1 /* 2 * Routines having to do with the 'struct sk_buff' memory handlers. 3 * 4 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk> 5 * Florian La Roche <rzsfl@rz.uni-sb.de> 6 * 7 * Fixes: 8 * Alan Cox : Fixed the worst of the load 9 * balancer bugs. 10 * Dave Platt : Interrupt stacking fix. 11 * Richard Kooijman : Timestamp fixes. 12 * Alan Cox : Changed buffer format. 13 * Alan Cox : destructor hook for AF_UNIX etc. 14 * Linus Torvalds : Better skb_clone. 15 * Alan Cox : Added skb_copy. 16 * Alan Cox : Added all the changed routines Linus 17 * only put in the headers 18 * Ray VanTassle : Fixed --skb->lock in free 19 * Alan Cox : skb_copy copy arp field 20 * Andi Kleen : slabified it. 21 * Robert Olsson : Removed skb_head_pool 22 * 23 * NOTE: 24 * The __skb_ routines should be called with interrupts 25 * disabled, or you better be *real* sure that the operation is atomic 26 * with respect to whatever list is being frobbed (e.g. via lock_sock() 27 * or via disabling bottom half handlers, etc). 28 * 29 * This program is free software; you can redistribute it and/or 30 * modify it under the terms of the GNU General Public License 31 * as published by the Free Software Foundation; either version 32 * 2 of the License, or (at your option) any later version. 33 */ 34 35 /* 36 * The functions in this file will not compile correctly with gcc 2.4.x 37 */ 38 39 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 40 41 #include <linux/module.h> 42 #include <linux/types.h> 43 #include <linux/kernel.h> 44 #include <linux/mm.h> 45 #include <linux/interrupt.h> 46 #include <linux/in.h> 47 #include <linux/inet.h> 48 #include <linux/slab.h> 49 #include <linux/tcp.h> 50 #include <linux/udp.h> 51 #include <linux/sctp.h> 52 #include <linux/netdevice.h> 53 #ifdef CONFIG_NET_CLS_ACT 54 #include <net/pkt_sched.h> 55 #endif 56 #include <linux/string.h> 57 #include <linux/skbuff.h> 58 #include <linux/splice.h> 59 #include <linux/cache.h> 60 #include <linux/rtnetlink.h> 61 #include <linux/init.h> 62 #include <linux/scatterlist.h> 63 #include <linux/errqueue.h> 64 #include <linux/prefetch.h> 65 #include <linux/if_vlan.h> 66 67 #include <net/protocol.h> 68 #include <net/dst.h> 69 #include <net/sock.h> 70 #include <net/checksum.h> 71 #include <net/ip6_checksum.h> 72 #include <net/xfrm.h> 73 74 #include <linux/uaccess.h> 75 #include <trace/events/skb.h> 76 #include <linux/highmem.h> 77 #include <linux/capability.h> 78 #include <linux/user_namespace.h> 79 80 struct kmem_cache *skbuff_head_cache __ro_after_init; 81 static struct kmem_cache *skbuff_fclone_cache __ro_after_init; 82 #ifdef CONFIG_SKB_EXTENSIONS 83 static struct kmem_cache *skbuff_ext_cache __ro_after_init; 84 #endif 85 int sysctl_max_skb_frags __read_mostly = MAX_SKB_FRAGS; 86 EXPORT_SYMBOL(sysctl_max_skb_frags); 87 88 /** 89 * skb_panic - private function for out-of-line support 90 * @skb: buffer 91 * @sz: size 92 * @addr: address 93 * @msg: skb_over_panic or skb_under_panic 94 * 95 * Out-of-line support for skb_put() and skb_push(). 96 * Called via the wrapper skb_over_panic() or skb_under_panic(). 97 * Keep out of line to prevent kernel bloat. 98 * __builtin_return_address is not used because it is not always reliable. 99 */ 100 static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr, 101 const char msg[]) 102 { 103 pr_emerg("%s: text:%p len:%d put:%d head:%p data:%p tail:%#lx end:%#lx dev:%s\n", 104 msg, addr, skb->len, sz, skb->head, skb->data, 105 (unsigned long)skb->tail, (unsigned long)skb->end, 106 skb->dev ? skb->dev->name : "<NULL>"); 107 BUG(); 108 } 109 110 static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr) 111 { 112 skb_panic(skb, sz, addr, __func__); 113 } 114 115 static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr) 116 { 117 skb_panic(skb, sz, addr, __func__); 118 } 119 120 /* 121 * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells 122 * the caller if emergency pfmemalloc reserves are being used. If it is and 123 * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves 124 * may be used. Otherwise, the packet data may be discarded until enough 125 * memory is free 126 */ 127 #define kmalloc_reserve(size, gfp, node, pfmemalloc) \ 128 __kmalloc_reserve(size, gfp, node, _RET_IP_, pfmemalloc) 129 130 static void *__kmalloc_reserve(size_t size, gfp_t flags, int node, 131 unsigned long ip, bool *pfmemalloc) 132 { 133 void *obj; 134 bool ret_pfmemalloc = false; 135 136 /* 137 * Try a regular allocation, when that fails and we're not entitled 138 * to the reserves, fail. 139 */ 140 obj = kmalloc_node_track_caller(size, 141 flags | __GFP_NOMEMALLOC | __GFP_NOWARN, 142 node); 143 if (obj || !(gfp_pfmemalloc_allowed(flags))) 144 goto out; 145 146 /* Try again but now we are using pfmemalloc reserves */ 147 ret_pfmemalloc = true; 148 obj = kmalloc_node_track_caller(size, flags, node); 149 150 out: 151 if (pfmemalloc) 152 *pfmemalloc = ret_pfmemalloc; 153 154 return obj; 155 } 156 157 /* Allocate a new skbuff. We do this ourselves so we can fill in a few 158 * 'private' fields and also do memory statistics to find all the 159 * [BEEP] leaks. 160 * 161 */ 162 163 /** 164 * __alloc_skb - allocate a network buffer 165 * @size: size to allocate 166 * @gfp_mask: allocation mask 167 * @flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache 168 * instead of head cache and allocate a cloned (child) skb. 169 * If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for 170 * allocations in case the data is required for writeback 171 * @node: numa node to allocate memory on 172 * 173 * Allocate a new &sk_buff. The returned buffer has no headroom and a 174 * tail room of at least size bytes. The object has a reference count 175 * of one. The return is the buffer. On a failure the return is %NULL. 176 * 177 * Buffers may only be allocated from interrupts using a @gfp_mask of 178 * %GFP_ATOMIC. 179 */ 180 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask, 181 int flags, int node) 182 { 183 struct kmem_cache *cache; 184 struct skb_shared_info *shinfo; 185 struct sk_buff *skb; 186 u8 *data; 187 bool pfmemalloc; 188 189 cache = (flags & SKB_ALLOC_FCLONE) 190 ? skbuff_fclone_cache : skbuff_head_cache; 191 192 if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX)) 193 gfp_mask |= __GFP_MEMALLOC; 194 195 /* Get the HEAD */ 196 skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node); 197 if (!skb) 198 goto out; 199 prefetchw(skb); 200 201 /* We do our best to align skb_shared_info on a separate cache 202 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives 203 * aligned memory blocks, unless SLUB/SLAB debug is enabled. 204 * Both skb->head and skb_shared_info are cache line aligned. 205 */ 206 size = SKB_DATA_ALIGN(size); 207 size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 208 data = kmalloc_reserve(size, gfp_mask, node, &pfmemalloc); 209 if (!data) 210 goto nodata; 211 /* kmalloc(size) might give us more room than requested. 212 * Put skb_shared_info exactly at the end of allocated zone, 213 * to allow max possible filling before reallocation. 214 */ 215 size = SKB_WITH_OVERHEAD(ksize(data)); 216 prefetchw(data + size); 217 218 /* 219 * Only clear those fields we need to clear, not those that we will 220 * actually initialise below. Hence, don't put any more fields after 221 * the tail pointer in struct sk_buff! 222 */ 223 memset(skb, 0, offsetof(struct sk_buff, tail)); 224 /* Account for allocated memory : skb + skb->head */ 225 skb->truesize = SKB_TRUESIZE(size); 226 skb->pfmemalloc = pfmemalloc; 227 refcount_set(&skb->users, 1); 228 skb->head = data; 229 skb->data = data; 230 skb_reset_tail_pointer(skb); 231 skb->end = skb->tail + size; 232 skb->mac_header = (typeof(skb->mac_header))~0U; 233 skb->transport_header = (typeof(skb->transport_header))~0U; 234 235 /* make sure we initialize shinfo sequentially */ 236 shinfo = skb_shinfo(skb); 237 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref)); 238 atomic_set(&shinfo->dataref, 1); 239 240 if (flags & SKB_ALLOC_FCLONE) { 241 struct sk_buff_fclones *fclones; 242 243 fclones = container_of(skb, struct sk_buff_fclones, skb1); 244 245 skb->fclone = SKB_FCLONE_ORIG; 246 refcount_set(&fclones->fclone_ref, 1); 247 248 fclones->skb2.fclone = SKB_FCLONE_CLONE; 249 } 250 out: 251 return skb; 252 nodata: 253 kmem_cache_free(cache, skb); 254 skb = NULL; 255 goto out; 256 } 257 EXPORT_SYMBOL(__alloc_skb); 258 259 /** 260 * __build_skb - build a network buffer 261 * @data: data buffer provided by caller 262 * @frag_size: size of data, or 0 if head was kmalloced 263 * 264 * Allocate a new &sk_buff. Caller provides space holding head and 265 * skb_shared_info. @data must have been allocated by kmalloc() only if 266 * @frag_size is 0, otherwise data should come from the page allocator 267 * or vmalloc() 268 * The return is the new skb buffer. 269 * On a failure the return is %NULL, and @data is not freed. 270 * Notes : 271 * Before IO, driver allocates only data buffer where NIC put incoming frame 272 * Driver should add room at head (NET_SKB_PAD) and 273 * MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info)) 274 * After IO, driver calls build_skb(), to allocate sk_buff and populate it 275 * before giving packet to stack. 276 * RX rings only contains data buffers, not full skbs. 277 */ 278 struct sk_buff *__build_skb(void *data, unsigned int frag_size) 279 { 280 struct skb_shared_info *shinfo; 281 struct sk_buff *skb; 282 unsigned int size = frag_size ? : ksize(data); 283 284 skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC); 285 if (!skb) 286 return NULL; 287 288 size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 289 290 memset(skb, 0, offsetof(struct sk_buff, tail)); 291 skb->truesize = SKB_TRUESIZE(size); 292 refcount_set(&skb->users, 1); 293 skb->head = data; 294 skb->data = data; 295 skb_reset_tail_pointer(skb); 296 skb->end = skb->tail + size; 297 skb->mac_header = (typeof(skb->mac_header))~0U; 298 skb->transport_header = (typeof(skb->transport_header))~0U; 299 300 /* make sure we initialize shinfo sequentially */ 301 shinfo = skb_shinfo(skb); 302 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref)); 303 atomic_set(&shinfo->dataref, 1); 304 305 return skb; 306 } 307 308 /* build_skb() is wrapper over __build_skb(), that specifically 309 * takes care of skb->head and skb->pfmemalloc 310 * This means that if @frag_size is not zero, then @data must be backed 311 * by a page fragment, not kmalloc() or vmalloc() 312 */ 313 struct sk_buff *build_skb(void *data, unsigned int frag_size) 314 { 315 struct sk_buff *skb = __build_skb(data, frag_size); 316 317 if (skb && frag_size) { 318 skb->head_frag = 1; 319 if (page_is_pfmemalloc(virt_to_head_page(data))) 320 skb->pfmemalloc = 1; 321 } 322 return skb; 323 } 324 EXPORT_SYMBOL(build_skb); 325 326 #define NAPI_SKB_CACHE_SIZE 64 327 328 struct napi_alloc_cache { 329 struct page_frag_cache page; 330 unsigned int skb_count; 331 void *skb_cache[NAPI_SKB_CACHE_SIZE]; 332 }; 333 334 static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache); 335 static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache); 336 337 static void *__netdev_alloc_frag(unsigned int fragsz, gfp_t gfp_mask) 338 { 339 struct page_frag_cache *nc; 340 unsigned long flags; 341 void *data; 342 343 local_irq_save(flags); 344 nc = this_cpu_ptr(&netdev_alloc_cache); 345 data = page_frag_alloc(nc, fragsz, gfp_mask); 346 local_irq_restore(flags); 347 return data; 348 } 349 350 /** 351 * netdev_alloc_frag - allocate a page fragment 352 * @fragsz: fragment size 353 * 354 * Allocates a frag from a page for receive buffer. 355 * Uses GFP_ATOMIC allocations. 356 */ 357 void *netdev_alloc_frag(unsigned int fragsz) 358 { 359 return __netdev_alloc_frag(fragsz, GFP_ATOMIC); 360 } 361 EXPORT_SYMBOL(netdev_alloc_frag); 362 363 static void *__napi_alloc_frag(unsigned int fragsz, gfp_t gfp_mask) 364 { 365 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 366 367 return page_frag_alloc(&nc->page, fragsz, gfp_mask); 368 } 369 370 void *napi_alloc_frag(unsigned int fragsz) 371 { 372 return __napi_alloc_frag(fragsz, GFP_ATOMIC); 373 } 374 EXPORT_SYMBOL(napi_alloc_frag); 375 376 /** 377 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device 378 * @dev: network device to receive on 379 * @len: length to allocate 380 * @gfp_mask: get_free_pages mask, passed to alloc_skb 381 * 382 * Allocate a new &sk_buff and assign it a usage count of one. The 383 * buffer has NET_SKB_PAD headroom built in. Users should allocate 384 * the headroom they think they need without accounting for the 385 * built in space. The built in space is used for optimisations. 386 * 387 * %NULL is returned if there is no free memory. 388 */ 389 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len, 390 gfp_t gfp_mask) 391 { 392 struct page_frag_cache *nc; 393 unsigned long flags; 394 struct sk_buff *skb; 395 bool pfmemalloc; 396 void *data; 397 398 len += NET_SKB_PAD; 399 400 if ((len > SKB_WITH_OVERHEAD(PAGE_SIZE)) || 401 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) { 402 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE); 403 if (!skb) 404 goto skb_fail; 405 goto skb_success; 406 } 407 408 len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 409 len = SKB_DATA_ALIGN(len); 410 411 if (sk_memalloc_socks()) 412 gfp_mask |= __GFP_MEMALLOC; 413 414 local_irq_save(flags); 415 416 nc = this_cpu_ptr(&netdev_alloc_cache); 417 data = page_frag_alloc(nc, len, gfp_mask); 418 pfmemalloc = nc->pfmemalloc; 419 420 local_irq_restore(flags); 421 422 if (unlikely(!data)) 423 return NULL; 424 425 skb = __build_skb(data, len); 426 if (unlikely(!skb)) { 427 skb_free_frag(data); 428 return NULL; 429 } 430 431 /* use OR instead of assignment to avoid clearing of bits in mask */ 432 if (pfmemalloc) 433 skb->pfmemalloc = 1; 434 skb->head_frag = 1; 435 436 skb_success: 437 skb_reserve(skb, NET_SKB_PAD); 438 skb->dev = dev; 439 440 skb_fail: 441 return skb; 442 } 443 EXPORT_SYMBOL(__netdev_alloc_skb); 444 445 /** 446 * __napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance 447 * @napi: napi instance this buffer was allocated for 448 * @len: length to allocate 449 * @gfp_mask: get_free_pages mask, passed to alloc_skb and alloc_pages 450 * 451 * Allocate a new sk_buff for use in NAPI receive. This buffer will 452 * attempt to allocate the head from a special reserved region used 453 * only for NAPI Rx allocation. By doing this we can save several 454 * CPU cycles by avoiding having to disable and re-enable IRQs. 455 * 456 * %NULL is returned if there is no free memory. 457 */ 458 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, unsigned int len, 459 gfp_t gfp_mask) 460 { 461 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 462 struct sk_buff *skb; 463 void *data; 464 465 len += NET_SKB_PAD + NET_IP_ALIGN; 466 467 if ((len > SKB_WITH_OVERHEAD(PAGE_SIZE)) || 468 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) { 469 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE); 470 if (!skb) 471 goto skb_fail; 472 goto skb_success; 473 } 474 475 len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 476 len = SKB_DATA_ALIGN(len); 477 478 if (sk_memalloc_socks()) 479 gfp_mask |= __GFP_MEMALLOC; 480 481 data = page_frag_alloc(&nc->page, len, gfp_mask); 482 if (unlikely(!data)) 483 return NULL; 484 485 skb = __build_skb(data, len); 486 if (unlikely(!skb)) { 487 skb_free_frag(data); 488 return NULL; 489 } 490 491 /* use OR instead of assignment to avoid clearing of bits in mask */ 492 if (nc->page.pfmemalloc) 493 skb->pfmemalloc = 1; 494 skb->head_frag = 1; 495 496 skb_success: 497 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN); 498 skb->dev = napi->dev; 499 500 skb_fail: 501 return skb; 502 } 503 EXPORT_SYMBOL(__napi_alloc_skb); 504 505 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off, 506 int size, unsigned int truesize) 507 { 508 skb_fill_page_desc(skb, i, page, off, size); 509 skb->len += size; 510 skb->data_len += size; 511 skb->truesize += truesize; 512 } 513 EXPORT_SYMBOL(skb_add_rx_frag); 514 515 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size, 516 unsigned int truesize) 517 { 518 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 519 520 skb_frag_size_add(frag, size); 521 skb->len += size; 522 skb->data_len += size; 523 skb->truesize += truesize; 524 } 525 EXPORT_SYMBOL(skb_coalesce_rx_frag); 526 527 static void skb_drop_list(struct sk_buff **listp) 528 { 529 kfree_skb_list(*listp); 530 *listp = NULL; 531 } 532 533 static inline void skb_drop_fraglist(struct sk_buff *skb) 534 { 535 skb_drop_list(&skb_shinfo(skb)->frag_list); 536 } 537 538 static void skb_clone_fraglist(struct sk_buff *skb) 539 { 540 struct sk_buff *list; 541 542 skb_walk_frags(skb, list) 543 skb_get(list); 544 } 545 546 static void skb_free_head(struct sk_buff *skb) 547 { 548 unsigned char *head = skb->head; 549 550 if (skb->head_frag) 551 skb_free_frag(head); 552 else 553 kfree(head); 554 } 555 556 static void skb_release_data(struct sk_buff *skb) 557 { 558 struct skb_shared_info *shinfo = skb_shinfo(skb); 559 int i; 560 561 if (skb->cloned && 562 atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1, 563 &shinfo->dataref)) 564 return; 565 566 for (i = 0; i < shinfo->nr_frags; i++) 567 __skb_frag_unref(&shinfo->frags[i]); 568 569 if (shinfo->frag_list) 570 kfree_skb_list(shinfo->frag_list); 571 572 skb_zcopy_clear(skb, true); 573 skb_free_head(skb); 574 } 575 576 /* 577 * Free an skbuff by memory without cleaning the state. 578 */ 579 static void kfree_skbmem(struct sk_buff *skb) 580 { 581 struct sk_buff_fclones *fclones; 582 583 switch (skb->fclone) { 584 case SKB_FCLONE_UNAVAILABLE: 585 kmem_cache_free(skbuff_head_cache, skb); 586 return; 587 588 case SKB_FCLONE_ORIG: 589 fclones = container_of(skb, struct sk_buff_fclones, skb1); 590 591 /* We usually free the clone (TX completion) before original skb 592 * This test would have no chance to be true for the clone, 593 * while here, branch prediction will be good. 594 */ 595 if (refcount_read(&fclones->fclone_ref) == 1) 596 goto fastpath; 597 break; 598 599 default: /* SKB_FCLONE_CLONE */ 600 fclones = container_of(skb, struct sk_buff_fclones, skb2); 601 break; 602 } 603 if (!refcount_dec_and_test(&fclones->fclone_ref)) 604 return; 605 fastpath: 606 kmem_cache_free(skbuff_fclone_cache, fclones); 607 } 608 609 void skb_release_head_state(struct sk_buff *skb) 610 { 611 skb_dst_drop(skb); 612 if (skb->destructor) { 613 WARN_ON(in_irq()); 614 skb->destructor(skb); 615 } 616 #if IS_ENABLED(CONFIG_NF_CONNTRACK) 617 nf_conntrack_put(skb_nfct(skb)); 618 #endif 619 skb_ext_put(skb); 620 } 621 622 /* Free everything but the sk_buff shell. */ 623 static void skb_release_all(struct sk_buff *skb) 624 { 625 skb_release_head_state(skb); 626 if (likely(skb->head)) 627 skb_release_data(skb); 628 } 629 630 /** 631 * __kfree_skb - private function 632 * @skb: buffer 633 * 634 * Free an sk_buff. Release anything attached to the buffer. 635 * Clean the state. This is an internal helper function. Users should 636 * always call kfree_skb 637 */ 638 639 void __kfree_skb(struct sk_buff *skb) 640 { 641 skb_release_all(skb); 642 kfree_skbmem(skb); 643 } 644 EXPORT_SYMBOL(__kfree_skb); 645 646 /** 647 * kfree_skb - free an sk_buff 648 * @skb: buffer to free 649 * 650 * Drop a reference to the buffer and free it if the usage count has 651 * hit zero. 652 */ 653 void kfree_skb(struct sk_buff *skb) 654 { 655 if (!skb_unref(skb)) 656 return; 657 658 trace_kfree_skb(skb, __builtin_return_address(0)); 659 __kfree_skb(skb); 660 } 661 EXPORT_SYMBOL(kfree_skb); 662 663 void kfree_skb_list(struct sk_buff *segs) 664 { 665 while (segs) { 666 struct sk_buff *next = segs->next; 667 668 kfree_skb(segs); 669 segs = next; 670 } 671 } 672 EXPORT_SYMBOL(kfree_skb_list); 673 674 /** 675 * skb_tx_error - report an sk_buff xmit error 676 * @skb: buffer that triggered an error 677 * 678 * Report xmit error if a device callback is tracking this skb. 679 * skb must be freed afterwards. 