1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Routines having to do with the 'struct sk_buff' memory handlers. 4 * 5 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk> 6 * Florian La Roche <rzsfl@rz.uni-sb.de> 7 * 8 * Fixes: 9 * Alan Cox : Fixed the worst of the load 10 * balancer bugs. 11 * Dave Platt : Interrupt stacking fix. 12 * Richard Kooijman : Timestamp fixes. 13 * Alan Cox : Changed buffer format. 14 * Alan Cox : destructor hook for AF_UNIX etc. 15 * Linus Torvalds : Better skb_clone. 16 * Alan Cox : Added skb_copy. 17 * Alan Cox : Added all the changed routines Linus 18 * only put in the headers 19 * Ray VanTassle : Fixed --skb->lock in free 20 * Alan Cox : skb_copy copy arp field 21 * Andi Kleen : slabified it. 22 * Robert Olsson : Removed skb_head_pool 23 * 24 * NOTE: 25 * The __skb_ routines should be called with interrupts 26 * disabled, or you better be *real* sure that the operation is atomic 27 * with respect to whatever list is being frobbed (e.g. via lock_sock() 28 * or via disabling bottom half handlers, etc). 29 */ 30 31 /* 32 * The functions in this file will not compile correctly with gcc 2.4.x 33 */ 34 35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 36 37 #include <linux/module.h> 38 #include <linux/types.h> 39 #include <linux/kernel.h> 40 #include <linux/mm.h> 41 #include <linux/interrupt.h> 42 #include <linux/in.h> 43 #include <linux/inet.h> 44 #include <linux/slab.h> 45 #include <linux/tcp.h> 46 #include <linux/udp.h> 47 #include <linux/sctp.h> 48 #include <linux/netdevice.h> 49 #ifdef CONFIG_NET_CLS_ACT 50 #include <net/pkt_sched.h> 51 #endif 52 #include <linux/string.h> 53 #include <linux/skbuff.h> 54 #include <linux/splice.h> 55 #include <linux/cache.h> 56 #include <linux/rtnetlink.h> 57 #include <linux/init.h> 58 #include <linux/scatterlist.h> 59 #include <linux/errqueue.h> 60 #include <linux/prefetch.h> 61 #include <linux/if_vlan.h> 62 #include <linux/mpls.h> 63 #include <linux/kcov.h> 64 65 #include <net/protocol.h> 66 #include <net/dst.h> 67 #include <net/sock.h> 68 #include <net/checksum.h> 69 #include <net/ip6_checksum.h> 70 #include <net/xfrm.h> 71 #include <net/mpls.h> 72 #include <net/mptcp.h> 73 #include <net/mctp.h> 74 #include <net/page_pool.h> 75 76 #include <linux/uaccess.h> 77 #include <trace/events/skb.h> 78 #include <linux/highmem.h> 79 #include <linux/capability.h> 80 #include <linux/user_namespace.h> 81 #include <linux/indirect_call_wrapper.h> 82 #include <linux/textsearch.h> 83 84 #include "dev.h" 85 #include "sock_destructor.h" 86 87 struct kmem_cache *skbuff_cache __ro_after_init; 88 static struct kmem_cache *skbuff_fclone_cache __ro_after_init; 89 #ifdef CONFIG_SKB_EXTENSIONS 90 static struct kmem_cache *skbuff_ext_cache __ro_after_init; 91 #endif 92 93 /* skb_small_head_cache and related code is only supported 94 * for CONFIG_SLAB and CONFIG_SLUB. 95 * As soon as SLOB is removed from the kernel, we can clean up this. 96 */ 97 #if !defined(CONFIG_SLOB) 98 # define HAVE_SKB_SMALL_HEAD_CACHE 1 99 #endif 100 101 #ifdef HAVE_SKB_SMALL_HEAD_CACHE 102 static struct kmem_cache *skb_small_head_cache __ro_after_init; 103 104 #define SKB_SMALL_HEAD_SIZE SKB_HEAD_ALIGN(MAX_TCP_HEADER) 105 106 /* We want SKB_SMALL_HEAD_CACHE_SIZE to not be a power of two. 107 * This should ensure that SKB_SMALL_HEAD_HEADROOM is a unique 108 * size, and we can differentiate heads from skb_small_head_cache 109 * vs system slabs by looking at their size (skb_end_offset()). 110 */ 111 #define SKB_SMALL_HEAD_CACHE_SIZE \ 112 (is_power_of_2(SKB_SMALL_HEAD_SIZE) ? \ 113 (SKB_SMALL_HEAD_SIZE + L1_CACHE_BYTES) : \ 114 SKB_SMALL_HEAD_SIZE) 115 116 #define SKB_SMALL_HEAD_HEADROOM \ 117 SKB_WITH_OVERHEAD(SKB_SMALL_HEAD_CACHE_SIZE) 118 #endif /* HAVE_SKB_SMALL_HEAD_CACHE */ 119 120 int sysctl_max_skb_frags __read_mostly = MAX_SKB_FRAGS; 121 EXPORT_SYMBOL(sysctl_max_skb_frags); 122 123 #undef FN 124 #define FN(reason) [SKB_DROP_REASON_##reason] = #reason, 125 const char * const drop_reasons[] = { 126 [SKB_CONSUMED] = "CONSUMED", 127 DEFINE_DROP_REASON(FN, FN) 128 }; 129 EXPORT_SYMBOL(drop_reasons); 130 131 /** 132 * skb_panic - private function for out-of-line support 133 * @skb: buffer 134 * @sz: size 135 * @addr: address 136 * @msg: skb_over_panic or skb_under_panic 137 * 138 * Out-of-line support for skb_put() and skb_push(). 139 * Called via the wrapper skb_over_panic() or skb_under_panic(). 140 * Keep out of line to prevent kernel bloat. 141 * __builtin_return_address is not used because it is not always reliable. 142 */ 143 static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr, 144 const char msg[]) 145 { 146 pr_emerg("%s: text:%px len:%d put:%d head:%px data:%px tail:%#lx end:%#lx dev:%s\n", 147 msg, addr, skb->len, sz, skb->head, skb->data, 148 (unsigned long)skb->tail, (unsigned long)skb->end, 149 skb->dev ? skb->dev->name : "<NULL>"); 150 BUG(); 151 } 152 153 static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr) 154 { 155 skb_panic(skb, sz, addr, __func__); 156 } 157 158 static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr) 159 { 160 skb_panic(skb, sz, addr, __func__); 161 } 162 163 #define NAPI_SKB_CACHE_SIZE 64 164 #define NAPI_SKB_CACHE_BULK 16 165 #define NAPI_SKB_CACHE_HALF (NAPI_SKB_CACHE_SIZE / 2) 166 167 #if PAGE_SIZE == SZ_4K 168 169 #define NAPI_HAS_SMALL_PAGE_FRAG 1 170 #define NAPI_SMALL_PAGE_PFMEMALLOC(nc) ((nc).pfmemalloc) 171 172 /* specialized page frag allocator using a single order 0 page 173 * and slicing it into 1K sized fragment. Constrained to systems 174 * with a very limited amount of 1K fragments fitting a single 175 * page - to avoid excessive truesize underestimation 176 */ 177 178 struct page_frag_1k { 179 void *va; 180 u16 offset; 181 bool pfmemalloc; 182 }; 183 184 static void *page_frag_alloc_1k(struct page_frag_1k *nc, gfp_t gfp) 185 { 186 struct page *page; 187 int offset; 188 189 offset = nc->offset - SZ_1K; 190 if (likely(offset >= 0)) 191 goto use_frag; 192 193 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0); 194 if (!page) 195 return NULL; 196 197 nc->va = page_address(page); 198 nc->pfmemalloc = page_is_pfmemalloc(page); 199 offset = PAGE_SIZE - SZ_1K; 200 page_ref_add(page, offset / SZ_1K); 201 202 use_frag: 203 nc->offset = offset; 204 return nc->va + offset; 205 } 206 #else 207 208 /* the small page is actually unused in this build; add dummy helpers 209 * to please the compiler and avoid later preprocessor's conditionals 210 */ 211 #define NAPI_HAS_SMALL_PAGE_FRAG 0 212 #define NAPI_SMALL_PAGE_PFMEMALLOC(nc) false 213 214 struct page_frag_1k { 215 }; 216 217 static void *page_frag_alloc_1k(struct page_frag_1k *nc, gfp_t gfp_mask) 218 { 219 return NULL; 220 } 221 222 #endif 223 224 struct napi_alloc_cache { 225 struct page_frag_cache page; 226 struct page_frag_1k page_small; 227 unsigned int skb_count; 228 void *skb_cache[NAPI_SKB_CACHE_SIZE]; 229 }; 230 231 static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache); 232 static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache); 233 234 /* Double check that napi_get_frags() allocates skbs with 235 * skb->head being backed by slab, not a page fragment. 236 * This is to make sure bug fixed in 3226b158e67c 237 * ("net: avoid 32 x truesize under-estimation for tiny skbs") 238 * does not accidentally come back. 239 */ 240 void napi_get_frags_check(struct napi_struct *napi) 241 { 242 struct sk_buff *skb; 243 244 local_bh_disable(); 245 skb = napi_get_frags(napi); 246 WARN_ON_ONCE(!NAPI_HAS_SMALL_PAGE_FRAG && skb && skb->head_frag); 247 napi_free_frags(napi); 248 local_bh_enable(); 249 } 250 251 void *__napi_alloc_frag_align(unsigned int fragsz, unsigned int align_mask) 252 { 253 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 254 255 fragsz = SKB_DATA_ALIGN(fragsz); 256 257 return page_frag_alloc_align(&nc->page, fragsz, GFP_ATOMIC, align_mask); 258 } 259 EXPORT_SYMBOL(__napi_alloc_frag_align); 260 261 void *__netdev_alloc_frag_align(unsigned int fragsz, unsigned int align_mask) 262 { 263 void *data; 264 265 fragsz = SKB_DATA_ALIGN(fragsz); 266 if (in_hardirq() || irqs_disabled()) { 267 struct page_frag_cache *nc = this_cpu_ptr(&netdev_alloc_cache); 268 269 data = page_frag_alloc_align(nc, fragsz, GFP_ATOMIC, align_mask); 270 } else { 271 struct napi_alloc_cache *nc; 272 273 local_bh_disable(); 274 nc = this_cpu_ptr(&napi_alloc_cache); 275 data = page_frag_alloc_align(&nc->page, fragsz, GFP_ATOMIC, align_mask); 276 local_bh_enable(); 277 } 278 return data; 279 } 280 EXPORT_SYMBOL(__netdev_alloc_frag_align); 281 282 static struct sk_buff *napi_skb_cache_get(void) 283 { 284 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 285 struct sk_buff *skb; 286 287 if (unlikely(!nc->skb_count)) { 288 nc->skb_count = kmem_cache_alloc_bulk(skbuff_cache, 289 GFP_ATOMIC, 290 NAPI_SKB_CACHE_BULK, 291 nc->skb_cache); 292 if (unlikely(!nc->skb_count)) 293 return NULL; 294 } 295 296 skb = nc->skb_cache[--nc->skb_count]; 297 kasan_unpoison_object_data(skbuff_cache, skb); 298 299 return skb; 300 } 301 302 static inline void __finalize_skb_around(struct sk_buff *skb, void *data, 303 unsigned int size) 304 { 305 struct skb_shared_info *shinfo; 306 307 size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 308 309 /* Assumes caller memset cleared SKB */ 310 skb->truesize = SKB_TRUESIZE(size); 311 refcount_set(&skb->users, 1); 312 skb->head = data; 313 skb->data = data; 314 skb_reset_tail_pointer(skb); 315 skb_set_end_offset(skb, size); 316 skb->mac_header = (typeof(skb->mac_header))~0U; 317 skb->transport_header = (typeof(skb->transport_header))~0U; 318 skb->alloc_cpu = raw_smp_processor_id(); 319 /* make sure we initialize shinfo sequentially */ 320 shinfo = skb_shinfo(skb); 321 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref)); 322 atomic_set(&shinfo->dataref, 1); 323 324 skb_set_kcov_handle(skb, kcov_common_handle()); 325 } 326 327 static inline void *__slab_build_skb(struct sk_buff *skb, void *data, 328 unsigned int *size) 329 { 330 void *resized; 331 332 /* Must find the allocation size (and grow it to match). */ 333 *size = ksize(data); 334 /* krealloc() will immediately return "data" when 335 * "ksize(data)" is requested: it is the existing upper 336 * bounds. As a result, GFP_ATOMIC will be ignored. Note 337 * that this "new" pointer needs to be passed back to the 338 * caller for use so the __alloc_size hinting will be 339 * tracked correctly. 340 */ 341 resized = krealloc(data, *size, GFP_ATOMIC); 342 WARN_ON_ONCE(resized != data); 343 return resized; 344 } 345 346 /* build_skb() variant which can operate on slab buffers. 347 * Note that this should be used sparingly as slab buffers 348 * cannot be combined efficiently by GRO! 349 */ 350 struct sk_buff *slab_build_skb(void *data) 351 { 352 struct sk_buff *skb; 353 unsigned int size; 354 355 skb = kmem_cache_alloc(skbuff_cache, GFP_ATOMIC); 356 if (unlikely(!skb)) 357 return NULL; 358 359 memset(skb, 0, offsetof(struct sk_buff, tail)); 360 data = __slab_build_skb(skb, data, &size); 361 __finalize_skb_around(skb, data, size); 362 363 return skb; 364 } 365 EXPORT_SYMBOL(slab_build_skb); 366 367 /* Caller must provide SKB that is memset cleared */ 368 static void __build_skb_around(struct sk_buff *skb, void *data, 369 unsigned int frag_size) 370 { 371 unsigned int size = frag_size; 372 373 /* frag_size == 0 is considered deprecated now. Callers 374 * using slab buffer should use slab_build_skb() instead. 375 */ 376 if (WARN_ONCE(size == 0, "Use slab_build_skb() instead")) 377 data = __slab_build_skb(skb, data, &size); 378 379 __finalize_skb_around(skb, data, size); 380 } 381 382 /** 383 * __build_skb - build a network buffer 384 * @data: data buffer provided by caller 385 * @frag_size: size of data (must not be 0) 386 * 387 * Allocate a new &sk_buff. Caller provides space holding head and 388 * skb_shared_info. @data must have been allocated from the page 389 * allocator or vmalloc(). (A @frag_size of 0 to indicate a kmalloc() 390 * allocation is deprecated, and callers should use slab_build_skb() 391 * instead.) 392 * The return is the new skb buffer. 393 * On a failure the return is %NULL, and @data is not freed. 394 * Notes : 395 * Before IO, driver allocates only data buffer where NIC put incoming frame 396 * Driver should add room at head (NET_SKB_PAD) and 397 * MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info)) 398 * After IO, driver calls build_skb(), to allocate sk_buff and populate it 399 * before giving packet to stack. 400 * RX rings only contains data buffers, not full skbs. 401 */ 402 struct sk_buff *__build_skb(void *data, unsigned int frag_size) 403 { 404 struct sk_buff *skb; 405 406 skb = kmem_cache_alloc(skbuff_cache, GFP_ATOMIC); 407 if (unlikely(!skb)) 408 return NULL; 409 410 memset(skb, 0, offsetof(struct sk_buff, tail)); 411 __build_skb_around(skb, data, frag_size); 412 413 return skb; 414 } 415 416 /* build_skb() is wrapper over __build_skb(), that specifically 417 * takes care of skb->head and skb->pfmemalloc 418 */ 419 struct sk_buff *build_skb(void *data, unsigned int frag_size) 420 { 421 struct sk_buff *skb = __build_skb(data, frag_size); 422 423 if (skb && frag_size) { 424 skb->head_frag = 1; 425 if (page_is_pfmemalloc(virt_to_head_page(data))) 426 skb->pfmemalloc = 1; 427 } 428 return skb; 429 } 430 EXPORT_SYMBOL(build_skb); 431 432 /** 433 * build_skb_around - build a network buffer around provided skb 434 * @skb: sk_buff provide by caller, must be memset cleared 435 * @data: data buffer provided by caller 436 * @frag_size: size of data 437 */ 438 struct sk_buff *build_skb_around(struct sk_buff *skb, 439 void *data, unsigned int frag_size) 440 { 441 if (unlikely(!skb)) 442 return NULL; 443 444 __build_skb_around(skb, data, frag_size); 445 446 if (frag_size) { 447 skb->head_frag = 1; 448 if (page_is_pfmemalloc(virt_to_head_page(data))) 449 skb->pfmemalloc = 1; 450 } 451 return skb; 452 } 453 EXPORT_SYMBOL(build_skb_around); 454 455 /** 456 * __napi_build_skb - build a network buffer 457 * @data: data buffer provided by caller 458 * @frag_size: size of data 459 * 460 * Version of __build_skb() that uses NAPI percpu caches to obtain 461 * skbuff_head instead of inplace allocation. 462 * 463 * Returns a new &sk_buff on success, %NULL on allocation failure. 464 */ 465 static struct sk_buff *__napi_build_skb(void *data, unsigned int frag_size) 466 { 467 struct sk_buff *skb; 468 469 skb = napi_skb_cache_get(); 470 if (unlikely(!skb)) 471 return NULL; 472 473 memset(skb, 0, offsetof(struct sk_buff, tail)); 474 __build_skb_around(skb, data, frag_size); 475 476 return skb; 477 } 478 479 /** 480 * napi_build_skb - build a network buffer 481 * @data: data buffer provided by caller 482 * @frag_size: size of data 483 * 484 * Version of __napi_build_skb() that takes care of skb->head_frag 485 * and skb->pfmemalloc when the data is a page or page fragment. 486 * 487 * Returns a new &sk_buff on success, %NULL on allocation failure. 488 */ 489 struct sk_buff *napi_build_skb(void *data, unsigned int frag_size) 490 { 491 struct sk_buff *skb = __napi_build_skb(data, frag_size); 492 493 if (likely(skb) && frag_size) { 494 skb->head_frag = 1; 495 skb_propagate_pfmemalloc(virt_to_head_page(data), skb); 496 } 497 498 return skb; 499 } 500 EXPORT_SYMBOL(napi_build_skb); 501 502 /* 503 * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells 504 * the caller if emergency pfmemalloc reserves are being used. If it is and 505 * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves 506 * may be used. Otherwise, the packet data may be discarded until enough 507 * memory is free 508 */ 509 static void *kmalloc_reserve(unsigned int *size, gfp_t flags, int node, 510 bool *pfmemalloc) 511 { 512 bool ret_pfmemalloc = false; 513 unsigned int obj_size; 514 void *obj; 515 516 obj_size = SKB_HEAD_ALIGN(*size); 517 #ifdef HAVE_SKB_SMALL_HEAD_CACHE 518 if (obj_size <= SKB_SMALL_HEAD_CACHE_SIZE && 519 !(flags & KMALLOC_NOT_NORMAL_BITS)) { 520 521 /* skb_small_head_cache has non power of two size, 522 * likely forcing SLUB to use order-3 pages. 523 * We deliberately attempt a NOMEMALLOC allocation only. 524 */ 525 obj = kmem_cache_alloc_node(skb_small_head_cache, 526 flags | __GFP_NOMEMALLOC | __GFP_NOWARN, 527 node); 528 if (obj) { 529 *size = SKB_SMALL_HEAD_CACHE_SIZE; 530 goto out; 531 } 532 } 533 #endif 534 *size = obj_size = kmalloc_size_roundup(obj_size); 535 /* 536 * Try a regular allocation, when that fails and we're not entitled 537 * to the reserves, fail. 538 */ 539 obj = kmalloc_node_track_caller(obj_size, 540 flags | __GFP_NOMEMALLOC | __GFP_NOWARN, 541 node); 542 if (obj || !(gfp_pfmemalloc_allowed(flags))) 543 goto out; 544 545 /* Try again but now we are using pfmemalloc reserves */ 546 ret_pfmemalloc = true; 547 obj = kmalloc_node_track_caller(obj_size, flags, node); 548 549 out: 550 if (pfmemalloc) 551 *pfmemalloc = ret_pfmemalloc; 552 553 return obj; 554 } 555 556 /* Allocate a new skbuff. We do this ourselves so we can fill in a few 557 * 'private' fields and also do memory statistics to find all the 558 * [BEEP] leaks. 559 * 560 */ 561 562 /** 563 * __alloc_skb - allocate a network buffer 564 * @size: size to allocate 565 * @gfp_mask: allocation mask 566 * @flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache 567 * instead of head cache and allocate a cloned (child) skb. 568 * If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for 569 * allocations in case the data is required for writeback 570 * @node: numa node to allocate memory on 571 * 572 * Allocate a new &sk_buff. The returned buffer has no headroom and a 573 * tail room of at least size bytes. The object has a reference count 574 * of one. The return is the buffer. On a failure the return is %NULL. 575 * 576 * Buffers may only be allocated from interrupts using a @gfp_mask of 577 * %GFP_ATOMIC. 578 */ 579 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask, 580 int flags, int node) 581 { 582 struct kmem_cache *cache; 583 struct sk_buff *skb; 584 bool pfmemalloc; 585 u8 *data; 586 587 cache = (flags & SKB_ALLOC_FCLONE) 588 ? skbuff_fclone_cache : skbuff_cache; 589 590 if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX)) 591 gfp_mask |= __GFP_MEMALLOC; 592 593 /* Get the HEAD */ 594 if ((flags & (SKB_ALLOC_FCLONE | SKB_ALLOC_NAPI)) == SKB_ALLOC_NAPI && 595 likely(node == NUMA_NO_NODE || node == numa_mem_id())) 596 skb = napi_skb_cache_get(); 597 else 598 skb = kmem_cache_alloc_node(cache, gfp_mask & ~GFP_DMA, node); 599 if (unlikely(!skb)) 600 return NULL; 601 prefetchw(skb); 602 603 /* We do our best to align skb_shared_info on a separate cache 604 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives 605 * aligned memory blocks, unless SLUB/SLAB debug is enabled. 606 * Both skb->head and skb_shared_info are cache line aligned. 607 */ 608 data = kmalloc_reserve(&size, gfp_mask, node, &pfmemalloc); 609 if (unlikely(!data)) 610 goto nodata; 611 /* kmalloc_size_roundup() might give us more room than requested. 612 * Put skb_shared_info exactly at the end of allocated zone, 613 * to allow max possible filling before reallocation. 614 */ 615 prefetchw(data + SKB_WITH_OVERHEAD(size)); 616 617 /* 618 * Only clear those fields we need to clear, not those that we will 619 * actually initialise below. Hence, don't put any more fields after 620 * the tail pointer in struct sk_buff! 621 */ 622 memset(skb, 0, offsetof(struct sk_buff, tail)); 623 __build_skb_around(skb, data, size); 624 skb->pfmemalloc = pfmemalloc; 625 626 if (flags & SKB_ALLOC_FCLONE) { 627 struct sk_buff_fclones *fclones; 628 629 fclones = container_of(skb, struct sk_buff_fclones, skb1); 630 631 skb->fclone = SKB_FCLONE_ORIG; 632 refcount_set(&fclones->fclone_ref, 1); 633 } 634 635 return skb; 636 637 nodata: 638 kmem_cache_free(cache, skb); 639 return NULL; 640 } 641 EXPORT_SYMBOL(__alloc_skb); 642 643 /** 644 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device 645 * @dev: network device to receive on 646 * @len: length to allocate 647 * @gfp_mask: get_free_pages mask, passed to alloc_skb 648 * 649 * Allocate a new &sk_buff and assign it a usage count of one. The 650 * buffer has NET_SKB_PAD headroom built in. Users should allocate 651 * the headroom they think they need without accounting for the 652 * built in space. The built in space is used for optimisations. 653 * 654 * %NULL is returned if there is no free memory. 655 */ 656 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len, 657 gfp_t gfp_mask) 658 { 659 struct page_frag_cache *nc; 660 struct sk_buff *skb; 661 bool pfmemalloc; 662 void *data; 663 664 len += NET_SKB_PAD; 665 666 /* If requested length is either too small or too big, 667 * we use kmalloc() for skb->head allocation. 668 */ 669 if (len <= SKB_WITH_OVERHEAD(1024) || 670 len > SKB_WITH_OVERHEAD(PAGE_SIZE) || 671 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) { 672 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE); 673 if (!skb) 674 goto skb_fail; 675 goto skb_success; 676 } 677 678 len = SKB_HEAD_ALIGN(len); 679 680 if (sk_memalloc_socks()) 681 gfp_mask |= __GFP_MEMALLOC; 682 683 if (in_hardirq() || irqs_disabled()) { 684 nc = this_cpu_ptr(&netdev_alloc_cache); 685 data = page_frag_alloc(nc, len, gfp_mask); 686 pfmemalloc = nc->pfmemalloc; 687 } else { 688 local_bh_disable(); 689 nc = this_cpu_ptr(&napi_alloc_cache.page); 690 data = page_frag_alloc(nc, len, gfp_mask); 691 pfmemalloc = nc->pfmemalloc; 692 local_bh_enable(); 693 } 694 695 if (unlikely(!data)) 696 return NULL; 697 698 skb = __build_skb(data, len); 699 if (unlikely(!skb)) { 700 skb_free_frag(data); 701 return NULL; 702 } 703 704 if (pfmemalloc) 705 skb->pfmemalloc = 1; 706 skb->head_frag = 1; 707 708 skb_success: 709 skb_reserve(skb, NET_SKB_PAD); 710 skb->dev = dev; 711 712 skb_fail: 713 return skb; 714 } 715 EXPORT_SYMBOL(__netdev_alloc_skb); 716 717 /** 718 * __napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance 719 * @napi: napi instance this buffer was allocated for 720 * @len: length to allocate 721 * @gfp_mask: get_free_pages mask, passed to alloc_skb and alloc_pages 722 * 723 * Allocate a new sk_buff for use in NAPI receive. This buffer will 724 * attempt to allocate the head from a special reserved region used 725 * only for NAPI Rx allocation. By doing this we can save several 726 * CPU cycles by avoiding having to disable and re-enable IRQs. 727 * 728 * %NULL is returned if there is no free memory. 729 */ 730 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, unsigned int len, 731 gfp_t gfp_mask) 732 { 733 struct napi_alloc_cache *nc; 734 struct sk_buff *skb; 735 bool pfmemalloc; 736 void *data; 737 738 DEBUG_NET_WARN_ON_ONCE(!in_softirq()); 739 len += NET_SKB_PAD + NET_IP_ALIGN; 740 741 /* If requested length is either too small or too big, 742 * we use kmalloc() for skb->head allocation. 743 * When the small frag allocator is available, prefer it over kmalloc 744 * for small fragments 745 */ 746 if ((!NAPI_HAS_SMALL_PAGE_FRAG && len <= SKB_WITH_OVERHEAD(1024)) || 747 len > SKB_WITH_OVERHEAD(PAGE_SIZE) || 748 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) { 749 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX | SKB_ALLOC_NAPI, 750 NUMA_NO_NODE); 751 if (!skb) 752 goto skb_fail; 753 goto skb_success; 754 } 755 756 nc = this_cpu_ptr(&napi_alloc_cache); 757 758 if (sk_memalloc_socks()) 759 gfp_mask |= __GFP_MEMALLOC; 760 761 if (NAPI_HAS_SMALL_PAGE_FRAG && len <= SKB_WITH_OVERHEAD(1024)) { 762 /* we are artificially inflating the allocation size, but 763 * that is not as bad as it may look like, as: 764 * - 'len' less than GRO_MAX_HEAD makes little sense 765 * - On most systems, larger 'len' values lead to fragment 766 * size above 512 bytes 767 * - kmalloc would use the kmalloc-1k slab for such values 768 * - Builds with smaller GRO_MAX_HEAD will very likely do 769 * little networking, as that implies no WiFi and no 770 * tunnels support, and 32 bits arches. 