skb_frag_ref(fragfrom); 3479 skb_frag_page_copy(fragto, fragfrom); 3480 skb_frag_off_copy(fragto, fragfrom); 3481 skb_frag_size_set(fragto, todo); 3482 3483 skb_frag_off_add(fragfrom, todo); 3484 skb_frag_size_sub(fragfrom, todo); 3485 todo = 0; 3486 3487 to++; 3488 break; 3489 } 3490 } 3491 3492 /* Ready to "commit" this state change to tgt */ 3493 skb_shinfo(tgt)->nr_frags = to; 3494 3495 if (merge >= 0) { 3496 fragfrom = &skb_shinfo(skb)->frags[0]; 3497 fragto = &skb_shinfo(tgt)->frags[merge]; 3498 3499 skb_frag_size_add(fragto, skb_frag_size(fragfrom)); 3500 __skb_frag_unref(fragfrom); 3501 } 3502 3503 /* Reposition in the original skb */ 3504 to = 0; 3505 while (from < skb_shinfo(skb)->nr_frags) 3506 skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++]; 3507 skb_shinfo(skb)->nr_frags = to; 3508 3509 BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags); 3510 3511 onlymerged: 3512 /* Most likely the tgt won't ever need its checksum anymore, skb on 3513 * the other hand might need it if it needs to be resent 3514 */ 3515 tgt->ip_summed = CHECKSUM_PARTIAL; 3516 skb->ip_summed = CHECKSUM_PARTIAL; 3517 3518 /* Yak, is it really working this way? Some helper please? */ 3519 skb->len -= shiftlen; 3520 skb->data_len -= shiftlen; 3521 skb->truesize -= shiftlen; 3522 tgt->len += shiftlen; 3523 tgt->data_len += shiftlen; 3524 tgt->truesize += shiftlen; 3525 3526 return shiftlen; 3527 } 3528 3529 /** 3530 * skb_prepare_seq_read - Prepare a sequential read of skb data 3531 * @skb: the buffer to read 3532 * @from: lower offset of data to be read 3533 * @to: upper offset of data to be read 3534 * @st: state variable 3535 * 3536 * Initializes the specified state variable. Must be called before 3537 * invoking skb_seq_read() for the first time. 3538 */ 3539 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from, 3540 unsigned int to, struct skb_seq_state *st) 3541 { 3542 st->lower_offset = from; 3543 st->upper_offset = to; 3544 st->root_skb = st->cur_skb = skb; 3545 st->frag_idx = st->stepped_offset = 0; 3546 st->frag_data = NULL; 3547 st->frag_off = 0; 3548 } 3549 EXPORT_SYMBOL(skb_prepare_seq_read); 3550 3551 /** 3552 * skb_seq_read - Sequentially read skb data 3553 * @consumed: number of bytes consumed by the caller so far 3554 * @data: destination pointer for data to be returned 3555 * @st: state variable 3556 * 3557 * Reads a block of skb data at @consumed relative to the 3558 * lower offset specified to skb_prepare_seq_read(). Assigns 3559 * the head of the data block to @data and returns the length 3560 * of the block or 0 if the end of the skb data or the upper 3561 * offset has been reached. 3562 * 3563 * The caller is not required to consume all of the data 3564 * returned, i.e. @consumed is typically set to the number 3565 * of bytes already consumed and the next call to 3566 * skb_seq_read() will return the remaining part of the block. 3567 * 3568 * Note 1: The size of each block of data returned can be arbitrary, 3569 * this limitation is the cost for zerocopy sequential 3570 * reads of potentially non linear data. 3571 * 3572 * Note 2: Fragment lists within fragments are not implemented 3573 * at the moment, state->root_skb could be replaced with 3574 * a stack for this purpose. 3575 */ 3576 unsigned int skb_seq_read(unsigned int consumed, const u8 **data, 3577 struct skb_seq_state *st) 3578 { 3579 unsigned int block_limit, abs_offset = consumed + st->lower_offset; 3580 skb_frag_t *frag; 3581 3582 if (unlikely(abs_offset >= st->upper_offset)) { 3583 if (st->frag_data) { 3584 kunmap_atomic(st->frag_data); 3585 st->frag_data = NULL; 3586 } 3587 return 0; 3588 } 3589 3590 next_skb: 3591 block_limit = skb_headlen(st->cur_skb) + st->stepped_offset; 3592 3593 if (abs_offset < block_limit && !st->frag_data) { 3594 *data = st->cur_skb->data + (abs_offset - st->stepped_offset); 3595 return block_limit - abs_offset; 3596 } 3597 3598 if (st->frag_idx == 0 && !st->frag_data) 3599 st->stepped_offset += skb_headlen(st->cur_skb); 3600 3601 while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) { 3602 unsigned int pg_idx, pg_off, pg_sz; 3603 3604 frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx]; 3605 3606 pg_idx = 0; 3607 pg_off = skb_frag_off(frag); 3608 pg_sz = skb_frag_size(frag); 3609 3610 if (skb_frag_must_loop(skb_frag_page(frag))) { 3611 pg_idx = (pg_off + st->frag_off) >> PAGE_SHIFT; 3612 pg_off = offset_in_page(pg_off + st->frag_off); 3613 pg_sz = min_t(unsigned int, pg_sz - st->frag_off, 3614 PAGE_SIZE - pg_off); 3615 } 3616 3617 block_limit = pg_sz + st->stepped_offset; 3618 if (abs_offset < block_limit) { 3619 if (!st->frag_data) 3620 st->frag_data = kmap_atomic(skb_frag_page(frag) + pg_idx); 3621 3622 *data = (u8 *)st->frag_data + pg_off + 3623 (abs_offset - st->stepped_offset); 3624 3625 return block_limit - abs_offset; 3626 } 3627 3628 if (st->frag_data) { 3629 kunmap_atomic(st->frag_data); 3630 st->frag_data = NULL; 3631 } 3632 3633 st->stepped_offset += pg_sz; 3634 st->frag_off += pg_sz; 3635 if (st->frag_off == skb_frag_size(frag)) { 3636 st->frag_off = 0; 3637 st->frag_idx++; 3638 } 3639 } 3640 3641 if (st->frag_data) { 3642 kunmap_atomic(st->frag_data); 3643 st->frag_data = NULL; 3644 } 3645 3646 if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) { 3647 st->cur_skb = skb_shinfo(st->root_skb)->frag_list; 3648 st->frag_idx = 0; 3649 goto next_skb; 3650 } else if (st->cur_skb->next) { 3651 st->cur_skb = st->cur_skb->next; 3652 st->frag_idx = 0; 3653 goto next_skb; 3654 } 3655 3656 return 0; 3657 } 3658 EXPORT_SYMBOL(skb_seq_read); 3659 3660 /** 3661 * skb_abort_seq_read - Abort a sequential read of skb data 3662 * @st: state variable 3663 * 3664 * Must be called if skb_seq_read() was not called until it 3665 * returned 0. 3666 */ 3667 void skb_abort_seq_read(struct skb_seq_state *st) 3668 { 3669 if (st->frag_data) 3670 kunmap_atomic(st->frag_data); 3671 } 3672 EXPORT_SYMBOL(skb_abort_seq_read); 3673 3674 #define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb)) 3675 3676 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text, 3677 struct ts_config *conf, 3678 struct ts_state *state) 3679 { 3680 return skb_seq_read(offset, text, TS_SKB_CB(state)); 3681 } 3682 3683 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state) 3684 { 3685 skb_abort_seq_read(TS_SKB_CB(state)); 3686 } 3687 3688 /** 3689 * skb_find_text - Find a text pattern in skb data 3690 * @skb: the buffer to look in 3691 * @from: search offset 3692 * @to: search limit 3693 * @config: textsearch configuration 3694 * 3695 * Finds a pattern in the skb data according to the specified 3696 * textsearch configuration. Use textsearch_next() to retrieve 3697 * subsequent occurrences of the pattern. Returns the offset 3698 * to the first occurrence or UINT_MAX if no match was found. 3699 */ 3700 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from, 3701 unsigned int to, struct ts_config *config) 3702 { 3703 struct ts_state state; 3704 unsigned int ret; 3705 3706 BUILD_BUG_ON(sizeof(struct skb_seq_state) > sizeof(state.cb)); 3707 3708 config->get_next_block = skb_ts_get_next_block; 3709 config->finish = skb_ts_finish; 3710 3711 skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state)); 3712 3713 ret = textsearch_find(config, &state); 3714 return (ret <= to - from ? ret : UINT_MAX); 3715 } 3716 EXPORT_SYMBOL(skb_find_text); 3717 3718 int skb_append_pagefrags(struct sk_buff *skb, struct page *page, 3719 int offset, size_t size) 3720 { 3721 int i = skb_shinfo(skb)->nr_frags; 3722 3723 if (skb_can_coalesce(skb, i, page, offset)) { 3724 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size); 3725 } else if (i < MAX_SKB_FRAGS) { 3726 get_page(page); 3727 skb_fill_page_desc(skb, i, page, offset, size); 3728 } else { 3729 return -EMSGSIZE; 3730 } 3731 3732 return 0; 3733 } 3734 EXPORT_SYMBOL_GPL(skb_append_pagefrags); 3735 3736 /** 3737 * skb_pull_rcsum - pull skb and update receive checksum 3738 * @skb: buffer to update 3739 * @len: length of data pulled 3740 * 3741 * This function performs an skb_pull on the packet and updates 3742 * the CHECKSUM_COMPLETE checksum. It should be used on 3743 * receive path processing instead of skb_pull unless you know 3744 * that the checksum difference is zero (e.g., a valid IP header) 3745 * or you are setting ip_summed to CHECKSUM_NONE. 3746 */ 3747 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len) 3748 { 3749 unsigned char *data = skb->data; 3750 3751 BUG_ON(len > skb->len); 3752 __skb_pull(skb, len); 3753 skb_postpull_rcsum(skb, data, len); 3754 return skb->data; 3755 } 3756 EXPORT_SYMBOL_GPL(skb_pull_rcsum); 3757 3758 static inline skb_frag_t skb_head_frag_to_page_desc(struct sk_buff *frag_skb) 3759 { 3760 skb_frag_t head_frag; 3761 struct page *page; 3762 3763 page = virt_to_head_page(frag_skb->head); 3764 __skb_frag_set_page(&head_frag, page); 3765 skb_frag_off_set(&head_frag, frag_skb->data - 3766 (unsigned char *)page_address(page)); 3767 skb_frag_size_set(&head_frag, skb_headlen(frag_skb)); 3768 return head_frag; 3769 } 3770 3771 struct sk_buff *skb_segment_list(struct sk_buff *skb, 3772 netdev_features_t features, 3773 unsigned int offset) 3774 { 3775 struct sk_buff *list_skb = skb_shinfo(skb)->frag_list; 3776 unsigned int tnl_hlen = skb_tnl_header_len(skb); 3777 unsigned int delta_truesize = 0; 3778 unsigned int delta_len = 0; 3779 struct sk_buff *tail = NULL; 3780 struct sk_buff *nskb, *tmp; 3781 int err; 3782 3783 skb_push(skb, -skb_network_offset(skb) + offset); 3784 3785 skb_shinfo(skb)->frag_list = NULL; 3786 3787 do { 3788 nskb = list_skb; 3789 list_skb = list_skb->next; 3790 3791 err = 0; 3792 if (skb_shared(nskb)) { 3793 tmp = skb_clone(nskb, GFP_ATOMIC); 3794 if (tmp) { 3795 consume_skb(nskb); 3796 nskb = tmp; 3797 err = skb_unclone(nskb, GFP_ATOMIC); 3798 } else { 3799 err = -ENOMEM; 3800 } 3801 } 3802 3803 if (!tail) 3804 skb->next = nskb; 3805 else 3806 tail->next = nskb; 3807 3808 if (unlikely(err)) { 3809 nskb->next = list_skb; 3810 goto err_linearize; 3811 } 3812 3813 tail = nskb; 3814 3815 delta_len += nskb->len; 3816 delta_truesize += nskb->truesize; 3817 3818 skb_push(nskb, -skb_network_offset(nskb) + offset); 3819 3820 skb_release_head_state(nskb); 3821 __copy_skb_header(nskb, skb); 3822 3823 skb_headers_offset_update(nskb, skb_headroom(nskb) - skb_headroom(skb)); 3824 skb_copy_from_linear_data_offset(skb, -tnl_hlen, 3825 nskb->data - tnl_hlen, 3826 offset + tnl_hlen); 3827 3828 if (skb_needs_linearize(nskb, features) && 3829 __skb_linearize(nskb)) 3830 goto err_linearize; 3831 3832 } while (list_skb); 3833 3834 skb->truesize = skb->truesize - delta_truesize; 3835 skb->data_len = skb->data_len - delta_len; 3836 skb->len = skb->len - delta_len; 3837 3838 skb_gso_reset(skb); 3839 3840 skb->prev = tail; 3841 3842 if (skb_needs_linearize(skb, features) && 3843 __skb_linearize(skb)) 3844 goto err_linearize; 3845 3846 skb_get(skb); 3847 3848 return skb; 3849 3850 err_linearize: 3851 kfree_skb_list(skb->next); 3852 skb->next = NULL; 3853 return ERR_PTR(-ENOMEM); 3854 } 3855 EXPORT_SYMBOL_GPL(skb_segment_list); 3856 3857 int skb_gro_receive_list(struct sk_buff *p, struct sk_buff *skb) 3858 { 3859 if (unlikely(p->len + skb->len >= 65536)) 3860 return -E2BIG; 3861 3862 if (NAPI_GRO_CB(p)->last == p) 3863 skb_shinfo(p)->frag_list = skb; 3864 else 3865 NAPI_GRO_CB(p)->last->next = skb; 3866 3867 skb_pull(skb, skb_gro_offset(skb)); 3868 3869 NAPI_GRO_CB(p)->last = skb; 3870 NAPI_GRO_CB(p)->count++; 3871 p->data_len += skb->len; 3872 p->truesize += skb->truesize; 3873 p->len += skb->len; 3874 3875 NAPI_GRO_CB(skb)->same_flow = 1; 3876 3877 return 0; 3878 } 3879 3880 /** 3881 * skb_segment - Perform protocol segmentation on skb. 3882 * @head_skb: buffer to segment 3883 * @features: features for the output path (see dev->features) 3884 * 3885 * This function performs segmentation on the given skb. It returns 3886 * a pointer to the first in a list of new skbs for the segments. 