xref: /openbmc/linux/net/core/skbuff.c (revision 9c6d26df1fae6ad4718d51c48e6517913304ed27)
1 /*
2  *	Routines having to do with the 'struct sk_buff' memory handlers.
3  *
4  *	Authors:	Alan Cox <alan@lxorguk.ukuu.org.uk>
5  *			Florian La Roche <rzsfl@rz.uni-sb.de>
6  *
7  *	Fixes:
8  *		Alan Cox	:	Fixed the worst of the load
9  *					balancer bugs.
10  *		Dave Platt	:	Interrupt stacking fix.
11  *	Richard Kooijman	:	Timestamp fixes.
12  *		Alan Cox	:	Changed buffer format.
13  *		Alan Cox	:	destructor hook for AF_UNIX etc.
14  *		Linus Torvalds	:	Better skb_clone.
15  *		Alan Cox	:	Added skb_copy.
16  *		Alan Cox	:	Added all the changed routines Linus
17  *					only put in the headers
18  *		Ray VanTassle	:	Fixed --skb->lock in free
19  *		Alan Cox	:	skb_copy copy arp field
20  *		Andi Kleen	:	slabified it.
21  *		Robert Olsson	:	Removed skb_head_pool
22  *
23  *	NOTE:
24  *		The __skb_ routines should be called with interrupts
25  *	disabled, or you better be *real* sure that the operation is atomic
26  *	with respect to whatever list is being frobbed (e.g. via lock_sock()
27  *	or via disabling bottom half handlers, etc).
28  *
29  *	This program is free software; you can redistribute it and/or
30  *	modify it under the terms of the GNU General Public License
31  *	as published by the Free Software Foundation; either version
32  *	2 of the License, or (at your option) any later version.
33  */
34 
35 /*
36  *	The functions in this file will not compile correctly with gcc 2.4.x
37  */
38 
39 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
40 
41 #include <linux/module.h>
42 #include <linux/types.h>
43 #include <linux/kernel.h>
44 #include <linux/mm.h>
45 #include <linux/interrupt.h>
46 #include <linux/in.h>
47 #include <linux/inet.h>
48 #include <linux/slab.h>
49 #include <linux/tcp.h>
50 #include <linux/udp.h>
51 #include <linux/sctp.h>
52 #include <linux/netdevice.h>
53 #ifdef CONFIG_NET_CLS_ACT
54 #include <net/pkt_sched.h>
55 #endif
56 #include <linux/string.h>
57 #include <linux/skbuff.h>
58 #include <linux/splice.h>
59 #include <linux/cache.h>
60 #include <linux/rtnetlink.h>
61 #include <linux/init.h>
62 #include <linux/scatterlist.h>
63 #include <linux/errqueue.h>
64 #include <linux/prefetch.h>
65 #include <linux/if_vlan.h>
66 
67 #include <net/protocol.h>
68 #include <net/dst.h>
69 #include <net/sock.h>
70 #include <net/checksum.h>
71 #include <net/ip6_checksum.h>
72 #include <net/xfrm.h>
73 
74 #include <linux/uaccess.h>
75 #include <trace/events/skb.h>
76 #include <linux/highmem.h>
77 #include <linux/capability.h>
78 #include <linux/user_namespace.h>
79 
80 struct kmem_cache *skbuff_head_cache __ro_after_init;
81 static struct kmem_cache *skbuff_fclone_cache __ro_after_init;
82 int sysctl_max_skb_frags __read_mostly = MAX_SKB_FRAGS;
83 EXPORT_SYMBOL(sysctl_max_skb_frags);
84 
85 /**
86  *	skb_panic - private function for out-of-line support
87  *	@skb:	buffer
88  *	@sz:	size
89  *	@addr:	address
90  *	@msg:	skb_over_panic or skb_under_panic
91  *
92  *	Out-of-line support for skb_put() and skb_push().
93  *	Called via the wrapper skb_over_panic() or skb_under_panic().
94  *	Keep out of line to prevent kernel bloat.
95  *	__builtin_return_address is not used because it is not always reliable.
96  */
97 static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr,
98 		      const char msg[])
99 {
100 	pr_emerg("%s: text:%p len:%d put:%d head:%p data:%p tail:%#lx end:%#lx dev:%s\n",
101 		 msg, addr, skb->len, sz, skb->head, skb->data,
102 		 (unsigned long)skb->tail, (unsigned long)skb->end,
103 		 skb->dev ? skb->dev->name : "<NULL>");
104 	BUG();
105 }
106 
107 static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr)
108 {
109 	skb_panic(skb, sz, addr, __func__);
110 }
111 
112 static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr)
113 {
114 	skb_panic(skb, sz, addr, __func__);
115 }
116 
117 /*
118  * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells
119  * the caller if emergency pfmemalloc reserves are being used. If it is and
120  * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves
121  * may be used. Otherwise, the packet data may be discarded until enough
122  * memory is free
123  */
124 #define kmalloc_reserve(size, gfp, node, pfmemalloc) \
125 	 __kmalloc_reserve(size, gfp, node, _RET_IP_, pfmemalloc)
126 
127 static void *__kmalloc_reserve(size_t size, gfp_t flags, int node,
128 			       unsigned long ip, bool *pfmemalloc)
129 {
130 	void *obj;
131 	bool ret_pfmemalloc = false;
132 
133 	/*
134 	 * Try a regular allocation, when that fails and we're not entitled
135 	 * to the reserves, fail.
136 	 */
137 	obj = kmalloc_node_track_caller(size,
138 					flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
139 					node);
140 	if (obj || !(gfp_pfmemalloc_allowed(flags)))
141 		goto out;
142 
143 	/* Try again but now we are using pfmemalloc reserves */
144 	ret_pfmemalloc = true;
145 	obj = kmalloc_node_track_caller(size, flags, node);
146 
147 out:
148 	if (pfmemalloc)
149 		*pfmemalloc = ret_pfmemalloc;
150 
151 	return obj;
152 }
153 
154 /* 	Allocate a new skbuff. We do this ourselves so we can fill in a few
155  *	'private' fields and also do memory statistics to find all the
156  *	[BEEP] leaks.
157  *
158  */
159 
160 /**
161  *	__alloc_skb	-	allocate a network buffer
162  *	@size: size to allocate
163  *	@gfp_mask: allocation mask
164  *	@flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache
165  *		instead of head cache and allocate a cloned (child) skb.
166  *		If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for
167  *		allocations in case the data is required for writeback
168  *	@node: numa node to allocate memory on
169  *
170  *	Allocate a new &sk_buff. The returned buffer has no headroom and a
171  *	tail room of at least size bytes. The object has a reference count
172  *	of one. The return is the buffer. On a failure the return is %NULL.
173  *
174  *	Buffers may only be allocated from interrupts using a @gfp_mask of
175  *	%GFP_ATOMIC.
176  */
177 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
178 			    int flags, int node)
179 {
180 	struct kmem_cache *cache;
181 	struct skb_shared_info *shinfo;
182 	struct sk_buff *skb;
183 	u8 *data;
184 	bool pfmemalloc;
185 
186 	cache = (flags & SKB_ALLOC_FCLONE)
187 		? skbuff_fclone_cache : skbuff_head_cache;
188 
189 	if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX))
190 		gfp_mask |= __GFP_MEMALLOC;
191 
192 	/* Get the HEAD */
193 	skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node);
194 	if (!skb)
195 		goto out;
196 	prefetchw(skb);
197 
198 	/* We do our best to align skb_shared_info on a separate cache
199 	 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives
200 	 * aligned memory blocks, unless SLUB/SLAB debug is enabled.
201 	 * Both skb->head and skb_shared_info are cache line aligned.
202 	 */
203 	size = SKB_DATA_ALIGN(size);
204 	size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
205 	data = kmalloc_reserve(size, gfp_mask, node, &pfmemalloc);
206 	if (!data)
207 		goto nodata;
208 	/* kmalloc(size) might give us more room than requested.
209 	 * Put skb_shared_info exactly at the end of allocated zone,
210 	 * to allow max possible filling before reallocation.
211 	 */
212 	size = SKB_WITH_OVERHEAD(ksize(data));
213 	prefetchw(data + size);
214 
215 	/*
216 	 * Only clear those fields we need to clear, not those that we will
217 	 * actually initialise below. Hence, don't put any more fields after
218 	 * the tail pointer in struct sk_buff!
219 	 */
220 	memset(skb, 0, offsetof(struct sk_buff, tail));
221 	/* Account for allocated memory : skb + skb->head */
222 	skb->truesize = SKB_TRUESIZE(size);
223 	skb->pfmemalloc = pfmemalloc;
224 	refcount_set(&skb->users, 1);
225 	skb->head = data;
226 	skb->data = data;
227 	skb_reset_tail_pointer(skb);
228 	skb->end = skb->tail + size;
229 	skb->mac_header = (typeof(skb->mac_header))~0U;
230 	skb->transport_header = (typeof(skb->transport_header))~0U;
231 
232 	/* make sure we initialize shinfo sequentially */
233 	shinfo = skb_shinfo(skb);
234 	memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
235 	atomic_set(&shinfo->dataref, 1);
236 
237 	if (flags & SKB_ALLOC_FCLONE) {
238 		struct sk_buff_fclones *fclones;
239 
240 		fclones = container_of(skb, struct sk_buff_fclones, skb1);
241 
242 		skb->fclone = SKB_FCLONE_ORIG;
243 		refcount_set(&fclones->fclone_ref, 1);
244 
245 		fclones->skb2.fclone = SKB_FCLONE_CLONE;
246 	}
247 out:
248 	return skb;
249 nodata:
250 	kmem_cache_free(cache, skb);
251 	skb = NULL;
252 	goto out;
253 }
254 EXPORT_SYMBOL(__alloc_skb);
255 
256 /**
257  * __build_skb - build a network buffer
258  * @data: data buffer provided by caller
259  * @frag_size: size of data, or 0 if head was kmalloced
260  *
261  * Allocate a new &sk_buff. Caller provides space holding head and
262  * skb_shared_info. @data must have been allocated by kmalloc() only if
263  * @frag_size is 0, otherwise data should come from the page allocator
264  *  or vmalloc()
265  * The return is the new skb buffer.
266  * On a failure the return is %NULL, and @data is not freed.
267  * Notes :
268  *  Before IO, driver allocates only data buffer where NIC put incoming frame
269  *  Driver should add room at head (NET_SKB_PAD) and
270  *  MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info))
271  *  After IO, driver calls build_skb(), to allocate sk_buff and populate it
272  *  before giving packet to stack.
273  *  RX rings only contains data buffers, not full skbs.
274  */
275 struct sk_buff *__build_skb(void *data, unsigned int frag_size)
276 {
277 	struct skb_shared_info *shinfo;
278 	struct sk_buff *skb;
279 	unsigned int size = frag_size ? : ksize(data);
280 
281 	skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC);
282 	if (!skb)
283 		return NULL;
284 
285 	size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
286 
287 	memset(skb, 0, offsetof(struct sk_buff, tail));
288 	skb->truesize = SKB_TRUESIZE(size);
289 	refcount_set(&skb->users, 1);
290 	skb->head = data;
291 	skb->data = data;
292 	skb_reset_tail_pointer(skb);
293 	skb->end = skb->tail + size;
294 	skb->mac_header = (typeof(skb->mac_header))~0U;
295 	skb->transport_header = (typeof(skb->transport_header))~0U;
296 
297 	/* make sure we initialize shinfo sequentially */
298 	shinfo = skb_shinfo(skb);
299 	memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
300 	atomic_set(&shinfo->dataref, 1);
301 
302 	return skb;
303 }
304 
305 /* build_skb() is wrapper over __build_skb(), that specifically
306  * takes care of skb->head and skb->pfmemalloc
307  * This means that if @frag_size is not zero, then @data must be backed
308  * by a page fragment, not kmalloc() or vmalloc()
309  */
310 struct sk_buff *build_skb(void *data, unsigned int frag_size)
311 {
312 	struct sk_buff *skb = __build_skb(data, frag_size);
313 
314 	if (skb && frag_size) {
315 		skb->head_frag = 1;
316 		if (page_is_pfmemalloc(virt_to_head_page(data)))
317 			skb->pfmemalloc = 1;
318 	}
319 	return skb;
320 }
321 EXPORT_SYMBOL(build_skb);
322 
323 #define NAPI_SKB_CACHE_SIZE	64
324 
325 struct napi_alloc_cache {
326 	struct page_frag_cache page;
327 	unsigned int skb_count;
328 	void *skb_cache[NAPI_SKB_CACHE_SIZE];
329 };
330 
331 static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache);
332 static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache);
333 
334 static void *__netdev_alloc_frag(unsigned int fragsz, gfp_t gfp_mask)
335 {
336 	struct page_frag_cache *nc;
337 	unsigned long flags;
338 	void *data;
339 
340 	local_irq_save(flags);
341 	nc = this_cpu_ptr(&netdev_alloc_cache);
342 	data = page_frag_alloc(nc, fragsz, gfp_mask);
343 	local_irq_restore(flags);
344 	return data;
345 }
346 
347 /**
348  * netdev_alloc_frag - allocate a page fragment
349  * @fragsz: fragment size
350  *
351  * Allocates a frag from a page for receive buffer.
352  * Uses GFP_ATOMIC allocations.
353  */
354 void *netdev_alloc_frag(unsigned int fragsz)
355 {
356 	return __netdev_alloc_frag(fragsz, GFP_ATOMIC);
357 }
358 EXPORT_SYMBOL(netdev_alloc_frag);
359 
360 static void *__napi_alloc_frag(unsigned int fragsz, gfp_t gfp_mask)
361 {
362 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
363 
364 	return page_frag_alloc(&nc->page, fragsz, gfp_mask);
365 }
366 
367 void *napi_alloc_frag(unsigned int fragsz)
368 {
369 	return __napi_alloc_frag(fragsz, GFP_ATOMIC);
370 }
371 EXPORT_SYMBOL(napi_alloc_frag);
372 
373 /**
374  *	__netdev_alloc_skb - allocate an skbuff for rx on a specific device
375  *	@dev: network device to receive on
376  *	@len: length to allocate
377  *	@gfp_mask: get_free_pages mask, passed to alloc_skb
378  *
379  *	Allocate a new &sk_buff and assign it a usage count of one. The
380  *	buffer has NET_SKB_PAD headroom built in. Users should allocate
381  *	the headroom they think they need without accounting for the
382  *	built in space. The built in space is used for optimisations.
383  *
384  *	%NULL is returned if there is no free memory.
385  */
386 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len,
387 				   gfp_t gfp_mask)
388 {
389 	struct page_frag_cache *nc;
390 	unsigned long flags;
391 	struct sk_buff *skb;
392 	bool pfmemalloc;
393 	void *data;
394 
395 	len += NET_SKB_PAD;
396 
397 	if ((len > SKB_WITH_OVERHEAD(PAGE_SIZE)) ||
398 	    (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
399 		skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
400 		if (!skb)
401 			goto skb_fail;
402 		goto skb_success;
403 	}
404 
405 	len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
406 	len = SKB_DATA_ALIGN(len);
407 
408 	if (sk_memalloc_socks())
409 		gfp_mask |= __GFP_MEMALLOC;
410 
411 	local_irq_save(flags);
412 
413 	nc = this_cpu_ptr(&netdev_alloc_cache);
414 	data = page_frag_alloc(nc, len, gfp_mask);
415 	pfmemalloc = nc->pfmemalloc;
416 
417 	local_irq_restore(flags);
418 
419 	if (unlikely(!data))
420 		return NULL;
421 
422 	skb = __build_skb(data, len);
423 	if (unlikely(!skb)) {
424 		skb_free_frag(data);
425 		return NULL;
426 	}
427 
428 	/* use OR instead of assignment to avoid clearing of bits in mask */
429 	if (pfmemalloc)
430 		skb->pfmemalloc = 1;
431 	skb->head_frag = 1;
432 
433 skb_success:
434 	skb_reserve(skb, NET_SKB_PAD);
435 	skb->dev = dev;
436 
437 skb_fail:
438 	return skb;
439 }
440 EXPORT_SYMBOL(__netdev_alloc_skb);
441 
442 /**
443  *	__napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance
444  *	@napi: napi instance this buffer was allocated for
445  *	@len: length to allocate
446  *	@gfp_mask: get_free_pages mask, passed to alloc_skb and alloc_pages
447  *
448  *	Allocate a new sk_buff for use in NAPI receive.  This buffer will
449  *	attempt to allocate the head from a special reserved region used
450  *	only for NAPI Rx allocation.  By doing this we can save several
451  *	CPU cycles by avoiding having to disable and re-enable IRQs.
452  *
453  *	%NULL is returned if there is no free memory.
454  */
455 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, unsigned int len,
456 				 gfp_t gfp_mask)
457 {
458 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
459 	struct sk_buff *skb;
460 	void *data;
461 
462 	len += NET_SKB_PAD + NET_IP_ALIGN;
463 
464 	if ((len > SKB_WITH_OVERHEAD(PAGE_SIZE)) ||
465 	    (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
466 		skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
467 		if (!skb)
468 			goto skb_fail;
469 		goto skb_success;
470 	}
471 
472 	len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
473 	len = SKB_DATA_ALIGN(len);
474 
475 	if (sk_memalloc_socks())
476 		gfp_mask |= __GFP_MEMALLOC;
477 
478 	data = page_frag_alloc(&nc->page, len, gfp_mask);
479 	if (unlikely(!data))
480 		return NULL;
481 
482 	skb = __build_skb(data, len);
483 	if (unlikely(!skb)) {
484 		skb_free_frag(data);
485 		return NULL;
486 	}
487 
488 	/* use OR instead of assignment to avoid clearing of bits in mask */
489 	if (nc->page.pfmemalloc)
490 		skb->pfmemalloc = 1;
491 	skb->head_frag = 1;
492 
493 skb_success:
494 	skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN);
495 	skb->dev = napi->dev;
496 
497 skb_fail:
498 	return skb;
499 }
500 EXPORT_SYMBOL(__napi_alloc_skb);
501 
502 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
503 		     int size, unsigned int truesize)
504 {
505 	skb_fill_page_desc(skb, i, page, off, size);
506 	skb->len += size;
507 	skb->data_len += size;
508 	skb->truesize += truesize;
509 }
510 EXPORT_SYMBOL(skb_add_rx_frag);
511 
512 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
513 			  unsigned int truesize)
514 {
515 	skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
516 
517 	skb_frag_size_add(frag, size);
518 	skb->len += size;
519 	skb->data_len += size;
520 	skb->truesize += truesize;
521 }
522 EXPORT_SYMBOL(skb_coalesce_rx_frag);
523 
524 static void skb_drop_list(struct sk_buff **listp)
525 {
526 	kfree_skb_list(*listp);
527 	*listp = NULL;
528 }
529 
530 static inline void skb_drop_fraglist(struct sk_buff *skb)
531 {
532 	skb_drop_list(&skb_shinfo(skb)->frag_list);
533 }
534 
535 static void skb_clone_fraglist(struct sk_buff *skb)
536 {
537 	struct sk_buff *list;
538 
539 	skb_walk_frags(skb, list)
540 		skb_get(list);
541 }
542 
543 static void skb_free_head(struct sk_buff *skb)
544 {
545 	unsigned char *head = skb->head;
546 
547 	if (skb->head_frag)
548 		skb_free_frag(head);
549 	else
550 		kfree(head);
551 }
552 
553 static void skb_release_data(struct sk_buff *skb)
554 {
555 	struct skb_shared_info *shinfo = skb_shinfo(skb);
556 	int i;
557 
558 	if (skb->cloned &&
559 	    atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
560 			      &shinfo->dataref))
561 		return;
562 
563 	for (i = 0; i < shinfo->nr_frags; i++)
564 		__skb_frag_unref(&shinfo->frags[i]);
565 
566 	if (shinfo->frag_list)
567 		kfree_skb_list(shinfo->frag_list);
568 
569 	skb_zcopy_clear(skb, true);
570 	skb_free_head(skb);
571 }
572 
573 /*
574  *	Free an skbuff by memory without cleaning the state.
575  */
576 static void kfree_skbmem(struct sk_buff *skb)
577 {
578 	struct sk_buff_fclones *fclones;
579 
580 	switch (skb->fclone) {
581 	case SKB_FCLONE_UNAVAILABLE:
582 		kmem_cache_free(skbuff_head_cache, skb);
583 		return;
584 
585 	case SKB_FCLONE_ORIG:
586 		fclones = container_of(skb, struct sk_buff_fclones, skb1);
587 
588 		/* We usually free the clone (TX completion) before original skb
589 		 * This test would have no chance to be true for the clone,
590 		 * while here, branch prediction will be good.
591 		 */
592 		if (refcount_read(&fclones->fclone_ref) == 1)
593 			goto fastpath;
594 		break;
595 
596 	default: /* SKB_FCLONE_CLONE */
597 		fclones = container_of(skb, struct sk_buff_fclones, skb2);
598 		break;
599 	}
600 	if (!refcount_dec_and_test(&fclones->fclone_ref))
601 		return;
602 fastpath:
603 	kmem_cache_free(skbuff_fclone_cache, fclones);
604 }
605 
606 void skb_release_head_state(struct sk_buff *skb)
607 {
608 	skb_dst_drop(skb);
609 	secpath_reset(skb);
610 	if (skb->destructor) {
611 		WARN_ON(in_irq());
612 		skb->destructor(skb);
613 	}
614 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
615 	nf_conntrack_put(skb_nfct(skb));
616 #endif
617 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
618 	nf_bridge_put(skb->nf_bridge);
619 #endif
620 }
621 
622 /* Free everything but the sk_buff shell. */
623 static void skb_release_all(struct sk_buff *skb)
624 {
625 	skb_release_head_state(skb);
626 	if (likely(skb->head))
627 		skb_release_data(skb);
628 }
629 
630 /**
631  *	__kfree_skb - private function
632  *	@skb: buffer
633  *
634  *	Free an sk_buff. Release anything attached to the buffer.
635  *	Clean the state. This is an internal helper function. Users should
636  *	always call kfree_skb
637  */
638 
639 void __kfree_skb(struct sk_buff *skb)
640 {
641 	skb_release_all(skb);
642 	kfree_skbmem(skb);
643 }
644 EXPORT_SYMBOL(__kfree_skb);
645 
646 /**
647  *	kfree_skb - free an sk_buff
648  *	@skb: buffer to free
649  *
650  *	Drop a reference to the buffer and free it if the usage count has
651  *	hit zero.
652  */
653 void kfree_skb(struct sk_buff *skb)
654 {
655 	if (!skb_unref(skb))
656 		return;
657 
658 	trace_kfree_skb(skb, __builtin_return_address(0));
659 	__kfree_skb(skb);
660 }
661 EXPORT_SYMBOL(kfree_skb);
662 
663 void kfree_skb_list(struct sk_buff *segs)
664 {
665 	while (segs) {
666 		struct sk_buff *next = segs->next;
667 
668 		kfree_skb(segs);
669 		segs = next;
670 	}
671 }
672 EXPORT_SYMBOL(kfree_skb_list);
673 
674 /**
675  *	skb_tx_error - report an sk_buff xmit error
676  *	@skb: buffer that triggered an error
677  *
678  *	Report xmit error if a device callback is tracking this skb.
679  *	skb must be freed afterwards.
