xref: /openbmc/linux/net/core/skbuff.c (revision baa7eb025ab14f3cba2e35c0a8648f9c9f01d24f)
1 /*
2  *	Routines having to do with the 'struct sk_buff' memory handlers.
3  *
4  *	Authors:	Alan Cox <alan@lxorguk.ukuu.org.uk>
5  *			Florian La Roche <rzsfl@rz.uni-sb.de>
6  *
7  *	Fixes:
8  *		Alan Cox	:	Fixed the worst of the load
9  *					balancer bugs.
10  *		Dave Platt	:	Interrupt stacking fix.
11  *	Richard Kooijman	:	Timestamp fixes.
12  *		Alan Cox	:	Changed buffer format.
13  *		Alan Cox	:	destructor hook for AF_UNIX etc.
14  *		Linus Torvalds	:	Better skb_clone.
15  *		Alan Cox	:	Added skb_copy.
16  *		Alan Cox	:	Added all the changed routines Linus
17  *					only put in the headers
18  *		Ray VanTassle	:	Fixed --skb->lock in free
19  *		Alan Cox	:	skb_copy copy arp field
20  *		Andi Kleen	:	slabified it.
21  *		Robert Olsson	:	Removed skb_head_pool
22  *
23  *	NOTE:
24  *		The __skb_ routines should be called with interrupts
25  *	disabled, or you better be *real* sure that the operation is atomic
26  *	with respect to whatever list is being frobbed (e.g. via lock_sock()
27  *	or via disabling bottom half handlers, etc).
28  *
29  *	This program is free software; you can redistribute it and/or
30  *	modify it under the terms of the GNU General Public License
31  *	as published by the Free Software Foundation; either version
32  *	2 of the License, or (at your option) any later version.
33  */
34 
35 /*
36  *	The functions in this file will not compile correctly with gcc 2.4.x
37  */
38 
39 #include <linux/module.h>
40 #include <linux/types.h>
41 #include <linux/kernel.h>
42 #include <linux/kmemcheck.h>
43 #include <linux/mm.h>
44 #include <linux/interrupt.h>
45 #include <linux/in.h>
46 #include <linux/inet.h>
47 #include <linux/slab.h>
48 #include <linux/netdevice.h>
49 #ifdef CONFIG_NET_CLS_ACT
50 #include <net/pkt_sched.h>
51 #endif
52 #include <linux/string.h>
53 #include <linux/skbuff.h>
54 #include <linux/splice.h>
55 #include <linux/cache.h>
56 #include <linux/rtnetlink.h>
57 #include <linux/init.h>
58 #include <linux/scatterlist.h>
59 #include <linux/errqueue.h>
60 
61 #include <net/protocol.h>
62 #include <net/dst.h>
63 #include <net/sock.h>
64 #include <net/checksum.h>
65 #include <net/xfrm.h>
66 
67 #include <asm/uaccess.h>
68 #include <asm/system.h>
69 #include <trace/events/skb.h>
70 
71 #include "kmap_skb.h"
72 
73 static struct kmem_cache *skbuff_head_cache __read_mostly;
74 static struct kmem_cache *skbuff_fclone_cache __read_mostly;
75 
76 static void sock_pipe_buf_release(struct pipe_inode_info *pipe,
77 				  struct pipe_buffer *buf)
78 {
79 	put_page(buf->page);
80 }
81 
82 static void sock_pipe_buf_get(struct pipe_inode_info *pipe,
83 				struct pipe_buffer *buf)
84 {
85 	get_page(buf->page);
86 }
87 
88 static int sock_pipe_buf_steal(struct pipe_inode_info *pipe,
89 			       struct pipe_buffer *buf)
90 {
91 	return 1;
92 }
93 
94 
95 /* Pipe buffer operations for a socket. */
96 static const struct pipe_buf_operations sock_pipe_buf_ops = {
97 	.can_merge = 0,
98 	.map = generic_pipe_buf_map,
99 	.unmap = generic_pipe_buf_unmap,
100 	.confirm = generic_pipe_buf_confirm,
101 	.release = sock_pipe_buf_release,
102 	.steal = sock_pipe_buf_steal,
103 	.get = sock_pipe_buf_get,
104 };
105 
106 /*
107  *	Keep out-of-line to prevent kernel bloat.
108  *	__builtin_return_address is not used because it is not always
109  *	reliable.
110  */
111 
112 /**
113  *	skb_over_panic	- 	private function
114  *	@skb: buffer
115  *	@sz: size
116  *	@here: address
117  *
118  *	Out of line support code for skb_put(). Not user callable.
119  */
120 static void skb_over_panic(struct sk_buff *skb, int sz, void *here)
121 {
122 	printk(KERN_EMERG "skb_over_panic: text:%p len:%d put:%d head:%p "
123 			  "data:%p tail:%#lx end:%#lx dev:%s\n",
124 	       here, skb->len, sz, skb->head, skb->data,
125 	       (unsigned long)skb->tail, (unsigned long)skb->end,
126 	       skb->dev ? skb->dev->name : "<NULL>");
127 	BUG();
128 }
129 
130 /**
131  *	skb_under_panic	- 	private function
132  *	@skb: buffer
133  *	@sz: size
134  *	@here: address
135  *
136  *	Out of line support code for skb_push(). Not user callable.
137  */
138 
139 static void skb_under_panic(struct sk_buff *skb, int sz, void *here)
140 {
141 	printk(KERN_EMERG "skb_under_panic: text:%p len:%d put:%d head:%p "
142 			  "data:%p tail:%#lx end:%#lx dev:%s\n",
143 	       here, skb->len, sz, skb->head, skb->data,
144 	       (unsigned long)skb->tail, (unsigned long)skb->end,
145 	       skb->dev ? skb->dev->name : "<NULL>");
146 	BUG();
147 }
148 
149 /* 	Allocate a new skbuff. We do this ourselves so we can fill in a few
150  *	'private' fields and also do memory statistics to find all the
151  *	[BEEP] leaks.
152  *
153  */
154 
155 /**
156  *	__alloc_skb	-	allocate a network buffer
157  *	@size: size to allocate
158  *	@gfp_mask: allocation mask
159  *	@fclone: allocate from fclone cache instead of head cache
160  *		and allocate a cloned (child) skb
161  *	@node: numa node to allocate memory on
162  *
163  *	Allocate a new &sk_buff. The returned buffer has no headroom and a
164  *	tail room of size bytes. The object has a reference count of one.
165  *	The return is the buffer. On a failure the return is %NULL.
166  *
167  *	Buffers may only be allocated from interrupts using a @gfp_mask of
168  *	%GFP_ATOMIC.
169  */
170 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
171 			    int fclone, int node)
172 {
173 	struct kmem_cache *cache;
174 	struct skb_shared_info *shinfo;
175 	struct sk_buff *skb;
176 	u8 *data;
177 
178 	cache = fclone ? skbuff_fclone_cache : skbuff_head_cache;
179 
180 	/* Get the HEAD */
181 	skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node);
182 	if (!skb)
183 		goto out;
184 	prefetchw(skb);
185 
186 	size = SKB_DATA_ALIGN(size);
187 	data = kmalloc_node_track_caller(size + sizeof(struct skb_shared_info),
188 			gfp_mask, node);
189 	if (!data)
190 		goto nodata;
191 	prefetchw(data + size);
192 
193 	/*
194 	 * Only clear those fields we need to clear, not those that we will
195 	 * actually initialise below. Hence, don't put any more fields after
196 	 * the tail pointer in struct sk_buff!
197 	 */
198 	memset(skb, 0, offsetof(struct sk_buff, tail));
199 	skb->truesize = size + sizeof(struct sk_buff);
200 	atomic_set(&skb->users, 1);
201 	skb->head = data;
202 	skb->data = data;
203 	skb_reset_tail_pointer(skb);
204 	skb->end = skb->tail + size;
205 #ifdef NET_SKBUFF_DATA_USES_OFFSET
206 	skb->mac_header = ~0U;
207 #endif
208 
209 	/* make sure we initialize shinfo sequentially */
210 	shinfo = skb_shinfo(skb);
211 	memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
212 	atomic_set(&shinfo->dataref, 1);
213 
214 	if (fclone) {
215 		struct sk_buff *child = skb + 1;
216 		atomic_t *fclone_ref = (atomic_t *) (child + 1);
217 
218 		kmemcheck_annotate_bitfield(child, flags1);
219 		kmemcheck_annotate_bitfield(child, flags2);
220 		skb->fclone = SKB_FCLONE_ORIG;
221 		atomic_set(fclone_ref, 1);
222 
223 		child->fclone = SKB_FCLONE_UNAVAILABLE;
224 	}
225 out:
226 	return skb;
227 nodata:
228 	kmem_cache_free(cache, skb);
229 	skb = NULL;
230 	goto out;
231 }
232 EXPORT_SYMBOL(__alloc_skb);
233 
234 /**
235  *	__netdev_alloc_skb - allocate an skbuff for rx on a specific device
236  *	@dev: network device to receive on
237  *	@length: length to allocate
238  *	@gfp_mask: get_free_pages mask, passed to alloc_skb
239  *
240  *	Allocate a new &sk_buff and assign it a usage count of one. The
241  *	buffer has unspecified headroom built in. Users should allocate
242  *	the headroom they think they need without accounting for the
243  *	built in space. The built in space is used for optimisations.
244  *
245  *	%NULL is returned if there is no free memory.
246  */
247 struct sk_buff *__netdev_alloc_skb(struct net_device *dev,
248 		unsigned int length, gfp_t gfp_mask)
249 {
250 	struct sk_buff *skb;
251 
252 	skb = __alloc_skb(length + NET_SKB_PAD, gfp_mask, 0, NUMA_NO_NODE);
253 	if (likely(skb)) {
254 		skb_reserve(skb, NET_SKB_PAD);
255 		skb->dev = dev;
256 	}
257 	return skb;
258 }
259 EXPORT_SYMBOL(__netdev_alloc_skb);
260 
261 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
262 		int size)
263 {
264 	skb_fill_page_desc(skb, i, page, off, size);
265 	skb->len += size;
266 	skb->data_len += size;
267 	skb->truesize += size;
268 }
269 EXPORT_SYMBOL(skb_add_rx_frag);
270 
271 /**
272  *	dev_alloc_skb - allocate an skbuff for receiving
273  *	@length: length to allocate
274  *
275  *	Allocate a new &sk_buff and assign it a usage count of one. The
276  *	buffer has unspecified headroom built in. Users should allocate
277  *	the headroom they think they need without accounting for the
278  *	built in space. The built in space is used for optimisations.
279  *
280  *	%NULL is returned if there is no free memory. Although this function
281  *	allocates memory it can be called from an interrupt.
282  */
283 struct sk_buff *dev_alloc_skb(unsigned int length)
284 {
285 	/*
286 	 * There is more code here than it seems:
287 	 * __dev_alloc_skb is an inline
288 	 */
289 	return __dev_alloc_skb(length, GFP_ATOMIC);
290 }
291 EXPORT_SYMBOL(dev_alloc_skb);
292 
293 static void skb_drop_list(struct sk_buff **listp)
294 {
295 	struct sk_buff *list = *listp;
296 
297 	*listp = NULL;
298 
299 	do {
300 		struct sk_buff *this = list;
301 		list = list->next;
302 		kfree_skb(this);
303 	} while (list);
304 }
305 
306 static inline void skb_drop_fraglist(struct sk_buff *skb)
307 {
308 	skb_drop_list(&skb_shinfo(skb)->frag_list);
309 }
310 
311 static void skb_clone_fraglist(struct sk_buff *skb)
312 {
313 	struct sk_buff *list;
314 
315 	skb_walk_frags(skb, list)
316 		skb_get(list);
317 }
318 
319 static void skb_release_data(struct sk_buff *skb)
320 {
321 	if (!skb->cloned ||
322 	    !atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
323 			       &skb_shinfo(skb)->dataref)) {
324 		if (skb_shinfo(skb)->nr_frags) {
325 			int i;
326 			for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
327 				put_page(skb_shinfo(skb)->frags[i].page);
328 		}
329 
330 		if (skb_has_frag_list(skb))
331 			skb_drop_fraglist(skb);
332 
333 		kfree(skb->head);
334 	}
335 }
336 
337 /*
338  *	Free an skbuff by memory without cleaning the state.
339  */
340 static void kfree_skbmem(struct sk_buff *skb)
341 {
342 	struct sk_buff *other;
343 	atomic_t *fclone_ref;
344 
345 	switch (skb->fclone) {
346 	case SKB_FCLONE_UNAVAILABLE:
347 		kmem_cache_free(skbuff_head_cache, skb);
348 		break;
349 
350 	case SKB_FCLONE_ORIG:
351 		fclone_ref = (atomic_t *) (skb + 2);
352 		if (atomic_dec_and_test(fclone_ref))
353 			kmem_cache_free(skbuff_fclone_cache, skb);
354 		break;
355 
356 	case SKB_FCLONE_CLONE:
357 		fclone_ref = (atomic_t *) (skb + 1);
358 		other = skb - 1;
359 
360 		/* The clone portion is available for
361 		 * fast-cloning again.
