1 /* 2 * Routines having to do with the 'struct sk_buff' memory handlers. 3 * 4 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk> 5 * Florian La Roche <rzsfl@rz.uni-sb.de> 6 * 7 * Fixes: 8 * Alan Cox : Fixed the worst of the load 9 * balancer bugs. 10 * Dave Platt : Interrupt stacking fix. 11 * Richard Kooijman : Timestamp fixes. 12 * Alan Cox : Changed buffer format. 13 * Alan Cox : destructor hook for AF_UNIX etc. 14 * Linus Torvalds : Better skb_clone. 15 * Alan Cox : Added skb_copy. 16 * Alan Cox : Added all the changed routines Linus 17 * only put in the headers 18 * Ray VanTassle : Fixed --skb->lock in free 19 * Alan Cox : skb_copy copy arp field 20 * Andi Kleen : slabified it. 21 * Robert Olsson : Removed skb_head_pool 22 * 23 * NOTE: 24 * The __skb_ routines should be called with interrupts 25 * disabled, or you better be *real* sure that the operation is atomic 26 * with respect to whatever list is being frobbed (e.g. via lock_sock() 27 * or via disabling bottom half handlers, etc). 28 * 29 * This program is free software; you can redistribute it and/or 30 * modify it under the terms of the GNU General Public License 31 * as published by the Free Software Foundation; either version 32 * 2 of the License, or (at your option) any later version. 33 */ 34 35 /* 36 * The functions in this file will not compile correctly with gcc 2.4.x 37 */ 38 39 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 40 41 #include <linux/module.h> 42 #include <linux/types.h> 43 #include <linux/kernel.h> 44 #include <linux/kmemcheck.h> 45 #include <linux/mm.h> 46 #include <linux/interrupt.h> 47 #include <linux/in.h> 48 #include <linux/inet.h> 49 #include <linux/slab.h> 50 #include <linux/tcp.h> 51 #include <linux/udp.h> 52 #include <linux/netdevice.h> 53 #ifdef CONFIG_NET_CLS_ACT 54 #include <net/pkt_sched.h> 55 #endif 56 #include <linux/string.h> 57 #include <linux/skbuff.h> 58 #include <linux/splice.h> 59 #include <linux/cache.h> 60 #include <linux/rtnetlink.h> 61 #include <linux/init.h> 62 #include <linux/scatterlist.h> 63 #include <linux/errqueue.h> 64 #include <linux/prefetch.h> 65 66 #include <net/protocol.h> 67 #include <net/dst.h> 68 #include <net/sock.h> 69 #include <net/checksum.h> 70 #include <net/ip6_checksum.h> 71 #include <net/xfrm.h> 72 73 #include <asm/uaccess.h> 74 #include <trace/events/skb.h> 75 #include <linux/highmem.h> 76 77 struct kmem_cache *skbuff_head_cache __read_mostly; 78 static struct kmem_cache *skbuff_fclone_cache __read_mostly; 79 80 /** 81 * skb_panic - private function for out-of-line support 82 * @skb: buffer 83 * @sz: size 84 * @addr: address 85 * @msg: skb_over_panic or skb_under_panic 86 * 87 * Out-of-line support for skb_put() and skb_push(). 88 * Called via the wrapper skb_over_panic() or skb_under_panic(). 89 * Keep out of line to prevent kernel bloat. 90 * __builtin_return_address is not used because it is not always reliable. 91 */ 92 static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr, 93 const char msg[]) 94 { 95 pr_emerg("%s: text:%p len:%d put:%d head:%p data:%p tail:%#lx end:%#lx dev:%s\n", 96 msg, addr, skb->len, sz, skb->head, skb->data, 97 (unsigned long)skb->tail, (unsigned long)skb->end, 98 skb->dev ? skb->dev->name : "<NULL>"); 99 BUG(); 100 } 101 102 static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr) 103 { 104 skb_panic(skb, sz, addr, __func__); 105 } 106 107 static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr) 108 { 109 skb_panic(skb, sz, addr, __func__); 110 } 111 112 /* 113 * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells 114 * the caller if emergency pfmemalloc reserves are being used. If it is and 115 * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves 116 * may be used. Otherwise, the packet data may be discarded until enough 117 * memory is free 118 */ 119 #define kmalloc_reserve(size, gfp, node, pfmemalloc) \ 120 __kmalloc_reserve(size, gfp, node, _RET_IP_, pfmemalloc) 121 122 static void *__kmalloc_reserve(size_t size, gfp_t flags, int node, 123 unsigned long ip, bool *pfmemalloc) 124 { 125 void *obj; 126 bool ret_pfmemalloc = false; 127 128 /* 129 * Try a regular allocation, when that fails and we're not entitled 130 * to the reserves, fail. 131 */ 132 obj = kmalloc_node_track_caller(size, 133 flags | __GFP_NOMEMALLOC | __GFP_NOWARN, 134 node); 135 if (obj || !(gfp_pfmemalloc_allowed(flags))) 136 goto out; 137 138 /* Try again but now we are using pfmemalloc reserves */ 139 ret_pfmemalloc = true; 140 obj = kmalloc_node_track_caller(size, flags, node); 141 142 out: 143 if (pfmemalloc) 144 *pfmemalloc = ret_pfmemalloc; 145 146 return obj; 147 } 148 149 /* Allocate a new skbuff. We do this ourselves so we can fill in a few 150 * 'private' fields and also do memory statistics to find all the 151 * [BEEP] leaks. 152 * 153 */ 154 155 struct sk_buff *__alloc_skb_head(gfp_t gfp_mask, int node) 156 { 157 struct sk_buff *skb; 158 159 /* Get the HEAD */ 160 skb = kmem_cache_alloc_node(skbuff_head_cache, 161 gfp_mask & ~__GFP_DMA, node); 162 if (!skb) 163 goto out; 164 165 /* 166 * Only clear those fields we need to clear, not those that we will 167 * actually initialise below. Hence, don't put any more fields after 168 * the tail pointer in struct sk_buff! 169 */ 170 memset(skb, 0, offsetof(struct sk_buff, tail)); 171 skb->head = NULL; 172 skb->truesize = sizeof(struct sk_buff); 173 atomic_set(&skb->users, 1); 174 175 skb->mac_header = (typeof(skb->mac_header))~0U; 176 out: 177 return skb; 178 } 179 180 /** 181 * __alloc_skb - allocate a network buffer 182 * @size: size to allocate 183 * @gfp_mask: allocation mask 184 * @flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache 185 * instead of head cache and allocate a cloned (child) skb. 186 * If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for 187 * allocations in case the data is required for writeback 188 * @node: numa node to allocate memory on 189 * 190 * Allocate a new &sk_buff. The returned buffer has no headroom and a 191 * tail room of at least size bytes. The object has a reference count 192 * of one. The return is the buffer. On a failure the return is %NULL. 193 * 194 * Buffers may only be allocated from interrupts using a @gfp_mask of 195 * %GFP_ATOMIC. 196 */ 197 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask, 198 int flags, int node) 199 { 200 struct kmem_cache *cache; 201 struct skb_shared_info *shinfo; 202 struct sk_buff *skb; 203 u8 *data; 204 bool pfmemalloc; 205 206 cache = (flags & SKB_ALLOC_FCLONE) 207 ? skbuff_fclone_cache : skbuff_head_cache; 208 209 if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX)) 210 gfp_mask |= __GFP_MEMALLOC; 211 212 /* Get the HEAD */ 213 skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node); 214 if (!skb) 215 goto out; 216 prefetchw(skb); 217 218 /* We do our best to align skb_shared_info on a separate cache 219 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives 220 * aligned memory blocks, unless SLUB/SLAB debug is enabled. 221 * Both skb->head and skb_shared_info are cache line aligned. 222 */ 223 size = SKB_DATA_ALIGN(size); 224 size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 225 data = kmalloc_reserve(size, gfp_mask, node, &pfmemalloc); 226 if (!data) 227 goto nodata; 228 /* kmalloc(size) might give us more room than requested. 229 * Put skb_shared_info exactly at the end of allocated zone, 230 * to allow max possible filling before reallocation. 231 */ 232 size = SKB_WITH_OVERHEAD(ksize(data)); 233 prefetchw(data + size); 234 235 /* 236 * Only clear those fields we need to clear, not those that we will 237 * actually initialise below. Hence, don't put any more fields after 238 * the tail pointer in struct sk_buff! 239 */ 240 memset(skb, 0, offsetof(struct sk_buff, tail)); 241 /* Account for allocated memory : skb + skb->head */ 242 skb->truesize = SKB_TRUESIZE(size); 243 skb->pfmemalloc = pfmemalloc; 244 atomic_set(&skb->users, 1); 245 skb->head = data; 246 skb->data = data; 247 skb_reset_tail_pointer(skb); 248 skb->end = skb->tail + size; 249 skb->mac_header = (typeof(skb->mac_header))~0U; 250 skb->transport_header = (typeof(skb->transport_header))~0U; 251 252 /* make sure we initialize shinfo sequentially */ 253 shinfo = skb_shinfo(skb); 254 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref)); 255 atomic_set(&shinfo->dataref, 1); 256 kmemcheck_annotate_variable(shinfo->destructor_arg); 257 258 if (flags & SKB_ALLOC_FCLONE) { 259 struct sk_buff *child = skb + 1; 260 atomic_t *fclone_ref = (atomic_t *) (child + 1); 261 262 kmemcheck_annotate_bitfield(child, flags1); 263 kmemcheck_annotate_bitfield(child, flags2); 264 skb->fclone = SKB_FCLONE_ORIG; 265 atomic_set(fclone_ref, 1); 266 267 child->fclone = SKB_FCLONE_UNAVAILABLE; 268 child->pfmemalloc = pfmemalloc; 269 } 270 out: 271 return skb; 272 nodata: 273 kmem_cache_free(cache, skb); 274 skb = NULL; 275 goto out; 276 } 277 EXPORT_SYMBOL(__alloc_skb); 278 279 /** 280 * build_skb - build a network buffer 281 * @data: data buffer provided by caller 282 * @frag_size: size of fragment, or 0 if head was kmalloced 283 * 284 * Allocate a new &sk_buff. Caller provides space holding head and 285 * skb_shared_info. @data must have been allocated by kmalloc() only if 286 * @frag_size is 0, otherwise data should come from the page allocator. 287 * The return is the new skb buffer. 288 * On a failure the return is %NULL, and @data is not freed. 289 * Notes : 290 * Before IO, driver allocates only data buffer where NIC put incoming frame 291 * Driver should add room at head (NET_SKB_PAD) and 292 * MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info)) 293 * After IO, driver calls build_skb(), to allocate sk_buff and populate it 294 * before giving packet to stack. 295 * RX rings only contains data buffers, not full skbs. 296 */ 297 struct sk_buff *build_skb(void *data, unsigned int frag_size) 298 { 299 struct skb_shared_info *shinfo; 300 struct sk_buff *skb; 301 unsigned int size = frag_size ? : ksize(data); 302 303 skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC); 304 if (!skb) 305 return NULL; 306 307 size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 308 309 memset(skb, 0, offsetof(struct sk_buff, tail)); 310 skb->truesize = SKB_TRUESIZE(size); 311 skb->head_frag = frag_size != 0; 312 atomic_set(&skb->users, 1); 313 skb->head = data; 314 skb->data = data; 315 skb_reset_tail_pointer(skb); 316 skb->end = skb->tail + size; 317 skb->mac_header = (typeof(skb->mac_header))~0U; 318 skb->transport_header = (typeof(skb->transport_header))~0U; 319 320 /* make sure we initialize shinfo sequentially */ 321 shinfo = skb_shinfo(skb); 322 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref)); 323 atomic_set(&shinfo->dataref, 1); 324 kmemcheck_annotate_variable(shinfo->destructor_arg); 325 326 return skb; 327 } 328 EXPORT_SYMBOL(build_skb); 329 330 struct netdev_alloc_cache { 331 struct page_frag frag; 332 /* we maintain a pagecount bias, so that we dont dirty cache line 333 * containing page->_count every time we allocate a fragment. 334 */ 335 unsigned int pagecnt_bias; 336 }; 337 static DEFINE_PER_CPU(struct netdev_alloc_cache, netdev_alloc_cache); 338 339 static void *__netdev_alloc_frag(unsigned int fragsz, gfp_t gfp_mask) 340 { 341 struct netdev_alloc_cache *nc; 342 void *data = NULL; 343 int order; 344 unsigned long flags; 345 346 local_irq_save(flags); 347 nc = &__get_cpu_var(netdev_alloc_cache); 348 if (unlikely(!nc->frag.page)) { 349 refill: 350 for (order = NETDEV_FRAG_PAGE_MAX_ORDER; ;) { 351 gfp_t gfp = gfp_mask; 352 353 if (order) 354 gfp |= __GFP_COMP | __GFP_NOWARN; 355 nc->frag.page = alloc_pages(gfp, order); 356 if (likely(nc->frag.page)) 357 break; 358 if (--order < 0) 359 goto end; 360 } 361 nc->frag.size = PAGE_SIZE << order; 362 recycle: 363 atomic_set(&nc->frag.page->_count, NETDEV_PAGECNT_MAX_BIAS); 364 nc->pagecnt_bias = NETDEV_PAGECNT_MAX_BIAS; 365 nc->frag.offset = 0; 366 } 367 368 if (nc->frag.offset + fragsz > nc->frag.size) { 369 /* avoid unnecessary locked operations if possible */ 370 if ((atomic_read(&nc->frag.page->_count) == nc->pagecnt_bias) || 371 atomic_sub_and_test(nc->pagecnt_bias, &nc->frag.page->_count)) 372 goto recycle; 373 goto refill; 374 } 375 376 data = page_address(nc->frag.page) + nc->frag.offset; 377 nc->frag.offset += fragsz; 378 nc->pagecnt_bias--; 379 end: 380 local_irq_restore(flags); 381 return data; 382 } 383 384 /** 385 * netdev_alloc_frag - allocate a page fragment 386 * @fragsz: fragment size 387 * 388 * Allocates a frag from a page for receive buffer. 389 * Uses GFP_ATOMIC allocations. 390 */ 391 void *netdev_alloc_frag(unsigned int fragsz) 392 { 393 return __netdev_alloc_frag(fragsz, GFP_ATOMIC | __GFP_COLD); 394 } 395 EXPORT_SYMBOL(netdev_alloc_frag); 396 397 /** 398 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device 399 * @dev: network device to receive on 400 * @length: length to allocate 401 * @gfp_mask: get_free_pages mask, passed to alloc_skb 402 * 403 * Allocate a new &sk_buff and assign it a usage count of one. The 404 * buffer has unspecified headroom built in. Users should allocate 405 * the headroom they think they need without accounting for the 406 * built in space. The built in space is used for optimisations. 407 * 408 * %NULL is returned if there is no free memory. 409 */ 410 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, 411 unsigned int length, gfp_t gfp_mask) 412 { 413 struct sk_buff *skb = NULL; 414 unsigned int fragsz = SKB_DATA_ALIGN(length + NET_SKB_PAD) + 415 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 416 417 if (fragsz <= PAGE_SIZE && !