1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Routines having to do with the 'struct sk_buff' memory handlers. 4 * 5 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk> 6 * Florian La Roche <rzsfl@rz.uni-sb.de> 7 * 8 * Fixes: 9 * Alan Cox : Fixed the worst of the load 10 * balancer bugs. 11 * Dave Platt : Interrupt stacking fix. 12 * Richard Kooijman : Timestamp fixes. 13 * Alan Cox : Changed buffer format. 14 * Alan Cox : destructor hook for AF_UNIX etc. 15 * Linus Torvalds : Better skb_clone. 16 * Alan Cox : Added skb_copy. 17 * Alan Cox : Added all the changed routines Linus 18 * only put in the headers 19 * Ray VanTassle : Fixed --skb->lock in free 20 * Alan Cox : skb_copy copy arp field 21 * Andi Kleen : slabified it. 22 * Robert Olsson : Removed skb_head_pool 23 * 24 * NOTE: 25 * The __skb_ routines should be called with interrupts 26 * disabled, or you better be *real* sure that the operation is atomic 27 * with respect to whatever list is being frobbed (e.g. via lock_sock() 28 * or via disabling bottom half handlers, etc). 29 */ 30 31 /* 32 * The functions in this file will not compile correctly with gcc 2.4.x 33 */ 34 35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 36 37 #include <linux/module.h> 38 #include <linux/types.h> 39 #include <linux/kernel.h> 40 #include <linux/mm.h> 41 #include <linux/interrupt.h> 42 #include <linux/in.h> 43 #include <linux/inet.h> 44 #include <linux/slab.h> 45 #include <linux/tcp.h> 46 #include <linux/udp.h> 47 #include <linux/sctp.h> 48 #include <linux/netdevice.h> 49 #ifdef CONFIG_NET_CLS_ACT 50 #include <net/pkt_sched.h> 51 #endif 52 #include <linux/string.h> 53 #include <linux/skbuff.h> 54 #include <linux/splice.h> 55 #include <linux/cache.h> 56 #include <linux/rtnetlink.h> 57 #include <linux/init.h> 58 #include <linux/scatterlist.h> 59 #include <linux/errqueue.h> 60 #include <linux/prefetch.h> 61 #include <linux/if_vlan.h> 62 #include <linux/mpls.h> 63 64 #include <net/protocol.h> 65 #include <net/dst.h> 66 #include <net/sock.h> 67 #include <net/checksum.h> 68 #include <net/ip6_checksum.h> 69 #include <net/xfrm.h> 70 #include <net/mpls.h> 71 #include <net/mptcp.h> 72 73 #include <linux/uaccess.h> 74 #include <trace/events/skb.h> 75 #include <linux/highmem.h> 76 #include <linux/capability.h> 77 #include <linux/user_namespace.h> 78 #include <linux/indirect_call_wrapper.h> 79 80 #include "datagram.h" 81 82 struct kmem_cache *skbuff_head_cache __ro_after_init; 83 static struct kmem_cache *skbuff_fclone_cache __ro_after_init; 84 #ifdef CONFIG_SKB_EXTENSIONS 85 static struct kmem_cache *skbuff_ext_cache __ro_after_init; 86 #endif 87 int sysctl_max_skb_frags __read_mostly = MAX_SKB_FRAGS; 88 EXPORT_SYMBOL(sysctl_max_skb_frags); 89 90 /** 91 * skb_panic - private function for out-of-line support 92 * @skb: buffer 93 * @sz: size 94 * @addr: address 95 * @msg: skb_over_panic or skb_under_panic 96 * 97 * Out-of-line support for skb_put() and skb_push(). 98 * Called via the wrapper skb_over_panic() or skb_under_panic(). 99 * Keep out of line to prevent kernel bloat. 100 * __builtin_return_address is not used because it is not always reliable. 101 */ 102 static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr, 103 const char msg[]) 104 { 105 pr_emerg("%s: text:%px len:%d put:%d head:%px data:%px tail:%#lx end:%#lx dev:%s\n", 106 msg, addr, skb->len, sz, skb->head, skb->data, 107 (unsigned long)skb->tail, (unsigned long)skb->end, 108 skb->dev ? skb->dev->name : "<NULL>"); 109 BUG(); 110 } 111 112 static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr) 113 { 114 skb_panic(skb, sz, addr, __func__); 115 } 116 117 static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr) 118 { 119 skb_panic(skb, sz, addr, __func__); 120 } 121 122 /* 123 * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells 124 * the caller if emergency pfmemalloc reserves are being used. If it is and 125 * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves 126 * may be used. Otherwise, the packet data may be discarded until enough 127 * memory is free 128 */ 129 #define kmalloc_reserve(size, gfp, node, pfmemalloc) \ 130 __kmalloc_reserve(size, gfp, node, _RET_IP_, pfmemalloc) 131 132 static void *__kmalloc_reserve(size_t size, gfp_t flags, int node, 133 unsigned long ip, bool *pfmemalloc) 134 { 135 void *obj; 136 bool ret_pfmemalloc = false; 137 138 /* 139 * Try a regular allocation, when that fails and we're not entitled 140 * to the reserves, fail. 141 */ 142 obj = kmalloc_node_track_caller(size, 143 flags | __GFP_NOMEMALLOC | __GFP_NOWARN, 144 node); 145 if (obj || !(gfp_pfmemalloc_allowed(flags))) 146 goto out; 147 148 /* Try again but now we are using pfmemalloc reserves */ 149 ret_pfmemalloc = true; 150 obj = kmalloc_node_track_caller(size, flags, node); 151 152 out: 153 if (pfmemalloc) 154 *pfmemalloc = ret_pfmemalloc; 155 156 return obj; 157 } 158 159 /* Allocate a new skbuff. We do this ourselves so we can fill in a few 160 * 'private' fields and also do memory statistics to find all the 161 * [BEEP] leaks. 162 * 163 */ 164 165 /** 166 * __alloc_skb - allocate a network buffer 167 * @size: size to allocate 168 * @gfp_mask: allocation mask 169 * @flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache 170 * instead of head cache and allocate a cloned (child) skb. 171 * If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for 172 * allocations in case the data is required for writeback 173 * @node: numa node to allocate memory on 174 * 175 * Allocate a new &sk_buff. The returned buffer has no headroom and a 176 * tail room of at least size bytes. The object has a reference count 177 * of one. The return is the buffer. On a failure the return is %NULL. 178 * 179 * Buffers may only be allocated from interrupts using a @gfp_mask of 180 * %GFP_ATOMIC. 181 */ 182 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask, 183 int flags, int node) 184 { 185 struct kmem_cache *cache; 186 struct skb_shared_info *shinfo; 187 struct sk_buff *skb; 188 u8 *data; 189 bool pfmemalloc; 190 191 cache = (flags & SKB_ALLOC_FCLONE) 192 ? skbuff_fclone_cache : skbuff_head_cache; 193 194 if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX)) 195 gfp_mask |= __GFP_MEMALLOC; 196 197 /* Get the HEAD */ 198 skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node); 199 if (!skb) 200 goto out; 201 prefetchw(skb); 202 203 /* We do our best to align skb_shared_info on a separate cache 204 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives 205 * aligned memory blocks, unless SLUB/SLAB debug is enabled. 206 * Both skb->head and skb_shared_info are cache line aligned. 207 */ 208 size = SKB_DATA_ALIGN(size); 209 size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 210 data = kmalloc_reserve(size, gfp_mask, node, &pfmemalloc); 211 if (!data) 212 goto nodata; 213 /* kmalloc(size) might give us more room than requested. 214 * Put skb_shared_info exactly at the end of allocated zone, 215 * to allow max possible filling before reallocation. 216 */ 217 size = SKB_WITH_OVERHEAD(ksize(data)); 218 prefetchw(data + size); 219 220 /* 221 * Only clear those fields we need to clear, not those that we will 222 * actually initialise below. Hence, don't put any more fields after 223 * the tail pointer in struct sk_buff! 224 */ 225 memset(skb, 0, offsetof(struct sk_buff, tail)); 226 /* Account for allocated memory : skb + skb->head */ 227 skb->truesize = SKB_TRUESIZE(size); 228 skb->pfmemalloc = pfmemalloc; 229 refcount_set(&skb->users, 1); 230 skb->head = data; 231 skb->data = data; 232 skb_reset_tail_pointer(skb); 233 skb->end = skb->tail + size; 234 skb->mac_header = (typeof(skb->mac_header))~0U; 235 skb->transport_header = (typeof(skb->transport_header))~0U; 236 237 /* make sure we initialize shinfo sequentially */ 238 shinfo = skb_shinfo(skb); 239 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref)); 240 atomic_set(&shinfo->dataref, 1); 241 242 if (flags & SKB_ALLOC_FCLONE) { 243 struct sk_buff_fclones *fclones; 244 245 fclones = container_of(skb, struct sk_buff_fclones, skb1); 246 247 skb->fclone = SKB_FCLONE_ORIG; 248 refcount_set(&fclones->fclone_ref, 1); 249 250 fclones->skb2.fclone = SKB_FCLONE_CLONE; 251 } 252 253 skb_set_kcov_handle(skb, kcov_common_handle()); 254 255 out: 256 return skb; 257 nodata: 258 kmem_cache_free(cache, skb); 259 skb = NULL; 260 goto out; 261 } 262 EXPORT_SYMBOL(__alloc_skb); 263 264 /* Caller must provide SKB that is memset cleared */ 265 static struct sk_buff *__build_skb_around(struct sk_buff *skb, 266 void *data, unsigned int frag_size) 267 { 268 struct skb_shared_info *shinfo; 269 unsigned int size = frag_size ? : ksize(data); 270 271 size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 272 273 /* Assumes caller memset cleared SKB */ 274 skb->truesize = SKB_TRUESIZE(size); 275 refcount_set(&skb->users, 1); 276 skb->head = data; 277 skb->data = data; 278 skb_reset_tail_pointer(skb); 279 skb->end = skb->tail + size; 280 skb->mac_header = (typeof(skb->mac_header))~0U; 281 skb->transport_header = (typeof(skb->transport_header))~0U; 282 283 /* make sure we initialize shinfo sequentially */ 284 shinfo = skb_shinfo(skb); 285 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref)); 286 atomic_set(&shinfo->dataref, 1); 287 288 skb_set_kcov_handle(skb, kcov_common_handle()); 289 290 return skb; 291 } 292 293 /** 294 * __build_skb - build a network buffer 295 * @data: data buffer provided by caller 296 * @frag_size: size of data, or 0 if head was kmalloced 297 * 298 * Allocate a new &sk_buff. Caller provides space holding head and 299 * skb_shared_info. @data must have been allocated by kmalloc() only if 300 * @frag_size is 0, otherwise data should come from the page allocator 301 * or vmalloc() 302 * The return is the new skb buffer. 303 * On a failure the return is %NULL, and @data is not freed. 304 * Notes : 305 * Before IO, driver allocates only data buffer where NIC put incoming frame 306 * Driver should add room at head (NET_SKB_PAD) and 307 * MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info)) 308 * After IO, driver calls build_skb(), to allocate sk_buff and populate it 309 * before giving packet to stack. 310 * RX rings only contains data buffers, not full skbs. 311 */ 312 struct sk_buff *__build_skb(void *data, unsigned int frag_size) 313 { 314 struct sk_buff *skb; 315 316 skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC); 317 if (unlikely(!skb)) 318 return NULL; 319 320 memset(skb, 0, offsetof(struct sk_buff, tail)); 321 322 return __build_skb_around(skb, data, frag_size); 323 } 324 325 /* build_skb() is wrapper over __build_skb(), that specifically 326 * takes care of skb->head and skb->pfmemalloc 327 * This means that if @frag_size is not zero, then @data must be backed 328 * by a page fragment, not kmalloc() or vmalloc() 329 */ 330 struct sk_buff *build_skb(void *data, unsigned int frag_size) 331 { 332 struct sk_buff *skb = __build_skb(data, frag_size); 333 334 if (skb && frag_size) { 335 skb->head_frag = 1; 336 if (page_is_pfmemalloc(virt_to_head_page(data))) 337 skb->pfmemalloc = 1; 338 } 339 return skb; 340 } 341 EXPORT_SYMBOL(build_skb); 342 343 /** 344 * build_skb_around - build a network buffer around provided skb 345 * @skb: sk_buff provide by caller, must be memset cleared 346 * @data: data buffer provided by caller 347 * @frag_size: size of data, or 0 if head was kmalloced 348 */ 349 struct sk_buff *build_skb_around(struct sk_buff *skb, 350 void *data, unsigned int frag_size) 351 { 352 if (unlikely(!skb)) 353 return NULL; 354 355 skb = __build_skb_around(skb, data, frag_size); 356 357 if (skb && frag_size) { 358 skb->head_frag = 1; 359 if (page_is_pfmemalloc(virt_to_head_page(data))) 360 skb->pfmemalloc = 1; 361 } 362 return skb; 363 } 364 EXPORT_SYMBOL(build_skb_around); 365 366 #define NAPI_SKB_CACHE_SIZE 64 367 368 struct napi_alloc_cache { 369 struct page_frag_cache page; 370 unsigned int skb_count; 371 void *skb_cache[NAPI_SKB_CACHE_SIZE]; 372 }; 373 374 static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache); 375 static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache); 376 377 static void *__alloc_frag_align(unsigned int fragsz, gfp_t gfp_mask, 378 unsigned int align_mask) 379 { 380 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 381 382 return page_frag_alloc_align(&nc->page, fragsz, gfp_mask, align_mask); 383 } 384 385 void *__napi_alloc_frag_align(unsigned int fragsz, unsigned int align_mask) 386 { 387 fragsz = SKB_DATA_ALIGN(fragsz); 388 389 return __alloc_frag_align(fragsz, GFP_ATOMIC, align_mask); 390 } 391 EXPORT_SYMBOL(__napi_alloc_frag_align); 392 393 void *__netdev_alloc_frag_align(unsigned int fragsz, unsigned int align_mask) 394 { 395 struct page_frag_cache *nc; 396 void *data; 397 398 fragsz = SKB_DATA_ALIGN(fragsz); 399 if (in_irq() || irqs_disabled()) { 400 nc = this_cpu_ptr(&netdev_alloc_cache); 401 data = page_frag_alloc_align(nc, fragsz, GFP_ATOMIC, align_mask); 402 } else { 403 local_bh_disable(); 404 data = __alloc_frag_align(fragsz, GFP_ATOMIC, align_mask); 405 local_bh_enable(); 406 } 407 return data; 408 } 409 EXPORT_SYMBOL(__netdev_alloc_frag_align); 410 411 /** 412 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device 413 * @dev: network device to receive on 414 * @len: length to allocate 415 * @gfp_mask: get_free_pages mask, passed to alloc_skb 416 * 417 * Allocate a new &sk_buff and assign it a usage count of one. The 418 * buffer has NET_SKB_PAD headroom built in. Users should allocate 419 * the headroom they think they need without accounting for the 420 * built in space. The built in space is used for optimisations. 421 * 422 * %NULL is returned if there is no free memory. 423 */ 424 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len, 425 gfp_t gfp_mask) 426 { 427 struct page_frag_cache *nc; 428 struct sk_buff *skb; 429 bool pfmemalloc; 430 void *data; 431 432 len += NET_SKB_PAD; 433 434 /* If requested length is either too small or too big, 435 * we use kmalloc() for skb->head allocation. 436 */ 437 if (len <= SKB_WITH_OVERHEAD(1024) || 438 len > SKB_WITH_OVERHEAD(PAGE_SIZE) || 439 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) { 440 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE); 441 if (!skb) 442 goto skb_fail; 443 goto skb_success; 444 } 445 446 len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 447 len = SKB_DATA_ALIGN(len); 448 449 if (sk_memalloc_socks()) 450 gfp_mask |= __GFP_MEMALLOC; 451 452 if (in_irq() || irqs_disabled()) { 453 nc = this_cpu_ptr(&netdev_alloc_cache); 454 data = page_frag_alloc(nc, len, gfp_mask); 455 pfmemalloc = nc->pfmemalloc; 456 } else { 457 local_bh_disable(); 458 nc = this_cpu_ptr(&napi_alloc_cache.page); 459 data = page_frag_alloc(nc, len, gfp_mask); 460 pfmemalloc = nc->pfmemalloc; 461 local_bh_enable(); 462 } 463 464 if (unlikely(!data)) 465 return NULL; 466 467 skb = __build_skb(data, len); 468 if (unlikely(!skb)) { 469 skb_free_frag(data); 470 return NULL; 471 } 472 473 if (pfmemalloc) 474 skb->pfmemalloc = 1; 475 skb->head_frag = 1; 476 477 skb_success: 478 skb_reserve(skb, NET_SKB_PAD); 479 skb->dev = dev; 480 481 skb_fail: 482 return skb; 483 } 484 EXPORT_SYMBOL(__netdev_alloc_skb); 485 486 /** 487 * __napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance 488 * @napi: napi instance this buffer was allocated for 489 * @len: length to allocate 490 * @gfp_mask: get_free_pages mask, passed to alloc_skb and alloc_pages 491 * 492 * Allocate a new sk_buff for use in NAPI receive. This buffer will 493 * attempt to allocate the head from a special reserved region used 494 * only for NAPI Rx allocation. By doing this we can save several 495 * CPU cycles by avoiding having to disable and re-enable IRQs. 496 * 497 * %NULL is returned if there is no free memory. 498 */ 499 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, unsigned int len, 500 gfp_t gfp_mask) 501 { 502 struct napi_alloc_cache *nc; 503 struct sk_buff *skb; 504 void *data; 505 506 len += NET_SKB_PAD + NET_IP_ALIGN; 507 508 /* If requested length is either too small or too big, 509 * we use kmalloc() for skb->head allocation. 510 */ 511 if (len <= SKB_WITH_OVERHEAD(1024) || 512 len > SKB_WITH_OVERHEAD(PAGE_SIZE) || 513 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) { 514 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE); 515 if (!skb) 516 goto skb_fail; 517 goto skb_success; 518 } 519 520 nc = this_cpu_ptr(&napi_alloc_cache); 521 len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 522 len = SKB_DATA_ALIGN(len); 523 524 if (sk_memalloc_socks()) 525 gfp_mask |= __GFP_MEMALLOC; 526 527 data = page_frag_alloc(&nc->page, len, gfp_mask); 528 if (unlikely(!data)) 529 return NULL; 530 531 skb = __build_skb(data, len); 532 if (unlikely(!skb)) { 533 skb_free_frag(data); 534 return NULL; 535 } 536 537 if (nc->page.pfmemalloc) 538 skb->pfmemalloc = 1; 539 skb->head_frag = 1; 540 541 skb_success: 542 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN); 543 skb->dev = napi->dev; 544 545 skb_fail: 546 return skb; 547 } 548 EXPORT_SYMBOL(__napi_alloc_skb); 549 550 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off, 551 int size, unsigned int truesize) 552 { 553 skb_fill_page_desc(skb, i, page, off, size); 554 skb->len += size; 555 skb->data_len += size; 556 skb->truesize += truesize; 557 } 558 EXPORT_SYMBOL(skb_add_rx_frag); 559 560 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size, 561 unsigned int truesize) 562 { 563 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 564 565 skb_frag_size_add(frag, size); 566 skb->len += size; 567 skb->data_len += size; 568 skb->truesize += truesize; 569 } 570 EXPORT_SYMBOL(skb_coalesce_rx_frag); 571 572 static void skb_drop_list(struct sk_buff **listp) 573 { 574 kfree_skb_list(*listp); 575 *listp = NULL; 576 } 577 578 static inline void skb_drop_fraglist(struct sk_buff *skb) 579 { 580 skb_drop_list(&skb_shinfo(skb)->frag_list); 581 } 582 583 static void skb_clone_fraglist(struct sk_buff *skb) 584 { 585 struct sk_buff *list; 586 587 skb_walk_frags(skb, list) 588 skb_get(list); 589 } 590 591 static void skb_free_head(struct sk_buff *skb) 592 { 593 unsigned char *head = skb->head; 594 595 if (skb->head_frag) 596 skb_free_frag(head); 597 else 598 kfree(head); 599 } 600 601 static void skb_release_data(struct sk_buff *skb) 602 { 603 struct skb_shared_info *shinfo = skb_shinfo(skb); 604 int i; 605 606 if (skb->cloned && 607 atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1, 608 &shinfo->dataref)) 609 return; 610 611 skb_zcopy_clear(skb, true); 612 613 for (i = 0; i < shinfo->nr_frags; i++) 614 __skb_frag_unref(&shinfo->frags[i]); 615 616 if (shinfo->frag_list) 617 kfree_skb_list(shinfo->frag_list); 618 619 skb_free_head(skb); 620 } 621 622 /* 623 * Free an skbuff by memory without cleaning the state. 624 */ 625 static void kfree_skbmem(struct sk_buff *skb) 626 { 627 struct sk_buff_fclones *fclones; 628 629 switch (skb->fclone) { 630 case SKB_FCLONE_UNAVAILABLE: 631 kmem_cache_free(skbuff_head_cache, skb); 632 return; 633 634 case SKB_FCLONE_ORIG: 635 fclones = container_of(skb, struct sk_buff_fclones, skb1); 636 637 /* We usually free the clone (TX completion) before original skb 638 * This test would have no chance to be true for the clone, 639 * while here, branch prediction will be good. 640 */ 641 if (refcount_read(&fclones->fclone_ref) == 1) 642 goto fastpath; 643 break; 644 645 default: /* SKB_FCLONE_CLONE */ 646 fclones = container_of(skb, struct sk_buff_fclones, skb2); 647 break; 648 } 649 if (!refcount_dec_and_test(&fclones->fclone_ref)) 650 return; 651 fastpath: 652 kmem_cache_free(skbuff_fclone_cache, fclones); 653 } 654 655 void skb_release_head_state(struct sk_buff *skb) 656 { 657 skb_dst_drop(skb); 658 if (skb->destructor) { 659 WARN_ON(in_irq()); 660 skb->destructor(skb); 661 } 662 #if IS_ENABLED(CONFIG_NF_CONNTRACK) 663 nf_conntrack_put(skb_nfct(skb)); 664 #endif 665 skb_ext_put(skb); 666 } 667 668 /* Free everything but the sk_buff shell. */ 669 static void skb_release_all(struct sk_buff *skb) 670 { 671 skb_release_head_state(skb); 672 if (likely(skb->head)) 673 skb_release_data(skb); 674 } 675 676 /** 677 * __kfree_skb - private function 678 * @skb: buffer 679 * 680 * Free an sk_buff. Release anything attached to the buffer. 681 * Clean the state. This is an internal helper function. Users should 682 * always call kfree_skb 683 */ 684 685 void __kfree_skb(struct sk_buff *skb) 686 { 687 skb_release_all(skb); 688 kfree_skbmem(skb); 689 } 690 EXPORT_SYMBOL(__kfree_skb); 691 692 /** 693 * kfree_skb - free an sk_buff 694 * @skb: buffer to free 695 * 696 * Drop a reference to the buffer and free it if the usage count has 697 * hit zero. 698 */ 699 void kfree_skb(struct sk_buff *skb) 700 { 701 if (!skb_unref(skb)) 702 return; 703 704 trace_kfree_skb(skb, __builtin_return_address(0)); 705 __kfree_skb(skb); 706 } 707 EXPORT_SYMBOL(kfree_skb); 708 709 void kfree_skb_list(struct sk_buff *segs) 710 { 711 while (segs) { 712 struct sk_buff *next = segs->next; 713 714 kfree_skb(segs); 715 segs = next; 716 } 717 } 718 EXPORT_SYMBOL(kfree_skb_list); 719 720 /* Dump skb information and contents. 721 * 722 * Must only be called from net_ratelimit()-ed paths. 723 * 724 * Dumps whole packets if full_pkt, only headers otherwise. 