680  */
681 void skb_tx_error(struct sk_buff *skb)
682 {
683 	skb_zcopy_clear(skb, true);
684 }
685 EXPORT_SYMBOL(skb_tx_error);
686 
687 /**
688  *	consume_skb - free an skbuff
689  *	@skb: buffer to free
690  *
691  *	Drop a ref to the buffer and free it if the usage count has hit zero
692  *	Functions identically to kfree_skb, but kfree_skb assumes that the frame
693  *	is being dropped after a failure and notes that
694  */
695 void consume_skb(struct sk_buff *skb)
696 {
697 	if (!skb_unref(skb))
698 		return;
699 
700 	trace_consume_skb(skb);
701 	__kfree_skb(skb);
702 }
703 EXPORT_SYMBOL(consume_skb);
704 
705 /**
706  *	consume_stateless_skb - free an skbuff, assuming it is stateless
707  *	@skb: buffer to free
708  *
709  *	Alike consume_skb(), but this variant assumes that this is the last
710  *	skb reference and all the head states have been already dropped
711  */
712 void __consume_stateless_skb(struct sk_buff *skb)
713 {
714 	trace_consume_skb(skb);
715 	skb_release_data(skb);
716 	kfree_skbmem(skb);
717 }
718 
719 void __kfree_skb_flush(void)
720 {
721 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
722 
723 	/* flush skb_cache if containing objects */
724 	if (nc->skb_count) {
725 		kmem_cache_free_bulk(skbuff_head_cache, nc->skb_count,
726 				     nc->skb_cache);
727 		nc->skb_count = 0;
728 	}
729 }
730 
731 static inline void _kfree_skb_defer(struct sk_buff *skb)
732 {
733 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
734 
735 	/* drop skb->head and call any destructors for packet */
736 	skb_release_all(skb);
737 
738 	/* record skb to CPU local list */
739 	nc->skb_cache[nc->skb_count++] = skb;
740 
741 #ifdef CONFIG_SLUB
742 	/* SLUB writes into objects when freeing */
743 	prefetchw(skb);
744 #endif
745 
746 	/* flush skb_cache if it is filled */
747 	if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) {
748 		kmem_cache_free_bulk(skbuff_head_cache, NAPI_SKB_CACHE_SIZE,
749 				     nc->skb_cache);
750 		nc->skb_count = 0;
751 	}
752 }
753 void __kfree_skb_defer(struct sk_buff *skb)
754 {
755 	_kfree_skb_defer(skb);
756 }
757 
758 void napi_consume_skb(struct sk_buff *skb, int budget)
759 {
760 	if (unlikely(!skb))
761 		return;
762 
763 	/* Zero budget indicate non-NAPI context called us, like netpoll */
764 	if (unlikely(!budget)) {
765 		dev_consume_skb_any(skb);
766 		return;
767 	}
768 
769 	if (!skb_unref(skb))
770 		return;
771 
772 	/* if reaching here SKB is ready to free */
773 	trace_consume_skb(skb);
774 
775 	/* if SKB is a clone, don't handle this case */
776 	if (skb->fclone != SKB_FCLONE_UNAVAILABLE) {
777 		__kfree_skb(skb);
778 		return;
779 	}
780 
781 	_kfree_skb_defer(skb);
782 }
783 EXPORT_SYMBOL(napi_consume_skb);
784 
785 /* Make sure a field is enclosed inside headers_start/headers_end section */
786 #define CHECK_SKB_FIELD(field) \
787 	BUILD_BUG_ON(offsetof(struct sk_buff, field) <		\
788 		     offsetof(struct sk_buff, headers_start));	\
789 	BUILD_BUG_ON(offsetof(struct sk_buff, field) >		\
790 		     offsetof(struct sk_buff, headers_end));	\
791 
792 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
793 {
794 	new->tstamp		= old->tstamp;
795 	/* We do not copy old->sk */
796 	new->dev		= old->dev;
797 	memcpy(new->cb, old->cb, sizeof(old->cb));
798 	skb_dst_copy(new, old);
799 #ifdef CONFIG_XFRM
800 	new->sp			= secpath_get(old->sp);
801 #endif
802 	__nf_copy(new, old, false);
803 
804 	/* Note : this field could be in headers_start/headers_end section
805 	 * It is not yet because we do not want to have a 16 bit hole
806 	 */
807 	new->queue_mapping = old->queue_mapping;
808 
809 	memcpy(&new->headers_start, &old->headers_start,
810 	       offsetof(struct sk_buff, headers_end) -
811 	       offsetof(struct sk_buff, headers_start));
812 	CHECK_SKB_FIELD(protocol);
813 	CHECK_SKB_FIELD(csum);
814 	CHECK_SKB_FIELD(hash);
815 	CHECK_SKB_FIELD(priority);
816 	CHECK_SKB_FIELD(skb_iif);
817 	CHECK_SKB_FIELD(vlan_proto);
818 	CHECK_SKB_FIELD(vlan_tci);
819 	CHECK_SKB_FIELD(transport_header);
820 	CHECK_SKB_FIELD(network_header);
821 	CHECK_SKB_FIELD(mac_header);
822 	CHECK_SKB_FIELD(inner_protocol);
823 	CHECK_SKB_FIELD(inner_transport_header);
824 	CHECK_SKB_FIELD(inner_network_header);
825 	CHECK_SKB_FIELD(inner_mac_header);
826 	CHECK_SKB_FIELD(mark);
827 #ifdef CONFIG_NETWORK_SECMARK
828 	CHECK_SKB_FIELD(secmark);
829 #endif
830 #ifdef CONFIG_NET_RX_BUSY_POLL
831 	CHECK_SKB_FIELD(napi_id);
832 #endif
833 #ifdef CONFIG_XPS
834 	CHECK_SKB_FIELD(sender_cpu);
835 #endif
836 #ifdef CONFIG_NET_SCHED
837 	CHECK_SKB_FIELD(tc_index);
838 #endif
839 
840 }
841 
842 /*
843  * You should not add any new code to this function.  Add it to
844  * __copy_skb_header above instead.
845  */
846 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
847 {
848 #define C(x) n->x = skb->x
849 
850 	n->next = n->prev = NULL;
851 	n->sk = NULL;
852 	__copy_skb_header(n, skb);
853 
854 	C(len);
855 	C(data_len);
856 	C(mac_len);
857 	n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
858 	n->cloned = 1;
859 	n->nohdr = 0;
860 	n->peeked = 0;
861 	n->destructor = NULL;
862 	C(tail);
863 	C(end);
864 	C(head);
865 	C(head_frag);
866 	C(data);
867 	C(truesize);
868 	refcount_set(&n->users, 1);
869 
870 	atomic_inc(&(skb_shinfo(skb)->dataref));
871 	skb->cloned = 1;
872 
873 	return n;
874 #undef C
875 }
876 
877 /**
878  *	skb_morph	-	morph one skb into another
879  *	@dst: the skb to receive the contents
880  *	@src: the skb to supply the contents
881  *
882  *	This is identical to skb_clone except that the target skb is
883  *	supplied by the user.
884  *
885  *	The target skb is returned upon exit.
886  */
887 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
888 {
889 	skb_release_all(dst);
890 	return __skb_clone(dst, src);
891 }
892 EXPORT_SYMBOL_GPL(skb_morph);
893 
894 int mm_account_pinned_pages(struct mmpin *mmp, size_t size)
895 {
896 	unsigned long max_pg, num_pg, new_pg, old_pg;
897 	struct user_struct *user;
898 
899 	if (capable(CAP_IPC_LOCK) || !size)
900 		return 0;
901 
902 	num_pg = (size >> PAGE_SHIFT) + 2;	/* worst case */
903 	max_pg = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
904 	user = mmp->user ? : current_user();
905 
906 	do {
907 		old_pg = atomic_long_read(&user->locked_vm);
908 		new_pg = old_pg + num_pg;
909 		if (new_pg > max_pg)
910 			return -ENOBUFS;
911 	} while (atomic_long_cmpxchg(&user->locked_vm, old_pg, new_pg) !=
912 		 old_pg);
913 
914 	if (!mmp->user) {
915 		mmp->user = get_uid(user);
916 		mmp->num_pg = num_pg;
917 	} else {
918 		mmp->num_pg += num_pg;
919 	}
920 
921 	return 0;
922 }
923 EXPORT_SYMBOL_GPL(mm_account_pinned_pages);
924 
925 void mm_unaccount_pinned_pages(struct mmpin *mmp)
926 {
927 	if (mmp->user) {
928 		atomic_long_sub(mmp->num_pg, &mmp->user->locked_vm);
929 		free_uid(mmp->user);
930 	}
931 }
932 EXPORT_SYMBOL_GPL(mm_unaccount_pinned_pages);
933 
934 struct ubuf_info *sock_zerocopy_alloc(struct sock *sk, size_t size)
935 {
936 	struct ubuf_info *uarg;
937 	struct sk_buff *skb;
938 
939 	WARN_ON_ONCE(!in_task());
940 
941 	if (!sock_flag(sk, SOCK_ZEROCOPY))
942 		return NULL;
943 
944 	skb = sock_omalloc(sk, 0, GFP_KERNEL);
945 	if (!skb)
946 		return NULL;
947 
948 	BUILD_BUG_ON(sizeof(*uarg) > sizeof(skb->cb));
949 	uarg = (void *)skb->cb;
950 	uarg->mmp.user = NULL;
951 
952 	if (mm_account_pinned_pages(&uarg->mmp, size)) {
953 		kfree_skb(skb);
954 		return NULL;
955 	}
956 
957 	uarg->callback = sock_zerocopy_callback;
958 	uarg->id = ((u32)atomic_inc_return(&sk->sk_zckey)) - 1;
959 	uarg->len = 1;
960 	uarg->bytelen = size;
961 	uarg->zerocopy = 1;
962 	refcount_set(&uarg->refcnt, 1);
963 	sock_hold(sk);
964 
965 	return uarg;
966 }
967 EXPORT_SYMBOL_GPL(sock_zerocopy_alloc);
968 
969 static inline struct sk_buff *skb_from_uarg(struct ubuf_info *uarg)
970 {
971 	return container_of((void *)uarg, struct sk_buff, cb);
972 }
973 
974 struct ubuf_info *sock_zerocopy_realloc(struct sock *sk, size_t size,
975 					struct ubuf_info *uarg)
976 {
977 	if (uarg) {
978 		const u32 byte_limit = 1 << 19;		/* limit to a few TSO */
979 		u32 bytelen, next;
980 
981 		/* realloc only when socket is locked (TCP, UDP cork),
982 		 * so uarg->len and sk_zckey access is serialized
983 		 */
984 		if (!sock_owned_by_user(sk)) {
985 			WARN_ON_ONCE(1);
986 			return NULL;
987 		}
988 
989 		bytelen = uarg->bytelen + size;
990 		if (uarg->len == USHRT_MAX - 1 || bytelen > byte_limit) {
991 			/* TCP can create new skb to attach new uarg */
992 			if (sk->sk_type == SOCK_STREAM)
993 				goto new_alloc;
994 			return NULL;
995 		}
996 
997 		next = (u32)atomic_read(&sk->sk_zckey);
998 		if ((u32)(uarg->id + uarg->len) == next) {
999 			if (mm_account_pinned_pages(&uarg->mmp, size))
1000 				return NULL;
1001 			uarg->len++;
1002 			uarg->bytelen = bytelen;
1003 			atomic_set(&sk->sk_zckey, ++next);
1004 			sock_zerocopy_get(uarg);
1005 			return uarg;
1006 		}
1007 	}
1008 
1009 new_alloc:
1010 	return sock_zerocopy_alloc(sk, size);
1011 }
1012 EXPORT_SYMBOL_GPL(sock_zerocopy_realloc);
1013 
1014 static bool skb_zerocopy_notify_extend(struct sk_buff *skb, u32 lo, u16 len)
1015 {
1016 	struct sock_exterr_skb *serr = SKB_EXT_ERR(skb);
1017 	u32 old_lo, old_hi;
1018 	u64 sum_len;
1019 
1020 	old_lo = serr->ee.ee_info;
1021 	old_hi = serr->ee.ee_data;
1022 	sum_len = old_hi - old_lo + 1ULL + len;
1023 
1024 	if (sum_len >= (1ULL << 32))
1025 		return false;
1026 
1027 	if (lo != old_hi + 1)
1028 		return false;
1029 
1030 	serr->ee.ee_data += len;
1031 	return true;
1032 }
1033 
1034 void sock_zerocopy_callback(struct ubuf_info *uarg, bool success)
1035 {
1036 	struct sk_buff *tail, *skb = skb_from_uarg(uarg);
1037 	struct sock_exterr_skb *serr;
1038 	struct sock *sk = skb->sk;
1039 	struct sk_buff_head *q;
1040 	unsigned long flags;
1041 	u32 lo, hi;
1042 	u16 len;
1043 
1044 	mm_unaccount_pinned_pages(&uarg->mmp);
1045 
1046 	/* if !len, there was only 1 call, and it was aborted
1047 	 * so do not queue a completion notification
1048 	 */
1049 	if (!uarg->len || sock_flag(sk, SOCK_DEAD))
1050 		goto release;
1051 
1052 	len = uarg->len;
1053 	lo = uarg->id;
1054 	hi = uarg->id + len - 1;
1055 
1056 	serr = SKB_EXT_ERR(skb);
1057 	memset(serr, 0, sizeof(*serr));
1058 	serr->ee.ee_errno = 0;
1059 	serr->ee.ee_origin = SO_EE_ORIGIN_ZEROCOPY;
1060 	serr->ee.ee_data = hi;
1061 	serr->ee.ee_info = lo;
1062 	if (!success)
1063 		serr->ee.ee_code |= SO_EE_CODE_ZEROCOPY_COPIED;
1064 
1065 	q = &sk->sk_error_queue;
1066 	spin_lock_irqsave(&q->lock, flags);
1067 	tail = skb_peek_tail(q);
1068 	if (!tail || SKB_EXT_ERR(tail)->ee.ee_origin != SO_EE_ORIGIN_ZEROCOPY ||
1069 	    !skb_zerocopy_notify_extend(tail, lo, len)) {
1070 		__skb_queue_tail(q, skb);
1071 		skb = NULL;
1072 	}
1073 	spin_unlock_irqrestore(&q->lock, flags);
1074 
1075 	sk->sk_error_report(sk);
1076 
1077 release:
1078 	consume_skb(skb);
1079 	sock_put(sk);
1080 }
1081 EXPORT_SYMBOL_GPL(sock_zerocopy_callback);
1082 
1083 void sock_zerocopy_put(struct ubuf_info *uarg)
1084 {
1085 	if (uarg && refcount_dec_and_test(&uarg->refcnt)) {
1086 		if (uarg->callback)
1087 			uarg->callback(uarg, uarg->zerocopy);
1088 		else
1089 			consume_skb(skb_from_uarg(uarg));
1090 	}
1091 }
1092 EXPORT_SYMBOL_GPL(sock_zerocopy_put);
1093 
1094 void sock_zerocopy_put_abort(struct ubuf_info *uarg)
1095 {
1096 	if (uarg) {
1097 		struct sock *sk = skb_from_uarg(uarg)->sk;
1098 
1099 		atomic_dec(&sk->sk_zckey);
1100 		uarg->len--;
1101 
1102 		sock_zerocopy_put(uarg);
1103 	}
1104 }
1105 EXPORT_SYMBOL_GPL(sock_zerocopy_put_abort);
1106 
1107 extern int __zerocopy_sg_from_iter(struct sock *sk, struct sk_buff *skb,
1108 				   struct iov_iter *from, size_t length);
1109 
1110 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
1111 			     struct msghdr *msg, int len,
1112 			     struct ubuf_info *uarg)
1113 {
1114 	struct ubuf_info *orig_uarg = skb_zcopy(skb);
1115 	struct iov_iter orig_iter = msg->msg_iter;
1116 	int err, orig_len = skb->len;
1117 
1118 	/* An skb can only point to one uarg. This edge case happens when
1119 	 * TCP appends to an skb, but zerocopy_realloc triggered a new alloc.
1120 	 */
1121 	if (orig_uarg && uarg != orig_uarg)
1122 		return -EEXIST;
1123 
1124 	err = __zerocopy_sg_from_iter(sk, skb, &msg->msg_iter, len);
1125 	if (err == -EFAULT || (err == -EMSGSIZE && skb->len == orig_len)) {
1126 		struct sock *save_sk = skb->sk;
1127 
1128 		/* Streams do not free skb on error. Reset to prev state. */
1129 		msg->msg_iter = orig_iter;
1130 		skb->sk = sk;
1131 		___pskb_trim(skb, orig_len);
1132 		skb->sk = save_sk;
1133 		return err;
1134 	}
1135 
1136 	skb_zcopy_set(skb, uarg);
1137 	return skb->len - orig_len;
1138 }
1139 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_stream);
1140 
1141 static int skb_zerocopy_clone(struct sk_buff *nskb, struct sk_buff *orig,
1142 			      gfp_t gfp_mask)
1143 {
1144 	if (skb_zcopy(orig)) {
1145 		if (skb_zcopy(nskb)) {
1146 			/* !gfp_mask callers are verified to !skb_zcopy(nskb) */
1147 			if (!gfp_mask) {
1148 				WARN_ON_ONCE(1);
1149 				return -ENOMEM;
1150 			}
1151 			if (skb_uarg(nskb) == skb_uarg(orig))
1152 				return 0;
1153 			if (skb_copy_ubufs(nskb, GFP_ATOMIC))
1154 				return -EIO;
1155 		}
1156 		skb_zcopy_set(nskb, skb_uarg(orig));
1157 	}
1158 	return 0;
1159 }
1160 
1161 /**
1162  *	skb_copy_ubufs	-	copy userspace skb frags buffers to kernel
1163  *	@skb: the skb to modify
1164  *	@gfp_mask: allocation priority
1165  *
1166  *	This must be called on SKBTX_DEV_ZEROCOPY skb.
1167  *	It will copy all frags into kernel and drop the reference
1168  *	to userspace pages.
1169  *
1170  *	If this function is called from an interrupt gfp_mask() must be
1171  *	%GFP_ATOMIC.
1172  *
1173  *	Returns 0 on success or a negative error code on failure
1174  *	to allocate kernel memory to copy to.
1175  */
1176 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask)
1177 {
1178 	int num_frags = skb_shinfo(skb)->nr_frags;
1179 	struct page *page, *head = NULL;
1180 	int i, new_frags;
1181 	u32 d_off;
1182 
1183 	if (skb_shared(skb) || skb_unclone(skb, gfp_mask))
1184 		return -EINVAL;
1185 
1186 	if (!num_frags)
1187 		goto release;
1188 
1189 	new_frags = (__skb_pagelen(skb) + PAGE_SIZE - 1) >> PAGE_SHIFT;
1190 	for (i = 0; i < new_frags; i++) {
1191 		page = alloc_page(gfp_mask);
1192 		if (!page) {
1193 			while (head) {
1194 				struct page *next = (struct page *)page_private(head);
1195 				put_page(head);
1196 				head = next;
1197 			}
1198 			return -ENOMEM;
1199 		}
1200 		set_page_private(page, (unsigned long)head);
1201 		head = page;
1202 	}
1203 
1204 	page = head;
1205 	d_off = 0;
1206 	for (i = 0; i < num_frags; i++) {
1207 		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
1208 		u32 p_off, p_len, copied;
1209 		struct page *p;
1210 		u8 *vaddr;
1211 
1212 		skb_frag_foreach_page(f, f->page_offset, skb_frag_size(f),
1213 				      p, p_off, p_len, copied) {
1214 			u32 copy, done = 0;
1215 			vaddr = kmap_atomic(p);
1216 
1217 			while (done < p_len) {
1218 				if (d_off == PAGE_SIZE) {
1219 					d_off = 0;
1220 					page = (struct page *)page_private(page);
1221 				}
1222 				copy = min_t(u32, PAGE_SIZE - d_off, p_len - done);
1223 				memcpy(page_address(page) + d_off,
1224 				       vaddr + p_off + done, copy);
1225 				done += copy;
1226 				d_off += copy;
1227 			}
1228 			kunmap_atomic(vaddr);
1229 		}
1230 	}
1231 
1232 	/* skb frags release userspace buffers */
1233 	for (i = 0; i < num_frags; i++)
1234 		skb_frag_unref(skb, i);
1235 
1236 	/* skb frags point to kernel buffers */
1237 	for (i = 0; i < new_frags - 1; i++) {
1238 		__skb_fill_page_desc(skb, i, head, 0, PAGE_SIZE);
1239 		head = (struct page *)page_private(head);
1240 	}
1241 	__skb_fill_page_desc(skb, new_frags - 1, head, 0, d_off);
1242 	skb_shinfo(skb)->nr_frags = new_frags;
1243 
1244 release:
1245 	skb_zcopy_clear(skb, false);
1246 	return 0;
1247 }
1248 EXPORT_SYMBOL_GPL(skb_copy_ubufs);
1249 
1250 /**
1251  *	skb_clone	-	duplicate an sk_buff
1252  *	@skb: buffer to clone
1253  *	@gfp_mask: allocation priority
1254  *
1255  *	Duplicate an &sk_buff. The new one is not owned by a socket. Both
1256  *	copies share the same packet data but not structure. The new
1257  *	buffer has a reference count of 1. If the allocation fails the
1258  *	function returns %NULL otherwise the new buffer is returned.
1259  *
1260  *	If this function is called from an interrupt gfp_mask() must be
1261  *	%GFP_ATOMIC.
1262  */
1263 
1264 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
1265 {
1266 	struct sk_buff_fclones *fclones = container_of(skb,
1267 						       struct sk_buff_fclones,
1268 						       skb1);
1269 	struct sk_buff *n;
1270 
1271 	if (skb_orphan_frags(skb, gfp_mask))
1272 		return NULL;
1273 
1274 	if (skb->fclone == SKB_FCLONE_ORIG &&
1275 	    refcount_read(&fclones->fclone_ref) == 1) {
1276 		n = &fclones->skb2;
1277 		refcount_set(&fclones->fclone_ref, 2);
1278 	} else {
1279 		if (skb_pfmemalloc(skb))
1280 			gfp_mask |= __GFP_MEMALLOC;
1281 
1282 		n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
1283 		if (!n)
1284 			return NULL;
1285 
1286 		n->fclone = SKB_FCLONE_UNAVAILABLE;
1287 	}
1288 
1289 	return __skb_clone(n, skb);
1290 }
1291 EXPORT_SYMBOL(skb_clone);
1292 
1293 static void skb_headers_offset_update(struct sk_buff *skb, int off)
1294 {
1295 	/* Only adjust this if it actually is csum_start rather than csum */
1296 	if (skb->ip_summed == CHECKSUM_PARTIAL)
1297 		skb->csum_start += off;
1298 	/* {transport,network,mac}_header and tail are relative to skb->head */
1299 	skb->transport_header += off;
1300 	skb->network_header   += off;
1301 	if (skb_mac_header_was_set(skb))
1302 		skb->mac_header += off;
1303 	skb->inner_transport_header += off;
1304 	skb->inner_network_header += off;
1305 	skb->inner_mac_header += off;
1306 }
1307 
1308 static void copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
1309 {
1310 	__copy_skb_header(new, old);
1311 
1312 	skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
1313 	skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
1314 	skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
1315 }
1316 
1317 static inline int skb_alloc_rx_flag(const struct sk_buff *skb)
1318 {
1319 	if (skb_pfmemalloc(skb))
1320 		return SKB_ALLOC_RX;
1321 	return 0;
1322 }
1323 
1324 /**
1325  *	skb_copy	-	create private copy of an sk_buff
1326  *	@skb: buffer to copy
1327  *	@gfp_mask: allocation priority
1328  *
1329  *	Make a copy of both an &sk_buff and its data. This is used when the
1330  *	caller wishes to modify the data and needs a private copy of the
1331  *	data to alter. Returns %NULL on failure or the pointer to the buffer
1332  *	on success. The returned buffer has a reference count of 1.
1333  *
1334  *	As by-product this function converts non-linear &sk_buff to linear
1335  *	one, so that &sk_buff becomes completely private and caller is allowed
1336  *	to modify all the data of returned buffer. This means that this
1337  *	function is not recommended for use in circumstances when only
1338  *	header is going to be modified. Use pskb_copy() instead.
1339  */
1340 
1341 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
1342 {
1343 	int headerlen = skb_headroom(skb);
1344 	unsigned int size = skb_end_offset(skb) + skb->data_len;
1345 	struct sk_buff *n = __alloc_skb(size, gfp_mask,
1346 					skb_alloc_rx_flag(skb), NUMA_NO_NODE);
1347 
1348 	if (!n)
1349 		return NULL;
1350 
1351 	/* Set the data pointer */
1352 	skb_reserve(n, headerlen);
1353 	/* Set the tail pointer and length */
1354 	skb_put(n, skb->len);
1355 
1356 	BUG_ON(skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len));
1357 
1358 	copy_skb_header(n, skb);
1359 	return n;
1360 }
1361 EXPORT_SYMBOL(skb_copy);
1362 
1363 /**
1364  *	__pskb_copy_fclone	-  create copy of an sk_buff with private head.
