xref: /openbmc/linux/net/core/skbuff.c (revision 911b8eac)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *	Routines having to do with the 'struct sk_buff' memory handlers.
4  *
5  *	Authors:	Alan Cox <alan@lxorguk.ukuu.org.uk>
6  *			Florian La Roche <rzsfl@rz.uni-sb.de>
7  *
8  *	Fixes:
9  *		Alan Cox	:	Fixed the worst of the load
10  *					balancer bugs.
11  *		Dave Platt	:	Interrupt stacking fix.
12  *	Richard Kooijman	:	Timestamp fixes.
13  *		Alan Cox	:	Changed buffer format.
14  *		Alan Cox	:	destructor hook for AF_UNIX etc.
15  *		Linus Torvalds	:	Better skb_clone.
16  *		Alan Cox	:	Added skb_copy.
17  *		Alan Cox	:	Added all the changed routines Linus
18  *					only put in the headers
19  *		Ray VanTassle	:	Fixed --skb->lock in free
20  *		Alan Cox	:	skb_copy copy arp field
21  *		Andi Kleen	:	slabified it.
22  *		Robert Olsson	:	Removed skb_head_pool
23  *
24  *	NOTE:
25  *		The __skb_ routines should be called with interrupts
26  *	disabled, or you better be *real* sure that the operation is atomic
27  *	with respect to whatever list is being frobbed (e.g. via lock_sock()
28  *	or via disabling bottom half handlers, etc).
29  */
30 
31 /*
32  *	The functions in this file will not compile correctly with gcc 2.4.x
33  */
34 
35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
36 
37 #include <linux/module.h>
38 #include <linux/types.h>
39 #include <linux/kernel.h>
40 #include <linux/mm.h>
41 #include <linux/interrupt.h>
42 #include <linux/in.h>
43 #include <linux/inet.h>
44 #include <linux/slab.h>
45 #include <linux/tcp.h>
46 #include <linux/udp.h>
47 #include <linux/sctp.h>
48 #include <linux/netdevice.h>
49 #ifdef CONFIG_NET_CLS_ACT
50 #include <net/pkt_sched.h>
51 #endif
52 #include <linux/string.h>
53 #include <linux/skbuff.h>
54 #include <linux/splice.h>
55 #include <linux/cache.h>
56 #include <linux/rtnetlink.h>
57 #include <linux/init.h>
58 #include <linux/scatterlist.h>
59 #include <linux/errqueue.h>
60 #include <linux/prefetch.h>
61 #include <linux/if_vlan.h>
62 #include <linux/mpls.h>
63 
64 #include <net/protocol.h>
65 #include <net/dst.h>
66 #include <net/sock.h>
67 #include <net/checksum.h>
68 #include <net/ip6_checksum.h>
69 #include <net/xfrm.h>
70 #include <net/mpls.h>
71 #include <net/mptcp.h>
72 
73 #include <linux/uaccess.h>
74 #include <trace/events/skb.h>
75 #include <linux/highmem.h>
76 #include <linux/capability.h>
77 #include <linux/user_namespace.h>
78 #include <linux/indirect_call_wrapper.h>
79 
80 #include "datagram.h"
81 
82 struct kmem_cache *skbuff_head_cache __ro_after_init;
83 static struct kmem_cache *skbuff_fclone_cache __ro_after_init;
84 #ifdef CONFIG_SKB_EXTENSIONS
85 static struct kmem_cache *skbuff_ext_cache __ro_after_init;
86 #endif
87 int sysctl_max_skb_frags __read_mostly = MAX_SKB_FRAGS;
88 EXPORT_SYMBOL(sysctl_max_skb_frags);
89 
90 /**
91  *	skb_panic - private function for out-of-line support
92  *	@skb:	buffer
93  *	@sz:	size
94  *	@addr:	address
95  *	@msg:	skb_over_panic or skb_under_panic
96  *
97  *	Out-of-line support for skb_put() and skb_push().
98  *	Called via the wrapper skb_over_panic() or skb_under_panic().
99  *	Keep out of line to prevent kernel bloat.
100  *	__builtin_return_address is not used because it is not always reliable.
101  */
102 static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr,
103 		      const char msg[])
104 {
105 	pr_emerg("%s: text:%px len:%d put:%d head:%px data:%px tail:%#lx end:%#lx dev:%s\n",
106 		 msg, addr, skb->len, sz, skb->head, skb->data,
107 		 (unsigned long)skb->tail, (unsigned long)skb->end,
108 		 skb->dev ? skb->dev->name : "<NULL>");
109 	BUG();
110 }
111 
112 static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr)
113 {
114 	skb_panic(skb, sz, addr, __func__);
115 }
116 
117 static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr)
118 {
119 	skb_panic(skb, sz, addr, __func__);
120 }
121 
122 /*
123  * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells
124  * the caller if emergency pfmemalloc reserves are being used. If it is and
125  * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves
126  * may be used. Otherwise, the packet data may be discarded until enough
127  * memory is free
128  */
129 #define kmalloc_reserve(size, gfp, node, pfmemalloc) \
130 	 __kmalloc_reserve(size, gfp, node, _RET_IP_, pfmemalloc)
131 
132 static void *__kmalloc_reserve(size_t size, gfp_t flags, int node,
133 			       unsigned long ip, bool *pfmemalloc)
134 {
135 	void *obj;
136 	bool ret_pfmemalloc = false;
137 
138 	/*
139 	 * Try a regular allocation, when that fails and we're not entitled
140 	 * to the reserves, fail.
141 	 */
142 	obj = kmalloc_node_track_caller(size,
143 					flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
144 					node);
145 	if (obj || !(gfp_pfmemalloc_allowed(flags)))
146 		goto out;
147 
148 	/* Try again but now we are using pfmemalloc reserves */
149 	ret_pfmemalloc = true;
150 	obj = kmalloc_node_track_caller(size, flags, node);
151 
152 out:
153 	if (pfmemalloc)
154 		*pfmemalloc = ret_pfmemalloc;
155 
156 	return obj;
157 }
158 
159 /* 	Allocate a new skbuff. We do this ourselves so we can fill in a few
160  *	'private' fields and also do memory statistics to find all the
161  *	[BEEP] leaks.
162  *
163  */
164 
165 /**
166  *	__alloc_skb	-	allocate a network buffer
167  *	@size: size to allocate
168  *	@gfp_mask: allocation mask
169  *	@flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache
170  *		instead of head cache and allocate a cloned (child) skb.
171  *		If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for
172  *		allocations in case the data is required for writeback
173  *	@node: numa node to allocate memory on
174  *
175  *	Allocate a new &sk_buff. The returned buffer has no headroom and a
176  *	tail room of at least size bytes. The object has a reference count
177  *	of one. The return is the buffer. On a failure the return is %NULL.
178  *
179  *	Buffers may only be allocated from interrupts using a @gfp_mask of
180  *	%GFP_ATOMIC.
181  */
182 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
183 			    int flags, int node)
184 {
185 	struct kmem_cache *cache;
186 	struct skb_shared_info *shinfo;
187 	struct sk_buff *skb;
188 	u8 *data;
189 	bool pfmemalloc;
190 
191 	cache = (flags & SKB_ALLOC_FCLONE)
192 		? skbuff_fclone_cache : skbuff_head_cache;
193 
194 	if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX))
195 		gfp_mask |= __GFP_MEMALLOC;
196 
197 	/* Get the HEAD */
198 	skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node);
199 	if (!skb)
200 		goto out;
201 	prefetchw(skb);
202 
203 	/* We do our best to align skb_shared_info on a separate cache
204 	 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives
205 	 * aligned memory blocks, unless SLUB/SLAB debug is enabled.
206 	 * Both skb->head and skb_shared_info are cache line aligned.
207 	 */
208 	size = SKB_DATA_ALIGN(size);
209 	size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
210 	data = kmalloc_reserve(size, gfp_mask, node, &pfmemalloc);
211 	if (!data)
212 		goto nodata;
213 	/* kmalloc(size) might give us more room than requested.
214 	 * Put skb_shared_info exactly at the end of allocated zone,
215 	 * to allow max possible filling before reallocation.
216 	 */
217 	size = SKB_WITH_OVERHEAD(ksize(data));
218 	prefetchw(data + size);
219 
220 	/*
221 	 * Only clear those fields we need to clear, not those that we will
222 	 * actually initialise below. Hence, don't put any more fields after
223 	 * the tail pointer in struct sk_buff!
224 	 */
225 	memset(skb, 0, offsetof(struct sk_buff, tail));
226 	/* Account for allocated memory : skb + skb->head */
227 	skb->truesize = SKB_TRUESIZE(size);
228 	skb->pfmemalloc = pfmemalloc;
229 	refcount_set(&skb->users, 1);
230 	skb->head = data;
231 	skb->data = data;
232 	skb_reset_tail_pointer(skb);
233 	skb->end = skb->tail + size;
234 	skb->mac_header = (typeof(skb->mac_header))~0U;
235 	skb->transport_header = (typeof(skb->transport_header))~0U;
236 
237 	/* make sure we initialize shinfo sequentially */
238 	shinfo = skb_shinfo(skb);
239 	memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
240 	atomic_set(&shinfo->dataref, 1);
241 
242 	if (flags & SKB_ALLOC_FCLONE) {
243 		struct sk_buff_fclones *fclones;
244 
245 		fclones = container_of(skb, struct sk_buff_fclones, skb1);
246 
247 		skb->fclone = SKB_FCLONE_ORIG;
248 		refcount_set(&fclones->fclone_ref, 1);
249 
250 		fclones->skb2.fclone = SKB_FCLONE_CLONE;
251 	}
252 out:
253 	return skb;
254 nodata:
255 	kmem_cache_free(cache, skb);
256 	skb = NULL;
257 	goto out;
258 }
259 EXPORT_SYMBOL(__alloc_skb);
260 
261 /* Caller must provide SKB that is memset cleared */
262 static struct sk_buff *__build_skb_around(struct sk_buff *skb,
263 					  void *data, unsigned int frag_size)
264 {
265 	struct skb_shared_info *shinfo;
266 	unsigned int size = frag_size ? : ksize(data);
267 
268 	size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
269 
270 	/* Assumes caller memset cleared SKB */
271 	skb->truesize = SKB_TRUESIZE(size);
272 	refcount_set(&skb->users, 1);
273 	skb->head = data;
274 	skb->data = data;
275 	skb_reset_tail_pointer(skb);
276 	skb->end = skb->tail + size;
277 	skb->mac_header = (typeof(skb->mac_header))~0U;
278 	skb->transport_header = (typeof(skb->transport_header))~0U;
279 
280 	/* make sure we initialize shinfo sequentially */
281 	shinfo = skb_shinfo(skb);
282 	memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
283 	atomic_set(&shinfo->dataref, 1);
284 
285 	return skb;
286 }
287 
288 /**
289  * __build_skb - build a network buffer
290  * @data: data buffer provided by caller
291  * @frag_size: size of data, or 0 if head was kmalloced
292  *
293  * Allocate a new &sk_buff. Caller provides space holding head and
294  * skb_shared_info. @data must have been allocated by kmalloc() only if
295  * @frag_size is 0, otherwise data should come from the page allocator
296  *  or vmalloc()
297  * The return is the new skb buffer.
298  * On a failure the return is %NULL, and @data is not freed.
299  * Notes :
300  *  Before IO, driver allocates only data buffer where NIC put incoming frame
301  *  Driver should add room at head (NET_SKB_PAD) and
302  *  MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info))
303  *  After IO, driver calls build_skb(), to allocate sk_buff and populate it
304  *  before giving packet to stack.
305  *  RX rings only contains data buffers, not full skbs.
306  */
307 struct sk_buff *__build_skb(void *data, unsigned int frag_size)
308 {
309 	struct sk_buff *skb;
310 
311 	skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC);
312 	if (unlikely(!skb))
313 		return NULL;
314 
315 	memset(skb, 0, offsetof(struct sk_buff, tail));
316 
317 	return __build_skb_around(skb, data, frag_size);
318 }
319 
320 /* build_skb() is wrapper over __build_skb(), that specifically
321  * takes care of skb->head and skb->pfmemalloc
322  * This means that if @frag_size is not zero, then @data must be backed
323  * by a page fragment, not kmalloc() or vmalloc()
324  */
325 struct sk_buff *build_skb(void *data, unsigned int frag_size)
326 {
327 	struct sk_buff *skb = __build_skb(data, frag_size);
328 
329 	if (skb && frag_size) {
330 		skb->head_frag = 1;
331 		if (page_is_pfmemalloc(virt_to_head_page(data)))
332 			skb->pfmemalloc = 1;
333 	}
334 	return skb;
335 }
336 EXPORT_SYMBOL(build_skb);
337 
338 /**
339  * build_skb_around - build a network buffer around provided skb
340  * @skb: sk_buff provide by caller, must be memset cleared
341  * @data: data buffer provided by caller
342  * @frag_size: size of data, or 0 if head was kmalloced
343  */
344 struct sk_buff *build_skb_around(struct sk_buff *skb,
345 				 void *data, unsigned int frag_size)
346 {
347 	if (unlikely(!skb))
348 		return NULL;
349 
350 	skb = __build_skb_around(skb, data, frag_size);
351 
352 	if (skb && frag_size) {
353 		skb->head_frag = 1;
354 		if (page_is_pfmemalloc(virt_to_head_page(data)))
355 			skb->pfmemalloc = 1;
356 	}
357 	return skb;
358 }
359 EXPORT_SYMBOL(build_skb_around);
360 
361 #define NAPI_SKB_CACHE_SIZE	64
362 
363 struct napi_alloc_cache {
364 	struct page_frag_cache page;
365 	unsigned int skb_count;
366 	void *skb_cache[NAPI_SKB_CACHE_SIZE];
367 };
368 
369 static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache);
370 static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache);
371 
372 static void *__napi_alloc_frag(unsigned int fragsz, gfp_t gfp_mask)
373 {
374 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
375 
376 	return page_frag_alloc(&nc->page, fragsz, gfp_mask);
377 }
378 
379 void *napi_alloc_frag(unsigned int fragsz)
380 {
381 	fragsz = SKB_DATA_ALIGN(fragsz);
382 
383 	return __napi_alloc_frag(fragsz, GFP_ATOMIC);
384 }
385 EXPORT_SYMBOL(napi_alloc_frag);
386 
387 /**
388  * netdev_alloc_frag - allocate a page fragment
389  * @fragsz: fragment size
390  *
391  * Allocates a frag from a page for receive buffer.
392  * Uses GFP_ATOMIC allocations.
393  */
394 void *netdev_alloc_frag(unsigned int fragsz)
395 {
396 	struct page_frag_cache *nc;
397 	void *data;
398 
399 	fragsz = SKB_DATA_ALIGN(fragsz);
400 	if (in_irq() || irqs_disabled()) {
401 		nc = this_cpu_ptr(&netdev_alloc_cache);
402 		data = page_frag_alloc(nc, fragsz, GFP_ATOMIC);
403 	} else {
404 		local_bh_disable();
405 		data = __napi_alloc_frag(fragsz, GFP_ATOMIC);
406 		local_bh_enable();
407 	}
408 	return data;
409 }
410 EXPORT_SYMBOL(netdev_alloc_frag);
411 
412 /**
413  *	__netdev_alloc_skb - allocate an skbuff for rx on a specific device
414  *	@dev: network device to receive on
415  *	@len: length to allocate
416  *	@gfp_mask: get_free_pages mask, passed to alloc_skb
417  *
418  *	Allocate a new &sk_buff and assign it a usage count of one. The
419  *	buffer has NET_SKB_PAD headroom built in. Users should allocate
420  *	the headroom they think they need without accounting for the
421  *	built in space. The built in space is used for optimisations.
422  *
423  *	%NULL is returned if there is no free memory.
424  */
425 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len,
426 				   gfp_t gfp_mask)
427 {
428 	struct page_frag_cache *nc;
429 	struct sk_buff *skb;
430 	bool pfmemalloc;
431 	void *data;
432 
433 	len += NET_SKB_PAD;
434 
435 	if ((len > SKB_WITH_OVERHEAD(PAGE_SIZE)) ||
436 	    (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
437 		skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
438 		if (!skb)
439 			goto skb_fail;
440 		goto skb_success;
441 	}
442 
443 	len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
444 	len = SKB_DATA_ALIGN(len);
445 
446 	if (sk_memalloc_socks())
447 		gfp_mask |= __GFP_MEMALLOC;
448 
449 	if (in_irq() || irqs_disabled()) {
450 		nc = this_cpu_ptr(&netdev_alloc_cache);
451 		data = page_frag_alloc(nc, len, gfp_mask);
452 		pfmemalloc = nc->pfmemalloc;
453 	} else {
454 		local_bh_disable();
455 		nc = this_cpu_ptr(&napi_alloc_cache.page);
456 		data = page_frag_alloc(nc, len, gfp_mask);
457 		pfmemalloc = nc->pfmemalloc;
458 		local_bh_enable();
459 	}
460 
461 	if (unlikely(!data))
462 		return NULL;
463 
464 	skb = __build_skb(data, len);
465 	if (unlikely(!skb)) {
466 		skb_free_frag(data);
467 		return NULL;
468 	}
469 
470 	if (pfmemalloc)
471 		skb->pfmemalloc = 1;
472 	skb->head_frag = 1;
473 
474 skb_success:
475 	skb_reserve(skb, NET_SKB_PAD);
476 	skb->dev = dev;
477 
478 skb_fail:
479 	return skb;
480 }
481 EXPORT_SYMBOL(__netdev_alloc_skb);
482 
483 /**
484  *	__napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance
485  *	@napi: napi instance this buffer was allocated for
486  *	@len: length to allocate
487  *	@gfp_mask: get_free_pages mask, passed to alloc_skb and alloc_pages
488  *
489  *	Allocate a new sk_buff for use in NAPI receive.  This buffer will
490  *	attempt to allocate the head from a special reserved region used
491  *	only for NAPI Rx allocation.  By doing this we can save several
492  *	CPU cycles by avoiding having to disable and re-enable IRQs.
493  *
494  *	%NULL is returned if there is no free memory.
495  */
496 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, unsigned int len,
497 				 gfp_t gfp_mask)
498 {
499 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
500 	struct sk_buff *skb;
501 	void *data;
502 
503 	len += NET_SKB_PAD + NET_IP_ALIGN;
504 
505 	if ((len > SKB_WITH_OVERHEAD(PAGE_SIZE)) ||
506 	    (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
507 		skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
508 		if (!skb)
509 			goto skb_fail;
510 		goto skb_success;
511 	}
512 
513 	len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
514 	len = SKB_DATA_ALIGN(len);
515 
516 	if (sk_memalloc_socks())
517 		gfp_mask |= __GFP_MEMALLOC;
518 
519 	data = page_frag_alloc(&nc->page, len, gfp_mask);
520 	if (unlikely(!data))
521 		return NULL;
522 
523 	skb = __build_skb(data, len);
524 	if (unlikely(!skb)) {
525 		skb_free_frag(data);
526 		return NULL;
527 	}
528 
529 	if (nc->page.pfmemalloc)
530 		skb->pfmemalloc = 1;
531 	skb->head_frag = 1;
532 
533 skb_success:
534 	skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN);
535 	skb->dev = napi->dev;
536 
537 skb_fail:
538 	return skb;
539 }
540 EXPORT_SYMBOL(__napi_alloc_skb);
541 
542 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
543 		     int size, unsigned int truesize)
544 {
545 	skb_fill_page_desc(skb, i, page, off, size);
546 	skb->len += size;
547 	skb->data_len += size;
548 	skb->truesize += truesize;
549 }
550 EXPORT_SYMBOL(skb_add_rx_frag);
551 
552 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
553 			  unsigned int truesize)
554 {
555 	skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
556 
557 	skb_frag_size_add(frag, size);
558 	skb->len += size;
559 	skb->data_len += size;
560 	skb->truesize += truesize;
561 }
562 EXPORT_SYMBOL(skb_coalesce_rx_frag);
563 
564 static void skb_drop_list(struct sk_buff **listp)
565 {
566 	kfree_skb_list(*listp);
567 	*listp = NULL;
568 }
569 
570 static inline void skb_drop_fraglist(struct sk_buff *skb)
571 {
572 	skb_drop_list(&skb_shinfo(skb)->frag_list);
573 }
574 
575 static void skb_clone_fraglist(struct sk_buff *skb)
576 {
577 	struct sk_buff *list;
578 
579 	skb_walk_frags(skb, list)
580 		skb_get(list);
581 }
582 
583 static void skb_free_head(struct sk_buff *skb)
584 {
585 	unsigned char *head = skb->head;
586 
587 	if (skb->head_frag)
588 		skb_free_frag(head);
589 	else
590 		kfree(head);
591 }
592 
593 static void skb_release_data(struct sk_buff *skb)
594 {
595 	struct skb_shared_info *shinfo = skb_shinfo(skb);
596 	int i;
597 
598 	if (skb->cloned &&
599 	    atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
600 			      &shinfo->dataref))
601 		return;
602 
603 	for (i = 0; i < shinfo->nr_frags; i++)
604 		__skb_frag_unref(&shinfo->frags[i]);
605 
606 	if (shinfo->frag_list)
607 		kfree_skb_list(shinfo->frag_list);
608 
609 	skb_zcopy_clear(skb, true);
610 	skb_free_head(skb);
611 }
612 
613 /*
614  *	Free an skbuff by memory without cleaning the state.
615  */
616 static void kfree_skbmem(struct sk_buff *skb)
617 {
618 	struct sk_buff_fclones *fclones;
619 
620 	switch (skb->fclone) {
621 	case SKB_FCLONE_UNAVAILABLE:
622 		kmem_cache_free(skbuff_head_cache, skb);
623 		return;
624 
625 	case SKB_FCLONE_ORIG:
626 		fclones = container_of(skb, struct sk_buff_fclones, skb1);
627 
628 		/* We usually free the clone (TX completion) before original skb
629 		 * This test would have no chance to be true for the clone,
630 		 * while here, branch prediction will be good.
631 		 */
632 		if (refcount_read(&fclones->fclone_ref) == 1)
633 			goto fastpath;
634 		break;
635 
636 	default: /* SKB_FCLONE_CLONE */
637 		fclones = container_of(skb, struct sk_buff_fclones, skb2);
638 		break;
639 	}
640 	if (!refcount_dec_and_test(&fclones->fclone_ref))
641 		return;
642 fastpath:
643 	kmem_cache_free(skbuff_fclone_cache, fclones);
644 }
645 
646 void skb_release_head_state(struct sk_buff *skb)
647 {
648 	skb_dst_drop(skb);
649 	if (skb->destructor) {
650 		WARN_ON(in_irq());
651 		skb->destructor(skb);
652 	}
653 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
654 	nf_conntrack_put(skb_nfct(skb));
655 #endif
656 	skb_ext_put(skb);
657 }
658 
659 /* Free everything but the sk_buff shell. */
660 static void skb_release_all(struct sk_buff *skb)
661 {
662 	skb_release_head_state(skb);
663 	if (likely(skb->head))
664 		skb_release_data(skb);
665 }
666 
667 /**
668  *	__kfree_skb - private function
669  *	@skb: buffer
670  *
671  *	Free an sk_buff. Release anything attached to the buffer.
672  *	Clean the state. This is an internal helper function. Users should
673  *	always call kfree_skb
674  */
675 
676 void __kfree_skb(struct sk_buff *skb)
677 {
678 	skb_release_all(skb);
679 	kfree_skbmem(skb);
680 }
681 EXPORT_SYMBOL(__kfree_skb);
682 
683 /**
684  *	kfree_skb - free an sk_buff
685  *	@skb: buffer to free
686  *
687  *	Drop a reference to the buffer and free it if the usage count has
688  *	hit zero.
689  */
690 void kfree_skb(struct sk_buff *skb)
691 {
692 	if (!skb_unref(skb))
693 		return;
694 
695 	trace_kfree_skb(skb, __builtin_return_address(0));
696 	__kfree_skb(skb);
697 }
698 EXPORT_SYMBOL(kfree_skb);
699 
700 void kfree_skb_list(struct sk_buff *segs)
701 {
702 	while (segs) {
703 		struct sk_buff *next = segs->next;
704 
705 		kfree_skb(segs);
706 		segs = next;
707 	}
708 }
709 EXPORT_SYMBOL(kfree_skb_list);
710 
711 /* Dump skb information and contents.
712  *
713  * Must only be called from net_ratelimit()-ed paths.
714  *
715  * Dumps up to can_dump_full whole packets if full_pkt, headers otherwise.
716  */
717 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt)
718 {
719 	static atomic_t can_dump_full = ATOMIC_INIT(5);
720 	struct skb_shared_info *sh = skb_shinfo(skb);
721 	struct net_device *dev = skb->dev;
722 	struct sock *sk = skb->sk;
723 	struct sk_buff *list_skb;
724 	bool has_mac, has_trans;
725 	int headroom, tailroom;
726 	int i, len, seg_len;
727 
728 	if (full_pkt)
729 		full_pkt = atomic_dec_if_positive(&can_dump_full) >= 0;
730 
731 	if (full_pkt)
732 		len = skb->len;
733 	else
734 		len = min_t(int, skb->len, MAX_HEADER + 128);
735 
736 	headroom = skb_headroom(skb);
737 	tailroom = skb_tailroom(skb);
738 
739 	has_mac = skb_mac_header_was_set(skb);
740 	has_trans = skb_transport_header_was_set(skb);
741 
742 	printk("%sskb len=%u headroom=%u headlen=%u tailroom=%u\n"
743 	       "mac=(%d,%d) net=(%d,%d) trans=%d\n"
744 	       "shinfo(txflags=%u nr_frags=%u gso(size=%hu type=%u segs=%hu))\n"
745 	       "csum(0x%x ip_summed=%u complete_sw=%u valid=%u level=%u)\n"
746 	       "hash(0x%x sw=%u l4=%u) proto=0x%04x pkttype=%u iif=%d\n",
747 	       level, skb->len, headroom, skb_headlen(skb), tailroom,
748 	       has_mac ? skb->mac_header : -1,
749 	       has_mac ? skb_mac_header_len(skb) : -1,
750 	       skb->network_header,
751 	       has_trans ? skb_network_header_len(skb) : -1,
752 	       has_trans ? skb->transport_header : -1,
753 	       sh->tx_flags, sh->nr_frags,
754 	       sh->gso_size, sh->gso_type, sh->gso_segs,
755 	       skb->csum, skb->ip_summed, skb->csum_complete_sw,
756 	       skb->csum_valid, skb->csum_level,
757 	       skb->hash, skb->sw_hash, skb->l4_hash,
758 	       ntohs(skb->protocol), skb->pkt_type, skb->skb_iif);
759 
760 	if (dev)
761 		printk("%sdev name=%s feat=0x%pNF\n",
762 		       level, dev->name, &dev->features);
763 	if (sk)
764 		printk("%ssk family=%hu type=%u proto=%u\n",
765 		       level, sk->sk_family, sk->sk_type, sk->sk_protocol);
766 
767 	if (full_pkt && headroom)
768 		print_hex_dump(level, "skb headroom: ", DUMP_PREFIX_OFFSET,
769 			       16, 1, skb->head, headroom, false);
770 
771 	seg_len = min_t(int, skb_headlen(skb), len);
772 	if (seg_len)
773 		print_hex_dump(level, "skb linear:   ", DUMP_PREFIX_OFFSET,
774 			       16, 1, skb->data, seg_len, false);
775 	len -= seg_len;
776 
777 	if (full_pkt && tailroom)
778 		print_hex_dump(level, "skb tailroom: ", DUMP_PREFIX_OFFSET,
779 			       16, 1, skb_tail_pointer(skb), tailroom, false);
780 
781 	for (i = 0; len && i < skb_shinfo(skb)->nr_frags; i++) {
782 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
783 		u32 p_off, p_len, copied;
784 		struct page *p;
785 		u8 *vaddr;
786 
787 		skb_frag_foreach_page(frag, skb_frag_off(frag),
788 				      skb_frag_size(frag), p, p_off, p_len,
789 				      copied) {
790 			seg_len = min_t(int, p_len, len);
791 			vaddr = kmap_atomic(p);
792 			print_hex_dump(level, "skb frag:     ",
793 				       DUMP_PREFIX_OFFSET,
794 				       16, 1, vaddr + p_off, seg_len, false);
795 			kunmap_atomic(vaddr);
796 			len -= seg_len;
797 			if (!len)
798 				break;
799 		}
800 	}
801 
802 	if (full_pkt && skb_has_frag_list(skb)) {
803 		printk("skb fraglist:\n");
804 		skb_walk_frags(skb, list_skb)
805 			skb_dump(level, list_skb, true);
806 	}
807 }
808 EXPORT_SYMBOL(skb_dump);
809 
810 /**
811  *	skb_tx_error - report an sk_buff xmit error
812  *	@skb: buffer that triggered an error
813  *
814  *	Report xmit error if a device callback is tracking this skb.
