xref: /openbmc/linux/net/core/skbuff.c (revision b54b6003)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *	Routines having to do with the 'struct sk_buff' memory handlers.
4  *
5  *	Authors:	Alan Cox <alan@lxorguk.ukuu.org.uk>
6  *			Florian La Roche <rzsfl@rz.uni-sb.de>
7  *
8  *	Fixes:
9  *		Alan Cox	:	Fixed the worst of the load
10  *					balancer bugs.
11  *		Dave Platt	:	Interrupt stacking fix.
12  *	Richard Kooijman	:	Timestamp fixes.
13  *		Alan Cox	:	Changed buffer format.
14  *		Alan Cox	:	destructor hook for AF_UNIX etc.
15  *		Linus Torvalds	:	Better skb_clone.
16  *		Alan Cox	:	Added skb_copy.
17  *		Alan Cox	:	Added all the changed routines Linus
18  *					only put in the headers
19  *		Ray VanTassle	:	Fixed --skb->lock in free
20  *		Alan Cox	:	skb_copy copy arp field
21  *		Andi Kleen	:	slabified it.
22  *		Robert Olsson	:	Removed skb_head_pool
23  *
24  *	NOTE:
25  *		The __skb_ routines should be called with interrupts
26  *	disabled, or you better be *real* sure that the operation is atomic
27  *	with respect to whatever list is being frobbed (e.g. via lock_sock()
28  *	or via disabling bottom half handlers, etc).
29  */
30 
31 /*
32  *	The functions in this file will not compile correctly with gcc 2.4.x
33  */
34 
35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
36 
37 #include <linux/module.h>
38 #include <linux/types.h>
39 #include <linux/kernel.h>
40 #include <linux/mm.h>
41 #include <linux/interrupt.h>
42 #include <linux/in.h>
43 #include <linux/inet.h>
44 #include <linux/slab.h>
45 #include <linux/tcp.h>
46 #include <linux/udp.h>
47 #include <linux/sctp.h>
48 #include <linux/netdevice.h>
49 #ifdef CONFIG_NET_CLS_ACT
50 #include <net/pkt_sched.h>
51 #endif
52 #include <linux/string.h>
53 #include <linux/skbuff.h>
54 #include <linux/splice.h>
55 #include <linux/cache.h>
56 #include <linux/rtnetlink.h>
57 #include <linux/init.h>
58 #include <linux/scatterlist.h>
59 #include <linux/errqueue.h>
60 #include <linux/prefetch.h>
61 #include <linux/if_vlan.h>
62 #include <linux/mpls.h>
63 #include <linux/kcov.h>
64 
65 #include <net/protocol.h>
66 #include <net/dst.h>
67 #include <net/sock.h>
68 #include <net/checksum.h>
69 #include <net/ip6_checksum.h>
70 #include <net/xfrm.h>
71 #include <net/mpls.h>
72 #include <net/mptcp.h>
73 #include <net/mctp.h>
74 #include <net/page_pool.h>
75 
76 #include <linux/uaccess.h>
77 #include <trace/events/skb.h>
78 #include <linux/highmem.h>
79 #include <linux/capability.h>
80 #include <linux/user_namespace.h>
81 #include <linux/indirect_call_wrapper.h>
82 
83 #include "dev.h"
84 #include "sock_destructor.h"
85 
86 struct kmem_cache *skbuff_head_cache __ro_after_init;
87 static struct kmem_cache *skbuff_fclone_cache __ro_after_init;
88 #ifdef CONFIG_SKB_EXTENSIONS
89 static struct kmem_cache *skbuff_ext_cache __ro_after_init;
90 #endif
91 int sysctl_max_skb_frags __read_mostly = MAX_SKB_FRAGS;
92 EXPORT_SYMBOL(sysctl_max_skb_frags);
93 
94 #undef FN
95 #define FN(reason) [SKB_DROP_REASON_##reason] = #reason,
96 const char * const drop_reasons[] = {
97 	[SKB_CONSUMED] = "CONSUMED",
98 	DEFINE_DROP_REASON(FN, FN)
99 };
100 EXPORT_SYMBOL(drop_reasons);
101 
102 /**
103  *	skb_panic - private function for out-of-line support
104  *	@skb:	buffer
105  *	@sz:	size
106  *	@addr:	address
107  *	@msg:	skb_over_panic or skb_under_panic
108  *
109  *	Out-of-line support for skb_put() and skb_push().
110  *	Called via the wrapper skb_over_panic() or skb_under_panic().
111  *	Keep out of line to prevent kernel bloat.
112  *	__builtin_return_address is not used because it is not always reliable.
113  */
114 static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr,
115 		      const char msg[])
116 {
117 	pr_emerg("%s: text:%px len:%d put:%d head:%px data:%px tail:%#lx end:%#lx dev:%s\n",
118 		 msg, addr, skb->len, sz, skb->head, skb->data,
119 		 (unsigned long)skb->tail, (unsigned long)skb->end,
120 		 skb->dev ? skb->dev->name : "<NULL>");
121 	BUG();
122 }
123 
124 static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr)
125 {
126 	skb_panic(skb, sz, addr, __func__);
127 }
128 
129 static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr)
130 {
131 	skb_panic(skb, sz, addr, __func__);
132 }
133 
134 #define NAPI_SKB_CACHE_SIZE	64
135 #define NAPI_SKB_CACHE_BULK	16
136 #define NAPI_SKB_CACHE_HALF	(NAPI_SKB_CACHE_SIZE / 2)
137 
138 #if PAGE_SIZE == SZ_4K
139 
140 #define NAPI_HAS_SMALL_PAGE_FRAG	1
141 #define NAPI_SMALL_PAGE_PFMEMALLOC(nc)	((nc).pfmemalloc)
142 
143 /* specialized page frag allocator using a single order 0 page
144  * and slicing it into 1K sized fragment. Constrained to systems
145  * with a very limited amount of 1K fragments fitting a single
146  * page - to avoid excessive truesize underestimation
147  */
148 
149 struct page_frag_1k {
150 	void *va;
151 	u16 offset;
152 	bool pfmemalloc;
153 };
154 
155 static void *page_frag_alloc_1k(struct page_frag_1k *nc, gfp_t gfp)
156 {
157 	struct page *page;
158 	int offset;
159 
160 	offset = nc->offset - SZ_1K;
161 	if (likely(offset >= 0))
162 		goto use_frag;
163 
164 	page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
165 	if (!page)
166 		return NULL;
167 
168 	nc->va = page_address(page);
169 	nc->pfmemalloc = page_is_pfmemalloc(page);
170 	offset = PAGE_SIZE - SZ_1K;
171 	page_ref_add(page, offset / SZ_1K);
172 
173 use_frag:
174 	nc->offset = offset;
175 	return nc->va + offset;
176 }
177 #else
178 
179 /* the small page is actually unused in this build; add dummy helpers
180  * to please the compiler and avoid later preprocessor's conditionals
181  */
182 #define NAPI_HAS_SMALL_PAGE_FRAG	0
183 #define NAPI_SMALL_PAGE_PFMEMALLOC(nc)	false
184 
185 struct page_frag_1k {
186 };
187 
188 static void *page_frag_alloc_1k(struct page_frag_1k *nc, gfp_t gfp_mask)
189 {
190 	return NULL;
191 }
192 
193 #endif
194 
195 struct napi_alloc_cache {
196 	struct page_frag_cache page;
197 	struct page_frag_1k page_small;
198 	unsigned int skb_count;
199 	void *skb_cache[NAPI_SKB_CACHE_SIZE];
200 };
201 
202 static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache);
203 static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache);
204 
205 /* Double check that napi_get_frags() allocates skbs with
206  * skb->head being backed by slab, not a page fragment.
207  * This is to make sure bug fixed in 3226b158e67c
208  * ("net: avoid 32 x truesize under-estimation for tiny skbs")
209  * does not accidentally come back.
210  */
211 void napi_get_frags_check(struct napi_struct *napi)
212 {
213 	struct sk_buff *skb;
214 
215 	local_bh_disable();
216 	skb = napi_get_frags(napi);
217 	WARN_ON_ONCE(!NAPI_HAS_SMALL_PAGE_FRAG && skb && skb->head_frag);
218 	napi_free_frags(napi);
219 	local_bh_enable();
220 }
221 
222 void *__napi_alloc_frag_align(unsigned int fragsz, unsigned int align_mask)
223 {
224 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
225 
226 	fragsz = SKB_DATA_ALIGN(fragsz);
227 
228 	return page_frag_alloc_align(&nc->page, fragsz, GFP_ATOMIC, align_mask);
229 }
230 EXPORT_SYMBOL(__napi_alloc_frag_align);
231 
232 void *__netdev_alloc_frag_align(unsigned int fragsz, unsigned int align_mask)
233 {
234 	void *data;
235 
236 	fragsz = SKB_DATA_ALIGN(fragsz);
237 	if (in_hardirq() || irqs_disabled()) {
238 		struct page_frag_cache *nc = this_cpu_ptr(&netdev_alloc_cache);
239 
240 		data = page_frag_alloc_align(nc, fragsz, GFP_ATOMIC, align_mask);
241 	} else {
242 		struct napi_alloc_cache *nc;
243 
244 		local_bh_disable();
245 		nc = this_cpu_ptr(&napi_alloc_cache);
246 		data = page_frag_alloc_align(&nc->page, fragsz, GFP_ATOMIC, align_mask);
247 		local_bh_enable();
248 	}
249 	return data;
250 }
251 EXPORT_SYMBOL(__netdev_alloc_frag_align);
252 
253 static struct sk_buff *napi_skb_cache_get(void)
254 {
255 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
256 	struct sk_buff *skb;
257 
258 	if (unlikely(!nc->skb_count)) {
259 		nc->skb_count = kmem_cache_alloc_bulk(skbuff_head_cache,
260 						      GFP_ATOMIC,
261 						      NAPI_SKB_CACHE_BULK,
262 						      nc->skb_cache);
263 		if (unlikely(!nc->skb_count))
264 			return NULL;
265 	}
266 
267 	skb = nc->skb_cache[--nc->skb_count];
268 	kasan_unpoison_object_data(skbuff_head_cache, skb);
269 
270 	return skb;
271 }
272 
273 /* Caller must provide SKB that is memset cleared */
274 static void __build_skb_around(struct sk_buff *skb, void *data,
275 			       unsigned int frag_size)
276 {
277 	struct skb_shared_info *shinfo;
278 	unsigned int size = frag_size ? : ksize(data);
279 
280 	size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
281 
282 	/* Assumes caller memset cleared SKB */
283 	skb->truesize = SKB_TRUESIZE(size);
284 	refcount_set(&skb->users, 1);
285 	skb->head = data;
286 	skb->data = data;
287 	skb_reset_tail_pointer(skb);
288 	skb_set_end_offset(skb, size);
289 	skb->mac_header = (typeof(skb->mac_header))~0U;
290 	skb->transport_header = (typeof(skb->transport_header))~0U;
291 	skb->alloc_cpu = raw_smp_processor_id();
292 	/* make sure we initialize shinfo sequentially */
293 	shinfo = skb_shinfo(skb);
294 	memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
295 	atomic_set(&shinfo->dataref, 1);
296 
297 	skb_set_kcov_handle(skb, kcov_common_handle());
298 }
299 
300 /**
301  * __build_skb - build a network buffer
302  * @data: data buffer provided by caller
303  * @frag_size: size of data, or 0 if head was kmalloced
304  *
305  * Allocate a new &sk_buff. Caller provides space holding head and
306  * skb_shared_info. @data must have been allocated by kmalloc() only if
307  * @frag_size is 0, otherwise data should come from the page allocator
308  *  or vmalloc()
309  * The return is the new skb buffer.
310  * On a failure the return is %NULL, and @data is not freed.
311  * Notes :
312  *  Before IO, driver allocates only data buffer where NIC put incoming frame
313  *  Driver should add room at head (NET_SKB_PAD) and
314  *  MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info))
315  *  After IO, driver calls build_skb(), to allocate sk_buff and populate it
316  *  before giving packet to stack.
317  *  RX rings only contains data buffers, not full skbs.
318  */
319 struct sk_buff *__build_skb(void *data, unsigned int frag_size)
320 {
321 	struct sk_buff *skb;
322 
323 	skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC);
324 	if (unlikely(!skb))
325 		return NULL;
326 
327 	memset(skb, 0, offsetof(struct sk_buff, tail));
328 	__build_skb_around(skb, data, frag_size);
329 
330 	return skb;
331 }
332 
333 /* build_skb() is wrapper over __build_skb(), that specifically
334  * takes care of skb->head and skb->pfmemalloc
335  * This means that if @frag_size is not zero, then @data must be backed
336  * by a page fragment, not kmalloc() or vmalloc()
337  */
338 struct sk_buff *build_skb(void *data, unsigned int frag_size)
339 {
340 	struct sk_buff *skb = __build_skb(data, frag_size);
341 
342 	if (skb && frag_size) {
343 		skb->head_frag = 1;
344 		if (page_is_pfmemalloc(virt_to_head_page(data)))
345 			skb->pfmemalloc = 1;
346 	}
347 	return skb;
348 }
349 EXPORT_SYMBOL(build_skb);
350 
351 /**
352  * build_skb_around - build a network buffer around provided skb
353  * @skb: sk_buff provide by caller, must be memset cleared
354  * @data: data buffer provided by caller
355  * @frag_size: size of data, or 0 if head was kmalloced
356  */
357 struct sk_buff *build_skb_around(struct sk_buff *skb,
358 				 void *data, unsigned int frag_size)
359 {
360 	if (unlikely(!skb))
361 		return NULL;
362 
363 	__build_skb_around(skb, data, frag_size);
364 
365 	if (frag_size) {
366 		skb->head_frag = 1;
367 		if (page_is_pfmemalloc(virt_to_head_page(data)))
368 			skb->pfmemalloc = 1;
369 	}
370 	return skb;
371 }
372 EXPORT_SYMBOL(build_skb_around);
373 
374 /**
375  * __napi_build_skb - build a network buffer
376  * @data: data buffer provided by caller
377  * @frag_size: size of data, or 0 if head was kmalloced
378  *
379  * Version of __build_skb() that uses NAPI percpu caches to obtain
380  * skbuff_head instead of inplace allocation.
381  *
382  * Returns a new &sk_buff on success, %NULL on allocation failure.
383  */
384 static struct sk_buff *__napi_build_skb(void *data, unsigned int frag_size)
385 {
386 	struct sk_buff *skb;
387 
388 	skb = napi_skb_cache_get();
389 	if (unlikely(!skb))
390 		return NULL;
391 
392 	memset(skb, 0, offsetof(struct sk_buff, tail));
393 	__build_skb_around(skb, data, frag_size);
394 
395 	return skb;
396 }
397 
398 /**
399  * napi_build_skb - build a network buffer
400  * @data: data buffer provided by caller
401  * @frag_size: size of data, or 0 if head was kmalloced
402  *
403  * Version of __napi_build_skb() that takes care of skb->head_frag
404  * and skb->pfmemalloc when the data is a page or page fragment.
405  *
406  * Returns a new &sk_buff on success, %NULL on allocation failure.
407  */
408 struct sk_buff *napi_build_skb(void *data, unsigned int frag_size)
409 {
410 	struct sk_buff *skb = __napi_build_skb(data, frag_size);
411 
412 	if (likely(skb) && frag_size) {
413 		skb->head_frag = 1;
414 		skb_propagate_pfmemalloc(virt_to_head_page(data), skb);
415 	}
416 
417 	return skb;
418 }
419 EXPORT_SYMBOL(napi_build_skb);
420 
421 /*
422  * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells
423  * the caller if emergency pfmemalloc reserves are being used. If it is and
424  * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves
425  * may be used. Otherwise, the packet data may be discarded until enough
426  * memory is free
427  */
428 static void *kmalloc_reserve(size_t size, gfp_t flags, int node,
429 			     bool *pfmemalloc)
430 {
431 	void *obj;
432 	bool ret_pfmemalloc = false;
433 
434 	/*
435 	 * Try a regular allocation, when that fails and we're not entitled
436 	 * to the reserves, fail.
437 	 */
438 	obj = kmalloc_node_track_caller(size,
439 					flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
440 					node);
441 	if (obj || !(gfp_pfmemalloc_allowed(flags)))
442 		goto out;
443 
444 	/* Try again but now we are using pfmemalloc reserves */
445 	ret_pfmemalloc = true;
446 	obj = kmalloc_node_track_caller(size, flags, node);
447 
448 out:
449 	if (pfmemalloc)
450 		*pfmemalloc = ret_pfmemalloc;
451 
452 	return obj;
453 }
454 
455 /* 	Allocate a new skbuff. We do this ourselves so we can fill in a few
456  *	'private' fields and also do memory statistics to find all the
457  *	[BEEP] leaks.
458  *
459  */
460 
461 /**
462  *	__alloc_skb	-	allocate a network buffer
463  *	@size: size to allocate
464  *	@gfp_mask: allocation mask
465  *	@flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache
466  *		instead of head cache and allocate a cloned (child) skb.
467  *		If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for
468  *		allocations in case the data is required for writeback
469  *	@node: numa node to allocate memory on
470  *
471  *	Allocate a new &sk_buff. The returned buffer has no headroom and a
472  *	tail room of at least size bytes. The object has a reference count
473  *	of one. The return is the buffer. On a failure the return is %NULL.
474  *
475  *	Buffers may only be allocated from interrupts using a @gfp_mask of
476  *	%GFP_ATOMIC.
477  */
478 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
479 			    int flags, int node)
480 {
481 	struct kmem_cache *cache;
482 	struct sk_buff *skb;
483 	unsigned int osize;
484 	bool pfmemalloc;
485 	u8 *data;
486 
487 	cache = (flags & SKB_ALLOC_FCLONE)
488 		? skbuff_fclone_cache : skbuff_head_cache;
489 
490 	if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX))
491 		gfp_mask |= __GFP_MEMALLOC;
492 
493 	/* Get the HEAD */
494 	if ((flags & (SKB_ALLOC_FCLONE | SKB_ALLOC_NAPI)) == SKB_ALLOC_NAPI &&
495 	    likely(node == NUMA_NO_NODE || node == numa_mem_id()))
496 		skb = napi_skb_cache_get();
497 	else
498 		skb = kmem_cache_alloc_node(cache, gfp_mask & ~GFP_DMA, node);
499 	if (unlikely(!skb))
500 		return NULL;
501 	prefetchw(skb);
502 
503 	/* We do our best to align skb_shared_info on a separate cache
504 	 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives
505 	 * aligned memory blocks, unless SLUB/SLAB debug is enabled.
506 	 * Both skb->head and skb_shared_info are cache line aligned.
507 	 */
508 	size = SKB_DATA_ALIGN(size);
509 	size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
510 	osize = kmalloc_size_roundup(size);
511 	data = kmalloc_reserve(osize, gfp_mask, node, &pfmemalloc);
512 	if (unlikely(!data))
513 		goto nodata;
514 	/* kmalloc_size_roundup() might give us more room than requested.
515 	 * Put skb_shared_info exactly at the end of allocated zone,
516 	 * to allow max possible filling before reallocation.
517 	 */
518 	size = SKB_WITH_OVERHEAD(osize);
519 	prefetchw(data + size);
520 
521 	/*
522 	 * Only clear those fields we need to clear, not those that we will
523 	 * actually initialise below. Hence, don't put any more fields after
524 	 * the tail pointer in struct sk_buff!
525 	 */
526 	memset(skb, 0, offsetof(struct sk_buff, tail));
527 	__build_skb_around(skb, data, osize);
528 	skb->pfmemalloc = pfmemalloc;
529 
530 	if (flags & SKB_ALLOC_FCLONE) {
531 		struct sk_buff_fclones *fclones;
532 
533 		fclones = container_of(skb, struct sk_buff_fclones, skb1);
534 
535 		skb->fclone = SKB_FCLONE_ORIG;
536 		refcount_set(&fclones->fclone_ref, 1);
537 	}
538 
539 	return skb;
540 
541 nodata:
542 	kmem_cache_free(cache, skb);
543 	return NULL;
544 }
545 EXPORT_SYMBOL(__alloc_skb);
546 
547 /**
548  *	__netdev_alloc_skb - allocate an skbuff for rx on a specific device
549  *	@dev: network device to receive on
550  *	@len: length to allocate
551  *	@gfp_mask: get_free_pages mask, passed to alloc_skb
552  *
553  *	Allocate a new &sk_buff and assign it a usage count of one. The
554  *	buffer has NET_SKB_PAD headroom built in. Users should allocate
555  *	the headroom they think they need without accounting for the
556  *	built in space. The built in space is used for optimisations.
557  *
558  *	%NULL is returned if there is no free memory.
559  */
560 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len,
561 				   gfp_t gfp_mask)
562 {
563 	struct page_frag_cache *nc;
564 	struct sk_buff *skb;
565 	bool pfmemalloc;
566 	void *data;
567 
568 	len += NET_SKB_PAD;
569 
570 	/* If requested length is either too small or too big,
571 	 * we use kmalloc() for skb->head allocation.
572 	 */
573 	if (len <= SKB_WITH_OVERHEAD(1024) ||
574 	    len > SKB_WITH_OVERHEAD(PAGE_SIZE) ||
575 	    (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
576 		skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
577 		if (!skb)
578 			goto skb_fail;
579 		goto skb_success;
580 	}
581 
582 	len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
583 	len = SKB_DATA_ALIGN(len);
584 
585 	if (sk_memalloc_socks())
586 		gfp_mask |= __GFP_MEMALLOC;
587 
588 	if (in_hardirq() || irqs_disabled()) {
589 		nc = this_cpu_ptr(&netdev_alloc_cache);
590 		data = page_frag_alloc(nc, len, gfp_mask);
591 		pfmemalloc = nc->pfmemalloc;
592 	} else {
593 		local_bh_disable();
594 		nc = this_cpu_ptr(&napi_alloc_cache.page);
595 		data = page_frag_alloc(nc, len, gfp_mask);
596 		pfmemalloc = nc->pfmemalloc;
597 		local_bh_enable();
598 	}
599 
600 	if (unlikely(!data))
601 		return NULL;
602 
603 	skb = __build_skb(data, len);
604 	if (unlikely(!skb)) {
605 		skb_free_frag(data);
606 		return NULL;
607 	}
608 
609 	if (pfmemalloc)
610 		skb->pfmemalloc = 1;
611 	skb->head_frag = 1;
612 
613 skb_success:
614 	skb_reserve(skb, NET_SKB_PAD);
615 	skb->dev = dev;
616 
617 skb_fail:
618 	return skb;
619 }
620 EXPORT_SYMBOL(__netdev_alloc_skb);
621 
622 /**
623  *	__napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance
624  *	@napi: napi instance this buffer was allocated for
625  *	@len: length to allocate
626  *	@gfp_mask: get_free_pages mask, passed to alloc_skb and alloc_pages
627  *
628  *	Allocate a new sk_buff for use in NAPI receive.  This buffer will
629  *	attempt to allocate the head from a special reserved region used
630  *	only for NAPI Rx allocation.  By doing this we can save several
631  *	CPU cycles by avoiding having to disable and re-enable IRQs.
632  *
633  *	%NULL is returned if there is no free memory.
634  */
635 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, unsigned int len,
636 				 gfp_t gfp_mask)
637 {
638 	struct napi_alloc_cache *nc;
639 	struct sk_buff *skb;
640 	bool pfmemalloc;
641 	void *data;
642 
643 	DEBUG_NET_WARN_ON_ONCE(!in_softirq());
644 	len += NET_SKB_PAD + NET_IP_ALIGN;
645 
646 	/* If requested length is either too small or too big,
647 	 * we use kmalloc() for skb->head allocation.
648 	 * When the small frag allocator is available, prefer it over kmalloc
649 	 * for small fragments
650 	 */
651 	if ((!NAPI_HAS_SMALL_PAGE_FRAG && len <= SKB_WITH_OVERHEAD(1024)) ||
652 	    len > SKB_WITH_OVERHEAD(PAGE_SIZE) ||
653 	    (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
654 		skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX | SKB_ALLOC_NAPI,
655 				  NUMA_NO_NODE);
656 		if (!skb)
657 			goto skb_fail;
658 		goto skb_success;
659 	}
660 
661 	nc = this_cpu_ptr(&napi_alloc_cache);
662 
663 	if (sk_memalloc_socks())
664 		gfp_mask |= __GFP_MEMALLOC;
665 
666 	if (NAPI_HAS_SMALL_PAGE_FRAG && len <= SKB_WITH_OVERHEAD(1024)) {
667 		/* we are artificially inflating the allocation size, but
668 		 * that is not as bad as it may look like, as:
669 		 * - 'len' less than GRO_MAX_HEAD makes little sense
670 		 * - On most systems, larger 'len' values lead to fragment
671 		 *   size above 512 bytes
672 		 * - kmalloc would use the kmalloc-1k slab for such values
673 		 * - Builds with smaller GRO_MAX_HEAD will very likely do
674 		 *   little networking, as that implies no WiFi and no
675 		 *   tunnels support, and 32 bits arches.
676 		 */
677 		len = SZ_1K;
678 
679 		data = page_frag_alloc_1k(&nc->page_small, gfp_mask);
680 		pfmemalloc = NAPI_SMALL_PAGE_PFMEMALLOC(nc->page_small);
681 	} else {
682 		len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
683 		len = SKB_DATA_ALIGN(len);
684 
685 		data = page_frag_alloc(&nc->page, len, gfp_mask);
686 		pfmemalloc = nc->page.pfmemalloc;
687 	}
688 
689 	if (unlikely(!data))
690 		return NULL;
691 
692 	skb = __napi_build_skb(data, len);
693 	if (unlikely(!skb)) {
694 		skb_free_frag(data);
695 		return NULL;
696 	}
697 
698 	if (pfmemalloc)
699 		skb->pfmemalloc = 1;
700 	skb->head_frag = 1;
701 
702 skb_success:
703 	skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN);
704 	skb->dev = napi->dev;
705 
706 skb_fail:
707 	return skb;
708 }
709 EXPORT_SYMBOL(__napi_alloc_skb);
710 
711 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
712 		     int size, unsigned int truesize)
713 {
714 	skb_fill_page_desc(skb, i, page, off, size);
715 	skb->len += size;
716 	skb->data_len += size;
717 	skb->truesize += truesize;
718 }
719 EXPORT_SYMBOL(skb_add_rx_frag);
720 
721 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
722 			  unsigned int truesize)
723 {
724 	skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
725 
726 	skb_frag_size_add(frag, size);
727 	skb->len += size;
728 	skb->data_len += size;
729 	skb->truesize += truesize;
730 }
731 EXPORT_SYMBOL(skb_coalesce_rx_frag);
732 
733 static void skb_drop_list(struct sk_buff **listp)
734 {
735 	kfree_skb_list(*listp);
736 	*listp = NULL;
737 }
738 
739 static inline void skb_drop_fraglist(struct sk_buff *skb)
740 {
741 	skb_drop_list(&skb_shinfo(skb)->frag_list);
742 }
743 
744 static void skb_clone_fraglist(struct sk_buff *skb)
745 {
746 	struct sk_buff *list;
747 
748 	skb_walk_frags(skb, list)
749 		skb_get(list);
750 }
751 
752 static bool skb_pp_recycle(struct sk_buff *skb, void *data)
753 {
754 	if (!IS_ENABLED(CONFIG_PAGE_POOL) || !skb->pp_recycle)
755 		return false;
756 	return page_pool_return_skb_page(virt_to_page(data));
757 }
758 
759 static void skb_free_head(struct sk_buff *skb)
760 {
761 	unsigned char *head = skb->head;
762 
763 	if (skb->head_frag) {
764 		if (skb_pp_recycle(skb, head))
765 			return;
766 		skb_free_frag(head);
767 	} else {
768 		kfree(head);
769 	}
770 }
771 
772 static void skb_release_data(struct sk_buff *skb, enum skb_drop_reason reason)
773 {
774 	struct skb_shared_info *shinfo = skb_shinfo(skb);
775 	int i;
776 
777 	if (skb->cloned &&
778 	    atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
779 			      &shinfo->dataref))
780 		goto exit;
781 
782 	if (skb_zcopy(skb)) {
783 		bool skip_unref = shinfo->flags & SKBFL_MANAGED_FRAG_REFS;
784 
785 		skb_zcopy_clear(skb, true);
786 		if (skip_unref)
787 			goto free_head;
788 	}
789 
790 	for (i = 0; i < shinfo->nr_frags; i++)
791 		__skb_frag_unref(&shinfo->frags[i], skb->pp_recycle);
792 
793 free_head:
794 	if (shinfo->frag_list)
795 		kfree_skb_list_reason(shinfo->frag_list, reason);
796 
797 	skb_free_head(skb);
798 exit:
799 	/* When we clone an SKB we copy the reycling bit. The pp_recycle
800 	 * bit is only set on the head though, so in order to avoid races
801 	 * while trying to recycle fragments on __skb_frag_unref() we need
802 	 * to make one SKB responsible for triggering the recycle path.
803 	 * So disable the recycling bit if an SKB is cloned and we have
804 	 * additional references to the fragmented part of the SKB.
805 	 * Eventually the last SKB will have the recycling bit set and it's
806 	 * dataref set to 0, which will trigger the recycling
807 	 */
808 	skb->pp_recycle = 0;
809 }
810 
811 /*
812  *	Free an skbuff by memory without cleaning the state.
813  */
814 static void kfree_skbmem(struct sk_buff *skb)
815 {
816 	struct sk_buff_fclones *fclones;
817 
818 	switch (skb->fclone) {
819 	case SKB_FCLONE_UNAVAILABLE:
820 		kmem_cache_free(skbuff_head_cache, skb);
821 		return;
822 
823 	case SKB_FCLONE_ORIG:
824 		fclones = container_of(skb, struct sk_buff_fclones, skb1);
825 
826 		/* We usually free the clone (TX completion) before original skb
827 		 * This test would have no chance to be true for the clone,
828 		 * while here, branch prediction will be good.
