1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Routines having to do with the 'struct sk_buff' memory handlers. 4 * 5 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk> 6 * Florian La Roche <rzsfl@rz.uni-sb.de> 7 * 8 * Fixes: 9 * Alan Cox : Fixed the worst of the load 10 * balancer bugs. 11 * Dave Platt : Interrupt stacking fix. 12 * Richard Kooijman : Timestamp fixes. 13 * Alan Cox : Changed buffer format. 14 * Alan Cox : destructor hook for AF_UNIX etc. 15 * Linus Torvalds : Better skb_clone. 16 * Alan Cox : Added skb_copy. 17 * Alan Cox : Added all the changed routines Linus 18 * only put in the headers 19 * Ray VanTassle : Fixed --skb->lock in free 20 * Alan Cox : skb_copy copy arp field 21 * Andi Kleen : slabified it. 22 * Robert Olsson : Removed skb_head_pool 23 * 24 * NOTE: 25 * The __skb_ routines should be called with interrupts 26 * disabled, or you better be *real* sure that the operation is atomic 27 * with respect to whatever list is being frobbed (e.g. via lock_sock() 28 * or via disabling bottom half handlers, etc). 29 */ 30 31 /* 32 * The functions in this file will not compile correctly with gcc 2.4.x 33 */ 34 35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 36 37 #include <linux/module.h> 38 #include <linux/types.h> 39 #include <linux/kernel.h> 40 #include <linux/mm.h> 41 #include <linux/interrupt.h> 42 #include <linux/in.h> 43 #include <linux/inet.h> 44 #include <linux/slab.h> 45 #include <linux/tcp.h> 46 #include <linux/udp.h> 47 #include <linux/sctp.h> 48 #include <linux/netdevice.h> 49 #ifdef CONFIG_NET_CLS_ACT 50 #include <net/pkt_sched.h> 51 #endif 52 #include <linux/string.h> 53 #include <linux/skbuff.h> 54 #include <linux/splice.h> 55 #include <linux/cache.h> 56 #include <linux/rtnetlink.h> 57 #include <linux/init.h> 58 #include <linux/scatterlist.h> 59 #include <linux/errqueue.h> 60 #include <linux/prefetch.h> 61 #include <linux/if_vlan.h> 62 #include <linux/mpls.h> 63 #include <linux/kcov.h> 64 65 #include <net/protocol.h> 66 #include <net/dst.h> 67 #include <net/sock.h> 68 #include <net/checksum.h> 69 #include <net/ip6_checksum.h> 70 #include <net/xfrm.h> 71 #include <net/mpls.h> 72 #include <net/mptcp.h> 73 #include <net/mctp.h> 74 #include <net/page_pool.h> 75 76 #include <linux/uaccess.h> 77 #include <trace/events/skb.h> 78 #include <linux/highmem.h> 79 #include <linux/capability.h> 80 #include <linux/user_namespace.h> 81 #include <linux/indirect_call_wrapper.h> 82 83 #include "dev.h" 84 #include "sock_destructor.h" 85 86 struct kmem_cache *skbuff_head_cache __ro_after_init; 87 static struct kmem_cache *skbuff_fclone_cache __ro_after_init; 88 #ifdef CONFIG_SKB_EXTENSIONS 89 static struct kmem_cache *skbuff_ext_cache __ro_after_init; 90 #endif 91 int sysctl_max_skb_frags __read_mostly = MAX_SKB_FRAGS; 92 EXPORT_SYMBOL(sysctl_max_skb_frags); 93 94 #undef FN 95 #define FN(reason) [SKB_DROP_REASON_##reason] = #reason, 96 const char * const drop_reasons[] = { 97 DEFINE_DROP_REASON(FN, FN) 98 }; 99 EXPORT_SYMBOL(drop_reasons); 100 101 /** 102 * skb_panic - private function for out-of-line support 103 * @skb: buffer 104 * @sz: size 105 * @addr: address 106 * @msg: skb_over_panic or skb_under_panic 107 * 108 * Out-of-line support for skb_put() and skb_push(). 109 * Called via the wrapper skb_over_panic() or skb_under_panic(). 110 * Keep out of line to prevent kernel bloat. 111 * __builtin_return_address is not used because it is not always reliable. 112 */ 113 static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr, 114 const char msg[]) 115 { 116 pr_emerg("%s: text:%px len:%d put:%d head:%px data:%px tail:%#lx end:%#lx dev:%s\n", 117 msg, addr, skb->len, sz, skb->head, skb->data, 118 (unsigned long)skb->tail, (unsigned long)skb->end, 119 skb->dev ? skb->dev->name : "<NULL>"); 120 BUG(); 121 } 122 123 static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr) 124 { 125 skb_panic(skb, sz, addr, __func__); 126 } 127 128 static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr) 129 { 130 skb_panic(skb, sz, addr, __func__); 131 } 132 133 #define NAPI_SKB_CACHE_SIZE 64 134 #define NAPI_SKB_CACHE_BULK 16 135 #define NAPI_SKB_CACHE_HALF (NAPI_SKB_CACHE_SIZE / 2) 136 137 struct napi_alloc_cache { 138 struct page_frag_cache page; 139 unsigned int skb_count; 140 void *skb_cache[NAPI_SKB_CACHE_SIZE]; 141 }; 142 143 static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache); 144 static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache); 145 146 void *__napi_alloc_frag_align(unsigned int fragsz, unsigned int align_mask) 147 { 148 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 149 150 fragsz = SKB_DATA_ALIGN(fragsz); 151 152 return page_frag_alloc_align(&nc->page, fragsz, GFP_ATOMIC, align_mask); 153 } 154 EXPORT_SYMBOL(__napi_alloc_frag_align); 155 156 void *__netdev_alloc_frag_align(unsigned int fragsz, unsigned int align_mask) 157 { 158 void *data; 159 160 fragsz = SKB_DATA_ALIGN(fragsz); 161 if (in_hardirq() || irqs_disabled()) { 162 struct page_frag_cache *nc = this_cpu_ptr(&netdev_alloc_cache); 163 164 data = page_frag_alloc_align(nc, fragsz, GFP_ATOMIC, align_mask); 165 } else { 166 struct napi_alloc_cache *nc; 167 168 local_bh_disable(); 169 nc = this_cpu_ptr(&napi_alloc_cache); 170 data = page_frag_alloc_align(&nc->page, fragsz, GFP_ATOMIC, align_mask); 171 local_bh_enable(); 172 } 173 return data; 174 } 175 EXPORT_SYMBOL(__netdev_alloc_frag_align); 176 177 static struct sk_buff *napi_skb_cache_get(void) 178 { 179 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 180 struct sk_buff *skb; 181 182 if (unlikely(!nc->skb_count)) { 183 nc->skb_count = kmem_cache_alloc_bulk(skbuff_head_cache, 184 GFP_ATOMIC, 185 NAPI_SKB_CACHE_BULK, 186 nc->skb_cache); 187 if (unlikely(!nc->skb_count)) 188 return NULL; 189 } 190 191 skb = nc->skb_cache[--nc->skb_count]; 192 kasan_unpoison_object_data(skbuff_head_cache, skb); 193 194 return skb; 195 } 196 197 /* Caller must provide SKB that is memset cleared */ 198 static void __build_skb_around(struct sk_buff *skb, void *data, 199 unsigned int frag_size) 200 { 201 struct skb_shared_info *shinfo; 202 unsigned int size = frag_size ? : ksize(data); 203 204 size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 205 206 /* Assumes caller memset cleared SKB */ 207 skb->truesize = SKB_TRUESIZE(size); 208 refcount_set(&skb->users, 1); 209 skb->head = data; 210 skb->data = data; 211 skb_reset_tail_pointer(skb); 212 skb_set_end_offset(skb, size); 213 skb->mac_header = (typeof(skb->mac_header))~0U; 214 skb->transport_header = (typeof(skb->transport_header))~0U; 215 skb->alloc_cpu = raw_smp_processor_id(); 216 /* make sure we initialize shinfo sequentially */ 217 shinfo = skb_shinfo(skb); 218 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref)); 219 atomic_set(&shinfo->dataref, 1); 220 221 skb_set_kcov_handle(skb, kcov_common_handle()); 222 } 223 224 /** 225 * __build_skb - build a network buffer 226 * @data: data buffer provided by caller 227 * @frag_size: size of data, or 0 if head was kmalloced 228 * 229 * Allocate a new &sk_buff. Caller provides space holding head and 230 * skb_shared_info. @data must have been allocated by kmalloc() only if 231 * @frag_size is 0, otherwise data should come from the page allocator 232 * or vmalloc() 233 * The return is the new skb buffer. 234 * On a failure the return is %NULL, and @data is not freed. 235 * Notes : 236 * Before IO, driver allocates only data buffer where NIC put incoming frame 237 * Driver should add room at head (NET_SKB_PAD) and 238 * MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info)) 239 * After IO, driver calls build_skb(), to allocate sk_buff and populate it 240 * before giving packet to stack. 241 * RX rings only contains data buffers, not full skbs. 242 */ 243 struct sk_buff *__build_skb(void *data, unsigned int frag_size) 244 { 245 struct sk_buff *skb; 246 247 skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC); 248 if (unlikely(!skb)) 249 return NULL; 250 251 memset(skb, 0, offsetof(struct sk_buff, tail)); 252 __build_skb_around(skb, data, frag_size); 253 254 return skb; 255 } 256 257 /* build_skb() is wrapper over __build_skb(), that specifically 258 * takes care of skb->head and skb->pfmemalloc 259 * This means that if @frag_size is not zero, then @data must be backed 260 * by a page fragment, not kmalloc() or vmalloc() 261 */ 262 struct sk_buff *build_skb(void *data, unsigned int frag_size) 263 { 264 struct sk_buff *skb = __build_skb(data, frag_size); 265 266 if (skb && frag_size) { 267 skb->head_frag = 1; 268 if (page_is_pfmemalloc(virt_to_head_page(data))) 269 skb->pfmemalloc = 1; 270 } 271 return skb; 272 } 273 EXPORT_SYMBOL(build_skb); 274 275 /** 276 * build_skb_around - build a network buffer around provided skb 277 * @skb: sk_buff provide by caller, must be memset cleared 278 * @data: data buffer provided by caller 279 * @frag_size: size of data, or 0 if head was kmalloced 280 */ 281 struct sk_buff *build_skb_around(struct sk_buff *skb, 282 void *data, unsigned int frag_size) 283 { 284 if (unlikely(!skb)) 285 return NULL; 286 287 __build_skb_around(skb, data, frag_size); 288 289 if (frag_size) { 290 skb->head_frag = 1; 291 if (page_is_pfmemalloc(virt_to_head_page(data))) 292 skb->pfmemalloc = 1; 293 } 294 return skb; 295 } 296 EXPORT_SYMBOL(build_skb_around); 297 298 /** 299 * __napi_build_skb - build a network buffer 300 * @data: data buffer provided by caller 301 * @frag_size: size of data, or 0 if head was kmalloced 302 * 303 * Version of __build_skb() that uses NAPI percpu caches to obtain 304 * skbuff_head instead of inplace allocation. 305 * 306 * Returns a new &sk_buff on success, %NULL on allocation failure. 307 */ 308 static struct sk_buff *__napi_build_skb(void *data, unsigned int frag_size) 309 { 310 struct sk_buff *skb; 311 312 skb = napi_skb_cache_get(); 313 if (unlikely(!skb)) 314 return NULL; 315 316 memset(skb, 0, offsetof(struct sk_buff, tail)); 317 __build_skb_around(skb, data, frag_size); 318 319 return skb; 320 } 321 322 /** 323 * napi_build_skb - build a network buffer 324 * @data: data buffer provided by caller 325 * @frag_size: size of data, or 0 if head was kmalloced 326 * 327 * Version of __napi_build_skb() that takes care of skb->head_frag 328 * and skb->pfmemalloc when the data is a page or page fragment. 329 * 330 * Returns a new &sk_buff on success, %NULL on allocation failure. 331 */ 332 struct sk_buff *napi_build_skb(void *data, unsigned int frag_size) 333 { 334 struct sk_buff *skb = __napi_build_skb(data, frag_size); 335 336 if (likely(skb) && frag_size) { 337 skb->head_frag = 1; 338 skb_propagate_pfmemalloc(virt_to_head_page(data), skb); 339 } 340 341 return skb; 342 } 343 EXPORT_SYMBOL(napi_build_skb); 344 345 /* 346 * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells 347 * the caller if emergency pfmemalloc reserves are being used. If it is and 348 * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves 349 * may be used. Otherwise, the packet data may be discarded until enough 350 * memory is free 351 */ 352 static void *kmalloc_reserve(size_t size, gfp_t flags, int node, 353 bool *pfmemalloc) 354 { 355 void *obj; 356 bool ret_pfmemalloc = false; 357 358 /* 359 * Try a regular allocation, when that fails and we're not entitled 360 * to the reserves, fail. 361 */ 362 obj = kmalloc_node_track_caller(size, 363 flags | __GFP_NOMEMALLOC | __GFP_NOWARN, 364 node); 365 if (obj || !(gfp_pfmemalloc_allowed(flags))) 366 goto out; 367 368 /* Try again but now we are using pfmemalloc reserves */ 369 ret_pfmemalloc = true; 370 obj = kmalloc_node_track_caller(size, flags, node); 371 372 out: 373 if (pfmemalloc) 374 *pfmemalloc = ret_pfmemalloc; 375 376 return obj; 377 } 378 379 /* Allocate a new skbuff. We do this ourselves so we can fill in a few 380 * 'private' fields and also do memory statistics to find all the 381 * [BEEP] leaks. 382 * 383 */ 384 385 /** 386 * __alloc_skb - allocate a network buffer 387 * @size: size to allocate 388 * @gfp_mask: allocation mask 389 * @flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache 390 * instead of head cache and allocate a cloned (child) skb. 391 * If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for 392 * allocations in case the data is required for writeback 393 * @node: numa node to allocate memory on 394 * 395 * Allocate a new &sk_buff. The returned buffer has no headroom and a 396 * tail room of at least size bytes. The object has a reference count 397 * of one. The return is the buffer. On a failure the return is %NULL. 398 * 399 * Buffers may only be allocated from interrupts using a @gfp_mask of 400 * %GFP_ATOMIC. 401 */ 402 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask, 403 int flags, int node) 404 { 405 struct kmem_cache *cache; 406 struct sk_buff *skb; 407 unsigned int osize; 408 bool pfmemalloc; 409 u8 *data; 410 411 cache = (flags & SKB_ALLOC_FCLONE) 412 ? skbuff_fclone_cache : skbuff_head_cache; 413 414 if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX)) 415 gfp_mask |= __GFP_MEMALLOC; 416 417 /* Get the HEAD */ 418 if ((flags & (SKB_ALLOC_FCLONE | SKB_ALLOC_NAPI)) == SKB_ALLOC_NAPI && 419 likely(node == NUMA_NO_NODE || node == numa_mem_id())) 420 skb = napi_skb_cache_get(); 421 else 422 skb = kmem_cache_alloc_node(cache, gfp_mask & ~GFP_DMA, node); 423 if (unlikely(!skb)) 424 return NULL; 425 prefetchw(skb); 426 427 /* We do our best to align skb_shared_info on a separate cache 428 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives 429 * aligned memory blocks, unless SLUB/SLAB debug is enabled. 430 * Both skb->head and skb_shared_info are cache line aligned. 431 */ 432 size = SKB_DATA_ALIGN(size); 433 size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 434 data = kmalloc_reserve(size, gfp_mask, node, &pfmemalloc); 435 if (unlikely(!data)) 436 goto nodata; 437 /* kmalloc(size) might give us more room than requested. 438 * Put skb_shared_info exactly at the end of allocated zone, 439 * to allow max possible filling before reallocation. 440 */ 441 osize = ksize(data); 442 size = SKB_WITH_OVERHEAD(osize); 443 prefetchw(data + size); 444 445 /* 446 * Only clear those fields we need to clear, not those that we will 447 * actually initialise below. Hence, don't put any more fields after 448 * the tail pointer in struct sk_buff! 449 */ 450 memset(skb, 0, offsetof(struct sk_buff, tail)); 451 __build_skb_around(skb, data, osize); 452 skb->pfmemalloc = pfmemalloc; 453 454 if (flags & SKB_ALLOC_FCLONE) { 455 struct sk_buff_fclones *fclones; 456 457 fclones = container_of(skb, struct sk_buff_fclones, skb1); 458 459 skb->fclone = SKB_FCLONE_ORIG; 460 refcount_set(&fclones->fclone_ref, 1); 461 } 462 463 return skb; 464 465 nodata: 466 kmem_cache_free(cache, skb); 467 return NULL; 468 } 469 EXPORT_SYMBOL(__alloc_skb); 470 471 /** 472 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device 473 * @dev: network device to receive on 474 * @len: length to allocate 475 * @gfp_mask: get_free_pages mask, passed to alloc_skb 476 * 477 * Allocate a new &sk_buff and assign it a usage count of one. The 478 * buffer has NET_SKB_PAD headroom built in. Users should allocate 479 * the headroom they think they need without accounting for the 480 * built in space. The built in space is used for optimisations. 481 * 482 * %NULL is returned if there is no free memory. 483 */ 484 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len, 485 gfp_t gfp_mask) 486 { 487 struct page_frag_cache *nc; 488 struct sk_buff *skb; 489 bool pfmemalloc; 490 void *data; 491 492 len += NET_SKB_PAD; 493 494 /* If requested length is either too small or too big, 495 * we use kmalloc() for skb->head allocation. 496 */ 497 if (len <= SKB_WITH_OVERHEAD(1024) || 498 len > SKB_WITH_OVERHEAD(PAGE_SIZE) || 499 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) { 500 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE); 501 if (!skb) 502 goto skb_fail; 503 goto skb_success; 504 } 505 506 len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 507 len = SKB_DATA_ALIGN(len); 508 509 if (sk_memalloc_socks()) 510 gfp_mask |= __GFP_MEMALLOC; 511 512 if (in_hardirq() || irqs_disabled()) { 513 nc = this_cpu_ptr(&netdev_alloc_cache); 514 data = page_frag_alloc(nc, len, gfp_mask); 515 pfmemalloc = nc->pfmemalloc; 516 } else { 517 local_bh_disable(); 518 nc = this_cpu_ptr(&napi_alloc_cache.page); 519 data = page_frag_alloc(nc, len, gfp_mask); 520 pfmemalloc = nc->pfmemalloc; 521 local_bh_enable(); 522 } 523 524 if (unlikely(!data)) 525 return NULL; 526 527 skb = __build_skb(data, len); 528 if (unlikely(!skb)) { 529 skb_free_frag(data); 530 return NULL; 531 } 532 533 if (pfmemalloc) 534 skb->pfmemalloc = 1; 535 skb->head_frag = 1; 536 537 skb_success: 538 skb_reserve(skb, NET_SKB_PAD); 539 skb->dev = dev; 540 541 skb_fail: 542 return skb; 543 } 544 EXPORT_SYMBOL(__netdev_alloc_skb); 545 546 /** 547 * __napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance 548 * @napi: napi instance this buffer was allocated for 549 * @len: length to allocate 550 * @gfp_mask: get_free_pages mask, passed to alloc_skb and alloc_pages 551 * 552 * Allocate a new sk_buff for use in NAPI receive. This buffer will 553 * attempt to allocate the head from a special reserved region used 554 * only for NAPI Rx allocation. By doing this we can save several 555 * CPU cycles by avoiding having to disable and re-enable IRQs. 556 * 557 * %NULL is returned if there is no free memory. 558 */ 559 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, unsigned int len, 560 gfp_t gfp_mask) 561 { 562 struct napi_alloc_cache *nc; 563 struct sk_buff *skb; 564 void *data; 565 566 DEBUG_NET_WARN_ON_ONCE(!in_softirq()); 567 len += NET_SKB_PAD + NET_IP_ALIGN; 568 569 /* If requested length is either too small or too big, 570 * we use kmalloc() for skb->head allocation. 571 */ 572 if (len <= SKB_WITH_OVERHEAD(1024) || 573 len > SKB_WITH_OVERHEAD(PAGE_SIZE) || 574 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) { 575 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX | SKB_ALLOC_NAPI, 576 NUMA_NO_NODE); 577 if (!skb) 578 goto skb_fail; 579 goto skb_success; 580 } 581 582 nc = this_cpu_ptr(&napi_alloc_cache); 583 len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 584 len = SKB_DATA_ALIGN(len); 585 586 if (sk_memalloc_socks()) 587 gfp_mask |= __GFP_MEMALLOC; 588 589 data = page_frag_alloc(&nc->page, len, gfp_mask); 590 if (unlikely(!data)) 591 return NULL; 592 593 skb = __napi_build_skb(data, len); 594 if (unlikely(!skb)) { 595 skb_free_frag(data); 596 return NULL; 597 } 598 599 if (nc->page.pfmemalloc) 600 skb->pfmemalloc = 1; 601 skb->head_frag = 1; 602 603 skb_success: 604 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN); 605 skb->dev = napi->dev; 606 607 skb_fail: 608 return skb; 609 } 610 EXPORT_SYMBOL(__napi_alloc_skb); 611 612 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off, 613 int size, unsigned int truesize) 614 { 615 skb_fill_page_desc(skb, i, page, off, size); 616 skb->len += size; 617 skb->data_len += size; 618 skb->truesize += truesize; 619 } 620 EXPORT_SYMBOL(skb_add_rx_frag); 621 622 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size, 623 unsigned int truesize) 624 { 625 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 626 627 skb_frag_size_add(frag, size); 628 skb->len += size; 629 skb->data_len += size; 630 skb->truesize += truesize; 631 } 632 EXPORT_SYMBOL(skb_coalesce_rx_frag); 633 634 static void skb_drop_list(struct sk_buff **listp) 635 { 636 kfree_skb_list(*listp); 637 *listp = NULL; 638 } 639 640 static inline void skb_drop_fraglist(struct sk_buff *skb) 641 { 642 skb_drop_list(&skb_shinfo(skb)->frag_list); 643 } 644 645 static void skb_clone_fraglist(struct sk_buff *skb) 646 { 647 struct sk_buff *list; 648 649 skb_walk_frags(skb, list) 650 skb_get(list); 651 } 652 653 static void skb_free_head(struct sk_buff *skb) 654 { 655 unsigned char *head = skb->head; 656 657 if (skb->head_frag) { 658 if (skb_pp_recycle(skb, head)) 659 return; 660 skb_free_frag(head); 661 } else { 662 kfree(head); 663 } 664 } 665 666 static void skb_release_data(struct sk_buff *skb) 667 { 668 struct skb_shared_info *shinfo = skb_shinfo(skb); 669 int i; 670 671 if (skb->cloned && 672 atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1, 673 &shinfo->dataref)) 674 goto exit; 675 676 if (skb_zcopy(skb)) { 677 bool skip_unref = shinfo->flags & SKBFL_MANAGED_FRAG_REFS; 678 679 skb_zcopy_clear(skb, true); 680 if (skip_unref) 681 goto free_head; 682 } 683 684 for (i = 0; i < shinfo->nr_frags; i++) 685 __skb_frag_unref(&shinfo->frags[i], skb->pp_recycle); 686 687 free_head: 688 if (shinfo->frag_list) 689 kfree_skb_list(shinfo->frag_list); 690 691 skb_free_head(skb); 692 exit: 693 /* When we clone an SKB we copy the reycling bit. The pp_recycle 694 * bit is only set on the head though, so in order to avoid races 695 * while trying to recycle fragments on __skb_frag_unref() we need 696 * to make one SKB responsible for triggering the recycle path. 697 * So disable the recycling bit if an SKB is cloned and we have 698 * additional references to the fragmented part of the SKB. 699 * Eventually the last SKB will have the recycling bit set and it's 700 * dataref set to 0, which will trigger the recycling 701 */ 702 skb->pp_recycle = 0; 703 } 704 705 /* 706 * Free an skbuff by memory without cleaning the state. 707 */ 708 static void kfree_skbmem(struct sk_buff *skb) 709 { 710 struct sk_buff_fclones *fclones; 711 712 switch (skb->fclone) { 713 case SKB_FCLONE_UNAVAILABLE: 714 kmem_cache_free(skbuff_head_cache, skb); 715 return; 716 717 case SKB_FCLONE_ORIG: 718 fclones = container_of(skb, struct sk_buff_fclones, skb1); 719 720 /* We usually free the clone (TX completion) before original skb 721 * This test would have no chance to be true for the clone, 722 * while here, branch prediction will be good. 723 */ 724 if (refcount_read(&fclones->fclone_ref) == 1) 725 goto fastpath; 726 break; 727 728 default: /* SKB_FCLONE_CLONE */ 729 fclones = container_of(skb, struct sk_buff_fclones, skb2); 730 break; 731 } 732 if (!refcount_dec_and_test(&fclones->fclone_ref)) 733 return; 734 fastpath: 735 kmem_cache_free(skbuff_fclone_cache, fclones); 736 } 737 738 void skb_release_head_state(struct sk_buff *skb) 739 { 740 skb_dst_drop(skb); 741 if (skb->destructor) { 742 DEBUG_NET_WARN_ON_ONCE(in_hardirq()); 743 skb->destructor(skb); 744 } 745 #if IS_ENABLED(CONFIG_NF_CONNTRACK) 746 nf_conntrack_put(skb_nfct(skb)); 747 #endif 748 skb_ext_put(skb); 749 } 750 751 /* Free everything but the sk_buff shell. */ 752 static void skb_release_all(struct sk_buff *skb) 753 { 754 skb_release_head_state(skb); 755 if (likely(skb->head)) 756 skb_release_data(skb); 757 } 758 759 /** 760 * __kfree_skb - private function 761 * @skb: buffer 762 * 763 * Free an sk_buff. Release anything attached to the buffer. 764 * Clean the state. This is an internal helper function. Users should 765 * always call kfree_skb 766 */ 767 768 void __kfree_skb(struct sk_buff *skb) 769 { 770 skb_release_all(skb); 771 kfree_skbmem(skb); 772 } 773 EXPORT_SYMBOL(__kfree_skb); 774 775 /** 776 * kfree_skb_reason - free an sk_buff with special reason 777 * @skb: buffer to free 778 * @reason: reason why this skb is dropped 779 * 780 * Drop a reference to the buffer and free it if the usage count has 781 * hit zero. Meanwhile, pass the drop reason to 'kfree_skb' 782 * tracepoint. 