1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Routines having to do with the 'struct sk_buff' memory handlers. 4 * 5 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk> 6 * Florian La Roche <rzsfl@rz.uni-sb.de> 7 * 8 * Fixes: 9 * Alan Cox : Fixed the worst of the load 10 * balancer bugs. 11 * Dave Platt : Interrupt stacking fix. 12 * Richard Kooijman : Timestamp fixes. 13 * Alan Cox : Changed buffer format. 14 * Alan Cox : destructor hook for AF_UNIX etc. 15 * Linus Torvalds : Better skb_clone. 16 * Alan Cox : Added skb_copy. 17 * Alan Cox : Added all the changed routines Linus 18 * only put in the headers 19 * Ray VanTassle : Fixed --skb->lock in free 20 * Alan Cox : skb_copy copy arp field 21 * Andi Kleen : slabified it. 22 * Robert Olsson : Removed skb_head_pool 23 * 24 * NOTE: 25 * The __skb_ routines should be called with interrupts 26 * disabled, or you better be *real* sure that the operation is atomic 27 * with respect to whatever list is being frobbed (e.g. via lock_sock() 28 * or via disabling bottom half handlers, etc). 29 */ 30 31 /* 32 * The functions in this file will not compile correctly with gcc 2.4.x 33 */ 34 35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 36 37 #include <linux/module.h> 38 #include <linux/types.h> 39 #include <linux/kernel.h> 40 #include <linux/mm.h> 41 #include <linux/interrupt.h> 42 #include <linux/in.h> 43 #include <linux/inet.h> 44 #include <linux/slab.h> 45 #include <linux/tcp.h> 46 #include <linux/udp.h> 47 #include <linux/sctp.h> 48 #include <linux/netdevice.h> 49 #ifdef CONFIG_NET_CLS_ACT 50 #include <net/pkt_sched.h> 51 #endif 52 #include <linux/string.h> 53 #include <linux/skbuff.h> 54 #include <linux/splice.h> 55 #include <linux/cache.h> 56 #include <linux/rtnetlink.h> 57 #include <linux/init.h> 58 #include <linux/scatterlist.h> 59 #include <linux/errqueue.h> 60 #include <linux/prefetch.h> 61 #include <linux/if_vlan.h> 62 #include <linux/mpls.h> 63 64 #include <net/protocol.h> 65 #include <net/dst.h> 66 #include <net/sock.h> 67 #include <net/checksum.h> 68 #include <net/ip6_checksum.h> 69 #include <net/xfrm.h> 70 #include <net/mpls.h> 71 #include <net/mptcp.h> 72 73 #include <linux/uaccess.h> 74 #include <trace/events/skb.h> 75 #include <linux/highmem.h> 76 #include <linux/capability.h> 77 #include <linux/user_namespace.h> 78 #include <linux/indirect_call_wrapper.h> 79 80 #include "datagram.h" 81 82 struct kmem_cache *skbuff_head_cache __ro_after_init; 83 static struct kmem_cache *skbuff_fclone_cache __ro_after_init; 84 #ifdef CONFIG_SKB_EXTENSIONS 85 static struct kmem_cache *skbuff_ext_cache __ro_after_init; 86 #endif 87 int sysctl_max_skb_frags __read_mostly = MAX_SKB_FRAGS; 88 EXPORT_SYMBOL(sysctl_max_skb_frags); 89 90 /** 91 * skb_panic - private function for out-of-line support 92 * @skb: buffer 93 * @sz: size 94 * @addr: address 95 * @msg: skb_over_panic or skb_under_panic 96 * 97 * Out-of-line support for skb_put() and skb_push(). 98 * Called via the wrapper skb_over_panic() or skb_under_panic(). 99 * Keep out of line to prevent kernel bloat. 100 * __builtin_return_address is not used because it is not always reliable. 101 */ 102 static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr, 103 const char msg[]) 104 { 105 pr_emerg("%s: text:%px len:%d put:%d head:%px data:%px tail:%#lx end:%#lx dev:%s\n", 106 msg, addr, skb->len, sz, skb->head, skb->data, 107 (unsigned long)skb->tail, (unsigned long)skb->end, 108 skb->dev ? skb->dev->name : "<NULL>"); 109 BUG(); 110 } 111 112 static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr) 113 { 114 skb_panic(skb, sz, addr, __func__); 115 } 116 117 static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr) 118 { 119 skb_panic(skb, sz, addr, __func__); 120 } 121 122 /* 123 * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells 124 * the caller if emergency pfmemalloc reserves are being used. If it is and 125 * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves 126 * may be used. Otherwise, the packet data may be discarded until enough 127 * memory is free 128 */ 129 #define kmalloc_reserve(size, gfp, node, pfmemalloc) \ 130 __kmalloc_reserve(size, gfp, node, _RET_IP_, pfmemalloc) 131 132 static void *__kmalloc_reserve(size_t size, gfp_t flags, int node, 133 unsigned long ip, bool *pfmemalloc) 134 { 135 void *obj; 136 bool ret_pfmemalloc = false; 137 138 /* 139 * Try a regular allocation, when that fails and we're not entitled 140 * to the reserves, fail. 141 */ 142 obj = kmalloc_node_track_caller(size, 143 flags | __GFP_NOMEMALLOC | __GFP_NOWARN, 144 node); 145 if (obj || !(gfp_pfmemalloc_allowed(flags))) 146 goto out; 147 148 /* Try again but now we are using pfmemalloc reserves */ 149 ret_pfmemalloc = true; 150 obj = kmalloc_node_track_caller(size, flags, node); 151 152 out: 153 if (pfmemalloc) 154 *pfmemalloc = ret_pfmemalloc; 155 156 return obj; 157 } 158 159 /* Allocate a new skbuff. We do this ourselves so we can fill in a few 160 * 'private' fields and also do memory statistics to find all the 161 * [BEEP] leaks. 162 * 163 */ 164 165 /** 166 * __alloc_skb - allocate a network buffer 167 * @size: size to allocate 168 * @gfp_mask: allocation mask 169 * @flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache 170 * instead of head cache and allocate a cloned (child) skb. 171 * If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for 172 * allocations in case the data is required for writeback 173 * @node: numa node to allocate memory on 174 * 175 * Allocate a new &sk_buff. The returned buffer has no headroom and a 176 * tail room of at least size bytes. The object has a reference count 177 * of one. The return is the buffer. On a failure the return is %NULL. 178 * 179 * Buffers may only be allocated from interrupts using a @gfp_mask of 180 * %GFP_ATOMIC. 181 */ 182 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask, 183 int flags, int node) 184 { 185 struct kmem_cache *cache; 186 struct skb_shared_info *shinfo; 187 struct sk_buff *skb; 188 u8 *data; 189 bool pfmemalloc; 190 191 cache = (flags & SKB_ALLOC_FCLONE) 192 ? skbuff_fclone_cache : skbuff_head_cache; 193 194 if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX)) 195 gfp_mask |= __GFP_MEMALLOC; 196 197 /* Get the HEAD */ 198 skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node); 199 if (!skb) 200 goto out; 201 prefetchw(skb); 202 203 /* We do our best to align skb_shared_info on a separate cache 204 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives 205 * aligned memory blocks, unless SLUB/SLAB debug is enabled. 206 * Both skb->head and skb_shared_info are cache line aligned. 207 */ 208 size = SKB_DATA_ALIGN(size); 209 size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 210 data = kmalloc_reserve(size, gfp_mask, node, &pfmemalloc); 211 if (!data) 212 goto nodata; 213 /* kmalloc(size) might give us more room than requested. 214 * Put skb_shared_info exactly at the end of allocated zone, 215 * to allow max possible filling before reallocation. 216 */ 217 size = SKB_WITH_OVERHEAD(ksize(data)); 218 prefetchw(data + size); 219 220 /* 221 * Only clear those fields we need to clear, not those that we will 222 * actually initialise below. Hence, don't put any more fields after 223 * the tail pointer in struct sk_buff! 224 */ 225 memset(skb, 0, offsetof(struct sk_buff, tail)); 226 /* Account for allocated memory : skb + skb->head */ 227 skb->truesize = SKB_TRUESIZE(size); 228 skb->pfmemalloc = pfmemalloc; 229 refcount_set(&skb->users, 1); 230 skb->head = data; 231 skb->data = data; 232 skb_reset_tail_pointer(skb); 233 skb->end = skb->tail + size; 234 skb->mac_header = (typeof(skb->mac_header))~0U; 235 skb->transport_header = (typeof(skb->transport_header))~0U; 236 237 /* make sure we initialize shinfo sequentially */ 238 shinfo = skb_shinfo(skb); 239 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref)); 240 atomic_set(&shinfo->dataref, 1); 241 242 if (flags & SKB_ALLOC_FCLONE) { 243 struct sk_buff_fclones *fclones; 244 245 fclones = container_of(skb, struct sk_buff_fclones, skb1); 246 247 skb->fclone = SKB_FCLONE_ORIG; 248 refcount_set(&fclones->fclone_ref, 1); 249 250 fclones->skb2.fclone = SKB_FCLONE_CLONE; 251 } 252 253 skb_set_kcov_handle(skb, kcov_common_handle()); 254 255 out: 256 return skb; 257 nodata: 258 kmem_cache_free(cache, skb); 259 skb = NULL; 260 goto out; 261 } 262 EXPORT_SYMBOL(__alloc_skb); 263 264 /* Caller must provide SKB that is memset cleared */ 265 static struct sk_buff *__build_skb_around(struct sk_buff *skb, 266 void *data, unsigned int frag_size) 267 { 268 struct skb_shared_info *shinfo; 269 unsigned int size = frag_size ? : ksize(data); 270 271 size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 272 273 /* Assumes caller memset cleared SKB */ 274 skb->truesize = SKB_TRUESIZE(size); 275 refcount_set(&skb->users, 1); 276 skb->head = data; 277 skb->data = data; 278 skb_reset_tail_pointer(skb); 279 skb->end = skb->tail + size; 280 skb->mac_header = (typeof(skb->mac_header))~0U; 281 skb->transport_header = (typeof(skb->transport_header))~0U; 282 283 /* make sure we initialize shinfo sequentially */ 284 shinfo = skb_shinfo(skb); 285 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref)); 286 atomic_set(&shinfo->dataref, 1); 287 288 skb_set_kcov_handle(skb, kcov_common_handle()); 289 290 return skb; 291 } 292 293 /** 294 * __build_skb - build a network buffer 295 * @data: data buffer provided by caller 296 * @frag_size: size of data, or 0 if head was kmalloced 297 * 298 * Allocate a new &sk_buff. Caller provides space holding head and 299 * skb_shared_info. @data must have been allocated by kmalloc() only if 300 * @frag_size is 0, otherwise data should come from the page allocator 301 * or vmalloc() 302 * The return is the new skb buffer. 303 * On a failure the return is %NULL, and @data is not freed. 304 * Notes : 305 * Before IO, driver allocates only data buffer where NIC put incoming frame 306 * Driver should add room at head (NET_SKB_PAD) and 307 * MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info)) 308 * After IO, driver calls build_skb(), to allocate sk_buff and populate it 309 * before giving packet to stack. 310 * RX rings only contains data buffers, not full skbs. 311 */ 312 struct sk_buff *__build_skb(void *data, unsigned int frag_size) 313 { 314 struct sk_buff *skb; 315 316 skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC); 317 if (unlikely(!skb)) 318 return NULL; 319 320 memset(skb, 0, offsetof(struct sk_buff, tail)); 321 322 return __build_skb_around(skb, data, frag_size); 323 } 324 325 /* build_skb() is wrapper over __build_skb(), that specifically 326 * takes care of skb->head and skb->pfmemalloc 327 * This means that if @frag_size is not zero, then @data must be backed 328 * by a page fragment, not kmalloc() or vmalloc() 329 */ 330 struct sk_buff *build_skb(void *data, unsigned int frag_size) 331 { 332 struct sk_buff *skb = __build_skb(data, frag_size); 333 334 if (skb && frag_size) { 335 skb->head_frag = 1; 336 if (page_is_pfmemalloc(virt_to_head_page(data))) 337 skb->pfmemalloc = 1; 338 } 339 return skb; 340 } 341 EXPORT_SYMBOL(build_skb); 342 343 /** 344 * build_skb_around - build a network buffer around provided skb 345 * @skb: sk_buff provide by caller, must be memset cleared 346 * @data: data buffer provided by caller 347 * @frag_size: size of data, or 0 if head was kmalloced 348 */ 349 struct sk_buff *build_skb_around(struct sk_buff *skb, 350 void *data, unsigned int frag_size) 351 { 352 if (unlikely(!skb)) 353 return NULL; 354 355 skb = __build_skb_around(skb, data, frag_size); 356 357 if (skb && frag_size) { 358 skb->head_frag = 1; 359 if (page_is_pfmemalloc(virt_to_head_page(data))) 360 skb->pfmemalloc = 1; 361 } 362 return skb; 363 } 364 EXPORT_SYMBOL(build_skb_around); 365 366 #define NAPI_SKB_CACHE_SIZE 64 367 368 struct napi_alloc_cache { 369 struct page_frag_cache page; 370 unsigned int skb_count; 371 void *skb_cache[NAPI_SKB_CACHE_SIZE]; 372 }; 373 374 static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache); 375 static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache); 376 377 static void *__napi_alloc_frag(unsigned int fragsz, gfp_t gfp_mask) 378 { 379 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 380 381 return page_frag_alloc(&nc->page, fragsz, gfp_mask); 382 } 383 384 void *napi_alloc_frag(unsigned int fragsz) 385 { 386 fragsz = SKB_DATA_ALIGN(fragsz); 387 388 return __napi_alloc_frag(fragsz, GFP_ATOMIC); 389 } 390 EXPORT_SYMBOL(napi_alloc_frag); 391 392 /** 393 * netdev_alloc_frag - allocate a page fragment 394 * @fragsz: fragment size 395 * 396 * Allocates a frag from a page for receive buffer. 397 * Uses GFP_ATOMIC allocations. 398 */ 399 void *netdev_alloc_frag(unsigned int fragsz) 400 { 401 struct page_frag_cache *nc; 402 void *data; 403 404 fragsz = SKB_DATA_ALIGN(fragsz); 405 if (in_irq() || irqs_disabled()) { 406 nc = this_cpu_ptr(&netdev_alloc_cache); 407 data = page_frag_alloc(nc, fragsz, GFP_ATOMIC); 408 } else { 409 local_bh_disable(); 410 data = __napi_alloc_frag(fragsz, GFP_ATOMIC); 411 local_bh_enable(); 412 } 413 return data; 414 } 415 EXPORT_SYMBOL(netdev_alloc_frag); 416 417 /** 418 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device 419 * @dev: network device to receive on 420 * @len: length to allocate 421 * @gfp_mask: get_free_pages mask, passed to alloc_skb 422 * 423 * Allocate a new &sk_buff and assign it a usage count of one. The 424 * buffer has NET_SKB_PAD headroom built in. Users should allocate 425 * the headroom they think they need without accounting for the 426 * built in space. The built in space is used for optimisations. 427 * 428 * %NULL is returned if there is no free memory. 429 */ 430 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len, 431 gfp_t gfp_mask) 432 { 433 struct page_frag_cache *nc; 434 struct sk_buff *skb; 435 bool pfmemalloc; 436 void *data; 437 438 len += NET_SKB_PAD; 439 440 /* If requested length is either too small or too big, 441 * we use kmalloc() for skb->head allocation. 442 */ 443 if (len <= SKB_WITH_OVERHEAD(1024) || 444 len > SKB_WITH_OVERHEAD(PAGE_SIZE) || 445 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) { 446 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE); 447 if (!skb) 448 goto skb_fail; 449 goto skb_success; 450 } 451 452 len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 453 len = SKB_DATA_ALIGN(len); 454 455 if (sk_memalloc_socks()) 456 gfp_mask |= __GFP_MEMALLOC; 457 458 if (in_irq() || irqs_disabled()) { 459 nc = this_cpu_ptr(&netdev_alloc_cache); 460 data = page_frag_alloc(nc, len, gfp_mask); 461 pfmemalloc = nc->pfmemalloc; 462 } else { 463 local_bh_disable(); 464 nc = this_cpu_ptr(&napi_alloc_cache.page); 465 data = page_frag_alloc(nc, len, gfp_mask); 466 pfmemalloc = nc->pfmemalloc; 467 local_bh_enable(); 468 } 469 470 if (unlikely(!data)) 471 return NULL; 472 473 skb = __build_skb(data, len); 474 if (unlikely(!skb)) { 475 skb_free_frag(data); 476 return NULL; 477 } 478 479 if (pfmemalloc) 480 skb->pfmemalloc = 1; 481 skb->head_frag = 1; 482 483 skb_success: 484 skb_reserve(skb, NET_SKB_PAD); 485 skb->dev = dev; 486 487 skb_fail: 488 return skb; 489 } 490 EXPORT_SYMBOL(__netdev_alloc_skb); 491 492 /** 493 * __napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance 494 * @napi: napi instance this buffer was allocated for 495 * @len: length to allocate 496 * @gfp_mask: get_free_pages mask, passed to alloc_skb and alloc_pages 497 * 498 * Allocate a new sk_buff for use in NAPI receive. This buffer will 499 * attempt to allocate the head from a special reserved region used 500 * only for NAPI Rx allocation. By doing this we can save several 501 * CPU cycles by avoiding having to disable and re-enable IRQs. 502 * 503 * %NULL is returned if there is no free memory. 504 */ 505 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, unsigned int len, 506 gfp_t gfp_mask) 507 { 508 struct napi_alloc_cache *nc; 509 struct sk_buff *skb; 510 void *data; 511 512 len += NET_SKB_PAD + NET_IP_ALIGN; 513 514 /* If requested length is either too small or too big, 515 * we use kmalloc() for skb->head allocation. 516 */ 517 if (len <= SKB_WITH_OVERHEAD(1024) || 518 len > SKB_WITH_OVERHEAD(PAGE_SIZE) || 519 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) { 520 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE); 521 if (!skb) 522 goto skb_fail; 523 goto skb_success; 524 } 525 526 nc = this_cpu_ptr(&napi_alloc_cache); 527 len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 528 len = SKB_DATA_ALIGN(len); 529 530 if (sk_memalloc_socks()) 531 gfp_mask |= __GFP_MEMALLOC; 532 533 data = page_frag_alloc(&nc->page, len, gfp_mask); 534 if (unlikely(!data)) 535 return NULL; 536 537 skb = __build_skb(data, len); 538 if (unlikely(!skb)) { 539 skb_free_frag(data); 540 return NULL; 541 } 542 543 if (nc->page.pfmemalloc) 544 skb->pfmemalloc = 1; 545 skb->head_frag = 1; 546 547 skb_success: 548 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN); 549 skb->dev = napi->dev; 550 551 skb_fail: 552 return skb; 553 } 554 EXPORT_SYMBOL(__napi_alloc_skb); 555 556 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off, 557 int size, unsigned int truesize) 558 { 559 skb_fill_page_desc(skb, i, page, off, size); 560 skb->len += size; 561 skb->data_len += size; 562 skb->truesize += truesize; 563 } 564 EXPORT_SYMBOL(skb_add_rx_frag); 565 566 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size, 567 unsigned int truesize) 568 { 569 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 570 571 skb_frag_size_add(frag, size); 572 skb->len += size; 573 skb->data_len += size; 574 skb->truesize += truesize; 575 } 576 EXPORT_SYMBOL(skb_coalesce_rx_frag); 577 578 static void skb_drop_list(struct sk_buff **listp) 579 { 580 kfree_skb_list(*listp); 581 *listp = NULL; 582 } 583 584 static inline void skb_drop_fraglist(struct sk_buff *skb) 585 { 586 skb_drop_list(&skb_shinfo(skb)->frag_list); 587 } 588 589 static void skb_clone_fraglist(struct sk_buff *skb) 590 { 591 struct sk_buff *list; 592 593 skb_walk_frags(skb, list) 594 skb_get(list); 595 } 596 597 static void skb_free_head(struct sk_buff *skb) 598 { 599 unsigned char *head = skb->head; 600 601 if (skb->head_frag) 602 skb_free_frag(head); 603 else 604 kfree(head); 605 } 606 607 static void skb_release_data(struct sk_buff *skb) 608 { 609 struct skb_shared_info *shinfo = skb_shinfo(skb); 610 int i; 611 612 if (skb->cloned && 613 atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1, 614 &shinfo->dataref)) 615 return; 616 617 for (i = 0; i < shinfo->nr_frags; i++) 618 __skb_frag_unref(&shinfo->frags[i]); 619 620 if (shinfo->frag_list) 621 kfree_skb_list(shinfo->frag_list); 622 623 skb_zcopy_clear(skb, true); 624 skb_free_head(skb); 625 } 626 627 /* 628 * Free an skbuff by memory without cleaning the state. 629 */ 630 static void kfree_skbmem(struct sk_buff *skb) 631 { 632 struct sk_buff_fclones *fclones; 633 634 switch (skb->fclone) { 635 case SKB_FCLONE_UNAVAILABLE: 636 kmem_cache_free(skbuff_head_cache, skb); 637 return; 638 639 case SKB_FCLONE_ORIG: 640 fclones = container_of(skb, struct sk_buff_fclones, skb1); 641 642 /* We usually free the clone (TX completion) before original skb 643 * This test would have no chance to be true for the clone, 644 * while here, branch prediction will be good. 645 */ 646 if (refcount_read(&fclones->fclone_ref) == 1) 647 goto fastpath; 648 break; 649 650 default: /* SKB_FCLONE_CLONE */ 651 fclones = container_of(skb, struct sk_buff_fclones, skb2); 652 break; 653 } 654 if (!refcount_dec_and_test(&fclones->fclone_ref)) 655 return; 656 fastpath: 657 kmem_cache_free(skbuff_fclone_cache, fclones); 658 } 659 660 void skb_release_head_state(struct sk_buff *skb) 661 { 662 skb_dst_drop(skb); 663 if (skb->destructor) { 664 WARN_ON(in_irq()); 665 skb->destructor(skb); 666 } 667 #if IS_ENABLED(CONFIG_NF_CONNTRACK) 668 nf_conntrack_put(skb_nfct(skb)); 669 #endif 670 skb_ext_put(skb); 671 } 672 673 /* Free everything but the sk_buff shell. */ 674 static void skb_release_all(struct sk_buff *skb) 675 { 676 skb_release_head_state(skb); 677 if (likely(skb->head)) 678 skb_release_data(skb); 679 } 680 681 /** 682 * __kfree_skb - private function 683 * @skb: buffer 684 * 685 * Free an sk_buff. Release anything attached to the buffer. 686 * Clean the state. This is an internal helper function. Users should 687 * always call kfree_skb 688 */ 689 690 void __kfree_skb(struct sk_buff *skb) 691 { 692 skb_release_all(skb); 693 kfree_skbmem(skb); 694 } 695 EXPORT_SYMBOL(__kfree_skb); 696 697 /** 698 * kfree_skb - free an sk_buff 699 * @skb: buffer to free 700 * 701 * Drop a reference to the buffer and free it if the usage count has 702 * hit zero. 703 */ 704 void kfree_skb(struct sk_buff *skb) 705 { 706 if (!skb_unref(skb)) 707 return; 708 709 trace_kfree_skb(skb, __builtin_return_address(0)); 710 __kfree_skb(skb); 711 } 712 EXPORT_SYMBOL(kfree_skb); 713 714 void kfree_skb_list(struct sk_buff *segs) 715 { 716 while (segs) { 717 struct sk_buff *next = segs->next; 718 719 kfree_skb(segs); 720 segs = next; 721 } 722 } 723 EXPORT_SYMBOL(kfree_skb_list); 724 725 /* Dump skb information and contents. 726 * 727 * Must only be called from net_ratelimit()-ed paths. 728 * 729 * Dumps whole packets if full_pkt, only headers otherwise. 