(gfp_mask & (__GFP_WAIT | GFP_DMA))) { 418 void *data; 419 420 if (sk_memalloc_socks()) 421 gfp_mask |= __GFP_MEMALLOC; 422 423 data = __netdev_alloc_frag(fragsz, gfp_mask); 424 425 if (likely(data)) { 426 skb = build_skb(data, fragsz); 427 if (unlikely(!skb)) 428 put_page(virt_to_head_page(data)); 429 } 430 } else { 431 skb = __alloc_skb(length + NET_SKB_PAD, gfp_mask, 432 SKB_ALLOC_RX, NUMA_NO_NODE); 433 } 434 if (likely(skb)) { 435 skb_reserve(skb, NET_SKB_PAD); 436 skb->dev = dev; 437 } 438 return skb; 439 } 440 EXPORT_SYMBOL(__netdev_alloc_skb); 441 442 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off, 443 int size, unsigned int truesize) 444 { 445 skb_fill_page_desc(skb, i, page, off, size); 446 skb->len += size; 447 skb->data_len += size; 448 skb->truesize += truesize; 449 } 450 EXPORT_SYMBOL(skb_add_rx_frag); 451 452 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size, 453 unsigned int truesize) 454 { 455 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 456 457 skb_frag_size_add(frag, size); 458 skb->len += size; 459 skb->data_len += size; 460 skb->truesize += truesize; 461 } 462 EXPORT_SYMBOL(skb_coalesce_rx_frag); 463 464 static void skb_drop_list(struct sk_buff **listp) 465 { 466 kfree_skb_list(*listp); 467 *listp = NULL; 468 } 469 470 static inline void skb_drop_fraglist(struct sk_buff *skb) 471 { 472 skb_drop_list(&skb_shinfo(skb)->frag_list); 473 } 474 475 static void skb_clone_fraglist(struct sk_buff *skb) 476 { 477 struct sk_buff *list; 478 479 skb_walk_frags(skb, list) 480 skb_get(list); 481 } 482 483 static void skb_free_head(struct sk_buff *skb) 484 { 485 if (skb->head_frag) 486 put_page(virt_to_head_page(skb->head)); 487 else 488 kfree(skb->head); 489 } 490 491 static void skb_release_data(struct sk_buff *skb) 492 { 493 if (!skb->cloned || 494 !atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1, 495 &skb_shinfo(skb)->dataref)) { 496 if (skb_shinfo(skb)->nr_frags) { 497 int i; 498 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 499 skb_frag_unref(skb, i); 500 } 501 502 /* 503 * If skb buf is from userspace, we need to notify the caller 504 * the lower device DMA has done; 505 */ 506 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) { 507 struct ubuf_info *uarg; 508 509 uarg = skb_shinfo(skb)->destructor_arg; 510 if (uarg->callback) 511 uarg->callback(uarg, true); 512 } 513 514 if (skb_has_frag_list(skb)) 515 skb_drop_fraglist(skb); 516 517 skb_free_head(skb); 518 } 519 } 520 521 /* 522 * Free an skbuff by memory without cleaning the state. 523 */ 524 static void kfree_skbmem(struct sk_buff *skb) 525 { 526 struct sk_buff *other; 527 atomic_t *fclone_ref; 528 529 switch (skb->fclone) { 530 case SKB_FCLONE_UNAVAILABLE: 531 kmem_cache_free(skbuff_head_cache, skb); 532 break; 533 534 case SKB_FCLONE_ORIG: 535 fclone_ref = (atomic_t *) (skb + 2); 536 if (atomic_dec_and_test(fclone_ref)) 537 kmem_cache_free(skbuff_fclone_cache, skb); 538 break; 539 540 case SKB_FCLONE_CLONE: 541 fclone_ref = (atomic_t *) (skb + 1); 542 other = skb - 1; 543 544 /* The clone portion is available for 545 * fast-cloning again. 546 */ 547 skb->fclone = SKB_FCLONE_UNAVAILABLE; 548 549 if (atomic_dec_and_test(fclone_ref)) 550 kmem_cache_free(skbuff_fclone_cache, other); 551 break; 552 } 553 } 554 555 static void skb_release_head_state(struct sk_buff *skb) 556 { 557 skb_dst_drop(skb); 558 #ifdef CONFIG_XFRM 559 secpath_put(skb->sp); 560 #endif 561 if (skb->destructor) { 562 WARN_ON(in_irq()); 563 skb->destructor(skb); 564 } 565 #if IS_ENABLED(CONFIG_NF_CONNTRACK) 566 nf_conntrack_put(skb->nfct); 567 #endif 568 #ifdef CONFIG_BRIDGE_NETFILTER 569 nf_bridge_put(skb->nf_bridge); 570 #endif 571 /* XXX: IS this still necessary? - JHS */ 572 #ifdef CONFIG_NET_SCHED 573 skb->tc_index = 0; 574 #ifdef CONFIG_NET_CLS_ACT 575 skb->tc_verd = 0; 576 #endif 577 #endif 578 } 579 580 /* Free everything but the sk_buff shell. */ 581 static void skb_release_all(struct sk_buff *skb) 582 { 583 skb_release_head_state(skb); 584 if (likely(skb->head)) 585 skb_release_data(skb); 586 } 587 588 /** 589 * __kfree_skb - private function 590 * @skb: buffer 591 * 592 * Free an sk_buff. Release anything attached to the buffer. 593 * Clean the state. This is an internal helper function. Users should 594 * always call kfree_skb 595 */ 596 597 void __kfree_skb(struct sk_buff *skb) 598 { 599 skb_release_all(skb); 600 kfree_skbmem(skb); 601 } 602 EXPORT_SYMBOL(__kfree_skb); 603 604 /** 605 * kfree_skb - free an sk_buff 606 * @skb: buffer to free 607 * 608 * Drop a reference to the buffer and free it if the usage count has 609 * hit zero. 610 */ 611 void kfree_skb(struct sk_buff *skb) 612 { 613 if (unlikely(!skb)) 614 return; 615 if (likely(atomic_read(&skb->users) == 1)) 616 smp_rmb(); 617 else if (likely(!atomic_dec_and_test(&skb->users))) 618 return; 619 trace_kfree_skb(skb, __builtin_return_address(0)); 620 __kfree_skb(skb); 621 } 622 EXPORT_SYMBOL(kfree_skb); 623 624 void kfree_skb_list(struct sk_buff *segs) 625 { 626 while (segs) { 627 struct sk_buff *next = segs->next; 628 629 kfree_skb(segs); 630 segs = next; 631 } 632 } 633 EXPORT_SYMBOL(kfree_skb_list); 634 635 /** 636 * skb_tx_error - report an sk_buff xmit error 637 * @skb: buffer that triggered an error 638 * 639 * Report xmit error if a device callback is tracking this skb. 640 * skb must be freed afterwards. 641 */ 642 void skb_tx_error(struct sk_buff *skb) 643 { 644 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) { 645 struct ubuf_info *uarg; 646 647 uarg = skb_shinfo(skb)->destructor_arg; 648 if (uarg->callback) 649 uarg->callback(uarg, false); 650 skb_shinfo(skb)->tx_flags &= ~SKBTX_DEV_ZEROCOPY; 651 } 652 } 653 EXPORT_SYMBOL(skb_tx_error); 654 655 /** 656 * consume_skb - free an skbuff 657 * @skb: buffer to free 658 * 659 * Drop a ref to the buffer and free it if the usage count has hit zero 660 * Functions identically to kfree_skb, but kfree_skb assumes that the frame 661 * is being dropped after a failure and notes that 662 */ 663 void consume_skb(struct sk_buff *skb) 664 { 665 if (unlikely(!skb)) 666 return; 667 if (likely(atomic_read(&skb->users) == 1)) 668 smp_rmb(); 669 else if (likely(!atomic_dec_and_test(&skb->users))) 670 return; 671 trace_consume_skb(skb); 672 __kfree_skb(skb); 673 } 674 EXPORT_SYMBOL(consume_skb); 675 676 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old) 677 { 678 new->tstamp = old->tstamp; 679 new->dev = old->dev; 680 new->transport_header = old->transport_header; 681 new->network_header = old->network_header; 682 new->mac_header = old->mac_header; 683 new->inner_protocol = old->inner_protocol; 684 new->inner_transport_header = old->inner_transport_header; 685 new->inner_network_header = old->inner_network_header; 686 new->inner_mac_header = old->inner_mac_header; 687 skb_dst_copy(new, old); 688 skb_copy_hash(new, old); 689 new->ooo_okay = old->ooo_okay; 690 new->no_fcs = old->no_fcs; 691 new->encapsulation = old->encapsulation; 692 #ifdef CONFIG_XFRM 693 new->sp = secpath_get(old->sp); 694 #endif 695 memcpy(new->cb, old->cb, sizeof(old->cb)); 696 new->csum = old->csum; 697 new->local_df = old->local_df; 698 new->pkt_type = old->pkt_type; 699 new->ip_summed = old->ip_summed; 700 skb_copy_queue_mapping(new, old); 701 new->priority = old->priority; 702 #if IS_ENABLED(CONFIG_IP_VS) 703 new->ipvs_property = old->ipvs_property; 704 #endif 705 new->pfmemalloc = old->pfmemalloc; 706 new->protocol = old->protocol; 707 new->mark = old->mark; 708 new->skb_iif = old->skb_iif; 709 __nf_copy(new, old); 710 #ifdef CONFIG_NET_SCHED 711 new->tc_index = old->tc_index; 712 #ifdef CONFIG_NET_CLS_ACT 713 new->tc_verd = old->tc_verd; 714 #endif 715 #endif 716 new->vlan_proto = old->vlan_proto; 717 new->vlan_tci = old->vlan_tci; 718 719 skb_copy_secmark(new, old); 720 721 #ifdef CONFIG_NET_RX_BUSY_POLL 722 new->napi_id = old->napi_id; 723 #endif 724 } 725 726 /* 727 * You should not add any new code to this function. Add it to 728 * __copy_skb_header above instead. 729 */ 730 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb) 731 { 732 #define C(x) n->x = skb->x 733 734 n->next = n->prev = NULL; 735 n->sk = NULL; 736 __copy_skb_header(n, skb); 737 738 C(len); 739 C(data_len); 740 C(mac_len); 741 n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len; 742 n->cloned = 1; 743 n->nohdr = 0; 744 n->destructor = NULL; 745 C(tail); 746 C(end); 747 C(head); 748 C(head_frag); 749 C(data); 750 C(truesize); 751 atomic_set(&n->users, 1); 752 753 atomic_inc(&(skb_shinfo(skb)->dataref)); 754 skb->cloned = 1; 755 756 return n; 757 #undef C 758 } 759 760 /** 761 * skb_morph - morph one skb into another 762 * @dst: the skb to receive the contents 763 * @src: the skb to supply the contents 764 * 765 * This is identical to skb_clone except that the target skb is 766 * supplied by the user. 767 * 768 * The target skb is returned upon exit. 769 */ 770 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src) 771 { 772 skb_release_all(dst); 773 return __skb_clone(dst, src); 774 } 775 EXPORT_SYMBOL_GPL(skb_morph); 776 777 /** 778 * skb_copy_ubufs - copy userspace skb frags buffers to kernel 779 * @skb: the skb to modify 780 * @gfp_mask: allocation priority 781 * 782 * This must be called on SKBTX_DEV_ZEROCOPY skb. 783 * It will copy all frags into kernel and drop the reference 784 * to userspace pages. 785 * 786 * If this function is called from an interrupt gfp_mask() must be 787 * %GFP_ATOMIC. 788 * 789 * Returns 0 on success or a negative error code on failure 790 * to allocate kernel memory to copy to. 791 */ 792 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask) 793 { 794 int i; 795 int num_frags = skb_shinfo(skb)->nr_frags; 796 struct page *page, *head = NULL; 797 struct ubuf_info *uarg = skb_shinfo(skb)->destructor_arg; 798 799 for (i = 0; i < num_frags; i++) { 800 u8 *vaddr; 801 skb_frag_t *f = &skb_shinfo(skb)->frags[i]; 802 803 page = alloc_page(gfp_mask); 804 if (!page) { 805 while (head) { 806 struct page *next = (struct page *)page_private(head); 807 put_page(head); 808 head = next; 809 } 810 return -ENOMEM; 811 } 812 vaddr = kmap_atomic(skb_frag_page(f)); 813 memcpy(page_address(page), 814 vaddr + f->page_offset, skb_frag_size(f)); 815 kunmap_atomic(vaddr); 816 set_page_private(page, (unsigned long)head); 817 head = page; 818 } 819 820 /* skb frags release userspace buffers */ 821 for (i = 0; i < num_frags; i++) 822 skb_frag_unref(skb, i); 823 824 uarg->callback(uarg, false); 825 826 /* skb frags point to kernel buffers */ 827 for (i = num_frags - 1; i >= 0; i--) { 828 __skb_fill_page_desc(skb, i, head, 0, 829 skb_shinfo(skb)->frags[i].size); 830 head = (struct page *)page_private(head); 831 } 832 833 skb_shinfo(skb)->tx_flags &= ~SKBTX_DEV_ZEROCOPY; 834 return 0; 835 } 836 EXPORT_SYMBOL_GPL(skb_copy_ubufs); 837 838 /** 839 * skb_clone - duplicate an sk_buff 840 * @skb: buffer to clone 841 * @gfp_mask: allocation priority 842 * 843 * Duplicate an &sk_buff. The new one is not owned by a socket. Both 844 * copies share the same packet data but not structure. The new 845 * buffer has a reference count of 1. If the allocation fails the 846 * function returns %NULL otherwise the new buffer is returned. 847 * 848 * If this function is called from an interrupt gfp_mask() must be 849 * %GFP_ATOMIC. 850 */ 851 852 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask) 853 { 854 struct sk_buff *n; 855 856 if (skb_orphan_frags(skb, gfp_mask)) 857 return NULL; 858 859 n = skb + 1; 860 if (skb->fclone == SKB_FCLONE_ORIG && 861 n->fclone == SKB_FCLONE_UNAVAILABLE) { 862 atomic_t *fclone_ref = (atomic_t *) (n + 1); 863 n->fclone = SKB_FCLONE_CLONE; 864 atomic_inc(fclone_ref); 865 } else { 866 if (skb_pfmemalloc(skb)) 867 gfp_mask |= __GFP_MEMALLOC; 868 869 n = kmem_cache_alloc(skbuff_head_cache, gfp_mask); 870 if (!n) 871 return NULL; 872 873 kmemcheck_annotate_bitfield(n, flags1); 874 kmemcheck_annotate_bitfield(n, flags2); 875 n->fclone = SKB_FCLONE_UNAVAILABLE; 876 } 877 878 return __skb_clone(n, skb); 879 } 880 EXPORT_SYMBOL(skb_clone); 881 882 static void skb_headers_offset_update(struct sk_buff *skb, int off) 883 { 884 /* Only adjust this if it actually is csum_start rather than csum */ 885 if (skb->ip_summed == CHECKSUM_PARTIAL) 886 skb->csum_start += off; 887 /* {transport,network,mac}_header and tail are relative to skb->head */ 888 skb->transport_header += off; 889 skb->network_header += off; 890 if (skb_mac_header_was_set(skb)) 891 skb->mac_header += off; 892 skb->inner_transport_header += off; 893 skb->inner_network_header += off; 894 skb->inner_mac_header += off; 895 } 896 897 static void copy_skb_header(struct sk_buff *new, const struct sk_buff *old) 898 { 899 __copy_skb_header(new, old); 900 901 skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size; 902 skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs; 903 skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type; 904 } 905 906 static inline int skb_alloc_rx_flag(const struct sk_buff *skb) 907 { 908 if (skb_pfmemalloc(skb)) 909 return SKB_ALLOC_RX; 910 return 0; 911 } 912 913 /** 914 * skb_copy - create private copy of an sk_buff 915 * @skb: buffer to copy 916 * @gfp_mask: allocation priority 917 * 918 * Make a copy of both an &sk_buff and its data. This is used when the 919 * caller wishes to modify the data and needs a private copy of the 920 * data to alter. Returns %NULL on failure or the pointer to the buffer 921 * on success. The returned buffer has a reference count of 1. 922 * 923 * As by-product this function converts non-linear &sk_buff to linear 924 * one, so that &sk_buff becomes completely private and caller is allowed 925 * to modify all the data of returned buffer. This means that this 926 * function is not recommended for use in circumstances when only 927 * header is going to be modified. Use pskb_copy() instead. 