xref: /openbmc/linux/net/core/skbuff.c (revision ac4dfccb)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *	Routines having to do with the 'struct sk_buff' memory handlers.
4  *
5  *	Authors:	Alan Cox <alan@lxorguk.ukuu.org.uk>
6  *			Florian La Roche <rzsfl@rz.uni-sb.de>
7  *
8  *	Fixes:
9  *		Alan Cox	:	Fixed the worst of the load
10  *					balancer bugs.
11  *		Dave Platt	:	Interrupt stacking fix.
12  *	Richard Kooijman	:	Timestamp fixes.
13  *		Alan Cox	:	Changed buffer format.
14  *		Alan Cox	:	destructor hook for AF_UNIX etc.
15  *		Linus Torvalds	:	Better skb_clone.
16  *		Alan Cox	:	Added skb_copy.
17  *		Alan Cox	:	Added all the changed routines Linus
18  *					only put in the headers
19  *		Ray VanTassle	:	Fixed --skb->lock in free
20  *		Alan Cox	:	skb_copy copy arp field
21  *		Andi Kleen	:	slabified it.
22  *		Robert Olsson	:	Removed skb_head_pool
23  *
24  *	NOTE:
25  *		The __skb_ routines should be called with interrupts
26  *	disabled, or you better be *real* sure that the operation is atomic
27  *	with respect to whatever list is being frobbed (e.g. via lock_sock()
28  *	or via disabling bottom half handlers, etc).
29  */
30 
31 /*
32  *	The functions in this file will not compile correctly with gcc 2.4.x
33  */
34 
35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
36 
37 #include <linux/module.h>
38 #include <linux/types.h>
39 #include <linux/kernel.h>
40 #include <linux/mm.h>
41 #include <linux/interrupt.h>
42 #include <linux/in.h>
43 #include <linux/inet.h>
44 #include <linux/slab.h>
45 #include <linux/tcp.h>
46 #include <linux/udp.h>
47 #include <linux/sctp.h>
48 #include <linux/netdevice.h>
49 #ifdef CONFIG_NET_CLS_ACT
50 #include <net/pkt_sched.h>
51 #endif
52 #include <linux/string.h>
53 #include <linux/skbuff.h>
54 #include <linux/splice.h>
55 #include <linux/cache.h>
56 #include <linux/rtnetlink.h>
57 #include <linux/init.h>
58 #include <linux/scatterlist.h>
59 #include <linux/errqueue.h>
60 #include <linux/prefetch.h>
61 #include <linux/if_vlan.h>
62 #include <linux/mpls.h>
63 #include <linux/kcov.h>
64 
65 #include <net/protocol.h>
66 #include <net/dst.h>
67 #include <net/sock.h>
68 #include <net/checksum.h>
69 #include <net/ip6_checksum.h>
70 #include <net/xfrm.h>
71 #include <net/mpls.h>
72 #include <net/mptcp.h>
73 #include <net/page_pool.h>
74 
75 #include <linux/uaccess.h>
76 #include <trace/events/skb.h>
77 #include <linux/highmem.h>
78 #include <linux/capability.h>
79 #include <linux/user_namespace.h>
80 #include <linux/indirect_call_wrapper.h>
81 
82 #include "datagram.h"
83 
84 struct kmem_cache *skbuff_head_cache __ro_after_init;
85 static struct kmem_cache *skbuff_fclone_cache __ro_after_init;
86 #ifdef CONFIG_SKB_EXTENSIONS
87 static struct kmem_cache *skbuff_ext_cache __ro_after_init;
88 #endif
89 int sysctl_max_skb_frags __read_mostly = MAX_SKB_FRAGS;
90 EXPORT_SYMBOL(sysctl_max_skb_frags);
91 
92 /**
93  *	skb_panic - private function for out-of-line support
94  *	@skb:	buffer
95  *	@sz:	size
96  *	@addr:	address
97  *	@msg:	skb_over_panic or skb_under_panic
98  *
99  *	Out-of-line support for skb_put() and skb_push().
100  *	Called via the wrapper skb_over_panic() or skb_under_panic().
101  *	Keep out of line to prevent kernel bloat.
102  *	__builtin_return_address is not used because it is not always reliable.
103  */
104 static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr,
105 		      const char msg[])
106 {
107 	pr_emerg("%s: text:%px len:%d put:%d head:%px data:%px tail:%#lx end:%#lx dev:%s\n",
108 		 msg, addr, skb->len, sz, skb->head, skb->data,
109 		 (unsigned long)skb->tail, (unsigned long)skb->end,
110 		 skb->dev ? skb->dev->name : "<NULL>");
111 	BUG();
112 }
113 
114 static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr)
115 {
116 	skb_panic(skb, sz, addr, __func__);
117 }
118 
119 static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr)
120 {
121 	skb_panic(skb, sz, addr, __func__);
122 }
123 
124 #define NAPI_SKB_CACHE_SIZE	64
125 #define NAPI_SKB_CACHE_BULK	16
126 #define NAPI_SKB_CACHE_HALF	(NAPI_SKB_CACHE_SIZE / 2)
127 
128 struct napi_alloc_cache {
129 	struct page_frag_cache page;
130 	unsigned int skb_count;
131 	void *skb_cache[NAPI_SKB_CACHE_SIZE];
132 };
133 
134 static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache);
135 static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache);
136 
137 static void *__alloc_frag_align(unsigned int fragsz, gfp_t gfp_mask,
138 				unsigned int align_mask)
139 {
140 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
141 
142 	return page_frag_alloc_align(&nc->page, fragsz, gfp_mask, align_mask);
143 }
144 
145 void *__napi_alloc_frag_align(unsigned int fragsz, unsigned int align_mask)
146 {
147 	fragsz = SKB_DATA_ALIGN(fragsz);
148 
149 	return __alloc_frag_align(fragsz, GFP_ATOMIC, align_mask);
150 }
151 EXPORT_SYMBOL(__napi_alloc_frag_align);
152 
153 void *__netdev_alloc_frag_align(unsigned int fragsz, unsigned int align_mask)
154 {
155 	struct page_frag_cache *nc;
156 	void *data;
157 
158 	fragsz = SKB_DATA_ALIGN(fragsz);
159 	if (in_irq() || irqs_disabled()) {
160 		nc = this_cpu_ptr(&netdev_alloc_cache);
161 		data = page_frag_alloc_align(nc, fragsz, GFP_ATOMIC, align_mask);
162 	} else {
163 		local_bh_disable();
164 		data = __alloc_frag_align(fragsz, GFP_ATOMIC, align_mask);
165 		local_bh_enable();
166 	}
167 	return data;
168 }
169 EXPORT_SYMBOL(__netdev_alloc_frag_align);
170 
171 static struct sk_buff *napi_skb_cache_get(void)
172 {
173 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
174 	struct sk_buff *skb;
175 
176 	if (unlikely(!nc->skb_count))
177 		nc->skb_count = kmem_cache_alloc_bulk(skbuff_head_cache,
178 						      GFP_ATOMIC,
179 						      NAPI_SKB_CACHE_BULK,
180 						      nc->skb_cache);
181 	if (unlikely(!nc->skb_count))
182 		return NULL;
183 
184 	skb = nc->skb_cache[--nc->skb_count];
185 	kasan_unpoison_object_data(skbuff_head_cache, skb);
186 
187 	return skb;
188 }
189 
190 /* Caller must provide SKB that is memset cleared */
191 static void __build_skb_around(struct sk_buff *skb, void *data,
192 			       unsigned int frag_size)
193 {
194 	struct skb_shared_info *shinfo;
195 	unsigned int size = frag_size ? : ksize(data);
196 
197 	size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
198 
199 	/* Assumes caller memset cleared SKB */
200 	skb->truesize = SKB_TRUESIZE(size);
201 	refcount_set(&skb->users, 1);
202 	skb->head = data;
203 	skb->data = data;
204 	skb_reset_tail_pointer(skb);
205 	skb->end = skb->tail + size;
206 	skb->mac_header = (typeof(skb->mac_header))~0U;
207 	skb->transport_header = (typeof(skb->transport_header))~0U;
208 
209 	/* make sure we initialize shinfo sequentially */
210 	shinfo = skb_shinfo(skb);
211 	memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
212 	atomic_set(&shinfo->dataref, 1);
213 
214 	skb_set_kcov_handle(skb, kcov_common_handle());
215 }
216 
217 /**
218  * __build_skb - build a network buffer
219  * @data: data buffer provided by caller
220  * @frag_size: size of data, or 0 if head was kmalloced
221  *
222  * Allocate a new &sk_buff. Caller provides space holding head and
223  * skb_shared_info. @data must have been allocated by kmalloc() only if
224  * @frag_size is 0, otherwise data should come from the page allocator
225  *  or vmalloc()
226  * The return is the new skb buffer.
227  * On a failure the return is %NULL, and @data is not freed.
228  * Notes :
229  *  Before IO, driver allocates only data buffer where NIC put incoming frame
230  *  Driver should add room at head (NET_SKB_PAD) and
231  *  MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info))
232  *  After IO, driver calls build_skb(), to allocate sk_buff and populate it
233  *  before giving packet to stack.
234  *  RX rings only contains data buffers, not full skbs.
235  */
236 struct sk_buff *__build_skb(void *data, unsigned int frag_size)
237 {
238 	struct sk_buff *skb;
239 
240 	skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC);
241 	if (unlikely(!skb))
242 		return NULL;
243 
244 	memset(skb, 0, offsetof(struct sk_buff, tail));
245 	__build_skb_around(skb, data, frag_size);
246 
247 	return skb;
248 }
249 
250 /* build_skb() is wrapper over __build_skb(), that specifically
251  * takes care of skb->head and skb->pfmemalloc
252  * This means that if @frag_size is not zero, then @data must be backed
253  * by a page fragment, not kmalloc() or vmalloc()
254  */
255 struct sk_buff *build_skb(void *data, unsigned int frag_size)
256 {
257 	struct sk_buff *skb = __build_skb(data, frag_size);
258 
259 	if (skb && frag_size) {
260 		skb->head_frag = 1;
261 		if (page_is_pfmemalloc(virt_to_head_page(data)))
262 			skb->pfmemalloc = 1;
263 	}
264 	return skb;
265 }
266 EXPORT_SYMBOL(build_skb);
267 
268 /**
269  * build_skb_around - build a network buffer around provided skb
270  * @skb: sk_buff provide by caller, must be memset cleared
271  * @data: data buffer provided by caller
272  * @frag_size: size of data, or 0 if head was kmalloced
273  */
274 struct sk_buff *build_skb_around(struct sk_buff *skb,
275 				 void *data, unsigned int frag_size)
276 {
277 	if (unlikely(!skb))
278 		return NULL;
279 
280 	__build_skb_around(skb, data, frag_size);
281 
282 	if (frag_size) {
283 		skb->head_frag = 1;
284 		if (page_is_pfmemalloc(virt_to_head_page(data)))
285 			skb->pfmemalloc = 1;
286 	}
287 	return skb;
288 }
289 EXPORT_SYMBOL(build_skb_around);
290 
291 /**
292  * __napi_build_skb - build a network buffer
293  * @data: data buffer provided by caller
294  * @frag_size: size of data, or 0 if head was kmalloced
295  *
296  * Version of __build_skb() that uses NAPI percpu caches to obtain
297  * skbuff_head instead of inplace allocation.
298  *
299  * Returns a new &sk_buff on success, %NULL on allocation failure.
300  */
301 static struct sk_buff *__napi_build_skb(void *data, unsigned int frag_size)
302 {
303 	struct sk_buff *skb;
304 
305 	skb = napi_skb_cache_get();
306 	if (unlikely(!skb))
307 		return NULL;
308 
309 	memset(skb, 0, offsetof(struct sk_buff, tail));
310 	__build_skb_around(skb, data, frag_size);
311 
312 	return skb;
313 }
314 
315 /**
316  * napi_build_skb - build a network buffer
317  * @data: data buffer provided by caller
318  * @frag_size: size of data, or 0 if head was kmalloced
319  *
320  * Version of __napi_build_skb() that takes care of skb->head_frag
321  * and skb->pfmemalloc when the data is a page or page fragment.
322  *
323  * Returns a new &sk_buff on success, %NULL on allocation failure.
324  */
325 struct sk_buff *napi_build_skb(void *data, unsigned int frag_size)
326 {
327 	struct sk_buff *skb = __napi_build_skb(data, frag_size);
328 
329 	if (likely(skb) && frag_size) {
330 		skb->head_frag = 1;
331 		skb_propagate_pfmemalloc(virt_to_head_page(data), skb);
332 	}
333 
334 	return skb;
335 }
336 EXPORT_SYMBOL(napi_build_skb);
337 
338 /*
339  * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells
340  * the caller if emergency pfmemalloc reserves are being used. If it is and
341  * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves
342  * may be used. Otherwise, the packet data may be discarded until enough
343  * memory is free
344  */
345 static void *kmalloc_reserve(size_t size, gfp_t flags, int node,
346 			     bool *pfmemalloc)
347 {
348 	void *obj;
349 	bool ret_pfmemalloc = false;
350 
351 	/*
352 	 * Try a regular allocation, when that fails and we're not entitled
353 	 * to the reserves, fail.
354 	 */
355 	obj = kmalloc_node_track_caller(size,
356 					flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
357 					node);
358 	if (obj || !(gfp_pfmemalloc_allowed(flags)))
359 		goto out;
360 
361 	/* Try again but now we are using pfmemalloc reserves */
362 	ret_pfmemalloc = true;
363 	obj = kmalloc_node_track_caller(size, flags, node);
364 
365 out:
366 	if (pfmemalloc)
367 		*pfmemalloc = ret_pfmemalloc;
368 
369 	return obj;
370 }
371 
372 /* 	Allocate a new skbuff. We do this ourselves so we can fill in a few
373  *	'private' fields and also do memory statistics to find all the
374  *	[BEEP] leaks.
375  *
376  */
377 
378 /**
379  *	__alloc_skb	-	allocate a network buffer
380  *	@size: size to allocate
381  *	@gfp_mask: allocation mask
382  *	@flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache
383  *		instead of head cache and allocate a cloned (child) skb.
384  *		If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for
385  *		allocations in case the data is required for writeback
386  *	@node: numa node to allocate memory on
387  *
388  *	Allocate a new &sk_buff. The returned buffer has no headroom and a
389  *	tail room of at least size bytes. The object has a reference count
390  *	of one. The return is the buffer. On a failure the return is %NULL.
391  *
392  *	Buffers may only be allocated from interrupts using a @gfp_mask of
393  *	%GFP_ATOMIC.
394  */
395 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
396 			    int flags, int node)
397 {
398 	struct kmem_cache *cache;
399 	struct sk_buff *skb;
400 	u8 *data;
401 	bool pfmemalloc;
402 
403 	cache = (flags & SKB_ALLOC_FCLONE)
404 		? skbuff_fclone_cache : skbuff_head_cache;
405 
406 	if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX))
407 		gfp_mask |= __GFP_MEMALLOC;
408 
409 	/* Get the HEAD */
410 	if ((flags & (SKB_ALLOC_FCLONE | SKB_ALLOC_NAPI)) == SKB_ALLOC_NAPI &&
411 	    likely(node == NUMA_NO_NODE || node == numa_mem_id()))
412 		skb = napi_skb_cache_get();
413 	else
414 		skb = kmem_cache_alloc_node(cache, gfp_mask & ~GFP_DMA, node);
415 	if (unlikely(!skb))
416 		return NULL;
417 	prefetchw(skb);
418 
419 	/* We do our best to align skb_shared_info on a separate cache
420 	 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives
421 	 * aligned memory blocks, unless SLUB/SLAB debug is enabled.
422 	 * Both skb->head and skb_shared_info are cache line aligned.
423 	 */
424 	size = SKB_DATA_ALIGN(size);
425 	size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
426 	data = kmalloc_reserve(size, gfp_mask, node, &pfmemalloc);
427 	if (unlikely(!data))
428 		goto nodata;
429 	/* kmalloc(size) might give us more room than requested.
430 	 * Put skb_shared_info exactly at the end of allocated zone,
431 	 * to allow max possible filling before reallocation.
432 	 */
433 	size = SKB_WITH_OVERHEAD(ksize(data));
434 	prefetchw(data + size);
435 
436 	/*
437 	 * Only clear those fields we need to clear, not those that we will
438 	 * actually initialise below. Hence, don't put any more fields after
439 	 * the tail pointer in struct sk_buff!
440 	 */
441 	memset(skb, 0, offsetof(struct sk_buff, tail));
442 	__build_skb_around(skb, data, 0);
443 	skb->pfmemalloc = pfmemalloc;
444 
445 	if (flags & SKB_ALLOC_FCLONE) {
446 		struct sk_buff_fclones *fclones;
447 
448 		fclones = container_of(skb, struct sk_buff_fclones, skb1);
449 
450 		skb->fclone = SKB_FCLONE_ORIG;
451 		refcount_set(&fclones->fclone_ref, 1);
452 
453 		fclones->skb2.fclone = SKB_FCLONE_CLONE;
454 	}
455 
456 	return skb;
457 
458 nodata:
459 	kmem_cache_free(cache, skb);
460 	return NULL;
461 }
462 EXPORT_SYMBOL(__alloc_skb);
463 
464 /**
465  *	__netdev_alloc_skb - allocate an skbuff for rx on a specific device
466  *	@dev: network device to receive on
467  *	@len: length to allocate
468  *	@gfp_mask: get_free_pages mask, passed to alloc_skb
469  *
470  *	Allocate a new &sk_buff and assign it a usage count of one. The
471  *	buffer has NET_SKB_PAD headroom built in. Users should allocate
472  *	the headroom they think they need without accounting for the
473  *	built in space. The built in space is used for optimisations.
474  *
475  *	%NULL is returned if there is no free memory.
476  */
477 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len,
478 				   gfp_t gfp_mask)
479 {
480 	struct page_frag_cache *nc;
481 	struct sk_buff *skb;
482 	bool pfmemalloc;
483 	void *data;
484 
485 	len += NET_SKB_PAD;
486 
487 	/* If requested length is either too small or too big,
488 	 * we use kmalloc() for skb->head allocation.
489 	 */
490 	if (len <= SKB_WITH_OVERHEAD(1024) ||
491 	    len > SKB_WITH_OVERHEAD(PAGE_SIZE) ||
492 	    (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
493 		skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
494 		if (!skb)
495 			goto skb_fail;
496 		goto skb_success;
497 	}
498 
499 	len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
500 	len = SKB_DATA_ALIGN(len);
501 
502 	if (sk_memalloc_socks())
503 		gfp_mask |= __GFP_MEMALLOC;
504 
505 	if (in_irq() || irqs_disabled()) {
506 		nc = this_cpu_ptr(&netdev_alloc_cache);
507 		data = page_frag_alloc(nc, len, gfp_mask);
508 		pfmemalloc = nc->pfmemalloc;
509 	} else {
510 		local_bh_disable();
511 		nc = this_cpu_ptr(&napi_alloc_cache.page);
512 		data = page_frag_alloc(nc, len, gfp_mask);
513 		pfmemalloc = nc->pfmemalloc;
514 		local_bh_enable();
515 	}
516 
517 	if (unlikely(!data))
518 		return NULL;
519 
520 	skb = __build_skb(data, len);
521 	if (unlikely(!skb)) {
522 		skb_free_frag(data);
523 		return NULL;
524 	}
525 
526 	if (pfmemalloc)
527 		skb->pfmemalloc = 1;
528 	skb->head_frag = 1;
529 
530 skb_success:
531 	skb_reserve(skb, NET_SKB_PAD);
532 	skb->dev = dev;
533 
534 skb_fail:
535 	return skb;
536 }
537 EXPORT_SYMBOL(__netdev_alloc_skb);
538 
539 /**
540  *	__napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance
541  *	@napi: napi instance this buffer was allocated for
542  *	@len: length to allocate
543  *	@gfp_mask: get_free_pages mask, passed to alloc_skb and alloc_pages
544  *
545  *	Allocate a new sk_buff for use in NAPI receive.  This buffer will
546  *	attempt to allocate the head from a special reserved region used
547  *	only for NAPI Rx allocation.  By doing this we can save several
548  *	CPU cycles by avoiding having to disable and re-enable IRQs.
549  *
550  *	%NULL is returned if there is no free memory.
551  */
552 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, unsigned int len,
553 				 gfp_t gfp_mask)
554 {
555 	struct napi_alloc_cache *nc;
556 	struct sk_buff *skb;
557 	void *data;
558 
559 	len += NET_SKB_PAD + NET_IP_ALIGN;
560 
561 	/* If requested length is either too small or too big,
562 	 * we use kmalloc() for skb->head allocation.
563 	 */
564 	if (len <= SKB_WITH_OVERHEAD(1024) ||
565 	    len > SKB_WITH_OVERHEAD(PAGE_SIZE) ||
566 	    (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
567 		skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX | SKB_ALLOC_NAPI,
568 				  NUMA_NO_NODE);
569 		if (!skb)
570 			goto skb_fail;
571 		goto skb_success;
572 	}
573 
574 	nc = this_cpu_ptr(&napi_alloc_cache);
575 	len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
576 	len = SKB_DATA_ALIGN(len);
577 
578 	if (sk_memalloc_socks())
579 		gfp_mask |= __GFP_MEMALLOC;
580 
581 	data = page_frag_alloc(&nc->page, len, gfp_mask);
582 	if (unlikely(!data))
583 		return NULL;
584 
585 	skb = __napi_build_skb(data, len);
586 	if (unlikely(!skb)) {
587 		skb_free_frag(data);
588 		return NULL;
589 	}
590 
591 	if (nc->page.pfmemalloc)
592 		skb->pfmemalloc = 1;
593 	skb->head_frag = 1;
594 
595 skb_success:
596 	skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN);
597 	skb->dev = napi->dev;
598 
599 skb_fail:
600 	return skb;
601 }
602 EXPORT_SYMBOL(__napi_alloc_skb);
603 
604 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
605 		     int size, unsigned int truesize)
606 {
607 	skb_fill_page_desc(skb, i, page, off, size);
608 	skb->len += size;
609 	skb->data_len += size;
610 	skb->truesize += truesize;
611 }
612 EXPORT_SYMBOL(skb_add_rx_frag);
613 
614 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
615 			  unsigned int truesize)
616 {
617 	skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
618 
619 	skb_frag_size_add(frag, size);
620 	skb->len += size;
621 	skb->data_len += size;
622 	skb->truesize += truesize;
623 }
624 EXPORT_SYMBOL(skb_coalesce_rx_frag);
625 
626 static void skb_drop_list(struct sk_buff **listp)
627 {
628 	kfree_skb_list(*listp);
629 	*listp = NULL;
630 }
631 
632 static inline void skb_drop_fraglist(struct sk_buff *skb)
633 {
634 	skb_drop_list(&skb_shinfo(skb)->frag_list);
635 }
636 
637 static void skb_clone_fraglist(struct sk_buff *skb)
638 {
639 	struct sk_buff *list;
640 
641 	skb_walk_frags(skb, list)
642 		skb_get(list);
643 }
644 
645 static void skb_free_head(struct sk_buff *skb)
646 {
647 	unsigned char *head = skb->head;
648 
649 	if (skb->head_frag) {
650 		if (skb_pp_recycle(skb, head))
651 			return;
652 		skb_free_frag(head);
653 	} else {
654 		kfree(head);
655 	}
656 }
657 
658 static void skb_release_data(struct sk_buff *skb)
659 {
660 	struct skb_shared_info *shinfo = skb_shinfo(skb);
661 	int i;
662 
663 	if (skb->cloned &&
664 	    atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
665 			      &shinfo->dataref))
666 		goto exit;
667 
668 	skb_zcopy_clear(skb, true);
669 
670 	for (i = 0; i < shinfo->nr_frags; i++)
671 		__skb_frag_unref(&shinfo->frags[i], skb->pp_recycle);
672 
673 	if (shinfo->frag_list)
674 		kfree_skb_list(shinfo->frag_list);
675 
676 	skb_free_head(skb);
677 exit:
678 	/* When we clone an SKB we copy the reycling bit. The pp_recycle
679 	 * bit is only set on the head though, so in order to avoid races
680 	 * while trying to recycle fragments on __skb_frag_unref() we need
681 	 * to make one SKB responsible for triggering the recycle path.
682 	 * So disable the recycling bit if an SKB is cloned and we have
683 	 * additional references to to the fragmented part of the SKB.
684 	 * Eventually the last SKB will have the recycling bit set and it's
685 	 * dataref set to 0, which will trigger the recycling
686 	 */
687 	skb->pp_recycle = 0;
688 }
689 
690 /*
691  *	Free an skbuff by memory without cleaning the state.
692  */
693 static void kfree_skbmem(struct sk_buff *skb)
694 {
695 	struct sk_buff_fclones *fclones;
696 
697 	switch (skb->fclone) {
698 	case SKB_FCLONE_UNAVAILABLE:
699 		kmem_cache_free(skbuff_head_cache, skb);
700 		return;
701 
702 	case SKB_FCLONE_ORIG:
703 		fclones = container_of(skb, struct sk_buff_fclones, skb1);
704 
705 		/* We usually free the clone (TX completion) before original skb
706 		 * This test would have no chance to be true for the clone,
707 		 * while here, branch prediction will be good.
708 		 */
709 		if (refcount_read(&fclones->fclone_ref) == 1)
710 			goto fastpath;
711 		break;
712 
713 	default: /* SKB_FCLONE_CLONE */
714 		fclones = container_of(skb, struct sk_buff_fclones, skb2);
715 		break;
716 	}
717 	if (!refcount_dec_and_test(&fclones->fclone_ref))
718 		return;
719 fastpath:
720 	kmem_cache_free(skbuff_fclone_cache, fclones);
721 }
722 
723 void skb_release_head_state(struct sk_buff *skb)
724 {
725 	skb_dst_drop(skb);
726 	if (skb->destructor) {
727 		WARN_ON(in_irq());
728 		skb->destructor(skb);
729 	}
730 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
731 	nf_conntrack_put(skb_nfct(skb));
732 #endif
733 	skb_ext_put(skb);
734 }
735 
736 /* Free everything but the sk_buff shell. */
737 static void skb_release_all(struct sk_buff *skb)
738 {
739 	skb_release_head_state(skb);
740 	if (likely(skb->head))
741 		skb_release_data(skb);
742 }
743 
744 /**
745  *	__kfree_skb - private function
746  *	@skb: buffer
747  *
748  *	Free an sk_buff. Release anything attached to the buffer.
749  *	Clean the state. This is an internal helper function. Users should
750  *	always call kfree_skb
751  */
752 
753 void __kfree_skb(struct sk_buff *skb)
754 {
755 	skb_release_all(skb);
756 	kfree_skbmem(skb);
757 }
758 EXPORT_SYMBOL(__kfree_skb);
759 
760 /**
761  *	kfree_skb - free an sk_buff
762  *	@skb: buffer to free
763  *
764  *	Drop a reference to the buffer and free it if the usage count has
765  *	hit zero.
766  */
767 void kfree_skb(struct sk_buff *skb)
768 {
769 	if (!skb_unref(skb))
770 		return;
771 
772 	trace_kfree_skb(skb, __builtin_return_address(0));
773 	__kfree_skb(skb);
774 }
775 EXPORT_SYMBOL(kfree_skb);
776 
777 void kfree_skb_list(struct sk_buff *segs)
778 {
779 	while (segs) {
780 		struct sk_buff *next = segs->next;
781 
782 		kfree_skb(segs);
783 		segs = next;
784 	}
785 }
786 EXPORT_SYMBOL(kfree_skb_list);
787 
788 /* Dump skb information and contents.
789  *
790  * Must only be called from net_ratelimit()-ed paths.
791  *
792  * Dumps whole packets if full_pkt, only headers otherwise.