815  *	skb must be freed afterwards.
816  */
817 void skb_tx_error(struct sk_buff *skb)
818 {
819 	skb_zcopy_clear(skb, true);
820 }
821 EXPORT_SYMBOL(skb_tx_error);
822 
823 #ifdef CONFIG_TRACEPOINTS
824 /**
825  *	consume_skb - free an skbuff
826  *	@skb: buffer to free
827  *
828  *	Drop a ref to the buffer and free it if the usage count has hit zero
829  *	Functions identically to kfree_skb, but kfree_skb assumes that the frame
830  *	is being dropped after a failure and notes that
831  */
832 void consume_skb(struct sk_buff *skb)
833 {
834 	if (!skb_unref(skb))
835 		return;
836 
837 	trace_consume_skb(skb);
838 	__kfree_skb(skb);
839 }
840 EXPORT_SYMBOL(consume_skb);
841 #endif
842 
843 /**
844  *	consume_stateless_skb - free an skbuff, assuming it is stateless
845  *	@skb: buffer to free
846  *
847  *	Alike consume_skb(), but this variant assumes that this is the last
848  *	skb reference and all the head states have been already dropped
849  */
850 void __consume_stateless_skb(struct sk_buff *skb)
851 {
852 	trace_consume_skb(skb);
853 	skb_release_data(skb);
854 	kfree_skbmem(skb);
855 }
856 
857 void __kfree_skb_flush(void)
858 {
859 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
860 
861 	/* flush skb_cache if containing objects */
862 	if (nc->skb_count) {
863 		kmem_cache_free_bulk(skbuff_head_cache, nc->skb_count,
864 				     nc->skb_cache);
865 		nc->skb_count = 0;
866 	}
867 }
868 
869 static inline void _kfree_skb_defer(struct sk_buff *skb)
870 {
871 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
872 
873 	/* drop skb->head and call any destructors for packet */
874 	skb_release_all(skb);
875 
876 	/* record skb to CPU local list */
877 	nc->skb_cache[nc->skb_count++] = skb;
878 
879 #ifdef CONFIG_SLUB
880 	/* SLUB writes into objects when freeing */
881 	prefetchw(skb);
882 #endif
883 
884 	/* flush skb_cache if it is filled */
885 	if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) {
886 		kmem_cache_free_bulk(skbuff_head_cache, NAPI_SKB_CACHE_SIZE,
887 				     nc->skb_cache);
888 		nc->skb_count = 0;
889 	}
890 }
891 void __kfree_skb_defer(struct sk_buff *skb)
892 {
893 	_kfree_skb_defer(skb);
894 }
895 
896 void napi_consume_skb(struct sk_buff *skb, int budget)
897 {
898 	/* Zero budget indicate non-NAPI context called us, like netpoll */
899 	if (unlikely(!budget)) {
900 		dev_consume_skb_any(skb);
901 		return;
902 	}
903 
904 	if (!skb_unref(skb))
905 		return;
906 
907 	/* if reaching here SKB is ready to free */
908 	trace_consume_skb(skb);
909 
910 	/* if SKB is a clone, don't handle this case */
911 	if (skb->fclone != SKB_FCLONE_UNAVAILABLE) {
912 		__kfree_skb(skb);
913 		return;
914 	}
915 
916 	_kfree_skb_defer(skb);
917 }
918 EXPORT_SYMBOL(napi_consume_skb);
919 
920 /* Make sure a field is enclosed inside headers_start/headers_end section */
921 #define CHECK_SKB_FIELD(field) \
922 	BUILD_BUG_ON(offsetof(struct sk_buff, field) <		\
923 		     offsetof(struct sk_buff, headers_start));	\
924 	BUILD_BUG_ON(offsetof(struct sk_buff, field) >		\
925 		     offsetof(struct sk_buff, headers_end));	\
926 
927 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
928 {
929 	new->tstamp		= old->tstamp;
930 	/* We do not copy old->sk */
931 	new->dev		= old->dev;
932 	memcpy(new->cb, old->cb, sizeof(old->cb));
933 	skb_dst_copy(new, old);
934 	__skb_ext_copy(new, old);
935 	__nf_copy(new, old, false);
936 
937 	/* Note : this field could be in headers_start/headers_end section
938 	 * It is not yet because we do not want to have a 16 bit hole
939 	 */
940 	new->queue_mapping = old->queue_mapping;
941 
942 	memcpy(&new->headers_start, &old->headers_start,
943 	       offsetof(struct sk_buff, headers_end) -
944 	       offsetof(struct sk_buff, headers_start));
945 	CHECK_SKB_FIELD(protocol);
946 	CHECK_SKB_FIELD(csum);
947 	CHECK_SKB_FIELD(hash);
948 	CHECK_SKB_FIELD(priority);
949 	CHECK_SKB_FIELD(skb_iif);
950 	CHECK_SKB_FIELD(vlan_proto);
951 	CHECK_SKB_FIELD(vlan_tci);
952 	CHECK_SKB_FIELD(transport_header);
953 	CHECK_SKB_FIELD(network_header);
954 	CHECK_SKB_FIELD(mac_header);
955 	CHECK_SKB_FIELD(inner_protocol);
956 	CHECK_SKB_FIELD(inner_transport_header);
957 	CHECK_SKB_FIELD(inner_network_header);
958 	CHECK_SKB_FIELD(inner_mac_header);
959 	CHECK_SKB_FIELD(mark);
960 #ifdef CONFIG_NETWORK_SECMARK
961 	CHECK_SKB_FIELD(secmark);
962 #endif
963 #ifdef CONFIG_NET_RX_BUSY_POLL
964 	CHECK_SKB_FIELD(napi_id);
965 #endif
966 #ifdef CONFIG_XPS
967 	CHECK_SKB_FIELD(sender_cpu);
968 #endif
969 #ifdef CONFIG_NET_SCHED
970 	CHECK_SKB_FIELD(tc_index);
971 #endif
972 
973 }
974 
975 /*
976  * You should not add any new code to this function.  Add it to
977  * __copy_skb_header above instead.
978  */
979 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
980 {
981 #define C(x) n->x = skb->x
982 
983 	n->next = n->prev = NULL;
984 	n->sk = NULL;
985 	__copy_skb_header(n, skb);
986 
987 	C(len);
988 	C(data_len);
989 	C(mac_len);
990 	n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
991 	n->cloned = 1;
992 	n->nohdr = 0;
993 	n->peeked = 0;
994 	C(pfmemalloc);
995 	n->destructor = NULL;
996 	C(tail);
997 	C(end);
998 	C(head);
999 	C(head_frag);
1000 	C(data);
1001 	C(truesize);
1002 	refcount_set(&n->users, 1);
1003 
1004 	atomic_inc(&(skb_shinfo(skb)->dataref));
1005 	skb->cloned = 1;
1006 
1007 	return n;
1008 #undef C
1009 }
1010 
1011 /**
1012  * alloc_skb_for_msg() - allocate sk_buff to wrap frag list forming a msg
1013  * @first: first sk_buff of the msg
1014  */
1015 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first)
1016 {
1017 	struct sk_buff *n;
1018 
1019 	n = alloc_skb(0, GFP_ATOMIC);
1020 	if (!n)
1021 		return NULL;
1022 
1023 	n->len = first->len;
1024 	n->data_len = first->len;
1025 	n->truesize = first->truesize;
1026 
1027 	skb_shinfo(n)->frag_list = first;
1028 
1029 	__copy_skb_header(n, first);
1030 	n->destructor = NULL;
1031 
1032 	return n;
1033 }
1034 EXPORT_SYMBOL_GPL(alloc_skb_for_msg);
1035 
1036 /**
1037  *	skb_morph	-	morph one skb into another
1038  *	@dst: the skb to receive the contents
1039  *	@src: the skb to supply the contents
1040  *
1041  *	This is identical to skb_clone except that the target skb is
1042  *	supplied by the user.
1043  *
1044  *	The target skb is returned upon exit.
1045  */
1046 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
1047 {
1048 	skb_release_all(dst);
1049 	return __skb_clone(dst, src);
1050 }
1051 EXPORT_SYMBOL_GPL(skb_morph);
1052 
1053 int mm_account_pinned_pages(struct mmpin *mmp, size_t size)
1054 {
1055 	unsigned long max_pg, num_pg, new_pg, old_pg;
1056 	struct user_struct *user;
1057 
1058 	if (capable(CAP_IPC_LOCK) || !size)
1059 		return 0;
1060 
1061 	num_pg = (size >> PAGE_SHIFT) + 2;	/* worst case */
1062 	max_pg = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
1063 	user = mmp->user ? : current_user();
1064 
1065 	do {
1066 		old_pg = atomic_long_read(&user->locked_vm);
1067 		new_pg = old_pg + num_pg;
1068 		if (new_pg > max_pg)
1069 			return -ENOBUFS;
1070 	} while (atomic_long_cmpxchg(&user->locked_vm, old_pg, new_pg) !=
1071 		 old_pg);
1072 
1073 	if (!mmp->user) {
1074 		mmp->user = get_uid(user);
1075 		mmp->num_pg = num_pg;
1076 	} else {
1077 		mmp->num_pg += num_pg;
1078 	}
1079 
1080 	return 0;
1081 }
1082 EXPORT_SYMBOL_GPL(mm_account_pinned_pages);
1083 
1084 void mm_unaccount_pinned_pages(struct mmpin *mmp)
1085 {
1086 	if (mmp->user) {
1087 		atomic_long_sub(mmp->num_pg, &mmp->user->locked_vm);
1088 		free_uid(mmp->user);
1089 	}
1090 }
1091 EXPORT_SYMBOL_GPL(mm_unaccount_pinned_pages);
1092 
1093 struct ubuf_info *sock_zerocopy_alloc(struct sock *sk, size_t size)
1094 {
1095 	struct ubuf_info *uarg;
1096 	struct sk_buff *skb;
1097 
1098 	WARN_ON_ONCE(!in_task());
1099 
1100 	skb = sock_omalloc(sk, 0, GFP_KERNEL);
1101 	if (!skb)
1102 		return NULL;
1103 
1104 	BUILD_BUG_ON(sizeof(*uarg) > sizeof(skb->cb));
1105 	uarg = (void *)skb->cb;
1106 	uarg->mmp.user = NULL;
1107 
1108 	if (mm_account_pinned_pages(&uarg->mmp, size)) {
1109 		kfree_skb(skb);
1110 		return NULL;
1111 	}
1112 
1113 	uarg->callback = sock_zerocopy_callback;
1114 	uarg->id = ((u32)atomic_inc_return(&sk->sk_zckey)) - 1;
1115 	uarg->len = 1;
1116 	uarg->bytelen = size;
1117 	uarg->zerocopy = 1;
1118 	refcount_set(&uarg->refcnt, 1);
1119 	sock_hold(sk);
1120 
1121 	return uarg;
1122 }
1123 EXPORT_SYMBOL_GPL(sock_zerocopy_alloc);
1124 
1125 static inline struct sk_buff *skb_from_uarg(struct ubuf_info *uarg)
1126 {
1127 	return container_of((void *)uarg, struct sk_buff, cb);
1128 }
1129 
1130 struct ubuf_info *sock_zerocopy_realloc(struct sock *sk, size_t size,
1131 					struct ubuf_info *uarg)
1132 {
1133 	if (uarg) {
1134 		const u32 byte_limit = 1 << 19;		/* limit to a few TSO */
1135 		u32 bytelen, next;
1136 
1137 		/* realloc only when socket is locked (TCP, UDP cork),
1138 		 * so uarg->len and sk_zckey access is serialized
1139 		 */
1140 		if (!sock_owned_by_user(sk)) {
1141 			WARN_ON_ONCE(1);
1142 			return NULL;
1143 		}
1144 
1145 		bytelen = uarg->bytelen + size;
1146 		if (uarg->len == USHRT_MAX - 1 || bytelen > byte_limit) {
1147 			/* TCP can create new skb to attach new uarg */
1148 			if (sk->sk_type == SOCK_STREAM)
1149 				goto new_alloc;
1150 			return NULL;
1151 		}
1152 
1153 		next = (u32)atomic_read(&sk->sk_zckey);
1154 		if ((u32)(uarg->id + uarg->len) == next) {
1155 			if (mm_account_pinned_pages(&uarg->mmp, size))
1156 				return NULL;
1157 			uarg->len++;
1158 			uarg->bytelen = bytelen;
1159 			atomic_set(&sk->sk_zckey, ++next);
1160 
1161 			/* no extra ref when appending to datagram (MSG_MORE) */
1162 			if (sk->sk_type == SOCK_STREAM)
1163 				sock_zerocopy_get(uarg);
1164 
1165 			return uarg;
1166 		}
1167 	}
1168 
1169 new_alloc:
1170 	return sock_zerocopy_alloc(sk, size);
1171 }
1172 EXPORT_SYMBOL_GPL(sock_zerocopy_realloc);
1173 
1174 static bool skb_zerocopy_notify_extend(struct sk_buff *skb, u32 lo, u16 len)
1175 {
1176 	struct sock_exterr_skb *serr = SKB_EXT_ERR(skb);
1177 	u32 old_lo, old_hi;
1178 	u64 sum_len;
1179 
1180 	old_lo = serr->ee.ee_info;
1181 	old_hi = serr->ee.ee_data;
1182 	sum_len = old_hi - old_lo + 1ULL + len;
1183 
1184 	if (sum_len >= (1ULL << 32))
1185 		return false;
1186 
1187 	if (lo != old_hi + 1)
1188 		return false;
1189 
1190 	serr->ee.ee_data += len;
1191 	return true;
1192 }
1193 
1194 void sock_zerocopy_callback(struct ubuf_info *uarg, bool success)
1195 {
1196 	struct sk_buff *tail, *skb = skb_from_uarg(uarg);
1197 	struct sock_exterr_skb *serr;
1198 	struct sock *sk = skb->sk;
1199 	struct sk_buff_head *q;
1200 	unsigned long flags;
1201 	u32 lo, hi;
1202 	u16 len;
1203 
1204 	mm_unaccount_pinned_pages(&uarg->mmp);
1205 
1206 	/* if !len, there was only 1 call, and it was aborted
1207 	 * so do not queue a completion notification
1208 	 */
1209 	if (!uarg->len || sock_flag(sk, SOCK_DEAD))
1210 		goto release;
1211 
1212 	len = uarg->len;
1213 	lo = uarg->id;
1214 	hi = uarg->id + len - 1;
1215 
1216 	serr = SKB_EXT_ERR(skb);
1217 	memset(serr, 0, sizeof(*serr));
1218 	serr->ee.ee_errno = 0;
1219 	serr->ee.ee_origin = SO_EE_ORIGIN_ZEROCOPY;
1220 	serr->ee.ee_data = hi;
1221 	serr->ee.ee_info = lo;
1222 	if (!success)
1223 		serr->ee.ee_code |= SO_EE_CODE_ZEROCOPY_COPIED;
1224 
1225 	q = &sk->sk_error_queue;
1226 	spin_lock_irqsave(&q->lock, flags);
1227 	tail = skb_peek_tail(q);
1228 	if (!tail || SKB_EXT_ERR(tail)->ee.ee_origin != SO_EE_ORIGIN_ZEROCOPY ||
1229 	    !skb_zerocopy_notify_extend(tail, lo, len)) {
1230 		__skb_queue_tail(q, skb);
1231 		skb = NULL;
1232 	}
1233 	spin_unlock_irqrestore(&q->lock, flags);
1234 
1235 	sk->sk_error_report(sk);
1236 
1237 release:
1238 	consume_skb(skb);
1239 	sock_put(sk);
1240 }
1241 EXPORT_SYMBOL_GPL(sock_zerocopy_callback);
1242 
1243 void sock_zerocopy_put(struct ubuf_info *uarg)
1244 {
1245 	if (uarg && refcount_dec_and_test(&uarg->refcnt)) {
1246 		if (uarg->callback)
1247 			uarg->callback(uarg, uarg->zerocopy);
1248 		else
1249 			consume_skb(skb_from_uarg(uarg));
1250 	}
1251 }
1252 EXPORT_SYMBOL_GPL(sock_zerocopy_put);
1253 
1254 void sock_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref)
1255 {
1256 	if (uarg) {
1257 		struct sock *sk = skb_from_uarg(uarg)->sk;
1258 
1259 		atomic_dec(&sk->sk_zckey);
1260 		uarg->len--;
1261 
1262 		if (have_uref)
1263 			sock_zerocopy_put(uarg);
1264 	}
1265 }
1266 EXPORT_SYMBOL_GPL(sock_zerocopy_put_abort);
1267 
1268 int skb_zerocopy_iter_dgram(struct sk_buff *skb, struct msghdr *msg, int len)
1269 {
1270 	return __zerocopy_sg_from_iter(skb->sk, skb, &msg->msg_iter, len);
1271 }
1272 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_dgram);
1273 
1274 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
1275 			     struct msghdr *msg, int len,
1276 			     struct ubuf_info *uarg)
1277 {
1278 	struct ubuf_info *orig_uarg = skb_zcopy(skb);
1279 	struct iov_iter orig_iter = msg->msg_iter;
1280 	int err, orig_len = skb->len;
1281 
1282 	/* An skb can only point to one uarg. This edge case happens when
1283 	 * TCP appends to an skb, but zerocopy_realloc triggered a new alloc.
1284 	 */
1285 	if (orig_uarg && uarg != orig_uarg)
1286 		return -EEXIST;
1287 
1288 	err = __zerocopy_sg_from_iter(sk, skb, &msg->msg_iter, len);
1289 	if (err == -EFAULT || (err == -EMSGSIZE && skb->len == orig_len)) {
1290 		struct sock *save_sk = skb->sk;
1291 
1292 		/* Streams do not free skb on error. Reset to prev state. */
1293 		msg->msg_iter = orig_iter;
1294 		skb->sk = sk;
1295 		___pskb_trim(skb, orig_len);
1296 		skb->sk = save_sk;
1297 		return err;
1298 	}
1299 
1300 	skb_zcopy_set(skb, uarg, NULL);
1301 	return skb->len - orig_len;
1302 }
1303 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_stream);
1304 
1305 static int skb_zerocopy_clone(struct sk_buff *nskb, struct sk_buff *orig,
1306 			      gfp_t gfp_mask)
1307 {
1308 	if (skb_zcopy(orig)) {
1309 		if (skb_zcopy(nskb)) {
1310 			/* !gfp_mask callers are verified to !skb_zcopy(nskb) */
1311 			if (!gfp_mask) {
1312 				WARN_ON_ONCE(1);
1313 				return -ENOMEM;
1314 			}
1315 			if (skb_uarg(nskb) == skb_uarg(orig))
1316 				return 0;
1317 			if (skb_copy_ubufs(nskb, GFP_ATOMIC))
1318 				return -EIO;
1319 		}
1320 		skb_zcopy_set(nskb, skb_uarg(orig), NULL);
1321 	}
1322 	return 0;
1323 }
1324 
1325 /**
1326  *	skb_copy_ubufs	-	copy userspace skb frags buffers to kernel
1327  *	@skb: the skb to modify
1328  *	@gfp_mask: allocation priority
1329  *
1330  *	This must be called on SKBTX_DEV_ZEROCOPY skb.
1331  *	It will copy all frags into kernel and drop the reference
1332  *	to userspace pages.
1333  *
1334  *	If this function is called from an interrupt gfp_mask() must be
1335  *	%GFP_ATOMIC.
1336  *
1337  *	Returns 0 on success or a negative error code on failure
1338  *	to allocate kernel memory to copy to.
1339  */
1340 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask)
1341 {
1342 	int num_frags = skb_shinfo(skb)->nr_frags;
1343 	struct page *page, *head = NULL;
1344 	int i, new_frags;
1345 	u32 d_off;
1346 
1347 	if (skb_shared(skb) || skb_unclone(skb, gfp_mask))
1348 		return -EINVAL;
1349 
1350 	if (!num_frags)
1351 		goto release;
1352 
1353 	new_frags = (__skb_pagelen(skb) + PAGE_SIZE - 1) >> PAGE_SHIFT;
1354 	for (i = 0; i < new_frags; i++) {
1355 		page = alloc_page(gfp_mask);
1356 		if (!page) {
1357 			while (head) {
1358 				struct page *next = (struct page *)page_private(head);
1359 				put_page(head);
1360 				head = next;
1361 			}
1362 			return -ENOMEM;
1363 		}
1364 		set_page_private(page, (unsigned long)head);
1365 		head = page;
1366 	}
1367 
1368 	page = head;
1369 	d_off = 0;
1370 	for (i = 0; i < num_frags; i++) {
1371 		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
1372 		u32 p_off, p_len, copied;
1373 		struct page *p;
1374 		u8 *vaddr;
1375 
1376 		skb_frag_foreach_page(f, skb_frag_off(f), skb_frag_size(f),
1377 				      p, p_off, p_len, copied) {
1378 			u32 copy, done = 0;
1379 			vaddr = kmap_atomic(p);
1380 
1381 			while (done < p_len) {
1382 				if (d_off == PAGE_SIZE) {
1383 					d_off = 0;
1384 					page = (struct page *)page_private(page);
1385 				}
1386 				copy = min_t(u32, PAGE_SIZE - d_off, p_len - done);
1387 				memcpy(page_address(page) + d_off,
1388 				       vaddr + p_off + done, copy);
1389 				done += copy;
1390 				d_off += copy;
1391 			}
1392 			kunmap_atomic(vaddr);
1393 		}
1394 	}
1395 
1396 	/* skb frags release userspace buffers */
1397 	for (i = 0; i < num_frags; i++)
1398 		skb_frag_unref(skb, i);
1399 
1400 	/* skb frags point to kernel buffers */
1401 	for (i = 0; i < new_frags - 1; i++) {
1402 		__skb_fill_page_desc(skb, i, head, 0, PAGE_SIZE);
1403 		head = (struct page *)page_private(head);
1404 	}
1405 	__skb_fill_page_desc(skb, new_frags - 1, head, 0, d_off);
1406 	skb_shinfo(skb)->nr_frags = new_frags;
1407 
1408 release:
1409 	skb_zcopy_clear(skb, false);
1410 	return 0;
1411 }
1412 EXPORT_SYMBOL_GPL(skb_copy_ubufs);
1413 
1414 /**
1415  *	skb_clone	-	duplicate an sk_buff
1416  *	@skb: buffer to clone
1417  *	@gfp_mask: allocation priority
1418  *
1419  *	Duplicate an &sk_buff. The new one is not owned by a socket. Both
1420  *	copies share the same packet data but not structure. The new
1421  *	buffer has a reference count of 1. If the allocation fails the
1422  *	function returns %NULL otherwise the new buffer is returned.
1423  *
1424  *	If this function is called from an interrupt gfp_mask() must be
1425  *	%GFP_ATOMIC.
1426  */
1427 
1428 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
1429 {
1430 	struct sk_buff_fclones *fclones = container_of(skb,
1431 						       struct sk_buff_fclones,
1432 						       skb1);
1433 	struct sk_buff *n;
1434 
1435 	if (skb_orphan_frags(skb, gfp_mask))
1436 		return NULL;
1437 
1438 	if (skb->fclone == SKB_FCLONE_ORIG &&
1439 	    refcount_read(&fclones->fclone_ref) == 1) {
1440 		n = &fclones->skb2;
1441 		refcount_set(&fclones->fclone_ref, 2);
1442 	} else {
1443 		if (skb_pfmemalloc(skb))
1444 			gfp_mask |= __GFP_MEMALLOC;
1445 
1446 		n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
1447 		if (!n)
1448 			return NULL;
1449 
1450 		n->fclone = SKB_FCLONE_UNAVAILABLE;
1451 	}
1452 
1453 	return __skb_clone(n, skb);
1454 }
1455 EXPORT_SYMBOL(skb_clone);
1456 
1457 void skb_headers_offset_update(struct sk_buff *skb, int off)
1458 {
1459 	/* Only adjust this if it actually is csum_start rather than csum */
1460 	if (skb->ip_summed == CHECKSUM_PARTIAL)
1461 		skb->csum_start += off;
1462 	/* {transport,network,mac}_header and tail are relative to skb->head */
1463 	skb->transport_header += off;
1464 	skb->network_header   += off;
1465 	if (skb_mac_header_was_set(skb))
1466 		skb->mac_header += off;
1467 	skb->inner_transport_header += off;
1468 	skb->inner_network_header += off;
1469 	skb->inner_mac_header += off;
1470 }
1471 EXPORT_SYMBOL(skb_headers_offset_update);
1472 
1473 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old)
1474 {
1475 	__copy_skb_header(new, old);
1476 
1477 	skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
1478 	skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
1479 	skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
1480 }
1481 EXPORT_SYMBOL(skb_copy_header);
1482 
1483 static inline int skb_alloc_rx_flag(const struct sk_buff *skb)
1484 {
1485 	if (skb_pfmemalloc(skb))
1486 		return SKB_ALLOC_RX;
1487 	return 0;
1488 }
1489 
1490 /**
1491  *	skb_copy	-	create private copy of an sk_buff
1492  *	@skb: buffer to copy
1493  *	@gfp_mask: allocation priority
1494  *
1495  *	Make a copy of both an &sk_buff and its data. This is used when the
1496  *	caller wishes to modify the data and needs a private copy of the
1497  *	data to alter. Returns %NULL on failure or the pointer to the buffer
1498  *	on success. The returned buffer has a reference count of 1.
1499  *
1500  *	As by-product this function converts non-linear &sk_buff to linear
1501  *	one, so that &sk_buff becomes completely private and caller is allowed
1502  *	to modify all the data of returned buffer. This means that this
1503  *	function is not recommended for use in circumstances when only
1504  *	header is going to be modified. Use pskb_copy() instead.
1505  */
1506 
1507 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
1508 {
1509 	int headerlen = skb_headroom(skb);
1510 	unsigned int size = skb_end_offset(skb) + skb->data_len;
1511 	struct sk_buff *n = __alloc_skb(size, gfp_mask,
1512 					skb_alloc_rx_flag(skb), NUMA_NO_NODE);
1513 
1514 	if (!n)
1515 		return NULL;
1516 
1517 	/* Set the data pointer */
1518 	skb_reserve(n, headerlen);
1519 	/* Set the tail pointer and length */
1520 	skb_put(n, skb->len);
1521 
1522 	BUG_ON(skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len));
1523 
1524 	skb_copy_header(n, skb);
1525 	return n;
1526 }
1527 EXPORT_SYMBOL(skb_copy);
1528 
1529 /**
1530  *	__pskb_copy_fclone	-  create copy of an sk_buff with private head.
