xref: /openbmc/linux/net/core/skbuff.c (revision babbdf5b)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *	Routines having to do with the 'struct sk_buff' memory handlers.
4  *
5  *	Authors:	Alan Cox <alan@lxorguk.ukuu.org.uk>
6  *			Florian La Roche <rzsfl@rz.uni-sb.de>
7  *
8  *	Fixes:
9  *		Alan Cox	:	Fixed the worst of the load
10  *					balancer bugs.
11  *		Dave Platt	:	Interrupt stacking fix.
12  *	Richard Kooijman	:	Timestamp fixes.
13  *		Alan Cox	:	Changed buffer format.
14  *		Alan Cox	:	destructor hook for AF_UNIX etc.
15  *		Linus Torvalds	:	Better skb_clone.
16  *		Alan Cox	:	Added skb_copy.
17  *		Alan Cox	:	Added all the changed routines Linus
18  *					only put in the headers
19  *		Ray VanTassle	:	Fixed --skb->lock in free
20  *		Alan Cox	:	skb_copy copy arp field
21  *		Andi Kleen	:	slabified it.
22  *		Robert Olsson	:	Removed skb_head_pool
23  *
24  *	NOTE:
25  *		The __skb_ routines should be called with interrupts
26  *	disabled, or you better be *real* sure that the operation is atomic
27  *	with respect to whatever list is being frobbed (e.g. via lock_sock()
28  *	or via disabling bottom half handlers, etc).
29  */
30 
31 /*
32  *	The functions in this file will not compile correctly with gcc 2.4.x
33  */
34 
35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
36 
37 #include <linux/module.h>
38 #include <linux/types.h>
39 #include <linux/kernel.h>
40 #include <linux/mm.h>
41 #include <linux/interrupt.h>
42 #include <linux/in.h>
43 #include <linux/inet.h>
44 #include <linux/slab.h>
45 #include <linux/tcp.h>
46 #include <linux/udp.h>
47 #include <linux/sctp.h>
48 #include <linux/netdevice.h>
49 #ifdef CONFIG_NET_CLS_ACT
50 #include <net/pkt_sched.h>
51 #endif
52 #include <linux/string.h>
53 #include <linux/skbuff.h>
54 #include <linux/splice.h>
55 #include <linux/cache.h>
56 #include <linux/rtnetlink.h>
57 #include <linux/init.h>
58 #include <linux/scatterlist.h>
59 #include <linux/errqueue.h>
60 #include <linux/prefetch.h>
61 #include <linux/if_vlan.h>
62 #include <linux/mpls.h>
63 #include <linux/kcov.h>
64 
65 #include <net/protocol.h>
66 #include <net/dst.h>
67 #include <net/sock.h>
68 #include <net/checksum.h>
69 #include <net/ip6_checksum.h>
70 #include <net/xfrm.h>
71 #include <net/mpls.h>
72 #include <net/mptcp.h>
73 
74 #include <linux/uaccess.h>
75 #include <trace/events/skb.h>
76 #include <linux/highmem.h>
77 #include <linux/capability.h>
78 #include <linux/user_namespace.h>
79 #include <linux/indirect_call_wrapper.h>
80 
81 #include "datagram.h"
82 
83 struct kmem_cache *skbuff_head_cache __ro_after_init;
84 static struct kmem_cache *skbuff_fclone_cache __ro_after_init;
85 #ifdef CONFIG_SKB_EXTENSIONS
86 static struct kmem_cache *skbuff_ext_cache __ro_after_init;
87 #endif
88 int sysctl_max_skb_frags __read_mostly = MAX_SKB_FRAGS;
89 EXPORT_SYMBOL(sysctl_max_skb_frags);
90 
91 /**
92  *	skb_panic - private function for out-of-line support
93  *	@skb:	buffer
94  *	@sz:	size
95  *	@addr:	address
96  *	@msg:	skb_over_panic or skb_under_panic
97  *
98  *	Out-of-line support for skb_put() and skb_push().
99  *	Called via the wrapper skb_over_panic() or skb_under_panic().
100  *	Keep out of line to prevent kernel bloat.
101  *	__builtin_return_address is not used because it is not always reliable.
102  */
103 static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr,
104 		      const char msg[])
105 {
106 	pr_emerg("%s: text:%px len:%d put:%d head:%px data:%px tail:%#lx end:%#lx dev:%s\n",
107 		 msg, addr, skb->len, sz, skb->head, skb->data,
108 		 (unsigned long)skb->tail, (unsigned long)skb->end,
109 		 skb->dev ? skb->dev->name : "<NULL>");
110 	BUG();
111 }
112 
113 static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr)
114 {
115 	skb_panic(skb, sz, addr, __func__);
116 }
117 
118 static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr)
119 {
120 	skb_panic(skb, sz, addr, __func__);
121 }
122 
123 #define NAPI_SKB_CACHE_SIZE	64
124 #define NAPI_SKB_CACHE_BULK	16
125 #define NAPI_SKB_CACHE_HALF	(NAPI_SKB_CACHE_SIZE / 2)
126 
127 struct napi_alloc_cache {
128 	struct page_frag_cache page;
129 	unsigned int skb_count;
130 	void *skb_cache[NAPI_SKB_CACHE_SIZE];
131 };
132 
133 static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache);
134 static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache);
135 
136 static void *__alloc_frag_align(unsigned int fragsz, gfp_t gfp_mask,
137 				unsigned int align_mask)
138 {
139 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
140 
141 	return page_frag_alloc_align(&nc->page, fragsz, gfp_mask, align_mask);
142 }
143 
144 void *__napi_alloc_frag_align(unsigned int fragsz, unsigned int align_mask)
145 {
146 	fragsz = SKB_DATA_ALIGN(fragsz);
147 
148 	return __alloc_frag_align(fragsz, GFP_ATOMIC, align_mask);
149 }
150 EXPORT_SYMBOL(__napi_alloc_frag_align);
151 
152 void *__netdev_alloc_frag_align(unsigned int fragsz, unsigned int align_mask)
153 {
154 	struct page_frag_cache *nc;
155 	void *data;
156 
157 	fragsz = SKB_DATA_ALIGN(fragsz);
158 	if (in_irq() || irqs_disabled()) {
159 		nc = this_cpu_ptr(&netdev_alloc_cache);
160 		data = page_frag_alloc_align(nc, fragsz, GFP_ATOMIC, align_mask);
161 	} else {
162 		local_bh_disable();
163 		data = __alloc_frag_align(fragsz, GFP_ATOMIC, align_mask);
164 		local_bh_enable();
165 	}
166 	return data;
167 }
168 EXPORT_SYMBOL(__netdev_alloc_frag_align);
169 
170 static struct sk_buff *napi_skb_cache_get(void)
171 {
172 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
173 	struct sk_buff *skb;
174 
175 	if (unlikely(!nc->skb_count))
176 		nc->skb_count = kmem_cache_alloc_bulk(skbuff_head_cache,
177 						      GFP_ATOMIC,
178 						      NAPI_SKB_CACHE_BULK,
179 						      nc->skb_cache);
180 	if (unlikely(!nc->skb_count))
181 		return NULL;
182 
183 	skb = nc->skb_cache[--nc->skb_count];
184 	kasan_unpoison_object_data(skbuff_head_cache, skb);
185 
186 	return skb;
187 }
188 
189 /* Caller must provide SKB that is memset cleared */
190 static void __build_skb_around(struct sk_buff *skb, void *data,
191 			       unsigned int frag_size)
192 {
193 	struct skb_shared_info *shinfo;
194 	unsigned int size = frag_size ? : ksize(data);
195 
196 	size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
197 
198 	/* Assumes caller memset cleared SKB */
199 	skb->truesize = SKB_TRUESIZE(size);
200 	refcount_set(&skb->users, 1);
201 	skb->head = data;
202 	skb->data = data;
203 	skb_reset_tail_pointer(skb);
204 	skb->end = skb->tail + size;
205 	skb->mac_header = (typeof(skb->mac_header))~0U;
206 	skb->transport_header = (typeof(skb->transport_header))~0U;
207 
208 	/* make sure we initialize shinfo sequentially */
209 	shinfo = skb_shinfo(skb);
210 	memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
211 	atomic_set(&shinfo->dataref, 1);
212 
213 	skb_set_kcov_handle(skb, kcov_common_handle());
214 }
215 
216 /**
217  * __build_skb - build a network buffer
218  * @data: data buffer provided by caller
219  * @frag_size: size of data, or 0 if head was kmalloced
220  *
221  * Allocate a new &sk_buff. Caller provides space holding head and
222  * skb_shared_info. @data must have been allocated by kmalloc() only if
223  * @frag_size is 0, otherwise data should come from the page allocator
224  *  or vmalloc()
225  * The return is the new skb buffer.
226  * On a failure the return is %NULL, and @data is not freed.
227  * Notes :
228  *  Before IO, driver allocates only data buffer where NIC put incoming frame
229  *  Driver should add room at head (NET_SKB_PAD) and
230  *  MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info))
231  *  After IO, driver calls build_skb(), to allocate sk_buff and populate it
232  *  before giving packet to stack.
233  *  RX rings only contains data buffers, not full skbs.
234  */
235 struct sk_buff *__build_skb(void *data, unsigned int frag_size)
236 {
237 	struct sk_buff *skb;
238 
239 	skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC);
240 	if (unlikely(!skb))
241 		return NULL;
242 
243 	memset(skb, 0, offsetof(struct sk_buff, tail));
244 	__build_skb_around(skb, data, frag_size);
245 
246 	return skb;
247 }
248 
249 /* build_skb() is wrapper over __build_skb(), that specifically
250  * takes care of skb->head and skb->pfmemalloc
251  * This means that if @frag_size is not zero, then @data must be backed
252  * by a page fragment, not kmalloc() or vmalloc()
253  */
254 struct sk_buff *build_skb(void *data, unsigned int frag_size)
255 {
256 	struct sk_buff *skb = __build_skb(data, frag_size);
257 
258 	if (skb && frag_size) {
259 		skb->head_frag = 1;
260 		if (page_is_pfmemalloc(virt_to_head_page(data)))
261 			skb->pfmemalloc = 1;
262 	}
263 	return skb;
264 }
265 EXPORT_SYMBOL(build_skb);
266 
267 /**
268  * build_skb_around - build a network buffer around provided skb
269  * @skb: sk_buff provide by caller, must be memset cleared
270  * @data: data buffer provided by caller
271  * @frag_size: size of data, or 0 if head was kmalloced
272  */
273 struct sk_buff *build_skb_around(struct sk_buff *skb,
274 				 void *data, unsigned int frag_size)
275 {
276 	if (unlikely(!skb))
277 		return NULL;
278 
279 	__build_skb_around(skb, data, frag_size);
280 
281 	if (frag_size) {
282 		skb->head_frag = 1;
283 		if (page_is_pfmemalloc(virt_to_head_page(data)))
284 			skb->pfmemalloc = 1;
285 	}
286 	return skb;
287 }
288 EXPORT_SYMBOL(build_skb_around);
289 
290 /**
291  * __napi_build_skb - build a network buffer
292  * @data: data buffer provided by caller
293  * @frag_size: size of data, or 0 if head was kmalloced
294  *
295  * Version of __build_skb() that uses NAPI percpu caches to obtain
296  * skbuff_head instead of inplace allocation.
297  *
298  * Returns a new &sk_buff on success, %NULL on allocation failure.
299  */
300 static struct sk_buff *__napi_build_skb(void *data, unsigned int frag_size)
301 {
302 	struct sk_buff *skb;
303 
304 	skb = napi_skb_cache_get();
305 	if (unlikely(!skb))
306 		return NULL;
307 
308 	memset(skb, 0, offsetof(struct sk_buff, tail));
309 	__build_skb_around(skb, data, frag_size);
310 
311 	return skb;
312 }
313 
314 /**
315  * napi_build_skb - build a network buffer
316  * @data: data buffer provided by caller
317  * @frag_size: size of data, or 0 if head was kmalloced
318  *
319  * Version of __napi_build_skb() that takes care of skb->head_frag
320  * and skb->pfmemalloc when the data is a page or page fragment.
321  *
322  * Returns a new &sk_buff on success, %NULL on allocation failure.
323  */
324 struct sk_buff *napi_build_skb(void *data, unsigned int frag_size)
325 {
326 	struct sk_buff *skb = __napi_build_skb(data, frag_size);
327 
328 	if (likely(skb) && frag_size) {
329 		skb->head_frag = 1;
330 		skb_propagate_pfmemalloc(virt_to_head_page(data), skb);
331 	}
332 
333 	return skb;
334 }
335 EXPORT_SYMBOL(napi_build_skb);
336 
337 /*
338  * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells
339  * the caller if emergency pfmemalloc reserves are being used. If it is and
340  * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves
341  * may be used. Otherwise, the packet data may be discarded until enough
342  * memory is free
343  */
344 static void *kmalloc_reserve(size_t size, gfp_t flags, int node,
345 			     bool *pfmemalloc)
346 {
347 	void *obj;
348 	bool ret_pfmemalloc = false;
349 
350 	/*
351 	 * Try a regular allocation, when that fails and we're not entitled
352 	 * to the reserves, fail.
353 	 */
354 	obj = kmalloc_node_track_caller(size,
355 					flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
356 					node);
357 	if (obj || !(gfp_pfmemalloc_allowed(flags)))
358 		goto out;
359 
360 	/* Try again but now we are using pfmemalloc reserves */
361 	ret_pfmemalloc = true;
362 	obj = kmalloc_node_track_caller(size, flags, node);
363 
364 out:
365 	if (pfmemalloc)
366 		*pfmemalloc = ret_pfmemalloc;
367 
368 	return obj;
369 }
370 
371 /* 	Allocate a new skbuff. We do this ourselves so we can fill in a few
372  *	'private' fields and also do memory statistics to find all the
373  *	[BEEP] leaks.
374  *
375  */
376 
377 /**
378  *	__alloc_skb	-	allocate a network buffer
379  *	@size: size to allocate
380  *	@gfp_mask: allocation mask
381  *	@flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache
382  *		instead of head cache and allocate a cloned (child) skb.
383  *		If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for
384  *		allocations in case the data is required for writeback
385  *	@node: numa node to allocate memory on
386  *
387  *	Allocate a new &sk_buff. The returned buffer has no headroom and a
388  *	tail room of at least size bytes. The object has a reference count
389  *	of one. The return is the buffer. On a failure the return is %NULL.
390  *
391  *	Buffers may only be allocated from interrupts using a @gfp_mask of
392  *	%GFP_ATOMIC.
393  */
394 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
395 			    int flags, int node)
396 {
397 	struct kmem_cache *cache;
398 	struct sk_buff *skb;
399 	u8 *data;
400 	bool pfmemalloc;
401 
402 	cache = (flags & SKB_ALLOC_FCLONE)
403 		? skbuff_fclone_cache : skbuff_head_cache;
404 
405 	if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX))
406 		gfp_mask |= __GFP_MEMALLOC;
407 
408 	/* Get the HEAD */
409 	if ((flags & (SKB_ALLOC_FCLONE | SKB_ALLOC_NAPI)) == SKB_ALLOC_NAPI &&
410 	    likely(node == NUMA_NO_NODE || node == numa_mem_id()))
411 		skb = napi_skb_cache_get();
412 	else
413 		skb = kmem_cache_alloc_node(cache, gfp_mask & ~GFP_DMA, node);
414 	if (unlikely(!skb))
415 		return NULL;
416 	prefetchw(skb);
417 
418 	/* We do our best to align skb_shared_info on a separate cache
419 	 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives
420 	 * aligned memory blocks, unless SLUB/SLAB debug is enabled.
421 	 * Both skb->head and skb_shared_info are cache line aligned.
422 	 */
423 	size = SKB_DATA_ALIGN(size);
424 	size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
425 	data = kmalloc_reserve(size, gfp_mask, node, &pfmemalloc);
426 	if (unlikely(!data))
427 		goto nodata;
428 	/* kmalloc(size) might give us more room than requested.
429 	 * Put skb_shared_info exactly at the end of allocated zone,
430 	 * to allow max possible filling before reallocation.
431 	 */
432 	size = SKB_WITH_OVERHEAD(ksize(data));
433 	prefetchw(data + size);
434 
435 	/*
436 	 * Only clear those fields we need to clear, not those that we will
437 	 * actually initialise below. Hence, don't put any more fields after
438 	 * the tail pointer in struct sk_buff!
439 	 */
440 	memset(skb, 0, offsetof(struct sk_buff, tail));
441 	__build_skb_around(skb, data, 0);
442 	skb->pfmemalloc = pfmemalloc;
443 
444 	if (flags & SKB_ALLOC_FCLONE) {
445 		struct sk_buff_fclones *fclones;
446 
447 		fclones = container_of(skb, struct sk_buff_fclones, skb1);
448 
449 		skb->fclone = SKB_FCLONE_ORIG;
450 		refcount_set(&fclones->fclone_ref, 1);
451 
452 		fclones->skb2.fclone = SKB_FCLONE_CLONE;
453 	}
454 
455 	return skb;
456 
457 nodata:
458 	kmem_cache_free(cache, skb);
459 	return NULL;
460 }
461 EXPORT_SYMBOL(__alloc_skb);
462 
463 /**
464  *	__netdev_alloc_skb - allocate an skbuff for rx on a specific device
465  *	@dev: network device to receive on
466  *	@len: length to allocate
467  *	@gfp_mask: get_free_pages mask, passed to alloc_skb
468  *
469  *	Allocate a new &sk_buff and assign it a usage count of one. The
470  *	buffer has NET_SKB_PAD headroom built in. Users should allocate
471  *	the headroom they think they need without accounting for the
472  *	built in space. The built in space is used for optimisations.
473  *
474  *	%NULL is returned if there is no free memory.
475  */
476 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len,
477 				   gfp_t gfp_mask)
478 {
479 	struct page_frag_cache *nc;
480 	struct sk_buff *skb;
481 	bool pfmemalloc;
482 	void *data;
483 
484 	len += NET_SKB_PAD;
485 
486 	/* If requested length is either too small or too big,
487 	 * we use kmalloc() for skb->head allocation.
488 	 */
489 	if (len <= SKB_WITH_OVERHEAD(1024) ||
490 	    len > SKB_WITH_OVERHEAD(PAGE_SIZE) ||
491 	    (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
492 		skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
493 		if (!skb)
494 			goto skb_fail;
495 		goto skb_success;
496 	}
497 
498 	len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
499 	len = SKB_DATA_ALIGN(len);
500 
501 	if (sk_memalloc_socks())
502 		gfp_mask |= __GFP_MEMALLOC;
503 
504 	if (in_irq() || irqs_disabled()) {
505 		nc = this_cpu_ptr(&netdev_alloc_cache);
506 		data = page_frag_alloc(nc, len, gfp_mask);
507 		pfmemalloc = nc->pfmemalloc;
508 	} else {
509 		local_bh_disable();
510 		nc = this_cpu_ptr(&napi_alloc_cache.page);
511 		data = page_frag_alloc(nc, len, gfp_mask);
512 		pfmemalloc = nc->pfmemalloc;
513 		local_bh_enable();
514 	}
515 
516 	if (unlikely(!data))
517 		return NULL;
518 
519 	skb = __build_skb(data, len);
520 	if (unlikely(!skb)) {
521 		skb_free_frag(data);
522 		return NULL;
523 	}
524 
525 	if (pfmemalloc)
526 		skb->pfmemalloc = 1;
527 	skb->head_frag = 1;
528 
529 skb_success:
530 	skb_reserve(skb, NET_SKB_PAD);
531 	skb->dev = dev;
532 
533 skb_fail:
534 	return skb;
535 }
536 EXPORT_SYMBOL(__netdev_alloc_skb);
537 
538 /**
539  *	__napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance
540  *	@napi: napi instance this buffer was allocated for
541  *	@len: length to allocate
542  *	@gfp_mask: get_free_pages mask, passed to alloc_skb and alloc_pages
543  *
544  *	Allocate a new sk_buff for use in NAPI receive.  This buffer will
545  *	attempt to allocate the head from a special reserved region used
546  *	only for NAPI Rx allocation.  By doing this we can save several
547  *	CPU cycles by avoiding having to disable and re-enable IRQs.
548  *
549  *	%NULL is returned if there is no free memory.
550  */
551 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, unsigned int len,
552 				 gfp_t gfp_mask)
553 {
554 	struct napi_alloc_cache *nc;
555 	struct sk_buff *skb;
556 	void *data;
557 
558 	len += NET_SKB_PAD + NET_IP_ALIGN;
559 
560 	/* If requested length is either too small or too big,
561 	 * we use kmalloc() for skb->head allocation.
562 	 */
563 	if (len <= SKB_WITH_OVERHEAD(1024) ||
564 	    len > SKB_WITH_OVERHEAD(PAGE_SIZE) ||
565 	    (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
566 		skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX | SKB_ALLOC_NAPI,
567 				  NUMA_NO_NODE);
568 		if (!skb)
569 			goto skb_fail;
570 		goto skb_success;
571 	}
572 
573 	nc = this_cpu_ptr(&napi_alloc_cache);
574 	len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
575 	len = SKB_DATA_ALIGN(len);
576 
577 	if (sk_memalloc_socks())
578 		gfp_mask |= __GFP_MEMALLOC;
579 
580 	data = page_frag_alloc(&nc->page, len, gfp_mask);
581 	if (unlikely(!data))
582 		return NULL;
583 
584 	skb = __napi_build_skb(data, len);
585 	if (unlikely(!skb)) {
586 		skb_free_frag(data);
587 		return NULL;
588 	}
589 
590 	if (nc->page.pfmemalloc)
591 		skb->pfmemalloc = 1;
592 	skb->head_frag = 1;
593 
594 skb_success:
595 	skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN);
596 	skb->dev = napi->dev;
597 
598 skb_fail:
599 	return skb;
600 }
601 EXPORT_SYMBOL(__napi_alloc_skb);
602 
603 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
604 		     int size, unsigned int truesize)
605 {
606 	skb_fill_page_desc(skb, i, page, off, size);
607 	skb->len += size;
608 	skb->data_len += size;
609 	skb->truesize += truesize;
610 }
611 EXPORT_SYMBOL(skb_add_rx_frag);
612 
613 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
614 			  unsigned int truesize)
615 {
616 	skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
617 
618 	skb_frag_size_add(frag, size);
619 	skb->len += size;
620 	skb->data_len += size;
621 	skb->truesize += truesize;
622 }
623 EXPORT_SYMBOL(skb_coalesce_rx_frag);
624 
625 static void skb_drop_list(struct sk_buff **listp)
626 {
627 	kfree_skb_list(*listp);
628 	*listp = NULL;
629 }
630 
631 static inline void skb_drop_fraglist(struct sk_buff *skb)
632 {
633 	skb_drop_list(&skb_shinfo(skb)->frag_list);
634 }
635 
636 static void skb_clone_fraglist(struct sk_buff *skb)
637 {
638 	struct sk_buff *list;
639 
640 	skb_walk_frags(skb, list)
641 		skb_get(list);
642 }
643 
644 static void skb_free_head(struct sk_buff *skb)
645 {
646 	unsigned char *head = skb->head;
647 
648 	if (skb->head_frag)
649 		skb_free_frag(head);
650 	else
651 		kfree(head);
652 }
653 
654 static void skb_release_data(struct sk_buff *skb)
655 {
656 	struct skb_shared_info *shinfo = skb_shinfo(skb);
657 	int i;
658 
659 	if (skb->cloned &&
660 	    atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
661 			      &shinfo->dataref))
662 		return;
663 
664 	skb_zcopy_clear(skb, true);
665 
666 	for (i = 0; i < shinfo->nr_frags; i++)
667 		__skb_frag_unref(&shinfo->frags[i]);
668 
669 	if (shinfo->frag_list)
670 		kfree_skb_list(shinfo->frag_list);
671 
672 	skb_free_head(skb);
673 }
674 
675 /*
676  *	Free an skbuff by memory without cleaning the state.
677  */
678 static void kfree_skbmem(struct sk_buff *skb)
679 {
680 	struct sk_buff_fclones *fclones;
681 
682 	switch (skb->fclone) {
683 	case SKB_FCLONE_UNAVAILABLE:
684 		kmem_cache_free(skbuff_head_cache, skb);
685 		return;
686 
687 	case SKB_FCLONE_ORIG:
688 		fclones = container_of(skb, struct sk_buff_fclones, skb1);
689 
690 		/* We usually free the clone (TX completion) before original skb
691 		 * This test would have no chance to be true for the clone,
692 		 * while here, branch prediction will be good.
693 		 */
694 		if (refcount_read(&fclones->fclone_ref) == 1)
695 			goto fastpath;
696 		break;
697 
698 	default: /* SKB_FCLONE_CLONE */
699 		fclones = container_of(skb, struct sk_buff_fclones, skb2);
700 		break;
701 	}
702 	if (!refcount_dec_and_test(&fclones->fclone_ref))
703 		return;
704 fastpath:
705 	kmem_cache_free(skbuff_fclone_cache, fclones);
706 }
707 
708 void skb_release_head_state(struct sk_buff *skb)
709 {
710 	skb_dst_drop(skb);
711 	if (skb->destructor) {
712 		WARN_ON(in_irq());
713 		skb->destructor(skb);
714 	}
715 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
716 	nf_conntrack_put(skb_nfct(skb));
717 #endif
718 	skb_ext_put(skb);
719 }
720 
721 /* Free everything but the sk_buff shell. */
722 static void skb_release_all(struct sk_buff *skb)
723 {
724 	skb_release_head_state(skb);
725 	if (likely(skb->head))
726 		skb_release_data(skb);
727 }
728 
729 /**
730  *	__kfree_skb - private function
731  *	@skb: buffer
732  *
733  *	Free an sk_buff. Release anything attached to the buffer.
734  *	Clean the state. This is an internal helper function. Users should
735  *	always call kfree_skb
736  */
737 
738 void __kfree_skb(struct sk_buff *skb)
739 {
740 	skb_release_all(skb);
741 	kfree_skbmem(skb);
742 }
743 EXPORT_SYMBOL(__kfree_skb);
744 
745 /**
746  *	kfree_skb - free an sk_buff
747  *	@skb: buffer to free
748  *
749  *	Drop a reference to the buffer and free it if the usage count has
750  *	hit zero.
751  */
752 void kfree_skb(struct sk_buff *skb)
753 {
754 	if (!skb_unref(skb))
755 		return;
756 
757 	trace_kfree_skb(skb, __builtin_return_address(0));
758 	__kfree_skb(skb);
759 }
760 EXPORT_SYMBOL(kfree_skb);
761 
762 void kfree_skb_list(struct sk_buff *segs)
763 {
764 	while (segs) {
765 		struct sk_buff *next = segs->next;
766 
767 		kfree_skb(segs);
768 		segs = next;
769 	}
770 }
771 EXPORT_SYMBOL(kfree_skb_list);
772 
773 /* Dump skb information and contents.
774  *
775  * Must only be called from net_ratelimit()-ed paths.
776  *
777  * Dumps whole packets if full_pkt, only headers otherwise.
