xref: /openbmc/linux/net/core/skbuff.c (revision ac73d4bf)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *	Routines having to do with the 'struct sk_buff' memory handlers.
4  *
5  *	Authors:	Alan Cox <alan@lxorguk.ukuu.org.uk>
6  *			Florian La Roche <rzsfl@rz.uni-sb.de>
7  *
8  *	Fixes:
9  *		Alan Cox	:	Fixed the worst of the load
10  *					balancer bugs.
11  *		Dave Platt	:	Interrupt stacking fix.
12  *	Richard Kooijman	:	Timestamp fixes.
13  *		Alan Cox	:	Changed buffer format.
14  *		Alan Cox	:	destructor hook for AF_UNIX etc.
15  *		Linus Torvalds	:	Better skb_clone.
16  *		Alan Cox	:	Added skb_copy.
17  *		Alan Cox	:	Added all the changed routines Linus
18  *					only put in the headers
19  *		Ray VanTassle	:	Fixed --skb->lock in free
20  *		Alan Cox	:	skb_copy copy arp field
21  *		Andi Kleen	:	slabified it.
22  *		Robert Olsson	:	Removed skb_head_pool
23  *
24  *	NOTE:
25  *		The __skb_ routines should be called with interrupts
26  *	disabled, or you better be *real* sure that the operation is atomic
27  *	with respect to whatever list is being frobbed (e.g. via lock_sock()
28  *	or via disabling bottom half handlers, etc).
29  */
30 
31 /*
32  *	The functions in this file will not compile correctly with gcc 2.4.x
33  */
34 
35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
36 
37 #include <linux/module.h>
38 #include <linux/types.h>
39 #include <linux/kernel.h>
40 #include <linux/mm.h>
41 #include <linux/interrupt.h>
42 #include <linux/in.h>
43 #include <linux/inet.h>
44 #include <linux/slab.h>
45 #include <linux/tcp.h>
46 #include <linux/udp.h>
47 #include <linux/sctp.h>
48 #include <linux/netdevice.h>
49 #ifdef CONFIG_NET_CLS_ACT
50 #include <net/pkt_sched.h>
51 #endif
52 #include <linux/string.h>
53 #include <linux/skbuff.h>
54 #include <linux/splice.h>
55 #include <linux/cache.h>
56 #include <linux/rtnetlink.h>
57 #include <linux/init.h>
58 #include <linux/scatterlist.h>
59 #include <linux/errqueue.h>
60 #include <linux/prefetch.h>
61 #include <linux/if_vlan.h>
62 #include <linux/mpls.h>
63 #include <linux/kcov.h>
64 
65 #include <net/protocol.h>
66 #include <net/dst.h>
67 #include <net/sock.h>
68 #include <net/checksum.h>
69 #include <net/ip6_checksum.h>
70 #include <net/xfrm.h>
71 #include <net/mpls.h>
72 #include <net/mptcp.h>
73 #include <net/mctp.h>
74 #include <net/page_pool.h>
75 
76 #include <linux/uaccess.h>
77 #include <trace/events/skb.h>
78 #include <linux/highmem.h>
79 #include <linux/capability.h>
80 #include <linux/user_namespace.h>
81 #include <linux/indirect_call_wrapper.h>
82 
83 #include "dev.h"
84 #include "sock_destructor.h"
85 
86 struct kmem_cache *skbuff_head_cache __ro_after_init;
87 static struct kmem_cache *skbuff_fclone_cache __ro_after_init;
88 #ifdef CONFIG_SKB_EXTENSIONS
89 static struct kmem_cache *skbuff_ext_cache __ro_after_init;
90 #endif
91 int sysctl_max_skb_frags __read_mostly = MAX_SKB_FRAGS;
92 EXPORT_SYMBOL(sysctl_max_skb_frags);
93 
94 #undef FN
95 #define FN(reason) [SKB_DROP_REASON_##reason] = #reason,
96 const char * const drop_reasons[] = {
97 	[SKB_CONSUMED] = "CONSUMED",
98 	DEFINE_DROP_REASON(FN, FN)
99 };
100 EXPORT_SYMBOL(drop_reasons);
101 
102 /**
103  *	skb_panic - private function for out-of-line support
104  *	@skb:	buffer
105  *	@sz:	size
106  *	@addr:	address
107  *	@msg:	skb_over_panic or skb_under_panic
108  *
109  *	Out-of-line support for skb_put() and skb_push().
110  *	Called via the wrapper skb_over_panic() or skb_under_panic().
111  *	Keep out of line to prevent kernel bloat.
112  *	__builtin_return_address is not used because it is not always reliable.
113  */
114 static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr,
115 		      const char msg[])
116 {
117 	pr_emerg("%s: text:%px len:%d put:%d head:%px data:%px tail:%#lx end:%#lx dev:%s\n",
118 		 msg, addr, skb->len, sz, skb->head, skb->data,
119 		 (unsigned long)skb->tail, (unsigned long)skb->end,
120 		 skb->dev ? skb->dev->name : "<NULL>");
121 	BUG();
122 }
123 
124 static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr)
125 {
126 	skb_panic(skb, sz, addr, __func__);
127 }
128 
129 static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr)
130 {
131 	skb_panic(skb, sz, addr, __func__);
132 }
133 
134 #define NAPI_SKB_CACHE_SIZE	64
135 #define NAPI_SKB_CACHE_BULK	16
136 #define NAPI_SKB_CACHE_HALF	(NAPI_SKB_CACHE_SIZE / 2)
137 
138 #if PAGE_SIZE == SZ_4K
139 
140 #define NAPI_HAS_SMALL_PAGE_FRAG	1
141 #define NAPI_SMALL_PAGE_PFMEMALLOC(nc)	((nc).pfmemalloc)
142 
143 /* specialized page frag allocator using a single order 0 page
144  * and slicing it into 1K sized fragment. Constrained to systems
145  * with a very limited amount of 1K fragments fitting a single
146  * page - to avoid excessive truesize underestimation
147  */
148 
149 struct page_frag_1k {
150 	void *va;
151 	u16 offset;
152 	bool pfmemalloc;
153 };
154 
155 static void *page_frag_alloc_1k(struct page_frag_1k *nc, gfp_t gfp)
156 {
157 	struct page *page;
158 	int offset;
159 
160 	offset = nc->offset - SZ_1K;
161 	if (likely(offset >= 0))
162 		goto use_frag;
163 
164 	page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
165 	if (!page)
166 		return NULL;
167 
168 	nc->va = page_address(page);
169 	nc->pfmemalloc = page_is_pfmemalloc(page);
170 	offset = PAGE_SIZE - SZ_1K;
171 	page_ref_add(page, offset / SZ_1K);
172 
173 use_frag:
174 	nc->offset = offset;
175 	return nc->va + offset;
176 }
177 #else
178 
179 /* the small page is actually unused in this build; add dummy helpers
180  * to please the compiler and avoid later preprocessor's conditionals
181  */
182 #define NAPI_HAS_SMALL_PAGE_FRAG	0
183 #define NAPI_SMALL_PAGE_PFMEMALLOC(nc)	false
184 
185 struct page_frag_1k {
186 };
187 
188 static void *page_frag_alloc_1k(struct page_frag_1k *nc, gfp_t gfp_mask)
189 {
190 	return NULL;
191 }
192 
193 #endif
194 
195 struct napi_alloc_cache {
196 	struct page_frag_cache page;
197 	struct page_frag_1k page_small;
198 	unsigned int skb_count;
199 	void *skb_cache[NAPI_SKB_CACHE_SIZE];
200 };
201 
202 static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache);
203 static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache);
204 
205 /* Double check that napi_get_frags() allocates skbs with
206  * skb->head being backed by slab, not a page fragment.
207  * This is to make sure bug fixed in 3226b158e67c
208  * ("net: avoid 32 x truesize under-estimation for tiny skbs")
209  * does not accidentally come back.
210  */
211 void napi_get_frags_check(struct napi_struct *napi)
212 {
213 	struct sk_buff *skb;
214 
215 	local_bh_disable();
216 	skb = napi_get_frags(napi);
217 	WARN_ON_ONCE(!NAPI_HAS_SMALL_PAGE_FRAG && skb && skb->head_frag);
218 	napi_free_frags(napi);
219 	local_bh_enable();
220 }
221 
222 void *__napi_alloc_frag_align(unsigned int fragsz, unsigned int align_mask)
223 {
224 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
225 
226 	fragsz = SKB_DATA_ALIGN(fragsz);
227 
228 	return page_frag_alloc_align(&nc->page, fragsz, GFP_ATOMIC, align_mask);
229 }
230 EXPORT_SYMBOL(__napi_alloc_frag_align);
231 
232 void *__netdev_alloc_frag_align(unsigned int fragsz, unsigned int align_mask)
233 {
234 	void *data;
235 
236 	fragsz = SKB_DATA_ALIGN(fragsz);
237 	if (in_hardirq() || irqs_disabled()) {
238 		struct page_frag_cache *nc = this_cpu_ptr(&netdev_alloc_cache);
239 
240 		data = page_frag_alloc_align(nc, fragsz, GFP_ATOMIC, align_mask);
241 	} else {
242 		struct napi_alloc_cache *nc;
243 
244 		local_bh_disable();
245 		nc = this_cpu_ptr(&napi_alloc_cache);
246 		data = page_frag_alloc_align(&nc->page, fragsz, GFP_ATOMIC, align_mask);
247 		local_bh_enable();
248 	}
249 	return data;
250 }
251 EXPORT_SYMBOL(__netdev_alloc_frag_align);
252 
253 static struct sk_buff *napi_skb_cache_get(void)
254 {
255 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
256 	struct sk_buff *skb;
257 
258 	if (unlikely(!nc->skb_count)) {
259 		nc->skb_count = kmem_cache_alloc_bulk(skbuff_head_cache,
260 						      GFP_ATOMIC,
261 						      NAPI_SKB_CACHE_BULK,
262 						      nc->skb_cache);
263 		if (unlikely(!nc->skb_count))
264 			return NULL;
265 	}
266 
267 	skb = nc->skb_cache[--nc->skb_count];
268 	kasan_unpoison_object_data(skbuff_head_cache, skb);
269 
270 	return skb;
271 }
272 
273 /* Caller must provide SKB that is memset cleared */
274 static void __build_skb_around(struct sk_buff *skb, void *data,
275 			       unsigned int frag_size)
276 {
277 	struct skb_shared_info *shinfo;
278 	unsigned int size = frag_size ? : ksize(data);
279 
280 	size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
281 
282 	/* Assumes caller memset cleared SKB */
283 	skb->truesize = SKB_TRUESIZE(size);
284 	refcount_set(&skb->users, 1);
285 	skb->head = data;
286 	skb->data = data;
287 	skb_reset_tail_pointer(skb);
288 	skb_set_end_offset(skb, size);
289 	skb->mac_header = (typeof(skb->mac_header))~0U;
290 	skb->transport_header = (typeof(skb->transport_header))~0U;
291 	skb->alloc_cpu = raw_smp_processor_id();
292 	/* make sure we initialize shinfo sequentially */
293 	shinfo = skb_shinfo(skb);
294 	memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
295 	atomic_set(&shinfo->dataref, 1);
296 
297 	skb_set_kcov_handle(skb, kcov_common_handle());
298 }
299 
300 /**
301  * __build_skb - build a network buffer
302  * @data: data buffer provided by caller
303  * @frag_size: size of data, or 0 if head was kmalloced
304  *
305  * Allocate a new &sk_buff. Caller provides space holding head and
306  * skb_shared_info. @data must have been allocated by kmalloc() only if
307  * @frag_size is 0, otherwise data should come from the page allocator
308  *  or vmalloc()
309  * The return is the new skb buffer.
310  * On a failure the return is %NULL, and @data is not freed.
311  * Notes :
312  *  Before IO, driver allocates only data buffer where NIC put incoming frame
313  *  Driver should add room at head (NET_SKB_PAD) and
314  *  MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info))
315  *  After IO, driver calls build_skb(), to allocate sk_buff and populate it
316  *  before giving packet to stack.
317  *  RX rings only contains data buffers, not full skbs.
318  */
319 struct sk_buff *__build_skb(void *data, unsigned int frag_size)
320 {
321 	struct sk_buff *skb;
322 
323 	skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC);
324 	if (unlikely(!skb))
325 		return NULL;
326 
327 	memset(skb, 0, offsetof(struct sk_buff, tail));
328 	__build_skb_around(skb, data, frag_size);
329 
330 	return skb;
331 }
332 
333 /* build_skb() is wrapper over __build_skb(), that specifically
334  * takes care of skb->head and skb->pfmemalloc
335  * This means that if @frag_size is not zero, then @data must be backed
336  * by a page fragment, not kmalloc() or vmalloc()
337  */
338 struct sk_buff *build_skb(void *data, unsigned int frag_size)
339 {
340 	struct sk_buff *skb = __build_skb(data, frag_size);
341 
342 	if (skb && frag_size) {
343 		skb->head_frag = 1;
344 		if (page_is_pfmemalloc(virt_to_head_page(data)))
345 			skb->pfmemalloc = 1;
346 	}
347 	return skb;
348 }
349 EXPORT_SYMBOL(build_skb);
350 
351 /**
352  * build_skb_around - build a network buffer around provided skb
353  * @skb: sk_buff provide by caller, must be memset cleared
354  * @data: data buffer provided by caller
355  * @frag_size: size of data, or 0 if head was kmalloced
356  */
357 struct sk_buff *build_skb_around(struct sk_buff *skb,
358 				 void *data, unsigned int frag_size)
359 {
360 	if (unlikely(!skb))
361 		return NULL;
362 
363 	__build_skb_around(skb, data, frag_size);
364 
365 	if (frag_size) {
366 		skb->head_frag = 1;
367 		if (page_is_pfmemalloc(virt_to_head_page(data)))
368 			skb->pfmemalloc = 1;
369 	}
370 	return skb;
371 }
372 EXPORT_SYMBOL(build_skb_around);
373 
374 /**
375  * __napi_build_skb - build a network buffer
376  * @data: data buffer provided by caller
377  * @frag_size: size of data, or 0 if head was kmalloced
378  *
379  * Version of __build_skb() that uses NAPI percpu caches to obtain
380  * skbuff_head instead of inplace allocation.
381  *
382  * Returns a new &sk_buff on success, %NULL on allocation failure.
383  */
384 static struct sk_buff *__napi_build_skb(void *data, unsigned int frag_size)
385 {
386 	struct sk_buff *skb;
387 
388 	skb = napi_skb_cache_get();
389 	if (unlikely(!skb))
390 		return NULL;
391 
392 	memset(skb, 0, offsetof(struct sk_buff, tail));
393 	__build_skb_around(skb, data, frag_size);
394 
395 	return skb;
396 }
397 
398 /**
399  * napi_build_skb - build a network buffer
400  * @data: data buffer provided by caller
401  * @frag_size: size of data, or 0 if head was kmalloced
402  *
403  * Version of __napi_build_skb() that takes care of skb->head_frag
404  * and skb->pfmemalloc when the data is a page or page fragment.
405  *
406  * Returns a new &sk_buff on success, %NULL on allocation failure.
407  */
408 struct sk_buff *napi_build_skb(void *data, unsigned int frag_size)
409 {
410 	struct sk_buff *skb = __napi_build_skb(data, frag_size);
411 
412 	if (likely(skb) && frag_size) {
413 		skb->head_frag = 1;
414 		skb_propagate_pfmemalloc(virt_to_head_page(data), skb);
415 	}
416 
417 	return skb;
418 }
419 EXPORT_SYMBOL(napi_build_skb);
420 
421 /*
422  * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells
423  * the caller if emergency pfmemalloc reserves are being used. If it is and
424  * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves
425  * may be used. Otherwise, the packet data may be discarded until enough
426  * memory is free
427  */
428 static void *kmalloc_reserve(size_t size, gfp_t flags, int node,
429 			     bool *pfmemalloc)
430 {
431 	void *obj;
432 	bool ret_pfmemalloc = false;
433 
434 	/*
435 	 * Try a regular allocation, when that fails and we're not entitled
436 	 * to the reserves, fail.
437 	 */
438 	obj = kmalloc_node_track_caller(size,
439 					flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
440 					node);
441 	if (obj || !(gfp_pfmemalloc_allowed(flags)))
442 		goto out;
443 
444 	/* Try again but now we are using pfmemalloc reserves */
445 	ret_pfmemalloc = true;
446 	obj = kmalloc_node_track_caller(size, flags, node);
447 
448 out:
449 	if (pfmemalloc)
450 		*pfmemalloc = ret_pfmemalloc;
451 
452 	return obj;
453 }
454 
455 /* 	Allocate a new skbuff. We do this ourselves so we can fill in a few
456  *	'private' fields and also do memory statistics to find all the
457  *	[BEEP] leaks.
458  *
459  */
460 
461 /**
462  *	__alloc_skb	-	allocate a network buffer
463  *	@size: size to allocate
464  *	@gfp_mask: allocation mask
465  *	@flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache
466  *		instead of head cache and allocate a cloned (child) skb.
467  *		If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for
468  *		allocations in case the data is required for writeback
469  *	@node: numa node to allocate memory on
470  *
471  *	Allocate a new &sk_buff. The returned buffer has no headroom and a
472  *	tail room of at least size bytes. The object has a reference count
473  *	of one. The return is the buffer. On a failure the return is %NULL.
474  *
475  *	Buffers may only be allocated from interrupts using a @gfp_mask of
476  *	%GFP_ATOMIC.
477  */
478 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
479 			    int flags, int node)
480 {
481 	struct kmem_cache *cache;
482 	struct sk_buff *skb;
483 	unsigned int osize;
484 	bool pfmemalloc;
485 	u8 *data;
486 
487 	cache = (flags & SKB_ALLOC_FCLONE)
488 		? skbuff_fclone_cache : skbuff_head_cache;
489 
490 	if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX))
491 		gfp_mask |= __GFP_MEMALLOC;
492 
493 	/* Get the HEAD */
494 	if ((flags & (SKB_ALLOC_FCLONE | SKB_ALLOC_NAPI)) == SKB_ALLOC_NAPI &&
495 	    likely(node == NUMA_NO_NODE || node == numa_mem_id()))
496 		skb = napi_skb_cache_get();
497 	else
498 		skb = kmem_cache_alloc_node(cache, gfp_mask & ~GFP_DMA, node);
499 	if (unlikely(!skb))
500 		return NULL;
501 	prefetchw(skb);
502 
503 	/* We do our best to align skb_shared_info on a separate cache
504 	 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives
505 	 * aligned memory blocks, unless SLUB/SLAB debug is enabled.
506 	 * Both skb->head and skb_shared_info are cache line aligned.
507 	 */
508 	size = SKB_DATA_ALIGN(size);
509 	size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
510 	osize = kmalloc_size_roundup(size);
511 	data = kmalloc_reserve(osize, gfp_mask, node, &pfmemalloc);
512 	if (unlikely(!data))
513 		goto nodata;
514 	/* kmalloc_size_roundup() might give us more room than requested.
515 	 * Put skb_shared_info exactly at the end of allocated zone,
516 	 * to allow max possible filling before reallocation.
517 	 */
518 	size = SKB_WITH_OVERHEAD(osize);
519 	prefetchw(data + size);
520 
521 	/*
522 	 * Only clear those fields we need to clear, not those that we will
523 	 * actually initialise below. Hence, don't put any more fields after
524 	 * the tail pointer in struct sk_buff!
525 	 */
526 	memset(skb, 0, offsetof(struct sk_buff, tail));
527 	__build_skb_around(skb, data, osize);
528 	skb->pfmemalloc = pfmemalloc;
529 
530 	if (flags & SKB_ALLOC_FCLONE) {
531 		struct sk_buff_fclones *fclones;
532 
533 		fclones = container_of(skb, struct sk_buff_fclones, skb1);
534 
535 		skb->fclone = SKB_FCLONE_ORIG;
536 		refcount_set(&fclones->fclone_ref, 1);
537 	}
538 
539 	return skb;
540 
541 nodata:
542 	kmem_cache_free(cache, skb);
543 	return NULL;
544 }
545 EXPORT_SYMBOL(__alloc_skb);
546 
547 /**
548  *	__netdev_alloc_skb - allocate an skbuff for rx on a specific device
549  *	@dev: network device to receive on
550  *	@len: length to allocate
551  *	@gfp_mask: get_free_pages mask, passed to alloc_skb
552  *
553  *	Allocate a new &sk_buff and assign it a usage count of one. The
554  *	buffer has NET_SKB_PAD headroom built in. Users should allocate
555  *	the headroom they think they need without accounting for the
556  *	built in space. The built in space is used for optimisations.
557  *
558  *	%NULL is returned if there is no free memory.
559  */
560 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len,
561 				   gfp_t gfp_mask)
562 {
563 	struct page_frag_cache *nc;
564 	struct sk_buff *skb;
565 	bool pfmemalloc;
566 	void *data;
567 
568 	len += NET_SKB_PAD;
569 
570 	/* If requested length is either too small or too big,
571 	 * we use kmalloc() for skb->head allocation.
572 	 */
573 	if (len <= SKB_WITH_OVERHEAD(1024) ||
574 	    len > SKB_WITH_OVERHEAD(PAGE_SIZE) ||
575 	    (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
576 		skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
577 		if (!skb)
578 			goto skb_fail;
579 		goto skb_success;
580 	}
581 
582 	len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
583 	len = SKB_DATA_ALIGN(len);
584 
585 	if (sk_memalloc_socks())
586 		gfp_mask |= __GFP_MEMALLOC;
587 
588 	if (in_hardirq() || irqs_disabled()) {
589 		nc = this_cpu_ptr(&netdev_alloc_cache);
590 		data = page_frag_alloc(nc, len, gfp_mask);
591 		pfmemalloc = nc->pfmemalloc;
592 	} else {
593 		local_bh_disable();
594 		nc = this_cpu_ptr(&napi_alloc_cache.page);
595 		data = page_frag_alloc(nc, len, gfp_mask);
596 		pfmemalloc = nc->pfmemalloc;
597 		local_bh_enable();
598 	}
599 
600 	if (unlikely(!data))
601 		return NULL;
602 
603 	skb = __build_skb(data, len);
604 	if (unlikely(!skb)) {
605 		skb_free_frag(data);
606 		return NULL;
607 	}
608 
609 	if (pfmemalloc)
610 		skb->pfmemalloc = 1;
611 	skb->head_frag = 1;
612 
613 skb_success:
614 	skb_reserve(skb, NET_SKB_PAD);
615 	skb->dev = dev;
616 
617 skb_fail:
618 	return skb;
619 }
620 EXPORT_SYMBOL(__netdev_alloc_skb);
621 
622 /**
623  *	__napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance
624  *	@napi: napi instance this buffer was allocated for
625  *	@len: length to allocate
626  *	@gfp_mask: get_free_pages mask, passed to alloc_skb and alloc_pages
627  *
628  *	Allocate a new sk_buff for use in NAPI receive.  This buffer will
629  *	attempt to allocate the head from a special reserved region used
630  *	only for NAPI Rx allocation.  By doing this we can save several
631  *	CPU cycles by avoiding having to disable and re-enable IRQs.
632  *
633  *	%NULL is returned if there is no free memory.
634  */
635 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, unsigned int len,
636 				 gfp_t gfp_mask)
637 {
638 	struct napi_alloc_cache *nc;
639 	struct sk_buff *skb;
640 	bool pfmemalloc;
641 	void *data;
642 
643 	DEBUG_NET_WARN_ON_ONCE(!in_softirq());
644 	len += NET_SKB_PAD + NET_IP_ALIGN;
645 
646 	/* If requested length is either too small or too big,
647 	 * we use kmalloc() for skb->head allocation.
648 	 * When the small frag allocator is available, prefer it over kmalloc
649 	 * for small fragments
650 	 */
651 	if ((!NAPI_HAS_SMALL_PAGE_FRAG && len <= SKB_WITH_OVERHEAD(1024)) ||
652 	    len > SKB_WITH_OVERHEAD(PAGE_SIZE) ||
653 	    (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
654 		skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX | SKB_ALLOC_NAPI,
655 				  NUMA_NO_NODE);
656 		if (!skb)
657 			goto skb_fail;
658 		goto skb_success;
659 	}
660 
661 	nc = this_cpu_ptr(&napi_alloc_cache);
662 
663 	if (sk_memalloc_socks())
664 		gfp_mask |= __GFP_MEMALLOC;
665 
666 	if (NAPI_HAS_SMALL_PAGE_FRAG && len <= SKB_WITH_OVERHEAD(1024)) {
667 		/* we are artificially inflating the allocation size, but
668 		 * that is not as bad as it may look like, as:
669 		 * - 'len' less than GRO_MAX_HEAD makes little sense
670 		 * - On most systems, larger 'len' values lead to fragment
671 		 *   size above 512 bytes
672 		 * - kmalloc would use the kmalloc-1k slab for such values
673 		 * - Builds with smaller GRO_MAX_HEAD will very likely do
674 		 *   little networking, as that implies no WiFi and no
675 		 *   tunnels support, and 32 bits arches.
676 		 */
677 		len = SZ_1K;
678 
679 		data = page_frag_alloc_1k(&nc->page_small, gfp_mask);
680 		pfmemalloc = NAPI_SMALL_PAGE_PFMEMALLOC(nc->page_small);
681 	} else {
682 		len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
683 		len = SKB_DATA_ALIGN(len);
684 
685 		data = page_frag_alloc(&nc->page, len, gfp_mask);
686 		pfmemalloc = nc->page.pfmemalloc;
687 	}
688 
689 	if (unlikely(!data))
690 		return NULL;
691 
692 	skb = __napi_build_skb(data, len);
693 	if (unlikely(!skb)) {
694 		skb_free_frag(data);
695 		return NULL;
696 	}
697 
698 	if (pfmemalloc)
699 		skb->pfmemalloc = 1;
700 	skb->head_frag = 1;
701 
702 skb_success:
703 	skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN);
704 	skb->dev = napi->dev;
705 
706 skb_fail:
707 	return skb;
708 }
709 EXPORT_SYMBOL(__napi_alloc_skb);
710 
711 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
712 		     int size, unsigned int truesize)
713 {
714 	skb_fill_page_desc(skb, i, page, off, size);
715 	skb->len += size;
716 	skb->data_len += size;
717 	skb->truesize += truesize;
718 }
719 EXPORT_SYMBOL(skb_add_rx_frag);
720 
721 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
722 			  unsigned int truesize)
723 {
724 	skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
725 
726 	skb_frag_size_add(frag, size);
727 	skb->len += size;
728 	skb->data_len += size;
729 	skb->truesize += truesize;
730 }
731 EXPORT_SYMBOL(skb_coalesce_rx_frag);
732 
733 static void skb_drop_list(struct sk_buff **listp)
734 {
735 	kfree_skb_list(*listp);
736 	*listp = NULL;
737 }
738 
739 static inline void skb_drop_fraglist(struct sk_buff *skb)
740 {
741 	skb_drop_list(&skb_shinfo(skb)->frag_list);
742 }
743 
744 static void skb_clone_fraglist(struct sk_buff *skb)
745 {
746 	struct sk_buff *list;
747 
748 	skb_walk_frags(skb, list)
749 		skb_get(list);
750 }
751 
752 static bool skb_pp_recycle(struct sk_buff *skb, void *data)
753 {
754 	if (!IS_ENABLED(CONFIG_PAGE_POOL) || !skb->pp_recycle)
755 		return false;
756 	return page_pool_return_skb_page(virt_to_page(data));
757 }
758 
759 static void skb_free_head(struct sk_buff *skb)
760 {
761 	unsigned char *head = skb->head;
762 
763 	if (skb->head_frag) {
764 		if (skb_pp_recycle(skb, head))
765 			return;
766 		skb_free_frag(head);
767 	} else {
768 		kfree(head);
769 	}
770 }
771 
772 static void skb_release_data(struct sk_buff *skb, enum skb_drop_reason reason)
773 {
774 	struct skb_shared_info *shinfo = skb_shinfo(skb);
775 	int i;
776 
777 	if (skb->cloned &&
778 	    atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
779 			      &shinfo->dataref))
780 		goto exit;
781 
782 	if (skb_zcopy(skb)) {
783 		bool skip_unref = shinfo->flags & SKBFL_MANAGED_FRAG_REFS;
784 
785 		skb_zcopy_clear(skb, true);
786 		if (skip_unref)
787 			goto free_head;
788 	}
789 
790 	for (i = 0; i < shinfo->nr_frags; i++)
791 		__skb_frag_unref(&shinfo->frags[i], skb->pp_recycle);
792 
793 free_head:
794 	if (shinfo->frag_list)
795 		kfree_skb_list_reason(shinfo->frag_list, reason);
796 
797 	skb_free_head(skb);
798 exit:
799 	/* When we clone an SKB we copy the reycling bit. The pp_recycle
800 	 * bit is only set on the head though, so in order to avoid races
801 	 * while trying to recycle fragments on __skb_frag_unref() we need
802 	 * to make one SKB responsible for triggering the recycle path.
803 	 * So disable the recycling bit if an SKB is cloned and we have
804 	 * additional references to the fragmented part of the SKB.
805 	 * Eventually the last SKB will have the recycling bit set and it's
806 	 * dataref set to 0, which will trigger the recycling
807 	 */
808 	skb->pp_recycle = 0;
809 }
810 
811 /*
812  *	Free an skbuff by memory without cleaning the state.
813  */
814 static void kfree_skbmem(struct sk_buff *skb)
815 {
816 	struct sk_buff_fclones *fclones;
817 
818 	switch (skb->fclone) {
819 	case SKB_FCLONE_UNAVAILABLE:
820 		kmem_cache_free(skbuff_head_cache, skb);
821 		return;
822 
823 	case SKB_FCLONE_ORIG:
824 		fclones = container_of(skb, struct sk_buff_fclones, skb1);
825 
826 		/* We usually free the clone (TX completion) before original skb
827 		 * This test would have no chance to be true for the clone,
828 		 * while here, branch prediction will be good.