1365  *	@skb: buffer to copy
1366  *	@headroom: headroom of new skb
1367  *	@gfp_mask: allocation priority
1368  *	@fclone: if true allocate the copy of the skb from the fclone
1369  *	cache instead of the head cache; it is recommended to set this
1370  *	to true for the cases where the copy will likely be cloned
1371  *
1372  *	Make a copy of both an &sk_buff and part of its data, located
1373  *	in header. Fragmented data remain shared. This is used when
1374  *	the caller wishes to modify only header of &sk_buff and needs
1375  *	private copy of the header to alter. Returns %NULL on failure
1376  *	or the pointer to the buffer on success.
1377  *	The returned buffer has a reference count of 1.
1378  */
1379 
1380 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1381 				   gfp_t gfp_mask, bool fclone)
1382 {
1383 	unsigned int size = skb_headlen(skb) + headroom;
1384 	int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0);
1385 	struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE);
1386 
1387 	if (!n)
1388 		goto out;
1389 
1390 	/* Set the data pointer */
1391 	skb_reserve(n, headroom);
1392 	/* Set the tail pointer and length */
1393 	skb_put(n, skb_headlen(skb));
1394 	/* Copy the bytes */
1395 	skb_copy_from_linear_data(skb, n->data, n->len);
1396 
1397 	n->truesize += skb->data_len;
1398 	n->data_len  = skb->data_len;
1399 	n->len	     = skb->len;
1400 
1401 	if (skb_shinfo(skb)->nr_frags) {
1402 		int i;
1403 
1404 		if (skb_orphan_frags(skb, gfp_mask) ||
1405 		    skb_zerocopy_clone(n, skb, gfp_mask)) {
1406 			kfree_skb(n);
1407 			n = NULL;
1408 			goto out;
1409 		}
1410 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1411 			skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
1412 			skb_frag_ref(skb, i);
1413 		}
1414 		skb_shinfo(n)->nr_frags = i;
1415 	}
1416 
1417 	if (skb_has_frag_list(skb)) {
1418 		skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
1419 		skb_clone_fraglist(n);
1420 	}
1421 
1422 	copy_skb_header(n, skb);
1423 out:
1424 	return n;
1425 }
1426 EXPORT_SYMBOL(__pskb_copy_fclone);
1427 
1428 /**
1429  *	pskb_expand_head - reallocate header of &sk_buff
1430  *	@skb: buffer to reallocate
1431  *	@nhead: room to add at head
1432  *	@ntail: room to add at tail
1433  *	@gfp_mask: allocation priority
1434  *
1435  *	Expands (or creates identical copy, if @nhead and @ntail are zero)
1436  *	header of @skb. &sk_buff itself is not changed. &sk_buff MUST have
1437  *	reference count of 1. Returns zero in the case of success or error,
1438  *	if expansion failed. In the last case, &sk_buff is not changed.
1439  *
1440  *	All the pointers pointing into skb header may change and must be
1441  *	reloaded after call to this function.
1442  */
1443 
1444 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
1445 		     gfp_t gfp_mask)
1446 {
1447 	int i, osize = skb_end_offset(skb);
1448 	int size = osize + nhead + ntail;
1449 	long off;
1450 	u8 *data;
1451 
1452 	BUG_ON(nhead < 0);
1453 
1454 	BUG_ON(skb_shared(skb));
1455 
1456 	size = SKB_DATA_ALIGN(size);
1457 
1458 	if (skb_pfmemalloc(skb))
1459 		gfp_mask |= __GFP_MEMALLOC;
1460 	data = kmalloc_reserve(size + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
1461 			       gfp_mask, NUMA_NO_NODE, NULL);
1462 	if (!data)
1463 		goto nodata;
1464 	size = SKB_WITH_OVERHEAD(ksize(data));
1465 
1466 	/* Copy only real data... and, alas, header. This should be
1467 	 * optimized for the cases when header is void.
1468 	 */
1469 	memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head);
1470 
1471 	memcpy((struct skb_shared_info *)(data + size),
1472 	       skb_shinfo(skb),
1473 	       offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags]));
1474 
1475 	/*
1476 	 * if shinfo is shared we must drop the old head gracefully, but if it
1477 	 * is not we can just drop the old head and let the existing refcount
1478 	 * be since all we did is relocate the values
1479 	 */
1480 	if (skb_cloned(skb)) {
1481 		if (skb_orphan_frags(skb, gfp_mask))
1482 			goto nofrags;
1483 		if (skb_zcopy(skb))
1484 			refcount_inc(&skb_uarg(skb)->refcnt);
1485 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1486 			skb_frag_ref(skb, i);
1487 
1488 		if (skb_has_frag_list(skb))
1489 			skb_clone_fraglist(skb);
1490 
1491 		skb_release_data(skb);
1492 	} else {
1493 		skb_free_head(skb);
1494 	}
1495 	off = (data + nhead) - skb->head;
1496 
1497 	skb->head     = data;
1498 	skb->head_frag = 0;
1499 	skb->data    += off;
1500 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1501 	skb->end      = size;
1502 	off           = nhead;
1503 #else
1504 	skb->end      = skb->head + size;
1505 #endif
1506 	skb->tail	      += off;
1507 	skb_headers_offset_update(skb, nhead);
1508 	skb->cloned   = 0;
1509 	skb->hdr_len  = 0;
1510 	skb->nohdr    = 0;
1511 	atomic_set(&skb_shinfo(skb)->dataref, 1);
1512 
1513 	skb_metadata_clear(skb);
1514 
1515 	/* It is not generally safe to change skb->truesize.
1516 	 * For the moment, we really care of rx path, or
1517 	 * when skb is orphaned (not attached to a socket).
1518 	 */
1519 	if (!skb->sk || skb->destructor == sock_edemux)
1520 		skb->truesize += size - osize;
1521 
1522 	return 0;
1523 
1524 nofrags:
1525 	kfree(data);
1526 nodata:
1527 	return -ENOMEM;
1528 }
1529 EXPORT_SYMBOL(pskb_expand_head);
1530 
1531 /* Make private copy of skb with writable head and some headroom */
1532 
1533 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
1534 {
1535 	struct sk_buff *skb2;
1536 	int delta = headroom - skb_headroom(skb);
1537 
1538 	if (delta <= 0)
1539 		skb2 = pskb_copy(skb, GFP_ATOMIC);
1540 	else {
1541 		skb2 = skb_clone(skb, GFP_ATOMIC);
1542 		if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
1543 					     GFP_ATOMIC)) {
1544 			kfree_skb(skb2);
1545 			skb2 = NULL;
1546 		}
1547 	}
1548 	return skb2;
1549 }
1550 EXPORT_SYMBOL(skb_realloc_headroom);
1551 
1552 /**
1553  *	skb_copy_expand	-	copy and expand sk_buff
1554  *	@skb: buffer to copy
1555  *	@newheadroom: new free bytes at head
1556  *	@newtailroom: new free bytes at tail
1557  *	@gfp_mask: allocation priority
1558  *
1559  *	Make a copy of both an &sk_buff and its data and while doing so
1560  *	allocate additional space.
1561  *
1562  *	This is used when the caller wishes to modify the data and needs a
1563  *	private copy of the data to alter as well as more space for new fields.
1564  *	Returns %NULL on failure or the pointer to the buffer
1565  *	on success. The returned buffer has a reference count of 1.
1566  *
1567  *	You must pass %GFP_ATOMIC as the allocation priority if this function
1568  *	is called from an interrupt.
1569  */
1570 struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
1571 				int newheadroom, int newtailroom,
1572 				gfp_t gfp_mask)
1573 {
1574 	/*
1575 	 *	Allocate the copy buffer
1576 	 */
1577 	struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom,
1578 					gfp_mask, skb_alloc_rx_flag(skb),
1579 					NUMA_NO_NODE);
1580 	int oldheadroom = skb_headroom(skb);
1581 	int head_copy_len, head_copy_off;
1582 
1583 	if (!n)
1584 		return NULL;
1585 
1586 	skb_reserve(n, newheadroom);
1587 
1588 	/* Set the tail pointer and length */
1589 	skb_put(n, skb->len);
1590 
1591 	head_copy_len = oldheadroom;
1592 	head_copy_off = 0;
1593 	if (newheadroom <= head_copy_len)
1594 		head_copy_len = newheadroom;
1595 	else
1596 		head_copy_off = newheadroom - head_copy_len;
1597 
1598 	/* Copy the linear header and data. */
1599 	BUG_ON(skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
1600 			     skb->len + head_copy_len));
1601 
1602 	copy_skb_header(n, skb);
1603 
1604 	skb_headers_offset_update(n, newheadroom - oldheadroom);
1605 
1606 	return n;
1607 }
1608 EXPORT_SYMBOL(skb_copy_expand);
1609 
1610 /**
1611  *	__skb_pad		-	zero pad the tail of an skb
1612  *	@skb: buffer to pad
1613  *	@pad: space to pad
1614  *	@free_on_error: free buffer on error
1615  *
1616  *	Ensure that a buffer is followed by a padding area that is zero
1617  *	filled. Used by network drivers which may DMA or transfer data
1618  *	beyond the buffer end onto the wire.
1619  *
1620  *	May return error in out of memory cases. The skb is freed on error
1621  *	if @free_on_error is true.
1622  */
1623 
1624 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error)
1625 {
1626 	int err;
1627 	int ntail;
1628 
1629 	/* If the skbuff is non linear tailroom is always zero.. */
1630 	if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
1631 		memset(skb->data+skb->len, 0, pad);
1632 		return 0;
1633 	}
1634 
1635 	ntail = skb->data_len + pad - (skb->end - skb->tail);
1636 	if (likely(skb_cloned(skb) || ntail > 0)) {
1637 		err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
1638 		if (unlikely(err))
1639 			goto free_skb;
1640 	}
1641 
1642 	/* FIXME: The use of this function with non-linear skb's really needs
1643 	 * to be audited.
1644 	 */
1645 	err = skb_linearize(skb);
1646 	if (unlikely(err))
1647 		goto free_skb;
1648 
1649 	memset(skb->data + skb->len, 0, pad);
1650 	return 0;
1651 
1652 free_skb:
1653 	if (free_on_error)
1654 		kfree_skb(skb);
1655 	return err;
1656 }
1657 EXPORT_SYMBOL(__skb_pad);
1658 
1659 /**
1660  *	pskb_put - add data to the tail of a potentially fragmented buffer
1661  *	@skb: start of the buffer to use
1662  *	@tail: tail fragment of the buffer to use
1663  *	@len: amount of data to add
1664  *
1665  *	This function extends the used data area of the potentially
1666  *	fragmented buffer. @tail must be the last fragment of @skb -- or
1667  *	@skb itself. If this would exceed the total buffer size the kernel
1668  *	will panic. A pointer to the first byte of the extra data is
1669  *	returned.
1670  */
1671 
1672 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len)
1673 {
1674 	if (tail != skb) {
1675 		skb->data_len += len;
1676 		skb->len += len;
1677 	}
1678 	return skb_put(tail, len);
1679 }
1680 EXPORT_SYMBOL_GPL(pskb_put);
1681 
1682 /**
1683  *	skb_put - add data to a buffer
1684  *	@skb: buffer to use
1685  *	@len: amount of data to add
1686  *
1687  *	This function extends the used data area of the buffer. If this would
1688  *	exceed the total buffer size the kernel will panic. A pointer to the
1689  *	first byte of the extra data is returned.
1690  */
1691 void *skb_put(struct sk_buff *skb, unsigned int len)
1692 {
1693 	void *tmp = skb_tail_pointer(skb);
1694 	SKB_LINEAR_ASSERT(skb);
1695 	skb->tail += len;
1696 	skb->len  += len;
1697 	if (unlikely(skb->tail > skb->end))
1698 		skb_over_panic(skb, len, __builtin_return_address(0));
1699 	return tmp;
1700 }
1701 EXPORT_SYMBOL(skb_put);
1702 
1703 /**
1704  *	skb_push - add data to the start of a buffer
1705  *	@skb: buffer to use
1706  *	@len: amount of data to add
1707  *
1708  *	This function extends the used data area of the buffer at the buffer
1709  *	start. If this would exceed the total buffer headroom the kernel will
1710  *	panic. A pointer to the first byte of the extra data is returned.
1711  */
1712 void *skb_push(struct sk_buff *skb, unsigned int len)
1713 {
1714 	skb->data -= len;
1715 	skb->len  += len;
1716 	if (unlikely(skb->data<skb->head))
1717 		skb_under_panic(skb, len, __builtin_return_address(0));
1718 	return skb->data;
1719 }
1720 EXPORT_SYMBOL(skb_push);
1721 
1722 /**
1723  *	skb_pull - remove data from the start of a buffer
1724  *	@skb: buffer to use
1725  *	@len: amount of data to remove
1726  *
1727  *	This function removes data from the start of a buffer, returning
1728  *	the memory to the headroom. A pointer to the next data in the buffer
1729  *	is returned. Once the data has been pulled future pushes will overwrite
1730  *	the old data.
1731  */
1732 void *skb_pull(struct sk_buff *skb, unsigned int len)
1733 {
1734 	return skb_pull_inline(skb, len);
1735 }
1736 EXPORT_SYMBOL(skb_pull);
1737 
1738 /**
1739  *	skb_trim - remove end from a buffer
1740  *	@skb: buffer to alter
1741  *	@len: new length
1742  *
1743  *	Cut the length of a buffer down by removing data from the tail. If
1744  *	the buffer is already under the length specified it is not modified.
1745  *	The skb must be linear.
1746  */
1747 void skb_trim(struct sk_buff *skb, unsigned int len)
1748 {
1749 	if (skb->len > len)
1750 		__skb_trim(skb, len);
1751 }
1752 EXPORT_SYMBOL(skb_trim);
1753 
1754 /* Trims skb to length len. It can change skb pointers.
1755  */
1756 
1757 int ___pskb_trim(struct sk_buff *skb, unsigned int len)
1758 {
1759 	struct sk_buff **fragp;
1760 	struct sk_buff *frag;
1761 	int offset = skb_headlen(skb);
1762 	int nfrags = skb_shinfo(skb)->nr_frags;
1763 	int i;
1764 	int err;
1765 
1766 	if (skb_cloned(skb) &&
1767 	    unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
1768 		return err;
1769 
1770 	i = 0;
1771 	if (offset >= len)
1772 		goto drop_pages;
1773 
1774 	for (; i < nfrags; i++) {
1775 		int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]);
1776 
1777 		if (end < len) {
1778 			offset = end;
1779 			continue;
1780 		}
1781 
1782 		skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset);
1783 
1784 drop_pages:
1785 		skb_shinfo(skb)->nr_frags = i;
1786 
1787 		for (; i < nfrags; i++)
1788 			skb_frag_unref(skb, i);
1789 
1790 		if (skb_has_frag_list(skb))
1791 			skb_drop_fraglist(skb);
1792 		goto done;
1793 	}
1794 
1795 	for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
1796 	     fragp = &frag->next) {
1797 		int end = offset + frag->len;
1798 
1799 		if (skb_shared(frag)) {
1800 			struct sk_buff *nfrag;
1801 
1802 			nfrag = skb_clone(frag, GFP_ATOMIC);
1803 			if (unlikely(!nfrag))
1804 				return -ENOMEM;
1805 
1806 			nfrag->next = frag->next;
1807 			consume_skb(frag);
1808 			frag = nfrag;
1809 			*fragp = frag;
1810 		}
1811 
1812 		if (end < len) {
1813 			offset = end;
1814 			continue;
1815 		}
1816 
1817 		if (end > len &&
1818 		    unlikely((err = pskb_trim(frag, len - offset))))
1819 			return err;
1820 
1821 		if (frag->next)
1822 			skb_drop_list(&frag->next);
1823 		break;
1824 	}
1825 
1826 done:
1827 	if (len > skb_headlen(skb)) {
1828 		skb->data_len -= skb->len - len;
1829 		skb->len       = len;
1830 	} else {
1831 		skb->len       = len;
1832 		skb->data_len  = 0;
1833 		skb_set_tail_pointer(skb, len);
1834 	}
1835 
1836 	if (!skb->sk || skb->destructor == sock_edemux)
1837 		skb_condense(skb);
1838 	return 0;
1839 }
1840 EXPORT_SYMBOL(___pskb_trim);
1841 
1842 /**
1843  *	__pskb_pull_tail - advance tail of skb header
1844  *	@skb: buffer to reallocate
1845  *	@delta: number of bytes to advance tail
1846  *
1847  *	The function makes a sense only on a fragmented &sk_buff,
1848  *	it expands header moving its tail forward and copying necessary
1849  *	data from fragmented part.
1850  *
1851  *	&sk_buff MUST have reference count of 1.
1852  *
1853  *	Returns %NULL (and &sk_buff does not change) if pull failed
1854  *	or value of new tail of skb in the case of success.
1855  *
1856  *	All the pointers pointing into skb header may change and must be
1857  *	reloaded after call to this function.
1858  */
1859 
1860 /* Moves tail of skb head forward, copying data from fragmented part,
1861  * when it is necessary.
1862  * 1. It may fail due to malloc failure.
1863  * 2. It may change skb pointers.
1864  *
1865  * It is pretty complicated. Luckily, it is called only in exceptional cases.
1866  */
1867 void *__pskb_pull_tail(struct sk_buff *skb, int delta)
1868 {
1869 	/* If skb has not enough free space at tail, get new one
1870 	 * plus 128 bytes for future expansions. If we have enough
1871 	 * room at tail, reallocate without expansion only if skb is cloned.
1872 	 */
1873 	int i, k, eat = (skb->tail + delta) - skb->end;
1874 
1875 	if (eat > 0 || skb_cloned(skb)) {
1876 		if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
1877 				     GFP_ATOMIC))
1878 			return NULL;
1879 	}
1880 
1881 	BUG_ON(skb_copy_bits(skb, skb_headlen(skb),
1882 			     skb_tail_pointer(skb), delta));
1883 
1884 	/* Optimization: no fragments, no reasons to preestimate
1885 	 * size of pulled pages. Superb.
1886 	 */
1887 	if (!skb_has_frag_list(skb))
1888 		goto pull_pages;
1889 
1890 	/* Estimate size of pulled pages. */
1891 	eat = delta;
1892 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1893 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
1894 
1895 		if (size >= eat)
1896 			goto pull_pages;
1897 		eat -= size;
1898 	}
1899 
1900 	/* If we need update frag list, we are in troubles.
1901 	 * Certainly, it is possible to add an offset to skb data,
1902 	 * but taking into account that pulling is expected to
1903 	 * be very rare operation, it is worth to fight against
1904 	 * further bloating skb head and crucify ourselves here instead.
1905 	 * Pure masohism, indeed. 8)8)
1906 	 */
1907 	if (eat) {
1908 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
1909 		struct sk_buff *clone = NULL;
1910 		struct sk_buff *insp = NULL;
1911 
1912 		do {
1913 			BUG_ON(!list);
1914 
1915 			if (list->len <= eat) {
1916 				/* Eaten as whole. */
1917 				eat -= list->len;
1918 				list = list->next;
1919 				insp = list;
1920 			} else {
1921 				/* Eaten partially. */
1922 
1923 				if (skb_shared(list)) {
1924 					/* Sucks! We need to fork list. :-( */
1925 					clone = skb_clone(list, GFP_ATOMIC);
1926 					if (!clone)
1927 						return NULL;
1928 					insp = list->next;
1929 					list = clone;
1930 				} else {
1931 					/* This may be pulled without
1932 					 * problems. */
1933 					insp = list;
1934 				}
1935 				if (!pskb_pull(list, eat)) {
1936 					kfree_skb(clone);
1937 					return NULL;
1938 				}
1939 				break;
1940 			}
1941 		} while (eat);
1942 
1943 		/* Free pulled out fragments. */
1944 		while ((list = skb_shinfo(skb)->frag_list) != insp) {
1945 			skb_shinfo(skb)->frag_list = list->next;
1946 			kfree_skb(list);
1947 		}
1948 		/* And insert new clone at head. */
1949 		if (clone) {
1950 			clone->next = list;
1951 			skb_shinfo(skb)->frag_list = clone;
1952 		}
1953 	}
1954 	/* Success! Now we may commit changes to skb data. */
1955 
1956 pull_pages:
1957 	eat = delta;
1958 	k = 0;
1959 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1960 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
1961 
1962 		if (size <= eat) {
1963 			skb_frag_unref(skb, i);
1964 			eat -= size;
1965 		} else {
1966 			skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i];
1967 			if (eat) {
1968 				skb_shinfo(skb)->frags[k].page_offset += eat;
1969 				skb_frag_size_sub(&skb_shinfo(skb)->frags[k], eat);
1970 				if (!i)
1971 					goto end;
1972 				eat = 0;
1973 			}
1974 			k++;
1975 		}
1976 	}
1977 	skb_shinfo(skb)->nr_frags = k;
1978 
1979 end:
1980 	skb->tail     += delta;
1981 	skb->data_len -= delta;
1982 
1983 	if (!skb->data_len)
1984 		skb_zcopy_clear(skb, false);
1985 
1986 	return skb_tail_pointer(skb);
1987 }
1988 EXPORT_SYMBOL(__pskb_pull_tail);
1989 
1990 /**
1991  *	skb_copy_bits - copy bits from skb to kernel buffer
1992  *	@skb: source skb
1993  *	@offset: offset in source
1994  *	@to: destination buffer
1995  *	@len: number of bytes to copy
1996  *
1997  *	Copy the specified number of bytes from the source skb to the
1998  *	destination buffer.
1999  *
2000  *	CAUTION ! :
2001  *		If its prototype is ever changed,
2002  *		check arch/{*}/net/{*}.S files,
2003  *		since it is called from BPF assembly code.
2004  */
2005 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
2006 {
2007 	int start = skb_headlen(skb);
2008 	struct sk_buff *frag_iter;
2009 	int i, copy;
2010 
2011 	if (offset > (int)skb->len - len)
2012 		goto fault;
2013 
2014 	/* Copy header. */
2015 	if ((copy = start - offset) > 0) {
2016 		if (copy > len)
2017 			copy = len;
2018 		skb_copy_from_linear_data_offset(skb, offset, to, copy);
2019 		if ((len -= copy) == 0)
2020 			return 0;
2021 		offset += copy;
2022 		to     += copy;
2023 	}
2024 
2025 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2026 		int end;
2027 		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
2028 
2029 		WARN_ON(start > offset + len);
2030 
2031 		end = start + skb_frag_size(f);
2032 		if ((copy = end - offset) > 0) {
2033 			u32 p_off, p_len, copied;
2034 			struct page *p;
2035 			u8 *vaddr;
2036 
2037 			if (copy > len)
2038 				copy = len;
2039 
2040 			skb_frag_foreach_page(f,
2041 					      f->page_offset + offset - start,
2042 					      copy, p, p_off, p_len, copied) {
2043 				vaddr = kmap_atomic(p);
2044 				memcpy(to + copied, vaddr + p_off, p_len);
2045 				kunmap_atomic(vaddr);
2046 			}
2047 
2048 			if ((len -= copy) == 0)
2049 				return 0;
2050 			offset += copy;
2051 			to     += copy;
2052 		}
2053 		start = end;
2054 	}
2055 
2056 	skb_walk_frags(skb, frag_iter) {
2057 		int end;
2058 
2059 		WARN_ON(start > offset + len);
2060 
2061 		end = start + frag_iter->len;
2062 		if ((copy = end - offset) > 0) {
2063 			if (copy > len)
2064 				copy = len;
2065 			if (skb_copy_bits(frag_iter, offset - start, to, copy))
2066 				goto fault;
2067 			if ((len -= copy) == 0)
2068 				return 0;
2069 			offset += copy;
2070 			to     += copy;
2071 		}
2072 		start = end;
2073 	}
2074 
2075 	if (!len)
2076 		return 0;
2077 
2078 fault:
2079 	return -EFAULT;
2080 }
2081 EXPORT_SYMBOL(skb_copy_bits);
2082 
2083 /*
2084  * Callback from splice_to_pipe(), if we need to release some pages
2085  * at the end of the spd in case we error'ed out in filling the pipe.
