xref: /openbmc/linux/net/core/skbuff.c (revision 94c7b6fc)
1 /*
2  *	Routines having to do with the 'struct sk_buff' memory handlers.
3  *
4  *	Authors:	Alan Cox <alan@lxorguk.ukuu.org.uk>
5  *			Florian La Roche <rzsfl@rz.uni-sb.de>
6  *
7  *	Fixes:
8  *		Alan Cox	:	Fixed the worst of the load
9  *					balancer bugs.
10  *		Dave Platt	:	Interrupt stacking fix.
11  *	Richard Kooijman	:	Timestamp fixes.
12  *		Alan Cox	:	Changed buffer format.
13  *		Alan Cox	:	destructor hook for AF_UNIX etc.
14  *		Linus Torvalds	:	Better skb_clone.
15  *		Alan Cox	:	Added skb_copy.
16  *		Alan Cox	:	Added all the changed routines Linus
17  *					only put in the headers
18  *		Ray VanTassle	:	Fixed --skb->lock in free
19  *		Alan Cox	:	skb_copy copy arp field
20  *		Andi Kleen	:	slabified it.
21  *		Robert Olsson	:	Removed skb_head_pool
22  *
23  *	NOTE:
24  *		The __skb_ routines should be called with interrupts
25  *	disabled, or you better be *real* sure that the operation is atomic
26  *	with respect to whatever list is being frobbed (e.g. via lock_sock()
27  *	or via disabling bottom half handlers, etc).
28  *
29  *	This program is free software; you can redistribute it and/or
30  *	modify it under the terms of the GNU General Public License
31  *	as published by the Free Software Foundation; either version
32  *	2 of the License, or (at your option) any later version.
33  */
34 
35 /*
36  *	The functions in this file will not compile correctly with gcc 2.4.x
37  */
38 
39 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
40 
41 #include <linux/module.h>
42 #include <linux/types.h>
43 #include <linux/kernel.h>
44 #include <linux/kmemcheck.h>
45 #include <linux/mm.h>
46 #include <linux/interrupt.h>
47 #include <linux/in.h>
48 #include <linux/inet.h>
49 #include <linux/slab.h>
50 #include <linux/tcp.h>
51 #include <linux/udp.h>
52 #include <linux/netdevice.h>
53 #ifdef CONFIG_NET_CLS_ACT
54 #include <net/pkt_sched.h>
55 #endif
56 #include <linux/string.h>
57 #include <linux/skbuff.h>
58 #include <linux/splice.h>
59 #include <linux/cache.h>
60 #include <linux/rtnetlink.h>
61 #include <linux/init.h>
62 #include <linux/scatterlist.h>
63 #include <linux/errqueue.h>
64 #include <linux/prefetch.h>
65 
66 #include <net/protocol.h>
67 #include <net/dst.h>
68 #include <net/sock.h>
69 #include <net/checksum.h>
70 #include <net/ip6_checksum.h>
71 #include <net/xfrm.h>
72 
73 #include <asm/uaccess.h>
74 #include <trace/events/skb.h>
75 #include <linux/highmem.h>
76 
77 struct kmem_cache *skbuff_head_cache __read_mostly;
78 static struct kmem_cache *skbuff_fclone_cache __read_mostly;
79 
80 /**
81  *	skb_panic - private function for out-of-line support
82  *	@skb:	buffer
83  *	@sz:	size
84  *	@addr:	address
85  *	@msg:	skb_over_panic or skb_under_panic
86  *
87  *	Out-of-line support for skb_put() and skb_push().
88  *	Called via the wrapper skb_over_panic() or skb_under_panic().
89  *	Keep out of line to prevent kernel bloat.
90  *	__builtin_return_address is not used because it is not always reliable.
91  */
92 static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr,
93 		      const char msg[])
94 {
95 	pr_emerg("%s: text:%p len:%d put:%d head:%p data:%p tail:%#lx end:%#lx dev:%s\n",
96 		 msg, addr, skb->len, sz, skb->head, skb->data,
97 		 (unsigned long)skb->tail, (unsigned long)skb->end,
98 		 skb->dev ? skb->dev->name : "<NULL>");
99 	BUG();
100 }
101 
102 static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr)
103 {
104 	skb_panic(skb, sz, addr, __func__);
105 }
106 
107 static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr)
108 {
109 	skb_panic(skb, sz, addr, __func__);
110 }
111 
112 /*
113  * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells
114  * the caller if emergency pfmemalloc reserves are being used. If it is and
115  * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves
116  * may be used. Otherwise, the packet data may be discarded until enough
117  * memory is free
118  */
119 #define kmalloc_reserve(size, gfp, node, pfmemalloc) \
120 	 __kmalloc_reserve(size, gfp, node, _RET_IP_, pfmemalloc)
121 
122 static void *__kmalloc_reserve(size_t size, gfp_t flags, int node,
123 			       unsigned long ip, bool *pfmemalloc)
124 {
125 	void *obj;
126 	bool ret_pfmemalloc = false;
127 
128 	/*
129 	 * Try a regular allocation, when that fails and we're not entitled
130 	 * to the reserves, fail.
131 	 */
132 	obj = kmalloc_node_track_caller(size,
133 					flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
134 					node);
135 	if (obj || !(gfp_pfmemalloc_allowed(flags)))
136 		goto out;
137 
138 	/* Try again but now we are using pfmemalloc reserves */
139 	ret_pfmemalloc = true;
140 	obj = kmalloc_node_track_caller(size, flags, node);
141 
142 out:
143 	if (pfmemalloc)
144 		*pfmemalloc = ret_pfmemalloc;
145 
146 	return obj;
147 }
148 
149 /* 	Allocate a new skbuff. We do this ourselves so we can fill in a few
150  *	'private' fields and also do memory statistics to find all the
151  *	[BEEP] leaks.
152  *
153  */
154 
155 struct sk_buff *__alloc_skb_head(gfp_t gfp_mask, int node)
156 {
157 	struct sk_buff *skb;
158 
159 	/* Get the HEAD */
160 	skb = kmem_cache_alloc_node(skbuff_head_cache,
161 				    gfp_mask & ~__GFP_DMA, node);
162 	if (!skb)
163 		goto out;
164 
165 	/*
166 	 * Only clear those fields we need to clear, not those that we will
167 	 * actually initialise below. Hence, don't put any more fields after
168 	 * the tail pointer in struct sk_buff!
169 	 */
170 	memset(skb, 0, offsetof(struct sk_buff, tail));
171 	skb->head = NULL;
172 	skb->truesize = sizeof(struct sk_buff);
173 	atomic_set(&skb->users, 1);
174 
175 	skb->mac_header = (typeof(skb->mac_header))~0U;
176 out:
177 	return skb;
178 }
179 
180 /**
181  *	__alloc_skb	-	allocate a network buffer
182  *	@size: size to allocate
183  *	@gfp_mask: allocation mask
184  *	@flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache
185  *		instead of head cache and allocate a cloned (child) skb.
186  *		If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for
187  *		allocations in case the data is required for writeback
188  *	@node: numa node to allocate memory on
189  *
190  *	Allocate a new &sk_buff. The returned buffer has no headroom and a
191  *	tail room of at least size bytes. The object has a reference count
192  *	of one. The return is the buffer. On a failure the return is %NULL.
193  *
194  *	Buffers may only be allocated from interrupts using a @gfp_mask of
195  *	%GFP_ATOMIC.
196  */
197 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
198 			    int flags, int node)
199 {
200 	struct kmem_cache *cache;
201 	struct skb_shared_info *shinfo;
202 	struct sk_buff *skb;
203 	u8 *data;
204 	bool pfmemalloc;
205 
206 	cache = (flags & SKB_ALLOC_FCLONE)
207 		? skbuff_fclone_cache : skbuff_head_cache;
208 
209 	if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX))
210 		gfp_mask |= __GFP_MEMALLOC;
211 
212 	/* Get the HEAD */
213 	skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node);
214 	if (!skb)
215 		goto out;
216 	prefetchw(skb);
217 
218 	/* We do our best to align skb_shared_info on a separate cache
219 	 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives
220 	 * aligned memory blocks, unless SLUB/SLAB debug is enabled.
221 	 * Both skb->head and skb_shared_info are cache line aligned.
222 	 */
223 	size = SKB_DATA_ALIGN(size);
224 	size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
225 	data = kmalloc_reserve(size, gfp_mask, node, &pfmemalloc);
226 	if (!data)
227 		goto nodata;
228 	/* kmalloc(size) might give us more room than requested.
229 	 * Put skb_shared_info exactly at the end of allocated zone,
230 	 * to allow max possible filling before reallocation.
231 	 */
232 	size = SKB_WITH_OVERHEAD(ksize(data));
233 	prefetchw(data + size);
234 
235 	/*
236 	 * Only clear those fields we need to clear, not those that we will
237 	 * actually initialise below. Hence, don't put any more fields after
238 	 * the tail pointer in struct sk_buff!
239 	 */
240 	memset(skb, 0, offsetof(struct sk_buff, tail));
241 	/* Account for allocated memory : skb + skb->head */
242 	skb->truesize = SKB_TRUESIZE(size);
243 	skb->pfmemalloc = pfmemalloc;
244 	atomic_set(&skb->users, 1);
245 	skb->head = data;
246 	skb->data = data;
247 	skb_reset_tail_pointer(skb);
248 	skb->end = skb->tail + size;
249 	skb->mac_header = (typeof(skb->mac_header))~0U;
250 	skb->transport_header = (typeof(skb->transport_header))~0U;
251 
252 	/* make sure we initialize shinfo sequentially */
253 	shinfo = skb_shinfo(skb);
254 	memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
255 	atomic_set(&shinfo->dataref, 1);
256 	kmemcheck_annotate_variable(shinfo->destructor_arg);
257 
258 	if (flags & SKB_ALLOC_FCLONE) {
259 		struct sk_buff *child = skb + 1;
260 		atomic_t *fclone_ref = (atomic_t *) (child + 1);
261 
262 		kmemcheck_annotate_bitfield(child, flags1);
263 		kmemcheck_annotate_bitfield(child, flags2);
264 		skb->fclone = SKB_FCLONE_ORIG;
265 		atomic_set(fclone_ref, 1);
266 
267 		child->fclone = SKB_FCLONE_UNAVAILABLE;
268 		child->pfmemalloc = pfmemalloc;
269 	}
270 out:
271 	return skb;
272 nodata:
273 	kmem_cache_free(cache, skb);
274 	skb = NULL;
275 	goto out;
276 }
277 EXPORT_SYMBOL(__alloc_skb);
278 
279 /**
280  * build_skb - build a network buffer
281  * @data: data buffer provided by caller
282  * @frag_size: size of fragment, or 0 if head was kmalloced
283  *
284  * Allocate a new &sk_buff. Caller provides space holding head and
285  * skb_shared_info. @data must have been allocated by kmalloc() only if
286  * @frag_size is 0, otherwise data should come from the page allocator.
287  * The return is the new skb buffer.
288  * On a failure the return is %NULL, and @data is not freed.
289  * Notes :
290  *  Before IO, driver allocates only data buffer where NIC put incoming frame
291  *  Driver should add room at head (NET_SKB_PAD) and
292  *  MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info))
293  *  After IO, driver calls build_skb(), to allocate sk_buff and populate it
294  *  before giving packet to stack.
295  *  RX rings only contains data buffers, not full skbs.
296  */
297 struct sk_buff *build_skb(void *data, unsigned int frag_size)
298 {
299 	struct skb_shared_info *shinfo;
300 	struct sk_buff *skb;
301 	unsigned int size = frag_size ? : ksize(data);
302 
303 	skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC);
304 	if (!skb)
305 		return NULL;
306 
307 	size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
308 
309 	memset(skb, 0, offsetof(struct sk_buff, tail));
310 	skb->truesize = SKB_TRUESIZE(size);
311 	skb->head_frag = frag_size != 0;
312 	atomic_set(&skb->users, 1);
313 	skb->head = data;
314 	skb->data = data;
315 	skb_reset_tail_pointer(skb);
316 	skb->end = skb->tail + size;
317 	skb->mac_header = (typeof(skb->mac_header))~0U;
318 	skb->transport_header = (typeof(skb->transport_header))~0U;
319 
320 	/* make sure we initialize shinfo sequentially */
321 	shinfo = skb_shinfo(skb);
322 	memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
323 	atomic_set(&shinfo->dataref, 1);
324 	kmemcheck_annotate_variable(shinfo->destructor_arg);
325 
326 	return skb;
327 }
328 EXPORT_SYMBOL(build_skb);
329 
330 struct netdev_alloc_cache {
331 	struct page_frag	frag;
332 	/* we maintain a pagecount bias, so that we dont dirty cache line
333 	 * containing page->_count every time we allocate a fragment.
334 	 */
335 	unsigned int		pagecnt_bias;
336 };
337 static DEFINE_PER_CPU(struct netdev_alloc_cache, netdev_alloc_cache);
338 
339 static void *__netdev_alloc_frag(unsigned int fragsz, gfp_t gfp_mask)
340 {
341 	struct netdev_alloc_cache *nc;
342 	void *data = NULL;
343 	int order;
344 	unsigned long flags;
345 
346 	local_irq_save(flags);
347 	nc = &__get_cpu_var(netdev_alloc_cache);
348 	if (unlikely(!nc->frag.page)) {
349 refill:
350 		for (order = NETDEV_FRAG_PAGE_MAX_ORDER; ;) {
351 			gfp_t gfp = gfp_mask;
352 
353 			if (order)
354 				gfp |= __GFP_COMP | __GFP_NOWARN;
355 			nc->frag.page = alloc_pages(gfp, order);
356 			if (likely(nc->frag.page))
357 				break;
358 			if (--order < 0)
359 				goto end;
360 		}
361 		nc->frag.size = PAGE_SIZE << order;
362 recycle:
363 		atomic_set(&nc->frag.page->_count, NETDEV_PAGECNT_MAX_BIAS);
364 		nc->pagecnt_bias = NETDEV_PAGECNT_MAX_BIAS;
365 		nc->frag.offset = 0;
366 	}
367 
368 	if (nc->frag.offset + fragsz > nc->frag.size) {
369 		/* avoid unnecessary locked operations if possible */
370 		if ((atomic_read(&nc->frag.page->_count) == nc->pagecnt_bias) ||
371 		    atomic_sub_and_test(nc->pagecnt_bias, &nc->frag.page->_count))
372 			goto recycle;
373 		goto refill;
374 	}
375 
376 	data = page_address(nc->frag.page) + nc->frag.offset;
377 	nc->frag.offset += fragsz;
378 	nc->pagecnt_bias--;
379 end:
380 	local_irq_restore(flags);
381 	return data;
382 }
383 
384 /**
385  * netdev_alloc_frag - allocate a page fragment
386  * @fragsz: fragment size
387  *
388  * Allocates a frag from a page for receive buffer.
389  * Uses GFP_ATOMIC allocations.
390  */
391 void *netdev_alloc_frag(unsigned int fragsz)
392 {
393 	return __netdev_alloc_frag(fragsz, GFP_ATOMIC | __GFP_COLD);
394 }
395 EXPORT_SYMBOL(netdev_alloc_frag);
396 
397 /**
398  *	__netdev_alloc_skb - allocate an skbuff for rx on a specific device
399  *	@dev: network device to receive on
400  *	@length: length to allocate
401  *	@gfp_mask: get_free_pages mask, passed to alloc_skb
402  *
403  *	Allocate a new &sk_buff and assign it a usage count of one. The
404  *	buffer has unspecified headroom built in. Users should allocate
405  *	the headroom they think they need without accounting for the
406  *	built in space. The built in space is used for optimisations.
407  *
408  *	%NULL is returned if there is no free memory.