771 */ 772 len = SZ_1K; 773 774 data = page_frag_alloc_1k(&nc->page_small, gfp_mask); 775 pfmemalloc = NAPI_SMALL_PAGE_PFMEMALLOC(nc->page_small); 776 } else { 777 len = SKB_HEAD_ALIGN(len); 778 779 data = page_frag_alloc(&nc->page, len, gfp_mask); 780 pfmemalloc = nc->page.pfmemalloc; 781 } 782 783 if (unlikely(!data)) 784 return NULL; 785 786 skb = __napi_build_skb(data, len); 787 if (unlikely(!skb)) { 788 skb_free_frag(data); 789 return NULL; 790 } 791 792 if (pfmemalloc) 793 skb->pfmemalloc = 1; 794 skb->head_frag = 1; 795 796 skb_success: 797 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN); 798 skb->dev = napi->dev; 799 800 skb_fail: 801 return skb; 802 } 803 EXPORT_SYMBOL(__napi_alloc_skb); 804 805 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off, 806 int size, unsigned int truesize) 807 { 808 skb_fill_page_desc(skb, i, page, off, size); 809 skb->len += size; 810 skb->data_len += size; 811 skb->truesize += truesize; 812 } 813 EXPORT_SYMBOL(skb_add_rx_frag); 814 815 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size, 816 unsigned int truesize) 817 { 818 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 819 820 skb_frag_size_add(frag, size); 821 skb->len += size; 822 skb->data_len += size; 823 skb->truesize += truesize; 824 } 825 EXPORT_SYMBOL(skb_coalesce_rx_frag); 826 827 static void skb_drop_list(struct sk_buff **listp) 828 { 829 kfree_skb_list(*listp); 830 *listp = NULL; 831 } 832 833 static inline void skb_drop_fraglist(struct sk_buff *skb) 834 { 835 skb_drop_list(&skb_shinfo(skb)->frag_list); 836 } 837 838 static void skb_clone_fraglist(struct sk_buff *skb) 839 { 840 struct sk_buff *list; 841 842 skb_walk_frags(skb, list) 843 skb_get(list); 844 } 845 846 static bool skb_pp_recycle(struct sk_buff *skb, void *data) 847 { 848 if (!IS_ENABLED(CONFIG_PAGE_POOL) || !skb->pp_recycle) 849 return false; 850 return page_pool_return_skb_page(virt_to_page(data)); 851 } 852 853 static void skb_kfree_head(void *head, unsigned int end_offset) 854 { 855 #ifdef HAVE_SKB_SMALL_HEAD_CACHE 856 if (end_offset == SKB_SMALL_HEAD_HEADROOM) 857 kmem_cache_free(skb_small_head_cache, head); 858 else 859 #endif 860 kfree(head); 861 } 862 863 static void skb_free_head(struct sk_buff *skb) 864 { 865 unsigned char *head = skb->head; 866 867 if (skb->head_frag) { 868 if (skb_pp_recycle(skb, head)) 869 return; 870 skb_free_frag(head); 871 } else { 872 skb_kfree_head(head, skb_end_offset(skb)); 873 } 874 } 875 876 static void skb_release_data(struct sk_buff *skb, enum skb_drop_reason reason) 877 { 878 struct skb_shared_info *shinfo = skb_shinfo(skb); 879 int i; 880 881 if (skb->cloned && 882 atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1, 883 &shinfo->dataref)) 884 goto exit; 885 886 if (skb_zcopy(skb)) { 887 bool skip_unref = shinfo->flags & SKBFL_MANAGED_FRAG_REFS; 888 889 skb_zcopy_clear(skb, true); 890 if (skip_unref) 891 goto free_head; 892 } 893 894 for (i = 0; i < shinfo->nr_frags; i++) 895 __skb_frag_unref(&shinfo->frags[i], skb->pp_recycle); 896 897 free_head: 898 if (shinfo->frag_list) 899 kfree_skb_list_reason(shinfo->frag_list, reason); 900 901 skb_free_head(skb); 902 exit: 903 /* When we clone an SKB we copy the reycling bit. The pp_recycle 904 * bit is only set on the head though, so in order to avoid races 905 * while trying to recycle fragments on __skb_frag_unref() we need 906 * to make one SKB responsible for triggering the recycle path. 907 * So disable the recycling bit if an SKB is cloned and we have 908 * additional references to the fragmented part of the SKB. 909 * Eventually the last SKB will have the recycling bit set and it's 910 * dataref set to 0, which will trigger the recycling 911 */ 912 skb->pp_recycle = 0; 913 } 914 915 /* 916 * Free an skbuff by memory without cleaning the state. 917 */ 918 static void kfree_skbmem(struct sk_buff *skb) 919 { 920 struct sk_buff_fclones *fclones; 921 922 switch (skb->fclone) { 923 case SKB_FCLONE_UNAVAILABLE: 924 kmem_cache_free(skbuff_cache, skb); 925 return; 926 927 case SKB_FCLONE_ORIG: 928 fclones = container_of(skb, struct sk_buff_fclones, skb1); 929 930 /* We usually free the clone (TX completion) before original skb 931 * This test would have no chance to be true for the clone, 932 * while here, branch prediction will be good. 933 */ 934 if (refcount_read(&fclones->fclone_ref) == 1) 935 goto fastpath; 936 break; 937 938 default: /* SKB_FCLONE_CLONE */ 939 fclones = container_of(skb, struct sk_buff_fclones, skb2); 940 break; 941 } 942 if (!refcount_dec_and_test(&fclones->fclone_ref)) 943 return; 944 fastpath: 945 kmem_cache_free(skbuff_fclone_cache, fclones); 946 } 947 948 void skb_release_head_state(struct sk_buff *skb) 949 { 950 skb_dst_drop(skb); 951 if (skb->destructor) { 952 DEBUG_NET_WARN_ON_ONCE(in_hardirq()); 953 skb->destructor(skb); 954 } 955 #if IS_ENABLED(CONFIG_NF_CONNTRACK) 956 nf_conntrack_put(skb_nfct(skb)); 957 #endif 958 skb_ext_put(skb); 959 } 960 961 /* Free everything but the sk_buff shell. */ 962 static void skb_release_all(struct sk_buff *skb, enum skb_drop_reason reason) 963 { 964 skb_release_head_state(skb); 965 if (likely(skb->head)) 966 skb_release_data(skb, reason); 967 } 968 969 /** 970 * __kfree_skb - private function 971 * @skb: buffer 972 * 973 * Free an sk_buff. Release anything attached to the buffer. 974 * Clean the state. This is an internal helper function. Users should 975 * always call kfree_skb 976 */ 977 978 void __kfree_skb(struct sk_buff *skb) 979 { 980 skb_release_all(skb, SKB_DROP_REASON_NOT_SPECIFIED); 981 kfree_skbmem(skb); 982 } 983 EXPORT_SYMBOL(__kfree_skb); 984 985 static __always_inline 986 bool __kfree_skb_reason(struct sk_buff *skb, enum skb_drop_reason reason) 987 { 988 if (unlikely(!skb_unref(skb))) 989 return false; 990 991 DEBUG_NET_WARN_ON_ONCE(reason <= 0 || reason >= SKB_DROP_REASON_MAX); 992 993 if (reason == SKB_CONSUMED) 994 trace_consume_skb(skb); 995 else 996 trace_kfree_skb(skb, __builtin_return_address(0), reason); 997 return true; 998 } 999 1000 /** 1001 * kfree_skb_reason - free an sk_buff with special reason 1002 * @skb: buffer to free 1003 * @reason: reason why this skb is dropped 1004 * 1005 * Drop a reference to the buffer and free it if the usage count has 1006 * hit zero. Meanwhile, pass the drop reason to 'kfree_skb' 1007 * tracepoint. 1008 */ 1009 void __fix_address 1010 kfree_skb_reason(struct sk_buff *skb, enum skb_drop_reason reason) 1011 { 1012 if (__kfree_skb_reason(skb, reason)) 1013 __kfree_skb(skb); 1014 } 1015 EXPORT_SYMBOL(kfree_skb_reason); 1016 1017 #define KFREE_SKB_BULK_SIZE 16 1018 1019 struct skb_free_array { 1020 unsigned int skb_count; 1021 void *skb_array[KFREE_SKB_BULK_SIZE]; 1022 }; 1023 1024 static void kfree_skb_add_bulk(struct sk_buff *skb, 1025 struct skb_free_array *sa, 1026 enum skb_drop_reason reason) 1027 { 1028 /* if SKB is a clone, don't handle this case */ 1029 if (unlikely(skb->fclone != SKB_FCLONE_UNAVAILABLE)) { 1030 __kfree_skb(skb); 1031 return; 1032 } 1033 1034 skb_release_all(skb, reason); 1035 sa->skb_array[sa->skb_count++] = skb; 1036 1037 if (unlikely(sa->skb_count == KFREE_SKB_BULK_SIZE)) { 1038 kmem_cache_free_bulk(skbuff_cache, KFREE_SKB_BULK_SIZE, 1039 sa->skb_array); 1040 sa->skb_count = 0; 1041 } 1042 } 1043 1044 void __fix_address 1045 kfree_skb_list_reason(struct sk_buff *segs, enum skb_drop_reason reason) 1046 { 1047 struct skb_free_array sa; 1048 1049 sa.skb_count = 0; 1050 1051 while (segs) { 1052 struct sk_buff *next = segs->next; 1053 1054 if (__kfree_skb_reason(segs, reason)) { 1055 skb_poison_list(segs); 1056 kfree_skb_add_bulk(segs, &sa, reason); 1057 } 1058 1059 segs = next; 1060 } 1061 1062 if (sa.skb_count) 1063 kmem_cache_free_bulk(skbuff_cache, sa.skb_count, sa.skb_array); 1064 } 1065 EXPORT_SYMBOL(kfree_skb_list_reason); 1066 1067 /* Dump skb information and contents. 1068 * 1069 * Must only be called from net_ratelimit()-ed paths. 1070 * 1071 * Dumps whole packets if full_pkt, only headers otherwise. 1072 */ 1073 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt) 1074 { 1075 struct skb_shared_info *sh = skb_shinfo(skb); 1076 struct net_device *dev = skb->dev; 1077 struct sock *sk = skb->sk; 1078 struct sk_buff *list_skb; 1079 bool has_mac, has_trans; 1080 int headroom, tailroom; 1081 int i, len, seg_len; 1082 1083 if (full_pkt) 1084 len = skb->len; 1085 else 1086 len = min_t(int, skb->len, MAX_HEADER + 128); 1087 1088 headroom = skb_headroom(skb); 1089 tailroom = skb_tailroom(skb); 1090 1091 has_mac = skb_mac_header_was_set(skb); 1092 has_trans = skb_transport_header_was_set(skb); 1093 1094 printk("%sskb len=%u headroom=%u headlen=%u tailroom=%u\n" 1095 "mac=(%d,%d) net=(%d,%d) trans=%d\n" 1096 "shinfo(txflags=%u nr_frags=%u gso(size=%hu type=%u segs=%hu))\n" 1097 "csum(0x%x ip_summed=%u complete_sw=%u valid=%u level=%u)\n" 1098 "hash(0x%x sw=%u l4=%u) proto=0x%04x pkttype=%u iif=%d\n", 1099 level, skb->len, headroom, skb_headlen(skb), tailroom, 1100 has_mac ? skb->mac_header : -1, 1101 has_mac ? skb_mac_header_len(skb) : -1, 1102 skb->network_header, 1103 has_trans ? skb_network_header_len(skb) : -1, 1104 has_trans ? skb->transport_header : -1, 1105 sh->tx_flags, sh->nr_frags, 1106 sh->gso_size, sh->gso_type, sh->gso_segs, 1107 skb->csum, skb->ip_summed, skb->csum_complete_sw, 1108 skb->csum_valid, skb->csum_level, 1109 skb->hash, skb->sw_hash, skb->l4_hash, 1110 ntohs(skb->protocol), skb->pkt_type, skb->skb_iif); 1111 1112 if (dev) 1113 printk("%sdev name=%s feat=%pNF\n", 1114 level, dev->name, &dev->features); 1115 if (sk) 1116 printk("%ssk family=%hu type=%u proto=%u\n", 1117 level, sk->sk_family, sk->sk_type, sk->sk_protocol); 1118 1119 if (full_pkt && headroom) 1120 print_hex_dump(level, "skb headroom: ", DUMP_PREFIX_OFFSET, 1121 16, 1, skb->head, headroom, false); 1122 1123 seg_len = min_t(int, skb_headlen(skb), len); 1124 if (seg_len) 1125 print_hex_dump(level, "skb linear: ", DUMP_PREFIX_OFFSET, 1126 16, 1, skb->data, seg_len, false); 1127 len -= seg_len; 1128 1129 if (full_pkt && tailroom) 1130 print_hex_dump(level, "skb tailroom: ", DUMP_PREFIX_OFFSET, 1131 16, 1, skb_tail_pointer(skb), tailroom, false); 1132 1133 for (i = 0; len && i < skb_shinfo(skb)->nr_frags; i++) { 1134 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 1135 u32 p_off, p_len, copied; 1136 struct page *p; 1137 u8 *vaddr; 1138 1139 skb_frag_foreach_page(frag, skb_frag_off(frag), 1140 skb_frag_size(frag), p, p_off, p_len, 1141 copied) { 1142 seg_len = min_t(int, p_len, len); 1143 vaddr = kmap_atomic(p); 1144 print_hex_dump(level, "skb frag: ", 1145 DUMP_PREFIX_OFFSET, 1146 16, 1, vaddr + p_off, seg_len, false); 1147 kunmap_atomic(vaddr); 1148 len -= seg_len; 1149 if (!len) 1150 break; 1151 } 1152 } 1153 1154 if (full_pkt && skb_has_frag_list(skb)) { 1155 printk("skb fraglist:\n"); 1156 skb_walk_frags(skb, list_skb) 1157 skb_dump(level, list_skb, true); 1158 } 1159 } 1160 EXPORT_SYMBOL(skb_dump); 1161 1162 /** 1163 * skb_tx_error - report an sk_buff xmit error 1164 * @skb: buffer that triggered an error 1165 * 1166 * Report xmit error if a device callback is tracking this skb. 1167 * skb must be freed afterwards. 1168 */ 1169 void skb_tx_error(struct sk_buff *skb) 1170 { 1171 if (skb) { 1172 skb_zcopy_downgrade_managed(skb); 1173 skb_zcopy_clear(skb, true); 1174 } 1175 } 1176 EXPORT_SYMBOL(skb_tx_error); 1177 1178 #ifdef CONFIG_TRACEPOINTS 1179 /** 1180 * consume_skb - free an skbuff 1181 * @skb: buffer to free 1182 * 1183 * Drop a ref to the buffer and free it if the usage count has hit zero 1184 * Functions identically to kfree_skb, but kfree_skb assumes that the frame 1185 * is being dropped after a failure and notes that 1186 */ 1187 void consume_skb(struct sk_buff *skb) 1188 { 1189 if (!skb_unref(skb)) 1190 return; 1191 1192 trace_consume_skb(skb); 1193 __kfree_skb(skb); 1194 } 1195 EXPORT_SYMBOL(consume_skb); 1196 #endif 1197 1198 /** 1199 * __consume_stateless_skb - free an skbuff, assuming it is stateless 1200 * @skb: buffer to free 1201 * 1202 * Alike consume_skb(), but this variant assumes that this is the last 1203 * skb reference and all the head states have been already dropped 1204 */ 1205 void __consume_stateless_skb(struct sk_buff *skb) 1206 { 1207 trace_consume_skb(skb); 1208 skb_release_data(skb, SKB_CONSUMED); 1209 kfree_skbmem(skb); 1210 } 1211 1212 static void napi_skb_cache_put(struct sk_buff *skb) 1213 { 1214 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 1215 u32 i; 1216 1217 kasan_poison_object_data(skbuff_cache, skb); 1218 nc->skb_cache[nc->skb_count++] = skb; 1219 1220 if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) { 1221 for (i = NAPI_SKB_CACHE_HALF; i < NAPI_SKB_CACHE_SIZE; i++) 1222 kasan_unpoison_object_data(skbuff_cache, 1223 nc->skb_cache[i]); 1224 1225 kmem_cache_free_bulk(skbuff_cache, NAPI_SKB_CACHE_HALF, 1226 nc->skb_cache + NAPI_SKB_CACHE_HALF); 1227 nc->skb_count = NAPI_SKB_CACHE_HALF; 1228 } 1229 } 1230 1231 void __kfree_skb_defer(struct sk_buff *skb) 1232 { 1233 skb_release_all(skb, SKB_DROP_REASON_NOT_SPECIFIED); 1234 napi_skb_cache_put(skb); 1235 } 1236 1237 void napi_skb_free_stolen_head(struct sk_buff *skb) 1238 { 1239 if (unlikely(skb->slow_gro)) { 1240 nf_reset_ct(skb); 1241 skb_dst_drop(skb); 1242 skb_ext_put(skb); 1243 skb_orphan(skb); 1244 skb->slow_gro = 0; 1245 } 1246 napi_skb_cache_put(skb); 1247 } 1248 1249 void napi_consume_skb(struct sk_buff *skb, int budget) 1250 { 1251 /* Zero budget indicate non-NAPI context called us, like netpoll */ 1252 if (unlikely(!budget)) { 1253 dev_consume_skb_any(skb); 1254 return; 1255 } 1256 1257 DEBUG_NET_WARN_ON_ONCE(!in_softirq()); 1258 1259 if (!skb_unref(skb)) 1260 return; 1261 1262 /* if reaching here SKB is ready to free */ 1263 trace_consume_skb(skb); 1264 1265 /* if SKB is a clone, don't handle this case */ 1266 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) { 1267 __kfree_skb(skb); 1268 return; 1269 } 1270 1271 skb_release_all(skb, SKB_CONSUMED); 1272 napi_skb_cache_put(skb); 1273 } 1274 EXPORT_SYMBOL(napi_consume_skb); 1275 1276 /* Make sure a field is contained by headers group */ 1277 #define CHECK_SKB_FIELD(field) \ 1278 BUILD_BUG_ON(offsetof(struct sk_buff, field) != \ 1279 offsetof(struct sk_buff, headers.field)); \ 1280 1281 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old) 1282 { 1283 new->tstamp = old->tstamp; 1284 /* We do not copy old->sk */ 1285 new->dev = old->dev; 1286 memcpy(new->cb, old->cb, sizeof(old->cb)); 1287 skb_dst_copy(new, old); 1288 __skb_ext_copy(new, old); 1289 __nf_copy(new, old, false); 1290 1291 /* Note : this field could be in the headers group. 1292 * It is not yet because we do not want to have a 16 bit hole 1293 */ 1294 new->queue_mapping = old->queue_mapping; 1295 1296 memcpy(&new->headers, &old->headers, sizeof(new->headers)); 1297 CHECK_SKB_FIELD(protocol); 1298 CHECK_SKB_FIELD(csum); 1299 CHECK_SKB_FIELD(hash); 1300 CHECK_SKB_FIELD(priority); 1301 CHECK_SKB_FIELD(skb_iif); 1302 CHECK_SKB_FIELD(vlan_proto); 1303 CHECK_SKB_FIELD(vlan_tci); 1304 CHECK_SKB_FIELD(transport_header); 1305 CHECK_SKB_FIELD(network_header); 1306 CHECK_SKB_FIELD(mac_header); 1307 CHECK_SKB_FIELD(inner_protocol); 1308 CHECK_SKB_FIELD(inner_transport_header); 1309 CHECK_SKB_FIELD(inner_network_header); 1310 CHECK_SKB_FIELD(inner_mac_header); 1311 CHECK_SKB_FIELD(mark); 1312 #ifdef CONFIG_NETWORK_SECMARK 1313 CHECK_SKB_FIELD(secmark); 1314 #endif 1315 #ifdef CONFIG_NET_RX_BUSY_POLL 1316 CHECK_SKB_FIELD(napi_id); 1317 #endif 1318 CHECK_SKB_FIELD(alloc_cpu); 1319 #ifdef CONFIG_XPS 1320 CHECK_SKB_FIELD(sender_cpu); 1321 #endif 1322 #ifdef CONFIG_NET_SCHED 1323 CHECK_SKB_FIELD(tc_index); 1324 #endif 1325 1326 } 1327 1328 /* 1329 * You should not add any new code to this function. Add it to 1330 * __copy_skb_header above instead. 1331 */ 1332 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb) 1333 { 1334 #define C(x) n->x = skb->x 1335 1336 n->next = n->prev = NULL; 1337 n->sk = NULL; 1338 __copy_skb_header(n, skb); 1339 1340 C(len); 1341 C(data_len); 1342 C(mac_len); 1343 n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len; 1344 n->cloned = 1; 1345 n->nohdr = 0; 1346 n->peeked = 0; 1347 C(pfmemalloc); 1348 C(pp_recycle); 1349 n->destructor = NULL; 1350 C(tail); 1351 C(end); 1352 C(head); 1353 C(head_frag); 1354 C(data); 1355 C(truesize); 1356 refcount_set(&n->users, 1); 1357 1358 atomic_inc(&(skb_shinfo(skb)->dataref)); 1359 skb->cloned = 1; 1360 1361 return n; 1362 #undef C 1363 } 1364 1365 /** 1366 * alloc_skb_for_msg() - allocate sk_buff to wrap frag list forming a msg 1367 * @first: first sk_buff of the msg 1368 */ 1369 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first) 1370 { 1371 struct sk_buff *n; 1372 1373 n = alloc_skb(0, GFP_ATOMIC); 1374 if (!n) 1375 return NULL; 1376 1377 n->len = first->len; 1378 n->data_len = first->len; 1379 n->truesize = first->truesize; 1380 1381 skb_shinfo(n)->frag_list = first; 1382 1383 __copy_skb_header(n, first); 1384 n->destructor = NULL; 1385 1386 return n; 1387 } 1388 EXPORT_SYMBOL_GPL(alloc_skb_for_msg); 1389 1390 /** 1391 * skb_morph - morph one skb into another 1392 * @dst: the skb to receive the contents 1393 * @src: the skb to supply the contents 1394 * 1395 * This is identical to skb_clone except that the target skb is 1396 * supplied by the user. 1397 * 1398 * The target skb is returned upon exit. 1399 */ 1400 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src) 1401 { 1402 skb_release_all(dst, SKB_CONSUMED); 1403 return __skb_clone(dst, src); 1404 } 1405 EXPORT_SYMBOL_GPL(skb_morph); 1406 1407 int mm_account_pinned_pages(struct mmpin *mmp, size_t size) 1408 { 1409 unsigned long max_pg, num_pg, new_pg, old_pg; 1410 struct user_struct *user; 1411 1412 if (capable(CAP_IPC_LOCK) || !size) 1413 return 0; 1414 1415 num_pg = (size >> PAGE_SHIFT) + 2; /* worst case */ 1416 max_pg = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT; 1417 user = mmp->user ? : current_user(); 1418 1419 old_pg = atomic_long_read(&user->locked_vm); 1420 do { 1421 new_pg = old_pg + num_pg; 1422 if (new_pg > max_pg) 1423 return -ENOBUFS; 1424 } while (!atomic_long_try_cmpxchg(&user->locked_vm, &old_pg, new_pg)); 1425 1426 if (!mmp->user) { 1427 mmp->user = get_uid(user); 1428 mmp->num_pg = num_pg; 1429 } else { 1430 mmp->num_pg += num_pg; 1431 } 1432 1433 return 0; 1434 } 1435 EXPORT_SYMBOL_GPL(mm_account_pinned_pages); 1436 1437 void mm_unaccount_pinned_pages(struct mmpin *mmp) 1438 { 1439 if (mmp->user) { 1440 atomic_long_sub(mmp->num_pg, &mmp->user->locked_vm); 1441 free_uid(mmp->user); 1442 } 1443 } 1444 EXPORT_SYMBOL_GPL(mm_unaccount_pinned_pages); 1445 1446 static struct ubuf_info *msg_zerocopy_alloc(struct sock *sk, size_t size) 1447 { 1448 struct ubuf_info_msgzc *uarg; 1449 struct sk_buff *skb; 1450 1451 WARN_ON_ONCE(!in_task()); 1452 1453 skb = sock_omalloc(sk, 0, GFP_KERNEL); 1454 if (!skb) 1455 return NULL; 1456 1457 BUILD_BUG_ON(sizeof(*uarg) > sizeof(skb->cb)); 1458 uarg = (void *)skb->cb; 1459 uarg->mmp.user = NULL; 1460 1461 if (mm_account_pinned_pages(&uarg->mmp, size)) { 1462 kfree_skb(skb); 1463 return NULL; 1464 } 1465 1466 uarg->ubuf.callback = msg_zerocopy_callback; 1467 uarg->id = ((u32)atomic_inc_return(&sk->sk_zckey)) - 1; 1468 uarg->len = 1; 1469 uarg->bytelen = size; 1470 uarg->zerocopy = 1; 1471 uarg->ubuf.flags = SKBFL_ZEROCOPY_FRAG | SKBFL_DONT_ORPHAN; 1472 refcount_set(&uarg->ubuf.refcnt, 1); 1473 sock_hold(sk); 1474 1475 return &uarg->ubuf; 1476 } 1477 1478 static inline struct sk_buff *skb_from_uarg(struct ubuf_info_msgzc *uarg) 1479 { 1480 return container_of((void *)uarg, struct sk_buff, cb); 1481 } 1482 1483 struct ubuf_info *msg_zerocopy_realloc(struct sock *sk, size_t size, 1484 struct ubuf_info *uarg) 1485 { 1486 if (uarg) { 1487 struct ubuf_info_msgzc *uarg_zc; 1488 const u32 byte_limit = 1 << 19; /* limit to a few TSO */ 1489 u32 bytelen, next; 1490 1491 /* there might be non MSG_ZEROCOPY users */ 1492 if (uarg->callback != msg_zerocopy_callback) 1493 return NULL; 1494 1495 /* realloc only when socket is locked (TCP, UDP cork), 1496 * so uarg->len and sk_zckey access is serialized 1497 */ 1498 if (!sock_owned_by_user(sk)) { 1499 WARN_ON_ONCE(1); 1500 return NULL; 1501 } 1502 1503 uarg_zc = uarg_to_msgzc(uarg); 1504 bytelen = uarg_zc->bytelen + size; 1505 if (uarg_zc->len == USHRT_MAX - 1 || bytelen > byte_limit) { 1506 /* TCP can create new skb to attach new uarg */ 1507 if (sk->sk_type == SOCK_STREAM) 1508 goto new_alloc; 1509 return NULL; 1510 } 1511 1512 next = (u32)atomic_read(&sk->sk_zckey); 1513 if ((u32)(uarg_zc->id + uarg_zc->len) == next) { 1514 if (mm_account_pinned_pages(&uarg_zc->mmp, size)) 1515 return NULL; 1516 uarg_zc->len++; 1517 uarg_zc->bytelen = bytelen; 1518 atomic_set(&sk->sk_zckey, ++next); 1519 1520 /* no extra ref when appending to datagram (MSG_MORE) */ 1521 if (sk->sk_type == SOCK_STREAM) 1522 net_zcopy_get(uarg); 1523 1524 return uarg; 1525 } 1526 } 1527 1528 new_alloc: 1529 return msg_zerocopy_alloc(sk, size); 1530 } 1531 EXPORT_SYMBOL_GPL(msg_zerocopy_realloc); 1532 1533 static bool skb_zerocopy_notify_extend(struct sk_buff *skb, u32 lo, u16 len) 1534 { 1535 struct sock_exterr_skb *serr = SKB_EXT_ERR(skb); 1536 u32 old_lo, old_hi; 1537 u64 sum_len; 1538 1539 old_lo = serr->ee.ee_info; 1540 old_hi = serr->ee.ee_data; 1541 sum_len = old_hi - old_lo + 1ULL + len; 1542 1543 if (sum_len >= (1ULL << 32)) 1544 return false; 1545 1546 if (lo != old_hi + 1) 1547 return false; 1548 1549 serr->ee.ee_data += len; 1550 return true; 1551 } 1552 1553 static void __msg_zerocopy_callback(struct ubuf_info_msgzc *uarg) 1554 { 1555 struct sk_buff *tail, *skb = skb_from_uarg(uarg); 1556 struct sock_exterr_skb *serr; 1557 struct sock *sk = skb->sk; 1558 struct sk_buff_head *q; 1559 unsigned long flags; 1560 bool is_zerocopy; 1561 u32 lo, hi; 1562 u16 len; 1563 1564 mm_unaccount_pinned_pages(&uarg->mmp); 1565 1566 /* if !len, there was only 1 call, and it was aborted 1567 * so do not queue a completion notification 1568 */ 1569 if (!uarg->len || sock_flag(sk, SOCK_DEAD)) 1570 goto release; 1571 1572 len = uarg->len; 1573 lo = uarg->id; 1574 hi = uarg->id + len - 1; 1575 is_zerocopy = uarg->zerocopy; 1576 1577 serr = SKB_EXT_ERR(skb); 1578 memset(serr, 0, sizeof(*serr)); 1579 serr->ee.ee_errno = 0; 1580 serr->ee.ee_origin = SO_EE_ORIGIN_ZEROCOPY; 1581 serr->ee.ee_data = hi; 1582 serr->ee.ee_info = lo; 1583 if (!is_zerocopy) 1584 serr->ee.ee_code |= SO_EE_CODE_ZEROCOPY_COPIED; 1585 1586 q = &sk->sk_error_queue; 1587 spin_lock_irqsave(&q->lock, flags); 1588 tail = skb_peek_tail(q); 1589 if (!tail || SKB_EXT_ERR(tail)->ee.ee_origin != SO_EE_ORIGIN_ZEROCOPY || 1590 !skb_zerocopy_notify_extend(tail, lo, len)) { 1591 __skb_queue_tail(q, skb); 1592 skb = NULL; 1593 } 1594 spin_unlock_irqrestore(&q->lock, flags); 1595 1596 sk_error_report(sk); 1597 1598 release: 1599 consume_skb(skb); 1600 sock_put(sk); 1601 } 1602 1603 void msg_zerocopy_callback(struct sk_buff *skb, struct ubuf_info *uarg, 1604 bool success) 1605 { 1606 struct ubuf_info_msgzc *uarg_zc = uarg_to_msgzc(uarg); 1607 1608 uarg_zc->zerocopy = uarg_zc->zerocopy & success; 1609 1610 if (refcount_dec_and_test(&uarg->refcnt)) 1611 __msg_zerocopy_callback(uarg_zc); 1612 } 1613 EXPORT_SYMBOL_GPL(msg_zerocopy_callback); 1614 1615 void msg_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref) 1616 { 1617 struct sock *sk = skb_from_uarg(uarg_to_msgzc(uarg))->sk; 1618 1619 atomic_dec(&sk->sk_zckey); 1620 uarg_to_msgzc(uarg)->len--; 1621 1622 if (have_uref) 1623 msg_zerocopy_callback(NULL, uarg, true); 1624 } 1625 EXPORT_SYMBOL_GPL(msg_zerocopy_put_abort); 1626 1627 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb, 1628 struct msghdr *msg, int len, 1629 struct ubuf_info *uarg) 1630 { 1631 struct ubuf_info *orig_uarg = skb_zcopy(skb); 1632 int err, orig_len = skb->len; 1633 1634 /* An skb can only point to one uarg. This edge case happens when 1635 * TCP appends to an skb, but zerocopy_realloc triggered a new alloc. 1636 */ 1637 if (orig_uarg && uarg != orig_uarg) 1638 return -EEXIST; 1639 1640 err = __zerocopy_sg_from_iter(msg, sk, skb, &msg->msg_iter, len); 1641 if (err == -EFAULT || (err == -EMSGSIZE && skb->len == orig_len)) { 1642 struct sock *save_sk = skb->sk; 1643 1644 /* Streams do not free skb on error. Reset to prev state. */ 1645 iov_iter_revert(&msg->msg_iter, skb->len - orig_len); 1646 skb->sk = sk; 1647 ___pskb_trim(skb, orig_len); 1648 skb->sk = save_sk; 1649 return err; 1650 } 1651 1652 skb_zcopy_set(skb, uarg, NULL); 1653 return skb->len - orig_len; 1654 } 1655 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_stream); 1656 1657 void __skb_zcopy_downgrade_managed(struct sk_buff *skb) 1658 { 1659 int i; 1660 1661 skb_shinfo(skb)->flags &= ~SKBFL_MANAGED_FRAG_REFS; 1662 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 1663 skb_frag_ref(skb, i); 1664 } 1665 EXPORT_SYMBOL_GPL(__skb_zcopy_downgrade_managed); 1666 1667 static int skb_zerocopy_clone(struct sk_buff *nskb, struct sk_buff *orig, 1668 gfp_t gfp_mask) 1669 { 1670 if (skb_zcopy(orig)) { 1671 if (skb_zcopy(nskb)) { 1672 /* !gfp_mask callers are verified to !skb_zcopy(nskb) */ 1673 if (!gfp_mask) { 1674 WARN_ON_ONCE(1); 1675 return -ENOMEM; 1676 } 1677 if (skb_uarg(nskb) == skb_uarg(orig)) 1678 return 0; 1679 if (skb_copy_ubufs(nskb, GFP_ATOMIC)) 1680 return -EIO; 1681 } 1682 skb_zcopy_set(nskb, skb_uarg(orig), NULL); 1683 } 1684 return 0; 1685 } 1686 1687 /** 1688 * skb_copy_ubufs - copy userspace skb frags buffers to kernel 1689 * @skb: the skb to modify 1690 * @gfp_mask: allocation priority 1691 * 1692 * This must be called on skb with SKBFL_ZEROCOPY_ENABLE. 