829 		 */
830 		if (refcount_read(&fclones->fclone_ref) == 1)
831 			goto fastpath;
832 		break;
833 
834 	default: /* SKB_FCLONE_CLONE */
835 		fclones = container_of(skb, struct sk_buff_fclones, skb2);
836 		break;
837 	}
838 	if (!refcount_dec_and_test(&fclones->fclone_ref))
839 		return;
840 fastpath:
841 	kmem_cache_free(skbuff_fclone_cache, fclones);
842 }
843 
844 void skb_release_head_state(struct sk_buff *skb)
845 {
846 	skb_dst_drop(skb);
847 	if (skb->destructor) {
848 		DEBUG_NET_WARN_ON_ONCE(in_hardirq());
849 		skb->destructor(skb);
850 	}
851 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
852 	nf_conntrack_put(skb_nfct(skb));
853 #endif
854 	skb_ext_put(skb);
855 }
856 
857 /* Free everything but the sk_buff shell. */
858 static void skb_release_all(struct sk_buff *skb, enum skb_drop_reason reason)
859 {
860 	skb_release_head_state(skb);
861 	if (likely(skb->head))
862 		skb_release_data(skb, reason);
863 }
864 
865 /**
866  *	__kfree_skb - private function
867  *	@skb: buffer
868  *
869  *	Free an sk_buff. Release anything attached to the buffer.
870  *	Clean the state. This is an internal helper function. Users should
871  *	always call kfree_skb
872  */
873 
874 void __kfree_skb(struct sk_buff *skb)
875 {
876 	skb_release_all(skb, SKB_DROP_REASON_NOT_SPECIFIED);
877 	kfree_skbmem(skb);
878 }
879 EXPORT_SYMBOL(__kfree_skb);
880 
881 /**
882  *	kfree_skb_reason - free an sk_buff with special reason
883  *	@skb: buffer to free
884  *	@reason: reason why this skb is dropped
885  *
886  *	Drop a reference to the buffer and free it if the usage count has
887  *	hit zero. Meanwhile, pass the drop reason to 'kfree_skb'
888  *	tracepoint.
889  */
890 void __fix_address
891 kfree_skb_reason(struct sk_buff *skb, enum skb_drop_reason reason)
892 {
893 	if (unlikely(!skb_unref(skb)))
894 		return;
895 
896 	DEBUG_NET_WARN_ON_ONCE(reason <= 0 || reason >= SKB_DROP_REASON_MAX);
897 
898 	if (reason == SKB_CONSUMED)
899 		trace_consume_skb(skb);
900 	else
901 		trace_kfree_skb(skb, __builtin_return_address(0), reason);
902 	__kfree_skb(skb);
903 }
904 EXPORT_SYMBOL(kfree_skb_reason);
905 
906 void kfree_skb_list_reason(struct sk_buff *segs,
907 			   enum skb_drop_reason reason)
908 {
909 	while (segs) {
910 		struct sk_buff *next = segs->next;
911 
912 		kfree_skb_reason(segs, reason);
913 		segs = next;
914 	}
915 }
916 EXPORT_SYMBOL(kfree_skb_list_reason);
917 
918 /* Dump skb information and contents.
919  *
920  * Must only be called from net_ratelimit()-ed paths.
921  *
922  * Dumps whole packets if full_pkt, only headers otherwise.
923  */
924 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt)
925 {
926 	struct skb_shared_info *sh = skb_shinfo(skb);
927 	struct net_device *dev = skb->dev;
928 	struct sock *sk = skb->sk;
929 	struct sk_buff *list_skb;
930 	bool has_mac, has_trans;
931 	int headroom, tailroom;
932 	int i, len, seg_len;
933 
934 	if (full_pkt)
935 		len = skb->len;
936 	else
937 		len = min_t(int, skb->len, MAX_HEADER + 128);
938 
939 	headroom = skb_headroom(skb);
940 	tailroom = skb_tailroom(skb);
941 
942 	has_mac = skb_mac_header_was_set(skb);
943 	has_trans = skb_transport_header_was_set(skb);
944 
945 	printk("%sskb len=%u headroom=%u headlen=%u tailroom=%u\n"
946 	       "mac=(%d,%d) net=(%d,%d) trans=%d\n"
947 	       "shinfo(txflags=%u nr_frags=%u gso(size=%hu type=%u segs=%hu))\n"
948 	       "csum(0x%x ip_summed=%u complete_sw=%u valid=%u level=%u)\n"
949 	       "hash(0x%x sw=%u l4=%u) proto=0x%04x pkttype=%u iif=%d\n",
950 	       level, skb->len, headroom, skb_headlen(skb), tailroom,
951 	       has_mac ? skb->mac_header : -1,
952 	       has_mac ? skb_mac_header_len(skb) : -1,
953 	       skb->network_header,
954 	       has_trans ? skb_network_header_len(skb) : -1,
955 	       has_trans ? skb->transport_header : -1,
956 	       sh->tx_flags, sh->nr_frags,
957 	       sh->gso_size, sh->gso_type, sh->gso_segs,
958 	       skb->csum, skb->ip_summed, skb->csum_complete_sw,
959 	       skb->csum_valid, skb->csum_level,
960 	       skb->hash, skb->sw_hash, skb->l4_hash,
961 	       ntohs(skb->protocol), skb->pkt_type, skb->skb_iif);
962 
963 	if (dev)
964 		printk("%sdev name=%s feat=%pNF\n",
965 		       level, dev->name, &dev->features);
966 	if (sk)
967 		printk("%ssk family=%hu type=%u proto=%u\n",
968 		       level, sk->sk_family, sk->sk_type, sk->sk_protocol);
969 
970 	if (full_pkt && headroom)
971 		print_hex_dump(level, "skb headroom: ", DUMP_PREFIX_OFFSET,
972 			       16, 1, skb->head, headroom, false);
973 
974 	seg_len = min_t(int, skb_headlen(skb), len);
975 	if (seg_len)
976 		print_hex_dump(level, "skb linear:   ", DUMP_PREFIX_OFFSET,
977 			       16, 1, skb->data, seg_len, false);
978 	len -= seg_len;
979 
980 	if (full_pkt && tailroom)
981 		print_hex_dump(level, "skb tailroom: ", DUMP_PREFIX_OFFSET,
982 			       16, 1, skb_tail_pointer(skb), tailroom, false);
983 
984 	for (i = 0; len && i < skb_shinfo(skb)->nr_frags; i++) {
985 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
986 		u32 p_off, p_len, copied;
987 		struct page *p;
988 		u8 *vaddr;
989 
990 		skb_frag_foreach_page(frag, skb_frag_off(frag),
991 				      skb_frag_size(frag), p, p_off, p_len,
992 				      copied) {
993 			seg_len = min_t(int, p_len, len);
994 			vaddr = kmap_atomic(p);
995 			print_hex_dump(level, "skb frag:     ",
996 				       DUMP_PREFIX_OFFSET,
997 				       16, 1, vaddr + p_off, seg_len, false);
998 			kunmap_atomic(vaddr);
999 			len -= seg_len;
1000 			if (!len)
1001 				break;
1002 		}
1003 	}
1004 
1005 	if (full_pkt && skb_has_frag_list(skb)) {
1006 		printk("skb fraglist:\n");
1007 		skb_walk_frags(skb, list_skb)
1008 			skb_dump(level, list_skb, true);
1009 	}
1010 }
1011 EXPORT_SYMBOL(skb_dump);
1012 
1013 /**
1014  *	skb_tx_error - report an sk_buff xmit error
1015  *	@skb: buffer that triggered an error
1016  *
1017  *	Report xmit error if a device callback is tracking this skb.
1018  *	skb must be freed afterwards.
1019  */
1020 void skb_tx_error(struct sk_buff *skb)
1021 {
1022 	if (skb) {
1023 		skb_zcopy_downgrade_managed(skb);
1024 		skb_zcopy_clear(skb, true);
1025 	}
1026 }
1027 EXPORT_SYMBOL(skb_tx_error);
1028 
1029 #ifdef CONFIG_TRACEPOINTS
1030 /**
1031  *	consume_skb - free an skbuff
1032  *	@skb: buffer to free
1033  *
1034  *	Drop a ref to the buffer and free it if the usage count has hit zero
1035  *	Functions identically to kfree_skb, but kfree_skb assumes that the frame
1036  *	is being dropped after a failure and notes that
1037  */
1038 void consume_skb(struct sk_buff *skb)
1039 {
1040 	if (!skb_unref(skb))
1041 		return;
1042 
1043 	trace_consume_skb(skb);
1044 	__kfree_skb(skb);
1045 }
1046 EXPORT_SYMBOL(consume_skb);
1047 #endif
1048 
1049 /**
1050  *	__consume_stateless_skb - free an skbuff, assuming it is stateless
1051  *	@skb: buffer to free
1052  *
1053  *	Alike consume_skb(), but this variant assumes that this is the last
1054  *	skb reference and all the head states have been already dropped
1055  */
1056 void __consume_stateless_skb(struct sk_buff *skb)
1057 {
1058 	trace_consume_skb(skb);
1059 	skb_release_data(skb, SKB_CONSUMED);
1060 	kfree_skbmem(skb);
1061 }
1062 
1063 static void napi_skb_cache_put(struct sk_buff *skb)
1064 {
1065 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
1066 	u32 i;
1067 
1068 	kasan_poison_object_data(skbuff_head_cache, skb);
1069 	nc->skb_cache[nc->skb_count++] = skb;
1070 
1071 	if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) {
1072 		for (i = NAPI_SKB_CACHE_HALF; i < NAPI_SKB_CACHE_SIZE; i++)
1073 			kasan_unpoison_object_data(skbuff_head_cache,
1074 						   nc->skb_cache[i]);
1075 
1076 		kmem_cache_free_bulk(skbuff_head_cache, NAPI_SKB_CACHE_HALF,
1077 				     nc->skb_cache + NAPI_SKB_CACHE_HALF);
1078 		nc->skb_count = NAPI_SKB_CACHE_HALF;
1079 	}
1080 }
1081 
1082 void __kfree_skb_defer(struct sk_buff *skb)
1083 {
1084 	skb_release_all(skb, SKB_DROP_REASON_NOT_SPECIFIED);
1085 	napi_skb_cache_put(skb);
1086 }
1087 
1088 void napi_skb_free_stolen_head(struct sk_buff *skb)
1089 {
1090 	if (unlikely(skb->slow_gro)) {
1091 		nf_reset_ct(skb);
1092 		skb_dst_drop(skb);
1093 		skb_ext_put(skb);
1094 		skb_orphan(skb);
1095 		skb->slow_gro = 0;
1096 	}
1097 	napi_skb_cache_put(skb);
1098 }
1099 
1100 void napi_consume_skb(struct sk_buff *skb, int budget)
1101 {
1102 	/* Zero budget indicate non-NAPI context called us, like netpoll */
1103 	if (unlikely(!budget)) {
1104 		dev_consume_skb_any(skb);
1105 		return;
1106 	}
1107 
1108 	DEBUG_NET_WARN_ON_ONCE(!in_softirq());
1109 
1110 	if (!skb_unref(skb))
1111 		return;
1112 
1113 	/* if reaching here SKB is ready to free */
1114 	trace_consume_skb(skb);
1115 
1116 	/* if SKB is a clone, don't handle this case */
1117 	if (skb->fclone != SKB_FCLONE_UNAVAILABLE) {
1118 		__kfree_skb(skb);
1119 		return;
1120 	}
1121 
1122 	skb_release_all(skb, SKB_CONSUMED);
1123 	napi_skb_cache_put(skb);
1124 }
1125 EXPORT_SYMBOL(napi_consume_skb);
1126 
1127 /* Make sure a field is contained by headers group */
1128 #define CHECK_SKB_FIELD(field) \
1129 	BUILD_BUG_ON(offsetof(struct sk_buff, field) !=		\
1130 		     offsetof(struct sk_buff, headers.field));	\
1131 
1132 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
1133 {
1134 	new->tstamp		= old->tstamp;
1135 	/* We do not copy old->sk */
1136 	new->dev		= old->dev;
1137 	memcpy(new->cb, old->cb, sizeof(old->cb));
1138 	skb_dst_copy(new, old);
1139 	__skb_ext_copy(new, old);
1140 	__nf_copy(new, old, false);
1141 
1142 	/* Note : this field could be in the headers group.
1143 	 * It is not yet because we do not want to have a 16 bit hole
1144 	 */
1145 	new->queue_mapping = old->queue_mapping;
1146 
1147 	memcpy(&new->headers, &old->headers, sizeof(new->headers));
1148 	CHECK_SKB_FIELD(protocol);
1149 	CHECK_SKB_FIELD(csum);
1150 	CHECK_SKB_FIELD(hash);
1151 	CHECK_SKB_FIELD(priority);
1152 	CHECK_SKB_FIELD(skb_iif);
1153 	CHECK_SKB_FIELD(vlan_proto);
1154 	CHECK_SKB_FIELD(vlan_tci);
1155 	CHECK_SKB_FIELD(transport_header);
1156 	CHECK_SKB_FIELD(network_header);
1157 	CHECK_SKB_FIELD(mac_header);
1158 	CHECK_SKB_FIELD(inner_protocol);
1159 	CHECK_SKB_FIELD(inner_transport_header);
1160 	CHECK_SKB_FIELD(inner_network_header);
1161 	CHECK_SKB_FIELD(inner_mac_header);
1162 	CHECK_SKB_FIELD(mark);
1163 #ifdef CONFIG_NETWORK_SECMARK
1164 	CHECK_SKB_FIELD(secmark);
1165 #endif
1166 #ifdef CONFIG_NET_RX_BUSY_POLL
1167 	CHECK_SKB_FIELD(napi_id);
1168 #endif
1169 	CHECK_SKB_FIELD(alloc_cpu);
1170 #ifdef CONFIG_XPS
1171 	CHECK_SKB_FIELD(sender_cpu);
1172 #endif
1173 #ifdef CONFIG_NET_SCHED
1174 	CHECK_SKB_FIELD(tc_index);
1175 #endif
1176 
1177 }
1178 
1179 /*
1180  * You should not add any new code to this function.  Add it to
1181  * __copy_skb_header above instead.
1182  */
1183 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
1184 {
1185 #define C(x) n->x = skb->x
1186 
1187 	n->next = n->prev = NULL;
1188 	n->sk = NULL;
1189 	__copy_skb_header(n, skb);
1190 
1191 	C(len);
1192 	C(data_len);
1193 	C(mac_len);
1194 	n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
1195 	n->cloned = 1;
1196 	n->nohdr = 0;
1197 	n->peeked = 0;
1198 	C(pfmemalloc);
1199 	C(pp_recycle);
1200 	n->destructor = NULL;
1201 	C(tail);
1202 	C(end);
1203 	C(head);
1204 	C(head_frag);
1205 	C(data);
1206 	C(truesize);
1207 	refcount_set(&n->users, 1);
1208 
1209 	atomic_inc(&(skb_shinfo(skb)->dataref));
1210 	skb->cloned = 1;
1211 
1212 	return n;
1213 #undef C
1214 }
1215 
1216 /**
1217  * alloc_skb_for_msg() - allocate sk_buff to wrap frag list forming a msg
1218  * @first: first sk_buff of the msg
1219  */
1220 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first)
1221 {
1222 	struct sk_buff *n;
1223 
1224 	n = alloc_skb(0, GFP_ATOMIC);
1225 	if (!n)
1226 		return NULL;
1227 
1228 	n->len = first->len;
1229 	n->data_len = first->len;
1230 	n->truesize = first->truesize;
1231 
1232 	skb_shinfo(n)->frag_list = first;
1233 
1234 	__copy_skb_header(n, first);
1235 	n->destructor = NULL;
1236 
1237 	return n;
1238 }
1239 EXPORT_SYMBOL_GPL(alloc_skb_for_msg);
1240 
1241 /**
1242  *	skb_morph	-	morph one skb into another
1243  *	@dst: the skb to receive the contents
1244  *	@src: the skb to supply the contents
1245  *
1246  *	This is identical to skb_clone except that the target skb is
1247  *	supplied by the user.
1248  *
1249  *	The target skb is returned upon exit.
1250  */
1251 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
1252 {
1253 	skb_release_all(dst, SKB_CONSUMED);
1254 	return __skb_clone(dst, src);
1255 }
1256 EXPORT_SYMBOL_GPL(skb_morph);
1257 
1258 int mm_account_pinned_pages(struct mmpin *mmp, size_t size)
1259 {
1260 	unsigned long max_pg, num_pg, new_pg, old_pg;
1261 	struct user_struct *user;
1262 
1263 	if (capable(CAP_IPC_LOCK) || !size)
1264 		return 0;
1265 
1266 	num_pg = (size >> PAGE_SHIFT) + 2;	/* worst case */
1267 	max_pg = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
1268 	user = mmp->user ? : current_user();
1269 
1270 	do {
1271 		old_pg = atomic_long_read(&user->locked_vm);
1272 		new_pg = old_pg + num_pg;
1273 		if (new_pg > max_pg)
1274 			return -ENOBUFS;
1275 	} while (atomic_long_cmpxchg(&user->locked_vm, old_pg, new_pg) !=
1276 		 old_pg);
1277 
1278 	if (!mmp->user) {
1279 		mmp->user = get_uid(user);
1280 		mmp->num_pg = num_pg;
1281 	} else {
1282 		mmp->num_pg += num_pg;
1283 	}
1284 
1285 	return 0;
1286 }
1287 EXPORT_SYMBOL_GPL(mm_account_pinned_pages);
1288 
1289 void mm_unaccount_pinned_pages(struct mmpin *mmp)
1290 {
1291 	if (mmp->user) {
1292 		atomic_long_sub(mmp->num_pg, &mmp->user->locked_vm);
1293 		free_uid(mmp->user);
1294 	}
1295 }
1296 EXPORT_SYMBOL_GPL(mm_unaccount_pinned_pages);
1297 
1298 static struct ubuf_info *msg_zerocopy_alloc(struct sock *sk, size_t size)
1299 {
1300 	struct ubuf_info_msgzc *uarg;
1301 	struct sk_buff *skb;
1302 
1303 	WARN_ON_ONCE(!in_task());
1304 
1305 	skb = sock_omalloc(sk, 0, GFP_KERNEL);
1306 	if (!skb)
1307 		return NULL;
1308 
1309 	BUILD_BUG_ON(sizeof(*uarg) > sizeof(skb->cb));
1310 	uarg = (void *)skb->cb;
1311 	uarg->mmp.user = NULL;
1312 
1313 	if (mm_account_pinned_pages(&uarg->mmp, size)) {
1314 		kfree_skb(skb);
1315 		return NULL;
1316 	}
1317 
1318 	uarg->ubuf.callback = msg_zerocopy_callback;
1319 	uarg->id = ((u32)atomic_inc_return(&sk->sk_zckey)) - 1;
1320 	uarg->len = 1;
1321 	uarg->bytelen = size;
1322 	uarg->zerocopy = 1;
1323 	uarg->ubuf.flags = SKBFL_ZEROCOPY_FRAG | SKBFL_DONT_ORPHAN;
1324 	refcount_set(&uarg->ubuf.refcnt, 1);
1325 	sock_hold(sk);
1326 
1327 	return &uarg->ubuf;
1328 }
1329 
1330 static inline struct sk_buff *skb_from_uarg(struct ubuf_info_msgzc *uarg)
1331 {
1332 	return container_of((void *)uarg, struct sk_buff, cb);
1333 }
1334 
1335 struct ubuf_info *msg_zerocopy_realloc(struct sock *sk, size_t size,
1336 				       struct ubuf_info *uarg)
1337 {
1338 	if (uarg) {
1339 		struct ubuf_info_msgzc *uarg_zc;
1340 		const u32 byte_limit = 1 << 19;		/* limit to a few TSO */
1341 		u32 bytelen, next;
1342 
1343 		/* there might be non MSG_ZEROCOPY users */
1344 		if (uarg->callback != msg_zerocopy_callback)
1345 			return NULL;
1346 
1347 		/* realloc only when socket is locked (TCP, UDP cork),
1348 		 * so uarg->len and sk_zckey access is serialized
1349 		 */
1350 		if (!sock_owned_by_user(sk)) {
1351 			WARN_ON_ONCE(1);
1352 			return NULL;
1353 		}
1354 
1355 		uarg_zc = uarg_to_msgzc(uarg);
1356 		bytelen = uarg_zc->bytelen + size;
1357 		if (uarg_zc->len == USHRT_MAX - 1 || bytelen > byte_limit) {
1358 			/* TCP can create new skb to attach new uarg */
1359 			if (sk->sk_type == SOCK_STREAM)
1360 				goto new_alloc;
1361 			return NULL;
1362 		}
1363 
1364 		next = (u32)atomic_read(&sk->sk_zckey);
1365 		if ((u32)(uarg_zc->id + uarg_zc->len) == next) {
1366 			if (mm_account_pinned_pages(&uarg_zc->mmp, size))
1367 				return NULL;
1368 			uarg_zc->len++;
1369 			uarg_zc->bytelen = bytelen;
1370 			atomic_set(&sk->sk_zckey, ++next);
1371 
1372 			/* no extra ref when appending to datagram (MSG_MORE) */
1373 			if (sk->sk_type == SOCK_STREAM)
1374 				net_zcopy_get(uarg);
1375 
1376 			return uarg;
1377 		}
1378 	}
1379 
1380 new_alloc:
1381 	return msg_zerocopy_alloc(sk, size);
1382 }
1383 EXPORT_SYMBOL_GPL(msg_zerocopy_realloc);
1384 
1385 static bool skb_zerocopy_notify_extend(struct sk_buff *skb, u32 lo, u16 len)
1386 {
1387 	struct sock_exterr_skb *serr = SKB_EXT_ERR(skb);
1388 	u32 old_lo, old_hi;
1389 	u64 sum_len;
1390 
1391 	old_lo = serr->ee.ee_info;
1392 	old_hi = serr->ee.ee_data;
1393 	sum_len = old_hi - old_lo + 1ULL + len;
1394 
1395 	if (sum_len >= (1ULL << 32))
1396 		return false;
1397 
1398 	if (lo != old_hi + 1)
1399 		return false;
1400 
1401 	serr->ee.ee_data += len;
1402 	return true;
1403 }
1404 
1405 static void __msg_zerocopy_callback(struct ubuf_info_msgzc *uarg)
1406 {
1407 	struct sk_buff *tail, *skb = skb_from_uarg(uarg);
1408 	struct sock_exterr_skb *serr;
1409 	struct sock *sk = skb->sk;
1410 	struct sk_buff_head *q;
1411 	unsigned long flags;
1412 	bool is_zerocopy;
1413 	u32 lo, hi;
1414 	u16 len;
1415 
1416 	mm_unaccount_pinned_pages(&uarg->mmp);
1417 
1418 	/* if !len, there was only 1 call, and it was aborted
1419 	 * so do not queue a completion notification
1420 	 */
1421 	if (!uarg->len || sock_flag(sk, SOCK_DEAD))
1422 		goto release;
1423 
1424 	len = uarg->len;
1425 	lo = uarg->id;
1426 	hi = uarg->id + len - 1;
1427 	is_zerocopy = uarg->zerocopy;
1428 
1429 	serr = SKB_EXT_ERR(skb);
1430 	memset(serr, 0, sizeof(*serr));
1431 	serr->ee.ee_errno = 0;
1432 	serr->ee.ee_origin = SO_EE_ORIGIN_ZEROCOPY;
1433 	serr->ee.ee_data = hi;
1434 	serr->ee.ee_info = lo;
1435 	if (!is_zerocopy)
1436 		serr->ee.ee_code |= SO_EE_CODE_ZEROCOPY_COPIED;
1437 
1438 	q = &sk->sk_error_queue;
1439 	spin_lock_irqsave(&q->lock, flags);
1440 	tail = skb_peek_tail(q);
1441 	if (!tail || SKB_EXT_ERR(tail)->ee.ee_origin != SO_EE_ORIGIN_ZEROCOPY ||
1442 	    !skb_zerocopy_notify_extend(tail, lo, len)) {
1443 		__skb_queue_tail(q, skb);
1444 		skb = NULL;
1445 	}
1446 	spin_unlock_irqrestore(&q->lock, flags);
1447 
1448 	sk_error_report(sk);
1449 
1450 release:
1451 	consume_skb(skb);
1452 	sock_put(sk);
1453 }
1454 
1455 void msg_zerocopy_callback(struct sk_buff *skb, struct ubuf_info *uarg,
1456 			   bool success)
1457 {
1458 	struct ubuf_info_msgzc *uarg_zc = uarg_to_msgzc(uarg);
1459 
1460 	uarg_zc->zerocopy = uarg_zc->zerocopy & success;
1461 
1462 	if (refcount_dec_and_test(&uarg->refcnt))
1463 		__msg_zerocopy_callback(uarg_zc);
1464 }
1465 EXPORT_SYMBOL_GPL(msg_zerocopy_callback);
1466 
1467 void msg_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref)
1468 {
1469 	struct sock *sk = skb_from_uarg(uarg_to_msgzc(uarg))->sk;
1470 
1471 	atomic_dec(&sk->sk_zckey);
1472 	uarg_to_msgzc(uarg)->len--;
1473 
1474 	if (have_uref)
1475 		msg_zerocopy_callback(NULL, uarg, true);
1476 }
1477 EXPORT_SYMBOL_GPL(msg_zerocopy_put_abort);
1478 
1479 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
1480 			     struct msghdr *msg, int len,
1481 			     struct ubuf_info *uarg)
1482 {
1483 	struct ubuf_info *orig_uarg = skb_zcopy(skb);
1484 	int err, orig_len = skb->len;
1485 
1486 	/* An skb can only point to one uarg. This edge case happens when
1487 	 * TCP appends to an skb, but zerocopy_realloc triggered a new alloc.
1488 	 */
1489 	if (orig_uarg && uarg != orig_uarg)
1490 		return -EEXIST;
1491 
1492 	err = __zerocopy_sg_from_iter(msg, sk, skb, &msg->msg_iter, len);
1493 	if (err == -EFAULT || (err == -EMSGSIZE && skb->len == orig_len)) {
1494 		struct sock *save_sk = skb->sk;
1495 
1496 		/* Streams do not free skb on error. Reset to prev state. */
1497 		iov_iter_revert(&msg->msg_iter, skb->len - orig_len);
1498 		skb->sk = sk;
1499 		___pskb_trim(skb, orig_len);
1500 		skb->sk = save_sk;
1501 		return err;
1502 	}
1503 
1504 	skb_zcopy_set(skb, uarg, NULL);
1505 	return skb->len - orig_len;
1506 }
1507 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_stream);
1508 
1509 void __skb_zcopy_downgrade_managed(struct sk_buff *skb)
1510 {
1511 	int i;
1512 
1513 	skb_shinfo(skb)->flags &= ~SKBFL_MANAGED_FRAG_REFS;
1514 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1515 		skb_frag_ref(skb, i);
1516 }
1517 EXPORT_SYMBOL_GPL(__skb_zcopy_downgrade_managed);
1518 
1519 static int skb_zerocopy_clone(struct sk_buff *nskb, struct sk_buff *orig,
1520 			      gfp_t gfp_mask)
1521 {
1522 	if (skb_zcopy(orig)) {
1523 		if (skb_zcopy(nskb)) {
1524 			/* !gfp_mask callers are verified to !skb_zcopy(nskb) */
1525 			if (!gfp_mask) {
1526 				WARN_ON_ONCE(1);
1527 				return -ENOMEM;
1528 			}
1529 			if (skb_uarg(nskb) == skb_uarg(orig))
1530 				return 0;
1531 			if (skb_copy_ubufs(nskb, GFP_ATOMIC))
1532 				return -EIO;
1533 		}
1534 		skb_zcopy_set(nskb, skb_uarg(orig), NULL);
1535 	}
1536 	return 0;
1537 }
1538 
1539 /**
1540  *	skb_copy_ubufs	-	copy userspace skb frags buffers to kernel
1541  *	@skb: the skb to modify
1542  *	@gfp_mask: allocation priority
1543  *
1544  *	This must be called on skb with SKBFL_ZEROCOPY_ENABLE.
1545  *	It will copy all frags into kernel and drop the reference
1546  *	to userspace pages.
1547  *
1548  *	If this function is called from an interrupt gfp_mask() must be
1549  *	%GFP_ATOMIC.
1550  *
1551  *	Returns 0 on success or a negative error code on failure
1552  *	to allocate kernel memory to copy to.
1553  */
1554 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask)
1555 {
1556 	int num_frags = skb_shinfo(skb)->nr_frags;
1557 	struct page *page, *head = NULL;
1558 	int i, new_frags;
1559 	u32 d_off;
1560 
1561 	if (skb_shared(skb) || skb_unclone(skb, gfp_mask))
1562 		return -EINVAL;
1563 
1564 	if (!num_frags)
1565 		goto release;
1566 
1567 	new_frags = (__skb_pagelen(skb) + PAGE_SIZE - 1) >> PAGE_SHIFT;
1568 	for (i = 0; i < new_frags; i++) {
1569 		page = alloc_page(gfp_mask);
1570 		if (!page) {
1571 			while (head) {
1572 				struct page *next = (struct page *)page_private(head);
1573 				put_page(head);
1574 				head = next;
1575 			}
1576 			return -ENOMEM;
1577 		}
1578 		set_page_private(page, (unsigned long)head);
1579 		head = page;
1580 	}
1581 
1582 	page = head;
1583 	d_off = 0;
1584 	for (i = 0; i < num_frags; i++) {
1585 		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
1586 		u32 p_off, p_len, copied;
1587 		struct page *p;
1588 		u8 *vaddr;
1589 
1590 		skb_frag_foreach_page(f, skb_frag_off(f), skb_frag_size(f),
1591 				      p, p_off, p_len, copied) {
1592 			u32 copy, done = 0;
1593 			vaddr = kmap_atomic(p);
1594 
1595 			while (done < p_len) {
1596 				if (d_off == PAGE_SIZE) {
1597 					d_off = 0;
1598 					page = (struct page *)page_private(page);
1599 				}
1600 				copy = min_t(u32, PAGE_SIZE - d_off, p_len - done);
1601 				memcpy(page_address(page) + d_off,
1602 				       vaddr + p_off + done, copy);
1603 				done += copy;
1604 				d_off += copy;
1605 			}
1606 			kunmap_atomic(vaddr);
1607 		}
1608 	}
1609 
1610 	/* skb frags release userspace buffers */
1611 	for (i = 0; i < num_frags; i++)
1612 		skb_frag_unref(skb, i);
1613 
1614 	/* skb frags point to kernel buffers */
1615 	for (i = 0; i < new_frags - 1; i++) {
1616 		__skb_fill_page_desc(skb, i, head, 0, PAGE_SIZE);
1617 		head = (struct page *)page_private(head);
1618 	}
1619 	__skb_fill_page_desc(skb, new_frags - 1, head, 0, d_off);
1620 	skb_shinfo(skb)->nr_frags = new_frags;
1621 
1622 release:
1623 	skb_zcopy_clear(skb, false);
1624 	return 0;
1625 }
1626 EXPORT_SYMBOL_GPL(skb_copy_ubufs);
1627 
1628 /**
1629  *	skb_clone	-	duplicate an sk_buff
1630  *	@skb: buffer to clone
1631  *	@gfp_mask: allocation priority
1632  *
1633  *	Duplicate an &sk_buff. The new one is not owned by a socket. Both
1634  *	copies share the same packet data but not structure. The new
1635  *	buffer has a reference count of 1. If the allocation fails the
1636  *	function returns %NULL otherwise the new buffer is returned.