793  */
794 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt)
795 {
796 	struct skb_shared_info *sh = skb_shinfo(skb);
797 	struct net_device *dev = skb->dev;
798 	struct sock *sk = skb->sk;
799 	struct sk_buff *list_skb;
800 	bool has_mac, has_trans;
801 	int headroom, tailroom;
802 	int i, len, seg_len;
803 
804 	if (full_pkt)
805 		len = skb->len;
806 	else
807 		len = min_t(int, skb->len, MAX_HEADER + 128);
808 
809 	headroom = skb_headroom(skb);
810 	tailroom = skb_tailroom(skb);
811 
812 	has_mac = skb_mac_header_was_set(skb);
813 	has_trans = skb_transport_header_was_set(skb);
814 
815 	printk("%sskb len=%u headroom=%u headlen=%u tailroom=%u\n"
816 	       "mac=(%d,%d) net=(%d,%d) trans=%d\n"
817 	       "shinfo(txflags=%u nr_frags=%u gso(size=%hu type=%u segs=%hu))\n"
818 	       "csum(0x%x ip_summed=%u complete_sw=%u valid=%u level=%u)\n"
819 	       "hash(0x%x sw=%u l4=%u) proto=0x%04x pkttype=%u iif=%d\n",
820 	       level, skb->len, headroom, skb_headlen(skb), tailroom,
821 	       has_mac ? skb->mac_header : -1,
822 	       has_mac ? skb_mac_header_len(skb) : -1,
823 	       skb->network_header,
824 	       has_trans ? skb_network_header_len(skb) : -1,
825 	       has_trans ? skb->transport_header : -1,
826 	       sh->tx_flags, sh->nr_frags,
827 	       sh->gso_size, sh->gso_type, sh->gso_segs,
828 	       skb->csum, skb->ip_summed, skb->csum_complete_sw,
829 	       skb->csum_valid, skb->csum_level,
830 	       skb->hash, skb->sw_hash, skb->l4_hash,
831 	       ntohs(skb->protocol), skb->pkt_type, skb->skb_iif);
832 
833 	if (dev)
834 		printk("%sdev name=%s feat=0x%pNF\n",
835 		       level, dev->name, &dev->features);
836 	if (sk)
837 		printk("%ssk family=%hu type=%u proto=%u\n",
838 		       level, sk->sk_family, sk->sk_type, sk->sk_protocol);
839 
840 	if (full_pkt && headroom)
841 		print_hex_dump(level, "skb headroom: ", DUMP_PREFIX_OFFSET,
842 			       16, 1, skb->head, headroom, false);
843 
844 	seg_len = min_t(int, skb_headlen(skb), len);
845 	if (seg_len)
846 		print_hex_dump(level, "skb linear:   ", DUMP_PREFIX_OFFSET,
847 			       16, 1, skb->data, seg_len, false);
848 	len -= seg_len;
849 
850 	if (full_pkt && tailroom)
851 		print_hex_dump(level, "skb tailroom: ", DUMP_PREFIX_OFFSET,
852 			       16, 1, skb_tail_pointer(skb), tailroom, false);
853 
854 	for (i = 0; len && i < skb_shinfo(skb)->nr_frags; i++) {
855 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
856 		u32 p_off, p_len, copied;
857 		struct page *p;
858 		u8 *vaddr;
859 
860 		skb_frag_foreach_page(frag, skb_frag_off(frag),
861 				      skb_frag_size(frag), p, p_off, p_len,
862 				      copied) {
863 			seg_len = min_t(int, p_len, len);
864 			vaddr = kmap_atomic(p);
865 			print_hex_dump(level, "skb frag:     ",
866 				       DUMP_PREFIX_OFFSET,
867 				       16, 1, vaddr + p_off, seg_len, false);
868 			kunmap_atomic(vaddr);
869 			len -= seg_len;
870 			if (!len)
871 				break;
872 		}
873 	}
874 
875 	if (full_pkt && skb_has_frag_list(skb)) {
876 		printk("skb fraglist:\n");
877 		skb_walk_frags(skb, list_skb)
878 			skb_dump(level, list_skb, true);
879 	}
880 }
881 EXPORT_SYMBOL(skb_dump);
882 
883 /**
884  *	skb_tx_error - report an sk_buff xmit error
885  *	@skb: buffer that triggered an error
886  *
887  *	Report xmit error if a device callback is tracking this skb.
888  *	skb must be freed afterwards.
889  */
890 void skb_tx_error(struct sk_buff *skb)
891 {
892 	skb_zcopy_clear(skb, true);
893 }
894 EXPORT_SYMBOL(skb_tx_error);
895 
896 #ifdef CONFIG_TRACEPOINTS
897 /**
898  *	consume_skb - free an skbuff
899  *	@skb: buffer to free
900  *
901  *	Drop a ref to the buffer and free it if the usage count has hit zero
902  *	Functions identically to kfree_skb, but kfree_skb assumes that the frame
903  *	is being dropped after a failure and notes that
904  */
905 void consume_skb(struct sk_buff *skb)
906 {
907 	if (!skb_unref(skb))
908 		return;
909 
910 	trace_consume_skb(skb);
911 	__kfree_skb(skb);
912 }
913 EXPORT_SYMBOL(consume_skb);
914 #endif
915 
916 /**
917  *	__consume_stateless_skb - free an skbuff, assuming it is stateless
918  *	@skb: buffer to free
919  *
920  *	Alike consume_skb(), but this variant assumes that this is the last
921  *	skb reference and all the head states have been already dropped
922  */
923 void __consume_stateless_skb(struct sk_buff *skb)
924 {
925 	trace_consume_skb(skb);
926 	skb_release_data(skb);
927 	kfree_skbmem(skb);
928 }
929 
930 static void napi_skb_cache_put(struct sk_buff *skb)
931 {
932 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
933 	u32 i;
934 
935 	kasan_poison_object_data(skbuff_head_cache, skb);
936 	nc->skb_cache[nc->skb_count++] = skb;
937 
938 	if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) {
939 		for (i = NAPI_SKB_CACHE_HALF; i < NAPI_SKB_CACHE_SIZE; i++)
940 			kasan_unpoison_object_data(skbuff_head_cache,
941 						   nc->skb_cache[i]);
942 
943 		kmem_cache_free_bulk(skbuff_head_cache, NAPI_SKB_CACHE_HALF,
944 				     nc->skb_cache + NAPI_SKB_CACHE_HALF);
945 		nc->skb_count = NAPI_SKB_CACHE_HALF;
946 	}
947 }
948 
949 void __kfree_skb_defer(struct sk_buff *skb)
950 {
951 	skb_release_all(skb);
952 	napi_skb_cache_put(skb);
953 }
954 
955 void napi_skb_free_stolen_head(struct sk_buff *skb)
956 {
957 	nf_reset_ct(skb);
958 	skb_dst_drop(skb);
959 	skb_ext_put(skb);
960 	napi_skb_cache_put(skb);
961 }
962 
963 void napi_consume_skb(struct sk_buff *skb, int budget)
964 {
965 	/* Zero budget indicate non-NAPI context called us, like netpoll */
966 	if (unlikely(!budget)) {
967 		dev_consume_skb_any(skb);
968 		return;
969 	}
970 
971 	lockdep_assert_in_softirq();
972 
973 	if (!skb_unref(skb))
974 		return;
975 
976 	/* if reaching here SKB is ready to free */
977 	trace_consume_skb(skb);
978 
979 	/* if SKB is a clone, don't handle this case */
980 	if (skb->fclone != SKB_FCLONE_UNAVAILABLE) {
981 		__kfree_skb(skb);
982 		return;
983 	}
984 
985 	skb_release_all(skb);
986 	napi_skb_cache_put(skb);
987 }
988 EXPORT_SYMBOL(napi_consume_skb);
989 
990 /* Make sure a field is enclosed inside headers_start/headers_end section */
991 #define CHECK_SKB_FIELD(field) \
992 	BUILD_BUG_ON(offsetof(struct sk_buff, field) <		\
993 		     offsetof(struct sk_buff, headers_start));	\
994 	BUILD_BUG_ON(offsetof(struct sk_buff, field) >		\
995 		     offsetof(struct sk_buff, headers_end));	\
996 
997 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
998 {
999 	new->tstamp		= old->tstamp;
1000 	/* We do not copy old->sk */
1001 	new->dev		= old->dev;
1002 	memcpy(new->cb, old->cb, sizeof(old->cb));
1003 	skb_dst_copy(new, old);
1004 	__skb_ext_copy(new, old);
1005 	__nf_copy(new, old, false);
1006 
1007 	/* Note : this field could be in headers_start/headers_end section
1008 	 * It is not yet because we do not want to have a 16 bit hole
1009 	 */
1010 	new->queue_mapping = old->queue_mapping;
1011 
1012 	memcpy(&new->headers_start, &old->headers_start,
1013 	       offsetof(struct sk_buff, headers_end) -
1014 	       offsetof(struct sk_buff, headers_start));
1015 	CHECK_SKB_FIELD(protocol);
1016 	CHECK_SKB_FIELD(csum);
1017 	CHECK_SKB_FIELD(hash);
1018 	CHECK_SKB_FIELD(priority);
1019 	CHECK_SKB_FIELD(skb_iif);
1020 	CHECK_SKB_FIELD(vlan_proto);
1021 	CHECK_SKB_FIELD(vlan_tci);
1022 	CHECK_SKB_FIELD(transport_header);
1023 	CHECK_SKB_FIELD(network_header);
1024 	CHECK_SKB_FIELD(mac_header);
1025 	CHECK_SKB_FIELD(inner_protocol);
1026 	CHECK_SKB_FIELD(inner_transport_header);
1027 	CHECK_SKB_FIELD(inner_network_header);
1028 	CHECK_SKB_FIELD(inner_mac_header);
1029 	CHECK_SKB_FIELD(mark);
1030 #ifdef CONFIG_NETWORK_SECMARK
1031 	CHECK_SKB_FIELD(secmark);
1032 #endif
1033 #ifdef CONFIG_NET_RX_BUSY_POLL
1034 	CHECK_SKB_FIELD(napi_id);
1035 #endif
1036 #ifdef CONFIG_XPS
1037 	CHECK_SKB_FIELD(sender_cpu);
1038 #endif
1039 #ifdef CONFIG_NET_SCHED
1040 	CHECK_SKB_FIELD(tc_index);
1041 #endif
1042 
1043 }
1044 
1045 /*
1046  * You should not add any new code to this function.  Add it to
1047  * __copy_skb_header above instead.
1048  */
1049 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
1050 {
1051 #define C(x) n->x = skb->x
1052 
1053 	n->next = n->prev = NULL;
1054 	n->sk = NULL;
1055 	__copy_skb_header(n, skb);
1056 
1057 	C(len);
1058 	C(data_len);
1059 	C(mac_len);
1060 	n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
1061 	n->cloned = 1;
1062 	n->nohdr = 0;
1063 	n->peeked = 0;
1064 	C(pfmemalloc);
1065 	C(pp_recycle);
1066 	n->destructor = NULL;
1067 	C(tail);
1068 	C(end);
1069 	C(head);
1070 	C(head_frag);
1071 	C(data);
1072 	C(truesize);
1073 	refcount_set(&n->users, 1);
1074 
1075 	atomic_inc(&(skb_shinfo(skb)->dataref));
1076 	skb->cloned = 1;
1077 
1078 	return n;
1079 #undef C
1080 }
1081 
1082 /**
1083  * alloc_skb_for_msg() - allocate sk_buff to wrap frag list forming a msg
1084  * @first: first sk_buff of the msg
1085  */
1086 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first)
1087 {
1088 	struct sk_buff *n;
1089 
1090 	n = alloc_skb(0, GFP_ATOMIC);
1091 	if (!n)
1092 		return NULL;
1093 
1094 	n->len = first->len;
1095 	n->data_len = first->len;
1096 	n->truesize = first->truesize;
1097 
1098 	skb_shinfo(n)->frag_list = first;
1099 
1100 	__copy_skb_header(n, first);
1101 	n->destructor = NULL;
1102 
1103 	return n;
1104 }
1105 EXPORT_SYMBOL_GPL(alloc_skb_for_msg);
1106 
1107 /**
1108  *	skb_morph	-	morph one skb into another
1109  *	@dst: the skb to receive the contents
1110  *	@src: the skb to supply the contents
1111  *
1112  *	This is identical to skb_clone except that the target skb is
1113  *	supplied by the user.
1114  *
1115  *	The target skb is returned upon exit.
1116  */
1117 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
1118 {
1119 	skb_release_all(dst);
1120 	return __skb_clone(dst, src);
1121 }
1122 EXPORT_SYMBOL_GPL(skb_morph);
1123 
1124 int mm_account_pinned_pages(struct mmpin *mmp, size_t size)
1125 {
1126 	unsigned long max_pg, num_pg, new_pg, old_pg;
1127 	struct user_struct *user;
1128 
1129 	if (capable(CAP_IPC_LOCK) || !size)
1130 		return 0;
1131 
1132 	num_pg = (size >> PAGE_SHIFT) + 2;	/* worst case */
1133 	max_pg = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
1134 	user = mmp->user ? : current_user();
1135 
1136 	do {
1137 		old_pg = atomic_long_read(&user->locked_vm);
1138 		new_pg = old_pg + num_pg;
1139 		if (new_pg > max_pg)
1140 			return -ENOBUFS;
1141 	} while (atomic_long_cmpxchg(&user->locked_vm, old_pg, new_pg) !=
1142 		 old_pg);
1143 
1144 	if (!mmp->user) {
1145 		mmp->user = get_uid(user);
1146 		mmp->num_pg = num_pg;
1147 	} else {
1148 		mmp->num_pg += num_pg;
1149 	}
1150 
1151 	return 0;
1152 }
1153 EXPORT_SYMBOL_GPL(mm_account_pinned_pages);
1154 
1155 void mm_unaccount_pinned_pages(struct mmpin *mmp)
1156 {
1157 	if (mmp->user) {
1158 		atomic_long_sub(mmp->num_pg, &mmp->user->locked_vm);
1159 		free_uid(mmp->user);
1160 	}
1161 }
1162 EXPORT_SYMBOL_GPL(mm_unaccount_pinned_pages);
1163 
1164 struct ubuf_info *msg_zerocopy_alloc(struct sock *sk, size_t size)
1165 {
1166 	struct ubuf_info *uarg;
1167 	struct sk_buff *skb;
1168 
1169 	WARN_ON_ONCE(!in_task());
1170 
1171 	skb = sock_omalloc(sk, 0, GFP_KERNEL);
1172 	if (!skb)
1173 		return NULL;
1174 
1175 	BUILD_BUG_ON(sizeof(*uarg) > sizeof(skb->cb));
1176 	uarg = (void *)skb->cb;
1177 	uarg->mmp.user = NULL;
1178 
1179 	if (mm_account_pinned_pages(&uarg->mmp, size)) {
1180 		kfree_skb(skb);
1181 		return NULL;
1182 	}
1183 
1184 	uarg->callback = msg_zerocopy_callback;
1185 	uarg->id = ((u32)atomic_inc_return(&sk->sk_zckey)) - 1;
1186 	uarg->len = 1;
1187 	uarg->bytelen = size;
1188 	uarg->zerocopy = 1;
1189 	uarg->flags = SKBFL_ZEROCOPY_FRAG;
1190 	refcount_set(&uarg->refcnt, 1);
1191 	sock_hold(sk);
1192 
1193 	return uarg;
1194 }
1195 EXPORT_SYMBOL_GPL(msg_zerocopy_alloc);
1196 
1197 static inline struct sk_buff *skb_from_uarg(struct ubuf_info *uarg)
1198 {
1199 	return container_of((void *)uarg, struct sk_buff, cb);
1200 }
1201 
1202 struct ubuf_info *msg_zerocopy_realloc(struct sock *sk, size_t size,
1203 				       struct ubuf_info *uarg)
1204 {
1205 	if (uarg) {
1206 		const u32 byte_limit = 1 << 19;		/* limit to a few TSO */
1207 		u32 bytelen, next;
1208 
1209 		/* realloc only when socket is locked (TCP, UDP cork),
1210 		 * so uarg->len and sk_zckey access is serialized
1211 		 */
1212 		if (!sock_owned_by_user(sk)) {
1213 			WARN_ON_ONCE(1);
1214 			return NULL;
1215 		}
1216 
1217 		bytelen = uarg->bytelen + size;
1218 		if (uarg->len == USHRT_MAX - 1 || bytelen > byte_limit) {
1219 			/* TCP can create new skb to attach new uarg */
1220 			if (sk->sk_type == SOCK_STREAM)
1221 				goto new_alloc;
1222 			return NULL;
1223 		}
1224 
1225 		next = (u32)atomic_read(&sk->sk_zckey);
1226 		if ((u32)(uarg->id + uarg->len) == next) {
1227 			if (mm_account_pinned_pages(&uarg->mmp, size))
1228 				return NULL;
1229 			uarg->len++;
1230 			uarg->bytelen = bytelen;
1231 			atomic_set(&sk->sk_zckey, ++next);
1232 
1233 			/* no extra ref when appending to datagram (MSG_MORE) */
1234 			if (sk->sk_type == SOCK_STREAM)
1235 				net_zcopy_get(uarg);
1236 
1237 			return uarg;
1238 		}
1239 	}
1240 
1241 new_alloc:
1242 	return msg_zerocopy_alloc(sk, size);
1243 }
1244 EXPORT_SYMBOL_GPL(msg_zerocopy_realloc);
1245 
1246 static bool skb_zerocopy_notify_extend(struct sk_buff *skb, u32 lo, u16 len)
1247 {
1248 	struct sock_exterr_skb *serr = SKB_EXT_ERR(skb);
1249 	u32 old_lo, old_hi;
1250 	u64 sum_len;
1251 
1252 	old_lo = serr->ee.ee_info;
1253 	old_hi = serr->ee.ee_data;
1254 	sum_len = old_hi - old_lo + 1ULL + len;
1255 
1256 	if (sum_len >= (1ULL << 32))
1257 		return false;
1258 
1259 	if (lo != old_hi + 1)
1260 		return false;
1261 
1262 	serr->ee.ee_data += len;
1263 	return true;
1264 }
1265 
1266 static void __msg_zerocopy_callback(struct ubuf_info *uarg)
1267 {
1268 	struct sk_buff *tail, *skb = skb_from_uarg(uarg);
1269 	struct sock_exterr_skb *serr;
1270 	struct sock *sk = skb->sk;
1271 	struct sk_buff_head *q;
1272 	unsigned long flags;
1273 	bool is_zerocopy;
1274 	u32 lo, hi;
1275 	u16 len;
1276 
1277 	mm_unaccount_pinned_pages(&uarg->mmp);
1278 
1279 	/* if !len, there was only 1 call, and it was aborted
1280 	 * so do not queue a completion notification
1281 	 */
1282 	if (!uarg->len || sock_flag(sk, SOCK_DEAD))
1283 		goto release;
1284 
1285 	len = uarg->len;
1286 	lo = uarg->id;
1287 	hi = uarg->id + len - 1;
1288 	is_zerocopy = uarg->zerocopy;
1289 
1290 	serr = SKB_EXT_ERR(skb);
1291 	memset(serr, 0, sizeof(*serr));
1292 	serr->ee.ee_errno = 0;
1293 	serr->ee.ee_origin = SO_EE_ORIGIN_ZEROCOPY;
1294 	serr->ee.ee_data = hi;
1295 	serr->ee.ee_info = lo;
1296 	if (!is_zerocopy)
1297 		serr->ee.ee_code |= SO_EE_CODE_ZEROCOPY_COPIED;
1298 
1299 	q = &sk->sk_error_queue;
1300 	spin_lock_irqsave(&q->lock, flags);
1301 	tail = skb_peek_tail(q);
1302 	if (!tail || SKB_EXT_ERR(tail)->ee.ee_origin != SO_EE_ORIGIN_ZEROCOPY ||
1303 	    !skb_zerocopy_notify_extend(tail, lo, len)) {
1304 		__skb_queue_tail(q, skb);
1305 		skb = NULL;
1306 	}
1307 	spin_unlock_irqrestore(&q->lock, flags);
1308 
1309 	sk_error_report(sk);
1310 
1311 release:
1312 	consume_skb(skb);
1313 	sock_put(sk);
1314 }
1315 
1316 void msg_zerocopy_callback(struct sk_buff *skb, struct ubuf_info *uarg,
1317 			   bool success)
1318 {
1319 	uarg->zerocopy = uarg->zerocopy & success;
1320 
1321 	if (refcount_dec_and_test(&uarg->refcnt))
1322 		__msg_zerocopy_callback(uarg);
1323 }
1324 EXPORT_SYMBOL_GPL(msg_zerocopy_callback);
1325 
1326 void msg_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref)
1327 {
1328 	struct sock *sk = skb_from_uarg(uarg)->sk;
1329 
1330 	atomic_dec(&sk->sk_zckey);
1331 	uarg->len--;
1332 
1333 	if (have_uref)
1334 		msg_zerocopy_callback(NULL, uarg, true);
1335 }
1336 EXPORT_SYMBOL_GPL(msg_zerocopy_put_abort);
1337 
1338 int skb_zerocopy_iter_dgram(struct sk_buff *skb, struct msghdr *msg, int len)
1339 {
1340 	return __zerocopy_sg_from_iter(skb->sk, skb, &msg->msg_iter, len);
1341 }
1342 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_dgram);
1343 
1344 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
1345 			     struct msghdr *msg, int len,
1346 			     struct ubuf_info *uarg)
1347 {
1348 	struct ubuf_info *orig_uarg = skb_zcopy(skb);
1349 	struct iov_iter orig_iter = msg->msg_iter;
1350 	int err, orig_len = skb->len;
1351 
1352 	/* An skb can only point to one uarg. This edge case happens when
1353 	 * TCP appends to an skb, but zerocopy_realloc triggered a new alloc.
1354 	 */
1355 	if (orig_uarg && uarg != orig_uarg)
1356 		return -EEXIST;
1357 
1358 	err = __zerocopy_sg_from_iter(sk, skb, &msg->msg_iter, len);
1359 	if (err == -EFAULT || (err == -EMSGSIZE && skb->len == orig_len)) {
1360 		struct sock *save_sk = skb->sk;
1361 
1362 		/* Streams do not free skb on error. Reset to prev state. */
1363 		msg->msg_iter = orig_iter;
1364 		skb->sk = sk;
1365 		___pskb_trim(skb, orig_len);
1366 		skb->sk = save_sk;
1367 		return err;
1368 	}
1369 
1370 	skb_zcopy_set(skb, uarg, NULL);
1371 	return skb->len - orig_len;
1372 }
1373 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_stream);
1374 
1375 static int skb_zerocopy_clone(struct sk_buff *nskb, struct sk_buff *orig,
1376 			      gfp_t gfp_mask)
1377 {
1378 	if (skb_zcopy(orig)) {
1379 		if (skb_zcopy(nskb)) {
1380 			/* !gfp_mask callers are verified to !skb_zcopy(nskb) */
1381 			if (!gfp_mask) {
1382 				WARN_ON_ONCE(1);
1383 				return -ENOMEM;
1384 			}
1385 			if (skb_uarg(nskb) == skb_uarg(orig))
1386 				return 0;
1387 			if (skb_copy_ubufs(nskb, GFP_ATOMIC))
1388 				return -EIO;
1389 		}
1390 		skb_zcopy_set(nskb, skb_uarg(orig), NULL);
1391 	}
1392 	return 0;
1393 }
1394 
1395 /**
1396  *	skb_copy_ubufs	-	copy userspace skb frags buffers to kernel
1397  *	@skb: the skb to modify
1398  *	@gfp_mask: allocation priority
1399  *
1400  *	This must be called on skb with SKBFL_ZEROCOPY_ENABLE.
1401  *	It will copy all frags into kernel and drop the reference
1402  *	to userspace pages.
1403  *
1404  *	If this function is called from an interrupt gfp_mask() must be
1405  *	%GFP_ATOMIC.
1406  *
1407  *	Returns 0 on success or a negative error code on failure
1408  *	to allocate kernel memory to copy to.
1409  */
1410 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask)
1411 {
1412 	int num_frags = skb_shinfo(skb)->nr_frags;
1413 	struct page *page, *head = NULL;
1414 	int i, new_frags;
1415 	u32 d_off;
1416 
1417 	if (skb_shared(skb) || skb_unclone(skb, gfp_mask))
1418 		return -EINVAL;
1419 
1420 	if (!num_frags)
1421 		goto release;
1422 
1423 	new_frags = (__skb_pagelen(skb) + PAGE_SIZE - 1) >> PAGE_SHIFT;
1424 	for (i = 0; i < new_frags; i++) {
1425 		page = alloc_page(gfp_mask);
1426 		if (!page) {
1427 			while (head) {
1428 				struct page *next = (struct page *)page_private(head);
1429 				put_page(head);
1430 				head = next;
1431 			}
1432 			return -ENOMEM;
1433 		}
1434 		set_page_private(page, (unsigned long)head);
1435 		head = page;
1436 	}
1437 
1438 	page = head;
1439 	d_off = 0;
1440 	for (i = 0; i < num_frags; i++) {
1441 		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
1442 		u32 p_off, p_len, copied;
1443 		struct page *p;
1444 		u8 *vaddr;
1445 
1446 		skb_frag_foreach_page(f, skb_frag_off(f), skb_frag_size(f),
1447 				      p, p_off, p_len, copied) {
1448 			u32 copy, done = 0;
1449 			vaddr = kmap_atomic(p);
1450 
1451 			while (done < p_len) {
1452 				if (d_off == PAGE_SIZE) {
1453 					d_off = 0;
1454 					page = (struct page *)page_private(page);
1455 				}
1456 				copy = min_t(u32, PAGE_SIZE - d_off, p_len - done);
1457 				memcpy(page_address(page) + d_off,
1458 				       vaddr + p_off + done, copy);
1459 				done += copy;
1460 				d_off += copy;
1461 			}
1462 			kunmap_atomic(vaddr);
1463 		}
1464 	}
1465 
1466 	/* skb frags release userspace buffers */
1467 	for (i = 0; i < num_frags; i++)
1468 		skb_frag_unref(skb, i);
1469 
1470 	/* skb frags point to kernel buffers */
1471 	for (i = 0; i < new_frags - 1; i++) {
1472 		__skb_fill_page_desc(skb, i, head, 0, PAGE_SIZE);
1473 		head = (struct page *)page_private(head);
1474 	}
1475 	__skb_fill_page_desc(skb, new_frags - 1, head, 0, d_off);
1476 	skb_shinfo(skb)->nr_frags = new_frags;
1477 
1478 release:
1479 	skb_zcopy_clear(skb, false);
1480 	return 0;
1481 }
1482 EXPORT_SYMBOL_GPL(skb_copy_ubufs);
1483 
1484 /**
1485  *	skb_clone	-	duplicate an sk_buff
1486  *	@skb: buffer to clone
1487  *	@gfp_mask: allocation priority
1488  *
1489  *	Duplicate an &sk_buff. The new one is not owned by a socket. Both
1490  *	copies share the same packet data but not structure. The new
1491  *	buffer has a reference count of 1. If the allocation fails the
1492  *	function returns %NULL otherwise the new buffer is returned.
1493  *
1494  *	If this function is called from an interrupt gfp_mask() must be
1495  *	%GFP_ATOMIC.
1496  */
1497 
1498 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
1499 {
1500 	struct sk_buff_fclones *fclones = container_of(skb,
1501 						       struct sk_buff_fclones,
1502 						       skb1);
1503 	struct sk_buff *n;
1504 
1505 	if (skb_orphan_frags(skb, gfp_mask))
1506 		return NULL;
1507 
1508 	if (skb->fclone == SKB_FCLONE_ORIG &&
1509 	    refcount_read(&fclones->fclone_ref) == 1) {
1510 		n = &fclones->skb2;
1511 		refcount_set(&fclones->fclone_ref, 2);
1512 	} else {
1513 		if (skb_pfmemalloc(skb))
1514 			gfp_mask |= __GFP_MEMALLOC;
1515 
1516 		n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
1517 		if (!n)
1518 			return NULL;
1519 
1520 		n->fclone = SKB_FCLONE_UNAVAILABLE;
1521 	}
1522 
1523 	return __skb_clone(n, skb);
1524 }
1525 EXPORT_SYMBOL(skb_clone);
1526 
1527 void skb_headers_offset_update(struct sk_buff *skb, int off)
1528 {
1529 	/* Only adjust this if it actually is csum_start rather than csum */
1530 	if (skb->ip_summed == CHECKSUM_PARTIAL)
1531 		skb->csum_start += off;
1532 	/* {transport,network,mac}_header and tail are relative to skb->head */
1533 	skb->transport_header += off;
1534 	skb->network_header   += off;
1535 	if (skb_mac_header_was_set(skb))
1536 		skb->mac_header += off;
1537 	skb->inner_transport_header += off;
1538 	skb->inner_network_header += off;
1539 	skb->inner_mac_header += off;
1540 }
1541 EXPORT_SYMBOL(skb_headers_offset_update);
1542 
1543 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old)
1544 {
1545 	__copy_skb_header(new, old);
1546 
1547 	skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
1548 	skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
1549 	skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
1550 }
1551 EXPORT_SYMBOL(skb_copy_header);
1552 
1553 static inline int skb_alloc_rx_flag(const struct sk_buff *skb)
1554 {
1555 	if (skb_pfmemalloc(skb))
1556 		return SKB_ALLOC_RX;
1557 	return 0;
1558 }
1559 
1560 /**
1561  *	skb_copy	-	create private copy of an sk_buff
1562  *	@skb: buffer to copy
1563  *	@gfp_mask: allocation priority
1564  *
1565  *	Make a copy of both an &sk_buff and its data. This is used when the
1566  *	caller wishes to modify the data and needs a private copy of the
1567  *	data to alter. Returns %NULL on failure or the pointer to the buffer
1568  *	on success. The returned buffer has a reference count of 1.
1569  *
1570  *	As by-product this function converts non-linear &sk_buff to linear
1571  *	one, so that &sk_buff becomes completely private and caller is allowed
1572  *	to modify all the data of returned buffer. This means that this
1573  *	function is not recommended for use in circumstances when only
1574  *	header is going to be modified. Use pskb_copy() instead.