409  */
410 struct sk_buff *__netdev_alloc_skb(struct net_device *dev,
411 				   unsigned int length, gfp_t gfp_mask)
412 {
413 	struct sk_buff *skb = NULL;
414 	unsigned int fragsz = SKB_DATA_ALIGN(length + NET_SKB_PAD) +
415 			      SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
416 
417 	if (fragsz <= PAGE_SIZE && !(gfp_mask & (__GFP_WAIT | GFP_DMA))) {
418 		void *data;
419 
420 		if (sk_memalloc_socks())
421 			gfp_mask |= __GFP_MEMALLOC;
422 
423 		data = __netdev_alloc_frag(fragsz, gfp_mask);
424 
425 		if (likely(data)) {
426 			skb = build_skb(data, fragsz);
427 			if (unlikely(!skb))
428 				put_page(virt_to_head_page(data));
429 		}
430 	} else {
431 		skb = __alloc_skb(length + NET_SKB_PAD, gfp_mask,
432 				  SKB_ALLOC_RX, NUMA_NO_NODE);
433 	}
434 	if (likely(skb)) {
435 		skb_reserve(skb, NET_SKB_PAD);
436 		skb->dev = dev;
437 	}
438 	return skb;
439 }
440 EXPORT_SYMBOL(__netdev_alloc_skb);
441 
442 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
443 		     int size, unsigned int truesize)
444 {
445 	skb_fill_page_desc(skb, i, page, off, size);
446 	skb->len += size;
447 	skb->data_len += size;
448 	skb->truesize += truesize;
449 }
450 EXPORT_SYMBOL(skb_add_rx_frag);
451 
452 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
453 			  unsigned int truesize)
454 {
455 	skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
456 
457 	skb_frag_size_add(frag, size);
458 	skb->len += size;
459 	skb->data_len += size;
460 	skb->truesize += truesize;
461 }
462 EXPORT_SYMBOL(skb_coalesce_rx_frag);
463 
464 static void skb_drop_list(struct sk_buff **listp)
465 {
466 	kfree_skb_list(*listp);
467 	*listp = NULL;
468 }
469 
470 static inline void skb_drop_fraglist(struct sk_buff *skb)
471 {
472 	skb_drop_list(&skb_shinfo(skb)->frag_list);
473 }
474 
475 static void skb_clone_fraglist(struct sk_buff *skb)
476 {
477 	struct sk_buff *list;
478 
479 	skb_walk_frags(skb, list)
480 		skb_get(list);
481 }
482 
483 static void skb_free_head(struct sk_buff *skb)
484 {
485 	if (skb->head_frag)
486 		put_page(virt_to_head_page(skb->head));
487 	else
488 		kfree(skb->head);
489 }
490 
491 static void skb_release_data(struct sk_buff *skb)
492 {
493 	if (!skb->cloned ||
494 	    !atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
495 			       &skb_shinfo(skb)->dataref)) {
496 		if (skb_shinfo(skb)->nr_frags) {
497 			int i;
498 			for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
499 				skb_frag_unref(skb, i);
500 		}
501 
502 		/*
503 		 * If skb buf is from userspace, we need to notify the caller
504 		 * the lower device DMA has done;
505 		 */
506 		if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
507 			struct ubuf_info *uarg;
508 
509 			uarg = skb_shinfo(skb)->destructor_arg;
510 			if (uarg->callback)
511 				uarg->callback(uarg, true);
512 		}
513 
514 		if (skb_has_frag_list(skb))
515 			skb_drop_fraglist(skb);
516 
517 		skb_free_head(skb);
518 	}
519 }
520 
521 /*
522  *	Free an skbuff by memory without cleaning the state.
523  */
524 static void kfree_skbmem(struct sk_buff *skb)
525 {
526 	struct sk_buff *other;
527 	atomic_t *fclone_ref;
528 
529 	switch (skb->fclone) {
530 	case SKB_FCLONE_UNAVAILABLE:
531 		kmem_cache_free(skbuff_head_cache, skb);
532 		break;
533 
534 	case SKB_FCLONE_ORIG:
535 		fclone_ref = (atomic_t *) (skb + 2);
536 		if (atomic_dec_and_test(fclone_ref))
537 			kmem_cache_free(skbuff_fclone_cache, skb);
538 		break;
539 
540 	case SKB_FCLONE_CLONE:
541 		fclone_ref = (atomic_t *) (skb + 1);
542 		other = skb - 1;
543 
544 		/* The clone portion is available for
545 		 * fast-cloning again.
546 		 */
547 		skb->fclone = SKB_FCLONE_UNAVAILABLE;
548 
549 		if (atomic_dec_and_test(fclone_ref))
550 			kmem_cache_free(skbuff_fclone_cache, other);
551 		break;
552 	}
553 }
554 
555 static void skb_release_head_state(struct sk_buff *skb)
556 {
557 	skb_dst_drop(skb);
558 #ifdef CONFIG_XFRM
559 	secpath_put(skb->sp);
560 #endif
561 	if (skb->destructor) {
562 		WARN_ON(in_irq());
563 		skb->destructor(skb);
564 	}
565 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
566 	nf_conntrack_put(skb->nfct);
567 #endif
568 #ifdef CONFIG_BRIDGE_NETFILTER
569 	nf_bridge_put(skb->nf_bridge);
570 #endif
571 /* XXX: IS this still necessary? - JHS */
572 #ifdef CONFIG_NET_SCHED
573 	skb->tc_index = 0;
574 #ifdef CONFIG_NET_CLS_ACT
575 	skb->tc_verd = 0;
576 #endif
577 #endif
578 }
579 
580 /* Free everything but the sk_buff shell. */
581 static void skb_release_all(struct sk_buff *skb)
582 {
583 	skb_release_head_state(skb);
584 	if (likely(skb->head))
585 		skb_release_data(skb);
586 }
587 
588 /**
589  *	__kfree_skb - private function
590  *	@skb: buffer
591  *
592  *	Free an sk_buff. Release anything attached to the buffer.
593  *	Clean the state. This is an internal helper function. Users should
594  *	always call kfree_skb
595  */
596 
597 void __kfree_skb(struct sk_buff *skb)
598 {
599 	skb_release_all(skb);
600 	kfree_skbmem(skb);
601 }
602 EXPORT_SYMBOL(__kfree_skb);
603 
604 /**
605  *	kfree_skb - free an sk_buff
606  *	@skb: buffer to free
607  *
608  *	Drop a reference to the buffer and free it if the usage count has
609  *	hit zero.
610  */
611 void kfree_skb(struct sk_buff *skb)
612 {
613 	if (unlikely(!skb))
614 		return;
615 	if (likely(atomic_read(&skb->users) == 1))
616 		smp_rmb();
617 	else if (likely(!atomic_dec_and_test(&skb->users)))
618 		return;
619 	trace_kfree_skb(skb, __builtin_return_address(0));
620 	__kfree_skb(skb);
621 }
622 EXPORT_SYMBOL(kfree_skb);
623 
624 void kfree_skb_list(struct sk_buff *segs)
625 {
626 	while (segs) {
627 		struct sk_buff *next = segs->next;
628 
629 		kfree_skb(segs);
630 		segs = next;
631 	}
632 }
633 EXPORT_SYMBOL(kfree_skb_list);
634 
635 /**
636  *	skb_tx_error - report an sk_buff xmit error
637  *	@skb: buffer that triggered an error
638  *
639  *	Report xmit error if a device callback is tracking this skb.
640  *	skb must be freed afterwards.
641  */
642 void skb_tx_error(struct sk_buff *skb)
643 {
644 	if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
645 		struct ubuf_info *uarg;
646 
647 		uarg = skb_shinfo(skb)->destructor_arg;
648 		if (uarg->callback)
649 			uarg->callback(uarg, false);
650 		skb_shinfo(skb)->tx_flags &= ~SKBTX_DEV_ZEROCOPY;
651 	}
652 }
653 EXPORT_SYMBOL(skb_tx_error);
654 
655 /**
656  *	consume_skb - free an skbuff
657  *	@skb: buffer to free
658  *
659  *	Drop a ref to the buffer and free it if the usage count has hit zero
660  *	Functions identically to kfree_skb, but kfree_skb assumes that the frame
661  *	is being dropped after a failure and notes that
662  */
663 void consume_skb(struct sk_buff *skb)
664 {
665 	if (unlikely(!skb))
666 		return;
667 	if (likely(atomic_read(&skb->users) == 1))
668 		smp_rmb();
669 	else if (likely(!atomic_dec_and_test(&skb->users)))
670 		return;
671 	trace_consume_skb(skb);
672 	__kfree_skb(skb);
673 }
674 EXPORT_SYMBOL(consume_skb);
675 
676 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
677 {
678 	new->tstamp		= old->tstamp;
679 	new->dev		= old->dev;
680 	new->transport_header	= old->transport_header;
681 	new->network_header	= old->network_header;
682 	new->mac_header		= old->mac_header;
683 	new->inner_protocol	= old->inner_protocol;
684 	new->inner_transport_header = old->inner_transport_header;
685 	new->inner_network_header = old->inner_network_header;
686 	new->inner_mac_header = old->inner_mac_header;
687 	skb_dst_copy(new, old);
688 	skb_copy_hash(new, old);
689 	new->ooo_okay		= old->ooo_okay;
690 	new->no_fcs		= old->no_fcs;
691 	new->encapsulation	= old->encapsulation;
692 	new->encap_hdr_csum	= old->encap_hdr_csum;
693 	new->csum_valid		= old->csum_valid;
694 	new->csum_complete_sw	= old->csum_complete_sw;
695 #ifdef CONFIG_XFRM
696 	new->sp			= secpath_get(old->sp);
697 #endif
698 	memcpy(new->cb, old->cb, sizeof(old->cb));
699 	new->csum		= old->csum;
700 	new->ignore_df		= old->ignore_df;
701 	new->pkt_type		= old->pkt_type;
702 	new->ip_summed		= old->ip_summed;
703 	skb_copy_queue_mapping(new, old);
704 	new->priority		= old->priority;
705 #if IS_ENABLED(CONFIG_IP_VS)
706 	new->ipvs_property	= old->ipvs_property;
707 #endif
708 	new->pfmemalloc		= old->pfmemalloc;
709 	new->protocol		= old->protocol;
710 	new->mark		= old->mark;
711 	new->skb_iif		= old->skb_iif;
712 	__nf_copy(new, old);
713 #ifdef CONFIG_NET_SCHED
714 	new->tc_index		= old->tc_index;
715 #ifdef CONFIG_NET_CLS_ACT
716 	new->tc_verd		= old->tc_verd;
717 #endif
718 #endif
719 	new->vlan_proto		= old->vlan_proto;
720 	new->vlan_tci		= old->vlan_tci;
721 
722 	skb_copy_secmark(new, old);
723 
724 #ifdef CONFIG_NET_RX_BUSY_POLL
725 	new->napi_id	= old->napi_id;
726 #endif
727 }
728 
729 /*
730  * You should not add any new code to this function.  Add it to
731  * __copy_skb_header above instead.
732  */
733 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
734 {
735 #define C(x) n->x = skb->x
736 
737 	n->next = n->prev = NULL;
738 	n->sk = NULL;
739 	__copy_skb_header(n, skb);
740 
741 	C(len);
742 	C(data_len);
743 	C(mac_len);
744 	n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
745 	n->cloned = 1;
746 	n->nohdr = 0;
747 	n->destructor = NULL;
748 	C(tail);
749 	C(end);
750 	C(head);
751 	C(head_frag);
752 	C(data);
753 	C(truesize);
754 	atomic_set(&n->users, 1);
755 
756 	atomic_inc(&(skb_shinfo(skb)->dataref));
757 	skb->cloned = 1;
758 
759 	return n;
760 #undef C
761 }
762 
763 /**
764  *	skb_morph	-	morph one skb into another
765  *	@dst: the skb to receive the contents
766  *	@src: the skb to supply the contents
767  *
768  *	This is identical to skb_clone except that the target skb is
769  *	supplied by the user.
770  *
771  *	The target skb is returned upon exit.
772  */
773 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
774 {
775 	skb_release_all(dst);
776 	return __skb_clone(dst, src);
777 }
778 EXPORT_SYMBOL_GPL(skb_morph);
779 
780 /**
781  *	skb_copy_ubufs	-	copy userspace skb frags buffers to kernel
782  *	@skb: the skb to modify
783  *	@gfp_mask: allocation priority
784  *
785  *	This must be called on SKBTX_DEV_ZEROCOPY skb.
786  *	It will copy all frags into kernel and drop the reference
787  *	to userspace pages.
788  *
789  *	If this function is called from an interrupt gfp_mask() must be
790  *	%GFP_ATOMIC.
791  *
792  *	Returns 0 on success or a negative error code on failure
793  *	to allocate kernel memory to copy to.
794  */
795 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask)
796 {
797 	int i;
798 	int num_frags = skb_shinfo(skb)->nr_frags;
799 	struct page *page, *head = NULL;
800 	struct ubuf_info *uarg = skb_shinfo(skb)->destructor_arg;
801 
802 	for (i = 0; i < num_frags; i++) {
803 		u8 *vaddr;
804 		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
805 
806 		page = alloc_page(gfp_mask);
807 		if (!page) {
808 			while (head) {
809 				struct page *next = (struct page *)page_private(head);
810 				put_page(head);
811 				head = next;
812 			}
813 			return -ENOMEM;
814 		}
815 		vaddr = kmap_atomic(skb_frag_page(f));
816 		memcpy(page_address(page),
817 		       vaddr + f->page_offset, skb_frag_size(f));
818 		kunmap_atomic(vaddr);
819 		set_page_private(page, (unsigned long)head);
820 		head = page;
821 	}
822 
823 	/* skb frags release userspace buffers */
824 	for (i = 0; i < num_frags; i++)
825 		skb_frag_unref(skb, i);
826 
827 	uarg->callback(uarg, false);
828 
829 	/* skb frags point to kernel buffers */
830 	for (i = num_frags - 1; i >= 0; i--) {
831 		__skb_fill_page_desc(skb, i, head, 0,
832 				     skb_shinfo(skb)->frags[i].size);
833 		head = (struct page *)page_private(head);
834 	}
835 
836 	skb_shinfo(skb)->tx_flags &= ~SKBTX_DEV_ZEROCOPY;
837 	return 0;
838 }
839 EXPORT_SYMBOL_GPL(skb_copy_ubufs);
840 
841 /**
842  *	skb_clone	-	duplicate an sk_buff
843  *	@skb: buffer to clone
844  *	@gfp_mask: allocation priority
845  *
846  *	Duplicate an &sk_buff. The new one is not owned by a socket. Both
847  *	copies share the same packet data but not structure. The new
848  *	buffer has a reference count of 1. If the allocation fails the
849  *	function returns %NULL otherwise the new buffer is returned.
850  *
851  *	If this function is called from an interrupt gfp_mask() must be
852  *	%GFP_ATOMIC.
853  */
854 
855 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
856 {
857 	struct sk_buff *n;
858 
859 	if (skb_orphan_frags(skb, gfp_mask))
860 		return NULL;
861 
862 	n = skb + 1;
863 	if (skb->fclone == SKB_FCLONE_ORIG &&
864 	    n->fclone == SKB_FCLONE_UNAVAILABLE) {
865 		atomic_t *fclone_ref = (atomic_t *) (n + 1);
866 		n->fclone = SKB_FCLONE_CLONE;
867 		atomic_inc(fclone_ref);
868 	} else {
869 		if (skb_pfmemalloc(skb))
870 			gfp_mask |= __GFP_MEMALLOC;
871 
872 		n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
873 		if (!n)
874 			return NULL;
875 
876 		kmemcheck_annotate_bitfield(n, flags1);
877 		kmemcheck_annotate_bitfield(n, flags2);
878 		n->fclone = SKB_FCLONE_UNAVAILABLE;
879 	}
880 
881 	return __skb_clone(n, skb);
882 }
883 EXPORT_SYMBOL(skb_clone);
884 
885 static void skb_headers_offset_update(struct sk_buff *skb, int off)
886 {
887 	/* Only adjust this if it actually is csum_start rather than csum */
888 	if (skb->ip_summed == CHECKSUM_PARTIAL)
889 		skb->csum_start += off;
890 	/* {transport,network,mac}_header and tail are relative to skb->head */
891 	skb->transport_header += off;
892 	skb->network_header   += off;
893 	if (skb_mac_header_was_set(skb))
894 		skb->mac_header += off;
895 	skb->inner_transport_header += off;
896 	skb->inner_network_header += off;
897 	skb->inner_mac_header += off;
898 }
899 
900 static void copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
901 {
902 	__copy_skb_header(new, old);
903 
904 	skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
905 	skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
906 	skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
907 }
908 
909 static inline int skb_alloc_rx_flag(const struct sk_buff *skb)
910 {
911 	if (skb_pfmemalloc(skb))
912 		return SKB_ALLOC_RX;
913 	return 0;
914 }
915 
916 /**
917  *	skb_copy	-	create private copy of an sk_buff
918  *	@skb: buffer to copy
919  *	@gfp_mask: allocation priority
920  *
921  *	Make a copy of both an &sk_buff and its data. This is used when the
922  *	caller wishes to modify the data and needs a private copy of the
923  *	data to alter. Returns %NULL on failure or the pointer to the buffer
924  *	on success. The returned buffer has a reference count of 1.
925  *
926  *	As by-product this function converts non-linear &sk_buff to linear
927  *	one, so that &sk_buff becomes completely private and caller is allowed
928  *	to modify all the data of returned buffer. This means that this
929  *	function is not recommended for use in circumstances when only
930  *	header is going to be modified. Use pskb_copy() instead.
931  */
932 
933 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
934 {
935 	int headerlen = skb_headroom(skb);
936 	unsigned int size = skb_end_offset(skb) + skb->data_len;
937 	struct sk_buff *n = __alloc_skb(size, gfp_mask,
938 					skb_alloc_rx_flag(skb), NUMA_NO_NODE);
939 
940 	if (!n)
941 		return NULL;
942 
943 	/* Set the data pointer */
944 	skb_reserve(n, headerlen);
945 	/* Set the tail pointer and length */
946 	skb_put(n, skb->len);
947 
948 	if (skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len))
949 		BUG();
950 
951 	copy_skb_header(n, skb);
952 	return n;
953 }
954 EXPORT_SYMBOL(skb_copy);
955 
956 /**
957  *	__pskb_copy_fclone	-  create copy of an sk_buff with private head.
