1 /* 2 * Routines having to do with the 'struct sk_buff' memory handlers. 3 * 4 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk> 5 * Florian La Roche <rzsfl@rz.uni-sb.de> 6 * 7 * Fixes: 8 * Alan Cox : Fixed the worst of the load 9 * balancer bugs. 10 * Dave Platt : Interrupt stacking fix. 11 * Richard Kooijman : Timestamp fixes. 12 * Alan Cox : Changed buffer format. 13 * Alan Cox : destructor hook for AF_UNIX etc. 14 * Linus Torvalds : Better skb_clone. 15 * Alan Cox : Added skb_copy. 16 * Alan Cox : Added all the changed routines Linus 17 * only put in the headers 18 * Ray VanTassle : Fixed --skb->lock in free 19 * Alan Cox : skb_copy copy arp field 20 * Andi Kleen : slabified it. 21 * Robert Olsson : Removed skb_head_pool 22 * 23 * NOTE: 24 * The __skb_ routines should be called with interrupts 25 * disabled, or you better be *real* sure that the operation is atomic 26 * with respect to whatever list is being frobbed (e.g. via lock_sock() 27 * or via disabling bottom half handlers, etc). 28 * 29 * This program is free software; you can redistribute it and/or 30 * modify it under the terms of the GNU General Public License 31 * as published by the Free Software Foundation; either version 32 * 2 of the License, or (at your option) any later version. 33 */ 34 35 /* 36 * The functions in this file will not compile correctly with gcc 2.4.x 37 */ 38 39 #include <linux/module.h> 40 #include <linux/types.h> 41 #include <linux/kernel.h> 42 #include <linux/kmemcheck.h> 43 #include <linux/mm.h> 44 #include <linux/interrupt.h> 45 #include <linux/in.h> 46 #include <linux/inet.h> 47 #include <linux/slab.h> 48 #include <linux/netdevice.h> 49 #ifdef CONFIG_NET_CLS_ACT 50 #include <net/pkt_sched.h> 51 #endif 52 #include <linux/string.h> 53 #include <linux/skbuff.h> 54 #include <linux/splice.h> 55 #include <linux/cache.h> 56 #include <linux/rtnetlink.h> 57 #include <linux/init.h> 58 #include <linux/scatterlist.h> 59 #include <linux/errqueue.h> 60 61 #include <net/protocol.h> 62 #include <net/dst.h> 63 #include <net/sock.h> 64 #include <net/checksum.h> 65 #include <net/xfrm.h> 66 67 #include <asm/uaccess.h> 68 #include <asm/system.h> 69 #include <trace/events/skb.h> 70 71 #include "kmap_skb.h" 72 73 static struct kmem_cache *skbuff_head_cache __read_mostly; 74 static struct kmem_cache *skbuff_fclone_cache __read_mostly; 75 76 static void sock_pipe_buf_release(struct pipe_inode_info *pipe, 77 struct pipe_buffer *buf) 78 { 79 put_page(buf->page); 80 } 81 82 static void sock_pipe_buf_get(struct pipe_inode_info *pipe, 83 struct pipe_buffer *buf) 84 { 85 get_page(buf->page); 86 } 87 88 static int sock_pipe_buf_steal(struct pipe_inode_info *pipe, 89 struct pipe_buffer *buf) 90 { 91 return 1; 92 } 93 94 95 /* Pipe buffer operations for a socket. */ 96 static const struct pipe_buf_operations sock_pipe_buf_ops = { 97 .can_merge = 0, 98 .map = generic_pipe_buf_map, 99 .unmap = generic_pipe_buf_unmap, 100 .confirm = generic_pipe_buf_confirm, 101 .release = sock_pipe_buf_release, 102 .steal = sock_pipe_buf_steal, 103 .get = sock_pipe_buf_get, 104 }; 105 106 /* 107 * Keep out-of-line to prevent kernel bloat. 108 * __builtin_return_address is not used because it is not always 109 * reliable. 110 */ 111 112 /** 113 * skb_over_panic - private function 114 * @skb: buffer 115 * @sz: size 116 * @here: address 117 * 118 * Out of line support code for skb_put(). Not user callable. 119 */ 120 void skb_over_panic(struct sk_buff *skb, int sz, void *here) 121 { 122 printk(KERN_EMERG "skb_over_panic: text:%p len:%d put:%d head:%p " 123 "data:%p tail:%#lx end:%#lx dev:%s\n", 124 here, skb->len, sz, skb->head, skb->data, 125 (unsigned long)skb->tail, (unsigned long)skb->end, 126 skb->dev ? skb->dev->name : "<NULL>"); 127 BUG(); 128 } 129 EXPORT_SYMBOL(skb_over_panic); 130 131 /** 132 * skb_under_panic - private function 133 * @skb: buffer 134 * @sz: size 135 * @here: address 136 * 137 * Out of line support code for skb_push(). Not user callable. 138 */ 139 140 void skb_under_panic(struct sk_buff *skb, int sz, void *here) 141 { 142 printk(KERN_EMERG "skb_under_panic: text:%p len:%d put:%d head:%p " 143 "data:%p tail:%#lx end:%#lx dev:%s\n", 144 here, skb->len, sz, skb->head, skb->data, 145 (unsigned long)skb->tail, (unsigned long)skb->end, 146 skb->dev ? skb->dev->name : "<NULL>"); 147 BUG(); 148 } 149 EXPORT_SYMBOL(skb_under_panic); 150 151 /* Allocate a new skbuff. We do this ourselves so we can fill in a few 152 * 'private' fields and also do memory statistics to find all the 153 * [BEEP] leaks. 154 * 155 */ 156 157 /** 158 * __alloc_skb - allocate a network buffer 159 * @size: size to allocate 160 * @gfp_mask: allocation mask 161 * @fclone: allocate from fclone cache instead of head cache 162 * and allocate a cloned (child) skb 163 * @node: numa node to allocate memory on 164 * 165 * Allocate a new &sk_buff. The returned buffer has no headroom and a 166 * tail room of size bytes. The object has a reference count of one. 167 * The return is the buffer. On a failure the return is %NULL. 168 * 169 * Buffers may only be allocated from interrupts using a @gfp_mask of 170 * %GFP_ATOMIC. 171 */ 172 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask, 173 int fclone, int node) 174 { 175 struct kmem_cache *cache; 176 struct skb_shared_info *shinfo; 177 struct sk_buff *skb; 178 u8 *data; 179 180 cache = fclone ? skbuff_fclone_cache : skbuff_head_cache; 181 182 /* Get the HEAD */ 183 skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node); 184 if (!skb) 185 goto out; 186 187 size = SKB_DATA_ALIGN(size); 188 data = kmalloc_node_track_caller(size + sizeof(struct skb_shared_info), 189 gfp_mask, node); 190 if (!data) 191 goto nodata; 192 193 /* 194 * Only clear those fields we need to clear, not those that we will 195 * actually initialise below. Hence, don't put any more fields after 196 * the tail pointer in struct sk_buff! 197 */ 198 memset(skb, 0, offsetof(struct sk_buff, tail)); 199 skb->truesize = size + sizeof(struct sk_buff); 200 atomic_set(&skb->users, 1); 201 skb->head = data; 202 skb->data = data; 203 skb_reset_tail_pointer(skb); 204 skb->end = skb->tail + size; 205 kmemcheck_annotate_bitfield(skb, flags1); 206 kmemcheck_annotate_bitfield(skb, flags2); 207 #ifdef NET_SKBUFF_DATA_USES_OFFSET 208 skb->mac_header = ~0U; 209 #endif 210 211 /* make sure we initialize shinfo sequentially */ 212 shinfo = skb_shinfo(skb); 213 atomic_set(&shinfo->dataref, 1); 214 shinfo->nr_frags = 0; 215 shinfo->gso_size = 0; 216 shinfo->gso_segs = 0; 217 shinfo->gso_type = 0; 218 shinfo->ip6_frag_id = 0; 219 shinfo->tx_flags.flags = 0; 220 skb_frag_list_init(skb); 221 memset(&shinfo->hwtstamps, 0, sizeof(shinfo->hwtstamps)); 222 223 if (fclone) { 224 struct sk_buff *child = skb + 1; 225 atomic_t *fclone_ref = (atomic_t *) (child + 1); 226 227 kmemcheck_annotate_bitfield(child, flags1); 228 kmemcheck_annotate_bitfield(child, flags2); 229 skb->fclone = SKB_FCLONE_ORIG; 230 atomic_set(fclone_ref, 1); 231 232 child->fclone = SKB_FCLONE_UNAVAILABLE; 233 } 234 out: 235 return skb; 236 nodata: 237 kmem_cache_free(cache, skb); 238 skb = NULL; 239 goto out; 240 } 241 EXPORT_SYMBOL(__alloc_skb); 242 243 /** 244 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device 245 * @dev: network device to receive on 246 * @length: length to allocate 247 * @gfp_mask: get_free_pages mask, passed to alloc_skb 248 * 249 * Allocate a new &sk_buff and assign it a usage count of one. The 250 * buffer has unspecified headroom built in. Users should allocate 251 * the headroom they think they need without accounting for the 252 * built in space. The built in space is used for optimisations. 253 * 254 * %NULL is returned if there is no free memory. 255 */ 256 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, 257 unsigned int length, gfp_t gfp_mask) 258 { 259 int node = dev->dev.parent ? dev_to_node(dev->dev.parent) : -1; 260 struct sk_buff *skb; 261 262 skb = __alloc_skb(length + NET_SKB_PAD, gfp_mask, 0, node); 263 if (likely(skb)) { 264 skb_reserve(skb, NET_SKB_PAD); 265 skb->dev = dev; 266 } 267 return skb; 268 } 269 EXPORT_SYMBOL(__netdev_alloc_skb); 270 271 struct page *__netdev_alloc_page(struct net_device *dev, gfp_t gfp_mask) 272 { 273 int node = dev->dev.parent ? dev_to_node(dev->dev.parent) : -1; 274 struct page *page; 275 276 page = alloc_pages_node(node, gfp_mask, 0); 277 return page; 278 } 279 EXPORT_SYMBOL(__netdev_alloc_page); 280 281 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off, 282 int size) 283 { 284 skb_fill_page_desc(skb, i, page, off, size); 285 skb->len += size; 286 skb->data_len += size; 287 skb->truesize += size; 288 } 289 EXPORT_SYMBOL(skb_add_rx_frag); 290 291 /** 292 * dev_alloc_skb - allocate an skbuff for receiving 293 * @length: length to allocate 294 * 295 * Allocate a new &sk_buff and assign it a usage count of one. The 296 * buffer has unspecified headroom built in. Users should allocate 297 * the headroom they think they need without accounting for the 298 * built in space. The built in space is used for optimisations. 299 * 300 * %NULL is returned if there is no free memory. Although this function 301 * allocates memory it can be called from an interrupt. 302 */ 303 struct sk_buff *dev_alloc_skb(unsigned int length) 304 { 305 /* 306 * There is more code here than it seems: 307 * __dev_alloc_skb is an inline 308 */ 309 return __dev_alloc_skb(length, GFP_ATOMIC); 310 } 311 EXPORT_SYMBOL(dev_alloc_skb); 312 313 static void skb_drop_list(struct sk_buff **listp) 314 { 315 struct sk_buff *list = *listp; 316 317 *listp = NULL; 318 319 do { 320 struct sk_buff *this = list; 321 list = list->next; 322 kfree_skb(this); 323 } while (list); 324 } 325 326 static inline void skb_drop_fraglist(struct sk_buff *skb) 327 { 328 skb_drop_list(&skb_shinfo(skb)->frag_list); 329 } 330 331 static void skb_clone_fraglist(struct sk_buff *skb) 332 { 333 struct sk_buff *list; 334 335 skb_walk_frags(skb, list) 336 skb_get(list); 337 } 338 339 static void skb_release_data(struct sk_buff *skb) 340 { 341 if (!skb->cloned || 342 !atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1, 343 &skb_shinfo(skb)->dataref)) { 344 if (skb_shinfo(skb)->nr_frags) { 345 int i; 346 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 347 put_page(skb_shinfo(skb)->frags[i].page); 348 } 349 350 if (skb_has_frags(skb)) 351 skb_drop_fraglist(skb); 352 353 kfree(skb->head); 354 } 355 } 356 357 /* 358 * Free an skbuff by memory without cleaning the state. 