1575  */
1576 
1577 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
1578 {
1579 	int headerlen = skb_headroom(skb);
1580 	unsigned int size = skb_end_offset(skb) + skb->data_len;
1581 	struct sk_buff *n = __alloc_skb(size, gfp_mask,
1582 					skb_alloc_rx_flag(skb), NUMA_NO_NODE);
1583 
1584 	if (!n)
1585 		return NULL;
1586 
1587 	/* Set the data pointer */
1588 	skb_reserve(n, headerlen);
1589 	/* Set the tail pointer and length */
1590 	skb_put(n, skb->len);
1591 
1592 	BUG_ON(skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len));
1593 
1594 	skb_copy_header(n, skb);
1595 	return n;
1596 }
1597 EXPORT_SYMBOL(skb_copy);
1598 
1599 /**
1600  *	__pskb_copy_fclone	-  create copy of an sk_buff with private head.
1601  *	@skb: buffer to copy
1602  *	@headroom: headroom of new skb
1603  *	@gfp_mask: allocation priority
1604  *	@fclone: if true allocate the copy of the skb from the fclone
1605  *	cache instead of the head cache; it is recommended to set this
1606  *	to true for the cases where the copy will likely be cloned
1607  *
1608  *	Make a copy of both an &sk_buff and part of its data, located
1609  *	in header. Fragmented data remain shared. This is used when
1610  *	the caller wishes to modify only header of &sk_buff and needs
1611  *	private copy of the header to alter. Returns %NULL on failure
1612  *	or the pointer to the buffer on success.
1613  *	The returned buffer has a reference count of 1.
1614  */
1615 
1616 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1617 				   gfp_t gfp_mask, bool fclone)
1618 {
1619 	unsigned int size = skb_headlen(skb) + headroom;
1620 	int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0);
1621 	struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE);
1622 
1623 	if (!n)
1624 		goto out;
1625 
1626 	/* Set the data pointer */
1627 	skb_reserve(n, headroom);
1628 	/* Set the tail pointer and length */
1629 	skb_put(n, skb_headlen(skb));
1630 	/* Copy the bytes */
1631 	skb_copy_from_linear_data(skb, n->data, n->len);
1632 
1633 	n->truesize += skb->data_len;
1634 	n->data_len  = skb->data_len;
1635 	n->len	     = skb->len;
1636 
1637 	if (skb_shinfo(skb)->nr_frags) {
1638 		int i;
1639 
1640 		if (skb_orphan_frags(skb, gfp_mask) ||
1641 		    skb_zerocopy_clone(n, skb, gfp_mask)) {
1642 			kfree_skb(n);
1643 			n = NULL;
1644 			goto out;
1645 		}
1646 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1647 			skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
1648 			skb_frag_ref(skb, i);
1649 		}
1650 		skb_shinfo(n)->nr_frags = i;
1651 	}
1652 
1653 	if (skb_has_frag_list(skb)) {
1654 		skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
1655 		skb_clone_fraglist(n);
1656 	}
1657 
1658 	skb_copy_header(n, skb);
1659 out:
1660 	return n;
1661 }
1662 EXPORT_SYMBOL(__pskb_copy_fclone);
1663 
1664 /**
1665  *	pskb_expand_head - reallocate header of &sk_buff
1666  *	@skb: buffer to reallocate
1667  *	@nhead: room to add at head
1668  *	@ntail: room to add at tail
1669  *	@gfp_mask: allocation priority
1670  *
1671  *	Expands (or creates identical copy, if @nhead and @ntail are zero)
1672  *	header of @skb. &sk_buff itself is not changed. &sk_buff MUST have
1673  *	reference count of 1. Returns zero in the case of success or error,
1674  *	if expansion failed. In the last case, &sk_buff is not changed.
1675  *
1676  *	All the pointers pointing into skb header may change and must be
1677  *	reloaded after call to this function.
1678  */
1679 
1680 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
1681 		     gfp_t gfp_mask)
1682 {
1683 	int i, osize = skb_end_offset(skb);
1684 	int size = osize + nhead + ntail;
1685 	long off;
1686 	u8 *data;
1687 
1688 	BUG_ON(nhead < 0);
1689 
1690 	BUG_ON(skb_shared(skb));
1691 
1692 	size = SKB_DATA_ALIGN(size);
1693 
1694 	if (skb_pfmemalloc(skb))
1695 		gfp_mask |= __GFP_MEMALLOC;
1696 	data = kmalloc_reserve(size + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
1697 			       gfp_mask, NUMA_NO_NODE, NULL);
1698 	if (!data)
1699 		goto nodata;
1700 	size = SKB_WITH_OVERHEAD(ksize(data));
1701 
1702 	/* Copy only real data... and, alas, header. This should be
1703 	 * optimized for the cases when header is void.
1704 	 */
1705 	memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head);
1706 
1707 	memcpy((struct skb_shared_info *)(data + size),
1708 	       skb_shinfo(skb),
1709 	       offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags]));
1710 
1711 	/*
1712 	 * if shinfo is shared we must drop the old head gracefully, but if it
1713 	 * is not we can just drop the old head and let the existing refcount
1714 	 * be since all we did is relocate the values
1715 	 */
1716 	if (skb_cloned(skb)) {
1717 		if (skb_orphan_frags(skb, gfp_mask))
1718 			goto nofrags;
1719 		if (skb_zcopy(skb))
1720 			refcount_inc(&skb_uarg(skb)->refcnt);
1721 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1722 			skb_frag_ref(skb, i);
1723 
1724 		if (skb_has_frag_list(skb))
1725 			skb_clone_fraglist(skb);
1726 
1727 		skb_release_data(skb);
1728 	} else {
1729 		skb_free_head(skb);
1730 	}
1731 	off = (data + nhead) - skb->head;
1732 
1733 	skb->head     = data;
1734 	skb->head_frag = 0;
1735 	skb->data    += off;
1736 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1737 	skb->end      = size;
1738 	off           = nhead;
1739 #else
1740 	skb->end      = skb->head + size;
1741 #endif
1742 	skb->tail	      += off;
1743 	skb_headers_offset_update(skb, nhead);
1744 	skb->cloned   = 0;
1745 	skb->hdr_len  = 0;
1746 	skb->nohdr    = 0;
1747 	atomic_set(&skb_shinfo(skb)->dataref, 1);
1748 
1749 	skb_metadata_clear(skb);
1750 
1751 	/* It is not generally safe to change skb->truesize.
1752 	 * For the moment, we really care of rx path, or
1753 	 * when skb is orphaned (not attached to a socket).
1754 	 */
1755 	if (!skb->sk || skb->destructor == sock_edemux)
1756 		skb->truesize += size - osize;
1757 
1758 	return 0;
1759 
1760 nofrags:
1761 	kfree(data);
1762 nodata:
1763 	return -ENOMEM;
1764 }
1765 EXPORT_SYMBOL(pskb_expand_head);
1766 
1767 /* Make private copy of skb with writable head and some headroom */
1768 
1769 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
1770 {
1771 	struct sk_buff *skb2;
1772 	int delta = headroom - skb_headroom(skb);
1773 
1774 	if (delta <= 0)
1775 		skb2 = pskb_copy(skb, GFP_ATOMIC);
1776 	else {
1777 		skb2 = skb_clone(skb, GFP_ATOMIC);
1778 		if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
1779 					     GFP_ATOMIC)) {
1780 			kfree_skb(skb2);
1781 			skb2 = NULL;
1782 		}
1783 	}
1784 	return skb2;
1785 }
1786 EXPORT_SYMBOL(skb_realloc_headroom);
1787 
1788 /**
1789  *	skb_copy_expand	-	copy and expand sk_buff
1790  *	@skb: buffer to copy
1791  *	@newheadroom: new free bytes at head
1792  *	@newtailroom: new free bytes at tail
1793  *	@gfp_mask: allocation priority
1794  *
1795  *	Make a copy of both an &sk_buff and its data and while doing so
1796  *	allocate additional space.
1797  *
1798  *	This is used when the caller wishes to modify the data and needs a
1799  *	private copy of the data to alter as well as more space for new fields.
1800  *	Returns %NULL on failure or the pointer to the buffer
1801  *	on success. The returned buffer has a reference count of 1.
1802  *
1803  *	You must pass %GFP_ATOMIC as the allocation priority if this function
1804  *	is called from an interrupt.
1805  */
1806 struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
1807 				int newheadroom, int newtailroom,
1808 				gfp_t gfp_mask)
1809 {
1810 	/*
1811 	 *	Allocate the copy buffer
1812 	 */
1813 	struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom,
1814 					gfp_mask, skb_alloc_rx_flag(skb),
1815 					NUMA_NO_NODE);
1816 	int oldheadroom = skb_headroom(skb);
1817 	int head_copy_len, head_copy_off;
1818 
1819 	if (!n)
1820 		return NULL;
1821 
1822 	skb_reserve(n, newheadroom);
1823 
1824 	/* Set the tail pointer and length */
1825 	skb_put(n, skb->len);
1826 
1827 	head_copy_len = oldheadroom;
1828 	head_copy_off = 0;
1829 	if (newheadroom <= head_copy_len)
1830 		head_copy_len = newheadroom;
1831 	else
1832 		head_copy_off = newheadroom - head_copy_len;
1833 
1834 	/* Copy the linear header and data. */
1835 	BUG_ON(skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
1836 			     skb->len + head_copy_len));
1837 
1838 	skb_copy_header(n, skb);
1839 
1840 	skb_headers_offset_update(n, newheadroom - oldheadroom);
1841 
1842 	return n;
1843 }
1844 EXPORT_SYMBOL(skb_copy_expand);
1845 
1846 /**
1847  *	__skb_pad		-	zero pad the tail of an skb
1848  *	@skb: buffer to pad
1849  *	@pad: space to pad
1850  *	@free_on_error: free buffer on error
1851  *
1852  *	Ensure that a buffer is followed by a padding area that is zero
1853  *	filled. Used by network drivers which may DMA or transfer data
1854  *	beyond the buffer end onto the wire.
1855  *
1856  *	May return error in out of memory cases. The skb is freed on error
1857  *	if @free_on_error is true.
1858  */
1859 
1860 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error)
1861 {
1862 	int err;
1863 	int ntail;
1864 
1865 	/* If the skbuff is non linear tailroom is always zero.. */
1866 	if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
1867 		memset(skb->data+skb->len, 0, pad);
1868 		return 0;
1869 	}
1870 
1871 	ntail = skb->data_len + pad - (skb->end - skb->tail);
1872 	if (likely(skb_cloned(skb) || ntail > 0)) {
1873 		err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
1874 		if (unlikely(err))
1875 			goto free_skb;
1876 	}
1877 
1878 	/* FIXME: The use of this function with non-linear skb's really needs
1879 	 * to be audited.
1880 	 */
1881 	err = skb_linearize(skb);
1882 	if (unlikely(err))
1883 		goto free_skb;
1884 
1885 	memset(skb->data + skb->len, 0, pad);
1886 	return 0;
1887 
1888 free_skb:
1889 	if (free_on_error)
1890 		kfree_skb(skb);
1891 	return err;
1892 }
1893 EXPORT_SYMBOL(__skb_pad);
1894 
1895 /**
1896  *	pskb_put - add data to the tail of a potentially fragmented buffer
1897  *	@skb: start of the buffer to use
1898  *	@tail: tail fragment of the buffer to use
1899  *	@len: amount of data to add
1900  *
1901  *	This function extends the used data area of the potentially
1902  *	fragmented buffer. @tail must be the last fragment of @skb -- or
1903  *	@skb itself. If this would exceed the total buffer size the kernel
1904  *	will panic. A pointer to the first byte of the extra data is
1905  *	returned.
1906  */
1907 
1908 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len)
1909 {
1910 	if (tail != skb) {
1911 		skb->data_len += len;
1912 		skb->len += len;
1913 	}
1914 	return skb_put(tail, len);
1915 }
1916 EXPORT_SYMBOL_GPL(pskb_put);
1917 
1918 /**
1919  *	skb_put - add data to a buffer
1920  *	@skb: buffer to use
1921  *	@len: amount of data to add
1922  *
1923  *	This function extends the used data area of the buffer. If this would
1924  *	exceed the total buffer size the kernel will panic. A pointer to the
1925  *	first byte of the extra data is returned.
1926  */
1927 void *skb_put(struct sk_buff *skb, unsigned int len)
1928 {
1929 	void *tmp = skb_tail_pointer(skb);
1930 	SKB_LINEAR_ASSERT(skb);
1931 	skb->tail += len;
1932 	skb->len  += len;
1933 	if (unlikely(skb->tail > skb->end))
1934 		skb_over_panic(skb, len, __builtin_return_address(0));
1935 	return tmp;
1936 }
1937 EXPORT_SYMBOL(skb_put);
1938 
1939 /**
1940  *	skb_push - add data to the start of a buffer
1941  *	@skb: buffer to use
1942  *	@len: amount of data to add
1943  *
1944  *	This function extends the used data area of the buffer at the buffer
1945  *	start. If this would exceed the total buffer headroom the kernel will
1946  *	panic. A pointer to the first byte of the extra data is returned.
1947  */
1948 void *skb_push(struct sk_buff *skb, unsigned int len)
1949 {
1950 	skb->data -= len;
1951 	skb->len  += len;
1952 	if (unlikely(skb->data < skb->head))
1953 		skb_under_panic(skb, len, __builtin_return_address(0));
1954 	return skb->data;
1955 }
1956 EXPORT_SYMBOL(skb_push);
1957 
1958 /**
1959  *	skb_pull - remove data from the start of a buffer
1960  *	@skb: buffer to use
1961  *	@len: amount of data to remove
1962  *
1963  *	This function removes data from the start of a buffer, returning
1964  *	the memory to the headroom. A pointer to the next data in the buffer
1965  *	is returned. Once the data has been pulled future pushes will overwrite
1966  *	the old data.
1967  */
1968 void *skb_pull(struct sk_buff *skb, unsigned int len)
1969 {
1970 	return skb_pull_inline(skb, len);
1971 }
1972 EXPORT_SYMBOL(skb_pull);
1973 
1974 /**
1975  *	skb_trim - remove end from a buffer
1976  *	@skb: buffer to alter
1977  *	@len: new length
1978  *
1979  *	Cut the length of a buffer down by removing data from the tail. If
1980  *	the buffer is already under the length specified it is not modified.
1981  *	The skb must be linear.
1982  */
1983 void skb_trim(struct sk_buff *skb, unsigned int len)
1984 {
1985 	if (skb->len > len)
1986 		__skb_trim(skb, len);
1987 }
1988 EXPORT_SYMBOL(skb_trim);
1989 
1990 /* Trims skb to length len. It can change skb pointers.
1991  */
1992 
1993 int ___pskb_trim(struct sk_buff *skb, unsigned int len)
1994 {
1995 	struct sk_buff **fragp;
1996 	struct sk_buff *frag;
1997 	int offset = skb_headlen(skb);
1998 	int nfrags = skb_shinfo(skb)->nr_frags;
1999 	int i;
2000 	int err;
2001 
2002 	if (skb_cloned(skb) &&
2003 	    unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
2004 		return err;
2005 
2006 	i = 0;
2007 	if (offset >= len)
2008 		goto drop_pages;
2009 
2010 	for (; i < nfrags; i++) {
2011 		int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]);
2012 
2013 		if (end < len) {
2014 			offset = end;
2015 			continue;
2016 		}
2017 
2018 		skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset);
2019 
2020 drop_pages:
2021 		skb_shinfo(skb)->nr_frags = i;
2022 
2023 		for (; i < nfrags; i++)
2024 			skb_frag_unref(skb, i);
2025 
2026 		if (skb_has_frag_list(skb))
2027 			skb_drop_fraglist(skb);
2028 		goto done;
2029 	}
2030 
2031 	for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
2032 	     fragp = &frag->next) {
2033 		int end = offset + frag->len;
2034 
2035 		if (skb_shared(frag)) {
2036 			struct sk_buff *nfrag;
2037 
2038 			nfrag = skb_clone(frag, GFP_ATOMIC);
2039 			if (unlikely(!nfrag))
2040 				return -ENOMEM;
2041 
2042 			nfrag->next = frag->next;
2043 			consume_skb(frag);
2044 			frag = nfrag;
2045 			*fragp = frag;
2046 		}
2047 
2048 		if (end < len) {
2049 			offset = end;
2050 			continue;
2051 		}
2052 
2053 		if (end > len &&
2054 		    unlikely((err = pskb_trim(frag, len - offset))))
2055 			return err;
2056 
2057 		if (frag->next)
2058 			skb_drop_list(&frag->next);
2059 		break;
2060 	}
2061 
2062 done:
2063 	if (len > skb_headlen(skb)) {
2064 		skb->data_len -= skb->len - len;
2065 		skb->len       = len;
2066 	} else {
2067 		skb->len       = len;
2068 		skb->data_len  = 0;
2069 		skb_set_tail_pointer(skb, len);
2070 	}
2071 
2072 	if (!skb->sk || skb->destructor == sock_edemux)
2073 		skb_condense(skb);
2074 	return 0;
2075 }
2076 EXPORT_SYMBOL(___pskb_trim);
2077 
2078 /* Note : use pskb_trim_rcsum() instead of calling this directly
2079  */
2080 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len)
2081 {
2082 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
2083 		int delta = skb->len - len;
2084 
2085 		skb->csum = csum_block_sub(skb->csum,
2086 					   skb_checksum(skb, len, delta, 0),
2087 					   len);
2088 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
2089 		int hdlen = (len > skb_headlen(skb)) ? skb_headlen(skb) : len;
2090 		int offset = skb_checksum_start_offset(skb) + skb->csum_offset;
2091 
2092 		if (offset + sizeof(__sum16) > hdlen)
2093 			return -EINVAL;
2094 	}
2095 	return __pskb_trim(skb, len);
2096 }
2097 EXPORT_SYMBOL(pskb_trim_rcsum_slow);
2098 
2099 /**
2100  *	__pskb_pull_tail - advance tail of skb header
2101  *	@skb: buffer to reallocate
2102  *	@delta: number of bytes to advance tail
2103  *
2104  *	The function makes a sense only on a fragmented &sk_buff,
2105  *	it expands header moving its tail forward and copying necessary
2106  *	data from fragmented part.
2107  *
2108  *	&sk_buff MUST have reference count of 1.
2109  *
2110  *	Returns %NULL (and &sk_buff does not change) if pull failed
2111  *	or value of new tail of skb in the case of success.
2112  *
2113  *	All the pointers pointing into skb header may change and must be
2114  *	reloaded after call to this function.
2115  */
2116 
2117 /* Moves tail of skb head forward, copying data from fragmented part,
2118  * when it is necessary.
2119  * 1. It may fail due to malloc failure.
2120  * 2. It may change skb pointers.
2121  *
2122  * It is pretty complicated. Luckily, it is called only in exceptional cases.
2123  */
2124 void *__pskb_pull_tail(struct sk_buff *skb, int delta)
2125 {
2126 	/* If skb has not enough free space at tail, get new one
2127 	 * plus 128 bytes for future expansions. If we have enough
2128 	 * room at tail, reallocate without expansion only if skb is cloned.
2129 	 */
2130 	int i, k, eat = (skb->tail + delta) - skb->end;
2131 
2132 	if (eat > 0 || skb_cloned(skb)) {
2133 		if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
2134 				     GFP_ATOMIC))
2135 			return NULL;
2136 	}
2137 
2138 	BUG_ON(skb_copy_bits(skb, skb_headlen(skb),
2139 			     skb_tail_pointer(skb), delta));
2140 
2141 	/* Optimization: no fragments, no reasons to preestimate
2142 	 * size of pulled pages. Superb.
2143 	 */
2144 	if (!skb_has_frag_list(skb))
2145 		goto pull_pages;
2146 
2147 	/* Estimate size of pulled pages. */
2148 	eat = delta;
2149 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2150 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2151 
2152 		if (size >= eat)
2153 			goto pull_pages;
2154 		eat -= size;
2155 	}
2156 
2157 	/* If we need update frag list, we are in troubles.
2158 	 * Certainly, it is possible to add an offset to skb data,
2159 	 * but taking into account that pulling is expected to
2160 	 * be very rare operation, it is worth to fight against
2161 	 * further bloating skb head and crucify ourselves here instead.
2162 	 * Pure masohism, indeed. 8)8)
2163 	 */
2164 	if (eat) {
2165 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
2166 		struct sk_buff *clone = NULL;
2167 		struct sk_buff *insp = NULL;
2168 
2169 		do {
2170 			if (list->len <= eat) {
2171 				/* Eaten as whole. */
2172 				eat -= list->len;
2173 				list = list->next;
2174 				insp = list;
2175 			} else {
2176 				/* Eaten partially. */
2177 
2178 				if (skb_shared(list)) {
2179 					/* Sucks! We need to fork list. :-( */
2180 					clone = skb_clone(list, GFP_ATOMIC);
2181 					if (!clone)
2182 						return NULL;
2183 					insp = list->next;
2184 					list = clone;
2185 				} else {
2186 					/* This may be pulled without
2187 					 * problems. */
2188 					insp = list;
2189 				}
2190 				if (!pskb_pull(list, eat)) {
2191 					kfree_skb(clone);
2192 					return NULL;
2193 				}
2194 				break;
2195 			}
2196 		} while (eat);
2197 
2198 		/* Free pulled out fragments. */
2199 		while ((list = skb_shinfo(skb)->frag_list) != insp) {
2200 			skb_shinfo(skb)->frag_list = list->next;
2201 			kfree_skb(list);
2202 		}
2203 		/* And insert new clone at head. */
2204 		if (clone) {
2205 			clone->next = list;
2206 			skb_shinfo(skb)->frag_list = clone;
2207 		}
2208 	}
2209 	/* Success! Now we may commit changes to skb data. */
2210 
2211 pull_pages:
2212 	eat = delta;
2213 	k = 0;
2214 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2215 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2216 
2217 		if (size <= eat) {
2218 			skb_frag_unref(skb, i);
2219 			eat -= size;
2220 		} else {
2221 			skb_frag_t *frag = &skb_shinfo(skb)->frags[k];
2222 
2223 			*frag = skb_shinfo(skb)->frags[i];
2224 			if (eat) {
2225 				skb_frag_off_add(frag, eat);
2226 				skb_frag_size_sub(frag, eat);
2227 				if (!i)
2228 					goto end;
2229 				eat = 0;
2230 			}
2231 			k++;
2232 		}
2233 	}
2234 	skb_shinfo(skb)->nr_frags = k;
2235 
2236 end:
2237 	skb->tail     += delta;
2238 	skb->data_len -= delta;
2239 
2240 	if (!skb->data_len)
2241 		skb_zcopy_clear(skb, false);
2242 
2243 	return skb_tail_pointer(skb);
2244 }
2245 EXPORT_SYMBOL(__pskb_pull_tail);
2246 
2247 /**
2248  *	skb_copy_bits - copy bits from skb to kernel buffer
2249  *	@skb: source skb
2250  *	@offset: offset in source
2251  *	@to: destination buffer
2252  *	@len: number of bytes to copy
2253  *
2254  *	Copy the specified number of bytes from the source skb to the
2255  *	destination buffer.
2256  *
2257  *	CAUTION ! :
2258  *		If its prototype is ever changed,
2259  *		check arch/{*}/net/{*}.S files,
2260  *		since it is called from BPF assembly code.
2261  */
2262 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
2263 {
2264 	int start = skb_headlen(skb);
2265 	struct sk_buff *frag_iter;
2266 	int i, copy;
2267 
2268 	if (offset > (int)skb->len - len)
2269 		goto fault;
2270 
2271 	/* Copy header. */
2272 	if ((copy = start - offset) > 0) {
2273 		if (copy > len)
2274 			copy = len;
2275 		skb_copy_from_linear_data_offset(skb, offset, to, copy);
2276 		if ((len -= copy) == 0)
2277 			return 0;
2278 		offset += copy;
2279 		to     += copy;
2280 	}
2281 
2282 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2283 		int end;
2284 		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
2285 
2286 		WARN_ON(start > offset + len);
2287 
2288 		end = start + skb_frag_size(f);
2289 		if ((copy = end - offset) > 0) {
2290 			u32 p_off, p_len, copied;
2291 			struct page *p;
2292 			u8 *vaddr;
2293 
2294 			if (copy > len)
2295 				copy = len;
2296 
2297 			skb_frag_foreach_page(f,
2298 					      skb_frag_off(f) + offset - start,
2299 					      copy, p, p_off, p_len, copied) {
2300 				vaddr = kmap_atomic(p);
2301 				memcpy(to + copied, vaddr + p_off, p_len);
2302 				kunmap_atomic(vaddr);
2303 			}
2304 
2305 			if ((len -= copy) == 0)
2306 				return 0;
2307 			offset += copy;
2308 			to     += copy;
2309 		}
2310 		start = end;
2311 	}
2312 
2313 	skb_walk_frags(skb, frag_iter) {
2314 		int end;
2315 
2316 		WARN_ON(start > offset + len);
2317 
2318 		end = start + frag_iter->len;
2319 		if ((copy = end - offset) > 0) {
2320 			if (copy > len)
2321 				copy = len;
2322 			if (skb_copy_bits(frag_iter, offset - start, to, copy))
2323 				goto fault;
2324 			if ((len -= copy) == 0)
2325 				return 0;
2326 			offset += copy;
2327 			to     += copy;
2328 		}
2329 		start = end;
2330 	}
2331 
2332 	if (!len)
2333 		return 0;
2334 
2335 fault:
2336 	return -EFAULT;
2337 }
2338 EXPORT_SYMBOL(skb_copy_bits);
2339 
2340 /*
2341  * Callback from splice_to_pipe(), if we need to release some pages
2342  * at the end of the spd in case we error'ed out in filling the pipe.
2343  */
2344 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
2345 {
2346 	put_page(spd->pages[i]);
2347 }
2348 
2349 static struct page *linear_to_page(struct page *page, unsigned int *len,
2350 				   unsigned int *offset,
2351 				   struct sock *sk)
2352 {
2353 	struct page_frag *pfrag = sk_page_frag(sk);
2354 
2355 	if (!sk_page_frag_refill(sk, pfrag))
2356 		return NULL;
2357 
2358 	*len = min_t(unsigned int, *len, pfrag->size - pfrag->offset);
2359 
2360 	memcpy(page_address(pfrag->page) + pfrag->offset,
2361 	       page_address(page) + *offset, *len);
2362 	*offset = pfrag->offset;
2363 	pfrag->offset += *len;
2364 
2365 	return pfrag->page;
2366 }
2367 
2368 static bool spd_can_coalesce(const struct splice_pipe_desc *spd,
2369 			     struct page *page,
2370 			     unsigned int offset)
2371 {
2372 	return	spd->nr_pages &&
2373 		spd->pages[spd->nr_pages - 1] == page &&
2374 		(spd->partial[spd->nr_pages - 1].offset +
2375 		 spd->partial[spd->nr_pages - 1].len == offset);
2376 }
2377 
2378 /*
2379  * Fill page/offset/length into spd, if it can hold more pages.
2380  */
2381 static bool spd_fill_page(struct splice_pipe_desc *spd,
2382 			  struct pipe_inode_info *pipe, struct page *page,
2383 			  unsigned int *len, unsigned int offset,
2384 			  bool linear,
2385 			  struct sock *sk)
2386 {
2387 	if (unlikely(spd->nr_pages == MAX_SKB_FRAGS))
2388 		return true;
2389 
2390 	if (linear) {
2391 		page = linear_to_page(page, len, &offset, sk);
2392 		if (!page)
2393 			return true;
2394 	}
2395 	if (spd_can_coalesce(spd, page, offset)) {
2396 		spd->partial[spd->nr_pages - 1].len += *len;
2397 		return false;
2398 	}
2399 	get_page(page);
2400 	spd->pages[spd->nr_pages] = page;
2401 	spd->partial[spd->nr_pages].len = *len;
2402 	spd->partial[spd->nr_pages].offset = offset;
2403 	spd->nr_pages++;
2404 
2405 	return false;
2406 }
2407 
2408 static bool __splice_segment(struct page *page, unsigned int poff,
2409 			     unsigned int plen, unsigned int *off,
2410 			     unsigned int *len,
2411 			     struct splice_pipe_desc *spd, bool linear,
2412 			     struct sock *sk,
2413 			     struct pipe_inode_info *pipe)
2414 {
2415 	if (!*len)
2416 		return true;
2417 
2418 	/* skip this segment if already processed */
2419 	if (*off >= plen) {
2420 		*off -= plen;
2421 		return false;
2422 	}
2423 
2424 	/* ignore any bits we already processed */
2425 	poff += *off;
2426 	plen -= *off;
2427 	*off = 0;
2428 
2429 	do {
2430 		unsigned int flen = min(*len, plen);
2431 
2432 		if (spd_fill_page(spd, pipe, page, &flen, poff,
2433 				  linear, sk))
2434 			return true;
2435 		poff += flen;
2436 		plen -= flen;
2437 		*len -= flen;
2438 	} while (*len && plen);
2439 
2440 	return false;
2441 }
2442 
2443 /*
2444  * Map linear and fragment data from the skb to spd. It reports true if the
2445  * pipe is full or if we already spliced the requested length.