783 */ 784 void __fix_address 785 kfree_skb_reason(struct sk_buff *skb, enum skb_drop_reason reason) 786 { 787 if (unlikely(!skb_unref(skb))) 788 return; 789 790 DEBUG_NET_WARN_ON_ONCE(reason <= 0 || reason >= SKB_DROP_REASON_MAX); 791 792 trace_kfree_skb(skb, __builtin_return_address(0), reason); 793 __kfree_skb(skb); 794 } 795 EXPORT_SYMBOL(kfree_skb_reason); 796 797 void kfree_skb_list_reason(struct sk_buff *segs, 798 enum skb_drop_reason reason) 799 { 800 while (segs) { 801 struct sk_buff *next = segs->next; 802 803 kfree_skb_reason(segs, reason); 804 segs = next; 805 } 806 } 807 EXPORT_SYMBOL(kfree_skb_list_reason); 808 809 /* Dump skb information and contents. 810 * 811 * Must only be called from net_ratelimit()-ed paths. 812 * 813 * Dumps whole packets if full_pkt, only headers otherwise. 814 */ 815 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt) 816 { 817 struct skb_shared_info *sh = skb_shinfo(skb); 818 struct net_device *dev = skb->dev; 819 struct sock *sk = skb->sk; 820 struct sk_buff *list_skb; 821 bool has_mac, has_trans; 822 int headroom, tailroom; 823 int i, len, seg_len; 824 825 if (full_pkt) 826 len = skb->len; 827 else 828 len = min_t(int, skb->len, MAX_HEADER + 128); 829 830 headroom = skb_headroom(skb); 831 tailroom = skb_tailroom(skb); 832 833 has_mac = skb_mac_header_was_set(skb); 834 has_trans = skb_transport_header_was_set(skb); 835 836 printk("%sskb len=%u headroom=%u headlen=%u tailroom=%u\n" 837 "mac=(%d,%d) net=(%d,%d) trans=%d\n" 838 "shinfo(txflags=%u nr_frags=%u gso(size=%hu type=%u segs=%hu))\n" 839 "csum(0x%x ip_summed=%u complete_sw=%u valid=%u level=%u)\n" 840 "hash(0x%x sw=%u l4=%u) proto=0x%04x pkttype=%u iif=%d\n", 841 level, skb->len, headroom, skb_headlen(skb), tailroom, 842 has_mac ? skb->mac_header : -1, 843 has_mac ? skb_mac_header_len(skb) : -1, 844 skb->network_header, 845 has_trans ? skb_network_header_len(skb) : -1, 846 has_trans ? skb->transport_header : -1, 847 sh->tx_flags, sh->nr_frags, 848 sh->gso_size, sh->gso_type, sh->gso_segs, 849 skb->csum, skb->ip_summed, skb->csum_complete_sw, 850 skb->csum_valid, skb->csum_level, 851 skb->hash, skb->sw_hash, skb->l4_hash, 852 ntohs(skb->protocol), skb->pkt_type, skb->skb_iif); 853 854 if (dev) 855 printk("%sdev name=%s feat=%pNF\n", 856 level, dev->name, &dev->features); 857 if (sk) 858 printk("%ssk family=%hu type=%u proto=%u\n", 859 level, sk->sk_family, sk->sk_type, sk->sk_protocol); 860 861 if (full_pkt && headroom) 862 print_hex_dump(level, "skb headroom: ", DUMP_PREFIX_OFFSET, 863 16, 1, skb->head, headroom, false); 864 865 seg_len = min_t(int, skb_headlen(skb), len); 866 if (seg_len) 867 print_hex_dump(level, "skb linear: ", DUMP_PREFIX_OFFSET, 868 16, 1, skb->data, seg_len, false); 869 len -= seg_len; 870 871 if (full_pkt && tailroom) 872 print_hex_dump(level, "skb tailroom: ", DUMP_PREFIX_OFFSET, 873 16, 1, skb_tail_pointer(skb), tailroom, false); 874 875 for (i = 0; len && i < skb_shinfo(skb)->nr_frags; i++) { 876 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 877 u32 p_off, p_len, copied; 878 struct page *p; 879 u8 *vaddr; 880 881 skb_frag_foreach_page(frag, skb_frag_off(frag), 882 skb_frag_size(frag), p, p_off, p_len, 883 copied) { 884 seg_len = min_t(int, p_len, len); 885 vaddr = kmap_atomic(p); 886 print_hex_dump(level, "skb frag: ", 887 DUMP_PREFIX_OFFSET, 888 16, 1, vaddr + p_off, seg_len, false); 889 kunmap_atomic(vaddr); 890 len -= seg_len; 891 if (!len) 892 break; 893 } 894 } 895 896 if (full_pkt && skb_has_frag_list(skb)) { 897 printk("skb fraglist:\n"); 898 skb_walk_frags(skb, list_skb) 899 skb_dump(level, list_skb, true); 900 } 901 } 902 EXPORT_SYMBOL(skb_dump); 903 904 /** 905 * skb_tx_error - report an sk_buff xmit error 906 * @skb: buffer that triggered an error 907 * 908 * Report xmit error if a device callback is tracking this skb. 909 * skb must be freed afterwards. 910 */ 911 void skb_tx_error(struct sk_buff *skb) 912 { 913 if (skb) { 914 skb_zcopy_downgrade_managed(skb); 915 skb_zcopy_clear(skb, true); 916 } 917 } 918 EXPORT_SYMBOL(skb_tx_error); 919 920 #ifdef CONFIG_TRACEPOINTS 921 /** 922 * consume_skb - free an skbuff 923 * @skb: buffer to free 924 * 925 * Drop a ref to the buffer and free it if the usage count has hit zero 926 * Functions identically to kfree_skb, but kfree_skb assumes that the frame 927 * is being dropped after a failure and notes that 928 */ 929 void consume_skb(struct sk_buff *skb) 930 { 931 if (!skb_unref(skb)) 932 return; 933 934 trace_consume_skb(skb); 935 __kfree_skb(skb); 936 } 937 EXPORT_SYMBOL(consume_skb); 938 #endif 939 940 /** 941 * __consume_stateless_skb - free an skbuff, assuming it is stateless 942 * @skb: buffer to free 943 * 944 * Alike consume_skb(), but this variant assumes that this is the last 945 * skb reference and all the head states have been already dropped 946 */ 947 void __consume_stateless_skb(struct sk_buff *skb) 948 { 949 trace_consume_skb(skb); 950 skb_release_data(skb); 951 kfree_skbmem(skb); 952 } 953 954 static void napi_skb_cache_put(struct sk_buff *skb) 955 { 956 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 957 u32 i; 958 959 kasan_poison_object_data(skbuff_head_cache, skb); 960 nc->skb_cache[nc->skb_count++] = skb; 961 962 if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) { 963 for (i = NAPI_SKB_CACHE_HALF; i < NAPI_SKB_CACHE_SIZE; i++) 964 kasan_unpoison_object_data(skbuff_head_cache, 965 nc->skb_cache[i]); 966 967 kmem_cache_free_bulk(skbuff_head_cache, NAPI_SKB_CACHE_HALF, 968 nc->skb_cache + NAPI_SKB_CACHE_HALF); 969 nc->skb_count = NAPI_SKB_CACHE_HALF; 970 } 971 } 972 973 void __kfree_skb_defer(struct sk_buff *skb) 974 { 975 skb_release_all(skb); 976 napi_skb_cache_put(skb); 977 } 978 979 void napi_skb_free_stolen_head(struct sk_buff *skb) 980 { 981 if (unlikely(skb->slow_gro)) { 982 nf_reset_ct(skb); 983 skb_dst_drop(skb); 984 skb_ext_put(skb); 985 skb_orphan(skb); 986 skb->slow_gro = 0; 987 } 988 napi_skb_cache_put(skb); 989 } 990 991 void napi_consume_skb(struct sk_buff *skb, int budget) 992 { 993 /* Zero budget indicate non-NAPI context called us, like netpoll */ 994 if (unlikely(!budget)) { 995 dev_consume_skb_any(skb); 996 return; 997 } 998 999 DEBUG_NET_WARN_ON_ONCE(!in_softirq()); 1000 1001 if (!skb_unref(skb)) 1002 return; 1003 1004 /* if reaching here SKB is ready to free */ 1005 trace_consume_skb(skb); 1006 1007 /* if SKB is a clone, don't handle this case */ 1008 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) { 1009 __kfree_skb(skb); 1010 return; 1011 } 1012 1013 skb_release_all(skb); 1014 napi_skb_cache_put(skb); 1015 } 1016 EXPORT_SYMBOL(napi_consume_skb); 1017 1018 /* Make sure a field is contained by headers group */ 1019 #define CHECK_SKB_FIELD(field) \ 1020 BUILD_BUG_ON(offsetof(struct sk_buff, field) != \ 1021 offsetof(struct sk_buff, headers.field)); \ 1022 1023 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old) 1024 { 1025 new->tstamp = old->tstamp; 1026 /* We do not copy old->sk */ 1027 new->dev = old->dev; 1028 memcpy(new->cb, old->cb, sizeof(old->cb)); 1029 skb_dst_copy(new, old); 1030 __skb_ext_copy(new, old); 1031 __nf_copy(new, old, false); 1032 1033 /* Note : this field could be in the headers group. 1034 * It is not yet because we do not want to have a 16 bit hole 1035 */ 1036 new->queue_mapping = old->queue_mapping; 1037 1038 memcpy(&new->headers, &old->headers, sizeof(new->headers)); 1039 CHECK_SKB_FIELD(protocol); 1040 CHECK_SKB_FIELD(csum); 1041 CHECK_SKB_FIELD(hash); 1042 CHECK_SKB_FIELD(priority); 1043 CHECK_SKB_FIELD(skb_iif); 1044 CHECK_SKB_FIELD(vlan_proto); 1045 CHECK_SKB_FIELD(vlan_tci); 1046 CHECK_SKB_FIELD(transport_header); 1047 CHECK_SKB_FIELD(network_header); 1048 CHECK_SKB_FIELD(mac_header); 1049 CHECK_SKB_FIELD(inner_protocol); 1050 CHECK_SKB_FIELD(inner_transport_header); 1051 CHECK_SKB_FIELD(inner_network_header); 1052 CHECK_SKB_FIELD(inner_mac_header); 1053 CHECK_SKB_FIELD(mark); 1054 #ifdef CONFIG_NETWORK_SECMARK 1055 CHECK_SKB_FIELD(secmark); 1056 #endif 1057 #ifdef CONFIG_NET_RX_BUSY_POLL 1058 CHECK_SKB_FIELD(napi_id); 1059 #endif 1060 CHECK_SKB_FIELD(alloc_cpu); 1061 #ifdef CONFIG_XPS 1062 CHECK_SKB_FIELD(sender_cpu); 1063 #endif 1064 #ifdef CONFIG_NET_SCHED 1065 CHECK_SKB_FIELD(tc_index); 1066 #endif 1067 1068 } 1069 1070 /* 1071 * You should not add any new code to this function. Add it to 1072 * __copy_skb_header above instead. 1073 */ 1074 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb) 1075 { 1076 #define C(x) n->x = skb->x 1077 1078 n->next = n->prev = NULL; 1079 n->sk = NULL; 1080 __copy_skb_header(n, skb); 1081 1082 C(len); 1083 C(data_len); 1084 C(mac_len); 1085 n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len; 1086 n->cloned = 1; 1087 n->nohdr = 0; 1088 n->peeked = 0; 1089 C(pfmemalloc); 1090 C(pp_recycle); 1091 n->destructor = NULL; 1092 C(tail); 1093 C(end); 1094 C(head); 1095 C(head_frag); 1096 C(data); 1097 C(truesize); 1098 refcount_set(&n->users, 1); 1099 1100 atomic_inc(&(skb_shinfo(skb)->dataref)); 1101 skb->cloned = 1; 1102 1103 return n; 1104 #undef C 1105 } 1106 1107 /** 1108 * alloc_skb_for_msg() - allocate sk_buff to wrap frag list forming a msg 1109 * @first: first sk_buff of the msg 1110 */ 1111 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first) 1112 { 1113 struct sk_buff *n; 1114 1115 n = alloc_skb(0, GFP_ATOMIC); 1116 if (!n) 1117 return NULL; 1118 1119 n->len = first->len; 1120 n->data_len = first->len; 1121 n->truesize = first->truesize; 1122 1123 skb_shinfo(n)->frag_list = first; 1124 1125 __copy_skb_header(n, first); 1126 n->destructor = NULL; 1127 1128 return n; 1129 } 1130 EXPORT_SYMBOL_GPL(alloc_skb_for_msg); 1131 1132 /** 1133 * skb_morph - morph one skb into another 1134 * @dst: the skb to receive the contents 1135 * @src: the skb to supply the contents 1136 * 1137 * This is identical to skb_clone except that the target skb is 1138 * supplied by the user. 1139 * 1140 * The target skb is returned upon exit. 1141 */ 1142 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src) 1143 { 1144 skb_release_all(dst); 1145 return __skb_clone(dst, src); 1146 } 1147 EXPORT_SYMBOL_GPL(skb_morph); 1148 1149 int mm_account_pinned_pages(struct mmpin *mmp, size_t size) 1150 { 1151 unsigned long max_pg, num_pg, new_pg, old_pg; 1152 struct user_struct *user; 1153 1154 if (capable(CAP_IPC_LOCK) || !size) 1155 return 0; 1156 1157 num_pg = (size >> PAGE_SHIFT) + 2; /* worst case */ 1158 max_pg = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT; 1159 user = mmp->user ? : current_user(); 1160 1161 do { 1162 old_pg = atomic_long_read(&user->locked_vm); 1163 new_pg = old_pg + num_pg; 1164 if (new_pg > max_pg) 1165 return -ENOBUFS; 1166 } while (atomic_long_cmpxchg(&user->locked_vm, old_pg, new_pg) != 1167 old_pg); 1168 1169 if (!mmp->user) { 1170 mmp->user = get_uid(user); 1171 mmp->num_pg = num_pg; 1172 } else { 1173 mmp->num_pg += num_pg; 1174 } 1175 1176 return 0; 1177 } 1178 EXPORT_SYMBOL_GPL(mm_account_pinned_pages); 1179 1180 void mm_unaccount_pinned_pages(struct mmpin *mmp) 1181 { 1182 if (mmp->user) { 1183 atomic_long_sub(mmp->num_pg, &mmp->user->locked_vm); 1184 free_uid(mmp->user); 1185 } 1186 } 1187 EXPORT_SYMBOL_GPL(mm_unaccount_pinned_pages); 1188 1189 static struct ubuf_info *msg_zerocopy_alloc(struct sock *sk, size_t size) 1190 { 1191 struct ubuf_info_msgzc *uarg; 1192 struct sk_buff *skb; 1193 1194 WARN_ON_ONCE(!in_task()); 1195 1196 skb = sock_omalloc(sk, 0, GFP_KERNEL); 1197 if (!skb) 1198 return NULL; 1199 1200 BUILD_BUG_ON(sizeof(*uarg) > sizeof(skb->cb)); 1201 uarg = (void *)skb->cb; 1202 uarg->mmp.user = NULL; 1203 1204 if (mm_account_pinned_pages(&uarg->mmp, size)) { 1205 kfree_skb(skb); 1206 return NULL; 1207 } 1208 1209 uarg->ubuf.callback = msg_zerocopy_callback; 1210 uarg->id = ((u32)atomic_inc_return(&sk->sk_zckey)) - 1; 1211 uarg->len = 1; 1212 uarg->bytelen = size; 1213 uarg->zerocopy = 1; 1214 uarg->ubuf.flags = SKBFL_ZEROCOPY_FRAG | SKBFL_DONT_ORPHAN; 1215 refcount_set(&uarg->ubuf.refcnt, 1); 1216 sock_hold(sk); 1217 1218 return &uarg->ubuf; 1219 } 1220 1221 static inline struct sk_buff *skb_from_uarg(struct ubuf_info_msgzc *uarg) 1222 { 1223 return container_of((void *)uarg, struct sk_buff, cb); 1224 } 1225 1226 struct ubuf_info *msg_zerocopy_realloc(struct sock *sk, size_t size, 1227 struct ubuf_info *uarg) 1228 { 1229 if (uarg) { 1230 struct ubuf_info_msgzc *uarg_zc; 1231 const u32 byte_limit = 1 << 19; /* limit to a few TSO */ 1232 u32 bytelen, next; 1233 1234 /* there might be non MSG_ZEROCOPY users */ 1235 if (uarg->callback != msg_zerocopy_callback) 1236 return NULL; 1237 1238 /* realloc only when socket is locked (TCP, UDP cork), 1239 * so uarg->len and sk_zckey access is serialized 1240 */ 1241 if (!sock_owned_by_user(sk)) { 1242 WARN_ON_ONCE(1); 1243 return NULL; 1244 } 1245 1246 uarg_zc = uarg_to_msgzc(uarg); 1247 bytelen = uarg_zc->bytelen + size; 1248 if (uarg_zc->len == USHRT_MAX - 1 || bytelen > byte_limit) { 1249 /* TCP can create new skb to attach new uarg */ 1250 if (sk->sk_type == SOCK_STREAM) 1251 goto new_alloc; 1252 return NULL; 1253 } 1254 1255 next = (u32)atomic_read(&sk->sk_zckey); 1256 if ((u32)(uarg_zc->id + uarg_zc->len) == next) { 1257 if (mm_account_pinned_pages(&uarg_zc->mmp, size)) 1258 return NULL; 1259 uarg_zc->len++; 1260 uarg_zc->bytelen = bytelen; 1261 atomic_set(&sk->sk_zckey, ++next); 1262 1263 /* no extra ref when appending to datagram (MSG_MORE) */ 1264 if (sk->sk_type == SOCK_STREAM) 1265 net_zcopy_get(uarg); 1266 1267 return uarg; 1268 } 1269 } 1270 1271 new_alloc: 1272 return msg_zerocopy_alloc(sk, size); 1273 } 1274 EXPORT_SYMBOL_GPL(msg_zerocopy_realloc); 1275 1276 static bool skb_zerocopy_notify_extend(struct sk_buff *skb, u32 lo, u16 len) 1277 { 1278 struct sock_exterr_skb *serr = SKB_EXT_ERR(skb); 1279 u32 old_lo, old_hi; 1280 u64 sum_len; 1281 1282 old_lo = serr->ee.ee_info; 1283 old_hi = serr->ee.ee_data; 1284 sum_len = old_hi - old_lo + 1ULL + len; 1285 1286 if (sum_len >= (1ULL << 32)) 1287 return false; 1288 1289 if (lo != old_hi + 1) 1290 return false; 1291 1292 serr->ee.ee_data += len; 1293 return true; 1294 } 1295 1296 static void __msg_zerocopy_callback(struct ubuf_info_msgzc *uarg) 1297 { 1298 struct sk_buff *tail, *skb = skb_from_uarg(uarg); 1299 struct sock_exterr_skb *serr; 1300 struct sock *sk = skb->sk; 1301 struct sk_buff_head *q; 1302 unsigned long flags; 1303 bool is_zerocopy; 1304 u32 lo, hi; 1305 u16 len; 1306 1307 mm_unaccount_pinned_pages(&uarg->mmp); 1308 1309 /* if !len, there was only 1 call, and it was aborted 1310 * so do not queue a completion notification 1311 */ 1312 if (!uarg->len || sock_flag(sk, SOCK_DEAD)) 1313 goto release; 1314 1315 len = uarg->len; 1316 lo = uarg->id; 1317 hi = uarg->id + len - 1; 1318 is_zerocopy = uarg->zerocopy; 1319 1320 serr = SKB_EXT_ERR(skb); 1321 memset(serr, 0, sizeof(*serr)); 1322 serr->ee.ee_errno = 0; 1323 serr->ee.ee_origin = SO_EE_ORIGIN_ZEROCOPY; 1324 serr->ee.ee_data = hi; 1325 serr->ee.ee_info = lo; 1326 if (!is_zerocopy) 1327 serr->ee.ee_code |= SO_EE_CODE_ZEROCOPY_COPIED; 1328 1329 q = &sk->sk_error_queue; 1330 spin_lock_irqsave(&q->lock, flags); 1331 tail = skb_peek_tail(q); 1332 if (!tail || SKB_EXT_ERR(tail)->ee.ee_origin != SO_EE_ORIGIN_ZEROCOPY || 1333 !skb_zerocopy_notify_extend(tail, lo, len)) { 1334 __skb_queue_tail(q, skb); 1335 skb = NULL; 1336 } 1337 spin_unlock_irqrestore(&q->lock, flags); 1338 1339 sk_error_report(sk); 1340 1341 release: 1342 consume_skb(skb); 1343 sock_put(sk); 1344 } 1345 1346 void msg_zerocopy_callback(struct sk_buff *skb, struct ubuf_info *uarg, 1347 bool success) 1348 { 1349 struct ubuf_info_msgzc *uarg_zc = uarg_to_msgzc(uarg); 1350 1351 uarg_zc->zerocopy = uarg_zc->zerocopy & success; 1352 1353 if (refcount_dec_and_test(&uarg->refcnt)) 1354 __msg_zerocopy_callback(uarg_zc); 1355 } 1356 EXPORT_SYMBOL_GPL(msg_zerocopy_callback); 1357 1358 void msg_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref) 1359 { 1360 struct sock *sk = skb_from_uarg(uarg_to_msgzc(uarg))->sk; 1361 1362 atomic_dec(&sk->sk_zckey); 1363 uarg_to_msgzc(uarg)->len--; 1364 1365 if (have_uref) 1366 msg_zerocopy_callback(NULL, uarg, true); 1367 } 1368 EXPORT_SYMBOL_GPL(msg_zerocopy_put_abort); 1369 1370 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb, 1371 struct msghdr *msg, int len, 1372 struct ubuf_info *uarg) 1373 { 1374 struct ubuf_info *orig_uarg = skb_zcopy(skb); 1375 int err, orig_len = skb->len; 1376 1377 /* An skb can only point to one uarg. This edge case happens when 1378 * TCP appends to an skb, but zerocopy_realloc triggered a new alloc. 1379 */ 1380 if (orig_uarg && uarg != orig_uarg) 1381 return -EEXIST; 1382 1383 err = __zerocopy_sg_from_iter(msg, sk, skb, &msg->msg_iter, len); 1384 if (err == -EFAULT || (err == -EMSGSIZE && skb->len == orig_len)) { 1385 struct sock *save_sk = skb->sk; 1386 1387 /* Streams do not free skb on error. Reset to prev state. */ 1388 iov_iter_revert(&msg->msg_iter, skb->len - orig_len); 1389 skb->sk = sk; 1390 ___pskb_trim(skb, orig_len); 1391 skb->sk = save_sk; 1392 return err; 1393 } 1394 1395 skb_zcopy_set(skb, uarg, NULL); 1396 return skb->len - orig_len; 1397 } 1398 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_stream); 1399 1400 void __skb_zcopy_downgrade_managed(struct sk_buff *skb) 1401 { 1402 int i; 1403 1404 skb_shinfo(skb)->flags &= ~SKBFL_MANAGED_FRAG_REFS; 1405 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 1406 skb_frag_ref(skb, i); 1407 } 1408 EXPORT_SYMBOL_GPL(__skb_zcopy_downgrade_managed); 1409 1410 static int skb_zerocopy_clone(struct sk_buff *nskb, struct sk_buff *orig, 1411 gfp_t gfp_mask) 1412 { 1413 if (skb_zcopy(orig)) { 1414 if (skb_zcopy(nskb)) { 1415 /* !gfp_mask callers are verified to !skb_zcopy(nskb) */ 1416 if (!gfp_mask) { 1417 WARN_ON_ONCE(1); 1418 return -ENOMEM; 1419 } 1420 if (skb_uarg(nskb) == skb_uarg(orig)) 1421 return 0; 1422 if (skb_copy_ubufs(nskb, GFP_ATOMIC)) 1423 return -EIO; 1424 } 1425 skb_zcopy_set(nskb, skb_uarg(orig), NULL); 1426 } 1427 return 0; 1428 } 1429 1430 /** 1431 * skb_copy_ubufs - copy userspace skb frags buffers to kernel 1432 * @skb: the skb to modify 1433 * @gfp_mask: allocation priority 1434 * 1435 * This must be called on skb with SKBFL_ZEROCOPY_ENABLE. 1436 * It will copy all frags into kernel and drop the reference 1437 * to userspace pages. 1438 * 1439 * If this function is called from an interrupt gfp_mask() must be 1440 * %GFP_ATOMIC. 1441 * 1442 * Returns 0 on success or a negative error code on failure 1443 * to allocate kernel memory to copy to. 1444 */ 1445 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask) 1446 { 1447 int num_frags = skb_shinfo(skb)->nr_frags; 1448 struct page *page, *head = NULL; 1449 int i, new_frags; 1450 u32 d_off; 1451 1452 if (skb_shared(skb) || skb_unclone(skb, gfp_mask)) 1453 return -EINVAL; 1454 1455 if (!num_frags) 1456 goto release; 1457 1458 new_frags = (__skb_pagelen(skb) + PAGE_SIZE - 1) >> PAGE_SHIFT; 1459 for (i = 0; i < new_frags; i++) { 1460 page = alloc_page(gfp_mask); 1461 if (!page) { 1462 while (head) { 1463 struct page *next = (struct page *)page_private(head); 1464 put_page(head); 1465 head = next; 1466 } 1467 return -ENOMEM; 1468 } 1469 set_page_private(page, (unsigned long)head); 1470 head = page; 1471 } 1472 1473 page = head; 1474 d_off = 0; 1475 for (i = 0; i < num_frags; i++) { 1476 skb_frag_t *f = &skb_shinfo(skb)->frags[i]; 1477 u32 p_off, p_len, copied; 1478 struct page *p; 1479 u8 *vaddr; 1480 1481 skb_frag_foreach_page(f, skb_frag_off(f), skb_frag_size(f), 1482 p, p_off, p_len, copied) { 1483 u32 copy, done = 0; 1484 vaddr = kmap_atomic(p); 1485 1486 while (done < p_len) { 1487 if (d_off == PAGE_SIZE) { 1488 d_off = 0; 1489 page = (struct page *)page_private(page); 1490 } 1491 copy = min_t(u32, PAGE_SIZE - d_off, p_len - done); 1492 memcpy(page_address(page) + d_off, 1493 vaddr + p_off + done, copy); 1494 done += copy; 1495 d_off += copy; 1496 } 1497 kunmap_atomic(vaddr); 1498 } 1499 } 1500 1501 /* skb frags release userspace buffers */ 1502 for (i = 0; i < num_frags; i++) 1503 skb_frag_unref(skb, i); 1504 1505 /* skb frags point to kernel buffers */ 1506 for (i = 0; i < new_frags - 1; i++) { 1507 __skb_fill_page_desc(skb, i, head, 0, PAGE_SIZE); 1508 head = (struct page *)page_private(head); 1509 } 1510 __skb_fill_page_desc(skb, new_frags - 1, head, 0, d_off); 1511 skb_shinfo(skb)->nr_frags = new_frags; 1512 1513 release: 1514 skb_zcopy_clear(skb, false); 1515 return 0; 1516 } 1517 EXPORT_SYMBOL_GPL(skb_copy_ubufs); 1518 1519 /** 1520 * skb_clone - duplicate an sk_buff 1521 * @skb: buffer to clone 1522 * @gfp_mask: allocation priority 1523 * 1524 * Duplicate an &sk_buff. The new one is not owned by a socket. Both 1525 * copies share the same packet data but not structure. The new 1526 * buffer has a reference count of 1. If the allocation fails the 1527 * function returns %NULL otherwise the new buffer is returned. 1528 * 1529 * If this function is called from an interrupt gfp_mask() must be 1530 * %GFP_ATOMIC. 1531 */ 1532 1533 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask) 1534 { 1535 struct sk_buff_fclones *fclones = container_of(skb, 1536 struct sk_buff_fclones, 1537 skb1); 1538 struct sk_buff *n; 1539 1540 if (skb_orphan_frags(skb, gfp_mask)) 1541 return NULL; 1542 1543 if (skb->fclone == SKB_FCLONE_ORIG && 1544 refcount_read(&fclones->fclone_ref) == 1) { 1545 n = &fclones->skb2; 1546 refcount_set(&fclones->fclone_ref, 2); 1547 n->fclone = SKB_FCLONE_CLONE; 1548 } else { 1549 if (skb_pfmemalloc(skb)) 1550 gfp_mask |= __GFP_MEMALLOC; 1551 1552 n = kmem_cache_alloc(skbuff_head_cache, gfp_mask); 1553 if (!n) 1554 return NULL; 1555 1556 n->fclone = SKB_FCLONE_UNAVAILABLE; 1557 } 1558 1559 return __skb_clone(n, skb); 1560 } 1561 EXPORT_SYMBOL(skb_clone); 1562 1563 void skb_headers_offset_update(struct sk_buff *skb, int off) 1564 { 1565 /* Only adjust this if it actually is csum_start rather than csum */ 1566 if (skb->ip_summed == CHECKSUM_PARTIAL) 1567 skb->csum_start += off; 1568 /* {transport,network,mac}_header and tail are relative to skb->head */ 1569 skb->transport_header += off; 1570 skb->network_header += off; 1571 if (skb_mac_header_was_set(skb)) 1572 skb->mac_header += off; 1573 skb->inner_transport_header += off; 1574 skb->inner_network_header += off; 1575 skb->inner_mac_header += off; 1576 } 1577 EXPORT_SYMBOL(skb_headers_offset_update); 1578 1579 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old) 1580 { 1581 __copy_skb_header(new, old); 1582 1583 skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size; 1584 skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs; 1585 skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type; 1586 } 1587 EXPORT_SYMBOL(skb_copy_header); 1588 1589 static inline int skb_alloc_rx_flag(const struct sk_buff *skb) 1590 { 1591 if (skb_pfmemalloc(skb)) 1592 return SKB_ALLOC_RX; 1593 return 0; 1594 } 1595 1596 /** 1597 * skb_copy - create private copy of an sk_buff 1598 * @skb: buffer to copy 1599 * @gfp_mask: allocation priority 1600 * 1601 * Make a copy of both an &sk_buff and its data. This is used when the 1602 * caller wishes to modify the data and needs a private copy of the 1603 * data to alter. Returns %NULL on failure or the pointer to the buffer 1604 * on success. The returned buffer has a reference count of 1. 1605 * 1606 * As by-product this function converts non-linear &sk_buff to linear 1607 * one, so that &sk_buff becomes completely private and caller is allowed 1608 * to modify all the data of returned buffer. This means that this 1609 * function is not recommended for use in circumstances when only 1610 * header is going to be modified. Use pskb_copy() instead. 