680 */ 681 void skb_tx_error(struct sk_buff *skb) 682 { 683 skb_zcopy_clear(skb, true); 684 } 685 EXPORT_SYMBOL(skb_tx_error); 686 687 /** 688 * consume_skb - free an skbuff 689 * @skb: buffer to free 690 * 691 * Drop a ref to the buffer and free it if the usage count has hit zero 692 * Functions identically to kfree_skb, but kfree_skb assumes that the frame 693 * is being dropped after a failure and notes that 694 */ 695 void consume_skb(struct sk_buff *skb) 696 { 697 if (!skb_unref(skb)) 698 return; 699 700 trace_consume_skb(skb); 701 __kfree_skb(skb); 702 } 703 EXPORT_SYMBOL(consume_skb); 704 705 /** 706 * consume_stateless_skb - free an skbuff, assuming it is stateless 707 * @skb: buffer to free 708 * 709 * Alike consume_skb(), but this variant assumes that this is the last 710 * skb reference and all the head states have been already dropped 711 */ 712 void __consume_stateless_skb(struct sk_buff *skb) 713 { 714 trace_consume_skb(skb); 715 skb_release_data(skb); 716 kfree_skbmem(skb); 717 } 718 719 void __kfree_skb_flush(void) 720 { 721 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 722 723 /* flush skb_cache if containing objects */ 724 if (nc->skb_count) { 725 kmem_cache_free_bulk(skbuff_head_cache, nc->skb_count, 726 nc->skb_cache); 727 nc->skb_count = 0; 728 } 729 } 730 731 static inline void _kfree_skb_defer(struct sk_buff *skb) 732 { 733 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 734 735 /* drop skb->head and call any destructors for packet */ 736 skb_release_all(skb); 737 738 /* record skb to CPU local list */ 739 nc->skb_cache[nc->skb_count++] = skb; 740 741 #ifdef CONFIG_SLUB 742 /* SLUB writes into objects when freeing */ 743 prefetchw(skb); 744 #endif 745 746 /* flush skb_cache if it is filled */ 747 if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) { 748 kmem_cache_free_bulk(skbuff_head_cache, NAPI_SKB_CACHE_SIZE, 749 nc->skb_cache); 750 nc->skb_count = 0; 751 } 752 } 753 void __kfree_skb_defer(struct sk_buff *skb) 754 { 755 _kfree_skb_defer(skb); 756 } 757 758 void napi_consume_skb(struct sk_buff *skb, int budget) 759 { 760 if (unlikely(!skb)) 761 return; 762 763 /* Zero budget indicate non-NAPI context called us, like netpoll */ 764 if (unlikely(!budget)) { 765 dev_consume_skb_any(skb); 766 return; 767 } 768 769 if (!skb_unref(skb)) 770 return; 771 772 /* if reaching here SKB is ready to free */ 773 trace_consume_skb(skb); 774 775 /* if SKB is a clone, don't handle this case */ 776 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) { 777 __kfree_skb(skb); 778 return; 779 } 780 781 _kfree_skb_defer(skb); 782 } 783 EXPORT_SYMBOL(napi_consume_skb); 784 785 /* Make sure a field is enclosed inside headers_start/headers_end section */ 786 #define CHECK_SKB_FIELD(field) \ 787 BUILD_BUG_ON(offsetof(struct sk_buff, field) < \ 788 offsetof(struct sk_buff, headers_start)); \ 789 BUILD_BUG_ON(offsetof(struct sk_buff, field) > \ 790 offsetof(struct sk_buff, headers_end)); \ 791 792 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old) 793 { 794 new->tstamp = old->tstamp; 795 /* We do not copy old->sk */ 796 new->dev = old->dev; 797 memcpy(new->cb, old->cb, sizeof(old->cb)); 798 skb_dst_copy(new, old); 799 __skb_ext_copy(new, old); 800 __nf_copy(new, old, false); 801 802 /* Note : this field could be in headers_start/headers_end section 803 * It is not yet because we do not want to have a 16 bit hole 804 */ 805 new->queue_mapping = old->queue_mapping; 806 807 memcpy(&new->headers_start, &old->headers_start, 808 offsetof(struct sk_buff, headers_end) - 809 offsetof(struct sk_buff, headers_start)); 810 CHECK_SKB_FIELD(protocol); 811 CHECK_SKB_FIELD(csum); 812 CHECK_SKB_FIELD(hash); 813 CHECK_SKB_FIELD(priority); 814 CHECK_SKB_FIELD(skb_iif); 815 CHECK_SKB_FIELD(vlan_proto); 816 CHECK_SKB_FIELD(vlan_tci); 817 CHECK_SKB_FIELD(transport_header); 818 CHECK_SKB_FIELD(network_header); 819 CHECK_SKB_FIELD(mac_header); 820 CHECK_SKB_FIELD(inner_protocol); 821 CHECK_SKB_FIELD(inner_transport_header); 822 CHECK_SKB_FIELD(inner_network_header); 823 CHECK_SKB_FIELD(inner_mac_header); 824 CHECK_SKB_FIELD(mark); 825 #ifdef CONFIG_NETWORK_SECMARK 826 CHECK_SKB_FIELD(secmark); 827 #endif 828 #ifdef CONFIG_NET_RX_BUSY_POLL 829 CHECK_SKB_FIELD(napi_id); 830 #endif 831 #ifdef CONFIG_XPS 832 CHECK_SKB_FIELD(sender_cpu); 833 #endif 834 #ifdef CONFIG_NET_SCHED 835 CHECK_SKB_FIELD(tc_index); 836 #endif 837 838 } 839 840 /* 841 * You should not add any new code to this function. Add it to 842 * __copy_skb_header above instead. 843 */ 844 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb) 845 { 846 #define C(x) n->x = skb->x 847 848 n->next = n->prev = NULL; 849 n->sk = NULL; 850 __copy_skb_header(n, skb); 851 852 C(len); 853 C(data_len); 854 C(mac_len); 855 n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len; 856 n->cloned = 1; 857 n->nohdr = 0; 858 n->peeked = 0; 859 C(pfmemalloc); 860 n->destructor = NULL; 861 C(tail); 862 C(end); 863 C(head); 864 C(head_frag); 865 C(data); 866 C(truesize); 867 refcount_set(&n->users, 1); 868 869 atomic_inc(&(skb_shinfo(skb)->dataref)); 870 skb->cloned = 1; 871 872 return n; 873 #undef C 874 } 875 876 /** 877 * skb_morph - morph one skb into another 878 * @dst: the skb to receive the contents 879 * @src: the skb to supply the contents 880 * 881 * This is identical to skb_clone except that the target skb is 882 * supplied by the user. 883 * 884 * The target skb is returned upon exit. 885 */ 886 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src) 887 { 888 skb_release_all(dst); 889 return __skb_clone(dst, src); 890 } 891 EXPORT_SYMBOL_GPL(skb_morph); 892 893 int mm_account_pinned_pages(struct mmpin *mmp, size_t size) 894 { 895 unsigned long max_pg, num_pg, new_pg, old_pg; 896 struct user_struct *user; 897 898 if (capable(CAP_IPC_LOCK) || !size) 899 return 0; 900 901 num_pg = (size >> PAGE_SHIFT) + 2; /* worst case */ 902 max_pg = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT; 903 user = mmp->user ? : current_user(); 904 905 do { 906 old_pg = atomic_long_read(&user->locked_vm); 907 new_pg = old_pg + num_pg; 908 if (new_pg > max_pg) 909 return -ENOBUFS; 910 } while (atomic_long_cmpxchg(&user->locked_vm, old_pg, new_pg) != 911 old_pg); 912 913 if (!mmp->user) { 914 mmp->user = get_uid(user); 915 mmp->num_pg = num_pg; 916 } else { 917 mmp->num_pg += num_pg; 918 } 919 920 return 0; 921 } 922 EXPORT_SYMBOL_GPL(mm_account_pinned_pages); 923 924 void mm_unaccount_pinned_pages(struct mmpin *mmp) 925 { 926 if (mmp->user) { 927 atomic_long_sub(mmp->num_pg, &mmp->user->locked_vm); 928 free_uid(mmp->user); 929 } 930 } 931 EXPORT_SYMBOL_GPL(mm_unaccount_pinned_pages); 932 933 struct ubuf_info *sock_zerocopy_alloc(struct sock *sk, size_t size) 934 { 935 struct ubuf_info *uarg; 936 struct sk_buff *skb; 937 938 WARN_ON_ONCE(!in_task()); 939 940 skb = sock_omalloc(sk, 0, GFP_KERNEL); 941 if (!skb) 942 return NULL; 943 944 BUILD_BUG_ON(sizeof(*uarg) > sizeof(skb->cb)); 945 uarg = (void *)skb->cb; 946 uarg->mmp.user = NULL; 947 948 if (mm_account_pinned_pages(&uarg->mmp, size)) { 949 kfree_skb(skb); 950 return NULL; 951 } 952 953 uarg->callback = sock_zerocopy_callback; 954 uarg->id = ((u32)atomic_inc_return(&sk->sk_zckey)) - 1; 955 uarg->len = 1; 956 uarg->bytelen = size; 957 uarg->zerocopy = 1; 958 refcount_set(&uarg->refcnt, 1); 959 sock_hold(sk); 960 961 return uarg; 962 } 963 EXPORT_SYMBOL_GPL(sock_zerocopy_alloc); 964 965 static inline struct sk_buff *skb_from_uarg(struct ubuf_info *uarg) 966 { 967 return container_of((void *)uarg, struct sk_buff, cb); 968 } 969 970 struct ubuf_info *sock_zerocopy_realloc(struct sock *sk, size_t size, 971 struct ubuf_info *uarg) 972 { 973 if (uarg) { 974 const u32 byte_limit = 1 << 19; /* limit to a few TSO */ 975 u32 bytelen, next; 976 977 /* realloc only when socket is locked (TCP, UDP cork), 978 * so uarg->len and sk_zckey access is serialized 979 */ 980 if (!sock_owned_by_user(sk)) { 981 WARN_ON_ONCE(1); 982 return NULL; 983 } 984 985 bytelen = uarg->bytelen + size; 986 if (uarg->len == USHRT_MAX - 1 || bytelen > byte_limit) { 987 /* TCP can create new skb to attach new uarg */ 988 if (sk->sk_type == SOCK_STREAM) 989 goto new_alloc; 990 return NULL; 991 } 992 993 next = (u32)atomic_read(&sk->sk_zckey); 994 if ((u32)(uarg->id + uarg->len) == next) { 995 if (mm_account_pinned_pages(&uarg->mmp, size)) 996 return NULL; 997 uarg->len++; 998 uarg->bytelen = bytelen; 999 atomic_set(&sk->sk_zckey, ++next); 1000 sock_zerocopy_get(uarg); 1001 return uarg; 1002 } 1003 } 1004 1005 new_alloc: 1006 return sock_zerocopy_alloc(sk, size); 1007 } 1008 EXPORT_SYMBOL_GPL(sock_zerocopy_realloc); 1009 1010 static bool skb_zerocopy_notify_extend(struct sk_buff *skb, u32 lo, u16 len) 1011 { 1012 struct sock_exterr_skb *serr = SKB_EXT_ERR(skb); 1013 u32 old_lo, old_hi; 1014 u64 sum_len; 1015 1016 old_lo = serr->ee.ee_info; 1017 old_hi = serr->ee.ee_data; 1018 sum_len = old_hi - old_lo + 1ULL + len; 1019 1020 if (sum_len >= (1ULL << 32)) 1021 return false; 1022 1023 if (lo != old_hi + 1) 1024 return false; 1025 1026 serr->ee.ee_data += len; 1027 return true; 1028 } 1029 1030 void sock_zerocopy_callback(struct ubuf_info *uarg, bool success) 1031 { 1032 struct sk_buff *tail, *skb = skb_from_uarg(uarg); 1033 struct sock_exterr_skb *serr; 1034 struct sock *sk = skb->sk; 1035 struct sk_buff_head *q; 1036 unsigned long flags; 1037 u32 lo, hi; 1038 u16 len; 1039 1040 mm_unaccount_pinned_pages(&uarg->mmp); 1041 1042 /* if !len, there was only 1 call, and it was aborted 1043 * so do not queue a completion notification 1044 */ 1045 if (!uarg->len || sock_flag(sk, SOCK_DEAD)) 1046 goto release; 1047 1048 len = uarg->len; 1049 lo = uarg->id; 1050 hi = uarg->id + len - 1; 1051 1052 serr = SKB_EXT_ERR(skb); 1053 memset(serr, 0, sizeof(*serr)); 1054 serr->ee.ee_errno = 0; 1055 serr->ee.ee_origin = SO_EE_ORIGIN_ZEROCOPY; 1056 serr->ee.ee_data = hi; 1057 serr->ee.ee_info = lo; 1058 if (!success) 1059 serr->ee.ee_code |= SO_EE_CODE_ZEROCOPY_COPIED; 1060 1061 q = &sk->sk_error_queue; 1062 spin_lock_irqsave(&q->lock, flags); 1063 tail = skb_peek_tail(q); 1064 if (!tail || SKB_EXT_ERR(tail)->ee.ee_origin != SO_EE_ORIGIN_ZEROCOPY || 1065 !skb_zerocopy_notify_extend(tail, lo, len)) { 1066 __skb_queue_tail(q, skb); 1067 skb = NULL; 1068 } 1069 spin_unlock_irqrestore(&q->lock, flags); 1070 1071 sk->sk_error_report(sk); 1072 1073 release: 1074 consume_skb(skb); 1075 sock_put(sk); 1076 } 1077 EXPORT_SYMBOL_GPL(sock_zerocopy_callback); 1078 1079 void sock_zerocopy_put(struct ubuf_info *uarg) 1080 { 1081 if (uarg && refcount_dec_and_test(&uarg->refcnt)) { 1082 if (uarg->callback) 1083 uarg->callback(uarg, uarg->zerocopy); 1084 else 1085 consume_skb(skb_from_uarg(uarg)); 1086 } 1087 } 1088 EXPORT_SYMBOL_GPL(sock_zerocopy_put); 1089 1090 void sock_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref) 1091 { 1092 if (uarg) { 1093 struct sock *sk = skb_from_uarg(uarg)->sk; 1094 1095 atomic_dec(&sk->sk_zckey); 1096 uarg->len--; 1097 1098 if (have_uref) 1099 sock_zerocopy_put(uarg); 1100 } 1101 } 1102 EXPORT_SYMBOL_GPL(sock_zerocopy_put_abort); 1103 1104 extern int __zerocopy_sg_from_iter(struct sock *sk, struct sk_buff *skb, 1105 struct iov_iter *from, size_t length); 1106 1107 int skb_zerocopy_iter_dgram(struct sk_buff *skb, struct msghdr *msg, int len) 1108 { 1109 return __zerocopy_sg_from_iter(skb->sk, skb, &msg->msg_iter, len); 1110 } 1111 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_dgram); 1112 1113 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb, 1114 struct msghdr *msg, int len, 1115 struct ubuf_info *uarg) 1116 { 1117 struct ubuf_info *orig_uarg = skb_zcopy(skb); 1118 struct iov_iter orig_iter = msg->msg_iter; 1119 int err, orig_len = skb->len; 1120 1121 /* An skb can only point to one uarg. This edge case happens when 1122 * TCP appends to an skb, but zerocopy_realloc triggered a new alloc. 1123 */ 1124 if (orig_uarg && uarg != orig_uarg) 1125 return -EEXIST; 1126 1127 err = __zerocopy_sg_from_iter(sk, skb, &msg->msg_iter, len); 1128 if (err == -EFAULT || (err == -EMSGSIZE && skb->len == orig_len)) { 1129 struct sock *save_sk = skb->sk; 1130 1131 /* Streams do not free skb on error. Reset to prev state. */ 1132 msg->msg_iter = orig_iter; 1133 skb->sk = sk; 1134 ___pskb_trim(skb, orig_len); 1135 skb->sk = save_sk; 1136 return err; 1137 } 1138 1139 skb_zcopy_set(skb, uarg, NULL); 1140 return skb->len - orig_len; 1141 } 1142 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_stream); 1143 1144 static int skb_zerocopy_clone(struct sk_buff *nskb, struct sk_buff *orig, 1145 gfp_t gfp_mask) 1146 { 1147 if (skb_zcopy(orig)) { 1148 if (skb_zcopy(nskb)) { 1149 /* !gfp_mask callers are verified to !skb_zcopy(nskb) */ 1150 if (!gfp_mask) { 1151 WARN_ON_ONCE(1); 1152 return -ENOMEM; 1153 } 1154 if (skb_uarg(nskb) == skb_uarg(orig)) 1155 return 0; 1156 if (skb_copy_ubufs(nskb, GFP_ATOMIC)) 1157 return -EIO; 1158 } 1159 skb_zcopy_set(nskb, skb_uarg(orig), NULL); 1160 } 1161 return 0; 1162 } 1163 1164 /** 1165 * skb_copy_ubufs - copy userspace skb frags buffers to kernel 1166 * @skb: the skb to modify 1167 * @gfp_mask: allocation priority 1168 * 1169 * This must be called on SKBTX_DEV_ZEROCOPY skb. 1170 * It will copy all frags into kernel and drop the reference 1171 * to userspace pages. 1172 * 1173 * If this function is called from an interrupt gfp_mask() must be 1174 * %GFP_ATOMIC. 1175 * 1176 * Returns 0 on success or a negative error code on failure 1177 * to allocate kernel memory to copy to. 1178 */ 1179 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask) 1180 { 1181 int num_frags = skb_shinfo(skb)->nr_frags; 1182 struct page *page, *head = NULL; 1183 int i, new_frags; 1184 u32 d_off; 1185 1186 if (skb_shared(skb) || skb_unclone(skb, gfp_mask)) 1187 return -EINVAL; 1188 1189 if (!num_frags) 1190 goto release; 1191 1192 new_frags = (__skb_pagelen(skb) + PAGE_SIZE - 1) >> PAGE_SHIFT; 1193 for (i = 0; i < new_frags; i++) { 1194 page = alloc_page(gfp_mask); 1195 if (!page) { 1196 while (head) { 1197 struct page *next = (struct page *)page_private(head); 1198 put_page(head); 1199 head = next; 1200 } 1201 return -ENOMEM; 1202 } 1203 set_page_private(page, (unsigned long)head); 1204 head = page; 1205 } 1206 1207 page = head; 1208 d_off = 0; 1209 for (i = 0; i < num_frags; i++) { 1210 skb_frag_t *f = &skb_shinfo(skb)->frags[i]; 1211 u32 p_off, p_len, copied; 1212 struct page *p; 1213 u8 *vaddr; 1214 1215 skb_frag_foreach_page(f, f->page_offset, skb_frag_size(f), 1216 p, p_off, p_len, copied) { 1217 u32 copy, done = 0; 1218 vaddr = kmap_atomic(p); 1219 1220 while (done < p_len) { 1221 if (d_off == PAGE_SIZE) { 1222 d_off = 0; 1223 page = (struct page *)page_private(page); 1224 } 1225 copy = min_t(u32, PAGE_SIZE - d_off, p_len - done); 1226 memcpy(page_address(page) + d_off, 1227 vaddr + p_off + done, copy); 1228 done += copy; 1229 d_off += copy; 1230 } 1231 kunmap_atomic(vaddr); 1232 } 1233 } 1234 1235 /* skb frags release userspace buffers */ 1236 for (i = 0; i < num_frags; i++) 1237 skb_frag_unref(skb, i); 1238 1239 /* skb frags point to kernel buffers */ 1240 for (i = 0; i < new_frags - 1; i++) { 1241 __skb_fill_page_desc(skb, i, head, 0, PAGE_SIZE); 1242 head = (struct page *)page_private(head); 1243 } 1244 __skb_fill_page_desc(skb, new_frags - 1, head, 0, d_off); 1245 skb_shinfo(skb)->nr_frags = new_frags; 1246 1247 release: 1248 skb_zcopy_clear(skb, false); 1249 return 0; 1250 } 1251 EXPORT_SYMBOL_GPL(skb_copy_ubufs); 1252 1253 /** 1254 * skb_clone - duplicate an sk_buff 1255 * @skb: buffer to clone 1256 * @gfp_mask: allocation priority 1257 * 1258 * Duplicate an &sk_buff. The new one is not owned by a socket. Both 1259 * copies share the same packet data but not structure. The new 1260 * buffer has a reference count of 1. If the allocation fails the 1261 * function returns %NULL otherwise the new buffer is returned. 1262 * 1263 * If this function is called from an interrupt gfp_mask() must be 1264 * %GFP_ATOMIC. 1265 */ 1266 1267 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask) 1268 { 1269 struct sk_buff_fclones *fclones = container_of(skb, 1270 struct sk_buff_fclones, 1271 skb1); 1272 struct sk_buff *n; 1273 1274 if (skb_orphan_frags(skb, gfp_mask)) 1275 return NULL; 1276 1277 if (skb->fclone == SKB_FCLONE_ORIG && 1278 refcount_read(&fclones->fclone_ref) == 1) { 1279 n = &fclones->skb2; 1280 refcount_set(&fclones->fclone_ref, 2); 1281 } else { 1282 if (skb_pfmemalloc(skb)) 1283 gfp_mask |= __GFP_MEMALLOC; 1284 1285 n = kmem_cache_alloc(skbuff_head_cache, gfp_mask); 1286 if (!n) 1287 return NULL; 1288 1289 n->fclone = SKB_FCLONE_UNAVAILABLE; 1290 } 1291 1292 return __skb_clone(n, skb); 1293 } 1294 EXPORT_SYMBOL(skb_clone); 1295 1296 void skb_headers_offset_update(struct sk_buff *skb, int off) 1297 { 1298 /* Only adjust this if it actually is csum_start rather than csum */ 1299 if (skb->ip_summed == CHECKSUM_PARTIAL) 1300 skb->csum_start += off; 1301 /* {transport,network,mac}_header and tail are relative to skb->head */ 1302 skb->transport_header += off; 1303 skb->network_header += off; 1304 if (skb_mac_header_was_set(skb)) 1305 skb->mac_header += off; 1306 skb->inner_transport_header += off; 1307 skb->inner_network_header += off; 1308 skb->inner_mac_header += off; 1309 } 1310 EXPORT_SYMBOL(skb_headers_offset_update); 1311 1312 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old) 1313 { 1314 __copy_skb_header(new, old); 1315 1316 skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size; 1317 skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs; 1318 skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type; 1319 } 1320 EXPORT_SYMBOL(skb_copy_header); 1321 1322 static inline int skb_alloc_rx_flag(const struct sk_buff *skb) 1323 { 1324 if (skb_pfmemalloc(skb)) 1325 return SKB_ALLOC_RX; 1326 return 0; 1327 } 1328 1329 /** 1330 * skb_copy - create private copy of an sk_buff 1331 * @skb: buffer to copy 1332 * @gfp_mask: allocation priority 1333 * 1334 * Make a copy of both an &sk_buff and its data. This is used when the 1335 * caller wishes to modify the data and needs a private copy of the 1336 * data to alter. Returns %NULL on failure or the pointer to the buffer 1337 * on success. The returned buffer has a reference count of 1. 1338 * 1339 * As by-product this function converts non-linear &sk_buff to linear 1340 * one, so that &sk_buff becomes completely private and caller is allowed 1341 * to modify all the data of returned buffer. This means that this 1342 * function is not recommended for use in circumstances when only 1343 * header is going to be modified. Use pskb_copy() instead. 1344 */ 1345 1346 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask) 1347 { 1348 int headerlen = skb_headroom(skb); 1349 unsigned int size = skb_end_offset(skb) + skb->data_len; 1350 struct sk_buff *n = __alloc_skb(size, gfp_mask, 1351 skb_alloc_rx_flag(skb), NUMA_NO_NODE); 1352 1353 if (!n) 1354 return NULL; 1355 1356 /* Set the data pointer */ 1357 skb_reserve(n, headerlen); 1358 /* Set the tail pointer and length */ 1359 skb_put(n, skb->len); 1360 1361 BUG_ON(skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len)); 1362 1363 skb_copy_header(n, skb); 1364 return n; 1365 } 1366 EXPORT_SYMBOL(skb_copy); 1367 1368 /** 1369 * __pskb_copy_fclone - create copy of an sk_buff with private head. 1370 * @skb: buffer to copy 1371 * @headroom: headroom of new skb 1372 * @gfp_mask: allocation priority 1373 * @fclone: if true allocate the copy of the skb from the fclone 1374 * cache instead of the head cache; it is recommended to set this 1375 * to true for the cases where the copy will likely be cloned 1376 * 1377 * Make a copy of both an &sk_buff and part of its data, located 1378 * in header. Fragmented data remain shared. This is used when 1379 * the caller wishes to modify only header of &sk_buff and needs 1380 * private copy of the header to alter. Returns %NULL on failure 1381 * or the pointer to the buffer on success. 1382 * The returned buffer has a reference count of 1. 