xref: /openbmc/linux/net/core/skbuff.c (revision b78412b8)
1 /*
2  *	Routines having to do with the 'struct sk_buff' memory handlers.
3  *
4  *	Authors:	Alan Cox <alan@lxorguk.ukuu.org.uk>
5  *			Florian La Roche <rzsfl@rz.uni-sb.de>
6  *
7  *	Fixes:
8  *		Alan Cox	:	Fixed the worst of the load
9  *					balancer bugs.
10  *		Dave Platt	:	Interrupt stacking fix.
11  *	Richard Kooijman	:	Timestamp fixes.
12  *		Alan Cox	:	Changed buffer format.
13  *		Alan Cox	:	destructor hook for AF_UNIX etc.
14  *		Linus Torvalds	:	Better skb_clone.
15  *		Alan Cox	:	Added skb_copy.
16  *		Alan Cox	:	Added all the changed routines Linus
17  *					only put in the headers
18  *		Ray VanTassle	:	Fixed --skb->lock in free
19  *		Alan Cox	:	skb_copy copy arp field
20  *		Andi Kleen	:	slabified it.
21  *		Robert Olsson	:	Removed skb_head_pool
22  *
23  *	NOTE:
24  *		The __skb_ routines should be called with interrupts
25  *	disabled, or you better be *real* sure that the operation is atomic
26  *	with respect to whatever list is being frobbed (e.g. via lock_sock()
27  *	or via disabling bottom half handlers, etc).
28  *
29  *	This program is free software; you can redistribute it and/or
30  *	modify it under the terms of the GNU General Public License
31  *	as published by the Free Software Foundation; either version
32  *	2 of the License, or (at your option) any later version.
33  */
34 
35 /*
36  *	The functions in this file will not compile correctly with gcc 2.4.x
37  */
38 
39 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
40 
41 #include <linux/module.h>
42 #include <linux/types.h>
43 #include <linux/kernel.h>
44 #include <linux/kmemcheck.h>
45 #include <linux/mm.h>
46 #include <linux/interrupt.h>
47 #include <linux/in.h>
48 #include <linux/inet.h>
49 #include <linux/slab.h>
50 #include <linux/tcp.h>
51 #include <linux/udp.h>
52 #include <linux/sctp.h>
53 #include <linux/netdevice.h>
54 #ifdef CONFIG_NET_CLS_ACT
55 #include <net/pkt_sched.h>
56 #endif
57 #include <linux/string.h>
58 #include <linux/skbuff.h>
59 #include <linux/splice.h>
60 #include <linux/cache.h>
61 #include <linux/rtnetlink.h>
62 #include <linux/init.h>
63 #include <linux/scatterlist.h>
64 #include <linux/errqueue.h>
65 #include <linux/prefetch.h>
66 #include <linux/if_vlan.h>
67 
68 #include <net/protocol.h>
69 #include <net/dst.h>
70 #include <net/sock.h>
71 #include <net/checksum.h>
72 #include <net/ip6_checksum.h>
73 #include <net/xfrm.h>
74 
75 #include <linux/uaccess.h>
76 #include <trace/events/skb.h>
77 #include <linux/highmem.h>
78 #include <linux/capability.h>
79 #include <linux/user_namespace.h>
80 
81 struct kmem_cache *skbuff_head_cache __read_mostly;
82 static struct kmem_cache *skbuff_fclone_cache __read_mostly;
83 int sysctl_max_skb_frags __read_mostly = MAX_SKB_FRAGS;
84 EXPORT_SYMBOL(sysctl_max_skb_frags);
85 
86 /**
87  *	skb_panic - private function for out-of-line support
88  *	@skb:	buffer
89  *	@sz:	size
90  *	@addr:	address
91  *	@msg:	skb_over_panic or skb_under_panic
92  *
93  *	Out-of-line support for skb_put() and skb_push().
94  *	Called via the wrapper skb_over_panic() or skb_under_panic().
95  *	Keep out of line to prevent kernel bloat.
96  *	__builtin_return_address is not used because it is not always reliable.
97  */
98 static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr,
99 		      const char msg[])
100 {
101 	pr_emerg("%s: text:%p len:%d put:%d head:%p data:%p tail:%#lx end:%#lx dev:%s\n",
102 		 msg, addr, skb->len, sz, skb->head, skb->data,
103 		 (unsigned long)skb->tail, (unsigned long)skb->end,
104 		 skb->dev ? skb->dev->name : "<NULL>");
105 	BUG();
106 }
107 
108 static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr)
109 {
110 	skb_panic(skb, sz, addr, __func__);
111 }
112 
113 static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr)
114 {
115 	skb_panic(skb, sz, addr, __func__);
116 }
117 
118 /*
119  * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells
120  * the caller if emergency pfmemalloc reserves are being used. If it is and
121  * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves
122  * may be used. Otherwise, the packet data may be discarded until enough
123  * memory is free
124  */
125 #define kmalloc_reserve(size, gfp, node, pfmemalloc) \
126 	 __kmalloc_reserve(size, gfp, node, _RET_IP_, pfmemalloc)
127 
128 static void *__kmalloc_reserve(size_t size, gfp_t flags, int node,
129 			       unsigned long ip, bool *pfmemalloc)
130 {
131 	void *obj;
132 	bool ret_pfmemalloc = false;
133 
134 	/*
135 	 * Try a regular allocation, when that fails and we're not entitled
136 	 * to the reserves, fail.
137 	 */
138 	obj = kmalloc_node_track_caller(size,
139 					flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
140 					node);
141 	if (obj || !(gfp_pfmemalloc_allowed(flags)))
142 		goto out;
143 
144 	/* Try again but now we are using pfmemalloc reserves */
145 	ret_pfmemalloc = true;
146 	obj = kmalloc_node_track_caller(size, flags, node);
147 
148 out:
149 	if (pfmemalloc)
150 		*pfmemalloc = ret_pfmemalloc;
151 
152 	return obj;
153 }
154 
155 /* 	Allocate a new skbuff. We do this ourselves so we can fill in a few
156  *	'private' fields and also do memory statistics to find all the
157  *	[BEEP] leaks.
158  *
159  */
160 
161 /**
162  *	__alloc_skb	-	allocate a network buffer
163  *	@size: size to allocate
164  *	@gfp_mask: allocation mask
165  *	@flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache
166  *		instead of head cache and allocate a cloned (child) skb.
167  *		If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for
168  *		allocations in case the data is required for writeback
169  *	@node: numa node to allocate memory on
170  *
171  *	Allocate a new &sk_buff. The returned buffer has no headroom and a
172  *	tail room of at least size bytes. The object has a reference count
173  *	of one. The return is the buffer. On a failure the return is %NULL.
174  *
175  *	Buffers may only be allocated from interrupts using a @gfp_mask of
176  *	%GFP_ATOMIC.
177  */
178 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
179 			    int flags, int node)
180 {
181 	struct kmem_cache *cache;
182 	struct skb_shared_info *shinfo;
183 	struct sk_buff *skb;
184 	u8 *data;
185 	bool pfmemalloc;
186 
187 	cache = (flags & SKB_ALLOC_FCLONE)
188 		? skbuff_fclone_cache : skbuff_head_cache;
189 
190 	if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX))
191 		gfp_mask |= __GFP_MEMALLOC;
192 
193 	/* Get the HEAD */
194 	skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node);
195 	if (!skb)
196 		goto out;
197 	prefetchw(skb);
198 
199 	/* We do our best to align skb_shared_info on a separate cache
200 	 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives
201 	 * aligned memory blocks, unless SLUB/SLAB debug is enabled.
202 	 * Both skb->head and skb_shared_info are cache line aligned.
203 	 */
204 	size = SKB_DATA_ALIGN(size);
205 	size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
206 	data = kmalloc_reserve(size, gfp_mask, node, &pfmemalloc);
207 	if (!data)
208 		goto nodata;
209 	/* kmalloc(size) might give us more room than requested.
210 	 * Put skb_shared_info exactly at the end of allocated zone,
211 	 * to allow max possible filling before reallocation.
212 	 */
213 	size = SKB_WITH_OVERHEAD(ksize(data));
214 	prefetchw(data + size);
215 
216 	/*
217 	 * Only clear those fields we need to clear, not those that we will
218 	 * actually initialise below. Hence, don't put any more fields after
219 	 * the tail pointer in struct sk_buff!
220 	 */
221 	memset(skb, 0, offsetof(struct sk_buff, tail));
222 	/* Account for allocated memory : skb + skb->head */
223 	skb->truesize = SKB_TRUESIZE(size);
224 	skb->pfmemalloc = pfmemalloc;
225 	refcount_set(&skb->users, 1);
226 	skb->head = data;
227 	skb->data = data;
228 	skb_reset_tail_pointer(skb);
229 	skb->end = skb->tail + size;
230 	skb->mac_header = (typeof(skb->mac_header))~0U;
231 	skb->transport_header = (typeof(skb->transport_header))~0U;
232 
233 	/* make sure we initialize shinfo sequentially */
234 	shinfo = skb_shinfo(skb);
235 	memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
236 	atomic_set(&shinfo->dataref, 1);
237 	kmemcheck_annotate_variable(shinfo->destructor_arg);
238 
239 	if (flags & SKB_ALLOC_FCLONE) {
240 		struct sk_buff_fclones *fclones;
241 
242 		fclones = container_of(skb, struct sk_buff_fclones, skb1);
243 
244 		kmemcheck_annotate_bitfield(&fclones->skb2, flags1);
245 		skb->fclone = SKB_FCLONE_ORIG;
246 		refcount_set(&fclones->fclone_ref, 1);
247 
248 		fclones->skb2.fclone = SKB_FCLONE_CLONE;
249 	}
250 out:
251 	return skb;
252 nodata:
253 	kmem_cache_free(cache, skb);
254 	skb = NULL;
255 	goto out;
256 }
257 EXPORT_SYMBOL(__alloc_skb);
258 
259 /**
260  * __build_skb - build a network buffer
261  * @data: data buffer provided by caller
262  * @frag_size: size of data, or 0 if head was kmalloced
263  *
264  * Allocate a new &sk_buff. Caller provides space holding head and
265  * skb_shared_info. @data must have been allocated by kmalloc() only if
266  * @frag_size is 0, otherwise data should come from the page allocator
267  *  or vmalloc()
268  * The return is the new skb buffer.
269  * On a failure the return is %NULL, and @data is not freed.
270  * Notes :
271  *  Before IO, driver allocates only data buffer where NIC put incoming frame
272  *  Driver should add room at head (NET_SKB_PAD) and
273  *  MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info))
274  *  After IO, driver calls build_skb(), to allocate sk_buff and populate it
275  *  before giving packet to stack.
276  *  RX rings only contains data buffers, not full skbs.
277  */
278 struct sk_buff *__build_skb(void *data, unsigned int frag_size)
279 {
280 	struct skb_shared_info *shinfo;
281 	struct sk_buff *skb;
282 	unsigned int size = frag_size ? : ksize(data);
283 
284 	skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC);
285 	if (!skb)
286 		return NULL;
287 
288 	size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
289 
290 	memset(skb, 0, offsetof(struct sk_buff, tail));
291 	skb->truesize = SKB_TRUESIZE(size);
292 	refcount_set(&skb->users, 1);
293 	skb->head = data;
294 	skb->data = data;
295 	skb_reset_tail_pointer(skb);
296 	skb->end = skb->tail + size;
297 	skb->mac_header = (typeof(skb->mac_header))~0U;
298 	skb->transport_header = (typeof(skb->transport_header))~0U;
299 
300 	/* make sure we initialize shinfo sequentially */
301 	shinfo = skb_shinfo(skb);
302 	memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
303 	atomic_set(&shinfo->dataref, 1);
304 	kmemcheck_annotate_variable(shinfo->destructor_arg);
305 
306 	return skb;
307 }
308 
309 /* build_skb() is wrapper over __build_skb(), that specifically
310  * takes care of skb->head and skb->pfmemalloc
311  * This means that if @frag_size is not zero, then @data must be backed
312  * by a page fragment, not kmalloc() or vmalloc()
313  */
314 struct sk_buff *build_skb(void *data, unsigned int frag_size)
315 {
316 	struct sk_buff *skb = __build_skb(data, frag_size);
317 
318 	if (skb && frag_size) {
319 		skb->head_frag = 1;
320 		if (page_is_pfmemalloc(virt_to_head_page(data)))
321 			skb->pfmemalloc = 1;
322 	}
323 	return skb;
324 }
325 EXPORT_SYMBOL(build_skb);
326 
327 #define NAPI_SKB_CACHE_SIZE	64
328 
329 struct napi_alloc_cache {
330 	struct page_frag_cache page;
331 	unsigned int skb_count;
332 	void *skb_cache[NAPI_SKB_CACHE_SIZE];
333 };
334 
335 static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache);
336 static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache);
337 
338 static void *__netdev_alloc_frag(unsigned int fragsz, gfp_t gfp_mask)
339 {
340 	struct page_frag_cache *nc;
341 	unsigned long flags;
342 	void *data;
343 
344 	local_irq_save(flags);
345 	nc = this_cpu_ptr(&netdev_alloc_cache);
346 	data = page_frag_alloc(nc, fragsz, gfp_mask);
347 	local_irq_restore(flags);
348 	return data;
349 }
350 
351 /**
352  * netdev_alloc_frag - allocate a page fragment
353  * @fragsz: fragment size
354  *
355  * Allocates a frag from a page for receive buffer.
356  * Uses GFP_ATOMIC allocations.
357  */
358 void *netdev_alloc_frag(unsigned int fragsz)
359 {
360 	return __netdev_alloc_frag(fragsz, GFP_ATOMIC | __GFP_COLD);
361 }
362 EXPORT_SYMBOL(netdev_alloc_frag);
363 
364 static void *__napi_alloc_frag(unsigned int fragsz, gfp_t gfp_mask)
365 {
366 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
367 
368 	return page_frag_alloc(&nc->page, fragsz, gfp_mask);
369 }
370 
371 void *napi_alloc_frag(unsigned int fragsz)
372 {
373 	return __napi_alloc_frag(fragsz, GFP_ATOMIC | __GFP_COLD);
374 }
375 EXPORT_SYMBOL(napi_alloc_frag);
376 
377 /**
378  *	__netdev_alloc_skb - allocate an skbuff for rx on a specific device
379  *	@dev: network device to receive on
380  *	@len: length to allocate
381  *	@gfp_mask: get_free_pages mask, passed to alloc_skb
382  *
383  *	Allocate a new &sk_buff and assign it a usage count of one. The
384  *	buffer has NET_SKB_PAD headroom built in. Users should allocate
385  *	the headroom they think they need without accounting for the
386  *	built in space. The built in space is used for optimisations.
387  *
388  *	%NULL is returned if there is no free memory.
389  */
390 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len,
391 				   gfp_t gfp_mask)
392 {
393 	struct page_frag_cache *nc;
394 	unsigned long flags;
395 	struct sk_buff *skb;
396 	bool pfmemalloc;
397 	void *data;
398 
399 	len += NET_SKB_PAD;
400 
401 	if ((len > SKB_WITH_OVERHEAD(PAGE_SIZE)) ||
402 	    (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
403 		skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
404 		if (!skb)
405 			goto skb_fail;
406 		goto skb_success;
407 	}
408 
409 	len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
410 	len = SKB_DATA_ALIGN(len);
411 
412 	if (sk_memalloc_socks())
413 		gfp_mask |= __GFP_MEMALLOC;
414 
415 	local_irq_save(flags);
416 
417 	nc = this_cpu_ptr(&netdev_alloc_cache);
418 	data = page_frag_alloc(nc, len, gfp_mask);
419 	pfmemalloc = nc->pfmemalloc;
420 
421 	local_irq_restore(flags);
422 
423 	if (unlikely(!data))
424 		return NULL;
425 
426 	skb = __build_skb(data, len);
427 	if (unlikely(!skb)) {
428 		skb_free_frag(data);
429 		return NULL;
430 	}
431 
432 	/* use OR instead of assignment to avoid clearing of bits in mask */
433 	if (pfmemalloc)
434 		skb->pfmemalloc = 1;
435 	skb->head_frag = 1;
436 
437 skb_success:
438 	skb_reserve(skb, NET_SKB_PAD);
439 	skb->dev = dev;
440 
441 skb_fail:
442 	return skb;
443 }
444 EXPORT_SYMBOL(__netdev_alloc_skb);
445 
446 /**
447  *	__napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance
448  *	@napi: napi instance this buffer was allocated for
449  *	@len: length to allocate
450  *	@gfp_mask: get_free_pages mask, passed to alloc_skb and alloc_pages
451  *
452  *	Allocate a new sk_buff for use in NAPI receive.  This buffer will
453  *	attempt to allocate the head from a special reserved region used
454  *	only for NAPI Rx allocation.  By doing this we can save several
455  *	CPU cycles by avoiding having to disable and re-enable IRQs.
456  *
457  *	%NULL is returned if there is no free memory.
458  */
459 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, unsigned int len,
460 				 gfp_t gfp_mask)
461 {
462 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
463 	struct sk_buff *skb;
464 	void *data;
465 
466 	len += NET_SKB_PAD + NET_IP_ALIGN;
467 
468 	if ((len > SKB_WITH_OVERHEAD(PAGE_SIZE)) ||
469 	    (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
470 		skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
471 		if (!skb)
472 			goto skb_fail;
473 		goto skb_success;
474 	}
475 
476 	len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
477 	len = SKB_DATA_ALIGN(len);
478 
479 	if (sk_memalloc_socks())
480 		gfp_mask |= __GFP_MEMALLOC;
481 
482 	data = page_frag_alloc(&nc->page, len, gfp_mask);
483 	if (unlikely(!data))
484 		return NULL;
485 
486 	skb = __build_skb(data, len);
487 	if (unlikely(!skb)) {
488 		skb_free_frag(data);
489 		return NULL;
490 	}
491 
492 	/* use OR instead of assignment to avoid clearing of bits in mask */
493 	if (nc->page.pfmemalloc)
494 		skb->pfmemalloc = 1;
495 	skb->head_frag = 1;
496 
497 skb_success:
498 	skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN);
499 	skb->dev = napi->dev;
500 
501 skb_fail:
502 	return skb;
503 }
504 EXPORT_SYMBOL(__napi_alloc_skb);
505 
506 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
507 		     int size, unsigned int truesize)
508 {
509 	skb_fill_page_desc(skb, i, page, off, size);
510 	skb->len += size;
511 	skb->data_len += size;
512 	skb->truesize += truesize;
513 }
514 EXPORT_SYMBOL(skb_add_rx_frag);
515 
516 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
517 			  unsigned int truesize)
518 {
519 	skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
520 
521 	skb_frag_size_add(frag, size);
522 	skb->len += size;
523 	skb->data_len += size;
524 	skb->truesize += truesize;
525 }
526 EXPORT_SYMBOL(skb_coalesce_rx_frag);
527 
528 static void skb_drop_list(struct sk_buff **listp)
529 {
530 	kfree_skb_list(*listp);
531 	*listp = NULL;
532 }
533 
534 static inline void skb_drop_fraglist(struct sk_buff *skb)
535 {
536 	skb_drop_list(&skb_shinfo(skb)->frag_list);
537 }
538 
539 static void skb_clone_fraglist(struct sk_buff *skb)
540 {
541 	struct sk_buff *list;
542 
543 	skb_walk_frags(skb, list)
544 		skb_get(list);
545 }
546 
547 static void skb_free_head(struct sk_buff *skb)
548 {
549 	unsigned char *head = skb->head;
550 
551 	if (skb->head_frag)
552 		skb_free_frag(head);
553 	else
554 		kfree(head);
555 }
556 
557 static void skb_release_data(struct sk_buff *skb)
558 {
559 	struct skb_shared_info *shinfo = skb_shinfo(skb);
560 	int i;
561 
562 	if (skb->cloned &&
563 	    atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
564 			      &shinfo->dataref))
565 		return;
566 
567 	for (i = 0; i < shinfo->nr_frags; i++)
568 		__skb_frag_unref(&shinfo->frags[i]);
569 
570 	if (shinfo->frag_list)
571 		kfree_skb_list(shinfo->frag_list);
572 
573 	skb_zcopy_clear(skb, true);
574 	skb_free_head(skb);
575 }
576 
577 /*
578  *	Free an skbuff by memory without cleaning the state.
579  */
580 static void kfree_skbmem(struct sk_buff *skb)
581 {
582 	struct sk_buff_fclones *fclones;
583 
584 	switch (skb->fclone) {
585 	case SKB_FCLONE_UNAVAILABLE:
586 		kmem_cache_free(skbuff_head_cache, skb);
587 		return;
588 
589 	case SKB_FCLONE_ORIG:
590 		fclones = container_of(skb, struct sk_buff_fclones, skb1);
591 
592 		/* We usually free the clone (TX completion) before original skb
593 		 * This test would have no chance to be true for the clone,
594 		 * while here, branch prediction will be good.
595 		 */
596 		if (refcount_read(&fclones->fclone_ref) == 1)
597 			goto fastpath;
598 		break;
599 
600 	default: /* SKB_FCLONE_CLONE */
601 		fclones = container_of(skb, struct sk_buff_fclones, skb2);
602 		break;
603 	}
604 	if (!refcount_dec_and_test(&fclones->fclone_ref))
605 		return;
606 fastpath:
607 	kmem_cache_free(skbuff_fclone_cache, fclones);
608 }
609 
610 void skb_release_head_state(struct sk_buff *skb)
611 {
612 	skb_dst_drop(skb);
613 	secpath_reset(skb);
614 	if (skb->destructor) {
615 		WARN_ON(in_irq());
616 		skb->destructor(skb);
617 	}
618 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
619 	nf_conntrack_put(skb_nfct(skb));
620 #endif
621 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
622 	nf_bridge_put(skb->nf_bridge);
623 #endif
624 }
625 
626 /* Free everything but the sk_buff shell. */
627 static void skb_release_all(struct sk_buff *skb)
628 {
629 	skb_release_head_state(skb);
630 	if (likely(skb->head))
631 		skb_release_data(skb);
632 }
633 
634 /**
635  *	__kfree_skb - private function
636  *	@skb: buffer
637  *
638  *	Free an sk_buff. Release anything attached to the buffer.
639  *	Clean the state. This is an internal helper function. Users should
640  *	always call kfree_skb
641  */
642 
643 void __kfree_skb(struct sk_buff *skb)
644 {
645 	skb_release_all(skb);
646 	kfree_skbmem(skb);
647 }
648 EXPORT_SYMBOL(__kfree_skb);
649 
650 /**
651  *	kfree_skb - free an sk_buff
652  *	@skb: buffer to free
653  *
654  *	Drop a reference to the buffer and free it if the usage count has
655  *	hit zero.
656  */
657 void kfree_skb(struct sk_buff *skb)
658 {
659 	if (!skb_unref(skb))
660 		return;
661 
662 	trace_kfree_skb(skb, __builtin_return_address(0));
663 	__kfree_skb(skb);
664 }
665 EXPORT_SYMBOL(kfree_skb);
666 
667 void kfree_skb_list(struct sk_buff *segs)
668 {
669 	while (segs) {
670 		struct sk_buff *next = segs->next;
671 
672 		kfree_skb(segs);
673 		segs = next;
674 	}
675 }
676 EXPORT_SYMBOL(kfree_skb_list);
677 
678 /**
679  *	skb_tx_error - report an sk_buff xmit error
680  *	@skb: buffer that triggered an error
681  *
682  *	Report xmit error if a device callback is tracking this skb.
683  *	skb must be freed afterwards.
