1 /* 2 * Routines having to do with the 'struct sk_buff' memory handlers. 3 * 4 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk> 5 * Florian La Roche <rzsfl@rz.uni-sb.de> 6 * 7 * Fixes: 8 * Alan Cox : Fixed the worst of the load 9 * balancer bugs. 10 * Dave Platt : Interrupt stacking fix. 11 * Richard Kooijman : Timestamp fixes. 12 * Alan Cox : Changed buffer format. 13 * Alan Cox : destructor hook for AF_UNIX etc. 14 * Linus Torvalds : Better skb_clone. 15 * Alan Cox : Added skb_copy. 16 * Alan Cox : Added all the changed routines Linus 17 * only put in the headers 18 * Ray VanTassle : Fixed --skb->lock in free 19 * Alan Cox : skb_copy copy arp field 20 * Andi Kleen : slabified it. 21 * Robert Olsson : Removed skb_head_pool 22 * 23 * NOTE: 24 * The __skb_ routines should be called with interrupts 25 * disabled, or you better be *real* sure that the operation is atomic 26 * with respect to whatever list is being frobbed (e.g. via lock_sock() 27 * or via disabling bottom half handlers, etc). 28 * 29 * This program is free software; you can redistribute it and/or 30 * modify it under the terms of the GNU General Public License 31 * as published by the Free Software Foundation; either version 32 * 2 of the License, or (at your option) any later version. 33 */ 34 35 /* 36 * The functions in this file will not compile correctly with gcc 2.4.x 37 */ 38 39 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 40 41 #include <linux/module.h> 42 #include <linux/types.h> 43 #include <linux/kernel.h> 44 #include <linux/kmemcheck.h> 45 #include <linux/mm.h> 46 #include <linux/interrupt.h> 47 #include <linux/in.h> 48 #include <linux/inet.h> 49 #include <linux/slab.h> 50 #include <linux/netdevice.h> 51 #ifdef CONFIG_NET_CLS_ACT 52 #include <net/pkt_sched.h> 53 #endif 54 #include <linux/string.h> 55 #include <linux/skbuff.h> 56 #include <linux/splice.h> 57 #include <linux/cache.h> 58 #include <linux/rtnetlink.h> 59 #include <linux/init.h> 60 #include <linux/scatterlist.h> 61 #include <linux/errqueue.h> 62 #include <linux/prefetch.h> 63 64 #include <net/protocol.h> 65 #include <net/dst.h> 66 #include <net/sock.h> 67 #include <net/checksum.h> 68 #include <net/xfrm.h> 69 70 #include <asm/uaccess.h> 71 #include <trace/events/skb.h> 72 #include <linux/highmem.h> 73 74 struct kmem_cache *skbuff_head_cache __read_mostly; 75 static struct kmem_cache *skbuff_fclone_cache __read_mostly; 76 77 static void sock_pipe_buf_release(struct pipe_inode_info *pipe, 78 struct pipe_buffer *buf) 79 { 80 put_page(buf->page); 81 } 82 83 static void sock_pipe_buf_get(struct pipe_inode_info *pipe, 84 struct pipe_buffer *buf) 85 { 86 get_page(buf->page); 87 } 88 89 static int sock_pipe_buf_steal(struct pipe_inode_info *pipe, 90 struct pipe_buffer *buf) 91 { 92 return 1; 93 } 94 95 96 /* Pipe buffer operations for a socket. */ 97 static const struct pipe_buf_operations sock_pipe_buf_ops = { 98 .can_merge = 0, 99 .map = generic_pipe_buf_map, 100 .unmap = generic_pipe_buf_unmap, 101 .confirm = generic_pipe_buf_confirm, 102 .release = sock_pipe_buf_release, 103 .steal = sock_pipe_buf_steal, 104 .get = sock_pipe_buf_get, 105 }; 106 107 /* 108 * Keep out-of-line to prevent kernel bloat. 109 * __builtin_return_address is not used because it is not always 110 * reliable. 111 */ 112 113 /** 114 * skb_over_panic - private function 115 * @skb: buffer 116 * @sz: size 117 * @here: address 118 * 119 * Out of line support code for skb_put(). Not user callable. 120 */ 121 static void skb_over_panic(struct sk_buff *skb, int sz, void *here) 122 { 123 pr_emerg("%s: text:%p len:%d put:%d head:%p data:%p tail:%#lx end:%#lx dev:%s\n", 124 __func__, here, skb->len, sz, skb->head, skb->data, 125 (unsigned long)skb->tail, (unsigned long)skb->end, 126 skb->dev ? skb->dev->name : "<NULL>"); 127 BUG(); 128 } 129 130 /** 131 * skb_under_panic - private function 132 * @skb: buffer 133 * @sz: size 134 * @here: address 135 * 136 * Out of line support code for skb_push(). Not user callable. 137 */ 138 139 static void skb_under_panic(struct sk_buff *skb, int sz, void *here) 140 { 141 pr_emerg("%s: text:%p len:%d put:%d head:%p data:%p tail:%#lx end:%#lx dev:%s\n", 142 __func__, here, skb->len, sz, skb->head, skb->data, 143 (unsigned long)skb->tail, (unsigned long)skb->end, 144 skb->dev ? skb->dev->name : "<NULL>"); 145 BUG(); 146 } 147 148 149 /* 150 * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells 151 * the caller if emergency pfmemalloc reserves are being used. If it is and 152 * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves 153 * may be used. Otherwise, the packet data may be discarded until enough 154 * memory is free 155 */ 156 #define kmalloc_reserve(size, gfp, node, pfmemalloc) \ 157 __kmalloc_reserve(size, gfp, node, _RET_IP_, pfmemalloc) 158 void *__kmalloc_reserve(size_t size, gfp_t flags, int node, unsigned long ip, 159 bool *pfmemalloc) 160 { 161 void *obj; 162 bool ret_pfmemalloc = false; 163 164 /* 165 * Try a regular allocation, when that fails and we're not entitled 166 * to the reserves, fail. 167 */ 168 obj = kmalloc_node_track_caller(size, 169 flags | __GFP_NOMEMALLOC | __GFP_NOWARN, 170 node); 171 if (obj || !(gfp_pfmemalloc_allowed(flags))) 172 goto out; 173 174 /* Try again but now we are using pfmemalloc reserves */ 175 ret_pfmemalloc = true; 176 obj = kmalloc_node_track_caller(size, flags, node); 177 178 out: 179 if (pfmemalloc) 180 *pfmemalloc = ret_pfmemalloc; 181 182 return obj; 183 } 184 185 /* Allocate a new skbuff. We do this ourselves so we can fill in a few 186 * 'private' fields and also do memory statistics to find all the 187 * [BEEP] leaks. 188 * 189 */ 190 191 /** 192 * __alloc_skb - allocate a network buffer 193 * @size: size to allocate 194 * @gfp_mask: allocation mask 195 * @flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache 196 * instead of head cache and allocate a cloned (child) skb. 197 * If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for 198 * allocations in case the data is required for writeback 199 * @node: numa node to allocate memory on 200 * 201 * Allocate a new &sk_buff. The returned buffer has no headroom and a 202 * tail room of at least size bytes. The object has a reference count 203 * of one. The return is the buffer. On a failure the return is %NULL. 204 * 205 * Buffers may only be allocated from interrupts using a @gfp_mask of 206 * %GFP_ATOMIC. 207 */ 208 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask, 209 int flags, int node) 210 { 211 struct kmem_cache *cache; 212 struct skb_shared_info *shinfo; 213 struct sk_buff *skb; 214 u8 *data; 215 bool pfmemalloc; 216 217 cache = (flags & SKB_ALLOC_FCLONE) 218 ? skbuff_fclone_cache : skbuff_head_cache; 219 220 if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX)) 221 gfp_mask |= __GFP_MEMALLOC; 222 223 /* Get the HEAD */ 224 skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node); 225 if (!skb) 226 goto out; 227 prefetchw(skb); 228 229 /* We do our best to align skb_shared_info on a separate cache 230 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives 231 * aligned memory blocks, unless SLUB/SLAB debug is enabled. 232 * Both skb->head and skb_shared_info are cache line aligned. 233 */ 234 size = SKB_DATA_ALIGN(size); 235 size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 236 data = kmalloc_reserve(size, gfp_mask, node, &pfmemalloc); 237 if (!data) 238 goto nodata; 239 /* kmalloc(size) might give us more room than requested. 240 * Put skb_shared_info exactly at the end of allocated zone, 241 * to allow max possible filling before reallocation. 242 */ 243 size = SKB_WITH_OVERHEAD(ksize(data)); 244 prefetchw(data + size); 245 246 /* 247 * Only clear those fields we need to clear, not those that we will 248 * actually initialise below. Hence, don't put any more fields after 249 * the tail pointer in struct sk_buff! 250 */ 251 memset(skb, 0, offsetof(struct sk_buff, tail)); 252 /* Account for allocated memory : skb + skb->head */ 253 skb->truesize = SKB_TRUESIZE(size); 254 skb->pfmemalloc = pfmemalloc; 255 atomic_set(&skb->users, 1); 256 skb->head = data; 257 skb->data = data; 258 skb_reset_tail_pointer(skb); 259 skb->end = skb->tail + size; 260 #ifdef NET_SKBUFF_DATA_USES_OFFSET 261 skb->mac_header = ~0U; 262 #endif 263 264 /* make sure we initialize shinfo sequentially */ 265 shinfo = skb_shinfo(skb); 266 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref)); 267 atomic_set(&shinfo->dataref, 1); 268 kmemcheck_annotate_variable(shinfo->destructor_arg); 269 270 if (flags & SKB_ALLOC_FCLONE) { 271 struct sk_buff *child = skb + 1; 272 atomic_t *fclone_ref = (atomic_t *) (child + 1); 273 274 kmemcheck_annotate_bitfield(child, flags1); 275 kmemcheck_annotate_bitfield(child, flags2); 276 skb->fclone = SKB_FCLONE_ORIG; 277 atomic_set(fclone_ref, 1); 278 279 child->fclone = SKB_FCLONE_UNAVAILABLE; 280 child->pfmemalloc = pfmemalloc; 281 } 282 out: 283 return skb; 284 nodata: 285 kmem_cache_free(cache, skb); 286 skb = NULL; 287 goto out; 288 } 289 EXPORT_SYMBOL(__alloc_skb); 290 291 /** 292 * build_skb - build a network buffer 293 * @data: data buffer provided by caller 294 * @frag_size: size of fragment, or 0 if head was kmalloced 295 * 296 * Allocate a new &sk_buff. Caller provides space holding head and 297 * skb_shared_info. @data must have been allocated by kmalloc() 298 * The return is the new skb buffer. 299 * On a failure the return is %NULL, and @data is not freed. 300 * Notes : 301 * Before IO, driver allocates only data buffer where NIC put incoming frame 302 * Driver should add room at head (NET_SKB_PAD) and 303 * MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info)) 304 * After IO, driver calls build_skb(), to allocate sk_buff and populate it 305 * before giving packet to stack. 306 * RX rings only contains data buffers, not full skbs. 307 */ 308 struct sk_buff *build_skb(void *data, unsigned int frag_size) 309 { 310 struct skb_shared_info *shinfo; 311 struct sk_buff *skb; 312 unsigned int size = frag_size ? : ksize(data); 313 314 skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC); 315 if (!skb) 316 return NULL; 317 318 size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 319 320 memset(skb, 0, offsetof(struct sk_buff, tail)); 321 skb->truesize = SKB_TRUESIZE(size); 322 skb->head_frag = frag_size != 0; 323 atomic_set(&skb->users, 1); 324 skb->head = data; 325 skb->data = data; 326 skb_reset_tail_pointer(skb); 327 skb->end = skb->tail + size; 328 #ifdef NET_SKBUFF_DATA_USES_OFFSET 329 skb->mac_header = ~0U; 330 #endif 331 332 /* make sure we initialize shinfo sequentially */ 333 shinfo = skb_shinfo(skb); 334 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref)); 335 atomic_set(&shinfo->dataref, 1); 336 kmemcheck_annotate_variable(shinfo->destructor_arg); 337 338 return skb; 339 } 340 EXPORT_SYMBOL(build_skb); 341 342 struct netdev_alloc_cache { 343 struct page *page; 344 unsigned int offset; 345 unsigned int pagecnt_bias; 346 }; 347 static DEFINE_PER_CPU(struct netdev_alloc_cache, netdev_alloc_cache); 348 349 #define NETDEV_PAGECNT_BIAS (PAGE_SIZE / SMP_CACHE_BYTES) 350 351 static void *__netdev_alloc_frag(unsigned int fragsz, gfp_t gfp_mask) 352 { 353 struct netdev_alloc_cache *nc; 354 void *data = NULL; 355 unsigned long flags; 356 357 local_irq_save(flags); 358 nc = &__get_cpu_var(netdev_alloc_cache); 359 if (unlikely(!nc->page)) { 360 refill: 361 nc->page = alloc_page(gfp_mask); 362 if (unlikely(!nc->page)) 363 goto end; 364 recycle: 365 atomic_set(&nc->page->_count, NETDEV_PAGECNT_BIAS); 366 nc->pagecnt_bias = NETDEV_PAGECNT_BIAS; 367 nc->offset = 0; 368 } 369 370 if (nc->offset + fragsz > PAGE_SIZE) { 371 /* avoid unnecessary locked operations if possible */ 372 if ((atomic_read(&nc->page->_count) == nc->pagecnt_bias) || 373 atomic_sub_and_test(nc->pagecnt_bias, &nc->page->_count)) 374 goto recycle; 375 goto refill; 376 } 377 378 data = page_address(nc->page) + nc->offset; 379 nc->offset += fragsz; 380 nc->pagecnt_bias--; 381 end: 382 local_irq_restore(flags); 383 return data; 384 } 385 386 /** 387 * netdev_alloc_frag - allocate a page fragment 388 * @fragsz: fragment size 389 * 390 * Allocates a frag from a page for receive buffer. 391 * Uses GFP_ATOMIC allocations. 