1611 */ 1612 1613 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask) 1614 { 1615 int headerlen = skb_headroom(skb); 1616 unsigned int size = skb_end_offset(skb) + skb->data_len; 1617 struct sk_buff *n = __alloc_skb(size, gfp_mask, 1618 skb_alloc_rx_flag(skb), NUMA_NO_NODE); 1619 1620 if (!n) 1621 return NULL; 1622 1623 /* Set the data pointer */ 1624 skb_reserve(n, headerlen); 1625 /* Set the tail pointer and length */ 1626 skb_put(n, skb->len); 1627 1628 BUG_ON(skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len)); 1629 1630 skb_copy_header(n, skb); 1631 return n; 1632 } 1633 EXPORT_SYMBOL(skb_copy); 1634 1635 /** 1636 * __pskb_copy_fclone - create copy of an sk_buff with private head. 1637 * @skb: buffer to copy 1638 * @headroom: headroom of new skb 1639 * @gfp_mask: allocation priority 1640 * @fclone: if true allocate the copy of the skb from the fclone 1641 * cache instead of the head cache; it is recommended to set this 1642 * to true for the cases where the copy will likely be cloned 1643 * 1644 * Make a copy of both an &sk_buff and part of its data, located 1645 * in header. Fragmented data remain shared. This is used when 1646 * the caller wishes to modify only header of &sk_buff and needs 1647 * private copy of the header to alter. Returns %NULL on failure 1648 * or the pointer to the buffer on success. 1649 * The returned buffer has a reference count of 1. 1650 */ 1651 1652 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom, 1653 gfp_t gfp_mask, bool fclone) 1654 { 1655 unsigned int size = skb_headlen(skb) + headroom; 1656 int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0); 1657 struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE); 1658 1659 if (!n) 1660 goto out; 1661 1662 /* Set the data pointer */ 1663 skb_reserve(n, headroom); 1664 /* Set the tail pointer and length */ 1665 skb_put(n, skb_headlen(skb)); 1666 /* Copy the bytes */ 1667 skb_copy_from_linear_data(skb, n->data, n->len); 1668 1669 n->truesize += skb->data_len; 1670 n->data_len = skb->data_len; 1671 n->len = skb->len; 1672 1673 if (skb_shinfo(skb)->nr_frags) { 1674 int i; 1675 1676 if (skb_orphan_frags(skb, gfp_mask) || 1677 skb_zerocopy_clone(n, skb, gfp_mask)) { 1678 kfree_skb(n); 1679 n = NULL; 1680 goto out; 1681 } 1682 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1683 skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i]; 1684 skb_frag_ref(skb, i); 1685 } 1686 skb_shinfo(n)->nr_frags = i; 1687 } 1688 1689 if (skb_has_frag_list(skb)) { 1690 skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list; 1691 skb_clone_fraglist(n); 1692 } 1693 1694 skb_copy_header(n, skb); 1695 out: 1696 return n; 1697 } 1698 EXPORT_SYMBOL(__pskb_copy_fclone); 1699 1700 /** 1701 * pskb_expand_head - reallocate header of &sk_buff 1702 * @skb: buffer to reallocate 1703 * @nhead: room to add at head 1704 * @ntail: room to add at tail 1705 * @gfp_mask: allocation priority 1706 * 1707 * Expands (or creates identical copy, if @nhead and @ntail are zero) 1708 * header of @skb. &sk_buff itself is not changed. &sk_buff MUST have 1709 * reference count of 1. Returns zero in the case of success or error, 1710 * if expansion failed. In the last case, &sk_buff is not changed. 1711 * 1712 * All the pointers pointing into skb header may change and must be 1713 * reloaded after call to this function. 1714 */ 1715 1716 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, 1717 gfp_t gfp_mask) 1718 { 1719 int i, osize = skb_end_offset(skb); 1720 int size = osize + nhead + ntail; 1721 long off; 1722 u8 *data; 1723 1724 BUG_ON(nhead < 0); 1725 1726 BUG_ON(skb_shared(skb)); 1727 1728 skb_zcopy_downgrade_managed(skb); 1729 1730 size = SKB_DATA_ALIGN(size); 1731 1732 if (skb_pfmemalloc(skb)) 1733 gfp_mask |= __GFP_MEMALLOC; 1734 data = kmalloc_reserve(size + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)), 1735 gfp_mask, NUMA_NO_NODE, NULL); 1736 if (!data) 1737 goto nodata; 1738 size = SKB_WITH_OVERHEAD(ksize(data)); 1739 1740 /* Copy only real data... and, alas, header. This should be 1741 * optimized for the cases when header is void. 1742 */ 1743 memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head); 1744 1745 memcpy((struct skb_shared_info *)(data + size), 1746 skb_shinfo(skb), 1747 offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags])); 1748 1749 /* 1750 * if shinfo is shared we must drop the old head gracefully, but if it 1751 * is not we can just drop the old head and let the existing refcount 1752 * be since all we did is relocate the values 1753 */ 1754 if (skb_cloned(skb)) { 1755 if (skb_orphan_frags(skb, gfp_mask)) 1756 goto nofrags; 1757 if (skb_zcopy(skb)) 1758 refcount_inc(&skb_uarg(skb)->refcnt); 1759 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 1760 skb_frag_ref(skb, i); 1761 1762 if (skb_has_frag_list(skb)) 1763 skb_clone_fraglist(skb); 1764 1765 skb_release_data(skb); 1766 } else { 1767 skb_free_head(skb); 1768 } 1769 off = (data + nhead) - skb->head; 1770 1771 skb->head = data; 1772 skb->head_frag = 0; 1773 skb->data += off; 1774 1775 skb_set_end_offset(skb, size); 1776 #ifdef NET_SKBUFF_DATA_USES_OFFSET 1777 off = nhead; 1778 #endif 1779 skb->tail += off; 1780 skb_headers_offset_update(skb, nhead); 1781 skb->cloned = 0; 1782 skb->hdr_len = 0; 1783 skb->nohdr = 0; 1784 atomic_set(&skb_shinfo(skb)->dataref, 1); 1785 1786 skb_metadata_clear(skb); 1787 1788 /* It is not generally safe to change skb->truesize. 1789 * For the moment, we really care of rx path, or 1790 * when skb is orphaned (not attached to a socket). 1791 */ 1792 if (!skb->sk || skb->destructor == sock_edemux) 1793 skb->truesize += size - osize; 1794 1795 return 0; 1796 1797 nofrags: 1798 kfree(data); 1799 nodata: 1800 return -ENOMEM; 1801 } 1802 EXPORT_SYMBOL(pskb_expand_head); 1803 1804 /* Make private copy of skb with writable head and some headroom */ 1805 1806 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom) 1807 { 1808 struct sk_buff *skb2; 1809 int delta = headroom - skb_headroom(skb); 1810 1811 if (delta <= 0) 1812 skb2 = pskb_copy(skb, GFP_ATOMIC); 1813 else { 1814 skb2 = skb_clone(skb, GFP_ATOMIC); 1815 if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0, 1816 GFP_ATOMIC)) { 1817 kfree_skb(skb2); 1818 skb2 = NULL; 1819 } 1820 } 1821 return skb2; 1822 } 1823 EXPORT_SYMBOL(skb_realloc_headroom); 1824 1825 int __skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri) 1826 { 1827 unsigned int saved_end_offset, saved_truesize; 1828 struct skb_shared_info *shinfo; 1829 int res; 1830 1831 saved_end_offset = skb_end_offset(skb); 1832 saved_truesize = skb->truesize; 1833 1834 res = pskb_expand_head(skb, 0, 0, pri); 1835 if (res) 1836 return res; 1837 1838 skb->truesize = saved_truesize; 1839 1840 if (likely(skb_end_offset(skb) == saved_end_offset)) 1841 return 0; 1842 1843 shinfo = skb_shinfo(skb); 1844 1845 /* We are about to change back skb->end, 1846 * we need to move skb_shinfo() to its new location. 1847 */ 1848 memmove(skb->head + saved_end_offset, 1849 shinfo, 1850 offsetof(struct skb_shared_info, frags[shinfo->nr_frags])); 1851 1852 skb_set_end_offset(skb, saved_end_offset); 1853 1854 return 0; 1855 } 1856 1857 /** 1858 * skb_expand_head - reallocate header of &sk_buff 1859 * @skb: buffer to reallocate 1860 * @headroom: needed headroom 1861 * 1862 * Unlike skb_realloc_headroom, this one does not allocate a new skb 1863 * if possible; copies skb->sk to new skb as needed 1864 * and frees original skb in case of failures. 1865 * 1866 * It expect increased headroom and generates warning otherwise. 1867 */ 1868 1869 struct sk_buff *skb_expand_head(struct sk_buff *skb, unsigned int headroom) 1870 { 1871 int delta = headroom - skb_headroom(skb); 1872 int osize = skb_end_offset(skb); 1873 struct sock *sk = skb->sk; 1874 1875 if (WARN_ONCE(delta <= 0, 1876 "%s is expecting an increase in the headroom", __func__)) 1877 return skb; 1878 1879 delta = SKB_DATA_ALIGN(delta); 1880 /* pskb_expand_head() might crash, if skb is shared. */ 1881 if (skb_shared(skb) || !is_skb_wmem(skb)) { 1882 struct sk_buff *nskb = skb_clone(skb, GFP_ATOMIC); 1883 1884 if (unlikely(!nskb)) 1885 goto fail; 1886 1887 if (sk) 1888 skb_set_owner_w(nskb, sk); 1889 consume_skb(skb); 1890 skb = nskb; 1891 } 1892 if (pskb_expand_head(skb, delta, 0, GFP_ATOMIC)) 1893 goto fail; 1894 1895 if (sk && is_skb_wmem(skb)) { 1896 delta = skb_end_offset(skb) - osize; 1897 refcount_add(delta, &sk->sk_wmem_alloc); 1898 skb->truesize += delta; 1899 } 1900 return skb; 1901 1902 fail: 1903 kfree_skb(skb); 1904 return NULL; 1905 } 1906 EXPORT_SYMBOL(skb_expand_head); 1907 1908 /** 1909 * skb_copy_expand - copy and expand sk_buff 1910 * @skb: buffer to copy 1911 * @newheadroom: new free bytes at head 1912 * @newtailroom: new free bytes at tail 1913 * @gfp_mask: allocation priority 1914 * 1915 * Make a copy of both an &sk_buff and its data and while doing so 1916 * allocate additional space. 1917 * 1918 * This is used when the caller wishes to modify the data and needs a 1919 * private copy of the data to alter as well as more space for new fields. 1920 * Returns %NULL on failure or the pointer to the buffer 1921 * on success. The returned buffer has a reference count of 1. 1922 * 1923 * You must pass %GFP_ATOMIC as the allocation priority if this function 1924 * is called from an interrupt. 1925 */ 1926 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, 1927 int newheadroom, int newtailroom, 1928 gfp_t gfp_mask) 1929 { 1930 /* 1931 * Allocate the copy buffer 1932 */ 1933 struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom, 1934 gfp_mask, skb_alloc_rx_flag(skb), 1935 NUMA_NO_NODE); 1936 int oldheadroom = skb_headroom(skb); 1937 int head_copy_len, head_copy_off; 1938 1939 if (!n) 1940 return NULL; 1941 1942 skb_reserve(n, newheadroom); 1943 1944 /* Set the tail pointer and length */ 1945 skb_put(n, skb->len); 1946 1947 head_copy_len = oldheadroom; 1948 head_copy_off = 0; 1949 if (newheadroom <= head_copy_len) 1950 head_copy_len = newheadroom; 1951 else 1952 head_copy_off = newheadroom - head_copy_len; 1953 1954 /* Copy the linear header and data. */ 1955 BUG_ON(skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off, 1956 skb->len + head_copy_len)); 1957 1958 skb_copy_header(n, skb); 1959 1960 skb_headers_offset_update(n, newheadroom - oldheadroom); 1961 1962 return n; 1963 } 1964 EXPORT_SYMBOL(skb_copy_expand); 1965 1966 /** 1967 * __skb_pad - zero pad the tail of an skb 1968 * @skb: buffer to pad 1969 * @pad: space to pad 1970 * @free_on_error: free buffer on error 1971 * 1972 * Ensure that a buffer is followed by a padding area that is zero 1973 * filled. Used by network drivers which may DMA or transfer data 1974 * beyond the buffer end onto the wire. 1975 * 1976 * May return error in out of memory cases. The skb is freed on error 1977 * if @free_on_error is true. 1978 */ 1979 1980 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error) 1981 { 1982 int err; 1983 int ntail; 1984 1985 /* If the skbuff is non linear tailroom is always zero.. */ 1986 if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) { 1987 memset(skb->data+skb->len, 0, pad); 1988 return 0; 1989 } 1990 1991 ntail = skb->data_len + pad - (skb->end - skb->tail); 1992 if (likely(skb_cloned(skb) || ntail > 0)) { 1993 err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC); 1994 if (unlikely(err)) 1995 goto free_skb; 1996 } 1997 1998 /* FIXME: The use of this function with non-linear skb's really needs 1999 * to be audited. 2000 */ 2001 err = skb_linearize(skb); 2002 if (unlikely(err)) 2003 goto free_skb; 2004 2005 memset(skb->data + skb->len, 0, pad); 2006 return 0; 2007 2008 free_skb: 2009 if (free_on_error) 2010 kfree_skb(skb); 2011 return err; 2012 } 2013 EXPORT_SYMBOL(__skb_pad); 2014 2015 /** 2016 * pskb_put - add data to the tail of a potentially fragmented buffer 2017 * @skb: start of the buffer to use 2018 * @tail: tail fragment of the buffer to use 2019 * @len: amount of data to add 2020 * 2021 * This function extends the used data area of the potentially 2022 * fragmented buffer. @tail must be the last fragment of @skb -- or 2023 * @skb itself. If this would exceed the total buffer size the kernel 2024 * will panic. A pointer to the first byte of the extra data is 2025 * returned. 2026 */ 2027 2028 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len) 2029 { 2030 if (tail != skb) { 2031 skb->data_len += len; 2032 skb->len += len; 2033 } 2034 return skb_put(tail, len); 2035 } 2036 EXPORT_SYMBOL_GPL(pskb_put); 2037 2038 /** 2039 * skb_put - add data to a buffer 2040 * @skb: buffer to use 2041 * @len: amount of data to add 2042 * 2043 * This function extends the used data area of the buffer. If this would 2044 * exceed the total buffer size the kernel will panic. A pointer to the 2045 * first byte of the extra data is returned. 2046 */ 2047 void *skb_put(struct sk_buff *skb, unsigned int len) 2048 { 2049 void *tmp = skb_tail_pointer(skb); 2050 SKB_LINEAR_ASSERT(skb); 2051 skb->tail += len; 2052 skb->len += len; 2053 if (unlikely(skb->tail > skb->end)) 2054 skb_over_panic(skb, len, __builtin_return_address(0)); 2055 return tmp; 2056 } 2057 EXPORT_SYMBOL(skb_put); 2058 2059 /** 2060 * skb_push - add data to the start of a buffer 2061 * @skb: buffer to use 2062 * @len: amount of data to add 2063 * 2064 * This function extends the used data area of the buffer at the buffer 2065 * start. If this would exceed the total buffer headroom the kernel will 2066 * panic. A pointer to the first byte of the extra data is returned. 2067 */ 2068 void *skb_push(struct sk_buff *skb, unsigned int len) 2069 { 2070 skb->data -= len; 2071 skb->len += len; 2072 if (unlikely(skb->data < skb->head)) 2073 skb_under_panic(skb, len, __builtin_return_address(0)); 2074 return skb->data; 2075 } 2076 EXPORT_SYMBOL(skb_push); 2077 2078 /** 2079 * skb_pull - remove data from the start of a buffer 2080 * @skb: buffer to use 2081 * @len: amount of data to remove 2082 * 2083 * This function removes data from the start of a buffer, returning 2084 * the memory to the headroom. A pointer to the next data in the buffer 2085 * is returned. Once the data has been pulled future pushes will overwrite 2086 * the old data. 2087 */ 2088 void *skb_pull(struct sk_buff *skb, unsigned int len) 2089 { 2090 return skb_pull_inline(skb, len); 2091 } 2092 EXPORT_SYMBOL(skb_pull); 2093 2094 /** 2095 * skb_pull_data - remove data from the start of a buffer returning its 2096 * original position. 2097 * @skb: buffer to use 2098 * @len: amount of data to remove 2099 * 2100 * This function removes data from the start of a buffer, returning 2101 * the memory to the headroom. A pointer to the original data in the buffer 2102 * is returned after checking if there is enough data to pull. Once the 2103 * data has been pulled future pushes will overwrite the old data. 2104 */ 2105 void *skb_pull_data(struct sk_buff *skb, size_t len) 2106 { 2107 void *data = skb->data; 2108 2109 if (skb->len < len) 2110 return NULL; 2111 2112 skb_pull(skb, len); 2113 2114 return data; 2115 } 2116 EXPORT_SYMBOL(skb_pull_data); 2117 2118 /** 2119 * skb_trim - remove end from a buffer 2120 * @skb: buffer to alter 2121 * @len: new length 2122 * 2123 * Cut the length of a buffer down by removing data from the tail. If 2124 * the buffer is already under the length specified it is not modified. 2125 * The skb must be linear. 2126 */ 2127 void skb_trim(struct sk_buff *skb, unsigned int len) 2128 { 2129 if (skb->len > len) 2130 __skb_trim(skb, len); 2131 } 2132 EXPORT_SYMBOL(skb_trim); 2133 2134 /* Trims skb to length len. It can change skb pointers. 2135 */ 2136 2137 int ___pskb_trim(struct sk_buff *skb, unsigned int len) 2138 { 2139 struct sk_buff **fragp; 2140 struct sk_buff *frag; 2141 int offset = skb_headlen(skb); 2142 int nfrags = skb_shinfo(skb)->nr_frags; 2143 int i; 2144 int err; 2145 2146 if (skb_cloned(skb) && 2147 unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))) 2148 return err; 2149 2150 i = 0; 2151 if (offset >= len) 2152 goto drop_pages; 2153 2154 for (; i < nfrags; i++) { 2155 int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]); 2156 2157 if (end < len) { 2158 offset = end; 2159 continue; 2160 } 2161 2162 skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset); 2163 2164 drop_pages: 2165 skb_shinfo(skb)->nr_frags = i; 2166 2167 for (; i < nfrags; i++) 2168 skb_frag_unref(skb, i); 2169 2170 if (skb_has_frag_list(skb)) 2171 skb_drop_fraglist(skb); 2172 goto done; 2173 } 2174 2175 for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp); 2176 fragp = &frag->next) { 2177 int end = offset + frag->len; 2178 2179 if (skb_shared(frag)) { 2180 struct sk_buff *nfrag; 2181 2182 nfrag = skb_clone(frag, GFP_ATOMIC); 2183 if (unlikely(!nfrag)) 2184 return -ENOMEM; 2185 2186 nfrag->next = frag->next; 2187 consume_skb(frag); 2188 frag = nfrag; 2189 *fragp = frag; 2190 } 2191 2192 if (end < len) { 2193 offset = end; 2194 continue; 2195 } 2196 2197 if (end > len && 2198 unlikely((err = pskb_trim(frag, len - offset)))) 2199 return err; 2200 2201 if (frag->next) 2202 skb_drop_list(&frag->next); 2203 break; 2204 } 2205 2206 done: 2207 if (len > skb_headlen(skb)) { 2208 skb->data_len -= skb->len - len; 2209 skb->len = len; 2210 } else { 2211 skb->len = len; 2212 skb->data_len = 0; 2213 skb_set_tail_pointer(skb, len); 2214 } 2215 2216 if (!skb->sk || skb->destructor == sock_edemux) 2217 skb_condense(skb); 2218 return 0; 2219 } 2220 EXPORT_SYMBOL(___pskb_trim); 2221 2222 /* Note : use pskb_trim_rcsum() instead of calling this directly 2223 */ 2224 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len) 2225 { 2226 if (skb->ip_summed == CHECKSUM_COMPLETE) { 2227 int delta = skb->len - len; 2228 2229 skb->csum = csum_block_sub(skb->csum, 2230 skb_checksum(skb, len, delta, 0), 2231 len); 2232 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { 2233 int hdlen = (len > skb_headlen(skb)) ? skb_headlen(skb) : len; 2234 int offset = skb_checksum_start_offset(skb) + skb->csum_offset; 2235 2236 if (offset + sizeof(__sum16) > hdlen) 2237 return -EINVAL; 2238 } 2239 return __pskb_trim(skb, len); 2240 } 2241 EXPORT_SYMBOL(pskb_trim_rcsum_slow); 2242 2243 /** 2244 * __pskb_pull_tail - advance tail of skb header 2245 * @skb: buffer to reallocate 2246 * @delta: number of bytes to advance tail 2247 * 2248 * The function makes a sense only on a fragmented &sk_buff, 2249 * it expands header moving its tail forward and copying necessary 2250 * data from fragmented part. 2251 * 2252 * &sk_buff MUST have reference count of 1. 2253 * 2254 * Returns %NULL (and &sk_buff does not change) if pull failed 2255 * or value of new tail of skb in the case of success. 2256 * 2257 * All the pointers pointing into skb header may change and must be 2258 * reloaded after call to this function. 2259 */ 2260 2261 /* Moves tail of skb head forward, copying data from fragmented part, 2262 * when it is necessary. 2263 * 1. It may fail due to malloc failure. 2264 * 2. It may change skb pointers. 2265 * 2266 * It is pretty complicated. Luckily, it is called only in exceptional cases. 2267 */ 2268 void *__pskb_pull_tail(struct sk_buff *skb, int delta) 2269 { 2270 /* If skb has not enough free space at tail, get new one 2271 * plus 128 bytes for future expansions. If we have enough 2272 * room at tail, reallocate without expansion only if skb is cloned. 2273 */ 2274 int i, k, eat = (skb->tail + delta) - skb->end; 2275 2276 if (eat > 0 || skb_cloned(skb)) { 2277 if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0, 2278 GFP_ATOMIC)) 2279 return NULL; 2280 } 2281 2282 BUG_ON(skb_copy_bits(skb, skb_headlen(skb), 2283 skb_tail_pointer(skb), delta)); 2284 2285 /* Optimization: no fragments, no reasons to preestimate 2286 * size of pulled pages. Superb. 2287 */ 2288 if (!skb_has_frag_list(skb)) 2289 goto pull_pages; 2290 2291 /* Estimate size of pulled pages. */ 2292 eat = delta; 2293 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2294 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 2295 2296 if (size >= eat) 2297 goto pull_pages; 2298 eat -= size; 2299 } 2300 2301 /* If we need update frag list, we are in troubles. 2302 * Certainly, it is possible to add an offset to skb data, 2303 * but taking into account that pulling is expected to 2304 * be very rare operation, it is worth to fight against 2305 * further bloating skb head and crucify ourselves here instead. 2306 * Pure masohism, indeed. 8)8) 2307 */ 2308 if (eat) { 2309 struct sk_buff *list = skb_shinfo(skb)->frag_list; 2310 struct sk_buff *clone = NULL; 2311 struct sk_buff *insp = NULL; 2312 2313 do { 2314 if (list->len <= eat) { 2315 /* Eaten as whole. */ 2316 eat -= list->len; 2317 list = list->next; 2318 insp = list; 2319 } else { 2320 /* Eaten partially. */ 2321 2322 if (skb_shared(list)) { 2323 /* Sucks! We need to fork list. :-( */ 2324 clone = skb_clone(list, GFP_ATOMIC); 2325 if (!clone) 2326 return NULL; 2327 insp = list->next; 2328 list = clone; 2329 } else { 2330 /* This may be pulled without 2331 * problems. */ 2332 insp = list; 2333 } 2334 if (!pskb_pull(list, eat)) { 2335 kfree_skb(clone); 2336 return NULL; 2337 } 2338 break; 2339 } 2340 } while (eat); 2341 2342 /* Free pulled out fragments. */ 2343 while ((list = skb_shinfo(skb)->frag_list) != insp) { 2344 skb_shinfo(skb)->frag_list = list->next; 2345 consume_skb(list); 2346 } 2347 /* And insert new clone at head. */ 2348 if (clone) { 2349 clone->next = list; 2350 skb_shinfo(skb)->frag_list = clone; 2351 } 2352 } 2353 /* Success! Now we may commit changes to skb data. */ 2354 2355 pull_pages: 2356 eat = delta; 2357 k = 0; 2358 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2359 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 2360 2361 if (size <= eat) { 2362 skb_frag_unref(skb, i); 2363 eat -= size; 2364 } else { 2365 skb_frag_t *frag = &skb_shinfo(skb)->frags[k]; 2366 2367 *frag = skb_shinfo(skb)->frags[i]; 2368 if (eat) { 2369 skb_frag_off_add(frag, eat); 2370 skb_frag_size_sub(frag, eat); 2371 if (!i) 2372 goto end; 2373 eat = 0; 2374 } 2375 k++; 2376 } 2377 } 2378 skb_shinfo(skb)->nr_frags = k; 2379 2380 end: 2381 skb->tail += delta; 2382 skb->data_len -= delta; 2383 2384 if (!skb->data_len) 2385 skb_zcopy_clear(skb, false); 2386 2387 return skb_tail_pointer(skb); 2388 } 2389 EXPORT_SYMBOL(__pskb_pull_tail); 2390 2391 /** 2392 * skb_copy_bits - copy bits from skb to kernel buffer 2393 * @skb: source skb 2394 * @offset: offset in source 2395 * @to: destination buffer 2396 * @len: number of bytes to copy 2397 * 2398 * Copy the specified number of bytes from the source skb to the 2399 * destination buffer. 