778  */
779 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt)
780 {
781 	struct skb_shared_info *sh = skb_shinfo(skb);
782 	struct net_device *dev = skb->dev;
783 	struct sock *sk = skb->sk;
784 	struct sk_buff *list_skb;
785 	bool has_mac, has_trans;
786 	int headroom, tailroom;
787 	int i, len, seg_len;
788 
789 	if (full_pkt)
790 		len = skb->len;
791 	else
792 		len = min_t(int, skb->len, MAX_HEADER + 128);
793 
794 	headroom = skb_headroom(skb);
795 	tailroom = skb_tailroom(skb);
796 
797 	has_mac = skb_mac_header_was_set(skb);
798 	has_trans = skb_transport_header_was_set(skb);
799 
800 	printk("%sskb len=%u headroom=%u headlen=%u tailroom=%u\n"
801 	       "mac=(%d,%d) net=(%d,%d) trans=%d\n"
802 	       "shinfo(txflags=%u nr_frags=%u gso(size=%hu type=%u segs=%hu))\n"
803 	       "csum(0x%x ip_summed=%u complete_sw=%u valid=%u level=%u)\n"
804 	       "hash(0x%x sw=%u l4=%u) proto=0x%04x pkttype=%u iif=%d\n",
805 	       level, skb->len, headroom, skb_headlen(skb), tailroom,
806 	       has_mac ? skb->mac_header : -1,
807 	       has_mac ? skb_mac_header_len(skb) : -1,
808 	       skb->network_header,
809 	       has_trans ? skb_network_header_len(skb) : -1,
810 	       has_trans ? skb->transport_header : -1,
811 	       sh->tx_flags, sh->nr_frags,
812 	       sh->gso_size, sh->gso_type, sh->gso_segs,
813 	       skb->csum, skb->ip_summed, skb->csum_complete_sw,
814 	       skb->csum_valid, skb->csum_level,
815 	       skb->hash, skb->sw_hash, skb->l4_hash,
816 	       ntohs(skb->protocol), skb->pkt_type, skb->skb_iif);
817 
818 	if (dev)
819 		printk("%sdev name=%s feat=0x%pNF\n",
820 		       level, dev->name, &dev->features);
821 	if (sk)
822 		printk("%ssk family=%hu type=%u proto=%u\n",
823 		       level, sk->sk_family, sk->sk_type, sk->sk_protocol);
824 
825 	if (full_pkt && headroom)
826 		print_hex_dump(level, "skb headroom: ", DUMP_PREFIX_OFFSET,
827 			       16, 1, skb->head, headroom, false);
828 
829 	seg_len = min_t(int, skb_headlen(skb), len);
830 	if (seg_len)
831 		print_hex_dump(level, "skb linear:   ", DUMP_PREFIX_OFFSET,
832 			       16, 1, skb->data, seg_len, false);
833 	len -= seg_len;
834 
835 	if (full_pkt && tailroom)
836 		print_hex_dump(level, "skb tailroom: ", DUMP_PREFIX_OFFSET,
837 			       16, 1, skb_tail_pointer(skb), tailroom, false);
838 
839 	for (i = 0; len && i < skb_shinfo(skb)->nr_frags; i++) {
840 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
841 		u32 p_off, p_len, copied;
842 		struct page *p;
843 		u8 *vaddr;
844 
845 		skb_frag_foreach_page(frag, skb_frag_off(frag),
846 				      skb_frag_size(frag), p, p_off, p_len,
847 				      copied) {
848 			seg_len = min_t(int, p_len, len);
849 			vaddr = kmap_atomic(p);
850 			print_hex_dump(level, "skb frag:     ",
851 				       DUMP_PREFIX_OFFSET,
852 				       16, 1, vaddr + p_off, seg_len, false);
853 			kunmap_atomic(vaddr);
854 			len -= seg_len;
855 			if (!len)
856 				break;
857 		}
858 	}
859 
860 	if (full_pkt && skb_has_frag_list(skb)) {
861 		printk("skb fraglist:\n");
862 		skb_walk_frags(skb, list_skb)
863 			skb_dump(level, list_skb, true);
864 	}
865 }
866 EXPORT_SYMBOL(skb_dump);
867 
868 /**
869  *	skb_tx_error - report an sk_buff xmit error
870  *	@skb: buffer that triggered an error
871  *
872  *	Report xmit error if a device callback is tracking this skb.
873  *	skb must be freed afterwards.
874  */
875 void skb_tx_error(struct sk_buff *skb)
876 {
877 	skb_zcopy_clear(skb, true);
878 }
879 EXPORT_SYMBOL(skb_tx_error);
880 
881 #ifdef CONFIG_TRACEPOINTS
882 /**
883  *	consume_skb - free an skbuff
884  *	@skb: buffer to free
885  *
886  *	Drop a ref to the buffer and free it if the usage count has hit zero
887  *	Functions identically to kfree_skb, but kfree_skb assumes that the frame
888  *	is being dropped after a failure and notes that
889  */
890 void consume_skb(struct sk_buff *skb)
891 {
892 	if (!skb_unref(skb))
893 		return;
894 
895 	trace_consume_skb(skb);
896 	__kfree_skb(skb);
897 }
898 EXPORT_SYMBOL(consume_skb);
899 #endif
900 
901 /**
902  *	__consume_stateless_skb - free an skbuff, assuming it is stateless
903  *	@skb: buffer to free
904  *
905  *	Alike consume_skb(), but this variant assumes that this is the last
906  *	skb reference and all the head states have been already dropped
907  */
908 void __consume_stateless_skb(struct sk_buff *skb)
909 {
910 	trace_consume_skb(skb);
911 	skb_release_data(skb);
912 	kfree_skbmem(skb);
913 }
914 
915 static void napi_skb_cache_put(struct sk_buff *skb)
916 {
917 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
918 	u32 i;
919 
920 	kasan_poison_object_data(skbuff_head_cache, skb);
921 	nc->skb_cache[nc->skb_count++] = skb;
922 
923 	if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) {
924 		for (i = NAPI_SKB_CACHE_HALF; i < NAPI_SKB_CACHE_SIZE; i++)
925 			kasan_unpoison_object_data(skbuff_head_cache,
926 						   nc->skb_cache[i]);
927 
928 		kmem_cache_free_bulk(skbuff_head_cache, NAPI_SKB_CACHE_HALF,
929 				     nc->skb_cache + NAPI_SKB_CACHE_HALF);
930 		nc->skb_count = NAPI_SKB_CACHE_HALF;
931 	}
932 }
933 
934 void __kfree_skb_defer(struct sk_buff *skb)
935 {
936 	skb_release_all(skb);
937 	napi_skb_cache_put(skb);
938 }
939 
940 void napi_skb_free_stolen_head(struct sk_buff *skb)
941 {
942 	skb_dst_drop(skb);
943 	skb_ext_put(skb);
944 	napi_skb_cache_put(skb);
945 }
946 
947 void napi_consume_skb(struct sk_buff *skb, int budget)
948 {
949 	/* Zero budget indicate non-NAPI context called us, like netpoll */
950 	if (unlikely(!budget)) {
951 		dev_consume_skb_any(skb);
952 		return;
953 	}
954 
955 	lockdep_assert_in_softirq();
956 
957 	if (!skb_unref(skb))
958 		return;
959 
960 	/* if reaching here SKB is ready to free */
961 	trace_consume_skb(skb);
962 
963 	/* if SKB is a clone, don't handle this case */
964 	if (skb->fclone != SKB_FCLONE_UNAVAILABLE) {
965 		__kfree_skb(skb);
966 		return;
967 	}
968 
969 	skb_release_all(skb);
970 	napi_skb_cache_put(skb);
971 }
972 EXPORT_SYMBOL(napi_consume_skb);
973 
974 /* Make sure a field is enclosed inside headers_start/headers_end section */
975 #define CHECK_SKB_FIELD(field) \
976 	BUILD_BUG_ON(offsetof(struct sk_buff, field) <		\
977 		     offsetof(struct sk_buff, headers_start));	\
978 	BUILD_BUG_ON(offsetof(struct sk_buff, field) >		\
979 		     offsetof(struct sk_buff, headers_end));	\
980 
981 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
982 {
983 	new->tstamp		= old->tstamp;
984 	/* We do not copy old->sk */
985 	new->dev		= old->dev;
986 	memcpy(new->cb, old->cb, sizeof(old->cb));
987 	skb_dst_copy(new, old);
988 	__skb_ext_copy(new, old);
989 	__nf_copy(new, old, false);
990 
991 	/* Note : this field could be in headers_start/headers_end section
992 	 * It is not yet because we do not want to have a 16 bit hole
993 	 */
994 	new->queue_mapping = old->queue_mapping;
995 
996 	memcpy(&new->headers_start, &old->headers_start,
997 	       offsetof(struct sk_buff, headers_end) -
998 	       offsetof(struct sk_buff, headers_start));
999 	CHECK_SKB_FIELD(protocol);
1000 	CHECK_SKB_FIELD(csum);
1001 	CHECK_SKB_FIELD(hash);
1002 	CHECK_SKB_FIELD(priority);
1003 	CHECK_SKB_FIELD(skb_iif);
1004 	CHECK_SKB_FIELD(vlan_proto);
1005 	CHECK_SKB_FIELD(vlan_tci);
1006 	CHECK_SKB_FIELD(transport_header);
1007 	CHECK_SKB_FIELD(network_header);
1008 	CHECK_SKB_FIELD(mac_header);
1009 	CHECK_SKB_FIELD(inner_protocol);
1010 	CHECK_SKB_FIELD(inner_transport_header);
1011 	CHECK_SKB_FIELD(inner_network_header);
1012 	CHECK_SKB_FIELD(inner_mac_header);
1013 	CHECK_SKB_FIELD(mark);
1014 #ifdef CONFIG_NETWORK_SECMARK
1015 	CHECK_SKB_FIELD(secmark);
1016 #endif
1017 #ifdef CONFIG_NET_RX_BUSY_POLL
1018 	CHECK_SKB_FIELD(napi_id);
1019 #endif
1020 #ifdef CONFIG_XPS
1021 	CHECK_SKB_FIELD(sender_cpu);
1022 #endif
1023 #ifdef CONFIG_NET_SCHED
1024 	CHECK_SKB_FIELD(tc_index);
1025 #endif
1026 
1027 }
1028 
1029 /*
1030  * You should not add any new code to this function.  Add it to
1031  * __copy_skb_header above instead.
1032  */
1033 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
1034 {
1035 #define C(x) n->x = skb->x
1036 
1037 	n->next = n->prev = NULL;
1038 	n->sk = NULL;
1039 	__copy_skb_header(n, skb);
1040 
1041 	C(len);
1042 	C(data_len);
1043 	C(mac_len);
1044 	n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
1045 	n->cloned = 1;
1046 	n->nohdr = 0;
1047 	n->peeked = 0;
1048 	C(pfmemalloc);
1049 	n->destructor = NULL;
1050 	C(tail);
1051 	C(end);
1052 	C(head);
1053 	C(head_frag);
1054 	C(data);
1055 	C(truesize);
1056 	refcount_set(&n->users, 1);
1057 
1058 	atomic_inc(&(skb_shinfo(skb)->dataref));
1059 	skb->cloned = 1;
1060 
1061 	return n;
1062 #undef C
1063 }
1064 
1065 /**
1066  * alloc_skb_for_msg() - allocate sk_buff to wrap frag list forming a msg
1067  * @first: first sk_buff of the msg
1068  */
1069 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first)
1070 {
1071 	struct sk_buff *n;
1072 
1073 	n = alloc_skb(0, GFP_ATOMIC);
1074 	if (!n)
1075 		return NULL;
1076 
1077 	n->len = first->len;
1078 	n->data_len = first->len;
1079 	n->truesize = first->truesize;
1080 
1081 	skb_shinfo(n)->frag_list = first;
1082 
1083 	__copy_skb_header(n, first);
1084 	n->destructor = NULL;
1085 
1086 	return n;
1087 }
1088 EXPORT_SYMBOL_GPL(alloc_skb_for_msg);
1089 
1090 /**
1091  *	skb_morph	-	morph one skb into another
1092  *	@dst: the skb to receive the contents
1093  *	@src: the skb to supply the contents
1094  *
1095  *	This is identical to skb_clone except that the target skb is
1096  *	supplied by the user.
1097  *
1098  *	The target skb is returned upon exit.
1099  */
1100 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
1101 {
1102 	skb_release_all(dst);
1103 	return __skb_clone(dst, src);
1104 }
1105 EXPORT_SYMBOL_GPL(skb_morph);
1106 
1107 int mm_account_pinned_pages(struct mmpin *mmp, size_t size)
1108 {
1109 	unsigned long max_pg, num_pg, new_pg, old_pg;
1110 	struct user_struct *user;
1111 
1112 	if (capable(CAP_IPC_LOCK) || !size)
1113 		return 0;
1114 
1115 	num_pg = (size >> PAGE_SHIFT) + 2;	/* worst case */
1116 	max_pg = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
1117 	user = mmp->user ? : current_user();
1118 
1119 	do {
1120 		old_pg = atomic_long_read(&user->locked_vm);
1121 		new_pg = old_pg + num_pg;
1122 		if (new_pg > max_pg)
1123 			return -ENOBUFS;
1124 	} while (atomic_long_cmpxchg(&user->locked_vm, old_pg, new_pg) !=
1125 		 old_pg);
1126 
1127 	if (!mmp->user) {
1128 		mmp->user = get_uid(user);
1129 		mmp->num_pg = num_pg;
1130 	} else {
1131 		mmp->num_pg += num_pg;
1132 	}
1133 
1134 	return 0;
1135 }
1136 EXPORT_SYMBOL_GPL(mm_account_pinned_pages);
1137 
1138 void mm_unaccount_pinned_pages(struct mmpin *mmp)
1139 {
1140 	if (mmp->user) {
1141 		atomic_long_sub(mmp->num_pg, &mmp->user->locked_vm);
1142 		free_uid(mmp->user);
1143 	}
1144 }
1145 EXPORT_SYMBOL_GPL(mm_unaccount_pinned_pages);
1146 
1147 struct ubuf_info *msg_zerocopy_alloc(struct sock *sk, size_t size)
1148 {
1149 	struct ubuf_info *uarg;
1150 	struct sk_buff *skb;
1151 
1152 	WARN_ON_ONCE(!in_task());
1153 
1154 	skb = sock_omalloc(sk, 0, GFP_KERNEL);
1155 	if (!skb)
1156 		return NULL;
1157 
1158 	BUILD_BUG_ON(sizeof(*uarg) > sizeof(skb->cb));
1159 	uarg = (void *)skb->cb;
1160 	uarg->mmp.user = NULL;
1161 
1162 	if (mm_account_pinned_pages(&uarg->mmp, size)) {
1163 		kfree_skb(skb);
1164 		return NULL;
1165 	}
1166 
1167 	uarg->callback = msg_zerocopy_callback;
1168 	uarg->id = ((u32)atomic_inc_return(&sk->sk_zckey)) - 1;
1169 	uarg->len = 1;
1170 	uarg->bytelen = size;
1171 	uarg->zerocopy = 1;
1172 	uarg->flags = SKBFL_ZEROCOPY_FRAG;
1173 	refcount_set(&uarg->refcnt, 1);
1174 	sock_hold(sk);
1175 
1176 	return uarg;
1177 }
1178 EXPORT_SYMBOL_GPL(msg_zerocopy_alloc);
1179 
1180 static inline struct sk_buff *skb_from_uarg(struct ubuf_info *uarg)
1181 {
1182 	return container_of((void *)uarg, struct sk_buff, cb);
1183 }
1184 
1185 struct ubuf_info *msg_zerocopy_realloc(struct sock *sk, size_t size,
1186 				       struct ubuf_info *uarg)
1187 {
1188 	if (uarg) {
1189 		const u32 byte_limit = 1 << 19;		/* limit to a few TSO */
1190 		u32 bytelen, next;
1191 
1192 		/* realloc only when socket is locked (TCP, UDP cork),
1193 		 * so uarg->len and sk_zckey access is serialized
1194 		 */
1195 		if (!sock_owned_by_user(sk)) {
1196 			WARN_ON_ONCE(1);
1197 			return NULL;
1198 		}
1199 
1200 		bytelen = uarg->bytelen + size;
1201 		if (uarg->len == USHRT_MAX - 1 || bytelen > byte_limit) {
1202 			/* TCP can create new skb to attach new uarg */
1203 			if (sk->sk_type == SOCK_STREAM)
1204 				goto new_alloc;
1205 			return NULL;
1206 		}
1207 
1208 		next = (u32)atomic_read(&sk->sk_zckey);
1209 		if ((u32)(uarg->id + uarg->len) == next) {
1210 			if (mm_account_pinned_pages(&uarg->mmp, size))
1211 				return NULL;
1212 			uarg->len++;
1213 			uarg->bytelen = bytelen;
1214 			atomic_set(&sk->sk_zckey, ++next);
1215 
1216 			/* no extra ref when appending to datagram (MSG_MORE) */
1217 			if (sk->sk_type == SOCK_STREAM)
1218 				net_zcopy_get(uarg);
1219 
1220 			return uarg;
1221 		}
1222 	}
1223 
1224 new_alloc:
1225 	return msg_zerocopy_alloc(sk, size);
1226 }
1227 EXPORT_SYMBOL_GPL(msg_zerocopy_realloc);
1228 
1229 static bool skb_zerocopy_notify_extend(struct sk_buff *skb, u32 lo, u16 len)
1230 {
1231 	struct sock_exterr_skb *serr = SKB_EXT_ERR(skb);
1232 	u32 old_lo, old_hi;
1233 	u64 sum_len;
1234 
1235 	old_lo = serr->ee.ee_info;
1236 	old_hi = serr->ee.ee_data;
1237 	sum_len = old_hi - old_lo + 1ULL + len;
1238 
1239 	if (sum_len >= (1ULL << 32))
1240 		return false;
1241 
1242 	if (lo != old_hi + 1)
1243 		return false;
1244 
1245 	serr->ee.ee_data += len;
1246 	return true;
1247 }
1248 
1249 static void __msg_zerocopy_callback(struct ubuf_info *uarg)
1250 {
1251 	struct sk_buff *tail, *skb = skb_from_uarg(uarg);
1252 	struct sock_exterr_skb *serr;
1253 	struct sock *sk = skb->sk;
1254 	struct sk_buff_head *q;
1255 	unsigned long flags;
1256 	bool is_zerocopy;
1257 	u32 lo, hi;
1258 	u16 len;
1259 
1260 	mm_unaccount_pinned_pages(&uarg->mmp);
1261 
1262 	/* if !len, there was only 1 call, and it was aborted
1263 	 * so do not queue a completion notification
1264 	 */
1265 	if (!uarg->len || sock_flag(sk, SOCK_DEAD))
1266 		goto release;
1267 
1268 	len = uarg->len;
1269 	lo = uarg->id;
1270 	hi = uarg->id + len - 1;
1271 	is_zerocopy = uarg->zerocopy;
1272 
1273 	serr = SKB_EXT_ERR(skb);
1274 	memset(serr, 0, sizeof(*serr));
1275 	serr->ee.ee_errno = 0;
1276 	serr->ee.ee_origin = SO_EE_ORIGIN_ZEROCOPY;
1277 	serr->ee.ee_data = hi;
1278 	serr->ee.ee_info = lo;
1279 	if (!is_zerocopy)
1280 		serr->ee.ee_code |= SO_EE_CODE_ZEROCOPY_COPIED;
1281 
1282 	q = &sk->sk_error_queue;
1283 	spin_lock_irqsave(&q->lock, flags);
1284 	tail = skb_peek_tail(q);
1285 	if (!tail || SKB_EXT_ERR(tail)->ee.ee_origin != SO_EE_ORIGIN_ZEROCOPY ||
1286 	    !skb_zerocopy_notify_extend(tail, lo, len)) {
1287 		__skb_queue_tail(q, skb);
1288 		skb = NULL;
1289 	}
1290 	spin_unlock_irqrestore(&q->lock, flags);
1291 
1292 	sk->sk_error_report(sk);
1293 
1294 release:
1295 	consume_skb(skb);
1296 	sock_put(sk);
1297 }
1298 
1299 void msg_zerocopy_callback(struct sk_buff *skb, struct ubuf_info *uarg,
1300 			   bool success)
1301 {
1302 	uarg->zerocopy = uarg->zerocopy & success;
1303 
1304 	if (refcount_dec_and_test(&uarg->refcnt))
1305 		__msg_zerocopy_callback(uarg);
1306 }
1307 EXPORT_SYMBOL_GPL(msg_zerocopy_callback);
1308 
1309 void msg_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref)
1310 {
1311 	struct sock *sk = skb_from_uarg(uarg)->sk;
1312 
1313 	atomic_dec(&sk->sk_zckey);
1314 	uarg->len--;
1315 
1316 	if (have_uref)
1317 		msg_zerocopy_callback(NULL, uarg, true);
1318 }
1319 EXPORT_SYMBOL_GPL(msg_zerocopy_put_abort);
1320 
1321 int skb_zerocopy_iter_dgram(struct sk_buff *skb, struct msghdr *msg, int len)
1322 {
1323 	return __zerocopy_sg_from_iter(skb->sk, skb, &msg->msg_iter, len);
1324 }
1325 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_dgram);
1326 
1327 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
1328 			     struct msghdr *msg, int len,
1329 			     struct ubuf_info *uarg)
1330 {
1331 	struct ubuf_info *orig_uarg = skb_zcopy(skb);
1332 	struct iov_iter orig_iter = msg->msg_iter;
1333 	int err, orig_len = skb->len;
1334 
1335 	/* An skb can only point to one uarg. This edge case happens when
1336 	 * TCP appends to an skb, but zerocopy_realloc triggered a new alloc.
1337 	 */
1338 	if (orig_uarg && uarg != orig_uarg)
1339 		return -EEXIST;
1340 
1341 	err = __zerocopy_sg_from_iter(sk, skb, &msg->msg_iter, len);
1342 	if (err == -EFAULT || (err == -EMSGSIZE && skb->len == orig_len)) {
1343 		struct sock *save_sk = skb->sk;
1344 
1345 		/* Streams do not free skb on error. Reset to prev state. */
1346 		msg->msg_iter = orig_iter;
1347 		skb->sk = sk;
1348 		___pskb_trim(skb, orig_len);
1349 		skb->sk = save_sk;
1350 		return err;
1351 	}
1352 
1353 	skb_zcopy_set(skb, uarg, NULL);
1354 	return skb->len - orig_len;
1355 }
1356 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_stream);
1357 
1358 static int skb_zerocopy_clone(struct sk_buff *nskb, struct sk_buff *orig,
1359 			      gfp_t gfp_mask)
1360 {
1361 	if (skb_zcopy(orig)) {
1362 		if (skb_zcopy(nskb)) {
1363 			/* !gfp_mask callers are verified to !skb_zcopy(nskb) */
1364 			if (!gfp_mask) {
1365 				WARN_ON_ONCE(1);
1366 				return -ENOMEM;
1367 			}
1368 			if (skb_uarg(nskb) == skb_uarg(orig))
1369 				return 0;
1370 			if (skb_copy_ubufs(nskb, GFP_ATOMIC))
1371 				return -EIO;
1372 		}
1373 		skb_zcopy_set(nskb, skb_uarg(orig), NULL);
1374 	}
1375 	return 0;
1376 }
1377 
1378 /**
1379  *	skb_copy_ubufs	-	copy userspace skb frags buffers to kernel
1380  *	@skb: the skb to modify
1381  *	@gfp_mask: allocation priority
1382  *
1383  *	This must be called on skb with SKBFL_ZEROCOPY_ENABLE.
1384  *	It will copy all frags into kernel and drop the reference
1385  *	to userspace pages.
1386  *
1387  *	If this function is called from an interrupt gfp_mask() must be
1388  *	%GFP_ATOMIC.
1389  *
1390  *	Returns 0 on success or a negative error code on failure
1391  *	to allocate kernel memory to copy to.
1392  */
1393 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask)
1394 {
1395 	int num_frags = skb_shinfo(skb)->nr_frags;
1396 	struct page *page, *head = NULL;
1397 	int i, new_frags;
1398 	u32 d_off;
1399 
1400 	if (skb_shared(skb) || skb_unclone(skb, gfp_mask))
1401 		return -EINVAL;
1402 
1403 	if (!num_frags)
1404 		goto release;
1405 
1406 	new_frags = (__skb_pagelen(skb) + PAGE_SIZE - 1) >> PAGE_SHIFT;
1407 	for (i = 0; i < new_frags; i++) {
1408 		page = alloc_page(gfp_mask);
1409 		if (!page) {
1410 			while (head) {
1411 				struct page *next = (struct page *)page_private(head);
1412 				put_page(head);
1413 				head = next;
1414 			}
1415 			return -ENOMEM;
1416 		}
1417 		set_page_private(page, (unsigned long)head);
1418 		head = page;
1419 	}
1420 
1421 	page = head;
1422 	d_off = 0;
1423 	for (i = 0; i < num_frags; i++) {
1424 		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
1425 		u32 p_off, p_len, copied;
1426 		struct page *p;
1427 		u8 *vaddr;
1428 
1429 		skb_frag_foreach_page(f, skb_frag_off(f), skb_frag_size(f),
1430 				      p, p_off, p_len, copied) {
1431 			u32 copy, done = 0;
1432 			vaddr = kmap_atomic(p);
1433 
1434 			while (done < p_len) {
1435 				if (d_off == PAGE_SIZE) {
1436 					d_off = 0;
1437 					page = (struct page *)page_private(page);
1438 				}
1439 				copy = min_t(u32, PAGE_SIZE - d_off, p_len - done);
1440 				memcpy(page_address(page) + d_off,
1441 				       vaddr + p_off + done, copy);
1442 				done += copy;
1443 				d_off += copy;
1444 			}
1445 			kunmap_atomic(vaddr);
1446 		}
1447 	}
1448 
1449 	/* skb frags release userspace buffers */
1450 	for (i = 0; i < num_frags; i++)
1451 		skb_frag_unref(skb, i);
1452 
1453 	/* skb frags point to kernel buffers */
1454 	for (i = 0; i < new_frags - 1; i++) {
1455 		__skb_fill_page_desc(skb, i, head, 0, PAGE_SIZE);
1456 		head = (struct page *)page_private(head);
1457 	}
1458 	__skb_fill_page_desc(skb, new_frags - 1, head, 0, d_off);
1459 	skb_shinfo(skb)->nr_frags = new_frags;
1460 
1461 release:
1462 	skb_zcopy_clear(skb, false);
1463 	return 0;
1464 }
1465 EXPORT_SYMBOL_GPL(skb_copy_ubufs);
1466 
1467 /**
1468  *	skb_clone	-	duplicate an sk_buff
1469  *	@skb: buffer to clone
1470  *	@gfp_mask: allocation priority
1471  *
1472  *	Duplicate an &sk_buff. The new one is not owned by a socket. Both
1473  *	copies share the same packet data but not structure. The new
1474  *	buffer has a reference count of 1. If the allocation fails the
1475  *	function returns %NULL otherwise the new buffer is returned.
1476  *
1477  *	If this function is called from an interrupt gfp_mask() must be
1478  *	%GFP_ATOMIC.
1479  */
1480 
1481 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
1482 {
1483 	struct sk_buff_fclones *fclones = container_of(skb,
1484 						       struct sk_buff_fclones,
1485 						       skb1);
1486 	struct sk_buff *n;
1487 
1488 	if (skb_orphan_frags(skb, gfp_mask))
1489 		return NULL;
1490 
1491 	if (skb->fclone == SKB_FCLONE_ORIG &&
1492 	    refcount_read(&fclones->fclone_ref) == 1) {
1493 		n = &fclones->skb2;
1494 		refcount_set(&fclones->fclone_ref, 2);
1495 	} else {
1496 		if (skb_pfmemalloc(skb))
1497 			gfp_mask |= __GFP_MEMALLOC;
1498 
1499 		n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
1500 		if (!n)
1501 			return NULL;
1502 
1503 		n->fclone = SKB_FCLONE_UNAVAILABLE;
1504 	}
1505 
1506 	return __skb_clone(n, skb);
1507 }
1508 EXPORT_SYMBOL(skb_clone);
1509 
1510 void skb_headers_offset_update(struct sk_buff *skb, int off)
1511 {
1512 	/* Only adjust this if it actually is csum_start rather than csum */
1513 	if (skb->ip_summed == CHECKSUM_PARTIAL)
1514 		skb->csum_start += off;
1515 	/* {transport,network,mac}_header and tail are relative to skb->head */
1516 	skb->transport_header += off;
1517 	skb->network_header   += off;
1518 	if (skb_mac_header_was_set(skb))
1519 		skb->mac_header += off;
1520 	skb->inner_transport_header += off;
1521 	skb->inner_network_header += off;
1522 	skb->inner_mac_header += off;
1523 }
1524 EXPORT_SYMBOL(skb_headers_offset_update);
1525 
1526 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old)
1527 {
1528 	__copy_skb_header(new, old);
1529 
1530 	skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
1531 	skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
1532 	skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
1533 }
1534 EXPORT_SYMBOL(skb_copy_header);
1535 
1536 static inline int skb_alloc_rx_flag(const struct sk_buff *skb)
1537 {
1538 	if (skb_pfmemalloc(skb))
1539 		return SKB_ALLOC_RX;
1540 	return 0;
1541 }
1542 
1543 /**
1544  *	skb_copy	-	create private copy of an sk_buff
1545  *	@skb: buffer to copy
1546  *	@gfp_mask: allocation priority
1547  *
1548  *	Make a copy of both an &sk_buff and its data. This is used when the
1549  *	caller wishes to modify the data and needs a private copy of the
1550  *	data to alter. Returns %NULL on failure or the pointer to the buffer
1551  *	on success. The returned buffer has a reference count of 1.
1552  *
1553  *	As by-product this function converts non-linear &sk_buff to linear
1554  *	one, so that &sk_buff becomes completely private and caller is allowed
1555  *	to modify all the data of returned buffer. This means that this
1556  *	function is not recommended for use in circumstances when only
1557  *	header is going to be modified. Use pskb_copy() instead.
1558  */
1559 
1560 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
1561 {
1562 	int headerlen = skb_headroom(skb);
1563 	unsigned int size = skb_end_offset(skb) + skb->data_len;
1564 	struct sk_buff *n = __alloc_skb(size, gfp_mask,
1565 					skb_alloc_rx_flag(skb), NUMA_NO_NODE);
1566 
1567 	if (!n)
1568 		return NULL;
1569 
1570 	/* Set the data pointer */
1571 	skb_reserve(n, headerlen);
1572 	/* Set the tail pointer and length */
1573 	skb_put(n, skb->len);
1574 
1575 	BUG_ON(skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len));
1576 
1577 	skb_copy_header(n, skb);
1578 	return n;
1579 }
1580 EXPORT_SYMBOL(skb_copy);
1581 
1582 /**
1583  *	__pskb_copy_fclone	-  create copy of an sk_buff with private head.