392 */ 393 void *netdev_alloc_frag(unsigned int fragsz) 394 { 395 return __netdev_alloc_frag(fragsz, GFP_ATOMIC | __GFP_COLD); 396 } 397 EXPORT_SYMBOL(netdev_alloc_frag); 398 399 /** 400 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device 401 * @dev: network device to receive on 402 * @length: length to allocate 403 * @gfp_mask: get_free_pages mask, passed to alloc_skb 404 * 405 * Allocate a new &sk_buff and assign it a usage count of one. The 406 * buffer has unspecified headroom built in. Users should allocate 407 * the headroom they think they need without accounting for the 408 * built in space. The built in space is used for optimisations. 409 * 410 * %NULL is returned if there is no free memory. 411 */ 412 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, 413 unsigned int length, gfp_t gfp_mask) 414 { 415 struct sk_buff *skb = NULL; 416 unsigned int fragsz = SKB_DATA_ALIGN(length + NET_SKB_PAD) + 417 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 418 419 if (fragsz <= PAGE_SIZE && !(gfp_mask & (__GFP_WAIT | GFP_DMA))) { 420 void *data; 421 422 if (sk_memalloc_socks()) 423 gfp_mask |= __GFP_MEMALLOC; 424 425 data = __netdev_alloc_frag(fragsz, gfp_mask); 426 427 if (likely(data)) { 428 skb = build_skb(data, fragsz); 429 if (unlikely(!skb)) 430 put_page(virt_to_head_page(data)); 431 } 432 } else { 433 skb = __alloc_skb(length + NET_SKB_PAD, gfp_mask, 434 SKB_ALLOC_RX, NUMA_NO_NODE); 435 } 436 if (likely(skb)) { 437 skb_reserve(skb, NET_SKB_PAD); 438 skb->dev = dev; 439 } 440 return skb; 441 } 442 EXPORT_SYMBOL(__netdev_alloc_skb); 443 444 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off, 445 int size, unsigned int truesize) 446 { 447 skb_fill_page_desc(skb, i, page, off, size); 448 skb->len += size; 449 skb->data_len += size; 450 skb->truesize += truesize; 451 } 452 EXPORT_SYMBOL(skb_add_rx_frag); 453 454 static void skb_drop_list(struct sk_buff **listp) 455 { 456 struct sk_buff *list = *listp; 457 458 *listp = NULL; 459 460 do { 461 struct sk_buff *this = list; 462 list = list->next; 463 kfree_skb(this); 464 } while (list); 465 } 466 467 static inline void skb_drop_fraglist(struct sk_buff *skb) 468 { 469 skb_drop_list(&skb_shinfo(skb)->frag_list); 470 } 471 472 static void skb_clone_fraglist(struct sk_buff *skb) 473 { 474 struct sk_buff *list; 475 476 skb_walk_frags(skb, list) 477 skb_get(list); 478 } 479 480 static void skb_free_head(struct sk_buff *skb) 481 { 482 if (skb->head_frag) 483 put_page(virt_to_head_page(skb->head)); 484 else 485 kfree(skb->head); 486 } 487 488 static void skb_release_data(struct sk_buff *skb) 489 { 490 if (!skb->cloned || 491 !atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1, 492 &skb_shinfo(skb)->dataref)) { 493 if (skb_shinfo(skb)->nr_frags) { 494 int i; 495 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 496 skb_frag_unref(skb, i); 497 } 498 499 /* 500 * If skb buf is from userspace, we need to notify the caller 501 * the lower device DMA has done; 502 */ 503 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) { 504 struct ubuf_info *uarg; 505 506 uarg = skb_shinfo(skb)->destructor_arg; 507 if (uarg->callback) 508 uarg->callback(uarg); 509 } 510 511 if (skb_has_frag_list(skb)) 512 skb_drop_fraglist(skb); 513 514 skb_free_head(skb); 515 } 516 } 517 518 /* 519 * Free an skbuff by memory without cleaning the state. 520 */ 521 static void kfree_skbmem(struct sk_buff *skb) 522 { 523 struct sk_buff *other; 524 atomic_t *fclone_ref; 525 526 switch (skb->fclone) { 527 case SKB_FCLONE_UNAVAILABLE: 528 kmem_cache_free(skbuff_head_cache, skb); 529 break; 530 531 case SKB_FCLONE_ORIG: 532 fclone_ref = (atomic_t *) (skb + 2); 533 if (atomic_dec_and_test(fclone_ref)) 534 kmem_cache_free(skbuff_fclone_cache, skb); 535 break; 536 537 case SKB_FCLONE_CLONE: 538 fclone_ref = (atomic_t *) (skb + 1); 539 other = skb - 1; 540 541 /* The clone portion is available for 542 * fast-cloning again. 543 */ 544 skb->fclone = SKB_FCLONE_UNAVAILABLE; 545 546 if (atomic_dec_and_test(fclone_ref)) 547 kmem_cache_free(skbuff_fclone_cache, other); 548 break; 549 } 550 } 551 552 static void skb_release_head_state(struct sk_buff *skb) 553 { 554 skb_dst_drop(skb); 555 #ifdef CONFIG_XFRM 556 secpath_put(skb->sp); 557 #endif 558 if (skb->destructor) { 559 WARN_ON(in_irq()); 560 skb->destructor(skb); 561 } 562 #if IS_ENABLED(CONFIG_NF_CONNTRACK) 563 nf_conntrack_put(skb->nfct); 564 #endif 565 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED 566 nf_conntrack_put_reasm(skb->nfct_reasm); 567 #endif 568 #ifdef CONFIG_BRIDGE_NETFILTER 569 nf_bridge_put(skb->nf_bridge); 570 #endif 571 /* XXX: IS this still necessary? - JHS */ 572 #ifdef CONFIG_NET_SCHED 573 skb->tc_index = 0; 574 #ifdef CONFIG_NET_CLS_ACT 575 skb->tc_verd = 0; 576 #endif 577 #endif 578 } 579 580 /* Free everything but the sk_buff shell. */ 581 static void skb_release_all(struct sk_buff *skb) 582 { 583 skb_release_head_state(skb); 584 skb_release_data(skb); 585 } 586 587 /** 588 * __kfree_skb - private function 589 * @skb: buffer 590 * 591 * Free an sk_buff. Release anything attached to the buffer. 592 * Clean the state. This is an internal helper function. Users should 593 * always call kfree_skb 594 */ 595 596 void __kfree_skb(struct sk_buff *skb) 597 { 598 skb_release_all(skb); 599 kfree_skbmem(skb); 600 } 601 EXPORT_SYMBOL(__kfree_skb); 602 603 /** 604 * kfree_skb - free an sk_buff 605 * @skb: buffer to free 606 * 607 * Drop a reference to the buffer and free it if the usage count has 608 * hit zero. 609 */ 610 void kfree_skb(struct sk_buff *skb) 611 { 612 if (unlikely(!skb)) 613 return; 614 if (likely(atomic_read(&skb->users) == 1)) 615 smp_rmb(); 616 else if (likely(!atomic_dec_and_test(&skb->users))) 617 return; 618 trace_kfree_skb(skb, __builtin_return_address(0)); 619 __kfree_skb(skb); 620 } 621 EXPORT_SYMBOL(kfree_skb); 622 623 /** 624 * consume_skb - free an skbuff 625 * @skb: buffer to free 626 * 627 * Drop a ref to the buffer and free it if the usage count has hit zero 628 * Functions identically to kfree_skb, but kfree_skb assumes that the frame 629 * is being dropped after a failure and notes that 630 */ 631 void consume_skb(struct sk_buff *skb) 632 { 633 if (unlikely(!skb)) 634 return; 635 if (likely(atomic_read(&skb->users) == 1)) 636 smp_rmb(); 637 else if (likely(!atomic_dec_and_test(&skb->users))) 638 return; 639 trace_consume_skb(skb); 640 __kfree_skb(skb); 641 } 642 EXPORT_SYMBOL(consume_skb); 643 644 /** 645 * skb_recycle - clean up an skb for reuse 646 * @skb: buffer 647 * 648 * Recycles the skb to be reused as a receive buffer. This 649 * function does any necessary reference count dropping, and 650 * cleans up the skbuff as if it just came from __alloc_skb(). 651 */ 652 void skb_recycle(struct sk_buff *skb) 653 { 654 struct skb_shared_info *shinfo; 655 656 skb_release_head_state(skb); 657 658 shinfo = skb_shinfo(skb); 659 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref)); 660 atomic_set(&shinfo->dataref, 1); 661 662 memset(skb, 0, offsetof(struct sk_buff, tail)); 663 skb->data = skb->head + NET_SKB_PAD; 664 skb_reset_tail_pointer(skb); 665 } 666 EXPORT_SYMBOL(skb_recycle); 667 668 /** 669 * skb_recycle_check - check if skb can be reused for receive 670 * @skb: buffer 671 * @skb_size: minimum receive buffer size 672 * 673 * Checks that the skb passed in is not shared or cloned, and 674 * that it is linear and its head portion at least as large as 675 * skb_size so that it can be recycled as a receive buffer. 676 * If these conditions are met, this function does any necessary 677 * reference count dropping and cleans up the skbuff as if it 678 * just came from __alloc_skb(). 679 */ 680 bool skb_recycle_check(struct sk_buff *skb, int skb_size) 681 { 682 if (!skb_is_recycleable(skb, skb_size)) 683 return false; 684 685 skb_recycle(skb); 686 687 return true; 688 } 689 EXPORT_SYMBOL(skb_recycle_check); 690 691 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old) 692 { 693 new->tstamp = old->tstamp; 694 new->dev = old->dev; 695 new->transport_header = old->transport_header; 696 new->network_header = old->network_header; 697 new->mac_header = old->mac_header; 698 skb_dst_copy(new, old); 699 new->rxhash = old->rxhash; 700 new->ooo_okay = old->ooo_okay; 701 new->l4_rxhash = old->l4_rxhash; 702 new->no_fcs = old->no_fcs; 703 #ifdef CONFIG_XFRM 704 new->sp = secpath_get(old->sp); 705 #endif 706 memcpy(new->cb, old->cb, sizeof(old->cb)); 707 new->csum = old->csum; 708 new->local_df = old->local_df; 709 new->pkt_type = old->pkt_type; 710 new->ip_summed = old->ip_summed; 711 skb_copy_queue_mapping(new, old); 712 new->priority = old->priority; 713 #if IS_ENABLED(CONFIG_IP_VS) 714 new->ipvs_property = old->ipvs_property; 715 #endif 716 new->pfmemalloc = old->pfmemalloc; 717 new->protocol = old->protocol; 718 new->mark = old->mark; 719 new->skb_iif = old->skb_iif; 720 __nf_copy(new, old); 721 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) 722 new->nf_trace = old->nf_trace; 723 #endif 724 #ifdef CONFIG_NET_SCHED 725 new->tc_index = old->tc_index; 726 #ifdef CONFIG_NET_CLS_ACT 727 new->tc_verd = old->tc_verd; 728 #endif 729 #endif 730 new->vlan_tci = old->vlan_tci; 731 732 skb_copy_secmark(new, old); 733 } 734 735 /* 736 * You should not add any new code to this function. Add it to 737 * __copy_skb_header above instead. 738 */ 739 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb) 740 { 741 #define C(x) n->x = skb->x 742 743 n->next = n->prev = NULL; 744 n->sk = NULL; 745 __copy_skb_header(n, skb); 746 747 C(len); 748 C(data_len); 749 C(mac_len); 750 n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len; 751 n->cloned = 1; 752 n->nohdr = 0; 753 n->destructor = NULL; 754 C(tail); 755 C(end); 756 C(head); 757 C(head_frag); 758 C(data); 759 C(truesize); 760 atomic_set(&n->users, 1); 761 762 atomic_inc(&(skb_shinfo(skb)->dataref)); 763 skb->cloned = 1; 764 765 return n; 766 #undef C 767 } 768 769 /** 770 * skb_morph - morph one skb into another 771 * @dst: the skb to receive the contents 772 * @src: the skb to supply the contents 773 * 774 * This is identical to skb_clone except that the target skb is 775 * supplied by the user. 776 * 777 * The target skb is returned upon exit. 778 */ 779 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src) 780 { 781 skb_release_all(dst); 782 return __skb_clone(dst, src); 783 } 784 EXPORT_SYMBOL_GPL(skb_morph); 785 786 /** 787 * skb_copy_ubufs - copy userspace skb frags buffers to kernel 788 * @skb: the skb to modify 789 * @gfp_mask: allocation priority 790 * 791 * This must be called on SKBTX_DEV_ZEROCOPY skb. 792 * It will copy all frags into kernel and drop the reference 793 * to userspace pages. 794 * 795 * If this function is called from an interrupt gfp_mask() must be 796 * %GFP_ATOMIC. 797 * 798 * Returns 0 on success or a negative error code on failure 799 * to allocate kernel memory to copy to. 800 */ 801 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask) 802 { 803 int i; 804 int num_frags = skb_shinfo(skb)->nr_frags; 805 struct page *page, *head = NULL; 806 struct ubuf_info *uarg = skb_shinfo(skb)->destructor_arg; 807 808 for (i = 0; i < num_frags; i++) { 809 u8 *vaddr; 810 skb_frag_t *f = &skb_shinfo(skb)->frags[i]; 811 812 page = alloc_page(gfp_mask); 813 if (!page) { 814 while (head) { 815 struct page *next = (struct page *)head->private; 816 put_page(head); 817 head = next; 818 } 819 return -ENOMEM; 820 } 821 vaddr = kmap_atomic(skb_frag_page(f)); 822 memcpy(page_address(page), 823 vaddr + f->page_offset, skb_frag_size(f)); 824 kunmap_atomic(vaddr); 825 page->private = (unsigned long)head; 826 head = page; 827 } 828 829 /* skb frags release userspace buffers */ 830 for (i = 0; i < num_frags; i++) 831 skb_frag_unref(skb, i); 832 833 uarg->callback(uarg); 834 835 /* skb frags point to kernel buffers */ 836 for (i = num_frags - 1; i >= 0; i--) { 837 __skb_fill_page_desc(skb, i, head, 0, 838 skb_shinfo(skb)->frags[i].size); 839 head = (struct page *)head->private; 840 } 841 842 skb_shinfo(skb)->tx_flags &= ~SKBTX_DEV_ZEROCOPY; 843 return 0; 844 } 845 EXPORT_SYMBOL_GPL(skb_copy_ubufs); 846 847 /** 848 * skb_clone - duplicate an sk_buff 849 * @skb: buffer to clone 850 * @gfp_mask: allocation priority 851 * 852 * Duplicate an &sk_buff. The new one is not owned by a socket. Both 853 * copies share the same packet data but not structure. The new 854 * buffer has a reference count of 1. If the allocation fails the 855 * function returns %NULL otherwise the new buffer is returned. 856 * 857 * If this function is called from an interrupt gfp_mask() must be 858 * %GFP_ATOMIC. 