3887 * In case of error it returns ERR_PTR(err). 3888 */ 3889 struct sk_buff *skb_segment(struct sk_buff *head_skb, 3890 netdev_features_t features) 3891 { 3892 struct sk_buff *segs = NULL; 3893 struct sk_buff *tail = NULL; 3894 struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list; 3895 skb_frag_t *frag = skb_shinfo(head_skb)->frags; 3896 unsigned int mss = skb_shinfo(head_skb)->gso_size; 3897 unsigned int doffset = head_skb->data - skb_mac_header(head_skb); 3898 struct sk_buff *frag_skb = head_skb; 3899 unsigned int offset = doffset; 3900 unsigned int tnl_hlen = skb_tnl_header_len(head_skb); 3901 unsigned int partial_segs = 0; 3902 unsigned int headroom; 3903 unsigned int len = head_skb->len; 3904 __be16 proto; 3905 bool csum, sg; 3906 int nfrags = skb_shinfo(head_skb)->nr_frags; 3907 int err = -ENOMEM; 3908 int i = 0; 3909 int pos; 3910 3911 if (list_skb && !list_skb->head_frag && skb_headlen(list_skb) && 3912 (skb_shinfo(head_skb)->gso_type & SKB_GSO_DODGY)) { 3913 /* gso_size is untrusted, and we have a frag_list with a linear 3914 * non head_frag head. 3915 * 3916 * (we assume checking the first list_skb member suffices; 3917 * i.e if either of the list_skb members have non head_frag 3918 * head, then the first one has too). 3919 * 3920 * If head_skb's headlen does not fit requested gso_size, it 3921 * means that the frag_list members do NOT terminate on exact 3922 * gso_size boundaries. Hence we cannot perform skb_frag_t page 3923 * sharing. Therefore we must fallback to copying the frag_list 3924 * skbs; we do so by disabling SG. 3925 */ 3926 if (mss != GSO_BY_FRAGS && mss != skb_headlen(head_skb)) 3927 features &= ~NETIF_F_SG; 3928 } 3929 3930 __skb_push(head_skb, doffset); 3931 proto = skb_network_protocol(head_skb, NULL); 3932 if (unlikely(!proto)) 3933 return ERR_PTR(-EINVAL); 3934 3935 sg = !!(features & NETIF_F_SG); 3936 csum = !!can_checksum_protocol(features, proto); 3937 3938 if (sg && csum && (mss != GSO_BY_FRAGS)) { 3939 if (!(features & NETIF_F_GSO_PARTIAL)) { 3940 struct sk_buff *iter; 3941 unsigned int frag_len; 3942 3943 if (!list_skb || 3944 !net_gso_ok(features, skb_shinfo(head_skb)->gso_type)) 3945 goto normal; 3946 3947 /* If we get here then all the required 3948 * GSO features except frag_list are supported. 3949 * Try to split the SKB to multiple GSO SKBs 3950 * with no frag_list. 3951 * Currently we can do that only when the buffers don't 3952 * have a linear part and all the buffers except 3953 * the last are of the same length. 3954 */ 3955 frag_len = list_skb->len; 3956 skb_walk_frags(head_skb, iter) { 3957 if (frag_len != iter->len && iter->next) 3958 goto normal; 3959 if (skb_headlen(iter) && !iter->head_frag) 3960 goto normal; 3961 3962 len -= iter->len; 3963 } 3964 3965 if (len != frag_len) 3966 goto normal; 3967 } 3968 3969 /* GSO partial only requires that we trim off any excess that 3970 * doesn't fit into an MSS sized block, so take care of that 3971 * now. 3972 */ 3973 partial_segs = len / mss; 3974 if (partial_segs > 1) 3975 mss *= partial_segs; 3976 else 3977 partial_segs = 0; 3978 } 3979 3980 normal: 3981 headroom = skb_headroom(head_skb); 3982 pos = skb_headlen(head_skb); 3983 3984 do { 3985 struct sk_buff *nskb; 3986 skb_frag_t *nskb_frag; 3987 int hsize; 3988 int size; 3989 3990 if (unlikely(mss == GSO_BY_FRAGS)) { 3991 len = list_skb->len; 3992 } else { 3993 len = head_skb->len - offset; 3994 if (len > mss) 3995 len = mss; 3996 } 3997 3998 hsize = skb_headlen(head_skb) - offset; 3999 4000 if (hsize <= 0 && i >= nfrags && skb_headlen(list_skb) && 4001 (skb_headlen(list_skb) == len || sg)) { 4002 BUG_ON(skb_headlen(list_skb) > len); 4003 4004 i = 0; 4005 nfrags = skb_shinfo(list_skb)->nr_frags; 4006 frag = skb_shinfo(list_skb)->frags; 4007 frag_skb = list_skb; 4008 pos += skb_headlen(list_skb); 4009 4010 while (pos < offset + len) { 4011 BUG_ON(i >= nfrags); 4012 4013 size = skb_frag_size(frag); 4014 if (pos + size > offset + len) 4015 break; 4016 4017 i++; 4018 pos += size; 4019 frag++; 4020 } 4021 4022 nskb = skb_clone(list_skb, GFP_ATOMIC); 4023 list_skb = list_skb->next; 4024 4025 if (unlikely(!nskb)) 4026 goto err; 4027 4028 if (unlikely(pskb_trim(nskb, len))) { 4029 kfree_skb(nskb); 4030 goto err; 4031 } 4032 4033 hsize = skb_end_offset(nskb); 4034 if (skb_cow_head(nskb, doffset + headroom)) { 4035 kfree_skb(nskb); 4036 goto err; 4037 } 4038 4039 nskb->truesize += skb_end_offset(nskb) - hsize; 4040 skb_release_head_state(nskb); 4041 __skb_push(nskb, doffset); 4042 } else { 4043 if (hsize < 0) 4044 hsize = 0; 4045 if (hsize > len || !sg) 4046 hsize = len; 4047 4048 nskb = __alloc_skb(hsize + doffset + headroom, 4049 GFP_ATOMIC, skb_alloc_rx_flag(head_skb), 4050 NUMA_NO_NODE); 4051 4052 if (unlikely(!nskb)) 4053 goto err; 4054 4055 skb_reserve(nskb, headroom); 4056 __skb_put(nskb, doffset); 4057 } 4058 4059 if (segs) 4060 tail->next = nskb; 4061 else 4062 segs = nskb; 4063 tail = nskb; 4064 4065 __copy_skb_header(nskb, head_skb); 4066 4067 skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom); 4068 skb_reset_mac_len(nskb); 4069 4070 skb_copy_from_linear_data_offset(head_skb, -tnl_hlen, 4071 nskb->data - tnl_hlen, 4072 doffset + tnl_hlen); 4073 4074 if (nskb->len == len + doffset) 4075 goto perform_csum_check; 4076 4077 if (!sg) { 4078 if (!csum) { 4079 if (!nskb->remcsum_offload) 4080 nskb->ip_summed = CHECKSUM_NONE; 4081 SKB_GSO_CB(nskb)->csum = 4082 skb_copy_and_csum_bits(head_skb, offset, 4083 skb_put(nskb, 4084 len), 4085 len); 4086 SKB_GSO_CB(nskb)->csum_start = 4087 skb_headroom(nskb) + doffset; 4088 } else { 4089 skb_copy_bits(head_skb, offset, 4090 skb_put(nskb, len), 4091 len); 4092 } 4093 continue; 4094 } 4095 4096 nskb_frag = skb_shinfo(nskb)->frags; 4097 4098 skb_copy_from_linear_data_offset(head_skb, offset, 4099 skb_put(nskb, hsize), hsize); 4100 4101 skb_shinfo(nskb)->flags |= skb_shinfo(head_skb)->flags & 4102 SKBFL_SHARED_FRAG; 4103 4104 if (skb_orphan_frags(frag_skb, GFP_ATOMIC) || 4105 skb_zerocopy_clone(nskb, frag_skb, GFP_ATOMIC)) 4106 goto err; 4107 4108 while (pos < offset + len) { 4109 if (i >= nfrags) { 4110 i = 0; 4111 nfrags = skb_shinfo(list_skb)->nr_frags; 4112 frag = skb_shinfo(list_skb)->frags; 4113 frag_skb = list_skb; 4114 if (!skb_headlen(list_skb)) { 4115 BUG_ON(!nfrags); 4116 } else { 4117 BUG_ON(!list_skb->head_frag); 4118 4119 /* to make room for head_frag. */ 4120 i--; 4121 frag--; 4122 } 4123 if (skb_orphan_frags(frag_skb, GFP_ATOMIC) || 4124 skb_zerocopy_clone(nskb, frag_skb, 4125 GFP_ATOMIC)) 4126 goto err; 4127 4128 list_skb = list_skb->next; 4129 } 4130 4131 if (unlikely(skb_shinfo(nskb)->nr_frags >= 4132 MAX_SKB_FRAGS)) { 4133 net_warn_ratelimited( 4134 "skb_segment: too many frags: %u %u\n", 4135 pos, mss); 4136 err = -EINVAL; 4137 goto err; 4138 } 4139 4140 *nskb_frag = (i < 0) ? skb_head_frag_to_page_desc(frag_skb) : *frag; 4141 __skb_frag_ref(nskb_frag); 4142 size = skb_frag_size(nskb_frag); 4143 4144 if (pos < offset) { 4145 skb_frag_off_add(nskb_frag, offset - pos); 4146 skb_frag_size_sub(nskb_frag, offset - pos); 4147 } 4148 4149 skb_shinfo(nskb)->nr_frags++; 4150 4151 if (pos + size <= offset + len) { 4152 i++; 4153 frag++; 4154 pos += size; 4155 } else { 4156 skb_frag_size_sub(nskb_frag, pos + size - (offset + len)); 4157 goto skip_fraglist; 4158 } 4159 4160 nskb_frag++; 4161 } 4162 4163 skip_fraglist: 4164 nskb->data_len = len - hsize; 4165 nskb->len += nskb->data_len; 4166 nskb->truesize += nskb->data_len; 4167 4168 perform_csum_check: 4169 if (!csum) { 4170 if (skb_has_shared_frag(nskb) && 4171 __skb_linearize(nskb)) 4172 goto err; 4173 4174 if (!nskb->remcsum_offload) 4175 nskb->ip_summed = CHECKSUM_NONE; 4176 SKB_GSO_CB(nskb)->csum = 4177 skb_checksum(nskb, doffset, 4178 nskb->len - doffset, 0); 4179 SKB_GSO_CB(nskb)->csum_start = 4180 skb_headroom(nskb) + doffset; 4181 } 4182 } while ((offset += len) < head_skb->len); 4183 4184 /* Some callers want to get the end of the list. 4185 * Put it in segs->prev to avoid walking the list. 4186 * (see validate_xmit_skb_list() for example) 4187 */ 4188 segs->prev = tail; 4189 4190 if (partial_segs) { 4191 struct sk_buff *iter; 4192 int type = skb_shinfo(head_skb)->gso_type; 4193 unsigned short gso_size = skb_shinfo(head_skb)->gso_size; 4194 4195 /* Update type to add partial and then remove dodgy if set */ 4196 type |= (features & NETIF_F_GSO_PARTIAL) / NETIF_F_GSO_PARTIAL * SKB_GSO_PARTIAL; 4197 type &= ~SKB_GSO_DODGY; 4198 4199 /* Update GSO info and prepare to start updating headers on 4200 * our way back down the stack of protocols. 4201 */ 4202 for (iter = segs; iter; iter = iter->next) { 4203 skb_shinfo(iter)->gso_size = gso_size; 4204 skb_shinfo(iter)->gso_segs = partial_segs; 4205 skb_shinfo(iter)->gso_type = type; 4206 SKB_GSO_CB(iter)->data_offset = skb_headroom(iter) + doffset; 4207 } 4208 4209 if (tail->len - doffset <= gso_size) 4210 skb_shinfo(tail)->gso_size = 0; 4211 else if (tail != segs) 4212 skb_shinfo(tail)->gso_segs = DIV_ROUND_UP(tail->len - doffset, gso_size); 4213 } 4214 4215 /* Following permits correct backpressure, for protocols 4216 * using skb_set_owner_w(). 4217 * Idea is to tranfert ownership from head_skb to last segment. 