362 		 */
363 		skb->fclone = SKB_FCLONE_UNAVAILABLE;
364 
365 		if (atomic_dec_and_test(fclone_ref))
366 			kmem_cache_free(skbuff_fclone_cache, other);
367 		break;
368 	}
369 }
370 
371 static void skb_release_head_state(struct sk_buff *skb)
372 {
373 	skb_dst_drop(skb);
374 #ifdef CONFIG_XFRM
375 	secpath_put(skb->sp);
376 #endif
377 	if (skb->destructor) {
378 		WARN_ON(in_irq());
379 		skb->destructor(skb);
380 	}
381 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
382 	nf_conntrack_put(skb->nfct);
383 	nf_conntrack_put_reasm(skb->nfct_reasm);
384 #endif
385 #ifdef CONFIG_BRIDGE_NETFILTER
386 	nf_bridge_put(skb->nf_bridge);
387 #endif
388 /* XXX: IS this still necessary? - JHS */
389 #ifdef CONFIG_NET_SCHED
390 	skb->tc_index = 0;
391 #ifdef CONFIG_NET_CLS_ACT
392 	skb->tc_verd = 0;
393 #endif
394 #endif
395 }
396 
397 /* Free everything but the sk_buff shell. */
398 static void skb_release_all(struct sk_buff *skb)
399 {
400 	skb_release_head_state(skb);
401 	skb_release_data(skb);
402 }
403 
404 /**
405  *	__kfree_skb - private function
406  *	@skb: buffer
407  *
408  *	Free an sk_buff. Release anything attached to the buffer.
409  *	Clean the state. This is an internal helper function. Users should
410  *	always call kfree_skb
411  */
412 
413 void __kfree_skb(struct sk_buff *skb)
414 {
415 	skb_release_all(skb);
416 	kfree_skbmem(skb);
417 }
418 EXPORT_SYMBOL(__kfree_skb);
419 
420 /**
421  *	kfree_skb - free an sk_buff
422  *	@skb: buffer to free
423  *
424  *	Drop a reference to the buffer and free it if the usage count has
425  *	hit zero.
426  */
427 void kfree_skb(struct sk_buff *skb)
428 {
429 	if (unlikely(!skb))
430 		return;
431 	if (likely(atomic_read(&skb->users) == 1))
432 		smp_rmb();
433 	else if (likely(!atomic_dec_and_test(&skb->users)))
434 		return;
435 	trace_kfree_skb(skb, __builtin_return_address(0));
436 	__kfree_skb(skb);
437 }
438 EXPORT_SYMBOL(kfree_skb);
439 
440 /**
441  *	consume_skb - free an skbuff
442  *	@skb: buffer to free
443  *
444  *	Drop a ref to the buffer and free it if the usage count has hit zero
445  *	Functions identically to kfree_skb, but kfree_skb assumes that the frame
446  *	is being dropped after a failure and notes that
447  */
448 void consume_skb(struct sk_buff *skb)
449 {
450 	if (unlikely(!skb))
451 		return;
452 	if (likely(atomic_read(&skb->users) == 1))
453 		smp_rmb();
454 	else if (likely(!atomic_dec_and_test(&skb->users)))
455 		return;
456 	trace_consume_skb(skb);
457 	__kfree_skb(skb);
458 }
459 EXPORT_SYMBOL(consume_skb);
460 
461 /**
462  *	skb_recycle_check - check if skb can be reused for receive
463  *	@skb: buffer
464  *	@skb_size: minimum receive buffer size
465  *
466  *	Checks that the skb passed in is not shared or cloned, and
467  *	that it is linear and its head portion at least as large as
468  *	skb_size so that it can be recycled as a receive buffer.
469  *	If these conditions are met, this function does any necessary
470  *	reference count dropping and cleans up the skbuff as if it
471  *	just came from __alloc_skb().
472  */
473 bool skb_recycle_check(struct sk_buff *skb, int skb_size)
474 {
475 	struct skb_shared_info *shinfo;
476 
477 	if (irqs_disabled())
478 		return false;
479 
480 	if (skb_is_nonlinear(skb) || skb->fclone != SKB_FCLONE_UNAVAILABLE)
481 		return false;
482 
483 	skb_size = SKB_DATA_ALIGN(skb_size + NET_SKB_PAD);
484 	if (skb_end_pointer(skb) - skb->head < skb_size)
485 		return false;
486 
487 	if (skb_shared(skb) || skb_cloned(skb))
488 		return false;
489 
490 	skb_release_head_state(skb);
491 
492 	shinfo = skb_shinfo(skb);
493 	memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
494 	atomic_set(&shinfo->dataref, 1);
495 
496 	memset(skb, 0, offsetof(struct sk_buff, tail));
497 	skb->data = skb->head + NET_SKB_PAD;
498 	skb_reset_tail_pointer(skb);
499 
500 	return true;
501 }
502 EXPORT_SYMBOL(skb_recycle_check);
503 
504 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
505 {
506 	new->tstamp		= old->tstamp;
507 	new->dev		= old->dev;
508 	new->transport_header	= old->transport_header;
509 	new->network_header	= old->network_header;
510 	new->mac_header		= old->mac_header;
511 	skb_dst_copy(new, old);
512 	new->rxhash		= old->rxhash;
513 #ifdef CONFIG_XFRM
514 	new->sp			= secpath_get(old->sp);
515 #endif
516 	memcpy(new->cb, old->cb, sizeof(old->cb));
517 	new->csum		= old->csum;
518 	new->local_df		= old->local_df;
519 	new->pkt_type		= old->pkt_type;
520 	new->ip_summed		= old->ip_summed;
521 	skb_copy_queue_mapping(new, old);
522 	new->priority		= old->priority;
523 	new->deliver_no_wcard	= old->deliver_no_wcard;
524 #if defined(CONFIG_IP_VS) || defined(CONFIG_IP_VS_MODULE)
525 	new->ipvs_property	= old->ipvs_property;
526 #endif
527 	new->protocol		= old->protocol;
528 	new->mark		= old->mark;
529 	new->skb_iif		= old->skb_iif;
530 	__nf_copy(new, old);
531 #if defined(CONFIG_NETFILTER_XT_TARGET_TRACE) || \
532     defined(CONFIG_NETFILTER_XT_TARGET_TRACE_MODULE)
533 	new->nf_trace		= old->nf_trace;
534 #endif
535 #ifdef CONFIG_NET_SCHED
536 	new->tc_index		= old->tc_index;
537 #ifdef CONFIG_NET_CLS_ACT
538 	new->tc_verd		= old->tc_verd;
539 #endif
540 #endif
541 	new->vlan_tci		= old->vlan_tci;
542 
543 	skb_copy_secmark(new, old);
544 }
545 
546 /*
547  * You should not add any new code to this function.  Add it to
548  * __copy_skb_header above instead.
549  */
550 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
551 {
552 #define C(x) n->x = skb->x
553 
554 	n->next = n->prev = NULL;
555 	n->sk = NULL;
556 	__copy_skb_header(n, skb);
557 
558 	C(len);
559 	C(data_len);
560 	C(mac_len);
561 	n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
562 	n->cloned = 1;
563 	n->nohdr = 0;
564 	n->destructor = NULL;
565 	C(tail);
566 	C(end);
567 	C(head);
568 	C(data);
569 	C(truesize);
570 	atomic_set(&n->users, 1);
571 
572 	atomic_inc(&(skb_shinfo(skb)->dataref));
573 	skb->cloned = 1;
574 
575 	return n;
576 #undef C
577 }
578 
579 /**
580  *	skb_morph	-	morph one skb into another
581  *	@dst: the skb to receive the contents
582  *	@src: the skb to supply the contents
583  *
584  *	This is identical to skb_clone except that the target skb is
585  *	supplied by the user.
586  *
587  *	The target skb is returned upon exit.
588  */
589 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
590 {
591 	skb_release_all(dst);
592 	return __skb_clone(dst, src);
593 }
594 EXPORT_SYMBOL_GPL(skb_morph);
595 
596 /**
597  *	skb_clone	-	duplicate an sk_buff
598  *	@skb: buffer to clone
599  *	@gfp_mask: allocation priority
600  *
601  *	Duplicate an &sk_buff. The new one is not owned by a socket. Both
602  *	copies share the same packet data but not structure. The new
603  *	buffer has a reference count of 1. If the allocation fails the
604  *	function returns %NULL otherwise the new buffer is returned.
605  *
606  *	If this function is called from an interrupt gfp_mask() must be
607  *	%GFP_ATOMIC.
608  */
609 
610 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
611 {
612 	struct sk_buff *n;
613 
614 	n = skb + 1;
615 	if (skb->fclone == SKB_FCLONE_ORIG &&
616 	    n->fclone == SKB_FCLONE_UNAVAILABLE) {
617 		atomic_t *fclone_ref = (atomic_t *) (n + 1);
618 		n->fclone = SKB_FCLONE_CLONE;
619 		atomic_inc(fclone_ref);
620 	} else {
621 		n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
622 		if (!n)
623 			return NULL;
624 
625 		kmemcheck_annotate_bitfield(n, flags1);
626 		kmemcheck_annotate_bitfield(n, flags2);
627 		n->fclone = SKB_FCLONE_UNAVAILABLE;
628 	}
629 
630 	return __skb_clone(n, skb);
631 }
632 EXPORT_SYMBOL(skb_clone);
633 
634 static void copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
635 {
636 #ifndef NET_SKBUFF_DATA_USES_OFFSET
637 	/*
638 	 *	Shift between the two data areas in bytes
639 	 */
640 	unsigned long offset = new->data - old->data;
641 #endif
642 
643 	__copy_skb_header(new, old);
644 
645 #ifndef NET_SKBUFF_DATA_USES_OFFSET
646 	/* {transport,network,mac}_header are relative to skb->head */
647 	new->transport_header += offset;
648 	new->network_header   += offset;
649 	if (skb_mac_header_was_set(new))
650 		new->mac_header	      += offset;
651 #endif
652 	skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
653 	skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
654 	skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
655 }
656 
657 /**
658  *	skb_copy	-	create private copy of an sk_buff
659  *	@skb: buffer to copy
660  *	@gfp_mask: allocation priority
661  *
662  *	Make a copy of both an &sk_buff and its data. This is used when the
663  *	caller wishes to modify the data and needs a private copy of the
664  *	data to alter. Returns %NULL on failure or the pointer to the buffer
665  *	on success. The returned buffer has a reference count of 1.
666  *
667  *	As by-product this function converts non-linear &sk_buff to linear
668  *	one, so that &sk_buff becomes completely private and caller is allowed
669  *	to modify all the data of returned buffer. This means that this
670  *	function is not recommended for use in circumstances when only
671  *	header is going to be modified. Use pskb_copy() instead.
672  */
673 
674 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
675 {
676 	int headerlen = skb_headroom(skb);
677 	unsigned int size = (skb_end_pointer(skb) - skb->head) + skb->data_len;
678 	struct sk_buff *n = alloc_skb(size, gfp_mask);
679 
680 	if (!n)
681 		return NULL;
682 
683 	/* Set the data pointer */
684 	skb_reserve(n, headerlen);
685 	/* Set the tail pointer and length */
686 	skb_put(n, skb->len);
687 
688 	if (skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len))
689 		BUG();
690 
691 	copy_skb_header(n, skb);
692 	return n;
693 }
694 EXPORT_SYMBOL(skb_copy);
695 
696 /**
697  *	pskb_copy	-	create copy of an sk_buff with private head.
698  *	@skb: buffer to copy
699  *	@gfp_mask: allocation priority
700  *
701  *	Make a copy of both an &sk_buff and part of its data, located
702  *	in header. Fragmented data remain shared. This is used when
703  *	the caller wishes to modify only header of &sk_buff and needs
704  *	private copy of the header to alter. Returns %NULL on failure
705  *	or the pointer to the buffer on success.
706  *	The returned buffer has a reference count of 1.
707  */
708 
709 struct sk_buff *pskb_copy(struct sk_buff *skb, gfp_t gfp_mask)
710 {
711 	unsigned int size = skb_end_pointer(skb) - skb->head;
712 	struct sk_buff *n = alloc_skb(size, gfp_mask);
713 
714 	if (!n)
715 		goto out;
716 
717 	/* Set the data pointer */
718 	skb_reserve(n, skb_headroom(skb));
719 	/* Set the tail pointer and length */
720 	skb_put(n, skb_headlen(skb));
721 	/* Copy the bytes */
722 	skb_copy_from_linear_data(skb, n->data, n->len);
723 
724 	n->truesize += skb->data_len;
725 	n->data_len  = skb->data_len;
726 	n->len	     = skb->len;
727 
728 	if (skb_shinfo(skb)->nr_frags) {
729 		int i;
730 
731 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
732 			skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
733 			get_page(skb_shinfo(n)->frags[i].page);
734 		}
735 		skb_shinfo(n)->nr_frags = i;
736 	}
737 
738 	if (skb_has_frag_list(skb)) {
739 		skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
740 		skb_clone_fraglist(n);
741 	}
742 
743 	copy_skb_header(n, skb);
744 out:
745 	return n;
746 }
747 EXPORT_SYMBOL(pskb_copy);
748 
749 /**
750  *	pskb_expand_head - reallocate header of &sk_buff
751  *	@skb: buffer to reallocate
752  *	@nhead: room to add at head
753  *	@ntail: room to add at tail
754  *	@gfp_mask: allocation priority
755  *
756  *	Expands (or creates identical copy, if &nhead and &ntail are zero)
757  *	header of skb. &sk_buff itself is not changed. &sk_buff MUST have
758  *	reference count of 1. Returns zero in the case of success or error,
759  *	if expansion failed. In the last case, &sk_buff is not changed.
