xref: /openbmc/linux/net/core/skbuff.c (revision 95e9fd10)
1 /*
2  *	Routines having to do with the 'struct sk_buff' memory handlers.
3  *
4  *	Authors:	Alan Cox <alan@lxorguk.ukuu.org.uk>
5  *			Florian La Roche <rzsfl@rz.uni-sb.de>
6  *
7  *	Fixes:
8  *		Alan Cox	:	Fixed the worst of the load
9  *					balancer bugs.
10  *		Dave Platt	:	Interrupt stacking fix.
11  *	Richard Kooijman	:	Timestamp fixes.
12  *		Alan Cox	:	Changed buffer format.
13  *		Alan Cox	:	destructor hook for AF_UNIX etc.
14  *		Linus Torvalds	:	Better skb_clone.
15  *		Alan Cox	:	Added skb_copy.
16  *		Alan Cox	:	Added all the changed routines Linus
17  *					only put in the headers
18  *		Ray VanTassle	:	Fixed --skb->lock in free
19  *		Alan Cox	:	skb_copy copy arp field
20  *		Andi Kleen	:	slabified it.
21  *		Robert Olsson	:	Removed skb_head_pool
22  *
23  *	NOTE:
24  *		The __skb_ routines should be called with interrupts
25  *	disabled, or you better be *real* sure that the operation is atomic
26  *	with respect to whatever list is being frobbed (e.g. via lock_sock()
27  *	or via disabling bottom half handlers, etc).
28  *
29  *	This program is free software; you can redistribute it and/or
30  *	modify it under the terms of the GNU General Public License
31  *	as published by the Free Software Foundation; either version
32  *	2 of the License, or (at your option) any later version.
33  */
34 
35 /*
36  *	The functions in this file will not compile correctly with gcc 2.4.x
37  */
38 
39 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
40 
41 #include <linux/module.h>
42 #include <linux/types.h>
43 #include <linux/kernel.h>
44 #include <linux/kmemcheck.h>
45 #include <linux/mm.h>
46 #include <linux/interrupt.h>
47 #include <linux/in.h>
48 #include <linux/inet.h>
49 #include <linux/slab.h>
50 #include <linux/netdevice.h>
51 #ifdef CONFIG_NET_CLS_ACT
52 #include <net/pkt_sched.h>
53 #endif
54 #include <linux/string.h>
55 #include <linux/skbuff.h>
56 #include <linux/splice.h>
57 #include <linux/cache.h>
58 #include <linux/rtnetlink.h>
59 #include <linux/init.h>
60 #include <linux/scatterlist.h>
61 #include <linux/errqueue.h>
62 #include <linux/prefetch.h>
63 
64 #include <net/protocol.h>
65 #include <net/dst.h>
66 #include <net/sock.h>
67 #include <net/checksum.h>
68 #include <net/xfrm.h>
69 
70 #include <asm/uaccess.h>
71 #include <trace/events/skb.h>
72 #include <linux/highmem.h>
73 
74 struct kmem_cache *skbuff_head_cache __read_mostly;
75 static struct kmem_cache *skbuff_fclone_cache __read_mostly;
76 
77 static void sock_pipe_buf_release(struct pipe_inode_info *pipe,
78 				  struct pipe_buffer *buf)
79 {
80 	put_page(buf->page);
81 }
82 
83 static void sock_pipe_buf_get(struct pipe_inode_info *pipe,
84 				struct pipe_buffer *buf)
85 {
86 	get_page(buf->page);
87 }
88 
89 static int sock_pipe_buf_steal(struct pipe_inode_info *pipe,
90 			       struct pipe_buffer *buf)
91 {
92 	return 1;
93 }
94 
95 
96 /* Pipe buffer operations for a socket. */
97 static const struct pipe_buf_operations sock_pipe_buf_ops = {
98 	.can_merge = 0,
99 	.map = generic_pipe_buf_map,
100 	.unmap = generic_pipe_buf_unmap,
101 	.confirm = generic_pipe_buf_confirm,
102 	.release = sock_pipe_buf_release,
103 	.steal = sock_pipe_buf_steal,
104 	.get = sock_pipe_buf_get,
105 };
106 
107 /*
108  *	Keep out-of-line to prevent kernel bloat.
109  *	__builtin_return_address is not used because it is not always
110  *	reliable.
111  */
112 
113 /**
114  *	skb_over_panic	- 	private function
115  *	@skb: buffer
116  *	@sz: size
117  *	@here: address
118  *
119  *	Out of line support code for skb_put(). Not user callable.
120  */
121 static void skb_over_panic(struct sk_buff *skb, int sz, void *here)
122 {
123 	pr_emerg("%s: text:%p len:%d put:%d head:%p data:%p tail:%#lx end:%#lx dev:%s\n",
124 		 __func__, here, skb->len, sz, skb->head, skb->data,
125 		 (unsigned long)skb->tail, (unsigned long)skb->end,
126 		 skb->dev ? skb->dev->name : "<NULL>");
127 	BUG();
128 }
129 
130 /**
131  *	skb_under_panic	- 	private function
132  *	@skb: buffer
133  *	@sz: size
134  *	@here: address
135  *
136  *	Out of line support code for skb_push(). Not user callable.
137  */
138 
139 static void skb_under_panic(struct sk_buff *skb, int sz, void *here)
140 {
141 	pr_emerg("%s: text:%p len:%d put:%d head:%p data:%p tail:%#lx end:%#lx dev:%s\n",
142 		 __func__, here, skb->len, sz, skb->head, skb->data,
143 		 (unsigned long)skb->tail, (unsigned long)skb->end,
144 		 skb->dev ? skb->dev->name : "<NULL>");
145 	BUG();
146 }
147 
148 
149 /*
150  * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells
151  * the caller if emergency pfmemalloc reserves are being used. If it is and
152  * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves
153  * may be used. Otherwise, the packet data may be discarded until enough
154  * memory is free
155  */
156 #define kmalloc_reserve(size, gfp, node, pfmemalloc) \
157 	 __kmalloc_reserve(size, gfp, node, _RET_IP_, pfmemalloc)
158 void *__kmalloc_reserve(size_t size, gfp_t flags, int node, unsigned long ip,
159 			 bool *pfmemalloc)
160 {
161 	void *obj;
162 	bool ret_pfmemalloc = false;
163 
164 	/*
165 	 * Try a regular allocation, when that fails and we're not entitled
166 	 * to the reserves, fail.
167 	 */
168 	obj = kmalloc_node_track_caller(size,
169 					flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
170 					node);
171 	if (obj || !(gfp_pfmemalloc_allowed(flags)))
172 		goto out;
173 
174 	/* Try again but now we are using pfmemalloc reserves */
175 	ret_pfmemalloc = true;
176 	obj = kmalloc_node_track_caller(size, flags, node);
177 
178 out:
179 	if (pfmemalloc)
180 		*pfmemalloc = ret_pfmemalloc;
181 
182 	return obj;
183 }
184 
185 /* 	Allocate a new skbuff. We do this ourselves so we can fill in a few
186  *	'private' fields and also do memory statistics to find all the
187  *	[BEEP] leaks.
188  *
189  */
190 
191 /**
192  *	__alloc_skb	-	allocate a network buffer
193  *	@size: size to allocate
194  *	@gfp_mask: allocation mask
195  *	@flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache
196  *		instead of head cache and allocate a cloned (child) skb.
197  *		If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for
198  *		allocations in case the data is required for writeback
199  *	@node: numa node to allocate memory on
200  *
201  *	Allocate a new &sk_buff. The returned buffer has no headroom and a
202  *	tail room of at least size bytes. The object has a reference count
203  *	of one. The return is the buffer. On a failure the return is %NULL.
204  *
205  *	Buffers may only be allocated from interrupts using a @gfp_mask of
206  *	%GFP_ATOMIC.
207  */
208 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
209 			    int flags, int node)
210 {
211 	struct kmem_cache *cache;
212 	struct skb_shared_info *shinfo;
213 	struct sk_buff *skb;
214 	u8 *data;
215 	bool pfmemalloc;
216 
217 	cache = (flags & SKB_ALLOC_FCLONE)
218 		? skbuff_fclone_cache : skbuff_head_cache;
219 
220 	if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX))
221 		gfp_mask |= __GFP_MEMALLOC;
222 
223 	/* Get the HEAD */
224 	skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node);
225 	if (!skb)
226 		goto out;
227 	prefetchw(skb);
228 
229 	/* We do our best to align skb_shared_info on a separate cache
230 	 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives
231 	 * aligned memory blocks, unless SLUB/SLAB debug is enabled.
232 	 * Both skb->head and skb_shared_info are cache line aligned.
233 	 */
234 	size = SKB_DATA_ALIGN(size);
235 	size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
236 	data = kmalloc_reserve(size, gfp_mask, node, &pfmemalloc);
237 	if (!data)
238 		goto nodata;
239 	/* kmalloc(size) might give us more room than requested.
240 	 * Put skb_shared_info exactly at the end of allocated zone,
241 	 * to allow max possible filling before reallocation.
242 	 */
243 	size = SKB_WITH_OVERHEAD(ksize(data));
244 	prefetchw(data + size);
245 
246 	/*
247 	 * Only clear those fields we need to clear, not those that we will
248 	 * actually initialise below. Hence, don't put any more fields after
249 	 * the tail pointer in struct sk_buff!
250 	 */
251 	memset(skb, 0, offsetof(struct sk_buff, tail));
252 	/* Account for allocated memory : skb + skb->head */
253 	skb->truesize = SKB_TRUESIZE(size);
254 	skb->pfmemalloc = pfmemalloc;
255 	atomic_set(&skb->users, 1);
256 	skb->head = data;
257 	skb->data = data;
258 	skb_reset_tail_pointer(skb);
259 	skb->end = skb->tail + size;
260 #ifdef NET_SKBUFF_DATA_USES_OFFSET
261 	skb->mac_header = ~0U;
262 #endif
263 
264 	/* make sure we initialize shinfo sequentially */
265 	shinfo = skb_shinfo(skb);
266 	memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
267 	atomic_set(&shinfo->dataref, 1);
268 	kmemcheck_annotate_variable(shinfo->destructor_arg);
269 
270 	if (flags & SKB_ALLOC_FCLONE) {
271 		struct sk_buff *child = skb + 1;
272 		atomic_t *fclone_ref = (atomic_t *) (child + 1);
273 
274 		kmemcheck_annotate_bitfield(child, flags1);
275 		kmemcheck_annotate_bitfield(child, flags2);
276 		skb->fclone = SKB_FCLONE_ORIG;
277 		atomic_set(fclone_ref, 1);
278 
279 		child->fclone = SKB_FCLONE_UNAVAILABLE;
280 		child->pfmemalloc = pfmemalloc;
281 	}
282 out:
283 	return skb;
284 nodata:
285 	kmem_cache_free(cache, skb);
286 	skb = NULL;
287 	goto out;
288 }
289 EXPORT_SYMBOL(__alloc_skb);
290 
291 /**
292  * build_skb - build a network buffer
293  * @data: data buffer provided by caller
294  * @frag_size: size of fragment, or 0 if head was kmalloced
295  *
296  * Allocate a new &sk_buff. Caller provides space holding head and
297  * skb_shared_info. @data must have been allocated by kmalloc()
298  * The return is the new skb buffer.
299  * On a failure the return is %NULL, and @data is not freed.
300  * Notes :
301  *  Before IO, driver allocates only data buffer where NIC put incoming frame
302  *  Driver should add room at head (NET_SKB_PAD) and
303  *  MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info))
304  *  After IO, driver calls build_skb(), to allocate sk_buff and populate it
305  *  before giving packet to stack.
306  *  RX rings only contains data buffers, not full skbs.
307  */
308 struct sk_buff *build_skb(void *data, unsigned int frag_size)
309 {
310 	struct skb_shared_info *shinfo;
311 	struct sk_buff *skb;
312 	unsigned int size = frag_size ? : ksize(data);
313 
314 	skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC);
315 	if (!skb)
316 		return NULL;
317 
318 	size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
319 
320 	memset(skb, 0, offsetof(struct sk_buff, tail));
321 	skb->truesize = SKB_TRUESIZE(size);
322 	skb->head_frag = frag_size != 0;
323 	atomic_set(&skb->users, 1);
324 	skb->head = data;
325 	skb->data = data;
326 	skb_reset_tail_pointer(skb);
327 	skb->end = skb->tail + size;
328 #ifdef NET_SKBUFF_DATA_USES_OFFSET
329 	skb->mac_header = ~0U;
330 #endif
331 
332 	/* make sure we initialize shinfo sequentially */
333 	shinfo = skb_shinfo(skb);
334 	memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
335 	atomic_set(&shinfo->dataref, 1);
336 	kmemcheck_annotate_variable(shinfo->destructor_arg);
337 
338 	return skb;
339 }
340 EXPORT_SYMBOL(build_skb);
341 
342 struct netdev_alloc_cache {
343 	struct page *page;
344 	unsigned int offset;
345 	unsigned int pagecnt_bias;
346 };
347 static DEFINE_PER_CPU(struct netdev_alloc_cache, netdev_alloc_cache);
348 
349 #define NETDEV_PAGECNT_BIAS (PAGE_SIZE / SMP_CACHE_BYTES)
350 
351 static void *__netdev_alloc_frag(unsigned int fragsz, gfp_t gfp_mask)
352 {
353 	struct netdev_alloc_cache *nc;
354 	void *data = NULL;
355 	unsigned long flags;
356 
357 	local_irq_save(flags);
358 	nc = &__get_cpu_var(netdev_alloc_cache);
359 	if (unlikely(!nc->page)) {
360 refill:
361 		nc->page = alloc_page(gfp_mask);
362 		if (unlikely(!nc->page))
363 			goto end;
364 recycle:
365 		atomic_set(&nc->page->_count, NETDEV_PAGECNT_BIAS);
366 		nc->pagecnt_bias = NETDEV_PAGECNT_BIAS;
367 		nc->offset = 0;
368 	}
369 
370 	if (nc->offset + fragsz > PAGE_SIZE) {
371 		/* avoid unnecessary locked operations if possible */
372 		if ((atomic_read(&nc->page->_count) == nc->pagecnt_bias) ||
373 		    atomic_sub_and_test(nc->pagecnt_bias, &nc->page->_count))
374 			goto recycle;
375 		goto refill;
376 	}
377 
378 	data = page_address(nc->page) + nc->offset;
379 	nc->offset += fragsz;
380 	nc->pagecnt_bias--;
381 end:
382 	local_irq_restore(flags);
383 	return data;
384 }
385 
386 /**
387  * netdev_alloc_frag - allocate a page fragment
388  * @fragsz: fragment size
389  *
390  * Allocates a frag from a page for receive buffer.
391  * Uses GFP_ATOMIC allocations.
392  */
393 void *netdev_alloc_frag(unsigned int fragsz)
394 {
395 	return __netdev_alloc_frag(fragsz, GFP_ATOMIC | __GFP_COLD);
396 }
397 EXPORT_SYMBOL(netdev_alloc_frag);
398 
399 /**
400  *	__netdev_alloc_skb - allocate an skbuff for rx on a specific device
401  *	@dev: network device to receive on
402  *	@length: length to allocate
403  *	@gfp_mask: get_free_pages mask, passed to alloc_skb
404  *
405  *	Allocate a new &sk_buff and assign it a usage count of one. The
406  *	buffer has unspecified headroom built in. Users should allocate
407  *	the headroom they think they need without accounting for the
408  *	built in space. The built in space is used for optimisations.
