1 /* 2 * Routines having to do with the 'struct sk_buff' memory handlers. 3 * 4 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk> 5 * Florian La Roche <rzsfl@rz.uni-sb.de> 6 * 7 * Fixes: 8 * Alan Cox : Fixed the worst of the load 9 * balancer bugs. 10 * Dave Platt : Interrupt stacking fix. 11 * Richard Kooijman : Timestamp fixes. 12 * Alan Cox : Changed buffer format. 13 * Alan Cox : destructor hook for AF_UNIX etc. 14 * Linus Torvalds : Better skb_clone. 15 * Alan Cox : Added skb_copy. 16 * Alan Cox : Added all the changed routines Linus 17 * only put in the headers 18 * Ray VanTassle : Fixed --skb->lock in free 19 * Alan Cox : skb_copy copy arp field 20 * Andi Kleen : slabified it. 21 * Robert Olsson : Removed skb_head_pool 22 * 23 * NOTE: 24 * The __skb_ routines should be called with interrupts 25 * disabled, or you better be *real* sure that the operation is atomic 26 * with respect to whatever list is being frobbed (e.g. via lock_sock() 27 * or via disabling bottom half handlers, etc). 28 * 29 * This program is free software; you can redistribute it and/or 30 * modify it under the terms of the GNU General Public License 31 * as published by the Free Software Foundation; either version 32 * 2 of the License, or (at your option) any later version. 33 */ 34 35 /* 36 * The functions in this file will not compile correctly with gcc 2.4.x 37 */ 38 39 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 40 41 #include <linux/module.h> 42 #include <linux/types.h> 43 #include <linux/kernel.h> 44 #include <linux/mm.h> 45 #include <linux/interrupt.h> 46 #include <linux/in.h> 47 #include <linux/inet.h> 48 #include <linux/slab.h> 49 #include <linux/tcp.h> 50 #include <linux/udp.h> 51 #include <linux/sctp.h> 52 #include <linux/netdevice.h> 53 #ifdef CONFIG_NET_CLS_ACT 54 #include <net/pkt_sched.h> 55 #endif 56 #include <linux/string.h> 57 #include <linux/skbuff.h> 58 #include <linux/splice.h> 59 #include <linux/cache.h> 60 #include <linux/rtnetlink.h> 61 #include <linux/init.h> 62 #include <linux/scatterlist.h> 63 #include <linux/errqueue.h> 64 #include <linux/prefetch.h> 65 #include <linux/if_vlan.h> 66 67 #include <net/protocol.h> 68 #include <net/dst.h> 69 #include <net/sock.h> 70 #include <net/checksum.h> 71 #include <net/ip6_checksum.h> 72 #include <net/xfrm.h> 73 74 #include <linux/uaccess.h> 75 #include <trace/events/skb.h> 76 #include <linux/highmem.h> 77 #include <linux/capability.h> 78 #include <linux/user_namespace.h> 79 80 struct kmem_cache *skbuff_head_cache __ro_after_init; 81 static struct kmem_cache *skbuff_fclone_cache __ro_after_init; 82 int sysctl_max_skb_frags __read_mostly = MAX_SKB_FRAGS; 83 EXPORT_SYMBOL(sysctl_max_skb_frags); 84 85 /** 86 * skb_panic - private function for out-of-line support 87 * @skb: buffer 88 * @sz: size 89 * @addr: address 90 * @msg: skb_over_panic or skb_under_panic 91 * 92 * Out-of-line support for skb_put() and skb_push(). 93 * Called via the wrapper skb_over_panic() or skb_under_panic(). 94 * Keep out of line to prevent kernel bloat. 95 * __builtin_return_address is not used because it is not always reliable. 96 */ 97 static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr, 98 const char msg[]) 99 { 100 pr_emerg("%s: text:%p len:%d put:%d head:%p data:%p tail:%#lx end:%#lx dev:%s\n", 101 msg, addr, skb->len, sz, skb->head, skb->data, 102 (unsigned long)skb->tail, (unsigned long)skb->end, 103 skb->dev ? skb->dev->name : "<NULL>"); 104 BUG(); 105 } 106 107 static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr) 108 { 109 skb_panic(skb, sz, addr, __func__); 110 } 111 112 static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr) 113 { 114 skb_panic(skb, sz, addr, __func__); 115 } 116 117 /* 118 * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells 119 * the caller if emergency pfmemalloc reserves are being used. If it is and 120 * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves 121 * may be used. Otherwise, the packet data may be discarded until enough 122 * memory is free 123 */ 124 #define kmalloc_reserve(size, gfp, node, pfmemalloc) \ 125 __kmalloc_reserve(size, gfp, node, _RET_IP_, pfmemalloc) 126 127 static void *__kmalloc_reserve(size_t size, gfp_t flags, int node, 128 unsigned long ip, bool *pfmemalloc) 129 { 130 void *obj; 131 bool ret_pfmemalloc = false; 132 133 /* 134 * Try a regular allocation, when that fails and we're not entitled 135 * to the reserves, fail. 136 */ 137 obj = kmalloc_node_track_caller(size, 138 flags | __GFP_NOMEMALLOC | __GFP_NOWARN, 139 node); 140 if (obj || !(gfp_pfmemalloc_allowed(flags))) 141 goto out; 142 143 /* Try again but now we are using pfmemalloc reserves */ 144 ret_pfmemalloc = true; 145 obj = kmalloc_node_track_caller(size, flags, node); 146 147 out: 148 if (pfmemalloc) 149 *pfmemalloc = ret_pfmemalloc; 150 151 return obj; 152 } 153 154 /* Allocate a new skbuff. We do this ourselves so we can fill in a few 155 * 'private' fields and also do memory statistics to find all the 156 * [BEEP] leaks. 157 * 158 */ 159 160 /** 161 * __alloc_skb - allocate a network buffer 162 * @size: size to allocate 163 * @gfp_mask: allocation mask 164 * @flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache 165 * instead of head cache and allocate a cloned (child) skb. 166 * If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for 167 * allocations in case the data is required for writeback 168 * @node: numa node to allocate memory on 169 * 170 * Allocate a new &sk_buff. The returned buffer has no headroom and a 171 * tail room of at least size bytes. The object has a reference count 172 * of one. The return is the buffer. On a failure the return is %NULL. 173 * 174 * Buffers may only be allocated from interrupts using a @gfp_mask of 175 * %GFP_ATOMIC. 176 */ 177 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask, 178 int flags, int node) 179 { 180 struct kmem_cache *cache; 181 struct skb_shared_info *shinfo; 182 struct sk_buff *skb; 183 u8 *data; 184 bool pfmemalloc; 185 186 cache = (flags & SKB_ALLOC_FCLONE) 187 ? skbuff_fclone_cache : skbuff_head_cache; 188 189 if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX)) 190 gfp_mask |= __GFP_MEMALLOC; 191 192 /* Get the HEAD */ 193 skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node); 194 if (!skb) 195 goto out; 196 prefetchw(skb); 197 198 /* We do our best to align skb_shared_info on a separate cache 199 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives 200 * aligned memory blocks, unless SLUB/SLAB debug is enabled. 201 * Both skb->head and skb_shared_info are cache line aligned. 202 */ 203 size = SKB_DATA_ALIGN(size); 204 size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 205 data = kmalloc_reserve(size, gfp_mask, node, &pfmemalloc); 206 if (!data) 207 goto nodata; 208 /* kmalloc(size) might give us more room than requested. 209 * Put skb_shared_info exactly at the end of allocated zone, 210 * to allow max possible filling before reallocation. 211 */ 212 size = SKB_WITH_OVERHEAD(ksize(data)); 213 prefetchw(data + size); 214 215 /* 216 * Only clear those fields we need to clear, not those that we will 217 * actually initialise below. Hence, don't put any more fields after 218 * the tail pointer in struct sk_buff! 219 */ 220 memset(skb, 0, offsetof(struct sk_buff, tail)); 221 /* Account for allocated memory : skb + skb->head */ 222 skb->truesize = SKB_TRUESIZE(size); 223 skb->pfmemalloc = pfmemalloc; 224 refcount_set(&skb->users, 1); 225 skb->head = data; 226 skb->data = data; 227 skb_reset_tail_pointer(skb); 228 skb->end = skb->tail + size; 229 skb->mac_header = (typeof(skb->mac_header))~0U; 230 skb->transport_header = (typeof(skb->transport_header))~0U; 231 232 /* make sure we initialize shinfo sequentially */ 233 shinfo = skb_shinfo(skb); 234 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref)); 235 atomic_set(&shinfo->dataref, 1); 236 237 if (flags & SKB_ALLOC_FCLONE) { 238 struct sk_buff_fclones *fclones; 239 240 fclones = container_of(skb, struct sk_buff_fclones, skb1); 241 242 skb->fclone = SKB_FCLONE_ORIG; 243 refcount_set(&fclones->fclone_ref, 1); 244 245 fclones->skb2.fclone = SKB_FCLONE_CLONE; 246 } 247 out: 248 return skb; 249 nodata: 250 kmem_cache_free(cache, skb); 251 skb = NULL; 252 goto out; 253 } 254 EXPORT_SYMBOL(__alloc_skb); 255 256 /** 257 * __build_skb - build a network buffer 258 * @data: data buffer provided by caller 259 * @frag_size: size of data, or 0 if head was kmalloced 260 * 261 * Allocate a new &sk_buff. Caller provides space holding head and 262 * skb_shared_info. @data must have been allocated by kmalloc() only if 263 * @frag_size is 0, otherwise data should come from the page allocator 264 * or vmalloc() 265 * The return is the new skb buffer. 266 * On a failure the return is %NULL, and @data is not freed. 267 * Notes : 268 * Before IO, driver allocates only data buffer where NIC put incoming frame 269 * Driver should add room at head (NET_SKB_PAD) and 270 * MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info)) 271 * After IO, driver calls build_skb(), to allocate sk_buff and populate it 272 * before giving packet to stack. 273 * RX rings only contains data buffers, not full skbs. 274 */ 275 struct sk_buff *__build_skb(void *data, unsigned int frag_size) 276 { 277 struct skb_shared_info *shinfo; 278 struct sk_buff *skb; 279 unsigned int size = frag_size ? : ksize(data); 280 281 skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC); 282 if (!skb) 283 return NULL; 284 285 size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 286 287 memset(skb, 0, offsetof(struct sk_buff, tail)); 288 skb->truesize = SKB_TRUESIZE(size); 289 refcount_set(&skb->users, 1); 290 skb->head = data; 291 skb->data = data; 292 skb_reset_tail_pointer(skb); 293 skb->end = skb->tail + size; 294 skb->mac_header = (typeof(skb->mac_header))~0U; 295 skb->transport_header = (typeof(skb->transport_header))~0U; 296 297 /* make sure we initialize shinfo sequentially */ 298 shinfo = skb_shinfo(skb); 299 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref)); 300 atomic_set(&shinfo->dataref, 1); 301 302 return skb; 303 } 304 305 /* build_skb() is wrapper over __build_skb(), that specifically 306 * takes care of skb->head and skb->pfmemalloc 307 * This means that if @frag_size is not zero, then @data must be backed 308 * by a page fragment, not kmalloc() or vmalloc() 309 */ 310 struct sk_buff *build_skb(void *data, unsigned int frag_size) 311 { 312 struct sk_buff *skb = __build_skb(data, frag_size); 313 314 if (skb && frag_size) { 315 skb->head_frag = 1; 316 if (page_is_pfmemalloc(virt_to_head_page(data))) 317 skb->pfmemalloc = 1; 318 } 319 return skb; 320 } 321 EXPORT_SYMBOL(build_skb); 322 323 #define NAPI_SKB_CACHE_SIZE 64 324 325 struct napi_alloc_cache { 326 struct page_frag_cache page; 327 unsigned int skb_count; 328 void *skb_cache[NAPI_SKB_CACHE_SIZE]; 329 }; 330 331 static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache); 332 static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache); 333 334 static void *__netdev_alloc_frag(unsigned int fragsz, gfp_t gfp_mask) 335 { 336 struct page_frag_cache *nc; 337 unsigned long flags; 338 void *data; 339 340 local_irq_save(flags); 341 nc = this_cpu_ptr(&netdev_alloc_cache); 342 data = page_frag_alloc(nc, fragsz, gfp_mask); 343 local_irq_restore(flags); 344 return data; 345 } 346 347 /** 348 * netdev_alloc_frag - allocate a page fragment 349 * @fragsz: fragment size 350 * 351 * Allocates a frag from a page for receive buffer. 352 * Uses GFP_ATOMIC allocations. 353 */ 354 void *netdev_alloc_frag(unsigned int fragsz) 355 { 356 return __netdev_alloc_frag(fragsz, GFP_ATOMIC); 357 } 358 EXPORT_SYMBOL(netdev_alloc_frag); 359 360 static void *__napi_alloc_frag(unsigned int fragsz, gfp_t gfp_mask) 361 { 362 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 363 364 return page_frag_alloc(&nc->page, fragsz, gfp_mask); 365 } 366 367 void *napi_alloc_frag(unsigned int fragsz) 368 { 369 return __napi_alloc_frag(fragsz, GFP_ATOMIC); 370 } 371 EXPORT_SYMBOL(napi_alloc_frag); 372 373 /** 374 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device 375 * @dev: network device to receive on 376 * @len: length to allocate 377 * @gfp_mask: get_free_pages mask, passed to alloc_skb 378 * 379 * Allocate a new &sk_buff and assign it a usage count of one. The 380 * buffer has NET_SKB_PAD headroom built in. Users should allocate 381 * the headroom they think they need without accounting for the 382 * built in space. The built in space is used for optimisations. 383 * 384 * %NULL is returned if there is no free memory. 385 */ 386 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len, 387 gfp_t gfp_mask) 388 { 389 struct page_frag_cache *nc; 390 unsigned long flags; 391 struct sk_buff *skb; 392 bool pfmemalloc; 393 void *data; 394 395 len += NET_SKB_PAD; 396 397 if ((len > SKB_WITH_OVERHEAD(PAGE_SIZE)) || 398 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) { 399 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE); 400 if (!skb) 401 goto skb_fail; 402 goto skb_success; 403 } 404 405 len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 406 len = SKB_DATA_ALIGN(len); 407 408 if (sk_memalloc_socks()) 409 gfp_mask |= __GFP_MEMALLOC; 410 411 local_irq_save(flags); 412 413 nc = this_cpu_ptr(&netdev_alloc_cache); 414 data = page_frag_alloc(nc, len, gfp_mask); 415 pfmemalloc = nc->pfmemalloc; 416 417 local_irq_restore(flags); 418 419 if (unlikely(!data)) 420 return NULL; 421 422 skb = __build_skb(data, len); 423 if (unlikely(!skb)) { 424 skb_free_frag(data); 425 return NULL; 426 } 427 428 /* use OR instead of assignment to avoid clearing of bits in mask */ 429 if (pfmemalloc) 430 skb->pfmemalloc = 1; 431 skb->head_frag = 1; 432 433 skb_success: 434 skb_reserve(skb, NET_SKB_PAD); 435 skb->dev = dev; 436 437 skb_fail: 438 return skb; 439 } 440 EXPORT_SYMBOL(__netdev_alloc_skb); 441 442 /** 443 * __napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance 444 * @napi: napi instance this buffer was allocated for 445 * @len: length to allocate 446 * @gfp_mask: get_free_pages mask, passed to alloc_skb and alloc_pages 447 * 448 * Allocate a new sk_buff for use in NAPI receive. This buffer will 449 * attempt to allocate the head from a special reserved region used 450 * only for NAPI Rx allocation. By doing this we can save several 451 * CPU cycles by avoiding having to disable and re-enable IRQs. 452 * 453 * %NULL is returned if there is no free memory. 454 */ 455 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, unsigned int len, 456 gfp_t gfp_mask) 457 { 458 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 459 struct sk_buff *skb; 460 void *data; 461 462 len += NET_SKB_PAD + NET_IP_ALIGN; 463 464 if ((len > SKB_WITH_OVERHEAD(PAGE_SIZE)) || 465 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) { 466 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE); 467 if (!skb) 468 goto skb_fail; 469 goto skb_success; 470 } 471 472 len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 473 len = SKB_DATA_ALIGN(len); 474 475 if (sk_memalloc_socks()) 476 gfp_mask |= __GFP_MEMALLOC; 477 478 data = page_frag_alloc(&nc->page, len, gfp_mask); 479 if (unlikely(!data)) 480 return NULL; 481 482 skb = __build_skb(data, len); 483 if (unlikely(!skb)) { 484 skb_free_frag(data); 485 return NULL; 486 } 487 488 /* use OR instead of assignment to avoid clearing of bits in mask */ 489 if (nc->page.pfmemalloc) 490 skb->pfmemalloc = 1; 491 skb->head_frag = 1; 492 493 skb_success: 494 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN); 495 skb->dev = napi->dev; 496 497 skb_fail: 498 return skb; 499 } 500 EXPORT_SYMBOL(__napi_alloc_skb); 501 502 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off, 503 int size, unsigned int truesize) 504 { 505 skb_fill_page_desc(skb, i, page, off, size); 506 skb->len += size; 507 skb->data_len += size; 508 skb->truesize += truesize; 509 } 510 EXPORT_SYMBOL(skb_add_rx_frag); 511 512 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size, 513 unsigned int truesize) 514 { 515 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 516 517 skb_frag_size_add(frag, size); 518 skb->len += size; 519 skb->data_len += size; 520 skb->truesize += truesize; 521 } 522 EXPORT_SYMBOL(skb_coalesce_rx_frag); 523 524 static void skb_drop_list(struct sk_buff **listp) 525 { 526 kfree_skb_list(*listp); 527 *listp = NULL; 528 } 529 530 static inline void skb_drop_fraglist(struct sk_buff *skb) 531 { 532 skb_drop_list(&skb_shinfo(skb)->frag_list); 533 } 534 535 static void skb_clone_fraglist(struct sk_buff *skb) 536 { 537 struct sk_buff *list; 538 539 skb_walk_frags(skb, list) 540 skb_get(list); 541 } 542 543 static void skb_free_head(struct sk_buff *skb) 544 { 545 unsigned char *head = skb->head; 546 547 if (skb->head_frag) 548 skb_free_frag(head); 549 else 550 kfree(head); 551 } 552 553 static void skb_release_data(struct sk_buff *skb) 554 { 555 struct skb_shared_info *shinfo = skb_shinfo(skb); 556 int i; 557 558 if (skb->cloned && 559 atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1, 560 &shinfo->dataref)) 561 return; 562 563 for (i = 0; i < shinfo->nr_frags; i++) 564 __skb_frag_unref(&shinfo->frags[i]); 565 566 if (shinfo->frag_list) 567 kfree_skb_list(shinfo->frag_list); 568 569 skb_zcopy_clear(skb, true); 570 skb_free_head(skb); 571 } 572 573 /* 574 * Free an skbuff by memory without cleaning the state. 575 */ 576 static void kfree_skbmem(struct sk_buff *skb) 577 { 578 struct sk_buff_fclones *fclones; 579 580 switch (skb->fclone) { 581 case SKB_FCLONE_UNAVAILABLE: 582 kmem_cache_free(skbuff_head_cache, skb); 583 return; 584 585 case SKB_FCLONE_ORIG: 586 fclones = container_of(skb, struct sk_buff_fclones, skb1); 587 588 /* We usually free the clone (TX completion) before original skb 589 * This test would have no chance to be true for the clone, 590 * while here, branch prediction will be good. 591 */ 592 if (refcount_read(&fclones->fclone_ref) == 1) 593 goto fastpath; 594 break; 595 596 default: /* SKB_FCLONE_CLONE */ 597 fclones = container_of(skb, struct sk_buff_fclones, skb2); 598 break; 599 } 600 if (!refcount_dec_and_test(&fclones->fclone_ref)) 601 return; 602 fastpath: 603 kmem_cache_free(skbuff_fclone_cache, fclones); 604 } 605 606 void skb_release_head_state(struct sk_buff *skb) 607 { 608 skb_dst_drop(skb); 609 secpath_reset(skb); 610 if (skb->destructor) { 611 WARN_ON(in_irq()); 612 skb->destructor(skb); 613 } 614 #if IS_ENABLED(CONFIG_NF_CONNTRACK) 615 nf_conntrack_put(skb_nfct(skb)); 616 #endif 617 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 618 nf_bridge_put(skb->nf_bridge); 619 #endif 620 } 621 622 /* Free everything but the sk_buff shell. */ 623 static void skb_release_all(struct sk_buff *skb) 624 { 625 skb_release_head_state(skb); 626 if (likely(skb->head)) 627 skb_release_data(skb); 628 } 629 630 /** 631 * __kfree_skb - private function 632 * @skb: buffer 633 * 634 * Free an sk_buff. Release anything attached to the buffer. 635 * Clean the state. This is an internal helper function. Users should 636 * always call kfree_skb 637 */ 638 639 void __kfree_skb(struct sk_buff *skb) 640 { 641 skb_release_all(skb); 642 kfree_skbmem(skb); 643 } 644 EXPORT_SYMBOL(__kfree_skb); 645 646 /** 647 * kfree_skb - free an sk_buff 648 * @skb: buffer to free 649 * 650 * Drop a reference to the buffer and free it if the usage count has 651 * hit zero. 652 */ 653 void kfree_skb(struct sk_buff *skb) 654 { 655 if (!skb_unref(skb)) 656 return; 657 658 trace_kfree_skb(skb, __builtin_return_address(0)); 659 __kfree_skb(skb); 660 } 661 EXPORT_SYMBOL(kfree_skb); 662 663 void kfree_skb_list(struct sk_buff *segs) 664 { 665 while (segs) { 666 struct sk_buff *next = segs->next; 667 668 kfree_skb(segs); 669 segs = next; 670 } 671 } 672 EXPORT_SYMBOL(kfree_skb_list); 673 674 /** 675 * skb_tx_error - report an sk_buff xmit error 676 * @skb: buffer that triggered an error 677 * 678 * Report xmit error if a device callback is tracking this skb. 679 * skb must be freed afterwards. 