1637  *
1638  *	If this function is called from an interrupt gfp_mask() must be
1639  *	%GFP_ATOMIC.
1640  */
1641 
1642 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
1643 {
1644 	struct sk_buff_fclones *fclones = container_of(skb,
1645 						       struct sk_buff_fclones,
1646 						       skb1);
1647 	struct sk_buff *n;
1648 
1649 	if (skb_orphan_frags(skb, gfp_mask))
1650 		return NULL;
1651 
1652 	if (skb->fclone == SKB_FCLONE_ORIG &&
1653 	    refcount_read(&fclones->fclone_ref) == 1) {
1654 		n = &fclones->skb2;
1655 		refcount_set(&fclones->fclone_ref, 2);
1656 		n->fclone = SKB_FCLONE_CLONE;
1657 	} else {
1658 		if (skb_pfmemalloc(skb))
1659 			gfp_mask |= __GFP_MEMALLOC;
1660 
1661 		n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
1662 		if (!n)
1663 			return NULL;
1664 
1665 		n->fclone = SKB_FCLONE_UNAVAILABLE;
1666 	}
1667 
1668 	return __skb_clone(n, skb);
1669 }
1670 EXPORT_SYMBOL(skb_clone);
1671 
1672 void skb_headers_offset_update(struct sk_buff *skb, int off)
1673 {
1674 	/* Only adjust this if it actually is csum_start rather than csum */
1675 	if (skb->ip_summed == CHECKSUM_PARTIAL)
1676 		skb->csum_start += off;
1677 	/* {transport,network,mac}_header and tail are relative to skb->head */
1678 	skb->transport_header += off;
1679 	skb->network_header   += off;
1680 	if (skb_mac_header_was_set(skb))
1681 		skb->mac_header += off;
1682 	skb->inner_transport_header += off;
1683 	skb->inner_network_header += off;
1684 	skb->inner_mac_header += off;
1685 }
1686 EXPORT_SYMBOL(skb_headers_offset_update);
1687 
1688 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old)
1689 {
1690 	__copy_skb_header(new, old);
1691 
1692 	skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
1693 	skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
1694 	skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
1695 }
1696 EXPORT_SYMBOL(skb_copy_header);
1697 
1698 static inline int skb_alloc_rx_flag(const struct sk_buff *skb)
1699 {
1700 	if (skb_pfmemalloc(skb))
1701 		return SKB_ALLOC_RX;
1702 	return 0;
1703 }
1704 
1705 /**
1706  *	skb_copy	-	create private copy of an sk_buff
1707  *	@skb: buffer to copy
1708  *	@gfp_mask: allocation priority
1709  *
1710  *	Make a copy of both an &sk_buff and its data. This is used when the
1711  *	caller wishes to modify the data and needs a private copy of the
1712  *	data to alter. Returns %NULL on failure or the pointer to the buffer
1713  *	on success. The returned buffer has a reference count of 1.
1714  *
1715  *	As by-product this function converts non-linear &sk_buff to linear
1716  *	one, so that &sk_buff becomes completely private and caller is allowed
1717  *	to modify all the data of returned buffer. This means that this
1718  *	function is not recommended for use in circumstances when only
1719  *	header is going to be modified. Use pskb_copy() instead.
1720  */
1721 
1722 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
1723 {
1724 	int headerlen = skb_headroom(skb);
1725 	unsigned int size = skb_end_offset(skb) + skb->data_len;
1726 	struct sk_buff *n = __alloc_skb(size, gfp_mask,
1727 					skb_alloc_rx_flag(skb), NUMA_NO_NODE);
1728 
1729 	if (!n)
1730 		return NULL;
1731 
1732 	/* Set the data pointer */
1733 	skb_reserve(n, headerlen);
1734 	/* Set the tail pointer and length */
1735 	skb_put(n, skb->len);
1736 
1737 	BUG_ON(skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len));
1738 
1739 	skb_copy_header(n, skb);
1740 	return n;
1741 }
1742 EXPORT_SYMBOL(skb_copy);
1743 
1744 /**
1745  *	__pskb_copy_fclone	-  create copy of an sk_buff with private head.
1746  *	@skb: buffer to copy
1747  *	@headroom: headroom of new skb
1748  *	@gfp_mask: allocation priority
1749  *	@fclone: if true allocate the copy of the skb from the fclone
1750  *	cache instead of the head cache; it is recommended to set this
1751  *	to true for the cases where the copy will likely be cloned
1752  *
1753  *	Make a copy of both an &sk_buff and part of its data, located
1754  *	in header. Fragmented data remain shared. This is used when
1755  *	the caller wishes to modify only header of &sk_buff and needs
1756  *	private copy of the header to alter. Returns %NULL on failure
1757  *	or the pointer to the buffer on success.
1758  *	The returned buffer has a reference count of 1.
1759  */
1760 
1761 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1762 				   gfp_t gfp_mask, bool fclone)
1763 {
1764 	unsigned int size = skb_headlen(skb) + headroom;
1765 	int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0);
1766 	struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE);
1767 
1768 	if (!n)
1769 		goto out;
1770 
1771 	/* Set the data pointer */
1772 	skb_reserve(n, headroom);
1773 	/* Set the tail pointer and length */
1774 	skb_put(n, skb_headlen(skb));
1775 	/* Copy the bytes */
1776 	skb_copy_from_linear_data(skb, n->data, n->len);
1777 
1778 	n->truesize += skb->data_len;
1779 	n->data_len  = skb->data_len;
1780 	n->len	     = skb->len;
1781 
1782 	if (skb_shinfo(skb)->nr_frags) {
1783 		int i;
1784 
1785 		if (skb_orphan_frags(skb, gfp_mask) ||
1786 		    skb_zerocopy_clone(n, skb, gfp_mask)) {
1787 			kfree_skb(n);
1788 			n = NULL;
1789 			goto out;
1790 		}
1791 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1792 			skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
1793 			skb_frag_ref(skb, i);
1794 		}
1795 		skb_shinfo(n)->nr_frags = i;
1796 	}
1797 
1798 	if (skb_has_frag_list(skb)) {
1799 		skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
1800 		skb_clone_fraglist(n);
1801 	}
1802 
1803 	skb_copy_header(n, skb);
1804 out:
1805 	return n;
1806 }
1807 EXPORT_SYMBOL(__pskb_copy_fclone);
1808 
1809 /**
1810  *	pskb_expand_head - reallocate header of &sk_buff
1811  *	@skb: buffer to reallocate
1812  *	@nhead: room to add at head
1813  *	@ntail: room to add at tail
1814  *	@gfp_mask: allocation priority
1815  *
1816  *	Expands (or creates identical copy, if @nhead and @ntail are zero)
1817  *	header of @skb. &sk_buff itself is not changed. &sk_buff MUST have
1818  *	reference count of 1. Returns zero in the case of success or error,
1819  *	if expansion failed. In the last case, &sk_buff is not changed.
1820  *
1821  *	All the pointers pointing into skb header may change and must be
1822  *	reloaded after call to this function.
1823  */
1824 
1825 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
1826 		     gfp_t gfp_mask)
1827 {
1828 	unsigned int osize = skb_end_offset(skb);
1829 	unsigned int size = osize + nhead + ntail;
1830 	long off;
1831 	u8 *data;
1832 	int i;
1833 
1834 	BUG_ON(nhead < 0);
1835 
1836 	BUG_ON(skb_shared(skb));
1837 
1838 	skb_zcopy_downgrade_managed(skb);
1839 
1840 	if (skb_pfmemalloc(skb))
1841 		gfp_mask |= __GFP_MEMALLOC;
1842 
1843 	size = SKB_DATA_ALIGN(size);
1844 	size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
1845 	size = kmalloc_size_roundup(size);
1846 	data = kmalloc_reserve(size, gfp_mask, NUMA_NO_NODE, NULL);
1847 	if (!data)
1848 		goto nodata;
1849 	size = SKB_WITH_OVERHEAD(size);
1850 
1851 	/* Copy only real data... and, alas, header. This should be
1852 	 * optimized for the cases when header is void.
1853 	 */
1854 	memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head);
1855 
1856 	memcpy((struct skb_shared_info *)(data + size),
1857 	       skb_shinfo(skb),
1858 	       offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags]));
1859 
1860 	/*
1861 	 * if shinfo is shared we must drop the old head gracefully, but if it
1862 	 * is not we can just drop the old head and let the existing refcount
1863 	 * be since all we did is relocate the values
1864 	 */
1865 	if (skb_cloned(skb)) {
1866 		if (skb_orphan_frags(skb, gfp_mask))
1867 			goto nofrags;
1868 		if (skb_zcopy(skb))
1869 			refcount_inc(&skb_uarg(skb)->refcnt);
1870 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1871 			skb_frag_ref(skb, i);
1872 
1873 		if (skb_has_frag_list(skb))
1874 			skb_clone_fraglist(skb);
1875 
1876 		skb_release_data(skb, SKB_CONSUMED);
1877 	} else {
1878 		skb_free_head(skb);
1879 	}
1880 	off = (data + nhead) - skb->head;
1881 
1882 	skb->head     = data;
1883 	skb->head_frag = 0;
1884 	skb->data    += off;
1885 
1886 	skb_set_end_offset(skb, size);
1887 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1888 	off           = nhead;
1889 #endif
1890 	skb->tail	      += off;
1891 	skb_headers_offset_update(skb, nhead);
1892 	skb->cloned   = 0;
1893 	skb->hdr_len  = 0;
1894 	skb->nohdr    = 0;
1895 	atomic_set(&skb_shinfo(skb)->dataref, 1);
1896 
1897 	skb_metadata_clear(skb);
1898 
1899 	/* It is not generally safe to change skb->truesize.
1900 	 * For the moment, we really care of rx path, or
1901 	 * when skb is orphaned (not attached to a socket).
1902 	 */
1903 	if (!skb->sk || skb->destructor == sock_edemux)
1904 		skb->truesize += size - osize;
1905 
1906 	return 0;
1907 
1908 nofrags:
1909 	kfree(data);
1910 nodata:
1911 	return -ENOMEM;
1912 }
1913 EXPORT_SYMBOL(pskb_expand_head);
1914 
1915 /* Make private copy of skb with writable head and some headroom */
1916 
1917 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
1918 {
1919 	struct sk_buff *skb2;
1920 	int delta = headroom - skb_headroom(skb);
1921 
1922 	if (delta <= 0)
1923 		skb2 = pskb_copy(skb, GFP_ATOMIC);
1924 	else {
1925 		skb2 = skb_clone(skb, GFP_ATOMIC);
1926 		if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
1927 					     GFP_ATOMIC)) {
1928 			kfree_skb(skb2);
1929 			skb2 = NULL;
1930 		}
1931 	}
1932 	return skb2;
1933 }
1934 EXPORT_SYMBOL(skb_realloc_headroom);
1935 
1936 int __skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri)
1937 {
1938 	unsigned int saved_end_offset, saved_truesize;
1939 	struct skb_shared_info *shinfo;
1940 	int res;
1941 
1942 	saved_end_offset = skb_end_offset(skb);
1943 	saved_truesize = skb->truesize;
1944 
1945 	res = pskb_expand_head(skb, 0, 0, pri);
1946 	if (res)
1947 		return res;
1948 
1949 	skb->truesize = saved_truesize;
1950 
1951 	if (likely(skb_end_offset(skb) == saved_end_offset))
1952 		return 0;
1953 
1954 	shinfo = skb_shinfo(skb);
1955 
1956 	/* We are about to change back skb->end,
1957 	 * we need to move skb_shinfo() to its new location.
1958 	 */
1959 	memmove(skb->head + saved_end_offset,
1960 		shinfo,
1961 		offsetof(struct skb_shared_info, frags[shinfo->nr_frags]));
1962 
1963 	skb_set_end_offset(skb, saved_end_offset);
1964 
1965 	return 0;
1966 }
1967 
1968 /**
1969  *	skb_expand_head - reallocate header of &sk_buff
1970  *	@skb: buffer to reallocate
1971  *	@headroom: needed headroom
1972  *
1973  *	Unlike skb_realloc_headroom, this one does not allocate a new skb
1974  *	if possible; copies skb->sk to new skb as needed
1975  *	and frees original skb in case of failures.
1976  *
1977  *	It expect increased headroom and generates warning otherwise.
1978  */
1979 
1980 struct sk_buff *skb_expand_head(struct sk_buff *skb, unsigned int headroom)
1981 {
1982 	int delta = headroom - skb_headroom(skb);
1983 	int osize = skb_end_offset(skb);
1984 	struct sock *sk = skb->sk;
1985 
1986 	if (WARN_ONCE(delta <= 0,
1987 		      "%s is expecting an increase in the headroom", __func__))
1988 		return skb;
1989 
1990 	delta = SKB_DATA_ALIGN(delta);
1991 	/* pskb_expand_head() might crash, if skb is shared. */
1992 	if (skb_shared(skb) || !is_skb_wmem(skb)) {
1993 		struct sk_buff *nskb = skb_clone(skb, GFP_ATOMIC);
1994 
1995 		if (unlikely(!nskb))
1996 			goto fail;
1997 
1998 		if (sk)
1999 			skb_set_owner_w(nskb, sk);
2000 		consume_skb(skb);
2001 		skb = nskb;
2002 	}
2003 	if (pskb_expand_head(skb, delta, 0, GFP_ATOMIC))
2004 		goto fail;
2005 
2006 	if (sk && is_skb_wmem(skb)) {
2007 		delta = skb_end_offset(skb) - osize;
2008 		refcount_add(delta, &sk->sk_wmem_alloc);
2009 		skb->truesize += delta;
2010 	}
2011 	return skb;
2012 
2013 fail:
2014 	kfree_skb(skb);
2015 	return NULL;
2016 }
2017 EXPORT_SYMBOL(skb_expand_head);
2018 
2019 /**
2020  *	skb_copy_expand	-	copy and expand sk_buff
2021  *	@skb: buffer to copy
2022  *	@newheadroom: new free bytes at head
2023  *	@newtailroom: new free bytes at tail
2024  *	@gfp_mask: allocation priority
2025  *
2026  *	Make a copy of both an &sk_buff and its data and while doing so
2027  *	allocate additional space.
2028  *
2029  *	This is used when the caller wishes to modify the data and needs a
2030  *	private copy of the data to alter as well as more space for new fields.
2031  *	Returns %NULL on failure or the pointer to the buffer
2032  *	on success. The returned buffer has a reference count of 1.
2033  *
2034  *	You must pass %GFP_ATOMIC as the allocation priority if this function
2035  *	is called from an interrupt.
2036  */
2037 struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
2038 				int newheadroom, int newtailroom,
2039 				gfp_t gfp_mask)
2040 {
2041 	/*
2042 	 *	Allocate the copy buffer
2043 	 */
2044 	struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom,
2045 					gfp_mask, skb_alloc_rx_flag(skb),
2046 					NUMA_NO_NODE);
2047 	int oldheadroom = skb_headroom(skb);
2048 	int head_copy_len, head_copy_off;
2049 
2050 	if (!n)
2051 		return NULL;
2052 
2053 	skb_reserve(n, newheadroom);
2054 
2055 	/* Set the tail pointer and length */
2056 	skb_put(n, skb->len);
2057 
2058 	head_copy_len = oldheadroom;
2059 	head_copy_off = 0;
2060 	if (newheadroom <= head_copy_len)
2061 		head_copy_len = newheadroom;
2062 	else
2063 		head_copy_off = newheadroom - head_copy_len;
2064 
2065 	/* Copy the linear header and data. */
2066 	BUG_ON(skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
2067 			     skb->len + head_copy_len));
2068 
2069 	skb_copy_header(n, skb);
2070 
2071 	skb_headers_offset_update(n, newheadroom - oldheadroom);
2072 
2073 	return n;
2074 }
2075 EXPORT_SYMBOL(skb_copy_expand);
2076 
2077 /**
2078  *	__skb_pad		-	zero pad the tail of an skb
2079  *	@skb: buffer to pad
2080  *	@pad: space to pad
2081  *	@free_on_error: free buffer on error
2082  *
2083  *	Ensure that a buffer is followed by a padding area that is zero
2084  *	filled. Used by network drivers which may DMA or transfer data
2085  *	beyond the buffer end onto the wire.
2086  *
2087  *	May return error in out of memory cases. The skb is freed on error
2088  *	if @free_on_error is true.
2089  */
2090 
2091 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error)
2092 {
2093 	int err;
2094 	int ntail;
2095 
2096 	/* If the skbuff is non linear tailroom is always zero.. */
2097 	if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
2098 		memset(skb->data+skb->len, 0, pad);
2099 		return 0;
2100 	}
2101 
2102 	ntail = skb->data_len + pad - (skb->end - skb->tail);
2103 	if (likely(skb_cloned(skb) || ntail > 0)) {
2104 		err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
2105 		if (unlikely(err))
2106 			goto free_skb;
2107 	}
2108 
2109 	/* FIXME: The use of this function with non-linear skb's really needs
2110 	 * to be audited.
2111 	 */
2112 	err = skb_linearize(skb);
2113 	if (unlikely(err))
2114 		goto free_skb;
2115 
2116 	memset(skb->data + skb->len, 0, pad);
2117 	return 0;
2118 
2119 free_skb:
2120 	if (free_on_error)
2121 		kfree_skb(skb);
2122 	return err;
2123 }
2124 EXPORT_SYMBOL(__skb_pad);
2125 
2126 /**
2127  *	pskb_put - add data to the tail of a potentially fragmented buffer
2128  *	@skb: start of the buffer to use
2129  *	@tail: tail fragment of the buffer to use
2130  *	@len: amount of data to add
2131  *
2132  *	This function extends the used data area of the potentially
2133  *	fragmented buffer. @tail must be the last fragment of @skb -- or
2134  *	@skb itself. If this would exceed the total buffer size the kernel
2135  *	will panic. A pointer to the first byte of the extra data is
2136  *	returned.
2137  */
2138 
2139 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len)
2140 {
2141 	if (tail != skb) {
2142 		skb->data_len += len;
2143 		skb->len += len;
2144 	}
2145 	return skb_put(tail, len);
2146 }
2147 EXPORT_SYMBOL_GPL(pskb_put);
2148 
2149 /**
2150  *	skb_put - add data to a buffer
2151  *	@skb: buffer to use
2152  *	@len: amount of data to add
2153  *
2154  *	This function extends the used data area of the buffer. If this would
2155  *	exceed the total buffer size the kernel will panic. A pointer to the
2156  *	first byte of the extra data is returned.
2157  */
2158 void *skb_put(struct sk_buff *skb, unsigned int len)
2159 {
2160 	void *tmp = skb_tail_pointer(skb);
2161 	SKB_LINEAR_ASSERT(skb);
2162 	skb->tail += len;
2163 	skb->len  += len;
2164 	if (unlikely(skb->tail > skb->end))
2165 		skb_over_panic(skb, len, __builtin_return_address(0));
2166 	return tmp;
2167 }
2168 EXPORT_SYMBOL(skb_put);
2169 
2170 /**
2171  *	skb_push - add data to the start of a buffer
2172  *	@skb: buffer to use
2173  *	@len: amount of data to add
2174  *
2175  *	This function extends the used data area of the buffer at the buffer
2176  *	start. If this would exceed the total buffer headroom the kernel will
2177  *	panic. A pointer to the first byte of the extra data is returned.
2178  */
2179 void *skb_push(struct sk_buff *skb, unsigned int len)
2180 {
2181 	skb->data -= len;
2182 	skb->len  += len;
2183 	if (unlikely(skb->data < skb->head))
2184 		skb_under_panic(skb, len, __builtin_return_address(0));
2185 	return skb->data;
2186 }
2187 EXPORT_SYMBOL(skb_push);
2188 
2189 /**
2190  *	skb_pull - remove data from the start of a buffer
2191  *	@skb: buffer to use
2192  *	@len: amount of data to remove
2193  *
2194  *	This function removes data from the start of a buffer, returning
2195  *	the memory to the headroom. A pointer to the next data in the buffer
2196  *	is returned. Once the data has been pulled future pushes will overwrite
2197  *	the old data.
2198  */
2199 void *skb_pull(struct sk_buff *skb, unsigned int len)
2200 {
2201 	return skb_pull_inline(skb, len);
2202 }
2203 EXPORT_SYMBOL(skb_pull);
2204 
2205 /**
2206  *	skb_pull_data - remove data from the start of a buffer returning its
2207  *	original position.
2208  *	@skb: buffer to use
2209  *	@len: amount of data to remove
2210  *
2211  *	This function removes data from the start of a buffer, returning
2212  *	the memory to the headroom. A pointer to the original data in the buffer
2213  *	is returned after checking if there is enough data to pull. Once the
2214  *	data has been pulled future pushes will overwrite the old data.
2215  */
2216 void *skb_pull_data(struct sk_buff *skb, size_t len)
2217 {
2218 	void *data = skb->data;
2219 
2220 	if (skb->len < len)
2221 		return NULL;
2222 
2223 	skb_pull(skb, len);
2224 
2225 	return data;
2226 }
2227 EXPORT_SYMBOL(skb_pull_data);
2228 
2229 /**
2230  *	skb_trim - remove end from a buffer
2231  *	@skb: buffer to alter
2232  *	@len: new length
2233  *
2234  *	Cut the length of a buffer down by removing data from the tail. If
2235  *	the buffer is already under the length specified it is not modified.
2236  *	The skb must be linear.
2237  */
2238 void skb_trim(struct sk_buff *skb, unsigned int len)
2239 {
2240 	if (skb->len > len)
2241 		__skb_trim(skb, len);
2242 }
2243 EXPORT_SYMBOL(skb_trim);
2244 
2245 /* Trims skb to length len. It can change skb pointers.
2246  */
2247 
2248 int ___pskb_trim(struct sk_buff *skb, unsigned int len)
2249 {
2250 	struct sk_buff **fragp;
2251 	struct sk_buff *frag;
2252 	int offset = skb_headlen(skb);
2253 	int nfrags = skb_shinfo(skb)->nr_frags;
2254 	int i;
2255 	int err;
2256 
2257 	if (skb_cloned(skb) &&
2258 	    unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
2259 		return err;
2260 
2261 	i = 0;
2262 	if (offset >= len)
2263 		goto drop_pages;
2264 
2265 	for (; i < nfrags; i++) {
2266 		int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]);
2267 
2268 		if (end < len) {
2269 			offset = end;
2270 			continue;
2271 		}
2272 
2273 		skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset);
2274 
2275 drop_pages:
2276 		skb_shinfo(skb)->nr_frags = i;
2277 
2278 		for (; i < nfrags; i++)
2279 			skb_frag_unref(skb, i);
2280 
2281 		if (skb_has_frag_list(skb))
2282 			skb_drop_fraglist(skb);
2283 		goto done;
2284 	}
2285 
2286 	for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
2287 	     fragp = &frag->next) {
2288 		int end = offset + frag->len;
2289 
2290 		if (skb_shared(frag)) {
2291 			struct sk_buff *nfrag;
2292 
2293 			nfrag = skb_clone(frag, GFP_ATOMIC);
2294 			if (unlikely(!nfrag))
2295 				return -ENOMEM;
2296 
2297 			nfrag->next = frag->next;
2298 			consume_skb(frag);
2299 			frag = nfrag;
2300 			*fragp = frag;
2301 		}
2302 
2303 		if (end < len) {
2304 			offset = end;
2305 			continue;
2306 		}
2307 
2308 		if (end > len &&
2309 		    unlikely((err = pskb_trim(frag, len - offset))))
2310 			return err;
2311 
2312 		if (frag->next)
2313 			skb_drop_list(&frag->next);
2314 		break;
2315 	}
2316 
2317 done:
2318 	if (len > skb_headlen(skb)) {
2319 		skb->data_len -= skb->len - len;
2320 		skb->len       = len;
2321 	} else {
2322 		skb->len       = len;
2323 		skb->data_len  = 0;
2324 		skb_set_tail_pointer(skb, len);
2325 	}
2326 
2327 	if (!skb->sk || skb->destructor == sock_edemux)
2328 		skb_condense(skb);
2329 	return 0;
2330 }
2331 EXPORT_SYMBOL(___pskb_trim);
2332 
2333 /* Note : use pskb_trim_rcsum() instead of calling this directly
2334  */
2335 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len)
2336 {
2337 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
2338 		int delta = skb->len - len;
2339 
2340 		skb->csum = csum_block_sub(skb->csum,
2341 					   skb_checksum(skb, len, delta, 0),
2342 					   len);
2343 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
2344 		int hdlen = (len > skb_headlen(skb)) ? skb_headlen(skb) : len;
2345 		int offset = skb_checksum_start_offset(skb) + skb->csum_offset;
2346 
2347 		if (offset + sizeof(__sum16) > hdlen)
2348 			return -EINVAL;
2349 	}
2350 	return __pskb_trim(skb, len);
2351 }
2352 EXPORT_SYMBOL(pskb_trim_rcsum_slow);
2353 
2354 /**
2355  *	__pskb_pull_tail - advance tail of skb header
2356  *	@skb: buffer to reallocate
2357  *	@delta: number of bytes to advance tail
2358  *
2359  *	The function makes a sense only on a fragmented &sk_buff,
2360  *	it expands header moving its tail forward and copying necessary
2361  *	data from fragmented part.
2362  *
2363  *	&sk_buff MUST have reference count of 1.
2364  *
2365  *	Returns %NULL (and &sk_buff does not change) if pull failed
2366  *	or value of new tail of skb in the case of success.
2367  *
2368  *	All the pointers pointing into skb header may change and must be
2369  *	reloaded after call to this function.
2370  */
2371 
2372 /* Moves tail of skb head forward, copying data from fragmented part,
2373  * when it is necessary.
2374  * 1. It may fail due to malloc failure.
2375  * 2. It may change skb pointers.
2376  *
2377  * It is pretty complicated. Luckily, it is called only in exceptional cases.
2378  */
2379 void *__pskb_pull_tail(struct sk_buff *skb, int delta)
2380 {
2381 	/* If skb has not enough free space at tail, get new one
2382 	 * plus 128 bytes for future expansions. If we have enough
2383 	 * room at tail, reallocate without expansion only if skb is cloned.
2384 	 */
2385 	int i, k, eat = (skb->tail + delta) - skb->end;
2386 
2387 	if (eat > 0 || skb_cloned(skb)) {
2388 		if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
2389 				     GFP_ATOMIC))
2390 			return NULL;
2391 	}
2392 
2393 	BUG_ON(skb_copy_bits(skb, skb_headlen(skb),
2394 			     skb_tail_pointer(skb), delta));
2395 
2396 	/* Optimization: no fragments, no reasons to preestimate
2397 	 * size of pulled pages. Superb.
2398 	 */
2399 	if (!skb_has_frag_list(skb))
2400 		goto pull_pages;
2401 
2402 	/* Estimate size of pulled pages. */
2403 	eat = delta;
2404 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2405 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2406 
2407 		if (size >= eat)
2408 			goto pull_pages;
2409 		eat -= size;
2410 	}
2411 
2412 	/* If we need update frag list, we are in troubles.
2413 	 * Certainly, it is possible to add an offset to skb data,
2414 	 * but taking into account that pulling is expected to
2415 	 * be very rare operation, it is worth to fight against
2416 	 * further bloating skb head and crucify ourselves here instead.
2417 	 * Pure masohism, indeed. 8)8)
2418 	 */
2419 	if (eat) {
2420 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
2421 		struct sk_buff *clone = NULL;
2422 		struct sk_buff *insp = NULL;
2423 
2424 		do {
2425 			if (list->len <= eat) {
2426 				/* Eaten as whole. */
2427 				eat -= list->len;
2428 				list = list->next;
2429 				insp = list;
2430 			} else {
2431 				/* Eaten partially. */
2432 
2433 				if (skb_shared(list)) {
2434 					/* Sucks! We need to fork list. :-( */
2435 					clone = skb_clone(list, GFP_ATOMIC);
2436 					if (!clone)
2437 						return NULL;
2438 					insp = list->next;
2439 					list = clone;
2440 				} else {
2441 					/* This may be pulled without
2442 					 * problems. */
2443 					insp = list;
2444 				}
2445 				if (!pskb_pull(list, eat)) {
2446 					kfree_skb(clone);
2447 					return NULL;
2448 				}
2449 				break;
2450 			}
2451 		} while (eat);
2452 
2453 		/* Free pulled out fragments. */
2454 		while ((list = skb_shinfo(skb)->frag_list) != insp) {
2455 			skb_shinfo(skb)->frag_list = list->next;
2456 			consume_skb(list);
2457 		}
2458 		/* And insert new clone at head. */
2459 		if (clone) {
2460 			clone->next = list;
2461 			skb_shinfo(skb)->frag_list = clone;
2462 		}
2463 	}
2464 	/* Success! Now we may commit changes to skb data. */
2465 
2466 pull_pages:
2467 	eat = delta;
2468 	k = 0;
2469 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2470 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2471 
2472 		if (size <= eat) {
2473 			skb_frag_unref(skb, i);
2474 			eat -= size;
2475 		} else {
2476 			skb_frag_t *frag = &skb_shinfo(skb)->frags[k];
2477 
2478 			*frag = skb_shinfo(skb)->frags[i];
2479 			if (eat) {
2480 				skb_frag_off_add(frag, eat);
2481 				skb_frag_size_sub(frag, eat);
2482 				if (!i)
2483 					goto end;
2484 				eat = 0;
2485 			}
2486 			k++;
2487 		}
2488 	}
2489 	skb_shinfo(skb)->nr_frags = k;
2490 
2491 end:
2492 	skb->tail     += delta;
2493 	skb->data_len -= delta;
2494 
2495 	if (!skb->data_len)
2496 		skb_zcopy_clear(skb, false);
2497 
2498 	return skb_tail_pointer(skb);
2499 }
2500 EXPORT_SYMBOL(__pskb_pull_tail);
2501 
2502 /**
2503  *	skb_copy_bits - copy bits from skb to kernel buffer
2504  *	@skb: source skb
2505  *	@offset: offset in source
2506  *	@to: destination buffer
2507  *	@len: number of bytes to copy
2508  *
2509  *	Copy the specified number of bytes from the source skb to the
2510  *	destination buffer.