1584  *	@skb: buffer to copy
1585  *	@headroom: headroom of new skb
1586  *	@gfp_mask: allocation priority
1587  *	@fclone: if true allocate the copy of the skb from the fclone
1588  *	cache instead of the head cache; it is recommended to set this
1589  *	to true for the cases where the copy will likely be cloned
1590  *
1591  *	Make a copy of both an &sk_buff and part of its data, located
1592  *	in header. Fragmented data remain shared. This is used when
1593  *	the caller wishes to modify only header of &sk_buff and needs
1594  *	private copy of the header to alter. Returns %NULL on failure
1595  *	or the pointer to the buffer on success.
1596  *	The returned buffer has a reference count of 1.
1597  */
1598 
1599 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1600 				   gfp_t gfp_mask, bool fclone)
1601 {
1602 	unsigned int size = skb_headlen(skb) + headroom;
1603 	int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0);
1604 	struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE);
1605 
1606 	if (!n)
1607 		goto out;
1608 
1609 	/* Set the data pointer */
1610 	skb_reserve(n, headroom);
1611 	/* Set the tail pointer and length */
1612 	skb_put(n, skb_headlen(skb));
1613 	/* Copy the bytes */
1614 	skb_copy_from_linear_data(skb, n->data, n->len);
1615 
1616 	n->truesize += skb->data_len;
1617 	n->data_len  = skb->data_len;
1618 	n->len	     = skb->len;
1619 
1620 	if (skb_shinfo(skb)->nr_frags) {
1621 		int i;
1622 
1623 		if (skb_orphan_frags(skb, gfp_mask) ||
1624 		    skb_zerocopy_clone(n, skb, gfp_mask)) {
1625 			kfree_skb(n);
1626 			n = NULL;
1627 			goto out;
1628 		}
1629 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1630 			skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
1631 			skb_frag_ref(skb, i);
1632 		}
1633 		skb_shinfo(n)->nr_frags = i;
1634 	}
1635 
1636 	if (skb_has_frag_list(skb)) {
1637 		skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
1638 		skb_clone_fraglist(n);
1639 	}
1640 
1641 	skb_copy_header(n, skb);
1642 out:
1643 	return n;
1644 }
1645 EXPORT_SYMBOL(__pskb_copy_fclone);
1646 
1647 /**
1648  *	pskb_expand_head - reallocate header of &sk_buff
1649  *	@skb: buffer to reallocate
1650  *	@nhead: room to add at head
1651  *	@ntail: room to add at tail
1652  *	@gfp_mask: allocation priority
1653  *
1654  *	Expands (or creates identical copy, if @nhead and @ntail are zero)
1655  *	header of @skb. &sk_buff itself is not changed. &sk_buff MUST have
1656  *	reference count of 1. Returns zero in the case of success or error,
1657  *	if expansion failed. In the last case, &sk_buff is not changed.
1658  *
1659  *	All the pointers pointing into skb header may change and must be
1660  *	reloaded after call to this function.
1661  */
1662 
1663 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
1664 		     gfp_t gfp_mask)
1665 {
1666 	int i, osize = skb_end_offset(skb);
1667 	int size = osize + nhead + ntail;
1668 	long off;
1669 	u8 *data;
1670 
1671 	BUG_ON(nhead < 0);
1672 
1673 	BUG_ON(skb_shared(skb));
1674 
1675 	size = SKB_DATA_ALIGN(size);
1676 
1677 	if (skb_pfmemalloc(skb))
1678 		gfp_mask |= __GFP_MEMALLOC;
1679 	data = kmalloc_reserve(size + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
1680 			       gfp_mask, NUMA_NO_NODE, NULL);
1681 	if (!data)
1682 		goto nodata;
1683 	size = SKB_WITH_OVERHEAD(ksize(data));
1684 
1685 	/* Copy only real data... and, alas, header. This should be
1686 	 * optimized for the cases when header is void.
1687 	 */
1688 	memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head);
1689 
1690 	memcpy((struct skb_shared_info *)(data + size),
1691 	       skb_shinfo(skb),
1692 	       offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags]));
1693 
1694 	/*
1695 	 * if shinfo is shared we must drop the old head gracefully, but if it
1696 	 * is not we can just drop the old head and let the existing refcount
1697 	 * be since all we did is relocate the values
1698 	 */
1699 	if (skb_cloned(skb)) {
1700 		if (skb_orphan_frags(skb, gfp_mask))
1701 			goto nofrags;
1702 		if (skb_zcopy(skb))
1703 			refcount_inc(&skb_uarg(skb)->refcnt);
1704 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1705 			skb_frag_ref(skb, i);
1706 
1707 		if (skb_has_frag_list(skb))
1708 			skb_clone_fraglist(skb);
1709 
1710 		skb_release_data(skb);
1711 	} else {
1712 		skb_free_head(skb);
1713 	}
1714 	off = (data + nhead) - skb->head;
1715 
1716 	skb->head     = data;
1717 	skb->head_frag = 0;
1718 	skb->data    += off;
1719 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1720 	skb->end      = size;
1721 	off           = nhead;
1722 #else
1723 	skb->end      = skb->head + size;
1724 #endif
1725 	skb->tail	      += off;
1726 	skb_headers_offset_update(skb, nhead);
1727 	skb->cloned   = 0;
1728 	skb->hdr_len  = 0;
1729 	skb->nohdr    = 0;
1730 	atomic_set(&skb_shinfo(skb)->dataref, 1);
1731 
1732 	skb_metadata_clear(skb);
1733 
1734 	/* It is not generally safe to change skb->truesize.
1735 	 * For the moment, we really care of rx path, or
1736 	 * when skb is orphaned (not attached to a socket).
1737 	 */
1738 	if (!skb->sk || skb->destructor == sock_edemux)
1739 		skb->truesize += size - osize;
1740 
1741 	return 0;
1742 
1743 nofrags:
1744 	kfree(data);
1745 nodata:
1746 	return -ENOMEM;
1747 }
1748 EXPORT_SYMBOL(pskb_expand_head);
1749 
1750 /* Make private copy of skb with writable head and some headroom */
1751 
1752 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
1753 {
1754 	struct sk_buff *skb2;
1755 	int delta = headroom - skb_headroom(skb);
1756 
1757 	if (delta <= 0)
1758 		skb2 = pskb_copy(skb, GFP_ATOMIC);
1759 	else {
1760 		skb2 = skb_clone(skb, GFP_ATOMIC);
1761 		if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
1762 					     GFP_ATOMIC)) {
1763 			kfree_skb(skb2);
1764 			skb2 = NULL;
1765 		}
1766 	}
1767 	return skb2;
1768 }
1769 EXPORT_SYMBOL(skb_realloc_headroom);
1770 
1771 /**
1772  *	skb_copy_expand	-	copy and expand sk_buff
1773  *	@skb: buffer to copy
1774  *	@newheadroom: new free bytes at head
1775  *	@newtailroom: new free bytes at tail
1776  *	@gfp_mask: allocation priority
1777  *
1778  *	Make a copy of both an &sk_buff and its data and while doing so
1779  *	allocate additional space.
1780  *
1781  *	This is used when the caller wishes to modify the data and needs a
1782  *	private copy of the data to alter as well as more space for new fields.
1783  *	Returns %NULL on failure or the pointer to the buffer
1784  *	on success. The returned buffer has a reference count of 1.
1785  *
1786  *	You must pass %GFP_ATOMIC as the allocation priority if this function
1787  *	is called from an interrupt.
1788  */
1789 struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
1790 				int newheadroom, int newtailroom,
1791 				gfp_t gfp_mask)
1792 {
1793 	/*
1794 	 *	Allocate the copy buffer
1795 	 */
1796 	struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom,
1797 					gfp_mask, skb_alloc_rx_flag(skb),
1798 					NUMA_NO_NODE);
1799 	int oldheadroom = skb_headroom(skb);
1800 	int head_copy_len, head_copy_off;
1801 
1802 	if (!n)
1803 		return NULL;
1804 
1805 	skb_reserve(n, newheadroom);
1806 
1807 	/* Set the tail pointer and length */
1808 	skb_put(n, skb->len);
1809 
1810 	head_copy_len = oldheadroom;
1811 	head_copy_off = 0;
1812 	if (newheadroom <= head_copy_len)
1813 		head_copy_len = newheadroom;
1814 	else
1815 		head_copy_off = newheadroom - head_copy_len;
1816 
1817 	/* Copy the linear header and data. */
1818 	BUG_ON(skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
1819 			     skb->len + head_copy_len));
1820 
1821 	skb_copy_header(n, skb);
1822 
1823 	skb_headers_offset_update(n, newheadroom - oldheadroom);
1824 
1825 	return n;
1826 }
1827 EXPORT_SYMBOL(skb_copy_expand);
1828 
1829 /**
1830  *	__skb_pad		-	zero pad the tail of an skb
1831  *	@skb: buffer to pad
1832  *	@pad: space to pad
1833  *	@free_on_error: free buffer on error
1834  *
1835  *	Ensure that a buffer is followed by a padding area that is zero
1836  *	filled. Used by network drivers which may DMA or transfer data
1837  *	beyond the buffer end onto the wire.
1838  *
1839  *	May return error in out of memory cases. The skb is freed on error
1840  *	if @free_on_error is true.
1841  */
1842 
1843 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error)
1844 {
1845 	int err;
1846 	int ntail;
1847 
1848 	/* If the skbuff is non linear tailroom is always zero.. */
1849 	if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
1850 		memset(skb->data+skb->len, 0, pad);
1851 		return 0;
1852 	}
1853 
1854 	ntail = skb->data_len + pad - (skb->end - skb->tail);
1855 	if (likely(skb_cloned(skb) || ntail > 0)) {
1856 		err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
1857 		if (unlikely(err))
1858 			goto free_skb;
1859 	}
1860 
1861 	/* FIXME: The use of this function with non-linear skb's really needs
1862 	 * to be audited.
1863 	 */
1864 	err = skb_linearize(skb);
1865 	if (unlikely(err))
1866 		goto free_skb;
1867 
1868 	memset(skb->data + skb->len, 0, pad);
1869 	return 0;
1870 
1871 free_skb:
1872 	if (free_on_error)
1873 		kfree_skb(skb);
1874 	return err;
1875 }
1876 EXPORT_SYMBOL(__skb_pad);
1877 
1878 /**
1879  *	pskb_put - add data to the tail of a potentially fragmented buffer
1880  *	@skb: start of the buffer to use
1881  *	@tail: tail fragment of the buffer to use
1882  *	@len: amount of data to add
1883  *
1884  *	This function extends the used data area of the potentially
1885  *	fragmented buffer. @tail must be the last fragment of @skb -- or
1886  *	@skb itself. If this would exceed the total buffer size the kernel
1887  *	will panic. A pointer to the first byte of the extra data is
1888  *	returned.
1889  */
1890 
1891 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len)
1892 {
1893 	if (tail != skb) {
1894 		skb->data_len += len;
1895 		skb->len += len;
1896 	}
1897 	return skb_put(tail, len);
1898 }
1899 EXPORT_SYMBOL_GPL(pskb_put);
1900 
1901 /**
1902  *	skb_put - add data to a buffer
1903  *	@skb: buffer to use
1904  *	@len: amount of data to add
1905  *
1906  *	This function extends the used data area of the buffer. If this would
1907  *	exceed the total buffer size the kernel will panic. A pointer to the
1908  *	first byte of the extra data is returned.
1909  */
1910 void *skb_put(struct sk_buff *skb, unsigned int len)
1911 {
1912 	void *tmp = skb_tail_pointer(skb);
1913 	SKB_LINEAR_ASSERT(skb);
1914 	skb->tail += len;
1915 	skb->len  += len;
1916 	if (unlikely(skb->tail > skb->end))
1917 		skb_over_panic(skb, len, __builtin_return_address(0));
1918 	return tmp;
1919 }
1920 EXPORT_SYMBOL(skb_put);
1921 
1922 /**
1923  *	skb_push - add data to the start of a buffer
1924  *	@skb: buffer to use
1925  *	@len: amount of data to add
1926  *
1927  *	This function extends the used data area of the buffer at the buffer
1928  *	start. If this would exceed the total buffer headroom the kernel will
1929  *	panic. A pointer to the first byte of the extra data is returned.
1930  */
1931 void *skb_push(struct sk_buff *skb, unsigned int len)
1932 {
1933 	skb->data -= len;
1934 	skb->len  += len;
1935 	if (unlikely(skb->data < skb->head))
1936 		skb_under_panic(skb, len, __builtin_return_address(0));
1937 	return skb->data;
1938 }
1939 EXPORT_SYMBOL(skb_push);
1940 
1941 /**
1942  *	skb_pull - remove data from the start of a buffer
1943  *	@skb: buffer to use
1944  *	@len: amount of data to remove
1945  *
1946  *	This function removes data from the start of a buffer, returning
1947  *	the memory to the headroom. A pointer to the next data in the buffer
1948  *	is returned. Once the data has been pulled future pushes will overwrite
1949  *	the old data.
1950  */
1951 void *skb_pull(struct sk_buff *skb, unsigned int len)
1952 {
1953 	return skb_pull_inline(skb, len);
1954 }
1955 EXPORT_SYMBOL(skb_pull);
1956 
1957 /**
1958  *	skb_trim - remove end from a buffer
1959  *	@skb: buffer to alter
1960  *	@len: new length
1961  *
1962  *	Cut the length of a buffer down by removing data from the tail. If
1963  *	the buffer is already under the length specified it is not modified.
1964  *	The skb must be linear.
1965  */
1966 void skb_trim(struct sk_buff *skb, unsigned int len)
1967 {
1968 	if (skb->len > len)
1969 		__skb_trim(skb, len);
1970 }
1971 EXPORT_SYMBOL(skb_trim);
1972 
1973 /* Trims skb to length len. It can change skb pointers.
1974  */
1975 
1976 int ___pskb_trim(struct sk_buff *skb, unsigned int len)
1977 {
1978 	struct sk_buff **fragp;
1979 	struct sk_buff *frag;
1980 	int offset = skb_headlen(skb);
1981 	int nfrags = skb_shinfo(skb)->nr_frags;
1982 	int i;
1983 	int err;
1984 
1985 	if (skb_cloned(skb) &&
1986 	    unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
1987 		return err;
1988 
1989 	i = 0;
1990 	if (offset >= len)
1991 		goto drop_pages;
1992 
1993 	for (; i < nfrags; i++) {
1994 		int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]);
1995 
1996 		if (end < len) {
1997 			offset = end;
1998 			continue;
1999 		}
2000 
2001 		skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset);
2002 
2003 drop_pages:
2004 		skb_shinfo(skb)->nr_frags = i;
2005 
2006 		for (; i < nfrags; i++)
2007 			skb_frag_unref(skb, i);
2008 
2009 		if (skb_has_frag_list(skb))
2010 			skb_drop_fraglist(skb);
2011 		goto done;
2012 	}
2013 
2014 	for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
2015 	     fragp = &frag->next) {
2016 		int end = offset + frag->len;
2017 
2018 		if (skb_shared(frag)) {
2019 			struct sk_buff *nfrag;
2020 
2021 			nfrag = skb_clone(frag, GFP_ATOMIC);
2022 			if (unlikely(!nfrag))
2023 				return -ENOMEM;
2024 
2025 			nfrag->next = frag->next;
2026 			consume_skb(frag);
2027 			frag = nfrag;
2028 			*fragp = frag;
2029 		}
2030 
2031 		if (end < len) {
2032 			offset = end;
2033 			continue;
2034 		}
2035 
2036 		if (end > len &&
2037 		    unlikely((err = pskb_trim(frag, len - offset))))
2038 			return err;
2039 
2040 		if (frag->next)
2041 			skb_drop_list(&frag->next);
2042 		break;
2043 	}
2044 
2045 done:
2046 	if (len > skb_headlen(skb)) {
2047 		skb->data_len -= skb->len - len;
2048 		skb->len       = len;
2049 	} else {
2050 		skb->len       = len;
2051 		skb->data_len  = 0;
2052 		skb_set_tail_pointer(skb, len);
2053 	}
2054 
2055 	if (!skb->sk || skb->destructor == sock_edemux)
2056 		skb_condense(skb);
2057 	return 0;
2058 }
2059 EXPORT_SYMBOL(___pskb_trim);
2060 
2061 /* Note : use pskb_trim_rcsum() instead of calling this directly
2062  */
2063 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len)
2064 {
2065 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
2066 		int delta = skb->len - len;
2067 
2068 		skb->csum = csum_block_sub(skb->csum,
2069 					   skb_checksum(skb, len, delta, 0),
2070 					   len);
2071 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
2072 		int hdlen = (len > skb_headlen(skb)) ? skb_headlen(skb) : len;
2073 		int offset = skb_checksum_start_offset(skb) + skb->csum_offset;
2074 
2075 		if (offset + sizeof(__sum16) > hdlen)
2076 			return -EINVAL;
2077 	}
2078 	return __pskb_trim(skb, len);
2079 }
2080 EXPORT_SYMBOL(pskb_trim_rcsum_slow);
2081 
2082 /**
2083  *	__pskb_pull_tail - advance tail of skb header
2084  *	@skb: buffer to reallocate
2085  *	@delta: number of bytes to advance tail
2086  *
2087  *	The function makes a sense only on a fragmented &sk_buff,
2088  *	it expands header moving its tail forward and copying necessary
2089  *	data from fragmented part.
2090  *
2091  *	&sk_buff MUST have reference count of 1.
2092  *
2093  *	Returns %NULL (and &sk_buff does not change) if pull failed
2094  *	or value of new tail of skb in the case of success.
2095  *
2096  *	All the pointers pointing into skb header may change and must be
2097  *	reloaded after call to this function.
2098  */
2099 
2100 /* Moves tail of skb head forward, copying data from fragmented part,
2101  * when it is necessary.
2102  * 1. It may fail due to malloc failure.
2103  * 2. It may change skb pointers.
2104  *
2105  * It is pretty complicated. Luckily, it is called only in exceptional cases.
2106  */
2107 void *__pskb_pull_tail(struct sk_buff *skb, int delta)
2108 {
2109 	/* If skb has not enough free space at tail, get new one
2110 	 * plus 128 bytes for future expansions. If we have enough
2111 	 * room at tail, reallocate without expansion only if skb is cloned.
2112 	 */
2113 	int i, k, eat = (skb->tail + delta) - skb->end;
2114 
2115 	if (eat > 0 || skb_cloned(skb)) {
2116 		if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
2117 				     GFP_ATOMIC))
2118 			return NULL;
2119 	}
2120 
2121 	BUG_ON(skb_copy_bits(skb, skb_headlen(skb),
2122 			     skb_tail_pointer(skb), delta));
2123 
2124 	/* Optimization: no fragments, no reasons to preestimate
2125 	 * size of pulled pages. Superb.
2126 	 */
2127 	if (!skb_has_frag_list(skb))
2128 		goto pull_pages;
2129 
2130 	/* Estimate size of pulled pages. */
2131 	eat = delta;
2132 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2133 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2134 
2135 		if (size >= eat)
2136 			goto pull_pages;
2137 		eat -= size;
2138 	}
2139 
2140 	/* If we need update frag list, we are in troubles.
2141 	 * Certainly, it is possible to add an offset to skb data,
2142 	 * but taking into account that pulling is expected to
2143 	 * be very rare operation, it is worth to fight against
2144 	 * further bloating skb head and crucify ourselves here instead.
2145 	 * Pure masohism, indeed. 8)8)
2146 	 */
2147 	if (eat) {
2148 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
2149 		struct sk_buff *clone = NULL;
2150 		struct sk_buff *insp = NULL;
2151 
2152 		do {
2153 			if (list->len <= eat) {
2154 				/* Eaten as whole. */
2155 				eat -= list->len;
2156 				list = list->next;
2157 				insp = list;
2158 			} else {
2159 				/* Eaten partially. */
2160 
2161 				if (skb_shared(list)) {
2162 					/* Sucks! We need to fork list. :-( */
2163 					clone = skb_clone(list, GFP_ATOMIC);
2164 					if (!clone)
2165 						return NULL;
2166 					insp = list->next;
2167 					list = clone;
2168 				} else {
2169 					/* This may be pulled without
2170 					 * problems. */
2171 					insp = list;
2172 				}
2173 				if (!pskb_pull(list, eat)) {
2174 					kfree_skb(clone);
2175 					return NULL;
2176 				}
2177 				break;
2178 			}
2179 		} while (eat);
2180 
2181 		/* Free pulled out fragments. */
2182 		while ((list = skb_shinfo(skb)->frag_list) != insp) {
2183 			skb_shinfo(skb)->frag_list = list->next;
2184 			kfree_skb(list);
2185 		}
2186 		/* And insert new clone at head. */
2187 		if (clone) {
2188 			clone->next = list;
2189 			skb_shinfo(skb)->frag_list = clone;
2190 		}
2191 	}
2192 	/* Success! Now we may commit changes to skb data. */
2193 
2194 pull_pages:
2195 	eat = delta;
2196 	k = 0;
2197 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2198 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2199 
2200 		if (size <= eat) {
2201 			skb_frag_unref(skb, i);
2202 			eat -= size;
2203 		} else {
2204 			skb_frag_t *frag = &skb_shinfo(skb)->frags[k];
2205 
2206 			*frag = skb_shinfo(skb)->frags[i];
2207 			if (eat) {
2208 				skb_frag_off_add(frag, eat);
2209 				skb_frag_size_sub(frag, eat);
2210 				if (!i)
2211 					goto end;
2212 				eat = 0;
2213 			}
2214 			k++;
2215 		}
2216 	}
2217 	skb_shinfo(skb)->nr_frags = k;
2218 
2219 end:
2220 	skb->tail     += delta;
2221 	skb->data_len -= delta;
2222 
2223 	if (!skb->data_len)
2224 		skb_zcopy_clear(skb, false);
2225 
2226 	return skb_tail_pointer(skb);
2227 }
2228 EXPORT_SYMBOL(__pskb_pull_tail);
2229 
2230 /**
2231  *	skb_copy_bits - copy bits from skb to kernel buffer
2232  *	@skb: source skb
2233  *	@offset: offset in source
2234  *	@to: destination buffer
2235  *	@len: number of bytes to copy
2236  *
2237  *	Copy the specified number of bytes from the source skb to the
2238  *	destination buffer.
2239  *
2240  *	CAUTION ! :
2241  *		If its prototype is ever changed,
2242  *		check arch/{*}/net/{*}.S files,
2243  *		since it is called from BPF assembly code.
2244  */
2245 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
2246 {
2247 	int start = skb_headlen(skb);
2248 	struct sk_buff *frag_iter;
2249 	int i, copy;
2250 
2251 	if (offset > (int)skb->len - len)
2252 		goto fault;
2253 
2254 	/* Copy header. */
2255 	if ((copy = start - offset) > 0) {
2256 		if (copy > len)
2257 			copy = len;
2258 		skb_copy_from_linear_data_offset(skb, offset, to, copy);
2259 		if ((len -= copy) == 0)
2260 			return 0;
2261 		offset += copy;
2262 		to     += copy;
2263 	}
2264 
2265 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2266 		int end;
2267 		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
2268 
2269 		WARN_ON(start > offset + len);
2270 
2271 		end = start + skb_frag_size(f);
2272 		if ((copy = end - offset) > 0) {
2273 			u32 p_off, p_len, copied;
2274 			struct page *p;
2275 			u8 *vaddr;
2276 
2277 			if (copy > len)
2278 				copy = len;
2279 
2280 			skb_frag_foreach_page(f,
2281 					      skb_frag_off(f) + offset - start,
2282 					      copy, p, p_off, p_len, copied) {
2283 				vaddr = kmap_atomic(p);
2284 				memcpy(to + copied, vaddr + p_off, p_len);
2285 				kunmap_atomic(vaddr);
2286 			}
2287 
2288 			if ((len -= copy) == 0)
2289 				return 0;
2290 			offset += copy;
2291 			to     += copy;
2292 		}
2293 		start = end;
2294 	}
2295 
2296 	skb_walk_frags(skb, frag_iter) {
2297 		int end;
2298 
2299 		WARN_ON(start > offset + len);
2300 
2301 		end = start + frag_iter->len;
2302 		if ((copy = end - offset) > 0) {
2303 			if (copy > len)
2304 				copy = len;
2305 			if (skb_copy_bits(frag_iter, offset - start, to, copy))
2306 				goto fault;
2307 			if ((len -= copy) == 0)
2308 				return 0;
2309 			offset += copy;
2310 			to     += copy;
2311 		}
2312 		start = end;
2313 	}
2314 
2315 	if (!len)
2316 		return 0;
2317 
2318 fault:
2319 	return -EFAULT;
2320 }
2321 EXPORT_SYMBOL(skb_copy_bits);
2322 
2323 /*
2324  * Callback from splice_to_pipe(), if we need to release some pages
2325  * at the end of the spd in case we error'ed out in filling the pipe.
2326  */
2327 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
2328 {
2329 	put_page(spd->pages[i]);
2330 }
2331 
2332 static struct page *linear_to_page(struct page *page, unsigned int *len,
2333 				   unsigned int *offset,
2334 				   struct sock *sk)
2335 {
2336 	struct page_frag *pfrag = sk_page_frag(sk);
2337 
2338 	if (!sk_page_frag_refill(sk, pfrag))
2339 		return NULL;
2340 
2341 	*len = min_t(unsigned int, *len, pfrag->size - pfrag->offset);
2342 
2343 	memcpy(page_address(pfrag->page) + pfrag->offset,
2344 	       page_address(page) + *offset, *len);
2345 	*offset = pfrag->offset;
2346 	pfrag->offset += *len;
2347 
2348 	return pfrag->page;
2349 }
2350 
2351 static bool spd_can_coalesce(const struct splice_pipe_desc *spd,
2352 			     struct page *page,
2353 			     unsigned int offset)
2354 {
2355 	return	spd->nr_pages &&
2356 		spd->pages[spd->nr_pages - 1] == page &&
2357 		(spd->partial[spd->nr_pages - 1].offset +
2358 		 spd->partial[spd->nr_pages - 1].len == offset);
2359 }
2360 
2361 /*
2362  * Fill page/offset/length into spd, if it can hold more pages.
2363  */
2364 static bool spd_fill_page(struct splice_pipe_desc *spd,
2365 			  struct pipe_inode_info *pipe, struct page *page,
2366 			  unsigned int *len, unsigned int offset,
2367 			  bool linear,
2368 			  struct sock *sk)
2369 {
2370 	if (unlikely(spd->nr_pages == MAX_SKB_FRAGS))
2371 		return true;
2372 
2373 	if (linear) {
2374 		page = linear_to_page(page, len, &offset, sk);
2375 		if (!page)
2376 			return true;
2377 	}
2378 	if (spd_can_coalesce(spd, page, offset)) {
2379 		spd->partial[spd->nr_pages - 1].len += *len;
2380 		return false;
2381 	}
2382 	get_page(page);
2383 	spd->pages[spd->nr_pages] = page;
2384 	spd->partial[spd->nr_pages].len = *len;
2385 	spd->partial[spd->nr_pages].offset = offset;
2386 	spd->nr_pages++;
2387 
2388 	return false;
2389 }
2390 
2391 static bool __splice_segment(struct page *page, unsigned int poff,
2392 			     unsigned int plen, unsigned int *off,
2393 			     unsigned int *len,
2394 			     struct splice_pipe_desc *spd, bool linear,
2395 			     struct sock *sk,
2396 			     struct pipe_inode_info *pipe)
2397 {
2398 	if (!*len)
2399 		return true;
2400 
2401 	/* skip this segment if already processed */
2402 	if (*off >= plen) {
2403 		*off -= plen;
2404 		return false;
2405 	}
2406 
2407 	/* ignore any bits we already processed */
2408 	poff += *off;
2409 	plen -= *off;
2410 	*off = 0;
2411 
2412 	do {
2413 		unsigned int flen = min(*len, plen);
2414 
2415 		if (spd_fill_page(spd, pipe, page, &flen, poff,
2416 				  linear, sk))
2417 			return true;
2418 		poff += flen;
2419 		plen -= flen;
2420 		*len -= flen;
2421 	} while (*len && plen);
2422 
2423 	return false;
2424 }
2425 
2426 /*
2427  * Map linear and fragment data from the skb to spd. It reports true if the
2428  * pipe is full or if we already spliced the requested length.
2429  */
2430 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe,
2431 			      unsigned int *offset, unsigned int *len,
2432 			      struct splice_pipe_desc *spd, struct sock *sk)
2433 {
2434 	int seg;
2435 	struct sk_buff *iter;
2436 
2437 	/* map the linear part :
2438 	 * If skb->head_frag is set, this 'linear' part is backed by a
2439 	 * fragment, and if the head is not shared with any clones then
2440 	 * we can avoid a copy since we own the head portion of this page.