760  *
761  *	All the pointers pointing into skb header may change and must be
762  *	reloaded after call to this function.
763  */
764 
765 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
766 		     gfp_t gfp_mask)
767 {
768 	int i;
769 	u8 *data;
770 	int size = nhead + (skb_end_pointer(skb) - skb->head) + ntail;
771 	long off;
772 	bool fastpath;
773 
774 	BUG_ON(nhead < 0);
775 
776 	if (skb_shared(skb))
777 		BUG();
778 
779 	size = SKB_DATA_ALIGN(size);
780 
781 	/* Check if we can avoid taking references on fragments if we own
782 	 * the last reference on skb->head. (see skb_release_data())
783 	 */
784 	if (!skb->cloned)
785 		fastpath = true;
786 	else {
787 		int delta = skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1;
788 
789 		fastpath = atomic_read(&skb_shinfo(skb)->dataref) == delta;
790 	}
791 
792 	if (fastpath &&
793 	    size + sizeof(struct skb_shared_info) <= ksize(skb->head)) {
794 		memmove(skb->head + size, skb_shinfo(skb),
795 			offsetof(struct skb_shared_info,
796 				 frags[skb_shinfo(skb)->nr_frags]));
797 		memmove(skb->head + nhead, skb->head,
798 			skb_tail_pointer(skb) - skb->head);
799 		off = nhead;
800 		goto adjust_others;
801 	}
802 
803 	data = kmalloc(size + sizeof(struct skb_shared_info), gfp_mask);
804 	if (!data)
805 		goto nodata;
806 
807 	/* Copy only real data... and, alas, header. This should be
808 	 * optimized for the cases when header is void.
809 	 */
810 	memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head);
811 
812 	memcpy((struct skb_shared_info *)(data + size),
813 	       skb_shinfo(skb),
814 	       offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags]));
815 
816 	if (fastpath) {
817 		kfree(skb->head);
818 	} else {
819 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
820 			get_page(skb_shinfo(skb)->frags[i].page);
821 
822 		if (skb_has_frag_list(skb))
823 			skb_clone_fraglist(skb);
824 
825 		skb_release_data(skb);
826 	}
827 	off = (data + nhead) - skb->head;
828 
829 	skb->head     = data;
830 adjust_others:
831 	skb->data    += off;
832 #ifdef NET_SKBUFF_DATA_USES_OFFSET
833 	skb->end      = size;
834 	off           = nhead;
835 #else
836 	skb->end      = skb->head + size;
837 #endif
838 	/* {transport,network,mac}_header and tail are relative to skb->head */
839 	skb->tail	      += off;
840 	skb->transport_header += off;
841 	skb->network_header   += off;
842 	if (skb_mac_header_was_set(skb))
843 		skb->mac_header += off;
844 	/* Only adjust this if it actually is csum_start rather than csum */
845 	if (skb->ip_summed == CHECKSUM_PARTIAL)
846 		skb->csum_start += nhead;
847 	skb->cloned   = 0;
848 	skb->hdr_len  = 0;
849 	skb->nohdr    = 0;
850 	atomic_set(&skb_shinfo(skb)->dataref, 1);
851 	return 0;
852 
853 nodata:
854 	return -ENOMEM;
855 }
856 EXPORT_SYMBOL(pskb_expand_head);
857 
858 /* Make private copy of skb with writable head and some headroom */
859 
860 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
861 {
862 	struct sk_buff *skb2;
863 	int delta = headroom - skb_headroom(skb);
864 
865 	if (delta <= 0)
866 		skb2 = pskb_copy(skb, GFP_ATOMIC);
867 	else {
868 		skb2 = skb_clone(skb, GFP_ATOMIC);
869 		if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
870 					     GFP_ATOMIC)) {
871 			kfree_skb(skb2);
872 			skb2 = NULL;
873 		}
874 	}
875 	return skb2;
876 }
877 EXPORT_SYMBOL(skb_realloc_headroom);
878 
879 /**
880  *	skb_copy_expand	-	copy and expand sk_buff
881  *	@skb: buffer to copy
882  *	@newheadroom: new free bytes at head
883  *	@newtailroom: new free bytes at tail
884  *	@gfp_mask: allocation priority
885  *
886  *	Make a copy of both an &sk_buff and its data and while doing so
887  *	allocate additional space.
888  *
889  *	This is used when the caller wishes to modify the data and needs a
890  *	private copy of the data to alter as well as more space for new fields.
891  *	Returns %NULL on failure or the pointer to the buffer
892  *	on success. The returned buffer has a reference count of 1.
893  *
894  *	You must pass %GFP_ATOMIC as the allocation priority if this function
895  *	is called from an interrupt.
896  */
897 struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
898 				int newheadroom, int newtailroom,
899 				gfp_t gfp_mask)
900 {
901 	/*
902 	 *	Allocate the copy buffer
903 	 */
904 	struct sk_buff *n = alloc_skb(newheadroom + skb->len + newtailroom,
905 				      gfp_mask);
906 	int oldheadroom = skb_headroom(skb);
907 	int head_copy_len, head_copy_off;
908 	int off;
909 
910 	if (!n)
911 		return NULL;
912 
913 	skb_reserve(n, newheadroom);
914 
915 	/* Set the tail pointer and length */
916 	skb_put(n, skb->len);
917 
918 	head_copy_len = oldheadroom;
919 	head_copy_off = 0;
920 	if (newheadroom <= head_copy_len)
921 		head_copy_len = newheadroom;
922 	else
923 		head_copy_off = newheadroom - head_copy_len;
924 
925 	/* Copy the linear header and data. */
926 	if (skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
927 			  skb->len + head_copy_len))
928 		BUG();
929 
930 	copy_skb_header(n, skb);
931 
932 	off                  = newheadroom - oldheadroom;
933 	if (n->ip_summed == CHECKSUM_PARTIAL)
934 		n->csum_start += off;
935 #ifdef NET_SKBUFF_DATA_USES_OFFSET
936 	n->transport_header += off;
937 	n->network_header   += off;
938 	if (skb_mac_header_was_set(skb))
939 		n->mac_header += off;
940 #endif
941 
942 	return n;
943 }
944 EXPORT_SYMBOL(skb_copy_expand);
945 
946 /**
947  *	skb_pad			-	zero pad the tail of an skb
948  *	@skb: buffer to pad
949  *	@pad: space to pad
950  *
951  *	Ensure that a buffer is followed by a padding area that is zero
952  *	filled. Used by network drivers which may DMA or transfer data
953  *	beyond the buffer end onto the wire.
954  *
955  *	May return error in out of memory cases. The skb is freed on error.
956  */
957 
958 int skb_pad(struct sk_buff *skb, int pad)
959 {
960 	int err;
961 	int ntail;
962 
963 	/* If the skbuff is non linear tailroom is always zero.. */
964 	if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
965 		memset(skb->data+skb->len, 0, pad);
966 		return 0;
967 	}
968 
969 	ntail = skb->data_len + pad - (skb->end - skb->tail);
970 	if (likely(skb_cloned(skb) || ntail > 0)) {
971 		err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
972 		if (unlikely(err))
973 			goto free_skb;
974 	}
975 
976 	/* FIXME: The use of this function with non-linear skb's really needs
977 	 * to be audited.
978 	 */
979 	err = skb_linearize(skb);
980 	if (unlikely(err))
981 		goto free_skb;
982 
983 	memset(skb->data + skb->len, 0, pad);
984 	return 0;
985 
986 free_skb:
987 	kfree_skb(skb);
988 	return err;
989 }
990 EXPORT_SYMBOL(skb_pad);
991 
992 /**
993  *	skb_put - add data to a buffer
994  *	@skb: buffer to use
995  *	@len: amount of data to add
996  *
997  *	This function extends the used data area of the buffer. If this would
998  *	exceed the total buffer size the kernel will panic. A pointer to the
999  *	first byte of the extra data is returned.
1000  */
1001 unsigned char *skb_put(struct sk_buff *skb, unsigned int len)
1002 {
1003 	unsigned char *tmp = skb_tail_pointer(skb);
1004 	SKB_LINEAR_ASSERT(skb);
1005 	skb->tail += len;
1006 	skb->len  += len;
1007 	if (unlikely(skb->tail > skb->end))
1008 		skb_over_panic(skb, len, __builtin_return_address(0));
1009 	return tmp;
1010 }
1011 EXPORT_SYMBOL(skb_put);
1012 
1013 /**
1014  *	skb_push - add data to the start of a buffer
1015  *	@skb: buffer to use
1016  *	@len: amount of data to add
1017  *
1018  *	This function extends the used data area of the buffer at the buffer
1019  *	start. If this would exceed the total buffer headroom the kernel will
1020  *	panic. A pointer to the first byte of the extra data is returned.
1021  */
1022 unsigned char *skb_push(struct sk_buff *skb, unsigned int len)
1023 {
1024 	skb->data -= len;
1025 	skb->len  += len;
1026 	if (unlikely(skb->data<skb->head))
1027 		skb_under_panic(skb, len, __builtin_return_address(0));
1028 	return skb->data;
1029 }
1030 EXPORT_SYMBOL(skb_push);
1031 
1032 /**
1033  *	skb_pull - remove data from the start of a buffer
1034  *	@skb: buffer to use
1035  *	@len: amount of data to remove
1036  *
1037  *	This function removes data from the start of a buffer, returning
1038  *	the memory to the headroom. A pointer to the next data in the buffer
1039  *	is returned. Once the data has been pulled future pushes will overwrite
1040  *	the old data.
1041  */
1042 unsigned char *skb_pull(struct sk_buff *skb, unsigned int len)
1043 {
1044 	return skb_pull_inline(skb, len);
1045 }
1046 EXPORT_SYMBOL(skb_pull);
1047 
1048 /**
1049  *	skb_trim - remove end from a buffer
1050  *	@skb: buffer to alter
1051  *	@len: new length
1052  *
1053  *	Cut the length of a buffer down by removing data from the tail. If
1054  *	the buffer is already under the length specified it is not modified.
1055  *	The skb must be linear.
1056  */
1057 void skb_trim(struct sk_buff *skb, unsigned int len)
1058 {
1059 	if (skb->len > len)
1060 		__skb_trim(skb, len);
1061 }
1062 EXPORT_SYMBOL(skb_trim);
1063 
1064 /* Trims skb to length len. It can change skb pointers.
1065  */
1066 
1067 int ___pskb_trim(struct sk_buff *skb, unsigned int len)
1068 {
1069 	struct sk_buff **fragp;
1070 	struct sk_buff *frag;
1071 	int offset = skb_headlen(skb);
1072 	int nfrags = skb_shinfo(skb)->nr_frags;
1073 	int i;
1074 	int err;
1075 
1076 	if (skb_cloned(skb) &&
1077 	    unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
1078 		return err;
1079 
1080 	i = 0;
1081 	if (offset >= len)
1082 		goto drop_pages;
1083 
1084 	for (; i < nfrags; i++) {
1085 		int end = offset + skb_shinfo(skb)->frags[i].size;
1086 
1087 		if (end < len) {
1088 			offset = end;
1089 			continue;
1090 		}
1091 
1092 		skb_shinfo(skb)->frags[i++].size = len - offset;
1093 
1094 drop_pages:
1095 		skb_shinfo(skb)->nr_frags = i;
1096 
1097 		for (; i < nfrags; i++)
1098 			put_page(skb_shinfo(skb)->frags[i].page);
1099 
1100 		if (skb_has_frag_list(skb))
1101 			skb_drop_fraglist(skb);
1102 		goto done;
1103 	}
1104 
1105 	for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
1106 	     fragp = &frag->next) {
1107 		int end = offset + frag->len;
1108 
1109 		if (skb_shared(frag)) {
1110 			struct sk_buff *nfrag;
1111 
1112 			nfrag = skb_clone(frag, GFP_ATOMIC);
1113 			if (unlikely(!nfrag))
1114 				return -ENOMEM;
1115 
1116 			nfrag->next = frag->next;
1117 			kfree_skb(frag);
1118 			frag = nfrag;
1119 			*fragp = frag;
1120 		}
1121 
1122 		if (end < len) {
1123 			offset = end;
1124 			continue;
1125 		}
1126 
1127 		if (end > len &&
1128 		    unlikely((err = pskb_trim(frag, len - offset))))
1129 			return err;
1130 
1131 		if (frag->next)
1132 			skb_drop_list(&frag->next);
1133 		break;
1134 	}
1135 
1136 done:
1137 	if (len > skb_headlen(skb)) {
1138 		skb->data_len -= skb->len - len;
1139 		skb->len       = len;
1140 	} else {
1141 		skb->len       = len;
1142 		skb->data_len  = 0;
1143 		skb_set_tail_pointer(skb, len);
1144 	}
1145 
1146 	return 0;
1147 }
1148 EXPORT_SYMBOL(___pskb_trim);
1149 
1150 /**
1151  *	__pskb_pull_tail - advance tail of skb header
1152  *	@skb: buffer to reallocate
1153  *	@delta: number of bytes to advance tail
1154  *
1155  *	The function makes a sense only on a fragmented &sk_buff,
1156  *	it expands header moving its tail forward and copying necessary
1157  *	data from fragmented part.
1158  *
1159  *	&sk_buff MUST have reference count of 1.