409  *
410  *	%NULL is returned if there is no free memory.
411  */
412 struct sk_buff *__netdev_alloc_skb(struct net_device *dev,
413 				   unsigned int length, gfp_t gfp_mask)
414 {
415 	struct sk_buff *skb = NULL;
416 	unsigned int fragsz = SKB_DATA_ALIGN(length + NET_SKB_PAD) +
417 			      SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
418 
419 	if (fragsz <= PAGE_SIZE && !(gfp_mask & (__GFP_WAIT | GFP_DMA))) {
420 		void *data;
421 
422 		if (sk_memalloc_socks())
423 			gfp_mask |= __GFP_MEMALLOC;
424 
425 		data = __netdev_alloc_frag(fragsz, gfp_mask);
426 
427 		if (likely(data)) {
428 			skb = build_skb(data, fragsz);
429 			if (unlikely(!skb))
430 				put_page(virt_to_head_page(data));
431 		}
432 	} else {
433 		skb = __alloc_skb(length + NET_SKB_PAD, gfp_mask,
434 				  SKB_ALLOC_RX, NUMA_NO_NODE);
435 	}
436 	if (likely(skb)) {
437 		skb_reserve(skb, NET_SKB_PAD);
438 		skb->dev = dev;
439 	}
440 	return skb;
441 }
442 EXPORT_SYMBOL(__netdev_alloc_skb);
443 
444 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
445 		     int size, unsigned int truesize)
446 {
447 	skb_fill_page_desc(skb, i, page, off, size);
448 	skb->len += size;
449 	skb->data_len += size;
450 	skb->truesize += truesize;
451 }
452 EXPORT_SYMBOL(skb_add_rx_frag);
453 
454 static void skb_drop_list(struct sk_buff **listp)
455 {
456 	struct sk_buff *list = *listp;
457 
458 	*listp = NULL;
459 
460 	do {
461 		struct sk_buff *this = list;
462 		list = list->next;
463 		kfree_skb(this);
464 	} while (list);
465 }
466 
467 static inline void skb_drop_fraglist(struct sk_buff *skb)
468 {
469 	skb_drop_list(&skb_shinfo(skb)->frag_list);
470 }
471 
472 static void skb_clone_fraglist(struct sk_buff *skb)
473 {
474 	struct sk_buff *list;
475 
476 	skb_walk_frags(skb, list)
477 		skb_get(list);
478 }
479 
480 static void skb_free_head(struct sk_buff *skb)
481 {
482 	if (skb->head_frag)
483 		put_page(virt_to_head_page(skb->head));
484 	else
485 		kfree(skb->head);
486 }
487 
488 static void skb_release_data(struct sk_buff *skb)
489 {
490 	if (!skb->cloned ||
491 	    !atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
492 			       &skb_shinfo(skb)->dataref)) {
493 		if (skb_shinfo(skb)->nr_frags) {
494 			int i;
495 			for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
496 				skb_frag_unref(skb, i);
497 		}
498 
499 		/*
500 		 * If skb buf is from userspace, we need to notify the caller
501 		 * the lower device DMA has done;
502 		 */
503 		if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
504 			struct ubuf_info *uarg;
505 
506 			uarg = skb_shinfo(skb)->destructor_arg;
507 			if (uarg->callback)
508 				uarg->callback(uarg);
509 		}
510 
511 		if (skb_has_frag_list(skb))
512 			skb_drop_fraglist(skb);
513 
514 		skb_free_head(skb);
515 	}
516 }
517 
518 /*
519  *	Free an skbuff by memory without cleaning the state.
520  */
521 static void kfree_skbmem(struct sk_buff *skb)
522 {
523 	struct sk_buff *other;
524 	atomic_t *fclone_ref;
525 
526 	switch (skb->fclone) {
527 	case SKB_FCLONE_UNAVAILABLE:
528 		kmem_cache_free(skbuff_head_cache, skb);
529 		break;
530 
531 	case SKB_FCLONE_ORIG:
532 		fclone_ref = (atomic_t *) (skb + 2);
533 		if (atomic_dec_and_test(fclone_ref))
534 			kmem_cache_free(skbuff_fclone_cache, skb);
535 		break;
536 
537 	case SKB_FCLONE_CLONE:
538 		fclone_ref = (atomic_t *) (skb + 1);
539 		other = skb - 1;
540 
541 		/* The clone portion is available for
542 		 * fast-cloning again.
543 		 */
544 		skb->fclone = SKB_FCLONE_UNAVAILABLE;
545 
546 		if (atomic_dec_and_test(fclone_ref))
547 			kmem_cache_free(skbuff_fclone_cache, other);
548 		break;
549 	}
550 }
551 
552 static void skb_release_head_state(struct sk_buff *skb)
553 {
554 	skb_dst_drop(skb);
555 #ifdef CONFIG_XFRM
556 	secpath_put(skb->sp);
557 #endif
558 	if (skb->destructor) {
559 		WARN_ON(in_irq());
560 		skb->destructor(skb);
561 	}
562 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
563 	nf_conntrack_put(skb->nfct);
564 #endif
565 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
566 	nf_conntrack_put_reasm(skb->nfct_reasm);
567 #endif
568 #ifdef CONFIG_BRIDGE_NETFILTER
569 	nf_bridge_put(skb->nf_bridge);
570 #endif
571 /* XXX: IS this still necessary? - JHS */
572 #ifdef CONFIG_NET_SCHED
573 	skb->tc_index = 0;
574 #ifdef CONFIG_NET_CLS_ACT
575 	skb->tc_verd = 0;
576 #endif
577 #endif
578 }
579 
580 /* Free everything but the sk_buff shell. */
581 static void skb_release_all(struct sk_buff *skb)
582 {
583 	skb_release_head_state(skb);
584 	skb_release_data(skb);
585 }
586 
587 /**
588  *	__kfree_skb - private function
589  *	@skb: buffer
590  *
591  *	Free an sk_buff. Release anything attached to the buffer.
592  *	Clean the state. This is an internal helper function. Users should
593  *	always call kfree_skb
594  */
595 
596 void __kfree_skb(struct sk_buff *skb)
597 {
598 	skb_release_all(skb);
599 	kfree_skbmem(skb);
600 }
601 EXPORT_SYMBOL(__kfree_skb);
602 
603 /**
604  *	kfree_skb - free an sk_buff
605  *	@skb: buffer to free
606  *
607  *	Drop a reference to the buffer and free it if the usage count has
608  *	hit zero.
609  */
610 void kfree_skb(struct sk_buff *skb)
611 {
612 	if (unlikely(!skb))
613 		return;
614 	if (likely(atomic_read(&skb->users) == 1))
615 		smp_rmb();
616 	else if (likely(!atomic_dec_and_test(&skb->users)))
617 		return;
618 	trace_kfree_skb(skb, __builtin_return_address(0));
619 	__kfree_skb(skb);
620 }
621 EXPORT_SYMBOL(kfree_skb);
622 
623 /**
624  *	consume_skb - free an skbuff
625  *	@skb: buffer to free
626  *
627  *	Drop a ref to the buffer and free it if the usage count has hit zero
628  *	Functions identically to kfree_skb, but kfree_skb assumes that the frame
629  *	is being dropped after a failure and notes that
630  */
631 void consume_skb(struct sk_buff *skb)
632 {
633 	if (unlikely(!skb))
634 		return;
635 	if (likely(atomic_read(&skb->users) == 1))
636 		smp_rmb();
637 	else if (likely(!atomic_dec_and_test(&skb->users)))
638 		return;
639 	trace_consume_skb(skb);
640 	__kfree_skb(skb);
641 }
642 EXPORT_SYMBOL(consume_skb);
643 
644 /**
645  * 	skb_recycle - clean up an skb for reuse
646  * 	@skb: buffer
647  *
648  * 	Recycles the skb to be reused as a receive buffer. This
649  * 	function does any necessary reference count dropping, and
650  * 	cleans up the skbuff as if it just came from __alloc_skb().
651  */
652 void skb_recycle(struct sk_buff *skb)
653 {
654 	struct skb_shared_info *shinfo;
655 
656 	skb_release_head_state(skb);
657 
658 	shinfo = skb_shinfo(skb);
659 	memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
660 	atomic_set(&shinfo->dataref, 1);
661 
662 	memset(skb, 0, offsetof(struct sk_buff, tail));
663 	skb->data = skb->head + NET_SKB_PAD;
664 	skb_reset_tail_pointer(skb);
665 }
666 EXPORT_SYMBOL(skb_recycle);
667 
668 /**
669  *	skb_recycle_check - check if skb can be reused for receive
670  *	@skb: buffer
671  *	@skb_size: minimum receive buffer size
672  *
673  *	Checks that the skb passed in is not shared or cloned, and
674  *	that it is linear and its head portion at least as large as
675  *	skb_size so that it can be recycled as a receive buffer.
676  *	If these conditions are met, this function does any necessary
677  *	reference count dropping and cleans up the skbuff as if it
678  *	just came from __alloc_skb().
679  */
680 bool skb_recycle_check(struct sk_buff *skb, int skb_size)
681 {
682 	if (!skb_is_recycleable(skb, skb_size))
683 		return false;
684 
685 	skb_recycle(skb);
686 
687 	return true;
688 }
689 EXPORT_SYMBOL(skb_recycle_check);
690 
691 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
692 {
693 	new->tstamp		= old->tstamp;
694 	new->dev		= old->dev;
695 	new->transport_header	= old->transport_header;
696 	new->network_header	= old->network_header;
697 	new->mac_header		= old->mac_header;
698 	skb_dst_copy(new, old);
699 	new->rxhash		= old->rxhash;
700 	new->ooo_okay		= old->ooo_okay;
701 	new->l4_rxhash		= old->l4_rxhash;
702 	new->no_fcs		= old->no_fcs;
703 #ifdef CONFIG_XFRM
704 	new->sp			= secpath_get(old->sp);
705 #endif
706 	memcpy(new->cb, old->cb, sizeof(old->cb));
707 	new->csum		= old->csum;
708 	new->local_df		= old->local_df;
709 	new->pkt_type		= old->pkt_type;
710 	new->ip_summed		= old->ip_summed;
711 	skb_copy_queue_mapping(new, old);
712 	new->priority		= old->priority;
713 #if IS_ENABLED(CONFIG_IP_VS)
714 	new->ipvs_property	= old->ipvs_property;
715 #endif
716 	new->pfmemalloc		= old->pfmemalloc;
717 	new->protocol		= old->protocol;
718 	new->mark		= old->mark;
719 	new->skb_iif		= old->skb_iif;
720 	__nf_copy(new, old);
721 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE)
722 	new->nf_trace		= old->nf_trace;
723 #endif
724 #ifdef CONFIG_NET_SCHED
725 	new->tc_index		= old->tc_index;
726 #ifdef CONFIG_NET_CLS_ACT
727 	new->tc_verd		= old->tc_verd;
728 #endif
729 #endif
730 	new->vlan_tci		= old->vlan_tci;
731 
732 	skb_copy_secmark(new, old);
733 }
734 
735 /*
736  * You should not add any new code to this function.  Add it to
737  * __copy_skb_header above instead.
738  */
739 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
740 {
741 #define C(x) n->x = skb->x
742 
743 	n->next = n->prev = NULL;
744 	n->sk = NULL;
745 	__copy_skb_header(n, skb);
746 
747 	C(len);
748 	C(data_len);
749 	C(mac_len);
750 	n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
751 	n->cloned = 1;
752 	n->nohdr = 0;
753 	n->destructor = NULL;
754 	C(tail);
755 	C(end);
756 	C(head);
757 	C(head_frag);
758 	C(data);
759 	C(truesize);
760 	atomic_set(&n->users, 1);
761 
762 	atomic_inc(&(skb_shinfo(skb)->dataref));
763 	skb->cloned = 1;
764 
765 	return n;
766 #undef C
767 }
768 
769 /**
770  *	skb_morph	-	morph one skb into another
771  *	@dst: the skb to receive the contents
772  *	@src: the skb to supply the contents
773  *
774  *	This is identical to skb_clone except that the target skb is
775  *	supplied by the user.
776  *
777  *	The target skb is returned upon exit.
778  */
779 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
780 {
781 	skb_release_all(dst);
782 	return __skb_clone(dst, src);
783 }
784 EXPORT_SYMBOL_GPL(skb_morph);
785 
786 /**
787  *	skb_copy_ubufs	-	copy userspace skb frags buffers to kernel
788  *	@skb: the skb to modify
789  *	@gfp_mask: allocation priority
790  *
791  *	This must be called on SKBTX_DEV_ZEROCOPY skb.
792  *	It will copy all frags into kernel and drop the reference
793  *	to userspace pages.
794  *
795  *	If this function is called from an interrupt gfp_mask() must be
796  *	%GFP_ATOMIC.
797  *
798  *	Returns 0 on success or a negative error code on failure
799  *	to allocate kernel memory to copy to.
800  */
801 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask)
802 {
803 	int i;
804 	int num_frags = skb_shinfo(skb)->nr_frags;
805 	struct page *page, *head = NULL;
806 	struct ubuf_info *uarg = skb_shinfo(skb)->destructor_arg;
807 
808 	for (i = 0; i < num_frags; i++) {
809 		u8 *vaddr;
810 		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
811 
812 		page = alloc_page(gfp_mask);
813 		if (!page) {
814 			while (head) {
815 				struct page *next = (struct page *)head->private;
816 				put_page(head);
817 				head = next;
818 			}
819 			return -ENOMEM;
820 		}
821 		vaddr = kmap_atomic(skb_frag_page(f));
822 		memcpy(page_address(page),
823 		       vaddr + f->page_offset, skb_frag_size(f));
824 		kunmap_atomic(vaddr);
825 		page->private = (unsigned long)head;
826 		head = page;
827 	}
828 
829 	/* skb frags release userspace buffers */
830 	for (i = 0; i < num_frags; i++)
831 		skb_frag_unref(skb, i);
832 
833 	uarg->callback(uarg);
834 
835 	/* skb frags point to kernel buffers */
836 	for (i = num_frags - 1; i >= 0; i--) {
837 		__skb_fill_page_desc(skb, i, head, 0,
838 				     skb_shinfo(skb)->frags[i].size);
839 		head = (struct page *)head->private;
840 	}
841 
842 	skb_shinfo(skb)->tx_flags &= ~SKBTX_DEV_ZEROCOPY;
843 	return 0;
844 }
845 EXPORT_SYMBOL_GPL(skb_copy_ubufs);
846 
847 /**
848  *	skb_clone	-	duplicate an sk_buff
849  *	@skb: buffer to clone
850  *	@gfp_mask: allocation priority
851  *
852  *	Duplicate an &sk_buff. The new one is not owned by a socket. Both
853  *	copies share the same packet data but not structure. The new
854  *	buffer has a reference count of 1. If the allocation fails the
855  *	function returns %NULL otherwise the new buffer is returned.
856  *
857  *	If this function is called from an interrupt gfp_mask() must be
858  *	%GFP_ATOMIC.