2441 	 */
2442 	if (__splice_segment(virt_to_page(skb->data),
2443 			     (unsigned long) skb->data & (PAGE_SIZE - 1),
2444 			     skb_headlen(skb),
2445 			     offset, len, spd,
2446 			     skb_head_is_locked(skb),
2447 			     sk, pipe))
2448 		return true;
2449 
2450 	/*
2451 	 * then map the fragments
2452 	 */
2453 	for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
2454 		const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
2455 
2456 		if (__splice_segment(skb_frag_page(f),
2457 				     skb_frag_off(f), skb_frag_size(f),
2458 				     offset, len, spd, false, sk, pipe))
2459 			return true;
2460 	}
2461 
2462 	skb_walk_frags(skb, iter) {
2463 		if (*offset >= iter->len) {
2464 			*offset -= iter->len;
2465 			continue;
2466 		}
2467 		/* __skb_splice_bits() only fails if the output has no room
2468 		 * left, so no point in going over the frag_list for the error
2469 		 * case.
2470 		 */
2471 		if (__skb_splice_bits(iter, pipe, offset, len, spd, sk))
2472 			return true;
2473 	}
2474 
2475 	return false;
2476 }
2477 
2478 /*
2479  * Map data from the skb to a pipe. Should handle both the linear part,
2480  * the fragments, and the frag list.
2481  */
2482 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
2483 		    struct pipe_inode_info *pipe, unsigned int tlen,
2484 		    unsigned int flags)
2485 {
2486 	struct partial_page partial[MAX_SKB_FRAGS];
2487 	struct page *pages[MAX_SKB_FRAGS];
2488 	struct splice_pipe_desc spd = {
2489 		.pages = pages,
2490 		.partial = partial,
2491 		.nr_pages_max = MAX_SKB_FRAGS,
2492 		.ops = &nosteal_pipe_buf_ops,
2493 		.spd_release = sock_spd_release,
2494 	};
2495 	int ret = 0;
2496 
2497 	__skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk);
2498 
2499 	if (spd.nr_pages)
2500 		ret = splice_to_pipe(pipe, &spd);
2501 
2502 	return ret;
2503 }
2504 EXPORT_SYMBOL_GPL(skb_splice_bits);
2505 
2506 static int sendmsg_unlocked(struct sock *sk, struct msghdr *msg,
2507 			    struct kvec *vec, size_t num, size_t size)
2508 {
2509 	struct socket *sock = sk->sk_socket;
2510 
2511 	if (!sock)
2512 		return -EINVAL;
2513 	return kernel_sendmsg(sock, msg, vec, num, size);
2514 }
2515 
2516 static int sendpage_unlocked(struct sock *sk, struct page *page, int offset,
2517 			     size_t size, int flags)
2518 {
2519 	struct socket *sock = sk->sk_socket;
2520 
2521 	if (!sock)
2522 		return -EINVAL;
2523 	return kernel_sendpage(sock, page, offset, size, flags);
2524 }
2525 
2526 typedef int (*sendmsg_func)(struct sock *sk, struct msghdr *msg,
2527 			    struct kvec *vec, size_t num, size_t size);
2528 typedef int (*sendpage_func)(struct sock *sk, struct page *page, int offset,
2529 			     size_t size, int flags);
2530 static int __skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset,
2531 			   int len, sendmsg_func sendmsg, sendpage_func sendpage)
2532 {
2533 	unsigned int orig_len = len;
2534 	struct sk_buff *head = skb;
2535 	unsigned short fragidx;
2536 	int slen, ret;
2537 
2538 do_frag_list:
2539 
2540 	/* Deal with head data */
2541 	while (offset < skb_headlen(skb) && len) {
2542 		struct kvec kv;
2543 		struct msghdr msg;
2544 
2545 		slen = min_t(int, len, skb_headlen(skb) - offset);
2546 		kv.iov_base = skb->data + offset;
2547 		kv.iov_len = slen;
2548 		memset(&msg, 0, sizeof(msg));
2549 		msg.msg_flags = MSG_DONTWAIT;
2550 
2551 		ret = INDIRECT_CALL_2(sendmsg, kernel_sendmsg_locked,
2552 				      sendmsg_unlocked, sk, &msg, &kv, 1, slen);
2553 		if (ret <= 0)
2554 			goto error;
2555 
2556 		offset += ret;
2557 		len -= ret;
2558 	}
2559 
2560 	/* All the data was skb head? */
2561 	if (!len)
2562 		goto out;
2563 
2564 	/* Make offset relative to start of frags */
2565 	offset -= skb_headlen(skb);
2566 
2567 	/* Find where we are in frag list */
2568 	for (fragidx = 0; fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
2569 		skb_frag_t *frag  = &skb_shinfo(skb)->frags[fragidx];
2570 
2571 		if (offset < skb_frag_size(frag))
2572 			break;
2573 
2574 		offset -= skb_frag_size(frag);
2575 	}
2576 
2577 	for (; len && fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
2578 		skb_frag_t *frag  = &skb_shinfo(skb)->frags[fragidx];
2579 
2580 		slen = min_t(size_t, len, skb_frag_size(frag) - offset);
2581 
2582 		while (slen) {
2583 			ret = INDIRECT_CALL_2(sendpage, kernel_sendpage_locked,
2584 					      sendpage_unlocked, sk,
2585 					      skb_frag_page(frag),
2586 					      skb_frag_off(frag) + offset,
2587 					      slen, MSG_DONTWAIT);
2588 			if (ret <= 0)
2589 				goto error;
2590 
2591 			len -= ret;
2592 			offset += ret;
2593 			slen -= ret;
2594 		}
2595 
2596 		offset = 0;
2597 	}
2598 
2599 	if (len) {
2600 		/* Process any frag lists */
2601 
2602 		if (skb == head) {
2603 			if (skb_has_frag_list(skb)) {
2604 				skb = skb_shinfo(skb)->frag_list;
2605 				goto do_frag_list;
2606 			}
2607 		} else if (skb->next) {
2608 			skb = skb->next;
2609 			goto do_frag_list;
2610 		}
2611 	}
2612 
2613 out:
2614 	return orig_len - len;
2615 
2616 error:
2617 	return orig_len == len ? ret : orig_len - len;
2618 }
2619 
2620 /* Send skb data on a socket. Socket must be locked. */
2621 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
2622 			 int len)
2623 {
2624 	return __skb_send_sock(sk, skb, offset, len, kernel_sendmsg_locked,
2625 			       kernel_sendpage_locked);
2626 }
2627 EXPORT_SYMBOL_GPL(skb_send_sock_locked);
2628 
2629 /* Send skb data on a socket. Socket must be unlocked. */
2630 int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len)
2631 {
2632 	return __skb_send_sock(sk, skb, offset, len, sendmsg_unlocked,
2633 			       sendpage_unlocked);
2634 }
2635 
2636 /**
2637  *	skb_store_bits - store bits from kernel buffer to skb
2638  *	@skb: destination buffer
2639  *	@offset: offset in destination
2640  *	@from: source buffer
2641  *	@len: number of bytes to copy
2642  *
2643  *	Copy the specified number of bytes from the source buffer to the
2644  *	destination skb.  This function handles all the messy bits of
2645  *	traversing fragment lists and such.
2646  */
2647 
2648 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
2649 {
2650 	int start = skb_headlen(skb);
2651 	struct sk_buff *frag_iter;
2652 	int i, copy;
2653 
2654 	if (offset > (int)skb->len - len)
2655 		goto fault;
2656 
2657 	if ((copy = start - offset) > 0) {
2658 		if (copy > len)
2659 			copy = len;
2660 		skb_copy_to_linear_data_offset(skb, offset, from, copy);
2661 		if ((len -= copy) == 0)
2662 			return 0;
2663 		offset += copy;
2664 		from += copy;
2665 	}
2666 
2667 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2668 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2669 		int end;
2670 
2671 		WARN_ON(start > offset + len);
2672 
2673 		end = start + skb_frag_size(frag);
2674 		if ((copy = end - offset) > 0) {
2675 			u32 p_off, p_len, copied;
2676 			struct page *p;
2677 			u8 *vaddr;
2678 
2679 			if (copy > len)
2680 				copy = len;
2681 
2682 			skb_frag_foreach_page(frag,
2683 					      skb_frag_off(frag) + offset - start,
2684 					      copy, p, p_off, p_len, copied) {
2685 				vaddr = kmap_atomic(p);
2686 				memcpy(vaddr + p_off, from + copied, p_len);
2687 				kunmap_atomic(vaddr);
2688 			}
2689 
2690 			if ((len -= copy) == 0)
2691 				return 0;
2692 			offset += copy;
2693 			from += copy;
2694 		}
2695 		start = end;
2696 	}
2697 
2698 	skb_walk_frags(skb, frag_iter) {
2699 		int end;
2700 
2701 		WARN_ON(start > offset + len);
2702 
2703 		end = start + frag_iter->len;
2704 		if ((copy = end - offset) > 0) {
2705 			if (copy > len)
2706 				copy = len;
2707 			if (skb_store_bits(frag_iter, offset - start,
2708 					   from, copy))
2709 				goto fault;
2710 			if ((len -= copy) == 0)
2711 				return 0;
2712 			offset += copy;
2713 			from += copy;
2714 		}
2715 		start = end;
2716 	}
2717 	if (!len)
2718 		return 0;
2719 
2720 fault:
2721 	return -EFAULT;
2722 }
2723 EXPORT_SYMBOL(skb_store_bits);
2724 
2725 /* Checksum skb data. */
2726 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
2727 		      __wsum csum, const struct skb_checksum_ops *ops)
2728 {
2729 	int start = skb_headlen(skb);
2730 	int i, copy = start - offset;
2731 	struct sk_buff *frag_iter;
2732 	int pos = 0;
2733 
2734 	/* Checksum header. */
2735 	if (copy > 0) {
2736 		if (copy > len)
2737 			copy = len;
2738 		csum = INDIRECT_CALL_1(ops->update, csum_partial_ext,
2739 				       skb->data + offset, copy, csum);
2740 		if ((len -= copy) == 0)
2741 			return csum;
2742 		offset += copy;
2743 		pos	= copy;
2744 	}
2745 
2746 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2747 		int end;
2748 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2749 
2750 		WARN_ON(start > offset + len);
2751 
2752 		end = start + skb_frag_size(frag);
2753 		if ((copy = end - offset) > 0) {
2754 			u32 p_off, p_len, copied;
2755 			struct page *p;
2756 			__wsum csum2;
2757 			u8 *vaddr;
2758 
2759 			if (copy > len)
2760 				copy = len;
2761 
2762 			skb_frag_foreach_page(frag,
2763 					      skb_frag_off(frag) + offset - start,
2764 					      copy, p, p_off, p_len, copied) {
2765 				vaddr = kmap_atomic(p);
2766 				csum2 = INDIRECT_CALL_1(ops->update,
2767 							csum_partial_ext,
2768 							vaddr + p_off, p_len, 0);
2769 				kunmap_atomic(vaddr);
2770 				csum = INDIRECT_CALL_1(ops->combine,
2771 						       csum_block_add_ext, csum,
2772 						       csum2, pos, p_len);
2773 				pos += p_len;
2774 			}
2775 
2776 			if (!(len -= copy))
2777 				return csum;
2778 			offset += copy;
2779 		}
2780 		start = end;
2781 	}
2782 
2783 	skb_walk_frags(skb, frag_iter) {
2784 		int end;
2785 
2786 		WARN_ON(start > offset + len);
2787 
2788 		end = start + frag_iter->len;
2789 		if ((copy = end - offset) > 0) {
2790 			__wsum csum2;
2791 			if (copy > len)
2792 				copy = len;
2793 			csum2 = __skb_checksum(frag_iter, offset - start,
2794 					       copy, 0, ops);
2795 			csum = INDIRECT_CALL_1(ops->combine, csum_block_add_ext,
2796 					       csum, csum2, pos, copy);
2797 			if ((len -= copy) == 0)
2798 				return csum;
2799 			offset += copy;
2800 			pos    += copy;
2801 		}
2802 		start = end;
2803 	}
2804 	BUG_ON(len);
2805 
2806 	return csum;
2807 }
2808 EXPORT_SYMBOL(__skb_checksum);
2809 
2810 __wsum skb_checksum(const struct sk_buff *skb, int offset,
2811 		    int len, __wsum csum)
2812 {
2813 	const struct skb_checksum_ops ops = {
2814 		.update  = csum_partial_ext,
2815 		.combine = csum_block_add_ext,
2816 	};
2817 
2818 	return __skb_checksum(skb, offset, len, csum, &ops);
2819 }
2820 EXPORT_SYMBOL(skb_checksum);
2821 
2822 /* Both of above in one bottle. */
2823 
2824 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
2825 				    u8 *to, int len)
2826 {
2827 	int start = skb_headlen(skb);
2828 	int i, copy = start - offset;
2829 	struct sk_buff *frag_iter;
2830 	int pos = 0;
2831 	__wsum csum = 0;
2832 
2833 	/* Copy header. */
2834 	if (copy > 0) {
2835 		if (copy > len)
2836 			copy = len;
2837 		csum = csum_partial_copy_nocheck(skb->data + offset, to,
2838 						 copy);
2839 		if ((len -= copy) == 0)
2840 			return csum;
2841 		offset += copy;
2842 		to     += copy;
2843 		pos	= copy;
2844 	}
2845 
2846 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2847 		int end;
2848 
2849 		WARN_ON(start > offset + len);
2850 
2851 		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
2852 		if ((copy = end - offset) > 0) {
2853 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2854 			u32 p_off, p_len, copied;
2855 			struct page *p;
2856 			__wsum csum2;
2857 			u8 *vaddr;
2858 
2859 			if (copy > len)
2860 				copy = len;
2861 
2862 			skb_frag_foreach_page(frag,
2863 					      skb_frag_off(frag) + offset - start,
2864 					      copy, p, p_off, p_len, copied) {
2865 				vaddr = kmap_atomic(p);
2866 				csum2 = csum_partial_copy_nocheck(vaddr + p_off,
2867 								  to + copied,
2868 								  p_len);
2869 				kunmap_atomic(vaddr);
2870 				csum = csum_block_add(csum, csum2, pos);
2871 				pos += p_len;
2872 			}
2873 
2874 			if (!(len -= copy))
2875 				return csum;
2876 			offset += copy;
2877 			to     += copy;
2878 		}
2879 		start = end;
2880 	}
2881 
2882 	skb_walk_frags(skb, frag_iter) {
2883 		__wsum csum2;
2884 		int end;
2885 
2886 		WARN_ON(start > offset + len);
2887 
2888 		end = start + frag_iter->len;
2889 		if ((copy = end - offset) > 0) {
2890 			if (copy > len)
2891 				copy = len;
2892 			csum2 = skb_copy_and_csum_bits(frag_iter,
2893 						       offset - start,
2894 						       to, copy);
2895 			csum = csum_block_add(csum, csum2, pos);
2896 			if ((len -= copy) == 0)
2897 				return csum;
2898 			offset += copy;
2899 			to     += copy;
2900 			pos    += copy;
2901 		}
2902 		start = end;
2903 	}
2904 	BUG_ON(len);
2905 	return csum;
2906 }
2907 EXPORT_SYMBOL(skb_copy_and_csum_bits);
2908 
2909 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len)
2910 {
2911 	__sum16 sum;
2912 
2913 	sum = csum_fold(skb_checksum(skb, 0, len, skb->csum));
2914 	/* See comments in __skb_checksum_complete(). */
2915 	if (likely(!sum)) {
2916 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
2917 		    !skb->csum_complete_sw)
2918 			netdev_rx_csum_fault(skb->dev, skb);
2919 	}
2920 	if (!skb_shared(skb))
2921 		skb->csum_valid = !sum;
2922 	return sum;
2923 }
2924 EXPORT_SYMBOL(__skb_checksum_complete_head);
2925 
2926 /* This function assumes skb->csum already holds pseudo header's checksum,
2927  * which has been changed from the hardware checksum, for example, by
2928  * __skb_checksum_validate_complete(). And, the original skb->csum must
2929  * have been validated unsuccessfully for CHECKSUM_COMPLETE case.
2930  *
2931  * It returns non-zero if the recomputed checksum is still invalid, otherwise
2932  * zero. The new checksum is stored back into skb->csum unless the skb is
2933  * shared.
2934  */
2935 __sum16 __skb_checksum_complete(struct sk_buff *skb)
2936 {
2937 	__wsum csum;
2938 	__sum16 sum;
2939 
2940 	csum = skb_checksum(skb, 0, skb->len, 0);
2941 
2942 	sum = csum_fold(csum_add(skb->csum, csum));
2943 	/* This check is inverted, because we already knew the hardware
2944 	 * checksum is invalid before calling this function. So, if the
2945 	 * re-computed checksum is valid instead, then we have a mismatch
2946 	 * between the original skb->csum and skb_checksum(). This means either
2947 	 * the original hardware checksum is incorrect or we screw up skb->csum
2948 	 * when moving skb->data around.
2949 	 */
2950 	if (likely(!sum)) {
2951 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
2952 		    !skb->csum_complete_sw)
2953 			netdev_rx_csum_fault(skb->dev, skb);
2954 	}
2955 
2956 	if (!skb_shared(skb)) {
2957 		/* Save full packet checksum */
2958 		skb->csum = csum;
2959 		skb->ip_summed = CHECKSUM_COMPLETE;
2960 		skb->csum_complete_sw = 1;
2961 		skb->csum_valid = !sum;
2962 	}
2963 
2964 	return sum;
2965 }
2966 EXPORT_SYMBOL(__skb_checksum_complete);
2967 
2968 static __wsum warn_crc32c_csum_update(const void *buff, int len, __wsum sum)
2969 {
2970 	net_warn_ratelimited(
2971 		"%s: attempt to compute crc32c without libcrc32c.ko\n",
2972 		__func__);
2973 	return 0;
2974 }
2975 
2976 static __wsum warn_crc32c_csum_combine(__wsum csum, __wsum csum2,
2977 				       int offset, int len)
2978 {
2979 	net_warn_ratelimited(
2980 		"%s: attempt to compute crc32c without libcrc32c.ko\n",
2981 		__func__);
2982 	return 0;
2983 }
2984 
2985 static const struct skb_checksum_ops default_crc32c_ops = {
2986 	.update  = warn_crc32c_csum_update,
2987 	.combine = warn_crc32c_csum_combine,
2988 };
2989 
2990 const struct skb_checksum_ops *crc32c_csum_stub __read_mostly =
2991 	&default_crc32c_ops;
2992 EXPORT_SYMBOL(crc32c_csum_stub);
2993 
2994  /**
2995  *	skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy()
2996  *	@from: source buffer
2997  *
2998  *	Calculates the amount of linear headroom needed in the 'to' skb passed
2999  *	into skb_zerocopy().
3000  */
3001 unsigned int
3002 skb_zerocopy_headlen(const struct sk_buff *from)
3003 {
3004 	unsigned int hlen = 0;
3005 
3006 	if (!from->head_frag ||
3007 	    skb_headlen(from) < L1_CACHE_BYTES ||
3008 	    skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS)
3009 		hlen = skb_headlen(from);
3010 
3011 	if (skb_has_frag_list(from))
3012 		hlen = from->len;
3013 
3014 	return hlen;
3015 }
3016 EXPORT_SYMBOL_GPL(skb_zerocopy_headlen);
3017 
3018 /**
3019  *	skb_zerocopy - Zero copy skb to skb
3020  *	@to: destination buffer
3021  *	@from: source buffer
3022  *	@len: number of bytes to copy from source buffer
3023  *	@hlen: size of linear headroom in destination buffer
3024  *
3025  *	Copies up to `len` bytes from `from` to `to` by creating references
3026  *	to the frags in the source buffer.
3027  *
3028  *	The `hlen` as calculated by skb_zerocopy_headlen() specifies the
3029  *	headroom in the `to` buffer.
3030  *
3031  *	Return value:
3032  *	0: everything is OK
3033  *	-ENOMEM: couldn't orphan frags of @from due to lack of memory
3034  *	-EFAULT: skb_copy_bits() found some problem with skb geometry
3035  */
3036 int
3037 skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen)
3038 {
3039 	int i, j = 0;
3040 	int plen = 0; /* length of skb->head fragment */
3041 	int ret;
3042 	struct page *page;
3043 	unsigned int offset;
3044 
3045 	BUG_ON(!from->head_frag && !hlen);
3046 
3047 	/* dont bother with small payloads */
3048 	if (len <= skb_tailroom(to))
3049 		return skb_copy_bits(from, 0, skb_put(to, len), len);
3050 
3051 	if (hlen) {
3052 		ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen);
3053 		if (unlikely(ret))
3054 			return ret;
3055 		len -= hlen;
3056 	} else {
3057 		plen = min_t(int, skb_headlen(from), len);
3058 		if (plen) {
3059 			page = virt_to_head_page(from->head);
3060 			offset = from->data - (unsigned char *)page_address(page);
3061 			__skb_fill_page_desc(to, 0, page, offset, plen);
3062 			get_page(page);
3063 			j = 1;
3064 			len -= plen;
3065 		}
3066 	}
3067 
3068 	to->truesize += len + plen;
3069 	to->len += len + plen;
3070 	to->data_len += len + plen;
3071 
3072 	if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) {
3073 		skb_tx_error(from);
3074 		return -ENOMEM;
3075 	}
3076 	skb_zerocopy_clone(to, from, GFP_ATOMIC);
3077 
3078 	for (i = 0; i < skb_shinfo(from)->nr_frags; i++) {
3079 		int size;
3080 
3081 		if (!len)
3082 			break;
3083 		skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i];
3084 		size = min_t(int, skb_frag_size(&skb_shinfo(to)->frags[j]),
3085 					len);
3086 		skb_frag_size_set(&skb_shinfo(to)->frags[j], size);
3087 		len -= size;
3088 		skb_frag_ref(to, j);
3089 		j++;
3090 	}
3091 	skb_shinfo(to)->nr_frags = j;
3092 
3093 	return 0;
3094 }
3095 EXPORT_SYMBOL_GPL(skb_zerocopy);
3096 
3097 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
3098 {
3099 	__wsum csum;
3100 	long csstart;
3101 
3102 	if (skb->ip_summed == CHECKSUM_PARTIAL)
3103 		csstart = skb_checksum_start_offset(skb);
3104 	else
3105 		csstart = skb_headlen(skb);
3106 
3107 	BUG_ON(csstart > skb_headlen(skb));
3108 
3109 	skb_copy_from_linear_data(skb, to, csstart);
3110 
3111 	csum = 0;
3112 	if (csstart != skb->len)
3113 		csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
3114 					      skb->len - csstart);
3115 
3116 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
3117 		long csstuff = csstart + skb->csum_offset;
3118 
3119 		*((__sum16 *)(to + csstuff)) = csum_fold(csum);
3120 	}
3121 }
3122 EXPORT_SYMBOL(skb_copy_and_csum_dev);
3123 
3124 /**
3125  *	skb_dequeue - remove from the head of the queue
3126  *	@list: list to dequeue from
3127  *
3128  *	Remove the head of the list. The list lock is taken so the function
3129  *	may be used safely with other locking list functions. The head item is
3130  *	returned or %NULL if the list is empty.
3131  */
3132 
3133 struct sk_buff *skb_dequeue(struct sk_buff_head *list)
3134 {
3135 	unsigned long flags;
3136 	struct sk_buff *result;
3137 
3138 	spin_lock_irqsave(&list->lock, flags);
3139 	result = __skb_dequeue(list);
3140 	spin_unlock_irqrestore(&list->lock, flags);
3141 	return result;
3142 }
3143 EXPORT_SYMBOL(skb_dequeue);
3144 
3145 /**
3146  *	skb_dequeue_tail - remove from the tail of the queue
3147  *	@list: list to dequeue from
3148  *
3149  *	Remove the tail of the list. The list lock is taken so the function
3150  *	may be used safely with other locking list functions. The tail item is
3151  *	returned or %NULL if the list is empty.
3152  */
3153 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
3154 {
3155 	unsigned long flags;
3156 	struct sk_buff *result;
3157 
3158 	spin_lock_irqsave(&list->lock, flags);
3159 	result = __skb_dequeue_tail(list);
3160 	spin_unlock_irqrestore(&list->lock, flags);
3161 	return result;
3162 }
3163 EXPORT_SYMBOL(skb_dequeue_tail);
3164 
3165 /**
3166  *	skb_queue_purge - empty a list
3167  *	@list: list to empty
3168  *
3169  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
3170  *	the list and one reference dropped. This function takes the list
3171  *	lock and is atomic with respect to other list locking functions.
3172  */
3173 void skb_queue_purge(struct sk_buff_head *list)
3174 {
3175 	struct sk_buff *skb;
3176 	while ((skb = skb_dequeue(list)) != NULL)
3177 		kfree_skb(skb);
3178 }
3179 EXPORT_SYMBOL(skb_queue_purge);
3180 
3181 /**
3182  *	skb_rbtree_purge - empty a skb rbtree
3183  *	@root: root of the rbtree to empty
3184  *	Return value: the sum of truesizes of all purged skbs.
3185  *
3186  *	Delete all buffers on an &sk_buff rbtree. Each buffer is removed from
3187  *	the list and one reference dropped. This function does not take
3188  *	any lock. Synchronization should be handled by the caller (e.g., TCP
3189  *	out-of-order queue is protected by the socket lock).
3190  */
3191 unsigned int skb_rbtree_purge(struct rb_root *root)
3192 {
3193 	struct rb_node *p = rb_first(root);
3194 	unsigned int sum = 0;
3195 
3196 	while (p) {
3197 		struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode);
3198 
3199 		p = rb_next(p);
3200 		rb_erase(&skb->rbnode, root);
3201 		sum += skb->truesize;
3202 		kfree_skb(skb);
3203 	}
3204 	return sum;
3205 }
3206 
3207 /**
3208  *	skb_queue_head - queue a buffer at the list head
3209  *	@list: list to use
3210  *	@newsk: buffer to queue
3211  *
3212  *	Queue a buffer at the start of the list. This function takes the
3213  *	list lock and can be used safely with other locking &sk_buff functions
3214  *	safely.
3215  *
3216  *	A buffer cannot be placed on two lists at the same time.
3217  */
3218 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
3219 {
3220 	unsigned long flags;
3221 
3222 	spin_lock_irqsave(&list->lock, flags);
3223 	__skb_queue_head(list, newsk);
3224 	spin_unlock_irqrestore(&list->lock, flags);
3225 }
3226 EXPORT_SYMBOL(skb_queue_head);
3227 
3228 /**
3229  *	skb_queue_tail - queue a buffer at the list tail
3230  *	@list: list to use
3231  *	@newsk: buffer to queue
3232  *
3233  *	Queue a buffer at the tail of the list. This function takes the
3234  *	list lock and can be used safely with other locking &sk_buff functions
3235  *	safely.
3236  *
3237  *	A buffer cannot be placed on two lists at the same time.
3238  */
3239 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
3240 {
3241 	unsigned long flags;
3242 
3243 	spin_lock_irqsave(&list->lock, flags);
3244 	__skb_queue_tail(list, newsk);
3245 	spin_unlock_irqrestore(&list->lock, flags);
3246 }
3247 EXPORT_SYMBOL(skb_queue_tail);
3248 
3249 /**
3250  *	skb_unlink	-	remove a buffer from a list
3251  *	@skb: buffer to remove
3252  *	@list: list to use
3253  *
3254  *	Remove a packet from a list. The list locks are taken and this
3255  *	function is atomic with respect to other list locked calls
3256  *
3257  *	You must know what list the SKB is on.
3258  */
3259 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
3260 {
3261 	unsigned long flags;
3262 
3263 	spin_lock_irqsave(&list->lock, flags);
3264 	__skb_unlink(skb, list);
3265 	spin_unlock_irqrestore(&list->lock, flags);
3266 }
3267 EXPORT_SYMBOL(skb_unlink);
3268 
3269 /**
3270  *	skb_append	-	append a buffer
3271  *	@old: buffer to insert after
3272  *	@newsk: buffer to insert
3273  *	@list: list to use
3274  *
3275  *	Place a packet after a given packet in a list. The list locks are taken
3276  *	and this function is atomic with respect to other list locked calls.
3277  *	A buffer cannot be placed on two lists at the same time.