2400 * 2401 * CAUTION ! : 2402 * If its prototype is ever changed, 2403 * check arch/{*}/net/{*}.S files, 2404 * since it is called from BPF assembly code. 2405 */ 2406 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len) 2407 { 2408 int start = skb_headlen(skb); 2409 struct sk_buff *frag_iter; 2410 int i, copy; 2411 2412 if (offset > (int)skb->len - len) 2413 goto fault; 2414 2415 /* Copy header. */ 2416 if ((copy = start - offset) > 0) { 2417 if (copy > len) 2418 copy = len; 2419 skb_copy_from_linear_data_offset(skb, offset, to, copy); 2420 if ((len -= copy) == 0) 2421 return 0; 2422 offset += copy; 2423 to += copy; 2424 } 2425 2426 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2427 int end; 2428 skb_frag_t *f = &skb_shinfo(skb)->frags[i]; 2429 2430 WARN_ON(start > offset + len); 2431 2432 end = start + skb_frag_size(f); 2433 if ((copy = end - offset) > 0) { 2434 u32 p_off, p_len, copied; 2435 struct page *p; 2436 u8 *vaddr; 2437 2438 if (copy > len) 2439 copy = len; 2440 2441 skb_frag_foreach_page(f, 2442 skb_frag_off(f) + offset - start, 2443 copy, p, p_off, p_len, copied) { 2444 vaddr = kmap_atomic(p); 2445 memcpy(to + copied, vaddr + p_off, p_len); 2446 kunmap_atomic(vaddr); 2447 } 2448 2449 if ((len -= copy) == 0) 2450 return 0; 2451 offset += copy; 2452 to += copy; 2453 } 2454 start = end; 2455 } 2456 2457 skb_walk_frags(skb, frag_iter) { 2458 int end; 2459 2460 WARN_ON(start > offset + len); 2461 2462 end = start + frag_iter->len; 2463 if ((copy = end - offset) > 0) { 2464 if (copy > len) 2465 copy = len; 2466 if (skb_copy_bits(frag_iter, offset - start, to, copy)) 2467 goto fault; 2468 if ((len -= copy) == 0) 2469 return 0; 2470 offset += copy; 2471 to += copy; 2472 } 2473 start = end; 2474 } 2475 2476 if (!len) 2477 return 0; 2478 2479 fault: 2480 return -EFAULT; 2481 } 2482 EXPORT_SYMBOL(skb_copy_bits); 2483 2484 /* 2485 * Callback from splice_to_pipe(), if we need to release some pages 2486 * at the end of the spd in case we error'ed out in filling the pipe. 2487 */ 2488 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i) 2489 { 2490 put_page(spd->pages[i]); 2491 } 2492 2493 static struct page *linear_to_page(struct page *page, unsigned int *len, 2494 unsigned int *offset, 2495 struct sock *sk) 2496 { 2497 struct page_frag *pfrag = sk_page_frag(sk); 2498 2499 if (!sk_page_frag_refill(sk, pfrag)) 2500 return NULL; 2501 2502 *len = min_t(unsigned int, *len, pfrag->size - pfrag->offset); 2503 2504 memcpy(page_address(pfrag->page) + pfrag->offset, 2505 page_address(page) + *offset, *len); 2506 *offset = pfrag->offset; 2507 pfrag->offset += *len; 2508 2509 return pfrag->page; 2510 } 2511 2512 static bool spd_can_coalesce(const struct splice_pipe_desc *spd, 2513 struct page *page, 2514 unsigned int offset) 2515 { 2516 return spd->nr_pages && 2517 spd->pages[spd->nr_pages - 1] == page && 2518 (spd->partial[spd->nr_pages - 1].offset + 2519 spd->partial[spd->nr_pages - 1].len == offset); 2520 } 2521 2522 /* 2523 * Fill page/offset/length into spd, if it can hold more pages. 2524 */ 2525 static bool spd_fill_page(struct splice_pipe_desc *spd, 2526 struct pipe_inode_info *pipe, struct page *page, 2527 unsigned int *len, unsigned int offset, 2528 bool linear, 2529 struct sock *sk) 2530 { 2531 if (unlikely(spd->nr_pages == MAX_SKB_FRAGS)) 2532 return true; 2533 2534 if (linear) { 2535 page = linear_to_page(page, len, &offset, sk); 2536 if (!page) 2537 return true; 2538 } 2539 if (spd_can_coalesce(spd, page, offset)) { 2540 spd->partial[spd->nr_pages - 1].len += *len; 2541 return false; 2542 } 2543 get_page(page); 2544 spd->pages[spd->nr_pages] = page; 2545 spd->partial[spd->nr_pages].len = *len; 2546 spd->partial[spd->nr_pages].offset = offset; 2547 spd->nr_pages++; 2548 2549 return false; 2550 } 2551 2552 static bool __splice_segment(struct page *page, unsigned int poff, 2553 unsigned int plen, unsigned int *off, 2554 unsigned int *len, 2555 struct splice_pipe_desc *spd, bool linear, 2556 struct sock *sk, 2557 struct pipe_inode_info *pipe) 2558 { 2559 if (!*len) 2560 return true; 2561 2562 /* skip this segment if already processed */ 2563 if (*off >= plen) { 2564 *off -= plen; 2565 return false; 2566 } 2567 2568 /* ignore any bits we already processed */ 2569 poff += *off; 2570 plen -= *off; 2571 *off = 0; 2572 2573 do { 2574 unsigned int flen = min(*len, plen); 2575 2576 if (spd_fill_page(spd, pipe, page, &flen, poff, 2577 linear, sk)) 2578 return true; 2579 poff += flen; 2580 plen -= flen; 2581 *len -= flen; 2582 } while (*len && plen); 2583 2584 return false; 2585 } 2586 2587 /* 2588 * Map linear and fragment data from the skb to spd. It reports true if the 2589 * pipe is full or if we already spliced the requested length. 2590 */ 2591 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe, 2592 unsigned int *offset, unsigned int *len, 2593 struct splice_pipe_desc *spd, struct sock *sk) 2594 { 2595 int seg; 2596 struct sk_buff *iter; 2597 2598 /* map the linear part : 2599 * If skb->head_frag is set, this 'linear' part is backed by a 2600 * fragment, and if the head is not shared with any clones then 2601 * we can avoid a copy since we own the head portion of this page. 2602 */ 2603 if (__splice_segment(virt_to_page(skb->data), 2604 (unsigned long) skb->data & (PAGE_SIZE - 1), 2605 skb_headlen(skb), 2606 offset, len, spd, 2607 skb_head_is_locked(skb), 2608 sk, pipe)) 2609 return true; 2610 2611 /* 2612 * then map the fragments 2613 */ 2614 for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) { 2615 const skb_frag_t *f = &skb_shinfo(skb)->frags[seg]; 2616 2617 if (__splice_segment(skb_frag_page(f), 2618 skb_frag_off(f), skb_frag_size(f), 2619 offset, len, spd, false, sk, pipe)) 2620 return true; 2621 } 2622 2623 skb_walk_frags(skb, iter) { 2624 if (*offset >= iter->len) { 2625 *offset -= iter->len; 2626 continue; 2627 } 2628 /* __skb_splice_bits() only fails if the output has no room 2629 * left, so no point in going over the frag_list for the error 2630 * case. 2631 */ 2632 if (__skb_splice_bits(iter, pipe, offset, len, spd, sk)) 2633 return true; 2634 } 2635 2636 return false; 2637 } 2638 2639 /* 2640 * Map data from the skb to a pipe. Should handle both the linear part, 2641 * the fragments, and the frag list. 2642 */ 2643 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset, 2644 struct pipe_inode_info *pipe, unsigned int tlen, 2645 unsigned int flags) 2646 { 2647 struct partial_page partial[MAX_SKB_FRAGS]; 2648 struct page *pages[MAX_SKB_FRAGS]; 2649 struct splice_pipe_desc spd = { 2650 .pages = pages, 2651 .partial = partial, 2652 .nr_pages_max = MAX_SKB_FRAGS, 2653 .ops = &nosteal_pipe_buf_ops, 2654 .spd_release = sock_spd_release, 2655 }; 2656 int ret = 0; 2657 2658 __skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk); 2659 2660 if (spd.nr_pages) 2661 ret = splice_to_pipe(pipe, &spd); 2662 2663 return ret; 2664 } 2665 EXPORT_SYMBOL_GPL(skb_splice_bits); 2666 2667 static int sendmsg_unlocked(struct sock *sk, struct msghdr *msg, 2668 struct kvec *vec, size_t num, size_t size) 2669 { 2670 struct socket *sock = sk->sk_socket; 2671 2672 if (!sock) 2673 return -EINVAL; 2674 return kernel_sendmsg(sock, msg, vec, num, size); 2675 } 2676 2677 static int sendpage_unlocked(struct sock *sk, struct page *page, int offset, 2678 size_t size, int flags) 2679 { 2680 struct socket *sock = sk->sk_socket; 2681 2682 if (!sock) 2683 return -EINVAL; 2684 return kernel_sendpage(sock, page, offset, size, flags); 2685 } 2686 2687 typedef int (*sendmsg_func)(struct sock *sk, struct msghdr *msg, 2688 struct kvec *vec, size_t num, size_t size); 2689 typedef int (*sendpage_func)(struct sock *sk, struct page *page, int offset, 2690 size_t size, int flags); 2691 static int __skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, 2692 int len, sendmsg_func sendmsg, sendpage_func sendpage) 2693 { 2694 unsigned int orig_len = len; 2695 struct sk_buff *head = skb; 2696 unsigned short fragidx; 2697 int slen, ret; 2698 2699 do_frag_list: 2700 2701 /* Deal with head data */ 2702 while (offset < skb_headlen(skb) && len) { 2703 struct kvec kv; 2704 struct msghdr msg; 2705 2706 slen = min_t(int, len, skb_headlen(skb) - offset); 2707 kv.iov_base = skb->data + offset; 2708 kv.iov_len = slen; 2709 memset(&msg, 0, sizeof(msg)); 2710 msg.msg_flags = MSG_DONTWAIT; 2711 2712 ret = INDIRECT_CALL_2(sendmsg, kernel_sendmsg_locked, 2713 sendmsg_unlocked, sk, &msg, &kv, 1, slen); 2714 if (ret <= 0) 2715 goto error; 2716 2717 offset += ret; 2718 len -= ret; 2719 } 2720 2721 /* All the data was skb head? */ 2722 if (!len) 2723 goto out; 2724 2725 /* Make offset relative to start of frags */ 2726 offset -= skb_headlen(skb); 2727 2728 /* Find where we are in frag list */ 2729 for (fragidx = 0; fragidx < skb_shinfo(skb)->nr_frags; fragidx++) { 2730 skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx]; 2731 2732 if (offset < skb_frag_size(frag)) 2733 break; 2734 2735 offset -= skb_frag_size(frag); 2736 } 2737 2738 for (; len && fragidx < skb_shinfo(skb)->nr_frags; fragidx++) { 2739 skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx]; 2740 2741 slen = min_t(size_t, len, skb_frag_size(frag) - offset); 2742 2743 while (slen) { 2744 ret = INDIRECT_CALL_2(sendpage, kernel_sendpage_locked, 2745 sendpage_unlocked, sk, 2746 skb_frag_page(frag), 2747 skb_frag_off(frag) + offset, 2748 slen, MSG_DONTWAIT); 2749 if (ret <= 0) 2750 goto error; 2751 2752 len -= ret; 2753 offset += ret; 2754 slen -= ret; 2755 } 2756 2757 offset = 0; 2758 } 2759 2760 if (len) { 2761 /* Process any frag lists */ 2762 2763 if (skb == head) { 2764 if (skb_has_frag_list(skb)) { 2765 skb = skb_shinfo(skb)->frag_list; 2766 goto do_frag_list; 2767 } 2768 } else if (skb->next) { 2769 skb = skb->next; 2770 goto do_frag_list; 2771 } 2772 } 2773 2774 out: 2775 return orig_len - len; 2776 2777 error: 2778 return orig_len == len ? ret : orig_len - len; 2779 } 2780 2781 /* Send skb data on a socket. Socket must be locked. */ 2782 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset, 2783 int len) 2784 { 2785 return __skb_send_sock(sk, skb, offset, len, kernel_sendmsg_locked, 2786 kernel_sendpage_locked); 2787 } 2788 EXPORT_SYMBOL_GPL(skb_send_sock_locked); 2789 2790 /* Send skb data on a socket. Socket must be unlocked. */ 2791 int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len) 2792 { 2793 return __skb_send_sock(sk, skb, offset, len, sendmsg_unlocked, 2794 sendpage_unlocked); 2795 } 2796 2797 /** 2798 * skb_store_bits - store bits from kernel buffer to skb 2799 * @skb: destination buffer 2800 * @offset: offset in destination 2801 * @from: source buffer 2802 * @len: number of bytes to copy 2803 * 2804 * Copy the specified number of bytes from the source buffer to the 2805 * destination skb. This function handles all the messy bits of 2806 * traversing fragment lists and such. 2807 */ 2808 2809 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len) 2810 { 2811 int start = skb_headlen(skb); 2812 struct sk_buff *frag_iter; 2813 int i, copy; 2814 2815 if (offset > (int)skb->len - len) 2816 goto fault; 2817 2818 if ((copy = start - offset) > 0) { 2819 if (copy > len) 2820 copy = len; 2821 skb_copy_to_linear_data_offset(skb, offset, from, copy); 2822 if ((len -= copy) == 0) 2823 return 0; 2824 offset += copy; 2825 from += copy; 2826 } 2827 2828 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2829 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2830 int end; 2831 2832 WARN_ON(start > offset + len); 2833 2834 end = start + skb_frag_size(frag); 2835 if ((copy = end - offset) > 0) { 2836 u32 p_off, p_len, copied; 2837 struct page *p; 2838 u8 *vaddr; 2839 2840 if (copy > len) 2841 copy = len; 2842 2843 skb_frag_foreach_page(frag, 2844 skb_frag_off(frag) + offset - start, 2845 copy, p, p_off, p_len, copied) { 2846 vaddr = kmap_atomic(p); 2847 memcpy(vaddr + p_off, from + copied, p_len); 2848 kunmap_atomic(vaddr); 2849 } 2850 2851 if ((len -= copy) == 0) 2852 return 0; 2853 offset += copy; 2854 from += copy; 2855 } 2856 start = end; 2857 } 2858 2859 skb_walk_frags(skb, frag_iter) { 2860 int end; 2861 2862 WARN_ON(start > offset + len); 2863 2864 end = start + frag_iter->len; 2865 if ((copy = end - offset) > 0) { 2866 if (copy > len) 2867 copy = len; 2868 if (skb_store_bits(frag_iter, offset - start, 2869 from, copy)) 2870 goto fault; 2871 if ((len -= copy) == 0) 2872 return 0; 2873 offset += copy; 2874 from += copy; 2875 } 2876 start = end; 2877 } 2878 if (!len) 2879 return 0; 2880 2881 fault: 2882 return -EFAULT; 2883 } 2884 EXPORT_SYMBOL(skb_store_bits); 2885 2886 /* Checksum skb data. */ 2887 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len, 2888 __wsum csum, const struct skb_checksum_ops *ops) 2889 { 2890 int start = skb_headlen(skb); 2891 int i, copy = start - offset; 2892 struct sk_buff *frag_iter; 2893 int pos = 0; 2894 2895 /* Checksum header. */ 2896 if (copy > 0) { 2897 if (copy > len) 2898 copy = len; 2899 csum = INDIRECT_CALL_1(ops->update, csum_partial_ext, 2900 skb->data + offset, copy, csum); 2901 if ((len -= copy) == 0) 2902 return csum; 2903 offset += copy; 2904 pos = copy; 2905 } 2906 2907 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2908 int end; 2909 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2910 2911 WARN_ON(start > offset + len); 2912 2913 end = start + skb_frag_size(frag); 2914 if ((copy = end - offset) > 0) { 2915 u32 p_off, p_len, copied; 2916 struct page *p; 2917 __wsum csum2; 2918 u8 *vaddr; 2919 2920 if (copy > len) 2921 copy = len; 2922 2923 skb_frag_foreach_page(frag, 2924 skb_frag_off(frag) + offset - start, 2925 copy, p, p_off, p_len, copied) { 2926 vaddr = kmap_atomic(p); 2927 csum2 = INDIRECT_CALL_1(ops->update, 2928 csum_partial_ext, 2929 vaddr + p_off, p_len, 0); 2930 kunmap_atomic(vaddr); 2931 csum = INDIRECT_CALL_1(ops->combine, 2932 csum_block_add_ext, csum, 2933 csum2, pos, p_len); 2934 pos += p_len; 2935 } 2936 2937 if (!(len -= copy)) 2938 return csum; 2939 offset += copy; 2940 } 2941 start = end; 2942 } 2943 2944 skb_walk_frags(skb, frag_iter) { 2945 int end; 2946 2947 WARN_ON(start > offset + len); 2948 2949 end = start + frag_iter->len; 2950 if ((copy = end - offset) > 0) { 2951 __wsum csum2; 2952 if (copy > len) 2953 copy = len; 2954 csum2 = __skb_checksum(frag_iter, offset - start, 2955 copy, 0, ops); 2956 csum = INDIRECT_CALL_1(ops->combine, csum_block_add_ext, 2957 csum, csum2, pos, copy); 2958 if ((len -= copy) == 0) 2959 return csum; 2960 offset += copy; 2961 pos += copy; 2962 } 2963 start = end; 2964 } 2965 BUG_ON(len); 2966 2967 return csum; 2968 } 2969 EXPORT_SYMBOL(__skb_checksum); 2970 2971 __wsum skb_checksum(const struct sk_buff *skb, int offset, 2972 int len, __wsum csum) 2973 { 2974 const struct skb_checksum_ops ops = { 2975 .update = csum_partial_ext, 2976 .combine = csum_block_add_ext, 2977 }; 2978 2979 return __skb_checksum(skb, offset, len, csum, &ops); 2980 } 2981 EXPORT_SYMBOL(skb_checksum); 2982 2983 /* Both of above in one bottle. */ 2984 2985 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, 2986 u8 *to, int len) 2987 { 2988 int start = skb_headlen(skb); 2989 int i, copy = start - offset; 2990 struct sk_buff *frag_iter; 2991 int pos = 0; 2992 __wsum csum = 0; 2993 2994 /* Copy header. */ 2995 if (copy > 0) { 2996 if (copy > len) 2997 copy = len; 2998 csum = csum_partial_copy_nocheck(skb->data + offset, to, 2999 copy); 3000 if ((len -= copy) == 0) 3001 return csum; 3002 offset += copy; 3003 to += copy; 3004 pos = copy; 3005 } 3006 3007 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 3008 int end; 3009 3010 WARN_ON(start > offset + len); 3011 3012 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]); 3013 if ((copy = end - offset) > 0) { 3014 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 3015 u32 p_off, p_len, copied; 3016 struct page *p; 3017 __wsum csum2; 3018 u8 *vaddr; 3019 3020 if (copy > len) 3021 copy = len; 3022 3023 skb_frag_foreach_page(frag, 3024 skb_frag_off(frag) + offset - start, 3025 copy, p, p_off, p_len, copied) { 3026 vaddr = kmap_atomic(p); 3027 csum2 = csum_partial_copy_nocheck(vaddr + p_off, 3028 to + copied, 3029 p_len); 3030 kunmap_atomic(vaddr); 3031 csum = csum_block_add(csum, csum2, pos); 3032 pos += p_len; 3033 } 3034 3035 if (!(len -= copy)) 3036 return csum; 3037 offset += copy; 3038 to += copy; 3039 } 3040 start = end; 3041 } 3042 3043 skb_walk_frags(skb, frag_iter) { 3044 __wsum csum2; 3045 int end; 3046 3047 WARN_ON(start > offset + len); 3048 3049 end = start + frag_iter->len; 3050 if ((copy = end - offset) > 0) { 3051 if (copy > len) 3052 copy = len; 3053 csum2 = skb_copy_and_csum_bits(frag_iter, 3054 offset - start, 3055 to, copy); 3056 csum = csum_block_add(csum, csum2, pos); 3057 if ((len -= copy) == 0) 3058 return csum; 3059 offset += copy; 3060 to += copy; 3061 pos += copy; 3062 } 3063 start = end; 3064 } 3065 BUG_ON(len); 3066 return csum; 3067 } 3068 EXPORT_SYMBOL(skb_copy_and_csum_bits); 3069 3070 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len) 3071 { 3072 __sum16 sum; 3073 3074 sum = csum_fold(skb_checksum(skb, 0, len, skb->csum)); 3075 /* See comments in __skb_checksum_complete(). */ 3076 if (likely(!sum)) { 3077 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) && 3078 !skb->csum_complete_sw) 3079 netdev_rx_csum_fault(skb->dev, skb); 3080 } 3081 if (!skb_shared(skb)) 3082 skb->csum_valid = !sum; 3083 return sum; 3084 } 3085 EXPORT_SYMBOL(__skb_checksum_complete_head); 3086 3087 /* This function assumes skb->csum already holds pseudo header's checksum, 3088 * which has been changed from the hardware checksum, for example, by 3089 * __skb_checksum_validate_complete(). And, the original skb->csum must 3090 * have been validated unsuccessfully for CHECKSUM_COMPLETE case. 3091 * 3092 * It returns non-zero if the recomputed checksum is still invalid, otherwise 3093 * zero. The new checksum is stored back into skb->csum unless the skb is 3094 * shared. 3095 */ 3096 __sum16 __skb_checksum_complete(struct sk_buff *skb) 3097 { 3098 __wsum csum; 3099 __sum16 sum; 3100 3101 csum = skb_checksum(skb, 0, skb->len, 0); 3102 3103 sum = csum_fold(csum_add(skb->csum, csum)); 3104 /* This check is inverted, because we already knew the hardware 3105 * checksum is invalid before calling this function. So, if the 3106 * re-computed checksum is valid instead, then we have a mismatch 3107 * between the original skb->csum and skb_checksum(). This means either 3108 * the original hardware checksum is incorrect or we screw up skb->csum 3109 * when moving skb->data around. 3110 */ 3111 if (likely(!sum)) { 3112 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) && 3113 !skb->csum_complete_sw) 3114 netdev_rx_csum_fault(skb->dev, skb); 3115 } 3116 3117 if (!skb_shared(skb)) { 3118 /* Save full packet checksum */ 3119 skb->csum = csum; 3120 skb->ip_summed = CHECKSUM_COMPLETE; 3121 skb->csum_complete_sw = 1; 3122 skb->csum_valid = !sum; 3123 } 3124 3125 return sum; 3126 } 3127 EXPORT_SYMBOL(__skb_checksum_complete); 3128 3129 static __wsum warn_crc32c_csum_update(const void *buff, int len, __wsum sum) 3130 { 3131 net_warn_ratelimited( 3132 "%s: attempt to compute crc32c without libcrc32c.ko\n", 3133 __func__); 3134 return 0; 3135 } 3136 3137 static __wsum warn_crc32c_csum_combine(__wsum csum, __wsum csum2, 3138 int offset, int len) 3139 { 3140 net_warn_ratelimited( 3141 "%s: attempt to compute crc32c without libcrc32c.ko\n", 3142 __func__); 3143 return 0; 3144 } 3145 3146 static const struct skb_checksum_ops default_crc32c_ops = { 3147 .update = warn_crc32c_csum_update, 3148 .combine = warn_crc32c_csum_combine, 3149 }; 3150 3151 const struct skb_checksum_ops *crc32c_csum_stub __read_mostly = 3152 &default_crc32c_ops; 3153 EXPORT_SYMBOL(crc32c_csum_stub); 3154 3155 /** 3156 * skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy() 3157 * @from: source buffer 3158 * 3159 * Calculates the amount of linear headroom needed in the 'to' skb passed 3160 * into skb_zerocopy(). 3161 */ 3162 unsigned int 3163 skb_zerocopy_headlen(const struct sk_buff *from) 3164 { 3165 unsigned int hlen = 0; 3166 3167 if (!from->head_frag || 3168 skb_headlen(from) < L1_CACHE_BYTES || 3169 skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS) { 3170 hlen = skb_headlen(from); 3171 if (!hlen) 3172 hlen = from->len; 3173 } 3174 3175 if (skb_has_frag_list(from)) 3176 hlen = from->len; 3177 3178 return hlen; 3179 } 3180 EXPORT_SYMBOL_GPL(skb_zerocopy_headlen); 3181 3182 /** 3183 * skb_zerocopy - Zero copy skb to skb 3184 * @to: destination buffer 3185 * @from: source buffer 3186 * @len: number of bytes to copy from source buffer 3187 * @hlen: size of linear headroom in destination buffer 3188 * 3189 * Copies up to `len` bytes from `from` to `to` by creating references 3190 * to the frags in the source buffer. 3191 * 3192 * The `hlen` as calculated by skb_zerocopy_headlen() specifies the 3193 * headroom in the `to` buffer. 3194 * 3195 * Return value: 3196 * 0: everything is OK 3197 * -ENOMEM: couldn't orphan frags of @from due to lack of memory 3198 * -EFAULT: skb_copy_bits() found some problem with skb geometry 3199 */ 3200 int 3201 skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen) 3202 { 3203 int i, j = 0; 3204 int plen = 0; /* length of skb->head fragment */ 3205 int ret; 3206 struct page *page; 3207 unsigned int offset; 3208 3209 BUG_ON(!from->head_frag && !hlen); 3210 3211 /* dont bother with small payloads */ 3212 if (len <= skb_tailroom(to)) 3213 return skb_copy_bits(from, 0, skb_put(to, len), len); 3214 3215 if (hlen) { 3216 ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen); 3217 if (unlikely(ret)) 3218 return ret; 3219 len -= hlen; 3220 } else { 3221 plen = min_t(int, skb_headlen(from), len); 3222 if (plen) { 3223 page = virt_to_head_page(from->head); 3224 offset = from->data - (unsigned char *)page_address(page); 3225 __skb_fill_page_desc(to, 0, page, offset, plen); 3226 get_page(page); 3227 j = 1; 3228 len -= plen; 3229 } 3230 } 3231 3232 skb_len_add(to, len + plen); 3233 3234 if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) { 3235 skb_tx_error(from); 3236 return -ENOMEM; 3237 } 3238 skb_zerocopy_clone(to, from, GFP_ATOMIC); 3239 3240 for (i = 0; i < skb_shinfo(from)->nr_frags; i++) { 3241 int size; 3242 3243 if (!len) 3244 break; 3245 skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i]; 3246 size = min_t(int, skb_frag_size(&skb_shinfo(to)->frags[j]), 3247 len); 3248 skb_frag_size_set(&skb_shinfo(to)->frags[j], size); 3249 len -= size; 3250 skb_frag_ref(to, j); 3251 j++; 3252 } 3253 skb_shinfo(to)->nr_frags = j; 3254 3255 return 0; 3256 } 3257 EXPORT_SYMBOL_GPL(skb_zerocopy); 3258 3259 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to) 3260 { 3261 __wsum csum; 3262 long csstart; 3263 3264 if (skb->ip_summed == CHECKSUM_PARTIAL) 3265 csstart = skb_checksum_start_offset(skb); 3266 else 3267 csstart = skb_headlen(skb); 3268 3269 BUG_ON(csstart > skb_headlen(skb)); 3270 3271 skb_copy_from_linear_data(skb, to, csstart); 3272 3273 csum = 0; 3274 if (csstart != skb->len) 3275 csum = skb_copy_and_csum_bits(skb, csstart, to + csstart, 3276 skb->len - csstart); 3277 3278 if (skb->ip_summed == CHECKSUM_PARTIAL) { 3279 long csstuff = csstart + skb->csum_offset; 3280 3281 *((__sum16 *)(to + csstuff)) = csum_fold(csum); 3282 } 3283 } 3284 EXPORT_SYMBOL(skb_copy_and_csum_dev); 3285 3286 /** 3287 * skb_dequeue - remove from the head of the queue 3288 * @list: list to dequeue from 3289 * 3290 * Remove the head of the list. The list lock is taken so the function 3291 * may be used safely with other locking list functions. The head item is 3292 * returned or %NULL if the list is empty. 3293 */ 3294 3295 struct sk_buff *skb_dequeue(struct sk_buff_head *list) 3296 { 3297 unsigned long flags; 3298 struct sk_buff *result; 3299 3300 spin_lock_irqsave(&list->lock, flags); 3301 result = __skb_dequeue(list); 3302 spin_unlock_irqrestore(&list->lock, flags); 3303 return result; 3304 } 3305 EXPORT_SYMBOL(skb_dequeue); 3306 3307 /** 3308 * skb_dequeue_tail - remove from the tail of the queue 3309 * @list: list to dequeue from 3310 * 3311 * Remove the tail of the list. The list lock is taken so the function 3312 * may be used safely with other locking list functions. The tail item is 3313 * returned or %NULL if the list is empty. 