xref: /openbmc/linux/net/core/skbuff.c (revision a99237af)
1 /*
2  *	Routines having to do with the 'struct sk_buff' memory handlers.
3  *
4  *	Authors:	Alan Cox <alan@lxorguk.ukuu.org.uk>
5  *			Florian La Roche <rzsfl@rz.uni-sb.de>
6  *
7  *	Fixes:
8  *		Alan Cox	:	Fixed the worst of the load
9  *					balancer bugs.
10  *		Dave Platt	:	Interrupt stacking fix.
11  *	Richard Kooijman	:	Timestamp fixes.
12  *		Alan Cox	:	Changed buffer format.
13  *		Alan Cox	:	destructor hook for AF_UNIX etc.
14  *		Linus Torvalds	:	Better skb_clone.
15  *		Alan Cox	:	Added skb_copy.
16  *		Alan Cox	:	Added all the changed routines Linus
17  *					only put in the headers
18  *		Ray VanTassle	:	Fixed --skb->lock in free
19  *		Alan Cox	:	skb_copy copy arp field
20  *		Andi Kleen	:	slabified it.
21  *		Robert Olsson	:	Removed skb_head_pool
22  *
23  *	NOTE:
24  *		The __skb_ routines should be called with interrupts
25  *	disabled, or you better be *real* sure that the operation is atomic
26  *	with respect to whatever list is being frobbed (e.g. via lock_sock()
27  *	or via disabling bottom half handlers, etc).
28  *
29  *	This program is free software; you can redistribute it and/or
30  *	modify it under the terms of the GNU General Public License
31  *	as published by the Free Software Foundation; either version
32  *	2 of the License, or (at your option) any later version.
33  */
34 
35 /*
36  *	The functions in this file will not compile correctly with gcc 2.4.x
37  */
38 
39 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
40 
41 #include <linux/module.h>
42 #include <linux/types.h>
43 #include <linux/kernel.h>
44 #include <linux/mm.h>
45 #include <linux/interrupt.h>
46 #include <linux/in.h>
47 #include <linux/inet.h>
48 #include <linux/slab.h>
49 #include <linux/tcp.h>
50 #include <linux/udp.h>
51 #include <linux/sctp.h>
52 #include <linux/netdevice.h>
53 #ifdef CONFIG_NET_CLS_ACT
54 #include <net/pkt_sched.h>
55 #endif
56 #include <linux/string.h>
57 #include <linux/skbuff.h>
58 #include <linux/splice.h>
59 #include <linux/cache.h>
60 #include <linux/rtnetlink.h>
61 #include <linux/init.h>
62 #include <linux/scatterlist.h>
63 #include <linux/errqueue.h>
64 #include <linux/prefetch.h>
65 #include <linux/if_vlan.h>
66 
67 #include <net/protocol.h>
68 #include <net/dst.h>
69 #include <net/sock.h>
70 #include <net/checksum.h>
71 #include <net/ip6_checksum.h>
72 #include <net/xfrm.h>
73 
74 #include <linux/uaccess.h>
75 #include <trace/events/skb.h>
76 #include <linux/highmem.h>
77 #include <linux/capability.h>
78 #include <linux/user_namespace.h>
79 
80 struct kmem_cache *skbuff_head_cache __ro_after_init;
81 static struct kmem_cache *skbuff_fclone_cache __ro_after_init;
82 int sysctl_max_skb_frags __read_mostly = MAX_SKB_FRAGS;
83 EXPORT_SYMBOL(sysctl_max_skb_frags);
84 
85 /**
86  *	skb_panic - private function for out-of-line support
87  *	@skb:	buffer
88  *	@sz:	size
89  *	@addr:	address
90  *	@msg:	skb_over_panic or skb_under_panic
91  *
92  *	Out-of-line support for skb_put() and skb_push().
93  *	Called via the wrapper skb_over_panic() or skb_under_panic().
94  *	Keep out of line to prevent kernel bloat.
95  *	__builtin_return_address is not used because it is not always reliable.
96  */
97 static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr,
98 		      const char msg[])
99 {
100 	pr_emerg("%s: text:%p len:%d put:%d head:%p data:%p tail:%#lx end:%#lx dev:%s\n",
101 		 msg, addr, skb->len, sz, skb->head, skb->data,
102 		 (unsigned long)skb->tail, (unsigned long)skb->end,
103 		 skb->dev ? skb->dev->name : "<NULL>");
104 	BUG();
105 }
106 
107 static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr)
108 {
109 	skb_panic(skb, sz, addr, __func__);
110 }
111 
112 static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr)
113 {
114 	skb_panic(skb, sz, addr, __func__);
115 }
116 
117 /*
118  * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells
119  * the caller if emergency pfmemalloc reserves are being used. If it is and
120  * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves
121  * may be used. Otherwise, the packet data may be discarded until enough
122  * memory is free
123  */
124 #define kmalloc_reserve(size, gfp, node, pfmemalloc) \
125 	 __kmalloc_reserve(size, gfp, node, _RET_IP_, pfmemalloc)
126 
127 static void *__kmalloc_reserve(size_t size, gfp_t flags, int node,
128 			       unsigned long ip, bool *pfmemalloc)
129 {
130 	void *obj;
131 	bool ret_pfmemalloc = false;
132 
133 	/*
134 	 * Try a regular allocation, when that fails and we're not entitled
135 	 * to the reserves, fail.
136 	 */
137 	obj = kmalloc_node_track_caller(size,
138 					flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
139 					node);
140 	if (obj || !(gfp_pfmemalloc_allowed(flags)))
141 		goto out;
142 
143 	/* Try again but now we are using pfmemalloc reserves */
144 	ret_pfmemalloc = true;
145 	obj = kmalloc_node_track_caller(size, flags, node);
146 
147 out:
148 	if (pfmemalloc)
149 		*pfmemalloc = ret_pfmemalloc;
150 
151 	return obj;
152 }
153 
154 /* 	Allocate a new skbuff. We do this ourselves so we can fill in a few
155  *	'private' fields and also do memory statistics to find all the
156  *	[BEEP] leaks.
157  *
158  */
159 
160 /**
161  *	__alloc_skb	-	allocate a network buffer
162  *	@size: size to allocate
163  *	@gfp_mask: allocation mask
164  *	@flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache
165  *		instead of head cache and allocate a cloned (child) skb.
166  *		If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for
167  *		allocations in case the data is required for writeback
168  *	@node: numa node to allocate memory on
169  *
170  *	Allocate a new &sk_buff. The returned buffer has no headroom and a
171  *	tail room of at least size bytes. The object has a reference count
172  *	of one. The return is the buffer. On a failure the return is %NULL.
173  *
174  *	Buffers may only be allocated from interrupts using a @gfp_mask of
175  *	%GFP_ATOMIC.
176  */
177 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
178 			    int flags, int node)
179 {
180 	struct kmem_cache *cache;
181 	struct skb_shared_info *shinfo;
182 	struct sk_buff *skb;
183 	u8 *data;
184 	bool pfmemalloc;
185 
186 	cache = (flags & SKB_ALLOC_FCLONE)
187 		? skbuff_fclone_cache : skbuff_head_cache;
188 
189 	if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX))
190 		gfp_mask |= __GFP_MEMALLOC;
191 
192 	/* Get the HEAD */
193 	skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node);
194 	if (!skb)
195 		goto out;
196 	prefetchw(skb);
197 
198 	/* We do our best to align skb_shared_info on a separate cache
199 	 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives
200 	 * aligned memory blocks, unless SLUB/SLAB debug is enabled.
201 	 * Both skb->head and skb_shared_info are cache line aligned.
202 	 */
203 	size = SKB_DATA_ALIGN(size);
204 	size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
205 	data = kmalloc_reserve(size, gfp_mask, node, &pfmemalloc);
206 	if (!data)
207 		goto nodata;
208 	/* kmalloc(size) might give us more room than requested.
209 	 * Put skb_shared_info exactly at the end of allocated zone,
210 	 * to allow max possible filling before reallocation.
211 	 */
212 	size = SKB_WITH_OVERHEAD(ksize(data));
213 	prefetchw(data + size);
214 
215 	/*
216 	 * Only clear those fields we need to clear, not those that we will
217 	 * actually initialise below. Hence, don't put any more fields after
218 	 * the tail pointer in struct sk_buff!
219 	 */
220 	memset(skb, 0, offsetof(struct sk_buff, tail));
221 	/* Account for allocated memory : skb + skb->head */
222 	skb->truesize = SKB_TRUESIZE(size);
223 	skb->pfmemalloc = pfmemalloc;
224 	refcount_set(&skb->users, 1);
225 	skb->head = data;
226 	skb->data = data;
227 	skb_reset_tail_pointer(skb);
228 	skb->end = skb->tail + size;
229 	skb->mac_header = (typeof(skb->mac_header))~0U;
230 	skb->transport_header = (typeof(skb->transport_header))~0U;
231 
232 	/* make sure we initialize shinfo sequentially */
233 	shinfo = skb_shinfo(skb);
234 	memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
235 	atomic_set(&shinfo->dataref, 1);
236 
237 	if (flags & SKB_ALLOC_FCLONE) {
238 		struct sk_buff_fclones *fclones;
239 
240 		fclones = container_of(skb, struct sk_buff_fclones, skb1);
241 
242 		skb->fclone = SKB_FCLONE_ORIG;
243 		refcount_set(&fclones->fclone_ref, 1);
244 
245 		fclones->skb2.fclone = SKB_FCLONE_CLONE;
246 	}
247 out:
248 	return skb;
249 nodata:
250 	kmem_cache_free(cache, skb);
251 	skb = NULL;
252 	goto out;
253 }
254 EXPORT_SYMBOL(__alloc_skb);
255 
256 /**
257  * __build_skb - build a network buffer
258  * @data: data buffer provided by caller
259  * @frag_size: size of data, or 0 if head was kmalloced
260  *
261  * Allocate a new &sk_buff. Caller provides space holding head and
262  * skb_shared_info. @data must have been allocated by kmalloc() only if
263  * @frag_size is 0, otherwise data should come from the page allocator
264  *  or vmalloc()
265  * The return is the new skb buffer.
266  * On a failure the return is %NULL, and @data is not freed.
267  * Notes :
268  *  Before IO, driver allocates only data buffer where NIC put incoming frame
269  *  Driver should add room at head (NET_SKB_PAD) and
270  *  MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info))
271  *  After IO, driver calls build_skb(), to allocate sk_buff and populate it
272  *  before giving packet to stack.
273  *  RX rings only contains data buffers, not full skbs.
274  */
275 struct sk_buff *__build_skb(void *data, unsigned int frag_size)
276 {
277 	struct skb_shared_info *shinfo;
278 	struct sk_buff *skb;
279 	unsigned int size = frag_size ? : ksize(data);
280 
281 	skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC);
282 	if (!skb)
283 		return NULL;
284 
285 	size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
286 
287 	memset(skb, 0, offsetof(struct sk_buff, tail));
288 	skb->truesize = SKB_TRUESIZE(size);
289 	refcount_set(&skb->users, 1);
290 	skb->head = data;
291 	skb->data = data;
292 	skb_reset_tail_pointer(skb);
293 	skb->end = skb->tail + size;
294 	skb->mac_header = (typeof(skb->mac_header))~0U;
295 	skb->transport_header = (typeof(skb->transport_header))~0U;
296 
297 	/* make sure we initialize shinfo sequentially */
298 	shinfo = skb_shinfo(skb);
299 	memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
300 	atomic_set(&shinfo->dataref, 1);
301 
302 	return skb;
303 }
304 
305 /* build_skb() is wrapper over __build_skb(), that specifically
306  * takes care of skb->head and skb->pfmemalloc
307  * This means that if @frag_size is not zero, then @data must be backed
308  * by a page fragment, not kmalloc() or vmalloc()
309  */
310 struct sk_buff *build_skb(void *data, unsigned int frag_size)
311 {
312 	struct sk_buff *skb = __build_skb(data, frag_size);
313 
314 	if (skb && frag_size) {
315 		skb->head_frag = 1;
316 		if (page_is_pfmemalloc(virt_to_head_page(data)))
317 			skb->pfmemalloc = 1;
318 	}
319 	return skb;
320 }
321 EXPORT_SYMBOL(build_skb);
322 
323 #define NAPI_SKB_CACHE_SIZE	64
324 
325 struct napi_alloc_cache {
326 	struct page_frag_cache page;
327 	unsigned int skb_count;
328 	void *skb_cache[NAPI_SKB_CACHE_SIZE];
329 };
330 
331 static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache);
332 static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache);
333 
334 static void *__netdev_alloc_frag(unsigned int fragsz, gfp_t gfp_mask)
335 {
336 	struct page_frag_cache *nc;
337 	unsigned long flags;
338 	void *data;
339 
340 	local_irq_save(flags);
341 	nc = this_cpu_ptr(&netdev_alloc_cache);
342 	data = page_frag_alloc(nc, fragsz, gfp_mask);
343 	local_irq_restore(flags);
344 	return data;
345 }
346 
347 /**
348  * netdev_alloc_frag - allocate a page fragment
349  * @fragsz: fragment size
350  *
351  * Allocates a frag from a page for receive buffer.
352  * Uses GFP_ATOMIC allocations.
353  */
354 void *netdev_alloc_frag(unsigned int fragsz)
355 {
356 	return __netdev_alloc_frag(fragsz, GFP_ATOMIC);
357 }
358 EXPORT_SYMBOL(netdev_alloc_frag);
359 
360 static void *__napi_alloc_frag(unsigned int fragsz, gfp_t gfp_mask)
361 {
362 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
363 
364 	return page_frag_alloc(&nc->page, fragsz, gfp_mask);
365 }
366 
367 void *napi_alloc_frag(unsigned int fragsz)
368 {
369 	return __napi_alloc_frag(fragsz, GFP_ATOMIC);
370 }
371 EXPORT_SYMBOL(napi_alloc_frag);
372 
373 /**
374  *	__netdev_alloc_skb - allocate an skbuff for rx on a specific device
375  *	@dev: network device to receive on
376  *	@len: length to allocate
377  *	@gfp_mask: get_free_pages mask, passed to alloc_skb
378  *
379  *	Allocate a new &sk_buff and assign it a usage count of one. The
380  *	buffer has NET_SKB_PAD headroom built in. Users should allocate
381  *	the headroom they think they need without accounting for the
382  *	built in space. The built in space is used for optimisations.
383  *
384  *	%NULL is returned if there is no free memory.
385  */
386 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len,
387 				   gfp_t gfp_mask)
388 {
389 	struct page_frag_cache *nc;
390 	unsigned long flags;
391 	struct sk_buff *skb;
392 	bool pfmemalloc;
393 	void *data;
394 
395 	len += NET_SKB_PAD;
396 
397 	if ((len > SKB_WITH_OVERHEAD(PAGE_SIZE)) ||
398 	    (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
399 		skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
400 		if (!skb)
401 			goto skb_fail;
402 		goto skb_success;
403 	}
404 
405 	len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
406 	len = SKB_DATA_ALIGN(len);
407 
408 	if (sk_memalloc_socks())
409 		gfp_mask |= __GFP_MEMALLOC;
410 
411 	local_irq_save(flags);
412 
413 	nc = this_cpu_ptr(&netdev_alloc_cache);
414 	data = page_frag_alloc(nc, len, gfp_mask);
415 	pfmemalloc = nc->pfmemalloc;
416 
417 	local_irq_restore(flags);
418 
419 	if (unlikely(!data))
420 		return NULL;
421 
422 	skb = __build_skb(data, len);
423 	if (unlikely(!skb)) {
424 		skb_free_frag(data);
425 		return NULL;
426 	}
427 
428 	/* use OR instead of assignment to avoid clearing of bits in mask */
429 	if (pfmemalloc)
430 		skb->pfmemalloc = 1;
431 	skb->head_frag = 1;
432 
433 skb_success:
434 	skb_reserve(skb, NET_SKB_PAD);
435 	skb->dev = dev;
436 
437 skb_fail:
438 	return skb;
439 }
440 EXPORT_SYMBOL(__netdev_alloc_skb);
441 
442 /**
443  *	__napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance
444  *	@napi: napi instance this buffer was allocated for
445  *	@len: length to allocate
446  *	@gfp_mask: get_free_pages mask, passed to alloc_skb and alloc_pages
447  *
448  *	Allocate a new sk_buff for use in NAPI receive.  This buffer will
449  *	attempt to allocate the head from a special reserved region used
450  *	only for NAPI Rx allocation.  By doing this we can save several
451  *	CPU cycles by avoiding having to disable and re-enable IRQs.
452  *
453  *	%NULL is returned if there is no free memory.
454  */
455 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, unsigned int len,
456 				 gfp_t gfp_mask)
457 {
458 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
459 	struct sk_buff *skb;
460 	void *data;
461 
462 	len += NET_SKB_PAD + NET_IP_ALIGN;
463 
464 	if ((len > SKB_WITH_OVERHEAD(PAGE_SIZE)) ||
465 	    (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
466 		skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
467 		if (!skb)
468 			goto skb_fail;
469 		goto skb_success;
470 	}
471 
472 	len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
473 	len = SKB_DATA_ALIGN(len);
474 
475 	if (sk_memalloc_socks())
476 		gfp_mask |= __GFP_MEMALLOC;
477 
478 	data = page_frag_alloc(&nc->page, len, gfp_mask);
479 	if (unlikely(!data))
480 		return NULL;
481 
482 	skb = __build_skb(data, len);
483 	if (unlikely(!skb)) {
484 		skb_free_frag(data);
485 		return NULL;
486 	}
487 
488 	/* use OR instead of assignment to avoid clearing of bits in mask */
489 	if (nc->page.pfmemalloc)
490 		skb->pfmemalloc = 1;
491 	skb->head_frag = 1;
492 
493 skb_success:
494 	skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN);
495 	skb->dev = napi->dev;
496 
497 skb_fail:
498 	return skb;
499 }
500 EXPORT_SYMBOL(__napi_alloc_skb);
501 
502 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
503 		     int size, unsigned int truesize)
504 {
505 	skb_fill_page_desc(skb, i, page, off, size);
506 	skb->len += size;
507 	skb->data_len += size;
508 	skb->truesize += truesize;
509 }
510 EXPORT_SYMBOL(skb_add_rx_frag);
511 
512 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
513 			  unsigned int truesize)
514 {
515 	skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
516 
517 	skb_frag_size_add(frag, size);
518 	skb->len += size;
519 	skb->data_len += size;
520 	skb->truesize += truesize;
521 }
522 EXPORT_SYMBOL(skb_coalesce_rx_frag);
523 
524 static void skb_drop_list(struct sk_buff **listp)
525 {
526 	kfree_skb_list(*listp);
527 	*listp = NULL;
528 }
529 
530 static inline void skb_drop_fraglist(struct sk_buff *skb)
531 {
532 	skb_drop_list(&skb_shinfo(skb)->frag_list);
533 }
534 
535 static void skb_clone_fraglist(struct sk_buff *skb)
536 {
537 	struct sk_buff *list;
538 
539 	skb_walk_frags(skb, list)
540 		skb_get(list);
541 }
542 
543 static void skb_free_head(struct sk_buff *skb)
544 {
545 	unsigned char *head = skb->head;
546 
547 	if (skb->head_frag)
548 		skb_free_frag(head);
549 	else
550 		kfree(head);
551 }
552 
553 static void skb_release_data(struct sk_buff *skb)
554 {
555 	struct skb_shared_info *shinfo = skb_shinfo(skb);
556 	int i;
557 
558 	if (skb->cloned &&
559 	    atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
560 			      &shinfo->dataref))
561 		return;
562 
563 	for (i = 0; i < shinfo->nr_frags; i++)
564 		__skb_frag_unref(&shinfo->frags[i]);
565 
566 	if (shinfo->frag_list)
567 		kfree_skb_list(shinfo->frag_list);
568 
569 	skb_zcopy_clear(skb, true);
570 	skb_free_head(skb);
571 }
572 
573 /*
574  *	Free an skbuff by memory without cleaning the state.
575  */
576 static void kfree_skbmem(struct sk_buff *skb)
577 {
578 	struct sk_buff_fclones *fclones;
579 
580 	switch (skb->fclone) {
581 	case SKB_FCLONE_UNAVAILABLE:
582 		kmem_cache_free(skbuff_head_cache, skb);
583 		return;
584 
585 	case SKB_FCLONE_ORIG:
586 		fclones = container_of(skb, struct sk_buff_fclones, skb1);
587 
588 		/* We usually free the clone (TX completion) before original skb
589 		 * This test would have no chance to be true for the clone,
590 		 * while here, branch prediction will be good.
591 		 */
592 		if (refcount_read(&fclones->fclone_ref) == 1)
593 			goto fastpath;
594 		break;
595 
596 	default: /* SKB_FCLONE_CLONE */
597 		fclones = container_of(skb, struct sk_buff_fclones, skb2);
598 		break;
599 	}
600 	if (!refcount_dec_and_test(&fclones->fclone_ref))
601 		return;
602 fastpath:
603 	kmem_cache_free(skbuff_fclone_cache, fclones);
604 }
605 
606 void skb_release_head_state(struct sk_buff *skb)
607 {
608 	skb_dst_drop(skb);
609 	secpath_reset(skb);
610 	if (skb->destructor) {
611 		WARN_ON(in_irq());
612 		skb->destructor(skb);
613 	}
614 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
615 	nf_conntrack_put(skb_nfct(skb));
616 #endif
617 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
618 	nf_bridge_put(skb->nf_bridge);
619 #endif
620 }
621 
622 /* Free everything but the sk_buff shell. */
623 static void skb_release_all(struct sk_buff *skb)
624 {
625 	skb_release_head_state(skb);
626 	if (likely(skb->head))
627 		skb_release_data(skb);
628 }
629 
630 /**
631  *	__kfree_skb - private function
632  *	@skb: buffer
633  *
634  *	Free an sk_buff. Release anything attached to the buffer.
635  *	Clean the state. This is an internal helper function. Users should
636  *	always call kfree_skb
637  */
638 
639 void __kfree_skb(struct sk_buff *skb)
640 {
641 	skb_release_all(skb);
642 	kfree_skbmem(skb);
643 }
644 EXPORT_SYMBOL(__kfree_skb);
645 
646 /**
647  *	kfree_skb - free an sk_buff
648  *	@skb: buffer to free
649  *
650  *	Drop a reference to the buffer and free it if the usage count has
651  *	hit zero.
652  */
653 void kfree_skb(struct sk_buff *skb)
654 {
655 	if (!skb_unref(skb))
656 		return;
657 
658 	trace_kfree_skb(skb, __builtin_return_address(0));
659 	__kfree_skb(skb);
660 }
661 EXPORT_SYMBOL(kfree_skb);
662 
663 void kfree_skb_list(struct sk_buff *segs)
664 {
665 	while (segs) {
666 		struct sk_buff *next = segs->next;
667 
668 		kfree_skb(segs);
669 		segs = next;
670 	}
671 }
672 EXPORT_SYMBOL(kfree_skb_list);
673 
674 /**
675  *	skb_tx_error - report an sk_buff xmit error
676  *	@skb: buffer that triggered an error
677  *
678  *	Report xmit error if a device callback is tracking this skb.
679  *	skb must be freed afterwards.