2511  *
2512  *	CAUTION ! :
2513  *		If its prototype is ever changed,
2514  *		check arch/{*}/net/{*}.S files,
2515  *		since it is called from BPF assembly code.
2516  */
2517 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
2518 {
2519 	int start = skb_headlen(skb);
2520 	struct sk_buff *frag_iter;
2521 	int i, copy;
2522 
2523 	if (offset > (int)skb->len - len)
2524 		goto fault;
2525 
2526 	/* Copy header. */
2527 	if ((copy = start - offset) > 0) {
2528 		if (copy > len)
2529 			copy = len;
2530 		skb_copy_from_linear_data_offset(skb, offset, to, copy);
2531 		if ((len -= copy) == 0)
2532 			return 0;
2533 		offset += copy;
2534 		to     += copy;
2535 	}
2536 
2537 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2538 		int end;
2539 		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
2540 
2541 		WARN_ON(start > offset + len);
2542 
2543 		end = start + skb_frag_size(f);
2544 		if ((copy = end - offset) > 0) {
2545 			u32 p_off, p_len, copied;
2546 			struct page *p;
2547 			u8 *vaddr;
2548 
2549 			if (copy > len)
2550 				copy = len;
2551 
2552 			skb_frag_foreach_page(f,
2553 					      skb_frag_off(f) + offset - start,
2554 					      copy, p, p_off, p_len, copied) {
2555 				vaddr = kmap_atomic(p);
2556 				memcpy(to + copied, vaddr + p_off, p_len);
2557 				kunmap_atomic(vaddr);
2558 			}
2559 
2560 			if ((len -= copy) == 0)
2561 				return 0;
2562 			offset += copy;
2563 			to     += copy;
2564 		}
2565 		start = end;
2566 	}
2567 
2568 	skb_walk_frags(skb, frag_iter) {
2569 		int end;
2570 
2571 		WARN_ON(start > offset + len);
2572 
2573 		end = start + frag_iter->len;
2574 		if ((copy = end - offset) > 0) {
2575 			if (copy > len)
2576 				copy = len;
2577 			if (skb_copy_bits(frag_iter, offset - start, to, copy))
2578 				goto fault;
2579 			if ((len -= copy) == 0)
2580 				return 0;
2581 			offset += copy;
2582 			to     += copy;
2583 		}
2584 		start = end;
2585 	}
2586 
2587 	if (!len)
2588 		return 0;
2589 
2590 fault:
2591 	return -EFAULT;
2592 }
2593 EXPORT_SYMBOL(skb_copy_bits);
2594 
2595 /*
2596  * Callback from splice_to_pipe(), if we need to release some pages
2597  * at the end of the spd in case we error'ed out in filling the pipe.
2598  */
2599 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
2600 {
2601 	put_page(spd->pages[i]);
2602 }
2603 
2604 static struct page *linear_to_page(struct page *page, unsigned int *len,
2605 				   unsigned int *offset,
2606 				   struct sock *sk)
2607 {
2608 	struct page_frag *pfrag = sk_page_frag(sk);
2609 
2610 	if (!sk_page_frag_refill(sk, pfrag))
2611 		return NULL;
2612 
2613 	*len = min_t(unsigned int, *len, pfrag->size - pfrag->offset);
2614 
2615 	memcpy(page_address(pfrag->page) + pfrag->offset,
2616 	       page_address(page) + *offset, *len);
2617 	*offset = pfrag->offset;
2618 	pfrag->offset += *len;
2619 
2620 	return pfrag->page;
2621 }
2622 
2623 static bool spd_can_coalesce(const struct splice_pipe_desc *spd,
2624 			     struct page *page,
2625 			     unsigned int offset)
2626 {
2627 	return	spd->nr_pages &&
2628 		spd->pages[spd->nr_pages - 1] == page &&
2629 		(spd->partial[spd->nr_pages - 1].offset +
2630 		 spd->partial[spd->nr_pages - 1].len == offset);
2631 }
2632 
2633 /*
2634  * Fill page/offset/length into spd, if it can hold more pages.
2635  */
2636 static bool spd_fill_page(struct splice_pipe_desc *spd,
2637 			  struct pipe_inode_info *pipe, struct page *page,
2638 			  unsigned int *len, unsigned int offset,
2639 			  bool linear,
2640 			  struct sock *sk)
2641 {
2642 	if (unlikely(spd->nr_pages == MAX_SKB_FRAGS))
2643 		return true;
2644 
2645 	if (linear) {
2646 		page = linear_to_page(page, len, &offset, sk);
2647 		if (!page)
2648 			return true;
2649 	}
2650 	if (spd_can_coalesce(spd, page, offset)) {
2651 		spd->partial[spd->nr_pages - 1].len += *len;
2652 		return false;
2653 	}
2654 	get_page(page);
2655 	spd->pages[spd->nr_pages] = page;
2656 	spd->partial[spd->nr_pages].len = *len;
2657 	spd->partial[spd->nr_pages].offset = offset;
2658 	spd->nr_pages++;
2659 
2660 	return false;
2661 }
2662 
2663 static bool __splice_segment(struct page *page, unsigned int poff,
2664 			     unsigned int plen, unsigned int *off,
2665 			     unsigned int *len,
2666 			     struct splice_pipe_desc *spd, bool linear,
2667 			     struct sock *sk,
2668 			     struct pipe_inode_info *pipe)
2669 {
2670 	if (!*len)
2671 		return true;
2672 
2673 	/* skip this segment if already processed */
2674 	if (*off >= plen) {
2675 		*off -= plen;
2676 		return false;
2677 	}
2678 
2679 	/* ignore any bits we already processed */
2680 	poff += *off;
2681 	plen -= *off;
2682 	*off = 0;
2683 
2684 	do {
2685 		unsigned int flen = min(*len, plen);
2686 
2687 		if (spd_fill_page(spd, pipe, page, &flen, poff,
2688 				  linear, sk))
2689 			return true;
2690 		poff += flen;
2691 		plen -= flen;
2692 		*len -= flen;
2693 	} while (*len && plen);
2694 
2695 	return false;
2696 }
2697 
2698 /*
2699  * Map linear and fragment data from the skb to spd. It reports true if the
2700  * pipe is full or if we already spliced the requested length.
2701  */
2702 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe,
2703 			      unsigned int *offset, unsigned int *len,
2704 			      struct splice_pipe_desc *spd, struct sock *sk)
2705 {
2706 	int seg;
2707 	struct sk_buff *iter;
2708 
2709 	/* map the linear part :
2710 	 * If skb->head_frag is set, this 'linear' part is backed by a
2711 	 * fragment, and if the head is not shared with any clones then
2712 	 * we can avoid a copy since we own the head portion of this page.
2713 	 */
2714 	if (__splice_segment(virt_to_page(skb->data),
2715 			     (unsigned long) skb->data & (PAGE_SIZE - 1),
2716 			     skb_headlen(skb),
2717 			     offset, len, spd,
2718 			     skb_head_is_locked(skb),
2719 			     sk, pipe))
2720 		return true;
2721 
2722 	/*
2723 	 * then map the fragments
2724 	 */
2725 	for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
2726 		const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
2727 
2728 		if (__splice_segment(skb_frag_page(f),
2729 				     skb_frag_off(f), skb_frag_size(f),
2730 				     offset, len, spd, false, sk, pipe))
2731 			return true;
2732 	}
2733 
2734 	skb_walk_frags(skb, iter) {
2735 		if (*offset >= iter->len) {
2736 			*offset -= iter->len;
2737 			continue;
2738 		}
2739 		/* __skb_splice_bits() only fails if the output has no room
2740 		 * left, so no point in going over the frag_list for the error
2741 		 * case.
2742 		 */
2743 		if (__skb_splice_bits(iter, pipe, offset, len, spd, sk))
2744 			return true;
2745 	}
2746 
2747 	return false;
2748 }
2749 
2750 /*
2751  * Map data from the skb to a pipe. Should handle both the linear part,
2752  * the fragments, and the frag list.
2753  */
2754 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
2755 		    struct pipe_inode_info *pipe, unsigned int tlen,
2756 		    unsigned int flags)
2757 {
2758 	struct partial_page partial[MAX_SKB_FRAGS];
2759 	struct page *pages[MAX_SKB_FRAGS];
2760 	struct splice_pipe_desc spd = {
2761 		.pages = pages,
2762 		.partial = partial,
2763 		.nr_pages_max = MAX_SKB_FRAGS,
2764 		.ops = &nosteal_pipe_buf_ops,
2765 		.spd_release = sock_spd_release,
2766 	};
2767 	int ret = 0;
2768 
2769 	__skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk);
2770 
2771 	if (spd.nr_pages)
2772 		ret = splice_to_pipe(pipe, &spd);
2773 
2774 	return ret;
2775 }
2776 EXPORT_SYMBOL_GPL(skb_splice_bits);
2777 
2778 static int sendmsg_unlocked(struct sock *sk, struct msghdr *msg,
2779 			    struct kvec *vec, size_t num, size_t size)
2780 {
2781 	struct socket *sock = sk->sk_socket;
2782 
2783 	if (!sock)
2784 		return -EINVAL;
2785 	return kernel_sendmsg(sock, msg, vec, num, size);
2786 }
2787 
2788 static int sendpage_unlocked(struct sock *sk, struct page *page, int offset,
2789 			     size_t size, int flags)
2790 {
2791 	struct socket *sock = sk->sk_socket;
2792 
2793 	if (!sock)
2794 		return -EINVAL;
2795 	return kernel_sendpage(sock, page, offset, size, flags);
2796 }
2797 
2798 typedef int (*sendmsg_func)(struct sock *sk, struct msghdr *msg,
2799 			    struct kvec *vec, size_t num, size_t size);
2800 typedef int (*sendpage_func)(struct sock *sk, struct page *page, int offset,
2801 			     size_t size, int flags);
2802 static int __skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset,
2803 			   int len, sendmsg_func sendmsg, sendpage_func sendpage)
2804 {
2805 	unsigned int orig_len = len;
2806 	struct sk_buff *head = skb;
2807 	unsigned short fragidx;
2808 	int slen, ret;
2809 
2810 do_frag_list:
2811 
2812 	/* Deal with head data */
2813 	while (offset < skb_headlen(skb) && len) {
2814 		struct kvec kv;
2815 		struct msghdr msg;
2816 
2817 		slen = min_t(int, len, skb_headlen(skb) - offset);
2818 		kv.iov_base = skb->data + offset;
2819 		kv.iov_len = slen;
2820 		memset(&msg, 0, sizeof(msg));
2821 		msg.msg_flags = MSG_DONTWAIT;
2822 
2823 		ret = INDIRECT_CALL_2(sendmsg, kernel_sendmsg_locked,
2824 				      sendmsg_unlocked, sk, &msg, &kv, 1, slen);
2825 		if (ret <= 0)
2826 			goto error;
2827 
2828 		offset += ret;
2829 		len -= ret;
2830 	}
2831 
2832 	/* All the data was skb head? */
2833 	if (!len)
2834 		goto out;
2835 
2836 	/* Make offset relative to start of frags */
2837 	offset -= skb_headlen(skb);
2838 
2839 	/* Find where we are in frag list */
2840 	for (fragidx = 0; fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
2841 		skb_frag_t *frag  = &skb_shinfo(skb)->frags[fragidx];
2842 
2843 		if (offset < skb_frag_size(frag))
2844 			break;
2845 
2846 		offset -= skb_frag_size(frag);
2847 	}
2848 
2849 	for (; len && fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
2850 		skb_frag_t *frag  = &skb_shinfo(skb)->frags[fragidx];
2851 
2852 		slen = min_t(size_t, len, skb_frag_size(frag) - offset);
2853 
2854 		while (slen) {
2855 			ret = INDIRECT_CALL_2(sendpage, kernel_sendpage_locked,
2856 					      sendpage_unlocked, sk,
2857 					      skb_frag_page(frag),
2858 					      skb_frag_off(frag) + offset,
2859 					      slen, MSG_DONTWAIT);
2860 			if (ret <= 0)
2861 				goto error;
2862 
2863 			len -= ret;
2864 			offset += ret;
2865 			slen -= ret;
2866 		}
2867 
2868 		offset = 0;
2869 	}
2870 
2871 	if (len) {
2872 		/* Process any frag lists */
2873 
2874 		if (skb == head) {
2875 			if (skb_has_frag_list(skb)) {
2876 				skb = skb_shinfo(skb)->frag_list;
2877 				goto do_frag_list;
2878 			}
2879 		} else if (skb->next) {
2880 			skb = skb->next;
2881 			goto do_frag_list;
2882 		}
2883 	}
2884 
2885 out:
2886 	return orig_len - len;
2887 
2888 error:
2889 	return orig_len == len ? ret : orig_len - len;
2890 }
2891 
2892 /* Send skb data on a socket. Socket must be locked. */
2893 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
2894 			 int len)
2895 {
2896 	return __skb_send_sock(sk, skb, offset, len, kernel_sendmsg_locked,
2897 			       kernel_sendpage_locked);
2898 }
2899 EXPORT_SYMBOL_GPL(skb_send_sock_locked);
2900 
2901 /* Send skb data on a socket. Socket must be unlocked. */
2902 int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len)
2903 {
2904 	return __skb_send_sock(sk, skb, offset, len, sendmsg_unlocked,
2905 			       sendpage_unlocked);
2906 }
2907 
2908 /**
2909  *	skb_store_bits - store bits from kernel buffer to skb
2910  *	@skb: destination buffer
2911  *	@offset: offset in destination
2912  *	@from: source buffer
2913  *	@len: number of bytes to copy
2914  *
2915  *	Copy the specified number of bytes from the source buffer to the
2916  *	destination skb.  This function handles all the messy bits of
2917  *	traversing fragment lists and such.
2918  */
2919 
2920 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
2921 {
2922 	int start = skb_headlen(skb);
2923 	struct sk_buff *frag_iter;
2924 	int i, copy;
2925 
2926 	if (offset > (int)skb->len - len)
2927 		goto fault;
2928 
2929 	if ((copy = start - offset) > 0) {
2930 		if (copy > len)
2931 			copy = len;
2932 		skb_copy_to_linear_data_offset(skb, offset, from, copy);
2933 		if ((len -= copy) == 0)
2934 			return 0;
2935 		offset += copy;
2936 		from += copy;
2937 	}
2938 
2939 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2940 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2941 		int end;
2942 
2943 		WARN_ON(start > offset + len);
2944 
2945 		end = start + skb_frag_size(frag);
2946 		if ((copy = end - offset) > 0) {
2947 			u32 p_off, p_len, copied;
2948 			struct page *p;
2949 			u8 *vaddr;
2950 
2951 			if (copy > len)
2952 				copy = len;
2953 
2954 			skb_frag_foreach_page(frag,
2955 					      skb_frag_off(frag) + offset - start,
2956 					      copy, p, p_off, p_len, copied) {
2957 				vaddr = kmap_atomic(p);
2958 				memcpy(vaddr + p_off, from + copied, p_len);
2959 				kunmap_atomic(vaddr);
2960 			}
2961 
2962 			if ((len -= copy) == 0)
2963 				return 0;
2964 			offset += copy;
2965 			from += copy;
2966 		}
2967 		start = end;
2968 	}
2969 
2970 	skb_walk_frags(skb, frag_iter) {
2971 		int end;
2972 
2973 		WARN_ON(start > offset + len);
2974 
2975 		end = start + frag_iter->len;
2976 		if ((copy = end - offset) > 0) {
2977 			if (copy > len)
2978 				copy = len;
2979 			if (skb_store_bits(frag_iter, offset - start,
2980 					   from, copy))
2981 				goto fault;
2982 			if ((len -= copy) == 0)
2983 				return 0;
2984 			offset += copy;
2985 			from += copy;
2986 		}
2987 		start = end;
2988 	}
2989 	if (!len)
2990 		return 0;
2991 
2992 fault:
2993 	return -EFAULT;
2994 }
2995 EXPORT_SYMBOL(skb_store_bits);
2996 
2997 /* Checksum skb data. */
2998 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
2999 		      __wsum csum, const struct skb_checksum_ops *ops)
3000 {
3001 	int start = skb_headlen(skb);
3002 	int i, copy = start - offset;
3003 	struct sk_buff *frag_iter;
3004 	int pos = 0;
3005 
3006 	/* Checksum header. */
3007 	if (copy > 0) {
3008 		if (copy > len)
3009 			copy = len;
3010 		csum = INDIRECT_CALL_1(ops->update, csum_partial_ext,
3011 				       skb->data + offset, copy, csum);
3012 		if ((len -= copy) == 0)
3013 			return csum;
3014 		offset += copy;
3015 		pos	= copy;
3016 	}
3017 
3018 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3019 		int end;
3020 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3021 
3022 		WARN_ON(start > offset + len);
3023 
3024 		end = start + skb_frag_size(frag);
3025 		if ((copy = end - offset) > 0) {
3026 			u32 p_off, p_len, copied;
3027 			struct page *p;
3028 			__wsum csum2;
3029 			u8 *vaddr;
3030 
3031 			if (copy > len)
3032 				copy = len;
3033 
3034 			skb_frag_foreach_page(frag,
3035 					      skb_frag_off(frag) + offset - start,
3036 					      copy, p, p_off, p_len, copied) {
3037 				vaddr = kmap_atomic(p);
3038 				csum2 = INDIRECT_CALL_1(ops->update,
3039 							csum_partial_ext,
3040 							vaddr + p_off, p_len, 0);
3041 				kunmap_atomic(vaddr);
3042 				csum = INDIRECT_CALL_1(ops->combine,
3043 						       csum_block_add_ext, csum,
3044 						       csum2, pos, p_len);
3045 				pos += p_len;
3046 			}
3047 
3048 			if (!(len -= copy))
3049 				return csum;
3050 			offset += copy;
3051 		}
3052 		start = end;
3053 	}
3054 
3055 	skb_walk_frags(skb, frag_iter) {
3056 		int end;
3057 
3058 		WARN_ON(start > offset + len);
3059 
3060 		end = start + frag_iter->len;
3061 		if ((copy = end - offset) > 0) {
3062 			__wsum csum2;
3063 			if (copy > len)
3064 				copy = len;
3065 			csum2 = __skb_checksum(frag_iter, offset - start,
3066 					       copy, 0, ops);
3067 			csum = INDIRECT_CALL_1(ops->combine, csum_block_add_ext,
3068 					       csum, csum2, pos, copy);
3069 			if ((len -= copy) == 0)
3070 				return csum;
3071 			offset += copy;
3072 			pos    += copy;
3073 		}
3074 		start = end;
3075 	}
3076 	BUG_ON(len);
3077 
3078 	return csum;
3079 }
3080 EXPORT_SYMBOL(__skb_checksum);
3081 
3082 __wsum skb_checksum(const struct sk_buff *skb, int offset,
3083 		    int len, __wsum csum)
3084 {
3085 	const struct skb_checksum_ops ops = {
3086 		.update  = csum_partial_ext,
3087 		.combine = csum_block_add_ext,
3088 	};
3089 
3090 	return __skb_checksum(skb, offset, len, csum, &ops);
3091 }
3092 EXPORT_SYMBOL(skb_checksum);
3093 
3094 /* Both of above in one bottle. */
3095 
3096 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
3097 				    u8 *to, int len)
3098 {
3099 	int start = skb_headlen(skb);
3100 	int i, copy = start - offset;
3101 	struct sk_buff *frag_iter;
3102 	int pos = 0;
3103 	__wsum csum = 0;
3104 
3105 	/* Copy header. */
3106 	if (copy > 0) {
3107 		if (copy > len)
3108 			copy = len;
3109 		csum = csum_partial_copy_nocheck(skb->data + offset, to,
3110 						 copy);
3111 		if ((len -= copy) == 0)
3112 			return csum;
3113 		offset += copy;
3114 		to     += copy;
3115 		pos	= copy;
3116 	}
3117 
3118 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3119 		int end;
3120 
3121 		WARN_ON(start > offset + len);
3122 
3123 		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
3124 		if ((copy = end - offset) > 0) {
3125 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3126 			u32 p_off, p_len, copied;
3127 			struct page *p;
3128 			__wsum csum2;
3129 			u8 *vaddr;
3130 
3131 			if (copy > len)
3132 				copy = len;
3133 
3134 			skb_frag_foreach_page(frag,
3135 					      skb_frag_off(frag) + offset - start,
3136 					      copy, p, p_off, p_len, copied) {
3137 				vaddr = kmap_atomic(p);
3138 				csum2 = csum_partial_copy_nocheck(vaddr + p_off,
3139 								  to + copied,
3140 								  p_len);
3141 				kunmap_atomic(vaddr);
3142 				csum = csum_block_add(csum, csum2, pos);
3143 				pos += p_len;
3144 			}
3145 
3146 			if (!(len -= copy))
3147 				return csum;
3148 			offset += copy;
3149 			to     += copy;
3150 		}
3151 		start = end;
3152 	}
3153 
3154 	skb_walk_frags(skb, frag_iter) {
3155 		__wsum csum2;
3156 		int end;
3157 
3158 		WARN_ON(start > offset + len);
3159 
3160 		end = start + frag_iter->len;
3161 		if ((copy = end - offset) > 0) {
3162 			if (copy > len)
3163 				copy = len;
3164 			csum2 = skb_copy_and_csum_bits(frag_iter,
3165 						       offset - start,
3166 						       to, copy);
3167 			csum = csum_block_add(csum, csum2, pos);
3168 			if ((len -= copy) == 0)
3169 				return csum;
3170 			offset += copy;
3171 			to     += copy;
3172 			pos    += copy;
3173 		}
3174 		start = end;
3175 	}
3176 	BUG_ON(len);
3177 	return csum;
3178 }
3179 EXPORT_SYMBOL(skb_copy_and_csum_bits);
3180 
3181 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len)
3182 {
3183 	__sum16 sum;
3184 
3185 	sum = csum_fold(skb_checksum(skb, 0, len, skb->csum));
3186 	/* See comments in __skb_checksum_complete(). */
3187 	if (likely(!sum)) {
3188 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
3189 		    !skb->csum_complete_sw)
3190 			netdev_rx_csum_fault(skb->dev, skb);
3191 	}
3192 	if (!skb_shared(skb))
3193 		skb->csum_valid = !sum;
3194 	return sum;
3195 }
3196 EXPORT_SYMBOL(__skb_checksum_complete_head);
3197 
3198 /* This function assumes skb->csum already holds pseudo header's checksum,
3199  * which has been changed from the hardware checksum, for example, by
3200  * __skb_checksum_validate_complete(). And, the original skb->csum must
3201  * have been validated unsuccessfully for CHECKSUM_COMPLETE case.
3202  *
3203  * It returns non-zero if the recomputed checksum is still invalid, otherwise
3204  * zero. The new checksum is stored back into skb->csum unless the skb is
3205  * shared.
3206  */
3207 __sum16 __skb_checksum_complete(struct sk_buff *skb)
3208 {
3209 	__wsum csum;
3210 	__sum16 sum;
3211 
3212 	csum = skb_checksum(skb, 0, skb->len, 0);
3213 
3214 	sum = csum_fold(csum_add(skb->csum, csum));
3215 	/* This check is inverted, because we already knew the hardware
3216 	 * checksum is invalid before calling this function. So, if the
3217 	 * re-computed checksum is valid instead, then we have a mismatch
3218 	 * between the original skb->csum and skb_checksum(). This means either
3219 	 * the original hardware checksum is incorrect or we screw up skb->csum
3220 	 * when moving skb->data around.
3221 	 */
3222 	if (likely(!sum)) {
3223 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
3224 		    !skb->csum_complete_sw)
3225 			netdev_rx_csum_fault(skb->dev, skb);
3226 	}
3227 
3228 	if (!skb_shared(skb)) {
3229 		/* Save full packet checksum */
3230 		skb->csum = csum;
3231 		skb->ip_summed = CHECKSUM_COMPLETE;
3232 		skb->csum_complete_sw = 1;
3233 		skb->csum_valid = !sum;
3234 	}
3235 
3236 	return sum;
3237 }
3238 EXPORT_SYMBOL(__skb_checksum_complete);
3239 
3240 static __wsum warn_crc32c_csum_update(const void *buff, int len, __wsum sum)
3241 {
3242 	net_warn_ratelimited(
3243 		"%s: attempt to compute crc32c without libcrc32c.ko\n",
3244 		__func__);
3245 	return 0;
3246 }
3247 
3248 static __wsum warn_crc32c_csum_combine(__wsum csum, __wsum csum2,
3249 				       int offset, int len)
3250 {
3251 	net_warn_ratelimited(
3252 		"%s: attempt to compute crc32c without libcrc32c.ko\n",
3253 		__func__);
3254 	return 0;
3255 }
3256 
3257 static const struct skb_checksum_ops default_crc32c_ops = {
3258 	.update  = warn_crc32c_csum_update,
3259 	.combine = warn_crc32c_csum_combine,
3260 };
3261 
3262 const struct skb_checksum_ops *crc32c_csum_stub __read_mostly =
3263 	&default_crc32c_ops;
3264 EXPORT_SYMBOL(crc32c_csum_stub);
3265 
3266  /**
3267  *	skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy()
3268  *	@from: source buffer
3269  *
3270  *	Calculates the amount of linear headroom needed in the 'to' skb passed
3271  *	into skb_zerocopy().
3272  */
3273 unsigned int
3274 skb_zerocopy_headlen(const struct sk_buff *from)
3275 {
3276 	unsigned int hlen = 0;
3277 
3278 	if (!from->head_frag ||
3279 	    skb_headlen(from) < L1_CACHE_BYTES ||
3280 	    skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS) {
3281 		hlen = skb_headlen(from);
3282 		if (!hlen)
3283 			hlen = from->len;
3284 	}
3285 
3286 	if (skb_has_frag_list(from))
3287 		hlen = from->len;
3288 
3289 	return hlen;
3290 }
3291 EXPORT_SYMBOL_GPL(skb_zerocopy_headlen);
3292 
3293 /**
3294  *	skb_zerocopy - Zero copy skb to skb
3295  *	@to: destination buffer
3296  *	@from: source buffer
3297  *	@len: number of bytes to copy from source buffer
3298  *	@hlen: size of linear headroom in destination buffer
3299  *
3300  *	Copies up to `len` bytes from `from` to `to` by creating references
3301  *	to the frags in the source buffer.
3302  *
3303  *	The `hlen` as calculated by skb_zerocopy_headlen() specifies the
3304  *	headroom in the `to` buffer.
3305  *
3306  *	Return value:
3307  *	0: everything is OK
3308  *	-ENOMEM: couldn't orphan frags of @from due to lack of memory
3309  *	-EFAULT: skb_copy_bits() found some problem with skb geometry
3310  */
3311 int
3312 skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen)
3313 {
3314 	int i, j = 0;
3315 	int plen = 0; /* length of skb->head fragment */
3316 	int ret;
3317 	struct page *page;
3318 	unsigned int offset;
3319 
3320 	BUG_ON(!from->head_frag && !hlen);
3321 
3322 	/* dont bother with small payloads */
3323 	if (len <= skb_tailroom(to))
3324 		return skb_copy_bits(from, 0, skb_put(to, len), len);
3325 
3326 	if (hlen) {
3327 		ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen);
3328 		if (unlikely(ret))
3329 			return ret;
3330 		len -= hlen;
3331 	} else {
3332 		plen = min_t(int, skb_headlen(from), len);
3333 		if (plen) {
3334 			page = virt_to_head_page(from->head);
3335 			offset = from->data - (unsigned char *)page_address(page);
3336 			__skb_fill_page_desc(to, 0, page, offset, plen);
3337 			get_page(page);
3338 			j = 1;
3339 			len -= plen;
3340 		}
3341 	}
3342 
3343 	skb_len_add(to, len + plen);
3344 
3345 	if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) {
3346 		skb_tx_error(from);
3347 		return -ENOMEM;
3348 	}
3349 	skb_zerocopy_clone(to, from, GFP_ATOMIC);
3350 
3351 	for (i = 0; i < skb_shinfo(from)->nr_frags; i++) {
3352 		int size;
3353 
3354 		if (!len)
3355 			break;
3356 		skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i];
3357 		size = min_t(int, skb_frag_size(&skb_shinfo(to)->frags[j]),
3358 					len);
3359 		skb_frag_size_set(&skb_shinfo(to)->frags[j], size);
3360 		len -= size;
3361 		skb_frag_ref(to, j);
3362 		j++;
3363 	}
3364 	skb_shinfo(to)->nr_frags = j;
3365 
3366 	return 0;
3367 }
3368 EXPORT_SYMBOL_GPL(skb_zerocopy);
3369 
3370 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
3371 {
3372 	__wsum csum;
3373 	long csstart;
3374 
3375 	if (skb->ip_summed == CHECKSUM_PARTIAL)
3376 		csstart = skb_checksum_start_offset(skb);
3377 	else
3378 		csstart = skb_headlen(skb);
3379 
3380 	BUG_ON(csstart > skb_headlen(skb));
3381 
3382 	skb_copy_from_linear_data(skb, to, csstart);
3383 
3384 	csum = 0;
3385 	if (csstart != skb->len)
3386 		csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
3387 					      skb->len - csstart);
3388 
3389 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
3390 		long csstuff = csstart + skb->csum_offset;
3391 
3392 		*((__sum16 *)(to + csstuff)) = csum_fold(csum);
3393 	}
3394 }
3395 EXPORT_SYMBOL(skb_copy_and_csum_dev);
3396 
3397 /**
3398  *	skb_dequeue - remove from the head of the queue
3399  *	@list: list to dequeue from
3400  *
3401  *	Remove the head of the list. The list lock is taken so the function
3402  *	may be used safely with other locking list functions. The head item is
3403  *	returned or %NULL if the list is empty.