1531  *	@skb: buffer to copy
1532  *	@headroom: headroom of new skb
1533  *	@gfp_mask: allocation priority
1534  *	@fclone: if true allocate the copy of the skb from the fclone
1535  *	cache instead of the head cache; it is recommended to set this
1536  *	to true for the cases where the copy will likely be cloned
1537  *
1538  *	Make a copy of both an &sk_buff and part of its data, located
1539  *	in header. Fragmented data remain shared. This is used when
1540  *	the caller wishes to modify only header of &sk_buff and needs
1541  *	private copy of the header to alter. Returns %NULL on failure
1542  *	or the pointer to the buffer on success.
1543  *	The returned buffer has a reference count of 1.
1544  */
1545 
1546 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1547 				   gfp_t gfp_mask, bool fclone)
1548 {
1549 	unsigned int size = skb_headlen(skb) + headroom;
1550 	int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0);
1551 	struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE);
1552 
1553 	if (!n)
1554 		goto out;
1555 
1556 	/* Set the data pointer */
1557 	skb_reserve(n, headroom);
1558 	/* Set the tail pointer and length */
1559 	skb_put(n, skb_headlen(skb));
1560 	/* Copy the bytes */
1561 	skb_copy_from_linear_data(skb, n->data, n->len);
1562 
1563 	n->truesize += skb->data_len;
1564 	n->data_len  = skb->data_len;
1565 	n->len	     = skb->len;
1566 
1567 	if (skb_shinfo(skb)->nr_frags) {
1568 		int i;
1569 
1570 		if (skb_orphan_frags(skb, gfp_mask) ||
1571 		    skb_zerocopy_clone(n, skb, gfp_mask)) {
1572 			kfree_skb(n);
1573 			n = NULL;
1574 			goto out;
1575 		}
1576 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1577 			skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
1578 			skb_frag_ref(skb, i);
1579 		}
1580 		skb_shinfo(n)->nr_frags = i;
1581 	}
1582 
1583 	if (skb_has_frag_list(skb)) {
1584 		skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
1585 		skb_clone_fraglist(n);
1586 	}
1587 
1588 	skb_copy_header(n, skb);
1589 out:
1590 	return n;
1591 }
1592 EXPORT_SYMBOL(__pskb_copy_fclone);
1593 
1594 /**
1595  *	pskb_expand_head - reallocate header of &sk_buff
1596  *	@skb: buffer to reallocate
1597  *	@nhead: room to add at head
1598  *	@ntail: room to add at tail
1599  *	@gfp_mask: allocation priority
1600  *
1601  *	Expands (or creates identical copy, if @nhead and @ntail are zero)
1602  *	header of @skb. &sk_buff itself is not changed. &sk_buff MUST have
1603  *	reference count of 1. Returns zero in the case of success or error,
1604  *	if expansion failed. In the last case, &sk_buff is not changed.
1605  *
1606  *	All the pointers pointing into skb header may change and must be
1607  *	reloaded after call to this function.
1608  */
1609 
1610 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
1611 		     gfp_t gfp_mask)
1612 {
1613 	int i, osize = skb_end_offset(skb);
1614 	int size = osize + nhead + ntail;
1615 	long off;
1616 	u8 *data;
1617 
1618 	BUG_ON(nhead < 0);
1619 
1620 	BUG_ON(skb_shared(skb));
1621 
1622 	size = SKB_DATA_ALIGN(size);
1623 
1624 	if (skb_pfmemalloc(skb))
1625 		gfp_mask |= __GFP_MEMALLOC;
1626 	data = kmalloc_reserve(size + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
1627 			       gfp_mask, NUMA_NO_NODE, NULL);
1628 	if (!data)
1629 		goto nodata;
1630 	size = SKB_WITH_OVERHEAD(ksize(data));
1631 
1632 	/* Copy only real data... and, alas, header. This should be
1633 	 * optimized for the cases when header is void.
1634 	 */
1635 	memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head);
1636 
1637 	memcpy((struct skb_shared_info *)(data + size),
1638 	       skb_shinfo(skb),
1639 	       offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags]));
1640 
1641 	/*
1642 	 * if shinfo is shared we must drop the old head gracefully, but if it
1643 	 * is not we can just drop the old head and let the existing refcount
1644 	 * be since all we did is relocate the values
1645 	 */
1646 	if (skb_cloned(skb)) {
1647 		if (skb_orphan_frags(skb, gfp_mask))
1648 			goto nofrags;
1649 		if (skb_zcopy(skb))
1650 			refcount_inc(&skb_uarg(skb)->refcnt);
1651 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1652 			skb_frag_ref(skb, i);
1653 
1654 		if (skb_has_frag_list(skb))
1655 			skb_clone_fraglist(skb);
1656 
1657 		skb_release_data(skb);
1658 	} else {
1659 		skb_free_head(skb);
1660 	}
1661 	off = (data + nhead) - skb->head;
1662 
1663 	skb->head     = data;
1664 	skb->head_frag = 0;
1665 	skb->data    += off;
1666 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1667 	skb->end      = size;
1668 	off           = nhead;
1669 #else
1670 	skb->end      = skb->head + size;
1671 #endif
1672 	skb->tail	      += off;
1673 	skb_headers_offset_update(skb, nhead);
1674 	skb->cloned   = 0;
1675 	skb->hdr_len  = 0;
1676 	skb->nohdr    = 0;
1677 	atomic_set(&skb_shinfo(skb)->dataref, 1);
1678 
1679 	skb_metadata_clear(skb);
1680 
1681 	/* It is not generally safe to change skb->truesize.
1682 	 * For the moment, we really care of rx path, or
1683 	 * when skb is orphaned (not attached to a socket).
1684 	 */
1685 	if (!skb->sk || skb->destructor == sock_edemux)
1686 		skb->truesize += size - osize;
1687 
1688 	return 0;
1689 
1690 nofrags:
1691 	kfree(data);
1692 nodata:
1693 	return -ENOMEM;
1694 }
1695 EXPORT_SYMBOL(pskb_expand_head);
1696 
1697 /* Make private copy of skb with writable head and some headroom */
1698 
1699 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
1700 {
1701 	struct sk_buff *skb2;
1702 	int delta = headroom - skb_headroom(skb);
1703 
1704 	if (delta <= 0)
1705 		skb2 = pskb_copy(skb, GFP_ATOMIC);
1706 	else {
1707 		skb2 = skb_clone(skb, GFP_ATOMIC);
1708 		if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
1709 					     GFP_ATOMIC)) {
1710 			kfree_skb(skb2);
1711 			skb2 = NULL;
1712 		}
1713 	}
1714 	return skb2;
1715 }
1716 EXPORT_SYMBOL(skb_realloc_headroom);
1717 
1718 /**
1719  *	skb_copy_expand	-	copy and expand sk_buff
1720  *	@skb: buffer to copy
1721  *	@newheadroom: new free bytes at head
1722  *	@newtailroom: new free bytes at tail
1723  *	@gfp_mask: allocation priority
1724  *
1725  *	Make a copy of both an &sk_buff and its data and while doing so
1726  *	allocate additional space.
1727  *
1728  *	This is used when the caller wishes to modify the data and needs a
1729  *	private copy of the data to alter as well as more space for new fields.
1730  *	Returns %NULL on failure or the pointer to the buffer
1731  *	on success. The returned buffer has a reference count of 1.
1732  *
1733  *	You must pass %GFP_ATOMIC as the allocation priority if this function
1734  *	is called from an interrupt.
1735  */
1736 struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
1737 				int newheadroom, int newtailroom,
1738 				gfp_t gfp_mask)
1739 {
1740 	/*
1741 	 *	Allocate the copy buffer
1742 	 */
1743 	struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom,
1744 					gfp_mask, skb_alloc_rx_flag(skb),
1745 					NUMA_NO_NODE);
1746 	int oldheadroom = skb_headroom(skb);
1747 	int head_copy_len, head_copy_off;
1748 
1749 	if (!n)
1750 		return NULL;
1751 
1752 	skb_reserve(n, newheadroom);
1753 
1754 	/* Set the tail pointer and length */
1755 	skb_put(n, skb->len);
1756 
1757 	head_copy_len = oldheadroom;
1758 	head_copy_off = 0;
1759 	if (newheadroom <= head_copy_len)
1760 		head_copy_len = newheadroom;
1761 	else
1762 		head_copy_off = newheadroom - head_copy_len;
1763 
1764 	/* Copy the linear header and data. */
1765 	BUG_ON(skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
1766 			     skb->len + head_copy_len));
1767 
1768 	skb_copy_header(n, skb);
1769 
1770 	skb_headers_offset_update(n, newheadroom - oldheadroom);
1771 
1772 	return n;
1773 }
1774 EXPORT_SYMBOL(skb_copy_expand);
1775 
1776 /**
1777  *	__skb_pad		-	zero pad the tail of an skb
1778  *	@skb: buffer to pad
1779  *	@pad: space to pad
1780  *	@free_on_error: free buffer on error
1781  *
1782  *	Ensure that a buffer is followed by a padding area that is zero
1783  *	filled. Used by network drivers which may DMA or transfer data
1784  *	beyond the buffer end onto the wire.
1785  *
1786  *	May return error in out of memory cases. The skb is freed on error
1787  *	if @free_on_error is true.
1788  */
1789 
1790 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error)
1791 {
1792 	int err;
1793 	int ntail;
1794 
1795 	/* If the skbuff is non linear tailroom is always zero.. */
1796 	if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
1797 		memset(skb->data+skb->len, 0, pad);
1798 		return 0;
1799 	}
1800 
1801 	ntail = skb->data_len + pad - (skb->end - skb->tail);
1802 	if (likely(skb_cloned(skb) || ntail > 0)) {
1803 		err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
1804 		if (unlikely(err))
1805 			goto free_skb;
1806 	}
1807 
1808 	/* FIXME: The use of this function with non-linear skb's really needs
1809 	 * to be audited.
1810 	 */
1811 	err = skb_linearize(skb);
1812 	if (unlikely(err))
1813 		goto free_skb;
1814 
1815 	memset(skb->data + skb->len, 0, pad);
1816 	return 0;
1817 
1818 free_skb:
1819 	if (free_on_error)
1820 		kfree_skb(skb);
1821 	return err;
1822 }
1823 EXPORT_SYMBOL(__skb_pad);
1824 
1825 /**
1826  *	pskb_put - add data to the tail of a potentially fragmented buffer
1827  *	@skb: start of the buffer to use
1828  *	@tail: tail fragment of the buffer to use
1829  *	@len: amount of data to add
1830  *
1831  *	This function extends the used data area of the potentially
1832  *	fragmented buffer. @tail must be the last fragment of @skb -- or
1833  *	@skb itself. If this would exceed the total buffer size the kernel
1834  *	will panic. A pointer to the first byte of the extra data is
1835  *	returned.
1836  */
1837 
1838 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len)
1839 {
1840 	if (tail != skb) {
1841 		skb->data_len += len;
1842 		skb->len += len;
1843 	}
1844 	return skb_put(tail, len);
1845 }
1846 EXPORT_SYMBOL_GPL(pskb_put);
1847 
1848 /**
1849  *	skb_put - add data to a buffer
1850  *	@skb: buffer to use
1851  *	@len: amount of data to add
1852  *
1853  *	This function extends the used data area of the buffer. If this would
1854  *	exceed the total buffer size the kernel will panic. A pointer to the
1855  *	first byte of the extra data is returned.
1856  */
1857 void *skb_put(struct sk_buff *skb, unsigned int len)
1858 {
1859 	void *tmp = skb_tail_pointer(skb);
1860 	SKB_LINEAR_ASSERT(skb);
1861 	skb->tail += len;
1862 	skb->len  += len;
1863 	if (unlikely(skb->tail > skb->end))
1864 		skb_over_panic(skb, len, __builtin_return_address(0));
1865 	return tmp;
1866 }
1867 EXPORT_SYMBOL(skb_put);
1868 
1869 /**
1870  *	skb_push - add data to the start of a buffer
1871  *	@skb: buffer to use
1872  *	@len: amount of data to add
1873  *
1874  *	This function extends the used data area of the buffer at the buffer
1875  *	start. If this would exceed the total buffer headroom the kernel will
1876  *	panic. A pointer to the first byte of the extra data is returned.
1877  */
1878 void *skb_push(struct sk_buff *skb, unsigned int len)
1879 {
1880 	skb->data -= len;
1881 	skb->len  += len;
1882 	if (unlikely(skb->data < skb->head))
1883 		skb_under_panic(skb, len, __builtin_return_address(0));
1884 	return skb->data;
1885 }
1886 EXPORT_SYMBOL(skb_push);
1887 
1888 /**
1889  *	skb_pull - remove data from the start of a buffer
1890  *	@skb: buffer to use
1891  *	@len: amount of data to remove
1892  *
1893  *	This function removes data from the start of a buffer, returning
1894  *	the memory to the headroom. A pointer to the next data in the buffer
1895  *	is returned. Once the data has been pulled future pushes will overwrite
1896  *	the old data.
1897  */
1898 void *skb_pull(struct sk_buff *skb, unsigned int len)
1899 {
1900 	return skb_pull_inline(skb, len);
1901 }
1902 EXPORT_SYMBOL(skb_pull);
1903 
1904 /**
1905  *	skb_trim - remove end from a buffer
1906  *	@skb: buffer to alter
1907  *	@len: new length
1908  *
1909  *	Cut the length of a buffer down by removing data from the tail. If
1910  *	the buffer is already under the length specified it is not modified.
1911  *	The skb must be linear.
1912  */
1913 void skb_trim(struct sk_buff *skb, unsigned int len)
1914 {
1915 	if (skb->len > len)
1916 		__skb_trim(skb, len);
1917 }
1918 EXPORT_SYMBOL(skb_trim);
1919 
1920 /* Trims skb to length len. It can change skb pointers.
1921  */
1922 
1923 int ___pskb_trim(struct sk_buff *skb, unsigned int len)
1924 {
1925 	struct sk_buff **fragp;
1926 	struct sk_buff *frag;
1927 	int offset = skb_headlen(skb);
1928 	int nfrags = skb_shinfo(skb)->nr_frags;
1929 	int i;
1930 	int err;
1931 
1932 	if (skb_cloned(skb) &&
1933 	    unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
1934 		return err;
1935 
1936 	i = 0;
1937 	if (offset >= len)
1938 		goto drop_pages;
1939 
1940 	for (; i < nfrags; i++) {
1941 		int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]);
1942 
1943 		if (end < len) {
1944 			offset = end;
1945 			continue;
1946 		}
1947 
1948 		skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset);
1949 
1950 drop_pages:
1951 		skb_shinfo(skb)->nr_frags = i;
1952 
1953 		for (; i < nfrags; i++)
1954 			skb_frag_unref(skb, i);
1955 
1956 		if (skb_has_frag_list(skb))
1957 			skb_drop_fraglist(skb);
1958 		goto done;
1959 	}
1960 
1961 	for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
1962 	     fragp = &frag->next) {
1963 		int end = offset + frag->len;
1964 
1965 		if (skb_shared(frag)) {
1966 			struct sk_buff *nfrag;
1967 
1968 			nfrag = skb_clone(frag, GFP_ATOMIC);
1969 			if (unlikely(!nfrag))
1970 				return -ENOMEM;
1971 
1972 			nfrag->next = frag->next;
1973 			consume_skb(frag);
1974 			frag = nfrag;
1975 			*fragp = frag;
1976 		}
1977 
1978 		if (end < len) {
1979 			offset = end;
1980 			continue;
1981 		}
1982 
1983 		if (end > len &&
1984 		    unlikely((err = pskb_trim(frag, len - offset))))
1985 			return err;
1986 
1987 		if (frag->next)
1988 			skb_drop_list(&frag->next);
1989 		break;
1990 	}
1991 
1992 done:
1993 	if (len > skb_headlen(skb)) {
1994 		skb->data_len -= skb->len - len;
1995 		skb->len       = len;
1996 	} else {
1997 		skb->len       = len;
1998 		skb->data_len  = 0;
1999 		skb_set_tail_pointer(skb, len);
2000 	}
2001 
2002 	if (!skb->sk || skb->destructor == sock_edemux)
2003 		skb_condense(skb);
2004 	return 0;
2005 }
2006 EXPORT_SYMBOL(___pskb_trim);
2007 
2008 /* Note : use pskb_trim_rcsum() instead of calling this directly
2009  */
2010 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len)
2011 {
2012 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
2013 		int delta = skb->len - len;
2014 
2015 		skb->csum = csum_block_sub(skb->csum,
2016 					   skb_checksum(skb, len, delta, 0),
2017 					   len);
2018 	}
2019 	return __pskb_trim(skb, len);
2020 }
2021 EXPORT_SYMBOL(pskb_trim_rcsum_slow);
2022 
2023 /**
2024  *	__pskb_pull_tail - advance tail of skb header
2025  *	@skb: buffer to reallocate
2026  *	@delta: number of bytes to advance tail
2027  *
2028  *	The function makes a sense only on a fragmented &sk_buff,
2029  *	it expands header moving its tail forward and copying necessary
2030  *	data from fragmented part.
2031  *
2032  *	&sk_buff MUST have reference count of 1.
2033  *
2034  *	Returns %NULL (and &sk_buff does not change) if pull failed
2035  *	or value of new tail of skb in the case of success.
2036  *
2037  *	All the pointers pointing into skb header may change and must be
2038  *	reloaded after call to this function.
2039  */
2040 
2041 /* Moves tail of skb head forward, copying data from fragmented part,
2042  * when it is necessary.
2043  * 1. It may fail due to malloc failure.
2044  * 2. It may change skb pointers.
2045  *
2046  * It is pretty complicated. Luckily, it is called only in exceptional cases.
2047  */
2048 void *__pskb_pull_tail(struct sk_buff *skb, int delta)
2049 {
2050 	/* If skb has not enough free space at tail, get new one
2051 	 * plus 128 bytes for future expansions. If we have enough
2052 	 * room at tail, reallocate without expansion only if skb is cloned.
2053 	 */
2054 	int i, k, eat = (skb->tail + delta) - skb->end;
2055 
2056 	if (eat > 0 || skb_cloned(skb)) {
2057 		if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
2058 				     GFP_ATOMIC))
2059 			return NULL;
2060 	}
2061 
2062 	BUG_ON(skb_copy_bits(skb, skb_headlen(skb),
2063 			     skb_tail_pointer(skb), delta));
2064 
2065 	/* Optimization: no fragments, no reasons to preestimate
2066 	 * size of pulled pages. Superb.
2067 	 */
2068 	if (!skb_has_frag_list(skb))
2069 		goto pull_pages;
2070 
2071 	/* Estimate size of pulled pages. */
2072 	eat = delta;
2073 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2074 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2075 
2076 		if (size >= eat)
2077 			goto pull_pages;
2078 		eat -= size;
2079 	}
2080 
2081 	/* If we need update frag list, we are in troubles.
2082 	 * Certainly, it is possible to add an offset to skb data,
2083 	 * but taking into account that pulling is expected to
2084 	 * be very rare operation, it is worth to fight against
2085 	 * further bloating skb head and crucify ourselves here instead.
2086 	 * Pure masohism, indeed. 8)8)
2087 	 */
2088 	if (eat) {
2089 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
2090 		struct sk_buff *clone = NULL;
2091 		struct sk_buff *insp = NULL;
2092 
2093 		do {
2094 			if (list->len <= eat) {
2095 				/* Eaten as whole. */
2096 				eat -= list->len;
2097 				list = list->next;
2098 				insp = list;
2099 			} else {
2100 				/* Eaten partially. */
2101 
2102 				if (skb_shared(list)) {
2103 					/* Sucks! We need to fork list. :-( */
2104 					clone = skb_clone(list, GFP_ATOMIC);
2105 					if (!clone)
2106 						return NULL;
2107 					insp = list->next;
2108 					list = clone;
2109 				} else {
2110 					/* This may be pulled without
2111 					 * problems. */
2112 					insp = list;
2113 				}
2114 				if (!pskb_pull(list, eat)) {
2115 					kfree_skb(clone);
2116 					return NULL;
2117 				}
2118 				break;
2119 			}
2120 		} while (eat);
2121 
2122 		/* Free pulled out fragments. */
2123 		while ((list = skb_shinfo(skb)->frag_list) != insp) {
2124 			skb_shinfo(skb)->frag_list = list->next;
2125 			kfree_skb(list);
2126 		}
2127 		/* And insert new clone at head. */
2128 		if (clone) {
2129 			clone->next = list;
2130 			skb_shinfo(skb)->frag_list = clone;
2131 		}
2132 	}
2133 	/* Success! Now we may commit changes to skb data. */
2134 
2135 pull_pages:
2136 	eat = delta;
2137 	k = 0;
2138 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2139 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2140 
2141 		if (size <= eat) {
2142 			skb_frag_unref(skb, i);
2143 			eat -= size;
2144 		} else {
2145 			skb_frag_t *frag = &skb_shinfo(skb)->frags[k];
2146 
2147 			*frag = skb_shinfo(skb)->frags[i];
2148 			if (eat) {
2149 				skb_frag_off_add(frag, eat);
2150 				skb_frag_size_sub(frag, eat);
2151 				if (!i)
2152 					goto end;
2153 				eat = 0;
2154 			}
2155 			k++;
2156 		}
2157 	}
2158 	skb_shinfo(skb)->nr_frags = k;
2159 
2160 end:
2161 	skb->tail     += delta;
2162 	skb->data_len -= delta;
2163 
2164 	if (!skb->data_len)
2165 		skb_zcopy_clear(skb, false);
2166 
2167 	return skb_tail_pointer(skb);
2168 }
2169 EXPORT_SYMBOL(__pskb_pull_tail);
2170 
2171 /**
2172  *	skb_copy_bits - copy bits from skb to kernel buffer
2173  *	@skb: source skb
2174  *	@offset: offset in source
2175  *	@to: destination buffer
2176  *	@len: number of bytes to copy
2177  *
2178  *	Copy the specified number of bytes from the source skb to the
2179  *	destination buffer.
2180  *
2181  *	CAUTION ! :
2182  *		If its prototype is ever changed,
2183  *		check arch/{*}/net/{*}.S files,
2184  *		since it is called from BPF assembly code.
2185  */
2186 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
2187 {
2188 	int start = skb_headlen(skb);
2189 	struct sk_buff *frag_iter;
2190 	int i, copy;
2191 
2192 	if (offset > (int)skb->len - len)
2193 		goto fault;
2194 
2195 	/* Copy header. */
2196 	if ((copy = start - offset) > 0) {
2197 		if (copy > len)
2198 			copy = len;
2199 		skb_copy_from_linear_data_offset(skb, offset, to, copy);
2200 		if ((len -= copy) == 0)
2201 			return 0;
2202 		offset += copy;
2203 		to     += copy;
2204 	}
2205 
2206 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2207 		int end;
2208 		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
2209 
2210 		WARN_ON(start > offset + len);
2211 
2212 		end = start + skb_frag_size(f);
2213 		if ((copy = end - offset) > 0) {
2214 			u32 p_off, p_len, copied;
2215 			struct page *p;
2216 			u8 *vaddr;
2217 
2218 			if (copy > len)
2219 				copy = len;
2220 
2221 			skb_frag_foreach_page(f,
2222 					      skb_frag_off(f) + offset - start,
2223 					      copy, p, p_off, p_len, copied) {
2224 				vaddr = kmap_atomic(p);
2225 				memcpy(to + copied, vaddr + p_off, p_len);
2226 				kunmap_atomic(vaddr);
2227 			}
2228 
2229 			if ((len -= copy) == 0)
2230 				return 0;
2231 			offset += copy;
2232 			to     += copy;
2233 		}
2234 		start = end;
2235 	}
2236 
2237 	skb_walk_frags(skb, frag_iter) {
2238 		int end;
2239 
2240 		WARN_ON(start > offset + len);
2241 
2242 		end = start + frag_iter->len;
2243 		if ((copy = end - offset) > 0) {
2244 			if (copy > len)
2245 				copy = len;
2246 			if (skb_copy_bits(frag_iter, offset - start, to, copy))
2247 				goto fault;
2248 			if ((len -= copy) == 0)
2249 				return 0;
2250 			offset += copy;
2251 			to     += copy;
2252 		}
2253 		start = end;
2254 	}
2255 
2256 	if (!len)
2257 		return 0;
2258 
2259 fault:
2260 	return -EFAULT;
2261 }
2262 EXPORT_SYMBOL(skb_copy_bits);
2263 
2264 /*
2265  * Callback from splice_to_pipe(), if we need to release some pages
2266  * at the end of the spd in case we error'ed out in filling the pipe.
2267  */
2268 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
2269 {
2270 	put_page(spd->pages[i]);
2271 }
2272 
2273 static struct page *linear_to_page(struct page *page, unsigned int *len,
2274 				   unsigned int *offset,
2275 				   struct sock *sk)
2276 {
2277 	struct page_frag *pfrag = sk_page_frag(sk);
2278 
2279 	if (!sk_page_frag_refill(sk, pfrag))
2280 		return NULL;
2281 
2282 	*len = min_t(unsigned int, *len, pfrag->size - pfrag->offset);
2283 
2284 	memcpy(page_address(pfrag->page) + pfrag->offset,
2285 	       page_address(page) + *offset, *len);
2286 	*offset = pfrag->offset;
2287 	pfrag->offset += *len;
2288 
2289 	return pfrag->page;
2290 }
2291 
2292 static bool spd_can_coalesce(const struct splice_pipe_desc *spd,
2293 			     struct page *page,
2294 			     unsigned int offset)
2295 {
2296 	return	spd->nr_pages &&
2297 		spd->pages[spd->nr_pages - 1] == page &&
2298 		(spd->partial[spd->nr_pages - 1].offset +
2299 		 spd->partial[spd->nr_pages - 1].len == offset);
2300 }
2301 
2302 /*
2303  * Fill page/offset/length into spd, if it can hold more pages.
2304  */
2305 static bool spd_fill_page(struct splice_pipe_desc *spd,
2306 			  struct pipe_inode_info *pipe, struct page *page,
2307 			  unsigned int *len, unsigned int offset,
2308 			  bool linear,
2309 			  struct sock *sk)
2310 {
2311 	if (unlikely(spd->nr_pages == MAX_SKB_FRAGS))
2312 		return true;
2313 
2314 	if (linear) {
2315 		page = linear_to_page(page, len, &offset, sk);
2316 		if (!page)
2317 			return true;
2318 	}
2319 	if (spd_can_coalesce(spd, page, offset)) {
2320 		spd->partial[spd->nr_pages - 1].len += *len;
2321 		return false;
2322 	}
2323 	get_page(page);
2324 	spd->pages[spd->nr_pages] = page;
2325 	spd->partial[spd->nr_pages].len = *len;
2326 	spd->partial[spd->nr_pages].offset = offset;
2327 	spd->nr_pages++;
2328 
2329 	return false;
2330 }
2331 
2332 static bool __splice_segment(struct page *page, unsigned int poff,
2333 			     unsigned int plen, unsigned int *off,
2334 			     unsigned int *len,
2335 			     struct splice_pipe_desc *spd, bool linear,
2336 			     struct sock *sk,
2337 			     struct pipe_inode_info *pipe)
2338 {
2339 	if (!*len)
2340 		return true;
2341 
2342 	/* skip this segment if already processed */
2343 	if (*off >= plen) {
2344 		*off -= plen;
2345 		return false;
2346 	}
2347 
2348 	/* ignore any bits we already processed */
2349 	poff += *off;
2350 	plen -= *off;
2351 	*off = 0;
2352 
2353 	do {
2354 		unsigned int flen = min(*len, plen);
2355 
2356 		if (spd_fill_page(spd, pipe, page, &flen, poff,
2357 				  linear, sk))
2358 			return true;
2359 		poff += flen;
2360 		plen -= flen;
2361 		*len -= flen;
2362 	} while (*len && plen);
2363 
2364 	return false;
2365 }
2366 
2367 /*
2368  * Map linear and fragment data from the skb to spd. It reports true if the
2369  * pipe is full or if we already spliced the requested length.