958  *	@skb: buffer to copy
959  *	@headroom: headroom of new skb
960  *	@gfp_mask: allocation priority
961  *	@fclone: if true allocate the copy of the skb from the fclone
962  *	cache instead of the head cache; it is recommended to set this
963  *	to true for the cases where the copy will likely be cloned
964  *
965  *	Make a copy of both an &sk_buff and part of its data, located
966  *	in header. Fragmented data remain shared. This is used when
967  *	the caller wishes to modify only header of &sk_buff and needs
968  *	private copy of the header to alter. Returns %NULL on failure
969  *	or the pointer to the buffer on success.
970  *	The returned buffer has a reference count of 1.
971  */
972 
973 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
974 				   gfp_t gfp_mask, bool fclone)
975 {
976 	unsigned int size = skb_headlen(skb) + headroom;
977 	int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0);
978 	struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE);
979 
980 	if (!n)
981 		goto out;
982 
983 	/* Set the data pointer */
984 	skb_reserve(n, headroom);
985 	/* Set the tail pointer and length */
986 	skb_put(n, skb_headlen(skb));
987 	/* Copy the bytes */
988 	skb_copy_from_linear_data(skb, n->data, n->len);
989 
990 	n->truesize += skb->data_len;
991 	n->data_len  = skb->data_len;
992 	n->len	     = skb->len;
993 
994 	if (skb_shinfo(skb)->nr_frags) {
995 		int i;
996 
997 		if (skb_orphan_frags(skb, gfp_mask)) {
998 			kfree_skb(n);
999 			n = NULL;
1000 			goto out;
1001 		}
1002 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1003 			skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
1004 			skb_frag_ref(skb, i);
1005 		}
1006 		skb_shinfo(n)->nr_frags = i;
1007 	}
1008 
1009 	if (skb_has_frag_list(skb)) {
1010 		skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
1011 		skb_clone_fraglist(n);
1012 	}
1013 
1014 	copy_skb_header(n, skb);
1015 out:
1016 	return n;
1017 }
1018 EXPORT_SYMBOL(__pskb_copy_fclone);
1019 
1020 /**
1021  *	pskb_expand_head - reallocate header of &sk_buff
1022  *	@skb: buffer to reallocate
1023  *	@nhead: room to add at head
1024  *	@ntail: room to add at tail
1025  *	@gfp_mask: allocation priority
1026  *
1027  *	Expands (or creates identical copy, if @nhead and @ntail are zero)
1028  *	header of @skb. &sk_buff itself is not changed. &sk_buff MUST have
1029  *	reference count of 1. Returns zero in the case of success or error,
1030  *	if expansion failed. In the last case, &sk_buff is not changed.
1031  *
1032  *	All the pointers pointing into skb header may change and must be
1033  *	reloaded after call to this function.
1034  */
1035 
1036 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
1037 		     gfp_t gfp_mask)
1038 {
1039 	int i;
1040 	u8 *data;
1041 	int size = nhead + skb_end_offset(skb) + ntail;
1042 	long off;
1043 
1044 	BUG_ON(nhead < 0);
1045 
1046 	if (skb_shared(skb))
1047 		BUG();
1048 
1049 	size = SKB_DATA_ALIGN(size);
1050 
1051 	if (skb_pfmemalloc(skb))
1052 		gfp_mask |= __GFP_MEMALLOC;
1053 	data = kmalloc_reserve(size + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
1054 			       gfp_mask, NUMA_NO_NODE, NULL);
1055 	if (!data)
1056 		goto nodata;
1057 	size = SKB_WITH_OVERHEAD(ksize(data));
1058 
1059 	/* Copy only real data... and, alas, header. This should be
1060 	 * optimized for the cases when header is void.
1061 	 */
1062 	memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head);
1063 
1064 	memcpy((struct skb_shared_info *)(data + size),
1065 	       skb_shinfo(skb),
1066 	       offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags]));
1067 
1068 	/*
1069 	 * if shinfo is shared we must drop the old head gracefully, but if it
1070 	 * is not we can just drop the old head and let the existing refcount
1071 	 * be since all we did is relocate the values
1072 	 */
1073 	if (skb_cloned(skb)) {
1074 		/* copy this zero copy skb frags */
1075 		if (skb_orphan_frags(skb, gfp_mask))
1076 			goto nofrags;
1077 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1078 			skb_frag_ref(skb, i);
1079 
1080 		if (skb_has_frag_list(skb))
1081 			skb_clone_fraglist(skb);
1082 
1083 		skb_release_data(skb);
1084 	} else {
1085 		skb_free_head(skb);
1086 	}
1087 	off = (data + nhead) - skb->head;
1088 
1089 	skb->head     = data;
1090 	skb->head_frag = 0;
1091 	skb->data    += off;
1092 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1093 	skb->end      = size;
1094 	off           = nhead;
1095 #else
1096 	skb->end      = skb->head + size;
1097 #endif
1098 	skb->tail	      += off;
1099 	skb_headers_offset_update(skb, nhead);
1100 	skb->cloned   = 0;
1101 	skb->hdr_len  = 0;
1102 	skb->nohdr    = 0;
1103 	atomic_set(&skb_shinfo(skb)->dataref, 1);
1104 	return 0;
1105 
1106 nofrags:
1107 	kfree(data);
1108 nodata:
1109 	return -ENOMEM;
1110 }
1111 EXPORT_SYMBOL(pskb_expand_head);
1112 
1113 /* Make private copy of skb with writable head and some headroom */
1114 
1115 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
1116 {
1117 	struct sk_buff *skb2;
1118 	int delta = headroom - skb_headroom(skb);
1119 
1120 	if (delta <= 0)
1121 		skb2 = pskb_copy(skb, GFP_ATOMIC);
1122 	else {
1123 		skb2 = skb_clone(skb, GFP_ATOMIC);
1124 		if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
1125 					     GFP_ATOMIC)) {
1126 			kfree_skb(skb2);
1127 			skb2 = NULL;
1128 		}
1129 	}
1130 	return skb2;
1131 }
1132 EXPORT_SYMBOL(skb_realloc_headroom);
1133 
1134 /**
1135  *	skb_copy_expand	-	copy and expand sk_buff
1136  *	@skb: buffer to copy
1137  *	@newheadroom: new free bytes at head
1138  *	@newtailroom: new free bytes at tail
1139  *	@gfp_mask: allocation priority
1140  *
1141  *	Make a copy of both an &sk_buff and its data and while doing so
1142  *	allocate additional space.
1143  *
1144  *	This is used when the caller wishes to modify the data and needs a
1145  *	private copy of the data to alter as well as more space for new fields.
1146  *	Returns %NULL on failure or the pointer to the buffer
1147  *	on success. The returned buffer has a reference count of 1.
1148  *
1149  *	You must pass %GFP_ATOMIC as the allocation priority if this function
1150  *	is called from an interrupt.
1151  */
1152 struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
1153 				int newheadroom, int newtailroom,
1154 				gfp_t gfp_mask)
1155 {
1156 	/*
1157 	 *	Allocate the copy buffer
1158 	 */
1159 	struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom,
1160 					gfp_mask, skb_alloc_rx_flag(skb),
1161 					NUMA_NO_NODE);
1162 	int oldheadroom = skb_headroom(skb);
1163 	int head_copy_len, head_copy_off;
1164 
1165 	if (!n)
1166 		return NULL;
1167 
1168 	skb_reserve(n, newheadroom);
1169 
1170 	/* Set the tail pointer and length */
1171 	skb_put(n, skb->len);
1172 
1173 	head_copy_len = oldheadroom;
1174 	head_copy_off = 0;
1175 	if (newheadroom <= head_copy_len)
1176 		head_copy_len = newheadroom;
1177 	else
1178 		head_copy_off = newheadroom - head_copy_len;
1179 
1180 	/* Copy the linear header and data. */
1181 	if (skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
1182 			  skb->len + head_copy_len))
1183 		BUG();
1184 
1185 	copy_skb_header(n, skb);
1186 
1187 	skb_headers_offset_update(n, newheadroom - oldheadroom);
1188 
1189 	return n;
1190 }
1191 EXPORT_SYMBOL(skb_copy_expand);
1192 
1193 /**
1194  *	skb_pad			-	zero pad the tail of an skb
1195  *	@skb: buffer to pad
1196  *	@pad: space to pad
1197  *
1198  *	Ensure that a buffer is followed by a padding area that is zero
1199  *	filled. Used by network drivers which may DMA or transfer data
1200  *	beyond the buffer end onto the wire.
1201  *
1202  *	May return error in out of memory cases. The skb is freed on error.
1203  */
1204 
1205 int skb_pad(struct sk_buff *skb, int pad)
1206 {
1207 	int err;
1208 	int ntail;
1209 
1210 	/* If the skbuff is non linear tailroom is always zero.. */
1211 	if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
1212 		memset(skb->data+skb->len, 0, pad);
1213 		return 0;
1214 	}
1215 
1216 	ntail = skb->data_len + pad - (skb->end - skb->tail);
1217 	if (likely(skb_cloned(skb) || ntail > 0)) {
1218 		err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
1219 		if (unlikely(err))
1220 			goto free_skb;
1221 	}
1222 
1223 	/* FIXME: The use of this function with non-linear skb's really needs
1224 	 * to be audited.
1225 	 */
1226 	err = skb_linearize(skb);
1227 	if (unlikely(err))
1228 		goto free_skb;
1229 
1230 	memset(skb->data + skb->len, 0, pad);
1231 	return 0;
1232 
1233 free_skb:
1234 	kfree_skb(skb);
1235 	return err;
1236 }
1237 EXPORT_SYMBOL(skb_pad);
1238 
1239 /**
1240  *	pskb_put - add data to the tail of a potentially fragmented buffer
1241  *	@skb: start of the buffer to use
1242  *	@tail: tail fragment of the buffer to use
1243  *	@len: amount of data to add
1244  *
1245  *	This function extends the used data area of the potentially
1246  *	fragmented buffer. @tail must be the last fragment of @skb -- or
1247  *	@skb itself. If this would exceed the total buffer size the kernel
1248  *	will panic. A pointer to the first byte of the extra data is
1249  *	returned.
1250  */
1251 
1252 unsigned char *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len)
1253 {
1254 	if (tail != skb) {
1255 		skb->data_len += len;
1256 		skb->len += len;
1257 	}
1258 	return skb_put(tail, len);
1259 }
1260 EXPORT_SYMBOL_GPL(pskb_put);
1261 
1262 /**
1263  *	skb_put - add data to a buffer
1264  *	@skb: buffer to use
1265  *	@len: amount of data to add
1266  *
1267  *	This function extends the used data area of the buffer. If this would
1268  *	exceed the total buffer size the kernel will panic. A pointer to the
1269  *	first byte of the extra data is returned.
1270  */
1271 unsigned char *skb_put(struct sk_buff *skb, unsigned int len)
1272 {
1273 	unsigned char *tmp = skb_tail_pointer(skb);
1274 	SKB_LINEAR_ASSERT(skb);
1275 	skb->tail += len;
1276 	skb->len  += len;
1277 	if (unlikely(skb->tail > skb->end))
1278 		skb_over_panic(skb, len, __builtin_return_address(0));
1279 	return tmp;
1280 }
1281 EXPORT_SYMBOL(skb_put);
1282 
1283 /**
1284  *	skb_push - add data to the start of a buffer
1285  *	@skb: buffer to use
1286  *	@len: amount of data to add
1287  *
1288  *	This function extends the used data area of the buffer at the buffer
1289  *	start. If this would exceed the total buffer headroom the kernel will
1290  *	panic. A pointer to the first byte of the extra data is returned.
1291  */
1292 unsigned char *skb_push(struct sk_buff *skb, unsigned int len)
1293 {
1294 	skb->data -= len;
1295 	skb->len  += len;
1296 	if (unlikely(skb->data<skb->head))
1297 		skb_under_panic(skb, len, __builtin_return_address(0));
1298 	return skb->data;
1299 }
1300 EXPORT_SYMBOL(skb_push);
1301 
1302 /**
1303  *	skb_pull - remove data from the start of a buffer
1304  *	@skb: buffer to use
1305  *	@len: amount of data to remove
1306  *
1307  *	This function removes data from the start of a buffer, returning
1308  *	the memory to the headroom. A pointer to the next data in the buffer
1309  *	is returned. Once the data has been pulled future pushes will overwrite
1310  *	the old data.
1311  */
1312 unsigned char *skb_pull(struct sk_buff *skb, unsigned int len)
1313 {
1314 	return skb_pull_inline(skb, len);
1315 }
1316 EXPORT_SYMBOL(skb_pull);
1317 
1318 /**
1319  *	skb_trim - remove end from a buffer
1320  *	@skb: buffer to alter
1321  *	@len: new length
1322  *
1323  *	Cut the length of a buffer down by removing data from the tail. If
1324  *	the buffer is already under the length specified it is not modified.
1325  *	The skb must be linear.
1326  */
1327 void skb_trim(struct sk_buff *skb, unsigned int len)
1328 {
1329 	if (skb->len > len)
1330 		__skb_trim(skb, len);
1331 }
1332 EXPORT_SYMBOL(skb_trim);
1333 
1334 /* Trims skb to length len. It can change skb pointers.
1335  */
1336 
1337 int ___pskb_trim(struct sk_buff *skb, unsigned int len)
1338 {
1339 	struct sk_buff **fragp;
1340 	struct sk_buff *frag;
1341 	int offset = skb_headlen(skb);
1342 	int nfrags = skb_shinfo(skb)->nr_frags;
1343 	int i;
1344 	int err;
1345 
1346 	if (skb_cloned(skb) &&
1347 	    unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
1348 		return err;
1349 
1350 	i = 0;
1351 	if (offset >= len)
1352 		goto drop_pages;
1353 
1354 	for (; i < nfrags; i++) {
1355 		int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]);
1356 
1357 		if (end < len) {
1358 			offset = end;
1359 			continue;
1360 		}
1361 
1362 		skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset);
1363 
1364 drop_pages:
1365 		skb_shinfo(skb)->nr_frags = i;
1366 
1367 		for (; i < nfrags; i++)
1368 			skb_frag_unref(skb, i);
1369 
1370 		if (skb_has_frag_list(skb))
1371 			skb_drop_fraglist(skb);
1372 		goto done;
1373 	}
1374 
1375 	for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
1376 	     fragp = &frag->next) {
1377 		int end = offset + frag->len;
1378 
1379 		if (skb_shared(frag)) {
1380 			struct sk_buff *nfrag;
1381 
1382 			nfrag = skb_clone(frag, GFP_ATOMIC);
1383 			if (unlikely(!nfrag))
1384 				return -ENOMEM;
1385 
1386 			nfrag->next = frag->next;
1387 			consume_skb(frag);
1388 			frag = nfrag;
1389 			*fragp = frag;
1390 		}
1391 
1392 		if (end < len) {
1393 			offset = end;
1394 			continue;
1395 		}
1396 
1397 		if (end > len &&
1398 		    unlikely((err = pskb_trim(frag, len - offset))))
1399 			return err;
1400 
1401 		if (frag->next)
1402 			skb_drop_list(&frag->next);
1403 		break;
1404 	}
1405 
1406 done:
1407 	if (len > skb_headlen(skb)) {
1408 		skb->data_len -= skb->len - len;
1409 		skb->len       = len;
1410 	} else {
1411 		skb->len       = len;
1412 		skb->data_len  = 0;
1413 		skb_set_tail_pointer(skb, len);
1414 	}
1415 
1416 	return 0;
1417 }
1418 EXPORT_SYMBOL(___pskb_trim);
1419 
1420 /**
1421  *	__pskb_pull_tail - advance tail of skb header
1422  *	@skb: buffer to reallocate
1423  *	@delta: number of bytes to advance tail
1424  *
1425  *	The function makes a sense only on a fragmented &sk_buff,
1426  *	it expands header moving its tail forward and copying necessary
1427  *	data from fragmented part.
1428  *
1429  *	&sk_buff MUST have reference count of 1.
1430  *
1431  *	Returns %NULL (and &sk_buff does not change) if pull failed
1432  *	or value of new tail of skb in the case of success.
1433  *
1434  *	All the pointers pointing into skb header may change and must be
1435  *	reloaded after call to this function.
1436  */
1437 
1438 /* Moves tail of skb head forward, copying data from fragmented part,
1439  * when it is necessary.
1440  * 1. It may fail due to malloc failure.
1441  * 2. It may change skb pointers.
1442  *
1443  * It is pretty complicated. Luckily, it is called only in exceptional cases.
1444  */
1445 unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta)
1446 {
1447 	/* If skb has not enough free space at tail, get new one
1448 	 * plus 128 bytes for future expansions. If we have enough
1449 	 * room at tail, reallocate without expansion only if skb is cloned.
1450 	 */
1451 	int i, k, eat = (skb->tail + delta) - skb->end;
1452 
1453 	if (eat > 0 || skb_cloned(skb)) {
1454 		if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
1455 				     GFP_ATOMIC))
1456 			return NULL;
1457 	}
1458 
1459 	if (skb_copy_bits(skb, skb_headlen(skb), skb_tail_pointer(skb), delta))
1460 		BUG();
1461 
1462 	/* Optimization: no fragments, no reasons to preestimate
1463 	 * size of pulled pages. Superb.