684  */
685 void skb_tx_error(struct sk_buff *skb)
686 {
687 	skb_zcopy_clear(skb, true);
688 }
689 EXPORT_SYMBOL(skb_tx_error);
690 
691 /**
692  *	consume_skb - free an skbuff
693  *	@skb: buffer to free
694  *
695  *	Drop a ref to the buffer and free it if the usage count has hit zero
696  *	Functions identically to kfree_skb, but kfree_skb assumes that the frame
697  *	is being dropped after a failure and notes that
698  */
699 void consume_skb(struct sk_buff *skb)
700 {
701 	if (!skb_unref(skb))
702 		return;
703 
704 	trace_consume_skb(skb);
705 	__kfree_skb(skb);
706 }
707 EXPORT_SYMBOL(consume_skb);
708 
709 /**
710  *	consume_stateless_skb - free an skbuff, assuming it is stateless
711  *	@skb: buffer to free
712  *
713  *	Alike consume_skb(), but this variant assumes that this is the last
714  *	skb reference and all the head states have been already dropped
715  */
716 void __consume_stateless_skb(struct sk_buff *skb)
717 {
718 	trace_consume_skb(skb);
719 	skb_release_data(skb);
720 	kfree_skbmem(skb);
721 }
722 
723 void __kfree_skb_flush(void)
724 {
725 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
726 
727 	/* flush skb_cache if containing objects */
728 	if (nc->skb_count) {
729 		kmem_cache_free_bulk(skbuff_head_cache, nc->skb_count,
730 				     nc->skb_cache);
731 		nc->skb_count = 0;
732 	}
733 }
734 
735 static inline void _kfree_skb_defer(struct sk_buff *skb)
736 {
737 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
738 
739 	/* drop skb->head and call any destructors for packet */
740 	skb_release_all(skb);
741 
742 	/* record skb to CPU local list */
743 	nc->skb_cache[nc->skb_count++] = skb;
744 
745 #ifdef CONFIG_SLUB
746 	/* SLUB writes into objects when freeing */
747 	prefetchw(skb);
748 #endif
749 
750 	/* flush skb_cache if it is filled */
751 	if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) {
752 		kmem_cache_free_bulk(skbuff_head_cache, NAPI_SKB_CACHE_SIZE,
753 				     nc->skb_cache);
754 		nc->skb_count = 0;
755 	}
756 }
757 void __kfree_skb_defer(struct sk_buff *skb)
758 {
759 	_kfree_skb_defer(skb);
760 }
761 
762 void napi_consume_skb(struct sk_buff *skb, int budget)
763 {
764 	if (unlikely(!skb))
765 		return;
766 
767 	/* Zero budget indicate non-NAPI context called us, like netpoll */
768 	if (unlikely(!budget)) {
769 		dev_consume_skb_any(skb);
770 		return;
771 	}
772 
773 	if (!skb_unref(skb))
774 		return;
775 
776 	/* if reaching here SKB is ready to free */
777 	trace_consume_skb(skb);
778 
779 	/* if SKB is a clone, don't handle this case */
780 	if (skb->fclone != SKB_FCLONE_UNAVAILABLE) {
781 		__kfree_skb(skb);
782 		return;
783 	}
784 
785 	_kfree_skb_defer(skb);
786 }
787 EXPORT_SYMBOL(napi_consume_skb);
788 
789 /* Make sure a field is enclosed inside headers_start/headers_end section */
790 #define CHECK_SKB_FIELD(field) \
791 	BUILD_BUG_ON(offsetof(struct sk_buff, field) <		\
792 		     offsetof(struct sk_buff, headers_start));	\
793 	BUILD_BUG_ON(offsetof(struct sk_buff, field) >		\
794 		     offsetof(struct sk_buff, headers_end));	\
795 
796 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
797 {
798 	new->tstamp		= old->tstamp;
799 	/* We do not copy old->sk */
800 	new->dev		= old->dev;
801 	memcpy(new->cb, old->cb, sizeof(old->cb));
802 	skb_dst_copy(new, old);
803 #ifdef CONFIG_XFRM
804 	new->sp			= secpath_get(old->sp);
805 #endif
806 	__nf_copy(new, old, false);
807 
808 	/* Note : this field could be in headers_start/headers_end section
809 	 * It is not yet because we do not want to have a 16 bit hole
810 	 */
811 	new->queue_mapping = old->queue_mapping;
812 
813 	memcpy(&new->headers_start, &old->headers_start,
814 	       offsetof(struct sk_buff, headers_end) -
815 	       offsetof(struct sk_buff, headers_start));
816 	CHECK_SKB_FIELD(protocol);
817 	CHECK_SKB_FIELD(csum);
818 	CHECK_SKB_FIELD(hash);
819 	CHECK_SKB_FIELD(priority);
820 	CHECK_SKB_FIELD(skb_iif);
821 	CHECK_SKB_FIELD(vlan_proto);
822 	CHECK_SKB_FIELD(vlan_tci);
823 	CHECK_SKB_FIELD(transport_header);
824 	CHECK_SKB_FIELD(network_header);
825 	CHECK_SKB_FIELD(mac_header);
826 	CHECK_SKB_FIELD(inner_protocol);
827 	CHECK_SKB_FIELD(inner_transport_header);
828 	CHECK_SKB_FIELD(inner_network_header);
829 	CHECK_SKB_FIELD(inner_mac_header);
830 	CHECK_SKB_FIELD(mark);
831 #ifdef CONFIG_NETWORK_SECMARK
832 	CHECK_SKB_FIELD(secmark);
833 #endif
834 #ifdef CONFIG_NET_RX_BUSY_POLL
835 	CHECK_SKB_FIELD(napi_id);
836 #endif
837 #ifdef CONFIG_XPS
838 	CHECK_SKB_FIELD(sender_cpu);
839 #endif
840 #ifdef CONFIG_NET_SCHED
841 	CHECK_SKB_FIELD(tc_index);
842 #endif
843 
844 }
845 
846 /*
847  * You should not add any new code to this function.  Add it to
848  * __copy_skb_header above instead.
849  */
850 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
851 {
852 #define C(x) n->x = skb->x
853 
854 	n->next = n->prev = NULL;
855 	n->sk = NULL;
856 	__copy_skb_header(n, skb);
857 
858 	C(len);
859 	C(data_len);
860 	C(mac_len);
861 	n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
862 	n->cloned = 1;
863 	n->nohdr = 0;
864 	n->destructor = NULL;
865 	C(tail);
866 	C(end);
867 	C(head);
868 	C(head_frag);
869 	C(data);
870 	C(truesize);
871 	refcount_set(&n->users, 1);
872 
873 	atomic_inc(&(skb_shinfo(skb)->dataref));
874 	skb->cloned = 1;
875 
876 	return n;
877 #undef C
878 }
879 
880 /**
881  *	skb_morph	-	morph one skb into another
882  *	@dst: the skb to receive the contents
883  *	@src: the skb to supply the contents
884  *
885  *	This is identical to skb_clone except that the target skb is
886  *	supplied by the user.
887  *
888  *	The target skb is returned upon exit.
889  */
890 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
891 {
892 	skb_release_all(dst);
893 	return __skb_clone(dst, src);
894 }
895 EXPORT_SYMBOL_GPL(skb_morph);
896 
897 static int mm_account_pinned_pages(struct mmpin *mmp, size_t size)
898 {
899 	unsigned long max_pg, num_pg, new_pg, old_pg;
900 	struct user_struct *user;
901 
902 	if (capable(CAP_IPC_LOCK) || !size)
903 		return 0;
904 
905 	num_pg = (size >> PAGE_SHIFT) + 2;	/* worst case */
906 	max_pg = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
907 	user = mmp->user ? : current_user();
908 
909 	do {
910 		old_pg = atomic_long_read(&user->locked_vm);
911 		new_pg = old_pg + num_pg;
912 		if (new_pg > max_pg)
913 			return -ENOBUFS;
914 	} while (atomic_long_cmpxchg(&user->locked_vm, old_pg, new_pg) !=
915 		 old_pg);
916 
917 	if (!mmp->user) {
918 		mmp->user = get_uid(user);
919 		mmp->num_pg = num_pg;
920 	} else {
921 		mmp->num_pg += num_pg;
922 	}
923 
924 	return 0;
925 }
926 
927 static void mm_unaccount_pinned_pages(struct mmpin *mmp)
928 {
929 	if (mmp->user) {
930 		atomic_long_sub(mmp->num_pg, &mmp->user->locked_vm);
931 		free_uid(mmp->user);
932 	}
933 }
934 
935 struct ubuf_info *sock_zerocopy_alloc(struct sock *sk, size_t size)
936 {
937 	struct ubuf_info *uarg;
938 	struct sk_buff *skb;
939 
940 	WARN_ON_ONCE(!in_task());
941 
942 	if (!sock_flag(sk, SOCK_ZEROCOPY))
943 		return NULL;
944 
945 	skb = sock_omalloc(sk, 0, GFP_KERNEL);
946 	if (!skb)
947 		return NULL;
948 
949 	BUILD_BUG_ON(sizeof(*uarg) > sizeof(skb->cb));
950 	uarg = (void *)skb->cb;
951 	uarg->mmp.user = NULL;
952 
953 	if (mm_account_pinned_pages(&uarg->mmp, size)) {
954 		kfree_skb(skb);
955 		return NULL;
956 	}
957 
958 	uarg->callback = sock_zerocopy_callback;
959 	uarg->id = ((u32)atomic_inc_return(&sk->sk_zckey)) - 1;
960 	uarg->len = 1;
961 	uarg->bytelen = size;
962 	uarg->zerocopy = 1;
963 	refcount_set(&uarg->refcnt, 1);
964 	sock_hold(sk);
965 
966 	return uarg;
967 }
968 EXPORT_SYMBOL_GPL(sock_zerocopy_alloc);
969 
970 static inline struct sk_buff *skb_from_uarg(struct ubuf_info *uarg)
971 {
972 	return container_of((void *)uarg, struct sk_buff, cb);
973 }
974 
975 struct ubuf_info *sock_zerocopy_realloc(struct sock *sk, size_t size,
976 					struct ubuf_info *uarg)
977 {
978 	if (uarg) {
979 		const u32 byte_limit = 1 << 19;		/* limit to a few TSO */
980 		u32 bytelen, next;
981 
982 		/* realloc only when socket is locked (TCP, UDP cork),
983 		 * so uarg->len and sk_zckey access is serialized
984 		 */
985 		if (!sock_owned_by_user(sk)) {
986 			WARN_ON_ONCE(1);
987 			return NULL;
988 		}
989 
990 		bytelen = uarg->bytelen + size;
991 		if (uarg->len == USHRT_MAX - 1 || bytelen > byte_limit) {
992 			/* TCP can create new skb to attach new uarg */
993 			if (sk->sk_type == SOCK_STREAM)
994 				goto new_alloc;
995 			return NULL;
996 		}
997 
998 		next = (u32)atomic_read(&sk->sk_zckey);
999 		if ((u32)(uarg->id + uarg->len) == next) {
1000 			if (mm_account_pinned_pages(&uarg->mmp, size))
1001 				return NULL;
1002 			uarg->len++;
1003 			uarg->bytelen = bytelen;
1004 			atomic_set(&sk->sk_zckey, ++next);
1005 			sock_zerocopy_get(uarg);
1006 			return uarg;
1007 		}
1008 	}
1009 
1010 new_alloc:
1011 	return sock_zerocopy_alloc(sk, size);
1012 }
1013 EXPORT_SYMBOL_GPL(sock_zerocopy_realloc);
1014 
1015 static bool skb_zerocopy_notify_extend(struct sk_buff *skb, u32 lo, u16 len)
1016 {
1017 	struct sock_exterr_skb *serr = SKB_EXT_ERR(skb);
1018 	u32 old_lo, old_hi;
1019 	u64 sum_len;
1020 
1021 	old_lo = serr->ee.ee_info;
1022 	old_hi = serr->ee.ee_data;
1023 	sum_len = old_hi - old_lo + 1ULL + len;
1024 
1025 	if (sum_len >= (1ULL << 32))
1026 		return false;
1027 
1028 	if (lo != old_hi + 1)
1029 		return false;
1030 
1031 	serr->ee.ee_data += len;
1032 	return true;
1033 }
1034 
1035 void sock_zerocopy_callback(struct ubuf_info *uarg, bool success)
1036 {
1037 	struct sk_buff *tail, *skb = skb_from_uarg(uarg);
1038 	struct sock_exterr_skb *serr;
1039 	struct sock *sk = skb->sk;
1040 	struct sk_buff_head *q;
1041 	unsigned long flags;
1042 	u32 lo, hi;
1043 	u16 len;
1044 
1045 	mm_unaccount_pinned_pages(&uarg->mmp);
1046 
1047 	/* if !len, there was only 1 call, and it was aborted
1048 	 * so do not queue a completion notification
1049 	 */
1050 	if (!uarg->len || sock_flag(sk, SOCK_DEAD))
1051 		goto release;
1052 
1053 	len = uarg->len;
1054 	lo = uarg->id;
1055 	hi = uarg->id + len - 1;
1056 
1057 	serr = SKB_EXT_ERR(skb);
1058 	memset(serr, 0, sizeof(*serr));
1059 	serr->ee.ee_errno = 0;
1060 	serr->ee.ee_origin = SO_EE_ORIGIN_ZEROCOPY;
1061 	serr->ee.ee_data = hi;
1062 	serr->ee.ee_info = lo;
1063 	if (!success)
1064 		serr->ee.ee_code |= SO_EE_CODE_ZEROCOPY_COPIED;
1065 
1066 	q = &sk->sk_error_queue;
1067 	spin_lock_irqsave(&q->lock, flags);
1068 	tail = skb_peek_tail(q);
1069 	if (!tail || SKB_EXT_ERR(tail)->ee.ee_origin != SO_EE_ORIGIN_ZEROCOPY ||
1070 	    !skb_zerocopy_notify_extend(tail, lo, len)) {
1071 		__skb_queue_tail(q, skb);
1072 		skb = NULL;
1073 	}
1074 	spin_unlock_irqrestore(&q->lock, flags);
1075 
1076 	sk->sk_error_report(sk);
1077 
1078 release:
1079 	consume_skb(skb);
1080 	sock_put(sk);
1081 }
1082 EXPORT_SYMBOL_GPL(sock_zerocopy_callback);
1083 
1084 void sock_zerocopy_put(struct ubuf_info *uarg)
1085 {
1086 	if (uarg && refcount_dec_and_test(&uarg->refcnt)) {
1087 		if (uarg->callback)
1088 			uarg->callback(uarg, uarg->zerocopy);
1089 		else
1090 			consume_skb(skb_from_uarg(uarg));
1091 	}
1092 }
1093 EXPORT_SYMBOL_GPL(sock_zerocopy_put);
1094 
1095 void sock_zerocopy_put_abort(struct ubuf_info *uarg)
1096 {
1097 	if (uarg) {
1098 		struct sock *sk = skb_from_uarg(uarg)->sk;
1099 
1100 		atomic_dec(&sk->sk_zckey);
1101 		uarg->len--;
1102 
1103 		sock_zerocopy_put(uarg);
1104 	}
1105 }
1106 EXPORT_SYMBOL_GPL(sock_zerocopy_put_abort);
1107 
1108 extern int __zerocopy_sg_from_iter(struct sock *sk, struct sk_buff *skb,
1109 				   struct iov_iter *from, size_t length);
1110 
1111 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
1112 			     struct msghdr *msg, int len,
1113 			     struct ubuf_info *uarg)
1114 {
1115 	struct ubuf_info *orig_uarg = skb_zcopy(skb);
1116 	struct iov_iter orig_iter = msg->msg_iter;
1117 	int err, orig_len = skb->len;
1118 
1119 	/* An skb can only point to one uarg. This edge case happens when
1120 	 * TCP appends to an skb, but zerocopy_realloc triggered a new alloc.
1121 	 */
1122 	if (orig_uarg && uarg != orig_uarg)
1123 		return -EEXIST;
1124 
1125 	err = __zerocopy_sg_from_iter(sk, skb, &msg->msg_iter, len);
1126 	if (err == -EFAULT || (err == -EMSGSIZE && skb->len == orig_len)) {
1127 		/* Streams do not free skb on error. Reset to prev state. */
1128 		msg->msg_iter = orig_iter;
1129 		___pskb_trim(skb, orig_len);
1130 		return err;
1131 	}
1132 
1133 	skb_zcopy_set(skb, uarg);
1134 	return skb->len - orig_len;
1135 }
1136 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_stream);
1137 
1138 static int skb_zerocopy_clone(struct sk_buff *nskb, struct sk_buff *orig,
1139 			      gfp_t gfp_mask)
1140 {
1141 	if (skb_zcopy(orig)) {
1142 		if (skb_zcopy(nskb)) {
1143 			/* !gfp_mask callers are verified to !skb_zcopy(nskb) */
1144 			if (!gfp_mask) {
1145 				WARN_ON_ONCE(1);
1146 				return -ENOMEM;
1147 			}
1148 			if (skb_uarg(nskb) == skb_uarg(orig))
1149 				return 0;
1150 			if (skb_copy_ubufs(nskb, GFP_ATOMIC))
1151 				return -EIO;
1152 		}
1153 		skb_zcopy_set(nskb, skb_uarg(orig));
1154 	}
1155 	return 0;
1156 }
1157 
1158 /**
1159  *	skb_copy_ubufs	-	copy userspace skb frags buffers to kernel
1160  *	@skb: the skb to modify
1161  *	@gfp_mask: allocation priority
1162  *
1163  *	This must be called on SKBTX_DEV_ZEROCOPY skb.
1164  *	It will copy all frags into kernel and drop the reference
1165  *	to userspace pages.
1166  *
1167  *	If this function is called from an interrupt gfp_mask() must be
1168  *	%GFP_ATOMIC.
1169  *
1170  *	Returns 0 on success or a negative error code on failure
1171  *	to allocate kernel memory to copy to.
1172  */
1173 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask)
1174 {
1175 	int num_frags = skb_shinfo(skb)->nr_frags;
1176 	struct page *page, *head = NULL;
1177 	int i, new_frags;
1178 	u32 d_off;
1179 
1180 	if (!num_frags)
1181 		return 0;
1182 
1183 	if (skb_shared(skb) || skb_unclone(skb, gfp_mask))
1184 		return -EINVAL;
1185 
1186 	new_frags = (__skb_pagelen(skb) + PAGE_SIZE - 1) >> PAGE_SHIFT;
1187 	for (i = 0; i < new_frags; i++) {
1188 		page = alloc_page(gfp_mask);
1189 		if (!page) {
1190 			while (head) {
1191 				struct page *next = (struct page *)page_private(head);
1192 				put_page(head);
1193 				head = next;
1194 			}
1195 			return -ENOMEM;
1196 		}
1197 		set_page_private(page, (unsigned long)head);
1198 		head = page;
1199 	}
1200 
1201 	page = head;
1202 	d_off = 0;
1203 	for (i = 0; i < num_frags; i++) {
1204 		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
1205 		u32 p_off, p_len, copied;
1206 		struct page *p;
1207 		u8 *vaddr;
1208 
1209 		skb_frag_foreach_page(f, f->page_offset, skb_frag_size(f),
1210 				      p, p_off, p_len, copied) {
1211 			u32 copy, done = 0;
1212 			vaddr = kmap_atomic(p);
1213 
1214 			while (done < p_len) {
1215 				if (d_off == PAGE_SIZE) {
1216 					d_off = 0;
1217 					page = (struct page *)page_private(page);
1218 				}
1219 				copy = min_t(u32, PAGE_SIZE - d_off, p_len - done);
1220 				memcpy(page_address(page) + d_off,
1221 				       vaddr + p_off + done, copy);
1222 				done += copy;
1223 				d_off += copy;
1224 			}
1225 			kunmap_atomic(vaddr);
1226 		}
1227 	}
1228 
1229 	/* skb frags release userspace buffers */
1230 	for (i = 0; i < num_frags; i++)
1231 		skb_frag_unref(skb, i);
1232 
1233 	/* skb frags point to kernel buffers */
1234 	for (i = 0; i < new_frags - 1; i++) {
1235 		__skb_fill_page_desc(skb, i, head, 0, PAGE_SIZE);
1236 		head = (struct page *)page_private(head);
1237 	}
1238 	__skb_fill_page_desc(skb, new_frags - 1, head, 0, d_off);
1239 	skb_shinfo(skb)->nr_frags = new_frags;
1240 
1241 	skb_zcopy_clear(skb, false);
1242 	return 0;
1243 }
1244 EXPORT_SYMBOL_GPL(skb_copy_ubufs);
1245 
1246 /**
1247  *	skb_clone	-	duplicate an sk_buff
1248  *	@skb: buffer to clone
1249  *	@gfp_mask: allocation priority
1250  *
1251  *	Duplicate an &sk_buff. The new one is not owned by a socket. Both
1252  *	copies share the same packet data but not structure. The new
1253  *	buffer has a reference count of 1. If the allocation fails the
1254  *	function returns %NULL otherwise the new buffer is returned.
1255  *
1256  *	If this function is called from an interrupt gfp_mask() must be
1257  *	%GFP_ATOMIC.
1258  */
1259 
1260 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
1261 {
1262 	struct sk_buff_fclones *fclones = container_of(skb,
1263 						       struct sk_buff_fclones,
1264 						       skb1);
1265 	struct sk_buff *n;
1266 
1267 	if (skb_orphan_frags(skb, gfp_mask))
1268 		return NULL;
1269 
1270 	if (skb->fclone == SKB_FCLONE_ORIG &&
1271 	    refcount_read(&fclones->fclone_ref) == 1) {
1272 		n = &fclones->skb2;
1273 		refcount_set(&fclones->fclone_ref, 2);
1274 	} else {
1275 		if (skb_pfmemalloc(skb))
1276 			gfp_mask |= __GFP_MEMALLOC;
1277 
1278 		n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
1279 		if (!n)
1280 			return NULL;
1281 
1282 		kmemcheck_annotate_bitfield(n, flags1);
1283 		n->fclone = SKB_FCLONE_UNAVAILABLE;
1284 	}
1285 
1286 	return __skb_clone(n, skb);
1287 }
1288 EXPORT_SYMBOL(skb_clone);
1289 
1290 static void skb_headers_offset_update(struct sk_buff *skb, int off)
1291 {
1292 	/* Only adjust this if it actually is csum_start rather than csum */
1293 	if (skb->ip_summed == CHECKSUM_PARTIAL)
1294 		skb->csum_start += off;
1295 	/* {transport,network,mac}_header and tail are relative to skb->head */
1296 	skb->transport_header += off;
1297 	skb->network_header   += off;
1298 	if (skb_mac_header_was_set(skb))
1299 		skb->mac_header += off;
1300 	skb->inner_transport_header += off;
1301 	skb->inner_network_header += off;
1302 	skb->inner_mac_header += off;
1303 }
1304 
1305 static void copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
1306 {
1307 	__copy_skb_header(new, old);
1308 
1309 	skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
1310 	skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
1311 	skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
1312 }
1313 
1314 static inline int skb_alloc_rx_flag(const struct sk_buff *skb)
1315 {
1316 	if (skb_pfmemalloc(skb))
1317 		return SKB_ALLOC_RX;
1318 	return 0;
1319 }
1320 
1321 /**
1322  *	skb_copy	-	create private copy of an sk_buff
1323  *	@skb: buffer to copy
1324  *	@gfp_mask: allocation priority
1325  *
1326  *	Make a copy of both an &sk_buff and its data. This is used when the
1327  *	caller wishes to modify the data and needs a private copy of the
1328  *	data to alter. Returns %NULL on failure or the pointer to the buffer
1329  *	on success. The returned buffer has a reference count of 1.
1330  *
1331  *	As by-product this function converts non-linear &sk_buff to linear
1332  *	one, so that &sk_buff becomes completely private and caller is allowed
1333  *	to modify all the data of returned buffer. This means that this
1334  *	function is not recommended for use in circumstances when only
1335  *	header is going to be modified. Use pskb_copy() instead.