1383 */ 1384 1385 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom, 1386 gfp_t gfp_mask, bool fclone) 1387 { 1388 unsigned int size = skb_headlen(skb) + headroom; 1389 int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0); 1390 struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE); 1391 1392 if (!n) 1393 goto out; 1394 1395 /* Set the data pointer */ 1396 skb_reserve(n, headroom); 1397 /* Set the tail pointer and length */ 1398 skb_put(n, skb_headlen(skb)); 1399 /* Copy the bytes */ 1400 skb_copy_from_linear_data(skb, n->data, n->len); 1401 1402 n->truesize += skb->data_len; 1403 n->data_len = skb->data_len; 1404 n->len = skb->len; 1405 1406 if (skb_shinfo(skb)->nr_frags) { 1407 int i; 1408 1409 if (skb_orphan_frags(skb, gfp_mask) || 1410 skb_zerocopy_clone(n, skb, gfp_mask)) { 1411 kfree_skb(n); 1412 n = NULL; 1413 goto out; 1414 } 1415 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1416 skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i]; 1417 skb_frag_ref(skb, i); 1418 } 1419 skb_shinfo(n)->nr_frags = i; 1420 } 1421 1422 if (skb_has_frag_list(skb)) { 1423 skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list; 1424 skb_clone_fraglist(n); 1425 } 1426 1427 skb_copy_header(n, skb); 1428 out: 1429 return n; 1430 } 1431 EXPORT_SYMBOL(__pskb_copy_fclone); 1432 1433 /** 1434 * pskb_expand_head - reallocate header of &sk_buff 1435 * @skb: buffer to reallocate 1436 * @nhead: room to add at head 1437 * @ntail: room to add at tail 1438 * @gfp_mask: allocation priority 1439 * 1440 * Expands (or creates identical copy, if @nhead and @ntail are zero) 1441 * header of @skb. &sk_buff itself is not changed. &sk_buff MUST have 1442 * reference count of 1. Returns zero in the case of success or error, 1443 * if expansion failed. In the last case, &sk_buff is not changed. 1444 * 1445 * All the pointers pointing into skb header may change and must be 1446 * reloaded after call to this function. 1447 */ 1448 1449 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, 1450 gfp_t gfp_mask) 1451 { 1452 int i, osize = skb_end_offset(skb); 1453 int size = osize + nhead + ntail; 1454 long off; 1455 u8 *data; 1456 1457 BUG_ON(nhead < 0); 1458 1459 BUG_ON(skb_shared(skb)); 1460 1461 size = SKB_DATA_ALIGN(size); 1462 1463 if (skb_pfmemalloc(skb)) 1464 gfp_mask |= __GFP_MEMALLOC; 1465 data = kmalloc_reserve(size + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)), 1466 gfp_mask, NUMA_NO_NODE, NULL); 1467 if (!data) 1468 goto nodata; 1469 size = SKB_WITH_OVERHEAD(ksize(data)); 1470 1471 /* Copy only real data... and, alas, header. This should be 1472 * optimized for the cases when header is void. 1473 */ 1474 memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head); 1475 1476 memcpy((struct skb_shared_info *)(data + size), 1477 skb_shinfo(skb), 1478 offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags])); 1479 1480 /* 1481 * if shinfo is shared we must drop the old head gracefully, but if it 1482 * is not we can just drop the old head and let the existing refcount 1483 * be since all we did is relocate the values 1484 */ 1485 if (skb_cloned(skb)) { 1486 if (skb_orphan_frags(skb, gfp_mask)) 1487 goto nofrags; 1488 if (skb_zcopy(skb)) 1489 refcount_inc(&skb_uarg(skb)->refcnt); 1490 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 1491 skb_frag_ref(skb, i); 1492 1493 if (skb_has_frag_list(skb)) 1494 skb_clone_fraglist(skb); 1495 1496 skb_release_data(skb); 1497 } else { 1498 skb_free_head(skb); 1499 } 1500 off = (data + nhead) - skb->head; 1501 1502 skb->head = data; 1503 skb->head_frag = 0; 1504 skb->data += off; 1505 #ifdef NET_SKBUFF_DATA_USES_OFFSET 1506 skb->end = size; 1507 off = nhead; 1508 #else 1509 skb->end = skb->head + size; 1510 #endif 1511 skb->tail += off; 1512 skb_headers_offset_update(skb, nhead); 1513 skb->cloned = 0; 1514 skb->hdr_len = 0; 1515 skb->nohdr = 0; 1516 atomic_set(&skb_shinfo(skb)->dataref, 1); 1517 1518 skb_metadata_clear(skb); 1519 1520 /* It is not generally safe to change skb->truesize. 1521 * For the moment, we really care of rx path, or 1522 * when skb is orphaned (not attached to a socket). 1523 */ 1524 if (!skb->sk || skb->destructor == sock_edemux) 1525 skb->truesize += size - osize; 1526 1527 return 0; 1528 1529 nofrags: 1530 kfree(data); 1531 nodata: 1532 return -ENOMEM; 1533 } 1534 EXPORT_SYMBOL(pskb_expand_head); 1535 1536 /* Make private copy of skb with writable head and some headroom */ 1537 1538 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom) 1539 { 1540 struct sk_buff *skb2; 1541 int delta = headroom - skb_headroom(skb); 1542 1543 if (delta <= 0) 1544 skb2 = pskb_copy(skb, GFP_ATOMIC); 1545 else { 1546 skb2 = skb_clone(skb, GFP_ATOMIC); 1547 if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0, 1548 GFP_ATOMIC)) { 1549 kfree_skb(skb2); 1550 skb2 = NULL; 1551 } 1552 } 1553 return skb2; 1554 } 1555 EXPORT_SYMBOL(skb_realloc_headroom); 1556 1557 /** 1558 * skb_copy_expand - copy and expand sk_buff 1559 * @skb: buffer to copy 1560 * @newheadroom: new free bytes at head 1561 * @newtailroom: new free bytes at tail 1562 * @gfp_mask: allocation priority 1563 * 1564 * Make a copy of both an &sk_buff and its data and while doing so 1565 * allocate additional space. 1566 * 1567 * This is used when the caller wishes to modify the data and needs a 1568 * private copy of the data to alter as well as more space for new fields. 1569 * Returns %NULL on failure or the pointer to the buffer 1570 * on success. The returned buffer has a reference count of 1. 1571 * 1572 * You must pass %GFP_ATOMIC as the allocation priority if this function 1573 * is called from an interrupt. 1574 */ 1575 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, 1576 int newheadroom, int newtailroom, 1577 gfp_t gfp_mask) 1578 { 1579 /* 1580 * Allocate the copy buffer 1581 */ 1582 struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom, 1583 gfp_mask, skb_alloc_rx_flag(skb), 1584 NUMA_NO_NODE); 1585 int oldheadroom = skb_headroom(skb); 1586 int head_copy_len, head_copy_off; 1587 1588 if (!n) 1589 return NULL; 1590 1591 skb_reserve(n, newheadroom); 1592 1593 /* Set the tail pointer and length */ 1594 skb_put(n, skb->len); 1595 1596 head_copy_len = oldheadroom; 1597 head_copy_off = 0; 1598 if (newheadroom <= head_copy_len) 1599 head_copy_len = newheadroom; 1600 else 1601 head_copy_off = newheadroom - head_copy_len; 1602 1603 /* Copy the linear header and data. */ 1604 BUG_ON(skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off, 1605 skb->len + head_copy_len)); 1606 1607 skb_copy_header(n, skb); 1608 1609 skb_headers_offset_update(n, newheadroom - oldheadroom); 1610 1611 return n; 1612 } 1613 EXPORT_SYMBOL(skb_copy_expand); 1614 1615 /** 1616 * __skb_pad - zero pad the tail of an skb 1617 * @skb: buffer to pad 1618 * @pad: space to pad 1619 * @free_on_error: free buffer on error 1620 * 1621 * Ensure that a buffer is followed by a padding area that is zero 1622 * filled. Used by network drivers which may DMA or transfer data 1623 * beyond the buffer end onto the wire. 1624 * 1625 * May return error in out of memory cases. The skb is freed on error 1626 * if @free_on_error is true. 1627 */ 1628 1629 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error) 1630 { 1631 int err; 1632 int ntail; 1633 1634 /* If the skbuff is non linear tailroom is always zero.. */ 1635 if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) { 1636 memset(skb->data+skb->len, 0, pad); 1637 return 0; 1638 } 1639 1640 ntail = skb->data_len + pad - (skb->end - skb->tail); 1641 if (likely(skb_cloned(skb) || ntail > 0)) { 1642 err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC); 1643 if (unlikely(err)) 1644 goto free_skb; 1645 } 1646 1647 /* FIXME: The use of this function with non-linear skb's really needs 1648 * to be audited. 1649 */ 1650 err = skb_linearize(skb); 1651 if (unlikely(err)) 1652 goto free_skb; 1653 1654 memset(skb->data + skb->len, 0, pad); 1655 return 0; 1656 1657 free_skb: 1658 if (free_on_error) 1659 kfree_skb(skb); 1660 return err; 1661 } 1662 EXPORT_SYMBOL(__skb_pad); 1663 1664 /** 1665 * pskb_put - add data to the tail of a potentially fragmented buffer 1666 * @skb: start of the buffer to use 1667 * @tail: tail fragment of the buffer to use 1668 * @len: amount of data to add 1669 * 1670 * This function extends the used data area of the potentially 1671 * fragmented buffer. @tail must be the last fragment of @skb -- or 1672 * @skb itself. If this would exceed the total buffer size the kernel 1673 * will panic. A pointer to the first byte of the extra data is 1674 * returned. 1675 */ 1676 1677 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len) 1678 { 1679 if (tail != skb) { 1680 skb->data_len += len; 1681 skb->len += len; 1682 } 1683 return skb_put(tail, len); 1684 } 1685 EXPORT_SYMBOL_GPL(pskb_put); 1686 1687 /** 1688 * skb_put - add data to a buffer 1689 * @skb: buffer to use 1690 * @len: amount of data to add 1691 * 1692 * This function extends the used data area of the buffer. If this would 1693 * exceed the total buffer size the kernel will panic. A pointer to the 1694 * first byte of the extra data is returned. 1695 */ 1696 void *skb_put(struct sk_buff *skb, unsigned int len) 1697 { 1698 void *tmp = skb_tail_pointer(skb); 1699 SKB_LINEAR_ASSERT(skb); 1700 skb->tail += len; 1701 skb->len += len; 1702 if (unlikely(skb->tail > skb->end)) 1703 skb_over_panic(skb, len, __builtin_return_address(0)); 1704 return tmp; 1705 } 1706 EXPORT_SYMBOL(skb_put); 1707 1708 /** 1709 * skb_push - add data to the start of a buffer 1710 * @skb: buffer to use 1711 * @len: amount of data to add 1712 * 1713 * This function extends the used data area of the buffer at the buffer 1714 * start. If this would exceed the total buffer headroom the kernel will 1715 * panic. A pointer to the first byte of the extra data is returned. 1716 */ 1717 void *skb_push(struct sk_buff *skb, unsigned int len) 1718 { 1719 skb->data -= len; 1720 skb->len += len; 1721 if (unlikely(skb->data < skb->head)) 1722 skb_under_panic(skb, len, __builtin_return_address(0)); 1723 return skb->data; 1724 } 1725 EXPORT_SYMBOL(skb_push); 1726 1727 /** 1728 * skb_pull - remove data from the start of a buffer 1729 * @skb: buffer to use 1730 * @len: amount of data to remove 1731 * 1732 * This function removes data from the start of a buffer, returning 1733 * the memory to the headroom. A pointer to the next data in the buffer 1734 * is returned. Once the data has been pulled future pushes will overwrite 1735 * the old data. 1736 */ 1737 void *skb_pull(struct sk_buff *skb, unsigned int len) 1738 { 1739 return skb_pull_inline(skb, len); 1740 } 1741 EXPORT_SYMBOL(skb_pull); 1742 1743 /** 1744 * skb_trim - remove end from a buffer 1745 * @skb: buffer to alter 1746 * @len: new length 1747 * 1748 * Cut the length of a buffer down by removing data from the tail. If 1749 * the buffer is already under the length specified it is not modified. 1750 * The skb must be linear. 1751 */ 1752 void skb_trim(struct sk_buff *skb, unsigned int len) 1753 { 1754 if (skb->len > len) 1755 __skb_trim(skb, len); 1756 } 1757 EXPORT_SYMBOL(skb_trim); 1758 1759 /* Trims skb to length len. It can change skb pointers. 1760 */ 1761 1762 int ___pskb_trim(struct sk_buff *skb, unsigned int len) 1763 { 1764 struct sk_buff **fragp; 1765 struct sk_buff *frag; 1766 int offset = skb_headlen(skb); 1767 int nfrags = skb_shinfo(skb)->nr_frags; 1768 int i; 1769 int err; 1770 1771 if (skb_cloned(skb) && 1772 unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))) 1773 return err; 1774 1775 i = 0; 1776 if (offset >= len) 1777 goto drop_pages; 1778 1779 for (; i < nfrags; i++) { 1780 int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]); 1781 1782 if (end < len) { 1783 offset = end; 1784 continue; 1785 } 1786 1787 skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset); 1788 1789 drop_pages: 1790 skb_shinfo(skb)->nr_frags = i; 1791 1792 for (; i < nfrags; i++) 1793 skb_frag_unref(skb, i); 1794 1795 if (skb_has_frag_list(skb)) 1796 skb_drop_fraglist(skb); 1797 goto done; 1798 } 1799 1800 for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp); 1801 fragp = &frag->next) { 1802 int end = offset + frag->len; 1803 1804 if (skb_shared(frag)) { 1805 struct sk_buff *nfrag; 1806 1807 nfrag = skb_clone(frag, GFP_ATOMIC); 1808 if (unlikely(!nfrag)) 1809 return -ENOMEM; 1810 1811 nfrag->next = frag->next; 1812 consume_skb(frag); 1813 frag = nfrag; 1814 *fragp = frag; 1815 } 1816 1817 if (end < len) { 1818 offset = end; 1819 continue; 1820 } 1821 1822 if (end > len && 1823 unlikely((err = pskb_trim(frag, len - offset)))) 1824 return err; 1825 1826 if (frag->next) 1827 skb_drop_list(&frag->next); 1828 break; 1829 } 1830 1831 done: 1832 if (len > skb_headlen(skb)) { 1833 skb->data_len -= skb->len - len; 1834 skb->len = len; 1835 } else { 1836 skb->len = len; 1837 skb->data_len = 0; 1838 skb_set_tail_pointer(skb, len); 1839 } 1840 1841 if (!skb->sk || skb->destructor == sock_edemux) 1842 skb_condense(skb); 1843 return 0; 1844 } 1845 EXPORT_SYMBOL(___pskb_trim); 1846 1847 /* Note : use pskb_trim_rcsum() instead of calling this directly 1848 */ 1849 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len) 1850 { 1851 if (skb->ip_summed == CHECKSUM_COMPLETE) { 1852 int delta = skb->len - len; 1853 1854 skb->csum = csum_block_sub(skb->csum, 1855 skb_checksum(skb, len, delta, 0), 1856 len); 1857 } 1858 return __pskb_trim(skb, len); 1859 } 1860 EXPORT_SYMBOL(pskb_trim_rcsum_slow); 1861 1862 /** 1863 * __pskb_pull_tail - advance tail of skb header 1864 * @skb: buffer to reallocate 1865 * @delta: number of bytes to advance tail 1866 * 1867 * The function makes a sense only on a fragmented &sk_buff, 1868 * it expands header moving its tail forward and copying necessary 1869 * data from fragmented part. 1870 * 1871 * &sk_buff MUST have reference count of 1. 1872 * 1873 * Returns %NULL (and &sk_buff does not change) if pull failed 1874 * or value of new tail of skb in the case of success. 1875 * 1876 * All the pointers pointing into skb header may change and must be 1877 * reloaded after call to this function. 1878 */ 1879 1880 /* Moves tail of skb head forward, copying data from fragmented part, 1881 * when it is necessary. 1882 * 1. It may fail due to malloc failure. 1883 * 2. It may change skb pointers. 1884 * 1885 * It is pretty complicated. Luckily, it is called only in exceptional cases. 1886 */ 1887 void *__pskb_pull_tail(struct sk_buff *skb, int delta) 1888 { 1889 /* If skb has not enough free space at tail, get new one 1890 * plus 128 bytes for future expansions. If we have enough 1891 * room at tail, reallocate without expansion only if skb is cloned. 1892 */ 1893 int i, k, eat = (skb->tail + delta) - skb->end; 1894 1895 if (eat > 0 || skb_cloned(skb)) { 1896 if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0, 1897 GFP_ATOMIC)) 1898 return NULL; 1899 } 1900 1901 BUG_ON(skb_copy_bits(skb, skb_headlen(skb), 1902 skb_tail_pointer(skb), delta)); 1903 1904 /* Optimization: no fragments, no reasons to preestimate 1905 * size of pulled pages. Superb. 1906 */ 1907 if (!skb_has_frag_list(skb)) 1908 goto pull_pages; 1909 1910 /* Estimate size of pulled pages. */ 1911 eat = delta; 1912 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1913 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 1914 1915 if (size >= eat) 1916 goto pull_pages; 1917 eat -= size; 1918 } 1919 1920 /* If we need update frag list, we are in troubles. 1921 * Certainly, it is possible to add an offset to skb data, 1922 * but taking into account that pulling is expected to 1923 * be very rare operation, it is worth to fight against 1924 * further bloating skb head and crucify ourselves here instead. 1925 * Pure masohism, indeed. 8)8) 1926 */ 1927 if (eat) { 1928 struct sk_buff *list = skb_shinfo(skb)->frag_list; 1929 struct sk_buff *clone = NULL; 1930 struct sk_buff *insp = NULL; 1931 1932 do { 1933 if (list->len <= eat) { 1934 /* Eaten as whole. */ 1935 eat -= list->len; 1936 list = list->next; 1937 insp = list; 1938 } else { 1939 /* Eaten partially. */ 1940 1941 if (skb_shared(list)) { 1942 /* Sucks! We need to fork list. :-( */ 1943 clone = skb_clone(list, GFP_ATOMIC); 1944 if (!clone) 1945 return NULL; 1946 insp = list->next; 1947 list = clone; 1948 } else { 1949 /* This may be pulled without 1950 * problems. */ 1951 insp = list; 1952 } 1953 if (!pskb_pull(list, eat)) { 1954 kfree_skb(clone); 1955 return NULL; 1956 } 1957 break; 1958 } 1959 } while (eat); 1960 1961 /* Free pulled out fragments. */ 1962 while ((list = skb_shinfo(skb)->frag_list) != insp) { 1963 skb_shinfo(skb)->frag_list = list->next; 1964 kfree_skb(list); 1965 } 1966 /* And insert new clone at head. */ 1967 if (clone) { 1968 clone->next = list; 1969 skb_shinfo(skb)->frag_list = clone; 1970 } 1971 } 1972 /* Success! Now we may commit changes to skb data. */ 1973 1974 pull_pages: 1975 eat = delta; 1976 k = 0; 1977 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1978 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 1979 1980 if (size <= eat) { 1981 skb_frag_unref(skb, i); 1982 eat -= size; 1983 } else { 1984 skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i]; 1985 if (eat) { 1986 skb_shinfo(skb)->frags[k].page_offset += eat; 1987 skb_frag_size_sub(&skb_shinfo(skb)->frags[k], eat); 1988 if (!i) 1989 goto end; 1990 eat = 0; 1991 } 1992 k++; 1993 } 1994 } 1995 skb_shinfo(skb)->nr_frags = k; 1996 1997 end: 1998 skb->tail += delta; 1999 skb->data_len -= delta; 2000 2001 if (!skb->data_len) 2002 skb_zcopy_clear(skb, false); 2003 2004 return skb_tail_pointer(skb); 2005 } 2006 EXPORT_SYMBOL(__pskb_pull_tail); 2007 2008 /** 2009 * skb_copy_bits - copy bits from skb to kernel buffer 2010 * @skb: source skb 2011 * @offset: offset in source 2012 * @to: destination buffer 2013 * @len: number of bytes to copy 2014 * 2015 * Copy the specified number of bytes from the source skb to the 2016 * destination buffer. 2017 * 2018 * CAUTION ! : 2019 * If its prototype is ever changed, 2020 * check arch/{*}/net/{*}.S files, 2021 * since it is called from BPF assembly code. 2022 */ 2023 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len) 2024 { 2025 int start = skb_headlen(skb); 2026 struct sk_buff *frag_iter; 2027 int i, copy; 2028 2029 if (offset > (int)skb->len - len) 2030 goto fault; 2031 2032 /* Copy header. */ 2033 if ((copy = start - offset) > 0) { 2034 if (copy > len) 2035 copy = len; 2036 skb_copy_from_linear_data_offset(skb, offset, to, copy); 2037 if ((len -= copy) == 0) 2038 return 0; 2039 offset += copy; 2040 to += copy; 2041 } 2042 2043 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2044 int end; 2045 skb_frag_t *f = &skb_shinfo(skb)->frags[i]; 2046 2047 WARN_ON(start > offset + len); 2048 2049 end = start + skb_frag_size(f); 2050 if ((copy = end - offset) > 0) { 2051 u32 p_off, p_len, copied; 2052 struct page *p; 2053 u8 *vaddr; 2054 2055 if (copy > len) 2056 copy = len; 2057 2058 skb_frag_foreach_page(f, 2059 f->page_offset + offset - start, 2060 copy, p, p_off, p_len, copied) { 2061 vaddr = kmap_atomic(p); 2062 memcpy(to + copied, vaddr + p_off, p_len); 2063 kunmap_atomic(vaddr); 2064 } 2065 2066 if ((len -= copy) == 0) 2067 return 0; 2068 offset += copy; 2069 to += copy; 2070 } 2071 start = end; 2072 } 2073 2074 skb_walk_frags(skb, frag_iter) { 2075 int end; 2076 2077 WARN_ON(start > offset + len); 2078 2079 end = start + frag_iter->len; 2080 if ((copy = end - offset) > 0) { 2081 if (copy > len) 2082 copy = len; 2083 if (skb_copy_bits(frag_iter, offset - start, to, copy)) 2084 goto fault; 2085 if ((len -= copy) == 0) 2086 return 0; 2087 offset += copy; 2088 to += copy; 2089 } 2090 start = end; 2091 } 2092 2093 if (!len) 2094 return 0; 2095 2096 fault: 2097 return -EFAULT; 2098 } 2099 EXPORT_SYMBOL(skb_copy_bits); 2100 2101 /* 2102 * Callback from splice_to_pipe(), if we need to release some pages 2103 * at the end of the spd in case we error'ed out in filling the pipe. 2104 */ 2105 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i) 2106 { 2107 put_page(spd->pages[i]); 2108 } 2109 2110 static struct page *linear_to_page(struct page *page, unsigned int *len, 2111 unsigned int *offset, 2112 struct sock *sk) 2113 { 2114 struct page_frag *pfrag = sk_page_frag(sk); 2115 2116 if (!sk_page_frag_refill(sk, pfrag)) 2117 return NULL; 2118 2119 *len = min_t(unsigned int, *len, pfrag->size - pfrag->offset); 2120 2121 memcpy(page_address(pfrag->page) + pfrag->offset, 2122 page_address(page) + *offset, *len); 2123 *offset = pfrag->offset; 2124 pfrag->offset += *len; 2125 2126 return pfrag->page; 2127 } 2128 2129 static bool spd_can_coalesce(const struct splice_pipe_desc *spd, 2130 struct page *page, 2131 unsigned int offset) 2132 { 2133 return spd->nr_pages && 2134 spd->pages[spd->nr_pages - 1] == page && 2135 (spd->partial[spd->nr_pages - 1].offset + 2136 spd->partial[spd->nr_pages - 1].len == offset); 2137 } 2138 2139 /* 2140 * Fill page/offset/length into spd, if it can hold more pages. 