1464 	 */
1465 	if (!skb_has_frag_list(skb))
1466 		goto pull_pages;
1467 
1468 	/* Estimate size of pulled pages. */
1469 	eat = delta;
1470 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1471 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
1472 
1473 		if (size >= eat)
1474 			goto pull_pages;
1475 		eat -= size;
1476 	}
1477 
1478 	/* If we need update frag list, we are in troubles.
1479 	 * Certainly, it possible to add an offset to skb data,
1480 	 * but taking into account that pulling is expected to
1481 	 * be very rare operation, it is worth to fight against
1482 	 * further bloating skb head and crucify ourselves here instead.
1483 	 * Pure masohism, indeed. 8)8)
1484 	 */
1485 	if (eat) {
1486 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
1487 		struct sk_buff *clone = NULL;
1488 		struct sk_buff *insp = NULL;
1489 
1490 		do {
1491 			BUG_ON(!list);
1492 
1493 			if (list->len <= eat) {
1494 				/* Eaten as whole. */
1495 				eat -= list->len;
1496 				list = list->next;
1497 				insp = list;
1498 			} else {
1499 				/* Eaten partially. */
1500 
1501 				if (skb_shared(list)) {
1502 					/* Sucks! We need to fork list. :-( */
1503 					clone = skb_clone(list, GFP_ATOMIC);
1504 					if (!clone)
1505 						return NULL;
1506 					insp = list->next;
1507 					list = clone;
1508 				} else {
1509 					/* This may be pulled without
1510 					 * problems. */
1511 					insp = list;
1512 				}
1513 				if (!pskb_pull(list, eat)) {
1514 					kfree_skb(clone);
1515 					return NULL;
1516 				}
1517 				break;
1518 			}
1519 		} while (eat);
1520 
1521 		/* Free pulled out fragments. */
1522 		while ((list = skb_shinfo(skb)->frag_list) != insp) {
1523 			skb_shinfo(skb)->frag_list = list->next;
1524 			kfree_skb(list);
1525 		}
1526 		/* And insert new clone at head. */
1527 		if (clone) {
1528 			clone->next = list;
1529 			skb_shinfo(skb)->frag_list = clone;
1530 		}
1531 	}
1532 	/* Success! Now we may commit changes to skb data. */
1533 
1534 pull_pages:
1535 	eat = delta;
1536 	k = 0;
1537 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1538 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
1539 
1540 		if (size <= eat) {
1541 			skb_frag_unref(skb, i);
1542 			eat -= size;
1543 		} else {
1544 			skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i];
1545 			if (eat) {
1546 				skb_shinfo(skb)->frags[k].page_offset += eat;
1547 				skb_frag_size_sub(&skb_shinfo(skb)->frags[k], eat);
1548 				eat = 0;
1549 			}
1550 			k++;
1551 		}
1552 	}
1553 	skb_shinfo(skb)->nr_frags = k;
1554 
1555 	skb->tail     += delta;
1556 	skb->data_len -= delta;
1557 
1558 	return skb_tail_pointer(skb);
1559 }
1560 EXPORT_SYMBOL(__pskb_pull_tail);
1561 
1562 /**
1563  *	skb_copy_bits - copy bits from skb to kernel buffer
1564  *	@skb: source skb
1565  *	@offset: offset in source
1566  *	@to: destination buffer
1567  *	@len: number of bytes to copy
1568  *
1569  *	Copy the specified number of bytes from the source skb to the
1570  *	destination buffer.
1571  *
1572  *	CAUTION ! :
1573  *		If its prototype is ever changed,
1574  *		check arch/{*}/net/{*}.S files,
1575  *		since it is called from BPF assembly code.
1576  */
1577 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
1578 {
1579 	int start = skb_headlen(skb);
1580 	struct sk_buff *frag_iter;
1581 	int i, copy;
1582 
1583 	if (offset > (int)skb->len - len)
1584 		goto fault;
1585 
1586 	/* Copy header. */
1587 	if ((copy = start - offset) > 0) {
1588 		if (copy > len)
1589 			copy = len;
1590 		skb_copy_from_linear_data_offset(skb, offset, to, copy);
1591 		if ((len -= copy) == 0)
1592 			return 0;
1593 		offset += copy;
1594 		to     += copy;
1595 	}
1596 
1597 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1598 		int end;
1599 		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
1600 
1601 		WARN_ON(start > offset + len);
1602 
1603 		end = start + skb_frag_size(f);
1604 		if ((copy = end - offset) > 0) {
1605 			u8 *vaddr;
1606 
1607 			if (copy > len)
1608 				copy = len;
1609 
1610 			vaddr = kmap_atomic(skb_frag_page(f));
1611 			memcpy(to,
1612 			       vaddr + f->page_offset + offset - start,
1613 			       copy);
1614 			kunmap_atomic(vaddr);
1615 
1616 			if ((len -= copy) == 0)
1617 				return 0;
1618 			offset += copy;
1619 			to     += copy;
1620 		}
1621 		start = end;
1622 	}
1623 
1624 	skb_walk_frags(skb, frag_iter) {
1625 		int end;
1626 
1627 		WARN_ON(start > offset + len);
1628 
1629 		end = start + frag_iter->len;
1630 		if ((copy = end - offset) > 0) {
1631 			if (copy > len)
1632 				copy = len;
1633 			if (skb_copy_bits(frag_iter, offset - start, to, copy))
1634 				goto fault;
1635 			if ((len -= copy) == 0)
1636 				return 0;
1637 			offset += copy;
1638 			to     += copy;
1639 		}
1640 		start = end;
1641 	}
1642 
1643 	if (!len)
1644 		return 0;
1645 
1646 fault:
1647 	return -EFAULT;
1648 }
1649 EXPORT_SYMBOL(skb_copy_bits);
1650 
1651 /*
1652  * Callback from splice_to_pipe(), if we need to release some pages
1653  * at the end of the spd in case we error'ed out in filling the pipe.
1654  */
1655 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
1656 {
1657 	put_page(spd->pages[i]);
1658 }
1659 
1660 static struct page *linear_to_page(struct page *page, unsigned int *len,
1661 				   unsigned int *offset,
1662 				   struct sock *sk)
1663 {
1664 	struct page_frag *pfrag = sk_page_frag(sk);
1665 
1666 	if (!sk_page_frag_refill(sk, pfrag))
1667 		return NULL;
1668 
1669 	*len = min_t(unsigned int, *len, pfrag->size - pfrag->offset);
1670 
1671 	memcpy(page_address(pfrag->page) + pfrag->offset,
1672 	       page_address(page) + *offset, *len);
1673 	*offset = pfrag->offset;
1674 	pfrag->offset += *len;
1675 
1676 	return pfrag->page;
1677 }
1678 
1679 static bool spd_can_coalesce(const struct splice_pipe_desc *spd,
1680 			     struct page *page,
1681 			     unsigned int offset)
1682 {
1683 	return	spd->nr_pages &&
1684 		spd->pages[spd->nr_pages - 1] == page &&
1685 		(spd->partial[spd->nr_pages - 1].offset +
1686 		 spd->partial[spd->nr_pages - 1].len == offset);
1687 }
1688 
1689 /*
1690  * Fill page/offset/length into spd, if it can hold more pages.
1691  */
1692 static bool spd_fill_page(struct splice_pipe_desc *spd,
1693 			  struct pipe_inode_info *pipe, struct page *page,
1694 			  unsigned int *len, unsigned int offset,
1695 			  bool linear,
1696 			  struct sock *sk)
1697 {
1698 	if (unlikely(spd->nr_pages == MAX_SKB_FRAGS))
1699 		return true;
1700 
1701 	if (linear) {
1702 		page = linear_to_page(page, len, &offset, sk);
1703 		if (!page)
1704 			return true;
1705 	}
1706 	if (spd_can_coalesce(spd, page, offset)) {
1707 		spd->partial[spd->nr_pages - 1].len += *len;
1708 		return false;
1709 	}
1710 	get_page(page);
1711 	spd->pages[spd->nr_pages] = page;
1712 	spd->partial[spd->nr_pages].len = *len;
1713 	spd->partial[spd->nr_pages].offset = offset;
1714 	spd->nr_pages++;
1715 
1716 	return false;
1717 }
1718 
1719 static bool __splice_segment(struct page *page, unsigned int poff,
1720 			     unsigned int plen, unsigned int *off,
1721 			     unsigned int *len,
1722 			     struct splice_pipe_desc *spd, bool linear,
1723 			     struct sock *sk,
1724 			     struct pipe_inode_info *pipe)
1725 {
1726 	if (!*len)
1727 		return true;
1728 
1729 	/* skip this segment if already processed */
1730 	if (*off >= plen) {
1731 		*off -= plen;
1732 		return false;
1733 	}
1734 
1735 	/* ignore any bits we already processed */
1736 	poff += *off;
1737 	plen -= *off;
1738 	*off = 0;
1739 
1740 	do {
1741 		unsigned int flen = min(*len, plen);
1742 
1743 		if (spd_fill_page(spd, pipe, page, &flen, poff,
1744 				  linear, sk))
1745 			return true;
1746 		poff += flen;
1747 		plen -= flen;
1748 		*len -= flen;
1749 	} while (*len && plen);
1750 
1751 	return false;
1752 }
1753 
1754 /*
1755  * Map linear and fragment data from the skb to spd. It reports true if the
1756  * pipe is full or if we already spliced the requested length.
1757  */
1758 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe,
1759 			      unsigned int *offset, unsigned int *len,
1760 			      struct splice_pipe_desc *spd, struct sock *sk)
1761 {
1762 	int seg;
1763 
1764 	/* map the linear part :
1765 	 * If skb->head_frag is set, this 'linear' part is backed by a
1766 	 * fragment, and if the head is not shared with any clones then
1767 	 * we can avoid a copy since we own the head portion of this page.
1768 	 */
1769 	if (__splice_segment(virt_to_page(skb->data),
1770 			     (unsigned long) skb->data & (PAGE_SIZE - 1),
1771 			     skb_headlen(skb),
1772 			     offset, len, spd,
1773 			     skb_head_is_locked(skb),
1774 			     sk, pipe))
1775 		return true;
1776 
1777 	/*
1778 	 * then map the fragments
1779 	 */
1780 	for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
1781 		const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
1782 
1783 		if (__splice_segment(skb_frag_page(f),
1784 				     f->page_offset, skb_frag_size(f),
1785 				     offset, len, spd, false, sk, pipe))
1786 			return true;
1787 	}
1788 
1789 	return false;
1790 }
1791 
1792 /*
1793  * Map data from the skb to a pipe. Should handle both the linear part,
1794  * the fragments, and the frag list. It does NOT handle frag lists within
1795  * the frag list, if such a thing exists. We'd probably need to recurse to
1796  * handle that cleanly.
1797  */
1798 int skb_splice_bits(struct sk_buff *skb, unsigned int offset,
1799 		    struct pipe_inode_info *pipe, unsigned int tlen,
1800 		    unsigned int flags)
1801 {
1802 	struct partial_page partial[MAX_SKB_FRAGS];
1803 	struct page *pages[MAX_SKB_FRAGS];
1804 	struct splice_pipe_desc spd = {
1805 		.pages = pages,
1806 		.partial = partial,
1807 		.nr_pages_max = MAX_SKB_FRAGS,
1808 		.flags = flags,
1809 		.ops = &nosteal_pipe_buf_ops,
1810 		.spd_release = sock_spd_release,
1811 	};
1812 	struct sk_buff *frag_iter;
1813 	struct sock *sk = skb->sk;
1814 	int ret = 0;
1815 
1816 	/*
1817 	 * __skb_splice_bits() only fails if the output has no room left,
1818 	 * so no point in going over the frag_list for the error case.
1819 	 */
1820 	if (__skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk))
1821 		goto done;
1822 	else if (!tlen)
1823 		goto done;
1824 
1825 	/*
1826 	 * now see if we have a frag_list to map
1827 	 */
1828 	skb_walk_frags(skb, frag_iter) {
1829 		if (!tlen)
1830 			break;
1831 		if (__skb_splice_bits(frag_iter, pipe, &offset, &tlen, &spd, sk))
1832 			break;
1833 	}
1834 
1835 done:
1836 	if (spd.nr_pages) {
1837 		/*
1838 		 * Drop the socket lock, otherwise we have reverse
1839 		 * locking dependencies between sk_lock and i_mutex
1840 		 * here as compared to sendfile(). We enter here
1841 		 * with the socket lock held, and splice_to_pipe() will
1842 		 * grab the pipe inode lock. For sendfile() emulation,
1843 		 * we call into ->sendpage() with the i_mutex lock held
1844 		 * and networking will grab the socket lock.
1845 		 */
1846 		release_sock(sk);
1847 		ret = splice_to_pipe(pipe, &spd);
1848 		lock_sock(sk);
1849 	}
1850 
1851 	return ret;
1852 }
1853 
1854 /**
1855  *	skb_store_bits - store bits from kernel buffer to skb
1856  *	@skb: destination buffer
1857  *	@offset: offset in destination
1858  *	@from: source buffer
1859  *	@len: number of bytes to copy
1860  *
1861  *	Copy the specified number of bytes from the source buffer to the
1862  *	destination skb.  This function handles all the messy bits of
1863  *	traversing fragment lists and such.
1864  */
1865 
1866 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
1867 {
1868 	int start = skb_headlen(skb);
1869 	struct sk_buff *frag_iter;
1870 	int i, copy;
1871 
1872 	if (offset > (int)skb->len - len)
1873 		goto fault;
1874 
1875 	if ((copy = start - offset) > 0) {
1876 		if (copy > len)
1877 			copy = len;
1878 		skb_copy_to_linear_data_offset(skb, offset, from, copy);
1879 		if ((len -= copy) == 0)
1880 			return 0;
1881 		offset += copy;
1882 		from += copy;
1883 	}
1884 
1885 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1886 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1887 		int end;
1888 
1889 		WARN_ON(start > offset + len);
1890 
1891 		end = start + skb_frag_size(frag);
1892 		if ((copy = end - offset) > 0) {
1893 			u8 *vaddr;
1894 
1895 			if (copy > len)
1896 				copy = len;
1897 
1898 			vaddr = kmap_atomic(skb_frag_page(frag));
1899 			memcpy(vaddr + frag->page_offset + offset - start,
1900 			       from, copy);
1901 			kunmap_atomic(vaddr);
1902 
1903 			if ((len -= copy) == 0)
1904 				return 0;
1905 			offset += copy;
1906 			from += copy;
1907 		}
1908 		start = end;
1909 	}
1910 
1911 	skb_walk_frags(skb, frag_iter) {
1912 		int end;
1913 
1914 		WARN_ON(start > offset + len);
1915 
1916 		end = start + frag_iter->len;
1917 		if ((copy = end - offset) > 0) {
1918 			if (copy > len)
1919 				copy = len;
1920 			if (skb_store_bits(frag_iter, offset - start,
1921 					   from, copy))
1922 				goto fault;
1923 			if ((len -= copy) == 0)
1924 				return 0;
1925 			offset += copy;
1926 			from += copy;
1927 		}
1928 		start = end;
1929 	}
1930 	if (!len)
1931 		return 0;
1932 
1933 fault:
1934 	return -EFAULT;
1935 }
1936 EXPORT_SYMBOL(skb_store_bits);
1937 
1938 /* Checksum skb data. */
1939 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
1940 		      __wsum csum, const struct skb_checksum_ops *ops)
1941 {
1942 	int start = skb_headlen(skb);
1943 	int i, copy = start - offset;
1944 	struct sk_buff *frag_iter;
1945 	int pos = 0;
1946 
1947 	/* Checksum header. */
1948 	if (copy > 0) {
1949 		if (copy > len)
1950 			copy = len;
1951 		csum = ops->update(skb->data + offset, copy, csum);
1952 		if ((len -= copy) == 0)
1953 			return csum;
1954 		offset += copy;
1955 		pos	= copy;
1956 	}
1957 
1958 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1959 		int end;
1960 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1961 
1962 		WARN_ON(start > offset + len);
1963 
1964 		end = start + skb_frag_size(frag);
1965 		if ((copy = end - offset) > 0) {
1966 			__wsum csum2;
1967 			u8 *vaddr;
1968 
1969 			if (copy > len)
1970 				copy = len;
1971 			vaddr = kmap_atomic(skb_frag_page(frag));
1972 			csum2 = ops->update(vaddr + frag->page_offset +
1973 					    offset - start, copy, 0);
1974 			kunmap_atomic(vaddr);
1975 			csum = ops->combine(csum, csum2, pos, copy);
1976 			if (!(len -= copy))
1977 				return csum;
1978 			offset += copy;
1979 			pos    += copy;
1980 		}
1981 		start = end;
1982 	}
1983 
1984 	skb_walk_frags(skb, frag_iter) {
1985 		int end;
1986 
1987 		WARN_ON(start > offset + len);
1988 
1989 		end = start + frag_iter->len;
1990 		if ((copy = end - offset) > 0) {
1991 			__wsum csum2;
1992 			if (copy > len)
1993 				copy = len;
1994 			csum2 = __skb_checksum(frag_iter, offset - start,
1995 					       copy, 0, ops);
1996 			csum = ops->combine(csum, csum2, pos, copy);
1997 			if ((len -= copy) == 0)
1998 				return csum;
1999 			offset += copy;
2000 			pos    += copy;
2001 		}
2002 		start = end;
2003 	}
2004 	BUG_ON(len);
2005 
2006 	return csum;
2007 }
2008 EXPORT_SYMBOL(__skb_checksum);
2009 
2010 __wsum skb_checksum(const struct sk_buff *skb, int offset,
2011 		    int len, __wsum csum)
2012 {
2013 	const struct skb_checksum_ops ops = {
2014 		.update  = csum_partial_ext,
2015 		.combine = csum_block_add_ext,
2016 	};
2017 
2018 	return __skb_checksum(skb, offset, len, csum, &ops);
2019 }
2020 EXPORT_SYMBOL(skb_checksum);
2021 
2022 /* Both of above in one bottle. */
2023 
2024 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
2025 				    u8 *to, int len, __wsum csum)
2026 {
2027 	int start = skb_headlen(skb);
2028 	int i, copy = start - offset;
2029 	struct sk_buff *frag_iter;
2030 	int pos = 0;
2031 
2032 	/* Copy header. */
2033 	if (copy > 0) {
2034 		if (copy > len)
2035 			copy = len;
2036 		csum = csum_partial_copy_nocheck(skb->data + offset, to,
2037 						 copy, csum);
2038 		if ((len -= copy) == 0)
2039 			return csum;
2040 		offset += copy;
2041 		to     += copy;
2042 		pos	= copy;
2043 	}
2044 
2045 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2046 		int end;
2047 
2048 		WARN_ON(start > offset + len);
2049 
2050 		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
2051 		if ((copy = end - offset) > 0) {
2052 			__wsum csum2;
2053 			u8 *vaddr;
2054 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2055 
2056 			if (copy > len)
2057 				copy = len;
2058 			vaddr = kmap_atomic(skb_frag_page(frag));
2059 			csum2 = csum_partial_copy_nocheck(vaddr +
2060 							  frag->page_offset +
2061 							  offset - start, to,
2062 							  copy, 0);
2063 			kunmap_atomic(vaddr);
2064 			csum = csum_block_add(csum, csum2, pos);
2065 			if (!(len -= copy))
2066 				return csum;
2067 			offset += copy;
2068 			to     += copy;
2069 			pos    += copy;
2070 		}
2071 		start = end;
2072 	}
2073 
2074 	skb_walk_frags(skb, frag_iter) {
2075 		__wsum csum2;
2076 		int end;
2077 
2078 		WARN_ON(start > offset + len);
2079 
2080 		end = start + frag_iter->len;
2081 		if ((copy = end - offset) > 0) {
2082 			if (copy > len)
2083 				copy = len;
2084 			csum2 = skb_copy_and_csum_bits(frag_iter,
2085 						       offset - start,
2086 						       to, copy, 0);
2087 			csum = csum_block_add(csum, csum2, pos);
2088 			if ((len -= copy) == 0)
2089 				return csum;
2090 			offset += copy;
2091 			to     += copy;
2092 			pos    += copy;
2093 		}
2094 		start = end;
2095 	}
2096 	BUG_ON(len);
2097 	return csum;
2098 }
2099 EXPORT_SYMBOL(skb_copy_and_csum_bits);
2100 
2101  /**
2102  *	skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy()
2103  *	@from: source buffer
2104  *
2105  *	Calculates the amount of linear headroom needed in the 'to' skb passed
2106  *	into skb_zerocopy().