680 */ 681 void skb_tx_error(struct sk_buff *skb) 682 { 683 skb_zcopy_clear(skb, true); 684 } 685 EXPORT_SYMBOL(skb_tx_error); 686 687 /** 688 * consume_skb - free an skbuff 689 * @skb: buffer to free 690 * 691 * Drop a ref to the buffer and free it if the usage count has hit zero 692 * Functions identically to kfree_skb, but kfree_skb assumes that the frame 693 * is being dropped after a failure and notes that 694 */ 695 void consume_skb(struct sk_buff *skb) 696 { 697 if (!skb_unref(skb)) 698 return; 699 700 trace_consume_skb(skb); 701 __kfree_skb(skb); 702 } 703 EXPORT_SYMBOL(consume_skb); 704 705 /** 706 * consume_stateless_skb - free an skbuff, assuming it is stateless 707 * @skb: buffer to free 708 * 709 * Alike consume_skb(), but this variant assumes that this is the last 710 * skb reference and all the head states have been already dropped 711 */ 712 void __consume_stateless_skb(struct sk_buff *skb) 713 { 714 trace_consume_skb(skb); 715 skb_release_data(skb); 716 kfree_skbmem(skb); 717 } 718 719 void __kfree_skb_flush(void) 720 { 721 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 722 723 /* flush skb_cache if containing objects */ 724 if (nc->skb_count) { 725 kmem_cache_free_bulk(skbuff_head_cache, nc->skb_count, 726 nc->skb_cache); 727 nc->skb_count = 0; 728 } 729 } 730 731 static inline void _kfree_skb_defer(struct sk_buff *skb) 732 { 733 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 734 735 /* drop skb->head and call any destructors for packet */ 736 skb_release_all(skb); 737 738 /* record skb to CPU local list */ 739 nc->skb_cache[nc->skb_count++] = skb; 740 741 #ifdef CONFIG_SLUB 742 /* SLUB writes into objects when freeing */ 743 prefetchw(skb); 744 #endif 745 746 /* flush skb_cache if it is filled */ 747 if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) { 748 kmem_cache_free_bulk(skbuff_head_cache, NAPI_SKB_CACHE_SIZE, 749 nc->skb_cache); 750 nc->skb_count = 0; 751 } 752 } 753 void __kfree_skb_defer(struct sk_buff *skb) 754 { 755 _kfree_skb_defer(skb); 756 } 757 758 void napi_consume_skb(struct sk_buff *skb, int budget) 759 { 760 if (unlikely(!skb)) 761 return; 762 763 /* Zero budget indicate non-NAPI context called us, like netpoll */ 764 if (unlikely(!budget)) { 765 dev_consume_skb_any(skb); 766 return; 767 } 768 769 if (!skb_unref(skb)) 770 return; 771 772 /* if reaching here SKB is ready to free */ 773 trace_consume_skb(skb); 774 775 /* if SKB is a clone, don't handle this case */ 776 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) { 777 __kfree_skb(skb); 778 return; 779 } 780 781 _kfree_skb_defer(skb); 782 } 783 EXPORT_SYMBOL(napi_consume_skb); 784 785 /* Make sure a field is enclosed inside headers_start/headers_end section */ 786 #define CHECK_SKB_FIELD(field) \ 787 BUILD_BUG_ON(offsetof(struct sk_buff, field) < \ 788 offsetof(struct sk_buff, headers_start)); \ 789 BUILD_BUG_ON(offsetof(struct sk_buff, field) > \ 790 offsetof(struct sk_buff, headers_end)); \ 791 792 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old) 793 { 794 new->tstamp = old->tstamp; 795 /* We do not copy old->sk */ 796 new->dev = old->dev; 797 memcpy(new->cb, old->cb, sizeof(old->cb)); 798 skb_dst_copy(new, old); 799 #ifdef CONFIG_XFRM 800 new->sp = secpath_get(old->sp); 801 #endif 802 __nf_copy(new, old, false); 803 804 /* Note : this field could be in headers_start/headers_end section 805 * It is not yet because we do not want to have a 16 bit hole 806 */ 807 new->queue_mapping = old->queue_mapping; 808 809 memcpy(&new->headers_start, &old->headers_start, 810 offsetof(struct sk_buff, headers_end) - 811 offsetof(struct sk_buff, headers_start)); 812 CHECK_SKB_FIELD(protocol); 813 CHECK_SKB_FIELD(csum); 814 CHECK_SKB_FIELD(hash); 815 CHECK_SKB_FIELD(priority); 816 CHECK_SKB_FIELD(skb_iif); 817 CHECK_SKB_FIELD(vlan_proto); 818 CHECK_SKB_FIELD(vlan_tci); 819 CHECK_SKB_FIELD(transport_header); 820 CHECK_SKB_FIELD(network_header); 821 CHECK_SKB_FIELD(mac_header); 822 CHECK_SKB_FIELD(inner_protocol); 823 CHECK_SKB_FIELD(inner_transport_header); 824 CHECK_SKB_FIELD(inner_network_header); 825 CHECK_SKB_FIELD(inner_mac_header); 826 CHECK_SKB_FIELD(mark); 827 #ifdef CONFIG_NETWORK_SECMARK 828 CHECK_SKB_FIELD(secmark); 829 #endif 830 #ifdef CONFIG_NET_RX_BUSY_POLL 831 CHECK_SKB_FIELD(napi_id); 832 #endif 833 #ifdef CONFIG_XPS 834 CHECK_SKB_FIELD(sender_cpu); 835 #endif 836 #ifdef CONFIG_NET_SCHED 837 CHECK_SKB_FIELD(tc_index); 838 #endif 839 840 } 841 842 /* 843 * You should not add any new code to this function. Add it to 844 * __copy_skb_header above instead. 845 */ 846 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb) 847 { 848 #define C(x) n->x = skb->x 849 850 n->next = n->prev = NULL; 851 n->sk = NULL; 852 __copy_skb_header(n, skb); 853 854 C(len); 855 C(data_len); 856 C(mac_len); 857 n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len; 858 n->cloned = 1; 859 n->nohdr = 0; 860 n->peeked = 0; 861 n->destructor = NULL; 862 C(tail); 863 C(end); 864 C(head); 865 C(head_frag); 866 C(data); 867 C(truesize); 868 refcount_set(&n->users, 1); 869 870 atomic_inc(&(skb_shinfo(skb)->dataref)); 871 skb->cloned = 1; 872 873 return n; 874 #undef C 875 } 876 877 /** 878 * skb_morph - morph one skb into another 879 * @dst: the skb to receive the contents 880 * @src: the skb to supply the contents 881 * 882 * This is identical to skb_clone except that the target skb is 883 * supplied by the user. 884 * 885 * The target skb is returned upon exit. 886 */ 887 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src) 888 { 889 skb_release_all(dst); 890 return __skb_clone(dst, src); 891 } 892 EXPORT_SYMBOL_GPL(skb_morph); 893 894 int mm_account_pinned_pages(struct mmpin *mmp, size_t size) 895 { 896 unsigned long max_pg, num_pg, new_pg, old_pg; 897 struct user_struct *user; 898 899 if (capable(CAP_IPC_LOCK) || !size) 900 return 0; 901 902 num_pg = (size >> PAGE_SHIFT) + 2; /* worst case */ 903 max_pg = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT; 904 user = mmp->user ? : current_user(); 905 906 do { 907 old_pg = atomic_long_read(&user->locked_vm); 908 new_pg = old_pg + num_pg; 909 if (new_pg > max_pg) 910 return -ENOBUFS; 911 } while (atomic_long_cmpxchg(&user->locked_vm, old_pg, new_pg) != 912 old_pg); 913 914 if (!mmp->user) { 915 mmp->user = get_uid(user); 916 mmp->num_pg = num_pg; 917 } else { 918 mmp->num_pg += num_pg; 919 } 920 921 return 0; 922 } 923 EXPORT_SYMBOL_GPL(mm_account_pinned_pages); 924 925 void mm_unaccount_pinned_pages(struct mmpin *mmp) 926 { 927 if (mmp->user) { 928 atomic_long_sub(mmp->num_pg, &mmp->user->locked_vm); 929 free_uid(mmp->user); 930 } 931 } 932 EXPORT_SYMBOL_GPL(mm_unaccount_pinned_pages); 933 934 struct ubuf_info *sock_zerocopy_alloc(struct sock *sk, size_t size) 935 { 936 struct ubuf_info *uarg; 937 struct sk_buff *skb; 938 939 WARN_ON_ONCE(!in_task()); 940 941 if (!sock_flag(sk, SOCK_ZEROCOPY)) 942 return NULL; 943 944 skb = sock_omalloc(sk, 0, GFP_KERNEL); 945 if (!skb) 946 return NULL; 947 948 BUILD_BUG_ON(sizeof(*uarg) > sizeof(skb->cb)); 949 uarg = (void *)skb->cb; 950 uarg->mmp.user = NULL; 951 952 if (mm_account_pinned_pages(&uarg->mmp, size)) { 953 kfree_skb(skb); 954 return NULL; 955 } 956 957 uarg->callback = sock_zerocopy_callback; 958 uarg->id = ((u32)atomic_inc_return(&sk->sk_zckey)) - 1; 959 uarg->len = 1; 960 uarg->bytelen = size; 961 uarg->zerocopy = 1; 962 refcount_set(&uarg->refcnt, 1); 963 sock_hold(sk); 964 965 return uarg; 966 } 967 EXPORT_SYMBOL_GPL(sock_zerocopy_alloc); 968 969 static inline struct sk_buff *skb_from_uarg(struct ubuf_info *uarg) 970 { 971 return container_of((void *)uarg, struct sk_buff, cb); 972 } 973 974 struct ubuf_info *sock_zerocopy_realloc(struct sock *sk, size_t size, 975 struct ubuf_info *uarg) 976 { 977 if (uarg) { 978 const u32 byte_limit = 1 << 19; /* limit to a few TSO */ 979 u32 bytelen, next; 980 981 /* realloc only when socket is locked (TCP, UDP cork), 982 * so uarg->len and sk_zckey access is serialized 983 */ 984 if (!sock_owned_by_user(sk)) { 985 WARN_ON_ONCE(1); 986 return NULL; 987 } 988 989 bytelen = uarg->bytelen + size; 990 if (uarg->len == USHRT_MAX - 1 || bytelen > byte_limit) { 991 /* TCP can create new skb to attach new uarg */ 992 if (sk->sk_type == SOCK_STREAM) 993 goto new_alloc; 994 return NULL; 995 } 996 997 next = (u32)atomic_read(&sk->sk_zckey); 998 if ((u32)(uarg->id + uarg->len) == next) { 999 if (mm_account_pinned_pages(&uarg->mmp, size)) 1000 return NULL; 1001 uarg->len++; 1002 uarg->bytelen = bytelen; 1003 atomic_set(&sk->sk_zckey, ++next); 1004 sock_zerocopy_get(uarg); 1005 return uarg; 1006 } 1007 } 1008 1009 new_alloc: 1010 return sock_zerocopy_alloc(sk, size); 1011 } 1012 EXPORT_SYMBOL_GPL(sock_zerocopy_realloc); 1013 1014 static bool skb_zerocopy_notify_extend(struct sk_buff *skb, u32 lo, u16 len) 1015 { 1016 struct sock_exterr_skb *serr = SKB_EXT_ERR(skb); 1017 u32 old_lo, old_hi; 1018 u64 sum_len; 1019 1020 old_lo = serr->ee.ee_info; 1021 old_hi = serr->ee.ee_data; 1022 sum_len = old_hi - old_lo + 1ULL + len; 1023 1024 if (sum_len >= (1ULL << 32)) 1025 return false; 1026 1027 if (lo != old_hi + 1) 1028 return false; 1029 1030 serr->ee.ee_data += len; 1031 return true; 1032 } 1033 1034 void sock_zerocopy_callback(struct ubuf_info *uarg, bool success) 1035 { 1036 struct sk_buff *tail, *skb = skb_from_uarg(uarg); 1037 struct sock_exterr_skb *serr; 1038 struct sock *sk = skb->sk; 1039 struct sk_buff_head *q; 1040 unsigned long flags; 1041 u32 lo, hi; 1042 u16 len; 1043 1044 mm_unaccount_pinned_pages(&uarg->mmp); 1045 1046 /* if !len, there was only 1 call, and it was aborted 1047 * so do not queue a completion notification 1048 */ 1049 if (!uarg->len || sock_flag(sk, SOCK_DEAD)) 1050 goto release; 1051 1052 len = uarg->len; 1053 lo = uarg->id; 1054 hi = uarg->id + len - 1; 1055 1056 serr = SKB_EXT_ERR(skb); 1057 memset(serr, 0, sizeof(*serr)); 1058 serr->ee.ee_errno = 0; 1059 serr->ee.ee_origin = SO_EE_ORIGIN_ZEROCOPY; 1060 serr->ee.ee_data = hi; 1061 serr->ee.ee_info = lo; 1062 if (!success) 1063 serr->ee.ee_code |= SO_EE_CODE_ZEROCOPY_COPIED; 1064 1065 q = &sk->sk_error_queue; 1066 spin_lock_irqsave(&q->lock, flags); 1067 tail = skb_peek_tail(q); 1068 if (!tail || SKB_EXT_ERR(tail)->ee.ee_origin != SO_EE_ORIGIN_ZEROCOPY || 1069 !skb_zerocopy_notify_extend(tail, lo, len)) { 1070 __skb_queue_tail(q, skb); 1071 skb = NULL; 1072 } 1073 spin_unlock_irqrestore(&q->lock, flags); 1074 1075 sk->sk_error_report(sk); 1076 1077 release: 1078 consume_skb(skb); 1079 sock_put(sk); 1080 } 1081 EXPORT_SYMBOL_GPL(sock_zerocopy_callback); 1082 1083 void sock_zerocopy_put(struct ubuf_info *uarg) 1084 { 1085 if (uarg && refcount_dec_and_test(&uarg->refcnt)) { 1086 if (uarg->callback) 1087 uarg->callback(uarg, uarg->zerocopy); 1088 else 1089 consume_skb(skb_from_uarg(uarg)); 1090 } 1091 } 1092 EXPORT_SYMBOL_GPL(sock_zerocopy_put); 1093 1094 void sock_zerocopy_put_abort(struct ubuf_info *uarg) 1095 { 1096 if (uarg) { 1097 struct sock *sk = skb_from_uarg(uarg)->sk; 1098 1099 atomic_dec(&sk->sk_zckey); 1100 uarg->len--; 1101 1102 sock_zerocopy_put(uarg); 1103 } 1104 } 1105 EXPORT_SYMBOL_GPL(sock_zerocopy_put_abort); 1106 1107 extern int __zerocopy_sg_from_iter(struct sock *sk, struct sk_buff *skb, 1108 struct iov_iter *from, size_t length); 1109 1110 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb, 1111 struct msghdr *msg, int len, 1112 struct ubuf_info *uarg) 1113 { 1114 struct ubuf_info *orig_uarg = skb_zcopy(skb); 1115 struct iov_iter orig_iter = msg->msg_iter; 1116 int err, orig_len = skb->len; 1117 1118 /* An skb can only point to one uarg. This edge case happens when 1119 * TCP appends to an skb, but zerocopy_realloc triggered a new alloc. 1120 */ 1121 if (orig_uarg && uarg != orig_uarg) 1122 return -EEXIST; 1123 1124 err = __zerocopy_sg_from_iter(sk, skb, &msg->msg_iter, len); 1125 if (err == -EFAULT || (err == -EMSGSIZE && skb->len == orig_len)) { 1126 struct sock *save_sk = skb->sk; 1127 1128 /* Streams do not free skb on error. Reset to prev state. */ 1129 msg->msg_iter = orig_iter; 1130 skb->sk = sk; 1131 ___pskb_trim(skb, orig_len); 1132 skb->sk = save_sk; 1133 return err; 1134 } 1135 1136 skb_zcopy_set(skb, uarg); 1137 return skb->len - orig_len; 1138 } 1139 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_stream); 1140 1141 static int skb_zerocopy_clone(struct sk_buff *nskb, struct sk_buff *orig, 1142 gfp_t gfp_mask) 1143 { 1144 if (skb_zcopy(orig)) { 1145 if (skb_zcopy(nskb)) { 1146 /* !gfp_mask callers are verified to !skb_zcopy(nskb) */ 1147 if (!gfp_mask) { 1148 WARN_ON_ONCE(1); 1149 return -ENOMEM; 1150 } 1151 if (skb_uarg(nskb) == skb_uarg(orig)) 1152 return 0; 1153 if (skb_copy_ubufs(nskb, GFP_ATOMIC)) 1154 return -EIO; 1155 } 1156 skb_zcopy_set(nskb, skb_uarg(orig)); 1157 } 1158 return 0; 1159 } 1160 1161 /** 1162 * skb_copy_ubufs - copy userspace skb frags buffers to kernel 1163 * @skb: the skb to modify 1164 * @gfp_mask: allocation priority 1165 * 1166 * This must be called on SKBTX_DEV_ZEROCOPY skb. 1167 * It will copy all frags into kernel and drop the reference 1168 * to userspace pages. 1169 * 1170 * If this function is called from an interrupt gfp_mask() must be 1171 * %GFP_ATOMIC. 1172 * 1173 * Returns 0 on success or a negative error code on failure 1174 * to allocate kernel memory to copy to. 1175 */ 1176 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask) 1177 { 1178 int num_frags = skb_shinfo(skb)->nr_frags; 1179 struct page *page, *head = NULL; 1180 int i, new_frags; 1181 u32 d_off; 1182 1183 if (skb_shared(skb) || skb_unclone(skb, gfp_mask)) 1184 return -EINVAL; 1185 1186 if (!num_frags) 1187 goto release; 1188 1189 new_frags = (__skb_pagelen(skb) + PAGE_SIZE - 1) >> PAGE_SHIFT; 1190 for (i = 0; i < new_frags; i++) { 1191 page = alloc_page(gfp_mask); 1192 if (!page) { 1193 while (head) { 1194 struct page *next = (struct page *)page_private(head); 1195 put_page(head); 1196 head = next; 1197 } 1198 return -ENOMEM; 1199 } 1200 set_page_private(page, (unsigned long)head); 1201 head = page; 1202 } 1203 1204 page = head; 1205 d_off = 0; 1206 for (i = 0; i < num_frags; i++) { 1207 skb_frag_t *f = &skb_shinfo(skb)->frags[i]; 1208 u32 p_off, p_len, copied; 1209 struct page *p; 1210 u8 *vaddr; 1211 1212 skb_frag_foreach_page(f, f->page_offset, skb_frag_size(f), 1213 p, p_off, p_len, copied) { 1214 u32 copy, done = 0; 1215 vaddr = kmap_atomic(p); 1216 1217 while (done < p_len) { 1218 if (d_off == PAGE_SIZE) { 1219 d_off = 0; 1220 page = (struct page *)page_private(page); 1221 } 1222 copy = min_t(u32, PAGE_SIZE - d_off, p_len - done); 1223 memcpy(page_address(page) + d_off, 1224 vaddr + p_off + done, copy); 1225 done += copy; 1226 d_off += copy; 1227 } 1228 kunmap_atomic(vaddr); 1229 } 1230 } 1231 1232 /* skb frags release userspace buffers */ 1233 for (i = 0; i < num_frags; i++) 1234 skb_frag_unref(skb, i); 1235 1236 /* skb frags point to kernel buffers */ 1237 for (i = 0; i < new_frags - 1; i++) { 1238 __skb_fill_page_desc(skb, i, head, 0, PAGE_SIZE); 1239 head = (struct page *)page_private(head); 1240 } 1241 __skb_fill_page_desc(skb, new_frags - 1, head, 0, d_off); 1242 skb_shinfo(skb)->nr_frags = new_frags; 1243 1244 release: 1245 skb_zcopy_clear(skb, false); 1246 return 0; 1247 } 1248 EXPORT_SYMBOL_GPL(skb_copy_ubufs); 1249 1250 /** 1251 * skb_clone - duplicate an sk_buff 1252 * @skb: buffer to clone 1253 * @gfp_mask: allocation priority 1254 * 1255 * Duplicate an &sk_buff. The new one is not owned by a socket. Both 1256 * copies share the same packet data but not structure. The new 1257 * buffer has a reference count of 1. If the allocation fails the 1258 * function returns %NULL otherwise the new buffer is returned. 1259 * 1260 * If this function is called from an interrupt gfp_mask() must be 1261 * %GFP_ATOMIC. 1262 */ 1263 1264 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask) 1265 { 1266 struct sk_buff_fclones *fclones = container_of(skb, 1267 struct sk_buff_fclones, 1268 skb1); 1269 struct sk_buff *n; 1270 1271 if (skb_orphan_frags(skb, gfp_mask)) 1272 return NULL; 1273 1274 if (skb->fclone == SKB_FCLONE_ORIG && 1275 refcount_read(&fclones->fclone_ref) == 1) { 1276 n = &fclones->skb2; 1277 refcount_set(&fclones->fclone_ref, 2); 1278 } else { 1279 if (skb_pfmemalloc(skb)) 1280 gfp_mask |= __GFP_MEMALLOC; 1281 1282 n = kmem_cache_alloc(skbuff_head_cache, gfp_mask); 1283 if (!n) 1284 return NULL; 1285 1286 n->fclone = SKB_FCLONE_UNAVAILABLE; 1287 } 1288 1289 return __skb_clone(n, skb); 1290 } 1291 EXPORT_SYMBOL(skb_clone); 1292 1293 static void skb_headers_offset_update(struct sk_buff *skb, int off) 1294 { 1295 /* Only adjust this if it actually is csum_start rather than csum */ 1296 if (skb->ip_summed == CHECKSUM_PARTIAL) 1297 skb->csum_start += off; 1298 /* {transport,network,mac}_header and tail are relative to skb->head */ 1299 skb->transport_header += off; 1300 skb->network_header += off; 1301 if (skb_mac_header_was_set(skb)) 1302 skb->mac_header += off; 1303 skb->inner_transport_header += off; 1304 skb->inner_network_header += off; 1305 skb->inner_mac_header += off; 1306 } 1307 1308 static void copy_skb_header(struct sk_buff *new, const struct sk_buff *old) 1309 { 1310 __copy_skb_header(new, old); 1311 1312 skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size; 1313 skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs; 1314 skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type; 1315 } 1316 1317 static inline int skb_alloc_rx_flag(const struct sk_buff *skb) 1318 { 1319 if (skb_pfmemalloc(skb)) 1320 return SKB_ALLOC_RX; 1321 return 0; 1322 } 1323 1324 /** 1325 * skb_copy - create private copy of an sk_buff 1326 * @skb: buffer to copy 1327 * @gfp_mask: allocation priority 1328 * 1329 * Make a copy of both an &sk_buff and its data. This is used when the 1330 * caller wishes to modify the data and needs a private copy of the 1331 * data to alter. Returns %NULL on failure or the pointer to the buffer 1332 * on success. The returned buffer has a reference count of 1. 1333 * 1334 * As by-product this function converts non-linear &sk_buff to linear 1335 * one, so that &sk_buff becomes completely private and caller is allowed 1336 * to modify all the data of returned buffer. This means that this 1337 * function is not recommended for use in circumstances when only 1338 * header is going to be modified. Use pskb_copy() instead. 1339 */ 1340 1341 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask) 1342 { 1343 int headerlen = skb_headroom(skb); 1344 unsigned int size = skb_end_offset(skb) + skb->data_len; 1345 struct sk_buff *n = __alloc_skb(size, gfp_mask, 1346 skb_alloc_rx_flag(skb), NUMA_NO_NODE); 1347 1348 if (!n) 1349 return NULL; 1350 1351 /* Set the data pointer */ 1352 skb_reserve(n, headerlen); 1353 /* Set the tail pointer and length */ 1354 skb_put(n, skb->len); 1355 1356 BUG_ON(skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len)); 1357 1358 copy_skb_header(n, skb); 1359 return n; 1360 } 1361 EXPORT_SYMBOL(skb_copy); 1362 1363 /** 1364 * __pskb_copy_fclone - create copy of an sk_buff with private head. 1365 * @skb: buffer to copy 1366 * @headroom: headroom of new skb 1367 * @gfp_mask: allocation priority 1368 * @fclone: if true allocate the copy of the skb from the fclone 1369 * cache instead of the head cache; it is recommended to set this 1370 * to true for the cases where the copy will likely be cloned 1371 * 1372 * Make a copy of both an &sk_buff and part of its data, located 1373 * in header. Fragmented data remain shared. This is used when 1374 * the caller wishes to modify only header of &sk_buff and needs 1375 * private copy of the header to alter. Returns %NULL on failure 1376 * or the pointer to the buffer on success. 