2446  */
2447 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe,
2448 			      unsigned int *offset, unsigned int *len,
2449 			      struct splice_pipe_desc *spd, struct sock *sk)
2450 {
2451 	int seg;
2452 	struct sk_buff *iter;
2453 
2454 	/* map the linear part :
2455 	 * If skb->head_frag is set, this 'linear' part is backed by a
2456 	 * fragment, and if the head is not shared with any clones then
2457 	 * we can avoid a copy since we own the head portion of this page.
2458 	 */
2459 	if (__splice_segment(virt_to_page(skb->data),
2460 			     (unsigned long) skb->data & (PAGE_SIZE - 1),
2461 			     skb_headlen(skb),
2462 			     offset, len, spd,
2463 			     skb_head_is_locked(skb),
2464 			     sk, pipe))
2465 		return true;
2466 
2467 	/*
2468 	 * then map the fragments
2469 	 */
2470 	for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
2471 		const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
2472 
2473 		if (__splice_segment(skb_frag_page(f),
2474 				     skb_frag_off(f), skb_frag_size(f),
2475 				     offset, len, spd, false, sk, pipe))
2476 			return true;
2477 	}
2478 
2479 	skb_walk_frags(skb, iter) {
2480 		if (*offset >= iter->len) {
2481 			*offset -= iter->len;
2482 			continue;
2483 		}
2484 		/* __skb_splice_bits() only fails if the output has no room
2485 		 * left, so no point in going over the frag_list for the error
2486 		 * case.
2487 		 */
2488 		if (__skb_splice_bits(iter, pipe, offset, len, spd, sk))
2489 			return true;
2490 	}
2491 
2492 	return false;
2493 }
2494 
2495 /*
2496  * Map data from the skb to a pipe. Should handle both the linear part,
2497  * the fragments, and the frag list.
2498  */
2499 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
2500 		    struct pipe_inode_info *pipe, unsigned int tlen,
2501 		    unsigned int flags)
2502 {
2503 	struct partial_page partial[MAX_SKB_FRAGS];
2504 	struct page *pages[MAX_SKB_FRAGS];
2505 	struct splice_pipe_desc spd = {
2506 		.pages = pages,
2507 		.partial = partial,
2508 		.nr_pages_max = MAX_SKB_FRAGS,
2509 		.ops = &nosteal_pipe_buf_ops,
2510 		.spd_release = sock_spd_release,
2511 	};
2512 	int ret = 0;
2513 
2514 	__skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk);
2515 
2516 	if (spd.nr_pages)
2517 		ret = splice_to_pipe(pipe, &spd);
2518 
2519 	return ret;
2520 }
2521 EXPORT_SYMBOL_GPL(skb_splice_bits);
2522 
2523 static int sendmsg_unlocked(struct sock *sk, struct msghdr *msg,
2524 			    struct kvec *vec, size_t num, size_t size)
2525 {
2526 	struct socket *sock = sk->sk_socket;
2527 
2528 	if (!sock)
2529 		return -EINVAL;
2530 	return kernel_sendmsg(sock, msg, vec, num, size);
2531 }
2532 
2533 static int sendpage_unlocked(struct sock *sk, struct page *page, int offset,
2534 			     size_t size, int flags)
2535 {
2536 	struct socket *sock = sk->sk_socket;
2537 
2538 	if (!sock)
2539 		return -EINVAL;
2540 	return kernel_sendpage(sock, page, offset, size, flags);
2541 }
2542 
2543 typedef int (*sendmsg_func)(struct sock *sk, struct msghdr *msg,
2544 			    struct kvec *vec, size_t num, size_t size);
2545 typedef int (*sendpage_func)(struct sock *sk, struct page *page, int offset,
2546 			     size_t size, int flags);
2547 static int __skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset,
2548 			   int len, sendmsg_func sendmsg, sendpage_func sendpage)
2549 {
2550 	unsigned int orig_len = len;
2551 	struct sk_buff *head = skb;
2552 	unsigned short fragidx;
2553 	int slen, ret;
2554 
2555 do_frag_list:
2556 
2557 	/* Deal with head data */
2558 	while (offset < skb_headlen(skb) && len) {
2559 		struct kvec kv;
2560 		struct msghdr msg;
2561 
2562 		slen = min_t(int, len, skb_headlen(skb) - offset);
2563 		kv.iov_base = skb->data + offset;
2564 		kv.iov_len = slen;
2565 		memset(&msg, 0, sizeof(msg));
2566 		msg.msg_flags = MSG_DONTWAIT;
2567 
2568 		ret = INDIRECT_CALL_2(sendmsg, kernel_sendmsg_locked,
2569 				      sendmsg_unlocked, sk, &msg, &kv, 1, slen);
2570 		if (ret <= 0)
2571 			goto error;
2572 
2573 		offset += ret;
2574 		len -= ret;
2575 	}
2576 
2577 	/* All the data was skb head? */
2578 	if (!len)
2579 		goto out;
2580 
2581 	/* Make offset relative to start of frags */
2582 	offset -= skb_headlen(skb);
2583 
2584 	/* Find where we are in frag list */
2585 	for (fragidx = 0; fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
2586 		skb_frag_t *frag  = &skb_shinfo(skb)->frags[fragidx];
2587 
2588 		if (offset < skb_frag_size(frag))
2589 			break;
2590 
2591 		offset -= skb_frag_size(frag);
2592 	}
2593 
2594 	for (; len && fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
2595 		skb_frag_t *frag  = &skb_shinfo(skb)->frags[fragidx];
2596 
2597 		slen = min_t(size_t, len, skb_frag_size(frag) - offset);
2598 
2599 		while (slen) {
2600 			ret = INDIRECT_CALL_2(sendpage, kernel_sendpage_locked,
2601 					      sendpage_unlocked, sk,
2602 					      skb_frag_page(frag),
2603 					      skb_frag_off(frag) + offset,
2604 					      slen, MSG_DONTWAIT);
2605 			if (ret <= 0)
2606 				goto error;
2607 
2608 			len -= ret;
2609 			offset += ret;
2610 			slen -= ret;
2611 		}
2612 
2613 		offset = 0;
2614 	}
2615 
2616 	if (len) {
2617 		/* Process any frag lists */
2618 
2619 		if (skb == head) {
2620 			if (skb_has_frag_list(skb)) {
2621 				skb = skb_shinfo(skb)->frag_list;
2622 				goto do_frag_list;
2623 			}
2624 		} else if (skb->next) {
2625 			skb = skb->next;
2626 			goto do_frag_list;
2627 		}
2628 	}
2629 
2630 out:
2631 	return orig_len - len;
2632 
2633 error:
2634 	return orig_len == len ? ret : orig_len - len;
2635 }
2636 
2637 /* Send skb data on a socket. Socket must be locked. */
2638 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
2639 			 int len)
2640 {
2641 	return __skb_send_sock(sk, skb, offset, len, kernel_sendmsg_locked,
2642 			       kernel_sendpage_locked);
2643 }
2644 EXPORT_SYMBOL_GPL(skb_send_sock_locked);
2645 
2646 /* Send skb data on a socket. Socket must be unlocked. */
2647 int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len)
2648 {
2649 	return __skb_send_sock(sk, skb, offset, len, sendmsg_unlocked,
2650 			       sendpage_unlocked);
2651 }
2652 
2653 /**
2654  *	skb_store_bits - store bits from kernel buffer to skb
2655  *	@skb: destination buffer
2656  *	@offset: offset in destination
2657  *	@from: source buffer
2658  *	@len: number of bytes to copy
2659  *
2660  *	Copy the specified number of bytes from the source buffer to the
2661  *	destination skb.  This function handles all the messy bits of
2662  *	traversing fragment lists and such.
2663  */
2664 
2665 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
2666 {
2667 	int start = skb_headlen(skb);
2668 	struct sk_buff *frag_iter;
2669 	int i, copy;
2670 
2671 	if (offset > (int)skb->len - len)
2672 		goto fault;
2673 
2674 	if ((copy = start - offset) > 0) {
2675 		if (copy > len)
2676 			copy = len;
2677 		skb_copy_to_linear_data_offset(skb, offset, from, copy);
2678 		if ((len -= copy) == 0)
2679 			return 0;
2680 		offset += copy;
2681 		from += copy;
2682 	}
2683 
2684 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2685 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2686 		int end;
2687 
2688 		WARN_ON(start > offset + len);
2689 
2690 		end = start + skb_frag_size(frag);
2691 		if ((copy = end - offset) > 0) {
2692 			u32 p_off, p_len, copied;
2693 			struct page *p;
2694 			u8 *vaddr;
2695 
2696 			if (copy > len)
2697 				copy = len;
2698 
2699 			skb_frag_foreach_page(frag,
2700 					      skb_frag_off(frag) + offset - start,
2701 					      copy, p, p_off, p_len, copied) {
2702 				vaddr = kmap_atomic(p);
2703 				memcpy(vaddr + p_off, from + copied, p_len);
2704 				kunmap_atomic(vaddr);
2705 			}
2706 
2707 			if ((len -= copy) == 0)
2708 				return 0;
2709 			offset += copy;
2710 			from += copy;
2711 		}
2712 		start = end;
2713 	}
2714 
2715 	skb_walk_frags(skb, frag_iter) {
2716 		int end;
2717 
2718 		WARN_ON(start > offset + len);
2719 
2720 		end = start + frag_iter->len;
2721 		if ((copy = end - offset) > 0) {
2722 			if (copy > len)
2723 				copy = len;
2724 			if (skb_store_bits(frag_iter, offset - start,
2725 					   from, copy))
2726 				goto fault;
2727 			if ((len -= copy) == 0)
2728 				return 0;
2729 			offset += copy;
2730 			from += copy;
2731 		}
2732 		start = end;
2733 	}
2734 	if (!len)
2735 		return 0;
2736 
2737 fault:
2738 	return -EFAULT;
2739 }
2740 EXPORT_SYMBOL(skb_store_bits);
2741 
2742 /* Checksum skb data. */
2743 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
2744 		      __wsum csum, const struct skb_checksum_ops *ops)
2745 {
2746 	int start = skb_headlen(skb);
2747 	int i, copy = start - offset;
2748 	struct sk_buff *frag_iter;
2749 	int pos = 0;
2750 
2751 	/* Checksum header. */
2752 	if (copy > 0) {
2753 		if (copy > len)
2754 			copy = len;
2755 		csum = INDIRECT_CALL_1(ops->update, csum_partial_ext,
2756 				       skb->data + offset, copy, csum);
2757 		if ((len -= copy) == 0)
2758 			return csum;
2759 		offset += copy;
2760 		pos	= copy;
2761 	}
2762 
2763 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2764 		int end;
2765 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2766 
2767 		WARN_ON(start > offset + len);
2768 
2769 		end = start + skb_frag_size(frag);
2770 		if ((copy = end - offset) > 0) {
2771 			u32 p_off, p_len, copied;
2772 			struct page *p;
2773 			__wsum csum2;
2774 			u8 *vaddr;
2775 
2776 			if (copy > len)
2777 				copy = len;
2778 
2779 			skb_frag_foreach_page(frag,
2780 					      skb_frag_off(frag) + offset - start,
2781 					      copy, p, p_off, p_len, copied) {
2782 				vaddr = kmap_atomic(p);
2783 				csum2 = INDIRECT_CALL_1(ops->update,
2784 							csum_partial_ext,
2785 							vaddr + p_off, p_len, 0);
2786 				kunmap_atomic(vaddr);
2787 				csum = INDIRECT_CALL_1(ops->combine,
2788 						       csum_block_add_ext, csum,
2789 						       csum2, pos, p_len);
2790 				pos += p_len;
2791 			}
2792 
2793 			if (!(len -= copy))
2794 				return csum;
2795 			offset += copy;
2796 		}
2797 		start = end;
2798 	}
2799 
2800 	skb_walk_frags(skb, frag_iter) {
2801 		int end;
2802 
2803 		WARN_ON(start > offset + len);
2804 
2805 		end = start + frag_iter->len;
2806 		if ((copy = end - offset) > 0) {
2807 			__wsum csum2;
2808 			if (copy > len)
2809 				copy = len;
2810 			csum2 = __skb_checksum(frag_iter, offset - start,
2811 					       copy, 0, ops);
2812 			csum = INDIRECT_CALL_1(ops->combine, csum_block_add_ext,
2813 					       csum, csum2, pos, copy);
2814 			if ((len -= copy) == 0)
2815 				return csum;
2816 			offset += copy;
2817 			pos    += copy;
2818 		}
2819 		start = end;
2820 	}
2821 	BUG_ON(len);
2822 
2823 	return csum;
2824 }
2825 EXPORT_SYMBOL(__skb_checksum);
2826 
2827 __wsum skb_checksum(const struct sk_buff *skb, int offset,
2828 		    int len, __wsum csum)
2829 {
2830 	const struct skb_checksum_ops ops = {
2831 		.update  = csum_partial_ext,
2832 		.combine = csum_block_add_ext,
2833 	};
2834 
2835 	return __skb_checksum(skb, offset, len, csum, &ops);
2836 }
2837 EXPORT_SYMBOL(skb_checksum);
2838 
2839 /* Both of above in one bottle. */
2840 
2841 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
2842 				    u8 *to, int len)
2843 {
2844 	int start = skb_headlen(skb);
2845 	int i, copy = start - offset;
2846 	struct sk_buff *frag_iter;
2847 	int pos = 0;
2848 	__wsum csum = 0;
2849 
2850 	/* Copy header. */
2851 	if (copy > 0) {
2852 		if (copy > len)
2853 			copy = len;
2854 		csum = csum_partial_copy_nocheck(skb->data + offset, to,
2855 						 copy);
2856 		if ((len -= copy) == 0)
2857 			return csum;
2858 		offset += copy;
2859 		to     += copy;
2860 		pos	= copy;
2861 	}
2862 
2863 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2864 		int end;
2865 
2866 		WARN_ON(start > offset + len);
2867 
2868 		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
2869 		if ((copy = end - offset) > 0) {
2870 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2871 			u32 p_off, p_len, copied;
2872 			struct page *p;
2873 			__wsum csum2;
2874 			u8 *vaddr;
2875 
2876 			if (copy > len)
2877 				copy = len;
2878 
2879 			skb_frag_foreach_page(frag,
2880 					      skb_frag_off(frag) + offset - start,
2881 					      copy, p, p_off, p_len, copied) {
2882 				vaddr = kmap_atomic(p);
2883 				csum2 = csum_partial_copy_nocheck(vaddr + p_off,
2884 								  to + copied,
2885 								  p_len);
2886 				kunmap_atomic(vaddr);
2887 				csum = csum_block_add(csum, csum2, pos);
2888 				pos += p_len;
2889 			}
2890 
2891 			if (!(len -= copy))
2892 				return csum;
2893 			offset += copy;
2894 			to     += copy;
2895 		}
2896 		start = end;
2897 	}
2898 
2899 	skb_walk_frags(skb, frag_iter) {
2900 		__wsum csum2;
2901 		int end;
2902 
2903 		WARN_ON(start > offset + len);
2904 
2905 		end = start + frag_iter->len;
2906 		if ((copy = end - offset) > 0) {
2907 			if (copy > len)
2908 				copy = len;
2909 			csum2 = skb_copy_and_csum_bits(frag_iter,
2910 						       offset - start,
2911 						       to, copy);
2912 			csum = csum_block_add(csum, csum2, pos);
2913 			if ((len -= copy) == 0)
2914 				return csum;
2915 			offset += copy;
2916 			to     += copy;
2917 			pos    += copy;
2918 		}
2919 		start = end;
2920 	}
2921 	BUG_ON(len);
2922 	return csum;
2923 }
2924 EXPORT_SYMBOL(skb_copy_and_csum_bits);
2925 
2926 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len)
2927 {
2928 	__sum16 sum;
2929 
2930 	sum = csum_fold(skb_checksum(skb, 0, len, skb->csum));
2931 	/* See comments in __skb_checksum_complete(). */
2932 	if (likely(!sum)) {
2933 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
2934 		    !skb->csum_complete_sw)
2935 			netdev_rx_csum_fault(skb->dev, skb);
2936 	}
2937 	if (!skb_shared(skb))
2938 		skb->csum_valid = !sum;
2939 	return sum;
2940 }
2941 EXPORT_SYMBOL(__skb_checksum_complete_head);
2942 
2943 /* This function assumes skb->csum already holds pseudo header's checksum,
2944  * which has been changed from the hardware checksum, for example, by
2945  * __skb_checksum_validate_complete(). And, the original skb->csum must
2946  * have been validated unsuccessfully for CHECKSUM_COMPLETE case.
2947  *
2948  * It returns non-zero if the recomputed checksum is still invalid, otherwise
2949  * zero. The new checksum is stored back into skb->csum unless the skb is
2950  * shared.
2951  */
2952 __sum16 __skb_checksum_complete(struct sk_buff *skb)
2953 {
2954 	__wsum csum;
2955 	__sum16 sum;
2956 
2957 	csum = skb_checksum(skb, 0, skb->len, 0);
2958 
2959 	sum = csum_fold(csum_add(skb->csum, csum));
2960 	/* This check is inverted, because we already knew the hardware
2961 	 * checksum is invalid before calling this function. So, if the
2962 	 * re-computed checksum is valid instead, then we have a mismatch
2963 	 * between the original skb->csum and skb_checksum(). This means either
2964 	 * the original hardware checksum is incorrect or we screw up skb->csum
2965 	 * when moving skb->data around.
2966 	 */
2967 	if (likely(!sum)) {
2968 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
2969 		    !skb->csum_complete_sw)
2970 			netdev_rx_csum_fault(skb->dev, skb);
2971 	}
2972 
2973 	if (!skb_shared(skb)) {
2974 		/* Save full packet checksum */
2975 		skb->csum = csum;
2976 		skb->ip_summed = CHECKSUM_COMPLETE;
2977 		skb->csum_complete_sw = 1;
2978 		skb->csum_valid = !sum;
2979 	}
2980 
2981 	return sum;
2982 }
2983 EXPORT_SYMBOL(__skb_checksum_complete);
2984 
2985 static __wsum warn_crc32c_csum_update(const void *buff, int len, __wsum sum)
2986 {
2987 	net_warn_ratelimited(
2988 		"%s: attempt to compute crc32c without libcrc32c.ko\n",
2989 		__func__);
2990 	return 0;
2991 }
2992 
2993 static __wsum warn_crc32c_csum_combine(__wsum csum, __wsum csum2,
2994 				       int offset, int len)
2995 {
2996 	net_warn_ratelimited(
2997 		"%s: attempt to compute crc32c without libcrc32c.ko\n",
2998 		__func__);
2999 	return 0;
3000 }
3001 
3002 static const struct skb_checksum_ops default_crc32c_ops = {
3003 	.update  = warn_crc32c_csum_update,
3004 	.combine = warn_crc32c_csum_combine,
3005 };
3006 
3007 const struct skb_checksum_ops *crc32c_csum_stub __read_mostly =
3008 	&default_crc32c_ops;
3009 EXPORT_SYMBOL(crc32c_csum_stub);
3010 
3011  /**
3012  *	skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy()
3013  *	@from: source buffer
3014  *
3015  *	Calculates the amount of linear headroom needed in the 'to' skb passed
3016  *	into skb_zerocopy().
3017  */
3018 unsigned int
3019 skb_zerocopy_headlen(const struct sk_buff *from)
3020 {
3021 	unsigned int hlen = 0;
3022 
3023 	if (!from->head_frag ||
3024 	    skb_headlen(from) < L1_CACHE_BYTES ||
3025 	    skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS) {
3026 		hlen = skb_headlen(from);
3027 		if (!hlen)
3028 			hlen = from->len;
3029 	}
3030 
3031 	if (skb_has_frag_list(from))
3032 		hlen = from->len;
3033 
3034 	return hlen;
3035 }
3036 EXPORT_SYMBOL_GPL(skb_zerocopy_headlen);
3037 
3038 /**
3039  *	skb_zerocopy - Zero copy skb to skb
3040  *	@to: destination buffer
3041  *	@from: source buffer
3042  *	@len: number of bytes to copy from source buffer
3043  *	@hlen: size of linear headroom in destination buffer
3044  *
3045  *	Copies up to `len` bytes from `from` to `to` by creating references
3046  *	to the frags in the source buffer.
3047  *
3048  *	The `hlen` as calculated by skb_zerocopy_headlen() specifies the
3049  *	headroom in the `to` buffer.
3050  *
3051  *	Return value:
3052  *	0: everything is OK
3053  *	-ENOMEM: couldn't orphan frags of @from due to lack of memory
3054  *	-EFAULT: skb_copy_bits() found some problem with skb geometry
3055  */
3056 int
3057 skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen)
3058 {
3059 	int i, j = 0;
3060 	int plen = 0; /* length of skb->head fragment */
3061 	int ret;
3062 	struct page *page;
3063 	unsigned int offset;
3064 
3065 	BUG_ON(!from->head_frag && !hlen);
3066 
3067 	/* dont bother with small payloads */
3068 	if (len <= skb_tailroom(to))
3069 		return skb_copy_bits(from, 0, skb_put(to, len), len);
3070 
3071 	if (hlen) {
3072 		ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen);
3073 		if (unlikely(ret))
3074 			return ret;
3075 		len -= hlen;
3076 	} else {
3077 		plen = min_t(int, skb_headlen(from), len);
3078 		if (plen) {
3079 			page = virt_to_head_page(from->head);
3080 			offset = from->data - (unsigned char *)page_address(page);
3081 			__skb_fill_page_desc(to, 0, page, offset, plen);
3082 			get_page(page);
3083 			j = 1;
3084 			len -= plen;
3085 		}
3086 	}
3087 
3088 	to->truesize += len + plen;
3089 	to->len += len + plen;
3090 	to->data_len += len + plen;
3091 
3092 	if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) {
3093 		skb_tx_error(from);
3094 		return -ENOMEM;
3095 	}
3096 	skb_zerocopy_clone(to, from, GFP_ATOMIC);
3097 
3098 	for (i = 0; i < skb_shinfo(from)->nr_frags; i++) {
3099 		int size;
3100 
3101 		if (!len)
3102 			break;
3103 		skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i];
3104 		size = min_t(int, skb_frag_size(&skb_shinfo(to)->frags[j]),
3105 					len);
3106 		skb_frag_size_set(&skb_shinfo(to)->frags[j], size);
3107 		len -= size;
3108 		skb_frag_ref(to, j);
3109 		j++;
3110 	}
3111 	skb_shinfo(to)->nr_frags = j;
3112 
3113 	return 0;
3114 }
3115 EXPORT_SYMBOL_GPL(skb_zerocopy);
3116 
3117 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
3118 {
3119 	__wsum csum;
3120 	long csstart;
3121 
3122 	if (skb->ip_summed == CHECKSUM_PARTIAL)
3123 		csstart = skb_checksum_start_offset(skb);
3124 	else
3125 		csstart = skb_headlen(skb);
3126 
3127 	BUG_ON(csstart > skb_headlen(skb));
3128 
3129 	skb_copy_from_linear_data(skb, to, csstart);
3130 
3131 	csum = 0;
3132 	if (csstart != skb->len)
3133 		csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
3134 					      skb->len - csstart);
3135 
3136 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
3137 		long csstuff = csstart + skb->csum_offset;
3138 
3139 		*((__sum16 *)(to + csstuff)) = csum_fold(csum);
3140 	}
3141 }
3142 EXPORT_SYMBOL(skb_copy_and_csum_dev);
3143 
3144 /**
3145  *	skb_dequeue - remove from the head of the queue
3146  *	@list: list to dequeue from
3147  *
3148  *	Remove the head of the list. The list lock is taken so the function
3149  *	may be used safely with other locking list functions. The head item is
3150  *	returned or %NULL if the list is empty.
3151  */
3152 
3153 struct sk_buff *skb_dequeue(struct sk_buff_head *list)
3154 {
3155 	unsigned long flags;
3156 	struct sk_buff *result;
3157 
3158 	spin_lock_irqsave(&list->lock, flags);
3159 	result = __skb_dequeue(list);
3160 	spin_unlock_irqrestore(&list->lock, flags);
3161 	return result;
3162 }
3163 EXPORT_SYMBOL(skb_dequeue);
3164 
3165 /**
3166  *	skb_dequeue_tail - remove from the tail of the queue
3167  *	@list: list to dequeue from
3168  *
3169  *	Remove the tail of the list. The list lock is taken so the function
3170  *	may be used safely with other locking list functions. The tail item is
3171  *	returned or %NULL if the list is empty.
3172  */
3173 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
3174 {
3175 	unsigned long flags;
3176 	struct sk_buff *result;
3177 
3178 	spin_lock_irqsave(&list->lock, flags);
3179 	result = __skb_dequeue_tail(list);
3180 	spin_unlock_irqrestore(&list->lock, flags);
3181 	return result;
3182 }
3183 EXPORT_SYMBOL(skb_dequeue_tail);
3184 
3185 /**
3186  *	skb_queue_purge - empty a list
3187  *	@list: list to empty
3188  *
3189  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
3190  *	the list and one reference dropped. This function takes the list
3191  *	lock and is atomic with respect to other list locking functions.
3192  */
3193 void skb_queue_purge(struct sk_buff_head *list)
3194 {
3195 	struct sk_buff *skb;
3196 	while ((skb = skb_dequeue(list)) != NULL)
3197 		kfree_skb(skb);
3198 }
3199 EXPORT_SYMBOL(skb_queue_purge);
3200 
3201 /**
3202  *	skb_rbtree_purge - empty a skb rbtree
3203  *	@root: root of the rbtree to empty
3204  *	Return value: the sum of truesizes of all purged skbs.
3205  *
3206  *	Delete all buffers on an &sk_buff rbtree. Each buffer is removed from
3207  *	the list and one reference dropped. This function does not take
3208  *	any lock. Synchronization should be handled by the caller (e.g., TCP
3209  *	out-of-order queue is protected by the socket lock).
3210  */
3211 unsigned int skb_rbtree_purge(struct rb_root *root)
3212 {
3213 	struct rb_node *p = rb_first(root);
3214 	unsigned int sum = 0;
3215 
3216 	while (p) {
3217 		struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode);
3218 
3219 		p = rb_next(p);
3220 		rb_erase(&skb->rbnode, root);
3221 		sum += skb->truesize;
3222 		kfree_skb(skb);
3223 	}
3224 	return sum;
3225 }
3226 
3227 /**
3228  *	skb_queue_head - queue a buffer at the list head
3229  *	@list: list to use
3230  *	@newsk: buffer to queue
3231  *
3232  *	Queue a buffer at the start of the list. This function takes the
3233  *	list lock and can be used safely with other locking &sk_buff functions
3234  *	safely.
3235  *
3236  *	A buffer cannot be placed on two lists at the same time.
3237  */
3238 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
3239 {
3240 	unsigned long flags;
3241 
3242 	spin_lock_irqsave(&list->lock, flags);
3243 	__skb_queue_head(list, newsk);
3244 	spin_unlock_irqrestore(&list->lock, flags);
3245 }
3246 EXPORT_SYMBOL(skb_queue_head);
3247 
3248 /**
3249  *	skb_queue_tail - queue a buffer at the list tail
3250  *	@list: list to use
3251  *	@newsk: buffer to queue
3252  *
3253  *	Queue a buffer at the tail of the list. This function takes the
3254  *	list lock and can be used safely with other locking &sk_buff functions
3255  *	safely.
3256  *
3257  *	A buffer cannot be placed on two lists at the same time.
3258  */
3259 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
3260 {
3261 	unsigned long flags;
3262 
3263 	spin_lock_irqsave(&list->lock, flags);
3264 	__skb_queue_tail(list, newsk);
3265 	spin_unlock_irqrestore(&list->lock, flags);
3266 }
3267 EXPORT_SYMBOL(skb_queue_tail);
3268 
3269 /**
3270  *	skb_unlink	-	remove a buffer from a list
3271  *	@skb: buffer to remove
3272  *	@list: list to use
3273  *
3274  *	Remove a packet from a list. The list locks are taken and this
3275  *	function is atomic with respect to other list locked calls
3276  *
3277  *	You must know what list the SKB is on.
3278  */
3279 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
3280 {
3281 	unsigned long flags;
3282 
3283 	spin_lock_irqsave(&list->lock, flags);
3284 	__skb_unlink(skb, list);
3285 	spin_unlock_irqrestore(&list->lock, flags);
3286 }
3287 EXPORT_SYMBOL(skb_unlink);
3288 
3289 /**
3290  *	skb_append	-	append a buffer
3291  *	@old: buffer to insert after
3292  *	@newsk: buffer to insert
3293  *	@list: list to use
3294  *
3295  *	Place a packet after a given packet in a list. The list locks are taken
3296  *	and this function is atomic with respect to other list locked calls.
3297  *	A buffer cannot be placed on two lists at the same time.