2086  */
2087 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
2088 {
2089 	put_page(spd->pages[i]);
2090 }
2091 
2092 static struct page *linear_to_page(struct page *page, unsigned int *len,
2093 				   unsigned int *offset,
2094 				   struct sock *sk)
2095 {
2096 	struct page_frag *pfrag = sk_page_frag(sk);
2097 
2098 	if (!sk_page_frag_refill(sk, pfrag))
2099 		return NULL;
2100 
2101 	*len = min_t(unsigned int, *len, pfrag->size - pfrag->offset);
2102 
2103 	memcpy(page_address(pfrag->page) + pfrag->offset,
2104 	       page_address(page) + *offset, *len);
2105 	*offset = pfrag->offset;
2106 	pfrag->offset += *len;
2107 
2108 	return pfrag->page;
2109 }
2110 
2111 static bool spd_can_coalesce(const struct splice_pipe_desc *spd,
2112 			     struct page *page,
2113 			     unsigned int offset)
2114 {
2115 	return	spd->nr_pages &&
2116 		spd->pages[spd->nr_pages - 1] == page &&
2117 		(spd->partial[spd->nr_pages - 1].offset +
2118 		 spd->partial[spd->nr_pages - 1].len == offset);
2119 }
2120 
2121 /*
2122  * Fill page/offset/length into spd, if it can hold more pages.
2123  */
2124 static bool spd_fill_page(struct splice_pipe_desc *spd,
2125 			  struct pipe_inode_info *pipe, struct page *page,
2126 			  unsigned int *len, unsigned int offset,
2127 			  bool linear,
2128 			  struct sock *sk)
2129 {
2130 	if (unlikely(spd->nr_pages == MAX_SKB_FRAGS))
2131 		return true;
2132 
2133 	if (linear) {
2134 		page = linear_to_page(page, len, &offset, sk);
2135 		if (!page)
2136 			return true;
2137 	}
2138 	if (spd_can_coalesce(spd, page, offset)) {
2139 		spd->partial[spd->nr_pages - 1].len += *len;
2140 		return false;
2141 	}
2142 	get_page(page);
2143 	spd->pages[spd->nr_pages] = page;
2144 	spd->partial[spd->nr_pages].len = *len;
2145 	spd->partial[spd->nr_pages].offset = offset;
2146 	spd->nr_pages++;
2147 
2148 	return false;
2149 }
2150 
2151 static bool __splice_segment(struct page *page, unsigned int poff,
2152 			     unsigned int plen, unsigned int *off,
2153 			     unsigned int *len,
2154 			     struct splice_pipe_desc *spd, bool linear,
2155 			     struct sock *sk,
2156 			     struct pipe_inode_info *pipe)
2157 {
2158 	if (!*len)
2159 		return true;
2160 
2161 	/* skip this segment if already processed */
2162 	if (*off >= plen) {
2163 		*off -= plen;
2164 		return false;
2165 	}
2166 
2167 	/* ignore any bits we already processed */
2168 	poff += *off;
2169 	plen -= *off;
2170 	*off = 0;
2171 
2172 	do {
2173 		unsigned int flen = min(*len, plen);
2174 
2175 		if (spd_fill_page(spd, pipe, page, &flen, poff,
2176 				  linear, sk))
2177 			return true;
2178 		poff += flen;
2179 		plen -= flen;
2180 		*len -= flen;
2181 	} while (*len && plen);
2182 
2183 	return false;
2184 }
2185 
2186 /*
2187  * Map linear and fragment data from the skb to spd. It reports true if the
2188  * pipe is full or if we already spliced the requested length.
2189  */
2190 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe,
2191 			      unsigned int *offset, unsigned int *len,
2192 			      struct splice_pipe_desc *spd, struct sock *sk)
2193 {
2194 	int seg;
2195 	struct sk_buff *iter;
2196 
2197 	/* map the linear part :
2198 	 * If skb->head_frag is set, this 'linear' part is backed by a
2199 	 * fragment, and if the head is not shared with any clones then
2200 	 * we can avoid a copy since we own the head portion of this page.
2201 	 */
2202 	if (__splice_segment(virt_to_page(skb->data),
2203 			     (unsigned long) skb->data & (PAGE_SIZE - 1),
2204 			     skb_headlen(skb),
2205 			     offset, len, spd,
2206 			     skb_head_is_locked(skb),
2207 			     sk, pipe))
2208 		return true;
2209 
2210 	/*
2211 	 * then map the fragments
2212 	 */
2213 	for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
2214 		const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
2215 
2216 		if (__splice_segment(skb_frag_page(f),
2217 				     f->page_offset, skb_frag_size(f),
2218 				     offset, len, spd, false, sk, pipe))
2219 			return true;
2220 	}
2221 
2222 	skb_walk_frags(skb, iter) {
2223 		if (*offset >= iter->len) {
2224 			*offset -= iter->len;
2225 			continue;
2226 		}
2227 		/* __skb_splice_bits() only fails if the output has no room
2228 		 * left, so no point in going over the frag_list for the error
2229 		 * case.
2230 		 */
2231 		if (__skb_splice_bits(iter, pipe, offset, len, spd, sk))
2232 			return true;
2233 	}
2234 
2235 	return false;
2236 }
2237 
2238 /*
2239  * Map data from the skb to a pipe. Should handle both the linear part,
2240  * the fragments, and the frag list.
2241  */
2242 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
2243 		    struct pipe_inode_info *pipe, unsigned int tlen,
2244 		    unsigned int flags)
2245 {
2246 	struct partial_page partial[MAX_SKB_FRAGS];
2247 	struct page *pages[MAX_SKB_FRAGS];
2248 	struct splice_pipe_desc spd = {
2249 		.pages = pages,
2250 		.partial = partial,
2251 		.nr_pages_max = MAX_SKB_FRAGS,
2252 		.ops = &nosteal_pipe_buf_ops,
2253 		.spd_release = sock_spd_release,
2254 	};
2255 	int ret = 0;
2256 
2257 	__skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk);
2258 
2259 	if (spd.nr_pages)
2260 		ret = splice_to_pipe(pipe, &spd);
2261 
2262 	return ret;
2263 }
2264 EXPORT_SYMBOL_GPL(skb_splice_bits);
2265 
2266 /* Send skb data on a socket. Socket must be locked. */
2267 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
2268 			 int len)
2269 {
2270 	unsigned int orig_len = len;
2271 	struct sk_buff *head = skb;
2272 	unsigned short fragidx;
2273 	int slen, ret;
2274 
2275 do_frag_list:
2276 
2277 	/* Deal with head data */
2278 	while (offset < skb_headlen(skb) && len) {
2279 		struct kvec kv;
2280 		struct msghdr msg;
2281 
2282 		slen = min_t(int, len, skb_headlen(skb) - offset);
2283 		kv.iov_base = skb->data + offset;
2284 		kv.iov_len = slen;
2285 		memset(&msg, 0, sizeof(msg));
2286 
2287 		ret = kernel_sendmsg_locked(sk, &msg, &kv, 1, slen);
2288 		if (ret <= 0)
2289 			goto error;
2290 
2291 		offset += ret;
2292 		len -= ret;
2293 	}
2294 
2295 	/* All the data was skb head? */
2296 	if (!len)
2297 		goto out;
2298 
2299 	/* Make offset relative to start of frags */
2300 	offset -= skb_headlen(skb);
2301 
2302 	/* Find where we are in frag list */
2303 	for (fragidx = 0; fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
2304 		skb_frag_t *frag  = &skb_shinfo(skb)->frags[fragidx];
2305 
2306 		if (offset < frag->size)
2307 			break;
2308 
2309 		offset -= frag->size;
2310 	}
2311 
2312 	for (; len && fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
2313 		skb_frag_t *frag  = &skb_shinfo(skb)->frags[fragidx];
2314 
2315 		slen = min_t(size_t, len, frag->size - offset);
2316 
2317 		while (slen) {
2318 			ret = kernel_sendpage_locked(sk, frag->page.p,
2319 						     frag->page_offset + offset,
2320 						     slen, MSG_DONTWAIT);
2321 			if (ret <= 0)
2322 				goto error;
2323 
2324 			len -= ret;
2325 			offset += ret;
2326 			slen -= ret;
2327 		}
2328 
2329 		offset = 0;
2330 	}
2331 
2332 	if (len) {
2333 		/* Process any frag lists */
2334 
2335 		if (skb == head) {
2336 			if (skb_has_frag_list(skb)) {
2337 				skb = skb_shinfo(skb)->frag_list;
2338 				goto do_frag_list;
2339 			}
2340 		} else if (skb->next) {
2341 			skb = skb->next;
2342 			goto do_frag_list;
2343 		}
2344 	}
2345 
2346 out:
2347 	return orig_len - len;
2348 
2349 error:
2350 	return orig_len == len ? ret : orig_len - len;
2351 }
2352 EXPORT_SYMBOL_GPL(skb_send_sock_locked);
2353 
2354 /* Send skb data on a socket. */
2355 int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len)
2356 {
2357 	int ret = 0;
2358 
2359 	lock_sock(sk);
2360 	ret = skb_send_sock_locked(sk, skb, offset, len);
2361 	release_sock(sk);
2362 
2363 	return ret;
2364 }
2365 EXPORT_SYMBOL_GPL(skb_send_sock);
2366 
2367 /**
2368  *	skb_store_bits - store bits from kernel buffer to skb
2369  *	@skb: destination buffer
2370  *	@offset: offset in destination
2371  *	@from: source buffer
2372  *	@len: number of bytes to copy
2373  *
2374  *	Copy the specified number of bytes from the source buffer to the
2375  *	destination skb.  This function handles all the messy bits of
2376  *	traversing fragment lists and such.
2377  */
2378 
2379 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
2380 {
2381 	int start = skb_headlen(skb);
2382 	struct sk_buff *frag_iter;
2383 	int i, copy;
2384 
2385 	if (offset > (int)skb->len - len)
2386 		goto fault;
2387 
2388 	if ((copy = start - offset) > 0) {
2389 		if (copy > len)
2390 			copy = len;
2391 		skb_copy_to_linear_data_offset(skb, offset, from, copy);
2392 		if ((len -= copy) == 0)
2393 			return 0;
2394 		offset += copy;
2395 		from += copy;
2396 	}
2397 
2398 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2399 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2400 		int end;
2401 
2402 		WARN_ON(start > offset + len);
2403 
2404 		end = start + skb_frag_size(frag);
2405 		if ((copy = end - offset) > 0) {
2406 			u32 p_off, p_len, copied;
2407 			struct page *p;
2408 			u8 *vaddr;
2409 
2410 			if (copy > len)
2411 				copy = len;
2412 
2413 			skb_frag_foreach_page(frag,
2414 					      frag->page_offset + offset - start,
2415 					      copy, p, p_off, p_len, copied) {
2416 				vaddr = kmap_atomic(p);
2417 				memcpy(vaddr + p_off, from + copied, p_len);
2418 				kunmap_atomic(vaddr);
2419 			}
2420 
2421 			if ((len -= copy) == 0)
2422 				return 0;
2423 			offset += copy;
2424 			from += copy;
2425 		}
2426 		start = end;
2427 	}
2428 
2429 	skb_walk_frags(skb, frag_iter) {
2430 		int end;
2431 
2432 		WARN_ON(start > offset + len);
2433 
2434 		end = start + frag_iter->len;
2435 		if ((copy = end - offset) > 0) {
2436 			if (copy > len)
2437 				copy = len;
2438 			if (skb_store_bits(frag_iter, offset - start,
2439 					   from, copy))
2440 				goto fault;
2441 			if ((len -= copy) == 0)
2442 				return 0;
2443 			offset += copy;
2444 			from += copy;
2445 		}
2446 		start = end;
2447 	}
2448 	if (!len)
2449 		return 0;
2450 
2451 fault:
2452 	return -EFAULT;
2453 }
2454 EXPORT_SYMBOL(skb_store_bits);
2455 
2456 /* Checksum skb data. */
2457 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
2458 		      __wsum csum, const struct skb_checksum_ops *ops)
2459 {
2460 	int start = skb_headlen(skb);
2461 	int i, copy = start - offset;
2462 	struct sk_buff *frag_iter;
2463 	int pos = 0;
2464 
2465 	/* Checksum header. */
2466 	if (copy > 0) {
2467 		if (copy > len)
2468 			copy = len;
2469 		csum = ops->update(skb->data + offset, copy, csum);
2470 		if ((len -= copy) == 0)
2471 			return csum;
2472 		offset += copy;
2473 		pos	= copy;
2474 	}
2475 
2476 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2477 		int end;
2478 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2479 
2480 		WARN_ON(start > offset + len);
2481 
2482 		end = start + skb_frag_size(frag);
2483 		if ((copy = end - offset) > 0) {
2484 			u32 p_off, p_len, copied;
2485 			struct page *p;
2486 			__wsum csum2;
2487 			u8 *vaddr;
2488 
2489 			if (copy > len)
2490 				copy = len;
2491 
2492 			skb_frag_foreach_page(frag,
2493 					      frag->page_offset + offset - start,
2494 					      copy, p, p_off, p_len, copied) {
2495 				vaddr = kmap_atomic(p);
2496 				csum2 = ops->update(vaddr + p_off, p_len, 0);
2497 				kunmap_atomic(vaddr);
2498 				csum = ops->combine(csum, csum2, pos, p_len);
2499 				pos += p_len;
2500 			}
2501 
2502 			if (!(len -= copy))
2503 				return csum;
2504 			offset += copy;
2505 		}
2506 		start = end;
2507 	}
2508 
2509 	skb_walk_frags(skb, frag_iter) {
2510 		int end;
2511 
2512 		WARN_ON(start > offset + len);
2513 
2514 		end = start + frag_iter->len;
2515 		if ((copy = end - offset) > 0) {
2516 			__wsum csum2;
2517 			if (copy > len)
2518 				copy = len;
2519 			csum2 = __skb_checksum(frag_iter, offset - start,
2520 					       copy, 0, ops);
2521 			csum = ops->combine(csum, csum2, pos, copy);
2522 			if ((len -= copy) == 0)
2523 				return csum;
2524 			offset += copy;
2525 			pos    += copy;
2526 		}
2527 		start = end;
2528 	}
2529 	BUG_ON(len);
2530 
2531 	return csum;
2532 }
2533 EXPORT_SYMBOL(__skb_checksum);
2534 
2535 __wsum skb_checksum(const struct sk_buff *skb, int offset,
2536 		    int len, __wsum csum)
2537 {
2538 	const struct skb_checksum_ops ops = {
2539 		.update  = csum_partial_ext,
2540 		.combine = csum_block_add_ext,
2541 	};
2542 
2543 	return __skb_checksum(skb, offset, len, csum, &ops);
2544 }
2545 EXPORT_SYMBOL(skb_checksum);
2546 
2547 /* Both of above in one bottle. */
2548 
2549 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
2550 				    u8 *to, int len, __wsum csum)
2551 {
2552 	int start = skb_headlen(skb);
2553 	int i, copy = start - offset;
2554 	struct sk_buff *frag_iter;
2555 	int pos = 0;
2556 
2557 	/* Copy header. */
2558 	if (copy > 0) {
2559 		if (copy > len)
2560 			copy = len;
2561 		csum = csum_partial_copy_nocheck(skb->data + offset, to,
2562 						 copy, csum);
2563 		if ((len -= copy) == 0)
2564 			return csum;
2565 		offset += copy;
2566 		to     += copy;
2567 		pos	= copy;
2568 	}
2569 
2570 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2571 		int end;
2572 
2573 		WARN_ON(start > offset + len);
2574 
2575 		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
2576 		if ((copy = end - offset) > 0) {
2577 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2578 			u32 p_off, p_len, copied;
2579 			struct page *p;
2580 			__wsum csum2;
2581 			u8 *vaddr;
2582 
2583 			if (copy > len)
2584 				copy = len;
2585 
2586 			skb_frag_foreach_page(frag,
2587 					      frag->page_offset + offset - start,
2588 					      copy, p, p_off, p_len, copied) {
2589 				vaddr = kmap_atomic(p);
2590 				csum2 = csum_partial_copy_nocheck(vaddr + p_off,
2591 								  to + copied,
2592 								  p_len, 0);
2593 				kunmap_atomic(vaddr);
2594 				csum = csum_block_add(csum, csum2, pos);
2595 				pos += p_len;
2596 			}
2597 
2598 			if (!(len -= copy))
2599 				return csum;
2600 			offset += copy;
2601 			to     += copy;
2602 		}
2603 		start = end;
2604 	}
2605 
2606 	skb_walk_frags(skb, frag_iter) {
2607 		__wsum csum2;
2608 		int end;
2609 
2610 		WARN_ON(start > offset + len);
2611 
2612 		end = start + frag_iter->len;
2613 		if ((copy = end - offset) > 0) {
2614 			if (copy > len)
2615 				copy = len;
2616 			csum2 = skb_copy_and_csum_bits(frag_iter,
2617 						       offset - start,
2618 						       to, copy, 0);
2619 			csum = csum_block_add(csum, csum2, pos);
2620 			if ((len -= copy) == 0)
2621 				return csum;
2622 			offset += copy;
2623 			to     += copy;
2624 			pos    += copy;
2625 		}
2626 		start = end;
2627 	}
2628 	BUG_ON(len);
2629 	return csum;
2630 }
2631 EXPORT_SYMBOL(skb_copy_and_csum_bits);
2632 
2633 static __wsum warn_crc32c_csum_update(const void *buff, int len, __wsum sum)
2634 {
2635 	net_warn_ratelimited(
2636 		"%s: attempt to compute crc32c without libcrc32c.ko\n",
2637 		__func__);
2638 	return 0;
2639 }
2640 
2641 static __wsum warn_crc32c_csum_combine(__wsum csum, __wsum csum2,
2642 				       int offset, int len)
2643 {
2644 	net_warn_ratelimited(
2645 		"%s: attempt to compute crc32c without libcrc32c.ko\n",
2646 		__func__);
2647 	return 0;
2648 }
2649 
2650 static const struct skb_checksum_ops default_crc32c_ops = {
2651 	.update  = warn_crc32c_csum_update,
2652 	.combine = warn_crc32c_csum_combine,
2653 };
2654 
2655 const struct skb_checksum_ops *crc32c_csum_stub __read_mostly =
2656 	&default_crc32c_ops;
2657 EXPORT_SYMBOL(crc32c_csum_stub);
2658 
2659  /**
2660  *	skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy()
2661  *	@from: source buffer
2662  *
2663  *	Calculates the amount of linear headroom needed in the 'to' skb passed
2664  *	into skb_zerocopy().
2665  */
2666 unsigned int
2667 skb_zerocopy_headlen(const struct sk_buff *from)
2668 {
2669 	unsigned int hlen = 0;
2670 
2671 	if (!from->head_frag ||
2672 	    skb_headlen(from) < L1_CACHE_BYTES ||
2673 	    skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS)
2674 		hlen = skb_headlen(from);
2675 
2676 	if (skb_has_frag_list(from))
2677 		hlen = from->len;
2678 
2679 	return hlen;
2680 }
2681 EXPORT_SYMBOL_GPL(skb_zerocopy_headlen);
2682 
2683 /**
2684  *	skb_zerocopy - Zero copy skb to skb
2685  *	@to: destination buffer
2686  *	@from: source buffer
2687  *	@len: number of bytes to copy from source buffer
2688  *	@hlen: size of linear headroom in destination buffer
2689  *
2690  *	Copies up to `len` bytes from `from` to `to` by creating references
2691  *	to the frags in the source buffer.
2692  *
2693  *	The `hlen` as calculated by skb_zerocopy_headlen() specifies the
2694  *	headroom in the `to` buffer.
2695  *
2696  *	Return value:
2697  *	0: everything is OK
2698  *	-ENOMEM: couldn't orphan frags of @from due to lack of memory
2699  *	-EFAULT: skb_copy_bits() found some problem with skb geometry
2700  */
2701 int
2702 skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen)
2703 {
2704 	int i, j = 0;
2705 	int plen = 0; /* length of skb->head fragment */
2706 	int ret;
2707 	struct page *page;
2708 	unsigned int offset;
2709 
2710 	BUG_ON(!from->head_frag && !hlen);
2711 
2712 	/* dont bother with small payloads */
2713 	if (len <= skb_tailroom(to))
2714 		return skb_copy_bits(from, 0, skb_put(to, len), len);
2715 
2716 	if (hlen) {
2717 		ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen);
2718 		if (unlikely(ret))
2719 			return ret;
2720 		len -= hlen;
2721 	} else {
2722 		plen = min_t(int, skb_headlen(from), len);
2723 		if (plen) {
2724 			page = virt_to_head_page(from->head);
2725 			offset = from->data - (unsigned char *)page_address(page);
2726 			__skb_fill_page_desc(to, 0, page, offset, plen);
2727 			get_page(page);
2728 			j = 1;
2729 			len -= plen;
2730 		}
2731 	}
2732 
2733 	to->truesize += len + plen;
2734 	to->len += len + plen;
2735 	to->data_len += len + plen;
2736 
2737 	if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) {
2738 		skb_tx_error(from);
2739 		return -ENOMEM;
2740 	}
2741 	skb_zerocopy_clone(to, from, GFP_ATOMIC);
2742 
2743 	for (i = 0; i < skb_shinfo(from)->nr_frags; i++) {
2744 		if (!len)
2745 			break;
2746 		skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i];
2747 		skb_shinfo(to)->frags[j].size = min_t(int, skb_shinfo(to)->frags[j].size, len);
2748 		len -= skb_shinfo(to)->frags[j].size;
2749 		skb_frag_ref(to, j);
2750 		j++;
2751 	}
2752 	skb_shinfo(to)->nr_frags = j;
2753 
2754 	return 0;
2755 }
2756 EXPORT_SYMBOL_GPL(skb_zerocopy);
2757 
2758 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
2759 {
2760 	__wsum csum;
2761 	long csstart;
2762 
2763 	if (skb->ip_summed == CHECKSUM_PARTIAL)
2764 		csstart = skb_checksum_start_offset(skb);
2765 	else
2766 		csstart = skb_headlen(skb);
2767 
2768 	BUG_ON(csstart > skb_headlen(skb));
2769 
2770 	skb_copy_from_linear_data(skb, to, csstart);
2771 
2772 	csum = 0;
2773 	if (csstart != skb->len)
2774 		csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
2775 					      skb->len - csstart, 0);
2776 
2777 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
2778 		long csstuff = csstart + skb->csum_offset;
2779 
2780 		*((__sum16 *)(to + csstuff)) = csum_fold(csum);
2781 	}
2782 }
2783 EXPORT_SYMBOL(skb_copy_and_csum_dev);
2784 
2785 /**
2786  *	skb_dequeue - remove from the head of the queue
2787  *	@list: list to dequeue from
2788  *
2789  *	Remove the head of the list. The list lock is taken so the function
2790  *	may be used safely with other locking list functions. The head item is
2791  *	returned or %NULL if the list is empty.
2792  */
2793 
2794 struct sk_buff *skb_dequeue(struct sk_buff_head *list)
2795 {
2796 	unsigned long flags;
2797 	struct sk_buff *result;
2798 
2799 	spin_lock_irqsave(&list->lock, flags);
2800 	result = __skb_dequeue(list);
2801 	spin_unlock_irqrestore(&list->lock, flags);
2802 	return result;
2803 }
2804 EXPORT_SYMBOL(skb_dequeue);
2805 
2806 /**
2807  *	skb_dequeue_tail - remove from the tail of the queue
2808  *	@list: list to dequeue from
2809  *
2810  *	Remove the tail of the list. The list lock is taken so the function
2811  *	may be used safely with other locking list functions. The tail item is
2812  *	returned or %NULL if the list is empty.
2813  */
2814 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
2815 {
2816 	unsigned long flags;
2817 	struct sk_buff *result;
2818 
2819 	spin_lock_irqsave(&list->lock, flags);
2820 	result = __skb_dequeue_tail(list);
2821 	spin_unlock_irqrestore(&list->lock, flags);
2822 	return result;
2823 }
2824 EXPORT_SYMBOL(skb_dequeue_tail);
2825 
2826 /**
2827  *	skb_queue_purge - empty a list
2828  *	@list: list to empty
2829  *
2830  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
2831  *	the list and one reference dropped. This function takes the list
2832  *	lock and is atomic with respect to other list locking functions.
2833  */
2834 void skb_queue_purge(struct sk_buff_head *list)
2835 {
2836 	struct sk_buff *skb;
2837 	while ((skb = skb_dequeue(list)) != NULL)
2838 		kfree_skb(skb);
2839 }
2840 EXPORT_SYMBOL(skb_queue_purge);
2841 
2842 /**
2843  *	skb_rbtree_purge - empty a skb rbtree
2844  *	@root: root of the rbtree to empty
2845  *
2846  *	Delete all buffers on an &sk_buff rbtree. Each buffer is removed from
2847  *	the list and one reference dropped. This function does not take
2848  *	any lock. Synchronization should be handled by the caller (e.g., TCP
2849  *	out-of-order queue is protected by the socket lock).
