1 /* 2 * Routines having to do with the 'struct sk_buff' memory handlers. 3 * 4 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk> 5 * Florian La Roche <rzsfl@rz.uni-sb.de> 6 * 7 * Fixes: 8 * Alan Cox : Fixed the worst of the load 9 * balancer bugs. 10 * Dave Platt : Interrupt stacking fix. 11 * Richard Kooijman : Timestamp fixes. 12 * Alan Cox : Changed buffer format. 13 * Alan Cox : destructor hook for AF_UNIX etc. 14 * Linus Torvalds : Better skb_clone. 15 * Alan Cox : Added skb_copy. 16 * Alan Cox : Added all the changed routines Linus 17 * only put in the headers 18 * Ray VanTassle : Fixed --skb->lock in free 19 * Alan Cox : skb_copy copy arp field 20 * Andi Kleen : slabified it. 21 * Robert Olsson : Removed skb_head_pool 22 * 23 * NOTE: 24 * The __skb_ routines should be called with interrupts 25 * disabled, or you better be *real* sure that the operation is atomic 26 * with respect to whatever list is being frobbed (e.g. via lock_sock() 27 * or via disabling bottom half handlers, etc). 28 * 29 * This program is free software; you can redistribute it and/or 30 * modify it under the terms of the GNU General Public License 31 * as published by the Free Software Foundation; either version 32 * 2 of the License, or (at your option) any later version. 33 */ 34 35 /* 36 * The functions in this file will not compile correctly with gcc 2.4.x 37 */ 38 39 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 40 41 #include <linux/module.h> 42 #include <linux/types.h> 43 #include <linux/kernel.h> 44 #include <linux/kmemcheck.h> 45 #include <linux/mm.h> 46 #include <linux/interrupt.h> 47 #include <linux/in.h> 48 #include <linux/inet.h> 49 #include <linux/slab.h> 50 #include <linux/tcp.h> 51 #include <linux/udp.h> 52 #include <linux/sctp.h> 53 #include <linux/netdevice.h> 54 #ifdef CONFIG_NET_CLS_ACT 55 #include <net/pkt_sched.h> 56 #endif 57 #include <linux/string.h> 58 #include <linux/skbuff.h> 59 #include <linux/splice.h> 60 #include <linux/cache.h> 61 #include <linux/rtnetlink.h> 62 #include <linux/init.h> 63 #include <linux/scatterlist.h> 64 #include <linux/errqueue.h> 65 #include <linux/prefetch.h> 66 #include <linux/if_vlan.h> 67 68 #include <net/protocol.h> 69 #include <net/dst.h> 70 #include <net/sock.h> 71 #include <net/checksum.h> 72 #include <net/ip6_checksum.h> 73 #include <net/xfrm.h> 74 75 #include <linux/uaccess.h> 76 #include <trace/events/skb.h> 77 #include <linux/highmem.h> 78 #include <linux/capability.h> 79 #include <linux/user_namespace.h> 80 81 struct kmem_cache *skbuff_head_cache __read_mostly; 82 static struct kmem_cache *skbuff_fclone_cache __read_mostly; 83 int sysctl_max_skb_frags __read_mostly = MAX_SKB_FRAGS; 84 EXPORT_SYMBOL(sysctl_max_skb_frags); 85 86 /** 87 * skb_panic - private function for out-of-line support 88 * @skb: buffer 89 * @sz: size 90 * @addr: address 91 * @msg: skb_over_panic or skb_under_panic 92 * 93 * Out-of-line support for skb_put() and skb_push(). 94 * Called via the wrapper skb_over_panic() or skb_under_panic(). 95 * Keep out of line to prevent kernel bloat. 96 * __builtin_return_address is not used because it is not always reliable. 97 */ 98 static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr, 99 const char msg[]) 100 { 101 pr_emerg("%s: text:%p len:%d put:%d head:%p data:%p tail:%#lx end:%#lx dev:%s\n", 102 msg, addr, skb->len, sz, skb->head, skb->data, 103 (unsigned long)skb->tail, (unsigned long)skb->end, 104 skb->dev ? skb->dev->name : "<NULL>"); 105 BUG(); 106 } 107 108 static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr) 109 { 110 skb_panic(skb, sz, addr, __func__); 111 } 112 113 static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr) 114 { 115 skb_panic(skb, sz, addr, __func__); 116 } 117 118 /* 119 * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells 120 * the caller if emergency pfmemalloc reserves are being used. If it is and 121 * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves 122 * may be used. Otherwise, the packet data may be discarded until enough 123 * memory is free 124 */ 125 #define kmalloc_reserve(size, gfp, node, pfmemalloc) \ 126 __kmalloc_reserve(size, gfp, node, _RET_IP_, pfmemalloc) 127 128 static void *__kmalloc_reserve(size_t size, gfp_t flags, int node, 129 unsigned long ip, bool *pfmemalloc) 130 { 131 void *obj; 132 bool ret_pfmemalloc = false; 133 134 /* 135 * Try a regular allocation, when that fails and we're not entitled 136 * to the reserves, fail. 137 */ 138 obj = kmalloc_node_track_caller(size, 139 flags | __GFP_NOMEMALLOC | __GFP_NOWARN, 140 node); 141 if (obj || !(gfp_pfmemalloc_allowed(flags))) 142 goto out; 143 144 /* Try again but now we are using pfmemalloc reserves */ 145 ret_pfmemalloc = true; 146 obj = kmalloc_node_track_caller(size, flags, node); 147 148 out: 149 if (pfmemalloc) 150 *pfmemalloc = ret_pfmemalloc; 151 152 return obj; 153 } 154 155 /* Allocate a new skbuff. We do this ourselves so we can fill in a few 156 * 'private' fields and also do memory statistics to find all the 157 * [BEEP] leaks. 158 * 159 */ 160 161 /** 162 * __alloc_skb - allocate a network buffer 163 * @size: size to allocate 164 * @gfp_mask: allocation mask 165 * @flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache 166 * instead of head cache and allocate a cloned (child) skb. 167 * If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for 168 * allocations in case the data is required for writeback 169 * @node: numa node to allocate memory on 170 * 171 * Allocate a new &sk_buff. The returned buffer has no headroom and a 172 * tail room of at least size bytes. The object has a reference count 173 * of one. The return is the buffer. On a failure the return is %NULL. 174 * 175 * Buffers may only be allocated from interrupts using a @gfp_mask of 176 * %GFP_ATOMIC. 177 */ 178 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask, 179 int flags, int node) 180 { 181 struct kmem_cache *cache; 182 struct skb_shared_info *shinfo; 183 struct sk_buff *skb; 184 u8 *data; 185 bool pfmemalloc; 186 187 cache = (flags & SKB_ALLOC_FCLONE) 188 ? skbuff_fclone_cache : skbuff_head_cache; 189 190 if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX)) 191 gfp_mask |= __GFP_MEMALLOC; 192 193 /* Get the HEAD */ 194 skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node); 195 if (!skb) 196 goto out; 197 prefetchw(skb); 198 199 /* We do our best to align skb_shared_info on a separate cache 200 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives 201 * aligned memory blocks, unless SLUB/SLAB debug is enabled. 202 * Both skb->head and skb_shared_info are cache line aligned. 203 */ 204 size = SKB_DATA_ALIGN(size); 205 size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 206 data = kmalloc_reserve(size, gfp_mask, node, &pfmemalloc); 207 if (!data) 208 goto nodata; 209 /* kmalloc(size) might give us more room than requested. 210 * Put skb_shared_info exactly at the end of allocated zone, 211 * to allow max possible filling before reallocation. 212 */ 213 size = SKB_WITH_OVERHEAD(ksize(data)); 214 prefetchw(data + size); 215 216 /* 217 * Only clear those fields we need to clear, not those that we will 218 * actually initialise below. Hence, don't put any more fields after 219 * the tail pointer in struct sk_buff! 220 */ 221 memset(skb, 0, offsetof(struct sk_buff, tail)); 222 /* Account for allocated memory : skb + skb->head */ 223 skb->truesize = SKB_TRUESIZE(size); 224 skb->pfmemalloc = pfmemalloc; 225 refcount_set(&skb->users, 1); 226 skb->head = data; 227 skb->data = data; 228 skb_reset_tail_pointer(skb); 229 skb->end = skb->tail + size; 230 skb->mac_header = (typeof(skb->mac_header))~0U; 231 skb->transport_header = (typeof(skb->transport_header))~0U; 232 233 /* make sure we initialize shinfo sequentially */ 234 shinfo = skb_shinfo(skb); 235 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref)); 236 atomic_set(&shinfo->dataref, 1); 237 kmemcheck_annotate_variable(shinfo->destructor_arg); 238 239 if (flags & SKB_ALLOC_FCLONE) { 240 struct sk_buff_fclones *fclones; 241 242 fclones = container_of(skb, struct sk_buff_fclones, skb1); 243 244 kmemcheck_annotate_bitfield(&fclones->skb2, flags1); 245 skb->fclone = SKB_FCLONE_ORIG; 246 refcount_set(&fclones->fclone_ref, 1); 247 248 fclones->skb2.fclone = SKB_FCLONE_CLONE; 249 } 250 out: 251 return skb; 252 nodata: 253 kmem_cache_free(cache, skb); 254 skb = NULL; 255 goto out; 256 } 257 EXPORT_SYMBOL(__alloc_skb); 258 259 /** 260 * __build_skb - build a network buffer 261 * @data: data buffer provided by caller 262 * @frag_size: size of data, or 0 if head was kmalloced 263 * 264 * Allocate a new &sk_buff. Caller provides space holding head and 265 * skb_shared_info. @data must have been allocated by kmalloc() only if 266 * @frag_size is 0, otherwise data should come from the page allocator 267 * or vmalloc() 268 * The return is the new skb buffer. 269 * On a failure the return is %NULL, and @data is not freed. 270 * Notes : 271 * Before IO, driver allocates only data buffer where NIC put incoming frame 272 * Driver should add room at head (NET_SKB_PAD) and 273 * MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info)) 274 * After IO, driver calls build_skb(), to allocate sk_buff and populate it 275 * before giving packet to stack. 276 * RX rings only contains data buffers, not full skbs. 277 */ 278 struct sk_buff *__build_skb(void *data, unsigned int frag_size) 279 { 280 struct skb_shared_info *shinfo; 281 struct sk_buff *skb; 282 unsigned int size = frag_size ? : ksize(data); 283 284 skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC); 285 if (!skb) 286 return NULL; 287 288 size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 289 290 memset(skb, 0, offsetof(struct sk_buff, tail)); 291 skb->truesize = SKB_TRUESIZE(size); 292 refcount_set(&skb->users, 1); 293 skb->head = data; 294 skb->data = data; 295 skb_reset_tail_pointer(skb); 296 skb->end = skb->tail + size; 297 skb->mac_header = (typeof(skb->mac_header))~0U; 298 skb->transport_header = (typeof(skb->transport_header))~0U; 299 300 /* make sure we initialize shinfo sequentially */ 301 shinfo = skb_shinfo(skb); 302 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref)); 303 atomic_set(&shinfo->dataref, 1); 304 kmemcheck_annotate_variable(shinfo->destructor_arg); 305 306 return skb; 307 } 308 309 /* build_skb() is wrapper over __build_skb(), that specifically 310 * takes care of skb->head and skb->pfmemalloc 311 * This means that if @frag_size is not zero, then @data must be backed 312 * by a page fragment, not kmalloc() or vmalloc() 313 */ 314 struct sk_buff *build_skb(void *data, unsigned int frag_size) 315 { 316 struct sk_buff *skb = __build_skb(data, frag_size); 317 318 if (skb && frag_size) { 319 skb->head_frag = 1; 320 if (page_is_pfmemalloc(virt_to_head_page(data))) 321 skb->pfmemalloc = 1; 322 } 323 return skb; 324 } 325 EXPORT_SYMBOL(build_skb); 326 327 #define NAPI_SKB_CACHE_SIZE 64 328 329 struct napi_alloc_cache { 330 struct page_frag_cache page; 331 unsigned int skb_count; 332 void *skb_cache[NAPI_SKB_CACHE_SIZE]; 333 }; 334 335 static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache); 336 static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache); 337 338 static void *__netdev_alloc_frag(unsigned int fragsz, gfp_t gfp_mask) 339 { 340 struct page_frag_cache *nc; 341 unsigned long flags; 342 void *data; 343 344 local_irq_save(flags); 345 nc = this_cpu_ptr(&netdev_alloc_cache); 346 data = page_frag_alloc(nc, fragsz, gfp_mask); 347 local_irq_restore(flags); 348 return data; 349 } 350 351 /** 352 * netdev_alloc_frag - allocate a page fragment 353 * @fragsz: fragment size 354 * 355 * Allocates a frag from a page for receive buffer. 356 * Uses GFP_ATOMIC allocations. 357 */ 358 void *netdev_alloc_frag(unsigned int fragsz) 359 { 360 return __netdev_alloc_frag(fragsz, GFP_ATOMIC | __GFP_COLD); 361 } 362 EXPORT_SYMBOL(netdev_alloc_frag); 363 364 static void *__napi_alloc_frag(unsigned int fragsz, gfp_t gfp_mask) 365 { 366 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 367 368 return page_frag_alloc(&nc->page, fragsz, gfp_mask); 369 } 370 371 void *napi_alloc_frag(unsigned int fragsz) 372 { 373 return __napi_alloc_frag(fragsz, GFP_ATOMIC | __GFP_COLD); 374 } 375 EXPORT_SYMBOL(napi_alloc_frag); 376 377 /** 378 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device 379 * @dev: network device to receive on 380 * @len: length to allocate 381 * @gfp_mask: get_free_pages mask, passed to alloc_skb 382 * 383 * Allocate a new &sk_buff and assign it a usage count of one. The 384 * buffer has NET_SKB_PAD headroom built in. Users should allocate 385 * the headroom they think they need without accounting for the 386 * built in space. The built in space is used for optimisations. 387 * 388 * %NULL is returned if there is no free memory. 389 */ 390 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len, 391 gfp_t gfp_mask) 392 { 393 struct page_frag_cache *nc; 394 unsigned long flags; 395 struct sk_buff *skb; 396 bool pfmemalloc; 397 void *data; 398 399 len += NET_SKB_PAD; 400 401 if ((len > SKB_WITH_OVERHEAD(PAGE_SIZE)) || 402 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) { 403 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE); 404 if (!skb) 405 goto skb_fail; 406 goto skb_success; 407 } 408 409 len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 410 len = SKB_DATA_ALIGN(len); 411 412 if (sk_memalloc_socks()) 413 gfp_mask |= __GFP_MEMALLOC; 414 415 local_irq_save(flags); 416 417 nc = this_cpu_ptr(&netdev_alloc_cache); 418 data = page_frag_alloc(nc, len, gfp_mask); 419 pfmemalloc = nc->pfmemalloc; 420 421 local_irq_restore(flags); 422 423 if (unlikely(!data)) 424 return NULL; 425 426 skb = __build_skb(data, len); 427 if (unlikely(!skb)) { 428 skb_free_frag(data); 429 return NULL; 430 } 431 432 /* use OR instead of assignment to avoid clearing of bits in mask */ 433 if (pfmemalloc) 434 skb->pfmemalloc = 1; 435 skb->head_frag = 1; 436 437 skb_success: 438 skb_reserve(skb, NET_SKB_PAD); 439 skb->dev = dev; 440 441 skb_fail: 442 return skb; 443 } 444 EXPORT_SYMBOL(__netdev_alloc_skb); 445 446 /** 447 * __napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance 448 * @napi: napi instance this buffer was allocated for 449 * @len: length to allocate 450 * @gfp_mask: get_free_pages mask, passed to alloc_skb and alloc_pages 451 * 452 * Allocate a new sk_buff for use in NAPI receive. This buffer will 453 * attempt to allocate the head from a special reserved region used 454 * only for NAPI Rx allocation. By doing this we can save several 455 * CPU cycles by avoiding having to disable and re-enable IRQs. 456 * 457 * %NULL is returned if there is no free memory. 458 */ 459 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, unsigned int len, 460 gfp_t gfp_mask) 461 { 462 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 463 struct sk_buff *skb; 464 void *data; 465 466 len += NET_SKB_PAD + NET_IP_ALIGN; 467 468 if ((len > SKB_WITH_OVERHEAD(PAGE_SIZE)) || 469 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) { 470 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE); 471 if (!skb) 472 goto skb_fail; 473 goto skb_success; 474 } 475 476 len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 477 len = SKB_DATA_ALIGN(len); 478 479 if (sk_memalloc_socks()) 480 gfp_mask |= __GFP_MEMALLOC; 481 482 data = page_frag_alloc(&nc->page, len, gfp_mask); 483 if (unlikely(!data)) 484 return NULL; 485 486 skb = __build_skb(data, len); 487 if (unlikely(!skb)) { 488 skb_free_frag(data); 489 return NULL; 490 } 491 492 /* use OR instead of assignment to avoid clearing of bits in mask */ 493 if (nc->page.pfmemalloc) 494 skb->pfmemalloc = 1; 495 skb->head_frag = 1; 496 497 skb_success: 498 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN); 499 skb->dev = napi->dev; 500 501 skb_fail: 502 return skb; 503 } 504 EXPORT_SYMBOL(__napi_alloc_skb); 505 506 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off, 507 int size, unsigned int truesize) 508 { 509 skb_fill_page_desc(skb, i, page, off, size); 510 skb->len += size; 511 skb->data_len += size; 512 skb->truesize += truesize; 513 } 514 EXPORT_SYMBOL(skb_add_rx_frag); 515 516 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size, 517 unsigned int truesize) 518 { 519 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 520 521 skb_frag_size_add(frag, size); 522 skb->len += size; 523 skb->data_len += size; 524 skb->truesize += truesize; 525 } 526 EXPORT_SYMBOL(skb_coalesce_rx_frag); 527 528 static void skb_drop_list(struct sk_buff **listp) 529 { 530 kfree_skb_list(*listp); 531 *listp = NULL; 532 } 533 534 static inline void skb_drop_fraglist(struct sk_buff *skb) 535 { 536 skb_drop_list(&skb_shinfo(skb)->frag_list); 537 } 538 539 static void skb_clone_fraglist(struct sk_buff *skb) 540 { 541 struct sk_buff *list; 542 543 skb_walk_frags(skb, list) 544 skb_get(list); 545 } 546 547 static void skb_free_head(struct sk_buff *skb) 548 { 549 unsigned char *head = skb->head; 550 551 if (skb->head_frag) 552 skb_free_frag(head); 553 else 554 kfree(head); 555 } 556 557 static void skb_release_data(struct sk_buff *skb) 558 { 559 struct skb_shared_info *shinfo = skb_shinfo(skb); 560 int i; 561 562 if (skb->cloned && 563 atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1, 564 &shinfo->dataref)) 565 return; 566 567 for (i = 0; i < shinfo->nr_frags; i++) 568 __skb_frag_unref(&shinfo->frags[i]); 569 570 if (shinfo->frag_list) 571 kfree_skb_list(shinfo->frag_list); 572 573 skb_zcopy_clear(skb, true); 574 skb_free_head(skb); 575 } 576 577 /* 578 * Free an skbuff by memory without cleaning the state. 579 */ 580 static void kfree_skbmem(struct sk_buff *skb) 581 { 582 struct sk_buff_fclones *fclones; 583 584 switch (skb->fclone) { 585 case SKB_FCLONE_UNAVAILABLE: 586 kmem_cache_free(skbuff_head_cache, skb); 587 return; 588 589 case SKB_FCLONE_ORIG: 590 fclones = container_of(skb, struct sk_buff_fclones, skb1); 591 592 /* We usually free the clone (TX completion) before original skb 593 * This test would have no chance to be true for the clone, 594 * while here, branch prediction will be good. 595 */ 596 if (refcount_read(&fclones->fclone_ref) == 1) 597 goto fastpath; 598 break; 599 600 default: /* SKB_FCLONE_CLONE */ 601 fclones = container_of(skb, struct sk_buff_fclones, skb2); 602 break; 603 } 604 if (!refcount_dec_and_test(&fclones->fclone_ref)) 605 return; 606 fastpath: 607 kmem_cache_free(skbuff_fclone_cache, fclones); 608 } 609 610 void skb_release_head_state(struct sk_buff *skb) 611 { 612 skb_dst_drop(skb); 613 secpath_reset(skb); 614 if (skb->destructor) { 615 WARN_ON(in_irq()); 616 skb->destructor(skb); 617 } 618 #if IS_ENABLED(CONFIG_NF_CONNTRACK) 619 nf_conntrack_put(skb_nfct(skb)); 620 #endif 621 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 622 nf_bridge_put(skb->nf_bridge); 623 #endif 624 } 625 626 /* Free everything but the sk_buff shell. */ 627 static void skb_release_all(struct sk_buff *skb) 628 { 629 skb_release_head_state(skb); 630 if (likely(skb->head)) 631 skb_release_data(skb); 632 } 633 634 /** 635 * __kfree_skb - private function 636 * @skb: buffer 637 * 638 * Free an sk_buff. Release anything attached to the buffer. 