4218 */ 4219 if (head_skb->destructor == sock_wfree) { 4220 swap(tail->truesize, head_skb->truesize); 4221 swap(tail->destructor, head_skb->destructor); 4222 swap(tail->sk, head_skb->sk); 4223 } 4224 return segs; 4225 4226 err: 4227 kfree_skb_list(segs); 4228 return ERR_PTR(err); 4229 } 4230 EXPORT_SYMBOL_GPL(skb_segment); 4231 4232 int skb_gro_receive(struct sk_buff *p, struct sk_buff *skb) 4233 { 4234 struct skb_shared_info *pinfo, *skbinfo = skb_shinfo(skb); 4235 unsigned int offset = skb_gro_offset(skb); 4236 unsigned int headlen = skb_headlen(skb); 4237 unsigned int len = skb_gro_len(skb); 4238 unsigned int delta_truesize; 4239 struct sk_buff *lp; 4240 4241 if (unlikely(p->len + len >= 65536 || NAPI_GRO_CB(skb)->flush)) 4242 return -E2BIG; 4243 4244 lp = NAPI_GRO_CB(p)->last; 4245 pinfo = skb_shinfo(lp); 4246 4247 if (headlen <= offset) { 4248 skb_frag_t *frag; 4249 skb_frag_t *frag2; 4250 int i = skbinfo->nr_frags; 4251 int nr_frags = pinfo->nr_frags + i; 4252 4253 if (nr_frags > MAX_SKB_FRAGS) 4254 goto merge; 4255 4256 offset -= headlen; 4257 pinfo->nr_frags = nr_frags; 4258 skbinfo->nr_frags = 0; 4259 4260 frag = pinfo->frags + nr_frags; 4261 frag2 = skbinfo->frags + i; 4262 do { 4263 *--frag = *--frag2; 4264 } while (--i); 4265 4266 skb_frag_off_add(frag, offset); 4267 skb_frag_size_sub(frag, offset); 4268 4269 /* all fragments truesize : remove (head size + sk_buff) */ 4270 delta_truesize = skb->truesize - 4271 SKB_TRUESIZE(skb_end_offset(skb)); 4272 4273 skb->truesize -= skb->data_len; 4274 skb->len -= skb->data_len; 4275 skb->data_len = 0; 4276 4277 NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE; 4278 goto done; 4279 } else if (skb->head_frag) { 4280 int nr_frags = pinfo->nr_frags; 4281 skb_frag_t *frag = pinfo->frags + nr_frags; 4282 struct page *page = virt_to_head_page(skb->head); 4283 unsigned int first_size = headlen - offset; 4284 unsigned int first_offset; 4285 4286 if (nr_frags + 1 + skbinfo->nr_frags > MAX_SKB_FRAGS) 4287 goto merge; 4288 4289 first_offset = skb->data - 4290 (unsigned char *)page_address(page) + 4291 offset; 4292 4293 pinfo->nr_frags = nr_frags + 1 + skbinfo->nr_frags; 4294 4295 __skb_frag_set_page(frag, page); 4296 skb_frag_off_set(frag, first_offset); 4297 skb_frag_size_set(frag, first_size); 4298 4299 memcpy(frag + 1, skbinfo->frags, sizeof(*frag) * skbinfo->nr_frags); 4300 /* We dont need to clear skbinfo->nr_frags here */ 4301 4302 delta_truesize = skb->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff)); 4303 NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE_STOLEN_HEAD; 4304 goto done; 4305 } 4306 4307 merge: 4308 delta_truesize = skb->truesize; 4309 if (offset > headlen) { 4310 unsigned int eat = offset - headlen; 4311 4312 skb_frag_off_add(&skbinfo->frags[0], eat); 4313 skb_frag_size_sub(&skbinfo->frags[0], eat); 4314 skb->data_len -= eat; 4315 skb->len -= eat; 4316 offset = headlen; 4317 } 4318 4319 __skb_pull(skb, offset); 4320 4321 if (NAPI_GRO_CB(p)->last == p) 4322 skb_shinfo(p)->frag_list = skb; 4323 else 4324 NAPI_GRO_CB(p)->last->next = skb; 4325 NAPI_GRO_CB(p)->last = skb; 4326 __skb_header_release(skb); 4327 lp = p; 4328 4329 done: 4330 NAPI_GRO_CB(p)->count++; 4331 p->data_len += len; 4332 p->truesize += delta_truesize; 4333 p->len += len; 4334 if (lp != p) { 4335 lp->data_len += len; 4336 lp->truesize += delta_truesize; 4337 lp->len += len; 4338 } 4339 NAPI_GRO_CB(skb)->same_flow = 1; 4340 return 0; 4341 } 4342 4343 #ifdef CONFIG_SKB_EXTENSIONS 4344 #define SKB_EXT_ALIGN_VALUE 8 4345 #define SKB_EXT_CHUNKSIZEOF(x) (ALIGN((sizeof(x)), SKB_EXT_ALIGN_VALUE) / SKB_EXT_ALIGN_VALUE) 4346 4347 static const u8 skb_ext_type_len[] = { 4348 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 4349 [SKB_EXT_BRIDGE_NF] = SKB_EXT_CHUNKSIZEOF(struct nf_bridge_info), 4350 #endif 4351 #ifdef CONFIG_XFRM 4352 [SKB_EXT_SEC_PATH] = SKB_EXT_CHUNKSIZEOF(struct sec_path), 4353 #endif 4354 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT) 4355 [TC_SKB_EXT] = SKB_EXT_CHUNKSIZEOF(struct tc_skb_ext), 4356 #endif 4357 #if IS_ENABLED(CONFIG_MPTCP) 4358 [SKB_EXT_MPTCP] = SKB_EXT_CHUNKSIZEOF(struct mptcp_ext), 4359 #endif 4360 }; 4361 4362 static __always_inline unsigned int skb_ext_total_length(void) 4363 { 4364 return SKB_EXT_CHUNKSIZEOF(struct skb_ext) + 4365 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 4366 skb_ext_type_len[SKB_EXT_BRIDGE_NF] + 4367 #endif 4368 #ifdef CONFIG_XFRM 4369 skb_ext_type_len[SKB_EXT_SEC_PATH] + 4370 #endif 4371 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT) 4372 skb_ext_type_len[TC_SKB_EXT] + 4373 #endif 4374 #if IS_ENABLED(CONFIG_MPTCP) 4375 skb_ext_type_len[SKB_EXT_MPTCP] + 4376 #endif 4377 0; 4378 } 4379 4380 static void skb_extensions_init(void) 4381 { 4382 BUILD_BUG_ON(SKB_EXT_NUM >= 8); 4383 BUILD_BUG_ON(skb_ext_total_length() > 255); 4384 4385 skbuff_ext_cache = kmem_cache_create("skbuff_ext_cache", 4386 SKB_EXT_ALIGN_VALUE * skb_ext_total_length(), 4387 0, 4388 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 4389 NULL); 4390 } 4391 #else 4392 static void skb_extensions_init(void) {} 4393 #endif 4394 4395 void __init skb_init(void) 4396 { 4397 skbuff_head_cache = kmem_cache_create_usercopy("skbuff_head_cache", 4398 sizeof(struct sk_buff), 4399 0, 4400 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 4401 offsetof(struct sk_buff, cb), 4402 sizeof_field(struct sk_buff, cb), 4403 NULL); 4404 skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache", 4405 sizeof(struct sk_buff_fclones), 4406 0, 4407 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 4408 NULL); 4409 skb_extensions_init(); 4410 } 4411 4412 static int 4413 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len, 4414 unsigned int recursion_level) 4415 { 4416 int start = skb_headlen(skb); 4417 int i, copy = start - offset; 4418 struct sk_buff *frag_iter; 4419 int elt = 0; 4420 4421 if (unlikely(recursion_level >= 24)) 4422 return -EMSGSIZE; 4423 4424 if (copy > 0) { 4425 if (copy > len) 4426 copy = len; 4427 sg_set_buf(sg, skb->data + offset, copy); 4428 elt++; 4429 if ((len -= copy) == 0) 4430 return elt; 4431 offset += copy; 4432 } 4433 4434 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 4435 int end; 4436 4437 WARN_ON(start > offset + len); 4438 4439 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]); 4440 if ((copy = end - offset) > 0) { 4441 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 4442 if (unlikely(elt && sg_is_last(&sg[elt - 1]))) 4443 return -EMSGSIZE; 4444 4445 if (copy > len) 4446 copy = len; 4447 sg_set_page(&sg[elt], skb_frag_page(frag), copy, 4448 skb_frag_off(frag) + offset - start); 4449 elt++; 4450 if (!(len -= copy)) 4451 return elt; 4452 offset += copy; 4453 } 4454 start = end; 4455 } 4456 4457 skb_walk_frags(skb, frag_iter) { 4458 int end, ret; 4459 4460 WARN_ON(start > offset + len); 4461 4462 end = start + frag_iter->len; 4463 if ((copy = end - offset) > 0) { 4464 if (unlikely(elt && sg_is_last(&sg[elt - 1]))) 4465 return -EMSGSIZE; 4466 4467 if (copy > len) 4468 copy = len; 4469 ret = __skb_to_sgvec(frag_iter, sg+elt, offset - start, 4470 copy, recursion_level + 1); 4471 if (unlikely(ret < 0)) 4472 return ret; 4473 elt += ret; 4474 if ((len -= copy) == 0) 4475 return elt; 4476 offset += copy; 4477 } 4478 start = end; 4479 } 4480 BUG_ON(len); 4481 return elt; 4482 } 4483 4484 /** 4485 * skb_to_sgvec - Fill a scatter-gather list from a socket buffer 4486 * @skb: Socket buffer containing the buffers to be mapped 4487 * @sg: The scatter-gather list to map into 4488 * @offset: The offset into the buffer's contents to start mapping 4489 * @len: Length of buffer space to be mapped 4490 * 4491 * Fill the specified scatter-gather list with mappings/pointers into a 4492 * region of the buffer space attached to a socket buffer. Returns either 4493 * the number of scatterlist items used, or -EMSGSIZE if the contents 4494 * could not fit. 4495 */ 4496 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len) 4497 { 4498 int nsg = __skb_to_sgvec(skb, sg, offset, len, 0); 4499 4500 if (nsg <= 0) 4501 return nsg; 4502 4503 sg_mark_end(&sg[nsg - 1]); 4504 4505 return nsg; 4506 } 4507 EXPORT_SYMBOL_GPL(skb_to_sgvec); 4508 4509 /* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given 4510 * sglist without mark the sg which contain last skb data as the end. 4511 * So the caller can mannipulate sg list as will when padding new data after 4512 * the first call without calling sg_unmark_end to expend sg list. 4513 * 4514 * Scenario to use skb_to_sgvec_nomark: 4515 * 1. sg_init_table 4516 * 2. skb_to_sgvec_nomark(payload1) 4517 * 3. skb_to_sgvec_nomark(payload2) 4518 * 4519 * This is equivalent to: 4520 * 1. sg_init_table 4521 * 2. skb_to_sgvec(payload1) 4522 * 3. sg_unmark_end 4523 * 4. skb_to_sgvec(payload2) 4524 * 4525 * When mapping mutilple payload conditionally, skb_to_sgvec_nomark 4526 * is more preferable. 4527 */ 4528 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg, 4529 int offset, int len) 4530 { 4531 return __skb_to_sgvec(skb, sg, offset, len, 0); 4532 } 4533 EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark); 4534 4535 4536 4537 /** 4538 * skb_cow_data - Check that a socket buffer's data buffers are writable 4539 * @skb: The socket buffer to check. 4540 * @tailbits: Amount of trailing space to be added 4541 * @trailer: Returned pointer to the skb where the @tailbits space begins 4542 * 4543 * Make sure that the data buffers attached to a socket buffer are 4544 * writable. If they are not, private copies are made of the data buffers 4545 * and the socket buffer is set to use these instead. 4546 * 4547 * If @tailbits is given, make sure that there is space to write @tailbits 4548 * bytes of data beyond current end of socket buffer. @trailer will be 4549 * set to point to the skb in which this space begins. 4550 * 4551 * The number of scatterlist elements required to completely map the 4552 * COW'd and extended socket buffer will be returned. 4553 */ 4554 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer) 4555 { 4556 int copyflag; 4557 int elt; 4558 struct sk_buff *skb1, **skb_p; 4559 4560 /* If skb is cloned or its head is paged, reallocate 4561 * head pulling out all the pages (pages are considered not writable 4562 * at the moment even if they are anonymous). 4563 */ 4564 if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) && 4565 !__pskb_pull_tail(skb, __skb_pagelen(skb))) 4566 return -ENOMEM; 4567 4568 /* Easy case. Most of packets will go this way. */ 4569 if (!skb_has_frag_list(skb)) { 4570 /* A little of trouble, not enough of space for trailer. 