1160  *
1161  *	Returns %NULL (and &sk_buff does not change) if pull failed
1162  *	or value of new tail of skb in the case of success.
1163  *
1164  *	All the pointers pointing into skb header may change and must be
1165  *	reloaded after call to this function.
1166  */
1167 
1168 /* Moves tail of skb head forward, copying data from fragmented part,
1169  * when it is necessary.
1170  * 1. It may fail due to malloc failure.
1171  * 2. It may change skb pointers.
1172  *
1173  * It is pretty complicated. Luckily, it is called only in exceptional cases.
1174  */
1175 unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta)
1176 {
1177 	/* If skb has not enough free space at tail, get new one
1178 	 * plus 128 bytes for future expansions. If we have enough
1179 	 * room at tail, reallocate without expansion only if skb is cloned.
1180 	 */
1181 	int i, k, eat = (skb->tail + delta) - skb->end;
1182 
1183 	if (eat > 0 || skb_cloned(skb)) {
1184 		if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
1185 				     GFP_ATOMIC))
1186 			return NULL;
1187 	}
1188 
1189 	if (skb_copy_bits(skb, skb_headlen(skb), skb_tail_pointer(skb), delta))
1190 		BUG();
1191 
1192 	/* Optimization: no fragments, no reasons to preestimate
1193 	 * size of pulled pages. Superb.
1194 	 */
1195 	if (!skb_has_frag_list(skb))
1196 		goto pull_pages;
1197 
1198 	/* Estimate size of pulled pages. */
1199 	eat = delta;
1200 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1201 		if (skb_shinfo(skb)->frags[i].size >= eat)
1202 			goto pull_pages;
1203 		eat -= skb_shinfo(skb)->frags[i].size;
1204 	}
1205 
1206 	/* If we need update frag list, we are in troubles.
1207 	 * Certainly, it possible to add an offset to skb data,
1208 	 * but taking into account that pulling is expected to
1209 	 * be very rare operation, it is worth to fight against
1210 	 * further bloating skb head and crucify ourselves here instead.
1211 	 * Pure masohism, indeed. 8)8)
1212 	 */
1213 	if (eat) {
1214 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
1215 		struct sk_buff *clone = NULL;
1216 		struct sk_buff *insp = NULL;
1217 
1218 		do {
1219 			BUG_ON(!list);
1220 
1221 			if (list->len <= eat) {
1222 				/* Eaten as whole. */
1223 				eat -= list->len;
1224 				list = list->next;
1225 				insp = list;
1226 			} else {
1227 				/* Eaten partially. */
1228 
1229 				if (skb_shared(list)) {
1230 					/* Sucks! We need to fork list. :-( */
1231 					clone = skb_clone(list, GFP_ATOMIC);
1232 					if (!clone)
1233 						return NULL;
1234 					insp = list->next;
1235 					list = clone;
1236 				} else {
1237 					/* This may be pulled without
1238 					 * problems. */
1239 					insp = list;
1240 				}
1241 				if (!pskb_pull(list, eat)) {
1242 					kfree_skb(clone);
1243 					return NULL;
1244 				}
1245 				break;
1246 			}
1247 		} while (eat);
1248 
1249 		/* Free pulled out fragments. */
1250 		while ((list = skb_shinfo(skb)->frag_list) != insp) {
1251 			skb_shinfo(skb)->frag_list = list->next;
1252 			kfree_skb(list);
1253 		}
1254 		/* And insert new clone at head. */
1255 		if (clone) {
1256 			clone->next = list;
1257 			skb_shinfo(skb)->frag_list = clone;
1258 		}
1259 	}
1260 	/* Success! Now we may commit changes to skb data. */
1261 
1262 pull_pages:
1263 	eat = delta;
1264 	k = 0;
1265 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1266 		if (skb_shinfo(skb)->frags[i].size <= eat) {
1267 			put_page(skb_shinfo(skb)->frags[i].page);
1268 			eat -= skb_shinfo(skb)->frags[i].size;
1269 		} else {
1270 			skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i];
1271 			if (eat) {
1272 				skb_shinfo(skb)->frags[k].page_offset += eat;
1273 				skb_shinfo(skb)->frags[k].size -= eat;
1274 				eat = 0;
1275 			}
1276 			k++;
1277 		}
1278 	}
1279 	skb_shinfo(skb)->nr_frags = k;
1280 
1281 	skb->tail     += delta;
1282 	skb->data_len -= delta;
1283 
1284 	return skb_tail_pointer(skb);
1285 }
1286 EXPORT_SYMBOL(__pskb_pull_tail);
1287 
1288 /* Copy some data bits from skb to kernel buffer. */
1289 
1290 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
1291 {
1292 	int start = skb_headlen(skb);
1293 	struct sk_buff *frag_iter;
1294 	int i, copy;
1295 
1296 	if (offset > (int)skb->len - len)
1297 		goto fault;
1298 
1299 	/* Copy header. */
1300 	if ((copy = start - offset) > 0) {
1301 		if (copy > len)
1302 			copy = len;
1303 		skb_copy_from_linear_data_offset(skb, offset, to, copy);
1304 		if ((len -= copy) == 0)
1305 			return 0;
1306 		offset += copy;
1307 		to     += copy;
1308 	}
1309 
1310 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1311 		int end;
1312 
1313 		WARN_ON(start > offset + len);
1314 
1315 		end = start + skb_shinfo(skb)->frags[i].size;
1316 		if ((copy = end - offset) > 0) {
1317 			u8 *vaddr;
1318 
1319 			if (copy > len)
1320 				copy = len;
1321 
1322 			vaddr = kmap_skb_frag(&skb_shinfo(skb)->frags[i]);
1323 			memcpy(to,
1324 			       vaddr + skb_shinfo(skb)->frags[i].page_offset+
1325 			       offset - start, copy);
1326 			kunmap_skb_frag(vaddr);
1327 
1328 			if ((len -= copy) == 0)
1329 				return 0;
1330 			offset += copy;
1331 			to     += copy;
1332 		}
1333 		start = end;
1334 	}
1335 
1336 	skb_walk_frags(skb, frag_iter) {
1337 		int end;
1338 
1339 		WARN_ON(start > offset + len);
1340 
1341 		end = start + frag_iter->len;
1342 		if ((copy = end - offset) > 0) {
1343 			if (copy > len)
1344 				copy = len;
1345 			if (skb_copy_bits(frag_iter, offset - start, to, copy))
1346 				goto fault;
1347 			if ((len -= copy) == 0)
1348 				return 0;
1349 			offset += copy;
1350 			to     += copy;
1351 		}
1352 		start = end;
1353 	}
1354 	if (!len)
1355 		return 0;
1356 
1357 fault:
1358 	return -EFAULT;
1359 }
1360 EXPORT_SYMBOL(skb_copy_bits);
1361 
1362 /*
1363  * Callback from splice_to_pipe(), if we need to release some pages
1364  * at the end of the spd in case we error'ed out in filling the pipe.
1365  */
1366 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
1367 {
1368 	put_page(spd->pages[i]);
1369 }
1370 
1371 static inline struct page *linear_to_page(struct page *page, unsigned int *len,
1372 					  unsigned int *offset,
1373 					  struct sk_buff *skb, struct sock *sk)
1374 {
1375 	struct page *p = sk->sk_sndmsg_page;
1376 	unsigned int off;
1377 
1378 	if (!p) {
1379 new_page:
1380 		p = sk->sk_sndmsg_page = alloc_pages(sk->sk_allocation, 0);
1381 		if (!p)
1382 			return NULL;
1383 
1384 		off = sk->sk_sndmsg_off = 0;
1385 		/* hold one ref to this page until it's full */
1386 	} else {
1387 		unsigned int mlen;
1388 
1389 		off = sk->sk_sndmsg_off;
1390 		mlen = PAGE_SIZE - off;
1391 		if (mlen < 64 && mlen < *len) {
1392 			put_page(p);
1393 			goto new_page;
1394 		}
1395 
1396 		*len = min_t(unsigned int, *len, mlen);
1397 	}
1398 
1399 	memcpy(page_address(p) + off, page_address(page) + *offset, *len);
1400 	sk->sk_sndmsg_off += *len;
1401 	*offset = off;
1402 	get_page(p);
1403 
1404 	return p;
1405 }
1406 
1407 /*
1408  * Fill page/offset/length into spd, if it can hold more pages.
1409  */
1410 static inline int spd_fill_page(struct splice_pipe_desc *spd,
1411 				struct pipe_inode_info *pipe, struct page *page,
1412 				unsigned int *len, unsigned int offset,
1413 				struct sk_buff *skb, int linear,
1414 				struct sock *sk)
1415 {
1416 	if (unlikely(spd->nr_pages == pipe->buffers))
1417 		return 1;
1418 
1419 	if (linear) {
1420 		page = linear_to_page(page, len, &offset, skb, sk);
1421 		if (!page)
1422 			return 1;
1423 	} else
1424 		get_page(page);
1425 
1426 	spd->pages[spd->nr_pages] = page;
1427 	spd->partial[spd->nr_pages].len = *len;
1428 	spd->partial[spd->nr_pages].offset = offset;
1429 	spd->nr_pages++;
1430 
1431 	return 0;
1432 }
1433 
1434 static inline void __segment_seek(struct page **page, unsigned int *poff,
1435 				  unsigned int *plen, unsigned int off)
1436 {
1437 	unsigned long n;
1438 
1439 	*poff += off;
1440 	n = *poff / PAGE_SIZE;
1441 	if (n)
1442 		*page = nth_page(*page, n);
1443 
1444 	*poff = *poff % PAGE_SIZE;
1445 	*plen -= off;
1446 }
1447 
1448 static inline int __splice_segment(struct page *page, unsigned int poff,
1449 				   unsigned int plen, unsigned int *off,
1450 				   unsigned int *len, struct sk_buff *skb,
1451 				   struct splice_pipe_desc *spd, int linear,
1452 				   struct sock *sk,
1453 				   struct pipe_inode_info *pipe)
1454 {
1455 	if (!*len)
1456 		return 1;
1457 
1458 	/* skip this segment if already processed */
1459 	if (*off >= plen) {
1460 		*off -= plen;
1461 		return 0;
1462 	}
1463 
1464 	/* ignore any bits we already processed */
1465 	if (*off) {
1466 		__segment_seek(&page, &poff, &plen, *off);
1467 		*off = 0;
1468 	}
1469 
1470 	do {
1471 		unsigned int flen = min(*len, plen);
1472 
1473 		/* the linear region may spread across several pages  */
1474 		flen = min_t(unsigned int, flen, PAGE_SIZE - poff);
1475 
1476 		if (spd_fill_page(spd, pipe, page, &flen, poff, skb, linear, sk))
1477 			return 1;
1478 
1479 		__segment_seek(&page, &poff, &plen, flen);
1480 		*len -= flen;
1481 
1482 	} while (*len && plen);
1483 
1484 	return 0;
1485 }
1486 
1487 /*
1488  * Map linear and fragment data from the skb to spd. It reports failure if the
1489  * pipe is full or if we already spliced the requested length.
1490  */
1491 static int __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe,
1492 			     unsigned int *offset, unsigned int *len,
1493 			     struct splice_pipe_desc *spd, struct sock *sk)
1494 {
1495 	int seg;
1496 
1497 	/*
1498 	 * map the linear part
1499 	 */
1500 	if (__splice_segment(virt_to_page(skb->data),
1501 			     (unsigned long) skb->data & (PAGE_SIZE - 1),
1502 			     skb_headlen(skb),
1503 			     offset, len, skb, spd, 1, sk, pipe))
1504 		return 1;
1505 
1506 	/*
1507 	 * then map the fragments
1508 	 */
1509 	for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
1510 		const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
1511 
1512 		if (__splice_segment(f->page, f->page_offset, f->size,
1513 				     offset, len, skb, spd, 0, sk, pipe))
1514 			return 1;
1515 	}
1516 
1517 	return 0;
1518 }
1519 
1520 /*
1521  * Map data from the skb to a pipe. Should handle both the linear part,
1522  * the fragments, and the frag list. It does NOT handle frag lists within
1523  * the frag list, if such a thing exists. We'd probably need to recurse to
1524  * handle that cleanly.
1525  */
1526 int skb_splice_bits(struct sk_buff *skb, unsigned int offset,
1527 		    struct pipe_inode_info *pipe, unsigned int tlen,
1528 		    unsigned int flags)
1529 {
1530 	struct partial_page partial[PIPE_DEF_BUFFERS];
1531 	struct page *pages[PIPE_DEF_BUFFERS];
1532 	struct splice_pipe_desc spd = {
1533 		.pages = pages,
1534 		.partial = partial,
1535 		.flags = flags,
1536 		.ops = &sock_pipe_buf_ops,
1537 		.spd_release = sock_spd_release,
1538 	};
1539 	struct sk_buff *frag_iter;
1540 	struct sock *sk = skb->sk;
1541 	int ret = 0;
1542 
1543 	if (splice_grow_spd(pipe, &spd))
1544 		return -ENOMEM;
1545 
1546 	/*
1547 	 * __skb_splice_bits() only fails if the output has no room left,
1548 	 * so no point in going over the frag_list for the error case.