2107  */
2108 unsigned int
2109 skb_zerocopy_headlen(const struct sk_buff *from)
2110 {
2111 	unsigned int hlen = 0;
2112 
2113 	if (!from->head_frag ||
2114 	    skb_headlen(from) < L1_CACHE_BYTES ||
2115 	    skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS)
2116 		hlen = skb_headlen(from);
2117 
2118 	if (skb_has_frag_list(from))
2119 		hlen = from->len;
2120 
2121 	return hlen;
2122 }
2123 EXPORT_SYMBOL_GPL(skb_zerocopy_headlen);
2124 
2125 /**
2126  *	skb_zerocopy - Zero copy skb to skb
2127  *	@to: destination buffer
2128  *	@from: source buffer
2129  *	@len: number of bytes to copy from source buffer
2130  *	@hlen: size of linear headroom in destination buffer
2131  *
2132  *	Copies up to `len` bytes from `from` to `to` by creating references
2133  *	to the frags in the source buffer.
2134  *
2135  *	The `hlen` as calculated by skb_zerocopy_headlen() specifies the
2136  *	headroom in the `to` buffer.
2137  *
2138  *	Return value:
2139  *	0: everything is OK
2140  *	-ENOMEM: couldn't orphan frags of @from due to lack of memory
2141  *	-EFAULT: skb_copy_bits() found some problem with skb geometry
2142  */
2143 int
2144 skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen)
2145 {
2146 	int i, j = 0;
2147 	int plen = 0; /* length of skb->head fragment */
2148 	int ret;
2149 	struct page *page;
2150 	unsigned int offset;
2151 
2152 	BUG_ON(!from->head_frag && !hlen);
2153 
2154 	/* dont bother with small payloads */
2155 	if (len <= skb_tailroom(to))
2156 		return skb_copy_bits(from, 0, skb_put(to, len), len);
2157 
2158 	if (hlen) {
2159 		ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen);
2160 		if (unlikely(ret))
2161 			return ret;
2162 		len -= hlen;
2163 	} else {
2164 		plen = min_t(int, skb_headlen(from), len);
2165 		if (plen) {
2166 			page = virt_to_head_page(from->head);
2167 			offset = from->data - (unsigned char *)page_address(page);
2168 			__skb_fill_page_desc(to, 0, page, offset, plen);
2169 			get_page(page);
2170 			j = 1;
2171 			len -= plen;
2172 		}
2173 	}
2174 
2175 	to->truesize += len + plen;
2176 	to->len += len + plen;
2177 	to->data_len += len + plen;
2178 
2179 	if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) {
2180 		skb_tx_error(from);
2181 		return -ENOMEM;
2182 	}
2183 
2184 	for (i = 0; i < skb_shinfo(from)->nr_frags; i++) {
2185 		if (!len)
2186 			break;
2187 		skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i];
2188 		skb_shinfo(to)->frags[j].size = min_t(int, skb_shinfo(to)->frags[j].size, len);
2189 		len -= skb_shinfo(to)->frags[j].size;
2190 		skb_frag_ref(to, j);
2191 		j++;
2192 	}
2193 	skb_shinfo(to)->nr_frags = j;
2194 
2195 	return 0;
2196 }
2197 EXPORT_SYMBOL_GPL(skb_zerocopy);
2198 
2199 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
2200 {
2201 	__wsum csum;
2202 	long csstart;
2203 
2204 	if (skb->ip_summed == CHECKSUM_PARTIAL)
2205 		csstart = skb_checksum_start_offset(skb);
2206 	else
2207 		csstart = skb_headlen(skb);
2208 
2209 	BUG_ON(csstart > skb_headlen(skb));
2210 
2211 	skb_copy_from_linear_data(skb, to, csstart);
2212 
2213 	csum = 0;
2214 	if (csstart != skb->len)
2215 		csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
2216 					      skb->len - csstart, 0);
2217 
2218 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
2219 		long csstuff = csstart + skb->csum_offset;
2220 
2221 		*((__sum16 *)(to + csstuff)) = csum_fold(csum);
2222 	}
2223 }
2224 EXPORT_SYMBOL(skb_copy_and_csum_dev);
2225 
2226 /**
2227  *	skb_dequeue - remove from the head of the queue
2228  *	@list: list to dequeue from
2229  *
2230  *	Remove the head of the list. The list lock is taken so the function
2231  *	may be used safely with other locking list functions. The head item is
2232  *	returned or %NULL if the list is empty.
2233  */
2234 
2235 struct sk_buff *skb_dequeue(struct sk_buff_head *list)
2236 {
2237 	unsigned long flags;
2238 	struct sk_buff *result;
2239 
2240 	spin_lock_irqsave(&list->lock, flags);
2241 	result = __skb_dequeue(list);
2242 	spin_unlock_irqrestore(&list->lock, flags);
2243 	return result;
2244 }
2245 EXPORT_SYMBOL(skb_dequeue);
2246 
2247 /**
2248  *	skb_dequeue_tail - remove from the tail of the queue
2249  *	@list: list to dequeue from
2250  *
2251  *	Remove the tail of the list. The list lock is taken so the function
2252  *	may be used safely with other locking list functions. The tail item is
2253  *	returned or %NULL if the list is empty.
2254  */
2255 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
2256 {
2257 	unsigned long flags;
2258 	struct sk_buff *result;
2259 
2260 	spin_lock_irqsave(&list->lock, flags);
2261 	result = __skb_dequeue_tail(list);
2262 	spin_unlock_irqrestore(&list->lock, flags);
2263 	return result;
2264 }
2265 EXPORT_SYMBOL(skb_dequeue_tail);
2266 
2267 /**
2268  *	skb_queue_purge - empty a list
2269  *	@list: list to empty
2270  *
2271  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
2272  *	the list and one reference dropped. This function takes the list
2273  *	lock and is atomic with respect to other list locking functions.
2274  */
2275 void skb_queue_purge(struct sk_buff_head *list)
2276 {
2277 	struct sk_buff *skb;
2278 	while ((skb = skb_dequeue(list)) != NULL)
2279 		kfree_skb(skb);
2280 }
2281 EXPORT_SYMBOL(skb_queue_purge);
2282 
2283 /**
2284  *	skb_queue_head - queue a buffer at the list head
2285  *	@list: list to use
2286  *	@newsk: buffer to queue
2287  *
2288  *	Queue a buffer at the start of the list. This function takes the
2289  *	list lock and can be used safely with other locking &sk_buff functions
2290  *	safely.
2291  *
2292  *	A buffer cannot be placed on two lists at the same time.
2293  */
2294 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
2295 {
2296 	unsigned long flags;
2297 
2298 	spin_lock_irqsave(&list->lock, flags);
2299 	__skb_queue_head(list, newsk);
2300 	spin_unlock_irqrestore(&list->lock, flags);
2301 }
2302 EXPORT_SYMBOL(skb_queue_head);
2303 
2304 /**
2305  *	skb_queue_tail - queue a buffer at the list tail
2306  *	@list: list to use
2307  *	@newsk: buffer to queue
2308  *
2309  *	Queue a buffer at the tail of the list. This function takes the
2310  *	list lock and can be used safely with other locking &sk_buff functions
2311  *	safely.
2312  *
2313  *	A buffer cannot be placed on two lists at the same time.
2314  */
2315 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
2316 {
2317 	unsigned long flags;
2318 
2319 	spin_lock_irqsave(&list->lock, flags);
2320 	__skb_queue_tail(list, newsk);
2321 	spin_unlock_irqrestore(&list->lock, flags);
2322 }
2323 EXPORT_SYMBOL(skb_queue_tail);
2324 
2325 /**
2326  *	skb_unlink	-	remove a buffer from a list
2327  *	@skb: buffer to remove
2328  *	@list: list to use
2329  *
2330  *	Remove a packet from a list. The list locks are taken and this
2331  *	function is atomic with respect to other list locked calls
2332  *
2333  *	You must know what list the SKB is on.
2334  */
2335 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
2336 {
2337 	unsigned long flags;
2338 
2339 	spin_lock_irqsave(&list->lock, flags);
2340 	__skb_unlink(skb, list);
2341 	spin_unlock_irqrestore(&list->lock, flags);
2342 }
2343 EXPORT_SYMBOL(skb_unlink);
2344 
2345 /**
2346  *	skb_append	-	append a buffer
2347  *	@old: buffer to insert after
2348  *	@newsk: buffer to insert
2349  *	@list: list to use
2350  *
2351  *	Place a packet after a given packet in a list. The list locks are taken
2352  *	and this function is atomic with respect to other list locked calls.
2353  *	A buffer cannot be placed on two lists at the same time.
2354  */
2355 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
2356 {
2357 	unsigned long flags;
2358 
2359 	spin_lock_irqsave(&list->lock, flags);
2360 	__skb_queue_after(list, old, newsk);
2361 	spin_unlock_irqrestore(&list->lock, flags);
2362 }
2363 EXPORT_SYMBOL(skb_append);
2364 
2365 /**
2366  *	skb_insert	-	insert a buffer
2367  *	@old: buffer to insert before
2368  *	@newsk: buffer to insert
2369  *	@list: list to use
2370  *
2371  *	Place a packet before a given packet in a list. The list locks are
2372  * 	taken and this function is atomic with respect to other list locked
2373  *	calls.
2374  *
2375  *	A buffer cannot be placed on two lists at the same time.
2376  */
2377 void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
2378 {
2379 	unsigned long flags;
2380 
2381 	spin_lock_irqsave(&list->lock, flags);
2382 	__skb_insert(newsk, old->prev, old, list);
2383 	spin_unlock_irqrestore(&list->lock, flags);
2384 }
2385 EXPORT_SYMBOL(skb_insert);
2386 
2387 static inline void skb_split_inside_header(struct sk_buff *skb,
2388 					   struct sk_buff* skb1,
2389 					   const u32 len, const int pos)
2390 {
2391 	int i;
2392 
2393 	skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
2394 					 pos - len);
2395 	/* And move data appendix as is. */
2396 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
2397 		skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
2398 
2399 	skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
2400 	skb_shinfo(skb)->nr_frags  = 0;
2401 	skb1->data_len		   = skb->data_len;
2402 	skb1->len		   += skb1->data_len;
2403 	skb->data_len		   = 0;
2404 	skb->len		   = len;
2405 	skb_set_tail_pointer(skb, len);
2406 }
2407 
2408 static inline void skb_split_no_header(struct sk_buff *skb,
2409 				       struct sk_buff* skb1,
2410 				       const u32 len, int pos)
2411 {
2412 	int i, k = 0;
2413 	const int nfrags = skb_shinfo(skb)->nr_frags;
2414 
2415 	skb_shinfo(skb)->nr_frags = 0;
2416 	skb1->len		  = skb1->data_len = skb->len - len;
2417 	skb->len		  = len;
2418 	skb->data_len		  = len - pos;
2419 
2420 	for (i = 0; i < nfrags; i++) {
2421 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2422 
2423 		if (pos + size > len) {
2424 			skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
2425 
2426 			if (pos < len) {
2427 				/* Split frag.
2428 				 * We have two variants in this case:
2429 				 * 1. Move all the frag to the second
2430 				 *    part, if it is possible. F.e.
2431 				 *    this approach is mandatory for TUX,
2432 				 *    where splitting is expensive.
2433 				 * 2. Split is accurately. We make this.
2434 				 */
2435 				skb_frag_ref(skb, i);
2436 				skb_shinfo(skb1)->frags[0].page_offset += len - pos;
2437 				skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos);
2438 				skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos);
2439 				skb_shinfo(skb)->nr_frags++;
2440 			}
2441 			k++;
2442 		} else
2443 			skb_shinfo(skb)->nr_frags++;
2444 		pos += size;
2445 	}
2446 	skb_shinfo(skb1)->nr_frags = k;
2447 }
2448 
2449 /**
2450  * skb_split - Split fragmented skb to two parts at length len.
2451  * @skb: the buffer to split
2452  * @skb1: the buffer to receive the second part
2453  * @len: new length for skb
2454  */
2455 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
2456 {
2457 	int pos = skb_headlen(skb);
2458 
2459 	skb_shinfo(skb1)->tx_flags = skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG;
2460 	if (len < pos)	/* Split line is inside header. */
2461 		skb_split_inside_header(skb, skb1, len, pos);
2462 	else		/* Second chunk has no header, nothing to copy. */
2463 		skb_split_no_header(skb, skb1, len, pos);
2464 }
2465 EXPORT_SYMBOL(skb_split);
2466 
2467 /* Shifting from/to a cloned skb is a no-go.
2468  *
2469  * Caller cannot keep skb_shinfo related pointers past calling here!
2470  */
2471 static int skb_prepare_for_shift(struct sk_buff *skb)
2472 {
2473 	return skb_cloned(skb) && pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2474 }
2475 
2476 /**
2477  * skb_shift - Shifts paged data partially from skb to another
2478  * @tgt: buffer into which tail data gets added
2479  * @skb: buffer from which the paged data comes from
2480  * @shiftlen: shift up to this many bytes
2481  *
2482  * Attempts to shift up to shiftlen worth of bytes, which may be less than
2483  * the length of the skb, from skb to tgt. Returns number bytes shifted.
2484  * It's up to caller to free skb if everything was shifted.
2485  *
2486  * If @tgt runs out of frags, the whole operation is aborted.
2487  *
2488  * Skb cannot include anything else but paged data while tgt is allowed
2489  * to have non-paged data as well.
2490  *
2491  * TODO: full sized shift could be optimized but that would need
2492  * specialized skb free'er to handle frags without up-to-date nr_frags.