359 */ 360 static void kfree_skbmem(struct sk_buff *skb) 361 { 362 struct sk_buff *other; 363 atomic_t *fclone_ref; 364 365 switch (skb->fclone) { 366 case SKB_FCLONE_UNAVAILABLE: 367 kmem_cache_free(skbuff_head_cache, skb); 368 break; 369 370 case SKB_FCLONE_ORIG: 371 fclone_ref = (atomic_t *) (skb + 2); 372 if (atomic_dec_and_test(fclone_ref)) 373 kmem_cache_free(skbuff_fclone_cache, skb); 374 break; 375 376 case SKB_FCLONE_CLONE: 377 fclone_ref = (atomic_t *) (skb + 1); 378 other = skb - 1; 379 380 /* The clone portion is available for 381 * fast-cloning again. 382 */ 383 skb->fclone = SKB_FCLONE_UNAVAILABLE; 384 385 if (atomic_dec_and_test(fclone_ref)) 386 kmem_cache_free(skbuff_fclone_cache, other); 387 break; 388 } 389 } 390 391 static void skb_release_head_state(struct sk_buff *skb) 392 { 393 skb_dst_drop(skb); 394 #ifdef CONFIG_XFRM 395 secpath_put(skb->sp); 396 #endif 397 if (skb->destructor) { 398 WARN_ON(in_irq()); 399 skb->destructor(skb); 400 } 401 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 402 nf_conntrack_put(skb->nfct); 403 nf_conntrack_put_reasm(skb->nfct_reasm); 404 #endif 405 #ifdef CONFIG_BRIDGE_NETFILTER 406 nf_bridge_put(skb->nf_bridge); 407 #endif 408 /* XXX: IS this still necessary? - JHS */ 409 #ifdef CONFIG_NET_SCHED 410 skb->tc_index = 0; 411 #ifdef CONFIG_NET_CLS_ACT 412 skb->tc_verd = 0; 413 #endif 414 #endif 415 } 416 417 /* Free everything but the sk_buff shell. */ 418 static void skb_release_all(struct sk_buff *skb) 419 { 420 skb_release_head_state(skb); 421 skb_release_data(skb); 422 } 423 424 /** 425 * __kfree_skb - private function 426 * @skb: buffer 427 * 428 * Free an sk_buff. Release anything attached to the buffer. 429 * Clean the state. This is an internal helper function. Users should 430 * always call kfree_skb 431 */ 432 433 void __kfree_skb(struct sk_buff *skb) 434 { 435 skb_release_all(skb); 436 kfree_skbmem(skb); 437 } 438 EXPORT_SYMBOL(__kfree_skb); 439 440 /** 441 * kfree_skb - free an sk_buff 442 * @skb: buffer to free 443 * 444 * Drop a reference to the buffer and free it if the usage count has 445 * hit zero. 446 */ 447 void kfree_skb(struct sk_buff *skb) 448 { 449 if (unlikely(!skb)) 450 return; 451 if (likely(atomic_read(&skb->users) == 1)) 452 smp_rmb(); 453 else if (likely(!atomic_dec_and_test(&skb->users))) 454 return; 455 trace_kfree_skb(skb, __builtin_return_address(0)); 456 __kfree_skb(skb); 457 } 458 EXPORT_SYMBOL(kfree_skb); 459 460 /** 461 * consume_skb - free an skbuff 462 * @skb: buffer to free 463 * 464 * Drop a ref to the buffer and free it if the usage count has hit zero 465 * Functions identically to kfree_skb, but kfree_skb assumes that the frame 466 * is being dropped after a failure and notes that 467 */ 468 void consume_skb(struct sk_buff *skb) 469 { 470 if (unlikely(!skb)) 471 return; 472 if (likely(atomic_read(&skb->users) == 1)) 473 smp_rmb(); 474 else if (likely(!atomic_dec_and_test(&skb->users))) 475 return; 476 __kfree_skb(skb); 477 } 478 EXPORT_SYMBOL(consume_skb); 479 480 /** 481 * skb_recycle_check - check if skb can be reused for receive 482 * @skb: buffer 483 * @skb_size: minimum receive buffer size 484 * 485 * Checks that the skb passed in is not shared or cloned, and 486 * that it is linear and its head portion at least as large as 487 * skb_size so that it can be recycled as a receive buffer. 488 * If these conditions are met, this function does any necessary 489 * reference count dropping and cleans up the skbuff as if it 490 * just came from __alloc_skb(). 491 */ 492 int skb_recycle_check(struct sk_buff *skb, int skb_size) 493 { 494 struct skb_shared_info *shinfo; 495 496 if (irqs_disabled()) 497 return 0; 498 499 if (skb_is_nonlinear(skb) || skb->fclone != SKB_FCLONE_UNAVAILABLE) 500 return 0; 501 502 skb_size = SKB_DATA_ALIGN(skb_size + NET_SKB_PAD); 503 if (skb_end_pointer(skb) - skb->head < skb_size) 504 return 0; 505 506 if (skb_shared(skb) || skb_cloned(skb)) 507 return 0; 508 509 skb_release_head_state(skb); 510 shinfo = skb_shinfo(skb); 511 atomic_set(&shinfo->dataref, 1); 512 shinfo->nr_frags = 0; 513 shinfo->gso_size = 0; 514 shinfo->gso_segs = 0; 515 shinfo->gso_type = 0; 516 shinfo->ip6_frag_id = 0; 517 shinfo->tx_flags.flags = 0; 518 skb_frag_list_init(skb); 519 memset(&shinfo->hwtstamps, 0, sizeof(shinfo->hwtstamps)); 520 521 memset(skb, 0, offsetof(struct sk_buff, tail)); 522 skb->data = skb->head + NET_SKB_PAD; 523 skb_reset_tail_pointer(skb); 524 525 return 1; 526 } 527 EXPORT_SYMBOL(skb_recycle_check); 528 529 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old) 530 { 531 new->tstamp = old->tstamp; 532 new->dev = old->dev; 533 new->transport_header = old->transport_header; 534 new->network_header = old->network_header; 535 new->mac_header = old->mac_header; 536 skb_dst_set(new, dst_clone(skb_dst(old))); 537 #ifdef CONFIG_XFRM 538 new->sp = secpath_get(old->sp); 539 #endif 540 memcpy(new->cb, old->cb, sizeof(old->cb)); 541 new->csum = old->csum; 542 new->local_df = old->local_df; 543 new->pkt_type = old->pkt_type; 544 new->ip_summed = old->ip_summed; 545 skb_copy_queue_mapping(new, old); 546 new->priority = old->priority; 547 #if defined(CONFIG_IP_VS) || defined(CONFIG_IP_VS_MODULE) 548 new->ipvs_property = old->ipvs_property; 549 #endif 550 new->protocol = old->protocol; 551 new->mark = old->mark; 552 new->skb_iif = old->skb_iif; 553 __nf_copy(new, old); 554 #if defined(CONFIG_NETFILTER_XT_TARGET_TRACE) || \ 555 defined(CONFIG_NETFILTER_XT_TARGET_TRACE_MODULE) 556 new->nf_trace = old->nf_trace; 557 #endif 558 #ifdef CONFIG_NET_SCHED 559 new->tc_index = old->tc_index; 560 #ifdef CONFIG_NET_CLS_ACT 561 new->tc_verd = old->tc_verd; 562 #endif 563 #endif 564 new->vlan_tci = old->vlan_tci; 565 566 skb_copy_secmark(new, old); 567 } 568 569 /* 570 * You should not add any new code to this function. Add it to 571 * __copy_skb_header above instead. 572 */ 573 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb) 574 { 575 #define C(x) n->x = skb->x 576 577 n->next = n->prev = NULL; 578 n->sk = NULL; 579 __copy_skb_header(n, skb); 580 581 C(len); 582 C(data_len); 583 C(mac_len); 584 n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len; 585 n->cloned = 1; 586 n->nohdr = 0; 587 n->destructor = NULL; 588 C(tail); 589 C(end); 590 C(head); 591 C(data); 592 C(truesize); 593 atomic_set(&n->users, 1); 594 595 atomic_inc(&(skb_shinfo(skb)->dataref)); 596 skb->cloned = 1; 597 598 return n; 599 #undef C 600 } 601 602 /** 603 * skb_morph - morph one skb into another 604 * @dst: the skb to receive the contents 605 * @src: the skb to supply the contents 606 * 607 * This is identical to skb_clone except that the target skb is 608 * supplied by the user. 609 * 610 * The target skb is returned upon exit. 611 */ 612 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src) 613 { 614 skb_release_all(dst); 615 return __skb_clone(dst, src); 616 } 617 EXPORT_SYMBOL_GPL(skb_morph); 618 619 /** 620 * skb_clone - duplicate an sk_buff 621 * @skb: buffer to clone 622 * @gfp_mask: allocation priority 623 * 624 * Duplicate an &sk_buff. The new one is not owned by a socket. Both 625 * copies share the same packet data but not structure. The new 626 * buffer has a reference count of 1. If the allocation fails the 627 * function returns %NULL otherwise the new buffer is returned. 628 * 629 * If this function is called from an interrupt gfp_mask() must be 630 * %GFP_ATOMIC. 631 */ 632 633 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask) 634 { 635 struct sk_buff *n; 636 637 n = skb + 1; 638 if (skb->fclone == SKB_FCLONE_ORIG && 639 n->fclone == SKB_FCLONE_UNAVAILABLE) { 640 atomic_t *fclone_ref = (atomic_t *) (n + 1); 641 n->fclone = SKB_FCLONE_CLONE; 642 atomic_inc(fclone_ref); 643 } else { 644 n = kmem_cache_alloc(skbuff_head_cache, gfp_mask); 645 if (!n) 646 return NULL; 647 648 kmemcheck_annotate_bitfield(n, flags1); 649 kmemcheck_annotate_bitfield(n, flags2); 650 n->fclone = SKB_FCLONE_UNAVAILABLE; 651 } 652 653 return __skb_clone(n, skb); 654 } 655 EXPORT_SYMBOL(skb_clone); 656 657 static void copy_skb_header(struct sk_buff *new, const struct sk_buff *old) 658 { 659 #ifndef NET_SKBUFF_DATA_USES_OFFSET 660 /* 661 * Shift between the two data areas in bytes 662 */ 663 unsigned long offset = new->data - old->data; 664 #endif 665 666 __copy_skb_header(new, old); 667 668 #ifndef NET_SKBUFF_DATA_USES_OFFSET 669 /* {transport,network,mac}_header are relative to skb->head */ 670 new->transport_header += offset; 671 new->network_header += offset; 672 if (skb_mac_header_was_set(new)) 673 new->mac_header += offset; 674 #endif 675 skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size; 676 skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs; 677 skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type; 678 } 679 680 /** 681 * skb_copy - create private copy of an sk_buff 682 * @skb: buffer to copy 683 * @gfp_mask: allocation priority 684 * 685 * Make a copy of both an &sk_buff and its data. This is used when the 686 * caller wishes to modify the data and needs a private copy of the 687 * data to alter. Returns %NULL on failure or the pointer to the buffer 688 * on success. The returned buffer has a reference count of 1. 689 * 690 * As by-product this function converts non-linear &sk_buff to linear 691 * one, so that &sk_buff becomes completely private and caller is allowed 692 * to modify all the data of returned buffer. This means that this 693 * function is not recommended for use in circumstances when only 694 * header is going to be modified. Use pskb_copy() instead. 695 */ 696 697 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask) 698 { 699 int headerlen = skb->data - skb->head; 700 /* 701 * Allocate the copy buffer 702 */ 703 struct sk_buff *n; 704 #ifdef NET_SKBUFF_DATA_USES_OFFSET 705 n = alloc_skb(skb->end + skb->data_len, gfp_mask); 706 #else 707 n = alloc_skb(skb->end - skb->head + skb->data_len, gfp_mask); 708 #endif 709 if (!n) 710 return NULL; 711 712 /* Set the data pointer */ 713 skb_reserve(n, headerlen); 714 /* Set the tail pointer and length */ 715 skb_put(n, skb->len); 716 717 if (skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len)) 718 BUG(); 719 720 copy_skb_header(n, skb); 721 return n; 722 } 723 EXPORT_SYMBOL(skb_copy); 724 725 /** 726 * pskb_copy - create copy of an sk_buff with private head. 727 * @skb: buffer to copy 728 * @gfp_mask: allocation priority 729 * 730 * Make a copy of both an &sk_buff and part of its data, located 731 * in header. Fragmented data remain shared. This is used when 732 * the caller wishes to modify only header of &sk_buff and needs 733 * private copy of the header to alter. Returns %NULL on failure 734 * or the pointer to the buffer on success. 735 * The returned buffer has a reference count of 1. 