680  */
681 void skb_tx_error(struct sk_buff *skb)
682 {
683 	skb_zcopy_clear(skb, true);
684 }
685 EXPORT_SYMBOL(skb_tx_error);
686 
687 /**
688  *	consume_skb - free an skbuff
689  *	@skb: buffer to free
690  *
691  *	Drop a ref to the buffer and free it if the usage count has hit zero
692  *	Functions identically to kfree_skb, but kfree_skb assumes that the frame
693  *	is being dropped after a failure and notes that
694  */
695 void consume_skb(struct sk_buff *skb)
696 {
697 	if (!skb_unref(skb))
698 		return;
699 
700 	trace_consume_skb(skb);
701 	__kfree_skb(skb);
702 }
703 EXPORT_SYMBOL(consume_skb);
704 
705 /**
706  *	consume_stateless_skb - free an skbuff, assuming it is stateless
707  *	@skb: buffer to free
708  *
709  *	Alike consume_skb(), but this variant assumes that this is the last
710  *	skb reference and all the head states have been already dropped
711  */
712 void __consume_stateless_skb(struct sk_buff *skb)
713 {
714 	trace_consume_skb(skb);
715 	skb_release_data(skb);
716 	kfree_skbmem(skb);
717 }
718 
719 void __kfree_skb_flush(void)
720 {
721 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
722 
723 	/* flush skb_cache if containing objects */
724 	if (nc->skb_count) {
725 		kmem_cache_free_bulk(skbuff_head_cache, nc->skb_count,
726 				     nc->skb_cache);
727 		nc->skb_count = 0;
728 	}
729 }
730 
731 static inline void _kfree_skb_defer(struct sk_buff *skb)
732 {
733 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
734 
735 	/* drop skb->head and call any destructors for packet */
736 	skb_release_all(skb);
737 
738 	/* record skb to CPU local list */
739 	nc->skb_cache[nc->skb_count++] = skb;
740 
741 #ifdef CONFIG_SLUB
742 	/* SLUB writes into objects when freeing */
743 	prefetchw(skb);
744 #endif
745 
746 	/* flush skb_cache if it is filled */
747 	if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) {
748 		kmem_cache_free_bulk(skbuff_head_cache, NAPI_SKB_CACHE_SIZE,
749 				     nc->skb_cache);
750 		nc->skb_count = 0;
751 	}
752 }
753 void __kfree_skb_defer(struct sk_buff *skb)
754 {
755 	_kfree_skb_defer(skb);
756 }
757 
758 void napi_consume_skb(struct sk_buff *skb, int budget)
759 {
760 	if (unlikely(!skb))
761 		return;
762 
763 	/* Zero budget indicate non-NAPI context called us, like netpoll */
764 	if (unlikely(!budget)) {
765 		dev_consume_skb_any(skb);
766 		return;
767 	}
768 
769 	if (!skb_unref(skb))
770 		return;
771 
772 	/* if reaching here SKB is ready to free */
773 	trace_consume_skb(skb);
774 
775 	/* if SKB is a clone, don't handle this case */
776 	if (skb->fclone != SKB_FCLONE_UNAVAILABLE) {
777 		__kfree_skb(skb);
778 		return;
779 	}
780 
781 	_kfree_skb_defer(skb);
782 }
783 EXPORT_SYMBOL(napi_consume_skb);
784 
785 /* Make sure a field is enclosed inside headers_start/headers_end section */
786 #define CHECK_SKB_FIELD(field) \
787 	BUILD_BUG_ON(offsetof(struct sk_buff, field) <		\
788 		     offsetof(struct sk_buff, headers_start));	\
789 	BUILD_BUG_ON(offsetof(struct sk_buff, field) >		\
790 		     offsetof(struct sk_buff, headers_end));	\
791 
792 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
793 {
794 	new->tstamp		= old->tstamp;
795 	/* We do not copy old->sk */
796 	new->dev		= old->dev;
797 	memcpy(new->cb, old->cb, sizeof(old->cb));
798 	skb_dst_copy(new, old);
799 #ifdef CONFIG_XFRM
800 	new->sp			= secpath_get(old->sp);
801 #endif
802 	__nf_copy(new, old, false);
803 
804 	/* Note : this field could be in headers_start/headers_end section
805 	 * It is not yet because we do not want to have a 16 bit hole
806 	 */
807 	new->queue_mapping = old->queue_mapping;
808 
809 	memcpy(&new->headers_start, &old->headers_start,
810 	       offsetof(struct sk_buff, headers_end) -
811 	       offsetof(struct sk_buff, headers_start));
812 	CHECK_SKB_FIELD(protocol);
813 	CHECK_SKB_FIELD(csum);
814 	CHECK_SKB_FIELD(hash);
815 	CHECK_SKB_FIELD(priority);
816 	CHECK_SKB_FIELD(skb_iif);
817 	CHECK_SKB_FIELD(vlan_proto);
818 	CHECK_SKB_FIELD(vlan_tci);
819 	CHECK_SKB_FIELD(transport_header);
820 	CHECK_SKB_FIELD(network_header);
821 	CHECK_SKB_FIELD(mac_header);
822 	CHECK_SKB_FIELD(inner_protocol);
823 	CHECK_SKB_FIELD(inner_transport_header);
824 	CHECK_SKB_FIELD(inner_network_header);
825 	CHECK_SKB_FIELD(inner_mac_header);
826 	CHECK_SKB_FIELD(mark);
827 #ifdef CONFIG_NETWORK_SECMARK
828 	CHECK_SKB_FIELD(secmark);
829 #endif
830 #ifdef CONFIG_NET_RX_BUSY_POLL
831 	CHECK_SKB_FIELD(napi_id);
832 #endif
833 #ifdef CONFIG_XPS
834 	CHECK_SKB_FIELD(sender_cpu);
835 #endif
836 #ifdef CONFIG_NET_SCHED
837 	CHECK_SKB_FIELD(tc_index);
838 #endif
839 
840 }
841 
842 /*
843  * You should not add any new code to this function.  Add it to
844  * __copy_skb_header above instead.
845  */
846 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
847 {
848 #define C(x) n->x = skb->x
849 
850 	n->next = n->prev = NULL;
851 	n->sk = NULL;
852 	__copy_skb_header(n, skb);
853 
854 	C(len);
855 	C(data_len);
856 	C(mac_len);
857 	n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
858 	n->cloned = 1;
859 	n->nohdr = 0;
860 	n->peeked = 0;
861 	C(pfmemalloc);
862 	n->destructor = NULL;
863 	C(tail);
864 	C(end);
865 	C(head);
866 	C(head_frag);
867 	C(data);
868 	C(truesize);
869 	refcount_set(&n->users, 1);
870 
871 	atomic_inc(&(skb_shinfo(skb)->dataref));
872 	skb->cloned = 1;
873 
874 	return n;
875 #undef C
876 }
877 
878 /**
879  *	skb_morph	-	morph one skb into another
880  *	@dst: the skb to receive the contents
881  *	@src: the skb to supply the contents
882  *
883  *	This is identical to skb_clone except that the target skb is
884  *	supplied by the user.
885  *
886  *	The target skb is returned upon exit.
887  */
888 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
889 {
890 	skb_release_all(dst);
891 	return __skb_clone(dst, src);
892 }
893 EXPORT_SYMBOL_GPL(skb_morph);
894 
895 int mm_account_pinned_pages(struct mmpin *mmp, size_t size)
896 {
897 	unsigned long max_pg, num_pg, new_pg, old_pg;
898 	struct user_struct *user;
899 
900 	if (capable(CAP_IPC_LOCK) || !size)
901 		return 0;
902 
903 	num_pg = (size >> PAGE_SHIFT) + 2;	/* worst case */
904 	max_pg = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
905 	user = mmp->user ? : current_user();
906 
907 	do {
908 		old_pg = atomic_long_read(&user->locked_vm);
909 		new_pg = old_pg + num_pg;
910 		if (new_pg > max_pg)
911 			return -ENOBUFS;
912 	} while (atomic_long_cmpxchg(&user->locked_vm, old_pg, new_pg) !=
913 		 old_pg);
914 
915 	if (!mmp->user) {
916 		mmp->user = get_uid(user);
917 		mmp->num_pg = num_pg;
918 	} else {
919 		mmp->num_pg += num_pg;
920 	}
921 
922 	return 0;
923 }
924 EXPORT_SYMBOL_GPL(mm_account_pinned_pages);
925 
926 void mm_unaccount_pinned_pages(struct mmpin *mmp)
927 {
928 	if (mmp->user) {
929 		atomic_long_sub(mmp->num_pg, &mmp->user->locked_vm);
930 		free_uid(mmp->user);
931 	}
932 }
933 EXPORT_SYMBOL_GPL(mm_unaccount_pinned_pages);
934 
935 struct ubuf_info *sock_zerocopy_alloc(struct sock *sk, size_t size)
936 {
937 	struct ubuf_info *uarg;
938 	struct sk_buff *skb;
939 
940 	WARN_ON_ONCE(!in_task());
941 
942 	if (!sock_flag(sk, SOCK_ZEROCOPY))
943 		return NULL;
944 
945 	skb = sock_omalloc(sk, 0, GFP_KERNEL);
946 	if (!skb)
947 		return NULL;
948 
949 	BUILD_BUG_ON(sizeof(*uarg) > sizeof(skb->cb));
950 	uarg = (void *)skb->cb;
951 	uarg->mmp.user = NULL;
952 
953 	if (mm_account_pinned_pages(&uarg->mmp, size)) {
954 		kfree_skb(skb);
955 		return NULL;
956 	}
957 
958 	uarg->callback = sock_zerocopy_callback;
959 	uarg->id = ((u32)atomic_inc_return(&sk->sk_zckey)) - 1;
960 	uarg->len = 1;
961 	uarg->bytelen = size;
962 	uarg->zerocopy = 1;
963 	refcount_set(&uarg->refcnt, 1);
964 	sock_hold(sk);
965 
966 	return uarg;
967 }
968 EXPORT_SYMBOL_GPL(sock_zerocopy_alloc);
969 
970 static inline struct sk_buff *skb_from_uarg(struct ubuf_info *uarg)
971 {
972 	return container_of((void *)uarg, struct sk_buff, cb);
973 }
974 
975 struct ubuf_info *sock_zerocopy_realloc(struct sock *sk, size_t size,
976 					struct ubuf_info *uarg)
977 {
978 	if (uarg) {
979 		const u32 byte_limit = 1 << 19;		/* limit to a few TSO */
980 		u32 bytelen, next;
981 
982 		/* realloc only when socket is locked (TCP, UDP cork),
983 		 * so uarg->len and sk_zckey access is serialized
984 		 */
985 		if (!sock_owned_by_user(sk)) {
986 			WARN_ON_ONCE(1);
987 			return NULL;
988 		}
989 
990 		bytelen = uarg->bytelen + size;
991 		if (uarg->len == USHRT_MAX - 1 || bytelen > byte_limit) {
992 			/* TCP can create new skb to attach new uarg */
993 			if (sk->sk_type == SOCK_STREAM)
994 				goto new_alloc;
995 			return NULL;
996 		}
997 
998 		next = (u32)atomic_read(&sk->sk_zckey);
999 		if ((u32)(uarg->id + uarg->len) == next) {
1000 			if (mm_account_pinned_pages(&uarg->mmp, size))
1001 				return NULL;
1002 			uarg->len++;
1003 			uarg->bytelen = bytelen;
1004 			atomic_set(&sk->sk_zckey, ++next);
1005 			sock_zerocopy_get(uarg);
1006 			return uarg;
1007 		}
1008 	}
1009 
1010 new_alloc:
1011 	return sock_zerocopy_alloc(sk, size);
1012 }
1013 EXPORT_SYMBOL_GPL(sock_zerocopy_realloc);
1014 
1015 static bool skb_zerocopy_notify_extend(struct sk_buff *skb, u32 lo, u16 len)
1016 {
1017 	struct sock_exterr_skb *serr = SKB_EXT_ERR(skb);
1018 	u32 old_lo, old_hi;
1019 	u64 sum_len;
1020 
1021 	old_lo = serr->ee.ee_info;
1022 	old_hi = serr->ee.ee_data;
1023 	sum_len = old_hi - old_lo + 1ULL + len;
1024 
1025 	if (sum_len >= (1ULL << 32))
1026 		return false;
1027 
1028 	if (lo != old_hi + 1)
1029 		return false;
1030 
1031 	serr->ee.ee_data += len;
1032 	return true;
1033 }
1034 
1035 void sock_zerocopy_callback(struct ubuf_info *uarg, bool success)
1036 {
1037 	struct sk_buff *tail, *skb = skb_from_uarg(uarg);
1038 	struct sock_exterr_skb *serr;
1039 	struct sock *sk = skb->sk;
1040 	struct sk_buff_head *q;
1041 	unsigned long flags;
1042 	u32 lo, hi;
1043 	u16 len;
1044 
1045 	mm_unaccount_pinned_pages(&uarg->mmp);
1046 
1047 	/* if !len, there was only 1 call, and it was aborted
1048 	 * so do not queue a completion notification
1049 	 */
1050 	if (!uarg->len || sock_flag(sk, SOCK_DEAD))
1051 		goto release;
1052 
1053 	len = uarg->len;
1054 	lo = uarg->id;
1055 	hi = uarg->id + len - 1;
1056 
1057 	serr = SKB_EXT_ERR(skb);
1058 	memset(serr, 0, sizeof(*serr));
1059 	serr->ee.ee_errno = 0;
1060 	serr->ee.ee_origin = SO_EE_ORIGIN_ZEROCOPY;
1061 	serr->ee.ee_data = hi;
1062 	serr->ee.ee_info = lo;
1063 	if (!success)
1064 		serr->ee.ee_code |= SO_EE_CODE_ZEROCOPY_COPIED;
1065 
1066 	q = &sk->sk_error_queue;
1067 	spin_lock_irqsave(&q->lock, flags);
1068 	tail = skb_peek_tail(q);
1069 	if (!tail || SKB_EXT_ERR(tail)->ee.ee_origin != SO_EE_ORIGIN_ZEROCOPY ||
1070 	    !skb_zerocopy_notify_extend(tail, lo, len)) {
1071 		__skb_queue_tail(q, skb);
1072 		skb = NULL;
1073 	}
1074 	spin_unlock_irqrestore(&q->lock, flags);
1075 
1076 	sk->sk_error_report(sk);
1077 
1078 release:
1079 	consume_skb(skb);
1080 	sock_put(sk);
1081 }
1082 EXPORT_SYMBOL_GPL(sock_zerocopy_callback);
1083 
1084 void sock_zerocopy_put(struct ubuf_info *uarg)
1085 {
1086 	if (uarg && refcount_dec_and_test(&uarg->refcnt)) {
1087 		if (uarg->callback)
1088 			uarg->callback(uarg, uarg->zerocopy);
1089 		else
1090 			consume_skb(skb_from_uarg(uarg));
1091 	}
1092 }
1093 EXPORT_SYMBOL_GPL(sock_zerocopy_put);
1094 
1095 void sock_zerocopy_put_abort(struct ubuf_info *uarg)
1096 {
1097 	if (uarg) {
1098 		struct sock *sk = skb_from_uarg(uarg)->sk;
1099 
1100 		atomic_dec(&sk->sk_zckey);
1101 		uarg->len--;
1102 
1103 		sock_zerocopy_put(uarg);
1104 	}
1105 }
1106 EXPORT_SYMBOL_GPL(sock_zerocopy_put_abort);
1107 
1108 extern int __zerocopy_sg_from_iter(struct sock *sk, struct sk_buff *skb,
1109 				   struct iov_iter *from, size_t length);
1110 
1111 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
1112 			     struct msghdr *msg, int len,
1113 			     struct ubuf_info *uarg)
1114 {
1115 	struct ubuf_info *orig_uarg = skb_zcopy(skb);
1116 	struct iov_iter orig_iter = msg->msg_iter;
1117 	int err, orig_len = skb->len;
1118 
1119 	/* An skb can only point to one uarg. This edge case happens when
1120 	 * TCP appends to an skb, but zerocopy_realloc triggered a new alloc.
1121 	 */
1122 	if (orig_uarg && uarg != orig_uarg)
1123 		return -EEXIST;
1124 
1125 	err = __zerocopy_sg_from_iter(sk, skb, &msg->msg_iter, len);
1126 	if (err == -EFAULT || (err == -EMSGSIZE && skb->len == orig_len)) {
1127 		struct sock *save_sk = skb->sk;
1128 
1129 		/* Streams do not free skb on error. Reset to prev state. */
1130 		msg->msg_iter = orig_iter;
1131 		skb->sk = sk;
1132 		___pskb_trim(skb, orig_len);
1133 		skb->sk = save_sk;
1134 		return err;
1135 	}
1136 
1137 	skb_zcopy_set(skb, uarg);
1138 	return skb->len - orig_len;
1139 }
1140 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_stream);
1141 
1142 static int skb_zerocopy_clone(struct sk_buff *nskb, struct sk_buff *orig,
1143 			      gfp_t gfp_mask)
1144 {
1145 	if (skb_zcopy(orig)) {
1146 		if (skb_zcopy(nskb)) {
1147 			/* !gfp_mask callers are verified to !skb_zcopy(nskb) */
1148 			if (!gfp_mask) {
1149 				WARN_ON_ONCE(1);
1150 				return -ENOMEM;
1151 			}
1152 			if (skb_uarg(nskb) == skb_uarg(orig))
1153 				return 0;
1154 			if (skb_copy_ubufs(nskb, GFP_ATOMIC))
1155 				return -EIO;
1156 		}
1157 		skb_zcopy_set(nskb, skb_uarg(orig));
1158 	}
1159 	return 0;
1160 }
1161 
1162 /**
1163  *	skb_copy_ubufs	-	copy userspace skb frags buffers to kernel
1164  *	@skb: the skb to modify
1165  *	@gfp_mask: allocation priority
1166  *
1167  *	This must be called on SKBTX_DEV_ZEROCOPY skb.
1168  *	It will copy all frags into kernel and drop the reference
1169  *	to userspace pages.
1170  *
1171  *	If this function is called from an interrupt gfp_mask() must be
1172  *	%GFP_ATOMIC.
1173  *
1174  *	Returns 0 on success or a negative error code on failure
1175  *	to allocate kernel memory to copy to.
1176  */
1177 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask)
1178 {
1179 	int num_frags = skb_shinfo(skb)->nr_frags;
1180 	struct page *page, *head = NULL;
1181 	int i, new_frags;
1182 	u32 d_off;
1183 
1184 	if (skb_shared(skb) || skb_unclone(skb, gfp_mask))
1185 		return -EINVAL;
1186 
1187 	if (!num_frags)
1188 		goto release;
1189 
1190 	new_frags = (__skb_pagelen(skb) + PAGE_SIZE - 1) >> PAGE_SHIFT;
1191 	for (i = 0; i < new_frags; i++) {
1192 		page = alloc_page(gfp_mask);
1193 		if (!page) {
1194 			while (head) {
1195 				struct page *next = (struct page *)page_private(head);
1196 				put_page(head);
1197 				head = next;
1198 			}
1199 			return -ENOMEM;
1200 		}
1201 		set_page_private(page, (unsigned long)head);
1202 		head = page;
1203 	}
1204 
1205 	page = head;
1206 	d_off = 0;
1207 	for (i = 0; i < num_frags; i++) {
1208 		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
1209 		u32 p_off, p_len, copied;
1210 		struct page *p;
1211 		u8 *vaddr;
1212 
1213 		skb_frag_foreach_page(f, f->page_offset, skb_frag_size(f),
1214 				      p, p_off, p_len, copied) {
1215 			u32 copy, done = 0;
1216 			vaddr = kmap_atomic(p);
1217 
1218 			while (done < p_len) {
1219 				if (d_off == PAGE_SIZE) {
1220 					d_off = 0;
1221 					page = (struct page *)page_private(page);
1222 				}
1223 				copy = min_t(u32, PAGE_SIZE - d_off, p_len - done);
1224 				memcpy(page_address(page) + d_off,
1225 				       vaddr + p_off + done, copy);
1226 				done += copy;
1227 				d_off += copy;
1228 			}
1229 			kunmap_atomic(vaddr);
1230 		}
1231 	}
1232 
1233 	/* skb frags release userspace buffers */
1234 	for (i = 0; i < num_frags; i++)
1235 		skb_frag_unref(skb, i);
1236 
1237 	/* skb frags point to kernel buffers */
1238 	for (i = 0; i < new_frags - 1; i++) {
1239 		__skb_fill_page_desc(skb, i, head, 0, PAGE_SIZE);
1240 		head = (struct page *)page_private(head);
1241 	}
1242 	__skb_fill_page_desc(skb, new_frags - 1, head, 0, d_off);
1243 	skb_shinfo(skb)->nr_frags = new_frags;
1244 
1245 release:
1246 	skb_zcopy_clear(skb, false);
1247 	return 0;
1248 }
1249 EXPORT_SYMBOL_GPL(skb_copy_ubufs);
1250 
1251 /**
1252  *	skb_clone	-	duplicate an sk_buff
1253  *	@skb: buffer to clone
1254  *	@gfp_mask: allocation priority
1255  *
1256  *	Duplicate an &sk_buff. The new one is not owned by a socket. Both
1257  *	copies share the same packet data but not structure. The new
1258  *	buffer has a reference count of 1. If the allocation fails the
1259  *	function returns %NULL otherwise the new buffer is returned.
1260  *
1261  *	If this function is called from an interrupt gfp_mask() must be
1262  *	%GFP_ATOMIC.
1263  */
1264 
1265 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
1266 {
1267 	struct sk_buff_fclones *fclones = container_of(skb,
1268 						       struct sk_buff_fclones,
1269 						       skb1);
1270 	struct sk_buff *n;
1271 
1272 	if (skb_orphan_frags(skb, gfp_mask))
1273 		return NULL;
1274 
1275 	if (skb->fclone == SKB_FCLONE_ORIG &&
1276 	    refcount_read(&fclones->fclone_ref) == 1) {
1277 		n = &fclones->skb2;
1278 		refcount_set(&fclones->fclone_ref, 2);
1279 	} else {
1280 		if (skb_pfmemalloc(skb))
1281 			gfp_mask |= __GFP_MEMALLOC;
1282 
1283 		n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
1284 		if (!n)
1285 			return NULL;
1286 
1287 		n->fclone = SKB_FCLONE_UNAVAILABLE;
1288 	}
1289 
1290 	return __skb_clone(n, skb);
1291 }
1292 EXPORT_SYMBOL(skb_clone);
1293 
1294 void skb_headers_offset_update(struct sk_buff *skb, int off)
1295 {
1296 	/* Only adjust this if it actually is csum_start rather than csum */
1297 	if (skb->ip_summed == CHECKSUM_PARTIAL)
1298 		skb->csum_start += off;
1299 	/* {transport,network,mac}_header and tail are relative to skb->head */
1300 	skb->transport_header += off;
1301 	skb->network_header   += off;
1302 	if (skb_mac_header_was_set(skb))
1303 		skb->mac_header += off;
1304 	skb->inner_transport_header += off;
1305 	skb->inner_network_header += off;
1306 	skb->inner_mac_header += off;
1307 }
1308 EXPORT_SYMBOL(skb_headers_offset_update);
1309 
1310 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old)
1311 {
1312 	__copy_skb_header(new, old);
1313 
1314 	skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
1315 	skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
1316 	skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
1317 }
1318 EXPORT_SYMBOL(skb_copy_header);
1319 
1320 static inline int skb_alloc_rx_flag(const struct sk_buff *skb)
1321 {
1322 	if (skb_pfmemalloc(skb))
1323 		return SKB_ALLOC_RX;
1324 	return 0;
1325 }
1326 
1327 /**
1328  *	skb_copy	-	create private copy of an sk_buff
1329  *	@skb: buffer to copy
1330  *	@gfp_mask: allocation priority
1331  *
1332  *	Make a copy of both an &sk_buff and its data. This is used when the
1333  *	caller wishes to modify the data and needs a private copy of the
1334  *	data to alter. Returns %NULL on failure or the pointer to the buffer
1335  *	on success. The returned buffer has a reference count of 1.
1336  *
1337  *	As by-product this function converts non-linear &sk_buff to linear
1338  *	one, so that &sk_buff becomes completely private and caller is allowed
1339  *	to modify all the data of returned buffer. This means that this
1340  *	function is not recommended for use in circumstances when only
1341  *	header is going to be modified. Use pskb_copy() instead.
1342  */
1343 
1344 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
1345 {
1346 	int headerlen = skb_headroom(skb);
1347 	unsigned int size = skb_end_offset(skb) + skb->data_len;
1348 	struct sk_buff *n = __alloc_skb(size, gfp_mask,
1349 					skb_alloc_rx_flag(skb), NUMA_NO_NODE);
1350 
1351 	if (!n)
1352 		return NULL;
1353 
1354 	/* Set the data pointer */
1355 	skb_reserve(n, headerlen);
1356 	/* Set the tail pointer and length */
1357 	skb_put(n, skb->len);
1358 
1359 	BUG_ON(skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len));
1360 
1361 	skb_copy_header(n, skb);
1362 	return n;
1363 }
1364 EXPORT_SYMBOL(skb_copy);
1365 
1366 /**
1367  *	__pskb_copy_fclone	-  create copy of an sk_buff with private head.
1368  *	@skb: buffer to copy
1369  *	@headroom: headroom of new skb
1370  *	@gfp_mask: allocation priority
1371  *	@fclone: if true allocate the copy of the skb from the fclone
1372  *	cache instead of the head cache; it is recommended to set this
1373  *	to true for the cases where the copy will likely be cloned
1374  *
1375  *	Make a copy of both an &sk_buff and part of its data, located
1376  *	in header. Fragmented data remain shared. This is used when
1377  *	the caller wishes to modify only header of &sk_buff and needs
1378  *	private copy of the header to alter. Returns %NULL on failure
1379  *	or the pointer to the buffer on success.