730 */ 731 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt) 732 { 733 struct skb_shared_info *sh = skb_shinfo(skb); 734 struct net_device *dev = skb->dev; 735 struct sock *sk = skb->sk; 736 struct sk_buff *list_skb; 737 bool has_mac, has_trans; 738 int headroom, tailroom; 739 int i, len, seg_len; 740 741 if (full_pkt) 742 len = skb->len; 743 else 744 len = min_t(int, skb->len, MAX_HEADER + 128); 745 746 headroom = skb_headroom(skb); 747 tailroom = skb_tailroom(skb); 748 749 has_mac = skb_mac_header_was_set(skb); 750 has_trans = skb_transport_header_was_set(skb); 751 752 printk("%sskb len=%u headroom=%u headlen=%u tailroom=%u\n" 753 "mac=(%d,%d) net=(%d,%d) trans=%d\n" 754 "shinfo(txflags=%u nr_frags=%u gso(size=%hu type=%u segs=%hu))\n" 755 "csum(0x%x ip_summed=%u complete_sw=%u valid=%u level=%u)\n" 756 "hash(0x%x sw=%u l4=%u) proto=0x%04x pkttype=%u iif=%d\n", 757 level, skb->len, headroom, skb_headlen(skb), tailroom, 758 has_mac ? skb->mac_header : -1, 759 has_mac ? skb_mac_header_len(skb) : -1, 760 skb->network_header, 761 has_trans ? skb_network_header_len(skb) : -1, 762 has_trans ? skb->transport_header : -1, 763 sh->tx_flags, sh->nr_frags, 764 sh->gso_size, sh->gso_type, sh->gso_segs, 765 skb->csum, skb->ip_summed, skb->csum_complete_sw, 766 skb->csum_valid, skb->csum_level, 767 skb->hash, skb->sw_hash, skb->l4_hash, 768 ntohs(skb->protocol), skb->pkt_type, skb->skb_iif); 769 770 if (dev) 771 printk("%sdev name=%s feat=0x%pNF\n", 772 level, dev->name, &dev->features); 773 if (sk) 774 printk("%ssk family=%hu type=%u proto=%u\n", 775 level, sk->sk_family, sk->sk_type, sk->sk_protocol); 776 777 if (full_pkt && headroom) 778 print_hex_dump(level, "skb headroom: ", DUMP_PREFIX_OFFSET, 779 16, 1, skb->head, headroom, false); 780 781 seg_len = min_t(int, skb_headlen(skb), len); 782 if (seg_len) 783 print_hex_dump(level, "skb linear: ", DUMP_PREFIX_OFFSET, 784 16, 1, skb->data, seg_len, false); 785 len -= seg_len; 786 787 if (full_pkt && tailroom) 788 print_hex_dump(level, "skb tailroom: ", DUMP_PREFIX_OFFSET, 789 16, 1, skb_tail_pointer(skb), tailroom, false); 790 791 for (i = 0; len && i < skb_shinfo(skb)->nr_frags; i++) { 792 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 793 u32 p_off, p_len, copied; 794 struct page *p; 795 u8 *vaddr; 796 797 skb_frag_foreach_page(frag, skb_frag_off(frag), 798 skb_frag_size(frag), p, p_off, p_len, 799 copied) { 800 seg_len = min_t(int, p_len, len); 801 vaddr = kmap_atomic(p); 802 print_hex_dump(level, "skb frag: ", 803 DUMP_PREFIX_OFFSET, 804 16, 1, vaddr + p_off, seg_len, false); 805 kunmap_atomic(vaddr); 806 len -= seg_len; 807 if (!len) 808 break; 809 } 810 } 811 812 if (full_pkt && skb_has_frag_list(skb)) { 813 printk("skb fraglist:\n"); 814 skb_walk_frags(skb, list_skb) 815 skb_dump(level, list_skb, true); 816 } 817 } 818 EXPORT_SYMBOL(skb_dump); 819 820 /** 821 * skb_tx_error - report an sk_buff xmit error 822 * @skb: buffer that triggered an error 823 * 824 * Report xmit error if a device callback is tracking this skb. 825 * skb must be freed afterwards. 826 */ 827 void skb_tx_error(struct sk_buff *skb) 828 { 829 skb_zcopy_clear(skb, true); 830 } 831 EXPORT_SYMBOL(skb_tx_error); 832 833 #ifdef CONFIG_TRACEPOINTS 834 /** 835 * consume_skb - free an skbuff 836 * @skb: buffer to free 837 * 838 * Drop a ref to the buffer and free it if the usage count has hit zero 839 * Functions identically to kfree_skb, but kfree_skb assumes that the frame 840 * is being dropped after a failure and notes that 841 */ 842 void consume_skb(struct sk_buff *skb) 843 { 844 if (!skb_unref(skb)) 845 return; 846 847 trace_consume_skb(skb); 848 __kfree_skb(skb); 849 } 850 EXPORT_SYMBOL(consume_skb); 851 #endif 852 853 /** 854 * __consume_stateless_skb - free an skbuff, assuming it is stateless 855 * @skb: buffer to free 856 * 857 * Alike consume_skb(), but this variant assumes that this is the last 858 * skb reference and all the head states have been already dropped 859 */ 860 void __consume_stateless_skb(struct sk_buff *skb) 861 { 862 trace_consume_skb(skb); 863 skb_release_data(skb); 864 kfree_skbmem(skb); 865 } 866 867 void __kfree_skb_flush(void) 868 { 869 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 870 871 /* flush skb_cache if containing objects */ 872 if (nc->skb_count) { 873 kmem_cache_free_bulk(skbuff_head_cache, nc->skb_count, 874 nc->skb_cache); 875 nc->skb_count = 0; 876 } 877 } 878 879 static inline void _kfree_skb_defer(struct sk_buff *skb) 880 { 881 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 882 883 /* drop skb->head and call any destructors for packet */ 884 skb_release_all(skb); 885 886 /* record skb to CPU local list */ 887 nc->skb_cache[nc->skb_count++] = skb; 888 889 #ifdef CONFIG_SLUB 890 /* SLUB writes into objects when freeing */ 891 prefetchw(skb); 892 #endif 893 894 /* flush skb_cache if it is filled */ 895 if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) { 896 kmem_cache_free_bulk(skbuff_head_cache, NAPI_SKB_CACHE_SIZE, 897 nc->skb_cache); 898 nc->skb_count = 0; 899 } 900 } 901 void __kfree_skb_defer(struct sk_buff *skb) 902 { 903 _kfree_skb_defer(skb); 904 } 905 906 void napi_consume_skb(struct sk_buff *skb, int budget) 907 { 908 /* Zero budget indicate non-NAPI context called us, like netpoll */ 909 if (unlikely(!budget)) { 910 dev_consume_skb_any(skb); 911 return; 912 } 913 914 lockdep_assert_in_softirq(); 915 916 if (!skb_unref(skb)) 917 return; 918 919 /* if reaching here SKB is ready to free */ 920 trace_consume_skb(skb); 921 922 /* if SKB is a clone, don't handle this case */ 923 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) { 924 __kfree_skb(skb); 925 return; 926 } 927 928 _kfree_skb_defer(skb); 929 } 930 EXPORT_SYMBOL(napi_consume_skb); 931 932 /* Make sure a field is enclosed inside headers_start/headers_end section */ 933 #define CHECK_SKB_FIELD(field) \ 934 BUILD_BUG_ON(offsetof(struct sk_buff, field) < \ 935 offsetof(struct sk_buff, headers_start)); \ 936 BUILD_BUG_ON(offsetof(struct sk_buff, field) > \ 937 offsetof(struct sk_buff, headers_end)); \ 938 939 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old) 940 { 941 new->tstamp = old->tstamp; 942 /* We do not copy old->sk */ 943 new->dev = old->dev; 944 memcpy(new->cb, old->cb, sizeof(old->cb)); 945 skb_dst_copy(new, old); 946 __skb_ext_copy(new, old); 947 __nf_copy(new, old, false); 948 949 /* Note : this field could be in headers_start/headers_end section 950 * It is not yet because we do not want to have a 16 bit hole 951 */ 952 new->queue_mapping = old->queue_mapping; 953 954 memcpy(&new->headers_start, &old->headers_start, 955 offsetof(struct sk_buff, headers_end) - 956 offsetof(struct sk_buff, headers_start)); 957 CHECK_SKB_FIELD(protocol); 958 CHECK_SKB_FIELD(csum); 959 CHECK_SKB_FIELD(hash); 960 CHECK_SKB_FIELD(priority); 961 CHECK_SKB_FIELD(skb_iif); 962 CHECK_SKB_FIELD(vlan_proto); 963 CHECK_SKB_FIELD(vlan_tci); 964 CHECK_SKB_FIELD(transport_header); 965 CHECK_SKB_FIELD(network_header); 966 CHECK_SKB_FIELD(mac_header); 967 CHECK_SKB_FIELD(inner_protocol); 968 CHECK_SKB_FIELD(inner_transport_header); 969 CHECK_SKB_FIELD(inner_network_header); 970 CHECK_SKB_FIELD(inner_mac_header); 971 CHECK_SKB_FIELD(mark); 972 #ifdef CONFIG_NETWORK_SECMARK 973 CHECK_SKB_FIELD(secmark); 974 #endif 975 #ifdef CONFIG_NET_RX_BUSY_POLL 976 CHECK_SKB_FIELD(napi_id); 977 #endif 978 #ifdef CONFIG_XPS 979 CHECK_SKB_FIELD(sender_cpu); 980 #endif 981 #ifdef CONFIG_NET_SCHED 982 CHECK_SKB_FIELD(tc_index); 983 #endif 984 985 } 986 987 /* 988 * You should not add any new code to this function. Add it to 989 * __copy_skb_header above instead. 990 */ 991 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb) 992 { 993 #define C(x) n->x = skb->x 994 995 n->next = n->prev = NULL; 996 n->sk = NULL; 997 __copy_skb_header(n, skb); 998 999 C(len); 1000 C(data_len); 1001 C(mac_len); 1002 n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len; 1003 n->cloned = 1; 1004 n->nohdr = 0; 1005 n->peeked = 0; 1006 C(pfmemalloc); 1007 n->destructor = NULL; 1008 C(tail); 1009 C(end); 1010 C(head); 1011 C(head_frag); 1012 C(data); 1013 C(truesize); 1014 refcount_set(&n->users, 1); 1015 1016 atomic_inc(&(skb_shinfo(skb)->dataref)); 1017 skb->cloned = 1; 1018 1019 return n; 1020 #undef C 1021 } 1022 1023 /** 1024 * alloc_skb_for_msg() - allocate sk_buff to wrap frag list forming a msg 1025 * @first: first sk_buff of the msg 1026 */ 1027 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first) 1028 { 1029 struct sk_buff *n; 1030 1031 n = alloc_skb(0, GFP_ATOMIC); 1032 if (!n) 1033 return NULL; 1034 1035 n->len = first->len; 1036 n->data_len = first->len; 1037 n->truesize = first->truesize; 1038 1039 skb_shinfo(n)->frag_list = first; 1040 1041 __copy_skb_header(n, first); 1042 n->destructor = NULL; 1043 1044 return n; 1045 } 1046 EXPORT_SYMBOL_GPL(alloc_skb_for_msg); 1047 1048 /** 1049 * skb_morph - morph one skb into another 1050 * @dst: the skb to receive the contents 1051 * @src: the skb to supply the contents 1052 * 1053 * This is identical to skb_clone except that the target skb is 1054 * supplied by the user. 1055 * 1056 * The target skb is returned upon exit. 1057 */ 1058 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src) 1059 { 1060 skb_release_all(dst); 1061 return __skb_clone(dst, src); 1062 } 1063 EXPORT_SYMBOL_GPL(skb_morph); 1064 1065 int mm_account_pinned_pages(struct mmpin *mmp, size_t size) 1066 { 1067 unsigned long max_pg, num_pg, new_pg, old_pg; 1068 struct user_struct *user; 1069 1070 if (capable(CAP_IPC_LOCK) || !size) 1071 return 0; 1072 1073 num_pg = (size >> PAGE_SHIFT) + 2; /* worst case */ 1074 max_pg = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT; 1075 user = mmp->user ? : current_user(); 1076 1077 do { 1078 old_pg = atomic_long_read(&user->locked_vm); 1079 new_pg = old_pg + num_pg; 1080 if (new_pg > max_pg) 1081 return -ENOBUFS; 1082 } while (atomic_long_cmpxchg(&user->locked_vm, old_pg, new_pg) != 1083 old_pg); 1084 1085 if (!mmp->user) { 1086 mmp->user = get_uid(user); 1087 mmp->num_pg = num_pg; 1088 } else { 1089 mmp->num_pg += num_pg; 1090 } 1091 1092 return 0; 1093 } 1094 EXPORT_SYMBOL_GPL(mm_account_pinned_pages); 1095 1096 void mm_unaccount_pinned_pages(struct mmpin *mmp) 1097 { 1098 if (mmp->user) { 1099 atomic_long_sub(mmp->num_pg, &mmp->user->locked_vm); 1100 free_uid(mmp->user); 1101 } 1102 } 1103 EXPORT_SYMBOL_GPL(mm_unaccount_pinned_pages); 1104 1105 struct ubuf_info *sock_zerocopy_alloc(struct sock *sk, size_t size) 1106 { 1107 struct ubuf_info *uarg; 1108 struct sk_buff *skb; 1109 1110 WARN_ON_ONCE(!in_task()); 1111 1112 skb = sock_omalloc(sk, 0, GFP_KERNEL); 1113 if (!skb) 1114 return NULL; 1115 1116 BUILD_BUG_ON(sizeof(*uarg) > sizeof(skb->cb)); 1117 uarg = (void *)skb->cb; 1118 uarg->mmp.user = NULL; 1119 1120 if (mm_account_pinned_pages(&uarg->mmp, size)) { 1121 kfree_skb(skb); 1122 return NULL; 1123 } 1124 1125 uarg->callback = sock_zerocopy_callback; 1126 uarg->id = ((u32)atomic_inc_return(&sk->sk_zckey)) - 1; 1127 uarg->len = 1; 1128 uarg->bytelen = size; 1129 uarg->zerocopy = 1; 1130 refcount_set(&uarg->refcnt, 1); 1131 sock_hold(sk); 1132 1133 return uarg; 1134 } 1135 EXPORT_SYMBOL_GPL(sock_zerocopy_alloc); 1136 1137 static inline struct sk_buff *skb_from_uarg(struct ubuf_info *uarg) 1138 { 1139 return container_of((void *)uarg, struct sk_buff, cb); 1140 } 1141 1142 struct ubuf_info *sock_zerocopy_realloc(struct sock *sk, size_t size, 1143 struct ubuf_info *uarg) 1144 { 1145 if (uarg) { 1146 const u32 byte_limit = 1 << 19; /* limit to a few TSO */ 1147 u32 bytelen, next; 1148 1149 /* realloc only when socket is locked (TCP, UDP cork), 1150 * so uarg->len and sk_zckey access is serialized 1151 */ 1152 if (!sock_owned_by_user(sk)) { 1153 WARN_ON_ONCE(1); 1154 return NULL; 1155 } 1156 1157 bytelen = uarg->bytelen + size; 1158 if (uarg->len == USHRT_MAX - 1 || bytelen > byte_limit) { 1159 /* TCP can create new skb to attach new uarg */ 1160 if (sk->sk_type == SOCK_STREAM) 1161 goto new_alloc; 1162 return NULL; 1163 } 1164 1165 next = (u32)atomic_read(&sk->sk_zckey); 1166 if ((u32)(uarg->id + uarg->len) == next) { 1167 if (mm_account_pinned_pages(&uarg->mmp, size)) 1168 return NULL; 1169 uarg->len++; 1170 uarg->bytelen = bytelen; 1171 atomic_set(&sk->sk_zckey, ++next); 1172 1173 /* no extra ref when appending to datagram (MSG_MORE) */ 1174 if (sk->sk_type == SOCK_STREAM) 1175 sock_zerocopy_get(uarg); 1176 1177 return uarg; 1178 } 1179 } 1180 1181 new_alloc: 1182 return sock_zerocopy_alloc(sk, size); 1183 } 1184 EXPORT_SYMBOL_GPL(sock_zerocopy_realloc); 1185 1186 static bool skb_zerocopy_notify_extend(struct sk_buff *skb, u32 lo, u16 len) 1187 { 1188 struct sock_exterr_skb *serr = SKB_EXT_ERR(skb); 1189 u32 old_lo, old_hi; 1190 u64 sum_len; 1191 1192 old_lo = serr->ee.ee_info; 1193 old_hi = serr->ee.ee_data; 1194 sum_len = old_hi - old_lo + 1ULL + len; 1195 1196 if (sum_len >= (1ULL << 32)) 1197 return false; 1198 1199 if (lo != old_hi + 1) 1200 return false; 1201 1202 serr->ee.ee_data += len; 1203 return true; 1204 } 1205 1206 void sock_zerocopy_callback(struct ubuf_info *uarg, bool success) 1207 { 1208 struct sk_buff *tail, *skb = skb_from_uarg(uarg); 1209 struct sock_exterr_skb *serr; 1210 struct sock *sk = skb->sk; 1211 struct sk_buff_head *q; 1212 unsigned long flags; 1213 u32 lo, hi; 1214 u16 len; 1215 1216 mm_unaccount_pinned_pages(&uarg->mmp); 1217 1218 /* if !len, there was only 1 call, and it was aborted 1219 * so do not queue a completion notification 1220 */ 1221 if (!uarg->len || sock_flag(sk, SOCK_DEAD)) 1222 goto release; 1223 1224 len = uarg->len; 1225 lo = uarg->id; 1226 hi = uarg->id + len - 1; 1227 1228 serr = SKB_EXT_ERR(skb); 1229 memset(serr, 0, sizeof(*serr)); 1230 serr->ee.ee_errno = 0; 1231 serr->ee.ee_origin = SO_EE_ORIGIN_ZEROCOPY; 1232 serr->ee.ee_data = hi; 1233 serr->ee.ee_info = lo; 1234 if (!success) 1235 serr->ee.ee_code |= SO_EE_CODE_ZEROCOPY_COPIED; 1236 1237 q = &sk->sk_error_queue; 1238 spin_lock_irqsave(&q->lock, flags); 1239 tail = skb_peek_tail(q); 1240 if (!tail || SKB_EXT_ERR(tail)->ee.ee_origin != SO_EE_ORIGIN_ZEROCOPY || 1241 !skb_zerocopy_notify_extend(tail, lo, len)) { 1242 __skb_queue_tail(q, skb); 1243 skb = NULL; 1244 } 1245 spin_unlock_irqrestore(&q->lock, flags); 1246 1247 sk->sk_error_report(sk); 1248 1249 release: 1250 consume_skb(skb); 1251 sock_put(sk); 1252 } 1253 EXPORT_SYMBOL_GPL(sock_zerocopy_callback); 1254 1255 void sock_zerocopy_put(struct ubuf_info *uarg) 1256 { 1257 if (uarg && refcount_dec_and_test(&uarg->refcnt)) { 1258 if (uarg->callback) 1259 uarg->callback(uarg, uarg->zerocopy); 1260 else 1261 consume_skb(skb_from_uarg(uarg)); 1262 } 1263 } 1264 EXPORT_SYMBOL_GPL(sock_zerocopy_put); 1265 1266 void sock_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref) 1267 { 1268 if (uarg) { 1269 struct sock *sk = skb_from_uarg(uarg)->sk; 1270 1271 atomic_dec(&sk->sk_zckey); 1272 uarg->len--; 1273 1274 if (have_uref) 1275 sock_zerocopy_put(uarg); 1276 } 1277 } 1278 EXPORT_SYMBOL_GPL(sock_zerocopy_put_abort); 1279 1280 int skb_zerocopy_iter_dgram(struct sk_buff *skb, struct msghdr *msg, int len) 1281 { 1282 return __zerocopy_sg_from_iter(skb->sk, skb, &msg->msg_iter, len); 1283 } 1284 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_dgram); 1285 1286 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb, 1287 struct msghdr *msg, int len, 1288 struct ubuf_info *uarg) 1289 { 1290 struct ubuf_info *orig_uarg = skb_zcopy(skb); 1291 struct iov_iter orig_iter = msg->msg_iter; 1292 int err, orig_len = skb->len; 1293 1294 /* An skb can only point to one uarg. This edge case happens when 1295 * TCP appends to an skb, but zerocopy_realloc triggered a new alloc. 1296 */ 1297 if (orig_uarg && uarg != orig_uarg) 1298 return -EEXIST; 1299 1300 err = __zerocopy_sg_from_iter(sk, skb, &msg->msg_iter, len); 1301 if (err == -EFAULT || (err == -EMSGSIZE && skb->len == orig_len)) { 1302 struct sock *save_sk = skb->sk; 1303 1304 /* Streams do not free skb on error. Reset to prev state. */ 1305 msg->msg_iter = orig_iter; 1306 skb->sk = sk; 1307 ___pskb_trim(skb, orig_len); 1308 skb->sk = save_sk; 1309 return err; 1310 } 1311 1312 skb_zcopy_set(skb, uarg, NULL); 1313 return skb->len - orig_len; 1314 } 1315 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_stream); 1316 1317 static int skb_zerocopy_clone(struct sk_buff *nskb, struct sk_buff *orig, 1318 gfp_t gfp_mask) 1319 { 1320 if (skb_zcopy(orig)) { 1321 if (skb_zcopy(nskb)) { 1322 /* !gfp_mask callers are verified to !skb_zcopy(nskb) */ 1323 if (!gfp_mask) { 1324 WARN_ON_ONCE(1); 1325 return -ENOMEM; 1326 } 1327 if (skb_uarg(nskb) == skb_uarg(orig)) 1328 return 0; 1329 if (skb_copy_ubufs(nskb, GFP_ATOMIC)) 1330 return -EIO; 1331 } 1332 skb_zcopy_set(nskb, skb_uarg(orig), NULL); 1333 } 1334 return 0; 1335 } 1336 1337 /** 1338 * skb_copy_ubufs - copy userspace skb frags buffers to kernel 1339 * @skb: the skb to modify 1340 * @gfp_mask: allocation priority 1341 * 1342 * This must be called on SKBTX_DEV_ZEROCOPY skb. 1343 * It will copy all frags into kernel and drop the reference 1344 * to userspace pages. 1345 * 1346 * If this function is called from an interrupt gfp_mask() must be 1347 * %GFP_ATOMIC. 1348 * 1349 * Returns 0 on success or a negative error code on failure 1350 * to allocate kernel memory to copy to. 1351 */ 1352 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask) 1353 { 1354 int num_frags = skb_shinfo(skb)->nr_frags; 1355 struct page *page, *head = NULL; 1356 int i, new_frags; 1357 u32 d_off; 1358 1359 if (skb_shared(skb) || skb_unclone(skb, gfp_mask)) 1360 return -EINVAL; 1361 1362 if (!num_frags) 1363 goto release; 1364 1365 new_frags = (__skb_pagelen(skb) + PAGE_SIZE - 1) >> PAGE_SHIFT; 1366 for (i = 0; i < new_frags; i++) { 1367 page = alloc_page(gfp_mask); 1368 if (!page) { 1369 while (head) { 1370 struct page *next = (struct page *)page_private(head); 1371 put_page(head); 1372 head = next; 1373 } 1374 return -ENOMEM; 1375 } 1376 set_page_private(page, (unsigned long)head); 1377 head = page; 1378 } 1379 1380 page = head; 1381 d_off = 0; 1382 for (i = 0; i < num_frags; i++) { 1383 skb_frag_t *f = &skb_shinfo(skb)->frags[i]; 1384 u32 p_off, p_len, copied; 1385 struct page *p; 1386 u8 *vaddr; 1387 1388 skb_frag_foreach_page(f, skb_frag_off(f), skb_frag_size(f), 1389 p, p_off, p_len, copied) { 1390 u32 copy, done = 0; 1391 vaddr = kmap_atomic(p); 1392 1393 while (done < p_len) { 1394 if (d_off == PAGE_SIZE) { 1395 d_off = 0; 1396 page = (struct page *)page_private(page); 1397 } 1398 copy = min_t(u32, PAGE_SIZE - d_off, p_len - done); 1399 memcpy(page_address(page) + d_off, 1400 vaddr + p_off + done, copy); 1401 done += copy; 1402 d_off += copy; 1403 } 1404 kunmap_atomic(vaddr); 1405 } 1406 } 1407 1408 /* skb frags release userspace buffers */ 1409 for (i = 0; i < num_frags; i++) 1410 skb_frag_unref(skb, i); 1411 1412 /* skb frags point to kernel buffers */ 1413 for (i = 0; i < new_frags - 1; i++) { 1414 __skb_fill_page_desc(skb, i, head, 0, PAGE_SIZE); 1415 head = (struct page *)page_private(head); 1416 } 1417 __skb_fill_page_desc(skb, new_frags - 1, head, 0, d_off); 1418 skb_shinfo(skb)->nr_frags = new_frags; 1419 1420 release: 1421 skb_zcopy_clear(skb, false); 1422 return 0; 1423 } 1424 EXPORT_SYMBOL_GPL(skb_copy_ubufs); 1425 1426 /** 1427 * skb_clone - duplicate an sk_buff 1428 * @skb: buffer to clone 1429 * @gfp_mask: allocation priority 1430 * 1431 * Duplicate an &sk_buff. The new one is not owned by a socket. Both 1432 * copies share the same packet data but not structure. The new 1433 * buffer has a reference count of 1. If the allocation fails the 1434 * function returns %NULL otherwise the new buffer is returned. 1435 * 1436 * If this function is called from an interrupt gfp_mask() must be 1437 * %GFP_ATOMIC. 1438 */ 1439 1440 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask) 1441 { 1442 struct sk_buff_fclones *fclones = container_of(skb, 1443 struct sk_buff_fclones, 1444 skb1); 1445 struct sk_buff *n; 1446 1447 if (skb_orphan_frags(skb, gfp_mask)) 1448 return NULL; 1449 1450 if (skb->fclone == SKB_FCLONE_ORIG && 1451 refcount_read(&fclones->fclone_ref) == 1) { 1452 n = &fclones->skb2; 1453 refcount_set(&fclones->fclone_ref, 2); 1454 } else { 1455 if (skb_pfmemalloc(skb)) 1456 gfp_mask |= __GFP_MEMALLOC; 1457 1458 n = kmem_cache_alloc(skbuff_head_cache, gfp_mask); 1459 if (!n) 1460 return NULL; 1461 1462 n->fclone = SKB_FCLONE_UNAVAILABLE; 1463 } 1464 1465 return __skb_clone(n, skb); 1466 } 1467 EXPORT_SYMBOL(skb_clone); 1468 1469 void skb_headers_offset_update(struct sk_buff *skb, int off) 1470 { 1471 /* Only adjust this if it actually is csum_start rather than csum */ 1472 if (skb->ip_summed == CHECKSUM_PARTIAL) 1473 skb->csum_start += off; 1474 /* {transport,network,mac}_header and tail are relative to skb->head */ 1475 skb->transport_header += off; 1476 skb->network_header += off; 1477 if (skb_mac_header_was_set(skb)) 1478 skb->mac_header += off; 1479 skb->inner_transport_header += off; 1480 skb->inner_network_header += off; 1481 skb->inner_mac_header += off; 1482 } 1483 EXPORT_SYMBOL(skb_headers_offset_update); 1484 1485 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old) 1486 { 1487 __copy_skb_header(new, old); 1488 1489 skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size; 1490 skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs; 1491 skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type; 1492 } 1493 EXPORT_SYMBOL(skb_copy_header); 1494 1495 static inline int skb_alloc_rx_flag(const struct sk_buff *skb) 1496 { 1497 if (skb_pfmemalloc(skb)) 1498 return SKB_ALLOC_RX; 1499 return 0; 1500 } 1501 1502 /** 1503 * skb_copy - create private copy of an sk_buff 1504 * @skb: buffer to copy 1505 * @gfp_mask: allocation priority 1506 * 1507 * Make a copy of both an &sk_buff and its data. This is used when the 1508 * caller wishes to modify the data and needs a private copy of the 1509 * data to alter. Returns %NULL on failure or the pointer to the buffer 1510 * on success. The returned buffer has a reference count of 1. 1511 * 1512 * As by-product this function converts non-linear &sk_buff to linear 1513 * one, so that &sk_buff becomes completely private and caller is allowed 1514 * to modify all the data of returned buffer. This means that this 1515 * function is not recommended for use in circumstances when only 1516 * header is going to be modified. Use pskb_copy() instead. 1517 */ 1518 1519 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask) 1520 { 1521 int headerlen = skb_headroom(skb); 1522 unsigned int size = skb_end_offset(skb) + skb->data_len; 1523 struct sk_buff *n = __alloc_skb(size, gfp_mask, 1524 skb_alloc_rx_flag(skb), NUMA_NO_NODE); 1525 1526 if (!n) 1527 return NULL; 1528 1529 /* Set the data pointer */ 1530 skb_reserve(n, headerlen); 1531 /* Set the tail pointer and length */ 1532 skb_put(n, skb->len); 1533 1534 BUG_ON(skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len)); 1535 1536 skb_copy_header(n, skb); 1537 return n; 1538 } 1539 EXPORT_SYMBOL(skb_copy); 1540 1541 /** 1542 * __pskb_copy_fclone - create copy of an sk_buff with private head. 1543 * @skb: buffer to copy 1544 * @headroom: headroom of new skb 1545 * @gfp_mask: allocation priority 1546 * @fclone: if true allocate the copy of the skb from the fclone 1547 * cache instead of the head cache; it is recommended to set this 1548 * to true for the cases where the copy will likely be cloned 1549 * 1550 * Make a copy of both an &sk_buff and part of its data, located 1551 * in header. Fragmented data remain shared. This is used when 1552 * the caller wishes to modify only header of &sk_buff and needs 1553 * private copy of the header to alter. Returns %NULL on failure 1554 * or the pointer to the buffer on success. 1555 * The returned buffer has a reference count of 1. 