2370  */
2371 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe,
2372 			      unsigned int *offset, unsigned int *len,
2373 			      struct splice_pipe_desc *spd, struct sock *sk)
2374 {
2375 	int seg;
2376 	struct sk_buff *iter;
2377 
2378 	/* map the linear part :
2379 	 * If skb->head_frag is set, this 'linear' part is backed by a
2380 	 * fragment, and if the head is not shared with any clones then
2381 	 * we can avoid a copy since we own the head portion of this page.
2382 	 */
2383 	if (__splice_segment(virt_to_page(skb->data),
2384 			     (unsigned long) skb->data & (PAGE_SIZE - 1),
2385 			     skb_headlen(skb),
2386 			     offset, len, spd,
2387 			     skb_head_is_locked(skb),
2388 			     sk, pipe))
2389 		return true;
2390 
2391 	/*
2392 	 * then map the fragments
2393 	 */
2394 	for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
2395 		const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
2396 
2397 		if (__splice_segment(skb_frag_page(f),
2398 				     skb_frag_off(f), skb_frag_size(f),
2399 				     offset, len, spd, false, sk, pipe))
2400 			return true;
2401 	}
2402 
2403 	skb_walk_frags(skb, iter) {
2404 		if (*offset >= iter->len) {
2405 			*offset -= iter->len;
2406 			continue;
2407 		}
2408 		/* __skb_splice_bits() only fails if the output has no room
2409 		 * left, so no point in going over the frag_list for the error
2410 		 * case.
2411 		 */
2412 		if (__skb_splice_bits(iter, pipe, offset, len, spd, sk))
2413 			return true;
2414 	}
2415 
2416 	return false;
2417 }
2418 
2419 /*
2420  * Map data from the skb to a pipe. Should handle both the linear part,
2421  * the fragments, and the frag list.
2422  */
2423 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
2424 		    struct pipe_inode_info *pipe, unsigned int tlen,
2425 		    unsigned int flags)
2426 {
2427 	struct partial_page partial[MAX_SKB_FRAGS];
2428 	struct page *pages[MAX_SKB_FRAGS];
2429 	struct splice_pipe_desc spd = {
2430 		.pages = pages,
2431 		.partial = partial,
2432 		.nr_pages_max = MAX_SKB_FRAGS,
2433 		.ops = &nosteal_pipe_buf_ops,
2434 		.spd_release = sock_spd_release,
2435 	};
2436 	int ret = 0;
2437 
2438 	__skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk);
2439 
2440 	if (spd.nr_pages)
2441 		ret = splice_to_pipe(pipe, &spd);
2442 
2443 	return ret;
2444 }
2445 EXPORT_SYMBOL_GPL(skb_splice_bits);
2446 
2447 /* Send skb data on a socket. Socket must be locked. */
2448 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
2449 			 int len)
2450 {
2451 	unsigned int orig_len = len;
2452 	struct sk_buff *head = skb;
2453 	unsigned short fragidx;
2454 	int slen, ret;
2455 
2456 do_frag_list:
2457 
2458 	/* Deal with head data */
2459 	while (offset < skb_headlen(skb) && len) {
2460 		struct kvec kv;
2461 		struct msghdr msg;
2462 
2463 		slen = min_t(int, len, skb_headlen(skb) - offset);
2464 		kv.iov_base = skb->data + offset;
2465 		kv.iov_len = slen;
2466 		memset(&msg, 0, sizeof(msg));
2467 		msg.msg_flags = MSG_DONTWAIT;
2468 
2469 		ret = kernel_sendmsg_locked(sk, &msg, &kv, 1, slen);
2470 		if (ret <= 0)
2471 			goto error;
2472 
2473 		offset += ret;
2474 		len -= ret;
2475 	}
2476 
2477 	/* All the data was skb head? */
2478 	if (!len)
2479 		goto out;
2480 
2481 	/* Make offset relative to start of frags */
2482 	offset -= skb_headlen(skb);
2483 
2484 	/* Find where we are in frag list */
2485 	for (fragidx = 0; fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
2486 		skb_frag_t *frag  = &skb_shinfo(skb)->frags[fragidx];
2487 
2488 		if (offset < skb_frag_size(frag))
2489 			break;
2490 
2491 		offset -= skb_frag_size(frag);
2492 	}
2493 
2494 	for (; len && fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
2495 		skb_frag_t *frag  = &skb_shinfo(skb)->frags[fragidx];
2496 
2497 		slen = min_t(size_t, len, skb_frag_size(frag) - offset);
2498 
2499 		while (slen) {
2500 			ret = kernel_sendpage_locked(sk, skb_frag_page(frag),
2501 						     skb_frag_off(frag) + offset,
2502 						     slen, MSG_DONTWAIT);
2503 			if (ret <= 0)
2504 				goto error;
2505 
2506 			len -= ret;
2507 			offset += ret;
2508 			slen -= ret;
2509 		}
2510 
2511 		offset = 0;
2512 	}
2513 
2514 	if (len) {
2515 		/* Process any frag lists */
2516 
2517 		if (skb == head) {
2518 			if (skb_has_frag_list(skb)) {
2519 				skb = skb_shinfo(skb)->frag_list;
2520 				goto do_frag_list;
2521 			}
2522 		} else if (skb->next) {
2523 			skb = skb->next;
2524 			goto do_frag_list;
2525 		}
2526 	}
2527 
2528 out:
2529 	return orig_len - len;
2530 
2531 error:
2532 	return orig_len == len ? ret : orig_len - len;
2533 }
2534 EXPORT_SYMBOL_GPL(skb_send_sock_locked);
2535 
2536 /**
2537  *	skb_store_bits - store bits from kernel buffer to skb
2538  *	@skb: destination buffer
2539  *	@offset: offset in destination
2540  *	@from: source buffer
2541  *	@len: number of bytes to copy
2542  *
2543  *	Copy the specified number of bytes from the source buffer to the
2544  *	destination skb.  This function handles all the messy bits of
2545  *	traversing fragment lists and such.
2546  */
2547 
2548 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
2549 {
2550 	int start = skb_headlen(skb);
2551 	struct sk_buff *frag_iter;
2552 	int i, copy;
2553 
2554 	if (offset > (int)skb->len - len)
2555 		goto fault;
2556 
2557 	if ((copy = start - offset) > 0) {
2558 		if (copy > len)
2559 			copy = len;
2560 		skb_copy_to_linear_data_offset(skb, offset, from, copy);
2561 		if ((len -= copy) == 0)
2562 			return 0;
2563 		offset += copy;
2564 		from += copy;
2565 	}
2566 
2567 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2568 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2569 		int end;
2570 
2571 		WARN_ON(start > offset + len);
2572 
2573 		end = start + skb_frag_size(frag);
2574 		if ((copy = end - offset) > 0) {
2575 			u32 p_off, p_len, copied;
2576 			struct page *p;
2577 			u8 *vaddr;
2578 
2579 			if (copy > len)
2580 				copy = len;
2581 
2582 			skb_frag_foreach_page(frag,
2583 					      skb_frag_off(frag) + offset - start,
2584 					      copy, p, p_off, p_len, copied) {
2585 				vaddr = kmap_atomic(p);
2586 				memcpy(vaddr + p_off, from + copied, p_len);
2587 				kunmap_atomic(vaddr);
2588 			}
2589 
2590 			if ((len -= copy) == 0)
2591 				return 0;
2592 			offset += copy;
2593 			from += copy;
2594 		}
2595 		start = end;
2596 	}
2597 
2598 	skb_walk_frags(skb, frag_iter) {
2599 		int end;
2600 
2601 		WARN_ON(start > offset + len);
2602 
2603 		end = start + frag_iter->len;
2604 		if ((copy = end - offset) > 0) {
2605 			if (copy > len)
2606 				copy = len;
2607 			if (skb_store_bits(frag_iter, offset - start,
2608 					   from, copy))
2609 				goto fault;
2610 			if ((len -= copy) == 0)
2611 				return 0;
2612 			offset += copy;
2613 			from += copy;
2614 		}
2615 		start = end;
2616 	}
2617 	if (!len)
2618 		return 0;
2619 
2620 fault:
2621 	return -EFAULT;
2622 }
2623 EXPORT_SYMBOL(skb_store_bits);
2624 
2625 /* Checksum skb data. */
2626 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
2627 		      __wsum csum, const struct skb_checksum_ops *ops)
2628 {
2629 	int start = skb_headlen(skb);
2630 	int i, copy = start - offset;
2631 	struct sk_buff *frag_iter;
2632 	int pos = 0;
2633 
2634 	/* Checksum header. */
2635 	if (copy > 0) {
2636 		if (copy > len)
2637 			copy = len;
2638 		csum = INDIRECT_CALL_1(ops->update, csum_partial_ext,
2639 				       skb->data + offset, copy, csum);
2640 		if ((len -= copy) == 0)
2641 			return csum;
2642 		offset += copy;
2643 		pos	= copy;
2644 	}
2645 
2646 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2647 		int end;
2648 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2649 
2650 		WARN_ON(start > offset + len);
2651 
2652 		end = start + skb_frag_size(frag);
2653 		if ((copy = end - offset) > 0) {
2654 			u32 p_off, p_len, copied;
2655 			struct page *p;
2656 			__wsum csum2;
2657 			u8 *vaddr;
2658 
2659 			if (copy > len)
2660 				copy = len;
2661 
2662 			skb_frag_foreach_page(frag,
2663 					      skb_frag_off(frag) + offset - start,
2664 					      copy, p, p_off, p_len, copied) {
2665 				vaddr = kmap_atomic(p);
2666 				csum2 = INDIRECT_CALL_1(ops->update,
2667 							csum_partial_ext,
2668 							vaddr + p_off, p_len, 0);
2669 				kunmap_atomic(vaddr);
2670 				csum = INDIRECT_CALL_1(ops->combine,
2671 						       csum_block_add_ext, csum,
2672 						       csum2, pos, p_len);
2673 				pos += p_len;
2674 			}
2675 
2676 			if (!(len -= copy))
2677 				return csum;
2678 			offset += copy;
2679 		}
2680 		start = end;
2681 	}
2682 
2683 	skb_walk_frags(skb, frag_iter) {
2684 		int end;
2685 
2686 		WARN_ON(start > offset + len);
2687 
2688 		end = start + frag_iter->len;
2689 		if ((copy = end - offset) > 0) {
2690 			__wsum csum2;
2691 			if (copy > len)
2692 				copy = len;
2693 			csum2 = __skb_checksum(frag_iter, offset - start,
2694 					       copy, 0, ops);
2695 			csum = INDIRECT_CALL_1(ops->combine, csum_block_add_ext,
2696 					       csum, csum2, pos, copy);
2697 			if ((len -= copy) == 0)
2698 				return csum;
2699 			offset += copy;
2700 			pos    += copy;
2701 		}
2702 		start = end;
2703 	}
2704 	BUG_ON(len);
2705 
2706 	return csum;
2707 }
2708 EXPORT_SYMBOL(__skb_checksum);
2709 
2710 __wsum skb_checksum(const struct sk_buff *skb, int offset,
2711 		    int len, __wsum csum)
2712 {
2713 	const struct skb_checksum_ops ops = {
2714 		.update  = csum_partial_ext,
2715 		.combine = csum_block_add_ext,
2716 	};
2717 
2718 	return __skb_checksum(skb, offset, len, csum, &ops);
2719 }
2720 EXPORT_SYMBOL(skb_checksum);
2721 
2722 /* Both of above in one bottle. */
2723 
2724 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
2725 				    u8 *to, int len, __wsum csum)
2726 {
2727 	int start = skb_headlen(skb);
2728 	int i, copy = start - offset;
2729 	struct sk_buff *frag_iter;
2730 	int pos = 0;
2731 
2732 	/* Copy header. */
2733 	if (copy > 0) {
2734 		if (copy > len)
2735 			copy = len;
2736 		csum = csum_partial_copy_nocheck(skb->data + offset, to,
2737 						 copy, csum);
2738 		if ((len -= copy) == 0)
2739 			return csum;
2740 		offset += copy;
2741 		to     += copy;
2742 		pos	= copy;
2743 	}
2744 
2745 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2746 		int end;
2747 
2748 		WARN_ON(start > offset + len);
2749 
2750 		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
2751 		if ((copy = end - offset) > 0) {
2752 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2753 			u32 p_off, p_len, copied;
2754 			struct page *p;
2755 			__wsum csum2;
2756 			u8 *vaddr;
2757 
2758 			if (copy > len)
2759 				copy = len;
2760 
2761 			skb_frag_foreach_page(frag,
2762 					      skb_frag_off(frag) + offset - start,
2763 					      copy, p, p_off, p_len, copied) {
2764 				vaddr = kmap_atomic(p);
2765 				csum2 = csum_partial_copy_nocheck(vaddr + p_off,
2766 								  to + copied,
2767 								  p_len, 0);
2768 				kunmap_atomic(vaddr);
2769 				csum = csum_block_add(csum, csum2, pos);
2770 				pos += p_len;
2771 			}
2772 
2773 			if (!(len -= copy))
2774 				return csum;
2775 			offset += copy;
2776 			to     += copy;
2777 		}
2778 		start = end;
2779 	}
2780 
2781 	skb_walk_frags(skb, frag_iter) {
2782 		__wsum csum2;
2783 		int end;
2784 
2785 		WARN_ON(start > offset + len);
2786 
2787 		end = start + frag_iter->len;
2788 		if ((copy = end - offset) > 0) {
2789 			if (copy > len)
2790 				copy = len;
2791 			csum2 = skb_copy_and_csum_bits(frag_iter,
2792 						       offset - start,
2793 						       to, copy, 0);
2794 			csum = csum_block_add(csum, csum2, pos);
2795 			if ((len -= copy) == 0)
2796 				return csum;
2797 			offset += copy;
2798 			to     += copy;
2799 			pos    += copy;
2800 		}
2801 		start = end;
2802 	}
2803 	BUG_ON(len);
2804 	return csum;
2805 }
2806 EXPORT_SYMBOL(skb_copy_and_csum_bits);
2807 
2808 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len)
2809 {
2810 	__sum16 sum;
2811 
2812 	sum = csum_fold(skb_checksum(skb, 0, len, skb->csum));
2813 	/* See comments in __skb_checksum_complete(). */
2814 	if (likely(!sum)) {
2815 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
2816 		    !skb->csum_complete_sw)
2817 			netdev_rx_csum_fault(skb->dev, skb);
2818 	}
2819 	if (!skb_shared(skb))
2820 		skb->csum_valid = !sum;
2821 	return sum;
2822 }
2823 EXPORT_SYMBOL(__skb_checksum_complete_head);
2824 
2825 /* This function assumes skb->csum already holds pseudo header's checksum,
2826  * which has been changed from the hardware checksum, for example, by
2827  * __skb_checksum_validate_complete(). And, the original skb->csum must
2828  * have been validated unsuccessfully for CHECKSUM_COMPLETE case.
2829  *
2830  * It returns non-zero if the recomputed checksum is still invalid, otherwise
2831  * zero. The new checksum is stored back into skb->csum unless the skb is
2832  * shared.
2833  */
2834 __sum16 __skb_checksum_complete(struct sk_buff *skb)
2835 {
2836 	__wsum csum;
2837 	__sum16 sum;
2838 
2839 	csum = skb_checksum(skb, 0, skb->len, 0);
2840 
2841 	sum = csum_fold(csum_add(skb->csum, csum));
2842 	/* This check is inverted, because we already knew the hardware
2843 	 * checksum is invalid before calling this function. So, if the
2844 	 * re-computed checksum is valid instead, then we have a mismatch
2845 	 * between the original skb->csum and skb_checksum(). This means either
2846 	 * the original hardware checksum is incorrect or we screw up skb->csum
2847 	 * when moving skb->data around.
2848 	 */
2849 	if (likely(!sum)) {
2850 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
2851 		    !skb->csum_complete_sw)
2852 			netdev_rx_csum_fault(skb->dev, skb);
2853 	}
2854 
2855 	if (!skb_shared(skb)) {
2856 		/* Save full packet checksum */
2857 		skb->csum = csum;
2858 		skb->ip_summed = CHECKSUM_COMPLETE;
2859 		skb->csum_complete_sw = 1;
2860 		skb->csum_valid = !sum;
2861 	}
2862 
2863 	return sum;
2864 }
2865 EXPORT_SYMBOL(__skb_checksum_complete);
2866 
2867 static __wsum warn_crc32c_csum_update(const void *buff, int len, __wsum sum)
2868 {
2869 	net_warn_ratelimited(
2870 		"%s: attempt to compute crc32c without libcrc32c.ko\n",
2871 		__func__);
2872 	return 0;
2873 }
2874 
2875 static __wsum warn_crc32c_csum_combine(__wsum csum, __wsum csum2,
2876 				       int offset, int len)
2877 {
2878 	net_warn_ratelimited(
2879 		"%s: attempt to compute crc32c without libcrc32c.ko\n",
2880 		__func__);
2881 	return 0;
2882 }
2883 
2884 static const struct skb_checksum_ops default_crc32c_ops = {
2885 	.update  = warn_crc32c_csum_update,
2886 	.combine = warn_crc32c_csum_combine,
2887 };
2888 
2889 const struct skb_checksum_ops *crc32c_csum_stub __read_mostly =
2890 	&default_crc32c_ops;
2891 EXPORT_SYMBOL(crc32c_csum_stub);
2892 
2893  /**
2894  *	skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy()
2895  *	@from: source buffer
2896  *
2897  *	Calculates the amount of linear headroom needed in the 'to' skb passed
2898  *	into skb_zerocopy().
2899  */
2900 unsigned int
2901 skb_zerocopy_headlen(const struct sk_buff *from)
2902 {
2903 	unsigned int hlen = 0;
2904 
2905 	if (!from->head_frag ||
2906 	    skb_headlen(from) < L1_CACHE_BYTES ||
2907 	    skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS)
2908 		hlen = skb_headlen(from);
2909 
2910 	if (skb_has_frag_list(from))
2911 		hlen = from->len;
2912 
2913 	return hlen;
2914 }
2915 EXPORT_SYMBOL_GPL(skb_zerocopy_headlen);
2916 
2917 /**
2918  *	skb_zerocopy - Zero copy skb to skb
2919  *	@to: destination buffer
2920  *	@from: source buffer
2921  *	@len: number of bytes to copy from source buffer
2922  *	@hlen: size of linear headroom in destination buffer
2923  *
2924  *	Copies up to `len` bytes from `from` to `to` by creating references
2925  *	to the frags in the source buffer.
2926  *
2927  *	The `hlen` as calculated by skb_zerocopy_headlen() specifies the
2928  *	headroom in the `to` buffer.
2929  *
2930  *	Return value:
2931  *	0: everything is OK
2932  *	-ENOMEM: couldn't orphan frags of @from due to lack of memory
2933  *	-EFAULT: skb_copy_bits() found some problem with skb geometry
2934  */
2935 int
2936 skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen)
2937 {
2938 	int i, j = 0;
2939 	int plen = 0; /* length of skb->head fragment */
2940 	int ret;
2941 	struct page *page;
2942 	unsigned int offset;
2943 
2944 	BUG_ON(!from->head_frag && !hlen);
2945 
2946 	/* dont bother with small payloads */
2947 	if (len <= skb_tailroom(to))
2948 		return skb_copy_bits(from, 0, skb_put(to, len), len);
2949 
2950 	if (hlen) {
2951 		ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen);
2952 		if (unlikely(ret))
2953 			return ret;
2954 		len -= hlen;
2955 	} else {
2956 		plen = min_t(int, skb_headlen(from), len);
2957 		if (plen) {
2958 			page = virt_to_head_page(from->head);
2959 			offset = from->data - (unsigned char *)page_address(page);
2960 			__skb_fill_page_desc(to, 0, page, offset, plen);
2961 			get_page(page);
2962 			j = 1;
2963 			len -= plen;
2964 		}
2965 	}
2966 
2967 	to->truesize += len + plen;
2968 	to->len += len + plen;
2969 	to->data_len += len + plen;
2970 
2971 	if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) {
2972 		skb_tx_error(from);
2973 		return -ENOMEM;
2974 	}
2975 	skb_zerocopy_clone(to, from, GFP_ATOMIC);
2976 
2977 	for (i = 0; i < skb_shinfo(from)->nr_frags; i++) {
2978 		int size;
2979 
2980 		if (!len)
2981 			break;
2982 		skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i];
2983 		size = min_t(int, skb_frag_size(&skb_shinfo(to)->frags[j]),
2984 					len);
2985 		skb_frag_size_set(&skb_shinfo(to)->frags[j], size);
2986 		len -= size;
2987 		skb_frag_ref(to, j);
2988 		j++;
2989 	}
2990 	skb_shinfo(to)->nr_frags = j;
2991 
2992 	return 0;
2993 }
2994 EXPORT_SYMBOL_GPL(skb_zerocopy);
2995 
2996 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
2997 {
2998 	__wsum csum;
2999 	long csstart;
3000 
3001 	if (skb->ip_summed == CHECKSUM_PARTIAL)
3002 		csstart = skb_checksum_start_offset(skb);
3003 	else
3004 		csstart = skb_headlen(skb);
3005 
3006 	BUG_ON(csstart > skb_headlen(skb));
3007 
3008 	skb_copy_from_linear_data(skb, to, csstart);
3009 
3010 	csum = 0;
3011 	if (csstart != skb->len)
3012 		csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
3013 					      skb->len - csstart, 0);
3014 
3015 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
3016 		long csstuff = csstart + skb->csum_offset;
3017 
3018 		*((__sum16 *)(to + csstuff)) = csum_fold(csum);
3019 	}
3020 }
3021 EXPORT_SYMBOL(skb_copy_and_csum_dev);
3022 
3023 /**
3024  *	skb_dequeue - remove from the head of the queue
3025  *	@list: list to dequeue from
3026  *
3027  *	Remove the head of the list. The list lock is taken so the function
3028  *	may be used safely with other locking list functions. The head item is
3029  *	returned or %NULL if the list is empty.
3030  */
3031 
3032 struct sk_buff *skb_dequeue(struct sk_buff_head *list)
3033 {
3034 	unsigned long flags;
3035 	struct sk_buff *result;
3036 
3037 	spin_lock_irqsave(&list->lock, flags);
3038 	result = __skb_dequeue(list);
3039 	spin_unlock_irqrestore(&list->lock, flags);
3040 	return result;
3041 }
3042 EXPORT_SYMBOL(skb_dequeue);
3043 
3044 /**
3045  *	skb_dequeue_tail - remove from the tail of the queue
3046  *	@list: list to dequeue from
3047  *
3048  *	Remove the tail of the list. The list lock is taken so the function
3049  *	may be used safely with other locking list functions. The tail item is
3050  *	returned or %NULL if the list is empty.
3051  */
3052 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
3053 {
3054 	unsigned long flags;
3055 	struct sk_buff *result;
3056 
3057 	spin_lock_irqsave(&list->lock, flags);
3058 	result = __skb_dequeue_tail(list);
3059 	spin_unlock_irqrestore(&list->lock, flags);
3060 	return result;
3061 }
3062 EXPORT_SYMBOL(skb_dequeue_tail);
3063 
3064 /**
3065  *	skb_queue_purge - empty a list
3066  *	@list: list to empty
3067  *
3068  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
3069  *	the list and one reference dropped. This function takes the list
3070  *	lock and is atomic with respect to other list locking functions.
3071  */
3072 void skb_queue_purge(struct sk_buff_head *list)
3073 {
3074 	struct sk_buff *skb;
3075 	while ((skb = skb_dequeue(list)) != NULL)
3076 		kfree_skb(skb);
3077 }
3078 EXPORT_SYMBOL(skb_queue_purge);
3079 
3080 /**
3081  *	skb_rbtree_purge - empty a skb rbtree
3082  *	@root: root of the rbtree to empty
3083  *	Return value: the sum of truesizes of all purged skbs.
3084  *
3085  *	Delete all buffers on an &sk_buff rbtree. Each buffer is removed from
3086  *	the list and one reference dropped. This function does not take
3087  *	any lock. Synchronization should be handled by the caller (e.g., TCP
3088  *	out-of-order queue is protected by the socket lock).
3089  */
3090 unsigned int skb_rbtree_purge(struct rb_root *root)
3091 {
3092 	struct rb_node *p = rb_first(root);
3093 	unsigned int sum = 0;
3094 
3095 	while (p) {
3096 		struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode);
3097 
3098 		p = rb_next(p);
3099 		rb_erase(&skb->rbnode, root);
3100 		sum += skb->truesize;
3101 		kfree_skb(skb);
3102 	}
3103 	return sum;
3104 }
3105 
3106 /**
3107  *	skb_queue_head - queue a buffer at the list head
3108  *	@list: list to use
3109  *	@newsk: buffer to queue
3110  *
3111  *	Queue a buffer at the start of the list. This function takes the
3112  *	list lock and can be used safely with other locking &sk_buff functions
3113  *	safely.
3114  *
3115  *	A buffer cannot be placed on two lists at the same time.
3116  */
3117 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
3118 {
3119 	unsigned long flags;
3120 
3121 	spin_lock_irqsave(&list->lock, flags);
3122 	__skb_queue_head(list, newsk);
3123 	spin_unlock_irqrestore(&list->lock, flags);
3124 }
3125 EXPORT_SYMBOL(skb_queue_head);
3126 
3127 /**
3128  *	skb_queue_tail - queue a buffer at the list tail
3129  *	@list: list to use
3130  *	@newsk: buffer to queue
3131  *
3132  *	Queue a buffer at the tail of the list. This function takes the
3133  *	list lock and can be used safely with other locking &sk_buff functions
3134  *	safely.
3135  *
3136  *	A buffer cannot be placed on two lists at the same time.
3137  */
3138 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
3139 {
3140 	unsigned long flags;
3141 
3142 	spin_lock_irqsave(&list->lock, flags);
3143 	__skb_queue_tail(list, newsk);
3144 	spin_unlock_irqrestore(&list->lock, flags);
3145 }
3146 EXPORT_SYMBOL(skb_queue_tail);
3147 
3148 /**
3149  *	skb_unlink	-	remove a buffer from a list
3150  *	@skb: buffer to remove
3151  *	@list: list to use
3152  *
3153  *	Remove a packet from a list. The list locks are taken and this
3154  *	function is atomic with respect to other list locked calls
3155  *
3156  *	You must know what list the SKB is on.
3157  */
3158 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
3159 {
3160 	unsigned long flags;
3161 
3162 	spin_lock_irqsave(&list->lock, flags);
3163 	__skb_unlink(skb, list);
3164 	spin_unlock_irqrestore(&list->lock, flags);
3165 }
3166 EXPORT_SYMBOL(skb_unlink);
3167 
3168 /**
3169  *	skb_append	-	append a buffer
3170  *	@old: buffer to insert after
3171  *	@newsk: buffer to insert
3172  *	@list: list to use
3173  *
3174  *	Place a packet after a given packet in a list. The list locks are taken
3175  *	and this function is atomic with respect to other list locked calls.
3176  *	A buffer cannot be placed on two lists at the same time.