1377 * The returned buffer has a reference count of 1. 1378 */ 1379 1380 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom, 1381 gfp_t gfp_mask, bool fclone) 1382 { 1383 unsigned int size = skb_headlen(skb) + headroom; 1384 int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0); 1385 struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE); 1386 1387 if (!n) 1388 goto out; 1389 1390 /* Set the data pointer */ 1391 skb_reserve(n, headroom); 1392 /* Set the tail pointer and length */ 1393 skb_put(n, skb_headlen(skb)); 1394 /* Copy the bytes */ 1395 skb_copy_from_linear_data(skb, n->data, n->len); 1396 1397 n->truesize += skb->data_len; 1398 n->data_len = skb->data_len; 1399 n->len = skb->len; 1400 1401 if (skb_shinfo(skb)->nr_frags) { 1402 int i; 1403 1404 if (skb_orphan_frags(skb, gfp_mask) || 1405 skb_zerocopy_clone(n, skb, gfp_mask)) { 1406 kfree_skb(n); 1407 n = NULL; 1408 goto out; 1409 } 1410 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1411 skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i]; 1412 skb_frag_ref(skb, i); 1413 } 1414 skb_shinfo(n)->nr_frags = i; 1415 } 1416 1417 if (skb_has_frag_list(skb)) { 1418 skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list; 1419 skb_clone_fraglist(n); 1420 } 1421 1422 copy_skb_header(n, skb); 1423 out: 1424 return n; 1425 } 1426 EXPORT_SYMBOL(__pskb_copy_fclone); 1427 1428 /** 1429 * pskb_expand_head - reallocate header of &sk_buff 1430 * @skb: buffer to reallocate 1431 * @nhead: room to add at head 1432 * @ntail: room to add at tail 1433 * @gfp_mask: allocation priority 1434 * 1435 * Expands (or creates identical copy, if @nhead and @ntail are zero) 1436 * header of @skb. &sk_buff itself is not changed. &sk_buff MUST have 1437 * reference count of 1. Returns zero in the case of success or error, 1438 * if expansion failed. In the last case, &sk_buff is not changed. 1439 * 1440 * All the pointers pointing into skb header may change and must be 1441 * reloaded after call to this function. 1442 */ 1443 1444 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, 1445 gfp_t gfp_mask) 1446 { 1447 int i, osize = skb_end_offset(skb); 1448 int size = osize + nhead + ntail; 1449 long off; 1450 u8 *data; 1451 1452 BUG_ON(nhead < 0); 1453 1454 BUG_ON(skb_shared(skb)); 1455 1456 size = SKB_DATA_ALIGN(size); 1457 1458 if (skb_pfmemalloc(skb)) 1459 gfp_mask |= __GFP_MEMALLOC; 1460 data = kmalloc_reserve(size + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)), 1461 gfp_mask, NUMA_NO_NODE, NULL); 1462 if (!data) 1463 goto nodata; 1464 size = SKB_WITH_OVERHEAD(ksize(data)); 1465 1466 /* Copy only real data... and, alas, header. This should be 1467 * optimized for the cases when header is void. 1468 */ 1469 memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head); 1470 1471 memcpy((struct skb_shared_info *)(data + size), 1472 skb_shinfo(skb), 1473 offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags])); 1474 1475 /* 1476 * if shinfo is shared we must drop the old head gracefully, but if it 1477 * is not we can just drop the old head and let the existing refcount 1478 * be since all we did is relocate the values 1479 */ 1480 if (skb_cloned(skb)) { 1481 if (skb_orphan_frags(skb, gfp_mask)) 1482 goto nofrags; 1483 if (skb_zcopy(skb)) 1484 refcount_inc(&skb_uarg(skb)->refcnt); 1485 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 1486 skb_frag_ref(skb, i); 1487 1488 if (skb_has_frag_list(skb)) 1489 skb_clone_fraglist(skb); 1490 1491 skb_release_data(skb); 1492 } else { 1493 skb_free_head(skb); 1494 } 1495 off = (data + nhead) - skb->head; 1496 1497 skb->head = data; 1498 skb->head_frag = 0; 1499 skb->data += off; 1500 #ifdef NET_SKBUFF_DATA_USES_OFFSET 1501 skb->end = size; 1502 off = nhead; 1503 #else 1504 skb->end = skb->head + size; 1505 #endif 1506 skb->tail += off; 1507 skb_headers_offset_update(skb, nhead); 1508 skb->cloned = 0; 1509 skb->hdr_len = 0; 1510 skb->nohdr = 0; 1511 atomic_set(&skb_shinfo(skb)->dataref, 1); 1512 1513 skb_metadata_clear(skb); 1514 1515 /* It is not generally safe to change skb->truesize. 1516 * For the moment, we really care of rx path, or 1517 * when skb is orphaned (not attached to a socket). 1518 */ 1519 if (!skb->sk || skb->destructor == sock_edemux) 1520 skb->truesize += size - osize; 1521 1522 return 0; 1523 1524 nofrags: 1525 kfree(data); 1526 nodata: 1527 return -ENOMEM; 1528 } 1529 EXPORT_SYMBOL(pskb_expand_head); 1530 1531 /* Make private copy of skb with writable head and some headroom */ 1532 1533 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom) 1534 { 1535 struct sk_buff *skb2; 1536 int delta = headroom - skb_headroom(skb); 1537 1538 if (delta <= 0) 1539 skb2 = pskb_copy(skb, GFP_ATOMIC); 1540 else { 1541 skb2 = skb_clone(skb, GFP_ATOMIC); 1542 if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0, 1543 GFP_ATOMIC)) { 1544 kfree_skb(skb2); 1545 skb2 = NULL; 1546 } 1547 } 1548 return skb2; 1549 } 1550 EXPORT_SYMBOL(skb_realloc_headroom); 1551 1552 /** 1553 * skb_copy_expand - copy and expand sk_buff 1554 * @skb: buffer to copy 1555 * @newheadroom: new free bytes at head 1556 * @newtailroom: new free bytes at tail 1557 * @gfp_mask: allocation priority 1558 * 1559 * Make a copy of both an &sk_buff and its data and while doing so 1560 * allocate additional space. 1561 * 1562 * This is used when the caller wishes to modify the data and needs a 1563 * private copy of the data to alter as well as more space for new fields. 1564 * Returns %NULL on failure or the pointer to the buffer 1565 * on success. The returned buffer has a reference count of 1. 1566 * 1567 * You must pass %GFP_ATOMIC as the allocation priority if this function 1568 * is called from an interrupt. 1569 */ 1570 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, 1571 int newheadroom, int newtailroom, 1572 gfp_t gfp_mask) 1573 { 1574 /* 1575 * Allocate the copy buffer 1576 */ 1577 struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom, 1578 gfp_mask, skb_alloc_rx_flag(skb), 1579 NUMA_NO_NODE); 1580 int oldheadroom = skb_headroom(skb); 1581 int head_copy_len, head_copy_off; 1582 1583 if (!n) 1584 return NULL; 1585 1586 skb_reserve(n, newheadroom); 1587 1588 /* Set the tail pointer and length */ 1589 skb_put(n, skb->len); 1590 1591 head_copy_len = oldheadroom; 1592 head_copy_off = 0; 1593 if (newheadroom <= head_copy_len) 1594 head_copy_len = newheadroom; 1595 else 1596 head_copy_off = newheadroom - head_copy_len; 1597 1598 /* Copy the linear header and data. */ 1599 BUG_ON(skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off, 1600 skb->len + head_copy_len)); 1601 1602 copy_skb_header(n, skb); 1603 1604 skb_headers_offset_update(n, newheadroom - oldheadroom); 1605 1606 return n; 1607 } 1608 EXPORT_SYMBOL(skb_copy_expand); 1609 1610 /** 1611 * __skb_pad - zero pad the tail of an skb 1612 * @skb: buffer to pad 1613 * @pad: space to pad 1614 * @free_on_error: free buffer on error 1615 * 1616 * Ensure that a buffer is followed by a padding area that is zero 1617 * filled. Used by network drivers which may DMA or transfer data 1618 * beyond the buffer end onto the wire. 1619 * 1620 * May return error in out of memory cases. The skb is freed on error 1621 * if @free_on_error is true. 1622 */ 1623 1624 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error) 1625 { 1626 int err; 1627 int ntail; 1628 1629 /* If the skbuff is non linear tailroom is always zero.. */ 1630 if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) { 1631 memset(skb->data+skb->len, 0, pad); 1632 return 0; 1633 } 1634 1635 ntail = skb->data_len + pad - (skb->end - skb->tail); 1636 if (likely(skb_cloned(skb) || ntail > 0)) { 1637 err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC); 1638 if (unlikely(err)) 1639 goto free_skb; 1640 } 1641 1642 /* FIXME: The use of this function with non-linear skb's really needs 1643 * to be audited. 1644 */ 1645 err = skb_linearize(skb); 1646 if (unlikely(err)) 1647 goto free_skb; 1648 1649 memset(skb->data + skb->len, 0, pad); 1650 return 0; 1651 1652 free_skb: 1653 if (free_on_error) 1654 kfree_skb(skb); 1655 return err; 1656 } 1657 EXPORT_SYMBOL(__skb_pad); 1658 1659 /** 1660 * pskb_put - add data to the tail of a potentially fragmented buffer 1661 * @skb: start of the buffer to use 1662 * @tail: tail fragment of the buffer to use 1663 * @len: amount of data to add 1664 * 1665 * This function extends the used data area of the potentially 1666 * fragmented buffer. @tail must be the last fragment of @skb -- or 1667 * @skb itself. If this would exceed the total buffer size the kernel 1668 * will panic. A pointer to the first byte of the extra data is 1669 * returned. 1670 */ 1671 1672 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len) 1673 { 1674 if (tail != skb) { 1675 skb->data_len += len; 1676 skb->len += len; 1677 } 1678 return skb_put(tail, len); 1679 } 1680 EXPORT_SYMBOL_GPL(pskb_put); 1681 1682 /** 1683 * skb_put - add data to a buffer 1684 * @skb: buffer to use 1685 * @len: amount of data to add 1686 * 1687 * This function extends the used data area of the buffer. If this would 1688 * exceed the total buffer size the kernel will panic. A pointer to the 1689 * first byte of the extra data is returned. 1690 */ 1691 void *skb_put(struct sk_buff *skb, unsigned int len) 1692 { 1693 void *tmp = skb_tail_pointer(skb); 1694 SKB_LINEAR_ASSERT(skb); 1695 skb->tail += len; 1696 skb->len += len; 1697 if (unlikely(skb->tail > skb->end)) 1698 skb_over_panic(skb, len, __builtin_return_address(0)); 1699 return tmp; 1700 } 1701 EXPORT_SYMBOL(skb_put); 1702 1703 /** 1704 * skb_push - add data to the start of a buffer 1705 * @skb: buffer to use 1706 * @len: amount of data to add 1707 * 1708 * This function extends the used data area of the buffer at the buffer 1709 * start. If this would exceed the total buffer headroom the kernel will 1710 * panic. A pointer to the first byte of the extra data is returned. 1711 */ 1712 void *skb_push(struct sk_buff *skb, unsigned int len) 1713 { 1714 skb->data -= len; 1715 skb->len += len; 1716 if (unlikely(skb->data<skb->head)) 1717 skb_under_panic(skb, len, __builtin_return_address(0)); 1718 return skb->data; 1719 } 1720 EXPORT_SYMBOL(skb_push); 1721 1722 /** 1723 * skb_pull - remove data from the start of a buffer 1724 * @skb: buffer to use 1725 * @len: amount of data to remove 1726 * 1727 * This function removes data from the start of a buffer, returning 1728 * the memory to the headroom. A pointer to the next data in the buffer 1729 * is returned. Once the data has been pulled future pushes will overwrite 1730 * the old data. 1731 */ 1732 void *skb_pull(struct sk_buff *skb, unsigned int len) 1733 { 1734 return skb_pull_inline(skb, len); 1735 } 1736 EXPORT_SYMBOL(skb_pull); 1737 1738 /** 1739 * skb_trim - remove end from a buffer 1740 * @skb: buffer to alter 1741 * @len: new length 1742 * 1743 * Cut the length of a buffer down by removing data from the tail. If 1744 * the buffer is already under the length specified it is not modified. 1745 * The skb must be linear. 1746 */ 1747 void skb_trim(struct sk_buff *skb, unsigned int len) 1748 { 1749 if (skb->len > len) 1750 __skb_trim(skb, len); 1751 } 1752 EXPORT_SYMBOL(skb_trim); 1753 1754 /* Trims skb to length len. It can change skb pointers. 1755 */ 1756 1757 int ___pskb_trim(struct sk_buff *skb, unsigned int len) 1758 { 1759 struct sk_buff **fragp; 1760 struct sk_buff *frag; 1761 int offset = skb_headlen(skb); 1762 int nfrags = skb_shinfo(skb)->nr_frags; 1763 int i; 1764 int err; 1765 1766 if (skb_cloned(skb) && 1767 unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))) 1768 return err; 1769 1770 i = 0; 1771 if (offset >= len) 1772 goto drop_pages; 1773 1774 for (; i < nfrags; i++) { 1775 int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]); 1776 1777 if (end < len) { 1778 offset = end; 1779 continue; 1780 } 1781 1782 skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset); 1783 1784 drop_pages: 1785 skb_shinfo(skb)->nr_frags = i; 1786 1787 for (; i < nfrags; i++) 1788 skb_frag_unref(skb, i); 1789 1790 if (skb_has_frag_list(skb)) 1791 skb_drop_fraglist(skb); 1792 goto done; 1793 } 1794 1795 for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp); 1796 fragp = &frag->next) { 1797 int end = offset + frag->len; 1798 1799 if (skb_shared(frag)) { 1800 struct sk_buff *nfrag; 1801 1802 nfrag = skb_clone(frag, GFP_ATOMIC); 1803 if (unlikely(!nfrag)) 1804 return -ENOMEM; 1805 1806 nfrag->next = frag->next; 1807 consume_skb(frag); 1808 frag = nfrag; 1809 *fragp = frag; 1810 } 1811 1812 if (end < len) { 1813 offset = end; 1814 continue; 1815 } 1816 1817 if (end > len && 1818 unlikely((err = pskb_trim(frag, len - offset)))) 1819 return err; 1820 1821 if (frag->next) 1822 skb_drop_list(&frag->next); 1823 break; 1824 } 1825 1826 done: 1827 if (len > skb_headlen(skb)) { 1828 skb->data_len -= skb->len - len; 1829 skb->len = len; 1830 } else { 1831 skb->len = len; 1832 skb->data_len = 0; 1833 skb_set_tail_pointer(skb, len); 1834 } 1835 1836 if (!skb->sk || skb->destructor == sock_edemux) 1837 skb_condense(skb); 1838 return 0; 1839 } 1840 EXPORT_SYMBOL(___pskb_trim); 1841 1842 /** 1843 * __pskb_pull_tail - advance tail of skb header 1844 * @skb: buffer to reallocate 1845 * @delta: number of bytes to advance tail 1846 * 1847 * The function makes a sense only on a fragmented &sk_buff, 1848 * it expands header moving its tail forward and copying necessary 1849 * data from fragmented part. 1850 * 1851 * &sk_buff MUST have reference count of 1. 1852 * 1853 * Returns %NULL (and &sk_buff does not change) if pull failed 1854 * or value of new tail of skb in the case of success. 1855 * 1856 * All the pointers pointing into skb header may change and must be 1857 * reloaded after call to this function. 1858 */ 1859 1860 /* Moves tail of skb head forward, copying data from fragmented part, 1861 * when it is necessary. 1862 * 1. It may fail due to malloc failure. 1863 * 2. It may change skb pointers. 1864 * 1865 * It is pretty complicated. Luckily, it is called only in exceptional cases. 1866 */ 1867 void *__pskb_pull_tail(struct sk_buff *skb, int delta) 1868 { 1869 /* If skb has not enough free space at tail, get new one 1870 * plus 128 bytes for future expansions. If we have enough 1871 * room at tail, reallocate without expansion only if skb is cloned. 1872 */ 1873 int i, k, eat = (skb->tail + delta) - skb->end; 1874 1875 if (eat > 0 || skb_cloned(skb)) { 1876 if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0, 1877 GFP_ATOMIC)) 1878 return NULL; 1879 } 1880 1881 BUG_ON(skb_copy_bits(skb, skb_headlen(skb), 1882 skb_tail_pointer(skb), delta)); 1883 1884 /* Optimization: no fragments, no reasons to preestimate 1885 * size of pulled pages. Superb. 1886 */ 1887 if (!skb_has_frag_list(skb)) 1888 goto pull_pages; 1889 1890 /* Estimate size of pulled pages. */ 1891 eat = delta; 1892 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1893 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 1894 1895 if (size >= eat) 1896 goto pull_pages; 1897 eat -= size; 1898 } 1899 1900 /* If we need update frag list, we are in troubles. 1901 * Certainly, it is possible to add an offset to skb data, 1902 * but taking into account that pulling is expected to 1903 * be very rare operation, it is worth to fight against 1904 * further bloating skb head and crucify ourselves here instead. 1905 * Pure masohism, indeed. 8)8) 1906 */ 1907 if (eat) { 1908 struct sk_buff *list = skb_shinfo(skb)->frag_list; 1909 struct sk_buff *clone = NULL; 1910 struct sk_buff *insp = NULL; 1911 1912 do { 1913 BUG_ON(!list); 1914 1915 if (list->len <= eat) { 1916 /* Eaten as whole. */ 1917 eat -= list->len; 1918 list = list->next; 1919 insp = list; 1920 } else { 1921 /* Eaten partially. */ 1922 1923 if (skb_shared(list)) { 1924 /* Sucks! We need to fork list. :-( */ 1925 clone = skb_clone(list, GFP_ATOMIC); 1926 if (!clone) 1927 return NULL; 1928 insp = list->next; 1929 list = clone; 1930 } else { 1931 /* This may be pulled without 1932 * problems. */ 1933 insp = list; 1934 } 1935 if (!pskb_pull(list, eat)) { 1936 kfree_skb(clone); 1937 return NULL; 1938 } 1939 break; 1940 } 1941 } while (eat); 1942 1943 /* Free pulled out fragments. */ 1944 while ((list = skb_shinfo(skb)->frag_list) != insp) { 1945 skb_shinfo(skb)->frag_list = list->next; 1946 kfree_skb(list); 1947 } 1948 /* And insert new clone at head. */ 1949 if (clone) { 1950 clone->next = list; 1951 skb_shinfo(skb)->frag_list = clone; 1952 } 1953 } 1954 /* Success! Now we may commit changes to skb data. */ 1955 1956 pull_pages: 1957 eat = delta; 1958 k = 0; 1959 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1960 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 1961 1962 if (size <= eat) { 1963 skb_frag_unref(skb, i); 1964 eat -= size; 1965 } else { 1966 skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i]; 1967 if (eat) { 1968 skb_shinfo(skb)->frags[k].page_offset += eat; 1969 skb_frag_size_sub(&skb_shinfo(skb)->frags[k], eat); 1970 if (!i) 1971 goto end; 1972 eat = 0; 1973 } 1974 k++; 1975 } 1976 } 1977 skb_shinfo(skb)->nr_frags = k; 1978 1979 end: 1980 skb->tail += delta; 1981 skb->data_len -= delta; 1982 1983 if (!skb->data_len) 1984 skb_zcopy_clear(skb, false); 1985 1986 return skb_tail_pointer(skb); 1987 } 1988 EXPORT_SYMBOL(__pskb_pull_tail); 1989 1990 /** 1991 * skb_copy_bits - copy bits from skb to kernel buffer 1992 * @skb: source skb 1993 * @offset: offset in source 1994 * @to: destination buffer 1995 * @len: number of bytes to copy 1996 * 1997 * Copy the specified number of bytes from the source skb to the 1998 * destination buffer. 1999 * 2000 * CAUTION ! : 2001 * If its prototype is ever changed, 2002 * check arch/{*}/net/{*}.S files, 2003 * since it is called from BPF assembly code. 2004 */ 2005 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len) 2006 { 2007 int start = skb_headlen(skb); 2008 struct sk_buff *frag_iter; 2009 int i, copy; 2010 2011 if (offset > (int)skb->len - len) 2012 goto fault; 2013 2014 /* Copy header. */ 2015 if ((copy = start - offset) > 0) { 2016 if (copy > len) 2017 copy = len; 2018 skb_copy_from_linear_data_offset(skb, offset, to, copy); 2019 if ((len -= copy) == 0) 2020 return 0; 2021 offset += copy; 2022 to += copy; 2023 } 2024 2025 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2026 int end; 2027 skb_frag_t *f = &skb_shinfo(skb)->frags[i]; 2028 2029 WARN_ON(start > offset + len); 2030 2031 end = start + skb_frag_size(f); 2032 if ((copy = end - offset) > 0) { 2033 u32 p_off, p_len, copied; 2034 struct page *p; 2035 u8 *vaddr; 2036 2037 if (copy > len) 2038 copy = len; 2039 2040 skb_frag_foreach_page(f, 2041 f->page_offset + offset - start, 2042 copy, p, p_off, p_len, copied) { 2043 vaddr = kmap_atomic(p); 2044 memcpy(to + copied, vaddr + p_off, p_len); 2045 kunmap_atomic(vaddr); 2046 } 2047 2048 if ((len -= copy) == 0) 2049 return 0; 2050 offset += copy; 2051 to += copy; 2052 } 2053 start = end; 2054 } 2055 2056 skb_walk_frags(skb, frag_iter) { 2057 int end; 2058 2059 WARN_ON(start > offset + len); 2060 2061 end = start + frag_iter->len; 2062 if ((copy = end - offset) > 0) { 2063 if (copy > len) 2064 copy = len; 2065 if (skb_copy_bits(frag_iter, offset - start, to, copy)) 2066 goto fault; 2067 if ((len -= copy) == 0) 2068 return 0; 2069 offset += copy; 2070 to += copy; 2071 } 2072 start = end; 2073 } 2074 2075 if (!len) 2076 return 0; 2077 2078 fault: 2079 return -EFAULT; 2080 } 2081 EXPORT_SYMBOL(skb_copy_bits); 2082 2083 /* 2084 * Callback from splice_to_pipe(), if we need to release some pages 2085 * at the end of the spd in case we error'ed out in filling the pipe. 2086 */ 2087 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i) 2088 { 2089 put_page(spd->pages[i]); 2090 } 2091 2092 static struct page *linear_to_page(struct page *page, unsigned int *len, 2093 unsigned int *offset, 2094 struct sock *sk) 2095 { 2096 struct page_frag *pfrag = sk_page_frag(sk); 2097 2098 if (!sk_page_frag_refill(sk, pfrag)) 2099 return NULL; 2100 2101 *len = min_t(unsigned int, *len, pfrag->size - pfrag->offset); 2102 2103 memcpy(page_address(pfrag->page) + pfrag->offset, 2104 page_address(page) + *offset, *len); 2105 *offset = pfrag->offset; 2106 pfrag->offset += *len; 2107 2108 return pfrag->page; 2109 } 2110 2111 static bool spd_can_coalesce(const struct splice_pipe_desc *spd, 2112 struct page *page, 2113 unsigned int offset) 2114 { 2115 return spd->nr_pages && 2116 spd->pages[spd->nr_pages - 1] == page && 2117 (spd->partial[spd->nr_pages - 1].offset + 2118 spd->partial[spd->nr_pages - 1].len == offset); 2119 } 2120 2121 /* 2122 * Fill page/offset/length into spd, if it can hold more pages. 