1556 */ 1557 1558 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom, 1559 gfp_t gfp_mask, bool fclone) 1560 { 1561 unsigned int size = skb_headlen(skb) + headroom; 1562 int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0); 1563 struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE); 1564 1565 if (!n) 1566 goto out; 1567 1568 /* Set the data pointer */ 1569 skb_reserve(n, headroom); 1570 /* Set the tail pointer and length */ 1571 skb_put(n, skb_headlen(skb)); 1572 /* Copy the bytes */ 1573 skb_copy_from_linear_data(skb, n->data, n->len); 1574 1575 n->truesize += skb->data_len; 1576 n->data_len = skb->data_len; 1577 n->len = skb->len; 1578 1579 if (skb_shinfo(skb)->nr_frags) { 1580 int i; 1581 1582 if (skb_orphan_frags(skb, gfp_mask) || 1583 skb_zerocopy_clone(n, skb, gfp_mask)) { 1584 kfree_skb(n); 1585 n = NULL; 1586 goto out; 1587 } 1588 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1589 skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i]; 1590 skb_frag_ref(skb, i); 1591 } 1592 skb_shinfo(n)->nr_frags = i; 1593 } 1594 1595 if (skb_has_frag_list(skb)) { 1596 skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list; 1597 skb_clone_fraglist(n); 1598 } 1599 1600 skb_copy_header(n, skb); 1601 out: 1602 return n; 1603 } 1604 EXPORT_SYMBOL(__pskb_copy_fclone); 1605 1606 /** 1607 * pskb_expand_head - reallocate header of &sk_buff 1608 * @skb: buffer to reallocate 1609 * @nhead: room to add at head 1610 * @ntail: room to add at tail 1611 * @gfp_mask: allocation priority 1612 * 1613 * Expands (or creates identical copy, if @nhead and @ntail are zero) 1614 * header of @skb. &sk_buff itself is not changed. &sk_buff MUST have 1615 * reference count of 1. Returns zero in the case of success or error, 1616 * if expansion failed. In the last case, &sk_buff is not changed. 1617 * 1618 * All the pointers pointing into skb header may change and must be 1619 * reloaded after call to this function. 1620 */ 1621 1622 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, 1623 gfp_t gfp_mask) 1624 { 1625 int i, osize = skb_end_offset(skb); 1626 int size = osize + nhead + ntail; 1627 long off; 1628 u8 *data; 1629 1630 BUG_ON(nhead < 0); 1631 1632 BUG_ON(skb_shared(skb)); 1633 1634 size = SKB_DATA_ALIGN(size); 1635 1636 if (skb_pfmemalloc(skb)) 1637 gfp_mask |= __GFP_MEMALLOC; 1638 data = kmalloc_reserve(size + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)), 1639 gfp_mask, NUMA_NO_NODE, NULL); 1640 if (!data) 1641 goto nodata; 1642 size = SKB_WITH_OVERHEAD(ksize(data)); 1643 1644 /* Copy only real data... and, alas, header. This should be 1645 * optimized for the cases when header is void. 1646 */ 1647 memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head); 1648 1649 memcpy((struct skb_shared_info *)(data + size), 1650 skb_shinfo(skb), 1651 offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags])); 1652 1653 /* 1654 * if shinfo is shared we must drop the old head gracefully, but if it 1655 * is not we can just drop the old head and let the existing refcount 1656 * be since all we did is relocate the values 1657 */ 1658 if (skb_cloned(skb)) { 1659 if (skb_orphan_frags(skb, gfp_mask)) 1660 goto nofrags; 1661 if (skb_zcopy(skb)) 1662 refcount_inc(&skb_uarg(skb)->refcnt); 1663 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 1664 skb_frag_ref(skb, i); 1665 1666 if (skb_has_frag_list(skb)) 1667 skb_clone_fraglist(skb); 1668 1669 skb_release_data(skb); 1670 } else { 1671 skb_free_head(skb); 1672 } 1673 off = (data + nhead) - skb->head; 1674 1675 skb->head = data; 1676 skb->head_frag = 0; 1677 skb->data += off; 1678 #ifdef NET_SKBUFF_DATA_USES_OFFSET 1679 skb->end = size; 1680 off = nhead; 1681 #else 1682 skb->end = skb->head + size; 1683 #endif 1684 skb->tail += off; 1685 skb_headers_offset_update(skb, nhead); 1686 skb->cloned = 0; 1687 skb->hdr_len = 0; 1688 skb->nohdr = 0; 1689 atomic_set(&skb_shinfo(skb)->dataref, 1); 1690 1691 skb_metadata_clear(skb); 1692 1693 /* It is not generally safe to change skb->truesize. 1694 * For the moment, we really care of rx path, or 1695 * when skb is orphaned (not attached to a socket). 1696 */ 1697 if (!skb->sk || skb->destructor == sock_edemux) 1698 skb->truesize += size - osize; 1699 1700 return 0; 1701 1702 nofrags: 1703 kfree(data); 1704 nodata: 1705 return -ENOMEM; 1706 } 1707 EXPORT_SYMBOL(pskb_expand_head); 1708 1709 /* Make private copy of skb with writable head and some headroom */ 1710 1711 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom) 1712 { 1713 struct sk_buff *skb2; 1714 int delta = headroom - skb_headroom(skb); 1715 1716 if (delta <= 0) 1717 skb2 = pskb_copy(skb, GFP_ATOMIC); 1718 else { 1719 skb2 = skb_clone(skb, GFP_ATOMIC); 1720 if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0, 1721 GFP_ATOMIC)) { 1722 kfree_skb(skb2); 1723 skb2 = NULL; 1724 } 1725 } 1726 return skb2; 1727 } 1728 EXPORT_SYMBOL(skb_realloc_headroom); 1729 1730 /** 1731 * skb_copy_expand - copy and expand sk_buff 1732 * @skb: buffer to copy 1733 * @newheadroom: new free bytes at head 1734 * @newtailroom: new free bytes at tail 1735 * @gfp_mask: allocation priority 1736 * 1737 * Make a copy of both an &sk_buff and its data and while doing so 1738 * allocate additional space. 1739 * 1740 * This is used when the caller wishes to modify the data and needs a 1741 * private copy of the data to alter as well as more space for new fields. 1742 * Returns %NULL on failure or the pointer to the buffer 1743 * on success. The returned buffer has a reference count of 1. 1744 * 1745 * You must pass %GFP_ATOMIC as the allocation priority if this function 1746 * is called from an interrupt. 1747 */ 1748 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, 1749 int newheadroom, int newtailroom, 1750 gfp_t gfp_mask) 1751 { 1752 /* 1753 * Allocate the copy buffer 1754 */ 1755 struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom, 1756 gfp_mask, skb_alloc_rx_flag(skb), 1757 NUMA_NO_NODE); 1758 int oldheadroom = skb_headroom(skb); 1759 int head_copy_len, head_copy_off; 1760 1761 if (!n) 1762 return NULL; 1763 1764 skb_reserve(n, newheadroom); 1765 1766 /* Set the tail pointer and length */ 1767 skb_put(n, skb->len); 1768 1769 head_copy_len = oldheadroom; 1770 head_copy_off = 0; 1771 if (newheadroom <= head_copy_len) 1772 head_copy_len = newheadroom; 1773 else 1774 head_copy_off = newheadroom - head_copy_len; 1775 1776 /* Copy the linear header and data. */ 1777 BUG_ON(skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off, 1778 skb->len + head_copy_len)); 1779 1780 skb_copy_header(n, skb); 1781 1782 skb_headers_offset_update(n, newheadroom - oldheadroom); 1783 1784 return n; 1785 } 1786 EXPORT_SYMBOL(skb_copy_expand); 1787 1788 /** 1789 * __skb_pad - zero pad the tail of an skb 1790 * @skb: buffer to pad 1791 * @pad: space to pad 1792 * @free_on_error: free buffer on error 1793 * 1794 * Ensure that a buffer is followed by a padding area that is zero 1795 * filled. Used by network drivers which may DMA or transfer data 1796 * beyond the buffer end onto the wire. 1797 * 1798 * May return error in out of memory cases. The skb is freed on error 1799 * if @free_on_error is true. 1800 */ 1801 1802 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error) 1803 { 1804 int err; 1805 int ntail; 1806 1807 /* If the skbuff is non linear tailroom is always zero.. */ 1808 if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) { 1809 memset(skb->data+skb->len, 0, pad); 1810 return 0; 1811 } 1812 1813 ntail = skb->data_len + pad - (skb->end - skb->tail); 1814 if (likely(skb_cloned(skb) || ntail > 0)) { 1815 err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC); 1816 if (unlikely(err)) 1817 goto free_skb; 1818 } 1819 1820 /* FIXME: The use of this function with non-linear skb's really needs 1821 * to be audited. 1822 */ 1823 err = skb_linearize(skb); 1824 if (unlikely(err)) 1825 goto free_skb; 1826 1827 memset(skb->data + skb->len, 0, pad); 1828 return 0; 1829 1830 free_skb: 1831 if (free_on_error) 1832 kfree_skb(skb); 1833 return err; 1834 } 1835 EXPORT_SYMBOL(__skb_pad); 1836 1837 /** 1838 * pskb_put - add data to the tail of a potentially fragmented buffer 1839 * @skb: start of the buffer to use 1840 * @tail: tail fragment of the buffer to use 1841 * @len: amount of data to add 1842 * 1843 * This function extends the used data area of the potentially 1844 * fragmented buffer. @tail must be the last fragment of @skb -- or 1845 * @skb itself. If this would exceed the total buffer size the kernel 1846 * will panic. A pointer to the first byte of the extra data is 1847 * returned. 1848 */ 1849 1850 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len) 1851 { 1852 if (tail != skb) { 1853 skb->data_len += len; 1854 skb->len += len; 1855 } 1856 return skb_put(tail, len); 1857 } 1858 EXPORT_SYMBOL_GPL(pskb_put); 1859 1860 /** 1861 * skb_put - add data to a buffer 1862 * @skb: buffer to use 1863 * @len: amount of data to add 1864 * 1865 * This function extends the used data area of the buffer. If this would 1866 * exceed the total buffer size the kernel will panic. A pointer to the 1867 * first byte of the extra data is returned. 1868 */ 1869 void *skb_put(struct sk_buff *skb, unsigned int len) 1870 { 1871 void *tmp = skb_tail_pointer(skb); 1872 SKB_LINEAR_ASSERT(skb); 1873 skb->tail += len; 1874 skb->len += len; 1875 if (unlikely(skb->tail > skb->end)) 1876 skb_over_panic(skb, len, __builtin_return_address(0)); 1877 return tmp; 1878 } 1879 EXPORT_SYMBOL(skb_put); 1880 1881 /** 1882 * skb_push - add data to the start of a buffer 1883 * @skb: buffer to use 1884 * @len: amount of data to add 1885 * 1886 * This function extends the used data area of the buffer at the buffer 1887 * start. If this would exceed the total buffer headroom the kernel will 1888 * panic. A pointer to the first byte of the extra data is returned. 1889 */ 1890 void *skb_push(struct sk_buff *skb, unsigned int len) 1891 { 1892 skb->data -= len; 1893 skb->len += len; 1894 if (unlikely(skb->data < skb->head)) 1895 skb_under_panic(skb, len, __builtin_return_address(0)); 1896 return skb->data; 1897 } 1898 EXPORT_SYMBOL(skb_push); 1899 1900 /** 1901 * skb_pull - remove data from the start of a buffer 1902 * @skb: buffer to use 1903 * @len: amount of data to remove 1904 * 1905 * This function removes data from the start of a buffer, returning 1906 * the memory to the headroom. A pointer to the next data in the buffer 1907 * is returned. Once the data has been pulled future pushes will overwrite 1908 * the old data. 1909 */ 1910 void *skb_pull(struct sk_buff *skb, unsigned int len) 1911 { 1912 return skb_pull_inline(skb, len); 1913 } 1914 EXPORT_SYMBOL(skb_pull); 1915 1916 /** 1917 * skb_trim - remove end from a buffer 1918 * @skb: buffer to alter 1919 * @len: new length 1920 * 1921 * Cut the length of a buffer down by removing data from the tail. If 1922 * the buffer is already under the length specified it is not modified. 1923 * The skb must be linear. 1924 */ 1925 void skb_trim(struct sk_buff *skb, unsigned int len) 1926 { 1927 if (skb->len > len) 1928 __skb_trim(skb, len); 1929 } 1930 EXPORT_SYMBOL(skb_trim); 1931 1932 /* Trims skb to length len. It can change skb pointers. 1933 */ 1934 1935 int ___pskb_trim(struct sk_buff *skb, unsigned int len) 1936 { 1937 struct sk_buff **fragp; 1938 struct sk_buff *frag; 1939 int offset = skb_headlen(skb); 1940 int nfrags = skb_shinfo(skb)->nr_frags; 1941 int i; 1942 int err; 1943 1944 if (skb_cloned(skb) && 1945 unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))) 1946 return err; 1947 1948 i = 0; 1949 if (offset >= len) 1950 goto drop_pages; 1951 1952 for (; i < nfrags; i++) { 1953 int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]); 1954 1955 if (end < len) { 1956 offset = end; 1957 continue; 1958 } 1959 1960 skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset); 1961 1962 drop_pages: 1963 skb_shinfo(skb)->nr_frags = i; 1964 1965 for (; i < nfrags; i++) 1966 skb_frag_unref(skb, i); 1967 1968 if (skb_has_frag_list(skb)) 1969 skb_drop_fraglist(skb); 1970 goto done; 1971 } 1972 1973 for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp); 1974 fragp = &frag->next) { 1975 int end = offset + frag->len; 1976 1977 if (skb_shared(frag)) { 1978 struct sk_buff *nfrag; 1979 1980 nfrag = skb_clone(frag, GFP_ATOMIC); 1981 if (unlikely(!nfrag)) 1982 return -ENOMEM; 1983 1984 nfrag->next = frag->next; 1985 consume_skb(frag); 1986 frag = nfrag; 1987 *fragp = frag; 1988 } 1989 1990 if (end < len) { 1991 offset = end; 1992 continue; 1993 } 1994 1995 if (end > len && 1996 unlikely((err = pskb_trim(frag, len - offset)))) 1997 return err; 1998 1999 if (frag->next) 2000 skb_drop_list(&frag->next); 2001 break; 2002 } 2003 2004 done: 2005 if (len > skb_headlen(skb)) { 2006 skb->data_len -= skb->len - len; 2007 skb->len = len; 2008 } else { 2009 skb->len = len; 2010 skb->data_len = 0; 2011 skb_set_tail_pointer(skb, len); 2012 } 2013 2014 if (!skb->sk || skb->destructor == sock_edemux) 2015 skb_condense(skb); 2016 return 0; 2017 } 2018 EXPORT_SYMBOL(___pskb_trim); 2019 2020 /* Note : use pskb_trim_rcsum() instead of calling this directly 2021 */ 2022 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len) 2023 { 2024 if (skb->ip_summed == CHECKSUM_COMPLETE) { 2025 int delta = skb->len - len; 2026 2027 skb->csum = csum_block_sub(skb->csum, 2028 skb_checksum(skb, len, delta, 0), 2029 len); 2030 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { 2031 int hdlen = (len > skb_headlen(skb)) ? skb_headlen(skb) : len; 2032 int offset = skb_checksum_start_offset(skb) + skb->csum_offset; 2033 2034 if (offset + sizeof(__sum16) > hdlen) 2035 return -EINVAL; 2036 } 2037 return __pskb_trim(skb, len); 2038 } 2039 EXPORT_SYMBOL(pskb_trim_rcsum_slow); 2040 2041 /** 2042 * __pskb_pull_tail - advance tail of skb header 2043 * @skb: buffer to reallocate 2044 * @delta: number of bytes to advance tail 2045 * 2046 * The function makes a sense only on a fragmented &sk_buff, 2047 * it expands header moving its tail forward and copying necessary 2048 * data from fragmented part. 2049 * 2050 * &sk_buff MUST have reference count of 1. 2051 * 2052 * Returns %NULL (and &sk_buff does not change) if pull failed 2053 * or value of new tail of skb in the case of success. 2054 * 2055 * All the pointers pointing into skb header may change and must be 2056 * reloaded after call to this function. 2057 */ 2058 2059 /* Moves tail of skb head forward, copying data from fragmented part, 2060 * when it is necessary. 2061 * 1. It may fail due to malloc failure. 2062 * 2. It may change skb pointers. 2063 * 2064 * It is pretty complicated. Luckily, it is called only in exceptional cases. 2065 */ 2066 void *__pskb_pull_tail(struct sk_buff *skb, int delta) 2067 { 2068 /* If skb has not enough free space at tail, get new one 2069 * plus 128 bytes for future expansions. If we have enough 2070 * room at tail, reallocate without expansion only if skb is cloned. 2071 */ 2072 int i, k, eat = (skb->tail + delta) - skb->end; 2073 2074 if (eat > 0 || skb_cloned(skb)) { 2075 if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0, 2076 GFP_ATOMIC)) 2077 return NULL; 2078 } 2079 2080 BUG_ON(skb_copy_bits(skb, skb_headlen(skb), 2081 skb_tail_pointer(skb), delta)); 2082 2083 /* Optimization: no fragments, no reasons to preestimate 2084 * size of pulled pages. Superb. 2085 */ 2086 if (!skb_has_frag_list(skb)) 2087 goto pull_pages; 2088 2089 /* Estimate size of pulled pages. */ 2090 eat = delta; 2091 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2092 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 2093 2094 if (size >= eat) 2095 goto pull_pages; 2096 eat -= size; 2097 } 2098 2099 /* If we need update frag list, we are in troubles. 2100 * Certainly, it is possible to add an offset to skb data, 2101 * but taking into account that pulling is expected to 2102 * be very rare operation, it is worth to fight against 2103 * further bloating skb head and crucify ourselves here instead. 2104 * Pure masohism, indeed. 8)8) 2105 */ 2106 if (eat) { 2107 struct sk_buff *list = skb_shinfo(skb)->frag_list; 2108 struct sk_buff *clone = NULL; 2109 struct sk_buff *insp = NULL; 2110 2111 do { 2112 if (list->len <= eat) { 2113 /* Eaten as whole. */ 2114 eat -= list->len; 2115 list = list->next; 2116 insp = list; 2117 } else { 2118 /* Eaten partially. */ 2119 2120 if (skb_shared(list)) { 2121 /* Sucks! We need to fork list. :-( */ 2122 clone = skb_clone(list, GFP_ATOMIC); 2123 if (!clone) 2124 return NULL; 2125 insp = list->next; 2126 list = clone; 2127 } else { 2128 /* This may be pulled without 2129 * problems. */ 2130 insp = list; 2131 } 2132 if (!pskb_pull(list, eat)) { 2133 kfree_skb(clone); 2134 return NULL; 2135 } 2136 break; 2137 } 2138 } while (eat); 2139 2140 /* Free pulled out fragments. */ 2141 while ((list = skb_shinfo(skb)->frag_list) != insp) { 2142 skb_shinfo(skb)->frag_list = list->next; 2143 kfree_skb(list); 2144 } 2145 /* And insert new clone at head. */ 2146 if (clone) { 2147 clone->next = list; 2148 skb_shinfo(skb)->frag_list = clone; 2149 } 2150 } 2151 /* Success! Now we may commit changes to skb data. */ 2152 2153 pull_pages: 2154 eat = delta; 2155 k = 0; 2156 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2157 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 2158 2159 if (size <= eat) { 2160 skb_frag_unref(skb, i); 2161 eat -= size; 2162 } else { 2163 skb_frag_t *frag = &skb_shinfo(skb)->frags[k]; 2164 2165 *frag = skb_shinfo(skb)->frags[i]; 2166 if (eat) { 2167 skb_frag_off_add(frag, eat); 2168 skb_frag_size_sub(frag, eat); 2169 if (!i) 2170 goto end; 2171 eat = 0; 2172 } 2173 k++; 2174 } 2175 } 2176 skb_shinfo(skb)->nr_frags = k; 2177 2178 end: 2179 skb->tail += delta; 2180 skb->data_len -= delta; 2181 2182 if (!skb->data_len) 2183 skb_zcopy_clear(skb, false); 2184 2185 return skb_tail_pointer(skb); 2186 } 2187 EXPORT_SYMBOL(__pskb_pull_tail); 2188 2189 /** 2190 * skb_copy_bits - copy bits from skb to kernel buffer 2191 * @skb: source skb 2192 * @offset: offset in source 2193 * @to: destination buffer 2194 * @len: number of bytes to copy 2195 * 2196 * Copy the specified number of bytes from the source skb to the 2197 * destination buffer. 2198 * 2199 * CAUTION ! : 2200 * If its prototype is ever changed, 2201 * check arch/{*}/net/{*}.S files, 2202 * since it is called from BPF assembly code. 2203 */ 2204 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len) 2205 { 2206 int start = skb_headlen(skb); 2207 struct sk_buff *frag_iter; 2208 int i, copy; 2209 2210 if (offset > (int)skb->len - len) 2211 goto fault; 2212 2213 /* Copy header. */ 2214 if ((copy = start - offset) > 0) { 2215 if (copy > len) 2216 copy = len; 2217 skb_copy_from_linear_data_offset(skb, offset, to, copy); 2218 if ((len -= copy) == 0) 2219 return 0; 2220 offset += copy; 2221 to += copy; 2222 } 2223 2224 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2225 int end; 2226 skb_frag_t *f = &skb_shinfo(skb)->frags[i]; 2227 2228 WARN_ON(start > offset + len); 2229 2230 end = start + skb_frag_size(f); 2231 if ((copy = end - offset) > 0) { 2232 u32 p_off, p_len, copied; 2233 struct page *p; 2234 u8 *vaddr; 2235 2236 if (copy > len) 2237 copy = len; 2238 2239 skb_frag_foreach_page(f, 2240 skb_frag_off(f) + offset - start, 2241 copy, p, p_off, p_len, copied) { 2242 vaddr = kmap_atomic(p); 2243 memcpy(to + copied, vaddr + p_off, p_len); 2244 kunmap_atomic(vaddr); 2245 } 2246 2247 if ((len -= copy) == 0) 2248 return 0; 2249 offset += copy; 2250 to += copy; 2251 } 2252 start = end; 2253 } 2254 2255 skb_walk_frags(skb, frag_iter) { 2256 int end; 2257 2258 WARN_ON(start > offset + len); 2259 2260 end = start + frag_iter->len; 2261 if ((copy = end - offset) > 0) { 2262 if (copy > len) 2263 copy = len; 2264 if (skb_copy_bits(frag_iter, offset - start, to, copy)) 2265 goto fault; 2266 if ((len -= copy) == 0) 2267 return 0; 2268 offset += copy; 2269 to += copy; 2270 } 2271 start = end; 2272 } 2273 2274 if (!len) 2275 return 0; 2276 2277 fault: 2278 return -EFAULT; 2279 } 2280 EXPORT_SYMBOL(skb_copy_bits); 2281 2282 /* 2283 * Callback from splice_to_pipe(), if we need to release some pages 2284 * at the end of the spd in case we error'ed out in filling the pipe. 2285 */ 2286 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i) 2287 { 2288 put_page(spd->pages[i]); 2289 } 2290 2291 static struct page *linear_to_page(struct page *page, unsigned int *len, 2292 unsigned int *offset, 2293 struct sock *sk) 2294 { 2295 struct page_frag *pfrag = sk_page_frag(sk); 2296 2297 if (!sk_page_frag_refill(sk, pfrag)) 2298 return NULL; 2299 2300 *len = min_t(unsigned int, *len, pfrag->size - pfrag->offset); 2301 2302 memcpy(page_address(pfrag->page) + pfrag->offset, 2303 page_address(page) + *offset, *len); 2304 *offset = pfrag->offset; 2305 pfrag->offset += *len; 2306 2307 return pfrag->page; 2308 } 2309 2310 static bool spd_can_coalesce(const struct splice_pipe_desc *spd, 2311 struct page *page, 2312 unsigned int offset) 2313 { 2314 return spd->nr_pages && 2315 spd->pages[spd->nr_pages - 1] == page && 2316 (spd->partial[spd->nr_pages - 1].offset + 2317 spd->partial[spd->nr_pages - 1].len == offset); 2318 } 2319 2320 /* 2321 * Fill page/offset/length into spd, if it can hold more pages. 2322 */ 2323 static bool spd_fill_page(struct splice_pipe_desc *spd, 2324 struct pipe_inode_info *pipe, struct page *page, 2325 unsigned int *len, unsigned int offset, 2326 bool linear, 2327 struct sock *sk) 2328 { 2329 if (unlikely(spd->nr_pages == MAX_SKB_FRAGS)) 2330 return true; 2331 2332 if (linear) { 2333 page = linear_to_page(page, len, &offset, sk); 2334 if (!page) 2335 return true; 2336 } 2337 if (spd_can_coalesce(spd, page, offset)) { 2338 spd->partial[spd->nr_pages - 1].len += *len; 2339 return false; 2340 } 2341 get_page(page); 2342 spd->pages[spd->nr_pages] = page; 2343 spd->partial[spd->nr_pages].len = *len; 2344 spd->partial[spd->nr_pages].offset = offset; 2345 spd->nr_pages++; 2346 2347 return false; 2348 } 2349 2350 static bool __splice_segment(struct page *page, unsigned int poff, 2351 unsigned int plen, unsigned int *off, 2352 unsigned int *len, 2353 struct splice_pipe_desc *spd, bool linear, 2354 struct sock *sk, 2355 struct pipe_inode_info *pipe) 2356 { 2357 if (!*len) 2358 return true; 2359 2360 /* skip this segment if already processed */ 2361 if (*off >= plen) { 2362 *off -= plen; 2363 return false; 2364 } 2365 2366 /* ignore any bits we already processed */ 2367 poff += *off; 2368 plen -= *off; 2369 *off = 0; 2370 2371 do { 2372 unsigned int flen = min(*len, plen); 2373 2374 if (spd_fill_page(spd, pipe, page, &flen, poff, 2375 linear, sk)) 2376 return true; 2377 poff += flen; 2378 plen -= flen; 2379 *len -= flen; 2380 } while (*len && plen); 2381 2382 return false; 2383 } 2384 2385 /* 2386 * Map linear and fragment data from the skb to spd. It reports true if the 2387 * pipe is full or if we already spliced the requested length. 