928 */ 929 930 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask) 931 { 932 int headerlen = skb_headroom(skb); 933 unsigned int size = skb_end_offset(skb) + skb->data_len; 934 struct sk_buff *n = __alloc_skb(size, gfp_mask, 935 skb_alloc_rx_flag(skb), NUMA_NO_NODE); 936 937 if (!n) 938 return NULL; 939 940 /* Set the data pointer */ 941 skb_reserve(n, headerlen); 942 /* Set the tail pointer and length */ 943 skb_put(n, skb->len); 944 945 if (skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len)) 946 BUG(); 947 948 copy_skb_header(n, skb); 949 return n; 950 } 951 EXPORT_SYMBOL(skb_copy); 952 953 /** 954 * __pskb_copy - create copy of an sk_buff with private head. 955 * @skb: buffer to copy 956 * @headroom: headroom of new skb 957 * @gfp_mask: allocation priority 958 * 959 * Make a copy of both an &sk_buff and part of its data, located 960 * in header. Fragmented data remain shared. This is used when 961 * the caller wishes to modify only header of &sk_buff and needs 962 * private copy of the header to alter. Returns %NULL on failure 963 * or the pointer to the buffer on success. 964 * The returned buffer has a reference count of 1. 965 */ 966 967 struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom, gfp_t gfp_mask) 968 { 969 unsigned int size = skb_headlen(skb) + headroom; 970 struct sk_buff *n = __alloc_skb(size, gfp_mask, 971 skb_alloc_rx_flag(skb), NUMA_NO_NODE); 972 973 if (!n) 974 goto out; 975 976 /* Set the data pointer */ 977 skb_reserve(n, headroom); 978 /* Set the tail pointer and length */ 979 skb_put(n, skb_headlen(skb)); 980 /* Copy the bytes */ 981 skb_copy_from_linear_data(skb, n->data, n->len); 982 983 n->truesize += skb->data_len; 984 n->data_len = skb->data_len; 985 n->len = skb->len; 986 987 if (skb_shinfo(skb)->nr_frags) { 988 int i; 989 990 if (skb_orphan_frags(skb, gfp_mask)) { 991 kfree_skb(n); 992 n = NULL; 993 goto out; 994 } 995 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 996 skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i]; 997 skb_frag_ref(skb, i); 998 } 999 skb_shinfo(n)->nr_frags = i; 1000 } 1001 1002 if (skb_has_frag_list(skb)) { 1003 skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list; 1004 skb_clone_fraglist(n); 1005 } 1006 1007 copy_skb_header(n, skb); 1008 out: 1009 return n; 1010 } 1011 EXPORT_SYMBOL(__pskb_copy); 1012 1013 /** 1014 * pskb_expand_head - reallocate header of &sk_buff 1015 * @skb: buffer to reallocate 1016 * @nhead: room to add at head 1017 * @ntail: room to add at tail 1018 * @gfp_mask: allocation priority 1019 * 1020 * Expands (or creates identical copy, if @nhead and @ntail are zero) 1021 * header of @skb. &sk_buff itself is not changed. &sk_buff MUST have 1022 * reference count of 1. Returns zero in the case of success or error, 1023 * if expansion failed. In the last case, &sk_buff is not changed. 1024 * 1025 * All the pointers pointing into skb header may change and must be 1026 * reloaded after call to this function. 1027 */ 1028 1029 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, 1030 gfp_t gfp_mask) 1031 { 1032 int i; 1033 u8 *data; 1034 int size = nhead + skb_end_offset(skb) + ntail; 1035 long off; 1036 1037 BUG_ON(nhead < 0); 1038 1039 if (skb_shared(skb)) 1040 BUG(); 1041 1042 size = SKB_DATA_ALIGN(size); 1043 1044 if (skb_pfmemalloc(skb)) 1045 gfp_mask |= __GFP_MEMALLOC; 1046 data = kmalloc_reserve(size + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)), 1047 gfp_mask, NUMA_NO_NODE, NULL); 1048 if (!data) 1049 goto nodata; 1050 size = SKB_WITH_OVERHEAD(ksize(data)); 1051 1052 /* Copy only real data... and, alas, header. This should be 1053 * optimized for the cases when header is void. 1054 */ 1055 memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head); 1056 1057 memcpy((struct skb_shared_info *)(data + size), 1058 skb_shinfo(skb), 1059 offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags])); 1060 1061 /* 1062 * if shinfo is shared we must drop the old head gracefully, but if it 1063 * is not we can just drop the old head and let the existing refcount 1064 * be since all we did is relocate the values 1065 */ 1066 if (skb_cloned(skb)) { 1067 /* copy this zero copy skb frags */ 1068 if (skb_orphan_frags(skb, gfp_mask)) 1069 goto nofrags; 1070 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 1071 skb_frag_ref(skb, i); 1072 1073 if (skb_has_frag_list(skb)) 1074 skb_clone_fraglist(skb); 1075 1076 skb_release_data(skb); 1077 } else { 1078 skb_free_head(skb); 1079 } 1080 off = (data + nhead) - skb->head; 1081 1082 skb->head = data; 1083 skb->head_frag = 0; 1084 skb->data += off; 1085 #ifdef NET_SKBUFF_DATA_USES_OFFSET 1086 skb->end = size; 1087 off = nhead; 1088 #else 1089 skb->end = skb->head + size; 1090 #endif 1091 skb->tail += off; 1092 skb_headers_offset_update(skb, nhead); 1093 skb->cloned = 0; 1094 skb->hdr_len = 0; 1095 skb->nohdr = 0; 1096 atomic_set(&skb_shinfo(skb)->dataref, 1); 1097 return 0; 1098 1099 nofrags: 1100 kfree(data); 1101 nodata: 1102 return -ENOMEM; 1103 } 1104 EXPORT_SYMBOL(pskb_expand_head); 1105 1106 /* Make private copy of skb with writable head and some headroom */ 1107 1108 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom) 1109 { 1110 struct sk_buff *skb2; 1111 int delta = headroom - skb_headroom(skb); 1112 1113 if (delta <= 0) 1114 skb2 = pskb_copy(skb, GFP_ATOMIC); 1115 else { 1116 skb2 = skb_clone(skb, GFP_ATOMIC); 1117 if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0, 1118 GFP_ATOMIC)) { 1119 kfree_skb(skb2); 1120 skb2 = NULL; 1121 } 1122 } 1123 return skb2; 1124 } 1125 EXPORT_SYMBOL(skb_realloc_headroom); 1126 1127 /** 1128 * skb_copy_expand - copy and expand sk_buff 1129 * @skb: buffer to copy 1130 * @newheadroom: new free bytes at head 1131 * @newtailroom: new free bytes at tail 1132 * @gfp_mask: allocation priority 1133 * 1134 * Make a copy of both an &sk_buff and its data and while doing so 1135 * allocate additional space. 1136 * 1137 * This is used when the caller wishes to modify the data and needs a 1138 * private copy of the data to alter as well as more space for new fields. 1139 * Returns %NULL on failure or the pointer to the buffer 1140 * on success. The returned buffer has a reference count of 1. 1141 * 1142 * You must pass %GFP_ATOMIC as the allocation priority if this function 1143 * is called from an interrupt. 1144 */ 1145 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, 1146 int newheadroom, int newtailroom, 1147 gfp_t gfp_mask) 1148 { 1149 /* 1150 * Allocate the copy buffer 1151 */ 1152 struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom, 1153 gfp_mask, skb_alloc_rx_flag(skb), 1154 NUMA_NO_NODE); 1155 int oldheadroom = skb_headroom(skb); 1156 int head_copy_len, head_copy_off; 1157 1158 if (!n) 1159 return NULL; 1160 1161 skb_reserve(n, newheadroom); 1162 1163 /* Set the tail pointer and length */ 1164 skb_put(n, skb->len); 1165 1166 head_copy_len = oldheadroom; 1167 head_copy_off = 0; 1168 if (newheadroom <= head_copy_len) 1169 head_copy_len = newheadroom; 1170 else 1171 head_copy_off = newheadroom - head_copy_len; 1172 1173 /* Copy the linear header and data. */ 1174 if (skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off, 1175 skb->len + head_copy_len)) 1176 BUG(); 1177 1178 copy_skb_header(n, skb); 1179 1180 skb_headers_offset_update(n, newheadroom - oldheadroom); 1181 1182 return n; 1183 } 1184 EXPORT_SYMBOL(skb_copy_expand); 1185 1186 /** 1187 * skb_pad - zero pad the tail of an skb 1188 * @skb: buffer to pad 1189 * @pad: space to pad 1190 * 1191 * Ensure that a buffer is followed by a padding area that is zero 1192 * filled. Used by network drivers which may DMA or transfer data 1193 * beyond the buffer end onto the wire. 1194 * 1195 * May return error in out of memory cases. The skb is freed on error. 1196 */ 1197 1198 int skb_pad(struct sk_buff *skb, int pad) 1199 { 1200 int err; 1201 int ntail; 1202 1203 /* If the skbuff is non linear tailroom is always zero.. */ 1204 if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) { 1205 memset(skb->data+skb->len, 0, pad); 1206 return 0; 1207 } 1208 1209 ntail = skb->data_len + pad - (skb->end - skb->tail); 1210 if (likely(skb_cloned(skb) || ntail > 0)) { 1211 err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC); 1212 if (unlikely(err)) 1213 goto free_skb; 1214 } 1215 1216 /* FIXME: The use of this function with non-linear skb's really needs 1217 * to be audited. 1218 */ 1219 err = skb_linearize(skb); 1220 if (unlikely(err)) 1221 goto free_skb; 1222 1223 memset(skb->data + skb->len, 0, pad); 1224 return 0; 1225 1226 free_skb: 1227 kfree_skb(skb); 1228 return err; 1229 } 1230 EXPORT_SYMBOL(skb_pad); 1231 1232 /** 1233 * pskb_put - add data to the tail of a potentially fragmented buffer 1234 * @skb: start of the buffer to use 1235 * @tail: tail fragment of the buffer to use 1236 * @len: amount of data to add 1237 * 1238 * This function extends the used data area of the potentially 1239 * fragmented buffer. @tail must be the last fragment of @skb -- or 1240 * @skb itself. If this would exceed the total buffer size the kernel 1241 * will panic. A pointer to the first byte of the extra data is 1242 * returned. 1243 */ 1244 1245 unsigned char *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len) 1246 { 1247 if (tail != skb) { 1248 skb->data_len += len; 1249 skb->len += len; 1250 } 1251 return skb_put(tail, len); 1252 } 1253 EXPORT_SYMBOL_GPL(pskb_put); 1254 1255 /** 1256 * skb_put - add data to a buffer 1257 * @skb: buffer to use 1258 * @len: amount of data to add 1259 * 1260 * This function extends the used data area of the buffer. If this would 1261 * exceed the total buffer size the kernel will panic. A pointer to the 1262 * first byte of the extra data is returned. 1263 */ 1264 unsigned char *skb_put(struct sk_buff *skb, unsigned int len) 1265 { 1266 unsigned char *tmp = skb_tail_pointer(skb); 1267 SKB_LINEAR_ASSERT(skb); 1268 skb->tail += len; 1269 skb->len += len; 1270 if (unlikely(skb->tail > skb->end)) 1271 skb_over_panic(skb, len, __builtin_return_address(0)); 1272 return tmp; 1273 } 1274 EXPORT_SYMBOL(skb_put); 1275 1276 /** 1277 * skb_push - add data to the start of a buffer 1278 * @skb: buffer to use 1279 * @len: amount of data to add 1280 * 1281 * This function extends the used data area of the buffer at the buffer 1282 * start. If this would exceed the total buffer headroom the kernel will 1283 * panic. A pointer to the first byte of the extra data is returned. 1284 */ 1285 unsigned char *skb_push(struct sk_buff *skb, unsigned int len) 1286 { 1287 skb->data -= len; 1288 skb->len += len; 1289 if (unlikely(skb->data<skb->head)) 1290 skb_under_panic(skb, len, __builtin_return_address(0)); 1291 return skb->data; 1292 } 1293 EXPORT_SYMBOL(skb_push); 1294 1295 /** 1296 * skb_pull - remove data from the start of a buffer 1297 * @skb: buffer to use 1298 * @len: amount of data to remove 1299 * 1300 * This function removes data from the start of a buffer, returning 1301 * the memory to the headroom. A pointer to the next data in the buffer 1302 * is returned. Once the data has been pulled future pushes will overwrite 1303 * the old data. 1304 */ 1305 unsigned char *skb_pull(struct sk_buff *skb, unsigned int len) 1306 { 1307 return skb_pull_inline(skb, len); 1308 } 1309 EXPORT_SYMBOL(skb_pull); 1310 1311 /** 1312 * skb_trim - remove end from a buffer 1313 * @skb: buffer to alter 1314 * @len: new length 1315 * 1316 * Cut the length of a buffer down by removing data from the tail. If 1317 * the buffer is already under the length specified it is not modified. 1318 * The skb must be linear. 1319 */ 1320 void skb_trim(struct sk_buff *skb, unsigned int len) 1321 { 1322 if (skb->len > len) 1323 __skb_trim(skb, len); 1324 } 1325 EXPORT_SYMBOL(skb_trim); 1326 1327 /* Trims skb to length len. It can change skb pointers. 1328 */ 1329 1330 int ___pskb_trim(struct sk_buff *skb, unsigned int len) 1331 { 1332 struct sk_buff **fragp; 1333 struct sk_buff *frag; 1334 int offset = skb_headlen(skb); 1335 int nfrags = skb_shinfo(skb)->nr_frags; 1336 int i; 1337 int err; 1338 1339 if (skb_cloned(skb) && 1340 unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))) 1341 return err; 1342 1343 i = 0; 1344 if (offset >= len) 1345 goto drop_pages; 1346 1347 for (; i < nfrags; i++) { 1348 int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]); 1349 1350 if (end < len) { 1351 offset = end; 1352 continue; 1353 } 1354 1355 skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset); 1356 1357 drop_pages: 1358 skb_shinfo(skb)->nr_frags = i; 1359 1360 for (; i < nfrags; i++) 1361 skb_frag_unref(skb, i); 1362 1363 if (skb_has_frag_list(skb)) 1364 skb_drop_fraglist(skb); 1365 goto done; 1366 } 1367 1368 for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp); 1369 fragp = &frag->next) { 1370 int end = offset + frag->len; 1371 1372 if (skb_shared(frag)) { 1373 struct sk_buff *nfrag; 1374 1375 nfrag = skb_clone(frag, GFP_ATOMIC); 1376 if (unlikely(!nfrag)) 1377 return -ENOMEM; 1378 1379 nfrag->next = frag->next; 1380 consume_skb(frag); 1381 frag = nfrag; 1382 *fragp = frag; 1383 } 1384 1385 if (end < len) { 1386 offset = end; 1387 continue; 1388 } 1389 1390 if (end > len && 1391 unlikely((err = pskb_trim(frag, len - offset)))) 1392 return err; 1393 1394 if (frag->next) 1395 skb_drop_list(&frag->next); 1396 break; 1397 } 1398 1399 done: 1400 if (len > skb_headlen(skb)) { 1401 skb->data_len -= skb->len - len; 1402 skb->len = len; 1403 } else { 1404 skb->len = len; 1405 skb->data_len = 0; 1406 skb_set_tail_pointer(skb, len); 1407 } 1408 1409 return 0; 1410 } 1411 EXPORT_SYMBOL(___pskb_trim); 1412 1413 /** 1414 * __pskb_pull_tail - advance tail of skb header 1415 * @skb: buffer to reallocate 1416 * @delta: number of bytes to advance tail 1417 * 1418 * The function makes a sense only on a fragmented &sk_buff, 1419 * it expands header moving its tail forward and copying necessary 1420 * data from fragmented part. 1421 * 1422 * &sk_buff MUST have reference count of 1. 1423 * 1424 * Returns %NULL (and &sk_buff does not change) if pull failed 1425 * or value of new tail of skb in the case of success. 1426 * 1427 * All the pointers pointing into skb header may change and must be 1428 * reloaded after call to this function. 