1549 	 */
1550 	if (__skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk))
1551 		goto done;
1552 	else if (!tlen)
1553 		goto done;
1554 
1555 	/*
1556 	 * now see if we have a frag_list to map
1557 	 */
1558 	skb_walk_frags(skb, frag_iter) {
1559 		if (!tlen)
1560 			break;
1561 		if (__skb_splice_bits(frag_iter, pipe, &offset, &tlen, &spd, sk))
1562 			break;
1563 	}
1564 
1565 done:
1566 	if (spd.nr_pages) {
1567 		/*
1568 		 * Drop the socket lock, otherwise we have reverse
1569 		 * locking dependencies between sk_lock and i_mutex
1570 		 * here as compared to sendfile(). We enter here
1571 		 * with the socket lock held, and splice_to_pipe() will
1572 		 * grab the pipe inode lock. For sendfile() emulation,
1573 		 * we call into ->sendpage() with the i_mutex lock held
1574 		 * and networking will grab the socket lock.
1575 		 */
1576 		release_sock(sk);
1577 		ret = splice_to_pipe(pipe, &spd);
1578 		lock_sock(sk);
1579 	}
1580 
1581 	splice_shrink_spd(pipe, &spd);
1582 	return ret;
1583 }
1584 
1585 /**
1586  *	skb_store_bits - store bits from kernel buffer to skb
1587  *	@skb: destination buffer
1588  *	@offset: offset in destination
1589  *	@from: source buffer
1590  *	@len: number of bytes to copy
1591  *
1592  *	Copy the specified number of bytes from the source buffer to the
1593  *	destination skb.  This function handles all the messy bits of
1594  *	traversing fragment lists and such.
1595  */
1596 
1597 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
1598 {
1599 	int start = skb_headlen(skb);
1600 	struct sk_buff *frag_iter;
1601 	int i, copy;
1602 
1603 	if (offset > (int)skb->len - len)
1604 		goto fault;
1605 
1606 	if ((copy = start - offset) > 0) {
1607 		if (copy > len)
1608 			copy = len;
1609 		skb_copy_to_linear_data_offset(skb, offset, from, copy);
1610 		if ((len -= copy) == 0)
1611 			return 0;
1612 		offset += copy;
1613 		from += copy;
1614 	}
1615 
1616 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1617 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1618 		int end;
1619 
1620 		WARN_ON(start > offset + len);
1621 
1622 		end = start + frag->size;
1623 		if ((copy = end - offset) > 0) {
1624 			u8 *vaddr;
1625 
1626 			if (copy > len)
1627 				copy = len;
1628 
1629 			vaddr = kmap_skb_frag(frag);
1630 			memcpy(vaddr + frag->page_offset + offset - start,
1631 			       from, copy);
1632 			kunmap_skb_frag(vaddr);
1633 
1634 			if ((len -= copy) == 0)
1635 				return 0;
1636 			offset += copy;
1637 			from += copy;
1638 		}
1639 		start = end;
1640 	}
1641 
1642 	skb_walk_frags(skb, frag_iter) {
1643 		int end;
1644 
1645 		WARN_ON(start > offset + len);
1646 
1647 		end = start + frag_iter->len;
1648 		if ((copy = end - offset) > 0) {
1649 			if (copy > len)
1650 				copy = len;
1651 			if (skb_store_bits(frag_iter, offset - start,
1652 					   from, copy))
1653 				goto fault;
1654 			if ((len -= copy) == 0)
1655 				return 0;
1656 			offset += copy;
1657 			from += copy;
1658 		}
1659 		start = end;
1660 	}
1661 	if (!len)
1662 		return 0;
1663 
1664 fault:
1665 	return -EFAULT;
1666 }
1667 EXPORT_SYMBOL(skb_store_bits);
1668 
1669 /* Checksum skb data. */
1670 
1671 __wsum skb_checksum(const struct sk_buff *skb, int offset,
1672 			  int len, __wsum csum)
1673 {
1674 	int start = skb_headlen(skb);
1675 	int i, copy = start - offset;
1676 	struct sk_buff *frag_iter;
1677 	int pos = 0;
1678 
1679 	/* Checksum header. */
1680 	if (copy > 0) {
1681 		if (copy > len)
1682 			copy = len;
1683 		csum = csum_partial(skb->data + offset, copy, csum);
1684 		if ((len -= copy) == 0)
1685 			return csum;
1686 		offset += copy;
1687 		pos	= copy;
1688 	}
1689 
1690 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1691 		int end;
1692 
1693 		WARN_ON(start > offset + len);
1694 
1695 		end = start + skb_shinfo(skb)->frags[i].size;
1696 		if ((copy = end - offset) > 0) {
1697 			__wsum csum2;
1698 			u8 *vaddr;
1699 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1700 
1701 			if (copy > len)
1702 				copy = len;
1703 			vaddr = kmap_skb_frag(frag);
1704 			csum2 = csum_partial(vaddr + frag->page_offset +
1705 					     offset - start, copy, 0);
1706 			kunmap_skb_frag(vaddr);
1707 			csum = csum_block_add(csum, csum2, pos);
1708 			if (!(len -= copy))
1709 				return csum;
1710 			offset += copy;
1711 			pos    += copy;
1712 		}
1713 		start = end;
1714 	}
1715 
1716 	skb_walk_frags(skb, frag_iter) {
1717 		int end;
1718 
1719 		WARN_ON(start > offset + len);
1720 
1721 		end = start + frag_iter->len;
1722 		if ((copy = end - offset) > 0) {
1723 			__wsum csum2;
1724 			if (copy > len)
1725 				copy = len;
1726 			csum2 = skb_checksum(frag_iter, offset - start,
1727 					     copy, 0);
1728 			csum = csum_block_add(csum, csum2, pos);
1729 			if ((len -= copy) == 0)
1730 				return csum;
1731 			offset += copy;
1732 			pos    += copy;
1733 		}
1734 		start = end;
1735 	}
1736 	BUG_ON(len);
1737 
1738 	return csum;
1739 }
1740 EXPORT_SYMBOL(skb_checksum);
1741 
1742 /* Both of above in one bottle. */
1743 
1744 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
1745 				    u8 *to, int len, __wsum csum)
1746 {
1747 	int start = skb_headlen(skb);
1748 	int i, copy = start - offset;
1749 	struct sk_buff *frag_iter;
1750 	int pos = 0;
1751 
1752 	/* Copy header. */
1753 	if (copy > 0) {
1754 		if (copy > len)
1755 			copy = len;
1756 		csum = csum_partial_copy_nocheck(skb->data + offset, to,
1757 						 copy, csum);
1758 		if ((len -= copy) == 0)
1759 			return csum;
1760 		offset += copy;
1761 		to     += copy;
1762 		pos	= copy;
1763 	}
1764 
1765 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1766 		int end;
1767 
1768 		WARN_ON(start > offset + len);
1769 
1770 		end = start + skb_shinfo(skb)->frags[i].size;
1771 		if ((copy = end - offset) > 0) {
1772 			__wsum csum2;
1773 			u8 *vaddr;
1774 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1775 
1776 			if (copy > len)
1777 				copy = len;
1778 			vaddr = kmap_skb_frag(frag);
1779 			csum2 = csum_partial_copy_nocheck(vaddr +
1780 							  frag->page_offset +
1781 							  offset - start, to,
1782 							  copy, 0);
1783 			kunmap_skb_frag(vaddr);
1784 			csum = csum_block_add(csum, csum2, pos);
1785 			if (!(len -= copy))
1786 				return csum;
1787 			offset += copy;
1788 			to     += copy;
1789 			pos    += copy;
1790 		}
1791 		start = end;
1792 	}
1793 
1794 	skb_walk_frags(skb, frag_iter) {
1795 		__wsum csum2;
1796 		int end;
1797 
1798 		WARN_ON(start > offset + len);
1799 
1800 		end = start + frag_iter->len;
1801 		if ((copy = end - offset) > 0) {
1802 			if (copy > len)
1803 				copy = len;
1804 			csum2 = skb_copy_and_csum_bits(frag_iter,
1805 						       offset - start,
1806 						       to, copy, 0);
1807 			csum = csum_block_add(csum, csum2, pos);
1808 			if ((len -= copy) == 0)
1809 				return csum;
1810 			offset += copy;
1811 			to     += copy;
1812 			pos    += copy;
1813 		}
1814 		start = end;
1815 	}
1816 	BUG_ON(len);
1817 	return csum;
1818 }
1819 EXPORT_SYMBOL(skb_copy_and_csum_bits);
1820 
1821 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
1822 {
1823 	__wsum csum;
1824 	long csstart;
1825 
1826 	if (skb->ip_summed == CHECKSUM_PARTIAL)
1827 		csstart = skb_checksum_start_offset(skb);
1828 	else
1829 		csstart = skb_headlen(skb);
1830 
1831 	BUG_ON(csstart > skb_headlen(skb));
1832 
1833 	skb_copy_from_linear_data(skb, to, csstart);
1834 
1835 	csum = 0;
1836 	if (csstart != skb->len)
1837 		csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
1838 					      skb->len - csstart, 0);
1839 
1840 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
1841 		long csstuff = csstart + skb->csum_offset;
1842 
1843 		*((__sum16 *)(to + csstuff)) = csum_fold(csum);
1844 	}
1845 }
1846 EXPORT_SYMBOL(skb_copy_and_csum_dev);
1847 
1848 /**
1849  *	skb_dequeue - remove from the head of the queue
1850  *	@list: list to dequeue from
1851  *
1852  *	Remove the head of the list. The list lock is taken so the function
1853  *	may be used safely with other locking list functions. The head item is
1854  *	returned or %NULL if the list is empty.
1855  */
1856 
1857 struct sk_buff *skb_dequeue(struct sk_buff_head *list)
1858 {
1859 	unsigned long flags;
1860 	struct sk_buff *result;
1861 
1862 	spin_lock_irqsave(&list->lock, flags);
1863 	result = __skb_dequeue(list);
1864 	spin_unlock_irqrestore(&list->lock, flags);
1865 	return result;
1866 }
1867 EXPORT_SYMBOL(skb_dequeue);
1868 
1869 /**
1870  *	skb_dequeue_tail - remove from the tail of the queue
1871  *	@list: list to dequeue from
1872  *
1873  *	Remove the tail of the list. The list lock is taken so the function
1874  *	may be used safely with other locking list functions. The tail item is
1875  *	returned or %NULL if the list is empty.
1876  */
1877 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
1878 {
1879 	unsigned long flags;
1880 	struct sk_buff *result;
1881 
1882 	spin_lock_irqsave(&list->lock, flags);
1883 	result = __skb_dequeue_tail(list);
1884 	spin_unlock_irqrestore(&list->lock, flags);
1885 	return result;
1886 }
1887 EXPORT_SYMBOL(skb_dequeue_tail);
1888 
1889 /**
1890  *	skb_queue_purge - empty a list
1891  *	@list: list to empty
1892  *
1893  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
1894  *	the list and one reference dropped. This function takes the list
1895  *	lock and is atomic with respect to other list locking functions.
1896  */
1897 void skb_queue_purge(struct sk_buff_head *list)
1898 {
1899 	struct sk_buff *skb;
1900 	while ((skb = skb_dequeue(list)) != NULL)
1901 		kfree_skb(skb);
1902 }
1903 EXPORT_SYMBOL(skb_queue_purge);
1904 
1905 /**
1906  *	skb_queue_head - queue a buffer at the list head
1907  *	@list: list to use
1908  *	@newsk: buffer to queue
1909  *
1910  *	Queue a buffer at the start of the list. This function takes the
1911  *	list lock and can be used safely with other locking &sk_buff functions
1912  *	safely.
1913  *
1914  *	A buffer cannot be placed on two lists at the same time.
1915  */
1916 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
1917 {
1918 	unsigned long flags;
1919 
1920 	spin_lock_irqsave(&list->lock, flags);
1921 	__skb_queue_head(list, newsk);
1922 	spin_unlock_irqrestore(&list->lock, flags);
1923 }
1924 EXPORT_SYMBOL(skb_queue_head);
1925 
1926 /**
1927  *	skb_queue_tail - queue a buffer at the list tail
1928  *	@list: list to use
1929  *	@newsk: buffer to queue
1930  *
1931  *	Queue a buffer at the tail of the list. This function takes the
1932  *	list lock and can be used safely with other locking &sk_buff functions
1933  *	safely.
1934  *
1935  *	A buffer cannot be placed on two lists at the same time.
1936  */
1937 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
1938 {
1939 	unsigned long flags;
1940 
1941 	spin_lock_irqsave(&list->lock, flags);
1942 	__skb_queue_tail(list, newsk);
1943 	spin_unlock_irqrestore(&list->lock, flags);
1944 }
1945 EXPORT_SYMBOL(skb_queue_tail);
1946 
1947 /**
1948  *	skb_unlink	-	remove a buffer from a list
1949  *	@skb: buffer to remove
1950  *	@list: list to use
1951  *
1952  *	Remove a packet from a list. The list locks are taken and this
1953  *	function is atomic with respect to other list locked calls
1954  *
1955  *	You must know what list the SKB is on.
1956  */
1957 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
1958 {
1959 	unsigned long flags;
1960 
1961 	spin_lock_irqsave(&list->lock, flags);
1962 	__skb_unlink(skb, list);
1963 	spin_unlock_irqrestore(&list->lock, flags);
1964 }
1965 EXPORT_SYMBOL(skb_unlink);
1966 
1967 /**
1968  *	skb_append	-	append a buffer
1969  *	@old: buffer to insert after
1970  *	@newsk: buffer to insert
1971  *	@list: list to use
1972  *
1973  *	Place a packet after a given packet in a list. The list locks are taken
1974  *	and this function is atomic with respect to other list locked calls.