639 * Clean the state. This is an internal helper function. Users should 640 * always call kfree_skb 641 */ 642 643 void __kfree_skb(struct sk_buff *skb) 644 { 645 skb_release_all(skb); 646 kfree_skbmem(skb); 647 } 648 EXPORT_SYMBOL(__kfree_skb); 649 650 /** 651 * kfree_skb - free an sk_buff 652 * @skb: buffer to free 653 * 654 * Drop a reference to the buffer and free it if the usage count has 655 * hit zero. 656 */ 657 void kfree_skb(struct sk_buff *skb) 658 { 659 if (!skb_unref(skb)) 660 return; 661 662 trace_kfree_skb(skb, __builtin_return_address(0)); 663 __kfree_skb(skb); 664 } 665 EXPORT_SYMBOL(kfree_skb); 666 667 void kfree_skb_list(struct sk_buff *segs) 668 { 669 while (segs) { 670 struct sk_buff *next = segs->next; 671 672 kfree_skb(segs); 673 segs = next; 674 } 675 } 676 EXPORT_SYMBOL(kfree_skb_list); 677 678 /** 679 * skb_tx_error - report an sk_buff xmit error 680 * @skb: buffer that triggered an error 681 * 682 * Report xmit error if a device callback is tracking this skb. 683 * skb must be freed afterwards. 684 */ 685 void skb_tx_error(struct sk_buff *skb) 686 { 687 skb_zcopy_clear(skb, true); 688 } 689 EXPORT_SYMBOL(skb_tx_error); 690 691 /** 692 * consume_skb - free an skbuff 693 * @skb: buffer to free 694 * 695 * Drop a ref to the buffer and free it if the usage count has hit zero 696 * Functions identically to kfree_skb, but kfree_skb assumes that the frame 697 * is being dropped after a failure and notes that 698 */ 699 void consume_skb(struct sk_buff *skb) 700 { 701 if (!skb_unref(skb)) 702 return; 703 704 trace_consume_skb(skb); 705 __kfree_skb(skb); 706 } 707 EXPORT_SYMBOL(consume_skb); 708 709 /** 710 * consume_stateless_skb - free an skbuff, assuming it is stateless 711 * @skb: buffer to free 712 * 713 * Alike consume_skb(), but this variant assumes that this is the last 714 * skb reference and all the head states have been already dropped 715 */ 716 void __consume_stateless_skb(struct sk_buff *skb) 717 { 718 trace_consume_skb(skb); 719 skb_release_data(skb); 720 kfree_skbmem(skb); 721 } 722 723 void __kfree_skb_flush(void) 724 { 725 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 726 727 /* flush skb_cache if containing objects */ 728 if (nc->skb_count) { 729 kmem_cache_free_bulk(skbuff_head_cache, nc->skb_count, 730 nc->skb_cache); 731 nc->skb_count = 0; 732 } 733 } 734 735 static inline void _kfree_skb_defer(struct sk_buff *skb) 736 { 737 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 738 739 /* drop skb->head and call any destructors for packet */ 740 skb_release_all(skb); 741 742 /* record skb to CPU local list */ 743 nc->skb_cache[nc->skb_count++] = skb; 744 745 #ifdef CONFIG_SLUB 746 /* SLUB writes into objects when freeing */ 747 prefetchw(skb); 748 #endif 749 750 /* flush skb_cache if it is filled */ 751 if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) { 752 kmem_cache_free_bulk(skbuff_head_cache, NAPI_SKB_CACHE_SIZE, 753 nc->skb_cache); 754 nc->skb_count = 0; 755 } 756 } 757 void __kfree_skb_defer(struct sk_buff *skb) 758 { 759 _kfree_skb_defer(skb); 760 } 761 762 void napi_consume_skb(struct sk_buff *skb, int budget) 763 { 764 if (unlikely(!skb)) 765 return; 766 767 /* Zero budget indicate non-NAPI context called us, like netpoll */ 768 if (unlikely(!budget)) { 769 dev_consume_skb_any(skb); 770 return; 771 } 772 773 if (!skb_unref(skb)) 774 return; 775 776 /* if reaching here SKB is ready to free */ 777 trace_consume_skb(skb); 778 779 /* if SKB is a clone, don't handle this case */ 780 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) { 781 __kfree_skb(skb); 782 return; 783 } 784 785 _kfree_skb_defer(skb); 786 } 787 EXPORT_SYMBOL(napi_consume_skb); 788 789 /* Make sure a field is enclosed inside headers_start/headers_end section */ 790 #define CHECK_SKB_FIELD(field) \ 791 BUILD_BUG_ON(offsetof(struct sk_buff, field) < \ 792 offsetof(struct sk_buff, headers_start)); \ 793 BUILD_BUG_ON(offsetof(struct sk_buff, field) > \ 794 offsetof(struct sk_buff, headers_end)); \ 795 796 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old) 797 { 798 new->tstamp = old->tstamp; 799 /* We do not copy old->sk */ 800 new->dev = old->dev; 801 memcpy(new->cb, old->cb, sizeof(old->cb)); 802 skb_dst_copy(new, old); 803 #ifdef CONFIG_XFRM 804 new->sp = secpath_get(old->sp); 805 #endif 806 __nf_copy(new, old, false); 807 808 /* Note : this field could be in headers_start/headers_end section 809 * It is not yet because we do not want to have a 16 bit hole 810 */ 811 new->queue_mapping = old->queue_mapping; 812 813 memcpy(&new->headers_start, &old->headers_start, 814 offsetof(struct sk_buff, headers_end) - 815 offsetof(struct sk_buff, headers_start)); 816 CHECK_SKB_FIELD(protocol); 817 CHECK_SKB_FIELD(csum); 818 CHECK_SKB_FIELD(hash); 819 CHECK_SKB_FIELD(priority); 820 CHECK_SKB_FIELD(skb_iif); 821 CHECK_SKB_FIELD(vlan_proto); 822 CHECK_SKB_FIELD(vlan_tci); 823 CHECK_SKB_FIELD(transport_header); 824 CHECK_SKB_FIELD(network_header); 825 CHECK_SKB_FIELD(mac_header); 826 CHECK_SKB_FIELD(inner_protocol); 827 CHECK_SKB_FIELD(inner_transport_header); 828 CHECK_SKB_FIELD(inner_network_header); 829 CHECK_SKB_FIELD(inner_mac_header); 830 CHECK_SKB_FIELD(mark); 831 #ifdef CONFIG_NETWORK_SECMARK 832 CHECK_SKB_FIELD(secmark); 833 #endif 834 #ifdef CONFIG_NET_RX_BUSY_POLL 835 CHECK_SKB_FIELD(napi_id); 836 #endif 837 #ifdef CONFIG_XPS 838 CHECK_SKB_FIELD(sender_cpu); 839 #endif 840 #ifdef CONFIG_NET_SCHED 841 CHECK_SKB_FIELD(tc_index); 842 #endif 843 844 } 845 846 /* 847 * You should not add any new code to this function. Add it to 848 * __copy_skb_header above instead. 849 */ 850 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb) 851 { 852 #define C(x) n->x = skb->x 853 854 n->next = n->prev = NULL; 855 n->sk = NULL; 856 __copy_skb_header(n, skb); 857 858 C(len); 859 C(data_len); 860 C(mac_len); 861 n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len; 862 n->cloned = 1; 863 n->nohdr = 0; 864 n->destructor = NULL; 865 C(tail); 866 C(end); 867 C(head); 868 C(head_frag); 869 C(data); 870 C(truesize); 871 refcount_set(&n->users, 1); 872 873 atomic_inc(&(skb_shinfo(skb)->dataref)); 874 skb->cloned = 1; 875 876 return n; 877 #undef C 878 } 879 880 /** 881 * skb_morph - morph one skb into another 882 * @dst: the skb to receive the contents 883 * @src: the skb to supply the contents 884 * 885 * This is identical to skb_clone except that the target skb is 886 * supplied by the user. 887 * 888 * The target skb is returned upon exit. 889 */ 890 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src) 891 { 892 skb_release_all(dst); 893 return __skb_clone(dst, src); 894 } 895 EXPORT_SYMBOL_GPL(skb_morph); 896 897 static int mm_account_pinned_pages(struct mmpin *mmp, size_t size) 898 { 899 unsigned long max_pg, num_pg, new_pg, old_pg; 900 struct user_struct *user; 901 902 if (capable(CAP_IPC_LOCK) || !size) 903 return 0; 904 905 num_pg = (size >> PAGE_SHIFT) + 2; /* worst case */ 906 max_pg = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT; 907 user = mmp->user ? : current_user(); 908 909 do { 910 old_pg = atomic_long_read(&user->locked_vm); 911 new_pg = old_pg + num_pg; 912 if (new_pg > max_pg) 913 return -ENOBUFS; 914 } while (atomic_long_cmpxchg(&user->locked_vm, old_pg, new_pg) != 915 old_pg); 916 917 if (!mmp->user) { 918 mmp->user = get_uid(user); 919 mmp->num_pg = num_pg; 920 } else { 921 mmp->num_pg += num_pg; 922 } 923 924 return 0; 925 } 926 927 static void mm_unaccount_pinned_pages(struct mmpin *mmp) 928 { 929 if (mmp->user) { 930 atomic_long_sub(mmp->num_pg, &mmp->user->locked_vm); 931 free_uid(mmp->user); 932 } 933 } 934 935 struct ubuf_info *sock_zerocopy_alloc(struct sock *sk, size_t size) 936 { 937 struct ubuf_info *uarg; 938 struct sk_buff *skb; 939 940 WARN_ON_ONCE(!in_task()); 941 942 if (!sock_flag(sk, SOCK_ZEROCOPY)) 943 return NULL; 944 945 skb = sock_omalloc(sk, 0, GFP_KERNEL); 946 if (!skb) 947 return NULL; 948 949 BUILD_BUG_ON(sizeof(*uarg) > sizeof(skb->cb)); 950 uarg = (void *)skb->cb; 951 uarg->mmp.user = NULL; 952 953 if (mm_account_pinned_pages(&uarg->mmp, size)) { 954 kfree_skb(skb); 955 return NULL; 956 } 957 958 uarg->callback = sock_zerocopy_callback; 959 uarg->id = ((u32)atomic_inc_return(&sk->sk_zckey)) - 1; 960 uarg->len = 1; 961 uarg->bytelen = size; 962 uarg->zerocopy = 1; 963 refcount_set(&uarg->refcnt, 1); 964 sock_hold(sk); 965 966 return uarg; 967 } 968 EXPORT_SYMBOL_GPL(sock_zerocopy_alloc); 969 970 static inline struct sk_buff *skb_from_uarg(struct ubuf_info *uarg) 971 { 972 return container_of((void *)uarg, struct sk_buff, cb); 973 } 974 975 struct ubuf_info *sock_zerocopy_realloc(struct sock *sk, size_t size, 976 struct ubuf_info *uarg) 977 { 978 if (uarg) { 979 const u32 byte_limit = 1 << 19; /* limit to a few TSO */ 980 u32 bytelen, next; 981 982 /* realloc only when socket is locked (TCP, UDP cork), 983 * so uarg->len and sk_zckey access is serialized 984 */ 985 if (!sock_owned_by_user(sk)) { 986 WARN_ON_ONCE(1); 987 return NULL; 988 } 989 990 bytelen = uarg->bytelen + size; 991 if (uarg->len == USHRT_MAX - 1 || bytelen > byte_limit) { 992 /* TCP can create new skb to attach new uarg */ 993 if (sk->sk_type == SOCK_STREAM) 994 goto new_alloc; 995 return NULL; 996 } 997 998 next = (u32)atomic_read(&sk->sk_zckey); 999 if ((u32)(uarg->id + uarg->len) == next) { 1000 if (mm_account_pinned_pages(&uarg->mmp, size)) 1001 return NULL; 1002 uarg->len++; 1003 uarg->bytelen = bytelen; 1004 atomic_set(&sk->sk_zckey, ++next); 1005 sock_zerocopy_get(uarg); 1006 return uarg; 1007 } 1008 } 1009 1010 new_alloc: 1011 return sock_zerocopy_alloc(sk, size); 1012 } 1013 EXPORT_SYMBOL_GPL(sock_zerocopy_realloc); 1014 1015 static bool skb_zerocopy_notify_extend(struct sk_buff *skb, u32 lo, u16 len) 1016 { 1017 struct sock_exterr_skb *serr = SKB_EXT_ERR(skb); 1018 u32 old_lo, old_hi; 1019 u64 sum_len; 1020 1021 old_lo = serr->ee.ee_info; 1022 old_hi = serr->ee.ee_data; 1023 sum_len = old_hi - old_lo + 1ULL + len; 1024 1025 if (sum_len >= (1ULL << 32)) 1026 return false; 1027 1028 if (lo != old_hi + 1) 1029 return false; 1030 1031 serr->ee.ee_data += len; 1032 return true; 1033 } 1034 1035 void sock_zerocopy_callback(struct ubuf_info *uarg, bool success) 1036 { 1037 struct sk_buff *tail, *skb = skb_from_uarg(uarg); 1038 struct sock_exterr_skb *serr; 1039 struct sock *sk = skb->sk; 1040 struct sk_buff_head *q; 1041 unsigned long flags; 1042 u32 lo, hi; 1043 u16 len; 1044 1045 mm_unaccount_pinned_pages(&uarg->mmp); 1046 1047 /* if !len, there was only 1 call, and it was aborted 1048 * so do not queue a completion notification 1049 */ 1050 if (!uarg->len || sock_flag(sk, SOCK_DEAD)) 1051 goto release; 1052 1053 len = uarg->len; 1054 lo = uarg->id; 1055 hi = uarg->id + len - 1; 1056 1057 serr = SKB_EXT_ERR(skb); 1058 memset(serr, 0, sizeof(*serr)); 1059 serr->ee.ee_errno = 0; 1060 serr->ee.ee_origin = SO_EE_ORIGIN_ZEROCOPY; 1061 serr->ee.ee_data = hi; 1062 serr->ee.ee_info = lo; 1063 if (!success) 1064 serr->ee.ee_code |= SO_EE_CODE_ZEROCOPY_COPIED; 1065 1066 q = &sk->sk_error_queue; 1067 spin_lock_irqsave(&q->lock, flags); 1068 tail = skb_peek_tail(q); 1069 if (!tail || SKB_EXT_ERR(tail)->ee.ee_origin != SO_EE_ORIGIN_ZEROCOPY || 1070 !skb_zerocopy_notify_extend(tail, lo, len)) { 1071 __skb_queue_tail(q, skb); 1072 skb = NULL; 1073 } 1074 spin_unlock_irqrestore(&q->lock, flags); 1075 1076 sk->sk_error_report(sk); 1077 1078 release: 1079 consume_skb(skb); 1080 sock_put(sk); 1081 } 1082 EXPORT_SYMBOL_GPL(sock_zerocopy_callback); 1083 1084 void sock_zerocopy_put(struct ubuf_info *uarg) 1085 { 1086 if (uarg && refcount_dec_and_test(&uarg->refcnt)) { 1087 if (uarg->callback) 1088 uarg->callback(uarg, uarg->zerocopy); 1089 else 1090 consume_skb(skb_from_uarg(uarg)); 1091 } 1092 } 1093 EXPORT_SYMBOL_GPL(sock_zerocopy_put); 1094 1095 void sock_zerocopy_put_abort(struct ubuf_info *uarg) 1096 { 1097 if (uarg) { 1098 struct sock *sk = skb_from_uarg(uarg)->sk; 1099 1100 atomic_dec(&sk->sk_zckey); 1101 uarg->len--; 1102 1103 sock_zerocopy_put(uarg); 1104 } 1105 } 1106 EXPORT_SYMBOL_GPL(sock_zerocopy_put_abort); 1107 1108 extern int __zerocopy_sg_from_iter(struct sock *sk, struct sk_buff *skb, 1109 struct iov_iter *from, size_t length); 1110 1111 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb, 1112 struct msghdr *msg, int len, 1113 struct ubuf_info *uarg) 1114 { 1115 struct ubuf_info *orig_uarg = skb_zcopy(skb); 1116 struct iov_iter orig_iter = msg->msg_iter; 1117 int err, orig_len = skb->len; 1118 1119 /* An skb can only point to one uarg. This edge case happens when 1120 * TCP appends to an skb, but zerocopy_realloc triggered a new alloc. 1121 */ 1122 if (orig_uarg && uarg != orig_uarg) 1123 return -EEXIST; 1124 1125 err = __zerocopy_sg_from_iter(sk, skb, &msg->msg_iter, len); 1126 if (err == -EFAULT || (err == -EMSGSIZE && skb->len == orig_len)) { 1127 /* Streams do not free skb on error. Reset to prev state. */ 1128 msg->msg_iter = orig_iter; 1129 ___pskb_trim(skb, orig_len); 1130 return err; 1131 } 1132 1133 skb_zcopy_set(skb, uarg); 1134 return skb->len - orig_len; 1135 } 1136 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_stream); 1137 1138 static int skb_zerocopy_clone(struct sk_buff *nskb, struct sk_buff *orig, 1139 gfp_t gfp_mask) 1140 { 1141 if (skb_zcopy(orig)) { 1142 if (skb_zcopy(nskb)) { 1143 /* !gfp_mask callers are verified to !skb_zcopy(nskb) */ 1144 if (!gfp_mask) { 1145 WARN_ON_ONCE(1); 1146 return -ENOMEM; 1147 } 1148 if (skb_uarg(nskb) == skb_uarg(orig)) 1149 return 0; 1150 if (skb_copy_ubufs(nskb, GFP_ATOMIC)) 1151 return -EIO; 1152 } 1153 skb_zcopy_set(nskb, skb_uarg(orig)); 1154 } 1155 return 0; 1156 } 1157 1158 /** 1159 * skb_copy_ubufs - copy userspace skb frags buffers to kernel 1160 * @skb: the skb to modify 1161 * @gfp_mask: allocation priority 1162 * 1163 * This must be called on SKBTX_DEV_ZEROCOPY skb. 1164 * It will copy all frags into kernel and drop the reference 1165 * to userspace pages. 1166 * 1167 * If this function is called from an interrupt gfp_mask() must be 1168 * %GFP_ATOMIC. 1169 * 1170 * Returns 0 on success or a negative error code on failure 1171 * to allocate kernel memory to copy to. 1172 */ 1173 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask) 1174 { 1175 int num_frags = skb_shinfo(skb)->nr_frags; 1176 struct page *page, *head = NULL; 1177 int i, new_frags; 1178 u32 d_off; 1179 1180 if (!num_frags) 1181 return 0; 1182 1183 if (skb_shared(skb) || skb_unclone(skb, gfp_mask)) 1184 return -EINVAL; 1185 1186 new_frags = (__skb_pagelen(skb) + PAGE_SIZE - 1) >> PAGE_SHIFT; 1187 for (i = 0; i < new_frags; i++) { 1188 page = alloc_page(gfp_mask); 1189 if (!page) { 1190 while (head) { 1191 struct page *next = (struct page *)page_private(head); 1192 put_page(head); 1193 head = next; 1194 } 1195 return -ENOMEM; 1196 } 1197 set_page_private(page, (unsigned long)head); 1198 head = page; 1199 } 1200 1201 page = head; 1202 d_off = 0; 1203 for (i = 0; i < num_frags; i++) { 1204 skb_frag_t *f = &skb_shinfo(skb)->frags[i]; 1205 u32 p_off, p_len, copied; 1206 struct page *p; 1207 u8 *vaddr; 1208 1209 skb_frag_foreach_page(f, f->page_offset, skb_frag_size(f), 1210 p, p_off, p_len, copied) { 1211 u32 copy, done = 0; 1212 vaddr = kmap_atomic(p); 1213 1214 while (done < p_len) { 1215 if (d_off == PAGE_SIZE) { 1216 d_off = 0; 1217 page = (struct page *)page_private(page); 1218 } 1219 copy = min_t(u32, PAGE_SIZE - d_off, p_len - done); 1220 memcpy(page_address(page) + d_off, 1221 vaddr + p_off + done, copy); 1222 done += copy; 1223 d_off += copy; 1224 } 1225 kunmap_atomic(vaddr); 1226 } 1227 } 1228 1229 /* skb frags release userspace buffers */ 1230 for (i = 0; i < num_frags; i++) 1231 skb_frag_unref(skb, i); 1232 1233 /* skb frags point to kernel buffers */ 1234 for (i = 0; i < new_frags - 1; i++) { 1235 __skb_fill_page_desc(skb, i, head, 0, PAGE_SIZE); 1236 head = (struct page *)page_private(head); 1237 } 1238 __skb_fill_page_desc(skb, new_frags - 1, head, 0, d_off); 1239 skb_shinfo(skb)->nr_frags = new_frags; 1240 1241 skb_zcopy_clear(skb, false); 1242 return 0; 1243 } 1244 EXPORT_SYMBOL_GPL(skb_copy_ubufs); 1245 1246 /** 1247 * skb_clone - duplicate an sk_buff 1248 * @skb: buffer to clone 1249 * @gfp_mask: allocation priority 1250 * 1251 * Duplicate an &sk_buff. The new one is not owned by a socket. Both 1252 * copies share the same packet data but not structure. The new 1253 * buffer has a reference count of 1. If the allocation fails the 1254 * function returns %NULL otherwise the new buffer is returned. 1255 * 1256 * If this function is called from an interrupt gfp_mask() must be 1257 * %GFP_ATOMIC. 1258 */ 1259 1260 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask) 1261 { 1262 struct sk_buff_fclones *fclones = container_of(skb, 1263 struct sk_buff_fclones, 1264 skb1); 1265 struct sk_buff *n; 1266 1267 if (skb_orphan_frags(skb, gfp_mask)) 1268 return NULL; 1269 1270 if (skb->fclone == SKB_FCLONE_ORIG && 1271 refcount_read(&fclones->fclone_ref) == 1) { 1272 n = &fclones->skb2; 1273 refcount_set(&fclones->fclone_ref, 2); 1274 } else { 1275 if (skb_pfmemalloc(skb)) 1276 gfp_mask |= __GFP_MEMALLOC; 1277 1278 n = kmem_cache_alloc(skbuff_head_cache, gfp_mask); 1279 if (!n) 1280 return NULL; 1281 1282 kmemcheck_annotate_bitfield(n, flags1); 1283 n->fclone = SKB_FCLONE_UNAVAILABLE; 1284 } 1285 1286 return __skb_clone(n, skb); 1287 } 1288 EXPORT_SYMBOL(skb_clone); 1289 1290 static void skb_headers_offset_update(struct sk_buff *skb, int off) 1291 { 1292 /* Only adjust this if it actually is csum_start rather than csum */ 1293 if (skb->ip_summed == CHECKSUM_PARTIAL) 1294 skb->csum_start += off; 1295 /* {transport,network,mac}_header and tail are relative to skb->head */ 1296 skb->transport_header += off; 1297 skb->network_header += off; 1298 if (skb_mac_header_was_set(skb)) 1299 skb->mac_header += off; 1300 skb->inner_transport_header += off; 1301 skb->inner_network_header += off; 1302 skb->inner_mac_header += off; 1303 } 1304 1305 static void copy_skb_header(struct sk_buff *new, const struct sk_buff *old) 1306 { 1307 __copy_skb_header(new, old); 1308 1309 skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size; 1310 skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs; 1311 skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type; 1312 } 1313 1314 static inline int skb_alloc_rx_flag(const struct sk_buff *skb) 1315 { 1316 if (skb_pfmemalloc(skb)) 1317 return SKB_ALLOC_RX; 1318 return 0; 1319 } 1320 1321 /** 1322 * skb_copy - create private copy of an sk_buff 1323 * @skb: buffer to copy 1324 * @gfp_mask: allocation priority 1325 * 1326 * Make a copy of both an &sk_buff and its data. This is used when the 1327 * caller wishes to modify the data and needs a private copy of the 1328 * data to alter. Returns %NULL on failure or the pointer to the buffer 1329 * on success. The returned buffer has a reference count of 1. 1330 * 1331 * As by-product this function converts non-linear &sk_buff to linear 1332 * one, so that &sk_buff becomes completely private and caller is allowed 1333 * to modify all the data of returned buffer. This means that this 1334 * function is not recommended for use in circumstances when only 1335 * header is going to be modified. Use pskb_copy() instead. 