1429 */ 1430 1431 /* Moves tail of skb head forward, copying data from fragmented part, 1432 * when it is necessary. 1433 * 1. It may fail due to malloc failure. 1434 * 2. It may change skb pointers. 1435 * 1436 * It is pretty complicated. Luckily, it is called only in exceptional cases. 1437 */ 1438 unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta) 1439 { 1440 /* If skb has not enough free space at tail, get new one 1441 * plus 128 bytes for future expansions. If we have enough 1442 * room at tail, reallocate without expansion only if skb is cloned. 1443 */ 1444 int i, k, eat = (skb->tail + delta) - skb->end; 1445 1446 if (eat > 0 || skb_cloned(skb)) { 1447 if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0, 1448 GFP_ATOMIC)) 1449 return NULL; 1450 } 1451 1452 if (skb_copy_bits(skb, skb_headlen(skb), skb_tail_pointer(skb), delta)) 1453 BUG(); 1454 1455 /* Optimization: no fragments, no reasons to preestimate 1456 * size of pulled pages. Superb. 1457 */ 1458 if (!skb_has_frag_list(skb)) 1459 goto pull_pages; 1460 1461 /* Estimate size of pulled pages. */ 1462 eat = delta; 1463 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1464 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 1465 1466 if (size >= eat) 1467 goto pull_pages; 1468 eat -= size; 1469 } 1470 1471 /* If we need update frag list, we are in troubles. 1472 * Certainly, it possible to add an offset to skb data, 1473 * but taking into account that pulling is expected to 1474 * be very rare operation, it is worth to fight against 1475 * further bloating skb head and crucify ourselves here instead. 1476 * Pure masohism, indeed. 8)8) 1477 */ 1478 if (eat) { 1479 struct sk_buff *list = skb_shinfo(skb)->frag_list; 1480 struct sk_buff *clone = NULL; 1481 struct sk_buff *insp = NULL; 1482 1483 do { 1484 BUG_ON(!list); 1485 1486 if (list->len <= eat) { 1487 /* Eaten as whole. */ 1488 eat -= list->len; 1489 list = list->next; 1490 insp = list; 1491 } else { 1492 /* Eaten partially. */ 1493 1494 if (skb_shared(list)) { 1495 /* Sucks! We need to fork list. :-( */ 1496 clone = skb_clone(list, GFP_ATOMIC); 1497 if (!clone) 1498 return NULL; 1499 insp = list->next; 1500 list = clone; 1501 } else { 1502 /* This may be pulled without 1503 * problems. */ 1504 insp = list; 1505 } 1506 if (!pskb_pull(list, eat)) { 1507 kfree_skb(clone); 1508 return NULL; 1509 } 1510 break; 1511 } 1512 } while (eat); 1513 1514 /* Free pulled out fragments. */ 1515 while ((list = skb_shinfo(skb)->frag_list) != insp) { 1516 skb_shinfo(skb)->frag_list = list->next; 1517 kfree_skb(list); 1518 } 1519 /* And insert new clone at head. */ 1520 if (clone) { 1521 clone->next = list; 1522 skb_shinfo(skb)->frag_list = clone; 1523 } 1524 } 1525 /* Success! Now we may commit changes to skb data. */ 1526 1527 pull_pages: 1528 eat = delta; 1529 k = 0; 1530 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1531 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 1532 1533 if (size <= eat) { 1534 skb_frag_unref(skb, i); 1535 eat -= size; 1536 } else { 1537 skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i]; 1538 if (eat) { 1539 skb_shinfo(skb)->frags[k].page_offset += eat; 1540 skb_frag_size_sub(&skb_shinfo(skb)->frags[k], eat); 1541 eat = 0; 1542 } 1543 k++; 1544 } 1545 } 1546 skb_shinfo(skb)->nr_frags = k; 1547 1548 skb->tail += delta; 1549 skb->data_len -= delta; 1550 1551 return skb_tail_pointer(skb); 1552 } 1553 EXPORT_SYMBOL(__pskb_pull_tail); 1554 1555 /** 1556 * skb_copy_bits - copy bits from skb to kernel buffer 1557 * @skb: source skb 1558 * @offset: offset in source 1559 * @to: destination buffer 1560 * @len: number of bytes to copy 1561 * 1562 * Copy the specified number of bytes from the source skb to the 1563 * destination buffer. 1564 * 1565 * CAUTION ! : 1566 * If its prototype is ever changed, 1567 * check arch/{*}/net/{*}.S files, 1568 * since it is called from BPF assembly code. 1569 */ 1570 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len) 1571 { 1572 int start = skb_headlen(skb); 1573 struct sk_buff *frag_iter; 1574 int i, copy; 1575 1576 if (offset > (int)skb->len - len) 1577 goto fault; 1578 1579 /* Copy header. */ 1580 if ((copy = start - offset) > 0) { 1581 if (copy > len) 1582 copy = len; 1583 skb_copy_from_linear_data_offset(skb, offset, to, copy); 1584 if ((len -= copy) == 0) 1585 return 0; 1586 offset += copy; 1587 to += copy; 1588 } 1589 1590 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1591 int end; 1592 skb_frag_t *f = &skb_shinfo(skb)->frags[i]; 1593 1594 WARN_ON(start > offset + len); 1595 1596 end = start + skb_frag_size(f); 1597 if ((copy = end - offset) > 0) { 1598 u8 *vaddr; 1599 1600 if (copy > len) 1601 copy = len; 1602 1603 vaddr = kmap_atomic(skb_frag_page(f)); 1604 memcpy(to, 1605 vaddr + f->page_offset + offset - start, 1606 copy); 1607 kunmap_atomic(vaddr); 1608 1609 if ((len -= copy) == 0) 1610 return 0; 1611 offset += copy; 1612 to += copy; 1613 } 1614 start = end; 1615 } 1616 1617 skb_walk_frags(skb, frag_iter) { 1618 int end; 1619 1620 WARN_ON(start > offset + len); 1621 1622 end = start + frag_iter->len; 1623 if ((copy = end - offset) > 0) { 1624 if (copy > len) 1625 copy = len; 1626 if (skb_copy_bits(frag_iter, offset - start, to, copy)) 1627 goto fault; 1628 if ((len -= copy) == 0) 1629 return 0; 1630 offset += copy; 1631 to += copy; 1632 } 1633 start = end; 1634 } 1635 1636 if (!len) 1637 return 0; 1638 1639 fault: 1640 return -EFAULT; 1641 } 1642 EXPORT_SYMBOL(skb_copy_bits); 1643 1644 /* 1645 * Callback from splice_to_pipe(), if we need to release some pages 1646 * at the end of the spd in case we error'ed out in filling the pipe. 1647 */ 1648 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i) 1649 { 1650 put_page(spd->pages[i]); 1651 } 1652 1653 static struct page *linear_to_page(struct page *page, unsigned int *len, 1654 unsigned int *offset, 1655 struct sock *sk) 1656 { 1657 struct page_frag *pfrag = sk_page_frag(sk); 1658 1659 if (!sk_page_frag_refill(sk, pfrag)) 1660 return NULL; 1661 1662 *len = min_t(unsigned int, *len, pfrag->size - pfrag->offset); 1663 1664 memcpy(page_address(pfrag->page) + pfrag->offset, 1665 page_address(page) + *offset, *len); 1666 *offset = pfrag->offset; 1667 pfrag->offset += *len; 1668 1669 return pfrag->page; 1670 } 1671 1672 static bool spd_can_coalesce(const struct splice_pipe_desc *spd, 1673 struct page *page, 1674 unsigned int offset) 1675 { 1676 return spd->nr_pages && 1677 spd->pages[spd->nr_pages - 1] == page && 1678 (spd->partial[spd->nr_pages - 1].offset + 1679 spd->partial[spd->nr_pages - 1].len == offset); 1680 } 1681 1682 /* 1683 * Fill page/offset/length into spd, if it can hold more pages. 1684 */ 1685 static bool spd_fill_page(struct splice_pipe_desc *spd, 1686 struct pipe_inode_info *pipe, struct page *page, 1687 unsigned int *len, unsigned int offset, 1688 bool linear, 1689 struct sock *sk) 1690 { 1691 if (unlikely(spd->nr_pages == MAX_SKB_FRAGS)) 1692 return true; 1693 1694 if (linear) { 1695 page = linear_to_page(page, len, &offset, sk); 1696 if (!page) 1697 return true; 1698 } 1699 if (spd_can_coalesce(spd, page, offset)) { 1700 spd->partial[spd->nr_pages - 1].len += *len; 1701 return false; 1702 } 1703 get_page(page); 1704 spd->pages[spd->nr_pages] = page; 1705 spd->partial[spd->nr_pages].len = *len; 1706 spd->partial[spd->nr_pages].offset = offset; 1707 spd->nr_pages++; 1708 1709 return false; 1710 } 1711 1712 static bool __splice_segment(struct page *page, unsigned int poff, 1713 unsigned int plen, unsigned int *off, 1714 unsigned int *len, 1715 struct splice_pipe_desc *spd, bool linear, 1716 struct sock *sk, 1717 struct pipe_inode_info *pipe) 1718 { 1719 if (!*len) 1720 return true; 1721 1722 /* skip this segment if already processed */ 1723 if (*off >= plen) { 1724 *off -= plen; 1725 return false; 1726 } 1727 1728 /* ignore any bits we already processed */ 1729 poff += *off; 1730 plen -= *off; 1731 *off = 0; 1732 1733 do { 1734 unsigned int flen = min(*len, plen); 1735 1736 if (spd_fill_page(spd, pipe, page, &flen, poff, 1737 linear, sk)) 1738 return true; 1739 poff += flen; 1740 plen -= flen; 1741 *len -= flen; 1742 } while (*len && plen); 1743 1744 return false; 1745 } 1746 1747 /* 1748 * Map linear and fragment data from the skb to spd. It reports true if the 1749 * pipe is full or if we already spliced the requested length. 1750 */ 1751 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe, 1752 unsigned int *offset, unsigned int *len, 1753 struct splice_pipe_desc *spd, struct sock *sk) 1754 { 1755 int seg; 1756 1757 /* map the linear part : 1758 * If skb->head_frag is set, this 'linear' part is backed by a 1759 * fragment, and if the head is not shared with any clones then 1760 * we can avoid a copy since we own the head portion of this page. 1761 */ 1762 if (__splice_segment(virt_to_page(skb->data), 1763 (unsigned long) skb->data & (PAGE_SIZE - 1), 1764 skb_headlen(skb), 1765 offset, len, spd, 1766 skb_head_is_locked(skb), 1767 sk, pipe)) 1768 return true; 1769 1770 /* 1771 * then map the fragments 1772 */ 1773 for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) { 1774 const skb_frag_t *f = &skb_shinfo(skb)->frags[seg]; 1775 1776 if (__splice_segment(skb_frag_page(f), 1777 f->page_offset, skb_frag_size(f), 1778 offset, len, spd, false, sk, pipe)) 1779 return true; 1780 } 1781 1782 return false; 1783 } 1784 1785 /* 1786 * Map data from the skb to a pipe. Should handle both the linear part, 1787 * the fragments, and the frag list. It does NOT handle frag lists within 1788 * the frag list, if such a thing exists. We'd probably need to recurse to 1789 * handle that cleanly. 1790 */ 1791 int skb_splice_bits(struct sk_buff *skb, unsigned int offset, 1792 struct pipe_inode_info *pipe, unsigned int tlen, 1793 unsigned int flags) 1794 { 1795 struct partial_page partial[MAX_SKB_FRAGS]; 1796 struct page *pages[MAX_SKB_FRAGS]; 1797 struct splice_pipe_desc spd = { 1798 .pages = pages, 1799 .partial = partial, 1800 .nr_pages_max = MAX_SKB_FRAGS, 1801 .flags = flags, 1802 .ops = &nosteal_pipe_buf_ops, 1803 .spd_release = sock_spd_release, 1804 }; 1805 struct sk_buff *frag_iter; 1806 struct sock *sk = skb->sk; 1807 int ret = 0; 1808 1809 /* 1810 * __skb_splice_bits() only fails if the output has no room left, 1811 * so no point in going over the frag_list for the error case. 1812 */ 1813 if (__skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk)) 1814 goto done; 1815 else if (!tlen) 1816 goto done; 1817 1818 /* 1819 * now see if we have a frag_list to map 1820 */ 1821 skb_walk_frags(skb, frag_iter) { 1822 if (!tlen) 1823 break; 1824 if (__skb_splice_bits(frag_iter, pipe, &offset, &tlen, &spd, sk)) 1825 break; 1826 } 1827 1828 done: 1829 if (spd.nr_pages) { 1830 /* 1831 * Drop the socket lock, otherwise we have reverse 1832 * locking dependencies between sk_lock and i_mutex 1833 * here as compared to sendfile(). We enter here 1834 * with the socket lock held, and splice_to_pipe() will 1835 * grab the pipe inode lock. For sendfile() emulation, 1836 * we call into ->sendpage() with the i_mutex lock held 1837 * and networking will grab the socket lock. 1838 */ 1839 release_sock(sk); 1840 ret = splice_to_pipe(pipe, &spd); 1841 lock_sock(sk); 1842 } 1843 1844 return ret; 1845 } 1846 1847 /** 1848 * skb_store_bits - store bits from kernel buffer to skb 1849 * @skb: destination buffer 1850 * @offset: offset in destination 1851 * @from: source buffer 1852 * @len: number of bytes to copy 1853 * 1854 * Copy the specified number of bytes from the source buffer to the 1855 * destination skb. This function handles all the messy bits of 1856 * traversing fragment lists and such. 1857 */ 1858 1859 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len) 1860 { 1861 int start = skb_headlen(skb); 1862 struct sk_buff *frag_iter; 1863 int i, copy; 1864 1865 if (offset > (int)skb->len - len) 1866 goto fault; 1867 1868 if ((copy = start - offset) > 0) { 1869 if (copy > len) 1870 copy = len; 1871 skb_copy_to_linear_data_offset(skb, offset, from, copy); 1872 if ((len -= copy) == 0) 1873 return 0; 1874 offset += copy; 1875 from += copy; 1876 } 1877 1878 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1879 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 1880 int end; 1881 1882 WARN_ON(start > offset + len); 1883 1884 end = start + skb_frag_size(frag); 1885 if ((copy = end - offset) > 0) { 1886 u8 *vaddr; 1887 1888 if (copy > len) 1889 copy = len; 1890 1891 vaddr = kmap_atomic(skb_frag_page(frag)); 1892 memcpy(vaddr + frag->page_offset + offset - start, 1893 from, copy); 1894 kunmap_atomic(vaddr); 1895 1896 if ((len -= copy) == 0) 1897 return 0; 1898 offset += copy; 1899 from += copy; 1900 } 1901 start = end; 1902 } 1903 1904 skb_walk_frags(skb, frag_iter) { 1905 int end; 1906 1907 WARN_ON(start > offset + len); 1908 1909 end = start + frag_iter->len; 1910 if ((copy = end - offset) > 0) { 1911 if (copy > len) 1912 copy = len; 1913 if (skb_store_bits(frag_iter, offset - start, 1914 from, copy)) 1915 goto fault; 1916 if ((len -= copy) == 0) 1917 return 0; 1918 offset += copy; 1919 from += copy; 1920 } 1921 start = end; 1922 } 1923 if (!len) 1924 return 0; 1925 1926 fault: 1927 return -EFAULT; 1928 } 1929 EXPORT_SYMBOL(skb_store_bits); 1930 1931 /* Checksum skb data. */ 1932 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len, 1933 __wsum csum, const struct skb_checksum_ops *ops) 1934 { 1935 int start = skb_headlen(skb); 1936 int i, copy = start - offset; 1937 struct sk_buff *frag_iter; 1938 int pos = 0; 1939 1940 /* Checksum header. */ 1941 if (copy > 0) { 1942 if (copy > len) 1943 copy = len; 1944 csum = ops->update(skb->data + offset, copy, csum); 1945 if ((len -= copy) == 0) 1946 return csum; 1947 offset += copy; 1948 pos = copy; 1949 } 1950 1951 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1952 int end; 1953 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 1954 1955 WARN_ON(start > offset + len); 1956 1957 end = start + skb_frag_size(frag); 1958 if ((copy = end - offset) > 0) { 1959 __wsum csum2; 1960 u8 *vaddr; 1961 1962 if (copy > len) 1963 copy = len; 1964 vaddr = kmap_atomic(skb_frag_page(frag)); 1965 csum2 = ops->update(vaddr + frag->page_offset + 1966 offset - start, copy, 0); 1967 kunmap_atomic(vaddr); 1968 csum = ops->combine(csum, csum2, pos, copy); 1969 if (!