2141 */ 2142 static bool spd_fill_page(struct splice_pipe_desc *spd, 2143 struct pipe_inode_info *pipe, struct page *page, 2144 unsigned int *len, unsigned int offset, 2145 bool linear, 2146 struct sock *sk) 2147 { 2148 if (unlikely(spd->nr_pages == MAX_SKB_FRAGS)) 2149 return true; 2150 2151 if (linear) { 2152 page = linear_to_page(page, len, &offset, sk); 2153 if (!page) 2154 return true; 2155 } 2156 if (spd_can_coalesce(spd, page, offset)) { 2157 spd->partial[spd->nr_pages - 1].len += *len; 2158 return false; 2159 } 2160 get_page(page); 2161 spd->pages[spd->nr_pages] = page; 2162 spd->partial[spd->nr_pages].len = *len; 2163 spd->partial[spd->nr_pages].offset = offset; 2164 spd->nr_pages++; 2165 2166 return false; 2167 } 2168 2169 static bool __splice_segment(struct page *page, unsigned int poff, 2170 unsigned int plen, unsigned int *off, 2171 unsigned int *len, 2172 struct splice_pipe_desc *spd, bool linear, 2173 struct sock *sk, 2174 struct pipe_inode_info *pipe) 2175 { 2176 if (!*len) 2177 return true; 2178 2179 /* skip this segment if already processed */ 2180 if (*off >= plen) { 2181 *off -= plen; 2182 return false; 2183 } 2184 2185 /* ignore any bits we already processed */ 2186 poff += *off; 2187 plen -= *off; 2188 *off = 0; 2189 2190 do { 2191 unsigned int flen = min(*len, plen); 2192 2193 if (spd_fill_page(spd, pipe, page, &flen, poff, 2194 linear, sk)) 2195 return true; 2196 poff += flen; 2197 plen -= flen; 2198 *len -= flen; 2199 } while (*len && plen); 2200 2201 return false; 2202 } 2203 2204 /* 2205 * Map linear and fragment data from the skb to spd. It reports true if the 2206 * pipe is full or if we already spliced the requested length. 2207 */ 2208 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe, 2209 unsigned int *offset, unsigned int *len, 2210 struct splice_pipe_desc *spd, struct sock *sk) 2211 { 2212 int seg; 2213 struct sk_buff *iter; 2214 2215 /* map the linear part : 2216 * If skb->head_frag is set, this 'linear' part is backed by a 2217 * fragment, and if the head is not shared with any clones then 2218 * we can avoid a copy since we own the head portion of this page. 2219 */ 2220 if (__splice_segment(virt_to_page(skb->data), 2221 (unsigned long) skb->data & (PAGE_SIZE - 1), 2222 skb_headlen(skb), 2223 offset, len, spd, 2224 skb_head_is_locked(skb), 2225 sk, pipe)) 2226 return true; 2227 2228 /* 2229 * then map the fragments 2230 */ 2231 for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) { 2232 const skb_frag_t *f = &skb_shinfo(skb)->frags[seg]; 2233 2234 if (__splice_segment(skb_frag_page(f), 2235 f->page_offset, skb_frag_size(f), 2236 offset, len, spd, false, sk, pipe)) 2237 return true; 2238 } 2239 2240 skb_walk_frags(skb, iter) { 2241 if (*offset >= iter->len) { 2242 *offset -= iter->len; 2243 continue; 2244 } 2245 /* __skb_splice_bits() only fails if the output has no room 2246 * left, so no point in going over the frag_list for the error 2247 * case. 2248 */ 2249 if (__skb_splice_bits(iter, pipe, offset, len, spd, sk)) 2250 return true; 2251 } 2252 2253 return false; 2254 } 2255 2256 /* 2257 * Map data from the skb to a pipe. Should handle both the linear part, 2258 * the fragments, and the frag list. 2259 */ 2260 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset, 2261 struct pipe_inode_info *pipe, unsigned int tlen, 2262 unsigned int flags) 2263 { 2264 struct partial_page partial[MAX_SKB_FRAGS]; 2265 struct page *pages[MAX_SKB_FRAGS]; 2266 struct splice_pipe_desc spd = { 2267 .pages = pages, 2268 .partial = partial, 2269 .nr_pages_max = MAX_SKB_FRAGS, 2270 .ops = &nosteal_pipe_buf_ops, 2271 .spd_release = sock_spd_release, 2272 }; 2273 int ret = 0; 2274 2275 __skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk); 2276 2277 if (spd.nr_pages) 2278 ret = splice_to_pipe(pipe, &spd); 2279 2280 return ret; 2281 } 2282 EXPORT_SYMBOL_GPL(skb_splice_bits); 2283 2284 /* Send skb data on a socket. Socket must be locked. */ 2285 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset, 2286 int len) 2287 { 2288 unsigned int orig_len = len; 2289 struct sk_buff *head = skb; 2290 unsigned short fragidx; 2291 int slen, ret; 2292 2293 do_frag_list: 2294 2295 /* Deal with head data */ 2296 while (offset < skb_headlen(skb) && len) { 2297 struct kvec kv; 2298 struct msghdr msg; 2299 2300 slen = min_t(int, len, skb_headlen(skb) - offset); 2301 kv.iov_base = skb->data + offset; 2302 kv.iov_len = slen; 2303 memset(&msg, 0, sizeof(msg)); 2304 2305 ret = kernel_sendmsg_locked(sk, &msg, &kv, 1, slen); 2306 if (ret <= 0) 2307 goto error; 2308 2309 offset += ret; 2310 len -= ret; 2311 } 2312 2313 /* All the data was skb head? */ 2314 if (!len) 2315 goto out; 2316 2317 /* Make offset relative to start of frags */ 2318 offset -= skb_headlen(skb); 2319 2320 /* Find where we are in frag list */ 2321 for (fragidx = 0; fragidx < skb_shinfo(skb)->nr_frags; fragidx++) { 2322 skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx]; 2323 2324 if (offset < frag->size) 2325 break; 2326 2327 offset -= frag->size; 2328 } 2329 2330 for (; len && fragidx < skb_shinfo(skb)->nr_frags; fragidx++) { 2331 skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx]; 2332 2333 slen = min_t(size_t, len, frag->size - offset); 2334 2335 while (slen) { 2336 ret = kernel_sendpage_locked(sk, frag->page.p, 2337 frag->page_offset + offset, 2338 slen, MSG_DONTWAIT); 2339 if (ret <= 0) 2340 goto error; 2341 2342 len -= ret; 2343 offset += ret; 2344 slen -= ret; 2345 } 2346 2347 offset = 0; 2348 } 2349 2350 if (len) { 2351 /* Process any frag lists */ 2352 2353 if (skb == head) { 2354 if (skb_has_frag_list(skb)) { 2355 skb = skb_shinfo(skb)->frag_list; 2356 goto do_frag_list; 2357 } 2358 } else if (skb->next) { 2359 skb = skb->next; 2360 goto do_frag_list; 2361 } 2362 } 2363 2364 out: 2365 return orig_len - len; 2366 2367 error: 2368 return orig_len == len ? ret : orig_len - len; 2369 } 2370 EXPORT_SYMBOL_GPL(skb_send_sock_locked); 2371 2372 /** 2373 * skb_store_bits - store bits from kernel buffer to skb 2374 * @skb: destination buffer 2375 * @offset: offset in destination 2376 * @from: source buffer 2377 * @len: number of bytes to copy 2378 * 2379 * Copy the specified number of bytes from the source buffer to the 2380 * destination skb. This function handles all the messy bits of 2381 * traversing fragment lists and such. 2382 */ 2383 2384 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len) 2385 { 2386 int start = skb_headlen(skb); 2387 struct sk_buff *frag_iter; 2388 int i, copy; 2389 2390 if (offset > (int)skb->len - len) 2391 goto fault; 2392 2393 if ((copy = start - offset) > 0) { 2394 if (copy > len) 2395 copy = len; 2396 skb_copy_to_linear_data_offset(skb, offset, from, copy); 2397 if ((len -= copy) == 0) 2398 return 0; 2399 offset += copy; 2400 from += copy; 2401 } 2402 2403 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2404 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2405 int end; 2406 2407 WARN_ON(start > offset + len); 2408 2409 end = start + skb_frag_size(frag); 2410 if ((copy = end - offset) > 0) { 2411 u32 p_off, p_len, copied; 2412 struct page *p; 2413 u8 *vaddr; 2414 2415 if (copy > len) 2416 copy = len; 2417 2418 skb_frag_foreach_page(frag, 2419 frag->page_offset + offset - start, 2420 copy, p, p_off, p_len, copied) { 2421 vaddr = kmap_atomic(p); 2422 memcpy(vaddr + p_off, from + copied, p_len); 2423 kunmap_atomic(vaddr); 2424 } 2425 2426 if ((len -= copy) == 0) 2427 return 0; 2428 offset += copy; 2429 from += copy; 2430 } 2431 start = end; 2432 } 2433 2434 skb_walk_frags(skb, frag_iter) { 2435 int end; 2436 2437 WARN_ON(start > offset + len); 2438 2439 end = start + frag_iter->len; 2440 if ((copy = end - offset) > 0) { 2441 if (copy > len) 2442 copy = len; 2443 if (skb_store_bits(frag_iter, offset - start, 2444 from, copy)) 2445 goto fault; 2446 if ((len -= copy) == 0) 2447 return 0; 2448 offset += copy; 2449 from += copy; 2450 } 2451 start = end; 2452 } 2453 if (!len) 2454 return 0; 2455 2456 fault: 2457 return -EFAULT; 2458 } 2459 EXPORT_SYMBOL(skb_store_bits); 2460 2461 /* Checksum skb data. */ 2462 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len, 2463 __wsum csum, const struct skb_checksum_ops *ops) 2464 { 2465 int start = skb_headlen(skb); 2466 int i, copy = start - offset; 2467 struct sk_buff *frag_iter; 2468 int pos = 0; 2469 2470 /* Checksum header. */ 2471 if (copy > 0) { 2472 if (copy > len) 2473 copy = len; 2474 csum = ops->update(skb->data + offset, copy, csum); 2475 if ((len -= copy) == 0) 2476 return csum; 2477 offset += copy; 2478 pos = copy; 2479 } 2480 2481 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2482 int end; 2483 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2484 2485 WARN_ON(start > offset + len); 2486 2487 end = start + skb_frag_size(frag); 2488 if ((copy = end - offset) > 0) { 2489 u32 p_off, p_len, copied; 2490 struct page *p; 2491 __wsum csum2; 2492 u8 *vaddr; 2493 2494 if (copy > len) 2495 copy = len; 2496 2497 skb_frag_foreach_page(frag, 2498 frag->page_offset + offset - start, 2499 copy, p, p_off, p_len, copied) { 2500 vaddr = kmap_atomic(p); 2501 csum2 = ops->update(vaddr + p_off, p_len, 0); 2502 kunmap_atomic(vaddr); 2503 csum = ops->combine(csum, csum2, pos, p_len); 2504 pos += p_len; 2505 } 2506 2507 if (!(len -= copy)) 2508 return csum; 2509 offset += copy; 2510 } 2511 start = end; 2512 } 2513 2514 skb_walk_frags(skb, frag_iter) { 2515 int end; 2516 2517 WARN_ON(start > offset + len); 2518 2519 end = start + frag_iter->len; 2520 if ((copy = end - offset) > 0) { 2521 __wsum csum2; 2522 if (copy > len) 2523 copy = len; 2524 csum2 = __skb_checksum(frag_iter, offset - start, 2525 copy, 0, ops); 2526 csum = ops->combine(csum, csum2, pos, copy); 2527 if ((len -= copy) == 0) 2528 return csum; 2529 offset += copy; 2530 pos += copy; 2531 } 2532 start = end; 2533 } 2534 BUG_ON(len); 2535 2536 return csum; 2537 } 2538 EXPORT_SYMBOL(__skb_checksum); 2539 2540 __wsum skb_checksum(const struct sk_buff *skb, int offset, 2541 int len, __wsum csum) 2542 { 2543 const struct skb_checksum_ops ops = { 2544 .update = csum_partial_ext, 2545 .combine = csum_block_add_ext, 2546 }; 2547 2548 return __skb_checksum(skb, offset, len, csum, &ops); 2549 } 2550 EXPORT_SYMBOL(skb_checksum); 2551 2552 /* Both of above in one bottle. */ 2553 2554 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, 2555 u8 *to, int len, __wsum csum) 2556 { 2557 int start = skb_headlen(skb); 2558 int i, copy = start - offset; 2559 struct sk_buff *frag_iter; 2560 int pos = 0; 2561 2562 /* Copy header. */ 2563 if (copy > 0) { 2564 if (copy > len) 2565 copy = len; 2566 csum = csum_partial_copy_nocheck(skb->data + offset, to, 2567 copy, csum); 2568 if ((len -= copy) == 0) 2569 return csum; 2570 offset += copy; 2571 to += copy; 2572 pos = copy; 2573 } 2574 2575 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2576 int end; 2577 2578 WARN_ON(start > offset + len); 2579 2580 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]); 2581 if ((copy = end - offset) > 0) { 2582 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2583 u32 p_off, p_len, copied; 2584 struct page *p; 2585 __wsum csum2; 2586 u8 *vaddr; 2587 2588 if (copy > len) 2589 copy = len; 2590 2591 skb_frag_foreach_page(frag, 2592 frag->page_offset + offset - start, 2593 copy, p, p_off, p_len, copied) { 2594 vaddr = kmap_atomic(p); 2595 csum2 = csum_partial_copy_nocheck(vaddr + p_off, 2596 to + copied, 2597 p_len, 0); 2598 kunmap_atomic(vaddr); 2599 csum = csum_block_add(csum, csum2, pos); 2600 pos += p_len; 2601 } 2602 2603 if (!(len -= copy)) 2604 return csum; 2605 offset += copy; 2606 to += copy; 2607 } 2608 start = end; 2609 } 2610 2611 skb_walk_frags(skb, frag_iter) { 2612 __wsum csum2; 2613 int end; 2614 2615 WARN_ON(start > offset + len); 2616 2617 end = start + frag_iter->len; 2618 if ((copy = end - offset) > 0) { 2619 if (copy > len) 2620 copy = len; 2621 csum2 = skb_copy_and_csum_bits(frag_iter, 2622 offset - start, 2623 to, copy, 0); 2624 csum = csum_block_add(csum, csum2, pos); 2625 if ((len -= copy) == 0) 2626 return csum; 2627 offset += copy; 2628 to += copy; 2629 pos += copy; 2630 } 2631 start = end; 2632 } 2633 BUG_ON(len); 2634 return csum; 2635 } 2636 EXPORT_SYMBOL(skb_copy_and_csum_bits); 2637 2638 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len) 2639 { 2640 __sum16 sum; 2641 2642 sum = csum_fold(skb_checksum(skb, 0, len, skb->csum)); 2643 /* See comments in __skb_checksum_complete(). */ 2644 if (likely(!sum)) { 2645 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) && 2646 !skb->csum_complete_sw) 2647 netdev_rx_csum_fault(skb->dev, skb); 2648 } 2649 if (!skb_shared(skb)) 2650 skb->csum_valid = !sum; 2651 return sum; 2652 } 2653 EXPORT_SYMBOL(__skb_checksum_complete_head); 2654 2655 /* This function assumes skb->csum already holds pseudo header's checksum, 2656 * which has been changed from the hardware checksum, for example, by 2657 * __skb_checksum_validate_complete(). And, the original skb->csum must 2658 * have been validated unsuccessfully for CHECKSUM_COMPLETE case. 2659 * 2660 * It returns non-zero if the recomputed checksum is still invalid, otherwise 2661 * zero. The new checksum is stored back into skb->csum unless the skb is 2662 * shared. 2663 */ 2664 __sum16 __skb_checksum_complete(struct sk_buff *skb) 2665 { 2666 __wsum csum; 2667 __sum16 sum; 2668 2669 csum = skb_checksum(skb, 0, skb->len, 0); 2670 2671 sum = csum_fold(csum_add(skb->csum, csum)); 2672 /* This check is inverted, because we already knew the hardware 2673 * checksum is invalid before calling this function. So, if the 2674 * re-computed checksum is valid instead, then we have a mismatch 2675 * between the original skb->csum and skb_checksum(). This means either 2676 * the original hardware checksum is incorrect or we screw up skb->csum 2677 * when moving skb->data around. 2678 */ 2679 if (likely(!sum)) { 2680 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) && 2681 !skb->csum_complete_sw) 2682 netdev_rx_csum_fault(skb->dev, skb); 2683 } 2684 2685 if (!skb_shared(skb)) { 2686 /* Save full packet checksum */ 2687 skb->csum = csum; 2688 skb->ip_summed = CHECKSUM_COMPLETE; 2689 skb->csum_complete_sw = 1; 2690 skb->csum_valid = !sum; 2691 } 2692 2693 return sum; 2694 } 2695 EXPORT_SYMBOL(__skb_checksum_complete); 2696 2697 static __wsum warn_crc32c_csum_update(const void *buff, int len, __wsum sum) 2698 { 2699 net_warn_ratelimited( 2700 "%s: attempt to compute crc32c without libcrc32c.ko\n", 2701 __func__); 2702 return 0; 2703 } 2704 2705 static __wsum warn_crc32c_csum_combine(__wsum csum, __wsum csum2, 2706 int offset, int len) 2707 { 2708 net_warn_ratelimited( 2709 "%s: attempt to compute crc32c without libcrc32c.ko\n", 2710 __func__); 2711 return 0; 2712 } 2713 2714 static const struct skb_checksum_ops default_crc32c_ops = { 2715 .update = warn_crc32c_csum_update, 2716 .combine = warn_crc32c_csum_combine, 2717 }; 2718 2719 const struct skb_checksum_ops *crc32c_csum_stub __read_mostly = 2720 &default_crc32c_ops; 2721 EXPORT_SYMBOL(crc32c_csum_stub); 2722 2723 /** 2724 * skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy() 2725 * @from: source buffer 2726 * 2727 * Calculates the amount of linear headroom needed in the 'to' skb passed 2728 * into skb_zerocopy(). 2729 */ 2730 unsigned int 2731 skb_zerocopy_headlen(const struct sk_buff *from) 2732 { 2733 unsigned int hlen = 0; 2734 2735 if (!from->head_frag || 2736 skb_headlen(from) < L1_CACHE_BYTES || 2737 skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS) 2738 hlen = skb_headlen(from); 2739 2740 if (skb_has_frag_list(from)) 2741 hlen = from->len; 2742 2743 return hlen; 2744 } 2745 EXPORT_SYMBOL_GPL(skb_zerocopy_headlen); 2746 2747 /** 2748 * skb_zerocopy - Zero copy skb to skb 2749 * @to: destination buffer 2750 * @from: source buffer 2751 * @len: number of bytes to copy from source buffer 2752 * @hlen: size of linear headroom in destination buffer 2753 * 2754 * Copies up to `len` bytes from `from` to `to` by creating references 2755 * to the frags in the source buffer. 2756 * 2757 * The `hlen` as calculated by skb_zerocopy_headlen() specifies the 2758 * headroom in the `to` buffer. 2759 * 2760 * Return value: 2761 * 0: everything is OK 2762 * -ENOMEM: couldn't orphan frags of @from due to lack of memory 2763 * -EFAULT: skb_copy_bits() found some problem with skb geometry 2764 */ 2765 int 2766 skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen) 2767 { 2768 int i, j = 0; 2769 int plen = 0; /* length of skb->head fragment */ 2770 int ret; 2771 struct page *page; 2772 unsigned int offset; 2773 2774 BUG_ON(!from->head_frag && !hlen); 2775 2776 /* dont bother with small payloads */ 2777 if (len <= skb_tailroom(to)) 2778 return skb_copy_bits(from, 0, skb_put(to, len), len); 2779 2780 if (hlen) { 2781 ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen); 2782 if (unlikely(ret)) 2783 return ret; 2784 len -= hlen; 2785 } else { 2786 plen = min_t(int, skb_headlen(from), len); 2787 if (plen) { 2788 page = virt_to_head_page(from->head); 2789 offset = from->data - (unsigned char *)page_address(page); 2790 __skb_fill_page_desc(to, 0, page, offset, plen); 2791 get_page(page); 2792 j = 1; 2793 len -= plen; 2794 } 2795 } 2796 2797 to->truesize += len + plen; 2798 to->len += len + plen; 2799 to->data_len += len + plen; 2800 2801 if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) { 2802 skb_tx_error(from); 2803 return -ENOMEM; 2804 } 2805 skb_zerocopy_clone(to, from, GFP_ATOMIC); 2806 2807 for (i = 0; i < skb_shinfo(from)->nr_frags; i++) { 2808 if (!len) 2809 break; 2810 skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i]; 2811 skb_shinfo(to)->frags[j].size = min_t(int, skb_shinfo(to)->frags[j].size, len); 2812 len -= skb_shinfo(to)->frags[j].size; 2813 skb_frag_ref(to, j); 2814 j++; 2815 } 2816 skb_shinfo(to)->nr_frags = j; 2817 2818 return 0; 2819 } 2820 EXPORT_SYMBOL_GPL(skb_zerocopy); 2821 2822 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to) 2823 { 2824 __wsum csum; 2825 long csstart; 2826 2827 if (skb->ip_summed == CHECKSUM_PARTIAL) 2828 csstart = skb_checksum_start_offset(skb); 2829 else 2830 csstart = skb_headlen(skb); 2831 2832 BUG_ON(csstart > skb_headlen(skb)); 2833 2834 skb_copy_from_linear_data(skb, to, csstart); 2835 2836 csum = 0; 2837 if (csstart != skb->len) 2838 csum = skb_copy_and_csum_bits(skb, csstart, to + csstart, 2839 skb->len - csstart, 0); 2840 2841 if (skb->ip_summed == CHECKSUM_PARTIAL) { 2842 long csstuff = csstart + skb->csum_offset; 2843 2844 *((__sum16 *)(to + csstuff)) = csum_fold(csum); 2845 } 2846 } 2847 EXPORT_SYMBOL(skb_copy_and_csum_dev); 2848 2849 /** 2850 * skb_dequeue - remove from the head of the queue 2851 * @list: list to dequeue from 2852 * 2853 * Remove the head of the list. The list lock is taken so the function 2854 * may be used safely with other locking list functions. The head item is 2855 * returned or %NULL if the list is empty. 2856 */ 2857 2858 struct sk_buff *skb_dequeue(struct sk_buff_head *list) 2859 { 2860 unsigned long flags; 2861 struct sk_buff *result; 2862 2863 spin_lock_irqsave(&list->lock, flags); 2864 result = __skb_dequeue(list); 2865 spin_unlock_irqrestore(&list->lock, flags); 2866 return result; 2867 } 2868 EXPORT_SYMBOL(skb_dequeue); 2869 2870 /** 2871 * skb_dequeue_tail - remove from the tail of the queue 2872 * @list: list to dequeue from 2873 * 2874 * Remove the tail of the list. The list lock is taken so the function 2875 * may be used safely with other locking list functions. The tail item is 2876 * returned or %NULL if the list is empty. 2877 */ 2878 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list) 2879 { 2880 unsigned long flags; 2881 struct sk_buff *result; 2882 2883 spin_lock_irqsave(&list->lock, flags); 2884 result = __skb_dequeue_tail(list); 2885 spin_unlock_irqrestore(&list->lock, flags); 2886 return result; 2887 } 2888 EXPORT_SYMBOL(skb_dequeue_tail); 2889 2890 /** 2891 * skb_queue_purge - empty a list 2892 * @list: list to empty 2893 * 2894 * Delete all buffers on an &sk_buff list. Each buffer is removed from 2895 * the list and one reference dropped. This function takes the list 2896 * lock and is atomic with respect to other list locking functions. 