1336 */ 1337 1338 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask) 1339 { 1340 int headerlen = skb_headroom(skb); 1341 unsigned int size = skb_end_offset(skb) + skb->data_len; 1342 struct sk_buff *n = __alloc_skb(size, gfp_mask, 1343 skb_alloc_rx_flag(skb), NUMA_NO_NODE); 1344 1345 if (!n) 1346 return NULL; 1347 1348 /* Set the data pointer */ 1349 skb_reserve(n, headerlen); 1350 /* Set the tail pointer and length */ 1351 skb_put(n, skb->len); 1352 1353 if (skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len)) 1354 BUG(); 1355 1356 copy_skb_header(n, skb); 1357 return n; 1358 } 1359 EXPORT_SYMBOL(skb_copy); 1360 1361 /** 1362 * __pskb_copy_fclone - create copy of an sk_buff with private head. 1363 * @skb: buffer to copy 1364 * @headroom: headroom of new skb 1365 * @gfp_mask: allocation priority 1366 * @fclone: if true allocate the copy of the skb from the fclone 1367 * cache instead of the head cache; it is recommended to set this 1368 * to true for the cases where the copy will likely be cloned 1369 * 1370 * Make a copy of both an &sk_buff and part of its data, located 1371 * in header. Fragmented data remain shared. This is used when 1372 * the caller wishes to modify only header of &sk_buff and needs 1373 * private copy of the header to alter. Returns %NULL on failure 1374 * or the pointer to the buffer on success. 1375 * The returned buffer has a reference count of 1. 1376 */ 1377 1378 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom, 1379 gfp_t gfp_mask, bool fclone) 1380 { 1381 unsigned int size = skb_headlen(skb) + headroom; 1382 int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0); 1383 struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE); 1384 1385 if (!n) 1386 goto out; 1387 1388 /* Set the data pointer */ 1389 skb_reserve(n, headroom); 1390 /* Set the tail pointer and length */ 1391 skb_put(n, skb_headlen(skb)); 1392 /* Copy the bytes */ 1393 skb_copy_from_linear_data(skb, n->data, n->len); 1394 1395 n->truesize += skb->data_len; 1396 n->data_len = skb->data_len; 1397 n->len = skb->len; 1398 1399 if (skb_shinfo(skb)->nr_frags) { 1400 int i; 1401 1402 if (skb_orphan_frags(skb, gfp_mask) || 1403 skb_zerocopy_clone(n, skb, gfp_mask)) { 1404 kfree_skb(n); 1405 n = NULL; 1406 goto out; 1407 } 1408 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1409 skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i]; 1410 skb_frag_ref(skb, i); 1411 } 1412 skb_shinfo(n)->nr_frags = i; 1413 } 1414 1415 if (skb_has_frag_list(skb)) { 1416 skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list; 1417 skb_clone_fraglist(n); 1418 } 1419 1420 copy_skb_header(n, skb); 1421 out: 1422 return n; 1423 } 1424 EXPORT_SYMBOL(__pskb_copy_fclone); 1425 1426 /** 1427 * pskb_expand_head - reallocate header of &sk_buff 1428 * @skb: buffer to reallocate 1429 * @nhead: room to add at head 1430 * @ntail: room to add at tail 1431 * @gfp_mask: allocation priority 1432 * 1433 * Expands (or creates identical copy, if @nhead and @ntail are zero) 1434 * header of @skb. &sk_buff itself is not changed. &sk_buff MUST have 1435 * reference count of 1. Returns zero in the case of success or error, 1436 * if expansion failed. In the last case, &sk_buff is not changed. 1437 * 1438 * All the pointers pointing into skb header may change and must be 1439 * reloaded after call to this function. 1440 */ 1441 1442 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, 1443 gfp_t gfp_mask) 1444 { 1445 int i, osize = skb_end_offset(skb); 1446 int size = osize + nhead + ntail; 1447 long off; 1448 u8 *data; 1449 1450 BUG_ON(nhead < 0); 1451 1452 if (skb_shared(skb)) 1453 BUG(); 1454 1455 size = SKB_DATA_ALIGN(size); 1456 1457 if (skb_pfmemalloc(skb)) 1458 gfp_mask |= __GFP_MEMALLOC; 1459 data = kmalloc_reserve(size + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)), 1460 gfp_mask, NUMA_NO_NODE, NULL); 1461 if (!data) 1462 goto nodata; 1463 size = SKB_WITH_OVERHEAD(ksize(data)); 1464 1465 /* Copy only real data... and, alas, header. This should be 1466 * optimized for the cases when header is void. 1467 */ 1468 memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head); 1469 1470 memcpy((struct skb_shared_info *)(data + size), 1471 skb_shinfo(skb), 1472 offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags])); 1473 1474 /* 1475 * if shinfo is shared we must drop the old head gracefully, but if it 1476 * is not we can just drop the old head and let the existing refcount 1477 * be since all we did is relocate the values 1478 */ 1479 if (skb_cloned(skb)) { 1480 if (skb_orphan_frags(skb, gfp_mask)) 1481 goto nofrags; 1482 if (skb_zcopy(skb)) 1483 refcount_inc(&skb_uarg(skb)->refcnt); 1484 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 1485 skb_frag_ref(skb, i); 1486 1487 if (skb_has_frag_list(skb)) 1488 skb_clone_fraglist(skb); 1489 1490 skb_release_data(skb); 1491 } else { 1492 skb_free_head(skb); 1493 } 1494 off = (data + nhead) - skb->head; 1495 1496 skb->head = data; 1497 skb->head_frag = 0; 1498 skb->data += off; 1499 #ifdef NET_SKBUFF_DATA_USES_OFFSET 1500 skb->end = size; 1501 off = nhead; 1502 #else 1503 skb->end = skb->head + size; 1504 #endif 1505 skb->tail += off; 1506 skb_headers_offset_update(skb, nhead); 1507 skb->cloned = 0; 1508 skb->hdr_len = 0; 1509 skb->nohdr = 0; 1510 atomic_set(&skb_shinfo(skb)->dataref, 1); 1511 1512 /* It is not generally safe to change skb->truesize. 1513 * For the moment, we really care of rx path, or 1514 * when skb is orphaned (not attached to a socket). 1515 */ 1516 if (!skb->sk || skb->destructor == sock_edemux) 1517 skb->truesize += size - osize; 1518 1519 return 0; 1520 1521 nofrags: 1522 kfree(data); 1523 nodata: 1524 return -ENOMEM; 1525 } 1526 EXPORT_SYMBOL(pskb_expand_head); 1527 1528 /* Make private copy of skb with writable head and some headroom */ 1529 1530 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom) 1531 { 1532 struct sk_buff *skb2; 1533 int delta = headroom - skb_headroom(skb); 1534 1535 if (delta <= 0) 1536 skb2 = pskb_copy(skb, GFP_ATOMIC); 1537 else { 1538 skb2 = skb_clone(skb, GFP_ATOMIC); 1539 if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0, 1540 GFP_ATOMIC)) { 1541 kfree_skb(skb2); 1542 skb2 = NULL; 1543 } 1544 } 1545 return skb2; 1546 } 1547 EXPORT_SYMBOL(skb_realloc_headroom); 1548 1549 /** 1550 * skb_copy_expand - copy and expand sk_buff 1551 * @skb: buffer to copy 1552 * @newheadroom: new free bytes at head 1553 * @newtailroom: new free bytes at tail 1554 * @gfp_mask: allocation priority 1555 * 1556 * Make a copy of both an &sk_buff and its data and while doing so 1557 * allocate additional space. 1558 * 1559 * This is used when the caller wishes to modify the data and needs a 1560 * private copy of the data to alter as well as more space for new fields. 1561 * Returns %NULL on failure or the pointer to the buffer 1562 * on success. The returned buffer has a reference count of 1. 1563 * 1564 * You must pass %GFP_ATOMIC as the allocation priority if this function 1565 * is called from an interrupt. 1566 */ 1567 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, 1568 int newheadroom, int newtailroom, 1569 gfp_t gfp_mask) 1570 { 1571 /* 1572 * Allocate the copy buffer 1573 */ 1574 struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom, 1575 gfp_mask, skb_alloc_rx_flag(skb), 1576 NUMA_NO_NODE); 1577 int oldheadroom = skb_headroom(skb); 1578 int head_copy_len, head_copy_off; 1579 1580 if (!n) 1581 return NULL; 1582 1583 skb_reserve(n, newheadroom); 1584 1585 /* Set the tail pointer and length */ 1586 skb_put(n, skb->len); 1587 1588 head_copy_len = oldheadroom; 1589 head_copy_off = 0; 1590 if (newheadroom <= head_copy_len) 1591 head_copy_len = newheadroom; 1592 else 1593 head_copy_off = newheadroom - head_copy_len; 1594 1595 /* Copy the linear header and data. */ 1596 if (skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off, 1597 skb->len + head_copy_len)) 1598 BUG(); 1599 1600 copy_skb_header(n, skb); 1601 1602 skb_headers_offset_update(n, newheadroom - oldheadroom); 1603 1604 return n; 1605 } 1606 EXPORT_SYMBOL(skb_copy_expand); 1607 1608 /** 1609 * __skb_pad - zero pad the tail of an skb 1610 * @skb: buffer to pad 1611 * @pad: space to pad 1612 * @free_on_error: free buffer on error 1613 * 1614 * Ensure that a buffer is followed by a padding area that is zero 1615 * filled. Used by network drivers which may DMA or transfer data 1616 * beyond the buffer end onto the wire. 1617 * 1618 * May return error in out of memory cases. The skb is freed on error 1619 * if @free_on_error is true. 1620 */ 1621 1622 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error) 1623 { 1624 int err; 1625 int ntail; 1626 1627 /* If the skbuff is non linear tailroom is always zero.. */ 1628 if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) { 1629 memset(skb->data+skb->len, 0, pad); 1630 return 0; 1631 } 1632 1633 ntail = skb->data_len + pad - (skb->end - skb->tail); 1634 if (likely(skb_cloned(skb) || ntail > 0)) { 1635 err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC); 1636 if (unlikely(err)) 1637 goto free_skb; 1638 } 1639 1640 /* FIXME: The use of this function with non-linear skb's really needs 1641 * to be audited. 1642 */ 1643 err = skb_linearize(skb); 1644 if (unlikely(err)) 1645 goto free_skb; 1646 1647 memset(skb->data + skb->len, 0, pad); 1648 return 0; 1649 1650 free_skb: 1651 if (free_on_error) 1652 kfree_skb(skb); 1653 return err; 1654 } 1655 EXPORT_SYMBOL(__skb_pad); 1656 1657 /** 1658 * pskb_put - add data to the tail of a potentially fragmented buffer 1659 * @skb: start of the buffer to use 1660 * @tail: tail fragment of the buffer to use 1661 * @len: amount of data to add 1662 * 1663 * This function extends the used data area of the potentially 1664 * fragmented buffer. @tail must be the last fragment of @skb -- or 1665 * @skb itself. If this would exceed the total buffer size the kernel 1666 * will panic. A pointer to the first byte of the extra data is 1667 * returned. 1668 */ 1669 1670 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len) 1671 { 1672 if (tail != skb) { 1673 skb->data_len += len; 1674 skb->len += len; 1675 } 1676 return skb_put(tail, len); 1677 } 1678 EXPORT_SYMBOL_GPL(pskb_put); 1679 1680 /** 1681 * skb_put - add data to a buffer 1682 * @skb: buffer to use 1683 * @len: amount of data to add 1684 * 1685 * This function extends the used data area of the buffer. If this would 1686 * exceed the total buffer size the kernel will panic. A pointer to the 1687 * first byte of the extra data is returned. 1688 */ 1689 void *skb_put(struct sk_buff *skb, unsigned int len) 1690 { 1691 void *tmp = skb_tail_pointer(skb); 1692 SKB_LINEAR_ASSERT(skb); 1693 skb->tail += len; 1694 skb->len += len; 1695 if (unlikely(skb->tail > skb->end)) 1696 skb_over_panic(skb, len, __builtin_return_address(0)); 1697 return tmp; 1698 } 1699 EXPORT_SYMBOL(skb_put); 1700 1701 /** 1702 * skb_push - add data to the start of a buffer 1703 * @skb: buffer to use 1704 * @len: amount of data to add 1705 * 1706 * This function extends the used data area of the buffer at the buffer 1707 * start. If this would exceed the total buffer headroom the kernel will 1708 * panic. A pointer to the first byte of the extra data is returned. 1709 */ 1710 void *skb_push(struct sk_buff *skb, unsigned int len) 1711 { 1712 skb->data -= len; 1713 skb->len += len; 1714 if (unlikely(skb->data<skb->head)) 1715 skb_under_panic(skb, len, __builtin_return_address(0)); 1716 return skb->data; 1717 } 1718 EXPORT_SYMBOL(skb_push); 1719 1720 /** 1721 * skb_pull - remove data from the start of a buffer 1722 * @skb: buffer to use 1723 * @len: amount of data to remove 1724 * 1725 * This function removes data from the start of a buffer, returning 1726 * the memory to the headroom. A pointer to the next data in the buffer 1727 * is returned. Once the data has been pulled future pushes will overwrite 1728 * the old data. 1729 */ 1730 void *skb_pull(struct sk_buff *skb, unsigned int len) 1731 { 1732 return skb_pull_inline(skb, len); 1733 } 1734 EXPORT_SYMBOL(skb_pull); 1735 1736 /** 1737 * skb_trim - remove end from a buffer 1738 * @skb: buffer to alter 1739 * @len: new length 1740 * 1741 * Cut the length of a buffer down by removing data from the tail. If 1742 * the buffer is already under the length specified it is not modified. 1743 * The skb must be linear. 1744 */ 1745 void skb_trim(struct sk_buff *skb, unsigned int len) 1746 { 1747 if (skb->len > len) 1748 __skb_trim(skb, len); 1749 } 1750 EXPORT_SYMBOL(skb_trim); 1751 1752 /* Trims skb to length len. It can change skb pointers. 1753 */ 1754 1755 int ___pskb_trim(struct sk_buff *skb, unsigned int len) 1756 { 1757 struct sk_buff **fragp; 1758 struct sk_buff *frag; 1759 int offset = skb_headlen(skb); 1760 int nfrags = skb_shinfo(skb)->nr_frags; 1761 int i; 1762 int err; 1763 1764 if (skb_cloned(skb) && 1765 unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))) 1766 return err; 1767 1768 i = 0; 1769 if (offset >= len) 1770 goto drop_pages; 1771 1772 for (; i < nfrags; i++) { 1773 int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]); 1774 1775 if (end < len) { 1776 offset = end; 1777 continue; 1778 } 1779 1780 skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset); 1781 1782 drop_pages: 1783 skb_shinfo(skb)->nr_frags = i; 1784 1785 for (; i < nfrags; i++) 1786 skb_frag_unref(skb, i); 1787 1788 if (skb_has_frag_list(skb)) 1789 skb_drop_fraglist(skb); 1790 goto done; 1791 } 1792 1793 for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp); 1794 fragp = &frag->next) { 1795 int end = offset + frag->len; 1796 1797 if (skb_shared(frag)) { 1798 struct sk_buff *nfrag; 1799 1800 nfrag = skb_clone(frag, GFP_ATOMIC); 1801 if (unlikely(!nfrag)) 1802 return -ENOMEM; 1803 1804 nfrag->next = frag->next; 1805 consume_skb(frag); 1806 frag = nfrag; 1807 *fragp = frag; 1808 } 1809 1810 if (end < len) { 1811 offset = end; 1812 continue; 1813 } 1814 1815 if (end > len && 1816 unlikely((err = pskb_trim(frag, len - offset)))) 1817 return err; 1818 1819 if (frag->next) 1820 skb_drop_list(&frag->next); 1821 break; 1822 } 1823 1824 done: 1825 if (len > skb_headlen(skb)) { 1826 skb->data_len -= skb->len - len; 1827 skb->len = len; 1828 } else { 1829 skb->len = len; 1830 skb->data_len = 0; 1831 skb_set_tail_pointer(skb, len); 1832 } 1833 1834 if (!skb->sk || skb->destructor == sock_edemux) 1835 skb_condense(skb); 1836 return 0; 1837 } 1838 EXPORT_SYMBOL(___pskb_trim); 1839 1840 /** 1841 * __pskb_pull_tail - advance tail of skb header 1842 * @skb: buffer to reallocate 1843 * @delta: number of bytes to advance tail 1844 * 1845 * The function makes a sense only on a fragmented &sk_buff, 1846 * it expands header moving its tail forward and copying necessary 1847 * data from fragmented part. 1848 * 1849 * &sk_buff MUST have reference count of 1. 1850 * 1851 * Returns %NULL (and &sk_buff does not change) if pull failed 1852 * or value of new tail of skb in the case of success. 1853 * 1854 * All the pointers pointing into skb header may change and must be 1855 * reloaded after call to this function. 1856 */ 1857 1858 /* Moves tail of skb head forward, copying data from fragmented part, 1859 * when it is necessary. 1860 * 1. It may fail due to malloc failure. 1861 * 2. It may change skb pointers. 1862 * 1863 * It is pretty complicated. Luckily, it is called only in exceptional cases. 1864 */ 1865 void *__pskb_pull_tail(struct sk_buff *skb, int delta) 1866 { 1867 /* If skb has not enough free space at tail, get new one 1868 * plus 128 bytes for future expansions. If we have enough 1869 * room at tail, reallocate without expansion only if skb is cloned. 1870 */ 1871 int i, k, eat = (skb->tail + delta) - skb->end; 1872 1873 if (eat > 0 || skb_cloned(skb)) { 1874 if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0, 1875 GFP_ATOMIC)) 1876 return NULL; 1877 } 1878 1879 if (skb_copy_bits(skb, skb_headlen(skb), skb_tail_pointer(skb), delta)) 1880 BUG(); 1881 1882 /* Optimization: no fragments, no reasons to preestimate 1883 * size of pulled pages. Superb. 1884 */ 1885 if (!skb_has_frag_list(skb)) 1886 goto pull_pages; 1887 1888 /* Estimate size of pulled pages. */ 1889 eat = delta; 1890 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1891 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 1892 1893 if (size >= eat) 1894 goto pull_pages; 1895 eat -= size; 1896 } 1897 1898 /* If we need update frag list, we are in troubles. 1899 * Certainly, it possible to add an offset to skb data, 1900 * but taking into account that pulling is expected to 1901 * be very rare operation, it is worth to fight against 1902 * further bloating skb head and crucify ourselves here instead. 1903 * Pure masohism, indeed. 8)8) 1904 */ 1905 if (eat) { 1906 struct sk_buff *list = skb_shinfo(skb)->frag_list; 1907 struct sk_buff *clone = NULL; 1908 struct sk_buff *insp = NULL; 1909 1910 do { 1911 BUG_ON(!list); 1912 1913 if (list->len <= eat) { 1914 /* Eaten as whole. */ 1915 eat -= list->len; 1916 list = list->next; 1917 insp = list; 1918 } else { 1919 /* Eaten partially. */ 1920 1921 if (skb_shared(list)) { 1922 /* Sucks! We need to fork list. :-( */ 1923 clone = skb_clone(list, GFP_ATOMIC); 1924 if (!clone) 1925 return NULL; 1926 insp = list->next; 1927 list = clone; 1928 } else { 1929 /* This may be pulled without 1930 * problems. */ 1931 insp = list; 1932 } 1933 if (!pskb_pull(list, eat)) { 1934 kfree_skb(clone); 1935 return NULL; 1936 } 1937 break; 1938 } 1939 } while (eat); 1940 1941 /* Free pulled out fragments. */ 1942 while ((list = skb_shinfo(skb)->frag_list) != insp) { 1943 skb_shinfo(skb)->frag_list = list->next; 1944 kfree_skb(list); 1945 } 1946 /* And insert new clone at head. */ 1947 if (clone) { 1948 clone->next = list; 1949 skb_shinfo(skb)->frag_list = clone; 1950 } 1951 } 1952 /* Success! Now we may commit changes to skb data. */ 1953 1954 pull_pages: 1955 eat = delta; 1956 k = 0; 1957 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1958 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 1959 1960 if (size <= eat) { 1961 skb_frag_unref(skb, i); 1962 eat -= size; 1963 } else { 1964 skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i]; 1965 if (eat) { 1966 skb_shinfo(skb)->frags[k].page_offset += eat; 1967 skb_frag_size_sub(&skb_shinfo(skb)->frags[k], eat); 1968 if (!i) 1969 goto end; 1970 eat = 0; 1971 } 1972 k++; 1973 } 1974 } 1975 skb_shinfo(skb)->nr_frags = k; 1976 1977 end: 1978 skb->tail += delta; 1979 skb->data_len -= delta; 1980 1981 if (!skb->data_len) 1982 skb_zcopy_clear(skb, false); 1983 1984 return skb_tail_pointer(skb); 1985 } 1986 EXPORT_SYMBOL(__pskb_pull_tail); 1987 1988 /** 1989 * skb_copy_bits - copy bits from skb to kernel buffer 1990 * @skb: source skb 1991 * @offset: offset in source 1992 * @to: destination buffer 1993 * @len: number of bytes to copy 1994 * 1995 * Copy the specified number of bytes from the source skb to the 1996 * destination buffer. 