3177  */
3178 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
3179 {
3180 	unsigned long flags;
3181 
3182 	spin_lock_irqsave(&list->lock, flags);
3183 	__skb_queue_after(list, old, newsk);
3184 	spin_unlock_irqrestore(&list->lock, flags);
3185 }
3186 EXPORT_SYMBOL(skb_append);
3187 
3188 static inline void skb_split_inside_header(struct sk_buff *skb,
3189 					   struct sk_buff* skb1,
3190 					   const u32 len, const int pos)
3191 {
3192 	int i;
3193 
3194 	skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
3195 					 pos - len);
3196 	/* And move data appendix as is. */
3197 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
3198 		skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
3199 
3200 	skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
3201 	skb_shinfo(skb)->nr_frags  = 0;
3202 	skb1->data_len		   = skb->data_len;
3203 	skb1->len		   += skb1->data_len;
3204 	skb->data_len		   = 0;
3205 	skb->len		   = len;
3206 	skb_set_tail_pointer(skb, len);
3207 }
3208 
3209 static inline void skb_split_no_header(struct sk_buff *skb,
3210 				       struct sk_buff* skb1,
3211 				       const u32 len, int pos)
3212 {
3213 	int i, k = 0;
3214 	const int nfrags = skb_shinfo(skb)->nr_frags;
3215 
3216 	skb_shinfo(skb)->nr_frags = 0;
3217 	skb1->len		  = skb1->data_len = skb->len - len;
3218 	skb->len		  = len;
3219 	skb->data_len		  = len - pos;
3220 
3221 	for (i = 0; i < nfrags; i++) {
3222 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
3223 
3224 		if (pos + size > len) {
3225 			skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
3226 
3227 			if (pos < len) {
3228 				/* Split frag.
3229 				 * We have two variants in this case:
3230 				 * 1. Move all the frag to the second
3231 				 *    part, if it is possible. F.e.
3232 				 *    this approach is mandatory for TUX,
3233 				 *    where splitting is expensive.
3234 				 * 2. Split is accurately. We make this.
3235 				 */
3236 				skb_frag_ref(skb, i);
3237 				skb_frag_off_add(&skb_shinfo(skb1)->frags[0], len - pos);
3238 				skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos);
3239 				skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos);
3240 				skb_shinfo(skb)->nr_frags++;
3241 			}
3242 			k++;
3243 		} else
3244 			skb_shinfo(skb)->nr_frags++;
3245 		pos += size;
3246 	}
3247 	skb_shinfo(skb1)->nr_frags = k;
3248 }
3249 
3250 /**
3251  * skb_split - Split fragmented skb to two parts at length len.
3252  * @skb: the buffer to split
3253  * @skb1: the buffer to receive the second part
3254  * @len: new length for skb
3255  */
3256 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
3257 {
3258 	int pos = skb_headlen(skb);
3259 
3260 	skb_shinfo(skb1)->tx_flags |= skb_shinfo(skb)->tx_flags &
3261 				      SKBTX_SHARED_FRAG;
3262 	skb_zerocopy_clone(skb1, skb, 0);
3263 	if (len < pos)	/* Split line is inside header. */
3264 		skb_split_inside_header(skb, skb1, len, pos);
3265 	else		/* Second chunk has no header, nothing to copy. */
3266 		skb_split_no_header(skb, skb1, len, pos);
3267 }
3268 EXPORT_SYMBOL(skb_split);
3269 
3270 /* Shifting from/to a cloned skb is a no-go.
3271  *
3272  * Caller cannot keep skb_shinfo related pointers past calling here!
3273  */
3274 static int skb_prepare_for_shift(struct sk_buff *skb)
3275 {
3276 	return skb_cloned(skb) && pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3277 }
3278 
3279 /**
3280  * skb_shift - Shifts paged data partially from skb to another
3281  * @tgt: buffer into which tail data gets added
3282  * @skb: buffer from which the paged data comes from
3283  * @shiftlen: shift up to this many bytes
3284  *
3285  * Attempts to shift up to shiftlen worth of bytes, which may be less than
3286  * the length of the skb, from skb to tgt. Returns number bytes shifted.
3287  * It's up to caller to free skb if everything was shifted.
3288  *
3289  * If @tgt runs out of frags, the whole operation is aborted.
3290  *
3291  * Skb cannot include anything else but paged data while tgt is allowed
3292  * to have non-paged data as well.
3293  *
3294  * TODO: full sized shift could be optimized but that would need
3295  * specialized skb free'er to handle frags without up-to-date nr_frags.
3296  */
3297 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
3298 {
3299 	int from, to, merge, todo;
3300 	skb_frag_t *fragfrom, *fragto;
3301 
3302 	BUG_ON(shiftlen > skb->len);
3303 
3304 	if (skb_headlen(skb))
3305 		return 0;
3306 	if (skb_zcopy(tgt) || skb_zcopy(skb))
3307 		return 0;
3308 
3309 	todo = shiftlen;
3310 	from = 0;
3311 	to = skb_shinfo(tgt)->nr_frags;
3312 	fragfrom = &skb_shinfo(skb)->frags[from];
3313 
3314 	/* Actual merge is delayed until the point when we know we can
3315 	 * commit all, so that we don't have to undo partial changes
3316 	 */
3317 	if (!to ||
3318 	    !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom),
3319 			      skb_frag_off(fragfrom))) {
3320 		merge = -1;
3321 	} else {
3322 		merge = to - 1;
3323 
3324 		todo -= skb_frag_size(fragfrom);
3325 		if (todo < 0) {
3326 			if (skb_prepare_for_shift(skb) ||
3327 			    skb_prepare_for_shift(tgt))
3328 				return 0;
3329 
3330 			/* All previous frag pointers might be stale! */
3331 			fragfrom = &skb_shinfo(skb)->frags[from];
3332 			fragto = &skb_shinfo(tgt)->frags[merge];
3333 
3334 			skb_frag_size_add(fragto, shiftlen);
3335 			skb_frag_size_sub(fragfrom, shiftlen);
3336 			skb_frag_off_add(fragfrom, shiftlen);
3337 
3338 			goto onlymerged;
3339 		}
3340 
3341 		from++;
3342 	}
3343 
3344 	/* Skip full, not-fitting skb to avoid expensive operations */
3345 	if ((shiftlen == skb->len) &&
3346 	    (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
3347 		return 0;
3348 
3349 	if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
3350 		return 0;
3351 
3352 	while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
3353 		if (to == MAX_SKB_FRAGS)
3354 			return 0;
3355 
3356 		fragfrom = &skb_shinfo(skb)->frags[from];
3357 		fragto = &skb_shinfo(tgt)->frags[to];
3358 
3359 		if (todo >= skb_frag_size(fragfrom)) {
3360 			*fragto = *fragfrom;
3361 			todo -= skb_frag_size(fragfrom);
3362 			from++;
3363 			to++;
3364 
3365 		} else {
3366 			__skb_frag_ref(fragfrom);
3367 			skb_frag_page_copy(fragto, fragfrom);
3368 			skb_frag_off_copy(fragto, fragfrom);
3369 			skb_frag_size_set(fragto, todo);
3370 
3371 			skb_frag_off_add(fragfrom, todo);
3372 			skb_frag_size_sub(fragfrom, todo);
3373 			todo = 0;
3374 
3375 			to++;
3376 			break;
3377 		}
3378 	}
3379 
3380 	/* Ready to "commit" this state change to tgt */
3381 	skb_shinfo(tgt)->nr_frags = to;
3382 
3383 	if (merge >= 0) {
3384 		fragfrom = &skb_shinfo(skb)->frags[0];
3385 		fragto = &skb_shinfo(tgt)->frags[merge];
3386 
3387 		skb_frag_size_add(fragto, skb_frag_size(fragfrom));
3388 		__skb_frag_unref(fragfrom);
3389 	}
3390 
3391 	/* Reposition in the original skb */
3392 	to = 0;
3393 	while (from < skb_shinfo(skb)->nr_frags)
3394 		skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
3395 	skb_shinfo(skb)->nr_frags = to;
3396 
3397 	BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
3398 
3399 onlymerged:
3400 	/* Most likely the tgt won't ever need its checksum anymore, skb on
3401 	 * the other hand might need it if it needs to be resent
3402 	 */
3403 	tgt->ip_summed = CHECKSUM_PARTIAL;
3404 	skb->ip_summed = CHECKSUM_PARTIAL;
3405 
3406 	/* Yak, is it really working this way? Some helper please? */
3407 	skb->len -= shiftlen;
3408 	skb->data_len -= shiftlen;
3409 	skb->truesize -= shiftlen;
3410 	tgt->len += shiftlen;
3411 	tgt->data_len += shiftlen;
3412 	tgt->truesize += shiftlen;
3413 
3414 	return shiftlen;
3415 }
3416 
3417 /**
3418  * skb_prepare_seq_read - Prepare a sequential read of skb data
3419  * @skb: the buffer to read
3420  * @from: lower offset of data to be read
3421  * @to: upper offset of data to be read
3422  * @st: state variable
3423  *
3424  * Initializes the specified state variable. Must be called before
3425  * invoking skb_seq_read() for the first time.
3426  */
3427 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
3428 			  unsigned int to, struct skb_seq_state *st)
3429 {
3430 	st->lower_offset = from;
3431 	st->upper_offset = to;
3432 	st->root_skb = st->cur_skb = skb;
3433 	st->frag_idx = st->stepped_offset = 0;
3434 	st->frag_data = NULL;
3435 }
3436 EXPORT_SYMBOL(skb_prepare_seq_read);
3437 
3438 /**
3439  * skb_seq_read - Sequentially read skb data
3440  * @consumed: number of bytes consumed by the caller so far
3441  * @data: destination pointer for data to be returned
3442  * @st: state variable
3443  *
3444  * Reads a block of skb data at @consumed relative to the
3445  * lower offset specified to skb_prepare_seq_read(). Assigns
3446  * the head of the data block to @data and returns the length
3447  * of the block or 0 if the end of the skb data or the upper
3448  * offset has been reached.
3449  *
3450  * The caller is not required to consume all of the data
3451  * returned, i.e. @consumed is typically set to the number
3452  * of bytes already consumed and the next call to
3453  * skb_seq_read() will return the remaining part of the block.
3454  *
3455  * Note 1: The size of each block of data returned can be arbitrary,
3456  *       this limitation is the cost for zerocopy sequential
3457  *       reads of potentially non linear data.
3458  *
3459  * Note 2: Fragment lists within fragments are not implemented
3460  *       at the moment, state->root_skb could be replaced with
3461  *       a stack for this purpose.
3462  */
3463 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
3464 			  struct skb_seq_state *st)
3465 {
3466 	unsigned int block_limit, abs_offset = consumed + st->lower_offset;
3467 	skb_frag_t *frag;
3468 
3469 	if (unlikely(abs_offset >= st->upper_offset)) {
3470 		if (st->frag_data) {
3471 			kunmap_atomic(st->frag_data);
3472 			st->frag_data = NULL;
3473 		}
3474 		return 0;
3475 	}
3476 
3477 next_skb:
3478 	block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
3479 
3480 	if (abs_offset < block_limit && !st->frag_data) {
3481 		*data = st->cur_skb->data + (abs_offset - st->stepped_offset);
3482 		return block_limit - abs_offset;
3483 	}
3484 
3485 	if (st->frag_idx == 0 && !st->frag_data)
3486 		st->stepped_offset += skb_headlen(st->cur_skb);
3487 
3488 	while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
3489 		frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
3490 		block_limit = skb_frag_size(frag) + st->stepped_offset;
3491 
3492 		if (abs_offset < block_limit) {
3493 			if (!st->frag_data)
3494 				st->frag_data = kmap_atomic(skb_frag_page(frag));
3495 
3496 			*data = (u8 *) st->frag_data + skb_frag_off(frag) +
3497 				(abs_offset - st->stepped_offset);
3498 
3499 			return block_limit - abs_offset;
3500 		}
3501 
3502 		if (st->frag_data) {
3503 			kunmap_atomic(st->frag_data);
3504 			st->frag_data = NULL;
3505 		}
3506 
3507 		st->frag_idx++;
3508 		st->stepped_offset += skb_frag_size(frag);
3509 	}
3510 
3511 	if (st->frag_data) {
3512 		kunmap_atomic(st->frag_data);
3513 		st->frag_data = NULL;
3514 	}
3515 
3516 	if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) {
3517 		st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
3518 		st->frag_idx = 0;
3519 		goto next_skb;
3520 	} else if (st->cur_skb->next) {
3521 		st->cur_skb = st->cur_skb->next;
3522 		st->frag_idx = 0;
3523 		goto next_skb;
3524 	}
3525 
3526 	return 0;
3527 }
3528 EXPORT_SYMBOL(skb_seq_read);
3529 
3530 /**
3531  * skb_abort_seq_read - Abort a sequential read of skb data
3532  * @st: state variable
3533  *
3534  * Must be called if skb_seq_read() was not called until it
3535  * returned 0.
3536  */
3537 void skb_abort_seq_read(struct skb_seq_state *st)
3538 {
3539 	if (st->frag_data)
3540 		kunmap_atomic(st->frag_data);
3541 }
3542 EXPORT_SYMBOL(skb_abort_seq_read);
3543 
3544 #define TS_SKB_CB(state)	((struct skb_seq_state *) &((state)->cb))
3545 
3546 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
3547 					  struct ts_config *conf,
3548 					  struct ts_state *state)
3549 {
3550 	return skb_seq_read(offset, text, TS_SKB_CB(state));
3551 }
3552 
3553 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
3554 {
3555 	skb_abort_seq_read(TS_SKB_CB(state));
3556 }
3557 
3558 /**
3559  * skb_find_text - Find a text pattern in skb data
3560  * @skb: the buffer to look in
3561  * @from: search offset
3562  * @to: search limit
3563  * @config: textsearch configuration
3564  *
3565  * Finds a pattern in the skb data according to the specified
3566  * textsearch configuration. Use textsearch_next() to retrieve
3567  * subsequent occurrences of the pattern. Returns the offset
3568  * to the first occurrence or UINT_MAX if no match was found.
3569  */
3570 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
3571 			   unsigned int to, struct ts_config *config)
3572 {
3573 	struct ts_state state;
3574 	unsigned int ret;
3575 
3576 	config->get_next_block = skb_ts_get_next_block;
3577 	config->finish = skb_ts_finish;
3578 
3579 	skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state));
3580 
3581 	ret = textsearch_find(config, &state);
3582 	return (ret <= to - from ? ret : UINT_MAX);
3583 }
3584 EXPORT_SYMBOL(skb_find_text);
3585 
3586 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
3587 			 int offset, size_t size)
3588 {
3589 	int i = skb_shinfo(skb)->nr_frags;
3590 
3591 	if (skb_can_coalesce(skb, i, page, offset)) {
3592 		skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size);
3593 	} else if (i < MAX_SKB_FRAGS) {
3594 		get_page(page);
3595 		skb_fill_page_desc(skb, i, page, offset, size);
3596 	} else {
3597 		return -EMSGSIZE;
3598 	}
3599 
3600 	return 0;
3601 }
3602 EXPORT_SYMBOL_GPL(skb_append_pagefrags);
3603 
3604 /**
3605  *	skb_pull_rcsum - pull skb and update receive checksum
3606  *	@skb: buffer to update
3607  *	@len: length of data pulled
3608  *
3609  *	This function performs an skb_pull on the packet and updates
3610  *	the CHECKSUM_COMPLETE checksum.  It should be used on
3611  *	receive path processing instead of skb_pull unless you know
3612  *	that the checksum difference is zero (e.g., a valid IP header)
3613  *	or you are setting ip_summed to CHECKSUM_NONE.
3614  */
3615 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
3616 {
3617 	unsigned char *data = skb->data;
3618 
3619 	BUG_ON(len > skb->len);
3620 	__skb_pull(skb, len);
3621 	skb_postpull_rcsum(skb, data, len);
3622 	return skb->data;
3623 }
3624 EXPORT_SYMBOL_GPL(skb_pull_rcsum);
3625 
3626 static inline skb_frag_t skb_head_frag_to_page_desc(struct sk_buff *frag_skb)
3627 {
3628 	skb_frag_t head_frag;
3629 	struct page *page;
3630 
3631 	page = virt_to_head_page(frag_skb->head);
3632 	__skb_frag_set_page(&head_frag, page);
3633 	skb_frag_off_set(&head_frag, frag_skb->data -
3634 			 (unsigned char *)page_address(page));
3635 	skb_frag_size_set(&head_frag, skb_headlen(frag_skb));
3636 	return head_frag;
3637 }
3638 
3639 struct sk_buff *skb_segment_list(struct sk_buff *skb,
3640 				 netdev_features_t features,
3641 				 unsigned int offset)
3642 {
3643 	struct sk_buff *list_skb = skb_shinfo(skb)->frag_list;
3644 	unsigned int tnl_hlen = skb_tnl_header_len(skb);
3645 	unsigned int delta_truesize = 0;
3646 	unsigned int delta_len = 0;
3647 	struct sk_buff *tail = NULL;
3648 	struct sk_buff *nskb;
3649 
3650 	skb_push(skb, -skb_network_offset(skb) + offset);
3651 
3652 	skb_shinfo(skb)->frag_list = NULL;
3653 
3654 	do {
3655 		nskb = list_skb;
3656 		list_skb = list_skb->next;
3657 
3658 		if (!tail)
3659 			skb->next = nskb;
3660 		else
3661 			tail->next = nskb;
3662 
3663 		tail = nskb;
3664 
3665 		delta_len += nskb->len;
3666 		delta_truesize += nskb->truesize;
3667 
3668 		skb_push(nskb, -skb_network_offset(nskb) + offset);
3669 
3670 		skb_release_head_state(nskb);
3671 		 __copy_skb_header(nskb, skb);
3672 
3673 		skb_headers_offset_update(nskb, skb_headroom(nskb) - skb_headroom(skb));
3674 		skb_copy_from_linear_data_offset(skb, -tnl_hlen,
3675 						 nskb->data - tnl_hlen,
3676 						 offset + tnl_hlen);
3677 
3678 		if (skb_needs_linearize(nskb, features) &&
3679 		    __skb_linearize(nskb))
3680 			goto err_linearize;
3681 
3682 	} while (list_skb);
3683 
3684 	skb->truesize = skb->truesize - delta_truesize;
3685 	skb->data_len = skb->data_len - delta_len;
3686 	skb->len = skb->len - delta_len;
3687 
3688 	skb_gso_reset(skb);
3689 
3690 	skb->prev = tail;
3691 
3692 	if (skb_needs_linearize(skb, features) &&
3693 	    __skb_linearize(skb))
3694 		goto err_linearize;
3695 
3696 	skb_get(skb);
3697 
3698 	return skb;
3699 
3700 err_linearize:
3701 	kfree_skb_list(skb->next);
3702 	skb->next = NULL;
3703 	return ERR_PTR(-ENOMEM);
3704 }
3705 EXPORT_SYMBOL_GPL(skb_segment_list);
3706 
3707 int skb_gro_receive_list(struct sk_buff *p, struct sk_buff *skb)
3708 {
3709 	if (unlikely(p->len + skb->len >= 65536))
3710 		return -E2BIG;
3711 
3712 	if (NAPI_GRO_CB(p)->last == p)
3713 		skb_shinfo(p)->frag_list = skb;
3714 	else
3715 		NAPI_GRO_CB(p)->last->next = skb;
3716 
3717 	skb_pull(skb, skb_gro_offset(skb));
3718 
3719 	NAPI_GRO_CB(p)->last = skb;
3720 	NAPI_GRO_CB(p)->count++;
3721 	p->data_len += skb->len;
3722 	p->truesize += skb->truesize;
3723 	p->len += skb->len;
3724 
3725 	NAPI_GRO_CB(skb)->same_flow = 1;
3726 
3727 	return 0;
3728 }
3729 
3730 /**
3731  *	skb_segment - Perform protocol segmentation on skb.
3732  *	@head_skb: buffer to segment
3733  *	@features: features for the output path (see dev->features)
3734  *
3735  *	This function performs segmentation on the given skb.  It returns
3736  *	a pointer to the first in a list of new skbs for the segments.
3737  *	In case of error it returns ERR_PTR(err).
3738  */
3739 struct sk_buff *skb_segment(struct sk_buff *head_skb,
3740 			    netdev_features_t features)
3741 {
3742 	struct sk_buff *segs = NULL;
3743 	struct sk_buff *tail = NULL;
3744 	struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list;
3745 	skb_frag_t *frag = skb_shinfo(head_skb)->frags;
3746 	unsigned int mss = skb_shinfo(head_skb)->gso_size;
3747 	unsigned int doffset = head_skb->data - skb_mac_header(head_skb);
3748 	struct sk_buff *frag_skb = head_skb;
3749 	unsigned int offset = doffset;
3750 	unsigned int tnl_hlen = skb_tnl_header_len(head_skb);
3751 	unsigned int partial_segs = 0;
3752 	unsigned int headroom;
3753 	unsigned int len = head_skb->len;
3754 	__be16 proto;
3755 	bool csum, sg;
3756 	int nfrags = skb_shinfo(head_skb)->nr_frags;
3757 	int err = -ENOMEM;
3758 	int i = 0;
3759 	int pos;
3760 
3761 	if (list_skb && !list_skb->head_frag && skb_headlen(list_skb) &&
3762 	    (skb_shinfo(head_skb)->gso_type & SKB_GSO_DODGY)) {
3763 		/* gso_size is untrusted, and we have a frag_list with a linear
3764 		 * non head_frag head.
3765 		 *
3766 		 * (we assume checking the first list_skb member suffices;
3767 		 * i.e if either of the list_skb members have non head_frag
3768 		 * head, then the first one has too).
3769 		 *
3770 		 * If head_skb's headlen does not fit requested gso_size, it
3771 		 * means that the frag_list members do NOT terminate on exact
3772 		 * gso_size boundaries. Hence we cannot perform skb_frag_t page
3773 		 * sharing. Therefore we must fallback to copying the frag_list
3774 		 * skbs; we do so by disabling SG.
3775 		 */
3776 		if (mss != GSO_BY_FRAGS && mss != skb_headlen(head_skb))
3777 			features &= ~NETIF_F_SG;
3778 	}
3779 
3780 	__skb_push(head_skb, doffset);
3781 	proto = skb_network_protocol(head_skb, NULL);
3782 	if (unlikely(!proto))
3783 		return ERR_PTR(-EINVAL);
3784 
3785 	sg = !!(features & NETIF_F_SG);
3786 	csum = !!can_checksum_protocol(features, proto);
3787 
3788 	if (sg && csum && (mss != GSO_BY_FRAGS))  {
3789 		if (!(features & NETIF_F_GSO_PARTIAL)) {
3790 			struct sk_buff *iter;
3791 			unsigned int frag_len;
3792 
3793 			if (!list_skb ||
3794 			    !net_gso_ok(features, skb_shinfo(head_skb)->gso_type))
3795 				goto normal;
3796 
3797 			/* If we get here then all the required
3798 			 * GSO features except frag_list are supported.
3799 			 * Try to split the SKB to multiple GSO SKBs
3800 			 * with no frag_list.
3801 			 * Currently we can do that only when the buffers don't
3802 			 * have a linear part and all the buffers except
3803 			 * the last are of the same length.
3804 			 */
3805 			frag_len = list_skb->len;
3806 			skb_walk_frags(head_skb, iter) {
3807 				if (frag_len != iter->len && iter->next)
3808 					goto normal;
3809 				if (skb_headlen(iter) && !iter->head_frag)
3810 					goto normal;
3811 
3812 				len -= iter->len;
3813 			}
3814 
3815 			if (len != frag_len)
3816 				goto normal;
3817 		}
3818 
3819 		/* GSO partial only requires that we trim off any excess that
3820 		 * doesn't fit into an MSS sized block, so take care of that
3821 		 * now.
3822 		 */
3823 		partial_segs = len / mss;
3824 		if (partial_segs > 1)
3825 			mss *= partial_segs;
3826 		else
3827 			partial_segs = 0;
3828 	}
3829 
3830 normal:
3831 	headroom = skb_headroom(head_skb);
3832 	pos = skb_headlen(head_skb);
3833 
3834 	do {
3835 		struct sk_buff *nskb;
3836 		skb_frag_t *nskb_frag;
3837 		int hsize;
3838 		int size;
3839 
3840 		if (unlikely(mss == GSO_BY_FRAGS)) {
3841 			len = list_skb->len;
3842 		} else {
3843 			len = head_skb->len - offset;
3844 			if (len > mss)
3845 				len = mss;
3846 		}
3847 
3848 		hsize = skb_headlen(head_skb) - offset;
3849 		if (hsize < 0)
3850 			hsize = 0;
3851 		if (hsize > len || !sg)
3852 			hsize = len;
3853 
3854 		if (!hsize && i >= nfrags && skb_headlen(list_skb) &&
3855 		    (skb_headlen(list_skb) == len || sg)) {
3856 			BUG_ON(skb_headlen(list_skb) > len);
3857 
3858 			i = 0;
3859 			nfrags = skb_shinfo(list_skb)->nr_frags;
3860 			frag = skb_shinfo(list_skb)->frags;
3861 			frag_skb = list_skb;
3862 			pos += skb_headlen(list_skb);
3863 
3864 			while (pos < offset + len) {
3865 				BUG_ON(i >= nfrags);
3866 
3867 				size = skb_frag_size(frag);
3868 				if (pos + size > offset + len)
3869 					break;
3870 
3871 				i++;
3872 				pos += size;
3873 				frag++;
3874 			}
3875 
3876 			nskb = skb_clone(list_skb, GFP_ATOMIC);
3877 			list_skb = list_skb->next;
3878 
3879 			if (unlikely(!nskb))
3880 				goto err;
3881 
3882 			if (unlikely(pskb_trim(nskb, len))) {
3883 				kfree_skb(nskb);
3884 				goto err;
3885 			}
3886 
3887 			hsize = skb_end_offset(nskb);
3888 			if (skb_cow_head(nskb, doffset + headroom)) {
3889 				kfree_skb(nskb);
3890 				goto err;
3891 			}
3892 
3893 			nskb->truesize += skb_end_offset(nskb) - hsize;
3894 			skb_release_head_state(nskb);
3895 			__skb_push(nskb, doffset);
3896 		} else {
3897 			nskb = __alloc_skb(hsize + doffset + headroom,
3898 					   GFP_ATOMIC, skb_alloc_rx_flag(head_skb),
3899 					   NUMA_NO_NODE);
3900 
3901 			if (unlikely(!nskb))
3902 				goto err;
3903 
3904 			skb_reserve(nskb, headroom);
3905 			__skb_put(nskb, doffset);
3906 		}
3907 
3908 		if (segs)
3909 			tail->next = nskb;
3910 		else
3911 			segs = nskb;
3912 		tail = nskb;
3913 
3914 		__copy_skb_header(nskb, head_skb);
3915 
3916 		skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom);
3917 		skb_reset_mac_len(nskb);
3918 
3919 		skb_copy_from_linear_data_offset(head_skb, -tnl_hlen,
3920 						 nskb->data - tnl_hlen,
3921 						 doffset + tnl_hlen);
3922 
3923 		if (nskb->len == len + doffset)
3924 			goto perform_csum_check;
3925 
3926 		if (!sg) {
3927 			if (!csum) {
3928 				if (!nskb->remcsum_offload)
3929 					nskb->ip_summed = CHECKSUM_NONE;
3930 				SKB_GSO_CB(nskb)->csum =
3931 					skb_copy_and_csum_bits(head_skb, offset,
3932 							       skb_put(nskb,
3933 								       len),
3934 							       len, 0);
3935 				SKB_GSO_CB(nskb)->csum_start =
3936 					skb_headroom(nskb) + doffset;
3937 			} else {
3938 				skb_copy_bits(head_skb, offset,
3939 					      skb_put(nskb, len),
3940 					      len);
3941 			}
3942 			continue;
3943 		}
3944 
3945 		nskb_frag = skb_shinfo(nskb)->frags;
3946 
3947 		skb_copy_from_linear_data_offset(head_skb, offset,
3948 						 skb_put(nskb, hsize), hsize);
3949 
3950 		skb_shinfo(nskb)->tx_flags |= skb_shinfo(head_skb)->tx_flags &
3951 					      SKBTX_SHARED_FRAG;
3952 
3953 		if (skb_orphan_frags(frag_skb, GFP_ATOMIC) ||
3954 		    skb_zerocopy_clone(nskb, frag_skb, GFP_ATOMIC))
3955 			goto err;
3956 
3957 		while (pos < offset + len) {
3958 			if (i >= nfrags) {
3959 				i = 0;
3960 				nfrags = skb_shinfo(list_skb)->nr_frags;
3961 				frag = skb_shinfo(list_skb)->frags;
3962 				frag_skb = list_skb;
3963 				if (!skb_headlen(list_skb)) {
3964 					BUG_ON(!nfrags);
3965 				} else {
3966 					BUG_ON(!list_skb->head_frag);
3967 
3968 					/* to make room for head_frag. */
3969 					i--;
3970 					frag--;
3971 				}
3972 				if (skb_orphan_frags(frag_skb, GFP_ATOMIC) ||
3973 				    skb_zerocopy_clone(nskb, frag_skb,
3974 						       GFP_ATOMIC))
3975 					goto err;
3976 
3977 				list_skb = list_skb->next;
3978 			}
3979 
3980 			if (unlikely(skb_shinfo(nskb)->nr_frags >=
3981 				     MAX_SKB_FRAGS)) {
3982 				net_warn_ratelimited(
3983 					"skb_segment: too many frags: %u %u\n",
3984 					pos, mss);
3985 				err = -EINVAL;
3986 				goto err;
3987 			}
3988 
3989 			*nskb_frag = (i < 0) ? skb_head_frag_to_page_desc(frag_skb) : *frag;
3990 			__skb_frag_ref(nskb_frag);
3991 			size = skb_frag_size(nskb_frag);
3992 
3993 			if (pos < offset) {
3994 				skb_frag_off_add(nskb_frag, offset - pos);
3995 				skb_frag_size_sub(nskb_frag, offset - pos);
3996 			}
3997 
3998 			skb_shinfo(nskb)->nr_frags++;
3999 
4000 			if (pos + size <= offset + len) {
4001 				i++;
4002 				frag++;
4003 				pos += size;
4004 			} else {
4005 				skb_frag_size_sub(nskb_frag, pos + size - (offset + len));
4006 				goto skip_fraglist;
4007 			}
4008 
4009 			nskb_frag++;
4010 		}
4011 
4012 skip_fraglist:
4013 		nskb->data_len = len - hsize;
4014 		nskb->len += nskb->data_len;
4015 		nskb->truesize += nskb->data_len;
4016 
4017 perform_csum_check:
4018 		if (!csum) {
4019 			if (skb_has_shared_frag(nskb) &&
4020 			    __skb_linearize(nskb))
4021 				goto err;
4022 
4023 			if (!nskb->remcsum_offload)
4024 				nskb->ip_summed = CHECKSUM_NONE;
4025 			SKB_GSO_CB(nskb)->csum =
4026 				skb_checksum(nskb, doffset,
4027 					     nskb->len - doffset, 0);
4028 			SKB_GSO_CB(nskb)->csum_start =
4029 				skb_headroom(nskb) + doffset;
4030 		}
4031 	} while ((offset += len) < head_skb->len);
4032 
4033 	/* Some callers want to get the end of the list.