1693 * It will copy all frags into kernel and drop the reference 1694 * to userspace pages. 1695 * 1696 * If this function is called from an interrupt gfp_mask() must be 1697 * %GFP_ATOMIC. 1698 * 1699 * Returns 0 on success or a negative error code on failure 1700 * to allocate kernel memory to copy to. 1701 */ 1702 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask) 1703 { 1704 int num_frags = skb_shinfo(skb)->nr_frags; 1705 struct page *page, *head = NULL; 1706 int i, new_frags; 1707 u32 d_off; 1708 1709 if (skb_shared(skb) || skb_unclone(skb, gfp_mask)) 1710 return -EINVAL; 1711 1712 if (!num_frags) 1713 goto release; 1714 1715 new_frags = (__skb_pagelen(skb) + PAGE_SIZE - 1) >> PAGE_SHIFT; 1716 for (i = 0; i < new_frags; i++) { 1717 page = alloc_page(gfp_mask); 1718 if (!page) { 1719 while (head) { 1720 struct page *next = (struct page *)page_private(head); 1721 put_page(head); 1722 head = next; 1723 } 1724 return -ENOMEM; 1725 } 1726 set_page_private(page, (unsigned long)head); 1727 head = page; 1728 } 1729 1730 page = head; 1731 d_off = 0; 1732 for (i = 0; i < num_frags; i++) { 1733 skb_frag_t *f = &skb_shinfo(skb)->frags[i]; 1734 u32 p_off, p_len, copied; 1735 struct page *p; 1736 u8 *vaddr; 1737 1738 skb_frag_foreach_page(f, skb_frag_off(f), skb_frag_size(f), 1739 p, p_off, p_len, copied) { 1740 u32 copy, done = 0; 1741 vaddr = kmap_atomic(p); 1742 1743 while (done < p_len) { 1744 if (d_off == PAGE_SIZE) { 1745 d_off = 0; 1746 page = (struct page *)page_private(page); 1747 } 1748 copy = min_t(u32, PAGE_SIZE - d_off, p_len - done); 1749 memcpy(page_address(page) + d_off, 1750 vaddr + p_off + done, copy); 1751 done += copy; 1752 d_off += copy; 1753 } 1754 kunmap_atomic(vaddr); 1755 } 1756 } 1757 1758 /* skb frags release userspace buffers */ 1759 for (i = 0; i < num_frags; i++) 1760 skb_frag_unref(skb, i); 1761 1762 /* skb frags point to kernel buffers */ 1763 for (i = 0; i < new_frags - 1; i++) { 1764 __skb_fill_page_desc(skb, i, head, 0, PAGE_SIZE); 1765 head = (struct page *)page_private(head); 1766 } 1767 __skb_fill_page_desc(skb, new_frags - 1, head, 0, d_off); 1768 skb_shinfo(skb)->nr_frags = new_frags; 1769 1770 release: 1771 skb_zcopy_clear(skb, false); 1772 return 0; 1773 } 1774 EXPORT_SYMBOL_GPL(skb_copy_ubufs); 1775 1776 /** 1777 * skb_clone - duplicate an sk_buff 1778 * @skb: buffer to clone 1779 * @gfp_mask: allocation priority 1780 * 1781 * Duplicate an &sk_buff. The new one is not owned by a socket. Both 1782 * copies share the same packet data but not structure. The new 1783 * buffer has a reference count of 1. If the allocation fails the 1784 * function returns %NULL otherwise the new buffer is returned. 1785 * 1786 * If this function is called from an interrupt gfp_mask() must be 1787 * %GFP_ATOMIC. 1788 */ 1789 1790 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask) 1791 { 1792 struct sk_buff_fclones *fclones = container_of(skb, 1793 struct sk_buff_fclones, 1794 skb1); 1795 struct sk_buff *n; 1796 1797 if (skb_orphan_frags(skb, gfp_mask)) 1798 return NULL; 1799 1800 if (skb->fclone == SKB_FCLONE_ORIG && 1801 refcount_read(&fclones->fclone_ref) == 1) { 1802 n = &fclones->skb2; 1803 refcount_set(&fclones->fclone_ref, 2); 1804 n->fclone = SKB_FCLONE_CLONE; 1805 } else { 1806 if (skb_pfmemalloc(skb)) 1807 gfp_mask |= __GFP_MEMALLOC; 1808 1809 n = kmem_cache_alloc(skbuff_cache, gfp_mask); 1810 if (!n) 1811 return NULL; 1812 1813 n->fclone = SKB_FCLONE_UNAVAILABLE; 1814 } 1815 1816 return __skb_clone(n, skb); 1817 } 1818 EXPORT_SYMBOL(skb_clone); 1819 1820 void skb_headers_offset_update(struct sk_buff *skb, int off) 1821 { 1822 /* Only adjust this if it actually is csum_start rather than csum */ 1823 if (skb->ip_summed == CHECKSUM_PARTIAL) 1824 skb->csum_start += off; 1825 /* {transport,network,mac}_header and tail are relative to skb->head */ 1826 skb->transport_header += off; 1827 skb->network_header += off; 1828 if (skb_mac_header_was_set(skb)) 1829 skb->mac_header += off; 1830 skb->inner_transport_header += off; 1831 skb->inner_network_header += off; 1832 skb->inner_mac_header += off; 1833 } 1834 EXPORT_SYMBOL(skb_headers_offset_update); 1835 1836 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old) 1837 { 1838 __copy_skb_header(new, old); 1839 1840 skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size; 1841 skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs; 1842 skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type; 1843 } 1844 EXPORT_SYMBOL(skb_copy_header); 1845 1846 static inline int skb_alloc_rx_flag(const struct sk_buff *skb) 1847 { 1848 if (skb_pfmemalloc(skb)) 1849 return SKB_ALLOC_RX; 1850 return 0; 1851 } 1852 1853 /** 1854 * skb_copy - create private copy of an sk_buff 1855 * @skb: buffer to copy 1856 * @gfp_mask: allocation priority 1857 * 1858 * Make a copy of both an &sk_buff and its data. This is used when the 1859 * caller wishes to modify the data and needs a private copy of the 1860 * data to alter. Returns %NULL on failure or the pointer to the buffer 1861 * on success. The returned buffer has a reference count of 1. 1862 * 1863 * As by-product this function converts non-linear &sk_buff to linear 1864 * one, so that &sk_buff becomes completely private and caller is allowed 1865 * to modify all the data of returned buffer. This means that this 1866 * function is not recommended for use in circumstances when only 1867 * header is going to be modified. Use pskb_copy() instead. 1868 */ 1869 1870 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask) 1871 { 1872 int headerlen = skb_headroom(skb); 1873 unsigned int size = skb_end_offset(skb) + skb->data_len; 1874 struct sk_buff *n = __alloc_skb(size, gfp_mask, 1875 skb_alloc_rx_flag(skb), NUMA_NO_NODE); 1876 1877 if (!n) 1878 return NULL; 1879 1880 /* Set the data pointer */ 1881 skb_reserve(n, headerlen); 1882 /* Set the tail pointer and length */ 1883 skb_put(n, skb->len); 1884 1885 BUG_ON(skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len)); 1886 1887 skb_copy_header(n, skb); 1888 return n; 1889 } 1890 EXPORT_SYMBOL(skb_copy); 1891 1892 /** 1893 * __pskb_copy_fclone - create copy of an sk_buff with private head. 1894 * @skb: buffer to copy 1895 * @headroom: headroom of new skb 1896 * @gfp_mask: allocation priority 1897 * @fclone: if true allocate the copy of the skb from the fclone 1898 * cache instead of the head cache; it is recommended to set this 1899 * to true for the cases where the copy will likely be cloned 1900 * 1901 * Make a copy of both an &sk_buff and part of its data, located 1902 * in header. Fragmented data remain shared. This is used when 1903 * the caller wishes to modify only header of &sk_buff and needs 1904 * private copy of the header to alter. Returns %NULL on failure 1905 * or the pointer to the buffer on success. 1906 * The returned buffer has a reference count of 1. 1907 */ 1908 1909 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom, 1910 gfp_t gfp_mask, bool fclone) 1911 { 1912 unsigned int size = skb_headlen(skb) + headroom; 1913 int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0); 1914 struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE); 1915 1916 if (!n) 1917 goto out; 1918 1919 /* Set the data pointer */ 1920 skb_reserve(n, headroom); 1921 /* Set the tail pointer and length */ 1922 skb_put(n, skb_headlen(skb)); 1923 /* Copy the bytes */ 1924 skb_copy_from_linear_data(skb, n->data, n->len); 1925 1926 n->truesize += skb->data_len; 1927 n->data_len = skb->data_len; 1928 n->len = skb->len; 1929 1930 if (skb_shinfo(skb)->nr_frags) { 1931 int i; 1932 1933 if (skb_orphan_frags(skb, gfp_mask) || 1934 skb_zerocopy_clone(n, skb, gfp_mask)) { 1935 kfree_skb(n); 1936 n = NULL; 1937 goto out; 1938 } 1939 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1940 skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i]; 1941 skb_frag_ref(skb, i); 1942 } 1943 skb_shinfo(n)->nr_frags = i; 1944 } 1945 1946 if (skb_has_frag_list(skb)) { 1947 skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list; 1948 skb_clone_fraglist(n); 1949 } 1950 1951 skb_copy_header(n, skb); 1952 out: 1953 return n; 1954 } 1955 EXPORT_SYMBOL(__pskb_copy_fclone); 1956 1957 /** 1958 * pskb_expand_head - reallocate header of &sk_buff 1959 * @skb: buffer to reallocate 1960 * @nhead: room to add at head 1961 * @ntail: room to add at tail 1962 * @gfp_mask: allocation priority 1963 * 1964 * Expands (or creates identical copy, if @nhead and @ntail are zero) 1965 * header of @skb. &sk_buff itself is not changed. &sk_buff MUST have 1966 * reference count of 1. Returns zero in the case of success or error, 1967 * if expansion failed. In the last case, &sk_buff is not changed. 1968 * 1969 * All the pointers pointing into skb header may change and must be 1970 * reloaded after call to this function. 1971 */ 1972 1973 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, 1974 gfp_t gfp_mask) 1975 { 1976 unsigned int osize = skb_end_offset(skb); 1977 unsigned int size = osize + nhead + ntail; 1978 long off; 1979 u8 *data; 1980 int i; 1981 1982 BUG_ON(nhead < 0); 1983 1984 BUG_ON(skb_shared(skb)); 1985 1986 skb_zcopy_downgrade_managed(skb); 1987 1988 if (skb_pfmemalloc(skb)) 1989 gfp_mask |= __GFP_MEMALLOC; 1990 1991 data = kmalloc_reserve(&size, gfp_mask, NUMA_NO_NODE, NULL); 1992 if (!data) 1993 goto nodata; 1994 size = SKB_WITH_OVERHEAD(size); 1995 1996 /* Copy only real data... and, alas, header. This should be 1997 * optimized for the cases when header is void. 1998 */ 1999 memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head); 2000 2001 memcpy((struct skb_shared_info *)(data + size), 2002 skb_shinfo(skb), 2003 offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags])); 2004 2005 /* 2006 * if shinfo is shared we must drop the old head gracefully, but if it 2007 * is not we can just drop the old head and let the existing refcount 2008 * be since all we did is relocate the values 2009 */ 2010 if (skb_cloned(skb)) { 2011 if (skb_orphan_frags(skb, gfp_mask)) 2012 goto nofrags; 2013 if (skb_zcopy(skb)) 2014 refcount_inc(&skb_uarg(skb)->refcnt); 2015 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 2016 skb_frag_ref(skb, i); 2017 2018 if (skb_has_frag_list(skb)) 2019 skb_clone_fraglist(skb); 2020 2021 skb_release_data(skb, SKB_CONSUMED); 2022 } else { 2023 skb_free_head(skb); 2024 } 2025 off = (data + nhead) - skb->head; 2026 2027 skb->head = data; 2028 skb->head_frag = 0; 2029 skb->data += off; 2030 2031 skb_set_end_offset(skb, size); 2032 #ifdef NET_SKBUFF_DATA_USES_OFFSET 2033 off = nhead; 2034 #endif 2035 skb->tail += off; 2036 skb_headers_offset_update(skb, nhead); 2037 skb->cloned = 0; 2038 skb->hdr_len = 0; 2039 skb->nohdr = 0; 2040 atomic_set(&skb_shinfo(skb)->dataref, 1); 2041 2042 skb_metadata_clear(skb); 2043 2044 /* It is not generally safe to change skb->truesize. 2045 * For the moment, we really care of rx path, or 2046 * when skb is orphaned (not attached to a socket). 2047 */ 2048 if (!skb->sk || skb->destructor == sock_edemux) 2049 skb->truesize += size - osize; 2050 2051 return 0; 2052 2053 nofrags: 2054 skb_kfree_head(data, size); 2055 nodata: 2056 return -ENOMEM; 2057 } 2058 EXPORT_SYMBOL(pskb_expand_head); 2059 2060 /* Make private copy of skb with writable head and some headroom */ 2061 2062 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom) 2063 { 2064 struct sk_buff *skb2; 2065 int delta = headroom - skb_headroom(skb); 2066 2067 if (delta <= 0) 2068 skb2 = pskb_copy(skb, GFP_ATOMIC); 2069 else { 2070 skb2 = skb_clone(skb, GFP_ATOMIC); 2071 if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0, 2072 GFP_ATOMIC)) { 2073 kfree_skb(skb2); 2074 skb2 = NULL; 2075 } 2076 } 2077 return skb2; 2078 } 2079 EXPORT_SYMBOL(skb_realloc_headroom); 2080 2081 int __skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri) 2082 { 2083 unsigned int saved_end_offset, saved_truesize; 2084 struct skb_shared_info *shinfo; 2085 int res; 2086 2087 saved_end_offset = skb_end_offset(skb); 2088 saved_truesize = skb->truesize; 2089 2090 res = pskb_expand_head(skb, 0, 0, pri); 2091 if (res) 2092 return res; 2093 2094 skb->truesize = saved_truesize; 2095 2096 if (likely(skb_end_offset(skb) == saved_end_offset)) 2097 return 0; 2098 2099 shinfo = skb_shinfo(skb); 2100 2101 /* We are about to change back skb->end, 2102 * we need to move skb_shinfo() to its new location. 2103 */ 2104 memmove(skb->head + saved_end_offset, 2105 shinfo, 2106 offsetof(struct skb_shared_info, frags[shinfo->nr_frags])); 2107 2108 skb_set_end_offset(skb, saved_end_offset); 2109 2110 return 0; 2111 } 2112 2113 /** 2114 * skb_expand_head - reallocate header of &sk_buff 2115 * @skb: buffer to reallocate 2116 * @headroom: needed headroom 2117 * 2118 * Unlike skb_realloc_headroom, this one does not allocate a new skb 2119 * if possible; copies skb->sk to new skb as needed 2120 * and frees original skb in case of failures. 2121 * 2122 * It expect increased headroom and generates warning otherwise. 2123 */ 2124 2125 struct sk_buff *skb_expand_head(struct sk_buff *skb, unsigned int headroom) 2126 { 2127 int delta = headroom - skb_headroom(skb); 2128 int osize = skb_end_offset(skb); 2129 struct sock *sk = skb->sk; 2130 2131 if (WARN_ONCE(delta <= 0, 2132 "%s is expecting an increase in the headroom", __func__)) 2133 return skb; 2134 2135 delta = SKB_DATA_ALIGN(delta); 2136 /* pskb_expand_head() might crash, if skb is shared. */ 2137 if (skb_shared(skb) || !is_skb_wmem(skb)) { 2138 struct sk_buff *nskb = skb_clone(skb, GFP_ATOMIC); 2139 2140 if (unlikely(!nskb)) 2141 goto fail; 2142 2143 if (sk) 2144 skb_set_owner_w(nskb, sk); 2145 consume_skb(skb); 2146 skb = nskb; 2147 } 2148 if (pskb_expand_head(skb, delta, 0, GFP_ATOMIC)) 2149 goto fail; 2150 2151 if (sk && is_skb_wmem(skb)) { 2152 delta = skb_end_offset(skb) - osize; 2153 refcount_add(delta, &sk->sk_wmem_alloc); 2154 skb->truesize += delta; 2155 } 2156 return skb; 2157 2158 fail: 2159 kfree_skb(skb); 2160 return NULL; 2161 } 2162 EXPORT_SYMBOL(skb_expand_head); 2163 2164 /** 2165 * skb_copy_expand - copy and expand sk_buff 2166 * @skb: buffer to copy 2167 * @newheadroom: new free bytes at head 2168 * @newtailroom: new free bytes at tail 2169 * @gfp_mask: allocation priority 2170 * 2171 * Make a copy of both an &sk_buff and its data and while doing so 2172 * allocate additional space. 2173 * 2174 * This is used when the caller wishes to modify the data and needs a 2175 * private copy of the data to alter as well as more space for new fields. 2176 * Returns %NULL on failure or the pointer to the buffer 2177 * on success. The returned buffer has a reference count of 1. 2178 * 2179 * You must pass %GFP_ATOMIC as the allocation priority if this function 2180 * is called from an interrupt. 2181 */ 2182 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, 2183 int newheadroom, int newtailroom, 2184 gfp_t gfp_mask) 2185 { 2186 /* 2187 * Allocate the copy buffer 2188 */ 2189 struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom, 2190 gfp_mask, skb_alloc_rx_flag(skb), 2191 NUMA_NO_NODE); 2192 int oldheadroom = skb_headroom(skb); 2193 int head_copy_len, head_copy_off; 2194 2195 if (!n) 2196 return NULL; 2197 2198 skb_reserve(n, newheadroom); 2199 2200 /* Set the tail pointer and length */ 2201 skb_put(n, skb->len); 2202 2203 head_copy_len = oldheadroom; 2204 head_copy_off = 0; 2205 if (newheadroom <= head_copy_len) 2206 head_copy_len = newheadroom; 2207 else 2208 head_copy_off = newheadroom - head_copy_len; 2209 2210 /* Copy the linear header and data. */ 2211 BUG_ON(skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off, 2212 skb->len + head_copy_len)); 2213 2214 skb_copy_header(n, skb); 2215 2216 skb_headers_offset_update(n, newheadroom - oldheadroom); 2217 2218 return n; 2219 } 2220 EXPORT_SYMBOL(skb_copy_expand); 2221 2222 /** 2223 * __skb_pad - zero pad the tail of an skb 2224 * @skb: buffer to pad 2225 * @pad: space to pad 2226 * @free_on_error: free buffer on error 2227 * 2228 * Ensure that a buffer is followed by a padding area that is zero 2229 * filled. Used by network drivers which may DMA or transfer data 2230 * beyond the buffer end onto the wire. 2231 * 2232 * May return error in out of memory cases. The skb is freed on error 2233 * if @free_on_error is true. 2234 */ 2235 2236 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error) 2237 { 2238 int err; 2239 int ntail; 2240 2241 /* If the skbuff is non linear tailroom is always zero.. */ 2242 if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) { 2243 memset(skb->data+skb->len, 0, pad); 2244 return 0; 2245 } 2246 2247 ntail = skb->data_len + pad - (skb->end - skb->tail); 2248 if (likely(skb_cloned(skb) || ntail > 0)) { 2249 err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC); 2250 if (unlikely(err)) 2251 goto free_skb; 2252 } 2253 2254 /* FIXME: The use of this function with non-linear skb's really needs 2255 * to be audited. 2256 */ 2257 err = skb_linearize(skb); 2258 if (unlikely(err)) 2259 goto free_skb; 2260 2261 memset(skb->data + skb->len, 0, pad); 2262 return 0; 2263 2264 free_skb: 2265 if (free_on_error) 2266 kfree_skb(skb); 2267 return err; 2268 } 2269 EXPORT_SYMBOL(__skb_pad); 2270 2271 /** 2272 * pskb_put - add data to the tail of a potentially fragmented buffer 2273 * @skb: start of the buffer to use 2274 * @tail: tail fragment of the buffer to use 2275 * @len: amount of data to add 2276 * 2277 * This function extends the used data area of the potentially 2278 * fragmented buffer. @tail must be the last fragment of @skb -- or 2279 * @skb itself. If this would exceed the total buffer size the kernel 2280 * will panic. A pointer to the first byte of the extra data is 2281 * returned. 2282 */ 2283 2284 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len) 2285 { 2286 if (tail != skb) { 2287 skb->data_len += len; 2288 skb->len += len; 2289 } 2290 return skb_put(tail, len); 2291 } 2292 EXPORT_SYMBOL_GPL(pskb_put); 2293 2294 /** 2295 * skb_put - add data to a buffer 2296 * @skb: buffer to use 2297 * @len: amount of data to add 2298 * 2299 * This function extends the used data area of the buffer. If this would 2300 * exceed the total buffer size the kernel will panic. A pointer to the 2301 * first byte of the extra data is returned. 2302 */ 2303 void *skb_put(struct sk_buff *skb, unsigned int len) 2304 { 2305 void *tmp = skb_tail_pointer(skb); 2306 SKB_LINEAR_ASSERT(skb); 2307 skb->tail += len; 2308 skb->len += len; 2309 if (unlikely(skb->tail > skb->end)) 2310 skb_over_panic(skb, len, __builtin_return_address(0)); 2311 return tmp; 2312 } 2313 EXPORT_SYMBOL(skb_put); 2314 2315 /** 2316 * skb_push - add data to the start of a buffer 2317 * @skb: buffer to use 2318 * @len: amount of data to add 2319 * 2320 * This function extends the used data area of the buffer at the buffer 2321 * start. If this would exceed the total buffer headroom the kernel will 2322 * panic. A pointer to the first byte of the extra data is returned. 2323 */ 2324 void *skb_push(struct sk_buff *skb, unsigned int len) 2325 { 2326 skb->data -= len; 2327 skb->len += len; 2328 if (unlikely(skb->data < skb->head)) 2329 skb_under_panic(skb, len, __builtin_return_address(0)); 2330 return skb->data; 2331 } 2332 EXPORT_SYMBOL(skb_push); 2333 2334 /** 2335 * skb_pull - remove data from the start of a buffer 2336 * @skb: buffer to use 2337 * @len: amount of data to remove 2338 * 2339 * This function removes data from the start of a buffer, returning 2340 * the memory to the headroom. A pointer to the next data in the buffer 2341 * is returned. Once the data has been pulled future pushes will overwrite 2342 * the old data. 2343 */ 2344 void *skb_pull(struct sk_buff *skb, unsigned int len) 2345 { 2346 return skb_pull_inline(skb, len); 2347 } 2348 EXPORT_SYMBOL(skb_pull); 2349 2350 /** 2351 * skb_pull_data - remove data from the start of a buffer returning its 2352 * original position. 2353 * @skb: buffer to use 2354 * @len: amount of data to remove 2355 * 2356 * This function removes data from the start of a buffer, returning 2357 * the memory to the headroom. A pointer to the original data in the buffer 2358 * is returned after checking if there is enough data to pull. Once the 2359 * data has been pulled future pushes will overwrite the old data. 2360 */ 2361 void *skb_pull_data(struct sk_buff *skb, size_t len) 2362 { 2363 void *data = skb->data; 2364 2365 if (skb->len < len) 2366 return NULL; 2367 2368 skb_pull(skb, len); 2369 2370 return data; 2371 } 2372 EXPORT_SYMBOL(skb_pull_data); 2373 2374 /** 2375 * skb_trim - remove end from a buffer 2376 * @skb: buffer to alter 2377 * @len: new length 2378 * 2379 * Cut the length of a buffer down by removing data from the tail. If 2380 * the buffer is already under the length specified it is not modified. 2381 * The skb must be linear. 2382 */ 2383 void skb_trim(struct sk_buff *skb, unsigned int len) 2384 { 2385 if (skb->len > len) 2386 __skb_trim(skb, len); 2387 } 2388 EXPORT_SYMBOL(skb_trim); 2389 2390 /* Trims skb to length len. It can change skb pointers. 2391 */ 2392 2393 int ___pskb_trim(struct sk_buff *skb, unsigned int len) 2394 { 2395 struct sk_buff **fragp; 2396 struct sk_buff *frag; 2397 int offset = skb_headlen(skb); 2398 int nfrags = skb_shinfo(skb)->nr_frags; 2399 int i; 2400 int err; 2401 2402 if (skb_cloned(skb) && 2403 unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))) 2404 return err; 2405 2406 i = 0; 2407 if (offset >= len) 2408 goto drop_pages; 2409 2410 for (; i < nfrags; i++) { 2411 int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]); 2412 2413 if (end < len) { 2414 offset = end; 2415 continue; 2416 } 2417 2418 skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset); 2419 2420 drop_pages: 2421 skb_shinfo(skb)->nr_frags = i; 2422 2423 for (; i < nfrags; i++) 2424 skb_frag_unref(skb, i); 2425 2426 if (skb_has_frag_list(skb)) 2427 skb_drop_fraglist(skb); 2428 goto done; 2429 } 2430 2431 for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp); 2432 fragp = &frag->next) { 2433 int end = offset + frag->len; 2434 2435 if (skb_shared(frag)) { 2436 struct sk_buff *nfrag; 2437 2438 nfrag = skb_clone(frag, GFP_ATOMIC); 2439 if (unlikely(!nfrag)) 2440 return -ENOMEM; 2441 2442 nfrag->next = frag->next; 2443 consume_skb(frag); 2444 frag = nfrag; 2445 *fragp = frag; 2446 } 2447 2448 if (end < len) { 2449 offset = end; 2450 continue; 2451 } 2452 2453 if (end > len && 2454 unlikely((err = pskb_trim(frag, len - offset)))) 2455 return err; 2456 2457 if (frag->next) 2458 skb_drop_list(&frag->next); 2459 break; 2460 } 2461 2462 done: 2463 if (len > skb_headlen(skb)) { 2464 skb->data_len -= skb->len - len; 2465 skb->len = len; 2466 } else { 2467 skb->len = len; 2468 skb->data_len = 0; 2469 skb_set_tail_pointer(skb, len); 2470 } 2471 2472 if (!skb->sk || skb->destructor == sock_edemux) 2473 skb_condense(skb); 2474 return 0; 2475 } 2476 EXPORT_SYMBOL(___pskb_trim); 2477 2478 /* Note : use pskb_trim_rcsum() instead of calling this directly 2479 */ 2480 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len) 2481 { 2482 if (skb->ip_summed == CHECKSUM_COMPLETE) { 2483 int delta = skb->len - len; 2484 2485 skb->csum = csum_block_sub(skb->csum, 2486 skb_checksum(skb, len, delta, 0), 2487 len); 2488 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { 2489 int hdlen = (len > skb_headlen(skb)) ? skb_headlen(skb) : len; 2490 int offset = skb_checksum_start_offset(skb) + skb->csum_offset; 2491 2492 if (offset + sizeof(__sum16) > hdlen) 2493 return -EINVAL; 2494 } 2495 return __pskb_trim(skb, len); 2496 } 2497 EXPORT_SYMBOL(pskb_trim_rcsum_slow); 2498 2499 /** 2500 * __pskb_pull_tail - advance tail of skb header 2501 * @skb: buffer to reallocate 2502 * @delta: number of bytes to advance tail 2503 * 2504 * The function makes a sense only on a fragmented &sk_buff, 2505 * it expands header moving its tail forward and copying necessary 2506 * data from fragmented part. 2507 * 2508 * &sk_buff MUST have reference count of 1. 