829 		 */
830 		if (refcount_read(&fclones->fclone_ref) == 1)
831 			goto fastpath;
832 		break;
833 
834 	default: /* SKB_FCLONE_CLONE */
835 		fclones = container_of(skb, struct sk_buff_fclones, skb2);
836 		break;
837 	}
838 	if (!refcount_dec_and_test(&fclones->fclone_ref))
839 		return;
840 fastpath:
841 	kmem_cache_free(skbuff_fclone_cache, fclones);
842 }
843 
844 void skb_release_head_state(struct sk_buff *skb)
845 {
846 	skb_dst_drop(skb);
847 	if (skb->destructor) {
848 		DEBUG_NET_WARN_ON_ONCE(in_hardirq());
849 		skb->destructor(skb);
850 	}
851 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
852 	nf_conntrack_put(skb_nfct(skb));
853 #endif
854 	skb_ext_put(skb);
855 }
856 
857 /* Free everything but the sk_buff shell. */
858 static void skb_release_all(struct sk_buff *skb, enum skb_drop_reason reason)
859 {
860 	skb_release_head_state(skb);
861 	if (likely(skb->head))
862 		skb_release_data(skb, reason);
863 }
864 
865 /**
866  *	__kfree_skb - private function
867  *	@skb: buffer
868  *
869  *	Free an sk_buff. Release anything attached to the buffer.
870  *	Clean the state. This is an internal helper function. Users should
871  *	always call kfree_skb
872  */
873 
874 void __kfree_skb(struct sk_buff *skb)
875 {
876 	skb_release_all(skb, SKB_DROP_REASON_NOT_SPECIFIED);
877 	kfree_skbmem(skb);
878 }
879 EXPORT_SYMBOL(__kfree_skb);
880 
881 /**
882  *	kfree_skb_reason - free an sk_buff with special reason
883  *	@skb: buffer to free
884  *	@reason: reason why this skb is dropped
885  *
886  *	Drop a reference to the buffer and free it if the usage count has
887  *	hit zero. Meanwhile, pass the drop reason to 'kfree_skb'
888  *	tracepoint.
889  */
890 void __fix_address
891 kfree_skb_reason(struct sk_buff *skb, enum skb_drop_reason reason)
892 {
893 	if (unlikely(!skb_unref(skb)))
894 		return;
895 
896 	DEBUG_NET_WARN_ON_ONCE(reason <= 0 || reason >= SKB_DROP_REASON_MAX);
897 
898 	if (reason == SKB_CONSUMED)
899 		trace_consume_skb(skb);
900 	else
901 		trace_kfree_skb(skb, __builtin_return_address(0), reason);
902 	__kfree_skb(skb);
903 }
904 EXPORT_SYMBOL(kfree_skb_reason);
905 
906 void kfree_skb_list_reason(struct sk_buff *segs,
907 			   enum skb_drop_reason reason)
908 {
909 	while (segs) {
910 		struct sk_buff *next = segs->next;
911 
912 		kfree_skb_reason(segs, reason);
913 		segs = next;
914 	}
915 }
916 EXPORT_SYMBOL(kfree_skb_list_reason);
917 
918 /* Dump skb information and contents.
919  *
920  * Must only be called from net_ratelimit()-ed paths.
921  *
922  * Dumps whole packets if full_pkt, only headers otherwise.
923  */
924 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt)
925 {
926 	struct skb_shared_info *sh = skb_shinfo(skb);
927 	struct net_device *dev = skb->dev;
928 	struct sock *sk = skb->sk;
929 	struct sk_buff *list_skb;
930 	bool has_mac, has_trans;
931 	int headroom, tailroom;
932 	int i, len, seg_len;
933 
934 	if (full_pkt)
935 		len = skb->len;
936 	else
937 		len = min_t(int, skb->len, MAX_HEADER + 128);
938 
939 	headroom = skb_headroom(skb);
940 	tailroom = skb_tailroom(skb);
941 
942 	has_mac = skb_mac_header_was_set(skb);
943 	has_trans = skb_transport_header_was_set(skb);
944 
945 	printk("%sskb len=%u headroom=%u headlen=%u tailroom=%u\n"
946 	       "mac=(%d,%d) net=(%d,%d) trans=%d\n"
947 	       "shinfo(txflags=%u nr_frags=%u gso(size=%hu type=%u segs=%hu))\n"
948 	       "csum(0x%x ip_summed=%u complete_sw=%u valid=%u level=%u)\n"
949 	       "hash(0x%x sw=%u l4=%u) proto=0x%04x pkttype=%u iif=%d\n",
950 	       level, skb->len, headroom, skb_headlen(skb), tailroom,
951 	       has_mac ? skb->mac_header : -1,
952 	       has_mac ? skb_mac_header_len(skb) : -1,
953 	       skb->network_header,
954 	       has_trans ? skb_network_header_len(skb) : -1,
955 	       has_trans ? skb->transport_header : -1,
956 	       sh->tx_flags, sh->nr_frags,
957 	       sh->gso_size, sh->gso_type, sh->gso_segs,
958 	       skb->csum, skb->ip_summed, skb->csum_complete_sw,
959 	       skb->csum_valid, skb->csum_level,
960 	       skb->hash, skb->sw_hash, skb->l4_hash,
961 	       ntohs(skb->protocol), skb->pkt_type, skb->skb_iif);
962 
963 	if (dev)
964 		printk("%sdev name=%s feat=%pNF\n",
965 		       level, dev->name, &dev->features);
966 	if (sk)
967 		printk("%ssk family=%hu type=%u proto=%u\n",
968 		       level, sk->sk_family, sk->sk_type, sk->sk_protocol);
969 
970 	if (full_pkt && headroom)
971 		print_hex_dump(level, "skb headroom: ", DUMP_PREFIX_OFFSET,
972 			       16, 1, skb->head, headroom, false);
973 
974 	seg_len = min_t(int, skb_headlen(skb), len);
975 	if (seg_len)
976 		print_hex_dump(level, "skb linear:   ", DUMP_PREFIX_OFFSET,
977 			       16, 1, skb->data, seg_len, false);
978 	len -= seg_len;
979 
980 	if (full_pkt && tailroom)
981 		print_hex_dump(level, "skb tailroom: ", DUMP_PREFIX_OFFSET,
982 			       16, 1, skb_tail_pointer(skb), tailroom, false);
983 
984 	for (i = 0; len && i < skb_shinfo(skb)->nr_frags; i++) {
985 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
986 		u32 p_off, p_len, copied;
987 		struct page *p;
988 		u8 *vaddr;
989 
990 		skb_frag_foreach_page(frag, skb_frag_off(frag),
991 				      skb_frag_size(frag), p, p_off, p_len,
992 				      copied) {
993 			seg_len = min_t(int, p_len, len);
994 			vaddr = kmap_atomic(p);
995 			print_hex_dump(level, "skb frag:     ",
996 				       DUMP_PREFIX_OFFSET,
997 				       16, 1, vaddr + p_off, seg_len, false);
998 			kunmap_atomic(vaddr);
999 			len -= seg_len;
1000 			if (!len)
1001 				break;
1002 		}
1003 	}
1004 
1005 	if (full_pkt && skb_has_frag_list(skb)) {
1006 		printk("skb fraglist:\n");
1007 		skb_walk_frags(skb, list_skb)
1008 			skb_dump(level, list_skb, true);
1009 	}
1010 }
1011 EXPORT_SYMBOL(skb_dump);
1012 
1013 /**
1014  *	skb_tx_error - report an sk_buff xmit error
1015  *	@skb: buffer that triggered an error
1016  *
1017  *	Report xmit error if a device callback is tracking this skb.
1018  *	skb must be freed afterwards.
1019  */
1020 void skb_tx_error(struct sk_buff *skb)
1021 {
1022 	if (skb) {
1023 		skb_zcopy_downgrade_managed(skb);
1024 		skb_zcopy_clear(skb, true);
1025 	}
1026 }
1027 EXPORT_SYMBOL(skb_tx_error);
1028 
1029 #ifdef CONFIG_TRACEPOINTS
1030 /**
1031  *	consume_skb - free an skbuff
1032  *	@skb: buffer to free
1033  *
1034  *	Drop a ref to the buffer and free it if the usage count has hit zero
1035  *	Functions identically to kfree_skb, but kfree_skb assumes that the frame
1036  *	is being dropped after a failure and notes that
1037  */
1038 void consume_skb(struct sk_buff *skb)
1039 {
1040 	if (!skb_unref(skb))
1041 		return;
1042 
1043 	trace_consume_skb(skb);
1044 	__kfree_skb(skb);
1045 }
1046 EXPORT_SYMBOL(consume_skb);
1047 #endif
1048 
1049 /**
1050  *	__consume_stateless_skb - free an skbuff, assuming it is stateless
1051  *	@skb: buffer to free
1052  *
1053  *	Alike consume_skb(), but this variant assumes that this is the last
1054  *	skb reference and all the head states have been already dropped
1055  */
1056 void __consume_stateless_skb(struct sk_buff *skb)
1057 {
1058 	trace_consume_skb(skb);
1059 	skb_release_data(skb, SKB_CONSUMED);
1060 	kfree_skbmem(skb);
1061 }
1062 
1063 static void napi_skb_cache_put(struct sk_buff *skb)
1064 {
1065 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
1066 	u32 i;
1067 
1068 	kasan_poison_object_data(skbuff_head_cache, skb);
1069 	nc->skb_cache[nc->skb_count++] = skb;
1070 
1071 	if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) {
1072 		for (i = NAPI_SKB_CACHE_HALF; i < NAPI_SKB_CACHE_SIZE; i++)
1073 			kasan_unpoison_object_data(skbuff_head_cache,
1074 						   nc->skb_cache[i]);
1075 
1076 		kmem_cache_free_bulk(skbuff_head_cache, NAPI_SKB_CACHE_HALF,
1077 				     nc->skb_cache + NAPI_SKB_CACHE_HALF);
1078 		nc->skb_count = NAPI_SKB_CACHE_HALF;
1079 	}
1080 }
1081 
1082 void __kfree_skb_defer(struct sk_buff *skb)
1083 {
1084 	skb_release_all(skb, SKB_DROP_REASON_NOT_SPECIFIED);
1085 	napi_skb_cache_put(skb);
1086 }
1087 
1088 void napi_skb_free_stolen_head(struct sk_buff *skb)
1089 {
1090 	if (unlikely(skb->slow_gro)) {
1091 		nf_reset_ct(skb);
1092 		skb_dst_drop(skb);
1093 		skb_ext_put(skb);
1094 		skb_orphan(skb);
1095 		skb->slow_gro = 0;
1096 	}
1097 	napi_skb_cache_put(skb);
1098 }
1099 
1100 void napi_consume_skb(struct sk_buff *skb, int budget)
1101 {
1102 	/* Zero budget indicate non-NAPI context called us, like netpoll */
1103 	if (unlikely(!budget)) {
1104 		dev_consume_skb_any(skb);
1105 		return;
1106 	}
1107 
1108 	DEBUG_NET_WARN_ON_ONCE(!in_softirq());
1109 
1110 	if (!skb_unref(skb))
1111 		return;
1112 
1113 	/* if reaching here SKB is ready to free */
1114 	trace_consume_skb(skb);
1115 
1116 	/* if SKB is a clone, don't handle this case */
1117 	if (skb->fclone != SKB_FCLONE_UNAVAILABLE) {
1118 		__kfree_skb(skb);
1119 		return;
1120 	}
1121 
1122 	skb_release_all(skb, SKB_CONSUMED);
1123 	napi_skb_cache_put(skb);
1124 }
1125 EXPORT_SYMBOL(napi_consume_skb);
1126 
1127 /* Make sure a field is contained by headers group */
1128 #define CHECK_SKB_FIELD(field) \
1129 	BUILD_BUG_ON(offsetof(struct sk_buff, field) !=		\
1130 		     offsetof(struct sk_buff, headers.field));	\
1131 
1132 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
1133 {
1134 	new->tstamp		= old->tstamp;
1135 	/* We do not copy old->sk */
1136 	new->dev		= old->dev;
1137 	memcpy(new->cb, old->cb, sizeof(old->cb));
1138 	skb_dst_copy(new, old);
1139 	__skb_ext_copy(new, old);
1140 	__nf_copy(new, old, false);
1141 
1142 	/* Note : this field could be in the headers group.
1143 	 * It is not yet because we do not want to have a 16 bit hole
1144 	 */
1145 	new->queue_mapping = old->queue_mapping;
1146 
1147 	memcpy(&new->headers, &old->headers, sizeof(new->headers));
1148 	CHECK_SKB_FIELD(protocol);
1149 	CHECK_SKB_FIELD(csum);
1150 	CHECK_SKB_FIELD(hash);
1151 	CHECK_SKB_FIELD(priority);
1152 	CHECK_SKB_FIELD(skb_iif);
1153 	CHECK_SKB_FIELD(vlan_proto);
1154 	CHECK_SKB_FIELD(vlan_tci);
1155 	CHECK_SKB_FIELD(transport_header);
1156 	CHECK_SKB_FIELD(network_header);
1157 	CHECK_SKB_FIELD(mac_header);
1158 	CHECK_SKB_FIELD(inner_protocol);
1159 	CHECK_SKB_FIELD(inner_transport_header);
1160 	CHECK_SKB_FIELD(inner_network_header);
1161 	CHECK_SKB_FIELD(inner_mac_header);
1162 	CHECK_SKB_FIELD(mark);
1163 #ifdef CONFIG_NETWORK_SECMARK
1164 	CHECK_SKB_FIELD(secmark);
1165 #endif
1166 #ifdef CONFIG_NET_RX_BUSY_POLL
1167 	CHECK_SKB_FIELD(napi_id);
1168 #endif
1169 	CHECK_SKB_FIELD(alloc_cpu);
1170 #ifdef CONFIG_XPS
1171 	CHECK_SKB_FIELD(sender_cpu);
1172 #endif
1173 #ifdef CONFIG_NET_SCHED
1174 	CHECK_SKB_FIELD(tc_index);
1175 #endif
1176 
1177 }
1178 
1179 /*
1180  * You should not add any new code to this function.  Add it to
1181  * __copy_skb_header above instead.
1182  */
1183 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
1184 {
1185 #define C(x) n->x = skb->x
1186 
1187 	n->next = n->prev = NULL;
1188 	n->sk = NULL;
1189 	__copy_skb_header(n, skb);
1190 
1191 	C(len);
1192 	C(data_len);
1193 	C(mac_len);
1194 	n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
1195 	n->cloned = 1;
1196 	n->nohdr = 0;
1197 	n->peeked = 0;
1198 	C(pfmemalloc);
1199 	C(pp_recycle);
1200 	n->destructor = NULL;
1201 	C(tail);
1202 	C(end);
1203 	C(head);
1204 	C(head_frag);
1205 	C(data);
1206 	C(truesize);
1207 	refcount_set(&n->users, 1);
1208 
1209 	atomic_inc(&(skb_shinfo(skb)->dataref));
1210 	skb->cloned = 1;
1211 
1212 	return n;
1213 #undef C
1214 }
1215 
1216 /**
1217  * alloc_skb_for_msg() - allocate sk_buff to wrap frag list forming a msg
1218  * @first: first sk_buff of the msg
1219  */
1220 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first)
1221 {
1222 	struct sk_buff *n;
1223 
1224 	n = alloc_skb(0, GFP_ATOMIC);
1225 	if (!n)
1226 		return NULL;
1227 
1228 	n->len = first->len;
1229 	n->data_len = first->len;
1230 	n->truesize = first->truesize;
1231 
1232 	skb_shinfo(n)->frag_list = first;
1233 
1234 	__copy_skb_header(n, first);
1235 	n->destructor = NULL;
1236 
1237 	return n;
1238 }
1239 EXPORT_SYMBOL_GPL(alloc_skb_for_msg);
1240 
1241 /**
1242  *	skb_morph	-	morph one skb into another
1243  *	@dst: the skb to receive the contents
1244  *	@src: the skb to supply the contents
1245  *
1246  *	This is identical to skb_clone except that the target skb is
1247  *	supplied by the user.
1248  *
1249  *	The target skb is returned upon exit.
1250  */
1251 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
1252 {
1253 	skb_release_all(dst, SKB_CONSUMED);
1254 	return __skb_clone(dst, src);
1255 }
1256 EXPORT_SYMBOL_GPL(skb_morph);
1257 
1258 int mm_account_pinned_pages(struct mmpin *mmp, size_t size)
1259 {
1260 	unsigned long max_pg, num_pg, new_pg, old_pg;
1261 	struct user_struct *user;
1262 
1263 	if (capable(CAP_IPC_LOCK) || !size)
1264 		return 0;
1265 
1266 	num_pg = (size >> PAGE_SHIFT) + 2;	/* worst case */
1267 	max_pg = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
1268 	user = mmp->user ? : current_user();
1269 
1270 	old_pg = atomic_long_read(&user->locked_vm);
1271 	do {
1272 		new_pg = old_pg + num_pg;
1273 		if (new_pg > max_pg)
1274 			return -ENOBUFS;
1275 	} while (!atomic_long_try_cmpxchg(&user->locked_vm, &old_pg, new_pg));
1276 
1277 	if (!mmp->user) {
1278 		mmp->user = get_uid(user);
1279 		mmp->num_pg = num_pg;
1280 	} else {
1281 		mmp->num_pg += num_pg;
1282 	}
1283 
1284 	return 0;
1285 }
1286 EXPORT_SYMBOL_GPL(mm_account_pinned_pages);
1287 
1288 void mm_unaccount_pinned_pages(struct mmpin *mmp)
1289 {
1290 	if (mmp->user) {
1291 		atomic_long_sub(mmp->num_pg, &mmp->user->locked_vm);
1292 		free_uid(mmp->user);
1293 	}
1294 }
1295 EXPORT_SYMBOL_GPL(mm_unaccount_pinned_pages);
1296 
1297 static struct ubuf_info *msg_zerocopy_alloc(struct sock *sk, size_t size)
1298 {
1299 	struct ubuf_info_msgzc *uarg;
1300 	struct sk_buff *skb;
1301 
1302 	WARN_ON_ONCE(!in_task());
1303 
1304 	skb = sock_omalloc(sk, 0, GFP_KERNEL);
1305 	if (!skb)
1306 		return NULL;
1307 
1308 	BUILD_BUG_ON(sizeof(*uarg) > sizeof(skb->cb));
1309 	uarg = (void *)skb->cb;
1310 	uarg->mmp.user = NULL;
1311 
1312 	if (mm_account_pinned_pages(&uarg->mmp, size)) {
1313 		kfree_skb(skb);
1314 		return NULL;
1315 	}
1316 
1317 	uarg->ubuf.callback = msg_zerocopy_callback;
1318 	uarg->id = ((u32)atomic_inc_return(&sk->sk_zckey)) - 1;
1319 	uarg->len = 1;
1320 	uarg->bytelen = size;
1321 	uarg->zerocopy = 1;
1322 	uarg->ubuf.flags = SKBFL_ZEROCOPY_FRAG | SKBFL_DONT_ORPHAN;
1323 	refcount_set(&uarg->ubuf.refcnt, 1);
1324 	sock_hold(sk);
1325 
1326 	return &uarg->ubuf;
1327 }
1328 
1329 static inline struct sk_buff *skb_from_uarg(struct ubuf_info_msgzc *uarg)
1330 {
1331 	return container_of((void *)uarg, struct sk_buff, cb);
1332 }
1333 
1334 struct ubuf_info *msg_zerocopy_realloc(struct sock *sk, size_t size,
1335 				       struct ubuf_info *uarg)
1336 {
1337 	if (uarg) {
1338 		struct ubuf_info_msgzc *uarg_zc;
1339 		const u32 byte_limit = 1 << 19;		/* limit to a few TSO */
1340 		u32 bytelen, next;
1341 
1342 		/* there might be non MSG_ZEROCOPY users */
1343 		if (uarg->callback != msg_zerocopy_callback)
1344 			return NULL;
1345 
1346 		/* realloc only when socket is locked (TCP, UDP cork),
1347 		 * so uarg->len and sk_zckey access is serialized
1348 		 */
1349 		if (!sock_owned_by_user(sk)) {
1350 			WARN_ON_ONCE(1);
1351 			return NULL;
1352 		}
1353 
1354 		uarg_zc = uarg_to_msgzc(uarg);
1355 		bytelen = uarg_zc->bytelen + size;
1356 		if (uarg_zc->len == USHRT_MAX - 1 || bytelen > byte_limit) {
1357 			/* TCP can create new skb to attach new uarg */
1358 			if (sk->sk_type == SOCK_STREAM)
1359 				goto new_alloc;
1360 			return NULL;
1361 		}
1362 
1363 		next = (u32)atomic_read(&sk->sk_zckey);
1364 		if ((u32)(uarg_zc->id + uarg_zc->len) == next) {
1365 			if (mm_account_pinned_pages(&uarg_zc->mmp, size))
1366 				return NULL;
1367 			uarg_zc->len++;
1368 			uarg_zc->bytelen = bytelen;
1369 			atomic_set(&sk->sk_zckey, ++next);
1370 
1371 			/* no extra ref when appending to datagram (MSG_MORE) */
1372 			if (sk->sk_type == SOCK_STREAM)
1373 				net_zcopy_get(uarg);
1374 
1375 			return uarg;
1376 		}
1377 	}
1378 
1379 new_alloc:
1380 	return msg_zerocopy_alloc(sk, size);
1381 }
1382 EXPORT_SYMBOL_GPL(msg_zerocopy_realloc);
1383 
1384 static bool skb_zerocopy_notify_extend(struct sk_buff *skb, u32 lo, u16 len)
1385 {
1386 	struct sock_exterr_skb *serr = SKB_EXT_ERR(skb);
1387 	u32 old_lo, old_hi;
1388 	u64 sum_len;
1389 
1390 	old_lo = serr->ee.ee_info;
1391 	old_hi = serr->ee.ee_data;
1392 	sum_len = old_hi - old_lo + 1ULL + len;
1393 
1394 	if (sum_len >= (1ULL << 32))
1395 		return false;
1396 
1397 	if (lo != old_hi + 1)
1398 		return false;
1399 
1400 	serr->ee.ee_data += len;
1401 	return true;
1402 }
1403 
1404 static void __msg_zerocopy_callback(struct ubuf_info_msgzc *uarg)
1405 {
1406 	struct sk_buff *tail, *skb = skb_from_uarg(uarg);
1407 	struct sock_exterr_skb *serr;
1408 	struct sock *sk = skb->sk;
1409 	struct sk_buff_head *q;
1410 	unsigned long flags;
1411 	bool is_zerocopy;
1412 	u32 lo, hi;
1413 	u16 len;
1414 
1415 	mm_unaccount_pinned_pages(&uarg->mmp);
1416 
1417 	/* if !len, there was only 1 call, and it was aborted
1418 	 * so do not queue a completion notification
1419 	 */
1420 	if (!uarg->len || sock_flag(sk, SOCK_DEAD))
1421 		goto release;
1422 
1423 	len = uarg->len;
1424 	lo = uarg->id;
1425 	hi = uarg->id + len - 1;
1426 	is_zerocopy = uarg->zerocopy;
1427 
1428 	serr = SKB_EXT_ERR(skb);
1429 	memset(serr, 0, sizeof(*serr));
1430 	serr->ee.ee_errno = 0;
1431 	serr->ee.ee_origin = SO_EE_ORIGIN_ZEROCOPY;
1432 	serr->ee.ee_data = hi;
1433 	serr->ee.ee_info = lo;
1434 	if (!is_zerocopy)
1435 		serr->ee.ee_code |= SO_EE_CODE_ZEROCOPY_COPIED;
1436 
1437 	q = &sk->sk_error_queue;
1438 	spin_lock_irqsave(&q->lock, flags);
1439 	tail = skb_peek_tail(q);
1440 	if (!tail || SKB_EXT_ERR(tail)->ee.ee_origin != SO_EE_ORIGIN_ZEROCOPY ||
1441 	    !skb_zerocopy_notify_extend(tail, lo, len)) {
1442 		__skb_queue_tail(q, skb);
1443 		skb = NULL;
1444 	}
1445 	spin_unlock_irqrestore(&q->lock, flags);
1446 
1447 	sk_error_report(sk);
1448 
1449 release:
1450 	consume_skb(skb);
1451 	sock_put(sk);
1452 }
1453 
1454 void msg_zerocopy_callback(struct sk_buff *skb, struct ubuf_info *uarg,
1455 			   bool success)
1456 {
1457 	struct ubuf_info_msgzc *uarg_zc = uarg_to_msgzc(uarg);
1458 
1459 	uarg_zc->zerocopy = uarg_zc->zerocopy & success;
1460 
1461 	if (refcount_dec_and_test(&uarg->refcnt))
1462 		__msg_zerocopy_callback(uarg_zc);
1463 }
1464 EXPORT_SYMBOL_GPL(msg_zerocopy_callback);
1465 
1466 void msg_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref)
1467 {
1468 	struct sock *sk = skb_from_uarg(uarg_to_msgzc(uarg))->sk;
1469 
1470 	atomic_dec(&sk->sk_zckey);
1471 	uarg_to_msgzc(uarg)->len--;
1472 
1473 	if (have_uref)
1474 		msg_zerocopy_callback(NULL, uarg, true);
1475 }
1476 EXPORT_SYMBOL_GPL(msg_zerocopy_put_abort);
1477 
1478 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
1479 			     struct msghdr *msg, int len,
1480 			     struct ubuf_info *uarg)
1481 {
1482 	struct ubuf_info *orig_uarg = skb_zcopy(skb);
1483 	int err, orig_len = skb->len;
1484 
1485 	/* An skb can only point to one uarg. This edge case happens when
1486 	 * TCP appends to an skb, but zerocopy_realloc triggered a new alloc.
1487 	 */
1488 	if (orig_uarg && uarg != orig_uarg)
1489 		return -EEXIST;
1490 
1491 	err = __zerocopy_sg_from_iter(msg, sk, skb, &msg->msg_iter, len);
1492 	if (err == -EFAULT || (err == -EMSGSIZE && skb->len == orig_len)) {
1493 		struct sock *save_sk = skb->sk;
1494 
1495 		/* Streams do not free skb on error. Reset to prev state. */
1496 		iov_iter_revert(&msg->msg_iter, skb->len - orig_len);
1497 		skb->sk = sk;
1498 		___pskb_trim(skb, orig_len);
1499 		skb->sk = save_sk;
1500 		return err;
1501 	}
1502 
1503 	skb_zcopy_set(skb, uarg, NULL);
1504 	return skb->len - orig_len;
1505 }
1506 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_stream);
1507 
1508 void __skb_zcopy_downgrade_managed(struct sk_buff *skb)
1509 {
1510 	int i;
1511 
1512 	skb_shinfo(skb)->flags &= ~SKBFL_MANAGED_FRAG_REFS;
1513 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1514 		skb_frag_ref(skb, i);
1515 }
1516 EXPORT_SYMBOL_GPL(__skb_zcopy_downgrade_managed);
1517 
1518 static int skb_zerocopy_clone(struct sk_buff *nskb, struct sk_buff *orig,
1519 			      gfp_t gfp_mask)
1520 {
1521 	if (skb_zcopy(orig)) {
1522 		if (skb_zcopy(nskb)) {
1523 			/* !gfp_mask callers are verified to !skb_zcopy(nskb) */
1524 			if (!gfp_mask) {
1525 				WARN_ON_ONCE(1);
1526 				return -ENOMEM;
1527 			}
1528 			if (skb_uarg(nskb) == skb_uarg(orig))
1529 				return 0;
1530 			if (skb_copy_ubufs(nskb, GFP_ATOMIC))
1531 				return -EIO;
1532 		}
1533 		skb_zcopy_set(nskb, skb_uarg(orig), NULL);
1534 	}
1535 	return 0;
1536 }
1537 
1538 /**
1539  *	skb_copy_ubufs	-	copy userspace skb frags buffers to kernel
1540  *	@skb: the skb to modify
1541  *	@gfp_mask: allocation priority
1542  *
1543  *	This must be called on skb with SKBFL_ZEROCOPY_ENABLE.
1544  *	It will copy all frags into kernel and drop the reference
1545  *	to userspace pages.
1546  *
1547  *	If this function is called from an interrupt gfp_mask() must be
1548  *	%GFP_ATOMIC.
1549  *
1550  *	Returns 0 on success or a negative error code on failure
1551  *	to allocate kernel memory to copy to.
1552  */
1553 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask)
1554 {
1555 	int num_frags = skb_shinfo(skb)->nr_frags;
1556 	struct page *page, *head = NULL;
1557 	int i, new_frags;
1558 	u32 d_off;
1559 
1560 	if (skb_shared(skb) || skb_unclone(skb, gfp_mask))
1561 		return -EINVAL;
1562 
1563 	if (!num_frags)
1564 		goto release;
1565 
1566 	new_frags = (__skb_pagelen(skb) + PAGE_SIZE - 1) >> PAGE_SHIFT;
1567 	for (i = 0; i < new_frags; i++) {
1568 		page = alloc_page(gfp_mask);
1569 		if (!page) {
1570 			while (head) {
1571 				struct page *next = (struct page *)page_private(head);
1572 				put_page(head);
1573 				head = next;
1574 			}
1575 			return -ENOMEM;
1576 		}
1577 		set_page_private(page, (unsigned long)head);
1578 		head = page;
1579 	}
1580 
1581 	page = head;
1582 	d_off = 0;
1583 	for (i = 0; i < num_frags; i++) {
1584 		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
1585 		u32 p_off, p_len, copied;
1586 		struct page *p;
1587 		u8 *vaddr;
1588 
1589 		skb_frag_foreach_page(f, skb_frag_off(f), skb_frag_size(f),
1590 				      p, p_off, p_len, copied) {
1591 			u32 copy, done = 0;
1592 			vaddr = kmap_atomic(p);
1593 
1594 			while (done < p_len) {
1595 				if (d_off == PAGE_SIZE) {
1596 					d_off = 0;
1597 					page = (struct page *)page_private(page);
1598 				}
1599 				copy = min_t(u32, PAGE_SIZE - d_off, p_len - done);
1600 				memcpy(page_address(page) + d_off,
1601 				       vaddr + p_off + done, copy);
1602 				done += copy;
1603 				d_off += copy;
1604 			}
1605 			kunmap_atomic(vaddr);
1606 		}
1607 	}
1608 
1609 	/* skb frags release userspace buffers */
1610 	for (i = 0; i < num_frags; i++)
1611 		skb_frag_unref(skb, i);
1612 
1613 	/* skb frags point to kernel buffers */
1614 	for (i = 0; i < new_frags - 1; i++) {
1615 		__skb_fill_page_desc(skb, i, head, 0, PAGE_SIZE);
1616 		head = (struct page *)page_private(head);
1617 	}
1618 	__skb_fill_page_desc(skb, new_frags - 1, head, 0, d_off);
1619 	skb_shinfo(skb)->nr_frags = new_frags;
1620 
1621 release:
1622 	skb_zcopy_clear(skb, false);
1623 	return 0;
1624 }
1625 EXPORT_SYMBOL_GPL(skb_copy_ubufs);
1626 
1627 /**
1628  *	skb_clone	-	duplicate an sk_buff
1629  *	@skb: buffer to clone
1630  *	@gfp_mask: allocation priority
1631  *
1632  *	Duplicate an &sk_buff. The new one is not owned by a socket. Both
1633  *	copies share the same packet data but not structure. The new
1634  *	buffer has a reference count of 1. If the allocation fails the
1635  *	function returns %NULL otherwise the new buffer is returned.