1380  *	The returned buffer has a reference count of 1.
1381  */
1382 
1383 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1384 				   gfp_t gfp_mask, bool fclone)
1385 {
1386 	unsigned int size = skb_headlen(skb) + headroom;
1387 	int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0);
1388 	struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE);
1389 
1390 	if (!n)
1391 		goto out;
1392 
1393 	/* Set the data pointer */
1394 	skb_reserve(n, headroom);
1395 	/* Set the tail pointer and length */
1396 	skb_put(n, skb_headlen(skb));
1397 	/* Copy the bytes */
1398 	skb_copy_from_linear_data(skb, n->data, n->len);
1399 
1400 	n->truesize += skb->data_len;
1401 	n->data_len  = skb->data_len;
1402 	n->len	     = skb->len;
1403 
1404 	if (skb_shinfo(skb)->nr_frags) {
1405 		int i;
1406 
1407 		if (skb_orphan_frags(skb, gfp_mask) ||
1408 		    skb_zerocopy_clone(n, skb, gfp_mask)) {
1409 			kfree_skb(n);
1410 			n = NULL;
1411 			goto out;
1412 		}
1413 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1414 			skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
1415 			skb_frag_ref(skb, i);
1416 		}
1417 		skb_shinfo(n)->nr_frags = i;
1418 	}
1419 
1420 	if (skb_has_frag_list(skb)) {
1421 		skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
1422 		skb_clone_fraglist(n);
1423 	}
1424 
1425 	skb_copy_header(n, skb);
1426 out:
1427 	return n;
1428 }
1429 EXPORT_SYMBOL(__pskb_copy_fclone);
1430 
1431 /**
1432  *	pskb_expand_head - reallocate header of &sk_buff
1433  *	@skb: buffer to reallocate
1434  *	@nhead: room to add at head
1435  *	@ntail: room to add at tail
1436  *	@gfp_mask: allocation priority
1437  *
1438  *	Expands (or creates identical copy, if @nhead and @ntail are zero)
1439  *	header of @skb. &sk_buff itself is not changed. &sk_buff MUST have
1440  *	reference count of 1. Returns zero in the case of success or error,
1441  *	if expansion failed. In the last case, &sk_buff is not changed.
1442  *
1443  *	All the pointers pointing into skb header may change and must be
1444  *	reloaded after call to this function.
1445  */
1446 
1447 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
1448 		     gfp_t gfp_mask)
1449 {
1450 	int i, osize = skb_end_offset(skb);
1451 	int size = osize + nhead + ntail;
1452 	long off;
1453 	u8 *data;
1454 
1455 	BUG_ON(nhead < 0);
1456 
1457 	BUG_ON(skb_shared(skb));
1458 
1459 	size = SKB_DATA_ALIGN(size);
1460 
1461 	if (skb_pfmemalloc(skb))
1462 		gfp_mask |= __GFP_MEMALLOC;
1463 	data = kmalloc_reserve(size + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
1464 			       gfp_mask, NUMA_NO_NODE, NULL);
1465 	if (!data)
1466 		goto nodata;
1467 	size = SKB_WITH_OVERHEAD(ksize(data));
1468 
1469 	/* Copy only real data... and, alas, header. This should be
1470 	 * optimized for the cases when header is void.
1471 	 */
1472 	memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head);
1473 
1474 	memcpy((struct skb_shared_info *)(data + size),
1475 	       skb_shinfo(skb),
1476 	       offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags]));
1477 
1478 	/*
1479 	 * if shinfo is shared we must drop the old head gracefully, but if it
1480 	 * is not we can just drop the old head and let the existing refcount
1481 	 * be since all we did is relocate the values
1482 	 */
1483 	if (skb_cloned(skb)) {
1484 		if (skb_orphan_frags(skb, gfp_mask))
1485 			goto nofrags;
1486 		if (skb_zcopy(skb))
1487 			refcount_inc(&skb_uarg(skb)->refcnt);
1488 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1489 			skb_frag_ref(skb, i);
1490 
1491 		if (skb_has_frag_list(skb))
1492 			skb_clone_fraglist(skb);
1493 
1494 		skb_release_data(skb);
1495 	} else {
1496 		skb_free_head(skb);
1497 	}
1498 	off = (data + nhead) - skb->head;
1499 
1500 	skb->head     = data;
1501 	skb->head_frag = 0;
1502 	skb->data    += off;
1503 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1504 	skb->end      = size;
1505 	off           = nhead;
1506 #else
1507 	skb->end      = skb->head + size;
1508 #endif
1509 	skb->tail	      += off;
1510 	skb_headers_offset_update(skb, nhead);
1511 	skb->cloned   = 0;
1512 	skb->hdr_len  = 0;
1513 	skb->nohdr    = 0;
1514 	atomic_set(&skb_shinfo(skb)->dataref, 1);
1515 
1516 	skb_metadata_clear(skb);
1517 
1518 	/* It is not generally safe to change skb->truesize.
1519 	 * For the moment, we really care of rx path, or
1520 	 * when skb is orphaned (not attached to a socket).
1521 	 */
1522 	if (!skb->sk || skb->destructor == sock_edemux)
1523 		skb->truesize += size - osize;
1524 
1525 	return 0;
1526 
1527 nofrags:
1528 	kfree(data);
1529 nodata:
1530 	return -ENOMEM;
1531 }
1532 EXPORT_SYMBOL(pskb_expand_head);
1533 
1534 /* Make private copy of skb with writable head and some headroom */
1535 
1536 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
1537 {
1538 	struct sk_buff *skb2;
1539 	int delta = headroom - skb_headroom(skb);
1540 
1541 	if (delta <= 0)
1542 		skb2 = pskb_copy(skb, GFP_ATOMIC);
1543 	else {
1544 		skb2 = skb_clone(skb, GFP_ATOMIC);
1545 		if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
1546 					     GFP_ATOMIC)) {
1547 			kfree_skb(skb2);
1548 			skb2 = NULL;
1549 		}
1550 	}
1551 	return skb2;
1552 }
1553 EXPORT_SYMBOL(skb_realloc_headroom);
1554 
1555 /**
1556  *	skb_copy_expand	-	copy and expand sk_buff
1557  *	@skb: buffer to copy
1558  *	@newheadroom: new free bytes at head
1559  *	@newtailroom: new free bytes at tail
1560  *	@gfp_mask: allocation priority
1561  *
1562  *	Make a copy of both an &sk_buff and its data and while doing so
1563  *	allocate additional space.
1564  *
1565  *	This is used when the caller wishes to modify the data and needs a
1566  *	private copy of the data to alter as well as more space for new fields.
1567  *	Returns %NULL on failure or the pointer to the buffer
1568  *	on success. The returned buffer has a reference count of 1.
1569  *
1570  *	You must pass %GFP_ATOMIC as the allocation priority if this function
1571  *	is called from an interrupt.
1572  */
1573 struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
1574 				int newheadroom, int newtailroom,
1575 				gfp_t gfp_mask)
1576 {
1577 	/*
1578 	 *	Allocate the copy buffer
1579 	 */
1580 	struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom,
1581 					gfp_mask, skb_alloc_rx_flag(skb),
1582 					NUMA_NO_NODE);
1583 	int oldheadroom = skb_headroom(skb);
1584 	int head_copy_len, head_copy_off;
1585 
1586 	if (!n)
1587 		return NULL;
1588 
1589 	skb_reserve(n, newheadroom);
1590 
1591 	/* Set the tail pointer and length */
1592 	skb_put(n, skb->len);
1593 
1594 	head_copy_len = oldheadroom;
1595 	head_copy_off = 0;
1596 	if (newheadroom <= head_copy_len)
1597 		head_copy_len = newheadroom;
1598 	else
1599 		head_copy_off = newheadroom - head_copy_len;
1600 
1601 	/* Copy the linear header and data. */
1602 	BUG_ON(skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
1603 			     skb->len + head_copy_len));
1604 
1605 	skb_copy_header(n, skb);
1606 
1607 	skb_headers_offset_update(n, newheadroom - oldheadroom);
1608 
1609 	return n;
1610 }
1611 EXPORT_SYMBOL(skb_copy_expand);
1612 
1613 /**
1614  *	__skb_pad		-	zero pad the tail of an skb
1615  *	@skb: buffer to pad
1616  *	@pad: space to pad
1617  *	@free_on_error: free buffer on error
1618  *
1619  *	Ensure that a buffer is followed by a padding area that is zero
1620  *	filled. Used by network drivers which may DMA or transfer data
1621  *	beyond the buffer end onto the wire.
1622  *
1623  *	May return error in out of memory cases. The skb is freed on error
1624  *	if @free_on_error is true.
1625  */
1626 
1627 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error)
1628 {
1629 	int err;
1630 	int ntail;
1631 
1632 	/* If the skbuff is non linear tailroom is always zero.. */
1633 	if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
1634 		memset(skb->data+skb->len, 0, pad);
1635 		return 0;
1636 	}
1637 
1638 	ntail = skb->data_len + pad - (skb->end - skb->tail);
1639 	if (likely(skb_cloned(skb) || ntail > 0)) {
1640 		err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
1641 		if (unlikely(err))
1642 			goto free_skb;
1643 	}
1644 
1645 	/* FIXME: The use of this function with non-linear skb's really needs
1646 	 * to be audited.
1647 	 */
1648 	err = skb_linearize(skb);
1649 	if (unlikely(err))
1650 		goto free_skb;
1651 
1652 	memset(skb->data + skb->len, 0, pad);
1653 	return 0;
1654 
1655 free_skb:
1656 	if (free_on_error)
1657 		kfree_skb(skb);
1658 	return err;
1659 }
1660 EXPORT_SYMBOL(__skb_pad);
1661 
1662 /**
1663  *	pskb_put - add data to the tail of a potentially fragmented buffer
1664  *	@skb: start of the buffer to use
1665  *	@tail: tail fragment of the buffer to use
1666  *	@len: amount of data to add
1667  *
1668  *	This function extends the used data area of the potentially
1669  *	fragmented buffer. @tail must be the last fragment of @skb -- or
1670  *	@skb itself. If this would exceed the total buffer size the kernel
1671  *	will panic. A pointer to the first byte of the extra data is
1672  *	returned.
1673  */
1674 
1675 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len)
1676 {
1677 	if (tail != skb) {
1678 		skb->data_len += len;
1679 		skb->len += len;
1680 	}
1681 	return skb_put(tail, len);
1682 }
1683 EXPORT_SYMBOL_GPL(pskb_put);
1684 
1685 /**
1686  *	skb_put - add data to a buffer
1687  *	@skb: buffer to use
1688  *	@len: amount of data to add
1689  *
1690  *	This function extends the used data area of the buffer. If this would
1691  *	exceed the total buffer size the kernel will panic. A pointer to the
1692  *	first byte of the extra data is returned.
1693  */
1694 void *skb_put(struct sk_buff *skb, unsigned int len)
1695 {
1696 	void *tmp = skb_tail_pointer(skb);
1697 	SKB_LINEAR_ASSERT(skb);
1698 	skb->tail += len;
1699 	skb->len  += len;
1700 	if (unlikely(skb->tail > skb->end))
1701 		skb_over_panic(skb, len, __builtin_return_address(0));
1702 	return tmp;
1703 }
1704 EXPORT_SYMBOL(skb_put);
1705 
1706 /**
1707  *	skb_push - add data to the start of a buffer
1708  *	@skb: buffer to use
1709  *	@len: amount of data to add
1710  *
1711  *	This function extends the used data area of the buffer at the buffer
1712  *	start. If this would exceed the total buffer headroom the kernel will
1713  *	panic. A pointer to the first byte of the extra data is returned.
1714  */
1715 void *skb_push(struct sk_buff *skb, unsigned int len)
1716 {
1717 	skb->data -= len;
1718 	skb->len  += len;
1719 	if (unlikely(skb->data < skb->head))
1720 		skb_under_panic(skb, len, __builtin_return_address(0));
1721 	return skb->data;
1722 }
1723 EXPORT_SYMBOL(skb_push);
1724 
1725 /**
1726  *	skb_pull - remove data from the start of a buffer
1727  *	@skb: buffer to use
1728  *	@len: amount of data to remove
1729  *
1730  *	This function removes data from the start of a buffer, returning
1731  *	the memory to the headroom. A pointer to the next data in the buffer
1732  *	is returned. Once the data has been pulled future pushes will overwrite
1733  *	the old data.
1734  */
1735 void *skb_pull(struct sk_buff *skb, unsigned int len)
1736 {
1737 	return skb_pull_inline(skb, len);
1738 }
1739 EXPORT_SYMBOL(skb_pull);
1740 
1741 /**
1742  *	skb_trim - remove end from a buffer
1743  *	@skb: buffer to alter
1744  *	@len: new length
1745  *
1746  *	Cut the length of a buffer down by removing data from the tail. If
1747  *	the buffer is already under the length specified it is not modified.
1748  *	The skb must be linear.
1749  */
1750 void skb_trim(struct sk_buff *skb, unsigned int len)
1751 {
1752 	if (skb->len > len)
1753 		__skb_trim(skb, len);
1754 }
1755 EXPORT_SYMBOL(skb_trim);
1756 
1757 /* Trims skb to length len. It can change skb pointers.
1758  */
1759 
1760 int ___pskb_trim(struct sk_buff *skb, unsigned int len)
1761 {
1762 	struct sk_buff **fragp;
1763 	struct sk_buff *frag;
1764 	int offset = skb_headlen(skb);
1765 	int nfrags = skb_shinfo(skb)->nr_frags;
1766 	int i;
1767 	int err;
1768 
1769 	if (skb_cloned(skb) &&
1770 	    unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
1771 		return err;
1772 
1773 	i = 0;
1774 	if (offset >= len)
1775 		goto drop_pages;
1776 
1777 	for (; i < nfrags; i++) {
1778 		int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]);
1779 
1780 		if (end < len) {
1781 			offset = end;
1782 			continue;
1783 		}
1784 
1785 		skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset);
1786 
1787 drop_pages:
1788 		skb_shinfo(skb)->nr_frags = i;
1789 
1790 		for (; i < nfrags; i++)
1791 			skb_frag_unref(skb, i);
1792 
1793 		if (skb_has_frag_list(skb))
1794 			skb_drop_fraglist(skb);
1795 		goto done;
1796 	}
1797 
1798 	for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
1799 	     fragp = &frag->next) {
1800 		int end = offset + frag->len;
1801 
1802 		if (skb_shared(frag)) {
1803 			struct sk_buff *nfrag;
1804 
1805 			nfrag = skb_clone(frag, GFP_ATOMIC);
1806 			if (unlikely(!nfrag))
1807 				return -ENOMEM;
1808 
1809 			nfrag->next = frag->next;
1810 			consume_skb(frag);
1811 			frag = nfrag;
1812 			*fragp = frag;
1813 		}
1814 
1815 		if (end < len) {
1816 			offset = end;
1817 			continue;
1818 		}
1819 
1820 		if (end > len &&
1821 		    unlikely((err = pskb_trim(frag, len - offset))))
1822 			return err;
1823 
1824 		if (frag->next)
1825 			skb_drop_list(&frag->next);
1826 		break;
1827 	}
1828 
1829 done:
1830 	if (len > skb_headlen(skb)) {
1831 		skb->data_len -= skb->len - len;
1832 		skb->len       = len;
1833 	} else {
1834 		skb->len       = len;
1835 		skb->data_len  = 0;
1836 		skb_set_tail_pointer(skb, len);
1837 	}
1838 
1839 	if (!skb->sk || skb->destructor == sock_edemux)
1840 		skb_condense(skb);
1841 	return 0;
1842 }
1843 EXPORT_SYMBOL(___pskb_trim);
1844 
1845 /* Note : use pskb_trim_rcsum() instead of calling this directly
1846  */
1847 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len)
1848 {
1849 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
1850 		int delta = skb->len - len;
1851 
1852 		skb->csum = csum_sub(skb->csum,
1853 				     skb_checksum(skb, len, delta, 0));
1854 	}
1855 	return __pskb_trim(skb, len);
1856 }
1857 EXPORT_SYMBOL(pskb_trim_rcsum_slow);
1858 
1859 /**
1860  *	__pskb_pull_tail - advance tail of skb header
1861  *	@skb: buffer to reallocate
1862  *	@delta: number of bytes to advance tail
1863  *
1864  *	The function makes a sense only on a fragmented &sk_buff,
1865  *	it expands header moving its tail forward and copying necessary
1866  *	data from fragmented part.
1867  *
1868  *	&sk_buff MUST have reference count of 1.
1869  *
1870  *	Returns %NULL (and &sk_buff does not change) if pull failed
1871  *	or value of new tail of skb in the case of success.
1872  *
1873  *	All the pointers pointing into skb header may change and must be
1874  *	reloaded after call to this function.
1875  */
1876 
1877 /* Moves tail of skb head forward, copying data from fragmented part,
1878  * when it is necessary.
1879  * 1. It may fail due to malloc failure.
1880  * 2. It may change skb pointers.
1881  *
1882  * It is pretty complicated. Luckily, it is called only in exceptional cases.
1883  */
1884 void *__pskb_pull_tail(struct sk_buff *skb, int delta)
1885 {
1886 	/* If skb has not enough free space at tail, get new one
1887 	 * plus 128 bytes for future expansions. If we have enough
1888 	 * room at tail, reallocate without expansion only if skb is cloned.
1889 	 */
1890 	int i, k, eat = (skb->tail + delta) - skb->end;
1891 
1892 	if (eat > 0 || skb_cloned(skb)) {
1893 		if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
1894 				     GFP_ATOMIC))
1895 			return NULL;
1896 	}
1897 
1898 	BUG_ON(skb_copy_bits(skb, skb_headlen(skb),
1899 			     skb_tail_pointer(skb), delta));
1900 
1901 	/* Optimization: no fragments, no reasons to preestimate
1902 	 * size of pulled pages. Superb.
1903 	 */
1904 	if (!skb_has_frag_list(skb))
1905 		goto pull_pages;
1906 
1907 	/* Estimate size of pulled pages. */
1908 	eat = delta;
1909 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1910 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
1911 
1912 		if (size >= eat)
1913 			goto pull_pages;
1914 		eat -= size;
1915 	}
1916 
1917 	/* If we need update frag list, we are in troubles.
1918 	 * Certainly, it is possible to add an offset to skb data,
1919 	 * but taking into account that pulling is expected to
1920 	 * be very rare operation, it is worth to fight against
1921 	 * further bloating skb head and crucify ourselves here instead.
1922 	 * Pure masohism, indeed. 8)8)
1923 	 */
1924 	if (eat) {
1925 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
1926 		struct sk_buff *clone = NULL;
1927 		struct sk_buff *insp = NULL;
1928 
1929 		do {
1930 			BUG_ON(!list);
1931 
1932 			if (list->len <= eat) {
1933 				/* Eaten as whole. */
1934 				eat -= list->len;
1935 				list = list->next;
1936 				insp = list;
1937 			} else {
1938 				/* Eaten partially. */
1939 
1940 				if (skb_shared(list)) {
1941 					/* Sucks! We need to fork list. :-( */
1942 					clone = skb_clone(list, GFP_ATOMIC);
1943 					if (!clone)
1944 						return NULL;
1945 					insp = list->next;
1946 					list = clone;
1947 				} else {
1948 					/* This may be pulled without
1949 					 * problems. */
1950 					insp = list;
1951 				}
1952 				if (!pskb_pull(list, eat)) {
1953 					kfree_skb(clone);
1954 					return NULL;
1955 				}
1956 				break;
1957 			}
1958 		} while (eat);
1959 
1960 		/* Free pulled out fragments. */
1961 		while ((list = skb_shinfo(skb)->frag_list) != insp) {
1962 			skb_shinfo(skb)->frag_list = list->next;
1963 			kfree_skb(list);
1964 		}
1965 		/* And insert new clone at head. */
1966 		if (clone) {
1967 			clone->next = list;
1968 			skb_shinfo(skb)->frag_list = clone;
1969 		}
1970 	}
1971 	/* Success! Now we may commit changes to skb data. */
1972 
1973 pull_pages:
1974 	eat = delta;
1975 	k = 0;
1976 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1977 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
1978 
1979 		if (size <= eat) {
1980 			skb_frag_unref(skb, i);
1981 			eat -= size;
1982 		} else {
1983 			skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i];
1984 			if (eat) {
1985 				skb_shinfo(skb)->frags[k].page_offset += eat;
1986 				skb_frag_size_sub(&skb_shinfo(skb)->frags[k], eat);
1987 				if (!i)
1988 					goto end;
1989 				eat = 0;
1990 			}
1991 			k++;
1992 		}
1993 	}
1994 	skb_shinfo(skb)->nr_frags = k;
1995 
1996 end:
1997 	skb->tail     += delta;
1998 	skb->data_len -= delta;
1999 
2000 	if (!skb->data_len)
2001 		skb_zcopy_clear(skb, false);
2002 
2003 	return skb_tail_pointer(skb);
2004 }
2005 EXPORT_SYMBOL(__pskb_pull_tail);
2006 
2007 /**
2008  *	skb_copy_bits - copy bits from skb to kernel buffer
2009  *	@skb: source skb
2010  *	@offset: offset in source
2011  *	@to: destination buffer
2012  *	@len: number of bytes to copy
2013  *
2014  *	Copy the specified number of bytes from the source skb to the
2015  *	destination buffer.
2016  *
2017  *	CAUTION ! :
2018  *		If its prototype is ever changed,
2019  *		check arch/{*}/net/{*}.S files,
2020  *		since it is called from BPF assembly code.
2021  */
2022 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
2023 {
2024 	int start = skb_headlen(skb);
2025 	struct sk_buff *frag_iter;
2026 	int i, copy;
2027 
2028 	if (offset > (int)skb->len - len)
2029 		goto fault;
2030 
2031 	/* Copy header. */
2032 	if ((copy = start - offset) > 0) {
2033 		if (copy > len)
2034 			copy = len;
2035 		skb_copy_from_linear_data_offset(skb, offset, to, copy);
2036 		if ((len -= copy) == 0)
2037 			return 0;
2038 		offset += copy;
2039 		to     += copy;
2040 	}
2041 
2042 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2043 		int end;
2044 		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
2045 
2046 		WARN_ON(start > offset + len);
2047 
2048 		end = start + skb_frag_size(f);
2049 		if ((copy = end - offset) > 0) {
2050 			u32 p_off, p_len, copied;
2051 			struct page *p;
2052 			u8 *vaddr;
2053 
2054 			if (copy > len)
2055 				copy = len;
2056 
2057 			skb_frag_foreach_page(f,
2058 					      f->page_offset + offset - start,
2059 					      copy, p, p_off, p_len, copied) {
2060 				vaddr = kmap_atomic(p);
2061 				memcpy(to + copied, vaddr + p_off, p_len);
2062 				kunmap_atomic(vaddr);
2063 			}
2064 
2065 			if ((len -= copy) == 0)
2066 				return 0;
2067 			offset += copy;
2068 			to     += copy;
2069 		}
2070 		start = end;
2071 	}
2072 
2073 	skb_walk_frags(skb, frag_iter) {
2074 		int end;
2075 
2076 		WARN_ON(start > offset + len);
2077 
2078 		end = start + frag_iter->len;
2079 		if ((copy = end - offset) > 0) {
2080 			if (copy > len)
2081 				copy = len;
2082 			if (skb_copy_bits(frag_iter, offset - start, to, copy))
2083 				goto fault;
2084 			if ((len -= copy) == 0)
2085 				return 0;
2086 			offset += copy;
2087 			to     += copy;
2088 		}
2089 		start = end;
2090 	}
2091 
2092 	if (!len)
2093 		return 0;
2094 
2095 fault:
2096 	return -EFAULT;
2097 }
2098 EXPORT_SYMBOL(skb_copy_bits);
2099 
2100 /*
2101  * Callback from splice_to_pipe(), if we need to release some pages
2102  * at the end of the spd in case we error'ed out in filling the pipe.