1997 * 1998 * CAUTION ! : 1999 * If its prototype is ever changed, 2000 * check arch/{*}/net/{*}.S files, 2001 * since it is called from BPF assembly code. 2002 */ 2003 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len) 2004 { 2005 int start = skb_headlen(skb); 2006 struct sk_buff *frag_iter; 2007 int i, copy; 2008 2009 if (offset > (int)skb->len - len) 2010 goto fault; 2011 2012 /* Copy header. */ 2013 if ((copy = start - offset) > 0) { 2014 if (copy > len) 2015 copy = len; 2016 skb_copy_from_linear_data_offset(skb, offset, to, copy); 2017 if ((len -= copy) == 0) 2018 return 0; 2019 offset += copy; 2020 to += copy; 2021 } 2022 2023 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2024 int end; 2025 skb_frag_t *f = &skb_shinfo(skb)->frags[i]; 2026 2027 WARN_ON(start > offset + len); 2028 2029 end = start + skb_frag_size(f); 2030 if ((copy = end - offset) > 0) { 2031 u32 p_off, p_len, copied; 2032 struct page *p; 2033 u8 *vaddr; 2034 2035 if (copy > len) 2036 copy = len; 2037 2038 skb_frag_foreach_page(f, 2039 f->page_offset + offset - start, 2040 copy, p, p_off, p_len, copied) { 2041 vaddr = kmap_atomic(p); 2042 memcpy(to + copied, vaddr + p_off, p_len); 2043 kunmap_atomic(vaddr); 2044 } 2045 2046 if ((len -= copy) == 0) 2047 return 0; 2048 offset += copy; 2049 to += copy; 2050 } 2051 start = end; 2052 } 2053 2054 skb_walk_frags(skb, frag_iter) { 2055 int end; 2056 2057 WARN_ON(start > offset + len); 2058 2059 end = start + frag_iter->len; 2060 if ((copy = end - offset) > 0) { 2061 if (copy > len) 2062 copy = len; 2063 if (skb_copy_bits(frag_iter, offset - start, to, copy)) 2064 goto fault; 2065 if ((len -= copy) == 0) 2066 return 0; 2067 offset += copy; 2068 to += copy; 2069 } 2070 start = end; 2071 } 2072 2073 if (!len) 2074 return 0; 2075 2076 fault: 2077 return -EFAULT; 2078 } 2079 EXPORT_SYMBOL(skb_copy_bits); 2080 2081 /* 2082 * Callback from splice_to_pipe(), if we need to release some pages 2083 * at the end of the spd in case we error'ed out in filling the pipe. 2084 */ 2085 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i) 2086 { 2087 put_page(spd->pages[i]); 2088 } 2089 2090 static struct page *linear_to_page(struct page *page, unsigned int *len, 2091 unsigned int *offset, 2092 struct sock *sk) 2093 { 2094 struct page_frag *pfrag = sk_page_frag(sk); 2095 2096 if (!sk_page_frag_refill(sk, pfrag)) 2097 return NULL; 2098 2099 *len = min_t(unsigned int, *len, pfrag->size - pfrag->offset); 2100 2101 memcpy(page_address(pfrag->page) + pfrag->offset, 2102 page_address(page) + *offset, *len); 2103 *offset = pfrag->offset; 2104 pfrag->offset += *len; 2105 2106 return pfrag->page; 2107 } 2108 2109 static bool spd_can_coalesce(const struct splice_pipe_desc *spd, 2110 struct page *page, 2111 unsigned int offset) 2112 { 2113 return spd->nr_pages && 2114 spd->pages[spd->nr_pages - 1] == page && 2115 (spd->partial[spd->nr_pages - 1].offset + 2116 spd->partial[spd->nr_pages - 1].len == offset); 2117 } 2118 2119 /* 2120 * Fill page/offset/length into spd, if it can hold more pages. 2121 */ 2122 static bool spd_fill_page(struct splice_pipe_desc *spd, 2123 struct pipe_inode_info *pipe, struct page *page, 2124 unsigned int *len, unsigned int offset, 2125 bool linear, 2126 struct sock *sk) 2127 { 2128 if (unlikely(spd->nr_pages == MAX_SKB_FRAGS)) 2129 return true; 2130 2131 if (linear) { 2132 page = linear_to_page(page, len, &offset, sk); 2133 if (!page) 2134 return true; 2135 } 2136 if (spd_can_coalesce(spd, page, offset)) { 2137 spd->partial[spd->nr_pages - 1].len += *len; 2138 return false; 2139 } 2140 get_page(page); 2141 spd->pages[spd->nr_pages] = page; 2142 spd->partial[spd->nr_pages].len = *len; 2143 spd->partial[spd->nr_pages].offset = offset; 2144 spd->nr_pages++; 2145 2146 return false; 2147 } 2148 2149 static bool __splice_segment(struct page *page, unsigned int poff, 2150 unsigned int plen, unsigned int *off, 2151 unsigned int *len, 2152 struct splice_pipe_desc *spd, bool linear, 2153 struct sock *sk, 2154 struct pipe_inode_info *pipe) 2155 { 2156 if (!*len) 2157 return true; 2158 2159 /* skip this segment if already processed */ 2160 if (*off >= plen) { 2161 *off -= plen; 2162 return false; 2163 } 2164 2165 /* ignore any bits we already processed */ 2166 poff += *off; 2167 plen -= *off; 2168 *off = 0; 2169 2170 do { 2171 unsigned int flen = min(*len, plen); 2172 2173 if (spd_fill_page(spd, pipe, page, &flen, poff, 2174 linear, sk)) 2175 return true; 2176 poff += flen; 2177 plen -= flen; 2178 *len -= flen; 2179 } while (*len && plen); 2180 2181 return false; 2182 } 2183 2184 /* 2185 * Map linear and fragment data from the skb to spd. It reports true if the 2186 * pipe is full or if we already spliced the requested length. 2187 */ 2188 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe, 2189 unsigned int *offset, unsigned int *len, 2190 struct splice_pipe_desc *spd, struct sock *sk) 2191 { 2192 int seg; 2193 struct sk_buff *iter; 2194 2195 /* map the linear part : 2196 * If skb->head_frag is set, this 'linear' part is backed by a 2197 * fragment, and if the head is not shared with any clones then 2198 * we can avoid a copy since we own the head portion of this page. 2199 */ 2200 if (__splice_segment(virt_to_page(skb->data), 2201 (unsigned long) skb->data & (PAGE_SIZE - 1), 2202 skb_headlen(skb), 2203 offset, len, spd, 2204 skb_head_is_locked(skb), 2205 sk, pipe)) 2206 return true; 2207 2208 /* 2209 * then map the fragments 2210 */ 2211 for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) { 2212 const skb_frag_t *f = &skb_shinfo(skb)->frags[seg]; 2213 2214 if (__splice_segment(skb_frag_page(f), 2215 f->page_offset, skb_frag_size(f), 2216 offset, len, spd, false, sk, pipe)) 2217 return true; 2218 } 2219 2220 skb_walk_frags(skb, iter) { 2221 if (*offset >= iter->len) { 2222 *offset -= iter->len; 2223 continue; 2224 } 2225 /* __skb_splice_bits() only fails if the output has no room 2226 * left, so no point in going over the frag_list for the error 2227 * case. 2228 */ 2229 if (__skb_splice_bits(iter, pipe, offset, len, spd, sk)) 2230 return true; 2231 } 2232 2233 return false; 2234 } 2235 2236 /* 2237 * Map data from the skb to a pipe. Should handle both the linear part, 2238 * the fragments, and the frag list. 2239 */ 2240 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset, 2241 struct pipe_inode_info *pipe, unsigned int tlen, 2242 unsigned int flags) 2243 { 2244 struct partial_page partial[MAX_SKB_FRAGS]; 2245 struct page *pages[MAX_SKB_FRAGS]; 2246 struct splice_pipe_desc spd = { 2247 .pages = pages, 2248 .partial = partial, 2249 .nr_pages_max = MAX_SKB_FRAGS, 2250 .ops = &nosteal_pipe_buf_ops, 2251 .spd_release = sock_spd_release, 2252 }; 2253 int ret = 0; 2254 2255 __skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk); 2256 2257 if (spd.nr_pages) 2258 ret = splice_to_pipe(pipe, &spd); 2259 2260 return ret; 2261 } 2262 EXPORT_SYMBOL_GPL(skb_splice_bits); 2263 2264 /* Send skb data on a socket. Socket must be locked. */ 2265 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset, 2266 int len) 2267 { 2268 unsigned int orig_len = len; 2269 struct sk_buff *head = skb; 2270 unsigned short fragidx; 2271 int slen, ret; 2272 2273 do_frag_list: 2274 2275 /* Deal with head data */ 2276 while (offset < skb_headlen(skb) && len) { 2277 struct kvec kv; 2278 struct msghdr msg; 2279 2280 slen = min_t(int, len, skb_headlen(skb) - offset); 2281 kv.iov_base = skb->data + offset; 2282 kv.iov_len = slen; 2283 memset(&msg, 0, sizeof(msg)); 2284 2285 ret = kernel_sendmsg_locked(sk, &msg, &kv, 1, slen); 2286 if (ret <= 0) 2287 goto error; 2288 2289 offset += ret; 2290 len -= ret; 2291 } 2292 2293 /* All the data was skb head? */ 2294 if (!len) 2295 goto out; 2296 2297 /* Make offset relative to start of frags */ 2298 offset -= skb_headlen(skb); 2299 2300 /* Find where we are in frag list */ 2301 for (fragidx = 0; fragidx < skb_shinfo(skb)->nr_frags; fragidx++) { 2302 skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx]; 2303 2304 if (offset < frag->size) 2305 break; 2306 2307 offset -= frag->size; 2308 } 2309 2310 for (; len && fragidx < skb_shinfo(skb)->nr_frags; fragidx++) { 2311 skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx]; 2312 2313 slen = min_t(size_t, len, frag->size - offset); 2314 2315 while (slen) { 2316 ret = kernel_sendpage_locked(sk, frag->page.p, 2317 frag->page_offset + offset, 2318 slen, MSG_DONTWAIT); 2319 if (ret <= 0) 2320 goto error; 2321 2322 len -= ret; 2323 offset += ret; 2324 slen -= ret; 2325 } 2326 2327 offset = 0; 2328 } 2329 2330 if (len) { 2331 /* Process any frag lists */ 2332 2333 if (skb == head) { 2334 if (skb_has_frag_list(skb)) { 2335 skb = skb_shinfo(skb)->frag_list; 2336 goto do_frag_list; 2337 } 2338 } else if (skb->next) { 2339 skb = skb->next; 2340 goto do_frag_list; 2341 } 2342 } 2343 2344 out: 2345 return orig_len - len; 2346 2347 error: 2348 return orig_len == len ? ret : orig_len - len; 2349 } 2350 EXPORT_SYMBOL_GPL(skb_send_sock_locked); 2351 2352 /* Send skb data on a socket. */ 2353 int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len) 2354 { 2355 int ret = 0; 2356 2357 lock_sock(sk); 2358 ret = skb_send_sock_locked(sk, skb, offset, len); 2359 release_sock(sk); 2360 2361 return ret; 2362 } 2363 EXPORT_SYMBOL_GPL(skb_send_sock); 2364 2365 /** 2366 * skb_store_bits - store bits from kernel buffer to skb 2367 * @skb: destination buffer 2368 * @offset: offset in destination 2369 * @from: source buffer 2370 * @len: number of bytes to copy 2371 * 2372 * Copy the specified number of bytes from the source buffer to the 2373 * destination skb. This function handles all the messy bits of 2374 * traversing fragment lists and such. 2375 */ 2376 2377 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len) 2378 { 2379 int start = skb_headlen(skb); 2380 struct sk_buff *frag_iter; 2381 int i, copy; 2382 2383 if (offset > (int)skb->len - len) 2384 goto fault; 2385 2386 if ((copy = start - offset) > 0) { 2387 if (copy > len) 2388 copy = len; 2389 skb_copy_to_linear_data_offset(skb, offset, from, copy); 2390 if ((len -= copy) == 0) 2391 return 0; 2392 offset += copy; 2393 from += copy; 2394 } 2395 2396 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2397 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2398 int end; 2399 2400 WARN_ON(start > offset + len); 2401 2402 end = start + skb_frag_size(frag); 2403 if ((copy = end - offset) > 0) { 2404 u32 p_off, p_len, copied; 2405 struct page *p; 2406 u8 *vaddr; 2407 2408 if (copy > len) 2409 copy = len; 2410 2411 skb_frag_foreach_page(frag, 2412 frag->page_offset + offset - start, 2413 copy, p, p_off, p_len, copied) { 2414 vaddr = kmap_atomic(p); 2415 memcpy(vaddr + p_off, from + copied, p_len); 2416 kunmap_atomic(vaddr); 2417 } 2418 2419 if ((len -= copy) == 0) 2420 return 0; 2421 offset += copy; 2422 from += copy; 2423 } 2424 start = end; 2425 } 2426 2427 skb_walk_frags(skb, frag_iter) { 2428 int end; 2429 2430 WARN_ON(start > offset + len); 2431 2432 end = start + frag_iter->len; 2433 if ((copy = end - offset) > 0) { 2434 if (copy > len) 2435 copy = len; 2436 if (skb_store_bits(frag_iter, offset - start, 2437 from, copy)) 2438 goto fault; 2439 if ((len -= copy) == 0) 2440 return 0; 2441 offset += copy; 2442 from += copy; 2443 } 2444 start = end; 2445 } 2446 if (!len) 2447 return 0; 2448 2449 fault: 2450 return -EFAULT; 2451 } 2452 EXPORT_SYMBOL(skb_store_bits); 2453 2454 /* Checksum skb data. */ 2455 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len, 2456 __wsum csum, const struct skb_checksum_ops *ops) 2457 { 2458 int start = skb_headlen(skb); 2459 int i, copy = start - offset; 2460 struct sk_buff *frag_iter; 2461 int pos = 0; 2462 2463 /* Checksum header. */ 2464 if (copy > 0) { 2465 if (copy > len) 2466 copy = len; 2467 csum = ops->update(skb->data + offset, copy, csum); 2468 if ((len -= copy) == 0) 2469 return csum; 2470 offset += copy; 2471 pos = copy; 2472 } 2473 2474 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2475 int end; 2476 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2477 2478 WARN_ON(start > offset + len); 2479 2480 end = start + skb_frag_size(frag); 2481 if ((copy = end - offset) > 0) { 2482 u32 p_off, p_len, copied; 2483 struct page *p; 2484 __wsum csum2; 2485 u8 *vaddr; 2486 2487 if (copy > len) 2488 copy = len; 2489 2490 skb_frag_foreach_page(frag, 2491 frag->page_offset + offset - start, 2492 copy, p, p_off, p_len, copied) { 2493 vaddr = kmap_atomic(p); 2494 csum2 = ops->update(vaddr + p_off, p_len, 0); 2495 kunmap_atomic(vaddr); 2496 csum = ops->combine(csum, csum2, pos, p_len); 2497 pos += p_len; 2498 } 2499 2500 if (!(len -= copy)) 2501 return csum; 2502 offset += copy; 2503 } 2504 start = end; 2505 } 2506 2507 skb_walk_frags(skb, frag_iter) { 2508 int end; 2509 2510 WARN_ON(start > offset + len); 2511 2512 end = start + frag_iter->len; 2513 if ((copy = end - offset) > 0) { 2514 __wsum csum2; 2515 if (copy > len) 2516 copy = len; 2517 csum2 = __skb_checksum(frag_iter, offset - start, 2518 copy, 0, ops); 2519 csum = ops->combine(csum, csum2, pos, copy); 2520 if ((len -= copy) == 0) 2521 return csum; 2522 offset += copy; 2523 pos += copy; 2524 } 2525 start = end; 2526 } 2527 BUG_ON(len); 2528 2529 return csum; 2530 } 2531 EXPORT_SYMBOL(__skb_checksum); 2532 2533 __wsum skb_checksum(const struct sk_buff *skb, int offset, 2534 int len, __wsum csum) 2535 { 2536 const struct skb_checksum_ops ops = { 2537 .update = csum_partial_ext, 2538 .combine = csum_block_add_ext, 2539 }; 2540 2541 return __skb_checksum(skb, offset, len, csum, &ops); 2542 } 2543 EXPORT_SYMBOL(skb_checksum); 2544 2545 /* Both of above in one bottle. */ 2546 2547 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, 2548 u8 *to, int len, __wsum csum) 2549 { 2550 int start = skb_headlen(skb); 2551 int i, copy = start - offset; 2552 struct sk_buff *frag_iter; 2553 int pos = 0; 2554 2555 /* Copy header. */ 2556 if (copy > 0) { 2557 if (copy > len) 2558 copy = len; 2559 csum = csum_partial_copy_nocheck(skb->data + offset, to, 2560 copy, csum); 2561 if ((len -= copy) == 0) 2562 return csum; 2563 offset += copy; 2564 to += copy; 2565 pos = copy; 2566 } 2567 2568 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2569 int end; 2570 2571 WARN_ON(start > offset + len); 2572 2573 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]); 2574 if ((copy = end - offset) > 0) { 2575 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2576 u32 p_off, p_len, copied; 2577 struct page *p; 2578 __wsum csum2; 2579 u8 *vaddr; 2580 2581 if (copy > len) 2582 copy = len; 2583 2584 skb_frag_foreach_page(frag, 2585 frag->page_offset + offset - start, 2586 copy, p, p_off, p_len, copied) { 2587 vaddr = kmap_atomic(p); 2588 csum2 = csum_partial_copy_nocheck(vaddr + p_off, 2589 to + copied, 2590 p_len, 0); 2591 kunmap_atomic(vaddr); 2592 csum = csum_block_add(csum, csum2, pos); 2593 pos += p_len; 2594 } 2595 2596 if (!(len -= copy)) 2597 return csum; 2598 offset += copy; 2599 to += copy; 2600 } 2601 start = end; 2602 } 2603 2604 skb_walk_frags(skb, frag_iter) { 2605 __wsum csum2; 2606 int end; 2607 2608 WARN_ON(start > offset + len); 2609 2610 end = start + frag_iter->len; 2611 if ((copy = end - offset) > 0) { 2612 if (copy > len) 2613 copy = len; 2614 csum2 = skb_copy_and_csum_bits(frag_iter, 2615 offset - start, 2616 to, copy, 0); 2617 csum = csum_block_add(csum, csum2, pos); 2618 if ((len -= copy) == 0) 2619 return csum; 2620 offset += copy; 2621 to += copy; 2622 pos += copy; 2623 } 2624 start = end; 2625 } 2626 BUG_ON(len); 2627 return csum; 2628 } 2629 EXPORT_SYMBOL(skb_copy_and_csum_bits); 2630 2631 static __wsum warn_crc32c_csum_update(const void *buff, int len, __wsum sum) 2632 { 2633 net_warn_ratelimited( 2634 "%s: attempt to compute crc32c without libcrc32c.ko\n", 2635 __func__); 2636 return 0; 2637 } 2638 2639 static __wsum warn_crc32c_csum_combine(__wsum csum, __wsum csum2, 2640 int offset, int len) 2641 { 2642 net_warn_ratelimited( 2643 "%s: attempt to compute crc32c without libcrc32c.ko\n", 2644 __func__); 2645 return 0; 2646 } 2647 2648 static const struct skb_checksum_ops default_crc32c_ops = { 2649 .update = warn_crc32c_csum_update, 2650 .combine = warn_crc32c_csum_combine, 2651 }; 2652 2653 const struct skb_checksum_ops *crc32c_csum_stub __read_mostly = 2654 &default_crc32c_ops; 2655 EXPORT_SYMBOL(crc32c_csum_stub); 2656 2657 /** 2658 * skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy() 2659 * @from: source buffer 2660 * 2661 * Calculates the amount of linear headroom needed in the 'to' skb passed 2662 * into skb_zerocopy(). 2663 */ 2664 unsigned int 2665 skb_zerocopy_headlen(const struct sk_buff *from) 2666 { 2667 unsigned int hlen = 0; 2668 2669 if (!from->head_frag || 2670 skb_headlen(from) < L1_CACHE_BYTES || 2671 skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS) 2672 hlen = skb_headlen(from); 2673 2674 if (skb_has_frag_list(from)) 2675 hlen = from->len; 2676 2677 return hlen; 2678 } 2679 EXPORT_SYMBOL_GPL(skb_zerocopy_headlen); 2680 2681 /** 2682 * skb_zerocopy - Zero copy skb to skb 2683 * @to: destination buffer 2684 * @from: source buffer 2685 * @len: number of bytes to copy from source buffer 2686 * @hlen: size of linear headroom in destination buffer 2687 * 2688 * Copies up to `len` bytes from `from` to `to` by creating references 2689 * to the frags in the source buffer. 2690 * 2691 * The `hlen` as calculated by skb_zerocopy_headlen() specifies the 2692 * headroom in the `to` buffer. 2693 * 2694 * Return value: 2695 * 0: everything is OK 2696 * -ENOMEM: couldn't orphan frags of @from due to lack of memory 2697 * -EFAULT: skb_copy_bits() found some problem with skb geometry 2698 */ 2699 int 2700 skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen) 2701 { 2702 int i, j = 0; 2703 int plen = 0; /* length of skb->head fragment */ 2704 int ret; 2705 struct page *page; 2706 unsigned int offset; 2707 2708 BUG_ON(!from->head_frag && !hlen); 2709 2710 /* dont bother with small payloads */ 2711 if (len <= skb_tailroom(to)) 2712 return skb_copy_bits(from, 0, skb_put(to, len), len); 2713 2714 if (hlen) { 2715 ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen); 2716 if (unlikely(ret)) 2717 return ret; 2718 len -= hlen; 2719 } else { 2720 plen = min_t(int, skb_headlen(from), len); 2721 if (plen) { 2722 page = virt_to_head_page(from->head); 2723 offset = from->data - (unsigned char *)page_address(page); 2724 __skb_fill_page_desc(to, 0, page, offset, plen); 2725 get_page(page); 2726 j = 1; 2727 len -= plen; 2728 } 2729 } 2730 2731 to->truesize += len + plen; 2732 to->len += len + plen; 2733 to->data_len += len + plen; 2734 2735 if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) { 2736 skb_tx_error(from); 2737 return -ENOMEM; 2738 } 2739 skb_zerocopy_clone(to, from, GFP_ATOMIC); 2740 2741 for (i = 0; i < skb_shinfo(from)->nr_frags; i++) { 2742 if (!len) 2743 break; 2744 skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i]; 2745 skb_shinfo(to)->frags[j].size = min_t(int, skb_shinfo(to)->frags[j].size, len); 2746 len -= skb_shinfo(to)->frags[j].size; 2747 skb_frag_ref(to, j); 2748 j++; 2749 } 2750 skb_shinfo(to)->nr_frags = j; 2751 2752 return 0; 2753 } 2754 EXPORT_SYMBOL_GPL(skb_zerocopy); 2755 2756 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to) 2757 { 2758 __wsum csum; 2759 long csstart; 2760 2761 if (skb->ip_summed == CHECKSUM_PARTIAL) 2762 csstart = skb_checksum_start_offset(skb); 2763 else 2764 csstart = skb_headlen(skb); 2765 2766 BUG_ON(csstart > skb_headlen(skb)); 2767 2768 skb_copy_from_linear_data(skb, to, csstart); 2769 2770 csum = 0; 2771 if (csstart != skb->len) 2772 csum = skb_copy_and_csum_bits(skb, csstart, to + csstart, 2773 skb->len - csstart, 0); 2774 2775 if (skb->ip_summed == CHECKSUM_PARTIAL) { 2776 long csstuff = csstart + skb->csum_offset; 2777 2778 *((__sum16 *)(to + csstuff)) = csum_fold(csum); 2779 } 2780 } 2781 EXPORT_SYMBOL(skb_copy_and_csum_dev); 2782 2783 /** 2784 * skb_dequeue - remove from the head of the queue 2785 * @list: list to dequeue from 2786 * 2787 * Remove the head of the list. The list lock is taken so the function 2788 * may be used safely with other locking list functions. The head item is 2789 * returned or %NULL if the list is empty. 