1336  */
1337 
1338 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
1339 {
1340 	int headerlen = skb_headroom(skb);
1341 	unsigned int size = skb_end_offset(skb) + skb->data_len;
1342 	struct sk_buff *n = __alloc_skb(size, gfp_mask,
1343 					skb_alloc_rx_flag(skb), NUMA_NO_NODE);
1344 
1345 	if (!n)
1346 		return NULL;
1347 
1348 	/* Set the data pointer */
1349 	skb_reserve(n, headerlen);
1350 	/* Set the tail pointer and length */
1351 	skb_put(n, skb->len);
1352 
1353 	if (skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len))
1354 		BUG();
1355 
1356 	copy_skb_header(n, skb);
1357 	return n;
1358 }
1359 EXPORT_SYMBOL(skb_copy);
1360 
1361 /**
1362  *	__pskb_copy_fclone	-  create copy of an sk_buff with private head.
1363  *	@skb: buffer to copy
1364  *	@headroom: headroom of new skb
1365  *	@gfp_mask: allocation priority
1366  *	@fclone: if true allocate the copy of the skb from the fclone
1367  *	cache instead of the head cache; it is recommended to set this
1368  *	to true for the cases where the copy will likely be cloned
1369  *
1370  *	Make a copy of both an &sk_buff and part of its data, located
1371  *	in header. Fragmented data remain shared. This is used when
1372  *	the caller wishes to modify only header of &sk_buff and needs
1373  *	private copy of the header to alter. Returns %NULL on failure
1374  *	or the pointer to the buffer on success.
1375  *	The returned buffer has a reference count of 1.
1376  */
1377 
1378 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1379 				   gfp_t gfp_mask, bool fclone)
1380 {
1381 	unsigned int size = skb_headlen(skb) + headroom;
1382 	int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0);
1383 	struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE);
1384 
1385 	if (!n)
1386 		goto out;
1387 
1388 	/* Set the data pointer */
1389 	skb_reserve(n, headroom);
1390 	/* Set the tail pointer and length */
1391 	skb_put(n, skb_headlen(skb));
1392 	/* Copy the bytes */
1393 	skb_copy_from_linear_data(skb, n->data, n->len);
1394 
1395 	n->truesize += skb->data_len;
1396 	n->data_len  = skb->data_len;
1397 	n->len	     = skb->len;
1398 
1399 	if (skb_shinfo(skb)->nr_frags) {
1400 		int i;
1401 
1402 		if (skb_orphan_frags(skb, gfp_mask) ||
1403 		    skb_zerocopy_clone(n, skb, gfp_mask)) {
1404 			kfree_skb(n);
1405 			n = NULL;
1406 			goto out;
1407 		}
1408 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1409 			skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
1410 			skb_frag_ref(skb, i);
1411 		}
1412 		skb_shinfo(n)->nr_frags = i;
1413 	}
1414 
1415 	if (skb_has_frag_list(skb)) {
1416 		skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
1417 		skb_clone_fraglist(n);
1418 	}
1419 
1420 	copy_skb_header(n, skb);
1421 out:
1422 	return n;
1423 }
1424 EXPORT_SYMBOL(__pskb_copy_fclone);
1425 
1426 /**
1427  *	pskb_expand_head - reallocate header of &sk_buff
1428  *	@skb: buffer to reallocate
1429  *	@nhead: room to add at head
1430  *	@ntail: room to add at tail
1431  *	@gfp_mask: allocation priority
1432  *
1433  *	Expands (or creates identical copy, if @nhead and @ntail are zero)
1434  *	header of @skb. &sk_buff itself is not changed. &sk_buff MUST have
1435  *	reference count of 1. Returns zero in the case of success or error,
1436  *	if expansion failed. In the last case, &sk_buff is not changed.
1437  *
1438  *	All the pointers pointing into skb header may change and must be
1439  *	reloaded after call to this function.
1440  */
1441 
1442 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
1443 		     gfp_t gfp_mask)
1444 {
1445 	int i, osize = skb_end_offset(skb);
1446 	int size = osize + nhead + ntail;
1447 	long off;
1448 	u8 *data;
1449 
1450 	BUG_ON(nhead < 0);
1451 
1452 	if (skb_shared(skb))
1453 		BUG();
1454 
1455 	size = SKB_DATA_ALIGN(size);
1456 
1457 	if (skb_pfmemalloc(skb))
1458 		gfp_mask |= __GFP_MEMALLOC;
1459 	data = kmalloc_reserve(size + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
1460 			       gfp_mask, NUMA_NO_NODE, NULL);
1461 	if (!data)
1462 		goto nodata;
1463 	size = SKB_WITH_OVERHEAD(ksize(data));
1464 
1465 	/* Copy only real data... and, alas, header. This should be
1466 	 * optimized for the cases when header is void.
1467 	 */
1468 	memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head);
1469 
1470 	memcpy((struct skb_shared_info *)(data + size),
1471 	       skb_shinfo(skb),
1472 	       offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags]));
1473 
1474 	/*
1475 	 * if shinfo is shared we must drop the old head gracefully, but if it
1476 	 * is not we can just drop the old head and let the existing refcount
1477 	 * be since all we did is relocate the values
1478 	 */
1479 	if (skb_cloned(skb)) {
1480 		if (skb_orphan_frags(skb, gfp_mask))
1481 			goto nofrags;
1482 		if (skb_zcopy(skb))
1483 			refcount_inc(&skb_uarg(skb)->refcnt);
1484 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1485 			skb_frag_ref(skb, i);
1486 
1487 		if (skb_has_frag_list(skb))
1488 			skb_clone_fraglist(skb);
1489 
1490 		skb_release_data(skb);
1491 	} else {
1492 		skb_free_head(skb);
1493 	}
1494 	off = (data + nhead) - skb->head;
1495 
1496 	skb->head     = data;
1497 	skb->head_frag = 0;
1498 	skb->data    += off;
1499 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1500 	skb->end      = size;
1501 	off           = nhead;
1502 #else
1503 	skb->end      = skb->head + size;
1504 #endif
1505 	skb->tail	      += off;
1506 	skb_headers_offset_update(skb, nhead);
1507 	skb->cloned   = 0;
1508 	skb->hdr_len  = 0;
1509 	skb->nohdr    = 0;
1510 	atomic_set(&skb_shinfo(skb)->dataref, 1);
1511 
1512 	/* It is not generally safe to change skb->truesize.
1513 	 * For the moment, we really care of rx path, or
1514 	 * when skb is orphaned (not attached to a socket).
1515 	 */
1516 	if (!skb->sk || skb->destructor == sock_edemux)
1517 		skb->truesize += size - osize;
1518 
1519 	return 0;
1520 
1521 nofrags:
1522 	kfree(data);
1523 nodata:
1524 	return -ENOMEM;
1525 }
1526 EXPORT_SYMBOL(pskb_expand_head);
1527 
1528 /* Make private copy of skb with writable head and some headroom */
1529 
1530 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
1531 {
1532 	struct sk_buff *skb2;
1533 	int delta = headroom - skb_headroom(skb);
1534 
1535 	if (delta <= 0)
1536 		skb2 = pskb_copy(skb, GFP_ATOMIC);
1537 	else {
1538 		skb2 = skb_clone(skb, GFP_ATOMIC);
1539 		if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
1540 					     GFP_ATOMIC)) {
1541 			kfree_skb(skb2);
1542 			skb2 = NULL;
1543 		}
1544 	}
1545 	return skb2;
1546 }
1547 EXPORT_SYMBOL(skb_realloc_headroom);
1548 
1549 /**
1550  *	skb_copy_expand	-	copy and expand sk_buff
1551  *	@skb: buffer to copy
1552  *	@newheadroom: new free bytes at head
1553  *	@newtailroom: new free bytes at tail
1554  *	@gfp_mask: allocation priority
1555  *
1556  *	Make a copy of both an &sk_buff and its data and while doing so
1557  *	allocate additional space.
1558  *
1559  *	This is used when the caller wishes to modify the data and needs a
1560  *	private copy of the data to alter as well as more space for new fields.
1561  *	Returns %NULL on failure or the pointer to the buffer
1562  *	on success. The returned buffer has a reference count of 1.
1563  *
1564  *	You must pass %GFP_ATOMIC as the allocation priority if this function
1565  *	is called from an interrupt.
1566  */
1567 struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
1568 				int newheadroom, int newtailroom,
1569 				gfp_t gfp_mask)
1570 {
1571 	/*
1572 	 *	Allocate the copy buffer
1573 	 */
1574 	struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom,
1575 					gfp_mask, skb_alloc_rx_flag(skb),
1576 					NUMA_NO_NODE);
1577 	int oldheadroom = skb_headroom(skb);
1578 	int head_copy_len, head_copy_off;
1579 
1580 	if (!n)
1581 		return NULL;
1582 
1583 	skb_reserve(n, newheadroom);
1584 
1585 	/* Set the tail pointer and length */
1586 	skb_put(n, skb->len);
1587 
1588 	head_copy_len = oldheadroom;
1589 	head_copy_off = 0;
1590 	if (newheadroom <= head_copy_len)
1591 		head_copy_len = newheadroom;
1592 	else
1593 		head_copy_off = newheadroom - head_copy_len;
1594 
1595 	/* Copy the linear header and data. */
1596 	if (skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
1597 			  skb->len + head_copy_len))
1598 		BUG();
1599 
1600 	copy_skb_header(n, skb);
1601 
1602 	skb_headers_offset_update(n, newheadroom - oldheadroom);
1603 
1604 	return n;
1605 }
1606 EXPORT_SYMBOL(skb_copy_expand);
1607 
1608 /**
1609  *	__skb_pad		-	zero pad the tail of an skb
1610  *	@skb: buffer to pad
1611  *	@pad: space to pad
1612  *	@free_on_error: free buffer on error
1613  *
1614  *	Ensure that a buffer is followed by a padding area that is zero
1615  *	filled. Used by network drivers which may DMA or transfer data
1616  *	beyond the buffer end onto the wire.
1617  *
1618  *	May return error in out of memory cases. The skb is freed on error
1619  *	if @free_on_error is true.
1620  */
1621 
1622 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error)
1623 {
1624 	int err;
1625 	int ntail;
1626 
1627 	/* If the skbuff is non linear tailroom is always zero.. */
1628 	if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
1629 		memset(skb->data+skb->len, 0, pad);
1630 		return 0;
1631 	}
1632 
1633 	ntail = skb->data_len + pad - (skb->end - skb->tail);
1634 	if (likely(skb_cloned(skb) || ntail > 0)) {
1635 		err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
1636 		if (unlikely(err))
1637 			goto free_skb;
1638 	}
1639 
1640 	/* FIXME: The use of this function with non-linear skb's really needs
1641 	 * to be audited.
1642 	 */
1643 	err = skb_linearize(skb);
1644 	if (unlikely(err))
1645 		goto free_skb;
1646 
1647 	memset(skb->data + skb->len, 0, pad);
1648 	return 0;
1649 
1650 free_skb:
1651 	if (free_on_error)
1652 		kfree_skb(skb);
1653 	return err;
1654 }
1655 EXPORT_SYMBOL(__skb_pad);
1656 
1657 /**
1658  *	pskb_put - add data to the tail of a potentially fragmented buffer
1659  *	@skb: start of the buffer to use
1660  *	@tail: tail fragment of the buffer to use
1661  *	@len: amount of data to add
1662  *
1663  *	This function extends the used data area of the potentially
1664  *	fragmented buffer. @tail must be the last fragment of @skb -- or
1665  *	@skb itself. If this would exceed the total buffer size the kernel
1666  *	will panic. A pointer to the first byte of the extra data is
1667  *	returned.
1668  */
1669 
1670 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len)
1671 {
1672 	if (tail != skb) {
1673 		skb->data_len += len;
1674 		skb->len += len;
1675 	}
1676 	return skb_put(tail, len);
1677 }
1678 EXPORT_SYMBOL_GPL(pskb_put);
1679 
1680 /**
1681  *	skb_put - add data to a buffer
1682  *	@skb: buffer to use
1683  *	@len: amount of data to add
1684  *
1685  *	This function extends the used data area of the buffer. If this would
1686  *	exceed the total buffer size the kernel will panic. A pointer to the
1687  *	first byte of the extra data is returned.
1688  */
1689 void *skb_put(struct sk_buff *skb, unsigned int len)
1690 {
1691 	void *tmp = skb_tail_pointer(skb);
1692 	SKB_LINEAR_ASSERT(skb);
1693 	skb->tail += len;
1694 	skb->len  += len;
1695 	if (unlikely(skb->tail > skb->end))
1696 		skb_over_panic(skb, len, __builtin_return_address(0));
1697 	return tmp;
1698 }
1699 EXPORT_SYMBOL(skb_put);
1700 
1701 /**
1702  *	skb_push - add data to the start of a buffer
1703  *	@skb: buffer to use
1704  *	@len: amount of data to add
1705  *
1706  *	This function extends the used data area of the buffer at the buffer
1707  *	start. If this would exceed the total buffer headroom the kernel will
1708  *	panic. A pointer to the first byte of the extra data is returned.
1709  */
1710 void *skb_push(struct sk_buff *skb, unsigned int len)
1711 {
1712 	skb->data -= len;
1713 	skb->len  += len;
1714 	if (unlikely(skb->data<skb->head))
1715 		skb_under_panic(skb, len, __builtin_return_address(0));
1716 	return skb->data;
1717 }
1718 EXPORT_SYMBOL(skb_push);
1719 
1720 /**
1721  *	skb_pull - remove data from the start of a buffer
1722  *	@skb: buffer to use
1723  *	@len: amount of data to remove
1724  *
1725  *	This function removes data from the start of a buffer, returning
1726  *	the memory to the headroom. A pointer to the next data in the buffer
1727  *	is returned. Once the data has been pulled future pushes will overwrite
1728  *	the old data.
1729  */
1730 void *skb_pull(struct sk_buff *skb, unsigned int len)
1731 {
1732 	return skb_pull_inline(skb, len);
1733 }
1734 EXPORT_SYMBOL(skb_pull);
1735 
1736 /**
1737  *	skb_trim - remove end from a buffer
1738  *	@skb: buffer to alter
1739  *	@len: new length
1740  *
1741  *	Cut the length of a buffer down by removing data from the tail. If
1742  *	the buffer is already under the length specified it is not modified.
1743  *	The skb must be linear.
1744  */
1745 void skb_trim(struct sk_buff *skb, unsigned int len)
1746 {
1747 	if (skb->len > len)
1748 		__skb_trim(skb, len);
1749 }
1750 EXPORT_SYMBOL(skb_trim);
1751 
1752 /* Trims skb to length len. It can change skb pointers.
1753  */
1754 
1755 int ___pskb_trim(struct sk_buff *skb, unsigned int len)
1756 {
1757 	struct sk_buff **fragp;
1758 	struct sk_buff *frag;
1759 	int offset = skb_headlen(skb);
1760 	int nfrags = skb_shinfo(skb)->nr_frags;
1761 	int i;
1762 	int err;
1763 
1764 	if (skb_cloned(skb) &&
1765 	    unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
1766 		return err;
1767 
1768 	i = 0;
1769 	if (offset >= len)
1770 		goto drop_pages;
1771 
1772 	for (; i < nfrags; i++) {
1773 		int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]);
1774 
1775 		if (end < len) {
1776 			offset = end;
1777 			continue;
1778 		}
1779 
1780 		skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset);
1781 
1782 drop_pages:
1783 		skb_shinfo(skb)->nr_frags = i;
1784 
1785 		for (; i < nfrags; i++)
1786 			skb_frag_unref(skb, i);
1787 
1788 		if (skb_has_frag_list(skb))
1789 			skb_drop_fraglist(skb);
1790 		goto done;
1791 	}
1792 
1793 	for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
1794 	     fragp = &frag->next) {
1795 		int end = offset + frag->len;
1796 
1797 		if (skb_shared(frag)) {
1798 			struct sk_buff *nfrag;
1799 
1800 			nfrag = skb_clone(frag, GFP_ATOMIC);
1801 			if (unlikely(!nfrag))
1802 				return -ENOMEM;
1803 
1804 			nfrag->next = frag->next;
1805 			consume_skb(frag);
1806 			frag = nfrag;
1807 			*fragp = frag;
1808 		}
1809 
1810 		if (end < len) {
1811 			offset = end;
1812 			continue;
1813 		}
1814 
1815 		if (end > len &&
1816 		    unlikely((err = pskb_trim(frag, len - offset))))
1817 			return err;
1818 
1819 		if (frag->next)
1820 			skb_drop_list(&frag->next);
1821 		break;
1822 	}
1823 
1824 done:
1825 	if (len > skb_headlen(skb)) {
1826 		skb->data_len -= skb->len - len;
1827 		skb->len       = len;
1828 	} else {
1829 		skb->len       = len;
1830 		skb->data_len  = 0;
1831 		skb_set_tail_pointer(skb, len);
1832 	}
1833 
1834 	if (!skb->sk || skb->destructor == sock_edemux)
1835 		skb_condense(skb);
1836 	return 0;
1837 }
1838 EXPORT_SYMBOL(___pskb_trim);
1839 
1840 /**
1841  *	__pskb_pull_tail - advance tail of skb header
1842  *	@skb: buffer to reallocate
1843  *	@delta: number of bytes to advance tail
1844  *
1845  *	The function makes a sense only on a fragmented &sk_buff,
1846  *	it expands header moving its tail forward and copying necessary
1847  *	data from fragmented part.
1848  *
1849  *	&sk_buff MUST have reference count of 1.
1850  *
1851  *	Returns %NULL (and &sk_buff does not change) if pull failed
1852  *	or value of new tail of skb in the case of success.
1853  *
1854  *	All the pointers pointing into skb header may change and must be
1855  *	reloaded after call to this function.
1856  */
1857 
1858 /* Moves tail of skb head forward, copying data from fragmented part,
1859  * when it is necessary.
1860  * 1. It may fail due to malloc failure.
1861  * 2. It may change skb pointers.
1862  *
1863  * It is pretty complicated. Luckily, it is called only in exceptional cases.
1864  */
1865 void *__pskb_pull_tail(struct sk_buff *skb, int delta)
1866 {
1867 	/* If skb has not enough free space at tail, get new one
1868 	 * plus 128 bytes for future expansions. If we have enough
1869 	 * room at tail, reallocate without expansion only if skb is cloned.
1870 	 */
1871 	int i, k, eat = (skb->tail + delta) - skb->end;
1872 
1873 	if (eat > 0 || skb_cloned(skb)) {
1874 		if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
1875 				     GFP_ATOMIC))
1876 			return NULL;
1877 	}
1878 
1879 	if (skb_copy_bits(skb, skb_headlen(skb), skb_tail_pointer(skb), delta))
1880 		BUG();
1881 
1882 	/* Optimization: no fragments, no reasons to preestimate
1883 	 * size of pulled pages. Superb.
1884 	 */
1885 	if (!skb_has_frag_list(skb))
1886 		goto pull_pages;
1887 
1888 	/* Estimate size of pulled pages. */
1889 	eat = delta;
1890 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1891 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
1892 
1893 		if (size >= eat)
1894 			goto pull_pages;
1895 		eat -= size;
1896 	}
1897 
1898 	/* If we need update frag list, we are in troubles.
1899 	 * Certainly, it possible to add an offset to skb data,
1900 	 * but taking into account that pulling is expected to
1901 	 * be very rare operation, it is worth to fight against
1902 	 * further bloating skb head and crucify ourselves here instead.
1903 	 * Pure masohism, indeed. 8)8)
1904 	 */
1905 	if (eat) {
1906 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
1907 		struct sk_buff *clone = NULL;
1908 		struct sk_buff *insp = NULL;
1909 
1910 		do {
1911 			BUG_ON(!list);
1912 
1913 			if (list->len <= eat) {
1914 				/* Eaten as whole. */
1915 				eat -= list->len;
1916 				list = list->next;
1917 				insp = list;
1918 			} else {
1919 				/* Eaten partially. */
1920 
1921 				if (skb_shared(list)) {
1922 					/* Sucks! We need to fork list. :-( */
1923 					clone = skb_clone(list, GFP_ATOMIC);
1924 					if (!clone)
1925 						return NULL;
1926 					insp = list->next;
1927 					list = clone;
1928 				} else {
1929 					/* This may be pulled without
1930 					 * problems. */
1931 					insp = list;
1932 				}
1933 				if (!pskb_pull(list, eat)) {
1934 					kfree_skb(clone);
1935 					return NULL;
1936 				}
1937 				break;
1938 			}
1939 		} while (eat);
1940 
1941 		/* Free pulled out fragments. */
1942 		while ((list = skb_shinfo(skb)->frag_list) != insp) {
1943 			skb_shinfo(skb)->frag_list = list->next;
1944 			kfree_skb(list);
1945 		}
1946 		/* And insert new clone at head. */
1947 		if (clone) {
1948 			clone->next = list;
1949 			skb_shinfo(skb)->frag_list = clone;
1950 		}
1951 	}
1952 	/* Success! Now we may commit changes to skb data. */
1953 
1954 pull_pages:
1955 	eat = delta;
1956 	k = 0;
1957 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1958 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
1959 
1960 		if (size <= eat) {
1961 			skb_frag_unref(skb, i);
1962 			eat -= size;
1963 		} else {
1964 			skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i];
1965 			if (eat) {
1966 				skb_shinfo(skb)->frags[k].page_offset += eat;
1967 				skb_frag_size_sub(&skb_shinfo(skb)->frags[k], eat);
1968 				if (!i)
1969 					goto end;
1970 				eat = 0;
1971 			}
1972 			k++;
1973 		}
1974 	}
1975 	skb_shinfo(skb)->nr_frags = k;
1976 
1977 end:
1978 	skb->tail     += delta;
1979 	skb->data_len -= delta;
1980 
1981 	if (!skb->data_len)
1982 		skb_zcopy_clear(skb, false);
1983 
1984 	return skb_tail_pointer(skb);
1985 }
1986 EXPORT_SYMBOL(__pskb_pull_tail);
1987 
1988 /**
1989  *	skb_copy_bits - copy bits from skb to kernel buffer
1990  *	@skb: source skb
1991  *	@offset: offset in source
1992  *	@to: destination buffer
1993  *	@len: number of bytes to copy
1994  *
1995  *	Copy the specified number of bytes from the source skb to the
1996  *	destination buffer.
1997  *
1998  *	CAUTION ! :
1999  *		If its prototype is ever changed,
2000  *		check arch/{*}/net/{*}.S files,
2001  *		since it is called from BPF assembly code.
2002  */
2003 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
2004 {
2005 	int start = skb_headlen(skb);
2006 	struct sk_buff *frag_iter;
2007 	int i, copy;
2008 
2009 	if (offset > (int)skb->len - len)
2010 		goto fault;
2011 
2012 	/* Copy header. */
2013 	if ((copy = start - offset) > 0) {
2014 		if (copy > len)
2015 			copy = len;
2016 		skb_copy_from_linear_data_offset(skb, offset, to, copy);
2017 		if ((len -= copy) == 0)
2018 			return 0;
2019 		offset += copy;
2020 		to     += copy;
2021 	}
2022 
2023 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2024 		int end;
2025 		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
2026 
2027 		WARN_ON(start > offset + len);
2028 
2029 		end = start + skb_frag_size(f);
2030 		if ((copy = end - offset) > 0) {
2031 			u32 p_off, p_len, copied;
2032 			struct page *p;
2033 			u8 *vaddr;
2034 
2035 			if (copy > len)
2036 				copy = len;
2037 
2038 			skb_frag_foreach_page(f,
2039 					      f->page_offset + offset - start,
2040 					      copy, p, p_off, p_len, copied) {
2041 				vaddr = kmap_atomic(p);
2042 				memcpy(to + copied, vaddr + p_off, p_len);
2043 				kunmap_atomic(vaddr);
2044 			}
2045 
2046 			if ((len -= copy) == 0)
2047 				return 0;
2048 			offset += copy;
2049 			to     += copy;
2050 		}
2051 		start = end;
2052 	}
2053 
2054 	skb_walk_frags(skb, frag_iter) {
2055 		int end;
2056 
2057 		WARN_ON(start > offset + len);
2058 
2059 		end = start + frag_iter->len;
2060 		if ((copy = end - offset) > 0) {
2061 			if (copy > len)
2062 				copy = len;
2063 			if (skb_copy_bits(frag_iter, offset - start, to, copy))
2064 				goto fault;
2065 			if ((len -= copy) == 0)
2066 				return 0;
2067 			offset += copy;
2068 			to     += copy;
2069 		}
2070 		start = end;
2071 	}
2072 
2073 	if (!len)
2074 		return 0;
2075 
2076 fault:
2077 	return -EFAULT;
2078 }
2079 EXPORT_SYMBOL(skb_copy_bits);
2080 
2081 /*
2082  * Callback from splice_to_pipe(), if we need to release some pages
2083  * at the end of the spd in case we error'ed out in filling the pipe.