1975  *	A buffer cannot be placed on two lists at the same time.
1976  */
1977 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
1978 {
1979 	unsigned long flags;
1980 
1981 	spin_lock_irqsave(&list->lock, flags);
1982 	__skb_queue_after(list, old, newsk);
1983 	spin_unlock_irqrestore(&list->lock, flags);
1984 }
1985 EXPORT_SYMBOL(skb_append);
1986 
1987 /**
1988  *	skb_insert	-	insert a buffer
1989  *	@old: buffer to insert before
1990  *	@newsk: buffer to insert
1991  *	@list: list to use
1992  *
1993  *	Place a packet before a given packet in a list. The list locks are
1994  * 	taken and this function is atomic with respect to other list locked
1995  *	calls.
1996  *
1997  *	A buffer cannot be placed on two lists at the same time.
1998  */
1999 void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
2000 {
2001 	unsigned long flags;
2002 
2003 	spin_lock_irqsave(&list->lock, flags);
2004 	__skb_insert(newsk, old->prev, old, list);
2005 	spin_unlock_irqrestore(&list->lock, flags);
2006 }
2007 EXPORT_SYMBOL(skb_insert);
2008 
2009 static inline void skb_split_inside_header(struct sk_buff *skb,
2010 					   struct sk_buff* skb1,
2011 					   const u32 len, const int pos)
2012 {
2013 	int i;
2014 
2015 	skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
2016 					 pos - len);
2017 	/* And move data appendix as is. */
2018 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
2019 		skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
2020 
2021 	skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
2022 	skb_shinfo(skb)->nr_frags  = 0;
2023 	skb1->data_len		   = skb->data_len;
2024 	skb1->len		   += skb1->data_len;
2025 	skb->data_len		   = 0;
2026 	skb->len		   = len;
2027 	skb_set_tail_pointer(skb, len);
2028 }
2029 
2030 static inline void skb_split_no_header(struct sk_buff *skb,
2031 				       struct sk_buff* skb1,
2032 				       const u32 len, int pos)
2033 {
2034 	int i, k = 0;
2035 	const int nfrags = skb_shinfo(skb)->nr_frags;
2036 
2037 	skb_shinfo(skb)->nr_frags = 0;
2038 	skb1->len		  = skb1->data_len = skb->len - len;
2039 	skb->len		  = len;
2040 	skb->data_len		  = len - pos;
2041 
2042 	for (i = 0; i < nfrags; i++) {
2043 		int size = skb_shinfo(skb)->frags[i].size;
2044 
2045 		if (pos + size > len) {
2046 			skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
2047 
2048 			if (pos < len) {
2049 				/* Split frag.
2050 				 * We have two variants in this case:
2051 				 * 1. Move all the frag to the second
2052 				 *    part, if it is possible. F.e.
2053 				 *    this approach is mandatory for TUX,
2054 				 *    where splitting is expensive.
2055 				 * 2. Split is accurately. We make this.
2056 				 */
2057 				get_page(skb_shinfo(skb)->frags[i].page);
2058 				skb_shinfo(skb1)->frags[0].page_offset += len - pos;
2059 				skb_shinfo(skb1)->frags[0].size -= len - pos;
2060 				skb_shinfo(skb)->frags[i].size	= len - pos;
2061 				skb_shinfo(skb)->nr_frags++;
2062 			}
2063 			k++;
2064 		} else
2065 			skb_shinfo(skb)->nr_frags++;
2066 		pos += size;
2067 	}
2068 	skb_shinfo(skb1)->nr_frags = k;
2069 }
2070 
2071 /**
2072  * skb_split - Split fragmented skb to two parts at length len.
2073  * @skb: the buffer to split
2074  * @skb1: the buffer to receive the second part
2075  * @len: new length for skb
2076  */
2077 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
2078 {
2079 	int pos = skb_headlen(skb);
2080 
2081 	if (len < pos)	/* Split line is inside header. */
2082 		skb_split_inside_header(skb, skb1, len, pos);
2083 	else		/* Second chunk has no header, nothing to copy. */
2084 		skb_split_no_header(skb, skb1, len, pos);
2085 }
2086 EXPORT_SYMBOL(skb_split);
2087 
2088 /* Shifting from/to a cloned skb is a no-go.
2089  *
2090  * Caller cannot keep skb_shinfo related pointers past calling here!
2091  */
2092 static int skb_prepare_for_shift(struct sk_buff *skb)
2093 {
2094 	return skb_cloned(skb) && pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2095 }
2096 
2097 /**
2098  * skb_shift - Shifts paged data partially from skb to another
2099  * @tgt: buffer into which tail data gets added
2100  * @skb: buffer from which the paged data comes from
2101  * @shiftlen: shift up to this many bytes
2102  *
2103  * Attempts to shift up to shiftlen worth of bytes, which may be less than
2104  * the length of the skb, from tgt to skb. Returns number bytes shifted.
2105  * It's up to caller to free skb if everything was shifted.
2106  *
2107  * If @tgt runs out of frags, the whole operation is aborted.
2108  *
2109  * Skb cannot include anything else but paged data while tgt is allowed
2110  * to have non-paged data as well.
2111  *
2112  * TODO: full sized shift could be optimized but that would need
2113  * specialized skb free'er to handle frags without up-to-date nr_frags.
2114  */
2115 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
2116 {
2117 	int from, to, merge, todo;
2118 	struct skb_frag_struct *fragfrom, *fragto;
2119 
2120 	BUG_ON(shiftlen > skb->len);
2121 	BUG_ON(skb_headlen(skb));	/* Would corrupt stream */
2122 
2123 	todo = shiftlen;
2124 	from = 0;
2125 	to = skb_shinfo(tgt)->nr_frags;
2126 	fragfrom = &skb_shinfo(skb)->frags[from];
2127 
2128 	/* Actual merge is delayed until the point when we know we can
2129 	 * commit all, so that we don't have to undo partial changes
2130 	 */
2131 	if (!to ||
2132 	    !skb_can_coalesce(tgt, to, fragfrom->page, fragfrom->page_offset)) {
2133 		merge = -1;
2134 	} else {
2135 		merge = to - 1;
2136 
2137 		todo -= fragfrom->size;
2138 		if (todo < 0) {
2139 			if (skb_prepare_for_shift(skb) ||
2140 			    skb_prepare_for_shift(tgt))
2141 				return 0;
2142 
2143 			/* All previous frag pointers might be stale! */
2144 			fragfrom = &skb_shinfo(skb)->frags[from];
2145 			fragto = &skb_shinfo(tgt)->frags[merge];
2146 
2147 			fragto->size += shiftlen;
2148 			fragfrom->size -= shiftlen;
2149 			fragfrom->page_offset += shiftlen;
2150 
2151 			goto onlymerged;
2152 		}
2153 
2154 		from++;
2155 	}
2156 
2157 	/* Skip full, not-fitting skb to avoid expensive operations */
2158 	if ((shiftlen == skb->len) &&
2159 	    (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
2160 		return 0;
2161 
2162 	if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
2163 		return 0;
2164 
2165 	while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
2166 		if (to == MAX_SKB_FRAGS)
2167 			return 0;
2168 
2169 		fragfrom = &skb_shinfo(skb)->frags[from];
2170 		fragto = &skb_shinfo(tgt)->frags[to];
2171 
2172 		if (todo >= fragfrom->size) {
2173 			*fragto = *fragfrom;
2174 			todo -= fragfrom->size;
2175 			from++;
2176 			to++;
2177 
2178 		} else {
2179 			get_page(fragfrom->page);
2180 			fragto->page = fragfrom->page;
2181 			fragto->page_offset = fragfrom->page_offset;
2182 			fragto->size = todo;
2183 
2184 			fragfrom->page_offset += todo;
2185 			fragfrom->size -= todo;
2186 			todo = 0;
2187 
2188 			to++;
2189 			break;
2190 		}
2191 	}
2192 
2193 	/* Ready to "commit" this state change to tgt */
2194 	skb_shinfo(tgt)->nr_frags = to;
2195 
2196 	if (merge >= 0) {
2197 		fragfrom = &skb_shinfo(skb)->frags[0];
2198 		fragto = &skb_shinfo(tgt)->frags[merge];
2199 
2200 		fragto->size += fragfrom->size;
2201 		put_page(fragfrom->page);
2202 	}
2203 
2204 	/* Reposition in the original skb */
2205 	to = 0;
2206 	while (from < skb_shinfo(skb)->nr_frags)
2207 		skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
2208 	skb_shinfo(skb)->nr_frags = to;
2209 
2210 	BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
2211 
2212 onlymerged:
2213 	/* Most likely the tgt won't ever need its checksum anymore, skb on
2214 	 * the other hand might need it if it needs to be resent
2215 	 */
2216 	tgt->ip_summed = CHECKSUM_PARTIAL;
2217 	skb->ip_summed = CHECKSUM_PARTIAL;
2218 
2219 	/* Yak, is it really working this way? Some helper please? */
2220 	skb->len -= shiftlen;
2221 	skb->data_len -= shiftlen;
2222 	skb->truesize -= shiftlen;
2223 	tgt->len += shiftlen;
2224 	tgt->data_len += shiftlen;
2225 	tgt->truesize += shiftlen;
2226 
2227 	return shiftlen;
2228 }
2229 
2230 /**
2231  * skb_prepare_seq_read - Prepare a sequential read of skb data
2232  * @skb: the buffer to read
2233  * @from: lower offset of data to be read
2234  * @to: upper offset of data to be read
2235  * @st: state variable
2236  *
2237  * Initializes the specified state variable. Must be called before
2238  * invoking skb_seq_read() for the first time.
2239  */
2240 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
2241 			  unsigned int to, struct skb_seq_state *st)
2242 {
2243 	st->lower_offset = from;
2244 	st->upper_offset = to;
2245 	st->root_skb = st->cur_skb = skb;
2246 	st->frag_idx = st->stepped_offset = 0;
2247 	st->frag_data = NULL;
2248 }
2249 EXPORT_SYMBOL(skb_prepare_seq_read);
2250 
2251 /**
2252  * skb_seq_read - Sequentially read skb data
2253  * @consumed: number of bytes consumed by the caller so far
2254  * @data: destination pointer for data to be returned
2255  * @st: state variable
2256  *
2257  * Reads a block of skb data at &consumed relative to the
2258  * lower offset specified to skb_prepare_seq_read(). Assigns
2259  * the head of the data block to &data and returns the length
2260  * of the block or 0 if the end of the skb data or the upper
2261  * offset has been reached.
2262  *
2263  * The caller is not required to consume all of the data
2264  * returned, i.e. &consumed is typically set to the number
2265  * of bytes already consumed and the next call to
2266  * skb_seq_read() will return the remaining part of the block.
2267  *
2268  * Note 1: The size of each block of data returned can be arbitary,
2269  *       this limitation is the cost for zerocopy seqeuental
2270  *       reads of potentially non linear data.
2271  *
2272  * Note 2: Fragment lists within fragments are not implemented
2273  *       at the moment, state->root_skb could be replaced with
2274  *       a stack for this purpose.
2275  */
2276 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
2277 			  struct skb_seq_state *st)
2278 {
2279 	unsigned int block_limit, abs_offset = consumed + st->lower_offset;
2280 	skb_frag_t *frag;
2281 
2282 	if (unlikely(abs_offset >= st->upper_offset))
2283 		return 0;
2284 
2285 next_skb:
2286 	block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
2287 
2288 	if (abs_offset < block_limit && !st->frag_data) {
2289 		*data = st->cur_skb->data + (abs_offset - st->stepped_offset);
2290 		return block_limit - abs_offset;
2291 	}
2292 
2293 	if (st->frag_idx == 0 && !st->frag_data)
2294 		st->stepped_offset += skb_headlen(st->cur_skb);
2295 
2296 	while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
2297 		frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
2298 		block_limit = frag->size + st->stepped_offset;
2299 
2300 		if (abs_offset < block_limit) {
2301 			if (!st->frag_data)
2302 				st->frag_data = kmap_skb_frag(frag);
2303 
2304 			*data = (u8 *) st->frag_data + frag->page_offset +
2305 				(abs_offset - st->stepped_offset);
2306 
2307 			return block_limit - abs_offset;
2308 		}
2309 
2310 		if (st->frag_data) {
2311 			kunmap_skb_frag(st->frag_data);
2312 			st->frag_data = NULL;
2313 		}
2314 
2315 		st->frag_idx++;
2316 		st->stepped_offset += frag->size;
2317 	}
2318 
2319 	if (st->frag_data) {
2320 		kunmap_skb_frag(st->frag_data);
2321 		st->frag_data = NULL;
2322 	}
2323 
2324 	if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) {
2325 		st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
2326 		st->frag_idx = 0;
2327 		goto next_skb;
2328 	} else if (st->cur_skb->next) {
2329 		st->cur_skb = st->cur_skb->next;
2330 		st->frag_idx = 0;
2331 		goto next_skb;
2332 	}
2333 
2334 	return 0;
2335 }
2336 EXPORT_SYMBOL(skb_seq_read);
2337 
2338 /**
2339  * skb_abort_seq_read - Abort a sequential read of skb data
2340  * @st: state variable
2341  *
2342  * Must be called if skb_seq_read() was not called until it
2343  * returned 0.