1636  *
1637  *	If this function is called from an interrupt gfp_mask() must be
1638  *	%GFP_ATOMIC.
1639  */
1640 
1641 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
1642 {
1643 	struct sk_buff_fclones *fclones = container_of(skb,
1644 						       struct sk_buff_fclones,
1645 						       skb1);
1646 	struct sk_buff *n;
1647 
1648 	if (skb_orphan_frags(skb, gfp_mask))
1649 		return NULL;
1650 
1651 	if (skb->fclone == SKB_FCLONE_ORIG &&
1652 	    refcount_read(&fclones->fclone_ref) == 1) {
1653 		n = &fclones->skb2;
1654 		refcount_set(&fclones->fclone_ref, 2);
1655 		n->fclone = SKB_FCLONE_CLONE;
1656 	} else {
1657 		if (skb_pfmemalloc(skb))
1658 			gfp_mask |= __GFP_MEMALLOC;
1659 
1660 		n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
1661 		if (!n)
1662 			return NULL;
1663 
1664 		n->fclone = SKB_FCLONE_UNAVAILABLE;
1665 	}
1666 
1667 	return __skb_clone(n, skb);
1668 }
1669 EXPORT_SYMBOL(skb_clone);
1670 
1671 void skb_headers_offset_update(struct sk_buff *skb, int off)
1672 {
1673 	/* Only adjust this if it actually is csum_start rather than csum */
1674 	if (skb->ip_summed == CHECKSUM_PARTIAL)
1675 		skb->csum_start += off;
1676 	/* {transport,network,mac}_header and tail are relative to skb->head */
1677 	skb->transport_header += off;
1678 	skb->network_header   += off;
1679 	if (skb_mac_header_was_set(skb))
1680 		skb->mac_header += off;
1681 	skb->inner_transport_header += off;
1682 	skb->inner_network_header += off;
1683 	skb->inner_mac_header += off;
1684 }
1685 EXPORT_SYMBOL(skb_headers_offset_update);
1686 
1687 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old)
1688 {
1689 	__copy_skb_header(new, old);
1690 
1691 	skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
1692 	skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
1693 	skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
1694 }
1695 EXPORT_SYMBOL(skb_copy_header);
1696 
1697 static inline int skb_alloc_rx_flag(const struct sk_buff *skb)
1698 {
1699 	if (skb_pfmemalloc(skb))
1700 		return SKB_ALLOC_RX;
1701 	return 0;
1702 }
1703 
1704 /**
1705  *	skb_copy	-	create private copy of an sk_buff
1706  *	@skb: buffer to copy
1707  *	@gfp_mask: allocation priority
1708  *
1709  *	Make a copy of both an &sk_buff and its data. This is used when the
1710  *	caller wishes to modify the data and needs a private copy of the
1711  *	data to alter. Returns %NULL on failure or the pointer to the buffer
1712  *	on success. The returned buffer has a reference count of 1.
1713  *
1714  *	As by-product this function converts non-linear &sk_buff to linear
1715  *	one, so that &sk_buff becomes completely private and caller is allowed
1716  *	to modify all the data of returned buffer. This means that this
1717  *	function is not recommended for use in circumstances when only
1718  *	header is going to be modified. Use pskb_copy() instead.
1719  */
1720 
1721 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
1722 {
1723 	int headerlen = skb_headroom(skb);
1724 	unsigned int size = skb_end_offset(skb) + skb->data_len;
1725 	struct sk_buff *n = __alloc_skb(size, gfp_mask,
1726 					skb_alloc_rx_flag(skb), NUMA_NO_NODE);
1727 
1728 	if (!n)
1729 		return NULL;
1730 
1731 	/* Set the data pointer */
1732 	skb_reserve(n, headerlen);
1733 	/* Set the tail pointer and length */
1734 	skb_put(n, skb->len);
1735 
1736 	BUG_ON(skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len));
1737 
1738 	skb_copy_header(n, skb);
1739 	return n;
1740 }
1741 EXPORT_SYMBOL(skb_copy);
1742 
1743 /**
1744  *	__pskb_copy_fclone	-  create copy of an sk_buff with private head.
1745  *	@skb: buffer to copy
1746  *	@headroom: headroom of new skb
1747  *	@gfp_mask: allocation priority
1748  *	@fclone: if true allocate the copy of the skb from the fclone
1749  *	cache instead of the head cache; it is recommended to set this
1750  *	to true for the cases where the copy will likely be cloned
1751  *
1752  *	Make a copy of both an &sk_buff and part of its data, located
1753  *	in header. Fragmented data remain shared. This is used when
1754  *	the caller wishes to modify only header of &sk_buff and needs
1755  *	private copy of the header to alter. Returns %NULL on failure
1756  *	or the pointer to the buffer on success.
1757  *	The returned buffer has a reference count of 1.
1758  */
1759 
1760 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1761 				   gfp_t gfp_mask, bool fclone)
1762 {
1763 	unsigned int size = skb_headlen(skb) + headroom;
1764 	int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0);
1765 	struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE);
1766 
1767 	if (!n)
1768 		goto out;
1769 
1770 	/* Set the data pointer */
1771 	skb_reserve(n, headroom);
1772 	/* Set the tail pointer and length */
1773 	skb_put(n, skb_headlen(skb));
1774 	/* Copy the bytes */
1775 	skb_copy_from_linear_data(skb, n->data, n->len);
1776 
1777 	n->truesize += skb->data_len;
1778 	n->data_len  = skb->data_len;
1779 	n->len	     = skb->len;
1780 
1781 	if (skb_shinfo(skb)->nr_frags) {
1782 		int i;
1783 
1784 		if (skb_orphan_frags(skb, gfp_mask) ||
1785 		    skb_zerocopy_clone(n, skb, gfp_mask)) {
1786 			kfree_skb(n);
1787 			n = NULL;
1788 			goto out;
1789 		}
1790 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1791 			skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
1792 			skb_frag_ref(skb, i);
1793 		}
1794 		skb_shinfo(n)->nr_frags = i;
1795 	}
1796 
1797 	if (skb_has_frag_list(skb)) {
1798 		skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
1799 		skb_clone_fraglist(n);
1800 	}
1801 
1802 	skb_copy_header(n, skb);
1803 out:
1804 	return n;
1805 }
1806 EXPORT_SYMBOL(__pskb_copy_fclone);
1807 
1808 /**
1809  *	pskb_expand_head - reallocate header of &sk_buff
1810  *	@skb: buffer to reallocate
1811  *	@nhead: room to add at head
1812  *	@ntail: room to add at tail
1813  *	@gfp_mask: allocation priority
1814  *
1815  *	Expands (or creates identical copy, if @nhead and @ntail are zero)
1816  *	header of @skb. &sk_buff itself is not changed. &sk_buff MUST have
1817  *	reference count of 1. Returns zero in the case of success or error,
1818  *	if expansion failed. In the last case, &sk_buff is not changed.
1819  *
1820  *	All the pointers pointing into skb header may change and must be
1821  *	reloaded after call to this function.
1822  */
1823 
1824 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
1825 		     gfp_t gfp_mask)
1826 {
1827 	unsigned int osize = skb_end_offset(skb);
1828 	unsigned int size = osize + nhead + ntail;
1829 	long off;
1830 	u8 *data;
1831 	int i;
1832 
1833 	BUG_ON(nhead < 0);
1834 
1835 	BUG_ON(skb_shared(skb));
1836 
1837 	skb_zcopy_downgrade_managed(skb);
1838 
1839 	if (skb_pfmemalloc(skb))
1840 		gfp_mask |= __GFP_MEMALLOC;
1841 
1842 	size = SKB_DATA_ALIGN(size);
1843 	size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
1844 	size = kmalloc_size_roundup(size);
1845 	data = kmalloc_reserve(size, gfp_mask, NUMA_NO_NODE, NULL);
1846 	if (!data)
1847 		goto nodata;
1848 	size = SKB_WITH_OVERHEAD(size);
1849 
1850 	/* Copy only real data... and, alas, header. This should be
1851 	 * optimized for the cases when header is void.
1852 	 */
1853 	memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head);
1854 
1855 	memcpy((struct skb_shared_info *)(data + size),
1856 	       skb_shinfo(skb),
1857 	       offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags]));
1858 
1859 	/*
1860 	 * if shinfo is shared we must drop the old head gracefully, but if it
1861 	 * is not we can just drop the old head and let the existing refcount
1862 	 * be since all we did is relocate the values
1863 	 */
1864 	if (skb_cloned(skb)) {
1865 		if (skb_orphan_frags(skb, gfp_mask))
1866 			goto nofrags;
1867 		if (skb_zcopy(skb))
1868 			refcount_inc(&skb_uarg(skb)->refcnt);
1869 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1870 			skb_frag_ref(skb, i);
1871 
1872 		if (skb_has_frag_list(skb))
1873 			skb_clone_fraglist(skb);
1874 
1875 		skb_release_data(skb, SKB_CONSUMED);
1876 	} else {
1877 		skb_free_head(skb);
1878 	}
1879 	off = (data + nhead) - skb->head;
1880 
1881 	skb->head     = data;
1882 	skb->head_frag = 0;
1883 	skb->data    += off;
1884 
1885 	skb_set_end_offset(skb, size);
1886 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1887 	off           = nhead;
1888 #endif
1889 	skb->tail	      += off;
1890 	skb_headers_offset_update(skb, nhead);
1891 	skb->cloned   = 0;
1892 	skb->hdr_len  = 0;
1893 	skb->nohdr    = 0;
1894 	atomic_set(&skb_shinfo(skb)->dataref, 1);
1895 
1896 	skb_metadata_clear(skb);
1897 
1898 	/* It is not generally safe to change skb->truesize.
1899 	 * For the moment, we really care of rx path, or
1900 	 * when skb is orphaned (not attached to a socket).
1901 	 */
1902 	if (!skb->sk || skb->destructor == sock_edemux)
1903 		skb->truesize += size - osize;
1904 
1905 	return 0;
1906 
1907 nofrags:
1908 	kfree(data);
1909 nodata:
1910 	return -ENOMEM;
1911 }
1912 EXPORT_SYMBOL(pskb_expand_head);
1913 
1914 /* Make private copy of skb with writable head and some headroom */
1915 
1916 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
1917 {
1918 	struct sk_buff *skb2;
1919 	int delta = headroom - skb_headroom(skb);
1920 
1921 	if (delta <= 0)
1922 		skb2 = pskb_copy(skb, GFP_ATOMIC);
1923 	else {
1924 		skb2 = skb_clone(skb, GFP_ATOMIC);
1925 		if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
1926 					     GFP_ATOMIC)) {
1927 			kfree_skb(skb2);
1928 			skb2 = NULL;
1929 		}
1930 	}
1931 	return skb2;
1932 }
1933 EXPORT_SYMBOL(skb_realloc_headroom);
1934 
1935 int __skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri)
1936 {
1937 	unsigned int saved_end_offset, saved_truesize;
1938 	struct skb_shared_info *shinfo;
1939 	int res;
1940 
1941 	saved_end_offset = skb_end_offset(skb);
1942 	saved_truesize = skb->truesize;
1943 
1944 	res = pskb_expand_head(skb, 0, 0, pri);
1945 	if (res)
1946 		return res;
1947 
1948 	skb->truesize = saved_truesize;
1949 
1950 	if (likely(skb_end_offset(skb) == saved_end_offset))
1951 		return 0;
1952 
1953 	shinfo = skb_shinfo(skb);
1954 
1955 	/* We are about to change back skb->end,
1956 	 * we need to move skb_shinfo() to its new location.
1957 	 */
1958 	memmove(skb->head + saved_end_offset,
1959 		shinfo,
1960 		offsetof(struct skb_shared_info, frags[shinfo->nr_frags]));
1961 
1962 	skb_set_end_offset(skb, saved_end_offset);
1963 
1964 	return 0;
1965 }
1966 
1967 /**
1968  *	skb_expand_head - reallocate header of &sk_buff
1969  *	@skb: buffer to reallocate
1970  *	@headroom: needed headroom
1971  *
1972  *	Unlike skb_realloc_headroom, this one does not allocate a new skb
1973  *	if possible; copies skb->sk to new skb as needed
1974  *	and frees original skb in case of failures.
1975  *
1976  *	It expect increased headroom and generates warning otherwise.
1977  */
1978 
1979 struct sk_buff *skb_expand_head(struct sk_buff *skb, unsigned int headroom)
1980 {
1981 	int delta = headroom - skb_headroom(skb);
1982 	int osize = skb_end_offset(skb);
1983 	struct sock *sk = skb->sk;
1984 
1985 	if (WARN_ONCE(delta <= 0,
1986 		      "%s is expecting an increase in the headroom", __func__))
1987 		return skb;
1988 
1989 	delta = SKB_DATA_ALIGN(delta);
1990 	/* pskb_expand_head() might crash, if skb is shared. */
1991 	if (skb_shared(skb) || !is_skb_wmem(skb)) {
1992 		struct sk_buff *nskb = skb_clone(skb, GFP_ATOMIC);
1993 
1994 		if (unlikely(!nskb))
1995 			goto fail;
1996 
1997 		if (sk)
1998 			skb_set_owner_w(nskb, sk);
1999 		consume_skb(skb);
2000 		skb = nskb;
2001 	}
2002 	if (pskb_expand_head(skb, delta, 0, GFP_ATOMIC))
2003 		goto fail;
2004 
2005 	if (sk && is_skb_wmem(skb)) {
2006 		delta = skb_end_offset(skb) - osize;
2007 		refcount_add(delta, &sk->sk_wmem_alloc);
2008 		skb->truesize += delta;
2009 	}
2010 	return skb;
2011 
2012 fail:
2013 	kfree_skb(skb);
2014 	return NULL;
2015 }
2016 EXPORT_SYMBOL(skb_expand_head);
2017 
2018 /**
2019  *	skb_copy_expand	-	copy and expand sk_buff
2020  *	@skb: buffer to copy
2021  *	@newheadroom: new free bytes at head
2022  *	@newtailroom: new free bytes at tail
2023  *	@gfp_mask: allocation priority
2024  *
2025  *	Make a copy of both an &sk_buff and its data and while doing so
2026  *	allocate additional space.
2027  *
2028  *	This is used when the caller wishes to modify the data and needs a
2029  *	private copy of the data to alter as well as more space for new fields.
2030  *	Returns %NULL on failure or the pointer to the buffer
2031  *	on success. The returned buffer has a reference count of 1.
2032  *
2033  *	You must pass %GFP_ATOMIC as the allocation priority if this function
2034  *	is called from an interrupt.
2035  */
2036 struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
2037 				int newheadroom, int newtailroom,
2038 				gfp_t gfp_mask)
2039 {
2040 	/*
2041 	 *	Allocate the copy buffer
2042 	 */
2043 	struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom,
2044 					gfp_mask, skb_alloc_rx_flag(skb),
2045 					NUMA_NO_NODE);
2046 	int oldheadroom = skb_headroom(skb);
2047 	int head_copy_len, head_copy_off;
2048 
2049 	if (!n)
2050 		return NULL;
2051 
2052 	skb_reserve(n, newheadroom);
2053 
2054 	/* Set the tail pointer and length */
2055 	skb_put(n, skb->len);
2056 
2057 	head_copy_len = oldheadroom;
2058 	head_copy_off = 0;
2059 	if (newheadroom <= head_copy_len)
2060 		head_copy_len = newheadroom;
2061 	else
2062 		head_copy_off = newheadroom - head_copy_len;
2063 
2064 	/* Copy the linear header and data. */
2065 	BUG_ON(skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
2066 			     skb->len + head_copy_len));
2067 
2068 	skb_copy_header(n, skb);
2069 
2070 	skb_headers_offset_update(n, newheadroom - oldheadroom);
2071 
2072 	return n;
2073 }
2074 EXPORT_SYMBOL(skb_copy_expand);
2075 
2076 /**
2077  *	__skb_pad		-	zero pad the tail of an skb
2078  *	@skb: buffer to pad
2079  *	@pad: space to pad
2080  *	@free_on_error: free buffer on error
2081  *
2082  *	Ensure that a buffer is followed by a padding area that is zero
2083  *	filled. Used by network drivers which may DMA or transfer data
2084  *	beyond the buffer end onto the wire.
2085  *
2086  *	May return error in out of memory cases. The skb is freed on error
2087  *	if @free_on_error is true.
2088  */
2089 
2090 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error)
2091 {
2092 	int err;
2093 	int ntail;
2094 
2095 	/* If the skbuff is non linear tailroom is always zero.. */
2096 	if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
2097 		memset(skb->data+skb->len, 0, pad);
2098 		return 0;
2099 	}
2100 
2101 	ntail = skb->data_len + pad - (skb->end - skb->tail);
2102 	if (likely(skb_cloned(skb) || ntail > 0)) {
2103 		err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
2104 		if (unlikely(err))
2105 			goto free_skb;
2106 	}
2107 
2108 	/* FIXME: The use of this function with non-linear skb's really needs
2109 	 * to be audited.
2110 	 */
2111 	err = skb_linearize(skb);
2112 	if (unlikely(err))
2113 		goto free_skb;
2114 
2115 	memset(skb->data + skb->len, 0, pad);
2116 	return 0;
2117 
2118 free_skb:
2119 	if (free_on_error)
2120 		kfree_skb(skb);
2121 	return err;
2122 }
2123 EXPORT_SYMBOL(__skb_pad);
2124 
2125 /**
2126  *	pskb_put - add data to the tail of a potentially fragmented buffer
2127  *	@skb: start of the buffer to use
2128  *	@tail: tail fragment of the buffer to use
2129  *	@len: amount of data to add
2130  *
2131  *	This function extends the used data area of the potentially
2132  *	fragmented buffer. @tail must be the last fragment of @skb -- or
2133  *	@skb itself. If this would exceed the total buffer size the kernel
2134  *	will panic. A pointer to the first byte of the extra data is
2135  *	returned.
2136  */
2137 
2138 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len)
2139 {
2140 	if (tail != skb) {
2141 		skb->data_len += len;
2142 		skb->len += len;
2143 	}
2144 	return skb_put(tail, len);
2145 }
2146 EXPORT_SYMBOL_GPL(pskb_put);
2147 
2148 /**
2149  *	skb_put - add data to a buffer
2150  *	@skb: buffer to use
2151  *	@len: amount of data to add
2152  *
2153  *	This function extends the used data area of the buffer. If this would
2154  *	exceed the total buffer size the kernel will panic. A pointer to the
2155  *	first byte of the extra data is returned.
2156  */
2157 void *skb_put(struct sk_buff *skb, unsigned int len)
2158 {
2159 	void *tmp = skb_tail_pointer(skb);
2160 	SKB_LINEAR_ASSERT(skb);
2161 	skb->tail += len;
2162 	skb->len  += len;
2163 	if (unlikely(skb->tail > skb->end))
2164 		skb_over_panic(skb, len, __builtin_return_address(0));
2165 	return tmp;
2166 }
2167 EXPORT_SYMBOL(skb_put);
2168 
2169 /**
2170  *	skb_push - add data to the start of a buffer
2171  *	@skb: buffer to use
2172  *	@len: amount of data to add
2173  *
2174  *	This function extends the used data area of the buffer at the buffer
2175  *	start. If this would exceed the total buffer headroom the kernel will
2176  *	panic. A pointer to the first byte of the extra data is returned.
2177  */
2178 void *skb_push(struct sk_buff *skb, unsigned int len)
2179 {
2180 	skb->data -= len;
2181 	skb->len  += len;
2182 	if (unlikely(skb->data < skb->head))
2183 		skb_under_panic(skb, len, __builtin_return_address(0));
2184 	return skb->data;
2185 }
2186 EXPORT_SYMBOL(skb_push);
2187 
2188 /**
2189  *	skb_pull - remove data from the start of a buffer
2190  *	@skb: buffer to use
2191  *	@len: amount of data to remove
2192  *
2193  *	This function removes data from the start of a buffer, returning
2194  *	the memory to the headroom. A pointer to the next data in the buffer
2195  *	is returned. Once the data has been pulled future pushes will overwrite
2196  *	the old data.
2197  */
2198 void *skb_pull(struct sk_buff *skb, unsigned int len)
2199 {
2200 	return skb_pull_inline(skb, len);
2201 }
2202 EXPORT_SYMBOL(skb_pull);
2203 
2204 /**
2205  *	skb_pull_data - remove data from the start of a buffer returning its
2206  *	original position.
2207  *	@skb: buffer to use
2208  *	@len: amount of data to remove
2209  *
2210  *	This function removes data from the start of a buffer, returning
2211  *	the memory to the headroom. A pointer to the original data in the buffer
2212  *	is returned after checking if there is enough data to pull. Once the
2213  *	data has been pulled future pushes will overwrite the old data.
2214  */
2215 void *skb_pull_data(struct sk_buff *skb, size_t len)
2216 {
2217 	void *data = skb->data;
2218 
2219 	if (skb->len < len)
2220 		return NULL;
2221 
2222 	skb_pull(skb, len);
2223 
2224 	return data;
2225 }
2226 EXPORT_SYMBOL(skb_pull_data);
2227 
2228 /**
2229  *	skb_trim - remove end from a buffer
2230  *	@skb: buffer to alter
2231  *	@len: new length
2232  *
2233  *	Cut the length of a buffer down by removing data from the tail. If
2234  *	the buffer is already under the length specified it is not modified.
2235  *	The skb must be linear.
2236  */
2237 void skb_trim(struct sk_buff *skb, unsigned int len)
2238 {
2239 	if (skb->len > len)
2240 		__skb_trim(skb, len);
2241 }
2242 EXPORT_SYMBOL(skb_trim);
2243 
2244 /* Trims skb to length len. It can change skb pointers.
2245  */
2246 
2247 int ___pskb_trim(struct sk_buff *skb, unsigned int len)
2248 {
2249 	struct sk_buff **fragp;
2250 	struct sk_buff *frag;
2251 	int offset = skb_headlen(skb);
2252 	int nfrags = skb_shinfo(skb)->nr_frags;
2253 	int i;
2254 	int err;
2255 
2256 	if (skb_cloned(skb) &&
2257 	    unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
2258 		return err;
2259 
2260 	i = 0;
2261 	if (offset >= len)
2262 		goto drop_pages;
2263 
2264 	for (; i < nfrags; i++) {
2265 		int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]);
2266 
2267 		if (end < len) {
2268 			offset = end;
2269 			continue;
2270 		}
2271 
2272 		skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset);
2273 
2274 drop_pages:
2275 		skb_shinfo(skb)->nr_frags = i;
2276 
2277 		for (; i < nfrags; i++)
2278 			skb_frag_unref(skb, i);
2279 
2280 		if (skb_has_frag_list(skb))
2281 			skb_drop_fraglist(skb);
2282 		goto done;
2283 	}
2284 
2285 	for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
2286 	     fragp = &frag->next) {
2287 		int end = offset + frag->len;
2288 
2289 		if (skb_shared(frag)) {
2290 			struct sk_buff *nfrag;
2291 
2292 			nfrag = skb_clone(frag, GFP_ATOMIC);
2293 			if (unlikely(!nfrag))
2294 				return -ENOMEM;
2295 
2296 			nfrag->next = frag->next;
2297 			consume_skb(frag);
2298 			frag = nfrag;
2299 			*fragp = frag;
2300 		}
2301 
2302 		if (end < len) {
2303 			offset = end;
2304 			continue;
2305 		}
2306 
2307 		if (end > len &&
2308 		    unlikely((err = pskb_trim(frag, len - offset))))
2309 			return err;
2310 
2311 		if (frag->next)
2312 			skb_drop_list(&frag->next);
2313 		break;
2314 	}
2315 
2316 done:
2317 	if (len > skb_headlen(skb)) {
2318 		skb->data_len -= skb->len - len;
2319 		skb->len       = len;
2320 	} else {
2321 		skb->len       = len;
2322 		skb->data_len  = 0;
2323 		skb_set_tail_pointer(skb, len);
2324 	}
2325 
2326 	if (!skb->sk || skb->destructor == sock_edemux)
2327 		skb_condense(skb);
2328 	return 0;
2329 }
2330 EXPORT_SYMBOL(___pskb_trim);
2331 
2332 /* Note : use pskb_trim_rcsum() instead of calling this directly
2333  */
2334 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len)
2335 {
2336 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
2337 		int delta = skb->len - len;
2338 
2339 		skb->csum = csum_block_sub(skb->csum,
2340 					   skb_checksum(skb, len, delta, 0),
2341 					   len);
2342 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
2343 		int hdlen = (len > skb_headlen(skb)) ? skb_headlen(skb) : len;
2344 		int offset = skb_checksum_start_offset(skb) + skb->csum_offset;
2345 
2346 		if (offset + sizeof(__sum16) > hdlen)
2347 			return -EINVAL;
2348 	}
2349 	return __pskb_trim(skb, len);
2350 }
2351 EXPORT_SYMBOL(pskb_trim_rcsum_slow);
2352 
2353 /**
2354  *	__pskb_pull_tail - advance tail of skb header
2355  *	@skb: buffer to reallocate
2356  *	@delta: number of bytes to advance tail
2357  *
2358  *	The function makes a sense only on a fragmented &sk_buff,
2359  *	it expands header moving its tail forward and copying necessary
2360  *	data from fragmented part.
2361  *
2362  *	&sk_buff MUST have reference count of 1.
2363  *
2364  *	Returns %NULL (and &sk_buff does not change) if pull failed
2365  *	or value of new tail of skb in the case of success.
2366  *
2367  *	All the pointers pointing into skb header may change and must be
2368  *	reloaded after call to this function.
2369  */
2370 
2371 /* Moves tail of skb head forward, copying data from fragmented part,
2372  * when it is necessary.
2373  * 1. It may fail due to malloc failure.
2374  * 2. It may change skb pointers.
2375  *
2376  * It is pretty complicated. Luckily, it is called only in exceptional cases.
2377  */
2378 void *__pskb_pull_tail(struct sk_buff *skb, int delta)
2379 {
2380 	/* If skb has not enough free space at tail, get new one
2381 	 * plus 128 bytes for future expansions. If we have enough
2382 	 * room at tail, reallocate without expansion only if skb is cloned.
2383 	 */
2384 	int i, k, eat = (skb->tail + delta) - skb->end;
2385 
2386 	if (eat > 0 || skb_cloned(skb)) {
2387 		if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
2388 				     GFP_ATOMIC))
2389 			return NULL;
2390 	}
2391 
2392 	BUG_ON(skb_copy_bits(skb, skb_headlen(skb),
2393 			     skb_tail_pointer(skb), delta));
2394 
2395 	/* Optimization: no fragments, no reasons to preestimate
2396 	 * size of pulled pages. Superb.
2397 	 */
2398 	if (!skb_has_frag_list(skb))
2399 		goto pull_pages;
2400 
2401 	/* Estimate size of pulled pages. */
2402 	eat = delta;
2403 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2404 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2405 
2406 		if (size >= eat)
2407 			goto pull_pages;
2408 		eat -= size;
2409 	}
2410 
2411 	/* If we need update frag list, we are in troubles.
2412 	 * Certainly, it is possible to add an offset to skb data,
2413 	 * but taking into account that pulling is expected to
2414 	 * be very rare operation, it is worth to fight against
2415 	 * further bloating skb head and crucify ourselves here instead.
2416 	 * Pure masohism, indeed. 8)8)
2417 	 */
2418 	if (eat) {
2419 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
2420 		struct sk_buff *clone = NULL;
2421 		struct sk_buff *insp = NULL;
2422 
2423 		do {
2424 			if (list->len <= eat) {
2425 				/* Eaten as whole. */
2426 				eat -= list->len;
2427 				list = list->next;
2428 				insp = list;
2429 			} else {
2430 				/* Eaten partially. */
2431 
2432 				if (skb_shared(list)) {
2433 					/* Sucks! We need to fork list. :-( */
2434 					clone = skb_clone(list, GFP_ATOMIC);
2435 					if (!clone)
2436 						return NULL;
2437 					insp = list->next;
2438 					list = clone;
2439 				} else {
2440 					/* This may be pulled without
2441 					 * problems. */
2442 					insp = list;
2443 				}
2444 				if (!pskb_pull(list, eat)) {
2445 					kfree_skb(clone);
2446 					return NULL;
2447 				}
2448 				break;
2449 			}
2450 		} while (eat);
2451 
2452 		/* Free pulled out fragments. */
2453 		while ((list = skb_shinfo(skb)->frag_list) != insp) {
2454 			skb_shinfo(skb)->frag_list = list->next;
2455 			consume_skb(list);
2456 		}
2457 		/* And insert new clone at head. */
2458 		if (clone) {
2459 			clone->next = list;
2460 			skb_shinfo(skb)->frag_list = clone;
2461 		}
2462 	}
2463 	/* Success! Now we may commit changes to skb data. */
2464 
2465 pull_pages:
2466 	eat = delta;
2467 	k = 0;
2468 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2469 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2470 
2471 		if (size <= eat) {
2472 			skb_frag_unref(skb, i);
2473 			eat -= size;
2474 		} else {
2475 			skb_frag_t *frag = &skb_shinfo(skb)->frags[k];
2476 
2477 			*frag = skb_shinfo(skb)->frags[i];
2478 			if (eat) {
2479 				skb_frag_off_add(frag, eat);
2480 				skb_frag_size_sub(frag, eat);
2481 				if (!i)
2482 					goto end;
2483 				eat = 0;
2484 			}
2485 			k++;
2486 		}
2487 	}
2488 	skb_shinfo(skb)->nr_frags = k;
2489 
2490 end:
2491 	skb->tail     += delta;
2492 	skb->data_len -= delta;
2493 
2494 	if (!skb->data_len)
2495 		skb_zcopy_clear(skb, false);
2496 
2497 	return skb_tail_pointer(skb);
2498 }
2499 EXPORT_SYMBOL(__pskb_pull_tail);
2500 
2501 /**
2502  *	skb_copy_bits - copy bits from skb to kernel buffer
2503  *	@skb: source skb
2504  *	@offset: offset in source
2505  *	@to: destination buffer
2506  *	@len: number of bytes to copy
2507  *
2508  *	Copy the specified number of bytes from the source skb to the
2509  *	destination buffer.