736 */ 737 738 struct sk_buff *pskb_copy(struct sk_buff *skb, gfp_t gfp_mask) 739 { 740 /* 741 * Allocate the copy buffer 742 */ 743 struct sk_buff *n; 744 #ifdef NET_SKBUFF_DATA_USES_OFFSET 745 n = alloc_skb(skb->end, gfp_mask); 746 #else 747 n = alloc_skb(skb->end - skb->head, gfp_mask); 748 #endif 749 if (!n) 750 goto out; 751 752 /* Set the data pointer */ 753 skb_reserve(n, skb->data - skb->head); 754 /* Set the tail pointer and length */ 755 skb_put(n, skb_headlen(skb)); 756 /* Copy the bytes */ 757 skb_copy_from_linear_data(skb, n->data, n->len); 758 759 n->truesize += skb->data_len; 760 n->data_len = skb->data_len; 761 n->len = skb->len; 762 763 if (skb_shinfo(skb)->nr_frags) { 764 int i; 765 766 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 767 skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i]; 768 get_page(skb_shinfo(n)->frags[i].page); 769 } 770 skb_shinfo(n)->nr_frags = i; 771 } 772 773 if (skb_has_frags(skb)) { 774 skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list; 775 skb_clone_fraglist(n); 776 } 777 778 copy_skb_header(n, skb); 779 out: 780 return n; 781 } 782 EXPORT_SYMBOL(pskb_copy); 783 784 /** 785 * pskb_expand_head - reallocate header of &sk_buff 786 * @skb: buffer to reallocate 787 * @nhead: room to add at head 788 * @ntail: room to add at tail 789 * @gfp_mask: allocation priority 790 * 791 * Expands (or creates identical copy, if &nhead and &ntail are zero) 792 * header of skb. &sk_buff itself is not changed. &sk_buff MUST have 793 * reference count of 1. Returns zero in the case of success or error, 794 * if expansion failed. In the last case, &sk_buff is not changed. 795 * 796 * All the pointers pointing into skb header may change and must be 797 * reloaded after call to this function. 798 */ 799 800 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, 801 gfp_t gfp_mask) 802 { 803 int i; 804 u8 *data; 805 #ifdef NET_SKBUFF_DATA_USES_OFFSET 806 int size = nhead + skb->end + ntail; 807 #else 808 int size = nhead + (skb->end - skb->head) + ntail; 809 #endif 810 long off; 811 812 BUG_ON(nhead < 0); 813 814 if (skb_shared(skb)) 815 BUG(); 816 817 size = SKB_DATA_ALIGN(size); 818 819 data = kmalloc(size + sizeof(struct skb_shared_info), gfp_mask); 820 if (!data) 821 goto nodata; 822 823 /* Copy only real data... and, alas, header. This should be 824 * optimized for the cases when header is void. */ 825 #ifdef NET_SKBUFF_DATA_USES_OFFSET 826 memcpy(data + nhead, skb->head, skb->tail); 827 #else 828 memcpy(data + nhead, skb->head, skb->tail - skb->head); 829 #endif 830 memcpy(data + size, skb_end_pointer(skb), 831 sizeof(struct skb_shared_info)); 832 833 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 834 get_page(skb_shinfo(skb)->frags[i].page); 835 836 if (skb_has_frags(skb)) 837 skb_clone_fraglist(skb); 838 839 skb_release_data(skb); 840 841 off = (data + nhead) - skb->head; 842 843 skb->head = data; 844 skb->data += off; 845 #ifdef NET_SKBUFF_DATA_USES_OFFSET 846 skb->end = size; 847 off = nhead; 848 #else 849 skb->end = skb->head + size; 850 #endif 851 /* {transport,network,mac}_header and tail are relative to skb->head */ 852 skb->tail += off; 853 skb->transport_header += off; 854 skb->network_header += off; 855 if (skb_mac_header_was_set(skb)) 856 skb->mac_header += off; 857 skb->csum_start += nhead; 858 skb->cloned = 0; 859 skb->hdr_len = 0; 860 skb->nohdr = 0; 861 atomic_set(&skb_shinfo(skb)->dataref, 1); 862 return 0; 863 864 nodata: 865 return -ENOMEM; 866 } 867 EXPORT_SYMBOL(pskb_expand_head); 868 869 /* Make private copy of skb with writable head and some headroom */ 870 871 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom) 872 { 873 struct sk_buff *skb2; 874 int delta = headroom - skb_headroom(skb); 875 876 if (delta <= 0) 877 skb2 = pskb_copy(skb, GFP_ATOMIC); 878 else { 879 skb2 = skb_clone(skb, GFP_ATOMIC); 880 if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0, 881 GFP_ATOMIC)) { 882 kfree_skb(skb2); 883 skb2 = NULL; 884 } 885 } 886 return skb2; 887 } 888 EXPORT_SYMBOL(skb_realloc_headroom); 889 890 /** 891 * skb_copy_expand - copy and expand sk_buff 892 * @skb: buffer to copy 893 * @newheadroom: new free bytes at head 894 * @newtailroom: new free bytes at tail 895 * @gfp_mask: allocation priority 896 * 897 * Make a copy of both an &sk_buff and its data and while doing so 898 * allocate additional space. 899 * 900 * This is used when the caller wishes to modify the data and needs a 901 * private copy of the data to alter as well as more space for new fields. 902 * Returns %NULL on failure or the pointer to the buffer 903 * on success. The returned buffer has a reference count of 1. 904 * 905 * You must pass %GFP_ATOMIC as the allocation priority if this function 906 * is called from an interrupt. 907 */ 908 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, 909 int newheadroom, int newtailroom, 910 gfp_t gfp_mask) 911 { 912 /* 913 * Allocate the copy buffer 914 */ 915 struct sk_buff *n = alloc_skb(newheadroom + skb->len + newtailroom, 916 gfp_mask); 917 int oldheadroom = skb_headroom(skb); 918 int head_copy_len, head_copy_off; 919 int off; 920 921 if (!n) 922 return NULL; 923 924 skb_reserve(n, newheadroom); 925 926 /* Set the tail pointer and length */ 927 skb_put(n, skb->len); 928 929 head_copy_len = oldheadroom; 930 head_copy_off = 0; 931 if (newheadroom <= head_copy_len) 932 head_copy_len = newheadroom; 933 else 934 head_copy_off = newheadroom - head_copy_len; 935 936 /* Copy the linear header and data. */ 937 if (skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off, 938 skb->len + head_copy_len)) 939 BUG(); 940 941 copy_skb_header(n, skb); 942 943 off = newheadroom - oldheadroom; 944 n->csum_start += off; 945 #ifdef NET_SKBUFF_DATA_USES_OFFSET 946 n->transport_header += off; 947 n->network_header += off; 948 if (skb_mac_header_was_set(skb)) 949 n->mac_header += off; 950 #endif 951 952 return n; 953 } 954 EXPORT_SYMBOL(skb_copy_expand); 955 956 /** 957 * skb_pad - zero pad the tail of an skb 958 * @skb: buffer to pad 959 * @pad: space to pad 960 * 961 * Ensure that a buffer is followed by a padding area that is zero 962 * filled. Used by network drivers which may DMA or transfer data 963 * beyond the buffer end onto the wire. 964 * 965 * May return error in out of memory cases. The skb is freed on error. 966 */ 967 968 int skb_pad(struct sk_buff *skb, int pad) 969 { 970 int err; 971 int ntail; 972 973 /* If the skbuff is non linear tailroom is always zero.. */ 974 if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) { 975 memset(skb->data+skb->len, 0, pad); 976 return 0; 977 } 978 979 ntail = skb->data_len + pad - (skb->end - skb->tail); 980 if (likely(skb_cloned(skb) || ntail > 0)) { 981 err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC); 982 if (unlikely(err)) 983 goto free_skb; 984 } 985 986 /* FIXME: The use of this function with non-linear skb's really needs 987 * to be audited. 988 */ 989 err = skb_linearize(skb); 990 if (unlikely(err)) 991 goto free_skb; 992 993 memset(skb->data + skb->len, 0, pad); 994 return 0; 995 996 free_skb: 997 kfree_skb(skb); 998 return err; 999 } 1000 EXPORT_SYMBOL(skb_pad); 1001 1002 /** 1003 * skb_put - add data to a buffer 1004 * @skb: buffer to use 1005 * @len: amount of data to add 1006 * 1007 * This function extends the used data area of the buffer. If this would 1008 * exceed the total buffer size the kernel will panic. A pointer to the 1009 * first byte of the extra data is returned. 1010 */ 1011 unsigned char *skb_put(struct sk_buff *skb, unsigned int len) 1012 { 1013 unsigned char *tmp = skb_tail_pointer(skb); 1014 SKB_LINEAR_ASSERT(skb); 1015 skb->tail += len; 1016 skb->len += len; 1017 if (unlikely(skb->tail > skb->end)) 1018 skb_over_panic(skb, len, __builtin_return_address(0)); 1019 return tmp; 1020 } 1021 EXPORT_SYMBOL(skb_put); 1022 1023 /** 1024 * skb_push - add data to the start of a buffer 1025 * @skb: buffer to use 1026 * @len: amount of data to add 1027 * 1028 * This function extends the used data area of the buffer at the buffer 1029 * start. If this would exceed the total buffer headroom the kernel will 1030 * panic. A pointer to the first byte of the extra data is returned. 1031 */ 1032 unsigned char *skb_push(struct sk_buff *skb, unsigned int len) 1033 { 1034 skb->data -= len; 1035 skb->len += len; 1036 if (unlikely(skb->data<skb->head)) 1037 skb_under_panic(skb, len, __builtin_return_address(0)); 1038 return skb->data; 1039 } 1040 EXPORT_SYMBOL(skb_push); 1041 1042 /** 1043 * skb_pull - remove data from the start of a buffer 1044 * @skb: buffer to use 1045 * @len: amount of data to remove 1046 * 1047 * This function removes data from the start of a buffer, returning 1048 * the memory to the headroom. A pointer to the next data in the buffer 1049 * is returned. Once the data has been pulled future pushes will overwrite 1050 * the old data. 1051 */ 1052 unsigned char *skb_pull(struct sk_buff *skb, unsigned int len) 1053 { 1054 return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len); 1055 } 1056 EXPORT_SYMBOL(skb_pull); 1057 1058 /** 1059 * skb_trim - remove end from a buffer 1060 * @skb: buffer to alter 1061 * @len: new length 1062 * 1063 * Cut the length of a buffer down by removing data from the tail. If 1064 * the buffer is already under the length specified it is not modified. 1065 * The skb must be linear. 1066 */ 1067 void skb_trim(struct sk_buff *skb, unsigned int len) 1068 { 1069 if (skb->len > len) 1070 __skb_trim(skb, len); 1071 } 1072 EXPORT_SYMBOL(skb_trim); 1073 1074 /* Trims skb to length len. It can change skb pointers. 1075 */ 1076 1077 int ___pskb_trim(struct sk_buff *skb, unsigned int len) 1078 { 1079 struct sk_buff **fragp; 1080 struct sk_buff *frag; 1081 int offset = skb_headlen(skb); 1082 int nfrags = skb_shinfo(skb)->nr_frags; 1083 int i; 1084 int err; 1085 1086 if (skb_cloned(skb) && 1087 unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))) 1088 return err; 1089 1090 i = 0; 1091 if (offset >= len) 1092 goto drop_pages; 1093 1094 for (; i < nfrags; i++) { 1095 int end = offset + skb_shinfo(skb)->frags[i].size; 1096 1097 if (end < len) { 1098 offset = end; 1099 continue; 1100 } 1101 1102 skb_shinfo(skb)->frags[i++].size = len - offset; 1103 1104 drop_pages: 1105 skb_shinfo(skb)->nr_frags = i; 1106 1107 for (; i < nfrags; i++) 1108 put_page(skb_shinfo(skb)->frags[i].page); 1109 1110 if (skb_has_frags(skb)) 1111 skb_drop_fraglist(skb); 1112 goto done; 1113 } 1114 1115 for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp); 1116 fragp = &frag->next) { 1117 int end = offset + frag->len; 1118 1119 if (skb_shared(frag)) { 1120 struct sk_buff *nfrag; 1121 1122 nfrag = skb_clone(frag, GFP_ATOMIC); 1123 if (unlikely(!nfrag)) 1124 return -ENOMEM; 1125 1126 nfrag->next = frag->next; 1127 kfree_skb(frag); 1128 frag = nfrag; 1129 *fragp = frag; 1130 } 1131 1132 if (end < len) { 1133 offset = end; 1134 continue; 1135 } 1136 1137 if (end > len && 1138 unlikely((err = pskb_trim(frag, len - offset)))) 1139 return err; 1140 1141 if (frag->next) 1142 skb_drop_list(&frag->next); 1143 break; 1144 } 1145 1146 done: 1147 if (len > skb_headlen(skb)) { 1148 skb->data_len -= skb->len - len; 1149 skb->len = len; 1150 } else { 1151 skb->len = len; 1152 skb->data_len = 0; 1153 skb_set_tail_pointer(skb, len); 1154 } 1155 1156 return 0; 1157 } 1158 EXPORT_SYMBOL(___pskb_trim); 1159 1160 /** 1161 * __pskb_pull_tail - advance tail of skb header 1162 * @skb: buffer to reallocate 1163 * @delta: number of bytes to advance tail 1164 * 1165 * The function makes a sense only on a fragmented &sk_buff, 1166 * it expands header moving its tail forward and copying necessary 1167 * data from fragmented part. 1168 * 1169 * &sk_buff MUST have reference count of 1. 