3314 */ 3315 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list) 3316 { 3317 unsigned long flags; 3318 struct sk_buff *result; 3319 3320 spin_lock_irqsave(&list->lock, flags); 3321 result = __skb_dequeue_tail(list); 3322 spin_unlock_irqrestore(&list->lock, flags); 3323 return result; 3324 } 3325 EXPORT_SYMBOL(skb_dequeue_tail); 3326 3327 /** 3328 * skb_queue_purge - empty a list 3329 * @list: list to empty 3330 * 3331 * Delete all buffers on an &sk_buff list. Each buffer is removed from 3332 * the list and one reference dropped. This function takes the list 3333 * lock and is atomic with respect to other list locking functions. 3334 */ 3335 void skb_queue_purge(struct sk_buff_head *list) 3336 { 3337 struct sk_buff *skb; 3338 while ((skb = skb_dequeue(list)) != NULL) 3339 kfree_skb(skb); 3340 } 3341 EXPORT_SYMBOL(skb_queue_purge); 3342 3343 /** 3344 * skb_rbtree_purge - empty a skb rbtree 3345 * @root: root of the rbtree to empty 3346 * Return value: the sum of truesizes of all purged skbs. 3347 * 3348 * Delete all buffers on an &sk_buff rbtree. Each buffer is removed from 3349 * the list and one reference dropped. This function does not take 3350 * any lock. Synchronization should be handled by the caller (e.g., TCP 3351 * out-of-order queue is protected by the socket lock). 3352 */ 3353 unsigned int skb_rbtree_purge(struct rb_root *root) 3354 { 3355 struct rb_node *p = rb_first(root); 3356 unsigned int sum = 0; 3357 3358 while (p) { 3359 struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode); 3360 3361 p = rb_next(p); 3362 rb_erase(&skb->rbnode, root); 3363 sum += skb->truesize; 3364 kfree_skb(skb); 3365 } 3366 return sum; 3367 } 3368 3369 /** 3370 * skb_queue_head - queue a buffer at the list head 3371 * @list: list to use 3372 * @newsk: buffer to queue 3373 * 3374 * Queue a buffer at the start of the list. This function takes the 3375 * list lock and can be used safely with other locking &sk_buff functions 3376 * safely. 3377 * 3378 * A buffer cannot be placed on two lists at the same time. 3379 */ 3380 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk) 3381 { 3382 unsigned long flags; 3383 3384 spin_lock_irqsave(&list->lock, flags); 3385 __skb_queue_head(list, newsk); 3386 spin_unlock_irqrestore(&list->lock, flags); 3387 } 3388 EXPORT_SYMBOL(skb_queue_head); 3389 3390 /** 3391 * skb_queue_tail - queue a buffer at the list tail 3392 * @list: list to use 3393 * @newsk: buffer to queue 3394 * 3395 * Queue a buffer at the tail of the list. This function takes the 3396 * list lock and can be used safely with other locking &sk_buff functions 3397 * safely. 3398 * 3399 * A buffer cannot be placed on two lists at the same time. 3400 */ 3401 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk) 3402 { 3403 unsigned long flags; 3404 3405 spin_lock_irqsave(&list->lock, flags); 3406 __skb_queue_tail(list, newsk); 3407 spin_unlock_irqrestore(&list->lock, flags); 3408 } 3409 EXPORT_SYMBOL(skb_queue_tail); 3410 3411 /** 3412 * skb_unlink - remove a buffer from a list 3413 * @skb: buffer to remove 3414 * @list: list to use 3415 * 3416 * Remove a packet from a list. The list locks are taken and this 3417 * function is atomic with respect to other list locked calls 3418 * 3419 * You must know what list the SKB is on. 3420 */ 3421 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list) 3422 { 3423 unsigned long flags; 3424 3425 spin_lock_irqsave(&list->lock, flags); 3426 __skb_unlink(skb, list); 3427 spin_unlock_irqrestore(&list->lock, flags); 3428 } 3429 EXPORT_SYMBOL(skb_unlink); 3430 3431 /** 3432 * skb_append - append a buffer 3433 * @old: buffer to insert after 3434 * @newsk: buffer to insert 3435 * @list: list to use 3436 * 3437 * Place a packet after a given packet in a list. The list locks are taken 3438 * and this function is atomic with respect to other list locked calls. 3439 * A buffer cannot be placed on two lists at the same time. 3440 */ 3441 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list) 3442 { 3443 unsigned long flags; 3444 3445 spin_lock_irqsave(&list->lock, flags); 3446 __skb_queue_after(list, old, newsk); 3447 spin_unlock_irqrestore(&list->lock, flags); 3448 } 3449 EXPORT_SYMBOL(skb_append); 3450 3451 static inline void skb_split_inside_header(struct sk_buff *skb, 3452 struct sk_buff* skb1, 3453 const u32 len, const int pos) 3454 { 3455 int i; 3456 3457 skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len), 3458 pos - len); 3459 /* And move data appendix as is. */ 3460 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 3461 skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i]; 3462 3463 skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags; 3464 skb_shinfo(skb)->nr_frags = 0; 3465 skb1->data_len = skb->data_len; 3466 skb1->len += skb1->data_len; 3467 skb->data_len = 0; 3468 skb->len = len; 3469 skb_set_tail_pointer(skb, len); 3470 } 3471 3472 static inline void skb_split_no_header(struct sk_buff *skb, 3473 struct sk_buff* skb1, 3474 const u32 len, int pos) 3475 { 3476 int i, k = 0; 3477 const int nfrags = skb_shinfo(skb)->nr_frags; 3478 3479 skb_shinfo(skb)->nr_frags = 0; 3480 skb1->len = skb1->data_len = skb->len - len; 3481 skb->len = len; 3482 skb->data_len = len - pos; 3483 3484 for (i = 0; i < nfrags; i++) { 3485 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 3486 3487 if (pos + size > len) { 3488 skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i]; 3489 3490 if (pos < len) { 3491 /* Split frag. 3492 * We have two variants in this case: 3493 * 1. Move all the frag to the second 3494 * part, if it is possible. F.e. 3495 * this approach is mandatory for TUX, 3496 * where splitting is expensive. 3497 * 2. Split is accurately. We make this. 3498 */ 3499 skb_frag_ref(skb, i); 3500 skb_frag_off_add(&skb_shinfo(skb1)->frags[0], len - pos); 3501 skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos); 3502 skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos); 3503 skb_shinfo(skb)->nr_frags++; 3504 } 3505 k++; 3506 } else 3507 skb_shinfo(skb)->nr_frags++; 3508 pos += size; 3509 } 3510 skb_shinfo(skb1)->nr_frags = k; 3511 } 3512 3513 /** 3514 * skb_split - Split fragmented skb to two parts at length len. 3515 * @skb: the buffer to split 3516 * @skb1: the buffer to receive the second part 3517 * @len: new length for skb 3518 */ 3519 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len) 3520 { 3521 int pos = skb_headlen(skb); 3522 const int zc_flags = SKBFL_SHARED_FRAG | SKBFL_PURE_ZEROCOPY; 3523 3524 skb_zcopy_downgrade_managed(skb); 3525 3526 skb_shinfo(skb1)->flags |= skb_shinfo(skb)->flags & zc_flags; 3527 skb_zerocopy_clone(skb1, skb, 0); 3528 if (len < pos) /* Split line is inside header. */ 3529 skb_split_inside_header(skb, skb1, len, pos); 3530 else /* Second chunk has no header, nothing to copy. */ 3531 skb_split_no_header(skb, skb1, len, pos); 3532 } 3533 EXPORT_SYMBOL(skb_split); 3534 3535 /* Shifting from/to a cloned skb is a no-go. 3536 * 3537 * Caller cannot keep skb_shinfo related pointers past calling here! 3538 */ 3539 static int skb_prepare_for_shift(struct sk_buff *skb) 3540 { 3541 return skb_unclone_keeptruesize(skb, GFP_ATOMIC); 3542 } 3543 3544 /** 3545 * skb_shift - Shifts paged data partially from skb to another 3546 * @tgt: buffer into which tail data gets added 3547 * @skb: buffer from which the paged data comes from 3548 * @shiftlen: shift up to this many bytes 3549 * 3550 * Attempts to shift up to shiftlen worth of bytes, which may be less than 3551 * the length of the skb, from skb to tgt. Returns number bytes shifted. 3552 * It's up to caller to free skb if everything was shifted. 3553 * 3554 * If @tgt runs out of frags, the whole operation is aborted. 3555 * 3556 * Skb cannot include anything else but paged data while tgt is allowed 3557 * to have non-paged data as well. 3558 * 3559 * TODO: full sized shift could be optimized but that would need 3560 * specialized skb free'er to handle frags without up-to-date nr_frags. 3561 */ 3562 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen) 3563 { 3564 int from, to, merge, todo; 3565 skb_frag_t *fragfrom, *fragto; 3566 3567 BUG_ON(shiftlen > skb->len); 3568 3569 if (skb_headlen(skb)) 3570 return 0; 3571 if (skb_zcopy(tgt) || skb_zcopy(skb)) 3572 return 0; 3573 3574 todo = shiftlen; 3575 from = 0; 3576 to = skb_shinfo(tgt)->nr_frags; 3577 fragfrom = &skb_shinfo(skb)->frags[from]; 3578 3579 /* Actual merge is delayed until the point when we know we can 3580 * commit all, so that we don't have to undo partial changes 3581 */ 3582 if (!to || 3583 !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom), 3584 skb_frag_off(fragfrom))) { 3585 merge = -1; 3586 } else { 3587 merge = to - 1; 3588 3589 todo -= skb_frag_size(fragfrom); 3590 if (todo < 0) { 3591 if (skb_prepare_for_shift(skb) || 3592 skb_prepare_for_shift(tgt)) 3593 return 0; 3594 3595 /* All previous frag pointers might be stale! */ 3596 fragfrom = &skb_shinfo(skb)->frags[from]; 3597 fragto = &skb_shinfo(tgt)->frags[merge]; 3598 3599 skb_frag_size_add(fragto, shiftlen); 3600 skb_frag_size_sub(fragfrom, shiftlen); 3601 skb_frag_off_add(fragfrom, shiftlen); 3602 3603 goto onlymerged; 3604 } 3605 3606 from++; 3607 } 3608 3609 /* Skip full, not-fitting skb to avoid expensive operations */ 3610 if ((shiftlen == skb->len) && 3611 (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to)) 3612 return 0; 3613 3614 if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt)) 3615 return 0; 3616 3617 while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) { 3618 if (to == MAX_SKB_FRAGS) 3619 return 0; 3620 3621 fragfrom = &skb_shinfo(skb)->frags[from]; 3622 fragto = &skb_shinfo(tgt)->frags[to]; 3623 3624 if (todo >= skb_frag_size(fragfrom)) { 3625 *fragto = *fragfrom; 3626 todo -= skb_frag_size(fragfrom); 3627 from++; 3628 to++; 3629 3630 } else { 3631 __skb_frag_ref(fragfrom); 3632 skb_frag_page_copy(fragto, fragfrom); 3633 skb_frag_off_copy(fragto, fragfrom); 3634 skb_frag_size_set(fragto, todo); 3635 3636 skb_frag_off_add(fragfrom, todo); 3637 skb_frag_size_sub(fragfrom, todo); 3638 todo = 0; 3639 3640 to++; 3641 break; 3642 } 3643 } 3644 3645 /* Ready to "commit" this state change to tgt */ 3646 skb_shinfo(tgt)->nr_frags = to; 3647 3648 if (merge >= 0) { 3649 fragfrom = &skb_shinfo(skb)->frags[0]; 3650 fragto = &skb_shinfo(tgt)->frags[merge]; 3651 3652 skb_frag_size_add(fragto, skb_frag_size(fragfrom)); 3653 __skb_frag_unref(fragfrom, skb->pp_recycle); 3654 } 3655 3656 /* Reposition in the original skb */ 3657 to = 0; 3658 while (from < skb_shinfo(skb)->nr_frags) 3659 skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++]; 3660 skb_shinfo(skb)->nr_frags = to; 3661 3662 BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags); 3663 3664 onlymerged: 3665 /* Most likely the tgt won't ever need its checksum anymore, skb on 3666 * the other hand might need it if it needs to be resent 3667 */ 3668 tgt->ip_summed = CHECKSUM_PARTIAL; 3669 skb->ip_summed = CHECKSUM_PARTIAL; 3670 3671 skb_len_add(skb, -shiftlen); 3672 skb_len_add(tgt, shiftlen); 3673 3674 return shiftlen; 3675 } 3676 3677 /** 3678 * skb_prepare_seq_read - Prepare a sequential read of skb data 3679 * @skb: the buffer to read 3680 * @from: lower offset of data to be read 3681 * @to: upper offset of data to be read 3682 * @st: state variable 3683 * 3684 * Initializes the specified state variable. Must be called before 3685 * invoking skb_seq_read() for the first time. 3686 */ 3687 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from, 3688 unsigned int to, struct skb_seq_state *st) 3689 { 3690 st->lower_offset = from; 3691 st->upper_offset = to; 3692 st->root_skb = st->cur_skb = skb; 3693 st->frag_idx = st->stepped_offset = 0; 3694 st->frag_data = NULL; 3695 st->frag_off = 0; 3696 } 3697 EXPORT_SYMBOL(skb_prepare_seq_read); 3698 3699 /** 3700 * skb_seq_read - Sequentially read skb data 3701 * @consumed: number of bytes consumed by the caller so far 3702 * @data: destination pointer for data to be returned 3703 * @st: state variable 3704 * 3705 * Reads a block of skb data at @consumed relative to the 3706 * lower offset specified to skb_prepare_seq_read(). Assigns 3707 * the head of the data block to @data and returns the length 3708 * of the block or 0 if the end of the skb data or the upper 3709 * offset has been reached. 3710 * 3711 * The caller is not required to consume all of the data 3712 * returned, i.e. @consumed is typically set to the number 3713 * of bytes already consumed and the next call to 3714 * skb_seq_read() will return the remaining part of the block. 3715 * 3716 * Note 1: The size of each block of data returned can be arbitrary, 3717 * this limitation is the cost for zerocopy sequential 3718 * reads of potentially non linear data. 3719 * 3720 * Note 2: Fragment lists within fragments are not implemented 3721 * at the moment, state->root_skb could be replaced with 3722 * a stack for this purpose. 3723 */ 3724 unsigned int skb_seq_read(unsigned int consumed, const u8 **data, 3725 struct skb_seq_state *st) 3726 { 3727 unsigned int block_limit, abs_offset = consumed + st->lower_offset; 3728 skb_frag_t *frag; 3729 3730 if (unlikely(abs_offset >= st->upper_offset)) { 3731 if (st->frag_data) { 3732 kunmap_atomic(st->frag_data); 3733 st->frag_data = NULL; 3734 } 3735 return 0; 3736 } 3737 3738 next_skb: 3739 block_limit = skb_headlen(st->cur_skb) + st->stepped_offset; 3740 3741 if (abs_offset < block_limit && !st->frag_data) { 3742 *data = st->cur_skb->data + (abs_offset - st->stepped_offset); 3743 return block_limit - abs_offset; 3744 } 3745 3746 if (st->frag_idx == 0 && !st->frag_data) 3747 st->stepped_offset += skb_headlen(st->cur_skb); 3748 3749 while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) { 3750 unsigned int pg_idx, pg_off, pg_sz; 3751 3752 frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx]; 3753 3754 pg_idx = 0; 3755 pg_off = skb_frag_off(frag); 3756 pg_sz = skb_frag_size(frag); 3757 3758 if (skb_frag_must_loop(skb_frag_page(frag))) { 3759 pg_idx = (pg_off + st->frag_off) >> PAGE_SHIFT; 3760 pg_off = offset_in_page(pg_off + st->frag_off); 3761 pg_sz = min_t(unsigned int, pg_sz - st->frag_off, 3762 PAGE_SIZE - pg_off); 3763 } 3764 3765 block_limit = pg_sz + st->stepped_offset; 3766 if (abs_offset < block_limit) { 3767 if (!st->frag_data) 3768 st->frag_data = kmap_atomic(skb_frag_page(frag) + pg_idx); 3769 3770 *data = (u8 *)st->frag_data + pg_off + 3771 (abs_offset - st->stepped_offset); 3772 3773 return block_limit - abs_offset; 3774 } 3775 3776 if (st->frag_data) { 3777 kunmap_atomic(st->frag_data); 3778 st->frag_data = NULL; 3779 } 3780 3781 st->stepped_offset += pg_sz; 3782 st->frag_off += pg_sz; 3783 if (st->frag_off == skb_frag_size(frag)) { 3784 st->frag_off = 0; 3785 st->frag_idx++; 3786 } 3787 } 3788 3789 if (st->frag_data) { 3790 kunmap_atomic(st->frag_data); 3791 st->frag_data = NULL; 3792 } 3793 3794 if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) { 3795 st->cur_skb = skb_shinfo(st->root_skb)->frag_list; 3796 st->frag_idx = 0; 3797 goto next_skb; 3798 } else if (st->cur_skb->next) { 3799 st->cur_skb = st->cur_skb->next; 3800 st->frag_idx = 0; 3801 goto next_skb; 3802 } 3803 3804 return 0; 3805 } 3806 EXPORT_SYMBOL(skb_seq_read); 3807 3808 /** 3809 * skb_abort_seq_read - Abort a sequential read of skb data 3810 * @st: state variable 3811 * 3812 * Must be called if skb_seq_read() was not called until it 3813 * returned 0. 3814 */ 3815 void skb_abort_seq_read(struct skb_seq_state *st) 3816 { 3817 if (st->frag_data) 3818 kunmap_atomic(st->frag_data); 3819 } 3820 EXPORT_SYMBOL(skb_abort_seq_read); 3821 3822 #define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb)) 3823 3824 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text, 3825 struct ts_config *conf, 3826 struct ts_state *state) 3827 { 3828 return skb_seq_read(offset, text, TS_SKB_CB(state)); 3829 } 3830 3831 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state) 3832 { 3833 skb_abort_seq_read(TS_SKB_CB(state)); 3834 } 3835 3836 /** 3837 * skb_find_text - Find a text pattern in skb data 3838 * @skb: the buffer to look in 3839 * @from: search offset 3840 * @to: search limit 3841 * @config: textsearch configuration 3842 * 3843 * Finds a pattern in the skb data according to the specified 3844 * textsearch configuration. Use textsearch_next() to retrieve 3845 * subsequent occurrences of the pattern. Returns the offset 3846 * to the first occurrence or UINT_MAX if no match was found. 3847 */ 3848 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from, 3849 unsigned int to, struct ts_config *config) 3850 { 3851 struct ts_state state; 3852 unsigned int ret; 3853 3854 BUILD_BUG_ON(sizeof(struct skb_seq_state) > sizeof(state.cb)); 3855 3856 config->get_next_block = skb_ts_get_next_block; 3857 config->finish = skb_ts_finish; 3858 3859 skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state)); 3860 3861 ret = textsearch_find(config, &state); 3862 return (ret <= to - from ? ret : UINT_MAX); 3863 } 3864 EXPORT_SYMBOL(skb_find_text); 3865 3866 int skb_append_pagefrags(struct sk_buff *skb, struct page *page, 3867 int offset, size_t size) 3868 { 3869 int i = skb_shinfo(skb)->nr_frags; 3870 3871 if (skb_can_coalesce(skb, i, page, offset)) { 3872 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size); 3873 } else if (i < MAX_SKB_FRAGS) { 3874 skb_zcopy_downgrade_managed(skb); 3875 get_page(page); 3876 skb_fill_page_desc(skb, i, page, offset, size); 3877 } else { 3878 return -EMSGSIZE; 3879 } 3880 3881 return 0; 3882 } 3883 EXPORT_SYMBOL_GPL(skb_append_pagefrags); 3884 3885 /** 3886 * skb_pull_rcsum - pull skb and update receive checksum 3887 * @skb: buffer to update 3888 * @len: length of data pulled 3889 * 3890 * This function performs an skb_pull on the packet and updates 3891 * the CHECKSUM_COMPLETE checksum. It should be used on 3892 * receive path processing instead of skb_pull unless you know 3893 * that the checksum difference is zero (e.g., a valid IP header) 3894 * or you are setting ip_summed to CHECKSUM_NONE. 3895 */ 3896 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len) 3897 { 3898 unsigned char *data = skb->data; 3899 3900 BUG_ON(len > skb->len); 3901 __skb_pull(skb, len); 3902 skb_postpull_rcsum(skb, data, len); 3903 return skb->data; 3904 } 3905 EXPORT_SYMBOL_GPL(skb_pull_rcsum); 3906 3907 static inline skb_frag_t skb_head_frag_to_page_desc(struct sk_buff *frag_skb) 3908 { 3909 skb_frag_t head_frag; 3910 struct page *page; 3911 3912 page = virt_to_head_page(frag_skb->head); 3913 __skb_frag_set_page(&head_frag, page); 3914 skb_frag_off_set(&head_frag, frag_skb->data - 3915 (unsigned char *)page_address(page)); 3916 skb_frag_size_set(&head_frag, skb_headlen(frag_skb)); 3917 return head_frag; 3918 } 3919 3920 struct sk_buff *skb_segment_list(struct sk_buff *skb, 3921 netdev_features_t features, 3922 unsigned int offset) 3923 { 3924 struct sk_buff *list_skb = skb_shinfo(skb)->frag_list; 3925 unsigned int tnl_hlen = skb_tnl_header_len(skb); 3926 unsigned int delta_truesize = 0; 3927 unsigned int delta_len = 0; 3928 struct sk_buff *tail = NULL; 3929 struct sk_buff *nskb, *tmp; 3930 int len_diff, err; 3931 3932 skb_push(skb, -skb_network_offset(skb) + offset); 3933 3934 skb_shinfo(skb)->frag_list = NULL; 3935 3936 do { 3937 nskb = list_skb; 3938 list_skb = list_skb->next; 3939 3940 err = 0; 3941 delta_truesize += nskb->truesize; 3942 if (skb_shared(nskb)) { 3943 tmp = skb_clone(nskb, GFP_ATOMIC); 3944 if (tmp) { 3945 consume_skb(nskb); 3946 nskb = tmp; 3947 err = skb_unclone(nskb, GFP_ATOMIC); 3948 } else { 3949 err = -ENOMEM; 3950 } 3951 } 3952 3953 if (!tail) 3954 skb->next = nskb; 3955 else 3956 tail->next = nskb; 3957 3958 if (unlikely(err)) { 3959 nskb->next = list_skb; 3960 goto err_linearize; 3961 } 3962 3963 tail = nskb; 3964 3965 delta_len += nskb->len; 3966 3967 skb_push(nskb, -skb_network_offset(nskb) + offset); 3968 3969 skb_release_head_state(nskb); 3970 len_diff = skb_network_header_len(nskb) - skb_network_header_len(skb); 3971 __copy_skb_header(nskb, skb); 3972 3973 skb_headers_offset_update(nskb, skb_headroom(nskb) - skb_headroom(skb)); 3974 nskb->transport_header += len_diff; 3975 skb_copy_from_linear_data_offset(skb, -tnl_hlen, 3976 nskb->data - tnl_hlen, 3977 offset + tnl_hlen); 3978 3979 if (skb_needs_linearize(nskb, features) && 3980 __skb_linearize(nskb)) 3981 goto err_linearize; 3982 3983 } while (list_skb); 3984 3985 skb->truesize = skb->truesize - delta_truesize; 3986 skb->data_len = skb->data_len - delta_len; 3987 skb->len = skb->len - delta_len; 3988 3989 skb_gso_reset(skb); 3990 3991 skb->prev = tail; 3992 3993 if (skb_needs_linearize(skb, features) && 3994 __skb_linearize(skb)) 3995 goto err_linearize; 3996 3997 skb_get(skb); 3998 3999 return skb; 4000 4001 err_linearize: 4002 kfree_skb_list(skb->next); 4003 skb->next = NULL; 4004 return ERR_PTR(-ENOMEM); 4005 } 4006 EXPORT_SYMBOL_GPL(skb_segment_list); 4007 4008 /** 4009 * skb_segment - Perform protocol segmentation on skb. 4010 * @head_skb: buffer to segment 4011 * @features: features for the output path (see dev->features) 4012 * 4013 * This function performs segmentation on the given skb. It returns 4014 * a pointer to the first in a list of new skbs for the segments. 4015 * In case of error it returns ERR_PTR(err). 4016 */ 4017 struct sk_buff *skb_segment(struct sk_buff *head_skb, 4018 netdev_features_t features) 4019 { 4020 struct sk_buff *segs = NULL; 4021 struct sk_buff *tail = NULL; 4022 struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list; 4023 skb_frag_t *frag = skb_shinfo(head_skb)->frags; 4024 unsigned int mss = skb_shinfo(head_skb)->gso_size; 4025 unsigned int doffset = head_skb->data - skb_mac_header(head_skb); 4026 struct sk_buff *frag_skb = head_skb; 4027 unsigned int offset = doffset; 4028 unsigned int tnl_hlen = skb_tnl_header_len(head_skb); 4029 unsigned int partial_segs = 0; 4030 unsigned int headroom; 4031 unsigned int len = head_skb->len; 4032 __be16 proto; 4033 bool csum, sg; 4034 int nfrags = skb_shinfo(head_skb)->nr_frags; 4035 int err = -ENOMEM; 4036 int i = 0; 4037 int pos; 4038 4039 if (list_skb && !list_skb->head_frag && skb_headlen(list_skb) && 4040 (skb_shinfo(head_skb)->gso_type & SKB_GSO_DODGY)) { 4041 /* gso_size is untrusted, and we have a frag_list with a linear 4042 * non head_frag head. 4043 * 4044 * (we assume checking the first list_skb member suffices; 4045 * i.e if either of the list_skb members have non head_frag 4046 * head, then the first one has too). 4047 * 4048 * If head_skb's headlen does not fit requested gso_size, it 4049 * means that the frag_list members do NOT terminate on exact 4050 * gso_size boundaries. Hence we cannot perform skb_frag_t page 4051 * sharing. Therefore we must fallback to copying the frag_list 4052 * skbs; we do so by disabling SG. 4053 */ 4054 if (mss != GSO_BY_FRAGS && mss != skb_headlen(head_skb)) 4055 features &= ~NETIF_F_SG; 4056 } 4057 4058 __skb_push(head_skb, doffset); 4059 proto = skb_network_protocol(head_skb, NULL); 4060 if (unlikely(!proto)) 4061 return ERR_PTR(-EINVAL); 4062 4063 sg = !!(features & NETIF_F_SG); 4064 csum = !!can_checksum_protocol(features, proto); 4065 4066 if (sg && csum && (mss != GSO_BY_FRAGS)) { 4067 if (!