2084  */
2085 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
2086 {
2087 	put_page(spd->pages[i]);
2088 }
2089 
2090 static struct page *linear_to_page(struct page *page, unsigned int *len,
2091 				   unsigned int *offset,
2092 				   struct sock *sk)
2093 {
2094 	struct page_frag *pfrag = sk_page_frag(sk);
2095 
2096 	if (!sk_page_frag_refill(sk, pfrag))
2097 		return NULL;
2098 
2099 	*len = min_t(unsigned int, *len, pfrag->size - pfrag->offset);
2100 
2101 	memcpy(page_address(pfrag->page) + pfrag->offset,
2102 	       page_address(page) + *offset, *len);
2103 	*offset = pfrag->offset;
2104 	pfrag->offset += *len;
2105 
2106 	return pfrag->page;
2107 }
2108 
2109 static bool spd_can_coalesce(const struct splice_pipe_desc *spd,
2110 			     struct page *page,
2111 			     unsigned int offset)
2112 {
2113 	return	spd->nr_pages &&
2114 		spd->pages[spd->nr_pages - 1] == page &&
2115 		(spd->partial[spd->nr_pages - 1].offset +
2116 		 spd->partial[spd->nr_pages - 1].len == offset);
2117 }
2118 
2119 /*
2120  * Fill page/offset/length into spd, if it can hold more pages.
2121  */
2122 static bool spd_fill_page(struct splice_pipe_desc *spd,
2123 			  struct pipe_inode_info *pipe, struct page *page,
2124 			  unsigned int *len, unsigned int offset,
2125 			  bool linear,
2126 			  struct sock *sk)
2127 {
2128 	if (unlikely(spd->nr_pages == MAX_SKB_FRAGS))
2129 		return true;
2130 
2131 	if (linear) {
2132 		page = linear_to_page(page, len, &offset, sk);
2133 		if (!page)
2134 			return true;
2135 	}
2136 	if (spd_can_coalesce(spd, page, offset)) {
2137 		spd->partial[spd->nr_pages - 1].len += *len;
2138 		return false;
2139 	}
2140 	get_page(page);
2141 	spd->pages[spd->nr_pages] = page;
2142 	spd->partial[spd->nr_pages].len = *len;
2143 	spd->partial[spd->nr_pages].offset = offset;
2144 	spd->nr_pages++;
2145 
2146 	return false;
2147 }
2148 
2149 static bool __splice_segment(struct page *page, unsigned int poff,
2150 			     unsigned int plen, unsigned int *off,
2151 			     unsigned int *len,
2152 			     struct splice_pipe_desc *spd, bool linear,
2153 			     struct sock *sk,
2154 			     struct pipe_inode_info *pipe)
2155 {
2156 	if (!*len)
2157 		return true;
2158 
2159 	/* skip this segment if already processed */
2160 	if (*off >= plen) {
2161 		*off -= plen;
2162 		return false;
2163 	}
2164 
2165 	/* ignore any bits we already processed */
2166 	poff += *off;
2167 	plen -= *off;
2168 	*off = 0;
2169 
2170 	do {
2171 		unsigned int flen = min(*len, plen);
2172 
2173 		if (spd_fill_page(spd, pipe, page, &flen, poff,
2174 				  linear, sk))
2175 			return true;
2176 		poff += flen;
2177 		plen -= flen;
2178 		*len -= flen;
2179 	} while (*len && plen);
2180 
2181 	return false;
2182 }
2183 
2184 /*
2185  * Map linear and fragment data from the skb to spd. It reports true if the
2186  * pipe is full or if we already spliced the requested length.
2187  */
2188 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe,
2189 			      unsigned int *offset, unsigned int *len,
2190 			      struct splice_pipe_desc *spd, struct sock *sk)
2191 {
2192 	int seg;
2193 	struct sk_buff *iter;
2194 
2195 	/* map the linear part :
2196 	 * If skb->head_frag is set, this 'linear' part is backed by a
2197 	 * fragment, and if the head is not shared with any clones then
2198 	 * we can avoid a copy since we own the head portion of this page.
2199 	 */
2200 	if (__splice_segment(virt_to_page(skb->data),
2201 			     (unsigned long) skb->data & (PAGE_SIZE - 1),
2202 			     skb_headlen(skb),
2203 			     offset, len, spd,
2204 			     skb_head_is_locked(skb),
2205 			     sk, pipe))
2206 		return true;
2207 
2208 	/*
2209 	 * then map the fragments
2210 	 */
2211 	for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
2212 		const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
2213 
2214 		if (__splice_segment(skb_frag_page(f),
2215 				     f->page_offset, skb_frag_size(f),
2216 				     offset, len, spd, false, sk, pipe))
2217 			return true;
2218 	}
2219 
2220 	skb_walk_frags(skb, iter) {
2221 		if (*offset >= iter->len) {
2222 			*offset -= iter->len;
2223 			continue;
2224 		}
2225 		/* __skb_splice_bits() only fails if the output has no room
2226 		 * left, so no point in going over the frag_list for the error
2227 		 * case.
2228 		 */
2229 		if (__skb_splice_bits(iter, pipe, offset, len, spd, sk))
2230 			return true;
2231 	}
2232 
2233 	return false;
2234 }
2235 
2236 /*
2237  * Map data from the skb to a pipe. Should handle both the linear part,
2238  * the fragments, and the frag list.
2239  */
2240 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
2241 		    struct pipe_inode_info *pipe, unsigned int tlen,
2242 		    unsigned int flags)
2243 {
2244 	struct partial_page partial[MAX_SKB_FRAGS];
2245 	struct page *pages[MAX_SKB_FRAGS];
2246 	struct splice_pipe_desc spd = {
2247 		.pages = pages,
2248 		.partial = partial,
2249 		.nr_pages_max = MAX_SKB_FRAGS,
2250 		.ops = &nosteal_pipe_buf_ops,
2251 		.spd_release = sock_spd_release,
2252 	};
2253 	int ret = 0;
2254 
2255 	__skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk);
2256 
2257 	if (spd.nr_pages)
2258 		ret = splice_to_pipe(pipe, &spd);
2259 
2260 	return ret;
2261 }
2262 EXPORT_SYMBOL_GPL(skb_splice_bits);
2263 
2264 /* Send skb data on a socket. Socket must be locked. */
2265 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
2266 			 int len)
2267 {
2268 	unsigned int orig_len = len;
2269 	struct sk_buff *head = skb;
2270 	unsigned short fragidx;
2271 	int slen, ret;
2272 
2273 do_frag_list:
2274 
2275 	/* Deal with head data */
2276 	while (offset < skb_headlen(skb) && len) {
2277 		struct kvec kv;
2278 		struct msghdr msg;
2279 
2280 		slen = min_t(int, len, skb_headlen(skb) - offset);
2281 		kv.iov_base = skb->data + offset;
2282 		kv.iov_len = slen;
2283 		memset(&msg, 0, sizeof(msg));
2284 
2285 		ret = kernel_sendmsg_locked(sk, &msg, &kv, 1, slen);
2286 		if (ret <= 0)
2287 			goto error;
2288 
2289 		offset += ret;
2290 		len -= ret;
2291 	}
2292 
2293 	/* All the data was skb head? */
2294 	if (!len)
2295 		goto out;
2296 
2297 	/* Make offset relative to start of frags */
2298 	offset -= skb_headlen(skb);
2299 
2300 	/* Find where we are in frag list */
2301 	for (fragidx = 0; fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
2302 		skb_frag_t *frag  = &skb_shinfo(skb)->frags[fragidx];
2303 
2304 		if (offset < frag->size)
2305 			break;
2306 
2307 		offset -= frag->size;
2308 	}
2309 
2310 	for (; len && fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
2311 		skb_frag_t *frag  = &skb_shinfo(skb)->frags[fragidx];
2312 
2313 		slen = min_t(size_t, len, frag->size - offset);
2314 
2315 		while (slen) {
2316 			ret = kernel_sendpage_locked(sk, frag->page.p,
2317 						     frag->page_offset + offset,
2318 						     slen, MSG_DONTWAIT);
2319 			if (ret <= 0)
2320 				goto error;
2321 
2322 			len -= ret;
2323 			offset += ret;
2324 			slen -= ret;
2325 		}
2326 
2327 		offset = 0;
2328 	}
2329 
2330 	if (len) {
2331 		/* Process any frag lists */
2332 
2333 		if (skb == head) {
2334 			if (skb_has_frag_list(skb)) {
2335 				skb = skb_shinfo(skb)->frag_list;
2336 				goto do_frag_list;
2337 			}
2338 		} else if (skb->next) {
2339 			skb = skb->next;
2340 			goto do_frag_list;
2341 		}
2342 	}
2343 
2344 out:
2345 	return orig_len - len;
2346 
2347 error:
2348 	return orig_len == len ? ret : orig_len - len;
2349 }
2350 EXPORT_SYMBOL_GPL(skb_send_sock_locked);
2351 
2352 /* Send skb data on a socket. */
2353 int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len)
2354 {
2355 	int ret = 0;
2356 
2357 	lock_sock(sk);
2358 	ret = skb_send_sock_locked(sk, skb, offset, len);
2359 	release_sock(sk);
2360 
2361 	return ret;
2362 }
2363 EXPORT_SYMBOL_GPL(skb_send_sock);
2364 
2365 /**
2366  *	skb_store_bits - store bits from kernel buffer to skb
2367  *	@skb: destination buffer
2368  *	@offset: offset in destination
2369  *	@from: source buffer
2370  *	@len: number of bytes to copy
2371  *
2372  *	Copy the specified number of bytes from the source buffer to the
2373  *	destination skb.  This function handles all the messy bits of
2374  *	traversing fragment lists and such.
2375  */
2376 
2377 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
2378 {
2379 	int start = skb_headlen(skb);
2380 	struct sk_buff *frag_iter;
2381 	int i, copy;
2382 
2383 	if (offset > (int)skb->len - len)
2384 		goto fault;
2385 
2386 	if ((copy = start - offset) > 0) {
2387 		if (copy > len)
2388 			copy = len;
2389 		skb_copy_to_linear_data_offset(skb, offset, from, copy);
2390 		if ((len -= copy) == 0)
2391 			return 0;
2392 		offset += copy;
2393 		from += copy;
2394 	}
2395 
2396 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2397 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2398 		int end;
2399 
2400 		WARN_ON(start > offset + len);
2401 
2402 		end = start + skb_frag_size(frag);
2403 		if ((copy = end - offset) > 0) {
2404 			u32 p_off, p_len, copied;
2405 			struct page *p;
2406 			u8 *vaddr;
2407 
2408 			if (copy > len)
2409 				copy = len;
2410 
2411 			skb_frag_foreach_page(frag,
2412 					      frag->page_offset + offset - start,
2413 					      copy, p, p_off, p_len, copied) {
2414 				vaddr = kmap_atomic(p);
2415 				memcpy(vaddr + p_off, from + copied, p_len);
2416 				kunmap_atomic(vaddr);
2417 			}
2418 
2419 			if ((len -= copy) == 0)
2420 				return 0;
2421 			offset += copy;
2422 			from += copy;
2423 		}
2424 		start = end;
2425 	}
2426 
2427 	skb_walk_frags(skb, frag_iter) {
2428 		int end;
2429 
2430 		WARN_ON(start > offset + len);
2431 
2432 		end = start + frag_iter->len;
2433 		if ((copy = end - offset) > 0) {
2434 			if (copy > len)
2435 				copy = len;
2436 			if (skb_store_bits(frag_iter, offset - start,
2437 					   from, copy))
2438 				goto fault;
2439 			if ((len -= copy) == 0)
2440 				return 0;
2441 			offset += copy;
2442 			from += copy;
2443 		}
2444 		start = end;
2445 	}
2446 	if (!len)
2447 		return 0;
2448 
2449 fault:
2450 	return -EFAULT;
2451 }
2452 EXPORT_SYMBOL(skb_store_bits);
2453 
2454 /* Checksum skb data. */
2455 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
2456 		      __wsum csum, const struct skb_checksum_ops *ops)
2457 {
2458 	int start = skb_headlen(skb);
2459 	int i, copy = start - offset;
2460 	struct sk_buff *frag_iter;
2461 	int pos = 0;
2462 
2463 	/* Checksum header. */
2464 	if (copy > 0) {
2465 		if (copy > len)
2466 			copy = len;
2467 		csum = ops->update(skb->data + offset, copy, csum);
2468 		if ((len -= copy) == 0)
2469 			return csum;
2470 		offset += copy;
2471 		pos	= copy;
2472 	}
2473 
2474 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2475 		int end;
2476 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2477 
2478 		WARN_ON(start > offset + len);
2479 
2480 		end = start + skb_frag_size(frag);
2481 		if ((copy = end - offset) > 0) {
2482 			u32 p_off, p_len, copied;
2483 			struct page *p;
2484 			__wsum csum2;
2485 			u8 *vaddr;
2486 
2487 			if (copy > len)
2488 				copy = len;
2489 
2490 			skb_frag_foreach_page(frag,
2491 					      frag->page_offset + offset - start,
2492 					      copy, p, p_off, p_len, copied) {
2493 				vaddr = kmap_atomic(p);
2494 				csum2 = ops->update(vaddr + p_off, p_len, 0);
2495 				kunmap_atomic(vaddr);
2496 				csum = ops->combine(csum, csum2, pos, p_len);
2497 				pos += p_len;
2498 			}
2499 
2500 			if (!(len -= copy))
2501 				return csum;
2502 			offset += copy;
2503 		}
2504 		start = end;
2505 	}
2506 
2507 	skb_walk_frags(skb, frag_iter) {
2508 		int end;
2509 
2510 		WARN_ON(start > offset + len);
2511 
2512 		end = start + frag_iter->len;
2513 		if ((copy = end - offset) > 0) {
2514 			__wsum csum2;
2515 			if (copy > len)
2516 				copy = len;
2517 			csum2 = __skb_checksum(frag_iter, offset - start,
2518 					       copy, 0, ops);
2519 			csum = ops->combine(csum, csum2, pos, copy);
2520 			if ((len -= copy) == 0)
2521 				return csum;
2522 			offset += copy;
2523 			pos    += copy;
2524 		}
2525 		start = end;
2526 	}
2527 	BUG_ON(len);
2528 
2529 	return csum;
2530 }
2531 EXPORT_SYMBOL(__skb_checksum);
2532 
2533 __wsum skb_checksum(const struct sk_buff *skb, int offset,
2534 		    int len, __wsum csum)
2535 {
2536 	const struct skb_checksum_ops ops = {
2537 		.update  = csum_partial_ext,
2538 		.combine = csum_block_add_ext,
2539 	};
2540 
2541 	return __skb_checksum(skb, offset, len, csum, &ops);
2542 }
2543 EXPORT_SYMBOL(skb_checksum);
2544 
2545 /* Both of above in one bottle. */
2546 
2547 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
2548 				    u8 *to, int len, __wsum csum)
2549 {
2550 	int start = skb_headlen(skb);
2551 	int i, copy = start - offset;
2552 	struct sk_buff *frag_iter;
2553 	int pos = 0;
2554 
2555 	/* Copy header. */
2556 	if (copy > 0) {
2557 		if (copy > len)
2558 			copy = len;
2559 		csum = csum_partial_copy_nocheck(skb->data + offset, to,
2560 						 copy, csum);
2561 		if ((len -= copy) == 0)
2562 			return csum;
2563 		offset += copy;
2564 		to     += copy;
2565 		pos	= copy;
2566 	}
2567 
2568 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2569 		int end;
2570 
2571 		WARN_ON(start > offset + len);
2572 
2573 		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
2574 		if ((copy = end - offset) > 0) {
2575 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2576 			u32 p_off, p_len, copied;
2577 			struct page *p;
2578 			__wsum csum2;
2579 			u8 *vaddr;
2580 
2581 			if (copy > len)
2582 				copy = len;
2583 
2584 			skb_frag_foreach_page(frag,
2585 					      frag->page_offset + offset - start,
2586 					      copy, p, p_off, p_len, copied) {
2587 				vaddr = kmap_atomic(p);
2588 				csum2 = csum_partial_copy_nocheck(vaddr + p_off,
2589 								  to + copied,
2590 								  p_len, 0);
2591 				kunmap_atomic(vaddr);
2592 				csum = csum_block_add(csum, csum2, pos);
2593 				pos += p_len;
2594 			}
2595 
2596 			if (!(len -= copy))
2597 				return csum;
2598 			offset += copy;
2599 			to     += copy;
2600 		}
2601 		start = end;
2602 	}
2603 
2604 	skb_walk_frags(skb, frag_iter) {
2605 		__wsum csum2;
2606 		int end;
2607 
2608 		WARN_ON(start > offset + len);
2609 
2610 		end = start + frag_iter->len;
2611 		if ((copy = end - offset) > 0) {
2612 			if (copy > len)
2613 				copy = len;
2614 			csum2 = skb_copy_and_csum_bits(frag_iter,
2615 						       offset - start,
2616 						       to, copy, 0);
2617 			csum = csum_block_add(csum, csum2, pos);
2618 			if ((len -= copy) == 0)
2619 				return csum;
2620 			offset += copy;
2621 			to     += copy;
2622 			pos    += copy;
2623 		}
2624 		start = end;
2625 	}
2626 	BUG_ON(len);
2627 	return csum;
2628 }
2629 EXPORT_SYMBOL(skb_copy_and_csum_bits);
2630 
2631 static __wsum warn_crc32c_csum_update(const void *buff, int len, __wsum sum)
2632 {
2633 	net_warn_ratelimited(
2634 		"%s: attempt to compute crc32c without libcrc32c.ko\n",
2635 		__func__);
2636 	return 0;
2637 }
2638 
2639 static __wsum warn_crc32c_csum_combine(__wsum csum, __wsum csum2,
2640 				       int offset, int len)
2641 {
2642 	net_warn_ratelimited(
2643 		"%s: attempt to compute crc32c without libcrc32c.ko\n",
2644 		__func__);
2645 	return 0;
2646 }
2647 
2648 static const struct skb_checksum_ops default_crc32c_ops = {
2649 	.update  = warn_crc32c_csum_update,
2650 	.combine = warn_crc32c_csum_combine,
2651 };
2652 
2653 const struct skb_checksum_ops *crc32c_csum_stub __read_mostly =
2654 	&default_crc32c_ops;
2655 EXPORT_SYMBOL(crc32c_csum_stub);
2656 
2657  /**
2658  *	skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy()
2659  *	@from: source buffer
2660  *
2661  *	Calculates the amount of linear headroom needed in the 'to' skb passed
2662  *	into skb_zerocopy().
2663  */
2664 unsigned int
2665 skb_zerocopy_headlen(const struct sk_buff *from)
2666 {
2667 	unsigned int hlen = 0;
2668 
2669 	if (!from->head_frag ||
2670 	    skb_headlen(from) < L1_CACHE_BYTES ||
2671 	    skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS)
2672 		hlen = skb_headlen(from);
2673 
2674 	if (skb_has_frag_list(from))
2675 		hlen = from->len;
2676 
2677 	return hlen;
2678 }
2679 EXPORT_SYMBOL_GPL(skb_zerocopy_headlen);
2680 
2681 /**
2682  *	skb_zerocopy - Zero copy skb to skb
2683  *	@to: destination buffer
2684  *	@from: source buffer
2685  *	@len: number of bytes to copy from source buffer
2686  *	@hlen: size of linear headroom in destination buffer
2687  *
2688  *	Copies up to `len` bytes from `from` to `to` by creating references
2689  *	to the frags in the source buffer.
2690  *
2691  *	The `hlen` as calculated by skb_zerocopy_headlen() specifies the
2692  *	headroom in the `to` buffer.
2693  *
2694  *	Return value:
2695  *	0: everything is OK
2696  *	-ENOMEM: couldn't orphan frags of @from due to lack of memory
2697  *	-EFAULT: skb_copy_bits() found some problem with skb geometry
2698  */
2699 int
2700 skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen)
2701 {
2702 	int i, j = 0;
2703 	int plen = 0; /* length of skb->head fragment */
2704 	int ret;
2705 	struct page *page;
2706 	unsigned int offset;
2707 
2708 	BUG_ON(!from->head_frag && !hlen);
2709 
2710 	/* dont bother with small payloads */
2711 	if (len <= skb_tailroom(to))
2712 		return skb_copy_bits(from, 0, skb_put(to, len), len);
2713 
2714 	if (hlen) {
2715 		ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen);
2716 		if (unlikely(ret))
2717 			return ret;
2718 		len -= hlen;
2719 	} else {
2720 		plen = min_t(int, skb_headlen(from), len);
2721 		if (plen) {
2722 			page = virt_to_head_page(from->head);
2723 			offset = from->data - (unsigned char *)page_address(page);
2724 			__skb_fill_page_desc(to, 0, page, offset, plen);
2725 			get_page(page);
2726 			j = 1;
2727 			len -= plen;
2728 		}
2729 	}
2730 
2731 	to->truesize += len + plen;
2732 	to->len += len + plen;
2733 	to->data_len += len + plen;
2734 
2735 	if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) {
2736 		skb_tx_error(from);
2737 		return -ENOMEM;
2738 	}
2739 	skb_zerocopy_clone(to, from, GFP_ATOMIC);
2740 
2741 	for (i = 0; i < skb_shinfo(from)->nr_frags; i++) {
2742 		if (!len)
2743 			break;
2744 		skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i];
2745 		skb_shinfo(to)->frags[j].size = min_t(int, skb_shinfo(to)->frags[j].size, len);
2746 		len -= skb_shinfo(to)->frags[j].size;
2747 		skb_frag_ref(to, j);
2748 		j++;
2749 	}
2750 	skb_shinfo(to)->nr_frags = j;
2751 
2752 	return 0;
2753 }
2754 EXPORT_SYMBOL_GPL(skb_zerocopy);
2755 
2756 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
2757 {
2758 	__wsum csum;
2759 	long csstart;
2760 
2761 	if (skb->ip_summed == CHECKSUM_PARTIAL)
2762 		csstart = skb_checksum_start_offset(skb);
2763 	else
2764 		csstart = skb_headlen(skb);
2765 
2766 	BUG_ON(csstart > skb_headlen(skb));
2767 
2768 	skb_copy_from_linear_data(skb, to, csstart);
2769 
2770 	csum = 0;
2771 	if (csstart != skb->len)
2772 		csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
2773 					      skb->len - csstart, 0);
2774 
2775 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
2776 		long csstuff = csstart + skb->csum_offset;
2777 
2778 		*((__sum16 *)(to + csstuff)) = csum_fold(csum);
2779 	}
2780 }
2781 EXPORT_SYMBOL(skb_copy_and_csum_dev);
2782 
2783 /**
2784  *	skb_dequeue - remove from the head of the queue
2785  *	@list: list to dequeue from
2786  *
2787  *	Remove the head of the list. The list lock is taken so the function
2788  *	may be used safely with other locking list functions. The head item is
2789  *	returned or %NULL if the list is empty.