3298  */
3299 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
3300 {
3301 	unsigned long flags;
3302 
3303 	spin_lock_irqsave(&list->lock, flags);
3304 	__skb_queue_after(list, old, newsk);
3305 	spin_unlock_irqrestore(&list->lock, flags);
3306 }
3307 EXPORT_SYMBOL(skb_append);
3308 
3309 static inline void skb_split_inside_header(struct sk_buff *skb,
3310 					   struct sk_buff* skb1,
3311 					   const u32 len, const int pos)
3312 {
3313 	int i;
3314 
3315 	skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
3316 					 pos - len);
3317 	/* And move data appendix as is. */
3318 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
3319 		skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
3320 
3321 	skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
3322 	skb_shinfo(skb)->nr_frags  = 0;
3323 	skb1->data_len		   = skb->data_len;
3324 	skb1->len		   += skb1->data_len;
3325 	skb->data_len		   = 0;
3326 	skb->len		   = len;
3327 	skb_set_tail_pointer(skb, len);
3328 }
3329 
3330 static inline void skb_split_no_header(struct sk_buff *skb,
3331 				       struct sk_buff* skb1,
3332 				       const u32 len, int pos)
3333 {
3334 	int i, k = 0;
3335 	const int nfrags = skb_shinfo(skb)->nr_frags;
3336 
3337 	skb_shinfo(skb)->nr_frags = 0;
3338 	skb1->len		  = skb1->data_len = skb->len - len;
3339 	skb->len		  = len;
3340 	skb->data_len		  = len - pos;
3341 
3342 	for (i = 0; i < nfrags; i++) {
3343 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
3344 
3345 		if (pos + size > len) {
3346 			skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
3347 
3348 			if (pos < len) {
3349 				/* Split frag.
3350 				 * We have two variants in this case:
3351 				 * 1. Move all the frag to the second
3352 				 *    part, if it is possible. F.e.
3353 				 *    this approach is mandatory for TUX,
3354 				 *    where splitting is expensive.
3355 				 * 2. Split is accurately. We make this.
3356 				 */
3357 				skb_frag_ref(skb, i);
3358 				skb_frag_off_add(&skb_shinfo(skb1)->frags[0], len - pos);
3359 				skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos);
3360 				skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos);
3361 				skb_shinfo(skb)->nr_frags++;
3362 			}
3363 			k++;
3364 		} else
3365 			skb_shinfo(skb)->nr_frags++;
3366 		pos += size;
3367 	}
3368 	skb_shinfo(skb1)->nr_frags = k;
3369 }
3370 
3371 /**
3372  * skb_split - Split fragmented skb to two parts at length len.
3373  * @skb: the buffer to split
3374  * @skb1: the buffer to receive the second part
3375  * @len: new length for skb
3376  */
3377 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
3378 {
3379 	int pos = skb_headlen(skb);
3380 
3381 	skb_shinfo(skb1)->flags |= skb_shinfo(skb)->flags & SKBFL_SHARED_FRAG;
3382 	skb_zerocopy_clone(skb1, skb, 0);
3383 	if (len < pos)	/* Split line is inside header. */
3384 		skb_split_inside_header(skb, skb1, len, pos);
3385 	else		/* Second chunk has no header, nothing to copy. */
3386 		skb_split_no_header(skb, skb1, len, pos);
3387 }
3388 EXPORT_SYMBOL(skb_split);
3389 
3390 /* Shifting from/to a cloned skb is a no-go.
3391  *
3392  * Caller cannot keep skb_shinfo related pointers past calling here!
3393  */
3394 static int skb_prepare_for_shift(struct sk_buff *skb)
3395 {
3396 	int ret = 0;
3397 
3398 	if (skb_cloned(skb)) {
3399 		/* Save and restore truesize: pskb_expand_head() may reallocate
3400 		 * memory where ksize(kmalloc(S)) != ksize(kmalloc(S)), but we
3401 		 * cannot change truesize at this point.
3402 		 */
3403 		unsigned int save_truesize = skb->truesize;
3404 
3405 		ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3406 		skb->truesize = save_truesize;
3407 	}
3408 	return ret;
3409 }
3410 
3411 /**
3412  * skb_shift - Shifts paged data partially from skb to another
3413  * @tgt: buffer into which tail data gets added
3414  * @skb: buffer from which the paged data comes from
3415  * @shiftlen: shift up to this many bytes
3416  *
3417  * Attempts to shift up to shiftlen worth of bytes, which may be less than
3418  * the length of the skb, from skb to tgt. Returns number bytes shifted.
3419  * It's up to caller to free skb if everything was shifted.
3420  *
3421  * If @tgt runs out of frags, the whole operation is aborted.
3422  *
3423  * Skb cannot include anything else but paged data while tgt is allowed
3424  * to have non-paged data as well.
3425  *
3426  * TODO: full sized shift could be optimized but that would need
3427  * specialized skb free'er to handle frags without up-to-date nr_frags.
3428  */
3429 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
3430 {
3431 	int from, to, merge, todo;
3432 	skb_frag_t *fragfrom, *fragto;
3433 
3434 	BUG_ON(shiftlen > skb->len);
3435 
3436 	if (skb_headlen(skb))
3437 		return 0;
3438 	if (skb_zcopy(tgt) || skb_zcopy(skb))
3439 		return 0;
3440 
3441 	todo = shiftlen;
3442 	from = 0;
3443 	to = skb_shinfo(tgt)->nr_frags;
3444 	fragfrom = &skb_shinfo(skb)->frags[from];
3445 
3446 	/* Actual merge is delayed until the point when we know we can
3447 	 * commit all, so that we don't have to undo partial changes
3448 	 */
3449 	if (!to ||
3450 	    !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom),
3451 			      skb_frag_off(fragfrom))) {
3452 		merge = -1;
3453 	} else {
3454 		merge = to - 1;
3455 
3456 		todo -= skb_frag_size(fragfrom);
3457 		if (todo < 0) {
3458 			if (skb_prepare_for_shift(skb) ||
3459 			    skb_prepare_for_shift(tgt))
3460 				return 0;
3461 
3462 			/* All previous frag pointers might be stale! */
3463 			fragfrom = &skb_shinfo(skb)->frags[from];
3464 			fragto = &skb_shinfo(tgt)->frags[merge];
3465 
3466 			skb_frag_size_add(fragto, shiftlen);
3467 			skb_frag_size_sub(fragfrom, shiftlen);
3468 			skb_frag_off_add(fragfrom, shiftlen);
3469 
3470 			goto onlymerged;
3471 		}
3472 
3473 		from++;
3474 	}
3475 
3476 	/* Skip full, not-fitting skb to avoid expensive operations */
3477 	if ((shiftlen == skb->len) &&
3478 	    (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
3479 		return 0;
3480 
3481 	if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
3482 		return 0;
3483 
3484 	while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
3485 		if (to == MAX_SKB_FRAGS)
3486 			return 0;
3487 
3488 		fragfrom = &skb_shinfo(skb)->frags[from];
3489 		fragto = &skb_shinfo(tgt)->frags[to];
3490 
3491 		if (todo >= skb_frag_size(fragfrom)) {
3492 			*fragto = *fragfrom;
3493 			todo -= skb_frag_size(fragfrom);
3494 			from++;
3495 			to++;
3496 
3497 		} else {
3498 			__skb_frag_ref(fragfrom);
3499 			skb_frag_page_copy(fragto, fragfrom);
3500 			skb_frag_off_copy(fragto, fragfrom);
3501 			skb_frag_size_set(fragto, todo);
3502 
3503 			skb_frag_off_add(fragfrom, todo);
3504 			skb_frag_size_sub(fragfrom, todo);
3505 			todo = 0;
3506 
3507 			to++;
3508 			break;
3509 		}
3510 	}
3511 
3512 	/* Ready to "commit" this state change to tgt */
3513 	skb_shinfo(tgt)->nr_frags = to;
3514 
3515 	if (merge >= 0) {
3516 		fragfrom = &skb_shinfo(skb)->frags[0];
3517 		fragto = &skb_shinfo(tgt)->frags[merge];
3518 
3519 		skb_frag_size_add(fragto, skb_frag_size(fragfrom));
3520 		__skb_frag_unref(fragfrom, skb->pp_recycle);
3521 	}
3522 
3523 	/* Reposition in the original skb */
3524 	to = 0;
3525 	while (from < skb_shinfo(skb)->nr_frags)
3526 		skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
3527 	skb_shinfo(skb)->nr_frags = to;
3528 
3529 	BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
3530 
3531 onlymerged:
3532 	/* Most likely the tgt won't ever need its checksum anymore, skb on
3533 	 * the other hand might need it if it needs to be resent
3534 	 */
3535 	tgt->ip_summed = CHECKSUM_PARTIAL;
3536 	skb->ip_summed = CHECKSUM_PARTIAL;
3537 
3538 	/* Yak, is it really working this way? Some helper please? */
3539 	skb->len -= shiftlen;
3540 	skb->data_len -= shiftlen;
3541 	skb->truesize -= shiftlen;
3542 	tgt->len += shiftlen;
3543 	tgt->data_len += shiftlen;
3544 	tgt->truesize += shiftlen;
3545 
3546 	return shiftlen;
3547 }
3548 
3549 /**
3550  * skb_prepare_seq_read - Prepare a sequential read of skb data
3551  * @skb: the buffer to read
3552  * @from: lower offset of data to be read
3553  * @to: upper offset of data to be read
3554  * @st: state variable
3555  *
3556  * Initializes the specified state variable. Must be called before
3557  * invoking skb_seq_read() for the first time.
3558  */
3559 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
3560 			  unsigned int to, struct skb_seq_state *st)
3561 {
3562 	st->lower_offset = from;
3563 	st->upper_offset = to;
3564 	st->root_skb = st->cur_skb = skb;
3565 	st->frag_idx = st->stepped_offset = 0;
3566 	st->frag_data = NULL;
3567 	st->frag_off = 0;
3568 }
3569 EXPORT_SYMBOL(skb_prepare_seq_read);
3570 
3571 /**
3572  * skb_seq_read - Sequentially read skb data
3573  * @consumed: number of bytes consumed by the caller so far
3574  * @data: destination pointer for data to be returned
3575  * @st: state variable
3576  *
3577  * Reads a block of skb data at @consumed relative to the
3578  * lower offset specified to skb_prepare_seq_read(). Assigns
3579  * the head of the data block to @data and returns the length
3580  * of the block or 0 if the end of the skb data or the upper
3581  * offset has been reached.
3582  *
3583  * The caller is not required to consume all of the data
3584  * returned, i.e. @consumed is typically set to the number
3585  * of bytes already consumed and the next call to
3586  * skb_seq_read() will return the remaining part of the block.
3587  *
3588  * Note 1: The size of each block of data returned can be arbitrary,
3589  *       this limitation is the cost for zerocopy sequential
3590  *       reads of potentially non linear data.
3591  *
3592  * Note 2: Fragment lists within fragments are not implemented
3593  *       at the moment, state->root_skb could be replaced with
3594  *       a stack for this purpose.
3595  */
3596 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
3597 			  struct skb_seq_state *st)
3598 {
3599 	unsigned int block_limit, abs_offset = consumed + st->lower_offset;
3600 	skb_frag_t *frag;
3601 
3602 	if (unlikely(abs_offset >= st->upper_offset)) {
3603 		if (st->frag_data) {
3604 			kunmap_atomic(st->frag_data);
3605 			st->frag_data = NULL;
3606 		}
3607 		return 0;
3608 	}
3609 
3610 next_skb:
3611 	block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
3612 
3613 	if (abs_offset < block_limit && !st->frag_data) {
3614 		*data = st->cur_skb->data + (abs_offset - st->stepped_offset);
3615 		return block_limit - abs_offset;
3616 	}
3617 
3618 	if (st->frag_idx == 0 && !st->frag_data)
3619 		st->stepped_offset += skb_headlen(st->cur_skb);
3620 
3621 	while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
3622 		unsigned int pg_idx, pg_off, pg_sz;
3623 
3624 		frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
3625 
3626 		pg_idx = 0;
3627 		pg_off = skb_frag_off(frag);
3628 		pg_sz = skb_frag_size(frag);
3629 
3630 		if (skb_frag_must_loop(skb_frag_page(frag))) {
3631 			pg_idx = (pg_off + st->frag_off) >> PAGE_SHIFT;
3632 			pg_off = offset_in_page(pg_off + st->frag_off);
3633 			pg_sz = min_t(unsigned int, pg_sz - st->frag_off,
3634 						    PAGE_SIZE - pg_off);
3635 		}
3636 
3637 		block_limit = pg_sz + st->stepped_offset;
3638 		if (abs_offset < block_limit) {
3639 			if (!st->frag_data)
3640 				st->frag_data = kmap_atomic(skb_frag_page(frag) + pg_idx);
3641 
3642 			*data = (u8 *)st->frag_data + pg_off +
3643 				(abs_offset - st->stepped_offset);
3644 
3645 			return block_limit - abs_offset;
3646 		}
3647 
3648 		if (st->frag_data) {
3649 			kunmap_atomic(st->frag_data);
3650 			st->frag_data = NULL;
3651 		}
3652 
3653 		st->stepped_offset += pg_sz;
3654 		st->frag_off += pg_sz;
3655 		if (st->frag_off == skb_frag_size(frag)) {
3656 			st->frag_off = 0;
3657 			st->frag_idx++;
3658 		}
3659 	}
3660 
3661 	if (st->frag_data) {
3662 		kunmap_atomic(st->frag_data);
3663 		st->frag_data = NULL;
3664 	}
3665 
3666 	if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) {
3667 		st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
3668 		st->frag_idx = 0;
3669 		goto next_skb;
3670 	} else if (st->cur_skb->next) {
3671 		st->cur_skb = st->cur_skb->next;
3672 		st->frag_idx = 0;
3673 		goto next_skb;
3674 	}
3675 
3676 	return 0;
3677 }
3678 EXPORT_SYMBOL(skb_seq_read);
3679 
3680 /**
3681  * skb_abort_seq_read - Abort a sequential read of skb data
3682  * @st: state variable
3683  *
3684  * Must be called if skb_seq_read() was not called until it
3685  * returned 0.
3686  */
3687 void skb_abort_seq_read(struct skb_seq_state *st)
3688 {
3689 	if (st->frag_data)
3690 		kunmap_atomic(st->frag_data);
3691 }
3692 EXPORT_SYMBOL(skb_abort_seq_read);
3693 
3694 #define TS_SKB_CB(state)	((struct skb_seq_state *) &((state)->cb))
3695 
3696 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
3697 					  struct ts_config *conf,
3698 					  struct ts_state *state)
3699 {
3700 	return skb_seq_read(offset, text, TS_SKB_CB(state));
3701 }
3702 
3703 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
3704 {
3705 	skb_abort_seq_read(TS_SKB_CB(state));
3706 }
3707 
3708 /**
3709  * skb_find_text - Find a text pattern in skb data
3710  * @skb: the buffer to look in
3711  * @from: search offset
3712  * @to: search limit
3713  * @config: textsearch configuration
3714  *
3715  * Finds a pattern in the skb data according to the specified
3716  * textsearch configuration. Use textsearch_next() to retrieve
3717  * subsequent occurrences of the pattern. Returns the offset
3718  * to the first occurrence or UINT_MAX if no match was found.
3719  */
3720 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
3721 			   unsigned int to, struct ts_config *config)
3722 {
3723 	struct ts_state state;
3724 	unsigned int ret;
3725 
3726 	BUILD_BUG_ON(sizeof(struct skb_seq_state) > sizeof(state.cb));
3727 
3728 	config->get_next_block = skb_ts_get_next_block;
3729 	config->finish = skb_ts_finish;
3730 
3731 	skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state));
3732 
3733 	ret = textsearch_find(config, &state);
3734 	return (ret <= to - from ? ret : UINT_MAX);
3735 }
3736 EXPORT_SYMBOL(skb_find_text);
3737 
3738 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
3739 			 int offset, size_t size)
3740 {
3741 	int i = skb_shinfo(skb)->nr_frags;
3742 
3743 	if (skb_can_coalesce(skb, i, page, offset)) {
3744 		skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size);
3745 	} else if (i < MAX_SKB_FRAGS) {
3746 		get_page(page);
3747 		skb_fill_page_desc(skb, i, page, offset, size);
3748 	} else {
3749 		return -EMSGSIZE;
3750 	}
3751 
3752 	return 0;
3753 }
3754 EXPORT_SYMBOL_GPL(skb_append_pagefrags);
3755 
3756 /**
3757  *	skb_pull_rcsum - pull skb and update receive checksum
3758  *	@skb: buffer to update
3759  *	@len: length of data pulled
3760  *
3761  *	This function performs an skb_pull on the packet and updates
3762  *	the CHECKSUM_COMPLETE checksum.  It should be used on
3763  *	receive path processing instead of skb_pull unless you know
3764  *	that the checksum difference is zero (e.g., a valid IP header)
3765  *	or you are setting ip_summed to CHECKSUM_NONE.
3766  */
3767 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
3768 {
3769 	unsigned char *data = skb->data;
3770 
3771 	BUG_ON(len > skb->len);
3772 	__skb_pull(skb, len);
3773 	skb_postpull_rcsum(skb, data, len);
3774 	return skb->data;
3775 }
3776 EXPORT_SYMBOL_GPL(skb_pull_rcsum);
3777 
3778 static inline skb_frag_t skb_head_frag_to_page_desc(struct sk_buff *frag_skb)
3779 {
3780 	skb_frag_t head_frag;
3781 	struct page *page;
3782 
3783 	page = virt_to_head_page(frag_skb->head);
3784 	__skb_frag_set_page(&head_frag, page);
3785 	skb_frag_off_set(&head_frag, frag_skb->data -
3786 			 (unsigned char *)page_address(page));
3787 	skb_frag_size_set(&head_frag, skb_headlen(frag_skb));
3788 	return head_frag;
3789 }
3790 
3791 struct sk_buff *skb_segment_list(struct sk_buff *skb,
3792 				 netdev_features_t features,
3793 				 unsigned int offset)
3794 {
3795 	struct sk_buff *list_skb = skb_shinfo(skb)->frag_list;
3796 	unsigned int tnl_hlen = skb_tnl_header_len(skb);
3797 	unsigned int delta_truesize = 0;
3798 	unsigned int delta_len = 0;
3799 	struct sk_buff *tail = NULL;
3800 	struct sk_buff *nskb, *tmp;
3801 	int err;
3802 
3803 	skb_push(skb, -skb_network_offset(skb) + offset);
3804 
3805 	skb_shinfo(skb)->frag_list = NULL;
3806 
3807 	do {
3808 		nskb = list_skb;
3809 		list_skb = list_skb->next;
3810 
3811 		err = 0;
3812 		if (skb_shared(nskb)) {
3813 			tmp = skb_clone(nskb, GFP_ATOMIC);
3814 			if (tmp) {
3815 				consume_skb(nskb);
3816 				nskb = tmp;
3817 				err = skb_unclone(nskb, GFP_ATOMIC);
3818 			} else {
3819 				err = -ENOMEM;
3820 			}
3821 		}
3822 
3823 		if (!tail)
3824 			skb->next = nskb;
3825 		else
3826 			tail->next = nskb;
3827 
3828 		if (unlikely(err)) {
3829 			nskb->next = list_skb;
3830 			goto err_linearize;
3831 		}
3832 
3833 		tail = nskb;
3834 
3835 		delta_len += nskb->len;
3836 		delta_truesize += nskb->truesize;
3837 
3838 		skb_push(nskb, -skb_network_offset(nskb) + offset);
3839 
3840 		skb_release_head_state(nskb);
3841 		 __copy_skb_header(nskb, skb);
3842 
3843 		skb_headers_offset_update(nskb, skb_headroom(nskb) - skb_headroom(skb));
3844 		skb_copy_from_linear_data_offset(skb, -tnl_hlen,
3845 						 nskb->data - tnl_hlen,
3846 						 offset + tnl_hlen);
3847 
3848 		if (skb_needs_linearize(nskb, features) &&
3849 		    __skb_linearize(nskb))
3850 			goto err_linearize;
3851 
3852 	} while (list_skb);
3853 
3854 	skb->truesize = skb->truesize - delta_truesize;
3855 	skb->data_len = skb->data_len - delta_len;
3856 	skb->len = skb->len - delta_len;
3857 
3858 	skb_gso_reset(skb);
3859 
3860 	skb->prev = tail;
3861 
3862 	if (skb_needs_linearize(skb, features) &&
3863 	    __skb_linearize(skb))
3864 		goto err_linearize;
3865 
3866 	skb_get(skb);
3867 
3868 	return skb;
3869 
3870 err_linearize:
3871 	kfree_skb_list(skb->next);
3872 	skb->next = NULL;
3873 	return ERR_PTR(-ENOMEM);
3874 }
3875 EXPORT_SYMBOL_GPL(skb_segment_list);
3876 
3877 int skb_gro_receive_list(struct sk_buff *p, struct sk_buff *skb)
3878 {
3879 	if (unlikely(p->len + skb->len >= 65536))
3880 		return -E2BIG;
3881 
3882 	if (NAPI_GRO_CB(p)->last == p)
3883 		skb_shinfo(p)->frag_list = skb;
3884 	else
3885 		NAPI_GRO_CB(p)->last->next = skb;
3886 
3887 	skb_pull(skb, skb_gro_offset(skb));
3888 
3889 	NAPI_GRO_CB(p)->last = skb;
3890 	NAPI_GRO_CB(p)->count++;
3891 	p->data_len += skb->len;
3892 	p->truesize += skb->truesize;
3893 	p->len += skb->len;
3894 
3895 	NAPI_GRO_CB(skb)->same_flow = 1;
3896 
3897 	return 0;
3898 }
3899 
3900 /**
3901  *	skb_segment - Perform protocol segmentation on skb.
3902  *	@head_skb: buffer to segment
3903  *	@features: features for the output path (see dev->features)
3904  *
3905  *	This function performs segmentation on the given skb.  It returns
3906  *	a pointer to the first in a list of new skbs for the segments.
3907  *	In case of error it returns ERR_PTR(err).
3908  */
3909 struct sk_buff *skb_segment(struct sk_buff *head_skb,
3910 			    netdev_features_t features)
3911 {
3912 	struct sk_buff *segs = NULL;
3913 	struct sk_buff *tail = NULL;
3914 	struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list;
3915 	skb_frag_t *frag = skb_shinfo(head_skb)->frags;
3916 	unsigned int mss = skb_shinfo(head_skb)->gso_size;
3917 	unsigned int doffset = head_skb->data - skb_mac_header(head_skb);
3918 	struct sk_buff *frag_skb = head_skb;
3919 	unsigned int offset = doffset;
3920 	unsigned int tnl_hlen = skb_tnl_header_len(head_skb);
3921 	unsigned int partial_segs = 0;
3922 	unsigned int headroom;
3923 	unsigned int len = head_skb->len;
3924 	__be16 proto;
3925 	bool csum, sg;
3926 	int nfrags = skb_shinfo(head_skb)->nr_frags;
3927 	int err = -ENOMEM;
3928 	int i = 0;
3929 	int pos;
3930 
3931 	if (list_skb && !list_skb->head_frag && skb_headlen(list_skb) &&
3932 	    (skb_shinfo(head_skb)->gso_type & SKB_GSO_DODGY)) {
3933 		/* gso_size is untrusted, and we have a frag_list with a linear
3934 		 * non head_frag head.
3935 		 *
3936 		 * (we assume checking the first list_skb member suffices;
3937 		 * i.e if either of the list_skb members have non head_frag
3938 		 * head, then the first one has too).
3939 		 *
3940 		 * If head_skb's headlen does not fit requested gso_size, it
3941 		 * means that the frag_list members do NOT terminate on exact
3942 		 * gso_size boundaries. Hence we cannot perform skb_frag_t page
3943 		 * sharing. Therefore we must fallback to copying the frag_list
3944 		 * skbs; we do so by disabling SG.
3945 		 */
3946 		if (mss != GSO_BY_FRAGS && mss != skb_headlen(head_skb))
3947 			features &= ~NETIF_F_SG;
3948 	}
3949 
3950 	__skb_push(head_skb, doffset);
3951 	proto = skb_network_protocol(head_skb, NULL);
3952 	if (unlikely(!proto))
3953 		return ERR_PTR(-EINVAL);
3954 
3955 	sg = !!(features & NETIF_F_SG);
3956 	csum = !!can_checksum_protocol(features, proto);
3957 
3958 	if (sg && csum && (mss != GSO_BY_FRAGS))  {
3959 		if (!(features & NETIF_F_GSO_PARTIAL)) {
3960 			struct sk_buff *iter;
3961 			unsigned int frag_len;
3962 
3963 			if (!list_skb ||
3964 			    !net_gso_ok(features, skb_shinfo(head_skb)->gso_type))
3965 				goto normal;
3966 
3967 			/* If we get here then all the required
3968 			 * GSO features except frag_list are supported.
3969 			 * Try to split the SKB to multiple GSO SKBs
3970 			 * with no frag_list.
3971 			 * Currently we can do that only when the buffers don't
3972 			 * have a linear part and all the buffers except
3973 			 * the last are of the same length.
3974 			 */
3975 			frag_len = list_skb->len;
3976 			skb_walk_frags(head_skb, iter) {
3977 				if (frag_len != iter->len && iter->next)
3978 					goto normal;
3979 				if (skb_headlen(iter) && !iter->head_frag)
3980 					goto normal;
3981 
3982 				len -= iter->len;
3983 			}
3984 
3985 			if (len != frag_len)
3986 				goto normal;
3987 		}
3988 
3989 		/* GSO partial only requires that we trim off any excess that
3990 		 * doesn't fit into an MSS sized block, so take care of that
3991 		 * now.
3992 		 */
3993 		partial_segs = len / mss;
3994 		if (partial_segs > 1)
3995 			mss *= partial_segs;
3996 		else
3997 			partial_segs = 0;
3998 	}
3999 
4000 normal:
4001 	headroom = skb_headroom(head_skb);
4002 	pos = skb_headlen(head_skb);
4003 
4004 	do {
4005 		struct sk_buff *nskb;
4006 		skb_frag_t *nskb_frag;
4007 		int hsize;
4008 		int size;
4009 
4010 		if (unlikely(mss == GSO_BY_FRAGS)) {
4011 			len = list_skb->len;
4012 		} else {
4013 			len = head_skb->len - offset;
4014 			if (len > mss)
4015 				len = mss;
4016 		}
4017 
4018 		hsize = skb_headlen(head_skb) - offset;
4019 
4020 		if (hsize <= 0 && i >= nfrags && skb_headlen(list_skb) &&
4021 		    (skb_headlen(list_skb) == len || sg)) {
4022 			BUG_ON(skb_headlen(list_skb) > len);
4023 
4024 			i = 0;
4025 			nfrags = skb_shinfo(list_skb)->nr_frags;
4026 			frag = skb_shinfo(list_skb)->frags;
4027 			frag_skb = list_skb;
4028 			pos += skb_headlen(list_skb);
4029 
4030 			while (pos < offset + len) {
4031 				BUG_ON(i >= nfrags);
4032 
4033 				size = skb_frag_size(frag);
4034 				if (pos + size > offset + len)
4035 					break;
4036 
4037 				i++;
4038 				pos += size;
4039 				frag++;
4040 			}
4041 
4042 			nskb = skb_clone(list_skb, GFP_ATOMIC);
4043 			list_skb = list_skb->next;
4044 
4045 			if (unlikely(!nskb))
4046 				goto err;
4047 
4048 			if (unlikely(pskb_trim(nskb, len))) {
4049 				kfree_skb(nskb);
4050 				goto err;
4051 			}
4052 
4053 			hsize = skb_end_offset(nskb);
4054 			if (skb_cow_head(nskb, doffset + headroom)) {
4055 				kfree_skb(nskb);
4056 				goto err;
4057 			}
4058 
4059 			nskb->truesize += skb_end_offset(nskb) - hsize;
4060 			skb_release_head_state(nskb);
4061 			__skb_push(nskb, doffset);
4062 		} else {
4063 			if (hsize < 0)
4064 				hsize = 0;
4065 			if (hsize > len || !sg)
4066 				hsize = len;
4067 
4068 			nskb = __alloc_skb(hsize + doffset + headroom,
4069 					   GFP_ATOMIC, skb_alloc_rx_flag(head_skb),
4070 					   NUMA_NO_NODE);
4071 
4072 			if (unlikely(!nskb))
4073 				goto err;
4074 
4075 			skb_reserve(nskb, headroom);
4076 			__skb_put(nskb, doffset);
4077 		}
4078 
4079 		if (segs)
4080 			tail->next = nskb;
4081 		else
4082 			segs = nskb;
4083 		tail = nskb;
4084 
4085 		__copy_skb_header(nskb, head_skb);
4086 
4087 		skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom);
4088 		skb_reset_mac_len(nskb);
4089 
4090 		skb_copy_from_linear_data_offset(head_skb, -tnl_hlen,
4091 						 nskb->data - tnl_hlen,
4092 						 doffset + tnl_hlen);
4093 
4094 		if (nskb->len == len + doffset)
4095 			goto perform_csum_check;
4096 
4097 		if (!sg) {
4098 			if (!csum) {
4099 				if (!nskb->remcsum_offload)
4100 					nskb->ip_summed = CHECKSUM_NONE;
4101 				SKB_GSO_CB(nskb)->csum =
4102 					skb_copy_and_csum_bits(head_skb, offset,
4103 							       skb_put(nskb,
4104 								       len),
4105 							       len);
4106 				SKB_GSO_CB(nskb)->csum_start =
4107 					skb_headroom(nskb) + doffset;
4108 			} else {
4109 				skb_copy_bits(head_skb, offset,
4110 					      skb_put(nskb, len),
4111 					      len);
4112 			}
4113 			continue;
4114 		}
4115 
4116 		nskb_frag = skb_shinfo(nskb)->frags;
4117 
4118 		skb_copy_from_linear_data_offset(head_skb, offset,
4119 						 skb_put(nskb, hsize), hsize);
4120 
4121 		skb_shinfo(nskb)->flags |= skb_shinfo(head_skb)->flags &
4122 					   SKBFL_SHARED_FRAG;
4123 
4124 		if (skb_orphan_frags(frag_skb, GFP_ATOMIC) ||
4125 		    skb_zerocopy_clone(nskb, frag_skb, GFP_ATOMIC))
4126 			goto err;
4127 
4128 		while (pos < offset + len) {
4129 			if (i >= nfrags) {
4130 				i = 0;
4131 				nfrags = skb_shinfo(list_skb)->nr_frags;
4132 				frag = skb_shinfo(list_skb)->frags;
4133 				frag_skb = list_skb;
4134 				if (!skb_headlen(list_skb)) {
4135 					BUG_ON(!nfrags);
4136 				} else {
4137 					BUG_ON(!list_skb->head_frag);
4138 
4139 					/* to make room for head_frag. */
4140 					i--;
4141 					frag--;
4142 				}
4143 				if (skb_orphan_frags(frag_skb, GFP_ATOMIC) ||
4144 				    skb_zerocopy_clone(nskb, frag_skb,
4145 						       GFP_ATOMIC))
4146 					goto err;
4147 
4148 				list_skb = list_skb->next;
4149 			}
4150 
4151 			if (unlikely(skb_shinfo(nskb)->nr_frags >=
4152 				     MAX_SKB_FRAGS)) {
4153 				net_warn_ratelimited(
4154 					"skb_segment: too many frags: %u %u\n",
4155 					pos, mss);
4156 				err = -EINVAL;
4157 				goto err;
4158 			}
4159 
4160 			*nskb_frag = (i < 0) ? skb_head_frag_to_page_desc(frag_skb) : *frag;
4161 			__skb_frag_ref(nskb_frag);
4162 			size = skb_frag_size(nskb_frag);
4163 
4164 			if (pos < offset) {
4165 				skb_frag_off_add(nskb_frag, offset - pos);
4166 				skb_frag_size_sub(nskb_frag, offset - pos);
4167 			}
4168 
4169 			skb_shinfo(nskb)->nr_frags++;
4170 
4171 			if (pos + size <= offset + len) {
4172 				i++;
4173 				frag++;
4174 				pos += size;
4175 			} else {
4176 				skb_frag_size_sub(nskb_frag, pos + size - (offset + len));
4177 				goto skip_fraglist;
4178 			}
4179 
4180 			nskb_frag++;
4181 		}
4182 
4183 skip_fraglist:
4184 		nskb->data_len = len - hsize;
4185 		nskb->len += nskb->data_len;
4186 		nskb->truesize += nskb->data_len;
4187 
4188 perform_csum_check:
4189 		if (!csum) {
4190 			if (skb_has_shared_frag(nskb) &&
4191 			    __skb_linearize(nskb))
4192 				goto err;
4193 
4194 			if (!nskb->remcsum_offload)
4195 				nskb->ip_summed = CHECKSUM_NONE;
4196 			SKB_GSO_CB(nskb)->csum =
4197 				skb_checksum(nskb, doffset,
4198 					     nskb->len - doffset, 0);
4199 			SKB_GSO_CB(nskb)->csum_start =
4200 				skb_headroom(nskb) + doffset;
4201 		}
4202 	} while ((offset += len) < head_skb->len);
4203 
4204 	/* Some callers want to get the end of the list.