(len -= copy)) 1970 return csum; 1971 offset += copy; 1972 pos += copy; 1973 } 1974 start = end; 1975 } 1976 1977 skb_walk_frags(skb, frag_iter) { 1978 int end; 1979 1980 WARN_ON(start > offset + len); 1981 1982 end = start + frag_iter->len; 1983 if ((copy = end - offset) > 0) { 1984 __wsum csum2; 1985 if (copy > len) 1986 copy = len; 1987 csum2 = __skb_checksum(frag_iter, offset - start, 1988 copy, 0, ops); 1989 csum = ops->combine(csum, csum2, pos, copy); 1990 if ((len -= copy) == 0) 1991 return csum; 1992 offset += copy; 1993 pos += copy; 1994 } 1995 start = end; 1996 } 1997 BUG_ON(len); 1998 1999 return csum; 2000 } 2001 EXPORT_SYMBOL(__skb_checksum); 2002 2003 __wsum skb_checksum(const struct sk_buff *skb, int offset, 2004 int len, __wsum csum) 2005 { 2006 const struct skb_checksum_ops ops = { 2007 .update = csum_partial_ext, 2008 .combine = csum_block_add_ext, 2009 }; 2010 2011 return __skb_checksum(skb, offset, len, csum, &ops); 2012 } 2013 EXPORT_SYMBOL(skb_checksum); 2014 2015 /* Both of above in one bottle. */ 2016 2017 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, 2018 u8 *to, int len, __wsum csum) 2019 { 2020 int start = skb_headlen(skb); 2021 int i, copy = start - offset; 2022 struct sk_buff *frag_iter; 2023 int pos = 0; 2024 2025 /* Copy header. */ 2026 if (copy > 0) { 2027 if (copy > len) 2028 copy = len; 2029 csum = csum_partial_copy_nocheck(skb->data + offset, to, 2030 copy, csum); 2031 if ((len -= copy) == 0) 2032 return csum; 2033 offset += copy; 2034 to += copy; 2035 pos = copy; 2036 } 2037 2038 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2039 int end; 2040 2041 WARN_ON(start > offset + len); 2042 2043 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]); 2044 if ((copy = end - offset) > 0) { 2045 __wsum csum2; 2046 u8 *vaddr; 2047 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2048 2049 if (copy > len) 2050 copy = len; 2051 vaddr = kmap_atomic(skb_frag_page(frag)); 2052 csum2 = csum_partial_copy_nocheck(vaddr + 2053 frag->page_offset + 2054 offset - start, to, 2055 copy, 0); 2056 kunmap_atomic(vaddr); 2057 csum = csum_block_add(csum, csum2, pos); 2058 if (!(len -= copy)) 2059 return csum; 2060 offset += copy; 2061 to += copy; 2062 pos += copy; 2063 } 2064 start = end; 2065 } 2066 2067 skb_walk_frags(skb, frag_iter) { 2068 __wsum csum2; 2069 int end; 2070 2071 WARN_ON(start > offset + len); 2072 2073 end = start + frag_iter->len; 2074 if ((copy = end - offset) > 0) { 2075 if (copy > len) 2076 copy = len; 2077 csum2 = skb_copy_and_csum_bits(frag_iter, 2078 offset - start, 2079 to, copy, 0); 2080 csum = csum_block_add(csum, csum2, pos); 2081 if ((len -= copy) == 0) 2082 return csum; 2083 offset += copy; 2084 to += copy; 2085 pos += copy; 2086 } 2087 start = end; 2088 } 2089 BUG_ON(len); 2090 return csum; 2091 } 2092 EXPORT_SYMBOL(skb_copy_and_csum_bits); 2093 2094 /** 2095 * skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy() 2096 * @from: source buffer 2097 * 2098 * Calculates the amount of linear headroom needed in the 'to' skb passed 2099 * into skb_zerocopy(). 2100 */ 2101 unsigned int 2102 skb_zerocopy_headlen(const struct sk_buff *from) 2103 { 2104 unsigned int hlen = 0; 2105 2106 if (!from->head_frag || 2107 skb_headlen(from) < L1_CACHE_BYTES || 2108 skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS) 2109 hlen = skb_headlen(from); 2110 2111 if (skb_has_frag_list(from)) 2112 hlen = from->len; 2113 2114 return hlen; 2115 } 2116 EXPORT_SYMBOL_GPL(skb_zerocopy_headlen); 2117 2118 /** 2119 * skb_zerocopy - Zero copy skb to skb 2120 * @to: destination buffer 2121 * @from: source buffer 2122 * @len: number of bytes to copy from source buffer 2123 * @hlen: size of linear headroom in destination buffer 2124 * 2125 * Copies up to `len` bytes from `from` to `to` by creating references 2126 * to the frags in the source buffer. 2127 * 2128 * The `hlen` as calculated by skb_zerocopy_headlen() specifies the 2129 * headroom in the `to` buffer. 2130 */ 2131 void 2132 skb_zerocopy(struct sk_buff *to, const struct sk_buff *from, int len, int hlen) 2133 { 2134 int i, j = 0; 2135 int plen = 0; /* length of skb->head fragment */ 2136 struct page *page; 2137 unsigned int offset; 2138 2139 BUG_ON(!from->head_frag && !hlen); 2140 2141 /* dont bother with small payloads */ 2142 if (len <= skb_tailroom(to)) { 2143 skb_copy_bits(from, 0, skb_put(to, len), len); 2144 return; 2145 } 2146 2147 if (hlen) { 2148 skb_copy_bits(from, 0, skb_put(to, hlen), hlen); 2149 len -= hlen; 2150 } else { 2151 plen = min_t(int, skb_headlen(from), len); 2152 if (plen) { 2153 page = virt_to_head_page(from->head); 2154 offset = from->data - (unsigned char *)page_address(page); 2155 __skb_fill_page_desc(to, 0, page, offset, plen); 2156 get_page(page); 2157 j = 1; 2158 len -= plen; 2159 } 2160 } 2161 2162 to->truesize += len + plen; 2163 to->len += len + plen; 2164 to->data_len += len + plen; 2165 2166 for (i = 0; i < skb_shinfo(from)->nr_frags; i++) { 2167 if (!len) 2168 break; 2169 skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i]; 2170 skb_shinfo(to)->frags[j].size = min_t(int, skb_shinfo(to)->frags[j].size, len); 2171 len -= skb_shinfo(to)->frags[j].size; 2172 skb_frag_ref(to, j); 2173 j++; 2174 } 2175 skb_shinfo(to)->nr_frags = j; 2176 } 2177 EXPORT_SYMBOL_GPL(skb_zerocopy); 2178 2179 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to) 2180 { 2181 __wsum csum; 2182 long csstart; 2183 2184 if (skb->ip_summed == CHECKSUM_PARTIAL) 2185 csstart = skb_checksum_start_offset(skb); 2186 else 2187 csstart = skb_headlen(skb); 2188 2189 BUG_ON(csstart > skb_headlen(skb)); 2190 2191 skb_copy_from_linear_data(skb, to, csstart); 2192 2193 csum = 0; 2194 if (csstart != skb->len) 2195 csum = skb_copy_and_csum_bits(skb, csstart, to + csstart, 2196 skb->len - csstart, 0); 2197 2198 if (skb->ip_summed == CHECKSUM_PARTIAL) { 2199 long csstuff = csstart + skb->csum_offset; 2200 2201 *((__sum16 *)(to + csstuff)) = csum_fold(csum); 2202 } 2203 } 2204 EXPORT_SYMBOL(skb_copy_and_csum_dev); 2205 2206 /** 2207 * skb_dequeue - remove from the head of the queue 2208 * @list: list to dequeue from 2209 * 2210 * Remove the head of the list. The list lock is taken so the function 2211 * may be used safely with other locking list functions. The head item is 2212 * returned or %NULL if the list is empty. 2213 */ 2214 2215 struct sk_buff *skb_dequeue(struct sk_buff_head *list) 2216 { 2217 unsigned long flags; 2218 struct sk_buff *result; 2219 2220 spin_lock_irqsave(&list->lock, flags); 2221 result = __skb_dequeue(list); 2222 spin_unlock_irqrestore(&list->lock, flags); 2223 return result; 2224 } 2225 EXPORT_SYMBOL(skb_dequeue); 2226 2227 /** 2228 * skb_dequeue_tail - remove from the tail of the queue 2229 * @list: list to dequeue from 2230 * 2231 * Remove the tail of the list. The list lock is taken so the function 2232 * may be used safely with other locking list functions. The tail item is 2233 * returned or %NULL if the list is empty. 2234 */ 2235 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list) 2236 { 2237 unsigned long flags; 2238 struct sk_buff *result; 2239 2240 spin_lock_irqsave(&list->lock, flags); 2241 result = __skb_dequeue_tail(list); 2242 spin_unlock_irqrestore(&list->lock, flags); 2243 return result; 2244 } 2245 EXPORT_SYMBOL(skb_dequeue_tail); 2246 2247 /** 2248 * skb_queue_purge - empty a list 2249 * @list: list to empty 2250 * 2251 * Delete all buffers on an &sk_buff list. Each buffer is removed from 2252 * the list and one reference dropped. This function takes the list 2253 * lock and is atomic with respect to other list locking functions. 2254 */ 2255 void skb_queue_purge(struct sk_buff_head *list) 2256 { 2257 struct sk_buff *skb; 2258 while ((skb = skb_dequeue(list)) != NULL) 2259 kfree_skb(skb); 2260 } 2261 EXPORT_SYMBOL(skb_queue_purge); 2262 2263 /** 2264 * skb_queue_head - queue a buffer at the list head 2265 * @list: list to use 2266 * @newsk: buffer to queue 2267 * 2268 * Queue a buffer at the start of the list. This function takes the 2269 * list lock and can be used safely with other locking &sk_buff functions 2270 * safely. 2271 * 2272 * A buffer cannot be placed on two lists at the same time. 2273 */ 2274 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk) 2275 { 2276 unsigned long flags; 2277 2278 spin_lock_irqsave(&list->lock, flags); 2279 __skb_queue_head(list, newsk); 2280 spin_unlock_irqrestore(&list->lock, flags); 2281 } 2282 EXPORT_SYMBOL(skb_queue_head); 2283 2284 /** 2285 * skb_queue_tail - queue a buffer at the list tail 2286 * @list: list to use 2287 * @newsk: buffer to queue 2288 * 2289 * Queue a buffer at the tail of the list. This function takes the 2290 * list lock and can be used safely with other locking &sk_buff functions 2291 * safely. 2292 * 2293 * A buffer cannot be placed on two lists at the same time. 2294 */ 2295 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk) 2296 { 2297 unsigned long flags; 2298 2299 spin_lock_irqsave(&list->lock, flags); 2300 __skb_queue_tail(list, newsk); 2301 spin_unlock_irqrestore(&list->lock, flags); 2302 } 2303 EXPORT_SYMBOL(skb_queue_tail); 2304 2305 /** 2306 * skb_unlink - remove a buffer from a list 2307 * @skb: buffer to remove 2308 * @list: list to use 2309 * 2310 * Remove a packet from a list. The list locks are taken and this 2311 * function is atomic with respect to other list locked calls 2312 * 2313 * You must know what list the SKB is on. 2314 */ 2315 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list) 2316 { 2317 unsigned long flags; 2318 2319 spin_lock_irqsave(&list->lock, flags); 2320 __skb_unlink(skb, list); 2321 spin_unlock_irqrestore(&list->lock, flags); 2322 } 2323 EXPORT_SYMBOL(skb_unlink); 2324 2325 /** 2326 * skb_append - append a buffer 2327 * @old: buffer to insert after 2328 * @newsk: buffer to insert 2329 * @list: list to use 2330 * 2331 * Place a packet after a given packet in a list. The list locks are taken 2332 * and this function is atomic with respect to other list locked calls. 2333 * A buffer cannot be placed on two lists at the same time. 2334 */ 2335 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list) 2336 { 2337 unsigned long flags; 2338 2339 spin_lock_irqsave(&list->lock, flags); 2340 __skb_queue_after(list, old, newsk); 2341 spin_unlock_irqrestore(&list->lock, flags); 2342 } 2343 EXPORT_SYMBOL(skb_append); 2344 2345 /** 2346 * skb_insert - insert a buffer 2347 * @old: buffer to insert before 2348 * @newsk: buffer to insert 2349 * @list: list to use 2350 * 2351 * Place a packet before a given packet in a list. The list locks are 2352 * taken and this function is atomic with respect to other list locked 2353 * calls. 2354 * 2355 * A buffer cannot be placed on two lists at the same time. 2356 */ 2357 void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list) 2358 { 2359 unsigned long flags; 2360 2361 spin_lock_irqsave(&list->lock, flags); 2362 __skb_insert(newsk, old->prev, old, list); 2363 spin_unlock_irqrestore(&list->lock, flags); 2364 } 2365 EXPORT_SYMBOL(skb_insert); 2366 2367 static inline void skb_split_inside_header(struct sk_buff *skb, 2368 struct sk_buff* skb1, 2369 const u32 len, const int pos) 2370 { 2371 int i; 2372 2373 skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len), 2374 pos - len); 2375 /* And move data appendix as is. */ 2376 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 2377 skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i]; 2378 2379 skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags; 2380 skb_shinfo(skb)->nr_frags = 0; 2381 skb1->data_len = skb->data_len; 2382 skb1->len += skb1->data_len; 2383 skb->data_len = 0; 2384 skb->len = len; 2385 skb_set_tail_pointer(skb, len); 2386 } 2387 2388 static inline void skb_split_no_header(struct sk_buff *skb, 2389 struct sk_buff* skb1, 2390 const u32 len, int pos) 2391 { 2392 int i, k = 0; 2393 const int nfrags = skb_shinfo(skb)->nr_frags; 2394 2395 skb_shinfo(skb)->nr_frags = 0; 2396 skb1->len = skb1->data_len = skb->len - len; 2397 skb->len = len; 2398 skb->data_len = len - pos; 2399 2400 for (i = 0; i < nfrags; i++) { 2401 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 2402 2403 if (pos + size > len) { 2404 skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i]; 2405 2406 if (pos < len) { 2407 /* Split frag. 2408 * We have two variants in this case: 2409 * 1. Move all the frag to the second 2410 * part, if it is possible. F.e. 2411 * this approach is mandatory for TUX, 2412 * where splitting is expensive. 2413 * 2. Split is accurately. We make this. 2414 */ 2415 skb_frag_ref(skb, i); 2416 skb_shinfo(skb1)->frags[0].page_offset += len - pos; 2417 skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos); 2418 skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos); 2419 skb_shinfo(skb)->nr_frags++; 2420 } 2421 k++; 2422 } else 2423 skb_shinfo(skb)->nr_frags++; 2424 pos += size; 2425 } 2426 skb_shinfo(skb1)->nr_frags = k; 2427 } 2428 2429 /** 2430 * skb_split - Split fragmented skb to two parts at length len. 2431 * @skb: the buffer to split 2432 * @skb1: the buffer to receive the second part 2433 * @len: new length for skb 2434 */ 2435 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len) 2436 { 2437 int pos = skb_headlen(skb); 2438 2439 skb_shinfo(skb1)->tx_flags = skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG; 2440 if (len < pos) /* Split line is inside header. */ 2441 skb_split_inside_header(skb, skb1, len, pos); 2442 else /* Second chunk has no header, nothing to copy. */ 2443 skb_split_no_header(skb, skb1, len, pos); 2444 } 2445 EXPORT_SYMBOL(skb_split); 2446 2447 /* Shifting from/to a cloned skb is a no-go. 2448 * 2449 * Caller cannot keep skb_shinfo related pointers past calling here! 2450 */ 2451 static int skb_prepare_for_shift(struct sk_buff *skb) 2452 { 2453 return skb_cloned(skb) && pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 2454 } 2455 2456 /** 2457 * skb_shift - Shifts paged data partially from skb to another 2458 * @tgt: buffer into which tail data gets added 2459 * @skb: buffer from which the paged data comes from 2460 * @shiftlen: shift up to this many bytes 2461 * 2462 * Attempts to shift up to shiftlen worth of bytes, which may be less than 2463 * the length of the skb, from skb to tgt. Returns number bytes shifted. 