2790  */
2791 
2792 struct sk_buff *skb_dequeue(struct sk_buff_head *list)
2793 {
2794 	unsigned long flags;
2795 	struct sk_buff *result;
2796 
2797 	spin_lock_irqsave(&list->lock, flags);
2798 	result = __skb_dequeue(list);
2799 	spin_unlock_irqrestore(&list->lock, flags);
2800 	return result;
2801 }
2802 EXPORT_SYMBOL(skb_dequeue);
2803 
2804 /**
2805  *	skb_dequeue_tail - remove from the tail of the queue
2806  *	@list: list to dequeue from
2807  *
2808  *	Remove the tail of the list. The list lock is taken so the function
2809  *	may be used safely with other locking list functions. The tail item is
2810  *	returned or %NULL if the list is empty.
2811  */
2812 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
2813 {
2814 	unsigned long flags;
2815 	struct sk_buff *result;
2816 
2817 	spin_lock_irqsave(&list->lock, flags);
2818 	result = __skb_dequeue_tail(list);
2819 	spin_unlock_irqrestore(&list->lock, flags);
2820 	return result;
2821 }
2822 EXPORT_SYMBOL(skb_dequeue_tail);
2823 
2824 /**
2825  *	skb_queue_purge - empty a list
2826  *	@list: list to empty
2827  *
2828  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
2829  *	the list and one reference dropped. This function takes the list
2830  *	lock and is atomic with respect to other list locking functions.
2831  */
2832 void skb_queue_purge(struct sk_buff_head *list)
2833 {
2834 	struct sk_buff *skb;
2835 	while ((skb = skb_dequeue(list)) != NULL)
2836 		kfree_skb(skb);
2837 }
2838 EXPORT_SYMBOL(skb_queue_purge);
2839 
2840 /**
2841  *	skb_rbtree_purge - empty a skb rbtree
2842  *	@root: root of the rbtree to empty
2843  *
2844  *	Delete all buffers on an &sk_buff rbtree. Each buffer is removed from
2845  *	the list and one reference dropped. This function does not take
2846  *	any lock. Synchronization should be handled by the caller (e.g., TCP
2847  *	out-of-order queue is protected by the socket lock).
2848  */
2849 void skb_rbtree_purge(struct rb_root *root)
2850 {
2851 	struct sk_buff *skb, *next;
2852 
2853 	rbtree_postorder_for_each_entry_safe(skb, next, root, rbnode)
2854 		kfree_skb(skb);
2855 
2856 	*root = RB_ROOT;
2857 }
2858 
2859 /**
2860  *	skb_queue_head - queue a buffer at the list head
2861  *	@list: list to use
2862  *	@newsk: buffer to queue
2863  *
2864  *	Queue a buffer at the start of the list. This function takes the
2865  *	list lock and can be used safely with other locking &sk_buff functions
2866  *	safely.
2867  *
2868  *	A buffer cannot be placed on two lists at the same time.
2869  */
2870 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
2871 {
2872 	unsigned long flags;
2873 
2874 	spin_lock_irqsave(&list->lock, flags);
2875 	__skb_queue_head(list, newsk);
2876 	spin_unlock_irqrestore(&list->lock, flags);
2877 }
2878 EXPORT_SYMBOL(skb_queue_head);
2879 
2880 /**
2881  *	skb_queue_tail - queue a buffer at the list tail
2882  *	@list: list to use
2883  *	@newsk: buffer to queue
2884  *
2885  *	Queue a buffer at the tail of the list. This function takes the
2886  *	list lock and can be used safely with other locking &sk_buff functions
2887  *	safely.
2888  *
2889  *	A buffer cannot be placed on two lists at the same time.
2890  */
2891 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
2892 {
2893 	unsigned long flags;
2894 
2895 	spin_lock_irqsave(&list->lock, flags);
2896 	__skb_queue_tail(list, newsk);
2897 	spin_unlock_irqrestore(&list->lock, flags);
2898 }
2899 EXPORT_SYMBOL(skb_queue_tail);
2900 
2901 /**
2902  *	skb_unlink	-	remove a buffer from a list
2903  *	@skb: buffer to remove
2904  *	@list: list to use
2905  *
2906  *	Remove a packet from a list. The list locks are taken and this
2907  *	function is atomic with respect to other list locked calls
2908  *
2909  *	You must know what list the SKB is on.
2910  */
2911 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
2912 {
2913 	unsigned long flags;
2914 
2915 	spin_lock_irqsave(&list->lock, flags);
2916 	__skb_unlink(skb, list);
2917 	spin_unlock_irqrestore(&list->lock, flags);
2918 }
2919 EXPORT_SYMBOL(skb_unlink);
2920 
2921 /**
2922  *	skb_append	-	append a buffer
2923  *	@old: buffer to insert after
2924  *	@newsk: buffer to insert
2925  *	@list: list to use
2926  *
2927  *	Place a packet after a given packet in a list. The list locks are taken
2928  *	and this function is atomic with respect to other list locked calls.
2929  *	A buffer cannot be placed on two lists at the same time.
2930  */
2931 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
2932 {
2933 	unsigned long flags;
2934 
2935 	spin_lock_irqsave(&list->lock, flags);
2936 	__skb_queue_after(list, old, newsk);
2937 	spin_unlock_irqrestore(&list->lock, flags);
2938 }
2939 EXPORT_SYMBOL(skb_append);
2940 
2941 /**
2942  *	skb_insert	-	insert a buffer
2943  *	@old: buffer to insert before
2944  *	@newsk: buffer to insert
2945  *	@list: list to use
2946  *
2947  *	Place a packet before a given packet in a list. The list locks are
2948  * 	taken and this function is atomic with respect to other list locked
2949  *	calls.
2950  *
2951  *	A buffer cannot be placed on two lists at the same time.
2952  */
2953 void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
2954 {
2955 	unsigned long flags;
2956 
2957 	spin_lock_irqsave(&list->lock, flags);
2958 	__skb_insert(newsk, old->prev, old, list);
2959 	spin_unlock_irqrestore(&list->lock, flags);
2960 }
2961 EXPORT_SYMBOL(skb_insert);
2962 
2963 static inline void skb_split_inside_header(struct sk_buff *skb,
2964 					   struct sk_buff* skb1,
2965 					   const u32 len, const int pos)
2966 {
2967 	int i;
2968 
2969 	skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
2970 					 pos - len);
2971 	/* And move data appendix as is. */
2972 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
2973 		skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
2974 
2975 	skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
2976 	skb_shinfo(skb)->nr_frags  = 0;
2977 	skb1->data_len		   = skb->data_len;
2978 	skb1->len		   += skb1->data_len;
2979 	skb->data_len		   = 0;
2980 	skb->len		   = len;
2981 	skb_set_tail_pointer(skb, len);
2982 }
2983 
2984 static inline void skb_split_no_header(struct sk_buff *skb,
2985 				       struct sk_buff* skb1,
2986 				       const u32 len, int pos)
2987 {
2988 	int i, k = 0;
2989 	const int nfrags = skb_shinfo(skb)->nr_frags;
2990 
2991 	skb_shinfo(skb)->nr_frags = 0;
2992 	skb1->len		  = skb1->data_len = skb->len - len;
2993 	skb->len		  = len;
2994 	skb->data_len		  = len - pos;
2995 
2996 	for (i = 0; i < nfrags; i++) {
2997 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2998 
2999 		if (pos + size > len) {
3000 			skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
3001 
3002 			if (pos < len) {
3003 				/* Split frag.
3004 				 * We have two variants in this case:
3005 				 * 1. Move all the frag to the second
3006 				 *    part, if it is possible. F.e.
3007 				 *    this approach is mandatory for TUX,
3008 				 *    where splitting is expensive.
3009 				 * 2. Split is accurately. We make this.
3010 				 */
3011 				skb_frag_ref(skb, i);
3012 				skb_shinfo(skb1)->frags[0].page_offset += len - pos;
3013 				skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos);
3014 				skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos);
3015 				skb_shinfo(skb)->nr_frags++;
3016 			}
3017 			k++;
3018 		} else
3019 			skb_shinfo(skb)->nr_frags++;
3020 		pos += size;
3021 	}
3022 	skb_shinfo(skb1)->nr_frags = k;
3023 }
3024 
3025 /**
3026  * skb_split - Split fragmented skb to two parts at length len.
3027  * @skb: the buffer to split
3028  * @skb1: the buffer to receive the second part
3029  * @len: new length for skb
3030  */
3031 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
3032 {
3033 	int pos = skb_headlen(skb);
3034 
3035 	skb_shinfo(skb1)->tx_flags |= skb_shinfo(skb)->tx_flags &
3036 				      SKBTX_SHARED_FRAG;
3037 	skb_zerocopy_clone(skb1, skb, 0);
3038 	if (len < pos)	/* Split line is inside header. */
3039 		skb_split_inside_header(skb, skb1, len, pos);
3040 	else		/* Second chunk has no header, nothing to copy. */
3041 		skb_split_no_header(skb, skb1, len, pos);
3042 }
3043 EXPORT_SYMBOL(skb_split);
3044 
3045 /* Shifting from/to a cloned skb is a no-go.
3046  *
3047  * Caller cannot keep skb_shinfo related pointers past calling here!
3048  */
3049 static int skb_prepare_for_shift(struct sk_buff *skb)
3050 {
3051 	return skb_cloned(skb) && pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3052 }
3053 
3054 /**
3055  * skb_shift - Shifts paged data partially from skb to another
3056  * @tgt: buffer into which tail data gets added
3057  * @skb: buffer from which the paged data comes from
3058  * @shiftlen: shift up to this many bytes
3059  *
3060  * Attempts to shift up to shiftlen worth of bytes, which may be less than
3061  * the length of the skb, from skb to tgt. Returns number bytes shifted.
3062  * It's up to caller to free skb if everything was shifted.
3063  *
3064  * If @tgt runs out of frags, the whole operation is aborted.
3065  *
3066  * Skb cannot include anything else but paged data while tgt is allowed
3067  * to have non-paged data as well.
3068  *
3069  * TODO: full sized shift could be optimized but that would need
3070  * specialized skb free'er to handle frags without up-to-date nr_frags.
3071  */
3072 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
3073 {
3074 	int from, to, merge, todo;
3075 	struct skb_frag_struct *fragfrom, *fragto;
3076 
3077 	BUG_ON(shiftlen > skb->len);
3078 
3079 	if (skb_headlen(skb))
3080 		return 0;
3081 	if (skb_zcopy(tgt) || skb_zcopy(skb))
3082 		return 0;
3083 
3084 	todo = shiftlen;
3085 	from = 0;
3086 	to = skb_shinfo(tgt)->nr_frags;
3087 	fragfrom = &skb_shinfo(skb)->frags[from];
3088 
3089 	/* Actual merge is delayed until the point when we know we can
3090 	 * commit all, so that we don't have to undo partial changes
3091 	 */
3092 	if (!to ||
3093 	    !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom),
3094 			      fragfrom->page_offset)) {
3095 		merge = -1;
3096 	} else {
3097 		merge = to - 1;
3098 
3099 		todo -= skb_frag_size(fragfrom);
3100 		if (todo < 0) {
3101 			if (skb_prepare_for_shift(skb) ||
3102 			    skb_prepare_for_shift(tgt))
3103 				return 0;
3104 
3105 			/* All previous frag pointers might be stale! */
3106 			fragfrom = &skb_shinfo(skb)->frags[from];
3107 			fragto = &skb_shinfo(tgt)->frags[merge];
3108 
3109 			skb_frag_size_add(fragto, shiftlen);
3110 			skb_frag_size_sub(fragfrom, shiftlen);
3111 			fragfrom->page_offset += shiftlen;
3112 
3113 			goto onlymerged;
3114 		}
3115 
3116 		from++;
3117 	}
3118 
3119 	/* Skip full, not-fitting skb to avoid expensive operations */
3120 	if ((shiftlen == skb->len) &&
3121 	    (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
3122 		return 0;
3123 
3124 	if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
3125 		return 0;
3126 
3127 	while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
3128 		if (to == MAX_SKB_FRAGS)
3129 			return 0;
3130 
3131 		fragfrom = &skb_shinfo(skb)->frags[from];
3132 		fragto = &skb_shinfo(tgt)->frags[to];
3133 
3134 		if (todo >= skb_frag_size(fragfrom)) {
3135 			*fragto = *fragfrom;
3136 			todo -= skb_frag_size(fragfrom);
3137 			from++;
3138 			to++;
3139 
3140 		} else {
3141 			__skb_frag_ref(fragfrom);
3142 			fragto->page = fragfrom->page;
3143 			fragto->page_offset = fragfrom->page_offset;
3144 			skb_frag_size_set(fragto, todo);
3145 
3146 			fragfrom->page_offset += todo;
3147 			skb_frag_size_sub(fragfrom, todo);
3148 			todo = 0;
3149 
3150 			to++;
3151 			break;
3152 		}
3153 	}
3154 
3155 	/* Ready to "commit" this state change to tgt */
3156 	skb_shinfo(tgt)->nr_frags = to;
3157 
3158 	if (merge >= 0) {
3159 		fragfrom = &skb_shinfo(skb)->frags[0];
3160 		fragto = &skb_shinfo(tgt)->frags[merge];
3161 
3162 		skb_frag_size_add(fragto, skb_frag_size(fragfrom));
3163 		__skb_frag_unref(fragfrom);
3164 	}
3165 
3166 	/* Reposition in the original skb */
3167 	to = 0;
3168 	while (from < skb_shinfo(skb)->nr_frags)
3169 		skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
3170 	skb_shinfo(skb)->nr_frags = to;
3171 
3172 	BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
3173 
3174 onlymerged:
3175 	/* Most likely the tgt won't ever need its checksum anymore, skb on
3176 	 * the other hand might need it if it needs to be resent
3177 	 */
3178 	tgt->ip_summed = CHECKSUM_PARTIAL;
3179 	skb->ip_summed = CHECKSUM_PARTIAL;
3180 
3181 	/* Yak, is it really working this way? Some helper please? */
3182 	skb->len -= shiftlen;
3183 	skb->data_len -= shiftlen;
3184 	skb->truesize -= shiftlen;
3185 	tgt->len += shiftlen;
3186 	tgt->data_len += shiftlen;
3187 	tgt->truesize += shiftlen;
3188 
3189 	return shiftlen;
3190 }
3191 
3192 /**
3193  * skb_prepare_seq_read - Prepare a sequential read of skb data
3194  * @skb: the buffer to read
3195  * @from: lower offset of data to be read
3196  * @to: upper offset of data to be read
3197  * @st: state variable
3198  *
3199  * Initializes the specified state variable. Must be called before
3200  * invoking skb_seq_read() for the first time.
3201  */
3202 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
3203 			  unsigned int to, struct skb_seq_state *st)
3204 {
3205 	st->lower_offset = from;
3206 	st->upper_offset = to;
3207 	st->root_skb = st->cur_skb = skb;
3208 	st->frag_idx = st->stepped_offset = 0;
3209 	st->frag_data = NULL;
3210 }
3211 EXPORT_SYMBOL(skb_prepare_seq_read);
3212 
3213 /**
3214  * skb_seq_read - Sequentially read skb data
3215  * @consumed: number of bytes consumed by the caller so far
3216  * @data: destination pointer for data to be returned
3217  * @st: state variable
3218  *
3219  * Reads a block of skb data at @consumed relative to the
3220  * lower offset specified to skb_prepare_seq_read(). Assigns
3221  * the head of the data block to @data and returns the length
3222  * of the block or 0 if the end of the skb data or the upper
3223  * offset has been reached.
3224  *
3225  * The caller is not required to consume all of the data
3226  * returned, i.e. @consumed is typically set to the number
3227  * of bytes already consumed and the next call to
3228  * skb_seq_read() will return the remaining part of the block.
3229  *
3230  * Note 1: The size of each block of data returned can be arbitrary,
3231  *       this limitation is the cost for zerocopy sequential
3232  *       reads of potentially non linear data.
3233  *
3234  * Note 2: Fragment lists within fragments are not implemented
3235  *       at the moment, state->root_skb could be replaced with
3236  *       a stack for this purpose.
3237  */
3238 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
3239 			  struct skb_seq_state *st)
3240 {
3241 	unsigned int block_limit, abs_offset = consumed + st->lower_offset;
3242 	skb_frag_t *frag;
3243 
3244 	if (unlikely(abs_offset >= st->upper_offset)) {
3245 		if (st->frag_data) {
3246 			kunmap_atomic(st->frag_data);
3247 			st->frag_data = NULL;
3248 		}
3249 		return 0;
3250 	}
3251 
3252 next_skb:
3253 	block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
3254 
3255 	if (abs_offset < block_limit && !st->frag_data) {
3256 		*data = st->cur_skb->data + (abs_offset - st->stepped_offset);
3257 		return block_limit - abs_offset;
3258 	}
3259 
3260 	if (st->frag_idx == 0 && !st->frag_data)
3261 		st->stepped_offset += skb_headlen(st->cur_skb);
3262 
3263 	while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
3264 		frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
3265 		block_limit = skb_frag_size(frag) + st->stepped_offset;
3266 
3267 		if (abs_offset < block_limit) {
3268 			if (!st->frag_data)
3269 				st->frag_data = kmap_atomic(skb_frag_page(frag));
3270 
3271 			*data = (u8 *) st->frag_data + frag->page_offset +
3272 				(abs_offset - st->stepped_offset);
3273 
3274 			return block_limit - abs_offset;
3275 		}
3276 
3277 		if (st->frag_data) {
3278 			kunmap_atomic(st->frag_data);
3279 			st->frag_data = NULL;
3280 		}
3281 
3282 		st->frag_idx++;
3283 		st->stepped_offset += skb_frag_size(frag);
3284 	}
3285 
3286 	if (st->frag_data) {
3287 		kunmap_atomic(st->frag_data);
3288 		st->frag_data = NULL;
3289 	}
3290 
3291 	if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) {
3292 		st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
3293 		st->frag_idx = 0;
3294 		goto next_skb;
3295 	} else if (st->cur_skb->next) {
3296 		st->cur_skb = st->cur_skb->next;
3297 		st->frag_idx = 0;
3298 		goto next_skb;
3299 	}
3300 
3301 	return 0;
3302 }
3303 EXPORT_SYMBOL(skb_seq_read);
3304 
3305 /**
3306  * skb_abort_seq_read - Abort a sequential read of skb data
3307  * @st: state variable
3308  *
3309  * Must be called if skb_seq_read() was not called until it
3310  * returned 0.
3311  */
3312 void skb_abort_seq_read(struct skb_seq_state *st)
3313 {
3314 	if (st->frag_data)
3315 		kunmap_atomic(st->frag_data);
3316 }
3317 EXPORT_SYMBOL(skb_abort_seq_read);
3318 
3319 #define TS_SKB_CB(state)	((struct skb_seq_state *) &((state)->cb))
3320 
3321 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
3322 					  struct ts_config *conf,
3323 					  struct ts_state *state)
3324 {
3325 	return skb_seq_read(offset, text, TS_SKB_CB(state));
3326 }
3327 
3328 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
3329 {
3330 	skb_abort_seq_read(TS_SKB_CB(state));
3331 }
3332 
3333 /**
3334  * skb_find_text - Find a text pattern in skb data
3335  * @skb: the buffer to look in
3336  * @from: search offset
3337  * @to: search limit
3338  * @config: textsearch configuration
3339  *
3340  * Finds a pattern in the skb data according to the specified
3341  * textsearch configuration. Use textsearch_next() to retrieve
3342  * subsequent occurrences of the pattern. Returns the offset
3343  * to the first occurrence or UINT_MAX if no match was found.
3344  */
3345 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
3346 			   unsigned int to, struct ts_config *config)
3347 {
3348 	struct ts_state state;
3349 	unsigned int ret;
3350 
3351 	config->get_next_block = skb_ts_get_next_block;
3352 	config->finish = skb_ts_finish;
3353 
3354 	skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state));
3355 
3356 	ret = textsearch_find(config, &state);
3357 	return (ret <= to - from ? ret : UINT_MAX);
3358 }
3359 EXPORT_SYMBOL(skb_find_text);
3360 
3361 /**
3362  * skb_append_datato_frags - append the user data to a skb
3363  * @sk: sock  structure
3364  * @skb: skb structure to be appended with user data.
3365  * @getfrag: call back function to be used for getting the user data
3366  * @from: pointer to user message iov
3367  * @length: length of the iov message
3368  *
3369  * Description: This procedure append the user data in the fragment part
3370  * of the skb if any page alloc fails user this procedure returns  -ENOMEM
3371  */
3372 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
3373 			int (*getfrag)(void *from, char *to, int offset,
3374 					int len, int odd, struct sk_buff *skb),
3375 			void *from, int length)
3376 {
3377 	int frg_cnt = skb_shinfo(skb)->nr_frags;
3378 	int copy;
3379 	int offset = 0;
3380 	int ret;
3381 	struct page_frag *pfrag = &current->task_frag;
3382 
3383 	do {
3384 		/* Return error if we don't have space for new frag */
3385 		if (frg_cnt >= MAX_SKB_FRAGS)
3386 			return -EMSGSIZE;
3387 
3388 		if (!sk_page_frag_refill(sk, pfrag))
3389 			return -ENOMEM;
3390 
3391 		/* copy the user data to page */
3392 		copy = min_t(int, length, pfrag->size - pfrag->offset);
3393 
3394 		ret = getfrag(from, page_address(pfrag->page) + pfrag->offset,
3395 			      offset, copy, 0, skb);
3396 		if (ret < 0)
3397 			return -EFAULT;
3398 
3399 		/* copy was successful so update the size parameters */
3400 		skb_fill_page_desc(skb, frg_cnt, pfrag->page, pfrag->offset,
3401 				   copy);
3402 		frg_cnt++;
3403 		pfrag->offset += copy;
3404 		get_page(pfrag->page);
3405 
3406 		skb->truesize += copy;
3407 		refcount_add(copy, &sk->sk_wmem_alloc);
3408 		skb->len += copy;
3409 		skb->data_len += copy;
3410 		offset += copy;
3411 		length -= copy;
3412 
3413 	} while (length > 0);
3414 
3415 	return 0;
3416 }
3417 EXPORT_SYMBOL(skb_append_datato_frags);
3418 
3419 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
3420 			 int offset, size_t size)
3421 {
3422 	int i = skb_shinfo(skb)->nr_frags;
3423 
3424 	if (skb_can_coalesce(skb, i, page, offset)) {
3425 		skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size);
3426 	} else if (i < MAX_SKB_FRAGS) {
3427 		get_page(page);
3428 		skb_fill_page_desc(skb, i, page, offset, size);
3429 	} else {
3430 		return -EMSGSIZE;
3431 	}
3432 
3433 	return 0;
3434 }
3435 EXPORT_SYMBOL_GPL(skb_append_pagefrags);
3436 
3437 /**
3438  *	skb_pull_rcsum - pull skb and update receive checksum
3439  *	@skb: buffer to update
3440  *	@len: length of data pulled
3441  *
3442  *	This function performs an skb_pull on the packet and updates
3443  *	the CHECKSUM_COMPLETE checksum.  It should be used on
3444  *	receive path processing instead of skb_pull unless you know
3445  *	that the checksum difference is zero (e.g., a valid IP header)
3446  *	or you are setting ip_summed to CHECKSUM_NONE.
3447  */
3448 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
3449 {
3450 	unsigned char *data = skb->data;
3451 
3452 	BUG_ON(len > skb->len);
3453 	__skb_pull(skb, len);
3454 	skb_postpull_rcsum(skb, data, len);
3455 	return skb->data;
3456 }
3457 EXPORT_SYMBOL_GPL(skb_pull_rcsum);
3458 
3459 /**
3460  *	skb_segment - Perform protocol segmentation on skb.