4205 	 * Put it in segs->prev to avoid walking the list.
4206 	 * (see validate_xmit_skb_list() for example)
4207 	 */
4208 	segs->prev = tail;
4209 
4210 	if (partial_segs) {
4211 		struct sk_buff *iter;
4212 		int type = skb_shinfo(head_skb)->gso_type;
4213 		unsigned short gso_size = skb_shinfo(head_skb)->gso_size;
4214 
4215 		/* Update type to add partial and then remove dodgy if set */
4216 		type |= (features & NETIF_F_GSO_PARTIAL) / NETIF_F_GSO_PARTIAL * SKB_GSO_PARTIAL;
4217 		type &= ~SKB_GSO_DODGY;
4218 
4219 		/* Update GSO info and prepare to start updating headers on
4220 		 * our way back down the stack of protocols.
4221 		 */
4222 		for (iter = segs; iter; iter = iter->next) {
4223 			skb_shinfo(iter)->gso_size = gso_size;
4224 			skb_shinfo(iter)->gso_segs = partial_segs;
4225 			skb_shinfo(iter)->gso_type = type;
4226 			SKB_GSO_CB(iter)->data_offset = skb_headroom(iter) + doffset;
4227 		}
4228 
4229 		if (tail->len - doffset <= gso_size)
4230 			skb_shinfo(tail)->gso_size = 0;
4231 		else if (tail != segs)
4232 			skb_shinfo(tail)->gso_segs = DIV_ROUND_UP(tail->len - doffset, gso_size);
4233 	}
4234 
4235 	/* Following permits correct backpressure, for protocols
4236 	 * using skb_set_owner_w().
4237 	 * Idea is to tranfert ownership from head_skb to last segment.
4238 	 */
4239 	if (head_skb->destructor == sock_wfree) {
4240 		swap(tail->truesize, head_skb->truesize);
4241 		swap(tail->destructor, head_skb->destructor);
4242 		swap(tail->sk, head_skb->sk);
4243 	}
4244 	return segs;
4245 
4246 err:
4247 	kfree_skb_list(segs);
4248 	return ERR_PTR(err);
4249 }
4250 EXPORT_SYMBOL_GPL(skb_segment);
4251 
4252 int skb_gro_receive(struct sk_buff *p, struct sk_buff *skb)
4253 {
4254 	struct skb_shared_info *pinfo, *skbinfo = skb_shinfo(skb);
4255 	unsigned int offset = skb_gro_offset(skb);
4256 	unsigned int headlen = skb_headlen(skb);
4257 	unsigned int len = skb_gro_len(skb);
4258 	unsigned int delta_truesize;
4259 	struct sk_buff *lp;
4260 
4261 	if (unlikely(p->len + len >= 65536 || NAPI_GRO_CB(skb)->flush))
4262 		return -E2BIG;
4263 
4264 	lp = NAPI_GRO_CB(p)->last;
4265 	pinfo = skb_shinfo(lp);
4266 
4267 	if (headlen <= offset) {
4268 		skb_frag_t *frag;
4269 		skb_frag_t *frag2;
4270 		int i = skbinfo->nr_frags;
4271 		int nr_frags = pinfo->nr_frags + i;
4272 
4273 		if (nr_frags > MAX_SKB_FRAGS)
4274 			goto merge;
4275 
4276 		offset -= headlen;
4277 		pinfo->nr_frags = nr_frags;
4278 		skbinfo->nr_frags = 0;
4279 
4280 		frag = pinfo->frags + nr_frags;
4281 		frag2 = skbinfo->frags + i;
4282 		do {
4283 			*--frag = *--frag2;
4284 		} while (--i);
4285 
4286 		skb_frag_off_add(frag, offset);
4287 		skb_frag_size_sub(frag, offset);
4288 
4289 		/* all fragments truesize : remove (head size + sk_buff) */
4290 		delta_truesize = skb->truesize -
4291 				 SKB_TRUESIZE(skb_end_offset(skb));
4292 
4293 		skb->truesize -= skb->data_len;
4294 		skb->len -= skb->data_len;
4295 		skb->data_len = 0;
4296 
4297 		NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE;
4298 		goto done;
4299 	} else if (skb->head_frag) {
4300 		int nr_frags = pinfo->nr_frags;
4301 		skb_frag_t *frag = pinfo->frags + nr_frags;
4302 		struct page *page = virt_to_head_page(skb->head);
4303 		unsigned int first_size = headlen - offset;
4304 		unsigned int first_offset;
4305 
4306 		if (nr_frags + 1 + skbinfo->nr_frags > MAX_SKB_FRAGS)
4307 			goto merge;
4308 
4309 		first_offset = skb->data -
4310 			       (unsigned char *)page_address(page) +
4311 			       offset;
4312 
4313 		pinfo->nr_frags = nr_frags + 1 + skbinfo->nr_frags;
4314 
4315 		__skb_frag_set_page(frag, page);
4316 		skb_frag_off_set(frag, first_offset);
4317 		skb_frag_size_set(frag, first_size);
4318 
4319 		memcpy(frag + 1, skbinfo->frags, sizeof(*frag) * skbinfo->nr_frags);
4320 		/* We dont need to clear skbinfo->nr_frags here */
4321 
4322 		delta_truesize = skb->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
4323 		NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE_STOLEN_HEAD;
4324 		goto done;
4325 	}
4326 
4327 merge:
4328 	delta_truesize = skb->truesize;
4329 	if (offset > headlen) {
4330 		unsigned int eat = offset - headlen;
4331 
4332 		skb_frag_off_add(&skbinfo->frags[0], eat);
4333 		skb_frag_size_sub(&skbinfo->frags[0], eat);
4334 		skb->data_len -= eat;
4335 		skb->len -= eat;
4336 		offset = headlen;
4337 	}
4338 
4339 	__skb_pull(skb, offset);
4340 
4341 	if (NAPI_GRO_CB(p)->last == p)
4342 		skb_shinfo(p)->frag_list = skb;
4343 	else
4344 		NAPI_GRO_CB(p)->last->next = skb;
4345 	NAPI_GRO_CB(p)->last = skb;
4346 	__skb_header_release(skb);
4347 	lp = p;
4348 
4349 done:
4350 	NAPI_GRO_CB(p)->count++;
4351 	p->data_len += len;
4352 	p->truesize += delta_truesize;
4353 	p->len += len;
4354 	if (lp != p) {
4355 		lp->data_len += len;
4356 		lp->truesize += delta_truesize;
4357 		lp->len += len;
4358 	}
4359 	NAPI_GRO_CB(skb)->same_flow = 1;
4360 	return 0;
4361 }
4362 
4363 #ifdef CONFIG_SKB_EXTENSIONS
4364 #define SKB_EXT_ALIGN_VALUE	8
4365 #define SKB_EXT_CHUNKSIZEOF(x)	(ALIGN((sizeof(x)), SKB_EXT_ALIGN_VALUE) / SKB_EXT_ALIGN_VALUE)
4366 
4367 static const u8 skb_ext_type_len[] = {
4368 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4369 	[SKB_EXT_BRIDGE_NF] = SKB_EXT_CHUNKSIZEOF(struct nf_bridge_info),
4370 #endif
4371 #ifdef CONFIG_XFRM
4372 	[SKB_EXT_SEC_PATH] = SKB_EXT_CHUNKSIZEOF(struct sec_path),
4373 #endif
4374 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4375 	[TC_SKB_EXT] = SKB_EXT_CHUNKSIZEOF(struct tc_skb_ext),
4376 #endif
4377 #if IS_ENABLED(CONFIG_MPTCP)
4378 	[SKB_EXT_MPTCP] = SKB_EXT_CHUNKSIZEOF(struct mptcp_ext),
4379 #endif
4380 };
4381 
4382 static __always_inline unsigned int skb_ext_total_length(void)
4383 {
4384 	return SKB_EXT_CHUNKSIZEOF(struct skb_ext) +
4385 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4386 		skb_ext_type_len[SKB_EXT_BRIDGE_NF] +
4387 #endif
4388 #ifdef CONFIG_XFRM
4389 		skb_ext_type_len[SKB_EXT_SEC_PATH] +
4390 #endif
4391 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4392 		skb_ext_type_len[TC_SKB_EXT] +
4393 #endif
4394 #if IS_ENABLED(CONFIG_MPTCP)
4395 		skb_ext_type_len[SKB_EXT_MPTCP] +
4396 #endif
4397 		0;
4398 }
4399 
4400 static void skb_extensions_init(void)
4401 {
4402 	BUILD_BUG_ON(SKB_EXT_NUM >= 8);
4403 	BUILD_BUG_ON(skb_ext_total_length() > 255);
4404 
4405 	skbuff_ext_cache = kmem_cache_create("skbuff_ext_cache",
4406 					     SKB_EXT_ALIGN_VALUE * skb_ext_total_length(),
4407 					     0,
4408 					     SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4409 					     NULL);
4410 }
4411 #else
4412 static void skb_extensions_init(void) {}
4413 #endif
4414 
4415 void __init skb_init(void)
4416 {
4417 	skbuff_head_cache = kmem_cache_create_usercopy("skbuff_head_cache",
4418 					      sizeof(struct sk_buff),
4419 					      0,
4420 					      SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4421 					      offsetof(struct sk_buff, cb),
4422 					      sizeof_field(struct sk_buff, cb),
4423 					      NULL);
4424 	skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
4425 						sizeof(struct sk_buff_fclones),
4426 						0,
4427 						SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4428 						NULL);
4429 	skb_extensions_init();
4430 }
4431 
4432 static int
4433 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len,
4434 	       unsigned int recursion_level)
4435 {
4436 	int start = skb_headlen(skb);
4437 	int i, copy = start - offset;
4438 	struct sk_buff *frag_iter;
4439 	int elt = 0;
4440 
4441 	if (unlikely(recursion_level >= 24))
4442 		return -EMSGSIZE;
4443 
4444 	if (copy > 0) {
4445 		if (copy > len)
4446 			copy = len;
4447 		sg_set_buf(sg, skb->data + offset, copy);
4448 		elt++;
4449 		if ((len -= copy) == 0)
4450 			return elt;
4451 		offset += copy;
4452 	}
4453 
4454 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
4455 		int end;
4456 
4457 		WARN_ON(start > offset + len);
4458 
4459 		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
4460 		if ((copy = end - offset) > 0) {
4461 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4462 			if (unlikely(elt && sg_is_last(&sg[elt - 1])))
4463 				return -EMSGSIZE;
4464 
4465 			if (copy > len)
4466 				copy = len;
4467 			sg_set_page(&sg[elt], skb_frag_page(frag), copy,
4468 				    skb_frag_off(frag) + offset - start);
4469 			elt++;
4470 			if (!(len -= copy))
4471 				return elt;
4472 			offset += copy;
4473 		}
4474 		start = end;
4475 	}
4476 
4477 	skb_walk_frags(skb, frag_iter) {
4478 		int end, ret;
4479 
4480 		WARN_ON(start > offset + len);
4481 
4482 		end = start + frag_iter->len;
4483 		if ((copy = end - offset) > 0) {
4484 			if (unlikely(elt && sg_is_last(&sg[elt - 1])))
4485 				return -EMSGSIZE;
4486 
4487 			if (copy > len)
4488 				copy = len;
4489 			ret = __skb_to_sgvec(frag_iter, sg+elt, offset - start,
4490 					      copy, recursion_level + 1);
4491 			if (unlikely(ret < 0))
4492 				return ret;
4493 			elt += ret;
4494 			if ((len -= copy) == 0)
4495 				return elt;
4496 			offset += copy;
4497 		}
4498 		start = end;
4499 	}
4500 	BUG_ON(len);
4501 	return elt;
4502 }
4503 
4504 /**
4505  *	skb_to_sgvec - Fill a scatter-gather list from a socket buffer
4506  *	@skb: Socket buffer containing the buffers to be mapped
4507  *	@sg: The scatter-gather list to map into
4508  *	@offset: The offset into the buffer's contents to start mapping
4509  *	@len: Length of buffer space to be mapped
4510  *
4511  *	Fill the specified scatter-gather list with mappings/pointers into a
4512  *	region of the buffer space attached to a socket buffer. Returns either
4513  *	the number of scatterlist items used, or -EMSGSIZE if the contents
4514  *	could not fit.
4515  */
4516 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
4517 {
4518 	int nsg = __skb_to_sgvec(skb, sg, offset, len, 0);
4519 
4520 	if (nsg <= 0)
4521 		return nsg;
4522 
4523 	sg_mark_end(&sg[nsg - 1]);
4524 
4525 	return nsg;
4526 }
4527 EXPORT_SYMBOL_GPL(skb_to_sgvec);
4528 
4529 /* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given
4530  * sglist without mark the sg which contain last skb data as the end.
4531  * So the caller can mannipulate sg list as will when padding new data after
4532  * the first call without calling sg_unmark_end to expend sg list.
4533  *
4534  * Scenario to use skb_to_sgvec_nomark:
4535  * 1. sg_init_table
4536  * 2. skb_to_sgvec_nomark(payload1)
4537  * 3. skb_to_sgvec_nomark(payload2)
4538  *
4539  * This is equivalent to:
4540  * 1. sg_init_table
4541  * 2. skb_to_sgvec(payload1)
4542  * 3. sg_unmark_end
4543  * 4. skb_to_sgvec(payload2)
4544  *
4545  * When mapping mutilple payload conditionally, skb_to_sgvec_nomark
4546  * is more preferable.
4547  */
4548 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
4549 			int offset, int len)
4550 {
4551 	return __skb_to_sgvec(skb, sg, offset, len, 0);
4552 }
4553 EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark);
4554 
4555 
4556 
4557 /**
4558  *	skb_cow_data - Check that a socket buffer's data buffers are writable
4559  *	@skb: The socket buffer to check.
4560  *	@tailbits: Amount of trailing space to be added
4561  *	@trailer: Returned pointer to the skb where the @tailbits space begins
4562  *
4563  *	Make sure that the data buffers attached to a socket buffer are
4564  *	writable. If they are not, private copies are made of the data buffers
4565  *	and the socket buffer is set to use these instead.
4566  *
4567  *	If @tailbits is given, make sure that there is space to write @tailbits
4568  *	bytes of data beyond current end of socket buffer.  @trailer will be
4569  *	set to point to the skb in which this space begins.
4570  *
4571  *	The number of scatterlist elements required to completely map the
4572  *	COW'd and extended socket buffer will be returned.
4573  */
4574 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
4575 {
4576 	int copyflag;
4577 	int elt;
4578 	struct sk_buff *skb1, **skb_p;
4579 
4580 	/* If skb is cloned or its head is paged, reallocate
4581 	 * head pulling out all the pages (pages are considered not writable
4582 	 * at the moment even if they are anonymous).
4583 	 */
4584 	if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
4585 	    !__pskb_pull_tail(skb, __skb_pagelen(skb)))
4586 		return -ENOMEM;
4587 
4588 	/* Easy case. Most of packets will go this way. */
4589 	if (!skb_has_frag_list(skb)) {
4590 		/* A little of trouble, not enough of space for trailer.
4591 		 * This should not happen, when stack is tuned to generate
4592 		 * good frames. OK, on miss we reallocate and reserve even more
4593 		 * space, 128 bytes is fair. */
4594 
4595 		if (skb_tailroom(skb) < tailbits &&
4596 		    pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
4597 			return -ENOMEM;
4598 
4599 		/* Voila! */
4600 		*trailer = skb;
4601 		return 1;
4602 	}
4603 
4604 	/* Misery. We are in troubles, going to mincer fragments... */
4605 
4606 	elt = 1;
4607 	skb_p = &skb_shinfo(skb)->frag_list;
4608 	copyflag = 0;
4609 
4610 	while ((skb1 = *skb_p) != NULL) {
4611 		int ntail = 0;
4612 
4613 		/* The fragment is partially pulled by someone,
4614 		 * this can happen on input. Copy it and everything
4615 		 * after it. */
4616 
4617 		if (skb_shared(skb1))
4618 			copyflag = 1;
4619 
4620 		/* If the skb is the last, worry about trailer. */
4621 
4622 		if (skb1->next == NULL && tailbits) {
4623 			if (skb_shinfo(skb1)->nr_frags ||
4624 			    skb_has_frag_list(skb1) ||
4625 			    skb_tailroom(skb1) < tailbits)
4626 				ntail = tailbits + 128;
4627 		}
4628 
4629 		if (copyflag ||
4630 		    skb_cloned(skb1) ||
4631 		    ntail ||
4632 		    skb_shinfo(skb1)->nr_frags ||
4633 		    skb_has_frag_list(skb1)) {
4634 			struct sk_buff *skb2;
4635 
4636 			/* Fuck, we are miserable poor guys... */
4637 			if (ntail == 0)
4638 				skb2 = skb_copy(skb1, GFP_ATOMIC);
4639 			else
4640 				skb2 = skb_copy_expand(skb1,
4641 						       skb_headroom(skb1),
4642 						       ntail,
4643 						       GFP_ATOMIC);
4644 			if (unlikely(skb2 == NULL))
4645 				return -ENOMEM;
4646 
4647 			if (skb1->sk)
4648 				skb_set_owner_w(skb2, skb1->sk);
4649 
4650 			/* Looking around. Are we still alive?
4651 			 * OK, link new skb, drop old one */
4652 
4653 			skb2->next = skb1->next;
4654 			*skb_p = skb2;
4655 			kfree_skb(skb1);
4656 			skb1 = skb2;
4657 		}
4658 		elt++;
4659 		*trailer = skb1;
4660 		skb_p = &skb1->next;
4661 	}
4662 
4663 	return elt;
4664 }
4665 EXPORT_SYMBOL_GPL(skb_cow_data);
4666 
4667 static void sock_rmem_free(struct sk_buff *skb)
4668 {
4669 	struct sock *sk = skb->sk;
4670 
4671 	atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
4672 }
4673 
4674 static void skb_set_err_queue(struct sk_buff *skb)
4675 {
4676 	/* pkt_type of skbs received on local sockets is never PACKET_OUTGOING.
4677 	 * So, it is safe to (mis)use it to mark skbs on the error queue.
4678 	 */
4679 	skb->pkt_type = PACKET_OUTGOING;
4680 	BUILD_BUG_ON(PACKET_OUTGOING == 0);
4681 }
4682 
4683 /*
4684  * Note: We dont mem charge error packets (no sk_forward_alloc changes)
4685  */
4686 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
4687 {
4688 	if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
4689 	    (unsigned int)READ_ONCE(sk->sk_rcvbuf))
4690 		return -ENOMEM;
4691 
4692 	skb_orphan(skb);
4693 	skb->sk = sk;
4694 	skb->destructor = sock_rmem_free;
4695 	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
4696 	skb_set_err_queue(skb);
4697 
4698 	/* before exiting rcu section, make sure dst is refcounted */
4699 	skb_dst_force(skb);
4700 
4701 	skb_queue_tail(&sk->sk_error_queue, skb);
4702 	if (!sock_flag(sk, SOCK_DEAD))
4703 		sk_error_report(sk);
4704 	return 0;
4705 }
4706 EXPORT_SYMBOL(sock_queue_err_skb);
4707 
4708 static bool is_icmp_err_skb(const struct sk_buff *skb)
4709 {
4710 	return skb && (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP ||
4711 		       SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP6);
4712 }
4713 
4714 struct sk_buff *sock_dequeue_err_skb(struct sock *sk)
4715 {
4716 	struct sk_buff_head *q = &sk->sk_error_queue;
4717 	struct sk_buff *skb, *skb_next = NULL;
4718 	bool icmp_next = false;
4719 	unsigned long flags;
4720 
4721 	spin_lock_irqsave(&q->lock, flags);
4722 	skb = __skb_dequeue(q);
4723 	if (skb && (skb_next = skb_peek(q))) {
4724 		icmp_next = is_icmp_err_skb(skb_next);
4725 		if (icmp_next)
4726 			sk->sk_err = SKB_EXT_ERR(skb_next)->ee.ee_errno;
4727 	}
4728 	spin_unlock_irqrestore(&q->lock, flags);
4729 
4730 	if (is_icmp_err_skb(skb) && !icmp_next)
4731 		sk->sk_err = 0;
4732 
4733 	if (skb_next)
4734 		sk_error_report(sk);
4735 
4736 	return skb;
4737 }
4738 EXPORT_SYMBOL(sock_dequeue_err_skb);
4739 
4740 /**
4741  * skb_clone_sk - create clone of skb, and take reference to socket
4742  * @skb: the skb to clone
4743  *
4744  * This function creates a clone of a buffer that holds a reference on
4745  * sk_refcnt.  Buffers created via this function are meant to be
4746  * returned using sock_queue_err_skb, or free via kfree_skb.
4747  *
4748  * When passing buffers allocated with this function to sock_queue_err_skb
4749  * it is necessary to wrap the call with sock_hold/sock_put in order to
4750  * prevent the socket from being released prior to being enqueued on
4751  * the sk_error_queue.
4752  */
4753 struct sk_buff *skb_clone_sk(struct sk_buff *skb)
4754 {
4755 	struct sock *sk = skb->sk;
4756 	struct sk_buff *clone;
4757 
4758 	if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt))
4759 		return NULL;
4760 
4761 	clone = skb_clone(skb, GFP_ATOMIC);
4762 	if (!clone) {
4763 		sock_put(sk);
4764 		return NULL;
4765 	}
4766 
4767 	clone->sk = sk;
4768 	clone->destructor = sock_efree;
4769 
4770 	return clone;
4771 }
4772 EXPORT_SYMBOL(skb_clone_sk);
4773 
4774 static void __skb_complete_tx_timestamp(struct sk_buff *skb,
4775 					struct sock *sk,
4776 					int tstype,
4777 					bool opt_stats)
4778 {
4779 	struct sock_exterr_skb *serr;
4780 	int err;
4781 
4782 	BUILD_BUG_ON(sizeof(struct sock_exterr_skb) > sizeof(skb->cb));
4783 
4784 	serr = SKB_EXT_ERR(skb);
4785 	memset(serr, 0, sizeof(*serr));
4786 	serr->ee.ee_errno = ENOMSG;
4787 	serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
4788 	serr->ee.ee_info = tstype;
4789 	serr->opt_stats = opt_stats;
4790 	serr->header.h4.iif = skb->dev ? skb->dev->ifindex : 0;
4791 	if (sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID) {
4792 		serr->ee.ee_data = skb_shinfo(skb)->tskey;
4793 		if (sk->sk_protocol == IPPROTO_TCP &&
4794 		    sk->sk_type == SOCK_STREAM)
4795 			serr->ee.ee_data -= sk->sk_tskey;
4796 	}
4797 
4798 	err = sock_queue_err_skb(sk, skb);
4799 
4800 	if (err)
4801 		kfree_skb(skb);
4802 }
4803 
4804 static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly)
4805 {
4806 	bool ret;
4807 
4808 	if (likely(sysctl_tstamp_allow_data || tsonly))
4809 		return true;
4810 
4811 	read_lock_bh(&sk->sk_callback_lock);
4812 	ret = sk->sk_socket && sk->sk_socket->file &&
4813 	      file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW);
4814 	read_unlock_bh(&sk->sk_callback_lock);
4815 	return ret;
4816 }
4817 
4818 void skb_complete_tx_timestamp(struct sk_buff *skb,
4819 			       struct skb_shared_hwtstamps *hwtstamps)
4820 {
4821 	struct sock *sk = skb->sk;
4822 
4823 	if (!skb_may_tx_timestamp(sk, false))
4824 		goto err;
4825 
4826 	/* Take a reference to prevent skb_orphan() from freeing the socket,
4827 	 * but only if the socket refcount is not zero.
4828 	 */
4829 	if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
4830 		*skb_hwtstamps(skb) = *hwtstamps;
4831 		__skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND, false);
4832 		sock_put(sk);
4833 		return;
4834 	}
4835 
4836 err:
4837 	kfree_skb(skb);
4838 }
4839 EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp);
4840 
4841 void __skb_tstamp_tx(struct sk_buff *orig_skb,
4842 		     const struct sk_buff *ack_skb,
4843 		     struct skb_shared_hwtstamps *hwtstamps,
4844 		     struct sock *sk, int tstype)
4845 {
4846 	struct sk_buff *skb;
4847 	bool tsonly, opt_stats = false;
4848 
4849 	if (!sk)
4850 		return;
4851 
4852 	if (!hwtstamps && !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TX_SWHW) &&
4853 	    skb_shinfo(orig_skb)->tx_flags & SKBTX_IN_PROGRESS)
4854 		return;
4855 
4856 	tsonly = sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TSONLY;
4857 	if (!skb_may_tx_timestamp(sk, tsonly))
4858 		return;
4859 
4860 	if (tsonly) {
4861 #ifdef CONFIG_INET
4862 		if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_STATS) &&
4863 		    sk->sk_protocol == IPPROTO_TCP &&
4864 		    sk->sk_type == SOCK_STREAM) {
4865 			skb = tcp_get_timestamping_opt_stats(sk, orig_skb,
4866 							     ack_skb);
4867 			opt_stats = true;
4868 		} else
4869 #endif
4870 			skb = alloc_skb(0, GFP_ATOMIC);
4871 	} else {
4872 		skb = skb_clone(orig_skb, GFP_ATOMIC);
4873 	}
4874 	if (!skb)
4875 		return;
4876 
4877 	if (tsonly) {
4878 		skb_shinfo(skb)->tx_flags |= skb_shinfo(orig_skb)->tx_flags &
4879 					     SKBTX_ANY_TSTAMP;
4880 		skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey;
4881 	}
4882 
4883 	if (hwtstamps)
4884 		*skb_hwtstamps(skb) = *hwtstamps;
4885 	else
4886 		skb->tstamp = ktime_get_real();
4887 
4888 	__skb_complete_tx_timestamp(skb, sk, tstype, opt_stats);
4889 }
4890 EXPORT_SYMBOL_GPL(__skb_tstamp_tx);
4891 
4892 void skb_tstamp_tx(struct sk_buff *orig_skb,
4893 		   struct skb_shared_hwtstamps *hwtstamps)
4894 {
4895 	return __skb_tstamp_tx(orig_skb, NULL, hwtstamps, orig_skb->sk,
4896 			       SCM_TSTAMP_SND);
4897 }
4898 EXPORT_SYMBOL_GPL(skb_tstamp_tx);
4899 
4900 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked)
4901 {
4902 	struct sock *sk = skb->sk;
4903 	struct sock_exterr_skb *serr;
4904 	int err = 1;
4905 
4906 	skb->wifi_acked_valid = 1;
4907 	skb->wifi_acked = acked;
4908 
4909 	serr = SKB_EXT_ERR(skb);
4910 	memset(serr, 0, sizeof(*serr));
4911 	serr->ee.ee_errno = ENOMSG;
4912 	serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS;
4913 
4914 	/* Take a reference to prevent skb_orphan() from freeing the socket,
4915 	 * but only if the socket refcount is not zero.