2344  */
2345 void skb_abort_seq_read(struct skb_seq_state *st)
2346 {
2347 	if (st->frag_data)
2348 		kunmap_skb_frag(st->frag_data);
2349 }
2350 EXPORT_SYMBOL(skb_abort_seq_read);
2351 
2352 #define TS_SKB_CB(state)	((struct skb_seq_state *) &((state)->cb))
2353 
2354 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
2355 					  struct ts_config *conf,
2356 					  struct ts_state *state)
2357 {
2358 	return skb_seq_read(offset, text, TS_SKB_CB(state));
2359 }
2360 
2361 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
2362 {
2363 	skb_abort_seq_read(TS_SKB_CB(state));
2364 }
2365 
2366 /**
2367  * skb_find_text - Find a text pattern in skb data
2368  * @skb: the buffer to look in
2369  * @from: search offset
2370  * @to: search limit
2371  * @config: textsearch configuration
2372  * @state: uninitialized textsearch state variable
2373  *
2374  * Finds a pattern in the skb data according to the specified
2375  * textsearch configuration. Use textsearch_next() to retrieve
2376  * subsequent occurrences of the pattern. Returns the offset
2377  * to the first occurrence or UINT_MAX if no match was found.
2378  */
2379 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
2380 			   unsigned int to, struct ts_config *config,
2381 			   struct ts_state *state)
2382 {
2383 	unsigned int ret;
2384 
2385 	config->get_next_block = skb_ts_get_next_block;
2386 	config->finish = skb_ts_finish;
2387 
2388 	skb_prepare_seq_read(skb, from, to, TS_SKB_CB(state));
2389 
2390 	ret = textsearch_find(config, state);
2391 	return (ret <= to - from ? ret : UINT_MAX);
2392 }
2393 EXPORT_SYMBOL(skb_find_text);
2394 
2395 /**
2396  * skb_append_datato_frags: - append the user data to a skb
2397  * @sk: sock  structure
2398  * @skb: skb structure to be appened with user data.
2399  * @getfrag: call back function to be used for getting the user data
2400  * @from: pointer to user message iov
2401  * @length: length of the iov message
2402  *
2403  * Description: This procedure append the user data in the fragment part
2404  * of the skb if any page alloc fails user this procedure returns  -ENOMEM
2405  */
2406 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
2407 			int (*getfrag)(void *from, char *to, int offset,
2408 					int len, int odd, struct sk_buff *skb),
2409 			void *from, int length)
2410 {
2411 	int frg_cnt = 0;
2412 	skb_frag_t *frag = NULL;
2413 	struct page *page = NULL;
2414 	int copy, left;
2415 	int offset = 0;
2416 	int ret;
2417 
2418 	do {
2419 		/* Return error if we don't have space for new frag */
2420 		frg_cnt = skb_shinfo(skb)->nr_frags;
2421 		if (frg_cnt >= MAX_SKB_FRAGS)
2422 			return -EFAULT;
2423 
2424 		/* allocate a new page for next frag */
2425 		page = alloc_pages(sk->sk_allocation, 0);
2426 
2427 		/* If alloc_page fails just return failure and caller will
2428 		 * free previous allocated pages by doing kfree_skb()
2429 		 */
2430 		if (page == NULL)
2431 			return -ENOMEM;
2432 
2433 		/* initialize the next frag */
2434 		sk->sk_sndmsg_page = page;
2435 		sk->sk_sndmsg_off = 0;
2436 		skb_fill_page_desc(skb, frg_cnt, page, 0, 0);
2437 		skb->truesize += PAGE_SIZE;
2438 		atomic_add(PAGE_SIZE, &sk->sk_wmem_alloc);
2439 
2440 		/* get the new initialized frag */
2441 		frg_cnt = skb_shinfo(skb)->nr_frags;
2442 		frag = &skb_shinfo(skb)->frags[frg_cnt - 1];
2443 
2444 		/* copy the user data to page */
2445 		left = PAGE_SIZE - frag->page_offset;
2446 		copy = (length > left)? left : length;
2447 
2448 		ret = getfrag(from, (page_address(frag->page) +
2449 			    frag->page_offset + frag->size),
2450 			    offset, copy, 0, skb);
2451 		if (ret < 0)
2452 			return -EFAULT;
2453 
2454 		/* copy was successful so update the size parameters */
2455 		sk->sk_sndmsg_off += copy;
2456 		frag->size += copy;
2457 		skb->len += copy;
2458 		skb->data_len += copy;
2459 		offset += copy;
2460 		length -= copy;
2461 
2462 	} while (length > 0);
2463 
2464 	return 0;
2465 }
2466 EXPORT_SYMBOL(skb_append_datato_frags);
2467 
2468 /**
2469  *	skb_pull_rcsum - pull skb and update receive checksum
2470  *	@skb: buffer to update
2471  *	@len: length of data pulled
2472  *
2473  *	This function performs an skb_pull on the packet and updates
2474  *	the CHECKSUM_COMPLETE checksum.  It should be used on
2475  *	receive path processing instead of skb_pull unless you know
2476  *	that the checksum difference is zero (e.g., a valid IP header)
2477  *	or you are setting ip_summed to CHECKSUM_NONE.
2478  */
2479 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
2480 {
2481 	BUG_ON(len > skb->len);
2482 	skb->len -= len;
2483 	BUG_ON(skb->len < skb->data_len);
2484 	skb_postpull_rcsum(skb, skb->data, len);
2485 	return skb->data += len;
2486 }
2487 EXPORT_SYMBOL_GPL(skb_pull_rcsum);
2488 
2489 /**
2490  *	skb_segment - Perform protocol segmentation on skb.
2491  *	@skb: buffer to segment
2492  *	@features: features for the output path (see dev->features)
2493  *
2494  *	This function performs segmentation on the given skb.  It returns
2495  *	a pointer to the first in a list of new skbs for the segments.
2496  *	In case of error it returns ERR_PTR(err).
2497  */
2498 struct sk_buff *skb_segment(struct sk_buff *skb, int features)
2499 {
2500 	struct sk_buff *segs = NULL;
2501 	struct sk_buff *tail = NULL;
2502 	struct sk_buff *fskb = skb_shinfo(skb)->frag_list;
2503 	unsigned int mss = skb_shinfo(skb)->gso_size;
2504 	unsigned int doffset = skb->data - skb_mac_header(skb);
2505 	unsigned int offset = doffset;
2506 	unsigned int headroom;
2507 	unsigned int len;
2508 	int sg = features & NETIF_F_SG;
2509 	int nfrags = skb_shinfo(skb)->nr_frags;
2510 	int err = -ENOMEM;
2511 	int i = 0;
2512 	int pos;
2513 
2514 	__skb_push(skb, doffset);
2515 	headroom = skb_headroom(skb);
2516 	pos = skb_headlen(skb);
2517 
2518 	do {
2519 		struct sk_buff *nskb;
2520 		skb_frag_t *frag;
2521 		int hsize;
2522 		int size;
2523 
2524 		len = skb->len - offset;
2525 		if (len > mss)
2526 			len = mss;
2527 
2528 		hsize = skb_headlen(skb) - offset;
2529 		if (hsize < 0)
2530 			hsize = 0;
2531 		if (hsize > len || !sg)
2532 			hsize = len;
2533 
2534 		if (!hsize && i >= nfrags) {
2535 			BUG_ON(fskb->len != len);
2536 
2537 			pos += len;
2538 			nskb = skb_clone(fskb, GFP_ATOMIC);
2539 			fskb = fskb->next;
2540 
2541 			if (unlikely(!nskb))
2542 				goto err;
2543 
2544 			hsize = skb_end_pointer(nskb) - nskb->head;
2545 			if (skb_cow_head(nskb, doffset + headroom)) {
2546 				kfree_skb(nskb);
2547 				goto err;
2548 			}
2549 
2550 			nskb->truesize += skb_end_pointer(nskb) - nskb->head -
2551 					  hsize;
2552 			skb_release_head_state(nskb);
2553 			__skb_push(nskb, doffset);
2554 		} else {
2555 			nskb = alloc_skb(hsize + doffset + headroom,
2556 					 GFP_ATOMIC);
2557 
2558 			if (unlikely(!nskb))
2559 				goto err;
2560 
2561 			skb_reserve(nskb, headroom);
2562 			__skb_put(nskb, doffset);
2563 		}
2564 
2565 		if (segs)
2566 			tail->next = nskb;
2567 		else
2568 			segs = nskb;
2569 		tail = nskb;
2570 
2571 		__copy_skb_header(nskb, skb);
2572 		nskb->mac_len = skb->mac_len;
2573 
2574 		/* nskb and skb might have different headroom */
2575 		if (nskb->ip_summed == CHECKSUM_PARTIAL)
2576 			nskb->csum_start += skb_headroom(nskb) - headroom;
2577 
2578 		skb_reset_mac_header(nskb);
2579 		skb_set_network_header(nskb, skb->mac_len);
2580 		nskb->transport_header = (nskb->network_header +
2581 					  skb_network_header_len(skb));
2582 		skb_copy_from_linear_data(skb, nskb->data, doffset);
2583 
2584 		if (fskb != skb_shinfo(skb)->frag_list)
2585 			continue;
2586 
2587 		if (!sg) {
2588 			nskb->ip_summed = CHECKSUM_NONE;
2589 			nskb->csum = skb_copy_and_csum_bits(skb, offset,
2590 							    skb_put(nskb, len),
2591 							    len, 0);
2592 			continue;
2593 		}
2594 
2595 		frag = skb_shinfo(nskb)->frags;
2596 
2597 		skb_copy_from_linear_data_offset(skb, offset,
2598 						 skb_put(nskb, hsize), hsize);
2599 
2600 		while (pos < offset + len && i < nfrags) {
2601 			*frag = skb_shinfo(skb)->frags[i];
2602 			get_page(frag->page);
2603 			size = frag->size;
2604 
2605 			if (pos < offset) {
2606 				frag->page_offset += offset - pos;
2607 				frag->size -= offset - pos;
2608 			}
2609 
2610 			skb_shinfo(nskb)->nr_frags++;
2611 
2612 			if (pos + size <= offset + len) {
2613 				i++;
2614 				pos += size;
2615 			} else {
2616 				frag->size -= pos + size - (offset + len);
2617 				goto skip_fraglist;
2618 			}
2619 
2620 			frag++;
2621 		}
2622 
2623 		if (pos < offset + len) {
2624 			struct sk_buff *fskb2 = fskb;
2625 
2626 			BUG_ON(pos + fskb->len != offset + len);
2627 
2628 			pos += fskb->len;
2629 			fskb = fskb->next;
2630 
2631 			if (fskb2->next) {
2632 				fskb2 = skb_clone(fskb2, GFP_ATOMIC);
2633 				if (!fskb2)
2634 					goto err;
2635 			} else
2636 				skb_get(fskb2);
2637 
2638 			SKB_FRAG_ASSERT(nskb);
2639 			skb_shinfo(nskb)->frag_list = fskb2;
2640 		}
2641 
2642 skip_fraglist:
2643 		nskb->data_len = len - hsize;
2644 		nskb->len += nskb->data_len;
2645 		nskb->truesize += nskb->data_len;
2646 	} while ((offset += len) < skb->len);
2647 
2648 	return segs;
2649 
2650 err:
2651 	while ((skb = segs)) {
2652 		segs = skb->next;
2653 		kfree_skb(skb);
2654 	}
2655 	return ERR_PTR(err);
2656 }
2657 EXPORT_SYMBOL_GPL(skb_segment);
2658 
2659 int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb)
2660 {
2661 	struct sk_buff *p = *head;
2662 	struct sk_buff *nskb;
2663 	struct skb_shared_info *skbinfo = skb_shinfo(skb);
2664 	struct skb_shared_info *pinfo = skb_shinfo(p);
2665 	unsigned int headroom;
2666 	unsigned int len = skb_gro_len(skb);
2667 	unsigned int offset = skb_gro_offset(skb);
2668 	unsigned int headlen = skb_headlen(skb);
2669 
2670 	if (p->len + len >= 65536)
2671 		return -E2BIG;
2672 
2673 	if (pinfo->frag_list)
2674 		goto merge;
2675 	else if (headlen <= offset) {
2676 		skb_frag_t *frag;
2677 		skb_frag_t *frag2;
2678 		int i = skbinfo->nr_frags;
2679 		int nr_frags = pinfo->nr_frags + i;
2680 
2681 		offset -= headlen;
2682 
2683 		if (nr_frags > MAX_SKB_FRAGS)
2684 			return -E2BIG;
2685 
2686 		pinfo->nr_frags = nr_frags;
2687 		skbinfo->nr_frags = 0;
2688 
2689 		frag = pinfo->frags + nr_frags;
2690 		frag2 = skbinfo->frags + i;
2691 		do {
2692 			*--frag = *--frag2;
2693 		} while (--i);
2694 
2695 		frag->page_offset += offset;
2696 		frag->size -= offset;
2697 
2698 		skb->truesize -= skb->data_len;
2699 		skb->len -= skb->data_len;
2700 		skb->data_len = 0;
2701 
2702 		NAPI_GRO_CB(skb)->free = 1;
2703 		goto done;
2704 	} else if (skb_gro_len(p) != pinfo->gso_size)
2705 		return -E2BIG;
2706 
2707 	headroom = skb_headroom(p);
2708 	nskb = alloc_skb(headroom + skb_gro_offset(p), GFP_ATOMIC);
2709 	if (unlikely(!nskb))
2710 		return -ENOMEM;
2711 
2712 	__copy_skb_header(nskb, p);
2713 	nskb->mac_len = p->mac_len;
2714 
2715 	skb_reserve(nskb, headroom);
2716 	__skb_put(nskb, skb_gro_offset(p));
2717 
2718 	skb_set_mac_header(nskb, skb_mac_header(p) - p->data);
2719 	skb_set_network_header(nskb, skb_network_offset(p));
2720 	skb_set_transport_header(nskb, skb_transport_offset(p));
2721 
2722 	__skb_pull(p, skb_gro_offset(p));
2723 	memcpy(skb_mac_header(nskb), skb_mac_header(p),
2724 	       p->data - skb_mac_header(p));
2725 
2726 	*NAPI_GRO_CB(nskb) = *NAPI_GRO_CB(p);
2727 	skb_shinfo(nskb)->frag_list = p;
2728 	skb_shinfo(nskb)->gso_size = pinfo->gso_size;
2729 	pinfo->gso_size = 0;
2730 	skb_header_release(p);
2731 	nskb->prev = p;
2732 
2733 	nskb->data_len += p->len;
2734 	nskb->truesize += p->len;
2735 	nskb->len += p->len;
2736 
2737 	*head = nskb;
2738 	nskb->next = p->next;
2739 	p->next = NULL;
2740 
2741 	p = nskb;
2742 
2743 merge:
2744 	if (offset > headlen) {
2745 		skbinfo->frags[0].page_offset += offset - headlen;
2746 		skbinfo->frags[0].size -= offset - headlen;
2747 		offset = headlen;
2748 	}
2749 
2750 	__skb_pull(skb, offset);
2751 
2752 	p->prev->next = skb;
2753 	p->prev = skb;
2754 	skb_header_release(skb);
2755 
2756 done:
2757 	NAPI_GRO_CB(p)->count++;
2758 	p->data_len += len;
2759 	p->truesize += len;
2760 	p->len += len;
2761 
2762 	NAPI_GRO_CB(skb)->same_flow = 1;
2763 	return 0;
2764 }
2765 EXPORT_SYMBOL_GPL(skb_gro_receive);
2766 
2767 void __init skb_init(void)
2768 {
2769 	skbuff_head_cache = kmem_cache_create("skbuff_head_cache",
2770 					      sizeof(struct sk_buff),
2771 					      0,
2772 					      SLAB_HWCACHE_ALIGN|SLAB_PANIC,
2773 					      NULL);
2774 	skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
2775 						(2*sizeof(struct sk_buff)) +
2776 						sizeof(atomic_t),
2777 						0,
2778 						SLAB_HWCACHE_ALIGN|SLAB_PANIC,
2779 						NULL);
2780 }
2781 
2782 /**
2783  *	skb_to_sgvec - Fill a scatter-gather list from a socket buffer
2784  *	@skb: Socket buffer containing the buffers to be mapped
2785  *	@sg: The scatter-gather list to map into
2786  *	@offset: The offset into the buffer's contents to start mapping
2787  *	@len: Length of buffer space to be mapped
2788  *
2789  *	Fill the specified scatter-gather list with mappings/pointers into a
2790  *	region of the buffer space attached to a socket buffer.