725 */ 726 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt) 727 { 728 struct skb_shared_info *sh = skb_shinfo(skb); 729 struct net_device *dev = skb->dev; 730 struct sock *sk = skb->sk; 731 struct sk_buff *list_skb; 732 bool has_mac, has_trans; 733 int headroom, tailroom; 734 int i, len, seg_len; 735 736 if (full_pkt) 737 len = skb->len; 738 else 739 len = min_t(int, skb->len, MAX_HEADER + 128); 740 741 headroom = skb_headroom(skb); 742 tailroom = skb_tailroom(skb); 743 744 has_mac = skb_mac_header_was_set(skb); 745 has_trans = skb_transport_header_was_set(skb); 746 747 printk("%sskb len=%u headroom=%u headlen=%u tailroom=%u\n" 748 "mac=(%d,%d) net=(%d,%d) trans=%d\n" 749 "shinfo(txflags=%u nr_frags=%u gso(size=%hu type=%u segs=%hu))\n" 750 "csum(0x%x ip_summed=%u complete_sw=%u valid=%u level=%u)\n" 751 "hash(0x%x sw=%u l4=%u) proto=0x%04x pkttype=%u iif=%d\n", 752 level, skb->len, headroom, skb_headlen(skb), tailroom, 753 has_mac ? skb->mac_header : -1, 754 has_mac ? skb_mac_header_len(skb) : -1, 755 skb->network_header, 756 has_trans ? skb_network_header_len(skb) : -1, 757 has_trans ? skb->transport_header : -1, 758 sh->tx_flags, sh->nr_frags, 759 sh->gso_size, sh->gso_type, sh->gso_segs, 760 skb->csum, skb->ip_summed, skb->csum_complete_sw, 761 skb->csum_valid, skb->csum_level, 762 skb->hash, skb->sw_hash, skb->l4_hash, 763 ntohs(skb->protocol), skb->pkt_type, skb->skb_iif); 764 765 if (dev) 766 printk("%sdev name=%s feat=0x%pNF\n", 767 level, dev->name, &dev->features); 768 if (sk) 769 printk("%ssk family=%hu type=%u proto=%u\n", 770 level, sk->sk_family, sk->sk_type, sk->sk_protocol); 771 772 if (full_pkt && headroom) 773 print_hex_dump(level, "skb headroom: ", DUMP_PREFIX_OFFSET, 774 16, 1, skb->head, headroom, false); 775 776 seg_len = min_t(int, skb_headlen(skb), len); 777 if (seg_len) 778 print_hex_dump(level, "skb linear: ", DUMP_PREFIX_OFFSET, 779 16, 1, skb->data, seg_len, false); 780 len -= seg_len; 781 782 if (full_pkt && tailroom) 783 print_hex_dump(level, "skb tailroom: ", DUMP_PREFIX_OFFSET, 784 16, 1, skb_tail_pointer(skb), tailroom, false); 785 786 for (i = 0; len && i < skb_shinfo(skb)->nr_frags; i++) { 787 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 788 u32 p_off, p_len, copied; 789 struct page *p; 790 u8 *vaddr; 791 792 skb_frag_foreach_page(frag, skb_frag_off(frag), 793 skb_frag_size(frag), p, p_off, p_len, 794 copied) { 795 seg_len = min_t(int, p_len, len); 796 vaddr = kmap_atomic(p); 797 print_hex_dump(level, "skb frag: ", 798 DUMP_PREFIX_OFFSET, 799 16, 1, vaddr + p_off, seg_len, false); 800 kunmap_atomic(vaddr); 801 len -= seg_len; 802 if (!len) 803 break; 804 } 805 } 806 807 if (full_pkt && skb_has_frag_list(skb)) { 808 printk("skb fraglist:\n"); 809 skb_walk_frags(skb, list_skb) 810 skb_dump(level, list_skb, true); 811 } 812 } 813 EXPORT_SYMBOL(skb_dump); 814 815 /** 816 * skb_tx_error - report an sk_buff xmit error 817 * @skb: buffer that triggered an error 818 * 819 * Report xmit error if a device callback is tracking this skb. 820 * skb must be freed afterwards. 821 */ 822 void skb_tx_error(struct sk_buff *skb) 823 { 824 skb_zcopy_clear(skb, true); 825 } 826 EXPORT_SYMBOL(skb_tx_error); 827 828 #ifdef CONFIG_TRACEPOINTS 829 /** 830 * consume_skb - free an skbuff 831 * @skb: buffer to free 832 * 833 * Drop a ref to the buffer and free it if the usage count has hit zero 834 * Functions identically to kfree_skb, but kfree_skb assumes that the frame 835 * is being dropped after a failure and notes that 836 */ 837 void consume_skb(struct sk_buff *skb) 838 { 839 if (!skb_unref(skb)) 840 return; 841 842 trace_consume_skb(skb); 843 __kfree_skb(skb); 844 } 845 EXPORT_SYMBOL(consume_skb); 846 #endif 847 848 /** 849 * __consume_stateless_skb - free an skbuff, assuming it is stateless 850 * @skb: buffer to free 851 * 852 * Alike consume_skb(), but this variant assumes that this is the last 853 * skb reference and all the head states have been already dropped 854 */ 855 void __consume_stateless_skb(struct sk_buff *skb) 856 { 857 trace_consume_skb(skb); 858 skb_release_data(skb); 859 kfree_skbmem(skb); 860 } 861 862 void __kfree_skb_flush(void) 863 { 864 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 865 866 /* flush skb_cache if containing objects */ 867 if (nc->skb_count) { 868 kmem_cache_free_bulk(skbuff_head_cache, nc->skb_count, 869 nc->skb_cache); 870 nc->skb_count = 0; 871 } 872 } 873 874 static inline void _kfree_skb_defer(struct sk_buff *skb) 875 { 876 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 877 878 /* drop skb->head and call any destructors for packet */ 879 skb_release_all(skb); 880 881 /* record skb to CPU local list */ 882 nc->skb_cache[nc->skb_count++] = skb; 883 884 #ifdef CONFIG_SLUB 885 /* SLUB writes into objects when freeing */ 886 prefetchw(skb); 887 #endif 888 889 /* flush skb_cache if it is filled */ 890 if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) { 891 kmem_cache_free_bulk(skbuff_head_cache, NAPI_SKB_CACHE_SIZE, 892 nc->skb_cache); 893 nc->skb_count = 0; 894 } 895 } 896 void __kfree_skb_defer(struct sk_buff *skb) 897 { 898 _kfree_skb_defer(skb); 899 } 900 901 void napi_consume_skb(struct sk_buff *skb, int budget) 902 { 903 /* Zero budget indicate non-NAPI context called us, like netpoll */ 904 if (unlikely(!budget)) { 905 dev_consume_skb_any(skb); 906 return; 907 } 908 909 lockdep_assert_in_softirq(); 910 911 if (!skb_unref(skb)) 912 return; 913 914 /* if reaching here SKB is ready to free */ 915 trace_consume_skb(skb); 916 917 /* if SKB is a clone, don't handle this case */ 918 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) { 919 __kfree_skb(skb); 920 return; 921 } 922 923 _kfree_skb_defer(skb); 924 } 925 EXPORT_SYMBOL(napi_consume_skb); 926 927 /* Make sure a field is enclosed inside headers_start/headers_end section */ 928 #define CHECK_SKB_FIELD(field) \ 929 BUILD_BUG_ON(offsetof(struct sk_buff, field) < \ 930 offsetof(struct sk_buff, headers_start)); \ 931 BUILD_BUG_ON(offsetof(struct sk_buff, field) > \ 932 offsetof(struct sk_buff, headers_end)); \ 933 934 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old) 935 { 936 new->tstamp = old->tstamp; 937 /* We do not copy old->sk */ 938 new->dev = old->dev; 939 memcpy(new->cb, old->cb, sizeof(old->cb)); 940 skb_dst_copy(new, old); 941 __skb_ext_copy(new, old); 942 __nf_copy(new, old, false); 943 944 /* Note : this field could be in headers_start/headers_end section 945 * It is not yet because we do not want to have a 16 bit hole 946 */ 947 new->queue_mapping = old->queue_mapping; 948 949 memcpy(&new->headers_start, &old->headers_start, 950 offsetof(struct sk_buff, headers_end) - 951 offsetof(struct sk_buff, headers_start)); 952 CHECK_SKB_FIELD(protocol); 953 CHECK_SKB_FIELD(csum); 954 CHECK_SKB_FIELD(hash); 955 CHECK_SKB_FIELD(priority); 956 CHECK_SKB_FIELD(skb_iif); 957 CHECK_SKB_FIELD(vlan_proto); 958 CHECK_SKB_FIELD(vlan_tci); 959 CHECK_SKB_FIELD(transport_header); 960 CHECK_SKB_FIELD(network_header); 961 CHECK_SKB_FIELD(mac_header); 962 CHECK_SKB_FIELD(inner_protocol); 963 CHECK_SKB_FIELD(inner_transport_header); 964 CHECK_SKB_FIELD(inner_network_header); 965 CHECK_SKB_FIELD(inner_mac_header); 966 CHECK_SKB_FIELD(mark); 967 #ifdef CONFIG_NETWORK_SECMARK 968 CHECK_SKB_FIELD(secmark); 969 #endif 970 #ifdef CONFIG_NET_RX_BUSY_POLL 971 CHECK_SKB_FIELD(napi_id); 972 #endif 973 #ifdef CONFIG_XPS 974 CHECK_SKB_FIELD(sender_cpu); 975 #endif 976 #ifdef CONFIG_NET_SCHED 977 CHECK_SKB_FIELD(tc_index); 978 #endif 979 980 } 981 982 /* 983 * You should not add any new code to this function. Add it to 984 * __copy_skb_header above instead. 985 */ 986 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb) 987 { 988 #define C(x) n->x = skb->x 989 990 n->next = n->prev = NULL; 991 n->sk = NULL; 992 __copy_skb_header(n, skb); 993 994 C(len); 995 C(data_len); 996 C(mac_len); 997 n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len; 998 n->cloned = 1; 999 n->nohdr = 0; 1000 n->peeked = 0; 1001 C(pfmemalloc); 1002 n->destructor = NULL; 1003 C(tail); 1004 C(end); 1005 C(head); 1006 C(head_frag); 1007 C(data); 1008 C(truesize); 1009 refcount_set(&n->users, 1); 1010 1011 atomic_inc(&(skb_shinfo(skb)->dataref)); 1012 skb->cloned = 1; 1013 1014 return n; 1015 #undef C 1016 } 1017 1018 /** 1019 * alloc_skb_for_msg() - allocate sk_buff to wrap frag list forming a msg 1020 * @first: first sk_buff of the msg 1021 */ 1022 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first) 1023 { 1024 struct sk_buff *n; 1025 1026 n = alloc_skb(0, GFP_ATOMIC); 1027 if (!n) 1028 return NULL; 1029 1030 n->len = first->len; 1031 n->data_len = first->len; 1032 n->truesize = first->truesize; 1033 1034 skb_shinfo(n)->frag_list = first; 1035 1036 __copy_skb_header(n, first); 1037 n->destructor = NULL; 1038 1039 return n; 1040 } 1041 EXPORT_SYMBOL_GPL(alloc_skb_for_msg); 1042 1043 /** 1044 * skb_morph - morph one skb into another 1045 * @dst: the skb to receive the contents 1046 * @src: the skb to supply the contents 1047 * 1048 * This is identical to skb_clone except that the target skb is 1049 * supplied by the user. 1050 * 1051 * The target skb is returned upon exit. 1052 */ 1053 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src) 1054 { 1055 skb_release_all(dst); 1056 return __skb_clone(dst, src); 1057 } 1058 EXPORT_SYMBOL_GPL(skb_morph); 1059 1060 int mm_account_pinned_pages(struct mmpin *mmp, size_t size) 1061 { 1062 unsigned long max_pg, num_pg, new_pg, old_pg; 1063 struct user_struct *user; 1064 1065 if (capable(CAP_IPC_LOCK) || !size) 1066 return 0; 1067 1068 num_pg = (size >> PAGE_SHIFT) + 2; /* worst case */ 1069 max_pg = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT; 1070 user = mmp->user ? : current_user(); 1071 1072 do { 1073 old_pg = atomic_long_read(&user->locked_vm); 1074 new_pg = old_pg + num_pg; 1075 if (new_pg > max_pg) 1076 return -ENOBUFS; 1077 } while (atomic_long_cmpxchg(&user->locked_vm, old_pg, new_pg) != 1078 old_pg); 1079 1080 if (!mmp->user) { 1081 mmp->user = get_uid(user); 1082 mmp->num_pg = num_pg; 1083 } else { 1084 mmp->num_pg += num_pg; 1085 } 1086 1087 return 0; 1088 } 1089 EXPORT_SYMBOL_GPL(mm_account_pinned_pages); 1090 1091 void mm_unaccount_pinned_pages(struct mmpin *mmp) 1092 { 1093 if (mmp->user) { 1094 atomic_long_sub(mmp->num_pg, &mmp->user->locked_vm); 1095 free_uid(mmp->user); 1096 } 1097 } 1098 EXPORT_SYMBOL_GPL(mm_unaccount_pinned_pages); 1099 1100 struct ubuf_info *msg_zerocopy_alloc(struct sock *sk, size_t size) 1101 { 1102 struct ubuf_info *uarg; 1103 struct sk_buff *skb; 1104 1105 WARN_ON_ONCE(!in_task()); 1106 1107 skb = sock_omalloc(sk, 0, GFP_KERNEL); 1108 if (!skb) 1109 return NULL; 1110 1111 BUILD_BUG_ON(sizeof(*uarg) > sizeof(skb->cb)); 1112 uarg = (void *)skb->cb; 1113 uarg->mmp.user = NULL; 1114 1115 if (mm_account_pinned_pages(&uarg->mmp, size)) { 1116 kfree_skb(skb); 1117 return NULL; 1118 } 1119 1120 uarg->callback = msg_zerocopy_callback; 1121 uarg->id = ((u32)atomic_inc_return(&sk->sk_zckey)) - 1; 1122 uarg->len = 1; 1123 uarg->bytelen = size; 1124 uarg->zerocopy = 1; 1125 uarg->flags = SKBFL_ZEROCOPY_FRAG; 1126 refcount_set(&uarg->refcnt, 1); 1127 sock_hold(sk); 1128 1129 return uarg; 1130 } 1131 EXPORT_SYMBOL_GPL(msg_zerocopy_alloc); 1132 1133 static inline struct sk_buff *skb_from_uarg(struct ubuf_info *uarg) 1134 { 1135 return container_of((void *)uarg, struct sk_buff, cb); 1136 } 1137 1138 struct ubuf_info *msg_zerocopy_realloc(struct sock *sk, size_t size, 1139 struct ubuf_info *uarg) 1140 { 1141 if (uarg) { 1142 const u32 byte_limit = 1 << 19; /* limit to a few TSO */ 1143 u32 bytelen, next; 1144 1145 /* realloc only when socket is locked (TCP, UDP cork), 1146 * so uarg->len and sk_zckey access is serialized 1147 */ 1148 if (!sock_owned_by_user(sk)) { 1149 WARN_ON_ONCE(1); 1150 return NULL; 1151 } 1152 1153 bytelen = uarg->bytelen + size; 1154 if (uarg->len == USHRT_MAX - 1 || bytelen > byte_limit) { 1155 /* TCP can create new skb to attach new uarg */ 1156 if (sk->sk_type == SOCK_STREAM) 1157 goto new_alloc; 1158 return NULL; 1159 } 1160 1161 next = (u32)atomic_read(&sk->sk_zckey); 1162 if ((u32)(uarg->id + uarg->len) == next) { 1163 if (mm_account_pinned_pages(&uarg->mmp, size)) 1164 return NULL; 1165 uarg->len++; 1166 uarg->bytelen = bytelen; 1167 atomic_set(&sk->sk_zckey, ++next); 1168 1169 /* no extra ref when appending to datagram (MSG_MORE) */ 1170 if (sk->sk_type == SOCK_STREAM) 1171 net_zcopy_get(uarg); 1172 1173 return uarg; 1174 } 1175 } 1176 1177 new_alloc: 1178 return msg_zerocopy_alloc(sk, size); 1179 } 1180 EXPORT_SYMBOL_GPL(msg_zerocopy_realloc); 1181 1182 static bool skb_zerocopy_notify_extend(struct sk_buff *skb, u32 lo, u16 len) 1183 { 1184 struct sock_exterr_skb *serr = SKB_EXT_ERR(skb); 1185 u32 old_lo, old_hi; 1186 u64 sum_len; 1187 1188 old_lo = serr->ee.ee_info; 1189 old_hi = serr->ee.ee_data; 1190 sum_len = old_hi - old_lo + 1ULL + len; 1191 1192 if (sum_len >= (1ULL << 32)) 1193 return false; 1194 1195 if (lo != old_hi + 1) 1196 return false; 1197 1198 serr->ee.ee_data += len; 1199 return true; 1200 } 1201 1202 static void __msg_zerocopy_callback(struct ubuf_info *uarg) 1203 { 1204 struct sk_buff *tail, *skb = skb_from_uarg(uarg); 1205 struct sock_exterr_skb *serr; 1206 struct sock *sk = skb->sk; 1207 struct sk_buff_head *q; 1208 unsigned long flags; 1209 u32 lo, hi; 1210 u16 len; 1211 1212 mm_unaccount_pinned_pages(&uarg->mmp); 1213 1214 /* if !len, there was only 1 call, and it was aborted 1215 * so do not queue a completion notification 1216 */ 1217 if (!uarg->len || sock_flag(sk, SOCK_DEAD)) 1218 goto release; 1219 1220 len = uarg->len; 1221 lo = uarg->id; 1222 hi = uarg->id + len - 1; 1223 1224 serr = SKB_EXT_ERR(skb); 1225 memset(serr, 0, sizeof(*serr)); 1226 serr->ee.ee_errno = 0; 1227 serr->ee.ee_origin = SO_EE_ORIGIN_ZEROCOPY; 1228 serr->ee.ee_data = hi; 1229 serr->ee.ee_info = lo; 1230 if (!uarg->zerocopy) 1231 serr->ee.ee_code |= SO_EE_CODE_ZEROCOPY_COPIED; 1232 1233 q = &sk->sk_error_queue; 1234 spin_lock_irqsave(&q->lock, flags); 1235 tail = skb_peek_tail(q); 1236 if (!tail || SKB_EXT_ERR(tail)->ee.ee_origin != SO_EE_ORIGIN_ZEROCOPY || 1237 !skb_zerocopy_notify_extend(tail, lo, len)) { 1238 __skb_queue_tail(q, skb); 1239 skb = NULL; 1240 } 1241 spin_unlock_irqrestore(&q->lock, flags); 1242 1243 sk->sk_error_report(sk); 1244 1245 release: 1246 consume_skb(skb); 1247 sock_put(sk); 1248 } 1249 1250 void msg_zerocopy_callback(struct sk_buff *skb, struct ubuf_info *uarg, 1251 bool success) 1252 { 1253 uarg->zerocopy = uarg->zerocopy & success; 1254 1255 if (refcount_dec_and_test(&uarg->refcnt)) 1256 __msg_zerocopy_callback(uarg); 1257 } 1258 EXPORT_SYMBOL_GPL(msg_zerocopy_callback); 1259 1260 void msg_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref) 1261 { 1262 struct sock *sk = skb_from_uarg(uarg)->sk; 1263 1264 atomic_dec(&sk->sk_zckey); 1265 uarg->len--; 1266 1267 if (have_uref) 1268 msg_zerocopy_callback(NULL, uarg, true); 1269 } 1270 EXPORT_SYMBOL_GPL(msg_zerocopy_put_abort); 1271 1272 int skb_zerocopy_iter_dgram(struct sk_buff *skb, struct msghdr *msg, int len) 1273 { 1274 return __zerocopy_sg_from_iter(skb->sk, skb, &msg->msg_iter, len); 1275 } 1276 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_dgram); 1277 1278 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb, 1279 struct msghdr *msg, int len, 1280 struct ubuf_info *uarg) 1281 { 1282 struct ubuf_info *orig_uarg = skb_zcopy(skb); 1283 struct iov_iter orig_iter = msg->msg_iter; 1284 int err, orig_len = skb->len; 1285 1286 /* An skb can only point to one uarg. This edge case happens when 1287 * TCP appends to an skb, but zerocopy_realloc triggered a new alloc. 1288 */ 1289 if (orig_uarg && uarg != orig_uarg) 1290 return -EEXIST; 1291 1292 err = __zerocopy_sg_from_iter(sk, skb, &msg->msg_iter, len); 1293 if (err == -EFAULT || (err == -EMSGSIZE && skb->len == orig_len)) { 1294 struct sock *save_sk = skb->sk; 1295 1296 /* Streams do not free skb on error. Reset to prev state. */ 1297 msg->msg_iter = orig_iter; 1298 skb->sk = sk; 1299 ___pskb_trim(skb, orig_len); 1300 skb->sk = save_sk; 1301 return err; 1302 } 1303 1304 skb_zcopy_set(skb, uarg, NULL); 1305 return skb->len - orig_len; 1306 } 1307 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_stream); 1308 1309 static int skb_zerocopy_clone(struct sk_buff *nskb, struct sk_buff *orig, 1310 gfp_t gfp_mask) 1311 { 1312 if (skb_zcopy(orig)) { 1313 if (skb_zcopy(nskb)) { 1314 /* !gfp_mask callers are verified to !skb_zcopy(nskb) */ 1315 if (!gfp_mask) { 1316 WARN_ON_ONCE(1); 1317 return -ENOMEM; 1318 } 1319 if (skb_uarg(nskb) == skb_uarg(orig)) 1320 return 0; 1321 if (skb_copy_ubufs(nskb, GFP_ATOMIC)) 1322 return -EIO; 1323 } 1324 skb_zcopy_set(nskb, skb_uarg(orig), NULL); 1325 } 1326 return 0; 1327 } 1328 1329 /** 1330 * skb_copy_ubufs - copy userspace skb frags buffers to kernel 1331 * @skb: the skb to modify 1332 * @gfp_mask: allocation priority 1333 * 1334 * This must be called on skb with SKBFL_ZEROCOPY_ENABLE. 1335 * It will copy all frags into kernel and drop the reference 1336 * to userspace pages. 1337 * 1338 * If this function is called from an interrupt gfp_mask() must be 1339 * %GFP_ATOMIC. 1340 * 1341 * Returns 0 on success or a negative error code on failure 1342 * to allocate kernel memory to copy to. 1343 */ 1344 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask) 1345 { 1346 int num_frags = skb_shinfo(skb)->nr_frags; 1347 struct page *page, *head = NULL; 1348 int i, new_frags; 1349 u32 d_off; 1350 1351 if (skb_shared(skb) || skb_unclone(skb, gfp_mask)) 1352 return -EINVAL; 1353 1354 if (!num_frags) 1355 goto release; 1356 1357 new_frags = (__skb_pagelen(skb) + PAGE_SIZE - 1) >> PAGE_SHIFT; 1358 for (i = 0; i < new_frags; i++) { 1359 page = alloc_page(gfp_mask); 1360 if (!page) { 1361 while (head) { 1362 struct page *next = (struct page *)page_private(head); 1363 put_page(head); 1364 head = next; 1365 } 1366 return -ENOMEM; 1367 } 1368 set_page_private(page, (unsigned long)head); 1369 head = page; 1370 } 1371 1372 page = head; 1373 d_off = 0; 1374 for (i = 0; i < num_frags; i++) { 1375 skb_frag_t *f = &skb_shinfo(skb)->frags[i]; 1376 u32 p_off, p_len, copied; 1377 struct page *p; 1378 u8 *vaddr; 1379 1380 skb_frag_foreach_page(f, skb_frag_off(f), skb_frag_size(f), 1381 p, p_off, p_len, copied) { 1382 u32 copy, done = 0; 1383 vaddr = kmap_atomic(p); 1384 1385 while (done < p_len) { 1386 if (d_off == PAGE_SIZE) { 1387 d_off = 0; 1388 page = (struct page *)page_private(page); 1389 } 1390 copy = min_t(u32, PAGE_SIZE - d_off, p_len - done); 1391 memcpy(page_address(page) + d_off, 1392 vaddr + p_off + done, copy); 1393 done += copy; 1394 d_off += copy; 1395 } 1396 kunmap_atomic(vaddr); 1397 } 1398 } 1399 1400 /* skb frags release userspace buffers */ 1401 for (i = 0; i < num_frags; i++) 1402 skb_frag_unref(skb, i); 1403 1404 /* skb frags point to kernel buffers */ 1405 for (i = 0; i < new_frags - 1; i++) { 1406 __skb_fill_page_desc(skb, i, head, 0, PAGE_SIZE); 1407 head = (struct page *)page_private(head); 1408 } 1409 __skb_fill_page_desc(skb, new_frags - 1, head, 0, d_off); 1410 skb_shinfo(skb)->nr_frags = new_frags; 1411 1412 release: 1413 skb_zcopy_clear(skb, false); 1414 return 0; 1415 } 1416 EXPORT_SYMBOL_GPL(skb_copy_ubufs); 1417 1418 /** 1419 * skb_clone - duplicate an sk_buff 1420 * @skb: buffer to clone 1421 * @gfp_mask: allocation priority 1422 * 1423 * Duplicate an &sk_buff. The new one is not owned by a socket. Both 1424 * copies share the same packet data but not structure. The new 1425 * buffer has a reference count of 1. If the allocation fails the 1426 * function returns %NULL otherwise the new buffer is returned. 1427 * 1428 * If this function is called from an interrupt gfp_mask() must be 1429 * %GFP_ATOMIC. 1430 */ 1431 1432 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask) 1433 { 1434 struct sk_buff_fclones *fclones = container_of(skb, 1435 struct sk_buff_fclones, 1436 skb1); 1437 struct sk_buff *n; 1438 1439 if (skb_orphan_frags(skb, gfp_mask)) 1440 return NULL; 1441 1442 if (skb->fclone == SKB_FCLONE_ORIG && 1443 refcount_read(&fclones->fclone_ref) == 1) { 1444 n = &fclones->skb2; 1445 refcount_set(&fclones->fclone_ref, 2); 1446 } else { 1447 if (skb_pfmemalloc(skb)) 1448 gfp_mask |= __GFP_MEMALLOC; 1449 1450 n = kmem_cache_alloc(skbuff_head_cache, gfp_mask); 1451 if (!n) 1452 return NULL; 1453 1454 n->fclone = SKB_FCLONE_UNAVAILABLE; 1455 } 1456 1457 return __skb_clone(n, skb); 1458 } 1459 EXPORT_SYMBOL(skb_clone); 1460 1461 void skb_headers_offset_update(struct sk_buff *skb, int off) 1462 { 1463 /* Only adjust this if it actually is csum_start rather than csum */ 1464 if (skb->ip_summed == CHECKSUM_PARTIAL) 1465 skb->csum_start += off; 1466 /* {transport,network,mac}_header and tail are relative to skb->head */ 1467 skb->transport_header += off; 1468 skb->network_header += off; 1469 if (skb_mac_header_was_set(skb)) 1470 skb->mac_header += off; 1471 skb->inner_transport_header += off; 1472 skb->inner_network_header += off; 1473 skb->inner_mac_header += off; 1474 } 1475 EXPORT_SYMBOL(skb_headers_offset_update); 1476 1477 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old) 1478 { 1479 __copy_skb_header(new, old); 1480 1481 skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size; 1482 skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs; 1483 skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type; 1484 } 1485 EXPORT_SYMBOL(skb_copy_header); 1486 1487 static inline int skb_alloc_rx_flag(const struct sk_buff *skb) 1488 { 1489 if (skb_pfmemalloc(skb)) 1490 return SKB_ALLOC_RX; 1491 return 0; 1492 } 1493 1494 /** 1495 * skb_copy - create private copy of an sk_buff 1496 * @skb: buffer to copy 1497 * @gfp_mask: allocation priority 1498 * 1499 * Make a copy of both an &sk_buff and its data. This is used when the 1500 * caller wishes to modify the data and needs a private copy of the 1501 * data to alter. Returns %NULL on failure or the pointer to the buffer 1502 * on success. The returned buffer has a reference count of 1. 1503 * 1504 * As by-product this function converts non-linear &sk_buff to linear 1505 * one, so that &sk_buff becomes completely private and caller is allowed 1506 * to modify all the data of returned buffer. This means that this 1507 * function is not recommended for use in circumstances when only 1508 * header is going to be modified. Use pskb_copy() instead. 1509 */ 1510 1511 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask) 1512 { 1513 int headerlen = skb_headroom(skb); 1514 unsigned int size = skb_end_offset(skb) + skb->data_len; 1515 struct sk_buff *n = __alloc_skb(size, gfp_mask, 1516 skb_alloc_rx_flag(skb), NUMA_NO_NODE); 1517 1518 if (!n) 1519 return NULL; 1520 1521 /* Set the data pointer */ 1522 skb_reserve(n, headerlen); 1523 /* Set the tail pointer and length */ 1524 skb_put(n, skb->len); 1525 1526 BUG_ON(skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len)); 1527 1528 skb_copy_header(n, skb); 1529 return n; 1530 } 1531 EXPORT_SYMBOL(skb_copy); 1532 1533 /** 1534 * __pskb_copy_fclone - create copy of an sk_buff with private head. 1535 * @skb: buffer to copy 1536 * @headroom: headroom of new skb 1537 * @gfp_mask: allocation priority 1538 * @fclone: if true allocate the copy of the skb from the fclone 1539 * cache instead of the head cache; it is recommended to set this 1540 * to true for the cases where the copy will likely be cloned 1541 * 1542 * Make a copy of both an &sk_buff and part of its data, located 1543 * in header. Fragmented data remain shared. This is used when 1544 * the caller wishes to modify only header of &sk_buff and needs 1545 * private copy of the header to alter. Returns %NULL on failure 1546 * or the pointer to the buffer on success. 1547 * The returned buffer has a reference count of 1. 