2509 * 2510 * Returns %NULL (and &sk_buff does not change) if pull failed 2511 * or value of new tail of skb in the case of success. 2512 * 2513 * All the pointers pointing into skb header may change and must be 2514 * reloaded after call to this function. 2515 */ 2516 2517 /* Moves tail of skb head forward, copying data from fragmented part, 2518 * when it is necessary. 2519 * 1. It may fail due to malloc failure. 2520 * 2. It may change skb pointers. 2521 * 2522 * It is pretty complicated. Luckily, it is called only in exceptional cases. 2523 */ 2524 void *__pskb_pull_tail(struct sk_buff *skb, int delta) 2525 { 2526 /* If skb has not enough free space at tail, get new one 2527 * plus 128 bytes for future expansions. If we have enough 2528 * room at tail, reallocate without expansion only if skb is cloned. 2529 */ 2530 int i, k, eat = (skb->tail + delta) - skb->end; 2531 2532 if (eat > 0 || skb_cloned(skb)) { 2533 if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0, 2534 GFP_ATOMIC)) 2535 return NULL; 2536 } 2537 2538 BUG_ON(skb_copy_bits(skb, skb_headlen(skb), 2539 skb_tail_pointer(skb), delta)); 2540 2541 /* Optimization: no fragments, no reasons to preestimate 2542 * size of pulled pages. Superb. 2543 */ 2544 if (!skb_has_frag_list(skb)) 2545 goto pull_pages; 2546 2547 /* Estimate size of pulled pages. */ 2548 eat = delta; 2549 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2550 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 2551 2552 if (size >= eat) 2553 goto pull_pages; 2554 eat -= size; 2555 } 2556 2557 /* If we need update frag list, we are in troubles. 2558 * Certainly, it is possible to add an offset to skb data, 2559 * but taking into account that pulling is expected to 2560 * be very rare operation, it is worth to fight against 2561 * further bloating skb head and crucify ourselves here instead. 2562 * Pure masohism, indeed. 8)8) 2563 */ 2564 if (eat) { 2565 struct sk_buff *list = skb_shinfo(skb)->frag_list; 2566 struct sk_buff *clone = NULL; 2567 struct sk_buff *insp = NULL; 2568 2569 do { 2570 if (list->len <= eat) { 2571 /* Eaten as whole. */ 2572 eat -= list->len; 2573 list = list->next; 2574 insp = list; 2575 } else { 2576 /* Eaten partially. */ 2577 if (skb_is_gso(skb) && !list->head_frag && 2578 skb_headlen(list)) 2579 skb_shinfo(skb)->gso_type |= SKB_GSO_DODGY; 2580 2581 if (skb_shared(list)) { 2582 /* Sucks! We need to fork list. :-( */ 2583 clone = skb_clone(list, GFP_ATOMIC); 2584 if (!clone) 2585 return NULL; 2586 insp = list->next; 2587 list = clone; 2588 } else { 2589 /* This may be pulled without 2590 * problems. */ 2591 insp = list; 2592 } 2593 if (!pskb_pull(list, eat)) { 2594 kfree_skb(clone); 2595 return NULL; 2596 } 2597 break; 2598 } 2599 } while (eat); 2600 2601 /* Free pulled out fragments. */ 2602 while ((list = skb_shinfo(skb)->frag_list) != insp) { 2603 skb_shinfo(skb)->frag_list = list->next; 2604 consume_skb(list); 2605 } 2606 /* And insert new clone at head. */ 2607 if (clone) { 2608 clone->next = list; 2609 skb_shinfo(skb)->frag_list = clone; 2610 } 2611 } 2612 /* Success! Now we may commit changes to skb data. */ 2613 2614 pull_pages: 2615 eat = delta; 2616 k = 0; 2617 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2618 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 2619 2620 if (size <= eat) { 2621 skb_frag_unref(skb, i); 2622 eat -= size; 2623 } else { 2624 skb_frag_t *frag = &skb_shinfo(skb)->frags[k]; 2625 2626 *frag = skb_shinfo(skb)->frags[i]; 2627 if (eat) { 2628 skb_frag_off_add(frag, eat); 2629 skb_frag_size_sub(frag, eat); 2630 if (!i) 2631 goto end; 2632 eat = 0; 2633 } 2634 k++; 2635 } 2636 } 2637 skb_shinfo(skb)->nr_frags = k; 2638 2639 end: 2640 skb->tail += delta; 2641 skb->data_len -= delta; 2642 2643 if (!skb->data_len) 2644 skb_zcopy_clear(skb, false); 2645 2646 return skb_tail_pointer(skb); 2647 } 2648 EXPORT_SYMBOL(__pskb_pull_tail); 2649 2650 /** 2651 * skb_copy_bits - copy bits from skb to kernel buffer 2652 * @skb: source skb 2653 * @offset: offset in source 2654 * @to: destination buffer 2655 * @len: number of bytes to copy 2656 * 2657 * Copy the specified number of bytes from the source skb to the 2658 * destination buffer. 2659 * 2660 * CAUTION ! : 2661 * If its prototype is ever changed, 2662 * check arch/{*}/net/{*}.S files, 2663 * since it is called from BPF assembly code. 2664 */ 2665 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len) 2666 { 2667 int start = skb_headlen(skb); 2668 struct sk_buff *frag_iter; 2669 int i, copy; 2670 2671 if (offset > (int)skb->len - len) 2672 goto fault; 2673 2674 /* Copy header. */ 2675 if ((copy = start - offset) > 0) { 2676 if (copy > len) 2677 copy = len; 2678 skb_copy_from_linear_data_offset(skb, offset, to, copy); 2679 if ((len -= copy) == 0) 2680 return 0; 2681 offset += copy; 2682 to += copy; 2683 } 2684 2685 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2686 int end; 2687 skb_frag_t *f = &skb_shinfo(skb)->frags[i]; 2688 2689 WARN_ON(start > offset + len); 2690 2691 end = start + skb_frag_size(f); 2692 if ((copy = end - offset) > 0) { 2693 u32 p_off, p_len, copied; 2694 struct page *p; 2695 u8 *vaddr; 2696 2697 if (copy > len) 2698 copy = len; 2699 2700 skb_frag_foreach_page(f, 2701 skb_frag_off(f) + offset - start, 2702 copy, p, p_off, p_len, copied) { 2703 vaddr = kmap_atomic(p); 2704 memcpy(to + copied, vaddr + p_off, p_len); 2705 kunmap_atomic(vaddr); 2706 } 2707 2708 if ((len -= copy) == 0) 2709 return 0; 2710 offset += copy; 2711 to += copy; 2712 } 2713 start = end; 2714 } 2715 2716 skb_walk_frags(skb, frag_iter) { 2717 int end; 2718 2719 WARN_ON(start > offset + len); 2720 2721 end = start + frag_iter->len; 2722 if ((copy = end - offset) > 0) { 2723 if (copy > len) 2724 copy = len; 2725 if (skb_copy_bits(frag_iter, offset - start, to, copy)) 2726 goto fault; 2727 if ((len -= copy) == 0) 2728 return 0; 2729 offset += copy; 2730 to += copy; 2731 } 2732 start = end; 2733 } 2734 2735 if (!len) 2736 return 0; 2737 2738 fault: 2739 return -EFAULT; 2740 } 2741 EXPORT_SYMBOL(skb_copy_bits); 2742 2743 /* 2744 * Callback from splice_to_pipe(), if we need to release some pages 2745 * at the end of the spd in case we error'ed out in filling the pipe. 2746 */ 2747 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i) 2748 { 2749 put_page(spd->pages[i]); 2750 } 2751 2752 static struct page *linear_to_page(struct page *page, unsigned int *len, 2753 unsigned int *offset, 2754 struct sock *sk) 2755 { 2756 struct page_frag *pfrag = sk_page_frag(sk); 2757 2758 if (!sk_page_frag_refill(sk, pfrag)) 2759 return NULL; 2760 2761 *len = min_t(unsigned int, *len, pfrag->size - pfrag->offset); 2762 2763 memcpy(page_address(pfrag->page) + pfrag->offset, 2764 page_address(page) + *offset, *len); 2765 *offset = pfrag->offset; 2766 pfrag->offset += *len; 2767 2768 return pfrag->page; 2769 } 2770 2771 static bool spd_can_coalesce(const struct splice_pipe_desc *spd, 2772 struct page *page, 2773 unsigned int offset) 2774 { 2775 return spd->nr_pages && 2776 spd->pages[spd->nr_pages - 1] == page && 2777 (spd->partial[spd->nr_pages - 1].offset + 2778 spd->partial[spd->nr_pages - 1].len == offset); 2779 } 2780 2781 /* 2782 * Fill page/offset/length into spd, if it can hold more pages. 2783 */ 2784 static bool spd_fill_page(struct splice_pipe_desc *spd, 2785 struct pipe_inode_info *pipe, struct page *page, 2786 unsigned int *len, unsigned int offset, 2787 bool linear, 2788 struct sock *sk) 2789 { 2790 if (unlikely(spd->nr_pages == MAX_SKB_FRAGS)) 2791 return true; 2792 2793 if (linear) { 2794 page = linear_to_page(page, len, &offset, sk); 2795 if (!page) 2796 return true; 2797 } 2798 if (spd_can_coalesce(spd, page, offset)) { 2799 spd->partial[spd->nr_pages - 1].len += *len; 2800 return false; 2801 } 2802 get_page(page); 2803 spd->pages[spd->nr_pages] = page; 2804 spd->partial[spd->nr_pages].len = *len; 2805 spd->partial[spd->nr_pages].offset = offset; 2806 spd->nr_pages++; 2807 2808 return false; 2809 } 2810 2811 static bool __splice_segment(struct page *page, unsigned int poff, 2812 unsigned int plen, unsigned int *off, 2813 unsigned int *len, 2814 struct splice_pipe_desc *spd, bool linear, 2815 struct sock *sk, 2816 struct pipe_inode_info *pipe) 2817 { 2818 if (!*len) 2819 return true; 2820 2821 /* skip this segment if already processed */ 2822 if (*off >= plen) { 2823 *off -= plen; 2824 return false; 2825 } 2826 2827 /* ignore any bits we already processed */ 2828 poff += *off; 2829 plen -= *off; 2830 *off = 0; 2831 2832 do { 2833 unsigned int flen = min(*len, plen); 2834 2835 if (spd_fill_page(spd, pipe, page, &flen, poff, 2836 linear, sk)) 2837 return true; 2838 poff += flen; 2839 plen -= flen; 2840 *len -= flen; 2841 } while (*len && plen); 2842 2843 return false; 2844 } 2845 2846 /* 2847 * Map linear and fragment data from the skb to spd. It reports true if the 2848 * pipe is full or if we already spliced the requested length. 2849 */ 2850 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe, 2851 unsigned int *offset, unsigned int *len, 2852 struct splice_pipe_desc *spd, struct sock *sk) 2853 { 2854 int seg; 2855 struct sk_buff *iter; 2856 2857 /* map the linear part : 2858 * If skb->head_frag is set, this 'linear' part is backed by a 2859 * fragment, and if the head is not shared with any clones then 2860 * we can avoid a copy since we own the head portion of this page. 2861 */ 2862 if (__splice_segment(virt_to_page(skb->data), 2863 (unsigned long) skb->data & (PAGE_SIZE - 1), 2864 skb_headlen(skb), 2865 offset, len, spd, 2866 skb_head_is_locked(skb), 2867 sk, pipe)) 2868 return true; 2869 2870 /* 2871 * then map the fragments 2872 */ 2873 for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) { 2874 const skb_frag_t *f = &skb_shinfo(skb)->frags[seg]; 2875 2876 if (__splice_segment(skb_frag_page(f), 2877 skb_frag_off(f), skb_frag_size(f), 2878 offset, len, spd, false, sk, pipe)) 2879 return true; 2880 } 2881 2882 skb_walk_frags(skb, iter) { 2883 if (*offset >= iter->len) { 2884 *offset -= iter->len; 2885 continue; 2886 } 2887 /* __skb_splice_bits() only fails if the output has no room 2888 * left, so no point in going over the frag_list for the error 2889 * case. 2890 */ 2891 if (__skb_splice_bits(iter, pipe, offset, len, spd, sk)) 2892 return true; 2893 } 2894 2895 return false; 2896 } 2897 2898 /* 2899 * Map data from the skb to a pipe. Should handle both the linear part, 2900 * the fragments, and the frag list. 2901 */ 2902 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset, 2903 struct pipe_inode_info *pipe, unsigned int tlen, 2904 unsigned int flags) 2905 { 2906 struct partial_page partial[MAX_SKB_FRAGS]; 2907 struct page *pages[MAX_SKB_FRAGS]; 2908 struct splice_pipe_desc spd = { 2909 .pages = pages, 2910 .partial = partial, 2911 .nr_pages_max = MAX_SKB_FRAGS, 2912 .ops = &nosteal_pipe_buf_ops, 2913 .spd_release = sock_spd_release, 2914 }; 2915 int ret = 0; 2916 2917 __skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk); 2918 2919 if (spd.nr_pages) 2920 ret = splice_to_pipe(pipe, &spd); 2921 2922 return ret; 2923 } 2924 EXPORT_SYMBOL_GPL(skb_splice_bits); 2925 2926 static int sendmsg_unlocked(struct sock *sk, struct msghdr *msg, 2927 struct kvec *vec, size_t num, size_t size) 2928 { 2929 struct socket *sock = sk->sk_socket; 2930 2931 if (!sock) 2932 return -EINVAL; 2933 return kernel_sendmsg(sock, msg, vec, num, size); 2934 } 2935 2936 static int sendpage_unlocked(struct sock *sk, struct page *page, int offset, 2937 size_t size, int flags) 2938 { 2939 struct socket *sock = sk->sk_socket; 2940 2941 if (!sock) 2942 return -EINVAL; 2943 return kernel_sendpage(sock, page, offset, size, flags); 2944 } 2945 2946 typedef int (*sendmsg_func)(struct sock *sk, struct msghdr *msg, 2947 struct kvec *vec, size_t num, size_t size); 2948 typedef int (*sendpage_func)(struct sock *sk, struct page *page, int offset, 2949 size_t size, int flags); 2950 static int __skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, 2951 int len, sendmsg_func sendmsg, sendpage_func sendpage) 2952 { 2953 unsigned int orig_len = len; 2954 struct sk_buff *head = skb; 2955 unsigned short fragidx; 2956 int slen, ret; 2957 2958 do_frag_list: 2959 2960 /* Deal with head data */ 2961 while (offset < skb_headlen(skb) && len) { 2962 struct kvec kv; 2963 struct msghdr msg; 2964 2965 slen = min_t(int, len, skb_headlen(skb) - offset); 2966 kv.iov_base = skb->data + offset; 2967 kv.iov_len = slen; 2968 memset(&msg, 0, sizeof(msg)); 2969 msg.msg_flags = MSG_DONTWAIT; 2970 2971 ret = INDIRECT_CALL_2(sendmsg, kernel_sendmsg_locked, 2972 sendmsg_unlocked, sk, &msg, &kv, 1, slen); 2973 if (ret <= 0) 2974 goto error; 2975 2976 offset += ret; 2977 len -= ret; 2978 } 2979 2980 /* All the data was skb head? */ 2981 if (!len) 2982 goto out; 2983 2984 /* Make offset relative to start of frags */ 2985 offset -= skb_headlen(skb); 2986 2987 /* Find where we are in frag list */ 2988 for (fragidx = 0; fragidx < skb_shinfo(skb)->nr_frags; fragidx++) { 2989 skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx]; 2990 2991 if (offset < skb_frag_size(frag)) 2992 break; 2993 2994 offset -= skb_frag_size(frag); 2995 } 2996 2997 for (; len && fragidx < skb_shinfo(skb)->nr_frags; fragidx++) { 2998 skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx]; 2999 3000 slen = min_t(size_t, len, skb_frag_size(frag) - offset); 3001 3002 while (slen) { 3003 ret = INDIRECT_CALL_2(sendpage, kernel_sendpage_locked, 3004 sendpage_unlocked, sk, 3005 skb_frag_page(frag), 3006 skb_frag_off(frag) + offset, 3007 slen, MSG_DONTWAIT); 3008 if (ret <= 0) 3009 goto error; 3010 3011 len -= ret; 3012 offset += ret; 3013 slen -= ret; 3014 } 3015 3016 offset = 0; 3017 } 3018 3019 if (len) { 3020 /* Process any frag lists */ 3021 3022 if (skb == head) { 3023 if (skb_has_frag_list(skb)) { 3024 skb = skb_shinfo(skb)->frag_list; 3025 goto do_frag_list; 3026 } 3027 } else if (skb->next) { 3028 skb = skb->next; 3029 goto do_frag_list; 3030 } 3031 } 3032 3033 out: 3034 return orig_len - len; 3035 3036 error: 3037 return orig_len == len ? ret : orig_len - len; 3038 } 3039 3040 /* Send skb data on a socket. Socket must be locked. */ 3041 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset, 3042 int len) 3043 { 3044 return __skb_send_sock(sk, skb, offset, len, kernel_sendmsg_locked, 3045 kernel_sendpage_locked); 3046 } 3047 EXPORT_SYMBOL_GPL(skb_send_sock_locked); 3048 3049 /* Send skb data on a socket. Socket must be unlocked. */ 3050 int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len) 3051 { 3052 return __skb_send_sock(sk, skb, offset, len, sendmsg_unlocked, 3053 sendpage_unlocked); 3054 } 3055 3056 /** 3057 * skb_store_bits - store bits from kernel buffer to skb 3058 * @skb: destination buffer 3059 * @offset: offset in destination 3060 * @from: source buffer 3061 * @len: number of bytes to copy 3062 * 3063 * Copy the specified number of bytes from the source buffer to the 3064 * destination skb. This function handles all the messy bits of 3065 * traversing fragment lists and such. 3066 */ 3067 3068 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len) 3069 { 3070 int start = skb_headlen(skb); 3071 struct sk_buff *frag_iter; 3072 int i, copy; 3073 3074 if (offset > (int)skb->len - len) 3075 goto fault; 3076 3077 if ((copy = start - offset) > 0) { 3078 if (copy > len) 3079 copy = len; 3080 skb_copy_to_linear_data_offset(skb, offset, from, copy); 3081 if ((len -= copy) == 0) 3082 return 0; 3083 offset += copy; 3084 from += copy; 3085 } 3086 3087 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 3088 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 3089 int end; 3090 3091 WARN_ON(start > offset + len); 3092 3093 end = start + skb_frag_size(frag); 3094 if ((copy = end - offset) > 0) { 3095 u32 p_off, p_len, copied; 3096 struct page *p; 3097 u8 *vaddr; 3098 3099 if (copy > len) 3100 copy = len; 3101 3102 skb_frag_foreach_page(frag, 3103 skb_frag_off(frag) + offset - start, 3104 copy, p, p_off, p_len, copied) { 3105 vaddr = kmap_atomic(p); 3106 memcpy(vaddr + p_off, from + copied, p_len); 3107 kunmap_atomic(vaddr); 3108 } 3109 3110 if ((len -= copy) == 0) 3111 return 0; 3112 offset += copy; 3113 from += copy; 3114 } 3115 start = end; 3116 } 3117 3118 skb_walk_frags(skb, frag_iter) { 3119 int end; 3120 3121 WARN_ON(start > offset + len); 3122 3123 end = start + frag_iter->len; 3124 if ((copy = end - offset) > 0) { 3125 if (copy > len) 3126 copy = len; 3127 if (skb_store_bits(frag_iter, offset - start, 3128 from, copy)) 3129 goto fault; 3130 if ((len -= copy) == 0) 3131 return 0; 3132 offset += copy; 3133 from += copy; 3134 } 3135 start = end; 3136 } 3137 if (!len) 3138 return 0; 3139 3140 fault: 3141 return -EFAULT; 3142 } 3143 EXPORT_SYMBOL(skb_store_bits); 3144 3145 /* Checksum skb data. */ 3146 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len, 3147 __wsum csum, const struct skb_checksum_ops *ops) 3148 { 3149 int start = skb_headlen(skb); 3150 int i, copy = start - offset; 3151 struct sk_buff *frag_iter; 3152 int pos = 0; 3153 3154 /* Checksum header. */ 3155 if (copy > 0) { 3156 if (copy > len) 3157 copy = len; 3158 csum = INDIRECT_CALL_1(ops->update, csum_partial_ext, 3159 skb->data + offset, copy, csum); 3160 if ((len -= copy) == 0) 3161 return csum; 3162 offset += copy; 3163 pos = copy; 3164 } 3165 3166 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 3167 int end; 3168 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 3169 3170 WARN_ON(start > offset + len); 3171 3172 end = start + skb_frag_size(frag); 3173 if ((copy = end - offset) > 0) { 3174 u32 p_off, p_len, copied; 3175 struct page *p; 3176 __wsum csum2; 3177 u8 *vaddr; 3178 3179 if (copy > len) 3180 copy = len; 3181 3182 skb_frag_foreach_page(frag, 3183 skb_frag_off(frag) + offset - start, 3184 copy, p, p_off, p_len, copied) { 3185 vaddr = kmap_atomic(p); 3186 csum2 = INDIRECT_CALL_1(ops->update, 3187 csum_partial_ext, 3188 vaddr + p_off, p_len, 0); 3189 kunmap_atomic(vaddr); 3190 csum = INDIRECT_CALL_1(ops->combine, 3191 csum_block_add_ext, csum, 3192 csum2, pos, p_len); 3193 pos += p_len; 3194 } 3195 3196 if (!(len -= copy)) 3197 return csum; 3198 offset += copy; 3199 } 3200 start = end; 3201 } 3202 3203 skb_walk_frags(skb, frag_iter) { 3204 int end; 3205 3206 WARN_ON(start > offset + len); 3207 3208 end = start + frag_iter->len; 3209 if ((copy = end - offset) > 0) { 3210 __wsum csum2; 3211 if (copy > len) 3212 copy = len; 3213 csum2 = __skb_checksum(frag_iter, offset - start, 3214 copy, 0, ops); 3215 csum = INDIRECT_CALL_1(ops->combine, csum_block_add_ext, 3216 csum, csum2, pos, copy); 3217 if ((len -= copy) == 0) 3218 return csum; 3219 offset += copy; 3220 pos += copy; 3221 } 3222 start = end; 3223 } 3224 BUG_ON(len); 3225 3226 return csum; 3227 } 3228 EXPORT_SYMBOL(__skb_checksum); 3229 3230 __wsum skb_checksum(const struct sk_buff *skb, int offset, 3231 int len, __wsum csum) 3232 { 3233 const struct skb_checksum_ops ops = { 3234 .update = csum_partial_ext, 3235 .combine = csum_block_add_ext, 3236 }; 3237 3238 return __skb_checksum(skb, offset, len, csum, &ops); 3239 } 3240 EXPORT_SYMBOL(skb_checksum); 3241 3242 /* Both of above in one bottle. */ 3243 3244 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, 3245 u8 *to, int len) 3246 { 3247 int start = skb_headlen(skb); 3248 int i, copy = start - offset; 3249 struct sk_buff *frag_iter; 3250 int pos = 0; 3251 __wsum csum = 0; 3252 3253 /* Copy header. */ 3254 if (copy > 0) { 3255 if (copy > len) 3256 copy = len; 3257 csum = csum_partial_copy_nocheck(skb->data + offset, to, 3258 copy); 3259 if ((len -= copy) == 0) 3260 return csum; 3261 offset += copy; 3262 to += copy; 3263 pos = copy; 3264 } 3265 3266 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 3267 int end; 3268 3269 WARN_ON(start > offset + len); 3270 3271 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]); 3272 if ((copy = end - offset) > 0) { 3273 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 3274 u32 p_off, p_len, copied; 3275 struct page *p; 3276 __wsum csum2; 3277 u8 *vaddr; 3278 3279 if (copy > len) 3280 copy = len; 3281 3282 skb_frag_foreach_page(frag, 3283 skb_frag_off(frag) + offset - start, 3284 copy, p, p_off, p_len, copied) { 3285 vaddr = kmap_atomic(p); 3286 csum2 = csum_partial_copy_nocheck(vaddr + p_off, 3287 to + copied, 3288 p_len); 3289 kunmap_atomic(vaddr); 3290 csum = csum_block_add(csum, csum2, pos); 3291 pos += p_len; 3292 } 3293 3294 if (!(len -= copy)) 3295 return csum; 3296 offset += copy; 3297 to += copy; 3298 } 3299 start = end; 3300 } 3301 3302 skb_walk_frags(skb, frag_iter) { 3303 __wsum csum2; 3304 int end; 3305 3306 WARN_ON(start > offset + len); 3307 3308 end = start + frag_iter->len; 3309 if ((copy = end - offset) > 0) { 3310 if (copy > len) 3311 copy = len; 3312 csum2 = skb_copy_and_csum_bits(frag_iter, 3313 offset - start, 3314 to, copy); 3315 csum = csum_block_add(csum, csum2, pos); 3316 if ((len -= copy) == 0) 3317 return csum; 3318 offset += copy; 3319 to += copy; 3320 pos += copy; 3321 } 3322 start = end; 3323 } 3324 BUG_ON(len); 3325 return csum; 3326 } 3327 EXPORT_SYMBOL(skb_copy_and_csum_bits); 3328 3329 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len) 3330 { 3331 __sum16 sum; 3332 3333 sum = csum_fold(skb_checksum(skb, 0, len, skb->csum)); 3334 /* See comments in __skb_checksum_complete(). */ 3335 if (likely(!sum)) { 3336 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) && 3337 !skb->csum_complete_sw) 3338 netdev_rx_csum_fault(skb->dev, skb); 3339 } 3340 if (!skb_shared(skb)) 3341 skb->csum_valid = !sum; 3342 return sum; 3343 } 3344 EXPORT_SYMBOL(__skb_checksum_complete_head); 3345 3346 /* This function assumes skb->csum already holds pseudo header's checksum, 3347 * which has been changed from the hardware checksum, for example, by 3348 * __skb_checksum_validate_complete(). And, the original skb->csum must 3349 * have been validated unsuccessfully for CHECKSUM_COMPLETE case. 3350 * 3351 * It returns non-zero if the recomputed checksum is still invalid, otherwise 3352 * zero. The new checksum is stored back into skb->csum unless the skb is 3353 * shared. 3354 */ 3355 __sum16 __skb_checksum_complete(struct sk_buff *skb) 3356 { 3357 __wsum csum; 3358 __sum16 sum; 3359 3360 csum = skb_checksum(skb, 0, skb->len, 0); 3361 3362 sum = csum_fold(csum_add(skb->csum, csum)); 3363 /* This check is inverted, because we already knew the hardware 3364 * checksum is invalid before calling this function. So, if the 3365 * re-computed checksum is valid instead, then we have a mismatch 3366 * between the original skb->csum and skb_checksum(). This means either 3367 * the original hardware checksum is incorrect or we screw up skb->csum 3368 * when moving skb->data around. 3369 */ 3370 if (likely(!sum)) { 3371 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) && 3372 !skb->csum_complete_sw) 3373 netdev_rx_csum_fault(skb->dev, skb); 3374 } 3375 3376 if (!skb_shared(skb)) { 3377 /* Save full packet checksum */ 3378 skb->csum = csum; 3379 skb->ip_summed = CHECKSUM_COMPLETE; 3380 skb->csum_complete_sw = 1; 3381 skb->csum_valid = !sum; 3382 } 3383 3384 return sum; 3385 } 3386 EXPORT_SYMBOL(__skb_checksum_complete); 3387 3388 static __wsum warn_crc32c_csum_update(const void *buff, int len, __wsum sum) 3389 { 3390 net_warn_ratelimited( 3391 "%s: attempt to compute crc32c without libcrc32c.ko\n", 3392 __func__); 3393 return 0; 3394 } 3395 3396 static __wsum warn_crc32c_csum_combine(__wsum csum, __wsum csum2, 3397 int offset, int len) 3398 { 3399 net_warn_ratelimited( 3400 "%s: attempt to compute crc32c without libcrc32c.ko\n", 3401 __func__); 3402 return 0; 3403 } 3404 3405 static const struct skb_checksum_ops default_crc32c_ops = { 3406 .update = warn_crc32c_csum_update, 3407 .combine = warn_crc32c_csum_combine, 3408 }; 3409 3410 const struct skb_checksum_ops *crc32c_csum_stub __read_mostly = 3411 &default_crc32c_ops; 3412 EXPORT_SYMBOL(crc32c_csum_stub); 3413 3414 /** 3415 * skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy() 3416 * @from: source buffer 3417 * 3418 * Calculates the amount of linear headroom needed in the 'to' skb passed 3419 * into skb_zerocopy(). 