3461  *	@head_skb: buffer to segment
3462  *	@features: features for the output path (see dev->features)
3463  *
3464  *	This function performs segmentation on the given skb.  It returns
3465  *	a pointer to the first in a list of new skbs for the segments.
3466  *	In case of error it returns ERR_PTR(err).
3467  */
3468 struct sk_buff *skb_segment(struct sk_buff *head_skb,
3469 			    netdev_features_t features)
3470 {
3471 	struct sk_buff *segs = NULL;
3472 	struct sk_buff *tail = NULL;
3473 	struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list;
3474 	skb_frag_t *frag = skb_shinfo(head_skb)->frags;
3475 	unsigned int mss = skb_shinfo(head_skb)->gso_size;
3476 	unsigned int doffset = head_skb->data - skb_mac_header(head_skb);
3477 	struct sk_buff *frag_skb = head_skb;
3478 	unsigned int offset = doffset;
3479 	unsigned int tnl_hlen = skb_tnl_header_len(head_skb);
3480 	unsigned int partial_segs = 0;
3481 	unsigned int headroom;
3482 	unsigned int len = head_skb->len;
3483 	__be16 proto;
3484 	bool csum, sg;
3485 	int nfrags = skb_shinfo(head_skb)->nr_frags;
3486 	int err = -ENOMEM;
3487 	int i = 0;
3488 	int pos;
3489 	int dummy;
3490 
3491 	__skb_push(head_skb, doffset);
3492 	proto = skb_network_protocol(head_skb, &dummy);
3493 	if (unlikely(!proto))
3494 		return ERR_PTR(-EINVAL);
3495 
3496 	sg = !!(features & NETIF_F_SG);
3497 	csum = !!can_checksum_protocol(features, proto);
3498 
3499 	if (sg && csum && (mss != GSO_BY_FRAGS))  {
3500 		if (!(features & NETIF_F_GSO_PARTIAL)) {
3501 			struct sk_buff *iter;
3502 			unsigned int frag_len;
3503 
3504 			if (!list_skb ||
3505 			    !net_gso_ok(features, skb_shinfo(head_skb)->gso_type))
3506 				goto normal;
3507 
3508 			/* If we get here then all the required
3509 			 * GSO features except frag_list are supported.
3510 			 * Try to split the SKB to multiple GSO SKBs
3511 			 * with no frag_list.
3512 			 * Currently we can do that only when the buffers don't
3513 			 * have a linear part and all the buffers except
3514 			 * the last are of the same length.
3515 			 */
3516 			frag_len = list_skb->len;
3517 			skb_walk_frags(head_skb, iter) {
3518 				if (frag_len != iter->len && iter->next)
3519 					goto normal;
3520 				if (skb_headlen(iter) && !iter->head_frag)
3521 					goto normal;
3522 
3523 				len -= iter->len;
3524 			}
3525 
3526 			if (len != frag_len)
3527 				goto normal;
3528 		}
3529 
3530 		/* GSO partial only requires that we trim off any excess that
3531 		 * doesn't fit into an MSS sized block, so take care of that
3532 		 * now.
3533 		 */
3534 		partial_segs = len / mss;
3535 		if (partial_segs > 1)
3536 			mss *= partial_segs;
3537 		else
3538 			partial_segs = 0;
3539 	}
3540 
3541 normal:
3542 	headroom = skb_headroom(head_skb);
3543 	pos = skb_headlen(head_skb);
3544 
3545 	do {
3546 		struct sk_buff *nskb;
3547 		skb_frag_t *nskb_frag;
3548 		int hsize;
3549 		int size;
3550 
3551 		if (unlikely(mss == GSO_BY_FRAGS)) {
3552 			len = list_skb->len;
3553 		} else {
3554 			len = head_skb->len - offset;
3555 			if (len > mss)
3556 				len = mss;
3557 		}
3558 
3559 		hsize = skb_headlen(head_skb) - offset;
3560 		if (hsize < 0)
3561 			hsize = 0;
3562 		if (hsize > len || !sg)
3563 			hsize = len;
3564 
3565 		if (!hsize && i >= nfrags && skb_headlen(list_skb) &&
3566 		    (skb_headlen(list_skb) == len || sg)) {
3567 			BUG_ON(skb_headlen(list_skb) > len);
3568 
3569 			i = 0;
3570 			nfrags = skb_shinfo(list_skb)->nr_frags;
3571 			frag = skb_shinfo(list_skb)->frags;
3572 			frag_skb = list_skb;
3573 			pos += skb_headlen(list_skb);
3574 
3575 			while (pos < offset + len) {
3576 				BUG_ON(i >= nfrags);
3577 
3578 				size = skb_frag_size(frag);
3579 				if (pos + size > offset + len)
3580 					break;
3581 
3582 				i++;
3583 				pos += size;
3584 				frag++;
3585 			}
3586 
3587 			nskb = skb_clone(list_skb, GFP_ATOMIC);
3588 			list_skb = list_skb->next;
3589 
3590 			if (unlikely(!nskb))
3591 				goto err;
3592 
3593 			if (unlikely(pskb_trim(nskb, len))) {
3594 				kfree_skb(nskb);
3595 				goto err;
3596 			}
3597 
3598 			hsize = skb_end_offset(nskb);
3599 			if (skb_cow_head(nskb, doffset + headroom)) {
3600 				kfree_skb(nskb);
3601 				goto err;
3602 			}
3603 
3604 			nskb->truesize += skb_end_offset(nskb) - hsize;
3605 			skb_release_head_state(nskb);
3606 			__skb_push(nskb, doffset);
3607 		} else {
3608 			nskb = __alloc_skb(hsize + doffset + headroom,
3609 					   GFP_ATOMIC, skb_alloc_rx_flag(head_skb),
3610 					   NUMA_NO_NODE);
3611 
3612 			if (unlikely(!nskb))
3613 				goto err;
3614 
3615 			skb_reserve(nskb, headroom);
3616 			__skb_put(nskb, doffset);
3617 		}
3618 
3619 		if (segs)
3620 			tail->next = nskb;
3621 		else
3622 			segs = nskb;
3623 		tail = nskb;
3624 
3625 		__copy_skb_header(nskb, head_skb);
3626 
3627 		skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom);
3628 		skb_reset_mac_len(nskb);
3629 
3630 		skb_copy_from_linear_data_offset(head_skb, -tnl_hlen,
3631 						 nskb->data - tnl_hlen,
3632 						 doffset + tnl_hlen);
3633 
3634 		if (nskb->len == len + doffset)
3635 			goto perform_csum_check;
3636 
3637 		if (!sg) {
3638 			if (!nskb->remcsum_offload)
3639 				nskb->ip_summed = CHECKSUM_NONE;
3640 			SKB_GSO_CB(nskb)->csum =
3641 				skb_copy_and_csum_bits(head_skb, offset,
3642 						       skb_put(nskb, len),
3643 						       len, 0);
3644 			SKB_GSO_CB(nskb)->csum_start =
3645 				skb_headroom(nskb) + doffset;
3646 			continue;
3647 		}
3648 
3649 		nskb_frag = skb_shinfo(nskb)->frags;
3650 
3651 		skb_copy_from_linear_data_offset(head_skb, offset,
3652 						 skb_put(nskb, hsize), hsize);
3653 
3654 		skb_shinfo(nskb)->tx_flags |= skb_shinfo(head_skb)->tx_flags &
3655 					      SKBTX_SHARED_FRAG;
3656 		if (skb_zerocopy_clone(nskb, head_skb, GFP_ATOMIC))
3657 			goto err;
3658 
3659 		while (pos < offset + len) {
3660 			if (i >= nfrags) {
3661 				BUG_ON(skb_headlen(list_skb));
3662 
3663 				i = 0;
3664 				nfrags = skb_shinfo(list_skb)->nr_frags;
3665 				frag = skb_shinfo(list_skb)->frags;
3666 				frag_skb = list_skb;
3667 
3668 				BUG_ON(!nfrags);
3669 
3670 				list_skb = list_skb->next;
3671 			}
3672 
3673 			if (unlikely(skb_shinfo(nskb)->nr_frags >=
3674 				     MAX_SKB_FRAGS)) {
3675 				net_warn_ratelimited(
3676 					"skb_segment: too many frags: %u %u\n",
3677 					pos, mss);
3678 				goto err;
3679 			}
3680 
3681 			if (unlikely(skb_orphan_frags(frag_skb, GFP_ATOMIC)))
3682 				goto err;
3683 
3684 			*nskb_frag = *frag;
3685 			__skb_frag_ref(nskb_frag);
3686 			size = skb_frag_size(nskb_frag);
3687 
3688 			if (pos < offset) {
3689 				nskb_frag->page_offset += offset - pos;
3690 				skb_frag_size_sub(nskb_frag, offset - pos);
3691 			}
3692 
3693 			skb_shinfo(nskb)->nr_frags++;
3694 
3695 			if (pos + size <= offset + len) {
3696 				i++;
3697 				frag++;
3698 				pos += size;
3699 			} else {
3700 				skb_frag_size_sub(nskb_frag, pos + size - (offset + len));
3701 				goto skip_fraglist;
3702 			}
3703 
3704 			nskb_frag++;
3705 		}
3706 
3707 skip_fraglist:
3708 		nskb->data_len = len - hsize;
3709 		nskb->len += nskb->data_len;
3710 		nskb->truesize += nskb->data_len;
3711 
3712 perform_csum_check:
3713 		if (!csum) {
3714 			if (skb_has_shared_frag(nskb)) {
3715 				err = __skb_linearize(nskb);
3716 				if (err)
3717 					goto err;
3718 			}
3719 			if (!nskb->remcsum_offload)
3720 				nskb->ip_summed = CHECKSUM_NONE;
3721 			SKB_GSO_CB(nskb)->csum =
3722 				skb_checksum(nskb, doffset,
3723 					     nskb->len - doffset, 0);
3724 			SKB_GSO_CB(nskb)->csum_start =
3725 				skb_headroom(nskb) + doffset;
3726 		}
3727 	} while ((offset += len) < head_skb->len);
3728 
3729 	/* Some callers want to get the end of the list.
3730 	 * Put it in segs->prev to avoid walking the list.
3731 	 * (see validate_xmit_skb_list() for example)
3732 	 */
3733 	segs->prev = tail;
3734 
3735 	if (partial_segs) {
3736 		struct sk_buff *iter;
3737 		int type = skb_shinfo(head_skb)->gso_type;
3738 		unsigned short gso_size = skb_shinfo(head_skb)->gso_size;
3739 
3740 		/* Update type to add partial and then remove dodgy if set */
3741 		type |= (features & NETIF_F_GSO_PARTIAL) / NETIF_F_GSO_PARTIAL * SKB_GSO_PARTIAL;
3742 		type &= ~SKB_GSO_DODGY;
3743 
3744 		/* Update GSO info and prepare to start updating headers on
3745 		 * our way back down the stack of protocols.
3746 		 */
3747 		for (iter = segs; iter; iter = iter->next) {
3748 			skb_shinfo(iter)->gso_size = gso_size;
3749 			skb_shinfo(iter)->gso_segs = partial_segs;
3750 			skb_shinfo(iter)->gso_type = type;
3751 			SKB_GSO_CB(iter)->data_offset = skb_headroom(iter) + doffset;
3752 		}
3753 
3754 		if (tail->len - doffset <= gso_size)
3755 			skb_shinfo(tail)->gso_size = 0;
3756 		else if (tail != segs)
3757 			skb_shinfo(tail)->gso_segs = DIV_ROUND_UP(tail->len - doffset, gso_size);
3758 	}
3759 
3760 	/* Following permits correct backpressure, for protocols
3761 	 * using skb_set_owner_w().
3762 	 * Idea is to tranfert ownership from head_skb to last segment.
3763 	 */
3764 	if (head_skb->destructor == sock_wfree) {
3765 		swap(tail->truesize, head_skb->truesize);
3766 		swap(tail->destructor, head_skb->destructor);
3767 		swap(tail->sk, head_skb->sk);
3768 	}
3769 	return segs;
3770 
3771 err:
3772 	kfree_skb_list(segs);
3773 	return ERR_PTR(err);
3774 }
3775 EXPORT_SYMBOL_GPL(skb_segment);
3776 
3777 int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb)
3778 {
3779 	struct skb_shared_info *pinfo, *skbinfo = skb_shinfo(skb);
3780 	unsigned int offset = skb_gro_offset(skb);
3781 	unsigned int headlen = skb_headlen(skb);
3782 	unsigned int len = skb_gro_len(skb);
3783 	struct sk_buff *lp, *p = *head;
3784 	unsigned int delta_truesize;
3785 
3786 	if (unlikely(p->len + len >= 65536))
3787 		return -E2BIG;
3788 
3789 	lp = NAPI_GRO_CB(p)->last;
3790 	pinfo = skb_shinfo(lp);
3791 
3792 	if (headlen <= offset) {
3793 		skb_frag_t *frag;
3794 		skb_frag_t *frag2;
3795 		int i = skbinfo->nr_frags;
3796 		int nr_frags = pinfo->nr_frags + i;
3797 
3798 		if (nr_frags > MAX_SKB_FRAGS)
3799 			goto merge;
3800 
3801 		offset -= headlen;
3802 		pinfo->nr_frags = nr_frags;
3803 		skbinfo->nr_frags = 0;
3804 
3805 		frag = pinfo->frags + nr_frags;
3806 		frag2 = skbinfo->frags + i;
3807 		do {
3808 			*--frag = *--frag2;
3809 		} while (--i);
3810 
3811 		frag->page_offset += offset;
3812 		skb_frag_size_sub(frag, offset);
3813 
3814 		/* all fragments truesize : remove (head size + sk_buff) */
3815 		delta_truesize = skb->truesize -
3816 				 SKB_TRUESIZE(skb_end_offset(skb));
3817 
3818 		skb->truesize -= skb->data_len;
3819 		skb->len -= skb->data_len;
3820 		skb->data_len = 0;
3821 
3822 		NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE;
3823 		goto done;
3824 	} else if (skb->head_frag) {
3825 		int nr_frags = pinfo->nr_frags;
3826 		skb_frag_t *frag = pinfo->frags + nr_frags;
3827 		struct page *page = virt_to_head_page(skb->head);
3828 		unsigned int first_size = headlen - offset;
3829 		unsigned int first_offset;
3830 
3831 		if (nr_frags + 1 + skbinfo->nr_frags > MAX_SKB_FRAGS)
3832 			goto merge;
3833 
3834 		first_offset = skb->data -
3835 			       (unsigned char *)page_address(page) +
3836 			       offset;
3837 
3838 		pinfo->nr_frags = nr_frags + 1 + skbinfo->nr_frags;
3839 
3840 		frag->page.p	  = page;
3841 		frag->page_offset = first_offset;
3842 		skb_frag_size_set(frag, first_size);
3843 
3844 		memcpy(frag + 1, skbinfo->frags, sizeof(*frag) * skbinfo->nr_frags);
3845 		/* We dont need to clear skbinfo->nr_frags here */
3846 
3847 		delta_truesize = skb->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
3848 		NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE_STOLEN_HEAD;
3849 		goto done;
3850 	}
3851 
3852 merge:
3853 	delta_truesize = skb->truesize;
3854 	if (offset > headlen) {
3855 		unsigned int eat = offset - headlen;
3856 
3857 		skbinfo->frags[0].page_offset += eat;
3858 		skb_frag_size_sub(&skbinfo->frags[0], eat);
3859 		skb->data_len -= eat;
3860 		skb->len -= eat;
3861 		offset = headlen;
3862 	}
3863 
3864 	__skb_pull(skb, offset);
3865 
3866 	if (NAPI_GRO_CB(p)->last == p)
3867 		skb_shinfo(p)->frag_list = skb;
3868 	else
3869 		NAPI_GRO_CB(p)->last->next = skb;
3870 	NAPI_GRO_CB(p)->last = skb;
3871 	__skb_header_release(skb);
3872 	lp = p;
3873 
3874 done:
3875 	NAPI_GRO_CB(p)->count++;
3876 	p->data_len += len;
3877 	p->truesize += delta_truesize;
3878 	p->len += len;
3879 	if (lp != p) {
3880 		lp->data_len += len;
3881 		lp->truesize += delta_truesize;
3882 		lp->len += len;
3883 	}
3884 	NAPI_GRO_CB(skb)->same_flow = 1;
3885 	return 0;
3886 }
3887 EXPORT_SYMBOL_GPL(skb_gro_receive);
3888 
3889 void __init skb_init(void)
3890 {
3891 	skbuff_head_cache = kmem_cache_create("skbuff_head_cache",
3892 					      sizeof(struct sk_buff),
3893 					      0,
3894 					      SLAB_HWCACHE_ALIGN|SLAB_PANIC,
3895 					      NULL);
3896 	skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
3897 						sizeof(struct sk_buff_fclones),
3898 						0,
3899 						SLAB_HWCACHE_ALIGN|SLAB_PANIC,
3900 						NULL);
3901 }
3902 
3903 static int
3904 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len,
3905 	       unsigned int recursion_level)
3906 {
3907 	int start = skb_headlen(skb);
3908 	int i, copy = start - offset;
3909 	struct sk_buff *frag_iter;
3910 	int elt = 0;
3911 
3912 	if (unlikely(recursion_level >= 24))
3913 		return -EMSGSIZE;
3914 
3915 	if (copy > 0) {
3916 		if (copy > len)
3917 			copy = len;
3918 		sg_set_buf(sg, skb->data + offset, copy);
3919 		elt++;
3920 		if ((len -= copy) == 0)
3921 			return elt;
3922 		offset += copy;
3923 	}
3924 
3925 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3926 		int end;
3927 
3928 		WARN_ON(start > offset + len);
3929 
3930 		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
3931 		if ((copy = end - offset) > 0) {
3932 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3933 			if (unlikely(elt && sg_is_last(&sg[elt - 1])))
3934 				return -EMSGSIZE;
3935 
3936 			if (copy > len)
3937 				copy = len;
3938 			sg_set_page(&sg[elt], skb_frag_page(frag), copy,
3939 					frag->page_offset+offset-start);
3940 			elt++;
3941 			if (!(len -= copy))
3942 				return elt;
3943 			offset += copy;
3944 		}
3945 		start = end;
3946 	}
3947 
3948 	skb_walk_frags(skb, frag_iter) {
3949 		int end, ret;
3950 
3951 		WARN_ON(start > offset + len);
3952 
3953 		end = start + frag_iter->len;
3954 		if ((copy = end - offset) > 0) {
3955 			if (unlikely(elt && sg_is_last(&sg[elt - 1])))
3956 				return -EMSGSIZE;
3957 
3958 			if (copy > len)
3959 				copy = len;
3960 			ret = __skb_to_sgvec(frag_iter, sg+elt, offset - start,
3961 					      copy, recursion_level + 1);
3962 			if (unlikely(ret < 0))
3963 				return ret;
3964 			elt += ret;
3965 			if ((len -= copy) == 0)
3966 				return elt;
3967 			offset += copy;
3968 		}
3969 		start = end;
3970 	}
3971 	BUG_ON(len);
3972 	return elt;
3973 }
3974 
3975 /**
3976  *	skb_to_sgvec - Fill a scatter-gather list from a socket buffer
3977  *	@skb: Socket buffer containing the buffers to be mapped
3978  *	@sg: The scatter-gather list to map into
3979  *	@offset: The offset into the buffer's contents to start mapping
3980  *	@len: Length of buffer space to be mapped
3981  *
3982  *	Fill the specified scatter-gather list with mappings/pointers into a
3983  *	region of the buffer space attached to a socket buffer. Returns either
3984  *	the number of scatterlist items used, or -EMSGSIZE if the contents
3985  *	could not fit.
3986  */
3987 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
3988 {
3989 	int nsg = __skb_to_sgvec(skb, sg, offset, len, 0);
3990 
3991 	if (nsg <= 0)
3992 		return nsg;
3993 
3994 	sg_mark_end(&sg[nsg - 1]);
3995 
3996 	return nsg;
3997 }
3998 EXPORT_SYMBOL_GPL(skb_to_sgvec);
3999 
4000 /* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given
4001  * sglist without mark the sg which contain last skb data as the end.
4002  * So the caller can mannipulate sg list as will when padding new data after
4003  * the first call without calling sg_unmark_end to expend sg list.
4004  *
4005  * Scenario to use skb_to_sgvec_nomark:
4006  * 1. sg_init_table
4007  * 2. skb_to_sgvec_nomark(payload1)
4008  * 3. skb_to_sgvec_nomark(payload2)
4009  *
4010  * This is equivalent to:
4011  * 1. sg_init_table
4012  * 2. skb_to_sgvec(payload1)
4013  * 3. sg_unmark_end
4014  * 4. skb_to_sgvec(payload2)
4015  *
4016  * When mapping mutilple payload conditionally, skb_to_sgvec_nomark
4017  * is more preferable.
4018  */
4019 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
4020 			int offset, int len)
4021 {
4022 	return __skb_to_sgvec(skb, sg, offset, len, 0);
4023 }
4024 EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark);
4025 
4026 
4027 
4028 /**
4029  *	skb_cow_data - Check that a socket buffer's data buffers are writable
4030  *	@skb: The socket buffer to check.
4031  *	@tailbits: Amount of trailing space to be added
4032  *	@trailer: Returned pointer to the skb where the @tailbits space begins
4033  *
4034  *	Make sure that the data buffers attached to a socket buffer are
4035  *	writable. If they are not, private copies are made of the data buffers
4036  *	and the socket buffer is set to use these instead.
4037  *
4038  *	If @tailbits is given, make sure that there is space to write @tailbits
4039  *	bytes of data beyond current end of socket buffer.  @trailer will be
4040  *	set to point to the skb in which this space begins.
4041  *
4042  *	The number of scatterlist elements required to completely map the
4043  *	COW'd and extended socket buffer will be returned.
4044  */
4045 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
4046 {
4047 	int copyflag;
4048 	int elt;
4049 	struct sk_buff *skb1, **skb_p;
4050 
4051 	/* If skb is cloned or its head is paged, reallocate
4052 	 * head pulling out all the pages (pages are considered not writable
4053 	 * at the moment even if they are anonymous).
4054 	 */
4055 	if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
4056 	    __pskb_pull_tail(skb, skb_pagelen(skb)-skb_headlen(skb)) == NULL)
4057 		return -ENOMEM;
4058 
4059 	/* Easy case. Most of packets will go this way. */
4060 	if (!skb_has_frag_list(skb)) {
4061 		/* A little of trouble, not enough of space for trailer.
4062 		 * This should not happen, when stack is tuned to generate
4063 		 * good frames. OK, on miss we reallocate and reserve even more
4064 		 * space, 128 bytes is fair. */
4065 
4066 		if (skb_tailroom(skb) < tailbits &&
4067 		    pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
4068 			return -ENOMEM;
4069 
4070 		/* Voila! */
4071 		*trailer = skb;
4072 		return 1;
4073 	}
4074 
4075 	/* Misery. We are in troubles, going to mincer fragments... */
4076 
4077 	elt = 1;
4078 	skb_p = &skb_shinfo(skb)->frag_list;
4079 	copyflag = 0;
4080 
4081 	while ((skb1 = *skb_p) != NULL) {
4082 		int ntail = 0;
4083 
4084 		/* The fragment is partially pulled by someone,
4085 		 * this can happen on input. Copy it and everything
4086 		 * after it. */
4087 
4088 		if (skb_shared(skb1))
4089 			copyflag = 1;
4090 
4091 		/* If the skb is the last, worry about trailer. */
4092 
4093 		if (skb1->next == NULL && tailbits) {
4094 			if (skb_shinfo(skb1)->nr_frags ||
4095 			    skb_has_frag_list(skb1) ||
4096 			    skb_tailroom(skb1) < tailbits)
4097 				ntail = tailbits + 128;
4098 		}
4099 
4100 		if (copyflag ||
4101 		    skb_cloned(skb1) ||
4102 		    ntail ||
4103 		    skb_shinfo(skb1)->nr_frags ||
4104 		    skb_has_frag_list(skb1)) {
4105 			struct sk_buff *skb2;
4106 
4107 			/* Fuck, we are miserable poor guys... */
4108 			if (ntail == 0)
4109 				skb2 = skb_copy(skb1, GFP_ATOMIC);
4110 			else
4111 				skb2 = skb_copy_expand(skb1,
4112 						       skb_headroom(skb1),
4113 						       ntail,
4114 						       GFP_ATOMIC);
4115 			if (unlikely(skb2 == NULL))
4116 				return -ENOMEM;
4117 
4118 			if (skb1->sk)
4119 				skb_set_owner_w(skb2, skb1->sk);
4120 
4121 			/* Looking around. Are we still alive?