2791  */
2792 static int
2793 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
2794 {
2795 	int start = skb_headlen(skb);
2796 	int i, copy = start - offset;
2797 	struct sk_buff *frag_iter;
2798 	int elt = 0;
2799 
2800 	if (copy > 0) {
2801 		if (copy > len)
2802 			copy = len;
2803 		sg_set_buf(sg, skb->data + offset, copy);
2804 		elt++;
2805 		if ((len -= copy) == 0)
2806 			return elt;
2807 		offset += copy;
2808 	}
2809 
2810 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2811 		int end;
2812 
2813 		WARN_ON(start > offset + len);
2814 
2815 		end = start + skb_shinfo(skb)->frags[i].size;
2816 		if ((copy = end - offset) > 0) {
2817 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2818 
2819 			if (copy > len)
2820 				copy = len;
2821 			sg_set_page(&sg[elt], frag->page, copy,
2822 					frag->page_offset+offset-start);
2823 			elt++;
2824 			if (!(len -= copy))
2825 				return elt;
2826 			offset += copy;
2827 		}
2828 		start = end;
2829 	}
2830 
2831 	skb_walk_frags(skb, frag_iter) {
2832 		int end;
2833 
2834 		WARN_ON(start > offset + len);
2835 
2836 		end = start + frag_iter->len;
2837 		if ((copy = end - offset) > 0) {
2838 			if (copy > len)
2839 				copy = len;
2840 			elt += __skb_to_sgvec(frag_iter, sg+elt, offset - start,
2841 					      copy);
2842 			if ((len -= copy) == 0)
2843 				return elt;
2844 			offset += copy;
2845 		}
2846 		start = end;
2847 	}
2848 	BUG_ON(len);
2849 	return elt;
2850 }
2851 
2852 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
2853 {
2854 	int nsg = __skb_to_sgvec(skb, sg, offset, len);
2855 
2856 	sg_mark_end(&sg[nsg - 1]);
2857 
2858 	return nsg;
2859 }
2860 EXPORT_SYMBOL_GPL(skb_to_sgvec);
2861 
2862 /**
2863  *	skb_cow_data - Check that a socket buffer's data buffers are writable
2864  *	@skb: The socket buffer to check.
2865  *	@tailbits: Amount of trailing space to be added
2866  *	@trailer: Returned pointer to the skb where the @tailbits space begins
2867  *
2868  *	Make sure that the data buffers attached to a socket buffer are
2869  *	writable. If they are not, private copies are made of the data buffers
2870  *	and the socket buffer is set to use these instead.
2871  *
2872  *	If @tailbits is given, make sure that there is space to write @tailbits
2873  *	bytes of data beyond current end of socket buffer.  @trailer will be
2874  *	set to point to the skb in which this space begins.
2875  *
2876  *	The number of scatterlist elements required to completely map the
2877  *	COW'd and extended socket buffer will be returned.
2878  */
2879 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
2880 {
2881 	int copyflag;
2882 	int elt;
2883 	struct sk_buff *skb1, **skb_p;
2884 
2885 	/* If skb is cloned or its head is paged, reallocate
2886 	 * head pulling out all the pages (pages are considered not writable
2887 	 * at the moment even if they are anonymous).
2888 	 */
2889 	if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
2890 	    __pskb_pull_tail(skb, skb_pagelen(skb)-skb_headlen(skb)) == NULL)
2891 		return -ENOMEM;
2892 
2893 	/* Easy case. Most of packets will go this way. */
2894 	if (!skb_has_frag_list(skb)) {
2895 		/* A little of trouble, not enough of space for trailer.
2896 		 * This should not happen, when stack is tuned to generate
2897 		 * good frames. OK, on miss we reallocate and reserve even more
2898 		 * space, 128 bytes is fair. */
2899 
2900 		if (skb_tailroom(skb) < tailbits &&
2901 		    pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
2902 			return -ENOMEM;
2903 
2904 		/* Voila! */
2905 		*trailer = skb;
2906 		return 1;
2907 	}
2908 
2909 	/* Misery. We are in troubles, going to mincer fragments... */
2910 
2911 	elt = 1;
2912 	skb_p = &skb_shinfo(skb)->frag_list;
2913 	copyflag = 0;
2914 
2915 	while ((skb1 = *skb_p) != NULL) {
2916 		int ntail = 0;
2917 
2918 		/* The fragment is partially pulled by someone,
2919 		 * this can happen on input. Copy it and everything
2920 		 * after it. */
2921 
2922 		if (skb_shared(skb1))
2923 			copyflag = 1;
2924 
2925 		/* If the skb is the last, worry about trailer. */
2926 
2927 		if (skb1->next == NULL && tailbits) {
2928 			if (skb_shinfo(skb1)->nr_frags ||
2929 			    skb_has_frag_list(skb1) ||
2930 			    skb_tailroom(skb1) < tailbits)
2931 				ntail = tailbits + 128;
2932 		}
2933 
2934 		if (copyflag ||
2935 		    skb_cloned(skb1) ||
2936 		    ntail ||
2937 		    skb_shinfo(skb1)->nr_frags ||
2938 		    skb_has_frag_list(skb1)) {
2939 			struct sk_buff *skb2;
2940 
2941 			/* Fuck, we are miserable poor guys... */
2942 			if (ntail == 0)
2943 				skb2 = skb_copy(skb1, GFP_ATOMIC);
2944 			else
2945 				skb2 = skb_copy_expand(skb1,
2946 						       skb_headroom(skb1),
2947 						       ntail,
2948 						       GFP_ATOMIC);
2949 			if (unlikely(skb2 == NULL))
2950 				return -ENOMEM;
2951 
2952 			if (skb1->sk)
2953 				skb_set_owner_w(skb2, skb1->sk);
2954 
2955 			/* Looking around. Are we still alive?
2956 			 * OK, link new skb, drop old one */
2957 
2958 			skb2->next = skb1->next;
2959 			*skb_p = skb2;
2960 			kfree_skb(skb1);
2961 			skb1 = skb2;
2962 		}
2963 		elt++;
2964 		*trailer = skb1;
2965 		skb_p = &skb1->next;
2966 	}
2967 
2968 	return elt;
2969 }
2970 EXPORT_SYMBOL_GPL(skb_cow_data);
2971 
2972 static void sock_rmem_free(struct sk_buff *skb)
2973 {
2974 	struct sock *sk = skb->sk;
2975 
2976 	atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
2977 }
2978 
2979 /*
2980  * Note: We dont mem charge error packets (no sk_forward_alloc changes)
2981  */
2982 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
2983 {
2984 	if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
2985 	    (unsigned)sk->sk_rcvbuf)
2986 		return -ENOMEM;
2987 
2988 	skb_orphan(skb);
2989 	skb->sk = sk;
2990 	skb->destructor = sock_rmem_free;
2991 	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
2992 
2993 	skb_queue_tail(&sk->sk_error_queue, skb);
2994 	if (!sock_flag(sk, SOCK_DEAD))
2995 		sk->sk_data_ready(sk, skb->len);
2996 	return 0;
2997 }
2998 EXPORT_SYMBOL(sock_queue_err_skb);
2999 
3000 void skb_tstamp_tx(struct sk_buff *orig_skb,
3001 		struct skb_shared_hwtstamps *hwtstamps)
3002 {
3003 	struct sock *sk = orig_skb->sk;
3004 	struct sock_exterr_skb *serr;
3005 	struct sk_buff *skb;
3006 	int err;
3007 
3008 	if (!sk)
3009 		return;
3010 
3011 	skb = skb_clone(orig_skb, GFP_ATOMIC);
3012 	if (!skb)
3013 		return;
3014 
3015 	if (hwtstamps) {
3016 		*skb_hwtstamps(skb) =
3017 			*hwtstamps;
3018 	} else {
3019 		/*
3020 		 * no hardware time stamps available,
3021 		 * so keep the shared tx_flags and only
3022 		 * store software time stamp
3023 		 */
3024 		skb->tstamp = ktime_get_real();
3025 	}
3026 
3027 	serr = SKB_EXT_ERR(skb);
3028 	memset(serr, 0, sizeof(*serr));
3029 	serr->ee.ee_errno = ENOMSG;
3030 	serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
3031 
3032 	err = sock_queue_err_skb(sk, skb);
3033 
3034 	if (err)
3035 		kfree_skb(skb);
3036 }
3037 EXPORT_SYMBOL_GPL(skb_tstamp_tx);
3038 
3039 
3040 /**
3041  * skb_partial_csum_set - set up and verify partial csum values for packet
3042  * @skb: the skb to set
3043  * @start: the number of bytes after skb->data to start checksumming.
3044  * @off: the offset from start to place the checksum.
3045  *
3046  * For untrusted partially-checksummed packets, we need to make sure the values
3047  * for skb->csum_start and skb->csum_offset are valid so we don't oops.
3048  *
3049  * This function checks and sets those values and skb->ip_summed: if this
3050  * returns false you should drop the packet.
3051  */
3052 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
3053 {
3054 	if (unlikely(start > skb_headlen(skb)) ||
3055 	    unlikely((int)start + off > skb_headlen(skb) - 2)) {
3056 		if (net_ratelimit())
3057 			printk(KERN_WARNING
3058 			       "bad partial csum: csum=%u/%u len=%u\n",
3059 			       start, off, skb_headlen(skb));
3060 		return false;
3061 	}
3062 	skb->ip_summed = CHECKSUM_PARTIAL;
3063 	skb->csum_start = skb_headroom(skb) + start;
3064 	skb->csum_offset = off;
3065 	return true;
3066 }
3067 EXPORT_SYMBOL_GPL(skb_partial_csum_set);
3068 
3069 void __skb_warn_lro_forwarding(const struct sk_buff *skb)
3070 {
3071 	if (net_ratelimit())
3072 		pr_warning("%s: received packets cannot be forwarded"
3073 			   " while LRO is enabled\n", skb->dev->name);
3074 }
3075 EXPORT_SYMBOL(__skb_warn_lro_forwarding);
3076