2123 */ 2124 static bool spd_fill_page(struct splice_pipe_desc *spd, 2125 struct pipe_inode_info *pipe, struct page *page, 2126 unsigned int *len, unsigned int offset, 2127 bool linear, 2128 struct sock *sk) 2129 { 2130 if (unlikely(spd->nr_pages == MAX_SKB_FRAGS)) 2131 return true; 2132 2133 if (linear) { 2134 page = linear_to_page(page, len, &offset, sk); 2135 if (!page) 2136 return true; 2137 } 2138 if (spd_can_coalesce(spd, page, offset)) { 2139 spd->partial[spd->nr_pages - 1].len += *len; 2140 return false; 2141 } 2142 get_page(page); 2143 spd->pages[spd->nr_pages] = page; 2144 spd->partial[spd->nr_pages].len = *len; 2145 spd->partial[spd->nr_pages].offset = offset; 2146 spd->nr_pages++; 2147 2148 return false; 2149 } 2150 2151 static bool __splice_segment(struct page *page, unsigned int poff, 2152 unsigned int plen, unsigned int *off, 2153 unsigned int *len, 2154 struct splice_pipe_desc *spd, bool linear, 2155 struct sock *sk, 2156 struct pipe_inode_info *pipe) 2157 { 2158 if (!*len) 2159 return true; 2160 2161 /* skip this segment if already processed */ 2162 if (*off >= plen) { 2163 *off -= plen; 2164 return false; 2165 } 2166 2167 /* ignore any bits we already processed */ 2168 poff += *off; 2169 plen -= *off; 2170 *off = 0; 2171 2172 do { 2173 unsigned int flen = min(*len, plen); 2174 2175 if (spd_fill_page(spd, pipe, page, &flen, poff, 2176 linear, sk)) 2177 return true; 2178 poff += flen; 2179 plen -= flen; 2180 *len -= flen; 2181 } while (*len && plen); 2182 2183 return false; 2184 } 2185 2186 /* 2187 * Map linear and fragment data from the skb to spd. It reports true if the 2188 * pipe is full or if we already spliced the requested length. 2189 */ 2190 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe, 2191 unsigned int *offset, unsigned int *len, 2192 struct splice_pipe_desc *spd, struct sock *sk) 2193 { 2194 int seg; 2195 struct sk_buff *iter; 2196 2197 /* map the linear part : 2198 * If skb->head_frag is set, this 'linear' part is backed by a 2199 * fragment, and if the head is not shared with any clones then 2200 * we can avoid a copy since we own the head portion of this page. 2201 */ 2202 if (__splice_segment(virt_to_page(skb->data), 2203 (unsigned long) skb->data & (PAGE_SIZE - 1), 2204 skb_headlen(skb), 2205 offset, len, spd, 2206 skb_head_is_locked(skb), 2207 sk, pipe)) 2208 return true; 2209 2210 /* 2211 * then map the fragments 2212 */ 2213 for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) { 2214 const skb_frag_t *f = &skb_shinfo(skb)->frags[seg]; 2215 2216 if (__splice_segment(skb_frag_page(f), 2217 f->page_offset, skb_frag_size(f), 2218 offset, len, spd, false, sk, pipe)) 2219 return true; 2220 } 2221 2222 skb_walk_frags(skb, iter) { 2223 if (*offset >= iter->len) { 2224 *offset -= iter->len; 2225 continue; 2226 } 2227 /* __skb_splice_bits() only fails if the output has no room 2228 * left, so no point in going over the frag_list for the error 2229 * case. 2230 */ 2231 if (__skb_splice_bits(iter, pipe, offset, len, spd, sk)) 2232 return true; 2233 } 2234 2235 return false; 2236 } 2237 2238 /* 2239 * Map data from the skb to a pipe. Should handle both the linear part, 2240 * the fragments, and the frag list. 2241 */ 2242 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset, 2243 struct pipe_inode_info *pipe, unsigned int tlen, 2244 unsigned int flags) 2245 { 2246 struct partial_page partial[MAX_SKB_FRAGS]; 2247 struct page *pages[MAX_SKB_FRAGS]; 2248 struct splice_pipe_desc spd = { 2249 .pages = pages, 2250 .partial = partial, 2251 .nr_pages_max = MAX_SKB_FRAGS, 2252 .ops = &nosteal_pipe_buf_ops, 2253 .spd_release = sock_spd_release, 2254 }; 2255 int ret = 0; 2256 2257 __skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk); 2258 2259 if (spd.nr_pages) 2260 ret = splice_to_pipe(pipe, &spd); 2261 2262 return ret; 2263 } 2264 EXPORT_SYMBOL_GPL(skb_splice_bits); 2265 2266 /* Send skb data on a socket. Socket must be locked. */ 2267 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset, 2268 int len) 2269 { 2270 unsigned int orig_len = len; 2271 struct sk_buff *head = skb; 2272 unsigned short fragidx; 2273 int slen, ret; 2274 2275 do_frag_list: 2276 2277 /* Deal with head data */ 2278 while (offset < skb_headlen(skb) && len) { 2279 struct kvec kv; 2280 struct msghdr msg; 2281 2282 slen = min_t(int, len, skb_headlen(skb) - offset); 2283 kv.iov_base = skb->data + offset; 2284 kv.iov_len = slen; 2285 memset(&msg, 0, sizeof(msg)); 2286 2287 ret = kernel_sendmsg_locked(sk, &msg, &kv, 1, slen); 2288 if (ret <= 0) 2289 goto error; 2290 2291 offset += ret; 2292 len -= ret; 2293 } 2294 2295 /* All the data was skb head? */ 2296 if (!len) 2297 goto out; 2298 2299 /* Make offset relative to start of frags */ 2300 offset -= skb_headlen(skb); 2301 2302 /* Find where we are in frag list */ 2303 for (fragidx = 0; fragidx < skb_shinfo(skb)->nr_frags; fragidx++) { 2304 skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx]; 2305 2306 if (offset < frag->size) 2307 break; 2308 2309 offset -= frag->size; 2310 } 2311 2312 for (; len && fragidx < skb_shinfo(skb)->nr_frags; fragidx++) { 2313 skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx]; 2314 2315 slen = min_t(size_t, len, frag->size - offset); 2316 2317 while (slen) { 2318 ret = kernel_sendpage_locked(sk, frag->page.p, 2319 frag->page_offset + offset, 2320 slen, MSG_DONTWAIT); 2321 if (ret <= 0) 2322 goto error; 2323 2324 len -= ret; 2325 offset += ret; 2326 slen -= ret; 2327 } 2328 2329 offset = 0; 2330 } 2331 2332 if (len) { 2333 /* Process any frag lists */ 2334 2335 if (skb == head) { 2336 if (skb_has_frag_list(skb)) { 2337 skb = skb_shinfo(skb)->frag_list; 2338 goto do_frag_list; 2339 } 2340 } else if (skb->next) { 2341 skb = skb->next; 2342 goto do_frag_list; 2343 } 2344 } 2345 2346 out: 2347 return orig_len - len; 2348 2349 error: 2350 return orig_len == len ? ret : orig_len - len; 2351 } 2352 EXPORT_SYMBOL_GPL(skb_send_sock_locked); 2353 2354 /* Send skb data on a socket. */ 2355 int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len) 2356 { 2357 int ret = 0; 2358 2359 lock_sock(sk); 2360 ret = skb_send_sock_locked(sk, skb, offset, len); 2361 release_sock(sk); 2362 2363 return ret; 2364 } 2365 EXPORT_SYMBOL_GPL(skb_send_sock); 2366 2367 /** 2368 * skb_store_bits - store bits from kernel buffer to skb 2369 * @skb: destination buffer 2370 * @offset: offset in destination 2371 * @from: source buffer 2372 * @len: number of bytes to copy 2373 * 2374 * Copy the specified number of bytes from the source buffer to the 2375 * destination skb. This function handles all the messy bits of 2376 * traversing fragment lists and such. 2377 */ 2378 2379 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len) 2380 { 2381 int start = skb_headlen(skb); 2382 struct sk_buff *frag_iter; 2383 int i, copy; 2384 2385 if (offset > (int)skb->len - len) 2386 goto fault; 2387 2388 if ((copy = start - offset) > 0) { 2389 if (copy > len) 2390 copy = len; 2391 skb_copy_to_linear_data_offset(skb, offset, from, copy); 2392 if ((len -= copy) == 0) 2393 return 0; 2394 offset += copy; 2395 from += copy; 2396 } 2397 2398 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2399 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2400 int end; 2401 2402 WARN_ON(start > offset + len); 2403 2404 end = start + skb_frag_size(frag); 2405 if ((copy = end - offset) > 0) { 2406 u32 p_off, p_len, copied; 2407 struct page *p; 2408 u8 *vaddr; 2409 2410 if (copy > len) 2411 copy = len; 2412 2413 skb_frag_foreach_page(frag, 2414 frag->page_offset + offset - start, 2415 copy, p, p_off, p_len, copied) { 2416 vaddr = kmap_atomic(p); 2417 memcpy(vaddr + p_off, from + copied, p_len); 2418 kunmap_atomic(vaddr); 2419 } 2420 2421 if ((len -= copy) == 0) 2422 return 0; 2423 offset += copy; 2424 from += copy; 2425 } 2426 start = end; 2427 } 2428 2429 skb_walk_frags(skb, frag_iter) { 2430 int end; 2431 2432 WARN_ON(start > offset + len); 2433 2434 end = start + frag_iter->len; 2435 if ((copy = end - offset) > 0) { 2436 if (copy > len) 2437 copy = len; 2438 if (skb_store_bits(frag_iter, offset - start, 2439 from, copy)) 2440 goto fault; 2441 if ((len -= copy) == 0) 2442 return 0; 2443 offset += copy; 2444 from += copy; 2445 } 2446 start = end; 2447 } 2448 if (!len) 2449 return 0; 2450 2451 fault: 2452 return -EFAULT; 2453 } 2454 EXPORT_SYMBOL(skb_store_bits); 2455 2456 /* Checksum skb data. */ 2457 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len, 2458 __wsum csum, const struct skb_checksum_ops *ops) 2459 { 2460 int start = skb_headlen(skb); 2461 int i, copy = start - offset; 2462 struct sk_buff *frag_iter; 2463 int pos = 0; 2464 2465 /* Checksum header. */ 2466 if (copy > 0) { 2467 if (copy > len) 2468 copy = len; 2469 csum = ops->update(skb->data + offset, copy, csum); 2470 if ((len -= copy) == 0) 2471 return csum; 2472 offset += copy; 2473 pos = copy; 2474 } 2475 2476 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2477 int end; 2478 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2479 2480 WARN_ON(start > offset + len); 2481 2482 end = start + skb_frag_size(frag); 2483 if ((copy = end - offset) > 0) { 2484 u32 p_off, p_len, copied; 2485 struct page *p; 2486 __wsum csum2; 2487 u8 *vaddr; 2488 2489 if (copy > len) 2490 copy = len; 2491 2492 skb_frag_foreach_page(frag, 2493 frag->page_offset + offset - start, 2494 copy, p, p_off, p_len, copied) { 2495 vaddr = kmap_atomic(p); 2496 csum2 = ops->update(vaddr + p_off, p_len, 0); 2497 kunmap_atomic(vaddr); 2498 csum = ops->combine(csum, csum2, pos, p_len); 2499 pos += p_len; 2500 } 2501 2502 if (!(len -= copy)) 2503 return csum; 2504 offset += copy; 2505 } 2506 start = end; 2507 } 2508 2509 skb_walk_frags(skb, frag_iter) { 2510 int end; 2511 2512 WARN_ON(start > offset + len); 2513 2514 end = start + frag_iter->len; 2515 if ((copy = end - offset) > 0) { 2516 __wsum csum2; 2517 if (copy > len) 2518 copy = len; 2519 csum2 = __skb_checksum(frag_iter, offset - start, 2520 copy, 0, ops); 2521 csum = ops->combine(csum, csum2, pos, copy); 2522 if ((len -= copy) == 0) 2523 return csum; 2524 offset += copy; 2525 pos += copy; 2526 } 2527 start = end; 2528 } 2529 BUG_ON(len); 2530 2531 return csum; 2532 } 2533 EXPORT_SYMBOL(__skb_checksum); 2534 2535 __wsum skb_checksum(const struct sk_buff *skb, int offset, 2536 int len, __wsum csum) 2537 { 2538 const struct skb_checksum_ops ops = { 2539 .update = csum_partial_ext, 2540 .combine = csum_block_add_ext, 2541 }; 2542 2543 return __skb_checksum(skb, offset, len, csum, &ops); 2544 } 2545 EXPORT_SYMBOL(skb_checksum); 2546 2547 /* Both of above in one bottle. */ 2548 2549 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, 2550 u8 *to, int len, __wsum csum) 2551 { 2552 int start = skb_headlen(skb); 2553 int i, copy = start - offset; 2554 struct sk_buff *frag_iter; 2555 int pos = 0; 2556 2557 /* Copy header. */ 2558 if (copy > 0) { 2559 if (copy > len) 2560 copy = len; 2561 csum = csum_partial_copy_nocheck(skb->data + offset, to, 2562 copy, csum); 2563 if ((len -= copy) == 0) 2564 return csum; 2565 offset += copy; 2566 to += copy; 2567 pos = copy; 2568 } 2569 2570 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2571 int end; 2572 2573 WARN_ON(start > offset + len); 2574 2575 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]); 2576 if ((copy = end - offset) > 0) { 2577 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2578 u32 p_off, p_len, copied; 2579 struct page *p; 2580 __wsum csum2; 2581 u8 *vaddr; 2582 2583 if (copy > len) 2584 copy = len; 2585 2586 skb_frag_foreach_page(frag, 2587 frag->page_offset + offset - start, 2588 copy, p, p_off, p_len, copied) { 2589 vaddr = kmap_atomic(p); 2590 csum2 = csum_partial_copy_nocheck(vaddr + p_off, 2591 to + copied, 2592 p_len, 0); 2593 kunmap_atomic(vaddr); 2594 csum = csum_block_add(csum, csum2, pos); 2595 pos += p_len; 2596 } 2597 2598 if (!(len -= copy)) 2599 return csum; 2600 offset += copy; 2601 to += copy; 2602 } 2603 start = end; 2604 } 2605 2606 skb_walk_frags(skb, frag_iter) { 2607 __wsum csum2; 2608 int end; 2609 2610 WARN_ON(start > offset + len); 2611 2612 end = start + frag_iter->len; 2613 if ((copy = end - offset) > 0) { 2614 if (copy > len) 2615 copy = len; 2616 csum2 = skb_copy_and_csum_bits(frag_iter, 2617 offset - start, 2618 to, copy, 0); 2619 csum = csum_block_add(csum, csum2, pos); 2620 if ((len -= copy) == 0) 2621 return csum; 2622 offset += copy; 2623 to += copy; 2624 pos += copy; 2625 } 2626 start = end; 2627 } 2628 BUG_ON(len); 2629 return csum; 2630 } 2631 EXPORT_SYMBOL(skb_copy_and_csum_bits); 2632 2633 static __wsum warn_crc32c_csum_update(const void *buff, int len, __wsum sum) 2634 { 2635 net_warn_ratelimited( 2636 "%s: attempt to compute crc32c without libcrc32c.ko\n", 2637 __func__); 2638 return 0; 2639 } 2640 2641 static __wsum warn_crc32c_csum_combine(__wsum csum, __wsum csum2, 2642 int offset, int len) 2643 { 2644 net_warn_ratelimited( 2645 "%s: attempt to compute crc32c without libcrc32c.ko\n", 2646 __func__); 2647 return 0; 2648 } 2649 2650 static const struct skb_checksum_ops default_crc32c_ops = { 2651 .update = warn_crc32c_csum_update, 2652 .combine = warn_crc32c_csum_combine, 2653 }; 2654 2655 const struct skb_checksum_ops *crc32c_csum_stub __read_mostly = 2656 &default_crc32c_ops; 2657 EXPORT_SYMBOL(crc32c_csum_stub); 2658 2659 /** 2660 * skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy() 2661 * @from: source buffer 2662 * 2663 * Calculates the amount of linear headroom needed in the 'to' skb passed 2664 * into skb_zerocopy(). 2665 */ 2666 unsigned int 2667 skb_zerocopy_headlen(const struct sk_buff *from) 2668 { 2669 unsigned int hlen = 0; 2670 2671 if (!from->head_frag || 2672 skb_headlen(from) < L1_CACHE_BYTES || 2673 skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS) 2674 hlen = skb_headlen(from); 2675 2676 if (skb_has_frag_list(from)) 2677 hlen = from->len; 2678 2679 return hlen; 2680 } 2681 EXPORT_SYMBOL_GPL(skb_zerocopy_headlen); 2682 2683 /** 2684 * skb_zerocopy - Zero copy skb to skb 2685 * @to: destination buffer 2686 * @from: source buffer 2687 * @len: number of bytes to copy from source buffer 2688 * @hlen: size of linear headroom in destination buffer 2689 * 2690 * Copies up to `len` bytes from `from` to `to` by creating references 2691 * to the frags in the source buffer. 2692 * 2693 * The `hlen` as calculated by skb_zerocopy_headlen() specifies the 2694 * headroom in the `to` buffer. 2695 * 2696 * Return value: 2697 * 0: everything is OK 2698 * -ENOMEM: couldn't orphan frags of @from due to lack of memory 2699 * -EFAULT: skb_copy_bits() found some problem with skb geometry 2700 */ 2701 int 2702 skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen) 2703 { 2704 int i, j = 0; 2705 int plen = 0; /* length of skb->head fragment */ 2706 int ret; 2707 struct page *page; 2708 unsigned int offset; 2709 2710 BUG_ON(!from->head_frag && !hlen); 2711 2712 /* dont bother with small payloads */ 2713 if (len <= skb_tailroom(to)) 2714 return skb_copy_bits(from, 0, skb_put(to, len), len); 2715 2716 if (hlen) { 2717 ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen); 2718 if (unlikely(ret)) 2719 return ret; 2720 len -= hlen; 2721 } else { 2722 plen = min_t(int, skb_headlen(from), len); 2723 if (plen) { 2724 page = virt_to_head_page(from->head); 2725 offset = from->data - (unsigned char *)page_address(page); 2726 __skb_fill_page_desc(to, 0, page, offset, plen); 2727 get_page(page); 2728 j = 1; 2729 len -= plen; 2730 } 2731 } 2732 2733 to->truesize += len + plen; 2734 to->len += len + plen; 2735 to->data_len += len + plen; 2736 2737 if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) { 2738 skb_tx_error(from); 2739 return -ENOMEM; 2740 } 2741 skb_zerocopy_clone(to, from, GFP_ATOMIC); 2742 2743 for (i = 0; i < skb_shinfo(from)->nr_frags; i++) { 2744 if (!len) 2745 break; 2746 skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i]; 2747 skb_shinfo(to)->frags[j].size = min_t(int, skb_shinfo(to)->frags[j].size, len); 2748 len -= skb_shinfo(to)->frags[j].size; 2749 skb_frag_ref(to, j); 2750 j++; 2751 } 2752 skb_shinfo(to)->nr_frags = j; 2753 2754 return 0; 2755 } 2756 EXPORT_SYMBOL_GPL(skb_zerocopy); 2757 2758 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to) 2759 { 2760 __wsum csum; 2761 long csstart; 2762 2763 if (skb->ip_summed == CHECKSUM_PARTIAL) 2764 csstart = skb_checksum_start_offset(skb); 2765 else 2766 csstart = skb_headlen(skb); 2767 2768 BUG_ON(csstart > skb_headlen(skb)); 2769 2770 skb_copy_from_linear_data(skb, to, csstart); 2771 2772 csum = 0; 2773 if (csstart != skb->len) 2774 csum = skb_copy_and_csum_bits(skb, csstart, to + csstart, 2775 skb->len - csstart, 0); 2776 2777 if (skb->ip_summed == CHECKSUM_PARTIAL) { 2778 long csstuff = csstart + skb->csum_offset; 2779 2780 *((__sum16 *)(to + csstuff)) = csum_fold(csum); 2781 } 2782 } 2783 EXPORT_SYMBOL(skb_copy_and_csum_dev); 2784 2785 /** 2786 * skb_dequeue - remove from the head of the queue 2787 * @list: list to dequeue from 2788 * 2789 * Remove the head of the list. The list lock is taken so the function 2790 * may be used safely with other locking list functions. The head item is 2791 * returned or %NULL if the list is empty. 2792 */ 2793 2794 struct sk_buff *skb_dequeue(struct sk_buff_head *list) 2795 { 2796 unsigned long flags; 2797 struct sk_buff *result; 2798 2799 spin_lock_irqsave(&list->lock, flags); 2800 result = __skb_dequeue(list); 2801 spin_unlock_irqrestore(&list->lock, flags); 2802 return result; 2803 } 2804 EXPORT_SYMBOL(skb_dequeue); 2805 2806 /** 2807 * skb_dequeue_tail - remove from the tail of the queue 2808 * @list: list to dequeue from 2809 * 2810 * Remove the tail of the list. The list lock is taken so the function 2811 * may be used safely with other locking list functions. The tail item is 2812 * returned or %NULL if the list is empty. 2813 */ 2814 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list) 2815 { 2816 unsigned long flags; 2817 struct sk_buff *result; 2818 2819 spin_lock_irqsave(&list->lock, flags); 2820 result = __skb_dequeue_tail(list); 2821 spin_unlock_irqrestore(&list->lock, flags); 2822 return result; 2823 } 2824 EXPORT_SYMBOL(skb_dequeue_tail); 2825 2826 /** 2827 * skb_queue_purge - empty a list 2828 * @list: list to empty 2829 * 2830 * Delete all buffers on an &sk_buff list. Each buffer is removed from 2831 * the list and one reference dropped. This function takes the list 2832 * lock and is atomic with respect to other list locking functions. 