1548 */ 1549 1550 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom, 1551 gfp_t gfp_mask, bool fclone) 1552 { 1553 unsigned int size = skb_headlen(skb) + headroom; 1554 int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0); 1555 struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE); 1556 1557 if (!n) 1558 goto out; 1559 1560 /* Set the data pointer */ 1561 skb_reserve(n, headroom); 1562 /* Set the tail pointer and length */ 1563 skb_put(n, skb_headlen(skb)); 1564 /* Copy the bytes */ 1565 skb_copy_from_linear_data(skb, n->data, n->len); 1566 1567 n->truesize += skb->data_len; 1568 n->data_len = skb->data_len; 1569 n->len = skb->len; 1570 1571 if (skb_shinfo(skb)->nr_frags) { 1572 int i; 1573 1574 if (skb_orphan_frags(skb, gfp_mask) || 1575 skb_zerocopy_clone(n, skb, gfp_mask)) { 1576 kfree_skb(n); 1577 n = NULL; 1578 goto out; 1579 } 1580 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1581 skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i]; 1582 skb_frag_ref(skb, i); 1583 } 1584 skb_shinfo(n)->nr_frags = i; 1585 } 1586 1587 if (skb_has_frag_list(skb)) { 1588 skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list; 1589 skb_clone_fraglist(n); 1590 } 1591 1592 skb_copy_header(n, skb); 1593 out: 1594 return n; 1595 } 1596 EXPORT_SYMBOL(__pskb_copy_fclone); 1597 1598 /** 1599 * pskb_expand_head - reallocate header of &sk_buff 1600 * @skb: buffer to reallocate 1601 * @nhead: room to add at head 1602 * @ntail: room to add at tail 1603 * @gfp_mask: allocation priority 1604 * 1605 * Expands (or creates identical copy, if @nhead and @ntail are zero) 1606 * header of @skb. &sk_buff itself is not changed. &sk_buff MUST have 1607 * reference count of 1. Returns zero in the case of success or error, 1608 * if expansion failed. In the last case, &sk_buff is not changed. 1609 * 1610 * All the pointers pointing into skb header may change and must be 1611 * reloaded after call to this function. 1612 */ 1613 1614 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, 1615 gfp_t gfp_mask) 1616 { 1617 int i, osize = skb_end_offset(skb); 1618 int size = osize + nhead + ntail; 1619 long off; 1620 u8 *data; 1621 1622 BUG_ON(nhead < 0); 1623 1624 BUG_ON(skb_shared(skb)); 1625 1626 size = SKB_DATA_ALIGN(size); 1627 1628 if (skb_pfmemalloc(skb)) 1629 gfp_mask |= __GFP_MEMALLOC; 1630 data = kmalloc_reserve(size + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)), 1631 gfp_mask, NUMA_NO_NODE, NULL); 1632 if (!data) 1633 goto nodata; 1634 size = SKB_WITH_OVERHEAD(ksize(data)); 1635 1636 /* Copy only real data... and, alas, header. This should be 1637 * optimized for the cases when header is void. 1638 */ 1639 memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head); 1640 1641 memcpy((struct skb_shared_info *)(data + size), 1642 skb_shinfo(skb), 1643 offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags])); 1644 1645 /* 1646 * if shinfo is shared we must drop the old head gracefully, but if it 1647 * is not we can just drop the old head and let the existing refcount 1648 * be since all we did is relocate the values 1649 */ 1650 if (skb_cloned(skb)) { 1651 if (skb_orphan_frags(skb, gfp_mask)) 1652 goto nofrags; 1653 if (skb_zcopy(skb)) 1654 refcount_inc(&skb_uarg(skb)->refcnt); 1655 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 1656 skb_frag_ref(skb, i); 1657 1658 if (skb_has_frag_list(skb)) 1659 skb_clone_fraglist(skb); 1660 1661 skb_release_data(skb); 1662 } else { 1663 skb_free_head(skb); 1664 } 1665 off = (data + nhead) - skb->head; 1666 1667 skb->head = data; 1668 skb->head_frag = 0; 1669 skb->data += off; 1670 #ifdef NET_SKBUFF_DATA_USES_OFFSET 1671 skb->end = size; 1672 off = nhead; 1673 #else 1674 skb->end = skb->head + size; 1675 #endif 1676 skb->tail += off; 1677 skb_headers_offset_update(skb, nhead); 1678 skb->cloned = 0; 1679 skb->hdr_len = 0; 1680 skb->nohdr = 0; 1681 atomic_set(&skb_shinfo(skb)->dataref, 1); 1682 1683 skb_metadata_clear(skb); 1684 1685 /* It is not generally safe to change skb->truesize. 1686 * For the moment, we really care of rx path, or 1687 * when skb is orphaned (not attached to a socket). 1688 */ 1689 if (!skb->sk || skb->destructor == sock_edemux) 1690 skb->truesize += size - osize; 1691 1692 return 0; 1693 1694 nofrags: 1695 kfree(data); 1696 nodata: 1697 return -ENOMEM; 1698 } 1699 EXPORT_SYMBOL(pskb_expand_head); 1700 1701 /* Make private copy of skb with writable head and some headroom */ 1702 1703 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom) 1704 { 1705 struct sk_buff *skb2; 1706 int delta = headroom - skb_headroom(skb); 1707 1708 if (delta <= 0) 1709 skb2 = pskb_copy(skb, GFP_ATOMIC); 1710 else { 1711 skb2 = skb_clone(skb, GFP_ATOMIC); 1712 if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0, 1713 GFP_ATOMIC)) { 1714 kfree_skb(skb2); 1715 skb2 = NULL; 1716 } 1717 } 1718 return skb2; 1719 } 1720 EXPORT_SYMBOL(skb_realloc_headroom); 1721 1722 /** 1723 * skb_copy_expand - copy and expand sk_buff 1724 * @skb: buffer to copy 1725 * @newheadroom: new free bytes at head 1726 * @newtailroom: new free bytes at tail 1727 * @gfp_mask: allocation priority 1728 * 1729 * Make a copy of both an &sk_buff and its data and while doing so 1730 * allocate additional space. 1731 * 1732 * This is used when the caller wishes to modify the data and needs a 1733 * private copy of the data to alter as well as more space for new fields. 1734 * Returns %NULL on failure or the pointer to the buffer 1735 * on success. The returned buffer has a reference count of 1. 1736 * 1737 * You must pass %GFP_ATOMIC as the allocation priority if this function 1738 * is called from an interrupt. 1739 */ 1740 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, 1741 int newheadroom, int newtailroom, 1742 gfp_t gfp_mask) 1743 { 1744 /* 1745 * Allocate the copy buffer 1746 */ 1747 struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom, 1748 gfp_mask, skb_alloc_rx_flag(skb), 1749 NUMA_NO_NODE); 1750 int oldheadroom = skb_headroom(skb); 1751 int head_copy_len, head_copy_off; 1752 1753 if (!n) 1754 return NULL; 1755 1756 skb_reserve(n, newheadroom); 1757 1758 /* Set the tail pointer and length */ 1759 skb_put(n, skb->len); 1760 1761 head_copy_len = oldheadroom; 1762 head_copy_off = 0; 1763 if (newheadroom <= head_copy_len) 1764 head_copy_len = newheadroom; 1765 else 1766 head_copy_off = newheadroom - head_copy_len; 1767 1768 /* Copy the linear header and data. */ 1769 BUG_ON(skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off, 1770 skb->len + head_copy_len)); 1771 1772 skb_copy_header(n, skb); 1773 1774 skb_headers_offset_update(n, newheadroom - oldheadroom); 1775 1776 return n; 1777 } 1778 EXPORT_SYMBOL(skb_copy_expand); 1779 1780 /** 1781 * __skb_pad - zero pad the tail of an skb 1782 * @skb: buffer to pad 1783 * @pad: space to pad 1784 * @free_on_error: free buffer on error 1785 * 1786 * Ensure that a buffer is followed by a padding area that is zero 1787 * filled. Used by network drivers which may DMA or transfer data 1788 * beyond the buffer end onto the wire. 1789 * 1790 * May return error in out of memory cases. The skb is freed on error 1791 * if @free_on_error is true. 1792 */ 1793 1794 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error) 1795 { 1796 int err; 1797 int ntail; 1798 1799 /* If the skbuff is non linear tailroom is always zero.. */ 1800 if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) { 1801 memset(skb->data+skb->len, 0, pad); 1802 return 0; 1803 } 1804 1805 ntail = skb->data_len + pad - (skb->end - skb->tail); 1806 if (likely(skb_cloned(skb) || ntail > 0)) { 1807 err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC); 1808 if (unlikely(err)) 1809 goto free_skb; 1810 } 1811 1812 /* FIXME: The use of this function with non-linear skb's really needs 1813 * to be audited. 1814 */ 1815 err = skb_linearize(skb); 1816 if (unlikely(err)) 1817 goto free_skb; 1818 1819 memset(skb->data + skb->len, 0, pad); 1820 return 0; 1821 1822 free_skb: 1823 if (free_on_error) 1824 kfree_skb(skb); 1825 return err; 1826 } 1827 EXPORT_SYMBOL(__skb_pad); 1828 1829 /** 1830 * pskb_put - add data to the tail of a potentially fragmented buffer 1831 * @skb: start of the buffer to use 1832 * @tail: tail fragment of the buffer to use 1833 * @len: amount of data to add 1834 * 1835 * This function extends the used data area of the potentially 1836 * fragmented buffer. @tail must be the last fragment of @skb -- or 1837 * @skb itself. If this would exceed the total buffer size the kernel 1838 * will panic. A pointer to the first byte of the extra data is 1839 * returned. 1840 */ 1841 1842 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len) 1843 { 1844 if (tail != skb) { 1845 skb->data_len += len; 1846 skb->len += len; 1847 } 1848 return skb_put(tail, len); 1849 } 1850 EXPORT_SYMBOL_GPL(pskb_put); 1851 1852 /** 1853 * skb_put - add data to a buffer 1854 * @skb: buffer to use 1855 * @len: amount of data to add 1856 * 1857 * This function extends the used data area of the buffer. If this would 1858 * exceed the total buffer size the kernel will panic. A pointer to the 1859 * first byte of the extra data is returned. 1860 */ 1861 void *skb_put(struct sk_buff *skb, unsigned int len) 1862 { 1863 void *tmp = skb_tail_pointer(skb); 1864 SKB_LINEAR_ASSERT(skb); 1865 skb->tail += len; 1866 skb->len += len; 1867 if (unlikely(skb->tail > skb->end)) 1868 skb_over_panic(skb, len, __builtin_return_address(0)); 1869 return tmp; 1870 } 1871 EXPORT_SYMBOL(skb_put); 1872 1873 /** 1874 * skb_push - add data to the start of a buffer 1875 * @skb: buffer to use 1876 * @len: amount of data to add 1877 * 1878 * This function extends the used data area of the buffer at the buffer 1879 * start. If this would exceed the total buffer headroom the kernel will 1880 * panic. A pointer to the first byte of the extra data is returned. 1881 */ 1882 void *skb_push(struct sk_buff *skb, unsigned int len) 1883 { 1884 skb->data -= len; 1885 skb->len += len; 1886 if (unlikely(skb->data < skb->head)) 1887 skb_under_panic(skb, len, __builtin_return_address(0)); 1888 return skb->data; 1889 } 1890 EXPORT_SYMBOL(skb_push); 1891 1892 /** 1893 * skb_pull - remove data from the start of a buffer 1894 * @skb: buffer to use 1895 * @len: amount of data to remove 1896 * 1897 * This function removes data from the start of a buffer, returning 1898 * the memory to the headroom. A pointer to the next data in the buffer 1899 * is returned. Once the data has been pulled future pushes will overwrite 1900 * the old data. 1901 */ 1902 void *skb_pull(struct sk_buff *skb, unsigned int len) 1903 { 1904 return skb_pull_inline(skb, len); 1905 } 1906 EXPORT_SYMBOL(skb_pull); 1907 1908 /** 1909 * skb_trim - remove end from a buffer 1910 * @skb: buffer to alter 1911 * @len: new length 1912 * 1913 * Cut the length of a buffer down by removing data from the tail. If 1914 * the buffer is already under the length specified it is not modified. 1915 * The skb must be linear. 1916 */ 1917 void skb_trim(struct sk_buff *skb, unsigned int len) 1918 { 1919 if (skb->len > len) 1920 __skb_trim(skb, len); 1921 } 1922 EXPORT_SYMBOL(skb_trim); 1923 1924 /* Trims skb to length len. It can change skb pointers. 1925 */ 1926 1927 int ___pskb_trim(struct sk_buff *skb, unsigned int len) 1928 { 1929 struct sk_buff **fragp; 1930 struct sk_buff *frag; 1931 int offset = skb_headlen(skb); 1932 int nfrags = skb_shinfo(skb)->nr_frags; 1933 int i; 1934 int err; 1935 1936 if (skb_cloned(skb) && 1937 unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))) 1938 return err; 1939 1940 i = 0; 1941 if (offset >= len) 1942 goto drop_pages; 1943 1944 for (; i < nfrags; i++) { 1945 int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]); 1946 1947 if (end < len) { 1948 offset = end; 1949 continue; 1950 } 1951 1952 skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset); 1953 1954 drop_pages: 1955 skb_shinfo(skb)->nr_frags = i; 1956 1957 for (; i < nfrags; i++) 1958 skb_frag_unref(skb, i); 1959 1960 if (skb_has_frag_list(skb)) 1961 skb_drop_fraglist(skb); 1962 goto done; 1963 } 1964 1965 for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp); 1966 fragp = &frag->next) { 1967 int end = offset + frag->len; 1968 1969 if (skb_shared(frag)) { 1970 struct sk_buff *nfrag; 1971 1972 nfrag = skb_clone(frag, GFP_ATOMIC); 1973 if (unlikely(!nfrag)) 1974 return -ENOMEM; 1975 1976 nfrag->next = frag->next; 1977 consume_skb(frag); 1978 frag = nfrag; 1979 *fragp = frag; 1980 } 1981 1982 if (end < len) { 1983 offset = end; 1984 continue; 1985 } 1986 1987 if (end > len && 1988 unlikely((err = pskb_trim(frag, len - offset)))) 1989 return err; 1990 1991 if (frag->next) 1992 skb_drop_list(&frag->next); 1993 break; 1994 } 1995 1996 done: 1997 if (len > skb_headlen(skb)) { 1998 skb->data_len -= skb->len - len; 1999 skb->len = len; 2000 } else { 2001 skb->len = len; 2002 skb->data_len = 0; 2003 skb_set_tail_pointer(skb, len); 2004 } 2005 2006 if (!skb->sk || skb->destructor == sock_edemux) 2007 skb_condense(skb); 2008 return 0; 2009 } 2010 EXPORT_SYMBOL(___pskb_trim); 2011 2012 /* Note : use pskb_trim_rcsum() instead of calling this directly 2013 */ 2014 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len) 2015 { 2016 if (skb->ip_summed == CHECKSUM_COMPLETE) { 2017 int delta = skb->len - len; 2018 2019 skb->csum = csum_block_sub(skb->csum, 2020 skb_checksum(skb, len, delta, 0), 2021 len); 2022 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { 2023 int hdlen = (len > skb_headlen(skb)) ? skb_headlen(skb) : len; 2024 int offset = skb_checksum_start_offset(skb) + skb->csum_offset; 2025 2026 if (offset + sizeof(__sum16) > hdlen) 2027 return -EINVAL; 2028 } 2029 return __pskb_trim(skb, len); 2030 } 2031 EXPORT_SYMBOL(pskb_trim_rcsum_slow); 2032 2033 /** 2034 * __pskb_pull_tail - advance tail of skb header 2035 * @skb: buffer to reallocate 2036 * @delta: number of bytes to advance tail 2037 * 2038 * The function makes a sense only on a fragmented &sk_buff, 2039 * it expands header moving its tail forward and copying necessary 2040 * data from fragmented part. 2041 * 2042 * &sk_buff MUST have reference count of 1. 2043 * 2044 * Returns %NULL (and &sk_buff does not change) if pull failed 2045 * or value of new tail of skb in the case of success. 2046 * 2047 * All the pointers pointing into skb header may change and must be 2048 * reloaded after call to this function. 2049 */ 2050 2051 /* Moves tail of skb head forward, copying data from fragmented part, 2052 * when it is necessary. 2053 * 1. It may fail due to malloc failure. 2054 * 2. It may change skb pointers. 2055 * 2056 * It is pretty complicated. Luckily, it is called only in exceptional cases. 2057 */ 2058 void *__pskb_pull_tail(struct sk_buff *skb, int delta) 2059 { 2060 /* If skb has not enough free space at tail, get new one 2061 * plus 128 bytes for future expansions. If we have enough 2062 * room at tail, reallocate without expansion only if skb is cloned. 2063 */ 2064 int i, k, eat = (skb->tail + delta) - skb->end; 2065 2066 if (eat > 0 || skb_cloned(skb)) { 2067 if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0, 2068 GFP_ATOMIC)) 2069 return NULL; 2070 } 2071 2072 BUG_ON(skb_copy_bits(skb, skb_headlen(skb), 2073 skb_tail_pointer(skb), delta)); 2074 2075 /* Optimization: no fragments, no reasons to preestimate 2076 * size of pulled pages. Superb. 2077 */ 2078 if (!skb_has_frag_list(skb)) 2079 goto pull_pages; 2080 2081 /* Estimate size of pulled pages. */ 2082 eat = delta; 2083 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2084 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 2085 2086 if (size >= eat) 2087 goto pull_pages; 2088 eat -= size; 2089 } 2090 2091 /* If we need update frag list, we are in troubles. 2092 * Certainly, it is possible to add an offset to skb data, 2093 * but taking into account that pulling is expected to 2094 * be very rare operation, it is worth to fight against 2095 * further bloating skb head and crucify ourselves here instead. 2096 * Pure masohism, indeed. 8)8) 2097 */ 2098 if (eat) { 2099 struct sk_buff *list = skb_shinfo(skb)->frag_list; 2100 struct sk_buff *clone = NULL; 2101 struct sk_buff *insp = NULL; 2102 2103 do { 2104 if (list->len <= eat) { 2105 /* Eaten as whole. */ 2106 eat -= list->len; 2107 list = list->next; 2108 insp = list; 2109 } else { 2110 /* Eaten partially. */ 2111 2112 if (skb_shared(list)) { 2113 /* Sucks! We need to fork list. :-( */ 2114 clone = skb_clone(list, GFP_ATOMIC); 2115 if (!clone) 2116 return NULL; 2117 insp = list->next; 2118 list = clone; 2119 } else { 2120 /* This may be pulled without 2121 * problems. */ 2122 insp = list; 2123 } 2124 if (!pskb_pull(list, eat)) { 2125 kfree_skb(clone); 2126 return NULL; 2127 } 2128 break; 2129 } 2130 } while (eat); 2131 2132 /* Free pulled out fragments. */ 2133 while ((list = skb_shinfo(skb)->frag_list) != insp) { 2134 skb_shinfo(skb)->frag_list = list->next; 2135 kfree_skb(list); 2136 } 2137 /* And insert new clone at head. */ 2138 if (clone) { 2139 clone->next = list; 2140 skb_shinfo(skb)->frag_list = clone; 2141 } 2142 } 2143 /* Success! Now we may commit changes to skb data. */ 2144 2145 pull_pages: 2146 eat = delta; 2147 k = 0; 2148 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2149 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 2150 2151 if (size <= eat) { 2152 skb_frag_unref(skb, i); 2153 eat -= size; 2154 } else { 2155 skb_frag_t *frag = &skb_shinfo(skb)->frags[k]; 2156 2157 *frag = skb_shinfo(skb)->frags[i]; 2158 if (eat) { 2159 skb_frag_off_add(frag, eat); 2160 skb_frag_size_sub(frag, eat); 2161 if (!i) 2162 goto end; 2163 eat = 0; 2164 } 2165 k++; 2166 } 2167 } 2168 skb_shinfo(skb)->nr_frags = k; 2169 2170 end: 2171 skb->tail += delta; 2172 skb->data_len -= delta; 2173 2174 if (!skb->data_len) 2175 skb_zcopy_clear(skb, false); 2176 2177 return skb_tail_pointer(skb); 2178 } 2179 EXPORT_SYMBOL(__pskb_pull_tail); 2180 2181 /** 2182 * skb_copy_bits - copy bits from skb to kernel buffer 2183 * @skb: source skb 2184 * @offset: offset in source 2185 * @to: destination buffer 2186 * @len: number of bytes to copy 2187 * 2188 * Copy the specified number of bytes from the source skb to the 2189 * destination buffer. 2190 * 2191 * CAUTION ! : 2192 * If its prototype is ever changed, 2193 * check arch/{*}/net/{*}.S files, 2194 * since it is called from BPF assembly code. 2195 */ 2196 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len) 2197 { 2198 int start = skb_headlen(skb); 2199 struct sk_buff *frag_iter; 2200 int i, copy; 2201 2202 if (offset > (int)skb->len - len) 2203 goto fault; 2204 2205 /* Copy header. */ 2206 if ((copy = start - offset) > 0) { 2207 if (copy > len) 2208 copy = len; 2209 skb_copy_from_linear_data_offset(skb, offset, to, copy); 2210 if ((len -= copy) == 0) 2211 return 0; 2212 offset += copy; 2213 to += copy; 2214 } 2215 2216 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2217 int end; 2218 skb_frag_t *f = &skb_shinfo(skb)->frags[i]; 2219 2220 WARN_ON(start > offset + len); 2221 2222 end = start + skb_frag_size(f); 2223 if ((copy = end - offset) > 0) { 2224 u32 p_off, p_len, copied; 2225 struct page *p; 2226 u8 *vaddr; 2227 2228 if (copy > len) 2229 copy = len; 2230 2231 skb_frag_foreach_page(f, 2232 skb_frag_off(f) + offset - start, 2233 copy, p, p_off, p_len, copied) { 2234 vaddr = kmap_atomic(p); 2235 memcpy(to + copied, vaddr + p_off, p_len); 2236 kunmap_atomic(vaddr); 2237 } 2238 2239 if ((len -= copy) == 0) 2240 return 0; 2241 offset += copy; 2242 to += copy; 2243 } 2244 start = end; 2245 } 2246 2247 skb_walk_frags(skb, frag_iter) { 2248 int end; 2249 2250 WARN_ON(start > offset + len); 2251 2252 end = start + frag_iter->len; 2253 if ((copy = end - offset) > 0) { 2254 if (copy > len) 2255 copy = len; 2256 if (skb_copy_bits(frag_iter, offset - start, to, copy)) 2257 goto fault; 2258 if ((len -= copy) == 0) 2259 return 0; 2260 offset += copy; 2261 to += copy; 2262 } 2263 start = end; 2264 } 2265 2266 if (!len) 2267 return 0; 2268 2269 fault: 2270 return -EFAULT; 2271 } 2272 EXPORT_SYMBOL(skb_copy_bits); 2273 2274 /* 2275 * Callback from splice_to_pipe(), if we need to release some pages 2276 * at the end of the spd in case we error'ed out in filling the pipe. 2277 */ 2278 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i) 2279 { 2280 put_page(spd->pages[i]); 2281 } 2282 2283 static struct page *linear_to_page(struct page *page, unsigned int *len, 2284 unsigned int *offset, 2285 struct sock *sk) 2286 { 2287 struct page_frag *pfrag = sk_page_frag(sk); 2288 2289 if (!sk_page_frag_refill(sk, pfrag)) 2290 return NULL; 2291 2292 *len = min_t(unsigned int, *len, pfrag->size - pfrag->offset); 2293 2294 memcpy(page_address(pfrag->page) + pfrag->offset, 2295 page_address(page) + *offset, *len); 2296 *offset = pfrag->offset; 2297 pfrag->offset += *len; 2298 2299 return pfrag->page; 2300 } 2301 2302 static bool spd_can_coalesce(const struct splice_pipe_desc *spd, 2303 struct page *page, 2304 unsigned int offset) 2305 { 2306 return spd->nr_pages && 2307 spd->pages[spd->nr_pages - 1] == page && 2308 (spd->partial[spd->nr_pages - 1].offset + 2309 spd->partial[spd->nr_pages - 1].len == offset); 2310 } 2311 2312 /* 2313 * Fill page/offset/length into spd, if it can hold more pages. 2314 */ 2315 static bool spd_fill_page(struct splice_pipe_desc *spd, 2316 struct pipe_inode_info *pipe, struct page *page, 2317 unsigned int *len, unsigned int offset, 2318 bool linear, 2319 struct sock *sk) 2320 { 2321 if (unlikely(spd->nr_pages == MAX_SKB_FRAGS)) 2322 return true; 2323 2324 if (linear) { 2325 page = linear_to_page(page, len, &offset, sk); 2326 if (!page) 2327 return true; 2328 } 2329 if (spd_can_coalesce(spd, page, offset)) { 2330 spd->partial[spd->nr_pages - 1].len += *len; 2331 return false; 2332 } 2333 get_page(page); 2334 spd->pages[spd->nr_pages] = page; 2335 spd->partial[spd->nr_pages].len = *len; 2336 spd->partial[spd->nr_pages].offset = offset; 2337 spd->nr_pages++; 2338 2339 return false; 2340 } 2341 2342 static bool __splice_segment(struct page *page, unsigned int poff, 2343 unsigned int plen, unsigned int *off, 2344 unsigned int *len, 2345 struct splice_pipe_desc *spd, bool linear, 2346 struct sock *sk, 2347 struct pipe_inode_info *pipe) 2348 { 2349 if (!*len) 2350 return true; 2351 2352 /* skip this segment if already processed */ 2353 if (*off >= plen) { 2354 *off -= plen; 2355 return false; 2356 } 2357 2358 /* ignore any bits we already processed */ 2359 poff += *off; 2360 plen -= *off; 2361 *off = 0; 2362 2363 do { 2364 unsigned int flen = min(*len, plen); 2365 2366 if (spd_fill_page(spd, pipe, page, &flen, poff, 2367 linear, sk)) 2368 return true; 2369 poff += flen; 2370 plen -= flen; 2371 *len -= flen; 2372 } while (*len && plen); 2373 2374 return false; 2375 } 2376 2377 /* 2378 * Map linear and fragment data from the skb to spd. It reports true if the 2379 * pipe is full or if we already spliced the requested length. 