3278  */
3279 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
3280 {
3281 	unsigned long flags;
3282 
3283 	spin_lock_irqsave(&list->lock, flags);
3284 	__skb_queue_after(list, old, newsk);
3285 	spin_unlock_irqrestore(&list->lock, flags);
3286 }
3287 EXPORT_SYMBOL(skb_append);
3288 
3289 static inline void skb_split_inside_header(struct sk_buff *skb,
3290 					   struct sk_buff* skb1,
3291 					   const u32 len, const int pos)
3292 {
3293 	int i;
3294 
3295 	skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
3296 					 pos - len);
3297 	/* And move data appendix as is. */
3298 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
3299 		skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
3300 
3301 	skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
3302 	skb_shinfo(skb)->nr_frags  = 0;
3303 	skb1->data_len		   = skb->data_len;
3304 	skb1->len		   += skb1->data_len;
3305 	skb->data_len		   = 0;
3306 	skb->len		   = len;
3307 	skb_set_tail_pointer(skb, len);
3308 }
3309 
3310 static inline void skb_split_no_header(struct sk_buff *skb,
3311 				       struct sk_buff* skb1,
3312 				       const u32 len, int pos)
3313 {
3314 	int i, k = 0;
3315 	const int nfrags = skb_shinfo(skb)->nr_frags;
3316 
3317 	skb_shinfo(skb)->nr_frags = 0;
3318 	skb1->len		  = skb1->data_len = skb->len - len;
3319 	skb->len		  = len;
3320 	skb->data_len		  = len - pos;
3321 
3322 	for (i = 0; i < nfrags; i++) {
3323 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
3324 
3325 		if (pos + size > len) {
3326 			skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
3327 
3328 			if (pos < len) {
3329 				/* Split frag.
3330 				 * We have two variants in this case:
3331 				 * 1. Move all the frag to the second
3332 				 *    part, if it is possible. F.e.
3333 				 *    this approach is mandatory for TUX,
3334 				 *    where splitting is expensive.
3335 				 * 2. Split is accurately. We make this.
3336 				 */
3337 				skb_frag_ref(skb, i);
3338 				skb_frag_off_add(&skb_shinfo(skb1)->frags[0], len - pos);
3339 				skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos);
3340 				skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos);
3341 				skb_shinfo(skb)->nr_frags++;
3342 			}
3343 			k++;
3344 		} else
3345 			skb_shinfo(skb)->nr_frags++;
3346 		pos += size;
3347 	}
3348 	skb_shinfo(skb1)->nr_frags = k;
3349 }
3350 
3351 /**
3352  * skb_split - Split fragmented skb to two parts at length len.
3353  * @skb: the buffer to split
3354  * @skb1: the buffer to receive the second part
3355  * @len: new length for skb
3356  */
3357 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
3358 {
3359 	int pos = skb_headlen(skb);
3360 
3361 	skb_shinfo(skb1)->flags |= skb_shinfo(skb)->flags & SKBFL_SHARED_FRAG;
3362 	skb_zerocopy_clone(skb1, skb, 0);
3363 	if (len < pos)	/* Split line is inside header. */
3364 		skb_split_inside_header(skb, skb1, len, pos);
3365 	else		/* Second chunk has no header, nothing to copy. */
3366 		skb_split_no_header(skb, skb1, len, pos);
3367 }
3368 EXPORT_SYMBOL(skb_split);
3369 
3370 /* Shifting from/to a cloned skb is a no-go.
3371  *
3372  * Caller cannot keep skb_shinfo related pointers past calling here!
3373  */
3374 static int skb_prepare_for_shift(struct sk_buff *skb)
3375 {
3376 	int ret = 0;
3377 
3378 	if (skb_cloned(skb)) {
3379 		/* Save and restore truesize: pskb_expand_head() may reallocate
3380 		 * memory where ksize(kmalloc(S)) != ksize(kmalloc(S)), but we
3381 		 * cannot change truesize at this point.
3382 		 */
3383 		unsigned int save_truesize = skb->truesize;
3384 
3385 		ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3386 		skb->truesize = save_truesize;
3387 	}
3388 	return ret;
3389 }
3390 
3391 /**
3392  * skb_shift - Shifts paged data partially from skb to another
3393  * @tgt: buffer into which tail data gets added
3394  * @skb: buffer from which the paged data comes from
3395  * @shiftlen: shift up to this many bytes
3396  *
3397  * Attempts to shift up to shiftlen worth of bytes, which may be less than
3398  * the length of the skb, from skb to tgt. Returns number bytes shifted.
3399  * It's up to caller to free skb if everything was shifted.
3400  *
3401  * If @tgt runs out of frags, the whole operation is aborted.
3402  *
3403  * Skb cannot include anything else but paged data while tgt is allowed
3404  * to have non-paged data as well.
3405  *
3406  * TODO: full sized shift could be optimized but that would need
3407  * specialized skb free'er to handle frags without up-to-date nr_frags.
3408  */
3409 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
3410 {
3411 	int from, to, merge, todo;
3412 	skb_frag_t *fragfrom, *fragto;
3413 
3414 	BUG_ON(shiftlen > skb->len);
3415 
3416 	if (skb_headlen(skb))
3417 		return 0;
3418 	if (skb_zcopy(tgt) || skb_zcopy(skb))
3419 		return 0;
3420 
3421 	todo = shiftlen;
3422 	from = 0;
3423 	to = skb_shinfo(tgt)->nr_frags;
3424 	fragfrom = &skb_shinfo(skb)->frags[from];
3425 
3426 	/* Actual merge is delayed until the point when we know we can
3427 	 * commit all, so that we don't have to undo partial changes
3428 	 */
3429 	if (!to ||
3430 	    !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom),
3431 			      skb_frag_off(fragfrom))) {
3432 		merge = -1;
3433 	} else {
3434 		merge = to - 1;
3435 
3436 		todo -= skb_frag_size(fragfrom);
3437 		if (todo < 0) {
3438 			if (skb_prepare_for_shift(skb) ||
3439 			    skb_prepare_for_shift(tgt))
3440 				return 0;
3441 
3442 			/* All previous frag pointers might be stale! */
3443 			fragfrom = &skb_shinfo(skb)->frags[from];
3444 			fragto = &skb_shinfo(tgt)->frags[merge];
3445 
3446 			skb_frag_size_add(fragto, shiftlen);
3447 			skb_frag_size_sub(fragfrom, shiftlen);
3448 			skb_frag_off_add(fragfrom, shiftlen);
3449 
3450 			goto onlymerged;
3451 		}
3452 
3453 		from++;
3454 	}
3455 
3456 	/* Skip full, not-fitting skb to avoid expensive operations */
3457 	if ((shiftlen == skb->len) &&
3458 	    (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
3459 		return 0;
3460 
3461 	if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
3462 		return 0;
3463 
3464 	while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
3465 		if (to == MAX_SKB_FRAGS)
3466 			return 0;
3467 
3468 		fragfrom = &skb_shinfo(skb)->frags[from];
3469 		fragto = &skb_shinfo(tgt)->frags[to];
3470 
3471 		if (todo >= skb_frag_size(fragfrom)) {
3472 			*fragto = *fragfrom;
3473 			todo -= skb_frag_size(fragfrom);
3474 			from++;
3475 			to++;
3476 
3477 		} else {
3478 			__skb_frag_ref(fragfrom);
3479 			skb_frag_page_copy(fragto, fragfrom);
3480 			skb_frag_off_copy(fragto, fragfrom);
3481 			skb_frag_size_set(fragto, todo);
3482 
3483 			skb_frag_off_add(fragfrom, todo);
3484 			skb_frag_size_sub(fragfrom, todo);
3485 			todo = 0;
3486 
3487 			to++;
3488 			break;
3489 		}
3490 	}
3491 
3492 	/* Ready to "commit" this state change to tgt */
3493 	skb_shinfo(tgt)->nr_frags = to;
3494 
3495 	if (merge >= 0) {
3496 		fragfrom = &skb_shinfo(skb)->frags[0];
3497 		fragto = &skb_shinfo(tgt)->frags[merge];
3498 
3499 		skb_frag_size_add(fragto, skb_frag_size(fragfrom));
3500 		__skb_frag_unref(fragfrom);
3501 	}
3502 
3503 	/* Reposition in the original skb */
3504 	to = 0;
3505 	while (from < skb_shinfo(skb)->nr_frags)
3506 		skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
3507 	skb_shinfo(skb)->nr_frags = to;
3508 
3509 	BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
3510 
3511 onlymerged:
3512 	/* Most likely the tgt won't ever need its checksum anymore, skb on
3513 	 * the other hand might need it if it needs to be resent
3514 	 */
3515 	tgt->ip_summed = CHECKSUM_PARTIAL;
3516 	skb->ip_summed = CHECKSUM_PARTIAL;
3517 
3518 	/* Yak, is it really working this way? Some helper please? */
3519 	skb->len -= shiftlen;
3520 	skb->data_len -= shiftlen;
3521 	skb->truesize -= shiftlen;
3522 	tgt->len += shiftlen;
3523 	tgt->data_len += shiftlen;
3524 	tgt->truesize += shiftlen;
3525 
3526 	return shiftlen;
3527 }
3528 
3529 /**
3530  * skb_prepare_seq_read - Prepare a sequential read of skb data
3531  * @skb: the buffer to read
3532  * @from: lower offset of data to be read
3533  * @to: upper offset of data to be read
3534  * @st: state variable
3535  *
3536  * Initializes the specified state variable. Must be called before
3537  * invoking skb_seq_read() for the first time.
3538  */
3539 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
3540 			  unsigned int to, struct skb_seq_state *st)
3541 {
3542 	st->lower_offset = from;
3543 	st->upper_offset = to;
3544 	st->root_skb = st->cur_skb = skb;
3545 	st->frag_idx = st->stepped_offset = 0;
3546 	st->frag_data = NULL;
3547 	st->frag_off = 0;
3548 }
3549 EXPORT_SYMBOL(skb_prepare_seq_read);
3550 
3551 /**
3552  * skb_seq_read - Sequentially read skb data
3553  * @consumed: number of bytes consumed by the caller so far
3554  * @data: destination pointer for data to be returned
3555  * @st: state variable
3556  *
3557  * Reads a block of skb data at @consumed relative to the
3558  * lower offset specified to skb_prepare_seq_read(). Assigns
3559  * the head of the data block to @data and returns the length
3560  * of the block or 0 if the end of the skb data or the upper
3561  * offset has been reached.
3562  *
3563  * The caller is not required to consume all of the data
3564  * returned, i.e. @consumed is typically set to the number
3565  * of bytes already consumed and the next call to
3566  * skb_seq_read() will return the remaining part of the block.
3567  *
3568  * Note 1: The size of each block of data returned can be arbitrary,
3569  *       this limitation is the cost for zerocopy sequential
3570  *       reads of potentially non linear data.
3571  *
3572  * Note 2: Fragment lists within fragments are not implemented
3573  *       at the moment, state->root_skb could be replaced with
3574  *       a stack for this purpose.
3575  */
3576 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
3577 			  struct skb_seq_state *st)
3578 {
3579 	unsigned int block_limit, abs_offset = consumed + st->lower_offset;
3580 	skb_frag_t *frag;
3581 
3582 	if (unlikely(abs_offset >= st->upper_offset)) {
3583 		if (st->frag_data) {
3584 			kunmap_atomic(st->frag_data);
3585 			st->frag_data = NULL;
3586 		}
3587 		return 0;
3588 	}
3589 
3590 next_skb:
3591 	block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
3592 
3593 	if (abs_offset < block_limit && !st->frag_data) {
3594 		*data = st->cur_skb->data + (abs_offset - st->stepped_offset);
3595 		return block_limit - abs_offset;
3596 	}
3597 
3598 	if (st->frag_idx == 0 && !st->frag_data)
3599 		st->stepped_offset += skb_headlen(st->cur_skb);
3600 
3601 	while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
3602 		unsigned int pg_idx, pg_off, pg_sz;
3603 
3604 		frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
3605 
3606 		pg_idx = 0;
3607 		pg_off = skb_frag_off(frag);
3608 		pg_sz = skb_frag_size(frag);
3609 
3610 		if (skb_frag_must_loop(skb_frag_page(frag))) {
3611 			pg_idx = (pg_off + st->frag_off) >> PAGE_SHIFT;
3612 			pg_off = offset_in_page(pg_off + st->frag_off);
3613 			pg_sz = min_t(unsigned int, pg_sz - st->frag_off,
3614 						    PAGE_SIZE - pg_off);
3615 		}
3616 
3617 		block_limit = pg_sz + st->stepped_offset;
3618 		if (abs_offset < block_limit) {
3619 			if (!st->frag_data)
3620 				st->frag_data = kmap_atomic(skb_frag_page(frag) + pg_idx);
3621 
3622 			*data = (u8 *)st->frag_data + pg_off +
3623 				(abs_offset - st->stepped_offset);
3624 
3625 			return block_limit - abs_offset;
3626 		}
3627 
3628 		if (st->frag_data) {
3629 			kunmap_atomic(st->frag_data);
3630 			st->frag_data = NULL;
3631 		}
3632 
3633 		st->stepped_offset += pg_sz;
3634 		st->frag_off += pg_sz;
3635 		if (st->frag_off == skb_frag_size(frag)) {
3636 			st->frag_off = 0;
3637 			st->frag_idx++;
3638 		}
3639 	}
3640 
3641 	if (st->frag_data) {
3642 		kunmap_atomic(st->frag_data);
3643 		st->frag_data = NULL;
3644 	}
3645 
3646 	if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) {
3647 		st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
3648 		st->frag_idx = 0;
3649 		goto next_skb;
3650 	} else if (st->cur_skb->next) {
3651 		st->cur_skb = st->cur_skb->next;
3652 		st->frag_idx = 0;
3653 		goto next_skb;
3654 	}
3655 
3656 	return 0;
3657 }
3658 EXPORT_SYMBOL(skb_seq_read);
3659 
3660 /**
3661  * skb_abort_seq_read - Abort a sequential read of skb data
3662  * @st: state variable
3663  *
3664  * Must be called if skb_seq_read() was not called until it
3665  * returned 0.
3666  */
3667 void skb_abort_seq_read(struct skb_seq_state *st)
3668 {
3669 	if (st->frag_data)
3670 		kunmap_atomic(st->frag_data);
3671 }
3672 EXPORT_SYMBOL(skb_abort_seq_read);
3673 
3674 #define TS_SKB_CB(state)	((struct skb_seq_state *) &((state)->cb))
3675 
3676 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
3677 					  struct ts_config *conf,
3678 					  struct ts_state *state)
3679 {
3680 	return skb_seq_read(offset, text, TS_SKB_CB(state));
3681 }
3682 
3683 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
3684 {
3685 	skb_abort_seq_read(TS_SKB_CB(state));
3686 }
3687 
3688 /**
3689  * skb_find_text - Find a text pattern in skb data
3690  * @skb: the buffer to look in
3691  * @from: search offset
3692  * @to: search limit
3693  * @config: textsearch configuration
3694  *
3695  * Finds a pattern in the skb data according to the specified
3696  * textsearch configuration. Use textsearch_next() to retrieve
3697  * subsequent occurrences of the pattern. Returns the offset
3698  * to the first occurrence or UINT_MAX if no match was found.
3699  */
3700 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
3701 			   unsigned int to, struct ts_config *config)
3702 {
3703 	struct ts_state state;
3704 	unsigned int ret;
3705 
3706 	BUILD_BUG_ON(sizeof(struct skb_seq_state) > sizeof(state.cb));
3707 
3708 	config->get_next_block = skb_ts_get_next_block;
3709 	config->finish = skb_ts_finish;
3710 
3711 	skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state));
3712 
3713 	ret = textsearch_find(config, &state);
3714 	return (ret <= to - from ? ret : UINT_MAX);
3715 }
3716 EXPORT_SYMBOL(skb_find_text);
3717 
3718 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
3719 			 int offset, size_t size)
3720 {
3721 	int i = skb_shinfo(skb)->nr_frags;
3722 
3723 	if (skb_can_coalesce(skb, i, page, offset)) {
3724 		skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size);
3725 	} else if (i < MAX_SKB_FRAGS) {
3726 		get_page(page);
3727 		skb_fill_page_desc(skb, i, page, offset, size);
3728 	} else {
3729 		return -EMSGSIZE;
3730 	}
3731 
3732 	return 0;
3733 }
3734 EXPORT_SYMBOL_GPL(skb_append_pagefrags);
3735 
3736 /**
3737  *	skb_pull_rcsum - pull skb and update receive checksum
3738  *	@skb: buffer to update
3739  *	@len: length of data pulled
3740  *
3741  *	This function performs an skb_pull on the packet and updates
3742  *	the CHECKSUM_COMPLETE checksum.  It should be used on
3743  *	receive path processing instead of skb_pull unless you know
3744  *	that the checksum difference is zero (e.g., a valid IP header)
3745  *	or you are setting ip_summed to CHECKSUM_NONE.
3746  */
3747 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
3748 {
3749 	unsigned char *data = skb->data;
3750 
3751 	BUG_ON(len > skb->len);
3752 	__skb_pull(skb, len);
3753 	skb_postpull_rcsum(skb, data, len);
3754 	return skb->data;
3755 }
3756 EXPORT_SYMBOL_GPL(skb_pull_rcsum);
3757 
3758 static inline skb_frag_t skb_head_frag_to_page_desc(struct sk_buff *frag_skb)
3759 {
3760 	skb_frag_t head_frag;
3761 	struct page *page;
3762 
3763 	page = virt_to_head_page(frag_skb->head);
3764 	__skb_frag_set_page(&head_frag, page);
3765 	skb_frag_off_set(&head_frag, frag_skb->data -
3766 			 (unsigned char *)page_address(page));
3767 	skb_frag_size_set(&head_frag, skb_headlen(frag_skb));
3768 	return head_frag;
3769 }
3770 
3771 struct sk_buff *skb_segment_list(struct sk_buff *skb,
3772 				 netdev_features_t features,
3773 				 unsigned int offset)
3774 {
3775 	struct sk_buff *list_skb = skb_shinfo(skb)->frag_list;
3776 	unsigned int tnl_hlen = skb_tnl_header_len(skb);
3777 	unsigned int delta_truesize = 0;
3778 	unsigned int delta_len = 0;
3779 	struct sk_buff *tail = NULL;
3780 	struct sk_buff *nskb, *tmp;
3781 	int err;
3782 
3783 	skb_push(skb, -skb_network_offset(skb) + offset);
3784 
3785 	skb_shinfo(skb)->frag_list = NULL;
3786 
3787 	do {
3788 		nskb = list_skb;
3789 		list_skb = list_skb->next;
3790 
3791 		err = 0;
3792 		if (skb_shared(nskb)) {
3793 			tmp = skb_clone(nskb, GFP_ATOMIC);
3794 			if (tmp) {
3795 				consume_skb(nskb);
3796 				nskb = tmp;
3797 				err = skb_unclone(nskb, GFP_ATOMIC);
3798 			} else {
3799 				err = -ENOMEM;
3800 			}
3801 		}
3802 
3803 		if (!tail)
3804 			skb->next = nskb;
3805 		else
3806 			tail->next = nskb;
3807 
3808 		if (unlikely(err)) {
3809 			nskb->next = list_skb;
3810 			goto err_linearize;
3811 		}
3812 
3813 		tail = nskb;
3814 
3815 		delta_len += nskb->len;
3816 		delta_truesize += nskb->truesize;
3817 
3818 		skb_push(nskb, -skb_network_offset(nskb) + offset);
3819 
3820 		skb_release_head_state(nskb);
3821 		 __copy_skb_header(nskb, skb);
3822 
3823 		skb_headers_offset_update(nskb, skb_headroom(nskb) - skb_headroom(skb));
3824 		skb_copy_from_linear_data_offset(skb, -tnl_hlen,
3825 						 nskb->data - tnl_hlen,
3826 						 offset + tnl_hlen);
3827 
3828 		if (skb_needs_linearize(nskb, features) &&
3829 		    __skb_linearize(nskb))
3830 			goto err_linearize;
3831 
3832 	} while (list_skb);
3833 
3834 	skb->truesize = skb->truesize - delta_truesize;
3835 	skb->data_len = skb->data_len - delta_len;
3836 	skb->len = skb->len - delta_len;
3837 
3838 	skb_gso_reset(skb);
3839 
3840 	skb->prev = tail;
3841 
3842 	if (skb_needs_linearize(skb, features) &&
3843 	    __skb_linearize(skb))
3844 		goto err_linearize;
3845 
3846 	skb_get(skb);
3847 
3848 	return skb;
3849 
3850 err_linearize:
3851 	kfree_skb_list(skb->next);
3852 	skb->next = NULL;
3853 	return ERR_PTR(-ENOMEM);
3854 }
3855 EXPORT_SYMBOL_GPL(skb_segment_list);
3856 
3857 int skb_gro_receive_list(struct sk_buff *p, struct sk_buff *skb)
3858 {
3859 	if (unlikely(p->len + skb->len >= 65536))
3860 		return -E2BIG;
3861 
3862 	if (NAPI_GRO_CB(p)->last == p)
3863 		skb_shinfo(p)->frag_list = skb;
3864 	else
3865 		NAPI_GRO_CB(p)->last->next = skb;
3866 
3867 	skb_pull(skb, skb_gro_offset(skb));
3868 
3869 	NAPI_GRO_CB(p)->last = skb;
3870 	NAPI_GRO_CB(p)->count++;
3871 	p->data_len += skb->len;
3872 	p->truesize += skb->truesize;
3873 	p->len += skb->len;
3874 
3875 	NAPI_GRO_CB(skb)->same_flow = 1;
3876 
3877 	return 0;
3878 }
3879 
3880 /**
3881  *	skb_segment - Perform protocol segmentation on skb.
3882  *	@head_skb: buffer to segment
3883  *	@features: features for the output path (see dev->features)
3884  *
3885  *	This function performs segmentation on the given skb.  It returns
3886  *	a pointer to the first in a list of new skbs for the segments.
3887  *	In case of error it returns ERR_PTR(err).
3888  */
3889 struct sk_buff *skb_segment(struct sk_buff *head_skb,
3890 			    netdev_features_t features)
3891 {
3892 	struct sk_buff *segs = NULL;
3893 	struct sk_buff *tail = NULL;
3894 	struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list;
3895 	skb_frag_t *frag = skb_shinfo(head_skb)->frags;
3896 	unsigned int mss = skb_shinfo(head_skb)->gso_size;
3897 	unsigned int doffset = head_skb->data - skb_mac_header(head_skb);
3898 	struct sk_buff *frag_skb = head_skb;
3899 	unsigned int offset = doffset;
3900 	unsigned int tnl_hlen = skb_tnl_header_len(head_skb);
3901 	unsigned int partial_segs = 0;
3902 	unsigned int headroom;
3903 	unsigned int len = head_skb->len;
3904 	__be16 proto;
3905 	bool csum, sg;
3906 	int nfrags = skb_shinfo(head_skb)->nr_frags;
3907 	int err = -ENOMEM;
3908 	int i = 0;
3909 	int pos;
3910 
3911 	if (list_skb && !list_skb->head_frag && skb_headlen(list_skb) &&
3912 	    (skb_shinfo(head_skb)->gso_type & SKB_GSO_DODGY)) {
3913 		/* gso_size is untrusted, and we have a frag_list with a linear
3914 		 * non head_frag head.
3915 		 *
3916 		 * (we assume checking the first list_skb member suffices;
3917 		 * i.e if either of the list_skb members have non head_frag
3918 		 * head, then the first one has too).
3919 		 *
3920 		 * If head_skb's headlen does not fit requested gso_size, it
3921 		 * means that the frag_list members do NOT terminate on exact
3922 		 * gso_size boundaries. Hence we cannot perform skb_frag_t page
3923 		 * sharing. Therefore we must fallback to copying the frag_list
3924 		 * skbs; we do so by disabling SG.
3925 		 */
3926 		if (mss != GSO_BY_FRAGS && mss != skb_headlen(head_skb))
3927 			features &= ~NETIF_F_SG;
3928 	}
3929 
3930 	__skb_push(head_skb, doffset);
3931 	proto = skb_network_protocol(head_skb, NULL);
3932 	if (unlikely(!proto))
3933 		return ERR_PTR(-EINVAL);
3934 
3935 	sg = !!(features & NETIF_F_SG);
3936 	csum = !!can_checksum_protocol(features, proto);
3937 
3938 	if (sg && csum && (mss != GSO_BY_FRAGS))  {
3939 		if (!(features & NETIF_F_GSO_PARTIAL)) {
3940 			struct sk_buff *iter;
3941 			unsigned int frag_len;
3942 
3943 			if (!list_skb ||
3944 			    !net_gso_ok(features, skb_shinfo(head_skb)->gso_type))
3945 				goto normal;
3946 
3947 			/* If we get here then all the required
3948 			 * GSO features except frag_list are supported.
3949 			 * Try to split the SKB to multiple GSO SKBs
3950 			 * with no frag_list.
3951 			 * Currently we can do that only when the buffers don't
3952 			 * have a linear part and all the buffers except
3953 			 * the last are of the same length.
3954 			 */
3955 			frag_len = list_skb->len;
3956 			skb_walk_frags(head_skb, iter) {
3957 				if (frag_len != iter->len && iter->next)
3958 					goto normal;
3959 				if (skb_headlen(iter) && !iter->head_frag)
3960 					goto normal;
3961 
3962 				len -= iter->len;
3963 			}
3964 
3965 			if (len != frag_len)
3966 				goto normal;
3967 		}
3968 
3969 		/* GSO partial only requires that we trim off any excess that
3970 		 * doesn't fit into an MSS sized block, so take care of that
3971 		 * now.
3972 		 */
3973 		partial_segs = len / mss;
3974 		if (partial_segs > 1)
3975 			mss *= partial_segs;
3976 		else
3977 			partial_segs = 0;
3978 	}
3979 
3980 normal:
3981 	headroom = skb_headroom(head_skb);
3982 	pos = skb_headlen(head_skb);
3983 
3984 	do {
3985 		struct sk_buff *nskb;
3986 		skb_frag_t *nskb_frag;
3987 		int hsize;
3988 		int size;
3989 
3990 		if (unlikely(mss == GSO_BY_FRAGS)) {
3991 			len = list_skb->len;
3992 		} else {
3993 			len = head_skb->len - offset;
3994 			if (len > mss)
3995 				len = mss;
3996 		}
3997 
3998 		hsize = skb_headlen(head_skb) - offset;
3999 
4000 		if (hsize <= 0 && i >= nfrags && skb_headlen(list_skb) &&
4001 		    (skb_headlen(list_skb) == len || sg)) {
4002 			BUG_ON(skb_headlen(list_skb) > len);
4003 
4004 			i = 0;
4005 			nfrags = skb_shinfo(list_skb)->nr_frags;
4006 			frag = skb_shinfo(list_skb)->frags;
4007 			frag_skb = list_skb;
4008 			pos += skb_headlen(list_skb);
4009 
4010 			while (pos < offset + len) {
4011 				BUG_ON(i >= nfrags);
4012 
4013 				size = skb_frag_size(frag);
4014 				if (pos + size > offset + len)
4015 					break;
4016 
4017 				i++;
4018 				pos += size;
4019 				frag++;
4020 			}
4021 
4022 			nskb = skb_clone(list_skb, GFP_ATOMIC);
4023 			list_skb = list_skb->next;
4024 
4025 			if (unlikely(!nskb))
4026 				goto err;
4027 
4028 			if (unlikely(pskb_trim(nskb, len))) {
4029 				kfree_skb(nskb);
4030 				goto err;
4031 			}
4032 
4033 			hsize = skb_end_offset(nskb);
4034 			if (skb_cow_head(nskb, doffset + headroom)) {
4035 				kfree_skb(nskb);
4036 				goto err;
4037 			}
4038 
4039 			nskb->truesize += skb_end_offset(nskb) - hsize;
4040 			skb_release_head_state(nskb);
4041 			__skb_push(nskb, doffset);
4042 		} else {
4043 			if (hsize < 0)
4044 				hsize = 0;
4045 			if (hsize > len || !sg)
4046 				hsize = len;
4047 
4048 			nskb = __alloc_skb(hsize + doffset + headroom,
4049 					   GFP_ATOMIC, skb_alloc_rx_flag(head_skb),
4050 					   NUMA_NO_NODE);
4051 
4052 			if (unlikely(!nskb))
4053 				goto err;
4054 
4055 			skb_reserve(nskb, headroom);
4056 			__skb_put(nskb, doffset);
4057 		}
4058 
4059 		if (segs)
4060 			tail->next = nskb;
4061 		else
4062 			segs = nskb;
4063 		tail = nskb;
4064 
4065 		__copy_skb_header(nskb, head_skb);
4066 
4067 		skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom);
4068 		skb_reset_mac_len(nskb);
4069 
4070 		skb_copy_from_linear_data_offset(head_skb, -tnl_hlen,
4071 						 nskb->data - tnl_hlen,
4072 						 doffset + tnl_hlen);
4073 
4074 		if (nskb->len == len + doffset)
4075 			goto perform_csum_check;
4076 
4077 		if (!sg) {
4078 			if (!csum) {
4079 				if (!nskb->remcsum_offload)
4080 					nskb->ip_summed = CHECKSUM_NONE;
4081 				SKB_GSO_CB(nskb)->csum =
4082 					skb_copy_and_csum_bits(head_skb, offset,
4083 							       skb_put(nskb,
4084 								       len),
4085 							       len);
4086 				SKB_GSO_CB(nskb)->csum_start =
4087 					skb_headroom(nskb) + doffset;
4088 			} else {
4089 				skb_copy_bits(head_skb, offset,
4090 					      skb_put(nskb, len),
4091 					      len);
4092 			}
4093 			continue;
4094 		}
4095 
4096 		nskb_frag = skb_shinfo(nskb)->frags;
4097 
4098 		skb_copy_from_linear_data_offset(head_skb, offset,
4099 						 skb_put(nskb, hsize), hsize);
4100 
4101 		skb_shinfo(nskb)->flags |= skb_shinfo(head_skb)->flags &
4102 					   SKBFL_SHARED_FRAG;
4103 
4104 		if (skb_orphan_frags(frag_skb, GFP_ATOMIC) ||
4105 		    skb_zerocopy_clone(nskb, frag_skb, GFP_ATOMIC))
4106 			goto err;
4107 
4108 		while (pos < offset + len) {
4109 			if (i >= nfrags) {
4110 				i = 0;
4111 				nfrags = skb_shinfo(list_skb)->nr_frags;
4112 				frag = skb_shinfo(list_skb)->frags;
4113 				frag_skb = list_skb;
4114 				if (!skb_headlen(list_skb)) {
4115 					BUG_ON(!nfrags);
4116 				} else {
4117 					BUG_ON(!list_skb->head_frag);
4118 
4119 					/* to make room for head_frag. */
4120 					i--;
4121 					frag--;
4122 				}
4123 				if (skb_orphan_frags(frag_skb, GFP_ATOMIC) ||
4124 				    skb_zerocopy_clone(nskb, frag_skb,
4125 						       GFP_ATOMIC))
4126 					goto err;
4127 
4128 				list_skb = list_skb->next;
4129 			}
4130 
4131 			if (unlikely(skb_shinfo(nskb)->nr_frags >=
4132 				     MAX_SKB_FRAGS)) {
4133 				net_warn_ratelimited(
4134 					"skb_segment: too many frags: %u %u\n",
4135 					pos, mss);
4136 				err = -EINVAL;
4137 				goto err;
4138 			}
4139 
4140 			*nskb_frag = (i < 0) ? skb_head_frag_to_page_desc(frag_skb) : *frag;
4141 			__skb_frag_ref(nskb_frag);
4142 			size = skb_frag_size(nskb_frag);
4143 
4144 			if (pos < offset) {
4145 				skb_frag_off_add(nskb_frag, offset - pos);
4146 				skb_frag_size_sub(nskb_frag, offset - pos);
4147 			}
4148 
4149 			skb_shinfo(nskb)->nr_frags++;
4150 
4151 			if (pos + size <= offset + len) {
4152 				i++;
4153 				frag++;
4154 				pos += size;
4155 			} else {
4156 				skb_frag_size_sub(nskb_frag, pos + size - (offset + len));
4157 				goto skip_fraglist;
4158 			}
4159 
4160 			nskb_frag++;
4161 		}
4162 
4163 skip_fraglist:
4164 		nskb->data_len = len - hsize;
4165 		nskb->len += nskb->data_len;
4166 		nskb->truesize += nskb->data_len;
4167 
4168 perform_csum_check:
4169 		if (!csum) {
4170 			if (skb_has_shared_frag(nskb) &&
4171 			    __skb_linearize(nskb))
4172 				goto err;
4173 
4174 			if (!nskb->remcsum_offload)
4175 				nskb->ip_summed = CHECKSUM_NONE;
4176 			SKB_GSO_CB(nskb)->csum =
4177 				skb_checksum(nskb, doffset,
4178 					     nskb->len - doffset, 0);
4179 			SKB_GSO_CB(nskb)->csum_start =
4180 				skb_headroom(nskb) + doffset;
4181 		}
4182 	} while ((offset += len) < head_skb->len);
4183 
4184 	/* Some callers want to get the end of the list.