4571 * This should not happen, when stack is tuned to generate 4572 * good frames. OK, on miss we reallocate and reserve even more 4573 * space, 128 bytes is fair. */ 4574 4575 if (skb_tailroom(skb) < tailbits && 4576 pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC)) 4577 return -ENOMEM; 4578 4579 /* Voila! */ 4580 *trailer = skb; 4581 return 1; 4582 } 4583 4584 /* Misery. We are in troubles, going to mincer fragments... */ 4585 4586 elt = 1; 4587 skb_p = &skb_shinfo(skb)->frag_list; 4588 copyflag = 0; 4589 4590 while ((skb1 = *skb_p) != NULL) { 4591 int ntail = 0; 4592 4593 /* The fragment is partially pulled by someone, 4594 * this can happen on input. Copy it and everything 4595 * after it. */ 4596 4597 if (skb_shared(skb1)) 4598 copyflag = 1; 4599 4600 /* If the skb is the last, worry about trailer. */ 4601 4602 if (skb1->next == NULL && tailbits) { 4603 if (skb_shinfo(skb1)->nr_frags || 4604 skb_has_frag_list(skb1) || 4605 skb_tailroom(skb1) < tailbits) 4606 ntail = tailbits + 128; 4607 } 4608 4609 if (copyflag || 4610 skb_cloned(skb1) || 4611 ntail || 4612 skb_shinfo(skb1)->nr_frags || 4613 skb_has_frag_list(skb1)) { 4614 struct sk_buff *skb2; 4615 4616 /* Fuck, we are miserable poor guys... */ 4617 if (ntail == 0) 4618 skb2 = skb_copy(skb1, GFP_ATOMIC); 4619 else 4620 skb2 = skb_copy_expand(skb1, 4621 skb_headroom(skb1), 4622 ntail, 4623 GFP_ATOMIC); 4624 if (unlikely(skb2 == NULL)) 4625 return -ENOMEM; 4626 4627 if (skb1->sk) 4628 skb_set_owner_w(skb2, skb1->sk); 4629 4630 /* Looking around. Are we still alive? 4631 * OK, link new skb, drop old one */ 4632 4633 skb2->next = skb1->next; 4634 *skb_p = skb2; 4635 kfree_skb(skb1); 4636 skb1 = skb2; 4637 } 4638 elt++; 4639 *trailer = skb1; 4640 skb_p = &skb1->next; 4641 } 4642 4643 return elt; 4644 } 4645 EXPORT_SYMBOL_GPL(skb_cow_data); 4646 4647 static void sock_rmem_free(struct sk_buff *skb) 4648 { 4649 struct sock *sk = skb->sk; 4650 4651 atomic_sub(skb->truesize, &sk->sk_rmem_alloc); 4652 } 4653 4654 static void skb_set_err_queue(struct sk_buff *skb) 4655 { 4656 /* pkt_type of skbs received on local sockets is never PACKET_OUTGOING. 4657 * So, it is safe to (mis)use it to mark skbs on the error queue. 4658 */ 4659 skb->pkt_type = PACKET_OUTGOING; 4660 BUILD_BUG_ON(PACKET_OUTGOING == 0); 4661 } 4662 4663 /* 4664 * Note: We dont mem charge error packets (no sk_forward_alloc changes) 4665 */ 4666 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb) 4667 { 4668 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >= 4669 (unsigned int)READ_ONCE(sk->sk_rcvbuf)) 4670 return -ENOMEM; 4671 4672 skb_orphan(skb); 4673 skb->sk = sk; 4674 skb->destructor = sock_rmem_free; 4675 atomic_add(skb->truesize, &sk->sk_rmem_alloc); 4676 skb_set_err_queue(skb); 4677 4678 /* before exiting rcu section, make sure dst is refcounted */ 4679 skb_dst_force(skb); 4680 4681 skb_queue_tail(&sk->sk_error_queue, skb); 4682 if (!sock_flag(sk, SOCK_DEAD)) 4683 sk->sk_error_report(sk); 4684 return 0; 4685 } 4686 EXPORT_SYMBOL(sock_queue_err_skb); 4687 4688 static bool is_icmp_err_skb(const struct sk_buff *skb) 4689 { 4690 return skb && (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP || 4691 SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP6); 4692 } 4693 4694 struct sk_buff *sock_dequeue_err_skb(struct sock *sk) 4695 { 4696 struct sk_buff_head *q = &sk->sk_error_queue; 4697 struct sk_buff *skb, *skb_next = NULL; 4698 bool icmp_next = false; 4699 unsigned long flags; 4700 4701 spin_lock_irqsave(&q->lock, flags); 4702 skb = __skb_dequeue(q); 4703 if (skb && (skb_next = skb_peek(q))) { 4704 icmp_next = is_icmp_err_skb(skb_next); 4705 if (icmp_next) 4706 sk->sk_err = SKB_EXT_ERR(skb_next)->ee.ee_errno; 4707 } 4708 spin_unlock_irqrestore(&q->lock, flags); 4709 4710 if (is_icmp_err_skb(skb) && !icmp_next) 4711 sk->sk_err = 0; 4712 4713 if (skb_next) 4714 sk->sk_error_report(sk); 4715 4716 return skb; 4717 } 4718 EXPORT_SYMBOL(sock_dequeue_err_skb); 4719 4720 /** 4721 * skb_clone_sk - create clone of skb, and take reference to socket 4722 * @skb: the skb to clone 4723 * 4724 * This function creates a clone of a buffer that holds a reference on 4725 * sk_refcnt. Buffers created via this function are meant to be 4726 * returned using sock_queue_err_skb, or free via kfree_skb. 4727 * 4728 * When passing buffers allocated with this function to sock_queue_err_skb 4729 * it is necessary to wrap the call with sock_hold/sock_put in order to 4730 * prevent the socket from being released prior to being enqueued on 4731 * the sk_error_queue. 4732 */ 4733 struct sk_buff *skb_clone_sk(struct sk_buff *skb) 4734 { 4735 struct sock *sk = skb->sk; 4736 struct sk_buff *clone; 4737 4738 if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt)) 4739 return NULL; 4740 4741 clone = skb_clone(skb, GFP_ATOMIC); 4742 if (!clone) { 4743 sock_put(sk); 4744 return NULL; 4745 } 4746 4747 clone->sk = sk; 4748 clone->destructor = sock_efree; 4749 4750 return clone; 4751 } 4752 EXPORT_SYMBOL(skb_clone_sk); 4753 4754 static void __skb_complete_tx_timestamp(struct sk_buff *skb, 4755 struct sock *sk, 4756 int tstype, 4757 bool opt_stats) 4758 { 4759 struct sock_exterr_skb *serr; 4760 int err; 4761 4762 BUILD_BUG_ON(sizeof(struct sock_exterr_skb) > sizeof(skb->cb)); 4763 4764 serr = SKB_EXT_ERR(skb); 4765 memset(serr, 0, sizeof(*serr)); 4766 serr->ee.ee_errno = ENOMSG; 4767 serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING; 4768 serr->ee.ee_info = tstype; 4769 serr->opt_stats = opt_stats; 4770 serr->header.h4.iif = skb->dev ? skb->dev->ifindex : 0; 4771 if (sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID) { 4772 serr->ee.ee_data = skb_shinfo(skb)->tskey; 4773 if (sk->sk_protocol == IPPROTO_TCP && 4774 sk->sk_type == SOCK_STREAM) 4775 serr->ee.ee_data -= sk->sk_tskey; 4776 } 4777 4778 err = sock_queue_err_skb(sk, skb); 4779 4780 if (err) 4781 kfree_skb(skb); 4782 } 4783 4784 static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly) 4785 { 4786 bool ret; 4787 4788 if (likely(sysctl_tstamp_allow_data || tsonly)) 4789 return true; 4790 4791 read_lock_bh(&sk->sk_callback_lock); 4792 ret = sk->sk_socket && sk->sk_socket->file && 4793 file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW); 4794 read_unlock_bh(&sk->sk_callback_lock); 4795 return ret; 4796 } 4797 4798 void skb_complete_tx_timestamp(struct sk_buff *skb, 4799 struct skb_shared_hwtstamps *hwtstamps) 4800 { 4801 struct sock *sk = skb->sk; 4802 4803 if (!skb_may_tx_timestamp(sk, false)) 4804 goto err; 4805 4806 /* Take a reference to prevent skb_orphan() from freeing the socket, 4807 * but only if the socket refcount is not zero. 4808 */ 4809 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) { 4810 *skb_hwtstamps(skb) = *hwtstamps; 4811 __skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND, false); 4812 sock_put(sk); 4813 return; 4814 } 4815 4816 err: 4817 kfree_skb(skb); 4818 } 4819 EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp); 4820 4821 void __skb_tstamp_tx(struct sk_buff *orig_skb, 4822 const struct sk_buff *ack_skb, 4823 struct skb_shared_hwtstamps *hwtstamps, 4824 struct sock *sk, int tstype) 4825 { 4826 struct sk_buff *skb; 4827 bool tsonly, opt_stats = false; 4828 4829 if (!sk) 4830 return; 4831 4832 if (!hwtstamps && !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TX_SWHW) && 4833 skb_shinfo(orig_skb)->tx_flags & SKBTX_IN_PROGRESS) 4834 return; 4835 4836 tsonly = sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TSONLY; 4837 if (!skb_may_tx_timestamp(sk, tsonly)) 4838 return; 4839 4840 if (tsonly) { 4841 #ifdef CONFIG_INET 4842 if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_STATS) && 4843 sk->sk_protocol == IPPROTO_TCP && 4844 sk->sk_type == SOCK_STREAM) { 4845 skb = tcp_get_timestamping_opt_stats(sk, orig_skb, 4846 ack_skb); 4847 opt_stats = true; 4848 } else 4849 #endif 4850 skb = alloc_skb(0, GFP_ATOMIC); 4851 } else { 4852 skb = skb_clone(orig_skb, GFP_ATOMIC); 4853 } 4854 if (!skb) 4855 return; 4856 4857 if (tsonly) { 4858 skb_shinfo(skb)->tx_flags |= skb_shinfo(orig_skb)->tx_flags & 4859 SKBTX_ANY_TSTAMP; 4860 skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey; 4861 } 4862 4863 if (hwtstamps) 4864 *skb_hwtstamps(skb) = *hwtstamps; 4865 else 4866 skb->tstamp = ktime_get_real(); 4867 4868 __skb_complete_tx_timestamp(skb, sk, tstype, opt_stats); 4869 } 4870 EXPORT_SYMBOL_GPL(__skb_tstamp_tx); 4871 4872 void skb_tstamp_tx(struct sk_buff *orig_skb, 4873 struct skb_shared_hwtstamps *hwtstamps) 4874 { 4875 return __skb_tstamp_tx(orig_skb, NULL, hwtstamps, orig_skb->sk, 4876 SCM_TSTAMP_SND); 4877 } 4878 EXPORT_SYMBOL_GPL(skb_tstamp_tx); 4879 4880 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked) 4881 { 4882 struct sock *sk = skb->sk; 4883 struct sock_exterr_skb *serr; 4884 int err = 1; 4885 4886 skb->wifi_acked_valid = 1; 4887 skb->wifi_acked = acked; 4888 4889 serr = SKB_EXT_ERR(skb); 4890 memset(serr, 0, sizeof(*serr)); 4891 serr->ee.ee_errno = ENOMSG; 4892 serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS; 4893 4894 /* Take a reference to prevent skb_orphan() from freeing the socket, 4895 * but only if the socket refcount is not zero. 4896 */ 4897 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) { 4898 err = sock_queue_err_skb(sk, skb); 4899 sock_put(sk); 4900 } 4901 if (err) 4902 kfree_skb(skb); 4903 } 4904 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack); 4905 4906 /** 4907 * skb_partial_csum_set - set up and verify partial csum values for packet 4908 * @skb: the skb to set 4909 * @start: the number of bytes after skb->data to start checksumming. 4910 * @off: the offset from start to place the checksum. 4911 * 4912 * For untrusted partially-checksummed packets, we need to make sure the values 4913 * for skb->csum_start and skb->csum_offset are valid so we don't oops. 4914 * 4915 * This function checks and sets those values and skb->ip_summed: if this 4916 * returns false you should drop the packet. 4917 */ 4918 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off) 4919 { 4920 u32 csum_end = (u32)start + (u32)off + sizeof(__sum16); 4921 u32 csum_start = skb_headroom(skb) + (u32)start; 4922 4923 if (unlikely(csum_start > U16_MAX || csum_end > skb_headlen(skb))) { 4924 net_warn_ratelimited("bad partial csum: csum=%u/%u headroom=%u headlen=%u\n", 4925 start, off, skb_headroom(skb), skb_headlen(skb)); 4926 return false; 4927 } 4928 skb->ip_summed = CHECKSUM_PARTIAL; 4929 skb->csum_start = csum_start; 4930 skb->csum_offset = off; 4931 skb_set_transport_header(skb, start); 4932 return true; 4933 } 4934 EXPORT_SYMBOL_GPL(skb_partial_csum_set); 4935 4936 static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len, 4937 unsigned int max) 4938 { 4939 if (skb_headlen(skb) >= len) 4940 return 0; 4941 4942 /* If we need to pullup then pullup to the max, so we 4943 * won't need to do it again. 