859  */
860 
861 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
862 {
863 	struct sk_buff *n;
864 
865 	if (skb_orphan_frags(skb, gfp_mask))
866 		return NULL;
867 
868 	n = skb + 1;
869 	if (skb->fclone == SKB_FCLONE_ORIG &&
870 	    n->fclone == SKB_FCLONE_UNAVAILABLE) {
871 		atomic_t *fclone_ref = (atomic_t *) (n + 1);
872 		n->fclone = SKB_FCLONE_CLONE;
873 		atomic_inc(fclone_ref);
874 	} else {
875 		if (skb_pfmemalloc(skb))
876 			gfp_mask |= __GFP_MEMALLOC;
877 
878 		n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
879 		if (!n)
880 			return NULL;
881 
882 		kmemcheck_annotate_bitfield(n, flags1);
883 		kmemcheck_annotate_bitfield(n, flags2);
884 		n->fclone = SKB_FCLONE_UNAVAILABLE;
885 	}
886 
887 	return __skb_clone(n, skb);
888 }
889 EXPORT_SYMBOL(skb_clone);
890 
891 static void copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
892 {
893 #ifndef NET_SKBUFF_DATA_USES_OFFSET
894 	/*
895 	 *	Shift between the two data areas in bytes
896 	 */
897 	unsigned long offset = new->data - old->data;
898 #endif
899 
900 	__copy_skb_header(new, old);
901 
902 #ifndef NET_SKBUFF_DATA_USES_OFFSET
903 	/* {transport,network,mac}_header are relative to skb->head */
904 	new->transport_header += offset;
905 	new->network_header   += offset;
906 	if (skb_mac_header_was_set(new))
907 		new->mac_header	      += offset;
908 #endif
909 	skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
910 	skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
911 	skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
912 }
913 
914 static inline int skb_alloc_rx_flag(const struct sk_buff *skb)
915 {
916 	if (skb_pfmemalloc(skb))
917 		return SKB_ALLOC_RX;
918 	return 0;
919 }
920 
921 /**
922  *	skb_copy	-	create private copy of an sk_buff
923  *	@skb: buffer to copy
924  *	@gfp_mask: allocation priority
925  *
926  *	Make a copy of both an &sk_buff and its data. This is used when the
927  *	caller wishes to modify the data and needs a private copy of the
928  *	data to alter. Returns %NULL on failure or the pointer to the buffer
929  *	on success. The returned buffer has a reference count of 1.
930  *
931  *	As by-product this function converts non-linear &sk_buff to linear
932  *	one, so that &sk_buff becomes completely private and caller is allowed
933  *	to modify all the data of returned buffer. This means that this
934  *	function is not recommended for use in circumstances when only
935  *	header is going to be modified. Use pskb_copy() instead.
936  */
937 
938 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
939 {
940 	int headerlen = skb_headroom(skb);
941 	unsigned int size = skb_end_offset(skb) + skb->data_len;
942 	struct sk_buff *n = __alloc_skb(size, gfp_mask,
943 					skb_alloc_rx_flag(skb), NUMA_NO_NODE);
944 
945 	if (!n)
946 		return NULL;
947 
948 	/* Set the data pointer */
949 	skb_reserve(n, headerlen);
950 	/* Set the tail pointer and length */
951 	skb_put(n, skb->len);
952 
953 	if (skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len))
954 		BUG();
955 
956 	copy_skb_header(n, skb);
957 	return n;
958 }
959 EXPORT_SYMBOL(skb_copy);
960 
961 /**
962  *	__pskb_copy	-	create copy of an sk_buff with private head.
963  *	@skb: buffer to copy
964  *	@headroom: headroom of new skb
965  *	@gfp_mask: allocation priority
966  *
967  *	Make a copy of both an &sk_buff and part of its data, located
968  *	in header. Fragmented data remain shared. This is used when
969  *	the caller wishes to modify only header of &sk_buff and needs
970  *	private copy of the header to alter. Returns %NULL on failure
971  *	or the pointer to the buffer on success.
972  *	The returned buffer has a reference count of 1.
973  */
974 
975 struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom, gfp_t gfp_mask)
976 {
977 	unsigned int size = skb_headlen(skb) + headroom;
978 	struct sk_buff *n = __alloc_skb(size, gfp_mask,
979 					skb_alloc_rx_flag(skb), NUMA_NO_NODE);
980 
981 	if (!n)
982 		goto out;
983 
984 	/* Set the data pointer */
985 	skb_reserve(n, headroom);
986 	/* Set the tail pointer and length */
987 	skb_put(n, skb_headlen(skb));
988 	/* Copy the bytes */
989 	skb_copy_from_linear_data(skb, n->data, n->len);
990 
991 	n->truesize += skb->data_len;
992 	n->data_len  = skb->data_len;
993 	n->len	     = skb->len;
994 
995 	if (skb_shinfo(skb)->nr_frags) {
996 		int i;
997 
998 		if (skb_orphan_frags(skb, gfp_mask)) {
999 			kfree_skb(n);
1000 			n = NULL;
1001 			goto out;
1002 		}
1003 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1004 			skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
1005 			skb_frag_ref(skb, i);
1006 		}
1007 		skb_shinfo(n)->nr_frags = i;
1008 	}
1009 
1010 	if (skb_has_frag_list(skb)) {
1011 		skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
1012 		skb_clone_fraglist(n);
1013 	}
1014 
1015 	copy_skb_header(n, skb);
1016 out:
1017 	return n;
1018 }
1019 EXPORT_SYMBOL(__pskb_copy);
1020 
1021 /**
1022  *	pskb_expand_head - reallocate header of &sk_buff
1023  *	@skb: buffer to reallocate
1024  *	@nhead: room to add at head
1025  *	@ntail: room to add at tail
1026  *	@gfp_mask: allocation priority
1027  *
1028  *	Expands (or creates identical copy, if &nhead and &ntail are zero)
1029  *	header of skb. &sk_buff itself is not changed. &sk_buff MUST have
1030  *	reference count of 1. Returns zero in the case of success or error,
1031  *	if expansion failed. In the last case, &sk_buff is not changed.
1032  *
1033  *	All the pointers pointing into skb header may change and must be
1034  *	reloaded after call to this function.
1035  */
1036 
1037 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
1038 		     gfp_t gfp_mask)
1039 {
1040 	int i;
1041 	u8 *data;
1042 	int size = nhead + skb_end_offset(skb) + ntail;
1043 	long off;
1044 
1045 	BUG_ON(nhead < 0);
1046 
1047 	if (skb_shared(skb))
1048 		BUG();
1049 
1050 	size = SKB_DATA_ALIGN(size);
1051 
1052 	if (skb_pfmemalloc(skb))
1053 		gfp_mask |= __GFP_MEMALLOC;
1054 	data = kmalloc_reserve(size + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
1055 			       gfp_mask, NUMA_NO_NODE, NULL);
1056 	if (!data)
1057 		goto nodata;
1058 	size = SKB_WITH_OVERHEAD(ksize(data));
1059 
1060 	/* Copy only real data... and, alas, header. This should be
1061 	 * optimized for the cases when header is void.
1062 	 */
1063 	memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head);
1064 
1065 	memcpy((struct skb_shared_info *)(data + size),
1066 	       skb_shinfo(skb),
1067 	       offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags]));
1068 
1069 	/*
1070 	 * if shinfo is shared we must drop the old head gracefully, but if it
1071 	 * is not we can just drop the old head and let the existing refcount
1072 	 * be since all we did is relocate the values
1073 	 */
1074 	if (skb_cloned(skb)) {
1075 		/* copy this zero copy skb frags */
1076 		if (skb_orphan_frags(skb, gfp_mask))
1077 			goto nofrags;
1078 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1079 			skb_frag_ref(skb, i);
1080 
1081 		if (skb_has_frag_list(skb))
1082 			skb_clone_fraglist(skb);
1083 
1084 		skb_release_data(skb);
1085 	} else {
1086 		skb_free_head(skb);
1087 	}
1088 	off = (data + nhead) - skb->head;
1089 
1090 	skb->head     = data;
1091 	skb->head_frag = 0;
1092 	skb->data    += off;
1093 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1094 	skb->end      = size;
1095 	off           = nhead;
1096 #else
1097 	skb->end      = skb->head + size;
1098 #endif
1099 	/* {transport,network,mac}_header and tail are relative to skb->head */
1100 	skb->tail	      += off;
1101 	skb->transport_header += off;
1102 	skb->network_header   += off;
1103 	if (skb_mac_header_was_set(skb))
1104 		skb->mac_header += off;
1105 	/* Only adjust this if it actually is csum_start rather than csum */
1106 	if (skb->ip_summed == CHECKSUM_PARTIAL)
1107 		skb->csum_start += nhead;
1108 	skb->cloned   = 0;
1109 	skb->hdr_len  = 0;
1110 	skb->nohdr    = 0;
1111 	atomic_set(&skb_shinfo(skb)->dataref, 1);
1112 	return 0;
1113 
1114 nofrags:
1115 	kfree(data);
1116 nodata:
1117 	return -ENOMEM;
1118 }
1119 EXPORT_SYMBOL(pskb_expand_head);
1120 
1121 /* Make private copy of skb with writable head and some headroom */
1122 
1123 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
1124 {
1125 	struct sk_buff *skb2;
1126 	int delta = headroom - skb_headroom(skb);
1127 
1128 	if (delta <= 0)
1129 		skb2 = pskb_copy(skb, GFP_ATOMIC);
1130 	else {
1131 		skb2 = skb_clone(skb, GFP_ATOMIC);
1132 		if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
1133 					     GFP_ATOMIC)) {
1134 			kfree_skb(skb2);
1135 			skb2 = NULL;
1136 		}
1137 	}
1138 	return skb2;
1139 }
1140 EXPORT_SYMBOL(skb_realloc_headroom);
1141 
1142 /**
1143  *	skb_copy_expand	-	copy and expand sk_buff
1144  *	@skb: buffer to copy
1145  *	@newheadroom: new free bytes at head
1146  *	@newtailroom: new free bytes at tail
1147  *	@gfp_mask: allocation priority
1148  *
1149  *	Make a copy of both an &sk_buff and its data and while doing so
1150  *	allocate additional space.
1151  *
1152  *	This is used when the caller wishes to modify the data and needs a
1153  *	private copy of the data to alter as well as more space for new fields.
1154  *	Returns %NULL on failure or the pointer to the buffer
1155  *	on success. The returned buffer has a reference count of 1.
1156  *
1157  *	You must pass %GFP_ATOMIC as the allocation priority if this function
1158  *	is called from an interrupt.
1159  */
1160 struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
1161 				int newheadroom, int newtailroom,
1162 				gfp_t gfp_mask)
1163 {
1164 	/*
1165 	 *	Allocate the copy buffer
1166 	 */
1167 	struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom,
1168 					gfp_mask, skb_alloc_rx_flag(skb),
1169 					NUMA_NO_NODE);
1170 	int oldheadroom = skb_headroom(skb);
1171 	int head_copy_len, head_copy_off;
1172 	int off;
1173 
1174 	if (!n)
1175 		return NULL;
1176 
1177 	skb_reserve(n, newheadroom);
1178 
1179 	/* Set the tail pointer and length */
1180 	skb_put(n, skb->len);
1181 
1182 	head_copy_len = oldheadroom;
1183 	head_copy_off = 0;
1184 	if (newheadroom <= head_copy_len)
1185 		head_copy_len = newheadroom;
1186 	else
1187 		head_copy_off = newheadroom - head_copy_len;
1188 
1189 	/* Copy the linear header and data. */
1190 	if (skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
1191 			  skb->len + head_copy_len))
1192 		BUG();
1193 
1194 	copy_skb_header(n, skb);
1195 
1196 	off                  = newheadroom - oldheadroom;
1197 	if (n->ip_summed == CHECKSUM_PARTIAL)
1198 		n->csum_start += off;
1199 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1200 	n->transport_header += off;
1201 	n->network_header   += off;
1202 	if (skb_mac_header_was_set(skb))
1203 		n->mac_header += off;
1204 #endif
1205 
1206 	return n;
1207 }
1208 EXPORT_SYMBOL(skb_copy_expand);
1209 
1210 /**
1211  *	skb_pad			-	zero pad the tail of an skb
1212  *	@skb: buffer to pad
1213  *	@pad: space to pad
1214  *
1215  *	Ensure that a buffer is followed by a padding area that is zero
1216  *	filled. Used by network drivers which may DMA or transfer data
1217  *	beyond the buffer end onto the wire.
1218  *
1219  *	May return error in out of memory cases. The skb is freed on error.
1220  */
1221 
1222 int skb_pad(struct sk_buff *skb, int pad)
1223 {
1224 	int err;
1225 	int ntail;
1226 
1227 	/* If the skbuff is non linear tailroom is always zero.. */
1228 	if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
1229 		memset(skb->data+skb->len, 0, pad);
1230 		return 0;
1231 	}
1232 
1233 	ntail = skb->data_len + pad - (skb->end - skb->tail);
1234 	if (likely(skb_cloned(skb) || ntail > 0)) {
1235 		err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
1236 		if (unlikely(err))
1237 			goto free_skb;
1238 	}
1239 
1240 	/* FIXME: The use of this function with non-linear skb's really needs
1241 	 * to be audited.
1242 	 */
1243 	err = skb_linearize(skb);
1244 	if (unlikely(err))
1245 		goto free_skb;
1246 
1247 	memset(skb->data + skb->len, 0, pad);
1248 	return 0;
1249 
1250 free_skb:
1251 	kfree_skb(skb);
1252 	return err;
1253 }
1254 EXPORT_SYMBOL(skb_pad);
1255 
1256 /**
1257  *	skb_put - add data to a buffer
1258  *	@skb: buffer to use
1259  *	@len: amount of data to add
1260  *
1261  *	This function extends the used data area of the buffer. If this would
1262  *	exceed the total buffer size the kernel will panic. A pointer to the
1263  *	first byte of the extra data is returned.
1264  */
1265 unsigned char *skb_put(struct sk_buff *skb, unsigned int len)
1266 {
1267 	unsigned char *tmp = skb_tail_pointer(skb);
1268 	SKB_LINEAR_ASSERT(skb);
1269 	skb->tail += len;
1270 	skb->len  += len;
1271 	if (unlikely(skb->tail > skb->end))
1272 		skb_over_panic(skb, len, __builtin_return_address(0));
1273 	return tmp;
1274 }
1275 EXPORT_SYMBOL(skb_put);
1276 
1277 /**
1278  *	skb_push - add data to the start of a buffer
1279  *	@skb: buffer to use
1280  *	@len: amount of data to add
1281  *
1282  *	This function extends the used data area of the buffer at the buffer
1283  *	start. If this would exceed the total buffer headroom the kernel will
1284  *	panic. A pointer to the first byte of the extra data is returned.
1285  */
1286 unsigned char *skb_push(struct sk_buff *skb, unsigned int len)
1287 {
1288 	skb->data -= len;
1289 	skb->len  += len;
1290 	if (unlikely(skb->data<skb->head))
1291 		skb_under_panic(skb, len, __builtin_return_address(0));
1292 	return skb->data;
1293 }
1294 EXPORT_SYMBOL(skb_push);
1295 
1296 /**
1297  *	skb_pull - remove data from the start of a buffer
1298  *	@skb: buffer to use
1299  *	@len: amount of data to remove
1300  *
1301  *	This function removes data from the start of a buffer, returning
1302  *	the memory to the headroom. A pointer to the next data in the buffer
1303  *	is returned. Once the data has been pulled future pushes will overwrite
1304  *	the old data.