3420 */ 3421 unsigned int 3422 skb_zerocopy_headlen(const struct sk_buff *from) 3423 { 3424 unsigned int hlen = 0; 3425 3426 if (!from->head_frag || 3427 skb_headlen(from) < L1_CACHE_BYTES || 3428 skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS) { 3429 hlen = skb_headlen(from); 3430 if (!hlen) 3431 hlen = from->len; 3432 } 3433 3434 if (skb_has_frag_list(from)) 3435 hlen = from->len; 3436 3437 return hlen; 3438 } 3439 EXPORT_SYMBOL_GPL(skb_zerocopy_headlen); 3440 3441 /** 3442 * skb_zerocopy - Zero copy skb to skb 3443 * @to: destination buffer 3444 * @from: source buffer 3445 * @len: number of bytes to copy from source buffer 3446 * @hlen: size of linear headroom in destination buffer 3447 * 3448 * Copies up to `len` bytes from `from` to `to` by creating references 3449 * to the frags in the source buffer. 3450 * 3451 * The `hlen` as calculated by skb_zerocopy_headlen() specifies the 3452 * headroom in the `to` buffer. 3453 * 3454 * Return value: 3455 * 0: everything is OK 3456 * -ENOMEM: couldn't orphan frags of @from due to lack of memory 3457 * -EFAULT: skb_copy_bits() found some problem with skb geometry 3458 */ 3459 int 3460 skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen) 3461 { 3462 int i, j = 0; 3463 int plen = 0; /* length of skb->head fragment */ 3464 int ret; 3465 struct page *page; 3466 unsigned int offset; 3467 3468 BUG_ON(!from->head_frag && !hlen); 3469 3470 /* dont bother with small payloads */ 3471 if (len <= skb_tailroom(to)) 3472 return skb_copy_bits(from, 0, skb_put(to, len), len); 3473 3474 if (hlen) { 3475 ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen); 3476 if (unlikely(ret)) 3477 return ret; 3478 len -= hlen; 3479 } else { 3480 plen = min_t(int, skb_headlen(from), len); 3481 if (plen) { 3482 page = virt_to_head_page(from->head); 3483 offset = from->data - (unsigned char *)page_address(page); 3484 __skb_fill_page_desc(to, 0, page, offset, plen); 3485 get_page(page); 3486 j = 1; 3487 len -= plen; 3488 } 3489 } 3490 3491 skb_len_add(to, len + plen); 3492 3493 if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) { 3494 skb_tx_error(from); 3495 return -ENOMEM; 3496 } 3497 skb_zerocopy_clone(to, from, GFP_ATOMIC); 3498 3499 for (i = 0; i < skb_shinfo(from)->nr_frags; i++) { 3500 int size; 3501 3502 if (!len) 3503 break; 3504 skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i]; 3505 size = min_t(int, skb_frag_size(&skb_shinfo(to)->frags[j]), 3506 len); 3507 skb_frag_size_set(&skb_shinfo(to)->frags[j], size); 3508 len -= size; 3509 skb_frag_ref(to, j); 3510 j++; 3511 } 3512 skb_shinfo(to)->nr_frags = j; 3513 3514 return 0; 3515 } 3516 EXPORT_SYMBOL_GPL(skb_zerocopy); 3517 3518 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to) 3519 { 3520 __wsum csum; 3521 long csstart; 3522 3523 if (skb->ip_summed == CHECKSUM_PARTIAL) 3524 csstart = skb_checksum_start_offset(skb); 3525 else 3526 csstart = skb_headlen(skb); 3527 3528 BUG_ON(csstart > skb_headlen(skb)); 3529 3530 skb_copy_from_linear_data(skb, to, csstart); 3531 3532 csum = 0; 3533 if (csstart != skb->len) 3534 csum = skb_copy_and_csum_bits(skb, csstart, to + csstart, 3535 skb->len - csstart); 3536 3537 if (skb->ip_summed == CHECKSUM_PARTIAL) { 3538 long csstuff = csstart + skb->csum_offset; 3539 3540 *((__sum16 *)(to + csstuff)) = csum_fold(csum); 3541 } 3542 } 3543 EXPORT_SYMBOL(skb_copy_and_csum_dev); 3544 3545 /** 3546 * skb_dequeue - remove from the head of the queue 3547 * @list: list to dequeue from 3548 * 3549 * Remove the head of the list. The list lock is taken so the function 3550 * may be used safely with other locking list functions. The head item is 3551 * returned or %NULL if the list is empty. 3552 */ 3553 3554 struct sk_buff *skb_dequeue(struct sk_buff_head *list) 3555 { 3556 unsigned long flags; 3557 struct sk_buff *result; 3558 3559 spin_lock_irqsave(&list->lock, flags); 3560 result = __skb_dequeue(list); 3561 spin_unlock_irqrestore(&list->lock, flags); 3562 return result; 3563 } 3564 EXPORT_SYMBOL(skb_dequeue); 3565 3566 /** 3567 * skb_dequeue_tail - remove from the tail of the queue 3568 * @list: list to dequeue from 3569 * 3570 * Remove the tail of the list. The list lock is taken so the function 3571 * may be used safely with other locking list functions. The tail item is 3572 * returned or %NULL if the list is empty. 3573 */ 3574 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list) 3575 { 3576 unsigned long flags; 3577 struct sk_buff *result; 3578 3579 spin_lock_irqsave(&list->lock, flags); 3580 result = __skb_dequeue_tail(list); 3581 spin_unlock_irqrestore(&list->lock, flags); 3582 return result; 3583 } 3584 EXPORT_SYMBOL(skb_dequeue_tail); 3585 3586 /** 3587 * skb_queue_purge - empty a list 3588 * @list: list to empty 3589 * 3590 * Delete all buffers on an &sk_buff list. Each buffer is removed from 3591 * the list and one reference dropped. This function takes the list 3592 * lock and is atomic with respect to other list locking functions. 3593 */ 3594 void skb_queue_purge(struct sk_buff_head *list) 3595 { 3596 struct sk_buff *skb; 3597 while ((skb = skb_dequeue(list)) != NULL) 3598 kfree_skb(skb); 3599 } 3600 EXPORT_SYMBOL(skb_queue_purge); 3601 3602 /** 3603 * skb_rbtree_purge - empty a skb rbtree 3604 * @root: root of the rbtree to empty 3605 * Return value: the sum of truesizes of all purged skbs. 3606 * 3607 * Delete all buffers on an &sk_buff rbtree. Each buffer is removed from 3608 * the list and one reference dropped. This function does not take 3609 * any lock. Synchronization should be handled by the caller (e.g., TCP 3610 * out-of-order queue is protected by the socket lock). 3611 */ 3612 unsigned int skb_rbtree_purge(struct rb_root *root) 3613 { 3614 struct rb_node *p = rb_first(root); 3615 unsigned int sum = 0; 3616 3617 while (p) { 3618 struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode); 3619 3620 p = rb_next(p); 3621 rb_erase(&skb->rbnode, root); 3622 sum += skb->truesize; 3623 kfree_skb(skb); 3624 } 3625 return sum; 3626 } 3627 3628 /** 3629 * skb_queue_head - queue a buffer at the list head 3630 * @list: list to use 3631 * @newsk: buffer to queue 3632 * 3633 * Queue a buffer at the start of the list. This function takes the 3634 * list lock and can be used safely with other locking &sk_buff functions 3635 * safely. 3636 * 3637 * A buffer cannot be placed on two lists at the same time. 3638 */ 3639 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk) 3640 { 3641 unsigned long flags; 3642 3643 spin_lock_irqsave(&list->lock, flags); 3644 __skb_queue_head(list, newsk); 3645 spin_unlock_irqrestore(&list->lock, flags); 3646 } 3647 EXPORT_SYMBOL(skb_queue_head); 3648 3649 /** 3650 * skb_queue_tail - queue a buffer at the list tail 3651 * @list: list to use 3652 * @newsk: buffer to queue 3653 * 3654 * Queue a buffer at the tail of the list. This function takes the 3655 * list lock and can be used safely with other locking &sk_buff functions 3656 * safely. 3657 * 3658 * A buffer cannot be placed on two lists at the same time. 3659 */ 3660 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk) 3661 { 3662 unsigned long flags; 3663 3664 spin_lock_irqsave(&list->lock, flags); 3665 __skb_queue_tail(list, newsk); 3666 spin_unlock_irqrestore(&list->lock, flags); 3667 } 3668 EXPORT_SYMBOL(skb_queue_tail); 3669 3670 /** 3671 * skb_unlink - remove a buffer from a list 3672 * @skb: buffer to remove 3673 * @list: list to use 3674 * 3675 * Remove a packet from a list. The list locks are taken and this 3676 * function is atomic with respect to other list locked calls 3677 * 3678 * You must know what list the SKB is on. 3679 */ 3680 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list) 3681 { 3682 unsigned long flags; 3683 3684 spin_lock_irqsave(&list->lock, flags); 3685 __skb_unlink(skb, list); 3686 spin_unlock_irqrestore(&list->lock, flags); 3687 } 3688 EXPORT_SYMBOL(skb_unlink); 3689 3690 /** 3691 * skb_append - append a buffer 3692 * @old: buffer to insert after 3693 * @newsk: buffer to insert 3694 * @list: list to use 3695 * 3696 * Place a packet after a given packet in a list. The list locks are taken 3697 * and this function is atomic with respect to other list locked calls. 3698 * A buffer cannot be placed on two lists at the same time. 3699 */ 3700 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list) 3701 { 3702 unsigned long flags; 3703 3704 spin_lock_irqsave(&list->lock, flags); 3705 __skb_queue_after(list, old, newsk); 3706 spin_unlock_irqrestore(&list->lock, flags); 3707 } 3708 EXPORT_SYMBOL(skb_append); 3709 3710 static inline void skb_split_inside_header(struct sk_buff *skb, 3711 struct sk_buff* skb1, 3712 const u32 len, const int pos) 3713 { 3714 int i; 3715 3716 skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len), 3717 pos - len); 3718 /* And move data appendix as is. */ 3719 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 3720 skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i]; 3721 3722 skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags; 3723 skb_shinfo(skb)->nr_frags = 0; 3724 skb1->data_len = skb->data_len; 3725 skb1->len += skb1->data_len; 3726 skb->data_len = 0; 3727 skb->len = len; 3728 skb_set_tail_pointer(skb, len); 3729 } 3730 3731 static inline void skb_split_no_header(struct sk_buff *skb, 3732 struct sk_buff* skb1, 3733 const u32 len, int pos) 3734 { 3735 int i, k = 0; 3736 const int nfrags = skb_shinfo(skb)->nr_frags; 3737 3738 skb_shinfo(skb)->nr_frags = 0; 3739 skb1->len = skb1->data_len = skb->len - len; 3740 skb->len = len; 3741 skb->data_len = len - pos; 3742 3743 for (i = 0; i < nfrags; i++) { 3744 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 3745 3746 if (pos + size > len) { 3747 skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i]; 3748 3749 if (pos < len) { 3750 /* Split frag. 3751 * We have two variants in this case: 3752 * 1. Move all the frag to the second 3753 * part, if it is possible. F.e. 3754 * this approach is mandatory for TUX, 3755 * where splitting is expensive. 3756 * 2. Split is accurately. We make this. 3757 */ 3758 skb_frag_ref(skb, i); 3759 skb_frag_off_add(&skb_shinfo(skb1)->frags[0], len - pos); 3760 skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos); 3761 skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos); 3762 skb_shinfo(skb)->nr_frags++; 3763 } 3764 k++; 3765 } else 3766 skb_shinfo(skb)->nr_frags++; 3767 pos += size; 3768 } 3769 skb_shinfo(skb1)->nr_frags = k; 3770 } 3771 3772 /** 3773 * skb_split - Split fragmented skb to two parts at length len. 3774 * @skb: the buffer to split 3775 * @skb1: the buffer to receive the second part 3776 * @len: new length for skb 3777 */ 3778 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len) 3779 { 3780 int pos = skb_headlen(skb); 3781 const int zc_flags = SKBFL_SHARED_FRAG | SKBFL_PURE_ZEROCOPY; 3782 3783 skb_zcopy_downgrade_managed(skb); 3784 3785 skb_shinfo(skb1)->flags |= skb_shinfo(skb)->flags & zc_flags; 3786 skb_zerocopy_clone(skb1, skb, 0); 3787 if (len < pos) /* Split line is inside header. */ 3788 skb_split_inside_header(skb, skb1, len, pos); 3789 else /* Second chunk has no header, nothing to copy. */ 3790 skb_split_no_header(skb, skb1, len, pos); 3791 } 3792 EXPORT_SYMBOL(skb_split); 3793 3794 /* Shifting from/to a cloned skb is a no-go. 3795 * 3796 * Caller cannot keep skb_shinfo related pointers past calling here! 3797 */ 3798 static int skb_prepare_for_shift(struct sk_buff *skb) 3799 { 3800 return skb_unclone_keeptruesize(skb, GFP_ATOMIC); 3801 } 3802 3803 /** 3804 * skb_shift - Shifts paged data partially from skb to another 3805 * @tgt: buffer into which tail data gets added 3806 * @skb: buffer from which the paged data comes from 3807 * @shiftlen: shift up to this many bytes 3808 * 3809 * Attempts to shift up to shiftlen worth of bytes, which may be less than 3810 * the length of the skb, from skb to tgt. Returns number bytes shifted. 3811 * It's up to caller to free skb if everything was shifted. 3812 * 3813 * If @tgt runs out of frags, the whole operation is aborted. 3814 * 3815 * Skb cannot include anything else but paged data while tgt is allowed 3816 * to have non-paged data as well. 3817 * 3818 * TODO: full sized shift could be optimized but that would need 3819 * specialized skb free'er to handle frags without up-to-date nr_frags. 3820 */ 3821 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen) 3822 { 3823 int from, to, merge, todo; 3824 skb_frag_t *fragfrom, *fragto; 3825 3826 BUG_ON(shiftlen > skb->len); 3827 3828 if (skb_headlen(skb)) 3829 return 0; 3830 if (skb_zcopy(tgt) || skb_zcopy(skb)) 3831 return 0; 3832 3833 todo = shiftlen; 3834 from = 0; 3835 to = skb_shinfo(tgt)->nr_frags; 3836 fragfrom = &skb_shinfo(skb)->frags[from]; 3837 3838 /* Actual merge is delayed until the point when we know we can 3839 * commit all, so that we don't have to undo partial changes 3840 */ 3841 if (!to || 3842 !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom), 3843 skb_frag_off(fragfrom))) { 3844 merge = -1; 3845 } else { 3846 merge = to - 1; 3847 3848 todo -= skb_frag_size(fragfrom); 3849 if (todo < 0) { 3850 if (skb_prepare_for_shift(skb) || 3851 skb_prepare_for_shift(tgt)) 3852 return 0; 3853 3854 /* All previous frag pointers might be stale! */ 3855 fragfrom = &skb_shinfo(skb)->frags[from]; 3856 fragto = &skb_shinfo(tgt)->frags[merge]; 3857 3858 skb_frag_size_add(fragto, shiftlen); 3859 skb_frag_size_sub(fragfrom, shiftlen); 3860 skb_frag_off_add(fragfrom, shiftlen); 3861 3862 goto onlymerged; 3863 } 3864 3865 from++; 3866 } 3867 3868 /* Skip full, not-fitting skb to avoid expensive operations */ 3869 if ((shiftlen == skb->len) && 3870 (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to)) 3871 return 0; 3872 3873 if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt)) 3874 return 0; 3875 3876 while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) { 3877 if (to == MAX_SKB_FRAGS) 3878 return 0; 3879 3880 fragfrom = &skb_shinfo(skb)->frags[from]; 3881 fragto = &skb_shinfo(tgt)->frags[to]; 3882 3883 if (todo >= skb_frag_size(fragfrom)) { 3884 *fragto = *fragfrom; 3885 todo -= skb_frag_size(fragfrom); 3886 from++; 3887 to++; 3888 3889 } else { 3890 __skb_frag_ref(fragfrom); 3891 skb_frag_page_copy(fragto, fragfrom); 3892 skb_frag_off_copy(fragto, fragfrom); 3893 skb_frag_size_set(fragto, todo); 3894 3895 skb_frag_off_add(fragfrom, todo); 3896 skb_frag_size_sub(fragfrom, todo); 3897 todo = 0; 3898 3899 to++; 3900 break; 3901 } 3902 } 3903 3904 /* Ready to "commit" this state change to tgt */ 3905 skb_shinfo(tgt)->nr_frags = to; 3906 3907 if (merge >= 0) { 3908 fragfrom = &skb_shinfo(skb)->frags[0]; 3909 fragto = &skb_shinfo(tgt)->frags[merge]; 3910 3911 skb_frag_size_add(fragto, skb_frag_size(fragfrom)); 3912 __skb_frag_unref(fragfrom, skb->pp_recycle); 3913 } 3914 3915 /* Reposition in the original skb */ 3916 to = 0; 3917 while (from < skb_shinfo(skb)->nr_frags) 3918 skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++]; 3919 skb_shinfo(skb)->nr_frags = to; 3920 3921 BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags); 3922 3923 onlymerged: 3924 /* Most likely the tgt won't ever need its checksum anymore, skb on 3925 * the other hand might need it if it needs to be resent 3926 */ 3927 tgt->ip_summed = CHECKSUM_PARTIAL; 3928 skb->ip_summed = CHECKSUM_PARTIAL; 3929 3930 skb_len_add(skb, -shiftlen); 3931 skb_len_add(tgt, shiftlen); 3932 3933 return shiftlen; 3934 } 3935 3936 /** 3937 * skb_prepare_seq_read - Prepare a sequential read of skb data 3938 * @skb: the buffer to read 3939 * @from: lower offset of data to be read 3940 * @to: upper offset of data to be read 3941 * @st: state variable 3942 * 3943 * Initializes the specified state variable. Must be called before 3944 * invoking skb_seq_read() for the first time. 3945 */ 3946 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from, 3947 unsigned int to, struct skb_seq_state *st) 3948 { 3949 st->lower_offset = from; 3950 st->upper_offset = to; 3951 st->root_skb = st->cur_skb = skb; 3952 st->frag_idx = st->stepped_offset = 0; 3953 st->frag_data = NULL; 3954 st->frag_off = 0; 3955 } 3956 EXPORT_SYMBOL(skb_prepare_seq_read); 3957 3958 /** 3959 * skb_seq_read - Sequentially read skb data 3960 * @consumed: number of bytes consumed by the caller so far 3961 * @data: destination pointer for data to be returned 3962 * @st: state variable 3963 * 3964 * Reads a block of skb data at @consumed relative to the 3965 * lower offset specified to skb_prepare_seq_read(). Assigns 3966 * the head of the data block to @data and returns the length 3967 * of the block or 0 if the end of the skb data or the upper 3968 * offset has been reached. 3969 * 3970 * The caller is not required to consume all of the data 3971 * returned, i.e. @consumed is typically set to the number 3972 * of bytes already consumed and the next call to 3973 * skb_seq_read() will return the remaining part of the block. 3974 * 3975 * Note 1: The size of each block of data returned can be arbitrary, 3976 * this limitation is the cost for zerocopy sequential 3977 * reads of potentially non linear data. 3978 * 3979 * Note 2: Fragment lists within fragments are not implemented 3980 * at the moment, state->root_skb could be replaced with 3981 * a stack for this purpose. 3982 */ 3983 unsigned int skb_seq_read(unsigned int consumed, const u8 **data, 3984 struct skb_seq_state *st) 3985 { 3986 unsigned int block_limit, abs_offset = consumed + st->lower_offset; 3987 skb_frag_t *frag; 3988 3989 if (unlikely(abs_offset >= st->upper_offset)) { 3990 if (st->frag_data) { 3991 kunmap_atomic(st->frag_data); 3992 st->frag_data = NULL; 3993 } 3994 return 0; 3995 } 3996 3997 next_skb: 3998 block_limit = skb_headlen(st->cur_skb) + st->stepped_offset; 3999 4000 if (abs_offset < block_limit && !st->frag_data) { 4001 *data = st->cur_skb->data + (abs_offset - st->stepped_offset); 4002 return block_limit - abs_offset; 4003 } 4004 4005 if (st->frag_idx == 0 && !st->frag_data) 4006 st->stepped_offset += skb_headlen(st->cur_skb); 4007 4008 while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) { 4009 unsigned int pg_idx, pg_off, pg_sz; 4010 4011 frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx]; 4012 4013 pg_idx = 0; 4014 pg_off = skb_frag_off(frag); 4015 pg_sz = skb_frag_size(frag); 4016 4017 if (skb_frag_must_loop(skb_frag_page(frag))) { 4018 pg_idx = (pg_off + st->frag_off) >> PAGE_SHIFT; 4019 pg_off = offset_in_page(pg_off + st->frag_off); 4020 pg_sz = min_t(unsigned int, pg_sz - st->frag_off, 4021 PAGE_SIZE - pg_off); 4022 } 4023 4024 block_limit = pg_sz + st->stepped_offset; 4025 if (abs_offset < block_limit) { 4026 if (!st->frag_data) 4027 st->frag_data = kmap_atomic(skb_frag_page(frag) + pg_idx); 4028 4029 *data = (u8 *)st->frag_data + pg_off + 4030 (abs_offset - st->stepped_offset); 4031 4032 return block_limit - abs_offset; 4033 } 4034 4035 if (st->frag_data) { 4036 kunmap_atomic(st->frag_data); 4037 st->frag_data = NULL; 4038 } 4039 4040 st->stepped_offset += pg_sz; 4041 st->frag_off += pg_sz; 4042 if (st->frag_off == skb_frag_size(frag)) { 4043 st->frag_off = 0; 4044 st->frag_idx++; 4045 } 4046 } 4047 4048 if (st->frag_data) { 4049 kunmap_atomic(st->frag_data); 4050 st->frag_data = NULL; 4051 } 4052 4053 if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) { 4054 st->cur_skb = skb_shinfo(st->root_skb)->frag_list; 4055 st->frag_idx = 0; 4056 goto next_skb; 4057 } else if (st->cur_skb->next) { 4058 st->cur_skb = st->cur_skb->next; 4059 st->frag_idx = 0; 4060 goto next_skb; 4061 } 4062 4063 return 0; 4064 } 4065 EXPORT_SYMBOL(skb_seq_read); 4066 4067 /** 4068 * skb_abort_seq_read - Abort a sequential read of skb data 4069 * @st: state variable 4070 * 4071 * Must be called if skb_seq_read() was not called until it 4072 * returned 0. 4073 */ 4074 void skb_abort_seq_read(struct skb_seq_state *st) 4075 { 4076 if (st->frag_data) 4077 kunmap_atomic(st->frag_data); 4078 } 4079 EXPORT_SYMBOL(skb_abort_seq_read); 4080 4081 #define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb)) 4082 4083 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text, 4084 struct ts_config *conf, 4085 struct ts_state *state) 4086 { 4087 return skb_seq_read(offset, text, TS_SKB_CB(state)); 4088 } 4089 4090 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state) 4091 { 4092 skb_abort_seq_read(TS_SKB_CB(state)); 4093 } 4094 4095 /** 4096 * skb_find_text - Find a text pattern in skb data 4097 * @skb: the buffer to look in 4098 * @from: search offset 4099 * @to: search limit 4100 * @config: textsearch configuration 4101 * 4102 * Finds a pattern in the skb data according to the specified 4103 * textsearch configuration. Use textsearch_next() to retrieve 4104 * subsequent occurrences of the pattern. Returns the offset 4105 * to the first occurrence or UINT_MAX if no match was found. 4106 */ 4107 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from, 4108 unsigned int to, struct ts_config *config) 4109 { 4110 struct ts_state state; 4111 unsigned int ret; 4112 4113 BUILD_BUG_ON(sizeof(struct skb_seq_state) > sizeof(state.cb)); 4114 4115 config->get_next_block = skb_ts_get_next_block; 4116 config->finish = skb_ts_finish; 4117 4118 skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state)); 4119 4120 ret = textsearch_find(config, &state); 4121 return (ret <= to - from ? ret : UINT_MAX); 4122 } 4123 EXPORT_SYMBOL(skb_find_text); 4124 4125 int skb_append_pagefrags(struct sk_buff *skb, struct page *page, 4126 int offset, size_t size) 4127 { 4128 int i = skb_shinfo(skb)->nr_frags; 4129 4130 if (skb_can_coalesce(skb, i, page, offset)) { 4131 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size); 4132 } else if (i < MAX_SKB_FRAGS) { 4133 skb_zcopy_downgrade_managed(skb); 4134 get_page(page); 4135 skb_fill_page_desc_noacc(skb, i, page, offset, size); 4136 } else { 4137 return -EMSGSIZE; 4138 } 4139 4140 return 0; 4141 } 4142 EXPORT_SYMBOL_GPL(skb_append_pagefrags); 4143 4144 /** 4145 * skb_pull_rcsum - pull skb and update receive checksum 4146 * @skb: buffer to update 4147 * @len: length of data pulled 4148 * 4149 * This function performs an skb_pull on the packet and updates 4150 * the CHECKSUM_COMPLETE checksum. It should be used on 4151 * receive path processing instead of skb_pull unless you know 4152 * that the checksum difference is zero (e.g., a valid IP header) 4153 * or you are setting ip_summed to CHECKSUM_NONE. 4154 */ 4155 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len) 4156 { 4157 unsigned char *data = skb->data; 4158 4159 BUG_ON(len > skb->len); 4160 __skb_pull(skb, len); 4161 skb_postpull_rcsum(skb, data, len); 4162 return skb->data; 4163 } 4164 EXPORT_SYMBOL_GPL(skb_pull_rcsum); 4165 4166 static inline skb_frag_t skb_head_frag_to_page_desc(struct sk_buff *frag_skb) 4167 { 4168 skb_frag_t head_frag; 4169 struct page *page; 4170 4171 page = virt_to_head_page(frag_skb->head); 4172 __skb_frag_set_page(&head_frag, page); 4173 skb_frag_off_set(&head_frag, frag_skb->data - 4174 (unsigned char *)page_address(page)); 4175 skb_frag_size_set(&head_frag, skb_headlen(frag_skb)); 4176 return head_frag; 4177 } 4178 4179 struct sk_buff *skb_segment_list(struct sk_buff *skb, 4180 netdev_features_t features, 4181 unsigned int offset) 4182 { 4183 struct sk_buff *list_skb = skb_shinfo(skb)->frag_list; 4184 unsigned int tnl_hlen = skb_tnl_header_len(skb); 4185 unsigned int delta_truesize = 0; 4186 unsigned int delta_len = 0; 4187 struct sk_buff *tail = NULL; 4188 struct sk_buff *nskb, *tmp; 4189 int len_diff, err; 4190 4191 skb_push(skb, -skb_network_offset(skb) + offset); 4192 4193 skb_shinfo(skb)->frag_list = NULL; 4194 4195 while (list_skb) { 4196 nskb = list_skb; 4197 list_skb = list_skb->next; 4198 4199 err = 0; 4200 delta_truesize += nskb->truesize; 4201 if (skb_shared(nskb)) { 4202 tmp = skb_clone(nskb, GFP_ATOMIC); 4203 if (tmp) { 4204 consume_skb(nskb); 4205 nskb = tmp; 4206 err = skb_unclone(nskb, GFP_ATOMIC); 4207 } else { 4208 err = -ENOMEM; 4209 } 4210 } 4211 4212 if (!tail) 4213 skb->next = nskb; 4214 else 4215 tail->next = nskb; 4216 4217 if (unlikely(err)) { 4218 nskb->next = list_skb; 4219 goto err_linearize; 4220 } 4221 4222 tail = nskb; 4223 4224 delta_len += nskb->len; 4225 4226 skb_push(nskb, -skb_network_offset(nskb) + offset); 4227 4228 skb_release_head_state(nskb); 4229 len_diff = skb_network_header_len(nskb) - skb_network_header_len(skb); 4230 __copy_skb_header(nskb, skb); 4231 4232 skb_headers_offset_update(nskb, skb_headroom(nskb) - skb_headroom(skb)); 4233 nskb->transport_header += len_diff; 4234 skb_copy_from_linear_data_offset(skb, -tnl_hlen, 4235 nskb->data - tnl_hlen, 4236 offset + tnl_hlen); 4237 4238 if (skb_needs_linearize(nskb, features) && 4239 __skb_linearize(nskb)) 4240 goto err_linearize; 4241 } 4242 4243 skb->truesize = skb->truesize - delta_truesize; 4244 skb->data_len = skb->data_len - delta_len; 4245 skb->len = skb->len - delta_len; 4246 4247 skb_gso_reset(skb); 4248 4249 skb->prev = tail; 4250 4251 if (skb_needs_linearize(skb, features) && 4252 __skb_linearize(skb)) 4253 goto err_linearize; 4254 4255 skb_get(skb); 4256 4257 return skb; 4258 4259 err_linearize: 4260 kfree_skb_list(skb->next); 4261 skb->next = NULL; 4262 return ERR_PTR(-ENOMEM); 4263 } 4264 EXPORT_SYMBOL_GPL(skb_segment_list); 4265 4266 /** 4267 * skb_segment - Perform protocol segmentation on skb. 4268 * @head_skb: buffer to segment 4269 * @features: features for the output path (see dev->features) 4270 * 4271 * This function performs segmentation on the given skb. It returns 4272 * a pointer to the first in a list of new skbs for the segments. 