4034 	 * Put it in segs->prev to avoid walking the list.
4035 	 * (see validate_xmit_skb_list() for example)
4036 	 */
4037 	segs->prev = tail;
4038 
4039 	if (partial_segs) {
4040 		struct sk_buff *iter;
4041 		int type = skb_shinfo(head_skb)->gso_type;
4042 		unsigned short gso_size = skb_shinfo(head_skb)->gso_size;
4043 
4044 		/* Update type to add partial and then remove dodgy if set */
4045 		type |= (features & NETIF_F_GSO_PARTIAL) / NETIF_F_GSO_PARTIAL * SKB_GSO_PARTIAL;
4046 		type &= ~SKB_GSO_DODGY;
4047 
4048 		/* Update GSO info and prepare to start updating headers on
4049 		 * our way back down the stack of protocols.
4050 		 */
4051 		for (iter = segs; iter; iter = iter->next) {
4052 			skb_shinfo(iter)->gso_size = gso_size;
4053 			skb_shinfo(iter)->gso_segs = partial_segs;
4054 			skb_shinfo(iter)->gso_type = type;
4055 			SKB_GSO_CB(iter)->data_offset = skb_headroom(iter) + doffset;
4056 		}
4057 
4058 		if (tail->len - doffset <= gso_size)
4059 			skb_shinfo(tail)->gso_size = 0;
4060 		else if (tail != segs)
4061 			skb_shinfo(tail)->gso_segs = DIV_ROUND_UP(tail->len - doffset, gso_size);
4062 	}
4063 
4064 	/* Following permits correct backpressure, for protocols
4065 	 * using skb_set_owner_w().
4066 	 * Idea is to tranfert ownership from head_skb to last segment.
4067 	 */
4068 	if (head_skb->destructor == sock_wfree) {
4069 		swap(tail->truesize, head_skb->truesize);
4070 		swap(tail->destructor, head_skb->destructor);
4071 		swap(tail->sk, head_skb->sk);
4072 	}
4073 	return segs;
4074 
4075 err:
4076 	kfree_skb_list(segs);
4077 	return ERR_PTR(err);
4078 }
4079 EXPORT_SYMBOL_GPL(skb_segment);
4080 
4081 int skb_gro_receive(struct sk_buff *p, struct sk_buff *skb)
4082 {
4083 	struct skb_shared_info *pinfo, *skbinfo = skb_shinfo(skb);
4084 	unsigned int offset = skb_gro_offset(skb);
4085 	unsigned int headlen = skb_headlen(skb);
4086 	unsigned int len = skb_gro_len(skb);
4087 	unsigned int delta_truesize;
4088 	struct sk_buff *lp;
4089 
4090 	if (unlikely(p->len + len >= 65536 || NAPI_GRO_CB(skb)->flush))
4091 		return -E2BIG;
4092 
4093 	lp = NAPI_GRO_CB(p)->last;
4094 	pinfo = skb_shinfo(lp);
4095 
4096 	if (headlen <= offset) {
4097 		skb_frag_t *frag;
4098 		skb_frag_t *frag2;
4099 		int i = skbinfo->nr_frags;
4100 		int nr_frags = pinfo->nr_frags + i;
4101 
4102 		if (nr_frags > MAX_SKB_FRAGS)
4103 			goto merge;
4104 
4105 		offset -= headlen;
4106 		pinfo->nr_frags = nr_frags;
4107 		skbinfo->nr_frags = 0;
4108 
4109 		frag = pinfo->frags + nr_frags;
4110 		frag2 = skbinfo->frags + i;
4111 		do {
4112 			*--frag = *--frag2;
4113 		} while (--i);
4114 
4115 		skb_frag_off_add(frag, offset);
4116 		skb_frag_size_sub(frag, offset);
4117 
4118 		/* all fragments truesize : remove (head size + sk_buff) */
4119 		delta_truesize = skb->truesize -
4120 				 SKB_TRUESIZE(skb_end_offset(skb));
4121 
4122 		skb->truesize -= skb->data_len;
4123 		skb->len -= skb->data_len;
4124 		skb->data_len = 0;
4125 
4126 		NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE;
4127 		goto done;
4128 	} else if (skb->head_frag) {
4129 		int nr_frags = pinfo->nr_frags;
4130 		skb_frag_t *frag = pinfo->frags + nr_frags;
4131 		struct page *page = virt_to_head_page(skb->head);
4132 		unsigned int first_size = headlen - offset;
4133 		unsigned int first_offset;
4134 
4135 		if (nr_frags + 1 + skbinfo->nr_frags > MAX_SKB_FRAGS)
4136 			goto merge;
4137 
4138 		first_offset = skb->data -
4139 			       (unsigned char *)page_address(page) +
4140 			       offset;
4141 
4142 		pinfo->nr_frags = nr_frags + 1 + skbinfo->nr_frags;
4143 
4144 		__skb_frag_set_page(frag, page);
4145 		skb_frag_off_set(frag, first_offset);
4146 		skb_frag_size_set(frag, first_size);
4147 
4148 		memcpy(frag + 1, skbinfo->frags, sizeof(*frag) * skbinfo->nr_frags);
4149 		/* We dont need to clear skbinfo->nr_frags here */
4150 
4151 		delta_truesize = skb->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
4152 		NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE_STOLEN_HEAD;
4153 		goto done;
4154 	}
4155 
4156 merge:
4157 	delta_truesize = skb->truesize;
4158 	if (offset > headlen) {
4159 		unsigned int eat = offset - headlen;
4160 
4161 		skb_frag_off_add(&skbinfo->frags[0], eat);
4162 		skb_frag_size_sub(&skbinfo->frags[0], eat);
4163 		skb->data_len -= eat;
4164 		skb->len -= eat;
4165 		offset = headlen;
4166 	}
4167 
4168 	__skb_pull(skb, offset);
4169 
4170 	if (NAPI_GRO_CB(p)->last == p)
4171 		skb_shinfo(p)->frag_list = skb;
4172 	else
4173 		NAPI_GRO_CB(p)->last->next = skb;
4174 	NAPI_GRO_CB(p)->last = skb;
4175 	__skb_header_release(skb);
4176 	lp = p;
4177 
4178 done:
4179 	NAPI_GRO_CB(p)->count++;
4180 	p->data_len += len;
4181 	p->truesize += delta_truesize;
4182 	p->len += len;
4183 	if (lp != p) {
4184 		lp->data_len += len;
4185 		lp->truesize += delta_truesize;
4186 		lp->len += len;
4187 	}
4188 	NAPI_GRO_CB(skb)->same_flow = 1;
4189 	return 0;
4190 }
4191 
4192 #ifdef CONFIG_SKB_EXTENSIONS
4193 #define SKB_EXT_ALIGN_VALUE	8
4194 #define SKB_EXT_CHUNKSIZEOF(x)	(ALIGN((sizeof(x)), SKB_EXT_ALIGN_VALUE) / SKB_EXT_ALIGN_VALUE)
4195 
4196 static const u8 skb_ext_type_len[] = {
4197 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4198 	[SKB_EXT_BRIDGE_NF] = SKB_EXT_CHUNKSIZEOF(struct nf_bridge_info),
4199 #endif
4200 #ifdef CONFIG_XFRM
4201 	[SKB_EXT_SEC_PATH] = SKB_EXT_CHUNKSIZEOF(struct sec_path),
4202 #endif
4203 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4204 	[TC_SKB_EXT] = SKB_EXT_CHUNKSIZEOF(struct tc_skb_ext),
4205 #endif
4206 #if IS_ENABLED(CONFIG_MPTCP)
4207 	[SKB_EXT_MPTCP] = SKB_EXT_CHUNKSIZEOF(struct mptcp_ext),
4208 #endif
4209 };
4210 
4211 static __always_inline unsigned int skb_ext_total_length(void)
4212 {
4213 	return SKB_EXT_CHUNKSIZEOF(struct skb_ext) +
4214 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4215 		skb_ext_type_len[SKB_EXT_BRIDGE_NF] +
4216 #endif
4217 #ifdef CONFIG_XFRM
4218 		skb_ext_type_len[SKB_EXT_SEC_PATH] +
4219 #endif
4220 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4221 		skb_ext_type_len[TC_SKB_EXT] +
4222 #endif
4223 #if IS_ENABLED(CONFIG_MPTCP)
4224 		skb_ext_type_len[SKB_EXT_MPTCP] +
4225 #endif
4226 		0;
4227 }
4228 
4229 static void skb_extensions_init(void)
4230 {
4231 	BUILD_BUG_ON(SKB_EXT_NUM >= 8);
4232 	BUILD_BUG_ON(skb_ext_total_length() > 255);
4233 
4234 	skbuff_ext_cache = kmem_cache_create("skbuff_ext_cache",
4235 					     SKB_EXT_ALIGN_VALUE * skb_ext_total_length(),
4236 					     0,
4237 					     SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4238 					     NULL);
4239 }
4240 #else
4241 static void skb_extensions_init(void) {}
4242 #endif
4243 
4244 void __init skb_init(void)
4245 {
4246 	skbuff_head_cache = kmem_cache_create_usercopy("skbuff_head_cache",
4247 					      sizeof(struct sk_buff),
4248 					      0,
4249 					      SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4250 					      offsetof(struct sk_buff, cb),
4251 					      sizeof_field(struct sk_buff, cb),
4252 					      NULL);
4253 	skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
4254 						sizeof(struct sk_buff_fclones),
4255 						0,
4256 						SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4257 						NULL);
4258 	skb_extensions_init();
4259 }
4260 
4261 static int
4262 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len,
4263 	       unsigned int recursion_level)
4264 {
4265 	int start = skb_headlen(skb);
4266 	int i, copy = start - offset;
4267 	struct sk_buff *frag_iter;
4268 	int elt = 0;
4269 
4270 	if (unlikely(recursion_level >= 24))
4271 		return -EMSGSIZE;
4272 
4273 	if (copy > 0) {
4274 		if (copy > len)
4275 			copy = len;
4276 		sg_set_buf(sg, skb->data + offset, copy);
4277 		elt++;
4278 		if ((len -= copy) == 0)
4279 			return elt;
4280 		offset += copy;
4281 	}
4282 
4283 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
4284 		int end;
4285 
4286 		WARN_ON(start > offset + len);
4287 
4288 		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
4289 		if ((copy = end - offset) > 0) {
4290 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4291 			if (unlikely(elt && sg_is_last(&sg[elt - 1])))
4292 				return -EMSGSIZE;
4293 
4294 			if (copy > len)
4295 				copy = len;
4296 			sg_set_page(&sg[elt], skb_frag_page(frag), copy,
4297 				    skb_frag_off(frag) + offset - start);
4298 			elt++;
4299 			if (!(len -= copy))
4300 				return elt;
4301 			offset += copy;
4302 		}
4303 		start = end;
4304 	}
4305 
4306 	skb_walk_frags(skb, frag_iter) {
4307 		int end, ret;
4308 
4309 		WARN_ON(start > offset + len);
4310 
4311 		end = start + frag_iter->len;
4312 		if ((copy = end - offset) > 0) {
4313 			if (unlikely(elt && sg_is_last(&sg[elt - 1])))
4314 				return -EMSGSIZE;
4315 
4316 			if (copy > len)
4317 				copy = len;
4318 			ret = __skb_to_sgvec(frag_iter, sg+elt, offset - start,
4319 					      copy, recursion_level + 1);
4320 			if (unlikely(ret < 0))
4321 				return ret;
4322 			elt += ret;
4323 			if ((len -= copy) == 0)
4324 				return elt;
4325 			offset += copy;
4326 		}
4327 		start = end;
4328 	}
4329 	BUG_ON(len);
4330 	return elt;
4331 }
4332 
4333 /**
4334  *	skb_to_sgvec - Fill a scatter-gather list from a socket buffer
4335  *	@skb: Socket buffer containing the buffers to be mapped
4336  *	@sg: The scatter-gather list to map into
4337  *	@offset: The offset into the buffer's contents to start mapping
4338  *	@len: Length of buffer space to be mapped
4339  *
4340  *	Fill the specified scatter-gather list with mappings/pointers into a
4341  *	region of the buffer space attached to a socket buffer. Returns either
4342  *	the number of scatterlist items used, or -EMSGSIZE if the contents
4343  *	could not fit.
4344  */
4345 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
4346 {
4347 	int nsg = __skb_to_sgvec(skb, sg, offset, len, 0);
4348 
4349 	if (nsg <= 0)
4350 		return nsg;
4351 
4352 	sg_mark_end(&sg[nsg - 1]);
4353 
4354 	return nsg;
4355 }
4356 EXPORT_SYMBOL_GPL(skb_to_sgvec);
4357 
4358 /* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given
4359  * sglist without mark the sg which contain last skb data as the end.
4360  * So the caller can mannipulate sg list as will when padding new data after
4361  * the first call without calling sg_unmark_end to expend sg list.
4362  *
4363  * Scenario to use skb_to_sgvec_nomark:
4364  * 1. sg_init_table
4365  * 2. skb_to_sgvec_nomark(payload1)
4366  * 3. skb_to_sgvec_nomark(payload2)
4367  *
4368  * This is equivalent to:
4369  * 1. sg_init_table
4370  * 2. skb_to_sgvec(payload1)
4371  * 3. sg_unmark_end
4372  * 4. skb_to_sgvec(payload2)
4373  *
4374  * When mapping mutilple payload conditionally, skb_to_sgvec_nomark
4375  * is more preferable.
4376  */
4377 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
4378 			int offset, int len)
4379 {
4380 	return __skb_to_sgvec(skb, sg, offset, len, 0);
4381 }
4382 EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark);
4383 
4384 
4385 
4386 /**
4387  *	skb_cow_data - Check that a socket buffer's data buffers are writable
4388  *	@skb: The socket buffer to check.
4389  *	@tailbits: Amount of trailing space to be added
4390  *	@trailer: Returned pointer to the skb where the @tailbits space begins
4391  *
4392  *	Make sure that the data buffers attached to a socket buffer are
4393  *	writable. If they are not, private copies are made of the data buffers
4394  *	and the socket buffer is set to use these instead.
4395  *
4396  *	If @tailbits is given, make sure that there is space to write @tailbits
4397  *	bytes of data beyond current end of socket buffer.  @trailer will be
4398  *	set to point to the skb in which this space begins.
4399  *
4400  *	The number of scatterlist elements required to completely map the
4401  *	COW'd and extended socket buffer will be returned.
4402  */
4403 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
4404 {
4405 	int copyflag;
4406 	int elt;
4407 	struct sk_buff *skb1, **skb_p;
4408 
4409 	/* If skb is cloned or its head is paged, reallocate
4410 	 * head pulling out all the pages (pages are considered not writable
4411 	 * at the moment even if they are anonymous).
4412 	 */
4413 	if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
4414 	    !__pskb_pull_tail(skb, __skb_pagelen(skb)))
4415 		return -ENOMEM;
4416 
4417 	/* Easy case. Most of packets will go this way. */
4418 	if (!skb_has_frag_list(skb)) {
4419 		/* A little of trouble, not enough of space for trailer.
4420 		 * This should not happen, when stack is tuned to generate
4421 		 * good frames. OK, on miss we reallocate and reserve even more
4422 		 * space, 128 bytes is fair. */
4423 
4424 		if (skb_tailroom(skb) < tailbits &&
4425 		    pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
4426 			return -ENOMEM;
4427 
4428 		/* Voila! */
4429 		*trailer = skb;
4430 		return 1;
4431 	}
4432 
4433 	/* Misery. We are in troubles, going to mincer fragments... */
4434 
4435 	elt = 1;
4436 	skb_p = &skb_shinfo(skb)->frag_list;
4437 	copyflag = 0;
4438 
4439 	while ((skb1 = *skb_p) != NULL) {
4440 		int ntail = 0;
4441 
4442 		/* The fragment is partially pulled by someone,
4443 		 * this can happen on input. Copy it and everything
4444 		 * after it. */
4445 
4446 		if (skb_shared(skb1))
4447 			copyflag = 1;
4448 
4449 		/* If the skb is the last, worry about trailer. */
4450 
4451 		if (skb1->next == NULL && tailbits) {
4452 			if (skb_shinfo(skb1)->nr_frags ||
4453 			    skb_has_frag_list(skb1) ||
4454 			    skb_tailroom(skb1) < tailbits)
4455 				ntail = tailbits + 128;
4456 		}
4457 
4458 		if (copyflag ||
4459 		    skb_cloned(skb1) ||
4460 		    ntail ||
4461 		    skb_shinfo(skb1)->nr_frags ||
4462 		    skb_has_frag_list(skb1)) {
4463 			struct sk_buff *skb2;
4464 
4465 			/* Fuck, we are miserable poor guys... */
4466 			if (ntail == 0)
4467 				skb2 = skb_copy(skb1, GFP_ATOMIC);
4468 			else
4469 				skb2 = skb_copy_expand(skb1,
4470 						       skb_headroom(skb1),
4471 						       ntail,
4472 						       GFP_ATOMIC);
4473 			if (unlikely(skb2 == NULL))
4474 				return -ENOMEM;
4475 
4476 			if (skb1->sk)
4477 				skb_set_owner_w(skb2, skb1->sk);
4478 
4479 			/* Looking around. Are we still alive?
4480 			 * OK, link new skb, drop old one */
4481 
4482 			skb2->next = skb1->next;
4483 			*skb_p = skb2;
4484 			kfree_skb(skb1);
4485 			skb1 = skb2;
4486 		}
4487 		elt++;
4488 		*trailer = skb1;
4489 		skb_p = &skb1->next;
4490 	}
4491 
4492 	return elt;
4493 }
4494 EXPORT_SYMBOL_GPL(skb_cow_data);
4495 
4496 static void sock_rmem_free(struct sk_buff *skb)
4497 {
4498 	struct sock *sk = skb->sk;
4499 
4500 	atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
4501 }
4502 
4503 static void skb_set_err_queue(struct sk_buff *skb)
4504 {
4505 	/* pkt_type of skbs received on local sockets is never PACKET_OUTGOING.
4506 	 * So, it is safe to (mis)use it to mark skbs on the error queue.
4507 	 */
4508 	skb->pkt_type = PACKET_OUTGOING;
4509 	BUILD_BUG_ON(PACKET_OUTGOING == 0);
4510 }
4511 
4512 /*
4513  * Note: We dont mem charge error packets (no sk_forward_alloc changes)
4514  */
4515 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
4516 {
4517 	if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
4518 	    (unsigned int)READ_ONCE(sk->sk_rcvbuf))
4519 		return -ENOMEM;
4520 
4521 	skb_orphan(skb);
4522 	skb->sk = sk;
4523 	skb->destructor = sock_rmem_free;
4524 	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
4525 	skb_set_err_queue(skb);
4526 
4527 	/* before exiting rcu section, make sure dst is refcounted */
4528 	skb_dst_force(skb);
4529 
4530 	skb_queue_tail(&sk->sk_error_queue, skb);
4531 	if (!sock_flag(sk, SOCK_DEAD))
4532 		sk->sk_error_report(sk);
4533 	return 0;
4534 }
4535 EXPORT_SYMBOL(sock_queue_err_skb);
4536 
4537 static bool is_icmp_err_skb(const struct sk_buff *skb)
4538 {
4539 	return skb && (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP ||
4540 		       SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP6);
4541 }
4542 
4543 struct sk_buff *sock_dequeue_err_skb(struct sock *sk)
4544 {
4545 	struct sk_buff_head *q = &sk->sk_error_queue;
4546 	struct sk_buff *skb, *skb_next = NULL;
4547 	bool icmp_next = false;
4548 	unsigned long flags;
4549 
4550 	spin_lock_irqsave(&q->lock, flags);
4551 	skb = __skb_dequeue(q);
4552 	if (skb && (skb_next = skb_peek(q))) {
4553 		icmp_next = is_icmp_err_skb(skb_next);
4554 		if (icmp_next)
4555 			sk->sk_err = SKB_EXT_ERR(skb_next)->ee.ee_origin;
4556 	}
4557 	spin_unlock_irqrestore(&q->lock, flags);
4558 
4559 	if (is_icmp_err_skb(skb) && !icmp_next)
4560 		sk->sk_err = 0;
4561 
4562 	if (skb_next)
4563 		sk->sk_error_report(sk);
4564 
4565 	return skb;
4566 }
4567 EXPORT_SYMBOL(sock_dequeue_err_skb);
4568 
4569 /**
4570  * skb_clone_sk - create clone of skb, and take reference to socket
4571  * @skb: the skb to clone
4572  *
4573  * This function creates a clone of a buffer that holds a reference on
4574  * sk_refcnt.  Buffers created via this function are meant to be
4575  * returned using sock_queue_err_skb, or free via kfree_skb.
4576  *
4577  * When passing buffers allocated with this function to sock_queue_err_skb
4578  * it is necessary to wrap the call with sock_hold/sock_put in order to
4579  * prevent the socket from being released prior to being enqueued on
4580  * the sk_error_queue.
4581  */
4582 struct sk_buff *skb_clone_sk(struct sk_buff *skb)
4583 {
4584 	struct sock *sk = skb->sk;
4585 	struct sk_buff *clone;
4586 
4587 	if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt))
4588 		return NULL;
4589 
4590 	clone = skb_clone(skb, GFP_ATOMIC);
4591 	if (!clone) {
4592 		sock_put(sk);
4593 		return NULL;
4594 	}
4595 
4596 	clone->sk = sk;
4597 	clone->destructor = sock_efree;
4598 
4599 	return clone;
4600 }
4601 EXPORT_SYMBOL(skb_clone_sk);
4602 
4603 static void __skb_complete_tx_timestamp(struct sk_buff *skb,
4604 					struct sock *sk,
4605 					int tstype,
4606 					bool opt_stats)
4607 {
4608 	struct sock_exterr_skb *serr;
4609 	int err;
4610 
4611 	BUILD_BUG_ON(sizeof(struct sock_exterr_skb) > sizeof(skb->cb));
4612 
4613 	serr = SKB_EXT_ERR(skb);
4614 	memset(serr, 0, sizeof(*serr));
4615 	serr->ee.ee_errno = ENOMSG;
4616 	serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
4617 	serr->ee.ee_info = tstype;
4618 	serr->opt_stats = opt_stats;
4619 	serr->header.h4.iif = skb->dev ? skb->dev->ifindex : 0;
4620 	if (sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID) {
4621 		serr->ee.ee_data = skb_shinfo(skb)->tskey;
4622 		if (sk->sk_protocol == IPPROTO_TCP &&
4623 		    sk->sk_type == SOCK_STREAM)
4624 			serr->ee.ee_data -= sk->sk_tskey;
4625 	}
4626 
4627 	err = sock_queue_err_skb(sk, skb);
4628 
4629 	if (err)
4630 		kfree_skb(skb);
4631 }
4632 
4633 static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly)
4634 {
4635 	bool ret;
4636 
4637 	if (likely(sysctl_tstamp_allow_data || tsonly))
4638 		return true;
4639 
4640 	read_lock_bh(&sk->sk_callback_lock);
4641 	ret = sk->sk_socket && sk->sk_socket->file &&
4642 	      file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW);
4643 	read_unlock_bh(&sk->sk_callback_lock);
4644 	return ret;
4645 }
4646 
4647 void skb_complete_tx_timestamp(struct sk_buff *skb,
4648 			       struct skb_shared_hwtstamps *hwtstamps)
4649 {
4650 	struct sock *sk = skb->sk;
4651 
4652 	if (!skb_may_tx_timestamp(sk, false))
4653 		goto err;
4654 
4655 	/* Take a reference to prevent skb_orphan() from freeing the socket,
4656 	 * but only if the socket refcount is not zero.