2897 */ 2898 void skb_queue_purge(struct sk_buff_head *list) 2899 { 2900 struct sk_buff *skb; 2901 while ((skb = skb_dequeue(list)) != NULL) 2902 kfree_skb(skb); 2903 } 2904 EXPORT_SYMBOL(skb_queue_purge); 2905 2906 /** 2907 * skb_rbtree_purge - empty a skb rbtree 2908 * @root: root of the rbtree to empty 2909 * Return value: the sum of truesizes of all purged skbs. 2910 * 2911 * Delete all buffers on an &sk_buff rbtree. Each buffer is removed from 2912 * the list and one reference dropped. This function does not take 2913 * any lock. Synchronization should be handled by the caller (e.g., TCP 2914 * out-of-order queue is protected by the socket lock). 2915 */ 2916 unsigned int skb_rbtree_purge(struct rb_root *root) 2917 { 2918 struct rb_node *p = rb_first(root); 2919 unsigned int sum = 0; 2920 2921 while (p) { 2922 struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode); 2923 2924 p = rb_next(p); 2925 rb_erase(&skb->rbnode, root); 2926 sum += skb->truesize; 2927 kfree_skb(skb); 2928 } 2929 return sum; 2930 } 2931 2932 /** 2933 * skb_queue_head - queue a buffer at the list head 2934 * @list: list to use 2935 * @newsk: buffer to queue 2936 * 2937 * Queue a buffer at the start of the list. This function takes the 2938 * list lock and can be used safely with other locking &sk_buff functions 2939 * safely. 2940 * 2941 * A buffer cannot be placed on two lists at the same time. 2942 */ 2943 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk) 2944 { 2945 unsigned long flags; 2946 2947 spin_lock_irqsave(&list->lock, flags); 2948 __skb_queue_head(list, newsk); 2949 spin_unlock_irqrestore(&list->lock, flags); 2950 } 2951 EXPORT_SYMBOL(skb_queue_head); 2952 2953 /** 2954 * skb_queue_tail - queue a buffer at the list tail 2955 * @list: list to use 2956 * @newsk: buffer to queue 2957 * 2958 * Queue a buffer at the tail of the list. This function takes the 2959 * list lock and can be used safely with other locking &sk_buff functions 2960 * safely. 2961 * 2962 * A buffer cannot be placed on two lists at the same time. 2963 */ 2964 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk) 2965 { 2966 unsigned long flags; 2967 2968 spin_lock_irqsave(&list->lock, flags); 2969 __skb_queue_tail(list, newsk); 2970 spin_unlock_irqrestore(&list->lock, flags); 2971 } 2972 EXPORT_SYMBOL(skb_queue_tail); 2973 2974 /** 2975 * skb_unlink - remove a buffer from a list 2976 * @skb: buffer to remove 2977 * @list: list to use 2978 * 2979 * Remove a packet from a list. The list locks are taken and this 2980 * function is atomic with respect to other list locked calls 2981 * 2982 * You must know what list the SKB is on. 2983 */ 2984 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list) 2985 { 2986 unsigned long flags; 2987 2988 spin_lock_irqsave(&list->lock, flags); 2989 __skb_unlink(skb, list); 2990 spin_unlock_irqrestore(&list->lock, flags); 2991 } 2992 EXPORT_SYMBOL(skb_unlink); 2993 2994 /** 2995 * skb_append - append a buffer 2996 * @old: buffer to insert after 2997 * @newsk: buffer to insert 2998 * @list: list to use 2999 * 3000 * Place a packet after a given packet in a list. The list locks are taken 3001 * and this function is atomic with respect to other list locked calls. 3002 * A buffer cannot be placed on two lists at the same time. 3003 */ 3004 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list) 3005 { 3006 unsigned long flags; 3007 3008 spin_lock_irqsave(&list->lock, flags); 3009 __skb_queue_after(list, old, newsk); 3010 spin_unlock_irqrestore(&list->lock, flags); 3011 } 3012 EXPORT_SYMBOL(skb_append); 3013 3014 static inline void skb_split_inside_header(struct sk_buff *skb, 3015 struct sk_buff* skb1, 3016 const u32 len, const int pos) 3017 { 3018 int i; 3019 3020 skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len), 3021 pos - len); 3022 /* And move data appendix as is. */ 3023 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 3024 skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i]; 3025 3026 skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags; 3027 skb_shinfo(skb)->nr_frags = 0; 3028 skb1->data_len = skb->data_len; 3029 skb1->len += skb1->data_len; 3030 skb->data_len = 0; 3031 skb->len = len; 3032 skb_set_tail_pointer(skb, len); 3033 } 3034 3035 static inline void skb_split_no_header(struct sk_buff *skb, 3036 struct sk_buff* skb1, 3037 const u32 len, int pos) 3038 { 3039 int i, k = 0; 3040 const int nfrags = skb_shinfo(skb)->nr_frags; 3041 3042 skb_shinfo(skb)->nr_frags = 0; 3043 skb1->len = skb1->data_len = skb->len - len; 3044 skb->len = len; 3045 skb->data_len = len - pos; 3046 3047 for (i = 0; i < nfrags; i++) { 3048 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 3049 3050 if (pos + size > len) { 3051 skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i]; 3052 3053 if (pos < len) { 3054 /* Split frag. 3055 * We have two variants in this case: 3056 * 1. Move all the frag to the second 3057 * part, if it is possible. F.e. 3058 * this approach is mandatory for TUX, 3059 * where splitting is expensive. 3060 * 2. Split is accurately. We make this. 3061 */ 3062 skb_frag_ref(skb, i); 3063 skb_shinfo(skb1)->frags[0].page_offset += len - pos; 3064 skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos); 3065 skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos); 3066 skb_shinfo(skb)->nr_frags++; 3067 } 3068 k++; 3069 } else 3070 skb_shinfo(skb)->nr_frags++; 3071 pos += size; 3072 } 3073 skb_shinfo(skb1)->nr_frags = k; 3074 } 3075 3076 /** 3077 * skb_split - Split fragmented skb to two parts at length len. 3078 * @skb: the buffer to split 3079 * @skb1: the buffer to receive the second part 3080 * @len: new length for skb 3081 */ 3082 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len) 3083 { 3084 int pos = skb_headlen(skb); 3085 3086 skb_shinfo(skb1)->tx_flags |= skb_shinfo(skb)->tx_flags & 3087 SKBTX_SHARED_FRAG; 3088 skb_zerocopy_clone(skb1, skb, 0); 3089 if (len < pos) /* Split line is inside header. */ 3090 skb_split_inside_header(skb, skb1, len, pos); 3091 else /* Second chunk has no header, nothing to copy. */ 3092 skb_split_no_header(skb, skb1, len, pos); 3093 } 3094 EXPORT_SYMBOL(skb_split); 3095 3096 /* Shifting from/to a cloned skb is a no-go. 3097 * 3098 * Caller cannot keep skb_shinfo related pointers past calling here! 3099 */ 3100 static int skb_prepare_for_shift(struct sk_buff *skb) 3101 { 3102 return skb_cloned(skb) && pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 3103 } 3104 3105 /** 3106 * skb_shift - Shifts paged data partially from skb to another 3107 * @tgt: buffer into which tail data gets added 3108 * @skb: buffer from which the paged data comes from 3109 * @shiftlen: shift up to this many bytes 3110 * 3111 * Attempts to shift up to shiftlen worth of bytes, which may be less than 3112 * the length of the skb, from skb to tgt. Returns number bytes shifted. 3113 * It's up to caller to free skb if everything was shifted. 3114 * 3115 * If @tgt runs out of frags, the whole operation is aborted. 3116 * 3117 * Skb cannot include anything else but paged data while tgt is allowed 3118 * to have non-paged data as well. 3119 * 3120 * TODO: full sized shift could be optimized but that would need 3121 * specialized skb free'er to handle frags without up-to-date nr_frags. 3122 */ 3123 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen) 3124 { 3125 int from, to, merge, todo; 3126 struct skb_frag_struct *fragfrom, *fragto; 3127 3128 BUG_ON(shiftlen > skb->len); 3129 3130 if (skb_headlen(skb)) 3131 return 0; 3132 if (skb_zcopy(tgt) || skb_zcopy(skb)) 3133 return 0; 3134 3135 todo = shiftlen; 3136 from = 0; 3137 to = skb_shinfo(tgt)->nr_frags; 3138 fragfrom = &skb_shinfo(skb)->frags[from]; 3139 3140 /* Actual merge is delayed until the point when we know we can 3141 * commit all, so that we don't have to undo partial changes 3142 */ 3143 if (!to || 3144 !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom), 3145 fragfrom->page_offset)) { 3146 merge = -1; 3147 } else { 3148 merge = to - 1; 3149 3150 todo -= skb_frag_size(fragfrom); 3151 if (todo < 0) { 3152 if (skb_prepare_for_shift(skb) || 3153 skb_prepare_for_shift(tgt)) 3154 return 0; 3155 3156 /* All previous frag pointers might be stale! */ 3157 fragfrom = &skb_shinfo(skb)->frags[from]; 3158 fragto = &skb_shinfo(tgt)->frags[merge]; 3159 3160 skb_frag_size_add(fragto, shiftlen); 3161 skb_frag_size_sub(fragfrom, shiftlen); 3162 fragfrom->page_offset += shiftlen; 3163 3164 goto onlymerged; 3165 } 3166 3167 from++; 3168 } 3169 3170 /* Skip full, not-fitting skb to avoid expensive operations */ 3171 if ((shiftlen == skb->len) && 3172 (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to)) 3173 return 0; 3174 3175 if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt)) 3176 return 0; 3177 3178 while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) { 3179 if (to == MAX_SKB_FRAGS) 3180 return 0; 3181 3182 fragfrom = &skb_shinfo(skb)->frags[from]; 3183 fragto = &skb_shinfo(tgt)->frags[to]; 3184 3185 if (todo >= skb_frag_size(fragfrom)) { 3186 *fragto = *fragfrom; 3187 todo -= skb_frag_size(fragfrom); 3188 from++; 3189 to++; 3190 3191 } else { 3192 __skb_frag_ref(fragfrom); 3193 fragto->page = fragfrom->page; 3194 fragto->page_offset = fragfrom->page_offset; 3195 skb_frag_size_set(fragto, todo); 3196 3197 fragfrom->page_offset += todo; 3198 skb_frag_size_sub(fragfrom, todo); 3199 todo = 0; 3200 3201 to++; 3202 break; 3203 } 3204 } 3205 3206 /* Ready to "commit" this state change to tgt */ 3207 skb_shinfo(tgt)->nr_frags = to; 3208 3209 if (merge >= 0) { 3210 fragfrom = &skb_shinfo(skb)->frags[0]; 3211 fragto = &skb_shinfo(tgt)->frags[merge]; 3212 3213 skb_frag_size_add(fragto, skb_frag_size(fragfrom)); 3214 __skb_frag_unref(fragfrom); 3215 } 3216 3217 /* Reposition in the original skb */ 3218 to = 0; 3219 while (from < skb_shinfo(skb)->nr_frags) 3220 skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++]; 3221 skb_shinfo(skb)->nr_frags = to; 3222 3223 BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags); 3224 3225 onlymerged: 3226 /* Most likely the tgt won't ever need its checksum anymore, skb on 3227 * the other hand might need it if it needs to be resent 3228 */ 3229 tgt->ip_summed = CHECKSUM_PARTIAL; 3230 skb->ip_summed = CHECKSUM_PARTIAL; 3231 3232 /* Yak, is it really working this way? Some helper please? */ 3233 skb->len -= shiftlen; 3234 skb->data_len -= shiftlen; 3235 skb->truesize -= shiftlen; 3236 tgt->len += shiftlen; 3237 tgt->data_len += shiftlen; 3238 tgt->truesize += shiftlen; 3239 3240 return shiftlen; 3241 } 3242 3243 /** 3244 * skb_prepare_seq_read - Prepare a sequential read of skb data 3245 * @skb: the buffer to read 3246 * @from: lower offset of data to be read 3247 * @to: upper offset of data to be read 3248 * @st: state variable 3249 * 3250 * Initializes the specified state variable. Must be called before 3251 * invoking skb_seq_read() for the first time. 3252 */ 3253 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from, 3254 unsigned int to, struct skb_seq_state *st) 3255 { 3256 st->lower_offset = from; 3257 st->upper_offset = to; 3258 st->root_skb = st->cur_skb = skb; 3259 st->frag_idx = st->stepped_offset = 0; 3260 st->frag_data = NULL; 3261 } 3262 EXPORT_SYMBOL(skb_prepare_seq_read); 3263 3264 /** 3265 * skb_seq_read - Sequentially read skb data 3266 * @consumed: number of bytes consumed by the caller so far 3267 * @data: destination pointer for data to be returned 3268 * @st: state variable 3269 * 3270 * Reads a block of skb data at @consumed relative to the 3271 * lower offset specified to skb_prepare_seq_read(). Assigns 3272 * the head of the data block to @data and returns the length 3273 * of the block or 0 if the end of the skb data or the upper 3274 * offset has been reached. 3275 * 3276 * The caller is not required to consume all of the data 3277 * returned, i.e. @consumed is typically set to the number 3278 * of bytes already consumed and the next call to 3279 * skb_seq_read() will return the remaining part of the block. 3280 * 3281 * Note 1: The size of each block of data returned can be arbitrary, 3282 * this limitation is the cost for zerocopy sequential 3283 * reads of potentially non linear data. 3284 * 3285 * Note 2: Fragment lists within fragments are not implemented 3286 * at the moment, state->root_skb could be replaced with 3287 * a stack for this purpose. 3288 */ 3289 unsigned int skb_seq_read(unsigned int consumed, const u8 **data, 3290 struct skb_seq_state *st) 3291 { 3292 unsigned int block_limit, abs_offset = consumed + st->lower_offset; 3293 skb_frag_t *frag; 3294 3295 if (unlikely(abs_offset >= st->upper_offset)) { 3296 if (st->frag_data) { 3297 kunmap_atomic(st->frag_data); 3298 st->frag_data = NULL; 3299 } 3300 return 0; 3301 } 3302 3303 next_skb: 3304 block_limit = skb_headlen(st->cur_skb) + st->stepped_offset; 3305 3306 if (abs_offset < block_limit && !st->frag_data) { 3307 *data = st->cur_skb->data + (abs_offset - st->stepped_offset); 3308 return block_limit - abs_offset; 3309 } 3310 3311 if (st->frag_idx == 0 && !st->frag_data) 3312 st->stepped_offset += skb_headlen(st->cur_skb); 3313 3314 while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) { 3315 frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx]; 3316 block_limit = skb_frag_size(frag) + st->stepped_offset; 3317 3318 if (abs_offset < block_limit) { 3319 if (!st->frag_data) 3320 st->frag_data = kmap_atomic(skb_frag_page(frag)); 3321 3322 *data = (u8 *) st->frag_data + frag->page_offset + 3323 (abs_offset - st->stepped_offset); 3324 3325 return block_limit - abs_offset; 3326 } 3327 3328 if (st->frag_data) { 3329 kunmap_atomic(st->frag_data); 3330 st->frag_data = NULL; 3331 } 3332 3333 st->frag_idx++; 3334 st->stepped_offset += skb_frag_size(frag); 3335 } 3336 3337 if (st->frag_data) { 3338 kunmap_atomic(st->frag_data); 3339 st->frag_data = NULL; 3340 } 3341 3342 if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) { 3343 st->cur_skb = skb_shinfo(st->root_skb)->frag_list; 3344 st->frag_idx = 0; 3345 goto next_skb; 3346 } else if (st->cur_skb->next) { 3347 st->cur_skb = st->cur_skb->next; 3348 st->frag_idx = 0; 3349 goto next_skb; 3350 } 3351 3352 return 0; 3353 } 3354 EXPORT_SYMBOL(skb_seq_read); 3355 3356 /** 3357 * skb_abort_seq_read - Abort a sequential read of skb data 3358 * @st: state variable 3359 * 3360 * Must be called if skb_seq_read() was not called until it 3361 * returned 0. 3362 */ 3363 void skb_abort_seq_read(struct skb_seq_state *st) 3364 { 3365 if (st->frag_data) 3366 kunmap_atomic(st->frag_data); 3367 } 3368 EXPORT_SYMBOL(skb_abort_seq_read); 3369 3370 #define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb)) 3371 3372 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text, 3373 struct ts_config *conf, 3374 struct ts_state *state) 3375 { 3376 return skb_seq_read(offset, text, TS_SKB_CB(state)); 3377 } 3378 3379 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state) 3380 { 3381 skb_abort_seq_read(TS_SKB_CB(state)); 3382 } 3383 3384 /** 3385 * skb_find_text - Find a text pattern in skb data 3386 * @skb: the buffer to look in 3387 * @from: search offset 3388 * @to: search limit 3389 * @config: textsearch configuration 3390 * 3391 * Finds a pattern in the skb data according to the specified 3392 * textsearch configuration. Use textsearch_next() to retrieve 3393 * subsequent occurrences of the pattern. Returns the offset 3394 * to the first occurrence or UINT_MAX if no match was found. 3395 */ 3396 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from, 3397 unsigned int to, struct ts_config *config) 3398 { 3399 struct ts_state state; 3400 unsigned int ret; 3401 3402 config->get_next_block = skb_ts_get_next_block; 3403 config->finish = skb_ts_finish; 3404 3405 skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state)); 3406 3407 ret = textsearch_find(config, &state); 3408 return (ret <= to - from ? ret : UINT_MAX); 3409 } 3410 EXPORT_SYMBOL(skb_find_text); 3411 3412 int skb_append_pagefrags(struct sk_buff *skb, struct page *page, 3413 int offset, size_t size) 3414 { 3415 int i = skb_shinfo(skb)->nr_frags; 3416 3417 if (skb_can_coalesce(skb, i, page, offset)) { 3418 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size); 3419 } else if (i < MAX_SKB_FRAGS) { 3420 get_page(page); 3421 skb_fill_page_desc(skb, i, page, offset, size); 3422 } else { 3423 return -EMSGSIZE; 3424 } 3425 3426 return 0; 3427 } 3428 EXPORT_SYMBOL_GPL(skb_append_pagefrags); 3429 3430 /** 3431 * skb_pull_rcsum - pull skb and update receive checksum 3432 * @skb: buffer to update 3433 * @len: length of data pulled 3434 * 3435 * This function performs an skb_pull on the packet and updates 3436 * the CHECKSUM_COMPLETE checksum. It should be used on 3437 * receive path processing instead of skb_pull unless you know 3438 * that the checksum difference is zero (e.g., a valid IP header) 3439 * or you are setting ip_summed to CHECKSUM_NONE. 3440 */ 3441 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len) 3442 { 3443 unsigned char *data = skb->data; 3444 3445 BUG_ON(len > skb->len); 3446 __skb_pull(skb, len); 3447 skb_postpull_rcsum(skb, data, len); 3448 return skb->data; 3449 } 3450 EXPORT_SYMBOL_GPL(skb_pull_rcsum); 3451 3452 static inline skb_frag_t skb_head_frag_to_page_desc(struct sk_buff *frag_skb) 3453 { 3454 skb_frag_t head_frag; 3455 struct page *page; 3456 3457 page = virt_to_head_page(frag_skb->head); 3458 head_frag.page.p = page; 3459 head_frag.page_offset = frag_skb->data - 3460 (unsigned char *)page_address(page); 3461 head_frag.size = skb_headlen(frag_skb); 3462 return head_frag; 3463 } 3464 3465 /** 3466 * skb_segment - Perform protocol segmentation on skb. 3467 * @head_skb: buffer to segment 3468 * @features: features for the output path (see dev->features) 3469 * 3470 * This function performs segmentation on the given skb. It returns 3471 * a pointer to the first in a list of new skbs for the segments. 3472 * In case of error it returns ERR_PTR(err). 3473 */ 3474 struct sk_buff *skb_segment(struct sk_buff *head_skb, 3475 netdev_features_t features) 3476 { 3477 struct sk_buff *segs = NULL; 3478 struct sk_buff *tail = NULL; 3479 struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list; 3480 skb_frag_t *frag = skb_shinfo(head_skb)->frags; 3481 unsigned int mss = skb_shinfo(head_skb)->gso_size; 3482 unsigned int doffset = head_skb->data - skb_mac_header(head_skb); 3483 struct sk_buff *frag_skb = head_skb; 3484 unsigned int offset = doffset; 3485 unsigned int tnl_hlen = skb_tnl_header_len(head_skb); 3486 unsigned int partial_segs = 0; 3487 unsigned int headroom; 3488 unsigned int len = head_skb->len; 3489 __be16 proto; 3490 bool csum, sg; 3491 int nfrags = skb_shinfo(head_skb)->nr_frags; 3492 int err = -ENOMEM; 3493 int i = 0; 3494 int pos; 3495 int dummy; 3496 3497 __skb_push(head_skb, doffset); 3498 proto = skb_network_protocol(head_skb, &dummy); 3499 if (unlikely(!proto)) 3500 return ERR_PTR(-EINVAL); 3501 3502 sg = !!(features & NETIF_F_SG); 3503 csum = !!can_checksum_protocol(features, proto); 3504 3505 if (sg && csum && (mss != GSO_BY_FRAGS)) { 3506 if (!(features & NETIF_F_GSO_PARTIAL)) { 3507 struct sk_buff *iter; 3508 unsigned int frag_len; 3509 3510 if (!list_skb || 3511 !net_gso_ok(features, skb_shinfo(head_skb)->gso_type)) 3512 goto normal; 3513 3514 /* If we get here then all the required 3515 * GSO features except frag_list are supported. 3516 * Try to split the SKB to multiple GSO SKBs 3517 * with no frag_list. 3518 * Currently we can do that only when the buffers don't 3519 * have a linear part and all the buffers except 3520 * the last are of the same length. 