3404  */
3405 
3406 struct sk_buff *skb_dequeue(struct sk_buff_head *list)
3407 {
3408 	unsigned long flags;
3409 	struct sk_buff *result;
3410 
3411 	spin_lock_irqsave(&list->lock, flags);
3412 	result = __skb_dequeue(list);
3413 	spin_unlock_irqrestore(&list->lock, flags);
3414 	return result;
3415 }
3416 EXPORT_SYMBOL(skb_dequeue);
3417 
3418 /**
3419  *	skb_dequeue_tail - remove from the tail of the queue
3420  *	@list: list to dequeue from
3421  *
3422  *	Remove the tail of the list. The list lock is taken so the function
3423  *	may be used safely with other locking list functions. The tail item is
3424  *	returned or %NULL if the list is empty.
3425  */
3426 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
3427 {
3428 	unsigned long flags;
3429 	struct sk_buff *result;
3430 
3431 	spin_lock_irqsave(&list->lock, flags);
3432 	result = __skb_dequeue_tail(list);
3433 	spin_unlock_irqrestore(&list->lock, flags);
3434 	return result;
3435 }
3436 EXPORT_SYMBOL(skb_dequeue_tail);
3437 
3438 /**
3439  *	skb_queue_purge - empty a list
3440  *	@list: list to empty
3441  *
3442  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
3443  *	the list and one reference dropped. This function takes the list
3444  *	lock and is atomic with respect to other list locking functions.
3445  */
3446 void skb_queue_purge(struct sk_buff_head *list)
3447 {
3448 	struct sk_buff *skb;
3449 	while ((skb = skb_dequeue(list)) != NULL)
3450 		kfree_skb(skb);
3451 }
3452 EXPORT_SYMBOL(skb_queue_purge);
3453 
3454 /**
3455  *	skb_rbtree_purge - empty a skb rbtree
3456  *	@root: root of the rbtree to empty
3457  *	Return value: the sum of truesizes of all purged skbs.
3458  *
3459  *	Delete all buffers on an &sk_buff rbtree. Each buffer is removed from
3460  *	the list and one reference dropped. This function does not take
3461  *	any lock. Synchronization should be handled by the caller (e.g., TCP
3462  *	out-of-order queue is protected by the socket lock).
3463  */
3464 unsigned int skb_rbtree_purge(struct rb_root *root)
3465 {
3466 	struct rb_node *p = rb_first(root);
3467 	unsigned int sum = 0;
3468 
3469 	while (p) {
3470 		struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode);
3471 
3472 		p = rb_next(p);
3473 		rb_erase(&skb->rbnode, root);
3474 		sum += skb->truesize;
3475 		kfree_skb(skb);
3476 	}
3477 	return sum;
3478 }
3479 
3480 /**
3481  *	skb_queue_head - queue a buffer at the list head
3482  *	@list: list to use
3483  *	@newsk: buffer to queue
3484  *
3485  *	Queue a buffer at the start of the list. This function takes the
3486  *	list lock and can be used safely with other locking &sk_buff functions
3487  *	safely.
3488  *
3489  *	A buffer cannot be placed on two lists at the same time.
3490  */
3491 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
3492 {
3493 	unsigned long flags;
3494 
3495 	spin_lock_irqsave(&list->lock, flags);
3496 	__skb_queue_head(list, newsk);
3497 	spin_unlock_irqrestore(&list->lock, flags);
3498 }
3499 EXPORT_SYMBOL(skb_queue_head);
3500 
3501 /**
3502  *	skb_queue_tail - queue a buffer at the list tail
3503  *	@list: list to use
3504  *	@newsk: buffer to queue
3505  *
3506  *	Queue a buffer at the tail of the list. This function takes the
3507  *	list lock and can be used safely with other locking &sk_buff functions
3508  *	safely.
3509  *
3510  *	A buffer cannot be placed on two lists at the same time.
3511  */
3512 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
3513 {
3514 	unsigned long flags;
3515 
3516 	spin_lock_irqsave(&list->lock, flags);
3517 	__skb_queue_tail(list, newsk);
3518 	spin_unlock_irqrestore(&list->lock, flags);
3519 }
3520 EXPORT_SYMBOL(skb_queue_tail);
3521 
3522 /**
3523  *	skb_unlink	-	remove a buffer from a list
3524  *	@skb: buffer to remove
3525  *	@list: list to use
3526  *
3527  *	Remove a packet from a list. The list locks are taken and this
3528  *	function is atomic with respect to other list locked calls
3529  *
3530  *	You must know what list the SKB is on.
3531  */
3532 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
3533 {
3534 	unsigned long flags;
3535 
3536 	spin_lock_irqsave(&list->lock, flags);
3537 	__skb_unlink(skb, list);
3538 	spin_unlock_irqrestore(&list->lock, flags);
3539 }
3540 EXPORT_SYMBOL(skb_unlink);
3541 
3542 /**
3543  *	skb_append	-	append a buffer
3544  *	@old: buffer to insert after
3545  *	@newsk: buffer to insert
3546  *	@list: list to use
3547  *
3548  *	Place a packet after a given packet in a list. The list locks are taken
3549  *	and this function is atomic with respect to other list locked calls.
3550  *	A buffer cannot be placed on two lists at the same time.
3551  */
3552 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
3553 {
3554 	unsigned long flags;
3555 
3556 	spin_lock_irqsave(&list->lock, flags);
3557 	__skb_queue_after(list, old, newsk);
3558 	spin_unlock_irqrestore(&list->lock, flags);
3559 }
3560 EXPORT_SYMBOL(skb_append);
3561 
3562 static inline void skb_split_inside_header(struct sk_buff *skb,
3563 					   struct sk_buff* skb1,
3564 					   const u32 len, const int pos)
3565 {
3566 	int i;
3567 
3568 	skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
3569 					 pos - len);
3570 	/* And move data appendix as is. */
3571 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
3572 		skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
3573 
3574 	skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
3575 	skb_shinfo(skb)->nr_frags  = 0;
3576 	skb1->data_len		   = skb->data_len;
3577 	skb1->len		   += skb1->data_len;
3578 	skb->data_len		   = 0;
3579 	skb->len		   = len;
3580 	skb_set_tail_pointer(skb, len);
3581 }
3582 
3583 static inline void skb_split_no_header(struct sk_buff *skb,
3584 				       struct sk_buff* skb1,
3585 				       const u32 len, int pos)
3586 {
3587 	int i, k = 0;
3588 	const int nfrags = skb_shinfo(skb)->nr_frags;
3589 
3590 	skb_shinfo(skb)->nr_frags = 0;
3591 	skb1->len		  = skb1->data_len = skb->len - len;
3592 	skb->len		  = len;
3593 	skb->data_len		  = len - pos;
3594 
3595 	for (i = 0; i < nfrags; i++) {
3596 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
3597 
3598 		if (pos + size > len) {
3599 			skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
3600 
3601 			if (pos < len) {
3602 				/* Split frag.
3603 				 * We have two variants in this case:
3604 				 * 1. Move all the frag to the second
3605 				 *    part, if it is possible. F.e.
3606 				 *    this approach is mandatory for TUX,
3607 				 *    where splitting is expensive.
3608 				 * 2. Split is accurately. We make this.
3609 				 */
3610 				skb_frag_ref(skb, i);
3611 				skb_frag_off_add(&skb_shinfo(skb1)->frags[0], len - pos);
3612 				skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos);
3613 				skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos);
3614 				skb_shinfo(skb)->nr_frags++;
3615 			}
3616 			k++;
3617 		} else
3618 			skb_shinfo(skb)->nr_frags++;
3619 		pos += size;
3620 	}
3621 	skb_shinfo(skb1)->nr_frags = k;
3622 }
3623 
3624 /**
3625  * skb_split - Split fragmented skb to two parts at length len.
3626  * @skb: the buffer to split
3627  * @skb1: the buffer to receive the second part
3628  * @len: new length for skb
3629  */
3630 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
3631 {
3632 	int pos = skb_headlen(skb);
3633 	const int zc_flags = SKBFL_SHARED_FRAG | SKBFL_PURE_ZEROCOPY;
3634 
3635 	skb_zcopy_downgrade_managed(skb);
3636 
3637 	skb_shinfo(skb1)->flags |= skb_shinfo(skb)->flags & zc_flags;
3638 	skb_zerocopy_clone(skb1, skb, 0);
3639 	if (len < pos)	/* Split line is inside header. */
3640 		skb_split_inside_header(skb, skb1, len, pos);
3641 	else		/* Second chunk has no header, nothing to copy. */
3642 		skb_split_no_header(skb, skb1, len, pos);
3643 }
3644 EXPORT_SYMBOL(skb_split);
3645 
3646 /* Shifting from/to a cloned skb is a no-go.
3647  *
3648  * Caller cannot keep skb_shinfo related pointers past calling here!
3649  */
3650 static int skb_prepare_for_shift(struct sk_buff *skb)
3651 {
3652 	return skb_unclone_keeptruesize(skb, GFP_ATOMIC);
3653 }
3654 
3655 /**
3656  * skb_shift - Shifts paged data partially from skb to another
3657  * @tgt: buffer into which tail data gets added
3658  * @skb: buffer from which the paged data comes from
3659  * @shiftlen: shift up to this many bytes
3660  *
3661  * Attempts to shift up to shiftlen worth of bytes, which may be less than
3662  * the length of the skb, from skb to tgt. Returns number bytes shifted.
3663  * It's up to caller to free skb if everything was shifted.
3664  *
3665  * If @tgt runs out of frags, the whole operation is aborted.
3666  *
3667  * Skb cannot include anything else but paged data while tgt is allowed
3668  * to have non-paged data as well.
3669  *
3670  * TODO: full sized shift could be optimized but that would need
3671  * specialized skb free'er to handle frags without up-to-date nr_frags.
3672  */
3673 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
3674 {
3675 	int from, to, merge, todo;
3676 	skb_frag_t *fragfrom, *fragto;
3677 
3678 	BUG_ON(shiftlen > skb->len);
3679 
3680 	if (skb_headlen(skb))
3681 		return 0;
3682 	if (skb_zcopy(tgt) || skb_zcopy(skb))
3683 		return 0;
3684 
3685 	todo = shiftlen;
3686 	from = 0;
3687 	to = skb_shinfo(tgt)->nr_frags;
3688 	fragfrom = &skb_shinfo(skb)->frags[from];
3689 
3690 	/* Actual merge is delayed until the point when we know we can
3691 	 * commit all, so that we don't have to undo partial changes
3692 	 */
3693 	if (!to ||
3694 	    !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom),
3695 			      skb_frag_off(fragfrom))) {
3696 		merge = -1;
3697 	} else {
3698 		merge = to - 1;
3699 
3700 		todo -= skb_frag_size(fragfrom);
3701 		if (todo < 0) {
3702 			if (skb_prepare_for_shift(skb) ||
3703 			    skb_prepare_for_shift(tgt))
3704 				return 0;
3705 
3706 			/* All previous frag pointers might be stale! */
3707 			fragfrom = &skb_shinfo(skb)->frags[from];
3708 			fragto = &skb_shinfo(tgt)->frags[merge];
3709 
3710 			skb_frag_size_add(fragto, shiftlen);
3711 			skb_frag_size_sub(fragfrom, shiftlen);
3712 			skb_frag_off_add(fragfrom, shiftlen);
3713 
3714 			goto onlymerged;
3715 		}
3716 
3717 		from++;
3718 	}
3719 
3720 	/* Skip full, not-fitting skb to avoid expensive operations */
3721 	if ((shiftlen == skb->len) &&
3722 	    (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
3723 		return 0;
3724 
3725 	if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
3726 		return 0;
3727 
3728 	while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
3729 		if (to == MAX_SKB_FRAGS)
3730 			return 0;
3731 
3732 		fragfrom = &skb_shinfo(skb)->frags[from];
3733 		fragto = &skb_shinfo(tgt)->frags[to];
3734 
3735 		if (todo >= skb_frag_size(fragfrom)) {
3736 			*fragto = *fragfrom;
3737 			todo -= skb_frag_size(fragfrom);
3738 			from++;
3739 			to++;
3740 
3741 		} else {
3742 			__skb_frag_ref(fragfrom);
3743 			skb_frag_page_copy(fragto, fragfrom);
3744 			skb_frag_off_copy(fragto, fragfrom);
3745 			skb_frag_size_set(fragto, todo);
3746 
3747 			skb_frag_off_add(fragfrom, todo);
3748 			skb_frag_size_sub(fragfrom, todo);
3749 			todo = 0;
3750 
3751 			to++;
3752 			break;
3753 		}
3754 	}
3755 
3756 	/* Ready to "commit" this state change to tgt */
3757 	skb_shinfo(tgt)->nr_frags = to;
3758 
3759 	if (merge >= 0) {
3760 		fragfrom = &skb_shinfo(skb)->frags[0];
3761 		fragto = &skb_shinfo(tgt)->frags[merge];
3762 
3763 		skb_frag_size_add(fragto, skb_frag_size(fragfrom));
3764 		__skb_frag_unref(fragfrom, skb->pp_recycle);
3765 	}
3766 
3767 	/* Reposition in the original skb */
3768 	to = 0;
3769 	while (from < skb_shinfo(skb)->nr_frags)
3770 		skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
3771 	skb_shinfo(skb)->nr_frags = to;
3772 
3773 	BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
3774 
3775 onlymerged:
3776 	/* Most likely the tgt won't ever need its checksum anymore, skb on
3777 	 * the other hand might need it if it needs to be resent
3778 	 */
3779 	tgt->ip_summed = CHECKSUM_PARTIAL;
3780 	skb->ip_summed = CHECKSUM_PARTIAL;
3781 
3782 	skb_len_add(skb, -shiftlen);
3783 	skb_len_add(tgt, shiftlen);
3784 
3785 	return shiftlen;
3786 }
3787 
3788 /**
3789  * skb_prepare_seq_read - Prepare a sequential read of skb data
3790  * @skb: the buffer to read
3791  * @from: lower offset of data to be read
3792  * @to: upper offset of data to be read
3793  * @st: state variable
3794  *
3795  * Initializes the specified state variable. Must be called before
3796  * invoking skb_seq_read() for the first time.
3797  */
3798 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
3799 			  unsigned int to, struct skb_seq_state *st)
3800 {
3801 	st->lower_offset = from;
3802 	st->upper_offset = to;
3803 	st->root_skb = st->cur_skb = skb;
3804 	st->frag_idx = st->stepped_offset = 0;
3805 	st->frag_data = NULL;
3806 	st->frag_off = 0;
3807 }
3808 EXPORT_SYMBOL(skb_prepare_seq_read);
3809 
3810 /**
3811  * skb_seq_read - Sequentially read skb data
3812  * @consumed: number of bytes consumed by the caller so far
3813  * @data: destination pointer for data to be returned
3814  * @st: state variable
3815  *
3816  * Reads a block of skb data at @consumed relative to the
3817  * lower offset specified to skb_prepare_seq_read(). Assigns
3818  * the head of the data block to @data and returns the length
3819  * of the block or 0 if the end of the skb data or the upper
3820  * offset has been reached.
3821  *
3822  * The caller is not required to consume all of the data
3823  * returned, i.e. @consumed is typically set to the number
3824  * of bytes already consumed and the next call to
3825  * skb_seq_read() will return the remaining part of the block.
3826  *
3827  * Note 1: The size of each block of data returned can be arbitrary,
3828  *       this limitation is the cost for zerocopy sequential
3829  *       reads of potentially non linear data.
3830  *
3831  * Note 2: Fragment lists within fragments are not implemented
3832  *       at the moment, state->root_skb could be replaced with
3833  *       a stack for this purpose.
3834  */
3835 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
3836 			  struct skb_seq_state *st)
3837 {
3838 	unsigned int block_limit, abs_offset = consumed + st->lower_offset;
3839 	skb_frag_t *frag;
3840 
3841 	if (unlikely(abs_offset >= st->upper_offset)) {
3842 		if (st->frag_data) {
3843 			kunmap_atomic(st->frag_data);
3844 			st->frag_data = NULL;
3845 		}
3846 		return 0;
3847 	}
3848 
3849 next_skb:
3850 	block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
3851 
3852 	if (abs_offset < block_limit && !st->frag_data) {
3853 		*data = st->cur_skb->data + (abs_offset - st->stepped_offset);
3854 		return block_limit - abs_offset;
3855 	}
3856 
3857 	if (st->frag_idx == 0 && !st->frag_data)
3858 		st->stepped_offset += skb_headlen(st->cur_skb);
3859 
3860 	while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
3861 		unsigned int pg_idx, pg_off, pg_sz;
3862 
3863 		frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
3864 
3865 		pg_idx = 0;
3866 		pg_off = skb_frag_off(frag);
3867 		pg_sz = skb_frag_size(frag);
3868 
3869 		if (skb_frag_must_loop(skb_frag_page(frag))) {
3870 			pg_idx = (pg_off + st->frag_off) >> PAGE_SHIFT;
3871 			pg_off = offset_in_page(pg_off + st->frag_off);
3872 			pg_sz = min_t(unsigned int, pg_sz - st->frag_off,
3873 						    PAGE_SIZE - pg_off);
3874 		}
3875 
3876 		block_limit = pg_sz + st->stepped_offset;
3877 		if (abs_offset < block_limit) {
3878 			if (!st->frag_data)
3879 				st->frag_data = kmap_atomic(skb_frag_page(frag) + pg_idx);
3880 
3881 			*data = (u8 *)st->frag_data + pg_off +
3882 				(abs_offset - st->stepped_offset);
3883 
3884 			return block_limit - abs_offset;
3885 		}
3886 
3887 		if (st->frag_data) {
3888 			kunmap_atomic(st->frag_data);
3889 			st->frag_data = NULL;
3890 		}
3891 
3892 		st->stepped_offset += pg_sz;
3893 		st->frag_off += pg_sz;
3894 		if (st->frag_off == skb_frag_size(frag)) {
3895 			st->frag_off = 0;
3896 			st->frag_idx++;
3897 		}
3898 	}
3899 
3900 	if (st->frag_data) {
3901 		kunmap_atomic(st->frag_data);
3902 		st->frag_data = NULL;
3903 	}
3904 
3905 	if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) {
3906 		st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
3907 		st->frag_idx = 0;
3908 		goto next_skb;
3909 	} else if (st->cur_skb->next) {
3910 		st->cur_skb = st->cur_skb->next;
3911 		st->frag_idx = 0;
3912 		goto next_skb;
3913 	}
3914 
3915 	return 0;
3916 }
3917 EXPORT_SYMBOL(skb_seq_read);
3918 
3919 /**
3920  * skb_abort_seq_read - Abort a sequential read of skb data
3921  * @st: state variable
3922  *
3923  * Must be called if skb_seq_read() was not called until it
3924  * returned 0.
3925  */
3926 void skb_abort_seq_read(struct skb_seq_state *st)
3927 {
3928 	if (st->frag_data)
3929 		kunmap_atomic(st->frag_data);
3930 }
3931 EXPORT_SYMBOL(skb_abort_seq_read);
3932 
3933 #define TS_SKB_CB(state)	((struct skb_seq_state *) &((state)->cb))
3934 
3935 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
3936 					  struct ts_config *conf,
3937 					  struct ts_state *state)
3938 {
3939 	return skb_seq_read(offset, text, TS_SKB_CB(state));
3940 }
3941 
3942 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
3943 {
3944 	skb_abort_seq_read(TS_SKB_CB(state));
3945 }
3946 
3947 /**
3948  * skb_find_text - Find a text pattern in skb data
3949  * @skb: the buffer to look in
3950  * @from: search offset
3951  * @to: search limit
3952  * @config: textsearch configuration
3953  *
3954  * Finds a pattern in the skb data according to the specified
3955  * textsearch configuration. Use textsearch_next() to retrieve
3956  * subsequent occurrences of the pattern. Returns the offset
3957  * to the first occurrence or UINT_MAX if no match was found.
3958  */
3959 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
3960 			   unsigned int to, struct ts_config *config)
3961 {
3962 	struct ts_state state;
3963 	unsigned int ret;
3964 
3965 	BUILD_BUG_ON(sizeof(struct skb_seq_state) > sizeof(state.cb));
3966 
3967 	config->get_next_block = skb_ts_get_next_block;
3968 	config->finish = skb_ts_finish;
3969 
3970 	skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state));
3971 
3972 	ret = textsearch_find(config, &state);
3973 	return (ret <= to - from ? ret : UINT_MAX);
3974 }
3975 EXPORT_SYMBOL(skb_find_text);
3976 
3977 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
3978 			 int offset, size_t size)
3979 {
3980 	int i = skb_shinfo(skb)->nr_frags;
3981 
3982 	if (skb_can_coalesce(skb, i, page, offset)) {
3983 		skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size);
3984 	} else if (i < MAX_SKB_FRAGS) {
3985 		skb_zcopy_downgrade_managed(skb);
3986 		get_page(page);
3987 		skb_fill_page_desc_noacc(skb, i, page, offset, size);
3988 	} else {
3989 		return -EMSGSIZE;
3990 	}
3991 
3992 	return 0;
3993 }
3994 EXPORT_SYMBOL_GPL(skb_append_pagefrags);
3995 
3996 /**
3997  *	skb_pull_rcsum - pull skb and update receive checksum
3998  *	@skb: buffer to update
3999  *	@len: length of data pulled
4000  *
4001  *	This function performs an skb_pull on the packet and updates
4002  *	the CHECKSUM_COMPLETE checksum.  It should be used on
4003  *	receive path processing instead of skb_pull unless you know
4004  *	that the checksum difference is zero (e.g., a valid IP header)
4005  *	or you are setting ip_summed to CHECKSUM_NONE.
4006  */
4007 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
4008 {
4009 	unsigned char *data = skb->data;
4010 
4011 	BUG_ON(len > skb->len);
4012 	__skb_pull(skb, len);
4013 	skb_postpull_rcsum(skb, data, len);
4014 	return skb->data;
4015 }
4016 EXPORT_SYMBOL_GPL(skb_pull_rcsum);
4017 
4018 static inline skb_frag_t skb_head_frag_to_page_desc(struct sk_buff *frag_skb)
4019 {
4020 	skb_frag_t head_frag;
4021 	struct page *page;
4022 
4023 	page = virt_to_head_page(frag_skb->head);
4024 	__skb_frag_set_page(&head_frag, page);
4025 	skb_frag_off_set(&head_frag, frag_skb->data -
4026 			 (unsigned char *)page_address(page));
4027 	skb_frag_size_set(&head_frag, skb_headlen(frag_skb));
4028 	return head_frag;
4029 }
4030 
4031 struct sk_buff *skb_segment_list(struct sk_buff *skb,
4032 				 netdev_features_t features,
4033 				 unsigned int offset)
4034 {
4035 	struct sk_buff *list_skb = skb_shinfo(skb)->frag_list;
4036 	unsigned int tnl_hlen = skb_tnl_header_len(skb);
4037 	unsigned int delta_truesize = 0;
4038 	unsigned int delta_len = 0;
4039 	struct sk_buff *tail = NULL;
4040 	struct sk_buff *nskb, *tmp;
4041 	int len_diff, err;
4042 
4043 	skb_push(skb, -skb_network_offset(skb) + offset);
4044 
4045 	skb_shinfo(skb)->frag_list = NULL;
4046 
4047 	do {
4048 		nskb = list_skb;
4049 		list_skb = list_skb->next;
4050 
4051 		err = 0;
4052 		delta_truesize += nskb->truesize;
4053 		if (skb_shared(nskb)) {
4054 			tmp = skb_clone(nskb, GFP_ATOMIC);
4055 			if (tmp) {
4056 				consume_skb(nskb);
4057 				nskb = tmp;
4058 				err = skb_unclone(nskb, GFP_ATOMIC);
4059 			} else {
4060 				err = -ENOMEM;
4061 			}
4062 		}
4063 
4064 		if (!tail)
4065 			skb->next = nskb;
4066 		else
4067 			tail->next = nskb;
4068 
4069 		if (unlikely(err)) {
4070 			nskb->next = list_skb;
4071 			goto err_linearize;
4072 		}
4073 
4074 		tail = nskb;
4075 
4076 		delta_len += nskb->len;
4077 
4078 		skb_push(nskb, -skb_network_offset(nskb) + offset);
4079 
4080 		skb_release_head_state(nskb);
4081 		len_diff = skb_network_header_len(nskb) - skb_network_header_len(skb);
4082 		__copy_skb_header(nskb, skb);
4083 
4084 		skb_headers_offset_update(nskb, skb_headroom(nskb) - skb_headroom(skb));
4085 		nskb->transport_header += len_diff;
4086 		skb_copy_from_linear_data_offset(skb, -tnl_hlen,
4087 						 nskb->data - tnl_hlen,
4088 						 offset + tnl_hlen);
4089 
4090 		if (skb_needs_linearize(nskb, features) &&
4091 		    __skb_linearize(nskb))
4092 			goto err_linearize;
4093 
4094 	} while (list_skb);
4095 
4096 	skb->truesize = skb->truesize - delta_truesize;
4097 	skb->data_len = skb->data_len - delta_len;
4098 	skb->len = skb->len - delta_len;
4099 
4100 	skb_gso_reset(skb);
4101 
4102 	skb->prev = tail;
4103 
4104 	if (skb_needs_linearize(skb, features) &&
4105 	    __skb_linearize(skb))
4106 		goto err_linearize;
4107 
4108 	skb_get(skb);
4109 
4110 	return skb;
4111 
4112 err_linearize:
4113 	kfree_skb_list(skb->next);
4114 	skb->next = NULL;
4115 	return ERR_PTR(-ENOMEM);
4116 }
4117 EXPORT_SYMBOL_GPL(skb_segment_list);
4118 
4119 /**
4120  *	skb_segment - Perform protocol segmentation on skb.
4121  *	@head_skb: buffer to segment
4122  *	@features: features for the output path (see dev->features)
4123  *
4124  *	This function performs segmentation on the given skb.  It returns
4125  *	a pointer to the first in a list of new skbs for the segments.
4126  *	In case of error it returns ERR_PTR(err).
4127  */
4128 struct sk_buff *skb_segment(struct sk_buff *head_skb,
4129 			    netdev_features_t features)
4130 {
4131 	struct sk_buff *segs = NULL;
4132 	struct sk_buff *tail = NULL;
4133 	struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list;
4134 	skb_frag_t *frag = skb_shinfo(head_skb)->frags;
4135 	unsigned int mss = skb_shinfo(head_skb)->gso_size;
4136 	unsigned int doffset = head_skb->data - skb_mac_header(head_skb);
4137 	struct sk_buff *frag_skb = head_skb;
4138 	unsigned int offset = doffset;
4139 	unsigned int tnl_hlen = skb_tnl_header_len(head_skb);
4140 	unsigned int partial_segs = 0;
4141 	unsigned int headroom;
4142 	unsigned int len = head_skb->len;
4143 	__be16 proto;
4144 	bool csum, sg;
4145 	int nfrags = skb_shinfo(head_skb)->nr_frags;
4146 	int err = -ENOMEM;
4147 	int i = 0;
4148 	int pos;
4149 
4150 	if (list_skb && !list_skb->head_frag && skb_headlen(list_skb) &&
4151 	    (skb_shinfo(head_skb)->gso_type & SKB_GSO_DODGY)) {
4152 		/* gso_size is untrusted, and we have a frag_list with a linear
4153 		 * non head_frag head.
4154 		 *
4155 		 * (we assume checking the first list_skb member suffices;
4156 		 * i.e if either of the list_skb members have non head_frag
4157 		 * head, then the first one has too).
4158 		 *
4159 		 * If head_skb's headlen does not fit requested gso_size, it
4160 		 * means that the frag_list members do NOT terminate on exact
4161 		 * gso_size boundaries. Hence we cannot perform skb_frag_t page
4162 		 * sharing. Therefore we must fallback to copying the frag_list
4163 		 * skbs; we do so by disabling SG.
4164 		 */
4165 		if (mss != GSO_BY_FRAGS && mss != skb_headlen(head_skb))
4166 			features &= ~NETIF_F_SG;
4167 	}
4168 
4169 	__skb_push(head_skb, doffset);
4170 	proto = skb_network_protocol(head_skb, NULL);
4171 	if (unlikely(!proto))
4172 		return ERR_PTR(-EINVAL);
4173 
4174 	sg = !!(features & NETIF_F_SG);
4175 	csum = !!can_checksum_protocol(features, proto);
4176 
4177 	if (sg && csum && (mss != GSO_BY_FRAGS))  {
4178 		if (!(features & NETIF_F_GSO_PARTIAL)) {
4179 			struct sk_buff *iter;
4180 			unsigned int frag_len;
4181 
4182 			if (!list_skb ||
4183 			    !net_gso_ok(features, skb_shinfo(head_skb)->gso_type))
4184 				goto normal;
4185 
4186 			/* If we get here then all the required
4187 			 * GSO features except frag_list are supported.
4188 			 * Try to split the SKB to multiple GSO SKBs
4189 			 * with no frag_list.
4190 			 * Currently we can do that only when the buffers don't
4191 			 * have a linear part and all the buffers except
4192 			 * the last are of the same length.
4193 			 */
4194 			frag_len = list_skb->len;
4195 			skb_walk_frags(head_skb, iter) {
4196 				if (frag_len != iter->len && iter->next)
4197 					goto normal;
4198 				if (skb_headlen(iter) && !iter->head_frag)
4199 					goto normal;
4200 
4201 				len -= iter->len;
4202 			}
4203 
4204 			if (len != frag_len)
4205 				goto normal;
4206 		}
4207 
4208 		/* GSO partial only requires that we trim off any excess that
4209 		 * doesn't fit into an MSS sized block, so take care of that
4210 		 * now.