859 */ 860 861 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask) 862 { 863 struct sk_buff *n; 864 865 if (skb_orphan_frags(skb, gfp_mask)) 866 return NULL; 867 868 n = skb + 1; 869 if (skb->fclone == SKB_FCLONE_ORIG && 870 n->fclone == SKB_FCLONE_UNAVAILABLE) { 871 atomic_t *fclone_ref = (atomic_t *) (n + 1); 872 n->fclone = SKB_FCLONE_CLONE; 873 atomic_inc(fclone_ref); 874 } else { 875 if (skb_pfmemalloc(skb)) 876 gfp_mask |= __GFP_MEMALLOC; 877 878 n = kmem_cache_alloc(skbuff_head_cache, gfp_mask); 879 if (!n) 880 return NULL; 881 882 kmemcheck_annotate_bitfield(n, flags1); 883 kmemcheck_annotate_bitfield(n, flags2); 884 n->fclone = SKB_FCLONE_UNAVAILABLE; 885 } 886 887 return __skb_clone(n, skb); 888 } 889 EXPORT_SYMBOL(skb_clone); 890 891 static void copy_skb_header(struct sk_buff *new, const struct sk_buff *old) 892 { 893 #ifndef NET_SKBUFF_DATA_USES_OFFSET 894 /* 895 * Shift between the two data areas in bytes 896 */ 897 unsigned long offset = new->data - old->data; 898 #endif 899 900 __copy_skb_header(new, old); 901 902 #ifndef NET_SKBUFF_DATA_USES_OFFSET 903 /* {transport,network,mac}_header are relative to skb->head */ 904 new->transport_header += offset; 905 new->network_header += offset; 906 if (skb_mac_header_was_set(new)) 907 new->mac_header += offset; 908 #endif 909 skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size; 910 skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs; 911 skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type; 912 } 913 914 static inline int skb_alloc_rx_flag(const struct sk_buff *skb) 915 { 916 if (skb_pfmemalloc(skb)) 917 return SKB_ALLOC_RX; 918 return 0; 919 } 920 921 /** 922 * skb_copy - create private copy of an sk_buff 923 * @skb: buffer to copy 924 * @gfp_mask: allocation priority 925 * 926 * Make a copy of both an &sk_buff and its data. This is used when the 927 * caller wishes to modify the data and needs a private copy of the 928 * data to alter. Returns %NULL on failure or the pointer to the buffer 929 * on success. The returned buffer has a reference count of 1. 930 * 931 * As by-product this function converts non-linear &sk_buff to linear 932 * one, so that &sk_buff becomes completely private and caller is allowed 933 * to modify all the data of returned buffer. This means that this 934 * function is not recommended for use in circumstances when only 935 * header is going to be modified. Use pskb_copy() instead. 936 */ 937 938 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask) 939 { 940 int headerlen = skb_headroom(skb); 941 unsigned int size = skb_end_offset(skb) + skb->data_len; 942 struct sk_buff *n = __alloc_skb(size, gfp_mask, 943 skb_alloc_rx_flag(skb), NUMA_NO_NODE); 944 945 if (!n) 946 return NULL; 947 948 /* Set the data pointer */ 949 skb_reserve(n, headerlen); 950 /* Set the tail pointer and length */ 951 skb_put(n, skb->len); 952 953 if (skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len)) 954 BUG(); 955 956 copy_skb_header(n, skb); 957 return n; 958 } 959 EXPORT_SYMBOL(skb_copy); 960 961 /** 962 * __pskb_copy - create copy of an sk_buff with private head. 963 * @skb: buffer to copy 964 * @headroom: headroom of new skb 965 * @gfp_mask: allocation priority 966 * 967 * Make a copy of both an &sk_buff and part of its data, located 968 * in header. Fragmented data remain shared. This is used when 969 * the caller wishes to modify only header of &sk_buff and needs 970 * private copy of the header to alter. Returns %NULL on failure 971 * or the pointer to the buffer on success. 972 * The returned buffer has a reference count of 1. 973 */ 974 975 struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom, gfp_t gfp_mask) 976 { 977 unsigned int size = skb_headlen(skb) + headroom; 978 struct sk_buff *n = __alloc_skb(size, gfp_mask, 979 skb_alloc_rx_flag(skb), NUMA_NO_NODE); 980 981 if (!n) 982 goto out; 983 984 /* Set the data pointer */ 985 skb_reserve(n, headroom); 986 /* Set the tail pointer and length */ 987 skb_put(n, skb_headlen(skb)); 988 /* Copy the bytes */ 989 skb_copy_from_linear_data(skb, n->data, n->len); 990 991 n->truesize += skb->data_len; 992 n->data_len = skb->data_len; 993 n->len = skb->len; 994 995 if (skb_shinfo(skb)->nr_frags) { 996 int i; 997 998 if (skb_orphan_frags(skb, gfp_mask)) { 999 kfree_skb(n); 1000 n = NULL; 1001 goto out; 1002 } 1003 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1004 skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i]; 1005 skb_frag_ref(skb, i); 1006 } 1007 skb_shinfo(n)->nr_frags = i; 1008 } 1009 1010 if (skb_has_frag_list(skb)) { 1011 skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list; 1012 skb_clone_fraglist(n); 1013 } 1014 1015 copy_skb_header(n, skb); 1016 out: 1017 return n; 1018 } 1019 EXPORT_SYMBOL(__pskb_copy); 1020 1021 /** 1022 * pskb_expand_head - reallocate header of &sk_buff 1023 * @skb: buffer to reallocate 1024 * @nhead: room to add at head 1025 * @ntail: room to add at tail 1026 * @gfp_mask: allocation priority 1027 * 1028 * Expands (or creates identical copy, if &nhead and &ntail are zero) 1029 * header of skb. &sk_buff itself is not changed. &sk_buff MUST have 1030 * reference count of 1. Returns zero in the case of success or error, 1031 * if expansion failed. In the last case, &sk_buff is not changed. 1032 * 1033 * All the pointers pointing into skb header may change and must be 1034 * reloaded after call to this function. 1035 */ 1036 1037 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, 1038 gfp_t gfp_mask) 1039 { 1040 int i; 1041 u8 *data; 1042 int size = nhead + skb_end_offset(skb) + ntail; 1043 long off; 1044 1045 BUG_ON(nhead < 0); 1046 1047 if (skb_shared(skb)) 1048 BUG(); 1049 1050 size = SKB_DATA_ALIGN(size); 1051 1052 if (skb_pfmemalloc(skb)) 1053 gfp_mask |= __GFP_MEMALLOC; 1054 data = kmalloc_reserve(size + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)), 1055 gfp_mask, NUMA_NO_NODE, NULL); 1056 if (!data) 1057 goto nodata; 1058 size = SKB_WITH_OVERHEAD(ksize(data)); 1059 1060 /* Copy only real data... and, alas, header. This should be 1061 * optimized for the cases when header is void. 1062 */ 1063 memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head); 1064 1065 memcpy((struct skb_shared_info *)(data + size), 1066 skb_shinfo(skb), 1067 offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags])); 1068 1069 /* 1070 * if shinfo is shared we must drop the old head gracefully, but if it 1071 * is not we can just drop the old head and let the existing refcount 1072 * be since all we did is relocate the values 1073 */ 1074 if (skb_cloned(skb)) { 1075 /* copy this zero copy skb frags */ 1076 if (skb_orphan_frags(skb, gfp_mask)) 1077 goto nofrags; 1078 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 1079 skb_frag_ref(skb, i); 1080 1081 if (skb_has_frag_list(skb)) 1082 skb_clone_fraglist(skb); 1083 1084 skb_release_data(skb); 1085 } else { 1086 skb_free_head(skb); 1087 } 1088 off = (data + nhead) - skb->head; 1089 1090 skb->head = data; 1091 skb->head_frag = 0; 1092 skb->data += off; 1093 #ifdef NET_SKBUFF_DATA_USES_OFFSET 1094 skb->end = size; 1095 off = nhead; 1096 #else 1097 skb->end = skb->head + size; 1098 #endif 1099 /* {transport,network,mac}_header and tail are relative to skb->head */ 1100 skb->tail += off; 1101 skb->transport_header += off; 1102 skb->network_header += off; 1103 if (skb_mac_header_was_set(skb)) 1104 skb->mac_header += off; 1105 /* Only adjust this if it actually is csum_start rather than csum */ 1106 if (skb->ip_summed == CHECKSUM_PARTIAL) 1107 skb->csum_start += nhead; 1108 skb->cloned = 0; 1109 skb->hdr_len = 0; 1110 skb->nohdr = 0; 1111 atomic_set(&skb_shinfo(skb)->dataref, 1); 1112 return 0; 1113 1114 nofrags: 1115 kfree(data); 1116 nodata: 1117 return -ENOMEM; 1118 } 1119 EXPORT_SYMBOL(pskb_expand_head); 1120 1121 /* Make private copy of skb with writable head and some headroom */ 1122 1123 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom) 1124 { 1125 struct sk_buff *skb2; 1126 int delta = headroom - skb_headroom(skb); 1127 1128 if (delta <= 0) 1129 skb2 = pskb_copy(skb, GFP_ATOMIC); 1130 else { 1131 skb2 = skb_clone(skb, GFP_ATOMIC); 1132 if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0, 1133 GFP_ATOMIC)) { 1134 kfree_skb(skb2); 1135 skb2 = NULL; 1136 } 1137 } 1138 return skb2; 1139 } 1140 EXPORT_SYMBOL(skb_realloc_headroom); 1141 1142 /** 1143 * skb_copy_expand - copy and expand sk_buff 1144 * @skb: buffer to copy 1145 * @newheadroom: new free bytes at head 1146 * @newtailroom: new free bytes at tail 1147 * @gfp_mask: allocation priority 1148 * 1149 * Make a copy of both an &sk_buff and its data and while doing so 1150 * allocate additional space. 1151 * 1152 * This is used when the caller wishes to modify the data and needs a 1153 * private copy of the data to alter as well as more space for new fields. 1154 * Returns %NULL on failure or the pointer to the buffer 1155 * on success. The returned buffer has a reference count of 1. 1156 * 1157 * You must pass %GFP_ATOMIC as the allocation priority if this function 1158 * is called from an interrupt. 1159 */ 1160 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, 1161 int newheadroom, int newtailroom, 1162 gfp_t gfp_mask) 1163 { 1164 /* 1165 * Allocate the copy buffer 1166 */ 1167 struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom, 1168 gfp_mask, skb_alloc_rx_flag(skb), 1169 NUMA_NO_NODE); 1170 int oldheadroom = skb_headroom(skb); 1171 int head_copy_len, head_copy_off; 1172 int off; 1173 1174 if (!n) 1175 return NULL; 1176 1177 skb_reserve(n, newheadroom); 1178 1179 /* Set the tail pointer and length */ 1180 skb_put(n, skb->len); 1181 1182 head_copy_len = oldheadroom; 1183 head_copy_off = 0; 1184 if (newheadroom <= head_copy_len) 1185 head_copy_len = newheadroom; 1186 else 1187 head_copy_off = newheadroom - head_copy_len; 1188 1189 /* Copy the linear header and data. */ 1190 if (skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off, 1191 skb->len + head_copy_len)) 1192 BUG(); 1193 1194 copy_skb_header(n, skb); 1195 1196 off = newheadroom - oldheadroom; 1197 if (n->ip_summed == CHECKSUM_PARTIAL) 1198 n->csum_start += off; 1199 #ifdef NET_SKBUFF_DATA_USES_OFFSET 1200 n->transport_header += off; 1201 n->network_header += off; 1202 if (skb_mac_header_was_set(skb)) 1203 n->mac_header += off; 1204 #endif 1205 1206 return n; 1207 } 1208 EXPORT_SYMBOL(skb_copy_expand); 1209 1210 /** 1211 * skb_pad - zero pad the tail of an skb 1212 * @skb: buffer to pad 1213 * @pad: space to pad 1214 * 1215 * Ensure that a buffer is followed by a padding area that is zero 1216 * filled. Used by network drivers which may DMA or transfer data 1217 * beyond the buffer end onto the wire. 1218 * 1219 * May return error in out of memory cases. The skb is freed on error. 1220 */ 1221 1222 int skb_pad(struct sk_buff *skb, int pad) 1223 { 1224 int err; 1225 int ntail; 1226 1227 /* If the skbuff is non linear tailroom is always zero.. */ 1228 if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) { 1229 memset(skb->data+skb->len, 0, pad); 1230 return 0; 1231 } 1232 1233 ntail = skb->data_len + pad - (skb->end - skb->tail); 1234 if (likely(skb_cloned(skb) || ntail > 0)) { 1235 err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC); 1236 if (unlikely(err)) 1237 goto free_skb; 1238 } 1239 1240 /* FIXME: The use of this function with non-linear skb's really needs 1241 * to be audited. 1242 */ 1243 err = skb_linearize(skb); 1244 if (unlikely(err)) 1245 goto free_skb; 1246 1247 memset(skb->data + skb->len, 0, pad); 1248 return 0; 1249 1250 free_skb: 1251 kfree_skb(skb); 1252 return err; 1253 } 1254 EXPORT_SYMBOL(skb_pad); 1255 1256 /** 1257 * skb_put - add data to a buffer 1258 * @skb: buffer to use 1259 * @len: amount of data to add 1260 * 1261 * This function extends the used data area of the buffer. If this would 1262 * exceed the total buffer size the kernel will panic. A pointer to the 1263 * first byte of the extra data is returned. 1264 */ 1265 unsigned char *skb_put(struct sk_buff *skb, unsigned int len) 1266 { 1267 unsigned char *tmp = skb_tail_pointer(skb); 1268 SKB_LINEAR_ASSERT(skb); 1269 skb->tail += len; 1270 skb->len += len; 1271 if (unlikely(skb->tail > skb->end)) 1272 skb_over_panic(skb, len, __builtin_return_address(0)); 1273 return tmp; 1274 } 1275 EXPORT_SYMBOL(skb_put); 1276 1277 /** 1278 * skb_push - add data to the start of a buffer 1279 * @skb: buffer to use 1280 * @len: amount of data to add 1281 * 1282 * This function extends the used data area of the buffer at the buffer 1283 * start. If this would exceed the total buffer headroom the kernel will 1284 * panic. A pointer to the first byte of the extra data is returned. 