2380 */ 2381 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe, 2382 unsigned int *offset, unsigned int *len, 2383 struct splice_pipe_desc *spd, struct sock *sk) 2384 { 2385 int seg; 2386 struct sk_buff *iter; 2387 2388 /* map the linear part : 2389 * If skb->head_frag is set, this 'linear' part is backed by a 2390 * fragment, and if the head is not shared with any clones then 2391 * we can avoid a copy since we own the head portion of this page. 2392 */ 2393 if (__splice_segment(virt_to_page(skb->data), 2394 (unsigned long) skb->data & (PAGE_SIZE - 1), 2395 skb_headlen(skb), 2396 offset, len, spd, 2397 skb_head_is_locked(skb), 2398 sk, pipe)) 2399 return true; 2400 2401 /* 2402 * then map the fragments 2403 */ 2404 for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) { 2405 const skb_frag_t *f = &skb_shinfo(skb)->frags[seg]; 2406 2407 if (__splice_segment(skb_frag_page(f), 2408 skb_frag_off(f), skb_frag_size(f), 2409 offset, len, spd, false, sk, pipe)) 2410 return true; 2411 } 2412 2413 skb_walk_frags(skb, iter) { 2414 if (*offset >= iter->len) { 2415 *offset -= iter->len; 2416 continue; 2417 } 2418 /* __skb_splice_bits() only fails if the output has no room 2419 * left, so no point in going over the frag_list for the error 2420 * case. 2421 */ 2422 if (__skb_splice_bits(iter, pipe, offset, len, spd, sk)) 2423 return true; 2424 } 2425 2426 return false; 2427 } 2428 2429 /* 2430 * Map data from the skb to a pipe. Should handle both the linear part, 2431 * the fragments, and the frag list. 2432 */ 2433 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset, 2434 struct pipe_inode_info *pipe, unsigned int tlen, 2435 unsigned int flags) 2436 { 2437 struct partial_page partial[MAX_SKB_FRAGS]; 2438 struct page *pages[MAX_SKB_FRAGS]; 2439 struct splice_pipe_desc spd = { 2440 .pages = pages, 2441 .partial = partial, 2442 .nr_pages_max = MAX_SKB_FRAGS, 2443 .ops = &nosteal_pipe_buf_ops, 2444 .spd_release = sock_spd_release, 2445 }; 2446 int ret = 0; 2447 2448 __skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk); 2449 2450 if (spd.nr_pages) 2451 ret = splice_to_pipe(pipe, &spd); 2452 2453 return ret; 2454 } 2455 EXPORT_SYMBOL_GPL(skb_splice_bits); 2456 2457 /* Send skb data on a socket. Socket must be locked. */ 2458 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset, 2459 int len) 2460 { 2461 unsigned int orig_len = len; 2462 struct sk_buff *head = skb; 2463 unsigned short fragidx; 2464 int slen, ret; 2465 2466 do_frag_list: 2467 2468 /* Deal with head data */ 2469 while (offset < skb_headlen(skb) && len) { 2470 struct kvec kv; 2471 struct msghdr msg; 2472 2473 slen = min_t(int, len, skb_headlen(skb) - offset); 2474 kv.iov_base = skb->data + offset; 2475 kv.iov_len = slen; 2476 memset(&msg, 0, sizeof(msg)); 2477 msg.msg_flags = MSG_DONTWAIT; 2478 2479 ret = kernel_sendmsg_locked(sk, &msg, &kv, 1, slen); 2480 if (ret <= 0) 2481 goto error; 2482 2483 offset += ret; 2484 len -= ret; 2485 } 2486 2487 /* All the data was skb head? */ 2488 if (!len) 2489 goto out; 2490 2491 /* Make offset relative to start of frags */ 2492 offset -= skb_headlen(skb); 2493 2494 /* Find where we are in frag list */ 2495 for (fragidx = 0; fragidx < skb_shinfo(skb)->nr_frags; fragidx++) { 2496 skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx]; 2497 2498 if (offset < skb_frag_size(frag)) 2499 break; 2500 2501 offset -= skb_frag_size(frag); 2502 } 2503 2504 for (; len && fragidx < skb_shinfo(skb)->nr_frags; fragidx++) { 2505 skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx]; 2506 2507 slen = min_t(size_t, len, skb_frag_size(frag) - offset); 2508 2509 while (slen) { 2510 ret = kernel_sendpage_locked(sk, skb_frag_page(frag), 2511 skb_frag_off(frag) + offset, 2512 slen, MSG_DONTWAIT); 2513 if (ret <= 0) 2514 goto error; 2515 2516 len -= ret; 2517 offset += ret; 2518 slen -= ret; 2519 } 2520 2521 offset = 0; 2522 } 2523 2524 if (len) { 2525 /* Process any frag lists */ 2526 2527 if (skb == head) { 2528 if (skb_has_frag_list(skb)) { 2529 skb = skb_shinfo(skb)->frag_list; 2530 goto do_frag_list; 2531 } 2532 } else if (skb->next) { 2533 skb = skb->next; 2534 goto do_frag_list; 2535 } 2536 } 2537 2538 out: 2539 return orig_len - len; 2540 2541 error: 2542 return orig_len == len ? ret : orig_len - len; 2543 } 2544 EXPORT_SYMBOL_GPL(skb_send_sock_locked); 2545 2546 /** 2547 * skb_store_bits - store bits from kernel buffer to skb 2548 * @skb: destination buffer 2549 * @offset: offset in destination 2550 * @from: source buffer 2551 * @len: number of bytes to copy 2552 * 2553 * Copy the specified number of bytes from the source buffer to the 2554 * destination skb. This function handles all the messy bits of 2555 * traversing fragment lists and such. 2556 */ 2557 2558 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len) 2559 { 2560 int start = skb_headlen(skb); 2561 struct sk_buff *frag_iter; 2562 int i, copy; 2563 2564 if (offset > (int)skb->len - len) 2565 goto fault; 2566 2567 if ((copy = start - offset) > 0) { 2568 if (copy > len) 2569 copy = len; 2570 skb_copy_to_linear_data_offset(skb, offset, from, copy); 2571 if ((len -= copy) == 0) 2572 return 0; 2573 offset += copy; 2574 from += copy; 2575 } 2576 2577 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2578 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2579 int end; 2580 2581 WARN_ON(start > offset + len); 2582 2583 end = start + skb_frag_size(frag); 2584 if ((copy = end - offset) > 0) { 2585 u32 p_off, p_len, copied; 2586 struct page *p; 2587 u8 *vaddr; 2588 2589 if (copy > len) 2590 copy = len; 2591 2592 skb_frag_foreach_page(frag, 2593 skb_frag_off(frag) + offset - start, 2594 copy, p, p_off, p_len, copied) { 2595 vaddr = kmap_atomic(p); 2596 memcpy(vaddr + p_off, from + copied, p_len); 2597 kunmap_atomic(vaddr); 2598 } 2599 2600 if ((len -= copy) == 0) 2601 return 0; 2602 offset += copy; 2603 from += copy; 2604 } 2605 start = end; 2606 } 2607 2608 skb_walk_frags(skb, frag_iter) { 2609 int end; 2610 2611 WARN_ON(start > offset + len); 2612 2613 end = start + frag_iter->len; 2614 if ((copy = end - offset) > 0) { 2615 if (copy > len) 2616 copy = len; 2617 if (skb_store_bits(frag_iter, offset - start, 2618 from, copy)) 2619 goto fault; 2620 if ((len -= copy) == 0) 2621 return 0; 2622 offset += copy; 2623 from += copy; 2624 } 2625 start = end; 2626 } 2627 if (!len) 2628 return 0; 2629 2630 fault: 2631 return -EFAULT; 2632 } 2633 EXPORT_SYMBOL(skb_store_bits); 2634 2635 /* Checksum skb data. */ 2636 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len, 2637 __wsum csum, const struct skb_checksum_ops *ops) 2638 { 2639 int start = skb_headlen(skb); 2640 int i, copy = start - offset; 2641 struct sk_buff *frag_iter; 2642 int pos = 0; 2643 2644 /* Checksum header. */ 2645 if (copy > 0) { 2646 if (copy > len) 2647 copy = len; 2648 csum = INDIRECT_CALL_1(ops->update, csum_partial_ext, 2649 skb->data + offset, copy, csum); 2650 if ((len -= copy) == 0) 2651 return csum; 2652 offset += copy; 2653 pos = copy; 2654 } 2655 2656 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2657 int end; 2658 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2659 2660 WARN_ON(start > offset + len); 2661 2662 end = start + skb_frag_size(frag); 2663 if ((copy = end - offset) > 0) { 2664 u32 p_off, p_len, copied; 2665 struct page *p; 2666 __wsum csum2; 2667 u8 *vaddr; 2668 2669 if (copy > len) 2670 copy = len; 2671 2672 skb_frag_foreach_page(frag, 2673 skb_frag_off(frag) + offset - start, 2674 copy, p, p_off, p_len, copied) { 2675 vaddr = kmap_atomic(p); 2676 csum2 = INDIRECT_CALL_1(ops->update, 2677 csum_partial_ext, 2678 vaddr + p_off, p_len, 0); 2679 kunmap_atomic(vaddr); 2680 csum = INDIRECT_CALL_1(ops->combine, 2681 csum_block_add_ext, csum, 2682 csum2, pos, p_len); 2683 pos += p_len; 2684 } 2685 2686 if (!(len -= copy)) 2687 return csum; 2688 offset += copy; 2689 } 2690 start = end; 2691 } 2692 2693 skb_walk_frags(skb, frag_iter) { 2694 int end; 2695 2696 WARN_ON(start > offset + len); 2697 2698 end = start + frag_iter->len; 2699 if ((copy = end - offset) > 0) { 2700 __wsum csum2; 2701 if (copy > len) 2702 copy = len; 2703 csum2 = __skb_checksum(frag_iter, offset - start, 2704 copy, 0, ops); 2705 csum = INDIRECT_CALL_1(ops->combine, csum_block_add_ext, 2706 csum, csum2, pos, copy); 2707 if ((len -= copy) == 0) 2708 return csum; 2709 offset += copy; 2710 pos += copy; 2711 } 2712 start = end; 2713 } 2714 BUG_ON(len); 2715 2716 return csum; 2717 } 2718 EXPORT_SYMBOL(__skb_checksum); 2719 2720 __wsum skb_checksum(const struct sk_buff *skb, int offset, 2721 int len, __wsum csum) 2722 { 2723 const struct skb_checksum_ops ops = { 2724 .update = csum_partial_ext, 2725 .combine = csum_block_add_ext, 2726 }; 2727 2728 return __skb_checksum(skb, offset, len, csum, &ops); 2729 } 2730 EXPORT_SYMBOL(skb_checksum); 2731 2732 /* Both of above in one bottle. */ 2733 2734 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, 2735 u8 *to, int len) 2736 { 2737 int start = skb_headlen(skb); 2738 int i, copy = start - offset; 2739 struct sk_buff *frag_iter; 2740 int pos = 0; 2741 __wsum csum = 0; 2742 2743 /* Copy header. */ 2744 if (copy > 0) { 2745 if (copy > len) 2746 copy = len; 2747 csum = csum_partial_copy_nocheck(skb->data + offset, to, 2748 copy); 2749 if ((len -= copy) == 0) 2750 return csum; 2751 offset += copy; 2752 to += copy; 2753 pos = copy; 2754 } 2755 2756 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2757 int end; 2758 2759 WARN_ON(start > offset + len); 2760 2761 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]); 2762 if ((copy = end - offset) > 0) { 2763 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2764 u32 p_off, p_len, copied; 2765 struct page *p; 2766 __wsum csum2; 2767 u8 *vaddr; 2768 2769 if (copy > len) 2770 copy = len; 2771 2772 skb_frag_foreach_page(frag, 2773 skb_frag_off(frag) + offset - start, 2774 copy, p, p_off, p_len, copied) { 2775 vaddr = kmap_atomic(p); 2776 csum2 = csum_partial_copy_nocheck(vaddr + p_off, 2777 to + copied, 2778 p_len); 2779 kunmap_atomic(vaddr); 2780 csum = csum_block_add(csum, csum2, pos); 2781 pos += p_len; 2782 } 2783 2784 if (!(len -= copy)) 2785 return csum; 2786 offset += copy; 2787 to += copy; 2788 } 2789 start = end; 2790 } 2791 2792 skb_walk_frags(skb, frag_iter) { 2793 __wsum csum2; 2794 int end; 2795 2796 WARN_ON(start > offset + len); 2797 2798 end = start + frag_iter->len; 2799 if ((copy = end - offset) > 0) { 2800 if (copy > len) 2801 copy = len; 2802 csum2 = skb_copy_and_csum_bits(frag_iter, 2803 offset - start, 2804 to, copy); 2805 csum = csum_block_add(csum, csum2, pos); 2806 if ((len -= copy) == 0) 2807 return csum; 2808 offset += copy; 2809 to += copy; 2810 pos += copy; 2811 } 2812 start = end; 2813 } 2814 BUG_ON(len); 2815 return csum; 2816 } 2817 EXPORT_SYMBOL(skb_copy_and_csum_bits); 2818 2819 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len) 2820 { 2821 __sum16 sum; 2822 2823 sum = csum_fold(skb_checksum(skb, 0, len, skb->csum)); 2824 /* See comments in __skb_checksum_complete(). */ 2825 if (likely(!sum)) { 2826 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) && 2827 !skb->csum_complete_sw) 2828 netdev_rx_csum_fault(skb->dev, skb); 2829 } 2830 if (!skb_shared(skb)) 2831 skb->csum_valid = !sum; 2832 return sum; 2833 } 2834 EXPORT_SYMBOL(__skb_checksum_complete_head); 2835 2836 /* This function assumes skb->csum already holds pseudo header's checksum, 2837 * which has been changed from the hardware checksum, for example, by 2838 * __skb_checksum_validate_complete(). And, the original skb->csum must 2839 * have been validated unsuccessfully for CHECKSUM_COMPLETE case. 2840 * 2841 * It returns non-zero if the recomputed checksum is still invalid, otherwise 2842 * zero. The new checksum is stored back into skb->csum unless the skb is 2843 * shared. 2844 */ 2845 __sum16 __skb_checksum_complete(struct sk_buff *skb) 2846 { 2847 __wsum csum; 2848 __sum16 sum; 2849 2850 csum = skb_checksum(skb, 0, skb->len, 0); 2851 2852 sum = csum_fold(csum_add(skb->csum, csum)); 2853 /* This check is inverted, because we already knew the hardware 2854 * checksum is invalid before calling this function. So, if the 2855 * re-computed checksum is valid instead, then we have a mismatch 2856 * between the original skb->csum and skb_checksum(). This means either 2857 * the original hardware checksum is incorrect or we screw up skb->csum 2858 * when moving skb->data around. 2859 */ 2860 if (likely(!sum)) { 2861 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) && 2862 !skb->csum_complete_sw) 2863 netdev_rx_csum_fault(skb->dev, skb); 2864 } 2865 2866 if (!skb_shared(skb)) { 2867 /* Save full packet checksum */ 2868 skb->csum = csum; 2869 skb->ip_summed = CHECKSUM_COMPLETE; 2870 skb->csum_complete_sw = 1; 2871 skb->csum_valid = !sum; 2872 } 2873 2874 return sum; 2875 } 2876 EXPORT_SYMBOL(__skb_checksum_complete); 2877 2878 static __wsum warn_crc32c_csum_update(const void *buff, int len, __wsum sum) 2879 { 2880 net_warn_ratelimited( 2881 "%s: attempt to compute crc32c without libcrc32c.ko\n", 2882 __func__); 2883 return 0; 2884 } 2885 2886 static __wsum warn_crc32c_csum_combine(__wsum csum, __wsum csum2, 2887 int offset, int len) 2888 { 2889 net_warn_ratelimited( 2890 "%s: attempt to compute crc32c without libcrc32c.ko\n", 2891 __func__); 2892 return 0; 2893 } 2894 2895 static const struct skb_checksum_ops default_crc32c_ops = { 2896 .update = warn_crc32c_csum_update, 2897 .combine = warn_crc32c_csum_combine, 2898 }; 2899 2900 const struct skb_checksum_ops *crc32c_csum_stub __read_mostly = 2901 &default_crc32c_ops; 2902 EXPORT_SYMBOL(crc32c_csum_stub); 2903 2904 /** 2905 * skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy() 2906 * @from: source buffer 2907 * 2908 * Calculates the amount of linear headroom needed in the 'to' skb passed 2909 * into skb_zerocopy(). 2910 */ 2911 unsigned int 2912 skb_zerocopy_headlen(const struct sk_buff *from) 2913 { 2914 unsigned int hlen = 0; 2915 2916 if (!from->head_frag || 2917 skb_headlen(from) < L1_CACHE_BYTES || 2918 skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS) 2919 hlen = skb_headlen(from); 2920 2921 if (skb_has_frag_list(from)) 2922 hlen = from->len; 2923 2924 return hlen; 2925 } 2926 EXPORT_SYMBOL_GPL(skb_zerocopy_headlen); 2927 2928 /** 2929 * skb_zerocopy - Zero copy skb to skb 2930 * @to: destination buffer 2931 * @from: source buffer 2932 * @len: number of bytes to copy from source buffer 2933 * @hlen: size of linear headroom in destination buffer 2934 * 2935 * Copies up to `len` bytes from `from` to `to` by creating references 2936 * to the frags in the source buffer. 2937 * 2938 * The `hlen` as calculated by skb_zerocopy_headlen() specifies the 2939 * headroom in the `to` buffer. 2940 * 2941 * Return value: 2942 * 0: everything is OK 2943 * -ENOMEM: couldn't orphan frags of @from due to lack of memory 2944 * -EFAULT: skb_copy_bits() found some problem with skb geometry 2945 */ 2946 int 2947 skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen) 2948 { 2949 int i, j = 0; 2950 int plen = 0; /* length of skb->head fragment */ 2951 int ret; 2952 struct page *page; 2953 unsigned int offset; 2954 2955 BUG_ON(!from->head_frag && !hlen); 2956 2957 /* dont bother with small payloads */ 2958 if (len <= skb_tailroom(to)) 2959 return skb_copy_bits(from, 0, skb_put(to, len), len); 2960 2961 if (hlen) { 2962 ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen); 2963 if (unlikely(ret)) 2964 return ret; 2965 len -= hlen; 2966 } else { 2967 plen = min_t(int, skb_headlen(from), len); 2968 if (plen) { 2969 page = virt_to_head_page(from->head); 2970 offset = from->data - (unsigned char *)page_address(page); 2971 __skb_fill_page_desc(to, 0, page, offset, plen); 2972 get_page(page); 2973 j = 1; 2974 len -= plen; 2975 } 2976 } 2977 2978 to->truesize += len + plen; 2979 to->len += len + plen; 2980 to->data_len += len + plen; 2981 2982 if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) { 2983 skb_tx_error(from); 2984 return -ENOMEM; 2985 } 2986 skb_zerocopy_clone(to, from, GFP_ATOMIC); 2987 2988 for (i = 0; i < skb_shinfo(from)->nr_frags; i++) { 2989 int size; 2990 2991 if (!len) 2992 break; 2993 skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i]; 2994 size = min_t(int, skb_frag_size(&skb_shinfo(to)->frags[j]), 2995 len); 2996 skb_frag_size_set(&skb_shinfo(to)->frags[j], size); 2997 len -= size; 2998 skb_frag_ref(to, j); 2999 j++; 3000 } 3001 skb_shinfo(to)->nr_frags = j; 3002 3003 return 0; 3004 } 3005 EXPORT_SYMBOL_GPL(skb_zerocopy); 3006 3007 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to) 3008 { 3009 __wsum csum; 3010 long csstart; 3011 3012 if (skb->ip_summed == CHECKSUM_PARTIAL) 3013 csstart = skb_checksum_start_offset(skb); 3014 else 3015 csstart = skb_headlen(skb); 3016 3017 BUG_ON(csstart > skb_headlen(skb)); 3018 3019 skb_copy_from_linear_data(skb, to, csstart); 3020 3021 csum = 0; 3022 if (csstart != skb->len) 3023 csum = skb_copy_and_csum_bits(skb, csstart, to + csstart, 3024 skb->len - csstart); 3025 3026 if (skb->ip_summed == CHECKSUM_PARTIAL) { 3027 long csstuff = csstart + skb->csum_offset; 3028 3029 *((__sum16 *)(to + csstuff)) = csum_fold(csum); 3030 } 3031 } 3032 EXPORT_SYMBOL(skb_copy_and_csum_dev); 3033 3034 /** 3035 * skb_dequeue - remove from the head of the queue 3036 * @list: list to dequeue from 3037 * 3038 * Remove the head of the list. The list lock is taken so the function 3039 * may be used safely with other locking list functions. The head item is 3040 * returned or %NULL if the list is empty. 3041 */ 3042 3043 struct sk_buff *skb_dequeue(struct sk_buff_head *list) 3044 { 3045 unsigned long flags; 3046 struct sk_buff *result; 3047 3048 spin_lock_irqsave(&list->lock, flags); 3049 result = __skb_dequeue(list); 3050 spin_unlock_irqrestore(&list->lock, flags); 3051 return result; 3052 } 3053 EXPORT_SYMBOL(skb_dequeue); 3054 3055 /** 3056 * skb_dequeue_tail - remove from the tail of the queue 3057 * @list: list to dequeue from 3058 * 3059 * Remove the tail of the list. The list lock is taken so the function 3060 * may be used safely with other locking list functions. The tail item is 3061 * returned or %NULL if the list is empty. 3062 */ 3063 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list) 3064 { 3065 unsigned long flags; 3066 struct sk_buff *result; 3067 3068 spin_lock_irqsave(&list->lock, flags); 3069 result = __skb_dequeue_tail(list); 3070 spin_unlock_irqrestore(&list->lock, flags); 3071 return result; 3072 } 3073 EXPORT_SYMBOL(skb_dequeue_tail); 3074 3075 /** 3076 * skb_queue_purge - empty a list 3077 * @list: list to empty 3078 * 3079 * Delete all buffers on an &sk_buff list. Each buffer is removed from 3080 * the list and one reference dropped. This function takes the list 3081 * lock and is atomic with respect to other list locking functions. 3082 */ 3083 void skb_queue_purge(struct sk_buff_head *list) 3084 { 3085 struct sk_buff *skb; 3086 while ((skb = skb_dequeue(list)) != NULL) 3087 kfree_skb(skb); 3088 } 3089 EXPORT_SYMBOL(skb_queue_purge); 3090 3091 /** 3092 * skb_rbtree_purge - empty a skb rbtree 3093 * @root: root of the rbtree to empty 3094 * Return value: the sum of truesizes of all purged skbs. 3095 * 3096 * Delete all buffers on an &sk_buff rbtree. Each buffer is removed from 3097 * the list and one reference dropped. This function does not take 3098 * any lock. Synchronization should be handled by the caller (e.g., TCP 3099 * out-of-order queue is protected by the socket lock). 3100 */ 3101 unsigned int skb_rbtree_purge(struct rb_root *root) 3102 { 3103 struct rb_node *p = rb_first(root); 3104 unsigned int sum = 0; 3105 3106 while (p) { 3107 struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode); 3108 3109 p = rb_next(p); 3110 rb_erase(&skb->rbnode, root); 3111 sum += skb->truesize; 3112 kfree_skb(skb); 3113 } 3114 return sum; 3115 } 3116 3117 /** 3118 * skb_queue_head - queue a buffer at the list head 3119 * @list: list to use 3120 * @newsk: buffer to queue 3121 * 3122 * Queue a buffer at the start of the list. This function takes the 3123 * list lock and can be used safely with other locking &sk_buff functions 3124 * safely. 3125 * 3126 * A buffer cannot be placed on two lists at the same time. 3127 */ 3128 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk) 3129 { 3130 unsigned long flags; 3131 3132 spin_lock_irqsave(&list->lock, flags); 3133 __skb_queue_head(list, newsk); 3134 spin_unlock_irqrestore(&list->lock, flags); 3135 } 3136 EXPORT_SYMBOL(skb_queue_head); 3137 3138 /** 3139 * skb_queue_tail - queue a buffer at the list tail 3140 * @list: list to use 3141 * @newsk: buffer to queue 3142 * 3143 * Queue a buffer at the tail of the list. This function takes the 3144 * list lock and can be used safely with other locking &sk_buff functions 3145 * safely. 3146 * 3147 * A buffer cannot be placed on two lists at the same time. 3148 */ 3149 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk) 3150 { 3151 unsigned long flags; 3152 3153 spin_lock_irqsave(&list->lock, flags); 3154 __skb_queue_tail(list, newsk); 3155 spin_unlock_irqrestore(&list->lock, flags); 3156 } 3157 EXPORT_SYMBOL(skb_queue_tail); 3158 3159 /** 3160 * skb_unlink - remove a buffer from a list 3161 * @skb: buffer to remove 3162 * @list: list to use 3163 * 3164 * Remove a packet from a list. The list locks are taken and this 3165 * function is atomic with respect to other list locked calls 3166 * 3167 * You must know what list the SKB is on. 3168 */ 3169 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list) 3170 { 3171 unsigned long flags; 3172 3173 spin_lock_irqsave(&list->lock, flags); 3174 __skb_unlink(skb, list); 3175 spin_unlock_irqrestore(&list->lock, flags); 3176 } 3177 EXPORT_SYMBOL(skb_unlink); 3178 3179 /** 3180 * skb_append - append a buffer 3181 * @old: buffer to insert after 3182 * @newsk: buffer to insert 3183 * @list: list to use 3184 * 3185 * Place a packet after a given packet in a list. The list locks are taken 3186 * and this function is atomic with respect to other list locked calls. 