4211 		 */
4212 		partial_segs = len / mss;
4213 		if (partial_segs > 1)
4214 			mss *= partial_segs;
4215 		else
4216 			partial_segs = 0;
4217 	}
4218 
4219 normal:
4220 	headroom = skb_headroom(head_skb);
4221 	pos = skb_headlen(head_skb);
4222 
4223 	do {
4224 		struct sk_buff *nskb;
4225 		skb_frag_t *nskb_frag;
4226 		int hsize;
4227 		int size;
4228 
4229 		if (unlikely(mss == GSO_BY_FRAGS)) {
4230 			len = list_skb->len;
4231 		} else {
4232 			len = head_skb->len - offset;
4233 			if (len > mss)
4234 				len = mss;
4235 		}
4236 
4237 		hsize = skb_headlen(head_skb) - offset;
4238 
4239 		if (hsize <= 0 && i >= nfrags && skb_headlen(list_skb) &&
4240 		    (skb_headlen(list_skb) == len || sg)) {
4241 			BUG_ON(skb_headlen(list_skb) > len);
4242 
4243 			i = 0;
4244 			nfrags = skb_shinfo(list_skb)->nr_frags;
4245 			frag = skb_shinfo(list_skb)->frags;
4246 			frag_skb = list_skb;
4247 			pos += skb_headlen(list_skb);
4248 
4249 			while (pos < offset + len) {
4250 				BUG_ON(i >= nfrags);
4251 
4252 				size = skb_frag_size(frag);
4253 				if (pos + size > offset + len)
4254 					break;
4255 
4256 				i++;
4257 				pos += size;
4258 				frag++;
4259 			}
4260 
4261 			nskb = skb_clone(list_skb, GFP_ATOMIC);
4262 			list_skb = list_skb->next;
4263 
4264 			if (unlikely(!nskb))
4265 				goto err;
4266 
4267 			if (unlikely(pskb_trim(nskb, len))) {
4268 				kfree_skb(nskb);
4269 				goto err;
4270 			}
4271 
4272 			hsize = skb_end_offset(nskb);
4273 			if (skb_cow_head(nskb, doffset + headroom)) {
4274 				kfree_skb(nskb);
4275 				goto err;
4276 			}
4277 
4278 			nskb->truesize += skb_end_offset(nskb) - hsize;
4279 			skb_release_head_state(nskb);
4280 			__skb_push(nskb, doffset);
4281 		} else {
4282 			if (hsize < 0)
4283 				hsize = 0;
4284 			if (hsize > len || !sg)
4285 				hsize = len;
4286 
4287 			nskb = __alloc_skb(hsize + doffset + headroom,
4288 					   GFP_ATOMIC, skb_alloc_rx_flag(head_skb),
4289 					   NUMA_NO_NODE);
4290 
4291 			if (unlikely(!nskb))
4292 				goto err;
4293 
4294 			skb_reserve(nskb, headroom);
4295 			__skb_put(nskb, doffset);
4296 		}
4297 
4298 		if (segs)
4299 			tail->next = nskb;
4300 		else
4301 			segs = nskb;
4302 		tail = nskb;
4303 
4304 		__copy_skb_header(nskb, head_skb);
4305 
4306 		skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom);
4307 		skb_reset_mac_len(nskb);
4308 
4309 		skb_copy_from_linear_data_offset(head_skb, -tnl_hlen,
4310 						 nskb->data - tnl_hlen,
4311 						 doffset + tnl_hlen);
4312 
4313 		if (nskb->len == len + doffset)
4314 			goto perform_csum_check;
4315 
4316 		if (!sg) {
4317 			if (!csum) {
4318 				if (!nskb->remcsum_offload)
4319 					nskb->ip_summed = CHECKSUM_NONE;
4320 				SKB_GSO_CB(nskb)->csum =
4321 					skb_copy_and_csum_bits(head_skb, offset,
4322 							       skb_put(nskb,
4323 								       len),
4324 							       len);
4325 				SKB_GSO_CB(nskb)->csum_start =
4326 					skb_headroom(nskb) + doffset;
4327 			} else {
4328 				if (skb_copy_bits(head_skb, offset, skb_put(nskb, len), len))
4329 					goto err;
4330 			}
4331 			continue;
4332 		}
4333 
4334 		nskb_frag = skb_shinfo(nskb)->frags;
4335 
4336 		skb_copy_from_linear_data_offset(head_skb, offset,
4337 						 skb_put(nskb, hsize), hsize);
4338 
4339 		skb_shinfo(nskb)->flags |= skb_shinfo(head_skb)->flags &
4340 					   SKBFL_SHARED_FRAG;
4341 
4342 		if (skb_orphan_frags(frag_skb, GFP_ATOMIC) ||
4343 		    skb_zerocopy_clone(nskb, frag_skb, GFP_ATOMIC))
4344 			goto err;
4345 
4346 		while (pos < offset + len) {
4347 			if (i >= nfrags) {
4348 				i = 0;
4349 				nfrags = skb_shinfo(list_skb)->nr_frags;
4350 				frag = skb_shinfo(list_skb)->frags;
4351 				frag_skb = list_skb;
4352 				if (!skb_headlen(list_skb)) {
4353 					BUG_ON(!nfrags);
4354 				} else {
4355 					BUG_ON(!list_skb->head_frag);
4356 
4357 					/* to make room for head_frag. */
4358 					i--;
4359 					frag--;
4360 				}
4361 				if (skb_orphan_frags(frag_skb, GFP_ATOMIC) ||
4362 				    skb_zerocopy_clone(nskb, frag_skb,
4363 						       GFP_ATOMIC))
4364 					goto err;
4365 
4366 				list_skb = list_skb->next;
4367 			}
4368 
4369 			if (unlikely(skb_shinfo(nskb)->nr_frags >=
4370 				     MAX_SKB_FRAGS)) {
4371 				net_warn_ratelimited(
4372 					"skb_segment: too many frags: %u %u\n",
4373 					pos, mss);
4374 				err = -EINVAL;
4375 				goto err;
4376 			}
4377 
4378 			*nskb_frag = (i < 0) ? skb_head_frag_to_page_desc(frag_skb) : *frag;
4379 			__skb_frag_ref(nskb_frag);
4380 			size = skb_frag_size(nskb_frag);
4381 
4382 			if (pos < offset) {
4383 				skb_frag_off_add(nskb_frag, offset - pos);
4384 				skb_frag_size_sub(nskb_frag, offset - pos);
4385 			}
4386 
4387 			skb_shinfo(nskb)->nr_frags++;
4388 
4389 			if (pos + size <= offset + len) {
4390 				i++;
4391 				frag++;
4392 				pos += size;
4393 			} else {
4394 				skb_frag_size_sub(nskb_frag, pos + size - (offset + len));
4395 				goto skip_fraglist;
4396 			}
4397 
4398 			nskb_frag++;
4399 		}
4400 
4401 skip_fraglist:
4402 		nskb->data_len = len - hsize;
4403 		nskb->len += nskb->data_len;
4404 		nskb->truesize += nskb->data_len;
4405 
4406 perform_csum_check:
4407 		if (!csum) {
4408 			if (skb_has_shared_frag(nskb) &&
4409 			    __skb_linearize(nskb))
4410 				goto err;
4411 
4412 			if (!nskb->remcsum_offload)
4413 				nskb->ip_summed = CHECKSUM_NONE;
4414 			SKB_GSO_CB(nskb)->csum =
4415 				skb_checksum(nskb, doffset,
4416 					     nskb->len - doffset, 0);
4417 			SKB_GSO_CB(nskb)->csum_start =
4418 				skb_headroom(nskb) + doffset;
4419 		}
4420 	} while ((offset += len) < head_skb->len);
4421 
4422 	/* Some callers want to get the end of the list.
4423 	 * Put it in segs->prev to avoid walking the list.
4424 	 * (see validate_xmit_skb_list() for example)
4425 	 */
4426 	segs->prev = tail;
4427 
4428 	if (partial_segs) {
4429 		struct sk_buff *iter;
4430 		int type = skb_shinfo(head_skb)->gso_type;
4431 		unsigned short gso_size = skb_shinfo(head_skb)->gso_size;
4432 
4433 		/* Update type to add partial and then remove dodgy if set */
4434 		type |= (features & NETIF_F_GSO_PARTIAL) / NETIF_F_GSO_PARTIAL * SKB_GSO_PARTIAL;
4435 		type &= ~SKB_GSO_DODGY;
4436 
4437 		/* Update GSO info and prepare to start updating headers on
4438 		 * our way back down the stack of protocols.
4439 		 */
4440 		for (iter = segs; iter; iter = iter->next) {
4441 			skb_shinfo(iter)->gso_size = gso_size;
4442 			skb_shinfo(iter)->gso_segs = partial_segs;
4443 			skb_shinfo(iter)->gso_type = type;
4444 			SKB_GSO_CB(iter)->data_offset = skb_headroom(iter) + doffset;
4445 		}
4446 
4447 		if (tail->len - doffset <= gso_size)
4448 			skb_shinfo(tail)->gso_size = 0;
4449 		else if (tail != segs)
4450 			skb_shinfo(tail)->gso_segs = DIV_ROUND_UP(tail->len - doffset, gso_size);
4451 	}
4452 
4453 	/* Following permits correct backpressure, for protocols
4454 	 * using skb_set_owner_w().
4455 	 * Idea is to tranfert ownership from head_skb to last segment.
4456 	 */
4457 	if (head_skb->destructor == sock_wfree) {
4458 		swap(tail->truesize, head_skb->truesize);
4459 		swap(tail->destructor, head_skb->destructor);
4460 		swap(tail->sk, head_skb->sk);
4461 	}
4462 	return segs;
4463 
4464 err:
4465 	kfree_skb_list(segs);
4466 	return ERR_PTR(err);
4467 }
4468 EXPORT_SYMBOL_GPL(skb_segment);
4469 
4470 #ifdef CONFIG_SKB_EXTENSIONS
4471 #define SKB_EXT_ALIGN_VALUE	8
4472 #define SKB_EXT_CHUNKSIZEOF(x)	(ALIGN((sizeof(x)), SKB_EXT_ALIGN_VALUE) / SKB_EXT_ALIGN_VALUE)
4473 
4474 static const u8 skb_ext_type_len[] = {
4475 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4476 	[SKB_EXT_BRIDGE_NF] = SKB_EXT_CHUNKSIZEOF(struct nf_bridge_info),
4477 #endif
4478 #ifdef CONFIG_XFRM
4479 	[SKB_EXT_SEC_PATH] = SKB_EXT_CHUNKSIZEOF(struct sec_path),
4480 #endif
4481 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4482 	[TC_SKB_EXT] = SKB_EXT_CHUNKSIZEOF(struct tc_skb_ext),
4483 #endif
4484 #if IS_ENABLED(CONFIG_MPTCP)
4485 	[SKB_EXT_MPTCP] = SKB_EXT_CHUNKSIZEOF(struct mptcp_ext),
4486 #endif
4487 #if IS_ENABLED(CONFIG_MCTP_FLOWS)
4488 	[SKB_EXT_MCTP] = SKB_EXT_CHUNKSIZEOF(struct mctp_flow),
4489 #endif
4490 };
4491 
4492 static __always_inline unsigned int skb_ext_total_length(void)
4493 {
4494 	return SKB_EXT_CHUNKSIZEOF(struct skb_ext) +
4495 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4496 		skb_ext_type_len[SKB_EXT_BRIDGE_NF] +
4497 #endif
4498 #ifdef CONFIG_XFRM
4499 		skb_ext_type_len[SKB_EXT_SEC_PATH] +
4500 #endif
4501 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4502 		skb_ext_type_len[TC_SKB_EXT] +
4503 #endif
4504 #if IS_ENABLED(CONFIG_MPTCP)
4505 		skb_ext_type_len[SKB_EXT_MPTCP] +
4506 #endif
4507 #if IS_ENABLED(CONFIG_MCTP_FLOWS)
4508 		skb_ext_type_len[SKB_EXT_MCTP] +
4509 #endif
4510 		0;
4511 }
4512 
4513 static void skb_extensions_init(void)
4514 {
4515 	BUILD_BUG_ON(SKB_EXT_NUM >= 8);
4516 	BUILD_BUG_ON(skb_ext_total_length() > 255);
4517 
4518 	skbuff_ext_cache = kmem_cache_create("skbuff_ext_cache",
4519 					     SKB_EXT_ALIGN_VALUE * skb_ext_total_length(),
4520 					     0,
4521 					     SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4522 					     NULL);
4523 }
4524 #else
4525 static void skb_extensions_init(void) {}
4526 #endif
4527 
4528 void __init skb_init(void)
4529 {
4530 	skbuff_head_cache = kmem_cache_create_usercopy("skbuff_head_cache",
4531 					      sizeof(struct sk_buff),
4532 					      0,
4533 					      SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4534 					      offsetof(struct sk_buff, cb),
4535 					      sizeof_field(struct sk_buff, cb),
4536 					      NULL);
4537 	skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
4538 						sizeof(struct sk_buff_fclones),
4539 						0,
4540 						SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4541 						NULL);
4542 	skb_extensions_init();
4543 }
4544 
4545 static int
4546 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len,
4547 	       unsigned int recursion_level)
4548 {
4549 	int start = skb_headlen(skb);
4550 	int i, copy = start - offset;
4551 	struct sk_buff *frag_iter;
4552 	int elt = 0;
4553 
4554 	if (unlikely(recursion_level >= 24))
4555 		return -EMSGSIZE;
4556 
4557 	if (copy > 0) {
4558 		if (copy > len)
4559 			copy = len;
4560 		sg_set_buf(sg, skb->data + offset, copy);
4561 		elt++;
4562 		if ((len -= copy) == 0)
4563 			return elt;
4564 		offset += copy;
4565 	}
4566 
4567 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
4568 		int end;
4569 
4570 		WARN_ON(start > offset + len);
4571 
4572 		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
4573 		if ((copy = end - offset) > 0) {
4574 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4575 			if (unlikely(elt && sg_is_last(&sg[elt - 1])))
4576 				return -EMSGSIZE;
4577 
4578 			if (copy > len)
4579 				copy = len;
4580 			sg_set_page(&sg[elt], skb_frag_page(frag), copy,
4581 				    skb_frag_off(frag) + offset - start);
4582 			elt++;
4583 			if (!(len -= copy))
4584 				return elt;
4585 			offset += copy;
4586 		}
4587 		start = end;
4588 	}
4589 
4590 	skb_walk_frags(skb, frag_iter) {
4591 		int end, ret;
4592 
4593 		WARN_ON(start > offset + len);
4594 
4595 		end = start + frag_iter->len;
4596 		if ((copy = end - offset) > 0) {
4597 			if (unlikely(elt && sg_is_last(&sg[elt - 1])))
4598 				return -EMSGSIZE;
4599 
4600 			if (copy > len)
4601 				copy = len;
4602 			ret = __skb_to_sgvec(frag_iter, sg+elt, offset - start,
4603 					      copy, recursion_level + 1);
4604 			if (unlikely(ret < 0))
4605 				return ret;
4606 			elt += ret;
4607 			if ((len -= copy) == 0)
4608 				return elt;
4609 			offset += copy;
4610 		}
4611 		start = end;
4612 	}
4613 	BUG_ON(len);
4614 	return elt;
4615 }
4616 
4617 /**
4618  *	skb_to_sgvec - Fill a scatter-gather list from a socket buffer
4619  *	@skb: Socket buffer containing the buffers to be mapped
4620  *	@sg: The scatter-gather list to map into
4621  *	@offset: The offset into the buffer's contents to start mapping
4622  *	@len: Length of buffer space to be mapped
4623  *
4624  *	Fill the specified scatter-gather list with mappings/pointers into a
4625  *	region of the buffer space attached to a socket buffer. Returns either
4626  *	the number of scatterlist items used, or -EMSGSIZE if the contents
4627  *	could not fit.
4628  */
4629 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
4630 {
4631 	int nsg = __skb_to_sgvec(skb, sg, offset, len, 0);
4632 
4633 	if (nsg <= 0)
4634 		return nsg;
4635 
4636 	sg_mark_end(&sg[nsg - 1]);
4637 
4638 	return nsg;
4639 }
4640 EXPORT_SYMBOL_GPL(skb_to_sgvec);
4641 
4642 /* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given
4643  * sglist without mark the sg which contain last skb data as the end.
4644  * So the caller can mannipulate sg list as will when padding new data after
4645  * the first call without calling sg_unmark_end to expend sg list.
4646  *
4647  * Scenario to use skb_to_sgvec_nomark:
4648  * 1. sg_init_table
4649  * 2. skb_to_sgvec_nomark(payload1)
4650  * 3. skb_to_sgvec_nomark(payload2)
4651  *
4652  * This is equivalent to:
4653  * 1. sg_init_table
4654  * 2. skb_to_sgvec(payload1)
4655  * 3. sg_unmark_end
4656  * 4. skb_to_sgvec(payload2)
4657  *
4658  * When mapping mutilple payload conditionally, skb_to_sgvec_nomark
4659  * is more preferable.
4660  */
4661 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
4662 			int offset, int len)
4663 {
4664 	return __skb_to_sgvec(skb, sg, offset, len, 0);
4665 }
4666 EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark);
4667 
4668 
4669 
4670 /**
4671  *	skb_cow_data - Check that a socket buffer's data buffers are writable
4672  *	@skb: The socket buffer to check.
4673  *	@tailbits: Amount of trailing space to be added
4674  *	@trailer: Returned pointer to the skb where the @tailbits space begins
4675  *
4676  *	Make sure that the data buffers attached to a socket buffer are
4677  *	writable. If they are not, private copies are made of the data buffers
4678  *	and the socket buffer is set to use these instead.
4679  *
4680  *	If @tailbits is given, make sure that there is space to write @tailbits
4681  *	bytes of data beyond current end of socket buffer.  @trailer will be
4682  *	set to point to the skb in which this space begins.
4683  *
4684  *	The number of scatterlist elements required to completely map the
4685  *	COW'd and extended socket buffer will be returned.
4686  */
4687 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
4688 {
4689 	int copyflag;
4690 	int elt;
4691 	struct sk_buff *skb1, **skb_p;
4692 
4693 	/* If skb is cloned or its head is paged, reallocate
4694 	 * head pulling out all the pages (pages are considered not writable
4695 	 * at the moment even if they are anonymous).
4696 	 */
4697 	if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
4698 	    !__pskb_pull_tail(skb, __skb_pagelen(skb)))
4699 		return -ENOMEM;
4700 
4701 	/* Easy case. Most of packets will go this way. */
4702 	if (!skb_has_frag_list(skb)) {
4703 		/* A little of trouble, not enough of space for trailer.
4704 		 * This should not happen, when stack is tuned to generate
4705 		 * good frames. OK, on miss we reallocate and reserve even more
4706 		 * space, 128 bytes is fair. */
4707 
4708 		if (skb_tailroom(skb) < tailbits &&
4709 		    pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
4710 			return -ENOMEM;
4711 
4712 		/* Voila! */
4713 		*trailer = skb;
4714 		return 1;
4715 	}
4716 
4717 	/* Misery. We are in troubles, going to mincer fragments... */
4718 
4719 	elt = 1;
4720 	skb_p = &skb_shinfo(skb)->frag_list;
4721 	copyflag = 0;
4722 
4723 	while ((skb1 = *skb_p) != NULL) {
4724 		int ntail = 0;
4725 
4726 		/* The fragment is partially pulled by someone,
4727 		 * this can happen on input. Copy it and everything
4728 		 * after it. */
4729 
4730 		if (skb_shared(skb1))
4731 			copyflag = 1;
4732 
4733 		/* If the skb is the last, worry about trailer. */
4734 
4735 		if (skb1->next == NULL && tailbits) {
4736 			if (skb_shinfo(skb1)->nr_frags ||
4737 			    skb_has_frag_list(skb1) ||
4738 			    skb_tailroom(skb1) < tailbits)
4739 				ntail = tailbits + 128;
4740 		}
4741 
4742 		if (copyflag ||
4743 		    skb_cloned(skb1) ||
4744 		    ntail ||
4745 		    skb_shinfo(skb1)->nr_frags ||
4746 		    skb_has_frag_list(skb1)) {
4747 			struct sk_buff *skb2;
4748 
4749 			/* Fuck, we are miserable poor guys... */
4750 			if (ntail == 0)
4751 				skb2 = skb_copy(skb1, GFP_ATOMIC);
4752 			else
4753 				skb2 = skb_copy_expand(skb1,
4754 						       skb_headroom(skb1),
4755 						       ntail,
4756 						       GFP_ATOMIC);
4757 			if (unlikely(skb2 == NULL))
4758 				return -ENOMEM;
4759 
4760 			if (skb1->sk)
4761 				skb_set_owner_w(skb2, skb1->sk);
4762 
4763 			/* Looking around. Are we still alive?
4764 			 * OK, link new skb, drop old one */
4765 
4766 			skb2->next = skb1->next;
4767 			*skb_p = skb2;
4768 			kfree_skb(skb1);
4769 			skb1 = skb2;
4770 		}
4771 		elt++;
4772 		*trailer = skb1;
4773 		skb_p = &skb1->next;
4774 	}
4775 
4776 	return elt;
4777 }
4778 EXPORT_SYMBOL_GPL(skb_cow_data);
4779 
4780 static void sock_rmem_free(struct sk_buff *skb)
4781 {
4782 	struct sock *sk = skb->sk;
4783 
4784 	atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
4785 }
4786 
4787 static void skb_set_err_queue(struct sk_buff *skb)
4788 {
4789 	/* pkt_type of skbs received on local sockets is never PACKET_OUTGOING.
4790 	 * So, it is safe to (mis)use it to mark skbs on the error queue.
4791 	 */
4792 	skb->pkt_type = PACKET_OUTGOING;
4793 	BUILD_BUG_ON(PACKET_OUTGOING == 0);
4794 }
4795 
4796 /*
4797  * Note: We dont mem charge error packets (no sk_forward_alloc changes)
4798  */
4799 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
4800 {
4801 	if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
4802 	    (unsigned int)READ_ONCE(sk->sk_rcvbuf))
4803 		return -ENOMEM;
4804 
4805 	skb_orphan(skb);
4806 	skb->sk = sk;
4807 	skb->destructor = sock_rmem_free;
4808 	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
4809 	skb_set_err_queue(skb);
4810 
4811 	/* before exiting rcu section, make sure dst is refcounted */
4812 	skb_dst_force(skb);
4813 
4814 	skb_queue_tail(&sk->sk_error_queue, skb);
4815 	if (!sock_flag(sk, SOCK_DEAD))
4816 		sk_error_report(sk);
4817 	return 0;
4818 }
4819 EXPORT_SYMBOL(sock_queue_err_skb);
4820 
4821 static bool is_icmp_err_skb(const struct sk_buff *skb)
4822 {
4823 	return skb && (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP ||
4824 		       SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP6);
4825 }
4826 
4827 struct sk_buff *sock_dequeue_err_skb(struct sock *sk)
4828 {
4829 	struct sk_buff_head *q = &sk->sk_error_queue;
4830 	struct sk_buff *skb, *skb_next = NULL;
4831 	bool icmp_next = false;
4832 	unsigned long flags;
4833 
4834 	spin_lock_irqsave(&q->lock, flags);
4835 	skb = __skb_dequeue(q);
4836 	if (skb && (skb_next = skb_peek(q))) {
4837 		icmp_next = is_icmp_err_skb(skb_next);
4838 		if (icmp_next)
4839 			sk->sk_err = SKB_EXT_ERR(skb_next)->ee.ee_errno;
4840 	}
4841 	spin_unlock_irqrestore(&q->lock, flags);
4842 
4843 	if (is_icmp_err_skb(skb) && !icmp_next)
4844 		sk->sk_err = 0;
4845 
4846 	if (skb_next)
4847 		sk_error_report(sk);
4848 
4849 	return skb;
4850 }
4851 EXPORT_SYMBOL(sock_dequeue_err_skb);
4852 
4853 /**
4854  * skb_clone_sk - create clone of skb, and take reference to socket
4855  * @skb: the skb to clone
4856  *
4857  * This function creates a clone of a buffer that holds a reference on
4858  * sk_refcnt.  Buffers created via this function are meant to be
4859  * returned using sock_queue_err_skb, or free via kfree_skb.
4860  *
4861  * When passing buffers allocated with this function to sock_queue_err_skb
4862  * it is necessary to wrap the call with sock_hold/sock_put in order to
4863  * prevent the socket from being released prior to being enqueued on
4864  * the sk_error_queue.
4865  */
4866 struct sk_buff *skb_clone_sk(struct sk_buff *skb)
4867 {
4868 	struct sock *sk = skb->sk;
4869 	struct sk_buff *clone;
4870 
4871 	if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt))
4872 		return NULL;
4873 
4874 	clone = skb_clone(skb, GFP_ATOMIC);
4875 	if (!clone) {
4876 		sock_put(sk);
4877 		return NULL;
4878 	}
4879 
4880 	clone->sk = sk;
4881 	clone->destructor = sock_efree;
4882 
4883 	return clone;
4884 }
4885 EXPORT_SYMBOL(skb_clone_sk);
4886 
4887 static void __skb_complete_tx_timestamp(struct sk_buff *skb,
4888 					struct sock *sk,
4889 					int tstype,
4890 					bool opt_stats)
4891 {
4892 	struct sock_exterr_skb *serr;
4893 	int err;
4894 
4895 	BUILD_BUG_ON(sizeof(struct sock_exterr_skb) > sizeof(skb->cb));
4896 
4897 	serr = SKB_EXT_ERR(skb);
4898 	memset(serr, 0, sizeof(*serr));
4899 	serr->ee.ee_errno = ENOMSG;
4900 	serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
4901 	serr->ee.ee_info = tstype;
4902 	serr->opt_stats = opt_stats;
4903 	serr->header.h4.iif = skb->dev ? skb->dev->ifindex : 0;
4904 	if (sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID) {
4905 		serr->ee.ee_data = skb_shinfo(skb)->tskey;
4906 		if (sk_is_tcp(sk))
4907 			serr->ee.ee_data -= atomic_read(&sk->sk_tskey);
4908 	}
4909 
4910 	err = sock_queue_err_skb(sk, skb);
4911 
4912 	if (err)
4913 		kfree_skb(skb);
4914 }
4915 
4916 static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly)
4917 {
4918 	bool ret;
4919 
4920 	if (likely(READ_ONCE(sysctl_tstamp_allow_data) || tsonly))
4921 		return true;
4922 
4923 	read_lock_bh(&sk->sk_callback_lock);
4924 	ret = sk->sk_socket && sk->sk_socket->file &&
4925 	      file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW);
4926 	read_unlock_bh(&sk->sk_callback_lock);
4927 	return ret;
4928 }
4929 
4930 void skb_complete_tx_timestamp(struct sk_buff *skb,
4931 			       struct skb_shared_hwtstamps *hwtstamps)
4932 {
4933 	struct sock *sk = skb->sk;
4934 
4935 	if (!skb_may_tx_timestamp(sk, false))
4936 		goto err;
4937 
4938 	/* Take a reference to prevent skb_orphan() from freeing the socket,
4939 	 * but only if the socket refcount is not zero.
4940 	 */
4941 	if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
4942 		*skb_hwtstamps(skb) = *hwtstamps;
4943 		__skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND, false);
4944 		sock_put(sk);
4945 		return;
4946 	}
4947 
4948 err:
4949 	kfree_skb(skb);
4950 }
4951 EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp);
4952 
4953 void __skb_tstamp_tx(struct sk_buff *orig_skb,
4954 		     const struct sk_buff *ack_skb,
4955 		     struct skb_shared_hwtstamps *hwtstamps,
4956 		     struct sock *sk, int tstype)
4957 {
4958 	struct sk_buff *skb;
4959 	bool tsonly, opt_stats = false;
4960 
4961 	if (!sk)
4962 		return;
4963 
4964 	if (!hwtstamps && !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TX_SWHW) &&
4965 	    skb_shinfo(orig_skb)->tx_flags & SKBTX_IN_PROGRESS)
4966 		return;
4967 
4968 	tsonly = sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TSONLY;
4969 	if (!skb_may_tx_timestamp(sk, tsonly))
4970 		return;
4971 
4972 	if (tsonly) {
4973 #ifdef CONFIG_INET
4974 		if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_STATS) &&
4975 		    sk_is_tcp(sk)) {
4976 			skb = tcp_get_timestamping_opt_stats(sk, orig_skb,
4977 							     ack_skb);
4978 			opt_stats = true;
4979 		} else
4980 #endif
4981 			skb = alloc_skb(0, GFP_ATOMIC);
4982 	} else {
4983 		skb = skb_clone(orig_skb, GFP_ATOMIC);
4984 	}
4985 	if (!skb)
4986 		return;
4987 
4988 	if (tsonly) {
4989 		skb_shinfo(skb)->tx_flags |= skb_shinfo(orig_skb)->tx_flags &
4990 					     SKBTX_ANY_TSTAMP;
4991 		skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey;
4992 	}
4993 
4994 	if (hwtstamps)
4995 		*skb_hwtstamps(skb) = *hwtstamps;
4996 	else
4997 		__net_timestamp(skb);
4998 
4999 	__skb_complete_tx_timestamp(skb, sk, tstype, opt_stats);
5000 }
5001 EXPORT_SYMBOL_GPL(__skb_tstamp_tx);
5002 
5003 void skb_tstamp_tx(struct sk_buff *orig_skb,
5004 		   struct skb_shared_hwtstamps *hwtstamps)
5005 {
5006 	return __skb_tstamp_tx(orig_skb, NULL, hwtstamps, orig_skb->sk,
5007 			       SCM_TSTAMP_SND);
5008 }
5009 EXPORT_SYMBOL_GPL(skb_tstamp_tx);
5010 
5011 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked)
5012 {
5013 	struct sock *sk = skb->sk;
5014 	struct sock_exterr_skb *serr;
5015 	int err = 1;
5016 
5017 	skb->wifi_acked_valid = 1;
5018 	skb->wifi_acked = acked;
5019 
5020 	serr = SKB_EXT_ERR(skb);
5021 	memset(serr, 0, sizeof(*serr));
5022 	serr->ee.ee_errno = ENOMSG;
5023 	serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS;
5024 
5025 	/* Take a reference to prevent skb_orphan() from freeing the socket,
5026 	 * but only if the socket refcount is not zero.