4273 * In case of error it returns ERR_PTR(err). 4274 */ 4275 struct sk_buff *skb_segment(struct sk_buff *head_skb, 4276 netdev_features_t features) 4277 { 4278 struct sk_buff *segs = NULL; 4279 struct sk_buff *tail = NULL; 4280 struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list; 4281 skb_frag_t *frag = skb_shinfo(head_skb)->frags; 4282 unsigned int mss = skb_shinfo(head_skb)->gso_size; 4283 unsigned int doffset = head_skb->data - skb_mac_header(head_skb); 4284 struct sk_buff *frag_skb = head_skb; 4285 unsigned int offset = doffset; 4286 unsigned int tnl_hlen = skb_tnl_header_len(head_skb); 4287 unsigned int partial_segs = 0; 4288 unsigned int headroom; 4289 unsigned int len = head_skb->len; 4290 __be16 proto; 4291 bool csum, sg; 4292 int nfrags = skb_shinfo(head_skb)->nr_frags; 4293 int err = -ENOMEM; 4294 int i = 0; 4295 int pos; 4296 4297 if ((skb_shinfo(head_skb)->gso_type & SKB_GSO_DODGY) && 4298 mss != GSO_BY_FRAGS && mss != skb_headlen(head_skb)) { 4299 struct sk_buff *check_skb; 4300 4301 for (check_skb = list_skb; check_skb; check_skb = check_skb->next) { 4302 if (skb_headlen(check_skb) && !check_skb->head_frag) { 4303 /* gso_size is untrusted, and we have a frag_list with 4304 * a linear non head_frag item. 4305 * 4306 * If head_skb's headlen does not fit requested gso_size, 4307 * it means that the frag_list members do NOT terminate 4308 * on exact gso_size boundaries. Hence we cannot perform 4309 * skb_frag_t page sharing. Therefore we must fallback to 4310 * copying the frag_list skbs; we do so by disabling SG. 4311 */ 4312 features &= ~NETIF_F_SG; 4313 break; 4314 } 4315 } 4316 } 4317 4318 __skb_push(head_skb, doffset); 4319 proto = skb_network_protocol(head_skb, NULL); 4320 if (unlikely(!proto)) 4321 return ERR_PTR(-EINVAL); 4322 4323 sg = !!(features & NETIF_F_SG); 4324 csum = !!can_checksum_protocol(features, proto); 4325 4326 if (sg && csum && (mss != GSO_BY_FRAGS)) { 4327 if (!(features & NETIF_F_GSO_PARTIAL)) { 4328 struct sk_buff *iter; 4329 unsigned int frag_len; 4330 4331 if (!list_skb || 4332 !net_gso_ok(features, skb_shinfo(head_skb)->gso_type)) 4333 goto normal; 4334 4335 /* If we get here then all the required 4336 * GSO features except frag_list are supported. 4337 * Try to split the SKB to multiple GSO SKBs 4338 * with no frag_list. 4339 * Currently we can do that only when the buffers don't 4340 * have a linear part and all the buffers except 4341 * the last are of the same length. 4342 */ 4343 frag_len = list_skb->len; 4344 skb_walk_frags(head_skb, iter) { 4345 if (frag_len != iter->len && iter->next) 4346 goto normal; 4347 if (skb_headlen(iter) && !iter->head_frag) 4348 goto normal; 4349 4350 len -= iter->len; 4351 } 4352 4353 if (len != frag_len) 4354 goto normal; 4355 } 4356 4357 /* GSO partial only requires that we trim off any excess that 4358 * doesn't fit into an MSS sized block, so take care of that 4359 * now. 4360 */ 4361 partial_segs = len / mss; 4362 if (partial_segs > 1) 4363 mss *= partial_segs; 4364 else 4365 partial_segs = 0; 4366 } 4367 4368 normal: 4369 headroom = skb_headroom(head_skb); 4370 pos = skb_headlen(head_skb); 4371 4372 do { 4373 struct sk_buff *nskb; 4374 skb_frag_t *nskb_frag; 4375 int hsize; 4376 int size; 4377 4378 if (unlikely(mss == GSO_BY_FRAGS)) { 4379 len = list_skb->len; 4380 } else { 4381 len = head_skb->len - offset; 4382 if (len > mss) 4383 len = mss; 4384 } 4385 4386 hsize = skb_headlen(head_skb) - offset; 4387 4388 if (hsize <= 0 && i >= nfrags && skb_headlen(list_skb) && 4389 (skb_headlen(list_skb) == len || sg)) { 4390 BUG_ON(skb_headlen(list_skb) > len); 4391 4392 i = 0; 4393 nfrags = skb_shinfo(list_skb)->nr_frags; 4394 frag = skb_shinfo(list_skb)->frags; 4395 frag_skb = list_skb; 4396 pos += skb_headlen(list_skb); 4397 4398 while (pos < offset + len) { 4399 BUG_ON(i >= nfrags); 4400 4401 size = skb_frag_size(frag); 4402 if (pos + size > offset + len) 4403 break; 4404 4405 i++; 4406 pos += size; 4407 frag++; 4408 } 4409 4410 nskb = skb_clone(list_skb, GFP_ATOMIC); 4411 list_skb = list_skb->next; 4412 4413 if (unlikely(!nskb)) 4414 goto err; 4415 4416 if (unlikely(pskb_trim(nskb, len))) { 4417 kfree_skb(nskb); 4418 goto err; 4419 } 4420 4421 hsize = skb_end_offset(nskb); 4422 if (skb_cow_head(nskb, doffset + headroom)) { 4423 kfree_skb(nskb); 4424 goto err; 4425 } 4426 4427 nskb->truesize += skb_end_offset(nskb) - hsize; 4428 skb_release_head_state(nskb); 4429 __skb_push(nskb, doffset); 4430 } else { 4431 if (hsize < 0) 4432 hsize = 0; 4433 if (hsize > len || !sg) 4434 hsize = len; 4435 4436 nskb = __alloc_skb(hsize + doffset + headroom, 4437 GFP_ATOMIC, skb_alloc_rx_flag(head_skb), 4438 NUMA_NO_NODE); 4439 4440 if (unlikely(!nskb)) 4441 goto err; 4442 4443 skb_reserve(nskb, headroom); 4444 __skb_put(nskb, doffset); 4445 } 4446 4447 if (segs) 4448 tail->next = nskb; 4449 else 4450 segs = nskb; 4451 tail = nskb; 4452 4453 __copy_skb_header(nskb, head_skb); 4454 4455 skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom); 4456 skb_reset_mac_len(nskb); 4457 4458 skb_copy_from_linear_data_offset(head_skb, -tnl_hlen, 4459 nskb->data - tnl_hlen, 4460 doffset + tnl_hlen); 4461 4462 if (nskb->len == len + doffset) 4463 goto perform_csum_check; 4464 4465 if (!sg) { 4466 if (!csum) { 4467 if (!nskb->remcsum_offload) 4468 nskb->ip_summed = CHECKSUM_NONE; 4469 SKB_GSO_CB(nskb)->csum = 4470 skb_copy_and_csum_bits(head_skb, offset, 4471 skb_put(nskb, 4472 len), 4473 len); 4474 SKB_GSO_CB(nskb)->csum_start = 4475 skb_headroom(nskb) + doffset; 4476 } else { 4477 if (skb_copy_bits(head_skb, offset, skb_put(nskb, len), len)) 4478 goto err; 4479 } 4480 continue; 4481 } 4482 4483 nskb_frag = skb_shinfo(nskb)->frags; 4484 4485 skb_copy_from_linear_data_offset(head_skb, offset, 4486 skb_put(nskb, hsize), hsize); 4487 4488 skb_shinfo(nskb)->flags |= skb_shinfo(head_skb)->flags & 4489 SKBFL_SHARED_FRAG; 4490 4491 if (skb_orphan_frags(frag_skb, GFP_ATOMIC) || 4492 skb_zerocopy_clone(nskb, frag_skb, GFP_ATOMIC)) 4493 goto err; 4494 4495 while (pos < offset + len) { 4496 if (i >= nfrags) { 4497 i = 0; 4498 nfrags = skb_shinfo(list_skb)->nr_frags; 4499 frag = skb_shinfo(list_skb)->frags; 4500 frag_skb = list_skb; 4501 if (!skb_headlen(list_skb)) { 4502 BUG_ON(!nfrags); 4503 } else { 4504 BUG_ON(!list_skb->head_frag); 4505 4506 /* to make room for head_frag. */ 4507 i--; 4508 frag--; 4509 } 4510 if (skb_orphan_frags(frag_skb, GFP_ATOMIC) || 4511 skb_zerocopy_clone(nskb, frag_skb, 4512 GFP_ATOMIC)) 4513 goto err; 4514 4515 list_skb = list_skb->next; 4516 } 4517 4518 if (unlikely(skb_shinfo(nskb)->nr_frags >= 4519 MAX_SKB_FRAGS)) { 4520 net_warn_ratelimited( 4521 "skb_segment: too many frags: %u %u\n", 4522 pos, mss); 4523 err = -EINVAL; 4524 goto err; 4525 } 4526 4527 *nskb_frag = (i < 0) ? skb_head_frag_to_page_desc(frag_skb) : *frag; 4528 __skb_frag_ref(nskb_frag); 4529 size = skb_frag_size(nskb_frag); 4530 4531 if (pos < offset) { 4532 skb_frag_off_add(nskb_frag, offset - pos); 4533 skb_frag_size_sub(nskb_frag, offset - pos); 4534 } 4535 4536 skb_shinfo(nskb)->nr_frags++; 4537 4538 if (pos + size <= offset + len) { 4539 i++; 4540 frag++; 4541 pos += size; 4542 } else { 4543 skb_frag_size_sub(nskb_frag, pos + size - (offset + len)); 4544 goto skip_fraglist; 4545 } 4546 4547 nskb_frag++; 4548 } 4549 4550 skip_fraglist: 4551 nskb->data_len = len - hsize; 4552 nskb->len += nskb->data_len; 4553 nskb->truesize += nskb->data_len; 4554 4555 perform_csum_check: 4556 if (!csum) { 4557 if (skb_has_shared_frag(nskb) && 4558 __skb_linearize(nskb)) 4559 goto err; 4560 4561 if (!nskb->remcsum_offload) 4562 nskb->ip_summed = CHECKSUM_NONE; 4563 SKB_GSO_CB(nskb)->csum = 4564 skb_checksum(nskb, doffset, 4565 nskb->len - doffset, 0); 4566 SKB_GSO_CB(nskb)->csum_start = 4567 skb_headroom(nskb) + doffset; 4568 } 4569 } while ((offset += len) < head_skb->len); 4570 4571 /* Some callers want to get the end of the list. 4572 * Put it in segs->prev to avoid walking the list. 4573 * (see validate_xmit_skb_list() for example) 4574 */ 4575 segs->prev = tail; 4576 4577 if (partial_segs) { 4578 struct sk_buff *iter; 4579 int type = skb_shinfo(head_skb)->gso_type; 4580 unsigned short gso_size = skb_shinfo(head_skb)->gso_size; 4581 4582 /* Update type to add partial and then remove dodgy if set */ 4583 type |= (features & NETIF_F_GSO_PARTIAL) / NETIF_F_GSO_PARTIAL * SKB_GSO_PARTIAL; 4584 type &= ~SKB_GSO_DODGY; 4585 4586 /* Update GSO info and prepare to start updating headers on 4587 * our way back down the stack of protocols. 4588 */ 4589 for (iter = segs; iter; iter = iter->next) { 4590 skb_shinfo(iter)->gso_size = gso_size; 4591 skb_shinfo(iter)->gso_segs = partial_segs; 4592 skb_shinfo(iter)->gso_type = type; 4593 SKB_GSO_CB(iter)->data_offset = skb_headroom(iter) + doffset; 4594 } 4595 4596 if (tail->len - doffset <= gso_size) 4597 skb_shinfo(tail)->gso_size = 0; 4598 else if (tail != segs) 4599 skb_shinfo(tail)->gso_segs = DIV_ROUND_UP(tail->len - doffset, gso_size); 4600 } 4601 4602 /* Following permits correct backpressure, for protocols 4603 * using skb_set_owner_w(). 4604 * Idea is to tranfert ownership from head_skb to last segment. 4605 */ 4606 if (head_skb->destructor == sock_wfree) { 4607 swap(tail->truesize, head_skb->truesize); 4608 swap(tail->destructor, head_skb->destructor); 4609 swap(tail->sk, head_skb->sk); 4610 } 4611 return segs; 4612 4613 err: 4614 kfree_skb_list(segs); 4615 return ERR_PTR(err); 4616 } 4617 EXPORT_SYMBOL_GPL(skb_segment); 4618 4619 #ifdef CONFIG_SKB_EXTENSIONS 4620 #define SKB_EXT_ALIGN_VALUE 8 4621 #define SKB_EXT_CHUNKSIZEOF(x) (ALIGN((sizeof(x)), SKB_EXT_ALIGN_VALUE) / SKB_EXT_ALIGN_VALUE) 4622 4623 static const u8 skb_ext_type_len[] = { 4624 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 4625 [SKB_EXT_BRIDGE_NF] = SKB_EXT_CHUNKSIZEOF(struct nf_bridge_info), 4626 #endif 4627 #ifdef CONFIG_XFRM 4628 [SKB_EXT_SEC_PATH] = SKB_EXT_CHUNKSIZEOF(struct sec_path), 4629 #endif 4630 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT) 4631 [TC_SKB_EXT] = SKB_EXT_CHUNKSIZEOF(struct tc_skb_ext), 4632 #endif 4633 #if IS_ENABLED(CONFIG_MPTCP) 4634 [SKB_EXT_MPTCP] = SKB_EXT_CHUNKSIZEOF(struct mptcp_ext), 4635 #endif 4636 #if IS_ENABLED(CONFIG_MCTP_FLOWS) 4637 [SKB_EXT_MCTP] = SKB_EXT_CHUNKSIZEOF(struct mctp_flow), 4638 #endif 4639 }; 4640 4641 static __always_inline unsigned int skb_ext_total_length(void) 4642 { 4643 return SKB_EXT_CHUNKSIZEOF(struct skb_ext) + 4644 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 4645 skb_ext_type_len[SKB_EXT_BRIDGE_NF] + 4646 #endif 4647 #ifdef CONFIG_XFRM 4648 skb_ext_type_len[SKB_EXT_SEC_PATH] + 4649 #endif 4650 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT) 4651 skb_ext_type_len[TC_SKB_EXT] + 4652 #endif 4653 #if IS_ENABLED(CONFIG_MPTCP) 4654 skb_ext_type_len[SKB_EXT_MPTCP] + 4655 #endif 4656 #if IS_ENABLED(CONFIG_MCTP_FLOWS) 4657 skb_ext_type_len[SKB_EXT_MCTP] + 4658 #endif 4659 0; 4660 } 4661 4662 static void skb_extensions_init(void) 4663 { 4664 BUILD_BUG_ON(SKB_EXT_NUM >= 8); 4665 BUILD_BUG_ON(skb_ext_total_length() > 255); 4666 4667 skbuff_ext_cache = kmem_cache_create("skbuff_ext_cache", 4668 SKB_EXT_ALIGN_VALUE * skb_ext_total_length(), 4669 0, 4670 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 4671 NULL); 4672 } 4673 #else 4674 static void skb_extensions_init(void) {} 4675 #endif 4676 4677 void __init skb_init(void) 4678 { 4679 skbuff_cache = kmem_cache_create_usercopy("skbuff_head_cache", 4680 sizeof(struct sk_buff), 4681 0, 4682 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 4683 offsetof(struct sk_buff, cb), 4684 sizeof_field(struct sk_buff, cb), 4685 NULL); 4686 skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache", 4687 sizeof(struct sk_buff_fclones), 4688 0, 4689 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 4690 NULL); 4691 #ifdef HAVE_SKB_SMALL_HEAD_CACHE 4692 /* usercopy should only access first SKB_SMALL_HEAD_HEADROOM bytes. 4693 * struct skb_shared_info is located at the end of skb->head, 4694 * and should not be copied to/from user. 4695 */ 4696 skb_small_head_cache = kmem_cache_create_usercopy("skbuff_small_head", 4697 SKB_SMALL_HEAD_CACHE_SIZE, 4698 0, 4699 SLAB_HWCACHE_ALIGN | SLAB_PANIC, 4700 0, 4701 SKB_SMALL_HEAD_HEADROOM, 4702 NULL); 4703 #endif 4704 skb_extensions_init(); 4705 } 4706 4707 static int 4708 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len, 4709 unsigned int recursion_level) 4710 { 4711 int start = skb_headlen(skb); 4712 int i, copy = start - offset; 4713 struct sk_buff *frag_iter; 4714 int elt = 0; 4715 4716 if (unlikely(recursion_level >= 24)) 4717 return -EMSGSIZE; 4718 4719 if (copy > 0) { 4720 if (copy > len) 4721 copy = len; 4722 sg_set_buf(sg, skb->data + offset, copy); 4723 elt++; 4724 if ((len -= copy) == 0) 4725 return elt; 4726 offset += copy; 4727 } 4728 4729 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 4730 int end; 4731 4732 WARN_ON(start > offset + len); 4733 4734 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]); 4735 if ((copy = end - offset) > 0) { 4736 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 4737 if (unlikely(elt && sg_is_last(&sg[elt - 1]))) 4738 return -EMSGSIZE; 4739 4740 if (copy > len) 4741 copy = len; 4742 sg_set_page(&sg[elt], skb_frag_page(frag), copy, 4743 skb_frag_off(frag) + offset - start); 4744 elt++; 4745 if (!(len -= copy)) 4746 return elt; 4747 offset += copy; 4748 } 4749 start = end; 4750 } 4751 4752 skb_walk_frags(skb, frag_iter) { 4753 int end, ret; 4754 4755 WARN_ON(start > offset + len); 4756 4757 end = start + frag_iter->len; 4758 if ((copy = end - offset) > 0) { 4759 if (unlikely(elt && sg_is_last(&sg[elt - 1]))) 4760 return -EMSGSIZE; 4761 4762 if (copy > len) 4763 copy = len; 4764 ret = __skb_to_sgvec(frag_iter, sg+elt, offset - start, 4765 copy, recursion_level + 1); 4766 if (unlikely(ret < 0)) 4767 return ret; 4768 elt += ret; 4769 if ((len -= copy) == 0) 4770 return elt; 4771 offset += copy; 4772 } 4773 start = end; 4774 } 4775 BUG_ON(len); 4776 return elt; 4777 } 4778 4779 /** 4780 * skb_to_sgvec - Fill a scatter-gather list from a socket buffer 4781 * @skb: Socket buffer containing the buffers to be mapped 4782 * @sg: The scatter-gather list to map into 4783 * @offset: The offset into the buffer's contents to start mapping 4784 * @len: Length of buffer space to be mapped 4785 * 4786 * Fill the specified scatter-gather list with mappings/pointers into a 4787 * region of the buffer space attached to a socket buffer. Returns either 4788 * the number of scatterlist items used, or -EMSGSIZE if the contents 4789 * could not fit. 4790 */ 4791 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len) 4792 { 4793 int nsg = __skb_to_sgvec(skb, sg, offset, len, 0); 4794 4795 if (nsg <= 0) 4796 return nsg; 4797 4798 sg_mark_end(&sg[nsg - 1]); 4799 4800 return nsg; 4801 } 4802 EXPORT_SYMBOL_GPL(skb_to_sgvec); 4803 4804 /* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given 4805 * sglist without mark the sg which contain last skb data as the end. 4806 * So the caller can mannipulate sg list as will when padding new data after 4807 * the first call without calling sg_unmark_end to expend sg list. 4808 * 4809 * Scenario to use skb_to_sgvec_nomark: 4810 * 1. sg_init_table 4811 * 2. skb_to_sgvec_nomark(payload1) 4812 * 3. skb_to_sgvec_nomark(payload2) 4813 * 4814 * This is equivalent to: 4815 * 1. sg_init_table 4816 * 2. skb_to_sgvec(payload1) 4817 * 3. sg_unmark_end 4818 * 4. skb_to_sgvec(payload2) 4819 * 4820 * When mapping mutilple payload conditionally, skb_to_sgvec_nomark 4821 * is more preferable. 4822 */ 4823 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg, 4824 int offset, int len) 4825 { 4826 return __skb_to_sgvec(skb, sg, offset, len, 0); 4827 } 4828 EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark); 4829 4830 4831 4832 /** 4833 * skb_cow_data - Check that a socket buffer's data buffers are writable 4834 * @skb: The socket buffer to check. 4835 * @tailbits: Amount of trailing space to be added 4836 * @trailer: Returned pointer to the skb where the @tailbits space begins 4837 * 4838 * Make sure that the data buffers attached to a socket buffer are 4839 * writable. If they are not, private copies are made of the data buffers 4840 * and the socket buffer is set to use these instead. 4841 * 4842 * If @tailbits is given, make sure that there is space to write @tailbits 4843 * bytes of data beyond current end of socket buffer. @trailer will be 4844 * set to point to the skb in which this space begins. 4845 * 4846 * The number of scatterlist elements required to completely map the 4847 * COW'd and extended socket buffer will be returned. 4848 */ 4849 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer) 4850 { 4851 int copyflag; 4852 int elt; 4853 struct sk_buff *skb1, **skb_p; 4854 4855 /* If skb is cloned or its head is paged, reallocate 4856 * head pulling out all the pages (pages are considered not writable 4857 * at the moment even if they are anonymous). 4858 */ 4859 if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) && 4860 !__pskb_pull_tail(skb, __skb_pagelen(skb))) 4861 return -ENOMEM; 4862 4863 /* Easy case. Most of packets will go this way. */ 4864 if (!skb_has_frag_list(skb)) { 4865 /* A little of trouble, not enough of space for trailer. 4866 * This should not happen, when stack is tuned to generate 4867 * good frames. OK, on miss we reallocate and reserve even more 4868 * space, 128 bytes is fair. */ 4869 4870 if (skb_tailroom(skb) < tailbits && 4871 pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC)) 4872 return -ENOMEM; 4873 4874 /* Voila! */ 4875 *trailer = skb; 4876 return 1; 4877 } 4878 4879 /* Misery. We are in troubles, going to mincer fragments... */ 4880 4881 elt = 1; 4882 skb_p = &skb_shinfo(skb)->frag_list; 4883 copyflag = 0; 4884 4885 while ((skb1 = *skb_p) != NULL) { 4886 int ntail = 0; 4887 4888 /* The fragment is partially pulled by someone, 4889 * this can happen on input. Copy it and everything 4890 * after it. */ 4891 4892 if (skb_shared(skb1)) 4893 copyflag = 1; 4894 4895 /* If the skb is the last, worry about trailer. */ 4896 4897 if (skb1->next == NULL && tailbits) { 4898 if (skb_shinfo(skb1)->nr_frags || 4899 skb_has_frag_list(skb1) || 4900 skb_tailroom(skb1) < tailbits) 4901 ntail = tailbits + 128; 4902 } 4903 4904 if (copyflag || 4905 skb_cloned(skb1) || 4906 ntail || 4907 skb_shinfo(skb1)->nr_frags || 4908 skb_has_frag_list(skb1)) { 4909 struct sk_buff *skb2; 4910 4911 /* Fuck, we are miserable poor guys... */ 4912 if (ntail == 0) 4913 skb2 = skb_copy(skb1, GFP_ATOMIC); 4914 else 4915 skb2 = skb_copy_expand(skb1, 4916 skb_headroom(skb1), 4917 ntail, 4918 GFP_ATOMIC); 4919 if (unlikely(skb2 == NULL)) 4920 return -ENOMEM; 4921 4922 if (skb1->sk) 4923 skb_set_owner_w(skb2, skb1->sk); 4924 4925 /* Looking around. Are we still alive? 4926 * OK, link new skb, drop old one */ 4927 4928 skb2->next = skb1->next; 4929 *skb_p = skb2; 4930 kfree_skb(skb1); 4931 skb1 = skb2; 4932 } 4933 elt++; 4934 *trailer = skb1; 4935 skb_p = &skb1->next; 4936 } 4937 4938 return elt; 4939 } 4940 EXPORT_SYMBOL_GPL(skb_cow_data); 4941 4942 static void sock_rmem_free(struct sk_buff *skb) 4943 { 4944 struct sock *sk = skb->sk; 4945 4946 atomic_sub(skb->truesize, &sk->sk_rmem_alloc); 4947 } 4948 4949 static void skb_set_err_queue(struct sk_buff *skb) 4950 { 4951 /* pkt_type of skbs received on local sockets is never PACKET_OUTGOING. 4952 * So, it is safe to (mis)use it to mark skbs on the error queue. 4953 */ 4954 skb->pkt_type = PACKET_OUTGOING; 4955 BUILD_BUG_ON(PACKET_OUTGOING == 0); 4956 } 4957 4958 /* 4959 * Note: We dont mem charge error packets (no sk_forward_alloc changes) 4960 */ 4961 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb) 4962 { 4963 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >= 4964 (unsigned int)READ_ONCE(sk->sk_rcvbuf)) 4965 return -ENOMEM; 4966 4967 skb_orphan(skb); 4968 skb->sk = sk; 4969 skb->destructor = sock_rmem_free; 4970 atomic_add(skb->truesize, &sk->sk_rmem_alloc); 4971 skb_set_err_queue(skb); 4972 4973 /* before exiting rcu section, make sure dst is refcounted */ 4974 skb_dst_force(skb); 4975 4976 skb_queue_tail(&sk->sk_error_queue, skb); 4977 if (!sock_flag(sk, SOCK_DEAD)) 4978 sk_error_report(sk); 4979 return 0; 4980 } 4981 EXPORT_SYMBOL(sock_queue_err_skb); 4982 4983 static bool is_icmp_err_skb(const struct sk_buff *skb) 4984 { 4985 return skb && (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP || 4986 SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP6); 4987 } 4988 4989 struct sk_buff *sock_dequeue_err_skb(struct sock *sk) 4990 { 4991 struct sk_buff_head *q = &sk->sk_error_queue; 4992 struct sk_buff *skb, *skb_next = NULL; 4993 bool icmp_next = false; 4994 unsigned long flags; 4995 4996 spin_lock_irqsave(&q->lock, flags); 4997 skb = __skb_dequeue(q); 4998 if (skb && (skb_next = skb_peek(q))) { 4999 icmp_next = is_icmp_err_skb(skb_next); 5000 if (icmp_next) 5001 sk->sk_err = SKB_EXT_ERR(skb_next)->ee.ee_errno; 5002 } 5003 spin_unlock_irqrestore(&q->lock, flags); 5004 5005 if (is_icmp_err_skb(skb) && !icmp_next) 5006 sk->sk_err = 0; 5007 5008 if (skb_next) 5009 sk_error_report(sk); 5010 5011 return skb; 5012 } 5013 EXPORT_SYMBOL(sock_dequeue_err_skb); 5014 5015 /** 5016 * skb_clone_sk - create clone of skb, and take reference to socket 5017 * @skb: the skb to clone 5018 * 5019 * This function creates a clone of a buffer that holds a reference on 5020 * sk_refcnt. Buffers created via this function are meant to be 5021 * returned using sock_queue_err_skb, or free via kfree_skb. 5022 * 5023 * When passing buffers allocated with this function to sock_queue_err_skb 5024 * it is necessary to wrap the call with sock_hold/sock_put in order to 5025 * prevent the socket from being released prior to being enqueued on 5026 * the sk_error_queue. 5027 */ 5028 struct sk_buff *skb_clone_sk(struct sk_buff *skb) 5029 { 5030 struct sock *sk = skb->sk; 5031 struct sk_buff *clone; 5032 5033 if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt)) 5034 return NULL; 5035 5036 clone = skb_clone(skb, GFP_ATOMIC); 5037 if (!clone) { 5038 sock_put(sk); 5039 return NULL; 5040 } 5041 5042 clone->sk = sk; 5043 clone->destructor = sock_efree; 5044 5045 return clone; 5046 } 5047 EXPORT_SYMBOL(skb_clone_sk); 5048 5049 static void __skb_complete_tx_timestamp(struct sk_buff *skb, 5050 struct sock *sk, 5051 int tstype, 5052 bool opt_stats) 5053 { 5054 struct sock_exterr_skb *serr; 5055 int err; 5056 5057 BUILD_BUG_ON(sizeof(struct sock_exterr_skb) > sizeof(skb->cb)); 5058 5059 serr = SKB_EXT_ERR(skb); 5060 memset(serr, 0, sizeof(*serr)); 5061 serr->ee.ee_errno = ENOMSG; 5062 serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING; 5063 serr->ee.ee_info = tstype; 5064 serr->opt_stats = opt_stats; 5065 serr->header.h4.iif = skb->dev ? skb->dev->ifindex : 0; 5066 if (sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID) { 5067 serr->ee.ee_data = skb_shinfo(skb)->tskey; 5068 if (sk_is_tcp(sk)) 5069 serr->ee.ee_data -= atomic_read(&sk->sk_tskey); 5070 } 5071 5072 err = sock_queue_err_skb(sk, skb); 5073 5074 if (err) 5075 kfree_skb(skb); 5076 } 5077 5078 static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly) 5079 { 5080 bool ret; 5081 5082 if (likely(READ_ONCE(sysctl_tstamp_allow_data) || tsonly)) 5083 return true; 5084 5085 read_lock_bh(&sk->sk_callback_lock); 5086 ret = sk->sk_socket && sk->sk_socket->file && 5087 file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW); 5088 read_unlock_bh(&sk->sk_callback_lock); 5089 return ret; 5090 } 5091 5092 void skb_complete_tx_timestamp(struct sk_buff *skb, 5093 struct skb_shared_hwtstamps *hwtstamps) 5094 { 5095 struct sock *sk = skb->sk; 5096 5097 if (!skb_may_tx_timestamp(sk, false)) 5098 goto err; 5099 5100 /* Take a reference to prevent skb_orphan() from freeing the socket, 5101 * but only if the socket refcount is not zero. 5102 */ 5103 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) { 5104 *skb_hwtstamps(skb) = *hwtstamps; 5105 __skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND, false); 5106 sock_put(sk); 5107 return; 5108 } 5109 5110 err: 5111 kfree_skb(skb); 5112 } 5113 EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp); 5114 5115 void __skb_tstamp_tx(struct sk_buff *orig_skb, 5116 const struct sk_buff *ack_skb, 5117 struct skb_shared_hwtstamps *hwtstamps, 5118 struct sock *sk, int tstype) 5119 { 5120 struct sk_buff *skb; 5121 bool tsonly, opt_stats = false; 5122 5123 if (!sk) 5124 return; 5125 5126 if (!hwtstamps && !