(features & NETIF_F_GSO_PARTIAL)) { 4068 struct sk_buff *iter; 4069 unsigned int frag_len; 4070 4071 if (!list_skb || 4072 !net_gso_ok(features, skb_shinfo(head_skb)->gso_type)) 4073 goto normal; 4074 4075 /* If we get here then all the required 4076 * GSO features except frag_list are supported. 4077 * Try to split the SKB to multiple GSO SKBs 4078 * with no frag_list. 4079 * Currently we can do that only when the buffers don't 4080 * have a linear part and all the buffers except 4081 * the last are of the same length. 4082 */ 4083 frag_len = list_skb->len; 4084 skb_walk_frags(head_skb, iter) { 4085 if (frag_len != iter->len && iter->next) 4086 goto normal; 4087 if (skb_headlen(iter) && !iter->head_frag) 4088 goto normal; 4089 4090 len -= iter->len; 4091 } 4092 4093 if (len != frag_len) 4094 goto normal; 4095 } 4096 4097 /* GSO partial only requires that we trim off any excess that 4098 * doesn't fit into an MSS sized block, so take care of that 4099 * now. 4100 */ 4101 partial_segs = len / mss; 4102 if (partial_segs > 1) 4103 mss *= partial_segs; 4104 else 4105 partial_segs = 0; 4106 } 4107 4108 normal: 4109 headroom = skb_headroom(head_skb); 4110 pos = skb_headlen(head_skb); 4111 4112 do { 4113 struct sk_buff *nskb; 4114 skb_frag_t *nskb_frag; 4115 int hsize; 4116 int size; 4117 4118 if (unlikely(mss == GSO_BY_FRAGS)) { 4119 len = list_skb->len; 4120 } else { 4121 len = head_skb->len - offset; 4122 if (len > mss) 4123 len = mss; 4124 } 4125 4126 hsize = skb_headlen(head_skb) - offset; 4127 4128 if (hsize <= 0 && i >= nfrags && skb_headlen(list_skb) && 4129 (skb_headlen(list_skb) == len || sg)) { 4130 BUG_ON(skb_headlen(list_skb) > len); 4131 4132 i = 0; 4133 nfrags = skb_shinfo(list_skb)->nr_frags; 4134 frag = skb_shinfo(list_skb)->frags; 4135 frag_skb = list_skb; 4136 pos += skb_headlen(list_skb); 4137 4138 while (pos < offset + len) { 4139 BUG_ON(i >= nfrags); 4140 4141 size = skb_frag_size(frag); 4142 if (pos + size > offset + len) 4143 break; 4144 4145 i++; 4146 pos += size; 4147 frag++; 4148 } 4149 4150 nskb = skb_clone(list_skb, GFP_ATOMIC); 4151 list_skb = list_skb->next; 4152 4153 if (unlikely(!nskb)) 4154 goto err; 4155 4156 if (unlikely(pskb_trim(nskb, len))) { 4157 kfree_skb(nskb); 4158 goto err; 4159 } 4160 4161 hsize = skb_end_offset(nskb); 4162 if (skb_cow_head(nskb, doffset + headroom)) { 4163 kfree_skb(nskb); 4164 goto err; 4165 } 4166 4167 nskb->truesize += skb_end_offset(nskb) - hsize; 4168 skb_release_head_state(nskb); 4169 __skb_push(nskb, doffset); 4170 } else { 4171 if (hsize < 0) 4172 hsize = 0; 4173 if (hsize > len || !sg) 4174 hsize = len; 4175 4176 nskb = __alloc_skb(hsize + doffset + headroom, 4177 GFP_ATOMIC, skb_alloc_rx_flag(head_skb), 4178 NUMA_NO_NODE); 4179 4180 if (unlikely(!nskb)) 4181 goto err; 4182 4183 skb_reserve(nskb, headroom); 4184 __skb_put(nskb, doffset); 4185 } 4186 4187 if (segs) 4188 tail->next = nskb; 4189 else 4190 segs = nskb; 4191 tail = nskb; 4192 4193 __copy_skb_header(nskb, head_skb); 4194 4195 skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom); 4196 skb_reset_mac_len(nskb); 4197 4198 skb_copy_from_linear_data_offset(head_skb, -tnl_hlen, 4199 nskb->data - tnl_hlen, 4200 doffset + tnl_hlen); 4201 4202 if (nskb->len == len + doffset) 4203 goto perform_csum_check; 4204 4205 if (!sg) { 4206 if (!csum) { 4207 if (!nskb->remcsum_offload) 4208 nskb->ip_summed = CHECKSUM_NONE; 4209 SKB_GSO_CB(nskb)->csum = 4210 skb_copy_and_csum_bits(head_skb, offset, 4211 skb_put(nskb, 4212 len), 4213 len); 4214 SKB_GSO_CB(nskb)->csum_start = 4215 skb_headroom(nskb) + doffset; 4216 } else { 4217 if (skb_copy_bits(head_skb, offset, skb_put(nskb, len), len)) 4218 goto err; 4219 } 4220 continue; 4221 } 4222 4223 nskb_frag = skb_shinfo(nskb)->frags; 4224 4225 skb_copy_from_linear_data_offset(head_skb, offset, 4226 skb_put(nskb, hsize), hsize); 4227 4228 skb_shinfo(nskb)->flags |= skb_shinfo(head_skb)->flags & 4229 SKBFL_SHARED_FRAG; 4230 4231 if (skb_orphan_frags(frag_skb, GFP_ATOMIC) || 4232 skb_zerocopy_clone(nskb, frag_skb, GFP_ATOMIC)) 4233 goto err; 4234 4235 while (pos < offset + len) { 4236 if (i >= nfrags) { 4237 i = 0; 4238 nfrags = skb_shinfo(list_skb)->nr_frags; 4239 frag = skb_shinfo(list_skb)->frags; 4240 frag_skb = list_skb; 4241 if (!skb_headlen(list_skb)) { 4242 BUG_ON(!nfrags); 4243 } else { 4244 BUG_ON(!list_skb->head_frag); 4245 4246 /* to make room for head_frag. */ 4247 i--; 4248 frag--; 4249 } 4250 if (skb_orphan_frags(frag_skb, GFP_ATOMIC) || 4251 skb_zerocopy_clone(nskb, frag_skb, 4252 GFP_ATOMIC)) 4253 goto err; 4254 4255 list_skb = list_skb->next; 4256 } 4257 4258 if (unlikely(skb_shinfo(nskb)->nr_frags >= 4259 MAX_SKB_FRAGS)) { 4260 net_warn_ratelimited( 4261 "skb_segment: too many frags: %u %u\n", 4262 pos, mss); 4263 err = -EINVAL; 4264 goto err; 4265 } 4266 4267 *nskb_frag = (i < 0) ? skb_head_frag_to_page_desc(frag_skb) : *frag; 4268 __skb_frag_ref(nskb_frag); 4269 size = skb_frag_size(nskb_frag); 4270 4271 if (pos < offset) { 4272 skb_frag_off_add(nskb_frag, offset - pos); 4273 skb_frag_size_sub(nskb_frag, offset - pos); 4274 } 4275 4276 skb_shinfo(nskb)->nr_frags++; 4277 4278 if (pos + size <= offset + len) { 4279 i++; 4280 frag++; 4281 pos += size; 4282 } else { 4283 skb_frag_size_sub(nskb_frag, pos + size - (offset + len)); 4284 goto skip_fraglist; 4285 } 4286 4287 nskb_frag++; 4288 } 4289 4290 skip_fraglist: 4291 nskb->data_len = len - hsize; 4292 nskb->len += nskb->data_len; 4293 nskb->truesize += nskb->data_len; 4294 4295 perform_csum_check: 4296 if (!csum) { 4297 if (skb_has_shared_frag(nskb) && 4298 __skb_linearize(nskb)) 4299 goto err; 4300 4301 if (!nskb->remcsum_offload) 4302 nskb->ip_summed = CHECKSUM_NONE; 4303 SKB_GSO_CB(nskb)->csum = 4304 skb_checksum(nskb, doffset, 4305 nskb->len - doffset, 0); 4306 SKB_GSO_CB(nskb)->csum_start = 4307 skb_headroom(nskb) + doffset; 4308 } 4309 } while ((offset += len) < head_skb->len); 4310 4311 /* Some callers want to get the end of the list. 4312 * Put it in segs->prev to avoid walking the list. 4313 * (see validate_xmit_skb_list() for example) 4314 */ 4315 segs->prev = tail; 4316 4317 if (partial_segs) { 4318 struct sk_buff *iter; 4319 int type = skb_shinfo(head_skb)->gso_type; 4320 unsigned short gso_size = skb_shinfo(head_skb)->gso_size; 4321 4322 /* Update type to add partial and then remove dodgy if set */ 4323 type |= (features & NETIF_F_GSO_PARTIAL) / NETIF_F_GSO_PARTIAL * SKB_GSO_PARTIAL; 4324 type &= ~SKB_GSO_DODGY; 4325 4326 /* Update GSO info and prepare to start updating headers on 4327 * our way back down the stack of protocols. 4328 */ 4329 for (iter = segs; iter; iter = iter->next) { 4330 skb_shinfo(iter)->gso_size = gso_size; 4331 skb_shinfo(iter)->gso_segs = partial_segs; 4332 skb_shinfo(iter)->gso_type = type; 4333 SKB_GSO_CB(iter)->data_offset = skb_headroom(iter) + doffset; 4334 } 4335 4336 if (tail->len - doffset <= gso_size) 4337 skb_shinfo(tail)->gso_size = 0; 4338 else if (tail != segs) 4339 skb_shinfo(tail)->gso_segs = DIV_ROUND_UP(tail->len - doffset, gso_size); 4340 } 4341 4342 /* Following permits correct backpressure, for protocols 4343 * using skb_set_owner_w(). 4344 * Idea is to tranfert ownership from head_skb to last segment. 4345 */ 4346 if (head_skb->destructor == sock_wfree) { 4347 swap(tail->truesize, head_skb->truesize); 4348 swap(tail->destructor, head_skb->destructor); 4349 swap(tail->sk, head_skb->sk); 4350 } 4351 return segs; 4352 4353 err: 4354 kfree_skb_list(segs); 4355 return ERR_PTR(err); 4356 } 4357 EXPORT_SYMBOL_GPL(skb_segment); 4358 4359 #ifdef CONFIG_SKB_EXTENSIONS 4360 #define SKB_EXT_ALIGN_VALUE 8 4361 #define SKB_EXT_CHUNKSIZEOF(x) (ALIGN((sizeof(x)), SKB_EXT_ALIGN_VALUE) / SKB_EXT_ALIGN_VALUE) 4362 4363 static const u8 skb_ext_type_len[] = { 4364 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 4365 [SKB_EXT_BRIDGE_NF] = SKB_EXT_CHUNKSIZEOF(struct nf_bridge_info), 4366 #endif 4367 #ifdef CONFIG_XFRM 4368 [SKB_EXT_SEC_PATH] = SKB_EXT_CHUNKSIZEOF(struct sec_path), 4369 #endif 4370 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT) 4371 [TC_SKB_EXT] = SKB_EXT_CHUNKSIZEOF(struct tc_skb_ext), 4372 #endif 4373 #if IS_ENABLED(CONFIG_MPTCP) 4374 [SKB_EXT_MPTCP] = SKB_EXT_CHUNKSIZEOF(struct mptcp_ext), 4375 #endif 4376 #if IS_ENABLED(CONFIG_MCTP_FLOWS) 4377 [SKB_EXT_MCTP] = SKB_EXT_CHUNKSIZEOF(struct mctp_flow), 4378 #endif 4379 }; 4380 4381 static __always_inline unsigned int skb_ext_total_length(void) 4382 { 4383 return SKB_EXT_CHUNKSIZEOF(struct skb_ext) + 4384 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 4385 skb_ext_type_len[SKB_EXT_BRIDGE_NF] + 4386 #endif 4387 #ifdef CONFIG_XFRM 4388 skb_ext_type_len[SKB_EXT_SEC_PATH] + 4389 #endif 4390 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT) 4391 skb_ext_type_len[TC_SKB_EXT] + 4392 #endif 4393 #if IS_ENABLED(CONFIG_MPTCP) 4394 skb_ext_type_len[SKB_EXT_MPTCP] + 4395 #endif 4396 #if IS_ENABLED(CONFIG_MCTP_FLOWS) 4397 skb_ext_type_len[SKB_EXT_MCTP] + 4398 #endif 4399 0; 4400 } 4401 4402 static void skb_extensions_init(void) 4403 { 4404 BUILD_BUG_ON(SKB_EXT_NUM >= 8); 4405 BUILD_BUG_ON(skb_ext_total_length() > 255); 4406 4407 skbuff_ext_cache = kmem_cache_create("skbuff_ext_cache", 4408 SKB_EXT_ALIGN_VALUE * skb_ext_total_length(), 4409 0, 4410 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 4411 NULL); 4412 } 4413 #else 4414 static void skb_extensions_init(void) {} 4415 #endif 4416 4417 void __init skb_init(void) 4418 { 4419 skbuff_head_cache = kmem_cache_create_usercopy("skbuff_head_cache", 4420 sizeof(struct sk_buff), 4421 0, 4422 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 4423 offsetof(struct sk_buff, cb), 4424 sizeof_field(struct sk_buff, cb), 4425 NULL); 4426 skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache", 4427 sizeof(struct sk_buff_fclones), 4428 0, 4429 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 4430 NULL); 4431 skb_extensions_init(); 4432 } 4433 4434 static int 4435 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len, 4436 unsigned int recursion_level) 4437 { 4438 int start = skb_headlen(skb); 4439 int i, copy = start - offset; 4440 struct sk_buff *frag_iter; 4441 int elt = 0; 4442 4443 if (unlikely(recursion_level >= 24)) 4444 return -EMSGSIZE; 4445 4446 if (copy > 0) { 4447 if (copy > len) 4448 copy = len; 4449 sg_set_buf(sg, skb->data + offset, copy); 4450 elt++; 4451 if ((len -= copy) == 0) 4452 return elt; 4453 offset += copy; 4454 } 4455 4456 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 4457 int end; 4458 4459 WARN_ON(start > offset + len); 4460 4461 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]); 4462 if ((copy = end - offset) > 0) { 4463 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 4464 if (unlikely(elt && sg_is_last(&sg[elt - 1]))) 4465 return -EMSGSIZE; 4466 4467 if (copy > len) 4468 copy = len; 4469 sg_set_page(&sg[elt], skb_frag_page(frag), copy, 4470 skb_frag_off(frag) + offset - start); 4471 elt++; 4472 if (!(len -= copy)) 4473 return elt; 4474 offset += copy; 4475 } 4476 start = end; 4477 } 4478 4479 skb_walk_frags(skb, frag_iter) { 4480 int end, ret; 4481 4482 WARN_ON(start > offset + len); 4483 4484 end = start + frag_iter->len; 4485 if ((copy = end - offset) > 0) { 4486 if (unlikely(elt && sg_is_last(&sg[elt - 1]))) 4487 return -EMSGSIZE; 4488 4489 if (copy > len) 4490 copy = len; 4491 ret = __skb_to_sgvec(frag_iter, sg+elt, offset - start, 4492 copy, recursion_level + 1); 4493 if (unlikely(ret < 0)) 4494 return ret; 4495 elt += ret; 4496 if ((len -= copy) == 0) 4497 return elt; 4498 offset += copy; 4499 } 4500 start = end; 4501 } 4502 BUG_ON(len); 4503 return elt; 4504 } 4505 4506 /** 4507 * skb_to_sgvec - Fill a scatter-gather list from a socket buffer 4508 * @skb: Socket buffer containing the buffers to be mapped 4509 * @sg: The scatter-gather list to map into 4510 * @offset: The offset into the buffer's contents to start mapping 4511 * @len: Length of buffer space to be mapped 4512 * 4513 * Fill the specified scatter-gather list with mappings/pointers into a 4514 * region of the buffer space attached to a socket buffer. Returns either 4515 * the number of scatterlist items used, or -EMSGSIZE if the contents 4516 * could not fit. 4517 */ 4518 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len) 4519 { 4520 int nsg = __skb_to_sgvec(skb, sg, offset, len, 0); 4521 4522 if (nsg <= 0) 4523 return nsg; 4524 4525 sg_mark_end(&sg[nsg - 1]); 4526 4527 return nsg; 4528 } 4529 EXPORT_SYMBOL_GPL(skb_to_sgvec); 4530 4531 /* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given 4532 * sglist without mark the sg which contain last skb data as the end. 4533 * So the caller can mannipulate sg list as will when padding new data after 4534 * the first call without calling sg_unmark_end to expend sg list. 4535 * 4536 * Scenario to use skb_to_sgvec_nomark: 4537 * 1. sg_init_table 4538 * 2. skb_to_sgvec_nomark(payload1) 4539 * 3. skb_to_sgvec_nomark(payload2) 4540 * 4541 * This is equivalent to: 4542 * 1. sg_init_table 4543 * 2. skb_to_sgvec(payload1) 4544 * 3. sg_unmark_end 4545 * 4. skb_to_sgvec(payload2) 4546 * 4547 * When mapping mutilple payload conditionally, skb_to_sgvec_nomark 4548 * is more preferable. 4549 */ 4550 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg, 4551 int offset, int len) 4552 { 4553 return __skb_to_sgvec(skb, sg, offset, len, 0); 4554 } 4555 EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark); 4556 4557 4558 4559 /** 4560 * skb_cow_data - Check that a socket buffer's data buffers are writable 4561 * @skb: The socket buffer to check. 4562 * @tailbits: Amount of trailing space to be added 4563 * @trailer: Returned pointer to the skb where the @tailbits space begins 4564 * 4565 * Make sure that the data buffers attached to a socket buffer are 4566 * writable. If they are not, private copies are made of the data buffers 4567 * and the socket buffer is set to use these instead. 4568 * 4569 * If @tailbits is given, make sure that there is space to write @tailbits 4570 * bytes of data beyond current end of socket buffer. @trailer will be 4571 * set to point to the skb in which this space begins. 4572 * 4573 * The number of scatterlist elements required to completely map the 4574 * COW'd and extended socket buffer will be returned. 4575 */ 4576 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer) 4577 { 4578 int copyflag; 4579 int elt; 4580 struct sk_buff *skb1, **skb_p; 4581 4582 /* If skb is cloned or its head is paged, reallocate 4583 * head pulling out all the pages (pages are considered not writable 4584 * at the moment even if they are anonymous). 4585 */ 4586 if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) && 4587 !__pskb_pull_tail(skb, __skb_pagelen(skb))) 4588 return -ENOMEM; 4589 4590 /* Easy case. Most of packets will go this way. */ 4591 if (!skb_has_frag_list(skb)) { 4592 /* A little of trouble, not enough of space for trailer. 4593 * This should not happen, when stack is tuned to generate 4594 * good frames. OK, on miss we reallocate and reserve even more 4595 * space, 128 bytes is fair. */ 4596 4597 if (skb_tailroom(skb) < tailbits && 4598 pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC)) 4599 return -ENOMEM; 4600 4601 /* Voila! */ 4602 *trailer = skb; 4603 return 1; 4604 } 4605 4606 /* Misery. We are in troubles, going to mincer fragments... */ 4607 4608 elt = 1; 4609 skb_p = &skb_shinfo(skb)->frag_list; 4610 copyflag = 0; 4611 4612 while ((skb1 = *skb_p) != NULL) { 4613 int ntail = 0; 4614 4615 /* The fragment is partially pulled by someone, 4616 * this can happen on input. Copy it and everything 4617 * after it. */ 4618 4619 if (skb_shared(skb1)) 4620 copyflag = 1; 4621 4622 /* If the skb is the last, worry about trailer. */ 4623 4624 if (skb1->next == NULL && tailbits) { 4625 if (skb_shinfo(skb1)->nr_frags || 4626 skb_has_frag_list(skb1) || 4627 skb_tailroom(skb1) < tailbits) 4628 ntail = tailbits + 128; 4629 } 4630 4631 if (copyflag || 4632 skb_cloned(skb1) || 4633 ntail || 4634 skb_shinfo(skb1)->nr_frags || 4635 skb_has_frag_list(skb1)) { 4636 struct sk_buff *skb2; 4637 4638 /* Fuck, we are miserable poor guys... */ 4639 if (ntail == 0) 4640 skb2 = skb_copy(skb1, GFP_ATOMIC); 4641 else 4642 skb2 = skb_copy_expand(skb1, 4643 skb_headroom(skb1), 4644 ntail, 4645 GFP_ATOMIC); 4646 if (unlikely(skb2 == NULL)) 4647 return -ENOMEM; 4648 4649 if (skb1->sk) 4650 skb_set_owner_w(skb2, skb1->sk); 4651 4652 /* Looking around. Are we still alive? 4653 * OK, link new skb, drop old one */ 4654 4655 skb2->next = skb1->next; 4656 *skb_p = skb2; 4657 kfree_skb(skb1); 4658 skb1 = skb2; 4659 } 4660 elt++; 4661 *trailer = skb1; 4662 skb_p = &skb1->next; 4663 } 4664 4665 return elt; 4666 } 4667 EXPORT_SYMBOL_GPL(skb_cow_data); 4668 4669 static void sock_rmem_free(struct sk_buff *skb) 4670 { 4671 struct sock *sk = skb->sk; 4672 4673 atomic_sub(skb->truesize, &sk->sk_rmem_alloc); 4674 } 4675 4676 static void skb_set_err_queue(struct sk_buff *skb) 4677 { 4678 /* pkt_type of skbs received on local sockets is never PACKET_OUTGOING. 4679 * So, it is safe to (mis)use it to mark skbs on the error queue. 4680 */ 4681 skb->pkt_type = PACKET_OUTGOING; 4682 BUILD_BUG_ON(PACKET_OUTGOING == 0); 4683 } 4684 4685 /* 4686 * Note: We dont mem charge error packets (no sk_forward_alloc changes) 4687 */ 4688 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb) 4689 { 4690 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >= 4691 (unsigned int)READ_ONCE(sk->sk_rcvbuf)) 4692 return -ENOMEM; 4693 4694 skb_orphan(skb); 4695 skb->sk = sk; 4696 skb->destructor = sock_rmem_free; 4697 atomic_add(skb->truesize, &sk->sk_rmem_alloc); 4698 skb_set_err_queue(skb); 4699 4700 /* before exiting rcu section, make sure dst is refcounted */ 4701 skb_dst_force(skb); 4702 4703 skb_queue_tail(&sk->sk_error_queue, skb); 4704 if (!sock_flag(sk, SOCK_DEAD)) 4705 sk_error_report(sk); 4706 return 0; 4707 } 4708 EXPORT_SYMBOL(sock_queue_err_skb); 4709 4710 static bool is_icmp_err_skb(const struct sk_buff *skb) 4711 { 4712 return skb && (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP || 4713 SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP6); 4714 } 4715 4716 struct sk_buff *sock_dequeue_err_skb(struct sock *sk) 4717 { 4718 struct sk_buff_head *q = &sk->sk_error_queue; 4719 struct sk_buff *skb, *skb_next = NULL; 4720 bool icmp_next = false; 4721 unsigned long flags; 4722 4723 spin_lock_irqsave(&q->lock, flags); 4724 skb = __skb_dequeue(q); 4725 if (skb && (skb_next = skb_peek(q))) { 4726 icmp_next = is_icmp_err_skb(skb_next); 4727 if (icmp_next) 4728 sk->sk_err = SKB_EXT_ERR(skb_next)->ee.ee_errno; 4729 } 4730 spin_unlock_irqrestore(&q->lock, flags); 4731 4732 if (is_icmp_err_skb(skb) && !icmp_next) 4733 sk->sk_err = 0; 4734 4735 if (skb_next) 4736 sk_error_report(sk); 4737 4738 return skb; 4739 } 4740 EXPORT_SYMBOL(sock_dequeue_err_skb); 4741 4742 /** 4743 * skb_clone_sk - create clone of skb, and take reference to socket 4744 * @skb: the skb to clone 4745 * 4746 * This function creates a clone of a buffer that holds a reference on 4747 * sk_refcnt. Buffers created via this function are meant to be 4748 * returned using sock_queue_err_skb, or free via kfree_skb. 4749 * 4750 * When passing buffers allocated with this function to sock_queue_err_skb 4751 * it is necessary to wrap the call with sock_hold/sock_put in order to 4752 * prevent the socket from being released prior to being enqueued on 4753 * the sk_error_queue. 4754 */ 4755 struct sk_buff *skb_clone_sk(struct sk_buff *skb) 4756 { 4757 struct sock *sk = skb->sk; 4758 struct sk_buff *clone; 4759 4760 if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt)) 4761 return NULL; 4762 4763 clone = skb_clone(skb, GFP_ATOMIC); 4764 if (!clone) { 4765 sock_put(sk); 4766 return NULL; 4767 } 4768 4769 clone->sk = sk; 4770 clone->destructor = sock_efree; 4771 4772 return clone; 4773 } 4774 EXPORT_SYMBOL(skb_clone_sk); 4775 4776 static void __skb_complete_tx_timestamp(struct sk_buff *skb, 4777 struct sock *sk, 4778 int tstype, 4779 bool opt_stats) 4780 { 4781 struct sock_exterr_skb *serr; 4782 int err; 4783 4784 BUILD_BUG_ON(sizeof(struct sock_exterr_skb) > sizeof(skb->cb)); 4785 4786 serr = SKB_EXT_ERR(skb); 4787 memset(serr, 0, sizeof(*serr)); 4788 serr->ee.ee_errno = ENOMSG; 4789 serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING; 4790 serr->ee.ee_info = tstype; 4791 serr->opt_stats = opt_stats; 4792 serr->header.h4.iif = skb->dev ? skb->dev->ifindex : 0; 4793 if (sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID) { 4794 serr->ee.ee_data = skb_shinfo(skb)->tskey; 4795 if (sk_is_tcp(sk)) 4796 serr->ee.ee_data -= atomic_read(&sk->sk_tskey); 4797 } 4798 4799 err = sock_queue_err_skb(sk, skb); 4800 4801 if (err) 4802 kfree_skb(skb); 4803 } 4804 4805 static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly) 4806 { 4807 bool ret; 4808 4809 if (likely(READ_ONCE(sysctl_tstamp_allow_data) || tsonly)) 4810 return true; 4811 4812 read_lock_bh(&sk->sk_callback_lock); 4813 ret = sk->sk_socket && sk->sk_socket->file && 4814 file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW); 4815 read_unlock_bh(&sk->sk_callback_lock); 4816 return ret; 4817 } 4818 4819 void skb_complete_tx_timestamp(struct sk_buff *skb, 4820 struct skb_shared_hwtstamps *hwtstamps) 4821 { 4822 struct sock *sk = skb->sk; 4823 4824 if (!skb_may_tx_timestamp(sk, false)) 4825 goto err; 4826 4827 /* Take a reference to prevent skb_orphan() from freeing the socket, 4828 * but only if the socket refcount is not zero. 4829 */ 4830 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) { 4831 *skb_hwtstamps(skb) = *hwtstamps; 4832 __skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND, false); 4833 sock_put(sk); 4834 return; 4835 } 4836 4837 err: 4838 kfree_skb(skb); 4839 } 4840 EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp); 4841 4842 void __skb_tstamp_tx(struct sk_buff *orig_skb, 4843 const struct sk_buff *ack_skb, 4844 struct skb_shared_hwtstamps *hwtstamps, 4845 struct sock *sk, int tstype) 4846 { 4847 struct sk_buff *skb; 4848 bool tsonly, opt_stats = false; 4849 4850 if (!sk) 4851 return; 4852 4853 if (!hwtstamps && !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TX_SWHW) && 4854 skb_shinfo(orig_skb)->tx_flags & SKBTX_IN_PROGRESS) 4855 return; 4856 4857 tsonly = sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TSONLY; 4858 if (!skb_may_tx_timestamp(sk, tsonly)) 4859 return; 4860 4861 if (tsonly) { 4862 #ifdef CONFIG_INET 4863 if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_STATS) && 4864 sk_is_tcp(sk)) { 4865 skb = tcp_get_timestamping_opt_stats(sk, orig_skb, 4866 ack_skb); 4867 opt_stats = true; 4868 } else 4869 #endif 4870 skb = alloc_skb(0, GFP_ATOMIC); 4871 } else { 4872 skb = skb_clone(orig_skb, GFP_ATOMIC); 4873 } 4874 if (!skb) 4875 return; 4876 4877 if (tsonly) { 4878 skb_shinfo(skb)->tx_flags |= skb_shinfo(orig_skb)->tx_flags & 4879 SKBTX_ANY_TSTAMP; 4880 skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey; 4881 } 4882 4883 if (hwtstamps) 4884 *skb_hwtstamps(skb) = *hwtstamps; 4885 else 4886 __net_timestamp(skb); 4887 4888 __skb_complete_tx_timestamp(skb, sk, tstype, opt_stats); 4889 } 4890 EXPORT_SYMBOL_GPL(__skb_tstamp_tx); 4891 4892 void skb_tstamp_tx(struct sk_buff *orig_skb, 4893 struct skb_shared_hwtstamps *hwtstamps) 4894 { 4895 return __skb_tstamp_tx(orig_skb, NULL, hwtstamps, orig_skb->sk, 4896 SCM_TSTAMP_SND); 4897 } 4898 EXPORT_SYMBOL_GPL(skb_tstamp_tx); 4899 4900 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked) 4901 { 4902 struct sock *sk = skb->sk; 4903 struct sock_exterr_skb *serr; 4904 int err = 1; 4905 4906 skb->wifi_acked_valid = 1; 4907 skb->wifi_acked = acked; 4908 4909 serr = SKB_EXT_ERR(skb); 4910 memset(serr, 0, sizeof(*serr)); 4911 serr->ee.ee_errno = ENOMSG; 4912 serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS; 4913 4914 /* Take a reference to prevent skb_orphan() from freeing the socket, 4915 * but only if the socket refcount is not zero. 4916 */ 4917 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) { 4918 err = sock_queue_err_skb(sk, skb); 4919 sock_put(sk); 4920 } 4921 if (err) 4922 kfree_skb(skb); 4923 } 4924 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack); 4925 4926 /** 4927 * skb_partial_csum_set - set up and verify partial csum values for packet 4928 * @skb: the skb to set 4929 * @start: the number of bytes after skb->data to start checksumming. 