3521 */ 3522 frag_len = list_skb->len; 3523 skb_walk_frags(head_skb, iter) { 3524 if (frag_len != iter->len && iter->next) 3525 goto normal; 3526 if (skb_headlen(iter) && !iter->head_frag) 3527 goto normal; 3528 3529 len -= iter->len; 3530 } 3531 3532 if (len != frag_len) 3533 goto normal; 3534 } 3535 3536 /* GSO partial only requires that we trim off any excess that 3537 * doesn't fit into an MSS sized block, so take care of that 3538 * now. 3539 */ 3540 partial_segs = len / mss; 3541 if (partial_segs > 1) 3542 mss *= partial_segs; 3543 else 3544 partial_segs = 0; 3545 } 3546 3547 normal: 3548 headroom = skb_headroom(head_skb); 3549 pos = skb_headlen(head_skb); 3550 3551 do { 3552 struct sk_buff *nskb; 3553 skb_frag_t *nskb_frag; 3554 int hsize; 3555 int size; 3556 3557 if (unlikely(mss == GSO_BY_FRAGS)) { 3558 len = list_skb->len; 3559 } else { 3560 len = head_skb->len - offset; 3561 if (len > mss) 3562 len = mss; 3563 } 3564 3565 hsize = skb_headlen(head_skb) - offset; 3566 if (hsize < 0) 3567 hsize = 0; 3568 if (hsize > len || !sg) 3569 hsize = len; 3570 3571 if (!hsize && i >= nfrags && skb_headlen(list_skb) && 3572 (skb_headlen(list_skb) == len || sg)) { 3573 BUG_ON(skb_headlen(list_skb) > len); 3574 3575 i = 0; 3576 nfrags = skb_shinfo(list_skb)->nr_frags; 3577 frag = skb_shinfo(list_skb)->frags; 3578 frag_skb = list_skb; 3579 pos += skb_headlen(list_skb); 3580 3581 while (pos < offset + len) { 3582 BUG_ON(i >= nfrags); 3583 3584 size = skb_frag_size(frag); 3585 if (pos + size > offset + len) 3586 break; 3587 3588 i++; 3589 pos += size; 3590 frag++; 3591 } 3592 3593 nskb = skb_clone(list_skb, GFP_ATOMIC); 3594 list_skb = list_skb->next; 3595 3596 if (unlikely(!nskb)) 3597 goto err; 3598 3599 if (unlikely(pskb_trim(nskb, len))) { 3600 kfree_skb(nskb); 3601 goto err; 3602 } 3603 3604 hsize = skb_end_offset(nskb); 3605 if (skb_cow_head(nskb, doffset + headroom)) { 3606 kfree_skb(nskb); 3607 goto err; 3608 } 3609 3610 nskb->truesize += skb_end_offset(nskb) - hsize; 3611 skb_release_head_state(nskb); 3612 __skb_push(nskb, doffset); 3613 } else { 3614 nskb = __alloc_skb(hsize + doffset + headroom, 3615 GFP_ATOMIC, skb_alloc_rx_flag(head_skb), 3616 NUMA_NO_NODE); 3617 3618 if (unlikely(!nskb)) 3619 goto err; 3620 3621 skb_reserve(nskb, headroom); 3622 __skb_put(nskb, doffset); 3623 } 3624 3625 if (segs) 3626 tail->next = nskb; 3627 else 3628 segs = nskb; 3629 tail = nskb; 3630 3631 __copy_skb_header(nskb, head_skb); 3632 3633 skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom); 3634 skb_reset_mac_len(nskb); 3635 3636 skb_copy_from_linear_data_offset(head_skb, -tnl_hlen, 3637 nskb->data - tnl_hlen, 3638 doffset + tnl_hlen); 3639 3640 if (nskb->len == len + doffset) 3641 goto perform_csum_check; 3642 3643 if (!sg) { 3644 if (!nskb->remcsum_offload) 3645 nskb->ip_summed = CHECKSUM_NONE; 3646 SKB_GSO_CB(nskb)->csum = 3647 skb_copy_and_csum_bits(head_skb, offset, 3648 skb_put(nskb, len), 3649 len, 0); 3650 SKB_GSO_CB(nskb)->csum_start = 3651 skb_headroom(nskb) + doffset; 3652 continue; 3653 } 3654 3655 nskb_frag = skb_shinfo(nskb)->frags; 3656 3657 skb_copy_from_linear_data_offset(head_skb, offset, 3658 skb_put(nskb, hsize), hsize); 3659 3660 skb_shinfo(nskb)->tx_flags |= skb_shinfo(head_skb)->tx_flags & 3661 SKBTX_SHARED_FRAG; 3662 3663 if (skb_orphan_frags(frag_skb, GFP_ATOMIC) || 3664 skb_zerocopy_clone(nskb, frag_skb, GFP_ATOMIC)) 3665 goto err; 3666 3667 while (pos < offset + len) { 3668 if (i >= nfrags) { 3669 i = 0; 3670 nfrags = skb_shinfo(list_skb)->nr_frags; 3671 frag = skb_shinfo(list_skb)->frags; 3672 frag_skb = list_skb; 3673 if (!skb_headlen(list_skb)) { 3674 BUG_ON(!nfrags); 3675 } else { 3676 BUG_ON(!list_skb->head_frag); 3677 3678 /* to make room for head_frag. */ 3679 i--; 3680 frag--; 3681 } 3682 if (skb_orphan_frags(frag_skb, GFP_ATOMIC) || 3683 skb_zerocopy_clone(nskb, frag_skb, 3684 GFP_ATOMIC)) 3685 goto err; 3686 3687 list_skb = list_skb->next; 3688 } 3689 3690 if (unlikely(skb_shinfo(nskb)->nr_frags >= 3691 MAX_SKB_FRAGS)) { 3692 net_warn_ratelimited( 3693 "skb_segment: too many frags: %u %u\n", 3694 pos, mss); 3695 err = -EINVAL; 3696 goto err; 3697 } 3698 3699 *nskb_frag = (i < 0) ? skb_head_frag_to_page_desc(frag_skb) : *frag; 3700 __skb_frag_ref(nskb_frag); 3701 size = skb_frag_size(nskb_frag); 3702 3703 if (pos < offset) { 3704 nskb_frag->page_offset += offset - pos; 3705 skb_frag_size_sub(nskb_frag, offset - pos); 3706 } 3707 3708 skb_shinfo(nskb)->nr_frags++; 3709 3710 if (pos + size <= offset + len) { 3711 i++; 3712 frag++; 3713 pos += size; 3714 } else { 3715 skb_frag_size_sub(nskb_frag, pos + size - (offset + len)); 3716 goto skip_fraglist; 3717 } 3718 3719 nskb_frag++; 3720 } 3721 3722 skip_fraglist: 3723 nskb->data_len = len - hsize; 3724 nskb->len += nskb->data_len; 3725 nskb->truesize += nskb->data_len; 3726 3727 perform_csum_check: 3728 if (!csum) { 3729 if (skb_has_shared_frag(nskb) && 3730 __skb_linearize(nskb)) 3731 goto err; 3732 3733 if (!nskb->remcsum_offload) 3734 nskb->ip_summed = CHECKSUM_NONE; 3735 SKB_GSO_CB(nskb)->csum = 3736 skb_checksum(nskb, doffset, 3737 nskb->len - doffset, 0); 3738 SKB_GSO_CB(nskb)->csum_start = 3739 skb_headroom(nskb) + doffset; 3740 } 3741 } while ((offset += len) < head_skb->len); 3742 3743 /* Some callers want to get the end of the list. 3744 * Put it in segs->prev to avoid walking the list. 3745 * (see validate_xmit_skb_list() for example) 3746 */ 3747 segs->prev = tail; 3748 3749 if (partial_segs) { 3750 struct sk_buff *iter; 3751 int type = skb_shinfo(head_skb)->gso_type; 3752 unsigned short gso_size = skb_shinfo(head_skb)->gso_size; 3753 3754 /* Update type to add partial and then remove dodgy if set */ 3755 type |= (features & NETIF_F_GSO_PARTIAL) / NETIF_F_GSO_PARTIAL * SKB_GSO_PARTIAL; 3756 type &= ~SKB_GSO_DODGY; 3757 3758 /* Update GSO info and prepare to start updating headers on 3759 * our way back down the stack of protocols. 3760 */ 3761 for (iter = segs; iter; iter = iter->next) { 3762 skb_shinfo(iter)->gso_size = gso_size; 3763 skb_shinfo(iter)->gso_segs = partial_segs; 3764 skb_shinfo(iter)->gso_type = type; 3765 SKB_GSO_CB(iter)->data_offset = skb_headroom(iter) + doffset; 3766 } 3767 3768 if (tail->len - doffset <= gso_size) 3769 skb_shinfo(tail)->gso_size = 0; 3770 else if (tail != segs) 3771 skb_shinfo(tail)->gso_segs = DIV_ROUND_UP(tail->len - doffset, gso_size); 3772 } 3773 3774 /* Following permits correct backpressure, for protocols 3775 * using skb_set_owner_w(). 3776 * Idea is to tranfert ownership from head_skb to last segment. 3777 */ 3778 if (head_skb->destructor == sock_wfree) { 3779 swap(tail->truesize, head_skb->truesize); 3780 swap(tail->destructor, head_skb->destructor); 3781 swap(tail->sk, head_skb->sk); 3782 } 3783 return segs; 3784 3785 err: 3786 kfree_skb_list(segs); 3787 return ERR_PTR(err); 3788 } 3789 EXPORT_SYMBOL_GPL(skb_segment); 3790 3791 int skb_gro_receive(struct sk_buff *p, struct sk_buff *skb) 3792 { 3793 struct skb_shared_info *pinfo, *skbinfo = skb_shinfo(skb); 3794 unsigned int offset = skb_gro_offset(skb); 3795 unsigned int headlen = skb_headlen(skb); 3796 unsigned int len = skb_gro_len(skb); 3797 unsigned int delta_truesize; 3798 struct sk_buff *lp; 3799 3800 if (unlikely(p->len + len >= 65536)) 3801 return -E2BIG; 3802 3803 lp = NAPI_GRO_CB(p)->last; 3804 pinfo = skb_shinfo(lp); 3805 3806 if (headlen <= offset) { 3807 skb_frag_t *frag; 3808 skb_frag_t *frag2; 3809 int i = skbinfo->nr_frags; 3810 int nr_frags = pinfo->nr_frags + i; 3811 3812 if (nr_frags > MAX_SKB_FRAGS) 3813 goto merge; 3814 3815 offset -= headlen; 3816 pinfo->nr_frags = nr_frags; 3817 skbinfo->nr_frags = 0; 3818 3819 frag = pinfo->frags + nr_frags; 3820 frag2 = skbinfo->frags + i; 3821 do { 3822 *--frag = *--frag2; 3823 } while (--i); 3824 3825 frag->page_offset += offset; 3826 skb_frag_size_sub(frag, offset); 3827 3828 /* all fragments truesize : remove (head size + sk_buff) */ 3829 delta_truesize = skb->truesize - 3830 SKB_TRUESIZE(skb_end_offset(skb)); 3831 3832 skb->truesize -= skb->data_len; 3833 skb->len -= skb->data_len; 3834 skb->data_len = 0; 3835 3836 NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE; 3837 goto done; 3838 } else if (skb->head_frag) { 3839 int nr_frags = pinfo->nr_frags; 3840 skb_frag_t *frag = pinfo->frags + nr_frags; 3841 struct page *page = virt_to_head_page(skb->head); 3842 unsigned int first_size = headlen - offset; 3843 unsigned int first_offset; 3844 3845 if (nr_frags + 1 + skbinfo->nr_frags > MAX_SKB_FRAGS) 3846 goto merge; 3847 3848 first_offset = skb->data - 3849 (unsigned char *)page_address(page) + 3850 offset; 3851 3852 pinfo->nr_frags = nr_frags + 1 + skbinfo->nr_frags; 3853 3854 frag->page.p = page; 3855 frag->page_offset = first_offset; 3856 skb_frag_size_set(frag, first_size); 3857 3858 memcpy(frag + 1, skbinfo->frags, sizeof(*frag) * skbinfo->nr_frags); 3859 /* We dont need to clear skbinfo->nr_frags here */ 3860 3861 delta_truesize = skb->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff)); 3862 NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE_STOLEN_HEAD; 3863 goto done; 3864 } 3865 3866 merge: 3867 delta_truesize = skb->truesize; 3868 if (offset > headlen) { 3869 unsigned int eat = offset - headlen; 3870 3871 skbinfo->frags[0].page_offset += eat; 3872 skb_frag_size_sub(&skbinfo->frags[0], eat); 3873 skb->data_len -= eat; 3874 skb->len -= eat; 3875 offset = headlen; 3876 } 3877 3878 __skb_pull(skb, offset); 3879 3880 if (NAPI_GRO_CB(p)->last == p) 3881 skb_shinfo(p)->frag_list = skb; 3882 else 3883 NAPI_GRO_CB(p)->last->next = skb; 3884 NAPI_GRO_CB(p)->last = skb; 3885 __skb_header_release(skb); 3886 lp = p; 3887 3888 done: 3889 NAPI_GRO_CB(p)->count++; 3890 p->data_len += len; 3891 p->truesize += delta_truesize; 3892 p->len += len; 3893 if (lp != p) { 3894 lp->data_len += len; 3895 lp->truesize += delta_truesize; 3896 lp->len += len; 3897 } 3898 NAPI_GRO_CB(skb)->same_flow = 1; 3899 return 0; 3900 } 3901 EXPORT_SYMBOL_GPL(skb_gro_receive); 3902 3903 #ifdef CONFIG_SKB_EXTENSIONS 3904 #define SKB_EXT_ALIGN_VALUE 8 3905 #define SKB_EXT_CHUNKSIZEOF(x) (ALIGN((sizeof(x)), SKB_EXT_ALIGN_VALUE) / SKB_EXT_ALIGN_VALUE) 3906 3907 static const u8 skb_ext_type_len[] = { 3908 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 3909 [SKB_EXT_BRIDGE_NF] = SKB_EXT_CHUNKSIZEOF(struct nf_bridge_info), 3910 #endif 3911 #ifdef CONFIG_XFRM 3912 [SKB_EXT_SEC_PATH] = SKB_EXT_CHUNKSIZEOF(struct sec_path), 3913 #endif 3914 }; 3915 3916 static __always_inline unsigned int skb_ext_total_length(void) 3917 { 3918 return SKB_EXT_CHUNKSIZEOF(struct skb_ext) + 3919 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 3920 skb_ext_type_len[SKB_EXT_BRIDGE_NF] + 3921 #endif 3922 #ifdef CONFIG_XFRM 3923 skb_ext_type_len[SKB_EXT_SEC_PATH] + 3924 #endif 3925 0; 3926 } 3927 3928 static void skb_extensions_init(void) 3929 { 3930 BUILD_BUG_ON(SKB_EXT_NUM >= 8); 3931 BUILD_BUG_ON(skb_ext_total_length() > 255); 3932 3933 skbuff_ext_cache = kmem_cache_create("skbuff_ext_cache", 3934 SKB_EXT_ALIGN_VALUE * skb_ext_total_length(), 3935 0, 3936 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 3937 NULL); 3938 } 3939 #else 3940 static void skb_extensions_init(void) {} 3941 #endif 3942 3943 void __init skb_init(void) 3944 { 3945 skbuff_head_cache = kmem_cache_create_usercopy("skbuff_head_cache", 3946 sizeof(struct sk_buff), 3947 0, 3948 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 3949 offsetof(struct sk_buff, cb), 3950 sizeof_field(struct sk_buff, cb), 3951 NULL); 3952 skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache", 3953 sizeof(struct sk_buff_fclones), 3954 0, 3955 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 3956 NULL); 3957 skb_extensions_init(); 3958 } 3959 3960 static int 3961 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len, 3962 unsigned int recursion_level) 3963 { 3964 int start = skb_headlen(skb); 3965 int i, copy = start - offset; 3966 struct sk_buff *frag_iter; 3967 int elt = 0; 3968 3969 if (unlikely(recursion_level >= 24)) 3970 return -EMSGSIZE; 3971 3972 if (copy > 0) { 3973 if (copy > len) 3974 copy = len; 3975 sg_set_buf(sg, skb->data + offset, copy); 3976 elt++; 3977 if ((len -= copy) == 0) 3978 return elt; 3979 offset += copy; 3980 } 3981 3982 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 3983 int end; 3984 3985 WARN_ON(start > offset + len); 3986 3987 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]); 3988 if ((copy = end - offset) > 0) { 3989 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 3990 if (unlikely(elt && sg_is_last(&sg[elt - 1]))) 3991 return -EMSGSIZE; 3992 3993 if (copy > len) 3994 copy = len; 3995 sg_set_page(&sg[elt], skb_frag_page(frag), copy, 3996 frag->page_offset+offset-start); 3997 elt++; 3998 if (!(len -= copy)) 3999 return elt; 4000 offset += copy; 4001 } 4002 start = end; 4003 } 4004 4005 skb_walk_frags(skb, frag_iter) { 4006 int end, ret; 4007 4008 WARN_ON(start > offset + len); 4009 4010 end = start + frag_iter->len; 4011 if ((copy = end - offset) > 0) { 4012 if (unlikely(elt && sg_is_last(&sg[elt - 1]))) 4013 return -EMSGSIZE; 4014 4015 if (copy > len) 4016 copy = len; 4017 ret = __skb_to_sgvec(frag_iter, sg+elt, offset - start, 4018 copy, recursion_level + 1); 4019 if (unlikely(ret < 0)) 4020 return ret; 4021 elt += ret; 4022 if ((len -= copy) == 0) 4023 return elt; 4024 offset += copy; 4025 } 4026 start = end; 4027 } 4028 BUG_ON(len); 4029 return elt; 4030 } 4031 4032 /** 4033 * skb_to_sgvec - Fill a scatter-gather list from a socket buffer 4034 * @skb: Socket buffer containing the buffers to be mapped 4035 * @sg: The scatter-gather list to map into 4036 * @offset: The offset into the buffer's contents to start mapping 4037 * @len: Length of buffer space to be mapped 4038 * 4039 * Fill the specified scatter-gather list with mappings/pointers into a 4040 * region of the buffer space attached to a socket buffer. Returns either 4041 * the number of scatterlist items used, or -EMSGSIZE if the contents 4042 * could not fit. 4043 */ 4044 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len) 4045 { 4046 int nsg = __skb_to_sgvec(skb, sg, offset, len, 0); 4047 4048 if (nsg <= 0) 4049 return nsg; 4050 4051 sg_mark_end(&sg[nsg - 1]); 4052 4053 return nsg; 4054 } 4055 EXPORT_SYMBOL_GPL(skb_to_sgvec); 4056 4057 /* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given 4058 * sglist without mark the sg which contain last skb data as the end. 4059 * So the caller can mannipulate sg list as will when padding new data after 4060 * the first call without calling sg_unmark_end to expend sg list. 4061 * 4062 * Scenario to use skb_to_sgvec_nomark: 4063 * 1. sg_init_table 4064 * 2. skb_to_sgvec_nomark(payload1) 4065 * 3. skb_to_sgvec_nomark(payload2) 4066 * 4067 * This is equivalent to: 4068 * 1. sg_init_table 4069 * 2. skb_to_sgvec(payload1) 4070 * 3. sg_unmark_end 4071 * 4. skb_to_sgvec(payload2) 4072 * 4073 * When mapping mutilple payload conditionally, skb_to_sgvec_nomark 4074 * is more preferable. 4075 */ 4076 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg, 4077 int offset, int len) 4078 { 4079 return __skb_to_sgvec(skb, sg, offset, len, 0); 4080 } 4081 EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark); 4082 4083 4084 4085 /** 4086 * skb_cow_data - Check that a socket buffer's data buffers are writable 4087 * @skb: The socket buffer to check. 4088 * @tailbits: Amount of trailing space to be added 4089 * @trailer: Returned pointer to the skb where the @tailbits space begins 4090 * 4091 * Make sure that the data buffers attached to a socket buffer are 4092 * writable. If they are not, private copies are made of the data buffers 4093 * and the socket buffer is set to use these instead. 4094 * 4095 * If @tailbits is given, make sure that there is space to write @tailbits 4096 * bytes of data beyond current end of socket buffer. @trailer will be 4097 * set to point to the skb in which this space begins. 4098 * 4099 * The number of scatterlist elements required to completely map the 4100 * COW'd and extended socket buffer will be returned. 4101 */ 4102 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer) 4103 { 4104 int copyflag; 4105 int elt; 4106 struct sk_buff *skb1, **skb_p; 4107 4108 /* If skb is cloned or its head is paged, reallocate 4109 * head pulling out all the pages (pages are considered not writable 4110 * at the moment even if they are anonymous). 4111 */ 4112 if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) && 4113 __pskb_pull_tail(skb, skb_pagelen(skb)-skb_headlen(skb)) == NULL) 4114 return -ENOMEM; 4115 4116 /* Easy case. Most of packets will go this way. */ 4117 if (!skb_has_frag_list(skb)) { 4118 /* A little of trouble, not enough of space for trailer. 4119 * This should not happen, when stack is tuned to generate 4120 * good frames. OK, on miss we reallocate and reserve even more 4121 * space, 128 bytes is fair. */ 4122 4123 if (skb_tailroom(skb) < tailbits && 4124 pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC)) 4125 return -ENOMEM; 4126 4127 /* Voila! */ 4128 *trailer = skb; 4129 return 1; 4130 } 4131 4132 /* Misery. We are in troubles, going to mincer fragments... */ 4133 4134 elt = 1; 4135 skb_p = &skb_shinfo(skb)->frag_list; 4136 copyflag = 0; 4137 4138 while ((skb1 = *skb_p) != NULL) { 4139 int ntail = 0; 4140 4141 /* The fragment is partially pulled by someone, 4142 * this can happen on input. Copy it and everything 4143 * after it. */ 4144 4145 if (skb_shared(skb1)) 4146 copyflag = 1; 4147 4148 /* If the skb is the last, worry about trailer. */ 4149 4150 if (skb1->next == NULL && tailbits) { 4151 if (skb_shinfo(skb1)->nr_frags || 4152 skb_has_frag_list(skb1) || 4153 skb_tailroom(skb1) < tailbits) 4154 ntail = tailbits + 128; 4155 } 4156 4157 if (copyflag || 4158 skb_cloned(skb1) || 4159 ntail || 4160 skb_shinfo(skb1)->nr_frags || 4161 skb_has_frag_list(skb1)) { 4162 struct sk_buff *skb2; 4163 4164 /* Fuck, we are miserable poor guys... */ 4165 if (ntail == 0) 4166 skb2 = skb_copy(skb1, GFP_ATOMIC); 4167 else 4168 skb2 = skb_copy_expand(skb1, 4169 skb_headroom(skb1), 4170 ntail, 4171 GFP_ATOMIC); 4172 if (unlikely(skb2 == NULL)) 4173 return -ENOMEM; 4174 4175 if (skb1->sk) 4176 skb_set_owner_w(skb2, skb1->sk); 4177 4178 /* Looking around. Are we still alive? 4179 * OK, link new skb, drop old one */ 4180 4181 skb2->next = skb1->next; 4182 *skb_p = skb2; 4183 kfree_skb(skb1); 4184 skb1 = skb2; 4185 } 4186 elt++; 4187 *trailer = skb1; 4188 skb_p = &skb1->next; 4189 } 4190 4191 return elt; 4192 } 4193 EXPORT_SYMBOL_GPL(skb_cow_data); 4194 4195 static void sock_rmem_free(struct sk_buff *skb) 4196 { 4197 struct sock *sk = skb->sk; 4198 4199 atomic_sub(skb->truesize, &sk->sk_rmem_alloc); 4200 } 4201 4202 static void skb_set_err_queue(struct sk_buff *skb) 4203 { 4204 /* pkt_type of skbs received on local sockets is never PACKET_OUTGOING. 4205 * So, it is safe to (mis)use it to mark skbs on the error queue. 4206 */ 4207 skb->pkt_type = PACKET_OUTGOING; 4208 BUILD_BUG_ON(PACKET_OUTGOING == 0); 4209 } 4210 4211 /* 4212 * Note: We dont mem charge error packets (no sk_forward_alloc changes) 4213 */ 4214 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb) 4215 { 4216 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >= 4217 (unsigned int)sk->sk_rcvbuf) 4218 return -ENOMEM; 4219 4220 skb_orphan(skb); 4221 skb->sk = sk; 4222 skb->destructor = sock_rmem_free; 4223 atomic_add(skb->truesize, &sk->sk_rmem_alloc); 4224 skb_set_err_queue(skb); 4225 4226 /* before exiting rcu section, make sure dst is refcounted */ 4227 skb_dst_force(skb); 4228 4229 skb_queue_tail(&sk->sk_error_queue, skb); 4230 if (!sock_flag(sk, SOCK_DEAD)) 4231 sk->sk_error_report(sk); 4232 return 0; 4233 } 4234 EXPORT_SYMBOL(sock_queue_err_skb); 4235 4236 static bool is_icmp_err_skb(const struct sk_buff *skb) 4237 { 4238 return skb && (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP || 4239 SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP6); 4240 } 4241 4242 struct sk_buff *sock_dequeue_err_skb(struct sock *sk) 4243 { 4244 struct sk_buff_head *q = &sk->sk_error_queue; 4245 struct sk_buff *skb, *skb_next = NULL; 4246 bool icmp_next = false; 4247 unsigned long flags; 4248 4249 spin_lock_irqsave(&q->lock, flags); 4250 skb = __skb_dequeue(q); 4251 if (skb && (skb_next = skb_peek(q))) { 4252 icmp_next = is_icmp_err_skb(skb_next); 4253 if (icmp_next) 4254 sk->sk_err = SKB_EXT_ERR(skb_next)->ee.ee_origin; 4255 } 4256 spin_unlock_irqrestore(&q->lock, flags); 4257 4258 if (is_icmp_err_skb(skb) && !icmp_next) 4259 sk->sk_err = 0; 4260 4261 if (skb_next) 4262 sk->sk_error_report(sk); 4263 4264 return skb; 4265 } 4266 EXPORT_SYMBOL(sock_dequeue_err_skb); 4267 4268 /** 4269 * skb_clone_sk - create clone of skb, and take reference to socket 4270 * @skb: the skb to clone 4271 * 4272 * This function creates a clone of a buffer that holds a reference on 4273 * sk_refcnt. Buffers created via this function are meant to be 4274 * returned using sock_queue_err_skb, or free via kfree_skb. 4275 * 4276 * When passing buffers allocated with this function to sock_queue_err_skb 4277 * it is necessary to wrap the call with sock_hold/sock_put in order to 4278 * prevent the socket from being released prior to being enqueued on 4279 * the sk_error_queue. 