2388 */ 2389 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe, 2390 unsigned int *offset, unsigned int *len, 2391 struct splice_pipe_desc *spd, struct sock *sk) 2392 { 2393 int seg; 2394 struct sk_buff *iter; 2395 2396 /* map the linear part : 2397 * If skb->head_frag is set, this 'linear' part is backed by a 2398 * fragment, and if the head is not shared with any clones then 2399 * we can avoid a copy since we own the head portion of this page. 2400 */ 2401 if (__splice_segment(virt_to_page(skb->data), 2402 (unsigned long) skb->data & (PAGE_SIZE - 1), 2403 skb_headlen(skb), 2404 offset, len, spd, 2405 skb_head_is_locked(skb), 2406 sk, pipe)) 2407 return true; 2408 2409 /* 2410 * then map the fragments 2411 */ 2412 for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) { 2413 const skb_frag_t *f = &skb_shinfo(skb)->frags[seg]; 2414 2415 if (__splice_segment(skb_frag_page(f), 2416 skb_frag_off(f), skb_frag_size(f), 2417 offset, len, spd, false, sk, pipe)) 2418 return true; 2419 } 2420 2421 skb_walk_frags(skb, iter) { 2422 if (*offset >= iter->len) { 2423 *offset -= iter->len; 2424 continue; 2425 } 2426 /* __skb_splice_bits() only fails if the output has no room 2427 * left, so no point in going over the frag_list for the error 2428 * case. 2429 */ 2430 if (__skb_splice_bits(iter, pipe, offset, len, spd, sk)) 2431 return true; 2432 } 2433 2434 return false; 2435 } 2436 2437 /* 2438 * Map data from the skb to a pipe. Should handle both the linear part, 2439 * the fragments, and the frag list. 2440 */ 2441 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset, 2442 struct pipe_inode_info *pipe, unsigned int tlen, 2443 unsigned int flags) 2444 { 2445 struct partial_page partial[MAX_SKB_FRAGS]; 2446 struct page *pages[MAX_SKB_FRAGS]; 2447 struct splice_pipe_desc spd = { 2448 .pages = pages, 2449 .partial = partial, 2450 .nr_pages_max = MAX_SKB_FRAGS, 2451 .ops = &nosteal_pipe_buf_ops, 2452 .spd_release = sock_spd_release, 2453 }; 2454 int ret = 0; 2455 2456 __skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk); 2457 2458 if (spd.nr_pages) 2459 ret = splice_to_pipe(pipe, &spd); 2460 2461 return ret; 2462 } 2463 EXPORT_SYMBOL_GPL(skb_splice_bits); 2464 2465 /* Send skb data on a socket. Socket must be locked. */ 2466 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset, 2467 int len) 2468 { 2469 unsigned int orig_len = len; 2470 struct sk_buff *head = skb; 2471 unsigned short fragidx; 2472 int slen, ret; 2473 2474 do_frag_list: 2475 2476 /* Deal with head data */ 2477 while (offset < skb_headlen(skb) && len) { 2478 struct kvec kv; 2479 struct msghdr msg; 2480 2481 slen = min_t(int, len, skb_headlen(skb) - offset); 2482 kv.iov_base = skb->data + offset; 2483 kv.iov_len = slen; 2484 memset(&msg, 0, sizeof(msg)); 2485 msg.msg_flags = MSG_DONTWAIT; 2486 2487 ret = kernel_sendmsg_locked(sk, &msg, &kv, 1, slen); 2488 if (ret <= 0) 2489 goto error; 2490 2491 offset += ret; 2492 len -= ret; 2493 } 2494 2495 /* All the data was skb head? */ 2496 if (!len) 2497 goto out; 2498 2499 /* Make offset relative to start of frags */ 2500 offset -= skb_headlen(skb); 2501 2502 /* Find where we are in frag list */ 2503 for (fragidx = 0; fragidx < skb_shinfo(skb)->nr_frags; fragidx++) { 2504 skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx]; 2505 2506 if (offset < skb_frag_size(frag)) 2507 break; 2508 2509 offset -= skb_frag_size(frag); 2510 } 2511 2512 for (; len && fragidx < skb_shinfo(skb)->nr_frags; fragidx++) { 2513 skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx]; 2514 2515 slen = min_t(size_t, len, skb_frag_size(frag) - offset); 2516 2517 while (slen) { 2518 ret = kernel_sendpage_locked(sk, skb_frag_page(frag), 2519 skb_frag_off(frag) + offset, 2520 slen, MSG_DONTWAIT); 2521 if (ret <= 0) 2522 goto error; 2523 2524 len -= ret; 2525 offset += ret; 2526 slen -= ret; 2527 } 2528 2529 offset = 0; 2530 } 2531 2532 if (len) { 2533 /* Process any frag lists */ 2534 2535 if (skb == head) { 2536 if (skb_has_frag_list(skb)) { 2537 skb = skb_shinfo(skb)->frag_list; 2538 goto do_frag_list; 2539 } 2540 } else if (skb->next) { 2541 skb = skb->next; 2542 goto do_frag_list; 2543 } 2544 } 2545 2546 out: 2547 return orig_len - len; 2548 2549 error: 2550 return orig_len == len ? ret : orig_len - len; 2551 } 2552 EXPORT_SYMBOL_GPL(skb_send_sock_locked); 2553 2554 /** 2555 * skb_store_bits - store bits from kernel buffer to skb 2556 * @skb: destination buffer 2557 * @offset: offset in destination 2558 * @from: source buffer 2559 * @len: number of bytes to copy 2560 * 2561 * Copy the specified number of bytes from the source buffer to the 2562 * destination skb. This function handles all the messy bits of 2563 * traversing fragment lists and such. 2564 */ 2565 2566 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len) 2567 { 2568 int start = skb_headlen(skb); 2569 struct sk_buff *frag_iter; 2570 int i, copy; 2571 2572 if (offset > (int)skb->len - len) 2573 goto fault; 2574 2575 if ((copy = start - offset) > 0) { 2576 if (copy > len) 2577 copy = len; 2578 skb_copy_to_linear_data_offset(skb, offset, from, copy); 2579 if ((len -= copy) == 0) 2580 return 0; 2581 offset += copy; 2582 from += copy; 2583 } 2584 2585 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2586 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2587 int end; 2588 2589 WARN_ON(start > offset + len); 2590 2591 end = start + skb_frag_size(frag); 2592 if ((copy = end - offset) > 0) { 2593 u32 p_off, p_len, copied; 2594 struct page *p; 2595 u8 *vaddr; 2596 2597 if (copy > len) 2598 copy = len; 2599 2600 skb_frag_foreach_page(frag, 2601 skb_frag_off(frag) + offset - start, 2602 copy, p, p_off, p_len, copied) { 2603 vaddr = kmap_atomic(p); 2604 memcpy(vaddr + p_off, from + copied, p_len); 2605 kunmap_atomic(vaddr); 2606 } 2607 2608 if ((len -= copy) == 0) 2609 return 0; 2610 offset += copy; 2611 from += copy; 2612 } 2613 start = end; 2614 } 2615 2616 skb_walk_frags(skb, frag_iter) { 2617 int end; 2618 2619 WARN_ON(start > offset + len); 2620 2621 end = start + frag_iter->len; 2622 if ((copy = end - offset) > 0) { 2623 if (copy > len) 2624 copy = len; 2625 if (skb_store_bits(frag_iter, offset - start, 2626 from, copy)) 2627 goto fault; 2628 if ((len -= copy) == 0) 2629 return 0; 2630 offset += copy; 2631 from += copy; 2632 } 2633 start = end; 2634 } 2635 if (!len) 2636 return 0; 2637 2638 fault: 2639 return -EFAULT; 2640 } 2641 EXPORT_SYMBOL(skb_store_bits); 2642 2643 /* Checksum skb data. */ 2644 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len, 2645 __wsum csum, const struct skb_checksum_ops *ops) 2646 { 2647 int start = skb_headlen(skb); 2648 int i, copy = start - offset; 2649 struct sk_buff *frag_iter; 2650 int pos = 0; 2651 2652 /* Checksum header. */ 2653 if (copy > 0) { 2654 if (copy > len) 2655 copy = len; 2656 csum = INDIRECT_CALL_1(ops->update, csum_partial_ext, 2657 skb->data + offset, copy, csum); 2658 if ((len -= copy) == 0) 2659 return csum; 2660 offset += copy; 2661 pos = copy; 2662 } 2663 2664 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2665 int end; 2666 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2667 2668 WARN_ON(start > offset + len); 2669 2670 end = start + skb_frag_size(frag); 2671 if ((copy = end - offset) > 0) { 2672 u32 p_off, p_len, copied; 2673 struct page *p; 2674 __wsum csum2; 2675 u8 *vaddr; 2676 2677 if (copy > len) 2678 copy = len; 2679 2680 skb_frag_foreach_page(frag, 2681 skb_frag_off(frag) + offset - start, 2682 copy, p, p_off, p_len, copied) { 2683 vaddr = kmap_atomic(p); 2684 csum2 = INDIRECT_CALL_1(ops->update, 2685 csum_partial_ext, 2686 vaddr + p_off, p_len, 0); 2687 kunmap_atomic(vaddr); 2688 csum = INDIRECT_CALL_1(ops->combine, 2689 csum_block_add_ext, csum, 2690 csum2, pos, p_len); 2691 pos += p_len; 2692 } 2693 2694 if (!(len -= copy)) 2695 return csum; 2696 offset += copy; 2697 } 2698 start = end; 2699 } 2700 2701 skb_walk_frags(skb, frag_iter) { 2702 int end; 2703 2704 WARN_ON(start > offset + len); 2705 2706 end = start + frag_iter->len; 2707 if ((copy = end - offset) > 0) { 2708 __wsum csum2; 2709 if (copy > len) 2710 copy = len; 2711 csum2 = __skb_checksum(frag_iter, offset - start, 2712 copy, 0, ops); 2713 csum = INDIRECT_CALL_1(ops->combine, csum_block_add_ext, 2714 csum, csum2, pos, copy); 2715 if ((len -= copy) == 0) 2716 return csum; 2717 offset += copy; 2718 pos += copy; 2719 } 2720 start = end; 2721 } 2722 BUG_ON(len); 2723 2724 return csum; 2725 } 2726 EXPORT_SYMBOL(__skb_checksum); 2727 2728 __wsum skb_checksum(const struct sk_buff *skb, int offset, 2729 int len, __wsum csum) 2730 { 2731 const struct skb_checksum_ops ops = { 2732 .update = csum_partial_ext, 2733 .combine = csum_block_add_ext, 2734 }; 2735 2736 return __skb_checksum(skb, offset, len, csum, &ops); 2737 } 2738 EXPORT_SYMBOL(skb_checksum); 2739 2740 /* Both of above in one bottle. */ 2741 2742 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, 2743 u8 *to, int len) 2744 { 2745 int start = skb_headlen(skb); 2746 int i, copy = start - offset; 2747 struct sk_buff *frag_iter; 2748 int pos = 0; 2749 __wsum csum = 0; 2750 2751 /* Copy header. */ 2752 if (copy > 0) { 2753 if (copy > len) 2754 copy = len; 2755 csum = csum_partial_copy_nocheck(skb->data + offset, to, 2756 copy); 2757 if ((len -= copy) == 0) 2758 return csum; 2759 offset += copy; 2760 to += copy; 2761 pos = copy; 2762 } 2763 2764 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2765 int end; 2766 2767 WARN_ON(start > offset + len); 2768 2769 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]); 2770 if ((copy = end - offset) > 0) { 2771 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2772 u32 p_off, p_len, copied; 2773 struct page *p; 2774 __wsum csum2; 2775 u8 *vaddr; 2776 2777 if (copy > len) 2778 copy = len; 2779 2780 skb_frag_foreach_page(frag, 2781 skb_frag_off(frag) + offset - start, 2782 copy, p, p_off, p_len, copied) { 2783 vaddr = kmap_atomic(p); 2784 csum2 = csum_partial_copy_nocheck(vaddr + p_off, 2785 to + copied, 2786 p_len); 2787 kunmap_atomic(vaddr); 2788 csum = csum_block_add(csum, csum2, pos); 2789 pos += p_len; 2790 } 2791 2792 if (!(len -= copy)) 2793 return csum; 2794 offset += copy; 2795 to += copy; 2796 } 2797 start = end; 2798 } 2799 2800 skb_walk_frags(skb, frag_iter) { 2801 __wsum csum2; 2802 int end; 2803 2804 WARN_ON(start > offset + len); 2805 2806 end = start + frag_iter->len; 2807 if ((copy = end - offset) > 0) { 2808 if (copy > len) 2809 copy = len; 2810 csum2 = skb_copy_and_csum_bits(frag_iter, 2811 offset - start, 2812 to, copy); 2813 csum = csum_block_add(csum, csum2, pos); 2814 if ((len -= copy) == 0) 2815 return csum; 2816 offset += copy; 2817 to += copy; 2818 pos += copy; 2819 } 2820 start = end; 2821 } 2822 BUG_ON(len); 2823 return csum; 2824 } 2825 EXPORT_SYMBOL(skb_copy_and_csum_bits); 2826 2827 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len) 2828 { 2829 __sum16 sum; 2830 2831 sum = csum_fold(skb_checksum(skb, 0, len, skb->csum)); 2832 /* See comments in __skb_checksum_complete(). */ 2833 if (likely(!sum)) { 2834 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) && 2835 !skb->csum_complete_sw) 2836 netdev_rx_csum_fault(skb->dev, skb); 2837 } 2838 if (!skb_shared(skb)) 2839 skb->csum_valid = !sum; 2840 return sum; 2841 } 2842 EXPORT_SYMBOL(__skb_checksum_complete_head); 2843 2844 /* This function assumes skb->csum already holds pseudo header's checksum, 2845 * which has been changed from the hardware checksum, for example, by 2846 * __skb_checksum_validate_complete(). And, the original skb->csum must 2847 * have been validated unsuccessfully for CHECKSUM_COMPLETE case. 2848 * 2849 * It returns non-zero if the recomputed checksum is still invalid, otherwise 2850 * zero. The new checksum is stored back into skb->csum unless the skb is 2851 * shared. 2852 */ 2853 __sum16 __skb_checksum_complete(struct sk_buff *skb) 2854 { 2855 __wsum csum; 2856 __sum16 sum; 2857 2858 csum = skb_checksum(skb, 0, skb->len, 0); 2859 2860 sum = csum_fold(csum_add(skb->csum, csum)); 2861 /* This check is inverted, because we already knew the hardware 2862 * checksum is invalid before calling this function. So, if the 2863 * re-computed checksum is valid instead, then we have a mismatch 2864 * between the original skb->csum and skb_checksum(). This means either 2865 * the original hardware checksum is incorrect or we screw up skb->csum 2866 * when moving skb->data around. 2867 */ 2868 if (likely(!sum)) { 2869 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) && 2870 !skb->csum_complete_sw) 2871 netdev_rx_csum_fault(skb->dev, skb); 2872 } 2873 2874 if (!skb_shared(skb)) { 2875 /* Save full packet checksum */ 2876 skb->csum = csum; 2877 skb->ip_summed = CHECKSUM_COMPLETE; 2878 skb->csum_complete_sw = 1; 2879 skb->csum_valid = !sum; 2880 } 2881 2882 return sum; 2883 } 2884 EXPORT_SYMBOL(__skb_checksum_complete); 2885 2886 static __wsum warn_crc32c_csum_update(const void *buff, int len, __wsum sum) 2887 { 2888 net_warn_ratelimited( 2889 "%s: attempt to compute crc32c without libcrc32c.ko\n", 2890 __func__); 2891 return 0; 2892 } 2893 2894 static __wsum warn_crc32c_csum_combine(__wsum csum, __wsum csum2, 2895 int offset, int len) 2896 { 2897 net_warn_ratelimited( 2898 "%s: attempt to compute crc32c without libcrc32c.ko\n", 2899 __func__); 2900 return 0; 2901 } 2902 2903 static const struct skb_checksum_ops default_crc32c_ops = { 2904 .update = warn_crc32c_csum_update, 2905 .combine = warn_crc32c_csum_combine, 2906 }; 2907 2908 const struct skb_checksum_ops *crc32c_csum_stub __read_mostly = 2909 &default_crc32c_ops; 2910 EXPORT_SYMBOL(crc32c_csum_stub); 2911 2912 /** 2913 * skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy() 2914 * @from: source buffer 2915 * 2916 * Calculates the amount of linear headroom needed in the 'to' skb passed 2917 * into skb_zerocopy(). 2918 */ 2919 unsigned int 2920 skb_zerocopy_headlen(const struct sk_buff *from) 2921 { 2922 unsigned int hlen = 0; 2923 2924 if (!from->head_frag || 2925 skb_headlen(from) < L1_CACHE_BYTES || 2926 skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS) 2927 hlen = skb_headlen(from); 2928 2929 if (skb_has_frag_list(from)) 2930 hlen = from->len; 2931 2932 return hlen; 2933 } 2934 EXPORT_SYMBOL_GPL(skb_zerocopy_headlen); 2935 2936 /** 2937 * skb_zerocopy - Zero copy skb to skb 2938 * @to: destination buffer 2939 * @from: source buffer 2940 * @len: number of bytes to copy from source buffer 2941 * @hlen: size of linear headroom in destination buffer 2942 * 2943 * Copies up to `len` bytes from `from` to `to` by creating references 2944 * to the frags in the source buffer. 2945 * 2946 * The `hlen` as calculated by skb_zerocopy_headlen() specifies the 2947 * headroom in the `to` buffer. 2948 * 2949 * Return value: 2950 * 0: everything is OK 2951 * -ENOMEM: couldn't orphan frags of @from due to lack of memory 2952 * -EFAULT: skb_copy_bits() found some problem with skb geometry 2953 */ 2954 int 2955 skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen) 2956 { 2957 int i, j = 0; 2958 int plen = 0; /* length of skb->head fragment */ 2959 int ret; 2960 struct page *page; 2961 unsigned int offset; 2962 2963 BUG_ON(!from->head_frag && !hlen); 2964 2965 /* dont bother with small payloads */ 2966 if (len <= skb_tailroom(to)) 2967 return skb_copy_bits(from, 0, skb_put(to, len), len); 2968 2969 if (hlen) { 2970 ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen); 2971 if (unlikely(ret)) 2972 return ret; 2973 len -= hlen; 2974 } else { 2975 plen = min_t(int, skb_headlen(from), len); 2976 if (plen) { 2977 page = virt_to_head_page(from->head); 2978 offset = from->data - (unsigned char *)page_address(page); 2979 __skb_fill_page_desc(to, 0, page, offset, plen); 2980 get_page(page); 2981 j = 1; 2982 len -= plen; 2983 } 2984 } 2985 2986 to->truesize += len + plen; 2987 to->len += len + plen; 2988 to->data_len += len + plen; 2989 2990 if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) { 2991 skb_tx_error(from); 2992 return -ENOMEM; 2993 } 2994 skb_zerocopy_clone(to, from, GFP_ATOMIC); 2995 2996 for (i = 0; i < skb_shinfo(from)->nr_frags; i++) { 2997 int size; 2998 2999 if (!len) 3000 break; 3001 skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i]; 3002 size = min_t(int, skb_frag_size(&skb_shinfo(to)->frags[j]), 3003 len); 3004 skb_frag_size_set(&skb_shinfo(to)->frags[j], size); 3005 len -= size; 3006 skb_frag_ref(to, j); 3007 j++; 3008 } 3009 skb_shinfo(to)->nr_frags = j; 3010 3011 return 0; 3012 } 3013 EXPORT_SYMBOL_GPL(skb_zerocopy); 3014 3015 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to) 3016 { 3017 __wsum csum; 3018 long csstart; 3019 3020 if (skb->ip_summed == CHECKSUM_PARTIAL) 3021 csstart = skb_checksum_start_offset(skb); 3022 else 3023 csstart = skb_headlen(skb); 3024 3025 BUG_ON(csstart > skb_headlen(skb)); 3026 3027 skb_copy_from_linear_data(skb, to, csstart); 3028 3029 csum = 0; 3030 if (csstart != skb->len) 3031 csum = skb_copy_and_csum_bits(skb, csstart, to + csstart, 3032 skb->len - csstart); 3033 3034 if (skb->ip_summed == CHECKSUM_PARTIAL) { 3035 long csstuff = csstart + skb->csum_offset; 3036 3037 *((__sum16 *)(to + csstuff)) = csum_fold(csum); 3038 } 3039 } 3040 EXPORT_SYMBOL(skb_copy_and_csum_dev); 3041 3042 /** 3043 * skb_dequeue - remove from the head of the queue 3044 * @list: list to dequeue from 3045 * 3046 * Remove the head of the list. The list lock is taken so the function 3047 * may be used safely with other locking list functions. The head item is 3048 * returned or %NULL if the list is empty. 3049 */ 3050 3051 struct sk_buff *skb_dequeue(struct sk_buff_head *list) 3052 { 3053 unsigned long flags; 3054 struct sk_buff *result; 3055 3056 spin_lock_irqsave(&list->lock, flags); 3057 result = __skb_dequeue(list); 3058 spin_unlock_irqrestore(&list->lock, flags); 3059 return result; 3060 } 3061 EXPORT_SYMBOL(skb_dequeue); 3062 3063 /** 3064 * skb_dequeue_tail - remove from the tail of the queue 3065 * @list: list to dequeue from 3066 * 3067 * Remove the tail of the list. The list lock is taken so the function 3068 * may be used safely with other locking list functions. The tail item is 3069 * returned or %NULL if the list is empty. 3070 */ 3071 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list) 3072 { 3073 unsigned long flags; 3074 struct sk_buff *result; 3075 3076 spin_lock_irqsave(&list->lock, flags); 3077 result = __skb_dequeue_tail(list); 3078 spin_unlock_irqrestore(&list->lock, flags); 3079 return result; 3080 } 3081 EXPORT_SYMBOL(skb_dequeue_tail); 3082 3083 /** 3084 * skb_queue_purge - empty a list 3085 * @list: list to empty 3086 * 3087 * Delete all buffers on an &sk_buff list. Each buffer is removed from 3088 * the list and one reference dropped. This function takes the list 3089 * lock and is atomic with respect to other list locking functions. 3090 */ 3091 void skb_queue_purge(struct sk_buff_head *list) 3092 { 3093 struct sk_buff *skb; 3094 while ((skb = skb_dequeue(list)) != NULL) 3095 kfree_skb(skb); 3096 } 3097 EXPORT_SYMBOL(skb_queue_purge); 3098 3099 /** 3100 * skb_rbtree_purge - empty a skb rbtree 3101 * @root: root of the rbtree to empty 3102 * Return value: the sum of truesizes of all purged skbs. 3103 * 3104 * Delete all buffers on an &sk_buff rbtree. Each buffer is removed from 3105 * the list and one reference dropped. This function does not take 3106 * any lock. Synchronization should be handled by the caller (e.g., TCP 3107 * out-of-order queue is protected by the socket lock). 3108 */ 3109 unsigned int skb_rbtree_purge(struct rb_root *root) 3110 { 3111 struct rb_node *p = rb_first(root); 3112 unsigned int sum = 0; 3113 3114 while (p) { 3115 struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode); 3116 3117 p = rb_next(p); 3118 rb_erase(&skb->rbnode, root); 3119 sum += skb->truesize; 3120 kfree_skb(skb); 3121 } 3122 return sum; 3123 } 3124 3125 /** 3126 * skb_queue_head - queue a buffer at the list head 3127 * @list: list to use 3128 * @newsk: buffer to queue 3129 * 3130 * Queue a buffer at the start of the list. This function takes the 3131 * list lock and can be used safely with other locking &sk_buff functions 3132 * safely. 3133 * 3134 * A buffer cannot be placed on two lists at the same time. 3135 */ 3136 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk) 3137 { 3138 unsigned long flags; 3139 3140 spin_lock_irqsave(&list->lock, flags); 3141 __skb_queue_head(list, newsk); 3142 spin_unlock_irqrestore(&list->lock, flags); 3143 } 3144 EXPORT_SYMBOL(skb_queue_head); 3145 3146 /** 3147 * skb_queue_tail - queue a buffer at the list tail 3148 * @list: list to use 3149 * @newsk: buffer to queue 3150 * 3151 * Queue a buffer at the tail of the list. This function takes the 3152 * list lock and can be used safely with other locking &sk_buff functions 3153 * safely. 3154 * 3155 * A buffer cannot be placed on two lists at the same time. 3156 */ 3157 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk) 3158 { 3159 unsigned long flags; 3160 3161 spin_lock_irqsave(&list->lock, flags); 3162 __skb_queue_tail(list, newsk); 3163 spin_unlock_irqrestore(&list->lock, flags); 3164 } 3165 EXPORT_SYMBOL(skb_queue_tail); 3166 3167 /** 3168 * skb_unlink - remove a buffer from a list 3169 * @skb: buffer to remove 3170 * @list: list to use 3171 * 3172 * Remove a packet from a list. The list locks are taken and this 3173 * function is atomic with respect to other list locked calls 3174 * 3175 * You must know what list the SKB is on. 3176 */ 3177 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list) 3178 { 3179 unsigned long flags; 3180 3181 spin_lock_irqsave(&list->lock, flags); 3182 __skb_unlink(skb, list); 3183 spin_unlock_irqrestore(&list->lock, flags); 3184 } 3185 EXPORT_SYMBOL(skb_unlink); 3186 3187 /** 3188 * skb_append - append a buffer 3189 * @old: buffer to insert after 3190 * @newsk: buffer to insert 3191 * @list: list to use 3192 * 3193 * Place a packet after a given packet in a list. The list locks are taken 3194 * and this function is atomic with respect to other list locked calls. 