2464 * It's up to caller to free skb if everything was shifted. 2465 * 2466 * If @tgt runs out of frags, the whole operation is aborted. 2467 * 2468 * Skb cannot include anything else but paged data while tgt is allowed 2469 * to have non-paged data as well. 2470 * 2471 * TODO: full sized shift could be optimized but that would need 2472 * specialized skb free'er to handle frags without up-to-date nr_frags. 2473 */ 2474 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen) 2475 { 2476 int from, to, merge, todo; 2477 struct skb_frag_struct *fragfrom, *fragto; 2478 2479 BUG_ON(shiftlen > skb->len); 2480 BUG_ON(skb_headlen(skb)); /* Would corrupt stream */ 2481 2482 todo = shiftlen; 2483 from = 0; 2484 to = skb_shinfo(tgt)->nr_frags; 2485 fragfrom = &skb_shinfo(skb)->frags[from]; 2486 2487 /* Actual merge is delayed until the point when we know we can 2488 * commit all, so that we don't have to undo partial changes 2489 */ 2490 if (!to || 2491 !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom), 2492 fragfrom->page_offset)) { 2493 merge = -1; 2494 } else { 2495 merge = to - 1; 2496 2497 todo -= skb_frag_size(fragfrom); 2498 if (todo < 0) { 2499 if (skb_prepare_for_shift(skb) || 2500 skb_prepare_for_shift(tgt)) 2501 return 0; 2502 2503 /* All previous frag pointers might be stale! */ 2504 fragfrom = &skb_shinfo(skb)->frags[from]; 2505 fragto = &skb_shinfo(tgt)->frags[merge]; 2506 2507 skb_frag_size_add(fragto, shiftlen); 2508 skb_frag_size_sub(fragfrom, shiftlen); 2509 fragfrom->page_offset += shiftlen; 2510 2511 goto onlymerged; 2512 } 2513 2514 from++; 2515 } 2516 2517 /* Skip full, not-fitting skb to avoid expensive operations */ 2518 if ((shiftlen == skb->len) && 2519 (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to)) 2520 return 0; 2521 2522 if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt)) 2523 return 0; 2524 2525 while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) { 2526 if (to == MAX_SKB_FRAGS) 2527 return 0; 2528 2529 fragfrom = &skb_shinfo(skb)->frags[from]; 2530 fragto = &skb_shinfo(tgt)->frags[to]; 2531 2532 if (todo >= skb_frag_size(fragfrom)) { 2533 *fragto = *fragfrom; 2534 todo -= skb_frag_size(fragfrom); 2535 from++; 2536 to++; 2537 2538 } else { 2539 __skb_frag_ref(fragfrom); 2540 fragto->page = fragfrom->page; 2541 fragto->page_offset = fragfrom->page_offset; 2542 skb_frag_size_set(fragto, todo); 2543 2544 fragfrom->page_offset += todo; 2545 skb_frag_size_sub(fragfrom, todo); 2546 todo = 0; 2547 2548 to++; 2549 break; 2550 } 2551 } 2552 2553 /* Ready to "commit" this state change to tgt */ 2554 skb_shinfo(tgt)->nr_frags = to; 2555 2556 if (merge >= 0) { 2557 fragfrom = &skb_shinfo(skb)->frags[0]; 2558 fragto = &skb_shinfo(tgt)->frags[merge]; 2559 2560 skb_frag_size_add(fragto, skb_frag_size(fragfrom)); 2561 __skb_frag_unref(fragfrom); 2562 } 2563 2564 /* Reposition in the original skb */ 2565 to = 0; 2566 while (from < skb_shinfo(skb)->nr_frags) 2567 skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++]; 2568 skb_shinfo(skb)->nr_frags = to; 2569 2570 BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags); 2571 2572 onlymerged: 2573 /* Most likely the tgt won't ever need its checksum anymore, skb on 2574 * the other hand might need it if it needs to be resent 2575 */ 2576 tgt->ip_summed = CHECKSUM_PARTIAL; 2577 skb->ip_summed = CHECKSUM_PARTIAL; 2578 2579 /* Yak, is it really working this way? Some helper please? */ 2580 skb->len -= shiftlen; 2581 skb->data_len -= shiftlen; 2582 skb->truesize -= shiftlen; 2583 tgt->len += shiftlen; 2584 tgt->data_len += shiftlen; 2585 tgt->truesize += shiftlen; 2586 2587 return shiftlen; 2588 } 2589 2590 /** 2591 * skb_prepare_seq_read - Prepare a sequential read of skb data 2592 * @skb: the buffer to read 2593 * @from: lower offset of data to be read 2594 * @to: upper offset of data to be read 2595 * @st: state variable 2596 * 2597 * Initializes the specified state variable. Must be called before 2598 * invoking skb_seq_read() for the first time. 2599 */ 2600 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from, 2601 unsigned int to, struct skb_seq_state *st) 2602 { 2603 st->lower_offset = from; 2604 st->upper_offset = to; 2605 st->root_skb = st->cur_skb = skb; 2606 st->frag_idx = st->stepped_offset = 0; 2607 st->frag_data = NULL; 2608 } 2609 EXPORT_SYMBOL(skb_prepare_seq_read); 2610 2611 /** 2612 * skb_seq_read - Sequentially read skb data 2613 * @consumed: number of bytes consumed by the caller so far 2614 * @data: destination pointer for data to be returned 2615 * @st: state variable 2616 * 2617 * Reads a block of skb data at @consumed relative to the 2618 * lower offset specified to skb_prepare_seq_read(). Assigns 2619 * the head of the data block to @data and returns the length 2620 * of the block or 0 if the end of the skb data or the upper 2621 * offset has been reached. 2622 * 2623 * The caller is not required to consume all of the data 2624 * returned, i.e. @consumed is typically set to the number 2625 * of bytes already consumed and the next call to 2626 * skb_seq_read() will return the remaining part of the block. 2627 * 2628 * Note 1: The size of each block of data returned can be arbitrary, 2629 * this limitation is the cost for zerocopy seqeuental 2630 * reads of potentially non linear data. 2631 * 2632 * Note 2: Fragment lists within fragments are not implemented 2633 * at the moment, state->root_skb could be replaced with 2634 * a stack for this purpose. 2635 */ 2636 unsigned int skb_seq_read(unsigned int consumed, const u8 **data, 2637 struct skb_seq_state *st) 2638 { 2639 unsigned int block_limit, abs_offset = consumed + st->lower_offset; 2640 skb_frag_t *frag; 2641 2642 if (unlikely(abs_offset >= st->upper_offset)) { 2643 if (st->frag_data) { 2644 kunmap_atomic(st->frag_data); 2645 st->frag_data = NULL; 2646 } 2647 return 0; 2648 } 2649 2650 next_skb: 2651 block_limit = skb_headlen(st->cur_skb) + st->stepped_offset; 2652 2653 if (abs_offset < block_limit && !st->frag_data) { 2654 *data = st->cur_skb->data + (abs_offset - st->stepped_offset); 2655 return block_limit - abs_offset; 2656 } 2657 2658 if (st->frag_idx == 0 && !st->frag_data) 2659 st->stepped_offset += skb_headlen(st->cur_skb); 2660 2661 while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) { 2662 frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx]; 2663 block_limit = skb_frag_size(frag) + st->stepped_offset; 2664 2665 if (abs_offset < block_limit) { 2666 if (!st->frag_data) 2667 st->frag_data = kmap_atomic(skb_frag_page(frag)); 2668 2669 *data = (u8 *) st->frag_data + frag->page_offset + 2670 (abs_offset - st->stepped_offset); 2671 2672 return block_limit - abs_offset; 2673 } 2674 2675 if (st->frag_data) { 2676 kunmap_atomic(st->frag_data); 2677 st->frag_data = NULL; 2678 } 2679 2680 st->frag_idx++; 2681 st->stepped_offset += skb_frag_size(frag); 2682 } 2683 2684 if (st->frag_data) { 2685 kunmap_atomic(st->frag_data); 2686 st->frag_data = NULL; 2687 } 2688 2689 if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) { 2690 st->cur_skb = skb_shinfo(st->root_skb)->frag_list; 2691 st->frag_idx = 0; 2692 goto next_skb; 2693 } else if (st->cur_skb->next) { 2694 st->cur_skb = st->cur_skb->next; 2695 st->frag_idx = 0; 2696 goto next_skb; 2697 } 2698 2699 return 0; 2700 } 2701 EXPORT_SYMBOL(skb_seq_read); 2702 2703 /** 2704 * skb_abort_seq_read - Abort a sequential read of skb data 2705 * @st: state variable 2706 * 2707 * Must be called if skb_seq_read() was not called until it 2708 * returned 0. 2709 */ 2710 void skb_abort_seq_read(struct skb_seq_state *st) 2711 { 2712 if (st->frag_data) 2713 kunmap_atomic(st->frag_data); 2714 } 2715 EXPORT_SYMBOL(skb_abort_seq_read); 2716 2717 #define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb)) 2718 2719 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text, 2720 struct ts_config *conf, 2721 struct ts_state *state) 2722 { 2723 return skb_seq_read(offset, text, TS_SKB_CB(state)); 2724 } 2725 2726 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state) 2727 { 2728 skb_abort_seq_read(TS_SKB_CB(state)); 2729 } 2730 2731 /** 2732 * skb_find_text - Find a text pattern in skb data 2733 * @skb: the buffer to look in 2734 * @from: search offset 2735 * @to: search limit 2736 * @config: textsearch configuration 2737 * @state: uninitialized textsearch state variable 2738 * 2739 * Finds a pattern in the skb data according to the specified 2740 * textsearch configuration. Use textsearch_next() to retrieve 2741 * subsequent occurrences of the pattern. Returns the offset 2742 * to the first occurrence or UINT_MAX if no match was found. 2743 */ 2744 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from, 2745 unsigned int to, struct ts_config *config, 2746 struct ts_state *state) 2747 { 2748 unsigned int ret; 2749 2750 config->get_next_block = skb_ts_get_next_block; 2751 config->finish = skb_ts_finish; 2752 2753 skb_prepare_seq_read(skb, from, to, TS_SKB_CB(state)); 2754 2755 ret = textsearch_find(config, state); 2756 return (ret <= to - from ? ret : UINT_MAX); 2757 } 2758 EXPORT_SYMBOL(skb_find_text); 2759 2760 /** 2761 * skb_append_datato_frags - append the user data to a skb 2762 * @sk: sock structure 2763 * @skb: skb structure to be appened with user data. 2764 * @getfrag: call back function to be used for getting the user data 2765 * @from: pointer to user message iov 2766 * @length: length of the iov message 2767 * 2768 * Description: This procedure append the user data in the fragment part 2769 * of the skb if any page alloc fails user this procedure returns -ENOMEM 2770 */ 2771 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb, 2772 int (*getfrag)(void *from, char *to, int offset, 2773 int len, int odd, struct sk_buff *skb), 2774 void *from, int length) 2775 { 2776 int frg_cnt = skb_shinfo(skb)->nr_frags; 2777 int copy; 2778 int offset = 0; 2779 int ret; 2780 struct page_frag *pfrag = ¤t->task_frag; 2781 2782 do { 2783 /* Return error if we don't have space for new frag */ 2784 if (frg_cnt >= MAX_SKB_FRAGS) 2785 return -EMSGSIZE; 2786 2787 if (!sk_page_frag_refill(sk, pfrag)) 2788 return -ENOMEM; 2789 2790 /* copy the user data to page */ 2791 copy = min_t(int, length, pfrag->size - pfrag->offset); 2792 2793 ret = getfrag(from, page_address(pfrag->page) + pfrag->offset, 2794 offset, copy, 0, skb); 2795 if (ret < 0) 2796 return -EFAULT; 2797 2798 /* copy was successful so update the size parameters */ 2799 skb_fill_page_desc(skb, frg_cnt, pfrag->page, pfrag->offset, 2800 copy); 2801 frg_cnt++; 2802 pfrag->offset += copy; 2803 get_page(pfrag->page); 2804 2805 skb->truesize += copy; 2806 atomic_add(copy, &sk->sk_wmem_alloc); 2807 skb->len += copy; 2808 skb->data_len += copy; 2809 offset += copy; 2810 length -= copy; 2811 2812 } while (length > 0); 2813 2814 return 0; 2815 } 2816 EXPORT_SYMBOL(skb_append_datato_frags); 2817 2818 /** 2819 * skb_pull_rcsum - pull skb and update receive checksum 2820 * @skb: buffer to update 2821 * @len: length of data pulled 2822 * 2823 * This function performs an skb_pull on the packet and updates 2824 * the CHECKSUM_COMPLETE checksum. It should be used on 2825 * receive path processing instead of skb_pull unless you know 2826 * that the checksum difference is zero (e.g., a valid IP header) 2827 * or you are setting ip_summed to CHECKSUM_NONE. 2828 */ 2829 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len) 2830 { 2831 BUG_ON(len > skb->len); 2832 skb->len -= len; 2833 BUG_ON(skb->len < skb->data_len); 2834 skb_postpull_rcsum(skb, skb->data, len); 2835 return skb->data += len; 2836 } 2837 EXPORT_SYMBOL_GPL(skb_pull_rcsum); 2838 2839 /** 2840 * skb_segment - Perform protocol segmentation on skb. 2841 * @head_skb: buffer to segment 2842 * @features: features for the output path (see dev->features) 2843 * 2844 * This function performs segmentation on the given skb. It returns 2845 * a pointer to the first in a list of new skbs for the segments. 2846 * In case of error it returns ERR_PTR(err). 2847 */ 2848 struct sk_buff *skb_segment(struct sk_buff *head_skb, 2849 netdev_features_t features) 2850 { 2851 struct sk_buff *segs = NULL; 2852 struct sk_buff *tail = NULL; 2853 struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list; 2854 skb_frag_t *frag = skb_shinfo(head_skb)->frags; 2855 unsigned int mss = skb_shinfo(head_skb)->gso_size; 2856 unsigned int doffset = head_skb->data - skb_mac_header(head_skb); 2857 struct sk_buff *frag_skb = head_skb; 2858 unsigned int offset = doffset; 2859 unsigned int tnl_hlen = skb_tnl_header_len(head_skb); 2860 unsigned int headroom; 2861 unsigned int len; 2862 __be16 proto; 2863 bool csum; 2864 int sg = !!