2833 */ 2834 void skb_queue_purge(struct sk_buff_head *list) 2835 { 2836 struct sk_buff *skb; 2837 while ((skb = skb_dequeue(list)) != NULL) 2838 kfree_skb(skb); 2839 } 2840 EXPORT_SYMBOL(skb_queue_purge); 2841 2842 /** 2843 * skb_rbtree_purge - empty a skb rbtree 2844 * @root: root of the rbtree to empty 2845 * 2846 * Delete all buffers on an &sk_buff rbtree. Each buffer is removed from 2847 * the list and one reference dropped. This function does not take 2848 * any lock. Synchronization should be handled by the caller (e.g., TCP 2849 * out-of-order queue is protected by the socket lock). 2850 */ 2851 void skb_rbtree_purge(struct rb_root *root) 2852 { 2853 struct rb_node *p = rb_first(root); 2854 2855 while (p) { 2856 struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode); 2857 2858 p = rb_next(p); 2859 rb_erase(&skb->rbnode, root); 2860 kfree_skb(skb); 2861 } 2862 } 2863 2864 /** 2865 * skb_queue_head - queue a buffer at the list head 2866 * @list: list to use 2867 * @newsk: buffer to queue 2868 * 2869 * Queue a buffer at the start of the list. This function takes the 2870 * list lock and can be used safely with other locking &sk_buff functions 2871 * safely. 2872 * 2873 * A buffer cannot be placed on two lists at the same time. 2874 */ 2875 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk) 2876 { 2877 unsigned long flags; 2878 2879 spin_lock_irqsave(&list->lock, flags); 2880 __skb_queue_head(list, newsk); 2881 spin_unlock_irqrestore(&list->lock, flags); 2882 } 2883 EXPORT_SYMBOL(skb_queue_head); 2884 2885 /** 2886 * skb_queue_tail - queue a buffer at the list tail 2887 * @list: list to use 2888 * @newsk: buffer to queue 2889 * 2890 * Queue a buffer at the tail of the list. This function takes the 2891 * list lock and can be used safely with other locking &sk_buff functions 2892 * safely. 2893 * 2894 * A buffer cannot be placed on two lists at the same time. 2895 */ 2896 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk) 2897 { 2898 unsigned long flags; 2899 2900 spin_lock_irqsave(&list->lock, flags); 2901 __skb_queue_tail(list, newsk); 2902 spin_unlock_irqrestore(&list->lock, flags); 2903 } 2904 EXPORT_SYMBOL(skb_queue_tail); 2905 2906 /** 2907 * skb_unlink - remove a buffer from a list 2908 * @skb: buffer to remove 2909 * @list: list to use 2910 * 2911 * Remove a packet from a list. The list locks are taken and this 2912 * function is atomic with respect to other list locked calls 2913 * 2914 * You must know what list the SKB is on. 2915 */ 2916 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list) 2917 { 2918 unsigned long flags; 2919 2920 spin_lock_irqsave(&list->lock, flags); 2921 __skb_unlink(skb, list); 2922 spin_unlock_irqrestore(&list->lock, flags); 2923 } 2924 EXPORT_SYMBOL(skb_unlink); 2925 2926 /** 2927 * skb_append - append a buffer 2928 * @old: buffer to insert after 2929 * @newsk: buffer to insert 2930 * @list: list to use 2931 * 2932 * Place a packet after a given packet in a list. The list locks are taken 2933 * and this function is atomic with respect to other list locked calls. 2934 * A buffer cannot be placed on two lists at the same time. 2935 */ 2936 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list) 2937 { 2938 unsigned long flags; 2939 2940 spin_lock_irqsave(&list->lock, flags); 2941 __skb_queue_after(list, old, newsk); 2942 spin_unlock_irqrestore(&list->lock, flags); 2943 } 2944 EXPORT_SYMBOL(skb_append); 2945 2946 /** 2947 * skb_insert - insert a buffer 2948 * @old: buffer to insert before 2949 * @newsk: buffer to insert 2950 * @list: list to use 2951 * 2952 * Place a packet before a given packet in a list. The list locks are 2953 * taken and this function is atomic with respect to other list locked 2954 * calls. 2955 * 2956 * A buffer cannot be placed on two lists at the same time. 2957 */ 2958 void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list) 2959 { 2960 unsigned long flags; 2961 2962 spin_lock_irqsave(&list->lock, flags); 2963 __skb_insert(newsk, old->prev, old, list); 2964 spin_unlock_irqrestore(&list->lock, flags); 2965 } 2966 EXPORT_SYMBOL(skb_insert); 2967 2968 static inline void skb_split_inside_header(struct sk_buff *skb, 2969 struct sk_buff* skb1, 2970 const u32 len, const int pos) 2971 { 2972 int i; 2973 2974 skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len), 2975 pos - len); 2976 /* And move data appendix as is. */ 2977 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 2978 skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i]; 2979 2980 skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags; 2981 skb_shinfo(skb)->nr_frags = 0; 2982 skb1->data_len = skb->data_len; 2983 skb1->len += skb1->data_len; 2984 skb->data_len = 0; 2985 skb->len = len; 2986 skb_set_tail_pointer(skb, len); 2987 } 2988 2989 static inline void skb_split_no_header(struct sk_buff *skb, 2990 struct sk_buff* skb1, 2991 const u32 len, int pos) 2992 { 2993 int i, k = 0; 2994 const int nfrags = skb_shinfo(skb)->nr_frags; 2995 2996 skb_shinfo(skb)->nr_frags = 0; 2997 skb1->len = skb1->data_len = skb->len - len; 2998 skb->len = len; 2999 skb->data_len = len - pos; 3000 3001 for (i = 0; i < nfrags; i++) { 3002 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 3003 3004 if (pos + size > len) { 3005 skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i]; 3006 3007 if (pos < len) { 3008 /* Split frag. 3009 * We have two variants in this case: 3010 * 1. Move all the frag to the second 3011 * part, if it is possible. F.e. 3012 * this approach is mandatory for TUX, 3013 * where splitting is expensive. 3014 * 2. Split is accurately. We make this. 3015 */ 3016 skb_frag_ref(skb, i); 3017 skb_shinfo(skb1)->frags[0].page_offset += len - pos; 3018 skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos); 3019 skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos); 3020 skb_shinfo(skb)->nr_frags++; 3021 } 3022 k++; 3023 } else 3024 skb_shinfo(skb)->nr_frags++; 3025 pos += size; 3026 } 3027 skb_shinfo(skb1)->nr_frags = k; 3028 } 3029 3030 /** 3031 * skb_split - Split fragmented skb to two parts at length len. 3032 * @skb: the buffer to split 3033 * @skb1: the buffer to receive the second part 3034 * @len: new length for skb 3035 */ 3036 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len) 3037 { 3038 int pos = skb_headlen(skb); 3039 3040 skb_shinfo(skb1)->tx_flags |= skb_shinfo(skb)->tx_flags & 3041 SKBTX_SHARED_FRAG; 3042 skb_zerocopy_clone(skb1, skb, 0); 3043 if (len < pos) /* Split line is inside header. */ 3044 skb_split_inside_header(skb, skb1, len, pos); 3045 else /* Second chunk has no header, nothing to copy. */ 3046 skb_split_no_header(skb, skb1, len, pos); 3047 } 3048 EXPORT_SYMBOL(skb_split); 3049 3050 /* Shifting from/to a cloned skb is a no-go. 3051 * 3052 * Caller cannot keep skb_shinfo related pointers past calling here! 3053 */ 3054 static int skb_prepare_for_shift(struct sk_buff *skb) 3055 { 3056 return skb_cloned(skb) && pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 3057 } 3058 3059 /** 3060 * skb_shift - Shifts paged data partially from skb to another 3061 * @tgt: buffer into which tail data gets added 3062 * @skb: buffer from which the paged data comes from 3063 * @shiftlen: shift up to this many bytes 3064 * 3065 * Attempts to shift up to shiftlen worth of bytes, which may be less than 3066 * the length of the skb, from skb to tgt. Returns number bytes shifted. 3067 * It's up to caller to free skb if everything was shifted. 3068 * 3069 * If @tgt runs out of frags, the whole operation is aborted. 3070 * 3071 * Skb cannot include anything else but paged data while tgt is allowed 3072 * to have non-paged data as well. 3073 * 3074 * TODO: full sized shift could be optimized but that would need 3075 * specialized skb free'er to handle frags without up-to-date nr_frags. 3076 */ 3077 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen) 3078 { 3079 int from, to, merge, todo; 3080 struct skb_frag_struct *fragfrom, *fragto; 3081 3082 BUG_ON(shiftlen > skb->len); 3083 3084 if (skb_headlen(skb)) 3085 return 0; 3086 if (skb_zcopy(tgt) || skb_zcopy(skb)) 3087 return 0; 3088 3089 todo = shiftlen; 3090 from = 0; 3091 to = skb_shinfo(tgt)->nr_frags; 3092 fragfrom = &skb_shinfo(skb)->frags[from]; 3093 3094 /* Actual merge is delayed until the point when we know we can 3095 * commit all, so that we don't have to undo partial changes 3096 */ 3097 if (!to || 3098 !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom), 3099 fragfrom->page_offset)) { 3100 merge = -1; 3101 } else { 3102 merge = to - 1; 3103 3104 todo -= skb_frag_size(fragfrom); 3105 if (todo < 0) { 3106 if (skb_prepare_for_shift(skb) || 3107 skb_prepare_for_shift(tgt)) 3108 return 0; 3109 3110 /* All previous frag pointers might be stale! */ 3111 fragfrom = &skb_shinfo(skb)->frags[from]; 3112 fragto = &skb_shinfo(tgt)->frags[merge]; 3113 3114 skb_frag_size_add(fragto, shiftlen); 3115 skb_frag_size_sub(fragfrom, shiftlen); 3116 fragfrom->page_offset += shiftlen; 3117 3118 goto onlymerged; 3119 } 3120 3121 from++; 3122 } 3123 3124 /* Skip full, not-fitting skb to avoid expensive operations */ 3125 if ((shiftlen == skb->len) && 3126 (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to)) 3127 return 0; 3128 3129 if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt)) 3130 return 0; 3131 3132 while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) { 3133 if (to == MAX_SKB_FRAGS) 3134 return 0; 3135 3136 fragfrom = &skb_shinfo(skb)->frags[from]; 3137 fragto = &skb_shinfo(tgt)->frags[to]; 3138 3139 if (todo >= skb_frag_size(fragfrom)) { 3140 *fragto = *fragfrom; 3141 todo -= skb_frag_size(fragfrom); 3142 from++; 3143 to++; 3144 3145 } else { 3146 __skb_frag_ref(fragfrom); 3147 fragto->page = fragfrom->page; 3148 fragto->page_offset = fragfrom->page_offset; 3149 skb_frag_size_set(fragto, todo); 3150 3151 fragfrom->page_offset += todo; 3152 skb_frag_size_sub(fragfrom, todo); 3153 todo = 0; 3154 3155 to++; 3156 break; 3157 } 3158 } 3159 3160 /* Ready to "commit" this state change to tgt */ 3161 skb_shinfo(tgt)->nr_frags = to; 3162 3163 if (merge >= 0) { 3164 fragfrom = &skb_shinfo(skb)->frags[0]; 3165 fragto = &skb_shinfo(tgt)->frags[merge]; 3166 3167 skb_frag_size_add(fragto, skb_frag_size(fragfrom)); 3168 __skb_frag_unref(fragfrom); 3169 } 3170 3171 /* Reposition in the original skb */ 3172 to = 0; 3173 while (from < skb_shinfo(skb)->nr_frags) 3174 skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++]; 3175 skb_shinfo(skb)->nr_frags = to; 3176 3177 BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags); 3178 3179 onlymerged: 3180 /* Most likely the tgt won't ever need its checksum anymore, skb on 3181 * the other hand might need it if it needs to be resent 3182 */ 3183 tgt->ip_summed = CHECKSUM_PARTIAL; 3184 skb->ip_summed = CHECKSUM_PARTIAL; 3185 3186 /* Yak, is it really working this way? Some helper please? */ 3187 skb->len -= shiftlen; 3188 skb->data_len -= shiftlen; 3189 skb->truesize -= shiftlen; 3190 tgt->len += shiftlen; 3191 tgt->data_len += shiftlen; 3192 tgt->truesize += shiftlen; 3193 3194 return shiftlen; 3195 } 3196 3197 /** 3198 * skb_prepare_seq_read - Prepare a sequential read of skb data 3199 * @skb: the buffer to read 3200 * @from: lower offset of data to be read 3201 * @to: upper offset of data to be read 3202 * @st: state variable 3203 * 3204 * Initializes the specified state variable. Must be called before 3205 * invoking skb_seq_read() for the first time. 3206 */ 3207 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from, 3208 unsigned int to, struct skb_seq_state *st) 3209 { 3210 st->lower_offset = from; 3211 st->upper_offset = to; 3212 st->root_skb = st->cur_skb = skb; 3213 st->frag_idx = st->stepped_offset = 0; 3214 st->frag_data = NULL; 3215 } 3216 EXPORT_SYMBOL(skb_prepare_seq_read); 3217 3218 /** 3219 * skb_seq_read - Sequentially read skb data 3220 * @consumed: number of bytes consumed by the caller so far 3221 * @data: destination pointer for data to be returned 3222 * @st: state variable 3223 * 3224 * Reads a block of skb data at @consumed relative to the 3225 * lower offset specified to skb_prepare_seq_read(). Assigns 3226 * the head of the data block to @data and returns the length 3227 * of the block or 0 if the end of the skb data or the upper 3228 * offset has been reached. 3229 * 3230 * The caller is not required to consume all of the data 3231 * returned, i.e. @consumed is typically set to the number 3232 * of bytes already consumed and the next call to 3233 * skb_seq_read() will return the remaining part of the block. 3234 * 3235 * Note 1: The size of each block of data returned can be arbitrary, 3236 * this limitation is the cost for zerocopy sequential 3237 * reads of potentially non linear data. 3238 * 3239 * Note 2: Fragment lists within fragments are not implemented 3240 * at the moment, state->root_skb could be replaced with 3241 * a stack for this purpose. 3242 */ 3243 unsigned int skb_seq_read(unsigned int consumed, const u8 **data, 3244 struct skb_seq_state *st) 3245 { 3246 unsigned int block_limit, abs_offset = consumed + st->lower_offset; 3247 skb_frag_t *frag; 3248 3249 if (unlikely(abs_offset >= st->upper_offset)) { 3250 if (st->frag_data) { 3251 kunmap_atomic(st->frag_data); 3252 st->frag_data = NULL; 3253 } 3254 return 0; 3255 } 3256 3257 next_skb: 3258 block_limit = skb_headlen(st->cur_skb) + st->stepped_offset; 3259 3260 if (abs_offset < block_limit && !st->frag_data) { 3261 *data = st->cur_skb->data + (abs_offset - st->stepped_offset); 3262 return block_limit - abs_offset; 3263 } 3264 3265 if (st->frag_idx == 0 && !st->frag_data) 3266 st->stepped_offset += skb_headlen(st->cur_skb); 3267 3268 while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) { 3269 frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx]; 3270 block_limit = skb_frag_size(frag) + st->stepped_offset; 3271 3272 if (abs_offset < block_limit) { 3273 if (!st->frag_data) 3274 st->frag_data = kmap_atomic(skb_frag_page(frag)); 3275 3276 *data = (u8 *) st->frag_data + frag->page_offset + 3277 (abs_offset - st->stepped_offset); 3278 3279 return block_limit - abs_offset; 3280 } 3281 3282 if (st->frag_data) { 3283 kunmap_atomic(st->frag_data); 3284 st->frag_data = NULL; 3285 } 3286 3287 st->frag_idx++; 3288 st->stepped_offset += skb_frag_size(frag); 3289 } 3290 3291 if (st->frag_data) { 3292 kunmap_atomic(st->frag_data); 3293 st->frag_data = NULL; 3294 } 3295 3296 if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) { 3297 st->cur_skb = skb_shinfo(st->root_skb)->frag_list; 3298 st->frag_idx = 0; 3299 goto next_skb; 3300 } else if (st->cur_skb->next) { 3301 st->cur_skb = st->cur_skb->next; 3302 st->frag_idx = 0; 3303 goto next_skb; 3304 } 3305 3306 return 0; 3307 } 3308 EXPORT_SYMBOL(skb_seq_read); 3309 3310 /** 3311 * skb_abort_seq_read - Abort a sequential read of skb data 3312 * @st: state variable 3313 * 3314 * Must be called if skb_seq_read() was not called until it 3315 * returned 0. 3316 */ 3317 void skb_abort_seq_read(struct skb_seq_state *st) 3318 { 3319 if (st->frag_data) 3320 kunmap_atomic(st->frag_data); 3321 } 3322 EXPORT_SYMBOL(skb_abort_seq_read); 3323 3324 #define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb)) 3325 3326 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text, 3327 struct ts_config *conf, 3328 struct ts_state *state) 3329 { 3330 return skb_seq_read(offset, text, TS_SKB_CB(state)); 3331 } 3332 3333 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state) 3334 { 3335 skb_abort_seq_read(TS_SKB_CB(state)); 3336 } 3337 3338 /** 3339 * skb_find_text - Find a text pattern in skb data 3340 * @skb: the buffer to look in 3341 * @from: search offset 3342 * @to: search limit 3343 * @config: textsearch configuration 3344 * 3345 * Finds a pattern in the skb data according to the specified 3346 * textsearch configuration. Use textsearch_next() to retrieve 3347 * subsequent occurrences of the pattern. Returns the offset 3348 * to the first occurrence or UINT_MAX if no match was found. 3349 */ 3350 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from, 3351 unsigned int to, struct ts_config *config) 3352 { 3353 struct ts_state state; 3354 unsigned int ret; 3355 3356 config->get_next_block = skb_ts_get_next_block; 3357 config->finish = skb_ts_finish; 3358 3359 skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state)); 3360 3361 ret = textsearch_find(config, &state); 3362 return (ret <= to - from ? ret : UINT_MAX); 3363 } 3364 EXPORT_SYMBOL(skb_find_text); 3365 3366 /** 3367 * skb_append_datato_frags - append the user data to a skb 3368 * @sk: sock structure 3369 * @skb: skb structure to be appended with user data. 3370 * @getfrag: call back function to be used for getting the user data 3371 * @from: pointer to user message iov 3372 * @length: length of the iov message 3373 * 3374 * Description: This procedure append the user data in the fragment part 3375 * of the skb if any page alloc fails user this procedure returns -ENOMEM 3376 */ 3377 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb, 3378 int (*getfrag)(void *from, char *to, int offset, 3379 int len, int odd, struct sk_buff *skb), 3380 void *from, int length) 3381 { 3382 int frg_cnt = skb_shinfo(skb)->nr_frags; 3383 int copy; 3384 int offset = 0; 3385 int ret; 3386 struct page_frag *pfrag = ¤t->task_frag; 3387 3388 do { 3389 /* Return error if we don't have space for new frag */ 3390 if (frg_cnt >= MAX_SKB_FRAGS) 3391 return -EMSGSIZE; 3392 3393 if (!sk_page_frag_refill(sk, pfrag)) 3394 return -ENOMEM; 3395 3396 /* copy the user data to page */ 3397 copy = min_t(int, length, pfrag->size - pfrag->offset); 3398 3399 ret = getfrag(from, page_address(pfrag->page) + pfrag->offset, 3400 offset, copy, 0, skb); 3401 if (ret < 0) 3402 return -EFAULT; 3403 3404 /* copy was successful so update the size parameters */ 3405 skb_fill_page_desc(skb, frg_cnt, pfrag->page, pfrag->offset, 3406 copy); 3407 frg_cnt++; 3408 pfrag->offset += copy; 3409 get_page(pfrag->page); 3410 3411 skb->truesize += copy; 3412 refcount_add(copy, &sk->sk_wmem_alloc); 3413 skb->len += copy; 3414 skb->data_len += copy; 3415 offset += copy; 3416 length -= copy; 3417 3418 } while (length > 0); 3419 3420 return 0; 3421 } 3422 EXPORT_SYMBOL(skb_append_datato_frags); 3423 3424 int skb_append_pagefrags(struct sk_buff *skb, struct page *page, 3425 int offset, size_t size) 3426 { 3427 int i = skb_shinfo(skb)->nr_frags; 3428 3429 if (skb_can_coalesce(skb, i, page, offset)) { 3430 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size); 3431 } else if (i < MAX_SKB_FRAGS) { 3432 get_page(page); 3433 skb_fill_page_desc(skb, i, page, offset, size); 3434 } else { 3435 return -EMSGSIZE; 3436 } 3437 3438 return 0; 3439 } 3440 EXPORT_SYMBOL_GPL(skb_append_pagefrags); 3441 3442 /** 3443 * skb_pull_rcsum - pull skb and update receive checksum 3444 * @skb: buffer to update 3445 * @len: length of data pulled 3446 * 3447 * This function performs an skb_pull on the packet and updates 3448 * the CHECKSUM_COMPLETE checksum. It should be used on 3449 * receive path processing instead of skb_pull unless you know 3450 * that the checksum difference is zero (e.g., a valid IP header) 3451 * or you are setting ip_summed to CHECKSUM_NONE. 3452 */ 3453 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len) 3454 { 3455 unsigned char *data = skb->data; 3456 3457 BUG_ON(len > skb->len); 3458 __skb_pull(skb, len); 3459 skb_postpull_rcsum(skb, data, len); 3460 return skb->data; 3461 } 3462 EXPORT_SYMBOL_GPL(skb_pull_rcsum); 3463 3464 static inline skb_frag_t skb_head_frag_to_page_desc(struct sk_buff *frag_skb) 3465 { 3466 skb_frag_t head_frag; 3467 struct page *page; 3468 3469 page = virt_to_head_page(frag_skb->head); 3470 head_frag.page.p = page; 3471 head_frag.page_offset = frag_skb->data - 3472 (unsigned char *)page_address(page); 3473 head_frag.size = skb_headlen(frag_skb); 3474 return head_frag; 3475 } 3476 3477 /** 3478 * skb_segment - Perform protocol segmentation on skb. 3479 * @head_skb: buffer to segment 3480 * @features: features for the output path (see dev->features) 3481 * 3482 * This function performs segmentation on the given skb. It returns 3483 * a pointer to the first in a list of new skbs for the segments. 