1305  */
1306 unsigned char *skb_pull(struct sk_buff *skb, unsigned int len)
1307 {
1308 	return skb_pull_inline(skb, len);
1309 }
1310 EXPORT_SYMBOL(skb_pull);
1311 
1312 /**
1313  *	skb_trim - remove end from a buffer
1314  *	@skb: buffer to alter
1315  *	@len: new length
1316  *
1317  *	Cut the length of a buffer down by removing data from the tail. If
1318  *	the buffer is already under the length specified it is not modified.
1319  *	The skb must be linear.
1320  */
1321 void skb_trim(struct sk_buff *skb, unsigned int len)
1322 {
1323 	if (skb->len > len)
1324 		__skb_trim(skb, len);
1325 }
1326 EXPORT_SYMBOL(skb_trim);
1327 
1328 /* Trims skb to length len. It can change skb pointers.
1329  */
1330 
1331 int ___pskb_trim(struct sk_buff *skb, unsigned int len)
1332 {
1333 	struct sk_buff **fragp;
1334 	struct sk_buff *frag;
1335 	int offset = skb_headlen(skb);
1336 	int nfrags = skb_shinfo(skb)->nr_frags;
1337 	int i;
1338 	int err;
1339 
1340 	if (skb_cloned(skb) &&
1341 	    unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
1342 		return err;
1343 
1344 	i = 0;
1345 	if (offset >= len)
1346 		goto drop_pages;
1347 
1348 	for (; i < nfrags; i++) {
1349 		int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]);
1350 
1351 		if (end < len) {
1352 			offset = end;
1353 			continue;
1354 		}
1355 
1356 		skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset);
1357 
1358 drop_pages:
1359 		skb_shinfo(skb)->nr_frags = i;
1360 
1361 		for (; i < nfrags; i++)
1362 			skb_frag_unref(skb, i);
1363 
1364 		if (skb_has_frag_list(skb))
1365 			skb_drop_fraglist(skb);
1366 		goto done;
1367 	}
1368 
1369 	for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
1370 	     fragp = &frag->next) {
1371 		int end = offset + frag->len;
1372 
1373 		if (skb_shared(frag)) {
1374 			struct sk_buff *nfrag;
1375 
1376 			nfrag = skb_clone(frag, GFP_ATOMIC);
1377 			if (unlikely(!nfrag))
1378 				return -ENOMEM;
1379 
1380 			nfrag->next = frag->next;
1381 			consume_skb(frag);
1382 			frag = nfrag;
1383 			*fragp = frag;
1384 		}
1385 
1386 		if (end < len) {
1387 			offset = end;
1388 			continue;
1389 		}
1390 
1391 		if (end > len &&
1392 		    unlikely((err = pskb_trim(frag, len - offset))))
1393 			return err;
1394 
1395 		if (frag->next)
1396 			skb_drop_list(&frag->next);
1397 		break;
1398 	}
1399 
1400 done:
1401 	if (len > skb_headlen(skb)) {
1402 		skb->data_len -= skb->len - len;
1403 		skb->len       = len;
1404 	} else {
1405 		skb->len       = len;
1406 		skb->data_len  = 0;
1407 		skb_set_tail_pointer(skb, len);
1408 	}
1409 
1410 	return 0;
1411 }
1412 EXPORT_SYMBOL(___pskb_trim);
1413 
1414 /**
1415  *	__pskb_pull_tail - advance tail of skb header
1416  *	@skb: buffer to reallocate
1417  *	@delta: number of bytes to advance tail
1418  *
1419  *	The function makes a sense only on a fragmented &sk_buff,
1420  *	it expands header moving its tail forward and copying necessary
1421  *	data from fragmented part.
1422  *
1423  *	&sk_buff MUST have reference count of 1.
1424  *
1425  *	Returns %NULL (and &sk_buff does not change) if pull failed
1426  *	or value of new tail of skb in the case of success.
1427  *
1428  *	All the pointers pointing into skb header may change and must be
1429  *	reloaded after call to this function.
1430  */
1431 
1432 /* Moves tail of skb head forward, copying data from fragmented part,
1433  * when it is necessary.
1434  * 1. It may fail due to malloc failure.
1435  * 2. It may change skb pointers.
1436  *
1437  * It is pretty complicated. Luckily, it is called only in exceptional cases.
1438  */
1439 unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta)
1440 {
1441 	/* If skb has not enough free space at tail, get new one
1442 	 * plus 128 bytes for future expansions. If we have enough
1443 	 * room at tail, reallocate without expansion only if skb is cloned.
1444 	 */
1445 	int i, k, eat = (skb->tail + delta) - skb->end;
1446 
1447 	if (eat > 0 || skb_cloned(skb)) {
1448 		if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
1449 				     GFP_ATOMIC))
1450 			return NULL;
1451 	}
1452 
1453 	if (skb_copy_bits(skb, skb_headlen(skb), skb_tail_pointer(skb), delta))
1454 		BUG();
1455 
1456 	/* Optimization: no fragments, no reasons to preestimate
1457 	 * size of pulled pages. Superb.
1458 	 */
1459 	if (!skb_has_frag_list(skb))
1460 		goto pull_pages;
1461 
1462 	/* Estimate size of pulled pages. */
1463 	eat = delta;
1464 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1465 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
1466 
1467 		if (size >= eat)
1468 			goto pull_pages;
1469 		eat -= size;
1470 	}
1471 
1472 	/* If we need update frag list, we are in troubles.
1473 	 * Certainly, it possible to add an offset to skb data,
1474 	 * but taking into account that pulling is expected to
1475 	 * be very rare operation, it is worth to fight against
1476 	 * further bloating skb head and crucify ourselves here instead.
1477 	 * Pure masohism, indeed. 8)8)
1478 	 */
1479 	if (eat) {
1480 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
1481 		struct sk_buff *clone = NULL;
1482 		struct sk_buff *insp = NULL;
1483 
1484 		do {
1485 			BUG_ON(!list);
1486 
1487 			if (list->len <= eat) {
1488 				/* Eaten as whole. */
1489 				eat -= list->len;
1490 				list = list->next;
1491 				insp = list;
1492 			} else {
1493 				/* Eaten partially. */
1494 
1495 				if (skb_shared(list)) {
1496 					/* Sucks! We need to fork list. :-( */
1497 					clone = skb_clone(list, GFP_ATOMIC);
1498 					if (!clone)
1499 						return NULL;
1500 					insp = list->next;
1501 					list = clone;
1502 				} else {
1503 					/* This may be pulled without
1504 					 * problems. */
1505 					insp = list;
1506 				}
1507 				if (!pskb_pull(list, eat)) {
1508 					kfree_skb(clone);
1509 					return NULL;
1510 				}
1511 				break;
1512 			}
1513 		} while (eat);
1514 
1515 		/* Free pulled out fragments. */
1516 		while ((list = skb_shinfo(skb)->frag_list) != insp) {
1517 			skb_shinfo(skb)->frag_list = list->next;
1518 			kfree_skb(list);
1519 		}
1520 		/* And insert new clone at head. */
1521 		if (clone) {
1522 			clone->next = list;
1523 			skb_shinfo(skb)->frag_list = clone;
1524 		}
1525 	}
1526 	/* Success! Now we may commit changes to skb data. */
1527 
1528 pull_pages:
1529 	eat = delta;
1530 	k = 0;
1531 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1532 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
1533 
1534 		if (size <= eat) {
1535 			skb_frag_unref(skb, i);
1536 			eat -= size;
1537 		} else {
1538 			skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i];
1539 			if (eat) {
1540 				skb_shinfo(skb)->frags[k].page_offset += eat;
1541 				skb_frag_size_sub(&skb_shinfo(skb)->frags[k], eat);
1542 				eat = 0;
1543 			}
1544 			k++;
1545 		}
1546 	}
1547 	skb_shinfo(skb)->nr_frags = k;
1548 
1549 	skb->tail     += delta;
1550 	skb->data_len -= delta;
1551 
1552 	return skb_tail_pointer(skb);
1553 }
1554 EXPORT_SYMBOL(__pskb_pull_tail);
1555 
1556 /**
1557  *	skb_copy_bits - copy bits from skb to kernel buffer
1558  *	@skb: source skb
1559  *	@offset: offset in source
1560  *	@to: destination buffer
1561  *	@len: number of bytes to copy
1562  *
1563  *	Copy the specified number of bytes from the source skb to the
1564  *	destination buffer.
1565  *
1566  *	CAUTION ! :
1567  *		If its prototype is ever changed,
1568  *		check arch/{*}/net/{*}.S files,
1569  *		since it is called from BPF assembly code.
1570  */
1571 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
1572 {
1573 	int start = skb_headlen(skb);
1574 	struct sk_buff *frag_iter;
1575 	int i, copy;
1576 
1577 	if (offset > (int)skb->len - len)
1578 		goto fault;
1579 
1580 	/* Copy header. */
1581 	if ((copy = start - offset) > 0) {
1582 		if (copy > len)
1583 			copy = len;
1584 		skb_copy_from_linear_data_offset(skb, offset, to, copy);
1585 		if ((len -= copy) == 0)
1586 			return 0;
1587 		offset += copy;
1588 		to     += copy;
1589 	}
1590 
1591 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1592 		int end;
1593 		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
1594 
1595 		WARN_ON(start > offset + len);
1596 
1597 		end = start + skb_frag_size(f);
1598 		if ((copy = end - offset) > 0) {
1599 			u8 *vaddr;
1600 
1601 			if (copy > len)
1602 				copy = len;
1603 
1604 			vaddr = kmap_atomic(skb_frag_page(f));
1605 			memcpy(to,
1606 			       vaddr + f->page_offset + offset - start,
1607 			       copy);
1608 			kunmap_atomic(vaddr);
1609 
1610 			if ((len -= copy) == 0)
1611 				return 0;
1612 			offset += copy;
1613 			to     += copy;
1614 		}
1615 		start = end;
1616 	}
1617 
1618 	skb_walk_frags(skb, frag_iter) {
1619 		int end;
1620 
1621 		WARN_ON(start > offset + len);
1622 
1623 		end = start + frag_iter->len;
1624 		if ((copy = end - offset) > 0) {
1625 			if (copy > len)
1626 				copy = len;
1627 			if (skb_copy_bits(frag_iter, offset - start, to, copy))
1628 				goto fault;
1629 			if ((len -= copy) == 0)
1630 				return 0;
1631 			offset += copy;
1632 			to     += copy;
1633 		}
1634 		start = end;
1635 	}
1636 
1637 	if (!len)
1638 		return 0;
1639 
1640 fault:
1641 	return -EFAULT;
1642 }
1643 EXPORT_SYMBOL(skb_copy_bits);
1644 
1645 /*
1646  * Callback from splice_to_pipe(), if we need to release some pages
1647  * at the end of the spd in case we error'ed out in filling the pipe.
1648  */
1649 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
1650 {
1651 	put_page(spd->pages[i]);
1652 }
1653 
1654 static struct page *linear_to_page(struct page *page, unsigned int *len,
1655 				   unsigned int *offset,
1656 				   struct sk_buff *skb, struct sock *sk)
1657 {
1658 	struct page *p = sk->sk_sndmsg_page;
1659 	unsigned int off;
1660 
1661 	if (!p) {
1662 new_page:
1663 		p = sk->sk_sndmsg_page = alloc_pages(sk->sk_allocation, 0);
1664 		if (!p)
1665 			return NULL;
1666 
1667 		off = sk->sk_sndmsg_off = 0;
1668 		/* hold one ref to this page until it's full */
1669 	} else {
1670 		unsigned int mlen;
1671 
1672 		/* If we are the only user of the page, we can reset offset */
1673 		if (page_count(p) == 1)
1674 			sk->sk_sndmsg_off = 0;
1675 		off = sk->sk_sndmsg_off;
1676 		mlen = PAGE_SIZE - off;
1677 		if (mlen < 64 && mlen < *len) {
1678 			put_page(p);
1679 			goto new_page;
1680 		}
1681 
1682 		*len = min_t(unsigned int, *len, mlen);
1683 	}
1684 
1685 	memcpy(page_address(p) + off, page_address(page) + *offset, *len);
1686 	sk->sk_sndmsg_off += *len;
1687 	*offset = off;
1688 
1689 	return p;
1690 }
1691 
1692 static bool spd_can_coalesce(const struct splice_pipe_desc *spd,
1693 			     struct page *page,
1694 			     unsigned int offset)
1695 {
1696 	return	spd->nr_pages &&
1697 		spd->pages[spd->nr_pages - 1] == page &&
1698 		(spd->partial[spd->nr_pages - 1].offset +
1699 		 spd->partial[spd->nr_pages - 1].len == offset);
1700 }
1701 
1702 /*
1703  * Fill page/offset/length into spd, if it can hold more pages.
1704  */
1705 static bool spd_fill_page(struct splice_pipe_desc *spd,
1706 			  struct pipe_inode_info *pipe, struct page *page,
1707 			  unsigned int *len, unsigned int offset,
1708 			  struct sk_buff *skb, bool linear,
1709 			  struct sock *sk)
1710 {
1711 	if (unlikely(spd->nr_pages == MAX_SKB_FRAGS))
1712 		return true;
1713 
1714 	if (linear) {
1715 		page = linear_to_page(page, len, &offset, skb, sk);
1716 		if (!page)
1717 			return true;
1718 	}
1719 	if (spd_can_coalesce(spd, page, offset)) {
1720 		spd->partial[spd->nr_pages - 1].len += *len;
1721 		return false;
1722 	}
1723 	get_page(page);
1724 	spd->pages[spd->nr_pages] = page;
1725 	spd->partial[spd->nr_pages].len = *len;
1726 	spd->partial[spd->nr_pages].offset = offset;
1727 	spd->nr_pages++;
1728 
1729 	return false;
1730 }
1731 
1732 static inline void __segment_seek(struct page **page, unsigned int *poff,
1733 				  unsigned int *plen, unsigned int off)
1734 {
1735 	unsigned long n;
1736 
1737 	*poff += off;
1738 	n = *poff / PAGE_SIZE;
1739 	if (n)
1740 		*page = nth_page(*page, n);
1741 
1742 	*poff = *poff % PAGE_SIZE;
1743 	*plen -= off;
1744 }
1745 
1746 static bool __splice_segment(struct page *page, unsigned int poff,
1747 			     unsigned int plen, unsigned int *off,
1748 			     unsigned int *len, struct sk_buff *skb,
1749 			     struct splice_pipe_desc *spd, bool linear,
1750 			     struct sock *sk,
1751 			     struct pipe_inode_info *pipe)
1752 {
1753 	if (!*len)
1754 		return true;
1755 
1756 	/* skip this segment if already processed */
1757 	if (*off >= plen) {
1758 		*off -= plen;
1759 		return false;
1760 	}
1761 
1762 	/* ignore any bits we already processed */
1763 	if (*off) {
1764 		__segment_seek(&page, &poff, &plen, *off);
1765 		*off = 0;
1766 	}
1767 
1768 	do {
1769 		unsigned int flen = min(*len, plen);
1770 
1771 		/* the linear region may spread across several pages  */
1772 		flen = min_t(unsigned int, flen, PAGE_SIZE - poff);
1773 
1774 		if (spd_fill_page(spd, pipe, page, &flen, poff, skb, linear, sk))
1775 			return true;
1776 
1777 		__segment_seek(&page, &poff, &plen, flen);
1778 		*len -= flen;
1779 
1780 	} while (*len && plen);
1781 
1782 	return false;
1783 }
1784 
1785 /*
1786  * Map linear and fragment data from the skb to spd. It reports true if the
1787  * pipe is full or if we already spliced the requested length.