1285 */ 1286 unsigned char *skb_push(struct sk_buff *skb, unsigned int len) 1287 { 1288 skb->data -= len; 1289 skb->len += len; 1290 if (unlikely(skb->data<skb->head)) 1291 skb_under_panic(skb, len, __builtin_return_address(0)); 1292 return skb->data; 1293 } 1294 EXPORT_SYMBOL(skb_push); 1295 1296 /** 1297 * skb_pull - remove data from the start of a buffer 1298 * @skb: buffer to use 1299 * @len: amount of data to remove 1300 * 1301 * This function removes data from the start of a buffer, returning 1302 * the memory to the headroom. A pointer to the next data in the buffer 1303 * is returned. Once the data has been pulled future pushes will overwrite 1304 * the old data. 1305 */ 1306 unsigned char *skb_pull(struct sk_buff *skb, unsigned int len) 1307 { 1308 return skb_pull_inline(skb, len); 1309 } 1310 EXPORT_SYMBOL(skb_pull); 1311 1312 /** 1313 * skb_trim - remove end from a buffer 1314 * @skb: buffer to alter 1315 * @len: new length 1316 * 1317 * Cut the length of a buffer down by removing data from the tail. If 1318 * the buffer is already under the length specified it is not modified. 1319 * The skb must be linear. 1320 */ 1321 void skb_trim(struct sk_buff *skb, unsigned int len) 1322 { 1323 if (skb->len > len) 1324 __skb_trim(skb, len); 1325 } 1326 EXPORT_SYMBOL(skb_trim); 1327 1328 /* Trims skb to length len. It can change skb pointers. 1329 */ 1330 1331 int ___pskb_trim(struct sk_buff *skb, unsigned int len) 1332 { 1333 struct sk_buff **fragp; 1334 struct sk_buff *frag; 1335 int offset = skb_headlen(skb); 1336 int nfrags = skb_shinfo(skb)->nr_frags; 1337 int i; 1338 int err; 1339 1340 if (skb_cloned(skb) && 1341 unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))) 1342 return err; 1343 1344 i = 0; 1345 if (offset >= len) 1346 goto drop_pages; 1347 1348 for (; i < nfrags; i++) { 1349 int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]); 1350 1351 if (end < len) { 1352 offset = end; 1353 continue; 1354 } 1355 1356 skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset); 1357 1358 drop_pages: 1359 skb_shinfo(skb)->nr_frags = i; 1360 1361 for (; i < nfrags; i++) 1362 skb_frag_unref(skb, i); 1363 1364 if (skb_has_frag_list(skb)) 1365 skb_drop_fraglist(skb); 1366 goto done; 1367 } 1368 1369 for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp); 1370 fragp = &frag->next) { 1371 int end = offset + frag->len; 1372 1373 if (skb_shared(frag)) { 1374 struct sk_buff *nfrag; 1375 1376 nfrag = skb_clone(frag, GFP_ATOMIC); 1377 if (unlikely(!nfrag)) 1378 return -ENOMEM; 1379 1380 nfrag->next = frag->next; 1381 consume_skb(frag); 1382 frag = nfrag; 1383 *fragp = frag; 1384 } 1385 1386 if (end < len) { 1387 offset = end; 1388 continue; 1389 } 1390 1391 if (end > len && 1392 unlikely((err = pskb_trim(frag, len - offset)))) 1393 return err; 1394 1395 if (frag->next) 1396 skb_drop_list(&frag->next); 1397 break; 1398 } 1399 1400 done: 1401 if (len > skb_headlen(skb)) { 1402 skb->data_len -= skb->len - len; 1403 skb->len = len; 1404 } else { 1405 skb->len = len; 1406 skb->data_len = 0; 1407 skb_set_tail_pointer(skb, len); 1408 } 1409 1410 return 0; 1411 } 1412 EXPORT_SYMBOL(___pskb_trim); 1413 1414 /** 1415 * __pskb_pull_tail - advance tail of skb header 1416 * @skb: buffer to reallocate 1417 * @delta: number of bytes to advance tail 1418 * 1419 * The function makes a sense only on a fragmented &sk_buff, 1420 * it expands header moving its tail forward and copying necessary 1421 * data from fragmented part. 1422 * 1423 * &sk_buff MUST have reference count of 1. 1424 * 1425 * Returns %NULL (and &sk_buff does not change) if pull failed 1426 * or value of new tail of skb in the case of success. 1427 * 1428 * All the pointers pointing into skb header may change and must be 1429 * reloaded after call to this function. 1430 */ 1431 1432 /* Moves tail of skb head forward, copying data from fragmented part, 1433 * when it is necessary. 1434 * 1. It may fail due to malloc failure. 1435 * 2. It may change skb pointers. 1436 * 1437 * It is pretty complicated. Luckily, it is called only in exceptional cases. 1438 */ 1439 unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta) 1440 { 1441 /* If skb has not enough free space at tail, get new one 1442 * plus 128 bytes for future expansions. If we have enough 1443 * room at tail, reallocate without expansion only if skb is cloned. 1444 */ 1445 int i, k, eat = (skb->tail + delta) - skb->end; 1446 1447 if (eat > 0 || skb_cloned(skb)) { 1448 if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0, 1449 GFP_ATOMIC)) 1450 return NULL; 1451 } 1452 1453 if (skb_copy_bits(skb, skb_headlen(skb), skb_tail_pointer(skb), delta)) 1454 BUG(); 1455 1456 /* Optimization: no fragments, no reasons to preestimate 1457 * size of pulled pages. Superb. 1458 */ 1459 if (!skb_has_frag_list(skb)) 1460 goto pull_pages; 1461 1462 /* Estimate size of pulled pages. */ 1463 eat = delta; 1464 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1465 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 1466 1467 if (size >= eat) 1468 goto pull_pages; 1469 eat -= size; 1470 } 1471 1472 /* If we need update frag list, we are in troubles. 1473 * Certainly, it possible to add an offset to skb data, 1474 * but taking into account that pulling is expected to 1475 * be very rare operation, it is worth to fight against 1476 * further bloating skb head and crucify ourselves here instead. 1477 * Pure masohism, indeed. 8)8) 1478 */ 1479 if (eat) { 1480 struct sk_buff *list = skb_shinfo(skb)->frag_list; 1481 struct sk_buff *clone = NULL; 1482 struct sk_buff *insp = NULL; 1483 1484 do { 1485 BUG_ON(!list); 1486 1487 if (list->len <= eat) { 1488 /* Eaten as whole. */ 1489 eat -= list->len; 1490 list = list->next; 1491 insp = list; 1492 } else { 1493 /* Eaten partially. */ 1494 1495 if (skb_shared(list)) { 1496 /* Sucks! We need to fork list. :-( */ 1497 clone = skb_clone(list, GFP_ATOMIC); 1498 if (!clone) 1499 return NULL; 1500 insp = list->next; 1501 list = clone; 1502 } else { 1503 /* This may be pulled without 1504 * problems. */ 1505 insp = list; 1506 } 1507 if (!pskb_pull(list, eat)) { 1508 kfree_skb(clone); 1509 return NULL; 1510 } 1511 break; 1512 } 1513 } while (eat); 1514 1515 /* Free pulled out fragments. */ 1516 while ((list = skb_shinfo(skb)->frag_list) != insp) { 1517 skb_shinfo(skb)->frag_list = list->next; 1518 kfree_skb(list); 1519 } 1520 /* And insert new clone at head. */ 1521 if (clone) { 1522 clone->next = list; 1523 skb_shinfo(skb)->frag_list = clone; 1524 } 1525 } 1526 /* Success! Now we may commit changes to skb data. */ 1527 1528 pull_pages: 1529 eat = delta; 1530 k = 0; 1531 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1532 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 1533 1534 if (size <= eat) { 1535 skb_frag_unref(skb, i); 1536 eat -= size; 1537 } else { 1538 skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i]; 1539 if (eat) { 1540 skb_shinfo(skb)->frags[k].page_offset += eat; 1541 skb_frag_size_sub(&skb_shinfo(skb)->frags[k], eat); 1542 eat = 0; 1543 } 1544 k++; 1545 } 1546 } 1547 skb_shinfo(skb)->nr_frags = k; 1548 1549 skb->tail += delta; 1550 skb->data_len -= delta; 1551 1552 return skb_tail_pointer(skb); 1553 } 1554 EXPORT_SYMBOL(__pskb_pull_tail); 1555 1556 /** 1557 * skb_copy_bits - copy bits from skb to kernel buffer 1558 * @skb: source skb 1559 * @offset: offset in source 1560 * @to: destination buffer 1561 * @len: number of bytes to copy 1562 * 1563 * Copy the specified number of bytes from the source skb to the 1564 * destination buffer. 1565 * 1566 * CAUTION ! : 1567 * If its prototype is ever changed, 1568 * check arch/{*}/net/{*}.S files, 1569 * since it is called from BPF assembly code. 1570 */ 1571 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len) 1572 { 1573 int start = skb_headlen(skb); 1574 struct sk_buff *frag_iter; 1575 int i, copy; 1576 1577 if (offset > (int)skb->len - len) 1578 goto fault; 1579 1580 /* Copy header. */ 1581 if ((copy = start - offset) > 0) { 1582 if (copy > len) 1583 copy = len; 1584 skb_copy_from_linear_data_offset(skb, offset, to, copy); 1585 if ((len -= copy) == 0) 1586 return 0; 1587 offset += copy; 1588 to += copy; 1589 } 1590 1591 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1592 int end; 1593 skb_frag_t *f = &skb_shinfo(skb)->frags[i]; 1594 1595 WARN_ON(start > offset + len); 1596 1597 end = start + skb_frag_size(f); 1598 if ((copy = end - offset) > 0) { 1599 u8 *vaddr; 1600 1601 if (copy > len) 1602 copy = len; 1603 1604 vaddr = kmap_atomic(skb_frag_page(f)); 1605 memcpy(to, 1606 vaddr + f->page_offset + offset - start, 1607 copy); 1608 kunmap_atomic(vaddr); 1609 1610 if ((len -= copy) == 0) 1611 return 0; 1612 offset += copy; 1613 to += copy; 1614 } 1615 start = end; 1616 } 1617 1618 skb_walk_frags(skb, frag_iter) { 1619 int end; 1620 1621 WARN_ON(start > offset + len); 1622 1623 end = start + frag_iter->len; 1624 if ((copy = end - offset) > 0) { 1625 if (copy > len) 1626 copy = len; 1627 if (skb_copy_bits(frag_iter, offset - start, to, copy)) 1628 goto fault; 1629 if ((len -= copy) == 0) 1630 return 0; 1631 offset += copy; 1632 to += copy; 1633 } 1634 start = end; 1635 } 1636 1637 if (!len) 1638 return 0; 1639 1640 fault: 1641 return -EFAULT; 1642 } 1643 EXPORT_SYMBOL(skb_copy_bits); 1644 1645 /* 1646 * Callback from splice_to_pipe(), if we need to release some pages 1647 * at the end of the spd in case we error'ed out in filling the pipe. 1648 */ 1649 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i) 1650 { 1651 put_page(spd->pages[i]); 1652 } 1653 1654 static struct page *linear_to_page(struct page *page, unsigned int *len, 1655 unsigned int *offset, 1656 struct sk_buff *skb, struct sock *sk) 1657 { 1658 struct page *p = sk->sk_sndmsg_page; 1659 unsigned int off; 1660 1661 if (!p) { 1662 new_page: 1663 p = sk->sk_sndmsg_page = alloc_pages(sk->sk_allocation, 0); 1664 if (!p) 1665 return NULL; 1666 1667 off = sk->sk_sndmsg_off = 0; 1668 /* hold one ref to this page until it's full */ 1669 } else { 1670 unsigned int mlen; 1671 1672 /* If we are the only user of the page, we can reset offset */ 1673 if (page_count(p) == 1) 1674 sk->sk_sndmsg_off = 0; 1675 off = sk->sk_sndmsg_off; 1676 mlen = PAGE_SIZE - off; 1677 if (mlen < 64 && mlen < *len) { 1678 put_page(p); 1679 goto new_page; 1680 } 1681 1682 *len = min_t(unsigned int, *len, mlen); 1683 } 1684 1685 memcpy(page_address(p) + off, page_address(page) + *offset, *len); 1686 sk->sk_sndmsg_off += *len; 1687 *offset = off; 1688 1689 return p; 1690 } 1691 1692 static bool spd_can_coalesce(const struct splice_pipe_desc *spd, 1693 struct page *page, 1694 unsigned int offset) 1695 { 1696 return spd->nr_pages && 1697 spd->pages[spd->nr_pages - 1] == page && 1698 (spd->partial[spd->nr_pages - 1].offset + 1699 spd->partial[spd->nr_pages - 1].len == offset); 1700 } 1701 1702 /* 1703 * Fill page/offset/length into spd, if it can hold more pages. 1704 */ 1705 static bool spd_fill_page(struct splice_pipe_desc *spd, 1706 struct pipe_inode_info *pipe, struct page *page, 1707 unsigned int *len, unsigned int offset, 1708 struct sk_buff *skb, bool linear, 1709 struct sock *sk) 1710 { 1711 if (unlikely(spd->nr_pages == MAX_SKB_FRAGS)) 1712 return true; 1713 1714 if (linear) { 1715 page = linear_to_page(page, len, &offset, skb, sk); 1716 if (!page) 1717 return true; 1718 } 1719 if (spd_can_coalesce(spd, page, offset)) { 1720 spd->partial[spd->nr_pages - 1].len += *len; 1721 return false; 1722 } 1723 get_page(page); 1724 spd->pages[spd->nr_pages] = page; 1725 spd->partial[spd->nr_pages].len = *len; 1726 spd->partial[spd->nr_pages].offset = offset; 1727 spd->nr_pages++; 1728 1729 return false; 1730 } 1731 1732 static inline void __segment_seek(struct page **page, unsigned int *poff, 1733 unsigned int *plen, unsigned int off) 1734 { 1735 unsigned long n; 1736 1737 *poff += off; 1738 n = *poff / PAGE_SIZE; 1739 if (n) 1740 *page = nth_page(*page, n); 1741 1742 *poff = *poff % PAGE_SIZE; 1743 *plen -= off; 1744 } 1745 1746 static bool __splice_segment(struct page *page, unsigned int poff, 1747 unsigned int plen, unsigned int *off, 1748 unsigned int *len, struct sk_buff *skb, 1749 struct splice_pipe_desc *spd, bool linear, 1750 struct sock *sk, 1751 struct pipe_inode_info *pipe) 1752 { 1753 if (!