2103  */
2104 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
2105 {
2106 	put_page(spd->pages[i]);
2107 }
2108 
2109 static struct page *linear_to_page(struct page *page, unsigned int *len,
2110 				   unsigned int *offset,
2111 				   struct sock *sk)
2112 {
2113 	struct page_frag *pfrag = sk_page_frag(sk);
2114 
2115 	if (!sk_page_frag_refill(sk, pfrag))
2116 		return NULL;
2117 
2118 	*len = min_t(unsigned int, *len, pfrag->size - pfrag->offset);
2119 
2120 	memcpy(page_address(pfrag->page) + pfrag->offset,
2121 	       page_address(page) + *offset, *len);
2122 	*offset = pfrag->offset;
2123 	pfrag->offset += *len;
2124 
2125 	return pfrag->page;
2126 }
2127 
2128 static bool spd_can_coalesce(const struct splice_pipe_desc *spd,
2129 			     struct page *page,
2130 			     unsigned int offset)
2131 {
2132 	return	spd->nr_pages &&
2133 		spd->pages[spd->nr_pages - 1] == page &&
2134 		(spd->partial[spd->nr_pages - 1].offset +
2135 		 spd->partial[spd->nr_pages - 1].len == offset);
2136 }
2137 
2138 /*
2139  * Fill page/offset/length into spd, if it can hold more pages.
2140  */
2141 static bool spd_fill_page(struct splice_pipe_desc *spd,
2142 			  struct pipe_inode_info *pipe, struct page *page,
2143 			  unsigned int *len, unsigned int offset,
2144 			  bool linear,
2145 			  struct sock *sk)
2146 {
2147 	if (unlikely(spd->nr_pages == MAX_SKB_FRAGS))
2148 		return true;
2149 
2150 	if (linear) {
2151 		page = linear_to_page(page, len, &offset, sk);
2152 		if (!page)
2153 			return true;
2154 	}
2155 	if (spd_can_coalesce(spd, page, offset)) {
2156 		spd->partial[spd->nr_pages - 1].len += *len;
2157 		return false;
2158 	}
2159 	get_page(page);
2160 	spd->pages[spd->nr_pages] = page;
2161 	spd->partial[spd->nr_pages].len = *len;
2162 	spd->partial[spd->nr_pages].offset = offset;
2163 	spd->nr_pages++;
2164 
2165 	return false;
2166 }
2167 
2168 static bool __splice_segment(struct page *page, unsigned int poff,
2169 			     unsigned int plen, unsigned int *off,
2170 			     unsigned int *len,
2171 			     struct splice_pipe_desc *spd, bool linear,
2172 			     struct sock *sk,
2173 			     struct pipe_inode_info *pipe)
2174 {
2175 	if (!*len)
2176 		return true;
2177 
2178 	/* skip this segment if already processed */
2179 	if (*off >= plen) {
2180 		*off -= plen;
2181 		return false;
2182 	}
2183 
2184 	/* ignore any bits we already processed */
2185 	poff += *off;
2186 	plen -= *off;
2187 	*off = 0;
2188 
2189 	do {
2190 		unsigned int flen = min(*len, plen);
2191 
2192 		if (spd_fill_page(spd, pipe, page, &flen, poff,
2193 				  linear, sk))
2194 			return true;
2195 		poff += flen;
2196 		plen -= flen;
2197 		*len -= flen;
2198 	} while (*len && plen);
2199 
2200 	return false;
2201 }
2202 
2203 /*
2204  * Map linear and fragment data from the skb to spd. It reports true if the
2205  * pipe is full or if we already spliced the requested length.
2206  */
2207 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe,
2208 			      unsigned int *offset, unsigned int *len,
2209 			      struct splice_pipe_desc *spd, struct sock *sk)
2210 {
2211 	int seg;
2212 	struct sk_buff *iter;
2213 
2214 	/* map the linear part :
2215 	 * If skb->head_frag is set, this 'linear' part is backed by a
2216 	 * fragment, and if the head is not shared with any clones then
2217 	 * we can avoid a copy since we own the head portion of this page.
2218 	 */
2219 	if (__splice_segment(virt_to_page(skb->data),
2220 			     (unsigned long) skb->data & (PAGE_SIZE - 1),
2221 			     skb_headlen(skb),
2222 			     offset, len, spd,
2223 			     skb_head_is_locked(skb),
2224 			     sk, pipe))
2225 		return true;
2226 
2227 	/*
2228 	 * then map the fragments
2229 	 */
2230 	for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
2231 		const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
2232 
2233 		if (__splice_segment(skb_frag_page(f),
2234 				     f->page_offset, skb_frag_size(f),
2235 				     offset, len, spd, false, sk, pipe))
2236 			return true;
2237 	}
2238 
2239 	skb_walk_frags(skb, iter) {
2240 		if (*offset >= iter->len) {
2241 			*offset -= iter->len;
2242 			continue;
2243 		}
2244 		/* __skb_splice_bits() only fails if the output has no room
2245 		 * left, so no point in going over the frag_list for the error
2246 		 * case.
2247 		 */
2248 		if (__skb_splice_bits(iter, pipe, offset, len, spd, sk))
2249 			return true;
2250 	}
2251 
2252 	return false;
2253 }
2254 
2255 /*
2256  * Map data from the skb to a pipe. Should handle both the linear part,
2257  * the fragments, and the frag list.
2258  */
2259 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
2260 		    struct pipe_inode_info *pipe, unsigned int tlen,
2261 		    unsigned int flags)
2262 {
2263 	struct partial_page partial[MAX_SKB_FRAGS];
2264 	struct page *pages[MAX_SKB_FRAGS];
2265 	struct splice_pipe_desc spd = {
2266 		.pages = pages,
2267 		.partial = partial,
2268 		.nr_pages_max = MAX_SKB_FRAGS,
2269 		.ops = &nosteal_pipe_buf_ops,
2270 		.spd_release = sock_spd_release,
2271 	};
2272 	int ret = 0;
2273 
2274 	__skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk);
2275 
2276 	if (spd.nr_pages)
2277 		ret = splice_to_pipe(pipe, &spd);
2278 
2279 	return ret;
2280 }
2281 EXPORT_SYMBOL_GPL(skb_splice_bits);
2282 
2283 /* Send skb data on a socket. Socket must be locked. */
2284 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
2285 			 int len)
2286 {
2287 	unsigned int orig_len = len;
2288 	struct sk_buff *head = skb;
2289 	unsigned short fragidx;
2290 	int slen, ret;
2291 
2292 do_frag_list:
2293 
2294 	/* Deal with head data */
2295 	while (offset < skb_headlen(skb) && len) {
2296 		struct kvec kv;
2297 		struct msghdr msg;
2298 
2299 		slen = min_t(int, len, skb_headlen(skb) - offset);
2300 		kv.iov_base = skb->data + offset;
2301 		kv.iov_len = slen;
2302 		memset(&msg, 0, sizeof(msg));
2303 
2304 		ret = kernel_sendmsg_locked(sk, &msg, &kv, 1, slen);
2305 		if (ret <= 0)
2306 			goto error;
2307 
2308 		offset += ret;
2309 		len -= ret;
2310 	}
2311 
2312 	/* All the data was skb head? */
2313 	if (!len)
2314 		goto out;
2315 
2316 	/* Make offset relative to start of frags */
2317 	offset -= skb_headlen(skb);
2318 
2319 	/* Find where we are in frag list */
2320 	for (fragidx = 0; fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
2321 		skb_frag_t *frag  = &skb_shinfo(skb)->frags[fragidx];
2322 
2323 		if (offset < frag->size)
2324 			break;
2325 
2326 		offset -= frag->size;
2327 	}
2328 
2329 	for (; len && fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
2330 		skb_frag_t *frag  = &skb_shinfo(skb)->frags[fragidx];
2331 
2332 		slen = min_t(size_t, len, frag->size - offset);
2333 
2334 		while (slen) {
2335 			ret = kernel_sendpage_locked(sk, frag->page.p,
2336 						     frag->page_offset + offset,
2337 						     slen, MSG_DONTWAIT);
2338 			if (ret <= 0)
2339 				goto error;
2340 
2341 			len -= ret;
2342 			offset += ret;
2343 			slen -= ret;
2344 		}
2345 
2346 		offset = 0;
2347 	}
2348 
2349 	if (len) {
2350 		/* Process any frag lists */
2351 
2352 		if (skb == head) {
2353 			if (skb_has_frag_list(skb)) {
2354 				skb = skb_shinfo(skb)->frag_list;
2355 				goto do_frag_list;
2356 			}
2357 		} else if (skb->next) {
2358 			skb = skb->next;
2359 			goto do_frag_list;
2360 		}
2361 	}
2362 
2363 out:
2364 	return orig_len - len;
2365 
2366 error:
2367 	return orig_len == len ? ret : orig_len - len;
2368 }
2369 EXPORT_SYMBOL_GPL(skb_send_sock_locked);
2370 
2371 /* Send skb data on a socket. */
2372 int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len)
2373 {
2374 	int ret = 0;
2375 
2376 	lock_sock(sk);
2377 	ret = skb_send_sock_locked(sk, skb, offset, len);
2378 	release_sock(sk);
2379 
2380 	return ret;
2381 }
2382 EXPORT_SYMBOL_GPL(skb_send_sock);
2383 
2384 /**
2385  *	skb_store_bits - store bits from kernel buffer to skb
2386  *	@skb: destination buffer
2387  *	@offset: offset in destination
2388  *	@from: source buffer
2389  *	@len: number of bytes to copy
2390  *
2391  *	Copy the specified number of bytes from the source buffer to the
2392  *	destination skb.  This function handles all the messy bits of
2393  *	traversing fragment lists and such.
2394  */
2395 
2396 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
2397 {
2398 	int start = skb_headlen(skb);
2399 	struct sk_buff *frag_iter;
2400 	int i, copy;
2401 
2402 	if (offset > (int)skb->len - len)
2403 		goto fault;
2404 
2405 	if ((copy = start - offset) > 0) {
2406 		if (copy > len)
2407 			copy = len;
2408 		skb_copy_to_linear_data_offset(skb, offset, from, copy);
2409 		if ((len -= copy) == 0)
2410 			return 0;
2411 		offset += copy;
2412 		from += copy;
2413 	}
2414 
2415 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2416 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2417 		int end;
2418 
2419 		WARN_ON(start > offset + len);
2420 
2421 		end = start + skb_frag_size(frag);
2422 		if ((copy = end - offset) > 0) {
2423 			u32 p_off, p_len, copied;
2424 			struct page *p;
2425 			u8 *vaddr;
2426 
2427 			if (copy > len)
2428 				copy = len;
2429 
2430 			skb_frag_foreach_page(frag,
2431 					      frag->page_offset + offset - start,
2432 					      copy, p, p_off, p_len, copied) {
2433 				vaddr = kmap_atomic(p);
2434 				memcpy(vaddr + p_off, from + copied, p_len);
2435 				kunmap_atomic(vaddr);
2436 			}
2437 
2438 			if ((len -= copy) == 0)
2439 				return 0;
2440 			offset += copy;
2441 			from += copy;
2442 		}
2443 		start = end;
2444 	}
2445 
2446 	skb_walk_frags(skb, frag_iter) {
2447 		int end;
2448 
2449 		WARN_ON(start > offset + len);
2450 
2451 		end = start + frag_iter->len;
2452 		if ((copy = end - offset) > 0) {
2453 			if (copy > len)
2454 				copy = len;
2455 			if (skb_store_bits(frag_iter, offset - start,
2456 					   from, copy))
2457 				goto fault;
2458 			if ((len -= copy) == 0)
2459 				return 0;
2460 			offset += copy;
2461 			from += copy;
2462 		}
2463 		start = end;
2464 	}
2465 	if (!len)
2466 		return 0;
2467 
2468 fault:
2469 	return -EFAULT;
2470 }
2471 EXPORT_SYMBOL(skb_store_bits);
2472 
2473 /* Checksum skb data. */
2474 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
2475 		      __wsum csum, const struct skb_checksum_ops *ops)
2476 {
2477 	int start = skb_headlen(skb);
2478 	int i, copy = start - offset;
2479 	struct sk_buff *frag_iter;
2480 	int pos = 0;
2481 
2482 	/* Checksum header. */
2483 	if (copy > 0) {
2484 		if (copy > len)
2485 			copy = len;
2486 		csum = ops->update(skb->data + offset, copy, csum);
2487 		if ((len -= copy) == 0)
2488 			return csum;
2489 		offset += copy;
2490 		pos	= copy;
2491 	}
2492 
2493 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2494 		int end;
2495 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2496 
2497 		WARN_ON(start > offset + len);
2498 
2499 		end = start + skb_frag_size(frag);
2500 		if ((copy = end - offset) > 0) {
2501 			u32 p_off, p_len, copied;
2502 			struct page *p;
2503 			__wsum csum2;
2504 			u8 *vaddr;
2505 
2506 			if (copy > len)
2507 				copy = len;
2508 
2509 			skb_frag_foreach_page(frag,
2510 					      frag->page_offset + offset - start,
2511 					      copy, p, p_off, p_len, copied) {
2512 				vaddr = kmap_atomic(p);
2513 				csum2 = ops->update(vaddr + p_off, p_len, 0);
2514 				kunmap_atomic(vaddr);
2515 				csum = ops->combine(csum, csum2, pos, p_len);
2516 				pos += p_len;
2517 			}
2518 
2519 			if (!(len -= copy))
2520 				return csum;
2521 			offset += copy;
2522 		}
2523 		start = end;
2524 	}
2525 
2526 	skb_walk_frags(skb, frag_iter) {
2527 		int end;
2528 
2529 		WARN_ON(start > offset + len);
2530 
2531 		end = start + frag_iter->len;
2532 		if ((copy = end - offset) > 0) {
2533 			__wsum csum2;
2534 			if (copy > len)
2535 				copy = len;
2536 			csum2 = __skb_checksum(frag_iter, offset - start,
2537 					       copy, 0, ops);
2538 			csum = ops->combine(csum, csum2, pos, copy);
2539 			if ((len -= copy) == 0)
2540 				return csum;
2541 			offset += copy;
2542 			pos    += copy;
2543 		}
2544 		start = end;
2545 	}
2546 	BUG_ON(len);
2547 
2548 	return csum;
2549 }
2550 EXPORT_SYMBOL(__skb_checksum);
2551 
2552 __wsum skb_checksum(const struct sk_buff *skb, int offset,
2553 		    int len, __wsum csum)
2554 {
2555 	const struct skb_checksum_ops ops = {
2556 		.update  = csum_partial_ext,
2557 		.combine = csum_block_add_ext,
2558 	};
2559 
2560 	return __skb_checksum(skb, offset, len, csum, &ops);
2561 }
2562 EXPORT_SYMBOL(skb_checksum);
2563 
2564 /* Both of above in one bottle. */
2565 
2566 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
2567 				    u8 *to, int len, __wsum csum)
2568 {
2569 	int start = skb_headlen(skb);
2570 	int i, copy = start - offset;
2571 	struct sk_buff *frag_iter;
2572 	int pos = 0;
2573 
2574 	/* Copy header. */
2575 	if (copy > 0) {
2576 		if (copy > len)
2577 			copy = len;
2578 		csum = csum_partial_copy_nocheck(skb->data + offset, to,
2579 						 copy, csum);
2580 		if ((len -= copy) == 0)
2581 			return csum;
2582 		offset += copy;
2583 		to     += copy;
2584 		pos	= copy;
2585 	}
2586 
2587 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2588 		int end;
2589 
2590 		WARN_ON(start > offset + len);
2591 
2592 		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
2593 		if ((copy = end - offset) > 0) {
2594 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2595 			u32 p_off, p_len, copied;
2596 			struct page *p;
2597 			__wsum csum2;
2598 			u8 *vaddr;
2599 
2600 			if (copy > len)
2601 				copy = len;
2602 
2603 			skb_frag_foreach_page(frag,
2604 					      frag->page_offset + offset - start,
2605 					      copy, p, p_off, p_len, copied) {
2606 				vaddr = kmap_atomic(p);
2607 				csum2 = csum_partial_copy_nocheck(vaddr + p_off,
2608 								  to + copied,
2609 								  p_len, 0);
2610 				kunmap_atomic(vaddr);
2611 				csum = csum_block_add(csum, csum2, pos);
2612 				pos += p_len;
2613 			}
2614 
2615 			if (!(len -= copy))
2616 				return csum;
2617 			offset += copy;
2618 			to     += copy;
2619 		}
2620 		start = end;
2621 	}
2622 
2623 	skb_walk_frags(skb, frag_iter) {
2624 		__wsum csum2;
2625 		int end;
2626 
2627 		WARN_ON(start > offset + len);
2628 
2629 		end = start + frag_iter->len;
2630 		if ((copy = end - offset) > 0) {
2631 			if (copy > len)
2632 				copy = len;
2633 			csum2 = skb_copy_and_csum_bits(frag_iter,
2634 						       offset - start,
2635 						       to, copy, 0);
2636 			csum = csum_block_add(csum, csum2, pos);
2637 			if ((len -= copy) == 0)
2638 				return csum;
2639 			offset += copy;
2640 			to     += copy;
2641 			pos    += copy;
2642 		}
2643 		start = end;
2644 	}
2645 	BUG_ON(len);
2646 	return csum;
2647 }
2648 EXPORT_SYMBOL(skb_copy_and_csum_bits);
2649 
2650 static __wsum warn_crc32c_csum_update(const void *buff, int len, __wsum sum)
2651 {
2652 	net_warn_ratelimited(
2653 		"%s: attempt to compute crc32c without libcrc32c.ko\n",
2654 		__func__);
2655 	return 0;
2656 }
2657 
2658 static __wsum warn_crc32c_csum_combine(__wsum csum, __wsum csum2,
2659 				       int offset, int len)
2660 {
2661 	net_warn_ratelimited(
2662 		"%s: attempt to compute crc32c without libcrc32c.ko\n",
2663 		__func__);
2664 	return 0;
2665 }
2666 
2667 static const struct skb_checksum_ops default_crc32c_ops = {
2668 	.update  = warn_crc32c_csum_update,
2669 	.combine = warn_crc32c_csum_combine,
2670 };
2671 
2672 const struct skb_checksum_ops *crc32c_csum_stub __read_mostly =
2673 	&default_crc32c_ops;
2674 EXPORT_SYMBOL(crc32c_csum_stub);
2675 
2676  /**
2677  *	skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy()
2678  *	@from: source buffer
2679  *
2680  *	Calculates the amount of linear headroom needed in the 'to' skb passed
2681  *	into skb_zerocopy().
2682  */
2683 unsigned int
2684 skb_zerocopy_headlen(const struct sk_buff *from)
2685 {
2686 	unsigned int hlen = 0;
2687 
2688 	if (!from->head_frag ||
2689 	    skb_headlen(from) < L1_CACHE_BYTES ||
2690 	    skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS)
2691 		hlen = skb_headlen(from);
2692 
2693 	if (skb_has_frag_list(from))
2694 		hlen = from->len;
2695 
2696 	return hlen;
2697 }
2698 EXPORT_SYMBOL_GPL(skb_zerocopy_headlen);
2699 
2700 /**
2701  *	skb_zerocopy - Zero copy skb to skb
2702  *	@to: destination buffer
2703  *	@from: source buffer
2704  *	@len: number of bytes to copy from source buffer
2705  *	@hlen: size of linear headroom in destination buffer
2706  *
2707  *	Copies up to `len` bytes from `from` to `to` by creating references
2708  *	to the frags in the source buffer.
2709  *
2710  *	The `hlen` as calculated by skb_zerocopy_headlen() specifies the
2711  *	headroom in the `to` buffer.
2712  *
2713  *	Return value:
2714  *	0: everything is OK
2715  *	-ENOMEM: couldn't orphan frags of @from due to lack of memory
2716  *	-EFAULT: skb_copy_bits() found some problem with skb geometry
2717  */
2718 int
2719 skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen)
2720 {
2721 	int i, j = 0;
2722 	int plen = 0; /* length of skb->head fragment */
2723 	int ret;
2724 	struct page *page;
2725 	unsigned int offset;
2726 
2727 	BUG_ON(!from->head_frag && !hlen);
2728 
2729 	/* dont bother with small payloads */
2730 	if (len <= skb_tailroom(to))
2731 		return skb_copy_bits(from, 0, skb_put(to, len), len);
2732 
2733 	if (hlen) {
2734 		ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen);
2735 		if (unlikely(ret))
2736 			return ret;
2737 		len -= hlen;
2738 	} else {
2739 		plen = min_t(int, skb_headlen(from), len);
2740 		if (plen) {
2741 			page = virt_to_head_page(from->head);
2742 			offset = from->data - (unsigned char *)page_address(page);
2743 			__skb_fill_page_desc(to, 0, page, offset, plen);
2744 			get_page(page);
2745 			j = 1;
2746 			len -= plen;
2747 		}
2748 	}
2749 
2750 	to->truesize += len + plen;
2751 	to->len += len + plen;
2752 	to->data_len += len + plen;
2753 
2754 	if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) {
2755 		skb_tx_error(from);
2756 		return -ENOMEM;
2757 	}
2758 	skb_zerocopy_clone(to, from, GFP_ATOMIC);
2759 
2760 	for (i = 0; i < skb_shinfo(from)->nr_frags; i++) {
2761 		if (!len)
2762 			break;
2763 		skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i];
2764 		skb_shinfo(to)->frags[j].size = min_t(int, skb_shinfo(to)->frags[j].size, len);
2765 		len -= skb_shinfo(to)->frags[j].size;
2766 		skb_frag_ref(to, j);
2767 		j++;
2768 	}
2769 	skb_shinfo(to)->nr_frags = j;
2770 
2771 	return 0;
2772 }
2773 EXPORT_SYMBOL_GPL(skb_zerocopy);
2774 
2775 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
2776 {
2777 	__wsum csum;
2778 	long csstart;
2779 
2780 	if (skb->ip_summed == CHECKSUM_PARTIAL)
2781 		csstart = skb_checksum_start_offset(skb);
2782 	else
2783 		csstart = skb_headlen(skb);
2784 
2785 	BUG_ON(csstart > skb_headlen(skb));
2786 
2787 	skb_copy_from_linear_data(skb, to, csstart);
2788 
2789 	csum = 0;
2790 	if (csstart != skb->len)
2791 		csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
2792 					      skb->len - csstart, 0);
2793 
2794 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
2795 		long csstuff = csstart + skb->csum_offset;
2796 
2797 		*((__sum16 *)(to + csstuff)) = csum_fold(csum);
2798 	}
2799 }
2800 EXPORT_SYMBOL(skb_copy_and_csum_dev);
2801 
2802 /**
2803  *	skb_dequeue - remove from the head of the queue
2804  *	@list: list to dequeue from
2805  *
2806  *	Remove the head of the list. The list lock is taken so the function
2807  *	may be used safely with other locking list functions. The head item is
2808  *	returned or %NULL if the list is empty.
2809  */
2810 
2811 struct sk_buff *skb_dequeue(struct sk_buff_head *list)
2812 {
2813 	unsigned long flags;
2814 	struct sk_buff *result;
2815 
2816 	spin_lock_irqsave(&list->lock, flags);
2817 	result = __skb_dequeue(list);
2818 	spin_unlock_irqrestore(&list->lock, flags);
2819 	return result;
2820 }
2821 EXPORT_SYMBOL(skb_dequeue);
2822 
2823 /**
2824  *	skb_dequeue_tail - remove from the tail of the queue
2825  *	@list: list to dequeue from
2826  *
2827  *	Remove the tail of the list. The list lock is taken so the function
2828  *	may be used safely with other locking list functions. The tail item is
2829  *	returned or %NULL if the list is empty.
2830  */
2831 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
2832 {
2833 	unsigned long flags;
2834 	struct sk_buff *result;
2835 
2836 	spin_lock_irqsave(&list->lock, flags);
2837 	result = __skb_dequeue_tail(list);
2838 	spin_unlock_irqrestore(&list->lock, flags);
2839 	return result;
2840 }
2841 EXPORT_SYMBOL(skb_dequeue_tail);
2842 
2843 /**
2844  *	skb_queue_purge - empty a list
2845  *	@list: list to empty
2846  *
2847  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
2848  *	the list and one reference dropped. This function takes the list
2849  *	lock and is atomic with respect to other list locking functions.
2850  */
2851 void skb_queue_purge(struct sk_buff_head *list)
2852 {
2853 	struct sk_buff *skb;
2854 	while ((skb = skb_dequeue(list)) != NULL)
2855 		kfree_skb(skb);
2856 }
2857 EXPORT_SYMBOL(skb_queue_purge);
2858 
2859 /**
2860  *	skb_rbtree_purge - empty a skb rbtree
2861  *	@root: root of the rbtree to empty
2862  *	Return value: the sum of truesizes of all purged skbs.