2850  */
2851 void skb_rbtree_purge(struct rb_root *root)
2852 {
2853 	struct rb_node *p = rb_first(root);
2854 
2855 	while (p) {
2856 		struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode);
2857 
2858 		p = rb_next(p);
2859 		rb_erase(&skb->rbnode, root);
2860 		kfree_skb(skb);
2861 	}
2862 }
2863 
2864 /**
2865  *	skb_queue_head - queue a buffer at the list head
2866  *	@list: list to use
2867  *	@newsk: buffer to queue
2868  *
2869  *	Queue a buffer at the start of the list. This function takes the
2870  *	list lock and can be used safely with other locking &sk_buff functions
2871  *	safely.
2872  *
2873  *	A buffer cannot be placed on two lists at the same time.
2874  */
2875 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
2876 {
2877 	unsigned long flags;
2878 
2879 	spin_lock_irqsave(&list->lock, flags);
2880 	__skb_queue_head(list, newsk);
2881 	spin_unlock_irqrestore(&list->lock, flags);
2882 }
2883 EXPORT_SYMBOL(skb_queue_head);
2884 
2885 /**
2886  *	skb_queue_tail - queue a buffer at the list tail
2887  *	@list: list to use
2888  *	@newsk: buffer to queue
2889  *
2890  *	Queue a buffer at the tail of the list. This function takes the
2891  *	list lock and can be used safely with other locking &sk_buff functions
2892  *	safely.
2893  *
2894  *	A buffer cannot be placed on two lists at the same time.
2895  */
2896 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
2897 {
2898 	unsigned long flags;
2899 
2900 	spin_lock_irqsave(&list->lock, flags);
2901 	__skb_queue_tail(list, newsk);
2902 	spin_unlock_irqrestore(&list->lock, flags);
2903 }
2904 EXPORT_SYMBOL(skb_queue_tail);
2905 
2906 /**
2907  *	skb_unlink	-	remove a buffer from a list
2908  *	@skb: buffer to remove
2909  *	@list: list to use
2910  *
2911  *	Remove a packet from a list. The list locks are taken and this
2912  *	function is atomic with respect to other list locked calls
2913  *
2914  *	You must know what list the SKB is on.
2915  */
2916 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
2917 {
2918 	unsigned long flags;
2919 
2920 	spin_lock_irqsave(&list->lock, flags);
2921 	__skb_unlink(skb, list);
2922 	spin_unlock_irqrestore(&list->lock, flags);
2923 }
2924 EXPORT_SYMBOL(skb_unlink);
2925 
2926 /**
2927  *	skb_append	-	append a buffer
2928  *	@old: buffer to insert after
2929  *	@newsk: buffer to insert
2930  *	@list: list to use
2931  *
2932  *	Place a packet after a given packet in a list. The list locks are taken
2933  *	and this function is atomic with respect to other list locked calls.
2934  *	A buffer cannot be placed on two lists at the same time.
2935  */
2936 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
2937 {
2938 	unsigned long flags;
2939 
2940 	spin_lock_irqsave(&list->lock, flags);
2941 	__skb_queue_after(list, old, newsk);
2942 	spin_unlock_irqrestore(&list->lock, flags);
2943 }
2944 EXPORT_SYMBOL(skb_append);
2945 
2946 /**
2947  *	skb_insert	-	insert a buffer
2948  *	@old: buffer to insert before
2949  *	@newsk: buffer to insert
2950  *	@list: list to use
2951  *
2952  *	Place a packet before a given packet in a list. The list locks are
2953  * 	taken and this function is atomic with respect to other list locked
2954  *	calls.
2955  *
2956  *	A buffer cannot be placed on two lists at the same time.
2957  */
2958 void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
2959 {
2960 	unsigned long flags;
2961 
2962 	spin_lock_irqsave(&list->lock, flags);
2963 	__skb_insert(newsk, old->prev, old, list);
2964 	spin_unlock_irqrestore(&list->lock, flags);
2965 }
2966 EXPORT_SYMBOL(skb_insert);
2967 
2968 static inline void skb_split_inside_header(struct sk_buff *skb,
2969 					   struct sk_buff* skb1,
2970 					   const u32 len, const int pos)
2971 {
2972 	int i;
2973 
2974 	skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
2975 					 pos - len);
2976 	/* And move data appendix as is. */
2977 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
2978 		skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
2979 
2980 	skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
2981 	skb_shinfo(skb)->nr_frags  = 0;
2982 	skb1->data_len		   = skb->data_len;
2983 	skb1->len		   += skb1->data_len;
2984 	skb->data_len		   = 0;
2985 	skb->len		   = len;
2986 	skb_set_tail_pointer(skb, len);
2987 }
2988 
2989 static inline void skb_split_no_header(struct sk_buff *skb,
2990 				       struct sk_buff* skb1,
2991 				       const u32 len, int pos)
2992 {
2993 	int i, k = 0;
2994 	const int nfrags = skb_shinfo(skb)->nr_frags;
2995 
2996 	skb_shinfo(skb)->nr_frags = 0;
2997 	skb1->len		  = skb1->data_len = skb->len - len;
2998 	skb->len		  = len;
2999 	skb->data_len		  = len - pos;
3000 
3001 	for (i = 0; i < nfrags; i++) {
3002 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
3003 
3004 		if (pos + size > len) {
3005 			skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
3006 
3007 			if (pos < len) {
3008 				/* Split frag.
3009 				 * We have two variants in this case:
3010 				 * 1. Move all the frag to the second
3011 				 *    part, if it is possible. F.e.
3012 				 *    this approach is mandatory for TUX,
3013 				 *    where splitting is expensive.
3014 				 * 2. Split is accurately. We make this.
3015 				 */
3016 				skb_frag_ref(skb, i);
3017 				skb_shinfo(skb1)->frags[0].page_offset += len - pos;
3018 				skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos);
3019 				skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos);
3020 				skb_shinfo(skb)->nr_frags++;
3021 			}
3022 			k++;
3023 		} else
3024 			skb_shinfo(skb)->nr_frags++;
3025 		pos += size;
3026 	}
3027 	skb_shinfo(skb1)->nr_frags = k;
3028 }
3029 
3030 /**
3031  * skb_split - Split fragmented skb to two parts at length len.
3032  * @skb: the buffer to split
3033  * @skb1: the buffer to receive the second part
3034  * @len: new length for skb
3035  */
3036 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
3037 {
3038 	int pos = skb_headlen(skb);
3039 
3040 	skb_shinfo(skb1)->tx_flags |= skb_shinfo(skb)->tx_flags &
3041 				      SKBTX_SHARED_FRAG;
3042 	skb_zerocopy_clone(skb1, skb, 0);
3043 	if (len < pos)	/* Split line is inside header. */
3044 		skb_split_inside_header(skb, skb1, len, pos);
3045 	else		/* Second chunk has no header, nothing to copy. */
3046 		skb_split_no_header(skb, skb1, len, pos);
3047 }
3048 EXPORT_SYMBOL(skb_split);
3049 
3050 /* Shifting from/to a cloned skb is a no-go.
3051  *
3052  * Caller cannot keep skb_shinfo related pointers past calling here!
3053  */
3054 static int skb_prepare_for_shift(struct sk_buff *skb)
3055 {
3056 	return skb_cloned(skb) && pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3057 }
3058 
3059 /**
3060  * skb_shift - Shifts paged data partially from skb to another
3061  * @tgt: buffer into which tail data gets added
3062  * @skb: buffer from which the paged data comes from
3063  * @shiftlen: shift up to this many bytes
3064  *
3065  * Attempts to shift up to shiftlen worth of bytes, which may be less than
3066  * the length of the skb, from skb to tgt. Returns number bytes shifted.
3067  * It's up to caller to free skb if everything was shifted.
3068  *
3069  * If @tgt runs out of frags, the whole operation is aborted.
3070  *
3071  * Skb cannot include anything else but paged data while tgt is allowed
3072  * to have non-paged data as well.
3073  *
3074  * TODO: full sized shift could be optimized but that would need
3075  * specialized skb free'er to handle frags without up-to-date nr_frags.
3076  */
3077 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
3078 {
3079 	int from, to, merge, todo;
3080 	struct skb_frag_struct *fragfrom, *fragto;
3081 
3082 	BUG_ON(shiftlen > skb->len);
3083 
3084 	if (skb_headlen(skb))
3085 		return 0;
3086 	if (skb_zcopy(tgt) || skb_zcopy(skb))
3087 		return 0;
3088 
3089 	todo = shiftlen;
3090 	from = 0;
3091 	to = skb_shinfo(tgt)->nr_frags;
3092 	fragfrom = &skb_shinfo(skb)->frags[from];
3093 
3094 	/* Actual merge is delayed until the point when we know we can
3095 	 * commit all, so that we don't have to undo partial changes
3096 	 */
3097 	if (!to ||
3098 	    !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom),
3099 			      fragfrom->page_offset)) {
3100 		merge = -1;
3101 	} else {
3102 		merge = to - 1;
3103 
3104 		todo -= skb_frag_size(fragfrom);
3105 		if (todo < 0) {
3106 			if (skb_prepare_for_shift(skb) ||
3107 			    skb_prepare_for_shift(tgt))
3108 				return 0;
3109 
3110 			/* All previous frag pointers might be stale! */
3111 			fragfrom = &skb_shinfo(skb)->frags[from];
3112 			fragto = &skb_shinfo(tgt)->frags[merge];
3113 
3114 			skb_frag_size_add(fragto, shiftlen);
3115 			skb_frag_size_sub(fragfrom, shiftlen);
3116 			fragfrom->page_offset += shiftlen;
3117 
3118 			goto onlymerged;
3119 		}
3120 
3121 		from++;
3122 	}
3123 
3124 	/* Skip full, not-fitting skb to avoid expensive operations */
3125 	if ((shiftlen == skb->len) &&
3126 	    (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
3127 		return 0;
3128 
3129 	if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
3130 		return 0;
3131 
3132 	while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
3133 		if (to == MAX_SKB_FRAGS)
3134 			return 0;
3135 
3136 		fragfrom = &skb_shinfo(skb)->frags[from];
3137 		fragto = &skb_shinfo(tgt)->frags[to];
3138 
3139 		if (todo >= skb_frag_size(fragfrom)) {
3140 			*fragto = *fragfrom;
3141 			todo -= skb_frag_size(fragfrom);
3142 			from++;
3143 			to++;
3144 
3145 		} else {
3146 			__skb_frag_ref(fragfrom);
3147 			fragto->page = fragfrom->page;
3148 			fragto->page_offset = fragfrom->page_offset;
3149 			skb_frag_size_set(fragto, todo);
3150 
3151 			fragfrom->page_offset += todo;
3152 			skb_frag_size_sub(fragfrom, todo);
3153 			todo = 0;
3154 
3155 			to++;
3156 			break;
3157 		}
3158 	}
3159 
3160 	/* Ready to "commit" this state change to tgt */
3161 	skb_shinfo(tgt)->nr_frags = to;
3162 
3163 	if (merge >= 0) {
3164 		fragfrom = &skb_shinfo(skb)->frags[0];
3165 		fragto = &skb_shinfo(tgt)->frags[merge];
3166 
3167 		skb_frag_size_add(fragto, skb_frag_size(fragfrom));
3168 		__skb_frag_unref(fragfrom);
3169 	}
3170 
3171 	/* Reposition in the original skb */
3172 	to = 0;
3173 	while (from < skb_shinfo(skb)->nr_frags)
3174 		skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
3175 	skb_shinfo(skb)->nr_frags = to;
3176 
3177 	BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
3178 
3179 onlymerged:
3180 	/* Most likely the tgt won't ever need its checksum anymore, skb on
3181 	 * the other hand might need it if it needs to be resent
3182 	 */
3183 	tgt->ip_summed = CHECKSUM_PARTIAL;
3184 	skb->ip_summed = CHECKSUM_PARTIAL;
3185 
3186 	/* Yak, is it really working this way? Some helper please? */
3187 	skb->len -= shiftlen;
3188 	skb->data_len -= shiftlen;
3189 	skb->truesize -= shiftlen;
3190 	tgt->len += shiftlen;
3191 	tgt->data_len += shiftlen;
3192 	tgt->truesize += shiftlen;
3193 
3194 	return shiftlen;
3195 }
3196 
3197 /**
3198  * skb_prepare_seq_read - Prepare a sequential read of skb data
3199  * @skb: the buffer to read
3200  * @from: lower offset of data to be read
3201  * @to: upper offset of data to be read
3202  * @st: state variable
3203  *
3204  * Initializes the specified state variable. Must be called before
3205  * invoking skb_seq_read() for the first time.
3206  */
3207 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
3208 			  unsigned int to, struct skb_seq_state *st)
3209 {
3210 	st->lower_offset = from;
3211 	st->upper_offset = to;
3212 	st->root_skb = st->cur_skb = skb;
3213 	st->frag_idx = st->stepped_offset = 0;
3214 	st->frag_data = NULL;
3215 }
3216 EXPORT_SYMBOL(skb_prepare_seq_read);
3217 
3218 /**
3219  * skb_seq_read - Sequentially read skb data
3220  * @consumed: number of bytes consumed by the caller so far
3221  * @data: destination pointer for data to be returned
3222  * @st: state variable
3223  *
3224  * Reads a block of skb data at @consumed relative to the
3225  * lower offset specified to skb_prepare_seq_read(). Assigns
3226  * the head of the data block to @data and returns the length
3227  * of the block or 0 if the end of the skb data or the upper
3228  * offset has been reached.
3229  *
3230  * The caller is not required to consume all of the data
3231  * returned, i.e. @consumed is typically set to the number
3232  * of bytes already consumed and the next call to
3233  * skb_seq_read() will return the remaining part of the block.
3234  *
3235  * Note 1: The size of each block of data returned can be arbitrary,
3236  *       this limitation is the cost for zerocopy sequential
3237  *       reads of potentially non linear data.
3238  *
3239  * Note 2: Fragment lists within fragments are not implemented
3240  *       at the moment, state->root_skb could be replaced with
3241  *       a stack for this purpose.
3242  */
3243 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
3244 			  struct skb_seq_state *st)
3245 {
3246 	unsigned int block_limit, abs_offset = consumed + st->lower_offset;
3247 	skb_frag_t *frag;
3248 
3249 	if (unlikely(abs_offset >= st->upper_offset)) {
3250 		if (st->frag_data) {
3251 			kunmap_atomic(st->frag_data);
3252 			st->frag_data = NULL;
3253 		}
3254 		return 0;
3255 	}
3256 
3257 next_skb:
3258 	block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
3259 
3260 	if (abs_offset < block_limit && !st->frag_data) {
3261 		*data = st->cur_skb->data + (abs_offset - st->stepped_offset);
3262 		return block_limit - abs_offset;
3263 	}
3264 
3265 	if (st->frag_idx == 0 && !st->frag_data)
3266 		st->stepped_offset += skb_headlen(st->cur_skb);
3267 
3268 	while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
3269 		frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
3270 		block_limit = skb_frag_size(frag) + st->stepped_offset;
3271 
3272 		if (abs_offset < block_limit) {
3273 			if (!st->frag_data)
3274 				st->frag_data = kmap_atomic(skb_frag_page(frag));
3275 
3276 			*data = (u8 *) st->frag_data + frag->page_offset +
3277 				(abs_offset - st->stepped_offset);
3278 
3279 			return block_limit - abs_offset;
3280 		}
3281 
3282 		if (st->frag_data) {
3283 			kunmap_atomic(st->frag_data);
3284 			st->frag_data = NULL;
3285 		}
3286 
3287 		st->frag_idx++;
3288 		st->stepped_offset += skb_frag_size(frag);
3289 	}
3290 
3291 	if (st->frag_data) {
3292 		kunmap_atomic(st->frag_data);
3293 		st->frag_data = NULL;
3294 	}
3295 
3296 	if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) {
3297 		st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
3298 		st->frag_idx = 0;
3299 		goto next_skb;
3300 	} else if (st->cur_skb->next) {
3301 		st->cur_skb = st->cur_skb->next;
3302 		st->frag_idx = 0;
3303 		goto next_skb;
3304 	}
3305 
3306 	return 0;
3307 }
3308 EXPORT_SYMBOL(skb_seq_read);
3309 
3310 /**
3311  * skb_abort_seq_read - Abort a sequential read of skb data
3312  * @st: state variable
3313  *
3314  * Must be called if skb_seq_read() was not called until it
3315  * returned 0.
3316  */
3317 void skb_abort_seq_read(struct skb_seq_state *st)
3318 {
3319 	if (st->frag_data)
3320 		kunmap_atomic(st->frag_data);
3321 }
3322 EXPORT_SYMBOL(skb_abort_seq_read);
3323 
3324 #define TS_SKB_CB(state)	((struct skb_seq_state *) &((state)->cb))
3325 
3326 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
3327 					  struct ts_config *conf,
3328 					  struct ts_state *state)
3329 {
3330 	return skb_seq_read(offset, text, TS_SKB_CB(state));
3331 }
3332 
3333 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
3334 {
3335 	skb_abort_seq_read(TS_SKB_CB(state));
3336 }
3337 
3338 /**
3339  * skb_find_text - Find a text pattern in skb data
3340  * @skb: the buffer to look in
3341  * @from: search offset
3342  * @to: search limit
3343  * @config: textsearch configuration
3344  *
3345  * Finds a pattern in the skb data according to the specified
3346  * textsearch configuration. Use textsearch_next() to retrieve
3347  * subsequent occurrences of the pattern. Returns the offset
3348  * to the first occurrence or UINT_MAX if no match was found.
3349  */
3350 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
3351 			   unsigned int to, struct ts_config *config)
3352 {
3353 	struct ts_state state;
3354 	unsigned int ret;
3355 
3356 	config->get_next_block = skb_ts_get_next_block;
3357 	config->finish = skb_ts_finish;
3358 
3359 	skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state));
3360 
3361 	ret = textsearch_find(config, &state);
3362 	return (ret <= to - from ? ret : UINT_MAX);
3363 }
3364 EXPORT_SYMBOL(skb_find_text);
3365 
3366 /**
3367  * skb_append_datato_frags - append the user data to a skb
3368  * @sk: sock  structure
3369  * @skb: skb structure to be appended with user data.
3370  * @getfrag: call back function to be used for getting the user data
3371  * @from: pointer to user message iov
3372  * @length: length of the iov message
3373  *
3374  * Description: This procedure append the user data in the fragment part
3375  * of the skb if any page alloc fails user this procedure returns  -ENOMEM
3376  */
3377 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
3378 			int (*getfrag)(void *from, char *to, int offset,
3379 					int len, int odd, struct sk_buff *skb),
3380 			void *from, int length)
3381 {
3382 	int frg_cnt = skb_shinfo(skb)->nr_frags;
3383 	int copy;
3384 	int offset = 0;
3385 	int ret;
3386 	struct page_frag *pfrag = &current->task_frag;
3387 
3388 	do {
3389 		/* Return error if we don't have space for new frag */
3390 		if (frg_cnt >= MAX_SKB_FRAGS)
3391 			return -EMSGSIZE;
3392 
3393 		if (!sk_page_frag_refill(sk, pfrag))
3394 			return -ENOMEM;
3395 
3396 		/* copy the user data to page */
3397 		copy = min_t(int, length, pfrag->size - pfrag->offset);
3398 
3399 		ret = getfrag(from, page_address(pfrag->page) + pfrag->offset,
3400 			      offset, copy, 0, skb);
3401 		if (ret < 0)
3402 			return -EFAULT;
3403 
3404 		/* copy was successful so update the size parameters */
3405 		skb_fill_page_desc(skb, frg_cnt, pfrag->page, pfrag->offset,
3406 				   copy);
3407 		frg_cnt++;
3408 		pfrag->offset += copy;
3409 		get_page(pfrag->page);
3410 
3411 		skb->truesize += copy;
3412 		refcount_add(copy, &sk->sk_wmem_alloc);
3413 		skb->len += copy;
3414 		skb->data_len += copy;
3415 		offset += copy;
3416 		length -= copy;
3417 
3418 	} while (length > 0);
3419 
3420 	return 0;
3421 }
3422 EXPORT_SYMBOL(skb_append_datato_frags);
3423 
3424 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
3425 			 int offset, size_t size)
3426 {
3427 	int i = skb_shinfo(skb)->nr_frags;
3428 
3429 	if (skb_can_coalesce(skb, i, page, offset)) {
3430 		skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size);
3431 	} else if (i < MAX_SKB_FRAGS) {
3432 		get_page(page);
3433 		skb_fill_page_desc(skb, i, page, offset, size);
3434 	} else {
3435 		return -EMSGSIZE;
3436 	}
3437 
3438 	return 0;
3439 }
3440 EXPORT_SYMBOL_GPL(skb_append_pagefrags);
3441 
3442 /**
3443  *	skb_pull_rcsum - pull skb and update receive checksum
3444  *	@skb: buffer to update
3445  *	@len: length of data pulled
3446  *
3447  *	This function performs an skb_pull on the packet and updates
3448  *	the CHECKSUM_COMPLETE checksum.  It should be used on
3449  *	receive path processing instead of skb_pull unless you know
3450  *	that the checksum difference is zero (e.g., a valid IP header)
3451  *	or you are setting ip_summed to CHECKSUM_NONE.
3452  */
3453 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
3454 {
3455 	unsigned char *data = skb->data;
3456 
3457 	BUG_ON(len > skb->len);
3458 	__skb_pull(skb, len);
3459 	skb_postpull_rcsum(skb, data, len);
3460 	return skb->data;
3461 }
3462 EXPORT_SYMBOL_GPL(skb_pull_rcsum);
3463 
3464 static inline skb_frag_t skb_head_frag_to_page_desc(struct sk_buff *frag_skb)
3465 {
3466 	skb_frag_t head_frag;
3467 	struct page *page;
3468 
3469 	page = virt_to_head_page(frag_skb->head);
3470 	head_frag.page.p = page;
3471 	head_frag.page_offset = frag_skb->data -
3472 		(unsigned char *)page_address(page);
3473 	head_frag.size = skb_headlen(frag_skb);
3474 	return head_frag;
3475 }
3476 
3477 /**
3478  *	skb_segment - Perform protocol segmentation on skb.
3479  *	@head_skb: buffer to segment
3480  *	@features: features for the output path (see dev->features)
3481  *
3482  *	This function performs segmentation on the given skb.  It returns
3483  *	a pointer to the first in a list of new skbs for the segments.
3484  *	In case of error it returns ERR_PTR(err).
3485  */
3486 struct sk_buff *skb_segment(struct sk_buff *head_skb,
3487 			    netdev_features_t features)
3488 {
3489 	struct sk_buff *segs = NULL;
3490 	struct sk_buff *tail = NULL;
3491 	struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list;
3492 	skb_frag_t *frag = skb_shinfo(head_skb)->frags;
3493 	unsigned int mss = skb_shinfo(head_skb)->gso_size;
3494 	unsigned int doffset = head_skb->data - skb_mac_header(head_skb);
3495 	struct sk_buff *frag_skb = head_skb;
3496 	unsigned int offset = doffset;
3497 	unsigned int tnl_hlen = skb_tnl_header_len(head_skb);
3498 	unsigned int partial_segs = 0;
3499 	unsigned int headroom;
3500 	unsigned int len = head_skb->len;
3501 	__be16 proto;
3502 	bool csum, sg;
3503 	int nfrags = skb_shinfo(head_skb)->nr_frags;
3504 	int err = -ENOMEM;
3505 	int i = 0;
3506 	int pos;
3507 	int dummy;
3508 
3509 	__skb_push(head_skb, doffset);
3510 	proto = skb_network_protocol(head_skb, &dummy);
3511 	if (unlikely(!proto))
3512 		return ERR_PTR(-EINVAL);
3513 
3514 	sg = !!(features & NETIF_F_SG);
3515 	csum = !!can_checksum_protocol(features, proto);
3516 
3517 	if (sg && csum && (mss != GSO_BY_FRAGS))  {
3518 		if (!(features & NETIF_F_GSO_PARTIAL)) {
3519 			struct sk_buff *iter;
3520 			unsigned int frag_len;
3521 
3522 			if (!list_skb ||
3523 			    !net_gso_ok(features, skb_shinfo(head_skb)->gso_type))
3524 				goto normal;
3525 
3526 			/* If we get here then all the required
3527 			 * GSO features except frag_list are supported.