*len) 1754 return true; 1755 1756 /* skip this segment if already processed */ 1757 if (*off >= plen) { 1758 *off -= plen; 1759 return false; 1760 } 1761 1762 /* ignore any bits we already processed */ 1763 if (*off) { 1764 __segment_seek(&page, &poff, &plen, *off); 1765 *off = 0; 1766 } 1767 1768 do { 1769 unsigned int flen = min(*len, plen); 1770 1771 /* the linear region may spread across several pages */ 1772 flen = min_t(unsigned int, flen, PAGE_SIZE - poff); 1773 1774 if (spd_fill_page(spd, pipe, page, &flen, poff, skb, linear, sk)) 1775 return true; 1776 1777 __segment_seek(&page, &poff, &plen, flen); 1778 *len -= flen; 1779 1780 } while (*len && plen); 1781 1782 return false; 1783 } 1784 1785 /* 1786 * Map linear and fragment data from the skb to spd. It reports true if the 1787 * pipe is full or if we already spliced the requested length. 1788 */ 1789 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe, 1790 unsigned int *offset, unsigned int *len, 1791 struct splice_pipe_desc *spd, struct sock *sk) 1792 { 1793 int seg; 1794 1795 /* map the linear part : 1796 * If skb->head_frag is set, this 'linear' part is backed by a 1797 * fragment, and if the head is not shared with any clones then 1798 * we can avoid a copy since we own the head portion of this page. 1799 */ 1800 if (__splice_segment(virt_to_page(skb->data), 1801 (unsigned long) skb->data & (PAGE_SIZE - 1), 1802 skb_headlen(skb), 1803 offset, len, skb, spd, 1804 skb_head_is_locked(skb), 1805 sk, pipe)) 1806 return true; 1807 1808 /* 1809 * then map the fragments 1810 */ 1811 for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) { 1812 const skb_frag_t *f = &skb_shinfo(skb)->frags[seg]; 1813 1814 if (__splice_segment(skb_frag_page(f), 1815 f->page_offset, skb_frag_size(f), 1816 offset, len, skb, spd, false, sk, pipe)) 1817 return true; 1818 } 1819 1820 return false; 1821 } 1822 1823 /* 1824 * Map data from the skb to a pipe. Should handle both the linear part, 1825 * the fragments, and the frag list. It does NOT handle frag lists within 1826 * the frag list, if such a thing exists. We'd probably need to recurse to 1827 * handle that cleanly. 1828 */ 1829 int skb_splice_bits(struct sk_buff *skb, unsigned int offset, 1830 struct pipe_inode_info *pipe, unsigned int tlen, 1831 unsigned int flags) 1832 { 1833 struct partial_page partial[MAX_SKB_FRAGS]; 1834 struct page *pages[MAX_SKB_FRAGS]; 1835 struct splice_pipe_desc spd = { 1836 .pages = pages, 1837 .partial = partial, 1838 .nr_pages_max = MAX_SKB_FRAGS, 1839 .flags = flags, 1840 .ops = &sock_pipe_buf_ops, 1841 .spd_release = sock_spd_release, 1842 }; 1843 struct sk_buff *frag_iter; 1844 struct sock *sk = skb->sk; 1845 int ret = 0; 1846 1847 /* 1848 * __skb_splice_bits() only fails if the output has no room left, 1849 * so no point in going over the frag_list for the error case. 1850 */ 1851 if (__skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk)) 1852 goto done; 1853 else if (!tlen) 1854 goto done; 1855 1856 /* 1857 * now see if we have a frag_list to map 1858 */ 1859 skb_walk_frags(skb, frag_iter) { 1860 if (!tlen) 1861 break; 1862 if (__skb_splice_bits(frag_iter, pipe, &offset, &tlen, &spd, sk)) 1863 break; 1864 } 1865 1866 done: 1867 if (spd.nr_pages) { 1868 /* 1869 * Drop the socket lock, otherwise we have reverse 1870 * locking dependencies between sk_lock and i_mutex 1871 * here as compared to sendfile(). We enter here 1872 * with the socket lock held, and splice_to_pipe() will 1873 * grab the pipe inode lock. For sendfile() emulation, 1874 * we call into ->sendpage() with the i_mutex lock held 1875 * and networking will grab the socket lock. 1876 */ 1877 release_sock(sk); 1878 ret = splice_to_pipe(pipe, &spd); 1879 lock_sock(sk); 1880 } 1881 1882 return ret; 1883 } 1884 1885 /** 1886 * skb_store_bits - store bits from kernel buffer to skb 1887 * @skb: destination buffer 1888 * @offset: offset in destination 1889 * @from: source buffer 1890 * @len: number of bytes to copy 1891 * 1892 * Copy the specified number of bytes from the source buffer to the 1893 * destination skb. This function handles all the messy bits of 1894 * traversing fragment lists and such. 1895 */ 1896 1897 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len) 1898 { 1899 int start = skb_headlen(skb); 1900 struct sk_buff *frag_iter; 1901 int i, copy; 1902 1903 if (offset > (int)skb->len - len) 1904 goto fault; 1905 1906 if ((copy = start - offset) > 0) { 1907 if (copy > len) 1908 copy = len; 1909 skb_copy_to_linear_data_offset(skb, offset, from, copy); 1910 if ((len -= copy) == 0) 1911 return 0; 1912 offset += copy; 1913 from += copy; 1914 } 1915 1916 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1917 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 1918 int end; 1919 1920 WARN_ON(start > offset + len); 1921 1922 end = start + skb_frag_size(frag); 1923 if ((copy = end - offset) > 0) { 1924 u8 *vaddr; 1925 1926 if (copy > len) 1927 copy = len; 1928 1929 vaddr = kmap_atomic(skb_frag_page(frag)); 1930 memcpy(vaddr + frag->page_offset + offset - start, 1931 from, copy); 1932 kunmap_atomic(vaddr); 1933 1934 if ((len -= copy) == 0) 1935 return 0; 1936 offset += copy; 1937 from += copy; 1938 } 1939 start = end; 1940 } 1941 1942 skb_walk_frags(skb, frag_iter) { 1943 int end; 1944 1945 WARN_ON(start > offset + len); 1946 1947 end = start + frag_iter->len; 1948 if ((copy = end - offset) > 0) { 1949 if (copy > len) 1950 copy = len; 1951 if (skb_store_bits(frag_iter, offset - start, 1952 from, copy)) 1953 goto fault; 1954 if ((len -= copy) == 0) 1955 return 0; 1956 offset += copy; 1957 from += copy; 1958 } 1959 start = end; 1960 } 1961 if (!len) 1962 return 0; 1963 1964 fault: 1965 return -EFAULT; 1966 } 1967 EXPORT_SYMBOL(skb_store_bits); 1968 1969 /* Checksum skb data. */ 1970 1971 __wsum skb_checksum(const struct sk_buff *skb, int offset, 1972 int len, __wsum csum) 1973 { 1974 int start = skb_headlen(skb); 1975 int i, copy = start - offset; 1976 struct sk_buff *frag_iter; 1977 int pos = 0; 1978 1979 /* Checksum header. */ 1980 if (copy > 0) { 1981 if (copy > len) 1982 copy = len; 1983 csum = csum_partial(skb->data + offset, copy, csum); 1984 if ((len -= copy) == 0) 1985 return csum; 1986 offset += copy; 1987 pos = copy; 1988 } 1989 1990 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1991 int end; 1992 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 1993 1994 WARN_ON(start > offset + len); 1995 1996 end = start + skb_frag_size(frag); 1997 if ((copy = end - offset) > 0) { 1998 __wsum csum2; 1999 u8 *vaddr; 2000 2001 if (copy > len) 2002 copy = len; 2003 vaddr = kmap_atomic(skb_frag_page(frag)); 2004 csum2 = csum_partial(vaddr + frag->page_offset + 2005 offset - start, copy, 0); 2006 kunmap_atomic(vaddr); 2007 csum = csum_block_add(csum, csum2, pos); 2008 if (!(len -= copy)) 2009 return csum; 2010 offset += copy; 2011 pos += copy; 2012 } 2013 start = end; 2014 } 2015 2016 skb_walk_frags(skb, frag_iter) { 2017 int end; 2018 2019 WARN_ON(start > offset + len); 2020 2021 end = start + frag_iter->len; 2022 if ((copy = end - offset) > 0) { 2023 __wsum csum2; 2024 if (copy > len) 2025 copy = len; 2026 csum2 = skb_checksum(frag_iter, offset - start, 2027 copy, 0); 2028 csum = csum_block_add(csum, csum2, pos); 2029 if ((len -= copy) == 0) 2030 return csum; 2031 offset += copy; 2032 pos += copy; 2033 } 2034 start = end; 2035 } 2036 BUG_ON(len); 2037 2038 return csum; 2039 } 2040 EXPORT_SYMBOL(skb_checksum); 2041 2042 /* Both of above in one bottle. */ 2043 2044 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, 2045 u8 *to, int len, __wsum csum) 2046 { 2047 int start = skb_headlen(skb); 2048 int i, copy = start - offset; 2049 struct sk_buff *frag_iter; 2050 int pos = 0; 2051 2052 /* Copy header. */ 2053 if (copy > 0) { 2054 if (copy > len) 2055 copy = len; 2056 csum = csum_partial_copy_nocheck(skb->data + offset, to, 2057 copy, csum); 2058 if ((len -= copy) == 0) 2059 return csum; 2060 offset += copy; 2061 to += copy; 2062 pos = copy; 2063 } 2064 2065 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2066 int end; 2067 2068 WARN_ON(start > offset + len); 2069 2070 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]); 2071 if ((copy = end - offset) > 0) { 2072 __wsum csum2; 2073 u8 *vaddr; 2074 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2075 2076 if (copy > len) 2077 copy = len; 2078 vaddr = kmap_atomic(skb_frag_page(frag)); 2079 csum2 = csum_partial_copy_nocheck(vaddr + 2080 frag->page_offset + 2081 offset - start, to, 2082 copy, 0); 2083 kunmap_atomic(vaddr); 2084 csum = csum_block_add(csum, csum2, pos); 2085 if (!(len -= copy)) 2086 return csum; 2087 offset += copy; 2088 to += copy; 2089 pos += copy; 2090 } 2091 start = end; 2092 } 2093 2094 skb_walk_frags(skb, frag_iter) { 2095 __wsum csum2; 2096 int end; 2097 2098 WARN_ON(start > offset + len); 2099 2100 end = start + frag_iter->len; 2101 if ((copy = end - offset) > 0) { 2102 if (copy > len) 2103 copy = len; 2104 csum2 = skb_copy_and_csum_bits(frag_iter, 2105 offset - start, 2106 to, copy, 0); 2107 csum = csum_block_add(csum, csum2, pos); 2108 if ((len -= copy) == 0) 2109 return csum; 2110 offset += copy; 2111 to += copy; 2112 pos += copy; 2113 } 2114 start = end; 2115 } 2116 BUG_ON(len); 2117 return csum; 2118 } 2119 EXPORT_SYMBOL(skb_copy_and_csum_bits); 2120 2121 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to) 2122 { 2123 __wsum csum; 2124 long csstart; 2125 2126 if (skb->ip_summed == CHECKSUM_PARTIAL) 2127 csstart = skb_checksum_start_offset(skb); 2128 else 2129 csstart = skb_headlen(skb); 2130 2131 BUG_ON(csstart > skb_headlen(skb)); 2132 2133 skb_copy_from_linear_data(skb, to, csstart); 2134 2135 csum = 0; 2136 if (csstart != skb->len) 2137 csum = skb_copy_and_csum_bits(skb, csstart, to + csstart, 2138 skb->len - csstart, 0); 2139 2140 if (skb->ip_summed == CHECKSUM_PARTIAL) { 2141 long csstuff = csstart + skb->csum_offset; 2142 2143 *((__sum16 *)(to + csstuff)) = csum_fold(csum); 2144 } 2145 } 2146 EXPORT_SYMBOL(skb_copy_and_csum_dev); 2147 2148 /** 2149 * skb_dequeue - remove from the head of the queue 2150 * @list: list to dequeue from 2151 * 2152 * Remove the head of the list. The list lock is taken so the function 2153 * may be used safely with other locking list functions. The head item is 2154 * returned or %NULL if the list is empty. 2155 */ 2156 2157 struct sk_buff *skb_dequeue(struct sk_buff_head *list) 2158 { 2159 unsigned long flags; 2160 struct sk_buff *result; 2161 2162 spin_lock_irqsave(&list->lock, flags); 2163 result = __skb_dequeue(list); 2164 spin_unlock_irqrestore(&list->lock, flags); 2165 return result; 2166 } 2167 EXPORT_SYMBOL(skb_dequeue); 2168 2169 /** 2170 * skb_dequeue_tail - remove from the tail of the queue 2171 * @list: list to dequeue from 2172 * 2173 * Remove the tail of the list. The list lock is taken so the function 2174 * may be used safely with other locking list functions. The tail item is 2175 * returned or %NULL if the list is empty. 2176 */ 2177 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list) 2178 { 2179 unsigned long flags; 2180 struct sk_buff *result; 2181 2182 spin_lock_irqsave(&list->lock, flags); 2183 result = __skb_dequeue_tail(list); 2184 spin_unlock_irqrestore(&list->lock, flags); 2185 return result; 2186 } 2187 EXPORT_SYMBOL(skb_dequeue_tail); 2188 2189 /** 2190 * skb_queue_purge - empty a list 2191 * @list: list to empty 2192 * 2193 * Delete all buffers on an &sk_buff list. Each buffer is removed from 2194 * the list and one reference dropped. This function takes the list 2195 * lock and is atomic with respect to other list locking functions. 2196 */ 2197 void skb_queue_purge(struct sk_buff_head *list) 2198 { 2199 struct sk_buff *skb; 2200 while ((skb = skb_dequeue(list)) != NULL) 2201 kfree_skb(skb); 2202 } 2203 EXPORT_SYMBOL(skb_queue_purge); 2204 2205 /** 2206 * skb_queue_head - queue a buffer at the list head 2207 * @list: list to use 2208 * @newsk: buffer to queue 2209 * 2210 * Queue a buffer at the start of the list. This function takes the 2211 * list lock and can be used safely with other locking &sk_buff functions 2212 * safely. 2213 * 2214 * A buffer cannot be placed on two lists at the same time. 2215 */ 2216 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk) 2217 { 2218 unsigned long flags; 2219 2220 spin_lock_irqsave(&list->lock, flags); 2221 __skb_queue_head(list, newsk); 2222 spin_unlock_irqrestore(&list->lock, flags); 2223 } 2224 EXPORT_SYMBOL(skb_queue_head); 2225 2226 /** 2227 * skb_queue_tail - queue a buffer at the list tail 2228 * @list: list to use 2229 * @newsk: buffer to queue 2230 * 2231 * Queue a buffer at the tail of the list. This function takes the 2232 * list lock and can be used safely with other locking &sk_buff functions 2233 * safely. 