2863  *
2864  *	Delete all buffers on an &sk_buff rbtree. Each buffer is removed from
2865  *	the list and one reference dropped. This function does not take
2866  *	any lock. Synchronization should be handled by the caller (e.g., TCP
2867  *	out-of-order queue is protected by the socket lock).
2868  */
2869 unsigned int skb_rbtree_purge(struct rb_root *root)
2870 {
2871 	struct rb_node *p = rb_first(root);
2872 	unsigned int sum = 0;
2873 
2874 	while (p) {
2875 		struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode);
2876 
2877 		p = rb_next(p);
2878 		rb_erase(&skb->rbnode, root);
2879 		sum += skb->truesize;
2880 		kfree_skb(skb);
2881 	}
2882 	return sum;
2883 }
2884 
2885 /**
2886  *	skb_queue_head - queue a buffer at the list head
2887  *	@list: list to use
2888  *	@newsk: buffer to queue
2889  *
2890  *	Queue a buffer at the start of the list. This function takes the
2891  *	list lock and can be used safely with other locking &sk_buff functions
2892  *	safely.
2893  *
2894  *	A buffer cannot be placed on two lists at the same time.
2895  */
2896 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
2897 {
2898 	unsigned long flags;
2899 
2900 	spin_lock_irqsave(&list->lock, flags);
2901 	__skb_queue_head(list, newsk);
2902 	spin_unlock_irqrestore(&list->lock, flags);
2903 }
2904 EXPORT_SYMBOL(skb_queue_head);
2905 
2906 /**
2907  *	skb_queue_tail - queue a buffer at the list tail
2908  *	@list: list to use
2909  *	@newsk: buffer to queue
2910  *
2911  *	Queue a buffer at the tail of the list. This function takes the
2912  *	list lock and can be used safely with other locking &sk_buff functions
2913  *	safely.
2914  *
2915  *	A buffer cannot be placed on two lists at the same time.
2916  */
2917 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
2918 {
2919 	unsigned long flags;
2920 
2921 	spin_lock_irqsave(&list->lock, flags);
2922 	__skb_queue_tail(list, newsk);
2923 	spin_unlock_irqrestore(&list->lock, flags);
2924 }
2925 EXPORT_SYMBOL(skb_queue_tail);
2926 
2927 /**
2928  *	skb_unlink	-	remove a buffer from a list
2929  *	@skb: buffer to remove
2930  *	@list: list to use
2931  *
2932  *	Remove a packet from a list. The list locks are taken and this
2933  *	function is atomic with respect to other list locked calls
2934  *
2935  *	You must know what list the SKB is on.
2936  */
2937 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
2938 {
2939 	unsigned long flags;
2940 
2941 	spin_lock_irqsave(&list->lock, flags);
2942 	__skb_unlink(skb, list);
2943 	spin_unlock_irqrestore(&list->lock, flags);
2944 }
2945 EXPORT_SYMBOL(skb_unlink);
2946 
2947 /**
2948  *	skb_append	-	append a buffer
2949  *	@old: buffer to insert after
2950  *	@newsk: buffer to insert
2951  *	@list: list to use
2952  *
2953  *	Place a packet after a given packet in a list. The list locks are taken
2954  *	and this function is atomic with respect to other list locked calls.
2955  *	A buffer cannot be placed on two lists at the same time.
2956  */
2957 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
2958 {
2959 	unsigned long flags;
2960 
2961 	spin_lock_irqsave(&list->lock, flags);
2962 	__skb_queue_after(list, old, newsk);
2963 	spin_unlock_irqrestore(&list->lock, flags);
2964 }
2965 EXPORT_SYMBOL(skb_append);
2966 
2967 /**
2968  *	skb_insert	-	insert a buffer
2969  *	@old: buffer to insert before
2970  *	@newsk: buffer to insert
2971  *	@list: list to use
2972  *
2973  *	Place a packet before a given packet in a list. The list locks are
2974  * 	taken and this function is atomic with respect to other list locked
2975  *	calls.
2976  *
2977  *	A buffer cannot be placed on two lists at the same time.
2978  */
2979 void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
2980 {
2981 	unsigned long flags;
2982 
2983 	spin_lock_irqsave(&list->lock, flags);
2984 	__skb_insert(newsk, old->prev, old, list);
2985 	spin_unlock_irqrestore(&list->lock, flags);
2986 }
2987 EXPORT_SYMBOL(skb_insert);
2988 
2989 static inline void skb_split_inside_header(struct sk_buff *skb,
2990 					   struct sk_buff* skb1,
2991 					   const u32 len, const int pos)
2992 {
2993 	int i;
2994 
2995 	skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
2996 					 pos - len);
2997 	/* And move data appendix as is. */
2998 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
2999 		skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
3000 
3001 	skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
3002 	skb_shinfo(skb)->nr_frags  = 0;
3003 	skb1->data_len		   = skb->data_len;
3004 	skb1->len		   += skb1->data_len;
3005 	skb->data_len		   = 0;
3006 	skb->len		   = len;
3007 	skb_set_tail_pointer(skb, len);
3008 }
3009 
3010 static inline void skb_split_no_header(struct sk_buff *skb,
3011 				       struct sk_buff* skb1,
3012 				       const u32 len, int pos)
3013 {
3014 	int i, k = 0;
3015 	const int nfrags = skb_shinfo(skb)->nr_frags;
3016 
3017 	skb_shinfo(skb)->nr_frags = 0;
3018 	skb1->len		  = skb1->data_len = skb->len - len;
3019 	skb->len		  = len;
3020 	skb->data_len		  = len - pos;
3021 
3022 	for (i = 0; i < nfrags; i++) {
3023 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
3024 
3025 		if (pos + size > len) {
3026 			skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
3027 
3028 			if (pos < len) {
3029 				/* Split frag.
3030 				 * We have two variants in this case:
3031 				 * 1. Move all the frag to the second
3032 				 *    part, if it is possible. F.e.
3033 				 *    this approach is mandatory for TUX,
3034 				 *    where splitting is expensive.
3035 				 * 2. Split is accurately. We make this.
3036 				 */
3037 				skb_frag_ref(skb, i);
3038 				skb_shinfo(skb1)->frags[0].page_offset += len - pos;
3039 				skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos);
3040 				skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos);
3041 				skb_shinfo(skb)->nr_frags++;
3042 			}
3043 			k++;
3044 		} else
3045 			skb_shinfo(skb)->nr_frags++;
3046 		pos += size;
3047 	}
3048 	skb_shinfo(skb1)->nr_frags = k;
3049 }
3050 
3051 /**
3052  * skb_split - Split fragmented skb to two parts at length len.
3053  * @skb: the buffer to split
3054  * @skb1: the buffer to receive the second part
3055  * @len: new length for skb
3056  */
3057 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
3058 {
3059 	int pos = skb_headlen(skb);
3060 
3061 	skb_shinfo(skb1)->tx_flags |= skb_shinfo(skb)->tx_flags &
3062 				      SKBTX_SHARED_FRAG;
3063 	skb_zerocopy_clone(skb1, skb, 0);
3064 	if (len < pos)	/* Split line is inside header. */
3065 		skb_split_inside_header(skb, skb1, len, pos);
3066 	else		/* Second chunk has no header, nothing to copy. */
3067 		skb_split_no_header(skb, skb1, len, pos);
3068 }
3069 EXPORT_SYMBOL(skb_split);
3070 
3071 /* Shifting from/to a cloned skb is a no-go.
3072  *
3073  * Caller cannot keep skb_shinfo related pointers past calling here!
3074  */
3075 static int skb_prepare_for_shift(struct sk_buff *skb)
3076 {
3077 	return skb_cloned(skb) && pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3078 }
3079 
3080 /**
3081  * skb_shift - Shifts paged data partially from skb to another
3082  * @tgt: buffer into which tail data gets added
3083  * @skb: buffer from which the paged data comes from
3084  * @shiftlen: shift up to this many bytes
3085  *
3086  * Attempts to shift up to shiftlen worth of bytes, which may be less than
3087  * the length of the skb, from skb to tgt. Returns number bytes shifted.
3088  * It's up to caller to free skb if everything was shifted.
3089  *
3090  * If @tgt runs out of frags, the whole operation is aborted.
3091  *
3092  * Skb cannot include anything else but paged data while tgt is allowed
3093  * to have non-paged data as well.
3094  *
3095  * TODO: full sized shift could be optimized but that would need
3096  * specialized skb free'er to handle frags without up-to-date nr_frags.
3097  */
3098 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
3099 {
3100 	int from, to, merge, todo;
3101 	struct skb_frag_struct *fragfrom, *fragto;
3102 
3103 	BUG_ON(shiftlen > skb->len);
3104 
3105 	if (skb_headlen(skb))
3106 		return 0;
3107 	if (skb_zcopy(tgt) || skb_zcopy(skb))
3108 		return 0;
3109 
3110 	todo = shiftlen;
3111 	from = 0;
3112 	to = skb_shinfo(tgt)->nr_frags;
3113 	fragfrom = &skb_shinfo(skb)->frags[from];
3114 
3115 	/* Actual merge is delayed until the point when we know we can
3116 	 * commit all, so that we don't have to undo partial changes
3117 	 */
3118 	if (!to ||
3119 	    !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom),
3120 			      fragfrom->page_offset)) {
3121 		merge = -1;
3122 	} else {
3123 		merge = to - 1;
3124 
3125 		todo -= skb_frag_size(fragfrom);
3126 		if (todo < 0) {
3127 			if (skb_prepare_for_shift(skb) ||
3128 			    skb_prepare_for_shift(tgt))
3129 				return 0;
3130 
3131 			/* All previous frag pointers might be stale! */
3132 			fragfrom = &skb_shinfo(skb)->frags[from];
3133 			fragto = &skb_shinfo(tgt)->frags[merge];
3134 
3135 			skb_frag_size_add(fragto, shiftlen);
3136 			skb_frag_size_sub(fragfrom, shiftlen);
3137 			fragfrom->page_offset += shiftlen;
3138 
3139 			goto onlymerged;
3140 		}
3141 
3142 		from++;
3143 	}
3144 
3145 	/* Skip full, not-fitting skb to avoid expensive operations */
3146 	if ((shiftlen == skb->len) &&
3147 	    (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
3148 		return 0;
3149 
3150 	if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
3151 		return 0;
3152 
3153 	while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
3154 		if (to == MAX_SKB_FRAGS)
3155 			return 0;
3156 
3157 		fragfrom = &skb_shinfo(skb)->frags[from];
3158 		fragto = &skb_shinfo(tgt)->frags[to];
3159 
3160 		if (todo >= skb_frag_size(fragfrom)) {
3161 			*fragto = *fragfrom;
3162 			todo -= skb_frag_size(fragfrom);
3163 			from++;
3164 			to++;
3165 
3166 		} else {
3167 			__skb_frag_ref(fragfrom);
3168 			fragto->page = fragfrom->page;
3169 			fragto->page_offset = fragfrom->page_offset;
3170 			skb_frag_size_set(fragto, todo);
3171 
3172 			fragfrom->page_offset += todo;
3173 			skb_frag_size_sub(fragfrom, todo);
3174 			todo = 0;
3175 
3176 			to++;
3177 			break;
3178 		}
3179 	}
3180 
3181 	/* Ready to "commit" this state change to tgt */
3182 	skb_shinfo(tgt)->nr_frags = to;
3183 
3184 	if (merge >= 0) {
3185 		fragfrom = &skb_shinfo(skb)->frags[0];
3186 		fragto = &skb_shinfo(tgt)->frags[merge];
3187 
3188 		skb_frag_size_add(fragto, skb_frag_size(fragfrom));
3189 		__skb_frag_unref(fragfrom);
3190 	}
3191 
3192 	/* Reposition in the original skb */
3193 	to = 0;
3194 	while (from < skb_shinfo(skb)->nr_frags)
3195 		skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
3196 	skb_shinfo(skb)->nr_frags = to;
3197 
3198 	BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
3199 
3200 onlymerged:
3201 	/* Most likely the tgt won't ever need its checksum anymore, skb on
3202 	 * the other hand might need it if it needs to be resent
3203 	 */
3204 	tgt->ip_summed = CHECKSUM_PARTIAL;
3205 	skb->ip_summed = CHECKSUM_PARTIAL;
3206 
3207 	/* Yak, is it really working this way? Some helper please? */
3208 	skb->len -= shiftlen;
3209 	skb->data_len -= shiftlen;
3210 	skb->truesize -= shiftlen;
3211 	tgt->len += shiftlen;
3212 	tgt->data_len += shiftlen;
3213 	tgt->truesize += shiftlen;
3214 
3215 	return shiftlen;
3216 }
3217 
3218 /**
3219  * skb_prepare_seq_read - Prepare a sequential read of skb data
3220  * @skb: the buffer to read
3221  * @from: lower offset of data to be read
3222  * @to: upper offset of data to be read
3223  * @st: state variable
3224  *
3225  * Initializes the specified state variable. Must be called before
3226  * invoking skb_seq_read() for the first time.
3227  */
3228 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
3229 			  unsigned int to, struct skb_seq_state *st)
3230 {
3231 	st->lower_offset = from;
3232 	st->upper_offset = to;
3233 	st->root_skb = st->cur_skb = skb;
3234 	st->frag_idx = st->stepped_offset = 0;
3235 	st->frag_data = NULL;
3236 }
3237 EXPORT_SYMBOL(skb_prepare_seq_read);
3238 
3239 /**
3240  * skb_seq_read - Sequentially read skb data
3241  * @consumed: number of bytes consumed by the caller so far
3242  * @data: destination pointer for data to be returned
3243  * @st: state variable
3244  *
3245  * Reads a block of skb data at @consumed relative to the
3246  * lower offset specified to skb_prepare_seq_read(). Assigns
3247  * the head of the data block to @data and returns the length
3248  * of the block or 0 if the end of the skb data or the upper
3249  * offset has been reached.
3250  *
3251  * The caller is not required to consume all of the data
3252  * returned, i.e. @consumed is typically set to the number
3253  * of bytes already consumed and the next call to
3254  * skb_seq_read() will return the remaining part of the block.
3255  *
3256  * Note 1: The size of each block of data returned can be arbitrary,
3257  *       this limitation is the cost for zerocopy sequential
3258  *       reads of potentially non linear data.
3259  *
3260  * Note 2: Fragment lists within fragments are not implemented
3261  *       at the moment, state->root_skb could be replaced with
3262  *       a stack for this purpose.
3263  */
3264 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
3265 			  struct skb_seq_state *st)
3266 {
3267 	unsigned int block_limit, abs_offset = consumed + st->lower_offset;
3268 	skb_frag_t *frag;
3269 
3270 	if (unlikely(abs_offset >= st->upper_offset)) {
3271 		if (st->frag_data) {
3272 			kunmap_atomic(st->frag_data);
3273 			st->frag_data = NULL;
3274 		}
3275 		return 0;
3276 	}
3277 
3278 next_skb:
3279 	block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
3280 
3281 	if (abs_offset < block_limit && !st->frag_data) {
3282 		*data = st->cur_skb->data + (abs_offset - st->stepped_offset);
3283 		return block_limit - abs_offset;
3284 	}
3285 
3286 	if (st->frag_idx == 0 && !st->frag_data)
3287 		st->stepped_offset += skb_headlen(st->cur_skb);
3288 
3289 	while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
3290 		frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
3291 		block_limit = skb_frag_size(frag) + st->stepped_offset;
3292 
3293 		if (abs_offset < block_limit) {
3294 			if (!st->frag_data)
3295 				st->frag_data = kmap_atomic(skb_frag_page(frag));
3296 
3297 			*data = (u8 *) st->frag_data + frag->page_offset +
3298 				(abs_offset - st->stepped_offset);
3299 
3300 			return block_limit - abs_offset;
3301 		}
3302 
3303 		if (st->frag_data) {
3304 			kunmap_atomic(st->frag_data);
3305 			st->frag_data = NULL;
3306 		}
3307 
3308 		st->frag_idx++;
3309 		st->stepped_offset += skb_frag_size(frag);
3310 	}
3311 
3312 	if (st->frag_data) {
3313 		kunmap_atomic(st->frag_data);
3314 		st->frag_data = NULL;
3315 	}
3316 
3317 	if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) {
3318 		st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
3319 		st->frag_idx = 0;
3320 		goto next_skb;
3321 	} else if (st->cur_skb->next) {
3322 		st->cur_skb = st->cur_skb->next;
3323 		st->frag_idx = 0;
3324 		goto next_skb;
3325 	}
3326 
3327 	return 0;
3328 }
3329 EXPORT_SYMBOL(skb_seq_read);
3330 
3331 /**
3332  * skb_abort_seq_read - Abort a sequential read of skb data
3333  * @st: state variable
3334  *
3335  * Must be called if skb_seq_read() was not called until it
3336  * returned 0.
3337  */
3338 void skb_abort_seq_read(struct skb_seq_state *st)
3339 {
3340 	if (st->frag_data)
3341 		kunmap_atomic(st->frag_data);
3342 }
3343 EXPORT_SYMBOL(skb_abort_seq_read);
3344 
3345 #define TS_SKB_CB(state)	((struct skb_seq_state *) &((state)->cb))
3346 
3347 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
3348 					  struct ts_config *conf,
3349 					  struct ts_state *state)
3350 {
3351 	return skb_seq_read(offset, text, TS_SKB_CB(state));
3352 }
3353 
3354 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
3355 {
3356 	skb_abort_seq_read(TS_SKB_CB(state));
3357 }
3358 
3359 /**
3360  * skb_find_text - Find a text pattern in skb data
3361  * @skb: the buffer to look in
3362  * @from: search offset
3363  * @to: search limit
3364  * @config: textsearch configuration
3365  *
3366  * Finds a pattern in the skb data according to the specified
3367  * textsearch configuration. Use textsearch_next() to retrieve
3368  * subsequent occurrences of the pattern. Returns the offset
3369  * to the first occurrence or UINT_MAX if no match was found.
3370  */
3371 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
3372 			   unsigned int to, struct ts_config *config)
3373 {
3374 	struct ts_state state;
3375 	unsigned int ret;
3376 
3377 	config->get_next_block = skb_ts_get_next_block;
3378 	config->finish = skb_ts_finish;
3379 
3380 	skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state));
3381 
3382 	ret = textsearch_find(config, &state);
3383 	return (ret <= to - from ? ret : UINT_MAX);
3384 }
3385 EXPORT_SYMBOL(skb_find_text);
3386 
3387 /**
3388  * skb_append_datato_frags - append the user data to a skb
3389  * @sk: sock  structure
3390  * @skb: skb structure to be appended with user data.
3391  * @getfrag: call back function to be used for getting the user data
3392  * @from: pointer to user message iov
3393  * @length: length of the iov message
3394  *
3395  * Description: This procedure append the user data in the fragment part
3396  * of the skb if any page alloc fails user this procedure returns  -ENOMEM
3397  */
3398 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
3399 			int (*getfrag)(void *from, char *to, int offset,
3400 					int len, int odd, struct sk_buff *skb),
3401 			void *from, int length)
3402 {
3403 	int frg_cnt = skb_shinfo(skb)->nr_frags;
3404 	int copy;
3405 	int offset = 0;
3406 	int ret;
3407 	struct page_frag *pfrag = &current->task_frag;
3408 
3409 	do {
3410 		/* Return error if we don't have space for new frag */
3411 		if (frg_cnt >= MAX_SKB_FRAGS)
3412 			return -EMSGSIZE;
3413 
3414 		if (!sk_page_frag_refill(sk, pfrag))
3415 			return -ENOMEM;
3416 
3417 		/* copy the user data to page */
3418 		copy = min_t(int, length, pfrag->size - pfrag->offset);
3419 
3420 		ret = getfrag(from, page_address(pfrag->page) + pfrag->offset,
3421 			      offset, copy, 0, skb);
3422 		if (ret < 0)
3423 			return -EFAULT;
3424 
3425 		/* copy was successful so update the size parameters */
3426 		skb_fill_page_desc(skb, frg_cnt, pfrag->page, pfrag->offset,
3427 				   copy);
3428 		frg_cnt++;
3429 		pfrag->offset += copy;
3430 		get_page(pfrag->page);
3431 
3432 		skb->truesize += copy;
3433 		refcount_add(copy, &sk->sk_wmem_alloc);
3434 		skb->len += copy;
3435 		skb->data_len += copy;
3436 		offset += copy;
3437 		length -= copy;
3438 
3439 	} while (length > 0);
3440 
3441 	return 0;
3442 }
3443 EXPORT_SYMBOL(skb_append_datato_frags);
3444 
3445 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
3446 			 int offset, size_t size)
3447 {
3448 	int i = skb_shinfo(skb)->nr_frags;
3449 
3450 	if (skb_can_coalesce(skb, i, page, offset)) {
3451 		skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size);
3452 	} else if (i < MAX_SKB_FRAGS) {
3453 		get_page(page);
3454 		skb_fill_page_desc(skb, i, page, offset, size);
3455 	} else {
3456 		return -EMSGSIZE;
3457 	}
3458 
3459 	return 0;
3460 }
3461 EXPORT_SYMBOL_GPL(skb_append_pagefrags);
3462 
3463 /**
3464  *	skb_pull_rcsum - pull skb and update receive checksum
3465  *	@skb: buffer to update
3466  *	@len: length of data pulled
3467  *
3468  *	This function performs an skb_pull on the packet and updates
3469  *	the CHECKSUM_COMPLETE checksum.  It should be used on
3470  *	receive path processing instead of skb_pull unless you know
3471  *	that the checksum difference is zero (e.g., a valid IP header)
3472  *	or you are setting ip_summed to CHECKSUM_NONE.
3473  */
3474 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
3475 {
3476 	unsigned char *data = skb->data;
3477 
3478 	BUG_ON(len > skb->len);
3479 	__skb_pull(skb, len);
3480 	skb_postpull_rcsum(skb, data, len);
3481 	return skb->data;
3482 }
3483 EXPORT_SYMBOL_GPL(skb_pull_rcsum);
3484 
3485 static inline skb_frag_t skb_head_frag_to_page_desc(struct sk_buff *frag_skb)
3486 {
3487 	skb_frag_t head_frag;
3488 	struct page *page;
3489 
3490 	page = virt_to_head_page(frag_skb->head);
3491 	head_frag.page.p = page;
3492 	head_frag.page_offset = frag_skb->data -
3493 		(unsigned char *)page_address(page);
3494 	head_frag.size = skb_headlen(frag_skb);
3495 	return head_frag;
3496 }
3497 
3498 /**
3499  *	skb_segment - Perform protocol segmentation on skb.
3500  *	@head_skb: buffer to segment
3501  *	@features: features for the output path (see dev->features)
3502  *
3503  *	This function performs segmentation on the given skb.  It returns
3504  *	a pointer to the first in a list of new skbs for the segments.
3505  *	In case of error it returns ERR_PTR(err).
3506  */
3507 struct sk_buff *skb_segment(struct sk_buff *head_skb,
3508 			    netdev_features_t features)
3509 {
3510 	struct sk_buff *segs = NULL;
3511 	struct sk_buff *tail = NULL;
3512 	struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list;
3513 	skb_frag_t *frag = skb_shinfo(head_skb)->frags;
3514 	unsigned int mss = skb_shinfo(head_skb)->gso_size;
3515 	unsigned int doffset = head_skb->data - skb_mac_header(head_skb);
3516 	struct sk_buff *frag_skb = head_skb;
3517 	unsigned int offset = doffset;
3518 	unsigned int tnl_hlen = skb_tnl_header_len(head_skb);
3519 	unsigned int partial_segs = 0;
3520 	unsigned int headroom;
3521 	unsigned int len = head_skb->len;
3522 	__be16 proto;
3523 	bool csum, sg;
3524 	int nfrags = skb_shinfo(head_skb)->nr_frags;
3525 	int err = -ENOMEM;
3526 	int i = 0;
3527 	int pos;
3528 	int dummy;
3529 
3530 	__skb_push(head_skb, doffset);
3531 	proto = skb_network_protocol(head_skb, &dummy);
3532 	if (unlikely(!proto))
3533 		return ERR_PTR(-EINVAL);
3534 
3535 	sg = !!(features & NETIF_F_SG);
3536 	csum = !!can_checksum_protocol(features, proto);
3537 
3538 	if (sg && csum && (mss != GSO_BY_FRAGS))  {
3539 		if (!(features & NETIF_F_GSO_PARTIAL)) {
3540 			struct sk_buff *iter;
3541 			unsigned int frag_len;
3542 
3543 			if (!list_skb ||
3544 			    !net_gso_ok(features, skb_shinfo(head_skb)->gso_type))
3545 				goto normal;
3546 
3547 			/* If we get here then all the required
3548 			 * GSO features except frag_list are supported.