4657 	 */
4658 	if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
4659 		*skb_hwtstamps(skb) = *hwtstamps;
4660 		__skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND, false);
4661 		sock_put(sk);
4662 		return;
4663 	}
4664 
4665 err:
4666 	kfree_skb(skb);
4667 }
4668 EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp);
4669 
4670 void __skb_tstamp_tx(struct sk_buff *orig_skb,
4671 		     struct skb_shared_hwtstamps *hwtstamps,
4672 		     struct sock *sk, int tstype)
4673 {
4674 	struct sk_buff *skb;
4675 	bool tsonly, opt_stats = false;
4676 
4677 	if (!sk)
4678 		return;
4679 
4680 	if (!hwtstamps && !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TX_SWHW) &&
4681 	    skb_shinfo(orig_skb)->tx_flags & SKBTX_IN_PROGRESS)
4682 		return;
4683 
4684 	tsonly = sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TSONLY;
4685 	if (!skb_may_tx_timestamp(sk, tsonly))
4686 		return;
4687 
4688 	if (tsonly) {
4689 #ifdef CONFIG_INET
4690 		if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_STATS) &&
4691 		    sk->sk_protocol == IPPROTO_TCP &&
4692 		    sk->sk_type == SOCK_STREAM) {
4693 			skb = tcp_get_timestamping_opt_stats(sk, orig_skb);
4694 			opt_stats = true;
4695 		} else
4696 #endif
4697 			skb = alloc_skb(0, GFP_ATOMIC);
4698 	} else {
4699 		skb = skb_clone(orig_skb, GFP_ATOMIC);
4700 	}
4701 	if (!skb)
4702 		return;
4703 
4704 	if (tsonly) {
4705 		skb_shinfo(skb)->tx_flags |= skb_shinfo(orig_skb)->tx_flags &
4706 					     SKBTX_ANY_TSTAMP;
4707 		skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey;
4708 	}
4709 
4710 	if (hwtstamps)
4711 		*skb_hwtstamps(skb) = *hwtstamps;
4712 	else
4713 		skb->tstamp = ktime_get_real();
4714 
4715 	__skb_complete_tx_timestamp(skb, sk, tstype, opt_stats);
4716 }
4717 EXPORT_SYMBOL_GPL(__skb_tstamp_tx);
4718 
4719 void skb_tstamp_tx(struct sk_buff *orig_skb,
4720 		   struct skb_shared_hwtstamps *hwtstamps)
4721 {
4722 	return __skb_tstamp_tx(orig_skb, hwtstamps, orig_skb->sk,
4723 			       SCM_TSTAMP_SND);
4724 }
4725 EXPORT_SYMBOL_GPL(skb_tstamp_tx);
4726 
4727 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked)
4728 {
4729 	struct sock *sk = skb->sk;
4730 	struct sock_exterr_skb *serr;
4731 	int err = 1;
4732 
4733 	skb->wifi_acked_valid = 1;
4734 	skb->wifi_acked = acked;
4735 
4736 	serr = SKB_EXT_ERR(skb);
4737 	memset(serr, 0, sizeof(*serr));
4738 	serr->ee.ee_errno = ENOMSG;
4739 	serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS;
4740 
4741 	/* Take a reference to prevent skb_orphan() from freeing the socket,
4742 	 * but only if the socket refcount is not zero.
4743 	 */
4744 	if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
4745 		err = sock_queue_err_skb(sk, skb);
4746 		sock_put(sk);
4747 	}
4748 	if (err)
4749 		kfree_skb(skb);
4750 }
4751 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack);
4752 
4753 /**
4754  * skb_partial_csum_set - set up and verify partial csum values for packet
4755  * @skb: the skb to set
4756  * @start: the number of bytes after skb->data to start checksumming.
4757  * @off: the offset from start to place the checksum.
4758  *
4759  * For untrusted partially-checksummed packets, we need to make sure the values
4760  * for skb->csum_start and skb->csum_offset are valid so we don't oops.
4761  *
4762  * This function checks and sets those values and skb->ip_summed: if this
4763  * returns false you should drop the packet.
4764  */
4765 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
4766 {
4767 	u32 csum_end = (u32)start + (u32)off + sizeof(__sum16);
4768 	u32 csum_start = skb_headroom(skb) + (u32)start;
4769 
4770 	if (unlikely(csum_start > U16_MAX || csum_end > skb_headlen(skb))) {
4771 		net_warn_ratelimited("bad partial csum: csum=%u/%u headroom=%u headlen=%u\n",
4772 				     start, off, skb_headroom(skb), skb_headlen(skb));
4773 		return false;
4774 	}
4775 	skb->ip_summed = CHECKSUM_PARTIAL;
4776 	skb->csum_start = csum_start;
4777 	skb->csum_offset = off;
4778 	skb_set_transport_header(skb, start);
4779 	return true;
4780 }
4781 EXPORT_SYMBOL_GPL(skb_partial_csum_set);
4782 
4783 static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len,
4784 			       unsigned int max)
4785 {
4786 	if (skb_headlen(skb) >= len)
4787 		return 0;
4788 
4789 	/* If we need to pullup then pullup to the max, so we
4790 	 * won't need to do it again.
4791 	 */
4792 	if (max > skb->len)
4793 		max = skb->len;
4794 
4795 	if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL)
4796 		return -ENOMEM;
4797 
4798 	if (skb_headlen(skb) < len)
4799 		return -EPROTO;
4800 
4801 	return 0;
4802 }
4803 
4804 #define MAX_TCP_HDR_LEN (15 * 4)
4805 
4806 static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb,
4807 				      typeof(IPPROTO_IP) proto,
4808 				      unsigned int off)
4809 {
4810 	int err;
4811 
4812 	switch (proto) {
4813 	case IPPROTO_TCP:
4814 		err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr),
4815 					  off + MAX_TCP_HDR_LEN);
4816 		if (!err && !skb_partial_csum_set(skb, off,
4817 						  offsetof(struct tcphdr,
4818 							   check)))
4819 			err = -EPROTO;
4820 		return err ? ERR_PTR(err) : &tcp_hdr(skb)->check;
4821 
4822 	case IPPROTO_UDP:
4823 		err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr),
4824 					  off + sizeof(struct udphdr));
4825 		if (!err && !skb_partial_csum_set(skb, off,
4826 						  offsetof(struct udphdr,
4827 							   check)))
4828 			err = -EPROTO;
4829 		return err ? ERR_PTR(err) : &udp_hdr(skb)->check;
4830 	}
4831 
4832 	return ERR_PTR(-EPROTO);
4833 }
4834 
4835 /* This value should be large enough to cover a tagged ethernet header plus
4836  * maximally sized IP and TCP or UDP headers.
4837  */
4838 #define MAX_IP_HDR_LEN 128
4839 
4840 static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate)
4841 {
4842 	unsigned int off;
4843 	bool fragment;
4844 	__sum16 *csum;
4845 	int err;
4846 
4847 	fragment = false;
4848 
4849 	err = skb_maybe_pull_tail(skb,
4850 				  sizeof(struct iphdr),
4851 				  MAX_IP_HDR_LEN);
4852 	if (err < 0)
4853 		goto out;
4854 
4855 	if (ip_is_fragment(ip_hdr(skb)))
4856 		fragment = true;
4857 
4858 	off = ip_hdrlen(skb);
4859 
4860 	err = -EPROTO;
4861 
4862 	if (fragment)
4863 		goto out;
4864 
4865 	csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off);
4866 	if (IS_ERR(csum))
4867 		return PTR_ERR(csum);
4868 
4869 	if (recalculate)
4870 		*csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
4871 					   ip_hdr(skb)->daddr,
4872 					   skb->len - off,
4873 					   ip_hdr(skb)->protocol, 0);
4874 	err = 0;
4875 
4876 out:
4877 	return err;
4878 }
4879 
4880 /* This value should be large enough to cover a tagged ethernet header plus
4881  * an IPv6 header, all options, and a maximal TCP or UDP header.
4882  */
4883 #define MAX_IPV6_HDR_LEN 256
4884 
4885 #define OPT_HDR(type, skb, off) \
4886 	(type *)(skb_network_header(skb) + (off))
4887 
4888 static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate)
4889 {
4890 	int err;
4891 	u8 nexthdr;
4892 	unsigned int off;
4893 	unsigned int len;
4894 	bool fragment;
4895 	bool done;
4896 	__sum16 *csum;
4897 
4898 	fragment = false;
4899 	done = false;
4900 
4901 	off = sizeof(struct ipv6hdr);
4902 
4903 	err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN);
4904 	if (err < 0)
4905 		goto out;
4906 
4907 	nexthdr = ipv6_hdr(skb)->nexthdr;
4908 
4909 	len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len);
4910 	while (off <= len && !done) {
4911 		switch (nexthdr) {
4912 		case IPPROTO_DSTOPTS:
4913 		case IPPROTO_HOPOPTS:
4914 		case IPPROTO_ROUTING: {
4915 			struct ipv6_opt_hdr *hp;
4916 
4917 			err = skb_maybe_pull_tail(skb,
4918 						  off +
4919 						  sizeof(struct ipv6_opt_hdr),
4920 						  MAX_IPV6_HDR_LEN);
4921 			if (err < 0)
4922 				goto out;
4923 
4924 			hp = OPT_HDR(struct ipv6_opt_hdr, skb, off);
4925 			nexthdr = hp->nexthdr;
4926 			off += ipv6_optlen(hp);
4927 			break;
4928 		}
4929 		case IPPROTO_AH: {
4930 			struct ip_auth_hdr *hp;
4931 
4932 			err = skb_maybe_pull_tail(skb,
4933 						  off +
4934 						  sizeof(struct ip_auth_hdr),
4935 						  MAX_IPV6_HDR_LEN);
4936 			if (err < 0)
4937 				goto out;
4938 
4939 			hp = OPT_HDR(struct ip_auth_hdr, skb, off);
4940 			nexthdr = hp->nexthdr;
4941 			off += ipv6_authlen(hp);
4942 			break;
4943 		}
4944 		case IPPROTO_FRAGMENT: {
4945 			struct frag_hdr *hp;
4946 
4947 			err = skb_maybe_pull_tail(skb,
4948 						  off +
4949 						  sizeof(struct frag_hdr),
4950 						  MAX_IPV6_HDR_LEN);
4951 			if (err < 0)
4952 				goto out;
4953 
4954 			hp = OPT_HDR(struct frag_hdr, skb, off);
4955 
4956 			if (hp->frag_off & htons(IP6_OFFSET | IP6_MF))
4957 				fragment = true;
4958 
4959 			nexthdr = hp->nexthdr;
4960 			off += sizeof(struct frag_hdr);
4961 			break;
4962 		}
4963 		default:
4964 			done = true;
4965 			break;
4966 		}
4967 	}
4968 
4969 	err = -EPROTO;
4970 
4971 	if (!done || fragment)
4972 		goto out;
4973 
4974 	csum = skb_checksum_setup_ip(skb, nexthdr, off);
4975 	if (IS_ERR(csum))
4976 		return PTR_ERR(csum);
4977 
4978 	if (recalculate)
4979 		*csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
4980 					 &ipv6_hdr(skb)->daddr,
4981 					 skb->len - off, nexthdr, 0);
4982 	err = 0;
4983 
4984 out:
4985 	return err;
4986 }
4987 
4988 /**
4989  * skb_checksum_setup - set up partial checksum offset
4990  * @skb: the skb to set up
4991  * @recalculate: if true the pseudo-header checksum will be recalculated
4992  */
4993 int skb_checksum_setup(struct sk_buff *skb, bool recalculate)
4994 {
4995 	int err;
4996 
4997 	switch (skb->protocol) {
4998 	case htons(ETH_P_IP):
4999 		err = skb_checksum_setup_ipv4(skb, recalculate);
5000 		break;
5001 
5002 	case htons(ETH_P_IPV6):
5003 		err = skb_checksum_setup_ipv6(skb, recalculate);
5004 		break;
5005 
5006 	default:
5007 		err = -EPROTO;
5008 		break;
5009 	}
5010 
5011 	return err;
5012 }
5013 EXPORT_SYMBOL(skb_checksum_setup);
5014 
5015 /**
5016  * skb_checksum_maybe_trim - maybe trims the given skb
5017  * @skb: the skb to check
5018  * @transport_len: the data length beyond the network header
5019  *
5020  * Checks whether the given skb has data beyond the given transport length.
5021  * If so, returns a cloned skb trimmed to this transport length.
5022  * Otherwise returns the provided skb. Returns NULL in error cases
5023  * (e.g. transport_len exceeds skb length or out-of-memory).
5024  *
5025  * Caller needs to set the skb transport header and free any returned skb if it
5026  * differs from the provided skb.
5027  */
5028 static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb,
5029 					       unsigned int transport_len)
5030 {
5031 	struct sk_buff *skb_chk;
5032 	unsigned int len = skb_transport_offset(skb) + transport_len;
5033 	int ret;
5034 
5035 	if (skb->len < len)
5036 		return NULL;
5037 	else if (skb->len == len)
5038 		return skb;
5039 
5040 	skb_chk = skb_clone(skb, GFP_ATOMIC);
5041 	if (!skb_chk)
5042 		return NULL;
5043 
5044 	ret = pskb_trim_rcsum(skb_chk, len);
5045 	if (ret) {
5046 		kfree_skb(skb_chk);
5047 		return NULL;
5048 	}
5049 
5050 	return skb_chk;
5051 }
5052 
5053 /**
5054  * skb_checksum_trimmed - validate checksum of an skb
5055  * @skb: the skb to check
5056  * @transport_len: the data length beyond the network header
5057  * @skb_chkf: checksum function to use
5058  *
5059  * Applies the given checksum function skb_chkf to the provided skb.
5060  * Returns a checked and maybe trimmed skb. Returns NULL on error.
5061  *
5062  * If the skb has data beyond the given transport length, then a
5063  * trimmed & cloned skb is checked and returned.
5064  *
5065  * Caller needs to set the skb transport header and free any returned skb if it
5066  * differs from the provided skb.
5067  */
5068 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
5069 				     unsigned int transport_len,
5070 				     __sum16(*skb_chkf)(struct sk_buff *skb))
5071 {
5072 	struct sk_buff *skb_chk;
5073 	unsigned int offset = skb_transport_offset(skb);
5074 	__sum16 ret;
5075 
5076 	skb_chk = skb_checksum_maybe_trim(skb, transport_len);
5077 	if (!skb_chk)
5078 		goto err;
5079 
5080 	if (!pskb_may_pull(skb_chk, offset))
5081 		goto err;
5082 
5083 	skb_pull_rcsum(skb_chk, offset);
5084 	ret = skb_chkf(skb_chk);
5085 	skb_push_rcsum(skb_chk, offset);
5086 
5087 	if (ret)
5088 		goto err;
5089 
5090 	return skb_chk;
5091 
5092 err:
5093 	if (skb_chk && skb_chk != skb)
5094 		kfree_skb(skb_chk);
5095 
5096 	return NULL;
5097 
5098 }
5099 EXPORT_SYMBOL(skb_checksum_trimmed);
5100 
5101 void __skb_warn_lro_forwarding(const struct sk_buff *skb)
5102 {
5103 	net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n",
5104 			     skb->dev->name);
5105 }
5106 EXPORT_SYMBOL(__skb_warn_lro_forwarding);
5107 
5108 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen)
5109 {
5110 	if (head_stolen) {
5111 		skb_release_head_state(skb);
5112 		kmem_cache_free(skbuff_head_cache, skb);
5113 	} else {
5114 		__kfree_skb(skb);
5115 	}
5116 }
5117 EXPORT_SYMBOL(kfree_skb_partial);
5118 
5119 /**
5120  * skb_try_coalesce - try to merge skb to prior one
5121  * @to: prior buffer
5122  * @from: buffer to add
5123  * @fragstolen: pointer to boolean
5124  * @delta_truesize: how much more was allocated than was requested
5125  */
5126 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
5127 		      bool *fragstolen, int *delta_truesize)
5128 {
5129 	struct skb_shared_info *to_shinfo, *from_shinfo;
5130 	int i, delta, len = from->len;
5131 
5132 	*fragstolen = false;
5133 
5134 	if (skb_cloned(to))
5135 		return false;
5136 
5137 	if (len <= skb_tailroom(to)) {
5138 		if (len)
5139 			BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len));
5140 		*delta_truesize = 0;
5141 		return true;
5142 	}
5143 
5144 	to_shinfo = skb_shinfo(to);
5145 	from_shinfo = skb_shinfo(from);
5146 	if (to_shinfo->frag_list || from_shinfo->frag_list)
5147 		return false;
5148 	if (skb_zcopy(to) || skb_zcopy(from))
5149 		return false;
5150 
5151 	if (skb_headlen(from) != 0) {
5152 		struct page *page;
5153 		unsigned int offset;
5154 
5155 		if (to_shinfo->nr_frags +
5156 		    from_shinfo->nr_frags >= MAX_SKB_FRAGS)
5157 			return false;
5158 
5159 		if (skb_head_is_locked(from))
5160 			return false;
5161 
5162 		delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
5163 
5164 		page = virt_to_head_page(from->head);
5165 		offset = from->data - (unsigned char *)page_address(page);
5166 
5167 		skb_fill_page_desc(to, to_shinfo->nr_frags,
5168 				   page, offset, skb_headlen(from));
5169 		*fragstolen = true;
5170 	} else {
5171 		if (to_shinfo->nr_frags +
5172 		    from_shinfo->nr_frags > MAX_SKB_FRAGS)
5173 			return false;
5174 
5175 		delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from));
5176 	}
5177 
5178 	WARN_ON_ONCE(delta < len);
5179 
5180 	memcpy(to_shinfo->frags + to_shinfo->nr_frags,
5181 	       from_shinfo->frags,
5182 	       from_shinfo->nr_frags * sizeof(skb_frag_t));
5183 	to_shinfo->nr_frags += from_shinfo->nr_frags;
5184 
5185 	if (!skb_cloned(from))
5186 		from_shinfo->nr_frags = 0;
5187 
5188 	/* if the skb is not cloned this does nothing
5189 	 * since we set nr_frags to 0.
5190 	 */
5191 	for (i = 0; i < from_shinfo->nr_frags; i++)
5192 		__skb_frag_ref(&from_shinfo->frags[i]);
5193 
5194 	to->truesize += delta;
5195 	to->len += len;
5196 	to->data_len += len;
5197 
5198 	*delta_truesize = delta;
5199 	return true;
5200 }
5201 EXPORT_SYMBOL(skb_try_coalesce);
5202 
5203 /**
5204  * skb_scrub_packet - scrub an skb
5205  *
5206  * @skb: buffer to clean
5207  * @xnet: packet is crossing netns
5208  *
5209  * skb_scrub_packet can be used after encapsulating or decapsulting a packet
5210  * into/from a tunnel. Some information have to be cleared during these
5211  * operations.
5212  * skb_scrub_packet can also be used to clean a skb before injecting it in
5213  * another namespace (@xnet == true). We have to clear all information in the
5214  * skb that could impact namespace isolation.
5215  */
5216 void skb_scrub_packet(struct sk_buff *skb, bool xnet)
5217 {
5218 	skb->pkt_type = PACKET_HOST;
5219 	skb->skb_iif = 0;
5220 	skb->ignore_df = 0;
5221 	skb_dst_drop(skb);
5222 	skb_ext_reset(skb);
5223 	nf_reset_ct(skb);
5224 	nf_reset_trace(skb);
5225 
5226 #ifdef CONFIG_NET_SWITCHDEV
5227 	skb->offload_fwd_mark = 0;
5228 	skb->offload_l3_fwd_mark = 0;
5229 #endif
5230 
5231 	if (!xnet)
5232 		return;
5233 
5234 	ipvs_reset(skb);
5235 	skb->mark = 0;
5236 	skb->tstamp = 0;
5237 }
5238 EXPORT_SYMBOL_GPL(skb_scrub_packet);
5239 
5240 /**
5241  * skb_gso_transport_seglen - Return length of individual segments of a gso packet
5242  *
5243  * @skb: GSO skb
5244  *
5245  * skb_gso_transport_seglen is used to determine the real size of the
5246  * individual segments, including Layer4 headers (TCP/UDP).
5247  *
5248  * The MAC/L2 or network (IP, IPv6) headers are not accounted for.
5249  */
5250 static unsigned int skb_gso_transport_seglen(const struct sk_buff *skb)
5251 {
5252 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
5253 	unsigned int thlen = 0;
5254 
5255 	if (skb->encapsulation) {
5256 		thlen = skb_inner_transport_header(skb) -
5257 			skb_transport_header(skb);
5258 
5259 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
5260 			thlen += inner_tcp_hdrlen(skb);
5261 	} else if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
5262 		thlen = tcp_hdrlen(skb);
5263 	} else if (unlikely(skb_is_gso_sctp(skb))) {
5264 		thlen = sizeof(struct sctphdr);
5265 	} else if (shinfo->gso_type & SKB_GSO_UDP_L4) {
5266 		thlen = sizeof(struct udphdr);
5267 	}
5268 	/* UFO sets gso_size to the size of the fragmentation
5269 	 * payload, i.e. the size of the L4 (UDP) header is already
5270 	 * accounted for.
5271 	 */
5272 	return thlen + shinfo->gso_size;
5273 }
5274 
5275 /**
5276  * skb_gso_network_seglen - Return length of individual segments of a gso packet
5277  *
5278  * @skb: GSO skb
5279  *
5280  * skb_gso_network_seglen is used to determine the real size of the
5281  * individual segments, including Layer3 (IP, IPv6) and L4 headers (TCP/UDP).
5282  *
5283  * The MAC/L2 header is not accounted for.
5284  */
5285 static unsigned int skb_gso_network_seglen(const struct sk_buff *skb)
5286 {
5287 	unsigned int hdr_len = skb_transport_header(skb) -
5288 			       skb_network_header(skb);
5289 
5290 	return hdr_len + skb_gso_transport_seglen(skb);
5291 }
5292 
5293 /**
5294  * skb_gso_mac_seglen - Return length of individual segments of a gso packet
5295  *
5296  * @skb: GSO skb
5297  *
5298  * skb_gso_mac_seglen is used to determine the real size of the
5299  * individual segments, including MAC/L2, Layer3 (IP, IPv6) and L4
5300  * headers (TCP/UDP).
5301  */
5302 static unsigned int skb_gso_mac_seglen(const struct sk_buff *skb)
5303 {
5304 	unsigned int hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
5305 
5306 	return hdr_len + skb_gso_transport_seglen(skb);
5307 }
5308 
5309 /**
5310  * skb_gso_size_check - check the skb size, considering GSO_BY_FRAGS
5311  *
5312  * There are a couple of instances where we have a GSO skb, and we
5313  * want to determine what size it would be after it is segmented.
5314  *
5315  * We might want to check:
5316  * -    L3+L4+payload size (e.g. IP forwarding)
5317  * - L2+L3+L4+payload size (e.g. sanity check before passing to driver)
5318  *
5319  * This is a helper to do that correctly considering GSO_BY_FRAGS.
5320  *
5321  * @skb: GSO skb
5322  *
5323  * @seg_len: The segmented length (from skb_gso_*_seglen). In the
5324  *           GSO_BY_FRAGS case this will be [header sizes + GSO_BY_FRAGS].
5325  *
5326  * @max_len: The maximum permissible length.
5327  *
5328  * Returns true if the segmented length <= max length.
5329  */
5330 static inline bool skb_gso_size_check(const struct sk_buff *skb,
5331 				      unsigned int seg_len,
5332 				      unsigned int max_len) {
5333 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
5334 	const struct sk_buff *iter;
5335 
5336 	if (shinfo->gso_size != GSO_BY_FRAGS)
5337 		return seg_len <= max_len;
5338 
5339 	/* Undo this so we can re-use header sizes */
5340 	seg_len -= GSO_BY_FRAGS;
5341 
5342 	skb_walk_frags(skb, iter) {
5343 		if (seg_len + skb_headlen(iter) > max_len)
5344 			return false;
5345 	}
5346 
5347 	return true;
5348 }
5349 
5350 /**
5351  * skb_gso_validate_network_len - Will a split GSO skb fit into a given MTU?
5352  *
5353  * @skb: GSO skb
5354  * @mtu: MTU to validate against
5355  *
5356  * skb_gso_validate_network_len validates if a given skb will fit a
5357  * wanted MTU once split. It considers L3 headers, L4 headers, and the
5358  * payload.
5359  */
5360 bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu)
5361 {
5362 	return skb_gso_size_check(skb, skb_gso_network_seglen(skb), mtu);
5363 }
5364 EXPORT_SYMBOL_GPL(skb_gso_validate_network_len);
5365 
5366 /**
5367  * skb_gso_validate_mac_len - Will a split GSO skb fit in a given length?
5368  *
5369  * @skb: GSO skb
5370  * @len: length to validate against
5371  *
5372  * skb_gso_validate_mac_len validates if a given skb will fit a wanted
5373  * length once split, including L2, L3 and L4 headers and the payload.
5374  */
5375 bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len)
5376 {
5377 	return skb_gso_size_check(skb, skb_gso_mac_seglen(skb), len);
5378 }
5379 EXPORT_SYMBOL_GPL(skb_gso_validate_mac_len);
5380 
5381 static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb)
5382 {
5383 	int mac_len, meta_len;
5384 	void *meta;
5385 
5386 	if (skb_cow(skb, skb_headroom(skb)) < 0) {
5387 		kfree_skb(skb);
5388 		return NULL;
5389 	}
5390 
5391 	mac_len = skb->data - skb_mac_header(skb);
5392 	if (likely(mac_len > VLAN_HLEN + ETH_TLEN)) {
5393 		memmove(skb_mac_header(skb) + VLAN_HLEN, skb_mac_header(skb),
5394 			mac_len - VLAN_HLEN - ETH_TLEN);
5395 	}
5396 
5397 	meta_len = skb_metadata_len(skb);
5398 	if (meta_len) {
5399 		meta = skb_metadata_end(skb) - meta_len;
5400 		memmove(meta + VLAN_HLEN, meta, meta_len);
5401 	}
5402 
5403 	skb->mac_header += VLAN_HLEN;
5404 	return skb;
5405 }
5406 
5407 struct sk_buff *skb_vlan_untag(struct sk_buff *skb)
5408 {
5409 	struct vlan_hdr *vhdr;
5410 	u16 vlan_tci;
5411 
5412 	if (unlikely(skb_vlan_tag_present(skb))) {
5413 		/* vlan_tci is already set-up so leave this for another time */
5414 		return skb;
5415 	}
5416 
5417 	skb = skb_share_check(skb, GFP_ATOMIC);
5418 	if (unlikely(!skb))
5419 		goto err_free;
5420 	/* We may access the two bytes after vlan_hdr in vlan_set_encap_proto(). */
5421 	if (unlikely(!pskb_may_pull(skb, VLAN_HLEN + sizeof(unsigned short))))
5422 		goto err_free;
5423 
5424 	vhdr = (struct vlan_hdr *)skb->data;
5425 	vlan_tci = ntohs(vhdr->h_vlan_TCI);
5426 	__vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci);
5427 
5428 	skb_pull_rcsum(skb, VLAN_HLEN);
5429 	vlan_set_encap_proto(skb, vhdr);
5430 
5431 	skb = skb_reorder_vlan_header(skb);
5432 	if (unlikely(!skb))
5433 		goto err_free;
5434 
5435 	skb_reset_network_header(skb);
5436 	skb_reset_transport_header(skb);
5437 	skb_reset_mac_len(skb);
5438 
5439 	return skb;
5440 
5441 err_free:
5442 	kfree_skb(skb);
5443 	return NULL;
5444 }
5445 EXPORT_SYMBOL(skb_vlan_untag);
5446 
5447 int skb_ensure_writable(struct sk_buff *skb, int write_len)
5448 {
5449 	if (!pskb_may_pull(skb, write_len))
5450 		return -ENOMEM;
5451 
5452 	if (!skb_cloned(skb) || skb_clone_writable(skb, write_len))
5453 		return 0;
5454 
5455 	return pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
5456 }
5457 EXPORT_SYMBOL(skb_ensure_writable);
5458 
5459 /* remove VLAN header from packet and update csum accordingly.
5460  * expects a non skb_vlan_tag_present skb with a vlan tag payload
5461  */
5462 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci)
5463 {
5464 	struct vlan_hdr *vhdr;
5465 	int offset = skb->data - skb_mac_header(skb);
5466 	int err;
5467 
5468 	if (WARN_ONCE(offset,
5469 		      "__skb_vlan_pop got skb with skb->data not at mac header (offset %d)\n",
5470 		      offset)) {
5471 		return -EINVAL;
5472 	}
5473 
5474 	err = skb_ensure_writable(skb, VLAN_ETH_HLEN);
5475 	if (unlikely(err))
5476 		return err;
5477 
5478 	skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
5479 
5480 	vhdr = (struct vlan_hdr *)(skb->data + ETH_HLEN);
5481 	*vlan_tci = ntohs(vhdr->h_vlan_TCI);
5482 
5483 	memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN);
5484 	__skb_pull(skb, VLAN_HLEN);
5485 
5486 	vlan_set_encap_proto(skb, vhdr);
5487 	skb->mac_header += VLAN_HLEN;
5488 
5489 	if (skb_network_offset(skb) < ETH_HLEN)
5490 		skb_set_network_header(skb, ETH_HLEN);
5491 
5492 	skb_reset_mac_len(skb);
5493 
5494 	return err;
5495 }
5496 EXPORT_SYMBOL(__skb_vlan_pop);
5497 
5498 /* Pop a vlan tag either from hwaccel or from payload.