2493  */
2494 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
2495 {
2496 	int from, to, merge, todo;
2497 	struct skb_frag_struct *fragfrom, *fragto;
2498 
2499 	BUG_ON(shiftlen > skb->len);
2500 	BUG_ON(skb_headlen(skb));	/* Would corrupt stream */
2501 
2502 	todo = shiftlen;
2503 	from = 0;
2504 	to = skb_shinfo(tgt)->nr_frags;
2505 	fragfrom = &skb_shinfo(skb)->frags[from];
2506 
2507 	/* Actual merge is delayed until the point when we know we can
2508 	 * commit all, so that we don't have to undo partial changes
2509 	 */
2510 	if (!to ||
2511 	    !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom),
2512 			      fragfrom->page_offset)) {
2513 		merge = -1;
2514 	} else {
2515 		merge = to - 1;
2516 
2517 		todo -= skb_frag_size(fragfrom);
2518 		if (todo < 0) {
2519 			if (skb_prepare_for_shift(skb) ||
2520 			    skb_prepare_for_shift(tgt))
2521 				return 0;
2522 
2523 			/* All previous frag pointers might be stale! */
2524 			fragfrom = &skb_shinfo(skb)->frags[from];
2525 			fragto = &skb_shinfo(tgt)->frags[merge];
2526 
2527 			skb_frag_size_add(fragto, shiftlen);
2528 			skb_frag_size_sub(fragfrom, shiftlen);
2529 			fragfrom->page_offset += shiftlen;
2530 
2531 			goto onlymerged;
2532 		}
2533 
2534 		from++;
2535 	}
2536 
2537 	/* Skip full, not-fitting skb to avoid expensive operations */
2538 	if ((shiftlen == skb->len) &&
2539 	    (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
2540 		return 0;
2541 
2542 	if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
2543 		return 0;
2544 
2545 	while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
2546 		if (to == MAX_SKB_FRAGS)
2547 			return 0;
2548 
2549 		fragfrom = &skb_shinfo(skb)->frags[from];
2550 		fragto = &skb_shinfo(tgt)->frags[to];
2551 
2552 		if (todo >= skb_frag_size(fragfrom)) {
2553 			*fragto = *fragfrom;
2554 			todo -= skb_frag_size(fragfrom);
2555 			from++;
2556 			to++;
2557 
2558 		} else {
2559 			__skb_frag_ref(fragfrom);
2560 			fragto->page = fragfrom->page;
2561 			fragto->page_offset = fragfrom->page_offset;
2562 			skb_frag_size_set(fragto, todo);
2563 
2564 			fragfrom->page_offset += todo;
2565 			skb_frag_size_sub(fragfrom, todo);
2566 			todo = 0;
2567 
2568 			to++;
2569 			break;
2570 		}
2571 	}
2572 
2573 	/* Ready to "commit" this state change to tgt */
2574 	skb_shinfo(tgt)->nr_frags = to;
2575 
2576 	if (merge >= 0) {
2577 		fragfrom = &skb_shinfo(skb)->frags[0];
2578 		fragto = &skb_shinfo(tgt)->frags[merge];
2579 
2580 		skb_frag_size_add(fragto, skb_frag_size(fragfrom));
2581 		__skb_frag_unref(fragfrom);
2582 	}
2583 
2584 	/* Reposition in the original skb */
2585 	to = 0;
2586 	while (from < skb_shinfo(skb)->nr_frags)
2587 		skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
2588 	skb_shinfo(skb)->nr_frags = to;
2589 
2590 	BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
2591 
2592 onlymerged:
2593 	/* Most likely the tgt won't ever need its checksum anymore, skb on
2594 	 * the other hand might need it if it needs to be resent
2595 	 */
2596 	tgt->ip_summed = CHECKSUM_PARTIAL;
2597 	skb->ip_summed = CHECKSUM_PARTIAL;
2598 
2599 	/* Yak, is it really working this way? Some helper please? */
2600 	skb->len -= shiftlen;
2601 	skb->data_len -= shiftlen;
2602 	skb->truesize -= shiftlen;
2603 	tgt->len += shiftlen;
2604 	tgt->data_len += shiftlen;
2605 	tgt->truesize += shiftlen;
2606 
2607 	return shiftlen;
2608 }
2609 
2610 /**
2611  * skb_prepare_seq_read - Prepare a sequential read of skb data
2612  * @skb: the buffer to read
2613  * @from: lower offset of data to be read
2614  * @to: upper offset of data to be read
2615  * @st: state variable
2616  *
2617  * Initializes the specified state variable. Must be called before
2618  * invoking skb_seq_read() for the first time.
2619  */
2620 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
2621 			  unsigned int to, struct skb_seq_state *st)
2622 {
2623 	st->lower_offset = from;
2624 	st->upper_offset = to;
2625 	st->root_skb = st->cur_skb = skb;
2626 	st->frag_idx = st->stepped_offset = 0;
2627 	st->frag_data = NULL;
2628 }
2629 EXPORT_SYMBOL(skb_prepare_seq_read);
2630 
2631 /**
2632  * skb_seq_read - Sequentially read skb data
2633  * @consumed: number of bytes consumed by the caller so far
2634  * @data: destination pointer for data to be returned
2635  * @st: state variable
2636  *
2637  * Reads a block of skb data at @consumed relative to the
2638  * lower offset specified to skb_prepare_seq_read(). Assigns
2639  * the head of the data block to @data and returns the length
2640  * of the block or 0 if the end of the skb data or the upper
2641  * offset has been reached.
2642  *
2643  * The caller is not required to consume all of the data
2644  * returned, i.e. @consumed is typically set to the number
2645  * of bytes already consumed and the next call to
2646  * skb_seq_read() will return the remaining part of the block.
2647  *
2648  * Note 1: The size of each block of data returned can be arbitrary,
2649  *       this limitation is the cost for zerocopy seqeuental
2650  *       reads of potentially non linear data.
2651  *
2652  * Note 2: Fragment lists within fragments are not implemented
2653  *       at the moment, state->root_skb could be replaced with
2654  *       a stack for this purpose.
2655  */
2656 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
2657 			  struct skb_seq_state *st)
2658 {
2659 	unsigned int block_limit, abs_offset = consumed + st->lower_offset;
2660 	skb_frag_t *frag;
2661 
2662 	if (unlikely(abs_offset >= st->upper_offset)) {
2663 		if (st->frag_data) {
2664 			kunmap_atomic(st->frag_data);
2665 			st->frag_data = NULL;
2666 		}
2667 		return 0;
2668 	}
2669 
2670 next_skb:
2671 	block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
2672 
2673 	if (abs_offset < block_limit && !st->frag_data) {
2674 		*data = st->cur_skb->data + (abs_offset - st->stepped_offset);
2675 		return block_limit - abs_offset;
2676 	}
2677 
2678 	if (st->frag_idx == 0 && !st->frag_data)
2679 		st->stepped_offset += skb_headlen(st->cur_skb);
2680 
2681 	while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
2682 		frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
2683 		block_limit = skb_frag_size(frag) + st->stepped_offset;
2684 
2685 		if (abs_offset < block_limit) {
2686 			if (!st->frag_data)
2687 				st->frag_data = kmap_atomic(skb_frag_page(frag));
2688 
2689 			*data = (u8 *) st->frag_data + frag->page_offset +
2690 				(abs_offset - st->stepped_offset);
2691 
2692 			return block_limit - abs_offset;
2693 		}
2694 
2695 		if (st->frag_data) {
2696 			kunmap_atomic(st->frag_data);
2697 			st->frag_data = NULL;
2698 		}
2699 
2700 		st->frag_idx++;
2701 		st->stepped_offset += skb_frag_size(frag);
2702 	}
2703 
2704 	if (st->frag_data) {
2705 		kunmap_atomic(st->frag_data);
2706 		st->frag_data = NULL;
2707 	}
2708 
2709 	if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) {
2710 		st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
2711 		st->frag_idx = 0;
2712 		goto next_skb;
2713 	} else if (st->cur_skb->next) {
2714 		st->cur_skb = st->cur_skb->next;
2715 		st->frag_idx = 0;
2716 		goto next_skb;
2717 	}
2718 
2719 	return 0;
2720 }
2721 EXPORT_SYMBOL(skb_seq_read);
2722 
2723 /**
2724  * skb_abort_seq_read - Abort a sequential read of skb data
2725  * @st: state variable
2726  *
2727  * Must be called if skb_seq_read() was not called until it
2728  * returned 0.
2729  */
2730 void skb_abort_seq_read(struct skb_seq_state *st)
2731 {
2732 	if (st->frag_data)
2733 		kunmap_atomic(st->frag_data);
2734 }
2735 EXPORT_SYMBOL(skb_abort_seq_read);
2736 
2737 #define TS_SKB_CB(state)	((struct skb_seq_state *) &((state)->cb))
2738 
2739 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
2740 					  struct ts_config *conf,
2741 					  struct ts_state *state)
2742 {
2743 	return skb_seq_read(offset, text, TS_SKB_CB(state));
2744 }
2745 
2746 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
2747 {
2748 	skb_abort_seq_read(TS_SKB_CB(state));
2749 }
2750 
2751 /**
2752  * skb_find_text - Find a text pattern in skb data
2753  * @skb: the buffer to look in
2754  * @from: search offset
2755  * @to: search limit
2756  * @config: textsearch configuration
2757  * @state: uninitialized textsearch state variable
2758  *
2759  * Finds a pattern in the skb data according to the specified
2760  * textsearch configuration. Use textsearch_next() to retrieve
2761  * subsequent occurrences of the pattern. Returns the offset
2762  * to the first occurrence or UINT_MAX if no match was found.
2763  */
2764 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
2765 			   unsigned int to, struct ts_config *config,
2766 			   struct ts_state *state)
2767 {
2768 	unsigned int ret;
2769 
2770 	config->get_next_block = skb_ts_get_next_block;
2771 	config->finish = skb_ts_finish;
2772 
2773 	skb_prepare_seq_read(skb, from, to, TS_SKB_CB(state));
2774 
2775 	ret = textsearch_find(config, state);
2776 	return (ret <= to - from ? ret : UINT_MAX);
2777 }
2778 EXPORT_SYMBOL(skb_find_text);
2779 
2780 /**
2781  * skb_append_datato_frags - append the user data to a skb
2782  * @sk: sock  structure
2783  * @skb: skb structure to be appened with user data.
2784  * @getfrag: call back function to be used for getting the user data
2785  * @from: pointer to user message iov
2786  * @length: length of the iov message
2787  *
2788  * Description: This procedure append the user data in the fragment part
2789  * of the skb if any page alloc fails user this procedure returns  -ENOMEM
2790  */
2791 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
2792 			int (*getfrag)(void *from, char *to, int offset,
2793 					int len, int odd, struct sk_buff *skb),
2794 			void *from, int length)
2795 {
2796 	int frg_cnt = skb_shinfo(skb)->nr_frags;
2797 	int copy;
2798 	int offset = 0;
2799 	int ret;
2800 	struct page_frag *pfrag = &current->task_frag;
2801 
2802 	do {
2803 		/* Return error if we don't have space for new frag */
2804 		if (frg_cnt >= MAX_SKB_FRAGS)
2805 			return -EMSGSIZE;
2806 
2807 		if (!sk_page_frag_refill(sk, pfrag))
2808 			return -ENOMEM;
2809 
2810 		/* copy the user data to page */
2811 		copy = min_t(int, length, pfrag->size - pfrag->offset);
2812 
2813 		ret = getfrag(from, page_address(pfrag->page) + pfrag->offset,
2814 			      offset, copy, 0, skb);
2815 		if (ret < 0)
2816 			return -EFAULT;
2817 
2818 		/* copy was successful so update the size parameters */
2819 		skb_fill_page_desc(skb, frg_cnt, pfrag->page, pfrag->offset,
2820 				   copy);
2821 		frg_cnt++;
2822 		pfrag->offset += copy;
2823 		get_page(pfrag->page);
2824 
2825 		skb->truesize += copy;
2826 		atomic_add(copy, &sk->sk_wmem_alloc);
2827 		skb->len += copy;
2828 		skb->data_len += copy;
2829 		offset += copy;
2830 		length -= copy;
2831 
2832 	} while (length > 0);
2833 
2834 	return 0;
2835 }
2836 EXPORT_SYMBOL(skb_append_datato_frags);
2837 
2838 /**
2839  *	skb_pull_rcsum - pull skb and update receive checksum
2840  *	@skb: buffer to update
2841  *	@len: length of data pulled
2842  *
2843  *	This function performs an skb_pull on the packet and updates
2844  *	the CHECKSUM_COMPLETE checksum.  It should be used on
2845  *	receive path processing instead of skb_pull unless you know
2846  *	that the checksum difference is zero (e.g., a valid IP header)
2847  *	or you are setting ip_summed to CHECKSUM_NONE.
2848  */
2849 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
2850 {
2851 	BUG_ON(len > skb->len);
2852 	skb->len -= len;
2853 	BUG_ON(skb->len < skb->data_len);
2854 	skb_postpull_rcsum(skb, skb->data, len);
2855 	return skb->data += len;
2856 }
2857 EXPORT_SYMBOL_GPL(skb_pull_rcsum);
2858 
2859 /**
2860  *	skb_segment - Perform protocol segmentation on skb.
2861  *	@head_skb: buffer to segment
2862  *	@features: features for the output path (see dev->features)
2863  *
2864  *	This function performs segmentation on the given skb.  It returns
2865  *	a pointer to the first in a list of new skbs for the segments.
2866  *	In case of error it returns ERR_PTR(err).