1170 * 1171 * Returns %NULL (and &sk_buff does not change) if pull failed 1172 * or value of new tail of skb in the case of success. 1173 * 1174 * All the pointers pointing into skb header may change and must be 1175 * reloaded after call to this function. 1176 */ 1177 1178 /* Moves tail of skb head forward, copying data from fragmented part, 1179 * when it is necessary. 1180 * 1. It may fail due to malloc failure. 1181 * 2. It may change skb pointers. 1182 * 1183 * It is pretty complicated. Luckily, it is called only in exceptional cases. 1184 */ 1185 unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta) 1186 { 1187 /* If skb has not enough free space at tail, get new one 1188 * plus 128 bytes for future expansions. If we have enough 1189 * room at tail, reallocate without expansion only if skb is cloned. 1190 */ 1191 int i, k, eat = (skb->tail + delta) - skb->end; 1192 1193 if (eat > 0 || skb_cloned(skb)) { 1194 if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0, 1195 GFP_ATOMIC)) 1196 return NULL; 1197 } 1198 1199 if (skb_copy_bits(skb, skb_headlen(skb), skb_tail_pointer(skb), delta)) 1200 BUG(); 1201 1202 /* Optimization: no fragments, no reasons to preestimate 1203 * size of pulled pages. Superb. 1204 */ 1205 if (!skb_has_frags(skb)) 1206 goto pull_pages; 1207 1208 /* Estimate size of pulled pages. */ 1209 eat = delta; 1210 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1211 if (skb_shinfo(skb)->frags[i].size >= eat) 1212 goto pull_pages; 1213 eat -= skb_shinfo(skb)->frags[i].size; 1214 } 1215 1216 /* If we need update frag list, we are in troubles. 1217 * Certainly, it possible to add an offset to skb data, 1218 * but taking into account that pulling is expected to 1219 * be very rare operation, it is worth to fight against 1220 * further bloating skb head and crucify ourselves here instead. 1221 * Pure masohism, indeed. 8)8) 1222 */ 1223 if (eat) { 1224 struct sk_buff *list = skb_shinfo(skb)->frag_list; 1225 struct sk_buff *clone = NULL; 1226 struct sk_buff *insp = NULL; 1227 1228 do { 1229 BUG_ON(!list); 1230 1231 if (list->len <= eat) { 1232 /* Eaten as whole. */ 1233 eat -= list->len; 1234 list = list->next; 1235 insp = list; 1236 } else { 1237 /* Eaten partially. */ 1238 1239 if (skb_shared(list)) { 1240 /* Sucks! We need to fork list. :-( */ 1241 clone = skb_clone(list, GFP_ATOMIC); 1242 if (!clone) 1243 return NULL; 1244 insp = list->next; 1245 list = clone; 1246 } else { 1247 /* This may be pulled without 1248 * problems. */ 1249 insp = list; 1250 } 1251 if (!pskb_pull(list, eat)) { 1252 kfree_skb(clone); 1253 return NULL; 1254 } 1255 break; 1256 } 1257 } while (eat); 1258 1259 /* Free pulled out fragments. */ 1260 while ((list = skb_shinfo(skb)->frag_list) != insp) { 1261 skb_shinfo(skb)->frag_list = list->next; 1262 kfree_skb(list); 1263 } 1264 /* And insert new clone at head. */ 1265 if (clone) { 1266 clone->next = list; 1267 skb_shinfo(skb)->frag_list = clone; 1268 } 1269 } 1270 /* Success! Now we may commit changes to skb data. */ 1271 1272 pull_pages: 1273 eat = delta; 1274 k = 0; 1275 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1276 if (skb_shinfo(skb)->frags[i].size <= eat) { 1277 put_page(skb_shinfo(skb)->frags[i].page); 1278 eat -= skb_shinfo(skb)->frags[i].size; 1279 } else { 1280 skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i]; 1281 if (eat) { 1282 skb_shinfo(skb)->frags[k].page_offset += eat; 1283 skb_shinfo(skb)->frags[k].size -= eat; 1284 eat = 0; 1285 } 1286 k++; 1287 } 1288 } 1289 skb_shinfo(skb)->nr_frags = k; 1290 1291 skb->tail += delta; 1292 skb->data_len -= delta; 1293 1294 return skb_tail_pointer(skb); 1295 } 1296 EXPORT_SYMBOL(__pskb_pull_tail); 1297 1298 /* Copy some data bits from skb to kernel buffer. */ 1299 1300 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len) 1301 { 1302 int start = skb_headlen(skb); 1303 struct sk_buff *frag_iter; 1304 int i, copy; 1305 1306 if (offset > (int)skb->len - len) 1307 goto fault; 1308 1309 /* Copy header. */ 1310 if ((copy = start - offset) > 0) { 1311 if (copy > len) 1312 copy = len; 1313 skb_copy_from_linear_data_offset(skb, offset, to, copy); 1314 if ((len -= copy) == 0) 1315 return 0; 1316 offset += copy; 1317 to += copy; 1318 } 1319 1320 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1321 int end; 1322 1323 WARN_ON(start > offset + len); 1324 1325 end = start + skb_shinfo(skb)->frags[i].size; 1326 if ((copy = end - offset) > 0) { 1327 u8 *vaddr; 1328 1329 if (copy > len) 1330 copy = len; 1331 1332 vaddr = kmap_skb_frag(&skb_shinfo(skb)->frags[i]); 1333 memcpy(to, 1334 vaddr + skb_shinfo(skb)->frags[i].page_offset+ 1335 offset - start, copy); 1336 kunmap_skb_frag(vaddr); 1337 1338 if ((len -= copy) == 0) 1339 return 0; 1340 offset += copy; 1341 to += copy; 1342 } 1343 start = end; 1344 } 1345 1346 skb_walk_frags(skb, frag_iter) { 1347 int end; 1348 1349 WARN_ON(start > offset + len); 1350 1351 end = start + frag_iter->len; 1352 if ((copy = end - offset) > 0) { 1353 if (copy > len) 1354 copy = len; 1355 if (skb_copy_bits(frag_iter, offset - start, to, copy)) 1356 goto fault; 1357 if ((len -= copy) == 0) 1358 return 0; 1359 offset += copy; 1360 to += copy; 1361 } 1362 start = end; 1363 } 1364 if (!len) 1365 return 0; 1366 1367 fault: 1368 return -EFAULT; 1369 } 1370 EXPORT_SYMBOL(skb_copy_bits); 1371 1372 /* 1373 * Callback from splice_to_pipe(), if we need to release some pages 1374 * at the end of the spd in case we error'ed out in filling the pipe. 1375 */ 1376 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i) 1377 { 1378 put_page(spd->pages[i]); 1379 } 1380 1381 static inline struct page *linear_to_page(struct page *page, unsigned int *len, 1382 unsigned int *offset, 1383 struct sk_buff *skb, struct sock *sk) 1384 { 1385 struct page *p = sk->sk_sndmsg_page; 1386 unsigned int off; 1387 1388 if (!p) { 1389 new_page: 1390 p = sk->sk_sndmsg_page = alloc_pages(sk->sk_allocation, 0); 1391 if (!p) 1392 return NULL; 1393 1394 off = sk->sk_sndmsg_off = 0; 1395 /* hold one ref to this page until it's full */ 1396 } else { 1397 unsigned int mlen; 1398 1399 off = sk->sk_sndmsg_off; 1400 mlen = PAGE_SIZE - off; 1401 if (mlen < 64 && mlen < *len) { 1402 put_page(p); 1403 goto new_page; 1404 } 1405 1406 *len = min_t(unsigned int, *len, mlen); 1407 } 1408 1409 memcpy(page_address(p) + off, page_address(page) + *offset, *len); 1410 sk->sk_sndmsg_off += *len; 1411 *offset = off; 1412 get_page(p); 1413 1414 return p; 1415 } 1416 1417 /* 1418 * Fill page/offset/length into spd, if it can hold more pages. 1419 */ 1420 static inline int spd_fill_page(struct splice_pipe_desc *spd, struct page *page, 1421 unsigned int *len, unsigned int offset, 1422 struct sk_buff *skb, int linear, 1423 struct sock *sk) 1424 { 1425 if (unlikely(spd->nr_pages == PIPE_BUFFERS)) 1426 return 1; 1427 1428 if (linear) { 1429 page = linear_to_page(page, len, &offset, skb, sk); 1430 if (!page) 1431 return 1; 1432 } else 1433 get_page(page); 1434 1435 spd->pages[spd->nr_pages] = page; 1436 spd->partial[spd->nr_pages].len = *len; 1437 spd->partial[spd->nr_pages].offset = offset; 1438 spd->nr_pages++; 1439 1440 return 0; 1441 } 1442 1443 static inline void __segment_seek(struct page **page, unsigned int *poff, 1444 unsigned int *plen, unsigned int off) 1445 { 1446 unsigned long n; 1447 1448 *poff += off; 1449 n = *poff / PAGE_SIZE; 1450 if (n) 1451 *page = nth_page(*page, n); 1452 1453 *poff = *poff % PAGE_SIZE; 1454 *plen -= off; 1455 } 1456 1457 static inline int __splice_segment(struct page *page, unsigned int poff, 1458 unsigned int plen, unsigned int *off, 1459 unsigned int *len, struct sk_buff *skb, 1460 struct splice_pipe_desc *spd, int linear, 1461 struct sock *sk) 1462 { 1463 if (!*len) 1464 return 1; 1465 1466 /* skip this segment if already processed */ 1467 if (*off >= plen) { 1468 *off -= plen; 1469 return 0; 1470 } 1471 1472 /* ignore any bits we already processed */ 1473 if (*off) { 1474 __segment_seek(&page, &poff, &plen, *off); 1475 *off = 0; 1476 } 1477 1478 do { 1479 unsigned int flen = min(*len, plen); 1480 1481 /* the linear region may spread across several pages */ 1482 flen = min_t(unsigned int, flen, PAGE_SIZE - poff); 1483 1484 if (spd_fill_page(spd, page, &flen, poff, skb, linear, sk)) 1485 return 1; 1486 1487 __segment_seek(&page, &poff, &plen, flen); 1488 *len -= flen; 1489 1490 } while (*len && plen); 1491 1492 return 0; 1493 } 1494 1495 /* 1496 * Map linear and fragment data from the skb to spd. It reports failure if the 1497 * pipe is full or if we already spliced the requested length. 1498 */ 1499 static int __skb_splice_bits(struct sk_buff *skb, unsigned int *offset, 1500 unsigned int *len, struct splice_pipe_desc *spd, 1501 struct sock *sk) 1502 { 1503 int seg; 1504 1505 /* 1506 * map the linear part 1507 */ 1508 if (__splice_segment(virt_to_page(skb->data), 1509 (unsigned long) skb->data & (PAGE_SIZE - 1), 1510 skb_headlen(skb), 1511 offset, len, skb, spd, 1, sk)) 1512 return 1; 1513 1514 /* 1515 * then map the fragments 1516 */ 1517 for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) { 1518 const skb_frag_t *f = &skb_shinfo(skb)->frags[seg]; 1519 1520 if (__splice_segment(f->page, f->page_offset, f->size, 1521 offset, len, skb, spd, 0, sk)) 1522 return 1; 1523 } 1524 1525 return 0; 1526 } 1527 1528 /* 1529 * Map data from the skb to a pipe. Should handle both the linear part, 1530 * the fragments, and the frag list. It does NOT handle frag lists within 1531 * the frag list, if such a thing exists. We'd probably need to recurse to 1532 * handle that cleanly. 