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TX_SWHW) && 5127 skb_shinfo(orig_skb)->tx_flags & SKBTX_IN_PROGRESS) 5128 return; 5129 5130 tsonly = sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TSONLY; 5131 if (!skb_may_tx_timestamp(sk, tsonly)) 5132 return; 5133 5134 if (tsonly) { 5135 #ifdef CONFIG_INET 5136 if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_STATS) && 5137 sk_is_tcp(sk)) { 5138 skb = tcp_get_timestamping_opt_stats(sk, orig_skb, 5139 ack_skb); 5140 opt_stats = true; 5141 } else 5142 #endif 5143 skb = alloc_skb(0, GFP_ATOMIC); 5144 } else { 5145 skb = skb_clone(orig_skb, GFP_ATOMIC); 5146 } 5147 if (!skb) 5148 return; 5149 5150 if (tsonly) { 5151 skb_shinfo(skb)->tx_flags |= skb_shinfo(orig_skb)->tx_flags & 5152 SKBTX_ANY_TSTAMP; 5153 skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey; 5154 } 5155 5156 if (hwtstamps) 5157 *skb_hwtstamps(skb) = *hwtstamps; 5158 else 5159 __net_timestamp(skb); 5160 5161 __skb_complete_tx_timestamp(skb, sk, tstype, opt_stats); 5162 } 5163 EXPORT_SYMBOL_GPL(__skb_tstamp_tx); 5164 5165 void skb_tstamp_tx(struct sk_buff *orig_skb, 5166 struct skb_shared_hwtstamps *hwtstamps) 5167 { 5168 return __skb_tstamp_tx(orig_skb, NULL, hwtstamps, orig_skb->sk, 5169 SCM_TSTAMP_SND); 5170 } 5171 EXPORT_SYMBOL_GPL(skb_tstamp_tx); 5172 5173 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked) 5174 { 5175 struct sock *sk = skb->sk; 5176 struct sock_exterr_skb *serr; 5177 int err = 1; 5178 5179 skb->wifi_acked_valid = 1; 5180 skb->wifi_acked = acked; 5181 5182 serr = SKB_EXT_ERR(skb); 5183 memset(serr, 0, sizeof(*serr)); 5184 serr->ee.ee_errno = ENOMSG; 5185 serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS; 5186 5187 /* Take a reference to prevent skb_orphan() from freeing the socket, 5188 * but only if the socket refcount is not zero. 5189 */ 5190 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) { 5191 err = sock_queue_err_skb(sk, skb); 5192 sock_put(sk); 5193 } 5194 if (err) 5195 kfree_skb(skb); 5196 } 5197 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack); 5198 5199 /** 5200 * skb_partial_csum_set - set up and verify partial csum values for packet 5201 * @skb: the skb to set 5202 * @start: the number of bytes after skb->data to start checksumming. 5203 * @off: the offset from start to place the checksum. 5204 * 5205 * For untrusted partially-checksummed packets, we need to make sure the values 5206 * for skb->csum_start and skb->csum_offset are valid so we don't oops. 5207 * 5208 * This function checks and sets those values and skb->ip_summed: if this 5209 * returns false you should drop the packet. 5210 */ 5211 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off) 5212 { 5213 u32 csum_end = (u32)start + (u32)off + sizeof(__sum16); 5214 u32 csum_start = skb_headroom(skb) + (u32)start; 5215 5216 if (unlikely(csum_start > U16_MAX || csum_end > skb_headlen(skb))) { 5217 net_warn_ratelimited("bad partial csum: csum=%u/%u headroom=%u headlen=%u\n", 5218 start, off, skb_headroom(skb), skb_headlen(skb)); 5219 return false; 5220 } 5221 skb->ip_summed = CHECKSUM_PARTIAL; 5222 skb->csum_start = csum_start; 5223 skb->csum_offset = off; 5224 skb_set_transport_header(skb, start); 5225 return true; 5226 } 5227 EXPORT_SYMBOL_GPL(skb_partial_csum_set); 5228 5229 static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len, 5230 unsigned int max) 5231 { 5232 if (skb_headlen(skb) >= len) 5233 return 0; 5234 5235 /* If we need to pullup then pullup to the max, so we 5236 * won't need to do it again. 5237 */ 5238 if (max > skb->len) 5239 max = skb->len; 5240 5241 if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL) 5242 return -ENOMEM; 5243 5244 if (skb_headlen(skb) < len) 5245 return -EPROTO; 5246 5247 return 0; 5248 } 5249 5250 #define MAX_TCP_HDR_LEN (15 * 4) 5251 5252 static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb, 5253 typeof(IPPROTO_IP) proto, 5254 unsigned int off) 5255 { 5256 int err; 5257 5258 switch (proto) { 5259 case IPPROTO_TCP: 5260 err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr), 5261 off + MAX_TCP_HDR_LEN); 5262 if (!err && !skb_partial_csum_set(skb, off, 5263 offsetof(struct tcphdr, 5264 check))) 5265 err = -EPROTO; 5266 return err ? ERR_PTR(err) : &tcp_hdr(skb)->check; 5267 5268 case IPPROTO_UDP: 5269 err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr), 5270 off + sizeof(struct udphdr)); 5271 if (!err && !skb_partial_csum_set(skb, off, 5272 offsetof(struct udphdr, 5273 check))) 5274 err = -EPROTO; 5275 return err ? ERR_PTR(err) : &udp_hdr(skb)->check; 5276 } 5277 5278 return ERR_PTR(-EPROTO); 5279 } 5280 5281 /* This value should be large enough to cover a tagged ethernet header plus 5282 * maximally sized IP and TCP or UDP headers. 5283 */ 5284 #define MAX_IP_HDR_LEN 128 5285 5286 static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate) 5287 { 5288 unsigned int off; 5289 bool fragment; 5290 __sum16 *csum; 5291 int err; 5292 5293 fragment = false; 5294 5295 err = skb_maybe_pull_tail(skb, 5296 sizeof(struct iphdr), 5297 MAX_IP_HDR_LEN); 5298 if (err < 0) 5299 goto out; 5300 5301 if (ip_is_fragment(ip_hdr(skb))) 5302 fragment = true; 5303 5304 off = ip_hdrlen(skb); 5305 5306 err = -EPROTO; 5307 5308 if (fragment) 5309 goto out; 5310 5311 csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off); 5312 if (IS_ERR(csum)) 5313 return PTR_ERR(csum); 5314 5315 if (recalculate) 5316 *csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr, 5317 ip_hdr(skb)->daddr, 5318 skb->len - off, 5319 ip_hdr(skb)->protocol, 0); 5320 err = 0; 5321 5322 out: 5323 return err; 5324 } 5325 5326 /* This value should be large enough to cover a tagged ethernet header plus 5327 * an IPv6 header, all options, and a maximal TCP or UDP header. 5328 */ 5329 #define MAX_IPV6_HDR_LEN 256 5330 5331 #define OPT_HDR(type, skb, off) \ 5332 (type *)(skb_network_header(skb) + (off)) 5333 5334 static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate) 5335 { 5336 int err; 5337 u8 nexthdr; 5338 unsigned int off; 5339 unsigned int len; 5340 bool fragment; 5341 bool done; 5342 __sum16 *csum; 5343 5344 fragment = false; 5345 done = false; 5346 5347 off = sizeof(struct ipv6hdr); 5348 5349 err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN); 5350 if (err < 0) 5351 goto out; 5352 5353 nexthdr = ipv6_hdr(skb)->nexthdr; 5354 5355 len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len); 5356 while (off <= len && !done) { 5357 switch (nexthdr) { 5358 case IPPROTO_DSTOPTS: 5359 case IPPROTO_HOPOPTS: 5360 case IPPROTO_ROUTING: { 5361 struct ipv6_opt_hdr *hp; 5362 5363 err = skb_maybe_pull_tail(skb, 5364 off + 5365 sizeof(struct ipv6_opt_hdr), 5366 MAX_IPV6_HDR_LEN); 5367 if (err < 0) 5368 goto out; 5369 5370 hp = OPT_HDR(struct ipv6_opt_hdr, skb, off); 5371 nexthdr = hp->nexthdr; 5372 off += ipv6_optlen(hp); 5373 break; 5374 } 5375 case IPPROTO_AH: { 5376 struct ip_auth_hdr *hp; 5377 5378 err = skb_maybe_pull_tail(skb, 5379 off + 5380 sizeof(struct ip_auth_hdr), 5381 MAX_IPV6_HDR_LEN); 5382 if (err < 0) 5383 goto out; 5384 5385 hp = OPT_HDR(struct ip_auth_hdr, skb, off); 5386 nexthdr = hp->nexthdr; 5387 off += ipv6_authlen(hp); 5388 break; 5389 } 5390 case IPPROTO_FRAGMENT: { 5391 struct frag_hdr *hp; 5392 5393 err = skb_maybe_pull_tail(skb, 5394 off + 5395 sizeof(struct frag_hdr), 5396 MAX_IPV6_HDR_LEN); 5397 if (err < 0) 5398 goto out; 5399 5400 hp = OPT_HDR(struct frag_hdr, skb, off); 5401 5402 if (hp->frag_off & htons(IP6_OFFSET | IP6_MF)) 5403 fragment = true; 5404 5405 nexthdr = hp->nexthdr; 5406 off += sizeof(struct frag_hdr); 5407 break; 5408 } 5409 default: 5410 done = true; 5411 break; 5412 } 5413 } 5414 5415 err = -EPROTO; 5416 5417 if (!done || fragment) 5418 goto out; 5419 5420 csum = skb_checksum_setup_ip(skb, nexthdr, off); 5421 if (IS_ERR(csum)) 5422 return PTR_ERR(csum); 5423 5424 if (recalculate) 5425 *csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr, 5426 &ipv6_hdr(skb)->daddr, 5427 skb->len - off, nexthdr, 0); 5428 err = 0; 5429 5430 out: 5431 return err; 5432 } 5433 5434 /** 5435 * skb_checksum_setup - set up partial checksum offset 5436 * @skb: the skb to set up 5437 * @recalculate: if true the pseudo-header checksum will be recalculated 5438 */ 5439 int skb_checksum_setup(struct sk_buff *skb, bool recalculate) 5440 { 5441 int err; 5442 5443 switch (skb->protocol) { 5444 case htons(ETH_P_IP): 5445 err = skb_checksum_setup_ipv4(skb, recalculate); 5446 break; 5447 5448 case htons(ETH_P_IPV6): 5449 err = skb_checksum_setup_ipv6(skb, recalculate); 5450 break; 5451 5452 default: 5453 err = -EPROTO; 5454 break; 5455 } 5456 5457 return err; 5458 } 5459 EXPORT_SYMBOL(skb_checksum_setup); 5460 5461 /** 5462 * skb_checksum_maybe_trim - maybe trims the given skb 5463 * @skb: the skb to check 5464 * @transport_len: the data length beyond the network header 5465 * 5466 * Checks whether the given skb has data beyond the given transport length. 5467 * If so, returns a cloned skb trimmed to this transport length. 5468 * Otherwise returns the provided skb. Returns NULL in error cases 5469 * (e.g. transport_len exceeds skb length or out-of-memory). 5470 * 5471 * Caller needs to set the skb transport header and free any returned skb if it 5472 * differs from the provided skb. 5473 */ 5474 static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb, 5475 unsigned int transport_len) 5476 { 5477 struct sk_buff *skb_chk; 5478 unsigned int len = skb_transport_offset(skb) + transport_len; 5479 int ret; 5480 5481 if (skb->len < len) 5482 return NULL; 5483 else if (skb->len == len) 5484 return skb; 5485 5486 skb_chk = skb_clone(skb, GFP_ATOMIC); 5487 if (!skb_chk) 5488 return NULL; 5489 5490 ret = pskb_trim_rcsum(skb_chk, len); 5491 if (ret) { 5492 kfree_skb(skb_chk); 5493 return NULL; 5494 } 5495 5496 return skb_chk; 5497 } 5498 5499 /** 5500 * skb_checksum_trimmed - validate checksum of an skb 5501 * @skb: the skb to check 5502 * @transport_len: the data length beyond the network header 5503 * @skb_chkf: checksum function to use 5504 * 5505 * Applies the given checksum function skb_chkf to the provided skb. 5506 * Returns a checked and maybe trimmed skb. Returns NULL on error. 5507 * 5508 * If the skb has data beyond the given transport length, then a 5509 * trimmed & cloned skb is checked and returned. 5510 * 5511 * Caller needs to set the skb transport header and free any returned skb if it 5512 * differs from the provided skb. 5513 */ 5514 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb, 5515 unsigned int transport_len, 5516 __sum16(*skb_chkf)(struct sk_buff *skb)) 5517 { 5518 struct sk_buff *skb_chk; 5519 unsigned int offset = skb_transport_offset(skb); 5520 __sum16 ret; 5521 5522 skb_chk = skb_checksum_maybe_trim(skb, transport_len); 5523 if (!skb_chk) 5524 goto err; 5525 5526 if (!pskb_may_pull(skb_chk, offset)) 5527 goto err; 5528 5529 skb_pull_rcsum(skb_chk, offset); 5530 ret = skb_chkf(skb_chk); 5531 skb_push_rcsum(skb_chk, offset); 5532 5533 if (ret) 5534 goto err; 5535 5536 return skb_chk; 5537 5538 err: 5539 if (skb_chk && skb_chk != skb) 5540 kfree_skb(skb_chk); 5541 5542 return NULL; 5543 5544 } 5545 EXPORT_SYMBOL(skb_checksum_trimmed); 5546 5547 void __skb_warn_lro_forwarding(const struct sk_buff *skb) 5548 { 5549 net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n", 5550 skb->dev->name); 5551 } 5552 EXPORT_SYMBOL(__skb_warn_lro_forwarding); 5553 5554 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen) 5555 { 5556 if (head_stolen) { 5557 skb_release_head_state(skb); 5558 kmem_cache_free(skbuff_cache, skb); 5559 } else { 5560 __kfree_skb(skb); 5561 } 5562 } 5563 EXPORT_SYMBOL(kfree_skb_partial); 5564 5565 /** 5566 * skb_try_coalesce - try to merge skb to prior one 5567 * @to: prior buffer 5568 * @from: buffer to add 5569 * @fragstolen: pointer to boolean 5570 * @delta_truesize: how much more was allocated than was requested 5571 */ 5572 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from, 5573 bool *fragstolen, int *delta_truesize) 5574 { 5575 struct skb_shared_info *to_shinfo, *from_shinfo; 5576 int i, delta, len = from->len; 5577 5578 *fragstolen = false; 5579 5580 if (skb_cloned(to)) 5581 return false; 5582 5583 /* In general, avoid mixing slab allocated and page_pool allocated 5584 * pages within the same SKB. However when @to is not pp_recycle and 5585 * @from is cloned, we can transition frag pages from page_pool to 5586 * reference counted. 5587 * 5588 * On the other hand, don't allow coalescing two pp_recycle SKBs if 5589 * @from is cloned, in case the SKB is using page_pool fragment 5590 * references (PP_FLAG_PAGE_FRAG). Since we only take full page 5591 * references for cloned SKBs at the moment that would result in 5592 * inconsistent reference counts. 5593 */ 5594 if (to->pp_recycle != (from->pp_recycle && !skb_cloned(from))) 5595 return false; 5596 5597 if (len <= skb_tailroom(to)) { 5598 if (len) 5599 BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len)); 5600 *delta_truesize = 0; 5601 return true; 5602 } 5603 5604 to_shinfo = skb_shinfo(to); 5605 from_shinfo = skb_shinfo(from); 5606 if (to_shinfo->frag_list || from_shinfo->frag_list) 5607 return false; 5608 if (skb_zcopy(to) || skb_zcopy(from)) 5609 return false; 5610 5611 if (skb_headlen(from) != 0) { 5612 struct page *page; 5613 unsigned int offset; 5614 5615 if (to_shinfo->nr_frags + 5616 from_shinfo->nr_frags >= MAX_SKB_FRAGS) 5617 return false; 5618 5619 if (skb_head_is_locked(from)) 5620 return false; 5621 5622 delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff)); 5623 5624 page = virt_to_head_page(from->head); 5625 offset = from->data - (unsigned char *)page_address(page); 5626 5627 skb_fill_page_desc(to, to_shinfo->nr_frags, 5628 page, offset, skb_headlen(from)); 5629 *fragstolen = true; 5630 } else { 5631 if (to_shinfo->nr_frags + 5632 from_shinfo->nr_frags > MAX_SKB_FRAGS) 5633 return false; 5634 5635 delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from)); 5636 } 5637 5638 WARN_ON_ONCE(delta < len); 5639 5640 memcpy(to_shinfo->frags + to_shinfo->nr_frags, 5641 from_shinfo->frags, 5642 from_shinfo->nr_frags * sizeof(skb_frag_t)); 5643 to_shinfo->nr_frags += from_shinfo->nr_frags; 5644 5645 if (!skb_cloned(from)) 5646 from_shinfo->nr_frags = 0; 5647 5648 /* if the skb is not cloned this does nothing 5649 * since we set nr_frags to 0. 5650 */ 5651 for (i = 0; i < from_shinfo->nr_frags; i++) 5652 __skb_frag_ref(&from_shinfo->frags[i]); 5653 5654 to->truesize += delta; 5655 to->len += len; 5656 to->data_len += len; 5657 5658 *delta_truesize = delta; 5659 return true; 5660 } 5661 EXPORT_SYMBOL(skb_try_coalesce); 5662 5663 /** 5664 * skb_scrub_packet - scrub an skb 5665 * 5666 * @skb: buffer to clean 5667 * @xnet: packet is crossing netns 5668 * 5669 * skb_scrub_packet can be used after encapsulating or decapsulting a packet 5670 * into/from a tunnel. Some information have to be cleared during these 5671 * operations. 5672 * skb_scrub_packet can also be used to clean a skb before injecting it in 5673 * another namespace (@xnet == true). We have to clear all information in the 5674 * skb that could impact namespace isolation. 5675 */ 5676 void skb_scrub_packet(struct sk_buff *skb, bool xnet) 5677 { 5678 skb->pkt_type = PACKET_HOST; 5679 skb->skb_iif = 0; 5680 skb->ignore_df = 0; 5681 skb_dst_drop(skb); 5682 skb_ext_reset(skb); 5683 nf_reset_ct(skb); 5684 nf_reset_trace(skb); 5685 5686 #ifdef CONFIG_NET_SWITCHDEV 5687 skb->offload_fwd_mark = 0; 5688 skb->offload_l3_fwd_mark = 0; 5689 #endif 5690 5691 if (!xnet) 5692 return; 5693 5694 ipvs_reset(skb); 5695 skb->mark = 0; 5696 skb_clear_tstamp(skb); 5697 } 5698 EXPORT_SYMBOL_GPL(skb_scrub_packet); 5699 5700 /** 5701 * skb_gso_transport_seglen - Return length of individual segments of a gso packet 5702 * 5703 * @skb: GSO skb 5704 * 5705 * skb_gso_transport_seglen is used to determine the real size of the 5706 * individual segments, including Layer4 headers (TCP/UDP). 5707 * 5708 * The MAC/L2 or network (IP, IPv6) headers are not accounted for. 5709 */ 5710 static unsigned int skb_gso_transport_seglen(const struct sk_buff *skb) 5711 { 5712 const struct skb_shared_info *shinfo = skb_shinfo(skb); 5713 unsigned int thlen = 0; 5714 5715 if (skb->encapsulation) { 5716 thlen = skb_inner_transport_header(skb) - 5717 skb_transport_header(skb); 5718 5719 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) 5720 thlen += inner_tcp_hdrlen(skb); 5721 } else if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) { 5722 thlen = tcp_hdrlen(skb); 5723 } else if (unlikely(skb_is_gso_sctp(skb))) { 5724 thlen = sizeof(struct sctphdr); 5725 } else if (shinfo->gso_type & SKB_GSO_UDP_L4) { 5726 thlen = sizeof(struct udphdr); 5727 } 5728 /* UFO sets gso_size to the size of the fragmentation 5729 * payload, i.e. the size of the L4 (UDP) header is already 5730 * accounted for. 5731 */ 5732 return thlen + shinfo->gso_size; 5733 } 5734 5735 /** 5736 * skb_gso_network_seglen - Return length of individual segments of a gso packet 5737 * 5738 * @skb: GSO skb 5739 * 5740 * skb_gso_network_seglen is used to determine the real size of the 5741 * individual segments, including Layer3 (IP, IPv6) and L4 headers (TCP/UDP). 5742 * 5743 * The MAC/L2 header is not accounted for. 5744 */ 5745 static unsigned int skb_gso_network_seglen(const struct sk_buff *skb) 5746 { 5747 unsigned int hdr_len = skb_transport_header(skb) - 5748 skb_network_header(skb); 5749 5750 return hdr_len + skb_gso_transport_seglen(skb); 5751 } 5752 5753 /** 5754 * skb_gso_mac_seglen - Return length of individual segments of a gso packet 5755 * 5756 * @skb: GSO skb 5757 * 5758 * skb_gso_mac_seglen is used to determine the real size of the 5759 * individual segments, including MAC/L2, Layer3 (IP, IPv6) and L4 5760 * headers (TCP/UDP). 5761 */ 5762 static unsigned int skb_gso_mac_seglen(const struct sk_buff *skb) 5763 { 5764 unsigned int hdr_len = skb_transport_header(skb) - skb_mac_header(skb); 5765 5766 return hdr_len + skb_gso_transport_seglen(skb); 5767 } 5768 5769 /** 5770 * skb_gso_size_check - check the skb size, considering GSO_BY_FRAGS 5771 * 5772 * There are a couple of instances where we have a GSO skb, and we 5773 * want to determine what size it would be after it is segmented. 5774 * 5775 * We might want to check: 5776 * - L3+L4+payload size (e.g. IP forwarding) 5777 * - L2+L3+L4+payload size (e.g. sanity check before passing to driver) 5778 * 5779 * This is a helper to do that correctly considering GSO_BY_FRAGS. 5780 * 5781 * @skb: GSO skb 5782 * 5783 * @seg_len: The segmented length (from skb_gso_*_seglen). In the 5784 * GSO_BY_FRAGS case this will be [header sizes + GSO_BY_FRAGS]. 5785 * 5786 * @max_len: The maximum permissible length. 5787 * 5788 * Returns true if the segmented length <= max length. 5789 */ 5790 static inline bool skb_gso_size_check(const struct sk_buff *skb, 5791 unsigned int seg_len, 5792 unsigned int max_len) { 5793 const struct skb_shared_info *shinfo = skb_shinfo(skb); 5794 const struct sk_buff *iter; 5795 5796 if (shinfo->gso_size != GSO_BY_FRAGS) 5797 return seg_len <= max_len; 5798 5799 /* Undo this so we can re-use header sizes */ 5800 seg_len -= GSO_BY_FRAGS; 5801 5802 skb_walk_frags(skb, iter) { 5803 if (seg_len + skb_headlen(iter) > max_len) 5804 return false; 5805 } 5806 5807 return true; 5808 } 5809 5810 /** 5811 * skb_gso_validate_network_len - Will a split GSO skb fit into a given MTU? 5812 * 5813 * @skb: GSO skb 5814 * @mtu: MTU to validate against 5815 * 5816 * skb_gso_validate_network_len validates if a given skb will fit a 5817 * wanted MTU once split. It considers L3 headers, L4 headers, and the 5818 * payload. 5819 */ 5820 bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu) 5821 { 5822 return skb_gso_size_check(skb, skb_gso_network_seglen(skb), mtu); 5823 } 5824 EXPORT_SYMBOL_GPL(skb_gso_validate_network_len); 5825 5826 /** 5827 * skb_gso_validate_mac_len - Will a split GSO skb fit in a given length? 5828 * 5829 * @skb: GSO skb 5830 * @len: length to validate against 5831 * 5832 * skb_gso_validate_mac_len validates if a given skb will fit a wanted 5833 * length once split, including L2, L3 and L4 headers and the payload. 5834 */ 5835 bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len) 5836 { 5837 return skb_gso_size_check(skb, skb_gso_mac_seglen(skb), len); 5838 } 5839 EXPORT_SYMBOL_GPL(skb_gso_validate_mac_len); 5840 5841 static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb) 5842 { 5843 int mac_len, meta_len; 5844 void *meta; 5845 5846 if (skb_cow(skb, skb_headroom(skb)) < 0) { 5847 kfree_skb(skb); 5848 return NULL; 5849 } 5850 5851 mac_len = skb->data - skb_mac_header(skb); 5852 if (likely(mac_len > VLAN_HLEN + ETH_TLEN)) { 5853 memmove(skb_mac_header(skb) + VLAN_HLEN, skb_mac_header(skb), 5854 mac_len - VLAN_HLEN - ETH_TLEN); 5855 } 5856 5857 meta_len = skb_metadata_len(skb); 5858 if (meta_len) { 5859 meta = skb_metadata_end(skb) - meta_len; 5860 memmove(meta + VLAN_HLEN, meta, meta_len); 5861 } 5862 5863 skb->mac_header += VLAN_HLEN; 5864 return skb; 5865 } 5866 5867 struct sk_buff *skb_vlan_untag(struct sk_buff *skb) 5868 { 5869 struct vlan_hdr *vhdr; 5870 u16 vlan_tci; 5871 5872 if (unlikely(skb_vlan_tag_present(skb))) { 5873 /* vlan_tci is already set-up so leave this for another time */ 5874 return skb; 5875 } 5876 5877 skb = skb_share_check(skb, GFP_ATOMIC); 5878 if (unlikely(!skb)) 5879 goto err_free; 5880 /* We may access the two bytes after vlan_hdr in vlan_set_encap_proto(). */ 5881 if (unlikely(!pskb_may_pull(skb, VLAN_HLEN + sizeof(unsigned short)))) 5882 goto err_free; 5883 5884 vhdr = (struct vlan_hdr *)skb->data; 5885 vlan_tci = ntohs(vhdr->h_vlan_TCI); 5886 __vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci); 5887 5888 skb_pull_rcsum(skb, VLAN_HLEN); 5889 vlan_set_encap_proto(skb, vhdr); 5890 5891 skb = skb_reorder_vlan_header(skb); 5892 if (unlikely(!skb)) 5893 goto err_free; 5894 5895 skb_reset_network_header(skb); 5896 if (!skb_transport_header_was_set(skb)) 5897 skb_reset_transport_header(skb); 5898 skb_reset_mac_len(skb); 5899 5900 return skb; 5901 5902 err_free: 5903 kfree_skb(skb); 5904 return NULL; 5905 } 5906 EXPORT_SYMBOL(skb_vlan_untag); 5907 5908 int skb_ensure_writable(struct sk_buff *skb, unsigned int write_len) 5909 { 5910 if (!pskb_may_pull(skb, write_len)) 5911 return -ENOMEM; 5912 5913 if (!skb_cloned(skb) || skb_clone_writable(skb, write_len)) 5914 return 0; 5915 5916 return pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 5917 } 5918 EXPORT_SYMBOL(skb_ensure_writable); 5919 5920 /* remove VLAN header from packet and update csum accordingly. 5921 * expects a non skb_vlan_tag_present skb with a vlan tag payload 5922 */ 5923 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci) 5924 { 5925 struct vlan_hdr *vhdr; 5926 int offset = skb->data - skb_mac_header(skb); 5927 int err; 5928 5929 if (WARN_ONCE(offset, 5930 "__skb_vlan_pop got skb with skb->data not at mac header (offset %d)\n", 5931 offset)) { 5932 return -EINVAL; 5933 } 5934 5935 err = skb_ensure_writable(skb, VLAN_ETH_HLEN); 5936 if (unlikely(err)) 5937 return err; 5938 5939 skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN); 5940 5941 vhdr = (struct vlan_hdr *)(skb->data + ETH_HLEN); 5942 *vlan_tci = ntohs(vhdr->h_vlan_TCI); 5943 5944 memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN); 5945 __skb_pull(skb, VLAN_HLEN); 5946 5947 vlan_set_encap_proto(skb, vhdr); 5948 skb->mac_header += VLAN_HLEN; 5949 5950 if (skb_network_offset(skb) < ETH_HLEN) 5951 skb_set_network_header(skb, ETH_HLEN); 5952 5953 skb_reset_mac_len(skb); 5954 5955 return err; 5956 } 5957 EXPORT_SYMBOL(__skb_vlan_pop); 5958 5959 /* Pop a vlan tag either from hwaccel or from payload. 5960 * Expects skb->data at mac header. 