3195 * A buffer cannot be placed on two lists at the same time. 3196 */ 3197 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list) 3198 { 3199 unsigned long flags; 3200 3201 spin_lock_irqsave(&list->lock, flags); 3202 __skb_queue_after(list, old, newsk); 3203 spin_unlock_irqrestore(&list->lock, flags); 3204 } 3205 EXPORT_SYMBOL(skb_append); 3206 3207 static inline void skb_split_inside_header(struct sk_buff *skb, 3208 struct sk_buff* skb1, 3209 const u32 len, const int pos) 3210 { 3211 int i; 3212 3213 skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len), 3214 pos - len); 3215 /* And move data appendix as is. */ 3216 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 3217 skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i]; 3218 3219 skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags; 3220 skb_shinfo(skb)->nr_frags = 0; 3221 skb1->data_len = skb->data_len; 3222 skb1->len += skb1->data_len; 3223 skb->data_len = 0; 3224 skb->len = len; 3225 skb_set_tail_pointer(skb, len); 3226 } 3227 3228 static inline void skb_split_no_header(struct sk_buff *skb, 3229 struct sk_buff* skb1, 3230 const u32 len, int pos) 3231 { 3232 int i, k = 0; 3233 const int nfrags = skb_shinfo(skb)->nr_frags; 3234 3235 skb_shinfo(skb)->nr_frags = 0; 3236 skb1->len = skb1->data_len = skb->len - len; 3237 skb->len = len; 3238 skb->data_len = len - pos; 3239 3240 for (i = 0; i < nfrags; i++) { 3241 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 3242 3243 if (pos + size > len) { 3244 skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i]; 3245 3246 if (pos < len) { 3247 /* Split frag. 3248 * We have two variants in this case: 3249 * 1. Move all the frag to the second 3250 * part, if it is possible. F.e. 3251 * this approach is mandatory for TUX, 3252 * where splitting is expensive. 3253 * 2. Split is accurately. We make this. 3254 */ 3255 skb_frag_ref(skb, i); 3256 skb_frag_off_add(&skb_shinfo(skb1)->frags[0], len - pos); 3257 skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos); 3258 skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos); 3259 skb_shinfo(skb)->nr_frags++; 3260 } 3261 k++; 3262 } else 3263 skb_shinfo(skb)->nr_frags++; 3264 pos += size; 3265 } 3266 skb_shinfo(skb1)->nr_frags = k; 3267 } 3268 3269 /** 3270 * skb_split - Split fragmented skb to two parts at length len. 3271 * @skb: the buffer to split 3272 * @skb1: the buffer to receive the second part 3273 * @len: new length for skb 3274 */ 3275 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len) 3276 { 3277 int pos = skb_headlen(skb); 3278 3279 skb_shinfo(skb1)->tx_flags |= skb_shinfo(skb)->tx_flags & 3280 SKBTX_SHARED_FRAG; 3281 skb_zerocopy_clone(skb1, skb, 0); 3282 if (len < pos) /* Split line is inside header. */ 3283 skb_split_inside_header(skb, skb1, len, pos); 3284 else /* Second chunk has no header, nothing to copy. */ 3285 skb_split_no_header(skb, skb1, len, pos); 3286 } 3287 EXPORT_SYMBOL(skb_split); 3288 3289 /* Shifting from/to a cloned skb is a no-go. 3290 * 3291 * Caller cannot keep skb_shinfo related pointers past calling here! 3292 */ 3293 static int skb_prepare_for_shift(struct sk_buff *skb) 3294 { 3295 return skb_cloned(skb) && pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 3296 } 3297 3298 /** 3299 * skb_shift - Shifts paged data partially from skb to another 3300 * @tgt: buffer into which tail data gets added 3301 * @skb: buffer from which the paged data comes from 3302 * @shiftlen: shift up to this many bytes 3303 * 3304 * Attempts to shift up to shiftlen worth of bytes, which may be less than 3305 * the length of the skb, from skb to tgt. Returns number bytes shifted. 3306 * It's up to caller to free skb if everything was shifted. 3307 * 3308 * If @tgt runs out of frags, the whole operation is aborted. 3309 * 3310 * Skb cannot include anything else but paged data while tgt is allowed 3311 * to have non-paged data as well. 3312 * 3313 * TODO: full sized shift could be optimized but that would need 3314 * specialized skb free'er to handle frags without up-to-date nr_frags. 3315 */ 3316 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen) 3317 { 3318 int from, to, merge, todo; 3319 skb_frag_t *fragfrom, *fragto; 3320 3321 BUG_ON(shiftlen > skb->len); 3322 3323 if (skb_headlen(skb)) 3324 return 0; 3325 if (skb_zcopy(tgt) || skb_zcopy(skb)) 3326 return 0; 3327 3328 todo = shiftlen; 3329 from = 0; 3330 to = skb_shinfo(tgt)->nr_frags; 3331 fragfrom = &skb_shinfo(skb)->frags[from]; 3332 3333 /* Actual merge is delayed until the point when we know we can 3334 * commit all, so that we don't have to undo partial changes 3335 */ 3336 if (!to || 3337 !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom), 3338 skb_frag_off(fragfrom))) { 3339 merge = -1; 3340 } else { 3341 merge = to - 1; 3342 3343 todo -= skb_frag_size(fragfrom); 3344 if (todo < 0) { 3345 if (skb_prepare_for_shift(skb) || 3346 skb_prepare_for_shift(tgt)) 3347 return 0; 3348 3349 /* All previous frag pointers might be stale! */ 3350 fragfrom = &skb_shinfo(skb)->frags[from]; 3351 fragto = &skb_shinfo(tgt)->frags[merge]; 3352 3353 skb_frag_size_add(fragto, shiftlen); 3354 skb_frag_size_sub(fragfrom, shiftlen); 3355 skb_frag_off_add(fragfrom, shiftlen); 3356 3357 goto onlymerged; 3358 } 3359 3360 from++; 3361 } 3362 3363 /* Skip full, not-fitting skb to avoid expensive operations */ 3364 if ((shiftlen == skb->len) && 3365 (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to)) 3366 return 0; 3367 3368 if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt)) 3369 return 0; 3370 3371 while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) { 3372 if (to == MAX_SKB_FRAGS) 3373 return 0; 3374 3375 fragfrom = &skb_shinfo(skb)->frags[from]; 3376 fragto = &skb_shinfo(tgt)->frags[to]; 3377 3378 if (todo >= skb_frag_size(fragfrom)) { 3379 *fragto = *fragfrom; 3380 todo -= skb_frag_size(fragfrom); 3381 from++; 3382 to++; 3383 3384 } else { 3385 __skb_frag_ref(fragfrom); 3386 skb_frag_page_copy(fragto, fragfrom); 3387 skb_frag_off_copy(fragto, fragfrom); 3388 skb_frag_size_set(fragto, todo); 3389 3390 skb_frag_off_add(fragfrom, todo); 3391 skb_frag_size_sub(fragfrom, todo); 3392 todo = 0; 3393 3394 to++; 3395 break; 3396 } 3397 } 3398 3399 /* Ready to "commit" this state change to tgt */ 3400 skb_shinfo(tgt)->nr_frags = to; 3401 3402 if (merge >= 0) { 3403 fragfrom = &skb_shinfo(skb)->frags[0]; 3404 fragto = &skb_shinfo(tgt)->frags[merge]; 3405 3406 skb_frag_size_add(fragto, skb_frag_size(fragfrom)); 3407 __skb_frag_unref(fragfrom); 3408 } 3409 3410 /* Reposition in the original skb */ 3411 to = 0; 3412 while (from < skb_shinfo(skb)->nr_frags) 3413 skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++]; 3414 skb_shinfo(skb)->nr_frags = to; 3415 3416 BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags); 3417 3418 onlymerged: 3419 /* Most likely the tgt won't ever need its checksum anymore, skb on 3420 * the other hand might need it if it needs to be resent 3421 */ 3422 tgt->ip_summed = CHECKSUM_PARTIAL; 3423 skb->ip_summed = CHECKSUM_PARTIAL; 3424 3425 /* Yak, is it really working this way? Some helper please? */ 3426 skb->len -= shiftlen; 3427 skb->data_len -= shiftlen; 3428 skb->truesize -= shiftlen; 3429 tgt->len += shiftlen; 3430 tgt->data_len += shiftlen; 3431 tgt->truesize += shiftlen; 3432 3433 return shiftlen; 3434 } 3435 3436 /** 3437 * skb_prepare_seq_read - Prepare a sequential read of skb data 3438 * @skb: the buffer to read 3439 * @from: lower offset of data to be read 3440 * @to: upper offset of data to be read 3441 * @st: state variable 3442 * 3443 * Initializes the specified state variable. Must be called before 3444 * invoking skb_seq_read() for the first time. 3445 */ 3446 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from, 3447 unsigned int to, struct skb_seq_state *st) 3448 { 3449 st->lower_offset = from; 3450 st->upper_offset = to; 3451 st->root_skb = st->cur_skb = skb; 3452 st->frag_idx = st->stepped_offset = 0; 3453 st->frag_data = NULL; 3454 st->frag_off = 0; 3455 } 3456 EXPORT_SYMBOL(skb_prepare_seq_read); 3457 3458 /** 3459 * skb_seq_read - Sequentially read skb data 3460 * @consumed: number of bytes consumed by the caller so far 3461 * @data: destination pointer for data to be returned 3462 * @st: state variable 3463 * 3464 * Reads a block of skb data at @consumed relative to the 3465 * lower offset specified to skb_prepare_seq_read(). Assigns 3466 * the head of the data block to @data and returns the length 3467 * of the block or 0 if the end of the skb data or the upper 3468 * offset has been reached. 3469 * 3470 * The caller is not required to consume all of the data 3471 * returned, i.e. @consumed is typically set to the number 3472 * of bytes already consumed and the next call to 3473 * skb_seq_read() will return the remaining part of the block. 3474 * 3475 * Note 1: The size of each block of data returned can be arbitrary, 3476 * this limitation is the cost for zerocopy sequential 3477 * reads of potentially non linear data. 3478 * 3479 * Note 2: Fragment lists within fragments are not implemented 3480 * at the moment, state->root_skb could be replaced with 3481 * a stack for this purpose. 3482 */ 3483 unsigned int skb_seq_read(unsigned int consumed, const u8 **data, 3484 struct skb_seq_state *st) 3485 { 3486 unsigned int block_limit, abs_offset = consumed + st->lower_offset; 3487 skb_frag_t *frag; 3488 3489 if (unlikely(abs_offset >= st->upper_offset)) { 3490 if (st->frag_data) { 3491 kunmap_atomic(st->frag_data); 3492 st->frag_data = NULL; 3493 } 3494 return 0; 3495 } 3496 3497 next_skb: 3498 block_limit = skb_headlen(st->cur_skb) + st->stepped_offset; 3499 3500 if (abs_offset < block_limit && !st->frag_data) { 3501 *data = st->cur_skb->data + (abs_offset - st->stepped_offset); 3502 return block_limit - abs_offset; 3503 } 3504 3505 if (st->frag_idx == 0 && !st->frag_data) 3506 st->stepped_offset += skb_headlen(st->cur_skb); 3507 3508 while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) { 3509 unsigned int pg_idx, pg_off, pg_sz; 3510 3511 frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx]; 3512 3513 pg_idx = 0; 3514 pg_off = skb_frag_off(frag); 3515 pg_sz = skb_frag_size(frag); 3516 3517 if (skb_frag_must_loop(skb_frag_page(frag))) { 3518 pg_idx = (pg_off + st->frag_off) >> PAGE_SHIFT; 3519 pg_off = offset_in_page(pg_off + st->frag_off); 3520 pg_sz = min_t(unsigned int, pg_sz - st->frag_off, 3521 PAGE_SIZE - pg_off); 3522 } 3523 3524 block_limit = pg_sz + st->stepped_offset; 3525 if (abs_offset < block_limit) { 3526 if (!st->frag_data) 3527 st->frag_data = kmap_atomic(skb_frag_page(frag) + pg_idx); 3528 3529 *data = (u8 *)st->frag_data + pg_off + 3530 (abs_offset - st->stepped_offset); 3531 3532 return block_limit - abs_offset; 3533 } 3534 3535 if (st->frag_data) { 3536 kunmap_atomic(st->frag_data); 3537 st->frag_data = NULL; 3538 } 3539 3540 st->stepped_offset += pg_sz; 3541 st->frag_off += pg_sz; 3542 if (st->frag_off == skb_frag_size(frag)) { 3543 st->frag_off = 0; 3544 st->frag_idx++; 3545 } 3546 } 3547 3548 if (st->frag_data) { 3549 kunmap_atomic(st->frag_data); 3550 st->frag_data = NULL; 3551 } 3552 3553 if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) { 3554 st->cur_skb = skb_shinfo(st->root_skb)->frag_list; 3555 st->frag_idx = 0; 3556 goto next_skb; 3557 } else if (st->cur_skb->next) { 3558 st->cur_skb = st->cur_skb->next; 3559 st->frag_idx = 0; 3560 goto next_skb; 3561 } 3562 3563 return 0; 3564 } 3565 EXPORT_SYMBOL(skb_seq_read); 3566 3567 /** 3568 * skb_abort_seq_read - Abort a sequential read of skb data 3569 * @st: state variable 3570 * 3571 * Must be called if skb_seq_read() was not called until it 3572 * returned 0. 3573 */ 3574 void skb_abort_seq_read(struct skb_seq_state *st) 3575 { 3576 if (st->frag_data) 3577 kunmap_atomic(st->frag_data); 3578 } 3579 EXPORT_SYMBOL(skb_abort_seq_read); 3580 3581 #define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb)) 3582 3583 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text, 3584 struct ts_config *conf, 3585 struct ts_state *state) 3586 { 3587 return skb_seq_read(offset, text, TS_SKB_CB(state)); 3588 } 3589 3590 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state) 3591 { 3592 skb_abort_seq_read(TS_SKB_CB(state)); 3593 } 3594 3595 /** 3596 * skb_find_text - Find a text pattern in skb data 3597 * @skb: the buffer to look in 3598 * @from: search offset 3599 * @to: search limit 3600 * @config: textsearch configuration 3601 * 3602 * Finds a pattern in the skb data according to the specified 3603 * textsearch configuration. Use textsearch_next() to retrieve 3604 * subsequent occurrences of the pattern. Returns the offset 3605 * to the first occurrence or UINT_MAX if no match was found. 3606 */ 3607 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from, 3608 unsigned int to, struct ts_config *config) 3609 { 3610 struct ts_state state; 3611 unsigned int ret; 3612 3613 config->get_next_block = skb_ts_get_next_block; 3614 config->finish = skb_ts_finish; 3615 3616 skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state)); 3617 3618 ret = textsearch_find(config, &state); 3619 return (ret <= to - from ? ret : UINT_MAX); 3620 } 3621 EXPORT_SYMBOL(skb_find_text); 3622 3623 int skb_append_pagefrags(struct sk_buff *skb, struct page *page, 3624 int offset, size_t size) 3625 { 3626 int i = skb_shinfo(skb)->nr_frags; 3627 3628 if (skb_can_coalesce(skb, i, page, offset)) { 3629 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size); 3630 } else if (i < MAX_SKB_FRAGS) { 3631 get_page(page); 3632 skb_fill_page_desc(skb, i, page, offset, size); 3633 } else { 3634 return -EMSGSIZE; 3635 } 3636 3637 return 0; 3638 } 3639 EXPORT_SYMBOL_GPL(skb_append_pagefrags); 3640 3641 /** 3642 * skb_pull_rcsum - pull skb and update receive checksum 3643 * @skb: buffer to update 3644 * @len: length of data pulled 3645 * 3646 * This function performs an skb_pull on the packet and updates 3647 * the CHECKSUM_COMPLETE checksum. It should be used on 3648 * receive path processing instead of skb_pull unless you know 3649 * that the checksum difference is zero (e.g., a valid IP header) 3650 * or you are setting ip_summed to CHECKSUM_NONE. 3651 */ 3652 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len) 3653 { 3654 unsigned char *data = skb->data; 3655 3656 BUG_ON(len > skb->len); 3657 __skb_pull(skb, len); 3658 skb_postpull_rcsum(skb, data, len); 3659 return skb->data; 3660 } 3661 EXPORT_SYMBOL_GPL(skb_pull_rcsum); 3662 3663 static inline skb_frag_t skb_head_frag_to_page_desc(struct sk_buff *frag_skb) 3664 { 3665 skb_frag_t head_frag; 3666 struct page *page; 3667 3668 page = virt_to_head_page(frag_skb->head); 3669 __skb_frag_set_page(&head_frag, page); 3670 skb_frag_off_set(&head_frag, frag_skb->data - 3671 (unsigned char *)page_address(page)); 3672 skb_frag_size_set(&head_frag, skb_headlen(frag_skb)); 3673 return head_frag; 3674 } 3675 3676 struct sk_buff *skb_segment_list(struct sk_buff *skb, 3677 netdev_features_t features, 3678 unsigned int offset) 3679 { 3680 struct sk_buff *list_skb = skb_shinfo(skb)->frag_list; 3681 unsigned int tnl_hlen = skb_tnl_header_len(skb); 3682 unsigned int delta_truesize = 0; 3683 unsigned int delta_len = 0; 3684 struct sk_buff *tail = NULL; 3685 struct sk_buff *nskb, *tmp; 3686 int err; 3687 3688 skb_push(skb, -skb_network_offset(skb) + offset); 3689 3690 skb_shinfo(skb)->frag_list = NULL; 3691 3692 do { 3693 nskb = list_skb; 3694 list_skb = list_skb->next; 3695 3696 err = 0; 3697 if (skb_shared(nskb)) { 3698 tmp = skb_clone(nskb, GFP_ATOMIC); 3699 if (tmp) { 3700 consume_skb(nskb); 3701 nskb = tmp; 3702 err = skb_unclone(nskb, GFP_ATOMIC); 3703 } else { 3704 err = -ENOMEM; 3705 } 3706 } 3707 3708 if (!tail) 3709 skb->next = nskb; 3710 else 3711 tail->next = nskb; 3712 3713 if (unlikely(err)) { 3714 nskb->next = list_skb; 3715 goto err_linearize; 3716 } 3717 3718 tail = nskb; 3719 3720 delta_len += nskb->len; 3721 delta_truesize += nskb->truesize; 3722 3723 skb_push(nskb, -skb_network_offset(nskb) + offset); 3724 3725 skb_release_head_state(nskb); 3726 __copy_skb_header(nskb, skb); 3727 3728 skb_headers_offset_update(nskb, skb_headroom(nskb) - skb_headroom(skb)); 3729 skb_copy_from_linear_data_offset(skb, -tnl_hlen, 3730 nskb->data - tnl_hlen, 3731 offset + tnl_hlen); 3732 3733 if (skb_needs_linearize(nskb, features) && 3734 __skb_linearize(nskb)) 3735 goto err_linearize; 3736 3737 } while (list_skb); 3738 3739 skb->truesize = skb->truesize - delta_truesize; 3740 skb->data_len = skb->data_len - delta_len; 3741 skb->len = skb->len - delta_len; 3742 3743 skb_gso_reset(skb); 3744 3745 skb->prev = tail; 3746 3747 if (skb_needs_linearize(skb, features) && 3748 __skb_linearize(skb)) 3749 goto err_linearize; 3750 3751 skb_get(skb); 3752 3753 return skb; 3754 3755 err_linearize: 3756 kfree_skb_list(skb->next); 3757 skb->next = NULL; 3758 return ERR_PTR(-ENOMEM); 3759 } 3760 EXPORT_SYMBOL_GPL(skb_segment_list); 3761 3762 int skb_gro_receive_list(struct sk_buff *p, struct sk_buff *skb) 3763 { 3764 if (unlikely(p->len + skb->len >= 65536)) 3765 return -E2BIG; 3766 3767 if (NAPI_GRO_CB(p)->last == p) 3768 skb_shinfo(p)->frag_list = skb; 3769 else 3770 NAPI_GRO_CB(p)->last->next = skb; 3771 3772 skb_pull(skb, skb_gro_offset(skb)); 3773 3774 NAPI_GRO_CB(p)->last = skb; 3775 NAPI_GRO_CB(p)->count++; 3776 p->data_len += skb->len; 3777 p->truesize += skb->truesize; 3778 p->len += skb->len; 3779 3780 NAPI_GRO_CB(skb)->same_flow = 1; 3781 3782 return 0; 3783 } 3784 3785 /** 3786 * skb_segment - Perform protocol segmentation on skb. 3787 * @head_skb: buffer to segment 3788 * @features: features for the output path (see dev->features) 3789 * 3790 * This function performs segmentation on the given skb. It returns 3791 * a pointer to the first in a list of new skbs for the segments. 3792 * In case of error it returns ERR_PTR(err). 3793 */ 3794 struct sk_buff *skb_segment(struct sk_buff *head_skb, 3795 netdev_features_t features) 3796 { 3797 struct sk_buff *segs = NULL; 3798 struct sk_buff *tail = NULL; 3799 struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list; 3800 skb_frag_t *frag = skb_shinfo(head_skb)->frags; 3801 unsigned int mss = skb_shinfo(head_skb)->gso_size; 3802 unsigned int doffset = head_skb->data - skb_mac_header(head_skb); 3803 struct sk_buff *frag_skb = head_skb; 3804 unsigned int offset = doffset; 3805 unsigned int tnl_hlen = skb_tnl_header_len(head_skb); 3806 unsigned int partial_segs = 0; 3807 unsigned int headroom; 3808 unsigned int len = head_skb->len; 3809 __be16 proto; 3810 bool csum, sg; 3811 int nfrags = skb_shinfo(head_skb)->nr_frags; 3812 int err = -ENOMEM; 3813 int i = 0; 3814 int pos; 3815 3816 if (list_skb && !list_skb->head_frag && skb_headlen(list_skb) && 3817 (skb_shinfo(head_skb)->gso_type & SKB_GSO_DODGY)) { 3818 /* gso_size is untrusted, and we have a frag_list with a linear 3819 * non head_frag head. 3820 * 3821 * (we assume checking the first list_skb member suffices; 3822 * i.e if either of the list_skb members have non head_frag 3823 * head, then the first one has too). 3824 * 3825 * If head_skb's headlen does not fit requested gso_size, it 3826 * means that the frag_list members do NOT terminate on exact 3827 * gso_size boundaries. Hence we cannot perform skb_frag_t page 3828 * sharing. Therefore we must fallback to copying the frag_list 3829 * skbs; we do so by disabling SG. 3830 */ 3831 if (mss != GSO_BY_FRAGS && mss != skb_headlen(head_skb)) 3832 features &= ~NETIF_F_SG; 3833 } 3834 3835 __skb_push(head_skb, doffset); 3836 proto = skb_network_protocol(head_skb, NULL); 3837 if (unlikely(!proto)) 3838 return ERR_PTR(-EINVAL); 3839 3840 sg = !!(features & NETIF_F_SG); 3841 csum = !!can_checksum_protocol(features, proto); 3842 3843 if (sg && csum && (mss != GSO_BY_FRAGS)) { 3844 if (!(features & NETIF_F_GSO_PARTIAL)) { 3845 struct sk_buff *iter; 3846 unsigned int frag_len; 3847 3848 if (!list_skb || 3849 !net_gso_ok(features, skb_shinfo(head_skb)->gso_type)) 3850 goto normal; 3851 3852 /* If we get here then all the required 3853 * GSO features except frag_list are supported. 3854 * Try to split the SKB to multiple GSO SKBs 3855 * with no frag_list. 3856 * Currently we can do that only when the buffers don't 3857 * have a linear part and all the buffers except 3858 * the last are of the same length. 