4944 */ 4945 if (max > skb->len) 4946 max = skb->len; 4947 4948 if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL) 4949 return -ENOMEM; 4950 4951 if (skb_headlen(skb) < len) 4952 return -EPROTO; 4953 4954 return 0; 4955 } 4956 4957 #define MAX_TCP_HDR_LEN (15 * 4) 4958 4959 static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb, 4960 typeof(IPPROTO_IP) proto, 4961 unsigned int off) 4962 { 4963 int err; 4964 4965 switch (proto) { 4966 case IPPROTO_TCP: 4967 err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr), 4968 off + MAX_TCP_HDR_LEN); 4969 if (!err && !skb_partial_csum_set(skb, off, 4970 offsetof(struct tcphdr, 4971 check))) 4972 err = -EPROTO; 4973 return err ? ERR_PTR(err) : &tcp_hdr(skb)->check; 4974 4975 case IPPROTO_UDP: 4976 err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr), 4977 off + sizeof(struct udphdr)); 4978 if (!err && !skb_partial_csum_set(skb, off, 4979 offsetof(struct udphdr, 4980 check))) 4981 err = -EPROTO; 4982 return err ? ERR_PTR(err) : &udp_hdr(skb)->check; 4983 } 4984 4985 return ERR_PTR(-EPROTO); 4986 } 4987 4988 /* This value should be large enough to cover a tagged ethernet header plus 4989 * maximally sized IP and TCP or UDP headers. 4990 */ 4991 #define MAX_IP_HDR_LEN 128 4992 4993 static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate) 4994 { 4995 unsigned int off; 4996 bool fragment; 4997 __sum16 *csum; 4998 int err; 4999 5000 fragment = false; 5001 5002 err = skb_maybe_pull_tail(skb, 5003 sizeof(struct iphdr), 5004 MAX_IP_HDR_LEN); 5005 if (err < 0) 5006 goto out; 5007 5008 if (ip_is_fragment(ip_hdr(skb))) 5009 fragment = true; 5010 5011 off = ip_hdrlen(skb); 5012 5013 err = -EPROTO; 5014 5015 if (fragment) 5016 goto out; 5017 5018 csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off); 5019 if (IS_ERR(csum)) 5020 return PTR_ERR(csum); 5021 5022 if (recalculate) 5023 *csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr, 5024 ip_hdr(skb)->daddr, 5025 skb->len - off, 5026 ip_hdr(skb)->protocol, 0); 5027 err = 0; 5028 5029 out: 5030 return err; 5031 } 5032 5033 /* This value should be large enough to cover a tagged ethernet header plus 5034 * an IPv6 header, all options, and a maximal TCP or UDP header. 5035 */ 5036 #define MAX_IPV6_HDR_LEN 256 5037 5038 #define OPT_HDR(type, skb, off) \ 5039 (type *)(skb_network_header(skb) + (off)) 5040 5041 static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate) 5042 { 5043 int err; 5044 u8 nexthdr; 5045 unsigned int off; 5046 unsigned int len; 5047 bool fragment; 5048 bool done; 5049 __sum16 *csum; 5050 5051 fragment = false; 5052 done = false; 5053 5054 off = sizeof(struct ipv6hdr); 5055 5056 err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN); 5057 if (err < 0) 5058 goto out; 5059 5060 nexthdr = ipv6_hdr(skb)->nexthdr; 5061 5062 len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len); 5063 while (off <= len && !done) { 5064 switch (nexthdr) { 5065 case IPPROTO_DSTOPTS: 5066 case IPPROTO_HOPOPTS: 5067 case IPPROTO_ROUTING: { 5068 struct ipv6_opt_hdr *hp; 5069 5070 err = skb_maybe_pull_tail(skb, 5071 off + 5072 sizeof(struct ipv6_opt_hdr), 5073 MAX_IPV6_HDR_LEN); 5074 if (err < 0) 5075 goto out; 5076 5077 hp = OPT_HDR(struct ipv6_opt_hdr, skb, off); 5078 nexthdr = hp->nexthdr; 5079 off += ipv6_optlen(hp); 5080 break; 5081 } 5082 case IPPROTO_AH: { 5083 struct ip_auth_hdr *hp; 5084 5085 err = skb_maybe_pull_tail(skb, 5086 off + 5087 sizeof(struct ip_auth_hdr), 5088 MAX_IPV6_HDR_LEN); 5089 if (err < 0) 5090 goto out; 5091 5092 hp = OPT_HDR(struct ip_auth_hdr, skb, off); 5093 nexthdr = hp->nexthdr; 5094 off += ipv6_authlen(hp); 5095 break; 5096 } 5097 case IPPROTO_FRAGMENT: { 5098 struct frag_hdr *hp; 5099 5100 err = skb_maybe_pull_tail(skb, 5101 off + 5102 sizeof(struct frag_hdr), 5103 MAX_IPV6_HDR_LEN); 5104 if (err < 0) 5105 goto out; 5106 5107 hp = OPT_HDR(struct frag_hdr, skb, off); 5108 5109 if (hp->frag_off & htons(IP6_OFFSET | IP6_MF)) 5110 fragment = true; 5111 5112 nexthdr = hp->nexthdr; 5113 off += sizeof(struct frag_hdr); 5114 break; 5115 } 5116 default: 5117 done = true; 5118 break; 5119 } 5120 } 5121 5122 err = -EPROTO; 5123 5124 if (!done || fragment) 5125 goto out; 5126 5127 csum = skb_checksum_setup_ip(skb, nexthdr, off); 5128 if (IS_ERR(csum)) 5129 return PTR_ERR(csum); 5130 5131 if (recalculate) 5132 *csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr, 5133 &ipv6_hdr(skb)->daddr, 5134 skb->len - off, nexthdr, 0); 5135 err = 0; 5136 5137 out: 5138 return err; 5139 } 5140 5141 /** 5142 * skb_checksum_setup - set up partial checksum offset 5143 * @skb: the skb to set up 5144 * @recalculate: if true the pseudo-header checksum will be recalculated 5145 */ 5146 int skb_checksum_setup(struct sk_buff *skb, bool recalculate) 5147 { 5148 int err; 5149 5150 switch (skb->protocol) { 5151 case htons(ETH_P_IP): 5152 err = skb_checksum_setup_ipv4(skb, recalculate); 5153 break; 5154 5155 case htons(ETH_P_IPV6): 5156 err = skb_checksum_setup_ipv6(skb, recalculate); 5157 break; 5158 5159 default: 5160 err = -EPROTO; 5161 break; 5162 } 5163 5164 return err; 5165 } 5166 EXPORT_SYMBOL(skb_checksum_setup); 5167 5168 /** 5169 * skb_checksum_maybe_trim - maybe trims the given skb 5170 * @skb: the skb to check 5171 * @transport_len: the data length beyond the network header 5172 * 5173 * Checks whether the given skb has data beyond the given transport length. 5174 * If so, returns a cloned skb trimmed to this transport length. 5175 * Otherwise returns the provided skb. Returns NULL in error cases 5176 * (e.g. transport_len exceeds skb length or out-of-memory). 5177 * 5178 * Caller needs to set the skb transport header and free any returned skb if it 5179 * differs from the provided skb. 5180 */ 5181 static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb, 5182 unsigned int transport_len) 5183 { 5184 struct sk_buff *skb_chk; 5185 unsigned int len = skb_transport_offset(skb) + transport_len; 5186 int ret; 5187 5188 if (skb->len < len) 5189 return NULL; 5190 else if (skb->len == len) 5191 return skb; 5192 5193 skb_chk = skb_clone(skb, GFP_ATOMIC); 5194 if (!skb_chk) 5195 return NULL; 5196 5197 ret = pskb_trim_rcsum(skb_chk, len); 5198 if (ret) { 5199 kfree_skb(skb_chk); 5200 return NULL; 5201 } 5202 5203 return skb_chk; 5204 } 5205 5206 /** 5207 * skb_checksum_trimmed - validate checksum of an skb 5208 * @skb: the skb to check 5209 * @transport_len: the data length beyond the network header 5210 * @skb_chkf: checksum function to use 5211 * 5212 * Applies the given checksum function skb_chkf to the provided skb. 5213 * Returns a checked and maybe trimmed skb. Returns NULL on error. 5214 * 5215 * If the skb has data beyond the given transport length, then a 5216 * trimmed & cloned skb is checked and returned. 5217 * 5218 * Caller needs to set the skb transport header and free any returned skb if it 5219 * differs from the provided skb. 5220 */ 5221 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb, 5222 unsigned int transport_len, 5223 __sum16(*skb_chkf)(struct sk_buff *skb)) 5224 { 5225 struct sk_buff *skb_chk; 5226 unsigned int offset = skb_transport_offset(skb); 5227 __sum16 ret; 5228 5229 skb_chk = skb_checksum_maybe_trim(skb, transport_len); 5230 if (!skb_chk) 5231 goto err; 5232 5233 if (!pskb_may_pull(skb_chk, offset)) 5234 goto err; 5235 5236 skb_pull_rcsum(skb_chk, offset); 5237 ret = skb_chkf(skb_chk); 5238 skb_push_rcsum(skb_chk, offset); 5239 5240 if (ret) 5241 goto err; 5242 5243 return skb_chk; 5244 5245 err: 5246 if (skb_chk && skb_chk != skb) 5247 kfree_skb(skb_chk); 5248 5249 return NULL; 5250 5251 } 5252 EXPORT_SYMBOL(skb_checksum_trimmed); 5253 5254 void __skb_warn_lro_forwarding(const struct sk_buff *skb) 5255 { 5256 net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n", 5257 skb->dev->name); 5258 } 5259 EXPORT_SYMBOL(__skb_warn_lro_forwarding); 5260 5261 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen) 5262 { 5263 if (head_stolen) { 5264 skb_release_head_state(skb); 5265 kmem_cache_free(skbuff_head_cache, skb); 5266 } else { 5267 __kfree_skb(skb); 5268 } 5269 } 5270 EXPORT_SYMBOL(kfree_skb_partial); 5271 5272 /** 5273 * skb_try_coalesce - try to merge skb to prior one 5274 * @to: prior buffer 5275 * @from: buffer to add 5276 * @fragstolen: pointer to boolean 5277 * @delta_truesize: how much more was allocated than was requested 5278 */ 5279 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from, 5280 bool *fragstolen, int *delta_truesize) 5281 { 5282 struct skb_shared_info *to_shinfo, *from_shinfo; 5283 int i, delta, len = from->len; 5284 5285 *fragstolen = false; 5286 5287 if (skb_cloned(to)) 5288 return false; 5289 5290 if (len <= skb_tailroom(to)) { 5291 if (len) 5292 BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len)); 5293 *delta_truesize = 0; 5294 return true; 5295 } 5296 5297 to_shinfo = skb_shinfo(to); 5298 from_shinfo = skb_shinfo(from); 5299 if (to_shinfo->frag_list || from_shinfo->frag_list) 5300 return false; 5301 if (skb_zcopy(to) || skb_zcopy(from)) 5302 return false; 5303 5304 if (skb_headlen(from) != 0) { 5305 struct page *page; 5306 unsigned int offset; 5307 5308 if (to_shinfo->nr_frags + 5309 from_shinfo->nr_frags >= MAX_SKB_FRAGS) 5310 return false; 5311 5312 if (skb_head_is_locked(from)) 5313 return false; 5314 5315 delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff)); 5316 5317 page = virt_to_head_page(from->head); 5318 offset = from->data - (unsigned char *)page_address(page); 5319 5320 skb_fill_page_desc(to, to_shinfo->nr_frags, 5321 page, offset, skb_headlen(from)); 5322 *fragstolen = true; 5323 } else { 5324 if (to_shinfo->nr_frags + 5325 from_shinfo->nr_frags > MAX_SKB_FRAGS) 5326 return false; 5327 5328 delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from)); 5329 } 5330 5331 WARN_ON_ONCE(delta < len); 5332 5333 memcpy(to_shinfo->frags + to_shinfo->nr_frags, 5334 from_shinfo->frags, 5335 from_shinfo->nr_frags * sizeof(skb_frag_t)); 5336 to_shinfo->nr_frags += from_shinfo->nr_frags; 5337 5338 if (!skb_cloned(from)) 5339 from_shinfo->nr_frags = 0; 5340 5341 /* if the skb is not cloned this does nothing 5342 * since we set nr_frags to 0. 5343 */ 5344 for (i = 0; i < from_shinfo->nr_frags; i++) 5345 __skb_frag_ref(&from_shinfo->frags[i]); 5346 5347 to->truesize += delta; 5348 to->len += len; 5349 to->data_len += len; 5350 5351 *delta_truesize = delta; 5352 return true; 5353 } 5354 EXPORT_SYMBOL(skb_try_coalesce); 5355 5356 /** 5357 * skb_scrub_packet - scrub an skb 5358 * 5359 * @skb: buffer to clean 5360 * @xnet: packet is crossing netns 5361 * 5362 * skb_scrub_packet can be used after encapsulating or decapsulting a packet 5363 * into/from a tunnel. Some information have to be cleared during these 5364 * operations. 