3549 			 * Try to split the SKB to multiple GSO SKBs
3550 			 * with no frag_list.
3551 			 * Currently we can do that only when the buffers don't
3552 			 * have a linear part and all the buffers except
3553 			 * the last are of the same length.
3554 			 */
3555 			frag_len = list_skb->len;
3556 			skb_walk_frags(head_skb, iter) {
3557 				if (frag_len != iter->len && iter->next)
3558 					goto normal;
3559 				if (skb_headlen(iter) && !iter->head_frag)
3560 					goto normal;
3561 
3562 				len -= iter->len;
3563 			}
3564 
3565 			if (len != frag_len)
3566 				goto normal;
3567 		}
3568 
3569 		/* GSO partial only requires that we trim off any excess that
3570 		 * doesn't fit into an MSS sized block, so take care of that
3571 		 * now.
3572 		 */
3573 		partial_segs = len / mss;
3574 		if (partial_segs > 1)
3575 			mss *= partial_segs;
3576 		else
3577 			partial_segs = 0;
3578 	}
3579 
3580 normal:
3581 	headroom = skb_headroom(head_skb);
3582 	pos = skb_headlen(head_skb);
3583 
3584 	do {
3585 		struct sk_buff *nskb;
3586 		skb_frag_t *nskb_frag;
3587 		int hsize;
3588 		int size;
3589 
3590 		if (unlikely(mss == GSO_BY_FRAGS)) {
3591 			len = list_skb->len;
3592 		} else {
3593 			len = head_skb->len - offset;
3594 			if (len > mss)
3595 				len = mss;
3596 		}
3597 
3598 		hsize = skb_headlen(head_skb) - offset;
3599 		if (hsize < 0)
3600 			hsize = 0;
3601 		if (hsize > len || !sg)
3602 			hsize = len;
3603 
3604 		if (!hsize && i >= nfrags && skb_headlen(list_skb) &&
3605 		    (skb_headlen(list_skb) == len || sg)) {
3606 			BUG_ON(skb_headlen(list_skb) > len);
3607 
3608 			i = 0;
3609 			nfrags = skb_shinfo(list_skb)->nr_frags;
3610 			frag = skb_shinfo(list_skb)->frags;
3611 			frag_skb = list_skb;
3612 			pos += skb_headlen(list_skb);
3613 
3614 			while (pos < offset + len) {
3615 				BUG_ON(i >= nfrags);
3616 
3617 				size = skb_frag_size(frag);
3618 				if (pos + size > offset + len)
3619 					break;
3620 
3621 				i++;
3622 				pos += size;
3623 				frag++;
3624 			}
3625 
3626 			nskb = skb_clone(list_skb, GFP_ATOMIC);
3627 			list_skb = list_skb->next;
3628 
3629 			if (unlikely(!nskb))
3630 				goto err;
3631 
3632 			if (unlikely(pskb_trim(nskb, len))) {
3633 				kfree_skb(nskb);
3634 				goto err;
3635 			}
3636 
3637 			hsize = skb_end_offset(nskb);
3638 			if (skb_cow_head(nskb, doffset + headroom)) {
3639 				kfree_skb(nskb);
3640 				goto err;
3641 			}
3642 
3643 			nskb->truesize += skb_end_offset(nskb) - hsize;
3644 			skb_release_head_state(nskb);
3645 			__skb_push(nskb, doffset);
3646 		} else {
3647 			nskb = __alloc_skb(hsize + doffset + headroom,
3648 					   GFP_ATOMIC, skb_alloc_rx_flag(head_skb),
3649 					   NUMA_NO_NODE);
3650 
3651 			if (unlikely(!nskb))
3652 				goto err;
3653 
3654 			skb_reserve(nskb, headroom);
3655 			__skb_put(nskb, doffset);
3656 		}
3657 
3658 		if (segs)
3659 			tail->next = nskb;
3660 		else
3661 			segs = nskb;
3662 		tail = nskb;
3663 
3664 		__copy_skb_header(nskb, head_skb);
3665 
3666 		skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom);
3667 		skb_reset_mac_len(nskb);
3668 
3669 		skb_copy_from_linear_data_offset(head_skb, -tnl_hlen,
3670 						 nskb->data - tnl_hlen,
3671 						 doffset + tnl_hlen);
3672 
3673 		if (nskb->len == len + doffset)
3674 			goto perform_csum_check;
3675 
3676 		if (!sg) {
3677 			if (!nskb->remcsum_offload)
3678 				nskb->ip_summed = CHECKSUM_NONE;
3679 			SKB_GSO_CB(nskb)->csum =
3680 				skb_copy_and_csum_bits(head_skb, offset,
3681 						       skb_put(nskb, len),
3682 						       len, 0);
3683 			SKB_GSO_CB(nskb)->csum_start =
3684 				skb_headroom(nskb) + doffset;
3685 			continue;
3686 		}
3687 
3688 		nskb_frag = skb_shinfo(nskb)->frags;
3689 
3690 		skb_copy_from_linear_data_offset(head_skb, offset,
3691 						 skb_put(nskb, hsize), hsize);
3692 
3693 		skb_shinfo(nskb)->tx_flags |= skb_shinfo(head_skb)->tx_flags &
3694 					      SKBTX_SHARED_FRAG;
3695 
3696 		if (skb_orphan_frags(frag_skb, GFP_ATOMIC) ||
3697 		    skb_zerocopy_clone(nskb, frag_skb, GFP_ATOMIC))
3698 			goto err;
3699 
3700 		while (pos < offset + len) {
3701 			if (i >= nfrags) {
3702 				i = 0;
3703 				nfrags = skb_shinfo(list_skb)->nr_frags;
3704 				frag = skb_shinfo(list_skb)->frags;
3705 				frag_skb = list_skb;
3706 				if (!skb_headlen(list_skb)) {
3707 					BUG_ON(!nfrags);
3708 				} else {
3709 					BUG_ON(!list_skb->head_frag);
3710 
3711 					/* to make room for head_frag. */
3712 					i--;
3713 					frag--;
3714 				}
3715 				if (skb_orphan_frags(frag_skb, GFP_ATOMIC) ||
3716 				    skb_zerocopy_clone(nskb, frag_skb,
3717 						       GFP_ATOMIC))
3718 					goto err;
3719 
3720 				list_skb = list_skb->next;
3721 			}
3722 
3723 			if (unlikely(skb_shinfo(nskb)->nr_frags >=
3724 				     MAX_SKB_FRAGS)) {
3725 				net_warn_ratelimited(
3726 					"skb_segment: too many frags: %u %u\n",
3727 					pos, mss);
3728 				err = -EINVAL;
3729 				goto err;
3730 			}
3731 
3732 			*nskb_frag = (i < 0) ? skb_head_frag_to_page_desc(frag_skb) : *frag;
3733 			__skb_frag_ref(nskb_frag);
3734 			size = skb_frag_size(nskb_frag);
3735 
3736 			if (pos < offset) {
3737 				nskb_frag->page_offset += offset - pos;
3738 				skb_frag_size_sub(nskb_frag, offset - pos);
3739 			}
3740 
3741 			skb_shinfo(nskb)->nr_frags++;
3742 
3743 			if (pos + size <= offset + len) {
3744 				i++;
3745 				frag++;
3746 				pos += size;
3747 			} else {
3748 				skb_frag_size_sub(nskb_frag, pos + size - (offset + len));
3749 				goto skip_fraglist;
3750 			}
3751 
3752 			nskb_frag++;
3753 		}
3754 
3755 skip_fraglist:
3756 		nskb->data_len = len - hsize;
3757 		nskb->len += nskb->data_len;
3758 		nskb->truesize += nskb->data_len;
3759 
3760 perform_csum_check:
3761 		if (!csum) {
3762 			if (skb_has_shared_frag(nskb) &&
3763 			    __skb_linearize(nskb))
3764 				goto err;
3765 
3766 			if (!nskb->remcsum_offload)
3767 				nskb->ip_summed = CHECKSUM_NONE;
3768 			SKB_GSO_CB(nskb)->csum =
3769 				skb_checksum(nskb, doffset,
3770 					     nskb->len - doffset, 0);
3771 			SKB_GSO_CB(nskb)->csum_start =
3772 				skb_headroom(nskb) + doffset;
3773 		}
3774 	} while ((offset += len) < head_skb->len);
3775 
3776 	/* Some callers want to get the end of the list.
3777 	 * Put it in segs->prev to avoid walking the list.
3778 	 * (see validate_xmit_skb_list() for example)
3779 	 */
3780 	segs->prev = tail;
3781 
3782 	if (partial_segs) {
3783 		struct sk_buff *iter;
3784 		int type = skb_shinfo(head_skb)->gso_type;
3785 		unsigned short gso_size = skb_shinfo(head_skb)->gso_size;
3786 
3787 		/* Update type to add partial and then remove dodgy if set */
3788 		type |= (features & NETIF_F_GSO_PARTIAL) / NETIF_F_GSO_PARTIAL * SKB_GSO_PARTIAL;
3789 		type &= ~SKB_GSO_DODGY;
3790 
3791 		/* Update GSO info and prepare to start updating headers on
3792 		 * our way back down the stack of protocols.
3793 		 */
3794 		for (iter = segs; iter; iter = iter->next) {
3795 			skb_shinfo(iter)->gso_size = gso_size;
3796 			skb_shinfo(iter)->gso_segs = partial_segs;
3797 			skb_shinfo(iter)->gso_type = type;
3798 			SKB_GSO_CB(iter)->data_offset = skb_headroom(iter) + doffset;
3799 		}
3800 
3801 		if (tail->len - doffset <= gso_size)
3802 			skb_shinfo(tail)->gso_size = 0;
3803 		else if (tail != segs)
3804 			skb_shinfo(tail)->gso_segs = DIV_ROUND_UP(tail->len - doffset, gso_size);
3805 	}
3806 
3807 	/* Following permits correct backpressure, for protocols
3808 	 * using skb_set_owner_w().
3809 	 * Idea is to tranfert ownership from head_skb to last segment.
3810 	 */
3811 	if (head_skb->destructor == sock_wfree) {
3812 		swap(tail->truesize, head_skb->truesize);
3813 		swap(tail->destructor, head_skb->destructor);
3814 		swap(tail->sk, head_skb->sk);
3815 	}
3816 	return segs;
3817 
3818 err:
3819 	kfree_skb_list(segs);
3820 	return ERR_PTR(err);
3821 }
3822 EXPORT_SYMBOL_GPL(skb_segment);
3823 
3824 int skb_gro_receive(struct sk_buff *p, struct sk_buff *skb)
3825 {
3826 	struct skb_shared_info *pinfo, *skbinfo = skb_shinfo(skb);
3827 	unsigned int offset = skb_gro_offset(skb);
3828 	unsigned int headlen = skb_headlen(skb);
3829 	unsigned int len = skb_gro_len(skb);
3830 	unsigned int delta_truesize;
3831 	struct sk_buff *lp;
3832 
3833 	if (unlikely(p->len + len >= 65536))
3834 		return -E2BIG;
3835 
3836 	lp = NAPI_GRO_CB(p)->last;
3837 	pinfo = skb_shinfo(lp);
3838 
3839 	if (headlen <= offset) {
3840 		skb_frag_t *frag;
3841 		skb_frag_t *frag2;
3842 		int i = skbinfo->nr_frags;
3843 		int nr_frags = pinfo->nr_frags + i;
3844 
3845 		if (nr_frags > MAX_SKB_FRAGS)
3846 			goto merge;
3847 
3848 		offset -= headlen;
3849 		pinfo->nr_frags = nr_frags;
3850 		skbinfo->nr_frags = 0;
3851 
3852 		frag = pinfo->frags + nr_frags;
3853 		frag2 = skbinfo->frags + i;
3854 		do {
3855 			*--frag = *--frag2;
3856 		} while (--i);
3857 
3858 		frag->page_offset += offset;
3859 		skb_frag_size_sub(frag, offset);
3860 
3861 		/* all fragments truesize : remove (head size + sk_buff) */
3862 		delta_truesize = skb->truesize -
3863 				 SKB_TRUESIZE(skb_end_offset(skb));
3864 
3865 		skb->truesize -= skb->data_len;
3866 		skb->len -= skb->data_len;
3867 		skb->data_len = 0;
3868 
3869 		NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE;
3870 		goto done;
3871 	} else if (skb->head_frag) {
3872 		int nr_frags = pinfo->nr_frags;
3873 		skb_frag_t *frag = pinfo->frags + nr_frags;
3874 		struct page *page = virt_to_head_page(skb->head);
3875 		unsigned int first_size = headlen - offset;
3876 		unsigned int first_offset;
3877 
3878 		if (nr_frags + 1 + skbinfo->nr_frags > MAX_SKB_FRAGS)
3879 			goto merge;
3880 
3881 		first_offset = skb->data -
3882 			       (unsigned char *)page_address(page) +
3883 			       offset;
3884 
3885 		pinfo->nr_frags = nr_frags + 1 + skbinfo->nr_frags;
3886 
3887 		frag->page.p	  = page;
3888 		frag->page_offset = first_offset;
3889 		skb_frag_size_set(frag, first_size);
3890 
3891 		memcpy(frag + 1, skbinfo->frags, sizeof(*frag) * skbinfo->nr_frags);
3892 		/* We dont need to clear skbinfo->nr_frags here */
3893 
3894 		delta_truesize = skb->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
3895 		NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE_STOLEN_HEAD;
3896 		goto done;
3897 	}
3898 
3899 merge:
3900 	delta_truesize = skb->truesize;
3901 	if (offset > headlen) {
3902 		unsigned int eat = offset - headlen;
3903 
3904 		skbinfo->frags[0].page_offset += eat;
3905 		skb_frag_size_sub(&skbinfo->frags[0], eat);
3906 		skb->data_len -= eat;
3907 		skb->len -= eat;
3908 		offset = headlen;
3909 	}
3910 
3911 	__skb_pull(skb, offset);
3912 
3913 	if (NAPI_GRO_CB(p)->last == p)
3914 		skb_shinfo(p)->frag_list = skb;
3915 	else
3916 		NAPI_GRO_CB(p)->last->next = skb;
3917 	NAPI_GRO_CB(p)->last = skb;
3918 	__skb_header_release(skb);
3919 	lp = p;
3920 
3921 done:
3922 	NAPI_GRO_CB(p)->count++;
3923 	p->data_len += len;
3924 	p->truesize += delta_truesize;
3925 	p->len += len;
3926 	if (lp != p) {
3927 		lp->data_len += len;
3928 		lp->truesize += delta_truesize;
3929 		lp->len += len;
3930 	}
3931 	NAPI_GRO_CB(skb)->same_flow = 1;
3932 	return 0;
3933 }
3934 EXPORT_SYMBOL_GPL(skb_gro_receive);
3935 
3936 void __init skb_init(void)
3937 {
3938 	skbuff_head_cache = kmem_cache_create_usercopy("skbuff_head_cache",
3939 					      sizeof(struct sk_buff),
3940 					      0,
3941 					      SLAB_HWCACHE_ALIGN|SLAB_PANIC,
3942 					      offsetof(struct sk_buff, cb),
3943 					      sizeof_field(struct sk_buff, cb),
3944 					      NULL);
3945 	skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
3946 						sizeof(struct sk_buff_fclones),
3947 						0,
3948 						SLAB_HWCACHE_ALIGN|SLAB_PANIC,
3949 						NULL);
3950 }
3951 
3952 static int
3953 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len,
3954 	       unsigned int recursion_level)
3955 {
3956 	int start = skb_headlen(skb);
3957 	int i, copy = start - offset;
3958 	struct sk_buff *frag_iter;
3959 	int elt = 0;
3960 
3961 	if (unlikely(recursion_level >= 24))
3962 		return -EMSGSIZE;
3963 
3964 	if (copy > 0) {
3965 		if (copy > len)
3966 			copy = len;
3967 		sg_set_buf(sg, skb->data + offset, copy);
3968 		elt++;
3969 		if ((len -= copy) == 0)
3970 			return elt;
3971 		offset += copy;
3972 	}
3973 
3974 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3975 		int end;
3976 
3977 		WARN_ON(start > offset + len);
3978 
3979 		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
3980 		if ((copy = end - offset) > 0) {
3981 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3982 			if (unlikely(elt && sg_is_last(&sg[elt - 1])))
3983 				return -EMSGSIZE;
3984 
3985 			if (copy > len)
3986 				copy = len;
3987 			sg_set_page(&sg[elt], skb_frag_page(frag), copy,
3988 					frag->page_offset+offset-start);
3989 			elt++;
3990 			if (!(len -= copy))
3991 				return elt;
3992 			offset += copy;
3993 		}
3994 		start = end;
3995 	}
3996 
3997 	skb_walk_frags(skb, frag_iter) {
3998 		int end, ret;
3999 
4000 		WARN_ON(start > offset + len);
4001 
4002 		end = start + frag_iter->len;
4003 		if ((copy = end - offset) > 0) {
4004 			if (unlikely(elt && sg_is_last(&sg[elt - 1])))
4005 				return -EMSGSIZE;
4006 
4007 			if (copy > len)
4008 				copy = len;
4009 			ret = __skb_to_sgvec(frag_iter, sg+elt, offset - start,
4010 					      copy, recursion_level + 1);
4011 			if (unlikely(ret < 0))
4012 				return ret;
4013 			elt += ret;
4014 			if ((len -= copy) == 0)
4015 				return elt;
4016 			offset += copy;
4017 		}
4018 		start = end;
4019 	}
4020 	BUG_ON(len);
4021 	return elt;
4022 }
4023 
4024 /**
4025  *	skb_to_sgvec - Fill a scatter-gather list from a socket buffer
4026  *	@skb: Socket buffer containing the buffers to be mapped
4027  *	@sg: The scatter-gather list to map into
4028  *	@offset: The offset into the buffer's contents to start mapping
4029  *	@len: Length of buffer space to be mapped
4030  *
4031  *	Fill the specified scatter-gather list with mappings/pointers into a
4032  *	region of the buffer space attached to a socket buffer. Returns either
4033  *	the number of scatterlist items used, or -EMSGSIZE if the contents
4034  *	could not fit.
4035  */
4036 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
4037 {
4038 	int nsg = __skb_to_sgvec(skb, sg, offset, len, 0);
4039 
4040 	if (nsg <= 0)
4041 		return nsg;
4042 
4043 	sg_mark_end(&sg[nsg - 1]);
4044 
4045 	return nsg;
4046 }
4047 EXPORT_SYMBOL_GPL(skb_to_sgvec);
4048 
4049 /* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given
4050  * sglist without mark the sg which contain last skb data as the end.
4051  * So the caller can mannipulate sg list as will when padding new data after
4052  * the first call without calling sg_unmark_end to expend sg list.
4053  *
4054  * Scenario to use skb_to_sgvec_nomark:
4055  * 1. sg_init_table
4056  * 2. skb_to_sgvec_nomark(payload1)
4057  * 3. skb_to_sgvec_nomark(payload2)
4058  *
4059  * This is equivalent to:
4060  * 1. sg_init_table
4061  * 2. skb_to_sgvec(payload1)
4062  * 3. sg_unmark_end
4063  * 4. skb_to_sgvec(payload2)
4064  *
4065  * When mapping mutilple payload conditionally, skb_to_sgvec_nomark
4066  * is more preferable.
4067  */
4068 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
4069 			int offset, int len)
4070 {
4071 	return __skb_to_sgvec(skb, sg, offset, len, 0);
4072 }
4073 EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark);
4074 
4075 
4076 
4077 /**
4078  *	skb_cow_data - Check that a socket buffer's data buffers are writable
4079  *	@skb: The socket buffer to check.
4080  *	@tailbits: Amount of trailing space to be added
4081  *	@trailer: Returned pointer to the skb where the @tailbits space begins
4082  *
4083  *	Make sure that the data buffers attached to a socket buffer are
4084  *	writable. If they are not, private copies are made of the data buffers
4085  *	and the socket buffer is set to use these instead.
4086  *
4087  *	If @tailbits is given, make sure that there is space to write @tailbits
4088  *	bytes of data beyond current end of socket buffer.  @trailer will be
4089  *	set to point to the skb in which this space begins.
4090  *
4091  *	The number of scatterlist elements required to completely map the
4092  *	COW'd and extended socket buffer will be returned.
4093  */
4094 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
4095 {
4096 	int copyflag;
4097 	int elt;
4098 	struct sk_buff *skb1, **skb_p;
4099 
4100 	/* If skb is cloned or its head is paged, reallocate
4101 	 * head pulling out all the pages (pages are considered not writable
4102 	 * at the moment even if they are anonymous).
4103 	 */
4104 	if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
4105 	    __pskb_pull_tail(skb, skb_pagelen(skb)-skb_headlen(skb)) == NULL)
4106 		return -ENOMEM;
4107 
4108 	/* Easy case. Most of packets will go this way. */
4109 	if (!skb_has_frag_list(skb)) {
4110 		/* A little of trouble, not enough of space for trailer.
4111 		 * This should not happen, when stack is tuned to generate
4112 		 * good frames. OK, on miss we reallocate and reserve even more
4113 		 * space, 128 bytes is fair. */
4114 
4115 		if (skb_tailroom(skb) < tailbits &&
4116 		    pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
4117 			return -ENOMEM;
4118 
4119 		/* Voila! */
4120 		*trailer = skb;
4121 		return 1;
4122 	}
4123 
4124 	/* Misery. We are in troubles, going to mincer fragments... */
4125 
4126 	elt = 1;
4127 	skb_p = &skb_shinfo(skb)->frag_list;
4128 	copyflag = 0;
4129 
4130 	while ((skb1 = *skb_p) != NULL) {
4131 		int ntail = 0;
4132 
4133 		/* The fragment is partially pulled by someone,
4134 		 * this can happen on input. Copy it and everything
4135 		 * after it. */
4136 
4137 		if (skb_shared(skb1))
4138 			copyflag = 1;
4139 
4140 		/* If the skb is the last, worry about trailer. */
4141 
4142 		if (skb1->next == NULL && tailbits) {
4143 			if (skb_shinfo(skb1)->nr_frags ||
4144 			    skb_has_frag_list(skb1) ||
4145 			    skb_tailroom(skb1) < tailbits)
4146 				ntail = tailbits + 128;
4147 		}
4148 
4149 		if (copyflag ||
4150 		    skb_cloned(skb1) ||
4151 		    ntail ||
4152 		    skb_shinfo(skb1)->nr_frags ||
4153 		    skb_has_frag_list(skb1)) {
4154 			struct sk_buff *skb2;
4155 
4156 			/* Fuck, we are miserable poor guys... */
4157 			if (ntail == 0)
4158 				skb2 = skb_copy(skb1, GFP_ATOMIC);
4159 			else
4160 				skb2 = skb_copy_expand(skb1,
4161 						       skb_headroom(skb1),
4162 						       ntail,
4163 						       GFP_ATOMIC);
4164 			if (unlikely(skb2 == NULL))
4165 				return -ENOMEM;
4166 
4167 			if (skb1->sk)
4168 				skb_set_owner_w(skb2, skb1->sk);
4169 
4170 			/* Looking around. Are we still alive?
4171 			 * OK, link new skb, drop old one */
4172 
4173 			skb2->next = skb1->next;
4174 			*skb_p = skb2;
4175 			kfree_skb(skb1);
4176 			skb1 = skb2;
4177 		}
4178 		elt++;
4179 		*trailer = skb1;
4180 		skb_p = &skb1->next;
4181 	}
4182 
4183 	return elt;
4184 }
4185 EXPORT_SYMBOL_GPL(skb_cow_data);
4186 
4187 static void sock_rmem_free(struct sk_buff *skb)
4188 {
4189 	struct sock *sk = skb->sk;
4190 
4191 	atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
4192 }
4193 
4194 static void skb_set_err_queue(struct sk_buff *skb)
4195 {
4196 	/* pkt_type of skbs received on local sockets is never PACKET_OUTGOING.
4197 	 * So, it is safe to (mis)use it to mark skbs on the error queue.