2234 * 2235 * A buffer cannot be placed on two lists at the same time. 2236 */ 2237 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk) 2238 { 2239 unsigned long flags; 2240 2241 spin_lock_irqsave(&list->lock, flags); 2242 __skb_queue_tail(list, newsk); 2243 spin_unlock_irqrestore(&list->lock, flags); 2244 } 2245 EXPORT_SYMBOL(skb_queue_tail); 2246 2247 /** 2248 * skb_unlink - remove a buffer from a list 2249 * @skb: buffer to remove 2250 * @list: list to use 2251 * 2252 * Remove a packet from a list. The list locks are taken and this 2253 * function is atomic with respect to other list locked calls 2254 * 2255 * You must know what list the SKB is on. 2256 */ 2257 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list) 2258 { 2259 unsigned long flags; 2260 2261 spin_lock_irqsave(&list->lock, flags); 2262 __skb_unlink(skb, list); 2263 spin_unlock_irqrestore(&list->lock, flags); 2264 } 2265 EXPORT_SYMBOL(skb_unlink); 2266 2267 /** 2268 * skb_append - append a buffer 2269 * @old: buffer to insert after 2270 * @newsk: buffer to insert 2271 * @list: list to use 2272 * 2273 * Place a packet after a given packet in a list. The list locks are taken 2274 * and this function is atomic with respect to other list locked calls. 2275 * A buffer cannot be placed on two lists at the same time. 2276 */ 2277 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list) 2278 { 2279 unsigned long flags; 2280 2281 spin_lock_irqsave(&list->lock, flags); 2282 __skb_queue_after(list, old, newsk); 2283 spin_unlock_irqrestore(&list->lock, flags); 2284 } 2285 EXPORT_SYMBOL(skb_append); 2286 2287 /** 2288 * skb_insert - insert a buffer 2289 * @old: buffer to insert before 2290 * @newsk: buffer to insert 2291 * @list: list to use 2292 * 2293 * Place a packet before a given packet in a list. The list locks are 2294 * taken and this function is atomic with respect to other list locked 2295 * calls. 2296 * 2297 * A buffer cannot be placed on two lists at the same time. 2298 */ 2299 void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list) 2300 { 2301 unsigned long flags; 2302 2303 spin_lock_irqsave(&list->lock, flags); 2304 __skb_insert(newsk, old->prev, old, list); 2305 spin_unlock_irqrestore(&list->lock, flags); 2306 } 2307 EXPORT_SYMBOL(skb_insert); 2308 2309 static inline void skb_split_inside_header(struct sk_buff *skb, 2310 struct sk_buff* skb1, 2311 const u32 len, const int pos) 2312 { 2313 int i; 2314 2315 skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len), 2316 pos - len); 2317 /* And move data appendix as is. */ 2318 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 2319 skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i]; 2320 2321 skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags; 2322 skb_shinfo(skb)->nr_frags = 0; 2323 skb1->data_len = skb->data_len; 2324 skb1->len += skb1->data_len; 2325 skb->data_len = 0; 2326 skb->len = len; 2327 skb_set_tail_pointer(skb, len); 2328 } 2329 2330 static inline void skb_split_no_header(struct sk_buff *skb, 2331 struct sk_buff* skb1, 2332 const u32 len, int pos) 2333 { 2334 int i, k = 0; 2335 const int nfrags = skb_shinfo(skb)->nr_frags; 2336 2337 skb_shinfo(skb)->nr_frags = 0; 2338 skb1->len = skb1->data_len = skb->len - len; 2339 skb->len = len; 2340 skb->data_len = len - pos; 2341 2342 for (i = 0; i < nfrags; i++) { 2343 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 2344 2345 if (pos + size > len) { 2346 skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i]; 2347 2348 if (pos < len) { 2349 /* Split frag. 2350 * We have two variants in this case: 2351 * 1. Move all the frag to the second 2352 * part, if it is possible. F.e. 2353 * this approach is mandatory for TUX, 2354 * where splitting is expensive. 2355 * 2. Split is accurately. We make this. 2356 */ 2357 skb_frag_ref(skb, i); 2358 skb_shinfo(skb1)->frags[0].page_offset += len - pos; 2359 skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos); 2360 skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos); 2361 skb_shinfo(skb)->nr_frags++; 2362 } 2363 k++; 2364 } else 2365 skb_shinfo(skb)->nr_frags++; 2366 pos += size; 2367 } 2368 skb_shinfo(skb1)->nr_frags = k; 2369 } 2370 2371 /** 2372 * skb_split - Split fragmented skb to two parts at length len. 2373 * @skb: the buffer to split 2374 * @skb1: the buffer to receive the second part 2375 * @len: new length for skb 2376 */ 2377 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len) 2378 { 2379 int pos = skb_headlen(skb); 2380 2381 if (len < pos) /* Split line is inside header. */ 2382 skb_split_inside_header(skb, skb1, len, pos); 2383 else /* Second chunk has no header, nothing to copy. */ 2384 skb_split_no_header(skb, skb1, len, pos); 2385 } 2386 EXPORT_SYMBOL(skb_split); 2387 2388 /* Shifting from/to a cloned skb is a no-go. 2389 * 2390 * Caller cannot keep skb_shinfo related pointers past calling here! 2391 */ 2392 static int skb_prepare_for_shift(struct sk_buff *skb) 2393 { 2394 return skb_cloned(skb) && pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 2395 } 2396 2397 /** 2398 * skb_shift - Shifts paged data partially from skb to another 2399 * @tgt: buffer into which tail data gets added 2400 * @skb: buffer from which the paged data comes from 2401 * @shiftlen: shift up to this many bytes 2402 * 2403 * Attempts to shift up to shiftlen worth of bytes, which may be less than 2404 * the length of the skb, from skb to tgt. Returns number bytes shifted. 2405 * It's up to caller to free skb if everything was shifted. 2406 * 2407 * If @tgt runs out of frags, the whole operation is aborted. 2408 * 2409 * Skb cannot include anything else but paged data while tgt is allowed 2410 * to have non-paged data as well. 2411 * 2412 * TODO: full sized shift could be optimized but that would need 2413 * specialized skb free'er to handle frags without up-to-date nr_frags. 2414 */ 2415 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen) 2416 { 2417 int from, to, merge, todo; 2418 struct skb_frag_struct *fragfrom, *fragto; 2419 2420 BUG_ON(shiftlen > skb->len); 2421 BUG_ON(skb_headlen(skb)); /* Would corrupt stream */ 2422 2423 todo = shiftlen; 2424 from = 0; 2425 to = skb_shinfo(tgt)->nr_frags; 2426 fragfrom = &skb_shinfo(skb)->frags[from]; 2427 2428 /* Actual merge is delayed until the point when we know we can 2429 * commit all, so that we don't have to undo partial changes 2430 */ 2431 if (!to || 2432 !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom), 2433 fragfrom->page_offset)) { 2434 merge = -1; 2435 } else { 2436 merge = to - 1; 2437 2438 todo -= skb_frag_size(fragfrom); 2439 if (todo < 0) { 2440 if (skb_prepare_for_shift(skb) || 2441 skb_prepare_for_shift(tgt)) 2442 return 0; 2443 2444 /* All previous frag pointers might be stale! */ 2445 fragfrom = &skb_shinfo(skb)->frags[from]; 2446 fragto = &skb_shinfo(tgt)->frags[merge]; 2447 2448 skb_frag_size_add(fragto, shiftlen); 2449 skb_frag_size_sub(fragfrom, shiftlen); 2450 fragfrom->page_offset += shiftlen; 2451 2452 goto onlymerged; 2453 } 2454 2455 from++; 2456 } 2457 2458 /* Skip full, not-fitting skb to avoid expensive operations */ 2459 if ((shiftlen == skb->len) && 2460 (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to)) 2461 return 0; 2462 2463 if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt)) 2464 return 0; 2465 2466 while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) { 2467 if (to == MAX_SKB_FRAGS) 2468 return 0; 2469 2470 fragfrom = &skb_shinfo(skb)->frags[from]; 2471 fragto = &skb_shinfo(tgt)->frags[to]; 2472 2473 if (todo >= skb_frag_size(fragfrom)) { 2474 *fragto = *fragfrom; 2475 todo -= skb_frag_size(fragfrom); 2476 from++; 2477 to++; 2478 2479 } else { 2480 __skb_frag_ref(fragfrom); 2481 fragto->page = fragfrom->page; 2482 fragto->page_offset = fragfrom->page_offset; 2483 skb_frag_size_set(fragto, todo); 2484 2485 fragfrom->page_offset += todo; 2486 skb_frag_size_sub(fragfrom, todo); 2487 todo = 0; 2488 2489 to++; 2490 break; 2491 } 2492 } 2493 2494 /* Ready to "commit" this state change to tgt */ 2495 skb_shinfo(tgt)->nr_frags = to; 2496 2497 if (merge >= 0) { 2498 fragfrom = &skb_shinfo(skb)->frags[0]; 2499 fragto = &skb_shinfo(tgt)->frags[merge]; 2500 2501 skb_frag_size_add(fragto, skb_frag_size(fragfrom)); 2502 __skb_frag_unref(fragfrom); 2503 } 2504 2505 /* Reposition in the original skb */ 2506 to = 0; 2507 while (from < skb_shinfo(skb)->nr_frags) 2508 skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++]; 2509 skb_shinfo(skb)->nr_frags = to; 2510 2511 BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags); 2512 2513 onlymerged: 2514 /* Most likely the tgt won't ever need its checksum anymore, skb on 2515 * the other hand might need it if it needs to be resent 2516 */ 2517 tgt->ip_summed = CHECKSUM_PARTIAL; 2518 skb->ip_summed = CHECKSUM_PARTIAL; 2519 2520 /* Yak, is it really working this way? Some helper please? */ 2521 skb->len -= shiftlen; 2522 skb->data_len -= shiftlen; 2523 skb->truesize -= shiftlen; 2524 tgt->len += shiftlen; 2525 tgt->data_len += shiftlen; 2526 tgt->truesize += shiftlen; 2527 2528 return shiftlen; 2529 } 2530 2531 /** 2532 * skb_prepare_seq_read - Prepare a sequential read of skb data 2533 * @skb: the buffer to read 2534 * @from: lower offset of data to be read 2535 * @to: upper offset of data to be read 2536 * @st: state variable 2537 * 2538 * Initializes the specified state variable. Must be called before 2539 * invoking skb_seq_read() for the first time. 2540 */ 2541 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from, 2542 unsigned int to, struct skb_seq_state *st) 2543 { 2544 st->lower_offset = from; 2545 st->upper_offset = to; 2546 st->root_skb = st->cur_skb = skb; 2547 st->frag_idx = st->stepped_offset = 0; 2548 st->frag_data = NULL; 2549 } 2550 EXPORT_SYMBOL(skb_prepare_seq_read); 2551 2552 /** 2553 * skb_seq_read - Sequentially read skb data 2554 * @consumed: number of bytes consumed by the caller so far 2555 * @data: destination pointer for data to be returned 2556 * @st: state variable 2557 * 2558 * Reads a block of skb data at &consumed relative to the 2559 * lower offset specified to skb_prepare_seq_read(). Assigns 2560 * the head of the data block to &data and returns the length 2561 * of the block or 0 if the end of the skb data or the upper 2562 * offset has been reached. 2563 * 2564 * The caller is not required to consume all of the data 2565 * returned, i.e. &consumed is typically set to the number 2566 * of bytes already consumed and the next call to 2567 * skb_seq_read() will return the remaining part of the block. 2568 * 2569 * Note 1: The size of each block of data returned can be arbitrary, 2570 * this limitation is the cost for zerocopy seqeuental 2571 * reads of potentially non linear data. 2572 * 2573 * Note 2: Fragment lists within fragments are not implemented 2574 * at the moment, state->root_skb could be replaced with 2575 * a stack for this purpose. 2576 */ 2577 unsigned int skb_seq_read(unsigned int consumed, const u8 **data, 2578 struct skb_seq_state *st) 2579 { 2580 unsigned int block_limit, abs_offset = consumed + st->lower_offset; 2581 skb_frag_t *frag; 2582 2583 if (unlikely(abs_offset >= st->upper_offset)) 2584 return 0; 2585 2586 next_skb: 2587 block_limit = skb_headlen(st->cur_skb) + st->stepped_offset; 2588 2589 if (abs_offset < block_limit && !st->frag_data) { 2590 *data = st->cur_skb->data + (abs_offset - st->stepped_offset); 2591 return block_limit - abs_offset; 2592 } 2593 2594 if (st->frag_idx == 0 && !st->frag_data) 2595 st->stepped_offset += skb_headlen(st->cur_skb); 2596 2597 while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) { 2598 frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx]; 2599 block_limit = skb_frag_size(frag) + st->stepped_offset; 2600 2601 if (abs_offset < block_limit) { 2602 if (!st->frag_data) 2603 st->frag_data = kmap_atomic(skb_frag_page(frag)); 2604 2605 *data = (u8 *) st->frag_data + frag->page_offset + 2606 (abs_offset - st->stepped_offset); 2607 2608 return block_limit - abs_offset; 2609 } 2610 2611 if (st->frag_data) { 2612 kunmap_atomic(st->frag_data); 2613 st->frag_data = NULL; 2614 } 2615 2616 st->frag_idx++; 2617 st->stepped_offset += skb_frag_size(frag); 2618 } 2619 2620 if (st->frag_data) { 2621 kunmap_atomic(st->frag_data); 2622 st->frag_data = NULL; 2623 } 2624 2625 if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) { 2626 st->cur_skb = skb_shinfo(st->root_skb)->frag_list; 2627 st->frag_idx = 0; 2628 goto next_skb; 2629 } else if (st->cur_skb->next) { 2630 st->cur_skb = st->cur_skb->next; 2631 st->frag_idx = 0; 2632 goto next_skb; 2633 } 2634 2635 return 0; 2636 } 2637 EXPORT_SYMBOL(skb_seq_read); 2638 2639 /** 2640 * skb_abort_seq_read - Abort a sequential read of skb data 2641 * @st: state variable 2642 * 2643 * Must be called if skb_seq_read() was not called until it 2644 * returned 0. 