3859 */ 3860 frag_len = list_skb->len; 3861 skb_walk_frags(head_skb, iter) { 3862 if (frag_len != iter->len && iter->next) 3863 goto normal; 3864 if (skb_headlen(iter) && !iter->head_frag) 3865 goto normal; 3866 3867 len -= iter->len; 3868 } 3869 3870 if (len != frag_len) 3871 goto normal; 3872 } 3873 3874 /* GSO partial only requires that we trim off any excess that 3875 * doesn't fit into an MSS sized block, so take care of that 3876 * now. 3877 */ 3878 partial_segs = len / mss; 3879 if (partial_segs > 1) 3880 mss *= partial_segs; 3881 else 3882 partial_segs = 0; 3883 } 3884 3885 normal: 3886 headroom = skb_headroom(head_skb); 3887 pos = skb_headlen(head_skb); 3888 3889 do { 3890 struct sk_buff *nskb; 3891 skb_frag_t *nskb_frag; 3892 int hsize; 3893 int size; 3894 3895 if (unlikely(mss == GSO_BY_FRAGS)) { 3896 len = list_skb->len; 3897 } else { 3898 len = head_skb->len - offset; 3899 if (len > mss) 3900 len = mss; 3901 } 3902 3903 hsize = skb_headlen(head_skb) - offset; 3904 if (hsize < 0) 3905 hsize = 0; 3906 if (hsize > len || !sg) 3907 hsize = len; 3908 3909 if (!hsize && i >= nfrags && skb_headlen(list_skb) && 3910 (skb_headlen(list_skb) == len || sg)) { 3911 BUG_ON(skb_headlen(list_skb) > len); 3912 3913 i = 0; 3914 nfrags = skb_shinfo(list_skb)->nr_frags; 3915 frag = skb_shinfo(list_skb)->frags; 3916 frag_skb = list_skb; 3917 pos += skb_headlen(list_skb); 3918 3919 while (pos < offset + len) { 3920 BUG_ON(i >= nfrags); 3921 3922 size = skb_frag_size(frag); 3923 if (pos + size > offset + len) 3924 break; 3925 3926 i++; 3927 pos += size; 3928 frag++; 3929 } 3930 3931 nskb = skb_clone(list_skb, GFP_ATOMIC); 3932 list_skb = list_skb->next; 3933 3934 if (unlikely(!nskb)) 3935 goto err; 3936 3937 if (unlikely(pskb_trim(nskb, len))) { 3938 kfree_skb(nskb); 3939 goto err; 3940 } 3941 3942 hsize = skb_end_offset(nskb); 3943 if (skb_cow_head(nskb, doffset + headroom)) { 3944 kfree_skb(nskb); 3945 goto err; 3946 } 3947 3948 nskb->truesize += skb_end_offset(nskb) - hsize; 3949 skb_release_head_state(nskb); 3950 __skb_push(nskb, doffset); 3951 } else { 3952 nskb = __alloc_skb(hsize + doffset + headroom, 3953 GFP_ATOMIC, skb_alloc_rx_flag(head_skb), 3954 NUMA_NO_NODE); 3955 3956 if (unlikely(!nskb)) 3957 goto err; 3958 3959 skb_reserve(nskb, headroom); 3960 __skb_put(nskb, doffset); 3961 } 3962 3963 if (segs) 3964 tail->next = nskb; 3965 else 3966 segs = nskb; 3967 tail = nskb; 3968 3969 __copy_skb_header(nskb, head_skb); 3970 3971 skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom); 3972 skb_reset_mac_len(nskb); 3973 3974 skb_copy_from_linear_data_offset(head_skb, -tnl_hlen, 3975 nskb->data - tnl_hlen, 3976 doffset + tnl_hlen); 3977 3978 if (nskb->len == len + doffset) 3979 goto perform_csum_check; 3980 3981 if (!sg) { 3982 if (!csum) { 3983 if (!nskb->remcsum_offload) 3984 nskb->ip_summed = CHECKSUM_NONE; 3985 SKB_GSO_CB(nskb)->csum = 3986 skb_copy_and_csum_bits(head_skb, offset, 3987 skb_put(nskb, 3988 len), 3989 len); 3990 SKB_GSO_CB(nskb)->csum_start = 3991 skb_headroom(nskb) + doffset; 3992 } else { 3993 skb_copy_bits(head_skb, offset, 3994 skb_put(nskb, len), 3995 len); 3996 } 3997 continue; 3998 } 3999 4000 nskb_frag = skb_shinfo(nskb)->frags; 4001 4002 skb_copy_from_linear_data_offset(head_skb, offset, 4003 skb_put(nskb, hsize), hsize); 4004 4005 skb_shinfo(nskb)->tx_flags |= skb_shinfo(head_skb)->tx_flags & 4006 SKBTX_SHARED_FRAG; 4007 4008 if (skb_orphan_frags(frag_skb, GFP_ATOMIC) || 4009 skb_zerocopy_clone(nskb, frag_skb, GFP_ATOMIC)) 4010 goto err; 4011 4012 while (pos < offset + len) { 4013 if (i >= nfrags) { 4014 i = 0; 4015 nfrags = skb_shinfo(list_skb)->nr_frags; 4016 frag = skb_shinfo(list_skb)->frags; 4017 frag_skb = list_skb; 4018 if (!skb_headlen(list_skb)) { 4019 BUG_ON(!nfrags); 4020 } else { 4021 BUG_ON(!list_skb->head_frag); 4022 4023 /* to make room for head_frag. */ 4024 i--; 4025 frag--; 4026 } 4027 if (skb_orphan_frags(frag_skb, GFP_ATOMIC) || 4028 skb_zerocopy_clone(nskb, frag_skb, 4029 GFP_ATOMIC)) 4030 goto err; 4031 4032 list_skb = list_skb->next; 4033 } 4034 4035 if (unlikely(skb_shinfo(nskb)->nr_frags >= 4036 MAX_SKB_FRAGS)) { 4037 net_warn_ratelimited( 4038 "skb_segment: too many frags: %u %u\n", 4039 pos, mss); 4040 err = -EINVAL; 4041 goto err; 4042 } 4043 4044 *nskb_frag = (i < 0) ? skb_head_frag_to_page_desc(frag_skb) : *frag; 4045 __skb_frag_ref(nskb_frag); 4046 size = skb_frag_size(nskb_frag); 4047 4048 if (pos < offset) { 4049 skb_frag_off_add(nskb_frag, offset - pos); 4050 skb_frag_size_sub(nskb_frag, offset - pos); 4051 } 4052 4053 skb_shinfo(nskb)->nr_frags++; 4054 4055 if (pos + size <= offset + len) { 4056 i++; 4057 frag++; 4058 pos += size; 4059 } else { 4060 skb_frag_size_sub(nskb_frag, pos + size - (offset + len)); 4061 goto skip_fraglist; 4062 } 4063 4064 nskb_frag++; 4065 } 4066 4067 skip_fraglist: 4068 nskb->data_len = len - hsize; 4069 nskb->len += nskb->data_len; 4070 nskb->truesize += nskb->data_len; 4071 4072 perform_csum_check: 4073 if (!csum) { 4074 if (skb_has_shared_frag(nskb) && 4075 __skb_linearize(nskb)) 4076 goto err; 4077 4078 if (!nskb->remcsum_offload) 4079 nskb->ip_summed = CHECKSUM_NONE; 4080 SKB_GSO_CB(nskb)->csum = 4081 skb_checksum(nskb, doffset, 4082 nskb->len - doffset, 0); 4083 SKB_GSO_CB(nskb)->csum_start = 4084 skb_headroom(nskb) + doffset; 4085 } 4086 } while ((offset += len) < head_skb->len); 4087 4088 /* Some callers want to get the end of the list. 4089 * Put it in segs->prev to avoid walking the list. 4090 * (see validate_xmit_skb_list() for example) 4091 */ 4092 segs->prev = tail; 4093 4094 if (partial_segs) { 4095 struct sk_buff *iter; 4096 int type = skb_shinfo(head_skb)->gso_type; 4097 unsigned short gso_size = skb_shinfo(head_skb)->gso_size; 4098 4099 /* Update type to add partial and then remove dodgy if set */ 4100 type |= (features & NETIF_F_GSO_PARTIAL) / NETIF_F_GSO_PARTIAL * SKB_GSO_PARTIAL; 4101 type &= ~SKB_GSO_DODGY; 4102 4103 /* Update GSO info and prepare to start updating headers on 4104 * our way back down the stack of protocols. 4105 */ 4106 for (iter = segs; iter; iter = iter->next) { 4107 skb_shinfo(iter)->gso_size = gso_size; 4108 skb_shinfo(iter)->gso_segs = partial_segs; 4109 skb_shinfo(iter)->gso_type = type; 4110 SKB_GSO_CB(iter)->data_offset = skb_headroom(iter) + doffset; 4111 } 4112 4113 if (tail->len - doffset <= gso_size) 4114 skb_shinfo(tail)->gso_size = 0; 4115 else if (tail != segs) 4116 skb_shinfo(tail)->gso_segs = DIV_ROUND_UP(tail->len - doffset, gso_size); 4117 } 4118 4119 /* Following permits correct backpressure, for protocols 4120 * using skb_set_owner_w(). 4121 * Idea is to tranfert ownership from head_skb to last segment. 4122 */ 4123 if (head_skb->destructor == sock_wfree) { 4124 swap(tail->truesize, head_skb->truesize); 4125 swap(tail->destructor, head_skb->destructor); 4126 swap(tail->sk, head_skb->sk); 4127 } 4128 return segs; 4129 4130 err: 4131 kfree_skb_list(segs); 4132 return ERR_PTR(err); 4133 } 4134 EXPORT_SYMBOL_GPL(skb_segment); 4135 4136 int skb_gro_receive(struct sk_buff *p, struct sk_buff *skb) 4137 { 4138 struct skb_shared_info *pinfo, *skbinfo = skb_shinfo(skb); 4139 unsigned int offset = skb_gro_offset(skb); 4140 unsigned int headlen = skb_headlen(skb); 4141 unsigned int len = skb_gro_len(skb); 4142 unsigned int delta_truesize; 4143 struct sk_buff *lp; 4144 4145 if (unlikely(p->len + len >= 65536 || NAPI_GRO_CB(skb)->flush)) 4146 return -E2BIG; 4147 4148 lp = NAPI_GRO_CB(p)->last; 4149 pinfo = skb_shinfo(lp); 4150 4151 if (headlen <= offset) { 4152 skb_frag_t *frag; 4153 skb_frag_t *frag2; 4154 int i = skbinfo->nr_frags; 4155 int nr_frags = pinfo->nr_frags + i; 4156 4157 if (nr_frags > MAX_SKB_FRAGS) 4158 goto merge; 4159 4160 offset -= headlen; 4161 pinfo->nr_frags = nr_frags; 4162 skbinfo->nr_frags = 0; 4163 4164 frag = pinfo->frags + nr_frags; 4165 frag2 = skbinfo->frags + i; 4166 do { 4167 *--frag = *--frag2; 4168 } while (--i); 4169 4170 skb_frag_off_add(frag, offset); 4171 skb_frag_size_sub(frag, offset); 4172 4173 /* all fragments truesize : remove (head size + sk_buff) */ 4174 delta_truesize = skb->truesize - 4175 SKB_TRUESIZE(skb_end_offset(skb)); 4176 4177 skb->truesize -= skb->data_len; 4178 skb->len -= skb->data_len; 4179 skb->data_len = 0; 4180 4181 NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE; 4182 goto done; 4183 } else if (skb->head_frag) { 4184 int nr_frags = pinfo->nr_frags; 4185 skb_frag_t *frag = pinfo->frags + nr_frags; 4186 struct page *page = virt_to_head_page(skb->head); 4187 unsigned int first_size = headlen - offset; 4188 unsigned int first_offset; 4189 4190 if (nr_frags + 1 + skbinfo->nr_frags > MAX_SKB_FRAGS) 4191 goto merge; 4192 4193 first_offset = skb->data - 4194 (unsigned char *)page_address(page) + 4195 offset; 4196 4197 pinfo->nr_frags = nr_frags + 1 + skbinfo->nr_frags; 4198 4199 __skb_frag_set_page(frag, page); 4200 skb_frag_off_set(frag, first_offset); 4201 skb_frag_size_set(frag, first_size); 4202 4203 memcpy(frag + 1, skbinfo->frags, sizeof(*frag) * skbinfo->nr_frags); 4204 /* We dont need to clear skbinfo->nr_frags here */ 4205 4206 delta_truesize = skb->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff)); 4207 NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE_STOLEN_HEAD; 4208 goto done; 4209 } 4210 4211 merge: 4212 delta_truesize = skb->truesize; 4213 if (offset > headlen) { 4214 unsigned int eat = offset - headlen; 4215 4216 skb_frag_off_add(&skbinfo->frags[0], eat); 4217 skb_frag_size_sub(&skbinfo->frags[0], eat); 4218 skb->data_len -= eat; 4219 skb->len -= eat; 4220 offset = headlen; 4221 } 4222 4223 __skb_pull(skb, offset); 4224 4225 if (NAPI_GRO_CB(p)->last == p) 4226 skb_shinfo(p)->frag_list = skb; 4227 else 4228 NAPI_GRO_CB(p)->last->next = skb; 4229 NAPI_GRO_CB(p)->last = skb; 4230 __skb_header_release(skb); 4231 lp = p; 4232 4233 done: 4234 NAPI_GRO_CB(p)->count++; 4235 p->data_len += len; 4236 p->truesize += delta_truesize; 4237 p->len += len; 4238 if (lp != p) { 4239 lp->data_len += len; 4240 lp->truesize += delta_truesize; 4241 lp->len += len; 4242 } 4243 NAPI_GRO_CB(skb)->same_flow = 1; 4244 return 0; 4245 } 4246 4247 #ifdef CONFIG_SKB_EXTENSIONS 4248 #define SKB_EXT_ALIGN_VALUE 8 4249 #define SKB_EXT_CHUNKSIZEOF(x) (ALIGN((sizeof(x)), SKB_EXT_ALIGN_VALUE) / SKB_EXT_ALIGN_VALUE) 4250 4251 static const u8 skb_ext_type_len[] = { 4252 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 4253 [SKB_EXT_BRIDGE_NF] = SKB_EXT_CHUNKSIZEOF(struct nf_bridge_info), 4254 #endif 4255 #ifdef CONFIG_XFRM 4256 [SKB_EXT_SEC_PATH] = SKB_EXT_CHUNKSIZEOF(struct sec_path), 4257 #endif 4258 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT) 4259 [TC_SKB_EXT] = SKB_EXT_CHUNKSIZEOF(struct tc_skb_ext), 4260 #endif 4261 #if IS_ENABLED(CONFIG_MPTCP) 4262 [SKB_EXT_MPTCP] = SKB_EXT_CHUNKSIZEOF(struct mptcp_ext), 4263 #endif 4264 }; 4265 4266 static __always_inline unsigned int skb_ext_total_length(void) 4267 { 4268 return SKB_EXT_CHUNKSIZEOF(struct skb_ext) + 4269 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 4270 skb_ext_type_len[SKB_EXT_BRIDGE_NF] + 4271 #endif 4272 #ifdef CONFIG_XFRM 4273 skb_ext_type_len[SKB_EXT_SEC_PATH] + 4274 #endif 4275 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT) 4276 skb_ext_type_len[TC_SKB_EXT] + 4277 #endif 4278 #if IS_ENABLED(CONFIG_MPTCP) 4279 skb_ext_type_len[SKB_EXT_MPTCP] + 4280 #endif 4281 0; 4282 } 4283 4284 static void skb_extensions_init(void) 4285 { 4286 BUILD_BUG_ON(SKB_EXT_NUM >= 8); 4287 BUILD_BUG_ON(skb_ext_total_length() > 255); 4288 4289 skbuff_ext_cache = kmem_cache_create("skbuff_ext_cache", 4290 SKB_EXT_ALIGN_VALUE * skb_ext_total_length(), 4291 0, 4292 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 4293 NULL); 4294 } 4295 #else 4296 static void skb_extensions_init(void) {} 4297 #endif 4298 4299 void __init skb_init(void) 4300 { 4301 skbuff_head_cache = kmem_cache_create_usercopy("skbuff_head_cache", 4302 sizeof(struct sk_buff), 4303 0, 4304 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 4305 offsetof(struct sk_buff, cb), 4306 sizeof_field(struct sk_buff, cb), 4307 NULL); 4308 skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache", 4309 sizeof(struct sk_buff_fclones), 4310 0, 4311 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 4312 NULL); 4313 skb_extensions_init(); 4314 } 4315 4316 static int 4317 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len, 4318 unsigned int recursion_level) 4319 { 4320 int start = skb_headlen(skb); 4321 int i, copy = start - offset; 4322 struct sk_buff *frag_iter; 4323 int elt = 0; 4324 4325 if (unlikely(recursion_level >= 24)) 4326 return -EMSGSIZE; 4327 4328 if (copy > 0) { 4329 if (copy > len) 4330 copy = len; 4331 sg_set_buf(sg, skb->data + offset, copy); 4332 elt++; 4333 if ((len -= copy) == 0) 4334 return elt; 4335 offset += copy; 4336 } 4337 4338 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 4339 int end; 4340 4341 WARN_ON(start > offset + len); 4342 4343 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]); 4344 if ((copy = end - offset) > 0) { 4345 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 4346 if (unlikely(elt && sg_is_last(&sg[elt - 1]))) 4347 return -EMSGSIZE; 4348 4349 if (copy > len) 4350 copy = len; 4351 sg_set_page(&sg[elt], skb_frag_page(frag), copy, 4352 skb_frag_off(frag) + offset - start); 4353 elt++; 4354 if (!(len -= copy)) 4355 return elt; 4356 offset += copy; 4357 } 4358 start = end; 4359 } 4360 4361 skb_walk_frags(skb, frag_iter) { 4362 int end, ret; 4363 4364 WARN_ON(start > offset + len); 4365 4366 end = start + frag_iter->len; 4367 if ((copy = end - offset) > 0) { 4368 if (unlikely(elt && sg_is_last(&sg[elt - 1]))) 4369 return -EMSGSIZE; 4370 4371 if (copy > len) 4372 copy = len; 4373 ret = __skb_to_sgvec(frag_iter, sg+elt, offset - start, 4374 copy, recursion_level + 1); 4375 if (unlikely(ret < 0)) 4376 return ret; 4377 elt += ret; 4378 if ((len -= copy) == 0) 4379 return elt; 4380 offset += copy; 4381 } 4382 start = end; 4383 } 4384 BUG_ON(len); 4385 return elt; 4386 } 4387 4388 /** 4389 * skb_to_sgvec - Fill a scatter-gather list from a socket buffer 4390 * @skb: Socket buffer containing the buffers to be mapped 4391 * @sg: The scatter-gather list to map into 4392 * @offset: The offset into the buffer's contents to start mapping 4393 * @len: Length of buffer space to be mapped 4394 * 4395 * Fill the specified scatter-gather list with mappings/pointers into a 4396 * region of the buffer space attached to a socket buffer. Returns either 4397 * the number of scatterlist items used, or -EMSGSIZE if the contents 4398 * could not fit. 4399 */ 4400 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len) 4401 { 4402 int nsg = __skb_to_sgvec(skb, sg, offset, len, 0); 4403 4404 if (nsg <= 0) 4405 return nsg; 4406 4407 sg_mark_end(&sg[nsg - 1]); 4408 4409 return nsg; 4410 } 4411 EXPORT_SYMBOL_GPL(skb_to_sgvec); 4412 4413 /* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given 4414 * sglist without mark the sg which contain last skb data as the end. 4415 * So the caller can mannipulate sg list as will when padding new data after 4416 * the first call without calling sg_unmark_end to expend sg list. 4417 * 4418 * Scenario to use skb_to_sgvec_nomark: 4419 * 1. sg_init_table 4420 * 2. skb_to_sgvec_nomark(payload1) 4421 * 3. skb_to_sgvec_nomark(payload2) 4422 * 4423 * This is equivalent to: 4424 * 1. sg_init_table 4425 * 2. skb_to_sgvec(payload1) 4426 * 3. sg_unmark_end 4427 * 4. skb_to_sgvec(payload2) 4428 * 4429 * When mapping mutilple payload conditionally, skb_to_sgvec_nomark 4430 * is more preferable. 4431 */ 4432 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg, 4433 int offset, int len) 4434 { 4435 return __skb_to_sgvec(skb, sg, offset, len, 0); 4436 } 4437 EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark); 4438 4439 4440 4441 /** 4442 * skb_cow_data - Check that a socket buffer's data buffers are writable 4443 * @skb: The socket buffer to check. 4444 * @tailbits: Amount of trailing space to be added 4445 * @trailer: Returned pointer to the skb where the @tailbits space begins 4446 * 4447 * Make sure that the data buffers attached to a socket buffer are 4448 * writable. If they are not, private copies are made of the data buffers 4449 * and the socket buffer is set to use these instead. 4450 * 4451 * If @tailbits is given, make sure that there is space to write @tailbits 4452 * bytes of data beyond current end of socket buffer. @trailer will be 4453 * set to point to the skb in which this space begins. 4454 * 4455 * The number of scatterlist elements required to completely map the 4456 * COW'd and extended socket buffer will be returned. 4457 */ 4458 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer) 4459 { 4460 int copyflag; 4461 int elt; 4462 struct sk_buff *skb1, **skb_p; 4463 4464 /* If skb is cloned or its head is paged, reallocate 4465 * head pulling out all the pages (pages are considered not writable 4466 * at the moment even if they are anonymous). 4467 */ 4468 if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) && 4469 !__pskb_pull_tail(skb, __skb_pagelen(skb))) 4470 return -ENOMEM; 4471 4472 /* Easy case. Most of packets will go this way. */ 4473 if (!skb_has_frag_list(skb)) { 4474 /* A little of trouble, not enough of space for trailer. 4475 * This should not happen, when stack is tuned to generate 4476 * good frames. OK, on miss we reallocate and reserve even more 4477 * space, 128 bytes is fair. */ 4478 4479 if (skb_tailroom(skb) < tailbits && 4480 pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC)) 4481 return -ENOMEM; 4482 4483 /* Voila! */ 4484 *trailer = skb; 4485 return 1; 4486 } 4487 4488 /* Misery. We are in troubles, going to mincer fragments... */ 4489 4490 elt = 1; 4491 skb_p = &skb_shinfo(skb)->frag_list; 4492 copyflag = 0; 4493 4494 while ((skb1 = *skb_p) != NULL) { 4495 int ntail = 0; 4496 4497 /* The fragment is partially pulled by someone, 4498 * this can happen on input. Copy it and everything 4499 * after it. */ 4500 4501 if (skb_shared(skb1)) 4502 copyflag = 1; 4503 4504 /* If the skb is the last, worry about trailer. */ 4505 4506 if (skb1->next == NULL && tailbits) { 4507 if (skb_shinfo(skb1)->nr_frags || 4508 skb_has_frag_list(skb1) || 4509 skb_tailroom(skb1) < tailbits) 4510 ntail = tailbits + 128; 4511 } 4512 4513 if (copyflag || 4514 skb_cloned(skb1) || 4515 ntail || 4516 skb_shinfo(skb1)->nr_frags || 4517 skb_has_frag_list(skb1)) { 4518 struct sk_buff *skb2; 4519 4520 /* Fuck, we are miserable poor guys... */ 4521 if (ntail == 0) 4522 skb2 = skb_copy(skb1, GFP_ATOMIC); 4523 else 4524 skb2 = skb_copy_expand(skb1, 4525 skb_headroom(skb1), 4526 ntail, 4527 GFP_ATOMIC); 4528 if (unlikely(skb2 == NULL)) 4529 return -ENOMEM; 4530 4531 if (skb1->sk) 4532 skb_set_owner_w(skb2, skb1->sk); 4533 4534 /* Looking around. Are we still alive? 4535 * OK, link new skb, drop old one */ 4536 4537 skb2->next = skb1->next; 4538 *skb_p = skb2; 4539 kfree_skb(skb1); 4540 skb1 = skb2; 4541 } 4542 elt++; 4543 *trailer = skb1; 4544 skb_p = &skb1->next; 4545 } 4546 4547 return elt; 4548 } 4549 EXPORT_SYMBOL_GPL(skb_cow_data); 4550 4551 static void sock_rmem_free(struct sk_buff *skb) 4552 { 4553 struct sock *sk = skb->sk; 4554 4555 atomic_sub(skb->truesize, &sk->sk_rmem_alloc); 4556 } 4557 4558 static void skb_set_err_queue(struct sk_buff *skb) 4559 { 4560 /* pkt_type of skbs received on local sockets is never PACKET_OUTGOING. 4561 * So, it is safe to (mis)use it to mark skbs on the error queue. 4562 */ 4563 skb->pkt_type = PACKET_OUTGOING; 4564 BUILD_BUG_ON(PACKET_OUTGOING == 0); 4565 } 4566 4567 /* 4568 * Note: We dont mem charge error packets (no sk_forward_alloc changes) 4569 */ 4570 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb) 4571 { 4572 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >= 4573 (unsigned int)READ_ONCE(sk->sk_rcvbuf)) 4574 return -ENOMEM; 4575 4576 skb_orphan(skb); 4577 skb->sk = sk; 4578 skb->destructor = sock_rmem_free; 4579 atomic_add(skb->truesize, &sk->sk_rmem_alloc); 4580 skb_set_err_queue(skb); 4581 4582 /* before exiting rcu section, make sure dst is refcounted */ 4583 skb_dst_force(skb); 4584 4585 skb_queue_tail(&sk->sk_error_queue, skb); 4586 if (!sock_flag(sk, SOCK_DEAD)) 4587 sk->sk_error_report(sk); 4588 return 0; 4589 } 4590 EXPORT_SYMBOL(sock_queue_err_skb); 4591 4592 static bool is_icmp_err_skb(const struct sk_buff *skb) 4593 { 4594 return skb && (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP || 4595 SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP6); 4596 } 4597 4598 struct sk_buff *sock_dequeue_err_skb(struct sock *sk) 4599 { 4600 struct sk_buff_head *q = &sk->sk_error_queue; 4601 struct sk_buff *skb, *skb_next = NULL; 4602 bool icmp_next = false; 4603 unsigned long flags; 4604 4605 spin_lock_irqsave(&q->lock, flags); 4606 skb = __skb_dequeue(q); 4607 if (skb && (skb_next = skb_peek(q))) { 4608 icmp_next = is_icmp_err_skb(skb_next); 4609 if (icmp_next) 4610 sk->sk_err = SKB_EXT_ERR(skb_next)->ee.ee_errno; 4611 } 4612 spin_unlock_irqrestore(&q->lock, flags); 4613 4614 if (is_icmp_err_skb(skb) && !icmp_next) 4615 sk->sk_err = 0; 4616 4617 if (skb_next) 4618 sk->sk_error_report(sk); 4619 4620 return skb; 4621 } 4622 EXPORT_SYMBOL(sock_dequeue_err_skb); 4623 4624 /** 4625 * skb_clone_sk - create clone of skb, and take reference to socket 4626 * @skb: the skb to clone 4627 * 4628 * This function creates a clone of a buffer that holds a reference on 4629 * sk_refcnt. Buffers created via this function are meant to be 4630 * returned using sock_queue_err_skb, or free via kfree_skb. 4631 * 4632 * When passing buffers allocated with this function to sock_queue_err_skb 4633 * it is necessary to wrap the call with sock_hold/sock_put in order to 4634 * prevent the socket from being released prior to being enqueued on 4635 * the sk_error_queue. 4636 */ 4637 struct sk_buff *skb_clone_sk(struct sk_buff *skb) 4638 { 4639 struct sock *sk = skb->sk; 4640 struct sk_buff *clone; 4641 4642 if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt)) 4643 return NULL; 4644 4645 clone = skb_clone(skb, GFP_ATOMIC); 4646 if (!clone) { 4647 sock_put(sk); 4648 return NULL; 4649 } 4650 4651 clone->sk = sk; 4652 clone->destructor = sock_efree; 4653 4654 return clone; 4655 } 4656 EXPORT_SYMBOL(skb_clone_sk); 4657 4658 static void __skb_complete_tx_timestamp(struct sk_buff *skb, 4659 struct sock *sk, 4660 int tstype, 4661 bool opt_stats) 4662 { 4663 struct sock_exterr_skb *serr; 4664 int err; 4665 4666 BUILD_BUG_ON(sizeof(struct sock_exterr_skb) > sizeof(skb->cb)); 4667 4668 serr = SKB_EXT_ERR(skb); 4669 memset(serr, 0, sizeof(*serr)); 4670 serr->ee.ee_errno = ENOMSG; 4671 serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING; 4672 serr->ee.ee_info = tstype; 4673 serr->opt_stats = opt_stats; 4674 serr->header.h4.iif = skb->dev ? skb->dev->ifindex : 0; 4675 if (sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID) { 4676 serr->ee.ee_data = skb_shinfo(skb)->tskey; 4677 if (sk->sk_protocol == IPPROTO_TCP && 4678 sk->sk_type == SOCK_STREAM) 4679 serr->ee.ee_data -= sk->sk_tskey; 4680 } 4681 4682 err = sock_queue_err_skb(sk, skb); 4683 4684 if (err) 4685 kfree_skb(skb); 4686 } 4687 4688 static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly) 4689 { 4690 bool ret; 4691 4692 if (likely(sysctl_tstamp_allow_data || tsonly)) 4693 return true; 4694 4695 read_lock_bh(&sk->sk_callback_lock); 4696 ret = sk->sk_socket && sk->sk_socket->file && 4697 file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW); 4698 read_unlock_bh(&sk->sk_callback_lock); 4699 return ret; 4700 } 4701 4702 void skb_complete_tx_timestamp(struct sk_buff *skb, 4703 struct skb_shared_hwtstamps *hwtstamps) 4704 { 4705 struct sock *sk = skb->sk; 4706 4707 if (!skb_may_tx_timestamp(sk, false)) 4708 goto err; 4709 4710 /* Take a reference to prevent skb_orphan() from freeing the socket, 4711 * but only if the socket refcount is not zero. 4712 */ 4713 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) { 4714 *skb_hwtstamps(skb) = *hwtstamps; 4715 __skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND, false); 4716 sock_put(sk); 4717 return; 4718 } 4719 4720 err: 4721 kfree_skb(skb); 4722 } 4723 EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp); 4724 4725 void __skb_tstamp_tx(struct sk_buff *orig_skb, 4726 struct skb_shared_hwtstamps *hwtstamps, 4727 struct sock *sk, int tstype) 4728 { 4729 struct sk_buff *skb; 4730 bool tsonly, opt_stats = false; 4731 4732 if (!sk) 4733 return; 4734 4735 if (!hwtstamps && !