3187 * A buffer cannot be placed on two lists at the same time. 3188 */ 3189 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list) 3190 { 3191 unsigned long flags; 3192 3193 spin_lock_irqsave(&list->lock, flags); 3194 __skb_queue_after(list, old, newsk); 3195 spin_unlock_irqrestore(&list->lock, flags); 3196 } 3197 EXPORT_SYMBOL(skb_append); 3198 3199 static inline void skb_split_inside_header(struct sk_buff *skb, 3200 struct sk_buff* skb1, 3201 const u32 len, const int pos) 3202 { 3203 int i; 3204 3205 skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len), 3206 pos - len); 3207 /* And move data appendix as is. */ 3208 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 3209 skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i]; 3210 3211 skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags; 3212 skb_shinfo(skb)->nr_frags = 0; 3213 skb1->data_len = skb->data_len; 3214 skb1->len += skb1->data_len; 3215 skb->data_len = 0; 3216 skb->len = len; 3217 skb_set_tail_pointer(skb, len); 3218 } 3219 3220 static inline void skb_split_no_header(struct sk_buff *skb, 3221 struct sk_buff* skb1, 3222 const u32 len, int pos) 3223 { 3224 int i, k = 0; 3225 const int nfrags = skb_shinfo(skb)->nr_frags; 3226 3227 skb_shinfo(skb)->nr_frags = 0; 3228 skb1->len = skb1->data_len = skb->len - len; 3229 skb->len = len; 3230 skb->data_len = len - pos; 3231 3232 for (i = 0; i < nfrags; i++) { 3233 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 3234 3235 if (pos + size > len) { 3236 skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i]; 3237 3238 if (pos < len) { 3239 /* Split frag. 3240 * We have two variants in this case: 3241 * 1. Move all the frag to the second 3242 * part, if it is possible. F.e. 3243 * this approach is mandatory for TUX, 3244 * where splitting is expensive. 3245 * 2. Split is accurately. We make this. 3246 */ 3247 skb_frag_ref(skb, i); 3248 skb_frag_off_add(&skb_shinfo(skb1)->frags[0], len - pos); 3249 skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos); 3250 skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos); 3251 skb_shinfo(skb)->nr_frags++; 3252 } 3253 k++; 3254 } else 3255 skb_shinfo(skb)->nr_frags++; 3256 pos += size; 3257 } 3258 skb_shinfo(skb1)->nr_frags = k; 3259 } 3260 3261 /** 3262 * skb_split - Split fragmented skb to two parts at length len. 3263 * @skb: the buffer to split 3264 * @skb1: the buffer to receive the second part 3265 * @len: new length for skb 3266 */ 3267 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len) 3268 { 3269 int pos = skb_headlen(skb); 3270 3271 skb_shinfo(skb1)->flags |= skb_shinfo(skb)->flags & SKBFL_SHARED_FRAG; 3272 skb_zerocopy_clone(skb1, skb, 0); 3273 if (len < pos) /* Split line is inside header. */ 3274 skb_split_inside_header(skb, skb1, len, pos); 3275 else /* Second chunk has no header, nothing to copy. */ 3276 skb_split_no_header(skb, skb1, len, pos); 3277 } 3278 EXPORT_SYMBOL(skb_split); 3279 3280 /* Shifting from/to a cloned skb is a no-go. 3281 * 3282 * Caller cannot keep skb_shinfo related pointers past calling here! 3283 */ 3284 static int skb_prepare_for_shift(struct sk_buff *skb) 3285 { 3286 int ret = 0; 3287 3288 if (skb_cloned(skb)) { 3289 /* Save and restore truesize: pskb_expand_head() may reallocate 3290 * memory where ksize(kmalloc(S)) != ksize(kmalloc(S)), but we 3291 * cannot change truesize at this point. 3292 */ 3293 unsigned int save_truesize = skb->truesize; 3294 3295 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 3296 skb->truesize = save_truesize; 3297 } 3298 return ret; 3299 } 3300 3301 /** 3302 * skb_shift - Shifts paged data partially from skb to another 3303 * @tgt: buffer into which tail data gets added 3304 * @skb: buffer from which the paged data comes from 3305 * @shiftlen: shift up to this many bytes 3306 * 3307 * Attempts to shift up to shiftlen worth of bytes, which may be less than 3308 * the length of the skb, from skb to tgt. Returns number bytes shifted. 3309 * It's up to caller to free skb if everything was shifted. 3310 * 3311 * If @tgt runs out of frags, the whole operation is aborted. 3312 * 3313 * Skb cannot include anything else but paged data while tgt is allowed 3314 * to have non-paged data as well. 3315 * 3316 * TODO: full sized shift could be optimized but that would need 3317 * specialized skb free'er to handle frags without up-to-date nr_frags. 3318 */ 3319 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen) 3320 { 3321 int from, to, merge, todo; 3322 skb_frag_t *fragfrom, *fragto; 3323 3324 BUG_ON(shiftlen > skb->len); 3325 3326 if (skb_headlen(skb)) 3327 return 0; 3328 if (skb_zcopy(tgt) || skb_zcopy(skb)) 3329 return 0; 3330 3331 todo = shiftlen; 3332 from = 0; 3333 to = skb_shinfo(tgt)->nr_frags; 3334 fragfrom = &skb_shinfo(skb)->frags[from]; 3335 3336 /* Actual merge is delayed until the point when we know we can 3337 * commit all, so that we don't have to undo partial changes 3338 */ 3339 if (!to || 3340 !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom), 3341 skb_frag_off(fragfrom))) { 3342 merge = -1; 3343 } else { 3344 merge = to - 1; 3345 3346 todo -= skb_frag_size(fragfrom); 3347 if (todo < 0) { 3348 if (skb_prepare_for_shift(skb) || 3349 skb_prepare_for_shift(tgt)) 3350 return 0; 3351 3352 /* All previous frag pointers might be stale! */ 3353 fragfrom = &skb_shinfo(skb)->frags[from]; 3354 fragto = &skb_shinfo(tgt)->frags[merge]; 3355 3356 skb_frag_size_add(fragto, shiftlen); 3357 skb_frag_size_sub(fragfrom, shiftlen); 3358 skb_frag_off_add(fragfrom, shiftlen); 3359 3360 goto onlymerged; 3361 } 3362 3363 from++; 3364 } 3365 3366 /* Skip full, not-fitting skb to avoid expensive operations */ 3367 if ((shiftlen == skb->len) && 3368 (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to)) 3369 return 0; 3370 3371 if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt)) 3372 return 0; 3373 3374 while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) { 3375 if (to == MAX_SKB_FRAGS) 3376 return 0; 3377 3378 fragfrom = &skb_shinfo(skb)->frags[from]; 3379 fragto = &skb_shinfo(tgt)->frags[to]; 3380 3381 if (todo >= skb_frag_size(fragfrom)) { 3382 *fragto = *fragfrom; 3383 todo -= skb_frag_size(fragfrom); 3384 from++; 3385 to++; 3386 3387 } else { 3388 __skb_frag_ref(fragfrom); 3389 skb_frag_page_copy(fragto, fragfrom); 3390 skb_frag_off_copy(fragto, fragfrom); 3391 skb_frag_size_set(fragto, todo); 3392 3393 skb_frag_off_add(fragfrom, todo); 3394 skb_frag_size_sub(fragfrom, todo); 3395 todo = 0; 3396 3397 to++; 3398 break; 3399 } 3400 } 3401 3402 /* Ready to "commit" this state change to tgt */ 3403 skb_shinfo(tgt)->nr_frags = to; 3404 3405 if (merge >= 0) { 3406 fragfrom = &skb_shinfo(skb)->frags[0]; 3407 fragto = &skb_shinfo(tgt)->frags[merge]; 3408 3409 skb_frag_size_add(fragto, skb_frag_size(fragfrom)); 3410 __skb_frag_unref(fragfrom); 3411 } 3412 3413 /* Reposition in the original skb */ 3414 to = 0; 3415 while (from < skb_shinfo(skb)->nr_frags) 3416 skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++]; 3417 skb_shinfo(skb)->nr_frags = to; 3418 3419 BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags); 3420 3421 onlymerged: 3422 /* Most likely the tgt won't ever need its checksum anymore, skb on 3423 * the other hand might need it if it needs to be resent 3424 */ 3425 tgt->ip_summed = CHECKSUM_PARTIAL; 3426 skb->ip_summed = CHECKSUM_PARTIAL; 3427 3428 /* Yak, is it really working this way? Some helper please? */ 3429 skb->len -= shiftlen; 3430 skb->data_len -= shiftlen; 3431 skb->truesize -= shiftlen; 3432 tgt->len += shiftlen; 3433 tgt->data_len += shiftlen; 3434 tgt->truesize += shiftlen; 3435 3436 return shiftlen; 3437 } 3438 3439 /** 3440 * skb_prepare_seq_read - Prepare a sequential read of skb data 3441 * @skb: the buffer to read 3442 * @from: lower offset of data to be read 3443 * @to: upper offset of data to be read 3444 * @st: state variable 3445 * 3446 * Initializes the specified state variable. Must be called before 3447 * invoking skb_seq_read() for the first time. 3448 */ 3449 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from, 3450 unsigned int to, struct skb_seq_state *st) 3451 { 3452 st->lower_offset = from; 3453 st->upper_offset = to; 3454 st->root_skb = st->cur_skb = skb; 3455 st->frag_idx = st->stepped_offset = 0; 3456 st->frag_data = NULL; 3457 st->frag_off = 0; 3458 } 3459 EXPORT_SYMBOL(skb_prepare_seq_read); 3460 3461 /** 3462 * skb_seq_read - Sequentially read skb data 3463 * @consumed: number of bytes consumed by the caller so far 3464 * @data: destination pointer for data to be returned 3465 * @st: state variable 3466 * 3467 * Reads a block of skb data at @consumed relative to the 3468 * lower offset specified to skb_prepare_seq_read(). Assigns 3469 * the head of the data block to @data and returns the length 3470 * of the block or 0 if the end of the skb data or the upper 3471 * offset has been reached. 3472 * 3473 * The caller is not required to consume all of the data 3474 * returned, i.e. @consumed is typically set to the number 3475 * of bytes already consumed and the next call to 3476 * skb_seq_read() will return the remaining part of the block. 3477 * 3478 * Note 1: The size of each block of data returned can be arbitrary, 3479 * this limitation is the cost for zerocopy sequential 3480 * reads of potentially non linear data. 3481 * 3482 * Note 2: Fragment lists within fragments are not implemented 3483 * at the moment, state->root_skb could be replaced with 3484 * a stack for this purpose. 3485 */ 3486 unsigned int skb_seq_read(unsigned int consumed, const u8 **data, 3487 struct skb_seq_state *st) 3488 { 3489 unsigned int block_limit, abs_offset = consumed + st->lower_offset; 3490 skb_frag_t *frag; 3491 3492 if (unlikely(abs_offset >= st->upper_offset)) { 3493 if (st->frag_data) { 3494 kunmap_atomic(st->frag_data); 3495 st->frag_data = NULL; 3496 } 3497 return 0; 3498 } 3499 3500 next_skb: 3501 block_limit = skb_headlen(st->cur_skb) + st->stepped_offset; 3502 3503 if (abs_offset < block_limit && !st->frag_data) { 3504 *data = st->cur_skb->data + (abs_offset - st->stepped_offset); 3505 return block_limit - abs_offset; 3506 } 3507 3508 if (st->frag_idx == 0 && !st->frag_data) 3509 st->stepped_offset += skb_headlen(st->cur_skb); 3510 3511 while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) { 3512 unsigned int pg_idx, pg_off, pg_sz; 3513 3514 frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx]; 3515 3516 pg_idx = 0; 3517 pg_off = skb_frag_off(frag); 3518 pg_sz = skb_frag_size(frag); 3519 3520 if (skb_frag_must_loop(skb_frag_page(frag))) { 3521 pg_idx = (pg_off + st->frag_off) >> PAGE_SHIFT; 3522 pg_off = offset_in_page(pg_off + st->frag_off); 3523 pg_sz = min_t(unsigned int, pg_sz - st->frag_off, 3524 PAGE_SIZE - pg_off); 3525 } 3526 3527 block_limit = pg_sz + st->stepped_offset; 3528 if (abs_offset < block_limit) { 3529 if (!st->frag_data) 3530 st->frag_data = kmap_atomic(skb_frag_page(frag) + pg_idx); 3531 3532 *data = (u8 *)st->frag_data + pg_off + 3533 (abs_offset - st->stepped_offset); 3534 3535 return block_limit - abs_offset; 3536 } 3537 3538 if (st->frag_data) { 3539 kunmap_atomic(st->frag_data); 3540 st->frag_data = NULL; 3541 } 3542 3543 st->stepped_offset += pg_sz; 3544 st->frag_off += pg_sz; 3545 if (st->frag_off == skb_frag_size(frag)) { 3546 st->frag_off = 0; 3547 st->frag_idx++; 3548 } 3549 } 3550 3551 if (st->frag_data) { 3552 kunmap_atomic(st->frag_data); 3553 st->frag_data = NULL; 3554 } 3555 3556 if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) { 3557 st->cur_skb = skb_shinfo(st->root_skb)->frag_list; 3558 st->frag_idx = 0; 3559 goto next_skb; 3560 } else if (st->cur_skb->next) { 3561 st->cur_skb = st->cur_skb->next; 3562 st->frag_idx = 0; 3563 goto next_skb; 3564 } 3565 3566 return 0; 3567 } 3568 EXPORT_SYMBOL(skb_seq_read); 3569 3570 /** 3571 * skb_abort_seq_read - Abort a sequential read of skb data 3572 * @st: state variable 3573 * 3574 * Must be called if skb_seq_read() was not called until it 3575 * returned 0. 3576 */ 3577 void skb_abort_seq_read(struct skb_seq_state *st) 3578 { 3579 if (st->frag_data) 3580 kunmap_atomic(st->frag_data); 3581 } 3582 EXPORT_SYMBOL(skb_abort_seq_read); 3583 3584 #define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb)) 3585 3586 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text, 3587 struct ts_config *conf, 3588 struct ts_state *state) 3589 { 3590 return skb_seq_read(offset, text, TS_SKB_CB(state)); 3591 } 3592 3593 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state) 3594 { 3595 skb_abort_seq_read(TS_SKB_CB(state)); 3596 } 3597 3598 /** 3599 * skb_find_text - Find a text pattern in skb data 3600 * @skb: the buffer to look in 3601 * @from: search offset 3602 * @to: search limit 3603 * @config: textsearch configuration 3604 * 3605 * Finds a pattern in the skb data according to the specified 3606 * textsearch configuration. Use textsearch_next() to retrieve 3607 * subsequent occurrences of the pattern. Returns the offset 3608 * to the first occurrence or UINT_MAX if no match was found. 3609 */ 3610 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from, 3611 unsigned int to, struct ts_config *config) 3612 { 3613 struct ts_state state; 3614 unsigned int ret; 3615 3616 config->get_next_block = skb_ts_get_next_block; 3617 config->finish = skb_ts_finish; 3618 3619 skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state)); 3620 3621 ret = textsearch_find(config, &state); 3622 return (ret <= to - from ? ret : UINT_MAX); 3623 } 3624 EXPORT_SYMBOL(skb_find_text); 3625 3626 int skb_append_pagefrags(struct sk_buff *skb, struct page *page, 3627 int offset, size_t size) 3628 { 3629 int i = skb_shinfo(skb)->nr_frags; 3630 3631 if (skb_can_coalesce(skb, i, page, offset)) { 3632 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size); 3633 } else if (i < MAX_SKB_FRAGS) { 3634 get_page(page); 3635 skb_fill_page_desc(skb, i, page, offset, size); 3636 } else { 3637 return -EMSGSIZE; 3638 } 3639 3640 return 0; 3641 } 3642 EXPORT_SYMBOL_GPL(skb_append_pagefrags); 3643 3644 /** 3645 * skb_pull_rcsum - pull skb and update receive checksum 3646 * @skb: buffer to update 3647 * @len: length of data pulled 3648 * 3649 * This function performs an skb_pull on the packet and updates 3650 * the CHECKSUM_COMPLETE checksum. It should be used on 3651 * receive path processing instead of skb_pull unless you know 3652 * that the checksum difference is zero (e.g., a valid IP header) 3653 * or you are setting ip_summed to CHECKSUM_NONE. 3654 */ 3655 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len) 3656 { 3657 unsigned char *data = skb->data; 3658 3659 BUG_ON(len > skb->len); 3660 __skb_pull(skb, len); 3661 skb_postpull_rcsum(skb, data, len); 3662 return skb->data; 3663 } 3664 EXPORT_SYMBOL_GPL(skb_pull_rcsum); 3665 3666 static inline skb_frag_t skb_head_frag_to_page_desc(struct sk_buff *frag_skb) 3667 { 3668 skb_frag_t head_frag; 3669 struct page *page; 3670 3671 page = virt_to_head_page(frag_skb->head); 3672 __skb_frag_set_page(&head_frag, page); 3673 skb_frag_off_set(&head_frag, frag_skb->data - 3674 (unsigned char *)page_address(page)); 3675 skb_frag_size_set(&head_frag, skb_headlen(frag_skb)); 3676 return head_frag; 3677 } 3678 3679 struct sk_buff *skb_segment_list(struct sk_buff *skb, 3680 netdev_features_t features, 3681 unsigned int offset) 3682 { 3683 struct sk_buff *list_skb = skb_shinfo(skb)->frag_list; 3684 unsigned int tnl_hlen = skb_tnl_header_len(skb); 3685 unsigned int delta_truesize = 0; 3686 unsigned int delta_len = 0; 3687 struct sk_buff *tail = NULL; 3688 struct sk_buff *nskb, *tmp; 3689 int err; 3690 3691 skb_push(skb, -skb_network_offset(skb) + offset); 3692 3693 skb_shinfo(skb)->frag_list = NULL; 3694 3695 do { 3696 nskb = list_skb; 3697 list_skb = list_skb->next; 3698 3699 err = 0; 3700 if (skb_shared(nskb)) { 3701 tmp = skb_clone(nskb, GFP_ATOMIC); 3702 if (tmp) { 3703 consume_skb(nskb); 3704 nskb = tmp; 3705 err = skb_unclone(nskb, GFP_ATOMIC); 3706 } else { 3707 err = -ENOMEM; 3708 } 3709 } 3710 3711 if (!tail) 3712 skb->next = nskb; 3713 else 3714 tail->next = nskb; 3715 3716 if (unlikely(err)) { 3717 nskb->next = list_skb; 3718 goto err_linearize; 3719 } 3720 3721 tail = nskb; 3722 3723 delta_len += nskb->len; 3724 delta_truesize += nskb->truesize; 3725 3726 skb_push(nskb, -skb_network_offset(nskb) + offset); 3727 3728 skb_release_head_state(nskb); 3729 __copy_skb_header(nskb, skb); 3730 3731 skb_headers_offset_update(nskb, skb_headroom(nskb) - skb_headroom(skb)); 3732 skb_copy_from_linear_data_offset(skb, -tnl_hlen, 3733 nskb->data - tnl_hlen, 3734 offset + tnl_hlen); 3735 3736 if (skb_needs_linearize(nskb, features) && 3737 __skb_linearize(nskb)) 3738 goto err_linearize; 3739 3740 } while (list_skb); 3741 3742 skb->truesize = skb->truesize - delta_truesize; 3743 skb->data_len = skb->data_len - delta_len; 3744 skb->len = skb->len - delta_len; 3745 3746 skb_gso_reset(skb); 3747 3748 skb->prev = tail; 3749 3750 if (skb_needs_linearize(skb, features) && 3751 __skb_linearize(skb)) 3752 goto err_linearize; 3753 3754 skb_get(skb); 3755 3756 return skb; 3757 3758 err_linearize: 3759 kfree_skb_list(skb->next); 3760 skb->next = NULL; 3761 return ERR_PTR(-ENOMEM); 3762 } 3763 EXPORT_SYMBOL_GPL(skb_segment_list); 3764 3765 int skb_gro_receive_list(struct sk_buff *p, struct sk_buff *skb) 3766 { 3767 if (unlikely(p->len + skb->len >= 65536)) 3768 return -E2BIG; 3769 3770 if (NAPI_GRO_CB(p)->last == p) 3771 skb_shinfo(p)->frag_list = skb; 3772 else 3773 NAPI_GRO_CB(p)->last->next = skb; 3774 3775 skb_pull(skb, skb_gro_offset(skb)); 3776 3777 NAPI_GRO_CB(p)->last = skb; 3778 NAPI_GRO_CB(p)->count++; 3779 p->data_len += skb->len; 3780 p->truesize += skb->truesize; 3781 p->len += skb->len; 3782 3783 NAPI_GRO_CB(skb)->same_flow = 1; 3784 3785 return 0; 3786 } 3787 3788 /** 3789 * skb_segment - Perform protocol segmentation on skb. 3790 * @head_skb: buffer to segment 3791 * @features: features for the output path (see dev->features) 3792 * 3793 * This function performs segmentation on the given skb. It returns 3794 * a pointer to the first in a list of new skbs for the segments. 3795 * In case of error it returns ERR_PTR(err). 3796 */ 3797 struct sk_buff *skb_segment(struct sk_buff *head_skb, 3798 netdev_features_t features) 3799 { 3800 struct sk_buff *segs = NULL; 3801 struct sk_buff *tail = NULL; 3802 struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list; 3803 skb_frag_t *frag = skb_shinfo(head_skb)->frags; 3804 unsigned int mss = skb_shinfo(head_skb)->gso_size; 3805 unsigned int doffset = head_skb->data - skb_mac_header(head_skb); 3806 struct sk_buff *frag_skb = head_skb; 3807 unsigned int offset = doffset; 3808 unsigned int tnl_hlen = skb_tnl_header_len(head_skb); 3809 unsigned int partial_segs = 0; 3810 unsigned int headroom; 3811 unsigned int len = head_skb->len; 3812 __be16 proto; 3813 bool csum, sg; 3814 int nfrags = skb_shinfo(head_skb)->nr_frags; 3815 int err = -ENOMEM; 3816 int i = 0; 3817 int pos; 3818 3819 if (list_skb && !list_skb->head_frag && skb_headlen(list_skb) && 3820 (skb_shinfo(head_skb)->gso_type & SKB_GSO_DODGY)) { 3821 /* gso_size is untrusted, and we have a frag_list with a linear 3822 * non head_frag head. 3823 * 3824 * (we assume checking the first list_skb member suffices; 3825 * i.e if either of the list_skb members have non head_frag 3826 * head, then the first one has too). 3827 * 3828 * If head_skb's headlen does not fit requested gso_size, it 3829 * means that the frag_list members do NOT terminate on exact 3830 * gso_size boundaries. Hence we cannot perform skb_frag_t page 3831 * sharing. Therefore we must fallback to copying the frag_list 3832 * skbs; we do so by disabling SG. 3833 */ 3834 if (mss != GSO_BY_FRAGS && mss != skb_headlen(head_skb)) 3835 features &= ~NETIF_F_SG; 3836 } 3837 3838 __skb_push(head_skb, doffset); 3839 proto = skb_network_protocol(head_skb, NULL); 3840 if (unlikely(!proto)) 3841 return ERR_PTR(-EINVAL); 3842 3843 sg = !!(features & NETIF_F_SG); 3844 csum = !!can_checksum_protocol(features, proto); 3845 3846 if (sg && csum && (mss != GSO_BY_FRAGS)) { 3847 if (!(features & NETIF_F_GSO_PARTIAL)) { 3848 struct sk_buff *iter; 3849 unsigned int frag_len; 3850 3851 if (!list_skb || 3852 !net_gso_ok(features, skb_shinfo(head_skb)->gso_type)) 3853 goto normal; 3854 3855 /* If we get here then all the required 3856 * GSO features except frag_list are supported. 3857 * Try to split the SKB to multiple GSO SKBs 3858 * with no frag_list. 3859 * Currently we can do that only when the buffers don't 3860 * have a linear part and all the buffers except 3861 * the last are of the same length. 