3528 			 * Try to split the SKB to multiple GSO SKBs
3529 			 * with no frag_list.
3530 			 * Currently we can do that only when the buffers don't
3531 			 * have a linear part and all the buffers except
3532 			 * the last are of the same length.
3533 			 */
3534 			frag_len = list_skb->len;
3535 			skb_walk_frags(head_skb, iter) {
3536 				if (frag_len != iter->len && iter->next)
3537 					goto normal;
3538 				if (skb_headlen(iter) && !iter->head_frag)
3539 					goto normal;
3540 
3541 				len -= iter->len;
3542 			}
3543 
3544 			if (len != frag_len)
3545 				goto normal;
3546 		}
3547 
3548 		/* GSO partial only requires that we trim off any excess that
3549 		 * doesn't fit into an MSS sized block, so take care of that
3550 		 * now.
3551 		 */
3552 		partial_segs = len / mss;
3553 		if (partial_segs > 1)
3554 			mss *= partial_segs;
3555 		else
3556 			partial_segs = 0;
3557 	}
3558 
3559 normal:
3560 	headroom = skb_headroom(head_skb);
3561 	pos = skb_headlen(head_skb);
3562 
3563 	do {
3564 		struct sk_buff *nskb;
3565 		skb_frag_t *nskb_frag;
3566 		int hsize;
3567 		int size;
3568 
3569 		if (unlikely(mss == GSO_BY_FRAGS)) {
3570 			len = list_skb->len;
3571 		} else {
3572 			len = head_skb->len - offset;
3573 			if (len > mss)
3574 				len = mss;
3575 		}
3576 
3577 		hsize = skb_headlen(head_skb) - offset;
3578 		if (hsize < 0)
3579 			hsize = 0;
3580 		if (hsize > len || !sg)
3581 			hsize = len;
3582 
3583 		if (!hsize && i >= nfrags && skb_headlen(list_skb) &&
3584 		    (skb_headlen(list_skb) == len || sg)) {
3585 			BUG_ON(skb_headlen(list_skb) > len);
3586 
3587 			i = 0;
3588 			nfrags = skb_shinfo(list_skb)->nr_frags;
3589 			frag = skb_shinfo(list_skb)->frags;
3590 			frag_skb = list_skb;
3591 			pos += skb_headlen(list_skb);
3592 
3593 			while (pos < offset + len) {
3594 				BUG_ON(i >= nfrags);
3595 
3596 				size = skb_frag_size(frag);
3597 				if (pos + size > offset + len)
3598 					break;
3599 
3600 				i++;
3601 				pos += size;
3602 				frag++;
3603 			}
3604 
3605 			nskb = skb_clone(list_skb, GFP_ATOMIC);
3606 			list_skb = list_skb->next;
3607 
3608 			if (unlikely(!nskb))
3609 				goto err;
3610 
3611 			if (unlikely(pskb_trim(nskb, len))) {
3612 				kfree_skb(nskb);
3613 				goto err;
3614 			}
3615 
3616 			hsize = skb_end_offset(nskb);
3617 			if (skb_cow_head(nskb, doffset + headroom)) {
3618 				kfree_skb(nskb);
3619 				goto err;
3620 			}
3621 
3622 			nskb->truesize += skb_end_offset(nskb) - hsize;
3623 			skb_release_head_state(nskb);
3624 			__skb_push(nskb, doffset);
3625 		} else {
3626 			nskb = __alloc_skb(hsize + doffset + headroom,
3627 					   GFP_ATOMIC, skb_alloc_rx_flag(head_skb),
3628 					   NUMA_NO_NODE);
3629 
3630 			if (unlikely(!nskb))
3631 				goto err;
3632 
3633 			skb_reserve(nskb, headroom);
3634 			__skb_put(nskb, doffset);
3635 		}
3636 
3637 		if (segs)
3638 			tail->next = nskb;
3639 		else
3640 			segs = nskb;
3641 		tail = nskb;
3642 
3643 		__copy_skb_header(nskb, head_skb);
3644 
3645 		skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom);
3646 		skb_reset_mac_len(nskb);
3647 
3648 		skb_copy_from_linear_data_offset(head_skb, -tnl_hlen,
3649 						 nskb->data - tnl_hlen,
3650 						 doffset + tnl_hlen);
3651 
3652 		if (nskb->len == len + doffset)
3653 			goto perform_csum_check;
3654 
3655 		if (!sg) {
3656 			if (!nskb->remcsum_offload)
3657 				nskb->ip_summed = CHECKSUM_NONE;
3658 			SKB_GSO_CB(nskb)->csum =
3659 				skb_copy_and_csum_bits(head_skb, offset,
3660 						       skb_put(nskb, len),
3661 						       len, 0);
3662 			SKB_GSO_CB(nskb)->csum_start =
3663 				skb_headroom(nskb) + doffset;
3664 			continue;
3665 		}
3666 
3667 		nskb_frag = skb_shinfo(nskb)->frags;
3668 
3669 		skb_copy_from_linear_data_offset(head_skb, offset,
3670 						 skb_put(nskb, hsize), hsize);
3671 
3672 		skb_shinfo(nskb)->tx_flags |= skb_shinfo(head_skb)->tx_flags &
3673 					      SKBTX_SHARED_FRAG;
3674 
3675 		if (skb_orphan_frags(frag_skb, GFP_ATOMIC) ||
3676 		    skb_zerocopy_clone(nskb, frag_skb, GFP_ATOMIC))
3677 			goto err;
3678 
3679 		while (pos < offset + len) {
3680 			if (i >= nfrags) {
3681 				i = 0;
3682 				nfrags = skb_shinfo(list_skb)->nr_frags;
3683 				frag = skb_shinfo(list_skb)->frags;
3684 				frag_skb = list_skb;
3685 				if (!skb_headlen(list_skb)) {
3686 					BUG_ON(!nfrags);
3687 				} else {
3688 					BUG_ON(!list_skb->head_frag);
3689 
3690 					/* to make room for head_frag. */
3691 					i--;
3692 					frag--;
3693 				}
3694 				if (skb_orphan_frags(frag_skb, GFP_ATOMIC) ||
3695 				    skb_zerocopy_clone(nskb, frag_skb,
3696 						       GFP_ATOMIC))
3697 					goto err;
3698 
3699 				list_skb = list_skb->next;
3700 			}
3701 
3702 			if (unlikely(skb_shinfo(nskb)->nr_frags >=
3703 				     MAX_SKB_FRAGS)) {
3704 				net_warn_ratelimited(
3705 					"skb_segment: too many frags: %u %u\n",
3706 					pos, mss);
3707 				goto err;
3708 			}
3709 
3710 			*nskb_frag = (i < 0) ? skb_head_frag_to_page_desc(frag_skb) : *frag;
3711 			__skb_frag_ref(nskb_frag);
3712 			size = skb_frag_size(nskb_frag);
3713 
3714 			if (pos < offset) {
3715 				nskb_frag->page_offset += offset - pos;
3716 				skb_frag_size_sub(nskb_frag, offset - pos);
3717 			}
3718 
3719 			skb_shinfo(nskb)->nr_frags++;
3720 
3721 			if (pos + size <= offset + len) {
3722 				i++;
3723 				frag++;
3724 				pos += size;
3725 			} else {
3726 				skb_frag_size_sub(nskb_frag, pos + size - (offset + len));
3727 				goto skip_fraglist;
3728 			}
3729 
3730 			nskb_frag++;
3731 		}
3732 
3733 skip_fraglist:
3734 		nskb->data_len = len - hsize;
3735 		nskb->len += nskb->data_len;
3736 		nskb->truesize += nskb->data_len;
3737 
3738 perform_csum_check:
3739 		if (!csum) {
3740 			if (skb_has_shared_frag(nskb)) {
3741 				err = __skb_linearize(nskb);
3742 				if (err)
3743 					goto err;
3744 			}
3745 			if (!nskb->remcsum_offload)
3746 				nskb->ip_summed = CHECKSUM_NONE;
3747 			SKB_GSO_CB(nskb)->csum =
3748 				skb_checksum(nskb, doffset,
3749 					     nskb->len - doffset, 0);
3750 			SKB_GSO_CB(nskb)->csum_start =
3751 				skb_headroom(nskb) + doffset;
3752 		}
3753 	} while ((offset += len) < head_skb->len);
3754 
3755 	/* Some callers want to get the end of the list.
3756 	 * Put it in segs->prev to avoid walking the list.
3757 	 * (see validate_xmit_skb_list() for example)
3758 	 */
3759 	segs->prev = tail;
3760 
3761 	if (partial_segs) {
3762 		struct sk_buff *iter;
3763 		int type = skb_shinfo(head_skb)->gso_type;
3764 		unsigned short gso_size = skb_shinfo(head_skb)->gso_size;
3765 
3766 		/* Update type to add partial and then remove dodgy if set */
3767 		type |= (features & NETIF_F_GSO_PARTIAL) / NETIF_F_GSO_PARTIAL * SKB_GSO_PARTIAL;
3768 		type &= ~SKB_GSO_DODGY;
3769 
3770 		/* Update GSO info and prepare to start updating headers on
3771 		 * our way back down the stack of protocols.
3772 		 */
3773 		for (iter = segs; iter; iter = iter->next) {
3774 			skb_shinfo(iter)->gso_size = gso_size;
3775 			skb_shinfo(iter)->gso_segs = partial_segs;
3776 			skb_shinfo(iter)->gso_type = type;
3777 			SKB_GSO_CB(iter)->data_offset = skb_headroom(iter) + doffset;
3778 		}
3779 
3780 		if (tail->len - doffset <= gso_size)
3781 			skb_shinfo(tail)->gso_size = 0;
3782 		else if (tail != segs)
3783 			skb_shinfo(tail)->gso_segs = DIV_ROUND_UP(tail->len - doffset, gso_size);
3784 	}
3785 
3786 	/* Following permits correct backpressure, for protocols
3787 	 * using skb_set_owner_w().
3788 	 * Idea is to tranfert ownership from head_skb to last segment.
3789 	 */
3790 	if (head_skb->destructor == sock_wfree) {
3791 		swap(tail->truesize, head_skb->truesize);
3792 		swap(tail->destructor, head_skb->destructor);
3793 		swap(tail->sk, head_skb->sk);
3794 	}
3795 	return segs;
3796 
3797 err:
3798 	kfree_skb_list(segs);
3799 	return ERR_PTR(err);
3800 }
3801 EXPORT_SYMBOL_GPL(skb_segment);
3802 
3803 int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb)
3804 {
3805 	struct skb_shared_info *pinfo, *skbinfo = skb_shinfo(skb);
3806 	unsigned int offset = skb_gro_offset(skb);
3807 	unsigned int headlen = skb_headlen(skb);
3808 	unsigned int len = skb_gro_len(skb);
3809 	struct sk_buff *lp, *p = *head;
3810 	unsigned int delta_truesize;
3811 
3812 	if (unlikely(p->len + len >= 65536))
3813 		return -E2BIG;
3814 
3815 	lp = NAPI_GRO_CB(p)->last;
3816 	pinfo = skb_shinfo(lp);
3817 
3818 	if (headlen <= offset) {
3819 		skb_frag_t *frag;
3820 		skb_frag_t *frag2;
3821 		int i = skbinfo->nr_frags;
3822 		int nr_frags = pinfo->nr_frags + i;
3823 
3824 		if (nr_frags > MAX_SKB_FRAGS)
3825 			goto merge;
3826 
3827 		offset -= headlen;
3828 		pinfo->nr_frags = nr_frags;
3829 		skbinfo->nr_frags = 0;
3830 
3831 		frag = pinfo->frags + nr_frags;
3832 		frag2 = skbinfo->frags + i;
3833 		do {
3834 			*--frag = *--frag2;
3835 		} while (--i);
3836 
3837 		frag->page_offset += offset;
3838 		skb_frag_size_sub(frag, offset);
3839 
3840 		/* all fragments truesize : remove (head size + sk_buff) */
3841 		delta_truesize = skb->truesize -
3842 				 SKB_TRUESIZE(skb_end_offset(skb));
3843 
3844 		skb->truesize -= skb->data_len;
3845 		skb->len -= skb->data_len;
3846 		skb->data_len = 0;
3847 
3848 		NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE;
3849 		goto done;
3850 	} else if (skb->head_frag) {
3851 		int nr_frags = pinfo->nr_frags;
3852 		skb_frag_t *frag = pinfo->frags + nr_frags;
3853 		struct page *page = virt_to_head_page(skb->head);
3854 		unsigned int first_size = headlen - offset;
3855 		unsigned int first_offset;
3856 
3857 		if (nr_frags + 1 + skbinfo->nr_frags > MAX_SKB_FRAGS)
3858 			goto merge;
3859 
3860 		first_offset = skb->data -
3861 			       (unsigned char *)page_address(page) +
3862 			       offset;
3863 
3864 		pinfo->nr_frags = nr_frags + 1 + skbinfo->nr_frags;
3865 
3866 		frag->page.p	  = page;
3867 		frag->page_offset = first_offset;
3868 		skb_frag_size_set(frag, first_size);
3869 
3870 		memcpy(frag + 1, skbinfo->frags, sizeof(*frag) * skbinfo->nr_frags);
3871 		/* We dont need to clear skbinfo->nr_frags here */
3872 
3873 		delta_truesize = skb->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
3874 		NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE_STOLEN_HEAD;
3875 		goto done;
3876 	}
3877 
3878 merge:
3879 	delta_truesize = skb->truesize;
3880 	if (offset > headlen) {
3881 		unsigned int eat = offset - headlen;
3882 
3883 		skbinfo->frags[0].page_offset += eat;
3884 		skb_frag_size_sub(&skbinfo->frags[0], eat);
3885 		skb->data_len -= eat;
3886 		skb->len -= eat;
3887 		offset = headlen;
3888 	}
3889 
3890 	__skb_pull(skb, offset);
3891 
3892 	if (NAPI_GRO_CB(p)->last == p)
3893 		skb_shinfo(p)->frag_list = skb;
3894 	else
3895 		NAPI_GRO_CB(p)->last->next = skb;
3896 	NAPI_GRO_CB(p)->last = skb;
3897 	__skb_header_release(skb);
3898 	lp = p;
3899 
3900 done:
3901 	NAPI_GRO_CB(p)->count++;
3902 	p->data_len += len;
3903 	p->truesize += delta_truesize;
3904 	p->len += len;
3905 	if (lp != p) {
3906 		lp->data_len += len;
3907 		lp->truesize += delta_truesize;
3908 		lp->len += len;
3909 	}
3910 	NAPI_GRO_CB(skb)->same_flow = 1;
3911 	return 0;
3912 }
3913 EXPORT_SYMBOL_GPL(skb_gro_receive);
3914 
3915 void __init skb_init(void)
3916 {
3917 	skbuff_head_cache = kmem_cache_create_usercopy("skbuff_head_cache",
3918 					      sizeof(struct sk_buff),
3919 					      0,
3920 					      SLAB_HWCACHE_ALIGN|SLAB_PANIC,
3921 					      offsetof(struct sk_buff, cb),
3922 					      sizeof_field(struct sk_buff, cb),
3923 					      NULL);
3924 	skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
3925 						sizeof(struct sk_buff_fclones),
3926 						0,
3927 						SLAB_HWCACHE_ALIGN|SLAB_PANIC,
3928 						NULL);
3929 }
3930 
3931 static int
3932 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len,
3933 	       unsigned int recursion_level)
3934 {
3935 	int start = skb_headlen(skb);
3936 	int i, copy = start - offset;
3937 	struct sk_buff *frag_iter;
3938 	int elt = 0;
3939 
3940 	if (unlikely(recursion_level >= 24))
3941 		return -EMSGSIZE;
3942 
3943 	if (copy > 0) {
3944 		if (copy > len)
3945 			copy = len;
3946 		sg_set_buf(sg, skb->data + offset, copy);
3947 		elt++;
3948 		if ((len -= copy) == 0)
3949 			return elt;
3950 		offset += copy;
3951 	}
3952 
3953 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3954 		int end;
3955 
3956 		WARN_ON(start > offset + len);
3957 
3958 		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
3959 		if ((copy = end - offset) > 0) {
3960 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3961 			if (unlikely(elt && sg_is_last(&sg[elt - 1])))
3962 				return -EMSGSIZE;
3963 
3964 			if (copy > len)
3965 				copy = len;
3966 			sg_set_page(&sg[elt], skb_frag_page(frag), copy,
3967 					frag->page_offset+offset-start);
3968 			elt++;
3969 			if (!(len -= copy))
3970 				return elt;
3971 			offset += copy;
3972 		}
3973 		start = end;
3974 	}
3975 
3976 	skb_walk_frags(skb, frag_iter) {
3977 		int end, ret;
3978 
3979 		WARN_ON(start > offset + len);
3980 
3981 		end = start + frag_iter->len;
3982 		if ((copy = end - offset) > 0) {
3983 			if (unlikely(elt && sg_is_last(&sg[elt - 1])))
3984 				return -EMSGSIZE;
3985 
3986 			if (copy > len)
3987 				copy = len;
3988 			ret = __skb_to_sgvec(frag_iter, sg+elt, offset - start,
3989 					      copy, recursion_level + 1);
3990 			if (unlikely(ret < 0))
3991 				return ret;
3992 			elt += ret;
3993 			if ((len -= copy) == 0)
3994 				return elt;
3995 			offset += copy;
3996 		}
3997 		start = end;
3998 	}
3999 	BUG_ON(len);
4000 	return elt;
4001 }
4002 
4003 /**
4004  *	skb_to_sgvec - Fill a scatter-gather list from a socket buffer
4005  *	@skb: Socket buffer containing the buffers to be mapped
4006  *	@sg: The scatter-gather list to map into
4007  *	@offset: The offset into the buffer's contents to start mapping
4008  *	@len: Length of buffer space to be mapped
4009  *
4010  *	Fill the specified scatter-gather list with mappings/pointers into a
4011  *	region of the buffer space attached to a socket buffer. Returns either
4012  *	the number of scatterlist items used, or -EMSGSIZE if the contents
4013  *	could not fit.
4014  */
4015 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
4016 {
4017 	int nsg = __skb_to_sgvec(skb, sg, offset, len, 0);
4018 
4019 	if (nsg <= 0)
4020 		return nsg;
4021 
4022 	sg_mark_end(&sg[nsg - 1]);
4023 
4024 	return nsg;
4025 }
4026 EXPORT_SYMBOL_GPL(skb_to_sgvec);
4027 
4028 /* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given
4029  * sglist without mark the sg which contain last skb data as the end.
4030  * So the caller can mannipulate sg list as will when padding new data after
4031  * the first call without calling sg_unmark_end to expend sg list.
4032  *
4033  * Scenario to use skb_to_sgvec_nomark:
4034  * 1. sg_init_table
4035  * 2. skb_to_sgvec_nomark(payload1)
4036  * 3. skb_to_sgvec_nomark(payload2)
4037  *
4038  * This is equivalent to:
4039  * 1. sg_init_table
4040  * 2. skb_to_sgvec(payload1)
4041  * 3. sg_unmark_end
4042  * 4. skb_to_sgvec(payload2)
4043  *
4044  * When mapping mutilple payload conditionally, skb_to_sgvec_nomark
4045  * is more preferable.
4046  */
4047 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
4048 			int offset, int len)
4049 {
4050 	return __skb_to_sgvec(skb, sg, offset, len, 0);
4051 }
4052 EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark);
4053 
4054 
4055 
4056 /**
4057  *	skb_cow_data - Check that a socket buffer's data buffers are writable
4058  *	@skb: The socket buffer to check.
4059  *	@tailbits: Amount of trailing space to be added
4060  *	@trailer: Returned pointer to the skb where the @tailbits space begins
4061  *
4062  *	Make sure that the data buffers attached to a socket buffer are
4063  *	writable. If they are not, private copies are made of the data buffers
4064  *	and the socket buffer is set to use these instead.
4065  *
4066  *	If @tailbits is given, make sure that there is space to write @tailbits
4067  *	bytes of data beyond current end of socket buffer.  @trailer will be
4068  *	set to point to the skb in which this space begins.
4069  *
4070  *	The number of scatterlist elements required to completely map the
4071  *	COW'd and extended socket buffer will be returned.
4072  */
4073 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
4074 {
4075 	int copyflag;
4076 	int elt;
4077 	struct sk_buff *skb1, **skb_p;
4078 
4079 	/* If skb is cloned or its head is paged, reallocate
4080 	 * head pulling out all the pages (pages are considered not writable
4081 	 * at the moment even if they are anonymous).
4082 	 */
4083 	if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
4084 	    __pskb_pull_tail(skb, skb_pagelen(skb)-skb_headlen(skb)) == NULL)
4085 		return -ENOMEM;
4086 
4087 	/* Easy case. Most of packets will go this way. */
4088 	if (!skb_has_frag_list(skb)) {
4089 		/* A little of trouble, not enough of space for trailer.
4090 		 * This should not happen, when stack is tuned to generate
4091 		 * good frames. OK, on miss we reallocate and reserve even more
4092 		 * space, 128 bytes is fair. */
4093 
4094 		if (skb_tailroom(skb) < tailbits &&
4095 		    pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
4096 			return -ENOMEM;
4097 
4098 		/* Voila! */
4099 		*trailer = skb;
4100 		return 1;
4101 	}
4102 
4103 	/* Misery. We are in troubles, going to mincer fragments... */
4104 
4105 	elt = 1;
4106 	skb_p = &skb_shinfo(skb)->frag_list;
4107 	copyflag = 0;
4108 
4109 	while ((skb1 = *skb_p) != NULL) {
4110 		int ntail = 0;
4111 
4112 		/* The fragment is partially pulled by someone,
4113 		 * this can happen on input. Copy it and everything
4114 		 * after it. */
4115 
4116 		if (skb_shared(skb1))
4117 			copyflag = 1;
4118 
4119 		/* If the skb is the last, worry about trailer. */
4120 
4121 		if (skb1->next == NULL && tailbits) {
4122 			if (skb_shinfo(skb1)->nr_frags ||
4123 			    skb_has_frag_list(skb1) ||
4124 			    skb_tailroom(skb1) < tailbits)
4125 				ntail = tailbits + 128;
4126 		}
4127 
4128 		if (copyflag ||
4129 		    skb_cloned(skb1) ||
4130 		    ntail ||
4131 		    skb_shinfo(skb1)->nr_frags ||
4132 		    skb_has_frag_list(skb1)) {
4133 			struct sk_buff *skb2;
4134 
4135 			/* Fuck, we are miserable poor guys... */
4136 			if (ntail == 0)
4137 				skb2 = skb_copy(skb1, GFP_ATOMIC);
4138 			else
4139 				skb2 = skb_copy_expand(skb1,
4140 						       skb_headroom(skb1),
4141 						       ntail,
4142 						       GFP_ATOMIC);
4143 			if (unlikely(skb2 == NULL))
4144 				return -ENOMEM;
4145 
4146 			if (skb1->sk)
4147 				skb_set_owner_w(skb2, skb1->sk);
4148 
4149 			/* Looking around. Are we still alive?
4150 			 * OK, link new skb, drop old one */
4151 
4152 			skb2->next = skb1->next;
4153 			*skb_p = skb2;
4154 			kfree_skb(skb1);
4155 			skb1 = skb2;
4156 		}
4157 		elt++;
4158 		*trailer = skb1;
4159 		skb_p = &skb1->next;
4160 	}
4161 
4162 	return elt;
4163 }
4164 EXPORT_SYMBOL_GPL(skb_cow_data);
4165 
4166 static void sock_rmem_free(struct sk_buff *skb)
4167 {
4168 	struct sock *sk = skb->sk;
4169 
4170 	atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
4171 }
4172 
4173 static void skb_set_err_queue(struct sk_buff *skb)
4174 {
4175 	/* pkt_type of skbs received on local sockets is never PACKET_OUTGOING.
4176 	 * So, it is safe to (mis)use it to mark skbs on the error queue.