2867  */
2868 struct sk_buff *skb_segment(struct sk_buff *head_skb,
2869 			    netdev_features_t features)
2870 {
2871 	struct sk_buff *segs = NULL;
2872 	struct sk_buff *tail = NULL;
2873 	struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list;
2874 	skb_frag_t *frag = skb_shinfo(head_skb)->frags;
2875 	unsigned int mss = skb_shinfo(head_skb)->gso_size;
2876 	unsigned int doffset = head_skb->data - skb_mac_header(head_skb);
2877 	struct sk_buff *frag_skb = head_skb;
2878 	unsigned int offset = doffset;
2879 	unsigned int tnl_hlen = skb_tnl_header_len(head_skb);
2880 	unsigned int headroom;
2881 	unsigned int len;
2882 	__be16 proto;
2883 	bool csum;
2884 	int sg = !!(features & NETIF_F_SG);
2885 	int nfrags = skb_shinfo(head_skb)->nr_frags;
2886 	int err = -ENOMEM;
2887 	int i = 0;
2888 	int pos;
2889 	int dummy;
2890 
2891 	__skb_push(head_skb, doffset);
2892 	proto = skb_network_protocol(head_skb, &dummy);
2893 	if (unlikely(!proto))
2894 		return ERR_PTR(-EINVAL);
2895 
2896 	csum = !head_skb->encap_hdr_csum &&
2897 	    !!can_checksum_protocol(features, proto);
2898 
2899 	headroom = skb_headroom(head_skb);
2900 	pos = skb_headlen(head_skb);
2901 
2902 	do {
2903 		struct sk_buff *nskb;
2904 		skb_frag_t *nskb_frag;
2905 		int hsize;
2906 		int size;
2907 
2908 		len = head_skb->len - offset;
2909 		if (len > mss)
2910 			len = mss;
2911 
2912 		hsize = skb_headlen(head_skb) - offset;
2913 		if (hsize < 0)
2914 			hsize = 0;
2915 		if (hsize > len || !sg)
2916 			hsize = len;
2917 
2918 		if (!hsize && i >= nfrags && skb_headlen(list_skb) &&
2919 		    (skb_headlen(list_skb) == len || sg)) {
2920 			BUG_ON(skb_headlen(list_skb) > len);
2921 
2922 			i = 0;
2923 			nfrags = skb_shinfo(list_skb)->nr_frags;
2924 			frag = skb_shinfo(list_skb)->frags;
2925 			frag_skb = list_skb;
2926 			pos += skb_headlen(list_skb);
2927 
2928 			while (pos < offset + len) {
2929 				BUG_ON(i >= nfrags);
2930 
2931 				size = skb_frag_size(frag);
2932 				if (pos + size > offset + len)
2933 					break;
2934 
2935 				i++;
2936 				pos += size;
2937 				frag++;
2938 			}
2939 
2940 			nskb = skb_clone(list_skb, GFP_ATOMIC);
2941 			list_skb = list_skb->next;
2942 
2943 			if (unlikely(!nskb))
2944 				goto err;
2945 
2946 			if (unlikely(pskb_trim(nskb, len))) {
2947 				kfree_skb(nskb);
2948 				goto err;
2949 			}
2950 
2951 			hsize = skb_end_offset(nskb);
2952 			if (skb_cow_head(nskb, doffset + headroom)) {
2953 				kfree_skb(nskb);
2954 				goto err;
2955 			}
2956 
2957 			nskb->truesize += skb_end_offset(nskb) - hsize;
2958 			skb_release_head_state(nskb);
2959 			__skb_push(nskb, doffset);
2960 		} else {
2961 			nskb = __alloc_skb(hsize + doffset + headroom,
2962 					   GFP_ATOMIC, skb_alloc_rx_flag(head_skb),
2963 					   NUMA_NO_NODE);
2964 
2965 			if (unlikely(!nskb))
2966 				goto err;
2967 
2968 			skb_reserve(nskb, headroom);
2969 			__skb_put(nskb, doffset);
2970 		}
2971 
2972 		if (segs)
2973 			tail->next = nskb;
2974 		else
2975 			segs = nskb;
2976 		tail = nskb;
2977 
2978 		__copy_skb_header(nskb, head_skb);
2979 		nskb->mac_len = head_skb->mac_len;
2980 
2981 		skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom);
2982 
2983 		skb_copy_from_linear_data_offset(head_skb, -tnl_hlen,
2984 						 nskb->data - tnl_hlen,
2985 						 doffset + tnl_hlen);
2986 
2987 		if (nskb->len == len + doffset)
2988 			goto perform_csum_check;
2989 
2990 		if (!sg) {
2991 			nskb->ip_summed = CHECKSUM_NONE;
2992 			nskb->csum = skb_copy_and_csum_bits(head_skb, offset,
2993 							    skb_put(nskb, len),
2994 							    len, 0);
2995 			SKB_GSO_CB(nskb)->csum_start =
2996 			    skb_headroom(nskb) + doffset;
2997 			continue;
2998 		}
2999 
3000 		nskb_frag = skb_shinfo(nskb)->frags;
3001 
3002 		skb_copy_from_linear_data_offset(head_skb, offset,
3003 						 skb_put(nskb, hsize), hsize);
3004 
3005 		skb_shinfo(nskb)->tx_flags = skb_shinfo(head_skb)->tx_flags &
3006 			SKBTX_SHARED_FRAG;
3007 
3008 		while (pos < offset + len) {
3009 			if (i >= nfrags) {
3010 				BUG_ON(skb_headlen(list_skb));
3011 
3012 				i = 0;
3013 				nfrags = skb_shinfo(list_skb)->nr_frags;
3014 				frag = skb_shinfo(list_skb)->frags;
3015 				frag_skb = list_skb;
3016 
3017 				BUG_ON(!nfrags);
3018 
3019 				list_skb = list_skb->next;
3020 			}
3021 
3022 			if (unlikely(skb_shinfo(nskb)->nr_frags >=
3023 				     MAX_SKB_FRAGS)) {
3024 				net_warn_ratelimited(
3025 					"skb_segment: too many frags: %u %u\n",
3026 					pos, mss);
3027 				goto err;
3028 			}
3029 
3030 			if (unlikely(skb_orphan_frags(frag_skb, GFP_ATOMIC)))
3031 				goto err;
3032 
3033 			*nskb_frag = *frag;
3034 			__skb_frag_ref(nskb_frag);
3035 			size = skb_frag_size(nskb_frag);
3036 
3037 			if (pos < offset) {
3038 				nskb_frag->page_offset += offset - pos;
3039 				skb_frag_size_sub(nskb_frag, offset - pos);
3040 			}
3041 
3042 			skb_shinfo(nskb)->nr_frags++;
3043 
3044 			if (pos + size <= offset + len) {
3045 				i++;
3046 				frag++;
3047 				pos += size;
3048 			} else {
3049 				skb_frag_size_sub(nskb_frag, pos + size - (offset + len));
3050 				goto skip_fraglist;
3051 			}
3052 
3053 			nskb_frag++;
3054 		}
3055 
3056 skip_fraglist:
3057 		nskb->data_len = len - hsize;
3058 		nskb->len += nskb->data_len;
3059 		nskb->truesize += nskb->data_len;
3060 
3061 perform_csum_check:
3062 		if (!csum) {
3063 			nskb->csum = skb_checksum(nskb, doffset,
3064 						  nskb->len - doffset, 0);
3065 			nskb->ip_summed = CHECKSUM_NONE;
3066 			SKB_GSO_CB(nskb)->csum_start =
3067 			    skb_headroom(nskb) + doffset;
3068 		}
3069 	} while ((offset += len) < head_skb->len);
3070 
3071 	return segs;
3072 
3073 err:
3074 	kfree_skb_list(segs);
3075 	return ERR_PTR(err);
3076 }
3077 EXPORT_SYMBOL_GPL(skb_segment);
3078 
3079 int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb)
3080 {
3081 	struct skb_shared_info *pinfo, *skbinfo = skb_shinfo(skb);
3082 	unsigned int offset = skb_gro_offset(skb);
3083 	unsigned int headlen = skb_headlen(skb);
3084 	struct sk_buff *nskb, *lp, *p = *head;
3085 	unsigned int len = skb_gro_len(skb);
3086 	unsigned int delta_truesize;
3087 	unsigned int headroom;
3088 
3089 	if (unlikely(p->len + len >= 65536))
3090 		return -E2BIG;
3091 
3092 	lp = NAPI_GRO_CB(p)->last;
3093 	pinfo = skb_shinfo(lp);
3094 
3095 	if (headlen <= offset) {
3096 		skb_frag_t *frag;
3097 		skb_frag_t *frag2;
3098 		int i = skbinfo->nr_frags;
3099 		int nr_frags = pinfo->nr_frags + i;
3100 
3101 		if (nr_frags > MAX_SKB_FRAGS)
3102 			goto merge;
3103 
3104 		offset -= headlen;
3105 		pinfo->nr_frags = nr_frags;
3106 		skbinfo->nr_frags = 0;
3107 
3108 		frag = pinfo->frags + nr_frags;
3109 		frag2 = skbinfo->frags + i;
3110 		do {
3111 			*--frag = *--frag2;
3112 		} while (--i);
3113 
3114 		frag->page_offset += offset;
3115 		skb_frag_size_sub(frag, offset);
3116 
3117 		/* all fragments truesize : remove (head size + sk_buff) */
3118 		delta_truesize = skb->truesize -
3119 				 SKB_TRUESIZE(skb_end_offset(skb));
3120 
3121 		skb->truesize -= skb->data_len;
3122 		skb->len -= skb->data_len;
3123 		skb->data_len = 0;
3124 
3125 		NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE;
3126 		goto done;
3127 	} else if (skb->head_frag) {
3128 		int nr_frags = pinfo->nr_frags;
3129 		skb_frag_t *frag = pinfo->frags + nr_frags;
3130 		struct page *page = virt_to_head_page(skb->head);
3131 		unsigned int first_size = headlen - offset;
3132 		unsigned int first_offset;
3133 
3134 		if (nr_frags + 1 + skbinfo->nr_frags > MAX_SKB_FRAGS)
3135 			goto merge;
3136 
3137 		first_offset = skb->data -
3138 			       (unsigned char *)page_address(page) +
3139 			       offset;
3140 
3141 		pinfo->nr_frags = nr_frags + 1 + skbinfo->nr_frags;
3142 
3143 		frag->page.p	  = page;
3144 		frag->page_offset = first_offset;
3145 		skb_frag_size_set(frag, first_size);
3146 
3147 		memcpy(frag + 1, skbinfo->frags, sizeof(*frag) * skbinfo->nr_frags);
3148 		/* We dont need to clear skbinfo->nr_frags here */
3149 
3150 		delta_truesize = skb->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
3151 		NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE_STOLEN_HEAD;
3152 		goto done;
3153 	}
3154 	if (pinfo->frag_list)
3155 		goto merge;
3156 	if (skb_gro_len(p) != pinfo->gso_size)
3157 		return -E2BIG;
3158 
3159 	headroom = skb_headroom(p);
3160 	nskb = alloc_skb(headroom + skb_gro_offset(p), GFP_ATOMIC);
3161 	if (unlikely(!nskb))
3162 		return -ENOMEM;
3163 
3164 	__copy_skb_header(nskb, p);
3165 	nskb->mac_len = p->mac_len;
3166 
3167 	skb_reserve(nskb, headroom);
3168 	__skb_put(nskb, skb_gro_offset(p));
3169 
3170 	skb_set_mac_header(nskb, skb_mac_header(p) - p->data);
3171 	skb_set_network_header(nskb, skb_network_offset(p));
3172 	skb_set_transport_header(nskb, skb_transport_offset(p));
3173 
3174 	__skb_pull(p, skb_gro_offset(p));
3175 	memcpy(skb_mac_header(nskb), skb_mac_header(p),
3176 	       p->data - skb_mac_header(p));
3177 
3178 	skb_shinfo(nskb)->frag_list = p;
3179 	skb_shinfo(nskb)->gso_size = pinfo->gso_size;
3180 	pinfo->gso_size = 0;
3181 	skb_header_release(p);
3182 	NAPI_GRO_CB(nskb)->last = p;
3183 
3184 	nskb->data_len += p->len;
3185 	nskb->truesize += p->truesize;
3186 	nskb->len += p->len;
3187 
3188 	*head = nskb;
3189 	nskb->next = p->next;
3190 	p->next = NULL;
3191 
3192 	p = nskb;
3193 
3194 merge:
3195 	delta_truesize = skb->truesize;
3196 	if (offset > headlen) {
3197 		unsigned int eat = offset - headlen;
3198 
3199 		skbinfo->frags[0].page_offset += eat;
3200 		skb_frag_size_sub(&skbinfo->frags[0], eat);
3201 		skb->data_len -= eat;
3202 		skb->len -= eat;
3203 		offset = headlen;
3204 	}
3205 
3206 	__skb_pull(skb, offset);
3207 
3208 	if (NAPI_GRO_CB(p)->last == p)
3209 		skb_shinfo(p)->frag_list = skb;
3210 	else
3211 		NAPI_GRO_CB(p)->last->next = skb;
3212 	NAPI_GRO_CB(p)->last = skb;
3213 	skb_header_release(skb);
3214 	lp = p;
3215 
3216 done:
3217 	NAPI_GRO_CB(p)->count++;
3218 	p->data_len += len;
3219 	p->truesize += delta_truesize;
3220 	p->len += len;
3221 	if (lp != p) {
3222 		lp->data_len += len;
3223 		lp->truesize += delta_truesize;
3224 		lp->len += len;
3225 	}
3226 	NAPI_GRO_CB(skb)->same_flow = 1;
3227 	return 0;
3228 }
3229 EXPORT_SYMBOL_GPL(skb_gro_receive);
3230 
3231 void __init skb_init(void)
3232 {
3233 	skbuff_head_cache = kmem_cache_create("skbuff_head_cache",
3234 					      sizeof(struct sk_buff),
3235 					      0,
3236 					      SLAB_HWCACHE_ALIGN|SLAB_PANIC,
3237 					      NULL);
3238 	skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
3239 						(2*sizeof(struct sk_buff)) +
3240 						sizeof(atomic_t),
3241 						0,
3242 						SLAB_HWCACHE_ALIGN|SLAB_PANIC,
3243 						NULL);
3244 }
3245 
3246 /**
3247  *	skb_to_sgvec - Fill a scatter-gather list from a socket buffer
3248  *	@skb: Socket buffer containing the buffers to be mapped
3249  *	@sg: The scatter-gather list to map into
3250  *	@offset: The offset into the buffer's contents to start mapping
3251  *	@len: Length of buffer space to be mapped
3252  *
3253  *	Fill the specified scatter-gather list with mappings/pointers into a
3254  *	region of the buffer space attached to a socket buffer.
3255  */
3256 static int
3257 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
3258 {
3259 	int start = skb_headlen(skb);
3260 	int i, copy = start - offset;
3261 	struct sk_buff *frag_iter;
3262 	int elt = 0;
3263 
3264 	if (copy > 0) {
3265 		if (copy > len)
3266 			copy = len;
3267 		sg_set_buf(sg, skb->data + offset, copy);
3268 		elt++;
3269 		if ((len -= copy) == 0)
3270 			return elt;
3271 		offset += copy;
3272 	}
3273 
3274 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3275 		int end;
3276 
3277 		WARN_ON(start > offset + len);
3278 
3279 		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
3280 		if ((copy = end - offset) > 0) {
3281 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3282 
3283 			if (copy > len)
3284 				copy = len;
3285 			sg_set_page(&sg[elt], skb_frag_page(frag), copy,
3286 					frag->page_offset+offset-start);
3287 			elt++;
3288 			if (!(len -= copy))
3289 				return elt;
3290 			offset += copy;
3291 		}
3292 		start = end;
3293 	}
3294 
3295 	skb_walk_frags(skb, frag_iter) {
3296 		int end;
3297 
3298 		WARN_ON(start > offset + len);
3299 
3300 		end = start + frag_iter->len;
3301 		if ((copy = end - offset) > 0) {
3302 			if (copy > len)
3303 				copy = len;
3304 			elt += __skb_to_sgvec(frag_iter, sg+elt, offset - start,
3305 					      copy);
3306 			if ((len -= copy) == 0)
3307 				return elt;
3308 			offset += copy;
3309 		}
3310 		start = end;
3311 	}
3312 	BUG_ON(len);
3313 	return elt;
3314 }
3315 
3316 /* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given
3317  * sglist without mark the sg which contain last skb data as the end.
3318  * So the caller can mannipulate sg list as will when padding new data after
3319  * the first call without calling sg_unmark_end to expend sg list.
3320  *
3321  * Scenario to use skb_to_sgvec_nomark:
3322  * 1. sg_init_table
3323  * 2. skb_to_sgvec_nomark(payload1)
3324  * 3. skb_to_sgvec_nomark(payload2)
3325  *
3326  * This is equivalent to:
3327  * 1. sg_init_table
3328  * 2. skb_to_sgvec(payload1)
3329  * 3. sg_unmark_end
3330  * 4. skb_to_sgvec(payload2)
3331  *
3332  * When mapping mutilple payload conditionally, skb_to_sgvec_nomark
3333  * is more preferable.
3334  */
3335 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
3336 			int offset, int len)
3337 {
3338 	return __skb_to_sgvec(skb, sg, offset, len);
3339 }
3340 EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark);
3341 
3342 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
3343 {
3344 	int nsg = __skb_to_sgvec(skb, sg, offset, len);
3345 
3346 	sg_mark_end(&sg[nsg - 1]);
3347 
3348 	return nsg;
3349 }
3350 EXPORT_SYMBOL_GPL(skb_to_sgvec);
3351 
3352 /**
3353  *	skb_cow_data - Check that a socket buffer's data buffers are writable
3354  *	@skb: The socket buffer to check.
3355  *	@tailbits: Amount of trailing space to be added
3356  *	@trailer: Returned pointer to the skb where the @tailbits space begins
3357  *
3358  *	Make sure that the data buffers attached to a socket buffer are
3359  *	writable. If they are not, private copies are made of the data buffers
3360  *	and the socket buffer is set to use these instead.
3361  *
3362  *	If @tailbits is given, make sure that there is space to write @tailbits
3363  *	bytes of data beyond current end of socket buffer.  @trailer will be
3364  *	set to point to the skb in which this space begins.
3365  *
3366  *	The number of scatterlist elements required to completely map the
3367  *	COW'd and extended socket buffer will be returned.
3368  */
3369 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
3370 {
3371 	int copyflag;
3372 	int elt;
3373 	struct sk_buff *skb1, **skb_p;
3374 
3375 	/* If skb is cloned or its head is paged, reallocate
3376 	 * head pulling out all the pages (pages are considered not writable
3377 	 * at the moment even if they are anonymous).
3378 	 */
3379 	if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
3380 	    __pskb_pull_tail(skb, skb_pagelen(skb)-skb_headlen(skb)) == NULL)
3381 		return -ENOMEM;
3382 
3383 	/* Easy case. Most of packets will go this way. */
3384 	if (!skb_has_frag_list(skb)) {
3385 		/* A little of trouble, not enough of space for trailer.
3386 		 * This should not happen, when stack is tuned to generate
3387 		 * good frames. OK, on miss we reallocate and reserve even more
3388 		 * space, 128 bytes is fair. */
3389 
3390 		if (skb_tailroom(skb) < tailbits &&
3391 		    pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
3392 			return -ENOMEM;
3393 
3394 		/* Voila! */
3395 		*trailer = skb;
3396 		return 1;
3397 	}
3398 
3399 	/* Misery. We are in troubles, going to mincer fragments... */
3400 
3401 	elt = 1;
3402 	skb_p = &skb_shinfo(skb)->frag_list;
3403 	copyflag = 0;
3404 
3405 	while ((skb1 = *skb_p) != NULL) {
3406 		int ntail = 0;
3407 
3408 		/* The fragment is partially pulled by someone,
3409 		 * this can happen on input. Copy it and everything
3410 		 * after it. */
3411 
3412 		if (skb_shared(skb1))
3413 			copyflag = 1;
3414 
3415 		/* If the skb is the last, worry about trailer. */
3416 
3417 		if (skb1->next == NULL && tailbits) {
3418 			if (skb_shinfo(skb1)->nr_frags ||
3419 			    skb_has_frag_list(skb1) ||
3420 			    skb_tailroom(skb1) < tailbits)
3421 				ntail = tailbits + 128;
3422 		}
3423 
3424 		if (copyflag ||
3425 		    skb_cloned(skb1) ||
3426 		    ntail ||
3427 		    skb_shinfo(skb1)->nr_frags ||
3428 		    skb_has_frag_list(skb1)) {
3429 			struct sk_buff *skb2;
3430 
3431 			/* Fuck, we are miserable poor guys... */
3432 			if (ntail == 0)
3433 				skb2 = skb_copy(skb1, GFP_ATOMIC);
3434 			else
3435 				skb2 = skb_copy_expand(skb1,
3436 						       skb_headroom(skb1),
3437 						       ntail,
3438 						       GFP_ATOMIC);
3439 			if (unlikely(skb2 == NULL))
3440 				return -ENOMEM;
3441 
3442 			if (skb1->sk)
3443 				skb_set_owner_w(skb2, skb1->sk);
3444 
3445 			/* Looking around. Are we still alive?