3862 */ 3863 frag_len = list_skb->len; 3864 skb_walk_frags(head_skb, iter) { 3865 if (frag_len != iter->len && iter->next) 3866 goto normal; 3867 if (skb_headlen(iter) && !iter->head_frag) 3868 goto normal; 3869 3870 len -= iter->len; 3871 } 3872 3873 if (len != frag_len) 3874 goto normal; 3875 } 3876 3877 /* GSO partial only requires that we trim off any excess that 3878 * doesn't fit into an MSS sized block, so take care of that 3879 * now. 3880 */ 3881 partial_segs = len / mss; 3882 if (partial_segs > 1) 3883 mss *= partial_segs; 3884 else 3885 partial_segs = 0; 3886 } 3887 3888 normal: 3889 headroom = skb_headroom(head_skb); 3890 pos = skb_headlen(head_skb); 3891 3892 do { 3893 struct sk_buff *nskb; 3894 skb_frag_t *nskb_frag; 3895 int hsize; 3896 int size; 3897 3898 if (unlikely(mss == GSO_BY_FRAGS)) { 3899 len = list_skb->len; 3900 } else { 3901 len = head_skb->len - offset; 3902 if (len > mss) 3903 len = mss; 3904 } 3905 3906 hsize = skb_headlen(head_skb) - offset; 3907 3908 if (hsize <= 0 && i >= nfrags && skb_headlen(list_skb) && 3909 (skb_headlen(list_skb) == len || sg)) { 3910 BUG_ON(skb_headlen(list_skb) > len); 3911 3912 i = 0; 3913 nfrags = skb_shinfo(list_skb)->nr_frags; 3914 frag = skb_shinfo(list_skb)->frags; 3915 frag_skb = list_skb; 3916 pos += skb_headlen(list_skb); 3917 3918 while (pos < offset + len) { 3919 BUG_ON(i >= nfrags); 3920 3921 size = skb_frag_size(frag); 3922 if (pos + size > offset + len) 3923 break; 3924 3925 i++; 3926 pos += size; 3927 frag++; 3928 } 3929 3930 nskb = skb_clone(list_skb, GFP_ATOMIC); 3931 list_skb = list_skb->next; 3932 3933 if (unlikely(!nskb)) 3934 goto err; 3935 3936 if (unlikely(pskb_trim(nskb, len))) { 3937 kfree_skb(nskb); 3938 goto err; 3939 } 3940 3941 hsize = skb_end_offset(nskb); 3942 if (skb_cow_head(nskb, doffset + headroom)) { 3943 kfree_skb(nskb); 3944 goto err; 3945 } 3946 3947 nskb->truesize += skb_end_offset(nskb) - hsize; 3948 skb_release_head_state(nskb); 3949 __skb_push(nskb, doffset); 3950 } else { 3951 if (hsize < 0) 3952 hsize = 0; 3953 if (hsize > len || !sg) 3954 hsize = len; 3955 3956 nskb = __alloc_skb(hsize + doffset + headroom, 3957 GFP_ATOMIC, skb_alloc_rx_flag(head_skb), 3958 NUMA_NO_NODE); 3959 3960 if (unlikely(!nskb)) 3961 goto err; 3962 3963 skb_reserve(nskb, headroom); 3964 __skb_put(nskb, doffset); 3965 } 3966 3967 if (segs) 3968 tail->next = nskb; 3969 else 3970 segs = nskb; 3971 tail = nskb; 3972 3973 __copy_skb_header(nskb, head_skb); 3974 3975 skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom); 3976 skb_reset_mac_len(nskb); 3977 3978 skb_copy_from_linear_data_offset(head_skb, -tnl_hlen, 3979 nskb->data - tnl_hlen, 3980 doffset + tnl_hlen); 3981 3982 if (nskb->len == len + doffset) 3983 goto perform_csum_check; 3984 3985 if (!sg) { 3986 if (!csum) { 3987 if (!nskb->remcsum_offload) 3988 nskb->ip_summed = CHECKSUM_NONE; 3989 SKB_GSO_CB(nskb)->csum = 3990 skb_copy_and_csum_bits(head_skb, offset, 3991 skb_put(nskb, 3992 len), 3993 len); 3994 SKB_GSO_CB(nskb)->csum_start = 3995 skb_headroom(nskb) + doffset; 3996 } else { 3997 skb_copy_bits(head_skb, offset, 3998 skb_put(nskb, len), 3999 len); 4000 } 4001 continue; 4002 } 4003 4004 nskb_frag = skb_shinfo(nskb)->frags; 4005 4006 skb_copy_from_linear_data_offset(head_skb, offset, 4007 skb_put(nskb, hsize), hsize); 4008 4009 skb_shinfo(nskb)->flags |= skb_shinfo(head_skb)->flags & 4010 SKBFL_SHARED_FRAG; 4011 4012 if (skb_orphan_frags(frag_skb, GFP_ATOMIC) || 4013 skb_zerocopy_clone(nskb, frag_skb, GFP_ATOMIC)) 4014 goto err; 4015 4016 while (pos < offset + len) { 4017 if (i >= nfrags) { 4018 i = 0; 4019 nfrags = skb_shinfo(list_skb)->nr_frags; 4020 frag = skb_shinfo(list_skb)->frags; 4021 frag_skb = list_skb; 4022 if (!skb_headlen(list_skb)) { 4023 BUG_ON(!nfrags); 4024 } else { 4025 BUG_ON(!list_skb->head_frag); 4026 4027 /* to make room for head_frag. */ 4028 i--; 4029 frag--; 4030 } 4031 if (skb_orphan_frags(frag_skb, GFP_ATOMIC) || 4032 skb_zerocopy_clone(nskb, frag_skb, 4033 GFP_ATOMIC)) 4034 goto err; 4035 4036 list_skb = list_skb->next; 4037 } 4038 4039 if (unlikely(skb_shinfo(nskb)->nr_frags >= 4040 MAX_SKB_FRAGS)) { 4041 net_warn_ratelimited( 4042 "skb_segment: too many frags: %u %u\n", 4043 pos, mss); 4044 err = -EINVAL; 4045 goto err; 4046 } 4047 4048 *nskb_frag = (i < 0) ? skb_head_frag_to_page_desc(frag_skb) : *frag; 4049 __skb_frag_ref(nskb_frag); 4050 size = skb_frag_size(nskb_frag); 4051 4052 if (pos < offset) { 4053 skb_frag_off_add(nskb_frag, offset - pos); 4054 skb_frag_size_sub(nskb_frag, offset - pos); 4055 } 4056 4057 skb_shinfo(nskb)->nr_frags++; 4058 4059 if (pos + size <= offset + len) { 4060 i++; 4061 frag++; 4062 pos += size; 4063 } else { 4064 skb_frag_size_sub(nskb_frag, pos + size - (offset + len)); 4065 goto skip_fraglist; 4066 } 4067 4068 nskb_frag++; 4069 } 4070 4071 skip_fraglist: 4072 nskb->data_len = len - hsize; 4073 nskb->len += nskb->data_len; 4074 nskb->truesize += nskb->data_len; 4075 4076 perform_csum_check: 4077 if (!csum) { 4078 if (skb_has_shared_frag(nskb) && 4079 __skb_linearize(nskb)) 4080 goto err; 4081 4082 if (!nskb->remcsum_offload) 4083 nskb->ip_summed = CHECKSUM_NONE; 4084 SKB_GSO_CB(nskb)->csum = 4085 skb_checksum(nskb, doffset, 4086 nskb->len - doffset, 0); 4087 SKB_GSO_CB(nskb)->csum_start = 4088 skb_headroom(nskb) + doffset; 4089 } 4090 } while ((offset += len) < head_skb->len); 4091 4092 /* Some callers want to get the end of the list. 4093 * Put it in segs->prev to avoid walking the list. 4094 * (see validate_xmit_skb_list() for example) 4095 */ 4096 segs->prev = tail; 4097 4098 if (partial_segs) { 4099 struct sk_buff *iter; 4100 int type = skb_shinfo(head_skb)->gso_type; 4101 unsigned short gso_size = skb_shinfo(head_skb)->gso_size; 4102 4103 /* Update type to add partial and then remove dodgy if set */ 4104 type |= (features & NETIF_F_GSO_PARTIAL) / NETIF_F_GSO_PARTIAL * SKB_GSO_PARTIAL; 4105 type &= ~SKB_GSO_DODGY; 4106 4107 /* Update GSO info and prepare to start updating headers on 4108 * our way back down the stack of protocols. 4109 */ 4110 for (iter = segs; iter; iter = iter->next) { 4111 skb_shinfo(iter)->gso_size = gso_size; 4112 skb_shinfo(iter)->gso_segs = partial_segs; 4113 skb_shinfo(iter)->gso_type = type; 4114 SKB_GSO_CB(iter)->data_offset = skb_headroom(iter) + doffset; 4115 } 4116 4117 if (tail->len - doffset <= gso_size) 4118 skb_shinfo(tail)->gso_size = 0; 4119 else if (tail != segs) 4120 skb_shinfo(tail)->gso_segs = DIV_ROUND_UP(tail->len - doffset, gso_size); 4121 } 4122 4123 /* Following permits correct backpressure, for protocols 4124 * using skb_set_owner_w(). 4125 * Idea is to tranfert ownership from head_skb to last segment. 4126 */ 4127 if (head_skb->destructor == sock_wfree) { 4128 swap(tail->truesize, head_skb->truesize); 4129 swap(tail->destructor, head_skb->destructor); 4130 swap(tail->sk, head_skb->sk); 4131 } 4132 return segs; 4133 4134 err: 4135 kfree_skb_list(segs); 4136 return ERR_PTR(err); 4137 } 4138 EXPORT_SYMBOL_GPL(skb_segment); 4139 4140 int skb_gro_receive(struct sk_buff *p, struct sk_buff *skb) 4141 { 4142 struct skb_shared_info *pinfo, *skbinfo = skb_shinfo(skb); 4143 unsigned int offset = skb_gro_offset(skb); 4144 unsigned int headlen = skb_headlen(skb); 4145 unsigned int len = skb_gro_len(skb); 4146 unsigned int delta_truesize; 4147 struct sk_buff *lp; 4148 4149 if (unlikely(p->len + len >= 65536 || NAPI_GRO_CB(skb)->flush)) 4150 return -E2BIG; 4151 4152 lp = NAPI_GRO_CB(p)->last; 4153 pinfo = skb_shinfo(lp); 4154 4155 if (headlen <= offset) { 4156 skb_frag_t *frag; 4157 skb_frag_t *frag2; 4158 int i = skbinfo->nr_frags; 4159 int nr_frags = pinfo->nr_frags + i; 4160 4161 if (nr_frags > MAX_SKB_FRAGS) 4162 goto merge; 4163 4164 offset -= headlen; 4165 pinfo->nr_frags = nr_frags; 4166 skbinfo->nr_frags = 0; 4167 4168 frag = pinfo->frags + nr_frags; 4169 frag2 = skbinfo->frags + i; 4170 do { 4171 *--frag = *--frag2; 4172 } while (--i); 4173 4174 skb_frag_off_add(frag, offset); 4175 skb_frag_size_sub(frag, offset); 4176 4177 /* all fragments truesize : remove (head size + sk_buff) */ 4178 delta_truesize = skb->truesize - 4179 SKB_TRUESIZE(skb_end_offset(skb)); 4180 4181 skb->truesize -= skb->data_len; 4182 skb->len -= skb->data_len; 4183 skb->data_len = 0; 4184 4185 NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE; 4186 goto done; 4187 } else if (skb->head_frag) { 4188 int nr_frags = pinfo->nr_frags; 4189 skb_frag_t *frag = pinfo->frags + nr_frags; 4190 struct page *page = virt_to_head_page(skb->head); 4191 unsigned int first_size = headlen - offset; 4192 unsigned int first_offset; 4193 4194 if (nr_frags + 1 + skbinfo->nr_frags > MAX_SKB_FRAGS) 4195 goto merge; 4196 4197 first_offset = skb->data - 4198 (unsigned char *)page_address(page) + 4199 offset; 4200 4201 pinfo->nr_frags = nr_frags + 1 + skbinfo->nr_frags; 4202 4203 __skb_frag_set_page(frag, page); 4204 skb_frag_off_set(frag, first_offset); 4205 skb_frag_size_set(frag, first_size); 4206 4207 memcpy(frag + 1, skbinfo->frags, sizeof(*frag) * skbinfo->nr_frags); 4208 /* We dont need to clear skbinfo->nr_frags here */ 4209 4210 delta_truesize = skb->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff)); 4211 NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE_STOLEN_HEAD; 4212 goto done; 4213 } 4214 4215 merge: 4216 delta_truesize = skb->truesize; 4217 if (offset > headlen) { 4218 unsigned int eat = offset - headlen; 4219 4220 skb_frag_off_add(&skbinfo->frags[0], eat); 4221 skb_frag_size_sub(&skbinfo->frags[0], eat); 4222 skb->data_len -= eat; 4223 skb->len -= eat; 4224 offset = headlen; 4225 } 4226 4227 __skb_pull(skb, offset); 4228 4229 if (NAPI_GRO_CB(p)->last == p) 4230 skb_shinfo(p)->frag_list = skb; 4231 else 4232 NAPI_GRO_CB(p)->last->next = skb; 4233 NAPI_GRO_CB(p)->last = skb; 4234 __skb_header_release(skb); 4235 lp = p; 4236 4237 done: 4238 NAPI_GRO_CB(p)->count++; 4239 p->data_len += len; 4240 p->truesize += delta_truesize; 4241 p->len += len; 4242 if (lp != p) { 4243 lp->data_len += len; 4244 lp->truesize += delta_truesize; 4245 lp->len += len; 4246 } 4247 NAPI_GRO_CB(skb)->same_flow = 1; 4248 return 0; 4249 } 4250 4251 #ifdef CONFIG_SKB_EXTENSIONS 4252 #define SKB_EXT_ALIGN_VALUE 8 4253 #define SKB_EXT_CHUNKSIZEOF(x) (ALIGN((sizeof(x)), SKB_EXT_ALIGN_VALUE) / SKB_EXT_ALIGN_VALUE) 4254 4255 static const u8 skb_ext_type_len[] = { 4256 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 4257 [SKB_EXT_BRIDGE_NF] = SKB_EXT_CHUNKSIZEOF(struct nf_bridge_info), 4258 #endif 4259 #ifdef CONFIG_XFRM 4260 [SKB_EXT_SEC_PATH] = SKB_EXT_CHUNKSIZEOF(struct sec_path), 4261 #endif 4262 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT) 4263 [TC_SKB_EXT] = SKB_EXT_CHUNKSIZEOF(struct tc_skb_ext), 4264 #endif 4265 #if IS_ENABLED(CONFIG_MPTCP) 4266 [SKB_EXT_MPTCP] = SKB_EXT_CHUNKSIZEOF(struct mptcp_ext), 4267 #endif 4268 }; 4269 4270 static __always_inline unsigned int skb_ext_total_length(void) 4271 { 4272 return SKB_EXT_CHUNKSIZEOF(struct skb_ext) + 4273 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 4274 skb_ext_type_len[SKB_EXT_BRIDGE_NF] + 4275 #endif 4276 #ifdef CONFIG_XFRM 4277 skb_ext_type_len[SKB_EXT_SEC_PATH] + 4278 #endif 4279 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT) 4280 skb_ext_type_len[TC_SKB_EXT] + 4281 #endif 4282 #if IS_ENABLED(CONFIG_MPTCP) 4283 skb_ext_type_len[SKB_EXT_MPTCP] + 4284 #endif 4285 0; 4286 } 4287 4288 static void skb_extensions_init(void) 4289 { 4290 BUILD_BUG_ON(SKB_EXT_NUM >= 8); 4291 BUILD_BUG_ON(skb_ext_total_length() > 255); 4292 4293 skbuff_ext_cache = kmem_cache_create("skbuff_ext_cache", 4294 SKB_EXT_ALIGN_VALUE * skb_ext_total_length(), 4295 0, 4296 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 4297 NULL); 4298 } 4299 #else 4300 static void skb_extensions_init(void) {} 4301 #endif 4302 4303 void __init skb_init(void) 4304 { 4305 skbuff_head_cache = kmem_cache_create_usercopy("skbuff_head_cache", 4306 sizeof(struct sk_buff), 4307 0, 4308 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 4309 offsetof(struct sk_buff, cb), 4310 sizeof_field(struct sk_buff, cb), 4311 NULL); 4312 skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache", 4313 sizeof(struct sk_buff_fclones), 4314 0, 4315 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 4316 NULL); 4317 skb_extensions_init(); 4318 } 4319 4320 static int 4321 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len, 4322 unsigned int recursion_level) 4323 { 4324 int start = skb_headlen(skb); 4325 int i, copy = start - offset; 4326 struct sk_buff *frag_iter; 4327 int elt = 0; 4328 4329 if (unlikely(recursion_level >= 24)) 4330 return -EMSGSIZE; 4331 4332 if (copy > 0) { 4333 if (copy > len) 4334 copy = len; 4335 sg_set_buf(sg, skb->data + offset, copy); 4336 elt++; 4337 if ((len -= copy) == 0) 4338 return elt; 4339 offset += copy; 4340 } 4341 4342 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 4343 int end; 4344 4345 WARN_ON(start > offset + len); 4346 4347 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]); 4348 if ((copy = end - offset) > 0) { 4349 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 4350 if (unlikely(elt && sg_is_last(&sg[elt - 1]))) 4351 return -EMSGSIZE; 4352 4353 if (copy > len) 4354 copy = len; 4355 sg_set_page(&sg[elt], skb_frag_page(frag), copy, 4356 skb_frag_off(frag) + offset - start); 4357 elt++; 4358 if (!(len -= copy)) 4359 return elt; 4360 offset += copy; 4361 } 4362 start = end; 4363 } 4364 4365 skb_walk_frags(skb, frag_iter) { 4366 int end, ret; 4367 4368 WARN_ON(start > offset + len); 4369 4370 end = start + frag_iter->len; 4371 if ((copy = end - offset) > 0) { 4372 if (unlikely(elt && sg_is_last(&sg[elt - 1]))) 4373 return -EMSGSIZE; 4374 4375 if (copy > len) 4376 copy = len; 4377 ret = __skb_to_sgvec(frag_iter, sg+elt, offset - start, 4378 copy, recursion_level + 1); 4379 if (unlikely(ret < 0)) 4380 return ret; 4381 elt += ret; 4382 if ((len -= copy) == 0) 4383 return elt; 4384 offset += copy; 4385 } 4386 start = end; 4387 } 4388 BUG_ON(len); 4389 return elt; 4390 } 4391 4392 /** 4393 * skb_to_sgvec - Fill a scatter-gather list from a socket buffer 4394 * @skb: Socket buffer containing the buffers to be mapped 4395 * @sg: The scatter-gather list to map into 4396 * @offset: The offset into the buffer's contents to start mapping 4397 * @len: Length of buffer space to be mapped 4398 * 4399 * Fill the specified scatter-gather list with mappings/pointers into a 4400 * region of the buffer space attached to a socket buffer. Returns either 4401 * the number of scatterlist items used, or -EMSGSIZE if the contents 4402 * could not fit. 4403 */ 4404 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len) 4405 { 4406 int nsg = __skb_to_sgvec(skb, sg, offset, len, 0); 4407 4408 if (nsg <= 0) 4409 return nsg; 4410 4411 sg_mark_end(&sg[nsg - 1]); 4412 4413 return nsg; 4414 } 4415 EXPORT_SYMBOL_GPL(skb_to_sgvec); 4416 4417 /* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given 4418 * sglist without mark the sg which contain last skb data as the end. 4419 * So the caller can mannipulate sg list as will when padding new data after 4420 * the first call without calling sg_unmark_end to expend sg list. 4421 * 4422 * Scenario to use skb_to_sgvec_nomark: 4423 * 1. sg_init_table 4424 * 2. skb_to_sgvec_nomark(payload1) 4425 * 3. skb_to_sgvec_nomark(payload2) 4426 * 4427 * This is equivalent to: 4428 * 1. sg_init_table 4429 * 2. skb_to_sgvec(payload1) 4430 * 3. sg_unmark_end 4431 * 4. skb_to_sgvec(payload2) 4432 * 4433 * When mapping mutilple payload conditionally, skb_to_sgvec_nomark 4434 * is more preferable. 4435 */ 4436 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg, 4437 int offset, int len) 4438 { 4439 return __skb_to_sgvec(skb, sg, offset, len, 0); 4440 } 4441 EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark); 4442 4443 4444 4445 /** 4446 * skb_cow_data - Check that a socket buffer's data buffers are writable 4447 * @skb: The socket buffer to check. 4448 * @tailbits: Amount of trailing space to be added 4449 * @trailer: Returned pointer to the skb where the @tailbits space begins 4450 * 4451 * Make sure that the data buffers attached to a socket buffer are 4452 * writable. If they are not, private copies are made of the data buffers 4453 * and the socket buffer is set to use these instead. 4454 * 4455 * If @tailbits is given, make sure that there is space to write @tailbits 4456 * bytes of data beyond current end of socket buffer. @trailer will be 4457 * set to point to the skb in which this space begins. 4458 * 4459 * The number of scatterlist elements required to completely map the 4460 * COW'd and extended socket buffer will be returned. 4461 */ 4462 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer) 4463 { 4464 int copyflag; 4465 int elt; 4466 struct sk_buff *skb1, **skb_p; 4467 4468 /* If skb is cloned or its head is paged, reallocate 4469 * head pulling out all the pages (pages are considered not writable 4470 * at the moment even if they are anonymous). 4471 */ 4472 if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) && 4473 !__pskb_pull_tail(skb, __skb_pagelen(skb))) 4474 return -ENOMEM; 4475 4476 /* Easy case. Most of packets will go this way. */ 4477 if (!skb_has_frag_list(skb)) { 4478 /* A little of trouble, not enough of space for trailer. 4479 * This should not happen, when stack is tuned to generate 4480 * good frames. OK, on miss we reallocate and reserve even more 4481 * space, 128 bytes is fair. */ 4482 4483 if (skb_tailroom(skb) < tailbits && 4484 pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC)) 4485 return -ENOMEM; 4486 4487 /* Voila! */ 4488 *trailer = skb; 4489 return 1; 4490 } 4491 4492 /* Misery. We are in troubles, going to mincer fragments... */ 4493 4494 elt = 1; 4495 skb_p = &skb_shinfo(skb)->frag_list; 4496 copyflag = 0; 4497 4498 while ((skb1 = *skb_p) != NULL) { 4499 int ntail = 0; 4500 4501 /* The fragment is partially pulled by someone, 4502 * this can happen on input. Copy it and everything 4503 * after it. */ 4504 4505 if (skb_shared(skb1)) 4506 copyflag = 1; 4507 4508 /* If the skb is the last, worry about trailer. */ 4509 4510 if (skb1->next == NULL && tailbits) { 4511 if (skb_shinfo(skb1)->nr_frags || 4512 skb_has_frag_list(skb1) || 4513 skb_tailroom(skb1) < tailbits) 4514 ntail = tailbits + 128; 4515 } 4516 4517 if (copyflag || 4518 skb_cloned(skb1) || 4519 ntail || 4520 skb_shinfo(skb1)->nr_frags || 4521 skb_has_frag_list(skb1)) { 4522 struct sk_buff *skb2; 4523 4524 /* Fuck, we are miserable poor guys... */ 4525 if (ntail == 0) 4526 skb2 = skb_copy(skb1, GFP_ATOMIC); 4527 else 4528 skb2 = skb_copy_expand(skb1, 4529 skb_headroom(skb1), 4530 ntail, 4531 GFP_ATOMIC); 4532 if (unlikely(skb2 == NULL)) 4533 return -ENOMEM; 4534 4535 if (skb1->sk) 4536 skb_set_owner_w(skb2, skb1->sk); 4537 4538 /* Looking around. Are we still alive? 4539 * OK, link new skb, drop old one */ 4540 4541 skb2->next = skb1->next; 4542 *skb_p = skb2; 4543 kfree_skb(skb1); 4544 skb1 = skb2; 4545 } 4546 elt++; 4547 *trailer = skb1; 4548 skb_p = &skb1->next; 4549 } 4550 4551 return elt; 4552 } 4553 EXPORT_SYMBOL_GPL(skb_cow_data); 4554 4555 static void sock_rmem_free(struct sk_buff *skb) 4556 { 4557 struct sock *sk = skb->sk; 4558 4559 atomic_sub(skb->truesize, &sk->sk_rmem_alloc); 4560 } 4561 4562 static void skb_set_err_queue(struct sk_buff *skb) 4563 { 4564 /* pkt_type of skbs received on local sockets is never PACKET_OUTGOING. 4565 * So, it is safe to (mis)use it to mark skbs on the error queue. 4566 */ 4567 skb->pkt_type = PACKET_OUTGOING; 4568 BUILD_BUG_ON(PACKET_OUTGOING == 0); 4569 } 4570 4571 /* 4572 * Note: We dont mem charge error packets (no sk_forward_alloc changes) 4573 */ 4574 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb) 4575 { 4576 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >= 4577 (unsigned int)READ_ONCE(sk->sk_rcvbuf)) 4578 return -ENOMEM; 4579 4580 skb_orphan(skb); 4581 skb->sk = sk; 4582 skb->destructor = sock_rmem_free; 4583 atomic_add(skb->truesize, &sk->sk_rmem_alloc); 4584 skb_set_err_queue(skb); 4585 4586 /* before exiting rcu section, make sure dst is refcounted */ 4587 skb_dst_force(skb); 4588 4589 skb_queue_tail(&sk->sk_error_queue, skb); 4590 if (!sock_flag(sk, SOCK_DEAD)) 4591 sk->sk_error_report(sk); 4592 return 0; 4593 } 4594 EXPORT_SYMBOL(sock_queue_err_skb); 4595 4596 static bool is_icmp_err_skb(const struct sk_buff *skb) 4597 { 4598 return skb && (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP || 4599 SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP6); 4600 } 4601 4602 struct sk_buff *sock_dequeue_err_skb(struct sock *sk) 4603 { 4604 struct sk_buff_head *q = &sk->sk_error_queue; 4605 struct sk_buff *skb, *skb_next = NULL; 4606 bool icmp_next = false; 4607 unsigned long flags; 4608 4609 spin_lock_irqsave(&q->lock, flags); 4610 skb = __skb_dequeue(q); 4611 if (skb && (skb_next = skb_peek(q))) { 4612 icmp_next = is_icmp_err_skb(skb_next); 4613 if (icmp_next) 4614 sk->sk_err = SKB_EXT_ERR(skb_next)->ee.ee_errno; 4615 } 4616 spin_unlock_irqrestore(&q->lock, flags); 4617 4618 if (is_icmp_err_skb(skb) && !icmp_next) 4619 sk->sk_err = 0; 4620 4621 if (skb_next) 4622 sk->sk_error_report(sk); 4623 4624 return skb; 4625 } 4626 EXPORT_SYMBOL(sock_dequeue_err_skb); 4627 4628 /** 4629 * skb_clone_sk - create clone of skb, and take reference to socket 4630 * @skb: the skb to clone 4631 * 4632 * This function creates a clone of a buffer that holds a reference on 4633 * sk_refcnt. Buffers created via this function are meant to be 4634 * returned using sock_queue_err_skb, or free via kfree_skb. 4635 * 4636 * When passing buffers allocated with this function to sock_queue_err_skb 4637 * it is necessary to wrap the call with sock_hold/sock_put in order to 4638 * prevent the socket from being released prior to being enqueued on 4639 * the sk_error_queue. 4640 */ 4641 struct sk_buff *skb_clone_sk(struct sk_buff *skb) 4642 { 4643 struct sock *sk = skb->sk; 4644 struct sk_buff *clone; 4645 4646 if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt)) 4647 return NULL; 4648 4649 clone = skb_clone(skb, GFP_ATOMIC); 4650 if (!clone) { 4651 sock_put(sk); 4652 return NULL; 4653 } 4654 4655 clone->sk = sk; 4656 clone->destructor = sock_efree; 4657 4658 return clone; 4659 } 4660 EXPORT_SYMBOL(skb_clone_sk); 4661 4662 static void __skb_complete_tx_timestamp(struct sk_buff *skb, 4663 struct sock *sk, 4664 int tstype, 4665 bool opt_stats) 4666 { 4667 struct sock_exterr_skb *serr; 4668 int err; 4669 4670 BUILD_BUG_ON(sizeof(struct sock_exterr_skb) > sizeof(skb->cb)); 4671 4672 serr = SKB_EXT_ERR(skb); 4673 memset(serr, 0, sizeof(*serr)); 4674 serr->ee.ee_errno = ENOMSG; 4675 serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING; 4676 serr->ee.ee_info = tstype; 4677 serr->opt_stats = opt_stats; 4678 serr->header.h4.iif = skb->dev ? skb->dev->ifindex : 0; 4679 if (sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID) { 4680 serr->ee.ee_data = skb_shinfo(skb)->tskey; 4681 if (sk->sk_protocol == IPPROTO_TCP && 4682 sk->sk_type == SOCK_STREAM) 4683 serr->ee.ee_data -= sk->sk_tskey; 4684 } 4685 4686 err = sock_queue_err_skb(sk, skb); 4687 4688 if (err) 4689 kfree_skb(skb); 4690 } 4691 4692 static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly) 4693 { 4694 bool ret; 4695 4696 if (likely(sysctl_tstamp_allow_data || tsonly)) 4697 return true; 4698 4699 read_lock_bh(&sk->sk_callback_lock); 4700 ret = sk->sk_socket && sk->sk_socket->file && 4701 file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW); 4702 read_unlock_bh(&sk->sk_callback_lock); 4703 return ret; 4704 } 4705 4706 void skb_complete_tx_timestamp(struct sk_buff *skb, 4707 struct skb_shared_hwtstamps *hwtstamps) 4708 { 4709 struct sock *sk = skb->sk; 4710 4711 if (!skb_may_tx_timestamp(sk, false)) 4712 goto err; 4713 4714 /* Take a reference to prevent skb_orphan() from freeing the socket, 4715 * but only if the socket refcount is not zero. 4716 */ 4717 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) { 4718 *skb_hwtstamps(skb) = *hwtstamps; 4719 __skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND, false); 4720 sock_put(sk); 4721 return; 4722 } 4723 4724 err: 4725 kfree_skb(skb); 4726 } 4727 EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp); 4728 4729 void __skb_tstamp_tx(struct sk_buff *orig_skb, 4730 const struct sk_buff *ack_skb, 4731 struct skb_shared_hwtstamps *hwtstamps, 4732 struct sock *sk, int tstype) 4733 { 4734 struct sk_buff *skb; 4735 bool tsonly, opt_stats = false; 4736 4737 if (!sk) 4738 return; 4739 4740 if (!hwtstamps && !