5027 	 */
5028 	if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
5029 		err = sock_queue_err_skb(sk, skb);
5030 		sock_put(sk);
5031 	}
5032 	if (err)
5033 		kfree_skb(skb);
5034 }
5035 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack);
5036 
5037 /**
5038  * skb_partial_csum_set - set up and verify partial csum values for packet
5039  * @skb: the skb to set
5040  * @start: the number of bytes after skb->data to start checksumming.
5041  * @off: the offset from start to place the checksum.
5042  *
5043  * For untrusted partially-checksummed packets, we need to make sure the values
5044  * for skb->csum_start and skb->csum_offset are valid so we don't oops.
5045  *
5046  * This function checks and sets those values and skb->ip_summed: if this
5047  * returns false you should drop the packet.
5048  */
5049 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
5050 {
5051 	u32 csum_end = (u32)start + (u32)off + sizeof(__sum16);
5052 	u32 csum_start = skb_headroom(skb) + (u32)start;
5053 
5054 	if (unlikely(csum_start > U16_MAX || csum_end > skb_headlen(skb))) {
5055 		net_warn_ratelimited("bad partial csum: csum=%u/%u headroom=%u headlen=%u\n",
5056 				     start, off, skb_headroom(skb), skb_headlen(skb));
5057 		return false;
5058 	}
5059 	skb->ip_summed = CHECKSUM_PARTIAL;
5060 	skb->csum_start = csum_start;
5061 	skb->csum_offset = off;
5062 	skb_set_transport_header(skb, start);
5063 	return true;
5064 }
5065 EXPORT_SYMBOL_GPL(skb_partial_csum_set);
5066 
5067 static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len,
5068 			       unsigned int max)
5069 {
5070 	if (skb_headlen(skb) >= len)
5071 		return 0;
5072 
5073 	/* If we need to pullup then pullup to the max, so we
5074 	 * won't need to do it again.
5075 	 */
5076 	if (max > skb->len)
5077 		max = skb->len;
5078 
5079 	if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL)
5080 		return -ENOMEM;
5081 
5082 	if (skb_headlen(skb) < len)
5083 		return -EPROTO;
5084 
5085 	return 0;
5086 }
5087 
5088 #define MAX_TCP_HDR_LEN (15 * 4)
5089 
5090 static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb,
5091 				      typeof(IPPROTO_IP) proto,
5092 				      unsigned int off)
5093 {
5094 	int err;
5095 
5096 	switch (proto) {
5097 	case IPPROTO_TCP:
5098 		err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr),
5099 					  off + MAX_TCP_HDR_LEN);
5100 		if (!err && !skb_partial_csum_set(skb, off,
5101 						  offsetof(struct tcphdr,
5102 							   check)))
5103 			err = -EPROTO;
5104 		return err ? ERR_PTR(err) : &tcp_hdr(skb)->check;
5105 
5106 	case IPPROTO_UDP:
5107 		err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr),
5108 					  off + sizeof(struct udphdr));
5109 		if (!err && !skb_partial_csum_set(skb, off,
5110 						  offsetof(struct udphdr,
5111 							   check)))
5112 			err = -EPROTO;
5113 		return err ? ERR_PTR(err) : &udp_hdr(skb)->check;
5114 	}
5115 
5116 	return ERR_PTR(-EPROTO);
5117 }
5118 
5119 /* This value should be large enough to cover a tagged ethernet header plus
5120  * maximally sized IP and TCP or UDP headers.
5121  */
5122 #define MAX_IP_HDR_LEN 128
5123 
5124 static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate)
5125 {
5126 	unsigned int off;
5127 	bool fragment;
5128 	__sum16 *csum;
5129 	int err;
5130 
5131 	fragment = false;
5132 
5133 	err = skb_maybe_pull_tail(skb,
5134 				  sizeof(struct iphdr),
5135 				  MAX_IP_HDR_LEN);
5136 	if (err < 0)
5137 		goto out;
5138 
5139 	if (ip_is_fragment(ip_hdr(skb)))
5140 		fragment = true;
5141 
5142 	off = ip_hdrlen(skb);
5143 
5144 	err = -EPROTO;
5145 
5146 	if (fragment)
5147 		goto out;
5148 
5149 	csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off);
5150 	if (IS_ERR(csum))
5151 		return PTR_ERR(csum);
5152 
5153 	if (recalculate)
5154 		*csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
5155 					   ip_hdr(skb)->daddr,
5156 					   skb->len - off,
5157 					   ip_hdr(skb)->protocol, 0);
5158 	err = 0;
5159 
5160 out:
5161 	return err;
5162 }
5163 
5164 /* This value should be large enough to cover a tagged ethernet header plus
5165  * an IPv6 header, all options, and a maximal TCP or UDP header.
5166  */
5167 #define MAX_IPV6_HDR_LEN 256
5168 
5169 #define OPT_HDR(type, skb, off) \
5170 	(type *)(skb_network_header(skb) + (off))
5171 
5172 static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate)
5173 {
5174 	int err;
5175 	u8 nexthdr;
5176 	unsigned int off;
5177 	unsigned int len;
5178 	bool fragment;
5179 	bool done;
5180 	__sum16 *csum;
5181 
5182 	fragment = false;
5183 	done = false;
5184 
5185 	off = sizeof(struct ipv6hdr);
5186 
5187 	err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN);
5188 	if (err < 0)
5189 		goto out;
5190 
5191 	nexthdr = ipv6_hdr(skb)->nexthdr;
5192 
5193 	len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len);
5194 	while (off <= len && !done) {
5195 		switch (nexthdr) {
5196 		case IPPROTO_DSTOPTS:
5197 		case IPPROTO_HOPOPTS:
5198 		case IPPROTO_ROUTING: {
5199 			struct ipv6_opt_hdr *hp;
5200 
5201 			err = skb_maybe_pull_tail(skb,
5202 						  off +
5203 						  sizeof(struct ipv6_opt_hdr),
5204 						  MAX_IPV6_HDR_LEN);
5205 			if (err < 0)
5206 				goto out;
5207 
5208 			hp = OPT_HDR(struct ipv6_opt_hdr, skb, off);
5209 			nexthdr = hp->nexthdr;
5210 			off += ipv6_optlen(hp);
5211 			break;
5212 		}
5213 		case IPPROTO_AH: {
5214 			struct ip_auth_hdr *hp;
5215 
5216 			err = skb_maybe_pull_tail(skb,
5217 						  off +
5218 						  sizeof(struct ip_auth_hdr),
5219 						  MAX_IPV6_HDR_LEN);
5220 			if (err < 0)
5221 				goto out;
5222 
5223 			hp = OPT_HDR(struct ip_auth_hdr, skb, off);
5224 			nexthdr = hp->nexthdr;
5225 			off += ipv6_authlen(hp);
5226 			break;
5227 		}
5228 		case IPPROTO_FRAGMENT: {
5229 			struct frag_hdr *hp;
5230 
5231 			err = skb_maybe_pull_tail(skb,
5232 						  off +
5233 						  sizeof(struct frag_hdr),
5234 						  MAX_IPV6_HDR_LEN);
5235 			if (err < 0)
5236 				goto out;
5237 
5238 			hp = OPT_HDR(struct frag_hdr, skb, off);
5239 
5240 			if (hp->frag_off & htons(IP6_OFFSET | IP6_MF))
5241 				fragment = true;
5242 
5243 			nexthdr = hp->nexthdr;
5244 			off += sizeof(struct frag_hdr);
5245 			break;
5246 		}
5247 		default:
5248 			done = true;
5249 			break;
5250 		}
5251 	}
5252 
5253 	err = -EPROTO;
5254 
5255 	if (!done || fragment)
5256 		goto out;
5257 
5258 	csum = skb_checksum_setup_ip(skb, nexthdr, off);
5259 	if (IS_ERR(csum))
5260 		return PTR_ERR(csum);
5261 
5262 	if (recalculate)
5263 		*csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
5264 					 &ipv6_hdr(skb)->daddr,
5265 					 skb->len - off, nexthdr, 0);
5266 	err = 0;
5267 
5268 out:
5269 	return err;
5270 }
5271 
5272 /**
5273  * skb_checksum_setup - set up partial checksum offset
5274  * @skb: the skb to set up
5275  * @recalculate: if true the pseudo-header checksum will be recalculated
5276  */
5277 int skb_checksum_setup(struct sk_buff *skb, bool recalculate)
5278 {
5279 	int err;
5280 
5281 	switch (skb->protocol) {
5282 	case htons(ETH_P_IP):
5283 		err = skb_checksum_setup_ipv4(skb, recalculate);
5284 		break;
5285 
5286 	case htons(ETH_P_IPV6):
5287 		err = skb_checksum_setup_ipv6(skb, recalculate);
5288 		break;
5289 
5290 	default:
5291 		err = -EPROTO;
5292 		break;
5293 	}
5294 
5295 	return err;
5296 }
5297 EXPORT_SYMBOL(skb_checksum_setup);
5298 
5299 /**
5300  * skb_checksum_maybe_trim - maybe trims the given skb
5301  * @skb: the skb to check
5302  * @transport_len: the data length beyond the network header
5303  *
5304  * Checks whether the given skb has data beyond the given transport length.
5305  * If so, returns a cloned skb trimmed to this transport length.
5306  * Otherwise returns the provided skb. Returns NULL in error cases
5307  * (e.g. transport_len exceeds skb length or out-of-memory).
5308  *
5309  * Caller needs to set the skb transport header and free any returned skb if it
5310  * differs from the provided skb.
5311  */
5312 static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb,
5313 					       unsigned int transport_len)
5314 {
5315 	struct sk_buff *skb_chk;
5316 	unsigned int len = skb_transport_offset(skb) + transport_len;
5317 	int ret;
5318 
5319 	if (skb->len < len)
5320 		return NULL;
5321 	else if (skb->len == len)
5322 		return skb;
5323 
5324 	skb_chk = skb_clone(skb, GFP_ATOMIC);
5325 	if (!skb_chk)
5326 		return NULL;
5327 
5328 	ret = pskb_trim_rcsum(skb_chk, len);
5329 	if (ret) {
5330 		kfree_skb(skb_chk);
5331 		return NULL;
5332 	}
5333 
5334 	return skb_chk;
5335 }
5336 
5337 /**
5338  * skb_checksum_trimmed - validate checksum of an skb
5339  * @skb: the skb to check
5340  * @transport_len: the data length beyond the network header
5341  * @skb_chkf: checksum function to use
5342  *
5343  * Applies the given checksum function skb_chkf to the provided skb.
5344  * Returns a checked and maybe trimmed skb. Returns NULL on error.
5345  *
5346  * If the skb has data beyond the given transport length, then a
5347  * trimmed & cloned skb is checked and returned.
5348  *
5349  * Caller needs to set the skb transport header and free any returned skb if it
5350  * differs from the provided skb.
5351  */
5352 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
5353 				     unsigned int transport_len,
5354 				     __sum16(*skb_chkf)(struct sk_buff *skb))
5355 {
5356 	struct sk_buff *skb_chk;
5357 	unsigned int offset = skb_transport_offset(skb);
5358 	__sum16 ret;
5359 
5360 	skb_chk = skb_checksum_maybe_trim(skb, transport_len);
5361 	if (!skb_chk)
5362 		goto err;
5363 
5364 	if (!pskb_may_pull(skb_chk, offset))
5365 		goto err;
5366 
5367 	skb_pull_rcsum(skb_chk, offset);
5368 	ret = skb_chkf(skb_chk);
5369 	skb_push_rcsum(skb_chk, offset);
5370 
5371 	if (ret)
5372 		goto err;
5373 
5374 	return skb_chk;
5375 
5376 err:
5377 	if (skb_chk && skb_chk != skb)
5378 		kfree_skb(skb_chk);
5379 
5380 	return NULL;
5381 
5382 }
5383 EXPORT_SYMBOL(skb_checksum_trimmed);
5384 
5385 void __skb_warn_lro_forwarding(const struct sk_buff *skb)
5386 {
5387 	net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n",
5388 			     skb->dev->name);
5389 }
5390 EXPORT_SYMBOL(__skb_warn_lro_forwarding);
5391 
5392 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen)
5393 {
5394 	if (head_stolen) {
5395 		skb_release_head_state(skb);
5396 		kmem_cache_free(skbuff_head_cache, skb);
5397 	} else {
5398 		__kfree_skb(skb);
5399 	}
5400 }
5401 EXPORT_SYMBOL(kfree_skb_partial);
5402 
5403 /**
5404  * skb_try_coalesce - try to merge skb to prior one
5405  * @to: prior buffer
5406  * @from: buffer to add
5407  * @fragstolen: pointer to boolean
5408  * @delta_truesize: how much more was allocated than was requested
5409  */
5410 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
5411 		      bool *fragstolen, int *delta_truesize)
5412 {
5413 	struct skb_shared_info *to_shinfo, *from_shinfo;
5414 	int i, delta, len = from->len;
5415 
5416 	*fragstolen = false;
5417 
5418 	if (skb_cloned(to))
5419 		return false;
5420 
5421 	/* In general, avoid mixing slab allocated and page_pool allocated
5422 	 * pages within the same SKB. However when @to is not pp_recycle and
5423 	 * @from is cloned, we can transition frag pages from page_pool to
5424 	 * reference counted.
5425 	 *
5426 	 * On the other hand, don't allow coalescing two pp_recycle SKBs if
5427 	 * @from is cloned, in case the SKB is using page_pool fragment
5428 	 * references (PP_FLAG_PAGE_FRAG). Since we only take full page
5429 	 * references for cloned SKBs at the moment that would result in
5430 	 * inconsistent reference counts.
5431 	 */
5432 	if (to->pp_recycle != (from->pp_recycle && !skb_cloned(from)))
5433 		return false;
5434 
5435 	if (len <= skb_tailroom(to)) {
5436 		if (len)
5437 			BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len));
5438 		*delta_truesize = 0;
5439 		return true;
5440 	}
5441 
5442 	to_shinfo = skb_shinfo(to);
5443 	from_shinfo = skb_shinfo(from);
5444 	if (to_shinfo->frag_list || from_shinfo->frag_list)
5445 		return false;
5446 	if (skb_zcopy(to) || skb_zcopy(from))
5447 		return false;
5448 
5449 	if (skb_headlen(from) != 0) {
5450 		struct page *page;
5451 		unsigned int offset;
5452 
5453 		if (to_shinfo->nr_frags +
5454 		    from_shinfo->nr_frags >= MAX_SKB_FRAGS)
5455 			return false;
5456 
5457 		if (skb_head_is_locked(from))
5458 			return false;
5459 
5460 		delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
5461 
5462 		page = virt_to_head_page(from->head);
5463 		offset = from->data - (unsigned char *)page_address(page);
5464 
5465 		skb_fill_page_desc(to, to_shinfo->nr_frags,
5466 				   page, offset, skb_headlen(from));
5467 		*fragstolen = true;
5468 	} else {
5469 		if (to_shinfo->nr_frags +
5470 		    from_shinfo->nr_frags > MAX_SKB_FRAGS)
5471 			return false;
5472 
5473 		delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from));
5474 	}
5475 
5476 	WARN_ON_ONCE(delta < len);
5477 
5478 	memcpy(to_shinfo->frags + to_shinfo->nr_frags,
5479 	       from_shinfo->frags,
5480 	       from_shinfo->nr_frags * sizeof(skb_frag_t));
5481 	to_shinfo->nr_frags += from_shinfo->nr_frags;
5482 
5483 	if (!skb_cloned(from))
5484 		from_shinfo->nr_frags = 0;
5485 
5486 	/* if the skb is not cloned this does nothing
5487 	 * since we set nr_frags to 0.
5488 	 */
5489 	for (i = 0; i < from_shinfo->nr_frags; i++)
5490 		__skb_frag_ref(&from_shinfo->frags[i]);
5491 
5492 	to->truesize += delta;
5493 	to->len += len;
5494 	to->data_len += len;
5495 
5496 	*delta_truesize = delta;
5497 	return true;
5498 }
5499 EXPORT_SYMBOL(skb_try_coalesce);
5500 
5501 /**
5502  * skb_scrub_packet - scrub an skb
5503  *
5504  * @skb: buffer to clean
5505  * @xnet: packet is crossing netns
5506  *
5507  * skb_scrub_packet can be used after encapsulating or decapsulting a packet
5508  * into/from a tunnel. Some information have to be cleared during these
5509  * operations.
5510  * skb_scrub_packet can also be used to clean a skb before injecting it in
5511  * another namespace (@xnet == true). We have to clear all information in the
5512  * skb that could impact namespace isolation.
5513  */
5514 void skb_scrub_packet(struct sk_buff *skb, bool xnet)
5515 {
5516 	skb->pkt_type = PACKET_HOST;
5517 	skb->skb_iif = 0;
5518 	skb->ignore_df = 0;
5519 	skb_dst_drop(skb);
5520 	skb_ext_reset(skb);
5521 	nf_reset_ct(skb);
5522 	nf_reset_trace(skb);
5523 
5524 #ifdef CONFIG_NET_SWITCHDEV
5525 	skb->offload_fwd_mark = 0;
5526 	skb->offload_l3_fwd_mark = 0;
5527 #endif
5528 
5529 	if (!xnet)
5530 		return;
5531 
5532 	ipvs_reset(skb);
5533 	skb->mark = 0;
5534 	skb_clear_tstamp(skb);
5535 }
5536 EXPORT_SYMBOL_GPL(skb_scrub_packet);
5537 
5538 /**
5539  * skb_gso_transport_seglen - Return length of individual segments of a gso packet
5540  *
5541  * @skb: GSO skb
5542  *
5543  * skb_gso_transport_seglen is used to determine the real size of the
5544  * individual segments, including Layer4 headers (TCP/UDP).
5545  *
5546  * The MAC/L2 or network (IP, IPv6) headers are not accounted for.
5547  */
5548 static unsigned int skb_gso_transport_seglen(const struct sk_buff *skb)
5549 {
5550 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
5551 	unsigned int thlen = 0;
5552 
5553 	if (skb->encapsulation) {
5554 		thlen = skb_inner_transport_header(skb) -
5555 			skb_transport_header(skb);
5556 
5557 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
5558 			thlen += inner_tcp_hdrlen(skb);
5559 	} else if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
5560 		thlen = tcp_hdrlen(skb);
5561 	} else if (unlikely(skb_is_gso_sctp(skb))) {
5562 		thlen = sizeof(struct sctphdr);
5563 	} else if (shinfo->gso_type & SKB_GSO_UDP_L4) {
5564 		thlen = sizeof(struct udphdr);
5565 	}
5566 	/* UFO sets gso_size to the size of the fragmentation
5567 	 * payload, i.e. the size of the L4 (UDP) header is already
5568 	 * accounted for.
5569 	 */
5570 	return thlen + shinfo->gso_size;
5571 }
5572 
5573 /**
5574  * skb_gso_network_seglen - Return length of individual segments of a gso packet
5575  *
5576  * @skb: GSO skb
5577  *
5578  * skb_gso_network_seglen is used to determine the real size of the
5579  * individual segments, including Layer3 (IP, IPv6) and L4 headers (TCP/UDP).
5580  *
5581  * The MAC/L2 header is not accounted for.
5582  */
5583 static unsigned int skb_gso_network_seglen(const struct sk_buff *skb)
5584 {
5585 	unsigned int hdr_len = skb_transport_header(skb) -
5586 			       skb_network_header(skb);
5587 
5588 	return hdr_len + skb_gso_transport_seglen(skb);
5589 }
5590 
5591 /**
5592  * skb_gso_mac_seglen - Return length of individual segments of a gso packet
5593  *
5594  * @skb: GSO skb
5595  *
5596  * skb_gso_mac_seglen is used to determine the real size of the
5597  * individual segments, including MAC/L2, Layer3 (IP, IPv6) and L4
5598  * headers (TCP/UDP).
5599  */
5600 static unsigned int skb_gso_mac_seglen(const struct sk_buff *skb)
5601 {
5602 	unsigned int hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
5603 
5604 	return hdr_len + skb_gso_transport_seglen(skb);
5605 }
5606 
5607 /**
5608  * skb_gso_size_check - check the skb size, considering GSO_BY_FRAGS
5609  *
5610  * There are a couple of instances where we have a GSO skb, and we
5611  * want to determine what size it would be after it is segmented.
5612  *
5613  * We might want to check:
5614  * -    L3+L4+payload size (e.g. IP forwarding)
5615  * - L2+L3+L4+payload size (e.g. sanity check before passing to driver)
5616  *
5617  * This is a helper to do that correctly considering GSO_BY_FRAGS.
5618  *
5619  * @skb: GSO skb
5620  *
5621  * @seg_len: The segmented length (from skb_gso_*_seglen). In the
5622  *           GSO_BY_FRAGS case this will be [header sizes + GSO_BY_FRAGS].
5623  *
5624  * @max_len: The maximum permissible length.
5625  *
5626  * Returns true if the segmented length <= max length.
5627  */
5628 static inline bool skb_gso_size_check(const struct sk_buff *skb,
5629 				      unsigned int seg_len,
5630 				      unsigned int max_len) {
5631 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
5632 	const struct sk_buff *iter;
5633 
5634 	if (shinfo->gso_size != GSO_BY_FRAGS)
5635 		return seg_len <= max_len;
5636 
5637 	/* Undo this so we can re-use header sizes */
5638 	seg_len -= GSO_BY_FRAGS;
5639 
5640 	skb_walk_frags(skb, iter) {
5641 		if (seg_len + skb_headlen(iter) > max_len)
5642 			return false;
5643 	}
5644 
5645 	return true;
5646 }
5647 
5648 /**
5649  * skb_gso_validate_network_len - Will a split GSO skb fit into a given MTU?
5650  *
5651  * @skb: GSO skb
5652  * @mtu: MTU to validate against
5653  *
5654  * skb_gso_validate_network_len validates if a given skb will fit a
5655  * wanted MTU once split. It considers L3 headers, L4 headers, and the
5656  * payload.
5657  */
5658 bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu)
5659 {
5660 	return skb_gso_size_check(skb, skb_gso_network_seglen(skb), mtu);
5661 }
5662 EXPORT_SYMBOL_GPL(skb_gso_validate_network_len);
5663 
5664 /**
5665  * skb_gso_validate_mac_len - Will a split GSO skb fit in a given length?
5666  *
5667  * @skb: GSO skb
5668  * @len: length to validate against
5669  *
5670  * skb_gso_validate_mac_len validates if a given skb will fit a wanted
5671  * length once split, including L2, L3 and L4 headers and the payload.
5672  */
5673 bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len)
5674 {
5675 	return skb_gso_size_check(skb, skb_gso_mac_seglen(skb), len);
5676 }
5677 EXPORT_SYMBOL_GPL(skb_gso_validate_mac_len);
5678 
5679 static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb)
5680 {
5681 	int mac_len, meta_len;
5682 	void *meta;
5683 
5684 	if (skb_cow(skb, skb_headroom(skb)) < 0) {
5685 		kfree_skb(skb);
5686 		return NULL;
5687 	}
5688 
5689 	mac_len = skb->data - skb_mac_header(skb);
5690 	if (likely(mac_len > VLAN_HLEN + ETH_TLEN)) {
5691 		memmove(skb_mac_header(skb) + VLAN_HLEN, skb_mac_header(skb),
5692 			mac_len - VLAN_HLEN - ETH_TLEN);
5693 	}
5694 
5695 	meta_len = skb_metadata_len(skb);
5696 	if (meta_len) {
5697 		meta = skb_metadata_end(skb) - meta_len;
5698 		memmove(meta + VLAN_HLEN, meta, meta_len);
5699 	}
5700 
5701 	skb->mac_header += VLAN_HLEN;
5702 	return skb;
5703 }
5704 
5705 struct sk_buff *skb_vlan_untag(struct sk_buff *skb)
5706 {
5707 	struct vlan_hdr *vhdr;
5708 	u16 vlan_tci;
5709 
5710 	if (unlikely(skb_vlan_tag_present(skb))) {
5711 		/* vlan_tci is already set-up so leave this for another time */
5712 		return skb;
5713 	}
5714 
5715 	skb = skb_share_check(skb, GFP_ATOMIC);
5716 	if (unlikely(!skb))
5717 		goto err_free;
5718 	/* We may access the two bytes after vlan_hdr in vlan_set_encap_proto(). */
5719 	if (unlikely(!pskb_may_pull(skb, VLAN_HLEN + sizeof(unsigned short))))
5720 		goto err_free;
5721 
5722 	vhdr = (struct vlan_hdr *)skb->data;
5723 	vlan_tci = ntohs(vhdr->h_vlan_TCI);
5724 	__vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci);
5725 
5726 	skb_pull_rcsum(skb, VLAN_HLEN);
5727 	vlan_set_encap_proto(skb, vhdr);
5728 
5729 	skb = skb_reorder_vlan_header(skb);
5730 	if (unlikely(!skb))
5731 		goto err_free;
5732 
5733 	skb_reset_network_header(skb);
5734 	if (!skb_transport_header_was_set(skb))
5735 		skb_reset_transport_header(skb);
5736 	skb_reset_mac_len(skb);
5737 
5738 	return skb;
5739 
5740 err_free:
5741 	kfree_skb(skb);
5742 	return NULL;
5743 }
5744 EXPORT_SYMBOL(skb_vlan_untag);
5745 
5746 int skb_ensure_writable(struct sk_buff *skb, unsigned int write_len)
5747 {
5748 	if (!pskb_may_pull(skb, write_len))
5749 		return -ENOMEM;
5750 
5751 	if (!skb_cloned(skb) || skb_clone_writable(skb, write_len))
5752 		return 0;
5753 
5754 	return pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
5755 }
5756 EXPORT_SYMBOL(skb_ensure_writable);
5757 
5758 /* remove VLAN header from packet and update csum accordingly.
5759  * expects a non skb_vlan_tag_present skb with a vlan tag payload
5760  */
5761 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci)
5762 {
5763 	struct vlan_hdr *vhdr;
5764 	int offset = skb->data - skb_mac_header(skb);
5765 	int err;
5766 
5767 	if (WARN_ONCE(offset,
5768 		      "__skb_vlan_pop got skb with skb->data not at mac header (offset %d)\n",
5769 		      offset)) {
5770 		return -EINVAL;
5771 	}
5772 
5773 	err = skb_ensure_writable(skb, VLAN_ETH_HLEN);
5774 	if (unlikely(err))
5775 		return err;
5776 
5777 	skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
5778 
5779 	vhdr = (struct vlan_hdr *)(skb->data + ETH_HLEN);
5780 	*vlan_tci = ntohs(vhdr->h_vlan_TCI);
5781 
5782 	memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN);
5783 	__skb_pull(skb, VLAN_HLEN);
5784 
5785 	vlan_set_encap_proto(skb, vhdr);
5786 	skb->mac_header += VLAN_HLEN;
5787 
5788 	if (skb_network_offset(skb) < ETH_HLEN)
5789 		skb_set_network_header(skb, ETH_HLEN);
5790 
5791 	skb_reset_mac_len(skb);
5792 
5793 	return err;
5794 }
5795 EXPORT_SYMBOL(__skb_vlan_pop);
5796 
5797 /* Pop a vlan tag either from hwaccel or from payload.
5798  * Expects skb->data at mac header.
5799  */
5800 int skb_vlan_pop(struct sk_buff *skb)
5801 {
5802 	u16 vlan_tci;
5803 	__be16 vlan_proto;
5804 	int err;
5805 
5806 	if (likely(skb_vlan_tag_present(skb))) {
5807 		__vlan_hwaccel_clear_tag(skb);
5808 	} else {
5809 		if (unlikely(!eth_type_vlan(skb->protocol)))
5810 			return 0;
5811 
5812 		err = __skb_vlan_pop(skb, &vlan_tci);
5813 		if (err)
5814 			return err;
5815 	}
5816 	/* move next vlan tag to hw accel tag */
5817 	if (likely(!eth_type_vlan(skb->protocol)))
5818 		return 0;
5819 
5820 	vlan_proto = skb->protocol;
5821 	err = __skb_vlan_pop(skb, &vlan_tci);
5822 	if (unlikely(err))
5823 		return err;
5824 
5825 	__vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
5826 	return 0;
5827 }
5828 EXPORT_SYMBOL(skb_vlan_pop);
5829 
5830 /* Push a vlan tag either into hwaccel or into payload (if hwaccel tag present).
5831  * Expects skb->data at mac header.
5832  */
5833 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci)
5834 {
5835 	if (skb_vlan_tag_present(skb)) {
5836 		int offset = skb->data - skb_mac_header(skb);
5837 		int err;
5838 
5839 		if (WARN_ONCE(offset,
5840 			      "skb_vlan_push got skb with skb->data not at mac header (offset %d)\n",
5841 			      offset)) {
5842 			return -EINVAL;
5843 		}
5844 
5845 		err = __vlan_insert_tag(skb, skb->vlan_proto,
5846 					skb_vlan_tag_get(skb));
5847 		if (err)
5848 			return err;
5849 
5850 		skb->protocol = skb->vlan_proto;
5851 		skb->mac_len += VLAN_HLEN;
5852 
5853 		skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
5854 	}
5855 	__vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
5856 	return 0;
5857 }
5858 EXPORT_SYMBOL(skb_vlan_push);
5859 
5860 /**
5861  * skb_eth_pop() - Drop the Ethernet header at the head of a packet
5862  *
5863  * @skb: Socket buffer to modify
5864  *
5865  * Drop the Ethernet header of @skb.
5866  *
5867  * Expects that skb->data points to the mac header and that no VLAN tags are
5868  * present.
5869  *
5870  * Returns 0 on success, -errno otherwise.