3446 			 * OK, link new skb, drop old one */
3447 
3448 			skb2->next = skb1->next;
3449 			*skb_p = skb2;
3450 			kfree_skb(skb1);
3451 			skb1 = skb2;
3452 		}
3453 		elt++;
3454 		*trailer = skb1;
3455 		skb_p = &skb1->next;
3456 	}
3457 
3458 	return elt;
3459 }
3460 EXPORT_SYMBOL_GPL(skb_cow_data);
3461 
3462 static void sock_rmem_free(struct sk_buff *skb)
3463 {
3464 	struct sock *sk = skb->sk;
3465 
3466 	atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
3467 }
3468 
3469 /*
3470  * Note: We dont mem charge error packets (no sk_forward_alloc changes)
3471  */
3472 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
3473 {
3474 	if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
3475 	    (unsigned int)sk->sk_rcvbuf)
3476 		return -ENOMEM;
3477 
3478 	skb_orphan(skb);
3479 	skb->sk = sk;
3480 	skb->destructor = sock_rmem_free;
3481 	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
3482 
3483 	/* before exiting rcu section, make sure dst is refcounted */
3484 	skb_dst_force(skb);
3485 
3486 	skb_queue_tail(&sk->sk_error_queue, skb);
3487 	if (!sock_flag(sk, SOCK_DEAD))
3488 		sk->sk_data_ready(sk);
3489 	return 0;
3490 }
3491 EXPORT_SYMBOL(sock_queue_err_skb);
3492 
3493 void skb_tstamp_tx(struct sk_buff *orig_skb,
3494 		struct skb_shared_hwtstamps *hwtstamps)
3495 {
3496 	struct sock *sk = orig_skb->sk;
3497 	struct sock_exterr_skb *serr;
3498 	struct sk_buff *skb;
3499 	int err;
3500 
3501 	if (!sk)
3502 		return;
3503 
3504 	if (hwtstamps) {
3505 		*skb_hwtstamps(orig_skb) =
3506 			*hwtstamps;
3507 	} else {
3508 		/*
3509 		 * no hardware time stamps available,
3510 		 * so keep the shared tx_flags and only
3511 		 * store software time stamp
3512 		 */
3513 		orig_skb->tstamp = ktime_get_real();
3514 	}
3515 
3516 	skb = skb_clone(orig_skb, GFP_ATOMIC);
3517 	if (!skb)
3518 		return;
3519 
3520 	serr = SKB_EXT_ERR(skb);
3521 	memset(serr, 0, sizeof(*serr));
3522 	serr->ee.ee_errno = ENOMSG;
3523 	serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
3524 
3525 	err = sock_queue_err_skb(sk, skb);
3526 
3527 	if (err)
3528 		kfree_skb(skb);
3529 }
3530 EXPORT_SYMBOL_GPL(skb_tstamp_tx);
3531 
3532 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked)
3533 {
3534 	struct sock *sk = skb->sk;
3535 	struct sock_exterr_skb *serr;
3536 	int err;
3537 
3538 	skb->wifi_acked_valid = 1;
3539 	skb->wifi_acked = acked;
3540 
3541 	serr = SKB_EXT_ERR(skb);
3542 	memset(serr, 0, sizeof(*serr));
3543 	serr->ee.ee_errno = ENOMSG;
3544 	serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS;
3545 
3546 	err = sock_queue_err_skb(sk, skb);
3547 	if (err)
3548 		kfree_skb(skb);
3549 }
3550 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack);
3551 
3552 
3553 /**
3554  * skb_partial_csum_set - set up and verify partial csum values for packet
3555  * @skb: the skb to set
3556  * @start: the number of bytes after skb->data to start checksumming.
3557  * @off: the offset from start to place the checksum.
3558  *
3559  * For untrusted partially-checksummed packets, we need to make sure the values
3560  * for skb->csum_start and skb->csum_offset are valid so we don't oops.
3561  *
3562  * This function checks and sets those values and skb->ip_summed: if this
3563  * returns false you should drop the packet.
3564  */
3565 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
3566 {
3567 	if (unlikely(start > skb_headlen(skb)) ||
3568 	    unlikely((int)start + off > skb_headlen(skb) - 2)) {
3569 		net_warn_ratelimited("bad partial csum: csum=%u/%u len=%u\n",
3570 				     start, off, skb_headlen(skb));
3571 		return false;
3572 	}
3573 	skb->ip_summed = CHECKSUM_PARTIAL;
3574 	skb->csum_start = skb_headroom(skb) + start;
3575 	skb->csum_offset = off;
3576 	skb_set_transport_header(skb, start);
3577 	return true;
3578 }
3579 EXPORT_SYMBOL_GPL(skb_partial_csum_set);
3580 
3581 static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len,
3582 			       unsigned int max)
3583 {
3584 	if (skb_headlen(skb) >= len)
3585 		return 0;
3586 
3587 	/* If we need to pullup then pullup to the max, so we
3588 	 * won't need to do it again.
3589 	 */
3590 	if (max > skb->len)
3591 		max = skb->len;
3592 
3593 	if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL)
3594 		return -ENOMEM;
3595 
3596 	if (skb_headlen(skb) < len)
3597 		return -EPROTO;
3598 
3599 	return 0;
3600 }
3601 
3602 #define MAX_TCP_HDR_LEN (15 * 4)
3603 
3604 static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb,
3605 				      typeof(IPPROTO_IP) proto,
3606 				      unsigned int off)
3607 {
3608 	switch (proto) {
3609 		int err;
3610 
3611 	case IPPROTO_TCP:
3612 		err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr),
3613 					  off + MAX_TCP_HDR_LEN);
3614 		if (!err && !skb_partial_csum_set(skb, off,
3615 						  offsetof(struct tcphdr,
3616 							   check)))
3617 			err = -EPROTO;
3618 		return err ? ERR_PTR(err) : &tcp_hdr(skb)->check;
3619 
3620 	case IPPROTO_UDP:
3621 		err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr),
3622 					  off + sizeof(struct udphdr));
3623 		if (!err && !skb_partial_csum_set(skb, off,
3624 						  offsetof(struct udphdr,
3625 							   check)))
3626 			err = -EPROTO;
3627 		return err ? ERR_PTR(err) : &udp_hdr(skb)->check;
3628 	}
3629 
3630 	return ERR_PTR(-EPROTO);
3631 }
3632 
3633 /* This value should be large enough to cover a tagged ethernet header plus
3634  * maximally sized IP and TCP or UDP headers.
3635  */
3636 #define MAX_IP_HDR_LEN 128
3637 
3638 static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate)
3639 {
3640 	unsigned int off;
3641 	bool fragment;
3642 	__sum16 *csum;
3643 	int err;
3644 
3645 	fragment = false;
3646 
3647 	err = skb_maybe_pull_tail(skb,
3648 				  sizeof(struct iphdr),
3649 				  MAX_IP_HDR_LEN);
3650 	if (err < 0)
3651 		goto out;
3652 
3653 	if (ip_hdr(skb)->frag_off & htons(IP_OFFSET | IP_MF))
3654 		fragment = true;
3655 
3656 	off = ip_hdrlen(skb);
3657 
3658 	err = -EPROTO;
3659 
3660 	if (fragment)
3661 		goto out;
3662 
3663 	csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off);
3664 	if (IS_ERR(csum))
3665 		return PTR_ERR(csum);
3666 
3667 	if (recalculate)
3668 		*csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
3669 					   ip_hdr(skb)->daddr,
3670 					   skb->len - off,
3671 					   ip_hdr(skb)->protocol, 0);
3672 	err = 0;
3673 
3674 out:
3675 	return err;
3676 }
3677 
3678 /* This value should be large enough to cover a tagged ethernet header plus
3679  * an IPv6 header, all options, and a maximal TCP or UDP header.
3680  */
3681 #define MAX_IPV6_HDR_LEN 256
3682 
3683 #define OPT_HDR(type, skb, off) \
3684 	(type *)(skb_network_header(skb) + (off))
3685 
3686 static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate)
3687 {
3688 	int err;
3689 	u8 nexthdr;
3690 	unsigned int off;
3691 	unsigned int len;
3692 	bool fragment;
3693 	bool done;
3694 	__sum16 *csum;
3695 
3696 	fragment = false;
3697 	done = false;
3698 
3699 	off = sizeof(struct ipv6hdr);
3700 
3701 	err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN);
3702 	if (err < 0)
3703 		goto out;
3704 
3705 	nexthdr = ipv6_hdr(skb)->nexthdr;
3706 
3707 	len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len);
3708 	while (off <= len && !done) {
3709 		switch (nexthdr) {
3710 		case IPPROTO_DSTOPTS:
3711 		case IPPROTO_HOPOPTS:
3712 		case IPPROTO_ROUTING: {
3713 			struct ipv6_opt_hdr *hp;
3714 
3715 			err = skb_maybe_pull_tail(skb,
3716 						  off +
3717 						  sizeof(struct ipv6_opt_hdr),
3718 						  MAX_IPV6_HDR_LEN);
3719 			if (err < 0)
3720 				goto out;
3721 
3722 			hp = OPT_HDR(struct ipv6_opt_hdr, skb, off);
3723 			nexthdr = hp->nexthdr;
3724 			off += ipv6_optlen(hp);
3725 			break;
3726 		}
3727 		case IPPROTO_AH: {
3728 			struct ip_auth_hdr *hp;
3729 
3730 			err = skb_maybe_pull_tail(skb,
3731 						  off +
3732 						  sizeof(struct ip_auth_hdr),
3733 						  MAX_IPV6_HDR_LEN);
3734 			if (err < 0)
3735 				goto out;
3736 
3737 			hp = OPT_HDR(struct ip_auth_hdr, skb, off);
3738 			nexthdr = hp->nexthdr;
3739 			off += ipv6_authlen(hp);
3740 			break;
3741 		}
3742 		case IPPROTO_FRAGMENT: {
3743 			struct frag_hdr *hp;
3744 
3745 			err = skb_maybe_pull_tail(skb,
3746 						  off +
3747 						  sizeof(struct frag_hdr),
3748 						  MAX_IPV6_HDR_LEN);
3749 			if (err < 0)
3750 				goto out;
3751 
3752 			hp = OPT_HDR(struct frag_hdr, skb, off);
3753 
3754 			if (hp->frag_off & htons(IP6_OFFSET | IP6_MF))
3755 				fragment = true;
3756 
3757 			nexthdr = hp->nexthdr;
3758 			off += sizeof(struct frag_hdr);
3759 			break;
3760 		}
3761 		default:
3762 			done = true;
3763 			break;
3764 		}
3765 	}
3766 
3767 	err = -EPROTO;
3768 
3769 	if (!done || fragment)
3770 		goto out;
3771 
3772 	csum = skb_checksum_setup_ip(skb, nexthdr, off);
3773 	if (IS_ERR(csum))
3774 		return PTR_ERR(csum);
3775 
3776 	if (recalculate)
3777 		*csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
3778 					 &ipv6_hdr(skb)->daddr,
3779 					 skb->len - off, nexthdr, 0);
3780 	err = 0;
3781 
3782 out:
3783 	return err;
3784 }
3785 
3786 /**
3787  * skb_checksum_setup - set up partial checksum offset
3788  * @skb: the skb to set up
3789  * @recalculate: if true the pseudo-header checksum will be recalculated
3790  */
3791 int skb_checksum_setup(struct sk_buff *skb, bool recalculate)
3792 {
3793 	int err;
3794 
3795 	switch (skb->protocol) {
3796 	case htons(ETH_P_IP):
3797 		err = skb_checksum_setup_ipv4(skb, recalculate);
3798 		break;
3799 
3800 	case htons(ETH_P_IPV6):
3801 		err = skb_checksum_setup_ipv6(skb, recalculate);
3802 		break;
3803 
3804 	default:
3805 		err = -EPROTO;
3806 		break;
3807 	}
3808 
3809 	return err;
3810 }
3811 EXPORT_SYMBOL(skb_checksum_setup);
3812 
3813 void __skb_warn_lro_forwarding(const struct sk_buff *skb)
3814 {
3815 	net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n",
3816 			     skb->dev->name);
3817 }
3818 EXPORT_SYMBOL(__skb_warn_lro_forwarding);
3819 
3820 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen)
3821 {
3822 	if (head_stolen) {
3823 		skb_release_head_state(skb);
3824 		kmem_cache_free(skbuff_head_cache, skb);
3825 	} else {
3826 		__kfree_skb(skb);
3827 	}
3828 }
3829 EXPORT_SYMBOL(kfree_skb_partial);
3830 
3831 /**
3832  * skb_try_coalesce - try to merge skb to prior one
3833  * @to: prior buffer
3834  * @from: buffer to add
3835  * @fragstolen: pointer to boolean
3836  * @delta_truesize: how much more was allocated than was requested
3837  */
3838 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
3839 		      bool *fragstolen, int *delta_truesize)
3840 {
3841 	int i, delta, len = from->len;
3842 
3843 	*fragstolen = false;
3844 
3845 	if (skb_cloned(to))
3846 		return false;
3847 
3848 	if (len <= skb_tailroom(to)) {
3849 		BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len));
3850 		*delta_truesize = 0;
3851 		return true;
3852 	}
3853 
3854 	if (skb_has_frag_list(to) || skb_has_frag_list(from))
3855 		return false;
3856 
3857 	if (skb_headlen(from) != 0) {
3858 		struct page *page;
3859 		unsigned int offset;
3860 
3861 		if (skb_shinfo(to)->nr_frags +
3862 		    skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS)
3863 			return false;
3864 
3865 		if (skb_head_is_locked(from))
3866 			return false;
3867 
3868 		delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
3869 
3870 		page = virt_to_head_page(from->head);
3871 		offset = from->data - (unsigned char *)page_address(page);
3872 
3873 		skb_fill_page_desc(to, skb_shinfo(to)->nr_frags,
3874 				   page, offset, skb_headlen(from));
3875 		*fragstolen = true;
3876 	} else {
3877 		if (skb_shinfo(to)->nr_frags +
3878 		    skb_shinfo(from)->nr_frags > MAX_SKB_FRAGS)
3879 			return false;
3880 
3881 		delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from));
3882 	}
3883 
3884 	WARN_ON_ONCE(delta < len);
3885 
3886 	memcpy(skb_shinfo(to)->frags + skb_shinfo(to)->nr_frags,
3887 	       skb_shinfo(from)->frags,
3888 	       skb_shinfo(from)->nr_frags * sizeof(skb_frag_t));
3889 	skb_shinfo(to)->nr_frags += skb_shinfo(from)->nr_frags;
3890 
3891 	if (!skb_cloned(from))
3892 		skb_shinfo(from)->nr_frags = 0;
3893 
3894 	/* if the skb is not cloned this does nothing
3895 	 * since we set nr_frags to 0.
3896 	 */
3897 	for (i = 0; i < skb_shinfo(from)->nr_frags; i++)
3898 		skb_frag_ref(from, i);
3899 
3900 	to->truesize += delta;
3901 	to->len += len;
3902 	to->data_len += len;
3903 
3904 	*delta_truesize = delta;
3905 	return true;
3906 }
3907 EXPORT_SYMBOL(skb_try_coalesce);
3908 
3909 /**
3910  * skb_scrub_packet - scrub an skb
3911  *
3912  * @skb: buffer to clean
3913  * @xnet: packet is crossing netns
3914  *
3915  * skb_scrub_packet can be used after encapsulating or decapsulting a packet
3916  * into/from a tunnel. Some information have to be cleared during these
3917  * operations.
3918  * skb_scrub_packet can also be used to clean a skb before injecting it in
3919  * another namespace (@xnet == true). We have to clear all information in the
3920  * skb that could impact namespace isolation.
3921  */
3922 void skb_scrub_packet(struct sk_buff *skb, bool xnet)
3923 {
3924 	if (xnet)
3925 		skb_orphan(skb);
3926 	skb->tstamp.tv64 = 0;
3927 	skb->pkt_type = PACKET_HOST;
3928 	skb->skb_iif = 0;
3929 	skb->ignore_df = 0;
3930 	skb_dst_drop(skb);
3931 	skb->mark = 0;
3932 	secpath_reset(skb);
3933 	nf_reset(skb);
3934 	nf_reset_trace(skb);
3935 }
3936 EXPORT_SYMBOL_GPL(skb_scrub_packet);
3937 
3938 /**
3939  * skb_gso_transport_seglen - Return length of individual segments of a gso packet
3940  *
3941  * @skb: GSO skb
3942  *
3943  * skb_gso_transport_seglen is used to determine the real size of the
3944  * individual segments, including Layer4 headers (TCP/UDP).
3945  *
3946  * The MAC/L2 or network (IP, IPv6) headers are not accounted for.
3947  */
3948 unsigned int skb_gso_transport_seglen(const struct sk_buff *skb)
3949 {
3950 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
3951 
3952 	if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
3953 		return tcp_hdrlen(skb) + shinfo->gso_size;
3954 
3955 	/* UFO sets gso_size to the size of the fragmentation
3956 	 * payload, i.e. the size of the L4 (UDP) header is already
3957 	 * accounted for.
3958 	 */
3959 	return shinfo->gso_size;
3960 }
3961 EXPORT_SYMBOL_GPL(skb_gso_transport_seglen);
3962