5365 * skb_scrub_packet can also be used to clean a skb before injecting it in 5366 * another namespace (@xnet == true). We have to clear all information in the 5367 * skb that could impact namespace isolation. 5368 */ 5369 void skb_scrub_packet(struct sk_buff *skb, bool xnet) 5370 { 5371 skb->pkt_type = PACKET_HOST; 5372 skb->skb_iif = 0; 5373 skb->ignore_df = 0; 5374 skb_dst_drop(skb); 5375 skb_ext_reset(skb); 5376 nf_reset_ct(skb); 5377 nf_reset_trace(skb); 5378 5379 #ifdef CONFIG_NET_SWITCHDEV 5380 skb->offload_fwd_mark = 0; 5381 skb->offload_l3_fwd_mark = 0; 5382 #endif 5383 5384 if (!xnet) 5385 return; 5386 5387 ipvs_reset(skb); 5388 skb->mark = 0; 5389 skb->tstamp = 0; 5390 } 5391 EXPORT_SYMBOL_GPL(skb_scrub_packet); 5392 5393 /** 5394 * skb_gso_transport_seglen - Return length of individual segments of a gso packet 5395 * 5396 * @skb: GSO skb 5397 * 5398 * skb_gso_transport_seglen is used to determine the real size of the 5399 * individual segments, including Layer4 headers (TCP/UDP). 5400 * 5401 * The MAC/L2 or network (IP, IPv6) headers are not accounted for. 5402 */ 5403 static unsigned int skb_gso_transport_seglen(const struct sk_buff *skb) 5404 { 5405 const struct skb_shared_info *shinfo = skb_shinfo(skb); 5406 unsigned int thlen = 0; 5407 5408 if (skb->encapsulation) { 5409 thlen = skb_inner_transport_header(skb) - 5410 skb_transport_header(skb); 5411 5412 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) 5413 thlen += inner_tcp_hdrlen(skb); 5414 } else if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) { 5415 thlen = tcp_hdrlen(skb); 5416 } else if (unlikely(skb_is_gso_sctp(skb))) { 5417 thlen = sizeof(struct sctphdr); 5418 } else if (shinfo->gso_type & SKB_GSO_UDP_L4) { 5419 thlen = sizeof(struct udphdr); 5420 } 5421 /* UFO sets gso_size to the size of the fragmentation 5422 * payload, i.e. the size of the L4 (UDP) header is already 5423 * accounted for. 5424 */ 5425 return thlen + shinfo->gso_size; 5426 } 5427 5428 /** 5429 * skb_gso_network_seglen - Return length of individual segments of a gso packet 5430 * 5431 * @skb: GSO skb 5432 * 5433 * skb_gso_network_seglen is used to determine the real size of the 5434 * individual segments, including Layer3 (IP, IPv6) and L4 headers (TCP/UDP). 5435 * 5436 * The MAC/L2 header is not accounted for. 5437 */ 5438 static unsigned int skb_gso_network_seglen(const struct sk_buff *skb) 5439 { 5440 unsigned int hdr_len = skb_transport_header(skb) - 5441 skb_network_header(skb); 5442 5443 return hdr_len + skb_gso_transport_seglen(skb); 5444 } 5445 5446 /** 5447 * skb_gso_mac_seglen - Return length of individual segments of a gso packet 5448 * 5449 * @skb: GSO skb 5450 * 5451 * skb_gso_mac_seglen is used to determine the real size of the 5452 * individual segments, including MAC/L2, Layer3 (IP, IPv6) and L4 5453 * headers (TCP/UDP). 5454 */ 5455 static unsigned int skb_gso_mac_seglen(const struct sk_buff *skb) 5456 { 5457 unsigned int hdr_len = skb_transport_header(skb) - skb_mac_header(skb); 5458 5459 return hdr_len + skb_gso_transport_seglen(skb); 5460 } 5461 5462 /** 5463 * skb_gso_size_check - check the skb size, considering GSO_BY_FRAGS 5464 * 5465 * There are a couple of instances where we have a GSO skb, and we 5466 * want to determine what size it would be after it is segmented. 5467 * 5468 * We might want to check: 5469 * - L3+L4+payload size (e.g. IP forwarding) 5470 * - L2+L3+L4+payload size (e.g. sanity check before passing to driver) 5471 * 5472 * This is a helper to do that correctly considering GSO_BY_FRAGS. 5473 * 5474 * @skb: GSO skb 5475 * 5476 * @seg_len: The segmented length (from skb_gso_*_seglen). In the 5477 * GSO_BY_FRAGS case this will be [header sizes + GSO_BY_FRAGS]. 5478 * 5479 * @max_len: The maximum permissible length. 5480 * 5481 * Returns true if the segmented length <= max length. 5482 */ 5483 static inline bool skb_gso_size_check(const struct sk_buff *skb, 5484 unsigned int seg_len, 5485 unsigned int max_len) { 5486 const struct skb_shared_info *shinfo = skb_shinfo(skb); 5487 const struct sk_buff *iter; 5488 5489 if (shinfo->gso_size != GSO_BY_FRAGS) 5490 return seg_len <= max_len; 5491 5492 /* Undo this so we can re-use header sizes */ 5493 seg_len -= GSO_BY_FRAGS; 5494 5495 skb_walk_frags(skb, iter) { 5496 if (seg_len + skb_headlen(iter) > max_len) 5497 return false; 5498 } 5499 5500 return true; 5501 } 5502 5503 /** 5504 * skb_gso_validate_network_len - Will a split GSO skb fit into a given MTU? 5505 * 5506 * @skb: GSO skb 5507 * @mtu: MTU to validate against 5508 * 5509 * skb_gso_validate_network_len validates if a given skb will fit a 5510 * wanted MTU once split. It considers L3 headers, L4 headers, and the 5511 * payload. 5512 */ 5513 bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu) 5514 { 5515 return skb_gso_size_check(skb, skb_gso_network_seglen(skb), mtu); 5516 } 5517 EXPORT_SYMBOL_GPL(skb_gso_validate_network_len); 5518 5519 /** 5520 * skb_gso_validate_mac_len - Will a split GSO skb fit in a given length? 5521 * 5522 * @skb: GSO skb 5523 * @len: length to validate against 5524 * 5525 * skb_gso_validate_mac_len validates if a given skb will fit a wanted 5526 * length once split, including L2, L3 and L4 headers and the payload. 5527 */ 5528 bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len) 5529 { 5530 return skb_gso_size_check(skb, skb_gso_mac_seglen(skb), len); 5531 } 5532 EXPORT_SYMBOL_GPL(skb_gso_validate_mac_len); 5533 5534 static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb) 5535 { 5536 int mac_len, meta_len; 5537 void *meta; 5538 5539 if (skb_cow(skb, skb_headroom(skb)) < 0) { 5540 kfree_skb(skb); 5541 return NULL; 5542 } 5543 5544 mac_len = skb->data - skb_mac_header(skb); 5545 if (likely(mac_len > VLAN_HLEN + ETH_TLEN)) { 5546 memmove(skb_mac_header(skb) + VLAN_HLEN, skb_mac_header(skb), 5547 mac_len - VLAN_HLEN - ETH_TLEN); 5548 } 5549 5550 meta_len = skb_metadata_len(skb); 5551 if (meta_len) { 5552 meta = skb_metadata_end(skb) - meta_len; 5553 memmove(meta + VLAN_HLEN, meta, meta_len); 5554 } 5555 5556 skb->mac_header += VLAN_HLEN; 5557 return skb; 5558 } 5559 5560 struct sk_buff *skb_vlan_untag(struct sk_buff *skb) 5561 { 5562 struct vlan_hdr *vhdr; 5563 u16 vlan_tci; 5564 5565 if (unlikely(skb_vlan_tag_present(skb))) { 5566 /* vlan_tci is already set-up so leave this for another time */ 5567 return skb; 5568 } 5569 5570 skb = skb_share_check(skb, GFP_ATOMIC); 5571 if (unlikely(!skb)) 5572 goto err_free; 5573 /* We may access the two bytes after vlan_hdr in vlan_set_encap_proto(). */ 5574 if (unlikely(!pskb_may_pull(skb, VLAN_HLEN + sizeof(unsigned short)))) 5575 goto err_free; 5576 5577 vhdr = (struct vlan_hdr *)skb->data; 5578 vlan_tci = ntohs(vhdr->h_vlan_TCI); 5579 __vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci); 5580 5581 skb_pull_rcsum(skb, VLAN_HLEN); 5582 vlan_set_encap_proto(skb, vhdr); 5583 5584 skb = skb_reorder_vlan_header(skb); 5585 if (unlikely(!skb)) 5586 goto err_free; 5587 5588 skb_reset_network_header(skb); 5589 if (!skb_transport_header_was_set(skb)) 5590 skb_reset_transport_header(skb); 5591 skb_reset_mac_len(skb); 5592 5593 return skb; 5594 5595 err_free: 5596 kfree_skb(skb); 5597 return NULL; 5598 } 5599 EXPORT_SYMBOL(skb_vlan_untag); 5600 5601 int skb_ensure_writable(struct sk_buff *skb, int write_len) 5602 { 5603 if (!pskb_may_pull(skb, write_len)) 5604 return -ENOMEM; 5605 5606 if (!skb_cloned(skb) || skb_clone_writable(skb, write_len)) 5607 return 0; 5608 5609 return pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 5610 } 5611 EXPORT_SYMBOL(skb_ensure_writable); 5612 5613 /* remove VLAN header from packet and update csum accordingly. 5614 * expects a non skb_vlan_tag_present skb with a vlan tag payload 5615 */ 5616 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci) 5617 { 5618 struct vlan_hdr *vhdr; 5619 int offset = skb->data - skb_mac_header(skb); 5620 int err; 5621 5622 if (WARN_ONCE(offset, 5623 "__skb_vlan_pop got skb with skb->data not at mac header (offset %d)\n", 5624 offset)) { 5625 return -EINVAL; 5626 } 5627 5628 err = skb_ensure_writable(skb, VLAN_ETH_HLEN); 5629 if (unlikely(err)) 5630 return err; 5631 5632 skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN); 5633 5634 vhdr = (struct vlan_hdr *)(skb->data + ETH_HLEN); 5635 *vlan_tci = ntohs(vhdr->h_vlan_TCI); 5636 5637 memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN); 5638 __skb_pull(skb, VLAN_HLEN); 5639 5640 vlan_set_encap_proto(skb, vhdr); 5641 skb->mac_header += VLAN_HLEN; 5642 5643 if (skb_network_offset(skb) < ETH_HLEN) 5644 skb_set_network_header(skb, ETH_HLEN); 5645 5646 skb_reset_mac_len(skb); 5647 5648 return err; 5649 } 5650 EXPORT_SYMBOL(__skb_vlan_pop); 5651 5652 /* Pop a vlan tag either from hwaccel or from payload. 5653 * Expects skb->data at mac header. 5654 */ 5655 int skb_vlan_pop(struct sk_buff *skb) 5656 { 5657 u16 vlan_tci; 5658 __be16 vlan_proto; 5659 int err; 5660 5661 if (likely(skb_vlan_tag_present(skb))) { 5662 __vlan_hwaccel_clear_tag(skb); 5663 } else { 5664 if (unlikely(!eth_type_vlan(skb->protocol))) 5665 return 0; 5666 5667 err = __skb_vlan_pop(skb, &vlan_tci); 5668 if (err) 5669 return err; 5670 } 5671 /* move next vlan tag to hw accel tag */ 5672 if (likely(!eth_type_vlan(skb->protocol))) 5673 return 0; 5674 5675 vlan_proto = skb->protocol; 5676 err = __skb_vlan_pop(skb, &vlan_tci); 5677 if (unlikely(err)) 5678 return err; 5679 5680 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci); 5681 return 0; 5682 } 5683 EXPORT_SYMBOL(skb_vlan_pop); 5684 5685 /* Push a vlan tag either into hwaccel or into payload (if hwaccel tag present). 5686 * Expects skb->data at mac header. 5687 */ 5688 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci) 5689 { 5690 if (skb_vlan_tag_present(skb)) { 5691 int offset = skb->data - skb_mac_header(skb); 5692 int err; 5693 5694 if (WARN_ONCE(offset, 5695 "skb_vlan_push got skb with skb->data not at mac header (offset %d)\n", 5696 offset)) { 5697 return -EINVAL; 5698 } 5699 5700 err = __vlan_insert_tag(skb, skb->vlan_proto, 5701 skb_vlan_tag_get(skb)); 5702 if (err) 5703 return err; 5704 5705 skb->protocol = skb->vlan_proto; 5706 skb->mac_len += VLAN_HLEN; 5707 5708 skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN); 5709 } 5710 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci); 5711 return 0; 5712 } 5713 EXPORT_SYMBOL(skb_vlan_push); 5714 5715 /** 5716 * skb_eth_pop() - Drop the Ethernet header at the head of a packet 5717 * 5718 * @skb: Socket buffer to modify 5719 * 5720 * Drop the Ethernet header of @skb. 5721 * 5722 * Expects that skb->data points to the mac header and that no VLAN tags are 5723 * present. 