2645 */ 2646 void skb_abort_seq_read(struct skb_seq_state *st) 2647 { 2648 if (st->frag_data) 2649 kunmap_atomic(st->frag_data); 2650 } 2651 EXPORT_SYMBOL(skb_abort_seq_read); 2652 2653 #define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb)) 2654 2655 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text, 2656 struct ts_config *conf, 2657 struct ts_state *state) 2658 { 2659 return skb_seq_read(offset, text, TS_SKB_CB(state)); 2660 } 2661 2662 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state) 2663 { 2664 skb_abort_seq_read(TS_SKB_CB(state)); 2665 } 2666 2667 /** 2668 * skb_find_text - Find a text pattern in skb data 2669 * @skb: the buffer to look in 2670 * @from: search offset 2671 * @to: search limit 2672 * @config: textsearch configuration 2673 * @state: uninitialized textsearch state variable 2674 * 2675 * Finds a pattern in the skb data according to the specified 2676 * textsearch configuration. Use textsearch_next() to retrieve 2677 * subsequent occurrences of the pattern. Returns the offset 2678 * to the first occurrence or UINT_MAX if no match was found. 2679 */ 2680 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from, 2681 unsigned int to, struct ts_config *config, 2682 struct ts_state *state) 2683 { 2684 unsigned int ret; 2685 2686 config->get_next_block = skb_ts_get_next_block; 2687 config->finish = skb_ts_finish; 2688 2689 skb_prepare_seq_read(skb, from, to, TS_SKB_CB(state)); 2690 2691 ret = textsearch_find(config, state); 2692 return (ret <= to - from ? ret : UINT_MAX); 2693 } 2694 EXPORT_SYMBOL(skb_find_text); 2695 2696 /** 2697 * skb_append_datato_frags - append the user data to a skb 2698 * @sk: sock structure 2699 * @skb: skb structure to be appened with user data. 2700 * @getfrag: call back function to be used for getting the user data 2701 * @from: pointer to user message iov 2702 * @length: length of the iov message 2703 * 2704 * Description: This procedure append the user data in the fragment part 2705 * of the skb if any page alloc fails user this procedure returns -ENOMEM 2706 */ 2707 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb, 2708 int (*getfrag)(void *from, char *to, int offset, 2709 int len, int odd, struct sk_buff *skb), 2710 void *from, int length) 2711 { 2712 int frg_cnt = 0; 2713 skb_frag_t *frag = NULL; 2714 struct page *page = NULL; 2715 int copy, left; 2716 int offset = 0; 2717 int ret; 2718 2719 do { 2720 /* Return error if we don't have space for new frag */ 2721 frg_cnt = skb_shinfo(skb)->nr_frags; 2722 if (frg_cnt >= MAX_SKB_FRAGS) 2723 return -EFAULT; 2724 2725 /* allocate a new page for next frag */ 2726 page = alloc_pages(sk->sk_allocation, 0); 2727 2728 /* If alloc_page fails just return failure and caller will 2729 * free previous allocated pages by doing kfree_skb() 2730 */ 2731 if (page == NULL) 2732 return -ENOMEM; 2733 2734 /* initialize the next frag */ 2735 skb_fill_page_desc(skb, frg_cnt, page, 0, 0); 2736 skb->truesize += PAGE_SIZE; 2737 atomic_add(PAGE_SIZE, &sk->sk_wmem_alloc); 2738 2739 /* get the new initialized frag */ 2740 frg_cnt = skb_shinfo(skb)->nr_frags; 2741 frag = &skb_shinfo(skb)->frags[frg_cnt - 1]; 2742 2743 /* copy the user data to page */ 2744 left = PAGE_SIZE - frag->page_offset; 2745 copy = (length > left)? left : length; 2746 2747 ret = getfrag(from, skb_frag_address(frag) + skb_frag_size(frag), 2748 offset, copy, 0, skb); 2749 if (ret < 0) 2750 return -EFAULT; 2751 2752 /* copy was successful so update the size parameters */ 2753 skb_frag_size_add(frag, copy); 2754 skb->len += copy; 2755 skb->data_len += copy; 2756 offset += copy; 2757 length -= copy; 2758 2759 } while (length > 0); 2760 2761 return 0; 2762 } 2763 EXPORT_SYMBOL(skb_append_datato_frags); 2764 2765 /** 2766 * skb_pull_rcsum - pull skb and update receive checksum 2767 * @skb: buffer to update 2768 * @len: length of data pulled 2769 * 2770 * This function performs an skb_pull on the packet and updates 2771 * the CHECKSUM_COMPLETE checksum. It should be used on 2772 * receive path processing instead of skb_pull unless you know 2773 * that the checksum difference is zero (e.g., a valid IP header) 2774 * or you are setting ip_summed to CHECKSUM_NONE. 2775 */ 2776 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len) 2777 { 2778 BUG_ON(len > skb->len); 2779 skb->len -= len; 2780 BUG_ON(skb->len < skb->data_len); 2781 skb_postpull_rcsum(skb, skb->data, len); 2782 return skb->data += len; 2783 } 2784 EXPORT_SYMBOL_GPL(skb_pull_rcsum); 2785 2786 /** 2787 * skb_segment - Perform protocol segmentation on skb. 2788 * @skb: buffer to segment 2789 * @features: features for the output path (see dev->features) 2790 * 2791 * This function performs segmentation on the given skb. It returns 2792 * a pointer to the first in a list of new skbs for the segments. 2793 * In case of error it returns ERR_PTR(err). 2794 */ 2795 struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features) 2796 { 2797 struct sk_buff *segs = NULL; 2798 struct sk_buff *tail = NULL; 2799 struct sk_buff *fskb = skb_shinfo(skb)->frag_list; 2800 unsigned int mss = skb_shinfo(skb)->gso_size; 2801 unsigned int doffset = skb->data - skb_mac_header(skb); 2802 unsigned int offset = doffset; 2803 unsigned int headroom; 2804 unsigned int len; 2805 int sg = !!(features & NETIF_F_SG); 2806 int nfrags = skb_shinfo(skb)->nr_frags; 2807 int err = -ENOMEM; 2808 int i = 0; 2809 int pos; 2810 2811 __skb_push(skb, doffset); 2812 headroom = skb_headroom(skb); 2813 pos = skb_headlen(skb); 2814 2815 do { 2816 struct sk_buff *nskb; 2817 skb_frag_t *frag; 2818 int hsize; 2819 int size; 2820 2821 len = skb->len - offset; 2822 if (len > mss) 2823 len = mss; 2824 2825 hsize = skb_headlen(skb) - offset; 2826 if (hsize < 0) 2827 hsize = 0; 2828 if (hsize > len || !sg) 2829 hsize = len; 2830 2831 if (!hsize && i >= nfrags) { 2832 BUG_ON(fskb->len != len); 2833 2834 pos += len; 2835 nskb = skb_clone(fskb, GFP_ATOMIC); 2836 fskb = fskb->next; 2837 2838 if (unlikely(!nskb)) 2839 goto err; 2840 2841 hsize = skb_end_offset(nskb); 2842 if (skb_cow_head(nskb, doffset + headroom)) { 2843 kfree_skb(nskb); 2844 goto err; 2845 } 2846 2847 nskb->truesize += skb_end_offset(nskb) - hsize; 2848 skb_release_head_state(nskb); 2849 __skb_push(nskb, doffset); 2850 } else { 2851 nskb = __alloc_skb(hsize + doffset + headroom, 2852 GFP_ATOMIC, skb_alloc_rx_flag(skb), 2853 NUMA_NO_NODE); 2854 2855 if (unlikely(!nskb)) 2856 goto err; 2857 2858 skb_reserve(nskb, headroom); 2859 __skb_put(nskb, doffset); 2860 } 2861 2862 if (segs) 2863 tail->next = nskb; 2864 else 2865 segs = nskb; 2866 tail = nskb; 2867 2868 __copy_skb_header(nskb, skb); 2869 nskb->mac_len = skb->mac_len; 2870 2871 /* nskb and skb might have different headroom */ 2872 if (nskb->ip_summed == CHECKSUM_PARTIAL) 2873 nskb->csum_start += skb_headroom(nskb) - headroom; 2874 2875 skb_reset_mac_header(nskb); 2876 skb_set_network_header(nskb, skb->mac_len); 2877 nskb->transport_header = (nskb->network_header + 2878 skb_network_header_len(skb)); 2879 skb_copy_from_linear_data(skb, nskb->data, doffset); 2880 2881 if (fskb != skb_shinfo(skb)->frag_list) 2882 continue; 2883 2884 if (!sg) { 2885 nskb->ip_summed = CHECKSUM_NONE; 2886 nskb->csum = skb_copy_and_csum_bits(skb, offset, 2887 skb_put(nskb, len), 2888 len, 0); 2889 continue; 2890 } 2891 2892 frag = skb_shinfo(nskb)->frags; 2893 2894 skb_copy_from_linear_data_offset(skb, offset, 2895 skb_put(nskb, hsize), hsize); 2896 2897 while (pos < offset + len && i < nfrags) { 2898 *frag = skb_shinfo(skb)->frags[i]; 2899 __skb_frag_ref(frag); 2900 size = skb_frag_size(frag); 2901 2902 if (pos < offset) { 2903 frag->page_offset += offset - pos; 2904 skb_frag_size_sub(frag, offset - pos); 2905 } 2906 2907 skb_shinfo(nskb)->nr_frags++; 2908 2909 if (pos + size <= offset + len) { 2910 i++; 2911 pos += size; 2912 } else { 2913 skb_frag_size_sub(frag, pos + size - (offset + len)); 2914 goto skip_fraglist; 2915 } 2916 2917 frag++; 2918 } 2919 2920 if (pos < offset + len) { 2921 struct sk_buff *fskb2 = fskb; 2922 2923 BUG_ON(pos + fskb->len != offset + len); 2924 2925 pos += fskb->len; 2926 fskb = fskb->next; 2927 2928 if (fskb2->next) { 2929 fskb2 = skb_clone(fskb2, GFP_ATOMIC); 2930 if (!fskb2) 2931 goto err; 2932 } else 2933 skb_get(fskb2); 2934 2935 SKB_FRAG_ASSERT(nskb); 2936 skb_shinfo(nskb)->frag_list = fskb2; 2937 } 2938 2939 skip_fraglist: 2940 nskb->data_len = len - hsize; 2941 nskb->len += nskb->data_len; 2942 nskb->truesize += nskb->data_len; 2943 } while ((offset += len) < skb->len); 2944 2945 return segs; 2946 2947 err: 2948 while ((skb = segs)) { 2949 segs = skb->next; 2950 kfree_skb(skb); 2951 } 2952 return ERR_PTR(err); 2953 } 2954 EXPORT_SYMBOL_GPL(skb_segment); 2955 2956 int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb) 2957 { 2958 struct sk_buff *p = *head; 2959 struct sk_buff *nskb; 2960 struct skb_shared_info *skbinfo = skb_shinfo(skb); 2961 struct skb_shared_info *pinfo = skb_shinfo(p); 2962 unsigned int headroom; 2963 unsigned int len = skb_gro_len(skb); 2964 unsigned int offset = skb_gro_offset(skb); 2965 unsigned int headlen = skb_headlen(skb); 2966 unsigned int delta_truesize; 2967 2968 if (p->len + len >= 65536) 2969 return -E2BIG; 2970 2971 if (pinfo->frag_list) 2972 goto merge; 2973 else if (headlen <= offset) { 2974 skb_frag_t *frag; 2975 skb_frag_t *frag2; 2976 int i = skbinfo->nr_frags; 2977 int nr_frags = pinfo->nr_frags + i; 2978 2979 offset -= headlen; 2980 2981 if (nr_frags > MAX_SKB_FRAGS) 2982 return -E2BIG; 2983 2984 pinfo->nr_frags = nr_frags; 2985 skbinfo->nr_frags = 0; 2986 2987 frag = pinfo->frags + nr_frags; 2988 frag2 = skbinfo->frags + i; 2989 do { 2990 *--frag = *--frag2; 2991 } while (--i); 2992 2993 frag->page_offset += offset; 2994 skb_frag_size_sub(frag, offset); 2995 2996 /* all fragments truesize : remove (head size + sk_buff) */ 2997 delta_truesize = skb->truesize - 2998 SKB_TRUESIZE(skb_end_offset(skb)); 2999 3000 skb->truesize -= skb->data_len; 3001 skb->len -= skb->data_len; 3002 skb->data_len = 0; 3003 3004 NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE; 3005 goto done; 3006 } else if (skb->head_frag) { 3007 int nr_frags = pinfo->nr_frags; 3008 skb_frag_t *frag = pinfo->frags + nr_frags; 3009 struct page *page = virt_to_head_page(skb->head); 3010 unsigned int first_size = headlen - offset; 3011 unsigned int first_offset; 3012 3013 if (nr_frags + 1 + skbinfo->nr_frags > MAX_SKB_FRAGS) 3014 return -E2BIG; 3015 3016 first_offset = skb->data - 3017 (unsigned char *)page_address(page) + 3018 offset; 3019 3020 pinfo->nr_frags = nr_frags + 1 + skbinfo->nr_frags; 3021 3022 frag->page.p = page; 3023 frag->page_offset = first_offset; 3024 skb_frag_size_set(frag, first_size); 3025 3026 memcpy(frag + 1, skbinfo->frags, sizeof(*frag) * skbinfo->nr_frags); 3027 /* We dont need to clear skbinfo->nr_frags here */ 3028 3029 delta_truesize = skb->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff)); 3030 NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE_STOLEN_HEAD; 3031 goto done; 3032 } else if (skb_gro_len(p) != pinfo->gso_size) 3033 return -E2BIG; 3034 3035 headroom = skb_headroom(p); 3036 nskb = alloc_skb(headroom + skb_gro_offset(p), GFP_ATOMIC); 3037 if (unlikely(!nskb)) 3038 return -ENOMEM; 3039 3040 __copy_skb_header(nskb, p); 3041 nskb->mac_len = p->mac_len; 3042 3043 skb_reserve(nskb, headroom); 3044 __skb_put(nskb, skb_gro_offset(p)); 3045 3046 skb_set_mac_header(nskb, skb_mac_header(p) - p->data); 3047 skb_set_network_header(nskb, skb_network_offset(p)); 3048 skb_set_transport_header(nskb, skb_transport_offset(p)); 3049 3050 __skb_pull(p, skb_gro_offset(p)); 3051 memcpy(skb_mac_header(nskb), skb_mac_header(p), 3052 p->data - skb_mac_header(p)); 3053 3054 *NAPI_GRO_CB(nskb) = *NAPI_GRO_CB(p); 3055 skb_shinfo(nskb)->frag_list = p; 3056 skb_shinfo(nskb)->gso_size = pinfo->gso_size; 3057 pinfo->gso_size = 0; 3058 skb_header_release(p); 3059 nskb->prev = p; 3060 3061 nskb->data_len += p->len; 3062 nskb->truesize += p->truesize; 3063 nskb->len += p->len; 3064 3065 *head = nskb; 3066 nskb->next = p->next; 3067 p->next = NULL; 3068 3069 p = nskb; 3070 3071 merge: 3072 delta_truesize = skb->truesize; 3073 if (offset > headlen) { 3074 unsigned int eat = offset - headlen; 3075 3076 skbinfo->frags[0].page_offset += eat; 3077 skb_frag_size_sub(&skbinfo->frags[0], eat); 3078 skb->data_len -= eat; 3079 skb->len -= eat; 3080 offset = headlen; 3081 } 3082 3083 __skb_pull(skb, offset); 3084 3085 p->prev->next = skb; 3086 p->prev = skb; 3087 skb_header_release(skb); 3088 3089 done: 3090 NAPI_GRO_CB(p)->count++; 3091 p->data_len += len; 3092 p->truesize += delta_truesize; 3093 p->len += len; 3094 3095 NAPI_GRO_CB(skb)->same_flow = 1; 3096 return 0; 3097 } 3098 EXPORT_SYMBOL_GPL(skb_gro_receive); 3099 3100 void __init skb_init(void) 3101 { 3102 skbuff_head_cache = kmem_cache_create("skbuff_head_cache", 3103 sizeof(struct sk_buff), 3104 0, 3105 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 3106 NULL); 3107 skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache", 3108 (2*sizeof(struct sk_buff)) + 3109 sizeof(atomic_t), 3110 0, 3111 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 3112 NULL); 3113 } 3114 3115 /** 3116 * skb_to_sgvec - Fill a scatter-gather list from a socket buffer 3117 * @skb: Socket buffer containing the buffers to be mapped 3118 * @sg: The scatter-gather list to map into 3119 * @offset: The offset into the buffer's contents to start mapping 3120 * @len: Length of buffer space to be mapped 3121 * 3122 * Fill the specified scatter-gather list with mappings/pointers into a 3123 * region of the buffer space attached to a socket buffer. 