1533 */ 1534 int skb_splice_bits(struct sk_buff *skb, unsigned int offset, 1535 struct pipe_inode_info *pipe, unsigned int tlen, 1536 unsigned int flags) 1537 { 1538 struct partial_page partial[PIPE_BUFFERS]; 1539 struct page *pages[PIPE_BUFFERS]; 1540 struct splice_pipe_desc spd = { 1541 .pages = pages, 1542 .partial = partial, 1543 .flags = flags, 1544 .ops = &sock_pipe_buf_ops, 1545 .spd_release = sock_spd_release, 1546 }; 1547 struct sk_buff *frag_iter; 1548 struct sock *sk = skb->sk; 1549 1550 /* 1551 * __skb_splice_bits() only fails if the output has no room left, 1552 * so no point in going over the frag_list for the error case. 1553 */ 1554 if (__skb_splice_bits(skb, &offset, &tlen, &spd, sk)) 1555 goto done; 1556 else if (!tlen) 1557 goto done; 1558 1559 /* 1560 * now see if we have a frag_list to map 1561 */ 1562 skb_walk_frags(skb, frag_iter) { 1563 if (!tlen) 1564 break; 1565 if (__skb_splice_bits(frag_iter, &offset, &tlen, &spd, sk)) 1566 break; 1567 } 1568 1569 done: 1570 if (spd.nr_pages) { 1571 int ret; 1572 1573 /* 1574 * Drop the socket lock, otherwise we have reverse 1575 * locking dependencies between sk_lock and i_mutex 1576 * here as compared to sendfile(). We enter here 1577 * with the socket lock held, and splice_to_pipe() will 1578 * grab the pipe inode lock. For sendfile() emulation, 1579 * we call into ->sendpage() with the i_mutex lock held 1580 * and networking will grab the socket lock. 1581 */ 1582 release_sock(sk); 1583 ret = splice_to_pipe(pipe, &spd); 1584 lock_sock(sk); 1585 return ret; 1586 } 1587 1588 return 0; 1589 } 1590 1591 /** 1592 * skb_store_bits - store bits from kernel buffer to skb 1593 * @skb: destination buffer 1594 * @offset: offset in destination 1595 * @from: source buffer 1596 * @len: number of bytes to copy 1597 * 1598 * Copy the specified number of bytes from the source buffer to the 1599 * destination skb. This function handles all the messy bits of 1600 * traversing fragment lists and such. 1601 */ 1602 1603 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len) 1604 { 1605 int start = skb_headlen(skb); 1606 struct sk_buff *frag_iter; 1607 int i, copy; 1608 1609 if (offset > (int)skb->len - len) 1610 goto fault; 1611 1612 if ((copy = start - offset) > 0) { 1613 if (copy > len) 1614 copy = len; 1615 skb_copy_to_linear_data_offset(skb, offset, from, copy); 1616 if ((len -= copy) == 0) 1617 return 0; 1618 offset += copy; 1619 from += copy; 1620 } 1621 1622 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1623 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 1624 int end; 1625 1626 WARN_ON(start > offset + len); 1627 1628 end = start + frag->size; 1629 if ((copy = end - offset) > 0) { 1630 u8 *vaddr; 1631 1632 if (copy > len) 1633 copy = len; 1634 1635 vaddr = kmap_skb_frag(frag); 1636 memcpy(vaddr + frag->page_offset + offset - start, 1637 from, copy); 1638 kunmap_skb_frag(vaddr); 1639 1640 if ((len -= copy) == 0) 1641 return 0; 1642 offset += copy; 1643 from += copy; 1644 } 1645 start = end; 1646 } 1647 1648 skb_walk_frags(skb, frag_iter) { 1649 int end; 1650 1651 WARN_ON(start > offset + len); 1652 1653 end = start + frag_iter->len; 1654 if ((copy = end - offset) > 0) { 1655 if (copy > len) 1656 copy = len; 1657 if (skb_store_bits(frag_iter, offset - start, 1658 from, copy)) 1659 goto fault; 1660 if ((len -= copy) == 0) 1661 return 0; 1662 offset += copy; 1663 from += copy; 1664 } 1665 start = end; 1666 } 1667 if (!len) 1668 return 0; 1669 1670 fault: 1671 return -EFAULT; 1672 } 1673 EXPORT_SYMBOL(skb_store_bits); 1674 1675 /* Checksum skb data. */ 1676 1677 __wsum skb_checksum(const struct sk_buff *skb, int offset, 1678 int len, __wsum csum) 1679 { 1680 int start = skb_headlen(skb); 1681 int i, copy = start - offset; 1682 struct sk_buff *frag_iter; 1683 int pos = 0; 1684 1685 /* Checksum header. */ 1686 if (copy > 0) { 1687 if (copy > len) 1688 copy = len; 1689 csum = csum_partial(skb->data + offset, copy, csum); 1690 if ((len -= copy) == 0) 1691 return csum; 1692 offset += copy; 1693 pos = copy; 1694 } 1695 1696 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1697 int end; 1698 1699 WARN_ON(start > offset + len); 1700 1701 end = start + skb_shinfo(skb)->frags[i].size; 1702 if ((copy = end - offset) > 0) { 1703 __wsum csum2; 1704 u8 *vaddr; 1705 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 1706 1707 if (copy > len) 1708 copy = len; 1709 vaddr = kmap_skb_frag(frag); 1710 csum2 = csum_partial(vaddr + frag->page_offset + 1711 offset - start, copy, 0); 1712 kunmap_skb_frag(vaddr); 1713 csum = csum_block_add(csum, csum2, pos); 1714 if (!(len -= copy)) 1715 return csum; 1716 offset += copy; 1717 pos += copy; 1718 } 1719 start = end; 1720 } 1721 1722 skb_walk_frags(skb, frag_iter) { 1723 int end; 1724 1725 WARN_ON(start > offset + len); 1726 1727 end = start + frag_iter->len; 1728 if ((copy = end - offset) > 0) { 1729 __wsum csum2; 1730 if (copy > len) 1731 copy = len; 1732 csum2 = skb_checksum(frag_iter, offset - start, 1733 copy, 0); 1734 csum = csum_block_add(csum, csum2, pos); 1735 if ((len -= copy) == 0) 1736 return csum; 1737 offset += copy; 1738 pos += copy; 1739 } 1740 start = end; 1741 } 1742 BUG_ON(len); 1743 1744 return csum; 1745 } 1746 EXPORT_SYMBOL(skb_checksum); 1747 1748 /* Both of above in one bottle. */ 1749 1750 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, 1751 u8 *to, int len, __wsum csum) 1752 { 1753 int start = skb_headlen(skb); 1754 int i, copy = start - offset; 1755 struct sk_buff *frag_iter; 1756 int pos = 0; 1757 1758 /* Copy header. */ 1759 if (copy > 0) { 1760 if (copy > len) 1761 copy = len; 1762 csum = csum_partial_copy_nocheck(skb->data + offset, to, 1763 copy, csum); 1764 if ((len -= copy) == 0) 1765 return csum; 1766 offset += copy; 1767 to += copy; 1768 pos = copy; 1769 } 1770 1771 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1772 int end; 1773 1774 WARN_ON(start > offset + len); 1775 1776 end = start + skb_shinfo(skb)->frags[i].size; 1777 if ((copy = end - offset) > 0) { 1778 __wsum csum2; 1779 u8 *vaddr; 1780 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 1781 1782 if (copy > len) 1783 copy = len; 1784 vaddr = kmap_skb_frag(frag); 1785 csum2 = csum_partial_copy_nocheck(vaddr + 1786 frag->page_offset + 1787 offset - start, to, 1788 copy, 0); 1789 kunmap_skb_frag(vaddr); 1790 csum = csum_block_add(csum, csum2, pos); 1791 if (!(len -= copy)) 1792 return csum; 1793 offset += copy; 1794 to += copy; 1795 pos += copy; 1796 } 1797 start = end; 1798 } 1799 1800 skb_walk_frags(skb, frag_iter) { 1801 __wsum csum2; 1802 int end; 1803 1804 WARN_ON(start > offset + len); 1805 1806 end = start + frag_iter->len; 1807 if ((copy = end - offset) > 0) { 1808 if (copy > len) 1809 copy = len; 1810 csum2 = skb_copy_and_csum_bits(frag_iter, 1811 offset - start, 1812 to, copy, 0); 1813 csum = csum_block_add(csum, csum2, pos); 1814 if ((len -= copy) == 0) 1815 return csum; 1816 offset += copy; 1817 to += copy; 1818 pos += copy; 1819 } 1820 start = end; 1821 } 1822 BUG_ON(len); 1823 return csum; 1824 } 1825 EXPORT_SYMBOL(skb_copy_and_csum_bits); 1826 1827 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to) 1828 { 1829 __wsum csum; 1830 long csstart; 1831 1832 if (skb->ip_summed == CHECKSUM_PARTIAL) 1833 csstart = skb->csum_start - skb_headroom(skb); 1834 else 1835 csstart = skb_headlen(skb); 1836 1837 BUG_ON(csstart > skb_headlen(skb)); 1838 1839 skb_copy_from_linear_data(skb, to, csstart); 1840 1841 csum = 0; 1842 if (csstart != skb->len) 1843 csum = skb_copy_and_csum_bits(skb, csstart, to + csstart, 1844 skb->len - csstart, 0); 1845 1846 if (skb->ip_summed == CHECKSUM_PARTIAL) { 1847 long csstuff = csstart + skb->csum_offset; 1848 1849 *((__sum16 *)(to + csstuff)) = csum_fold(csum); 1850 } 1851 } 1852 EXPORT_SYMBOL(skb_copy_and_csum_dev); 1853 1854 /** 1855 * skb_dequeue - remove from the head of the queue 1856 * @list: list to dequeue from 1857 * 1858 * Remove the head of the list. The list lock is taken so the function 1859 * may be used safely with other locking list functions. The head item is 1860 * returned or %NULL if the list is empty. 1861 */ 1862 1863 struct sk_buff *skb_dequeue(struct sk_buff_head *list) 1864 { 1865 unsigned long flags; 1866 struct sk_buff *result; 1867 1868 spin_lock_irqsave(&list->lock, flags); 1869 result = __skb_dequeue(list); 1870 spin_unlock_irqrestore(&list->lock, flags); 1871 return result; 1872 } 1873 EXPORT_SYMBOL(skb_dequeue); 1874 1875 /** 1876 * skb_dequeue_tail - remove from the tail of the queue 1877 * @list: list to dequeue from 1878 * 1879 * Remove the tail of the list. The list lock is taken so the function 1880 * may be used safely with other locking list functions. The tail item is 1881 * returned or %NULL if the list is empty. 1882 */ 1883 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list) 1884 { 1885 unsigned long flags; 1886 struct sk_buff *result; 1887 1888 spin_lock_irqsave(&list->lock, flags); 1889 result = __skb_dequeue_tail(list); 1890 spin_unlock_irqrestore(&list->lock, flags); 1891 return result; 1892 } 1893 EXPORT_SYMBOL(skb_dequeue_tail); 1894 1895 /** 1896 * skb_queue_purge - empty a list 1897 * @list: list to empty 1898 * 1899 * Delete all buffers on an &sk_buff list. Each buffer is removed from 1900 * the list and one reference dropped. This function takes the list 1901 * lock and is atomic with respect to other list locking functions. 1902 */ 1903 void skb_queue_purge(struct sk_buff_head *list) 1904 { 1905 struct sk_buff *skb; 1906 while ((skb = skb_dequeue(list)) != NULL) 1907 kfree_skb(skb); 1908 } 1909 EXPORT_SYMBOL(skb_queue_purge); 1910 1911 /** 1912 * skb_queue_head - queue a buffer at the list head 1913 * @list: list to use 1914 * @newsk: buffer to queue 1915 * 1916 * Queue a buffer at the start of the list. This function takes the 1917 * list lock and can be used safely with other locking &sk_buff functions 1918 * safely. 1919 * 1920 * A buffer cannot be placed on two lists at the same time. 1921 */ 1922 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk) 1923 { 1924 unsigned long flags; 1925 1926 spin_lock_irqsave(&list->lock, flags); 1927 __skb_queue_head(list, newsk); 1928 spin_unlock_irqrestore(&list->lock, flags); 1929 } 1930 EXPORT_SYMBOL(skb_queue_head); 1931 1932 /** 1933 * skb_queue_tail - queue a buffer at the list tail 1934 * @list: list to use 1935 * @newsk: buffer to queue 1936 * 1937 * Queue a buffer at the tail of the list. This function takes the 1938 * list lock and can be used safely with other locking &sk_buff functions 1939 * safely. 