5724 * 5725 * Returns 0 on success, -errno otherwise. 5726 */ 5727 int skb_eth_pop(struct sk_buff *skb) 5728 { 5729 if (!pskb_may_pull(skb, ETH_HLEN) || skb_vlan_tagged(skb) || 5730 skb_network_offset(skb) < ETH_HLEN) 5731 return -EPROTO; 5732 5733 skb_pull_rcsum(skb, ETH_HLEN); 5734 skb_reset_mac_header(skb); 5735 skb_reset_mac_len(skb); 5736 5737 return 0; 5738 } 5739 EXPORT_SYMBOL(skb_eth_pop); 5740 5741 /** 5742 * skb_eth_push() - Add a new Ethernet header at the head of a packet 5743 * 5744 * @skb: Socket buffer to modify 5745 * @dst: Destination MAC address of the new header 5746 * @src: Source MAC address of the new header 5747 * 5748 * Prepend @skb with a new Ethernet header. 5749 * 5750 * Expects that skb->data points to the mac header, which must be empty. 5751 * 5752 * Returns 0 on success, -errno otherwise. 5753 */ 5754 int skb_eth_push(struct sk_buff *skb, const unsigned char *dst, 5755 const unsigned char *src) 5756 { 5757 struct ethhdr *eth; 5758 int err; 5759 5760 if (skb_network_offset(skb) || skb_vlan_tag_present(skb)) 5761 return -EPROTO; 5762 5763 err = skb_cow_head(skb, sizeof(*eth)); 5764 if (err < 0) 5765 return err; 5766 5767 skb_push(skb, sizeof(*eth)); 5768 skb_reset_mac_header(skb); 5769 skb_reset_mac_len(skb); 5770 5771 eth = eth_hdr(skb); 5772 ether_addr_copy(eth->h_dest, dst); 5773 ether_addr_copy(eth->h_source, src); 5774 eth->h_proto = skb->protocol; 5775 5776 skb_postpush_rcsum(skb, eth, sizeof(*eth)); 5777 5778 return 0; 5779 } 5780 EXPORT_SYMBOL(skb_eth_push); 5781 5782 /* Update the ethertype of hdr and the skb csum value if required. */ 5783 static void skb_mod_eth_type(struct sk_buff *skb, struct ethhdr *hdr, 5784 __be16 ethertype) 5785 { 5786 if (skb->ip_summed == CHECKSUM_COMPLETE) { 5787 __be16 diff[] = { ~hdr->h_proto, ethertype }; 5788 5789 skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum); 5790 } 5791 5792 hdr->h_proto = ethertype; 5793 } 5794 5795 /** 5796 * skb_mpls_push() - push a new MPLS header after mac_len bytes from start of 5797 * the packet 5798 * 5799 * @skb: buffer 5800 * @mpls_lse: MPLS label stack entry to push 5801 * @mpls_proto: ethertype of the new MPLS header (expects 0x8847 or 0x8848) 5802 * @mac_len: length of the MAC header 5803 * @ethernet: flag to indicate if the resulting packet after skb_mpls_push is 5804 * ethernet 5805 * 5806 * Expects skb->data at mac header. 5807 * 5808 * Returns 0 on success, -errno otherwise. 5809 */ 5810 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto, 5811 int mac_len, bool ethernet) 5812 { 5813 struct mpls_shim_hdr *lse; 5814 int err; 5815 5816 if (unlikely(!eth_p_mpls(mpls_proto))) 5817 return -EINVAL; 5818 5819 /* Networking stack does not allow simultaneous Tunnel and MPLS GSO. */ 5820 if (skb->encapsulation) 5821 return -EINVAL; 5822 5823 err = skb_cow_head(skb, MPLS_HLEN); 5824 if (unlikely(err)) 5825 return err; 5826 5827 if (!skb->inner_protocol) { 5828 skb_set_inner_network_header(skb, skb_network_offset(skb)); 5829 skb_set_inner_protocol(skb, skb->protocol); 5830 } 5831 5832 skb_push(skb, MPLS_HLEN); 5833 memmove(skb_mac_header(skb) - MPLS_HLEN, skb_mac_header(skb), 5834 mac_len); 5835 skb_reset_mac_header(skb); 5836 skb_set_network_header(skb, mac_len); 5837 skb_reset_mac_len(skb); 5838 5839 lse = mpls_hdr(skb); 5840 lse->label_stack_entry = mpls_lse; 5841 skb_postpush_rcsum(skb, lse, MPLS_HLEN); 5842 5843 if (ethernet && mac_len >= ETH_HLEN) 5844 skb_mod_eth_type(skb, eth_hdr(skb), mpls_proto); 5845 skb->protocol = mpls_proto; 5846 5847 return 0; 5848 } 5849 EXPORT_SYMBOL_GPL(skb_mpls_push); 5850 5851 /** 5852 * skb_mpls_pop() - pop the outermost MPLS header 5853 * 5854 * @skb: buffer 5855 * @next_proto: ethertype of header after popped MPLS header 5856 * @mac_len: length of the MAC header 5857 * @ethernet: flag to indicate if the packet is ethernet 5858 * 5859 * Expects skb->data at mac header. 5860 * 5861 * Returns 0 on success, -errno otherwise. 5862 */ 5863 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len, 5864 bool ethernet) 5865 { 5866 int err; 5867 5868 if (unlikely(!eth_p_mpls(skb->protocol))) 5869 return 0; 5870 5871 err = skb_ensure_writable(skb, mac_len + MPLS_HLEN); 5872 if (unlikely(err)) 5873 return err; 5874 5875 skb_postpull_rcsum(skb, mpls_hdr(skb), MPLS_HLEN); 5876 memmove(skb_mac_header(skb) + MPLS_HLEN, skb_mac_header(skb), 5877 mac_len); 5878 5879 __skb_pull(skb, MPLS_HLEN); 5880 skb_reset_mac_header(skb); 5881 skb_set_network_header(skb, mac_len); 5882 5883 if (ethernet && mac_len >= ETH_HLEN) { 5884 struct ethhdr *hdr; 5885 5886 /* use mpls_hdr() to get ethertype to account for VLANs. */ 5887 hdr = (struct ethhdr *)((void *)mpls_hdr(skb) - ETH_HLEN); 5888 skb_mod_eth_type(skb, hdr, next_proto); 5889 } 5890 skb->protocol = next_proto; 5891 5892 return 0; 5893 } 5894 EXPORT_SYMBOL_GPL(skb_mpls_pop); 5895 5896 /** 5897 * skb_mpls_update_lse() - modify outermost MPLS header and update csum 5898 * 5899 * @skb: buffer 5900 * @mpls_lse: new MPLS label stack entry to update to 5901 * 5902 * Expects skb->data at mac header. 5903 * 5904 * Returns 0 on success, -errno otherwise. 5905 */ 5906 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse) 5907 { 5908 int err; 5909 5910 if (unlikely(!eth_p_mpls(skb->protocol))) 5911 return -EINVAL; 5912 5913 err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN); 5914 if (unlikely(err)) 5915 return err; 5916 5917 if (skb->ip_summed == CHECKSUM_COMPLETE) { 5918 __be32 diff[] = { ~mpls_hdr(skb)->label_stack_entry, mpls_lse }; 5919 5920 skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum); 5921 } 5922 5923 mpls_hdr(skb)->label_stack_entry = mpls_lse; 5924 5925 return 0; 5926 } 5927 EXPORT_SYMBOL_GPL(skb_mpls_update_lse); 5928 5929 /** 5930 * skb_mpls_dec_ttl() - decrement the TTL of the outermost MPLS header 5931 * 5932 * @skb: buffer 5933 * 5934 * Expects skb->data at mac header. 5935 * 5936 * Returns 0 on success, -errno otherwise. 5937 */ 5938 int skb_mpls_dec_ttl(struct sk_buff *skb) 5939 { 5940 u32 lse; 5941 u8 ttl; 5942 5943 if (unlikely(!eth_p_mpls(skb->protocol))) 5944 return -EINVAL; 5945 5946 if (!pskb_may_pull(skb, skb_network_offset(skb) + MPLS_HLEN)) 5947 return -ENOMEM; 5948 5949 lse = be32_to_cpu(mpls_hdr(skb)->label_stack_entry); 5950 ttl = (lse & MPLS_LS_TTL_MASK) >> MPLS_LS_TTL_SHIFT; 5951 if (!--ttl) 5952 return -EINVAL; 5953 5954 lse &= ~MPLS_LS_TTL_MASK; 5955 lse |= ttl << MPLS_LS_TTL_SHIFT; 5956 5957 return skb_mpls_update_lse(skb, cpu_to_be32(lse)); 5958 } 5959 EXPORT_SYMBOL_GPL(skb_mpls_dec_ttl); 5960 5961 /** 5962 * alloc_skb_with_frags - allocate skb with page frags 5963 * 5964 * @header_len: size of linear part 5965 * @data_len: needed length in frags 5966 * @max_page_order: max page order desired. 5967 * @errcode: pointer to error code if any 5968 * @gfp_mask: allocation mask 5969 * 5970 * This can be used to allocate a paged skb, given a maximal order for frags. 5971 */ 5972 struct sk_buff *alloc_skb_with_frags(unsigned long header_len, 5973 unsigned long data_len, 5974 int max_page_order, 5975 int *errcode, 5976 gfp_t gfp_mask) 5977 { 5978 int npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT; 5979 unsigned long chunk; 5980 struct sk_buff *skb; 5981 struct page *page; 5982 int i; 5983 5984 *errcode = -EMSGSIZE; 5985 /* Note this test could be relaxed, if we succeed to allocate 5986 * high order pages... 5987 */ 5988 if (npages > MAX_SKB_FRAGS) 5989 return NULL; 5990 5991 *errcode = -ENOBUFS; 5992 skb = alloc_skb(header_len, gfp_mask); 5993 if (!skb) 5994 return NULL; 5995 5996 skb->truesize += npages << PAGE_SHIFT; 5997 5998 for (i = 0; npages > 0; i++) { 5999 int order = max_page_order; 6000 6001 while (order) { 6002 if (npages >= 1 << order) { 6003 page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) | 6004 __GFP_COMP | 6005 __GFP_NOWARN, 6006 order); 6007 if (page) 6008 goto fill_page; 6009 /* Do not retry other high order allocations */ 6010 order = 1; 6011 max_page_order = 0; 6012 } 6013 order--; 6014 } 6015 page = alloc_page(gfp_mask); 6016 if (!page) 6017 goto failure; 6018 fill_page: 6019 chunk = min_t(unsigned long, data_len, 6020 PAGE_SIZE << order); 6021 skb_fill_page_desc(skb, i, page, 0, chunk); 6022 data_len -= chunk; 6023 npages -= 1 << order; 6024 } 6025 return skb; 6026 6027 failure: 6028 kfree_skb(skb); 6029 return NULL; 6030 } 6031 EXPORT_SYMBOL(alloc_skb_with_frags); 6032 6033 /* carve out the first off bytes from skb when off < headlen */ 6034 static int pskb_carve_inside_header(struct sk_buff *skb, const u32 off, 6035 const int headlen, gfp_t gfp_mask) 6036 { 6037 int i; 6038 int size = skb_end_offset(skb); 6039 int new_hlen = headlen - off; 6040 u8 *data; 6041 6042 size = SKB_DATA_ALIGN(size); 6043 6044 if (skb_pfmemalloc(skb)) 6045 gfp_mask |= __GFP_MEMALLOC; 6046 data = kmalloc_reserve(size + 6047 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)), 6048 gfp_mask, NUMA_NO_NODE, NULL); 6049 if (!data) 6050 return -ENOMEM; 6051 6052 size = SKB_WITH_OVERHEAD(ksize(data)); 6053 6054 /* Copy real data, and all frags */ 6055 skb_copy_from_linear_data_offset(skb, off, data, new_hlen); 6056 skb->len -= off; 6057 6058 memcpy((struct skb_shared_info *)(data + size), 6059 skb_shinfo(skb), 6060 offsetof(struct skb_shared_info, 6061 frags[skb_shinfo(skb)->nr_frags])); 6062 if (skb_cloned(skb)) { 6063 /* drop the old head gracefully */ 6064 if (skb_orphan_frags(skb, gfp_mask)) { 6065 kfree(data); 6066 return -ENOMEM; 6067 } 6068 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 6069 skb_frag_ref(skb, i); 6070 if (skb_has_frag_list(skb)) 6071 skb_clone_fraglist(skb); 6072 skb_release_data(skb); 6073 } else { 6074 /* we can reuse existing recount- all we did was 6075 * relocate values 6076 */ 6077 skb_free_head(skb); 6078 } 6079 6080 skb->head = data; 6081 skb->data = data; 6082 skb->head_frag = 0; 6083 #ifdef NET_SKBUFF_DATA_USES_OFFSET 6084 skb->end = size; 6085 #else 6086 skb->end = skb->head + size; 6087 #endif 6088 skb_set_tail_pointer(skb, skb_headlen(skb)); 6089 skb_headers_offset_update(skb, 0); 6090 skb->cloned = 0; 6091 skb->hdr_len = 0; 6092 skb->nohdr = 0; 6093 atomic_set(&skb_shinfo(skb)->dataref, 1); 6094 6095 return 0; 6096 } 6097 6098 static int pskb_carve(struct sk_buff *skb, const u32 off, gfp_t gfp); 6099 6100 /* carve out the first eat bytes from skb's frag_list. May recurse into 6101 * pskb_carve() 6102 */ 6103 static int pskb_carve_frag_list(struct