3484 * In case of error it returns ERR_PTR(err). 3485 */ 3486 struct sk_buff *skb_segment(struct sk_buff *head_skb, 3487 netdev_features_t features) 3488 { 3489 struct sk_buff *segs = NULL; 3490 struct sk_buff *tail = NULL; 3491 struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list; 3492 skb_frag_t *frag = skb_shinfo(head_skb)->frags; 3493 unsigned int mss = skb_shinfo(head_skb)->gso_size; 3494 unsigned int doffset = head_skb->data - skb_mac_header(head_skb); 3495 struct sk_buff *frag_skb = head_skb; 3496 unsigned int offset = doffset; 3497 unsigned int tnl_hlen = skb_tnl_header_len(head_skb); 3498 unsigned int partial_segs = 0; 3499 unsigned int headroom; 3500 unsigned int len = head_skb->len; 3501 __be16 proto; 3502 bool csum, sg; 3503 int nfrags = skb_shinfo(head_skb)->nr_frags; 3504 int err = -ENOMEM; 3505 int i = 0; 3506 int pos; 3507 int dummy; 3508 3509 __skb_push(head_skb, doffset); 3510 proto = skb_network_protocol(head_skb, &dummy); 3511 if (unlikely(!proto)) 3512 return ERR_PTR(-EINVAL); 3513 3514 sg = !!(features & NETIF_F_SG); 3515 csum = !!can_checksum_protocol(features, proto); 3516 3517 if (sg && csum && (mss != GSO_BY_FRAGS)) { 3518 if (!(features & NETIF_F_GSO_PARTIAL)) { 3519 struct sk_buff *iter; 3520 unsigned int frag_len; 3521 3522 if (!list_skb || 3523 !net_gso_ok(features, skb_shinfo(head_skb)->gso_type)) 3524 goto normal; 3525 3526 /* If we get here then all the required 3527 * GSO features except frag_list are supported. 3528 * Try to split the SKB to multiple GSO SKBs 3529 * with no frag_list. 3530 * Currently we can do that only when the buffers don't 3531 * have a linear part and all the buffers except 3532 * the last are of the same length. 3533 */ 3534 frag_len = list_skb->len; 3535 skb_walk_frags(head_skb, iter) { 3536 if (frag_len != iter->len && iter->next) 3537 goto normal; 3538 if (skb_headlen(iter) && !iter->head_frag) 3539 goto normal; 3540 3541 len -= iter->len; 3542 } 3543 3544 if (len != frag_len) 3545 goto normal; 3546 } 3547 3548 /* GSO partial only requires that we trim off any excess that 3549 * doesn't fit into an MSS sized block, so take care of that 3550 * now. 3551 */ 3552 partial_segs = len / mss; 3553 if (partial_segs > 1) 3554 mss *= partial_segs; 3555 else 3556 partial_segs = 0; 3557 } 3558 3559 normal: 3560 headroom = skb_headroom(head_skb); 3561 pos = skb_headlen(head_skb); 3562 3563 do { 3564 struct sk_buff *nskb; 3565 skb_frag_t *nskb_frag; 3566 int hsize; 3567 int size; 3568 3569 if (unlikely(mss == GSO_BY_FRAGS)) { 3570 len = list_skb->len; 3571 } else { 3572 len = head_skb->len - offset; 3573 if (len > mss) 3574 len = mss; 3575 } 3576 3577 hsize = skb_headlen(head_skb) - offset; 3578 if (hsize < 0) 3579 hsize = 0; 3580 if (hsize > len || !sg) 3581 hsize = len; 3582 3583 if (!hsize && i >= nfrags && skb_headlen(list_skb) && 3584 (skb_headlen(list_skb) == len || sg)) { 3585 BUG_ON(skb_headlen(list_skb) > len); 3586 3587 i = 0; 3588 nfrags = skb_shinfo(list_skb)->nr_frags; 3589 frag = skb_shinfo(list_skb)->frags; 3590 frag_skb = list_skb; 3591 pos += skb_headlen(list_skb); 3592 3593 while (pos < offset + len) { 3594 BUG_ON(i >= nfrags); 3595 3596 size = skb_frag_size(frag); 3597 if (pos + size > offset + len) 3598 break; 3599 3600 i++; 3601 pos += size; 3602 frag++; 3603 } 3604 3605 nskb = skb_clone(list_skb, GFP_ATOMIC); 3606 list_skb = list_skb->next; 3607 3608 if (unlikely(!nskb)) 3609 goto err; 3610 3611 if (unlikely(pskb_trim(nskb, len))) { 3612 kfree_skb(nskb); 3613 goto err; 3614 } 3615 3616 hsize = skb_end_offset(nskb); 3617 if (skb_cow_head(nskb, doffset + headroom)) { 3618 kfree_skb(nskb); 3619 goto err; 3620 } 3621 3622 nskb->truesize += skb_end_offset(nskb) - hsize; 3623 skb_release_head_state(nskb); 3624 __skb_push(nskb, doffset); 3625 } else { 3626 nskb = __alloc_skb(hsize + doffset + headroom, 3627 GFP_ATOMIC, skb_alloc_rx_flag(head_skb), 3628 NUMA_NO_NODE); 3629 3630 if (unlikely(!nskb)) 3631 goto err; 3632 3633 skb_reserve(nskb, headroom); 3634 __skb_put(nskb, doffset); 3635 } 3636 3637 if (segs) 3638 tail->next = nskb; 3639 else 3640 segs = nskb; 3641 tail = nskb; 3642 3643 __copy_skb_header(nskb, head_skb); 3644 3645 skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom); 3646 skb_reset_mac_len(nskb); 3647 3648 skb_copy_from_linear_data_offset(head_skb, -tnl_hlen, 3649 nskb->data - tnl_hlen, 3650 doffset + tnl_hlen); 3651 3652 if (nskb->len == len + doffset) 3653 goto perform_csum_check; 3654 3655 if (!sg) { 3656 if (!nskb->remcsum_offload) 3657 nskb->ip_summed = CHECKSUM_NONE; 3658 SKB_GSO_CB(nskb)->csum = 3659 skb_copy_and_csum_bits(head_skb, offset, 3660 skb_put(nskb, len), 3661 len, 0); 3662 SKB_GSO_CB(nskb)->csum_start = 3663 skb_headroom(nskb) + doffset; 3664 continue; 3665 } 3666 3667 nskb_frag = skb_shinfo(nskb)->frags; 3668 3669 skb_copy_from_linear_data_offset(head_skb, offset, 3670 skb_put(nskb, hsize), hsize); 3671 3672 skb_shinfo(nskb)->tx_flags |= skb_shinfo(head_skb)->tx_flags & 3673 SKBTX_SHARED_FRAG; 3674 3675 if (skb_orphan_frags(frag_skb, GFP_ATOMIC) || 3676 skb_zerocopy_clone(nskb, frag_skb, GFP_ATOMIC)) 3677 goto err; 3678 3679 while (pos < offset + len) { 3680 if (i >= nfrags) { 3681 i = 0; 3682 nfrags = skb_shinfo(list_skb)->nr_frags; 3683 frag = skb_shinfo(list_skb)->frags; 3684 frag_skb = list_skb; 3685 if (!skb_headlen(list_skb)) { 3686 BUG_ON(!nfrags); 3687 } else { 3688 BUG_ON(!list_skb->head_frag); 3689 3690 /* to make room for head_frag. */ 3691 i--; 3692 frag--; 3693 } 3694 if (skb_orphan_frags(frag_skb, GFP_ATOMIC) || 3695 skb_zerocopy_clone(nskb, frag_skb, 3696 GFP_ATOMIC)) 3697 goto err; 3698 3699 list_skb = list_skb->next; 3700 } 3701 3702 if (unlikely(skb_shinfo(nskb)->nr_frags >= 3703 MAX_SKB_FRAGS)) { 3704 net_warn_ratelimited( 3705 "skb_segment: too many frags: %u %u\n", 3706 pos, mss); 3707 goto err; 3708 } 3709 3710 *nskb_frag = (i < 0) ? skb_head_frag_to_page_desc(frag_skb) : *frag; 3711 __skb_frag_ref(nskb_frag); 3712 size = skb_frag_size(nskb_frag); 3713 3714 if (pos < offset) { 3715 nskb_frag->page_offset += offset - pos; 3716 skb_frag_size_sub(nskb_frag, offset - pos); 3717 } 3718 3719 skb_shinfo(nskb)->nr_frags++; 3720 3721 if (pos + size <= offset + len) { 3722 i++; 3723 frag++; 3724 pos += size; 3725 } else { 3726 skb_frag_size_sub(nskb_frag, pos + size - (offset + len)); 3727 goto skip_fraglist; 3728 } 3729 3730 nskb_frag++; 3731 } 3732 3733 skip_fraglist: 3734 nskb->data_len = len - hsize; 3735 nskb->len += nskb->data_len; 3736 nskb->truesize += nskb->data_len; 3737 3738 perform_csum_check: 3739 if (!csum) { 3740 if (skb_has_shared_frag(nskb)) { 3741 err = __skb_linearize(nskb); 3742 if (err) 3743 goto err; 3744 } 3745 if (!nskb->remcsum_offload) 3746 nskb->ip_summed = CHECKSUM_NONE; 3747 SKB_GSO_CB(nskb)->csum = 3748 skb_checksum(nskb, doffset, 3749 nskb->len - doffset, 0); 3750 SKB_GSO_CB(nskb)->csum_start = 3751 skb_headroom(nskb) + doffset; 3752 } 3753 } while ((offset += len) < head_skb->len); 3754 3755 /* Some callers want to get the end of the list. 3756 * Put it in segs->prev to avoid walking the list. 3757 * (see validate_xmit_skb_list() for example) 3758 */ 3759 segs->prev = tail; 3760 3761 if (partial_segs) { 3762 struct sk_buff *iter; 3763 int type = skb_shinfo(head_skb)->gso_type; 3764 unsigned short gso_size = skb_shinfo(head_skb)->gso_size; 3765 3766 /* Update type to add partial and then remove dodgy if set */ 3767 type |= (features & NETIF_F_GSO_PARTIAL) / NETIF_F_GSO_PARTIAL * SKB_GSO_PARTIAL; 3768 type &= ~SKB_GSO_DODGY; 3769 3770 /* Update GSO info and prepare to start updating headers on 3771 * our way back down the stack of protocols. 3772 */ 3773 for (iter = segs; iter; iter = iter->next) { 3774 skb_shinfo(iter)->gso_size = gso_size; 3775 skb_shinfo(iter)->gso_segs = partial_segs; 3776 skb_shinfo(iter)->gso_type = type; 3777 SKB_GSO_CB(iter)->data_offset = skb_headroom(iter) + doffset; 3778 } 3779 3780 if (tail->len - doffset <= gso_size) 3781 skb_shinfo(tail)->gso_size = 0; 3782 else if (tail != segs) 3783 skb_shinfo(tail)->gso_segs = DIV_ROUND_UP(tail->len - doffset, gso_size); 3784 } 3785 3786 /* Following permits correct backpressure, for protocols 3787 * using skb_set_owner_w(). 3788 * Idea is to tranfert ownership from head_skb to last segment. 3789 */ 3790 if (head_skb->destructor == sock_wfree) { 3791 swap(tail->truesize, head_skb->truesize); 3792 swap(tail->destructor, head_skb->destructor); 3793 swap(tail->sk, head_skb->sk); 3794 } 3795 return segs; 3796 3797 err: 3798 kfree_skb_list(segs); 3799 return ERR_PTR(err); 3800 } 3801 EXPORT_SYMBOL_GPL(skb_segment); 3802 3803 int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb) 3804 { 3805 struct skb_shared_info *pinfo, *skbinfo = skb_shinfo(skb); 3806 unsigned int offset = skb_gro_offset(skb); 3807 unsigned int headlen = skb_headlen(skb); 3808 unsigned int len = skb_gro_len(skb); 3809 struct sk_buff *lp, *p = *head; 3810 unsigned int delta_truesize; 3811 3812 if (unlikely(p->len + len >= 65536)) 3813 return -E2BIG; 3814 3815 lp = NAPI_GRO_CB(p)->last; 3816 pinfo = skb_shinfo(lp); 3817 3818 if (headlen <= offset) { 3819 skb_frag_t *frag; 3820 skb_frag_t *frag2; 3821 int i = skbinfo->nr_frags; 3822 int nr_frags = pinfo->nr_frags + i; 3823 3824 if (nr_frags > MAX_SKB_FRAGS) 3825 goto merge; 3826 3827 offset -= headlen; 3828 pinfo->nr_frags = nr_frags; 3829 skbinfo->nr_frags = 0; 3830 3831 frag = pinfo->frags + nr_frags; 3832 frag2 = skbinfo->frags + i; 3833 do { 3834 *--frag = *--frag2; 3835 } while (--i); 3836 3837 frag->page_offset += offset; 3838 skb_frag_size_sub(frag, offset); 3839 3840 /* all fragments truesize : remove (head size + sk_buff) */ 3841 delta_truesize = skb->truesize - 3842 SKB_TRUESIZE(skb_end_offset(skb)); 3843 3844 skb->truesize -= skb->data_len; 3845 skb->len -= skb->data_len; 3846 skb->data_len = 0; 3847 3848 NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE; 3849 goto done; 3850 } else if (skb->head_frag) { 3851 int nr_frags = pinfo->nr_frags; 3852 skb_frag_t *frag = pinfo->frags + nr_frags; 3853 struct page *page = virt_to_head_page(skb->head); 3854 unsigned int first_size = headlen - offset; 3855 unsigned int first_offset; 3856 3857 if (nr_frags + 1 + skbinfo->nr_frags > MAX_SKB_FRAGS) 3858 goto merge; 3859 3860 first_offset = skb->data - 3861 (unsigned char *)page_address(page) + 3862 offset; 3863 3864 pinfo->nr_frags = nr_frags + 1 + skbinfo->nr_frags; 3865 3866 frag->page.p = page; 3867 frag->page_offset = first_offset; 3868 skb_frag_size_set(frag, first_size); 3869 3870 memcpy(frag + 1, skbinfo->frags, sizeof(*frag) * skbinfo->nr_frags); 3871 /* We dont need to clear skbinfo->nr_frags here */ 3872 3873 delta_truesize = skb->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff)); 3874 NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE_STOLEN_HEAD; 3875 goto done; 3876 } 3877 3878 merge: 3879 delta_truesize = skb->truesize; 3880 if (offset > headlen) { 3881 unsigned int eat = offset - headlen; 3882 3883 skbinfo->frags[0].page_offset += eat; 3884 skb_frag_size_sub(&skbinfo->frags[0], eat); 3885 skb->data_len -= eat; 3886 skb->len -= eat; 3887 offset = headlen; 3888 } 3889 3890 __skb_pull(skb, offset); 3891 3892 if (NAPI_GRO_CB(p)->last == p) 3893 skb_shinfo(p)->frag_list = skb; 3894 else 3895 NAPI_GRO_CB(p)->last->next = skb; 3896 NAPI_GRO_CB(p)->last = skb; 3897 __skb_header_release(skb); 3898 lp = p; 3899 3900 done: 3901 NAPI_GRO_CB(p)->count++; 3902 p->data_len += len; 3903 p->truesize += delta_truesize; 3904 p->len += len; 3905 if (lp != p) { 3906 lp->data_len += len; 3907 lp->truesize += delta_truesize; 3908 lp->len += len; 3909 } 3910 NAPI_GRO_CB(skb)->same_flow = 1; 3911 return 0; 3912 } 3913 EXPORT_SYMBOL_GPL(skb_gro_receive); 3914 3915 void __init skb_init(void) 3916 { 3917 skbuff_head_cache = kmem_cache_create_usercopy("skbuff_head_cache", 3918 sizeof(struct sk_buff), 3919 0, 3920 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 3921 offsetof(struct sk_buff, cb), 3922 sizeof_field(struct sk_buff, cb), 3923 NULL); 3924 skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache", 3925 sizeof(struct sk_buff_fclones), 3926 0, 3927 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 3928 NULL); 3929 } 3930 3931 static int 3932 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len, 3933 unsigned int recursion_level) 3934 { 3935 int start = skb_headlen(skb); 3936 int i, copy = start - offset; 3937 struct sk_buff *frag_iter; 3938 int elt = 0; 3939 3940 if (unlikely(recursion_level >= 24)) 3941 return -EMSGSIZE; 3942 3943 if (copy > 0) { 3944 if (copy > len) 3945 copy = len; 3946 sg_set_buf(sg, skb->data + offset, copy); 3947 elt++; 3948 if ((len -= copy) == 0) 3949 return elt; 3950 offset += copy; 3951 } 3952 3953 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 3954 int end; 3955 3956 WARN_ON(start > offset + len); 3957 3958 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]); 3959 if ((copy = end - offset) > 0) { 3960 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 3961 if (unlikely(elt && sg_is_last(&sg[elt - 1]))) 3962 return -EMSGSIZE; 3963 3964 if (copy > len) 3965 copy = len; 3966 sg_set_page(&sg[elt], skb_frag_page(frag), copy, 3967 frag->page_offset+offset-start); 3968 elt++; 3969 if (!(len -= copy)) 3970 return elt; 3971 offset += copy; 3972 } 3973 start = end; 3974 } 3975 3976 skb_walk_frags(skb, frag_iter) { 3977 int end, ret; 3978 3979 WARN_ON(start > offset + len); 3980 3981 end = start + frag_iter->len; 3982 if ((copy = end - offset) > 0) { 3983 if (unlikely(elt && sg_is_last(&sg[elt - 1]))) 3984 return -EMSGSIZE; 3985 3986 if (copy > len) 3987 copy = len; 3988 ret = __skb_to_sgvec(frag_iter, sg+elt, offset - start, 3989 copy, recursion_level + 1); 3990 if (unlikely(ret < 0)) 3991 return ret; 3992 elt += ret; 3993 if ((len -= copy) == 0) 3994 return elt; 3995 offset += copy; 3996 } 3997 start = end; 3998 } 3999 BUG_ON(len); 4000 return elt; 4001 } 4002 4003 /** 4004 * skb_to_sgvec - Fill a scatter-gather list from a socket buffer 4005 * @skb: Socket buffer containing the buffers to be mapped 4006 * @sg: The scatter-gather list to map into 4007 * @offset: The offset into the buffer's contents to start mapping 4008 * @len: Length of buffer space to be mapped 4009 * 4010 * Fill the specified scatter-gather list with mappings/pointers into a 4011 * region of the buffer space attached to a socket buffer. Returns either 4012 * the number of scatterlist items used, or -EMSGSIZE if the contents 4013 * could not fit. 4014 */ 4015 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len) 4016 { 4017 int nsg = __skb_to_sgvec(skb, sg, offset, len, 0); 4018 4019 if (nsg <= 0) 4020 return nsg; 4021 4022 sg_mark_end(&sg[nsg - 1]); 4023 4024 return nsg; 4025 } 4026 EXPORT_SYMBOL_GPL(skb_to_sgvec); 4027 4028 /* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given 4029 * sglist without mark the sg which contain last skb data as the end. 4030 * So the caller can mannipulate sg list as will when padding new data after 4031 * the first call without calling sg_unmark_end to expend sg list. 4032 * 4033 * Scenario to use skb_to_sgvec_nomark: 4034 * 1. sg_init_table 4035 * 2. skb_to_sgvec_nomark(payload1) 4036 * 3. skb_to_sgvec_nomark(payload2) 4037 * 4038 * This is equivalent to: 4039 * 1. sg_init_table 4040 * 2. skb_to_sgvec(payload1) 4041 * 3. sg_unmark_end 4042 * 4. skb_to_sgvec(payload2) 4043 * 4044 * When mapping mutilple payload conditionally, skb_to_sgvec_nomark 4045 * is more preferable. 4046 */ 4047 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg, 4048 int offset, int len) 4049 { 4050 return __skb_to_sgvec(skb, sg, offset, len, 0); 4051 } 4052 EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark); 4053 4054 4055 4056 /** 4057 * skb_cow_data - Check that a socket buffer's data buffers are writable 4058 * @skb: The socket buffer to check. 4059 * @tailbits: Amount of trailing space to be added 4060 * @trailer: Returned pointer to the skb where the @tailbits space begins 4061 * 4062 * Make sure that the data buffers attached to a socket buffer are 4063 * writable. If they are not, private copies are made of the data buffers 4064 * and the socket buffer is set to use these instead. 4065 * 4066 * If @tailbits is given, make sure that there is space to write @tailbits 4067 * bytes of data beyond current end of socket buffer. @trailer will be 4068 * set to point to the skb in which this space begins. 4069 * 4070 * The number of scatterlist elements required to completely map the 4071 * COW'd and extended socket buffer will be returned. 4072 */ 4073 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer) 4074 { 4075 int copyflag; 4076 int elt; 4077 struct sk_buff *skb1, **skb_p; 4078 4079 /* If skb is cloned or its head is paged, reallocate 4080 * head pulling out all the pages (pages are considered not writable 4081 * at the moment even if they are anonymous). 4082 */ 4083 if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) && 4084 __pskb_pull_tail(skb, skb_pagelen(skb)-skb_headlen(skb)) == NULL) 4085 return -ENOMEM; 4086 4087 /* Easy case. Most of packets will go this way. */ 4088 if (!skb_has_frag_list(skb)) { 4089 /* A little of trouble, not enough of space for trailer. 4090 * This should not happen, when stack is tuned to generate 4091 * good frames. OK, on miss we reallocate and reserve even more 4092 * space, 128 bytes is fair. */ 4093 4094 if (skb_tailroom(skb) < tailbits && 4095 pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC)) 4096 return -ENOMEM; 4097 4098 /* Voila! */ 4099 *trailer = skb; 4100 return 1; 4101 } 4102 4103 /* Misery. We are in troubles, going to mincer fragments... */ 4104 4105 elt = 1; 4106 skb_p = &skb_shinfo(skb)->frag_list; 4107 copyflag = 0; 4108 4109 while ((skb1 = *skb_p) != NULL) { 4110 int ntail = 0; 4111 4112 /* The fragment is partially pulled by someone, 4113 * this can happen on input. Copy it and everything 4114 * after it. */ 4115 4116 if (skb_shared(skb1)) 4117 copyflag = 1; 4118 4119 /* If the skb is the last, worry about trailer. */ 4120 4121 if (skb1->next == NULL && tailbits) { 4122 if (skb_shinfo(skb1)->nr_frags || 4123 skb_has_frag_list(skb1) || 4124 skb_tailroom(skb1) < tailbits) 4125 ntail = tailbits + 128; 4126 } 4127 4128 if (copyflag || 4129 skb_cloned(skb1) || 4130 ntail || 4131 skb_shinfo(skb1)->nr_frags || 4132 skb_has_frag_list(skb1)) { 4133 struct sk_buff *skb2; 4134 4135 /* Fuck, we are miserable poor guys... */ 4136 if (ntail == 0) 4137 skb2 = skb_copy(skb1, GFP_ATOMIC); 4138 else 4139 skb2 = skb_copy_expand(skb1, 4140 skb_headroom(skb1), 4141 ntail, 4142 GFP_ATOMIC); 4143 if (unlikely(skb2 == NULL)) 4144 return -ENOMEM; 4145 4146 if (skb1->sk) 4147 skb_set_owner_w(skb2, skb1->sk); 4148 4149 /* Looking around. Are we still alive? 