4930 * @off: the offset from start to place the checksum. 4931 * 4932 * For untrusted partially-checksummed packets, we need to make sure the values 4933 * for skb->csum_start and skb->csum_offset are valid so we don't oops. 4934 * 4935 * This function checks and sets those values and skb->ip_summed: if this 4936 * returns false you should drop the packet. 4937 */ 4938 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off) 4939 { 4940 u32 csum_end = (u32)start + (u32)off + sizeof(__sum16); 4941 u32 csum_start = skb_headroom(skb) + (u32)start; 4942 4943 if (unlikely(csum_start > U16_MAX || csum_end > skb_headlen(skb))) { 4944 net_warn_ratelimited("bad partial csum: csum=%u/%u headroom=%u headlen=%u\n", 4945 start, off, skb_headroom(skb), skb_headlen(skb)); 4946 return false; 4947 } 4948 skb->ip_summed = CHECKSUM_PARTIAL; 4949 skb->csum_start = csum_start; 4950 skb->csum_offset = off; 4951 skb_set_transport_header(skb, start); 4952 return true; 4953 } 4954 EXPORT_SYMBOL_GPL(skb_partial_csum_set); 4955 4956 static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len, 4957 unsigned int max) 4958 { 4959 if (skb_headlen(skb) >= len) 4960 return 0; 4961 4962 /* If we need to pullup then pullup to the max, so we 4963 * won't need to do it again. 4964 */ 4965 if (max > skb->len) 4966 max = skb->len; 4967 4968 if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL) 4969 return -ENOMEM; 4970 4971 if (skb_headlen(skb) < len) 4972 return -EPROTO; 4973 4974 return 0; 4975 } 4976 4977 #define MAX_TCP_HDR_LEN (15 * 4) 4978 4979 static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb, 4980 typeof(IPPROTO_IP) proto, 4981 unsigned int off) 4982 { 4983 int err; 4984 4985 switch (proto) { 4986 case IPPROTO_TCP: 4987 err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr), 4988 off + MAX_TCP_HDR_LEN); 4989 if (!err && !skb_partial_csum_set(skb, off, 4990 offsetof(struct tcphdr, 4991 check))) 4992 err = -EPROTO; 4993 return err ? ERR_PTR(err) : &tcp_hdr(skb)->check; 4994 4995 case IPPROTO_UDP: 4996 err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr), 4997 off + sizeof(struct udphdr)); 4998 if (!err && !skb_partial_csum_set(skb, off, 4999 offsetof(struct udphdr, 5000 check))) 5001 err = -EPROTO; 5002 return err ? ERR_PTR(err) : &udp_hdr(skb)->check; 5003 } 5004 5005 return ERR_PTR(-EPROTO); 5006 } 5007 5008 /* This value should be large enough to cover a tagged ethernet header plus 5009 * maximally sized IP and TCP or UDP headers. 5010 */ 5011 #define MAX_IP_HDR_LEN 128 5012 5013 static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate) 5014 { 5015 unsigned int off; 5016 bool fragment; 5017 __sum16 *csum; 5018 int err; 5019 5020 fragment = false; 5021 5022 err = skb_maybe_pull_tail(skb, 5023 sizeof(struct iphdr), 5024 MAX_IP_HDR_LEN); 5025 if (err < 0) 5026 goto out; 5027 5028 if (ip_is_fragment(ip_hdr(skb))) 5029 fragment = true; 5030 5031 off = ip_hdrlen(skb); 5032 5033 err = -EPROTO; 5034 5035 if (fragment) 5036 goto out; 5037 5038 csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off); 5039 if (IS_ERR(csum)) 5040 return PTR_ERR(csum); 5041 5042 if (recalculate) 5043 *csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr, 5044 ip_hdr(skb)->daddr, 5045 skb->len - off, 5046 ip_hdr(skb)->protocol, 0); 5047 err = 0; 5048 5049 out: 5050 return err; 5051 } 5052 5053 /* This value should be large enough to cover a tagged ethernet header plus 5054 * an IPv6 header, all options, and a maximal TCP or UDP header. 5055 */ 5056 #define MAX_IPV6_HDR_LEN 256 5057 5058 #define OPT_HDR(type, skb, off) \ 5059 (type *)(skb_network_header(skb) + (off)) 5060 5061 static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate) 5062 { 5063 int err; 5064 u8 nexthdr; 5065 unsigned int off; 5066 unsigned int len; 5067 bool fragment; 5068 bool done; 5069 __sum16 *csum; 5070 5071 fragment = false; 5072 done = false; 5073 5074 off = sizeof(struct ipv6hdr); 5075 5076 err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN); 5077 if (err < 0) 5078 goto out; 5079 5080 nexthdr = ipv6_hdr(skb)->nexthdr; 5081 5082 len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len); 5083 while (off <= len && !done) { 5084 switch (nexthdr) { 5085 case IPPROTO_DSTOPTS: 5086 case IPPROTO_HOPOPTS: 5087 case IPPROTO_ROUTING: { 5088 struct ipv6_opt_hdr *hp; 5089 5090 err = skb_maybe_pull_tail(skb, 5091 off + 5092 sizeof(struct ipv6_opt_hdr), 5093 MAX_IPV6_HDR_LEN); 5094 if (err < 0) 5095 goto out; 5096 5097 hp = OPT_HDR(struct ipv6_opt_hdr, skb, off); 5098 nexthdr = hp->nexthdr; 5099 off += ipv6_optlen(hp); 5100 break; 5101 } 5102 case IPPROTO_AH: { 5103 struct ip_auth_hdr *hp; 5104 5105 err = skb_maybe_pull_tail(skb, 5106 off + 5107 sizeof(struct ip_auth_hdr), 5108 MAX_IPV6_HDR_LEN); 5109 if (err < 0) 5110 goto out; 5111 5112 hp = OPT_HDR(struct ip_auth_hdr, skb, off); 5113 nexthdr = hp->nexthdr; 5114 off += ipv6_authlen(hp); 5115 break; 5116 } 5117 case IPPROTO_FRAGMENT: { 5118 struct frag_hdr *hp; 5119 5120 err = skb_maybe_pull_tail(skb, 5121 off + 5122 sizeof(struct frag_hdr), 5123 MAX_IPV6_HDR_LEN); 5124 if (err < 0) 5125 goto out; 5126 5127 hp = OPT_HDR(struct frag_hdr, skb, off); 5128 5129 if (hp->frag_off & htons(IP6_OFFSET | IP6_MF)) 5130 fragment = true; 5131 5132 nexthdr = hp->nexthdr; 5133 off += sizeof(struct frag_hdr); 5134 break; 5135 } 5136 default: 5137 done = true; 5138 break; 5139 } 5140 } 5141 5142 err = -EPROTO; 5143 5144 if (!done || fragment) 5145 goto out; 5146 5147 csum = skb_checksum_setup_ip(skb, nexthdr, off); 5148 if (IS_ERR(csum)) 5149 return PTR_ERR(csum); 5150 5151 if (recalculate) 5152 *csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr, 5153 &ipv6_hdr(skb)->daddr, 5154 skb->len - off, nexthdr, 0); 5155 err = 0; 5156 5157 out: 5158 return err; 5159 } 5160 5161 /** 5162 * skb_checksum_setup - set up partial checksum offset 5163 * @skb: the skb to set up 5164 * @recalculate: if true the pseudo-header checksum will be recalculated 5165 */ 5166 int skb_checksum_setup(struct sk_buff *skb, bool recalculate) 5167 { 5168 int err; 5169 5170 switch (skb->protocol) { 5171 case htons(ETH_P_IP): 5172 err = skb_checksum_setup_ipv4(skb, recalculate); 5173 break; 5174 5175 case htons(ETH_P_IPV6): 5176 err = skb_checksum_setup_ipv6(skb, recalculate); 5177 break; 5178 5179 default: 5180 err = -EPROTO; 5181 break; 5182 } 5183 5184 return err; 5185 } 5186 EXPORT_SYMBOL(skb_checksum_setup); 5187 5188 /** 5189 * skb_checksum_maybe_trim - maybe trims the given skb 5190 * @skb: the skb to check 5191 * @transport_len: the data length beyond the network header 5192 * 5193 * Checks whether the given skb has data beyond the given transport length. 5194 * If so, returns a cloned skb trimmed to this transport length. 5195 * Otherwise returns the provided skb. Returns NULL in error cases 5196 * (e.g. transport_len exceeds skb length or out-of-memory). 5197 * 5198 * Caller needs to set the skb transport header and free any returned skb if it 5199 * differs from the provided skb. 5200 */ 5201 static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb, 5202 unsigned int transport_len) 5203 { 5204 struct sk_buff *skb_chk; 5205 unsigned int len = skb_transport_offset(skb) + transport_len; 5206 int ret; 5207 5208 if (skb->len < len) 5209 return NULL; 5210 else if (skb->len == len) 5211 return skb; 5212 5213 skb_chk = skb_clone(skb, GFP_ATOMIC); 5214 if (!skb_chk) 5215 return NULL; 5216 5217 ret = pskb_trim_rcsum(skb_chk, len); 5218 if (ret) { 5219 kfree_skb(skb_chk); 5220 return NULL; 5221 } 5222 5223 return skb_chk; 5224 } 5225 5226 /** 5227 * skb_checksum_trimmed - validate checksum of an skb 5228 * @skb: the skb to check 5229 * @transport_len: the data length beyond the network header 5230 * @skb_chkf: checksum function to use 5231 * 5232 * Applies the given checksum function skb_chkf to the provided skb. 5233 * Returns a checked and maybe trimmed skb. Returns NULL on error. 5234 * 5235 * If the skb has data beyond the given transport length, then a 5236 * trimmed & cloned skb is checked and returned. 5237 * 5238 * Caller needs to set the skb transport header and free any returned skb if it 5239 * differs from the provided skb. 5240 */ 5241 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb, 5242 unsigned int transport_len, 5243 __sum16(*skb_chkf)(struct sk_buff *skb)) 5244 { 5245 struct sk_buff *skb_chk; 5246 unsigned int offset = skb_transport_offset(skb); 5247 __sum16 ret; 5248 5249 skb_chk = skb_checksum_maybe_trim(skb, transport_len); 5250 if (!skb_chk) 5251 goto err; 5252 5253 if (!pskb_may_pull(skb_chk, offset)) 5254 goto err; 5255 5256 skb_pull_rcsum(skb_chk, offset); 5257 ret = skb_chkf(skb_chk); 5258 skb_push_rcsum(skb_chk, offset); 5259 5260 if (ret) 5261 goto err; 5262 5263 return skb_chk; 5264 5265 err: 5266 if (skb_chk && skb_chk != skb) 5267 kfree_skb(skb_chk); 5268 5269 return NULL; 5270 5271 } 5272 EXPORT_SYMBOL(skb_checksum_trimmed); 5273 5274 void __skb_warn_lro_forwarding(const struct sk_buff *skb) 5275 { 5276 net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n", 5277 skb->dev->name); 5278 } 5279 EXPORT_SYMBOL(__skb_warn_lro_forwarding); 5280 5281 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen) 5282 { 5283 if (head_stolen) { 5284 skb_release_head_state(skb); 5285 kmem_cache_free(skbuff_head_cache, skb); 5286 } else { 5287 __kfree_skb(skb); 5288 } 5289 } 5290 EXPORT_SYMBOL(kfree_skb_partial); 5291 5292 /** 5293 * skb_try_coalesce - try to merge skb to prior one 5294 * @to: prior buffer 5295 * @from: buffer to add 5296 * @fragstolen: pointer to boolean 5297 * @delta_truesize: how much more was allocated than was requested 5298 */ 5299 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from, 5300 bool *fragstolen, int *delta_truesize) 5301 { 5302 struct skb_shared_info *to_shinfo, *from_shinfo; 5303 int i, delta, len = from->len; 5304 5305 *fragstolen = false; 5306 5307 if (skb_cloned(to)) 5308 return false; 5309 5310 /* In general, avoid mixing slab allocated and page_pool allocated 5311 * pages within the same SKB. However when @to is not pp_recycle and 5312 * @from is cloned, we can transition frag pages from page_pool to 5313 * reference counted. 5314 * 5315 * On the other hand, don't allow coalescing two pp_recycle SKBs if 5316 * @from is cloned, in case the SKB is using page_pool fragment 5317 * references (PP_FLAG_PAGE_FRAG). Since we only take full page 5318 * references for cloned SKBs at the moment that would result in 5319 * inconsistent reference counts. 5320 */ 5321 if (to->pp_recycle != (from->pp_recycle && !skb_cloned(from))) 5322 return false; 5323 5324 if (len <= skb_tailroom(to)) { 5325 if (len) 5326 BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len)); 5327 *delta_truesize = 0; 5328 return true; 5329 } 5330 5331 to_shinfo = skb_shinfo(to); 5332 from_shinfo = skb_shinfo(from); 5333 if (to_shinfo->frag_list || from_shinfo->frag_list) 5334 return false; 5335 if (skb_zcopy(to) || skb_zcopy(from)) 5336 return false; 5337 5338 if (skb_headlen(from) != 0) { 5339 struct page *page; 5340 unsigned int offset; 5341 5342 if (to_shinfo->nr_frags + 5343 from_shinfo->nr_frags >= MAX_SKB_FRAGS) 5344 return false; 5345 5346 if (skb_head_is_locked(from)) 5347 return false; 5348 5349 delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff)); 5350 5351 page = virt_to_head_page(from->head); 5352 offset = from->data - (unsigned char *)page_address(page); 5353 5354 skb_fill_page_desc(to, to_shinfo->nr_frags, 5355 page, offset, skb_headlen(from)); 5356 *fragstolen = true; 5357 } else { 5358 if (to_shinfo->nr_frags + 5359 from_shinfo->nr_frags > MAX_SKB_FRAGS) 5360 return false; 5361 5362 delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from)); 5363 } 5364 5365 WARN_ON_ONCE(delta < len); 5366 5367 memcpy(to_shinfo->frags + to_shinfo->nr_frags, 5368 from_shinfo->frags, 5369 from_shinfo->nr_frags * sizeof(skb_frag_t)); 5370 to_shinfo->nr_frags += from_shinfo->nr_frags; 5371 5372 if (!skb_cloned(from)) 5373 from_shinfo->nr_frags = 0; 5374 5375 /* if the skb is not cloned this does nothing 5376 * since we set nr_frags to 0. 5377 */ 5378 for (i = 0; i < from_shinfo->nr_frags; i++) 5379 __skb_frag_ref(&from_shinfo->frags[i]); 5380 5381 to->truesize += delta; 5382 to->len += len; 5383 to->data_len += len; 5384 5385 *delta_truesize = delta; 5386 return true; 5387 } 5388 EXPORT_SYMBOL(skb_try_coalesce); 5389 5390 /** 5391 * skb_scrub_packet - scrub an skb 5392 * 5393 * @skb: buffer to clean 5394 * @xnet: packet is crossing netns 5395 * 5396 * skb_scrub_packet can be used after encapsulating or decapsulting a packet 5397 * into/from a tunnel. Some information have to be cleared during these 5398 * operations. 5399 * skb_scrub_packet can also be used to clean a skb before injecting it in 5400 * another namespace (@xnet == true). We have to clear all information in the 5401 * skb that could impact namespace isolation. 5402 */ 5403 void skb_scrub_packet(struct sk_buff *skb, bool xnet) 5404 { 5405 skb->pkt_type = PACKET_HOST; 5406 skb->skb_iif = 0; 5407 skb->ignore_df = 0; 5408 skb_dst_drop(skb); 5409 skb_ext_reset(skb); 5410 nf_reset_ct(skb); 5411 nf_reset_trace(skb); 5412 5413 #ifdef CONFIG_NET_SWITCHDEV 5414 skb->offload_fwd_mark = 0; 5415 skb->offload_l3_fwd_mark = 0; 5416 #endif 5417 5418 if (!xnet) 5419 return; 5420 5421 ipvs_reset(skb); 5422 skb->mark = 0; 5423 skb_clear_tstamp(skb); 5424 } 5425 EXPORT_SYMBOL_GPL(skb_scrub_packet); 5426 5427 /** 5428 * skb_gso_transport_seglen - Return length of individual segments of a gso packet 5429 * 5430 * @skb: GSO skb 5431 * 5432 * skb_gso_transport_seglen is used to determine the real size of the 5433 * individual segments, including Layer4 headers (TCP/UDP). 5434 * 5435 * The MAC/L2 or network (IP, IPv6) headers are not accounted for. 5436 */ 5437 static unsigned int skb_gso_transport_seglen(const struct sk_buff *skb) 5438 { 5439 const struct skb_shared_info *shinfo = skb_shinfo(skb); 5440 unsigned int thlen = 0; 5441 5442 if (skb->encapsulation) { 5443 thlen = skb_inner_transport_header(skb) - 5444 skb_transport_header(skb); 5445 5446 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) 5447 thlen += inner_tcp_hdrlen(skb); 5448 } else if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) { 5449 thlen = tcp_hdrlen(skb); 5450 } else if (unlikely(skb_is_gso_sctp(skb))) { 5451 thlen = sizeof(struct sctphdr); 5452 } else if (shinfo->gso_type & SKB_GSO_UDP_L4) { 5453 thlen = sizeof(struct udphdr); 5454 } 5455 /* UFO sets gso_size to the size of the fragmentation 5456 * payload, i.e. the size of the L4 (UDP) header is already 5457 * accounted for. 5458 */ 5459 return thlen + shinfo->gso_size; 5460 } 5461 5462 /** 5463 * skb_gso_network_seglen - Return length of individual segments of a gso packet 5464 * 5465 * @skb: GSO skb 5466 * 5467 * skb_gso_network_seglen is used to determine the real size of the 5468 * individual segments, including Layer3 (IP, IPv6) and L4 headers (TCP/UDP). 5469 * 5470 * The MAC/L2 header is not accounted for. 5471 */ 5472 static unsigned int skb_gso_network_seglen(const struct sk_buff *skb) 5473 { 5474 unsigned int hdr_len = skb_transport_header(skb) - 5475 skb_network_header(skb); 5476 5477 return hdr_len + skb_gso_transport_seglen(skb); 5478 } 5479 5480 /** 5481 * skb_gso_mac_seglen - Return length of individual segments of a gso packet 5482 * 5483 * @skb: GSO skb 5484 * 5485 * skb_gso_mac_seglen is used to determine the real size of the 5486 * individual segments, including MAC/L2, Layer3 (IP, IPv6) and L4 5487 * headers (TCP/UDP). 5488 */ 5489 static unsigned int skb_gso_mac_seglen(const struct sk_buff *skb) 5490 { 5491 unsigned int hdr_len = skb_transport_header(skb) - skb_mac_header(skb); 5492 5493 return hdr_len + skb_gso_transport_seglen(skb); 5494 } 5495 5496 /** 5497 * skb_gso_size_check - check the skb size, considering GSO_BY_FRAGS 5498 * 5499 * There are a couple of instances where we have a GSO skb, and we 5500 * want to determine what size it would be after it is segmented. 5501 * 5502 * We might want to check: 5503 * - L3+L4+payload size (e.g. IP forwarding) 5504 * - L2+L3+L4+payload size (e.g. sanity check before passing to driver) 5505 * 5506 * This is a helper to do that correctly considering GSO_BY_FRAGS. 5507 * 5508 * @skb: GSO skb 5509 * 5510 * @seg_len: The segmented length (from skb_gso_*_seglen). In the 5511 * GSO_BY_FRAGS case this will be [header sizes + GSO_BY_FRAGS]. 5512 * 5513 * @max_len: The maximum permissible length. 5514 * 5515 * Returns true if the segmented length <= max length. 5516 */ 5517 static inline bool skb_gso_size_check(const struct sk_buff *skb, 5518 unsigned int seg_len, 5519 unsigned int max_len) { 5520 const struct skb_shared_info *shinfo = skb_shinfo(skb); 5521 const struct sk_buff *iter; 5522 5523 if (shinfo->gso_size != GSO_BY_FRAGS) 5524 return seg_len <= max_len; 5525 5526 /* Undo this so we can re-use header sizes */ 5527 seg_len -= GSO_BY_FRAGS; 5528 5529 skb_walk_frags(skb, iter) { 5530 if (seg_len + skb_headlen(iter) > max_len) 5531 return false; 5532 } 5533 5534 return true; 5535 } 5536 5537 /** 5538 * skb_gso_validate_network_len - Will a split GSO skb fit into a given MTU? 5539 * 5540 * @skb: GSO skb 5541 * @mtu: MTU to validate against 5542 * 5543 * skb_gso_validate_network_len validates if a given skb will fit a 5544 * wanted MTU once split. It considers L3 headers, L4 headers, and the 5545 * payload. 5546 */ 5547 bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu) 5548 { 5549 return skb_gso_size_check(skb, skb_gso_network_seglen(skb), mtu); 5550 } 5551 EXPORT_SYMBOL_GPL(skb_gso_validate_network_len); 5552 5553 /** 5554 * skb_gso_validate_mac_len - Will a split GSO skb fit in a given length? 5555 * 5556 * @skb: GSO skb 5557 * @len: length to validate against 5558 * 5559 * skb_gso_validate_mac_len validates if a given skb will fit a wanted 5560 * length once split, including L2, L3 and L4 headers and the payload. 5561 */ 5562 bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len) 5563 { 5564 return skb_gso_size_check(skb, skb_gso_mac_seglen(skb), len); 5565 } 5566 EXPORT_SYMBOL_GPL(skb_gso_validate_mac_len); 5567 5568 static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb) 5569 { 5570 int mac_len, meta_len; 5571 void *meta; 5572 5573 if (skb_cow(skb, skb_headroom(skb)) < 0) { 5574 kfree_skb(skb); 5575 return NULL; 5576 } 5577 5578 mac_len = skb->data - skb_mac_header(skb); 5579 if (likely(mac_len > VLAN_HLEN + ETH_TLEN)) { 5580 memmove(skb_mac_header(skb) + VLAN_HLEN, skb_mac_header(skb), 5581 mac_len - VLAN_HLEN - ETH_TLEN); 5582 } 5583 5584 meta_len = skb_metadata_len(skb); 5585 if (meta_len) { 5586 meta = skb_metadata_end(skb) - meta_len; 5587 memmove(meta + VLAN_HLEN, meta, meta_len); 5588 } 5589 5590 skb->mac_header += VLAN_HLEN; 5591 return skb; 5592 } 5593 5594 struct sk_buff *skb_vlan_untag(struct sk_buff *skb) 5595 { 5596 struct vlan_hdr *vhdr; 5597 u16 vlan_tci; 5598 5599 if (unlikely(skb_vlan_tag_present(skb))) { 5600 /* vlan_tci is already set-up so leave this for another time */ 5601 return skb; 5602 } 5603 5604 skb = skb_share_check(skb, GFP_ATOMIC); 5605 if (unlikely(!skb)) 5606 goto err_free; 5607 /* We may access the two bytes after vlan_hdr in vlan_set_encap_proto(). */ 5608 if (unlikely(!pskb_may_pull(skb, VLAN_HLEN + sizeof(unsigned short)))) 5609 goto err_free; 5610 5611 vhdr = (struct vlan_hdr *)skb->data; 5612 vlan_tci = ntohs(vhdr->h_vlan_TCI); 5613 __vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci); 5614 5615 skb_pull_rcsum(skb, VLAN_HLEN); 5616 vlan_set_encap_proto(skb, vhdr); 5617 5618 skb = skb_reorder_vlan_header(skb); 5619 if (unlikely(!skb)) 5620 goto err_free; 5621 5622 skb_reset_network_header(skb); 5623 if (!skb_transport_header_was_set(skb)) 5624 skb_reset_transport_header(skb); 5625 skb_reset_mac_len(skb); 5626 5627 return skb; 5628 5629 err_free: 5630 kfree_skb(skb); 5631 return NULL; 5632 } 5633 EXPORT_SYMBOL(skb_vlan_untag); 5634 5635 int skb_ensure_writable(struct sk_buff *skb, unsigned int write_len) 5636 { 5637 if (!pskb_may_pull(skb, write_len)) 5638 return -ENOMEM; 5639 5640 if (!skb_cloned(skb) || skb_clone_writable(skb, write_len)) 5641 return 0; 5642 5643 return pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 5644 } 5645 EXPORT_SYMBOL(skb_ensure_writable); 5646 5647 /* remove VLAN header from packet and update csum accordingly. 5648 * expects a non skb_vlan_tag_present skb with a vlan tag payload 5649 */ 5650 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci) 5651 { 5652 struct vlan_hdr *vhdr; 5653 int offset = skb->data - skb_mac_header(skb); 5654 int err; 5655 5656 if (WARN_ONCE(offset, 5657 "__skb_vlan_pop got skb with skb->data not at mac header (offset %d)\n", 5658 offset)) { 5659 return -EINVAL; 5660 } 5661 5662 err = skb_ensure_writable(skb, VLAN_ETH_HLEN); 5663 if (unlikely(err)) 5664 return err; 5665 5666 skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN); 5667 5668 vhdr = (struct vlan_hdr *)(skb->data + ETH_HLEN); 5669 *vlan_tci = ntohs(vhdr->h_vlan_TCI); 5670 5671 memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN); 5672 __skb_pull(skb, VLAN_HLEN); 5673 5674 vlan_set_encap_proto(skb, vhdr); 5675 skb->mac_header += VLAN_HLEN; 5676 5677 if (skb_network_offset(skb) < ETH_HLEN) 5678 skb_set_network_header(skb, ETH_HLEN); 5679 5680 skb_reset_mac_len(skb); 5681 5682 return err; 5683 } 5684 EXPORT_SYMBOL(__skb_vlan_pop); 5685 5686 /* Pop a vlan tag either from hwaccel or from payload. 5687 * Expects skb->data at mac header. 5688 */ 5689 int skb_vlan_pop(struct sk_buff *skb) 5690 { 5691 u16 vlan_tci; 5692 __be16 vlan_proto; 5693 int err; 5694 5695 if (likely(skb_vlan_tag_present(skb))) { 5696 __vlan_hwaccel_clear_tag(skb); 5697 } else { 5698 if (unlikely(!eth_type_vlan(skb->protocol))) 5699 return 0; 5700 5701 err = __skb_vlan_pop(skb, &vlan_tci); 5702 if (err) 5703 return err; 5704 } 5705 /* move next vlan tag to hw accel tag */ 5706 if (likely(!eth_type_vlan(skb->protocol))) 5707 return 0; 5708 5709 vlan_proto = skb->protocol; 5710 err = __skb_vlan_pop(skb, &vlan_tci); 5711 if (unlikely(err)) 5712 return err; 5713 5714 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci); 5715 return 0; 5716 } 5717 EXPORT_SYMBOL(skb_vlan_pop); 5718 5719 /* Push a vlan tag either into hwaccel or into payload (if hwaccel tag present). 5720 * Expects skb->data at mac header. 