sk_buff *skb, 6104 struct skb_shared_info *shinfo, int eat, 6105 gfp_t gfp_mask) 6106 { 6107 struct sk_buff *list = shinfo->frag_list; 6108 struct sk_buff *clone = NULL; 6109 struct sk_buff *insp = NULL; 6110 6111 do { 6112 if (!list) { 6113 pr_err("Not enough bytes to eat. Want %d\n", eat); 6114 return -EFAULT; 6115 } 6116 if (list->len <= eat) { 6117 /* Eaten as whole. */ 6118 eat -= list->len; 6119 list = list->next; 6120 insp = list; 6121 } else { 6122 /* Eaten partially. */ 6123 if (skb_shared(list)) { 6124 clone = skb_clone(list, gfp_mask); 6125 if (!clone) 6126 return -ENOMEM; 6127 insp = list->next; 6128 list = clone; 6129 } else { 6130 /* This may be pulled without problems. */ 6131 insp = list; 6132 } 6133 if (pskb_carve(list, eat, gfp_mask) < 0) { 6134 kfree_skb(clone); 6135 return -ENOMEM; 6136 } 6137 break; 6138 } 6139 } while (eat); 6140 6141 /* Free pulled out fragments. */ 6142 while ((list = shinfo->frag_list) != insp) { 6143 shinfo->frag_list = list->next; 6144 kfree_skb(list); 6145 } 6146 /* And insert new clone at head. */ 6147 if (clone) { 6148 clone->next = list; 6149 shinfo->frag_list = clone; 6150 } 6151 return 0; 6152 } 6153 6154 /* carve off first len bytes from skb. Split line (off) is in the 6155 * non-linear part of skb 6156 */ 6157 static int pskb_carve_inside_nonlinear(struct sk_buff *skb, const u32 off, 6158 int pos, gfp_t gfp_mask) 6159 { 6160 int i, k = 0; 6161 int size = skb_end_offset(skb); 6162 u8 *data; 6163 const int nfrags = skb_shinfo(skb)->nr_frags; 6164 struct skb_shared_info *shinfo; 6165 6166 size = SKB_DATA_ALIGN(size); 6167 6168 if (skb_pfmemalloc(skb)) 6169 gfp_mask |= __GFP_MEMALLOC; 6170 data = kmalloc_reserve(size + 6171 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)), 6172 gfp_mask, NUMA_NO_NODE, NULL); 6173 if (!data) 6174 return -ENOMEM; 6175 6176 size = SKB_WITH_OVERHEAD(ksize(data)); 6177 6178 memcpy((struct skb_shared_info *)(data + size), 6179 skb_shinfo(skb), offsetof(struct skb_shared_info, frags[0])); 6180 if (skb_orphan_frags(skb, gfp_mask)) { 6181 kfree(data); 6182 return -ENOMEM; 6183 } 6184 shinfo = (struct skb_shared_info *)(data + size); 6185 for (i = 0; i < nfrags; i++) { 6186 int fsize = skb_frag_size(&skb_shinfo(skb)->frags[i]); 6187 6188 if (pos + fsize > off) { 6189 shinfo->frags[k] = skb_shinfo(skb)->frags[i]; 6190 6191 if (pos < off) { 6192 /* Split frag. 6193 * We have two variants in this case: 6194 * 1. Move all the frag to the second 6195 * part, if it is possible. F.e. 6196 * this approach is mandatory for TUX, 6197 * where splitting is expensive. 6198 * 2. Split is accurately. We make this. 6199 */ 6200 skb_frag_off_add(&shinfo->frags[0], off - pos); 6201 skb_frag_size_sub(&shinfo->frags[0], off - pos); 6202 } 6203 skb_frag_ref(skb, i); 6204 k++; 6205 } 6206 pos += fsize; 6207 } 6208 shinfo->nr_frags = k; 6209 if (skb_has_frag_list(skb)) 6210 skb_clone_fraglist(skb); 6211 6212 /* split line is in frag list */ 6213 if (k == 0 && pskb_carve_frag_list(skb, shinfo, off - pos, gfp_mask)) { 6214 /* skb_frag_unref() is not needed here as shinfo->nr_frags = 0. */ 6215 if (skb_has_frag_list(skb)) 6216 kfree_skb_list(skb_shinfo(skb)->frag_list); 6217 kfree(data); 6218 return -ENOMEM; 6219 } 6220 skb_release_data(skb); 6221 6222 skb->head = data; 6223 skb->head_frag = 0; 6224 skb->data = data; 6225 #ifdef NET_SKBUFF_DATA_USES_OFFSET 6226 skb->end = size; 6227 #else 6228 skb->end = skb->head + size; 6229 #endif 6230 skb_reset_tail_pointer(skb); 6231 skb_headers_offset_update(skb, 0); 6232 skb->cloned = 0; 6233 skb->hdr_len = 0; 6234 skb->nohdr = 0; 6235 skb->len -= off; 6236 skb->data_len = skb->len; 6237 atomic_set(&skb_shinfo(skb)->dataref, 1); 6238 return 0; 6239 } 6240 6241 /* remove len bytes from the beginning of the skb */ 6242 static int pskb_carve(struct sk_buff *skb, const u32 len, gfp_t gfp) 6243 { 6244 int headlen = skb_headlen(skb); 6245 6246 if (len < headlen) 6247 return pskb_carve_inside_header(skb, len, headlen, gfp); 6248 else 6249 return pskb_carve_inside_nonlinear(skb, len, headlen, gfp); 6250 } 6251 6252 /* Extract to_copy bytes starting at off from skb, and return this in 6253 * a new skb 6254 */ 6255 struct sk_buff *pskb_extract(struct sk_buff *skb, int off, 6256 int to_copy, gfp_t gfp) 6257 { 6258 struct sk_buff *clone = skb_clone(skb, gfp); 6259 6260 if (!clone) 6261 return NULL; 6262 6263 if (pskb_carve(clone, off, gfp) < 0 || 6264 pskb_trim(clone, to_copy)) { 6265 kfree_skb(clone); 6266 return NULL; 6267 } 6268 return clone; 6269 } 6270 EXPORT_SYMBOL(pskb_extract); 6271 6272 /** 6273 * skb_condense - try to get rid of fragments/frag_list if possible 6274 * @skb: buffer 6275 * 6276 * Can be used to save memory before skb is added to a busy queue. 6277 * If packet has bytes in frags and enough tail room in skb->head, 6278 * pull all of them, so that we can free the frags right now and adjust 6279 * truesize. 6280 * Notes: 6281 * We do not reallocate skb->head thus can not fail. 6282 * Caller must re-evaluate skb->truesize if needed. 6283 */ 6284 void skb_condense(struct sk_buff *skb) 6285 { 6286 if (skb->data_len) { 6287 if (skb->data_len > skb->end - skb->tail || 6288 skb_cloned(skb)) 6289 return; 6290 6291 /* Nice, we can free page frag(s) right now */ 6292 __pskb_pull_tail(skb, skb->data_len); 6293 } 6294 /* At this point, skb->truesize might be over estimated, 6295 * because skb had a fragment, and fragments do not tell 6296 * their truesize. 6297 * When we pulled its content into skb->head, fragment 6298 * was freed, but __pskb_pull_tail() could not possibly 6299 * adjust skb->truesize, not knowing the frag truesize. 6300 */ 6301 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb)); 6302 } 6303 6304 #ifdef CONFIG_SKB_EXTENSIONS 6305 static void *skb_ext_get_ptr(struct skb_ext *ext, enum skb_ext_id id) 6306 { 6307 return (void *)ext + (ext->offset[id] * SKB_EXT_ALIGN_VALUE); 6308 } 6309 6310 /** 6311 * __skb_ext_alloc - allocate a new skb extensions storage 6312 * 6313 * @flags: See kmalloc(). 6314 * 6315 * Returns the newly allocated pointer. The pointer can later attached to a 6316 * skb via __skb_ext_set(). 6317 * Note: caller must handle the skb_ext as an opaque data. 6318 */ 6319 struct skb_ext *__skb_ext_alloc(gfp_t flags) 6320 { 6321 struct skb_ext *new = kmem_cache_alloc(skbuff_ext_cache, flags); 6322 6323 if (new) { 6324 memset(new->offset, 0, sizeof(new->offset)); 6325 refcount_set(&new->refcnt, 1); 6326 } 6327 6328 return new; 6329 } 6330 6331 static struct skb_ext *skb_ext_maybe_cow(struct skb_ext *old, 6332 unsigned int old_active) 6333 { 6334 struct skb_ext *new; 6335 6336 if (refcount_read(&old->refcnt) == 1) 6337 return old; 6338 6339 new = kmem_cache_alloc(skbuff_ext_cache, GFP_ATOMIC); 6340 if (!new) 6341 return NULL; 6342 6343 memcpy(new, old, old->chunks * SKB_EXT_ALIGN_VALUE); 6344 refcount_set(&new->refcnt, 1); 6345 6346 #ifdef CONFIG_XFRM 6347 if (old_active & (1 << SKB_EXT_SEC_PATH)) { 6348 struct sec_path *sp = skb_ext_get_ptr(old, SKB_EXT_SEC_PATH); 6349 unsigned int i; 6350 6351 for (i = 0; i < sp->len; i++) 6352 xfrm_state_hold(sp->xvec[i]); 6353 } 6354 #endif 6355 __skb_ext_put(old); 6356 return new; 6357 } 6358 6359 /** 6360 * __skb_ext_set - attach the specified extension storage to this skb 6361 * @skb: buffer 6362 * @id: extension id 6363 * @ext: extension storage previously allocated via __skb_ext_alloc() 6364 * 6365 * Existing extensions, if any, are cleared. 6366 * 6367 * Returns the pointer to the extension. 6368 */ 6369 void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id, 6370 struct skb_ext *ext) 6371 { 6372 unsigned int newlen, newoff = SKB_EXT_CHUNKSIZEOF(*ext); 6373 6374 skb_ext_put(skb); 6375 newlen = newoff + skb_ext_type_len[id]; 6376 ext->chunks = newlen; 6377 ext->offset[id] = newoff; 6378 skb->extensions = ext; 6379 skb->active_extensions = 1 << id; 6380 return skb_ext_get_ptr(ext, id); 6381 } 6382 6383 /** 6384 * skb_ext_add - allocate space for given extension, COW if needed 6385 * @skb: buffer 6386 * @id: extension to allocate space for 6387 * 6388 * Allocates enough space for the given extension. 6389 * If the extension is already present, a pointer to that extension 6390 * is returned. 6391 * 6392 * If the skb was cloned, COW applies and the returned memory can be 6393 * modified without changing the extension space of clones buffers. 6394 * 6395 * Returns pointer to the extension or NULL on allocation failure. 6396 */ 6397 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id) 6398 { 6399 struct skb_ext *new, *old = NULL; 6400 unsigned int newlen, newoff; 6401 6402 if (skb->active_extensions) { 6403 old = skb->extensions; 6404 6405 new = skb_ext_maybe_cow(old, skb->active_extensions); 6406 if (!new) 6407 return NULL; 6408 6409 if (__skb_ext_exist(new, id)) 6410 goto set_active; 6411 6412 newoff = new->chunks; 6413 } else { 6414 newoff = SKB_EXT_CHUNKSIZEOF(*new); 6415 6416 new = __skb_ext_alloc(GFP_ATOMIC); 6417 if (!new) 6418 return NULL; 6419 } 6420 6421 newlen = newoff + skb_ext_type_len[id]; 6422 new->chunks = newlen; 6423 new->offset[id] = newoff; 6424 set_active: 6425 skb->extensions = new; 6426 skb->active_extensions |= 1 << id; 6427 return skb_ext_get_ptr(new, id); 6428 } 6429 EXPORT_SYMBOL(skb_ext_add); 6430 6431 #ifdef CONFIG_XFRM 6432 static void skb_ext_put_sp(struct sec_path *sp) 6433 { 6434 unsigned int i; 6435 6436 for (i = 0; i < sp->len; i++) 6437 xfrm_state_put(sp->xvec[i]); 6438 } 6439 #endif 6440 6441 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id) 6442 { 6443 struct skb_ext *ext = skb->extensions; 6444 6445 skb->active_extensions &= ~(1 << id); 6446 if (skb->active_extensions == 0) { 6447 skb->extensions = NULL; 6448 __skb_ext_put(ext); 6449 #ifdef CONFIG_XFRM 6450 } else if (id == SKB_EXT_SEC_PATH && 6451 refcount_read(&ext->refcnt) == 1) { 6452 struct sec_path *sp = skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH); 6453 6454 skb_ext_put_sp(sp); 6455 sp->len = 0; 6456 #endif 6457 } 6458 } 6459 EXPORT_SYMBOL(__skb_ext_del); 6460 6461 void __skb_ext_put(struct skb_ext *ext) 6462 { 6463 /* If this is last clone, nothing can increment 6464 * it after check passes. Avoids one atomic op. 6465 */ 6466 if (refcount_read(&ext->refcnt) == 1) 6467 goto free_now; 6468 6469 if (!refcount_dec_and_test(&ext->refcnt)) 6470 return; 6471 free_now: 6472 #ifdef CONFIG_XFRM 6473 if (__skb_ext_exist(ext, SKB_EXT_SEC_PATH)) 6474 skb_ext_put_sp(skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH)); 6475 #endif 6476 6477 kmem_cache_free(skbuff_ext_cache, ext); 6478 } 6479 EXPORT_SYMBOL(__skb_ext_put); 6480 #endif /* CONFIG_SKB_EXTENSIONS */ 6481