2510  *
2511  *	CAUTION ! :
2512  *		If its prototype is ever changed,
2513  *		check arch/{*}/net/{*}.S files,
2514  *		since it is called from BPF assembly code.
2515  */
2516 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
2517 {
2518 	int start = skb_headlen(skb);
2519 	struct sk_buff *frag_iter;
2520 	int i, copy;
2521 
2522 	if (offset > (int)skb->len - len)
2523 		goto fault;
2524 
2525 	/* Copy header. */
2526 	if ((copy = start - offset) > 0) {
2527 		if (copy > len)
2528 			copy = len;
2529 		skb_copy_from_linear_data_offset(skb, offset, to, copy);
2530 		if ((len -= copy) == 0)
2531 			return 0;
2532 		offset += copy;
2533 		to     += copy;
2534 	}
2535 
2536 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2537 		int end;
2538 		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
2539 
2540 		WARN_ON(start > offset + len);
2541 
2542 		end = start + skb_frag_size(f);
2543 		if ((copy = end - offset) > 0) {
2544 			u32 p_off, p_len, copied;
2545 			struct page *p;
2546 			u8 *vaddr;
2547 
2548 			if (copy > len)
2549 				copy = len;
2550 
2551 			skb_frag_foreach_page(f,
2552 					      skb_frag_off(f) + offset - start,
2553 					      copy, p, p_off, p_len, copied) {
2554 				vaddr = kmap_atomic(p);
2555 				memcpy(to + copied, vaddr + p_off, p_len);
2556 				kunmap_atomic(vaddr);
2557 			}
2558 
2559 			if ((len -= copy) == 0)
2560 				return 0;
2561 			offset += copy;
2562 			to     += copy;
2563 		}
2564 		start = end;
2565 	}
2566 
2567 	skb_walk_frags(skb, frag_iter) {
2568 		int end;
2569 
2570 		WARN_ON(start > offset + len);
2571 
2572 		end = start + frag_iter->len;
2573 		if ((copy = end - offset) > 0) {
2574 			if (copy > len)
2575 				copy = len;
2576 			if (skb_copy_bits(frag_iter, offset - start, to, copy))
2577 				goto fault;
2578 			if ((len -= copy) == 0)
2579 				return 0;
2580 			offset += copy;
2581 			to     += copy;
2582 		}
2583 		start = end;
2584 	}
2585 
2586 	if (!len)
2587 		return 0;
2588 
2589 fault:
2590 	return -EFAULT;
2591 }
2592 EXPORT_SYMBOL(skb_copy_bits);
2593 
2594 /*
2595  * Callback from splice_to_pipe(), if we need to release some pages
2596  * at the end of the spd in case we error'ed out in filling the pipe.
2597  */
2598 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
2599 {
2600 	put_page(spd->pages[i]);
2601 }
2602 
2603 static struct page *linear_to_page(struct page *page, unsigned int *len,
2604 				   unsigned int *offset,
2605 				   struct sock *sk)
2606 {
2607 	struct page_frag *pfrag = sk_page_frag(sk);
2608 
2609 	if (!sk_page_frag_refill(sk, pfrag))
2610 		return NULL;
2611 
2612 	*len = min_t(unsigned int, *len, pfrag->size - pfrag->offset);
2613 
2614 	memcpy(page_address(pfrag->page) + pfrag->offset,
2615 	       page_address(page) + *offset, *len);
2616 	*offset = pfrag->offset;
2617 	pfrag->offset += *len;
2618 
2619 	return pfrag->page;
2620 }
2621 
2622 static bool spd_can_coalesce(const struct splice_pipe_desc *spd,
2623 			     struct page *page,
2624 			     unsigned int offset)
2625 {
2626 	return	spd->nr_pages &&
2627 		spd->pages[spd->nr_pages - 1] == page &&
2628 		(spd->partial[spd->nr_pages - 1].offset +
2629 		 spd->partial[spd->nr_pages - 1].len == offset);
2630 }
2631 
2632 /*
2633  * Fill page/offset/length into spd, if it can hold more pages.
2634  */
2635 static bool spd_fill_page(struct splice_pipe_desc *spd,
2636 			  struct pipe_inode_info *pipe, struct page *page,
2637 			  unsigned int *len, unsigned int offset,
2638 			  bool linear,
2639 			  struct sock *sk)
2640 {
2641 	if (unlikely(spd->nr_pages == MAX_SKB_FRAGS))
2642 		return true;
2643 
2644 	if (linear) {
2645 		page = linear_to_page(page, len, &offset, sk);
2646 		if (!page)
2647 			return true;
2648 	}
2649 	if (spd_can_coalesce(spd, page, offset)) {
2650 		spd->partial[spd->nr_pages - 1].len += *len;
2651 		return false;
2652 	}
2653 	get_page(page);
2654 	spd->pages[spd->nr_pages] = page;
2655 	spd->partial[spd->nr_pages].len = *len;
2656 	spd->partial[spd->nr_pages].offset = offset;
2657 	spd->nr_pages++;
2658 
2659 	return false;
2660 }
2661 
2662 static bool __splice_segment(struct page *page, unsigned int poff,
2663 			     unsigned int plen, unsigned int *off,
2664 			     unsigned int *len,
2665 			     struct splice_pipe_desc *spd, bool linear,
2666 			     struct sock *sk,
2667 			     struct pipe_inode_info *pipe)
2668 {
2669 	if (!*len)
2670 		return true;
2671 
2672 	/* skip this segment if already processed */
2673 	if (*off >= plen) {
2674 		*off -= plen;
2675 		return false;
2676 	}
2677 
2678 	/* ignore any bits we already processed */
2679 	poff += *off;
2680 	plen -= *off;
2681 	*off = 0;
2682 
2683 	do {
2684 		unsigned int flen = min(*len, plen);
2685 
2686 		if (spd_fill_page(spd, pipe, page, &flen, poff,
2687 				  linear, sk))
2688 			return true;
2689 		poff += flen;
2690 		plen -= flen;
2691 		*len -= flen;
2692 	} while (*len && plen);
2693 
2694 	return false;
2695 }
2696 
2697 /*
2698  * Map linear and fragment data from the skb to spd. It reports true if the
2699  * pipe is full or if we already spliced the requested length.
2700  */
2701 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe,
2702 			      unsigned int *offset, unsigned int *len,
2703 			      struct splice_pipe_desc *spd, struct sock *sk)
2704 {
2705 	int seg;
2706 	struct sk_buff *iter;
2707 
2708 	/* map the linear part :
2709 	 * If skb->head_frag is set, this 'linear' part is backed by a
2710 	 * fragment, and if the head is not shared with any clones then
2711 	 * we can avoid a copy since we own the head portion of this page.
2712 	 */
2713 	if (__splice_segment(virt_to_page(skb->data),
2714 			     (unsigned long) skb->data & (PAGE_SIZE - 1),
2715 			     skb_headlen(skb),
2716 			     offset, len, spd,
2717 			     skb_head_is_locked(skb),
2718 			     sk, pipe))
2719 		return true;
2720 
2721 	/*
2722 	 * then map the fragments
2723 	 */
2724 	for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
2725 		const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
2726 
2727 		if (__splice_segment(skb_frag_page(f),
2728 				     skb_frag_off(f), skb_frag_size(f),
2729 				     offset, len, spd, false, sk, pipe))
2730 			return true;
2731 	}
2732 
2733 	skb_walk_frags(skb, iter) {
2734 		if (*offset >= iter->len) {
2735 			*offset -= iter->len;
2736 			continue;
2737 		}
2738 		/* __skb_splice_bits() only fails if the output has no room
2739 		 * left, so no point in going over the frag_list for the error
2740 		 * case.
2741 		 */
2742 		if (__skb_splice_bits(iter, pipe, offset, len, spd, sk))
2743 			return true;
2744 	}
2745 
2746 	return false;
2747 }
2748 
2749 /*
2750  * Map data from the skb to a pipe. Should handle both the linear part,
2751  * the fragments, and the frag list.
2752  */
2753 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
2754 		    struct pipe_inode_info *pipe, unsigned int tlen,
2755 		    unsigned int flags)
2756 {
2757 	struct partial_page partial[MAX_SKB_FRAGS];
2758 	struct page *pages[MAX_SKB_FRAGS];
2759 	struct splice_pipe_desc spd = {
2760 		.pages = pages,
2761 		.partial = partial,
2762 		.nr_pages_max = MAX_SKB_FRAGS,
2763 		.ops = &nosteal_pipe_buf_ops,
2764 		.spd_release = sock_spd_release,
2765 	};
2766 	int ret = 0;
2767 
2768 	__skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk);
2769 
2770 	if (spd.nr_pages)
2771 		ret = splice_to_pipe(pipe, &spd);
2772 
2773 	return ret;
2774 }
2775 EXPORT_SYMBOL_GPL(skb_splice_bits);
2776 
2777 static int sendmsg_unlocked(struct sock *sk, struct msghdr *msg,
2778 			    struct kvec *vec, size_t num, size_t size)
2779 {
2780 	struct socket *sock = sk->sk_socket;
2781 
2782 	if (!sock)
2783 		return -EINVAL;
2784 	return kernel_sendmsg(sock, msg, vec, num, size);
2785 }
2786 
2787 static int sendpage_unlocked(struct sock *sk, struct page *page, int offset,
2788 			     size_t size, int flags)
2789 {
2790 	struct socket *sock = sk->sk_socket;
2791 
2792 	if (!sock)
2793 		return -EINVAL;
2794 	return kernel_sendpage(sock, page, offset, size, flags);
2795 }
2796 
2797 typedef int (*sendmsg_func)(struct sock *sk, struct msghdr *msg,
2798 			    struct kvec *vec, size_t num, size_t size);
2799 typedef int (*sendpage_func)(struct sock *sk, struct page *page, int offset,
2800 			     size_t size, int flags);
2801 static int __skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset,
2802 			   int len, sendmsg_func sendmsg, sendpage_func sendpage)
2803 {
2804 	unsigned int orig_len = len;
2805 	struct sk_buff *head = skb;
2806 	unsigned short fragidx;
2807 	int slen, ret;
2808 
2809 do_frag_list:
2810 
2811 	/* Deal with head data */
2812 	while (offset < skb_headlen(skb) && len) {
2813 		struct kvec kv;
2814 		struct msghdr msg;
2815 
2816 		slen = min_t(int, len, skb_headlen(skb) - offset);
2817 		kv.iov_base = skb->data + offset;
2818 		kv.iov_len = slen;
2819 		memset(&msg, 0, sizeof(msg));
2820 		msg.msg_flags = MSG_DONTWAIT;
2821 
2822 		ret = INDIRECT_CALL_2(sendmsg, kernel_sendmsg_locked,
2823 				      sendmsg_unlocked, sk, &msg, &kv, 1, slen);
2824 		if (ret <= 0)
2825 			goto error;
2826 
2827 		offset += ret;
2828 		len -= ret;
2829 	}
2830 
2831 	/* All the data was skb head? */
2832 	if (!len)
2833 		goto out;
2834 
2835 	/* Make offset relative to start of frags */
2836 	offset -= skb_headlen(skb);
2837 
2838 	/* Find where we are in frag list */
2839 	for (fragidx = 0; fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
2840 		skb_frag_t *frag  = &skb_shinfo(skb)->frags[fragidx];
2841 
2842 		if (offset < skb_frag_size(frag))
2843 			break;
2844 
2845 		offset -= skb_frag_size(frag);
2846 	}
2847 
2848 	for (; len && fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
2849 		skb_frag_t *frag  = &skb_shinfo(skb)->frags[fragidx];
2850 
2851 		slen = min_t(size_t, len, skb_frag_size(frag) - offset);
2852 
2853 		while (slen) {
2854 			ret = INDIRECT_CALL_2(sendpage, kernel_sendpage_locked,
2855 					      sendpage_unlocked, sk,
2856 					      skb_frag_page(frag),
2857 					      skb_frag_off(frag) + offset,
2858 					      slen, MSG_DONTWAIT);
2859 			if (ret <= 0)
2860 				goto error;
2861 
2862 			len -= ret;
2863 			offset += ret;
2864 			slen -= ret;
2865 		}
2866 
2867 		offset = 0;
2868 	}
2869 
2870 	if (len) {
2871 		/* Process any frag lists */
2872 
2873 		if (skb == head) {
2874 			if (skb_has_frag_list(skb)) {
2875 				skb = skb_shinfo(skb)->frag_list;
2876 				goto do_frag_list;
2877 			}
2878 		} else if (skb->next) {
2879 			skb = skb->next;
2880 			goto do_frag_list;
2881 		}
2882 	}
2883 
2884 out:
2885 	return orig_len - len;
2886 
2887 error:
2888 	return orig_len == len ? ret : orig_len - len;
2889 }
2890 
2891 /* Send skb data on a socket. Socket must be locked. */
2892 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
2893 			 int len)
2894 {
2895 	return __skb_send_sock(sk, skb, offset, len, kernel_sendmsg_locked,
2896 			       kernel_sendpage_locked);
2897 }
2898 EXPORT_SYMBOL_GPL(skb_send_sock_locked);
2899 
2900 /* Send skb data on a socket. Socket must be unlocked. */
2901 int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len)
2902 {
2903 	return __skb_send_sock(sk, skb, offset, len, sendmsg_unlocked,
2904 			       sendpage_unlocked);
2905 }
2906 
2907 /**
2908  *	skb_store_bits - store bits from kernel buffer to skb
2909  *	@skb: destination buffer
2910  *	@offset: offset in destination
2911  *	@from: source buffer
2912  *	@len: number of bytes to copy
2913  *
2914  *	Copy the specified number of bytes from the source buffer to the
2915  *	destination skb.  This function handles all the messy bits of
2916  *	traversing fragment lists and such.
2917  */
2918 
2919 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
2920 {
2921 	int start = skb_headlen(skb);
2922 	struct sk_buff *frag_iter;
2923 	int i, copy;
2924 
2925 	if (offset > (int)skb->len - len)
2926 		goto fault;
2927 
2928 	if ((copy = start - offset) > 0) {
2929 		if (copy > len)
2930 			copy = len;
2931 		skb_copy_to_linear_data_offset(skb, offset, from, copy);
2932 		if ((len -= copy) == 0)
2933 			return 0;
2934 		offset += copy;
2935 		from += copy;
2936 	}
2937 
2938 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2939 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2940 		int end;
2941 
2942 		WARN_ON(start > offset + len);
2943 
2944 		end = start + skb_frag_size(frag);
2945 		if ((copy = end - offset) > 0) {
2946 			u32 p_off, p_len, copied;
2947 			struct page *p;
2948 			u8 *vaddr;
2949 
2950 			if (copy > len)
2951 				copy = len;
2952 
2953 			skb_frag_foreach_page(frag,
2954 					      skb_frag_off(frag) + offset - start,
2955 					      copy, p, p_off, p_len, copied) {
2956 				vaddr = kmap_atomic(p);
2957 				memcpy(vaddr + p_off, from + copied, p_len);
2958 				kunmap_atomic(vaddr);
2959 			}
2960 
2961 			if ((len -= copy) == 0)
2962 				return 0;
2963 			offset += copy;
2964 			from += copy;
2965 		}
2966 		start = end;
2967 	}
2968 
2969 	skb_walk_frags(skb, frag_iter) {
2970 		int end;
2971 
2972 		WARN_ON(start > offset + len);
2973 
2974 		end = start + frag_iter->len;
2975 		if ((copy = end - offset) > 0) {
2976 			if (copy > len)
2977 				copy = len;
2978 			if (skb_store_bits(frag_iter, offset - start,
2979 					   from, copy))
2980 				goto fault;
2981 			if ((len -= copy) == 0)
2982 				return 0;
2983 			offset += copy;
2984 			from += copy;
2985 		}
2986 		start = end;
2987 	}
2988 	if (!len)
2989 		return 0;
2990 
2991 fault:
2992 	return -EFAULT;
2993 }
2994 EXPORT_SYMBOL(skb_store_bits);
2995 
2996 /* Checksum skb data. */
2997 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
2998 		      __wsum csum, const struct skb_checksum_ops *ops)
2999 {
3000 	int start = skb_headlen(skb);
3001 	int i, copy = start - offset;
3002 	struct sk_buff *frag_iter;
3003 	int pos = 0;
3004 
3005 	/* Checksum header. */
3006 	if (copy > 0) {
3007 		if (copy > len)
3008 			copy = len;
3009 		csum = INDIRECT_CALL_1(ops->update, csum_partial_ext,
3010 				       skb->data + offset, copy, csum);
3011 		if ((len -= copy) == 0)
3012 			return csum;
3013 		offset += copy;
3014 		pos	= copy;
3015 	}
3016 
3017 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3018 		int end;
3019 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3020 
3021 		WARN_ON(start > offset + len);
3022 
3023 		end = start + skb_frag_size(frag);
3024 		if ((copy = end - offset) > 0) {
3025 			u32 p_off, p_len, copied;
3026 			struct page *p;
3027 			__wsum csum2;
3028 			u8 *vaddr;
3029 
3030 			if (copy > len)
3031 				copy = len;
3032 
3033 			skb_frag_foreach_page(frag,
3034 					      skb_frag_off(frag) + offset - start,
3035 					      copy, p, p_off, p_len, copied) {
3036 				vaddr = kmap_atomic(p);
3037 				csum2 = INDIRECT_CALL_1(ops->update,
3038 							csum_partial_ext,
3039 							vaddr + p_off, p_len, 0);
3040 				kunmap_atomic(vaddr);
3041 				csum = INDIRECT_CALL_1(ops->combine,
3042 						       csum_block_add_ext, csum,
3043 						       csum2, pos, p_len);
3044 				pos += p_len;
3045 			}
3046 
3047 			if (!(len -= copy))
3048 				return csum;
3049 			offset += copy;
3050 		}
3051 		start = end;
3052 	}
3053 
3054 	skb_walk_frags(skb, frag_iter) {
3055 		int end;
3056 
3057 		WARN_ON(start > offset + len);
3058 
3059 		end = start + frag_iter->len;
3060 		if ((copy = end - offset) > 0) {
3061 			__wsum csum2;
3062 			if (copy > len)
3063 				copy = len;
3064 			csum2 = __skb_checksum(frag_iter, offset - start,
3065 					       copy, 0, ops);
3066 			csum = INDIRECT_CALL_1(ops->combine, csum_block_add_ext,
3067 					       csum, csum2, pos, copy);
3068 			if ((len -= copy) == 0)
3069 				return csum;
3070 			offset += copy;
3071 			pos    += copy;
3072 		}
3073 		start = end;
3074 	}
3075 	BUG_ON(len);
3076 
3077 	return csum;
3078 }
3079 EXPORT_SYMBOL(__skb_checksum);
3080 
3081 __wsum skb_checksum(const struct sk_buff *skb, int offset,
3082 		    int len, __wsum csum)
3083 {
3084 	const struct skb_checksum_ops ops = {
3085 		.update  = csum_partial_ext,
3086 		.combine = csum_block_add_ext,
3087 	};
3088 
3089 	return __skb_checksum(skb, offset, len, csum, &ops);
3090 }
3091 EXPORT_SYMBOL(skb_checksum);
3092 
3093 /* Both of above in one bottle. */
3094 
3095 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
3096 				    u8 *to, int len)
3097 {
3098 	int start = skb_headlen(skb);
3099 	int i, copy = start - offset;
3100 	struct sk_buff *frag_iter;
3101 	int pos = 0;
3102 	__wsum csum = 0;
3103 
3104 	/* Copy header. */
3105 	if (copy > 0) {
3106 		if (copy > len)
3107 			copy = len;
3108 		csum = csum_partial_copy_nocheck(skb->data + offset, to,
3109 						 copy);
3110 		if ((len -= copy) == 0)
3111 			return csum;
3112 		offset += copy;
3113 		to     += copy;
3114 		pos	= copy;
3115 	}
3116 
3117 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3118 		int end;
3119 
3120 		WARN_ON(start > offset + len);
3121 
3122 		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
3123 		if ((copy = end - offset) > 0) {
3124 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3125 			u32 p_off, p_len, copied;
3126 			struct page *p;
3127 			__wsum csum2;
3128 			u8 *vaddr;
3129 
3130 			if (copy > len)
3131 				copy = len;
3132 
3133 			skb_frag_foreach_page(frag,
3134 					      skb_frag_off(frag) + offset - start,
3135 					      copy, p, p_off, p_len, copied) {
3136 				vaddr = kmap_atomic(p);
3137 				csum2 = csum_partial_copy_nocheck(vaddr + p_off,
3138 								  to + copied,
3139 								  p_len);
3140 				kunmap_atomic(vaddr);
3141 				csum = csum_block_add(csum, csum2, pos);
3142 				pos += p_len;
3143 			}
3144 
3145 			if (!(len -= copy))
3146 				return csum;
3147 			offset += copy;
3148 			to     += copy;
3149 		}
3150 		start = end;
3151 	}
3152 
3153 	skb_walk_frags(skb, frag_iter) {
3154 		__wsum csum2;
3155 		int end;
3156 
3157 		WARN_ON(start > offset + len);
3158 
3159 		end = start + frag_iter->len;
3160 		if ((copy = end - offset) > 0) {
3161 			if (copy > len)
3162 				copy = len;
3163 			csum2 = skb_copy_and_csum_bits(frag_iter,
3164 						       offset - start,
3165 						       to, copy);
3166 			csum = csum_block_add(csum, csum2, pos);
3167 			if ((len -= copy) == 0)
3168 				return csum;
3169 			offset += copy;
3170 			to     += copy;
3171 			pos    += copy;
3172 		}
3173 		start = end;
3174 	}
3175 	BUG_ON(len);
3176 	return csum;
3177 }
3178 EXPORT_SYMBOL(skb_copy_and_csum_bits);
3179 
3180 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len)
3181 {
3182 	__sum16 sum;
3183 
3184 	sum = csum_fold(skb_checksum(skb, 0, len, skb->csum));
3185 	/* See comments in __skb_checksum_complete(). */
3186 	if (likely(!sum)) {
3187 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
3188 		    !skb->csum_complete_sw)
3189 			netdev_rx_csum_fault(skb->dev, skb);
3190 	}
3191 	if (!skb_shared(skb))
3192 		skb->csum_valid = !sum;
3193 	return sum;
3194 }
3195 EXPORT_SYMBOL(__skb_checksum_complete_head);
3196 
3197 /* This function assumes skb->csum already holds pseudo header's checksum,
3198  * which has been changed from the hardware checksum, for example, by
3199  * __skb_checksum_validate_complete(). And, the original skb->csum must
3200  * have been validated unsuccessfully for CHECKSUM_COMPLETE case.
3201  *
3202  * It returns non-zero if the recomputed checksum is still invalid, otherwise
3203  * zero. The new checksum is stored back into skb->csum unless the skb is
3204  * shared.
3205  */
3206 __sum16 __skb_checksum_complete(struct sk_buff *skb)
3207 {
3208 	__wsum csum;
3209 	__sum16 sum;
3210 
3211 	csum = skb_checksum(skb, 0, skb->len, 0);
3212 
3213 	sum = csum_fold(csum_add(skb->csum, csum));
3214 	/* This check is inverted, because we already knew the hardware
3215 	 * checksum is invalid before calling this function. So, if the
3216 	 * re-computed checksum is valid instead, then we have a mismatch
3217 	 * between the original skb->csum and skb_checksum(). This means either
3218 	 * the original hardware checksum is incorrect or we screw up skb->csum
3219 	 * when moving skb->data around.
3220 	 */
3221 	if (likely(!sum)) {
3222 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
3223 		    !skb->csum_complete_sw)
3224 			netdev_rx_csum_fault(skb->dev, skb);
3225 	}
3226 
3227 	if (!skb_shared(skb)) {
3228 		/* Save full packet checksum */
3229 		skb->csum = csum;
3230 		skb->ip_summed = CHECKSUM_COMPLETE;
3231 		skb->csum_complete_sw = 1;
3232 		skb->csum_valid = !sum;
3233 	}
3234 
3235 	return sum;
3236 }
3237 EXPORT_SYMBOL(__skb_checksum_complete);
3238 
3239 static __wsum warn_crc32c_csum_update(const void *buff, int len, __wsum sum)
3240 {
3241 	net_warn_ratelimited(
3242 		"%s: attempt to compute crc32c without libcrc32c.ko\n",
3243 		__func__);
3244 	return 0;
3245 }
3246 
3247 static __wsum warn_crc32c_csum_combine(__wsum csum, __wsum csum2,
3248 				       int offset, int len)
3249 {
3250 	net_warn_ratelimited(
3251 		"%s: attempt to compute crc32c without libcrc32c.ko\n",
3252 		__func__);
3253 	return 0;
3254 }
3255 
3256 static const struct skb_checksum_ops default_crc32c_ops = {
3257 	.update  = warn_crc32c_csum_update,
3258 	.combine = warn_crc32c_csum_combine,
3259 };
3260 
3261 const struct skb_checksum_ops *crc32c_csum_stub __read_mostly =
3262 	&default_crc32c_ops;
3263 EXPORT_SYMBOL(crc32c_csum_stub);
3264 
3265  /**
3266  *	skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy()
3267  *	@from: source buffer
3268  *
3269  *	Calculates the amount of linear headroom needed in the 'to' skb passed
3270  *	into skb_zerocopy().
3271  */
3272 unsigned int
3273 skb_zerocopy_headlen(const struct sk_buff *from)
3274 {
3275 	unsigned int hlen = 0;
3276 
3277 	if (!from->head_frag ||
3278 	    skb_headlen(from) < L1_CACHE_BYTES ||
3279 	    skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS) {
3280 		hlen = skb_headlen(from);
3281 		if (!hlen)
3282 			hlen = from->len;
3283 	}
3284 
3285 	if (skb_has_frag_list(from))
3286 		hlen = from->len;
3287 
3288 	return hlen;
3289 }
3290 EXPORT_SYMBOL_GPL(skb_zerocopy_headlen);
3291 
3292 /**
3293  *	skb_zerocopy - Zero copy skb to skb
3294  *	@to: destination buffer
3295  *	@from: source buffer
3296  *	@len: number of bytes to copy from source buffer
3297  *	@hlen: size of linear headroom in destination buffer
3298  *
3299  *	Copies up to `len` bytes from `from` to `to` by creating references
3300  *	to the frags in the source buffer.
3301  *
3302  *	The `hlen` as calculated by skb_zerocopy_headlen() specifies the
3303  *	headroom in the `to` buffer.
3304  *
3305  *	Return value:
3306  *	0: everything is OK
3307  *	-ENOMEM: couldn't orphan frags of @from due to lack of memory
3308  *	-EFAULT: skb_copy_bits() found some problem with skb geometry
3309  */
3310 int
3311 skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen)
3312 {
3313 	int i, j = 0;
3314 	int plen = 0; /* length of skb->head fragment */
3315 	int ret;
3316 	struct page *page;
3317 	unsigned int offset;
3318 
3319 	BUG_ON(!from->head_frag && !hlen);
3320 
3321 	/* dont bother with small payloads */
3322 	if (len <= skb_tailroom(to))
3323 		return skb_copy_bits(from, 0, skb_put(to, len), len);
3324 
3325 	if (hlen) {
3326 		ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen);
3327 		if (unlikely(ret))
3328 			return ret;
3329 		len -= hlen;
3330 	} else {
3331 		plen = min_t(int, skb_headlen(from), len);
3332 		if (plen) {
3333 			page = virt_to_head_page(from->head);
3334 			offset = from->data - (unsigned char *)page_address(page);
3335 			__skb_fill_page_desc(to, 0, page, offset, plen);
3336 			get_page(page);
3337 			j = 1;
3338 			len -= plen;
3339 		}
3340 	}
3341 
3342 	skb_len_add(to, len + plen);
3343 
3344 	if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) {
3345 		skb_tx_error(from);
3346 		return -ENOMEM;
3347 	}
3348 	skb_zerocopy_clone(to, from, GFP_ATOMIC);
3349 
3350 	for (i = 0; i < skb_shinfo(from)->nr_frags; i++) {
3351 		int size;
3352 
3353 		if (!len)
3354 			break;
3355 		skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i];
3356 		size = min_t(int, skb_frag_size(&skb_shinfo(to)->frags[j]),
3357 					len);
3358 		skb_frag_size_set(&skb_shinfo(to)->frags[j], size);
3359 		len -= size;
3360 		skb_frag_ref(to, j);
3361 		j++;
3362 	}
3363 	skb_shinfo(to)->nr_frags = j;
3364 
3365 	return 0;
3366 }
3367 EXPORT_SYMBOL_GPL(skb_zerocopy);
3368 
3369 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
3370 {
3371 	__wsum csum;
3372 	long csstart;
3373 
3374 	if (skb->ip_summed == CHECKSUM_PARTIAL)
3375 		csstart = skb_checksum_start_offset(skb);
3376 	else
3377 		csstart = skb_headlen(skb);
3378 
3379 	BUG_ON(csstart > skb_headlen(skb));
3380 
3381 	skb_copy_from_linear_data(skb, to, csstart);
3382 
3383 	csum = 0;
3384 	if (csstart != skb->len)
3385 		csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
3386 					      skb->len - csstart);
3387 
3388 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
3389 		long csstuff = csstart + skb->csum_offset;
3390 
3391 		*((__sum16 *)(to + csstuff)) = csum_fold(csum);
3392 	}
3393 }
3394 EXPORT_SYMBOL(skb_copy_and_csum_dev);
3395 
3396 /**
3397  *	skb_dequeue - remove from the head of the queue
3398  *	@list: list to dequeue from
3399  *
3400  *	Remove the head of the list. The list lock is taken so the function
3401  *	may be used safely with other locking list functions. The head item is
3402  *	returned or %NULL if the list is empty.