2790 */ 2791 2792 struct sk_buff *skb_dequeue(struct sk_buff_head *list) 2793 { 2794 unsigned long flags; 2795 struct sk_buff *result; 2796 2797 spin_lock_irqsave(&list->lock, flags); 2798 result = __skb_dequeue(list); 2799 spin_unlock_irqrestore(&list->lock, flags); 2800 return result; 2801 } 2802 EXPORT_SYMBOL(skb_dequeue); 2803 2804 /** 2805 * skb_dequeue_tail - remove from the tail of the queue 2806 * @list: list to dequeue from 2807 * 2808 * Remove the tail of the list. The list lock is taken so the function 2809 * may be used safely with other locking list functions. The tail item is 2810 * returned or %NULL if the list is empty. 2811 */ 2812 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list) 2813 { 2814 unsigned long flags; 2815 struct sk_buff *result; 2816 2817 spin_lock_irqsave(&list->lock, flags); 2818 result = __skb_dequeue_tail(list); 2819 spin_unlock_irqrestore(&list->lock, flags); 2820 return result; 2821 } 2822 EXPORT_SYMBOL(skb_dequeue_tail); 2823 2824 /** 2825 * skb_queue_purge - empty a list 2826 * @list: list to empty 2827 * 2828 * Delete all buffers on an &sk_buff list. Each buffer is removed from 2829 * the list and one reference dropped. This function takes the list 2830 * lock and is atomic with respect to other list locking functions. 2831 */ 2832 void skb_queue_purge(struct sk_buff_head *list) 2833 { 2834 struct sk_buff *skb; 2835 while ((skb = skb_dequeue(list)) != NULL) 2836 kfree_skb(skb); 2837 } 2838 EXPORT_SYMBOL(skb_queue_purge); 2839 2840 /** 2841 * skb_rbtree_purge - empty a skb rbtree 2842 * @root: root of the rbtree to empty 2843 * 2844 * Delete all buffers on an &sk_buff rbtree. Each buffer is removed from 2845 * the list and one reference dropped. This function does not take 2846 * any lock. Synchronization should be handled by the caller (e.g., TCP 2847 * out-of-order queue is protected by the socket lock). 2848 */ 2849 void skb_rbtree_purge(struct rb_root *root) 2850 { 2851 struct sk_buff *skb, *next; 2852 2853 rbtree_postorder_for_each_entry_safe(skb, next, root, rbnode) 2854 kfree_skb(skb); 2855 2856 *root = RB_ROOT; 2857 } 2858 2859 /** 2860 * skb_queue_head - queue a buffer at the list head 2861 * @list: list to use 2862 * @newsk: buffer to queue 2863 * 2864 * Queue a buffer at the start of the list. This function takes the 2865 * list lock and can be used safely with other locking &sk_buff functions 2866 * safely. 2867 * 2868 * A buffer cannot be placed on two lists at the same time. 2869 */ 2870 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk) 2871 { 2872 unsigned long flags; 2873 2874 spin_lock_irqsave(&list->lock, flags); 2875 __skb_queue_head(list, newsk); 2876 spin_unlock_irqrestore(&list->lock, flags); 2877 } 2878 EXPORT_SYMBOL(skb_queue_head); 2879 2880 /** 2881 * skb_queue_tail - queue a buffer at the list tail 2882 * @list: list to use 2883 * @newsk: buffer to queue 2884 * 2885 * Queue a buffer at the tail of the list. This function takes the 2886 * list lock and can be used safely with other locking &sk_buff functions 2887 * safely. 2888 * 2889 * A buffer cannot be placed on two lists at the same time. 2890 */ 2891 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk) 2892 { 2893 unsigned long flags; 2894 2895 spin_lock_irqsave(&list->lock, flags); 2896 __skb_queue_tail(list, newsk); 2897 spin_unlock_irqrestore(&list->lock, flags); 2898 } 2899 EXPORT_SYMBOL(skb_queue_tail); 2900 2901 /** 2902 * skb_unlink - remove a buffer from a list 2903 * @skb: buffer to remove 2904 * @list: list to use 2905 * 2906 * Remove a packet from a list. The list locks are taken and this 2907 * function is atomic with respect to other list locked calls 2908 * 2909 * You must know what list the SKB is on. 2910 */ 2911 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list) 2912 { 2913 unsigned long flags; 2914 2915 spin_lock_irqsave(&list->lock, flags); 2916 __skb_unlink(skb, list); 2917 spin_unlock_irqrestore(&list->lock, flags); 2918 } 2919 EXPORT_SYMBOL(skb_unlink); 2920 2921 /** 2922 * skb_append - append a buffer 2923 * @old: buffer to insert after 2924 * @newsk: buffer to insert 2925 * @list: list to use 2926 * 2927 * Place a packet after a given packet in a list. The list locks are taken 2928 * and this function is atomic with respect to other list locked calls. 2929 * A buffer cannot be placed on two lists at the same time. 2930 */ 2931 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list) 2932 { 2933 unsigned long flags; 2934 2935 spin_lock_irqsave(&list->lock, flags); 2936 __skb_queue_after(list, old, newsk); 2937 spin_unlock_irqrestore(&list->lock, flags); 2938 } 2939 EXPORT_SYMBOL(skb_append); 2940 2941 /** 2942 * skb_insert - insert a buffer 2943 * @old: buffer to insert before 2944 * @newsk: buffer to insert 2945 * @list: list to use 2946 * 2947 * Place a packet before a given packet in a list. The list locks are 2948 * taken and this function is atomic with respect to other list locked 2949 * calls. 2950 * 2951 * A buffer cannot be placed on two lists at the same time. 2952 */ 2953 void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list) 2954 { 2955 unsigned long flags; 2956 2957 spin_lock_irqsave(&list->lock, flags); 2958 __skb_insert(newsk, old->prev, old, list); 2959 spin_unlock_irqrestore(&list->lock, flags); 2960 } 2961 EXPORT_SYMBOL(skb_insert); 2962 2963 static inline void skb_split_inside_header(struct sk_buff *skb, 2964 struct sk_buff* skb1, 2965 const u32 len, const int pos) 2966 { 2967 int i; 2968 2969 skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len), 2970 pos - len); 2971 /* And move data appendix as is. */ 2972 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 2973 skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i]; 2974 2975 skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags; 2976 skb_shinfo(skb)->nr_frags = 0; 2977 skb1->data_len = skb->data_len; 2978 skb1->len += skb1->data_len; 2979 skb->data_len = 0; 2980 skb->len = len; 2981 skb_set_tail_pointer(skb, len); 2982 } 2983 2984 static inline void skb_split_no_header(struct sk_buff *skb, 2985 struct sk_buff* skb1, 2986 const u32 len, int pos) 2987 { 2988 int i, k = 0; 2989 const int nfrags = skb_shinfo(skb)->nr_frags; 2990 2991 skb_shinfo(skb)->nr_frags = 0; 2992 skb1->len = skb1->data_len = skb->len - len; 2993 skb->len = len; 2994 skb->data_len = len - pos; 2995 2996 for (i = 0; i < nfrags; i++) { 2997 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 2998 2999 if (pos + size > len) { 3000 skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i]; 3001 3002 if (pos < len) { 3003 /* Split frag. 3004 * We have two variants in this case: 3005 * 1. Move all the frag to the second 3006 * part, if it is possible. F.e. 3007 * this approach is mandatory for TUX, 3008 * where splitting is expensive. 3009 * 2. Split is accurately. We make this. 3010 */ 3011 skb_frag_ref(skb, i); 3012 skb_shinfo(skb1)->frags[0].page_offset += len - pos; 3013 skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos); 3014 skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos); 3015 skb_shinfo(skb)->nr_frags++; 3016 } 3017 k++; 3018 } else 3019 skb_shinfo(skb)->nr_frags++; 3020 pos += size; 3021 } 3022 skb_shinfo(skb1)->nr_frags = k; 3023 } 3024 3025 /** 3026 * skb_split - Split fragmented skb to two parts at length len. 3027 * @skb: the buffer to split 3028 * @skb1: the buffer to receive the second part 3029 * @len: new length for skb 3030 */ 3031 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len) 3032 { 3033 int pos = skb_headlen(skb); 3034 3035 skb_shinfo(skb1)->tx_flags |= skb_shinfo(skb)->tx_flags & 3036 SKBTX_SHARED_FRAG; 3037 skb_zerocopy_clone(skb1, skb, 0); 3038 if (len < pos) /* Split line is inside header. */ 3039 skb_split_inside_header(skb, skb1, len, pos); 3040 else /* Second chunk has no header, nothing to copy. */ 3041 skb_split_no_header(skb, skb1, len, pos); 3042 } 3043 EXPORT_SYMBOL(skb_split); 3044 3045 /* Shifting from/to a cloned skb is a no-go. 3046 * 3047 * Caller cannot keep skb_shinfo related pointers past calling here! 3048 */ 3049 static int skb_prepare_for_shift(struct sk_buff *skb) 3050 { 3051 return skb_cloned(skb) && pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 3052 } 3053 3054 /** 3055 * skb_shift - Shifts paged data partially from skb to another 3056 * @tgt: buffer into which tail data gets added 3057 * @skb: buffer from which the paged data comes from 3058 * @shiftlen: shift up to this many bytes 3059 * 3060 * Attempts to shift up to shiftlen worth of bytes, which may be less than 3061 * the length of the skb, from skb to tgt. Returns number bytes shifted. 3062 * It's up to caller to free skb if everything was shifted. 3063 * 3064 * If @tgt runs out of frags, the whole operation is aborted. 3065 * 3066 * Skb cannot include anything else but paged data while tgt is allowed 3067 * to have non-paged data as well. 3068 * 3069 * TODO: full sized shift could be optimized but that would need 3070 * specialized skb free'er to handle frags without up-to-date nr_frags. 3071 */ 3072 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen) 3073 { 3074 int from, to, merge, todo; 3075 struct skb_frag_struct *fragfrom, *fragto; 3076 3077 BUG_ON(shiftlen > skb->len); 3078 3079 if (skb_headlen(skb)) 3080 return 0; 3081 if (skb_zcopy(tgt) || skb_zcopy(skb)) 3082 return 0; 3083 3084 todo = shiftlen; 3085 from = 0; 3086 to = skb_shinfo(tgt)->nr_frags; 3087 fragfrom = &skb_shinfo(skb)->frags[from]; 3088 3089 /* Actual merge is delayed until the point when we know we can 3090 * commit all, so that we don't have to undo partial changes 3091 */ 3092 if (!to || 3093 !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom), 3094 fragfrom->page_offset)) { 3095 merge = -1; 3096 } else { 3097 merge = to - 1; 3098 3099 todo -= skb_frag_size(fragfrom); 3100 if (todo < 0) { 3101 if (skb_prepare_for_shift(skb) || 3102 skb_prepare_for_shift(tgt)) 3103 return 0; 3104 3105 /* All previous frag pointers might be stale! */ 3106 fragfrom = &skb_shinfo(skb)->frags[from]; 3107 fragto = &skb_shinfo(tgt)->frags[merge]; 3108 3109 skb_frag_size_add(fragto, shiftlen); 3110 skb_frag_size_sub(fragfrom, shiftlen); 3111 fragfrom->page_offset += shiftlen; 3112 3113 goto onlymerged; 3114 } 3115 3116 from++; 3117 } 3118 3119 /* Skip full, not-fitting skb to avoid expensive operations */ 3120 if ((shiftlen == skb->len) && 3121 (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to)) 3122 return 0; 3123 3124 if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt)) 3125 return 0; 3126 3127 while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) { 3128 if (to == MAX_SKB_FRAGS) 3129 return 0; 3130 3131 fragfrom = &skb_shinfo(skb)->frags[from]; 3132 fragto = &skb_shinfo(tgt)->frags[to]; 3133 3134 if (todo >= skb_frag_size(fragfrom)) { 3135 *fragto = *fragfrom; 3136 todo -= skb_frag_size(fragfrom); 3137 from++; 3138 to++; 3139 3140 } else { 3141 __skb_frag_ref(fragfrom); 3142 fragto->page = fragfrom->page; 3143 fragto->page_offset = fragfrom->page_offset; 3144 skb_frag_size_set(fragto, todo); 3145 3146 fragfrom->page_offset += todo; 3147 skb_frag_size_sub(fragfrom, todo); 3148 todo = 0; 3149 3150 to++; 3151 break; 3152 } 3153 } 3154 3155 /* Ready to "commit" this state change to tgt */ 3156 skb_shinfo(tgt)->nr_frags = to; 3157 3158 if (merge >= 0) { 3159 fragfrom = &skb_shinfo(skb)->frags[0]; 3160 fragto = &skb_shinfo(tgt)->frags[merge]; 3161 3162 skb_frag_size_add(fragto, skb_frag_size(fragfrom)); 3163 __skb_frag_unref(fragfrom); 3164 } 3165 3166 /* Reposition in the original skb */ 3167 to = 0; 3168 while (from < skb_shinfo(skb)->nr_frags) 3169 skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++]; 3170 skb_shinfo(skb)->nr_frags = to; 3171 3172 BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags); 3173 3174 onlymerged: 3175 /* Most likely the tgt won't ever need its checksum anymore, skb on 3176 * the other hand might need it if it needs to be resent 3177 */ 3178 tgt->ip_summed = CHECKSUM_PARTIAL; 3179 skb->ip_summed = CHECKSUM_PARTIAL; 3180 3181 /* Yak, is it really working this way? Some helper please? */ 3182 skb->len -= shiftlen; 3183 skb->data_len -= shiftlen; 3184 skb->truesize -= shiftlen; 3185 tgt->len += shiftlen; 3186 tgt->data_len += shiftlen; 3187 tgt->truesize += shiftlen; 3188 3189 return shiftlen; 3190 } 3191 3192 /** 3193 * skb_prepare_seq_read - Prepare a sequential read of skb data 3194 * @skb: the buffer to read 3195 * @from: lower offset of data to be read 3196 * @to: upper offset of data to be read 3197 * @st: state variable 3198 * 3199 * Initializes the specified state variable. Must be called before 3200 * invoking skb_seq_read() for the first time. 3201 */ 3202 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from, 3203 unsigned int to, struct skb_seq_state *st) 3204 { 3205 st->lower_offset = from; 3206 st->upper_offset = to; 3207 st->root_skb = st->cur_skb = skb; 3208 st->frag_idx = st->stepped_offset = 0; 3209 st->frag_data = NULL; 3210 } 3211 EXPORT_SYMBOL(skb_prepare_seq_read); 3212 3213 /** 3214 * skb_seq_read - Sequentially read skb data 3215 * @consumed: number of bytes consumed by the caller so far 3216 * @data: destination pointer for data to be returned 3217 * @st: state variable 3218 * 3219 * Reads a block of skb data at @consumed relative to the 3220 * lower offset specified to skb_prepare_seq_read(). Assigns 3221 * the head of the data block to @data and returns the length 3222 * of the block or 0 if the end of the skb data or the upper 3223 * offset has been reached. 3224 * 3225 * The caller is not required to consume all of the data 3226 * returned, i.e. @consumed is typically set to the number 3227 * of bytes already consumed and the next call to 3228 * skb_seq_read() will return the remaining part of the block. 3229 * 3230 * Note 1: The size of each block of data returned can be arbitrary, 3231 * this limitation is the cost for zerocopy sequential 3232 * reads of potentially non linear data. 3233 * 3234 * Note 2: Fragment lists within fragments are not implemented 3235 * at the moment, state->root_skb could be replaced with 3236 * a stack for this purpose. 3237 */ 3238 unsigned int skb_seq_read(unsigned int consumed, const u8 **data, 3239 struct skb_seq_state *st) 3240 { 3241 unsigned int block_limit, abs_offset = consumed + st->lower_offset; 3242 skb_frag_t *frag; 3243 3244 if (unlikely(abs_offset >= st->upper_offset)) { 3245 if (st->frag_data) { 3246 kunmap_atomic(st->frag_data); 3247 st->frag_data = NULL; 3248 } 3249 return 0; 3250 } 3251 3252 next_skb: 3253 block_limit = skb_headlen(st->cur_skb) + st->stepped_offset; 3254 3255 if (abs_offset < block_limit && !st->frag_data) { 3256 *data = st->cur_skb->data + (abs_offset - st->stepped_offset); 3257 return block_limit - abs_offset; 3258 } 3259 3260 if (st->frag_idx == 0 && !st->frag_data) 3261 st->stepped_offset += skb_headlen(st->cur_skb); 3262 3263 while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) { 3264 frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx]; 3265 block_limit = skb_frag_size(frag) + st->stepped_offset; 3266 3267 if (abs_offset < block_limit) { 3268 if (!st->frag_data) 3269 st->frag_data = kmap_atomic(skb_frag_page(frag)); 3270 3271 *data = (u8 *) st->frag_data + frag->page_offset + 3272 (abs_offset - st->stepped_offset); 3273 3274 return block_limit - abs_offset; 3275 } 3276 3277 if (st->frag_data) { 3278 kunmap_atomic(st->frag_data); 3279 st->frag_data = NULL; 3280 } 3281 3282 st->frag_idx++; 3283 st->stepped_offset += skb_frag_size(frag); 3284 } 3285 3286 if (st->frag_data) { 3287 kunmap_atomic(st->frag_data); 3288 st->frag_data = NULL; 3289 } 3290 3291 if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) { 3292 st->cur_skb = skb_shinfo(st->root_skb)->frag_list; 3293 st->frag_idx = 0; 3294 goto next_skb; 3295 } else if (st->cur_skb->next) { 3296 st->cur_skb = st->cur_skb->next; 3297 st->frag_idx = 0; 3298 goto next_skb; 3299 } 3300 3301 return 0; 3302 } 3303 EXPORT_SYMBOL(skb_seq_read); 3304 3305 /** 3306 * skb_abort_seq_read - Abort a sequential read of skb data 3307 * @st: state variable 3308 * 3309 * Must be called if skb_seq_read() was not called until it 3310 * returned 0. 3311 */ 3312 void skb_abort_seq_read(struct skb_seq_state *st) 3313 { 3314 if (st->frag_data) 3315 kunmap_atomic(st->frag_data); 3316 } 3317 EXPORT_SYMBOL(skb_abort_seq_read); 3318 3319 #define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb)) 3320 3321 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text, 3322 struct ts_config *conf, 3323 struct ts_state *state) 3324 { 3325 return skb_seq_read(offset, text, TS_SKB_CB(state)); 3326 } 3327 3328 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state) 3329 { 3330 skb_abort_seq_read(TS_SKB_CB(state)); 3331 } 3332 3333 /** 3334 * skb_find_text - Find a text pattern in skb data 3335 * @skb: the buffer to look in 3336 * @from: search offset 3337 * @to: search limit 3338 * @config: textsearch configuration 3339 * 3340 * Finds a pattern in the skb data according to the specified 3341 * textsearch configuration. Use textsearch_next() to retrieve 3342 * subsequent occurrences of the pattern. Returns the offset 3343 * to the first occurrence or UINT_MAX if no match was found. 