4185 	 * Put it in segs->prev to avoid walking the list.
4186 	 * (see validate_xmit_skb_list() for example)
4187 	 */
4188 	segs->prev = tail;
4189 
4190 	if (partial_segs) {
4191 		struct sk_buff *iter;
4192 		int type = skb_shinfo(head_skb)->gso_type;
4193 		unsigned short gso_size = skb_shinfo(head_skb)->gso_size;
4194 
4195 		/* Update type to add partial and then remove dodgy if set */
4196 		type |= (features & NETIF_F_GSO_PARTIAL) / NETIF_F_GSO_PARTIAL * SKB_GSO_PARTIAL;
4197 		type &= ~SKB_GSO_DODGY;
4198 
4199 		/* Update GSO info and prepare to start updating headers on
4200 		 * our way back down the stack of protocols.
4201 		 */
4202 		for (iter = segs; iter; iter = iter->next) {
4203 			skb_shinfo(iter)->gso_size = gso_size;
4204 			skb_shinfo(iter)->gso_segs = partial_segs;
4205 			skb_shinfo(iter)->gso_type = type;
4206 			SKB_GSO_CB(iter)->data_offset = skb_headroom(iter) + doffset;
4207 		}
4208 
4209 		if (tail->len - doffset <= gso_size)
4210 			skb_shinfo(tail)->gso_size = 0;
4211 		else if (tail != segs)
4212 			skb_shinfo(tail)->gso_segs = DIV_ROUND_UP(tail->len - doffset, gso_size);
4213 	}
4214 
4215 	/* Following permits correct backpressure, for protocols
4216 	 * using skb_set_owner_w().
4217 	 * Idea is to tranfert ownership from head_skb to last segment.
4218 	 */
4219 	if (head_skb->destructor == sock_wfree) {
4220 		swap(tail->truesize, head_skb->truesize);
4221 		swap(tail->destructor, head_skb->destructor);
4222 		swap(tail->sk, head_skb->sk);
4223 	}
4224 	return segs;
4225 
4226 err:
4227 	kfree_skb_list(segs);
4228 	return ERR_PTR(err);
4229 }
4230 EXPORT_SYMBOL_GPL(skb_segment);
4231 
4232 int skb_gro_receive(struct sk_buff *p, struct sk_buff *skb)
4233 {
4234 	struct skb_shared_info *pinfo, *skbinfo = skb_shinfo(skb);
4235 	unsigned int offset = skb_gro_offset(skb);
4236 	unsigned int headlen = skb_headlen(skb);
4237 	unsigned int len = skb_gro_len(skb);
4238 	unsigned int delta_truesize;
4239 	struct sk_buff *lp;
4240 
4241 	if (unlikely(p->len + len >= 65536 || NAPI_GRO_CB(skb)->flush))
4242 		return -E2BIG;
4243 
4244 	lp = NAPI_GRO_CB(p)->last;
4245 	pinfo = skb_shinfo(lp);
4246 
4247 	if (headlen <= offset) {
4248 		skb_frag_t *frag;
4249 		skb_frag_t *frag2;
4250 		int i = skbinfo->nr_frags;
4251 		int nr_frags = pinfo->nr_frags + i;
4252 
4253 		if (nr_frags > MAX_SKB_FRAGS)
4254 			goto merge;
4255 
4256 		offset -= headlen;
4257 		pinfo->nr_frags = nr_frags;
4258 		skbinfo->nr_frags = 0;
4259 
4260 		frag = pinfo->frags + nr_frags;
4261 		frag2 = skbinfo->frags + i;
4262 		do {
4263 			*--frag = *--frag2;
4264 		} while (--i);
4265 
4266 		skb_frag_off_add(frag, offset);
4267 		skb_frag_size_sub(frag, offset);
4268 
4269 		/* all fragments truesize : remove (head size + sk_buff) */
4270 		delta_truesize = skb->truesize -
4271 				 SKB_TRUESIZE(skb_end_offset(skb));
4272 
4273 		skb->truesize -= skb->data_len;
4274 		skb->len -= skb->data_len;
4275 		skb->data_len = 0;
4276 
4277 		NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE;
4278 		goto done;
4279 	} else if (skb->head_frag) {
4280 		int nr_frags = pinfo->nr_frags;
4281 		skb_frag_t *frag = pinfo->frags + nr_frags;
4282 		struct page *page = virt_to_head_page(skb->head);
4283 		unsigned int first_size = headlen - offset;
4284 		unsigned int first_offset;
4285 
4286 		if (nr_frags + 1 + skbinfo->nr_frags > MAX_SKB_FRAGS)
4287 			goto merge;
4288 
4289 		first_offset = skb->data -
4290 			       (unsigned char *)page_address(page) +
4291 			       offset;
4292 
4293 		pinfo->nr_frags = nr_frags + 1 + skbinfo->nr_frags;
4294 
4295 		__skb_frag_set_page(frag, page);
4296 		skb_frag_off_set(frag, first_offset);
4297 		skb_frag_size_set(frag, first_size);
4298 
4299 		memcpy(frag + 1, skbinfo->frags, sizeof(*frag) * skbinfo->nr_frags);
4300 		/* We dont need to clear skbinfo->nr_frags here */
4301 
4302 		delta_truesize = skb->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
4303 		NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE_STOLEN_HEAD;
4304 		goto done;
4305 	}
4306 
4307 merge:
4308 	delta_truesize = skb->truesize;
4309 	if (offset > headlen) {
4310 		unsigned int eat = offset - headlen;
4311 
4312 		skb_frag_off_add(&skbinfo->frags[0], eat);
4313 		skb_frag_size_sub(&skbinfo->frags[0], eat);
4314 		skb->data_len -= eat;
4315 		skb->len -= eat;
4316 		offset = headlen;
4317 	}
4318 
4319 	__skb_pull(skb, offset);
4320 
4321 	if (NAPI_GRO_CB(p)->last == p)
4322 		skb_shinfo(p)->frag_list = skb;
4323 	else
4324 		NAPI_GRO_CB(p)->last->next = skb;
4325 	NAPI_GRO_CB(p)->last = skb;
4326 	__skb_header_release(skb);
4327 	lp = p;
4328 
4329 done:
4330 	NAPI_GRO_CB(p)->count++;
4331 	p->data_len += len;
4332 	p->truesize += delta_truesize;
4333 	p->len += len;
4334 	if (lp != p) {
4335 		lp->data_len += len;
4336 		lp->truesize += delta_truesize;
4337 		lp->len += len;
4338 	}
4339 	NAPI_GRO_CB(skb)->same_flow = 1;
4340 	return 0;
4341 }
4342 
4343 #ifdef CONFIG_SKB_EXTENSIONS
4344 #define SKB_EXT_ALIGN_VALUE	8
4345 #define SKB_EXT_CHUNKSIZEOF(x)	(ALIGN((sizeof(x)), SKB_EXT_ALIGN_VALUE) / SKB_EXT_ALIGN_VALUE)
4346 
4347 static const u8 skb_ext_type_len[] = {
4348 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4349 	[SKB_EXT_BRIDGE_NF] = SKB_EXT_CHUNKSIZEOF(struct nf_bridge_info),
4350 #endif
4351 #ifdef CONFIG_XFRM
4352 	[SKB_EXT_SEC_PATH] = SKB_EXT_CHUNKSIZEOF(struct sec_path),
4353 #endif
4354 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4355 	[TC_SKB_EXT] = SKB_EXT_CHUNKSIZEOF(struct tc_skb_ext),
4356 #endif
4357 #if IS_ENABLED(CONFIG_MPTCP)
4358 	[SKB_EXT_MPTCP] = SKB_EXT_CHUNKSIZEOF(struct mptcp_ext),
4359 #endif
4360 };
4361 
4362 static __always_inline unsigned int skb_ext_total_length(void)
4363 {
4364 	return SKB_EXT_CHUNKSIZEOF(struct skb_ext) +
4365 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4366 		skb_ext_type_len[SKB_EXT_BRIDGE_NF] +
4367 #endif
4368 #ifdef CONFIG_XFRM
4369 		skb_ext_type_len[SKB_EXT_SEC_PATH] +
4370 #endif
4371 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4372 		skb_ext_type_len[TC_SKB_EXT] +
4373 #endif
4374 #if IS_ENABLED(CONFIG_MPTCP)
4375 		skb_ext_type_len[SKB_EXT_MPTCP] +
4376 #endif
4377 		0;
4378 }
4379 
4380 static void skb_extensions_init(void)
4381 {
4382 	BUILD_BUG_ON(SKB_EXT_NUM >= 8);
4383 	BUILD_BUG_ON(skb_ext_total_length() > 255);
4384 
4385 	skbuff_ext_cache = kmem_cache_create("skbuff_ext_cache",
4386 					     SKB_EXT_ALIGN_VALUE * skb_ext_total_length(),
4387 					     0,
4388 					     SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4389 					     NULL);
4390 }
4391 #else
4392 static void skb_extensions_init(void) {}
4393 #endif
4394 
4395 void __init skb_init(void)
4396 {
4397 	skbuff_head_cache = kmem_cache_create_usercopy("skbuff_head_cache",
4398 					      sizeof(struct sk_buff),
4399 					      0,
4400 					      SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4401 					      offsetof(struct sk_buff, cb),
4402 					      sizeof_field(struct sk_buff, cb),
4403 					      NULL);
4404 	skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
4405 						sizeof(struct sk_buff_fclones),
4406 						0,
4407 						SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4408 						NULL);
4409 	skb_extensions_init();
4410 }
4411 
4412 static int
4413 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len,
4414 	       unsigned int recursion_level)
4415 {
4416 	int start = skb_headlen(skb);
4417 	int i, copy = start - offset;
4418 	struct sk_buff *frag_iter;
4419 	int elt = 0;
4420 
4421 	if (unlikely(recursion_level >= 24))
4422 		return -EMSGSIZE;
4423 
4424 	if (copy > 0) {
4425 		if (copy > len)
4426 			copy = len;
4427 		sg_set_buf(sg, skb->data + offset, copy);
4428 		elt++;
4429 		if ((len -= copy) == 0)
4430 			return elt;
4431 		offset += copy;
4432 	}
4433 
4434 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
4435 		int end;
4436 
4437 		WARN_ON(start > offset + len);
4438 
4439 		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
4440 		if ((copy = end - offset) > 0) {
4441 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4442 			if (unlikely(elt && sg_is_last(&sg[elt - 1])))
4443 				return -EMSGSIZE;
4444 
4445 			if (copy > len)
4446 				copy = len;
4447 			sg_set_page(&sg[elt], skb_frag_page(frag), copy,
4448 				    skb_frag_off(frag) + offset - start);
4449 			elt++;
4450 			if (!(len -= copy))
4451 				return elt;
4452 			offset += copy;
4453 		}
4454 		start = end;
4455 	}
4456 
4457 	skb_walk_frags(skb, frag_iter) {
4458 		int end, ret;
4459 
4460 		WARN_ON(start > offset + len);
4461 
4462 		end = start + frag_iter->len;
4463 		if ((copy = end - offset) > 0) {
4464 			if (unlikely(elt && sg_is_last(&sg[elt - 1])))
4465 				return -EMSGSIZE;
4466 
4467 			if (copy > len)
4468 				copy = len;
4469 			ret = __skb_to_sgvec(frag_iter, sg+elt, offset - start,
4470 					      copy, recursion_level + 1);
4471 			if (unlikely(ret < 0))
4472 				return ret;
4473 			elt += ret;
4474 			if ((len -= copy) == 0)
4475 				return elt;
4476 			offset += copy;
4477 		}
4478 		start = end;
4479 	}
4480 	BUG_ON(len);
4481 	return elt;
4482 }
4483 
4484 /**
4485  *	skb_to_sgvec - Fill a scatter-gather list from a socket buffer
4486  *	@skb: Socket buffer containing the buffers to be mapped
4487  *	@sg: The scatter-gather list to map into
4488  *	@offset: The offset into the buffer's contents to start mapping
4489  *	@len: Length of buffer space to be mapped
4490  *
4491  *	Fill the specified scatter-gather list with mappings/pointers into a
4492  *	region of the buffer space attached to a socket buffer. Returns either
4493  *	the number of scatterlist items used, or -EMSGSIZE if the contents
4494  *	could not fit.
4495  */
4496 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
4497 {
4498 	int nsg = __skb_to_sgvec(skb, sg, offset, len, 0);
4499 
4500 	if (nsg <= 0)
4501 		return nsg;
4502 
4503 	sg_mark_end(&sg[nsg - 1]);
4504 
4505 	return nsg;
4506 }
4507 EXPORT_SYMBOL_GPL(skb_to_sgvec);
4508 
4509 /* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given
4510  * sglist without mark the sg which contain last skb data as the end.
4511  * So the caller can mannipulate sg list as will when padding new data after
4512  * the first call without calling sg_unmark_end to expend sg list.
4513  *
4514  * Scenario to use skb_to_sgvec_nomark:
4515  * 1. sg_init_table
4516  * 2. skb_to_sgvec_nomark(payload1)
4517  * 3. skb_to_sgvec_nomark(payload2)
4518  *
4519  * This is equivalent to:
4520  * 1. sg_init_table
4521  * 2. skb_to_sgvec(payload1)
4522  * 3. sg_unmark_end
4523  * 4. skb_to_sgvec(payload2)
4524  *
4525  * When mapping mutilple payload conditionally, skb_to_sgvec_nomark
4526  * is more preferable.
4527  */
4528 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
4529 			int offset, int len)
4530 {
4531 	return __skb_to_sgvec(skb, sg, offset, len, 0);
4532 }
4533 EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark);
4534 
4535 
4536 
4537 /**
4538  *	skb_cow_data - Check that a socket buffer's data buffers are writable
4539  *	@skb: The socket buffer to check.
4540  *	@tailbits: Amount of trailing space to be added
4541  *	@trailer: Returned pointer to the skb where the @tailbits space begins
4542  *
4543  *	Make sure that the data buffers attached to a socket buffer are
4544  *	writable. If they are not, private copies are made of the data buffers
4545  *	and the socket buffer is set to use these instead.
4546  *
4547  *	If @tailbits is given, make sure that there is space to write @tailbits
4548  *	bytes of data beyond current end of socket buffer.  @trailer will be
4549  *	set to point to the skb in which this space begins.
4550  *
4551  *	The number of scatterlist elements required to completely map the
4552  *	COW'd and extended socket buffer will be returned.
4553  */
4554 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
4555 {
4556 	int copyflag;
4557 	int elt;
4558 	struct sk_buff *skb1, **skb_p;
4559 
4560 	/* If skb is cloned or its head is paged, reallocate
4561 	 * head pulling out all the pages (pages are considered not writable
4562 	 * at the moment even if they are anonymous).
4563 	 */
4564 	if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
4565 	    !__pskb_pull_tail(skb, __skb_pagelen(skb)))
4566 		return -ENOMEM;
4567 
4568 	/* Easy case. Most of packets will go this way. */
4569 	if (!skb_has_frag_list(skb)) {
4570 		/* A little of trouble, not enough of space for trailer.
4571 		 * This should not happen, when stack is tuned to generate
4572 		 * good frames. OK, on miss we reallocate and reserve even more
4573 		 * space, 128 bytes is fair. */
4574 
4575 		if (skb_tailroom(skb) < tailbits &&
4576 		    pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
4577 			return -ENOMEM;
4578 
4579 		/* Voila! */
4580 		*trailer = skb;
4581 		return 1;
4582 	}
4583 
4584 	/* Misery. We are in troubles, going to mincer fragments... */
4585 
4586 	elt = 1;
4587 	skb_p = &skb_shinfo(skb)->frag_list;
4588 	copyflag = 0;
4589 
4590 	while ((skb1 = *skb_p) != NULL) {
4591 		int ntail = 0;
4592 
4593 		/* The fragment is partially pulled by someone,
4594 		 * this can happen on input. Copy it and everything
4595 		 * after it. */
4596 
4597 		if (skb_shared(skb1))
4598 			copyflag = 1;
4599 
4600 		/* If the skb is the last, worry about trailer. */
4601 
4602 		if (skb1->next == NULL && tailbits) {
4603 			if (skb_shinfo(skb1)->nr_frags ||
4604 			    skb_has_frag_list(skb1) ||
4605 			    skb_tailroom(skb1) < tailbits)
4606 				ntail = tailbits + 128;
4607 		}
4608 
4609 		if (copyflag ||
4610 		    skb_cloned(skb1) ||
4611 		    ntail ||
4612 		    skb_shinfo(skb1)->nr_frags ||
4613 		    skb_has_frag_list(skb1)) {
4614 			struct sk_buff *skb2;
4615 
4616 			/* Fuck, we are miserable poor guys... */
4617 			if (ntail == 0)
4618 				skb2 = skb_copy(skb1, GFP_ATOMIC);
4619 			else
4620 				skb2 = skb_copy_expand(skb1,
4621 						       skb_headroom(skb1),
4622 						       ntail,
4623 						       GFP_ATOMIC);
4624 			if (unlikely(skb2 == NULL))
4625 				return -ENOMEM;
4626 
4627 			if (skb1->sk)
4628 				skb_set_owner_w(skb2, skb1->sk);
4629 
4630 			/* Looking around. Are we still alive?
4631 			 * OK, link new skb, drop old one */
4632 
4633 			skb2->next = skb1->next;
4634 			*skb_p = skb2;
4635 			kfree_skb(skb1);
4636 			skb1 = skb2;
4637 		}
4638 		elt++;
4639 		*trailer = skb1;
4640 		skb_p = &skb1->next;
4641 	}
4642 
4643 	return elt;
4644 }
4645 EXPORT_SYMBOL_GPL(skb_cow_data);
4646 
4647 static void sock_rmem_free(struct sk_buff *skb)
4648 {
4649 	struct sock *sk = skb->sk;
4650 
4651 	atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
4652 }
4653 
4654 static void skb_set_err_queue(struct sk_buff *skb)
4655 {
4656 	/* pkt_type of skbs received on local sockets is never PACKET_OUTGOING.
4657 	 * So, it is safe to (mis)use it to mark skbs on the error queue.
4658 	 */
4659 	skb->pkt_type = PACKET_OUTGOING;
4660 	BUILD_BUG_ON(PACKET_OUTGOING == 0);
4661 }
4662 
4663 /*
4664  * Note: We dont mem charge error packets (no sk_forward_alloc changes)
4665  */
4666 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
4667 {
4668 	if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
4669 	    (unsigned int)READ_ONCE(sk->sk_rcvbuf))
4670 		return -ENOMEM;
4671 
4672 	skb_orphan(skb);
4673 	skb->sk = sk;
4674 	skb->destructor = sock_rmem_free;
4675 	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
4676 	skb_set_err_queue(skb);
4677 
4678 	/* before exiting rcu section, make sure dst is refcounted */
4679 	skb_dst_force(skb);
4680 
4681 	skb_queue_tail(&sk->sk_error_queue, skb);
4682 	if (!sock_flag(sk, SOCK_DEAD))
4683 		sk->sk_error_report(sk);
4684 	return 0;
4685 }
4686 EXPORT_SYMBOL(sock_queue_err_skb);
4687 
4688 static bool is_icmp_err_skb(const struct sk_buff *skb)
4689 {
4690 	return skb && (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP ||
4691 		       SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP6);
4692 }
4693 
4694 struct sk_buff *sock_dequeue_err_skb(struct sock *sk)
4695 {
4696 	struct sk_buff_head *q = &sk->sk_error_queue;
4697 	struct sk_buff *skb, *skb_next = NULL;
4698 	bool icmp_next = false;
4699 	unsigned long flags;
4700 
4701 	spin_lock_irqsave(&q->lock, flags);
4702 	skb = __skb_dequeue(q);
4703 	if (skb && (skb_next = skb_peek(q))) {
4704 		icmp_next = is_icmp_err_skb(skb_next);
4705 		if (icmp_next)
4706 			sk->sk_err = SKB_EXT_ERR(skb_next)->ee.ee_errno;
4707 	}
4708 	spin_unlock_irqrestore(&q->lock, flags);
4709 
4710 	if (is_icmp_err_skb(skb) && !icmp_next)
4711 		sk->sk_err = 0;
4712 
4713 	if (skb_next)
4714 		sk->sk_error_report(sk);
4715 
4716 	return skb;
4717 }
4718 EXPORT_SYMBOL(sock_dequeue_err_skb);
4719 
4720 /**
4721  * skb_clone_sk - create clone of skb, and take reference to socket
4722  * @skb: the skb to clone
4723  *
4724  * This function creates a clone of a buffer that holds a reference on
4725  * sk_refcnt.  Buffers created via this function are meant to be
4726  * returned using sock_queue_err_skb, or free via kfree_skb.
4727  *
4728  * When passing buffers allocated with this function to sock_queue_err_skb
4729  * it is necessary to wrap the call with sock_hold/sock_put in order to
4730  * prevent the socket from being released prior to being enqueued on
4731  * the sk_error_queue.
4732  */
4733 struct sk_buff *skb_clone_sk(struct sk_buff *skb)
4734 {
4735 	struct sock *sk = skb->sk;
4736 	struct sk_buff *clone;
4737 
4738 	if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt))
4739 		return NULL;
4740 
4741 	clone = skb_clone(skb, GFP_ATOMIC);
4742 	if (!clone) {
4743 		sock_put(sk);
4744 		return NULL;
4745 	}
4746 
4747 	clone->sk = sk;
4748 	clone->destructor = sock_efree;
4749 
4750 	return clone;
4751 }
4752 EXPORT_SYMBOL(skb_clone_sk);
4753 
4754 static void __skb_complete_tx_timestamp(struct sk_buff *skb,
4755 					struct sock *sk,
4756 					int tstype,
4757 					bool opt_stats)
4758 {
4759 	struct sock_exterr_skb *serr;
4760 	int err;
4761 
4762 	BUILD_BUG_ON(sizeof(struct sock_exterr_skb) > sizeof(skb->cb));
4763 
4764 	serr = SKB_EXT_ERR(skb);
4765 	memset(serr, 0, sizeof(*serr));
4766 	serr->ee.ee_errno = ENOMSG;
4767 	serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
4768 	serr->ee.ee_info = tstype;
4769 	serr->opt_stats = opt_stats;
4770 	serr->header.h4.iif = skb->dev ? skb->dev->ifindex : 0;
4771 	if (sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID) {
4772 		serr->ee.ee_data = skb_shinfo(skb)->tskey;
4773 		if (sk->sk_protocol == IPPROTO_TCP &&
4774 		    sk->sk_type == SOCK_STREAM)
4775 			serr->ee.ee_data -= sk->sk_tskey;
4776 	}
4777 
4778 	err = sock_queue_err_skb(sk, skb);
4779 
4780 	if (err)
4781 		kfree_skb(skb);
4782 }
4783 
4784 static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly)
4785 {
4786 	bool ret;
4787 
4788 	if (likely(sysctl_tstamp_allow_data || tsonly))
4789 		return true;
4790 
4791 	read_lock_bh(&sk->sk_callback_lock);
4792 	ret = sk->sk_socket && sk->sk_socket->file &&
4793 	      file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW);
4794 	read_unlock_bh(&sk->sk_callback_lock);
4795 	return ret;
4796 }
4797 
4798 void skb_complete_tx_timestamp(struct sk_buff *skb,
4799 			       struct skb_shared_hwtstamps *hwtstamps)
4800 {
4801 	struct sock *sk = skb->sk;
4802 
4803 	if (!skb_may_tx_timestamp(sk, false))
4804 		goto err;
4805 
4806 	/* Take a reference to prevent skb_orphan() from freeing the socket,
4807 	 * but only if the socket refcount is not zero.
4808 	 */
4809 	if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
4810 		*skb_hwtstamps(skb) = *hwtstamps;
4811 		__skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND, false);
4812 		sock_put(sk);
4813 		return;
4814 	}
4815 
4816 err:
4817 	kfree_skb(skb);
4818 }
4819 EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp);
4820 
4821 void __skb_tstamp_tx(struct sk_buff *orig_skb,
4822 		     const struct sk_buff *ack_skb,
4823 		     struct skb_shared_hwtstamps *hwtstamps,
4824 		     struct sock *sk, int tstype)
4825 {
4826 	struct sk_buff *skb;
4827 	bool tsonly, opt_stats = false;
4828 
4829 	if (!sk)
4830 		return;
4831 
4832 	if (!hwtstamps && !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TX_SWHW) &&
4833 	    skb_shinfo(orig_skb)->tx_flags & SKBTX_IN_PROGRESS)
4834 		return;
4835 
4836 	tsonly = sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TSONLY;
4837 	if (!skb_may_tx_timestamp(sk, tsonly))
4838 		return;
4839 
4840 	if (tsonly) {
4841 #ifdef CONFIG_INET
4842 		if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_STATS) &&
4843 		    sk->sk_protocol == IPPROTO_TCP &&
4844 		    sk->sk_type == SOCK_STREAM) {
4845 			skb = tcp_get_timestamping_opt_stats(sk, orig_skb,
4846 							     ack_skb);
4847 			opt_stats = true;
4848 		} else
4849 #endif
4850 			skb = alloc_skb(0, GFP_ATOMIC);
4851 	} else {
4852 		skb = skb_clone(orig_skb, GFP_ATOMIC);
4853 	}
4854 	if (!skb)
4855 		return;
4856 
4857 	if (tsonly) {
4858 		skb_shinfo(skb)->tx_flags |= skb_shinfo(orig_skb)->tx_flags &
4859 					     SKBTX_ANY_TSTAMP;
4860 		skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey;
4861 	}
4862 
4863 	if (hwtstamps)
4864 		*skb_hwtstamps(skb) = *hwtstamps;
4865 	else
4866 		skb->tstamp = ktime_get_real();
4867 
4868 	__skb_complete_tx_timestamp(skb, sk, tstype, opt_stats);
4869 }
4870 EXPORT_SYMBOL_GPL(__skb_tstamp_tx);
4871 
4872 void skb_tstamp_tx(struct sk_buff *orig_skb,
4873 		   struct skb_shared_hwtstamps *hwtstamps)
4874 {
4875 	return __skb_tstamp_tx(orig_skb, NULL, hwtstamps, orig_skb->sk,
4876 			       SCM_TSTAMP_SND);
4877 }
4878 EXPORT_SYMBOL_GPL(skb_tstamp_tx);
4879 
4880 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked)
4881 {
4882 	struct sock *sk = skb->sk;
4883 	struct sock_exterr_skb *serr;
4884 	int err = 1;
4885 
4886 	skb->wifi_acked_valid = 1;
4887 	skb->wifi_acked = acked;
4888 
4889 	serr = SKB_EXT_ERR(skb);
4890 	memset(serr, 0, sizeof(*serr));
4891 	serr->ee.ee_errno = ENOMSG;
4892 	serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS;
4893 
4894 	/* Take a reference to prevent skb_orphan() from freeing the socket,
4895 	 * but only if the socket refcount is not zero.