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TX_SWHW) && 4736 skb_shinfo(orig_skb)->tx_flags & SKBTX_IN_PROGRESS) 4737 return; 4738 4739 tsonly = sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TSONLY; 4740 if (!skb_may_tx_timestamp(sk, tsonly)) 4741 return; 4742 4743 if (tsonly) { 4744 #ifdef CONFIG_INET 4745 if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_STATS) && 4746 sk->sk_protocol == IPPROTO_TCP && 4747 sk->sk_type == SOCK_STREAM) { 4748 skb = tcp_get_timestamping_opt_stats(sk, orig_skb); 4749 opt_stats = true; 4750 } else 4751 #endif 4752 skb = alloc_skb(0, GFP_ATOMIC); 4753 } else { 4754 skb = skb_clone(orig_skb, GFP_ATOMIC); 4755 } 4756 if (!skb) 4757 return; 4758 4759 if (tsonly) { 4760 skb_shinfo(skb)->tx_flags |= skb_shinfo(orig_skb)->tx_flags & 4761 SKBTX_ANY_TSTAMP; 4762 skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey; 4763 } 4764 4765 if (hwtstamps) 4766 *skb_hwtstamps(skb) = *hwtstamps; 4767 else 4768 skb->tstamp = ktime_get_real(); 4769 4770 __skb_complete_tx_timestamp(skb, sk, tstype, opt_stats); 4771 } 4772 EXPORT_SYMBOL_GPL(__skb_tstamp_tx); 4773 4774 void skb_tstamp_tx(struct sk_buff *orig_skb, 4775 struct skb_shared_hwtstamps *hwtstamps) 4776 { 4777 return __skb_tstamp_tx(orig_skb, hwtstamps, orig_skb->sk, 4778 SCM_TSTAMP_SND); 4779 } 4780 EXPORT_SYMBOL_GPL(skb_tstamp_tx); 4781 4782 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked) 4783 { 4784 struct sock *sk = skb->sk; 4785 struct sock_exterr_skb *serr; 4786 int err = 1; 4787 4788 skb->wifi_acked_valid = 1; 4789 skb->wifi_acked = acked; 4790 4791 serr = SKB_EXT_ERR(skb); 4792 memset(serr, 0, sizeof(*serr)); 4793 serr->ee.ee_errno = ENOMSG; 4794 serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS; 4795 4796 /* Take a reference to prevent skb_orphan() from freeing the socket, 4797 * but only if the socket refcount is not zero. 4798 */ 4799 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) { 4800 err = sock_queue_err_skb(sk, skb); 4801 sock_put(sk); 4802 } 4803 if (err) 4804 kfree_skb(skb); 4805 } 4806 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack); 4807 4808 /** 4809 * skb_partial_csum_set - set up and verify partial csum values for packet 4810 * @skb: the skb to set 4811 * @start: the number of bytes after skb->data to start checksumming. 4812 * @off: the offset from start to place the checksum. 4813 * 4814 * For untrusted partially-checksummed packets, we need to make sure the values 4815 * for skb->csum_start and skb->csum_offset are valid so we don't oops. 4816 * 4817 * This function checks and sets those values and skb->ip_summed: if this 4818 * returns false you should drop the packet. 4819 */ 4820 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off) 4821 { 4822 u32 csum_end = (u32)start + (u32)off + sizeof(__sum16); 4823 u32 csum_start = skb_headroom(skb) + (u32)start; 4824 4825 if (unlikely(csum_start > U16_MAX || csum_end > skb_headlen(skb))) { 4826 net_warn_ratelimited("bad partial csum: csum=%u/%u headroom=%u headlen=%u\n", 4827 start, off, skb_headroom(skb), skb_headlen(skb)); 4828 return false; 4829 } 4830 skb->ip_summed = CHECKSUM_PARTIAL; 4831 skb->csum_start = csum_start; 4832 skb->csum_offset = off; 4833 skb_set_transport_header(skb, start); 4834 return true; 4835 } 4836 EXPORT_SYMBOL_GPL(skb_partial_csum_set); 4837 4838 static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len, 4839 unsigned int max) 4840 { 4841 if (skb_headlen(skb) >= len) 4842 return 0; 4843 4844 /* If we need to pullup then pullup to the max, so we 4845 * won't need to do it again. 4846 */ 4847 if (max > skb->len) 4848 max = skb->len; 4849 4850 if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL) 4851 return -ENOMEM; 4852 4853 if (skb_headlen(skb) < len) 4854 return -EPROTO; 4855 4856 return 0; 4857 } 4858 4859 #define MAX_TCP_HDR_LEN (15 * 4) 4860 4861 static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb, 4862 typeof(IPPROTO_IP) proto, 4863 unsigned int off) 4864 { 4865 int err; 4866 4867 switch (proto) { 4868 case IPPROTO_TCP: 4869 err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr), 4870 off + MAX_TCP_HDR_LEN); 4871 if (!err && !skb_partial_csum_set(skb, off, 4872 offsetof(struct tcphdr, 4873 check))) 4874 err = -EPROTO; 4875 return err ? ERR_PTR(err) : &tcp_hdr(skb)->check; 4876 4877 case IPPROTO_UDP: 4878 err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr), 4879 off + sizeof(struct udphdr)); 4880 if (!err && !skb_partial_csum_set(skb, off, 4881 offsetof(struct udphdr, 4882 check))) 4883 err = -EPROTO; 4884 return err ? ERR_PTR(err) : &udp_hdr(skb)->check; 4885 } 4886 4887 return ERR_PTR(-EPROTO); 4888 } 4889 4890 /* This value should be large enough to cover a tagged ethernet header plus 4891 * maximally sized IP and TCP or UDP headers. 4892 */ 4893 #define MAX_IP_HDR_LEN 128 4894 4895 static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate) 4896 { 4897 unsigned int off; 4898 bool fragment; 4899 __sum16 *csum; 4900 int err; 4901 4902 fragment = false; 4903 4904 err = skb_maybe_pull_tail(skb, 4905 sizeof(struct iphdr), 4906 MAX_IP_HDR_LEN); 4907 if (err < 0) 4908 goto out; 4909 4910 if (ip_is_fragment(ip_hdr(skb))) 4911 fragment = true; 4912 4913 off = ip_hdrlen(skb); 4914 4915 err = -EPROTO; 4916 4917 if (fragment) 4918 goto out; 4919 4920 csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off); 4921 if (IS_ERR(csum)) 4922 return PTR_ERR(csum); 4923 4924 if (recalculate) 4925 *csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr, 4926 ip_hdr(skb)->daddr, 4927 skb->len - off, 4928 ip_hdr(skb)->protocol, 0); 4929 err = 0; 4930 4931 out: 4932 return err; 4933 } 4934 4935 /* This value should be large enough to cover a tagged ethernet header plus 4936 * an IPv6 header, all options, and a maximal TCP or UDP header. 4937 */ 4938 #define MAX_IPV6_HDR_LEN 256 4939 4940 #define OPT_HDR(type, skb, off) \ 4941 (type *)(skb_network_header(skb) + (off)) 4942 4943 static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate) 4944 { 4945 int err; 4946 u8 nexthdr; 4947 unsigned int off; 4948 unsigned int len; 4949 bool fragment; 4950 bool done; 4951 __sum16 *csum; 4952 4953 fragment = false; 4954 done = false; 4955 4956 off = sizeof(struct ipv6hdr); 4957 4958 err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN); 4959 if (err < 0) 4960 goto out; 4961 4962 nexthdr = ipv6_hdr(skb)->nexthdr; 4963 4964 len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len); 4965 while (off <= len && !done) { 4966 switch (nexthdr) { 4967 case IPPROTO_DSTOPTS: 4968 case IPPROTO_HOPOPTS: 4969 case IPPROTO_ROUTING: { 4970 struct ipv6_opt_hdr *hp; 4971 4972 err = skb_maybe_pull_tail(skb, 4973 off + 4974 sizeof(struct ipv6_opt_hdr), 4975 MAX_IPV6_HDR_LEN); 4976 if (err < 0) 4977 goto out; 4978 4979 hp = OPT_HDR(struct ipv6_opt_hdr, skb, off); 4980 nexthdr = hp->nexthdr; 4981 off += ipv6_optlen(hp); 4982 break; 4983 } 4984 case IPPROTO_AH: { 4985 struct ip_auth_hdr *hp; 4986 4987 err = skb_maybe_pull_tail(skb, 4988 off + 4989 sizeof(struct ip_auth_hdr), 4990 MAX_IPV6_HDR_LEN); 4991 if (err < 0) 4992 goto out; 4993 4994 hp = OPT_HDR(struct ip_auth_hdr, skb, off); 4995 nexthdr = hp->nexthdr; 4996 off += ipv6_authlen(hp); 4997 break; 4998 } 4999 case IPPROTO_FRAGMENT: { 5000 struct frag_hdr *hp; 5001 5002 err = skb_maybe_pull_tail(skb, 5003 off + 5004 sizeof(struct frag_hdr), 5005 MAX_IPV6_HDR_LEN); 5006 if (err < 0) 5007 goto out; 5008 5009 hp = OPT_HDR(struct frag_hdr, skb, off); 5010 5011 if (hp->frag_off & htons(IP6_OFFSET | IP6_MF)) 5012 fragment = true; 5013 5014 nexthdr = hp->nexthdr; 5015 off += sizeof(struct frag_hdr); 5016 break; 5017 } 5018 default: 5019 done = true; 5020 break; 5021 } 5022 } 5023 5024 err = -EPROTO; 5025 5026 if (!done || fragment) 5027 goto out; 5028 5029 csum = skb_checksum_setup_ip(skb, nexthdr, off); 5030 if (IS_ERR(csum)) 5031 return PTR_ERR(csum); 5032 5033 if (recalculate) 5034 *csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr, 5035 &ipv6_hdr(skb)->daddr, 5036 skb->len - off, nexthdr, 0); 5037 err = 0; 5038 5039 out: 5040 return err; 5041 } 5042 5043 /** 5044 * skb_checksum_setup - set up partial checksum offset 5045 * @skb: the skb to set up 5046 * @recalculate: if true the pseudo-header checksum will be recalculated 5047 */ 5048 int skb_checksum_setup(struct sk_buff *skb, bool recalculate) 5049 { 5050 int err; 5051 5052 switch (skb->protocol) { 5053 case htons(ETH_P_IP): 5054 err = skb_checksum_setup_ipv4(skb, recalculate); 5055 break; 5056 5057 case htons(ETH_P_IPV6): 5058 err = skb_checksum_setup_ipv6(skb, recalculate); 5059 break; 5060 5061 default: 5062 err = -EPROTO; 5063 break; 5064 } 5065 5066 return err; 5067 } 5068 EXPORT_SYMBOL(skb_checksum_setup); 5069 5070 /** 5071 * skb_checksum_maybe_trim - maybe trims the given skb 5072 * @skb: the skb to check 5073 * @transport_len: the data length beyond the network header 5074 * 5075 * Checks whether the given skb has data beyond the given transport length. 5076 * If so, returns a cloned skb trimmed to this transport length. 5077 * Otherwise returns the provided skb. Returns NULL in error cases 5078 * (e.g. transport_len exceeds skb length or out-of-memory). 5079 * 5080 * Caller needs to set the skb transport header and free any returned skb if it 5081 * differs from the provided skb. 5082 */ 5083 static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb, 5084 unsigned int transport_len) 5085 { 5086 struct sk_buff *skb_chk; 5087 unsigned int len = skb_transport_offset(skb) + transport_len; 5088 int ret; 5089 5090 if (skb->len < len) 5091 return NULL; 5092 else if (skb->len == len) 5093 return skb; 5094 5095 skb_chk = skb_clone(skb, GFP_ATOMIC); 5096 if (!skb_chk) 5097 return NULL; 5098 5099 ret = pskb_trim_rcsum(skb_chk, len); 5100 if (ret) { 5101 kfree_skb(skb_chk); 5102 return NULL; 5103 } 5104 5105 return skb_chk; 5106 } 5107 5108 /** 5109 * skb_checksum_trimmed - validate checksum of an skb 5110 * @skb: the skb to check 5111 * @transport_len: the data length beyond the network header 5112 * @skb_chkf: checksum function to use 5113 * 5114 * Applies the given checksum function skb_chkf to the provided skb. 5115 * Returns a checked and maybe trimmed skb. Returns NULL on error. 5116 * 5117 * If the skb has data beyond the given transport length, then a 5118 * trimmed & cloned skb is checked and returned. 5119 * 5120 * Caller needs to set the skb transport header and free any returned skb if it 5121 * differs from the provided skb. 5122 */ 5123 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb, 5124 unsigned int transport_len, 5125 __sum16(*skb_chkf)(struct sk_buff *skb)) 5126 { 5127 struct sk_buff *skb_chk; 5128 unsigned int offset = skb_transport_offset(skb); 5129 __sum16 ret; 5130 5131 skb_chk = skb_checksum_maybe_trim(skb, transport_len); 5132 if (!skb_chk) 5133 goto err; 5134 5135 if (!pskb_may_pull(skb_chk, offset)) 5136 goto err; 5137 5138 skb_pull_rcsum(skb_chk, offset); 5139 ret = skb_chkf(skb_chk); 5140 skb_push_rcsum(skb_chk, offset); 5141 5142 if (ret) 5143 goto err; 5144 5145 return skb_chk; 5146 5147 err: 5148 if (skb_chk && skb_chk != skb) 5149 kfree_skb(skb_chk); 5150 5151 return NULL; 5152 5153 } 5154 EXPORT_SYMBOL(skb_checksum_trimmed); 5155 5156 void __skb_warn_lro_forwarding(const struct sk_buff *skb) 5157 { 5158 net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n", 5159 skb->dev->name); 5160 } 5161 EXPORT_SYMBOL(__skb_warn_lro_forwarding); 5162 5163 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen) 5164 { 5165 if (head_stolen) { 5166 skb_release_head_state(skb); 5167 kmem_cache_free(skbuff_head_cache, skb); 5168 } else { 5169 __kfree_skb(skb); 5170 } 5171 } 5172 EXPORT_SYMBOL(kfree_skb_partial); 5173 5174 /** 5175 * skb_try_coalesce - try to merge skb to prior one 5176 * @to: prior buffer 5177 * @from: buffer to add 5178 * @fragstolen: pointer to boolean 5179 * @delta_truesize: how much more was allocated than was requested 5180 */ 5181 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from, 5182 bool *fragstolen, int *delta_truesize) 5183 { 5184 struct skb_shared_info *to_shinfo, *from_shinfo; 5185 int i, delta, len = from->len; 5186 5187 *fragstolen = false; 5188 5189 if (skb_cloned(to)) 5190 return false; 5191 5192 if (len <= skb_tailroom(to)) { 5193 if (len) 5194 BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len)); 5195 *delta_truesize = 0; 5196 return true; 5197 } 5198 5199 to_shinfo = skb_shinfo(to); 5200 from_shinfo = skb_shinfo(from); 5201 if (to_shinfo->frag_list || from_shinfo->frag_list) 5202 return false; 5203 if (skb_zcopy(to) || skb_zcopy(from)) 5204 return false; 5205 5206 if (skb_headlen(from) != 0) { 5207 struct page *page; 5208 unsigned int offset; 5209 5210 if (to_shinfo->nr_frags + 5211 from_shinfo->nr_frags >= MAX_SKB_FRAGS) 5212 return false; 5213 5214 if (skb_head_is_locked(from)) 5215 return false; 5216 5217 delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff)); 5218 5219 page = virt_to_head_page(from->head); 5220 offset = from->data - (unsigned char *)page_address(page); 5221 5222 skb_fill_page_desc(to, to_shinfo->nr_frags, 5223 page, offset, skb_headlen(from)); 5224 *fragstolen = true; 5225 } else { 5226 if (to_shinfo->nr_frags + 5227 from_shinfo->nr_frags > MAX_SKB_FRAGS) 5228 return false; 5229 5230 delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from)); 5231 } 5232 5233 WARN_ON_ONCE(delta < len); 5234 5235 memcpy(to_shinfo->frags + to_shinfo->nr_frags, 5236 from_shinfo->frags, 5237 from_shinfo->nr_frags * sizeof(skb_frag_t)); 5238 to_shinfo->nr_frags += from_shinfo->nr_frags; 5239 5240 if (!skb_cloned(from)) 5241 from_shinfo->nr_frags = 0; 5242 5243 /* if the skb is not cloned this does nothing 5244 * since we set nr_frags to 0. 5245 */ 5246 for (i = 0; i < from_shinfo->nr_frags; i++) 5247 __skb_frag_ref(&from_shinfo->frags[i]); 5248 5249 to->truesize += delta; 5250 to->len += len; 5251 to->data_len += len; 5252 5253 *delta_truesize = delta; 5254 return true; 5255 } 5256 EXPORT_SYMBOL(skb_try_coalesce); 5257 5258 /** 5259 * skb_scrub_packet - scrub an skb 5260 * 5261 * @skb: buffer to clean 5262 * @xnet: packet is crossing netns 5263 * 5264 * skb_scrub_packet can be used after encapsulating or decapsulting a packet 5265 * into/from a tunnel. Some information have to be cleared during these 5266 * operations. 5267 * skb_scrub_packet can also be used to clean a skb before injecting it in 5268 * another namespace (@xnet == true). We have to clear all information in the 5269 * skb that could impact namespace isolation. 5270 */ 5271 void skb_scrub_packet(struct sk_buff *skb, bool xnet) 5272 { 5273 skb->pkt_type = PACKET_HOST; 5274 skb->skb_iif = 0; 5275 skb->ignore_df = 0; 5276 skb_dst_drop(skb); 5277 skb_ext_reset(skb); 5278 nf_reset_ct(skb); 5279 nf_reset_trace(skb); 5280 5281 #ifdef CONFIG_NET_SWITCHDEV 5282 skb->offload_fwd_mark = 0; 5283 skb->offload_l3_fwd_mark = 0; 5284 #endif 5285 5286 if (!xnet) 5287 return; 5288 5289 ipvs_reset(skb); 5290 skb->mark = 0; 5291 skb->tstamp = 0; 5292 } 5293 EXPORT_SYMBOL_GPL(skb_scrub_packet); 5294 5295 /** 5296 * skb_gso_transport_seglen - Return length of individual segments of a gso packet 5297 * 5298 * @skb: GSO skb 5299 * 5300 * skb_gso_transport_seglen is used to determine the real size of the 5301 * individual segments, including Layer4 headers (TCP/UDP). 5302 * 5303 * The MAC/L2 or network (IP, IPv6) headers are not accounted for. 5304 */ 5305 static unsigned int skb_gso_transport_seglen(const struct sk_buff *skb) 5306 { 5307 const struct skb_shared_info *shinfo = skb_shinfo(skb); 5308 unsigned int thlen = 0; 5309 5310 if (skb->encapsulation) { 5311 thlen = skb_inner_transport_header(skb) - 5312 skb_transport_header(skb); 5313 5314 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) 5315 thlen += inner_tcp_hdrlen(skb); 5316 } else if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) { 5317 thlen = tcp_hdrlen(skb); 5318 } else if (unlikely(skb_is_gso_sctp(skb))) { 5319 thlen = sizeof(struct sctphdr); 5320 } else if (shinfo->gso_type & SKB_GSO_UDP_L4) { 5321 thlen = sizeof(struct udphdr); 5322 } 5323 /* UFO sets gso_size to the size of the fragmentation 5324 * payload, i.e. the size of the L4 (UDP) header is already 5325 * accounted for. 5326 */ 5327 return thlen + shinfo->gso_size; 5328 } 5329 5330 /** 5331 * skb_gso_network_seglen - Return length of individual segments of a gso packet 5332 * 5333 * @skb: GSO skb 5334 * 5335 * skb_gso_network_seglen is used to determine the real size of the 5336 * individual segments, including Layer3 (IP, IPv6) and L4 headers (TCP/UDP). 5337 * 5338 * The MAC/L2 header is not accounted for. 5339 */ 5340 static unsigned int skb_gso_network_seglen(const struct sk_buff *skb) 5341 { 5342 unsigned int hdr_len = skb_transport_header(skb) - 5343 skb_network_header(skb); 5344 5345 return hdr_len + skb_gso_transport_seglen(skb); 5346 } 5347 5348 /** 5349 * skb_gso_mac_seglen - Return length of individual segments of a gso packet 5350 * 5351 * @skb: GSO skb 5352 * 5353 * skb_gso_mac_seglen is used to determine the real size of the 5354 * individual segments, including MAC/L2, Layer3 (IP, IPv6) and L4 5355 * headers (TCP/UDP). 5356 */ 5357 static unsigned int skb_gso_mac_seglen(const struct sk_buff *skb) 5358 { 5359 unsigned int hdr_len = skb_transport_header(skb) - skb_mac_header(skb); 5360 5361 return hdr_len + skb_gso_transport_seglen(skb); 5362 } 5363 5364 /** 5365 * skb_gso_size_check - check the skb size, considering GSO_BY_FRAGS 5366 * 5367 * There are a couple of instances where we have a GSO skb, and we 5368 * want to determine what size it would be after it is segmented. 5369 * 5370 * We might want to check: 5371 * - L3+L4+payload size (e.g. IP forwarding) 5372 * - L2+L3+L4+payload size (e.g. sanity check before passing to driver) 5373 * 5374 * This is a helper to do that correctly considering GSO_BY_FRAGS. 5375 * 5376 * @skb: GSO skb 5377 * 5378 * @seg_len: The segmented length (from skb_gso_*_seglen). In the 5379 * GSO_BY_FRAGS case this will be [header sizes + GSO_BY_FRAGS]. 5380 * 5381 * @max_len: The maximum permissible length. 5382 * 5383 * Returns true if the segmented length <= max length. 5384 */ 5385 static inline bool skb_gso_size_check(const struct sk_buff *skb, 5386 unsigned int seg_len, 5387 unsigned int max_len) { 5388 const struct skb_shared_info *shinfo = skb_shinfo(skb); 5389 const struct sk_buff *iter; 5390 5391 if (shinfo->gso_size != GSO_BY_FRAGS) 5392 return seg_len <= max_len; 5393 5394 /* Undo this so we can re-use header sizes */ 5395 seg_len -= GSO_BY_FRAGS; 5396 5397 skb_walk_frags(skb, iter) { 5398 if (seg_len + skb_headlen(iter) > max_len) 5399 return false; 5400 } 5401 5402 return true; 5403 } 5404 5405 /** 5406 * skb_gso_validate_network_len - Will a split GSO skb fit into a given MTU? 5407 * 5408 * @skb: GSO skb 5409 * @mtu: MTU to validate against 5410 * 5411 * skb_gso_validate_network_len validates if a given skb will fit a 5412 * wanted MTU once split. It considers L3 headers, L4 headers, and the 5413 * payload. 5414 */ 5415 bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu) 5416 { 5417 return skb_gso_size_check(skb, skb_gso_network_seglen(skb), mtu); 5418 } 5419 EXPORT_SYMBOL_GPL(skb_gso_validate_network_len); 5420 5421 /** 5422 * skb_gso_validate_mac_len - Will a split GSO skb fit in a given length? 5423 * 5424 * @skb: GSO skb 5425 * @len: length to validate against 5426 * 5427 * skb_gso_validate_mac_len validates if a given skb will fit a wanted 5428 * length once split, including L2, L3 and L4 headers and the payload. 5429 */ 5430 bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len) 5431 { 5432 return skb_gso_size_check(skb, skb_gso_mac_seglen(skb), len); 5433 } 5434 EXPORT_SYMBOL_GPL(skb_gso_validate_mac_len); 5435 5436 static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb) 5437 { 5438 int mac_len, meta_len; 5439 void *meta; 5440 5441 if (skb_cow(skb, skb_headroom(skb)) < 0) { 5442 kfree_skb(skb); 5443 return NULL; 5444 } 5445 5446 mac_len = skb->data - skb_mac_header(skb); 5447 if (likely(mac_len > VLAN_HLEN + ETH_TLEN)) { 5448 memmove(skb_mac_header(skb) + VLAN_HLEN, skb_mac_header(skb), 5449 mac_len - VLAN_HLEN - ETH_TLEN); 5450 } 5451 5452 meta_len = skb_metadata_len(skb); 5453 if (meta_len) { 5454 meta = skb_metadata_end(skb) - meta_len; 5455 memmove(meta + VLAN_HLEN, meta, meta_len); 5456 } 5457 5458 skb->mac_header += VLAN_HLEN; 5459 return skb; 5460 } 5461 5462 struct sk_buff *skb_vlan_untag(struct sk_buff *skb) 5463 { 5464 struct vlan_hdr *vhdr; 5465 u16 vlan_tci; 5466 5467 if (unlikely(skb_vlan_tag_present(skb))) { 5468 /* vlan_tci is already set-up so leave this for another time */ 5469 return skb; 5470 } 5471 5472 skb = skb_share_check(skb, GFP_ATOMIC); 5473 if (unlikely(!skb)) 5474 goto err_free; 5475 /* We may access the two bytes after vlan_hdr in vlan_set_encap_proto(). */ 5476 if (unlikely(!pskb_may_pull(skb, VLAN_HLEN + sizeof(unsigned short)))) 5477 goto err_free; 5478 5479 vhdr = (struct vlan_hdr *)skb->data; 5480 vlan_tci = ntohs(vhdr->h_vlan_TCI); 5481 __vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci); 5482 5483 skb_pull_rcsum(skb, VLAN_HLEN); 5484 vlan_set_encap_proto(skb, vhdr); 5485 5486 skb = skb_reorder_vlan_header(skb); 5487 if (unlikely(!skb)) 5488 goto err_free; 5489 5490 skb_reset_network_header(skb); 5491 if (!skb_transport_header_was_set(skb)) 5492 skb_reset_transport_header(skb); 5493 skb_reset_mac_len(skb); 5494 5495 return skb; 5496 5497 err_free: 5498 kfree_skb(skb); 5499 return NULL; 5500 } 5501 EXPORT_SYMBOL(skb_vlan_untag); 5502 5503 int skb_ensure_writable(struct sk_buff *skb, int write_len) 5504 { 5505 if (!pskb_may_pull(skb, write_len)) 5506 return -ENOMEM; 5507 5508 if (!skb_cloned(skb) || skb_clone_writable(skb, write_len)) 5509 return 0; 5510 5511 return pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 5512 } 5513 EXPORT_SYMBOL(skb_ensure_writable); 5514 5515 /* remove VLAN header from packet and update csum accordingly. 5516 * expects a non skb_vlan_tag_present skb with a vlan tag payload 5517 */ 5518 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci) 5519 { 5520 struct vlan_hdr *vhdr; 5521 int offset = skb->data - skb_mac_header(skb); 5522 int err; 5523 5524 if (WARN_ONCE(offset, 5525 "__skb_vlan_pop got skb with skb->data not at mac header (offset %d)\n", 5526 offset)) { 5527 return -EINVAL; 5528 } 5529 5530 err = skb_ensure_writable(skb, VLAN_ETH_HLEN); 5531 if (unlikely(err)) 5532 return err; 5533 5534 skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN); 5535 5536 vhdr = (struct vlan_hdr *)(skb->data + ETH_HLEN); 5537 *vlan_tci = ntohs(vhdr->h_vlan_TCI); 5538 5539 memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN); 5540 __skb_pull(skb, VLAN_HLEN); 5541 5542 vlan_set_encap_proto(skb, vhdr); 5543 skb->mac_header += VLAN_HLEN; 5544 5545 if (skb_network_offset(skb) < ETH_HLEN) 5546 skb_set_network_header(skb, ETH_HLEN); 5547 5548 skb_reset_mac_len(skb); 5549 5550 return err; 5551 } 5552 EXPORT_SYMBOL(__skb_vlan_pop); 5553 5554 /* Pop a vlan tag either from hwaccel or from payload. 5555 * Expects skb->data at mac header. 