1788  */
1789 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe,
1790 			      unsigned int *offset, unsigned int *len,
1791 			      struct splice_pipe_desc *spd, struct sock *sk)
1792 {
1793 	int seg;
1794 
1795 	/* map the linear part :
1796 	 * If skb->head_frag is set, this 'linear' part is backed by a
1797 	 * fragment, and if the head is not shared with any clones then
1798 	 * we can avoid a copy since we own the head portion of this page.
1799 	 */
1800 	if (__splice_segment(virt_to_page(skb->data),
1801 			     (unsigned long) skb->data & (PAGE_SIZE - 1),
1802 			     skb_headlen(skb),
1803 			     offset, len, skb, spd,
1804 			     skb_head_is_locked(skb),
1805 			     sk, pipe))
1806 		return true;
1807 
1808 	/*
1809 	 * then map the fragments
1810 	 */
1811 	for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
1812 		const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
1813 
1814 		if (__splice_segment(skb_frag_page(f),
1815 				     f->page_offset, skb_frag_size(f),
1816 				     offset, len, skb, spd, false, sk, pipe))
1817 			return true;
1818 	}
1819 
1820 	return false;
1821 }
1822 
1823 /*
1824  * Map data from the skb to a pipe. Should handle both the linear part,
1825  * the fragments, and the frag list. It does NOT handle frag lists within
1826  * the frag list, if such a thing exists. We'd probably need to recurse to
1827  * handle that cleanly.
1828  */
1829 int skb_splice_bits(struct sk_buff *skb, unsigned int offset,
1830 		    struct pipe_inode_info *pipe, unsigned int tlen,
1831 		    unsigned int flags)
1832 {
1833 	struct partial_page partial[MAX_SKB_FRAGS];
1834 	struct page *pages[MAX_SKB_FRAGS];
1835 	struct splice_pipe_desc spd = {
1836 		.pages = pages,
1837 		.partial = partial,
1838 		.nr_pages_max = MAX_SKB_FRAGS,
1839 		.flags = flags,
1840 		.ops = &sock_pipe_buf_ops,
1841 		.spd_release = sock_spd_release,
1842 	};
1843 	struct sk_buff *frag_iter;
1844 	struct sock *sk = skb->sk;
1845 	int ret = 0;
1846 
1847 	/*
1848 	 * __skb_splice_bits() only fails if the output has no room left,
1849 	 * so no point in going over the frag_list for the error case.
1850 	 */
1851 	if (__skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk))
1852 		goto done;
1853 	else if (!tlen)
1854 		goto done;
1855 
1856 	/*
1857 	 * now see if we have a frag_list to map
1858 	 */
1859 	skb_walk_frags(skb, frag_iter) {
1860 		if (!tlen)
1861 			break;
1862 		if (__skb_splice_bits(frag_iter, pipe, &offset, &tlen, &spd, sk))
1863 			break;
1864 	}
1865 
1866 done:
1867 	if (spd.nr_pages) {
1868 		/*
1869 		 * Drop the socket lock, otherwise we have reverse
1870 		 * locking dependencies between sk_lock and i_mutex
1871 		 * here as compared to sendfile(). We enter here
1872 		 * with the socket lock held, and splice_to_pipe() will
1873 		 * grab the pipe inode lock. For sendfile() emulation,
1874 		 * we call into ->sendpage() with the i_mutex lock held
1875 		 * and networking will grab the socket lock.
1876 		 */
1877 		release_sock(sk);
1878 		ret = splice_to_pipe(pipe, &spd);
1879 		lock_sock(sk);
1880 	}
1881 
1882 	return ret;
1883 }
1884 
1885 /**
1886  *	skb_store_bits - store bits from kernel buffer to skb
1887  *	@skb: destination buffer
1888  *	@offset: offset in destination
1889  *	@from: source buffer
1890  *	@len: number of bytes to copy
1891  *
1892  *	Copy the specified number of bytes from the source buffer to the
1893  *	destination skb.  This function handles all the messy bits of
1894  *	traversing fragment lists and such.
1895  */
1896 
1897 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
1898 {
1899 	int start = skb_headlen(skb);
1900 	struct sk_buff *frag_iter;
1901 	int i, copy;
1902 
1903 	if (offset > (int)skb->len - len)
1904 		goto fault;
1905 
1906 	if ((copy = start - offset) > 0) {
1907 		if (copy > len)
1908 			copy = len;
1909 		skb_copy_to_linear_data_offset(skb, offset, from, copy);
1910 		if ((len -= copy) == 0)
1911 			return 0;
1912 		offset += copy;
1913 		from += copy;
1914 	}
1915 
1916 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1917 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1918 		int end;
1919 
1920 		WARN_ON(start > offset + len);
1921 
1922 		end = start + skb_frag_size(frag);
1923 		if ((copy = end - offset) > 0) {
1924 			u8 *vaddr;
1925 
1926 			if (copy > len)
1927 				copy = len;
1928 
1929 			vaddr = kmap_atomic(skb_frag_page(frag));
1930 			memcpy(vaddr + frag->page_offset + offset - start,
1931 			       from, copy);
1932 			kunmap_atomic(vaddr);
1933 
1934 			if ((len -= copy) == 0)
1935 				return 0;
1936 			offset += copy;
1937 			from += copy;
1938 		}
1939 		start = end;
1940 	}
1941 
1942 	skb_walk_frags(skb, frag_iter) {
1943 		int end;
1944 
1945 		WARN_ON(start > offset + len);
1946 
1947 		end = start + frag_iter->len;
1948 		if ((copy = end - offset) > 0) {
1949 			if (copy > len)
1950 				copy = len;
1951 			if (skb_store_bits(frag_iter, offset - start,
1952 					   from, copy))
1953 				goto fault;
1954 			if ((len -= copy) == 0)
1955 				return 0;
1956 			offset += copy;
1957 			from += copy;
1958 		}
1959 		start = end;
1960 	}
1961 	if (!len)
1962 		return 0;
1963 
1964 fault:
1965 	return -EFAULT;
1966 }
1967 EXPORT_SYMBOL(skb_store_bits);
1968 
1969 /* Checksum skb data. */
1970 
1971 __wsum skb_checksum(const struct sk_buff *skb, int offset,
1972 			  int len, __wsum csum)
1973 {
1974 	int start = skb_headlen(skb);
1975 	int i, copy = start - offset;
1976 	struct sk_buff *frag_iter;
1977 	int pos = 0;
1978 
1979 	/* Checksum header. */
1980 	if (copy > 0) {
1981 		if (copy > len)
1982 			copy = len;
1983 		csum = csum_partial(skb->data + offset, copy, csum);
1984 		if ((len -= copy) == 0)
1985 			return csum;
1986 		offset += copy;
1987 		pos	= copy;
1988 	}
1989 
1990 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1991 		int end;
1992 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1993 
1994 		WARN_ON(start > offset + len);
1995 
1996 		end = start + skb_frag_size(frag);
1997 		if ((copy = end - offset) > 0) {
1998 			__wsum csum2;
1999 			u8 *vaddr;
2000 
2001 			if (copy > len)
2002 				copy = len;
2003 			vaddr = kmap_atomic(skb_frag_page(frag));
2004 			csum2 = csum_partial(vaddr + frag->page_offset +
2005 					     offset - start, copy, 0);
2006 			kunmap_atomic(vaddr);
2007 			csum = csum_block_add(csum, csum2, pos);
2008 			if (!(len -= copy))
2009 				return csum;
2010 			offset += copy;
2011 			pos    += copy;
2012 		}
2013 		start = end;
2014 	}
2015 
2016 	skb_walk_frags(skb, frag_iter) {
2017 		int end;
2018 
2019 		WARN_ON(start > offset + len);
2020 
2021 		end = start + frag_iter->len;
2022 		if ((copy = end - offset) > 0) {
2023 			__wsum csum2;
2024 			if (copy > len)
2025 				copy = len;
2026 			csum2 = skb_checksum(frag_iter, offset - start,
2027 					     copy, 0);
2028 			csum = csum_block_add(csum, csum2, pos);
2029 			if ((len -= copy) == 0)
2030 				return csum;
2031 			offset += copy;
2032 			pos    += copy;
2033 		}
2034 		start = end;
2035 	}
2036 	BUG_ON(len);
2037 
2038 	return csum;
2039 }
2040 EXPORT_SYMBOL(skb_checksum);
2041 
2042 /* Both of above in one bottle. */
2043 
2044 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
2045 				    u8 *to, int len, __wsum csum)
2046 {
2047 	int start = skb_headlen(skb);
2048 	int i, copy = start - offset;
2049 	struct sk_buff *frag_iter;
2050 	int pos = 0;
2051 
2052 	/* Copy header. */
2053 	if (copy > 0) {
2054 		if (copy > len)
2055 			copy = len;
2056 		csum = csum_partial_copy_nocheck(skb->data + offset, to,
2057 						 copy, csum);
2058 		if ((len -= copy) == 0)
2059 			return csum;
2060 		offset += copy;
2061 		to     += copy;
2062 		pos	= copy;
2063 	}
2064 
2065 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2066 		int end;
2067 
2068 		WARN_ON(start > offset + len);
2069 
2070 		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
2071 		if ((copy = end - offset) > 0) {
2072 			__wsum csum2;
2073 			u8 *vaddr;
2074 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2075 
2076 			if (copy > len)
2077 				copy = len;
2078 			vaddr = kmap_atomic(skb_frag_page(frag));
2079 			csum2 = csum_partial_copy_nocheck(vaddr +
2080 							  frag->page_offset +
2081 							  offset - start, to,
2082 							  copy, 0);
2083 			kunmap_atomic(vaddr);
2084 			csum = csum_block_add(csum, csum2, pos);
2085 			if (!(len -= copy))
2086 				return csum;
2087 			offset += copy;
2088 			to     += copy;
2089 			pos    += copy;
2090 		}
2091 		start = end;
2092 	}
2093 
2094 	skb_walk_frags(skb, frag_iter) {
2095 		__wsum csum2;
2096 		int end;
2097 
2098 		WARN_ON(start > offset + len);
2099 
2100 		end = start + frag_iter->len;
2101 		if ((copy = end - offset) > 0) {
2102 			if (copy > len)
2103 				copy = len;
2104 			csum2 = skb_copy_and_csum_bits(frag_iter,
2105 						       offset - start,
2106 						       to, copy, 0);
2107 			csum = csum_block_add(csum, csum2, pos);
2108 			if ((len -= copy) == 0)
2109 				return csum;
2110 			offset += copy;
2111 			to     += copy;
2112 			pos    += copy;
2113 		}
2114 		start = end;
2115 	}
2116 	BUG_ON(len);
2117 	return csum;
2118 }
2119 EXPORT_SYMBOL(skb_copy_and_csum_bits);
2120 
2121 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
2122 {
2123 	__wsum csum;
2124 	long csstart;
2125 
2126 	if (skb->ip_summed == CHECKSUM_PARTIAL)
2127 		csstart = skb_checksum_start_offset(skb);
2128 	else
2129 		csstart = skb_headlen(skb);
2130 
2131 	BUG_ON(csstart > skb_headlen(skb));
2132 
2133 	skb_copy_from_linear_data(skb, to, csstart);
2134 
2135 	csum = 0;
2136 	if (csstart != skb->len)
2137 		csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
2138 					      skb->len - csstart, 0);
2139 
2140 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
2141 		long csstuff = csstart + skb->csum_offset;
2142 
2143 		*((__sum16 *)(to + csstuff)) = csum_fold(csum);
2144 	}
2145 }
2146 EXPORT_SYMBOL(skb_copy_and_csum_dev);
2147 
2148 /**
2149  *	skb_dequeue - remove from the head of the queue
2150  *	@list: list to dequeue from
2151  *
2152  *	Remove the head of the list. The list lock is taken so the function
2153  *	may be used safely with other locking list functions. The head item is
2154  *	returned or %NULL if the list is empty.
2155  */
2156 
2157 struct sk_buff *skb_dequeue(struct sk_buff_head *list)
2158 {
2159 	unsigned long flags;
2160 	struct sk_buff *result;
2161 
2162 	spin_lock_irqsave(&list->lock, flags);
2163 	result = __skb_dequeue(list);
2164 	spin_unlock_irqrestore(&list->lock, flags);
2165 	return result;
2166 }
2167 EXPORT_SYMBOL(skb_dequeue);
2168 
2169 /**
2170  *	skb_dequeue_tail - remove from the tail of the queue
2171  *	@list: list to dequeue from
2172  *
2173  *	Remove the tail of the list. The list lock is taken so the function
2174  *	may be used safely with other locking list functions. The tail item is
2175  *	returned or %NULL if the list is empty.
2176  */
2177 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
2178 {
2179 	unsigned long flags;
2180 	struct sk_buff *result;
2181 
2182 	spin_lock_irqsave(&list->lock, flags);
2183 	result = __skb_dequeue_tail(list);
2184 	spin_unlock_irqrestore(&list->lock, flags);
2185 	return result;
2186 }
2187 EXPORT_SYMBOL(skb_dequeue_tail);
2188 
2189 /**
2190  *	skb_queue_purge - empty a list
2191  *	@list: list to empty
2192  *
2193  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
2194  *	the list and one reference dropped. This function takes the list
2195  *	lock and is atomic with respect to other list locking functions.
2196  */
2197 void skb_queue_purge(struct sk_buff_head *list)
2198 {
2199 	struct sk_buff *skb;
2200 	while ((skb = skb_dequeue(list)) != NULL)
2201 		kfree_skb(skb);
2202 }
2203 EXPORT_SYMBOL(skb_queue_purge);
2204 
2205 /**
2206  *	skb_queue_head - queue a buffer at the list head
2207  *	@list: list to use
2208  *	@newsk: buffer to queue
2209  *
2210  *	Queue a buffer at the start of the list. This function takes the
2211  *	list lock and can be used safely with other locking &sk_buff functions
2212  *	safely.
2213  *
2214  *	A buffer cannot be placed on two lists at the same time.
2215  */
2216 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
2217 {
2218 	unsigned long flags;
2219 
2220 	spin_lock_irqsave(&list->lock, flags);
2221 	__skb_queue_head(list, newsk);
2222 	spin_unlock_irqrestore(&list->lock, flags);
2223 }
2224 EXPORT_SYMBOL(skb_queue_head);
2225 
2226 /**
2227  *	skb_queue_tail - queue a buffer at the list tail
2228  *	@list: list to use
2229  *	@newsk: buffer to queue
2230  *
2231  *	Queue a buffer at the tail of the list. This function takes the
2232  *	list lock and can be used safely with other locking &sk_buff functions
2233  *	safely.
2234  *
2235  *	A buffer cannot be placed on two lists at the same time.