3403  */
3404 
3405 struct sk_buff *skb_dequeue(struct sk_buff_head *list)
3406 {
3407 	unsigned long flags;
3408 	struct sk_buff *result;
3409 
3410 	spin_lock_irqsave(&list->lock, flags);
3411 	result = __skb_dequeue(list);
3412 	spin_unlock_irqrestore(&list->lock, flags);
3413 	return result;
3414 }
3415 EXPORT_SYMBOL(skb_dequeue);
3416 
3417 /**
3418  *	skb_dequeue_tail - remove from the tail of the queue
3419  *	@list: list to dequeue from
3420  *
3421  *	Remove the tail of the list. The list lock is taken so the function
3422  *	may be used safely with other locking list functions. The tail item is
3423  *	returned or %NULL if the list is empty.
3424  */
3425 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
3426 {
3427 	unsigned long flags;
3428 	struct sk_buff *result;
3429 
3430 	spin_lock_irqsave(&list->lock, flags);
3431 	result = __skb_dequeue_tail(list);
3432 	spin_unlock_irqrestore(&list->lock, flags);
3433 	return result;
3434 }
3435 EXPORT_SYMBOL(skb_dequeue_tail);
3436 
3437 /**
3438  *	skb_queue_purge - empty a list
3439  *	@list: list to empty
3440  *
3441  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
3442  *	the list and one reference dropped. This function takes the list
3443  *	lock and is atomic with respect to other list locking functions.
3444  */
3445 void skb_queue_purge(struct sk_buff_head *list)
3446 {
3447 	struct sk_buff *skb;
3448 	while ((skb = skb_dequeue(list)) != NULL)
3449 		kfree_skb(skb);
3450 }
3451 EXPORT_SYMBOL(skb_queue_purge);
3452 
3453 /**
3454  *	skb_rbtree_purge - empty a skb rbtree
3455  *	@root: root of the rbtree to empty
3456  *	Return value: the sum of truesizes of all purged skbs.
3457  *
3458  *	Delete all buffers on an &sk_buff rbtree. Each buffer is removed from
3459  *	the list and one reference dropped. This function does not take
3460  *	any lock. Synchronization should be handled by the caller (e.g., TCP
3461  *	out-of-order queue is protected by the socket lock).
3462  */
3463 unsigned int skb_rbtree_purge(struct rb_root *root)
3464 {
3465 	struct rb_node *p = rb_first(root);
3466 	unsigned int sum = 0;
3467 
3468 	while (p) {
3469 		struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode);
3470 
3471 		p = rb_next(p);
3472 		rb_erase(&skb->rbnode, root);
3473 		sum += skb->truesize;
3474 		kfree_skb(skb);
3475 	}
3476 	return sum;
3477 }
3478 
3479 /**
3480  *	skb_queue_head - queue a buffer at the list head
3481  *	@list: list to use
3482  *	@newsk: buffer to queue
3483  *
3484  *	Queue a buffer at the start of the list. This function takes the
3485  *	list lock and can be used safely with other locking &sk_buff functions
3486  *	safely.
3487  *
3488  *	A buffer cannot be placed on two lists at the same time.
3489  */
3490 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
3491 {
3492 	unsigned long flags;
3493 
3494 	spin_lock_irqsave(&list->lock, flags);
3495 	__skb_queue_head(list, newsk);
3496 	spin_unlock_irqrestore(&list->lock, flags);
3497 }
3498 EXPORT_SYMBOL(skb_queue_head);
3499 
3500 /**
3501  *	skb_queue_tail - queue a buffer at the list tail
3502  *	@list: list to use
3503  *	@newsk: buffer to queue
3504  *
3505  *	Queue a buffer at the tail of the list. This function takes the
3506  *	list lock and can be used safely with other locking &sk_buff functions
3507  *	safely.
3508  *
3509  *	A buffer cannot be placed on two lists at the same time.
3510  */
3511 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
3512 {
3513 	unsigned long flags;
3514 
3515 	spin_lock_irqsave(&list->lock, flags);
3516 	__skb_queue_tail(list, newsk);
3517 	spin_unlock_irqrestore(&list->lock, flags);
3518 }
3519 EXPORT_SYMBOL(skb_queue_tail);
3520 
3521 /**
3522  *	skb_unlink	-	remove a buffer from a list
3523  *	@skb: buffer to remove
3524  *	@list: list to use
3525  *
3526  *	Remove a packet from a list. The list locks are taken and this
3527  *	function is atomic with respect to other list locked calls
3528  *
3529  *	You must know what list the SKB is on.
3530  */
3531 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
3532 {
3533 	unsigned long flags;
3534 
3535 	spin_lock_irqsave(&list->lock, flags);
3536 	__skb_unlink(skb, list);
3537 	spin_unlock_irqrestore(&list->lock, flags);
3538 }
3539 EXPORT_SYMBOL(skb_unlink);
3540 
3541 /**
3542  *	skb_append	-	append a buffer
3543  *	@old: buffer to insert after
3544  *	@newsk: buffer to insert
3545  *	@list: list to use
3546  *
3547  *	Place a packet after a given packet in a list. The list locks are taken
3548  *	and this function is atomic with respect to other list locked calls.
3549  *	A buffer cannot be placed on two lists at the same time.
3550  */
3551 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
3552 {
3553 	unsigned long flags;
3554 
3555 	spin_lock_irqsave(&list->lock, flags);
3556 	__skb_queue_after(list, old, newsk);
3557 	spin_unlock_irqrestore(&list->lock, flags);
3558 }
3559 EXPORT_SYMBOL(skb_append);
3560 
3561 static inline void skb_split_inside_header(struct sk_buff *skb,
3562 					   struct sk_buff* skb1,
3563 					   const u32 len, const int pos)
3564 {
3565 	int i;
3566 
3567 	skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
3568 					 pos - len);
3569 	/* And move data appendix as is. */
3570 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
3571 		skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
3572 
3573 	skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
3574 	skb_shinfo(skb)->nr_frags  = 0;
3575 	skb1->data_len		   = skb->data_len;
3576 	skb1->len		   += skb1->data_len;
3577 	skb->data_len		   = 0;
3578 	skb->len		   = len;
3579 	skb_set_tail_pointer(skb, len);
3580 }
3581 
3582 static inline void skb_split_no_header(struct sk_buff *skb,
3583 				       struct sk_buff* skb1,
3584 				       const u32 len, int pos)
3585 {
3586 	int i, k = 0;
3587 	const int nfrags = skb_shinfo(skb)->nr_frags;
3588 
3589 	skb_shinfo(skb)->nr_frags = 0;
3590 	skb1->len		  = skb1->data_len = skb->len - len;
3591 	skb->len		  = len;
3592 	skb->data_len		  = len - pos;
3593 
3594 	for (i = 0; i < nfrags; i++) {
3595 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
3596 
3597 		if (pos + size > len) {
3598 			skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
3599 
3600 			if (pos < len) {
3601 				/* Split frag.
3602 				 * We have two variants in this case:
3603 				 * 1. Move all the frag to the second
3604 				 *    part, if it is possible. F.e.
3605 				 *    this approach is mandatory for TUX,
3606 				 *    where splitting is expensive.
3607 				 * 2. Split is accurately. We make this.
3608 				 */
3609 				skb_frag_ref(skb, i);
3610 				skb_frag_off_add(&skb_shinfo(skb1)->frags[0], len - pos);
3611 				skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos);
3612 				skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos);
3613 				skb_shinfo(skb)->nr_frags++;
3614 			}
3615 			k++;
3616 		} else
3617 			skb_shinfo(skb)->nr_frags++;
3618 		pos += size;
3619 	}
3620 	skb_shinfo(skb1)->nr_frags = k;
3621 }
3622 
3623 /**
3624  * skb_split - Split fragmented skb to two parts at length len.
3625  * @skb: the buffer to split
3626  * @skb1: the buffer to receive the second part
3627  * @len: new length for skb
3628  */
3629 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
3630 {
3631 	int pos = skb_headlen(skb);
3632 	const int zc_flags = SKBFL_SHARED_FRAG | SKBFL_PURE_ZEROCOPY;
3633 
3634 	skb_zcopy_downgrade_managed(skb);
3635 
3636 	skb_shinfo(skb1)->flags |= skb_shinfo(skb)->flags & zc_flags;
3637 	skb_zerocopy_clone(skb1, skb, 0);
3638 	if (len < pos)	/* Split line is inside header. */
3639 		skb_split_inside_header(skb, skb1, len, pos);
3640 	else		/* Second chunk has no header, nothing to copy. */
3641 		skb_split_no_header(skb, skb1, len, pos);
3642 }
3643 EXPORT_SYMBOL(skb_split);
3644 
3645 /* Shifting from/to a cloned skb is a no-go.
3646  *
3647  * Caller cannot keep skb_shinfo related pointers past calling here!
3648  */
3649 static int skb_prepare_for_shift(struct sk_buff *skb)
3650 {
3651 	return skb_unclone_keeptruesize(skb, GFP_ATOMIC);
3652 }
3653 
3654 /**
3655  * skb_shift - Shifts paged data partially from skb to another
3656  * @tgt: buffer into which tail data gets added
3657  * @skb: buffer from which the paged data comes from
3658  * @shiftlen: shift up to this many bytes
3659  *
3660  * Attempts to shift up to shiftlen worth of bytes, which may be less than
3661  * the length of the skb, from skb to tgt. Returns number bytes shifted.
3662  * It's up to caller to free skb if everything was shifted.
3663  *
3664  * If @tgt runs out of frags, the whole operation is aborted.
3665  *
3666  * Skb cannot include anything else but paged data while tgt is allowed
3667  * to have non-paged data as well.
3668  *
3669  * TODO: full sized shift could be optimized but that would need
3670  * specialized skb free'er to handle frags without up-to-date nr_frags.
3671  */
3672 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
3673 {
3674 	int from, to, merge, todo;
3675 	skb_frag_t *fragfrom, *fragto;
3676 
3677 	BUG_ON(shiftlen > skb->len);
3678 
3679 	if (skb_headlen(skb))
3680 		return 0;
3681 	if (skb_zcopy(tgt) || skb_zcopy(skb))
3682 		return 0;
3683 
3684 	todo = shiftlen;
3685 	from = 0;
3686 	to = skb_shinfo(tgt)->nr_frags;
3687 	fragfrom = &skb_shinfo(skb)->frags[from];
3688 
3689 	/* Actual merge is delayed until the point when we know we can
3690 	 * commit all, so that we don't have to undo partial changes
3691 	 */
3692 	if (!to ||
3693 	    !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom),
3694 			      skb_frag_off(fragfrom))) {
3695 		merge = -1;
3696 	} else {
3697 		merge = to - 1;
3698 
3699 		todo -= skb_frag_size(fragfrom);
3700 		if (todo < 0) {
3701 			if (skb_prepare_for_shift(skb) ||
3702 			    skb_prepare_for_shift(tgt))
3703 				return 0;
3704 
3705 			/* All previous frag pointers might be stale! */
3706 			fragfrom = &skb_shinfo(skb)->frags[from];
3707 			fragto = &skb_shinfo(tgt)->frags[merge];
3708 
3709 			skb_frag_size_add(fragto, shiftlen);
3710 			skb_frag_size_sub(fragfrom, shiftlen);
3711 			skb_frag_off_add(fragfrom, shiftlen);
3712 
3713 			goto onlymerged;
3714 		}
3715 
3716 		from++;
3717 	}
3718 
3719 	/* Skip full, not-fitting skb to avoid expensive operations */
3720 	if ((shiftlen == skb->len) &&
3721 	    (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
3722 		return 0;
3723 
3724 	if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
3725 		return 0;
3726 
3727 	while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
3728 		if (to == MAX_SKB_FRAGS)
3729 			return 0;
3730 
3731 		fragfrom = &skb_shinfo(skb)->frags[from];
3732 		fragto = &skb_shinfo(tgt)->frags[to];
3733 
3734 		if (todo >= skb_frag_size(fragfrom)) {
3735 			*fragto = *fragfrom;
3736 			todo -= skb_frag_size(fragfrom);
3737 			from++;
3738 			to++;
3739 
3740 		} else {
3741 			__skb_frag_ref(fragfrom);
3742 			skb_frag_page_copy(fragto, fragfrom);
3743 			skb_frag_off_copy(fragto, fragfrom);
3744 			skb_frag_size_set(fragto, todo);
3745 
3746 			skb_frag_off_add(fragfrom, todo);
3747 			skb_frag_size_sub(fragfrom, todo);
3748 			todo = 0;
3749 
3750 			to++;
3751 			break;
3752 		}
3753 	}
3754 
3755 	/* Ready to "commit" this state change to tgt */
3756 	skb_shinfo(tgt)->nr_frags = to;
3757 
3758 	if (merge >= 0) {
3759 		fragfrom = &skb_shinfo(skb)->frags[0];
3760 		fragto = &skb_shinfo(tgt)->frags[merge];
3761 
3762 		skb_frag_size_add(fragto, skb_frag_size(fragfrom));
3763 		__skb_frag_unref(fragfrom, skb->pp_recycle);
3764 	}
3765 
3766 	/* Reposition in the original skb */
3767 	to = 0;
3768 	while (from < skb_shinfo(skb)->nr_frags)
3769 		skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
3770 	skb_shinfo(skb)->nr_frags = to;
3771 
3772 	BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
3773 
3774 onlymerged:
3775 	/* Most likely the tgt won't ever need its checksum anymore, skb on
3776 	 * the other hand might need it if it needs to be resent
3777 	 */
3778 	tgt->ip_summed = CHECKSUM_PARTIAL;
3779 	skb->ip_summed = CHECKSUM_PARTIAL;
3780 
3781 	skb_len_add(skb, -shiftlen);
3782 	skb_len_add(tgt, shiftlen);
3783 
3784 	return shiftlen;
3785 }
3786 
3787 /**
3788  * skb_prepare_seq_read - Prepare a sequential read of skb data
3789  * @skb: the buffer to read
3790  * @from: lower offset of data to be read
3791  * @to: upper offset of data to be read
3792  * @st: state variable
3793  *
3794  * Initializes the specified state variable. Must be called before
3795  * invoking skb_seq_read() for the first time.
3796  */
3797 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
3798 			  unsigned int to, struct skb_seq_state *st)
3799 {
3800 	st->lower_offset = from;
3801 	st->upper_offset = to;
3802 	st->root_skb = st->cur_skb = skb;
3803 	st->frag_idx = st->stepped_offset = 0;
3804 	st->frag_data = NULL;
3805 	st->frag_off = 0;
3806 }
3807 EXPORT_SYMBOL(skb_prepare_seq_read);
3808 
3809 /**
3810  * skb_seq_read - Sequentially read skb data
3811  * @consumed: number of bytes consumed by the caller so far
3812  * @data: destination pointer for data to be returned
3813  * @st: state variable
3814  *
3815  * Reads a block of skb data at @consumed relative to the
3816  * lower offset specified to skb_prepare_seq_read(). Assigns
3817  * the head of the data block to @data and returns the length
3818  * of the block or 0 if the end of the skb data or the upper
3819  * offset has been reached.
3820  *
3821  * The caller is not required to consume all of the data
3822  * returned, i.e. @consumed is typically set to the number
3823  * of bytes already consumed and the next call to
3824  * skb_seq_read() will return the remaining part of the block.
3825  *
3826  * Note 1: The size of each block of data returned can be arbitrary,
3827  *       this limitation is the cost for zerocopy sequential
3828  *       reads of potentially non linear data.
3829  *
3830  * Note 2: Fragment lists within fragments are not implemented
3831  *       at the moment, state->root_skb could be replaced with
3832  *       a stack for this purpose.
3833  */
3834 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
3835 			  struct skb_seq_state *st)
3836 {
3837 	unsigned int block_limit, abs_offset = consumed + st->lower_offset;
3838 	skb_frag_t *frag;
3839 
3840 	if (unlikely(abs_offset >= st->upper_offset)) {
3841 		if (st->frag_data) {
3842 			kunmap_atomic(st->frag_data);
3843 			st->frag_data = NULL;
3844 		}
3845 		return 0;
3846 	}
3847 
3848 next_skb:
3849 	block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
3850 
3851 	if (abs_offset < block_limit && !st->frag_data) {
3852 		*data = st->cur_skb->data + (abs_offset - st->stepped_offset);
3853 		return block_limit - abs_offset;
3854 	}
3855 
3856 	if (st->frag_idx == 0 && !st->frag_data)
3857 		st->stepped_offset += skb_headlen(st->cur_skb);
3858 
3859 	while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
3860 		unsigned int pg_idx, pg_off, pg_sz;
3861 
3862 		frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
3863 
3864 		pg_idx = 0;
3865 		pg_off = skb_frag_off(frag);
3866 		pg_sz = skb_frag_size(frag);
3867 
3868 		if (skb_frag_must_loop(skb_frag_page(frag))) {
3869 			pg_idx = (pg_off + st->frag_off) >> PAGE_SHIFT;
3870 			pg_off = offset_in_page(pg_off + st->frag_off);
3871 			pg_sz = min_t(unsigned int, pg_sz - st->frag_off,
3872 						    PAGE_SIZE - pg_off);
3873 		}
3874 
3875 		block_limit = pg_sz + st->stepped_offset;
3876 		if (abs_offset < block_limit) {
3877 			if (!st->frag_data)
3878 				st->frag_data = kmap_atomic(skb_frag_page(frag) + pg_idx);
3879 
3880 			*data = (u8 *)st->frag_data + pg_off +
3881 				(abs_offset - st->stepped_offset);
3882 
3883 			return block_limit - abs_offset;
3884 		}
3885 
3886 		if (st->frag_data) {
3887 			kunmap_atomic(st->frag_data);
3888 			st->frag_data = NULL;
3889 		}
3890 
3891 		st->stepped_offset += pg_sz;
3892 		st->frag_off += pg_sz;
3893 		if (st->frag_off == skb_frag_size(frag)) {
3894 			st->frag_off = 0;
3895 			st->frag_idx++;
3896 		}
3897 	}
3898 
3899 	if (st->frag_data) {
3900 		kunmap_atomic(st->frag_data);
3901 		st->frag_data = NULL;
3902 	}
3903 
3904 	if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) {
3905 		st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
3906 		st->frag_idx = 0;
3907 		goto next_skb;
3908 	} else if (st->cur_skb->next) {
3909 		st->cur_skb = st->cur_skb->next;
3910 		st->frag_idx = 0;
3911 		goto next_skb;
3912 	}
3913 
3914 	return 0;
3915 }
3916 EXPORT_SYMBOL(skb_seq_read);
3917 
3918 /**
3919  * skb_abort_seq_read - Abort a sequential read of skb data
3920  * @st: state variable
3921  *
3922  * Must be called if skb_seq_read() was not called until it
3923  * returned 0.
3924  */
3925 void skb_abort_seq_read(struct skb_seq_state *st)
3926 {
3927 	if (st->frag_data)
3928 		kunmap_atomic(st->frag_data);
3929 }
3930 EXPORT_SYMBOL(skb_abort_seq_read);
3931 
3932 #define TS_SKB_CB(state)	((struct skb_seq_state *) &((state)->cb))
3933 
3934 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
3935 					  struct ts_config *conf,
3936 					  struct ts_state *state)
3937 {
3938 	return skb_seq_read(offset, text, TS_SKB_CB(state));
3939 }
3940 
3941 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
3942 {
3943 	skb_abort_seq_read(TS_SKB_CB(state));
3944 }
3945 
3946 /**
3947  * skb_find_text - Find a text pattern in skb data
3948  * @skb: the buffer to look in
3949  * @from: search offset
3950  * @to: search limit
3951  * @config: textsearch configuration
3952  *
3953  * Finds a pattern in the skb data according to the specified
3954  * textsearch configuration. Use textsearch_next() to retrieve
3955  * subsequent occurrences of the pattern. Returns the offset
3956  * to the first occurrence or UINT_MAX if no match was found.
3957  */
3958 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
3959 			   unsigned int to, struct ts_config *config)
3960 {
3961 	struct ts_state state;
3962 	unsigned int ret;
3963 
3964 	BUILD_BUG_ON(sizeof(struct skb_seq_state) > sizeof(state.cb));
3965 
3966 	config->get_next_block = skb_ts_get_next_block;
3967 	config->finish = skb_ts_finish;
3968 
3969 	skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state));
3970 
3971 	ret = textsearch_find(config, &state);
3972 	return (ret <= to - from ? ret : UINT_MAX);
3973 }
3974 EXPORT_SYMBOL(skb_find_text);
3975 
3976 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
3977 			 int offset, size_t size)
3978 {
3979 	int i = skb_shinfo(skb)->nr_frags;
3980 
3981 	if (skb_can_coalesce(skb, i, page, offset)) {
3982 		skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size);
3983 	} else if (i < MAX_SKB_FRAGS) {
3984 		skb_zcopy_downgrade_managed(skb);
3985 		get_page(page);
3986 		skb_fill_page_desc_noacc(skb, i, page, offset, size);
3987 	} else {
3988 		return -EMSGSIZE;
3989 	}
3990 
3991 	return 0;
3992 }
3993 EXPORT_SYMBOL_GPL(skb_append_pagefrags);
3994 
3995 /**
3996  *	skb_pull_rcsum - pull skb and update receive checksum
3997  *	@skb: buffer to update
3998  *	@len: length of data pulled
3999  *
4000  *	This function performs an skb_pull on the packet and updates
4001  *	the CHECKSUM_COMPLETE checksum.  It should be used on
4002  *	receive path processing instead of skb_pull unless you know
4003  *	that the checksum difference is zero (e.g., a valid IP header)
4004  *	or you are setting ip_summed to CHECKSUM_NONE.
4005  */
4006 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
4007 {
4008 	unsigned char *data = skb->data;
4009 
4010 	BUG_ON(len > skb->len);
4011 	__skb_pull(skb, len);
4012 	skb_postpull_rcsum(skb, data, len);
4013 	return skb->data;
4014 }
4015 EXPORT_SYMBOL_GPL(skb_pull_rcsum);
4016 
4017 static inline skb_frag_t skb_head_frag_to_page_desc(struct sk_buff *frag_skb)
4018 {
4019 	skb_frag_t head_frag;
4020 	struct page *page;
4021 
4022 	page = virt_to_head_page(frag_skb->head);
4023 	__skb_frag_set_page(&head_frag, page);
4024 	skb_frag_off_set(&head_frag, frag_skb->data -
4025 			 (unsigned char *)page_address(page));
4026 	skb_frag_size_set(&head_frag, skb_headlen(frag_skb));
4027 	return head_frag;
4028 }
4029 
4030 struct sk_buff *skb_segment_list(struct sk_buff *skb,
4031 				 netdev_features_t features,
4032 				 unsigned int offset)
4033 {
4034 	struct sk_buff *list_skb = skb_shinfo(skb)->frag_list;
4035 	unsigned int tnl_hlen = skb_tnl_header_len(skb);
4036 	unsigned int delta_truesize = 0;
4037 	unsigned int delta_len = 0;
4038 	struct sk_buff *tail = NULL;
4039 	struct sk_buff *nskb, *tmp;
4040 	int len_diff, err;
4041 
4042 	skb_push(skb, -skb_network_offset(skb) + offset);
4043 
4044 	skb_shinfo(skb)->frag_list = NULL;
4045 
4046 	do {
4047 		nskb = list_skb;
4048 		list_skb = list_skb->next;
4049 
4050 		err = 0;
4051 		delta_truesize += nskb->truesize;
4052 		if (skb_shared(nskb)) {
4053 			tmp = skb_clone(nskb, GFP_ATOMIC);
4054 			if (tmp) {
4055 				consume_skb(nskb);
4056 				nskb = tmp;
4057 				err = skb_unclone(nskb, GFP_ATOMIC);
4058 			} else {
4059 				err = -ENOMEM;
4060 			}
4061 		}
4062 
4063 		if (!tail)
4064 			skb->next = nskb;
4065 		else
4066 			tail->next = nskb;
4067 
4068 		if (unlikely(err)) {
4069 			nskb->next = list_skb;
4070 			goto err_linearize;
4071 		}
4072 
4073 		tail = nskb;
4074 
4075 		delta_len += nskb->len;
4076 
4077 		skb_push(nskb, -skb_network_offset(nskb) + offset);
4078 
4079 		skb_release_head_state(nskb);
4080 		len_diff = skb_network_header_len(nskb) - skb_network_header_len(skb);
4081 		__copy_skb_header(nskb, skb);
4082 
4083 		skb_headers_offset_update(nskb, skb_headroom(nskb) - skb_headroom(skb));
4084 		nskb->transport_header += len_diff;
4085 		skb_copy_from_linear_data_offset(skb, -tnl_hlen,
4086 						 nskb->data - tnl_hlen,
4087 						 offset + tnl_hlen);
4088 
4089 		if (skb_needs_linearize(nskb, features) &&
4090 		    __skb_linearize(nskb))
4091 			goto err_linearize;
4092 
4093 	} while (list_skb);
4094 
4095 	skb->truesize = skb->truesize - delta_truesize;
4096 	skb->data_len = skb->data_len - delta_len;
4097 	skb->len = skb->len - delta_len;
4098 
4099 	skb_gso_reset(skb);
4100 
4101 	skb->prev = tail;
4102 
4103 	if (skb_needs_linearize(skb, features) &&
4104 	    __skb_linearize(skb))
4105 		goto err_linearize;
4106 
4107 	skb_get(skb);
4108 
4109 	return skb;
4110 
4111 err_linearize:
4112 	kfree_skb_list(skb->next);
4113 	skb->next = NULL;
4114 	return ERR_PTR(-ENOMEM);
4115 }
4116 EXPORT_SYMBOL_GPL(skb_segment_list);
4117 
4118 /**
4119  *	skb_segment - Perform protocol segmentation on skb.
4120  *	@head_skb: buffer to segment
4121  *	@features: features for the output path (see dev->features)
4122  *
4123  *	This function performs segmentation on the given skb.  It returns
4124  *	a pointer to the first in a list of new skbs for the segments.
4125  *	In case of error it returns ERR_PTR(err).
4126  */
4127 struct sk_buff *skb_segment(struct sk_buff *head_skb,
4128 			    netdev_features_t features)
4129 {
4130 	struct sk_buff *segs = NULL;
4131 	struct sk_buff *tail = NULL;
4132 	struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list;
4133 	skb_frag_t *frag = skb_shinfo(head_skb)->frags;
4134 	unsigned int mss = skb_shinfo(head_skb)->gso_size;
4135 	unsigned int doffset = head_skb->data - skb_mac_header(head_skb);
4136 	struct sk_buff *frag_skb = head_skb;
4137 	unsigned int offset = doffset;
4138 	unsigned int tnl_hlen = skb_tnl_header_len(head_skb);
4139 	unsigned int partial_segs = 0;
4140 	unsigned int headroom;
4141 	unsigned int len = head_skb->len;
4142 	__be16 proto;
4143 	bool csum, sg;
4144 	int nfrags = skb_shinfo(head_skb)->nr_frags;
4145 	int err = -ENOMEM;
4146 	int i = 0;
4147 	int pos;
4148 
4149 	if ((skb_shinfo(head_skb)->gso_type & SKB_GSO_DODGY) &&
4150 	    mss != GSO_BY_FRAGS && mss != skb_headlen(head_skb)) {
4151 		struct sk_buff *check_skb;
4152 
4153 		for (check_skb = list_skb; check_skb; check_skb = check_skb->next) {
4154 			if (skb_headlen(check_skb) && !check_skb->head_frag) {
4155 				/* gso_size is untrusted, and we have a frag_list with
4156 				 * a linear non head_frag item.
4157 				 *
4158 				 * If head_skb's headlen does not fit requested gso_size,
4159 				 * it means that the frag_list members do NOT terminate
4160 				 * on exact gso_size boundaries. Hence we cannot perform
4161 				 * skb_frag_t page sharing. Therefore we must fallback to
4162 				 * copying the frag_list skbs; we do so by disabling SG.
4163 				 */
4164 				features &= ~NETIF_F_SG;
4165 				break;
4166 			}
4167 		}
4168 	}
4169 
4170 	__skb_push(head_skb, doffset);
4171 	proto = skb_network_protocol(head_skb, NULL);
4172 	if (unlikely(!proto))
4173 		return ERR_PTR(-EINVAL);
4174 
4175 	sg = !!(features & NETIF_F_SG);
4176 	csum = !!can_checksum_protocol(features, proto);
4177 
4178 	if (sg && csum && (mss != GSO_BY_FRAGS))  {
4179 		if (!(features & NETIF_F_GSO_PARTIAL)) {
4180 			struct sk_buff *iter;
4181 			unsigned int frag_len;
4182 
4183 			if (!list_skb ||
4184 			    !net_gso_ok(features, skb_shinfo(head_skb)->gso_type))
4185 				goto normal;
4186 
4187 			/* If we get here then all the required
4188 			 * GSO features except frag_list are supported.
4189 			 * Try to split the SKB to multiple GSO SKBs
4190 			 * with no frag_list.
4191 			 * Currently we can do that only when the buffers don't
4192 			 * have a linear part and all the buffers except
4193 			 * the last are of the same length.
4194 			 */
4195 			frag_len = list_skb->len;
4196 			skb_walk_frags(head_skb, iter) {
4197 				if (frag_len != iter->len && iter->next)
4198 					goto normal;
4199 				if (skb_headlen(iter) && !iter->head_frag)
4200 					goto normal;
4201 
4202 				len -= iter->len;
4203 			}
4204 
4205 			if (len != frag_len)
4206 				goto normal;
4207 		}
4208 
4209 		/* GSO partial only requires that we trim off any excess that
4210 		 * doesn't fit into an MSS sized block, so take care of that
4211 		 * now.