4150 * OK, link new skb, drop old one */ 4151 4152 skb2->next = skb1->next; 4153 *skb_p = skb2; 4154 kfree_skb(skb1); 4155 skb1 = skb2; 4156 } 4157 elt++; 4158 *trailer = skb1; 4159 skb_p = &skb1->next; 4160 } 4161 4162 return elt; 4163 } 4164 EXPORT_SYMBOL_GPL(skb_cow_data); 4165 4166 static void sock_rmem_free(struct sk_buff *skb) 4167 { 4168 struct sock *sk = skb->sk; 4169 4170 atomic_sub(skb->truesize, &sk->sk_rmem_alloc); 4171 } 4172 4173 static void skb_set_err_queue(struct sk_buff *skb) 4174 { 4175 /* pkt_type of skbs received on local sockets is never PACKET_OUTGOING. 4176 * So, it is safe to (mis)use it to mark skbs on the error queue. 4177 */ 4178 skb->pkt_type = PACKET_OUTGOING; 4179 BUILD_BUG_ON(PACKET_OUTGOING == 0); 4180 } 4181 4182 /* 4183 * Note: We dont mem charge error packets (no sk_forward_alloc changes) 4184 */ 4185 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb) 4186 { 4187 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >= 4188 (unsigned int)sk->sk_rcvbuf) 4189 return -ENOMEM; 4190 4191 skb_orphan(skb); 4192 skb->sk = sk; 4193 skb->destructor = sock_rmem_free; 4194 atomic_add(skb->truesize, &sk->sk_rmem_alloc); 4195 skb_set_err_queue(skb); 4196 4197 /* before exiting rcu section, make sure dst is refcounted */ 4198 skb_dst_force(skb); 4199 4200 skb_queue_tail(&sk->sk_error_queue, skb); 4201 if (!sock_flag(sk, SOCK_DEAD)) 4202 sk->sk_error_report(sk); 4203 return 0; 4204 } 4205 EXPORT_SYMBOL(sock_queue_err_skb); 4206 4207 static bool is_icmp_err_skb(const struct sk_buff *skb) 4208 { 4209 return skb && (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP || 4210 SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP6); 4211 } 4212 4213 struct sk_buff *sock_dequeue_err_skb(struct sock *sk) 4214 { 4215 struct sk_buff_head *q = &sk->sk_error_queue; 4216 struct sk_buff *skb, *skb_next = NULL; 4217 bool icmp_next = false; 4218 unsigned long flags; 4219 4220 spin_lock_irqsave(&q->lock, flags); 4221 skb = __skb_dequeue(q); 4222 if (skb && (skb_next = skb_peek(q))) { 4223 icmp_next = is_icmp_err_skb(skb_next); 4224 if (icmp_next) 4225 sk->sk_err = SKB_EXT_ERR(skb_next)->ee.ee_origin; 4226 } 4227 spin_unlock_irqrestore(&q->lock, flags); 4228 4229 if (is_icmp_err_skb(skb) && !icmp_next) 4230 sk->sk_err = 0; 4231 4232 if (skb_next) 4233 sk->sk_error_report(sk); 4234 4235 return skb; 4236 } 4237 EXPORT_SYMBOL(sock_dequeue_err_skb); 4238 4239 /** 4240 * skb_clone_sk - create clone of skb, and take reference to socket 4241 * @skb: the skb to clone 4242 * 4243 * This function creates a clone of a buffer that holds a reference on 4244 * sk_refcnt. Buffers created via this function are meant to be 4245 * returned using sock_queue_err_skb, or free via kfree_skb. 4246 * 4247 * When passing buffers allocated with this function to sock_queue_err_skb 4248 * it is necessary to wrap the call with sock_hold/sock_put in order to 4249 * prevent the socket from being released prior to being enqueued on 4250 * the sk_error_queue. 4251 */ 4252 struct sk_buff *skb_clone_sk(struct sk_buff *skb) 4253 { 4254 struct sock *sk = skb->sk; 4255 struct sk_buff *clone; 4256 4257 if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt)) 4258 return NULL; 4259 4260 clone = skb_clone(skb, GFP_ATOMIC); 4261 if (!clone) { 4262 sock_put(sk); 4263 return NULL; 4264 } 4265 4266 clone->sk = sk; 4267 clone->destructor = sock_efree; 4268 4269 return clone; 4270 } 4271 EXPORT_SYMBOL(skb_clone_sk); 4272 4273 static void __skb_complete_tx_timestamp(struct sk_buff *skb, 4274 struct sock *sk, 4275 int tstype, 4276 bool opt_stats) 4277 { 4278 struct sock_exterr_skb *serr; 4279 int err; 4280 4281 BUILD_BUG_ON(sizeof(struct sock_exterr_skb) > sizeof(skb->cb)); 4282 4283 serr = SKB_EXT_ERR(skb); 4284 memset(serr, 0, sizeof(*serr)); 4285 serr->ee.ee_errno = ENOMSG; 4286 serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING; 4287 serr->ee.ee_info = tstype; 4288 serr->opt_stats = opt_stats; 4289 serr->header.h4.iif = skb->dev ? skb->dev->ifindex : 0; 4290 if (sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID) { 4291 serr->ee.ee_data = skb_shinfo(skb)->tskey; 4292 if (sk->sk_protocol == IPPROTO_TCP && 4293 sk->sk_type == SOCK_STREAM) 4294 serr->ee.ee_data -= sk->sk_tskey; 4295 } 4296 4297 err = sock_queue_err_skb(sk, skb); 4298 4299 if (err) 4300 kfree_skb(skb); 4301 } 4302 4303 static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly) 4304 { 4305 bool ret; 4306 4307 if (likely(sysctl_tstamp_allow_data || tsonly)) 4308 return true; 4309 4310 read_lock_bh(&sk->sk_callback_lock); 4311 ret = sk->sk_socket && sk->sk_socket->file && 4312 file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW); 4313 read_unlock_bh(&sk->sk_callback_lock); 4314 return ret; 4315 } 4316 4317 void skb_complete_tx_timestamp(struct sk_buff *skb, 4318 struct skb_shared_hwtstamps *hwtstamps) 4319 { 4320 struct sock *sk = skb->sk; 4321 4322 if (!skb_may_tx_timestamp(sk, false)) 4323 goto err; 4324 4325 /* Take a reference to prevent skb_orphan() from freeing the socket, 4326 * but only if the socket refcount is not zero. 4327 */ 4328 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) { 4329 *skb_hwtstamps(skb) = *hwtstamps; 4330 __skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND, false); 4331 sock_put(sk); 4332 return; 4333 } 4334 4335 err: 4336 kfree_skb(skb); 4337 } 4338 EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp); 4339 4340 void __skb_tstamp_tx(struct sk_buff *orig_skb, 4341 struct skb_shared_hwtstamps *hwtstamps, 4342 struct sock *sk, int tstype) 4343 { 4344 struct sk_buff *skb; 4345 bool tsonly, opt_stats = false; 4346 4347 if (!sk) 4348 return; 4349 4350 if (!hwtstamps && !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TX_SWHW) && 4351 skb_shinfo(orig_skb)->tx_flags & SKBTX_IN_PROGRESS) 4352 return; 4353 4354 tsonly = sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TSONLY; 4355 if (!skb_may_tx_timestamp(sk, tsonly)) 4356 return; 4357 4358 if (tsonly) { 4359 #ifdef CONFIG_INET 4360 if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_STATS) && 4361 sk->sk_protocol == IPPROTO_TCP && 4362 sk->sk_type == SOCK_STREAM) { 4363 skb = tcp_get_timestamping_opt_stats(sk); 4364 opt_stats = true; 4365 } else 4366 #endif 4367 skb = alloc_skb(0, GFP_ATOMIC); 4368 } else { 4369 skb = skb_clone(orig_skb, GFP_ATOMIC); 4370 } 4371 if (!skb) 4372 return; 4373 4374 if (tsonly) { 4375 skb_shinfo(skb)->tx_flags |= skb_shinfo(orig_skb)->tx_flags & 4376 SKBTX_ANY_TSTAMP; 4377 skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey; 4378 } 4379 4380 if (hwtstamps) 4381 *skb_hwtstamps(skb) = *hwtstamps; 4382 else 4383 skb->tstamp = ktime_get_real(); 4384 4385 __skb_complete_tx_timestamp(skb, sk, tstype, opt_stats); 4386 } 4387 EXPORT_SYMBOL_GPL(__skb_tstamp_tx); 4388 4389 void skb_tstamp_tx(struct sk_buff *orig_skb, 4390 struct skb_shared_hwtstamps *hwtstamps) 4391 { 4392 return __skb_tstamp_tx(orig_skb, hwtstamps, orig_skb->sk, 4393 SCM_TSTAMP_SND); 4394 } 4395 EXPORT_SYMBOL_GPL(skb_tstamp_tx); 4396 4397 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked) 4398 { 4399 struct sock *sk = skb->sk; 4400 struct sock_exterr_skb *serr; 4401 int err = 1; 4402 4403 skb->wifi_acked_valid = 1; 4404 skb->wifi_acked = acked; 4405 4406 serr = SKB_EXT_ERR(skb); 4407 memset(serr, 0, sizeof(*serr)); 4408 serr->ee.ee_errno = ENOMSG; 4409 serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS; 4410 4411 /* Take a reference to prevent skb_orphan() from freeing the socket, 4412 * but only if the socket refcount is not zero. 4413 */ 4414 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) { 4415 err = sock_queue_err_skb(sk, skb); 4416 sock_put(sk); 4417 } 4418 if (err) 4419 kfree_skb(skb); 4420 } 4421 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack); 4422 4423 /** 4424 * skb_partial_csum_set - set up and verify partial csum values for packet 4425 * @skb: the skb to set 4426 * @start: the number of bytes after skb->data to start checksumming. 4427 * @off: the offset from start to place the checksum. 4428 * 4429 * For untrusted partially-checksummed packets, we need to make sure the values 4430 * for skb->csum_start and skb->csum_offset are valid so we don't oops. 4431 * 4432 * This function checks and sets those values and skb->ip_summed: if this 4433 * returns false you should drop the packet. 4434 */ 4435 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off) 4436 { 4437 if (unlikely(start > skb_headlen(skb)) || 4438 unlikely((int)start + off > skb_headlen(skb) - 2)) { 4439 net_warn_ratelimited("bad partial csum: csum=%u/%u len=%u\n", 4440 start, off, skb_headlen(skb)); 4441 return false; 4442 } 4443 skb->ip_summed = CHECKSUM_PARTIAL; 4444 skb->csum_start = skb_headroom(skb) + start; 4445 skb->csum_offset = off; 4446 skb_set_transport_header(skb, start); 4447 return true; 4448 } 4449 EXPORT_SYMBOL_GPL(skb_partial_csum_set); 4450 4451 static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len, 4452 unsigned int max) 4453 { 4454 if (skb_headlen(skb) >= len) 4455 return 0; 4456 4457 /* If we need to pullup then pullup to the max, so we 4458 * won't need to do it again. 4459 */ 4460 if (max > skb->len) 4461 max = skb->len; 4462 4463 if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL) 4464 return -ENOMEM; 4465 4466 if (skb_headlen(skb) < len) 4467 return -EPROTO; 4468 4469 return 0; 4470 } 4471 4472 #define MAX_TCP_HDR_LEN (15 * 4) 4473 4474 static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb, 4475 typeof(IPPROTO_IP) proto, 4476 unsigned int off) 4477 { 4478 switch (proto) { 4479 int err; 4480 4481 case IPPROTO_TCP: 4482 err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr), 4483 off + MAX_TCP_HDR_LEN); 4484 if (!err && !skb_partial_csum_set(skb, off, 4485 offsetof(struct tcphdr, 4486 check))) 4487 err = -EPROTO; 4488 return err ? ERR_PTR(err) : &tcp_hdr(skb)->check; 4489 4490 case IPPROTO_UDP: 4491 err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr), 4492 off + sizeof(struct udphdr)); 4493 if (!err && !skb_partial_csum_set(skb, off, 4494 offsetof(struct udphdr, 4495 check))) 4496 err = -EPROTO; 4497 return err ? ERR_PTR(err) : &udp_hdr(skb)->check; 4498 } 4499 4500 return ERR_PTR(-EPROTO); 4501 } 4502 4503 /* This value should be large enough to cover a tagged ethernet header plus 4504 * maximally sized IP and TCP or UDP headers. 4505 */ 4506 #define MAX_IP_HDR_LEN 128 4507 4508 static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate) 4509 { 4510 unsigned int off; 4511 bool fragment; 4512 __sum16 *csum; 4513 int err; 4514 4515 fragment = false; 4516 4517 err = skb_maybe_pull_tail(skb, 4518 sizeof(struct iphdr), 4519 MAX_IP_HDR_LEN); 4520 if (err < 0) 4521 goto out; 4522 4523 if (ip_hdr(skb)->frag_off & htons(IP_OFFSET | IP_MF)) 4524 fragment = true; 4525 4526 off = ip_hdrlen(skb); 4527 4528 err = -EPROTO; 4529 4530 if (fragment) 4531 goto out; 4532 4533 csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off); 4534 if (IS_ERR(csum)) 4535 return PTR_ERR(csum); 4536 4537 if (recalculate) 4538 *csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr, 4539 ip_hdr(skb)->daddr, 4540 skb->len - off, 4541 ip_hdr(skb)->protocol, 0); 4542 err = 0; 4543 4544 out: 4545 return err; 4546 } 4547 4548 /* This value should be large enough to cover a tagged ethernet header plus 4549 * an IPv6 header, all options, and a maximal TCP or UDP header. 4550 */ 4551 #define MAX_IPV6_HDR_LEN 256 4552 4553 #define OPT_HDR(type, skb, off) \ 4554 (type *)(skb_network_header(skb) + (off)) 4555 4556 static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate) 4557 { 4558 int err; 4559 u8 nexthdr; 4560 unsigned int off; 4561 unsigned int len; 4562 bool fragment; 4563 bool done; 4564 __sum16 *csum; 4565 4566 fragment = false; 4567 done = false; 4568 4569 off = sizeof(struct ipv6hdr); 4570 4571 err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN); 4572 if (err < 0) 4573 goto out; 4574 4575 nexthdr = ipv6_hdr(skb)->nexthdr; 4576 4577 len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len); 4578 while (off <= len && !done) { 4579 switch (nexthdr) { 4580 case IPPROTO_DSTOPTS: 4581 case IPPROTO_HOPOPTS: 4582 case IPPROTO_ROUTING: { 4583 struct ipv6_opt_hdr *hp; 4584 4585 err = skb_maybe_pull_tail(skb, 4586 off + 4587 sizeof(struct ipv6_opt_hdr), 4588 MAX_IPV6_HDR_LEN); 4589 if (err < 0) 4590 goto out; 4591 4592 hp = OPT_HDR(struct ipv6_opt_hdr, skb, off); 4593 nexthdr = hp->nexthdr; 4594 off += ipv6_optlen(hp); 4595 break; 4596 } 4597 case IPPROTO_AH: { 4598 struct ip_auth_hdr *hp; 4599 4600 err = skb_maybe_pull_tail(skb, 4601 off + 4602 sizeof(struct ip_auth_hdr), 4603 MAX_IPV6_HDR_LEN); 4604 if (err < 0) 4605 goto out; 4606 4607 hp = OPT_HDR(struct ip_auth_hdr, skb, off); 4608 nexthdr = hp->nexthdr; 4609 off += ipv6_authlen(hp); 4610 break; 4611 } 4612 case IPPROTO_FRAGMENT: { 4613 struct frag_hdr *hp; 4614 4615 err = skb_maybe_pull_tail(skb, 4616 off + 4617 sizeof(struct frag_hdr), 4618 MAX_IPV6_HDR_LEN); 4619 if (err < 0) 4620 goto out; 4621 4622 hp = OPT_HDR(struct frag_hdr, skb, off); 4623 4624 if (hp->frag_off & htons(IP6_OFFSET | IP6_MF)) 4625 fragment = true; 4626 4627 nexthdr = hp->nexthdr; 4628 off += sizeof(struct frag_hdr); 4629 break; 4630 } 4631 default: 4632 done = true; 4633 break; 4634 } 4635 } 4636 4637 err = -EPROTO; 4638 4639 if (!done || fragment) 4640 goto out; 4641 4642 csum = skb_checksum_setup_ip(skb, nexthdr, off); 4643 if (IS_ERR(csum)) 4644 return PTR_ERR(csum); 4645 4646 if (recalculate) 4647 *csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr, 4648 &ipv6_hdr(skb)->daddr, 4649 skb->len - off, nexthdr, 0); 4650 err = 0; 4651 4652 out: 4653 return err; 4654 } 4655 4656 /** 4657 * skb_checksum_setup - set up partial checksum offset 4658 * @skb: the skb to set up 4659 * @recalculate: if true the pseudo-header checksum will be recalculated 4660 */ 4661 int skb_checksum_setup(struct sk_buff *skb, bool recalculate) 4662 { 4663 int err; 4664 4665 switch (skb->protocol) { 4666 case htons(ETH_P_IP): 4667 err = skb_checksum_setup_ipv4(skb, recalculate); 4668 break; 4669 4670 case htons(ETH_P_IPV6): 4671 err = skb_checksum_setup_ipv6(skb, recalculate); 4672 break; 4673 4674 default: 4675 err = -EPROTO; 4676 break; 4677 } 4678 4679 return err; 4680 } 4681 EXPORT_SYMBOL(skb_checksum_setup); 4682 4683 /** 4684 * skb_checksum_maybe_trim - maybe trims the given skb 4685 * @skb: the skb to check 4686 * @transport_len: the data length beyond the network header 4687 * 4688 * Checks whether the given skb has data beyond the given transport length. 4689 * If so, returns a cloned skb trimmed to this transport length. 4690 * Otherwise returns the provided skb. Returns NULL in error cases 4691 * (e.g. transport_len exceeds skb length or out-of-memory). 4692 * 4693 * Caller needs to set the skb transport header and free any returned skb if it 4694 * differs from the provided skb. 4695 */ 4696 static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb, 4697 unsigned int transport_len) 4698 { 4699 struct sk_buff *skb_chk; 4700 unsigned int len = skb_transport_offset(skb) + transport_len; 4701 int ret; 4702 4703 if (skb->len < len) 4704 return NULL; 4705 else if (skb->len == len) 4706 return skb; 4707 4708 skb_chk = skb_clone(skb, GFP_ATOMIC); 4709 if (!skb_chk) 4710 return NULL; 4711 4712 ret = pskb_trim_rcsum(skb_chk, len); 4713 if (ret) { 4714 kfree_skb(skb_chk); 4715 return NULL; 4716 } 4717 4718 return skb_chk; 4719 } 4720 4721 /** 4722 * skb_checksum_trimmed - validate checksum of an skb 4723 * @skb: the skb to check 4724 * @transport_len: the data length beyond the network header 4725 * @skb_chkf: checksum function to use 4726 * 4727 * Applies the given checksum function skb_chkf to the provided skb. 4728 * Returns a checked and maybe trimmed skb. Returns NULL on error. 4729 * 4730 * If the skb has data beyond the given transport length, then a 4731 * trimmed & cloned skb is checked and returned. 4732 * 4733 * Caller needs to set the skb transport header and free any returned skb if it 4734 * differs from the provided skb. 4735 */ 4736 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb, 4737 unsigned int transport_len, 4738 __sum16(*skb_chkf)(struct sk_buff *skb)) 4739 { 4740 struct sk_buff *skb_chk; 4741 unsigned int offset = skb_transport_offset(skb); 4742 __sum16 ret; 4743 4744 skb_chk = skb_checksum_maybe_trim(skb, transport_len); 4745 if (!skb_chk) 4746 goto err; 4747 4748 if (!pskb_may_pull(skb_chk, offset)) 4749 goto err; 4750 4751 skb_pull_rcsum(skb_chk, offset); 4752 ret = skb_chkf(skb_chk); 4753 skb_push_rcsum(skb_chk, offset); 4754 4755 if (ret) 4756 goto err; 4757 4758 return skb_chk; 4759 4760 err: 4761 if (skb_chk && skb_chk != skb) 4762 kfree_skb(skb_chk); 4763 4764 return NULL; 4765 4766 } 4767 EXPORT_SYMBOL(skb_checksum_trimmed); 4768 4769 void __skb_warn_lro_forwarding(const struct sk_buff *skb) 4770 { 4771 net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n", 4772 skb->dev->name); 4773 } 4774 EXPORT_SYMBOL(__skb_warn_lro_forwarding); 4775 4776 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen) 4777 { 4778 if (head_stolen) { 4779 skb_release_head_state(skb); 4780 kmem_cache_free(skbuff_head_cache, skb); 4781 } else { 4782 __kfree_skb(skb); 4783 } 4784 } 4785 EXPORT_SYMBOL(kfree_skb_partial); 4786 4787 /** 4788 * skb_try_coalesce - try to merge skb to prior one 4789 * @to: prior buffer 4790 * @from: buffer to add 4791 * @fragstolen: pointer to boolean 4792 * @delta_truesize: how much more was allocated than was requested 4793 */ 4794 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from, 4795 bool *fragstolen, int *delta_truesize) 4796 { 4797 struct skb_shared_info *to_shinfo, *from_shinfo; 4798 int i, delta, len = from->len; 4799 4800 *fragstolen = false; 4801 4802 if (skb_cloned(to)) 4803 return false; 4804 4805 if (len <= skb_tailroom(to)) { 4806 if (len) 4807 BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len)); 4808 *delta_truesize = 0; 4809 return true; 4810 } 4811 4812 to_shinfo = skb_shinfo(to); 4813 from_shinfo = skb_shinfo(from); 4814 if (to_shinfo->frag_list || from_shinfo->frag_list) 4815 return false; 4816 if (skb_zcopy(to) || skb_zcopy(from)) 4817 return false; 4818 4819 if (skb_headlen(from) != 0) { 4820 struct page *page; 4821 unsigned int offset; 4822 4823 if (to_shinfo->nr_frags + 4824 from_shinfo->nr_frags >= MAX_SKB_FRAGS) 4825 return false; 4826 4827 if (skb_head_is_locked(from)) 4828 return false; 4829 4830 delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff)); 4831 4832 page = virt_to_head_page(from->head); 4833 offset = from->data - (unsigned char *)page_address(page); 4834 4835 skb_fill_page_desc(to, to_shinfo->nr_frags, 4836 page, offset, skb_headlen(from)); 4837 *fragstolen = true; 4838 } else { 4839 if (to_shinfo->nr_frags + 4840 from_shinfo->nr_frags > MAX_SKB_FRAGS) 4841 return false; 4842 4843 delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from)); 4844 } 4845 4846 WARN_ON_ONCE(delta < len); 4847 4848 memcpy(to_shinfo->frags + to_shinfo->nr_frags, 4849 from_shinfo->frags, 4850 from_shinfo->nr_frags * sizeof(skb_frag_t)); 4851 to_shinfo->nr_frags += from_shinfo->nr_frags; 4852 4853 if (!skb_cloned(from)) 4854 from_shinfo->nr_frags = 0; 4855 4856 /* if the skb is not cloned this does nothing 4857 * since we set nr_frags to 0. 4858 */ 4859 for (i = 0; i < from_shinfo->nr_frags; i++) 4860 __skb_frag_ref(&from_shinfo->frags[i]); 4861 4862 to->truesize += delta; 4863 to->len += len; 4864 to->data_len += len; 4865 4866 *delta_truesize = delta; 4867 return true; 4868 } 4869 EXPORT_SYMBOL(skb_try_coalesce); 4870 4871 /** 4872 * skb_scrub_packet - scrub an skb 4873 * 4874 * @skb: buffer to clean 4875 * @xnet: packet is crossing netns 4876 * 4877 * skb_scrub_packet can be used after encapsulating or decapsulting a packet 4878 * into/from a tunnel. Some information have to be cleared during these 4879 * operations. 