3344 */ 3345 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from, 3346 unsigned int to, struct ts_config *config) 3347 { 3348 struct ts_state state; 3349 unsigned int ret; 3350 3351 config->get_next_block = skb_ts_get_next_block; 3352 config->finish = skb_ts_finish; 3353 3354 skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state)); 3355 3356 ret = textsearch_find(config, &state); 3357 return (ret <= to - from ? ret : UINT_MAX); 3358 } 3359 EXPORT_SYMBOL(skb_find_text); 3360 3361 /** 3362 * skb_append_datato_frags - append the user data to a skb 3363 * @sk: sock structure 3364 * @skb: skb structure to be appended with user data. 3365 * @getfrag: call back function to be used for getting the user data 3366 * @from: pointer to user message iov 3367 * @length: length of the iov message 3368 * 3369 * Description: This procedure append the user data in the fragment part 3370 * of the skb if any page alloc fails user this procedure returns -ENOMEM 3371 */ 3372 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb, 3373 int (*getfrag)(void *from, char *to, int offset, 3374 int len, int odd, struct sk_buff *skb), 3375 void *from, int length) 3376 { 3377 int frg_cnt = skb_shinfo(skb)->nr_frags; 3378 int copy; 3379 int offset = 0; 3380 int ret; 3381 struct page_frag *pfrag = ¤t->task_frag; 3382 3383 do { 3384 /* Return error if we don't have space for new frag */ 3385 if (frg_cnt >= MAX_SKB_FRAGS) 3386 return -EMSGSIZE; 3387 3388 if (!sk_page_frag_refill(sk, pfrag)) 3389 return -ENOMEM; 3390 3391 /* copy the user data to page */ 3392 copy = min_t(int, length, pfrag->size - pfrag->offset); 3393 3394 ret = getfrag(from, page_address(pfrag->page) + pfrag->offset, 3395 offset, copy, 0, skb); 3396 if (ret < 0) 3397 return -EFAULT; 3398 3399 /* copy was successful so update the size parameters */ 3400 skb_fill_page_desc(skb, frg_cnt, pfrag->page, pfrag->offset, 3401 copy); 3402 frg_cnt++; 3403 pfrag->offset += copy; 3404 get_page(pfrag->page); 3405 3406 skb->truesize += copy; 3407 refcount_add(copy, &sk->sk_wmem_alloc); 3408 skb->len += copy; 3409 skb->data_len += copy; 3410 offset += copy; 3411 length -= copy; 3412 3413 } while (length > 0); 3414 3415 return 0; 3416 } 3417 EXPORT_SYMBOL(skb_append_datato_frags); 3418 3419 int skb_append_pagefrags(struct sk_buff *skb, struct page *page, 3420 int offset, size_t size) 3421 { 3422 int i = skb_shinfo(skb)->nr_frags; 3423 3424 if (skb_can_coalesce(skb, i, page, offset)) { 3425 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size); 3426 } else if (i < MAX_SKB_FRAGS) { 3427 get_page(page); 3428 skb_fill_page_desc(skb, i, page, offset, size); 3429 } else { 3430 return -EMSGSIZE; 3431 } 3432 3433 return 0; 3434 } 3435 EXPORT_SYMBOL_GPL(skb_append_pagefrags); 3436 3437 /** 3438 * skb_pull_rcsum - pull skb and update receive checksum 3439 * @skb: buffer to update 3440 * @len: length of data pulled 3441 * 3442 * This function performs an skb_pull on the packet and updates 3443 * the CHECKSUM_COMPLETE checksum. It should be used on 3444 * receive path processing instead of skb_pull unless you know 3445 * that the checksum difference is zero (e.g., a valid IP header) 3446 * or you are setting ip_summed to CHECKSUM_NONE. 3447 */ 3448 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len) 3449 { 3450 unsigned char *data = skb->data; 3451 3452 BUG_ON(len > skb->len); 3453 __skb_pull(skb, len); 3454 skb_postpull_rcsum(skb, data, len); 3455 return skb->data; 3456 } 3457 EXPORT_SYMBOL_GPL(skb_pull_rcsum); 3458 3459 /** 3460 * skb_segment - Perform protocol segmentation on skb. 3461 * @head_skb: buffer to segment 3462 * @features: features for the output path (see dev->features) 3463 * 3464 * This function performs segmentation on the given skb. It returns 3465 * a pointer to the first in a list of new skbs for the segments. 3466 * In case of error it returns ERR_PTR(err). 3467 */ 3468 struct sk_buff *skb_segment(struct sk_buff *head_skb, 3469 netdev_features_t features) 3470 { 3471 struct sk_buff *segs = NULL; 3472 struct sk_buff *tail = NULL; 3473 struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list; 3474 skb_frag_t *frag = skb_shinfo(head_skb)->frags; 3475 unsigned int mss = skb_shinfo(head_skb)->gso_size; 3476 unsigned int doffset = head_skb->data - skb_mac_header(head_skb); 3477 struct sk_buff *frag_skb = head_skb; 3478 unsigned int offset = doffset; 3479 unsigned int tnl_hlen = skb_tnl_header_len(head_skb); 3480 unsigned int partial_segs = 0; 3481 unsigned int headroom; 3482 unsigned int len = head_skb->len; 3483 __be16 proto; 3484 bool csum, sg; 3485 int nfrags = skb_shinfo(head_skb)->nr_frags; 3486 int err = -ENOMEM; 3487 int i = 0; 3488 int pos; 3489 int dummy; 3490 3491 __skb_push(head_skb, doffset); 3492 proto = skb_network_protocol(head_skb, &dummy); 3493 if (unlikely(!proto)) 3494 return ERR_PTR(-EINVAL); 3495 3496 sg = !!(features & NETIF_F_SG); 3497 csum = !!can_checksum_protocol(features, proto); 3498 3499 if (sg && csum && (mss != GSO_BY_FRAGS)) { 3500 if (!(features & NETIF_F_GSO_PARTIAL)) { 3501 struct sk_buff *iter; 3502 unsigned int frag_len; 3503 3504 if (!list_skb || 3505 !net_gso_ok(features, skb_shinfo(head_skb)->gso_type)) 3506 goto normal; 3507 3508 /* If we get here then all the required 3509 * GSO features except frag_list are supported. 3510 * Try to split the SKB to multiple GSO SKBs 3511 * with no frag_list. 3512 * Currently we can do that only when the buffers don't 3513 * have a linear part and all the buffers except 3514 * the last are of the same length. 3515 */ 3516 frag_len = list_skb->len; 3517 skb_walk_frags(head_skb, iter) { 3518 if (frag_len != iter->len && iter->next) 3519 goto normal; 3520 if (skb_headlen(iter) && !iter->head_frag) 3521 goto normal; 3522 3523 len -= iter->len; 3524 } 3525 3526 if (len != frag_len) 3527 goto normal; 3528 } 3529 3530 /* GSO partial only requires that we trim off any excess that 3531 * doesn't fit into an MSS sized block, so take care of that 3532 * now. 3533 */ 3534 partial_segs = len / mss; 3535 if (partial_segs > 1) 3536 mss *= partial_segs; 3537 else 3538 partial_segs = 0; 3539 } 3540 3541 normal: 3542 headroom = skb_headroom(head_skb); 3543 pos = skb_headlen(head_skb); 3544 3545 do { 3546 struct sk_buff *nskb; 3547 skb_frag_t *nskb_frag; 3548 int hsize; 3549 int size; 3550 3551 if (unlikely(mss == GSO_BY_FRAGS)) { 3552 len = list_skb->len; 3553 } else { 3554 len = head_skb->len - offset; 3555 if (len > mss) 3556 len = mss; 3557 } 3558 3559 hsize = skb_headlen(head_skb) - offset; 3560 if (hsize < 0) 3561 hsize = 0; 3562 if (hsize > len || !sg) 3563 hsize = len; 3564 3565 if (!hsize && i >= nfrags && skb_headlen(list_skb) && 3566 (skb_headlen(list_skb) == len || sg)) { 3567 BUG_ON(skb_headlen(list_skb) > len); 3568 3569 i = 0; 3570 nfrags = skb_shinfo(list_skb)->nr_frags; 3571 frag = skb_shinfo(list_skb)->frags; 3572 frag_skb = list_skb; 3573 pos += skb_headlen(list_skb); 3574 3575 while (pos < offset + len) { 3576 BUG_ON(i >= nfrags); 3577 3578 size = skb_frag_size(frag); 3579 if (pos + size > offset + len) 3580 break; 3581 3582 i++; 3583 pos += size; 3584 frag++; 3585 } 3586 3587 nskb = skb_clone(list_skb, GFP_ATOMIC); 3588 list_skb = list_skb->next; 3589 3590 if (unlikely(!nskb)) 3591 goto err; 3592 3593 if (unlikely(pskb_trim(nskb, len))) { 3594 kfree_skb(nskb); 3595 goto err; 3596 } 3597 3598 hsize = skb_end_offset(nskb); 3599 if (skb_cow_head(nskb, doffset + headroom)) { 3600 kfree_skb(nskb); 3601 goto err; 3602 } 3603 3604 nskb->truesize += skb_end_offset(nskb) - hsize; 3605 skb_release_head_state(nskb); 3606 __skb_push(nskb, doffset); 3607 } else { 3608 nskb = __alloc_skb(hsize + doffset + headroom, 3609 GFP_ATOMIC, skb_alloc_rx_flag(head_skb), 3610 NUMA_NO_NODE); 3611 3612 if (unlikely(!nskb)) 3613 goto err; 3614 3615 skb_reserve(nskb, headroom); 3616 __skb_put(nskb, doffset); 3617 } 3618 3619 if (segs) 3620 tail->next = nskb; 3621 else 3622 segs = nskb; 3623 tail = nskb; 3624 3625 __copy_skb_header(nskb, head_skb); 3626 3627 skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom); 3628 skb_reset_mac_len(nskb); 3629 3630 skb_copy_from_linear_data_offset(head_skb, -tnl_hlen, 3631 nskb->data - tnl_hlen, 3632 doffset + tnl_hlen); 3633 3634 if (nskb->len == len + doffset) 3635 goto perform_csum_check; 3636 3637 if (!sg) { 3638 if (!nskb->remcsum_offload) 3639 nskb->ip_summed = CHECKSUM_NONE; 3640 SKB_GSO_CB(nskb)->csum = 3641 skb_copy_and_csum_bits(head_skb, offset, 3642 skb_put(nskb, len), 3643 len, 0); 3644 SKB_GSO_CB(nskb)->csum_start = 3645 skb_headroom(nskb) + doffset; 3646 continue; 3647 } 3648 3649 nskb_frag = skb_shinfo(nskb)->frags; 3650 3651 skb_copy_from_linear_data_offset(head_skb, offset, 3652 skb_put(nskb, hsize), hsize); 3653 3654 skb_shinfo(nskb)->tx_flags |= skb_shinfo(head_skb)->tx_flags & 3655 SKBTX_SHARED_FRAG; 3656 if (skb_zerocopy_clone(nskb, head_skb, GFP_ATOMIC)) 3657 goto err; 3658 3659 while (pos < offset + len) { 3660 if (i >= nfrags) { 3661 BUG_ON(skb_headlen(list_skb)); 3662 3663 i = 0; 3664 nfrags = skb_shinfo(list_skb)->nr_frags; 3665 frag = skb_shinfo(list_skb)->frags; 3666 frag_skb = list_skb; 3667 3668 BUG_ON(!nfrags); 3669 3670 list_skb = list_skb->next; 3671 } 3672 3673 if (unlikely(skb_shinfo(nskb)->nr_frags >= 3674 MAX_SKB_FRAGS)) { 3675 net_warn_ratelimited( 3676 "skb_segment: too many frags: %u %u\n", 3677 pos, mss); 3678 goto err; 3679 } 3680 3681 if (unlikely(skb_orphan_frags(frag_skb, GFP_ATOMIC))) 3682 goto err; 3683 3684 *nskb_frag = *frag; 3685 __skb_frag_ref(nskb_frag); 3686 size = skb_frag_size(nskb_frag); 3687 3688 if (pos < offset) { 3689 nskb_frag->page_offset += offset - pos; 3690 skb_frag_size_sub(nskb_frag, offset - pos); 3691 } 3692 3693 skb_shinfo(nskb)->nr_frags++; 3694 3695 if (pos + size <= offset + len) { 3696 i++; 3697 frag++; 3698 pos += size; 3699 } else { 3700 skb_frag_size_sub(nskb_frag, pos + size - (offset + len)); 3701 goto skip_fraglist; 3702 } 3703 3704 nskb_frag++; 3705 } 3706 3707 skip_fraglist: 3708 nskb->data_len = len - hsize; 3709 nskb->len += nskb->data_len; 3710 nskb->truesize += nskb->data_len; 3711 3712 perform_csum_check: 3713 if (!csum) { 3714 if (skb_has_shared_frag(nskb)) { 3715 err = __skb_linearize(nskb); 3716 if (err) 3717 goto err; 3718 } 3719 if (!nskb->remcsum_offload) 3720 nskb->ip_summed = CHECKSUM_NONE; 3721 SKB_GSO_CB(nskb)->csum = 3722 skb_checksum(nskb, doffset, 3723 nskb->len - doffset, 0); 3724 SKB_GSO_CB(nskb)->csum_start = 3725 skb_headroom(nskb) + doffset; 3726 } 3727 } while ((offset += len) < head_skb->len); 3728 3729 /* Some callers want to get the end of the list. 3730 * Put it in segs->prev to avoid walking the list. 3731 * (see validate_xmit_skb_list() for example) 3732 */ 3733 segs->prev = tail; 3734 3735 if (partial_segs) { 3736 struct sk_buff *iter; 3737 int type = skb_shinfo(head_skb)->gso_type; 3738 unsigned short gso_size = skb_shinfo(head_skb)->gso_size; 3739 3740 /* Update type to add partial and then remove dodgy if set */ 3741 type |= (features & NETIF_F_GSO_PARTIAL) / NETIF_F_GSO_PARTIAL * SKB_GSO_PARTIAL; 3742 type &= ~SKB_GSO_DODGY; 3743 3744 /* Update GSO info and prepare to start updating headers on 3745 * our way back down the stack of protocols. 3746 */ 3747 for (iter = segs; iter; iter = iter->next) { 3748 skb_shinfo(iter)->gso_size = gso_size; 3749 skb_shinfo(iter)->gso_segs = partial_segs; 3750 skb_shinfo(iter)->gso_type = type; 3751 SKB_GSO_CB(iter)->data_offset = skb_headroom(iter) + doffset; 3752 } 3753 3754 if (tail->len - doffset <= gso_size) 3755 skb_shinfo(tail)->gso_size = 0; 3756 else if (tail != segs) 3757 skb_shinfo(tail)->gso_segs = DIV_ROUND_UP(tail->len - doffset, gso_size); 3758 } 3759 3760 /* Following permits correct backpressure, for protocols 3761 * using skb_set_owner_w(). 3762 * Idea is to tranfert ownership from head_skb to last segment. 3763 */ 3764 if (head_skb->destructor == sock_wfree) { 3765 swap(tail->truesize, head_skb->truesize); 3766 swap(tail->destructor, head_skb->destructor); 3767 swap(tail->sk, head_skb->sk); 3768 } 3769 return segs; 3770 3771 err: 3772 kfree_skb_list(segs); 3773 return ERR_PTR(err); 3774 } 3775 EXPORT_SYMBOL_GPL(skb_segment); 3776 3777 int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb) 3778 { 3779 struct skb_shared_info *pinfo, *skbinfo = skb_shinfo(skb); 3780 unsigned int offset = skb_gro_offset(skb); 3781 unsigned int headlen = skb_headlen(skb); 3782 unsigned int len = skb_gro_len(skb); 3783 struct sk_buff *lp, *p = *head; 3784 unsigned int delta_truesize; 3785 3786 if (unlikely(p->len + len >= 65536)) 3787 return -E2BIG; 3788 3789 lp = NAPI_GRO_CB(p)->last; 3790 pinfo = skb_shinfo(lp); 3791 3792 if (headlen <= offset) { 3793 skb_frag_t *frag; 3794 skb_frag_t *frag2; 3795 int i = skbinfo->nr_frags; 3796 int nr_frags = pinfo->nr_frags + i; 3797 3798 if (nr_frags > MAX_SKB_FRAGS) 3799 goto merge; 3800 3801 offset -= headlen; 3802 pinfo->nr_frags = nr_frags; 3803 skbinfo->nr_frags = 0; 3804 3805 frag = pinfo->frags + nr_frags; 3806 frag2 = skbinfo->frags + i; 3807 do { 3808 *--frag = *--frag2; 3809 } while (--i); 3810 3811 frag->page_offset += offset; 3812 skb_frag_size_sub(frag, offset); 3813 3814 /* all fragments truesize : remove (head size + sk_buff) */ 3815 delta_truesize = skb->truesize - 3816 SKB_TRUESIZE(skb_end_offset(skb)); 3817 3818 skb->truesize -= skb->data_len; 3819 skb->len -= skb->data_len; 3820 skb->data_len = 0; 3821 3822 NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE; 3823 goto done; 3824 } else if (skb->head_frag) { 3825 int nr_frags = pinfo->nr_frags; 3826 skb_frag_t *frag = pinfo->frags + nr_frags; 3827 struct page *page = virt_to_head_page(skb->head); 3828 unsigned int first_size = headlen - offset; 3829 unsigned int first_offset; 3830 3831 if (nr_frags + 1 + skbinfo->nr_frags > MAX_SKB_FRAGS) 3832 goto merge; 3833 3834 first_offset = skb->data - 3835 (unsigned char *)page_address(page) + 3836 offset; 3837 3838 pinfo->nr_frags = nr_frags + 1 + skbinfo->nr_frags; 3839 3840 frag->page.p = page; 3841 frag->page_offset = first_offset; 3842 skb_frag_size_set(frag, first_size); 3843 3844 memcpy(frag + 1, skbinfo->frags, sizeof(*frag) * skbinfo->nr_frags); 3845 /* We dont need to clear skbinfo->nr_frags here */ 3846 3847 delta_truesize = skb->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff)); 3848 NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE_STOLEN_HEAD; 3849 goto done; 3850 } 3851 3852 merge: 3853 delta_truesize = skb->truesize; 3854 if (offset > headlen) { 3855 unsigned int eat = offset - headlen; 3856 3857 skbinfo->frags[0].page_offset += eat; 3858 skb_frag_size_sub(&skbinfo->frags[0], eat); 3859 skb->data_len -= eat; 3860 skb->len -= eat; 3861 offset = headlen; 3862 } 3863 3864 __skb_pull(skb, offset); 3865 3866 if (NAPI_GRO_CB(p)->last == p) 3867 skb_shinfo(p)->frag_list = skb; 3868 else 3869 NAPI_GRO_CB(p)->last->next = skb; 3870 NAPI_GRO_CB(p)->last = skb; 3871 __skb_header_release(skb); 3872 lp = p; 3873 3874 done: 3875 NAPI_GRO_CB(p)->count++; 3876 p->data_len += len; 3877 p->truesize += delta_truesize; 3878 p->len += len; 3879 if (lp != p) { 3880 lp->data_len += len; 3881 lp->truesize += delta_truesize; 3882 lp->len += len; 3883 } 3884 NAPI_GRO_CB(skb)->same_flow = 1; 3885 return 0; 3886 } 3887 EXPORT_SYMBOL_GPL(skb_gro_receive); 3888 3889 void __init skb_init(void) 3890 { 3891 skbuff_head_cache = kmem_cache_create("skbuff_head_cache", 3892 sizeof(struct sk_buff), 3893 0, 3894 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 3895 NULL); 3896 skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache", 3897 sizeof(struct sk_buff_fclones), 3898 0, 3899 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 3900 NULL); 3901 } 3902 3903 static int 3904 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len, 3905 unsigned int recursion_level) 3906 { 3907 int start = skb_headlen(skb); 3908 int i, copy = start - offset; 3909 struct sk_buff *frag_iter; 3910 int elt = 0; 3911 3912 if (unlikely(recursion_level >= 24)) 3913 return -EMSGSIZE; 3914 3915 if (copy > 0) { 3916 if (copy > len) 3917 copy = len; 3918 sg_set_buf(sg, skb->data + offset, copy); 3919 elt++; 3920 if ((len -= copy) == 0) 3921 return elt; 3922 offset += copy; 3923 } 3924 3925 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 3926 int end; 3927 3928 WARN_ON(start > offset + len); 3929 3930 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]); 3931 if ((copy = end - offset) > 0) { 3932 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 3933 if (unlikely(elt && sg_is_last(&sg[elt - 1]))) 3934 return -EMSGSIZE; 3935 3936 if (copy > len) 3937 copy = len; 3938 sg_set_page(&sg[elt], skb_frag_page(frag), copy, 3939 frag->page_offset+offset-start); 3940 elt++; 3941 if (!(len -= copy)) 3942 return elt; 3943 offset += copy; 3944 } 3945 start = end; 3946 } 3947 3948 skb_walk_frags(skb, frag_iter) { 3949 int end, ret; 3950 3951 WARN_ON(start > offset + len); 3952 3953 end = start + frag_iter->len; 3954 if ((copy = end - offset) > 0) { 3955 if (unlikely(elt && sg_is_last(&sg[elt - 1]))) 3956 return -EMSGSIZE; 3957 3958 if (copy > len) 3959 copy = len; 3960 ret = __skb_to_sgvec(frag_iter, sg+elt, offset - start, 3961 copy, recursion_level + 1); 3962 if (unlikely(ret < 0)) 3963 return ret; 3964 elt += ret; 3965 if ((len -= copy) == 0) 3966 return elt; 3967 offset += copy; 3968 } 3969 start = end; 3970 } 3971 BUG_ON(len); 3972 return elt; 3973 } 3974 3975 /** 3976 * skb_to_sgvec - Fill a scatter-gather list from a socket buffer 3977 * @skb: Socket buffer containing the buffers to be mapped 3978 * @sg: The scatter-gather list to map into 3979 * @offset: The offset into the buffer's contents to start mapping 3980 * @len: Length of buffer space to be mapped 3981 * 3982 * Fill the specified scatter-gather list with mappings/pointers into a 3983 * region of the buffer space attached to a socket buffer. Returns either 3984 * the number of scatterlist items used, or -EMSGSIZE if the contents 3985 * could not fit. 3986 */ 3987 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len) 3988 { 3989 int nsg = __skb_to_sgvec(skb, sg, offset, len, 0); 3990 3991 if (nsg <= 0) 3992 return nsg; 3993 3994 sg_mark_end(&sg[nsg - 1]); 3995 3996 return nsg; 3997 } 3998 EXPORT_SYMBOL_GPL(skb_to_sgvec); 3999 4000 /* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given 4001 * sglist without mark the sg which contain last skb data as the end. 4002 * So the caller can mannipulate sg list as will when padding new data after 4003 * the first call without calling sg_unmark_end to expend sg list. 4004 * 4005 * Scenario to use skb_to_sgvec_nomark: 4006 * 1. sg_init_table 4007 * 2. skb_to_sgvec_nomark(payload1) 4008 * 3. skb_to_sgvec_nomark(payload2) 4009 * 4010 * This is equivalent to: 4011 * 1. sg_init_table 4012 * 2. skb_to_sgvec(payload1) 4013 * 3. sg_unmark_end 4014 * 4. skb_to_sgvec(payload2) 4015 * 4016 * When mapping mutilple payload conditionally, skb_to_sgvec_nomark 4017 * is more preferable. 4018 */ 4019 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg, 4020 int offset, int len) 4021 { 4022 return __skb_to_sgvec(skb, sg, offset, len, 0); 4023 } 4024 EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark); 4025 4026 4027 4028 /** 4029 * skb_cow_data - Check that a socket buffer's data buffers are writable 4030 * @skb: The socket buffer to check. 4031 * @tailbits: Amount of trailing space to be added 4032 * @trailer: Returned pointer to the skb where the @tailbits space begins 4033 * 4034 * Make sure that the data buffers attached to a socket buffer are 4035 * writable. If they are not, private copies are made of the data buffers 4036 * and the socket buffer is set to use these instead. 4037 * 4038 * If @tailbits is given, make sure that there is space to write @tailbits 4039 * bytes of data beyond current end of socket buffer. @trailer will be 4040 * set to point to the skb in which this space begins. 4041 * 4042 * The number of scatterlist elements required to completely map the 4043 * COW'd and extended socket buffer will be returned. 4044 */ 4045 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer) 4046 { 4047 int copyflag; 4048 int elt; 4049 struct sk_buff *skb1, **skb_p; 4050 4051 /* If skb is cloned or its head is paged, reallocate 4052 * head pulling out all the pages (pages are considered not writable 4053 * at the moment even if they are anonymous). 