1940 * 1941 * A buffer cannot be placed on two lists at the same time. 1942 */ 1943 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk) 1944 { 1945 unsigned long flags; 1946 1947 spin_lock_irqsave(&list->lock, flags); 1948 __skb_queue_tail(list, newsk); 1949 spin_unlock_irqrestore(&list->lock, flags); 1950 } 1951 EXPORT_SYMBOL(skb_queue_tail); 1952 1953 /** 1954 * skb_unlink - remove a buffer from a list 1955 * @skb: buffer to remove 1956 * @list: list to use 1957 * 1958 * Remove a packet from a list. The list locks are taken and this 1959 * function is atomic with respect to other list locked calls 1960 * 1961 * You must know what list the SKB is on. 1962 */ 1963 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list) 1964 { 1965 unsigned long flags; 1966 1967 spin_lock_irqsave(&list->lock, flags); 1968 __skb_unlink(skb, list); 1969 spin_unlock_irqrestore(&list->lock, flags); 1970 } 1971 EXPORT_SYMBOL(skb_unlink); 1972 1973 /** 1974 * skb_append - append a buffer 1975 * @old: buffer to insert after 1976 * @newsk: buffer to insert 1977 * @list: list to use 1978 * 1979 * Place a packet after a given packet in a list. The list locks are taken 1980 * and this function is atomic with respect to other list locked calls. 1981 * A buffer cannot be placed on two lists at the same time. 1982 */ 1983 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list) 1984 { 1985 unsigned long flags; 1986 1987 spin_lock_irqsave(&list->lock, flags); 1988 __skb_queue_after(list, old, newsk); 1989 spin_unlock_irqrestore(&list->lock, flags); 1990 } 1991 EXPORT_SYMBOL(skb_append); 1992 1993 /** 1994 * skb_insert - insert a buffer 1995 * @old: buffer to insert before 1996 * @newsk: buffer to insert 1997 * @list: list to use 1998 * 1999 * Place a packet before a given packet in a list. The list locks are 2000 * taken and this function is atomic with respect to other list locked 2001 * calls. 2002 * 2003 * A buffer cannot be placed on two lists at the same time. 2004 */ 2005 void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list) 2006 { 2007 unsigned long flags; 2008 2009 spin_lock_irqsave(&list->lock, flags); 2010 __skb_insert(newsk, old->prev, old, list); 2011 spin_unlock_irqrestore(&list->lock, flags); 2012 } 2013 EXPORT_SYMBOL(skb_insert); 2014 2015 static inline void skb_split_inside_header(struct sk_buff *skb, 2016 struct sk_buff* skb1, 2017 const u32 len, const int pos) 2018 { 2019 int i; 2020 2021 skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len), 2022 pos - len); 2023 /* And move data appendix as is. */ 2024 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 2025 skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i]; 2026 2027 skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags; 2028 skb_shinfo(skb)->nr_frags = 0; 2029 skb1->data_len = skb->data_len; 2030 skb1->len += skb1->data_len; 2031 skb->data_len = 0; 2032 skb->len = len; 2033 skb_set_tail_pointer(skb, len); 2034 } 2035 2036 static inline void skb_split_no_header(struct sk_buff *skb, 2037 struct sk_buff* skb1, 2038 const u32 len, int pos) 2039 { 2040 int i, k = 0; 2041 const int nfrags = skb_shinfo(skb)->nr_frags; 2042 2043 skb_shinfo(skb)->nr_frags = 0; 2044 skb1->len = skb1->data_len = skb->len - len; 2045 skb->len = len; 2046 skb->data_len = len - pos; 2047 2048 for (i = 0; i < nfrags; i++) { 2049 int size = skb_shinfo(skb)->frags[i].size; 2050 2051 if (pos + size > len) { 2052 skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i]; 2053 2054 if (pos < len) { 2055 /* Split frag. 2056 * We have two variants in this case: 2057 * 1. Move all the frag to the second 2058 * part, if it is possible. F.e. 2059 * this approach is mandatory for TUX, 2060 * where splitting is expensive. 2061 * 2. Split is accurately. We make this. 2062 */ 2063 get_page(skb_shinfo(skb)->frags[i].page); 2064 skb_shinfo(skb1)->frags[0].page_offset += len - pos; 2065 skb_shinfo(skb1)->frags[0].size -= len - pos; 2066 skb_shinfo(skb)->frags[i].size = len - pos; 2067 skb_shinfo(skb)->nr_frags++; 2068 } 2069 k++; 2070 } else 2071 skb_shinfo(skb)->nr_frags++; 2072 pos += size; 2073 } 2074 skb_shinfo(skb1)->nr_frags = k; 2075 } 2076 2077 /** 2078 * skb_split - Split fragmented skb to two parts at length len. 2079 * @skb: the buffer to split 2080 * @skb1: the buffer to receive the second part 2081 * @len: new length for skb 2082 */ 2083 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len) 2084 { 2085 int pos = skb_headlen(skb); 2086 2087 if (len < pos) /* Split line is inside header. */ 2088 skb_split_inside_header(skb, skb1, len, pos); 2089 else /* Second chunk has no header, nothing to copy. */ 2090 skb_split_no_header(skb, skb1, len, pos); 2091 } 2092 EXPORT_SYMBOL(skb_split); 2093 2094 /* Shifting from/to a cloned skb is a no-go. 2095 * 2096 * Caller cannot keep skb_shinfo related pointers past calling here! 2097 */ 2098 static int skb_prepare_for_shift(struct sk_buff *skb) 2099 { 2100 return skb_cloned(skb) && pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 2101 } 2102 2103 /** 2104 * skb_shift - Shifts paged data partially from skb to another 2105 * @tgt: buffer into which tail data gets added 2106 * @skb: buffer from which the paged data comes from 2107 * @shiftlen: shift up to this many bytes 2108 * 2109 * Attempts to shift up to shiftlen worth of bytes, which may be less than 2110 * the length of the skb, from tgt to skb. Returns number bytes shifted. 2111 * It's up to caller to free skb if everything was shifted. 2112 * 2113 * If @tgt runs out of frags, the whole operation is aborted. 2114 * 2115 * Skb cannot include anything else but paged data while tgt is allowed 2116 * to have non-paged data as well. 2117 * 2118 * TODO: full sized shift could be optimized but that would need 2119 * specialized skb free'er to handle frags without up-to-date nr_frags. 2120 */ 2121 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen) 2122 { 2123 int from, to, merge, todo; 2124 struct skb_frag_struct *fragfrom, *fragto; 2125 2126 BUG_ON(shiftlen > skb->len); 2127 BUG_ON(skb_headlen(skb)); /* Would corrupt stream */ 2128 2129 todo = shiftlen; 2130 from = 0; 2131 to = skb_shinfo(tgt)->nr_frags; 2132 fragfrom = &skb_shinfo(skb)->frags[from]; 2133 2134 /* Actual merge is delayed until the point when we know we can 2135 * commit all, so that we don't have to undo partial changes 2136 */ 2137 if (!to || 2138 !skb_can_coalesce(tgt, to, fragfrom->page, fragfrom->page_offset)) { 2139 merge = -1; 2140 } else { 2141 merge = to - 1; 2142 2143 todo -= fragfrom->size; 2144 if (todo < 0) { 2145 if (skb_prepare_for_shift(skb) || 2146 skb_prepare_for_shift(tgt)) 2147 return 0; 2148 2149 /* All previous frag pointers might be stale! */ 2150 fragfrom = &skb_shinfo(skb)->frags[from]; 2151 fragto = &skb_shinfo(tgt)->frags[merge]; 2152 2153 fragto->size += shiftlen; 2154 fragfrom->size -= shiftlen; 2155 fragfrom->page_offset += shiftlen; 2156 2157 goto onlymerged; 2158 } 2159 2160 from++; 2161 } 2162 2163 /* Skip full, not-fitting skb to avoid expensive operations */ 2164 if ((shiftlen == skb->len) && 2165 (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to)) 2166 return 0; 2167 2168 if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt)) 2169 return 0; 2170 2171 while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) { 2172 if (to == MAX_SKB_FRAGS) 2173 return 0; 2174 2175 fragfrom = &skb_shinfo(skb)->frags[from]; 2176 fragto = &skb_shinfo(tgt)->frags[to]; 2177 2178 if (todo >= fragfrom->size) { 2179 *fragto = *fragfrom; 2180 todo -= fragfrom->size; 2181 from++; 2182 to++; 2183 2184 } else { 2185 get_page(fragfrom->page); 2186 fragto->page = fragfrom->page; 2187 fragto->page_offset = fragfrom->page_offset; 2188 fragto->size = todo; 2189 2190 fragfrom->page_offset += todo; 2191 fragfrom->size -= todo; 2192 todo = 0; 2193 2194 to++; 2195 break; 2196 } 2197 } 2198 2199 /* Ready to "commit" this state change to tgt */ 2200 skb_shinfo(tgt)->nr_frags = to; 2201 2202 if (merge >= 0) { 2203 fragfrom = &skb_shinfo(skb)->frags[0]; 2204 fragto = &skb_shinfo(tgt)->frags[merge]; 2205 2206 fragto->size += fragfrom->size; 2207 put_page(fragfrom->page); 2208 } 2209 2210 /* Reposition in the original skb */ 2211 to = 0; 2212 while (from < skb_shinfo(skb)->nr_frags) 2213 skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++]; 2214 skb_shinfo(skb)->nr_frags = to; 2215 2216 BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags); 2217 2218 onlymerged: 2219 /* Most likely the tgt won't ever need its checksum anymore, skb on 2220 * the other hand might need it if it needs to be resent 2221 */ 2222 tgt->ip_summed = CHECKSUM_PARTIAL; 2223 skb->ip_summed = CHECKSUM_PARTIAL; 2224 2225 /* Yak, is it really working this way? Some helper please? */ 2226 skb->len -= shiftlen; 2227 skb->data_len -= shiftlen; 2228 skb->truesize -= shiftlen; 2229 tgt->len += shiftlen; 2230 tgt->data_len += shiftlen; 2231 tgt->truesize += shiftlen; 2232 2233 return shiftlen; 2234 } 2235 2236 /** 2237 * skb_prepare_seq_read - Prepare a sequential read of skb data 2238 * @skb: the buffer to read 2239 * @from: lower offset of data to be read 2240 * @to: upper offset of data to be read 2241 * @st: state variable 2242 * 2243 * Initializes the specified state variable. Must be called before 2244 * invoking skb_seq_read() for the first time. 2245 */ 2246 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from, 2247 unsigned int to, struct skb_seq_state *st) 2248 { 2249 st->lower_offset = from; 2250 st->upper_offset = to; 2251 st->root_skb = st->cur_skb = skb; 2252 st->frag_idx = st->stepped_offset = 0; 2253 st->frag_data = NULL; 2254 } 2255 EXPORT_SYMBOL(skb_prepare_seq_read); 2256 2257 /** 2258 * skb_seq_read - Sequentially read skb data 2259 * @consumed: number of bytes consumed by the caller so far 2260 * @data: destination pointer for data to be returned 2261 * @st: state variable 2262 * 2263 * Reads a block of skb data at &consumed relative to the 2264 * lower offset specified to skb_prepare_seq_read(). Assigns 2265 * the head of the data block to &data and returns the length 2266 * of the block or 0 if the end of the skb data or the upper 2267 * offset has been reached. 2268 * 2269 * The caller is not required to consume all of the data 2270 * returned, i.e. &consumed is typically set to the number 2271 * of bytes already consumed and the next call to 2272 * skb_seq_read() will return the remaining part of the block. 2273 * 2274 * Note 1: The size of each block of data returned can be arbitary, 2275 * this limitation is the cost for zerocopy seqeuental 2276 * reads of potentially non linear data. 2277 * 2278 * Note 2: Fragment lists within fragments are not implemented 2279 * at the moment, state->root_skb could be replaced with 2280 * a stack for this purpose. 