5871  */
5872 int skb_eth_pop(struct sk_buff *skb)
5873 {
5874 	if (!pskb_may_pull(skb, ETH_HLEN) || skb_vlan_tagged(skb) ||
5875 	    skb_network_offset(skb) < ETH_HLEN)
5876 		return -EPROTO;
5877 
5878 	skb_pull_rcsum(skb, ETH_HLEN);
5879 	skb_reset_mac_header(skb);
5880 	skb_reset_mac_len(skb);
5881 
5882 	return 0;
5883 }
5884 EXPORT_SYMBOL(skb_eth_pop);
5885 
5886 /**
5887  * skb_eth_push() - Add a new Ethernet header at the head of a packet
5888  *
5889  * @skb: Socket buffer to modify
5890  * @dst: Destination MAC address of the new header
5891  * @src: Source MAC address of the new header
5892  *
5893  * Prepend @skb with a new Ethernet header.
5894  *
5895  * Expects that skb->data points to the mac header, which must be empty.
5896  *
5897  * Returns 0 on success, -errno otherwise.
5898  */
5899 int skb_eth_push(struct sk_buff *skb, const unsigned char *dst,
5900 		 const unsigned char *src)
5901 {
5902 	struct ethhdr *eth;
5903 	int err;
5904 
5905 	if (skb_network_offset(skb) || skb_vlan_tag_present(skb))
5906 		return -EPROTO;
5907 
5908 	err = skb_cow_head(skb, sizeof(*eth));
5909 	if (err < 0)
5910 		return err;
5911 
5912 	skb_push(skb, sizeof(*eth));
5913 	skb_reset_mac_header(skb);
5914 	skb_reset_mac_len(skb);
5915 
5916 	eth = eth_hdr(skb);
5917 	ether_addr_copy(eth->h_dest, dst);
5918 	ether_addr_copy(eth->h_source, src);
5919 	eth->h_proto = skb->protocol;
5920 
5921 	skb_postpush_rcsum(skb, eth, sizeof(*eth));
5922 
5923 	return 0;
5924 }
5925 EXPORT_SYMBOL(skb_eth_push);
5926 
5927 /* Update the ethertype of hdr and the skb csum value if required. */
5928 static void skb_mod_eth_type(struct sk_buff *skb, struct ethhdr *hdr,
5929 			     __be16 ethertype)
5930 {
5931 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
5932 		__be16 diff[] = { ~hdr->h_proto, ethertype };
5933 
5934 		skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum);
5935 	}
5936 
5937 	hdr->h_proto = ethertype;
5938 }
5939 
5940 /**
5941  * skb_mpls_push() - push a new MPLS header after mac_len bytes from start of
5942  *                   the packet
5943  *
5944  * @skb: buffer
5945  * @mpls_lse: MPLS label stack entry to push
5946  * @mpls_proto: ethertype of the new MPLS header (expects 0x8847 or 0x8848)
5947  * @mac_len: length of the MAC header
5948  * @ethernet: flag to indicate if the resulting packet after skb_mpls_push is
5949  *            ethernet
5950  *
5951  * Expects skb->data at mac header.
5952  *
5953  * Returns 0 on success, -errno otherwise.
5954  */
5955 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto,
5956 		  int mac_len, bool ethernet)
5957 {
5958 	struct mpls_shim_hdr *lse;
5959 	int err;
5960 
5961 	if (unlikely(!eth_p_mpls(mpls_proto)))
5962 		return -EINVAL;
5963 
5964 	/* Networking stack does not allow simultaneous Tunnel and MPLS GSO. */
5965 	if (skb->encapsulation)
5966 		return -EINVAL;
5967 
5968 	err = skb_cow_head(skb, MPLS_HLEN);
5969 	if (unlikely(err))
5970 		return err;
5971 
5972 	if (!skb->inner_protocol) {
5973 		skb_set_inner_network_header(skb, skb_network_offset(skb));
5974 		skb_set_inner_protocol(skb, skb->protocol);
5975 	}
5976 
5977 	skb_push(skb, MPLS_HLEN);
5978 	memmove(skb_mac_header(skb) - MPLS_HLEN, skb_mac_header(skb),
5979 		mac_len);
5980 	skb_reset_mac_header(skb);
5981 	skb_set_network_header(skb, mac_len);
5982 	skb_reset_mac_len(skb);
5983 
5984 	lse = mpls_hdr(skb);
5985 	lse->label_stack_entry = mpls_lse;
5986 	skb_postpush_rcsum(skb, lse, MPLS_HLEN);
5987 
5988 	if (ethernet && mac_len >= ETH_HLEN)
5989 		skb_mod_eth_type(skb, eth_hdr(skb), mpls_proto);
5990 	skb->protocol = mpls_proto;
5991 
5992 	return 0;
5993 }
5994 EXPORT_SYMBOL_GPL(skb_mpls_push);
5995 
5996 /**
5997  * skb_mpls_pop() - pop the outermost MPLS header
5998  *
5999  * @skb: buffer
6000  * @next_proto: ethertype of header after popped MPLS header
6001  * @mac_len: length of the MAC header
6002  * @ethernet: flag to indicate if the packet is ethernet
6003  *
6004  * Expects skb->data at mac header.
6005  *
6006  * Returns 0 on success, -errno otherwise.
6007  */
6008 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len,
6009 		 bool ethernet)
6010 {
6011 	int err;
6012 
6013 	if (unlikely(!eth_p_mpls(skb->protocol)))
6014 		return 0;
6015 
6016 	err = skb_ensure_writable(skb, mac_len + MPLS_HLEN);
6017 	if (unlikely(err))
6018 		return err;
6019 
6020 	skb_postpull_rcsum(skb, mpls_hdr(skb), MPLS_HLEN);
6021 	memmove(skb_mac_header(skb) + MPLS_HLEN, skb_mac_header(skb),
6022 		mac_len);
6023 
6024 	__skb_pull(skb, MPLS_HLEN);
6025 	skb_reset_mac_header(skb);
6026 	skb_set_network_header(skb, mac_len);
6027 
6028 	if (ethernet && mac_len >= ETH_HLEN) {
6029 		struct ethhdr *hdr;
6030 
6031 		/* use mpls_hdr() to get ethertype to account for VLANs. */
6032 		hdr = (struct ethhdr *)((void *)mpls_hdr(skb) - ETH_HLEN);
6033 		skb_mod_eth_type(skb, hdr, next_proto);
6034 	}
6035 	skb->protocol = next_proto;
6036 
6037 	return 0;
6038 }
6039 EXPORT_SYMBOL_GPL(skb_mpls_pop);
6040 
6041 /**
6042  * skb_mpls_update_lse() - modify outermost MPLS header and update csum
6043  *
6044  * @skb: buffer
6045  * @mpls_lse: new MPLS label stack entry to update to
6046  *
6047  * Expects skb->data at mac header.
6048  *
6049  * Returns 0 on success, -errno otherwise.
6050  */
6051 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse)
6052 {
6053 	int err;
6054 
6055 	if (unlikely(!eth_p_mpls(skb->protocol)))
6056 		return -EINVAL;
6057 
6058 	err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN);
6059 	if (unlikely(err))
6060 		return err;
6061 
6062 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
6063 		__be32 diff[] = { ~mpls_hdr(skb)->label_stack_entry, mpls_lse };
6064 
6065 		skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum);
6066 	}
6067 
6068 	mpls_hdr(skb)->label_stack_entry = mpls_lse;
6069 
6070 	return 0;
6071 }
6072 EXPORT_SYMBOL_GPL(skb_mpls_update_lse);
6073 
6074 /**
6075  * skb_mpls_dec_ttl() - decrement the TTL of the outermost MPLS header
6076  *
6077  * @skb: buffer
6078  *
6079  * Expects skb->data at mac header.
6080  *
6081  * Returns 0 on success, -errno otherwise.
6082  */
6083 int skb_mpls_dec_ttl(struct sk_buff *skb)
6084 {
6085 	u32 lse;
6086 	u8 ttl;
6087 
6088 	if (unlikely(!eth_p_mpls(skb->protocol)))
6089 		return -EINVAL;
6090 
6091 	if (!pskb_may_pull(skb, skb_network_offset(skb) + MPLS_HLEN))
6092 		return -ENOMEM;
6093 
6094 	lse = be32_to_cpu(mpls_hdr(skb)->label_stack_entry);
6095 	ttl = (lse & MPLS_LS_TTL_MASK) >> MPLS_LS_TTL_SHIFT;
6096 	if (!--ttl)
6097 		return -EINVAL;
6098 
6099 	lse &= ~MPLS_LS_TTL_MASK;
6100 	lse |= ttl << MPLS_LS_TTL_SHIFT;
6101 
6102 	return skb_mpls_update_lse(skb, cpu_to_be32(lse));
6103 }
6104 EXPORT_SYMBOL_GPL(skb_mpls_dec_ttl);
6105 
6106 /**
6107  * alloc_skb_with_frags - allocate skb with page frags
6108  *
6109  * @header_len: size of linear part
6110  * @data_len: needed length in frags
6111  * @max_page_order: max page order desired.
6112  * @errcode: pointer to error code if any
6113  * @gfp_mask: allocation mask
6114  *
6115  * This can be used to allocate a paged skb, given a maximal order for frags.
6116  */
6117 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
6118 				     unsigned long data_len,
6119 				     int max_page_order,
6120 				     int *errcode,
6121 				     gfp_t gfp_mask)
6122 {
6123 	int npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
6124 	unsigned long chunk;
6125 	struct sk_buff *skb;
6126 	struct page *page;
6127 	int i;
6128 
6129 	*errcode = -EMSGSIZE;
6130 	/* Note this test could be relaxed, if we succeed to allocate
6131 	 * high order pages...
6132 	 */
6133 	if (npages > MAX_SKB_FRAGS)
6134 		return NULL;
6135 
6136 	*errcode = -ENOBUFS;
6137 	skb = alloc_skb(header_len, gfp_mask);
6138 	if (!skb)
6139 		return NULL;
6140 
6141 	skb->truesize += npages << PAGE_SHIFT;
6142 
6143 	for (i = 0; npages > 0; i++) {
6144 		int order = max_page_order;
6145 
6146 		while (order) {
6147 			if (npages >= 1 << order) {
6148 				page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) |
6149 						   __GFP_COMP |
6150 						   __GFP_NOWARN,
6151 						   order);
6152 				if (page)
6153 					goto fill_page;
6154 				/* Do not retry other high order allocations */
6155 				order = 1;
6156 				max_page_order = 0;
6157 			}
6158 			order--;
6159 		}
6160 		page = alloc_page(gfp_mask);
6161 		if (!page)
6162 			goto failure;
6163 fill_page:
6164 		chunk = min_t(unsigned long, data_len,
6165 			      PAGE_SIZE << order);
6166 		skb_fill_page_desc(skb, i, page, 0, chunk);
6167 		data_len -= chunk;
6168 		npages -= 1 << order;
6169 	}
6170 	return skb;
6171 
6172 failure:
6173 	kfree_skb(skb);
6174 	return NULL;
6175 }
6176 EXPORT_SYMBOL(alloc_skb_with_frags);
6177 
6178 /* carve out the first off bytes from skb when off < headlen */
6179 static int pskb_carve_inside_header(struct sk_buff *skb, const u32 off,
6180 				    const int headlen, gfp_t gfp_mask)
6181 {
6182 	int i;
6183 	unsigned int size = skb_end_offset(skb);
6184 	int new_hlen = headlen - off;
6185 	u8 *data;
6186 
6187 	if (skb_pfmemalloc(skb))
6188 		gfp_mask |= __GFP_MEMALLOC;
6189 
6190 	size = SKB_DATA_ALIGN(size);
6191 	size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
6192 	size = kmalloc_size_roundup(size);
6193 	data = kmalloc_reserve(size, gfp_mask, NUMA_NO_NODE, NULL);
6194 	if (!data)
6195 		return -ENOMEM;
6196 	size = SKB_WITH_OVERHEAD(size);
6197 
6198 	/* Copy real data, and all frags */
6199 	skb_copy_from_linear_data_offset(skb, off, data, new_hlen);
6200 	skb->len -= off;
6201 
6202 	memcpy((struct skb_shared_info *)(data + size),
6203 	       skb_shinfo(skb),
6204 	       offsetof(struct skb_shared_info,
6205 			frags[skb_shinfo(skb)->nr_frags]));
6206 	if (skb_cloned(skb)) {
6207 		/* drop the old head gracefully */
6208 		if (skb_orphan_frags(skb, gfp_mask)) {
6209 			kfree(data);
6210 			return -ENOMEM;
6211 		}
6212 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
6213 			skb_frag_ref(skb, i);
6214 		if (skb_has_frag_list(skb))
6215 			skb_clone_fraglist(skb);
6216 		skb_release_data(skb, SKB_CONSUMED);
6217 	} else {
6218 		/* we can reuse existing recount- all we did was
6219 		 * relocate values
6220 		 */
6221 		skb_free_head(skb);
6222 	}
6223 
6224 	skb->head = data;
6225 	skb->data = data;
6226 	skb->head_frag = 0;
6227 	skb_set_end_offset(skb, size);
6228 	skb_set_tail_pointer(skb, skb_headlen(skb));
6229 	skb_headers_offset_update(skb, 0);
6230 	skb->cloned = 0;
6231 	skb->hdr_len = 0;
6232 	skb->nohdr = 0;
6233 	atomic_set(&skb_shinfo(skb)->dataref, 1);
6234 
6235 	return 0;
6236 }
6237 
6238 static int pskb_carve(struct sk_buff *skb, const u32 off, gfp_t gfp);
6239 
6240 /* carve out the first eat bytes from skb's frag_list. May recurse into
6241  * pskb_carve()
6242  */
6243 static int pskb_carve_frag_list(struct sk_buff *skb,
6244 				struct skb_shared_info *shinfo, int eat,
6245 				gfp_t gfp_mask)
6246 {
6247 	struct sk_buff *list = shinfo->frag_list;
6248 	struct sk_buff *clone = NULL;
6249 	struct sk_buff *insp = NULL;
6250 
6251 	do {
6252 		if (!list) {
6253 			pr_err("Not enough bytes to eat. Want %d\n", eat);
6254 			return -EFAULT;
6255 		}
6256 		if (list->len <= eat) {
6257 			/* Eaten as whole. */
6258 			eat -= list->len;
6259 			list = list->next;
6260 			insp = list;
6261 		} else {
6262 			/* Eaten partially. */
6263 			if (skb_shared(list)) {
6264 				clone = skb_clone(list, gfp_mask);
6265 				if (!clone)
6266 					return -ENOMEM;
6267 				insp = list->next;
6268 				list = clone;
6269 			} else {
6270 				/* This may be pulled without problems. */
6271 				insp = list;
6272 			}
6273 			if (pskb_carve(list, eat, gfp_mask) < 0) {
6274 				kfree_skb(clone);
6275 				return -ENOMEM;
6276 			}
6277 			break;
6278 		}
6279 	} while (eat);
6280 
6281 	/* Free pulled out fragments. */
6282 	while ((list = shinfo->frag_list) != insp) {
6283 		shinfo->frag_list = list->next;
6284 		consume_skb(list);
6285 	}
6286 	/* And insert new clone at head. */
6287 	if (clone) {
6288 		clone->next = list;
6289 		shinfo->frag_list = clone;
6290 	}
6291 	return 0;
6292 }
6293 
6294 /* carve off first len bytes from skb. Split line (off) is in the
6295  * non-linear part of skb
6296  */
6297 static int pskb_carve_inside_nonlinear(struct sk_buff *skb, const u32 off,
6298 				       int pos, gfp_t gfp_mask)
6299 {
6300 	int i, k = 0;
6301 	unsigned int size = skb_end_offset(skb);
6302 	u8 *data;
6303 	const int nfrags = skb_shinfo(skb)->nr_frags;
6304 	struct skb_shared_info *shinfo;
6305 
6306 	if (skb_pfmemalloc(skb))
6307 		gfp_mask |= __GFP_MEMALLOC;
6308 
6309 	size = SKB_DATA_ALIGN(size);
6310 	size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
6311 	size = kmalloc_size_roundup(size);
6312 	data = kmalloc_reserve(size, gfp_mask, NUMA_NO_NODE, NULL);
6313 	if (!data)
6314 		return -ENOMEM;
6315 	size = SKB_WITH_OVERHEAD(size);
6316 
6317 	memcpy((struct skb_shared_info *)(data + size),
6318 	       skb_shinfo(skb), offsetof(struct skb_shared_info, frags[0]));
6319 	if (skb_orphan_frags(skb, gfp_mask)) {
6320 		kfree(data);
6321 		return -ENOMEM;
6322 	}
6323 	shinfo = (struct skb_shared_info *)(data + size);
6324 	for (i = 0; i < nfrags; i++) {
6325 		int fsize = skb_frag_size(&skb_shinfo(skb)->frags[i]);
6326 
6327 		if (pos + fsize > off) {
6328 			shinfo->frags[k] = skb_shinfo(skb)->frags[i];
6329 
6330 			if (pos < off) {
6331 				/* Split frag.
6332 				 * We have two variants in this case:
6333 				 * 1. Move all the frag to the second
6334 				 *    part, if it is possible. F.e.
6335 				 *    this approach is mandatory for TUX,
6336 				 *    where splitting is expensive.
6337 				 * 2. Split is accurately. We make this.
6338 				 */
6339 				skb_frag_off_add(&shinfo->frags[0], off - pos);
6340 				skb_frag_size_sub(&shinfo->frags[0], off - pos);
6341 			}
6342 			skb_frag_ref(skb, i);
6343 			k++;
6344 		}
6345 		pos += fsize;
6346 	}
6347 	shinfo->nr_frags = k;
6348 	if (skb_has_frag_list(skb))
6349 		skb_clone_fraglist(skb);
6350 
6351 	/* split line is in frag list */
6352 	if (k == 0 && pskb_carve_frag_list(skb, shinfo, off - pos, gfp_mask)) {
6353 		/* skb_frag_unref() is not needed here as shinfo->nr_frags = 0. */
6354 		if (skb_has_frag_list(skb))
6355 			kfree_skb_list(skb_shinfo(skb)->frag_list);
6356 		kfree(data);
6357 		return -ENOMEM;
6358 	}
6359 	skb_release_data(skb, SKB_CONSUMED);
6360 
6361 	skb->head = data;
6362 	skb->head_frag = 0;
6363 	skb->data = data;
6364 	skb_set_end_offset(skb, size);
6365 	skb_reset_tail_pointer(skb);
6366 	skb_headers_offset_update(skb, 0);
6367 	skb->cloned   = 0;
6368 	skb->hdr_len  = 0;
6369 	skb->nohdr    = 0;
6370 	skb->len -= off;
6371 	skb->data_len = skb->len;
6372 	atomic_set(&skb_shinfo(skb)->dataref, 1);
6373 	return 0;
6374 }
6375 
6376 /* remove len bytes from the beginning of the skb */
6377 static int pskb_carve(struct sk_buff *skb, const u32 len, gfp_t gfp)
6378 {
6379 	int headlen = skb_headlen(skb);
6380 
6381 	if (len < headlen)
6382 		return pskb_carve_inside_header(skb, len, headlen, gfp);
6383 	else
6384 		return pskb_carve_inside_nonlinear(skb, len, headlen, gfp);
6385 }
6386 
6387 /* Extract to_copy bytes starting at off from skb, and return this in
6388  * a new skb
6389  */
6390 struct sk_buff *pskb_extract(struct sk_buff *skb, int off,
6391 			     int to_copy, gfp_t gfp)
6392 {
6393 	struct sk_buff  *clone = skb_clone(skb, gfp);
6394 
6395 	if (!clone)
6396 		return NULL;
6397 
6398 	if (pskb_carve(clone, off, gfp) < 0 ||
6399 	    pskb_trim(clone, to_copy)) {
6400 		kfree_skb(clone);
6401 		return NULL;
6402 	}
6403 	return clone;
6404 }
6405 EXPORT_SYMBOL(pskb_extract);
6406 
6407 /**
6408  * skb_condense - try to get rid of fragments/frag_list if possible
6409  * @skb: buffer
6410  *
6411  * Can be used to save memory before skb is added to a busy queue.
6412  * If packet has bytes in frags and enough tail room in skb->head,
6413  * pull all of them, so that we can free the frags right now and adjust
6414  * truesize.
6415  * Notes:
6416  *	We do not reallocate skb->head thus can not fail.
6417  *	Caller must re-evaluate skb->truesize if needed.
6418  */
6419 void skb_condense(struct sk_buff *skb)
6420 {
6421 	if (skb->data_len) {
6422 		if (skb->data_len > skb->end - skb->tail ||
6423 		    skb_cloned(skb))
6424 			return;
6425 
6426 		/* Nice, we can free page frag(s) right now */
6427 		__pskb_pull_tail(skb, skb->data_len);
6428 	}
6429 	/* At this point, skb->truesize might be over estimated,
6430 	 * because skb had a fragment, and fragments do not tell
6431 	 * their truesize.
6432 	 * When we pulled its content into skb->head, fragment
6433 	 * was freed, but __pskb_pull_tail() could not possibly
6434 	 * adjust skb->truesize, not knowing the frag truesize.
6435 	 */
6436 	skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
6437 }
6438 
6439 #ifdef CONFIG_SKB_EXTENSIONS
6440 static void *skb_ext_get_ptr(struct skb_ext *ext, enum skb_ext_id id)
6441 {
6442 	return (void *)ext + (ext->offset[id] * SKB_EXT_ALIGN_VALUE);
6443 }
6444 
6445 /**
6446  * __skb_ext_alloc - allocate a new skb extensions storage
6447  *
6448  * @flags: See kmalloc().
6449  *
6450  * Returns the newly allocated pointer. The pointer can later attached to a
6451  * skb via __skb_ext_set().
6452  * Note: caller must handle the skb_ext as an opaque data.
6453  */
6454 struct skb_ext *__skb_ext_alloc(gfp_t flags)
6455 {
6456 	struct skb_ext *new = kmem_cache_alloc(skbuff_ext_cache, flags);
6457 
6458 	if (new) {
6459 		memset(new->offset, 0, sizeof(new->offset));
6460 		refcount_set(&new->refcnt, 1);
6461 	}
6462 
6463 	return new;
6464 }
6465 
6466 static struct skb_ext *skb_ext_maybe_cow(struct skb_ext *old,
6467 					 unsigned int old_active)
6468 {
6469 	struct skb_ext *new;
6470 
6471 	if (refcount_read(&old->refcnt) == 1)
6472 		return old;
6473 
6474 	new = kmem_cache_alloc(skbuff_ext_cache, GFP_ATOMIC);
6475 	if (!new)
6476 		return NULL;
6477 
6478 	memcpy(new, old, old->chunks * SKB_EXT_ALIGN_VALUE);
6479 	refcount_set(&new->refcnt, 1);
6480 
6481 #ifdef CONFIG_XFRM
6482 	if (old_active & (1 << SKB_EXT_SEC_PATH)) {
6483 		struct sec_path *sp = skb_ext_get_ptr(old, SKB_EXT_SEC_PATH);
6484 		unsigned int i;
6485 
6486 		for (i = 0; i < sp->len; i++)
6487 			xfrm_state_hold(sp->xvec[i]);
6488 	}
6489 #endif
6490 	__skb_ext_put(old);
6491 	return new;
6492 }
6493 
6494 /**
6495  * __skb_ext_set - attach the specified extension storage to this skb
6496  * @skb: buffer
6497  * @id: extension id
6498  * @ext: extension storage previously allocated via __skb_ext_alloc()
6499  *
6500  * Existing extensions, if any, are cleared.
6501  *
6502  * Returns the pointer to the extension.
6503  */
6504 void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id,
6505 		    struct skb_ext *ext)
6506 {
6507 	unsigned int newlen, newoff = SKB_EXT_CHUNKSIZEOF(*ext);
6508 
6509 	skb_ext_put(skb);
6510 	newlen = newoff + skb_ext_type_len[id];
6511 	ext->chunks = newlen;
6512 	ext->offset[id] = newoff;
6513 	skb->extensions = ext;
6514 	skb->active_extensions = 1 << id;
6515 	return skb_ext_get_ptr(ext, id);
6516 }
6517 
6518 /**
6519  * skb_ext_add - allocate space for given extension, COW if needed
6520  * @skb: buffer
6521  * @id: extension to allocate space for
6522  *
6523  * Allocates enough space for the given extension.
6524  * If the extension is already present, a pointer to that extension
6525  * is returned.
6526  *
6527  * If the skb was cloned, COW applies and the returned memory can be
6528  * modified without changing the extension space of clones buffers.
6529  *
6530  * Returns pointer to the extension or NULL on allocation failure.
6531  */
6532 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id)
6533 {
6534 	struct skb_ext *new, *old = NULL;
6535 	unsigned int newlen, newoff;
6536 
6537 	if (skb->active_extensions) {
6538 		old = skb->extensions;
6539 
6540 		new = skb_ext_maybe_cow(old, skb->active_extensions);
6541 		if (!new)
6542 			return NULL;
6543 
6544 		if (__skb_ext_exist(new, id))
6545 			goto set_active;
6546 
6547 		newoff = new->chunks;
6548 	} else {
6549 		newoff = SKB_EXT_CHUNKSIZEOF(*new);
6550 
6551 		new = __skb_ext_alloc(GFP_ATOMIC);
6552 		if (!new)
6553 			return NULL;
6554 	}
6555 
6556 	newlen = newoff + skb_ext_type_len[id];
6557 	new->chunks = newlen;
6558 	new->offset[id] = newoff;
6559 set_active:
6560 	skb->slow_gro = 1;
6561 	skb->extensions = new;
6562 	skb->active_extensions |= 1 << id;
6563 	return skb_ext_get_ptr(new, id);
6564 }
6565 EXPORT_SYMBOL(skb_ext_add);
6566 
6567 #ifdef CONFIG_XFRM
6568 static void skb_ext_put_sp(struct sec_path *sp)
6569 {
6570 	unsigned int i;
6571 
6572 	for (i = 0; i < sp->len; i++)
6573 		xfrm_state_put(sp->xvec[i]);
6574 }
6575 #endif
6576 
6577 #ifdef CONFIG_MCTP_FLOWS
6578 static void skb_ext_put_mctp(struct mctp_flow *flow)
6579 {
6580 	if (flow->key)
6581 		mctp_key_unref(flow->key);
6582 }
6583 #endif
6584 
6585 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id)
6586 {
6587 	struct skb_ext *ext = skb->extensions;
6588 
6589 	skb->active_extensions &= ~(1 << id);
6590 	if (skb->active_extensions == 0) {
6591 		skb->extensions = NULL;
6592 		__skb_ext_put(ext);
6593 #ifdef CONFIG_XFRM
6594 	} else if (id == SKB_EXT_SEC_PATH &&
6595 		   refcount_read(&ext->refcnt) == 1) {
6596 		struct sec_path *sp = skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH);
6597 
6598 		skb_ext_put_sp(sp);
6599 		sp->len = 0;
6600 #endif
6601 	}
6602 }
6603 EXPORT_SYMBOL(__skb_ext_del);
6604 
6605 void __skb_ext_put(struct skb_ext *ext)
6606 {
6607 	/* If this is last clone, nothing can increment
6608 	 * it after check passes.  Avoids one atomic op.
6609 	 */
6610 	if (refcount_read(&ext->refcnt) == 1)
6611 		goto free_now;
6612 
6613 	if (!refcount_dec_and_test(&ext->refcnt))
6614 		return;
6615 free_now:
6616 #ifdef CONFIG_XFRM
6617 	if (__skb_ext_exist(ext, SKB_EXT_SEC_PATH))
6618 		skb_ext_put_sp(skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH));
6619 #endif
6620 #ifdef CONFIG_MCTP_FLOWS
6621 	if (__skb_ext_exist(ext, SKB_EXT_MCTP))
6622 		skb_ext_put_mctp(skb_ext_get_ptr(ext, SKB_EXT_MCTP));
6623 #endif
6624 
6625 	kmem_cache_free(skbuff_ext_cache, ext);
6626 }
6627 EXPORT_SYMBOL(__skb_ext_put);
6628 #endif /* CONFIG_SKB_EXTENSIONS */
6629 
6630 /**
6631  * skb_attempt_defer_free - queue skb for remote freeing
6632  * @skb: buffer
6633  *
6634  * Put @skb in a per-cpu list, using the cpu which
6635  * allocated the skb/pages to reduce false sharing
6636  * and memory zone spinlock contention.
6637  */
6638 void skb_attempt_defer_free(struct sk_buff *skb)
6639 {
6640 	int cpu = skb->alloc_cpu;
6641 	struct softnet_data *sd;
6642 	unsigned long flags;
6643 	unsigned int defer_max;
6644 	bool kick;
6645 
6646 	if (WARN_ON_ONCE(cpu >= nr_cpu_ids) ||
6647 	    !cpu_online(cpu) ||
6648 	    cpu == raw_smp_processor_id()) {
6649 nodefer:	__kfree_skb(skb);
6650 		return;
6651 	}
6652 
6653 	sd = &per_cpu(softnet_data, cpu);
6654 	defer_max = READ_ONCE(sysctl_skb_defer_max);
6655 	if (READ_ONCE(sd->defer_count) >= defer_max)
6656 		goto nodefer;
6657 
6658 	spin_lock_irqsave(&sd->defer_lock, flags);
6659 	/* Send an IPI every time queue reaches half capacity. */
6660 	kick = sd->defer_count == (defer_max >> 1);
6661 	/* Paired with the READ_ONCE() few lines above */
6662 	WRITE_ONCE(sd->defer_count, sd->defer_count + 1);
6663 
6664 	skb->next = sd->defer_list;
6665 	/* Paired with READ_ONCE() in skb_defer_free_flush() */
6666 	WRITE_ONCE(sd->defer_list, skb);
6667 	spin_unlock_irqrestore(&sd->defer_lock, flags);
6668 
6669 	/* Make sure to trigger NET_RX_SOFTIRQ on the remote CPU
6670 	 * if we are unlucky enough (this seems very unlikely).
6671 	 */
6672 	if (unlikely(kick) && !cmpxchg(&sd->defer_ipi_scheduled, 0, 1))
6673 		smp_call_function_single_async(cpu, &sd->defer_csd);
6674 }
6675