4054 */ 4055 if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) && 4056 __pskb_pull_tail(skb, skb_pagelen(skb)-skb_headlen(skb)) == NULL) 4057 return -ENOMEM; 4058 4059 /* Easy case. Most of packets will go this way. */ 4060 if (!skb_has_frag_list(skb)) { 4061 /* A little of trouble, not enough of space for trailer. 4062 * This should not happen, when stack is tuned to generate 4063 * good frames. OK, on miss we reallocate and reserve even more 4064 * space, 128 bytes is fair. */ 4065 4066 if (skb_tailroom(skb) < tailbits && 4067 pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC)) 4068 return -ENOMEM; 4069 4070 /* Voila! */ 4071 *trailer = skb; 4072 return 1; 4073 } 4074 4075 /* Misery. We are in troubles, going to mincer fragments... */ 4076 4077 elt = 1; 4078 skb_p = &skb_shinfo(skb)->frag_list; 4079 copyflag = 0; 4080 4081 while ((skb1 = *skb_p) != NULL) { 4082 int ntail = 0; 4083 4084 /* The fragment is partially pulled by someone, 4085 * this can happen on input. Copy it and everything 4086 * after it. */ 4087 4088 if (skb_shared(skb1)) 4089 copyflag = 1; 4090 4091 /* If the skb is the last, worry about trailer. */ 4092 4093 if (skb1->next == NULL && tailbits) { 4094 if (skb_shinfo(skb1)->nr_frags || 4095 skb_has_frag_list(skb1) || 4096 skb_tailroom(skb1) < tailbits) 4097 ntail = tailbits + 128; 4098 } 4099 4100 if (copyflag || 4101 skb_cloned(skb1) || 4102 ntail || 4103 skb_shinfo(skb1)->nr_frags || 4104 skb_has_frag_list(skb1)) { 4105 struct sk_buff *skb2; 4106 4107 /* Fuck, we are miserable poor guys... */ 4108 if (ntail == 0) 4109 skb2 = skb_copy(skb1, GFP_ATOMIC); 4110 else 4111 skb2 = skb_copy_expand(skb1, 4112 skb_headroom(skb1), 4113 ntail, 4114 GFP_ATOMIC); 4115 if (unlikely(skb2 == NULL)) 4116 return -ENOMEM; 4117 4118 if (skb1->sk) 4119 skb_set_owner_w(skb2, skb1->sk); 4120 4121 /* Looking around. Are we still alive? 4122 * OK, link new skb, drop old one */ 4123 4124 skb2->next = skb1->next; 4125 *skb_p = skb2; 4126 kfree_skb(skb1); 4127 skb1 = skb2; 4128 } 4129 elt++; 4130 *trailer = skb1; 4131 skb_p = &skb1->next; 4132 } 4133 4134 return elt; 4135 } 4136 EXPORT_SYMBOL_GPL(skb_cow_data); 4137 4138 static void sock_rmem_free(struct sk_buff *skb) 4139 { 4140 struct sock *sk = skb->sk; 4141 4142 atomic_sub(skb->truesize, &sk->sk_rmem_alloc); 4143 } 4144 4145 static void skb_set_err_queue(struct sk_buff *skb) 4146 { 4147 /* pkt_type of skbs received on local sockets is never PACKET_OUTGOING. 4148 * So, it is safe to (mis)use it to mark skbs on the error queue. 4149 */ 4150 skb->pkt_type = PACKET_OUTGOING; 4151 BUILD_BUG_ON(PACKET_OUTGOING == 0); 4152 } 4153 4154 /* 4155 * Note: We dont mem charge error packets (no sk_forward_alloc changes) 4156 */ 4157 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb) 4158 { 4159 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >= 4160 (unsigned int)sk->sk_rcvbuf) 4161 return -ENOMEM; 4162 4163 skb_orphan(skb); 4164 skb->sk = sk; 4165 skb->destructor = sock_rmem_free; 4166 atomic_add(skb->truesize, &sk->sk_rmem_alloc); 4167 skb_set_err_queue(skb); 4168 4169 /* before exiting rcu section, make sure dst is refcounted */ 4170 skb_dst_force(skb); 4171 4172 skb_queue_tail(&sk->sk_error_queue, skb); 4173 if (!sock_flag(sk, SOCK_DEAD)) 4174 sk->sk_data_ready(sk); 4175 return 0; 4176 } 4177 EXPORT_SYMBOL(sock_queue_err_skb); 4178 4179 static bool is_icmp_err_skb(const struct sk_buff *skb) 4180 { 4181 return skb && (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP || 4182 SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP6); 4183 } 4184 4185 struct sk_buff *sock_dequeue_err_skb(struct sock *sk) 4186 { 4187 struct sk_buff_head *q = &sk->sk_error_queue; 4188 struct sk_buff *skb, *skb_next = NULL; 4189 bool icmp_next = false; 4190 unsigned long flags; 4191 4192 spin_lock_irqsave(&q->lock, flags); 4193 skb = __skb_dequeue(q); 4194 if (skb && (skb_next = skb_peek(q))) { 4195 icmp_next = is_icmp_err_skb(skb_next); 4196 if (icmp_next) 4197 sk->sk_err = SKB_EXT_ERR(skb_next)->ee.ee_origin; 4198 } 4199 spin_unlock_irqrestore(&q->lock, flags); 4200 4201 if (is_icmp_err_skb(skb) && !icmp_next) 4202 sk->sk_err = 0; 4203 4204 if (skb_next) 4205 sk->sk_error_report(sk); 4206 4207 return skb; 4208 } 4209 EXPORT_SYMBOL(sock_dequeue_err_skb); 4210 4211 /** 4212 * skb_clone_sk - create clone of skb, and take reference to socket 4213 * @skb: the skb to clone 4214 * 4215 * This function creates a clone of a buffer that holds a reference on 4216 * sk_refcnt. Buffers created via this function are meant to be 4217 * returned using sock_queue_err_skb, or free via kfree_skb. 4218 * 4219 * When passing buffers allocated with this function to sock_queue_err_skb 4220 * it is necessary to wrap the call with sock_hold/sock_put in order to 4221 * prevent the socket from being released prior to being enqueued on 4222 * the sk_error_queue. 4223 */ 4224 struct sk_buff *skb_clone_sk(struct sk_buff *skb) 4225 { 4226 struct sock *sk = skb->sk; 4227 struct sk_buff *clone; 4228 4229 if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt)) 4230 return NULL; 4231 4232 clone = skb_clone(skb, GFP_ATOMIC); 4233 if (!clone) { 4234 sock_put(sk); 4235 return NULL; 4236 } 4237 4238 clone->sk = sk; 4239 clone->destructor = sock_efree; 4240 4241 return clone; 4242 } 4243 EXPORT_SYMBOL(skb_clone_sk); 4244 4245 static void __skb_complete_tx_timestamp(struct sk_buff *skb, 4246 struct sock *sk, 4247 int tstype, 4248 bool opt_stats) 4249 { 4250 struct sock_exterr_skb *serr; 4251 int err; 4252 4253 BUILD_BUG_ON(sizeof(struct sock_exterr_skb) > sizeof(skb->cb)); 4254 4255 serr = SKB_EXT_ERR(skb); 4256 memset(serr, 0, sizeof(*serr)); 4257 serr->ee.ee_errno = ENOMSG; 4258 serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING; 4259 serr->ee.ee_info = tstype; 4260 serr->opt_stats = opt_stats; 4261 serr->header.h4.iif = skb->dev ? skb->dev->ifindex : 0; 4262 if (sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID) { 4263 serr->ee.ee_data = skb_shinfo(skb)->tskey; 4264 if (sk->sk_protocol == IPPROTO_TCP && 4265 sk->sk_type == SOCK_STREAM) 4266 serr->ee.ee_data -= sk->sk_tskey; 4267 } 4268 4269 err = sock_queue_err_skb(sk, skb); 4270 4271 if (err) 4272 kfree_skb(skb); 4273 } 4274 4275 static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly) 4276 { 4277 bool ret; 4278 4279 if (likely(sysctl_tstamp_allow_data || tsonly)) 4280 return true; 4281 4282 read_lock_bh(&sk->sk_callback_lock); 4283 ret = sk->sk_socket && sk->sk_socket->file && 4284 file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW); 4285 read_unlock_bh(&sk->sk_callback_lock); 4286 return ret; 4287 } 4288 4289 void skb_complete_tx_timestamp(struct sk_buff *skb, 4290 struct skb_shared_hwtstamps *hwtstamps) 4291 { 4292 struct sock *sk = skb->sk; 4293 4294 if (!skb_may_tx_timestamp(sk, false)) 4295 return; 4296 4297 /* Take a reference to prevent skb_orphan() from freeing the socket, 4298 * but only if the socket refcount is not zero. 4299 */ 4300 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) { 4301 *skb_hwtstamps(skb) = *hwtstamps; 4302 __skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND, false); 4303 sock_put(sk); 4304 } 4305 } 4306 EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp); 4307 4308 void __skb_tstamp_tx(struct sk_buff *orig_skb, 4309 struct skb_shared_hwtstamps *hwtstamps, 4310 struct sock *sk, int tstype) 4311 { 4312 struct sk_buff *skb; 4313 bool tsonly, opt_stats = false; 4314 4315 if (!sk) 4316 return; 4317 4318 if (!hwtstamps && !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TX_SWHW) && 4319 skb_shinfo(orig_skb)->tx_flags & SKBTX_IN_PROGRESS) 4320 return; 4321 4322 tsonly = sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TSONLY; 4323 if (!skb_may_tx_timestamp(sk, tsonly)) 4324 return; 4325 4326 if (tsonly) { 4327 #ifdef CONFIG_INET 4328 if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_STATS) && 4329 sk->sk_protocol == IPPROTO_TCP && 4330 sk->sk_type == SOCK_STREAM) { 4331 skb = tcp_get_timestamping_opt_stats(sk); 4332 opt_stats = true; 4333 } else 4334 #endif 4335 skb = alloc_skb(0, GFP_ATOMIC); 4336 } else { 4337 skb = skb_clone(orig_skb, GFP_ATOMIC); 4338 } 4339 if (!skb) 4340 return; 4341 4342 if (tsonly) { 4343 skb_shinfo(skb)->tx_flags |= skb_shinfo(orig_skb)->tx_flags & 4344 SKBTX_ANY_TSTAMP; 4345 skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey; 4346 } 4347 4348 if (hwtstamps) 4349 *skb_hwtstamps(skb) = *hwtstamps; 4350 else 4351 skb->tstamp = ktime_get_real(); 4352 4353 __skb_complete_tx_timestamp(skb, sk, tstype, opt_stats); 4354 } 4355 EXPORT_SYMBOL_GPL(__skb_tstamp_tx); 4356 4357 void skb_tstamp_tx(struct sk_buff *orig_skb, 4358 struct skb_shared_hwtstamps *hwtstamps) 4359 { 4360 return __skb_tstamp_tx(orig_skb, hwtstamps, orig_skb->sk, 4361 SCM_TSTAMP_SND); 4362 } 4363 EXPORT_SYMBOL_GPL(skb_tstamp_tx); 4364 4365 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked) 4366 { 4367 struct sock *sk = skb->sk; 4368 struct sock_exterr_skb *serr; 4369 int err = 1; 4370 4371 skb->wifi_acked_valid = 1; 4372 skb->wifi_acked = acked; 4373 4374 serr = SKB_EXT_ERR(skb); 4375 memset(serr, 0, sizeof(*serr)); 4376 serr->ee.ee_errno = ENOMSG; 4377 serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS; 4378 4379 /* Take a reference to prevent skb_orphan() from freeing the socket, 4380 * but only if the socket refcount is not zero. 4381 */ 4382 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) { 4383 err = sock_queue_err_skb(sk, skb); 4384 sock_put(sk); 4385 } 4386 if (err) 4387 kfree_skb(skb); 4388 } 4389 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack); 4390 4391 /** 4392 * skb_partial_csum_set - set up and verify partial csum values for packet 4393 * @skb: the skb to set 4394 * @start: the number of bytes after skb->data to start checksumming. 4395 * @off: the offset from start to place the checksum. 4396 * 4397 * For untrusted partially-checksummed packets, we need to make sure the values 4398 * for skb->csum_start and skb->csum_offset are valid so we don't oops. 4399 * 4400 * This function checks and sets those values and skb->ip_summed: if this 4401 * returns false you should drop the packet. 4402 */ 4403 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off) 4404 { 4405 if (unlikely(start > skb_headlen(skb)) || 4406 unlikely((int)start + off > skb_headlen(skb) - 2)) { 4407 net_warn_ratelimited("bad partial csum: csum=%u/%u len=%u\n", 4408 start, off, skb_headlen(skb)); 4409 return false; 4410 } 4411 skb->ip_summed = CHECKSUM_PARTIAL; 4412 skb->csum_start = skb_headroom(skb) + start; 4413 skb->csum_offset = off; 4414 skb_set_transport_header(skb, start); 4415 return true; 4416 } 4417 EXPORT_SYMBOL_GPL(skb_partial_csum_set); 4418 4419 static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len, 4420 unsigned int max) 4421 { 4422 if (skb_headlen(skb) >= len) 4423 return 0; 4424 4425 /* If we need to pullup then pullup to the max, so we 4426 * won't need to do it again. 4427 */ 4428 if (max > skb->len) 4429 max = skb->len; 4430 4431 if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL) 4432 return -ENOMEM; 4433 4434 if (skb_headlen(skb) < len) 4435 return -EPROTO; 4436 4437 return 0; 4438 } 4439 4440 #define MAX_TCP_HDR_LEN (15 * 4) 4441 4442 static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb, 4443 typeof(IPPROTO_IP) proto, 4444 unsigned int off) 4445 { 4446 switch (proto) { 4447 int err; 4448 4449 case IPPROTO_TCP: 4450 err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr), 4451 off + MAX_TCP_HDR_LEN); 4452 if (!err && !skb_partial_csum_set(skb, off, 4453 offsetof(struct tcphdr, 4454 check))) 4455 err = -EPROTO; 4456 return err ? ERR_PTR(err) : &tcp_hdr(skb)->check; 4457 4458 case IPPROTO_UDP: 4459 err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr), 4460 off + sizeof(struct udphdr)); 4461 if (!err && !skb_partial_csum_set(skb, off, 4462 offsetof(struct udphdr, 4463 check))) 4464 err = -EPROTO; 4465 return err ? ERR_PTR(err) : &udp_hdr(skb)->check; 4466 } 4467 4468 return ERR_PTR(-EPROTO); 4469 } 4470 4471 /* This value should be large enough to cover a tagged ethernet header plus 4472 * maximally sized IP and TCP or UDP headers. 4473 */ 4474 #define MAX_IP_HDR_LEN 128 4475 4476 static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate) 4477 { 4478 unsigned int off; 4479 bool fragment; 4480 __sum16 *csum; 4481 int err; 4482 4483 fragment = false; 4484 4485 err = skb_maybe_pull_tail(skb, 4486 sizeof(struct iphdr), 4487 MAX_IP_HDR_LEN); 4488 if (err < 0) 4489 goto out; 4490 4491 if (ip_hdr(skb)->frag_off & htons(IP_OFFSET | IP_MF)) 4492 fragment = true; 4493 4494 off = ip_hdrlen(skb); 4495 4496 err = -EPROTO; 4497 4498 if (fragment) 4499 goto out; 4500 4501 csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off); 4502 if (IS_ERR(csum)) 4503 return PTR_ERR(csum); 4504 4505 if (recalculate) 4506 *csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr, 4507 ip_hdr(skb)->daddr, 4508 skb->len - off, 4509 ip_hdr(skb)->protocol, 0); 4510 err = 0; 4511 4512 out: 4513 return err; 4514 } 4515 4516 /* This value should be large enough to cover a tagged ethernet header plus 4517 * an IPv6 header, all options, and a maximal TCP or UDP header. 4518 */ 4519 #define MAX_IPV6_HDR_LEN 256 4520 4521 #define OPT_HDR(type, skb, off) \ 4522 (type *)(skb_network_header(skb) + (off)) 4523 4524 static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate) 4525 { 4526 int err; 4527 u8 nexthdr; 4528 unsigned int off; 4529 unsigned int len; 4530 bool fragment; 4531 bool done; 4532 __sum16 *csum; 4533 4534 fragment = false; 4535 done = false; 4536 4537 off = sizeof(struct ipv6hdr); 4538 4539 err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN); 4540 if (err < 0) 4541 goto out; 4542 4543 nexthdr = ipv6_hdr(skb)->nexthdr; 4544 4545 len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len); 4546 while (off <= len && !done) { 4547 switch (nexthdr) { 4548 case IPPROTO_DSTOPTS: 4549 case IPPROTO_HOPOPTS: 4550 case IPPROTO_ROUTING: { 4551 struct ipv6_opt_hdr *hp; 4552 4553 err = skb_maybe_pull_tail(skb, 4554 off + 4555 sizeof(struct ipv6_opt_hdr), 4556 MAX_IPV6_HDR_LEN); 4557 if (err < 0) 4558 goto out; 4559 4560 hp = OPT_HDR(struct ipv6_opt_hdr, skb, off); 4561 nexthdr = hp->nexthdr; 4562 off += ipv6_optlen(hp); 4563 break; 4564 } 4565 case IPPROTO_AH: { 4566 struct ip_auth_hdr *hp; 4567 4568 err = skb_maybe_pull_tail(skb, 4569 off + 4570 sizeof(struct ip_auth_hdr), 4571 MAX_IPV6_HDR_LEN); 4572 if (err < 0) 4573 goto out; 4574 4575 hp = OPT_HDR(struct ip_auth_hdr, skb, off); 4576 nexthdr = hp->nexthdr; 4577 off += ipv6_authlen(hp); 4578 break; 4579 } 4580 case IPPROTO_FRAGMENT: { 4581 struct frag_hdr *hp; 4582 4583 err = skb_maybe_pull_tail(skb, 4584 off + 4585 sizeof(struct frag_hdr), 4586 MAX_IPV6_HDR_LEN); 4587 if (err < 0) 4588 goto out; 4589 4590 hp = OPT_HDR(struct frag_hdr, skb, off); 4591 4592 if (hp->frag_off & htons(IP6_OFFSET | IP6_MF)) 4593 fragment = true; 4594 4595 nexthdr = hp->nexthdr; 4596 off += sizeof(struct frag_hdr); 4597 break; 4598 } 4599 default: 4600 done = true; 4601 break; 4602 } 4603 } 4604 4605 err = -EPROTO; 4606 4607 if (!done || fragment) 4608 goto out; 4609 4610 csum = skb_checksum_setup_ip(skb, nexthdr, off); 4611 if (IS_ERR(csum)) 4612 return PTR_ERR(csum); 4613 4614 if (recalculate) 4615 *csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr, 4616 &ipv6_hdr(skb)->daddr, 4617 skb->len - off, nexthdr, 0); 4618 err = 0; 4619 4620 out: 4621 return err; 4622 } 4623 4624 /** 4625 * skb_checksum_setup - set up partial checksum offset 4626 * @skb: the skb to set up 4627 * @recalculate: if true the pseudo-header checksum will be recalculated 4628 */ 4629 int skb_checksum_setup(struct sk_buff *skb, bool recalculate) 4630 { 4631 int err; 4632 4633 switch (skb->protocol) { 4634 case htons(ETH_P_IP): 4635 err = skb_checksum_setup_ipv4(skb, recalculate); 4636 break; 4637 4638 case htons(ETH_P_IPV6): 4639 err = skb_checksum_setup_ipv6(skb, recalculate); 4640 break; 4641 4642 default: 4643 err = -EPROTO; 4644 break; 4645 } 4646 4647 return err; 4648 } 4649 EXPORT_SYMBOL(skb_checksum_setup); 4650 4651 /** 4652 * skb_checksum_maybe_trim - maybe trims the given skb 4653 * @skb: the skb to check 4654 * @transport_len: the data length beyond the network header 4655 * 4656 * Checks whether the given skb has data beyond the given transport length. 4657 * If so, returns a cloned skb trimmed to this transport length. 4658 * Otherwise returns the provided skb. Returns NULL in error cases 4659 * (e.g. transport_len exceeds skb length or out-of-memory). 4660 * 4661 * Caller needs to set the skb transport header and free any returned skb if it 4662 * differs from the provided skb. 4663 */ 4664 static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb, 4665 unsigned int transport_len) 4666 { 4667 struct sk_buff *skb_chk; 4668 unsigned int len = skb_transport_offset(skb) + transport_len; 4669 int ret; 4670 4671 if (skb->len < len) 4672 return NULL; 4673 else if (skb->len == len) 4674 return skb; 4675 4676 skb_chk = skb_clone(skb, GFP_ATOMIC); 4677 if (!skb_chk) 4678 return NULL; 4679 4680 ret = pskb_trim_rcsum(skb_chk, len); 4681 if (ret) { 4682 kfree_skb(skb_chk); 4683 return NULL; 4684 } 4685 4686 return skb_chk; 4687 } 4688 4689 /** 4690 * skb_checksum_trimmed - validate checksum of an skb 4691 * @skb: the skb to check 4692 * @transport_len: the data length beyond the network header 4693 * @skb_chkf: checksum function to use 4694 * 4695 * Applies the given checksum function skb_chkf to the provided skb. 4696 * Returns a checked and maybe trimmed skb. Returns NULL on error. 4697 * 4698 * If the skb has data beyond the given transport length, then a 4699 * trimmed & cloned skb is checked and returned. 