4916 	 */
4917 	if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
4918 		err = sock_queue_err_skb(sk, skb);
4919 		sock_put(sk);
4920 	}
4921 	if (err)
4922 		kfree_skb(skb);
4923 }
4924 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack);
4925 
4926 /**
4927  * skb_partial_csum_set - set up and verify partial csum values for packet
4928  * @skb: the skb to set
4929  * @start: the number of bytes after skb->data to start checksumming.
4930  * @off: the offset from start to place the checksum.
4931  *
4932  * For untrusted partially-checksummed packets, we need to make sure the values
4933  * for skb->csum_start and skb->csum_offset are valid so we don't oops.
4934  *
4935  * This function checks and sets those values and skb->ip_summed: if this
4936  * returns false you should drop the packet.
4937  */
4938 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
4939 {
4940 	u32 csum_end = (u32)start + (u32)off + sizeof(__sum16);
4941 	u32 csum_start = skb_headroom(skb) + (u32)start;
4942 
4943 	if (unlikely(csum_start > U16_MAX || csum_end > skb_headlen(skb))) {
4944 		net_warn_ratelimited("bad partial csum: csum=%u/%u headroom=%u headlen=%u\n",
4945 				     start, off, skb_headroom(skb), skb_headlen(skb));
4946 		return false;
4947 	}
4948 	skb->ip_summed = CHECKSUM_PARTIAL;
4949 	skb->csum_start = csum_start;
4950 	skb->csum_offset = off;
4951 	skb_set_transport_header(skb, start);
4952 	return true;
4953 }
4954 EXPORT_SYMBOL_GPL(skb_partial_csum_set);
4955 
4956 static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len,
4957 			       unsigned int max)
4958 {
4959 	if (skb_headlen(skb) >= len)
4960 		return 0;
4961 
4962 	/* If we need to pullup then pullup to the max, so we
4963 	 * won't need to do it again.
4964 	 */
4965 	if (max > skb->len)
4966 		max = skb->len;
4967 
4968 	if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL)
4969 		return -ENOMEM;
4970 
4971 	if (skb_headlen(skb) < len)
4972 		return -EPROTO;
4973 
4974 	return 0;
4975 }
4976 
4977 #define MAX_TCP_HDR_LEN (15 * 4)
4978 
4979 static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb,
4980 				      typeof(IPPROTO_IP) proto,
4981 				      unsigned int off)
4982 {
4983 	int err;
4984 
4985 	switch (proto) {
4986 	case IPPROTO_TCP:
4987 		err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr),
4988 					  off + MAX_TCP_HDR_LEN);
4989 		if (!err && !skb_partial_csum_set(skb, off,
4990 						  offsetof(struct tcphdr,
4991 							   check)))
4992 			err = -EPROTO;
4993 		return err ? ERR_PTR(err) : &tcp_hdr(skb)->check;
4994 
4995 	case IPPROTO_UDP:
4996 		err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr),
4997 					  off + sizeof(struct udphdr));
4998 		if (!err && !skb_partial_csum_set(skb, off,
4999 						  offsetof(struct udphdr,
5000 							   check)))
5001 			err = -EPROTO;
5002 		return err ? ERR_PTR(err) : &udp_hdr(skb)->check;
5003 	}
5004 
5005 	return ERR_PTR(-EPROTO);
5006 }
5007 
5008 /* This value should be large enough to cover a tagged ethernet header plus
5009  * maximally sized IP and TCP or UDP headers.
5010  */
5011 #define MAX_IP_HDR_LEN 128
5012 
5013 static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate)
5014 {
5015 	unsigned int off;
5016 	bool fragment;
5017 	__sum16 *csum;
5018 	int err;
5019 
5020 	fragment = false;
5021 
5022 	err = skb_maybe_pull_tail(skb,
5023 				  sizeof(struct iphdr),
5024 				  MAX_IP_HDR_LEN);
5025 	if (err < 0)
5026 		goto out;
5027 
5028 	if (ip_is_fragment(ip_hdr(skb)))
5029 		fragment = true;
5030 
5031 	off = ip_hdrlen(skb);
5032 
5033 	err = -EPROTO;
5034 
5035 	if (fragment)
5036 		goto out;
5037 
5038 	csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off);
5039 	if (IS_ERR(csum))
5040 		return PTR_ERR(csum);
5041 
5042 	if (recalculate)
5043 		*csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
5044 					   ip_hdr(skb)->daddr,
5045 					   skb->len - off,
5046 					   ip_hdr(skb)->protocol, 0);
5047 	err = 0;
5048 
5049 out:
5050 	return err;
5051 }
5052 
5053 /* This value should be large enough to cover a tagged ethernet header plus
5054  * an IPv6 header, all options, and a maximal TCP or UDP header.
5055  */
5056 #define MAX_IPV6_HDR_LEN 256
5057 
5058 #define OPT_HDR(type, skb, off) \
5059 	(type *)(skb_network_header(skb) + (off))
5060 
5061 static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate)
5062 {
5063 	int err;
5064 	u8 nexthdr;
5065 	unsigned int off;
5066 	unsigned int len;
5067 	bool fragment;
5068 	bool done;
5069 	__sum16 *csum;
5070 
5071 	fragment = false;
5072 	done = false;
5073 
5074 	off = sizeof(struct ipv6hdr);
5075 
5076 	err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN);
5077 	if (err < 0)
5078 		goto out;
5079 
5080 	nexthdr = ipv6_hdr(skb)->nexthdr;
5081 
5082 	len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len);
5083 	while (off <= len && !done) {
5084 		switch (nexthdr) {
5085 		case IPPROTO_DSTOPTS:
5086 		case IPPROTO_HOPOPTS:
5087 		case IPPROTO_ROUTING: {
5088 			struct ipv6_opt_hdr *hp;
5089 
5090 			err = skb_maybe_pull_tail(skb,
5091 						  off +
5092 						  sizeof(struct ipv6_opt_hdr),
5093 						  MAX_IPV6_HDR_LEN);
5094 			if (err < 0)
5095 				goto out;
5096 
5097 			hp = OPT_HDR(struct ipv6_opt_hdr, skb, off);
5098 			nexthdr = hp->nexthdr;
5099 			off += ipv6_optlen(hp);
5100 			break;
5101 		}
5102 		case IPPROTO_AH: {
5103 			struct ip_auth_hdr *hp;
5104 
5105 			err = skb_maybe_pull_tail(skb,
5106 						  off +
5107 						  sizeof(struct ip_auth_hdr),
5108 						  MAX_IPV6_HDR_LEN);
5109 			if (err < 0)
5110 				goto out;
5111 
5112 			hp = OPT_HDR(struct ip_auth_hdr, skb, off);
5113 			nexthdr = hp->nexthdr;
5114 			off += ipv6_authlen(hp);
5115 			break;
5116 		}
5117 		case IPPROTO_FRAGMENT: {
5118 			struct frag_hdr *hp;
5119 
5120 			err = skb_maybe_pull_tail(skb,
5121 						  off +
5122 						  sizeof(struct frag_hdr),
5123 						  MAX_IPV6_HDR_LEN);
5124 			if (err < 0)
5125 				goto out;
5126 
5127 			hp = OPT_HDR(struct frag_hdr, skb, off);
5128 
5129 			if (hp->frag_off & htons(IP6_OFFSET | IP6_MF))
5130 				fragment = true;
5131 
5132 			nexthdr = hp->nexthdr;
5133 			off += sizeof(struct frag_hdr);
5134 			break;
5135 		}
5136 		default:
5137 			done = true;
5138 			break;
5139 		}
5140 	}
5141 
5142 	err = -EPROTO;
5143 
5144 	if (!done || fragment)
5145 		goto out;
5146 
5147 	csum = skb_checksum_setup_ip(skb, nexthdr, off);
5148 	if (IS_ERR(csum))
5149 		return PTR_ERR(csum);
5150 
5151 	if (recalculate)
5152 		*csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
5153 					 &ipv6_hdr(skb)->daddr,
5154 					 skb->len - off, nexthdr, 0);
5155 	err = 0;
5156 
5157 out:
5158 	return err;
5159 }
5160 
5161 /**
5162  * skb_checksum_setup - set up partial checksum offset
5163  * @skb: the skb to set up
5164  * @recalculate: if true the pseudo-header checksum will be recalculated
5165  */
5166 int skb_checksum_setup(struct sk_buff *skb, bool recalculate)
5167 {
5168 	int err;
5169 
5170 	switch (skb->protocol) {
5171 	case htons(ETH_P_IP):
5172 		err = skb_checksum_setup_ipv4(skb, recalculate);
5173 		break;
5174 
5175 	case htons(ETH_P_IPV6):
5176 		err = skb_checksum_setup_ipv6(skb, recalculate);
5177 		break;
5178 
5179 	default:
5180 		err = -EPROTO;
5181 		break;
5182 	}
5183 
5184 	return err;
5185 }
5186 EXPORT_SYMBOL(skb_checksum_setup);
5187 
5188 /**
5189  * skb_checksum_maybe_trim - maybe trims the given skb
5190  * @skb: the skb to check
5191  * @transport_len: the data length beyond the network header
5192  *
5193  * Checks whether the given skb has data beyond the given transport length.
5194  * If so, returns a cloned skb trimmed to this transport length.
5195  * Otherwise returns the provided skb. Returns NULL in error cases
5196  * (e.g. transport_len exceeds skb length or out-of-memory).
5197  *
5198  * Caller needs to set the skb transport header and free any returned skb if it
5199  * differs from the provided skb.
5200  */
5201 static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb,
5202 					       unsigned int transport_len)
5203 {
5204 	struct sk_buff *skb_chk;
5205 	unsigned int len = skb_transport_offset(skb) + transport_len;
5206 	int ret;
5207 
5208 	if (skb->len < len)
5209 		return NULL;
5210 	else if (skb->len == len)
5211 		return skb;
5212 
5213 	skb_chk = skb_clone(skb, GFP_ATOMIC);
5214 	if (!skb_chk)
5215 		return NULL;
5216 
5217 	ret = pskb_trim_rcsum(skb_chk, len);
5218 	if (ret) {
5219 		kfree_skb(skb_chk);
5220 		return NULL;
5221 	}
5222 
5223 	return skb_chk;
5224 }
5225 
5226 /**
5227  * skb_checksum_trimmed - validate checksum of an skb
5228  * @skb: the skb to check
5229  * @transport_len: the data length beyond the network header
5230  * @skb_chkf: checksum function to use
5231  *
5232  * Applies the given checksum function skb_chkf to the provided skb.
5233  * Returns a checked and maybe trimmed skb. Returns NULL on error.
5234  *
5235  * If the skb has data beyond the given transport length, then a
5236  * trimmed & cloned skb is checked and returned.
5237  *
5238  * Caller needs to set the skb transport header and free any returned skb if it
5239  * differs from the provided skb.
5240  */
5241 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
5242 				     unsigned int transport_len,
5243 				     __sum16(*skb_chkf)(struct sk_buff *skb))
5244 {
5245 	struct sk_buff *skb_chk;
5246 	unsigned int offset = skb_transport_offset(skb);
5247 	__sum16 ret;
5248 
5249 	skb_chk = skb_checksum_maybe_trim(skb, transport_len);
5250 	if (!skb_chk)
5251 		goto err;
5252 
5253 	if (!pskb_may_pull(skb_chk, offset))
5254 		goto err;
5255 
5256 	skb_pull_rcsum(skb_chk, offset);
5257 	ret = skb_chkf(skb_chk);
5258 	skb_push_rcsum(skb_chk, offset);
5259 
5260 	if (ret)
5261 		goto err;
5262 
5263 	return skb_chk;
5264 
5265 err:
5266 	if (skb_chk && skb_chk != skb)
5267 		kfree_skb(skb_chk);
5268 
5269 	return NULL;
5270 
5271 }
5272 EXPORT_SYMBOL(skb_checksum_trimmed);
5273 
5274 void __skb_warn_lro_forwarding(const struct sk_buff *skb)
5275 {
5276 	net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n",
5277 			     skb->dev->name);
5278 }
5279 EXPORT_SYMBOL(__skb_warn_lro_forwarding);
5280 
5281 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen)
5282 {
5283 	if (head_stolen) {
5284 		skb_release_head_state(skb);
5285 		kmem_cache_free(skbuff_head_cache, skb);
5286 	} else {
5287 		__kfree_skb(skb);
5288 	}
5289 }
5290 EXPORT_SYMBOL(kfree_skb_partial);
5291 
5292 /**
5293  * skb_try_coalesce - try to merge skb to prior one
5294  * @to: prior buffer
5295  * @from: buffer to add
5296  * @fragstolen: pointer to boolean
5297  * @delta_truesize: how much more was allocated than was requested
5298  */
5299 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
5300 		      bool *fragstolen, int *delta_truesize)
5301 {
5302 	struct skb_shared_info *to_shinfo, *from_shinfo;
5303 	int i, delta, len = from->len;
5304 
5305 	*fragstolen = false;
5306 
5307 	if (skb_cloned(to))
5308 		return false;
5309 
5310 	/* The page pool signature of struct page will eventually figure out
5311 	 * which pages can be recycled or not but for now let's prohibit slab
5312 	 * allocated and page_pool allocated SKBs from being coalesced.
5313 	 */
5314 	if (to->pp_recycle != from->pp_recycle)
5315 		return false;
5316 
5317 	if (len <= skb_tailroom(to)) {
5318 		if (len)
5319 			BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len));
5320 		*delta_truesize = 0;
5321 		return true;
5322 	}
5323 
5324 	to_shinfo = skb_shinfo(to);
5325 	from_shinfo = skb_shinfo(from);
5326 	if (to_shinfo->frag_list || from_shinfo->frag_list)
5327 		return false;
5328 	if (skb_zcopy(to) || skb_zcopy(from))
5329 		return false;
5330 
5331 	if (skb_headlen(from) != 0) {
5332 		struct page *page;
5333 		unsigned int offset;
5334 
5335 		if (to_shinfo->nr_frags +
5336 		    from_shinfo->nr_frags >= MAX_SKB_FRAGS)
5337 			return false;
5338 
5339 		if (skb_head_is_locked(from))
5340 			return false;
5341 
5342 		delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
5343 
5344 		page = virt_to_head_page(from->head);
5345 		offset = from->data - (unsigned char *)page_address(page);
5346 
5347 		skb_fill_page_desc(to, to_shinfo->nr_frags,
5348 				   page, offset, skb_headlen(from));
5349 		*fragstolen = true;
5350 	} else {
5351 		if (to_shinfo->nr_frags +
5352 		    from_shinfo->nr_frags > MAX_SKB_FRAGS)
5353 			return false;
5354 
5355 		delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from));
5356 	}
5357 
5358 	WARN_ON_ONCE(delta < len);
5359 
5360 	memcpy(to_shinfo->frags + to_shinfo->nr_frags,
5361 	       from_shinfo->frags,
5362 	       from_shinfo->nr_frags * sizeof(skb_frag_t));
5363 	to_shinfo->nr_frags += from_shinfo->nr_frags;
5364 
5365 	if (!skb_cloned(from))
5366 		from_shinfo->nr_frags = 0;
5367 
5368 	/* if the skb is not cloned this does nothing
5369 	 * since we set nr_frags to 0.
5370 	 */
5371 	for (i = 0; i < from_shinfo->nr_frags; i++)
5372 		__skb_frag_ref(&from_shinfo->frags[i]);
5373 
5374 	to->truesize += delta;
5375 	to->len += len;
5376 	to->data_len += len;
5377 
5378 	*delta_truesize = delta;
5379 	return true;
5380 }
5381 EXPORT_SYMBOL(skb_try_coalesce);
5382 
5383 /**
5384  * skb_scrub_packet - scrub an skb
5385  *
5386  * @skb: buffer to clean
5387  * @xnet: packet is crossing netns
5388  *
5389  * skb_scrub_packet can be used after encapsulating or decapsulting a packet
5390  * into/from a tunnel. Some information have to be cleared during these
5391  * operations.
5392  * skb_scrub_packet can also be used to clean a skb before injecting it in
5393  * another namespace (@xnet == true). We have to clear all information in the
5394  * skb that could impact namespace isolation.
5395  */
5396 void skb_scrub_packet(struct sk_buff *skb, bool xnet)
5397 {
5398 	skb->pkt_type = PACKET_HOST;
5399 	skb->skb_iif = 0;
5400 	skb->ignore_df = 0;
5401 	skb_dst_drop(skb);
5402 	skb_ext_reset(skb);
5403 	nf_reset_ct(skb);
5404 	nf_reset_trace(skb);
5405 
5406 #ifdef CONFIG_NET_SWITCHDEV
5407 	skb->offload_fwd_mark = 0;
5408 	skb->offload_l3_fwd_mark = 0;
5409 #endif
5410 
5411 	if (!xnet)
5412 		return;
5413 
5414 	ipvs_reset(skb);
5415 	skb->mark = 0;
5416 	skb->tstamp = 0;
5417 }
5418 EXPORT_SYMBOL_GPL(skb_scrub_packet);
5419 
5420 /**
5421  * skb_gso_transport_seglen - Return length of individual segments of a gso packet
5422  *
5423  * @skb: GSO skb
5424  *
5425  * skb_gso_transport_seglen is used to determine the real size of the
5426  * individual segments, including Layer4 headers (TCP/UDP).
5427  *
5428  * The MAC/L2 or network (IP, IPv6) headers are not accounted for.
5429  */
5430 static unsigned int skb_gso_transport_seglen(const struct sk_buff *skb)
5431 {
5432 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
5433 	unsigned int thlen = 0;
5434 
5435 	if (skb->encapsulation) {
5436 		thlen = skb_inner_transport_header(skb) -
5437 			skb_transport_header(skb);
5438 
5439 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
5440 			thlen += inner_tcp_hdrlen(skb);
5441 	} else if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
5442 		thlen = tcp_hdrlen(skb);
5443 	} else if (unlikely(skb_is_gso_sctp(skb))) {
5444 		thlen = sizeof(struct sctphdr);
5445 	} else if (shinfo->gso_type & SKB_GSO_UDP_L4) {
5446 		thlen = sizeof(struct udphdr);
5447 	}
5448 	/* UFO sets gso_size to the size of the fragmentation
5449 	 * payload, i.e. the size of the L4 (UDP) header is already
5450 	 * accounted for.
5451 	 */
5452 	return thlen + shinfo->gso_size;
5453 }
5454 
5455 /**
5456  * skb_gso_network_seglen - Return length of individual segments of a gso packet
5457  *
5458  * @skb: GSO skb
5459  *
5460  * skb_gso_network_seglen is used to determine the real size of the
5461  * individual segments, including Layer3 (IP, IPv6) and L4 headers (TCP/UDP).
5462  *
5463  * The MAC/L2 header is not accounted for.
5464  */
5465 static unsigned int skb_gso_network_seglen(const struct sk_buff *skb)
5466 {
5467 	unsigned int hdr_len = skb_transport_header(skb) -
5468 			       skb_network_header(skb);
5469 
5470 	return hdr_len + skb_gso_transport_seglen(skb);
5471 }
5472 
5473 /**
5474  * skb_gso_mac_seglen - Return length of individual segments of a gso packet
5475  *
5476  * @skb: GSO skb
5477  *
5478  * skb_gso_mac_seglen is used to determine the real size of the
5479  * individual segments, including MAC/L2, Layer3 (IP, IPv6) and L4
5480  * headers (TCP/UDP).
5481  */
5482 static unsigned int skb_gso_mac_seglen(const struct sk_buff *skb)
5483 {
5484 	unsigned int hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
5485 
5486 	return hdr_len + skb_gso_transport_seglen(skb);
5487 }
5488 
5489 /**
5490  * skb_gso_size_check - check the skb size, considering GSO_BY_FRAGS
5491  *
5492  * There are a couple of instances where we have a GSO skb, and we
5493  * want to determine what size it would be after it is segmented.
5494  *
5495  * We might want to check:
5496  * -    L3+L4+payload size (e.g. IP forwarding)
5497  * - L2+L3+L4+payload size (e.g. sanity check before passing to driver)
5498  *
5499  * This is a helper to do that correctly considering GSO_BY_FRAGS.
5500  *
5501  * @skb: GSO skb
5502  *
5503  * @seg_len: The segmented length (from skb_gso_*_seglen). In the
5504  *           GSO_BY_FRAGS case this will be [header sizes + GSO_BY_FRAGS].
5505  *
5506  * @max_len: The maximum permissible length.
5507  *
5508  * Returns true if the segmented length <= max length.
5509  */
5510 static inline bool skb_gso_size_check(const struct sk_buff *skb,
5511 				      unsigned int seg_len,
5512 				      unsigned int max_len) {
5513 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
5514 	const struct sk_buff *iter;
5515 
5516 	if (shinfo->gso_size != GSO_BY_FRAGS)
5517 		return seg_len <= max_len;
5518 
5519 	/* Undo this so we can re-use header sizes */
5520 	seg_len -= GSO_BY_FRAGS;
5521 
5522 	skb_walk_frags(skb, iter) {
5523 		if (seg_len + skb_headlen(iter) > max_len)
5524 			return false;
5525 	}
5526 
5527 	return true;
5528 }
5529 
5530 /**
5531  * skb_gso_validate_network_len - Will a split GSO skb fit into a given MTU?
5532  *
5533  * @skb: GSO skb
5534  * @mtu: MTU to validate against
5535  *
5536  * skb_gso_validate_network_len validates if a given skb will fit a
5537  * wanted MTU once split. It considers L3 headers, L4 headers, and the
5538  * payload.
5539  */
5540 bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu)
5541 {
5542 	return skb_gso_size_check(skb, skb_gso_network_seglen(skb), mtu);
5543 }
5544 EXPORT_SYMBOL_GPL(skb_gso_validate_network_len);
5545 
5546 /**
5547  * skb_gso_validate_mac_len - Will a split GSO skb fit in a given length?
5548  *
5549  * @skb: GSO skb
5550  * @len: length to validate against
5551  *
5552  * skb_gso_validate_mac_len validates if a given skb will fit a wanted
5553  * length once split, including L2, L3 and L4 headers and the payload.
5554  */
5555 bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len)
5556 {
5557 	return skb_gso_size_check(skb, skb_gso_mac_seglen(skb), len);
5558 }
5559 EXPORT_SYMBOL_GPL(skb_gso_validate_mac_len);
5560 
5561 static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb)
5562 {
5563 	int mac_len, meta_len;
5564 	void *meta;
5565 
5566 	if (skb_cow(skb, skb_headroom(skb)) < 0) {
5567 		kfree_skb(skb);
5568 		return NULL;
5569 	}
5570 
5571 	mac_len = skb->data - skb_mac_header(skb);
5572 	if (likely(mac_len > VLAN_HLEN + ETH_TLEN)) {
5573 		memmove(skb_mac_header(skb) + VLAN_HLEN, skb_mac_header(skb),
5574 			mac_len - VLAN_HLEN - ETH_TLEN);
5575 	}
5576 
5577 	meta_len = skb_metadata_len(skb);
5578 	if (meta_len) {
5579 		meta = skb_metadata_end(skb) - meta_len;
5580 		memmove(meta + VLAN_HLEN, meta, meta_len);
5581 	}
5582 
5583 	skb->mac_header += VLAN_HLEN;
5584 	return skb;
5585 }
5586 
5587 struct sk_buff *skb_vlan_untag(struct sk_buff *skb)
5588 {
5589 	struct vlan_hdr *vhdr;
5590 	u16 vlan_tci;
5591 
5592 	if (unlikely(skb_vlan_tag_present(skb))) {
5593 		/* vlan_tci is already set-up so leave this for another time */
5594 		return skb;
5595 	}
5596 
5597 	skb = skb_share_check(skb, GFP_ATOMIC);
5598 	if (unlikely(!skb))
5599 		goto err_free;
5600 	/* We may access the two bytes after vlan_hdr in vlan_set_encap_proto(). */
5601 	if (unlikely(!pskb_may_pull(skb, VLAN_HLEN + sizeof(unsigned short))))
5602 		goto err_free;
5603 
5604 	vhdr = (struct vlan_hdr *)skb->data;
5605 	vlan_tci = ntohs(vhdr->h_vlan_TCI);
5606 	__vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci);
5607 
5608 	skb_pull_rcsum(skb, VLAN_HLEN);
5609 	vlan_set_encap_proto(skb, vhdr);
5610 
5611 	skb = skb_reorder_vlan_header(skb);
5612 	if (unlikely(!skb))
5613 		goto err_free;
5614 
5615 	skb_reset_network_header(skb);
5616 	if (!skb_transport_header_was_set(skb))
5617 		skb_reset_transport_header(skb);
5618 	skb_reset_mac_len(skb);
5619 
5620 	return skb;
5621 
5622 err_free:
5623 	kfree_skb(skb);
5624 	return NULL;
5625 }
5626 EXPORT_SYMBOL(skb_vlan_untag);
5627 
5628 int skb_ensure_writable(struct sk_buff *skb, int write_len)
5629 {
5630 	if (!pskb_may_pull(skb, write_len))
5631 		return -ENOMEM;
5632 
5633 	if (!skb_cloned(skb) || skb_clone_writable(skb, write_len))
5634 		return 0;
5635 
5636 	return pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
5637 }
5638 EXPORT_SYMBOL(skb_ensure_writable);
5639 
5640 /* remove VLAN header from packet and update csum accordingly.
5641  * expects a non skb_vlan_tag_present skb with a vlan tag payload
5642  */
5643 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci)
5644 {
5645 	struct vlan_hdr *vhdr;
5646 	int offset = skb->data - skb_mac_header(skb);
5647 	int err;
5648 
5649 	if (WARN_ONCE(offset,
5650 		      "__skb_vlan_pop got skb with skb->data not at mac header (offset %d)\n",
5651 		      offset)) {
5652 		return -EINVAL;
5653 	}
5654 
5655 	err = skb_ensure_writable(skb, VLAN_ETH_HLEN);
5656 	if (unlikely(err))
5657 		return err;
5658 
5659 	skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
5660 
5661 	vhdr = (struct vlan_hdr *)(skb->data + ETH_HLEN);
5662 	*vlan_tci = ntohs(vhdr->h_vlan_TCI);
5663 
5664 	memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN);
5665 	__skb_pull(skb, VLAN_HLEN);
5666 
5667 	vlan_set_encap_proto(skb, vhdr);
5668 	skb->mac_header += VLAN_HLEN;
5669 
5670 	if (skb_network_offset(skb) < ETH_HLEN)
5671 		skb_set_network_header(skb, ETH_HLEN);
5672 
5673 	skb_reset_mac_len(skb);
5674 
5675 	return err;
5676 }
5677 EXPORT_SYMBOL(__skb_vlan_pop);
5678 
5679 /* Pop a vlan tag either from hwaccel or from payload.
5680  * Expects skb->data at mac header.
5681  */
5682 int skb_vlan_pop(struct sk_buff *skb)
5683 {
5684 	u16 vlan_tci;
5685 	__be16 vlan_proto;
5686 	int err;
5687 
5688 	if (likely(skb_vlan_tag_present(skb))) {
5689 		__vlan_hwaccel_clear_tag(skb);
5690 	} else {
5691 		if (unlikely(!eth_type_vlan(skb->protocol)))
5692 			return 0;
5693 
5694 		err = __skb_vlan_pop(skb, &vlan_tci);
5695 		if (err)
5696 			return err;
5697 	}
5698 	/* move next vlan tag to hw accel tag */
5699 	if (likely(!eth_type_vlan(skb->protocol)))
5700 		return 0;
5701 
5702 	vlan_proto = skb->protocol;
5703 	err = __skb_vlan_pop(skb, &vlan_tci);
5704 	if (unlikely(err))
5705 		return err;
5706 
5707 	__vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
5708 	return 0;
5709 }
5710 EXPORT_SYMBOL(skb_vlan_pop);
5711 
5712 /* Push a vlan tag either into hwaccel or into payload (if hwaccel tag present).