(features & NETIF_F_SG); 2865 int nfrags = skb_shinfo(head_skb)->nr_frags; 2866 int err = -ENOMEM; 2867 int i = 0; 2868 int pos; 2869 2870 proto = skb_network_protocol(head_skb); 2871 if (unlikely(!proto)) 2872 return ERR_PTR(-EINVAL); 2873 2874 csum = !!can_checksum_protocol(features, proto); 2875 __skb_push(head_skb, doffset); 2876 headroom = skb_headroom(head_skb); 2877 pos = skb_headlen(head_skb); 2878 2879 do { 2880 struct sk_buff *nskb; 2881 skb_frag_t *nskb_frag; 2882 int hsize; 2883 int size; 2884 2885 len = head_skb->len - offset; 2886 if (len > mss) 2887 len = mss; 2888 2889 hsize = skb_headlen(head_skb) - offset; 2890 if (hsize < 0) 2891 hsize = 0; 2892 if (hsize > len || !sg) 2893 hsize = len; 2894 2895 if (!hsize && i >= nfrags && skb_headlen(list_skb) && 2896 (skb_headlen(list_skb) == len || sg)) { 2897 BUG_ON(skb_headlen(list_skb) > len); 2898 2899 i = 0; 2900 nfrags = skb_shinfo(list_skb)->nr_frags; 2901 frag = skb_shinfo(list_skb)->frags; 2902 frag_skb = list_skb; 2903 pos += skb_headlen(list_skb); 2904 2905 while (pos < offset + len) { 2906 BUG_ON(i >= nfrags); 2907 2908 size = skb_frag_size(frag); 2909 if (pos + size > offset + len) 2910 break; 2911 2912 i++; 2913 pos += size; 2914 frag++; 2915 } 2916 2917 nskb = skb_clone(list_skb, GFP_ATOMIC); 2918 list_skb = list_skb->next; 2919 2920 if (unlikely(!nskb)) 2921 goto err; 2922 2923 if (unlikely(pskb_trim(nskb, len))) { 2924 kfree_skb(nskb); 2925 goto err; 2926 } 2927 2928 hsize = skb_end_offset(nskb); 2929 if (skb_cow_head(nskb, doffset + headroom)) { 2930 kfree_skb(nskb); 2931 goto err; 2932 } 2933 2934 nskb->truesize += skb_end_offset(nskb) - hsize; 2935 skb_release_head_state(nskb); 2936 __skb_push(nskb, doffset); 2937 } else { 2938 nskb = __alloc_skb(hsize + doffset + headroom, 2939 GFP_ATOMIC, skb_alloc_rx_flag(head_skb), 2940 NUMA_NO_NODE); 2941 2942 if (unlikely(!nskb)) 2943 goto err; 2944 2945 skb_reserve(nskb, headroom); 2946 __skb_put(nskb, doffset); 2947 } 2948 2949 if (segs) 2950 tail->next = nskb; 2951 else 2952 segs = nskb; 2953 tail = nskb; 2954 2955 __copy_skb_header(nskb, head_skb); 2956 nskb->mac_len = head_skb->mac_len; 2957 2958 skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom); 2959 2960 skb_copy_from_linear_data_offset(head_skb, -tnl_hlen, 2961 nskb->data - tnl_hlen, 2962 doffset + tnl_hlen); 2963 2964 if (nskb->len == len + doffset) 2965 goto perform_csum_check; 2966 2967 if (!sg) { 2968 nskb->ip_summed = CHECKSUM_NONE; 2969 nskb->csum = skb_copy_and_csum_bits(head_skb, offset, 2970 skb_put(nskb, len), 2971 len, 0); 2972 continue; 2973 } 2974 2975 nskb_frag = skb_shinfo(nskb)->frags; 2976 2977 skb_copy_from_linear_data_offset(head_skb, offset, 2978 skb_put(nskb, hsize), hsize); 2979 2980 skb_shinfo(nskb)->tx_flags = skb_shinfo(head_skb)->tx_flags & 2981 SKBTX_SHARED_FRAG; 2982 2983 while (pos < offset + len) { 2984 if (i >= nfrags) { 2985 BUG_ON(skb_headlen(list_skb)); 2986 2987 i = 0; 2988 nfrags = skb_shinfo(list_skb)->nr_frags; 2989 frag = skb_shinfo(list_skb)->frags; 2990 frag_skb = list_skb; 2991 2992 BUG_ON(!nfrags); 2993 2994 list_skb = list_skb->next; 2995 } 2996 2997 if (unlikely(skb_shinfo(nskb)->nr_frags >= 2998 MAX_SKB_FRAGS)) { 2999 net_warn_ratelimited( 3000 "skb_segment: too many frags: %u %u\n", 3001 pos, mss); 3002 goto err; 3003 } 3004 3005 if (unlikely(skb_orphan_frags(frag_skb, GFP_ATOMIC))) 3006 goto err; 3007 3008 *nskb_frag = *frag; 3009 __skb_frag_ref(nskb_frag); 3010 size = skb_frag_size(nskb_frag); 3011 3012 if (pos < offset) { 3013 nskb_frag->page_offset += offset - pos; 3014 skb_frag_size_sub(nskb_frag, offset - pos); 3015 } 3016 3017 skb_shinfo(nskb)->nr_frags++; 3018 3019 if (pos + size <= offset + len) { 3020 i++; 3021 frag++; 3022 pos += size; 3023 } else { 3024 skb_frag_size_sub(nskb_frag, pos + size - (offset + len)); 3025 goto skip_fraglist; 3026 } 3027 3028 nskb_frag++; 3029 } 3030 3031 skip_fraglist: 3032 nskb->data_len = len - hsize; 3033 nskb->len += nskb->data_len; 3034 nskb->truesize += nskb->data_len; 3035 3036 perform_csum_check: 3037 if (!csum) { 3038 nskb->csum = skb_checksum(nskb, doffset, 3039 nskb->len - doffset, 0); 3040 nskb->ip_summed = CHECKSUM_NONE; 3041 } 3042 } while ((offset += len) < head_skb->len); 3043 3044 return segs; 3045 3046 err: 3047 kfree_skb_list(segs); 3048 return ERR_PTR(err); 3049 } 3050 EXPORT_SYMBOL_GPL(skb_segment); 3051 3052 int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb) 3053 { 3054 struct skb_shared_info *pinfo, *skbinfo = skb_shinfo(skb); 3055 unsigned int offset = skb_gro_offset(skb); 3056 unsigned int headlen = skb_headlen(skb); 3057 struct sk_buff *nskb, *lp, *p = *head; 3058 unsigned int len = skb_gro_len(skb); 3059 unsigned int delta_truesize; 3060 unsigned int headroom; 3061 3062 if (unlikely(p->len + len >= 65536)) 3063 return -E2BIG; 3064 3065 lp = NAPI_GRO_CB(p)->last ?: p; 3066 pinfo = skb_shinfo(lp); 3067 3068 if (headlen <= offset) { 3069 skb_frag_t *frag; 3070 skb_frag_t *frag2; 3071 int i = skbinfo->nr_frags; 3072 int nr_frags = pinfo->nr_frags + i; 3073 3074 if (nr_frags > MAX_SKB_FRAGS) 3075 goto merge; 3076 3077 offset -= headlen; 3078 pinfo->nr_frags = nr_frags; 3079 skbinfo->nr_frags = 0; 3080 3081 frag = pinfo->frags + nr_frags; 3082 frag2 = skbinfo->frags + i; 3083 do { 3084 *--frag = *--frag2; 3085 } while (--i); 3086 3087 frag->page_offset += offset; 3088 skb_frag_size_sub(frag, offset); 3089 3090 /* all fragments truesize : remove (head size + sk_buff) */ 3091 delta_truesize = skb->truesize - 3092 SKB_TRUESIZE(skb_end_offset(skb)); 3093 3094 skb->truesize -= skb->data_len; 3095 skb->len -= skb->data_len; 3096 skb->data_len = 0; 3097 3098 NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE; 3099 goto done; 3100 } else if (skb->head_frag) { 3101 int nr_frags = pinfo->nr_frags; 3102 skb_frag_t *frag = pinfo->frags + nr_frags; 3103 struct page *page = virt_to_head_page(skb->head); 3104 unsigned int first_size = headlen - offset; 3105 unsigned int first_offset; 3106 3107 if (nr_frags + 1 + skbinfo->nr_frags > MAX_SKB_FRAGS) 3108 goto merge; 3109 3110 first_offset = skb->data - 3111 (unsigned char *)page_address(page) + 3112 offset; 3113 3114 pinfo->nr_frags = nr_frags + 1 + skbinfo->nr_frags; 3115 3116 frag->page.p = page; 3117 frag->page_offset = first_offset; 3118 skb_frag_size_set(frag, first_size); 3119 3120 memcpy(frag + 1, skbinfo->frags, sizeof(*frag) * skbinfo->nr_frags); 3121 /* We dont need to clear skbinfo->nr_frags here */ 3122 3123 delta_truesize = skb->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff)); 3124 NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE_STOLEN_HEAD; 3125 goto done; 3126 } 3127 if (pinfo->frag_list) 3128 goto merge; 3129 if (skb_gro_len(p) != pinfo->gso_size) 3130 return -E2BIG; 3131 3132 headroom = skb_headroom(p); 3133 nskb = alloc_skb(headroom + skb_gro_offset(p), GFP_ATOMIC); 3134 if (unlikely(!nskb)) 3135 return -ENOMEM; 3136 3137 __copy_skb_header(nskb, p); 3138 nskb->mac_len = p->mac_len; 3139 3140 skb_reserve(nskb, headroom); 3141 __skb_put(nskb, skb_gro_offset(p)); 3142 3143 skb_set_mac_header(nskb, skb_mac_header(p) - p->data); 3144 skb_set_network_header(nskb, skb_network_offset(p)); 3145 skb_set_transport_header(nskb, skb_transport_offset(p)); 3146 3147 __skb_pull(p, skb_gro_offset(p)); 3148 memcpy(skb_mac_header(nskb), skb_mac_header(p), 3149 p->data - skb_mac_header(p)); 3150 3151 skb_shinfo(nskb)->frag_list = p; 3152 skb_shinfo(nskb)->gso_size = pinfo->gso_size; 3153 pinfo->gso_size = 0; 3154 skb_header_release(p); 3155 NAPI_GRO_CB(nskb)->last = p; 3156 3157 nskb->data_len += p->len; 3158 nskb->truesize += p->truesize; 3159 nskb->len += p->len; 3160 3161 *head = nskb; 3162 nskb->next = p->next; 3163 p->next = NULL; 3164 3165 p = nskb; 3166 3167 merge: 3168 delta_truesize = skb->truesize; 3169 if (offset > headlen) { 3170 unsigned int eat = offset - headlen; 3171 3172 skbinfo->frags[0].page_offset += eat; 3173 skb_frag_size_sub(&skbinfo->frags[0], eat); 3174 skb->data_len -= eat; 3175 skb->len -= eat; 3176 offset = headlen; 3177 } 3178 3179 __skb_pull(skb, offset); 3180 3181 if (!NAPI_GRO_CB(p)->last) 3182 skb_shinfo(p)->frag_list = skb; 3183 else 3184 NAPI_GRO_CB(p)->last->next = skb; 3185 NAPI_GRO_CB(p)->last = skb; 3186 skb_header_release(skb); 3187 lp = p; 3188 3189 done: 3190 NAPI_GRO_CB(p)->count++; 3191 p->data_len += len; 3192 p->truesize += delta_truesize; 3193 p->len += len; 3194 if (lp != p) { 3195 lp->data_len += len; 3196 lp->truesize += delta_truesize; 3197 lp->len += len; 3198 } 3199 NAPI_GRO_CB(skb)->same_flow = 1; 3200 return 0; 3201 } 3202 EXPORT_SYMBOL_GPL(skb_gro_receive); 3203 3204 void __init skb_init(void) 3205 { 3206 skbuff_head_cache = kmem_cache_create("skbuff_head_cache", 3207 sizeof(struct sk_buff), 3208 0, 3209 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 3210 NULL); 3211 skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache", 3212 (2*sizeof(struct sk_buff)) + 3213 sizeof(atomic_t), 3214 0, 3215 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 3216 NULL); 3217 } 3218 3219 /** 3220 * skb_to_sgvec - Fill a scatter-gather list from a socket buffer 3221 * @skb: Socket buffer containing the buffers to be mapped 3222 * @sg: The scatter-gather list to map into 3223 * @offset: The offset into the buffer's contents to start mapping 3224 * @len: Length of buffer space to be mapped 3225 * 3226 * Fill the specified scatter-gather list with mappings/pointers into a 3227 * region of the buffer space attached to a socket buffer. 3228 */ 3229 static int 3230 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len) 3231 { 3232 int start = skb_headlen(skb); 3233 int i, copy = start - offset; 3234 struct sk_buff *frag_iter; 3235 int elt = 0; 3236 3237 if (copy > 0) { 3238 if (copy > len) 3239 copy = len; 3240 sg_set_buf(sg, skb->data + offset, copy); 3241 elt++; 3242 if ((len -= copy) == 0) 3243 return elt; 3244 offset += copy; 3245 } 3246 3247 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 3248 int end; 3249 3250 WARN_ON(start > offset + len); 3251 3252 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]); 3253 if ((copy = end - offset) > 0) { 3254 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 3255 3256 if (copy > len) 3257 copy = len; 3258 sg_set_page(&sg[elt], skb_frag_page(frag), copy, 3259 frag->page_offset+offset-start); 3260 elt++; 3261 if (!(len -= copy)) 3262 return elt; 3263 offset += copy; 3264 } 3265 start = end; 3266 } 3267 3268 skb_walk_frags(skb, frag_iter) { 3269 int end; 3270 3271 WARN_ON(start > offset + len); 3272 3273 end = start + frag_iter->len; 3274 if ((copy = end - offset) > 0) { 3275 if (copy > len) 3276 copy = len; 3277 elt += __skb_to_sgvec(frag_iter, sg+elt, offset - start, 3278 copy); 3279 if ((len -= copy) == 0) 3280 return elt; 3281 offset += copy; 3282 } 3283 start = end; 3284 } 3285 BUG_ON(len); 3286 return elt; 3287 } 3288 3289 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len) 3290 { 3291 int nsg = __skb_to_sgvec(skb, sg, offset, len); 3292 3293 sg_mark_end(&sg[nsg - 1]); 3294 3295 return nsg; 3296 } 3297 EXPORT_SYMBOL_GPL(skb_to_sgvec); 3298 3299 /** 3300 * skb_cow_data - Check that a socket buffer's data buffers are writable 3301 * @skb: The socket buffer to check. 3302 * @tailbits: Amount of trailing space to be added 3303 * @trailer: Returned pointer to the skb where the @tailbits space begins 3304 * 3305 * Make sure that the data buffers attached to a socket buffer are 3306 * writable. If they are not, private copies are made of the data buffers 3307 * and the socket buffer is set to use these instead. 3308 * 3309 * If @tailbits is given, make sure that there is space to write @tailbits 3310 * bytes of data beyond current end of socket buffer. @trailer will be 3311 * set to point to the skb in which this space begins. 3312 * 3313 * The number of scatterlist elements required to completely map the 3314 * COW'd and extended socket buffer will be returned. 3315 */ 3316 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer) 3317 { 3318 int copyflag; 3319 int elt; 3320 struct sk_buff *skb1, **skb_p; 3321 3322 /* If skb is cloned or its head is paged, reallocate 3323 * head pulling out all the pages (pages are considered not writable 3324 * at the moment even if they are anonymous). 3325 */ 3326 if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) && 3327 __pskb_pull_tail(skb, skb_pagelen(skb)-skb_headlen(skb)) == NULL) 3328 return -ENOMEM; 3329 3330 /* Easy case. Most of packets will go this way. */ 3331 if (!skb_has_frag_list(skb)) { 3332 /* A little of trouble, not enough of space for trailer. 3333 * This should not happen, when stack is tuned to generate 3334 * good frames. OK, on miss we reallocate and reserve even more 3335 * space, 128 bytes is fair. */ 3336 3337 if (skb_tailroom(skb) < tailbits && 3338 pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC)) 3339 return -ENOMEM; 3340 3341 /* Voila! */ 3342 *trailer = skb; 3343 return 1; 3344 } 3345 3346 /* Misery. We are in troubles, going to mincer fragments... */ 3347 3348 elt = 1; 3349 skb_p = &skb_shinfo(skb)->frag_list; 3350 copyflag = 0; 3351 3352 while ((skb1 = *skb_p) != NULL) { 3353 int ntail = 0; 3354 3355 /* The fragment is partially pulled by someone, 3356 * this can happen on input. Copy it and everything 3357 * after it. */ 3358 3359 if (skb_shared(skb1)) 3360 copyflag = 1; 3361 3362 /* If the skb is the last, worry about trailer. */ 3363 3364 if (skb1->next == NULL && tailbits) { 3365 if (skb_shinfo(skb1)->nr_frags || 3366 skb_has_frag_list(skb1) || 3367 skb_tailroom(skb1) < tailbits) 3368 ntail = tailbits + 128; 3369 } 3370 3371 if (copyflag || 3372 skb_cloned(skb1) || 3373 ntail || 3374 skb_shinfo(skb1)->nr_frags || 3375 skb_has_frag_list(skb1)) { 3376 struct sk_buff *skb2; 3377 3378 /* Fuck, we are miserable poor guys... */ 3379 if (ntail == 0) 3380 skb2 = skb_copy(skb1, GFP_ATOMIC); 3381 else 3382 skb2 = skb_copy_expand(skb1, 3383 skb_headroom(skb1), 3384 ntail, 3385 GFP_ATOMIC); 3386 if (unlikely(skb2 == NULL)) 3387 return -ENOMEM; 3388 3389 if (skb1->sk) 3390 skb_set_owner_w(skb2, skb1->sk); 3391 3392 /* Looking around. Are we still alive? 