4280 */ 4281 struct sk_buff *skb_clone_sk(struct sk_buff *skb) 4282 { 4283 struct sock *sk = skb->sk; 4284 struct sk_buff *clone; 4285 4286 if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt)) 4287 return NULL; 4288 4289 clone = skb_clone(skb, GFP_ATOMIC); 4290 if (!clone) { 4291 sock_put(sk); 4292 return NULL; 4293 } 4294 4295 clone->sk = sk; 4296 clone->destructor = sock_efree; 4297 4298 return clone; 4299 } 4300 EXPORT_SYMBOL(skb_clone_sk); 4301 4302 static void __skb_complete_tx_timestamp(struct sk_buff *skb, 4303 struct sock *sk, 4304 int tstype, 4305 bool opt_stats) 4306 { 4307 struct sock_exterr_skb *serr; 4308 int err; 4309 4310 BUILD_BUG_ON(sizeof(struct sock_exterr_skb) > sizeof(skb->cb)); 4311 4312 serr = SKB_EXT_ERR(skb); 4313 memset(serr, 0, sizeof(*serr)); 4314 serr->ee.ee_errno = ENOMSG; 4315 serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING; 4316 serr->ee.ee_info = tstype; 4317 serr->opt_stats = opt_stats; 4318 serr->header.h4.iif = skb->dev ? skb->dev->ifindex : 0; 4319 if (sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID) { 4320 serr->ee.ee_data = skb_shinfo(skb)->tskey; 4321 if (sk->sk_protocol == IPPROTO_TCP && 4322 sk->sk_type == SOCK_STREAM) 4323 serr->ee.ee_data -= sk->sk_tskey; 4324 } 4325 4326 err = sock_queue_err_skb(sk, skb); 4327 4328 if (err) 4329 kfree_skb(skb); 4330 } 4331 4332 static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly) 4333 { 4334 bool ret; 4335 4336 if (likely(sysctl_tstamp_allow_data || tsonly)) 4337 return true; 4338 4339 read_lock_bh(&sk->sk_callback_lock); 4340 ret = sk->sk_socket && sk->sk_socket->file && 4341 file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW); 4342 read_unlock_bh(&sk->sk_callback_lock); 4343 return ret; 4344 } 4345 4346 void skb_complete_tx_timestamp(struct sk_buff *skb, 4347 struct skb_shared_hwtstamps *hwtstamps) 4348 { 4349 struct sock *sk = skb->sk; 4350 4351 if (!skb_may_tx_timestamp(sk, false)) 4352 goto err; 4353 4354 /* Take a reference to prevent skb_orphan() from freeing the socket, 4355 * but only if the socket refcount is not zero. 4356 */ 4357 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) { 4358 *skb_hwtstamps(skb) = *hwtstamps; 4359 __skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND, false); 4360 sock_put(sk); 4361 return; 4362 } 4363 4364 err: 4365 kfree_skb(skb); 4366 } 4367 EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp); 4368 4369 void __skb_tstamp_tx(struct sk_buff *orig_skb, 4370 struct skb_shared_hwtstamps *hwtstamps, 4371 struct sock *sk, int tstype) 4372 { 4373 struct sk_buff *skb; 4374 bool tsonly, opt_stats = false; 4375 4376 if (!sk) 4377 return; 4378 4379 if (!hwtstamps && !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TX_SWHW) && 4380 skb_shinfo(orig_skb)->tx_flags & SKBTX_IN_PROGRESS) 4381 return; 4382 4383 tsonly = sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TSONLY; 4384 if (!skb_may_tx_timestamp(sk, tsonly)) 4385 return; 4386 4387 if (tsonly) { 4388 #ifdef CONFIG_INET 4389 if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_STATS) && 4390 sk->sk_protocol == IPPROTO_TCP && 4391 sk->sk_type == SOCK_STREAM) { 4392 skb = tcp_get_timestamping_opt_stats(sk); 4393 opt_stats = true; 4394 } else 4395 #endif 4396 skb = alloc_skb(0, GFP_ATOMIC); 4397 } else { 4398 skb = skb_clone(orig_skb, GFP_ATOMIC); 4399 } 4400 if (!skb) 4401 return; 4402 4403 if (tsonly) { 4404 skb_shinfo(skb)->tx_flags |= skb_shinfo(orig_skb)->tx_flags & 4405 SKBTX_ANY_TSTAMP; 4406 skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey; 4407 } 4408 4409 if (hwtstamps) 4410 *skb_hwtstamps(skb) = *hwtstamps; 4411 else 4412 skb->tstamp = ktime_get_real(); 4413 4414 __skb_complete_tx_timestamp(skb, sk, tstype, opt_stats); 4415 } 4416 EXPORT_SYMBOL_GPL(__skb_tstamp_tx); 4417 4418 void skb_tstamp_tx(struct sk_buff *orig_skb, 4419 struct skb_shared_hwtstamps *hwtstamps) 4420 { 4421 return __skb_tstamp_tx(orig_skb, hwtstamps, orig_skb->sk, 4422 SCM_TSTAMP_SND); 4423 } 4424 EXPORT_SYMBOL_GPL(skb_tstamp_tx); 4425 4426 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked) 4427 { 4428 struct sock *sk = skb->sk; 4429 struct sock_exterr_skb *serr; 4430 int err = 1; 4431 4432 skb->wifi_acked_valid = 1; 4433 skb->wifi_acked = acked; 4434 4435 serr = SKB_EXT_ERR(skb); 4436 memset(serr, 0, sizeof(*serr)); 4437 serr->ee.ee_errno = ENOMSG; 4438 serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS; 4439 4440 /* Take a reference to prevent skb_orphan() from freeing the socket, 4441 * but only if the socket refcount is not zero. 4442 */ 4443 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) { 4444 err = sock_queue_err_skb(sk, skb); 4445 sock_put(sk); 4446 } 4447 if (err) 4448 kfree_skb(skb); 4449 } 4450 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack); 4451 4452 /** 4453 * skb_partial_csum_set - set up and verify partial csum values for packet 4454 * @skb: the skb to set 4455 * @start: the number of bytes after skb->data to start checksumming. 4456 * @off: the offset from start to place the checksum. 4457 * 4458 * For untrusted partially-checksummed packets, we need to make sure the values 4459 * for skb->csum_start and skb->csum_offset are valid so we don't oops. 4460 * 4461 * This function checks and sets those values and skb->ip_summed: if this 4462 * returns false you should drop the packet. 4463 */ 4464 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off) 4465 { 4466 u32 csum_end = (u32)start + (u32)off + sizeof(__sum16); 4467 u32 csum_start = skb_headroom(skb) + (u32)start; 4468 4469 if (unlikely(csum_start > U16_MAX || csum_end > skb_headlen(skb))) { 4470 net_warn_ratelimited("bad partial csum: csum=%u/%u headroom=%u headlen=%u\n", 4471 start, off, skb_headroom(skb), skb_headlen(skb)); 4472 return false; 4473 } 4474 skb->ip_summed = CHECKSUM_PARTIAL; 4475 skb->csum_start = csum_start; 4476 skb->csum_offset = off; 4477 skb_set_transport_header(skb, start); 4478 return true; 4479 } 4480 EXPORT_SYMBOL_GPL(skb_partial_csum_set); 4481 4482 static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len, 4483 unsigned int max) 4484 { 4485 if (skb_headlen(skb) >= len) 4486 return 0; 4487 4488 /* If we need to pullup then pullup to the max, so we 4489 * won't need to do it again. 4490 */ 4491 if (max > skb->len) 4492 max = skb->len; 4493 4494 if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL) 4495 return -ENOMEM; 4496 4497 if (skb_headlen(skb) < len) 4498 return -EPROTO; 4499 4500 return 0; 4501 } 4502 4503 #define MAX_TCP_HDR_LEN (15 * 4) 4504 4505 static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb, 4506 typeof(IPPROTO_IP) proto, 4507 unsigned int off) 4508 { 4509 switch (proto) { 4510 int err; 4511 4512 case IPPROTO_TCP: 4513 err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr), 4514 off + MAX_TCP_HDR_LEN); 4515 if (!err && !skb_partial_csum_set(skb, off, 4516 offsetof(struct tcphdr, 4517 check))) 4518 err = -EPROTO; 4519 return err ? ERR_PTR(err) : &tcp_hdr(skb)->check; 4520 4521 case IPPROTO_UDP: 4522 err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr), 4523 off + sizeof(struct udphdr)); 4524 if (!err && !skb_partial_csum_set(skb, off, 4525 offsetof(struct udphdr, 4526 check))) 4527 err = -EPROTO; 4528 return err ? ERR_PTR(err) : &udp_hdr(skb)->check; 4529 } 4530 4531 return ERR_PTR(-EPROTO); 4532 } 4533 4534 /* This value should be large enough to cover a tagged ethernet header plus 4535 * maximally sized IP and TCP or UDP headers. 4536 */ 4537 #define MAX_IP_HDR_LEN 128 4538 4539 static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate) 4540 { 4541 unsigned int off; 4542 bool fragment; 4543 __sum16 *csum; 4544 int err; 4545 4546 fragment = false; 4547 4548 err = skb_maybe_pull_tail(skb, 4549 sizeof(struct iphdr), 4550 MAX_IP_HDR_LEN); 4551 if (err < 0) 4552 goto out; 4553 4554 if (ip_hdr(skb)->frag_off & htons(IP_OFFSET | IP_MF)) 4555 fragment = true; 4556 4557 off = ip_hdrlen(skb); 4558 4559 err = -EPROTO; 4560 4561 if (fragment) 4562 goto out; 4563 4564 csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off); 4565 if (IS_ERR(csum)) 4566 return PTR_ERR(csum); 4567 4568 if (recalculate) 4569 *csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr, 4570 ip_hdr(skb)->daddr, 4571 skb->len - off, 4572 ip_hdr(skb)->protocol, 0); 4573 err = 0; 4574 4575 out: 4576 return err; 4577 } 4578 4579 /* This value should be large enough to cover a tagged ethernet header plus 4580 * an IPv6 header, all options, and a maximal TCP or UDP header. 4581 */ 4582 #define MAX_IPV6_HDR_LEN 256 4583 4584 #define OPT_HDR(type, skb, off) \ 4585 (type *)(skb_network_header(skb) + (off)) 4586 4587 static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate) 4588 { 4589 int err; 4590 u8 nexthdr; 4591 unsigned int off; 4592 unsigned int len; 4593 bool fragment; 4594 bool done; 4595 __sum16 *csum; 4596 4597 fragment = false; 4598 done = false; 4599 4600 off = sizeof(struct ipv6hdr); 4601 4602 err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN); 4603 if (err < 0) 4604 goto out; 4605 4606 nexthdr = ipv6_hdr(skb)->nexthdr; 4607 4608 len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len); 4609 while (off <= len && !done) { 4610 switch (nexthdr) { 4611 case IPPROTO_DSTOPTS: 4612 case IPPROTO_HOPOPTS: 4613 case IPPROTO_ROUTING: { 4614 struct ipv6_opt_hdr *hp; 4615 4616 err = skb_maybe_pull_tail(skb, 4617 off + 4618 sizeof(struct ipv6_opt_hdr), 4619 MAX_IPV6_HDR_LEN); 4620 if (err < 0) 4621 goto out; 4622 4623 hp = OPT_HDR(struct ipv6_opt_hdr, skb, off); 4624 nexthdr = hp->nexthdr; 4625 off += ipv6_optlen(hp); 4626 break; 4627 } 4628 case IPPROTO_AH: { 4629 struct ip_auth_hdr *hp; 4630 4631 err = skb_maybe_pull_tail(skb, 4632 off + 4633 sizeof(struct ip_auth_hdr), 4634 MAX_IPV6_HDR_LEN); 4635 if (err < 0) 4636 goto out; 4637 4638 hp = OPT_HDR(struct ip_auth_hdr, skb, off); 4639 nexthdr = hp->nexthdr; 4640 off += ipv6_authlen(hp); 4641 break; 4642 } 4643 case IPPROTO_FRAGMENT: { 4644 struct frag_hdr *hp; 4645 4646 err = skb_maybe_pull_tail(skb, 4647 off + 4648 sizeof(struct frag_hdr), 4649 MAX_IPV6_HDR_LEN); 4650 if (err < 0) 4651 goto out; 4652 4653 hp = OPT_HDR(struct frag_hdr, skb, off); 4654 4655 if (hp->frag_off & htons(IP6_OFFSET | IP6_MF)) 4656 fragment = true; 4657 4658 nexthdr = hp->nexthdr; 4659 off += sizeof(struct frag_hdr); 4660 break; 4661 } 4662 default: 4663 done = true; 4664 break; 4665 } 4666 } 4667 4668 err = -EPROTO; 4669 4670 if (!done || fragment) 4671 goto out; 4672 4673 csum = skb_checksum_setup_ip(skb, nexthdr, off); 4674 if (IS_ERR(csum)) 4675 return PTR_ERR(csum); 4676 4677 if (recalculate) 4678 *csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr, 4679 &ipv6_hdr(skb)->daddr, 4680 skb->len - off, nexthdr, 0); 4681 err = 0; 4682 4683 out: 4684 return err; 4685 } 4686 4687 /** 4688 * skb_checksum_setup - set up partial checksum offset 4689 * @skb: the skb to set up 4690 * @recalculate: if true the pseudo-header checksum will be recalculated 4691 */ 4692 int skb_checksum_setup(struct sk_buff *skb, bool recalculate) 4693 { 4694 int err; 4695 4696 switch (skb->protocol) { 4697 case htons(ETH_P_IP): 4698 err = skb_checksum_setup_ipv4(skb, recalculate); 4699 break; 4700 4701 case htons(ETH_P_IPV6): 4702 err = skb_checksum_setup_ipv6(skb, recalculate); 4703 break; 4704 4705 default: 4706 err = -EPROTO; 4707 break; 4708 } 4709 4710 return err; 4711 } 4712 EXPORT_SYMBOL(skb_checksum_setup); 4713 4714 /** 4715 * skb_checksum_maybe_trim - maybe trims the given skb 4716 * @skb: the skb to check 4717 * @transport_len: the data length beyond the network header 4718 * 4719 * Checks whether the given skb has data beyond the given transport length. 4720 * If so, returns a cloned skb trimmed to this transport length. 4721 * Otherwise returns the provided skb. Returns NULL in error cases 4722 * (e.g. transport_len exceeds skb length or out-of-memory). 4723 * 4724 * Caller needs to set the skb transport header and free any returned skb if it 4725 * differs from the provided skb. 4726 */ 4727 static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb, 4728 unsigned int transport_len) 4729 { 4730 struct sk_buff *skb_chk; 4731 unsigned int len = skb_transport_offset(skb) + transport_len; 4732 int ret; 4733 4734 if (skb->len < len) 4735 return NULL; 4736 else if (skb->len == len) 4737 return skb; 4738 4739 skb_chk = skb_clone(skb, GFP_ATOMIC); 4740 if (!skb_chk) 4741 return NULL; 4742 4743 ret = pskb_trim_rcsum(skb_chk, len); 4744 if (ret) { 4745 kfree_skb(skb_chk); 4746 return NULL; 4747 } 4748 4749 return skb_chk; 4750 } 4751 4752 /** 4753 * skb_checksum_trimmed - validate checksum of an skb 4754 * @skb: the skb to check 4755 * @transport_len: the data length beyond the network header 4756 * @skb_chkf: checksum function to use 4757 * 4758 * Applies the given checksum function skb_chkf to the provided skb. 4759 * Returns a checked and maybe trimmed skb. Returns NULL on error. 4760 * 4761 * If the skb has data beyond the given transport length, then a 4762 * trimmed & cloned skb is checked and returned. 4763 * 4764 * Caller needs to set the skb transport header and free any returned skb if it 4765 * differs from the provided skb. 4766 */ 4767 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb, 4768 unsigned int transport_len, 4769 __sum16(*skb_chkf)(struct sk_buff *skb)) 4770 { 4771 struct sk_buff *skb_chk; 4772 unsigned int offset = skb_transport_offset(skb); 4773 __sum16 ret; 4774 4775 skb_chk = skb_checksum_maybe_trim(skb, transport_len); 4776 if (!skb_chk) 4777 goto err; 4778 4779 if (!pskb_may_pull(skb_chk, offset)) 4780 goto err; 4781 4782 skb_pull_rcsum(skb_chk, offset); 4783 ret = skb_chkf(skb_chk); 4784 skb_push_rcsum(skb_chk, offset); 4785 4786 if (ret) 4787 goto err; 4788 4789 return skb_chk; 4790 4791 err: 4792 if (skb_chk && skb_chk != skb) 4793 kfree_skb(skb_chk); 4794 4795 return NULL; 4796 4797 } 4798 EXPORT_SYMBOL(skb_checksum_trimmed); 4799 4800 void __skb_warn_lro_forwarding(const struct sk_buff *skb) 4801 { 4802 net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n", 4803 skb->dev->name); 4804 } 4805 EXPORT_SYMBOL(__skb_warn_lro_forwarding); 4806 4807 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen) 4808 { 4809 if (head_stolen) { 4810 skb_release_head_state(skb); 4811 kmem_cache_free(skbuff_head_cache, skb); 4812 } else { 4813 __kfree_skb(skb); 4814 } 4815 } 4816 EXPORT_SYMBOL(kfree_skb_partial); 4817 4818 /** 4819 * skb_try_coalesce - try to merge skb to prior one 4820 * @to: prior buffer 4821 * @from: buffer to add 4822 * @fragstolen: pointer to boolean 4823 * @delta_truesize: how much more was allocated than was requested 4824 */ 4825 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from, 4826 bool *fragstolen, int *delta_truesize) 4827 { 4828 struct skb_shared_info *to_shinfo, *from_shinfo; 4829 int i, delta, len = from->len; 4830 4831 *fragstolen = false; 4832 4833 if (skb_cloned(to)) 4834 return false; 4835 4836 if (len <= skb_tailroom(to)) { 4837 if (len) 4838 BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len)); 4839 *delta_truesize = 0; 4840 return true; 4841 } 4842 4843 to_shinfo = skb_shinfo(to); 4844 from_shinfo = skb_shinfo(from); 4845 if (to_shinfo->frag_list || from_shinfo->frag_list) 4846 return false; 4847 if (skb_zcopy(to) || skb_zcopy(from)) 4848 return false; 4849 4850 if (skb_headlen(from) != 0) { 4851 struct page *page; 4852 unsigned int offset; 4853 4854 if (to_shinfo->nr_frags + 4855 from_shinfo->nr_frags >= MAX_SKB_FRAGS) 4856 return false; 4857 4858 if (skb_head_is_locked(from)) 4859 return false; 4860 4861 delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff)); 4862 4863 page = virt_to_head_page(from->head); 4864 offset = from->data - (unsigned char *)page_address(page); 4865 4866 skb_fill_page_desc(to, to_shinfo->nr_frags, 4867 page, offset, skb_headlen(from)); 4868 *fragstolen = true; 4869 } else { 4870 if (to_shinfo->nr_frags + 4871 from_shinfo->nr_frags > MAX_SKB_FRAGS) 4872 return false; 4873 4874 delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from)); 4875 } 4876 4877 WARN_ON_ONCE(delta < len); 4878 4879 memcpy(to_shinfo->frags + to_shinfo->nr_frags, 4880 from_shinfo->frags, 4881 from_shinfo->nr_frags * sizeof(skb_frag_t)); 4882 to_shinfo->nr_frags += from_shinfo->nr_frags; 4883 4884 if (!skb_cloned(from)) 4885 from_shinfo->nr_frags = 0; 4886 4887 /* if the skb is not cloned this does nothing 4888 * since we set nr_frags to 0. 4889 */ 4890 for (i = 0; i < from_shinfo->nr_frags; i++) 4891 __skb_frag_ref(&from_shinfo->frags[i]); 4892 4893 to->truesize += delta; 4894 to->len += len; 4895 to->data_len += len; 4896 4897 *delta_truesize = delta; 4898 return true; 4899 } 4900 EXPORT_SYMBOL(skb_try_coalesce); 4901 4902 /** 4903 * skb_scrub_packet - scrub an skb 4904 * 4905 * @skb: buffer to clean 4906 * @xnet: packet is crossing netns 4907 * 4908 * skb_scrub_packet can be used after encapsulating or decapsulting a packet 4909 * into/from a tunnel. Some information have to be cleared during these 4910 * operations. 4911 * skb_scrub_packet can also be used to clean a skb before injecting it in 4912 * another namespace (@xnet == true). We have to clear all information in the 4913 * skb that could impact namespace isolation. 4914 */ 4915 void skb_scrub_packet(struct sk_buff *skb, bool xnet) 4916 { 4917 skb->pkt_type = PACKET_HOST; 4918 skb->skb_iif = 0; 4919 skb->ignore_df = 0; 4920 skb_dst_drop(skb); 4921 secpath_reset(skb); 4922 nf_reset(skb); 4923 nf_reset_trace(skb); 4924 4925 #ifdef CONFIG_NET_SWITCHDEV 4926 skb->offload_fwd_mark = 0; 4927 skb->offload_l3_fwd_mark = 0; 4928 #endif 4929 4930 if (!xnet) 4931 return; 4932 4933 ipvs_reset(skb); 4934 skb->mark = 0; 4935 skb->tstamp = 0; 4936 } 4937 EXPORT_SYMBOL_GPL(skb_scrub_packet); 4938 4939 /** 4940 * skb_gso_transport_seglen - Return length of individual segments of a gso packet 4941 * 4942 * @skb: GSO skb 4943 * 4944 * skb_gso_transport_seglen is used to determine the real size of the 4945 * individual segments, including Layer4 headers (TCP/UDP). 4946 * 4947 * The MAC/L2 or network (IP, IPv6) headers are not accounted for. 4948 */ 4949 static unsigned int skb_gso_transport_seglen(const struct sk_buff *skb) 4950 { 4951 const struct skb_shared_info *shinfo = skb_shinfo(skb); 4952 unsigned int thlen = 0; 4953 4954 if (skb->encapsulation) { 4955 thlen = skb_inner_transport_header(skb) - 4956 skb_transport_header(skb); 4957 4958 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) 4959 thlen += inner_tcp_hdrlen(skb); 4960 } else if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) { 4961 thlen = tcp_hdrlen(skb); 4962 } else if (unlikely(skb_is_gso_sctp(skb))) { 4963 thlen = sizeof(struct sctphdr); 4964 } else if (shinfo->gso_type & SKB_GSO_UDP_L4) { 4965 thlen = sizeof(struct udphdr); 4966 } 4967 /* UFO sets gso_size to the size of the fragmentation 4968 * payload, i.e. the size of the L4 (UDP) header is already 4969 * accounted for. 4970 */ 4971 return thlen + shinfo->gso_size; 4972 } 4973 4974 /** 4975 * skb_gso_network_seglen - Return length of individual segments of a gso packet 4976 * 4977 * @skb: GSO skb 4978 * 4979 * skb_gso_network_seglen is used to determine the real size of the 4980 * individual segments, including Layer3 (IP, IPv6) and L4 headers (TCP/UDP). 4981 * 4982 * The MAC/L2 header is not accounted for. 4983 */ 4984 static unsigned int skb_gso_network_seglen(const struct sk_buff *skb) 4985 { 4986 unsigned int hdr_len = skb_transport_header(skb) - 4987 skb_network_header(skb); 4988 4989 return hdr_len + skb_gso_transport_seglen(skb); 4990 } 4991 4992 /** 4993 * skb_gso_mac_seglen - Return length of individual segments of a gso packet 4994 * 4995 * @skb: GSO skb 4996 * 4997 * skb_gso_mac_seglen is used to determine the real size of the 4998 * individual segments, including MAC/L2, Layer3 (IP, IPv6) and L4 4999 * headers (TCP/UDP). 5000 */ 5001 static unsigned int skb_gso_mac_seglen(const struct sk_buff *skb) 5002 { 5003 unsigned int hdr_len = skb_transport_header(skb) - skb_mac_header(skb); 5004 5005 return hdr_len + skb_gso_transport_seglen(skb); 5006 } 5007 5008 /** 5009 * skb_gso_size_check - check the skb size, considering GSO_BY_FRAGS 5010 * 5011 * There are a couple of instances where we have a GSO skb, and we 5012 * want to determine what size it would be after it is segmented. 