5713  * Expects skb->data at mac header.
5714  */
5715 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci)
5716 {
5717 	if (skb_vlan_tag_present(skb)) {
5718 		int offset = skb->data - skb_mac_header(skb);
5719 		int err;
5720 
5721 		if (WARN_ONCE(offset,
5722 			      "skb_vlan_push got skb with skb->data not at mac header (offset %d)\n",
5723 			      offset)) {
5724 			return -EINVAL;
5725 		}
5726 
5727 		err = __vlan_insert_tag(skb, skb->vlan_proto,
5728 					skb_vlan_tag_get(skb));
5729 		if (err)
5730 			return err;
5731 
5732 		skb->protocol = skb->vlan_proto;
5733 		skb->mac_len += VLAN_HLEN;
5734 
5735 		skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
5736 	}
5737 	__vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
5738 	return 0;
5739 }
5740 EXPORT_SYMBOL(skb_vlan_push);
5741 
5742 /**
5743  * skb_eth_pop() - Drop the Ethernet header at the head of a packet
5744  *
5745  * @skb: Socket buffer to modify
5746  *
5747  * Drop the Ethernet header of @skb.
5748  *
5749  * Expects that skb->data points to the mac header and that no VLAN tags are
5750  * present.
5751  *
5752  * Returns 0 on success, -errno otherwise.
5753  */
5754 int skb_eth_pop(struct sk_buff *skb)
5755 {
5756 	if (!pskb_may_pull(skb, ETH_HLEN) || skb_vlan_tagged(skb) ||
5757 	    skb_network_offset(skb) < ETH_HLEN)
5758 		return -EPROTO;
5759 
5760 	skb_pull_rcsum(skb, ETH_HLEN);
5761 	skb_reset_mac_header(skb);
5762 	skb_reset_mac_len(skb);
5763 
5764 	return 0;
5765 }
5766 EXPORT_SYMBOL(skb_eth_pop);
5767 
5768 /**
5769  * skb_eth_push() - Add a new Ethernet header at the head of a packet
5770  *
5771  * @skb: Socket buffer to modify
5772  * @dst: Destination MAC address of the new header
5773  * @src: Source MAC address of the new header
5774  *
5775  * Prepend @skb with a new Ethernet header.
5776  *
5777  * Expects that skb->data points to the mac header, which must be empty.
5778  *
5779  * Returns 0 on success, -errno otherwise.
5780  */
5781 int skb_eth_push(struct sk_buff *skb, const unsigned char *dst,
5782 		 const unsigned char *src)
5783 {
5784 	struct ethhdr *eth;
5785 	int err;
5786 
5787 	if (skb_network_offset(skb) || skb_vlan_tag_present(skb))
5788 		return -EPROTO;
5789 
5790 	err = skb_cow_head(skb, sizeof(*eth));
5791 	if (err < 0)
5792 		return err;
5793 
5794 	skb_push(skb, sizeof(*eth));
5795 	skb_reset_mac_header(skb);
5796 	skb_reset_mac_len(skb);
5797 
5798 	eth = eth_hdr(skb);
5799 	ether_addr_copy(eth->h_dest, dst);
5800 	ether_addr_copy(eth->h_source, src);
5801 	eth->h_proto = skb->protocol;
5802 
5803 	skb_postpush_rcsum(skb, eth, sizeof(*eth));
5804 
5805 	return 0;
5806 }
5807 EXPORT_SYMBOL(skb_eth_push);
5808 
5809 /* Update the ethertype of hdr and the skb csum value if required. */
5810 static void skb_mod_eth_type(struct sk_buff *skb, struct ethhdr *hdr,
5811 			     __be16 ethertype)
5812 {
5813 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
5814 		__be16 diff[] = { ~hdr->h_proto, ethertype };
5815 
5816 		skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum);
5817 	}
5818 
5819 	hdr->h_proto = ethertype;
5820 }
5821 
5822 /**
5823  * skb_mpls_push() - push a new MPLS header after mac_len bytes from start of
5824  *                   the packet
5825  *
5826  * @skb: buffer
5827  * @mpls_lse: MPLS label stack entry to push
5828  * @mpls_proto: ethertype of the new MPLS header (expects 0x8847 or 0x8848)
5829  * @mac_len: length of the MAC header
5830  * @ethernet: flag to indicate if the resulting packet after skb_mpls_push is
5831  *            ethernet
5832  *
5833  * Expects skb->data at mac header.
5834  *
5835  * Returns 0 on success, -errno otherwise.
5836  */
5837 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto,
5838 		  int mac_len, bool ethernet)
5839 {
5840 	struct mpls_shim_hdr *lse;
5841 	int err;
5842 
5843 	if (unlikely(!eth_p_mpls(mpls_proto)))
5844 		return -EINVAL;
5845 
5846 	/* Networking stack does not allow simultaneous Tunnel and MPLS GSO. */
5847 	if (skb->encapsulation)
5848 		return -EINVAL;
5849 
5850 	err = skb_cow_head(skb, MPLS_HLEN);
5851 	if (unlikely(err))
5852 		return err;
5853 
5854 	if (!skb->inner_protocol) {
5855 		skb_set_inner_network_header(skb, skb_network_offset(skb));
5856 		skb_set_inner_protocol(skb, skb->protocol);
5857 	}
5858 
5859 	skb_push(skb, MPLS_HLEN);
5860 	memmove(skb_mac_header(skb) - MPLS_HLEN, skb_mac_header(skb),
5861 		mac_len);
5862 	skb_reset_mac_header(skb);
5863 	skb_set_network_header(skb, mac_len);
5864 	skb_reset_mac_len(skb);
5865 
5866 	lse = mpls_hdr(skb);
5867 	lse->label_stack_entry = mpls_lse;
5868 	skb_postpush_rcsum(skb, lse, MPLS_HLEN);
5869 
5870 	if (ethernet && mac_len >= ETH_HLEN)
5871 		skb_mod_eth_type(skb, eth_hdr(skb), mpls_proto);
5872 	skb->protocol = mpls_proto;
5873 
5874 	return 0;
5875 }
5876 EXPORT_SYMBOL_GPL(skb_mpls_push);
5877 
5878 /**
5879  * skb_mpls_pop() - pop the outermost MPLS header
5880  *
5881  * @skb: buffer
5882  * @next_proto: ethertype of header after popped MPLS header
5883  * @mac_len: length of the MAC header
5884  * @ethernet: flag to indicate if the packet is ethernet
5885  *
5886  * Expects skb->data at mac header.
5887  *
5888  * Returns 0 on success, -errno otherwise.
5889  */
5890 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len,
5891 		 bool ethernet)
5892 {
5893 	int err;
5894 
5895 	if (unlikely(!eth_p_mpls(skb->protocol)))
5896 		return 0;
5897 
5898 	err = skb_ensure_writable(skb, mac_len + MPLS_HLEN);
5899 	if (unlikely(err))
5900 		return err;
5901 
5902 	skb_postpull_rcsum(skb, mpls_hdr(skb), MPLS_HLEN);
5903 	memmove(skb_mac_header(skb) + MPLS_HLEN, skb_mac_header(skb),
5904 		mac_len);
5905 
5906 	__skb_pull(skb, MPLS_HLEN);
5907 	skb_reset_mac_header(skb);
5908 	skb_set_network_header(skb, mac_len);
5909 
5910 	if (ethernet && mac_len >= ETH_HLEN) {
5911 		struct ethhdr *hdr;
5912 
5913 		/* use mpls_hdr() to get ethertype to account for VLANs. */
5914 		hdr = (struct ethhdr *)((void *)mpls_hdr(skb) - ETH_HLEN);
5915 		skb_mod_eth_type(skb, hdr, next_proto);
5916 	}
5917 	skb->protocol = next_proto;
5918 
5919 	return 0;
5920 }
5921 EXPORT_SYMBOL_GPL(skb_mpls_pop);
5922 
5923 /**
5924  * skb_mpls_update_lse() - modify outermost MPLS header and update csum
5925  *
5926  * @skb: buffer
5927  * @mpls_lse: new MPLS label stack entry to update to
5928  *
5929  * Expects skb->data at mac header.
5930  *
5931  * Returns 0 on success, -errno otherwise.
5932  */
5933 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse)
5934 {
5935 	int err;
5936 
5937 	if (unlikely(!eth_p_mpls(skb->protocol)))
5938 		return -EINVAL;
5939 
5940 	err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN);
5941 	if (unlikely(err))
5942 		return err;
5943 
5944 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
5945 		__be32 diff[] = { ~mpls_hdr(skb)->label_stack_entry, mpls_lse };
5946 
5947 		skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum);
5948 	}
5949 
5950 	mpls_hdr(skb)->label_stack_entry = mpls_lse;
5951 
5952 	return 0;
5953 }
5954 EXPORT_SYMBOL_GPL(skb_mpls_update_lse);
5955 
5956 /**
5957  * skb_mpls_dec_ttl() - decrement the TTL of the outermost MPLS header
5958  *
5959  * @skb: buffer
5960  *
5961  * Expects skb->data at mac header.
5962  *
5963  * Returns 0 on success, -errno otherwise.
5964  */
5965 int skb_mpls_dec_ttl(struct sk_buff *skb)
5966 {
5967 	u32 lse;
5968 	u8 ttl;
5969 
5970 	if (unlikely(!eth_p_mpls(skb->protocol)))
5971 		return -EINVAL;
5972 
5973 	if (!pskb_may_pull(skb, skb_network_offset(skb) + MPLS_HLEN))
5974 		return -ENOMEM;
5975 
5976 	lse = be32_to_cpu(mpls_hdr(skb)->label_stack_entry);
5977 	ttl = (lse & MPLS_LS_TTL_MASK) >> MPLS_LS_TTL_SHIFT;
5978 	if (!--ttl)
5979 		return -EINVAL;
5980 
5981 	lse &= ~MPLS_LS_TTL_MASK;
5982 	lse |= ttl << MPLS_LS_TTL_SHIFT;
5983 
5984 	return skb_mpls_update_lse(skb, cpu_to_be32(lse));
5985 }
5986 EXPORT_SYMBOL_GPL(skb_mpls_dec_ttl);
5987 
5988 /**
5989  * alloc_skb_with_frags - allocate skb with page frags
5990  *
5991  * @header_len: size of linear part
5992  * @data_len: needed length in frags
5993  * @max_page_order: max page order desired.
5994  * @errcode: pointer to error code if any
5995  * @gfp_mask: allocation mask
5996  *
5997  * This can be used to allocate a paged skb, given a maximal order for frags.
5998  */
5999 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
6000 				     unsigned long data_len,
6001 				     int max_page_order,
6002 				     int *errcode,
6003 				     gfp_t gfp_mask)
6004 {
6005 	int npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
6006 	unsigned long chunk;
6007 	struct sk_buff *skb;
6008 	struct page *page;
6009 	int i;
6010 
6011 	*errcode = -EMSGSIZE;
6012 	/* Note this test could be relaxed, if we succeed to allocate
6013 	 * high order pages...
6014 	 */
6015 	if (npages > MAX_SKB_FRAGS)
6016 		return NULL;
6017 
6018 	*errcode = -ENOBUFS;
6019 	skb = alloc_skb(header_len, gfp_mask);
6020 	if (!skb)
6021 		return NULL;
6022 
6023 	skb->truesize += npages << PAGE_SHIFT;
6024 
6025 	for (i = 0; npages > 0; i++) {
6026 		int order = max_page_order;
6027 
6028 		while (order) {
6029 			if (npages >= 1 << order) {
6030 				page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) |
6031 						   __GFP_COMP |
6032 						   __GFP_NOWARN,
6033 						   order);
6034 				if (page)
6035 					goto fill_page;
6036 				/* Do not retry other high order allocations */
6037 				order = 1;
6038 				max_page_order = 0;
6039 			}
6040 			order--;
6041 		}
6042 		page = alloc_page(gfp_mask);
6043 		if (!page)
6044 			goto failure;
6045 fill_page:
6046 		chunk = min_t(unsigned long, data_len,
6047 			      PAGE_SIZE << order);
6048 		skb_fill_page_desc(skb, i, page, 0, chunk);
6049 		data_len -= chunk;
6050 		npages -= 1 << order;
6051 	}
6052 	return skb;
6053 
6054 failure:
6055 	kfree_skb(skb);
6056 	return NULL;
6057 }
6058 EXPORT_SYMBOL(alloc_skb_with_frags);
6059 
6060 /* carve out the first off bytes from skb when off < headlen */
6061 static int pskb_carve_inside_header(struct sk_buff *skb, const u32 off,
6062 				    const int headlen, gfp_t gfp_mask)
6063 {
6064 	int i;
6065 	int size = skb_end_offset(skb);
6066 	int new_hlen = headlen - off;
6067 	u8 *data;
6068 
6069 	size = SKB_DATA_ALIGN(size);
6070 
6071 	if (skb_pfmemalloc(skb))
6072 		gfp_mask |= __GFP_MEMALLOC;
6073 	data = kmalloc_reserve(size +
6074 			       SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
6075 			       gfp_mask, NUMA_NO_NODE, NULL);
6076 	if (!data)
6077 		return -ENOMEM;
6078 
6079 	size = SKB_WITH_OVERHEAD(ksize(data));
6080 
6081 	/* Copy real data, and all frags */
6082 	skb_copy_from_linear_data_offset(skb, off, data, new_hlen);
6083 	skb->len -= off;
6084 
6085 	memcpy((struct skb_shared_info *)(data + size),
6086 	       skb_shinfo(skb),
6087 	       offsetof(struct skb_shared_info,
6088 			frags[skb_shinfo(skb)->nr_frags]));
6089 	if (skb_cloned(skb)) {
6090 		/* drop the old head gracefully */
6091 		if (skb_orphan_frags(skb, gfp_mask)) {
6092 			kfree(data);
6093 			return -ENOMEM;
6094 		}
6095 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
6096 			skb_frag_ref(skb, i);
6097 		if (skb_has_frag_list(skb))
6098 			skb_clone_fraglist(skb);
6099 		skb_release_data(skb);
6100 	} else {
6101 		/* we can reuse existing recount- all we did was
6102 		 * relocate values
6103 		 */
6104 		skb_free_head(skb);
6105 	}
6106 
6107 	skb->head = data;
6108 	skb->data = data;
6109 	skb->head_frag = 0;
6110 #ifdef NET_SKBUFF_DATA_USES_OFFSET
6111 	skb->end = size;
6112 #else
6113 	skb->end = skb->head + size;
6114 #endif
6115 	skb_set_tail_pointer(skb, skb_headlen(skb));
6116 	skb_headers_offset_update(skb, 0);
6117 	skb->cloned = 0;
6118 	skb->hdr_len = 0;
6119 	skb->nohdr = 0;
6120 	atomic_set(&skb_shinfo(skb)->dataref, 1);
6121 
6122 	return 0;
6123 }
6124 
6125 static int pskb_carve(struct sk_buff *skb, const u32 off, gfp_t gfp);
6126 
6127 /* carve out the first eat bytes from skb's frag_list. May recurse into
6128  * pskb_carve()
6129  */
6130 static int pskb_carve_frag_list(struct sk_buff *skb,
6131 				struct skb_shared_info *shinfo, int eat,
6132 				gfp_t gfp_mask)
6133 {
6134 	struct sk_buff *list = shinfo->frag_list;
6135 	struct sk_buff *clone = NULL;
6136 	struct sk_buff *insp = NULL;
6137 
6138 	do {
6139 		if (!list) {
6140 			pr_err("Not enough bytes to eat. Want %d\n", eat);
6141 			return -EFAULT;
6142 		}
6143 		if (list->len <= eat) {
6144 			/* Eaten as whole. */
6145 			eat -= list->len;
6146 			list = list->next;
6147 			insp = list;
6148 		} else {
6149 			/* Eaten partially. */
6150 			if (skb_shared(list)) {
6151 				clone = skb_clone(list, gfp_mask);
6152 				if (!clone)
6153 					return -ENOMEM;
6154 				insp = list->next;
6155 				list = clone;
6156 			} else {
6157 				/* This may be pulled without problems. */
6158 				insp = list;
6159 			}
6160 			if (pskb_carve(list, eat, gfp_mask) < 0) {
6161 				kfree_skb(clone);
6162 				return -ENOMEM;
6163 			}
6164 			break;
6165 		}
6166 	} while (eat);
6167 
6168 	/* Free pulled out fragments. */
6169 	while ((list = shinfo->frag_list) != insp) {
6170 		shinfo->frag_list = list->next;
6171 		kfree_skb(list);
6172 	}
6173 	/* And insert new clone at head. */
6174 	if (clone) {
6175 		clone->next = list;
6176 		shinfo->frag_list = clone;
6177 	}
6178 	return 0;
6179 }
6180 
6181 /* carve off first len bytes from skb. Split line (off) is in the
6182  * non-linear part of skb
6183  */
6184 static int pskb_carve_inside_nonlinear(struct sk_buff *skb, const u32 off,
6185 				       int pos, gfp_t gfp_mask)
6186 {
6187 	int i, k = 0;
6188 	int size = skb_end_offset(skb);
6189 	u8 *data;
6190 	const int nfrags = skb_shinfo(skb)->nr_frags;
6191 	struct skb_shared_info *shinfo;
6192 
6193 	size = SKB_DATA_ALIGN(size);
6194 
6195 	if (skb_pfmemalloc(skb))
6196 		gfp_mask |= __GFP_MEMALLOC;
6197 	data = kmalloc_reserve(size +
6198 			       SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
6199 			       gfp_mask, NUMA_NO_NODE, NULL);
6200 	if (!data)
6201 		return -ENOMEM;
6202 
6203 	size = SKB_WITH_OVERHEAD(ksize(data));
6204 
6205 	memcpy((struct skb_shared_info *)(data + size),
6206 	       skb_shinfo(skb), offsetof(struct skb_shared_info, frags[0]));
6207 	if (skb_orphan_frags(skb, gfp_mask)) {
6208 		kfree(data);
6209 		return -ENOMEM;
6210 	}
6211 	shinfo = (struct skb_shared_info *)(data + size);
6212 	for (i = 0; i < nfrags; i++) {
6213 		int fsize = skb_frag_size(&skb_shinfo(skb)->frags[i]);
6214 
6215 		if (pos + fsize > off) {
6216 			shinfo->frags[k] = skb_shinfo(skb)->frags[i];
6217 
6218 			if (pos < off) {
6219 				/* Split frag.
6220 				 * We have two variants in this case:
6221 				 * 1. Move all the frag to the second
6222 				 *    part, if it is possible. F.e.
6223 				 *    this approach is mandatory for TUX,
6224 				 *    where splitting is expensive.
6225 				 * 2. Split is accurately. We make this.
6226 				 */
6227 				skb_frag_off_add(&shinfo->frags[0], off - pos);
6228 				skb_frag_size_sub(&shinfo->frags[0], off - pos);
6229 			}
6230 			skb_frag_ref(skb, i);
6231 			k++;
6232 		}
6233 		pos += fsize;
6234 	}
6235 	shinfo->nr_frags = k;
6236 	if (skb_has_frag_list(skb))
6237 		skb_clone_fraglist(skb);
6238 
6239 	/* split line is in frag list */
6240 	if (k == 0 && pskb_carve_frag_list(skb, shinfo, off - pos, gfp_mask)) {
6241 		/* skb_frag_unref() is not needed here as shinfo->nr_frags = 0. */
6242 		if (skb_has_frag_list(skb))
6243 			kfree_skb_list(skb_shinfo(skb)->frag_list);
6244 		kfree(data);
6245 		return -ENOMEM;
6246 	}
6247 	skb_release_data(skb);
6248 
6249 	skb->head = data;
6250 	skb->head_frag = 0;
6251 	skb->data = data;
6252 #ifdef NET_SKBUFF_DATA_USES_OFFSET
6253 	skb->end = size;
6254 #else
6255 	skb->end = skb->head + size;
6256 #endif
6257 	skb_reset_tail_pointer(skb);
6258 	skb_headers_offset_update(skb, 0);
6259 	skb->cloned   = 0;
6260 	skb->hdr_len  = 0;
6261 	skb->nohdr    = 0;
6262 	skb->len -= off;
6263 	skb->data_len = skb->len;
6264 	atomic_set(&skb_shinfo(skb)->dataref, 1);
6265 	return 0;
6266 }
6267 
6268 /* remove len bytes from the beginning of the skb */
6269 static int pskb_carve(struct sk_buff *skb, const u32 len, gfp_t gfp)
6270 {
6271 	int headlen = skb_headlen(skb);
6272 
6273 	if (len < headlen)
6274 		return pskb_carve_inside_header(skb, len, headlen, gfp);
6275 	else
6276 		return pskb_carve_inside_nonlinear(skb, len, headlen, gfp);
6277 }
6278 
6279 /* Extract to_copy bytes starting at off from skb, and return this in
6280  * a new skb
6281  */
6282 struct sk_buff *pskb_extract(struct sk_buff *skb, int off,
6283 			     int to_copy, gfp_t gfp)
6284 {
6285 	struct sk_buff  *clone = skb_clone(skb, gfp);
6286 
6287 	if (!clone)
6288 		return NULL;
6289 
6290 	if (pskb_carve(clone, off, gfp) < 0 ||
6291 	    pskb_trim(clone, to_copy)) {
6292 		kfree_skb(clone);
6293 		return NULL;
6294 	}
6295 	return clone;
6296 }
6297 EXPORT_SYMBOL(pskb_extract);
6298 
6299 /**
6300  * skb_condense - try to get rid of fragments/frag_list if possible
6301  * @skb: buffer
6302  *
6303  * Can be used to save memory before skb is added to a busy queue.
6304  * If packet has bytes in frags and enough tail room in skb->head,
6305  * pull all of them, so that we can free the frags right now and adjust
6306  * truesize.
6307  * Notes:
6308  *	We do not reallocate skb->head thus can not fail.
6309  *	Caller must re-evaluate skb->truesize if needed.
6310  */
6311 void skb_condense(struct sk_buff *skb)
6312 {
6313 	if (skb->data_len) {
6314 		if (skb->data_len > skb->end - skb->tail ||
6315 		    skb_cloned(skb))
6316 			return;
6317 
6318 		/* Nice, we can free page frag(s) right now */
6319 		__pskb_pull_tail(skb, skb->data_len);
6320 	}
6321 	/* At this point, skb->truesize might be over estimated,
6322 	 * because skb had a fragment, and fragments do not tell
6323 	 * their truesize.
6324 	 * When we pulled its content into skb->head, fragment
6325 	 * was freed, but __pskb_pull_tail() could not possibly
6326 	 * adjust skb->truesize, not knowing the frag truesize.
6327 	 */
6328 	skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
6329 }
6330 
6331 #ifdef CONFIG_SKB_EXTENSIONS
6332 static void *skb_ext_get_ptr(struct skb_ext *ext, enum skb_ext_id id)
6333 {
6334 	return (void *)ext + (ext->offset[id] * SKB_EXT_ALIGN_VALUE);
6335 }
6336 
6337 /**
6338  * __skb_ext_alloc - allocate a new skb extensions storage
6339  *
6340  * @flags: See kmalloc().
6341  *
6342  * Returns the newly allocated pointer. The pointer can later attached to a
6343  * skb via __skb_ext_set().
6344  * Note: caller must handle the skb_ext as an opaque data.
6345  */
6346 struct skb_ext *__skb_ext_alloc(gfp_t flags)
6347 {
6348 	struct skb_ext *new = kmem_cache_alloc(skbuff_ext_cache, flags);
6349 
6350 	if (new) {
6351 		memset(new->offset, 0, sizeof(new->offset));
6352 		refcount_set(&new->refcnt, 1);
6353 	}
6354 
6355 	return new;
6356 }
6357 
6358 static struct skb_ext *skb_ext_maybe_cow(struct skb_ext *old,
6359 					 unsigned int old_active)
6360 {
6361 	struct skb_ext *new;
6362 
6363 	if (refcount_read(&old->refcnt) == 1)
6364 		return old;
6365 
6366 	new = kmem_cache_alloc(skbuff_ext_cache, GFP_ATOMIC);
6367 	if (!new)
6368 		return NULL;
6369 
6370 	memcpy(new, old, old->chunks * SKB_EXT_ALIGN_VALUE);
6371 	refcount_set(&new->refcnt, 1);
6372 
6373 #ifdef CONFIG_XFRM
6374 	if (old_active & (1 << SKB_EXT_SEC_PATH)) {
6375 		struct sec_path *sp = skb_ext_get_ptr(old, SKB_EXT_SEC_PATH);
6376 		unsigned int i;
6377 
6378 		for (i = 0; i < sp->len; i++)
6379 			xfrm_state_hold(sp->xvec[i]);
6380 	}
6381 #endif
6382 	__skb_ext_put(old);
6383 	return new;
6384 }
6385 
6386 /**
6387  * __skb_ext_set - attach the specified extension storage to this skb
6388  * @skb: buffer
6389  * @id: extension id
6390  * @ext: extension storage previously allocated via __skb_ext_alloc()
6391  *
6392  * Existing extensions, if any, are cleared.
6393  *
6394  * Returns the pointer to the extension.
6395  */
6396 void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id,
6397 		    struct skb_ext *ext)
6398 {
6399 	unsigned int newlen, newoff = SKB_EXT_CHUNKSIZEOF(*ext);
6400 
6401 	skb_ext_put(skb);
6402 	newlen = newoff + skb_ext_type_len[id];
6403 	ext->chunks = newlen;
6404 	ext->offset[id] = newoff;
6405 	skb->extensions = ext;
6406 	skb->active_extensions = 1 << id;
6407 	return skb_ext_get_ptr(ext, id);
6408 }
6409 
6410 /**
6411  * skb_ext_add - allocate space for given extension, COW if needed
6412  * @skb: buffer
6413  * @id: extension to allocate space for
6414  *
6415  * Allocates enough space for the given extension.
6416  * If the extension is already present, a pointer to that extension
6417  * is returned.
6418  *
6419  * If the skb was cloned, COW applies and the returned memory can be
6420  * modified without changing the extension space of clones buffers.
6421  *
6422  * Returns pointer to the extension or NULL on allocation failure.
6423  */
6424 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id)
6425 {
6426 	struct skb_ext *new, *old = NULL;
6427 	unsigned int newlen, newoff;
6428 
6429 	if (skb->active_extensions) {
6430 		old = skb->extensions;
6431 
6432 		new = skb_ext_maybe_cow(old, skb->active_extensions);
6433 		if (!new)
6434 			return NULL;
6435 
6436 		if (__skb_ext_exist(new, id))
6437 			goto set_active;
6438 
6439 		newoff = new->chunks;
6440 	} else {
6441 		newoff = SKB_EXT_CHUNKSIZEOF(*new);
6442 
6443 		new = __skb_ext_alloc(GFP_ATOMIC);
6444 		if (!new)
6445 			return NULL;
6446 	}
6447 
6448 	newlen = newoff + skb_ext_type_len[id];
6449 	new->chunks = newlen;
6450 	new->offset[id] = newoff;
6451 set_active:
6452 	skb->extensions = new;
6453 	skb->active_extensions |= 1 << id;
6454 	return skb_ext_get_ptr(new, id);
6455 }
6456 EXPORT_SYMBOL(skb_ext_add);
6457 
6458 #ifdef CONFIG_XFRM
6459 static void skb_ext_put_sp(struct sec_path *sp)
6460 {
6461 	unsigned int i;
6462 
6463 	for (i = 0; i < sp->len; i++)
6464 		xfrm_state_put(sp->xvec[i]);
6465 }
6466 #endif
6467 
6468 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id)
6469 {
6470 	struct skb_ext *ext = skb->extensions;
6471 
6472 	skb->active_extensions &= ~(1 << id);
6473 	if (skb->active_extensions == 0) {
6474 		skb->extensions = NULL;
6475 		__skb_ext_put(ext);
6476 #ifdef CONFIG_XFRM
6477 	} else if (id == SKB_EXT_SEC_PATH &&
6478 		   refcount_read(&ext->refcnt) == 1) {
6479 		struct sec_path *sp = skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH);
6480 
6481 		skb_ext_put_sp(sp);
6482 		sp->len = 0;
6483 #endif
6484 	}
6485 }
6486 EXPORT_SYMBOL(__skb_ext_del);
6487 
6488 void __skb_ext_put(struct skb_ext *ext)
6489 {
6490 	/* If this is last clone, nothing can increment
6491 	 * it after check passes.  Avoids one atomic op.
6492 	 */
6493 	if (refcount_read(&ext->refcnt) == 1)
6494 		goto free_now;
6495 
6496 	if (!refcount_dec_and_test(&ext->refcnt))
6497 		return;
6498 free_now:
6499 #ifdef CONFIG_XFRM
6500 	if (__skb_ext_exist(ext, SKB_EXT_SEC_PATH))
6501 		skb_ext_put_sp(skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH));
6502 #endif
6503 
6504 	kmem_cache_free(skbuff_ext_cache, ext);
6505 }
6506 EXPORT_SYMBOL(__skb_ext_put);
6507 #endif /* CONFIG_SKB_EXTENSIONS */
6508