4896 	 */
4897 	if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
4898 		err = sock_queue_err_skb(sk, skb);
4899 		sock_put(sk);
4900 	}
4901 	if (err)
4902 		kfree_skb(skb);
4903 }
4904 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack);
4905 
4906 /**
4907  * skb_partial_csum_set - set up and verify partial csum values for packet
4908  * @skb: the skb to set
4909  * @start: the number of bytes after skb->data to start checksumming.
4910  * @off: the offset from start to place the checksum.
4911  *
4912  * For untrusted partially-checksummed packets, we need to make sure the values
4913  * for skb->csum_start and skb->csum_offset are valid so we don't oops.
4914  *
4915  * This function checks and sets those values and skb->ip_summed: if this
4916  * returns false you should drop the packet.
4917  */
4918 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
4919 {
4920 	u32 csum_end = (u32)start + (u32)off + sizeof(__sum16);
4921 	u32 csum_start = skb_headroom(skb) + (u32)start;
4922 
4923 	if (unlikely(csum_start > U16_MAX || csum_end > skb_headlen(skb))) {
4924 		net_warn_ratelimited("bad partial csum: csum=%u/%u headroom=%u headlen=%u\n",
4925 				     start, off, skb_headroom(skb), skb_headlen(skb));
4926 		return false;
4927 	}
4928 	skb->ip_summed = CHECKSUM_PARTIAL;
4929 	skb->csum_start = csum_start;
4930 	skb->csum_offset = off;
4931 	skb_set_transport_header(skb, start);
4932 	return true;
4933 }
4934 EXPORT_SYMBOL_GPL(skb_partial_csum_set);
4935 
4936 static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len,
4937 			       unsigned int max)
4938 {
4939 	if (skb_headlen(skb) >= len)
4940 		return 0;
4941 
4942 	/* If we need to pullup then pullup to the max, so we
4943 	 * won't need to do it again.
4944 	 */
4945 	if (max > skb->len)
4946 		max = skb->len;
4947 
4948 	if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL)
4949 		return -ENOMEM;
4950 
4951 	if (skb_headlen(skb) < len)
4952 		return -EPROTO;
4953 
4954 	return 0;
4955 }
4956 
4957 #define MAX_TCP_HDR_LEN (15 * 4)
4958 
4959 static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb,
4960 				      typeof(IPPROTO_IP) proto,
4961 				      unsigned int off)
4962 {
4963 	int err;
4964 
4965 	switch (proto) {
4966 	case IPPROTO_TCP:
4967 		err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr),
4968 					  off + MAX_TCP_HDR_LEN);
4969 		if (!err && !skb_partial_csum_set(skb, off,
4970 						  offsetof(struct tcphdr,
4971 							   check)))
4972 			err = -EPROTO;
4973 		return err ? ERR_PTR(err) : &tcp_hdr(skb)->check;
4974 
4975 	case IPPROTO_UDP:
4976 		err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr),
4977 					  off + sizeof(struct udphdr));
4978 		if (!err && !skb_partial_csum_set(skb, off,
4979 						  offsetof(struct udphdr,
4980 							   check)))
4981 			err = -EPROTO;
4982 		return err ? ERR_PTR(err) : &udp_hdr(skb)->check;
4983 	}
4984 
4985 	return ERR_PTR(-EPROTO);
4986 }
4987 
4988 /* This value should be large enough to cover a tagged ethernet header plus
4989  * maximally sized IP and TCP or UDP headers.
4990  */
4991 #define MAX_IP_HDR_LEN 128
4992 
4993 static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate)
4994 {
4995 	unsigned int off;
4996 	bool fragment;
4997 	__sum16 *csum;
4998 	int err;
4999 
5000 	fragment = false;
5001 
5002 	err = skb_maybe_pull_tail(skb,
5003 				  sizeof(struct iphdr),
5004 				  MAX_IP_HDR_LEN);
5005 	if (err < 0)
5006 		goto out;
5007 
5008 	if (ip_is_fragment(ip_hdr(skb)))
5009 		fragment = true;
5010 
5011 	off = ip_hdrlen(skb);
5012 
5013 	err = -EPROTO;
5014 
5015 	if (fragment)
5016 		goto out;
5017 
5018 	csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off);
5019 	if (IS_ERR(csum))
5020 		return PTR_ERR(csum);
5021 
5022 	if (recalculate)
5023 		*csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
5024 					   ip_hdr(skb)->daddr,
5025 					   skb->len - off,
5026 					   ip_hdr(skb)->protocol, 0);
5027 	err = 0;
5028 
5029 out:
5030 	return err;
5031 }
5032 
5033 /* This value should be large enough to cover a tagged ethernet header plus
5034  * an IPv6 header, all options, and a maximal TCP or UDP header.
5035  */
5036 #define MAX_IPV6_HDR_LEN 256
5037 
5038 #define OPT_HDR(type, skb, off) \
5039 	(type *)(skb_network_header(skb) + (off))
5040 
5041 static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate)
5042 {
5043 	int err;
5044 	u8 nexthdr;
5045 	unsigned int off;
5046 	unsigned int len;
5047 	bool fragment;
5048 	bool done;
5049 	__sum16 *csum;
5050 
5051 	fragment = false;
5052 	done = false;
5053 
5054 	off = sizeof(struct ipv6hdr);
5055 
5056 	err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN);
5057 	if (err < 0)
5058 		goto out;
5059 
5060 	nexthdr = ipv6_hdr(skb)->nexthdr;
5061 
5062 	len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len);
5063 	while (off <= len && !done) {
5064 		switch (nexthdr) {
5065 		case IPPROTO_DSTOPTS:
5066 		case IPPROTO_HOPOPTS:
5067 		case IPPROTO_ROUTING: {
5068 			struct ipv6_opt_hdr *hp;
5069 
5070 			err = skb_maybe_pull_tail(skb,
5071 						  off +
5072 						  sizeof(struct ipv6_opt_hdr),
5073 						  MAX_IPV6_HDR_LEN);
5074 			if (err < 0)
5075 				goto out;
5076 
5077 			hp = OPT_HDR(struct ipv6_opt_hdr, skb, off);
5078 			nexthdr = hp->nexthdr;
5079 			off += ipv6_optlen(hp);
5080 			break;
5081 		}
5082 		case IPPROTO_AH: {
5083 			struct ip_auth_hdr *hp;
5084 
5085 			err = skb_maybe_pull_tail(skb,
5086 						  off +
5087 						  sizeof(struct ip_auth_hdr),
5088 						  MAX_IPV6_HDR_LEN);
5089 			if (err < 0)
5090 				goto out;
5091 
5092 			hp = OPT_HDR(struct ip_auth_hdr, skb, off);
5093 			nexthdr = hp->nexthdr;
5094 			off += ipv6_authlen(hp);
5095 			break;
5096 		}
5097 		case IPPROTO_FRAGMENT: {
5098 			struct frag_hdr *hp;
5099 
5100 			err = skb_maybe_pull_tail(skb,
5101 						  off +
5102 						  sizeof(struct frag_hdr),
5103 						  MAX_IPV6_HDR_LEN);
5104 			if (err < 0)
5105 				goto out;
5106 
5107 			hp = OPT_HDR(struct frag_hdr, skb, off);
5108 
5109 			if (hp->frag_off & htons(IP6_OFFSET | IP6_MF))
5110 				fragment = true;
5111 
5112 			nexthdr = hp->nexthdr;
5113 			off += sizeof(struct frag_hdr);
5114 			break;
5115 		}
5116 		default:
5117 			done = true;
5118 			break;
5119 		}
5120 	}
5121 
5122 	err = -EPROTO;
5123 
5124 	if (!done || fragment)
5125 		goto out;
5126 
5127 	csum = skb_checksum_setup_ip(skb, nexthdr, off);
5128 	if (IS_ERR(csum))
5129 		return PTR_ERR(csum);
5130 
5131 	if (recalculate)
5132 		*csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
5133 					 &ipv6_hdr(skb)->daddr,
5134 					 skb->len - off, nexthdr, 0);
5135 	err = 0;
5136 
5137 out:
5138 	return err;
5139 }
5140 
5141 /**
5142  * skb_checksum_setup - set up partial checksum offset
5143  * @skb: the skb to set up
5144  * @recalculate: if true the pseudo-header checksum will be recalculated
5145  */
5146 int skb_checksum_setup(struct sk_buff *skb, bool recalculate)
5147 {
5148 	int err;
5149 
5150 	switch (skb->protocol) {
5151 	case htons(ETH_P_IP):
5152 		err = skb_checksum_setup_ipv4(skb, recalculate);
5153 		break;
5154 
5155 	case htons(ETH_P_IPV6):
5156 		err = skb_checksum_setup_ipv6(skb, recalculate);
5157 		break;
5158 
5159 	default:
5160 		err = -EPROTO;
5161 		break;
5162 	}
5163 
5164 	return err;
5165 }
5166 EXPORT_SYMBOL(skb_checksum_setup);
5167 
5168 /**
5169  * skb_checksum_maybe_trim - maybe trims the given skb
5170  * @skb: the skb to check
5171  * @transport_len: the data length beyond the network header
5172  *
5173  * Checks whether the given skb has data beyond the given transport length.
5174  * If so, returns a cloned skb trimmed to this transport length.
5175  * Otherwise returns the provided skb. Returns NULL in error cases
5176  * (e.g. transport_len exceeds skb length or out-of-memory).
5177  *
5178  * Caller needs to set the skb transport header and free any returned skb if it
5179  * differs from the provided skb.
5180  */
5181 static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb,
5182 					       unsigned int transport_len)
5183 {
5184 	struct sk_buff *skb_chk;
5185 	unsigned int len = skb_transport_offset(skb) + transport_len;
5186 	int ret;
5187 
5188 	if (skb->len < len)
5189 		return NULL;
5190 	else if (skb->len == len)
5191 		return skb;
5192 
5193 	skb_chk = skb_clone(skb, GFP_ATOMIC);
5194 	if (!skb_chk)
5195 		return NULL;
5196 
5197 	ret = pskb_trim_rcsum(skb_chk, len);
5198 	if (ret) {
5199 		kfree_skb(skb_chk);
5200 		return NULL;
5201 	}
5202 
5203 	return skb_chk;
5204 }
5205 
5206 /**
5207  * skb_checksum_trimmed - validate checksum of an skb
5208  * @skb: the skb to check
5209  * @transport_len: the data length beyond the network header
5210  * @skb_chkf: checksum function to use
5211  *
5212  * Applies the given checksum function skb_chkf to the provided skb.
5213  * Returns a checked and maybe trimmed skb. Returns NULL on error.
5214  *
5215  * If the skb has data beyond the given transport length, then a
5216  * trimmed & cloned skb is checked and returned.
5217  *
5218  * Caller needs to set the skb transport header and free any returned skb if it
5219  * differs from the provided skb.
5220  */
5221 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
5222 				     unsigned int transport_len,
5223 				     __sum16(*skb_chkf)(struct sk_buff *skb))
5224 {
5225 	struct sk_buff *skb_chk;
5226 	unsigned int offset = skb_transport_offset(skb);
5227 	__sum16 ret;
5228 
5229 	skb_chk = skb_checksum_maybe_trim(skb, transport_len);
5230 	if (!skb_chk)
5231 		goto err;
5232 
5233 	if (!pskb_may_pull(skb_chk, offset))
5234 		goto err;
5235 
5236 	skb_pull_rcsum(skb_chk, offset);
5237 	ret = skb_chkf(skb_chk);
5238 	skb_push_rcsum(skb_chk, offset);
5239 
5240 	if (ret)
5241 		goto err;
5242 
5243 	return skb_chk;
5244 
5245 err:
5246 	if (skb_chk && skb_chk != skb)
5247 		kfree_skb(skb_chk);
5248 
5249 	return NULL;
5250 
5251 }
5252 EXPORT_SYMBOL(skb_checksum_trimmed);
5253 
5254 void __skb_warn_lro_forwarding(const struct sk_buff *skb)
5255 {
5256 	net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n",
5257 			     skb->dev->name);
5258 }
5259 EXPORT_SYMBOL(__skb_warn_lro_forwarding);
5260 
5261 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen)
5262 {
5263 	if (head_stolen) {
5264 		skb_release_head_state(skb);
5265 		kmem_cache_free(skbuff_head_cache, skb);
5266 	} else {
5267 		__kfree_skb(skb);
5268 	}
5269 }
5270 EXPORT_SYMBOL(kfree_skb_partial);
5271 
5272 /**
5273  * skb_try_coalesce - try to merge skb to prior one
5274  * @to: prior buffer
5275  * @from: buffer to add
5276  * @fragstolen: pointer to boolean
5277  * @delta_truesize: how much more was allocated than was requested
5278  */
5279 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
5280 		      bool *fragstolen, int *delta_truesize)
5281 {
5282 	struct skb_shared_info *to_shinfo, *from_shinfo;
5283 	int i, delta, len = from->len;
5284 
5285 	*fragstolen = false;
5286 
5287 	if (skb_cloned(to))
5288 		return false;
5289 
5290 	if (len <= skb_tailroom(to)) {
5291 		if (len)
5292 			BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len));
5293 		*delta_truesize = 0;
5294 		return true;
5295 	}
5296 
5297 	to_shinfo = skb_shinfo(to);
5298 	from_shinfo = skb_shinfo(from);
5299 	if (to_shinfo->frag_list || from_shinfo->frag_list)
5300 		return false;
5301 	if (skb_zcopy(to) || skb_zcopy(from))
5302 		return false;
5303 
5304 	if (skb_headlen(from) != 0) {
5305 		struct page *page;
5306 		unsigned int offset;
5307 
5308 		if (to_shinfo->nr_frags +
5309 		    from_shinfo->nr_frags >= MAX_SKB_FRAGS)
5310 			return false;
5311 
5312 		if (skb_head_is_locked(from))
5313 			return false;
5314 
5315 		delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
5316 
5317 		page = virt_to_head_page(from->head);
5318 		offset = from->data - (unsigned char *)page_address(page);
5319 
5320 		skb_fill_page_desc(to, to_shinfo->nr_frags,
5321 				   page, offset, skb_headlen(from));
5322 		*fragstolen = true;
5323 	} else {
5324 		if (to_shinfo->nr_frags +
5325 		    from_shinfo->nr_frags > MAX_SKB_FRAGS)
5326 			return false;
5327 
5328 		delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from));
5329 	}
5330 
5331 	WARN_ON_ONCE(delta < len);
5332 
5333 	memcpy(to_shinfo->frags + to_shinfo->nr_frags,
5334 	       from_shinfo->frags,
5335 	       from_shinfo->nr_frags * sizeof(skb_frag_t));
5336 	to_shinfo->nr_frags += from_shinfo->nr_frags;
5337 
5338 	if (!skb_cloned(from))
5339 		from_shinfo->nr_frags = 0;
5340 
5341 	/* if the skb is not cloned this does nothing
5342 	 * since we set nr_frags to 0.
5343 	 */
5344 	for (i = 0; i < from_shinfo->nr_frags; i++)
5345 		__skb_frag_ref(&from_shinfo->frags[i]);
5346 
5347 	to->truesize += delta;
5348 	to->len += len;
5349 	to->data_len += len;
5350 
5351 	*delta_truesize = delta;
5352 	return true;
5353 }
5354 EXPORT_SYMBOL(skb_try_coalesce);
5355 
5356 /**
5357  * skb_scrub_packet - scrub an skb
5358  *
5359  * @skb: buffer to clean
5360  * @xnet: packet is crossing netns
5361  *
5362  * skb_scrub_packet can be used after encapsulating or decapsulting a packet
5363  * into/from a tunnel. Some information have to be cleared during these
5364  * operations.
5365  * skb_scrub_packet can also be used to clean a skb before injecting it in
5366  * another namespace (@xnet == true). We have to clear all information in the
5367  * skb that could impact namespace isolation.
5368  */
5369 void skb_scrub_packet(struct sk_buff *skb, bool xnet)
5370 {
5371 	skb->pkt_type = PACKET_HOST;
5372 	skb->skb_iif = 0;
5373 	skb->ignore_df = 0;
5374 	skb_dst_drop(skb);
5375 	skb_ext_reset(skb);
5376 	nf_reset_ct(skb);
5377 	nf_reset_trace(skb);
5378 
5379 #ifdef CONFIG_NET_SWITCHDEV
5380 	skb->offload_fwd_mark = 0;
5381 	skb->offload_l3_fwd_mark = 0;
5382 #endif
5383 
5384 	if (!xnet)
5385 		return;
5386 
5387 	ipvs_reset(skb);
5388 	skb->mark = 0;
5389 	skb->tstamp = 0;
5390 }
5391 EXPORT_SYMBOL_GPL(skb_scrub_packet);
5392 
5393 /**
5394  * skb_gso_transport_seglen - Return length of individual segments of a gso packet
5395  *
5396  * @skb: GSO skb
5397  *
5398  * skb_gso_transport_seglen is used to determine the real size of the
5399  * individual segments, including Layer4 headers (TCP/UDP).
5400  *
5401  * The MAC/L2 or network (IP, IPv6) headers are not accounted for.
5402  */
5403 static unsigned int skb_gso_transport_seglen(const struct sk_buff *skb)
5404 {
5405 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
5406 	unsigned int thlen = 0;
5407 
5408 	if (skb->encapsulation) {
5409 		thlen = skb_inner_transport_header(skb) -
5410 			skb_transport_header(skb);
5411 
5412 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
5413 			thlen += inner_tcp_hdrlen(skb);
5414 	} else if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
5415 		thlen = tcp_hdrlen(skb);
5416 	} else if (unlikely(skb_is_gso_sctp(skb))) {
5417 		thlen = sizeof(struct sctphdr);
5418 	} else if (shinfo->gso_type & SKB_GSO_UDP_L4) {
5419 		thlen = sizeof(struct udphdr);
5420 	}
5421 	/* UFO sets gso_size to the size of the fragmentation
5422 	 * payload, i.e. the size of the L4 (UDP) header is already
5423 	 * accounted for.
5424 	 */
5425 	return thlen + shinfo->gso_size;
5426 }
5427 
5428 /**
5429  * skb_gso_network_seglen - Return length of individual segments of a gso packet
5430  *
5431  * @skb: GSO skb
5432  *
5433  * skb_gso_network_seglen is used to determine the real size of the
5434  * individual segments, including Layer3 (IP, IPv6) and L4 headers (TCP/UDP).
5435  *
5436  * The MAC/L2 header is not accounted for.
5437  */
5438 static unsigned int skb_gso_network_seglen(const struct sk_buff *skb)
5439 {
5440 	unsigned int hdr_len = skb_transport_header(skb) -
5441 			       skb_network_header(skb);
5442 
5443 	return hdr_len + skb_gso_transport_seglen(skb);
5444 }
5445 
5446 /**
5447  * skb_gso_mac_seglen - Return length of individual segments of a gso packet
5448  *
5449  * @skb: GSO skb
5450  *
5451  * skb_gso_mac_seglen is used to determine the real size of the
5452  * individual segments, including MAC/L2, Layer3 (IP, IPv6) and L4
5453  * headers (TCP/UDP).
5454  */
5455 static unsigned int skb_gso_mac_seglen(const struct sk_buff *skb)
5456 {
5457 	unsigned int hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
5458 
5459 	return hdr_len + skb_gso_transport_seglen(skb);
5460 }
5461 
5462 /**
5463  * skb_gso_size_check - check the skb size, considering GSO_BY_FRAGS
5464  *
5465  * There are a couple of instances where we have a GSO skb, and we
5466  * want to determine what size it would be after it is segmented.
5467  *
5468  * We might want to check:
5469  * -    L3+L4+payload size (e.g. IP forwarding)
5470  * - L2+L3+L4+payload size (e.g. sanity check before passing to driver)
5471  *
5472  * This is a helper to do that correctly considering GSO_BY_FRAGS.
5473  *
5474  * @skb: GSO skb
5475  *
5476  * @seg_len: The segmented length (from skb_gso_*_seglen). In the
5477  *           GSO_BY_FRAGS case this will be [header sizes + GSO_BY_FRAGS].
5478  *
5479  * @max_len: The maximum permissible length.
5480  *
5481  * Returns true if the segmented length <= max length.
5482  */
5483 static inline bool skb_gso_size_check(const struct sk_buff *skb,
5484 				      unsigned int seg_len,
5485 				      unsigned int max_len) {
5486 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
5487 	const struct sk_buff *iter;
5488 
5489 	if (shinfo->gso_size != GSO_BY_FRAGS)
5490 		return seg_len <= max_len;
5491 
5492 	/* Undo this so we can re-use header sizes */
5493 	seg_len -= GSO_BY_FRAGS;
5494 
5495 	skb_walk_frags(skb, iter) {
5496 		if (seg_len + skb_headlen(iter) > max_len)
5497 			return false;
5498 	}
5499 
5500 	return true;
5501 }
5502 
5503 /**
5504  * skb_gso_validate_network_len - Will a split GSO skb fit into a given MTU?
5505  *
5506  * @skb: GSO skb
5507  * @mtu: MTU to validate against
5508  *
5509  * skb_gso_validate_network_len validates if a given skb will fit a
5510  * wanted MTU once split. It considers L3 headers, L4 headers, and the
5511  * payload.
5512  */
5513 bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu)
5514 {
5515 	return skb_gso_size_check(skb, skb_gso_network_seglen(skb), mtu);
5516 }
5517 EXPORT_SYMBOL_GPL(skb_gso_validate_network_len);
5518 
5519 /**
5520  * skb_gso_validate_mac_len - Will a split GSO skb fit in a given length?
5521  *
5522  * @skb: GSO skb
5523  * @len: length to validate against
5524  *
5525  * skb_gso_validate_mac_len validates if a given skb will fit a wanted
5526  * length once split, including L2, L3 and L4 headers and the payload.
5527  */
5528 bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len)
5529 {
5530 	return skb_gso_size_check(skb, skb_gso_mac_seglen(skb), len);
5531 }
5532 EXPORT_SYMBOL_GPL(skb_gso_validate_mac_len);
5533 
5534 static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb)
5535 {
5536 	int mac_len, meta_len;
5537 	void *meta;
5538 
5539 	if (skb_cow(skb, skb_headroom(skb)) < 0) {
5540 		kfree_skb(skb);
5541 		return NULL;
5542 	}
5543 
5544 	mac_len = skb->data - skb_mac_header(skb);
5545 	if (likely(mac_len > VLAN_HLEN + ETH_TLEN)) {
5546 		memmove(skb_mac_header(skb) + VLAN_HLEN, skb_mac_header(skb),
5547 			mac_len - VLAN_HLEN - ETH_TLEN);
5548 	}
5549 
5550 	meta_len = skb_metadata_len(skb);
5551 	if (meta_len) {
5552 		meta = skb_metadata_end(skb) - meta_len;
5553 		memmove(meta + VLAN_HLEN, meta, meta_len);
5554 	}
5555 
5556 	skb->mac_header += VLAN_HLEN;
5557 	return skb;
5558 }
5559 
5560 struct sk_buff *skb_vlan_untag(struct sk_buff *skb)
5561 {
5562 	struct vlan_hdr *vhdr;
5563 	u16 vlan_tci;
5564 
5565 	if (unlikely(skb_vlan_tag_present(skb))) {
5566 		/* vlan_tci is already set-up so leave this for another time */
5567 		return skb;
5568 	}
5569 
5570 	skb = skb_share_check(skb, GFP_ATOMIC);
5571 	if (unlikely(!skb))
5572 		goto err_free;
5573 	/* We may access the two bytes after vlan_hdr in vlan_set_encap_proto(). */
5574 	if (unlikely(!pskb_may_pull(skb, VLAN_HLEN + sizeof(unsigned short))))
5575 		goto err_free;
5576 
5577 	vhdr = (struct vlan_hdr *)skb->data;
5578 	vlan_tci = ntohs(vhdr->h_vlan_TCI);
5579 	__vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci);
5580 
5581 	skb_pull_rcsum(skb, VLAN_HLEN);
5582 	vlan_set_encap_proto(skb, vhdr);
5583 
5584 	skb = skb_reorder_vlan_header(skb);
5585 	if (unlikely(!skb))
5586 		goto err_free;
5587 
5588 	skb_reset_network_header(skb);
5589 	if (!skb_transport_header_was_set(skb))
5590 		skb_reset_transport_header(skb);
5591 	skb_reset_mac_len(skb);
5592 
5593 	return skb;
5594 
5595 err_free:
5596 	kfree_skb(skb);
5597 	return NULL;
5598 }
5599 EXPORT_SYMBOL(skb_vlan_untag);
5600 
5601 int skb_ensure_writable(struct sk_buff *skb, int write_len)
5602 {
5603 	if (!pskb_may_pull(skb, write_len))
5604 		return -ENOMEM;
5605 
5606 	if (!skb_cloned(skb) || skb_clone_writable(skb, write_len))
5607 		return 0;
5608 
5609 	return pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
5610 }
5611 EXPORT_SYMBOL(skb_ensure_writable);
5612 
5613 /* remove VLAN header from packet and update csum accordingly.
5614  * expects a non skb_vlan_tag_present skb with a vlan tag payload
5615  */
5616 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci)
5617 {
5618 	struct vlan_hdr *vhdr;
5619 	int offset = skb->data - skb_mac_header(skb);
5620 	int err;
5621 
5622 	if (WARN_ONCE(offset,
5623 		      "__skb_vlan_pop got skb with skb->data not at mac header (offset %d)\n",
5624 		      offset)) {
5625 		return -EINVAL;
5626 	}
5627 
5628 	err = skb_ensure_writable(skb, VLAN_ETH_HLEN);
5629 	if (unlikely(err))
5630 		return err;
5631 
5632 	skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
5633 
5634 	vhdr = (struct vlan_hdr *)(skb->data + ETH_HLEN);
5635 	*vlan_tci = ntohs(vhdr->h_vlan_TCI);
5636 
5637 	memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN);
5638 	__skb_pull(skb, VLAN_HLEN);
5639 
5640 	vlan_set_encap_proto(skb, vhdr);
5641 	skb->mac_header += VLAN_HLEN;
5642 
5643 	if (skb_network_offset(skb) < ETH_HLEN)
5644 		skb_set_network_header(skb, ETH_HLEN);
5645 
5646 	skb_reset_mac_len(skb);
5647 
5648 	return err;
5649 }
5650 EXPORT_SYMBOL(__skb_vlan_pop);
5651 
5652 /* Pop a vlan tag either from hwaccel or from payload.
5653  * Expects skb->data at mac header.
5654  */
5655 int skb_vlan_pop(struct sk_buff *skb)
5656 {
5657 	u16 vlan_tci;
5658 	__be16 vlan_proto;
5659 	int err;
5660 
5661 	if (likely(skb_vlan_tag_present(skb))) {
5662 		__vlan_hwaccel_clear_tag(skb);
5663 	} else {
5664 		if (unlikely(!eth_type_vlan(skb->protocol)))
5665 			return 0;
5666 
5667 		err = __skb_vlan_pop(skb, &vlan_tci);
5668 		if (err)
5669 			return err;
5670 	}
5671 	/* move next vlan tag to hw accel tag */
5672 	if (likely(!eth_type_vlan(skb->protocol)))
5673 		return 0;
5674 
5675 	vlan_proto = skb->protocol;
5676 	err = __skb_vlan_pop(skb, &vlan_tci);
5677 	if (unlikely(err))
5678 		return err;
5679 
5680 	__vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
5681 	return 0;
5682 }
5683 EXPORT_SYMBOL(skb_vlan_pop);
5684 
5685 /* Push a vlan tag either into hwaccel or into payload (if hwaccel tag present).
5686  * Expects skb->data at mac header.