4212 		 */
4213 		partial_segs = len / mss;
4214 		if (partial_segs > 1)
4215 			mss *= partial_segs;
4216 		else
4217 			partial_segs = 0;
4218 	}
4219 
4220 normal:
4221 	headroom = skb_headroom(head_skb);
4222 	pos = skb_headlen(head_skb);
4223 
4224 	do {
4225 		struct sk_buff *nskb;
4226 		skb_frag_t *nskb_frag;
4227 		int hsize;
4228 		int size;
4229 
4230 		if (unlikely(mss == GSO_BY_FRAGS)) {
4231 			len = list_skb->len;
4232 		} else {
4233 			len = head_skb->len - offset;
4234 			if (len > mss)
4235 				len = mss;
4236 		}
4237 
4238 		hsize = skb_headlen(head_skb) - offset;
4239 
4240 		if (hsize <= 0 && i >= nfrags && skb_headlen(list_skb) &&
4241 		    (skb_headlen(list_skb) == len || sg)) {
4242 			BUG_ON(skb_headlen(list_skb) > len);
4243 
4244 			i = 0;
4245 			nfrags = skb_shinfo(list_skb)->nr_frags;
4246 			frag = skb_shinfo(list_skb)->frags;
4247 			frag_skb = list_skb;
4248 			pos += skb_headlen(list_skb);
4249 
4250 			while (pos < offset + len) {
4251 				BUG_ON(i >= nfrags);
4252 
4253 				size = skb_frag_size(frag);
4254 				if (pos + size > offset + len)
4255 					break;
4256 
4257 				i++;
4258 				pos += size;
4259 				frag++;
4260 			}
4261 
4262 			nskb = skb_clone(list_skb, GFP_ATOMIC);
4263 			list_skb = list_skb->next;
4264 
4265 			if (unlikely(!nskb))
4266 				goto err;
4267 
4268 			if (unlikely(pskb_trim(nskb, len))) {
4269 				kfree_skb(nskb);
4270 				goto err;
4271 			}
4272 
4273 			hsize = skb_end_offset(nskb);
4274 			if (skb_cow_head(nskb, doffset + headroom)) {
4275 				kfree_skb(nskb);
4276 				goto err;
4277 			}
4278 
4279 			nskb->truesize += skb_end_offset(nskb) - hsize;
4280 			skb_release_head_state(nskb);
4281 			__skb_push(nskb, doffset);
4282 		} else {
4283 			if (hsize < 0)
4284 				hsize = 0;
4285 			if (hsize > len || !sg)
4286 				hsize = len;
4287 
4288 			nskb = __alloc_skb(hsize + doffset + headroom,
4289 					   GFP_ATOMIC, skb_alloc_rx_flag(head_skb),
4290 					   NUMA_NO_NODE);
4291 
4292 			if (unlikely(!nskb))
4293 				goto err;
4294 
4295 			skb_reserve(nskb, headroom);
4296 			__skb_put(nskb, doffset);
4297 		}
4298 
4299 		if (segs)
4300 			tail->next = nskb;
4301 		else
4302 			segs = nskb;
4303 		tail = nskb;
4304 
4305 		__copy_skb_header(nskb, head_skb);
4306 
4307 		skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom);
4308 		skb_reset_mac_len(nskb);
4309 
4310 		skb_copy_from_linear_data_offset(head_skb, -tnl_hlen,
4311 						 nskb->data - tnl_hlen,
4312 						 doffset + tnl_hlen);
4313 
4314 		if (nskb->len == len + doffset)
4315 			goto perform_csum_check;
4316 
4317 		if (!sg) {
4318 			if (!csum) {
4319 				if (!nskb->remcsum_offload)
4320 					nskb->ip_summed = CHECKSUM_NONE;
4321 				SKB_GSO_CB(nskb)->csum =
4322 					skb_copy_and_csum_bits(head_skb, offset,
4323 							       skb_put(nskb,
4324 								       len),
4325 							       len);
4326 				SKB_GSO_CB(nskb)->csum_start =
4327 					skb_headroom(nskb) + doffset;
4328 			} else {
4329 				if (skb_copy_bits(head_skb, offset, skb_put(nskb, len), len))
4330 					goto err;
4331 			}
4332 			continue;
4333 		}
4334 
4335 		nskb_frag = skb_shinfo(nskb)->frags;
4336 
4337 		skb_copy_from_linear_data_offset(head_skb, offset,
4338 						 skb_put(nskb, hsize), hsize);
4339 
4340 		skb_shinfo(nskb)->flags |= skb_shinfo(head_skb)->flags &
4341 					   SKBFL_SHARED_FRAG;
4342 
4343 		if (skb_orphan_frags(frag_skb, GFP_ATOMIC) ||
4344 		    skb_zerocopy_clone(nskb, frag_skb, GFP_ATOMIC))
4345 			goto err;
4346 
4347 		while (pos < offset + len) {
4348 			if (i >= nfrags) {
4349 				i = 0;
4350 				nfrags = skb_shinfo(list_skb)->nr_frags;
4351 				frag = skb_shinfo(list_skb)->frags;
4352 				frag_skb = list_skb;
4353 				if (!skb_headlen(list_skb)) {
4354 					BUG_ON(!nfrags);
4355 				} else {
4356 					BUG_ON(!list_skb->head_frag);
4357 
4358 					/* to make room for head_frag. */
4359 					i--;
4360 					frag--;
4361 				}
4362 				if (skb_orphan_frags(frag_skb, GFP_ATOMIC) ||
4363 				    skb_zerocopy_clone(nskb, frag_skb,
4364 						       GFP_ATOMIC))
4365 					goto err;
4366 
4367 				list_skb = list_skb->next;
4368 			}
4369 
4370 			if (unlikely(skb_shinfo(nskb)->nr_frags >=
4371 				     MAX_SKB_FRAGS)) {
4372 				net_warn_ratelimited(
4373 					"skb_segment: too many frags: %u %u\n",
4374 					pos, mss);
4375 				err = -EINVAL;
4376 				goto err;
4377 			}
4378 
4379 			*nskb_frag = (i < 0) ? skb_head_frag_to_page_desc(frag_skb) : *frag;
4380 			__skb_frag_ref(nskb_frag);
4381 			size = skb_frag_size(nskb_frag);
4382 
4383 			if (pos < offset) {
4384 				skb_frag_off_add(nskb_frag, offset - pos);
4385 				skb_frag_size_sub(nskb_frag, offset - pos);
4386 			}
4387 
4388 			skb_shinfo(nskb)->nr_frags++;
4389 
4390 			if (pos + size <= offset + len) {
4391 				i++;
4392 				frag++;
4393 				pos += size;
4394 			} else {
4395 				skb_frag_size_sub(nskb_frag, pos + size - (offset + len));
4396 				goto skip_fraglist;
4397 			}
4398 
4399 			nskb_frag++;
4400 		}
4401 
4402 skip_fraglist:
4403 		nskb->data_len = len - hsize;
4404 		nskb->len += nskb->data_len;
4405 		nskb->truesize += nskb->data_len;
4406 
4407 perform_csum_check:
4408 		if (!csum) {
4409 			if (skb_has_shared_frag(nskb) &&
4410 			    __skb_linearize(nskb))
4411 				goto err;
4412 
4413 			if (!nskb->remcsum_offload)
4414 				nskb->ip_summed = CHECKSUM_NONE;
4415 			SKB_GSO_CB(nskb)->csum =
4416 				skb_checksum(nskb, doffset,
4417 					     nskb->len - doffset, 0);
4418 			SKB_GSO_CB(nskb)->csum_start =
4419 				skb_headroom(nskb) + doffset;
4420 		}
4421 	} while ((offset += len) < head_skb->len);
4422 
4423 	/* Some callers want to get the end of the list.
4424 	 * Put it in segs->prev to avoid walking the list.
4425 	 * (see validate_xmit_skb_list() for example)
4426 	 */
4427 	segs->prev = tail;
4428 
4429 	if (partial_segs) {
4430 		struct sk_buff *iter;
4431 		int type = skb_shinfo(head_skb)->gso_type;
4432 		unsigned short gso_size = skb_shinfo(head_skb)->gso_size;
4433 
4434 		/* Update type to add partial and then remove dodgy if set */
4435 		type |= (features & NETIF_F_GSO_PARTIAL) / NETIF_F_GSO_PARTIAL * SKB_GSO_PARTIAL;
4436 		type &= ~SKB_GSO_DODGY;
4437 
4438 		/* Update GSO info and prepare to start updating headers on
4439 		 * our way back down the stack of protocols.
4440 		 */
4441 		for (iter = segs; iter; iter = iter->next) {
4442 			skb_shinfo(iter)->gso_size = gso_size;
4443 			skb_shinfo(iter)->gso_segs = partial_segs;
4444 			skb_shinfo(iter)->gso_type = type;
4445 			SKB_GSO_CB(iter)->data_offset = skb_headroom(iter) + doffset;
4446 		}
4447 
4448 		if (tail->len - doffset <= gso_size)
4449 			skb_shinfo(tail)->gso_size = 0;
4450 		else if (tail != segs)
4451 			skb_shinfo(tail)->gso_segs = DIV_ROUND_UP(tail->len - doffset, gso_size);
4452 	}
4453 
4454 	/* Following permits correct backpressure, for protocols
4455 	 * using skb_set_owner_w().
4456 	 * Idea is to tranfert ownership from head_skb to last segment.
4457 	 */
4458 	if (head_skb->destructor == sock_wfree) {
4459 		swap(tail->truesize, head_skb->truesize);
4460 		swap(tail->destructor, head_skb->destructor);
4461 		swap(tail->sk, head_skb->sk);
4462 	}
4463 	return segs;
4464 
4465 err:
4466 	kfree_skb_list(segs);
4467 	return ERR_PTR(err);
4468 }
4469 EXPORT_SYMBOL_GPL(skb_segment);
4470 
4471 #ifdef CONFIG_SKB_EXTENSIONS
4472 #define SKB_EXT_ALIGN_VALUE	8
4473 #define SKB_EXT_CHUNKSIZEOF(x)	(ALIGN((sizeof(x)), SKB_EXT_ALIGN_VALUE) / SKB_EXT_ALIGN_VALUE)
4474 
4475 static const u8 skb_ext_type_len[] = {
4476 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4477 	[SKB_EXT_BRIDGE_NF] = SKB_EXT_CHUNKSIZEOF(struct nf_bridge_info),
4478 #endif
4479 #ifdef CONFIG_XFRM
4480 	[SKB_EXT_SEC_PATH] = SKB_EXT_CHUNKSIZEOF(struct sec_path),
4481 #endif
4482 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4483 	[TC_SKB_EXT] = SKB_EXT_CHUNKSIZEOF(struct tc_skb_ext),
4484 #endif
4485 #if IS_ENABLED(CONFIG_MPTCP)
4486 	[SKB_EXT_MPTCP] = SKB_EXT_CHUNKSIZEOF(struct mptcp_ext),
4487 #endif
4488 #if IS_ENABLED(CONFIG_MCTP_FLOWS)
4489 	[SKB_EXT_MCTP] = SKB_EXT_CHUNKSIZEOF(struct mctp_flow),
4490 #endif
4491 };
4492 
4493 static __always_inline unsigned int skb_ext_total_length(void)
4494 {
4495 	return SKB_EXT_CHUNKSIZEOF(struct skb_ext) +
4496 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4497 		skb_ext_type_len[SKB_EXT_BRIDGE_NF] +
4498 #endif
4499 #ifdef CONFIG_XFRM
4500 		skb_ext_type_len[SKB_EXT_SEC_PATH] +
4501 #endif
4502 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4503 		skb_ext_type_len[TC_SKB_EXT] +
4504 #endif
4505 #if IS_ENABLED(CONFIG_MPTCP)
4506 		skb_ext_type_len[SKB_EXT_MPTCP] +
4507 #endif
4508 #if IS_ENABLED(CONFIG_MCTP_FLOWS)
4509 		skb_ext_type_len[SKB_EXT_MCTP] +
4510 #endif
4511 		0;
4512 }
4513 
4514 static void skb_extensions_init(void)
4515 {
4516 	BUILD_BUG_ON(SKB_EXT_NUM >= 8);
4517 	BUILD_BUG_ON(skb_ext_total_length() > 255);
4518 
4519 	skbuff_ext_cache = kmem_cache_create("skbuff_ext_cache",
4520 					     SKB_EXT_ALIGN_VALUE * skb_ext_total_length(),
4521 					     0,
4522 					     SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4523 					     NULL);
4524 }
4525 #else
4526 static void skb_extensions_init(void) {}
4527 #endif
4528 
4529 void __init skb_init(void)
4530 {
4531 	skbuff_head_cache = kmem_cache_create_usercopy("skbuff_head_cache",
4532 					      sizeof(struct sk_buff),
4533 					      0,
4534 					      SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4535 					      offsetof(struct sk_buff, cb),
4536 					      sizeof_field(struct sk_buff, cb),
4537 					      NULL);
4538 	skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
4539 						sizeof(struct sk_buff_fclones),
4540 						0,
4541 						SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4542 						NULL);
4543 	skb_extensions_init();
4544 }
4545 
4546 static int
4547 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len,
4548 	       unsigned int recursion_level)
4549 {
4550 	int start = skb_headlen(skb);
4551 	int i, copy = start - offset;
4552 	struct sk_buff *frag_iter;
4553 	int elt = 0;
4554 
4555 	if (unlikely(recursion_level >= 24))
4556 		return -EMSGSIZE;
4557 
4558 	if (copy > 0) {
4559 		if (copy > len)
4560 			copy = len;
4561 		sg_set_buf(sg, skb->data + offset, copy);
4562 		elt++;
4563 		if ((len -= copy) == 0)
4564 			return elt;
4565 		offset += copy;
4566 	}
4567 
4568 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
4569 		int end;
4570 
4571 		WARN_ON(start > offset + len);
4572 
4573 		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
4574 		if ((copy = end - offset) > 0) {
4575 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4576 			if (unlikely(elt && sg_is_last(&sg[elt - 1])))
4577 				return -EMSGSIZE;
4578 
4579 			if (copy > len)
4580 				copy = len;
4581 			sg_set_page(&sg[elt], skb_frag_page(frag), copy,
4582 				    skb_frag_off(frag) + offset - start);
4583 			elt++;
4584 			if (!(len -= copy))
4585 				return elt;
4586 			offset += copy;
4587 		}
4588 		start = end;
4589 	}
4590 
4591 	skb_walk_frags(skb, frag_iter) {
4592 		int end, ret;
4593 
4594 		WARN_ON(start > offset + len);
4595 
4596 		end = start + frag_iter->len;
4597 		if ((copy = end - offset) > 0) {
4598 			if (unlikely(elt && sg_is_last(&sg[elt - 1])))
4599 				return -EMSGSIZE;
4600 
4601 			if (copy > len)
4602 				copy = len;
4603 			ret = __skb_to_sgvec(frag_iter, sg+elt, offset - start,
4604 					      copy, recursion_level + 1);
4605 			if (unlikely(ret < 0))
4606 				return ret;
4607 			elt += ret;
4608 			if ((len -= copy) == 0)
4609 				return elt;
4610 			offset += copy;
4611 		}
4612 		start = end;
4613 	}
4614 	BUG_ON(len);
4615 	return elt;
4616 }
4617 
4618 /**
4619  *	skb_to_sgvec - Fill a scatter-gather list from a socket buffer
4620  *	@skb: Socket buffer containing the buffers to be mapped
4621  *	@sg: The scatter-gather list to map into
4622  *	@offset: The offset into the buffer's contents to start mapping
4623  *	@len: Length of buffer space to be mapped
4624  *
4625  *	Fill the specified scatter-gather list with mappings/pointers into a
4626  *	region of the buffer space attached to a socket buffer. Returns either
4627  *	the number of scatterlist items used, or -EMSGSIZE if the contents
4628  *	could not fit.
4629  */
4630 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
4631 {
4632 	int nsg = __skb_to_sgvec(skb, sg, offset, len, 0);
4633 
4634 	if (nsg <= 0)
4635 		return nsg;
4636 
4637 	sg_mark_end(&sg[nsg - 1]);
4638 
4639 	return nsg;
4640 }
4641 EXPORT_SYMBOL_GPL(skb_to_sgvec);
4642 
4643 /* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given
4644  * sglist without mark the sg which contain last skb data as the end.
4645  * So the caller can mannipulate sg list as will when padding new data after
4646  * the first call without calling sg_unmark_end to expend sg list.
4647  *
4648  * Scenario to use skb_to_sgvec_nomark:
4649  * 1. sg_init_table
4650  * 2. skb_to_sgvec_nomark(payload1)
4651  * 3. skb_to_sgvec_nomark(payload2)
4652  *
4653  * This is equivalent to:
4654  * 1. sg_init_table
4655  * 2. skb_to_sgvec(payload1)
4656  * 3. sg_unmark_end
4657  * 4. skb_to_sgvec(payload2)
4658  *
4659  * When mapping mutilple payload conditionally, skb_to_sgvec_nomark
4660  * is more preferable.
4661  */
4662 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
4663 			int offset, int len)
4664 {
4665 	return __skb_to_sgvec(skb, sg, offset, len, 0);
4666 }
4667 EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark);
4668 
4669 
4670 
4671 /**
4672  *	skb_cow_data - Check that a socket buffer's data buffers are writable
4673  *	@skb: The socket buffer to check.
4674  *	@tailbits: Amount of trailing space to be added
4675  *	@trailer: Returned pointer to the skb where the @tailbits space begins
4676  *
4677  *	Make sure that the data buffers attached to a socket buffer are
4678  *	writable. If they are not, private copies are made of the data buffers
4679  *	and the socket buffer is set to use these instead.
4680  *
4681  *	If @tailbits is given, make sure that there is space to write @tailbits
4682  *	bytes of data beyond current end of socket buffer.  @trailer will be
4683  *	set to point to the skb in which this space begins.
4684  *
4685  *	The number of scatterlist elements required to completely map the
4686  *	COW'd and extended socket buffer will be returned.
4687  */
4688 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
4689 {
4690 	int copyflag;
4691 	int elt;
4692 	struct sk_buff *skb1, **skb_p;
4693 
4694 	/* If skb is cloned or its head is paged, reallocate
4695 	 * head pulling out all the pages (pages are considered not writable
4696 	 * at the moment even if they are anonymous).
4697 	 */
4698 	if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
4699 	    !__pskb_pull_tail(skb, __skb_pagelen(skb)))
4700 		return -ENOMEM;
4701 
4702 	/* Easy case. Most of packets will go this way. */
4703 	if (!skb_has_frag_list(skb)) {
4704 		/* A little of trouble, not enough of space for trailer.
4705 		 * This should not happen, when stack is tuned to generate
4706 		 * good frames. OK, on miss we reallocate and reserve even more
4707 		 * space, 128 bytes is fair. */
4708 
4709 		if (skb_tailroom(skb) < tailbits &&
4710 		    pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
4711 			return -ENOMEM;
4712 
4713 		/* Voila! */
4714 		*trailer = skb;
4715 		return 1;
4716 	}
4717 
4718 	/* Misery. We are in troubles, going to mincer fragments... */
4719 
4720 	elt = 1;
4721 	skb_p = &skb_shinfo(skb)->frag_list;
4722 	copyflag = 0;
4723 
4724 	while ((skb1 = *skb_p) != NULL) {
4725 		int ntail = 0;
4726 
4727 		/* The fragment is partially pulled by someone,
4728 		 * this can happen on input. Copy it and everything
4729 		 * after it. */
4730 
4731 		if (skb_shared(skb1))
4732 			copyflag = 1;
4733 
4734 		/* If the skb is the last, worry about trailer. */
4735 
4736 		if (skb1->next == NULL && tailbits) {
4737 			if (skb_shinfo(skb1)->nr_frags ||
4738 			    skb_has_frag_list(skb1) ||
4739 			    skb_tailroom(skb1) < tailbits)
4740 				ntail = tailbits + 128;
4741 		}
4742 
4743 		if (copyflag ||
4744 		    skb_cloned(skb1) ||
4745 		    ntail ||
4746 		    skb_shinfo(skb1)->nr_frags ||
4747 		    skb_has_frag_list(skb1)) {
4748 			struct sk_buff *skb2;
4749 
4750 			/* Fuck, we are miserable poor guys... */
4751 			if (ntail == 0)
4752 				skb2 = skb_copy(skb1, GFP_ATOMIC);
4753 			else
4754 				skb2 = skb_copy_expand(skb1,
4755 						       skb_headroom(skb1),
4756 						       ntail,
4757 						       GFP_ATOMIC);
4758 			if (unlikely(skb2 == NULL))
4759 				return -ENOMEM;
4760 
4761 			if (skb1->sk)
4762 				skb_set_owner_w(skb2, skb1->sk);
4763 
4764 			/* Looking around. Are we still alive?
4765 			 * OK, link new skb, drop old one */
4766 
4767 			skb2->next = skb1->next;
4768 			*skb_p = skb2;
4769 			kfree_skb(skb1);
4770 			skb1 = skb2;
4771 		}
4772 		elt++;
4773 		*trailer = skb1;
4774 		skb_p = &skb1->next;
4775 	}
4776 
4777 	return elt;
4778 }
4779 EXPORT_SYMBOL_GPL(skb_cow_data);
4780 
4781 static void sock_rmem_free(struct sk_buff *skb)
4782 {
4783 	struct sock *sk = skb->sk;
4784 
4785 	atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
4786 }
4787 
4788 static void skb_set_err_queue(struct sk_buff *skb)
4789 {
4790 	/* pkt_type of skbs received on local sockets is never PACKET_OUTGOING.
4791 	 * So, it is safe to (mis)use it to mark skbs on the error queue.
4792 	 */
4793 	skb->pkt_type = PACKET_OUTGOING;
4794 	BUILD_BUG_ON(PACKET_OUTGOING == 0);
4795 }
4796 
4797 /*
4798  * Note: We dont mem charge error packets (no sk_forward_alloc changes)
4799  */
4800 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
4801 {
4802 	if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
4803 	    (unsigned int)READ_ONCE(sk->sk_rcvbuf))
4804 		return -ENOMEM;
4805 
4806 	skb_orphan(skb);
4807 	skb->sk = sk;
4808 	skb->destructor = sock_rmem_free;
4809 	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
4810 	skb_set_err_queue(skb);
4811 
4812 	/* before exiting rcu section, make sure dst is refcounted */
4813 	skb_dst_force(skb);
4814 
4815 	skb_queue_tail(&sk->sk_error_queue, skb);
4816 	if (!sock_flag(sk, SOCK_DEAD))
4817 		sk_error_report(sk);
4818 	return 0;
4819 }
4820 EXPORT_SYMBOL(sock_queue_err_skb);
4821 
4822 static bool is_icmp_err_skb(const struct sk_buff *skb)
4823 {
4824 	return skb && (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP ||
4825 		       SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP6);
4826 }
4827 
4828 struct sk_buff *sock_dequeue_err_skb(struct sock *sk)
4829 {
4830 	struct sk_buff_head *q = &sk->sk_error_queue;
4831 	struct sk_buff *skb, *skb_next = NULL;
4832 	bool icmp_next = false;
4833 	unsigned long flags;
4834 
4835 	spin_lock_irqsave(&q->lock, flags);
4836 	skb = __skb_dequeue(q);
4837 	if (skb && (skb_next = skb_peek(q))) {
4838 		icmp_next = is_icmp_err_skb(skb_next);
4839 		if (icmp_next)
4840 			sk->sk_err = SKB_EXT_ERR(skb_next)->ee.ee_errno;
4841 	}
4842 	spin_unlock_irqrestore(&q->lock, flags);
4843 
4844 	if (is_icmp_err_skb(skb) && !icmp_next)
4845 		sk->sk_err = 0;
4846 
4847 	if (skb_next)
4848 		sk_error_report(sk);
4849 
4850 	return skb;
4851 }
4852 EXPORT_SYMBOL(sock_dequeue_err_skb);
4853 
4854 /**
4855  * skb_clone_sk - create clone of skb, and take reference to socket
4856  * @skb: the skb to clone
4857  *
4858  * This function creates a clone of a buffer that holds a reference on
4859  * sk_refcnt.  Buffers created via this function are meant to be
4860  * returned using sock_queue_err_skb, or free via kfree_skb.
4861  *
4862  * When passing buffers allocated with this function to sock_queue_err_skb
4863  * it is necessary to wrap the call with sock_hold/sock_put in order to
4864  * prevent the socket from being released prior to being enqueued on
4865  * the sk_error_queue.
4866  */
4867 struct sk_buff *skb_clone_sk(struct sk_buff *skb)
4868 {
4869 	struct sock *sk = skb->sk;
4870 	struct sk_buff *clone;
4871 
4872 	if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt))
4873 		return NULL;
4874 
4875 	clone = skb_clone(skb, GFP_ATOMIC);
4876 	if (!clone) {
4877 		sock_put(sk);
4878 		return NULL;
4879 	}
4880 
4881 	clone->sk = sk;
4882 	clone->destructor = sock_efree;
4883 
4884 	return clone;
4885 }
4886 EXPORT_SYMBOL(skb_clone_sk);
4887 
4888 static void __skb_complete_tx_timestamp(struct sk_buff *skb,
4889 					struct sock *sk,
4890 					int tstype,
4891 					bool opt_stats)
4892 {
4893 	struct sock_exterr_skb *serr;
4894 	int err;
4895 
4896 	BUILD_BUG_ON(sizeof(struct sock_exterr_skb) > sizeof(skb->cb));
4897 
4898 	serr = SKB_EXT_ERR(skb);
4899 	memset(serr, 0, sizeof(*serr));
4900 	serr->ee.ee_errno = ENOMSG;
4901 	serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
4902 	serr->ee.ee_info = tstype;
4903 	serr->opt_stats = opt_stats;
4904 	serr->header.h4.iif = skb->dev ? skb->dev->ifindex : 0;
4905 	if (sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID) {
4906 		serr->ee.ee_data = skb_shinfo(skb)->tskey;
4907 		if (sk_is_tcp(sk))
4908 			serr->ee.ee_data -= atomic_read(&sk->sk_tskey);
4909 	}
4910 
4911 	err = sock_queue_err_skb(sk, skb);
4912 
4913 	if (err)
4914 		kfree_skb(skb);
4915 }
4916 
4917 static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly)
4918 {
4919 	bool ret;
4920 
4921 	if (likely(READ_ONCE(sysctl_tstamp_allow_data) || tsonly))
4922 		return true;
4923 
4924 	read_lock_bh(&sk->sk_callback_lock);
4925 	ret = sk->sk_socket && sk->sk_socket->file &&
4926 	      file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW);
4927 	read_unlock_bh(&sk->sk_callback_lock);
4928 	return ret;
4929 }
4930 
4931 void skb_complete_tx_timestamp(struct sk_buff *skb,
4932 			       struct skb_shared_hwtstamps *hwtstamps)
4933 {
4934 	struct sock *sk = skb->sk;
4935 
4936 	if (!skb_may_tx_timestamp(sk, false))
4937 		goto err;
4938 
4939 	/* Take a reference to prevent skb_orphan() from freeing the socket,
4940 	 * but only if the socket refcount is not zero.
4941 	 */
4942 	if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
4943 		*skb_hwtstamps(skb) = *hwtstamps;
4944 		__skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND, false);
4945 		sock_put(sk);
4946 		return;
4947 	}
4948 
4949 err:
4950 	kfree_skb(skb);
4951 }
4952 EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp);
4953 
4954 void __skb_tstamp_tx(struct sk_buff *orig_skb,
4955 		     const struct sk_buff *ack_skb,
4956 		     struct skb_shared_hwtstamps *hwtstamps,
4957 		     struct sock *sk, int tstype)
4958 {
4959 	struct sk_buff *skb;
4960 	bool tsonly, opt_stats = false;
4961 
4962 	if (!sk)
4963 		return;
4964 
4965 	if (!hwtstamps && !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TX_SWHW) &&
4966 	    skb_shinfo(orig_skb)->tx_flags & SKBTX_IN_PROGRESS)
4967 		return;
4968 
4969 	tsonly = sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TSONLY;
4970 	if (!skb_may_tx_timestamp(sk, tsonly))
4971 		return;
4972 
4973 	if (tsonly) {
4974 #ifdef CONFIG_INET
4975 		if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_STATS) &&
4976 		    sk_is_tcp(sk)) {
4977 			skb = tcp_get_timestamping_opt_stats(sk, orig_skb,
4978 							     ack_skb);
4979 			opt_stats = true;
4980 		} else
4981 #endif
4982 			skb = alloc_skb(0, GFP_ATOMIC);
4983 	} else {
4984 		skb = skb_clone(orig_skb, GFP_ATOMIC);
4985 	}
4986 	if (!skb)
4987 		return;
4988 
4989 	if (tsonly) {
4990 		skb_shinfo(skb)->tx_flags |= skb_shinfo(orig_skb)->tx_flags &
4991 					     SKBTX_ANY_TSTAMP;
4992 		skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey;
4993 	}
4994 
4995 	if (hwtstamps)
4996 		*skb_hwtstamps(skb) = *hwtstamps;
4997 	else
4998 		__net_timestamp(skb);
4999 
5000 	__skb_complete_tx_timestamp(skb, sk, tstype, opt_stats);
5001 }
5002 EXPORT_SYMBOL_GPL(__skb_tstamp_tx);
5003 
5004 void skb_tstamp_tx(struct sk_buff *orig_skb,
5005 		   struct skb_shared_hwtstamps *hwtstamps)
5006 {
5007 	return __skb_tstamp_tx(orig_skb, NULL, hwtstamps, orig_skb->sk,
5008 			       SCM_TSTAMP_SND);
5009 }
5010 EXPORT_SYMBOL_GPL(skb_tstamp_tx);
5011 
5012 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked)
5013 {
5014 	struct sock *sk = skb->sk;
5015 	struct sock_exterr_skb *serr;
5016 	int err = 1;
5017 
5018 	skb->wifi_acked_valid = 1;
5019 	skb->wifi_acked = acked;
5020 
5021 	serr = SKB_EXT_ERR(skb);
5022 	memset(serr, 0, sizeof(*serr));
5023 	serr->ee.ee_errno = ENOMSG;
5024 	serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS;
5025 
5026 	/* Take a reference to prevent skb_orphan() from freeing the socket,
5027 	 * but only if the socket refcount is not zero.