5721 */ 5722 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci) 5723 { 5724 if (skb_vlan_tag_present(skb)) { 5725 int offset = skb->data - skb_mac_header(skb); 5726 int err; 5727 5728 if (WARN_ONCE(offset, 5729 "skb_vlan_push got skb with skb->data not at mac header (offset %d)\n", 5730 offset)) { 5731 return -EINVAL; 5732 } 5733 5734 err = __vlan_insert_tag(skb, skb->vlan_proto, 5735 skb_vlan_tag_get(skb)); 5736 if (err) 5737 return err; 5738 5739 skb->protocol = skb->vlan_proto; 5740 skb->mac_len += VLAN_HLEN; 5741 5742 skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN); 5743 } 5744 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci); 5745 return 0; 5746 } 5747 EXPORT_SYMBOL(skb_vlan_push); 5748 5749 /** 5750 * skb_eth_pop() - Drop the Ethernet header at the head of a packet 5751 * 5752 * @skb: Socket buffer to modify 5753 * 5754 * Drop the Ethernet header of @skb. 5755 * 5756 * Expects that skb->data points to the mac header and that no VLAN tags are 5757 * present. 5758 * 5759 * Returns 0 on success, -errno otherwise. 5760 */ 5761 int skb_eth_pop(struct sk_buff *skb) 5762 { 5763 if (!pskb_may_pull(skb, ETH_HLEN) || skb_vlan_tagged(skb) || 5764 skb_network_offset(skb) < ETH_HLEN) 5765 return -EPROTO; 5766 5767 skb_pull_rcsum(skb, ETH_HLEN); 5768 skb_reset_mac_header(skb); 5769 skb_reset_mac_len(skb); 5770 5771 return 0; 5772 } 5773 EXPORT_SYMBOL(skb_eth_pop); 5774 5775 /** 5776 * skb_eth_push() - Add a new Ethernet header at the head of a packet 5777 * 5778 * @skb: Socket buffer to modify 5779 * @dst: Destination MAC address of the new header 5780 * @src: Source MAC address of the new header 5781 * 5782 * Prepend @skb with a new Ethernet header. 5783 * 5784 * Expects that skb->data points to the mac header, which must be empty. 5785 * 5786 * Returns 0 on success, -errno otherwise. 5787 */ 5788 int skb_eth_push(struct sk_buff *skb, const unsigned char *dst, 5789 const unsigned char *src) 5790 { 5791 struct ethhdr *eth; 5792 int err; 5793 5794 if (skb_network_offset(skb) || skb_vlan_tag_present(skb)) 5795 return -EPROTO; 5796 5797 err = skb_cow_head(skb, sizeof(*eth)); 5798 if (err < 0) 5799 return err; 5800 5801 skb_push(skb, sizeof(*eth)); 5802 skb_reset_mac_header(skb); 5803 skb_reset_mac_len(skb); 5804 5805 eth = eth_hdr(skb); 5806 ether_addr_copy(eth->h_dest, dst); 5807 ether_addr_copy(eth->h_source, src); 5808 eth->h_proto = skb->protocol; 5809 5810 skb_postpush_rcsum(skb, eth, sizeof(*eth)); 5811 5812 return 0; 5813 } 5814 EXPORT_SYMBOL(skb_eth_push); 5815 5816 /* Update the ethertype of hdr and the skb csum value if required. */ 5817 static void skb_mod_eth_type(struct sk_buff *skb, struct ethhdr *hdr, 5818 __be16 ethertype) 5819 { 5820 if (skb->ip_summed == CHECKSUM_COMPLETE) { 5821 __be16 diff[] = { ~hdr->h_proto, ethertype }; 5822 5823 skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum); 5824 } 5825 5826 hdr->h_proto = ethertype; 5827 } 5828 5829 /** 5830 * skb_mpls_push() - push a new MPLS header after mac_len bytes from start of 5831 * the packet 5832 * 5833 * @skb: buffer 5834 * @mpls_lse: MPLS label stack entry to push 5835 * @mpls_proto: ethertype of the new MPLS header (expects 0x8847 or 0x8848) 5836 * @mac_len: length of the MAC header 5837 * @ethernet: flag to indicate if the resulting packet after skb_mpls_push is 5838 * ethernet 5839 * 5840 * Expects skb->data at mac header. 5841 * 5842 * Returns 0 on success, -errno otherwise. 5843 */ 5844 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto, 5845 int mac_len, bool ethernet) 5846 { 5847 struct mpls_shim_hdr *lse; 5848 int err; 5849 5850 if (unlikely(!eth_p_mpls(mpls_proto))) 5851 return -EINVAL; 5852 5853 /* Networking stack does not allow simultaneous Tunnel and MPLS GSO. */ 5854 if (skb->encapsulation) 5855 return -EINVAL; 5856 5857 err = skb_cow_head(skb, MPLS_HLEN); 5858 if (unlikely(err)) 5859 return err; 5860 5861 if (!skb->inner_protocol) { 5862 skb_set_inner_network_header(skb, skb_network_offset(skb)); 5863 skb_set_inner_protocol(skb, skb->protocol); 5864 } 5865 5866 skb_push(skb, MPLS_HLEN); 5867 memmove(skb_mac_header(skb) - MPLS_HLEN, skb_mac_header(skb), 5868 mac_len); 5869 skb_reset_mac_header(skb); 5870 skb_set_network_header(skb, mac_len); 5871 skb_reset_mac_len(skb); 5872 5873 lse = mpls_hdr(skb); 5874 lse->label_stack_entry = mpls_lse; 5875 skb_postpush_rcsum(skb, lse, MPLS_HLEN); 5876 5877 if (ethernet && mac_len >= ETH_HLEN) 5878 skb_mod_eth_type(skb, eth_hdr(skb), mpls_proto); 5879 skb->protocol = mpls_proto; 5880 5881 return 0; 5882 } 5883 EXPORT_SYMBOL_GPL(skb_mpls_push); 5884 5885 /** 5886 * skb_mpls_pop() - pop the outermost MPLS header 5887 * 5888 * @skb: buffer 5889 * @next_proto: ethertype of header after popped MPLS header 5890 * @mac_len: length of the MAC header 5891 * @ethernet: flag to indicate if the packet is ethernet 5892 * 5893 * Expects skb->data at mac header. 5894 * 5895 * Returns 0 on success, -errno otherwise. 5896 */ 5897 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len, 5898 bool ethernet) 5899 { 5900 int err; 5901 5902 if (unlikely(!eth_p_mpls(skb->protocol))) 5903 return 0; 5904 5905 err = skb_ensure_writable(skb, mac_len + MPLS_HLEN); 5906 if (unlikely(err)) 5907 return err; 5908 5909 skb_postpull_rcsum(skb, mpls_hdr(skb), MPLS_HLEN); 5910 memmove(skb_mac_header(skb) + MPLS_HLEN, skb_mac_header(skb), 5911 mac_len); 5912 5913 __skb_pull(skb, MPLS_HLEN); 5914 skb_reset_mac_header(skb); 5915 skb_set_network_header(skb, mac_len); 5916 5917 if (ethernet && mac_len >= ETH_HLEN) { 5918 struct ethhdr *hdr; 5919 5920 /* use mpls_hdr() to get ethertype to account for VLANs. */ 5921 hdr = (struct ethhdr *)((void *)mpls_hdr(skb) - ETH_HLEN); 5922 skb_mod_eth_type(skb, hdr, next_proto); 5923 } 5924 skb->protocol = next_proto; 5925 5926 return 0; 5927 } 5928 EXPORT_SYMBOL_GPL(skb_mpls_pop); 5929 5930 /** 5931 * skb_mpls_update_lse() - modify outermost MPLS header and update csum 5932 * 5933 * @skb: buffer 5934 * @mpls_lse: new MPLS label stack entry to update to 5935 * 5936 * Expects skb->data at mac header. 5937 * 5938 * Returns 0 on success, -errno otherwise. 5939 */ 5940 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse) 5941 { 5942 int err; 5943 5944 if (unlikely(!eth_p_mpls(skb->protocol))) 5945 return -EINVAL; 5946 5947 err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN); 5948 if (unlikely(err)) 5949 return err; 5950 5951 if (skb->ip_summed == CHECKSUM_COMPLETE) { 5952 __be32 diff[] = { ~mpls_hdr(skb)->label_stack_entry, mpls_lse }; 5953 5954 skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum); 5955 } 5956 5957 mpls_hdr(skb)->label_stack_entry = mpls_lse; 5958 5959 return 0; 5960 } 5961 EXPORT_SYMBOL_GPL(skb_mpls_update_lse); 5962 5963 /** 5964 * skb_mpls_dec_ttl() - decrement the TTL of the outermost MPLS header 5965 * 5966 * @skb: buffer 5967 * 5968 * Expects skb->data at mac header. 5969 * 5970 * Returns 0 on success, -errno otherwise. 5971 */ 5972 int skb_mpls_dec_ttl(struct sk_buff *skb) 5973 { 5974 u32 lse; 5975 u8 ttl; 5976 5977 if (unlikely(!eth_p_mpls(skb->protocol))) 5978 return -EINVAL; 5979 5980 if (!pskb_may_pull(skb, skb_network_offset(skb) + MPLS_HLEN)) 5981 return -ENOMEM; 5982 5983 lse = be32_to_cpu(mpls_hdr(skb)->label_stack_entry); 5984 ttl = (lse & MPLS_LS_TTL_MASK) >> MPLS_LS_TTL_SHIFT; 5985 if (!--ttl) 5986 return -EINVAL; 5987 5988 lse &= ~MPLS_LS_TTL_MASK; 5989 lse |= ttl << MPLS_LS_TTL_SHIFT; 5990 5991 return skb_mpls_update_lse(skb, cpu_to_be32(lse)); 5992 } 5993 EXPORT_SYMBOL_GPL(skb_mpls_dec_ttl); 5994 5995 /** 5996 * alloc_skb_with_frags - allocate skb with page frags 5997 * 5998 * @header_len: size of linear part 5999 * @data_len: needed length in frags 6000 * @max_page_order: max page order desired. 6001 * @errcode: pointer to error code if any 6002 * @gfp_mask: allocation mask 6003 * 6004 * This can be used to allocate a paged skb, given a maximal order for frags. 6005 */ 6006 struct sk_buff *alloc_skb_with_frags(unsigned long header_len, 6007 unsigned long data_len, 6008 int max_page_order, 6009 int *errcode, 6010 gfp_t gfp_mask) 6011 { 6012 int npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT; 6013 unsigned long chunk; 6014 struct sk_buff *skb; 6015 struct page *page; 6016 int i; 6017 6018 *errcode = -EMSGSIZE; 6019 /* Note this test could be relaxed, if we succeed to allocate 6020 * high order pages... 6021 */ 6022 if (npages > MAX_SKB_FRAGS) 6023 return NULL; 6024 6025 *errcode = -ENOBUFS; 6026 skb = alloc_skb(header_len, gfp_mask); 6027 if (!skb) 6028 return NULL; 6029 6030 skb->truesize += npages << PAGE_SHIFT; 6031 6032 for (i = 0; npages > 0; i++) { 6033 int order = max_page_order; 6034 6035 while (order) { 6036 if (npages >= 1 << order) { 6037 page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) | 6038 __GFP_COMP | 6039 __GFP_NOWARN, 6040 order); 6041 if (page) 6042 goto fill_page; 6043 /* Do not retry other high order allocations */ 6044 order = 1; 6045 max_page_order = 0; 6046 } 6047 order--; 6048 } 6049 page = alloc_page(gfp_mask); 6050 if (!page) 6051 goto failure; 6052 fill_page: 6053 chunk = min_t(unsigned long, data_len, 6054 PAGE_SIZE << order); 6055 skb_fill_page_desc(skb, i, page, 0, chunk); 6056 data_len -= chunk; 6057 npages -= 1 << order; 6058 } 6059 return skb; 6060 6061 failure: 6062 kfree_skb(skb); 6063 return NULL; 6064 } 6065 EXPORT_SYMBOL(alloc_skb_with_frags); 6066 6067 /* carve out the first off bytes from skb when off < headlen */ 6068 static int pskb_carve_inside_header(struct sk_buff *skb, const u32 off, 6069 const int headlen, gfp_t gfp_mask) 6070 { 6071 int i; 6072 int size = skb_end_offset(skb); 6073 int new_hlen = headlen - off; 6074 u8 *data; 6075 6076 size = SKB_DATA_ALIGN(size); 6077 6078 if (skb_pfmemalloc(skb)) 6079 gfp_mask |= __GFP_MEMALLOC; 6080 data = kmalloc_reserve(size + 6081 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)), 6082 gfp_mask, NUMA_NO_NODE, NULL); 6083 if (!data) 6084 return -ENOMEM; 6085 6086 size = SKB_WITH_OVERHEAD(ksize(data)); 6087 6088 /* Copy real data, and all frags */ 6089 skb_copy_from_linear_data_offset(skb, off, data, new_hlen); 6090 skb->len -= off; 6091 6092 memcpy((struct skb_shared_info *)(data + size), 6093 skb_shinfo(skb), 6094 offsetof(struct skb_shared_info, 6095 frags[skb_shinfo(skb)->nr_frags])); 6096 if (skb_cloned(skb)) { 6097 /* drop the old head gracefully */ 6098 if (skb_orphan_frags(skb, gfp_mask)) { 6099 kfree(data); 6100 return -ENOMEM; 6101 } 6102 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 6103 skb_frag_ref(skb, i); 6104 if (skb_has_frag_list(skb)) 6105 skb_clone_fraglist(skb); 6106 skb_release_data(skb); 6107 } else { 6108 /* we can reuse existing recount- all we did was 6109 * relocate values 6110 */ 6111 skb_free_head(skb); 6112 } 6113 6114 skb->head = data; 6115 skb->data = data; 6116 skb->head_frag = 0; 6117 skb_set_end_offset(skb, size); 6118 skb_set_tail_pointer(skb, skb_headlen(skb)); 6119 skb_headers_offset_update(skb, 0); 6120 skb->cloned = 0; 6121 skb->hdr_len = 0; 6122 skb->nohdr = 0; 6123 atomic_set(&skb_shinfo(skb)->dataref, 1); 6124 6125 return 0; 6126 } 6127 6128 static int pskb_carve(struct sk_buff *skb, const u32 off, gfp_t gfp); 6129 6130 /* carve out the first eat bytes from skb's frag_list. May recurse into 6131 * pskb_carve() 6132 */ 6133 static int pskb_carve_frag_list(struct sk_buff *skb, 6134 struct skb_shared_info *shinfo, int eat, 6135 gfp_t gfp_mask) 6136 { 6137 struct sk_buff *list = shinfo->frag_list; 6138 struct sk_buff *clone = NULL; 6139 struct sk_buff *insp = NULL; 6140 6141 do { 6142 if (!list) { 6143 pr_err("Not enough bytes to eat. Want %d\n", eat); 6144 return -EFAULT; 6145 } 6146 if (list->len <= eat) { 6147 /* Eaten as whole. */ 6148 eat -= list->len; 6149 list = list->next; 6150 insp = list; 6151 } else { 6152 /* Eaten partially. */ 6153 if (skb_shared(list)) { 6154 clone = skb_clone(list, gfp_mask); 6155 if (!clone) 6156 return -ENOMEM; 6157 insp = list->next; 6158 list = clone; 6159 } else { 6160 /* This may be pulled without problems. */ 6161 insp = list; 6162 } 6163 if (pskb_carve(list, eat, gfp_mask) < 0) { 6164 kfree_skb(clone); 6165 return -ENOMEM; 6166 } 6167 break; 6168 } 6169 } while (eat); 6170 6171 /* Free pulled out fragments. */ 6172 while ((list = shinfo->frag_list) != insp) { 6173 shinfo->frag_list = list->next; 6174 consume_skb(list); 6175 } 6176 /* And insert new clone at head. */ 6177 if (clone) { 6178 clone->next = list; 6179 shinfo->frag_list = clone; 6180 } 6181 return 0; 6182 } 6183 6184 /* carve off first len bytes from skb. Split line (off) is in the 6185 * non-linear part of skb 6186 */ 6187 static int pskb_carve_inside_nonlinear(struct sk_buff *skb, const u32 off, 6188 int pos, gfp_t gfp_mask) 6189 { 6190 int i, k = 0; 6191 int size = skb_end_offset(skb); 6192 u8 *data; 6193 const int nfrags = skb_shinfo(skb)->nr_frags; 6194 struct skb_shared_info *shinfo; 6195 6196 size = SKB_DATA_ALIGN(size); 6197 6198 if (skb_pfmemalloc(skb)) 6199 gfp_mask |= __GFP_MEMALLOC; 6200 data = kmalloc_reserve(size + 6201 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)), 6202 gfp_mask, NUMA_NO_NODE, NULL); 6203 if (!data) 6204 return -ENOMEM; 6205 6206 size = SKB_WITH_OVERHEAD(ksize(data)); 6207 6208 memcpy((struct skb_shared_info *)(data + size), 6209 skb_shinfo(skb), offsetof(struct skb_shared_info, frags[0])); 6210 if (skb_orphan_frags(skb, gfp_mask)) { 6211 kfree(data); 6212 return -ENOMEM; 6213 } 6214 shinfo = (struct skb_shared_info *)(data + size); 6215 for (i = 0; i < nfrags; i++) { 6216 int fsize = skb_frag_size(&skb_shinfo(skb)->frags[i]); 6217 6218 if (pos + fsize > off) { 6219 shinfo->frags[k] = skb_shinfo(skb)->frags[i]; 6220 6221 if (pos < off) { 6222 /* Split frag. 6223 * We have two variants in this case: 6224 * 1. Move all the frag to the second 6225 * part, if it is possible. F.e. 6226 * this approach is mandatory for TUX, 6227 * where splitting is expensive. 6228 * 2. Split is accurately. We make this. 6229 */ 6230 skb_frag_off_add(&shinfo->frags[0], off - pos); 6231 skb_frag_size_sub(&shinfo->frags[0], off - pos); 6232 } 6233 skb_frag_ref(skb, i); 6234 k++; 6235 } 6236 pos += fsize; 6237 } 6238 shinfo->nr_frags = k; 6239 if (skb_has_frag_list(skb)) 6240 skb_clone_fraglist(skb); 6241 6242 /* split line is in frag list */ 6243 if (k == 0 && pskb_carve_frag_list(skb, shinfo, off - pos, gfp_mask)) { 6244 /* skb_frag_unref() is not needed here as shinfo->nr_frags = 0. */ 6245 if (skb_has_frag_list(skb)) 6246 kfree_skb_list(skb_shinfo(skb)->frag_list); 6247 kfree(data); 6248 return -ENOMEM; 6249 } 6250 skb_release_data(skb); 6251 6252 skb->head = data; 6253 skb->head_frag = 0; 6254 skb->data = data; 6255 skb_set_end_offset(skb, size); 6256 skb_reset_tail_pointer(skb); 6257 skb_headers_offset_update(skb, 0); 6258 skb->cloned = 0; 6259 skb->hdr_len = 0; 6260 skb->nohdr = 0; 6261 skb->len -= off; 6262 skb->data_len = skb->len; 6263 atomic_set(&skb_shinfo(skb)->dataref, 1); 6264 return 0; 6265 } 6266 6267 /* remove len bytes from the beginning of the skb */ 6268 static int pskb_carve(struct sk_buff *skb, const u32 len, gfp_t gfp) 6269 { 6270 int headlen = skb_headlen(skb); 6271 6272 if (len < headlen) 6273 return pskb_carve_inside_header(skb, len, headlen, gfp); 6274 else 6275 return pskb_carve_inside_nonlinear(skb, len, headlen, gfp); 6276 } 6277 6278 /* Extract to_copy bytes starting at off from skb, and return this in 6279 * a new skb 6280 */ 6281 struct sk_buff *pskb_extract(struct sk_buff *skb, int off, 6282 int to_copy, gfp_t gfp) 6283 { 6284 struct sk_buff *clone = skb_clone(skb, gfp); 6285 6286 if (!clone) 6287 return NULL; 6288 6289 if (pskb_carve(clone, off, gfp) < 0 || 6290 pskb_trim(clone, to_copy)) { 6291 kfree_skb(clone); 6292 return NULL; 6293 } 6294 return clone; 6295 } 6296 EXPORT_SYMBOL(pskb_extract); 6297 6298 /** 6299 * skb_condense - try to get rid of fragments/frag_list if possible 6300 * @skb: buffer 6301 * 6302 * Can be used to save memory before skb is added to a busy queue. 6303 * If packet has bytes in frags and enough tail room in skb->head, 6304 * pull all of them, so that we can free the frags right now and adjust 6305 * truesize. 6306 * Notes: 6307 * We do not reallocate skb->head thus can not fail. 6308 * Caller must re-evaluate skb->truesize if needed. 6309 */ 6310 void skb_condense(struct sk_buff *skb) 6311 { 6312 if (skb->data_len) { 6313 if (skb->data_len > skb->end - skb->tail || 6314 skb_cloned(skb)) 6315 return; 6316 6317 /* Nice, we can free page frag(s) right now */ 6318 __pskb_pull_tail(skb, skb->data_len); 6319 } 6320 /* At this point, skb->truesize might be over estimated, 6321 * because skb had a fragment, and fragments do not tell 6322 * their truesize. 6323 * When we pulled its content into skb->head, fragment 6324 * was freed, but __pskb_pull_tail() could not possibly 6325 * adjust skb->truesize, not knowing the frag truesize. 6326 */ 6327 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb)); 6328 } 6329 6330 #ifdef CONFIG_SKB_EXTENSIONS 6331 static void *skb_ext_get_ptr(struct skb_ext *ext, enum skb_ext_id id) 6332 { 6333 return (void *)ext + (ext->offset[id] * SKB_EXT_ALIGN_VALUE); 6334 } 6335 6336 /** 6337 * __skb_ext_alloc - allocate a new skb extensions storage 6338 * 6339 * @flags: See kmalloc(). 6340 * 6341 * Returns the newly allocated pointer. The pointer can later attached to a 6342 * skb via __skb_ext_set(). 6343 * Note: caller must handle the skb_ext as an opaque data. 6344 */ 6345 struct skb_ext *__skb_ext_alloc(gfp_t flags) 6346 { 6347 struct skb_ext *new = kmem_cache_alloc(skbuff_ext_cache, flags); 6348 6349 if (new) { 6350 memset(new->offset, 0, sizeof(new->offset)); 6351 refcount_set(&new->refcnt, 1); 6352 } 6353 6354 return new; 6355 } 6356 6357 static struct skb_ext *skb_ext_maybe_cow(struct skb_ext *old, 6358 unsigned int old_active) 6359 { 6360 struct skb_ext *new; 6361 6362 if (refcount_read(&old->refcnt) == 1) 6363 return old; 6364 6365 new = kmem_cache_alloc(skbuff_ext_cache, GFP_ATOMIC); 6366 if (!new) 6367 return NULL; 6368 6369 memcpy(new, old, old->chunks * SKB_EXT_ALIGN_VALUE); 6370 refcount_set(&new->refcnt, 1); 6371 6372 #ifdef CONFIG_XFRM 6373 if (old_active & (1 << SKB_EXT_SEC_PATH)) { 6374 struct sec_path *sp = skb_ext_get_ptr(old, SKB_EXT_SEC_PATH); 6375 unsigned int i; 6376 6377 for (i = 0; i < sp->len; i++) 6378 xfrm_state_hold(sp->xvec[i]); 6379 } 6380 #endif 6381 __skb_ext_put(old); 6382 return new; 6383 } 6384 6385 /** 6386 * __skb_ext_set - attach the specified extension storage to this skb 6387 * @skb: buffer 6388 * @id: extension id 6389 * @ext: extension storage previously allocated via __skb_ext_alloc() 6390 * 6391 * Existing extensions, if any, are cleared. 6392 * 6393 * Returns the pointer to the extension. 6394 */ 6395 void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id, 6396 struct skb_ext *ext) 6397 { 6398 unsigned int newlen, newoff = SKB_EXT_CHUNKSIZEOF(*ext); 6399 6400 skb_ext_put(skb); 6401 newlen = newoff + skb_ext_type_len[id]; 6402 ext->chunks = newlen; 6403 ext->offset[id] = newoff; 6404 skb->extensions = ext; 6405 skb->active_extensions = 1 << id; 6406 return skb_ext_get_ptr(ext, id); 6407 } 6408 6409 /** 6410 * skb_ext_add - allocate space for given extension, COW if needed 6411 * @skb: buffer 6412 * @id: extension to allocate space for 6413 * 6414 * Allocates enough space for the given extension. 6415 * If the extension is already present, a pointer to that extension 6416 * is returned. 6417 * 6418 * If the skb was cloned, COW applies and the returned memory can be 6419 * modified without changing the extension space of clones buffers. 6420 * 6421 * Returns pointer to the extension or NULL on allocation failure. 6422 */ 6423 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id) 6424 { 6425 struct skb_ext *new, *old = NULL; 6426 unsigned int newlen, newoff; 6427 6428 if (skb->active_extensions) { 6429 old = skb->extensions; 6430 6431 new = skb_ext_maybe_cow(old, skb->active_extensions); 6432 if (!new) 6433 return NULL; 6434 6435 if (__skb_ext_exist(new, id)) 6436 goto set_active; 6437 6438 newoff = new->chunks; 6439 } else { 6440 newoff = SKB_EXT_CHUNKSIZEOF(*new); 6441 6442 new = __skb_ext_alloc(GFP_ATOMIC); 6443 if (!new) 6444 return NULL; 6445 } 6446 6447 newlen = newoff + skb_ext_type_len[id]; 6448 new->chunks = newlen; 6449 new->offset[id] = newoff; 6450 set_active: 6451 skb->slow_gro = 1; 6452 skb->extensions = new; 6453 skb->active_extensions |= 1 << id; 6454 return skb_ext_get_ptr(new, id); 6455 } 6456 EXPORT_SYMBOL(skb_ext_add); 6457 6458 #ifdef CONFIG_XFRM 6459 static void skb_ext_put_sp(struct sec_path *sp) 6460 { 6461 unsigned int i; 6462 6463 for (i = 0; i < sp->len; i++) 6464 xfrm_state_put(sp->xvec[i]); 6465 } 6466 #endif 6467 6468 #ifdef CONFIG_MCTP_FLOWS 6469 static void skb_ext_put_mctp(struct mctp_flow *flow) 6470 { 6471 if (flow->key) 6472 mctp_key_unref(flow->key); 6473 } 6474 #endif 6475 6476 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id) 6477 { 6478 struct skb_ext *ext = skb->extensions; 6479 6480 skb->active_extensions &= ~(1 << id); 6481 if (skb->active_extensions == 0) { 6482 skb->extensions = NULL; 6483 __skb_ext_put(ext); 6484 #ifdef CONFIG_XFRM 6485 } else if (id == SKB_EXT_SEC_PATH && 6486 refcount_read(&ext->refcnt) == 1) { 6487 struct sec_path *sp = skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH); 6488 6489 skb_ext_put_sp(sp); 6490 sp->len = 0; 6491 #endif 6492 } 6493 } 6494 EXPORT_SYMBOL(__skb_ext_del); 6495 6496 void __skb_ext_put(struct skb_ext *ext) 6497 { 6498 /* If this is last clone, nothing can increment 6499 * it after check passes. Avoids one atomic op. 6500 */ 6501 if (refcount_read(&ext->refcnt) == 1) 6502 goto free_now; 6503 6504 if (!refcount_dec_and_test(&ext->refcnt)) 6505 return; 6506 free_now: 6507 #ifdef CONFIG_XFRM 6508 if (__skb_ext_exist(ext, SKB_EXT_SEC_PATH)) 6509 skb_ext_put_sp(skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH)); 6510 #endif 6511 #ifdef CONFIG_MCTP_FLOWS 6512 if (__skb_ext_exist(ext, SKB_EXT_MCTP)) 6513 skb_ext_put_mctp(skb_ext_get_ptr(ext, SKB_EXT_MCTP)); 6514 #endif 6515 6516 kmem_cache_free(skbuff_ext_cache, ext); 6517 } 6518 EXPORT_SYMBOL(__skb_ext_put); 6519 #endif /* CONFIG_SKB_EXTENSIONS */ 6520 6521 /** 6522 * skb_attempt_defer_free - queue skb for remote freeing 6523 * @skb: buffer 6524 * 6525 * Put @skb in a per-cpu list, using the cpu which 6526 * allocated the skb/pages to reduce false sharing 6527 * and memory zone spinlock contention. 6528 */ 6529 void skb_attempt_defer_free(struct sk_buff *skb) 6530 { 6531 int cpu = skb->alloc_cpu; 6532 struct softnet_data *sd; 6533 unsigned long flags; 6534 unsigned int defer_max; 6535 bool kick; 6536 6537 if (WARN_ON_ONCE(cpu >= nr_cpu_ids) || 6538 !cpu_online(cpu) || 6539 cpu == raw_smp_processor_id()) { 6540 nodefer: __kfree_skb(skb); 6541 return; 6542 } 6543 6544 sd = &per_cpu(softnet_data, cpu); 6545 defer_max = READ_ONCE(sysctl_skb_defer_max); 6546 if (READ_ONCE(sd->defer_count) >= defer_max) 6547 goto nodefer; 6548 6549 spin_lock_irqsave(&sd->defer_lock, flags); 6550 /* Send an IPI every time queue reaches half capacity. */ 6551 kick = sd->defer_count == (defer_max >> 1); 6552 /* Paired with the READ_ONCE() few lines above */ 6553 WRITE_ONCE(sd->defer_count, sd->defer_count + 1); 6554 6555 skb->next = sd->defer_list; 6556 /* Paired with READ_ONCE() in skb_defer_free_flush() */ 6557 WRITE_ONCE(sd->defer_list, skb); 6558 spin_unlock_irqrestore(&sd->defer_lock, flags); 6559 6560 /* Make sure to trigger NET_RX_SOFTIRQ on the remote CPU 6561 * if we are unlucky enough (this seems very unlikely). 6562 */ 6563 if (unlikely(kick) && !cmpxchg(&sd->defer_ipi_scheduled, 0, 1)) 6564 smp_call_function_single_async(cpu, &sd->defer_csd); 6565 } 6566