2281 */ 2282 unsigned int skb_seq_read(unsigned int consumed, const u8 **data, 2283 struct skb_seq_state *st) 2284 { 2285 unsigned int block_limit, abs_offset = consumed + st->lower_offset; 2286 skb_frag_t *frag; 2287 2288 if (unlikely(abs_offset >= st->upper_offset)) 2289 return 0; 2290 2291 next_skb: 2292 block_limit = skb_headlen(st->cur_skb) + st->stepped_offset; 2293 2294 if (abs_offset < block_limit && !st->frag_data) { 2295 *data = st->cur_skb->data + (abs_offset - st->stepped_offset); 2296 return block_limit - abs_offset; 2297 } 2298 2299 if (st->frag_idx == 0 && !st->frag_data) 2300 st->stepped_offset += skb_headlen(st->cur_skb); 2301 2302 while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) { 2303 frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx]; 2304 block_limit = frag->size + st->stepped_offset; 2305 2306 if (abs_offset < block_limit) { 2307 if (!st->frag_data) 2308 st->frag_data = kmap_skb_frag(frag); 2309 2310 *data = (u8 *) st->frag_data + frag->page_offset + 2311 (abs_offset - st->stepped_offset); 2312 2313 return block_limit - abs_offset; 2314 } 2315 2316 if (st->frag_data) { 2317 kunmap_skb_frag(st->frag_data); 2318 st->frag_data = NULL; 2319 } 2320 2321 st->frag_idx++; 2322 st->stepped_offset += frag->size; 2323 } 2324 2325 if (st->frag_data) { 2326 kunmap_skb_frag(st->frag_data); 2327 st->frag_data = NULL; 2328 } 2329 2330 if (st->root_skb == st->cur_skb && skb_has_frags(st->root_skb)) { 2331 st->cur_skb = skb_shinfo(st->root_skb)->frag_list; 2332 st->frag_idx = 0; 2333 goto next_skb; 2334 } else if (st->cur_skb->next) { 2335 st->cur_skb = st->cur_skb->next; 2336 st->frag_idx = 0; 2337 goto next_skb; 2338 } 2339 2340 return 0; 2341 } 2342 EXPORT_SYMBOL(skb_seq_read); 2343 2344 /** 2345 * skb_abort_seq_read - Abort a sequential read of skb data 2346 * @st: state variable 2347 * 2348 * Must be called if skb_seq_read() was not called until it 2349 * returned 0. 2350 */ 2351 void skb_abort_seq_read(struct skb_seq_state *st) 2352 { 2353 if (st->frag_data) 2354 kunmap_skb_frag(st->frag_data); 2355 } 2356 EXPORT_SYMBOL(skb_abort_seq_read); 2357 2358 #define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb)) 2359 2360 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text, 2361 struct ts_config *conf, 2362 struct ts_state *state) 2363 { 2364 return skb_seq_read(offset, text, TS_SKB_CB(state)); 2365 } 2366 2367 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state) 2368 { 2369 skb_abort_seq_read(TS_SKB_CB(state)); 2370 } 2371 2372 /** 2373 * skb_find_text - Find a text pattern in skb data 2374 * @skb: the buffer to look in 2375 * @from: search offset 2376 * @to: search limit 2377 * @config: textsearch configuration 2378 * @state: uninitialized textsearch state variable 2379 * 2380 * Finds a pattern in the skb data according to the specified 2381 * textsearch configuration. Use textsearch_next() to retrieve 2382 * subsequent occurrences of the pattern. Returns the offset 2383 * to the first occurrence or UINT_MAX if no match was found. 2384 */ 2385 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from, 2386 unsigned int to, struct ts_config *config, 2387 struct ts_state *state) 2388 { 2389 unsigned int ret; 2390 2391 config->get_next_block = skb_ts_get_next_block; 2392 config->finish = skb_ts_finish; 2393 2394 skb_prepare_seq_read(skb, from, to, TS_SKB_CB(state)); 2395 2396 ret = textsearch_find(config, state); 2397 return (ret <= to - from ? ret : UINT_MAX); 2398 } 2399 EXPORT_SYMBOL(skb_find_text); 2400 2401 /** 2402 * skb_append_datato_frags: - append the user data to a skb 2403 * @sk: sock structure 2404 * @skb: skb structure to be appened with user data. 2405 * @getfrag: call back function to be used for getting the user data 2406 * @from: pointer to user message iov 2407 * @length: length of the iov message 2408 * 2409 * Description: This procedure append the user data in the fragment part 2410 * of the skb if any page alloc fails user this procedure returns -ENOMEM 2411 */ 2412 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb, 2413 int (*getfrag)(void *from, char *to, int offset, 2414 int len, int odd, struct sk_buff *skb), 2415 void *from, int length) 2416 { 2417 int frg_cnt = 0; 2418 skb_frag_t *frag = NULL; 2419 struct page *page = NULL; 2420 int copy, left; 2421 int offset = 0; 2422 int ret; 2423 2424 do { 2425 /* Return error if we don't have space for new frag */ 2426 frg_cnt = skb_shinfo(skb)->nr_frags; 2427 if (frg_cnt >= MAX_SKB_FRAGS) 2428 return -EFAULT; 2429 2430 /* allocate a new page for next frag */ 2431 page = alloc_pages(sk->sk_allocation, 0); 2432 2433 /* If alloc_page fails just return failure and caller will 2434 * free previous allocated pages by doing kfree_skb() 2435 */ 2436 if (page == NULL) 2437 return -ENOMEM; 2438 2439 /* initialize the next frag */ 2440 sk->sk_sndmsg_page = page; 2441 sk->sk_sndmsg_off = 0; 2442 skb_fill_page_desc(skb, frg_cnt, page, 0, 0); 2443 skb->truesize += PAGE_SIZE; 2444 atomic_add(PAGE_SIZE, &sk->sk_wmem_alloc); 2445 2446 /* get the new initialized frag */ 2447 frg_cnt = skb_shinfo(skb)->nr_frags; 2448 frag = &skb_shinfo(skb)->frags[frg_cnt - 1]; 2449 2450 /* copy the user data to page */ 2451 left = PAGE_SIZE - frag->page_offset; 2452 copy = (length > left)? left : length; 2453 2454 ret = getfrag(from, (page_address(frag->page) + 2455 frag->page_offset + frag->size), 2456 offset, copy, 0, skb); 2457 if (ret < 0) 2458 return -EFAULT; 2459 2460 /* copy was successful so update the size parameters */ 2461 sk->sk_sndmsg_off += copy; 2462 frag->size += copy; 2463 skb->len += copy; 2464 skb->data_len += copy; 2465 offset += copy; 2466 length -= copy; 2467 2468 } while (length > 0); 2469 2470 return 0; 2471 } 2472 EXPORT_SYMBOL(skb_append_datato_frags); 2473 2474 /** 2475 * skb_pull_rcsum - pull skb and update receive checksum 2476 * @skb: buffer to update 2477 * @len: length of data pulled 2478 * 2479 * This function performs an skb_pull on the packet and updates 2480 * the CHECKSUM_COMPLETE checksum. It should be used on 2481 * receive path processing instead of skb_pull unless you know 2482 * that the checksum difference is zero (e.g., a valid IP header) 2483 * or you are setting ip_summed to CHECKSUM_NONE. 2484 */ 2485 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len) 2486 { 2487 BUG_ON(len > skb->len); 2488 skb->len -= len; 2489 BUG_ON(skb->len < skb->data_len); 2490 skb_postpull_rcsum(skb, skb->data, len); 2491 return skb->data += len; 2492 } 2493 2494 EXPORT_SYMBOL_GPL(skb_pull_rcsum); 2495 2496 /** 2497 * skb_segment - Perform protocol segmentation on skb. 2498 * @skb: buffer to segment 2499 * @features: features for the output path (see dev->features) 2500 * 2501 * This function performs segmentation on the given skb. It returns 2502 * a pointer to the first in a list of new skbs for the segments. 2503 * In case of error it returns ERR_PTR(err). 2504 */ 2505 struct sk_buff *skb_segment(struct sk_buff *skb, int features) 2506 { 2507 struct sk_buff *segs = NULL; 2508 struct sk_buff *tail = NULL; 2509 struct sk_buff *fskb = skb_shinfo(skb)->frag_list; 2510 unsigned int mss = skb_shinfo(skb)->gso_size; 2511 unsigned int doffset = skb->data - skb_mac_header(skb); 2512 unsigned int offset = doffset; 2513 unsigned int headroom; 2514 unsigned int len; 2515 int sg = features & NETIF_F_SG; 2516 int nfrags = skb_shinfo(skb)->nr_frags; 2517 int err = -ENOMEM; 2518 int i = 0; 2519 int pos; 2520 2521 __skb_push(skb, doffset); 2522 headroom = skb_headroom(skb); 2523 pos = skb_headlen(skb); 2524 2525 do { 2526 struct sk_buff *nskb; 2527 skb_frag_t *frag; 2528 int hsize; 2529 int size; 2530 2531 len = skb->len - offset; 2532 if (len > mss) 2533 len = mss; 2534 2535 hsize = skb_headlen(skb) - offset; 2536 if (hsize < 0) 2537 hsize = 0; 2538 if (hsize > len || !sg) 2539 hsize = len; 2540 2541 if (!hsize && i >= nfrags) { 2542 BUG_ON(fskb->len != len); 2543 2544 pos += len; 2545 nskb = skb_clone(fskb, GFP_ATOMIC); 2546 fskb = fskb->next; 2547 2548 if (unlikely(!nskb)) 2549 goto err; 2550 2551 hsize = skb_end_pointer(nskb) - nskb->head; 2552 if (skb_cow_head(nskb, doffset + headroom)) { 2553 kfree_skb(nskb); 2554 goto err; 2555 } 2556 2557 nskb->truesize += skb_end_pointer(nskb) - nskb->head - 2558 hsize; 2559 skb_release_head_state(nskb); 2560 __skb_push(nskb, doffset); 2561 } else { 2562 nskb = alloc_skb(hsize + doffset + headroom, 2563 GFP_ATOMIC); 2564 2565 if (unlikely(!nskb)) 2566 goto err; 2567 2568 skb_reserve(nskb, headroom); 2569 __skb_put(nskb, doffset); 2570 } 2571 2572 if (segs) 2573 tail->next = nskb; 2574 else 2575 segs = nskb; 2576 tail = nskb; 2577 2578 __copy_skb_header(nskb, skb); 2579 nskb->mac_len = skb->mac_len; 2580 2581 skb_reset_mac_header(nskb); 2582 skb_set_network_header(nskb, skb->mac_len); 2583 nskb->transport_header = (nskb->network_header + 2584 skb_network_header_len(skb)); 2585 skb_copy_from_linear_data(skb, nskb->data, doffset); 2586 2587 if (fskb != skb_shinfo(skb)->frag_list) 2588 continue; 2589 2590 if (!sg) { 2591 nskb->ip_summed = CHECKSUM_NONE; 2592 nskb->csum = skb_copy_and_csum_bits(skb, offset, 2593 skb_put(nskb, len), 2594 len, 0); 2595 continue; 2596 } 2597 2598 frag = skb_shinfo(nskb)->frags; 2599 2600 skb_copy_from_linear_data_offset(skb, offset, 2601 skb_put(nskb, hsize), hsize); 2602 2603 while (pos < offset + len && i < nfrags) { 2604 *frag = skb_shinfo(skb)->frags[i]; 2605 get_page(frag->page); 2606 size = frag->size; 2607 2608 if (pos < offset) { 2609 frag->page_offset += offset - pos; 2610 frag->size -= offset - pos; 2611 } 2612 2613 skb_shinfo(nskb)->nr_frags++; 2614 2615 if (pos + size <= offset + len) { 2616 i++; 2617 pos += size; 2618 } else { 2619 frag->size -= pos + size - (offset + len); 2620 goto skip_fraglist; 2621 } 2622 2623 frag++; 2624 } 2625 2626 if (pos < offset + len) { 2627 struct sk_buff *fskb2 = fskb; 2628 2629 BUG_ON(pos + fskb->len != offset + len); 2630 2631 pos += fskb->len; 2632 fskb = fskb->next; 2633 2634 if (fskb2->next) { 2635 fskb2 = skb_clone(fskb2, GFP_ATOMIC); 2636 if (!fskb2) 2637 goto err; 2638 } else 2639 skb_get(fskb2); 2640 2641 SKB_FRAG_ASSERT(nskb); 2642 skb_shinfo(nskb)->frag_list = fskb2; 2643 } 2644 2645 skip_fraglist: 2646 nskb->data_len = len - hsize; 2647 nskb->len += nskb->data_len; 2648 nskb->truesize += nskb->data_len; 2649 } while ((offset += len) < skb->len); 2650 2651 return segs; 2652 2653 err: 2654 while ((skb = segs)) { 2655 segs = skb->next; 2656 kfree_skb(skb); 2657 } 2658 return ERR_PTR(err); 2659 } 2660 EXPORT_SYMBOL_GPL(skb_segment); 2661 2662 int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb) 2663 { 2664 struct sk_buff *p = *head; 2665 struct