3124 */ 3125 static int 3126 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len) 3127 { 3128 int start = skb_headlen(skb); 3129 int i, copy = start - offset; 3130 struct sk_buff *frag_iter; 3131 int elt = 0; 3132 3133 if (copy > 0) { 3134 if (copy > len) 3135 copy = len; 3136 sg_set_buf(sg, skb->data + offset, copy); 3137 elt++; 3138 if ((len -= copy) == 0) 3139 return elt; 3140 offset += copy; 3141 } 3142 3143 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 3144 int end; 3145 3146 WARN_ON(start > offset + len); 3147 3148 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]); 3149 if ((copy = end - offset) > 0) { 3150 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 3151 3152 if (copy > len) 3153 copy = len; 3154 sg_set_page(&sg[elt], skb_frag_page(frag), copy, 3155 frag->page_offset+offset-start); 3156 elt++; 3157 if (!(len -= copy)) 3158 return elt; 3159 offset += copy; 3160 } 3161 start = end; 3162 } 3163 3164 skb_walk_frags(skb, frag_iter) { 3165 int end; 3166 3167 WARN_ON(start > offset + len); 3168 3169 end = start + frag_iter->len; 3170 if ((copy = end - offset) > 0) { 3171 if (copy > len) 3172 copy = len; 3173 elt += __skb_to_sgvec(frag_iter, sg+elt, offset - start, 3174 copy); 3175 if ((len -= copy) == 0) 3176 return elt; 3177 offset += copy; 3178 } 3179 start = end; 3180 } 3181 BUG_ON(len); 3182 return elt; 3183 } 3184 3185 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len) 3186 { 3187 int nsg = __skb_to_sgvec(skb, sg, offset, len); 3188 3189 sg_mark_end(&sg[nsg - 1]); 3190 3191 return nsg; 3192 } 3193 EXPORT_SYMBOL_GPL(skb_to_sgvec); 3194 3195 /** 3196 * skb_cow_data - Check that a socket buffer's data buffers are writable 3197 * @skb: The socket buffer to check. 3198 * @tailbits: Amount of trailing space to be added 3199 * @trailer: Returned pointer to the skb where the @tailbits space begins 3200 * 3201 * Make sure that the data buffers attached to a socket buffer are 3202 * writable. If they are not, private copies are made of the data buffers 3203 * and the socket buffer is set to use these instead. 3204 * 3205 * If @tailbits is given, make sure that there is space to write @tailbits 3206 * bytes of data beyond current end of socket buffer. @trailer will be 3207 * set to point to the skb in which this space begins. 3208 * 3209 * The number of scatterlist elements required to completely map the 3210 * COW'd and extended socket buffer will be returned. 3211 */ 3212 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer) 3213 { 3214 int copyflag; 3215 int elt; 3216 struct sk_buff *skb1, **skb_p; 3217 3218 /* If skb is cloned or its head is paged, reallocate 3219 * head pulling out all the pages (pages are considered not writable 3220 * at the moment even if they are anonymous). 3221 */ 3222 if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) && 3223 __pskb_pull_tail(skb, skb_pagelen(skb)-skb_headlen(skb)) == NULL) 3224 return -ENOMEM; 3225 3226 /* Easy case. Most of packets will go this way. */ 3227 if (!skb_has_frag_list(skb)) { 3228 /* A little of trouble, not enough of space for trailer. 3229 * This should not happen, when stack is tuned to generate 3230 * good frames. OK, on miss we reallocate and reserve even more 3231 * space, 128 bytes is fair. */ 3232 3233 if (skb_tailroom(skb) < tailbits && 3234 pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC)) 3235 return -ENOMEM; 3236 3237 /* Voila! */ 3238 *trailer = skb; 3239 return 1; 3240 } 3241 3242 /* Misery. We are in troubles, going to mincer fragments... */ 3243 3244 elt = 1; 3245 skb_p = &skb_shinfo(skb)->frag_list; 3246 copyflag = 0; 3247 3248 while ((skb1 = *skb_p) != NULL) { 3249 int ntail = 0; 3250 3251 /* The fragment is partially pulled by someone, 3252 * this can happen on input. Copy it and everything 3253 * after it. */ 3254 3255 if (skb_shared(skb1)) 3256 copyflag = 1; 3257 3258 /* If the skb is the last, worry about trailer. */ 3259 3260 if (skb1->next == NULL && tailbits) { 3261 if (skb_shinfo(skb1)->nr_frags || 3262 skb_has_frag_list(skb1) || 3263 skb_tailroom(skb1) < tailbits) 3264 ntail = tailbits + 128; 3265 } 3266 3267 if (copyflag || 3268 skb_cloned(skb1) || 3269 ntail || 3270 skb_shinfo(skb1)->nr_frags || 3271 skb_has_frag_list(skb1)) { 3272 struct sk_buff *skb2; 3273 3274 /* Fuck, we are miserable poor guys... */ 3275 if (ntail == 0) 3276 skb2 = skb_copy(skb1, GFP_ATOMIC); 3277 else 3278 skb2 = skb_copy_expand(skb1, 3279 skb_headroom(skb1), 3280 ntail, 3281 GFP_ATOMIC); 3282 if (unlikely(skb2 == NULL)) 3283 return -ENOMEM; 3284 3285 if (skb1->sk) 3286 skb_set_owner_w(skb2, skb1->sk); 3287 3288 /* Looking around. Are we still alive? 3289 * OK, link new skb, drop old one */ 3290 3291 skb2->next = skb1->next; 3292 *skb_p = skb2; 3293 kfree_skb(skb1); 3294 skb1 = skb2; 3295 } 3296 elt++; 3297 *trailer = skb1; 3298 skb_p = &skb1->next; 3299 } 3300 3301 return elt; 3302 } 3303 EXPORT_SYMBOL_GPL(skb_cow_data); 3304 3305 static void sock_rmem_free(struct sk_buff *skb) 3306 { 3307 struct sock *sk = skb->sk; 3308 3309 atomic_sub(skb->truesize, &sk->sk_rmem_alloc); 3310 } 3311 3312 /* 3313 * Note: We dont mem charge error packets (no sk_forward_alloc changes) 3314 */ 3315 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb) 3316 { 3317 int len = skb->len; 3318 3319 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >= 3320 (unsigned int)sk->sk_rcvbuf) 3321 return -ENOMEM; 3322 3323 skb_orphan(skb); 3324 skb->sk = sk; 3325 skb->destructor = sock_rmem_free; 3326 atomic_add(skb->truesize, &sk->sk_rmem_alloc); 3327 3328 /* before exiting rcu section, make sure dst is refcounted */ 3329 skb_dst_force(skb); 3330 3331 skb_queue_tail(&sk->sk_error_queue, skb); 3332 if (!sock_flag(sk, SOCK_DEAD)) 3333 sk->sk_data_ready(sk, len); 3334 return 0; 3335 } 3336 EXPORT_SYMBOL(sock_queue_err_skb); 3337 3338 void skb_tstamp_tx(struct sk_buff *orig_skb, 3339 struct skb_shared_hwtstamps *hwtstamps) 3340 { 3341 struct sock *sk = orig_skb->sk; 3342 struct sock_exterr_skb *serr; 3343 struct sk_buff *skb; 3344 int err; 3345 3346 if (!sk) 3347 return; 3348 3349 skb = skb_clone(orig_skb, GFP_ATOMIC); 3350 if (!skb) 3351 return; 3352 3353 if (hwtstamps) { 3354 *skb_hwtstamps(skb) = 3355 *hwtstamps; 3356 } else { 3357 /* 3358 * no hardware time stamps available, 3359 * so keep the shared tx_flags and only 3360 * store software time stamp 3361 */ 3362 skb->tstamp = ktime_get_real(); 3363 } 3364 3365 serr = SKB_EXT_ERR(skb); 3366 memset(serr, 0, sizeof(*serr)); 3367 serr->ee.ee_errno = ENOMSG; 3368 serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING; 3369 3370 err = sock_queue_err_skb(sk, skb); 3371 3372 if (err) 3373 kfree_skb(skb); 3374 } 3375 EXPORT_SYMBOL_GPL(skb_tstamp_tx); 3376 3377 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked) 3378 { 3379 struct sock *sk = skb->sk; 3380 struct sock_exterr_skb *serr; 3381 int err; 3382 3383 skb->wifi_acked_valid = 1; 3384 skb->wifi_acked = acked; 3385 3386 serr = SKB_EXT_ERR(skb); 3387 memset(serr, 0, sizeof(*serr)); 3388 serr->ee.ee_errno = ENOMSG; 3389 serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS; 3390 3391 err = sock_queue_err_skb(sk, skb); 3392 if (err) 3393 kfree_skb(skb); 3394 } 3395 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack); 3396 3397 3398 /** 3399 * skb_partial_csum_set - set up and verify partial csum values for packet 3400 * @skb: the skb to set 3401 * @start: the number of bytes after skb->data to start checksumming. 3402 * @off: the offset from start to place the checksum. 3403 * 3404 * For untrusted partially-checksummed packets, we need to make sure the values 3405 * for skb->csum_start and skb->csum_offset are valid so we don't oops. 3406 * 3407 * This function checks and sets those values and skb->ip_summed: if this 3408 * returns false you should drop the packet. 3409 */ 3410 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off) 3411 { 3412 if (unlikely(start > skb_headlen(skb)) || 3413 unlikely((int)start + off > skb_headlen(skb) - 2)) { 3414 net_warn_ratelimited("bad partial csum: csum=%u/%u len=%u\n", 3415 start, off, skb_headlen(skb)); 3416 return false; 3417 } 3418 skb->ip_summed = CHECKSUM_PARTIAL; 3419 skb->csum_start = skb_headroom(skb) + start; 3420 skb->csum_offset = off; 3421 return true; 3422 } 3423 EXPORT_SYMBOL_GPL(skb_partial_csum_set); 3424 3425 void __skb_warn_lro_forwarding(const struct sk_buff *skb) 3426 { 3427 net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n", 3428 skb->dev->name); 3429 } 3430 EXPORT_SYMBOL(__skb_warn_lro_forwarding); 3431 3432 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen) 3433 { 3434 if (head_stolen) 3435 kmem_cache_free(skbuff_head_cache, skb); 3436 else 3437 __kfree_skb(skb); 3438 } 3439 EXPORT_SYMBOL(kfree_skb_partial); 3440 3441 /** 3442 * skb_try_coalesce - try to merge skb to prior one 3443 * @to: prior buffer 3444 * @from: buffer to add 3445 * @fragstolen: pointer to boolean 3446 * @delta_truesize: how much more was allocated than was requested 3447 */ 3448 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from, 3449 bool *fragstolen, int *delta_truesize) 3450 { 3451 int i, delta, len = from->len; 3452 3453 *fragstolen = false; 3454 3455 if (skb_cloned(to)) 3456 return false; 3457 3458 if (len <= skb_tailroom(to)) { 3459 BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len)); 3460 *delta_truesize = 0; 3461 return true; 3462 } 3463 3464 if (skb_has_frag_list(to) || skb_has_frag_list(from)) 3465 return false; 3466 3467 if (skb_headlen(from) != 0) { 3468 struct page *page; 3469 unsigned int offset; 3470 3471 if (skb_shinfo(to)->nr_frags + 3472 skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS) 3473 return false; 3474 3475 if (skb_head_is_locked(from)) 3476 return false; 3477 3478 delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff)); 3479 3480 page = virt_to_head_page(from->head); 3481 offset = from->data - (unsigned char *)page_address(page); 3482 3483 skb_fill_page_desc(to, skb_shinfo(to)->nr_frags, 3484 page, offset, skb_headlen(from)); 3485 *fragstolen = true; 3486 } else { 3487 if (skb_shinfo(to)->nr_frags + 3488 skb_shinfo(from)->nr_frags > MAX_SKB_FRAGS) 3489 return false; 3490 3491 delta = from->truesize - 3492 SKB_TRUESIZE(skb_end_pointer(from) - from->head); 3493 } 3494 3495 WARN_ON_ONCE(delta < len); 3496 3497 memcpy(skb_shinfo(to)->frags + skb_shinfo(to)->nr_frags, 3498 skb_shinfo(from)->frags, 3499 skb_shinfo(from)->nr_frags * sizeof(skb_frag_t)); 3500 skb_shinfo(to)->nr_frags += skb_shinfo(from)->nr_frags; 3501 3502 if (!skb_cloned(from)) 3503 skb_shinfo(from)->nr_frags = 0; 3504 3505 /* if the skb is cloned this does nothing since we set nr_frags to 0 */ 3506 for (i = 0; i < skb_shinfo(from)->nr_frags; i++) 3507 skb_frag_ref(from, i); 3508 3509 to->truesize += delta; 3510 to->len += len; 3511 to->data_len += len; 3512 3513 *delta_truesize = delta; 3514 return true; 3515 } 3516 EXPORT_SYMBOL(skb_try_coalesce); 3517