4177 	 */
4178 	skb->pkt_type = PACKET_OUTGOING;
4179 	BUILD_BUG_ON(PACKET_OUTGOING == 0);
4180 }
4181 
4182 /*
4183  * Note: We dont mem charge error packets (no sk_forward_alloc changes)
4184  */
4185 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
4186 {
4187 	if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
4188 	    (unsigned int)sk->sk_rcvbuf)
4189 		return -ENOMEM;
4190 
4191 	skb_orphan(skb);
4192 	skb->sk = sk;
4193 	skb->destructor = sock_rmem_free;
4194 	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
4195 	skb_set_err_queue(skb);
4196 
4197 	/* before exiting rcu section, make sure dst is refcounted */
4198 	skb_dst_force(skb);
4199 
4200 	skb_queue_tail(&sk->sk_error_queue, skb);
4201 	if (!sock_flag(sk, SOCK_DEAD))
4202 		sk->sk_error_report(sk);
4203 	return 0;
4204 }
4205 EXPORT_SYMBOL(sock_queue_err_skb);
4206 
4207 static bool is_icmp_err_skb(const struct sk_buff *skb)
4208 {
4209 	return skb && (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP ||
4210 		       SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP6);
4211 }
4212 
4213 struct sk_buff *sock_dequeue_err_skb(struct sock *sk)
4214 {
4215 	struct sk_buff_head *q = &sk->sk_error_queue;
4216 	struct sk_buff *skb, *skb_next = NULL;
4217 	bool icmp_next = false;
4218 	unsigned long flags;
4219 
4220 	spin_lock_irqsave(&q->lock, flags);
4221 	skb = __skb_dequeue(q);
4222 	if (skb && (skb_next = skb_peek(q))) {
4223 		icmp_next = is_icmp_err_skb(skb_next);
4224 		if (icmp_next)
4225 			sk->sk_err = SKB_EXT_ERR(skb_next)->ee.ee_origin;
4226 	}
4227 	spin_unlock_irqrestore(&q->lock, flags);
4228 
4229 	if (is_icmp_err_skb(skb) && !icmp_next)
4230 		sk->sk_err = 0;
4231 
4232 	if (skb_next)
4233 		sk->sk_error_report(sk);
4234 
4235 	return skb;
4236 }
4237 EXPORT_SYMBOL(sock_dequeue_err_skb);
4238 
4239 /**
4240  * skb_clone_sk - create clone of skb, and take reference to socket
4241  * @skb: the skb to clone
4242  *
4243  * This function creates a clone of a buffer that holds a reference on
4244  * sk_refcnt.  Buffers created via this function are meant to be
4245  * returned using sock_queue_err_skb, or free via kfree_skb.
4246  *
4247  * When passing buffers allocated with this function to sock_queue_err_skb
4248  * it is necessary to wrap the call with sock_hold/sock_put in order to
4249  * prevent the socket from being released prior to being enqueued on
4250  * the sk_error_queue.
4251  */
4252 struct sk_buff *skb_clone_sk(struct sk_buff *skb)
4253 {
4254 	struct sock *sk = skb->sk;
4255 	struct sk_buff *clone;
4256 
4257 	if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt))
4258 		return NULL;
4259 
4260 	clone = skb_clone(skb, GFP_ATOMIC);
4261 	if (!clone) {
4262 		sock_put(sk);
4263 		return NULL;
4264 	}
4265 
4266 	clone->sk = sk;
4267 	clone->destructor = sock_efree;
4268 
4269 	return clone;
4270 }
4271 EXPORT_SYMBOL(skb_clone_sk);
4272 
4273 static void __skb_complete_tx_timestamp(struct sk_buff *skb,
4274 					struct sock *sk,
4275 					int tstype,
4276 					bool opt_stats)
4277 {
4278 	struct sock_exterr_skb *serr;
4279 	int err;
4280 
4281 	BUILD_BUG_ON(sizeof(struct sock_exterr_skb) > sizeof(skb->cb));
4282 
4283 	serr = SKB_EXT_ERR(skb);
4284 	memset(serr, 0, sizeof(*serr));
4285 	serr->ee.ee_errno = ENOMSG;
4286 	serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
4287 	serr->ee.ee_info = tstype;
4288 	serr->opt_stats = opt_stats;
4289 	serr->header.h4.iif = skb->dev ? skb->dev->ifindex : 0;
4290 	if (sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID) {
4291 		serr->ee.ee_data = skb_shinfo(skb)->tskey;
4292 		if (sk->sk_protocol == IPPROTO_TCP &&
4293 		    sk->sk_type == SOCK_STREAM)
4294 			serr->ee.ee_data -= sk->sk_tskey;
4295 	}
4296 
4297 	err = sock_queue_err_skb(sk, skb);
4298 
4299 	if (err)
4300 		kfree_skb(skb);
4301 }
4302 
4303 static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly)
4304 {
4305 	bool ret;
4306 
4307 	if (likely(sysctl_tstamp_allow_data || tsonly))
4308 		return true;
4309 
4310 	read_lock_bh(&sk->sk_callback_lock);
4311 	ret = sk->sk_socket && sk->sk_socket->file &&
4312 	      file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW);
4313 	read_unlock_bh(&sk->sk_callback_lock);
4314 	return ret;
4315 }
4316 
4317 void skb_complete_tx_timestamp(struct sk_buff *skb,
4318 			       struct skb_shared_hwtstamps *hwtstamps)
4319 {
4320 	struct sock *sk = skb->sk;
4321 
4322 	if (!skb_may_tx_timestamp(sk, false))
4323 		goto err;
4324 
4325 	/* Take a reference to prevent skb_orphan() from freeing the socket,
4326 	 * but only if the socket refcount is not zero.
4327 	 */
4328 	if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
4329 		*skb_hwtstamps(skb) = *hwtstamps;
4330 		__skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND, false);
4331 		sock_put(sk);
4332 		return;
4333 	}
4334 
4335 err:
4336 	kfree_skb(skb);
4337 }
4338 EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp);
4339 
4340 void __skb_tstamp_tx(struct sk_buff *orig_skb,
4341 		     struct skb_shared_hwtstamps *hwtstamps,
4342 		     struct sock *sk, int tstype)
4343 {
4344 	struct sk_buff *skb;
4345 	bool tsonly, opt_stats = false;
4346 
4347 	if (!sk)
4348 		return;
4349 
4350 	if (!hwtstamps && !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TX_SWHW) &&
4351 	    skb_shinfo(orig_skb)->tx_flags & SKBTX_IN_PROGRESS)
4352 		return;
4353 
4354 	tsonly = sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TSONLY;
4355 	if (!skb_may_tx_timestamp(sk, tsonly))
4356 		return;
4357 
4358 	if (tsonly) {
4359 #ifdef CONFIG_INET
4360 		if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_STATS) &&
4361 		    sk->sk_protocol == IPPROTO_TCP &&
4362 		    sk->sk_type == SOCK_STREAM) {
4363 			skb = tcp_get_timestamping_opt_stats(sk);
4364 			opt_stats = true;
4365 		} else
4366 #endif
4367 			skb = alloc_skb(0, GFP_ATOMIC);
4368 	} else {
4369 		skb = skb_clone(orig_skb, GFP_ATOMIC);
4370 	}
4371 	if (!skb)
4372 		return;
4373 
4374 	if (tsonly) {
4375 		skb_shinfo(skb)->tx_flags |= skb_shinfo(orig_skb)->tx_flags &
4376 					     SKBTX_ANY_TSTAMP;
4377 		skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey;
4378 	}
4379 
4380 	if (hwtstamps)
4381 		*skb_hwtstamps(skb) = *hwtstamps;
4382 	else
4383 		skb->tstamp = ktime_get_real();
4384 
4385 	__skb_complete_tx_timestamp(skb, sk, tstype, opt_stats);
4386 }
4387 EXPORT_SYMBOL_GPL(__skb_tstamp_tx);
4388 
4389 void skb_tstamp_tx(struct sk_buff *orig_skb,
4390 		   struct skb_shared_hwtstamps *hwtstamps)
4391 {
4392 	return __skb_tstamp_tx(orig_skb, hwtstamps, orig_skb->sk,
4393 			       SCM_TSTAMP_SND);
4394 }
4395 EXPORT_SYMBOL_GPL(skb_tstamp_tx);
4396 
4397 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked)
4398 {
4399 	struct sock *sk = skb->sk;
4400 	struct sock_exterr_skb *serr;
4401 	int err = 1;
4402 
4403 	skb->wifi_acked_valid = 1;
4404 	skb->wifi_acked = acked;
4405 
4406 	serr = SKB_EXT_ERR(skb);
4407 	memset(serr, 0, sizeof(*serr));
4408 	serr->ee.ee_errno = ENOMSG;
4409 	serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS;
4410 
4411 	/* Take a reference to prevent skb_orphan() from freeing the socket,
4412 	 * but only if the socket refcount is not zero.
4413 	 */
4414 	if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
4415 		err = sock_queue_err_skb(sk, skb);
4416 		sock_put(sk);
4417 	}
4418 	if (err)
4419 		kfree_skb(skb);
4420 }
4421 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack);
4422 
4423 /**
4424  * skb_partial_csum_set - set up and verify partial csum values for packet
4425  * @skb: the skb to set
4426  * @start: the number of bytes after skb->data to start checksumming.
4427  * @off: the offset from start to place the checksum.
4428  *
4429  * For untrusted partially-checksummed packets, we need to make sure the values
4430  * for skb->csum_start and skb->csum_offset are valid so we don't oops.
4431  *
4432  * This function checks and sets those values and skb->ip_summed: if this
4433  * returns false you should drop the packet.
4434  */
4435 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
4436 {
4437 	if (unlikely(start > skb_headlen(skb)) ||
4438 	    unlikely((int)start + off > skb_headlen(skb) - 2)) {
4439 		net_warn_ratelimited("bad partial csum: csum=%u/%u len=%u\n",
4440 				     start, off, skb_headlen(skb));
4441 		return false;
4442 	}
4443 	skb->ip_summed = CHECKSUM_PARTIAL;
4444 	skb->csum_start = skb_headroom(skb) + start;
4445 	skb->csum_offset = off;
4446 	skb_set_transport_header(skb, start);
4447 	return true;
4448 }
4449 EXPORT_SYMBOL_GPL(skb_partial_csum_set);
4450 
4451 static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len,
4452 			       unsigned int max)
4453 {
4454 	if (skb_headlen(skb) >= len)
4455 		return 0;
4456 
4457 	/* If we need to pullup then pullup to the max, so we
4458 	 * won't need to do it again.
4459 	 */
4460 	if (max > skb->len)
4461 		max = skb->len;
4462 
4463 	if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL)
4464 		return -ENOMEM;
4465 
4466 	if (skb_headlen(skb) < len)
4467 		return -EPROTO;
4468 
4469 	return 0;
4470 }
4471 
4472 #define MAX_TCP_HDR_LEN (15 * 4)
4473 
4474 static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb,
4475 				      typeof(IPPROTO_IP) proto,
4476 				      unsigned int off)
4477 {
4478 	switch (proto) {
4479 		int err;
4480 
4481 	case IPPROTO_TCP:
4482 		err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr),
4483 					  off + MAX_TCP_HDR_LEN);
4484 		if (!err && !skb_partial_csum_set(skb, off,
4485 						  offsetof(struct tcphdr,
4486 							   check)))
4487 			err = -EPROTO;
4488 		return err ? ERR_PTR(err) : &tcp_hdr(skb)->check;
4489 
4490 	case IPPROTO_UDP:
4491 		err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr),
4492 					  off + sizeof(struct udphdr));
4493 		if (!err && !skb_partial_csum_set(skb, off,
4494 						  offsetof(struct udphdr,
4495 							   check)))
4496 			err = -EPROTO;
4497 		return err ? ERR_PTR(err) : &udp_hdr(skb)->check;
4498 	}
4499 
4500 	return ERR_PTR(-EPROTO);
4501 }
4502 
4503 /* This value should be large enough to cover a tagged ethernet header plus
4504  * maximally sized IP and TCP or UDP headers.
4505  */
4506 #define MAX_IP_HDR_LEN 128
4507 
4508 static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate)
4509 {
4510 	unsigned int off;
4511 	bool fragment;
4512 	__sum16 *csum;
4513 	int err;
4514 
4515 	fragment = false;
4516 
4517 	err = skb_maybe_pull_tail(skb,
4518 				  sizeof(struct iphdr),
4519 				  MAX_IP_HDR_LEN);
4520 	if (err < 0)
4521 		goto out;
4522 
4523 	if (ip_hdr(skb)->frag_off & htons(IP_OFFSET | IP_MF))
4524 		fragment = true;
4525 
4526 	off = ip_hdrlen(skb);
4527 
4528 	err = -EPROTO;
4529 
4530 	if (fragment)
4531 		goto out;
4532 
4533 	csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off);
4534 	if (IS_ERR(csum))
4535 		return PTR_ERR(csum);
4536 
4537 	if (recalculate)
4538 		*csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
4539 					   ip_hdr(skb)->daddr,
4540 					   skb->len - off,
4541 					   ip_hdr(skb)->protocol, 0);
4542 	err = 0;
4543 
4544 out:
4545 	return err;
4546 }
4547 
4548 /* This value should be large enough to cover a tagged ethernet header plus
4549  * an IPv6 header, all options, and a maximal TCP or UDP header.
4550  */
4551 #define MAX_IPV6_HDR_LEN 256
4552 
4553 #define OPT_HDR(type, skb, off) \
4554 	(type *)(skb_network_header(skb) + (off))
4555 
4556 static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate)
4557 {
4558 	int err;
4559 	u8 nexthdr;
4560 	unsigned int off;
4561 	unsigned int len;
4562 	bool fragment;
4563 	bool done;
4564 	__sum16 *csum;
4565 
4566 	fragment = false;
4567 	done = false;
4568 
4569 	off = sizeof(struct ipv6hdr);
4570 
4571 	err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN);
4572 	if (err < 0)
4573 		goto out;
4574 
4575 	nexthdr = ipv6_hdr(skb)->nexthdr;
4576 
4577 	len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len);
4578 	while (off <= len && !done) {
4579 		switch (nexthdr) {
4580 		case IPPROTO_DSTOPTS:
4581 		case IPPROTO_HOPOPTS:
4582 		case IPPROTO_ROUTING: {
4583 			struct ipv6_opt_hdr *hp;
4584 
4585 			err = skb_maybe_pull_tail(skb,
4586 						  off +
4587 						  sizeof(struct ipv6_opt_hdr),
4588 						  MAX_IPV6_HDR_LEN);
4589 			if (err < 0)
4590 				goto out;
4591 
4592 			hp = OPT_HDR(struct ipv6_opt_hdr, skb, off);
4593 			nexthdr = hp->nexthdr;
4594 			off += ipv6_optlen(hp);
4595 			break;
4596 		}
4597 		case IPPROTO_AH: {
4598 			struct ip_auth_hdr *hp;
4599 
4600 			err = skb_maybe_pull_tail(skb,
4601 						  off +
4602 						  sizeof(struct ip_auth_hdr),
4603 						  MAX_IPV6_HDR_LEN);
4604 			if (err < 0)
4605 				goto out;
4606 
4607 			hp = OPT_HDR(struct ip_auth_hdr, skb, off);
4608 			nexthdr = hp->nexthdr;
4609 			off += ipv6_authlen(hp);
4610 			break;
4611 		}
4612 		case IPPROTO_FRAGMENT: {
4613 			struct frag_hdr *hp;
4614 
4615 			err = skb_maybe_pull_tail(skb,
4616 						  off +
4617 						  sizeof(struct frag_hdr),
4618 						  MAX_IPV6_HDR_LEN);
4619 			if (err < 0)
4620 				goto out;
4621 
4622 			hp = OPT_HDR(struct frag_hdr, skb, off);
4623 
4624 			if (hp->frag_off & htons(IP6_OFFSET | IP6_MF))
4625 				fragment = true;
4626 
4627 			nexthdr = hp->nexthdr;
4628 			off += sizeof(struct frag_hdr);
4629 			break;
4630 		}
4631 		default:
4632 			done = true;
4633 			break;
4634 		}
4635 	}
4636 
4637 	err = -EPROTO;
4638 
4639 	if (!done || fragment)
4640 		goto out;
4641 
4642 	csum = skb_checksum_setup_ip(skb, nexthdr, off);
4643 	if (IS_ERR(csum))
4644 		return PTR_ERR(csum);
4645 
4646 	if (recalculate)
4647 		*csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
4648 					 &ipv6_hdr(skb)->daddr,
4649 					 skb->len - off, nexthdr, 0);
4650 	err = 0;
4651 
4652 out:
4653 	return err;
4654 }
4655 
4656 /**
4657  * skb_checksum_setup - set up partial checksum offset
4658  * @skb: the skb to set up
4659  * @recalculate: if true the pseudo-header checksum will be recalculated
4660  */
4661 int skb_checksum_setup(struct sk_buff *skb, bool recalculate)
4662 {
4663 	int err;
4664 
4665 	switch (skb->protocol) {
4666 	case htons(ETH_P_IP):
4667 		err = skb_checksum_setup_ipv4(skb, recalculate);
4668 		break;
4669 
4670 	case htons(ETH_P_IPV6):
4671 		err = skb_checksum_setup_ipv6(skb, recalculate);
4672 		break;
4673 
4674 	default:
4675 		err = -EPROTO;
4676 		break;
4677 	}
4678 
4679 	return err;
4680 }
4681 EXPORT_SYMBOL(skb_checksum_setup);
4682 
4683 /**
4684  * skb_checksum_maybe_trim - maybe trims the given skb
4685  * @skb: the skb to check
4686  * @transport_len: the data length beyond the network header
4687  *
4688  * Checks whether the given skb has data beyond the given transport length.
4689  * If so, returns a cloned skb trimmed to this transport length.
4690  * Otherwise returns the provided skb. Returns NULL in error cases
4691  * (e.g. transport_len exceeds skb length or out-of-memory).
4692  *
4693  * Caller needs to set the skb transport header and free any returned skb if it
4694  * differs from the provided skb.
4695  */
4696 static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb,
4697 					       unsigned int transport_len)
4698 {
4699 	struct sk_buff *skb_chk;
4700 	unsigned int len = skb_transport_offset(skb) + transport_len;
4701 	int ret;
4702 
4703 	if (skb->len < len)
4704 		return NULL;
4705 	else if (skb->len == len)
4706 		return skb;
4707 
4708 	skb_chk = skb_clone(skb, GFP_ATOMIC);
4709 	if (!skb_chk)
4710 		return NULL;
4711 
4712 	ret = pskb_trim_rcsum(skb_chk, len);
4713 	if (ret) {
4714 		kfree_skb(skb_chk);
4715 		return NULL;
4716 	}
4717 
4718 	return skb_chk;
4719 }
4720 
4721 /**
4722  * skb_checksum_trimmed - validate checksum of an skb
4723  * @skb: the skb to check
4724  * @transport_len: the data length beyond the network header
4725  * @skb_chkf: checksum function to use
4726  *
4727  * Applies the given checksum function skb_chkf to the provided skb.
4728  * Returns a checked and maybe trimmed skb. Returns NULL on error.
4729  *
4730  * If the skb has data beyond the given transport length, then a
4731  * trimmed & cloned skb is checked and returned.
4732  *
4733  * Caller needs to set the skb transport header and free any returned skb if it
4734  * differs from the provided skb.
4735  */
4736 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
4737 				     unsigned int transport_len,
4738 				     __sum16(*skb_chkf)(struct sk_buff *skb))
4739 {
4740 	struct sk_buff *skb_chk;
4741 	unsigned int offset = skb_transport_offset(skb);
4742 	__sum16 ret;
4743 
4744 	skb_chk = skb_checksum_maybe_trim(skb, transport_len);
4745 	if (!skb_chk)
4746 		goto err;
4747 
4748 	if (!pskb_may_pull(skb_chk, offset))
4749 		goto err;
4750 
4751 	skb_pull_rcsum(skb_chk, offset);
4752 	ret = skb_chkf(skb_chk);
4753 	skb_push_rcsum(skb_chk, offset);
4754 
4755 	if (ret)
4756 		goto err;
4757 
4758 	return skb_chk;
4759 
4760 err:
4761 	if (skb_chk && skb_chk != skb)
4762 		kfree_skb(skb_chk);
4763 
4764 	return NULL;
4765 
4766 }
4767 EXPORT_SYMBOL(skb_checksum_trimmed);
4768 
4769 void __skb_warn_lro_forwarding(const struct sk_buff *skb)
4770 {
4771 	net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n",
4772 			     skb->dev->name);
4773 }
4774 EXPORT_SYMBOL(__skb_warn_lro_forwarding);
4775 
4776 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen)
4777 {
4778 	if (head_stolen) {
4779 		skb_release_head_state(skb);
4780 		kmem_cache_free(skbuff_head_cache, skb);
4781 	} else {
4782 		__kfree_skb(skb);
4783 	}
4784 }
4785 EXPORT_SYMBOL(kfree_skb_partial);
4786 
4787 /**
4788  * skb_try_coalesce - try to merge skb to prior one
4789  * @to: prior buffer
4790  * @from: buffer to add
4791  * @fragstolen: pointer to boolean
4792  * @delta_truesize: how much more was allocated than was requested
4793  */
4794 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
4795 		      bool *fragstolen, int *delta_truesize)
4796 {
4797 	struct skb_shared_info *to_shinfo, *from_shinfo;
4798 	int i, delta, len = from->len;
4799 
4800 	*fragstolen = false;
4801 
4802 	if (skb_cloned(to))
4803 		return false;
4804 
4805 	if (len <= skb_tailroom(to)) {
4806 		if (len)
4807 			BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len));
4808 		*delta_truesize = 0;
4809 		return true;
4810 	}
4811 
4812 	to_shinfo = skb_shinfo(to);
4813 	from_shinfo = skb_shinfo(from);
4814 	if (to_shinfo->frag_list || from_shinfo->frag_list)
4815 		return false;
4816 	if (skb_zcopy(to) || skb_zcopy(from))
4817 		return false;
4818 
4819 	if (skb_headlen(from) != 0) {
4820 		struct page *page;
4821 		unsigned int offset;
4822 
4823 		if (to_shinfo->nr_frags +
4824 		    from_shinfo->nr_frags >= MAX_SKB_FRAGS)
4825 			return false;
4826 
4827 		if (skb_head_is_locked(from))
4828 			return false;
4829 
4830 		delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
4831 
4832 		page = virt_to_head_page(from->head);
4833 		offset = from->data - (unsigned char *)page_address(page);
4834 
4835 		skb_fill_page_desc(to, to_shinfo->nr_frags,
4836 				   page, offset, skb_headlen(from));
4837 		*fragstolen = true;
4838 	} else {
4839 		if (to_shinfo->nr_frags +
4840 		    from_shinfo->nr_frags > MAX_SKB_FRAGS)
4841 			return false;
4842 
4843 		delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from));
4844 	}
4845 
4846 	WARN_ON_ONCE(delta < len);
4847 
4848 	memcpy(to_shinfo->frags + to_shinfo->nr_frags,
4849 	       from_shinfo->frags,
4850 	       from_shinfo->nr_frags * sizeof(skb_frag_t));
4851 	to_shinfo->nr_frags += from_shinfo->nr_frags;
4852 
4853 	if (!skb_cloned(from))
4854 		from_shinfo->nr_frags = 0;
4855 
4856 	/* if the skb is not cloned this does nothing
4857 	 * since we set nr_frags to 0.
4858 	 */
4859 	for (i = 0; i < from_shinfo->nr_frags; i++)
4860 		__skb_frag_ref(&from_shinfo->frags[i]);
4861 
4862 	to->truesize += delta;
4863 	to->len += len;
4864 	to->data_len += len;
4865 
4866 	*delta_truesize = delta;
4867 	return true;
4868 }
4869 EXPORT_SYMBOL(skb_try_coalesce);
4870 
4871 /**
4872  * skb_scrub_packet - scrub an skb
4873  *
4874  * @skb: buffer to clean
4875  * @xnet: packet is crossing netns
4876  *
4877  * skb_scrub_packet can be used after encapsulating or decapsulting a packet
4878  * into/from a tunnel. Some information have to be cleared during these
4879  * operations.
4880  * skb_scrub_packet can also be used to clean a skb before injecting it in
4881  * another namespace (@xnet == true). We have to clear all information in the
4882  * skb that could impact namespace isolation.