2236  */
2237 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
2238 {
2239 	unsigned long flags;
2240 
2241 	spin_lock_irqsave(&list->lock, flags);
2242 	__skb_queue_tail(list, newsk);
2243 	spin_unlock_irqrestore(&list->lock, flags);
2244 }
2245 EXPORT_SYMBOL(skb_queue_tail);
2246 
2247 /**
2248  *	skb_unlink	-	remove a buffer from a list
2249  *	@skb: buffer to remove
2250  *	@list: list to use
2251  *
2252  *	Remove a packet from a list. The list locks are taken and this
2253  *	function is atomic with respect to other list locked calls
2254  *
2255  *	You must know what list the SKB is on.
2256  */
2257 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
2258 {
2259 	unsigned long flags;
2260 
2261 	spin_lock_irqsave(&list->lock, flags);
2262 	__skb_unlink(skb, list);
2263 	spin_unlock_irqrestore(&list->lock, flags);
2264 }
2265 EXPORT_SYMBOL(skb_unlink);
2266 
2267 /**
2268  *	skb_append	-	append a buffer
2269  *	@old: buffer to insert after
2270  *	@newsk: buffer to insert
2271  *	@list: list to use
2272  *
2273  *	Place a packet after a given packet in a list. The list locks are taken
2274  *	and this function is atomic with respect to other list locked calls.
2275  *	A buffer cannot be placed on two lists at the same time.
2276  */
2277 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
2278 {
2279 	unsigned long flags;
2280 
2281 	spin_lock_irqsave(&list->lock, flags);
2282 	__skb_queue_after(list, old, newsk);
2283 	spin_unlock_irqrestore(&list->lock, flags);
2284 }
2285 EXPORT_SYMBOL(skb_append);
2286 
2287 /**
2288  *	skb_insert	-	insert a buffer
2289  *	@old: buffer to insert before
2290  *	@newsk: buffer to insert
2291  *	@list: list to use
2292  *
2293  *	Place a packet before a given packet in a list. The list locks are
2294  * 	taken and this function is atomic with respect to other list locked
2295  *	calls.
2296  *
2297  *	A buffer cannot be placed on two lists at the same time.
2298  */
2299 void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
2300 {
2301 	unsigned long flags;
2302 
2303 	spin_lock_irqsave(&list->lock, flags);
2304 	__skb_insert(newsk, old->prev, old, list);
2305 	spin_unlock_irqrestore(&list->lock, flags);
2306 }
2307 EXPORT_SYMBOL(skb_insert);
2308 
2309 static inline void skb_split_inside_header(struct sk_buff *skb,
2310 					   struct sk_buff* skb1,
2311 					   const u32 len, const int pos)
2312 {
2313 	int i;
2314 
2315 	skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
2316 					 pos - len);
2317 	/* And move data appendix as is. */
2318 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
2319 		skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
2320 
2321 	skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
2322 	skb_shinfo(skb)->nr_frags  = 0;
2323 	skb1->data_len		   = skb->data_len;
2324 	skb1->len		   += skb1->data_len;
2325 	skb->data_len		   = 0;
2326 	skb->len		   = len;
2327 	skb_set_tail_pointer(skb, len);
2328 }
2329 
2330 static inline void skb_split_no_header(struct sk_buff *skb,
2331 				       struct sk_buff* skb1,
2332 				       const u32 len, int pos)
2333 {
2334 	int i, k = 0;
2335 	const int nfrags = skb_shinfo(skb)->nr_frags;
2336 
2337 	skb_shinfo(skb)->nr_frags = 0;
2338 	skb1->len		  = skb1->data_len = skb->len - len;
2339 	skb->len		  = len;
2340 	skb->data_len		  = len - pos;
2341 
2342 	for (i = 0; i < nfrags; i++) {
2343 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2344 
2345 		if (pos + size > len) {
2346 			skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
2347 
2348 			if (pos < len) {
2349 				/* Split frag.
2350 				 * We have two variants in this case:
2351 				 * 1. Move all the frag to the second
2352 				 *    part, if it is possible. F.e.
2353 				 *    this approach is mandatory for TUX,
2354 				 *    where splitting is expensive.
2355 				 * 2. Split is accurately. We make this.
2356 				 */
2357 				skb_frag_ref(skb, i);
2358 				skb_shinfo(skb1)->frags[0].page_offset += len - pos;
2359 				skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos);
2360 				skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos);
2361 				skb_shinfo(skb)->nr_frags++;
2362 			}
2363 			k++;
2364 		} else
2365 			skb_shinfo(skb)->nr_frags++;
2366 		pos += size;
2367 	}
2368 	skb_shinfo(skb1)->nr_frags = k;
2369 }
2370 
2371 /**
2372  * skb_split - Split fragmented skb to two parts at length len.
2373  * @skb: the buffer to split
2374  * @skb1: the buffer to receive the second part
2375  * @len: new length for skb
2376  */
2377 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
2378 {
2379 	int pos = skb_headlen(skb);
2380 
2381 	if (len < pos)	/* Split line is inside header. */
2382 		skb_split_inside_header(skb, skb1, len, pos);
2383 	else		/* Second chunk has no header, nothing to copy. */
2384 		skb_split_no_header(skb, skb1, len, pos);
2385 }
2386 EXPORT_SYMBOL(skb_split);
2387 
2388 /* Shifting from/to a cloned skb is a no-go.
2389  *
2390  * Caller cannot keep skb_shinfo related pointers past calling here!
2391  */
2392 static int skb_prepare_for_shift(struct sk_buff *skb)
2393 {
2394 	return skb_cloned(skb) && pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2395 }
2396 
2397 /**
2398  * skb_shift - Shifts paged data partially from skb to another
2399  * @tgt: buffer into which tail data gets added
2400  * @skb: buffer from which the paged data comes from
2401  * @shiftlen: shift up to this many bytes
2402  *
2403  * Attempts to shift up to shiftlen worth of bytes, which may be less than
2404  * the length of the skb, from skb to tgt. Returns number bytes shifted.
2405  * It's up to caller to free skb if everything was shifted.
2406  *
2407  * If @tgt runs out of frags, the whole operation is aborted.
2408  *
2409  * Skb cannot include anything else but paged data while tgt is allowed
2410  * to have non-paged data as well.
2411  *
2412  * TODO: full sized shift could be optimized but that would need
2413  * specialized skb free'er to handle frags without up-to-date nr_frags.
2414  */
2415 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
2416 {
2417 	int from, to, merge, todo;
2418 	struct skb_frag_struct *fragfrom, *fragto;
2419 
2420 	BUG_ON(shiftlen > skb->len);
2421 	BUG_ON(skb_headlen(skb));	/* Would corrupt stream */
2422 
2423 	todo = shiftlen;
2424 	from = 0;
2425 	to = skb_shinfo(tgt)->nr_frags;
2426 	fragfrom = &skb_shinfo(skb)->frags[from];
2427 
2428 	/* Actual merge is delayed until the point when we know we can
2429 	 * commit all, so that we don't have to undo partial changes
2430 	 */
2431 	if (!to ||
2432 	    !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom),
2433 			      fragfrom->page_offset)) {
2434 		merge = -1;
2435 	} else {
2436 		merge = to - 1;
2437 
2438 		todo -= skb_frag_size(fragfrom);
2439 		if (todo < 0) {
2440 			if (skb_prepare_for_shift(skb) ||
2441 			    skb_prepare_for_shift(tgt))
2442 				return 0;
2443 
2444 			/* All previous frag pointers might be stale! */
2445 			fragfrom = &skb_shinfo(skb)->frags[from];
2446 			fragto = &skb_shinfo(tgt)->frags[merge];
2447 
2448 			skb_frag_size_add(fragto, shiftlen);
2449 			skb_frag_size_sub(fragfrom, shiftlen);
2450 			fragfrom->page_offset += shiftlen;
2451 
2452 			goto onlymerged;
2453 		}
2454 
2455 		from++;
2456 	}
2457 
2458 	/* Skip full, not-fitting skb to avoid expensive operations */
2459 	if ((shiftlen == skb->len) &&
2460 	    (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
2461 		return 0;
2462 
2463 	if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
2464 		return 0;
2465 
2466 	while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
2467 		if (to == MAX_SKB_FRAGS)
2468 			return 0;
2469 
2470 		fragfrom = &skb_shinfo(skb)->frags[from];
2471 		fragto = &skb_shinfo(tgt)->frags[to];
2472 
2473 		if (todo >= skb_frag_size(fragfrom)) {
2474 			*fragto = *fragfrom;
2475 			todo -= skb_frag_size(fragfrom);
2476 			from++;
2477 			to++;
2478 
2479 		} else {
2480 			__skb_frag_ref(fragfrom);
2481 			fragto->page = fragfrom->page;
2482 			fragto->page_offset = fragfrom->page_offset;
2483 			skb_frag_size_set(fragto, todo);
2484 
2485 			fragfrom->page_offset += todo;
2486 			skb_frag_size_sub(fragfrom, todo);
2487 			todo = 0;
2488 
2489 			to++;
2490 			break;
2491 		}
2492 	}
2493 
2494 	/* Ready to "commit" this state change to tgt */
2495 	skb_shinfo(tgt)->nr_frags = to;
2496 
2497 	if (merge >= 0) {
2498 		fragfrom = &skb_shinfo(skb)->frags[0];
2499 		fragto = &skb_shinfo(tgt)->frags[merge];
2500 
2501 		skb_frag_size_add(fragto, skb_frag_size(fragfrom));
2502 		__skb_frag_unref(fragfrom);
2503 	}
2504 
2505 	/* Reposition in the original skb */
2506 	to = 0;
2507 	while (from < skb_shinfo(skb)->nr_frags)
2508 		skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
2509 	skb_shinfo(skb)->nr_frags = to;
2510 
2511 	BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
2512 
2513 onlymerged:
2514 	/* Most likely the tgt won't ever need its checksum anymore, skb on
2515 	 * the other hand might need it if it needs to be resent
2516 	 */
2517 	tgt->ip_summed = CHECKSUM_PARTIAL;
2518 	skb->ip_summed = CHECKSUM_PARTIAL;
2519 
2520 	/* Yak, is it really working this way? Some helper please? */
2521 	skb->len -= shiftlen;
2522 	skb->data_len -= shiftlen;
2523 	skb->truesize -= shiftlen;
2524 	tgt->len += shiftlen;
2525 	tgt->data_len += shiftlen;
2526 	tgt->truesize += shiftlen;
2527 
2528 	return shiftlen;
2529 }
2530 
2531 /**
2532  * skb_prepare_seq_read - Prepare a sequential read of skb data
2533  * @skb: the buffer to read
2534  * @from: lower offset of data to be read
2535  * @to: upper offset of data to be read
2536  * @st: state variable
2537  *
2538  * Initializes the specified state variable. Must be called before
2539  * invoking skb_seq_read() for the first time.
2540  */
2541 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
2542 			  unsigned int to, struct skb_seq_state *st)
2543 {
2544 	st->lower_offset = from;
2545 	st->upper_offset = to;
2546 	st->root_skb = st->cur_skb = skb;
2547 	st->frag_idx = st->stepped_offset = 0;
2548 	st->frag_data = NULL;
2549 }
2550 EXPORT_SYMBOL(skb_prepare_seq_read);
2551 
2552 /**
2553  * skb_seq_read - Sequentially read skb data
2554  * @consumed: number of bytes consumed by the caller so far
2555  * @data: destination pointer for data to be returned
2556  * @st: state variable
2557  *
2558  * Reads a block of skb data at &consumed relative to the
2559  * lower offset specified to skb_prepare_seq_read(). Assigns
2560  * the head of the data block to &data and returns the length
2561  * of the block or 0 if the end of the skb data or the upper
2562  * offset has been reached.
2563  *
2564  * The caller is not required to consume all of the data
2565  * returned, i.e. &consumed is typically set to the number
2566  * of bytes already consumed and the next call to
2567  * skb_seq_read() will return the remaining part of the block.
2568  *
2569  * Note 1: The size of each block of data returned can be arbitrary,
2570  *       this limitation is the cost for zerocopy seqeuental
2571  *       reads of potentially non linear data.
2572  *
2573  * Note 2: Fragment lists within fragments are not implemented
2574  *       at the moment, state->root_skb could be replaced with
2575  *       a stack for this purpose.
2576  */
2577 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
2578 			  struct skb_seq_state *st)
2579 {
2580 	unsigned int block_limit, abs_offset = consumed + st->lower_offset;
2581 	skb_frag_t *frag;
2582 
2583 	if (unlikely(abs_offset >= st->upper_offset))
2584 		return 0;
2585 
2586 next_skb:
2587 	block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
2588 
2589 	if (abs_offset < block_limit && !st->frag_data) {
2590 		*data = st->cur_skb->data + (abs_offset - st->stepped_offset);
2591 		return block_limit - abs_offset;
2592 	}
2593 
2594 	if (st->frag_idx == 0 && !st->frag_data)
2595 		st->stepped_offset += skb_headlen(st->cur_skb);
2596 
2597 	while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
2598 		frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
2599 		block_limit = skb_frag_size(frag) + st->stepped_offset;
2600 
2601 		if (abs_offset < block_limit) {
2602 			if (!st->frag_data)
2603 				st->frag_data = kmap_atomic(skb_frag_page(frag));
2604 
2605 			*data = (u8 *) st->frag_data + frag->page_offset +
2606 				(abs_offset - st->stepped_offset);
2607 
2608 			return block_limit - abs_offset;
2609 		}
2610 
2611 		if (st->frag_data) {
2612 			kunmap_atomic(st->frag_data);
2613 			st->frag_data = NULL;
2614 		}
2615 
2616 		st->frag_idx++;
2617 		st->stepped_offset += skb_frag_size(frag);
2618 	}
2619 
2620 	if (st->frag_data) {
2621 		kunmap_atomic(st->frag_data);
2622 		st->frag_data = NULL;
2623 	}
2624 
2625 	if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) {
2626 		st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
2627 		st->frag_idx = 0;
2628 		goto next_skb;
2629 	} else if (st->cur_skb->next) {
2630 		st->cur_skb = st->cur_skb->next;
2631 		st->frag_idx = 0;
2632 		goto next_skb;
2633 	}
2634 
2635 	return 0;
2636 }
2637 EXPORT_SYMBOL(skb_seq_read);
2638 
2639 /**
2640  * skb_abort_seq_read - Abort a sequential read of skb data
2641  * @st: state variable
2642  *
2643  * Must be called if skb_seq_read() was not called until it
2644  * returned 0.
2645  */
2646 void skb_abort_seq_read(struct skb_seq_state *st)
2647 {
2648 	if (st->frag_data)
2649 		kunmap_atomic(st->frag_data);
2650 }
2651 EXPORT_SYMBOL(skb_abort_seq_read);
2652 
2653 #define TS_SKB_CB(state)	((struct skb_seq_state *) &((state)->cb))
2654 
2655 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
2656 					  struct ts_config *conf,
2657 					  struct ts_state *state)
2658 {
2659 	return skb_seq_read(offset, text, TS_SKB_CB(state));
2660 }
2661 
2662 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
2663 {
2664 	skb_abort_seq_read(TS_SKB_CB(state));
2665 }
2666 
2667 /**
2668  * skb_find_text - Find a text pattern in skb data
2669  * @skb: the buffer to look in
2670  * @from: search offset
2671  * @to: search limit
2672  * @config: textsearch configuration
2673  * @state: uninitialized textsearch state variable
2674  *
2675  * Finds a pattern in the skb data according to the specified
2676  * textsearch configuration. Use textsearch_next() to retrieve
2677  * subsequent occurrences of the pattern. Returns the offset
2678  * to the first occurrence or UINT_MAX if no match was found.