5013 * 5014 * We might want to check: 5015 * - L3+L4+payload size (e.g. IP forwarding) 5016 * - L2+L3+L4+payload size (e.g. sanity check before passing to driver) 5017 * 5018 * This is a helper to do that correctly considering GSO_BY_FRAGS. 5019 * 5020 * @skb: GSO skb 5021 * 5022 * @seg_len: The segmented length (from skb_gso_*_seglen). In the 5023 * GSO_BY_FRAGS case this will be [header sizes + GSO_BY_FRAGS]. 5024 * 5025 * @max_len: The maximum permissible length. 5026 * 5027 * Returns true if the segmented length <= max length. 5028 */ 5029 static inline bool skb_gso_size_check(const struct sk_buff *skb, 5030 unsigned int seg_len, 5031 unsigned int max_len) { 5032 const struct skb_shared_info *shinfo = skb_shinfo(skb); 5033 const struct sk_buff *iter; 5034 5035 if (shinfo->gso_size != GSO_BY_FRAGS) 5036 return seg_len <= max_len; 5037 5038 /* Undo this so we can re-use header sizes */ 5039 seg_len -= GSO_BY_FRAGS; 5040 5041 skb_walk_frags(skb, iter) { 5042 if (seg_len + skb_headlen(iter) > max_len) 5043 return false; 5044 } 5045 5046 return true; 5047 } 5048 5049 /** 5050 * skb_gso_validate_network_len - Will a split GSO skb fit into a given MTU? 5051 * 5052 * @skb: GSO skb 5053 * @mtu: MTU to validate against 5054 * 5055 * skb_gso_validate_network_len validates if a given skb will fit a 5056 * wanted MTU once split. It considers L3 headers, L4 headers, and the 5057 * payload. 5058 */ 5059 bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu) 5060 { 5061 return skb_gso_size_check(skb, skb_gso_network_seglen(skb), mtu); 5062 } 5063 EXPORT_SYMBOL_GPL(skb_gso_validate_network_len); 5064 5065 /** 5066 * skb_gso_validate_mac_len - Will a split GSO skb fit in a given length? 5067 * 5068 * @skb: GSO skb 5069 * @len: length to validate against 5070 * 5071 * skb_gso_validate_mac_len validates if a given skb will fit a wanted 5072 * length once split, including L2, L3 and L4 headers and the payload. 5073 */ 5074 bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len) 5075 { 5076 return skb_gso_size_check(skb, skb_gso_mac_seglen(skb), len); 5077 } 5078 EXPORT_SYMBOL_GPL(skb_gso_validate_mac_len); 5079 5080 static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb) 5081 { 5082 int mac_len; 5083 5084 if (skb_cow(skb, skb_headroom(skb)) < 0) { 5085 kfree_skb(skb); 5086 return NULL; 5087 } 5088 5089 mac_len = skb->data - skb_mac_header(skb); 5090 if (likely(mac_len > VLAN_HLEN + ETH_TLEN)) { 5091 memmove(skb_mac_header(skb) + VLAN_HLEN, skb_mac_header(skb), 5092 mac_len - VLAN_HLEN - ETH_TLEN); 5093 } 5094 skb->mac_header += VLAN_HLEN; 5095 return skb; 5096 } 5097 5098 struct sk_buff *skb_vlan_untag(struct sk_buff *skb) 5099 { 5100 struct vlan_hdr *vhdr; 5101 u16 vlan_tci; 5102 5103 if (unlikely(skb_vlan_tag_present(skb))) { 5104 /* vlan_tci is already set-up so leave this for another time */ 5105 return skb; 5106 } 5107 5108 skb = skb_share_check(skb, GFP_ATOMIC); 5109 if (unlikely(!skb)) 5110 goto err_free; 5111 5112 if (unlikely(!pskb_may_pull(skb, VLAN_HLEN))) 5113 goto err_free; 5114 5115 vhdr = (struct vlan_hdr *)skb->data; 5116 vlan_tci = ntohs(vhdr->h_vlan_TCI); 5117 __vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci); 5118 5119 skb_pull_rcsum(skb, VLAN_HLEN); 5120 vlan_set_encap_proto(skb, vhdr); 5121 5122 skb = skb_reorder_vlan_header(skb); 5123 if (unlikely(!skb)) 5124 goto err_free; 5125 5126 skb_reset_network_header(skb); 5127 skb_reset_transport_header(skb); 5128 skb_reset_mac_len(skb); 5129 5130 return skb; 5131 5132 err_free: 5133 kfree_skb(skb); 5134 return NULL; 5135 } 5136 EXPORT_SYMBOL(skb_vlan_untag); 5137 5138 int skb_ensure_writable(struct sk_buff *skb, int write_len) 5139 { 5140 if (!pskb_may_pull(skb, write_len)) 5141 return -ENOMEM; 5142 5143 if (!skb_cloned(skb) || skb_clone_writable(skb, write_len)) 5144 return 0; 5145 5146 return pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 5147 } 5148 EXPORT_SYMBOL(skb_ensure_writable); 5149 5150 /* remove VLAN header from packet and update csum accordingly. 5151 * expects a non skb_vlan_tag_present skb with a vlan tag payload 5152 */ 5153 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci) 5154 { 5155 struct vlan_hdr *vhdr; 5156 int offset = skb->data - skb_mac_header(skb); 5157 int err; 5158 5159 if (WARN_ONCE(offset, 5160 "__skb_vlan_pop got skb with skb->data not at mac header (offset %d)\n", 5161 offset)) { 5162 return -EINVAL; 5163 } 5164 5165 err = skb_ensure_writable(skb, VLAN_ETH_HLEN); 5166 if (unlikely(err)) 5167 return err; 5168 5169 skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN); 5170 5171 vhdr = (struct vlan_hdr *)(skb->data + ETH_HLEN); 5172 *vlan_tci = ntohs(vhdr->h_vlan_TCI); 5173 5174 memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN); 5175 __skb_pull(skb, VLAN_HLEN); 5176 5177 vlan_set_encap_proto(skb, vhdr); 5178 skb->mac_header += VLAN_HLEN; 5179 5180 if (skb_network_offset(skb) < ETH_HLEN) 5181 skb_set_network_header(skb, ETH_HLEN); 5182 5183 skb_reset_mac_len(skb); 5184 5185 return err; 5186 } 5187 EXPORT_SYMBOL(__skb_vlan_pop); 5188 5189 /* Pop a vlan tag either from hwaccel or from payload. 5190 * Expects skb->data at mac header. 5191 */ 5192 int skb_vlan_pop(struct sk_buff *skb) 5193 { 5194 u16 vlan_tci; 5195 __be16 vlan_proto; 5196 int err; 5197 5198 if (likely(skb_vlan_tag_present(skb))) { 5199 __vlan_hwaccel_clear_tag(skb); 5200 } else { 5201 if (unlikely(!eth_type_vlan(skb->protocol))) 5202 return 0; 5203 5204 err = __skb_vlan_pop(skb, &vlan_tci); 5205 if (err) 5206 return err; 5207 } 5208 /* move next vlan tag to hw accel tag */ 5209 if (likely(!eth_type_vlan(skb->protocol))) 5210 return 0; 5211 5212 vlan_proto = skb->protocol; 5213 err = __skb_vlan_pop(skb, &vlan_tci); 5214 if (unlikely(err)) 5215 return err; 5216 5217 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci); 5218 return 0; 5219 } 5220 EXPORT_SYMBOL(skb_vlan_pop); 5221 5222 /* Push a vlan tag either into hwaccel or into payload (if hwaccel tag present). 5223 * Expects skb->data at mac header. 5224 */ 5225 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci) 5226 { 5227 if (skb_vlan_tag_present(skb)) { 5228 int offset = skb->data - skb_mac_header(skb); 5229 int err; 5230 5231 if (WARN_ONCE(offset, 5232 "skb_vlan_push got skb with skb->data not at mac header (offset %d)\n", 5233 offset)) { 5234 return -EINVAL; 5235 } 5236 5237 err = __vlan_insert_tag(skb, skb->vlan_proto, 5238 skb_vlan_tag_get(skb)); 5239 if (err) 5240 return err; 5241 5242 skb->protocol = skb->vlan_proto; 5243 skb->mac_len += VLAN_HLEN; 5244 5245 skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN); 5246 } 5247 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci); 5248 return 0; 5249 } 5250 EXPORT_SYMBOL(skb_vlan_push); 5251 5252 /** 5253 * alloc_skb_with_frags - allocate skb with page frags 5254 * 5255 * @header_len: size of linear part 5256 * @data_len: needed length in frags 5257 * @max_page_order: max page order desired. 5258 * @errcode: pointer to error code if any 5259 * @gfp_mask: allocation mask 5260 * 5261 * This can be used to allocate a paged skb, given a maximal order for frags. 5262 */ 5263 struct sk_buff *alloc_skb_with_frags(unsigned long header_len, 5264 unsigned long data_len, 5265 int max_page_order, 5266 int *errcode, 5267 gfp_t gfp_mask) 5268 { 5269 int npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT; 5270 unsigned long chunk; 5271 struct sk_buff *skb; 5272 struct page *page; 5273 gfp_t gfp_head; 5274 int i; 5275 5276 *errcode = -EMSGSIZE; 5277 /* Note this test could be relaxed, if we succeed to allocate 5278 * high order pages... 5279 */ 5280 if (npages > MAX_SKB_FRAGS) 5281 return NULL; 5282 5283 gfp_head = gfp_mask; 5284 if (gfp_head & __GFP_DIRECT_RECLAIM) 5285 gfp_head |= __GFP_RETRY_MAYFAIL; 5286 5287 *errcode = -ENOBUFS; 5288 skb = alloc_skb(header_len, gfp_head); 5289 if (!skb) 5290 return NULL; 5291 5292 skb->truesize += npages << PAGE_SHIFT; 5293 5294 for (i = 0; npages > 0; i++) { 5295 int order = max_page_order; 5296 5297 while (order) { 5298 if (npages >= 1 << order) { 5299 page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) | 5300 __GFP_COMP | 5301 __GFP_NOWARN, 5302 order); 5303 if (page) 5304 goto fill_page; 5305 /* Do not retry other high order allocations */ 5306 order = 1; 5307 max_page_order = 0; 5308 } 5309 order--; 5310 } 5311 page = alloc_page(gfp_mask); 5312 if (!page) 5313 goto failure; 5314 fill_page: 5315 chunk = min_t(unsigned long, data_len, 5316 PAGE_SIZE << order); 5317 skb_fill_page_desc(skb, i, page, 0, chunk); 5318 data_len -= chunk; 5319 npages -= 1 << order; 5320 } 5321 return skb; 5322 5323 failure: 5324 kfree_skb(skb); 5325 return NULL; 5326 } 5327 EXPORT_SYMBOL(alloc_skb_with_frags); 5328 5329 /* carve out the first off bytes from skb when off < headlen */ 5330 static int pskb_carve_inside_header(struct sk_buff *skb, const u32 off, 5331 const int headlen, gfp_t gfp_mask) 5332 { 5333 int i; 5334 int size = skb_end_offset(skb); 5335 int new_hlen = headlen - off; 5336 u8 *data; 5337 5338 size = SKB_DATA_ALIGN(size); 5339 5340 if (skb_pfmemalloc(skb)) 5341 gfp_mask |= __GFP_MEMALLOC; 5342 data = kmalloc_reserve(size + 5343 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)), 5344 gfp_mask, NUMA_NO_NODE, NULL); 5345 if (!data) 5346 return -ENOMEM; 5347 5348 size = SKB_WITH_OVERHEAD(ksize(data)); 5349 5350 /* Copy real data, and all frags */ 5351 skb_copy_from_linear_data_offset(skb, off, data, new_hlen); 5352 skb->len -= off; 5353 5354 memcpy((struct skb_shared_info *)(data + size), 5355 skb_shinfo(skb), 5356 offsetof(struct skb_shared_info, 5357 frags[skb_shinfo(skb)->nr_frags])); 5358 if (skb_cloned(skb)) { 5359 /* drop the old head gracefully */ 5360 if (skb_orphan_frags(skb, gfp_mask)) { 5361 kfree(data); 5362 return -ENOMEM; 5363 } 5364 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 5365 skb_frag_ref(skb, i); 5366 if (skb_has_frag_list(skb)) 5367 skb_clone_fraglist(skb); 5368 skb_release_data(skb); 5369 } else { 5370 /* we can reuse existing recount- all we did was 5371 * relocate values 5372 */ 5373 skb_free_head(skb); 5374 } 5375 5376 skb->head = data; 5377 skb->data = data; 5378 skb->head_frag = 0; 5379 #ifdef NET_SKBUFF_DATA_USES_OFFSET 5380 skb->end = size; 5381 #else 5382 skb->end = skb->head + size; 5383 #endif 5384 skb_set_tail_pointer(skb, skb_headlen(skb)); 5385 skb_headers_offset_update(skb, 0); 5386 skb->cloned = 0; 5387 skb->hdr_len = 0; 5388 skb->nohdr = 0; 5389 atomic_set(&skb_shinfo(skb)->dataref, 1); 5390 5391 return 0; 5392 } 5393 5394 static int pskb_carve(struct sk_buff *skb, const u32 off, gfp_t gfp); 5395 5396 /* carve out the first eat bytes from skb's frag_list. May recurse into 5397 * pskb_carve() 5398 */ 5399 static int pskb_carve_frag_list(struct sk_buff *skb, 5400 struct skb_shared_info *shinfo, int eat, 5401 gfp_t gfp_mask) 5402 { 5403 struct sk_buff *list = shinfo->frag_list; 5404 struct sk_buff *clone = NULL; 5405 struct sk_buff *insp = NULL; 5406 5407 do { 5408 if (!list) { 5409 pr_err("Not enough bytes to eat. Want %d\n", eat); 5410 return -EFAULT; 5411 } 5412 if (list->len <= eat) { 5413 /* Eaten as whole. */ 5414 eat -= list->len; 5415 list = list->next; 5416 insp = list; 5417 } else { 5418 /* Eaten partially. */ 5419 if (skb_shared(list)) { 5420 clone = skb_clone(list, gfp_mask); 5421 if (!clone) 5422 return -ENOMEM; 5423 insp = list->next; 5424 list = clone; 5425 } else { 5426 /* This may be pulled without problems. */ 5427 insp = list; 5428 } 5429 if (pskb_carve(list, eat, gfp_mask) < 0) { 5430 kfree_skb(clone); 5431 return -ENOMEM; 5432 } 5433 break; 5434 } 5435 } while (eat); 5436 5437 /* Free pulled out fragments. */ 5438 while ((list = shinfo->frag_list) != insp) { 5439 shinfo->frag_list = list->next; 5440 kfree_skb(list); 5441 } 5442 /* And insert new clone at head. */ 5443 if (clone) { 5444 clone->next = list; 5445 shinfo->frag_list = clone; 5446 } 5447 return 0; 5448 } 5449 5450 /* carve off first len bytes from skb. Split line (off) is in the 5451 * non-linear part of skb 5452 */ 5453 static int pskb_carve_inside_nonlinear(struct sk_buff *skb, const u32 off, 5454 int pos, gfp_t gfp_mask) 5455 { 5456 int i, k = 0; 5457 int size = skb_end_offset(skb); 5458 u8 *data; 5459 const int nfrags = skb_shinfo(skb)->nr_frags; 5460 struct skb_shared_info *shinfo; 5461 5462 size = SKB_DATA_ALIGN(size); 5463 5464 if (skb_pfmemalloc(skb)) 5465 gfp_mask |= __GFP_MEMALLOC; 5466 data = kmalloc_reserve(size + 5467 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)), 5468 gfp_mask, NUMA_NO_NODE, NULL); 5469 if (!data) 5470 return -ENOMEM; 5471 5472 size = SKB_WITH_OVERHEAD(ksize(data)); 5473 5474 memcpy((struct skb_shared_info *)(data + size), 5475 skb_shinfo(skb), offsetof(struct skb_shared_info, 5476 frags[skb_shinfo(skb)->nr_frags])); 5477 if (skb_orphan_frags(skb, gfp_mask)) { 5478 kfree(data); 5479 return -ENOMEM; 5480 } 5481 shinfo = (struct skb_shared_info *)(data + size); 5482 for (i = 0; i < nfrags; i++) { 5483 int fsize = skb_frag_size(&skb_shinfo(skb)->frags[i]); 5484 5485 if (pos + fsize > off) { 5486 shinfo->frags[k] = skb_shinfo(skb)->frags[i]; 5487 5488 if (pos < off) { 5489 /* Split frag. 5490 * We have two variants in this case: 5491 * 1. Move all the frag to the second 5492 * part, if it is possible. F.e. 5493 * this approach is mandatory for TUX, 5494 * where splitting is expensive. 5495 * 2. Split is accurately. We make this. 5496 */ 5497 shinfo->frags[0].page_offset += off - pos; 5498 skb_frag_size_sub(&shinfo->frags[0], off - pos); 5499 } 5500 skb_frag_ref(skb, i); 5501 k++; 5502 } 5503 pos += fsize; 5504 } 5505 shinfo->nr_frags = k; 5506 if (skb_has_frag_list(skb)) 5507 skb_clone_fraglist(skb); 5508 5509 if (k == 0) { 5510 /* split line is in frag list */ 5511 pskb_carve_frag_list(skb, shinfo, off - pos, gfp_mask); 5512 } 5513 skb_release_data(skb); 5514 5515 skb->head = data; 5516 skb->head_frag = 0; 5517 skb->data = data; 5518 #ifdef NET_SKBUFF_DATA_USES_OFFSET 5519 skb->end = size; 5520 #else 5521 skb->end = skb->head + size; 5522 #endif 5523 skb_reset_tail_pointer(skb); 5524 skb_headers_offset_update(skb, 0); 5525 skb->cloned = 0; 5526 skb->hdr_len = 0; 5527 skb->nohdr = 0; 5528 skb->len -= off; 5529 skb->data_len = skb->len; 5530 atomic_set(&skb_shinfo(skb)->dataref, 1); 5531 return 0; 5532 } 5533 5534 /* remove len bytes from the beginning of the skb */ 5535 static int pskb_carve(struct sk_buff *skb, const u32 len, gfp_t gfp) 5536 { 5537 int headlen = skb_headlen(skb); 5538 5539 if (len < headlen) 5540 return pskb_carve_inside_header(skb, len, headlen, gfp); 5541 else 5542 return pskb_carve_inside_nonlinear(skb, len, headlen, gfp); 5543 } 5544 5545 /* Extract to_copy bytes starting at off from skb, and return this in 5546 * a new skb 5547 */ 5548 struct sk_buff *pskb_extract(struct sk_buff *skb, int off, 5549 int to_copy, gfp_t gfp) 5550 { 5551 struct sk_buff *clone = skb_clone(skb, gfp); 5552 5553 if (!clone) 5554 return NULL; 5555 5556 if (pskb_carve(clone, off, gfp) < 0 || 5557 pskb_trim(clone, to_copy)) { 5558 kfree_skb(clone); 5559 return NULL; 5560 } 5561 return clone; 5562 } 5563 EXPORT_SYMBOL(pskb_extract); 5564 5565 /** 5566 * skb_condense - try to get rid of fragments/frag_list if possible 5567 * @skb: buffer 5568 * 5569 * Can be used to save memory before skb is added to a busy queue. 5570 * If packet has bytes in frags and enough tail room in skb->head, 5571 * pull all of them, so that we can free the frags right now and adjust 5572 * truesize. 5573 * Notes: 5574 * We do not reallocate skb->head thus can not fail. 5575 * Caller must re-evaluate skb->truesize if needed. 5576 */ 5577 void skb_condense(struct sk_buff *skb) 5578 { 5579 if (skb->data_len) { 5580 if (skb->data_len > skb->end - skb->tail || 5581 skb_cloned(skb)) 5582 return; 5583 5584 /* Nice, we can free page frag(s) right now */ 5585 __pskb_pull_tail(skb, skb->data_len); 5586 } 5587 /* At this point, skb->truesize might be over estimated, 5588 * because skb had a fragment, and fragments do not tell 5589 * their truesize. 5590 * When we pulled its content into skb->head, fragment 5591 * was freed, but __pskb_pull_tail() could not possibly 5592 * adjust skb->truesize, not knowing the frag truesize. 5593 */ 5594 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb)); 5595 } 5596 5597 #ifdef CONFIG_SKB_EXTENSIONS 5598 static void *skb_ext_get_ptr(struct skb_ext *ext, enum skb_ext_id id) 5599 { 5600 return (void *)ext + (ext->offset[id] * SKB_EXT_ALIGN_VALUE); 5601 } 5602 5603 static struct skb_ext *skb_ext_alloc(void) 5604 { 5605 struct skb_ext *new = kmem_cache_alloc(skbuff_ext_cache, GFP_ATOMIC); 5606 5607 if (new) { 5608 memset(new->offset, 0, sizeof(new->offset)); 5609 refcount_set(&new->refcnt, 1); 5610 } 5611 5612 return new; 5613 } 5614 5615 static struct skb_ext *skb_ext_maybe_cow(struct skb_ext *old, 5616 unsigned int old_active) 5617 { 5618 struct skb_ext *new; 5619 5620 if (refcount_read(&old->refcnt) == 1) 5621 return old; 5622 5623 new = kmem_cache_alloc(skbuff_ext_cache, GFP_ATOMIC); 5624 if (!new) 5625 return NULL; 5626 5627 memcpy(new, old, old->chunks * SKB_EXT_ALIGN_VALUE); 5628 refcount_set(&new->refcnt, 1); 5629 5630 #ifdef CONFIG_XFRM 5631 if (old_active & (1 << SKB_EXT_SEC_PATH)) { 5632 struct sec_path *sp = skb_ext_get_ptr(old, SKB_EXT_SEC_PATH); 5633 unsigned int i; 5634 5635 for (i = 0; i < sp->len; i++) 5636 xfrm_state_hold(sp->xvec[i]); 5637 } 5638 #endif 5639 __skb_ext_put(old); 5640 return new; 5641 } 5642 5643 /** 5644 * skb_ext_add - allocate space for given extension, COW if needed 5645 * @skb: buffer 5646 * @id: extension to allocate space for 5647 * 5648 * Allocates enough space for the given extension. 5649 * If the extension is already present, a pointer to that extension 5650 * is returned. 5651 * 5652 * If the skb was cloned, COW applies and the returned memory can be 5653 * modified without changing the extension space of clones buffers. 5654 * 5655 * Returns pointer to the extension or NULL on allocation failure. 5656 */ 5657 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id) 5658 { 5659 struct skb_ext *new, *old = NULL; 5660 unsigned int newlen, newoff; 5661 5662 if (skb->active_extensions) { 5663 old = skb->extensions; 5664 5665 new = skb_ext_maybe_cow(old, skb->active_extensions); 5666 if (!new) 5667 return NULL; 5668 5669 if (__skb_ext_exist(new, id)) 5670 goto set_active; 5671 5672 newoff = new->chunks; 5673 } else { 5674 newoff = SKB_EXT_CHUNKSIZEOF(*new); 5675 5676 new = skb_ext_alloc(); 5677 if (!new) 5678 return NULL; 5679 } 5680 5681 newlen = newoff + skb_ext_type_len[id]; 5682 new->chunks = newlen; 5683 new->offset[id] = newoff; 5684 set_active: 5685 skb->extensions = new; 5686 skb->active_extensions |= 1 << id; 5687 return skb_ext_get_ptr(new, id); 5688 } 5689 EXPORT_SYMBOL(skb_ext_add); 5690 5691 #ifdef CONFIG_XFRM 5692 static void skb_ext_put_sp(struct sec_path *sp) 5693 { 5694 unsigned int i; 5695 5696 for (i = 0; i < sp->len; i++) 5697 xfrm_state_put(sp->xvec[i]); 5698 } 5699 #endif 5700 5701 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id) 5702 { 5703 struct skb_ext *ext = skb->extensions; 5704 5705 skb->active_extensions &= ~(1 << id); 5706 if (skb->active_extensions == 0) { 5707 skb->extensions = NULL; 5708 __skb_ext_put(ext); 5709 #ifdef CONFIG_XFRM 5710 } else if (id == SKB_EXT_SEC_PATH && 5711 refcount_read(&ext->refcnt) == 1) { 5712 struct sec_path *sp = skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH); 5713 5714 skb_ext_put_sp(sp); 5715 sp->len = 0; 5716 #endif 5717 } 5718 } 5719 EXPORT_SYMBOL(__skb_ext_del); 5720 5721 void __skb_ext_put(struct skb_ext *ext) 5722 { 5723 /* If this is last clone, nothing can increment 5724 * it after check passes. Avoids one atomic op. 5725 */ 5726 if (refcount_read(&ext->refcnt) == 1) 5727 goto free_now; 5728 5729 if (!refcount_dec_and_test(&ext->refcnt)) 5730 return; 5731 free_now: 5732 #ifdef CONFIG_XFRM 5733 if (__skb_ext_exist(ext, SKB_EXT_SEC_PATH)) 5734 skb_ext_put_sp(skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH)); 5735 #endif 5736 5737 kmem_cache_free(skbuff_ext_cache, ext); 5738 } 5739 EXPORT_SYMBOL(__skb_ext_put); 5740 #endif /* CONFIG_SKB_EXTENSIONS */ 5741