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TX_SWHW) && 4741 skb_shinfo(orig_skb)->tx_flags & SKBTX_IN_PROGRESS) 4742 return; 4743 4744 tsonly = sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TSONLY; 4745 if (!skb_may_tx_timestamp(sk, tsonly)) 4746 return; 4747 4748 if (tsonly) { 4749 #ifdef CONFIG_INET 4750 if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_STATS) && 4751 sk->sk_protocol == IPPROTO_TCP && 4752 sk->sk_type == SOCK_STREAM) { 4753 skb = tcp_get_timestamping_opt_stats(sk, orig_skb, 4754 ack_skb); 4755 opt_stats = true; 4756 } else 4757 #endif 4758 skb = alloc_skb(0, GFP_ATOMIC); 4759 } else { 4760 skb = skb_clone(orig_skb, GFP_ATOMIC); 4761 } 4762 if (!skb) 4763 return; 4764 4765 if (tsonly) { 4766 skb_shinfo(skb)->tx_flags |= skb_shinfo(orig_skb)->tx_flags & 4767 SKBTX_ANY_TSTAMP; 4768 skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey; 4769 } 4770 4771 if (hwtstamps) 4772 *skb_hwtstamps(skb) = *hwtstamps; 4773 else 4774 skb->tstamp = ktime_get_real(); 4775 4776 __skb_complete_tx_timestamp(skb, sk, tstype, opt_stats); 4777 } 4778 EXPORT_SYMBOL_GPL(__skb_tstamp_tx); 4779 4780 void skb_tstamp_tx(struct sk_buff *orig_skb, 4781 struct skb_shared_hwtstamps *hwtstamps) 4782 { 4783 return __skb_tstamp_tx(orig_skb, NULL, hwtstamps, orig_skb->sk, 4784 SCM_TSTAMP_SND); 4785 } 4786 EXPORT_SYMBOL_GPL(skb_tstamp_tx); 4787 4788 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked) 4789 { 4790 struct sock *sk = skb->sk; 4791 struct sock_exterr_skb *serr; 4792 int err = 1; 4793 4794 skb->wifi_acked_valid = 1; 4795 skb->wifi_acked = acked; 4796 4797 serr = SKB_EXT_ERR(skb); 4798 memset(serr, 0, sizeof(*serr)); 4799 serr->ee.ee_errno = ENOMSG; 4800 serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS; 4801 4802 /* Take a reference to prevent skb_orphan() from freeing the socket, 4803 * but only if the socket refcount is not zero. 4804 */ 4805 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) { 4806 err = sock_queue_err_skb(sk, skb); 4807 sock_put(sk); 4808 } 4809 if (err) 4810 kfree_skb(skb); 4811 } 4812 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack); 4813 4814 /** 4815 * skb_partial_csum_set - set up and verify partial csum values for packet 4816 * @skb: the skb to set 4817 * @start: the number of bytes after skb->data to start checksumming. 4818 * @off: the offset from start to place the checksum. 4819 * 4820 * For untrusted partially-checksummed packets, we need to make sure the values 4821 * for skb->csum_start and skb->csum_offset are valid so we don't oops. 4822 * 4823 * This function checks and sets those values and skb->ip_summed: if this 4824 * returns false you should drop the packet. 4825 */ 4826 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off) 4827 { 4828 u32 csum_end = (u32)start + (u32)off + sizeof(__sum16); 4829 u32 csum_start = skb_headroom(skb) + (u32)start; 4830 4831 if (unlikely(csum_start > U16_MAX || csum_end > skb_headlen(skb))) { 4832 net_warn_ratelimited("bad partial csum: csum=%u/%u headroom=%u headlen=%u\n", 4833 start, off, skb_headroom(skb), skb_headlen(skb)); 4834 return false; 4835 } 4836 skb->ip_summed = CHECKSUM_PARTIAL; 4837 skb->csum_start = csum_start; 4838 skb->csum_offset = off; 4839 skb_set_transport_header(skb, start); 4840 return true; 4841 } 4842 EXPORT_SYMBOL_GPL(skb_partial_csum_set); 4843 4844 static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len, 4845 unsigned int max) 4846 { 4847 if (skb_headlen(skb) >= len) 4848 return 0; 4849 4850 /* If we need to pullup then pullup to the max, so we 4851 * won't need to do it again. 4852 */ 4853 if (max > skb->len) 4854 max = skb->len; 4855 4856 if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL) 4857 return -ENOMEM; 4858 4859 if (skb_headlen(skb) < len) 4860 return -EPROTO; 4861 4862 return 0; 4863 } 4864 4865 #define MAX_TCP_HDR_LEN (15 * 4) 4866 4867 static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb, 4868 typeof(IPPROTO_IP) proto, 4869 unsigned int off) 4870 { 4871 int err; 4872 4873 switch (proto) { 4874 case IPPROTO_TCP: 4875 err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr), 4876 off + MAX_TCP_HDR_LEN); 4877 if (!err && !skb_partial_csum_set(skb, off, 4878 offsetof(struct tcphdr, 4879 check))) 4880 err = -EPROTO; 4881 return err ? ERR_PTR(err) : &tcp_hdr(skb)->check; 4882 4883 case IPPROTO_UDP: 4884 err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr), 4885 off + sizeof(struct udphdr)); 4886 if (!err && !skb_partial_csum_set(skb, off, 4887 offsetof(struct udphdr, 4888 check))) 4889 err = -EPROTO; 4890 return err ? ERR_PTR(err) : &udp_hdr(skb)->check; 4891 } 4892 4893 return ERR_PTR(-EPROTO); 4894 } 4895 4896 /* This value should be large enough to cover a tagged ethernet header plus 4897 * maximally sized IP and TCP or UDP headers. 4898 */ 4899 #define MAX_IP_HDR_LEN 128 4900 4901 static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate) 4902 { 4903 unsigned int off; 4904 bool fragment; 4905 __sum16 *csum; 4906 int err; 4907 4908 fragment = false; 4909 4910 err = skb_maybe_pull_tail(skb, 4911 sizeof(struct iphdr), 4912 MAX_IP_HDR_LEN); 4913 if (err < 0) 4914 goto out; 4915 4916 if (ip_is_fragment(ip_hdr(skb))) 4917 fragment = true; 4918 4919 off = ip_hdrlen(skb); 4920 4921 err = -EPROTO; 4922 4923 if (fragment) 4924 goto out; 4925 4926 csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off); 4927 if (IS_ERR(csum)) 4928 return PTR_ERR(csum); 4929 4930 if (recalculate) 4931 *csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr, 4932 ip_hdr(skb)->daddr, 4933 skb->len - off, 4934 ip_hdr(skb)->protocol, 0); 4935 err = 0; 4936 4937 out: 4938 return err; 4939 } 4940 4941 /* This value should be large enough to cover a tagged ethernet header plus 4942 * an IPv6 header, all options, and a maximal TCP or UDP header. 4943 */ 4944 #define MAX_IPV6_HDR_LEN 256 4945 4946 #define OPT_HDR(type, skb, off) \ 4947 (type *)(skb_network_header(skb) + (off)) 4948 4949 static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate) 4950 { 4951 int err; 4952 u8 nexthdr; 4953 unsigned int off; 4954 unsigned int len; 4955 bool fragment; 4956 bool done; 4957 __sum16 *csum; 4958 4959 fragment = false; 4960 done = false; 4961 4962 off = sizeof(struct ipv6hdr); 4963 4964 err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN); 4965 if (err < 0) 4966 goto out; 4967 4968 nexthdr = ipv6_hdr(skb)->nexthdr; 4969 4970 len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len); 4971 while (off <= len && !done) { 4972 switch (nexthdr) { 4973 case IPPROTO_DSTOPTS: 4974 case IPPROTO_HOPOPTS: 4975 case IPPROTO_ROUTING: { 4976 struct ipv6_opt_hdr *hp; 4977 4978 err = skb_maybe_pull_tail(skb, 4979 off + 4980 sizeof(struct ipv6_opt_hdr), 4981 MAX_IPV6_HDR_LEN); 4982 if (err < 0) 4983 goto out; 4984 4985 hp = OPT_HDR(struct ipv6_opt_hdr, skb, off); 4986 nexthdr = hp->nexthdr; 4987 off += ipv6_optlen(hp); 4988 break; 4989 } 4990 case IPPROTO_AH: { 4991 struct ip_auth_hdr *hp; 4992 4993 err = skb_maybe_pull_tail(skb, 4994 off + 4995 sizeof(struct ip_auth_hdr), 4996 MAX_IPV6_HDR_LEN); 4997 if (err < 0) 4998 goto out; 4999 5000 hp = OPT_HDR(struct ip_auth_hdr, skb, off); 5001 nexthdr = hp->nexthdr; 5002 off += ipv6_authlen(hp); 5003 break; 5004 } 5005 case IPPROTO_FRAGMENT: { 5006 struct frag_hdr *hp; 5007 5008 err = skb_maybe_pull_tail(skb, 5009 off + 5010 sizeof(struct frag_hdr), 5011 MAX_IPV6_HDR_LEN); 5012 if (err < 0) 5013 goto out; 5014 5015 hp = OPT_HDR(struct frag_hdr, skb, off); 5016 5017 if (hp->frag_off & htons(IP6_OFFSET | IP6_MF)) 5018 fragment = true; 5019 5020 nexthdr = hp->nexthdr; 5021 off += sizeof(struct frag_hdr); 5022 break; 5023 } 5024 default: 5025 done = true; 5026 break; 5027 } 5028 } 5029 5030 err = -EPROTO; 5031 5032 if (!done || fragment) 5033 goto out; 5034 5035 csum = skb_checksum_setup_ip(skb, nexthdr, off); 5036 if (IS_ERR(csum)) 5037 return PTR_ERR(csum); 5038 5039 if (recalculate) 5040 *csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr, 5041 &ipv6_hdr(skb)->daddr, 5042 skb->len - off, nexthdr, 0); 5043 err = 0; 5044 5045 out: 5046 return err; 5047 } 5048 5049 /** 5050 * skb_checksum_setup - set up partial checksum offset 5051 * @skb: the skb to set up 5052 * @recalculate: if true the pseudo-header checksum will be recalculated 5053 */ 5054 int skb_checksum_setup(struct sk_buff *skb, bool recalculate) 5055 { 5056 int err; 5057 5058 switch (skb->protocol) { 5059 case htons(ETH_P_IP): 5060 err = skb_checksum_setup_ipv4(skb, recalculate); 5061 break; 5062 5063 case htons(ETH_P_IPV6): 5064 err = skb_checksum_setup_ipv6(skb, recalculate); 5065 break; 5066 5067 default: 5068 err = -EPROTO; 5069 break; 5070 } 5071 5072 return err; 5073 } 5074 EXPORT_SYMBOL(skb_checksum_setup); 5075 5076 /** 5077 * skb_checksum_maybe_trim - maybe trims the given skb 5078 * @skb: the skb to check 5079 * @transport_len: the data length beyond the network header 5080 * 5081 * Checks whether the given skb has data beyond the given transport length. 5082 * If so, returns a cloned skb trimmed to this transport length. 5083 * Otherwise returns the provided skb. Returns NULL in error cases 5084 * (e.g. transport_len exceeds skb length or out-of-memory). 5085 * 5086 * Caller needs to set the skb transport header and free any returned skb if it 5087 * differs from the provided skb. 5088 */ 5089 static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb, 5090 unsigned int transport_len) 5091 { 5092 struct sk_buff *skb_chk; 5093 unsigned int len = skb_transport_offset(skb) + transport_len; 5094 int ret; 5095 5096 if (skb->len < len) 5097 return NULL; 5098 else if (skb->len == len) 5099 return skb; 5100 5101 skb_chk = skb_clone(skb, GFP_ATOMIC); 5102 if (!skb_chk) 5103 return NULL; 5104 5105 ret = pskb_trim_rcsum(skb_chk, len); 5106 if (ret) { 5107 kfree_skb(skb_chk); 5108 return NULL; 5109 } 5110 5111 return skb_chk; 5112 } 5113 5114 /** 5115 * skb_checksum_trimmed - validate checksum of an skb 5116 * @skb: the skb to check 5117 * @transport_len: the data length beyond the network header 5118 * @skb_chkf: checksum function to use 5119 * 5120 * Applies the given checksum function skb_chkf to the provided skb. 5121 * Returns a checked and maybe trimmed skb. Returns NULL on error. 5122 * 5123 * If the skb has data beyond the given transport length, then a 5124 * trimmed & cloned skb is checked and returned. 5125 * 5126 * Caller needs to set the skb transport header and free any returned skb if it 5127 * differs from the provided skb. 5128 */ 5129 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb, 5130 unsigned int transport_len, 5131 __sum16(*skb_chkf)(struct sk_buff *skb)) 5132 { 5133 struct sk_buff *skb_chk; 5134 unsigned int offset = skb_transport_offset(skb); 5135 __sum16 ret; 5136 5137 skb_chk = skb_checksum_maybe_trim(skb, transport_len); 5138 if (!skb_chk) 5139 goto err; 5140 5141 if (!pskb_may_pull(skb_chk, offset)) 5142 goto err; 5143 5144 skb_pull_rcsum(skb_chk, offset); 5145 ret = skb_chkf(skb_chk); 5146 skb_push_rcsum(skb_chk, offset); 5147 5148 if (ret) 5149 goto err; 5150 5151 return skb_chk; 5152 5153 err: 5154 if (skb_chk && skb_chk != skb) 5155 kfree_skb(skb_chk); 5156 5157 return NULL; 5158 5159 } 5160 EXPORT_SYMBOL(skb_checksum_trimmed); 5161 5162 void __skb_warn_lro_forwarding(const struct sk_buff *skb) 5163 { 5164 net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n", 5165 skb->dev->name); 5166 } 5167 EXPORT_SYMBOL(__skb_warn_lro_forwarding); 5168 5169 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen) 5170 { 5171 if (head_stolen) { 5172 skb_release_head_state(skb); 5173 kmem_cache_free(skbuff_head_cache, skb); 5174 } else { 5175 __kfree_skb(skb); 5176 } 5177 } 5178 EXPORT_SYMBOL(kfree_skb_partial); 5179 5180 /** 5181 * skb_try_coalesce - try to merge skb to prior one 5182 * @to: prior buffer 5183 * @from: buffer to add 5184 * @fragstolen: pointer to boolean 5185 * @delta_truesize: how much more was allocated than was requested 5186 */ 5187 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from, 5188 bool *fragstolen, int *delta_truesize) 5189 { 5190 struct skb_shared_info *to_shinfo, *from_shinfo; 5191 int i, delta, len = from->len; 5192 5193 *fragstolen = false; 5194 5195 if (skb_cloned(to)) 5196 return false; 5197 5198 if (len <= skb_tailroom(to)) { 5199 if (len) 5200 BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len)); 5201 *delta_truesize = 0; 5202 return true; 5203 } 5204 5205 to_shinfo = skb_shinfo(to); 5206 from_shinfo = skb_shinfo(from); 5207 if (to_shinfo->frag_list || from_shinfo->frag_list) 5208 return false; 5209 if (skb_zcopy(to) || skb_zcopy(from)) 5210 return false; 5211 5212 if (skb_headlen(from) != 0) { 5213 struct page *page; 5214 unsigned int offset; 5215 5216 if (to_shinfo->nr_frags + 5217 from_shinfo->nr_frags >= MAX_SKB_FRAGS) 5218 return false; 5219 5220 if (skb_head_is_locked(from)) 5221 return false; 5222 5223 delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff)); 5224 5225 page = virt_to_head_page(from->head); 5226 offset = from->data - (unsigned char *)page_address(page); 5227 5228 skb_fill_page_desc(to, to_shinfo->nr_frags, 5229 page, offset, skb_headlen(from)); 5230 *fragstolen = true; 5231 } else { 5232 if (to_shinfo->nr_frags + 5233 from_shinfo->nr_frags > MAX_SKB_FRAGS) 5234 return false; 5235 5236 delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from)); 5237 } 5238 5239 WARN_ON_ONCE(delta < len); 5240 5241 memcpy(to_shinfo->frags + to_shinfo->nr_frags, 5242 from_shinfo->frags, 5243 from_shinfo->nr_frags * sizeof(skb_frag_t)); 5244 to_shinfo->nr_frags += from_shinfo->nr_frags; 5245 5246 if (!skb_cloned(from)) 5247 from_shinfo->nr_frags = 0; 5248 5249 /* if the skb is not cloned this does nothing 5250 * since we set nr_frags to 0. 5251 */ 5252 for (i = 0; i < from_shinfo->nr_frags; i++) 5253 __skb_frag_ref(&from_shinfo->frags[i]); 5254 5255 to->truesize += delta; 5256 to->len += len; 5257 to->data_len += len; 5258 5259 *delta_truesize = delta; 5260 return true; 5261 } 5262 EXPORT_SYMBOL(skb_try_coalesce); 5263 5264 /** 5265 * skb_scrub_packet - scrub an skb 5266 * 5267 * @skb: buffer to clean 5268 * @xnet: packet is crossing netns 5269 * 5270 * skb_scrub_packet can be used after encapsulating or decapsulting a packet 5271 * into/from a tunnel. Some information have to be cleared during these 5272 * operations. 5273 * skb_scrub_packet can also be used to clean a skb before injecting it in 5274 * another namespace (@xnet == true). We have to clear all information in the 5275 * skb that could impact namespace isolation. 5276 */ 5277 void skb_scrub_packet(struct sk_buff *skb, bool xnet) 5278 { 5279 skb->pkt_type = PACKET_HOST; 5280 skb->skb_iif = 0; 5281 skb->ignore_df = 0; 5282 skb_dst_drop(skb); 5283 skb_ext_reset(skb); 5284 nf_reset_ct(skb); 5285 nf_reset_trace(skb); 5286 5287 #ifdef CONFIG_NET_SWITCHDEV 5288 skb->offload_fwd_mark = 0; 5289 skb->offload_l3_fwd_mark = 0; 5290 #endif 5291 5292 if (!xnet) 5293 return; 5294 5295 ipvs_reset(skb); 5296 skb->mark = 0; 5297 skb->tstamp = 0; 5298 } 5299 EXPORT_SYMBOL_GPL(skb_scrub_packet); 5300 5301 /** 5302 * skb_gso_transport_seglen - Return length of individual segments of a gso packet 5303 * 5304 * @skb: GSO skb 5305 * 5306 * skb_gso_transport_seglen is used to determine the real size of the 5307 * individual segments, including Layer4 headers (TCP/UDP). 5308 * 5309 * The MAC/L2 or network (IP, IPv6) headers are not accounted for. 5310 */ 5311 static unsigned int skb_gso_transport_seglen(const struct sk_buff *skb) 5312 { 5313 const struct skb_shared_info *shinfo = skb_shinfo(skb); 5314 unsigned int thlen = 0; 5315 5316 if (skb->encapsulation) { 5317 thlen = skb_inner_transport_header(skb) - 5318 skb_transport_header(skb); 5319 5320 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) 5321 thlen += inner_tcp_hdrlen(skb); 5322 } else if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) { 5323 thlen = tcp_hdrlen(skb); 5324 } else if (unlikely(skb_is_gso_sctp(skb))) { 5325 thlen = sizeof(struct sctphdr); 5326 } else if (shinfo->gso_type & SKB_GSO_UDP_L4) { 5327 thlen = sizeof(struct udphdr); 5328 } 5329 /* UFO sets gso_size to the size of the fragmentation 5330 * payload, i.e. the size of the L4 (UDP) header is already 5331 * accounted for. 5332 */ 5333 return thlen + shinfo->gso_size; 5334 } 5335 5336 /** 5337 * skb_gso_network_seglen - Return length of individual segments of a gso packet 5338 * 5339 * @skb: GSO skb 5340 * 5341 * skb_gso_network_seglen is used to determine the real size of the 5342 * individual segments, including Layer3 (IP, IPv6) and L4 headers (TCP/UDP). 5343 * 5344 * The MAC/L2 header is not accounted for. 5345 */ 5346 static unsigned int skb_gso_network_seglen(const struct sk_buff *skb) 5347 { 5348 unsigned int hdr_len = skb_transport_header(skb) - 5349 skb_network_header(skb); 5350 5351 return hdr_len + skb_gso_transport_seglen(skb); 5352 } 5353 5354 /** 5355 * skb_gso_mac_seglen - Return length of individual segments of a gso packet 5356 * 5357 * @skb: GSO skb 5358 * 5359 * skb_gso_mac_seglen is used to determine the real size of the 5360 * individual segments, including MAC/L2, Layer3 (IP, IPv6) and L4 5361 * headers (TCP/UDP). 5362 */ 5363 static unsigned int skb_gso_mac_seglen(const struct sk_buff *skb) 5364 { 5365 unsigned int hdr_len = skb_transport_header(skb) - skb_mac_header(skb); 5366 5367 return hdr_len + skb_gso_transport_seglen(skb); 5368 } 5369 5370 /** 5371 * skb_gso_size_check - check the skb size, considering GSO_BY_FRAGS 5372 * 5373 * There are a couple of instances where we have a GSO skb, and we 5374 * want to determine what size it would be after it is segmented. 5375 * 5376 * We might want to check: 5377 * - L3+L4+payload size (e.g. IP forwarding) 5378 * - L2+L3+L4+payload size (e.g. sanity check before passing to driver) 5379 * 5380 * This is a helper to do that correctly considering GSO_BY_FRAGS. 5381 * 5382 * @skb: GSO skb 5383 * 5384 * @seg_len: The segmented length (from skb_gso_*_seglen). In the 5385 * GSO_BY_FRAGS case this will be [header sizes + GSO_BY_FRAGS]. 5386 * 5387 * @max_len: The maximum permissible length. 5388 * 5389 * Returns true if the segmented length <= max length. 5390 */ 5391 static inline bool skb_gso_size_check(const struct sk_buff *skb, 5392 unsigned int seg_len, 5393 unsigned int max_len) { 5394 const struct skb_shared_info *shinfo = skb_shinfo(skb); 5395 const struct sk_buff *iter; 5396 5397 if (shinfo->gso_size != GSO_BY_FRAGS) 5398 return seg_len <= max_len; 5399 5400 /* Undo this so we can re-use header sizes */ 5401 seg_len -= GSO_BY_FRAGS; 5402 5403 skb_walk_frags(skb, iter) { 5404 if (seg_len + skb_headlen(iter) > max_len) 5405 return false; 5406 } 5407 5408 return true; 5409 } 5410 5411 /** 5412 * skb_gso_validate_network_len - Will a split GSO skb fit into a given MTU? 5413 * 5414 * @skb: GSO skb 5415 * @mtu: MTU to validate against 5416 * 5417 * skb_gso_validate_network_len validates if a given skb will fit a 5418 * wanted MTU once split. It considers L3 headers, L4 headers, and the 5419 * payload. 5420 */ 5421 bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu) 5422 { 5423 return skb_gso_size_check(skb, skb_gso_network_seglen(skb), mtu); 5424 } 5425 EXPORT_SYMBOL_GPL(skb_gso_validate_network_len); 5426 5427 /** 5428 * skb_gso_validate_mac_len - Will a split GSO skb fit in a given length? 5429 * 5430 * @skb: GSO skb 5431 * @len: length to validate against 5432 * 5433 * skb_gso_validate_mac_len validates if a given skb will fit a wanted 5434 * length once split, including L2, L3 and L4 headers and the payload. 5435 */ 5436 bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len) 5437 { 5438 return skb_gso_size_check(skb, skb_gso_mac_seglen(skb), len); 5439 } 5440 EXPORT_SYMBOL_GPL(skb_gso_validate_mac_len); 5441 5442 static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb) 5443 { 5444 int mac_len, meta_len; 5445 void *meta; 5446 5447 if (skb_cow(skb, skb_headroom(skb)) < 0) { 5448 kfree_skb(skb); 5449 return NULL; 5450 } 5451 5452 mac_len = skb->data - skb_mac_header(skb); 5453 if (likely(mac_len > VLAN_HLEN + ETH_TLEN)) { 5454 memmove(skb_mac_header(skb) + VLAN_HLEN, skb_mac_header(skb), 5455 mac_len - VLAN_HLEN - ETH_TLEN); 5456 } 5457 5458 meta_len = skb_metadata_len(skb); 5459 if (meta_len) { 5460 meta = skb_metadata_end(skb) - meta_len; 5461 memmove(meta + VLAN_HLEN, meta, meta_len); 5462 } 5463 5464 skb->mac_header += VLAN_HLEN; 5465 return skb; 5466 } 5467 5468 struct sk_buff *skb_vlan_untag(struct sk_buff *skb) 5469 { 5470 struct vlan_hdr *vhdr; 5471 u16 vlan_tci; 5472 5473 if (unlikely(skb_vlan_tag_present(skb))) { 5474 /* vlan_tci is already set-up so leave this for another time */ 5475 return skb; 5476 } 5477 5478 skb = skb_share_check(skb, GFP_ATOMIC); 5479 if (unlikely(!skb)) 5480 goto err_free; 5481 /* We may access the two bytes after vlan_hdr in vlan_set_encap_proto(). */ 5482 if (unlikely(!pskb_may_pull(skb, VLAN_HLEN + sizeof(unsigned short)))) 5483 goto err_free; 5484 5485 vhdr = (struct vlan_hdr *)skb->data; 5486 vlan_tci = ntohs(vhdr->h_vlan_TCI); 5487 __vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci); 5488 5489 skb_pull_rcsum(skb, VLAN_HLEN); 5490 vlan_set_encap_proto(skb, vhdr); 5491 5492 skb = skb_reorder_vlan_header(skb); 5493 if (unlikely(!skb)) 5494 goto err_free; 5495 5496 skb_reset_network_header(skb); 5497 if (!skb_transport_header_was_set(skb)) 5498 skb_reset_transport_header(skb); 5499 skb_reset_mac_len(skb); 5500 5501 return skb; 5502 5503 err_free: 5504 kfree_skb(skb); 5505 return NULL; 5506 } 5507 EXPORT_SYMBOL(skb_vlan_untag); 5508 5509 int skb_ensure_writable(struct sk_buff *skb, int write_len) 5510 { 5511 if (!pskb_may_pull(skb, write_len)) 5512 return -ENOMEM; 5513 5514 if (!skb_cloned(skb) || skb_clone_writable(skb, write_len)) 5515 return 0; 5516 5517 return pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 5518 } 5519 EXPORT_SYMBOL(skb_ensure_writable); 5520 5521 /* remove VLAN header from packet and update csum accordingly. 5522 * expects a non skb_vlan_tag_present skb with a vlan tag payload 5523 */ 5524 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci) 5525 { 5526 struct vlan_hdr *vhdr; 5527 int offset = skb->data - skb_mac_header(skb); 5528 int err; 5529 5530 if (WARN_ONCE(offset, 5531 "__skb_vlan_pop got skb with skb->data not at mac header (offset %d)\n", 5532 offset)) { 5533 return -EINVAL; 5534 } 5535 5536 err = skb_ensure_writable(skb, VLAN_ETH_HLEN); 5537 if (unlikely(err)) 5538 return err; 5539 5540 skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN); 5541 5542 vhdr = (struct vlan_hdr *)(skb->data + ETH_HLEN); 5543 *vlan_tci = ntohs(vhdr->h_vlan_TCI); 5544 5545 memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN); 5546 __skb_pull(skb, VLAN_HLEN); 5547 5548 vlan_set_encap_proto(skb, vhdr); 5549 skb->mac_header += VLAN_HLEN; 5550 5551 if (skb_network_offset(skb) < ETH_HLEN) 5552 skb_set_network_header(skb, ETH_HLEN); 5553 5554 skb_reset_mac_len(skb); 5555 5556 return err; 5557 } 5558 EXPORT_SYMBOL(__skb_vlan_pop); 5559 5560 /* Pop a vlan tag either from hwaccel or from payload. 5561 * Expects skb->data at mac header. 