4700 * 4701 * Caller needs to set the skb transport header and free any returned skb if it 4702 * differs from the provided skb. 4703 */ 4704 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb, 4705 unsigned int transport_len, 4706 __sum16(*skb_chkf)(struct sk_buff *skb)) 4707 { 4708 struct sk_buff *skb_chk; 4709 unsigned int offset = skb_transport_offset(skb); 4710 __sum16 ret; 4711 4712 skb_chk = skb_checksum_maybe_trim(skb, transport_len); 4713 if (!skb_chk) 4714 goto err; 4715 4716 if (!pskb_may_pull(skb_chk, offset)) 4717 goto err; 4718 4719 skb_pull_rcsum(skb_chk, offset); 4720 ret = skb_chkf(skb_chk); 4721 skb_push_rcsum(skb_chk, offset); 4722 4723 if (ret) 4724 goto err; 4725 4726 return skb_chk; 4727 4728 err: 4729 if (skb_chk && skb_chk != skb) 4730 kfree_skb(skb_chk); 4731 4732 return NULL; 4733 4734 } 4735 EXPORT_SYMBOL(skb_checksum_trimmed); 4736 4737 void __skb_warn_lro_forwarding(const struct sk_buff *skb) 4738 { 4739 net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n", 4740 skb->dev->name); 4741 } 4742 EXPORT_SYMBOL(__skb_warn_lro_forwarding); 4743 4744 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen) 4745 { 4746 if (head_stolen) { 4747 skb_release_head_state(skb); 4748 kmem_cache_free(skbuff_head_cache, skb); 4749 } else { 4750 __kfree_skb(skb); 4751 } 4752 } 4753 EXPORT_SYMBOL(kfree_skb_partial); 4754 4755 /** 4756 * skb_try_coalesce - try to merge skb to prior one 4757 * @to: prior buffer 4758 * @from: buffer to add 4759 * @fragstolen: pointer to boolean 4760 * @delta_truesize: how much more was allocated than was requested 4761 */ 4762 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from, 4763 bool *fragstolen, int *delta_truesize) 4764 { 4765 int i, delta, len = from->len; 4766 4767 *fragstolen = false; 4768 4769 if (skb_cloned(to)) 4770 return false; 4771 4772 if (len <= skb_tailroom(to)) { 4773 if (len) 4774 BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len)); 4775 *delta_truesize = 0; 4776 return true; 4777 } 4778 4779 if (skb_has_frag_list(to) || skb_has_frag_list(from)) 4780 return false; 4781 if (skb_zcopy(to) || skb_zcopy(from)) 4782 return false; 4783 4784 if (skb_headlen(from) != 0) { 4785 struct page *page; 4786 unsigned int offset; 4787 4788 if (skb_shinfo(to)->nr_frags + 4789 skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS) 4790 return false; 4791 4792 if (skb_head_is_locked(from)) 4793 return false; 4794 4795 delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff)); 4796 4797 page = virt_to_head_page(from->head); 4798 offset = from->data - (unsigned char *)page_address(page); 4799 4800 skb_fill_page_desc(to, skb_shinfo(to)->nr_frags, 4801 page, offset, skb_headlen(from)); 4802 *fragstolen = true; 4803 } else { 4804 if (skb_shinfo(to)->nr_frags + 4805 skb_shinfo(from)->nr_frags > MAX_SKB_FRAGS) 4806 return false; 4807 4808 delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from)); 4809 } 4810 4811 WARN_ON_ONCE(delta < len); 4812 4813 memcpy(skb_shinfo(to)->frags + skb_shinfo(to)->nr_frags, 4814 skb_shinfo(from)->frags, 4815 skb_shinfo(from)->nr_frags * sizeof(skb_frag_t)); 4816 skb_shinfo(to)->nr_frags += skb_shinfo(from)->nr_frags; 4817 4818 if (!skb_cloned(from)) 4819 skb_shinfo(from)->nr_frags = 0; 4820 4821 /* if the skb is not cloned this does nothing 4822 * since we set nr_frags to 0. 4823 */ 4824 for (i = 0; i < skb_shinfo(from)->nr_frags; i++) 4825 skb_frag_ref(from, i); 4826 4827 to->truesize += delta; 4828 to->len += len; 4829 to->data_len += len; 4830 4831 *delta_truesize = delta; 4832 return true; 4833 } 4834 EXPORT_SYMBOL(skb_try_coalesce); 4835 4836 /** 4837 * skb_scrub_packet - scrub an skb 4838 * 4839 * @skb: buffer to clean 4840 * @xnet: packet is crossing netns 4841 * 4842 * skb_scrub_packet can be used after encapsulating or decapsulting a packet 4843 * into/from a tunnel. Some information have to be cleared during these 4844 * operations. 4845 * skb_scrub_packet can also be used to clean a skb before injecting it in 4846 * another namespace (@xnet == true). We have to clear all information in the 4847 * skb that could impact namespace isolation. 4848 */ 4849 void skb_scrub_packet(struct sk_buff *skb, bool xnet) 4850 { 4851 skb->tstamp = 0; 4852 skb->pkt_type = PACKET_HOST; 4853 skb->skb_iif = 0; 4854 skb->ignore_df = 0; 4855 skb_dst_drop(skb); 4856 secpath_reset(skb); 4857 nf_reset(skb); 4858 nf_reset_trace(skb); 4859 4860 if (!xnet) 4861 return; 4862 4863 skb_orphan(skb); 4864 skb->mark = 0; 4865 } 4866 EXPORT_SYMBOL_GPL(skb_scrub_packet); 4867 4868 /** 4869 * skb_gso_transport_seglen - Return length of individual segments of a gso packet 4870 * 4871 * @skb: GSO skb 4872 * 4873 * skb_gso_transport_seglen is used to determine the real size of the 4874 * individual segments, including Layer4 headers (TCP/UDP). 4875 * 4876 * The MAC/L2 or network (IP, IPv6) headers are not accounted for. 4877 */ 4878 unsigned int skb_gso_transport_seglen(const struct sk_buff *skb) 4879 { 4880 const struct skb_shared_info *shinfo = skb_shinfo(skb); 4881 unsigned int thlen = 0; 4882 4883 if (skb->encapsulation) { 4884 thlen = skb_inner_transport_header(skb) - 4885 skb_transport_header(skb); 4886 4887 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) 4888 thlen += inner_tcp_hdrlen(skb); 4889 } else if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) { 4890 thlen = tcp_hdrlen(skb); 4891 } else if (unlikely(shinfo->gso_type & SKB_GSO_SCTP)) { 4892 thlen = sizeof(struct sctphdr); 4893 } 4894 /* UFO sets gso_size to the size of the fragmentation 4895 * payload, i.e. the size of the L4 (UDP) header is already 4896 * accounted for. 4897 */ 4898 return thlen + shinfo->gso_size; 4899 } 4900 EXPORT_SYMBOL_GPL(skb_gso_transport_seglen); 4901 4902 /** 4903 * skb_gso_validate_mtu - Return in case such skb fits a given MTU 4904 * 4905 * @skb: GSO skb 4906 * @mtu: MTU to validate against 4907 * 4908 * skb_gso_validate_mtu validates if a given skb will fit a wanted MTU 4909 * once split. 4910 */ 4911 bool skb_gso_validate_mtu(const struct sk_buff *skb, unsigned int mtu) 4912 { 4913 const struct skb_shared_info *shinfo = skb_shinfo(skb); 4914 const struct sk_buff *iter; 4915 unsigned int hlen; 4916 4917 hlen = skb_gso_network_seglen(skb); 4918 4919 if (shinfo->gso_size != GSO_BY_FRAGS) 4920 return hlen <= mtu; 4921 4922 /* Undo this so we can re-use header sizes */ 4923 hlen -= GSO_BY_FRAGS; 4924 4925 skb_walk_frags(skb, iter) { 4926 if (hlen + skb_headlen(iter) > mtu) 4927 return false; 4928 } 4929 4930 return true; 4931 } 4932 EXPORT_SYMBOL_GPL(skb_gso_validate_mtu); 4933 4934 static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb) 4935 { 4936 if (skb_cow(skb, skb_headroom(skb)) < 0) { 4937 kfree_skb(skb); 4938 return NULL; 4939 } 4940 4941 memmove(skb->data - ETH_HLEN, skb->data - skb->mac_len - VLAN_HLEN, 4942 2 * ETH_ALEN); 4943 skb->mac_header += VLAN_HLEN; 4944 return skb; 4945 } 4946 4947 struct sk_buff *skb_vlan_untag(struct sk_buff *skb) 4948 { 4949 struct vlan_hdr *vhdr; 4950 u16 vlan_tci; 4951 4952 if (unlikely(skb_vlan_tag_present(skb))) { 4953 /* vlan_tci is already set-up so leave this for another time */ 4954 return skb; 4955 } 4956 4957 skb = skb_share_check(skb, GFP_ATOMIC); 4958 if (unlikely(!skb)) 4959 goto err_free; 4960 4961 if (unlikely(!pskb_may_pull(skb, VLAN_HLEN))) 4962 goto err_free; 4963 4964 vhdr = (struct vlan_hdr *)skb->data; 4965 vlan_tci = ntohs(vhdr->h_vlan_TCI); 4966 __vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci); 4967 4968 skb_pull_rcsum(skb, VLAN_HLEN); 4969 vlan_set_encap_proto(skb, vhdr); 4970 4971 skb = skb_reorder_vlan_header(skb); 4972 if (unlikely(!skb)) 4973 goto err_free; 4974 4975 skb_reset_network_header(skb); 4976 skb_reset_transport_header(skb); 4977 skb_reset_mac_len(skb); 4978 4979 return skb; 4980 4981 err_free: 4982 kfree_skb(skb); 4983 return NULL; 4984 } 4985 EXPORT_SYMBOL(skb_vlan_untag); 4986 4987 int skb_ensure_writable(struct sk_buff *skb, int write_len) 4988 { 4989 if (!pskb_may_pull(skb, write_len)) 4990 return -ENOMEM; 4991 4992 if (!skb_cloned(skb) || skb_clone_writable(skb, write_len)) 4993 return 0; 4994 4995 return pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 4996 } 4997 EXPORT_SYMBOL(skb_ensure_writable); 4998 4999 /* remove VLAN header from packet and update csum accordingly. 5000 * expects a non skb_vlan_tag_present skb with a vlan tag payload 5001 */ 5002 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci) 5003 { 5004 struct vlan_hdr *vhdr; 5005 int offset = skb->data - skb_mac_header(skb); 5006 int err; 5007 5008 if (WARN_ONCE(offset, 5009 "__skb_vlan_pop got skb with skb->data not at mac header (offset %d)\n", 5010 offset)) { 5011 return -EINVAL; 5012 } 5013 5014 err = skb_ensure_writable(skb, VLAN_ETH_HLEN); 5015 if (unlikely(err)) 5016 return err; 5017 5018 skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN); 5019 5020 vhdr = (struct vlan_hdr *)(skb->data + ETH_HLEN); 5021 *vlan_tci = ntohs(vhdr->h_vlan_TCI); 5022 5023 memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN); 5024 __skb_pull(skb, VLAN_HLEN); 5025 5026 vlan_set_encap_proto(skb, vhdr); 5027 skb->mac_header += VLAN_HLEN; 5028 5029 if (skb_network_offset(skb) < ETH_HLEN) 5030 skb_set_network_header(skb, ETH_HLEN); 5031 5032 skb_reset_mac_len(skb); 5033 5034 return err; 5035 } 5036 EXPORT_SYMBOL(__skb_vlan_pop); 5037 5038 /* Pop a vlan tag either from hwaccel or from payload. 5039 * Expects skb->data at mac header. 5040 */ 5041 int skb_vlan_pop(struct sk_buff *skb) 5042 { 5043 u16 vlan_tci; 5044 __be16 vlan_proto; 5045 int err; 5046 5047 if (likely(skb_vlan_tag_present(skb))) { 5048 skb->vlan_tci = 0; 5049 } else { 5050 if (unlikely(!eth_type_vlan(skb->protocol))) 5051 return 0; 5052 5053 err = __skb_vlan_pop(skb, &vlan_tci); 5054 if (err) 5055 return err; 5056 } 5057 /* move next vlan tag to hw accel tag */ 5058 if (likely(!eth_type_vlan(skb->protocol))) 5059 return 0; 5060 5061 vlan_proto = skb->protocol; 5062 err = __skb_vlan_pop(skb, &vlan_tci); 5063 if (unlikely(err)) 5064 return err; 5065 5066 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci); 5067 return 0; 5068 } 5069 EXPORT_SYMBOL(skb_vlan_pop); 5070 5071 /* Push a vlan tag either into hwaccel or into payload (if hwaccel tag present). 5072 * Expects skb->data at mac header. 5073 */ 5074 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci) 5075 { 5076 if (skb_vlan_tag_present(skb)) { 5077 int offset = skb->data - skb_mac_header(skb); 5078 int err; 5079 5080 if (WARN_ONCE(offset, 5081 "skb_vlan_push got skb with skb->data not at mac header (offset %d)\n", 5082 offset)) { 5083 return -EINVAL; 5084 } 5085 5086 err = __vlan_insert_tag(skb, skb->vlan_proto, 5087 skb_vlan_tag_get(skb)); 5088 if (err) 5089 return err; 5090 5091 skb->protocol = skb->vlan_proto; 5092 skb->mac_len += VLAN_HLEN; 5093 5094 skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN); 5095 } 5096 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci); 5097 return 0; 5098 } 5099 EXPORT_SYMBOL(skb_vlan_push); 5100 5101 /** 5102 * alloc_skb_with_frags - allocate skb with page frags 5103 * 5104 * @header_len: size of linear part 5105 * @data_len: needed length in frags 5106 * @max_page_order: max page order desired. 5107 * @errcode: pointer to error code if any 5108 * @gfp_mask: allocation mask 5109 * 5110 * This can be used to allocate a paged skb, given a maximal order for frags. 5111 */ 5112 struct sk_buff *alloc_skb_with_frags(unsigned long header_len, 5113 unsigned long data_len, 5114 int max_page_order, 5115 int *errcode, 5116 gfp_t gfp_mask) 5117 { 5118 int npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT; 5119 unsigned long chunk; 5120 struct sk_buff *skb; 5121 struct page *page; 5122 gfp_t gfp_head; 5123 int i; 5124 5125 *errcode = -EMSGSIZE; 5126 /* Note this test could be relaxed, if we succeed to allocate 5127 * high order pages... 5128 */ 5129 if (npages > MAX_SKB_FRAGS) 5130 return NULL; 5131 5132 gfp_head = gfp_mask; 5133 if (gfp_head & __GFP_DIRECT_RECLAIM) 5134 gfp_head |= __GFP_RETRY_MAYFAIL; 5135 5136 *errcode = -ENOBUFS; 5137 skb = alloc_skb(header_len, gfp_head); 5138 if (!skb) 5139 return NULL; 5140 5141 skb->truesize += npages << PAGE_SHIFT; 5142 5143 for (i = 0; npages > 0; i++) { 5144 int order = max_page_order; 5145 5146 while (order) { 5147 if (npages >= 1 << order) { 5148 page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) | 5149 __GFP_COMP | 5150 __GFP_NOWARN | 5151 __GFP_NORETRY, 5152 order); 5153 if (page) 5154 goto fill_page; 5155 /* Do not retry other high order allocations */ 5156 order = 1; 5157 max_page_order = 0; 5158 } 5159 order--; 5160 } 5161 page = alloc_page(gfp_mask); 5162 if (!page) 5163 goto failure; 5164 fill_page: 5165 chunk = min_t(unsigned long, data_len, 5166 PAGE_SIZE << order); 5167 skb_fill_page_desc(skb, i, page, 0, chunk); 5168 data_len -= chunk; 5169 npages -= 1 << order; 5170 } 5171 return skb; 5172 5173 failure: 5174 kfree_skb(skb); 5175 return NULL; 5176 } 5177 EXPORT_SYMBOL(alloc_skb_with_frags); 5178 5179 /* carve out the first off bytes from skb when off < headlen */ 5180 static int pskb_carve_inside_header(struct sk_buff *skb, const u32 off, 5181 const int headlen, gfp_t gfp_mask) 5182 { 5183 int i; 5184 int size = skb_end_offset(skb); 5185 int new_hlen = headlen - off; 5186 u8 *data; 5187 5188 size = SKB_DATA_ALIGN(size); 5189 5190 if (skb_pfmemalloc(skb)) 5191 gfp_mask |= __GFP_MEMALLOC; 5192 data = kmalloc_reserve(size + 5193 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)), 5194 gfp_mask, NUMA_NO_NODE, NULL); 5195 if (!data) 5196 return -ENOMEM; 5197 5198 size = SKB_WITH_OVERHEAD(ksize(data)); 5199 5200 /* Copy real data, and all frags */ 5201 skb_copy_from_linear_data_offset(skb, off, data, new_hlen); 5202 skb->len -= off; 5203 5204 memcpy((struct skb_shared_info *)(data + size), 5205 skb_shinfo(skb), 5206 offsetof(struct skb_shared_info, 5207 frags[skb_shinfo(skb)->nr_frags])); 5208 if (skb_cloned(skb)) { 5209 /* drop the old head gracefully */ 5210 if (skb_orphan_frags(skb, gfp_mask)) { 5211 kfree(data); 5212 return -ENOMEM; 5213 } 5214 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 5215 skb_frag_ref(skb, i); 5216 if (skb_has_frag_list(skb)) 5217 skb_clone_fraglist(skb); 5218 skb_release_data(skb); 5219 } else { 5220 /* we can reuse existing recount- all we did was 5221 * relocate values 5222 */ 5223 skb_free_head(skb); 5224 } 5225 5226 skb->head = data; 5227 skb->data = data; 5228 skb->head_frag = 0; 5229 #ifdef NET_SKBUFF_DATA_USES_OFFSET 5230 skb->end = size; 5231 #else 5232 skb->end = skb->head + size; 5233 #endif 5234 skb_set_tail_pointer(skb, skb_headlen(skb)); 5235 skb_headers_offset_update(skb, 0); 5236 skb->cloned = 0; 5237 skb->hdr_len = 0; 5238 skb->nohdr = 0; 5239 atomic_set(&skb_shinfo(skb)->dataref, 1); 5240 5241 return 0; 5242 } 5243 5244 static int pskb_carve(struct sk_buff *skb, const u32 off, gfp_t gfp); 5245 5246 /* carve out the first eat bytes from skb's frag_list. May recurse into 5247 * pskb_carve() 5248 */ 5249 static int pskb_carve_frag_list(struct sk_buff *skb, 5250 struct skb_shared_info *shinfo, int eat, 5251 gfp_t gfp_mask) 5252 { 5253 struct sk_buff *list = shinfo->frag_list; 5254 struct sk_buff *clone = NULL; 5255 struct sk_buff *insp = NULL; 5256 5257 do { 5258 if (!list) { 5259 pr_err("Not enough bytes to eat. Want %d\n", eat); 5260 return -EFAULT; 5261 } 5262 if (list->len <= eat) { 5263 /* Eaten as whole. */ 5264 eat -= list->len; 5265 list = list->next; 5266 insp = list; 5267 } else { 5268 /* Eaten partially. */ 5269 if (skb_shared(list)) { 5270 clone = skb_clone(list, gfp_mask); 5271 if (!clone) 5272 return -ENOMEM; 5273 insp = list->next; 5274 list = clone; 5275 } else { 5276 /* This may be pulled without problems. */ 5277 insp = list; 5278 } 5279 if (pskb_carve(list, eat, gfp_mask) < 0) { 5280 kfree_skb(clone); 5281 return -ENOMEM; 5282 } 5283 break; 5284 } 5285 } while (eat); 5286 5287 /* Free pulled out fragments. */ 5288 while ((list = shinfo->frag_list) != insp) { 5289 shinfo->frag_list = list->next; 5290 kfree_skb(list); 5291 } 5292 /* And insert new clone at head. */ 5293 if (clone) { 5294 clone->next = list; 5295 shinfo->frag_list = clone; 5296 } 5297 return 0; 5298 } 5299 5300 /* carve off first len bytes from skb. Split line (off) is in the 5301 * non-linear part of skb 5302 */ 5303 static int pskb_carve_inside_nonlinear(struct sk_buff *skb, const u32 off, 5304 int pos, gfp_t gfp_mask) 5305 { 5306 int i, k = 0; 5307 int size = skb_end_offset(skb); 5308 u8 *data; 5309 const int nfrags = skb_shinfo(skb)->nr_frags; 5310 struct skb_shared_info *shinfo; 5311 5312 size = SKB_DATA_ALIGN(size); 5313 5314 if (skb_pfmemalloc(skb)) 5315 gfp_mask |= __GFP_MEMALLOC; 5316 data = kmalloc_reserve(size + 5317 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)), 5318 gfp_mask, NUMA_NO_NODE, NULL); 5319 if (!data) 5320 return -ENOMEM; 5321 5322 size = SKB_WITH_OVERHEAD(ksize(data)); 5323 5324 memcpy((struct skb_shared_info *)(data + size), 5325 skb_shinfo(skb), offsetof(struct skb_shared_info, 5326 frags[skb_shinfo(skb)->nr_frags])); 5327 if (skb_orphan_frags(skb, gfp_mask)) { 5328 kfree(data); 5329 return -ENOMEM; 5330 } 5331 shinfo = (struct skb_shared_info *)(data + size); 5332 for (i = 0; i < nfrags; i++) { 5333 int fsize = skb_frag_size(&skb_shinfo(skb)->frags[i]); 5334 5335 if (pos + fsize > off) { 5336 shinfo->frags[k] = skb_shinfo(skb)->frags[i]; 5337 5338 if (pos < off) { 5339 /* Split frag. 5340 * We have two variants in this case: 5341 * 1. Move all the frag to the second 5342 * part, if it is possible. F.e. 5343 * this approach is mandatory for TUX, 5344 * where splitting is expensive. 5345 * 2. Split is accurately. We make this. 5346 */ 5347 shinfo->frags[0].page_offset += off - pos; 5348 skb_frag_size_sub(&shinfo->frags[0], off - pos); 5349 } 5350 skb_frag_ref(skb, i); 5351 k++; 5352 } 5353 pos += fsize; 5354 } 5355 shinfo->nr_frags = k; 5356 if (skb_has_frag_list(skb)) 5357 skb_clone_fraglist(skb); 5358 5359 if (k == 0) { 5360 /* split line is in frag list */ 5361 pskb_carve_frag_list(skb, shinfo, off - pos, gfp_mask); 5362 } 5363 skb_release_data(skb); 5364 5365 skb->head = data; 5366 skb->head_frag = 0; 5367 skb->data = data; 5368 #ifdef NET_SKBUFF_DATA_USES_OFFSET 5369 skb->end = size; 5370 #else 5371 skb->end = skb->head + size; 5372 #endif 5373 skb_reset_tail_pointer(skb); 5374 skb_headers_offset_update(skb, 0); 5375 skb->cloned = 0; 5376 skb->hdr_len = 0; 5377 skb->nohdr = 0; 5378 skb->len -= off; 5379 skb->data_len = skb->len; 5380 atomic_set(&skb_shinfo(skb)->dataref, 1); 5381 return 0; 5382 } 5383 5384 /* remove len bytes from the beginning of the skb */ 5385 static int pskb_carve(struct sk_buff *skb, const u32 len, gfp_t gfp) 5386 { 5387 int headlen = skb_headlen(skb); 5388 5389 if (len < headlen) 5390 return pskb_carve_inside_header(skb, len, headlen, gfp); 5391 else 5392 return pskb_carve_inside_nonlinear(skb, len, headlen, gfp); 5393 } 5394 5395 /* Extract to_copy bytes starting at off from skb, and return this in 5396 * a new skb 5397 */ 5398 struct sk_buff *pskb_extract(struct sk_buff *skb, int off, 5399 int to_copy, gfp_t gfp) 5400 { 5401 struct sk_buff *clone = skb_clone(skb, gfp); 5402 5403 if (!clone) 5404 return NULL; 5405 5406 if (pskb_carve(clone, off, gfp) < 0 || 5407 pskb_trim(clone, to_copy)) { 5408 kfree_skb(clone); 5409 return NULL; 5410 } 5411 return clone; 5412 } 5413 EXPORT_SYMBOL(pskb_extract); 5414 5415 /** 5416 * skb_condense - try to get rid of fragments/frag_list if possible 5417 * @skb: buffer 5418 * 5419 * Can be used to save memory before skb is added to a busy queue. 5420 * If packet has bytes in frags and enough tail room in skb->head, 5421 * pull all of them, so that we can free the frags right now and adjust 5422 * truesize. 5423 * Notes: 5424 * We do not reallocate skb->head thus can not fail. 5425 * Caller must re-evaluate skb->truesize if needed. 5426 */ 5427 void skb_condense(struct sk_buff *skb) 5428 { 5429 if (skb->data_len) { 5430 if (skb->data_len > skb->end - skb->tail || 5431 skb_cloned(skb)) 5432 return; 5433 5434 /* Nice, we can free page frag(s) right now */ 5435 __pskb_pull_tail(skb, skb->data_len); 5436 } 5437 /* At this point, skb->truesize might be over estimated, 5438 * because skb had a fragment, and fragments do not tell 5439 * their truesize. 5440 * When we pulled its content into skb->head, fragment 5441 * was freed, but __pskb_pull_tail() could not possibly 5442 * adjust skb->truesize, not knowing the frag truesize. 5443 */ 5444 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb)); 5445 } 5446