4198 	 */
4199 	skb->pkt_type = PACKET_OUTGOING;
4200 	BUILD_BUG_ON(PACKET_OUTGOING == 0);
4201 }
4202 
4203 /*
4204  * Note: We dont mem charge error packets (no sk_forward_alloc changes)
4205  */
4206 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
4207 {
4208 	if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
4209 	    (unsigned int)sk->sk_rcvbuf)
4210 		return -ENOMEM;
4211 
4212 	skb_orphan(skb);
4213 	skb->sk = sk;
4214 	skb->destructor = sock_rmem_free;
4215 	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
4216 	skb_set_err_queue(skb);
4217 
4218 	/* before exiting rcu section, make sure dst is refcounted */
4219 	skb_dst_force(skb);
4220 
4221 	skb_queue_tail(&sk->sk_error_queue, skb);
4222 	if (!sock_flag(sk, SOCK_DEAD))
4223 		sk->sk_error_report(sk);
4224 	return 0;
4225 }
4226 EXPORT_SYMBOL(sock_queue_err_skb);
4227 
4228 static bool is_icmp_err_skb(const struct sk_buff *skb)
4229 {
4230 	return skb && (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP ||
4231 		       SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP6);
4232 }
4233 
4234 struct sk_buff *sock_dequeue_err_skb(struct sock *sk)
4235 {
4236 	struct sk_buff_head *q = &sk->sk_error_queue;
4237 	struct sk_buff *skb, *skb_next = NULL;
4238 	bool icmp_next = false;
4239 	unsigned long flags;
4240 
4241 	spin_lock_irqsave(&q->lock, flags);
4242 	skb = __skb_dequeue(q);
4243 	if (skb && (skb_next = skb_peek(q))) {
4244 		icmp_next = is_icmp_err_skb(skb_next);
4245 		if (icmp_next)
4246 			sk->sk_err = SKB_EXT_ERR(skb_next)->ee.ee_origin;
4247 	}
4248 	spin_unlock_irqrestore(&q->lock, flags);
4249 
4250 	if (is_icmp_err_skb(skb) && !icmp_next)
4251 		sk->sk_err = 0;
4252 
4253 	if (skb_next)
4254 		sk->sk_error_report(sk);
4255 
4256 	return skb;
4257 }
4258 EXPORT_SYMBOL(sock_dequeue_err_skb);
4259 
4260 /**
4261  * skb_clone_sk - create clone of skb, and take reference to socket
4262  * @skb: the skb to clone
4263  *
4264  * This function creates a clone of a buffer that holds a reference on
4265  * sk_refcnt.  Buffers created via this function are meant to be
4266  * returned using sock_queue_err_skb, or free via kfree_skb.
4267  *
4268  * When passing buffers allocated with this function to sock_queue_err_skb
4269  * it is necessary to wrap the call with sock_hold/sock_put in order to
4270  * prevent the socket from being released prior to being enqueued on
4271  * the sk_error_queue.
4272  */
4273 struct sk_buff *skb_clone_sk(struct sk_buff *skb)
4274 {
4275 	struct sock *sk = skb->sk;
4276 	struct sk_buff *clone;
4277 
4278 	if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt))
4279 		return NULL;
4280 
4281 	clone = skb_clone(skb, GFP_ATOMIC);
4282 	if (!clone) {
4283 		sock_put(sk);
4284 		return NULL;
4285 	}
4286 
4287 	clone->sk = sk;
4288 	clone->destructor = sock_efree;
4289 
4290 	return clone;
4291 }
4292 EXPORT_SYMBOL(skb_clone_sk);
4293 
4294 static void __skb_complete_tx_timestamp(struct sk_buff *skb,
4295 					struct sock *sk,
4296 					int tstype,
4297 					bool opt_stats)
4298 {
4299 	struct sock_exterr_skb *serr;
4300 	int err;
4301 
4302 	BUILD_BUG_ON(sizeof(struct sock_exterr_skb) > sizeof(skb->cb));
4303 
4304 	serr = SKB_EXT_ERR(skb);
4305 	memset(serr, 0, sizeof(*serr));
4306 	serr->ee.ee_errno = ENOMSG;
4307 	serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
4308 	serr->ee.ee_info = tstype;
4309 	serr->opt_stats = opt_stats;
4310 	serr->header.h4.iif = skb->dev ? skb->dev->ifindex : 0;
4311 	if (sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID) {
4312 		serr->ee.ee_data = skb_shinfo(skb)->tskey;
4313 		if (sk->sk_protocol == IPPROTO_TCP &&
4314 		    sk->sk_type == SOCK_STREAM)
4315 			serr->ee.ee_data -= sk->sk_tskey;
4316 	}
4317 
4318 	err = sock_queue_err_skb(sk, skb);
4319 
4320 	if (err)
4321 		kfree_skb(skb);
4322 }
4323 
4324 static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly)
4325 {
4326 	bool ret;
4327 
4328 	if (likely(sysctl_tstamp_allow_data || tsonly))
4329 		return true;
4330 
4331 	read_lock_bh(&sk->sk_callback_lock);
4332 	ret = sk->sk_socket && sk->sk_socket->file &&
4333 	      file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW);
4334 	read_unlock_bh(&sk->sk_callback_lock);
4335 	return ret;
4336 }
4337 
4338 void skb_complete_tx_timestamp(struct sk_buff *skb,
4339 			       struct skb_shared_hwtstamps *hwtstamps)
4340 {
4341 	struct sock *sk = skb->sk;
4342 
4343 	if (!skb_may_tx_timestamp(sk, false))
4344 		goto err;
4345 
4346 	/* Take a reference to prevent skb_orphan() from freeing the socket,
4347 	 * but only if the socket refcount is not zero.
4348 	 */
4349 	if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
4350 		*skb_hwtstamps(skb) = *hwtstamps;
4351 		__skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND, false);
4352 		sock_put(sk);
4353 		return;
4354 	}
4355 
4356 err:
4357 	kfree_skb(skb);
4358 }
4359 EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp);
4360 
4361 void __skb_tstamp_tx(struct sk_buff *orig_skb,
4362 		     struct skb_shared_hwtstamps *hwtstamps,
4363 		     struct sock *sk, int tstype)
4364 {
4365 	struct sk_buff *skb;
4366 	bool tsonly, opt_stats = false;
4367 
4368 	if (!sk)
4369 		return;
4370 
4371 	if (!hwtstamps && !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TX_SWHW) &&
4372 	    skb_shinfo(orig_skb)->tx_flags & SKBTX_IN_PROGRESS)
4373 		return;
4374 
4375 	tsonly = sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TSONLY;
4376 	if (!skb_may_tx_timestamp(sk, tsonly))
4377 		return;
4378 
4379 	if (tsonly) {
4380 #ifdef CONFIG_INET
4381 		if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_STATS) &&
4382 		    sk->sk_protocol == IPPROTO_TCP &&
4383 		    sk->sk_type == SOCK_STREAM) {
4384 			skb = tcp_get_timestamping_opt_stats(sk);
4385 			opt_stats = true;
4386 		} else
4387 #endif
4388 			skb = alloc_skb(0, GFP_ATOMIC);
4389 	} else {
4390 		skb = skb_clone(orig_skb, GFP_ATOMIC);
4391 	}
4392 	if (!skb)
4393 		return;
4394 
4395 	if (tsonly) {
4396 		skb_shinfo(skb)->tx_flags |= skb_shinfo(orig_skb)->tx_flags &
4397 					     SKBTX_ANY_TSTAMP;
4398 		skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey;
4399 	}
4400 
4401 	if (hwtstamps)
4402 		*skb_hwtstamps(skb) = *hwtstamps;
4403 	else
4404 		skb->tstamp = ktime_get_real();
4405 
4406 	__skb_complete_tx_timestamp(skb, sk, tstype, opt_stats);
4407 }
4408 EXPORT_SYMBOL_GPL(__skb_tstamp_tx);
4409 
4410 void skb_tstamp_tx(struct sk_buff *orig_skb,
4411 		   struct skb_shared_hwtstamps *hwtstamps)
4412 {
4413 	return __skb_tstamp_tx(orig_skb, hwtstamps, orig_skb->sk,
4414 			       SCM_TSTAMP_SND);
4415 }
4416 EXPORT_SYMBOL_GPL(skb_tstamp_tx);
4417 
4418 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked)
4419 {
4420 	struct sock *sk = skb->sk;
4421 	struct sock_exterr_skb *serr;
4422 	int err = 1;
4423 
4424 	skb->wifi_acked_valid = 1;
4425 	skb->wifi_acked = acked;
4426 
4427 	serr = SKB_EXT_ERR(skb);
4428 	memset(serr, 0, sizeof(*serr));
4429 	serr->ee.ee_errno = ENOMSG;
4430 	serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS;
4431 
4432 	/* Take a reference to prevent skb_orphan() from freeing the socket,
4433 	 * but only if the socket refcount is not zero.
4434 	 */
4435 	if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
4436 		err = sock_queue_err_skb(sk, skb);
4437 		sock_put(sk);
4438 	}
4439 	if (err)
4440 		kfree_skb(skb);
4441 }
4442 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack);
4443 
4444 /**
4445  * skb_partial_csum_set - set up and verify partial csum values for packet
4446  * @skb: the skb to set
4447  * @start: the number of bytes after skb->data to start checksumming.
4448  * @off: the offset from start to place the checksum.
4449  *
4450  * For untrusted partially-checksummed packets, we need to make sure the values
4451  * for skb->csum_start and skb->csum_offset are valid so we don't oops.
4452  *
4453  * This function checks and sets those values and skb->ip_summed: if this
4454  * returns false you should drop the packet.
4455  */
4456 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
4457 {
4458 	if (unlikely(start > skb_headlen(skb)) ||
4459 	    unlikely((int)start + off > skb_headlen(skb) - 2)) {
4460 		net_warn_ratelimited("bad partial csum: csum=%u/%u len=%u\n",
4461 				     start, off, skb_headlen(skb));
4462 		return false;
4463 	}
4464 	skb->ip_summed = CHECKSUM_PARTIAL;
4465 	skb->csum_start = skb_headroom(skb) + start;
4466 	skb->csum_offset = off;
4467 	skb_set_transport_header(skb, start);
4468 	return true;
4469 }
4470 EXPORT_SYMBOL_GPL(skb_partial_csum_set);
4471 
4472 static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len,
4473 			       unsigned int max)
4474 {
4475 	if (skb_headlen(skb) >= len)
4476 		return 0;
4477 
4478 	/* If we need to pullup then pullup to the max, so we
4479 	 * won't need to do it again.
4480 	 */
4481 	if (max > skb->len)
4482 		max = skb->len;
4483 
4484 	if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL)
4485 		return -ENOMEM;
4486 
4487 	if (skb_headlen(skb) < len)
4488 		return -EPROTO;
4489 
4490 	return 0;
4491 }
4492 
4493 #define MAX_TCP_HDR_LEN (15 * 4)
4494 
4495 static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb,
4496 				      typeof(IPPROTO_IP) proto,
4497 				      unsigned int off)
4498 {
4499 	switch (proto) {
4500 		int err;
4501 
4502 	case IPPROTO_TCP:
4503 		err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr),
4504 					  off + MAX_TCP_HDR_LEN);
4505 		if (!err && !skb_partial_csum_set(skb, off,
4506 						  offsetof(struct tcphdr,
4507 							   check)))
4508 			err = -EPROTO;
4509 		return err ? ERR_PTR(err) : &tcp_hdr(skb)->check;
4510 
4511 	case IPPROTO_UDP:
4512 		err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr),
4513 					  off + sizeof(struct udphdr));
4514 		if (!err && !skb_partial_csum_set(skb, off,
4515 						  offsetof(struct udphdr,
4516 							   check)))
4517 			err = -EPROTO;
4518 		return err ? ERR_PTR(err) : &udp_hdr(skb)->check;
4519 	}
4520 
4521 	return ERR_PTR(-EPROTO);
4522 }
4523 
4524 /* This value should be large enough to cover a tagged ethernet header plus
4525  * maximally sized IP and TCP or UDP headers.
4526  */
4527 #define MAX_IP_HDR_LEN 128
4528 
4529 static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate)
4530 {
4531 	unsigned int off;
4532 	bool fragment;
4533 	__sum16 *csum;
4534 	int err;
4535 
4536 	fragment = false;
4537 
4538 	err = skb_maybe_pull_tail(skb,
4539 				  sizeof(struct iphdr),
4540 				  MAX_IP_HDR_LEN);
4541 	if (err < 0)
4542 		goto out;
4543 
4544 	if (ip_hdr(skb)->frag_off & htons(IP_OFFSET | IP_MF))
4545 		fragment = true;
4546 
4547 	off = ip_hdrlen(skb);
4548 
4549 	err = -EPROTO;
4550 
4551 	if (fragment)
4552 		goto out;
4553 
4554 	csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off);
4555 	if (IS_ERR(csum))
4556 		return PTR_ERR(csum);
4557 
4558 	if (recalculate)
4559 		*csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
4560 					   ip_hdr(skb)->daddr,
4561 					   skb->len - off,
4562 					   ip_hdr(skb)->protocol, 0);
4563 	err = 0;
4564 
4565 out:
4566 	return err;
4567 }
4568 
4569 /* This value should be large enough to cover a tagged ethernet header plus
4570  * an IPv6 header, all options, and a maximal TCP or UDP header.
4571  */
4572 #define MAX_IPV6_HDR_LEN 256
4573 
4574 #define OPT_HDR(type, skb, off) \
4575 	(type *)(skb_network_header(skb) + (off))
4576 
4577 static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate)
4578 {
4579 	int err;
4580 	u8 nexthdr;
4581 	unsigned int off;
4582 	unsigned int len;
4583 	bool fragment;
4584 	bool done;
4585 	__sum16 *csum;
4586 
4587 	fragment = false;
4588 	done = false;
4589 
4590 	off = sizeof(struct ipv6hdr);
4591 
4592 	err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN);
4593 	if (err < 0)
4594 		goto out;
4595 
4596 	nexthdr = ipv6_hdr(skb)->nexthdr;
4597 
4598 	len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len);
4599 	while (off <= len && !done) {
4600 		switch (nexthdr) {
4601 		case IPPROTO_DSTOPTS:
4602 		case IPPROTO_HOPOPTS:
4603 		case IPPROTO_ROUTING: {
4604 			struct ipv6_opt_hdr *hp;
4605 
4606 			err = skb_maybe_pull_tail(skb,
4607 						  off +
4608 						  sizeof(struct ipv6_opt_hdr),
4609 						  MAX_IPV6_HDR_LEN);
4610 			if (err < 0)
4611 				goto out;
4612 
4613 			hp = OPT_HDR(struct ipv6_opt_hdr, skb, off);
4614 			nexthdr = hp->nexthdr;
4615 			off += ipv6_optlen(hp);
4616 			break;
4617 		}
4618 		case IPPROTO_AH: {
4619 			struct ip_auth_hdr *hp;
4620 
4621 			err = skb_maybe_pull_tail(skb,
4622 						  off +
4623 						  sizeof(struct ip_auth_hdr),
4624 						  MAX_IPV6_HDR_LEN);
4625 			if (err < 0)
4626 				goto out;
4627 
4628 			hp = OPT_HDR(struct ip_auth_hdr, skb, off);
4629 			nexthdr = hp->nexthdr;
4630 			off += ipv6_authlen(hp);
4631 			break;
4632 		}
4633 		case IPPROTO_FRAGMENT: {
4634 			struct frag_hdr *hp;
4635 
4636 			err = skb_maybe_pull_tail(skb,
4637 						  off +
4638 						  sizeof(struct frag_hdr),
4639 						  MAX_IPV6_HDR_LEN);
4640 			if (err < 0)
4641 				goto out;
4642 
4643 			hp = OPT_HDR(struct frag_hdr, skb, off);
4644 
4645 			if (hp->frag_off & htons(IP6_OFFSET | IP6_MF))
4646 				fragment = true;
4647 
4648 			nexthdr = hp->nexthdr;
4649 			off += sizeof(struct frag_hdr);
4650 			break;
4651 		}
4652 		default:
4653 			done = true;
4654 			break;
4655 		}
4656 	}
4657 
4658 	err = -EPROTO;
4659 
4660 	if (!done || fragment)
4661 		goto out;
4662 
4663 	csum = skb_checksum_setup_ip(skb, nexthdr, off);
4664 	if (IS_ERR(csum))
4665 		return PTR_ERR(csum);
4666 
4667 	if (recalculate)
4668 		*csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
4669 					 &ipv6_hdr(skb)->daddr,
4670 					 skb->len - off, nexthdr, 0);
4671 	err = 0;
4672 
4673 out:
4674 	return err;
4675 }
4676 
4677 /**
4678  * skb_checksum_setup - set up partial checksum offset
4679  * @skb: the skb to set up
4680  * @recalculate: if true the pseudo-header checksum will be recalculated
4681  */
4682 int skb_checksum_setup(struct sk_buff *skb, bool recalculate)
4683 {
4684 	int err;
4685 
4686 	switch (skb->protocol) {
4687 	case htons(ETH_P_IP):
4688 		err = skb_checksum_setup_ipv4(skb, recalculate);
4689 		break;
4690 
4691 	case htons(ETH_P_IPV6):
4692 		err = skb_checksum_setup_ipv6(skb, recalculate);
4693 		break;
4694 
4695 	default:
4696 		err = -EPROTO;
4697 		break;
4698 	}
4699 
4700 	return err;
4701 }
4702 EXPORT_SYMBOL(skb_checksum_setup);
4703 
4704 /**
4705  * skb_checksum_maybe_trim - maybe trims the given skb
4706  * @skb: the skb to check
4707  * @transport_len: the data length beyond the network header
4708  *
4709  * Checks whether the given skb has data beyond the given transport length.
4710  * If so, returns a cloned skb trimmed to this transport length.
4711  * Otherwise returns the provided skb. Returns NULL in error cases
4712  * (e.g. transport_len exceeds skb length or out-of-memory).
4713  *
4714  * Caller needs to set the skb transport header and free any returned skb if it
4715  * differs from the provided skb.
4716  */
4717 static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb,
4718 					       unsigned int transport_len)
4719 {
4720 	struct sk_buff *skb_chk;
4721 	unsigned int len = skb_transport_offset(skb) + transport_len;
4722 	int ret;
4723 
4724 	if (skb->len < len)
4725 		return NULL;
4726 	else if (skb->len == len)
4727 		return skb;
4728 
4729 	skb_chk = skb_clone(skb, GFP_ATOMIC);
4730 	if (!skb_chk)
4731 		return NULL;
4732 
4733 	ret = pskb_trim_rcsum(skb_chk, len);
4734 	if (ret) {
4735 		kfree_skb(skb_chk);
4736 		return NULL;
4737 	}
4738 
4739 	return skb_chk;
4740 }
4741 
4742 /**
4743  * skb_checksum_trimmed - validate checksum of an skb
4744  * @skb: the skb to check
4745  * @transport_len: the data length beyond the network header
4746  * @skb_chkf: checksum function to use
4747  *
4748  * Applies the given checksum function skb_chkf to the provided skb.
4749  * Returns a checked and maybe trimmed skb. Returns NULL on error.
4750  *
4751  * If the skb has data beyond the given transport length, then a
4752  * trimmed & cloned skb is checked and returned.
4753  *
4754  * Caller needs to set the skb transport header and free any returned skb if it
4755  * differs from the provided skb.
4756  */
4757 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
4758 				     unsigned int transport_len,
4759 				     __sum16(*skb_chkf)(struct sk_buff *skb))
4760 {
4761 	struct sk_buff *skb_chk;
4762 	unsigned int offset = skb_transport_offset(skb);
4763 	__sum16 ret;
4764 
4765 	skb_chk = skb_checksum_maybe_trim(skb, transport_len);
4766 	if (!skb_chk)
4767 		goto err;
4768 
4769 	if (!pskb_may_pull(skb_chk, offset))
4770 		goto err;
4771 
4772 	skb_pull_rcsum(skb_chk, offset);
4773 	ret = skb_chkf(skb_chk);
4774 	skb_push_rcsum(skb_chk, offset);
4775 
4776 	if (ret)
4777 		goto err;
4778 
4779 	return skb_chk;
4780 
4781 err:
4782 	if (skb_chk && skb_chk != skb)
4783 		kfree_skb(skb_chk);
4784 
4785 	return NULL;
4786 
4787 }
4788 EXPORT_SYMBOL(skb_checksum_trimmed);
4789 
4790 void __skb_warn_lro_forwarding(const struct sk_buff *skb)
4791 {
4792 	net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n",
4793 			     skb->dev->name);
4794 }
4795 EXPORT_SYMBOL(__skb_warn_lro_forwarding);
4796 
4797 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen)
4798 {
4799 	if (head_stolen) {
4800 		skb_release_head_state(skb);
4801 		kmem_cache_free(skbuff_head_cache, skb);
4802 	} else {
4803 		__kfree_skb(skb);
4804 	}
4805 }
4806 EXPORT_SYMBOL(kfree_skb_partial);
4807 
4808 /**
4809  * skb_try_coalesce - try to merge skb to prior one
4810  * @to: prior buffer
4811  * @from: buffer to add
4812  * @fragstolen: pointer to boolean
4813  * @delta_truesize: how much more was allocated than was requested
4814  */
4815 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
4816 		      bool *fragstolen, int *delta_truesize)
4817 {
4818 	struct skb_shared_info *to_shinfo, *from_shinfo;
4819 	int i, delta, len = from->len;
4820 
4821 	*fragstolen = false;
4822 
4823 	if (skb_cloned(to))
4824 		return false;
4825 
4826 	if (len <= skb_tailroom(to)) {
4827 		if (len)
4828 			BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len));
4829 		*delta_truesize = 0;
4830 		return true;
4831 	}
4832 
4833 	to_shinfo = skb_shinfo(to);
4834 	from_shinfo = skb_shinfo(from);
4835 	if (to_shinfo->frag_list || from_shinfo->frag_list)
4836 		return false;
4837 	if (skb_zcopy(to) || skb_zcopy(from))
4838 		return false;
4839 
4840 	if (skb_headlen(from) != 0) {
4841 		struct page *page;
4842 		unsigned int offset;
4843 
4844 		if (to_shinfo->nr_frags +
4845 		    from_shinfo->nr_frags >= MAX_SKB_FRAGS)
4846 			return false;
4847 
4848 		if (skb_head_is_locked(from))
4849 			return false;
4850 
4851 		delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
4852 
4853 		page = virt_to_head_page(from->head);
4854 		offset = from->data - (unsigned char *)page_address(page);
4855 
4856 		skb_fill_page_desc(to, to_shinfo->nr_frags,
4857 				   page, offset, skb_headlen(from));
4858 		*fragstolen = true;
4859 	} else {
4860 		if (to_shinfo->nr_frags +
4861 		    from_shinfo->nr_frags > MAX_SKB_FRAGS)
4862 			return false;
4863 
4864 		delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from));
4865 	}
4866 
4867 	WARN_ON_ONCE(delta < len);
4868 
4869 	memcpy(to_shinfo->frags + to_shinfo->nr_frags,
4870 	       from_shinfo->frags,
4871 	       from_shinfo->nr_frags * sizeof(skb_frag_t));
4872 	to_shinfo->nr_frags += from_shinfo->nr_frags;
4873 
4874 	if (!skb_cloned(from))
4875 		from_shinfo->nr_frags = 0;
4876 
4877 	/* if the skb is not cloned this does nothing
4878 	 * since we set nr_frags to 0.
4879 	 */
4880 	for (i = 0; i < from_shinfo->nr_frags; i++)
4881 		__skb_frag_ref(&from_shinfo->frags[i]);
4882 
4883 	to->truesize += delta;
4884 	to->len += len;
4885 	to->data_len += len;
4886 
4887 	*delta_truesize = delta;
4888 	return true;
4889 }
4890 EXPORT_SYMBOL(skb_try_coalesce);
4891 
4892 /**
4893  * skb_scrub_packet - scrub an skb
4894  *
4895  * @skb: buffer to clean
4896  * @xnet: packet is crossing netns
4897  *
4898  * skb_scrub_packet can be used after encapsulating or decapsulting a packet
4899  * into/from a tunnel. Some information have to be cleared during these
4900  * operations.
4901  * skb_scrub_packet can also be used to clean a skb before injecting it in
4902  * another namespace (@xnet == true). We have to clear all information in the
4903  * skb that could impact namespace isolation.