2679  */
2680 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
2681 			   unsigned int to, struct ts_config *config,
2682 			   struct ts_state *state)
2683 {
2684 	unsigned int ret;
2685 
2686 	config->get_next_block = skb_ts_get_next_block;
2687 	config->finish = skb_ts_finish;
2688 
2689 	skb_prepare_seq_read(skb, from, to, TS_SKB_CB(state));
2690 
2691 	ret = textsearch_find(config, state);
2692 	return (ret <= to - from ? ret : UINT_MAX);
2693 }
2694 EXPORT_SYMBOL(skb_find_text);
2695 
2696 /**
2697  * skb_append_datato_frags - append the user data to a skb
2698  * @sk: sock  structure
2699  * @skb: skb structure to be appened with user data.
2700  * @getfrag: call back function to be used for getting the user data
2701  * @from: pointer to user message iov
2702  * @length: length of the iov message
2703  *
2704  * Description: This procedure append the user data in the fragment part
2705  * of the skb if any page alloc fails user this procedure returns  -ENOMEM
2706  */
2707 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
2708 			int (*getfrag)(void *from, char *to, int offset,
2709 					int len, int odd, struct sk_buff *skb),
2710 			void *from, int length)
2711 {
2712 	int frg_cnt = 0;
2713 	skb_frag_t *frag = NULL;
2714 	struct page *page = NULL;
2715 	int copy, left;
2716 	int offset = 0;
2717 	int ret;
2718 
2719 	do {
2720 		/* Return error if we don't have space for new frag */
2721 		frg_cnt = skb_shinfo(skb)->nr_frags;
2722 		if (frg_cnt >= MAX_SKB_FRAGS)
2723 			return -EFAULT;
2724 
2725 		/* allocate a new page for next frag */
2726 		page = alloc_pages(sk->sk_allocation, 0);
2727 
2728 		/* If alloc_page fails just return failure and caller will
2729 		 * free previous allocated pages by doing kfree_skb()
2730 		 */
2731 		if (page == NULL)
2732 			return -ENOMEM;
2733 
2734 		/* initialize the next frag */
2735 		skb_fill_page_desc(skb, frg_cnt, page, 0, 0);
2736 		skb->truesize += PAGE_SIZE;
2737 		atomic_add(PAGE_SIZE, &sk->sk_wmem_alloc);
2738 
2739 		/* get the new initialized frag */
2740 		frg_cnt = skb_shinfo(skb)->nr_frags;
2741 		frag = &skb_shinfo(skb)->frags[frg_cnt - 1];
2742 
2743 		/* copy the user data to page */
2744 		left = PAGE_SIZE - frag->page_offset;
2745 		copy = (length > left)? left : length;
2746 
2747 		ret = getfrag(from, skb_frag_address(frag) + skb_frag_size(frag),
2748 			    offset, copy, 0, skb);
2749 		if (ret < 0)
2750 			return -EFAULT;
2751 
2752 		/* copy was successful so update the size parameters */
2753 		skb_frag_size_add(frag, copy);
2754 		skb->len += copy;
2755 		skb->data_len += copy;
2756 		offset += copy;
2757 		length -= copy;
2758 
2759 	} while (length > 0);
2760 
2761 	return 0;
2762 }
2763 EXPORT_SYMBOL(skb_append_datato_frags);
2764 
2765 /**
2766  *	skb_pull_rcsum - pull skb and update receive checksum
2767  *	@skb: buffer to update
2768  *	@len: length of data pulled
2769  *
2770  *	This function performs an skb_pull on the packet and updates
2771  *	the CHECKSUM_COMPLETE checksum.  It should be used on
2772  *	receive path processing instead of skb_pull unless you know
2773  *	that the checksum difference is zero (e.g., a valid IP header)
2774  *	or you are setting ip_summed to CHECKSUM_NONE.
2775  */
2776 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
2777 {
2778 	BUG_ON(len > skb->len);
2779 	skb->len -= len;
2780 	BUG_ON(skb->len < skb->data_len);
2781 	skb_postpull_rcsum(skb, skb->data, len);
2782 	return skb->data += len;
2783 }
2784 EXPORT_SYMBOL_GPL(skb_pull_rcsum);
2785 
2786 /**
2787  *	skb_segment - Perform protocol segmentation on skb.
2788  *	@skb: buffer to segment
2789  *	@features: features for the output path (see dev->features)
2790  *
2791  *	This function performs segmentation on the given skb.  It returns
2792  *	a pointer to the first in a list of new skbs for the segments.
2793  *	In case of error it returns ERR_PTR(err).
2794  */
2795 struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features)
2796 {
2797 	struct sk_buff *segs = NULL;
2798 	struct sk_buff *tail = NULL;
2799 	struct sk_buff *fskb = skb_shinfo(skb)->frag_list;
2800 	unsigned int mss = skb_shinfo(skb)->gso_size;
2801 	unsigned int doffset = skb->data - skb_mac_header(skb);
2802 	unsigned int offset = doffset;
2803 	unsigned int headroom;
2804 	unsigned int len;
2805 	int sg = !!(features & NETIF_F_SG);
2806 	int nfrags = skb_shinfo(skb)->nr_frags;
2807 	int err = -ENOMEM;
2808 	int i = 0;
2809 	int pos;
2810 
2811 	__skb_push(skb, doffset);
2812 	headroom = skb_headroom(skb);
2813 	pos = skb_headlen(skb);
2814 
2815 	do {
2816 		struct sk_buff *nskb;
2817 		skb_frag_t *frag;
2818 		int hsize;
2819 		int size;
2820 
2821 		len = skb->len - offset;
2822 		if (len > mss)
2823 			len = mss;
2824 
2825 		hsize = skb_headlen(skb) - offset;
2826 		if (hsize < 0)
2827 			hsize = 0;
2828 		if (hsize > len || !sg)
2829 			hsize = len;
2830 
2831 		if (!hsize && i >= nfrags) {
2832 			BUG_ON(fskb->len != len);
2833 
2834 			pos += len;
2835 			nskb = skb_clone(fskb, GFP_ATOMIC);
2836 			fskb = fskb->next;
2837 
2838 			if (unlikely(!nskb))
2839 				goto err;
2840 
2841 			hsize = skb_end_offset(nskb);
2842 			if (skb_cow_head(nskb, doffset + headroom)) {
2843 				kfree_skb(nskb);
2844 				goto err;
2845 			}
2846 
2847 			nskb->truesize += skb_end_offset(nskb) - hsize;
2848 			skb_release_head_state(nskb);
2849 			__skb_push(nskb, doffset);
2850 		} else {
2851 			nskb = __alloc_skb(hsize + doffset + headroom,
2852 					   GFP_ATOMIC, skb_alloc_rx_flag(skb),
2853 					   NUMA_NO_NODE);
2854 
2855 			if (unlikely(!nskb))
2856 				goto err;
2857 
2858 			skb_reserve(nskb, headroom);
2859 			__skb_put(nskb, doffset);
2860 		}
2861 
2862 		if (segs)
2863 			tail->next = nskb;
2864 		else
2865 			segs = nskb;
2866 		tail = nskb;
2867 
2868 		__copy_skb_header(nskb, skb);
2869 		nskb->mac_len = skb->mac_len;
2870 
2871 		/* nskb and skb might have different headroom */
2872 		if (nskb->ip_summed == CHECKSUM_PARTIAL)
2873 			nskb->csum_start += skb_headroom(nskb) - headroom;
2874 
2875 		skb_reset_mac_header(nskb);
2876 		skb_set_network_header(nskb, skb->mac_len);
2877 		nskb->transport_header = (nskb->network_header +
2878 					  skb_network_header_len(skb));
2879 		skb_copy_from_linear_data(skb, nskb->data, doffset);
2880 
2881 		if (fskb != skb_shinfo(skb)->frag_list)
2882 			continue;
2883 
2884 		if (!sg) {
2885 			nskb->ip_summed = CHECKSUM_NONE;
2886 			nskb->csum = skb_copy_and_csum_bits(skb, offset,
2887 							    skb_put(nskb, len),
2888 							    len, 0);
2889 			continue;
2890 		}
2891 
2892 		frag = skb_shinfo(nskb)->frags;
2893 
2894 		skb_copy_from_linear_data_offset(skb, offset,
2895 						 skb_put(nskb, hsize), hsize);
2896 
2897 		while (pos < offset + len && i < nfrags) {
2898 			*frag = skb_shinfo(skb)->frags[i];
2899 			__skb_frag_ref(frag);
2900 			size = skb_frag_size(frag);
2901 
2902 			if (pos < offset) {
2903 				frag->page_offset += offset - pos;
2904 				skb_frag_size_sub(frag, offset - pos);
2905 			}
2906 
2907 			skb_shinfo(nskb)->nr_frags++;
2908 
2909 			if (pos + size <= offset + len) {
2910 				i++;
2911 				pos += size;
2912 			} else {
2913 				skb_frag_size_sub(frag, pos + size - (offset + len));
2914 				goto skip_fraglist;
2915 			}
2916 
2917 			frag++;
2918 		}
2919 
2920 		if (pos < offset + len) {
2921 			struct sk_buff *fskb2 = fskb;
2922 
2923 			BUG_ON(pos + fskb->len != offset + len);
2924 
2925 			pos += fskb->len;
2926 			fskb = fskb->next;
2927 
2928 			if (fskb2->next) {
2929 				fskb2 = skb_clone(fskb2, GFP_ATOMIC);
2930 				if (!fskb2)
2931 					goto err;
2932 			} else
2933 				skb_get(fskb2);
2934 
2935 			SKB_FRAG_ASSERT(nskb);
2936 			skb_shinfo(nskb)->frag_list = fskb2;
2937 		}
2938 
2939 skip_fraglist:
2940 		nskb->data_len = len - hsize;
2941 		nskb->len += nskb->data_len;
2942 		nskb->truesize += nskb->data_len;
2943 	} while ((offset += len) < skb->len);
2944 
2945 	return segs;
2946 
2947 err:
2948 	while ((skb = segs)) {
2949 		segs = skb->next;
2950 		kfree_skb(skb);
2951 	}
2952 	return ERR_PTR(err);
2953 }
2954 EXPORT_SYMBOL_GPL(skb_segment);
2955 
2956 int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb)
2957 {
2958 	struct sk_buff *p = *head;
2959 	struct sk_buff *nskb;
2960 	struct skb_shared_info *skbinfo = skb_shinfo(skb);
2961 	struct skb_shared_info *pinfo = skb_shinfo(p);
2962 	unsigned int headroom;
2963 	unsigned int len = skb_gro_len(skb);
2964 	unsigned int offset = skb_gro_offset(skb);
2965 	unsigned int headlen = skb_headlen(skb);
2966 	unsigned int delta_truesize;
2967 
2968 	if (p->len + len >= 65536)
2969 		return -E2BIG;
2970 
2971 	if (pinfo->frag_list)
2972 		goto merge;
2973 	else if (headlen <= offset) {
2974 		skb_frag_t *frag;
2975 		skb_frag_t *frag2;
2976 		int i = skbinfo->nr_frags;
2977 		int nr_frags = pinfo->nr_frags + i;
2978 
2979 		offset -= headlen;
2980 
2981 		if (nr_frags > MAX_SKB_FRAGS)
2982 			return -E2BIG;
2983 
2984 		pinfo->nr_frags = nr_frags;
2985 		skbinfo->nr_frags = 0;
2986 
2987 		frag = pinfo->frags + nr_frags;
2988 		frag2 = skbinfo->frags + i;
2989 		do {
2990 			*--frag = *--frag2;
2991 		} while (--i);
2992 
2993 		frag->page_offset += offset;
2994 		skb_frag_size_sub(frag, offset);
2995 
2996 		/* all fragments truesize : remove (head size + sk_buff) */
2997 		delta_truesize = skb->truesize -
2998 				 SKB_TRUESIZE(skb_end_offset(skb));
2999 
3000 		skb->truesize -= skb->data_len;
3001 		skb->len -= skb->data_len;
3002 		skb->data_len = 0;
3003 
3004 		NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE;
3005 		goto done;
3006 	} else if (skb->head_frag) {
3007 		int nr_frags = pinfo->nr_frags;
3008 		skb_frag_t *frag = pinfo->frags + nr_frags;
3009 		struct page *page = virt_to_head_page(skb->head);
3010 		unsigned int first_size = headlen - offset;
3011 		unsigned int first_offset;
3012 
3013 		if (nr_frags + 1 + skbinfo->nr_frags > MAX_SKB_FRAGS)
3014 			return -E2BIG;
3015 
3016 		first_offset = skb->data -
3017 			       (unsigned char *)page_address(page) +
3018 			       offset;
3019 
3020 		pinfo->nr_frags = nr_frags + 1 + skbinfo->nr_frags;
3021 
3022 		frag->page.p	  = page;
3023 		frag->page_offset = first_offset;
3024 		skb_frag_size_set(frag, first_size);
3025 
3026 		memcpy(frag + 1, skbinfo->frags, sizeof(*frag) * skbinfo->nr_frags);
3027 		/* We dont need to clear skbinfo->nr_frags here */
3028 
3029 		delta_truesize = skb->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
3030 		NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE_STOLEN_HEAD;
3031 		goto done;
3032 	} else if (skb_gro_len(p) != pinfo->gso_size)
3033 		return -E2BIG;
3034 
3035 	headroom = skb_headroom(p);
3036 	nskb = alloc_skb(headroom + skb_gro_offset(p), GFP_ATOMIC);
3037 	if (unlikely(!nskb))
3038 		return -ENOMEM;
3039 
3040 	__copy_skb_header(nskb, p);
3041 	nskb->mac_len = p->mac_len;
3042 
3043 	skb_reserve(nskb, headroom);
3044 	__skb_put(nskb, skb_gro_offset(p));
3045 
3046 	skb_set_mac_header(nskb, skb_mac_header(p) - p->data);
3047 	skb_set_network_header(nskb, skb_network_offset(p));
3048 	skb_set_transport_header(nskb, skb_transport_offset(p));
3049 
3050 	__skb_pull(p, skb_gro_offset(p));
3051 	memcpy(skb_mac_header(nskb), skb_mac_header(p),
3052 	       p->data - skb_mac_header(p));
3053 
3054 	*NAPI_GRO_CB(nskb) = *NAPI_GRO_CB(p);
3055 	skb_shinfo(nskb)->frag_list = p;
3056 	skb_shinfo(nskb)->gso_size = pinfo->gso_size;
3057 	pinfo->gso_size = 0;
3058 	skb_header_release(p);
3059 	nskb->prev = p;
3060 
3061 	nskb->data_len += p->len;
3062 	nskb->truesize += p->truesize;
3063 	nskb->len += p->len;
3064 
3065 	*head = nskb;
3066 	nskb->next = p->next;
3067 	p->next = NULL;
3068 
3069 	p = nskb;
3070 
3071 merge:
3072 	delta_truesize = skb->truesize;
3073 	if (offset > headlen) {
3074 		unsigned int eat = offset - headlen;
3075 
3076 		skbinfo->frags[0].page_offset += eat;
3077 		skb_frag_size_sub(&skbinfo->frags[0], eat);
3078 		skb->data_len -= eat;
3079 		skb->len -= eat;
3080 		offset = headlen;
3081 	}
3082 
3083 	__skb_pull(skb, offset);
3084 
3085 	p->prev->next = skb;
3086 	p->prev = skb;
3087 	skb_header_release(skb);
3088 
3089 done:
3090 	NAPI_GRO_CB(p)->count++;
3091 	p->data_len += len;
3092 	p->truesize += delta_truesize;
3093 	p->len += len;
3094 
3095 	NAPI_GRO_CB(skb)->same_flow = 1;
3096 	return 0;
3097 }
3098 EXPORT_SYMBOL_GPL(skb_gro_receive);
3099 
3100 void __init skb_init(void)
3101 {
3102 	skbuff_head_cache = kmem_cache_create("skbuff_head_cache",
3103 					      sizeof(struct sk_buff),
3104 					      0,
3105 					      SLAB_HWCACHE_ALIGN|SLAB_PANIC,
3106 					      NULL);
3107 	skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
3108 						(2*sizeof(struct sk_buff)) +
3109 						sizeof(atomic_t),
3110 						0,
3111 						SLAB_HWCACHE_ALIGN|SLAB_PANIC,
3112 						NULL);
3113 }
3114 
3115 /**
3116  *	skb_to_sgvec - Fill a scatter-gather list from a socket buffer
3117  *	@skb: Socket buffer containing the buffers to be mapped
3118  *	@sg: The scatter-gather list to map into
3119  *	@offset: The offset into the buffer's contents to start mapping
3120  *	@len: Length of buffer space to be mapped
3121  *
3122  *	Fill the specified scatter-gather list with mappings/pointers into a
3123  *	region of the buffer space attached to a socket buffer.