4122 			 * OK, link new skb, drop old one */
4123 
4124 			skb2->next = skb1->next;
4125 			*skb_p = skb2;
4126 			kfree_skb(skb1);
4127 			skb1 = skb2;
4128 		}
4129 		elt++;
4130 		*trailer = skb1;
4131 		skb_p = &skb1->next;
4132 	}
4133 
4134 	return elt;
4135 }
4136 EXPORT_SYMBOL_GPL(skb_cow_data);
4137 
4138 static void sock_rmem_free(struct sk_buff *skb)
4139 {
4140 	struct sock *sk = skb->sk;
4141 
4142 	atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
4143 }
4144 
4145 static void skb_set_err_queue(struct sk_buff *skb)
4146 {
4147 	/* pkt_type of skbs received on local sockets is never PACKET_OUTGOING.
4148 	 * So, it is safe to (mis)use it to mark skbs on the error queue.
4149 	 */
4150 	skb->pkt_type = PACKET_OUTGOING;
4151 	BUILD_BUG_ON(PACKET_OUTGOING == 0);
4152 }
4153 
4154 /*
4155  * Note: We dont mem charge error packets (no sk_forward_alloc changes)
4156  */
4157 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
4158 {
4159 	if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
4160 	    (unsigned int)sk->sk_rcvbuf)
4161 		return -ENOMEM;
4162 
4163 	skb_orphan(skb);
4164 	skb->sk = sk;
4165 	skb->destructor = sock_rmem_free;
4166 	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
4167 	skb_set_err_queue(skb);
4168 
4169 	/* before exiting rcu section, make sure dst is refcounted */
4170 	skb_dst_force(skb);
4171 
4172 	skb_queue_tail(&sk->sk_error_queue, skb);
4173 	if (!sock_flag(sk, SOCK_DEAD))
4174 		sk->sk_data_ready(sk);
4175 	return 0;
4176 }
4177 EXPORT_SYMBOL(sock_queue_err_skb);
4178 
4179 static bool is_icmp_err_skb(const struct sk_buff *skb)
4180 {
4181 	return skb && (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP ||
4182 		       SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP6);
4183 }
4184 
4185 struct sk_buff *sock_dequeue_err_skb(struct sock *sk)
4186 {
4187 	struct sk_buff_head *q = &sk->sk_error_queue;
4188 	struct sk_buff *skb, *skb_next = NULL;
4189 	bool icmp_next = false;
4190 	unsigned long flags;
4191 
4192 	spin_lock_irqsave(&q->lock, flags);
4193 	skb = __skb_dequeue(q);
4194 	if (skb && (skb_next = skb_peek(q))) {
4195 		icmp_next = is_icmp_err_skb(skb_next);
4196 		if (icmp_next)
4197 			sk->sk_err = SKB_EXT_ERR(skb_next)->ee.ee_origin;
4198 	}
4199 	spin_unlock_irqrestore(&q->lock, flags);
4200 
4201 	if (is_icmp_err_skb(skb) && !icmp_next)
4202 		sk->sk_err = 0;
4203 
4204 	if (skb_next)
4205 		sk->sk_error_report(sk);
4206 
4207 	return skb;
4208 }
4209 EXPORT_SYMBOL(sock_dequeue_err_skb);
4210 
4211 /**
4212  * skb_clone_sk - create clone of skb, and take reference to socket
4213  * @skb: the skb to clone
4214  *
4215  * This function creates a clone of a buffer that holds a reference on
4216  * sk_refcnt.  Buffers created via this function are meant to be
4217  * returned using sock_queue_err_skb, or free via kfree_skb.
4218  *
4219  * When passing buffers allocated with this function to sock_queue_err_skb
4220  * it is necessary to wrap the call with sock_hold/sock_put in order to
4221  * prevent the socket from being released prior to being enqueued on
4222  * the sk_error_queue.
4223  */
4224 struct sk_buff *skb_clone_sk(struct sk_buff *skb)
4225 {
4226 	struct sock *sk = skb->sk;
4227 	struct sk_buff *clone;
4228 
4229 	if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt))
4230 		return NULL;
4231 
4232 	clone = skb_clone(skb, GFP_ATOMIC);
4233 	if (!clone) {
4234 		sock_put(sk);
4235 		return NULL;
4236 	}
4237 
4238 	clone->sk = sk;
4239 	clone->destructor = sock_efree;
4240 
4241 	return clone;
4242 }
4243 EXPORT_SYMBOL(skb_clone_sk);
4244 
4245 static void __skb_complete_tx_timestamp(struct sk_buff *skb,
4246 					struct sock *sk,
4247 					int tstype,
4248 					bool opt_stats)
4249 {
4250 	struct sock_exterr_skb *serr;
4251 	int err;
4252 
4253 	BUILD_BUG_ON(sizeof(struct sock_exterr_skb) > sizeof(skb->cb));
4254 
4255 	serr = SKB_EXT_ERR(skb);
4256 	memset(serr, 0, sizeof(*serr));
4257 	serr->ee.ee_errno = ENOMSG;
4258 	serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
4259 	serr->ee.ee_info = tstype;
4260 	serr->opt_stats = opt_stats;
4261 	serr->header.h4.iif = skb->dev ? skb->dev->ifindex : 0;
4262 	if (sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID) {
4263 		serr->ee.ee_data = skb_shinfo(skb)->tskey;
4264 		if (sk->sk_protocol == IPPROTO_TCP &&
4265 		    sk->sk_type == SOCK_STREAM)
4266 			serr->ee.ee_data -= sk->sk_tskey;
4267 	}
4268 
4269 	err = sock_queue_err_skb(sk, skb);
4270 
4271 	if (err)
4272 		kfree_skb(skb);
4273 }
4274 
4275 static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly)
4276 {
4277 	bool ret;
4278 
4279 	if (likely(sysctl_tstamp_allow_data || tsonly))
4280 		return true;
4281 
4282 	read_lock_bh(&sk->sk_callback_lock);
4283 	ret = sk->sk_socket && sk->sk_socket->file &&
4284 	      file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW);
4285 	read_unlock_bh(&sk->sk_callback_lock);
4286 	return ret;
4287 }
4288 
4289 void skb_complete_tx_timestamp(struct sk_buff *skb,
4290 			       struct skb_shared_hwtstamps *hwtstamps)
4291 {
4292 	struct sock *sk = skb->sk;
4293 
4294 	if (!skb_may_tx_timestamp(sk, false))
4295 		return;
4296 
4297 	/* Take a reference to prevent skb_orphan() from freeing the socket,
4298 	 * but only if the socket refcount is not zero.
4299 	 */
4300 	if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
4301 		*skb_hwtstamps(skb) = *hwtstamps;
4302 		__skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND, false);
4303 		sock_put(sk);
4304 	}
4305 }
4306 EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp);
4307 
4308 void __skb_tstamp_tx(struct sk_buff *orig_skb,
4309 		     struct skb_shared_hwtstamps *hwtstamps,
4310 		     struct sock *sk, int tstype)
4311 {
4312 	struct sk_buff *skb;
4313 	bool tsonly, opt_stats = false;
4314 
4315 	if (!sk)
4316 		return;
4317 
4318 	if (!hwtstamps && !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TX_SWHW) &&
4319 	    skb_shinfo(orig_skb)->tx_flags & SKBTX_IN_PROGRESS)
4320 		return;
4321 
4322 	tsonly = sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TSONLY;
4323 	if (!skb_may_tx_timestamp(sk, tsonly))
4324 		return;
4325 
4326 	if (tsonly) {
4327 #ifdef CONFIG_INET
4328 		if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_STATS) &&
4329 		    sk->sk_protocol == IPPROTO_TCP &&
4330 		    sk->sk_type == SOCK_STREAM) {
4331 			skb = tcp_get_timestamping_opt_stats(sk);
4332 			opt_stats = true;
4333 		} else
4334 #endif
4335 			skb = alloc_skb(0, GFP_ATOMIC);
4336 	} else {
4337 		skb = skb_clone(orig_skb, GFP_ATOMIC);
4338 	}
4339 	if (!skb)
4340 		return;
4341 
4342 	if (tsonly) {
4343 		skb_shinfo(skb)->tx_flags |= skb_shinfo(orig_skb)->tx_flags &
4344 					     SKBTX_ANY_TSTAMP;
4345 		skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey;
4346 	}
4347 
4348 	if (hwtstamps)
4349 		*skb_hwtstamps(skb) = *hwtstamps;
4350 	else
4351 		skb->tstamp = ktime_get_real();
4352 
4353 	__skb_complete_tx_timestamp(skb, sk, tstype, opt_stats);
4354 }
4355 EXPORT_SYMBOL_GPL(__skb_tstamp_tx);
4356 
4357 void skb_tstamp_tx(struct sk_buff *orig_skb,
4358 		   struct skb_shared_hwtstamps *hwtstamps)
4359 {
4360 	return __skb_tstamp_tx(orig_skb, hwtstamps, orig_skb->sk,
4361 			       SCM_TSTAMP_SND);
4362 }
4363 EXPORT_SYMBOL_GPL(skb_tstamp_tx);
4364 
4365 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked)
4366 {
4367 	struct sock *sk = skb->sk;
4368 	struct sock_exterr_skb *serr;
4369 	int err = 1;
4370 
4371 	skb->wifi_acked_valid = 1;
4372 	skb->wifi_acked = acked;
4373 
4374 	serr = SKB_EXT_ERR(skb);
4375 	memset(serr, 0, sizeof(*serr));
4376 	serr->ee.ee_errno = ENOMSG;
4377 	serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS;
4378 
4379 	/* Take a reference to prevent skb_orphan() from freeing the socket,
4380 	 * but only if the socket refcount is not zero.
4381 	 */
4382 	if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
4383 		err = sock_queue_err_skb(sk, skb);
4384 		sock_put(sk);
4385 	}
4386 	if (err)
4387 		kfree_skb(skb);
4388 }
4389 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack);
4390 
4391 /**
4392  * skb_partial_csum_set - set up and verify partial csum values for packet
4393  * @skb: the skb to set
4394  * @start: the number of bytes after skb->data to start checksumming.
4395  * @off: the offset from start to place the checksum.
4396  *
4397  * For untrusted partially-checksummed packets, we need to make sure the values
4398  * for skb->csum_start and skb->csum_offset are valid so we don't oops.
4399  *
4400  * This function checks and sets those values and skb->ip_summed: if this
4401  * returns false you should drop the packet.
4402  */
4403 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
4404 {
4405 	if (unlikely(start > skb_headlen(skb)) ||
4406 	    unlikely((int)start + off > skb_headlen(skb) - 2)) {
4407 		net_warn_ratelimited("bad partial csum: csum=%u/%u len=%u\n",
4408 				     start, off, skb_headlen(skb));
4409 		return false;
4410 	}
4411 	skb->ip_summed = CHECKSUM_PARTIAL;
4412 	skb->csum_start = skb_headroom(skb) + start;
4413 	skb->csum_offset = off;
4414 	skb_set_transport_header(skb, start);
4415 	return true;
4416 }
4417 EXPORT_SYMBOL_GPL(skb_partial_csum_set);
4418 
4419 static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len,
4420 			       unsigned int max)
4421 {
4422 	if (skb_headlen(skb) >= len)
4423 		return 0;
4424 
4425 	/* If we need to pullup then pullup to the max, so we
4426 	 * won't need to do it again.
4427 	 */
4428 	if (max > skb->len)
4429 		max = skb->len;
4430 
4431 	if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL)
4432 		return -ENOMEM;
4433 
4434 	if (skb_headlen(skb) < len)
4435 		return -EPROTO;
4436 
4437 	return 0;
4438 }
4439 
4440 #define MAX_TCP_HDR_LEN (15 * 4)
4441 
4442 static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb,
4443 				      typeof(IPPROTO_IP) proto,
4444 				      unsigned int off)
4445 {
4446 	switch (proto) {
4447 		int err;
4448 
4449 	case IPPROTO_TCP:
4450 		err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr),
4451 					  off + MAX_TCP_HDR_LEN);
4452 		if (!err && !skb_partial_csum_set(skb, off,
4453 						  offsetof(struct tcphdr,
4454 							   check)))
4455 			err = -EPROTO;
4456 		return err ? ERR_PTR(err) : &tcp_hdr(skb)->check;
4457 
4458 	case IPPROTO_UDP:
4459 		err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr),
4460 					  off + sizeof(struct udphdr));
4461 		if (!err && !skb_partial_csum_set(skb, off,
4462 						  offsetof(struct udphdr,
4463 							   check)))
4464 			err = -EPROTO;
4465 		return err ? ERR_PTR(err) : &udp_hdr(skb)->check;
4466 	}
4467 
4468 	return ERR_PTR(-EPROTO);
4469 }
4470 
4471 /* This value should be large enough to cover a tagged ethernet header plus
4472  * maximally sized IP and TCP or UDP headers.
4473  */
4474 #define MAX_IP_HDR_LEN 128
4475 
4476 static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate)
4477 {
4478 	unsigned int off;
4479 	bool fragment;
4480 	__sum16 *csum;
4481 	int err;
4482 
4483 	fragment = false;
4484 
4485 	err = skb_maybe_pull_tail(skb,
4486 				  sizeof(struct iphdr),
4487 				  MAX_IP_HDR_LEN);
4488 	if (err < 0)
4489 		goto out;
4490 
4491 	if (ip_hdr(skb)->frag_off & htons(IP_OFFSET | IP_MF))
4492 		fragment = true;
4493 
4494 	off = ip_hdrlen(skb);
4495 
4496 	err = -EPROTO;
4497 
4498 	if (fragment)
4499 		goto out;
4500 
4501 	csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off);
4502 	if (IS_ERR(csum))
4503 		return PTR_ERR(csum);
4504 
4505 	if (recalculate)
4506 		*csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
4507 					   ip_hdr(skb)->daddr,
4508 					   skb->len - off,
4509 					   ip_hdr(skb)->protocol, 0);
4510 	err = 0;
4511 
4512 out:
4513 	return err;
4514 }
4515 
4516 /* This value should be large enough to cover a tagged ethernet header plus
4517  * an IPv6 header, all options, and a maximal TCP or UDP header.
4518  */
4519 #define MAX_IPV6_HDR_LEN 256
4520 
4521 #define OPT_HDR(type, skb, off) \
4522 	(type *)(skb_network_header(skb) + (off))
4523 
4524 static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate)
4525 {
4526 	int err;
4527 	u8 nexthdr;
4528 	unsigned int off;
4529 	unsigned int len;
4530 	bool fragment;
4531 	bool done;
4532 	__sum16 *csum;
4533 
4534 	fragment = false;
4535 	done = false;
4536 
4537 	off = sizeof(struct ipv6hdr);
4538 
4539 	err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN);
4540 	if (err < 0)
4541 		goto out;
4542 
4543 	nexthdr = ipv6_hdr(skb)->nexthdr;
4544 
4545 	len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len);
4546 	while (off <= len && !done) {
4547 		switch (nexthdr) {
4548 		case IPPROTO_DSTOPTS:
4549 		case IPPROTO_HOPOPTS:
4550 		case IPPROTO_ROUTING: {
4551 			struct ipv6_opt_hdr *hp;
4552 
4553 			err = skb_maybe_pull_tail(skb,
4554 						  off +
4555 						  sizeof(struct ipv6_opt_hdr),
4556 						  MAX_IPV6_HDR_LEN);
4557 			if (err < 0)
4558 				goto out;
4559 
4560 			hp = OPT_HDR(struct ipv6_opt_hdr, skb, off);
4561 			nexthdr = hp->nexthdr;
4562 			off += ipv6_optlen(hp);
4563 			break;
4564 		}
4565 		case IPPROTO_AH: {
4566 			struct ip_auth_hdr *hp;
4567 
4568 			err = skb_maybe_pull_tail(skb,
4569 						  off +
4570 						  sizeof(struct ip_auth_hdr),
4571 						  MAX_IPV6_HDR_LEN);
4572 			if (err < 0)
4573 				goto out;
4574 
4575 			hp = OPT_HDR(struct ip_auth_hdr, skb, off);
4576 			nexthdr = hp->nexthdr;
4577 			off += ipv6_authlen(hp);
4578 			break;
4579 		}
4580 		case IPPROTO_FRAGMENT: {
4581 			struct frag_hdr *hp;
4582 
4583 			err = skb_maybe_pull_tail(skb,
4584 						  off +
4585 						  sizeof(struct frag_hdr),
4586 						  MAX_IPV6_HDR_LEN);
4587 			if (err < 0)
4588 				goto out;
4589 
4590 			hp = OPT_HDR(struct frag_hdr, skb, off);
4591 
4592 			if (hp->frag_off & htons(IP6_OFFSET | IP6_MF))
4593 				fragment = true;
4594 
4595 			nexthdr = hp->nexthdr;
4596 			off += sizeof(struct frag_hdr);
4597 			break;
4598 		}
4599 		default:
4600 			done = true;
4601 			break;
4602 		}
4603 	}
4604 
4605 	err = -EPROTO;
4606 
4607 	if (!done || fragment)
4608 		goto out;
4609 
4610 	csum = skb_checksum_setup_ip(skb, nexthdr, off);
4611 	if (IS_ERR(csum))
4612 		return PTR_ERR(csum);
4613 
4614 	if (recalculate)
4615 		*csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
4616 					 &ipv6_hdr(skb)->daddr,
4617 					 skb->len - off, nexthdr, 0);
4618 	err = 0;
4619 
4620 out:
4621 	return err;
4622 }
4623 
4624 /**
4625  * skb_checksum_setup - set up partial checksum offset
4626  * @skb: the skb to set up
4627  * @recalculate: if true the pseudo-header checksum will be recalculated
4628  */
4629 int skb_checksum_setup(struct sk_buff *skb, bool recalculate)
4630 {
4631 	int err;
4632 
4633 	switch (skb->protocol) {
4634 	case htons(ETH_P_IP):
4635 		err = skb_checksum_setup_ipv4(skb, recalculate);
4636 		break;
4637 
4638 	case htons(ETH_P_IPV6):
4639 		err = skb_checksum_setup_ipv6(skb, recalculate);
4640 		break;
4641 
4642 	default:
4643 		err = -EPROTO;
4644 		break;
4645 	}
4646 
4647 	return err;
4648 }
4649 EXPORT_SYMBOL(skb_checksum_setup);
4650 
4651 /**
4652  * skb_checksum_maybe_trim - maybe trims the given skb
4653  * @skb: the skb to check
4654  * @transport_len: the data length beyond the network header
4655  *
4656  * Checks whether the given skb has data beyond the given transport length.
4657  * If so, returns a cloned skb trimmed to this transport length.
4658  * Otherwise returns the provided skb. Returns NULL in error cases
4659  * (e.g. transport_len exceeds skb length or out-of-memory).
4660  *
4661  * Caller needs to set the skb transport header and free any returned skb if it
4662  * differs from the provided skb.
4663  */
4664 static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb,
4665 					       unsigned int transport_len)
4666 {
4667 	struct sk_buff *skb_chk;
4668 	unsigned int len = skb_transport_offset(skb) + transport_len;
4669 	int ret;
4670 
4671 	if (skb->len < len)
4672 		return NULL;
4673 	else if (skb->len == len)
4674 		return skb;
4675 
4676 	skb_chk = skb_clone(skb, GFP_ATOMIC);
4677 	if (!skb_chk)
4678 		return NULL;
4679 
4680 	ret = pskb_trim_rcsum(skb_chk, len);
4681 	if (ret) {
4682 		kfree_skb(skb_chk);
4683 		return NULL;
4684 	}
4685 
4686 	return skb_chk;
4687 }
4688 
4689 /**
4690  * skb_checksum_trimmed - validate checksum of an skb
4691  * @skb: the skb to check
4692  * @transport_len: the data length beyond the network header
4693  * @skb_chkf: checksum function to use
4694  *
4695  * Applies the given checksum function skb_chkf to the provided skb.
4696  * Returns a checked and maybe trimmed skb. Returns NULL on error.
4697  *
4698  * If the skb has data beyond the given transport length, then a
4699  * trimmed & cloned skb is checked and returned.
4700  *
4701  * Caller needs to set the skb transport header and free any returned skb if it
4702  * differs from the provided skb.
4703  */
4704 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
4705 				     unsigned int transport_len,
4706 				     __sum16(*skb_chkf)(struct sk_buff *skb))
4707 {
4708 	struct sk_buff *skb_chk;
4709 	unsigned int offset = skb_transport_offset(skb);
4710 	__sum16 ret;
4711 
4712 	skb_chk = skb_checksum_maybe_trim(skb, transport_len);
4713 	if (!skb_chk)
4714 		goto err;
4715 
4716 	if (!pskb_may_pull(skb_chk, offset))
4717 		goto err;
4718 
4719 	skb_pull_rcsum(skb_chk, offset);
4720 	ret = skb_chkf(skb_chk);
4721 	skb_push_rcsum(skb_chk, offset);
4722 
4723 	if (ret)
4724 		goto err;
4725 
4726 	return skb_chk;
4727 
4728 err:
4729 	if (skb_chk && skb_chk != skb)
4730 		kfree_skb(skb_chk);
4731 
4732 	return NULL;
4733 
4734 }
4735 EXPORT_SYMBOL(skb_checksum_trimmed);
4736 
4737 void __skb_warn_lro_forwarding(const struct sk_buff *skb)
4738 {
4739 	net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n",
4740 			     skb->dev->name);
4741 }
4742 EXPORT_SYMBOL(__skb_warn_lro_forwarding);
4743 
4744 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen)
4745 {
4746 	if (head_stolen) {
4747 		skb_release_head_state(skb);
4748 		kmem_cache_free(skbuff_head_cache, skb);
4749 	} else {
4750 		__kfree_skb(skb);
4751 	}
4752 }
4753 EXPORT_SYMBOL(kfree_skb_partial);
4754 
4755 /**
4756  * skb_try_coalesce - try to merge skb to prior one
4757  * @to: prior buffer
4758  * @from: buffer to add
4759  * @fragstolen: pointer to boolean
4760  * @delta_truesize: how much more was allocated than was requested
4761  */
4762 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
4763 		      bool *fragstolen, int *delta_truesize)
4764 {
4765 	int i, delta, len = from->len;
4766 
4767 	*fragstolen = false;
4768 
4769 	if (skb_cloned(to))
4770 		return false;
4771 
4772 	if (len <= skb_tailroom(to)) {
4773 		if (len)
4774 			BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len));
4775 		*delta_truesize = 0;
4776 		return true;
4777 	}
4778 
4779 	if (skb_has_frag_list(to) || skb_has_frag_list(from))
4780 		return false;
4781 	if (skb_zcopy(to) || skb_zcopy(from))
4782 		return false;
4783 
4784 	if (skb_headlen(from) != 0) {
4785 		struct page *page;
4786 		unsigned int offset;
4787 
4788 		if (skb_shinfo(to)->nr_frags +
4789 		    skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS)
4790 			return false;
4791 
4792 		if (skb_head_is_locked(from))
4793 			return false;
4794 
4795 		delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
4796 
4797 		page = virt_to_head_page(from->head);
4798 		offset = from->data - (unsigned char *)page_address(page);
4799 
4800 		skb_fill_page_desc(to, skb_shinfo(to)->nr_frags,
4801 				   page, offset, skb_headlen(from));
4802 		*fragstolen = true;
4803 	} else {
4804 		if (skb_shinfo(to)->nr_frags +
4805 		    skb_shinfo(from)->nr_frags > MAX_SKB_FRAGS)
4806 			return false;
4807 
4808 		delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from));
4809 	}
4810 
4811 	WARN_ON_ONCE(delta < len);
4812 
4813 	memcpy(skb_shinfo(to)->frags + skb_shinfo(to)->nr_frags,
4814 	       skb_shinfo(from)->frags,
4815 	       skb_shinfo(from)->nr_frags * sizeof(skb_frag_t));
4816 	skb_shinfo(to)->nr_frags += skb_shinfo(from)->nr_frags;
4817 
4818 	if (!skb_cloned(from))
4819 		skb_shinfo(from)->nr_frags = 0;
4820 
4821 	/* if the skb is not cloned this does nothing
4822 	 * since we set nr_frags to 0.