5556 */ 5557 int skb_vlan_pop(struct sk_buff *skb) 5558 { 5559 u16 vlan_tci; 5560 __be16 vlan_proto; 5561 int err; 5562 5563 if (likely(skb_vlan_tag_present(skb))) { 5564 __vlan_hwaccel_clear_tag(skb); 5565 } else { 5566 if (unlikely(!eth_type_vlan(skb->protocol))) 5567 return 0; 5568 5569 err = __skb_vlan_pop(skb, &vlan_tci); 5570 if (err) 5571 return err; 5572 } 5573 /* move next vlan tag to hw accel tag */ 5574 if (likely(!eth_type_vlan(skb->protocol))) 5575 return 0; 5576 5577 vlan_proto = skb->protocol; 5578 err = __skb_vlan_pop(skb, &vlan_tci); 5579 if (unlikely(err)) 5580 return err; 5581 5582 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci); 5583 return 0; 5584 } 5585 EXPORT_SYMBOL(skb_vlan_pop); 5586 5587 /* Push a vlan tag either into hwaccel or into payload (if hwaccel tag present). 5588 * Expects skb->data at mac header. 5589 */ 5590 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci) 5591 { 5592 if (skb_vlan_tag_present(skb)) { 5593 int offset = skb->data - skb_mac_header(skb); 5594 int err; 5595 5596 if (WARN_ONCE(offset, 5597 "skb_vlan_push got skb with skb->data not at mac header (offset %d)\n", 5598 offset)) { 5599 return -EINVAL; 5600 } 5601 5602 err = __vlan_insert_tag(skb, skb->vlan_proto, 5603 skb_vlan_tag_get(skb)); 5604 if (err) 5605 return err; 5606 5607 skb->protocol = skb->vlan_proto; 5608 skb->mac_len += VLAN_HLEN; 5609 5610 skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN); 5611 } 5612 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci); 5613 return 0; 5614 } 5615 EXPORT_SYMBOL(skb_vlan_push); 5616 5617 /** 5618 * skb_eth_pop() - Drop the Ethernet header at the head of a packet 5619 * 5620 * @skb: Socket buffer to modify 5621 * 5622 * Drop the Ethernet header of @skb. 5623 * 5624 * Expects that skb->data points to the mac header and that no VLAN tags are 5625 * present. 5626 * 5627 * Returns 0 on success, -errno otherwise. 5628 */ 5629 int skb_eth_pop(struct sk_buff *skb) 5630 { 5631 if (!pskb_may_pull(skb, ETH_HLEN) || skb_vlan_tagged(skb) || 5632 skb_network_offset(skb) < ETH_HLEN) 5633 return -EPROTO; 5634 5635 skb_pull_rcsum(skb, ETH_HLEN); 5636 skb_reset_mac_header(skb); 5637 skb_reset_mac_len(skb); 5638 5639 return 0; 5640 } 5641 EXPORT_SYMBOL(skb_eth_pop); 5642 5643 /** 5644 * skb_eth_push() - Add a new Ethernet header at the head of a packet 5645 * 5646 * @skb: Socket buffer to modify 5647 * @dst: Destination MAC address of the new header 5648 * @src: Source MAC address of the new header 5649 * 5650 * Prepend @skb with a new Ethernet header. 5651 * 5652 * Expects that skb->data points to the mac header, which must be empty. 5653 * 5654 * Returns 0 on success, -errno otherwise. 5655 */ 5656 int skb_eth_push(struct sk_buff *skb, const unsigned char *dst, 5657 const unsigned char *src) 5658 { 5659 struct ethhdr *eth; 5660 int err; 5661 5662 if (skb_network_offset(skb) || skb_vlan_tag_present(skb)) 5663 return -EPROTO; 5664 5665 err = skb_cow_head(skb, sizeof(*eth)); 5666 if (err < 0) 5667 return err; 5668 5669 skb_push(skb, sizeof(*eth)); 5670 skb_reset_mac_header(skb); 5671 skb_reset_mac_len(skb); 5672 5673 eth = eth_hdr(skb); 5674 ether_addr_copy(eth->h_dest, dst); 5675 ether_addr_copy(eth->h_source, src); 5676 eth->h_proto = skb->protocol; 5677 5678 skb_postpush_rcsum(skb, eth, sizeof(*eth)); 5679 5680 return 0; 5681 } 5682 EXPORT_SYMBOL(skb_eth_push); 5683 5684 /* Update the ethertype of hdr and the skb csum value if required. */ 5685 static void skb_mod_eth_type(struct sk_buff *skb, struct ethhdr *hdr, 5686 __be16 ethertype) 5687 { 5688 if (skb->ip_summed == CHECKSUM_COMPLETE) { 5689 __be16 diff[] = { ~hdr->h_proto, ethertype }; 5690 5691 skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum); 5692 } 5693 5694 hdr->h_proto = ethertype; 5695 } 5696 5697 /** 5698 * skb_mpls_push() - push a new MPLS header after mac_len bytes from start of 5699 * the packet 5700 * 5701 * @skb: buffer 5702 * @mpls_lse: MPLS label stack entry to push 5703 * @mpls_proto: ethertype of the new MPLS header (expects 0x8847 or 0x8848) 5704 * @mac_len: length of the MAC header 5705 * @ethernet: flag to indicate if the resulting packet after skb_mpls_push is 5706 * ethernet 5707 * 5708 * Expects skb->data at mac header. 5709 * 5710 * Returns 0 on success, -errno otherwise. 5711 */ 5712 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto, 5713 int mac_len, bool ethernet) 5714 { 5715 struct mpls_shim_hdr *lse; 5716 int err; 5717 5718 if (unlikely(!eth_p_mpls(mpls_proto))) 5719 return -EINVAL; 5720 5721 /* Networking stack does not allow simultaneous Tunnel and MPLS GSO. */ 5722 if (skb->encapsulation) 5723 return -EINVAL; 5724 5725 err = skb_cow_head(skb, MPLS_HLEN); 5726 if (unlikely(err)) 5727 return err; 5728 5729 if (!skb->inner_protocol) { 5730 skb_set_inner_network_header(skb, skb_network_offset(skb)); 5731 skb_set_inner_protocol(skb, skb->protocol); 5732 } 5733 5734 skb_push(skb, MPLS_HLEN); 5735 memmove(skb_mac_header(skb) - MPLS_HLEN, skb_mac_header(skb), 5736 mac_len); 5737 skb_reset_mac_header(skb); 5738 skb_set_network_header(skb, mac_len); 5739 skb_reset_mac_len(skb); 5740 5741 lse = mpls_hdr(skb); 5742 lse->label_stack_entry = mpls_lse; 5743 skb_postpush_rcsum(skb, lse, MPLS_HLEN); 5744 5745 if (ethernet && mac_len >= ETH_HLEN) 5746 skb_mod_eth_type(skb, eth_hdr(skb), mpls_proto); 5747 skb->protocol = mpls_proto; 5748 5749 return 0; 5750 } 5751 EXPORT_SYMBOL_GPL(skb_mpls_push); 5752 5753 /** 5754 * skb_mpls_pop() - pop the outermost MPLS header 5755 * 5756 * @skb: buffer 5757 * @next_proto: ethertype of header after popped MPLS header 5758 * @mac_len: length of the MAC header 5759 * @ethernet: flag to indicate if the packet is ethernet 5760 * 5761 * Expects skb->data at mac header. 5762 * 5763 * Returns 0 on success, -errno otherwise. 5764 */ 5765 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len, 5766 bool ethernet) 5767 { 5768 int err; 5769 5770 if (unlikely(!eth_p_mpls(skb->protocol))) 5771 return 0; 5772 5773 err = skb_ensure_writable(skb, mac_len + MPLS_HLEN); 5774 if (unlikely(err)) 5775 return err; 5776 5777 skb_postpull_rcsum(skb, mpls_hdr(skb), MPLS_HLEN); 5778 memmove(skb_mac_header(skb) + MPLS_HLEN, skb_mac_header(skb), 5779 mac_len); 5780 5781 __skb_pull(skb, MPLS_HLEN); 5782 skb_reset_mac_header(skb); 5783 skb_set_network_header(skb, mac_len); 5784 5785 if (ethernet && mac_len >= ETH_HLEN) { 5786 struct ethhdr *hdr; 5787 5788 /* use mpls_hdr() to get ethertype to account for VLANs. */ 5789 hdr = (struct ethhdr *)((void *)mpls_hdr(skb) - ETH_HLEN); 5790 skb_mod_eth_type(skb, hdr, next_proto); 5791 } 5792 skb->protocol = next_proto; 5793 5794 return 0; 5795 } 5796 EXPORT_SYMBOL_GPL(skb_mpls_pop); 5797 5798 /** 5799 * skb_mpls_update_lse() - modify outermost MPLS header and update csum 5800 * 5801 * @skb: buffer 5802 * @mpls_lse: new MPLS label stack entry to update to 5803 * 5804 * Expects skb->data at mac header. 5805 * 5806 * Returns 0 on success, -errno otherwise. 5807 */ 5808 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse) 5809 { 5810 int err; 5811 5812 if (unlikely(!eth_p_mpls(skb->protocol))) 5813 return -EINVAL; 5814 5815 err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN); 5816 if (unlikely(err)) 5817 return err; 5818 5819 if (skb->ip_summed == CHECKSUM_COMPLETE) { 5820 __be32 diff[] = { ~mpls_hdr(skb)->label_stack_entry, mpls_lse }; 5821 5822 skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum); 5823 } 5824 5825 mpls_hdr(skb)->label_stack_entry = mpls_lse; 5826 5827 return 0; 5828 } 5829 EXPORT_SYMBOL_GPL(skb_mpls_update_lse); 5830 5831 /** 5832 * skb_mpls_dec_ttl() - decrement the TTL of the outermost MPLS header 5833 * 5834 * @skb: buffer 5835 * 5836 * Expects skb->data at mac header. 5837 * 5838 * Returns 0 on success, -errno otherwise. 5839 */ 5840 int skb_mpls_dec_ttl(struct sk_buff *skb) 5841 { 5842 u32 lse; 5843 u8 ttl; 5844 5845 if (unlikely(!eth_p_mpls(skb->protocol))) 5846 return -EINVAL; 5847 5848 if (!pskb_may_pull(skb, skb_network_offset(skb) + MPLS_HLEN)) 5849 return -ENOMEM; 5850 5851 lse = be32_to_cpu(mpls_hdr(skb)->label_stack_entry); 5852 ttl = (lse & MPLS_LS_TTL_MASK) >> MPLS_LS_TTL_SHIFT; 5853 if (!--ttl) 5854 return -EINVAL; 5855 5856 lse &= ~MPLS_LS_TTL_MASK; 5857 lse |= ttl << MPLS_LS_TTL_SHIFT; 5858 5859 return skb_mpls_update_lse(skb, cpu_to_be32(lse)); 5860 } 5861 EXPORT_SYMBOL_GPL(skb_mpls_dec_ttl); 5862 5863 /** 5864 * alloc_skb_with_frags - allocate skb with page frags 5865 * 5866 * @header_len: size of linear part 5867 * @data_len: needed length in frags 5868 * @max_page_order: max page order desired. 5869 * @errcode: pointer to error code if any 5870 * @gfp_mask: allocation mask 5871 * 5872 * This can be used to allocate a paged skb, given a maximal order for frags. 5873 */ 5874 struct sk_buff *alloc_skb_with_frags(unsigned long header_len, 5875 unsigned long data_len, 5876 int max_page_order, 5877 int *errcode, 5878 gfp_t gfp_mask) 5879 { 5880 int npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT; 5881 unsigned long chunk; 5882 struct sk_buff *skb; 5883 struct page *page; 5884 int i; 5885 5886 *errcode = -EMSGSIZE; 5887 /* Note this test could be relaxed, if we succeed to allocate 5888 * high order pages... 5889 */ 5890 if (npages > MAX_SKB_FRAGS) 5891 return NULL; 5892 5893 *errcode = -ENOBUFS; 5894 skb = alloc_skb(header_len, gfp_mask); 5895 if (!skb) 5896 return NULL; 5897 5898 skb->truesize += npages << PAGE_SHIFT; 5899 5900 for (i = 0; npages > 0; i++) { 5901 int order = max_page_order; 5902 5903 while (order) { 5904 if (npages >= 1 << order) { 5905 page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) | 5906 __GFP_COMP | 5907 __GFP_NOWARN, 5908 order); 5909 if (page) 5910 goto fill_page; 5911 /* Do not retry other high order allocations */ 5912 order = 1; 5913 max_page_order = 0; 5914 } 5915 order--; 5916 } 5917 page = alloc_page(gfp_mask); 5918 if (!page) 5919 goto failure; 5920 fill_page: 5921 chunk = min_t(unsigned long, data_len, 5922 PAGE_SIZE << order); 5923 skb_fill_page_desc(skb, i, page, 0, chunk); 5924 data_len -= chunk; 5925 npages -= 1 << order; 5926 } 5927 return skb; 5928 5929 failure: 5930 kfree_skb(skb); 5931 return NULL; 5932 } 5933 EXPORT_SYMBOL(alloc_skb_with_frags); 5934 5935 /* carve out the first off bytes from skb when off < headlen */ 5936 static int pskb_carve_inside_header(struct sk_buff *skb, const u32 off, 5937 const int headlen, gfp_t gfp_mask) 5938 { 5939 int i; 5940 int size = skb_end_offset(skb); 5941 int new_hlen = headlen - off; 5942 u8 *data; 5943 5944 size = SKB_DATA_ALIGN(size); 5945 5946 if (skb_pfmemalloc(skb)) 5947 gfp_mask |= __GFP_MEMALLOC; 5948 data = kmalloc_reserve(size + 5949 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)), 5950 gfp_mask, NUMA_NO_NODE, NULL); 5951 if (!data) 5952 return -ENOMEM; 5953 5954 size = SKB_WITH_OVERHEAD(ksize(data)); 5955 5956 /* Copy real data, and all frags */ 5957 skb_copy_from_linear_data_offset(skb, off, data, new_hlen); 5958 skb->len -= off; 5959 5960 memcpy((struct skb_shared_info *)(data + size), 5961 skb_shinfo(skb), 5962 offsetof(struct skb_shared_info, 5963 frags[skb_shinfo(skb)->nr_frags])); 5964 if (skb_cloned(skb)) { 5965 /* drop the old head gracefully */ 5966 if (skb_orphan_frags(skb, gfp_mask)) { 5967 kfree(data); 5968 return -ENOMEM; 5969 } 5970 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 5971 skb_frag_ref(skb, i); 5972 if (skb_has_frag_list(skb)) 5973 skb_clone_fraglist(skb); 5974 skb_release_data(skb); 5975 } else { 5976 /* we can reuse existing recount- all we did was 5977 * relocate values 5978 */ 5979 skb_free_head(skb); 5980 } 5981 5982 skb->head = data; 5983 skb->data = data; 5984 skb->head_frag = 0; 5985 #ifdef NET_SKBUFF_DATA_USES_OFFSET 5986 skb->end = size; 5987 #else 5988 skb->end = skb->head + size; 5989 #endif 5990 skb_set_tail_pointer(skb, skb_headlen(skb)); 5991 skb_headers_offset_update(skb, 0); 5992 skb->cloned = 0; 5993 skb->hdr_len = 0; 5994 skb->nohdr = 0; 5995 atomic_set(&skb_shinfo(skb)->dataref, 1); 5996 5997 return 0; 5998 } 5999 6000 static int pskb_carve(struct sk_buff *skb, const u32 off, gfp_t gfp); 6001 6002 /* carve out the first eat bytes from skb's frag_list. May recurse into 6003 * pskb_carve() 6004 */ 6005 static int pskb_carve_frag_list(struct sk_buff *skb, 6006 struct skb_shared_info *shinfo, int eat, 6007 gfp_t gfp_mask) 6008 { 6009 struct sk_buff *list = shinfo->frag_list; 6010 struct sk_buff *clone = NULL; 6011 struct sk_buff *insp = NULL; 6012 6013 do { 6014 if (!list) { 6015 pr_err("Not enough bytes to eat. Want %d\n", eat); 6016 return -EFAULT; 6017 } 6018 if (list->len <= eat) { 6019 /* Eaten as whole. */ 6020 eat -= list->len; 6021 list = list->next; 6022 insp = list; 6023 } else { 6024 /* Eaten partially. */ 6025 if (skb_shared(list)) { 6026 clone = skb_clone(list, gfp_mask); 6027 if (!clone) 6028 return -ENOMEM; 6029 insp = list->next; 6030 list = clone; 6031 } else { 6032 /* This may be pulled without problems. */ 6033 insp = list; 6034 } 6035 if (pskb_carve(list, eat, gfp_mask) < 0) { 6036 kfree_skb(clone); 6037 return -ENOMEM; 6038 } 6039 break; 6040 } 6041 } while (eat); 6042 6043 /* Free pulled out fragments. */ 6044 while ((list = shinfo->frag_list) != insp) { 6045 shinfo->frag_list = list->next; 6046 kfree_skb(list); 6047 } 6048 /* And insert new clone at head. */ 6049 if (clone) { 6050 clone->next = list; 6051 shinfo->frag_list = clone; 6052 } 6053 return 0; 6054 } 6055 6056 /* carve off first len bytes from skb. Split line (off) is in the 6057 * non-linear part of skb 6058 */ 6059 static int pskb_carve_inside_nonlinear(struct sk_buff *skb, const u32 off, 6060 int pos, gfp_t gfp_mask) 6061 { 6062 int i, k = 0; 6063 int size = skb_end_offset(skb); 6064 u8 *data; 6065 const int nfrags = skb_shinfo(skb)->nr_frags; 6066 struct skb_shared_info *shinfo; 6067 6068 size = SKB_DATA_ALIGN(size); 6069 6070 if (skb_pfmemalloc(skb)) 6071 gfp_mask |= __GFP_MEMALLOC; 6072 data = kmalloc_reserve(size + 6073 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)), 6074 gfp_mask, NUMA_NO_NODE, NULL); 6075 if (!data) 6076 return -ENOMEM; 6077 6078 size = SKB_WITH_OVERHEAD(ksize(data)); 6079 6080 memcpy((struct skb_shared_info *)(data + size), 6081 skb_shinfo(skb), offsetof(struct skb_shared_info, frags[0])); 6082 if (skb_orphan_frags(skb, gfp_mask)) { 6083 kfree(data); 6084 return -ENOMEM; 6085 } 6086 shinfo = (struct skb_shared_info *)(data + size); 6087 for (i = 0; i < nfrags; i++) { 6088 int fsize = skb_frag_size(&skb_shinfo(skb)->frags[i]); 6089 6090 if (pos + fsize > off) { 6091 shinfo->frags[k] = skb_shinfo(skb)->frags[i]; 6092 6093 if (pos < off) { 6094 /* Split frag. 6095 * We have two variants in this case: 6096 * 1. Move all the frag to the second 6097 * part, if it is possible. F.e. 6098 * this approach is mandatory for TUX, 6099 * where splitting is expensive. 6100 * 2. Split is accurately. We make this. 6101 */ 6102 skb_frag_off_add(&shinfo->frags[0], off - pos); 6103 skb_frag_size_sub(&shinfo->frags[0], off - pos); 6104 } 6105 skb_frag_ref(skb, i); 6106 k++; 6107 } 6108 pos += fsize; 6109 } 6110 shinfo->nr_frags = k; 6111 if (skb_has_frag_list(skb)) 6112 skb_clone_fraglist(skb); 6113 6114 /* split line is in frag list */ 6115 if (k == 0 && pskb_carve_frag_list(skb, shinfo, off - pos, gfp_mask)) { 6116 /* skb_frag_unref() is not needed here as shinfo->nr_frags = 0. */ 6117 if (skb_has_frag_list(skb)) 6118 kfree_skb_list(skb_shinfo(skb)->frag_list); 6119 kfree(data); 6120 return -ENOMEM; 6121 } 6122 skb_release_data(skb); 6123 6124 skb->head = data; 6125 skb->head_frag = 0; 6126 skb->data = data; 6127 #ifdef NET_SKBUFF_DATA_USES_OFFSET 6128 skb->end = size; 6129 #else 6130 skb->end = skb->head + size; 6131 #endif 6132 skb_reset_tail_pointer(skb); 6133 skb_headers_offset_update(skb, 0); 6134 skb->cloned = 0; 6135 skb->hdr_len = 0; 6136 skb->nohdr = 0; 6137 skb->len -= off; 6138 skb->data_len = skb->len; 6139 atomic_set(&skb_shinfo(skb)->dataref, 1); 6140 return 0; 6141 } 6142 6143 /* remove len bytes from the beginning of the skb */ 6144 static int pskb_carve(struct sk_buff *skb, const u32 len, gfp_t gfp) 6145 { 6146 int headlen = skb_headlen(skb); 6147 6148 if (len < headlen) 6149 return pskb_carve_inside_header(skb, len, headlen, gfp); 6150 else 6151 return pskb_carve_inside_nonlinear(skb, len, headlen, gfp); 6152 } 6153 6154 /* Extract to_copy bytes starting at off from skb, and return this in 6155 * a new skb 6156 */ 6157 struct sk_buff *pskb_extract(struct sk_buff *skb, int off, 6158 int to_copy, gfp_t gfp) 6159 { 6160 struct sk_buff *clone = skb_clone(skb, gfp); 6161 6162 if (!clone) 6163 return NULL; 6164 6165 if (pskb_carve(clone, off, gfp) < 0 || 6166 pskb_trim(clone, to_copy)) { 6167 kfree_skb(clone); 6168 return NULL; 6169 } 6170 return clone; 6171 } 6172 EXPORT_SYMBOL(pskb_extract); 6173 6174 /** 6175 * skb_condense - try to get rid of fragments/frag_list if possible 6176 * @skb: buffer 6177 * 6178 * Can be used to save memory before skb is added to a busy queue. 6179 * If packet has bytes in frags and enough tail room in skb->head, 6180 * pull all of them, so that we can free the frags right now and adjust 6181 * truesize. 6182 * Notes: 6183 * We do not reallocate skb->head thus can not fail. 6184 * Caller must re-evaluate skb->truesize if needed. 6185 */ 6186 void skb_condense(struct sk_buff *skb) 6187 { 6188 if (skb->data_len) { 6189 if (skb->data_len > skb->end - skb->tail || 6190 skb_cloned(skb)) 6191 return; 6192 6193 /* Nice, we can free page frag(s) right now */ 6194 __pskb_pull_tail(skb, skb->data_len); 6195 } 6196 /* At this point, skb->truesize might be over estimated, 6197 * because skb had a fragment, and fragments do not tell 6198 * their truesize. 6199 * When we pulled its content into skb->head, fragment 6200 * was freed, but __pskb_pull_tail() could not possibly 6201 * adjust skb->truesize, not knowing the frag truesize. 6202 */ 6203 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb)); 6204 } 6205 6206 #ifdef CONFIG_SKB_EXTENSIONS 6207 static void *skb_ext_get_ptr(struct skb_ext *ext, enum skb_ext_id id) 6208 { 6209 return (void *)ext + (ext->offset[id] * SKB_EXT_ALIGN_VALUE); 6210 } 6211 6212 /** 6213 * __skb_ext_alloc - allocate a new skb extensions storage 6214 * 6215 * @flags: See kmalloc(). 6216 * 6217 * Returns the newly allocated pointer. The pointer can later attached to a 6218 * skb via __skb_ext_set(). 6219 * Note: caller must handle the skb_ext as an opaque data. 6220 */ 6221 struct skb_ext *__skb_ext_alloc(gfp_t flags) 6222 { 6223 struct skb_ext *new = kmem_cache_alloc(skbuff_ext_cache, flags); 6224 6225 if (new) { 6226 memset(new->offset, 0, sizeof(new->offset)); 6227 refcount_set(&new->refcnt, 1); 6228 } 6229 6230 return new; 6231 } 6232 6233 static struct skb_ext *skb_ext_maybe_cow(struct skb_ext *old, 6234 unsigned int old_active) 6235 { 6236 struct skb_ext *new; 6237 6238 if (refcount_read(&old->refcnt) == 1) 6239 return old; 6240 6241 new = kmem_cache_alloc(skbuff_ext_cache, GFP_ATOMIC); 6242 if (!new) 6243 return NULL; 6244 6245 memcpy(new, old, old->chunks * SKB_EXT_ALIGN_VALUE); 6246 refcount_set(&new->refcnt, 1); 6247 6248 #ifdef CONFIG_XFRM 6249 if (old_active & (1 << SKB_EXT_SEC_PATH)) { 6250 struct sec_path *sp = skb_ext_get_ptr(old, SKB_EXT_SEC_PATH); 6251 unsigned int i; 6252 6253 for (i = 0; i < sp->len; i++) 6254 xfrm_state_hold(sp->xvec[i]); 6255 } 6256 #endif 6257 __skb_ext_put(old); 6258 return new; 6259 } 6260 6261 /** 6262 * __skb_ext_set - attach the specified extension storage to this skb 6263 * @skb: buffer 6264 * @id: extension id 6265 * @ext: extension storage previously allocated via __skb_ext_alloc() 6266 * 6267 * Existing extensions, if any, are cleared. 6268 * 6269 * Returns the pointer to the extension. 6270 */ 6271 void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id, 6272 struct skb_ext *ext) 6273 { 6274 unsigned int newlen, newoff = SKB_EXT_CHUNKSIZEOF(*ext); 6275 6276 skb_ext_put(skb); 6277 newlen = newoff + skb_ext_type_len[id]; 6278 ext->chunks = newlen; 6279 ext->offset[id] = newoff; 6280 skb->extensions = ext; 6281 skb->active_extensions = 1 << id; 6282 return skb_ext_get_ptr(ext, id); 6283 } 6284 6285 /** 6286 * skb_ext_add - allocate space for given extension, COW if needed 6287 * @skb: buffer 6288 * @id: extension to allocate space for 6289 * 6290 * Allocates enough space for the given extension. 6291 * If the extension is already present, a pointer to that extension 6292 * is returned. 6293 * 6294 * If the skb was cloned, COW applies and the returned memory can be 6295 * modified without changing the extension space of clones buffers. 6296 * 6297 * Returns pointer to the extension or NULL on allocation failure. 6298 */ 6299 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id) 6300 { 6301 struct skb_ext *new, *old = NULL; 6302 unsigned int newlen, newoff; 6303 6304 if (skb->active_extensions) { 6305 old = skb->extensions; 6306 6307 new = skb_ext_maybe_cow(old, skb->active_extensions); 6308 if (!new) 6309 return NULL; 6310 6311 if (__skb_ext_exist(new, id)) 6312 goto set_active; 6313 6314 newoff = new->chunks; 6315 } else { 6316 newoff = SKB_EXT_CHUNKSIZEOF(*new); 6317 6318 new = __skb_ext_alloc(GFP_ATOMIC); 6319 if (!new) 6320 return NULL; 6321 } 6322 6323 newlen = newoff + skb_ext_type_len[id]; 6324 new->chunks = newlen; 6325 new->offset[id] = newoff; 6326 set_active: 6327 skb->extensions = new; 6328 skb->active_extensions |= 1 << id; 6329 return skb_ext_get_ptr(new, id); 6330 } 6331 EXPORT_SYMBOL(skb_ext_add); 6332 6333 #ifdef CONFIG_XFRM 6334 static void skb_ext_put_sp(struct sec_path *sp) 6335 { 6336 unsigned int i; 6337 6338 for (i = 0; i < sp->len; i++) 6339 xfrm_state_put(sp->xvec[i]); 6340 } 6341 #endif 6342 6343 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id) 6344 { 6345 struct skb_ext *ext = skb->extensions; 6346 6347 skb->active_extensions &= ~(1 << id); 6348 if (skb->active_extensions == 0) { 6349 skb->extensions = NULL; 6350 __skb_ext_put(ext); 6351 #ifdef CONFIG_XFRM 6352 } else if (id == SKB_EXT_SEC_PATH && 6353 refcount_read(&ext->refcnt) == 1) { 6354 struct sec_path *sp = skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH); 6355 6356 skb_ext_put_sp(sp); 6357 sp->len = 0; 6358 #endif 6359 } 6360 } 6361 EXPORT_SYMBOL(__skb_ext_del); 6362 6363 void __skb_ext_put(struct skb_ext *ext) 6364 { 6365 /* If this is last clone, nothing can increment 6366 * it after check passes. Avoids one atomic op. 6367 */ 6368 if (refcount_read(&ext->refcnt) == 1) 6369 goto free_now; 6370 6371 if (!refcount_dec_and_test(&ext->refcnt)) 6372 return; 6373 free_now: 6374 #ifdef CONFIG_XFRM 6375 if (__skb_ext_exist(ext, SKB_EXT_SEC_PATH)) 6376 skb_ext_put_sp(skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH)); 6377 #endif 6378 6379 kmem_cache_free(skbuff_ext_cache, ext); 6380 } 6381 EXPORT_SYMBOL(__skb_ext_put); 6382 #endif /* CONFIG_SKB_EXTENSIONS */ 6383