3393 * OK, link new skb, drop old one */ 3394 3395 skb2->next = skb1->next; 3396 *skb_p = skb2; 3397 kfree_skb(skb1); 3398 skb1 = skb2; 3399 } 3400 elt++; 3401 *trailer = skb1; 3402 skb_p = &skb1->next; 3403 } 3404 3405 return elt; 3406 } 3407 EXPORT_SYMBOL_GPL(skb_cow_data); 3408 3409 static void sock_rmem_free(struct sk_buff *skb) 3410 { 3411 struct sock *sk = skb->sk; 3412 3413 atomic_sub(skb->truesize, &sk->sk_rmem_alloc); 3414 } 3415 3416 /* 3417 * Note: We dont mem charge error packets (no sk_forward_alloc changes) 3418 */ 3419 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb) 3420 { 3421 int len = skb->len; 3422 3423 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >= 3424 (unsigned int)sk->sk_rcvbuf) 3425 return -ENOMEM; 3426 3427 skb_orphan(skb); 3428 skb->sk = sk; 3429 skb->destructor = sock_rmem_free; 3430 atomic_add(skb->truesize, &sk->sk_rmem_alloc); 3431 3432 /* before exiting rcu section, make sure dst is refcounted */ 3433 skb_dst_force(skb); 3434 3435 skb_queue_tail(&sk->sk_error_queue, skb); 3436 if (!sock_flag(sk, SOCK_DEAD)) 3437 sk->sk_data_ready(sk, len); 3438 return 0; 3439 } 3440 EXPORT_SYMBOL(sock_queue_err_skb); 3441 3442 void skb_tstamp_tx(struct sk_buff *orig_skb, 3443 struct skb_shared_hwtstamps *hwtstamps) 3444 { 3445 struct sock *sk = orig_skb->sk; 3446 struct sock_exterr_skb *serr; 3447 struct sk_buff *skb; 3448 int err; 3449 3450 if (!sk) 3451 return; 3452 3453 if (hwtstamps) { 3454 *skb_hwtstamps(orig_skb) = 3455 *hwtstamps; 3456 } else { 3457 /* 3458 * no hardware time stamps available, 3459 * so keep the shared tx_flags and only 3460 * store software time stamp 3461 */ 3462 orig_skb->tstamp = ktime_get_real(); 3463 } 3464 3465 skb = skb_clone(orig_skb, GFP_ATOMIC); 3466 if (!skb) 3467 return; 3468 3469 serr = SKB_EXT_ERR(skb); 3470 memset(serr, 0, sizeof(*serr)); 3471 serr->ee.ee_errno = ENOMSG; 3472 serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING; 3473 3474 err = sock_queue_err_skb(sk, skb); 3475 3476 if (err) 3477 kfree_skb(skb); 3478 } 3479 EXPORT_SYMBOL_GPL(skb_tstamp_tx); 3480 3481 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked) 3482 { 3483 struct sock *sk = skb->sk; 3484 struct sock_exterr_skb *serr; 3485 int err; 3486 3487 skb->wifi_acked_valid = 1; 3488 skb->wifi_acked = acked; 3489 3490 serr = SKB_EXT_ERR(skb); 3491 memset(serr, 0, sizeof(*serr)); 3492 serr->ee.ee_errno = ENOMSG; 3493 serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS; 3494 3495 err = sock_queue_err_skb(sk, skb); 3496 if (err) 3497 kfree_skb(skb); 3498 } 3499 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack); 3500 3501 3502 /** 3503 * skb_partial_csum_set - set up and verify partial csum values for packet 3504 * @skb: the skb to set 3505 * @start: the number of bytes after skb->data to start checksumming. 3506 * @off: the offset from start to place the checksum. 3507 * 3508 * For untrusted partially-checksummed packets, we need to make sure the values 3509 * for skb->csum_start and skb->csum_offset are valid so we don't oops. 3510 * 3511 * This function checks and sets those values and skb->ip_summed: if this 3512 * returns false you should drop the packet. 3513 */ 3514 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off) 3515 { 3516 if (unlikely(start > skb_headlen(skb)) || 3517 unlikely((int)start + off > skb_headlen(skb) - 2)) { 3518 net_warn_ratelimited("bad partial csum: csum=%u/%u len=%u\n", 3519 start, off, skb_headlen(skb)); 3520 return false; 3521 } 3522 skb->ip_summed = CHECKSUM_PARTIAL; 3523 skb->csum_start = skb_headroom(skb) + start; 3524 skb->csum_offset = off; 3525 skb_set_transport_header(skb, start); 3526 return true; 3527 } 3528 EXPORT_SYMBOL_GPL(skb_partial_csum_set); 3529 3530 static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len, 3531 unsigned int max) 3532 { 3533 if (skb_headlen(skb) >= len) 3534 return 0; 3535 3536 /* If we need to pullup then pullup to the max, so we 3537 * won't need to do it again. 3538 */ 3539 if (max > skb->len) 3540 max = skb->len; 3541 3542 if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL) 3543 return -ENOMEM; 3544 3545 if (skb_headlen(skb) < len) 3546 return -EPROTO; 3547 3548 return 0; 3549 } 3550 3551 /* This value should be large enough to cover a tagged ethernet header plus 3552 * maximally sized IP and TCP or UDP headers. 3553 */ 3554 #define MAX_IP_HDR_LEN 128 3555 3556 static int skb_checksum_setup_ip(struct sk_buff *skb, bool recalculate) 3557 { 3558 unsigned int off; 3559 bool fragment; 3560 int err; 3561 3562 fragment = false; 3563 3564 err = skb_maybe_pull_tail(skb, 3565 sizeof(struct iphdr), 3566 MAX_IP_HDR_LEN); 3567 if (err < 0) 3568 goto out; 3569 3570 if (ip_hdr(skb)->frag_off & htons(IP_OFFSET | IP_MF)) 3571 fragment = true; 3572 3573 off = ip_hdrlen(skb); 3574 3575 err = -EPROTO; 3576 3577 if (fragment) 3578 goto out; 3579 3580 switch (ip_hdr(skb)->protocol) { 3581 case IPPROTO_TCP: 3582 err = skb_maybe_pull_tail(skb, 3583 off + sizeof(struct tcphdr), 3584 MAX_IP_HDR_LEN); 3585 if (err < 0) 3586 goto out; 3587 3588 if (!skb_partial_csum_set(skb, off, 3589 offsetof(struct tcphdr, check))) { 3590 err = -EPROTO; 3591 goto out; 3592 } 3593 3594 if (recalculate) 3595 tcp_hdr(skb)->check = 3596 ~csum_tcpudp_magic(ip_hdr(skb)->saddr, 3597 ip_hdr(skb)->daddr, 3598 skb->len - off, 3599 IPPROTO_TCP, 0); 3600 break; 3601 case IPPROTO_UDP: 3602 err = skb_maybe_pull_tail(skb, 3603 off + sizeof(struct udphdr), 3604 MAX_IP_HDR_LEN); 3605 if (err < 0) 3606 goto out; 3607 3608 if (!skb_partial_csum_set(skb, off, 3609 offsetof(struct udphdr, check))) { 3610 err = -EPROTO; 3611 goto out; 3612 } 3613 3614 if (recalculate) 3615 udp_hdr(skb)->check = 3616 ~csum_tcpudp_magic(ip_hdr(skb)->saddr, 3617 ip_hdr(skb)->daddr, 3618 skb->len - off, 3619 IPPROTO_UDP, 0); 3620 break; 3621 default: 3622 goto out; 3623 } 3624 3625 err = 0; 3626 3627 out: 3628 return err; 3629 } 3630 3631 /* This value should be large enough to cover a tagged ethernet header plus 3632 * an IPv6 header, all options, and a maximal TCP or UDP header. 3633 */ 3634 #define MAX_IPV6_HDR_LEN 256 3635 3636 #define OPT_HDR(type, skb, off) \ 3637 (type *)(skb_network_header(skb) + (off)) 3638 3639 static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate) 3640 { 3641 int err; 3642 u8 nexthdr; 3643 unsigned int off; 3644 unsigned int len; 3645 bool fragment; 3646 bool done; 3647 3648 fragment = false; 3649 done = false; 3650 3651 off = sizeof(struct ipv6hdr); 3652 3653 err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN); 3654 if (err < 0) 3655 goto out; 3656 3657 nexthdr = ipv6_hdr(skb)->nexthdr; 3658 3659 len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len); 3660 while (off <= len && !done) { 3661 switch (nexthdr) { 3662 case IPPROTO_DSTOPTS: 3663 case IPPROTO_HOPOPTS: 3664 case IPPROTO_ROUTING: { 3665 struct ipv6_opt_hdr *hp; 3666 3667 err = skb_maybe_pull_tail(skb, 3668 off + 3669 sizeof(struct ipv6_opt_hdr), 3670 MAX_IPV6_HDR_LEN); 3671 if (err < 0) 3672 goto out; 3673 3674 hp = OPT_HDR(struct ipv6_opt_hdr, skb, off); 3675 nexthdr = hp->nexthdr; 3676 off += ipv6_optlen(hp); 3677 break; 3678 } 3679 case IPPROTO_AH: { 3680 struct ip_auth_hdr *hp; 3681 3682 err = skb_maybe_pull_tail(skb, 3683 off + 3684 sizeof(struct ip_auth_hdr), 3685 MAX_IPV6_HDR_LEN); 3686 if (err < 0) 3687 goto out; 3688 3689 hp = OPT_HDR(struct ip_auth_hdr, skb, off); 3690 nexthdr = hp->nexthdr; 3691 off += ipv6_authlen(hp); 3692 break; 3693 } 3694 case IPPROTO_FRAGMENT: { 3695 struct frag_hdr *hp; 3696 3697 err = skb_maybe_pull_tail(skb, 3698 off + 3699 sizeof(struct frag_hdr), 3700 MAX_IPV6_HDR_LEN); 3701 if (err < 0) 3702 goto out; 3703 3704 hp = OPT_HDR(struct frag_hdr, skb, off); 3705 3706 if (hp->frag_off & htons(IP6_OFFSET | IP6_MF)) 3707 fragment = true; 3708 3709 nexthdr = hp->nexthdr; 3710 off += sizeof(struct frag_hdr); 3711 break; 3712 } 3713 default: 3714 done = true; 3715 break; 3716 } 3717 } 3718 3719 err = -EPROTO; 3720 3721 if (!done || fragment) 3722 goto out; 3723 3724 switch (nexthdr) { 3725 case IPPROTO_TCP: 3726 err = skb_maybe_pull_tail(skb, 3727 off + sizeof(struct tcphdr), 3728 MAX_IPV6_HDR_LEN); 3729 if (err < 0) 3730 goto out; 3731 3732 if (!skb_partial_csum_set(skb, off, 3733 offsetof(struct tcphdr, check))) { 3734 err = -EPROTO; 3735 goto out; 3736 } 3737 3738 if (recalculate) 3739 tcp_hdr(skb)->check = 3740 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr, 3741 &ipv6_hdr(skb)->daddr, 3742 skb->len - off, 3743 IPPROTO_TCP, 0); 3744 break; 3745 case IPPROTO_UDP: 3746 err = skb_maybe_pull_tail(skb, 3747 off + sizeof(struct udphdr), 3748 MAX_IPV6_HDR_LEN); 3749 if (err < 0) 3750 goto out; 3751 3752 if (!skb_partial_csum_set(skb, off, 3753 offsetof(struct udphdr, check))) { 3754 err = -EPROTO; 3755 goto out; 3756 } 3757 3758 if (recalculate) 3759 udp_hdr(skb)->check = 3760 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr, 3761 &ipv6_hdr(skb)->daddr, 3762 skb->len - off, 3763 IPPROTO_UDP, 0); 3764 break; 3765 default: 3766 goto out; 3767 } 3768 3769 err = 0; 3770 3771 out: 3772 return err; 3773 } 3774 3775 /** 3776 * skb_checksum_setup - set up partial checksum offset 3777 * @skb: the skb to set up 3778 * @recalculate: if true the pseudo-header checksum will be recalculated 3779 */ 3780 int skb_checksum_setup(struct sk_buff *skb, bool recalculate) 3781 { 3782 int err; 3783 3784 switch (skb->protocol) { 3785 case htons(ETH_P_IP): 3786 err = skb_checksum_setup_ip(skb, recalculate); 3787 break; 3788 3789 case htons(ETH_P_IPV6): 3790 err = skb_checksum_setup_ipv6(skb, recalculate); 3791 break; 3792 3793 default: 3794 err = -EPROTO; 3795 break; 3796 } 3797 3798 return err; 3799 } 3800 EXPORT_SYMBOL(skb_checksum_setup); 3801 3802 void __skb_warn_lro_forwarding(const struct sk_buff *skb) 3803 { 3804 net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n", 3805 skb->dev->name); 3806 } 3807 EXPORT_SYMBOL(__skb_warn_lro_forwarding); 3808 3809 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen) 3810 { 3811 if (head_stolen) { 3812 skb_release_head_state(skb); 3813 kmem_cache_free(skbuff_head_cache, skb); 3814 } else { 3815 __kfree_skb(skb); 3816 } 3817 } 3818 EXPORT_SYMBOL(kfree_skb_partial); 3819 3820 /** 3821 * skb_try_coalesce - try to merge skb to prior one 3822 * @to: prior buffer 3823 * @from: buffer to add 3824 * @fragstolen: pointer to boolean 3825 * @delta_truesize: how much more was allocated than was requested 3826 */ 3827 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from, 3828 bool *fragstolen, int *delta_truesize) 3829 { 3830 int i, delta, len = from->len; 3831 3832 *fragstolen = false; 3833 3834 if (skb_cloned(to)) 3835 return false; 3836 3837 if (len <= skb_tailroom(to)) { 3838 BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len)); 3839 *delta_truesize = 0; 3840 return true; 3841 } 3842 3843 if (skb_has_frag_list(to) || skb_has_frag_list(from)) 3844 return false; 3845 3846 if (skb_headlen(from) != 0) { 3847 struct page *page; 3848 unsigned int offset; 3849 3850 if (skb_shinfo(to)->nr_frags + 3851 skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS) 3852 return false; 3853 3854 if (skb_head_is_locked(from)) 3855 return false; 3856 3857 delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff)); 3858 3859 page = virt_to_head_page(from->head); 3860 offset = from->data - (unsigned char *)page_address(page); 3861 3862 skb_fill_page_desc(to, skb_shinfo(to)->nr_frags, 3863 page, offset, skb_headlen(from)); 3864 *fragstolen = true; 3865 } else { 3866 if (skb_shinfo(to)->nr_frags + 3867 skb_shinfo(from)->nr_frags > MAX_SKB_FRAGS) 3868 return false; 3869 3870 delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from)); 3871 } 3872 3873 WARN_ON_ONCE(delta < len); 3874 3875 memcpy(skb_shinfo(to)->frags + skb_shinfo(to)->nr_frags, 3876 skb_shinfo(from)->frags, 3877 skb_shinfo(from)->nr_frags * sizeof(skb_frag_t)); 3878 skb_shinfo(to)->nr_frags += skb_shinfo(from)->nr_frags; 3879 3880 if (!skb_cloned(from)) 3881 skb_shinfo(from)->nr_frags = 0; 3882 3883 /* if the skb is not cloned this does nothing 3884 * since we set nr_frags to 0. 3885 */ 3886 for (i = 0; i < skb_shinfo(from)->nr_frags; i++) 3887 skb_frag_ref(from, i); 3888 3889 to->truesize += delta; 3890 to->len += len; 3891 to->data_len += len; 3892 3893 *delta_truesize = delta; 3894 return true; 3895 } 3896 EXPORT_SYMBOL(skb_try_coalesce); 3897 3898 /** 3899 * skb_scrub_packet - scrub an skb 3900 * 3901 * @skb: buffer to clean 3902 * @xnet: packet is crossing netns 3903 * 3904 * skb_scrub_packet can be used after encapsulating or decapsulting a packet 3905 * into/from a tunnel. Some information have to be cleared during these 3906 * operations. 3907 * skb_scrub_packet can also be used to clean a skb before injecting it in 3908 * another namespace (@xnet == true). We have to clear all information in the 3909 * skb that could impact namespace isolation. 3910 */ 3911 void skb_scrub_packet(struct sk_buff *skb, bool xnet) 3912 { 3913 if (xnet) 3914 skb_orphan(skb); 3915 skb->tstamp.tv64 = 0; 3916 skb->pkt_type = PACKET_HOST; 3917 skb->skb_iif = 0; 3918 skb->local_df = 0; 3919 skb_dst_drop(skb); 3920 skb->mark = 0; 3921 secpath_reset(skb); 3922 nf_reset(skb); 3923 nf_reset_trace(skb); 3924 } 3925 EXPORT_SYMBOL_GPL(skb_scrub_packet); 3926 3927 /** 3928 * skb_gso_transport_seglen - Return length of individual segments of a gso packet 3929 * 3930 * @skb: GSO skb 3931 * 3932 * skb_gso_transport_seglen is used to determine the real size of the 3933 * individual segments, including Layer4 headers (TCP/UDP). 3934 * 3935 * The MAC/L2 or network (IP, IPv6) headers are not accounted for. 3936 */ 3937 unsigned int skb_gso_transport_seglen(const struct sk_buff *skb) 3938 { 3939 const struct skb_shared_info *shinfo = skb_shinfo(skb); 3940 unsigned int hdr_len; 3941 3942 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) 3943 hdr_len = tcp_hdrlen(skb); 3944 else 3945 hdr_len = sizeof(struct udphdr); 3946 return hdr_len + shinfo->gso_size; 3947 } 3948 EXPORT_SYMBOL_GPL(skb_gso_transport_seglen); 3949