4883  */
4884 void skb_scrub_packet(struct sk_buff *skb, bool xnet)
4885 {
4886 	skb->tstamp = 0;
4887 	skb->pkt_type = PACKET_HOST;
4888 	skb->skb_iif = 0;
4889 	skb->ignore_df = 0;
4890 	skb_dst_drop(skb);
4891 	secpath_reset(skb);
4892 	nf_reset(skb);
4893 	nf_reset_trace(skb);
4894 
4895 	if (!xnet)
4896 		return;
4897 
4898 	ipvs_reset(skb);
4899 	skb_orphan(skb);
4900 	skb->mark = 0;
4901 }
4902 EXPORT_SYMBOL_GPL(skb_scrub_packet);
4903 
4904 /**
4905  * skb_gso_transport_seglen - Return length of individual segments of a gso packet
4906  *
4907  * @skb: GSO skb
4908  *
4909  * skb_gso_transport_seglen is used to determine the real size of the
4910  * individual segments, including Layer4 headers (TCP/UDP).
4911  *
4912  * The MAC/L2 or network (IP, IPv6) headers are not accounted for.
4913  */
4914 static unsigned int skb_gso_transport_seglen(const struct sk_buff *skb)
4915 {
4916 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
4917 	unsigned int thlen = 0;
4918 
4919 	if (skb->encapsulation) {
4920 		thlen = skb_inner_transport_header(skb) -
4921 			skb_transport_header(skb);
4922 
4923 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
4924 			thlen += inner_tcp_hdrlen(skb);
4925 	} else if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
4926 		thlen = tcp_hdrlen(skb);
4927 	} else if (unlikely(skb_is_gso_sctp(skb))) {
4928 		thlen = sizeof(struct sctphdr);
4929 	}
4930 	/* UFO sets gso_size to the size of the fragmentation
4931 	 * payload, i.e. the size of the L4 (UDP) header is already
4932 	 * accounted for.
4933 	 */
4934 	return thlen + shinfo->gso_size;
4935 }
4936 
4937 /**
4938  * skb_gso_network_seglen - Return length of individual segments of a gso packet
4939  *
4940  * @skb: GSO skb
4941  *
4942  * skb_gso_network_seglen is used to determine the real size of the
4943  * individual segments, including Layer3 (IP, IPv6) and L4 headers (TCP/UDP).
4944  *
4945  * The MAC/L2 header is not accounted for.
4946  */
4947 static unsigned int skb_gso_network_seglen(const struct sk_buff *skb)
4948 {
4949 	unsigned int hdr_len = skb_transport_header(skb) -
4950 			       skb_network_header(skb);
4951 
4952 	return hdr_len + skb_gso_transport_seglen(skb);
4953 }
4954 
4955 /**
4956  * skb_gso_mac_seglen - Return length of individual segments of a gso packet
4957  *
4958  * @skb: GSO skb
4959  *
4960  * skb_gso_mac_seglen is used to determine the real size of the
4961  * individual segments, including MAC/L2, Layer3 (IP, IPv6) and L4
4962  * headers (TCP/UDP).
4963  */
4964 static unsigned int skb_gso_mac_seglen(const struct sk_buff *skb)
4965 {
4966 	unsigned int hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
4967 
4968 	return hdr_len + skb_gso_transport_seglen(skb);
4969 }
4970 
4971 /**
4972  * skb_gso_size_check - check the skb size, considering GSO_BY_FRAGS
4973  *
4974  * There are a couple of instances where we have a GSO skb, and we
4975  * want to determine what size it would be after it is segmented.
4976  *
4977  * We might want to check:
4978  * -    L3+L4+payload size (e.g. IP forwarding)
4979  * - L2+L3+L4+payload size (e.g. sanity check before passing to driver)
4980  *
4981  * This is a helper to do that correctly considering GSO_BY_FRAGS.
4982  *
4983  * @seg_len: The segmented length (from skb_gso_*_seglen). In the
4984  *           GSO_BY_FRAGS case this will be [header sizes + GSO_BY_FRAGS].
4985  *
4986  * @max_len: The maximum permissible length.
4987  *
4988  * Returns true if the segmented length <= max length.
4989  */
4990 static inline bool skb_gso_size_check(const struct sk_buff *skb,
4991 				      unsigned int seg_len,
4992 				      unsigned int max_len) {
4993 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
4994 	const struct sk_buff *iter;
4995 
4996 	if (shinfo->gso_size != GSO_BY_FRAGS)
4997 		return seg_len <= max_len;
4998 
4999 	/* Undo this so we can re-use header sizes */
5000 	seg_len -= GSO_BY_FRAGS;
5001 
5002 	skb_walk_frags(skb, iter) {
5003 		if (seg_len + skb_headlen(iter) > max_len)
5004 			return false;
5005 	}
5006 
5007 	return true;
5008 }
5009 
5010 /**
5011  * skb_gso_validate_network_len - Will a split GSO skb fit into a given MTU?
5012  *
5013  * @skb: GSO skb
5014  * @mtu: MTU to validate against
5015  *
5016  * skb_gso_validate_network_len validates if a given skb will fit a
5017  * wanted MTU once split. It considers L3 headers, L4 headers, and the
5018  * payload.
5019  */
5020 bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu)
5021 {
5022 	return skb_gso_size_check(skb, skb_gso_network_seglen(skb), mtu);
5023 }
5024 EXPORT_SYMBOL_GPL(skb_gso_validate_network_len);
5025 
5026 /**
5027  * skb_gso_validate_mac_len - Will a split GSO skb fit in a given length?
5028  *
5029  * @skb: GSO skb
5030  * @len: length to validate against
5031  *
5032  * skb_gso_validate_mac_len validates if a given skb will fit a wanted
5033  * length once split, including L2, L3 and L4 headers and the payload.
5034  */
5035 bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len)
5036 {
5037 	return skb_gso_size_check(skb, skb_gso_mac_seglen(skb), len);
5038 }
5039 EXPORT_SYMBOL_GPL(skb_gso_validate_mac_len);
5040 
5041 static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb)
5042 {
5043 	int mac_len;
5044 
5045 	if (skb_cow(skb, skb_headroom(skb)) < 0) {
5046 		kfree_skb(skb);
5047 		return NULL;
5048 	}
5049 
5050 	mac_len = skb->data - skb_mac_header(skb);
5051 	if (likely(mac_len > VLAN_HLEN + ETH_TLEN)) {
5052 		memmove(skb_mac_header(skb) + VLAN_HLEN, skb_mac_header(skb),
5053 			mac_len - VLAN_HLEN - ETH_TLEN);
5054 	}
5055 	skb->mac_header += VLAN_HLEN;
5056 	return skb;
5057 }
5058 
5059 struct sk_buff *skb_vlan_untag(struct sk_buff *skb)
5060 {
5061 	struct vlan_hdr *vhdr;
5062 	u16 vlan_tci;
5063 
5064 	if (unlikely(skb_vlan_tag_present(skb))) {
5065 		/* vlan_tci is already set-up so leave this for another time */
5066 		return skb;
5067 	}
5068 
5069 	skb = skb_share_check(skb, GFP_ATOMIC);
5070 	if (unlikely(!skb))
5071 		goto err_free;
5072 
5073 	if (unlikely(!pskb_may_pull(skb, VLAN_HLEN)))
5074 		goto err_free;
5075 
5076 	vhdr = (struct vlan_hdr *)skb->data;
5077 	vlan_tci = ntohs(vhdr->h_vlan_TCI);
5078 	__vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci);
5079 
5080 	skb_pull_rcsum(skb, VLAN_HLEN);
5081 	vlan_set_encap_proto(skb, vhdr);
5082 
5083 	skb = skb_reorder_vlan_header(skb);
5084 	if (unlikely(!skb))
5085 		goto err_free;
5086 
5087 	skb_reset_network_header(skb);
5088 	skb_reset_transport_header(skb);
5089 	skb_reset_mac_len(skb);
5090 
5091 	return skb;
5092 
5093 err_free:
5094 	kfree_skb(skb);
5095 	return NULL;
5096 }
5097 EXPORT_SYMBOL(skb_vlan_untag);
5098 
5099 int skb_ensure_writable(struct sk_buff *skb, int write_len)
5100 {
5101 	if (!pskb_may_pull(skb, write_len))
5102 		return -ENOMEM;
5103 
5104 	if (!skb_cloned(skb) || skb_clone_writable(skb, write_len))
5105 		return 0;
5106 
5107 	return pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
5108 }
5109 EXPORT_SYMBOL(skb_ensure_writable);
5110 
5111 /* remove VLAN header from packet and update csum accordingly.
5112  * expects a non skb_vlan_tag_present skb with a vlan tag payload
5113  */
5114 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci)
5115 {
5116 	struct vlan_hdr *vhdr;
5117 	int offset = skb->data - skb_mac_header(skb);
5118 	int err;
5119 
5120 	if (WARN_ONCE(offset,
5121 		      "__skb_vlan_pop got skb with skb->data not at mac header (offset %d)\n",
5122 		      offset)) {
5123 		return -EINVAL;
5124 	}
5125 
5126 	err = skb_ensure_writable(skb, VLAN_ETH_HLEN);
5127 	if (unlikely(err))
5128 		return err;
5129 
5130 	skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
5131 
5132 	vhdr = (struct vlan_hdr *)(skb->data + ETH_HLEN);
5133 	*vlan_tci = ntohs(vhdr->h_vlan_TCI);
5134 
5135 	memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN);
5136 	__skb_pull(skb, VLAN_HLEN);
5137 
5138 	vlan_set_encap_proto(skb, vhdr);
5139 	skb->mac_header += VLAN_HLEN;
5140 
5141 	if (skb_network_offset(skb) < ETH_HLEN)
5142 		skb_set_network_header(skb, ETH_HLEN);
5143 
5144 	skb_reset_mac_len(skb);
5145 
5146 	return err;
5147 }
5148 EXPORT_SYMBOL(__skb_vlan_pop);
5149 
5150 /* Pop a vlan tag either from hwaccel or from payload.
5151  * Expects skb->data at mac header.
5152  */
5153 int skb_vlan_pop(struct sk_buff *skb)
5154 {
5155 	u16 vlan_tci;
5156 	__be16 vlan_proto;
5157 	int err;
5158 
5159 	if (likely(skb_vlan_tag_present(skb))) {
5160 		skb->vlan_tci = 0;
5161 	} else {
5162 		if (unlikely(!eth_type_vlan(skb->protocol)))
5163 			return 0;
5164 
5165 		err = __skb_vlan_pop(skb, &vlan_tci);
5166 		if (err)
5167 			return err;
5168 	}
5169 	/* move next vlan tag to hw accel tag */
5170 	if (likely(!eth_type_vlan(skb->protocol)))
5171 		return 0;
5172 
5173 	vlan_proto = skb->protocol;
5174 	err = __skb_vlan_pop(skb, &vlan_tci);
5175 	if (unlikely(err))
5176 		return err;
5177 
5178 	__vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
5179 	return 0;
5180 }
5181 EXPORT_SYMBOL(skb_vlan_pop);
5182 
5183 /* Push a vlan tag either into hwaccel or into payload (if hwaccel tag present).
5184  * Expects skb->data at mac header.
5185  */
5186 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci)
5187 {
5188 	if (skb_vlan_tag_present(skb)) {
5189 		int offset = skb->data - skb_mac_header(skb);
5190 		int err;
5191 
5192 		if (WARN_ONCE(offset,
5193 			      "skb_vlan_push got skb with skb->data not at mac header (offset %d)\n",
5194 			      offset)) {
5195 			return -EINVAL;
5196 		}
5197 
5198 		err = __vlan_insert_tag(skb, skb->vlan_proto,
5199 					skb_vlan_tag_get(skb));
5200 		if (err)
5201 			return err;
5202 
5203 		skb->protocol = skb->vlan_proto;
5204 		skb->mac_len += VLAN_HLEN;
5205 
5206 		skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
5207 	}
5208 	__vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
5209 	return 0;
5210 }
5211 EXPORT_SYMBOL(skb_vlan_push);
5212 
5213 /**
5214  * alloc_skb_with_frags - allocate skb with page frags
5215  *
5216  * @header_len: size of linear part
5217  * @data_len: needed length in frags
5218  * @max_page_order: max page order desired.
5219  * @errcode: pointer to error code if any
5220  * @gfp_mask: allocation mask
5221  *
5222  * This can be used to allocate a paged skb, given a maximal order for frags.
5223  */
5224 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
5225 				     unsigned long data_len,
5226 				     int max_page_order,
5227 				     int *errcode,
5228 				     gfp_t gfp_mask)
5229 {
5230 	int npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
5231 	unsigned long chunk;
5232 	struct sk_buff *skb;
5233 	struct page *page;
5234 	gfp_t gfp_head;
5235 	int i;
5236 
5237 	*errcode = -EMSGSIZE;
5238 	/* Note this test could be relaxed, if we succeed to allocate
5239 	 * high order pages...
5240 	 */
5241 	if (npages > MAX_SKB_FRAGS)
5242 		return NULL;
5243 
5244 	gfp_head = gfp_mask;
5245 	if (gfp_head & __GFP_DIRECT_RECLAIM)
5246 		gfp_head |= __GFP_RETRY_MAYFAIL;
5247 
5248 	*errcode = -ENOBUFS;
5249 	skb = alloc_skb(header_len, gfp_head);
5250 	if (!skb)
5251 		return NULL;
5252 
5253 	skb->truesize += npages << PAGE_SHIFT;
5254 
5255 	for (i = 0; npages > 0; i++) {
5256 		int order = max_page_order;
5257 
5258 		while (order) {
5259 			if (npages >= 1 << order) {
5260 				page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) |
5261 						   __GFP_COMP |
5262 						   __GFP_NOWARN |
5263 						   __GFP_NORETRY,
5264 						   order);
5265 				if (page)
5266 					goto fill_page;
5267 				/* Do not retry other high order allocations */
5268 				order = 1;
5269 				max_page_order = 0;
5270 			}
5271 			order--;
5272 		}
5273 		page = alloc_page(gfp_mask);
5274 		if (!page)
5275 			goto failure;
5276 fill_page:
5277 		chunk = min_t(unsigned long, data_len,
5278 			      PAGE_SIZE << order);
5279 		skb_fill_page_desc(skb, i, page, 0, chunk);
5280 		data_len -= chunk;
5281 		npages -= 1 << order;
5282 	}
5283 	return skb;
5284 
5285 failure:
5286 	kfree_skb(skb);
5287 	return NULL;
5288 }
5289 EXPORT_SYMBOL(alloc_skb_with_frags);
5290 
5291 /* carve out the first off bytes from skb when off < headlen */
5292 static int pskb_carve_inside_header(struct sk_buff *skb, const u32 off,
5293 				    const int headlen, gfp_t gfp_mask)
5294 {
5295 	int i;
5296 	int size = skb_end_offset(skb);
5297 	int new_hlen = headlen - off;
5298 	u8 *data;
5299 
5300 	size = SKB_DATA_ALIGN(size);
5301 
5302 	if (skb_pfmemalloc(skb))
5303 		gfp_mask |= __GFP_MEMALLOC;
5304 	data = kmalloc_reserve(size +
5305 			       SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
5306 			       gfp_mask, NUMA_NO_NODE, NULL);
5307 	if (!data)
5308 		return -ENOMEM;
5309 
5310 	size = SKB_WITH_OVERHEAD(ksize(data));
5311 
5312 	/* Copy real data, and all frags */
5313 	skb_copy_from_linear_data_offset(skb, off, data, new_hlen);
5314 	skb->len -= off;
5315 
5316 	memcpy((struct skb_shared_info *)(data + size),
5317 	       skb_shinfo(skb),
5318 	       offsetof(struct skb_shared_info,
5319 			frags[skb_shinfo(skb)->nr_frags]));
5320 	if (skb_cloned(skb)) {
5321 		/* drop the old head gracefully */
5322 		if (skb_orphan_frags(skb, gfp_mask)) {
5323 			kfree(data);
5324 			return -ENOMEM;
5325 		}
5326 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
5327 			skb_frag_ref(skb, i);
5328 		if (skb_has_frag_list(skb))
5329 			skb_clone_fraglist(skb);
5330 		skb_release_data(skb);
5331 	} else {
5332 		/* we can reuse existing recount- all we did was
5333 		 * relocate values
5334 		 */
5335 		skb_free_head(skb);
5336 	}
5337 
5338 	skb->head = data;
5339 	skb->data = data;
5340 	skb->head_frag = 0;
5341 #ifdef NET_SKBUFF_DATA_USES_OFFSET
5342 	skb->end = size;
5343 #else
5344 	skb->end = skb->head + size;
5345 #endif
5346 	skb_set_tail_pointer(skb, skb_headlen(skb));
5347 	skb_headers_offset_update(skb, 0);
5348 	skb->cloned = 0;
5349 	skb->hdr_len = 0;
5350 	skb->nohdr = 0;
5351 	atomic_set(&skb_shinfo(skb)->dataref, 1);
5352 
5353 	return 0;
5354 }
5355 
5356 static int pskb_carve(struct sk_buff *skb, const u32 off, gfp_t gfp);
5357 
5358 /* carve out the first eat bytes from skb's frag_list. May recurse into
5359  * pskb_carve()
5360  */
5361 static int pskb_carve_frag_list(struct sk_buff *skb,
5362 				struct skb_shared_info *shinfo, int eat,
5363 				gfp_t gfp_mask)
5364 {
5365 	struct sk_buff *list = shinfo->frag_list;
5366 	struct sk_buff *clone = NULL;
5367 	struct sk_buff *insp = NULL;
5368 
5369 	do {
5370 		if (!list) {
5371 			pr_err("Not enough bytes to eat. Want %d\n", eat);
5372 			return -EFAULT;
5373 		}
5374 		if (list->len <= eat) {
5375 			/* Eaten as whole. */
5376 			eat -= list->len;
5377 			list = list->next;
5378 			insp = list;
5379 		} else {
5380 			/* Eaten partially. */
5381 			if (skb_shared(list)) {
5382 				clone = skb_clone(list, gfp_mask);
5383 				if (!clone)
5384 					return -ENOMEM;
5385 				insp = list->next;
5386 				list = clone;
5387 			} else {
5388 				/* This may be pulled without problems. */
5389 				insp = list;
5390 			}
5391 			if (pskb_carve(list, eat, gfp_mask) < 0) {
5392 				kfree_skb(clone);
5393 				return -ENOMEM;
5394 			}
5395 			break;
5396 		}
5397 	} while (eat);
5398 
5399 	/* Free pulled out fragments. */
5400 	while ((list = shinfo->frag_list) != insp) {
5401 		shinfo->frag_list = list->next;
5402 		kfree_skb(list);
5403 	}
5404 	/* And insert new clone at head. */
5405 	if (clone) {
5406 		clone->next = list;
5407 		shinfo->frag_list = clone;
5408 	}
5409 	return 0;
5410 }
5411 
5412 /* carve off first len bytes from skb. Split line (off) is in the
5413  * non-linear part of skb
5414  */
5415 static int pskb_carve_inside_nonlinear(struct sk_buff *skb, const u32 off,
5416 				       int pos, gfp_t gfp_mask)
5417 {
5418 	int i, k = 0;
5419 	int size = skb_end_offset(skb);
5420 	u8 *data;
5421 	const int nfrags = skb_shinfo(skb)->nr_frags;
5422 	struct skb_shared_info *shinfo;
5423 
5424 	size = SKB_DATA_ALIGN(size);
5425 
5426 	if (skb_pfmemalloc(skb))
5427 		gfp_mask |= __GFP_MEMALLOC;
5428 	data = kmalloc_reserve(size +
5429 			       SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
5430 			       gfp_mask, NUMA_NO_NODE, NULL);
5431 	if (!data)
5432 		return -ENOMEM;
5433 
5434 	size = SKB_WITH_OVERHEAD(ksize(data));
5435 
5436 	memcpy((struct skb_shared_info *)(data + size),
5437 	       skb_shinfo(skb), offsetof(struct skb_shared_info,
5438 					 frags[skb_shinfo(skb)->nr_frags]));
5439 	if (skb_orphan_frags(skb, gfp_mask)) {
5440 		kfree(data);
5441 		return -ENOMEM;
5442 	}
5443 	shinfo = (struct skb_shared_info *)(data + size);
5444 	for (i = 0; i < nfrags; i++) {
5445 		int fsize = skb_frag_size(&skb_shinfo(skb)->frags[i]);
5446 
5447 		if (pos + fsize > off) {
5448 			shinfo->frags[k] = skb_shinfo(skb)->frags[i];
5449 
5450 			if (pos < off) {
5451 				/* Split frag.
5452 				 * We have two variants in this case:
5453 				 * 1. Move all the frag to the second
5454 				 *    part, if it is possible. F.e.
5455 				 *    this approach is mandatory for TUX,
5456 				 *    where splitting is expensive.
5457 				 * 2. Split is accurately. We make this.
5458 				 */
5459 				shinfo->frags[0].page_offset += off - pos;
5460 				skb_frag_size_sub(&shinfo->frags[0], off - pos);
5461 			}
5462 			skb_frag_ref(skb, i);
5463 			k++;
5464 		}
5465 		pos += fsize;
5466 	}
5467 	shinfo->nr_frags = k;
5468 	if (skb_has_frag_list(skb))
5469 		skb_clone_fraglist(skb);
5470 
5471 	if (k == 0) {
5472 		/* split line is in frag list */
5473 		pskb_carve_frag_list(skb, shinfo, off - pos, gfp_mask);
5474 	}
5475 	skb_release_data(skb);
5476 
5477 	skb->head = data;
5478 	skb->head_frag = 0;
5479 	skb->data = data;
5480 #ifdef NET_SKBUFF_DATA_USES_OFFSET
5481 	skb->end = size;
5482 #else
5483 	skb->end = skb->head + size;
5484 #endif
5485 	skb_reset_tail_pointer(skb);
5486 	skb_headers_offset_update(skb, 0);
5487 	skb->cloned   = 0;
5488 	skb->hdr_len  = 0;
5489 	skb->nohdr    = 0;
5490 	skb->len -= off;
5491 	skb->data_len = skb->len;
5492 	atomic_set(&skb_shinfo(skb)->dataref, 1);
5493 	return 0;
5494 }
5495 
5496 /* remove len bytes from the beginning of the skb */
5497 static int pskb_carve(struct sk_buff *skb, const u32 len, gfp_t gfp)
5498 {
5499 	int headlen = skb_headlen(skb);
5500 
5501 	if (len < headlen)
5502 		return pskb_carve_inside_header(skb, len, headlen, gfp);
5503 	else
5504 		return pskb_carve_inside_nonlinear(skb, len, headlen, gfp);
5505 }
5506 
5507 /* Extract to_copy bytes starting at off from skb, and return this in
5508  * a new skb
5509  */
5510 struct sk_buff *pskb_extract(struct sk_buff *skb, int off,
5511 			     int to_copy, gfp_t gfp)
5512 {
5513 	struct sk_buff  *clone = skb_clone(skb, gfp);
5514 
5515 	if (!clone)
5516 		return NULL;
5517 
5518 	if (pskb_carve(clone, off, gfp) < 0 ||
5519 	    pskb_trim(clone, to_copy)) {
5520 		kfree_skb(clone);
5521 		return NULL;
5522 	}
5523 	return clone;
5524 }
5525 EXPORT_SYMBOL(pskb_extract);
5526 
5527 /**
5528  * skb_condense - try to get rid of fragments/frag_list if possible
5529  * @skb: buffer
5530  *
5531  * Can be used to save memory before skb is added to a busy queue.
5532  * If packet has bytes in frags and enough tail room in skb->head,
5533  * pull all of them, so that we can free the frags right now and adjust
5534  * truesize.
5535  * Notes:
5536  *	We do not reallocate skb->head thus can not fail.
5537  *	Caller must re-evaluate skb->truesize if needed.
5538  */
5539 void skb_condense(struct sk_buff *skb)
5540 {
5541 	if (skb->data_len) {
5542 		if (skb->data_len > skb->end - skb->tail ||
5543 		    skb_cloned(skb))
5544 			return;
5545 
5546 		/* Nice, we can free page frag(s) right now */
5547 		__pskb_pull_tail(skb, skb->data_len);
5548 	}
5549 	/* At this point, skb->truesize might be over estimated,
5550 	 * because skb had a fragment, and fragments do not tell
5551 	 * their truesize.
5552 	 * When we pulled its content into skb->head, fragment
5553 	 * was freed, but __pskb_pull_tail() could not possibly
5554 	 * adjust skb->truesize, not knowing the frag truesize.
5555 	 */
5556 	skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
5557 }
5558