4823 	 */
4824 	for (i = 0; i < skb_shinfo(from)->nr_frags; i++)
4825 		skb_frag_ref(from, i);
4826 
4827 	to->truesize += delta;
4828 	to->len += len;
4829 	to->data_len += len;
4830 
4831 	*delta_truesize = delta;
4832 	return true;
4833 }
4834 EXPORT_SYMBOL(skb_try_coalesce);
4835 
4836 /**
4837  * skb_scrub_packet - scrub an skb
4838  *
4839  * @skb: buffer to clean
4840  * @xnet: packet is crossing netns
4841  *
4842  * skb_scrub_packet can be used after encapsulating or decapsulting a packet
4843  * into/from a tunnel. Some information have to be cleared during these
4844  * operations.
4845  * skb_scrub_packet can also be used to clean a skb before injecting it in
4846  * another namespace (@xnet == true). We have to clear all information in the
4847  * skb that could impact namespace isolation.
4848  */
4849 void skb_scrub_packet(struct sk_buff *skb, bool xnet)
4850 {
4851 	skb->tstamp = 0;
4852 	skb->pkt_type = PACKET_HOST;
4853 	skb->skb_iif = 0;
4854 	skb->ignore_df = 0;
4855 	skb_dst_drop(skb);
4856 	secpath_reset(skb);
4857 	nf_reset(skb);
4858 	nf_reset_trace(skb);
4859 
4860 	if (!xnet)
4861 		return;
4862 
4863 	skb_orphan(skb);
4864 	skb->mark = 0;
4865 }
4866 EXPORT_SYMBOL_GPL(skb_scrub_packet);
4867 
4868 /**
4869  * skb_gso_transport_seglen - Return length of individual segments of a gso packet
4870  *
4871  * @skb: GSO skb
4872  *
4873  * skb_gso_transport_seglen is used to determine the real size of the
4874  * individual segments, including Layer4 headers (TCP/UDP).
4875  *
4876  * The MAC/L2 or network (IP, IPv6) headers are not accounted for.
4877  */
4878 unsigned int skb_gso_transport_seglen(const struct sk_buff *skb)
4879 {
4880 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
4881 	unsigned int thlen = 0;
4882 
4883 	if (skb->encapsulation) {
4884 		thlen = skb_inner_transport_header(skb) -
4885 			skb_transport_header(skb);
4886 
4887 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
4888 			thlen += inner_tcp_hdrlen(skb);
4889 	} else if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
4890 		thlen = tcp_hdrlen(skb);
4891 	} else if (unlikely(shinfo->gso_type & SKB_GSO_SCTP)) {
4892 		thlen = sizeof(struct sctphdr);
4893 	}
4894 	/* UFO sets gso_size to the size of the fragmentation
4895 	 * payload, i.e. the size of the L4 (UDP) header is already
4896 	 * accounted for.
4897 	 */
4898 	return thlen + shinfo->gso_size;
4899 }
4900 EXPORT_SYMBOL_GPL(skb_gso_transport_seglen);
4901 
4902 /**
4903  * skb_gso_validate_mtu - Return in case such skb fits a given MTU
4904  *
4905  * @skb: GSO skb
4906  * @mtu: MTU to validate against
4907  *
4908  * skb_gso_validate_mtu validates if a given skb will fit a wanted MTU
4909  * once split.
4910  */
4911 bool skb_gso_validate_mtu(const struct sk_buff *skb, unsigned int mtu)
4912 {
4913 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
4914 	const struct sk_buff *iter;
4915 	unsigned int hlen;
4916 
4917 	hlen = skb_gso_network_seglen(skb);
4918 
4919 	if (shinfo->gso_size != GSO_BY_FRAGS)
4920 		return hlen <= mtu;
4921 
4922 	/* Undo this so we can re-use header sizes */
4923 	hlen -= GSO_BY_FRAGS;
4924 
4925 	skb_walk_frags(skb, iter) {
4926 		if (hlen + skb_headlen(iter) > mtu)
4927 			return false;
4928 	}
4929 
4930 	return true;
4931 }
4932 EXPORT_SYMBOL_GPL(skb_gso_validate_mtu);
4933 
4934 static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb)
4935 {
4936 	if (skb_cow(skb, skb_headroom(skb)) < 0) {
4937 		kfree_skb(skb);
4938 		return NULL;
4939 	}
4940 
4941 	memmove(skb->data - ETH_HLEN, skb->data - skb->mac_len - VLAN_HLEN,
4942 		2 * ETH_ALEN);
4943 	skb->mac_header += VLAN_HLEN;
4944 	return skb;
4945 }
4946 
4947 struct sk_buff *skb_vlan_untag(struct sk_buff *skb)
4948 {
4949 	struct vlan_hdr *vhdr;
4950 	u16 vlan_tci;
4951 
4952 	if (unlikely(skb_vlan_tag_present(skb))) {
4953 		/* vlan_tci is already set-up so leave this for another time */
4954 		return skb;
4955 	}
4956 
4957 	skb = skb_share_check(skb, GFP_ATOMIC);
4958 	if (unlikely(!skb))
4959 		goto err_free;
4960 
4961 	if (unlikely(!pskb_may_pull(skb, VLAN_HLEN)))
4962 		goto err_free;
4963 
4964 	vhdr = (struct vlan_hdr *)skb->data;
4965 	vlan_tci = ntohs(vhdr->h_vlan_TCI);
4966 	__vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci);
4967 
4968 	skb_pull_rcsum(skb, VLAN_HLEN);
4969 	vlan_set_encap_proto(skb, vhdr);
4970 
4971 	skb = skb_reorder_vlan_header(skb);
4972 	if (unlikely(!skb))
4973 		goto err_free;
4974 
4975 	skb_reset_network_header(skb);
4976 	skb_reset_transport_header(skb);
4977 	skb_reset_mac_len(skb);
4978 
4979 	return skb;
4980 
4981 err_free:
4982 	kfree_skb(skb);
4983 	return NULL;
4984 }
4985 EXPORT_SYMBOL(skb_vlan_untag);
4986 
4987 int skb_ensure_writable(struct sk_buff *skb, int write_len)
4988 {
4989 	if (!pskb_may_pull(skb, write_len))
4990 		return -ENOMEM;
4991 
4992 	if (!skb_cloned(skb) || skb_clone_writable(skb, write_len))
4993 		return 0;
4994 
4995 	return pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
4996 }
4997 EXPORT_SYMBOL(skb_ensure_writable);
4998 
4999 /* remove VLAN header from packet and update csum accordingly.
5000  * expects a non skb_vlan_tag_present skb with a vlan tag payload
5001  */
5002 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci)
5003 {
5004 	struct vlan_hdr *vhdr;
5005 	int offset = skb->data - skb_mac_header(skb);
5006 	int err;
5007 
5008 	if (WARN_ONCE(offset,
5009 		      "__skb_vlan_pop got skb with skb->data not at mac header (offset %d)\n",
5010 		      offset)) {
5011 		return -EINVAL;
5012 	}
5013 
5014 	err = skb_ensure_writable(skb, VLAN_ETH_HLEN);
5015 	if (unlikely(err))
5016 		return err;
5017 
5018 	skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
5019 
5020 	vhdr = (struct vlan_hdr *)(skb->data + ETH_HLEN);
5021 	*vlan_tci = ntohs(vhdr->h_vlan_TCI);
5022 
5023 	memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN);
5024 	__skb_pull(skb, VLAN_HLEN);
5025 
5026 	vlan_set_encap_proto(skb, vhdr);
5027 	skb->mac_header += VLAN_HLEN;
5028 
5029 	if (skb_network_offset(skb) < ETH_HLEN)
5030 		skb_set_network_header(skb, ETH_HLEN);
5031 
5032 	skb_reset_mac_len(skb);
5033 
5034 	return err;
5035 }
5036 EXPORT_SYMBOL(__skb_vlan_pop);
5037 
5038 /* Pop a vlan tag either from hwaccel or from payload.
5039  * Expects skb->data at mac header.
5040  */
5041 int skb_vlan_pop(struct sk_buff *skb)
5042 {
5043 	u16 vlan_tci;
5044 	__be16 vlan_proto;
5045 	int err;
5046 
5047 	if (likely(skb_vlan_tag_present(skb))) {
5048 		skb->vlan_tci = 0;
5049 	} else {
5050 		if (unlikely(!eth_type_vlan(skb->protocol)))
5051 			return 0;
5052 
5053 		err = __skb_vlan_pop(skb, &vlan_tci);
5054 		if (err)
5055 			return err;
5056 	}
5057 	/* move next vlan tag to hw accel tag */
5058 	if (likely(!eth_type_vlan(skb->protocol)))
5059 		return 0;
5060 
5061 	vlan_proto = skb->protocol;
5062 	err = __skb_vlan_pop(skb, &vlan_tci);
5063 	if (unlikely(err))
5064 		return err;
5065 
5066 	__vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
5067 	return 0;
5068 }
5069 EXPORT_SYMBOL(skb_vlan_pop);
5070 
5071 /* Push a vlan tag either into hwaccel or into payload (if hwaccel tag present).
5072  * Expects skb->data at mac header.
5073  */
5074 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci)
5075 {
5076 	if (skb_vlan_tag_present(skb)) {
5077 		int offset = skb->data - skb_mac_header(skb);
5078 		int err;
5079 
5080 		if (WARN_ONCE(offset,
5081 			      "skb_vlan_push got skb with skb->data not at mac header (offset %d)\n",
5082 			      offset)) {
5083 			return -EINVAL;
5084 		}
5085 
5086 		err = __vlan_insert_tag(skb, skb->vlan_proto,
5087 					skb_vlan_tag_get(skb));
5088 		if (err)
5089 			return err;
5090 
5091 		skb->protocol = skb->vlan_proto;
5092 		skb->mac_len += VLAN_HLEN;
5093 
5094 		skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
5095 	}
5096 	__vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
5097 	return 0;
5098 }
5099 EXPORT_SYMBOL(skb_vlan_push);
5100 
5101 /**
5102  * alloc_skb_with_frags - allocate skb with page frags
5103  *
5104  * @header_len: size of linear part
5105  * @data_len: needed length in frags
5106  * @max_page_order: max page order desired.
5107  * @errcode: pointer to error code if any
5108  * @gfp_mask: allocation mask
5109  *
5110  * This can be used to allocate a paged skb, given a maximal order for frags.
5111  */
5112 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
5113 				     unsigned long data_len,
5114 				     int max_page_order,
5115 				     int *errcode,
5116 				     gfp_t gfp_mask)
5117 {
5118 	int npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
5119 	unsigned long chunk;
5120 	struct sk_buff *skb;
5121 	struct page *page;
5122 	gfp_t gfp_head;
5123 	int i;
5124 
5125 	*errcode = -EMSGSIZE;
5126 	/* Note this test could be relaxed, if we succeed to allocate
5127 	 * high order pages...
5128 	 */
5129 	if (npages > MAX_SKB_FRAGS)
5130 		return NULL;
5131 
5132 	gfp_head = gfp_mask;
5133 	if (gfp_head & __GFP_DIRECT_RECLAIM)
5134 		gfp_head |= __GFP_RETRY_MAYFAIL;
5135 
5136 	*errcode = -ENOBUFS;
5137 	skb = alloc_skb(header_len, gfp_head);
5138 	if (!skb)
5139 		return NULL;
5140 
5141 	skb->truesize += npages << PAGE_SHIFT;
5142 
5143 	for (i = 0; npages > 0; i++) {
5144 		int order = max_page_order;
5145 
5146 		while (order) {
5147 			if (npages >= 1 << order) {
5148 				page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) |
5149 						   __GFP_COMP |
5150 						   __GFP_NOWARN |
5151 						   __GFP_NORETRY,
5152 						   order);
5153 				if (page)
5154 					goto fill_page;
5155 				/* Do not retry other high order allocations */
5156 				order = 1;
5157 				max_page_order = 0;
5158 			}
5159 			order--;
5160 		}
5161 		page = alloc_page(gfp_mask);
5162 		if (!page)
5163 			goto failure;
5164 fill_page:
5165 		chunk = min_t(unsigned long, data_len,
5166 			      PAGE_SIZE << order);
5167 		skb_fill_page_desc(skb, i, page, 0, chunk);
5168 		data_len -= chunk;
5169 		npages -= 1 << order;
5170 	}
5171 	return skb;
5172 
5173 failure:
5174 	kfree_skb(skb);
5175 	return NULL;
5176 }
5177 EXPORT_SYMBOL(alloc_skb_with_frags);
5178 
5179 /* carve out the first off bytes from skb when off < headlen */
5180 static int pskb_carve_inside_header(struct sk_buff *skb, const u32 off,
5181 				    const int headlen, gfp_t gfp_mask)
5182 {
5183 	int i;
5184 	int size = skb_end_offset(skb);
5185 	int new_hlen = headlen - off;
5186 	u8 *data;
5187 
5188 	size = SKB_DATA_ALIGN(size);
5189 
5190 	if (skb_pfmemalloc(skb))
5191 		gfp_mask |= __GFP_MEMALLOC;
5192 	data = kmalloc_reserve(size +
5193 			       SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
5194 			       gfp_mask, NUMA_NO_NODE, NULL);
5195 	if (!data)
5196 		return -ENOMEM;
5197 
5198 	size = SKB_WITH_OVERHEAD(ksize(data));
5199 
5200 	/* Copy real data, and all frags */
5201 	skb_copy_from_linear_data_offset(skb, off, data, new_hlen);
5202 	skb->len -= off;
5203 
5204 	memcpy((struct skb_shared_info *)(data + size),
5205 	       skb_shinfo(skb),
5206 	       offsetof(struct skb_shared_info,
5207 			frags[skb_shinfo(skb)->nr_frags]));
5208 	if (skb_cloned(skb)) {
5209 		/* drop the old head gracefully */
5210 		if (skb_orphan_frags(skb, gfp_mask)) {
5211 			kfree(data);
5212 			return -ENOMEM;
5213 		}
5214 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
5215 			skb_frag_ref(skb, i);
5216 		if (skb_has_frag_list(skb))
5217 			skb_clone_fraglist(skb);
5218 		skb_release_data(skb);
5219 	} else {
5220 		/* we can reuse existing recount- all we did was
5221 		 * relocate values
5222 		 */
5223 		skb_free_head(skb);
5224 	}
5225 
5226 	skb->head = data;
5227 	skb->data = data;
5228 	skb->head_frag = 0;
5229 #ifdef NET_SKBUFF_DATA_USES_OFFSET
5230 	skb->end = size;
5231 #else
5232 	skb->end = skb->head + size;
5233 #endif
5234 	skb_set_tail_pointer(skb, skb_headlen(skb));
5235 	skb_headers_offset_update(skb, 0);
5236 	skb->cloned = 0;
5237 	skb->hdr_len = 0;
5238 	skb->nohdr = 0;
5239 	atomic_set(&skb_shinfo(skb)->dataref, 1);
5240 
5241 	return 0;
5242 }
5243 
5244 static int pskb_carve(struct sk_buff *skb, const u32 off, gfp_t gfp);
5245 
5246 /* carve out the first eat bytes from skb's frag_list. May recurse into
5247  * pskb_carve()
5248  */
5249 static int pskb_carve_frag_list(struct sk_buff *skb,
5250 				struct skb_shared_info *shinfo, int eat,
5251 				gfp_t gfp_mask)
5252 {
5253 	struct sk_buff *list = shinfo->frag_list;
5254 	struct sk_buff *clone = NULL;
5255 	struct sk_buff *insp = NULL;
5256 
5257 	do {
5258 		if (!list) {
5259 			pr_err("Not enough bytes to eat. Want %d\n", eat);
5260 			return -EFAULT;
5261 		}
5262 		if (list->len <= eat) {
5263 			/* Eaten as whole. */
5264 			eat -= list->len;
5265 			list = list->next;
5266 			insp = list;
5267 		} else {
5268 			/* Eaten partially. */
5269 			if (skb_shared(list)) {
5270 				clone = skb_clone(list, gfp_mask);
5271 				if (!clone)
5272 					return -ENOMEM;
5273 				insp = list->next;
5274 				list = clone;
5275 			} else {
5276 				/* This may be pulled without problems. */
5277 				insp = list;
5278 			}
5279 			if (pskb_carve(list, eat, gfp_mask) < 0) {
5280 				kfree_skb(clone);
5281 				return -ENOMEM;
5282 			}
5283 			break;
5284 		}
5285 	} while (eat);
5286 
5287 	/* Free pulled out fragments. */
5288 	while ((list = shinfo->frag_list) != insp) {
5289 		shinfo->frag_list = list->next;
5290 		kfree_skb(list);
5291 	}
5292 	/* And insert new clone at head. */
5293 	if (clone) {
5294 		clone->next = list;
5295 		shinfo->frag_list = clone;
5296 	}
5297 	return 0;
5298 }
5299 
5300 /* carve off first len bytes from skb. Split line (off) is in the
5301  * non-linear part of skb
5302  */
5303 static int pskb_carve_inside_nonlinear(struct sk_buff *skb, const u32 off,
5304 				       int pos, gfp_t gfp_mask)
5305 {
5306 	int i, k = 0;
5307 	int size = skb_end_offset(skb);
5308 	u8 *data;
5309 	const int nfrags = skb_shinfo(skb)->nr_frags;
5310 	struct skb_shared_info *shinfo;
5311 
5312 	size = SKB_DATA_ALIGN(size);
5313 
5314 	if (skb_pfmemalloc(skb))
5315 		gfp_mask |= __GFP_MEMALLOC;
5316 	data = kmalloc_reserve(size +
5317 			       SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
5318 			       gfp_mask, NUMA_NO_NODE, NULL);
5319 	if (!data)
5320 		return -ENOMEM;
5321 
5322 	size = SKB_WITH_OVERHEAD(ksize(data));
5323 
5324 	memcpy((struct skb_shared_info *)(data + size),
5325 	       skb_shinfo(skb), offsetof(struct skb_shared_info,
5326 					 frags[skb_shinfo(skb)->nr_frags]));
5327 	if (skb_orphan_frags(skb, gfp_mask)) {
5328 		kfree(data);
5329 		return -ENOMEM;
5330 	}
5331 	shinfo = (struct skb_shared_info *)(data + size);
5332 	for (i = 0; i < nfrags; i++) {
5333 		int fsize = skb_frag_size(&skb_shinfo(skb)->frags[i]);
5334 
5335 		if (pos + fsize > off) {
5336 			shinfo->frags[k] = skb_shinfo(skb)->frags[i];
5337 
5338 			if (pos < off) {
5339 				/* Split frag.
5340 				 * We have two variants in this case:
5341 				 * 1. Move all the frag to the second
5342 				 *    part, if it is possible. F.e.
5343 				 *    this approach is mandatory for TUX,
5344 				 *    where splitting is expensive.
5345 				 * 2. Split is accurately. We make this.
5346 				 */
5347 				shinfo->frags[0].page_offset += off - pos;
5348 				skb_frag_size_sub(&shinfo->frags[0], off - pos);
5349 			}
5350 			skb_frag_ref(skb, i);
5351 			k++;
5352 		}
5353 		pos += fsize;
5354 	}
5355 	shinfo->nr_frags = k;
5356 	if (skb_has_frag_list(skb))
5357 		skb_clone_fraglist(skb);
5358 
5359 	if (k == 0) {
5360 		/* split line is in frag list */
5361 		pskb_carve_frag_list(skb, shinfo, off - pos, gfp_mask);
5362 	}
5363 	skb_release_data(skb);
5364 
5365 	skb->head = data;
5366 	skb->head_frag = 0;
5367 	skb->data = data;
5368 #ifdef NET_SKBUFF_DATA_USES_OFFSET
5369 	skb->end = size;
5370 #else
5371 	skb->end = skb->head + size;
5372 #endif
5373 	skb_reset_tail_pointer(skb);
5374 	skb_headers_offset_update(skb, 0);
5375 	skb->cloned   = 0;
5376 	skb->hdr_len  = 0;
5377 	skb->nohdr    = 0;
5378 	skb->len -= off;
5379 	skb->data_len = skb->len;
5380 	atomic_set(&skb_shinfo(skb)->dataref, 1);
5381 	return 0;
5382 }
5383 
5384 /* remove len bytes from the beginning of the skb */
5385 static int pskb_carve(struct sk_buff *skb, const u32 len, gfp_t gfp)
5386 {
5387 	int headlen = skb_headlen(skb);
5388 
5389 	if (len < headlen)
5390 		return pskb_carve_inside_header(skb, len, headlen, gfp);
5391 	else
5392 		return pskb_carve_inside_nonlinear(skb, len, headlen, gfp);
5393 }
5394 
5395 /* Extract to_copy bytes starting at off from skb, and return this in
5396  * a new skb
5397  */
5398 struct sk_buff *pskb_extract(struct sk_buff *skb, int off,
5399 			     int to_copy, gfp_t gfp)
5400 {
5401 	struct sk_buff  *clone = skb_clone(skb, gfp);
5402 
5403 	if (!clone)
5404 		return NULL;
5405 
5406 	if (pskb_carve(clone, off, gfp) < 0 ||
5407 	    pskb_trim(clone, to_copy)) {
5408 		kfree_skb(clone);
5409 		return NULL;
5410 	}
5411 	return clone;
5412 }
5413 EXPORT_SYMBOL(pskb_extract);
5414 
5415 /**
5416  * skb_condense - try to get rid of fragments/frag_list if possible
5417  * @skb: buffer
5418  *
5419  * Can be used to save memory before skb is added to a busy queue.
5420  * If packet has bytes in frags and enough tail room in skb->head,
5421  * pull all of them, so that we can free the frags right now and adjust
5422  * truesize.
5423  * Notes:
5424  *	We do not reallocate skb->head thus can not fail.
5425  *	Caller must re-evaluate skb->truesize if needed.
5426  */
5427 void skb_condense(struct sk_buff *skb)
5428 {
5429 	if (skb->data_len) {
5430 		if (skb->data_len > skb->end - skb->tail ||
5431 		    skb_cloned(skb))
5432 			return;
5433 
5434 		/* Nice, we can free page frag(s) right now */
5435 		__pskb_pull_tail(skb, skb->data_len);
5436 	}
5437 	/* At this point, skb->truesize might be over estimated,
5438 	 * because skb had a fragment, and fragments do not tell
5439 	 * their truesize.
5440 	 * When we pulled its content into skb->head, fragment
5441 	 * was freed, but __pskb_pull_tail() could not possibly
5442 	 * adjust skb->truesize, not knowing the frag truesize.
5443 	 */
5444 	skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
5445 }
5446