5028 	 */
5029 	if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
5030 		err = sock_queue_err_skb(sk, skb);
5031 		sock_put(sk);
5032 	}
5033 	if (err)
5034 		kfree_skb(skb);
5035 }
5036 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack);
5037 
5038 /**
5039  * skb_partial_csum_set - set up and verify partial csum values for packet
5040  * @skb: the skb to set
5041  * @start: the number of bytes after skb->data to start checksumming.
5042  * @off: the offset from start to place the checksum.
5043  *
5044  * For untrusted partially-checksummed packets, we need to make sure the values
5045  * for skb->csum_start and skb->csum_offset are valid so we don't oops.
5046  *
5047  * This function checks and sets those values and skb->ip_summed: if this
5048  * returns false you should drop the packet.
5049  */
5050 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
5051 {
5052 	u32 csum_end = (u32)start + (u32)off + sizeof(__sum16);
5053 	u32 csum_start = skb_headroom(skb) + (u32)start;
5054 
5055 	if (unlikely(csum_start > U16_MAX || csum_end > skb_headlen(skb))) {
5056 		net_warn_ratelimited("bad partial csum: csum=%u/%u headroom=%u headlen=%u\n",
5057 				     start, off, skb_headroom(skb), skb_headlen(skb));
5058 		return false;
5059 	}
5060 	skb->ip_summed = CHECKSUM_PARTIAL;
5061 	skb->csum_start = csum_start;
5062 	skb->csum_offset = off;
5063 	skb_set_transport_header(skb, start);
5064 	return true;
5065 }
5066 EXPORT_SYMBOL_GPL(skb_partial_csum_set);
5067 
5068 static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len,
5069 			       unsigned int max)
5070 {
5071 	if (skb_headlen(skb) >= len)
5072 		return 0;
5073 
5074 	/* If we need to pullup then pullup to the max, so we
5075 	 * won't need to do it again.
5076 	 */
5077 	if (max > skb->len)
5078 		max = skb->len;
5079 
5080 	if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL)
5081 		return -ENOMEM;
5082 
5083 	if (skb_headlen(skb) < len)
5084 		return -EPROTO;
5085 
5086 	return 0;
5087 }
5088 
5089 #define MAX_TCP_HDR_LEN (15 * 4)
5090 
5091 static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb,
5092 				      typeof(IPPROTO_IP) proto,
5093 				      unsigned int off)
5094 {
5095 	int err;
5096 
5097 	switch (proto) {
5098 	case IPPROTO_TCP:
5099 		err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr),
5100 					  off + MAX_TCP_HDR_LEN);
5101 		if (!err && !skb_partial_csum_set(skb, off,
5102 						  offsetof(struct tcphdr,
5103 							   check)))
5104 			err = -EPROTO;
5105 		return err ? ERR_PTR(err) : &tcp_hdr(skb)->check;
5106 
5107 	case IPPROTO_UDP:
5108 		err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr),
5109 					  off + sizeof(struct udphdr));
5110 		if (!err && !skb_partial_csum_set(skb, off,
5111 						  offsetof(struct udphdr,
5112 							   check)))
5113 			err = -EPROTO;
5114 		return err ? ERR_PTR(err) : &udp_hdr(skb)->check;
5115 	}
5116 
5117 	return ERR_PTR(-EPROTO);
5118 }
5119 
5120 /* This value should be large enough to cover a tagged ethernet header plus
5121  * maximally sized IP and TCP or UDP headers.
5122  */
5123 #define MAX_IP_HDR_LEN 128
5124 
5125 static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate)
5126 {
5127 	unsigned int off;
5128 	bool fragment;
5129 	__sum16 *csum;
5130 	int err;
5131 
5132 	fragment = false;
5133 
5134 	err = skb_maybe_pull_tail(skb,
5135 				  sizeof(struct iphdr),
5136 				  MAX_IP_HDR_LEN);
5137 	if (err < 0)
5138 		goto out;
5139 
5140 	if (ip_is_fragment(ip_hdr(skb)))
5141 		fragment = true;
5142 
5143 	off = ip_hdrlen(skb);
5144 
5145 	err = -EPROTO;
5146 
5147 	if (fragment)
5148 		goto out;
5149 
5150 	csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off);
5151 	if (IS_ERR(csum))
5152 		return PTR_ERR(csum);
5153 
5154 	if (recalculate)
5155 		*csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
5156 					   ip_hdr(skb)->daddr,
5157 					   skb->len - off,
5158 					   ip_hdr(skb)->protocol, 0);
5159 	err = 0;
5160 
5161 out:
5162 	return err;
5163 }
5164 
5165 /* This value should be large enough to cover a tagged ethernet header plus
5166  * an IPv6 header, all options, and a maximal TCP or UDP header.
5167  */
5168 #define MAX_IPV6_HDR_LEN 256
5169 
5170 #define OPT_HDR(type, skb, off) \
5171 	(type *)(skb_network_header(skb) + (off))
5172 
5173 static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate)
5174 {
5175 	int err;
5176 	u8 nexthdr;
5177 	unsigned int off;
5178 	unsigned int len;
5179 	bool fragment;
5180 	bool done;
5181 	__sum16 *csum;
5182 
5183 	fragment = false;
5184 	done = false;
5185 
5186 	off = sizeof(struct ipv6hdr);
5187 
5188 	err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN);
5189 	if (err < 0)
5190 		goto out;
5191 
5192 	nexthdr = ipv6_hdr(skb)->nexthdr;
5193 
5194 	len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len);
5195 	while (off <= len && !done) {
5196 		switch (nexthdr) {
5197 		case IPPROTO_DSTOPTS:
5198 		case IPPROTO_HOPOPTS:
5199 		case IPPROTO_ROUTING: {
5200 			struct ipv6_opt_hdr *hp;
5201 
5202 			err = skb_maybe_pull_tail(skb,
5203 						  off +
5204 						  sizeof(struct ipv6_opt_hdr),
5205 						  MAX_IPV6_HDR_LEN);
5206 			if (err < 0)
5207 				goto out;
5208 
5209 			hp = OPT_HDR(struct ipv6_opt_hdr, skb, off);
5210 			nexthdr = hp->nexthdr;
5211 			off += ipv6_optlen(hp);
5212 			break;
5213 		}
5214 		case IPPROTO_AH: {
5215 			struct ip_auth_hdr *hp;
5216 
5217 			err = skb_maybe_pull_tail(skb,
5218 						  off +
5219 						  sizeof(struct ip_auth_hdr),
5220 						  MAX_IPV6_HDR_LEN);
5221 			if (err < 0)
5222 				goto out;
5223 
5224 			hp = OPT_HDR(struct ip_auth_hdr, skb, off);
5225 			nexthdr = hp->nexthdr;
5226 			off += ipv6_authlen(hp);
5227 			break;
5228 		}
5229 		case IPPROTO_FRAGMENT: {
5230 			struct frag_hdr *hp;
5231 
5232 			err = skb_maybe_pull_tail(skb,
5233 						  off +
5234 						  sizeof(struct frag_hdr),
5235 						  MAX_IPV6_HDR_LEN);
5236 			if (err < 0)
5237 				goto out;
5238 
5239 			hp = OPT_HDR(struct frag_hdr, skb, off);
5240 
5241 			if (hp->frag_off & htons(IP6_OFFSET | IP6_MF))
5242 				fragment = true;
5243 
5244 			nexthdr = hp->nexthdr;
5245 			off += sizeof(struct frag_hdr);
5246 			break;
5247 		}
5248 		default:
5249 			done = true;
5250 			break;
5251 		}
5252 	}
5253 
5254 	err = -EPROTO;
5255 
5256 	if (!done || fragment)
5257 		goto out;
5258 
5259 	csum = skb_checksum_setup_ip(skb, nexthdr, off);
5260 	if (IS_ERR(csum))
5261 		return PTR_ERR(csum);
5262 
5263 	if (recalculate)
5264 		*csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
5265 					 &ipv6_hdr(skb)->daddr,
5266 					 skb->len - off, nexthdr, 0);
5267 	err = 0;
5268 
5269 out:
5270 	return err;
5271 }
5272 
5273 /**
5274  * skb_checksum_setup - set up partial checksum offset
5275  * @skb: the skb to set up
5276  * @recalculate: if true the pseudo-header checksum will be recalculated
5277  */
5278 int skb_checksum_setup(struct sk_buff *skb, bool recalculate)
5279 {
5280 	int err;
5281 
5282 	switch (skb->protocol) {
5283 	case htons(ETH_P_IP):
5284 		err = skb_checksum_setup_ipv4(skb, recalculate);
5285 		break;
5286 
5287 	case htons(ETH_P_IPV6):
5288 		err = skb_checksum_setup_ipv6(skb, recalculate);
5289 		break;
5290 
5291 	default:
5292 		err = -EPROTO;
5293 		break;
5294 	}
5295 
5296 	return err;
5297 }
5298 EXPORT_SYMBOL(skb_checksum_setup);
5299 
5300 /**
5301  * skb_checksum_maybe_trim - maybe trims the given skb
5302  * @skb: the skb to check
5303  * @transport_len: the data length beyond the network header
5304  *
5305  * Checks whether the given skb has data beyond the given transport length.
5306  * If so, returns a cloned skb trimmed to this transport length.
5307  * Otherwise returns the provided skb. Returns NULL in error cases
5308  * (e.g. transport_len exceeds skb length or out-of-memory).
5309  *
5310  * Caller needs to set the skb transport header and free any returned skb if it
5311  * differs from the provided skb.
5312  */
5313 static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb,
5314 					       unsigned int transport_len)
5315 {
5316 	struct sk_buff *skb_chk;
5317 	unsigned int len = skb_transport_offset(skb) + transport_len;
5318 	int ret;
5319 
5320 	if (skb->len < len)
5321 		return NULL;
5322 	else if (skb->len == len)
5323 		return skb;
5324 
5325 	skb_chk = skb_clone(skb, GFP_ATOMIC);
5326 	if (!skb_chk)
5327 		return NULL;
5328 
5329 	ret = pskb_trim_rcsum(skb_chk, len);
5330 	if (ret) {
5331 		kfree_skb(skb_chk);
5332 		return NULL;
5333 	}
5334 
5335 	return skb_chk;
5336 }
5337 
5338 /**
5339  * skb_checksum_trimmed - validate checksum of an skb
5340  * @skb: the skb to check
5341  * @transport_len: the data length beyond the network header
5342  * @skb_chkf: checksum function to use
5343  *
5344  * Applies the given checksum function skb_chkf to the provided skb.
5345  * Returns a checked and maybe trimmed skb. Returns NULL on error.
5346  *
5347  * If the skb has data beyond the given transport length, then a
5348  * trimmed & cloned skb is checked and returned.
5349  *
5350  * Caller needs to set the skb transport header and free any returned skb if it
5351  * differs from the provided skb.
5352  */
5353 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
5354 				     unsigned int transport_len,
5355 				     __sum16(*skb_chkf)(struct sk_buff *skb))
5356 {
5357 	struct sk_buff *skb_chk;
5358 	unsigned int offset = skb_transport_offset(skb);
5359 	__sum16 ret;
5360 
5361 	skb_chk = skb_checksum_maybe_trim(skb, transport_len);
5362 	if (!skb_chk)
5363 		goto err;
5364 
5365 	if (!pskb_may_pull(skb_chk, offset))
5366 		goto err;
5367 
5368 	skb_pull_rcsum(skb_chk, offset);
5369 	ret = skb_chkf(skb_chk);
5370 	skb_push_rcsum(skb_chk, offset);
5371 
5372 	if (ret)
5373 		goto err;
5374 
5375 	return skb_chk;
5376 
5377 err:
5378 	if (skb_chk && skb_chk != skb)
5379 		kfree_skb(skb_chk);
5380 
5381 	return NULL;
5382 
5383 }
5384 EXPORT_SYMBOL(skb_checksum_trimmed);
5385 
5386 void __skb_warn_lro_forwarding(const struct sk_buff *skb)
5387 {
5388 	net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n",
5389 			     skb->dev->name);
5390 }
5391 EXPORT_SYMBOL(__skb_warn_lro_forwarding);
5392 
5393 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen)
5394 {
5395 	if (head_stolen) {
5396 		skb_release_head_state(skb);
5397 		kmem_cache_free(skbuff_head_cache, skb);
5398 	} else {
5399 		__kfree_skb(skb);
5400 	}
5401 }
5402 EXPORT_SYMBOL(kfree_skb_partial);
5403 
5404 /**
5405  * skb_try_coalesce - try to merge skb to prior one
5406  * @to: prior buffer
5407  * @from: buffer to add
5408  * @fragstolen: pointer to boolean
5409  * @delta_truesize: how much more was allocated than was requested
5410  */
5411 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
5412 		      bool *fragstolen, int *delta_truesize)
5413 {
5414 	struct skb_shared_info *to_shinfo, *from_shinfo;
5415 	int i, delta, len = from->len;
5416 
5417 	*fragstolen = false;
5418 
5419 	if (skb_cloned(to))
5420 		return false;
5421 
5422 	/* In general, avoid mixing slab allocated and page_pool allocated
5423 	 * pages within the same SKB. However when @to is not pp_recycle and
5424 	 * @from is cloned, we can transition frag pages from page_pool to
5425 	 * reference counted.
5426 	 *
5427 	 * On the other hand, don't allow coalescing two pp_recycle SKBs if
5428 	 * @from is cloned, in case the SKB is using page_pool fragment
5429 	 * references (PP_FLAG_PAGE_FRAG). Since we only take full page
5430 	 * references for cloned SKBs at the moment that would result in
5431 	 * inconsistent reference counts.
5432 	 */
5433 	if (to->pp_recycle != (from->pp_recycle && !skb_cloned(from)))
5434 		return false;
5435 
5436 	if (len <= skb_tailroom(to)) {
5437 		if (len)
5438 			BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len));
5439 		*delta_truesize = 0;
5440 		return true;
5441 	}
5442 
5443 	to_shinfo = skb_shinfo(to);
5444 	from_shinfo = skb_shinfo(from);
5445 	if (to_shinfo->frag_list || from_shinfo->frag_list)
5446 		return false;
5447 	if (skb_zcopy(to) || skb_zcopy(from))
5448 		return false;
5449 
5450 	if (skb_headlen(from) != 0) {
5451 		struct page *page;
5452 		unsigned int offset;
5453 
5454 		if (to_shinfo->nr_frags +
5455 		    from_shinfo->nr_frags >= MAX_SKB_FRAGS)
5456 			return false;
5457 
5458 		if (skb_head_is_locked(from))
5459 			return false;
5460 
5461 		delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
5462 
5463 		page = virt_to_head_page(from->head);
5464 		offset = from->data - (unsigned char *)page_address(page);
5465 
5466 		skb_fill_page_desc(to, to_shinfo->nr_frags,
5467 				   page, offset, skb_headlen(from));
5468 		*fragstolen = true;
5469 	} else {
5470 		if (to_shinfo->nr_frags +
5471 		    from_shinfo->nr_frags > MAX_SKB_FRAGS)
5472 			return false;
5473 
5474 		delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from));
5475 	}
5476 
5477 	WARN_ON_ONCE(delta < len);
5478 
5479 	memcpy(to_shinfo->frags + to_shinfo->nr_frags,
5480 	       from_shinfo->frags,
5481 	       from_shinfo->nr_frags * sizeof(skb_frag_t));
5482 	to_shinfo->nr_frags += from_shinfo->nr_frags;
5483 
5484 	if (!skb_cloned(from))
5485 		from_shinfo->nr_frags = 0;
5486 
5487 	/* if the skb is not cloned this does nothing
5488 	 * since we set nr_frags to 0.
5489 	 */
5490 	for (i = 0; i < from_shinfo->nr_frags; i++)
5491 		__skb_frag_ref(&from_shinfo->frags[i]);
5492 
5493 	to->truesize += delta;
5494 	to->len += len;
5495 	to->data_len += len;
5496 
5497 	*delta_truesize = delta;
5498 	return true;
5499 }
5500 EXPORT_SYMBOL(skb_try_coalesce);
5501 
5502 /**
5503  * skb_scrub_packet - scrub an skb
5504  *
5505  * @skb: buffer to clean
5506  * @xnet: packet is crossing netns
5507  *
5508  * skb_scrub_packet can be used after encapsulating or decapsulting a packet
5509  * into/from a tunnel. Some information have to be cleared during these
5510  * operations.
5511  * skb_scrub_packet can also be used to clean a skb before injecting it in
5512  * another namespace (@xnet == true). We have to clear all information in the
5513  * skb that could impact namespace isolation.
5514  */
5515 void skb_scrub_packet(struct sk_buff *skb, bool xnet)
5516 {
5517 	skb->pkt_type = PACKET_HOST;
5518 	skb->skb_iif = 0;
5519 	skb->ignore_df = 0;
5520 	skb_dst_drop(skb);
5521 	skb_ext_reset(skb);
5522 	nf_reset_ct(skb);
5523 	nf_reset_trace(skb);
5524 
5525 #ifdef CONFIG_NET_SWITCHDEV
5526 	skb->offload_fwd_mark = 0;
5527 	skb->offload_l3_fwd_mark = 0;
5528 #endif
5529 
5530 	if (!xnet)
5531 		return;
5532 
5533 	ipvs_reset(skb);
5534 	skb->mark = 0;
5535 	skb_clear_tstamp(skb);
5536 }
5537 EXPORT_SYMBOL_GPL(skb_scrub_packet);
5538 
5539 /**
5540  * skb_gso_transport_seglen - Return length of individual segments of a gso packet
5541  *
5542  * @skb: GSO skb
5543  *
5544  * skb_gso_transport_seglen is used to determine the real size of the
5545  * individual segments, including Layer4 headers (TCP/UDP).
5546  *
5547  * The MAC/L2 or network (IP, IPv6) headers are not accounted for.
5548  */
5549 static unsigned int skb_gso_transport_seglen(const struct sk_buff *skb)
5550 {
5551 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
5552 	unsigned int thlen = 0;
5553 
5554 	if (skb->encapsulation) {
5555 		thlen = skb_inner_transport_header(skb) -
5556 			skb_transport_header(skb);
5557 
5558 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
5559 			thlen += inner_tcp_hdrlen(skb);
5560 	} else if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
5561 		thlen = tcp_hdrlen(skb);
5562 	} else if (unlikely(skb_is_gso_sctp(skb))) {
5563 		thlen = sizeof(struct sctphdr);
5564 	} else if (shinfo->gso_type & SKB_GSO_UDP_L4) {
5565 		thlen = sizeof(struct udphdr);
5566 	}
5567 	/* UFO sets gso_size to the size of the fragmentation
5568 	 * payload, i.e. the size of the L4 (UDP) header is already
5569 	 * accounted for.
5570 	 */
5571 	return thlen + shinfo->gso_size;
5572 }
5573 
5574 /**
5575  * skb_gso_network_seglen - Return length of individual segments of a gso packet
5576  *
5577  * @skb: GSO skb
5578  *
5579  * skb_gso_network_seglen is used to determine the real size of the
5580  * individual segments, including Layer3 (IP, IPv6) and L4 headers (TCP/UDP).
5581  *
5582  * The MAC/L2 header is not accounted for.
5583  */
5584 static unsigned int skb_gso_network_seglen(const struct sk_buff *skb)
5585 {
5586 	unsigned int hdr_len = skb_transport_header(skb) -
5587 			       skb_network_header(skb);
5588 
5589 	return hdr_len + skb_gso_transport_seglen(skb);
5590 }
5591 
5592 /**
5593  * skb_gso_mac_seglen - Return length of individual segments of a gso packet
5594  *
5595  * @skb: GSO skb
5596  *
5597  * skb_gso_mac_seglen is used to determine the real size of the
5598  * individual segments, including MAC/L2, Layer3 (IP, IPv6) and L4
5599  * headers (TCP/UDP).
5600  */
5601 static unsigned int skb_gso_mac_seglen(const struct sk_buff *skb)
5602 {
5603 	unsigned int hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
5604 
5605 	return hdr_len + skb_gso_transport_seglen(skb);
5606 }
5607 
5608 /**
5609  * skb_gso_size_check - check the skb size, considering GSO_BY_FRAGS
5610  *
5611  * There are a couple of instances where we have a GSO skb, and we
5612  * want to determine what size it would be after it is segmented.
5613  *
5614  * We might want to check:
5615  * -    L3+L4+payload size (e.g. IP forwarding)
5616  * - L2+L3+L4+payload size (e.g. sanity check before passing to driver)
5617  *
5618  * This is a helper to do that correctly considering GSO_BY_FRAGS.
5619  *
5620  * @skb: GSO skb
5621  *
5622  * @seg_len: The segmented length (from skb_gso_*_seglen). In the
5623  *           GSO_BY_FRAGS case this will be [header sizes + GSO_BY_FRAGS].
5624  *
5625  * @max_len: The maximum permissible length.
5626  *
5627  * Returns true if the segmented length <= max length.
5628  */
5629 static inline bool skb_gso_size_check(const struct sk_buff *skb,
5630 				      unsigned int seg_len,
5631 				      unsigned int max_len) {
5632 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
5633 	const struct sk_buff *iter;
5634 
5635 	if (shinfo->gso_size != GSO_BY_FRAGS)
5636 		return seg_len <= max_len;
5637 
5638 	/* Undo this so we can re-use header sizes */
5639 	seg_len -= GSO_BY_FRAGS;
5640 
5641 	skb_walk_frags(skb, iter) {
5642 		if (seg_len + skb_headlen(iter) > max_len)
5643 			return false;
5644 	}
5645 
5646 	return true;
5647 }
5648 
5649 /**
5650  * skb_gso_validate_network_len - Will a split GSO skb fit into a given MTU?
5651  *
5652  * @skb: GSO skb
5653  * @mtu: MTU to validate against
5654  *
5655  * skb_gso_validate_network_len validates if a given skb will fit a
5656  * wanted MTU once split. It considers L3 headers, L4 headers, and the
5657  * payload.
5658  */
5659 bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu)
5660 {
5661 	return skb_gso_size_check(skb, skb_gso_network_seglen(skb), mtu);
5662 }
5663 EXPORT_SYMBOL_GPL(skb_gso_validate_network_len);
5664 
5665 /**
5666  * skb_gso_validate_mac_len - Will a split GSO skb fit in a given length?
5667  *
5668  * @skb: GSO skb
5669  * @len: length to validate against
5670  *
5671  * skb_gso_validate_mac_len validates if a given skb will fit a wanted
5672  * length once split, including L2, L3 and L4 headers and the payload.
5673  */
5674 bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len)
5675 {
5676 	return skb_gso_size_check(skb, skb_gso_mac_seglen(skb), len);
5677 }
5678 EXPORT_SYMBOL_GPL(skb_gso_validate_mac_len);
5679 
5680 static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb)
5681 {
5682 	int mac_len, meta_len;
5683 	void *meta;
5684 
5685 	if (skb_cow(skb, skb_headroom(skb)) < 0) {
5686 		kfree_skb(skb);
5687 		return NULL;
5688 	}
5689 
5690 	mac_len = skb->data - skb_mac_header(skb);
5691 	if (likely(mac_len > VLAN_HLEN + ETH_TLEN)) {
5692 		memmove(skb_mac_header(skb) + VLAN_HLEN, skb_mac_header(skb),
5693 			mac_len - VLAN_HLEN - ETH_TLEN);
5694 	}
5695 
5696 	meta_len = skb_metadata_len(skb);
5697 	if (meta_len) {
5698 		meta = skb_metadata_end(skb) - meta_len;
5699 		memmove(meta + VLAN_HLEN, meta, meta_len);
5700 	}
5701 
5702 	skb->mac_header += VLAN_HLEN;
5703 	return skb;
5704 }
5705 
5706 struct sk_buff *skb_vlan_untag(struct sk_buff *skb)
5707 {
5708 	struct vlan_hdr *vhdr;
5709 	u16 vlan_tci;
5710 
5711 	if (unlikely(skb_vlan_tag_present(skb))) {
5712 		/* vlan_tci is already set-up so leave this for another time */
5713 		return skb;
5714 	}
5715 
5716 	skb = skb_share_check(skb, GFP_ATOMIC);
5717 	if (unlikely(!skb))
5718 		goto err_free;
5719 	/* We may access the two bytes after vlan_hdr in vlan_set_encap_proto(). */
5720 	if (unlikely(!pskb_may_pull(skb, VLAN_HLEN + sizeof(unsigned short))))
5721 		goto err_free;
5722 
5723 	vhdr = (struct vlan_hdr *)skb->data;
5724 	vlan_tci = ntohs(vhdr->h_vlan_TCI);
5725 	__vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci);
5726 
5727 	skb_pull_rcsum(skb, VLAN_HLEN);
5728 	vlan_set_encap_proto(skb, vhdr);
5729 
5730 	skb = skb_reorder_vlan_header(skb);
5731 	if (unlikely(!skb))
5732 		goto err_free;
5733 
5734 	skb_reset_network_header(skb);
5735 	if (!skb_transport_header_was_set(skb))
5736 		skb_reset_transport_header(skb);
5737 	skb_reset_mac_len(skb);
5738 
5739 	return skb;
5740 
5741 err_free:
5742 	kfree_skb(skb);
5743 	return NULL;
5744 }
5745 EXPORT_SYMBOL(skb_vlan_untag);
5746 
5747 int skb_ensure_writable(struct sk_buff *skb, unsigned int write_len)
5748 {
5749 	if (!pskb_may_pull(skb, write_len))
5750 		return -ENOMEM;
5751 
5752 	if (!skb_cloned(skb) || skb_clone_writable(skb, write_len))
5753 		return 0;
5754 
5755 	return pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
5756 }
5757 EXPORT_SYMBOL(skb_ensure_writable);
5758 
5759 /* remove VLAN header from packet and update csum accordingly.
5760  * expects a non skb_vlan_tag_present skb with a vlan tag payload
5761  */
5762 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci)
5763 {
5764 	struct vlan_hdr *vhdr;
5765 	int offset = skb->data - skb_mac_header(skb);
5766 	int err;
5767 
5768 	if (WARN_ONCE(offset,
5769 		      "__skb_vlan_pop got skb with skb->data not at mac header (offset %d)\n",
5770 		      offset)) {
5771 		return -EINVAL;
5772 	}
5773 
5774 	err = skb_ensure_writable(skb, VLAN_ETH_HLEN);
5775 	if (unlikely(err))
5776 		return err;
5777 
5778 	skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
5779 
5780 	vhdr = (struct vlan_hdr *)(skb->data + ETH_HLEN);
5781 	*vlan_tci = ntohs(vhdr->h_vlan_TCI);
5782 
5783 	memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN);
5784 	__skb_pull(skb, VLAN_HLEN);
5785 
5786 	vlan_set_encap_proto(skb, vhdr);
5787 	skb->mac_header += VLAN_HLEN;
5788 
5789 	if (skb_network_offset(skb) < ETH_HLEN)
5790 		skb_set_network_header(skb, ETH_HLEN);
5791 
5792 	skb_reset_mac_len(skb);
5793 
5794 	return err;
5795 }
5796 EXPORT_SYMBOL(__skb_vlan_pop);
5797 
5798 /* Pop a vlan tag either from hwaccel or from payload.
5799  * Expects skb->data at mac header.
5800  */
5801 int skb_vlan_pop(struct sk_buff *skb)
5802 {
5803 	u16 vlan_tci;
5804 	__be16 vlan_proto;
5805 	int err;
5806 
5807 	if (likely(skb_vlan_tag_present(skb))) {
5808 		__vlan_hwaccel_clear_tag(skb);
5809 	} else {
5810 		if (unlikely(!eth_type_vlan(skb->protocol)))
5811 			return 0;
5812 
5813 		err = __skb_vlan_pop(skb, &vlan_tci);
5814 		if (err)
5815 			return err;
5816 	}
5817 	/* move next vlan tag to hw accel tag */
5818 	if (likely(!eth_type_vlan(skb->protocol)))
5819 		return 0;
5820 
5821 	vlan_proto = skb->protocol;
5822 	err = __skb_vlan_pop(skb, &vlan_tci);
5823 	if (unlikely(err))
5824 		return err;
5825 
5826 	__vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
5827 	return 0;
5828 }
5829 EXPORT_SYMBOL(skb_vlan_pop);
5830 
5831 /* Push a vlan tag either into hwaccel or into payload (if hwaccel tag present).
5832  * Expects skb->data at mac header.
5833  */
5834 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci)
5835 {
5836 	if (skb_vlan_tag_present(skb)) {
5837 		int offset = skb->data - skb_mac_header(skb);
5838 		int err;
5839 
5840 		if (WARN_ONCE(offset,
5841 			      "skb_vlan_push got skb with skb->data not at mac header (offset %d)\n",
5842 			      offset)) {
5843 			return -EINVAL;
5844 		}
5845 
5846 		err = __vlan_insert_tag(skb, skb->vlan_proto,
5847 					skb_vlan_tag_get(skb));
5848 		if (err)
5849 			return err;
5850 
5851 		skb->protocol = skb->vlan_proto;
5852 		skb->mac_len += VLAN_HLEN;
5853 
5854 		skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
5855 	}
5856 	__vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
5857 	return 0;
5858 }
5859 EXPORT_SYMBOL(skb_vlan_push);
5860 
5861 /**
5862  * skb_eth_pop() - Drop the Ethernet header at the head of a packet
5863  *
5864  * @skb: Socket buffer to modify
5865  *
5866  * Drop the Ethernet header of @skb.
5867  *
5868  * Expects that skb->data points to the mac header and that no VLAN tags are
5869  * present.
5870  *
5871  * Returns 0 on success, -errno otherwise.