5562 */ 5563 int skb_vlan_pop(struct sk_buff *skb) 5564 { 5565 u16 vlan_tci; 5566 __be16 vlan_proto; 5567 int err; 5568 5569 if (likely(skb_vlan_tag_present(skb))) { 5570 __vlan_hwaccel_clear_tag(skb); 5571 } else { 5572 if (unlikely(!eth_type_vlan(skb->protocol))) 5573 return 0; 5574 5575 err = __skb_vlan_pop(skb, &vlan_tci); 5576 if (err) 5577 return err; 5578 } 5579 /* move next vlan tag to hw accel tag */ 5580 if (likely(!eth_type_vlan(skb->protocol))) 5581 return 0; 5582 5583 vlan_proto = skb->protocol; 5584 err = __skb_vlan_pop(skb, &vlan_tci); 5585 if (unlikely(err)) 5586 return err; 5587 5588 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci); 5589 return 0; 5590 } 5591 EXPORT_SYMBOL(skb_vlan_pop); 5592 5593 /* Push a vlan tag either into hwaccel or into payload (if hwaccel tag present). 5594 * Expects skb->data at mac header. 5595 */ 5596 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci) 5597 { 5598 if (skb_vlan_tag_present(skb)) { 5599 int offset = skb->data - skb_mac_header(skb); 5600 int err; 5601 5602 if (WARN_ONCE(offset, 5603 "skb_vlan_push got skb with skb->data not at mac header (offset %d)\n", 5604 offset)) { 5605 return -EINVAL; 5606 } 5607 5608 err = __vlan_insert_tag(skb, skb->vlan_proto, 5609 skb_vlan_tag_get(skb)); 5610 if (err) 5611 return err; 5612 5613 skb->protocol = skb->vlan_proto; 5614 skb->mac_len += VLAN_HLEN; 5615 5616 skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN); 5617 } 5618 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci); 5619 return 0; 5620 } 5621 EXPORT_SYMBOL(skb_vlan_push); 5622 5623 /** 5624 * skb_eth_pop() - Drop the Ethernet header at the head of a packet 5625 * 5626 * @skb: Socket buffer to modify 5627 * 5628 * Drop the Ethernet header of @skb. 5629 * 5630 * Expects that skb->data points to the mac header and that no VLAN tags are 5631 * present. 5632 * 5633 * Returns 0 on success, -errno otherwise. 5634 */ 5635 int skb_eth_pop(struct sk_buff *skb) 5636 { 5637 if (!pskb_may_pull(skb, ETH_HLEN) || skb_vlan_tagged(skb) || 5638 skb_network_offset(skb) < ETH_HLEN) 5639 return -EPROTO; 5640 5641 skb_pull_rcsum(skb, ETH_HLEN); 5642 skb_reset_mac_header(skb); 5643 skb_reset_mac_len(skb); 5644 5645 return 0; 5646 } 5647 EXPORT_SYMBOL(skb_eth_pop); 5648 5649 /** 5650 * skb_eth_push() - Add a new Ethernet header at the head of a packet 5651 * 5652 * @skb: Socket buffer to modify 5653 * @dst: Destination MAC address of the new header 5654 * @src: Source MAC address of the new header 5655 * 5656 * Prepend @skb with a new Ethernet header. 5657 * 5658 * Expects that skb->data points to the mac header, which must be empty. 5659 * 5660 * Returns 0 on success, -errno otherwise. 5661 */ 5662 int skb_eth_push(struct sk_buff *skb, const unsigned char *dst, 5663 const unsigned char *src) 5664 { 5665 struct ethhdr *eth; 5666 int err; 5667 5668 if (skb_network_offset(skb) || skb_vlan_tag_present(skb)) 5669 return -EPROTO; 5670 5671 err = skb_cow_head(skb, sizeof(*eth)); 5672 if (err < 0) 5673 return err; 5674 5675 skb_push(skb, sizeof(*eth)); 5676 skb_reset_mac_header(skb); 5677 skb_reset_mac_len(skb); 5678 5679 eth = eth_hdr(skb); 5680 ether_addr_copy(eth->h_dest, dst); 5681 ether_addr_copy(eth->h_source, src); 5682 eth->h_proto = skb->protocol; 5683 5684 skb_postpush_rcsum(skb, eth, sizeof(*eth)); 5685 5686 return 0; 5687 } 5688 EXPORT_SYMBOL(skb_eth_push); 5689 5690 /* Update the ethertype of hdr and the skb csum value if required. */ 5691 static void skb_mod_eth_type(struct sk_buff *skb, struct ethhdr *hdr, 5692 __be16 ethertype) 5693 { 5694 if (skb->ip_summed == CHECKSUM_COMPLETE) { 5695 __be16 diff[] = { ~hdr->h_proto, ethertype }; 5696 5697 skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum); 5698 } 5699 5700 hdr->h_proto = ethertype; 5701 } 5702 5703 /** 5704 * skb_mpls_push() - push a new MPLS header after mac_len bytes from start of 5705 * the packet 5706 * 5707 * @skb: buffer 5708 * @mpls_lse: MPLS label stack entry to push 5709 * @mpls_proto: ethertype of the new MPLS header (expects 0x8847 or 0x8848) 5710 * @mac_len: length of the MAC header 5711 * @ethernet: flag to indicate if the resulting packet after skb_mpls_push is 5712 * ethernet 5713 * 5714 * Expects skb->data at mac header. 5715 * 5716 * Returns 0 on success, -errno otherwise. 5717 */ 5718 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto, 5719 int mac_len, bool ethernet) 5720 { 5721 struct mpls_shim_hdr *lse; 5722 int err; 5723 5724 if (unlikely(!eth_p_mpls(mpls_proto))) 5725 return -EINVAL; 5726 5727 /* Networking stack does not allow simultaneous Tunnel and MPLS GSO. */ 5728 if (skb->encapsulation) 5729 return -EINVAL; 5730 5731 err = skb_cow_head(skb, MPLS_HLEN); 5732 if (unlikely(err)) 5733 return err; 5734 5735 if (!skb->inner_protocol) { 5736 skb_set_inner_network_header(skb, skb_network_offset(skb)); 5737 skb_set_inner_protocol(skb, skb->protocol); 5738 } 5739 5740 skb_push(skb, MPLS_HLEN); 5741 memmove(skb_mac_header(skb) - MPLS_HLEN, skb_mac_header(skb), 5742 mac_len); 5743 skb_reset_mac_header(skb); 5744 skb_set_network_header(skb, mac_len); 5745 skb_reset_mac_len(skb); 5746 5747 lse = mpls_hdr(skb); 5748 lse->label_stack_entry = mpls_lse; 5749 skb_postpush_rcsum(skb, lse, MPLS_HLEN); 5750 5751 if (ethernet && mac_len >= ETH_HLEN) 5752 skb_mod_eth_type(skb, eth_hdr(skb), mpls_proto); 5753 skb->protocol = mpls_proto; 5754 5755 return 0; 5756 } 5757 EXPORT_SYMBOL_GPL(skb_mpls_push); 5758 5759 /** 5760 * skb_mpls_pop() - pop the outermost MPLS header 5761 * 5762 * @skb: buffer 5763 * @next_proto: ethertype of header after popped MPLS header 5764 * @mac_len: length of the MAC header 5765 * @ethernet: flag to indicate if the packet is ethernet 5766 * 5767 * Expects skb->data at mac header. 5768 * 5769 * Returns 0 on success, -errno otherwise. 5770 */ 5771 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len, 5772 bool ethernet) 5773 { 5774 int err; 5775 5776 if (unlikely(!eth_p_mpls(skb->protocol))) 5777 return 0; 5778 5779 err = skb_ensure_writable(skb, mac_len + MPLS_HLEN); 5780 if (unlikely(err)) 5781 return err; 5782 5783 skb_postpull_rcsum(skb, mpls_hdr(skb), MPLS_HLEN); 5784 memmove(skb_mac_header(skb) + MPLS_HLEN, skb_mac_header(skb), 5785 mac_len); 5786 5787 __skb_pull(skb, MPLS_HLEN); 5788 skb_reset_mac_header(skb); 5789 skb_set_network_header(skb, mac_len); 5790 5791 if (ethernet && mac_len >= ETH_HLEN) { 5792 struct ethhdr *hdr; 5793 5794 /* use mpls_hdr() to get ethertype to account for VLANs. */ 5795 hdr = (struct ethhdr *)((void *)mpls_hdr(skb) - ETH_HLEN); 5796 skb_mod_eth_type(skb, hdr, next_proto); 5797 } 5798 skb->protocol = next_proto; 5799 5800 return 0; 5801 } 5802 EXPORT_SYMBOL_GPL(skb_mpls_pop); 5803 5804 /** 5805 * skb_mpls_update_lse() - modify outermost MPLS header and update csum 5806 * 5807 * @skb: buffer 5808 * @mpls_lse: new MPLS label stack entry to update to 5809 * 5810 * Expects skb->data at mac header. 5811 * 5812 * Returns 0 on success, -errno otherwise. 5813 */ 5814 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse) 5815 { 5816 int err; 5817 5818 if (unlikely(!eth_p_mpls(skb->protocol))) 5819 return -EINVAL; 5820 5821 err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN); 5822 if (unlikely(err)) 5823 return err; 5824 5825 if (skb->ip_summed == CHECKSUM_COMPLETE) { 5826 __be32 diff[] = { ~mpls_hdr(skb)->label_stack_entry, mpls_lse }; 5827 5828 skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum); 5829 } 5830 5831 mpls_hdr(skb)->label_stack_entry = mpls_lse; 5832 5833 return 0; 5834 } 5835 EXPORT_SYMBOL_GPL(skb_mpls_update_lse); 5836 5837 /** 5838 * skb_mpls_dec_ttl() - decrement the TTL of the outermost MPLS header 5839 * 5840 * @skb: buffer 5841 * 5842 * Expects skb->data at mac header. 5843 * 5844 * Returns 0 on success, -errno otherwise. 5845 */ 5846 int skb_mpls_dec_ttl(struct sk_buff *skb) 5847 { 5848 u32 lse; 5849 u8 ttl; 5850 5851 if (unlikely(!eth_p_mpls(skb->protocol))) 5852 return -EINVAL; 5853 5854 if (!pskb_may_pull(skb, skb_network_offset(skb) + MPLS_HLEN)) 5855 return -ENOMEM; 5856 5857 lse = be32_to_cpu(mpls_hdr(skb)->label_stack_entry); 5858 ttl = (lse & MPLS_LS_TTL_MASK) >> MPLS_LS_TTL_SHIFT; 5859 if (!--ttl) 5860 return -EINVAL; 5861 5862 lse &= ~MPLS_LS_TTL_MASK; 5863 lse |= ttl << MPLS_LS_TTL_SHIFT; 5864 5865 return skb_mpls_update_lse(skb, cpu_to_be32(lse)); 5866 } 5867 EXPORT_SYMBOL_GPL(skb_mpls_dec_ttl); 5868 5869 /** 5870 * alloc_skb_with_frags - allocate skb with page frags 5871 * 5872 * @header_len: size of linear part 5873 * @data_len: needed length in frags 5874 * @max_page_order: max page order desired. 5875 * @errcode: pointer to error code if any 5876 * @gfp_mask: allocation mask 5877 * 5878 * This can be used to allocate a paged skb, given a maximal order for frags. 5879 */ 5880 struct sk_buff *alloc_skb_with_frags(unsigned long header_len, 5881 unsigned long data_len, 5882 int max_page_order, 5883 int *errcode, 5884 gfp_t gfp_mask) 5885 { 5886 int npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT; 5887 unsigned long chunk; 5888 struct sk_buff *skb; 5889 struct page *page; 5890 int i; 5891 5892 *errcode = -EMSGSIZE; 5893 /* Note this test could be relaxed, if we succeed to allocate 5894 * high order pages... 5895 */ 5896 if (npages > MAX_SKB_FRAGS) 5897 return NULL; 5898 5899 *errcode = -ENOBUFS; 5900 skb = alloc_skb(header_len, gfp_mask); 5901 if (!skb) 5902 return NULL; 5903 5904 skb->truesize += npages << PAGE_SHIFT; 5905 5906 for (i = 0; npages > 0; i++) { 5907 int order = max_page_order; 5908 5909 while (order) { 5910 if (npages >= 1 << order) { 5911 page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) | 5912 __GFP_COMP | 5913 __GFP_NOWARN, 5914 order); 5915 if (page) 5916 goto fill_page; 5917 /* Do not retry other high order allocations */ 5918 order = 1; 5919 max_page_order = 0; 5920 } 5921 order--; 5922 } 5923 page = alloc_page(gfp_mask); 5924 if (!page) 5925 goto failure; 5926 fill_page: 5927 chunk = min_t(unsigned long, data_len, 5928 PAGE_SIZE << order); 5929 skb_fill_page_desc(skb, i, page, 0, chunk); 5930 data_len -= chunk; 5931 npages -= 1 << order; 5932 } 5933 return skb; 5934 5935 failure: 5936 kfree_skb(skb); 5937 return NULL; 5938 } 5939 EXPORT_SYMBOL(alloc_skb_with_frags); 5940 5941 /* carve out the first off bytes from skb when off < headlen */ 5942 static int pskb_carve_inside_header(struct sk_buff *skb, const u32 off, 5943 const int headlen, gfp_t gfp_mask) 5944 { 5945 int i; 5946 int size = skb_end_offset(skb); 5947 int new_hlen = headlen - off; 5948 u8 *data; 5949 5950 size = SKB_DATA_ALIGN(size); 5951 5952 if (skb_pfmemalloc(skb)) 5953 gfp_mask |= __GFP_MEMALLOC; 5954 data = kmalloc_reserve(size + 5955 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)), 5956 gfp_mask, NUMA_NO_NODE, NULL); 5957 if (!data) 5958 return -ENOMEM; 5959 5960 size = SKB_WITH_OVERHEAD(ksize(data)); 5961 5962 /* Copy real data, and all frags */ 5963 skb_copy_from_linear_data_offset(skb, off, data, new_hlen); 5964 skb->len -= off; 5965 5966 memcpy((struct skb_shared_info *)(data + size), 5967 skb_shinfo(skb), 5968 offsetof(struct skb_shared_info, 5969 frags[skb_shinfo(skb)->nr_frags])); 5970 if (skb_cloned(skb)) { 5971 /* drop the old head gracefully */ 5972 if (skb_orphan_frags(skb, gfp_mask)) { 5973 kfree(data); 5974 return -ENOMEM; 5975 } 5976 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 5977 skb_frag_ref(skb, i); 5978 if (skb_has_frag_list(skb)) 5979 skb_clone_fraglist(skb); 5980 skb_release_data(skb); 5981 } else { 5982 /* we can reuse existing recount- all we did was 5983 * relocate values 5984 */ 5985 skb_free_head(skb); 5986 } 5987 5988 skb->head = data; 5989 skb->data = data; 5990 skb->head_frag = 0; 5991 #ifdef NET_SKBUFF_DATA_USES_OFFSET 5992 skb->end = size; 5993 #else 5994 skb->end = skb->head + size; 5995 #endif 5996 skb_set_tail_pointer(skb, skb_headlen(skb)); 5997 skb_headers_offset_update(skb, 0); 5998 skb->cloned = 0; 5999 skb->hdr_len = 0; 6000 skb->nohdr = 0; 6001 atomic_set(&skb_shinfo(skb)->dataref, 1); 6002 6003 return 0; 6004 } 6005 6006 static int pskb_carve(struct sk_buff *skb, const u32 off, gfp_t gfp); 6007 6008 /* carve out the first eat bytes from skb's frag_list. May recurse into 6009 * pskb_carve() 6010 */ 6011 static int pskb_carve_frag_list(struct sk_buff *skb, 6012 struct skb_shared_info *shinfo, int eat, 6013 gfp_t gfp_mask) 6014 { 6015 struct sk_buff *list = shinfo->frag_list; 6016 struct sk_buff *clone = NULL; 6017 struct sk_buff *insp = NULL; 6018 6019 do { 6020 if (!list) { 6021 pr_err("Not enough bytes to eat. Want %d\n", eat); 6022 return -EFAULT; 6023 } 6024 if (list->len <= eat) { 6025 /* Eaten as whole. */ 6026 eat -= list->len; 6027 list = list->next; 6028 insp = list; 6029 } else { 6030 /* Eaten partially. */ 6031 if (skb_shared(list)) { 6032 clone = skb_clone(list, gfp_mask); 6033 if (!clone) 6034 return -ENOMEM; 6035 insp = list->next; 6036 list = clone; 6037 } else { 6038 /* This may be pulled without problems. */ 6039 insp = list; 6040 } 6041 if (pskb_carve(list, eat, gfp_mask) < 0) { 6042 kfree_skb(clone); 6043 return -ENOMEM; 6044 } 6045 break; 6046 } 6047 } while (eat); 6048 6049 /* Free pulled out fragments. */ 6050 while ((list = shinfo->frag_list) != insp) { 6051 shinfo->frag_list = list->next; 6052 kfree_skb(list); 6053 } 6054 /* And insert new clone at head. */ 6055 if (clone) { 6056 clone->next = list; 6057 shinfo->frag_list = clone; 6058 } 6059 return 0; 6060 } 6061 6062 /* carve off first len bytes from skb. Split line (off) is in the 6063 * non-linear part of skb 6064 */ 6065 static int pskb_carve_inside_nonlinear(struct sk_buff *skb, const u32 off, 6066 int pos, gfp_t gfp_mask) 6067 { 6068 int i, k = 0; 6069 int size = skb_end_offset(skb); 6070 u8 *data; 6071 const int nfrags = skb_shinfo(skb)->nr_frags; 6072 struct skb_shared_info *shinfo; 6073 6074 size = SKB_DATA_ALIGN(size); 6075 6076 if (skb_pfmemalloc(skb)) 6077 gfp_mask |= __GFP_MEMALLOC; 6078 data = kmalloc_reserve(size + 6079 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)), 6080 gfp_mask, NUMA_NO_NODE, NULL); 6081 if (!data) 6082 return -ENOMEM; 6083 6084 size = SKB_WITH_OVERHEAD(ksize(data)); 6085 6086 memcpy((struct skb_shared_info *)(data + size), 6087 skb_shinfo(skb), offsetof(struct skb_shared_info, frags[0])); 6088 if (skb_orphan_frags(skb, gfp_mask)) { 6089 kfree(data); 6090 return -ENOMEM; 6091 } 6092 shinfo = (struct skb_shared_info *)(data + size); 6093 for (i = 0; i < nfrags; i++) { 6094 int fsize = skb_frag_size(&skb_shinfo(skb)->frags[i]); 6095 6096 if (pos + fsize > off) { 6097 shinfo->frags[k] = skb_shinfo(skb)->frags[i]; 6098 6099 if (pos < off) { 6100 /* Split frag. 6101 * We have two variants in this case: 6102 * 1. Move all the frag to the second 6103 * part, if it is possible. F.e. 6104 * this approach is mandatory for TUX, 6105 * where splitting is expensive. 6106 * 2. Split is accurately. We make this. 6107 */ 6108 skb_frag_off_add(&shinfo->frags[0], off - pos); 6109 skb_frag_size_sub(&shinfo->frags[0], off - pos); 6110 } 6111 skb_frag_ref(skb, i); 6112 k++; 6113 } 6114 pos += fsize; 6115 } 6116 shinfo->nr_frags = k; 6117 if (skb_has_frag_list(skb)) 6118 skb_clone_fraglist(skb); 6119 6120 /* split line is in frag list */ 6121 if (k == 0 && pskb_carve_frag_list(skb, shinfo, off - pos, gfp_mask)) { 6122 /* skb_frag_unref() is not needed here as shinfo->nr_frags = 0. */ 6123 if (skb_has_frag_list(skb)) 6124 kfree_skb_list(skb_shinfo(skb)->frag_list); 6125 kfree(data); 6126 return -ENOMEM; 6127 } 6128 skb_release_data(skb); 6129 6130 skb->head = data; 6131 skb->head_frag = 0; 6132 skb->data = data; 6133 #ifdef NET_SKBUFF_DATA_USES_OFFSET 6134 skb->end = size; 6135 #else 6136 skb->end = skb->head + size; 6137 #endif 6138 skb_reset_tail_pointer(skb); 6139 skb_headers_offset_update(skb, 0); 6140 skb->cloned = 0; 6141 skb->hdr_len = 0; 6142 skb->nohdr = 0; 6143 skb->len -= off; 6144 skb->data_len = skb->len; 6145 atomic_set(&skb_shinfo(skb)->dataref, 1); 6146 return 0; 6147 } 6148 6149 /* remove len bytes from the beginning of the skb */ 6150 static int pskb_carve(struct sk_buff *skb, const u32 len, gfp_t gfp) 6151 { 6152 int headlen = skb_headlen(skb); 6153 6154 if (len < headlen) 6155 return pskb_carve_inside_header(skb, len, headlen, gfp); 6156 else 6157 return pskb_carve_inside_nonlinear(skb, len, headlen, gfp); 6158 } 6159 6160 /* Extract to_copy bytes starting at off from skb, and return this in 6161 * a new skb 6162 */ 6163 struct sk_buff *pskb_extract(struct sk_buff *skb, int off, 6164 int to_copy, gfp_t gfp) 6165 { 6166 struct sk_buff *clone = skb_clone(skb, gfp); 6167 6168 if (!clone) 6169 return NULL; 6170 6171 if (pskb_carve(clone, off, gfp) < 0 || 6172 pskb_trim(clone, to_copy)) { 6173 kfree_skb(clone); 6174 return NULL; 6175 } 6176 return clone; 6177 } 6178 EXPORT_SYMBOL(pskb_extract); 6179 6180 /** 6181 * skb_condense - try to get rid of fragments/frag_list if possible 6182 * @skb: buffer 6183 * 6184 * Can be used to save memory before skb is added to a busy queue. 6185 * If packet has bytes in frags and enough tail room in skb->head, 6186 * pull all of them, so that we can free the frags right now and adjust 6187 * truesize. 6188 * Notes: 6189 * We do not reallocate skb->head thus can not fail. 6190 * Caller must re-evaluate skb->truesize if needed. 6191 */ 6192 void skb_condense(struct sk_buff *skb) 6193 { 6194 if (skb->data_len) { 6195 if (skb->data_len > skb->end - skb->tail || 6196 skb_cloned(skb)) 6197 return; 6198 6199 /* Nice, we can free page frag(s) right now */ 6200 __pskb_pull_tail(skb, skb->data_len); 6201 } 6202 /* At this point, skb->truesize might be over estimated, 6203 * because skb had a fragment, and fragments do not tell 6204 * their truesize. 6205 * When we pulled its content into skb->head, fragment 6206 * was freed, but __pskb_pull_tail() could not possibly 6207 * adjust skb->truesize, not knowing the frag truesize. 6208 */ 6209 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb)); 6210 } 6211 6212 #ifdef CONFIG_SKB_EXTENSIONS 6213 static void *skb_ext_get_ptr(struct skb_ext *ext, enum skb_ext_id id) 6214 { 6215 return (void *)ext + (ext->offset[id] * SKB_EXT_ALIGN_VALUE); 6216 } 6217 6218 /** 6219 * __skb_ext_alloc - allocate a new skb extensions storage 6220 * 6221 * @flags: See kmalloc(). 6222 * 6223 * Returns the newly allocated pointer. The pointer can later attached to a 6224 * skb via __skb_ext_set(). 6225 * Note: caller must handle the skb_ext as an opaque data. 6226 */ 6227 struct skb_ext *__skb_ext_alloc(gfp_t flags) 6228 { 6229 struct skb_ext *new = kmem_cache_alloc(skbuff_ext_cache, flags); 6230 6231 if (new) { 6232 memset(new->offset, 0, sizeof(new->offset)); 6233 refcount_set(&new->refcnt, 1); 6234 } 6235 6236 return new; 6237 } 6238 6239 static struct skb_ext *skb_ext_maybe_cow(struct skb_ext *old, 6240 unsigned int old_active) 6241 { 6242 struct skb_ext *new; 6243 6244 if (refcount_read(&old->refcnt) == 1) 6245 return old; 6246 6247 new = kmem_cache_alloc(skbuff_ext_cache, GFP_ATOMIC); 6248 if (!new) 6249 return NULL; 6250 6251 memcpy(new, old, old->chunks * SKB_EXT_ALIGN_VALUE); 6252 refcount_set(&new->refcnt, 1); 6253 6254 #ifdef CONFIG_XFRM 6255 if (old_active & (1 << SKB_EXT_SEC_PATH)) { 6256 struct sec_path *sp = skb_ext_get_ptr(old, SKB_EXT_SEC_PATH); 6257 unsigned int i; 6258 6259 for (i = 0; i < sp->len; i++) 6260 xfrm_state_hold(sp->xvec[i]); 6261 } 6262 #endif 6263 __skb_ext_put(old); 6264 return new; 6265 } 6266 6267 /** 6268 * __skb_ext_set - attach the specified extension storage to this skb 6269 * @skb: buffer 6270 * @id: extension id 6271 * @ext: extension storage previously allocated via __skb_ext_alloc() 6272 * 6273 * Existing extensions, if any, are cleared. 6274 * 6275 * Returns the pointer to the extension. 6276 */ 6277 void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id, 6278 struct skb_ext *ext) 6279 { 6280 unsigned int newlen, newoff = SKB_EXT_CHUNKSIZEOF(*ext); 6281 6282 skb_ext_put(skb); 6283 newlen = newoff + skb_ext_type_len[id]; 6284 ext->chunks = newlen; 6285 ext->offset[id] = newoff; 6286 skb->extensions = ext; 6287 skb->active_extensions = 1 << id; 6288 return skb_ext_get_ptr(ext, id); 6289 } 6290 6291 /** 6292 * skb_ext_add - allocate space for given extension, COW if needed 6293 * @skb: buffer 6294 * @id: extension to allocate space for 6295 * 6296 * Allocates enough space for the given extension. 6297 * If the extension is already present, a pointer to that extension 6298 * is returned. 6299 * 6300 * If the skb was cloned, COW applies and the returned memory can be 6301 * modified without changing the extension space of clones buffers. 6302 * 6303 * Returns pointer to the extension or NULL on allocation failure. 6304 */ 6305 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id) 6306 { 6307 struct skb_ext *new, *old = NULL; 6308 unsigned int newlen, newoff; 6309 6310 if (skb->active_extensions) { 6311 old = skb->extensions; 6312 6313 new = skb_ext_maybe_cow(old, skb->active_extensions); 6314 if (!new) 6315 return NULL; 6316 6317 if (__skb_ext_exist(new, id)) 6318 goto set_active; 6319 6320 newoff = new->chunks; 6321 } else { 6322 newoff = SKB_EXT_CHUNKSIZEOF(*new); 6323 6324 new = __skb_ext_alloc(GFP_ATOMIC); 6325 if (!new) 6326 return NULL; 6327 } 6328 6329 newlen = newoff + skb_ext_type_len[id]; 6330 new->chunks = newlen; 6331 new->offset[id] = newoff; 6332 set_active: 6333 skb->extensions = new; 6334 skb->active_extensions |= 1 << id; 6335 return skb_ext_get_ptr(new, id); 6336 } 6337 EXPORT_SYMBOL(skb_ext_add); 6338 6339 #ifdef CONFIG_XFRM 6340 static void skb_ext_put_sp(struct sec_path *sp) 6341 { 6342 unsigned int i; 6343 6344 for (i = 0; i < sp->len; i++) 6345 xfrm_state_put(sp->xvec[i]); 6346 } 6347 #endif 6348 6349 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id) 6350 { 6351 struct skb_ext *ext = skb->extensions; 6352 6353 skb->active_extensions &= ~(1 << id); 6354 if (skb->active_extensions == 0) { 6355 skb->extensions = NULL; 6356 __skb_ext_put(ext); 6357 #ifdef CONFIG_XFRM 6358 } else if (id == SKB_EXT_SEC_PATH && 6359 refcount_read(&ext->refcnt) == 1) { 6360 struct sec_path *sp = skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH); 6361 6362 skb_ext_put_sp(sp); 6363 sp->len = 0; 6364 #endif 6365 } 6366 } 6367 EXPORT_SYMBOL(__skb_ext_del); 6368 6369 void __skb_ext_put(struct skb_ext *ext) 6370 { 6371 /* If this is last clone, nothing can increment 6372 * it after check passes. Avoids one atomic op. 6373 */ 6374 if (refcount_read(&ext->refcnt) == 1) 6375 goto free_now; 6376 6377 if (!refcount_dec_and_test(&ext->refcnt)) 6378 return; 6379 free_now: 6380 #ifdef CONFIG_XFRM 6381 if (__skb_ext_exist(ext, SKB_EXT_SEC_PATH)) 6382 skb_ext_put_sp(skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH)); 6383 #endif 6384 6385 kmem_cache_free(skbuff_ext_cache, ext); 6386 } 6387 EXPORT_SYMBOL(__skb_ext_put); 6388 #endif /* CONFIG_SKB_EXTENSIONS */ 6389