5687  */
5688 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci)
5689 {
5690 	if (skb_vlan_tag_present(skb)) {
5691 		int offset = skb->data - skb_mac_header(skb);
5692 		int err;
5693 
5694 		if (WARN_ONCE(offset,
5695 			      "skb_vlan_push got skb with skb->data not at mac header (offset %d)\n",
5696 			      offset)) {
5697 			return -EINVAL;
5698 		}
5699 
5700 		err = __vlan_insert_tag(skb, skb->vlan_proto,
5701 					skb_vlan_tag_get(skb));
5702 		if (err)
5703 			return err;
5704 
5705 		skb->protocol = skb->vlan_proto;
5706 		skb->mac_len += VLAN_HLEN;
5707 
5708 		skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
5709 	}
5710 	__vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
5711 	return 0;
5712 }
5713 EXPORT_SYMBOL(skb_vlan_push);
5714 
5715 /**
5716  * skb_eth_pop() - Drop the Ethernet header at the head of a packet
5717  *
5718  * @skb: Socket buffer to modify
5719  *
5720  * Drop the Ethernet header of @skb.
5721  *
5722  * Expects that skb->data points to the mac header and that no VLAN tags are
5723  * present.
5724  *
5725  * Returns 0 on success, -errno otherwise.
5726  */
5727 int skb_eth_pop(struct sk_buff *skb)
5728 {
5729 	if (!pskb_may_pull(skb, ETH_HLEN) || skb_vlan_tagged(skb) ||
5730 	    skb_network_offset(skb) < ETH_HLEN)
5731 		return -EPROTO;
5732 
5733 	skb_pull_rcsum(skb, ETH_HLEN);
5734 	skb_reset_mac_header(skb);
5735 	skb_reset_mac_len(skb);
5736 
5737 	return 0;
5738 }
5739 EXPORT_SYMBOL(skb_eth_pop);
5740 
5741 /**
5742  * skb_eth_push() - Add a new Ethernet header at the head of a packet
5743  *
5744  * @skb: Socket buffer to modify
5745  * @dst: Destination MAC address of the new header
5746  * @src: Source MAC address of the new header
5747  *
5748  * Prepend @skb with a new Ethernet header.
5749  *
5750  * Expects that skb->data points to the mac header, which must be empty.
5751  *
5752  * Returns 0 on success, -errno otherwise.
5753  */
5754 int skb_eth_push(struct sk_buff *skb, const unsigned char *dst,
5755 		 const unsigned char *src)
5756 {
5757 	struct ethhdr *eth;
5758 	int err;
5759 
5760 	if (skb_network_offset(skb) || skb_vlan_tag_present(skb))
5761 		return -EPROTO;
5762 
5763 	err = skb_cow_head(skb, sizeof(*eth));
5764 	if (err < 0)
5765 		return err;
5766 
5767 	skb_push(skb, sizeof(*eth));
5768 	skb_reset_mac_header(skb);
5769 	skb_reset_mac_len(skb);
5770 
5771 	eth = eth_hdr(skb);
5772 	ether_addr_copy(eth->h_dest, dst);
5773 	ether_addr_copy(eth->h_source, src);
5774 	eth->h_proto = skb->protocol;
5775 
5776 	skb_postpush_rcsum(skb, eth, sizeof(*eth));
5777 
5778 	return 0;
5779 }
5780 EXPORT_SYMBOL(skb_eth_push);
5781 
5782 /* Update the ethertype of hdr and the skb csum value if required. */
5783 static void skb_mod_eth_type(struct sk_buff *skb, struct ethhdr *hdr,
5784 			     __be16 ethertype)
5785 {
5786 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
5787 		__be16 diff[] = { ~hdr->h_proto, ethertype };
5788 
5789 		skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum);
5790 	}
5791 
5792 	hdr->h_proto = ethertype;
5793 }
5794 
5795 /**
5796  * skb_mpls_push() - push a new MPLS header after mac_len bytes from start of
5797  *                   the packet
5798  *
5799  * @skb: buffer
5800  * @mpls_lse: MPLS label stack entry to push
5801  * @mpls_proto: ethertype of the new MPLS header (expects 0x8847 or 0x8848)
5802  * @mac_len: length of the MAC header
5803  * @ethernet: flag to indicate if the resulting packet after skb_mpls_push is
5804  *            ethernet
5805  *
5806  * Expects skb->data at mac header.
5807  *
5808  * Returns 0 on success, -errno otherwise.
5809  */
5810 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto,
5811 		  int mac_len, bool ethernet)
5812 {
5813 	struct mpls_shim_hdr *lse;
5814 	int err;
5815 
5816 	if (unlikely(!eth_p_mpls(mpls_proto)))
5817 		return -EINVAL;
5818 
5819 	/* Networking stack does not allow simultaneous Tunnel and MPLS GSO. */
5820 	if (skb->encapsulation)
5821 		return -EINVAL;
5822 
5823 	err = skb_cow_head(skb, MPLS_HLEN);
5824 	if (unlikely(err))
5825 		return err;
5826 
5827 	if (!skb->inner_protocol) {
5828 		skb_set_inner_network_header(skb, skb_network_offset(skb));
5829 		skb_set_inner_protocol(skb, skb->protocol);
5830 	}
5831 
5832 	skb_push(skb, MPLS_HLEN);
5833 	memmove(skb_mac_header(skb) - MPLS_HLEN, skb_mac_header(skb),
5834 		mac_len);
5835 	skb_reset_mac_header(skb);
5836 	skb_set_network_header(skb, mac_len);
5837 	skb_reset_mac_len(skb);
5838 
5839 	lse = mpls_hdr(skb);
5840 	lse->label_stack_entry = mpls_lse;
5841 	skb_postpush_rcsum(skb, lse, MPLS_HLEN);
5842 
5843 	if (ethernet && mac_len >= ETH_HLEN)
5844 		skb_mod_eth_type(skb, eth_hdr(skb), mpls_proto);
5845 	skb->protocol = mpls_proto;
5846 
5847 	return 0;
5848 }
5849 EXPORT_SYMBOL_GPL(skb_mpls_push);
5850 
5851 /**
5852  * skb_mpls_pop() - pop the outermost MPLS header
5853  *
5854  * @skb: buffer
5855  * @next_proto: ethertype of header after popped MPLS header
5856  * @mac_len: length of the MAC header
5857  * @ethernet: flag to indicate if the packet is ethernet
5858  *
5859  * Expects skb->data at mac header.
5860  *
5861  * Returns 0 on success, -errno otherwise.
5862  */
5863 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len,
5864 		 bool ethernet)
5865 {
5866 	int err;
5867 
5868 	if (unlikely(!eth_p_mpls(skb->protocol)))
5869 		return 0;
5870 
5871 	err = skb_ensure_writable(skb, mac_len + MPLS_HLEN);
5872 	if (unlikely(err))
5873 		return err;
5874 
5875 	skb_postpull_rcsum(skb, mpls_hdr(skb), MPLS_HLEN);
5876 	memmove(skb_mac_header(skb) + MPLS_HLEN, skb_mac_header(skb),
5877 		mac_len);
5878 
5879 	__skb_pull(skb, MPLS_HLEN);
5880 	skb_reset_mac_header(skb);
5881 	skb_set_network_header(skb, mac_len);
5882 
5883 	if (ethernet && mac_len >= ETH_HLEN) {
5884 		struct ethhdr *hdr;
5885 
5886 		/* use mpls_hdr() to get ethertype to account for VLANs. */
5887 		hdr = (struct ethhdr *)((void *)mpls_hdr(skb) - ETH_HLEN);
5888 		skb_mod_eth_type(skb, hdr, next_proto);
5889 	}
5890 	skb->protocol = next_proto;
5891 
5892 	return 0;
5893 }
5894 EXPORT_SYMBOL_GPL(skb_mpls_pop);
5895 
5896 /**
5897  * skb_mpls_update_lse() - modify outermost MPLS header and update csum
5898  *
5899  * @skb: buffer
5900  * @mpls_lse: new MPLS label stack entry to update to
5901  *
5902  * Expects skb->data at mac header.
5903  *
5904  * Returns 0 on success, -errno otherwise.
5905  */
5906 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse)
5907 {
5908 	int err;
5909 
5910 	if (unlikely(!eth_p_mpls(skb->protocol)))
5911 		return -EINVAL;
5912 
5913 	err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN);
5914 	if (unlikely(err))
5915 		return err;
5916 
5917 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
5918 		__be32 diff[] = { ~mpls_hdr(skb)->label_stack_entry, mpls_lse };
5919 
5920 		skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum);
5921 	}
5922 
5923 	mpls_hdr(skb)->label_stack_entry = mpls_lse;
5924 
5925 	return 0;
5926 }
5927 EXPORT_SYMBOL_GPL(skb_mpls_update_lse);
5928 
5929 /**
5930  * skb_mpls_dec_ttl() - decrement the TTL of the outermost MPLS header
5931  *
5932  * @skb: buffer
5933  *
5934  * Expects skb->data at mac header.
5935  *
5936  * Returns 0 on success, -errno otherwise.
5937  */
5938 int skb_mpls_dec_ttl(struct sk_buff *skb)
5939 {
5940 	u32 lse;
5941 	u8 ttl;
5942 
5943 	if (unlikely(!eth_p_mpls(skb->protocol)))
5944 		return -EINVAL;
5945 
5946 	if (!pskb_may_pull(skb, skb_network_offset(skb) + MPLS_HLEN))
5947 		return -ENOMEM;
5948 
5949 	lse = be32_to_cpu(mpls_hdr(skb)->label_stack_entry);
5950 	ttl = (lse & MPLS_LS_TTL_MASK) >> MPLS_LS_TTL_SHIFT;
5951 	if (!--ttl)
5952 		return -EINVAL;
5953 
5954 	lse &= ~MPLS_LS_TTL_MASK;
5955 	lse |= ttl << MPLS_LS_TTL_SHIFT;
5956 
5957 	return skb_mpls_update_lse(skb, cpu_to_be32(lse));
5958 }
5959 EXPORT_SYMBOL_GPL(skb_mpls_dec_ttl);
5960 
5961 /**
5962  * alloc_skb_with_frags - allocate skb with page frags
5963  *
5964  * @header_len: size of linear part
5965  * @data_len: needed length in frags
5966  * @max_page_order: max page order desired.
5967  * @errcode: pointer to error code if any
5968  * @gfp_mask: allocation mask
5969  *
5970  * This can be used to allocate a paged skb, given a maximal order for frags.
5971  */
5972 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
5973 				     unsigned long data_len,
5974 				     int max_page_order,
5975 				     int *errcode,
5976 				     gfp_t gfp_mask)
5977 {
5978 	int npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
5979 	unsigned long chunk;
5980 	struct sk_buff *skb;
5981 	struct page *page;
5982 	int i;
5983 
5984 	*errcode = -EMSGSIZE;
5985 	/* Note this test could be relaxed, if we succeed to allocate
5986 	 * high order pages...
5987 	 */
5988 	if (npages > MAX_SKB_FRAGS)
5989 		return NULL;
5990 
5991 	*errcode = -ENOBUFS;
5992 	skb = alloc_skb(header_len, gfp_mask);
5993 	if (!skb)
5994 		return NULL;
5995 
5996 	skb->truesize += npages << PAGE_SHIFT;
5997 
5998 	for (i = 0; npages > 0; i++) {
5999 		int order = max_page_order;
6000 
6001 		while (order) {
6002 			if (npages >= 1 << order) {
6003 				page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) |
6004 						   __GFP_COMP |
6005 						   __GFP_NOWARN,
6006 						   order);
6007 				if (page)
6008 					goto fill_page;
6009 				/* Do not retry other high order allocations */
6010 				order = 1;
6011 				max_page_order = 0;
6012 			}
6013 			order--;
6014 		}
6015 		page = alloc_page(gfp_mask);
6016 		if (!page)
6017 			goto failure;
6018 fill_page:
6019 		chunk = min_t(unsigned long, data_len,
6020 			      PAGE_SIZE << order);
6021 		skb_fill_page_desc(skb, i, page, 0, chunk);
6022 		data_len -= chunk;
6023 		npages -= 1 << order;
6024 	}
6025 	return skb;
6026 
6027 failure:
6028 	kfree_skb(skb);
6029 	return NULL;
6030 }
6031 EXPORT_SYMBOL(alloc_skb_with_frags);
6032 
6033 /* carve out the first off bytes from skb when off < headlen */
6034 static int pskb_carve_inside_header(struct sk_buff *skb, const u32 off,
6035 				    const int headlen, gfp_t gfp_mask)
6036 {
6037 	int i;
6038 	int size = skb_end_offset(skb);
6039 	int new_hlen = headlen - off;
6040 	u8 *data;
6041 
6042 	size = SKB_DATA_ALIGN(size);
6043 
6044 	if (skb_pfmemalloc(skb))
6045 		gfp_mask |= __GFP_MEMALLOC;
6046 	data = kmalloc_reserve(size +
6047 			       SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
6048 			       gfp_mask, NUMA_NO_NODE, NULL);
6049 	if (!data)
6050 		return -ENOMEM;
6051 
6052 	size = SKB_WITH_OVERHEAD(ksize(data));
6053 
6054 	/* Copy real data, and all frags */
6055 	skb_copy_from_linear_data_offset(skb, off, data, new_hlen);
6056 	skb->len -= off;
6057 
6058 	memcpy((struct skb_shared_info *)(data + size),
6059 	       skb_shinfo(skb),
6060 	       offsetof(struct skb_shared_info,
6061 			frags[skb_shinfo(skb)->nr_frags]));
6062 	if (skb_cloned(skb)) {
6063 		/* drop the old head gracefully */
6064 		if (skb_orphan_frags(skb, gfp_mask)) {
6065 			kfree(data);
6066 			return -ENOMEM;
6067 		}
6068 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
6069 			skb_frag_ref(skb, i);
6070 		if (skb_has_frag_list(skb))
6071 			skb_clone_fraglist(skb);
6072 		skb_release_data(skb);
6073 	} else {
6074 		/* we can reuse existing recount- all we did was
6075 		 * relocate values
6076 		 */
6077 		skb_free_head(skb);
6078 	}
6079 
6080 	skb->head = data;
6081 	skb->data = data;
6082 	skb->head_frag = 0;
6083 #ifdef NET_SKBUFF_DATA_USES_OFFSET
6084 	skb->end = size;
6085 #else
6086 	skb->end = skb->head + size;
6087 #endif
6088 	skb_set_tail_pointer(skb, skb_headlen(skb));
6089 	skb_headers_offset_update(skb, 0);
6090 	skb->cloned = 0;
6091 	skb->hdr_len = 0;
6092 	skb->nohdr = 0;
6093 	atomic_set(&skb_shinfo(skb)->dataref, 1);
6094 
6095 	return 0;
6096 }
6097 
6098 static int pskb_carve(struct sk_buff *skb, const u32 off, gfp_t gfp);
6099 
6100 /* carve out the first eat bytes from skb's frag_list. May recurse into
6101  * pskb_carve()
6102  */
6103 static int pskb_carve_frag_list(struct sk_buff *skb,
6104 				struct skb_shared_info *shinfo, int eat,
6105 				gfp_t gfp_mask)
6106 {
6107 	struct sk_buff *list = shinfo->frag_list;
6108 	struct sk_buff *clone = NULL;
6109 	struct sk_buff *insp = NULL;
6110 
6111 	do {
6112 		if (!list) {
6113 			pr_err("Not enough bytes to eat. Want %d\n", eat);
6114 			return -EFAULT;
6115 		}
6116 		if (list->len <= eat) {
6117 			/* Eaten as whole. */
6118 			eat -= list->len;
6119 			list = list->next;
6120 			insp = list;
6121 		} else {
6122 			/* Eaten partially. */
6123 			if (skb_shared(list)) {
6124 				clone = skb_clone(list, gfp_mask);
6125 				if (!clone)
6126 					return -ENOMEM;
6127 				insp = list->next;
6128 				list = clone;
6129 			} else {
6130 				/* This may be pulled without problems. */
6131 				insp = list;
6132 			}
6133 			if (pskb_carve(list, eat, gfp_mask) < 0) {
6134 				kfree_skb(clone);
6135 				return -ENOMEM;
6136 			}
6137 			break;
6138 		}
6139 	} while (eat);
6140 
6141 	/* Free pulled out fragments. */
6142 	while ((list = shinfo->frag_list) != insp) {
6143 		shinfo->frag_list = list->next;
6144 		kfree_skb(list);
6145 	}
6146 	/* And insert new clone at head. */
6147 	if (clone) {
6148 		clone->next = list;
6149 		shinfo->frag_list = clone;
6150 	}
6151 	return 0;
6152 }
6153 
6154 /* carve off first len bytes from skb. Split line (off) is in the
6155  * non-linear part of skb
6156  */
6157 static int pskb_carve_inside_nonlinear(struct sk_buff *skb, const u32 off,
6158 				       int pos, gfp_t gfp_mask)
6159 {
6160 	int i, k = 0;
6161 	int size = skb_end_offset(skb);
6162 	u8 *data;
6163 	const int nfrags = skb_shinfo(skb)->nr_frags;
6164 	struct skb_shared_info *shinfo;
6165 
6166 	size = SKB_DATA_ALIGN(size);
6167 
6168 	if (skb_pfmemalloc(skb))
6169 		gfp_mask |= __GFP_MEMALLOC;
6170 	data = kmalloc_reserve(size +
6171 			       SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
6172 			       gfp_mask, NUMA_NO_NODE, NULL);
6173 	if (!data)
6174 		return -ENOMEM;
6175 
6176 	size = SKB_WITH_OVERHEAD(ksize(data));
6177 
6178 	memcpy((struct skb_shared_info *)(data + size),
6179 	       skb_shinfo(skb), offsetof(struct skb_shared_info, frags[0]));
6180 	if (skb_orphan_frags(skb, gfp_mask)) {
6181 		kfree(data);
6182 		return -ENOMEM;
6183 	}
6184 	shinfo = (struct skb_shared_info *)(data + size);
6185 	for (i = 0; i < nfrags; i++) {
6186 		int fsize = skb_frag_size(&skb_shinfo(skb)->frags[i]);
6187 
6188 		if (pos + fsize > off) {
6189 			shinfo->frags[k] = skb_shinfo(skb)->frags[i];
6190 
6191 			if (pos < off) {
6192 				/* Split frag.
6193 				 * We have two variants in this case:
6194 				 * 1. Move all the frag to the second
6195 				 *    part, if it is possible. F.e.
6196 				 *    this approach is mandatory for TUX,
6197 				 *    where splitting is expensive.
6198 				 * 2. Split is accurately. We make this.
6199 				 */
6200 				skb_frag_off_add(&shinfo->frags[0], off - pos);
6201 				skb_frag_size_sub(&shinfo->frags[0], off - pos);
6202 			}
6203 			skb_frag_ref(skb, i);
6204 			k++;
6205 		}
6206 		pos += fsize;
6207 	}
6208 	shinfo->nr_frags = k;
6209 	if (skb_has_frag_list(skb))
6210 		skb_clone_fraglist(skb);
6211 
6212 	/* split line is in frag list */
6213 	if (k == 0 && pskb_carve_frag_list(skb, shinfo, off - pos, gfp_mask)) {
6214 		/* skb_frag_unref() is not needed here as shinfo->nr_frags = 0. */
6215 		if (skb_has_frag_list(skb))
6216 			kfree_skb_list(skb_shinfo(skb)->frag_list);
6217 		kfree(data);
6218 		return -ENOMEM;
6219 	}
6220 	skb_release_data(skb);
6221 
6222 	skb->head = data;
6223 	skb->head_frag = 0;
6224 	skb->data = data;
6225 #ifdef NET_SKBUFF_DATA_USES_OFFSET
6226 	skb->end = size;
6227 #else
6228 	skb->end = skb->head + size;
6229 #endif
6230 	skb_reset_tail_pointer(skb);
6231 	skb_headers_offset_update(skb, 0);
6232 	skb->cloned   = 0;
6233 	skb->hdr_len  = 0;
6234 	skb->nohdr    = 0;
6235 	skb->len -= off;
6236 	skb->data_len = skb->len;
6237 	atomic_set(&skb_shinfo(skb)->dataref, 1);
6238 	return 0;
6239 }
6240 
6241 /* remove len bytes from the beginning of the skb */
6242 static int pskb_carve(struct sk_buff *skb, const u32 len, gfp_t gfp)
6243 {
6244 	int headlen = skb_headlen(skb);
6245 
6246 	if (len < headlen)
6247 		return pskb_carve_inside_header(skb, len, headlen, gfp);
6248 	else
6249 		return pskb_carve_inside_nonlinear(skb, len, headlen, gfp);
6250 }
6251 
6252 /* Extract to_copy bytes starting at off from skb, and return this in
6253  * a new skb
6254  */
6255 struct sk_buff *pskb_extract(struct sk_buff *skb, int off,
6256 			     int to_copy, gfp_t gfp)
6257 {
6258 	struct sk_buff  *clone = skb_clone(skb, gfp);
6259 
6260 	if (!clone)
6261 		return NULL;
6262 
6263 	if (pskb_carve(clone, off, gfp) < 0 ||
6264 	    pskb_trim(clone, to_copy)) {
6265 		kfree_skb(clone);
6266 		return NULL;
6267 	}
6268 	return clone;
6269 }
6270 EXPORT_SYMBOL(pskb_extract);
6271 
6272 /**
6273  * skb_condense - try to get rid of fragments/frag_list if possible
6274  * @skb: buffer
6275  *
6276  * Can be used to save memory before skb is added to a busy queue.
6277  * If packet has bytes in frags and enough tail room in skb->head,
6278  * pull all of them, so that we can free the frags right now and adjust
6279  * truesize.
6280  * Notes:
6281  *	We do not reallocate skb->head thus can not fail.
6282  *	Caller must re-evaluate skb->truesize if needed.
6283  */
6284 void skb_condense(struct sk_buff *skb)
6285 {
6286 	if (skb->data_len) {
6287 		if (skb->data_len > skb->end - skb->tail ||
6288 		    skb_cloned(skb))
6289 			return;
6290 
6291 		/* Nice, we can free page frag(s) right now */
6292 		__pskb_pull_tail(skb, skb->data_len);
6293 	}
6294 	/* At this point, skb->truesize might be over estimated,
6295 	 * because skb had a fragment, and fragments do not tell
6296 	 * their truesize.
6297 	 * When we pulled its content into skb->head, fragment
6298 	 * was freed, but __pskb_pull_tail() could not possibly
6299 	 * adjust skb->truesize, not knowing the frag truesize.
6300 	 */
6301 	skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
6302 }
6303 
6304 #ifdef CONFIG_SKB_EXTENSIONS
6305 static void *skb_ext_get_ptr(struct skb_ext *ext, enum skb_ext_id id)
6306 {
6307 	return (void *)ext + (ext->offset[id] * SKB_EXT_ALIGN_VALUE);
6308 }
6309 
6310 /**
6311  * __skb_ext_alloc - allocate a new skb extensions storage
6312  *
6313  * @flags: See kmalloc().
6314  *
6315  * Returns the newly allocated pointer. The pointer can later attached to a
6316  * skb via __skb_ext_set().
6317  * Note: caller must handle the skb_ext as an opaque data.
6318  */
6319 struct skb_ext *__skb_ext_alloc(gfp_t flags)
6320 {
6321 	struct skb_ext *new = kmem_cache_alloc(skbuff_ext_cache, flags);
6322 
6323 	if (new) {
6324 		memset(new->offset, 0, sizeof(new->offset));
6325 		refcount_set(&new->refcnt, 1);
6326 	}
6327 
6328 	return new;
6329 }
6330 
6331 static struct skb_ext *skb_ext_maybe_cow(struct skb_ext *old,
6332 					 unsigned int old_active)
6333 {
6334 	struct skb_ext *new;
6335 
6336 	if (refcount_read(&old->refcnt) == 1)
6337 		return old;
6338 
6339 	new = kmem_cache_alloc(skbuff_ext_cache, GFP_ATOMIC);
6340 	if (!new)
6341 		return NULL;
6342 
6343 	memcpy(new, old, old->chunks * SKB_EXT_ALIGN_VALUE);
6344 	refcount_set(&new->refcnt, 1);
6345 
6346 #ifdef CONFIG_XFRM
6347 	if (old_active & (1 << SKB_EXT_SEC_PATH)) {
6348 		struct sec_path *sp = skb_ext_get_ptr(old, SKB_EXT_SEC_PATH);
6349 		unsigned int i;
6350 
6351 		for (i = 0; i < sp->len; i++)
6352 			xfrm_state_hold(sp->xvec[i]);
6353 	}
6354 #endif
6355 	__skb_ext_put(old);
6356 	return new;
6357 }
6358 
6359 /**
6360  * __skb_ext_set - attach the specified extension storage to this skb
6361  * @skb: buffer
6362  * @id: extension id
6363  * @ext: extension storage previously allocated via __skb_ext_alloc()
6364  *
6365  * Existing extensions, if any, are cleared.
6366  *
6367  * Returns the pointer to the extension.
6368  */
6369 void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id,
6370 		    struct skb_ext *ext)
6371 {
6372 	unsigned int newlen, newoff = SKB_EXT_CHUNKSIZEOF(*ext);
6373 
6374 	skb_ext_put(skb);
6375 	newlen = newoff + skb_ext_type_len[id];
6376 	ext->chunks = newlen;
6377 	ext->offset[id] = newoff;
6378 	skb->extensions = ext;
6379 	skb->active_extensions = 1 << id;
6380 	return skb_ext_get_ptr(ext, id);
6381 }
6382 
6383 /**
6384  * skb_ext_add - allocate space for given extension, COW if needed
6385  * @skb: buffer
6386  * @id: extension to allocate space for
6387  *
6388  * Allocates enough space for the given extension.
6389  * If the extension is already present, a pointer to that extension
6390  * is returned.
6391  *
6392  * If the skb was cloned, COW applies and the returned memory can be
6393  * modified without changing the extension space of clones buffers.
6394  *
6395  * Returns pointer to the extension or NULL on allocation failure.
6396  */
6397 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id)
6398 {
6399 	struct skb_ext *new, *old = NULL;
6400 	unsigned int newlen, newoff;
6401 
6402 	if (skb->active_extensions) {
6403 		old = skb->extensions;
6404 
6405 		new = skb_ext_maybe_cow(old, skb->active_extensions);
6406 		if (!new)
6407 			return NULL;
6408 
6409 		if (__skb_ext_exist(new, id))
6410 			goto set_active;
6411 
6412 		newoff = new->chunks;
6413 	} else {
6414 		newoff = SKB_EXT_CHUNKSIZEOF(*new);
6415 
6416 		new = __skb_ext_alloc(GFP_ATOMIC);
6417 		if (!new)
6418 			return NULL;
6419 	}
6420 
6421 	newlen = newoff + skb_ext_type_len[id];
6422 	new->chunks = newlen;
6423 	new->offset[id] = newoff;
6424 set_active:
6425 	skb->extensions = new;
6426 	skb->active_extensions |= 1 << id;
6427 	return skb_ext_get_ptr(new, id);
6428 }
6429 EXPORT_SYMBOL(skb_ext_add);
6430 
6431 #ifdef CONFIG_XFRM
6432 static void skb_ext_put_sp(struct sec_path *sp)
6433 {
6434 	unsigned int i;
6435 
6436 	for (i = 0; i < sp->len; i++)
6437 		xfrm_state_put(sp->xvec[i]);
6438 }
6439 #endif
6440 
6441 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id)
6442 {
6443 	struct skb_ext *ext = skb->extensions;
6444 
6445 	skb->active_extensions &= ~(1 << id);
6446 	if (skb->active_extensions == 0) {
6447 		skb->extensions = NULL;
6448 		__skb_ext_put(ext);
6449 #ifdef CONFIG_XFRM
6450 	} else if (id == SKB_EXT_SEC_PATH &&
6451 		   refcount_read(&ext->refcnt) == 1) {
6452 		struct sec_path *sp = skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH);
6453 
6454 		skb_ext_put_sp(sp);
6455 		sp->len = 0;
6456 #endif
6457 	}
6458 }
6459 EXPORT_SYMBOL(__skb_ext_del);
6460 
6461 void __skb_ext_put(struct skb_ext *ext)
6462 {
6463 	/* If this is last clone, nothing can increment
6464 	 * it after check passes.  Avoids one atomic op.
6465 	 */
6466 	if (refcount_read(&ext->refcnt) == 1)
6467 		goto free_now;
6468 
6469 	if (!refcount_dec_and_test(&ext->refcnt))
6470 		return;
6471 free_now:
6472 #ifdef CONFIG_XFRM
6473 	if (__skb_ext_exist(ext, SKB_EXT_SEC_PATH))
6474 		skb_ext_put_sp(skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH));
6475 #endif
6476 
6477 	kmem_cache_free(skbuff_ext_cache, ext);
6478 }
6479 EXPORT_SYMBOL(__skb_ext_put);
6480 #endif /* CONFIG_SKB_EXTENSIONS */
6481