5872  */
5873 int skb_eth_pop(struct sk_buff *skb)
5874 {
5875 	if (!pskb_may_pull(skb, ETH_HLEN) || skb_vlan_tagged(skb) ||
5876 	    skb_network_offset(skb) < ETH_HLEN)
5877 		return -EPROTO;
5878 
5879 	skb_pull_rcsum(skb, ETH_HLEN);
5880 	skb_reset_mac_header(skb);
5881 	skb_reset_mac_len(skb);
5882 
5883 	return 0;
5884 }
5885 EXPORT_SYMBOL(skb_eth_pop);
5886 
5887 /**
5888  * skb_eth_push() - Add a new Ethernet header at the head of a packet
5889  *
5890  * @skb: Socket buffer to modify
5891  * @dst: Destination MAC address of the new header
5892  * @src: Source MAC address of the new header
5893  *
5894  * Prepend @skb with a new Ethernet header.
5895  *
5896  * Expects that skb->data points to the mac header, which must be empty.
5897  *
5898  * Returns 0 on success, -errno otherwise.
5899  */
5900 int skb_eth_push(struct sk_buff *skb, const unsigned char *dst,
5901 		 const unsigned char *src)
5902 {
5903 	struct ethhdr *eth;
5904 	int err;
5905 
5906 	if (skb_network_offset(skb) || skb_vlan_tag_present(skb))
5907 		return -EPROTO;
5908 
5909 	err = skb_cow_head(skb, sizeof(*eth));
5910 	if (err < 0)
5911 		return err;
5912 
5913 	skb_push(skb, sizeof(*eth));
5914 	skb_reset_mac_header(skb);
5915 	skb_reset_mac_len(skb);
5916 
5917 	eth = eth_hdr(skb);
5918 	ether_addr_copy(eth->h_dest, dst);
5919 	ether_addr_copy(eth->h_source, src);
5920 	eth->h_proto = skb->protocol;
5921 
5922 	skb_postpush_rcsum(skb, eth, sizeof(*eth));
5923 
5924 	return 0;
5925 }
5926 EXPORT_SYMBOL(skb_eth_push);
5927 
5928 /* Update the ethertype of hdr and the skb csum value if required. */
5929 static void skb_mod_eth_type(struct sk_buff *skb, struct ethhdr *hdr,
5930 			     __be16 ethertype)
5931 {
5932 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
5933 		__be16 diff[] = { ~hdr->h_proto, ethertype };
5934 
5935 		skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum);
5936 	}
5937 
5938 	hdr->h_proto = ethertype;
5939 }
5940 
5941 /**
5942  * skb_mpls_push() - push a new MPLS header after mac_len bytes from start of
5943  *                   the packet
5944  *
5945  * @skb: buffer
5946  * @mpls_lse: MPLS label stack entry to push
5947  * @mpls_proto: ethertype of the new MPLS header (expects 0x8847 or 0x8848)
5948  * @mac_len: length of the MAC header
5949  * @ethernet: flag to indicate if the resulting packet after skb_mpls_push is
5950  *            ethernet
5951  *
5952  * Expects skb->data at mac header.
5953  *
5954  * Returns 0 on success, -errno otherwise.
5955  */
5956 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto,
5957 		  int mac_len, bool ethernet)
5958 {
5959 	struct mpls_shim_hdr *lse;
5960 	int err;
5961 
5962 	if (unlikely(!eth_p_mpls(mpls_proto)))
5963 		return -EINVAL;
5964 
5965 	/* Networking stack does not allow simultaneous Tunnel and MPLS GSO. */
5966 	if (skb->encapsulation)
5967 		return -EINVAL;
5968 
5969 	err = skb_cow_head(skb, MPLS_HLEN);
5970 	if (unlikely(err))
5971 		return err;
5972 
5973 	if (!skb->inner_protocol) {
5974 		skb_set_inner_network_header(skb, skb_network_offset(skb));
5975 		skb_set_inner_protocol(skb, skb->protocol);
5976 	}
5977 
5978 	skb_push(skb, MPLS_HLEN);
5979 	memmove(skb_mac_header(skb) - MPLS_HLEN, skb_mac_header(skb),
5980 		mac_len);
5981 	skb_reset_mac_header(skb);
5982 	skb_set_network_header(skb, mac_len);
5983 	skb_reset_mac_len(skb);
5984 
5985 	lse = mpls_hdr(skb);
5986 	lse->label_stack_entry = mpls_lse;
5987 	skb_postpush_rcsum(skb, lse, MPLS_HLEN);
5988 
5989 	if (ethernet && mac_len >= ETH_HLEN)
5990 		skb_mod_eth_type(skb, eth_hdr(skb), mpls_proto);
5991 	skb->protocol = mpls_proto;
5992 
5993 	return 0;
5994 }
5995 EXPORT_SYMBOL_GPL(skb_mpls_push);
5996 
5997 /**
5998  * skb_mpls_pop() - pop the outermost MPLS header
5999  *
6000  * @skb: buffer
6001  * @next_proto: ethertype of header after popped MPLS header
6002  * @mac_len: length of the MAC header
6003  * @ethernet: flag to indicate if the packet is ethernet
6004  *
6005  * Expects skb->data at mac header.
6006  *
6007  * Returns 0 on success, -errno otherwise.
6008  */
6009 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len,
6010 		 bool ethernet)
6011 {
6012 	int err;
6013 
6014 	if (unlikely(!eth_p_mpls(skb->protocol)))
6015 		return 0;
6016 
6017 	err = skb_ensure_writable(skb, mac_len + MPLS_HLEN);
6018 	if (unlikely(err))
6019 		return err;
6020 
6021 	skb_postpull_rcsum(skb, mpls_hdr(skb), MPLS_HLEN);
6022 	memmove(skb_mac_header(skb) + MPLS_HLEN, skb_mac_header(skb),
6023 		mac_len);
6024 
6025 	__skb_pull(skb, MPLS_HLEN);
6026 	skb_reset_mac_header(skb);
6027 	skb_set_network_header(skb, mac_len);
6028 
6029 	if (ethernet && mac_len >= ETH_HLEN) {
6030 		struct ethhdr *hdr;
6031 
6032 		/* use mpls_hdr() to get ethertype to account for VLANs. */
6033 		hdr = (struct ethhdr *)((void *)mpls_hdr(skb) - ETH_HLEN);
6034 		skb_mod_eth_type(skb, hdr, next_proto);
6035 	}
6036 	skb->protocol = next_proto;
6037 
6038 	return 0;
6039 }
6040 EXPORT_SYMBOL_GPL(skb_mpls_pop);
6041 
6042 /**
6043  * skb_mpls_update_lse() - modify outermost MPLS header and update csum
6044  *
6045  * @skb: buffer
6046  * @mpls_lse: new MPLS label stack entry to update to
6047  *
6048  * Expects skb->data at mac header.
6049  *
6050  * Returns 0 on success, -errno otherwise.
6051  */
6052 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse)
6053 {
6054 	int err;
6055 
6056 	if (unlikely(!eth_p_mpls(skb->protocol)))
6057 		return -EINVAL;
6058 
6059 	err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN);
6060 	if (unlikely(err))
6061 		return err;
6062 
6063 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
6064 		__be32 diff[] = { ~mpls_hdr(skb)->label_stack_entry, mpls_lse };
6065 
6066 		skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum);
6067 	}
6068 
6069 	mpls_hdr(skb)->label_stack_entry = mpls_lse;
6070 
6071 	return 0;
6072 }
6073 EXPORT_SYMBOL_GPL(skb_mpls_update_lse);
6074 
6075 /**
6076  * skb_mpls_dec_ttl() - decrement the TTL of the outermost MPLS header
6077  *
6078  * @skb: buffer
6079  *
6080  * Expects skb->data at mac header.
6081  *
6082  * Returns 0 on success, -errno otherwise.
6083  */
6084 int skb_mpls_dec_ttl(struct sk_buff *skb)
6085 {
6086 	u32 lse;
6087 	u8 ttl;
6088 
6089 	if (unlikely(!eth_p_mpls(skb->protocol)))
6090 		return -EINVAL;
6091 
6092 	if (!pskb_may_pull(skb, skb_network_offset(skb) + MPLS_HLEN))
6093 		return -ENOMEM;
6094 
6095 	lse = be32_to_cpu(mpls_hdr(skb)->label_stack_entry);
6096 	ttl = (lse & MPLS_LS_TTL_MASK) >> MPLS_LS_TTL_SHIFT;
6097 	if (!--ttl)
6098 		return -EINVAL;
6099 
6100 	lse &= ~MPLS_LS_TTL_MASK;
6101 	lse |= ttl << MPLS_LS_TTL_SHIFT;
6102 
6103 	return skb_mpls_update_lse(skb, cpu_to_be32(lse));
6104 }
6105 EXPORT_SYMBOL_GPL(skb_mpls_dec_ttl);
6106 
6107 /**
6108  * alloc_skb_with_frags - allocate skb with page frags
6109  *
6110  * @header_len: size of linear part
6111  * @data_len: needed length in frags
6112  * @max_page_order: max page order desired.
6113  * @errcode: pointer to error code if any
6114  * @gfp_mask: allocation mask
6115  *
6116  * This can be used to allocate a paged skb, given a maximal order for frags.
6117  */
6118 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
6119 				     unsigned long data_len,
6120 				     int max_page_order,
6121 				     int *errcode,
6122 				     gfp_t gfp_mask)
6123 {
6124 	int npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
6125 	unsigned long chunk;
6126 	struct sk_buff *skb;
6127 	struct page *page;
6128 	int i;
6129 
6130 	*errcode = -EMSGSIZE;
6131 	/* Note this test could be relaxed, if we succeed to allocate
6132 	 * high order pages...
6133 	 */
6134 	if (npages > MAX_SKB_FRAGS)
6135 		return NULL;
6136 
6137 	*errcode = -ENOBUFS;
6138 	skb = alloc_skb(header_len, gfp_mask);
6139 	if (!skb)
6140 		return NULL;
6141 
6142 	skb->truesize += npages << PAGE_SHIFT;
6143 
6144 	for (i = 0; npages > 0; i++) {
6145 		int order = max_page_order;
6146 
6147 		while (order) {
6148 			if (npages >= 1 << order) {
6149 				page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) |
6150 						   __GFP_COMP |
6151 						   __GFP_NOWARN,
6152 						   order);
6153 				if (page)
6154 					goto fill_page;
6155 				/* Do not retry other high order allocations */
6156 				order = 1;
6157 				max_page_order = 0;
6158 			}
6159 			order--;
6160 		}
6161 		page = alloc_page(gfp_mask);
6162 		if (!page)
6163 			goto failure;
6164 fill_page:
6165 		chunk = min_t(unsigned long, data_len,
6166 			      PAGE_SIZE << order);
6167 		skb_fill_page_desc(skb, i, page, 0, chunk);
6168 		data_len -= chunk;
6169 		npages -= 1 << order;
6170 	}
6171 	return skb;
6172 
6173 failure:
6174 	kfree_skb(skb);
6175 	return NULL;
6176 }
6177 EXPORT_SYMBOL(alloc_skb_with_frags);
6178 
6179 /* carve out the first off bytes from skb when off < headlen */
6180 static int pskb_carve_inside_header(struct sk_buff *skb, const u32 off,
6181 				    const int headlen, gfp_t gfp_mask)
6182 {
6183 	int i;
6184 	unsigned int size = skb_end_offset(skb);
6185 	int new_hlen = headlen - off;
6186 	u8 *data;
6187 
6188 	if (skb_pfmemalloc(skb))
6189 		gfp_mask |= __GFP_MEMALLOC;
6190 
6191 	size = SKB_DATA_ALIGN(size);
6192 	size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
6193 	size = kmalloc_size_roundup(size);
6194 	data = kmalloc_reserve(size, gfp_mask, NUMA_NO_NODE, NULL);
6195 	if (!data)
6196 		return -ENOMEM;
6197 	size = SKB_WITH_OVERHEAD(size);
6198 
6199 	/* Copy real data, and all frags */
6200 	skb_copy_from_linear_data_offset(skb, off, data, new_hlen);
6201 	skb->len -= off;
6202 
6203 	memcpy((struct skb_shared_info *)(data + size),
6204 	       skb_shinfo(skb),
6205 	       offsetof(struct skb_shared_info,
6206 			frags[skb_shinfo(skb)->nr_frags]));
6207 	if (skb_cloned(skb)) {
6208 		/* drop the old head gracefully */
6209 		if (skb_orphan_frags(skb, gfp_mask)) {
6210 			kfree(data);
6211 			return -ENOMEM;
6212 		}
6213 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
6214 			skb_frag_ref(skb, i);
6215 		if (skb_has_frag_list(skb))
6216 			skb_clone_fraglist(skb);
6217 		skb_release_data(skb, SKB_CONSUMED);
6218 	} else {
6219 		/* we can reuse existing recount- all we did was
6220 		 * relocate values
6221 		 */
6222 		skb_free_head(skb);
6223 	}
6224 
6225 	skb->head = data;
6226 	skb->data = data;
6227 	skb->head_frag = 0;
6228 	skb_set_end_offset(skb, size);
6229 	skb_set_tail_pointer(skb, skb_headlen(skb));
6230 	skb_headers_offset_update(skb, 0);
6231 	skb->cloned = 0;
6232 	skb->hdr_len = 0;
6233 	skb->nohdr = 0;
6234 	atomic_set(&skb_shinfo(skb)->dataref, 1);
6235 
6236 	return 0;
6237 }
6238 
6239 static int pskb_carve(struct sk_buff *skb, const u32 off, gfp_t gfp);
6240 
6241 /* carve out the first eat bytes from skb's frag_list. May recurse into
6242  * pskb_carve()
6243  */
6244 static int pskb_carve_frag_list(struct sk_buff *skb,
6245 				struct skb_shared_info *shinfo, int eat,
6246 				gfp_t gfp_mask)
6247 {
6248 	struct sk_buff *list = shinfo->frag_list;
6249 	struct sk_buff *clone = NULL;
6250 	struct sk_buff *insp = NULL;
6251 
6252 	do {
6253 		if (!list) {
6254 			pr_err("Not enough bytes to eat. Want %d\n", eat);
6255 			return -EFAULT;
6256 		}
6257 		if (list->len <= eat) {
6258 			/* Eaten as whole. */
6259 			eat -= list->len;
6260 			list = list->next;
6261 			insp = list;
6262 		} else {
6263 			/* Eaten partially. */
6264 			if (skb_shared(list)) {
6265 				clone = skb_clone(list, gfp_mask);
6266 				if (!clone)
6267 					return -ENOMEM;
6268 				insp = list->next;
6269 				list = clone;
6270 			} else {
6271 				/* This may be pulled without problems. */
6272 				insp = list;
6273 			}
6274 			if (pskb_carve(list, eat, gfp_mask) < 0) {
6275 				kfree_skb(clone);
6276 				return -ENOMEM;
6277 			}
6278 			break;
6279 		}
6280 	} while (eat);
6281 
6282 	/* Free pulled out fragments. */
6283 	while ((list = shinfo->frag_list) != insp) {
6284 		shinfo->frag_list = list->next;
6285 		consume_skb(list);
6286 	}
6287 	/* And insert new clone at head. */
6288 	if (clone) {
6289 		clone->next = list;
6290 		shinfo->frag_list = clone;
6291 	}
6292 	return 0;
6293 }
6294 
6295 /* carve off first len bytes from skb. Split line (off) is in the
6296  * non-linear part of skb
6297  */
6298 static int pskb_carve_inside_nonlinear(struct sk_buff *skb, const u32 off,
6299 				       int pos, gfp_t gfp_mask)
6300 {
6301 	int i, k = 0;
6302 	unsigned int size = skb_end_offset(skb);
6303 	u8 *data;
6304 	const int nfrags = skb_shinfo(skb)->nr_frags;
6305 	struct skb_shared_info *shinfo;
6306 
6307 	if (skb_pfmemalloc(skb))
6308 		gfp_mask |= __GFP_MEMALLOC;
6309 
6310 	size = SKB_DATA_ALIGN(size);
6311 	size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
6312 	size = kmalloc_size_roundup(size);
6313 	data = kmalloc_reserve(size, gfp_mask, NUMA_NO_NODE, NULL);
6314 	if (!data)
6315 		return -ENOMEM;
6316 	size = SKB_WITH_OVERHEAD(size);
6317 
6318 	memcpy((struct skb_shared_info *)(data + size),
6319 	       skb_shinfo(skb), offsetof(struct skb_shared_info, frags[0]));
6320 	if (skb_orphan_frags(skb, gfp_mask)) {
6321 		kfree(data);
6322 		return -ENOMEM;
6323 	}
6324 	shinfo = (struct skb_shared_info *)(data + size);
6325 	for (i = 0; i < nfrags; i++) {
6326 		int fsize = skb_frag_size(&skb_shinfo(skb)->frags[i]);
6327 
6328 		if (pos + fsize > off) {
6329 			shinfo->frags[k] = skb_shinfo(skb)->frags[i];
6330 
6331 			if (pos < off) {
6332 				/* Split frag.
6333 				 * We have two variants in this case:
6334 				 * 1. Move all the frag to the second
6335 				 *    part, if it is possible. F.e.
6336 				 *    this approach is mandatory for TUX,
6337 				 *    where splitting is expensive.
6338 				 * 2. Split is accurately. We make this.
6339 				 */
6340 				skb_frag_off_add(&shinfo->frags[0], off - pos);
6341 				skb_frag_size_sub(&shinfo->frags[0], off - pos);
6342 			}
6343 			skb_frag_ref(skb, i);
6344 			k++;
6345 		}
6346 		pos += fsize;
6347 	}
6348 	shinfo->nr_frags = k;
6349 	if (skb_has_frag_list(skb))
6350 		skb_clone_fraglist(skb);
6351 
6352 	/* split line is in frag list */
6353 	if (k == 0 && pskb_carve_frag_list(skb, shinfo, off - pos, gfp_mask)) {
6354 		/* skb_frag_unref() is not needed here as shinfo->nr_frags = 0. */
6355 		if (skb_has_frag_list(skb))
6356 			kfree_skb_list(skb_shinfo(skb)->frag_list);
6357 		kfree(data);
6358 		return -ENOMEM;
6359 	}
6360 	skb_release_data(skb, SKB_CONSUMED);
6361 
6362 	skb->head = data;
6363 	skb->head_frag = 0;
6364 	skb->data = data;
6365 	skb_set_end_offset(skb, size);
6366 	skb_reset_tail_pointer(skb);
6367 	skb_headers_offset_update(skb, 0);
6368 	skb->cloned   = 0;
6369 	skb->hdr_len  = 0;
6370 	skb->nohdr    = 0;
6371 	skb->len -= off;
6372 	skb->data_len = skb->len;
6373 	atomic_set(&skb_shinfo(skb)->dataref, 1);
6374 	return 0;
6375 }
6376 
6377 /* remove len bytes from the beginning of the skb */
6378 static int pskb_carve(struct sk_buff *skb, const u32 len, gfp_t gfp)
6379 {
6380 	int headlen = skb_headlen(skb);
6381 
6382 	if (len < headlen)
6383 		return pskb_carve_inside_header(skb, len, headlen, gfp);
6384 	else
6385 		return pskb_carve_inside_nonlinear(skb, len, headlen, gfp);
6386 }
6387 
6388 /* Extract to_copy bytes starting at off from skb, and return this in
6389  * a new skb
6390  */
6391 struct sk_buff *pskb_extract(struct sk_buff *skb, int off,
6392 			     int to_copy, gfp_t gfp)
6393 {
6394 	struct sk_buff  *clone = skb_clone(skb, gfp);
6395 
6396 	if (!clone)
6397 		return NULL;
6398 
6399 	if (pskb_carve(clone, off, gfp) < 0 ||
6400 	    pskb_trim(clone, to_copy)) {
6401 		kfree_skb(clone);
6402 		return NULL;
6403 	}
6404 	return clone;
6405 }
6406 EXPORT_SYMBOL(pskb_extract);
6407 
6408 /**
6409  * skb_condense - try to get rid of fragments/frag_list if possible
6410  * @skb: buffer
6411  *
6412  * Can be used to save memory before skb is added to a busy queue.
6413  * If packet has bytes in frags and enough tail room in skb->head,
6414  * pull all of them, so that we can free the frags right now and adjust
6415  * truesize.
6416  * Notes:
6417  *	We do not reallocate skb->head thus can not fail.
6418  *	Caller must re-evaluate skb->truesize if needed.
6419  */
6420 void skb_condense(struct sk_buff *skb)
6421 {
6422 	if (skb->data_len) {
6423 		if (skb->data_len > skb->end - skb->tail ||
6424 		    skb_cloned(skb))
6425 			return;
6426 
6427 		/* Nice, we can free page frag(s) right now */
6428 		__pskb_pull_tail(skb, skb->data_len);
6429 	}
6430 	/* At this point, skb->truesize might be over estimated,
6431 	 * because skb had a fragment, and fragments do not tell
6432 	 * their truesize.
6433 	 * When we pulled its content into skb->head, fragment
6434 	 * was freed, but __pskb_pull_tail() could not possibly
6435 	 * adjust skb->truesize, not knowing the frag truesize.
6436 	 */
6437 	skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
6438 }
6439 EXPORT_SYMBOL(skb_condense);
6440 
6441 #ifdef CONFIG_SKB_EXTENSIONS
6442 static void *skb_ext_get_ptr(struct skb_ext *ext, enum skb_ext_id id)
6443 {
6444 	return (void *)ext + (ext->offset[id] * SKB_EXT_ALIGN_VALUE);
6445 }
6446 
6447 /**
6448  * __skb_ext_alloc - allocate a new skb extensions storage
6449  *
6450  * @flags: See kmalloc().
6451  *
6452  * Returns the newly allocated pointer. The pointer can later attached to a
6453  * skb via __skb_ext_set().
6454  * Note: caller must handle the skb_ext as an opaque data.
6455  */
6456 struct skb_ext *__skb_ext_alloc(gfp_t flags)
6457 {
6458 	struct skb_ext *new = kmem_cache_alloc(skbuff_ext_cache, flags);
6459 
6460 	if (new) {
6461 		memset(new->offset, 0, sizeof(new->offset));
6462 		refcount_set(&new->refcnt, 1);
6463 	}
6464 
6465 	return new;
6466 }
6467 
6468 static struct skb_ext *skb_ext_maybe_cow(struct skb_ext *old,
6469 					 unsigned int old_active)
6470 {
6471 	struct skb_ext *new;
6472 
6473 	if (refcount_read(&old->refcnt) == 1)
6474 		return old;
6475 
6476 	new = kmem_cache_alloc(skbuff_ext_cache, GFP_ATOMIC);
6477 	if (!new)
6478 		return NULL;
6479 
6480 	memcpy(new, old, old->chunks * SKB_EXT_ALIGN_VALUE);
6481 	refcount_set(&new->refcnt, 1);
6482 
6483 #ifdef CONFIG_XFRM
6484 	if (old_active & (1 << SKB_EXT_SEC_PATH)) {
6485 		struct sec_path *sp = skb_ext_get_ptr(old, SKB_EXT_SEC_PATH);
6486 		unsigned int i;
6487 
6488 		for (i = 0; i < sp->len; i++)
6489 			xfrm_state_hold(sp->xvec[i]);
6490 	}
6491 #endif
6492 	__skb_ext_put(old);
6493 	return new;
6494 }
6495 
6496 /**
6497  * __skb_ext_set - attach the specified extension storage to this skb
6498  * @skb: buffer
6499  * @id: extension id
6500  * @ext: extension storage previously allocated via __skb_ext_alloc()
6501  *
6502  * Existing extensions, if any, are cleared.
6503  *
6504  * Returns the pointer to the extension.
6505  */
6506 void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id,
6507 		    struct skb_ext *ext)
6508 {
6509 	unsigned int newlen, newoff = SKB_EXT_CHUNKSIZEOF(*ext);
6510 
6511 	skb_ext_put(skb);
6512 	newlen = newoff + skb_ext_type_len[id];
6513 	ext->chunks = newlen;
6514 	ext->offset[id] = newoff;
6515 	skb->extensions = ext;
6516 	skb->active_extensions = 1 << id;
6517 	return skb_ext_get_ptr(ext, id);
6518 }
6519 
6520 /**
6521  * skb_ext_add - allocate space for given extension, COW if needed
6522  * @skb: buffer
6523  * @id: extension to allocate space for
6524  *
6525  * Allocates enough space for the given extension.
6526  * If the extension is already present, a pointer to that extension
6527  * is returned.
6528  *
6529  * If the skb was cloned, COW applies and the returned memory can be
6530  * modified without changing the extension space of clones buffers.
6531  *
6532  * Returns pointer to the extension or NULL on allocation failure.
6533  */
6534 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id)
6535 {
6536 	struct skb_ext *new, *old = NULL;
6537 	unsigned int newlen, newoff;
6538 
6539 	if (skb->active_extensions) {
6540 		old = skb->extensions;
6541 
6542 		new = skb_ext_maybe_cow(old, skb->active_extensions);
6543 		if (!new)
6544 			return NULL;
6545 
6546 		if (__skb_ext_exist(new, id))
6547 			goto set_active;
6548 
6549 		newoff = new->chunks;
6550 	} else {
6551 		newoff = SKB_EXT_CHUNKSIZEOF(*new);
6552 
6553 		new = __skb_ext_alloc(GFP_ATOMIC);
6554 		if (!new)
6555 			return NULL;
6556 	}
6557 
6558 	newlen = newoff + skb_ext_type_len[id];
6559 	new->chunks = newlen;
6560 	new->offset[id] = newoff;
6561 set_active:
6562 	skb->slow_gro = 1;
6563 	skb->extensions = new;
6564 	skb->active_extensions |= 1 << id;
6565 	return skb_ext_get_ptr(new, id);
6566 }
6567 EXPORT_SYMBOL(skb_ext_add);
6568 
6569 #ifdef CONFIG_XFRM
6570 static void skb_ext_put_sp(struct sec_path *sp)
6571 {
6572 	unsigned int i;
6573 
6574 	for (i = 0; i < sp->len; i++)
6575 		xfrm_state_put(sp->xvec[i]);
6576 }
6577 #endif
6578 
6579 #ifdef CONFIG_MCTP_FLOWS
6580 static void skb_ext_put_mctp(struct mctp_flow *flow)
6581 {
6582 	if (flow->key)
6583 		mctp_key_unref(flow->key);
6584 }
6585 #endif
6586 
6587 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id)
6588 {
6589 	struct skb_ext *ext = skb->extensions;
6590 
6591 	skb->active_extensions &= ~(1 << id);
6592 	if (skb->active_extensions == 0) {
6593 		skb->extensions = NULL;
6594 		__skb_ext_put(ext);
6595 #ifdef CONFIG_XFRM
6596 	} else if (id == SKB_EXT_SEC_PATH &&
6597 		   refcount_read(&ext->refcnt) == 1) {
6598 		struct sec_path *sp = skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH);
6599 
6600 		skb_ext_put_sp(sp);
6601 		sp->len = 0;
6602 #endif
6603 	}
6604 }
6605 EXPORT_SYMBOL(__skb_ext_del);
6606 
6607 void __skb_ext_put(struct skb_ext *ext)
6608 {
6609 	/* If this is last clone, nothing can increment
6610 	 * it after check passes.  Avoids one atomic op.
6611 	 */
6612 	if (refcount_read(&ext->refcnt) == 1)
6613 		goto free_now;
6614 
6615 	if (!refcount_dec_and_test(&ext->refcnt))
6616 		return;
6617 free_now:
6618 #ifdef CONFIG_XFRM
6619 	if (__skb_ext_exist(ext, SKB_EXT_SEC_PATH))
6620 		skb_ext_put_sp(skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH));
6621 #endif
6622 #ifdef CONFIG_MCTP_FLOWS
6623 	if (__skb_ext_exist(ext, SKB_EXT_MCTP))
6624 		skb_ext_put_mctp(skb_ext_get_ptr(ext, SKB_EXT_MCTP));
6625 #endif
6626 
6627 	kmem_cache_free(skbuff_ext_cache, ext);
6628 }
6629 EXPORT_SYMBOL(__skb_ext_put);
6630 #endif /* CONFIG_SKB_EXTENSIONS */
6631 
6632 /**
6633  * skb_attempt_defer_free - queue skb for remote freeing
6634  * @skb: buffer
6635  *
6636  * Put @skb in a per-cpu list, using the cpu which
6637  * allocated the skb/pages to reduce false sharing
6638  * and memory zone spinlock contention.
6639  */
6640 void skb_attempt_defer_free(struct sk_buff *skb)
6641 {
6642 	int cpu = skb->alloc_cpu;
6643 	struct softnet_data *sd;
6644 	unsigned long flags;
6645 	unsigned int defer_max;
6646 	bool kick;
6647 
6648 	if (WARN_ON_ONCE(cpu >= nr_cpu_ids) ||
6649 	    !cpu_online(cpu) ||
6650 	    cpu == raw_smp_processor_id()) {
6651 nodefer:	__kfree_skb(skb);
6652 		return;
6653 	}
6654 
6655 	sd = &per_cpu(softnet_data, cpu);
6656 	defer_max = READ_ONCE(sysctl_skb_defer_max);
6657 	if (READ_ONCE(sd->defer_count) >= defer_max)
6658 		goto nodefer;
6659 
6660 	spin_lock_irqsave(&sd->defer_lock, flags);
6661 	/* Send an IPI every time queue reaches half capacity. */
6662 	kick = sd->defer_count == (defer_max >> 1);
6663 	/* Paired with the READ_ONCE() few lines above */
6664 	WRITE_ONCE(sd->defer_count, sd->defer_count + 1);
6665 
6666 	skb->next = sd->defer_list;
6667 	/* Paired with READ_ONCE() in skb_defer_free_flush() */
6668 	WRITE_ONCE(sd->defer_list, skb);
6669 	spin_unlock_irqrestore(&sd->defer_lock, flags);
6670 
6671 	/* Make sure to trigger NET_RX_SOFTIRQ on the remote CPU
6672 	 * if we are unlucky enough (this seems very unlikely).
6673 	 */
6674 	if (unlikely(kick) && !cmpxchg(&sd->defer_ipi_scheduled, 0, 1))
6675 		smp_call_function_single_async(cpu, &sd->defer_csd);
6676 }
6677