sk_buff *nskb; 2666 struct skb_shared_info *skbinfo = skb_shinfo(skb); 2667 struct skb_shared_info *pinfo = skb_shinfo(p); 2668 unsigned int headroom; 2669 unsigned int len = skb_gro_len(skb); 2670 unsigned int offset = skb_gro_offset(skb); 2671 unsigned int headlen = skb_headlen(skb); 2672 2673 if (p->len + len >= 65536) 2674 return -E2BIG; 2675 2676 if (pinfo->frag_list) 2677 goto merge; 2678 else if (headlen <= offset) { 2679 skb_frag_t *frag; 2680 skb_frag_t *frag2; 2681 int i = skbinfo->nr_frags; 2682 int nr_frags = pinfo->nr_frags + i; 2683 2684 offset -= headlen; 2685 2686 if (nr_frags > MAX_SKB_FRAGS) 2687 return -E2BIG; 2688 2689 pinfo->nr_frags = nr_frags; 2690 skbinfo->nr_frags = 0; 2691 2692 frag = pinfo->frags + nr_frags; 2693 frag2 = skbinfo->frags + i; 2694 do { 2695 *--frag = *--frag2; 2696 } while (--i); 2697 2698 frag->page_offset += offset; 2699 frag->size -= offset; 2700 2701 skb->truesize -= skb->data_len; 2702 skb->len -= skb->data_len; 2703 skb->data_len = 0; 2704 2705 NAPI_GRO_CB(skb)->free = 1; 2706 goto done; 2707 } else if (skb_gro_len(p) != pinfo->gso_size) 2708 return -E2BIG; 2709 2710 headroom = skb_headroom(p); 2711 nskb = netdev_alloc_skb(p->dev, headroom + skb_gro_offset(p)); 2712 if (unlikely(!nskb)) 2713 return -ENOMEM; 2714 2715 __copy_skb_header(nskb, p); 2716 nskb->mac_len = p->mac_len; 2717 2718 skb_reserve(nskb, headroom); 2719 __skb_put(nskb, skb_gro_offset(p)); 2720 2721 skb_set_mac_header(nskb, skb_mac_header(p) - p->data); 2722 skb_set_network_header(nskb, skb_network_offset(p)); 2723 skb_set_transport_header(nskb, skb_transport_offset(p)); 2724 2725 __skb_pull(p, skb_gro_offset(p)); 2726 memcpy(skb_mac_header(nskb), skb_mac_header(p), 2727 p->data - skb_mac_header(p)); 2728 2729 *NAPI_GRO_CB(nskb) = *NAPI_GRO_CB(p); 2730 skb_shinfo(nskb)->frag_list = p; 2731 skb_shinfo(nskb)->gso_size = pinfo->gso_size; 2732 skb_header_release(p); 2733 nskb->prev = p; 2734 2735 nskb->data_len += p->len; 2736 nskb->truesize += p->len; 2737 nskb->len += p->len; 2738 2739 *head = nskb; 2740 nskb->next = p->next; 2741 p->next = NULL; 2742 2743 p = nskb; 2744 2745 merge: 2746 if (offset > headlen) { 2747 skbinfo->frags[0].page_offset += offset - headlen; 2748 skbinfo->frags[0].size -= offset - headlen; 2749 offset = headlen; 2750 } 2751 2752 __skb_pull(skb, offset); 2753 2754 p->prev->next = skb; 2755 p->prev = skb; 2756 skb_header_release(skb); 2757 2758 done: 2759 NAPI_GRO_CB(p)->count++; 2760 p->data_len += len; 2761 p->truesize += len; 2762 p->len += len; 2763 2764 NAPI_GRO_CB(skb)->same_flow = 1; 2765 return 0; 2766 } 2767 EXPORT_SYMBOL_GPL(skb_gro_receive); 2768 2769 void __init skb_init(void) 2770 { 2771 skbuff_head_cache = kmem_cache_create("skbuff_head_cache", 2772 sizeof(struct sk_buff), 2773 0, 2774 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 2775 NULL); 2776 skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache", 2777 (2*sizeof(struct sk_buff)) + 2778 sizeof(atomic_t), 2779 0, 2780 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 2781 NULL); 2782 } 2783 2784 /** 2785 * skb_to_sgvec - Fill a scatter-gather list from a socket buffer 2786 * @skb: Socket buffer containing the buffers to be mapped 2787 * @sg: The scatter-gather list to map into 2788 * @offset: The offset into the buffer's contents to start mapping 2789 * @len: Length of buffer space to be mapped 2790 * 2791 * Fill the specified scatter-gather list with mappings/pointers into a 2792 * region of the buffer space attached to a socket buffer. 2793 */ 2794 static int 2795 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len) 2796 { 2797 int start = skb_headlen(skb); 2798 int i, copy = start - offset; 2799 struct sk_buff *frag_iter; 2800 int elt = 0; 2801 2802 if (copy > 0) { 2803 if (copy > len) 2804 copy = len; 2805 sg_set_buf(sg, skb->data + offset, copy); 2806 elt++; 2807 if ((len -= copy) == 0) 2808 return elt; 2809 offset += copy; 2810 } 2811 2812 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2813 int end; 2814 2815 WARN_ON(start > offset + len); 2816 2817 end = start + skb_shinfo(skb)->frags[i].size; 2818 if ((copy = end - offset) > 0) { 2819 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2820 2821 if (copy > len) 2822 copy = len; 2823 sg_set_page(&sg[elt], frag->page, copy, 2824 frag->page_offset+offset-start); 2825 elt++; 2826 if (!(len -= copy)) 2827 return elt; 2828 offset += copy; 2829 } 2830 start = end; 2831 } 2832 2833 skb_walk_frags(skb, frag_iter) { 2834 int end; 2835 2836 WARN_ON(start > offset + len); 2837 2838 end = start + frag_iter->len; 2839 if ((copy = end - offset) > 0) { 2840 if (copy > len) 2841 copy = len; 2842 elt += __skb_to_sgvec(frag_iter, sg+elt, offset - start, 2843 copy); 2844 if ((len -= copy) == 0) 2845 return elt; 2846 offset += copy; 2847 } 2848 start = end; 2849 } 2850 BUG_ON(len); 2851 return elt; 2852 } 2853 2854 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len) 2855 { 2856 int nsg = __skb_to_sgvec(skb, sg, offset, len); 2857 2858 sg_mark_end(&sg[nsg - 1]); 2859 2860 return nsg; 2861 } 2862 EXPORT_SYMBOL_GPL(skb_to_sgvec); 2863 2864 /** 2865 * skb_cow_data - Check that a socket buffer's data buffers are writable 2866 * @skb: The socket buffer to check. 2867 * @tailbits: Amount of trailing space to be added 2868 * @trailer: Returned pointer to the skb where the @tailbits space begins 2869 * 2870 * Make sure that the data buffers attached to a socket buffer are 2871 * writable. If they are not, private copies are made of the data buffers 2872 * and the socket buffer is set to use these instead. 2873 * 2874 * If @tailbits is given, make sure that there is space to write @tailbits 2875 * bytes of data beyond current end of socket buffer. @trailer will be 2876 * set to point to the skb in which this space begins. 2877 * 2878 * The number of scatterlist elements required to completely map the 2879 * COW'd and extended socket buffer will be returned. 2880 */ 2881 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer) 2882 { 2883 int copyflag; 2884 int elt; 2885 struct sk_buff *skb1, **skb_p; 2886 2887 /* If skb is cloned or its head is paged, reallocate 2888 * head pulling out all the pages (pages are considered not writable 2889 * at the moment even if they are anonymous). 2890 */ 2891 if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) && 2892 __pskb_pull_tail(skb, skb_pagelen(skb)-skb_headlen(skb)) == NULL) 2893 return -ENOMEM; 2894 2895 /* Easy case. Most of packets will go this way. */ 2896 if (!skb_has_frags(skb)) { 2897 /* A little of trouble, not enough of space for trailer. 2898 * This should not happen, when stack is tuned to generate 2899 * good frames. OK, on miss we reallocate and reserve even more 2900 * space, 128 bytes is fair. */ 2901 2902 if (skb_tailroom(skb) < tailbits && 2903 pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC)) 2904 return -ENOMEM; 2905 2906 /* Voila! */ 2907 *trailer = skb; 2908 return 1; 2909 } 2910 2911 /* Misery. We are in troubles, going to mincer fragments... */ 2912 2913 elt = 1; 2914 skb_p = &skb_shinfo(skb)->frag_list; 2915 copyflag = 0; 2916 2917 while ((skb1 = *skb_p) != NULL) { 2918 int ntail = 0; 2919 2920 /* The fragment is partially pulled by someone, 2921 * this can happen on input. Copy it and everything 2922 * after it. */ 2923 2924 if (skb_shared(skb1)) 2925 copyflag = 1; 2926 2927 /* If the skb is the last, worry about trailer. */ 2928 2929 if (skb1->next == NULL && tailbits) { 2930 if (skb_shinfo(skb1)->nr_frags || 2931 skb_has_frags(skb1) || 2932 skb_tailroom(skb1) < tailbits) 2933 ntail = tailbits + 128; 2934 } 2935 2936 if (copyflag || 2937 skb_cloned(skb1) || 2938 ntail || 2939 skb_shinfo(skb1)->nr_frags || 2940 skb_has_frags(skb1)) { 2941 struct sk_buff *skb2; 2942 2943 /* Fuck, we are miserable poor guys... */ 2944 if (ntail == 0) 2945 skb2 = skb_copy(skb1, GFP_ATOMIC); 2946 else 2947 skb2 = skb_copy_expand(skb1, 2948 skb_headroom(skb1), 2949 ntail, 2950 GFP_ATOMIC); 2951 if (unlikely(skb2 == NULL)) 2952 return -ENOMEM; 2953 2954 if (skb1->sk) 2955 skb_set_owner_w(skb2, skb1->sk); 2956 2957 /* Looking around. Are we still alive? 2958 * OK, link new skb, drop old one */ 2959 2960 skb2->next = skb1->next; 2961 *skb_p = skb2; 2962 kfree_skb(skb1); 2963 skb1 = skb2; 2964 } 2965 elt++; 2966 *trailer = skb1; 2967 skb_p = &skb1->next; 2968 } 2969 2970 return elt; 2971 } 2972 EXPORT_SYMBOL_GPL(skb_cow_data); 2973 2974 void skb_tstamp_tx(struct sk_buff *orig_skb, 2975 struct skb_shared_hwtstamps *hwtstamps) 2976 { 2977 struct sock *sk = orig_skb->sk; 2978 struct sock_exterr_skb *serr; 2979 struct sk_buff *skb; 2980 int err; 2981 2982 if (!sk) 2983 return; 2984 2985 skb = skb_clone(orig_skb, GFP_ATOMIC); 2986 if (!skb) 2987 return; 2988 2989 if (hwtstamps) { 2990 *skb_hwtstamps(skb) = 2991 *hwtstamps; 2992 } else { 2993 /* 2994 * no hardware time stamps available, 2995 * so keep the skb_shared_tx and only 2996 * store software time stamp 2997 */ 2998 skb->tstamp = ktime_get_real(); 2999 } 3000 3001 serr = SKB_EXT_ERR(skb); 3002 memset(serr, 0, sizeof(*serr)); 3003 serr->ee.ee_errno = ENOMSG; 3004 serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING; 3005 err = sock_queue_err_skb(sk, skb); 3006 if (err) 3007 kfree_skb(skb); 3008 } 3009 EXPORT_SYMBOL_GPL(skb_tstamp_tx); 3010 3011 3012 /** 3013 * skb_partial_csum_set - set up and verify partial csum values for packet 3014 * @skb: the skb to set 3015 * @start: the number of bytes after skb->data to start checksumming. 3016 * @off: the offset from start to place the checksum. 3017 * 3018 * For untrusted partially-checksummed packets, we need to make sure the values 3019 * for skb->csum_start and skb->csum_offset are valid so we don't oops. 3020 * 3021 * This function checks and sets those values and skb->ip_summed: if this 3022 * returns false you should drop the packet. 3023 */ 3024 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off) 3025 { 3026 if (unlikely(start > skb_headlen(skb)) || 3027 unlikely((int)start + off > skb_headlen(skb) - 2)) { 3028 if (net_ratelimit()) 3029 printk(KERN_WARNING 3030 "bad partial csum: csum=%u/%u len=%u\n", 3031 start, off, skb_headlen(skb)); 3032 return false; 3033 } 3034 skb->ip_summed = CHECKSUM_PARTIAL; 3035 skb->csum_start = skb_headroom(skb) + start; 3036 skb->csum_offset = off; 3037 return true; 3038 } 3039 EXPORT_SYMBOL_GPL(skb_partial_csum_set); 3040 3041 void __skb_warn_lro_forwarding(const struct sk_buff *skb) 3042 { 3043 if (net_ratelimit()) 3044 pr_warning("%s: received packets cannot be forwarded" 3045 " while LRO is enabled\n", skb->dev->name); 3046 } 3047 EXPORT_SYMBOL(__skb_warn_lro_forwarding); 3048