3124  */
3125 static int
3126 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
3127 {
3128 	int start = skb_headlen(skb);
3129 	int i, copy = start - offset;
3130 	struct sk_buff *frag_iter;
3131 	int elt = 0;
3132 
3133 	if (copy > 0) {
3134 		if (copy > len)
3135 			copy = len;
3136 		sg_set_buf(sg, skb->data + offset, copy);
3137 		elt++;
3138 		if ((len -= copy) == 0)
3139 			return elt;
3140 		offset += copy;
3141 	}
3142 
3143 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3144 		int end;
3145 
3146 		WARN_ON(start > offset + len);
3147 
3148 		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
3149 		if ((copy = end - offset) > 0) {
3150 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3151 
3152 			if (copy > len)
3153 				copy = len;
3154 			sg_set_page(&sg[elt], skb_frag_page(frag), copy,
3155 					frag->page_offset+offset-start);
3156 			elt++;
3157 			if (!(len -= copy))
3158 				return elt;
3159 			offset += copy;
3160 		}
3161 		start = end;
3162 	}
3163 
3164 	skb_walk_frags(skb, frag_iter) {
3165 		int end;
3166 
3167 		WARN_ON(start > offset + len);
3168 
3169 		end = start + frag_iter->len;
3170 		if ((copy = end - offset) > 0) {
3171 			if (copy > len)
3172 				copy = len;
3173 			elt += __skb_to_sgvec(frag_iter, sg+elt, offset - start,
3174 					      copy);
3175 			if ((len -= copy) == 0)
3176 				return elt;
3177 			offset += copy;
3178 		}
3179 		start = end;
3180 	}
3181 	BUG_ON(len);
3182 	return elt;
3183 }
3184 
3185 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
3186 {
3187 	int nsg = __skb_to_sgvec(skb, sg, offset, len);
3188 
3189 	sg_mark_end(&sg[nsg - 1]);
3190 
3191 	return nsg;
3192 }
3193 EXPORT_SYMBOL_GPL(skb_to_sgvec);
3194 
3195 /**
3196  *	skb_cow_data - Check that a socket buffer's data buffers are writable
3197  *	@skb: The socket buffer to check.
3198  *	@tailbits: Amount of trailing space to be added
3199  *	@trailer: Returned pointer to the skb where the @tailbits space begins
3200  *
3201  *	Make sure that the data buffers attached to a socket buffer are
3202  *	writable. If they are not, private copies are made of the data buffers
3203  *	and the socket buffer is set to use these instead.
3204  *
3205  *	If @tailbits is given, make sure that there is space to write @tailbits
3206  *	bytes of data beyond current end of socket buffer.  @trailer will be
3207  *	set to point to the skb in which this space begins.
3208  *
3209  *	The number of scatterlist elements required to completely map the
3210  *	COW'd and extended socket buffer will be returned.
3211  */
3212 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
3213 {
3214 	int copyflag;
3215 	int elt;
3216 	struct sk_buff *skb1, **skb_p;
3217 
3218 	/* If skb is cloned or its head is paged, reallocate
3219 	 * head pulling out all the pages (pages are considered not writable
3220 	 * at the moment even if they are anonymous).
3221 	 */
3222 	if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
3223 	    __pskb_pull_tail(skb, skb_pagelen(skb)-skb_headlen(skb)) == NULL)
3224 		return -ENOMEM;
3225 
3226 	/* Easy case. Most of packets will go this way. */
3227 	if (!skb_has_frag_list(skb)) {
3228 		/* A little of trouble, not enough of space for trailer.
3229 		 * This should not happen, when stack is tuned to generate
3230 		 * good frames. OK, on miss we reallocate and reserve even more
3231 		 * space, 128 bytes is fair. */
3232 
3233 		if (skb_tailroom(skb) < tailbits &&
3234 		    pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
3235 			return -ENOMEM;
3236 
3237 		/* Voila! */
3238 		*trailer = skb;
3239 		return 1;
3240 	}
3241 
3242 	/* Misery. We are in troubles, going to mincer fragments... */
3243 
3244 	elt = 1;
3245 	skb_p = &skb_shinfo(skb)->frag_list;
3246 	copyflag = 0;
3247 
3248 	while ((skb1 = *skb_p) != NULL) {
3249 		int ntail = 0;
3250 
3251 		/* The fragment is partially pulled by someone,
3252 		 * this can happen on input. Copy it and everything
3253 		 * after it. */
3254 
3255 		if (skb_shared(skb1))
3256 			copyflag = 1;
3257 
3258 		/* If the skb is the last, worry about trailer. */
3259 
3260 		if (skb1->next == NULL && tailbits) {
3261 			if (skb_shinfo(skb1)->nr_frags ||
3262 			    skb_has_frag_list(skb1) ||
3263 			    skb_tailroom(skb1) < tailbits)
3264 				ntail = tailbits + 128;
3265 		}
3266 
3267 		if (copyflag ||
3268 		    skb_cloned(skb1) ||
3269 		    ntail ||
3270 		    skb_shinfo(skb1)->nr_frags ||
3271 		    skb_has_frag_list(skb1)) {
3272 			struct sk_buff *skb2;
3273 
3274 			/* Fuck, we are miserable poor guys... */
3275 			if (ntail == 0)
3276 				skb2 = skb_copy(skb1, GFP_ATOMIC);
3277 			else
3278 				skb2 = skb_copy_expand(skb1,
3279 						       skb_headroom(skb1),
3280 						       ntail,
3281 						       GFP_ATOMIC);
3282 			if (unlikely(skb2 == NULL))
3283 				return -ENOMEM;
3284 
3285 			if (skb1->sk)
3286 				skb_set_owner_w(skb2, skb1->sk);
3287 
3288 			/* Looking around. Are we still alive?
3289 			 * OK, link new skb, drop old one */
3290 
3291 			skb2->next = skb1->next;
3292 			*skb_p = skb2;
3293 			kfree_skb(skb1);
3294 			skb1 = skb2;
3295 		}
3296 		elt++;
3297 		*trailer = skb1;
3298 		skb_p = &skb1->next;
3299 	}
3300 
3301 	return elt;
3302 }
3303 EXPORT_SYMBOL_GPL(skb_cow_data);
3304 
3305 static void sock_rmem_free(struct sk_buff *skb)
3306 {
3307 	struct sock *sk = skb->sk;
3308 
3309 	atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
3310 }
3311 
3312 /*
3313  * Note: We dont mem charge error packets (no sk_forward_alloc changes)
3314  */
3315 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
3316 {
3317 	int len = skb->len;
3318 
3319 	if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
3320 	    (unsigned int)sk->sk_rcvbuf)
3321 		return -ENOMEM;
3322 
3323 	skb_orphan(skb);
3324 	skb->sk = sk;
3325 	skb->destructor = sock_rmem_free;
3326 	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
3327 
3328 	/* before exiting rcu section, make sure dst is refcounted */
3329 	skb_dst_force(skb);
3330 
3331 	skb_queue_tail(&sk->sk_error_queue, skb);
3332 	if (!sock_flag(sk, SOCK_DEAD))
3333 		sk->sk_data_ready(sk, len);
3334 	return 0;
3335 }
3336 EXPORT_SYMBOL(sock_queue_err_skb);
3337 
3338 void skb_tstamp_tx(struct sk_buff *orig_skb,
3339 		struct skb_shared_hwtstamps *hwtstamps)
3340 {
3341 	struct sock *sk = orig_skb->sk;
3342 	struct sock_exterr_skb *serr;
3343 	struct sk_buff *skb;
3344 	int err;
3345 
3346 	if (!sk)
3347 		return;
3348 
3349 	skb = skb_clone(orig_skb, GFP_ATOMIC);
3350 	if (!skb)
3351 		return;
3352 
3353 	if (hwtstamps) {
3354 		*skb_hwtstamps(skb) =
3355 			*hwtstamps;
3356 	} else {
3357 		/*
3358 		 * no hardware time stamps available,
3359 		 * so keep the shared tx_flags and only
3360 		 * store software time stamp
3361 		 */
3362 		skb->tstamp = ktime_get_real();
3363 	}
3364 
3365 	serr = SKB_EXT_ERR(skb);
3366 	memset(serr, 0, sizeof(*serr));
3367 	serr->ee.ee_errno = ENOMSG;
3368 	serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
3369 
3370 	err = sock_queue_err_skb(sk, skb);
3371 
3372 	if (err)
3373 		kfree_skb(skb);
3374 }
3375 EXPORT_SYMBOL_GPL(skb_tstamp_tx);
3376 
3377 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked)
3378 {
3379 	struct sock *sk = skb->sk;
3380 	struct sock_exterr_skb *serr;
3381 	int err;
3382 
3383 	skb->wifi_acked_valid = 1;
3384 	skb->wifi_acked = acked;
3385 
3386 	serr = SKB_EXT_ERR(skb);
3387 	memset(serr, 0, sizeof(*serr));
3388 	serr->ee.ee_errno = ENOMSG;
3389 	serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS;
3390 
3391 	err = sock_queue_err_skb(sk, skb);
3392 	if (err)
3393 		kfree_skb(skb);
3394 }
3395 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack);
3396 
3397 
3398 /**
3399  * skb_partial_csum_set - set up and verify partial csum values for packet
3400  * @skb: the skb to set
3401  * @start: the number of bytes after skb->data to start checksumming.
3402  * @off: the offset from start to place the checksum.
3403  *
3404  * For untrusted partially-checksummed packets, we need to make sure the values
3405  * for skb->csum_start and skb->csum_offset are valid so we don't oops.
3406  *
3407  * This function checks and sets those values and skb->ip_summed: if this
3408  * returns false you should drop the packet.
3409  */
3410 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
3411 {
3412 	if (unlikely(start > skb_headlen(skb)) ||
3413 	    unlikely((int)start + off > skb_headlen(skb) - 2)) {
3414 		net_warn_ratelimited("bad partial csum: csum=%u/%u len=%u\n",
3415 				     start, off, skb_headlen(skb));
3416 		return false;
3417 	}
3418 	skb->ip_summed = CHECKSUM_PARTIAL;
3419 	skb->csum_start = skb_headroom(skb) + start;
3420 	skb->csum_offset = off;
3421 	return true;
3422 }
3423 EXPORT_SYMBOL_GPL(skb_partial_csum_set);
3424 
3425 void __skb_warn_lro_forwarding(const struct sk_buff *skb)
3426 {
3427 	net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n",
3428 			     skb->dev->name);
3429 }
3430 EXPORT_SYMBOL(__skb_warn_lro_forwarding);
3431 
3432 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen)
3433 {
3434 	if (head_stolen)
3435 		kmem_cache_free(skbuff_head_cache, skb);
3436 	else
3437 		__kfree_skb(skb);
3438 }
3439 EXPORT_SYMBOL(kfree_skb_partial);
3440 
3441 /**
3442  * skb_try_coalesce - try to merge skb to prior one
3443  * @to: prior buffer
3444  * @from: buffer to add
3445  * @fragstolen: pointer to boolean
3446  * @delta_truesize: how much more was allocated than was requested
3447  */
3448 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
3449 		      bool *fragstolen, int *delta_truesize)
3450 {
3451 	int i, delta, len = from->len;
3452 
3453 	*fragstolen = false;
3454 
3455 	if (skb_cloned(to))
3456 		return false;
3457 
3458 	if (len <= skb_tailroom(to)) {
3459 		BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len));
3460 		*delta_truesize = 0;
3461 		return true;
3462 	}
3463 
3464 	if (skb_has_frag_list(to) || skb_has_frag_list(from))
3465 		return false;
3466 
3467 	if (skb_headlen(from) != 0) {
3468 		struct page *page;
3469 		unsigned int offset;
3470 
3471 		if (skb_shinfo(to)->nr_frags +
3472 		    skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS)
3473 			return false;
3474 
3475 		if (skb_head_is_locked(from))
3476 			return false;
3477 
3478 		delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
3479 
3480 		page = virt_to_head_page(from->head);
3481 		offset = from->data - (unsigned char *)page_address(page);
3482 
3483 		skb_fill_page_desc(to, skb_shinfo(to)->nr_frags,
3484 				   page, offset, skb_headlen(from));
3485 		*fragstolen = true;
3486 	} else {
3487 		if (skb_shinfo(to)->nr_frags +
3488 		    skb_shinfo(from)->nr_frags > MAX_SKB_FRAGS)
3489 			return false;
3490 
3491 		delta = from->truesize -
3492 			SKB_TRUESIZE(skb_end_pointer(from) - from->head);
3493 	}
3494 
3495 	WARN_ON_ONCE(delta < len);
3496 
3497 	memcpy(skb_shinfo(to)->frags + skb_shinfo(to)->nr_frags,
3498 	       skb_shinfo(from)->frags,
3499 	       skb_shinfo(from)->nr_frags * sizeof(skb_frag_t));
3500 	skb_shinfo(to)->nr_frags += skb_shinfo(from)->nr_frags;
3501 
3502 	if (!skb_cloned(from))
3503 		skb_shinfo(from)->nr_frags = 0;
3504 
3505 	/* if the skb is cloned this does nothing since we set nr_frags to 0 */
3506 	for (i = 0; i < skb_shinfo(from)->nr_frags; i++)
3507 		skb_frag_ref(from, i);
3508 
3509 	to->truesize += delta;
3510 	to->len += len;
3511 	to->data_len += len;
3512 
3513 	*delta_truesize = delta;
3514 	return true;
3515 }
3516 EXPORT_SYMBOL(skb_try_coalesce);
3517