4880 * skb_scrub_packet can also be used to clean a skb before injecting it in 4881 * another namespace (@xnet == true). We have to clear all information in the 4882 * skb that could impact namespace isolation. 4883 */ 4884 void skb_scrub_packet(struct sk_buff *skb, bool xnet) 4885 { 4886 skb->tstamp = 0; 4887 skb->pkt_type = PACKET_HOST; 4888 skb->skb_iif = 0; 4889 skb->ignore_df = 0; 4890 skb_dst_drop(skb); 4891 secpath_reset(skb); 4892 nf_reset(skb); 4893 nf_reset_trace(skb); 4894 4895 if (!xnet) 4896 return; 4897 4898 ipvs_reset(skb); 4899 skb_orphan(skb); 4900 skb->mark = 0; 4901 } 4902 EXPORT_SYMBOL_GPL(skb_scrub_packet); 4903 4904 /** 4905 * skb_gso_transport_seglen - Return length of individual segments of a gso packet 4906 * 4907 * @skb: GSO skb 4908 * 4909 * skb_gso_transport_seglen is used to determine the real size of the 4910 * individual segments, including Layer4 headers (TCP/UDP). 4911 * 4912 * The MAC/L2 or network (IP, IPv6) headers are not accounted for. 4913 */ 4914 static unsigned int skb_gso_transport_seglen(const struct sk_buff *skb) 4915 { 4916 const struct skb_shared_info *shinfo = skb_shinfo(skb); 4917 unsigned int thlen = 0; 4918 4919 if (skb->encapsulation) { 4920 thlen = skb_inner_transport_header(skb) - 4921 skb_transport_header(skb); 4922 4923 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) 4924 thlen += inner_tcp_hdrlen(skb); 4925 } else if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) { 4926 thlen = tcp_hdrlen(skb); 4927 } else if (unlikely(skb_is_gso_sctp(skb))) { 4928 thlen = sizeof(struct sctphdr); 4929 } 4930 /* UFO sets gso_size to the size of the fragmentation 4931 * payload, i.e. the size of the L4 (UDP) header is already 4932 * accounted for. 4933 */ 4934 return thlen + shinfo->gso_size; 4935 } 4936 4937 /** 4938 * skb_gso_network_seglen - Return length of individual segments of a gso packet 4939 * 4940 * @skb: GSO skb 4941 * 4942 * skb_gso_network_seglen is used to determine the real size of the 4943 * individual segments, including Layer3 (IP, IPv6) and L4 headers (TCP/UDP). 4944 * 4945 * The MAC/L2 header is not accounted for. 4946 */ 4947 static unsigned int skb_gso_network_seglen(const struct sk_buff *skb) 4948 { 4949 unsigned int hdr_len = skb_transport_header(skb) - 4950 skb_network_header(skb); 4951 4952 return hdr_len + skb_gso_transport_seglen(skb); 4953 } 4954 4955 /** 4956 * skb_gso_mac_seglen - Return length of individual segments of a gso packet 4957 * 4958 * @skb: GSO skb 4959 * 4960 * skb_gso_mac_seglen is used to determine the real size of the 4961 * individual segments, including MAC/L2, Layer3 (IP, IPv6) and L4 4962 * headers (TCP/UDP). 4963 */ 4964 static unsigned int skb_gso_mac_seglen(const struct sk_buff *skb) 4965 { 4966 unsigned int hdr_len = skb_transport_header(skb) - skb_mac_header(skb); 4967 4968 return hdr_len + skb_gso_transport_seglen(skb); 4969 } 4970 4971 /** 4972 * skb_gso_size_check - check the skb size, considering GSO_BY_FRAGS 4973 * 4974 * There are a couple of instances where we have a GSO skb, and we 4975 * want to determine what size it would be after it is segmented. 4976 * 4977 * We might want to check: 4978 * - L3+L4+payload size (e.g. IP forwarding) 4979 * - L2+L3+L4+payload size (e.g. sanity check before passing to driver) 4980 * 4981 * This is a helper to do that correctly considering GSO_BY_FRAGS. 4982 * 4983 * @seg_len: The segmented length (from skb_gso_*_seglen). In the 4984 * GSO_BY_FRAGS case this will be [header sizes + GSO_BY_FRAGS]. 4985 * 4986 * @max_len: The maximum permissible length. 4987 * 4988 * Returns true if the segmented length <= max length. 4989 */ 4990 static inline bool skb_gso_size_check(const struct sk_buff *skb, 4991 unsigned int seg_len, 4992 unsigned int max_len) { 4993 const struct skb_shared_info *shinfo = skb_shinfo(skb); 4994 const struct sk_buff *iter; 4995 4996 if (shinfo->gso_size != GSO_BY_FRAGS) 4997 return seg_len <= max_len; 4998 4999 /* Undo this so we can re-use header sizes */ 5000 seg_len -= GSO_BY_FRAGS; 5001 5002 skb_walk_frags(skb, iter) { 5003 if (seg_len + skb_headlen(iter) > max_len) 5004 return false; 5005 } 5006 5007 return true; 5008 } 5009 5010 /** 5011 * skb_gso_validate_network_len - Will a split GSO skb fit into a given MTU? 5012 * 5013 * @skb: GSO skb 5014 * @mtu: MTU to validate against 5015 * 5016 * skb_gso_validate_network_len validates if a given skb will fit a 5017 * wanted MTU once split. It considers L3 headers, L4 headers, and the 5018 * payload. 5019 */ 5020 bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu) 5021 { 5022 return skb_gso_size_check(skb, skb_gso_network_seglen(skb), mtu); 5023 } 5024 EXPORT_SYMBOL_GPL(skb_gso_validate_network_len); 5025 5026 /** 5027 * skb_gso_validate_mac_len - Will a split GSO skb fit in a given length? 5028 * 5029 * @skb: GSO skb 5030 * @len: length to validate against 5031 * 5032 * skb_gso_validate_mac_len validates if a given skb will fit a wanted 5033 * length once split, including L2, L3 and L4 headers and the payload. 5034 */ 5035 bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len) 5036 { 5037 return skb_gso_size_check(skb, skb_gso_mac_seglen(skb), len); 5038 } 5039 EXPORT_SYMBOL_GPL(skb_gso_validate_mac_len); 5040 5041 static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb) 5042 { 5043 int mac_len; 5044 5045 if (skb_cow(skb, skb_headroom(skb)) < 0) { 5046 kfree_skb(skb); 5047 return NULL; 5048 } 5049 5050 mac_len = skb->data - skb_mac_header(skb); 5051 if (likely(mac_len > VLAN_HLEN + ETH_TLEN)) { 5052 memmove(skb_mac_header(skb) + VLAN_HLEN, skb_mac_header(skb), 5053 mac_len - VLAN_HLEN - ETH_TLEN); 5054 } 5055 skb->mac_header += VLAN_HLEN; 5056 return skb; 5057 } 5058 5059 struct sk_buff *skb_vlan_untag(struct sk_buff *skb) 5060 { 5061 struct vlan_hdr *vhdr; 5062 u16 vlan_tci; 5063 5064 if (unlikely(skb_vlan_tag_present(skb))) { 5065 /* vlan_tci is already set-up so leave this for another time */ 5066 return skb; 5067 } 5068 5069 skb = skb_share_check(skb, GFP_ATOMIC); 5070 if (unlikely(!skb)) 5071 goto err_free; 5072 5073 if (unlikely(!pskb_may_pull(skb, VLAN_HLEN))) 5074 goto err_free; 5075 5076 vhdr = (struct vlan_hdr *)skb->data; 5077 vlan_tci = ntohs(vhdr->h_vlan_TCI); 5078 __vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci); 5079 5080 skb_pull_rcsum(skb, VLAN_HLEN); 5081 vlan_set_encap_proto(skb, vhdr); 5082 5083 skb = skb_reorder_vlan_header(skb); 5084 if (unlikely(!skb)) 5085 goto err_free; 5086 5087 skb_reset_network_header(skb); 5088 skb_reset_transport_header(skb); 5089 skb_reset_mac_len(skb); 5090 5091 return skb; 5092 5093 err_free: 5094 kfree_skb(skb); 5095 return NULL; 5096 } 5097 EXPORT_SYMBOL(skb_vlan_untag); 5098 5099 int skb_ensure_writable(struct sk_buff *skb, int write_len) 5100 { 5101 if (!pskb_may_pull(skb, write_len)) 5102 return -ENOMEM; 5103 5104 if (!skb_cloned(skb) || skb_clone_writable(skb, write_len)) 5105 return 0; 5106 5107 return pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 5108 } 5109 EXPORT_SYMBOL(skb_ensure_writable); 5110 5111 /* remove VLAN header from packet and update csum accordingly. 5112 * expects a non skb_vlan_tag_present skb with a vlan tag payload 5113 */ 5114 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci) 5115 { 5116 struct vlan_hdr *vhdr; 5117 int offset = skb->data - skb_mac_header(skb); 5118 int err; 5119 5120 if (WARN_ONCE(offset, 5121 "__skb_vlan_pop got skb with skb->data not at mac header (offset %d)\n", 5122 offset)) { 5123 return -EINVAL; 5124 } 5125 5126 err = skb_ensure_writable(skb, VLAN_ETH_HLEN); 5127 if (unlikely(err)) 5128 return err; 5129 5130 skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN); 5131 5132 vhdr = (struct vlan_hdr *)(skb->data + ETH_HLEN); 5133 *vlan_tci = ntohs(vhdr->h_vlan_TCI); 5134 5135 memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN); 5136 __skb_pull(skb, VLAN_HLEN); 5137 5138 vlan_set_encap_proto(skb, vhdr); 5139 skb->mac_header += VLAN_HLEN; 5140 5141 if (skb_network_offset(skb) < ETH_HLEN) 5142 skb_set_network_header(skb, ETH_HLEN); 5143 5144 skb_reset_mac_len(skb); 5145 5146 return err; 5147 } 5148 EXPORT_SYMBOL(__skb_vlan_pop); 5149 5150 /* Pop a vlan tag either from hwaccel or from payload. 5151 * Expects skb->data at mac header. 5152 */ 5153 int skb_vlan_pop(struct sk_buff *skb) 5154 { 5155 u16 vlan_tci; 5156 __be16 vlan_proto; 5157 int err; 5158 5159 if (likely(skb_vlan_tag_present(skb))) { 5160 skb->vlan_tci = 0; 5161 } else { 5162 if (unlikely(!eth_type_vlan(skb->protocol))) 5163 return 0; 5164 5165 err = __skb_vlan_pop(skb, &vlan_tci); 5166 if (err) 5167 return err; 5168 } 5169 /* move next vlan tag to hw accel tag */ 5170 if (likely(!eth_type_vlan(skb->protocol))) 5171 return 0; 5172 5173 vlan_proto = skb->protocol; 5174 err = __skb_vlan_pop(skb, &vlan_tci); 5175 if (unlikely(err)) 5176 return err; 5177 5178 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci); 5179 return 0; 5180 } 5181 EXPORT_SYMBOL(skb_vlan_pop); 5182 5183 /* Push a vlan tag either into hwaccel or into payload (if hwaccel tag present). 5184 * Expects skb->data at mac header. 5185 */ 5186 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci) 5187 { 5188 if (skb_vlan_tag_present(skb)) { 5189 int offset = skb->data - skb_mac_header(skb); 5190 int err; 5191 5192 if (WARN_ONCE(offset, 5193 "skb_vlan_push got skb with skb->data not at mac header (offset %d)\n", 5194 offset)) { 5195 return -EINVAL; 5196 } 5197 5198 err = __vlan_insert_tag(skb, skb->vlan_proto, 5199 skb_vlan_tag_get(skb)); 5200 if (err) 5201 return err; 5202 5203 skb->protocol = skb->vlan_proto; 5204 skb->mac_len += VLAN_HLEN; 5205 5206 skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN); 5207 } 5208 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci); 5209 return 0; 5210 } 5211 EXPORT_SYMBOL(skb_vlan_push); 5212 5213 /** 5214 * alloc_skb_with_frags - allocate skb with page frags 5215 * 5216 * @header_len: size of linear part 5217 * @data_len: needed length in frags 5218 * @max_page_order: max page order desired. 5219 * @errcode: pointer to error code if any 5220 * @gfp_mask: allocation mask 5221 * 5222 * This can be used to allocate a paged skb, given a maximal order for frags. 5223 */ 5224 struct sk_buff *alloc_skb_with_frags(unsigned long header_len, 5225 unsigned long data_len, 5226 int max_page_order, 5227 int *errcode, 5228 gfp_t gfp_mask) 5229 { 5230 int npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT; 5231 unsigned long chunk; 5232 struct sk_buff *skb; 5233 struct page *page; 5234 gfp_t gfp_head; 5235 int i; 5236 5237 *errcode = -EMSGSIZE; 5238 /* Note this test could be relaxed, if we succeed to allocate 5239 * high order pages... 5240 */ 5241 if (npages > MAX_SKB_FRAGS) 5242 return NULL; 5243 5244 gfp_head = gfp_mask; 5245 if (gfp_head & __GFP_DIRECT_RECLAIM) 5246 gfp_head |= __GFP_RETRY_MAYFAIL; 5247 5248 *errcode = -ENOBUFS; 5249 skb = alloc_skb(header_len, gfp_head); 5250 if (!skb) 5251 return NULL; 5252 5253 skb->truesize += npages << PAGE_SHIFT; 5254 5255 for (i = 0; npages > 0; i++) { 5256 int order = max_page_order; 5257 5258 while (order) { 5259 if (npages >= 1 << order) { 5260 page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) | 5261 __GFP_COMP | 5262 __GFP_NOWARN | 5263 __GFP_NORETRY, 5264 order); 5265 if (page) 5266 goto fill_page; 5267 /* Do not retry other high order allocations */ 5268 order = 1; 5269 max_page_order = 0; 5270 } 5271 order--; 5272 } 5273 page = alloc_page(gfp_mask); 5274 if (!page) 5275 goto failure; 5276 fill_page: 5277 chunk = min_t(unsigned long, data_len, 5278 PAGE_SIZE << order); 5279 skb_fill_page_desc(skb, i, page, 0, chunk); 5280 data_len -= chunk; 5281 npages -= 1 << order; 5282 } 5283 return skb; 5284 5285 failure: 5286 kfree_skb(skb); 5287 return NULL; 5288 } 5289 EXPORT_SYMBOL(alloc_skb_with_frags); 5290 5291 /* carve out the first off bytes from skb when off < headlen */ 5292 static int pskb_carve_inside_header(struct sk_buff *skb, const u32 off, 5293 const int headlen, gfp_t gfp_mask) 5294 { 5295 int i; 5296 int size = skb_end_offset(skb); 5297 int new_hlen = headlen - off; 5298 u8 *data; 5299 5300 size = SKB_DATA_ALIGN(size); 5301 5302 if (skb_pfmemalloc(skb)) 5303 gfp_mask |= __GFP_MEMALLOC; 5304 data = kmalloc_reserve(size + 5305 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)), 5306 gfp_mask, NUMA_NO_NODE, NULL); 5307 if (!data) 5308 return -ENOMEM; 5309 5310 size = SKB_WITH_OVERHEAD(ksize(data)); 5311 5312 /* Copy real data, and all frags */ 5313 skb_copy_from_linear_data_offset(skb, off, data, new_hlen); 5314 skb->len -= off; 5315 5316 memcpy((struct skb_shared_info *)(data + size), 5317 skb_shinfo(skb), 5318 offsetof(struct skb_shared_info, 5319 frags[skb_shinfo(skb)->nr_frags])); 5320 if (skb_cloned(skb)) { 5321 /* drop the old head gracefully */ 5322 if (skb_orphan_frags(skb, gfp_mask)) { 5323 kfree(data); 5324 return -ENOMEM; 5325 } 5326 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 5327 skb_frag_ref(skb, i); 5328 if (skb_has_frag_list(skb)) 5329 skb_clone_fraglist(skb); 5330 skb_release_data(skb); 5331 } else { 5332 /* we can reuse existing recount- all we did was 5333 * relocate values 5334 */ 5335 skb_free_head(skb); 5336 } 5337 5338 skb->head = data; 5339 skb->data = data; 5340 skb->head_frag = 0; 5341 #ifdef NET_SKBUFF_DATA_USES_OFFSET 5342 skb->end = size; 5343 #else 5344 skb->end = skb->head + size; 5345 #endif 5346 skb_set_tail_pointer(skb, skb_headlen(skb)); 5347 skb_headers_offset_update(skb, 0); 5348 skb->cloned = 0; 5349 skb->hdr_len = 0; 5350 skb->nohdr = 0; 5351 atomic_set(&skb_shinfo(skb)->dataref, 1); 5352 5353 return 0; 5354 } 5355 5356 static int pskb_carve(struct sk_buff *skb, const u32 off, gfp_t gfp); 5357 5358 /* carve out the first eat bytes from skb's frag_list. May recurse into 5359 * pskb_carve() 5360 */ 5361 static int pskb_carve_frag_list(struct sk_buff *skb, 5362 struct skb_shared_info *shinfo, int eat, 5363 gfp_t gfp_mask) 5364 { 5365 struct sk_buff *list = shinfo->frag_list; 5366 struct sk_buff *clone = NULL; 5367 struct sk_buff *insp = NULL; 5368 5369 do { 5370 if (!list) { 5371 pr_err("Not enough bytes to eat. Want %d\n", eat); 5372 return -EFAULT; 5373 } 5374 if (list->len <= eat) { 5375 /* Eaten as whole. */ 5376 eat -= list->len; 5377 list = list->next; 5378 insp = list; 5379 } else { 5380 /* Eaten partially. */ 5381 if (skb_shared(list)) { 5382 clone = skb_clone(list, gfp_mask); 5383 if (!clone) 5384 return -ENOMEM; 5385 insp = list->next; 5386 list = clone; 5387 } else { 5388 /* This may be pulled without problems. */ 5389 insp = list; 5390 } 5391 if (pskb_carve(list, eat, gfp_mask) < 0) { 5392 kfree_skb(clone); 5393 return -ENOMEM; 5394 } 5395 break; 5396 } 5397 } while (eat); 5398 5399 /* Free pulled out fragments. */ 5400 while ((list = shinfo->frag_list) != insp) { 5401 shinfo->frag_list = list->next; 5402 kfree_skb(list); 5403 } 5404 /* And insert new clone at head. */ 5405 if (clone) { 5406 clone->next = list; 5407 shinfo->frag_list = clone; 5408 } 5409 return 0; 5410 } 5411 5412 /* carve off first len bytes from skb. Split line (off) is in the 5413 * non-linear part of skb 5414 */ 5415 static int pskb_carve_inside_nonlinear(struct sk_buff *skb, const u32 off, 5416 int pos, gfp_t gfp_mask) 5417 { 5418 int i, k = 0; 5419 int size = skb_end_offset(skb); 5420 u8 *data; 5421 const int nfrags = skb_shinfo(skb)->nr_frags; 5422 struct skb_shared_info *shinfo; 5423 5424 size = SKB_DATA_ALIGN(size); 5425 5426 if (skb_pfmemalloc(skb)) 5427 gfp_mask |= __GFP_MEMALLOC; 5428 data = kmalloc_reserve(size + 5429 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)), 5430 gfp_mask, NUMA_NO_NODE, NULL); 5431 if (!data) 5432 return -ENOMEM; 5433 5434 size = SKB_WITH_OVERHEAD(ksize(data)); 5435 5436 memcpy((struct skb_shared_info *)(data + size), 5437 skb_shinfo(skb), offsetof(struct skb_shared_info, 5438 frags[skb_shinfo(skb)->nr_frags])); 5439 if (skb_orphan_frags(skb, gfp_mask)) { 5440 kfree(data); 5441 return -ENOMEM; 5442 } 5443 shinfo = (struct skb_shared_info *)(data + size); 5444 for (i = 0; i < nfrags; i++) { 5445 int fsize = skb_frag_size(&skb_shinfo(skb)->frags[i]); 5446 5447 if (pos + fsize > off) { 5448 shinfo->frags[k] = skb_shinfo(skb)->frags[i]; 5449 5450 if (pos < off) { 5451 /* Split frag. 5452 * We have two variants in this case: 5453 * 1. Move all the frag to the second 5454 * part, if it is possible. F.e. 5455 * this approach is mandatory for TUX, 5456 * where splitting is expensive. 5457 * 2. Split is accurately. We make this. 5458 */ 5459 shinfo->frags[0].page_offset += off - pos; 5460 skb_frag_size_sub(&shinfo->frags[0], off - pos); 5461 } 5462 skb_frag_ref(skb, i); 5463 k++; 5464 } 5465 pos += fsize; 5466 } 5467 shinfo->nr_frags = k; 5468 if (skb_has_frag_list(skb)) 5469 skb_clone_fraglist(skb); 5470 5471 if (k == 0) { 5472 /* split line is in frag list */ 5473 pskb_carve_frag_list(skb, shinfo, off - pos, gfp_mask); 5474 } 5475 skb_release_data(skb); 5476 5477 skb->head = data; 5478 skb->head_frag = 0; 5479 skb->data = data; 5480 #ifdef NET_SKBUFF_DATA_USES_OFFSET 5481 skb->end = size; 5482 #else 5483 skb->end = skb->head + size; 5484 #endif 5485 skb_reset_tail_pointer(skb); 5486 skb_headers_offset_update(skb, 0); 5487 skb->cloned = 0; 5488 skb->hdr_len = 0; 5489 skb->nohdr = 0; 5490 skb->len -= off; 5491 skb->data_len = skb->len; 5492 atomic_set(&skb_shinfo(skb)->dataref, 1); 5493 return 0; 5494 } 5495 5496 /* remove len bytes from the beginning of the skb */ 5497 static int pskb_carve(struct sk_buff *skb, const u32 len, gfp_t gfp) 5498 { 5499 int headlen = skb_headlen(skb); 5500 5501 if (len < headlen) 5502 return pskb_carve_inside_header(skb, len, headlen, gfp); 5503 else 5504 return pskb_carve_inside_nonlinear(skb, len, headlen, gfp); 5505 } 5506 5507 /* Extract to_copy bytes starting at off from skb, and return this in 5508 * a new skb 5509 */ 5510 struct sk_buff *pskb_extract(struct sk_buff *skb, int off, 5511 int to_copy, gfp_t gfp) 5512 { 5513 struct sk_buff *clone = skb_clone(skb, gfp); 5514 5515 if (!clone) 5516 return NULL; 5517 5518 if (pskb_carve(clone, off, gfp) < 0 || 5519 pskb_trim(clone, to_copy)) { 5520 kfree_skb(clone); 5521 return NULL; 5522 } 5523 return clone; 5524 } 5525 EXPORT_SYMBOL(pskb_extract); 5526 5527 /** 5528 * skb_condense - try to get rid of fragments/frag_list if possible 5529 * @skb: buffer 5530 * 5531 * Can be used to save memory before skb is added to a busy queue. 5532 * If packet has bytes in frags and enough tail room in skb->head, 5533 * pull all of them, so that we can free the frags right now and adjust 5534 * truesize. 5535 * Notes: 5536 * We do not reallocate skb->head thus can not fail. 5537 * Caller must re-evaluate skb->truesize if needed. 5538 */ 5539 void skb_condense(struct sk_buff *skb) 5540 { 5541 if (skb->data_len) { 5542 if (skb->data_len > skb->end - skb->tail || 5543 skb_cloned(skb)) 5544 return; 5545 5546 /* Nice, we can free page frag(s) right now */ 5547 __pskb_pull_tail(skb, skb->data_len); 5548 } 5549 /* At this point, skb->truesize might be over estimated, 5550 * because skb had a fragment, and fragments do not tell 5551 * their truesize. 5552 * When we pulled its content into skb->head, fragment 5553 * was freed, but __pskb_pull_tail() could not possibly 5554 * adjust skb->truesize, not knowing the frag truesize. 5555 */ 5556 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb)); 5557 } 5558