5961 */ 5962 int skb_vlan_pop(struct sk_buff *skb) 5963 { 5964 u16 vlan_tci; 5965 __be16 vlan_proto; 5966 int err; 5967 5968 if (likely(skb_vlan_tag_present(skb))) { 5969 __vlan_hwaccel_clear_tag(skb); 5970 } else { 5971 if (unlikely(!eth_type_vlan(skb->protocol))) 5972 return 0; 5973 5974 err = __skb_vlan_pop(skb, &vlan_tci); 5975 if (err) 5976 return err; 5977 } 5978 /* move next vlan tag to hw accel tag */ 5979 if (likely(!eth_type_vlan(skb->protocol))) 5980 return 0; 5981 5982 vlan_proto = skb->protocol; 5983 err = __skb_vlan_pop(skb, &vlan_tci); 5984 if (unlikely(err)) 5985 return err; 5986 5987 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci); 5988 return 0; 5989 } 5990 EXPORT_SYMBOL(skb_vlan_pop); 5991 5992 /* Push a vlan tag either into hwaccel or into payload (if hwaccel tag present). 5993 * Expects skb->data at mac header. 5994 */ 5995 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci) 5996 { 5997 if (skb_vlan_tag_present(skb)) { 5998 int offset = skb->data - skb_mac_header(skb); 5999 int err; 6000 6001 if (WARN_ONCE(offset, 6002 "skb_vlan_push got skb with skb->data not at mac header (offset %d)\n", 6003 offset)) { 6004 return -EINVAL; 6005 } 6006 6007 err = __vlan_insert_tag(skb, skb->vlan_proto, 6008 skb_vlan_tag_get(skb)); 6009 if (err) 6010 return err; 6011 6012 skb->protocol = skb->vlan_proto; 6013 skb->mac_len += VLAN_HLEN; 6014 6015 skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN); 6016 } 6017 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci); 6018 return 0; 6019 } 6020 EXPORT_SYMBOL(skb_vlan_push); 6021 6022 /** 6023 * skb_eth_pop() - Drop the Ethernet header at the head of a packet 6024 * 6025 * @skb: Socket buffer to modify 6026 * 6027 * Drop the Ethernet header of @skb. 6028 * 6029 * Expects that skb->data points to the mac header and that no VLAN tags are 6030 * present. 6031 * 6032 * Returns 0 on success, -errno otherwise. 6033 */ 6034 int skb_eth_pop(struct sk_buff *skb) 6035 { 6036 if (!pskb_may_pull(skb, ETH_HLEN) || skb_vlan_tagged(skb) || 6037 skb_network_offset(skb) < ETH_HLEN) 6038 return -EPROTO; 6039 6040 skb_pull_rcsum(skb, ETH_HLEN); 6041 skb_reset_mac_header(skb); 6042 skb_reset_mac_len(skb); 6043 6044 return 0; 6045 } 6046 EXPORT_SYMBOL(skb_eth_pop); 6047 6048 /** 6049 * skb_eth_push() - Add a new Ethernet header at the head of a packet 6050 * 6051 * @skb: Socket buffer to modify 6052 * @dst: Destination MAC address of the new header 6053 * @src: Source MAC address of the new header 6054 * 6055 * Prepend @skb with a new Ethernet header. 6056 * 6057 * Expects that skb->data points to the mac header, which must be empty. 6058 * 6059 * Returns 0 on success, -errno otherwise. 6060 */ 6061 int skb_eth_push(struct sk_buff *skb, const unsigned char *dst, 6062 const unsigned char *src) 6063 { 6064 struct ethhdr *eth; 6065 int err; 6066 6067 if (skb_network_offset(skb) || skb_vlan_tag_present(skb)) 6068 return -EPROTO; 6069 6070 err = skb_cow_head(skb, sizeof(*eth)); 6071 if (err < 0) 6072 return err; 6073 6074 skb_push(skb, sizeof(*eth)); 6075 skb_reset_mac_header(skb); 6076 skb_reset_mac_len(skb); 6077 6078 eth = eth_hdr(skb); 6079 ether_addr_copy(eth->h_dest, dst); 6080 ether_addr_copy(eth->h_source, src); 6081 eth->h_proto = skb->protocol; 6082 6083 skb_postpush_rcsum(skb, eth, sizeof(*eth)); 6084 6085 return 0; 6086 } 6087 EXPORT_SYMBOL(skb_eth_push); 6088 6089 /* Update the ethertype of hdr and the skb csum value if required. */ 6090 static void skb_mod_eth_type(struct sk_buff *skb, struct ethhdr *hdr, 6091 __be16 ethertype) 6092 { 6093 if (skb->ip_summed == CHECKSUM_COMPLETE) { 6094 __be16 diff[] = { ~hdr->h_proto, ethertype }; 6095 6096 skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum); 6097 } 6098 6099 hdr->h_proto = ethertype; 6100 } 6101 6102 /** 6103 * skb_mpls_push() - push a new MPLS header after mac_len bytes from start of 6104 * the packet 6105 * 6106 * @skb: buffer 6107 * @mpls_lse: MPLS label stack entry to push 6108 * @mpls_proto: ethertype of the new MPLS header (expects 0x8847 or 0x8848) 6109 * @mac_len: length of the MAC header 6110 * @ethernet: flag to indicate if the resulting packet after skb_mpls_push is 6111 * ethernet 6112 * 6113 * Expects skb->data at mac header. 6114 * 6115 * Returns 0 on success, -errno otherwise. 6116 */ 6117 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto, 6118 int mac_len, bool ethernet) 6119 { 6120 struct mpls_shim_hdr *lse; 6121 int err; 6122 6123 if (unlikely(!eth_p_mpls(mpls_proto))) 6124 return -EINVAL; 6125 6126 /* Networking stack does not allow simultaneous Tunnel and MPLS GSO. */ 6127 if (skb->encapsulation) 6128 return -EINVAL; 6129 6130 err = skb_cow_head(skb, MPLS_HLEN); 6131 if (unlikely(err)) 6132 return err; 6133 6134 if (!skb->inner_protocol) { 6135 skb_set_inner_network_header(skb, skb_network_offset(skb)); 6136 skb_set_inner_protocol(skb, skb->protocol); 6137 } 6138 6139 skb_push(skb, MPLS_HLEN); 6140 memmove(skb_mac_header(skb) - MPLS_HLEN, skb_mac_header(skb), 6141 mac_len); 6142 skb_reset_mac_header(skb); 6143 skb_set_network_header(skb, mac_len); 6144 skb_reset_mac_len(skb); 6145 6146 lse = mpls_hdr(skb); 6147 lse->label_stack_entry = mpls_lse; 6148 skb_postpush_rcsum(skb, lse, MPLS_HLEN); 6149 6150 if (ethernet && mac_len >= ETH_HLEN) 6151 skb_mod_eth_type(skb, eth_hdr(skb), mpls_proto); 6152 skb->protocol = mpls_proto; 6153 6154 return 0; 6155 } 6156 EXPORT_SYMBOL_GPL(skb_mpls_push); 6157 6158 /** 6159 * skb_mpls_pop() - pop the outermost MPLS header 6160 * 6161 * @skb: buffer 6162 * @next_proto: ethertype of header after popped MPLS header 6163 * @mac_len: length of the MAC header 6164 * @ethernet: flag to indicate if the packet is ethernet 6165 * 6166 * Expects skb->data at mac header. 6167 * 6168 * Returns 0 on success, -errno otherwise. 6169 */ 6170 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len, 6171 bool ethernet) 6172 { 6173 int err; 6174 6175 if (unlikely(!eth_p_mpls(skb->protocol))) 6176 return 0; 6177 6178 err = skb_ensure_writable(skb, mac_len + MPLS_HLEN); 6179 if (unlikely(err)) 6180 return err; 6181 6182 skb_postpull_rcsum(skb, mpls_hdr(skb), MPLS_HLEN); 6183 memmove(skb_mac_header(skb) + MPLS_HLEN, skb_mac_header(skb), 6184 mac_len); 6185 6186 __skb_pull(skb, MPLS_HLEN); 6187 skb_reset_mac_header(skb); 6188 skb_set_network_header(skb, mac_len); 6189 6190 if (ethernet && mac_len >= ETH_HLEN) { 6191 struct ethhdr *hdr; 6192 6193 /* use mpls_hdr() to get ethertype to account for VLANs. */ 6194 hdr = (struct ethhdr *)((void *)mpls_hdr(skb) - ETH_HLEN); 6195 skb_mod_eth_type(skb, hdr, next_proto); 6196 } 6197 skb->protocol = next_proto; 6198 6199 return 0; 6200 } 6201 EXPORT_SYMBOL_GPL(skb_mpls_pop); 6202 6203 /** 6204 * skb_mpls_update_lse() - modify outermost MPLS header and update csum 6205 * 6206 * @skb: buffer 6207 * @mpls_lse: new MPLS label stack entry to update to 6208 * 6209 * Expects skb->data at mac header. 6210 * 6211 * Returns 0 on success, -errno otherwise. 6212 */ 6213 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse) 6214 { 6215 int err; 6216 6217 if (unlikely(!eth_p_mpls(skb->protocol))) 6218 return -EINVAL; 6219 6220 err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN); 6221 if (unlikely(err)) 6222 return err; 6223 6224 if (skb->ip_summed == CHECKSUM_COMPLETE) { 6225 __be32 diff[] = { ~mpls_hdr(skb)->label_stack_entry, mpls_lse }; 6226 6227 skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum); 6228 } 6229 6230 mpls_hdr(skb)->label_stack_entry = mpls_lse; 6231 6232 return 0; 6233 } 6234 EXPORT_SYMBOL_GPL(skb_mpls_update_lse); 6235 6236 /** 6237 * skb_mpls_dec_ttl() - decrement the TTL of the outermost MPLS header 6238 * 6239 * @skb: buffer 6240 * 6241 * Expects skb->data at mac header. 6242 * 6243 * Returns 0 on success, -errno otherwise. 6244 */ 6245 int skb_mpls_dec_ttl(struct sk_buff *skb) 6246 { 6247 u32 lse; 6248 u8 ttl; 6249 6250 if (unlikely(!eth_p_mpls(skb->protocol))) 6251 return -EINVAL; 6252 6253 if (!pskb_may_pull(skb, skb_network_offset(skb) + MPLS_HLEN)) 6254 return -ENOMEM; 6255 6256 lse = be32_to_cpu(mpls_hdr(skb)->label_stack_entry); 6257 ttl = (lse & MPLS_LS_TTL_MASK) >> MPLS_LS_TTL_SHIFT; 6258 if (!--ttl) 6259 return -EINVAL; 6260 6261 lse &= ~MPLS_LS_TTL_MASK; 6262 lse |= ttl << MPLS_LS_TTL_SHIFT; 6263 6264 return skb_mpls_update_lse(skb, cpu_to_be32(lse)); 6265 } 6266 EXPORT_SYMBOL_GPL(skb_mpls_dec_ttl); 6267 6268 /** 6269 * alloc_skb_with_frags - allocate skb with page frags 6270 * 6271 * @header_len: size of linear part 6272 * @data_len: needed length in frags 6273 * @max_page_order: max page order desired. 6274 * @errcode: pointer to error code if any 6275 * @gfp_mask: allocation mask 6276 * 6277 * This can be used to allocate a paged skb, given a maximal order for frags. 6278 */ 6279 struct sk_buff *alloc_skb_with_frags(unsigned long header_len, 6280 unsigned long data_len, 6281 int max_page_order, 6282 int *errcode, 6283 gfp_t gfp_mask) 6284 { 6285 int npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT; 6286 unsigned long chunk; 6287 struct sk_buff *skb; 6288 struct page *page; 6289 int i; 6290 6291 *errcode = -EMSGSIZE; 6292 /* Note this test could be relaxed, if we succeed to allocate 6293 * high order pages... 6294 */ 6295 if (npages > MAX_SKB_FRAGS) 6296 return NULL; 6297 6298 *errcode = -ENOBUFS; 6299 skb = alloc_skb(header_len, gfp_mask); 6300 if (!skb) 6301 return NULL; 6302 6303 skb->truesize += npages << PAGE_SHIFT; 6304 6305 for (i = 0; npages > 0; i++) { 6306 int order = max_page_order; 6307 6308 while (order) { 6309 if (npages >= 1 << order) { 6310 page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) | 6311 __GFP_COMP | 6312 __GFP_NOWARN, 6313 order); 6314 if (page) 6315 goto fill_page; 6316 /* Do not retry other high order allocations */ 6317 order = 1; 6318 max_page_order = 0; 6319 } 6320 order--; 6321 } 6322 page = alloc_page(gfp_mask); 6323 if (!page) 6324 goto failure; 6325 fill_page: 6326 chunk = min_t(unsigned long, data_len, 6327 PAGE_SIZE << order); 6328 skb_fill_page_desc(skb, i, page, 0, chunk); 6329 data_len -= chunk; 6330 npages -= 1 << order; 6331 } 6332 return skb; 6333 6334 failure: 6335 kfree_skb(skb); 6336 return NULL; 6337 } 6338 EXPORT_SYMBOL(alloc_skb_with_frags); 6339 6340 /* carve out the first off bytes from skb when off < headlen */ 6341 static int pskb_carve_inside_header(struct sk_buff *skb, const u32 off, 6342 const int headlen, gfp_t gfp_mask) 6343 { 6344 int i; 6345 unsigned int size = skb_end_offset(skb); 6346 int new_hlen = headlen - off; 6347 u8 *data; 6348 6349 if (skb_pfmemalloc(skb)) 6350 gfp_mask |= __GFP_MEMALLOC; 6351 6352 data = kmalloc_reserve(&size, gfp_mask, NUMA_NO_NODE, NULL); 6353 if (!data) 6354 return -ENOMEM; 6355 size = SKB_WITH_OVERHEAD(size); 6356 6357 /* Copy real data, and all frags */ 6358 skb_copy_from_linear_data_offset(skb, off, data, new_hlen); 6359 skb->len -= off; 6360 6361 memcpy((struct skb_shared_info *)(data + size), 6362 skb_shinfo(skb), 6363 offsetof(struct skb_shared_info, 6364 frags[skb_shinfo(skb)->nr_frags])); 6365 if (skb_cloned(skb)) { 6366 /* drop the old head gracefully */ 6367 if (skb_orphan_frags(skb, gfp_mask)) { 6368 skb_kfree_head(data, size); 6369 return -ENOMEM; 6370 } 6371 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 6372 skb_frag_ref(skb, i); 6373 if (skb_has_frag_list(skb)) 6374 skb_clone_fraglist(skb); 6375 skb_release_data(skb, SKB_CONSUMED); 6376 } else { 6377 /* we can reuse existing recount- all we did was 6378 * relocate values 6379 */ 6380 skb_free_head(skb); 6381 } 6382 6383 skb->head = data; 6384 skb->data = data; 6385 skb->head_frag = 0; 6386 skb_set_end_offset(skb, size); 6387 skb_set_tail_pointer(skb, skb_headlen(skb)); 6388 skb_headers_offset_update(skb, 0); 6389 skb->cloned = 0; 6390 skb->hdr_len = 0; 6391 skb->nohdr = 0; 6392 atomic_set(&skb_shinfo(skb)->dataref, 1); 6393 6394 return 0; 6395 } 6396 6397 static int pskb_carve(struct sk_buff *skb, const u32 off, gfp_t gfp); 6398 6399 /* carve out the first eat bytes from skb's frag_list. May recurse into 6400 * pskb_carve() 6401 */ 6402 static int pskb_carve_frag_list(struct sk_buff *skb, 6403 struct skb_shared_info *shinfo, int eat, 6404 gfp_t gfp_mask) 6405 { 6406 struct sk_buff *list = shinfo->frag_list; 6407 struct sk_buff *clone = NULL; 6408 struct sk_buff *insp = NULL; 6409 6410 do { 6411 if (!list) { 6412 pr_err("Not enough bytes to eat. Want %d\n", eat); 6413 return -EFAULT; 6414 } 6415 if (list->len <= eat) { 6416 /* Eaten as whole. */ 6417 eat -= list->len; 6418 list = list->next; 6419 insp = list; 6420 } else { 6421 /* Eaten partially. */ 6422 if (skb_shared(list)) { 6423 clone = skb_clone(list, gfp_mask); 6424 if (!clone) 6425 return -ENOMEM; 6426 insp = list->next; 6427 list = clone; 6428 } else { 6429 /* This may be pulled without problems. */ 6430 insp = list; 6431 } 6432 if (pskb_carve(list, eat, gfp_mask) < 0) { 6433 kfree_skb(clone); 6434 return -ENOMEM; 6435 } 6436 break; 6437 } 6438 } while (eat); 6439 6440 /* Free pulled out fragments. */ 6441 while ((list = shinfo->frag_list) != insp) { 6442 shinfo->frag_list = list->next; 6443 consume_skb(list); 6444 } 6445 /* And insert new clone at head. */ 6446 if (clone) { 6447 clone->next = list; 6448 shinfo->frag_list = clone; 6449 } 6450 return 0; 6451 } 6452 6453 /* carve off first len bytes from skb. Split line (off) is in the 6454 * non-linear part of skb 6455 */ 6456 static int pskb_carve_inside_nonlinear(struct sk_buff *skb, const u32 off, 6457 int pos, gfp_t gfp_mask) 6458 { 6459 int i, k = 0; 6460 unsigned int size = skb_end_offset(skb); 6461 u8 *data; 6462 const int nfrags = skb_shinfo(skb)->nr_frags; 6463 struct skb_shared_info *shinfo; 6464 6465 if (skb_pfmemalloc(skb)) 6466 gfp_mask |= __GFP_MEMALLOC; 6467 6468 data = kmalloc_reserve(&size, gfp_mask, NUMA_NO_NODE, NULL); 6469 if (!data) 6470 return -ENOMEM; 6471 size = SKB_WITH_OVERHEAD(size); 6472 6473 memcpy((struct skb_shared_info *)(data + size), 6474 skb_shinfo(skb), offsetof(struct skb_shared_info, frags[0])); 6475 if (skb_orphan_frags(skb, gfp_mask)) { 6476 skb_kfree_head(data, size); 6477 return -ENOMEM; 6478 } 6479 shinfo = (struct skb_shared_info *)(data + size); 6480 for (i = 0; i < nfrags; i++) { 6481 int fsize = skb_frag_size(&skb_shinfo(skb)->frags[i]); 6482 6483 if (pos + fsize > off) { 6484 shinfo->frags[k] = skb_shinfo(skb)->frags[i]; 6485 6486 if (pos < off) { 6487 /* Split frag. 6488 * We have two variants in this case: 6489 * 1. Move all the frag to the second 6490 * part, if it is possible. F.e. 6491 * this approach is mandatory for TUX, 6492 * where splitting is expensive. 6493 * 2. Split is accurately. We make this. 6494 */ 6495 skb_frag_off_add(&shinfo->frags[0], off - pos); 6496 skb_frag_size_sub(&shinfo->frags[0], off - pos); 6497 } 6498 skb_frag_ref(skb, i); 6499 k++; 6500 } 6501 pos += fsize; 6502 } 6503 shinfo->nr_frags = k; 6504 if (skb_has_frag_list(skb)) 6505 skb_clone_fraglist(skb); 6506 6507 /* split line is in frag list */ 6508 if (k == 0 && pskb_carve_frag_list(skb, shinfo, off - pos, gfp_mask)) { 6509 /* skb_frag_unref() is not needed here as shinfo->nr_frags = 0. */ 6510 if (skb_has_frag_list(skb)) 6511 kfree_skb_list(skb_shinfo(skb)->frag_list); 6512 skb_kfree_head(data, size); 6513 return -ENOMEM; 6514 } 6515 skb_release_data(skb, SKB_CONSUMED); 6516 6517 skb->head = data; 6518 skb->head_frag = 0; 6519 skb->data = data; 6520 skb_set_end_offset(skb, size); 6521 skb_reset_tail_pointer(skb); 6522 skb_headers_offset_update(skb, 0); 6523 skb->cloned = 0; 6524 skb->hdr_len = 0; 6525 skb->nohdr = 0; 6526 skb->len -= off; 6527 skb->data_len = skb->len; 6528 atomic_set(&skb_shinfo(skb)->dataref, 1); 6529 return 0; 6530 } 6531 6532 /* remove len bytes from the beginning of the skb */ 6533 static int pskb_carve(struct sk_buff *skb, const u32 len, gfp_t gfp) 6534 { 6535 int headlen = skb_headlen(skb); 6536 6537 if (len < headlen) 6538 return pskb_carve_inside_header(skb, len, headlen, gfp); 6539 else 6540 return pskb_carve_inside_nonlinear(skb, len, headlen, gfp); 6541 } 6542 6543 /* Extract to_copy bytes starting at off from skb, and return this in 6544 * a new skb 6545 */ 6546 struct sk_buff *pskb_extract(struct sk_buff *skb, int off, 6547 int to_copy, gfp_t gfp) 6548 { 6549 struct sk_buff *clone = skb_clone(skb, gfp); 6550 6551 if (!clone) 6552 return NULL; 6553 6554 if (pskb_carve(clone, off, gfp) < 0 || 6555 pskb_trim(clone, to_copy)) { 6556 kfree_skb(clone); 6557 return NULL; 6558 } 6559 return clone; 6560 } 6561 EXPORT_SYMBOL(pskb_extract); 6562 6563 /** 6564 * skb_condense - try to get rid of fragments/frag_list if possible 6565 * @skb: buffer 6566 * 6567 * Can be used to save memory before skb is added to a busy queue. 6568 * If packet has bytes in frags and enough tail room in skb->head, 6569 * pull all of them, so that we can free the frags right now and adjust 6570 * truesize. 6571 * Notes: 6572 * We do not reallocate skb->head thus can not fail. 6573 * Caller must re-evaluate skb->truesize if needed. 6574 */ 6575 void skb_condense(struct sk_buff *skb) 6576 { 6577 if (skb->data_len) { 6578 if (skb->data_len > skb->end - skb->tail || 6579 skb_cloned(skb)) 6580 return; 6581 6582 /* Nice, we can free page frag(s) right now */ 6583 __pskb_pull_tail(skb, skb->data_len); 6584 } 6585 /* At this point, skb->truesize might be over estimated, 6586 * because skb had a fragment, and fragments do not tell 6587 * their truesize. 6588 * When we pulled its content into skb->head, fragment 6589 * was freed, but __pskb_pull_tail() could not possibly 6590 * adjust skb->truesize, not knowing the frag truesize. 6591 */ 6592 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb)); 6593 } 6594 EXPORT_SYMBOL(skb_condense); 6595 6596 #ifdef CONFIG_SKB_EXTENSIONS 6597 static void *skb_ext_get_ptr(struct skb_ext *ext, enum skb_ext_id id) 6598 { 6599 return (void *)ext + (ext->offset[id] * SKB_EXT_ALIGN_VALUE); 6600 } 6601 6602 /** 6603 * __skb_ext_alloc - allocate a new skb extensions storage 6604 * 6605 * @flags: See kmalloc(). 6606 * 6607 * Returns the newly allocated pointer. The pointer can later attached to a 6608 * skb via __skb_ext_set(). 6609 * Note: caller must handle the skb_ext as an opaque data. 6610 */ 6611 struct skb_ext *__skb_ext_alloc(gfp_t flags) 6612 { 6613 struct skb_ext *new = kmem_cache_alloc(skbuff_ext_cache, flags); 6614 6615 if (new) { 6616 memset(new->offset, 0, sizeof(new->offset)); 6617 refcount_set(&new->refcnt, 1); 6618 } 6619 6620 return new; 6621 } 6622 6623 static struct skb_ext *skb_ext_maybe_cow(struct skb_ext *old, 6624 unsigned int old_active) 6625 { 6626 struct skb_ext *new; 6627 6628 if (refcount_read(&old->refcnt) == 1) 6629 return old; 6630 6631 new = kmem_cache_alloc(skbuff_ext_cache, GFP_ATOMIC); 6632 if (!new) 6633 return NULL; 6634 6635 memcpy(new, old, old->chunks * SKB_EXT_ALIGN_VALUE); 6636 refcount_set(&new->refcnt, 1); 6637 6638 #ifdef CONFIG_XFRM 6639 if (old_active & (1 << SKB_EXT_SEC_PATH)) { 6640 struct sec_path *sp = skb_ext_get_ptr(old, SKB_EXT_SEC_PATH); 6641 unsigned int i; 6642 6643 for (i = 0; i < sp->len; i++) 6644 xfrm_state_hold(sp->xvec[i]); 6645 } 6646 #endif 6647 __skb_ext_put(old); 6648 return new; 6649 } 6650 6651 /** 6652 * __skb_ext_set - attach the specified extension storage to this skb 6653 * @skb: buffer 6654 * @id: extension id 6655 * @ext: extension storage previously allocated via __skb_ext_alloc() 6656 * 6657 * Existing extensions, if any, are cleared. 6658 * 6659 * Returns the pointer to the extension. 6660 */ 6661 void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id, 6662 struct skb_ext *ext) 6663 { 6664 unsigned int newlen, newoff = SKB_EXT_CHUNKSIZEOF(*ext); 6665 6666 skb_ext_put(skb); 6667 newlen = newoff + skb_ext_type_len[id]; 6668 ext->chunks = newlen; 6669 ext->offset[id] = newoff; 6670 skb->extensions = ext; 6671 skb->active_extensions = 1 << id; 6672 return skb_ext_get_ptr(ext, id); 6673 } 6674 6675 /** 6676 * skb_ext_add - allocate space for given extension, COW if needed 6677 * @skb: buffer 6678 * @id: extension to allocate space for 6679 * 6680 * Allocates enough space for the given extension. 6681 * If the extension is already present, a pointer to that extension 6682 * is returned. 6683 * 6684 * If the skb was cloned, COW applies and the returned memory can be 6685 * modified without changing the extension space of clones buffers. 6686 * 6687 * Returns pointer to the extension or NULL on allocation failure. 6688 */ 6689 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id) 6690 { 6691 struct skb_ext *new, *old = NULL; 6692 unsigned int newlen, newoff; 6693 6694 if (skb->active_extensions) { 6695 old = skb->extensions; 6696 6697 new = skb_ext_maybe_cow(old, skb->active_extensions); 6698 if (!new) 6699 return NULL; 6700 6701 if (__skb_ext_exist(new, id)) 6702 goto set_active; 6703 6704 newoff = new->chunks; 6705 } else { 6706 newoff = SKB_EXT_CHUNKSIZEOF(*new); 6707 6708 new = __skb_ext_alloc(GFP_ATOMIC); 6709 if (!new) 6710 return NULL; 6711 } 6712 6713 newlen = newoff + skb_ext_type_len[id]; 6714 new->chunks = newlen; 6715 new->offset[id] = newoff; 6716 set_active: 6717 skb->slow_gro = 1; 6718 skb->extensions = new; 6719 skb->active_extensions |= 1 << id; 6720 return skb_ext_get_ptr(new, id); 6721 } 6722 EXPORT_SYMBOL(skb_ext_add); 6723 6724 #ifdef CONFIG_XFRM 6725 static void skb_ext_put_sp(struct sec_path *sp) 6726 { 6727 unsigned int i; 6728 6729 for (i = 0; i < sp->len; i++) 6730 xfrm_state_put(sp->xvec[i]); 6731 } 6732 #endif 6733 6734 #ifdef CONFIG_MCTP_FLOWS 6735 static void skb_ext_put_mctp(struct mctp_flow *flow) 6736 { 6737 if (flow->key) 6738 mctp_key_unref(flow->key); 6739 } 6740 #endif 6741 6742 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id) 6743 { 6744 struct skb_ext *ext = skb->extensions; 6745 6746 skb->active_extensions &= ~(1 << id); 6747 if (skb->active_extensions == 0) { 6748 skb->extensions = NULL; 6749 __skb_ext_put(ext); 6750 #ifdef CONFIG_XFRM 6751 } else if (id == SKB_EXT_SEC_PATH && 6752 refcount_read(&ext->refcnt) == 1) { 6753 struct sec_path *sp = skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH); 6754 6755 skb_ext_put_sp(sp); 6756 sp->len = 0; 6757 #endif 6758 } 6759 } 6760 EXPORT_SYMBOL(__skb_ext_del); 6761 6762 void __skb_ext_put(struct skb_ext *ext) 6763 { 6764 /* If this is last clone, nothing can increment 6765 * it after check passes. Avoids one atomic op. 6766 */ 6767 if (refcount_read(&ext->refcnt) == 1) 6768 goto free_now; 6769 6770 if (!refcount_dec_and_test(&ext->refcnt)) 6771 return; 6772 free_now: 6773 #ifdef CONFIG_XFRM 6774 if (__skb_ext_exist(ext, SKB_EXT_SEC_PATH)) 6775 skb_ext_put_sp(skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH)); 6776 #endif 6777 #ifdef CONFIG_MCTP_FLOWS 6778 if (__skb_ext_exist(ext, SKB_EXT_MCTP)) 6779 skb_ext_put_mctp(skb_ext_get_ptr(ext, SKB_EXT_MCTP)); 6780 #endif 6781 6782 kmem_cache_free(skbuff_ext_cache, ext); 6783 } 6784 EXPORT_SYMBOL(__skb_ext_put); 6785 #endif /* CONFIG_SKB_EXTENSIONS */ 6786 6787 /** 6788 * skb_attempt_defer_free - queue skb for remote freeing 6789 * @skb: buffer 6790 * 6791 * Put @skb in a per-cpu list, using the cpu which 6792 * allocated the skb/pages to reduce false sharing 6793 * and memory zone spinlock contention. 6794 */ 6795 void skb_attempt_defer_free(struct sk_buff *skb) 6796 { 6797 int cpu = skb->alloc_cpu; 6798 struct softnet_data *sd; 6799 unsigned long flags; 6800 unsigned int defer_max; 6801 bool kick; 6802 6803 if (WARN_ON_ONCE(cpu >= nr_cpu_ids) || 6804 !cpu_online(cpu) || 6805 cpu == raw_smp_processor_id()) { 6806 nodefer: __kfree_skb(skb); 6807 return; 6808 } 6809 6810 sd = &per_cpu(softnet_data, cpu); 6811 defer_max = READ_ONCE(sysctl_skb_defer_max); 6812 if (READ_ONCE(sd->defer_count) >= defer_max) 6813 goto nodefer; 6814 6815 spin_lock_irqsave(&sd->defer_lock, flags); 6816 /* Send an IPI every time queue reaches half capacity. */ 6817 kick = sd->defer_count == (defer_max >> 1); 6818 /* Paired with the READ_ONCE() few lines above */ 6819 WRITE_ONCE(sd->defer_count, sd->defer_count + 1); 6820 6821 skb->next = sd->defer_list; 6822 /* Paired with READ_ONCE() in skb_defer_free_flush() */ 6823 WRITE_ONCE(sd->defer_list, skb); 6824 spin_unlock_irqrestore(&sd->defer_lock, flags); 6825 6826 /* Make sure to trigger NET_RX_SOFTIRQ on the remote CPU 6827 * if we are unlucky enough (this seems very unlikely). 6828 */ 6829 if (unlikely(kick) && !cmpxchg(&sd->defer_ipi_scheduled, 0, 1)) 6830 smp_call_function_single_async(cpu, &sd->defer_csd); 6831 } 6832