4904  */
4905 void skb_scrub_packet(struct sk_buff *skb, bool xnet)
4906 {
4907 	skb->pkt_type = PACKET_HOST;
4908 	skb->skb_iif = 0;
4909 	skb->ignore_df = 0;
4910 	skb_dst_drop(skb);
4911 	secpath_reset(skb);
4912 	nf_reset(skb);
4913 	nf_reset_trace(skb);
4914 
4915 	if (!xnet)
4916 		return;
4917 
4918 	ipvs_reset(skb);
4919 	skb->mark = 0;
4920 	skb->tstamp = 0;
4921 }
4922 EXPORT_SYMBOL_GPL(skb_scrub_packet);
4923 
4924 /**
4925  * skb_gso_transport_seglen - Return length of individual segments of a gso packet
4926  *
4927  * @skb: GSO skb
4928  *
4929  * skb_gso_transport_seglen is used to determine the real size of the
4930  * individual segments, including Layer4 headers (TCP/UDP).
4931  *
4932  * The MAC/L2 or network (IP, IPv6) headers are not accounted for.
4933  */
4934 static unsigned int skb_gso_transport_seglen(const struct sk_buff *skb)
4935 {
4936 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
4937 	unsigned int thlen = 0;
4938 
4939 	if (skb->encapsulation) {
4940 		thlen = skb_inner_transport_header(skb) -
4941 			skb_transport_header(skb);
4942 
4943 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
4944 			thlen += inner_tcp_hdrlen(skb);
4945 	} else if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
4946 		thlen = tcp_hdrlen(skb);
4947 	} else if (unlikely(skb_is_gso_sctp(skb))) {
4948 		thlen = sizeof(struct sctphdr);
4949 	} else if (shinfo->gso_type & SKB_GSO_UDP_L4) {
4950 		thlen = sizeof(struct udphdr);
4951 	}
4952 	/* UFO sets gso_size to the size of the fragmentation
4953 	 * payload, i.e. the size of the L4 (UDP) header is already
4954 	 * accounted for.
4955 	 */
4956 	return thlen + shinfo->gso_size;
4957 }
4958 
4959 /**
4960  * skb_gso_network_seglen - Return length of individual segments of a gso packet
4961  *
4962  * @skb: GSO skb
4963  *
4964  * skb_gso_network_seglen is used to determine the real size of the
4965  * individual segments, including Layer3 (IP, IPv6) and L4 headers (TCP/UDP).
4966  *
4967  * The MAC/L2 header is not accounted for.
4968  */
4969 static unsigned int skb_gso_network_seglen(const struct sk_buff *skb)
4970 {
4971 	unsigned int hdr_len = skb_transport_header(skb) -
4972 			       skb_network_header(skb);
4973 
4974 	return hdr_len + skb_gso_transport_seglen(skb);
4975 }
4976 
4977 /**
4978  * skb_gso_mac_seglen - Return length of individual segments of a gso packet
4979  *
4980  * @skb: GSO skb
4981  *
4982  * skb_gso_mac_seglen is used to determine the real size of the
4983  * individual segments, including MAC/L2, Layer3 (IP, IPv6) and L4
4984  * headers (TCP/UDP).
4985  */
4986 static unsigned int skb_gso_mac_seglen(const struct sk_buff *skb)
4987 {
4988 	unsigned int hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
4989 
4990 	return hdr_len + skb_gso_transport_seglen(skb);
4991 }
4992 
4993 /**
4994  * skb_gso_size_check - check the skb size, considering GSO_BY_FRAGS
4995  *
4996  * There are a couple of instances where we have a GSO skb, and we
4997  * want to determine what size it would be after it is segmented.
4998  *
4999  * We might want to check:
5000  * -    L3+L4+payload size (e.g. IP forwarding)
5001  * - L2+L3+L4+payload size (e.g. sanity check before passing to driver)
5002  *
5003  * This is a helper to do that correctly considering GSO_BY_FRAGS.
5004  *
5005  * @seg_len: The segmented length (from skb_gso_*_seglen). In the
5006  *           GSO_BY_FRAGS case this will be [header sizes + GSO_BY_FRAGS].
5007  *
5008  * @max_len: The maximum permissible length.
5009  *
5010  * Returns true if the segmented length <= max length.
5011  */
5012 static inline bool skb_gso_size_check(const struct sk_buff *skb,
5013 				      unsigned int seg_len,
5014 				      unsigned int max_len) {
5015 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
5016 	const struct sk_buff *iter;
5017 
5018 	if (shinfo->gso_size != GSO_BY_FRAGS)
5019 		return seg_len <= max_len;
5020 
5021 	/* Undo this so we can re-use header sizes */
5022 	seg_len -= GSO_BY_FRAGS;
5023 
5024 	skb_walk_frags(skb, iter) {
5025 		if (seg_len + skb_headlen(iter) > max_len)
5026 			return false;
5027 	}
5028 
5029 	return true;
5030 }
5031 
5032 /**
5033  * skb_gso_validate_network_len - Will a split GSO skb fit into a given MTU?
5034  *
5035  * @skb: GSO skb
5036  * @mtu: MTU to validate against
5037  *
5038  * skb_gso_validate_network_len validates if a given skb will fit a
5039  * wanted MTU once split. It considers L3 headers, L4 headers, and the
5040  * payload.
5041  */
5042 bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu)
5043 {
5044 	return skb_gso_size_check(skb, skb_gso_network_seglen(skb), mtu);
5045 }
5046 EXPORT_SYMBOL_GPL(skb_gso_validate_network_len);
5047 
5048 /**
5049  * skb_gso_validate_mac_len - Will a split GSO skb fit in a given length?
5050  *
5051  * @skb: GSO skb
5052  * @len: length to validate against
5053  *
5054  * skb_gso_validate_mac_len validates if a given skb will fit a wanted
5055  * length once split, including L2, L3 and L4 headers and the payload.
5056  */
5057 bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len)
5058 {
5059 	return skb_gso_size_check(skb, skb_gso_mac_seglen(skb), len);
5060 }
5061 EXPORT_SYMBOL_GPL(skb_gso_validate_mac_len);
5062 
5063 static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb)
5064 {
5065 	int mac_len;
5066 
5067 	if (skb_cow(skb, skb_headroom(skb)) < 0) {
5068 		kfree_skb(skb);
5069 		return NULL;
5070 	}
5071 
5072 	mac_len = skb->data - skb_mac_header(skb);
5073 	if (likely(mac_len > VLAN_HLEN + ETH_TLEN)) {
5074 		memmove(skb_mac_header(skb) + VLAN_HLEN, skb_mac_header(skb),
5075 			mac_len - VLAN_HLEN - ETH_TLEN);
5076 	}
5077 	skb->mac_header += VLAN_HLEN;
5078 	return skb;
5079 }
5080 
5081 struct sk_buff *skb_vlan_untag(struct sk_buff *skb)
5082 {
5083 	struct vlan_hdr *vhdr;
5084 	u16 vlan_tci;
5085 
5086 	if (unlikely(skb_vlan_tag_present(skb))) {
5087 		/* vlan_tci is already set-up so leave this for another time */
5088 		return skb;
5089 	}
5090 
5091 	skb = skb_share_check(skb, GFP_ATOMIC);
5092 	if (unlikely(!skb))
5093 		goto err_free;
5094 
5095 	if (unlikely(!pskb_may_pull(skb, VLAN_HLEN)))
5096 		goto err_free;
5097 
5098 	vhdr = (struct vlan_hdr *)skb->data;
5099 	vlan_tci = ntohs(vhdr->h_vlan_TCI);
5100 	__vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci);
5101 
5102 	skb_pull_rcsum(skb, VLAN_HLEN);
5103 	vlan_set_encap_proto(skb, vhdr);
5104 
5105 	skb = skb_reorder_vlan_header(skb);
5106 	if (unlikely(!skb))
5107 		goto err_free;
5108 
5109 	skb_reset_network_header(skb);
5110 	skb_reset_transport_header(skb);
5111 	skb_reset_mac_len(skb);
5112 
5113 	return skb;
5114 
5115 err_free:
5116 	kfree_skb(skb);
5117 	return NULL;
5118 }
5119 EXPORT_SYMBOL(skb_vlan_untag);
5120 
5121 int skb_ensure_writable(struct sk_buff *skb, int write_len)
5122 {
5123 	if (!pskb_may_pull(skb, write_len))
5124 		return -ENOMEM;
5125 
5126 	if (!skb_cloned(skb) || skb_clone_writable(skb, write_len))
5127 		return 0;
5128 
5129 	return pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
5130 }
5131 EXPORT_SYMBOL(skb_ensure_writable);
5132 
5133 /* remove VLAN header from packet and update csum accordingly.
5134  * expects a non skb_vlan_tag_present skb with a vlan tag payload
5135  */
5136 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci)
5137 {
5138 	struct vlan_hdr *vhdr;
5139 	int offset = skb->data - skb_mac_header(skb);
5140 	int err;
5141 
5142 	if (WARN_ONCE(offset,
5143 		      "__skb_vlan_pop got skb with skb->data not at mac header (offset %d)\n",
5144 		      offset)) {
5145 		return -EINVAL;
5146 	}
5147 
5148 	err = skb_ensure_writable(skb, VLAN_ETH_HLEN);
5149 	if (unlikely(err))
5150 		return err;
5151 
5152 	skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
5153 
5154 	vhdr = (struct vlan_hdr *)(skb->data + ETH_HLEN);
5155 	*vlan_tci = ntohs(vhdr->h_vlan_TCI);
5156 
5157 	memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN);
5158 	__skb_pull(skb, VLAN_HLEN);
5159 
5160 	vlan_set_encap_proto(skb, vhdr);
5161 	skb->mac_header += VLAN_HLEN;
5162 
5163 	if (skb_network_offset(skb) < ETH_HLEN)
5164 		skb_set_network_header(skb, ETH_HLEN);
5165 
5166 	skb_reset_mac_len(skb);
5167 
5168 	return err;
5169 }
5170 EXPORT_SYMBOL(__skb_vlan_pop);
5171 
5172 /* Pop a vlan tag either from hwaccel or from payload.
5173  * Expects skb->data at mac header.
5174  */
5175 int skb_vlan_pop(struct sk_buff *skb)
5176 {
5177 	u16 vlan_tci;
5178 	__be16 vlan_proto;
5179 	int err;
5180 
5181 	if (likely(skb_vlan_tag_present(skb))) {
5182 		skb->vlan_tci = 0;
5183 	} else {
5184 		if (unlikely(!eth_type_vlan(skb->protocol)))
5185 			return 0;
5186 
5187 		err = __skb_vlan_pop(skb, &vlan_tci);
5188 		if (err)
5189 			return err;
5190 	}
5191 	/* move next vlan tag to hw accel tag */
5192 	if (likely(!eth_type_vlan(skb->protocol)))
5193 		return 0;
5194 
5195 	vlan_proto = skb->protocol;
5196 	err = __skb_vlan_pop(skb, &vlan_tci);
5197 	if (unlikely(err))
5198 		return err;
5199 
5200 	__vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
5201 	return 0;
5202 }
5203 EXPORT_SYMBOL(skb_vlan_pop);
5204 
5205 /* Push a vlan tag either into hwaccel or into payload (if hwaccel tag present).
5206  * Expects skb->data at mac header.
5207  */
5208 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci)
5209 {
5210 	if (skb_vlan_tag_present(skb)) {
5211 		int offset = skb->data - skb_mac_header(skb);
5212 		int err;
5213 
5214 		if (WARN_ONCE(offset,
5215 			      "skb_vlan_push got skb with skb->data not at mac header (offset %d)\n",
5216 			      offset)) {
5217 			return -EINVAL;
5218 		}
5219 
5220 		err = __vlan_insert_tag(skb, skb->vlan_proto,
5221 					skb_vlan_tag_get(skb));
5222 		if (err)
5223 			return err;
5224 
5225 		skb->protocol = skb->vlan_proto;
5226 		skb->mac_len += VLAN_HLEN;
5227 
5228 		skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
5229 	}
5230 	__vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
5231 	return 0;
5232 }
5233 EXPORT_SYMBOL(skb_vlan_push);
5234 
5235 /**
5236  * alloc_skb_with_frags - allocate skb with page frags
5237  *
5238  * @header_len: size of linear part
5239  * @data_len: needed length in frags
5240  * @max_page_order: max page order desired.
5241  * @errcode: pointer to error code if any
5242  * @gfp_mask: allocation mask
5243  *
5244  * This can be used to allocate a paged skb, given a maximal order for frags.
5245  */
5246 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
5247 				     unsigned long data_len,
5248 				     int max_page_order,
5249 				     int *errcode,
5250 				     gfp_t gfp_mask)
5251 {
5252 	int npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
5253 	unsigned long chunk;
5254 	struct sk_buff *skb;
5255 	struct page *page;
5256 	gfp_t gfp_head;
5257 	int i;
5258 
5259 	*errcode = -EMSGSIZE;
5260 	/* Note this test could be relaxed, if we succeed to allocate
5261 	 * high order pages...
5262 	 */
5263 	if (npages > MAX_SKB_FRAGS)
5264 		return NULL;
5265 
5266 	gfp_head = gfp_mask;
5267 	if (gfp_head & __GFP_DIRECT_RECLAIM)
5268 		gfp_head |= __GFP_RETRY_MAYFAIL;
5269 
5270 	*errcode = -ENOBUFS;
5271 	skb = alloc_skb(header_len, gfp_head);
5272 	if (!skb)
5273 		return NULL;
5274 
5275 	skb->truesize += npages << PAGE_SHIFT;
5276 
5277 	for (i = 0; npages > 0; i++) {
5278 		int order = max_page_order;
5279 
5280 		while (order) {
5281 			if (npages >= 1 << order) {
5282 				page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) |
5283 						   __GFP_COMP |
5284 						   __GFP_NOWARN,
5285 						   order);
5286 				if (page)
5287 					goto fill_page;
5288 				/* Do not retry other high order allocations */
5289 				order = 1;
5290 				max_page_order = 0;
5291 			}
5292 			order--;
5293 		}
5294 		page = alloc_page(gfp_mask);
5295 		if (!page)
5296 			goto failure;
5297 fill_page:
5298 		chunk = min_t(unsigned long, data_len,
5299 			      PAGE_SIZE << order);
5300 		skb_fill_page_desc(skb, i, page, 0, chunk);
5301 		data_len -= chunk;
5302 		npages -= 1 << order;
5303 	}
5304 	return skb;
5305 
5306 failure:
5307 	kfree_skb(skb);
5308 	return NULL;
5309 }
5310 EXPORT_SYMBOL(alloc_skb_with_frags);
5311 
5312 /* carve out the first off bytes from skb when off < headlen */
5313 static int pskb_carve_inside_header(struct sk_buff *skb, const u32 off,
5314 				    const int headlen, gfp_t gfp_mask)
5315 {
5316 	int i;
5317 	int size = skb_end_offset(skb);
5318 	int new_hlen = headlen - off;
5319 	u8 *data;
5320 
5321 	size = SKB_DATA_ALIGN(size);
5322 
5323 	if (skb_pfmemalloc(skb))
5324 		gfp_mask |= __GFP_MEMALLOC;
5325 	data = kmalloc_reserve(size +
5326 			       SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
5327 			       gfp_mask, NUMA_NO_NODE, NULL);
5328 	if (!data)
5329 		return -ENOMEM;
5330 
5331 	size = SKB_WITH_OVERHEAD(ksize(data));
5332 
5333 	/* Copy real data, and all frags */
5334 	skb_copy_from_linear_data_offset(skb, off, data, new_hlen);
5335 	skb->len -= off;
5336 
5337 	memcpy((struct skb_shared_info *)(data + size),
5338 	       skb_shinfo(skb),
5339 	       offsetof(struct skb_shared_info,
5340 			frags[skb_shinfo(skb)->nr_frags]));
5341 	if (skb_cloned(skb)) {
5342 		/* drop the old head gracefully */
5343 		if (skb_orphan_frags(skb, gfp_mask)) {
5344 			kfree(data);
5345 			return -ENOMEM;
5346 		}
5347 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
5348 			skb_frag_ref(skb, i);
5349 		if (skb_has_frag_list(skb))
5350 			skb_clone_fraglist(skb);
5351 		skb_release_data(skb);
5352 	} else {
5353 		/* we can reuse existing recount- all we did was
5354 		 * relocate values
5355 		 */
5356 		skb_free_head(skb);
5357 	}
5358 
5359 	skb->head = data;
5360 	skb->data = data;
5361 	skb->head_frag = 0;
5362 #ifdef NET_SKBUFF_DATA_USES_OFFSET
5363 	skb->end = size;
5364 #else
5365 	skb->end = skb->head + size;
5366 #endif
5367 	skb_set_tail_pointer(skb, skb_headlen(skb));
5368 	skb_headers_offset_update(skb, 0);
5369 	skb->cloned = 0;
5370 	skb->hdr_len = 0;
5371 	skb->nohdr = 0;
5372 	atomic_set(&skb_shinfo(skb)->dataref, 1);
5373 
5374 	return 0;
5375 }
5376 
5377 static int pskb_carve(struct sk_buff *skb, const u32 off, gfp_t gfp);
5378 
5379 /* carve out the first eat bytes from skb's frag_list. May recurse into
5380  * pskb_carve()
5381  */
5382 static int pskb_carve_frag_list(struct sk_buff *skb,
5383 				struct skb_shared_info *shinfo, int eat,
5384 				gfp_t gfp_mask)
5385 {
5386 	struct sk_buff *list = shinfo->frag_list;
5387 	struct sk_buff *clone = NULL;
5388 	struct sk_buff *insp = NULL;
5389 
5390 	do {
5391 		if (!list) {
5392 			pr_err("Not enough bytes to eat. Want %d\n", eat);
5393 			return -EFAULT;
5394 		}
5395 		if (list->len <= eat) {
5396 			/* Eaten as whole. */
5397 			eat -= list->len;
5398 			list = list->next;
5399 			insp = list;
5400 		} else {
5401 			/* Eaten partially. */
5402 			if (skb_shared(list)) {
5403 				clone = skb_clone(list, gfp_mask);
5404 				if (!clone)
5405 					return -ENOMEM;
5406 				insp = list->next;
5407 				list = clone;
5408 			} else {
5409 				/* This may be pulled without problems. */
5410 				insp = list;
5411 			}
5412 			if (pskb_carve(list, eat, gfp_mask) < 0) {
5413 				kfree_skb(clone);
5414 				return -ENOMEM;
5415 			}
5416 			break;
5417 		}
5418 	} while (eat);
5419 
5420 	/* Free pulled out fragments. */
5421 	while ((list = shinfo->frag_list) != insp) {
5422 		shinfo->frag_list = list->next;
5423 		kfree_skb(list);
5424 	}
5425 	/* And insert new clone at head. */
5426 	if (clone) {
5427 		clone->next = list;
5428 		shinfo->frag_list = clone;
5429 	}
5430 	return 0;
5431 }
5432 
5433 /* carve off first len bytes from skb. Split line (off) is in the
5434  * non-linear part of skb
5435  */
5436 static int pskb_carve_inside_nonlinear(struct sk_buff *skb, const u32 off,
5437 				       int pos, gfp_t gfp_mask)
5438 {
5439 	int i, k = 0;
5440 	int size = skb_end_offset(skb);
5441 	u8 *data;
5442 	const int nfrags = skb_shinfo(skb)->nr_frags;
5443 	struct skb_shared_info *shinfo;
5444 
5445 	size = SKB_DATA_ALIGN(size);
5446 
5447 	if (skb_pfmemalloc(skb))
5448 		gfp_mask |= __GFP_MEMALLOC;
5449 	data = kmalloc_reserve(size +
5450 			       SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
5451 			       gfp_mask, NUMA_NO_NODE, NULL);
5452 	if (!data)
5453 		return -ENOMEM;
5454 
5455 	size = SKB_WITH_OVERHEAD(ksize(data));
5456 
5457 	memcpy((struct skb_shared_info *)(data + size),
5458 	       skb_shinfo(skb), offsetof(struct skb_shared_info,
5459 					 frags[skb_shinfo(skb)->nr_frags]));
5460 	if (skb_orphan_frags(skb, gfp_mask)) {
5461 		kfree(data);
5462 		return -ENOMEM;
5463 	}
5464 	shinfo = (struct skb_shared_info *)(data + size);
5465 	for (i = 0; i < nfrags; i++) {
5466 		int fsize = skb_frag_size(&skb_shinfo(skb)->frags[i]);
5467 
5468 		if (pos + fsize > off) {
5469 			shinfo->frags[k] = skb_shinfo(skb)->frags[i];
5470 
5471 			if (pos < off) {
5472 				/* Split frag.
5473 				 * We have two variants in this case:
5474 				 * 1. Move all the frag to the second
5475 				 *    part, if it is possible. F.e.
5476 				 *    this approach is mandatory for TUX,
5477 				 *    where splitting is expensive.
5478 				 * 2. Split is accurately. We make this.
5479 				 */
5480 				shinfo->frags[0].page_offset += off - pos;
5481 				skb_frag_size_sub(&shinfo->frags[0], off - pos);
5482 			}
5483 			skb_frag_ref(skb, i);
5484 			k++;
5485 		}
5486 		pos += fsize;
5487 	}
5488 	shinfo->nr_frags = k;
5489 	if (skb_has_frag_list(skb))
5490 		skb_clone_fraglist(skb);
5491 
5492 	if (k == 0) {
5493 		/* split line is in frag list */
5494 		pskb_carve_frag_list(skb, shinfo, off - pos, gfp_mask);
5495 	}
5496 	skb_release_data(skb);
5497 
5498 	skb->head = data;
5499 	skb->head_frag = 0;
5500 	skb->data = data;
5501 #ifdef NET_SKBUFF_DATA_USES_OFFSET
5502 	skb->end = size;
5503 #else
5504 	skb->end = skb->head + size;
5505 #endif
5506 	skb_reset_tail_pointer(skb);
5507 	skb_headers_offset_update(skb, 0);
5508 	skb->cloned   = 0;
5509 	skb->hdr_len  = 0;
5510 	skb->nohdr    = 0;
5511 	skb->len -= off;
5512 	skb->data_len = skb->len;
5513 	atomic_set(&skb_shinfo(skb)->dataref, 1);
5514 	return 0;
5515 }
5516 
5517 /* remove len bytes from the beginning of the skb */
5518 static int pskb_carve(struct sk_buff *skb, const u32 len, gfp_t gfp)
5519 {
5520 	int headlen = skb_headlen(skb);
5521 
5522 	if (len < headlen)
5523 		return pskb_carve_inside_header(skb, len, headlen, gfp);
5524 	else
5525 		return pskb_carve_inside_nonlinear(skb, len, headlen, gfp);
5526 }
5527 
5528 /* Extract to_copy bytes starting at off from skb, and return this in
5529  * a new skb
5530  */
5531 struct sk_buff *pskb_extract(struct sk_buff *skb, int off,
5532 			     int to_copy, gfp_t gfp)
5533 {
5534 	struct sk_buff  *clone = skb_clone(skb, gfp);
5535 
5536 	if (!clone)
5537 		return NULL;
5538 
5539 	if (pskb_carve(clone, off, gfp) < 0 ||
5540 	    pskb_trim(clone, to_copy)) {
5541 		kfree_skb(clone);
5542 		return NULL;
5543 	}
5544 	return clone;
5545 }
5546 EXPORT_SYMBOL(pskb_extract);
5547 
5548 /**
5549  * skb_condense - try to get rid of fragments/frag_list if possible
5550  * @skb: buffer
5551  *
5552  * Can be used to save memory before skb is added to a busy queue.
5553  * If packet has bytes in frags and enough tail room in skb->head,
5554  * pull all of them, so that we can free the frags right now and adjust
5555  * truesize.
5556  * Notes:
5557  *	We do not reallocate skb->head thus can not fail.
5558  *	Caller must re-evaluate skb->truesize if needed.
5559  */
5560 void skb_condense(struct sk_buff *skb)
5561 {
5562 	if (skb->data_len) {
5563 		if (skb->data_len > skb->end - skb->tail ||
5564 		    skb_cloned(skb))
5565 			return;
5566 
5567 		/* Nice, we can free page frag(s) right now */
5568 		__pskb_pull_tail(skb, skb->data_len);
5569 	}
5570 	/* At this point, skb->truesize might be over estimated,
5571 	 * because skb had a fragment, and fragments do not tell
5572 	 * their truesize.
5573 	 * When we pulled its content into skb->head, fragment
5574 	 * was freed, but __pskb_pull_tail() could not possibly
5575 	 * adjust skb->truesize, not knowing the frag truesize.
5576 	 */
5577 	skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
5578 }
5579