5499  * Expects skb->data at mac header.
5500  */
5501 int skb_vlan_pop(struct sk_buff *skb)
5502 {
5503 	u16 vlan_tci;
5504 	__be16 vlan_proto;
5505 	int err;
5506 
5507 	if (likely(skb_vlan_tag_present(skb))) {
5508 		__vlan_hwaccel_clear_tag(skb);
5509 	} else {
5510 		if (unlikely(!eth_type_vlan(skb->protocol)))
5511 			return 0;
5512 
5513 		err = __skb_vlan_pop(skb, &vlan_tci);
5514 		if (err)
5515 			return err;
5516 	}
5517 	/* move next vlan tag to hw accel tag */
5518 	if (likely(!eth_type_vlan(skb->protocol)))
5519 		return 0;
5520 
5521 	vlan_proto = skb->protocol;
5522 	err = __skb_vlan_pop(skb, &vlan_tci);
5523 	if (unlikely(err))
5524 		return err;
5525 
5526 	__vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
5527 	return 0;
5528 }
5529 EXPORT_SYMBOL(skb_vlan_pop);
5530 
5531 /* Push a vlan tag either into hwaccel or into payload (if hwaccel tag present).
5532  * Expects skb->data at mac header.
5533  */
5534 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci)
5535 {
5536 	if (skb_vlan_tag_present(skb)) {
5537 		int offset = skb->data - skb_mac_header(skb);
5538 		int err;
5539 
5540 		if (WARN_ONCE(offset,
5541 			      "skb_vlan_push got skb with skb->data not at mac header (offset %d)\n",
5542 			      offset)) {
5543 			return -EINVAL;
5544 		}
5545 
5546 		err = __vlan_insert_tag(skb, skb->vlan_proto,
5547 					skb_vlan_tag_get(skb));
5548 		if (err)
5549 			return err;
5550 
5551 		skb->protocol = skb->vlan_proto;
5552 		skb->mac_len += VLAN_HLEN;
5553 
5554 		skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
5555 	}
5556 	__vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
5557 	return 0;
5558 }
5559 EXPORT_SYMBOL(skb_vlan_push);
5560 
5561 /* Update the ethertype of hdr and the skb csum value if required. */
5562 static void skb_mod_eth_type(struct sk_buff *skb, struct ethhdr *hdr,
5563 			     __be16 ethertype)
5564 {
5565 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
5566 		__be16 diff[] = { ~hdr->h_proto, ethertype };
5567 
5568 		skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum);
5569 	}
5570 
5571 	hdr->h_proto = ethertype;
5572 }
5573 
5574 /**
5575  * skb_mpls_push() - push a new MPLS header after mac_len bytes from start of
5576  *                   the packet
5577  *
5578  * @skb: buffer
5579  * @mpls_lse: MPLS label stack entry to push
5580  * @mpls_proto: ethertype of the new MPLS header (expects 0x8847 or 0x8848)
5581  * @mac_len: length of the MAC header
5582  * @ethernet: flag to indicate if the resulting packet after skb_mpls_push is
5583  *            ethernet
5584  *
5585  * Expects skb->data at mac header.
5586  *
5587  * Returns 0 on success, -errno otherwise.
5588  */
5589 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto,
5590 		  int mac_len, bool ethernet)
5591 {
5592 	struct mpls_shim_hdr *lse;
5593 	int err;
5594 
5595 	if (unlikely(!eth_p_mpls(mpls_proto)))
5596 		return -EINVAL;
5597 
5598 	/* Networking stack does not allow simultaneous Tunnel and MPLS GSO. */
5599 	if (skb->encapsulation)
5600 		return -EINVAL;
5601 
5602 	err = skb_cow_head(skb, MPLS_HLEN);
5603 	if (unlikely(err))
5604 		return err;
5605 
5606 	if (!skb->inner_protocol) {
5607 		skb_set_inner_network_header(skb, skb_network_offset(skb));
5608 		skb_set_inner_protocol(skb, skb->protocol);
5609 	}
5610 
5611 	skb_push(skb, MPLS_HLEN);
5612 	memmove(skb_mac_header(skb) - MPLS_HLEN, skb_mac_header(skb),
5613 		mac_len);
5614 	skb_reset_mac_header(skb);
5615 	skb_set_network_header(skb, mac_len);
5616 	skb_reset_mac_len(skb);
5617 
5618 	lse = mpls_hdr(skb);
5619 	lse->label_stack_entry = mpls_lse;
5620 	skb_postpush_rcsum(skb, lse, MPLS_HLEN);
5621 
5622 	if (ethernet)
5623 		skb_mod_eth_type(skb, eth_hdr(skb), mpls_proto);
5624 	skb->protocol = mpls_proto;
5625 
5626 	return 0;
5627 }
5628 EXPORT_SYMBOL_GPL(skb_mpls_push);
5629 
5630 /**
5631  * skb_mpls_pop() - pop the outermost MPLS header
5632  *
5633  * @skb: buffer
5634  * @next_proto: ethertype of header after popped MPLS header
5635  * @mac_len: length of the MAC header
5636  * @ethernet: flag to indicate if the packet is ethernet
5637  *
5638  * Expects skb->data at mac header.
5639  *
5640  * Returns 0 on success, -errno otherwise.
5641  */
5642 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len,
5643 		 bool ethernet)
5644 {
5645 	int err;
5646 
5647 	if (unlikely(!eth_p_mpls(skb->protocol)))
5648 		return 0;
5649 
5650 	err = skb_ensure_writable(skb, mac_len + MPLS_HLEN);
5651 	if (unlikely(err))
5652 		return err;
5653 
5654 	skb_postpull_rcsum(skb, mpls_hdr(skb), MPLS_HLEN);
5655 	memmove(skb_mac_header(skb) + MPLS_HLEN, skb_mac_header(skb),
5656 		mac_len);
5657 
5658 	__skb_pull(skb, MPLS_HLEN);
5659 	skb_reset_mac_header(skb);
5660 	skb_set_network_header(skb, mac_len);
5661 
5662 	if (ethernet) {
5663 		struct ethhdr *hdr;
5664 
5665 		/* use mpls_hdr() to get ethertype to account for VLANs. */
5666 		hdr = (struct ethhdr *)((void *)mpls_hdr(skb) - ETH_HLEN);
5667 		skb_mod_eth_type(skb, hdr, next_proto);
5668 	}
5669 	skb->protocol = next_proto;
5670 
5671 	return 0;
5672 }
5673 EXPORT_SYMBOL_GPL(skb_mpls_pop);
5674 
5675 /**
5676  * skb_mpls_update_lse() - modify outermost MPLS header and update csum
5677  *
5678  * @skb: buffer
5679  * @mpls_lse: new MPLS label stack entry to update to
5680  *
5681  * Expects skb->data at mac header.
5682  *
5683  * Returns 0 on success, -errno otherwise.
5684  */
5685 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse)
5686 {
5687 	int err;
5688 
5689 	if (unlikely(!eth_p_mpls(skb->protocol)))
5690 		return -EINVAL;
5691 
5692 	err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN);
5693 	if (unlikely(err))
5694 		return err;
5695 
5696 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
5697 		__be32 diff[] = { ~mpls_hdr(skb)->label_stack_entry, mpls_lse };
5698 
5699 		skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum);
5700 	}
5701 
5702 	mpls_hdr(skb)->label_stack_entry = mpls_lse;
5703 
5704 	return 0;
5705 }
5706 EXPORT_SYMBOL_GPL(skb_mpls_update_lse);
5707 
5708 /**
5709  * skb_mpls_dec_ttl() - decrement the TTL of the outermost MPLS header
5710  *
5711  * @skb: buffer
5712  *
5713  * Expects skb->data at mac header.
5714  *
5715  * Returns 0 on success, -errno otherwise.
5716  */
5717 int skb_mpls_dec_ttl(struct sk_buff *skb)
5718 {
5719 	u32 lse;
5720 	u8 ttl;
5721 
5722 	if (unlikely(!eth_p_mpls(skb->protocol)))
5723 		return -EINVAL;
5724 
5725 	lse = be32_to_cpu(mpls_hdr(skb)->label_stack_entry);
5726 	ttl = (lse & MPLS_LS_TTL_MASK) >> MPLS_LS_TTL_SHIFT;
5727 	if (!--ttl)
5728 		return -EINVAL;
5729 
5730 	lse &= ~MPLS_LS_TTL_MASK;
5731 	lse |= ttl << MPLS_LS_TTL_SHIFT;
5732 
5733 	return skb_mpls_update_lse(skb, cpu_to_be32(lse));
5734 }
5735 EXPORT_SYMBOL_GPL(skb_mpls_dec_ttl);
5736 
5737 /**
5738  * alloc_skb_with_frags - allocate skb with page frags
5739  *
5740  * @header_len: size of linear part
5741  * @data_len: needed length in frags
5742  * @max_page_order: max page order desired.
5743  * @errcode: pointer to error code if any
5744  * @gfp_mask: allocation mask
5745  *
5746  * This can be used to allocate a paged skb, given a maximal order for frags.
5747  */
5748 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
5749 				     unsigned long data_len,
5750 				     int max_page_order,
5751 				     int *errcode,
5752 				     gfp_t gfp_mask)
5753 {
5754 	int npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
5755 	unsigned long chunk;
5756 	struct sk_buff *skb;
5757 	struct page *page;
5758 	int i;
5759 
5760 	*errcode = -EMSGSIZE;
5761 	/* Note this test could be relaxed, if we succeed to allocate
5762 	 * high order pages...
5763 	 */
5764 	if (npages > MAX_SKB_FRAGS)
5765 		return NULL;
5766 
5767 	*errcode = -ENOBUFS;
5768 	skb = alloc_skb(header_len, gfp_mask);
5769 	if (!skb)
5770 		return NULL;
5771 
5772 	skb->truesize += npages << PAGE_SHIFT;
5773 
5774 	for (i = 0; npages > 0; i++) {
5775 		int order = max_page_order;
5776 
5777 		while (order) {
5778 			if (npages >= 1 << order) {
5779 				page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) |
5780 						   __GFP_COMP |
5781 						   __GFP_NOWARN,
5782 						   order);
5783 				if (page)
5784 					goto fill_page;
5785 				/* Do not retry other high order allocations */
5786 				order = 1;
5787 				max_page_order = 0;
5788 			}
5789 			order--;
5790 		}
5791 		page = alloc_page(gfp_mask);
5792 		if (!page)
5793 			goto failure;
5794 fill_page:
5795 		chunk = min_t(unsigned long, data_len,
5796 			      PAGE_SIZE << order);
5797 		skb_fill_page_desc(skb, i, page, 0, chunk);
5798 		data_len -= chunk;
5799 		npages -= 1 << order;
5800 	}
5801 	return skb;
5802 
5803 failure:
5804 	kfree_skb(skb);
5805 	return NULL;
5806 }
5807 EXPORT_SYMBOL(alloc_skb_with_frags);
5808 
5809 /* carve out the first off bytes from skb when off < headlen */
5810 static int pskb_carve_inside_header(struct sk_buff *skb, const u32 off,
5811 				    const int headlen, gfp_t gfp_mask)
5812 {
5813 	int i;
5814 	int size = skb_end_offset(skb);
5815 	int new_hlen = headlen - off;
5816 	u8 *data;
5817 
5818 	size = SKB_DATA_ALIGN(size);
5819 
5820 	if (skb_pfmemalloc(skb))
5821 		gfp_mask |= __GFP_MEMALLOC;
5822 	data = kmalloc_reserve(size +
5823 			       SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
5824 			       gfp_mask, NUMA_NO_NODE, NULL);
5825 	if (!data)
5826 		return -ENOMEM;
5827 
5828 	size = SKB_WITH_OVERHEAD(ksize(data));
5829 
5830 	/* Copy real data, and all frags */
5831 	skb_copy_from_linear_data_offset(skb, off, data, new_hlen);
5832 	skb->len -= off;
5833 
5834 	memcpy((struct skb_shared_info *)(data + size),
5835 	       skb_shinfo(skb),
5836 	       offsetof(struct skb_shared_info,
5837 			frags[skb_shinfo(skb)->nr_frags]));
5838 	if (skb_cloned(skb)) {
5839 		/* drop the old head gracefully */
5840 		if (skb_orphan_frags(skb, gfp_mask)) {
5841 			kfree(data);
5842 			return -ENOMEM;
5843 		}
5844 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
5845 			skb_frag_ref(skb, i);
5846 		if (skb_has_frag_list(skb))
5847 			skb_clone_fraglist(skb);
5848 		skb_release_data(skb);
5849 	} else {
5850 		/* we can reuse existing recount- all we did was
5851 		 * relocate values
5852 		 */
5853 		skb_free_head(skb);
5854 	}
5855 
5856 	skb->head = data;
5857 	skb->data = data;
5858 	skb->head_frag = 0;
5859 #ifdef NET_SKBUFF_DATA_USES_OFFSET
5860 	skb->end = size;
5861 #else
5862 	skb->end = skb->head + size;
5863 #endif
5864 	skb_set_tail_pointer(skb, skb_headlen(skb));
5865 	skb_headers_offset_update(skb, 0);
5866 	skb->cloned = 0;
5867 	skb->hdr_len = 0;
5868 	skb->nohdr = 0;
5869 	atomic_set(&skb_shinfo(skb)->dataref, 1);
5870 
5871 	return 0;
5872 }
5873 
5874 static int pskb_carve(struct sk_buff *skb, const u32 off, gfp_t gfp);
5875 
5876 /* carve out the first eat bytes from skb's frag_list. May recurse into
5877  * pskb_carve()
5878  */
5879 static int pskb_carve_frag_list(struct sk_buff *skb,
5880 				struct skb_shared_info *shinfo, int eat,
5881 				gfp_t gfp_mask)
5882 {
5883 	struct sk_buff *list = shinfo->frag_list;
5884 	struct sk_buff *clone = NULL;
5885 	struct sk_buff *insp = NULL;
5886 
5887 	do {
5888 		if (!list) {
5889 			pr_err("Not enough bytes to eat. Want %d\n", eat);
5890 			return -EFAULT;
5891 		}
5892 		if (list->len <= eat) {
5893 			/* Eaten as whole. */
5894 			eat -= list->len;
5895 			list = list->next;
5896 			insp = list;
5897 		} else {
5898 			/* Eaten partially. */
5899 			if (skb_shared(list)) {
5900 				clone = skb_clone(list, gfp_mask);
5901 				if (!clone)
5902 					return -ENOMEM;
5903 				insp = list->next;
5904 				list = clone;
5905 			} else {
5906 				/* This may be pulled without problems. */
5907 				insp = list;
5908 			}
5909 			if (pskb_carve(list, eat, gfp_mask) < 0) {
5910 				kfree_skb(clone);
5911 				return -ENOMEM;
5912 			}
5913 			break;
5914 		}
5915 	} while (eat);
5916 
5917 	/* Free pulled out fragments. */
5918 	while ((list = shinfo->frag_list) != insp) {
5919 		shinfo->frag_list = list->next;
5920 		kfree_skb(list);
5921 	}
5922 	/* And insert new clone at head. */
5923 	if (clone) {
5924 		clone->next = list;
5925 		shinfo->frag_list = clone;
5926 	}
5927 	return 0;
5928 }
5929 
5930 /* carve off first len bytes from skb. Split line (off) is in the
5931  * non-linear part of skb
5932  */
5933 static int pskb_carve_inside_nonlinear(struct sk_buff *skb, const u32 off,
5934 				       int pos, gfp_t gfp_mask)
5935 {
5936 	int i, k = 0;
5937 	int size = skb_end_offset(skb);
5938 	u8 *data;
5939 	const int nfrags = skb_shinfo(skb)->nr_frags;
5940 	struct skb_shared_info *shinfo;
5941 
5942 	size = SKB_DATA_ALIGN(size);
5943 
5944 	if (skb_pfmemalloc(skb))
5945 		gfp_mask |= __GFP_MEMALLOC;
5946 	data = kmalloc_reserve(size +
5947 			       SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
5948 			       gfp_mask, NUMA_NO_NODE, NULL);
5949 	if (!data)
5950 		return -ENOMEM;
5951 
5952 	size = SKB_WITH_OVERHEAD(ksize(data));
5953 
5954 	memcpy((struct skb_shared_info *)(data + size),
5955 	       skb_shinfo(skb), offsetof(struct skb_shared_info, frags[0]));
5956 	if (skb_orphan_frags(skb, gfp_mask)) {
5957 		kfree(data);
5958 		return -ENOMEM;
5959 	}
5960 	shinfo = (struct skb_shared_info *)(data + size);
5961 	for (i = 0; i < nfrags; i++) {
5962 		int fsize = skb_frag_size(&skb_shinfo(skb)->frags[i]);
5963 
5964 		if (pos + fsize > off) {
5965 			shinfo->frags[k] = skb_shinfo(skb)->frags[i];
5966 
5967 			if (pos < off) {
5968 				/* Split frag.
5969 				 * We have two variants in this case:
5970 				 * 1. Move all the frag to the second
5971 				 *    part, if it is possible. F.e.
5972 				 *    this approach is mandatory for TUX,
5973 				 *    where splitting is expensive.
5974 				 * 2. Split is accurately. We make this.
5975 				 */
5976 				skb_frag_off_add(&shinfo->frags[0], off - pos);
5977 				skb_frag_size_sub(&shinfo->frags[0], off - pos);
5978 			}
5979 			skb_frag_ref(skb, i);
5980 			k++;
5981 		}
5982 		pos += fsize;
5983 	}
5984 	shinfo->nr_frags = k;
5985 	if (skb_has_frag_list(skb))
5986 		skb_clone_fraglist(skb);
5987 
5988 	/* split line is in frag list */
5989 	if (k == 0 && pskb_carve_frag_list(skb, shinfo, off - pos, gfp_mask)) {
5990 		/* skb_frag_unref() is not needed here as shinfo->nr_frags = 0. */
5991 		if (skb_has_frag_list(skb))
5992 			kfree_skb_list(skb_shinfo(skb)->frag_list);
5993 		kfree(data);
5994 		return -ENOMEM;
5995 	}
5996 	skb_release_data(skb);
5997 
5998 	skb->head = data;
5999 	skb->head_frag = 0;
6000 	skb->data = data;
6001 #ifdef NET_SKBUFF_DATA_USES_OFFSET
6002 	skb->end = size;
6003 #else
6004 	skb->end = skb->head + size;
6005 #endif
6006 	skb_reset_tail_pointer(skb);
6007 	skb_headers_offset_update(skb, 0);
6008 	skb->cloned   = 0;
6009 	skb->hdr_len  = 0;
6010 	skb->nohdr    = 0;
6011 	skb->len -= off;
6012 	skb->data_len = skb->len;
6013 	atomic_set(&skb_shinfo(skb)->dataref, 1);
6014 	return 0;
6015 }
6016 
6017 /* remove len bytes from the beginning of the skb */
6018 static int pskb_carve(struct sk_buff *skb, const u32 len, gfp_t gfp)
6019 {
6020 	int headlen = skb_headlen(skb);
6021 
6022 	if (len < headlen)
6023 		return pskb_carve_inside_header(skb, len, headlen, gfp);
6024 	else
6025 		return pskb_carve_inside_nonlinear(skb, len, headlen, gfp);
6026 }
6027 
6028 /* Extract to_copy bytes starting at off from skb, and return this in
6029  * a new skb
6030  */
6031 struct sk_buff *pskb_extract(struct sk_buff *skb, int off,
6032 			     int to_copy, gfp_t gfp)
6033 {
6034 	struct sk_buff  *clone = skb_clone(skb, gfp);
6035 
6036 	if (!clone)
6037 		return NULL;
6038 
6039 	if (pskb_carve(clone, off, gfp) < 0 ||
6040 	    pskb_trim(clone, to_copy)) {
6041 		kfree_skb(clone);
6042 		return NULL;
6043 	}
6044 	return clone;
6045 }
6046 EXPORT_SYMBOL(pskb_extract);
6047 
6048 /**
6049  * skb_condense - try to get rid of fragments/frag_list if possible
6050  * @skb: buffer
6051  *
6052  * Can be used to save memory before skb is added to a busy queue.
6053  * If packet has bytes in frags and enough tail room in skb->head,
6054  * pull all of them, so that we can free the frags right now and adjust
6055  * truesize.
6056  * Notes:
6057  *	We do not reallocate skb->head thus can not fail.
6058  *	Caller must re-evaluate skb->truesize if needed.
6059  */
6060 void skb_condense(struct sk_buff *skb)
6061 {
6062 	if (skb->data_len) {
6063 		if (skb->data_len > skb->end - skb->tail ||
6064 		    skb_cloned(skb))
6065 			return;
6066 
6067 		/* Nice, we can free page frag(s) right now */
6068 		__pskb_pull_tail(skb, skb->data_len);
6069 	}
6070 	/* At this point, skb->truesize might be over estimated,
6071 	 * because skb had a fragment, and fragments do not tell
6072 	 * their truesize.
6073 	 * When we pulled its content into skb->head, fragment
6074 	 * was freed, but __pskb_pull_tail() could not possibly
6075 	 * adjust skb->truesize, not knowing the frag truesize.
6076 	 */
6077 	skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
6078 }
6079 
6080 #ifdef CONFIG_SKB_EXTENSIONS
6081 static void *skb_ext_get_ptr(struct skb_ext *ext, enum skb_ext_id id)
6082 {
6083 	return (void *)ext + (ext->offset[id] * SKB_EXT_ALIGN_VALUE);
6084 }
6085 
6086 /**
6087  * __skb_ext_alloc - allocate a new skb extensions storage
6088  *
6089  * @flags: See kmalloc().
6090  *
6091  * Returns the newly allocated pointer. The pointer can later attached to a
6092  * skb via __skb_ext_set().
6093  * Note: caller must handle the skb_ext as an opaque data.
6094  */
6095 struct skb_ext *__skb_ext_alloc(gfp_t flags)
6096 {
6097 	struct skb_ext *new = kmem_cache_alloc(skbuff_ext_cache, flags);
6098 
6099 	if (new) {
6100 		memset(new->offset, 0, sizeof(new->offset));
6101 		refcount_set(&new->refcnt, 1);
6102 	}
6103 
6104 	return new;
6105 }
6106 
6107 static struct skb_ext *skb_ext_maybe_cow(struct skb_ext *old,
6108 					 unsigned int old_active)
6109 {
6110 	struct skb_ext *new;
6111 
6112 	if (refcount_read(&old->refcnt) == 1)
6113 		return old;
6114 
6115 	new = kmem_cache_alloc(skbuff_ext_cache, GFP_ATOMIC);
6116 	if (!new)
6117 		return NULL;
6118 
6119 	memcpy(new, old, old->chunks * SKB_EXT_ALIGN_VALUE);
6120 	refcount_set(&new->refcnt, 1);
6121 
6122 #ifdef CONFIG_XFRM
6123 	if (old_active & (1 << SKB_EXT_SEC_PATH)) {
6124 		struct sec_path *sp = skb_ext_get_ptr(old, SKB_EXT_SEC_PATH);
6125 		unsigned int i;
6126 
6127 		for (i = 0; i < sp->len; i++)
6128 			xfrm_state_hold(sp->xvec[i]);
6129 	}
6130 #endif
6131 	__skb_ext_put(old);
6132 	return new;
6133 }
6134 
6135 /**
6136  * __skb_ext_set - attach the specified extension storage to this skb
6137  * @skb: buffer
6138  * @id: extension id
6139  * @ext: extension storage previously allocated via __skb_ext_alloc()
6140  *
6141  * Existing extensions, if any, are cleared.
6142  *
6143  * Returns the pointer to the extension.
6144  */
6145 void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id,
6146 		    struct skb_ext *ext)
6147 {
6148 	unsigned int newlen, newoff = SKB_EXT_CHUNKSIZEOF(*ext);
6149 
6150 	skb_ext_put(skb);
6151 	newlen = newoff + skb_ext_type_len[id];
6152 	ext->chunks = newlen;
6153 	ext->offset[id] = newoff;
6154 	skb->extensions = ext;
6155 	skb->active_extensions = 1 << id;
6156 	return skb_ext_get_ptr(ext, id);
6157 }
6158 
6159 /**
6160  * skb_ext_add - allocate space for given extension, COW if needed
6161  * @skb: buffer
6162  * @id: extension to allocate space for
6163  *
6164  * Allocates enough space for the given extension.
6165  * If the extension is already present, a pointer to that extension
6166  * is returned.
6167  *
6168  * If the skb was cloned, COW applies and the returned memory can be
6169  * modified without changing the extension space of clones buffers.
6170  *
6171  * Returns pointer to the extension or NULL on allocation failure.
6172  */
6173 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id)
6174 {
6175 	struct skb_ext *new, *old = NULL;
6176 	unsigned int newlen, newoff;
6177 
6178 	if (skb->active_extensions) {
6179 		old = skb->extensions;
6180 
6181 		new = skb_ext_maybe_cow(old, skb->active_extensions);
6182 		if (!new)
6183 			return NULL;
6184 
6185 		if (__skb_ext_exist(new, id))
6186 			goto set_active;
6187 
6188 		newoff = new->chunks;
6189 	} else {
6190 		newoff = SKB_EXT_CHUNKSIZEOF(*new);
6191 
6192 		new = __skb_ext_alloc(GFP_ATOMIC);
6193 		if (!new)
6194 			return NULL;
6195 	}
6196 
6197 	newlen = newoff + skb_ext_type_len[id];
6198 	new->chunks = newlen;
6199 	new->offset[id] = newoff;
6200 set_active:
6201 	skb->extensions = new;
6202 	skb->active_extensions |= 1 << id;
6203 	return skb_ext_get_ptr(new, id);
6204 }
6205 EXPORT_SYMBOL(skb_ext_add);
6206 
6207 #ifdef CONFIG_XFRM
6208 static void skb_ext_put_sp(struct sec_path *sp)
6209 {
6210 	unsigned int i;
6211 
6212 	for (i = 0; i < sp->len; i++)
6213 		xfrm_state_put(sp->xvec[i]);
6214 }
6215 #endif
6216 
6217 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id)
6218 {
6219 	struct skb_ext *ext = skb->extensions;
6220 
6221 	skb->active_extensions &= ~(1 << id);
6222 	if (skb->active_extensions == 0) {
6223 		skb->extensions = NULL;
6224 		__skb_ext_put(ext);
6225 #ifdef CONFIG_XFRM
6226 	} else if (id == SKB_EXT_SEC_PATH &&
6227 		   refcount_read(&ext->refcnt) == 1) {
6228 		struct sec_path *sp = skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH);
6229 
6230 		skb_ext_put_sp(sp);
6231 		sp->len = 0;
6232 #endif
6233 	}
6234 }
6235 EXPORT_SYMBOL(__skb_ext_del);
6236 
6237 void __skb_ext_put(struct skb_ext *ext)
6238 {
6239 	/* If this is last clone, nothing can increment
6240 	 * it after check passes.  Avoids one atomic op.
6241 	 */
6242 	if (refcount_read(&ext->refcnt) == 1)
6243 		goto free_now;
6244 
6245 	if (!refcount_dec_and_test(&ext->refcnt))
6246 		return;
6247 free_now:
6248 #ifdef CONFIG_XFRM
6249 	if (__skb_ext_exist(ext, SKB_EXT_SEC_PATH))
6250 		skb_ext_put_sp(skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH));
6251 #endif
6252 
6253 	kmem_cache_free(skbuff_ext_cache, ext);
6254 }
6255 EXPORT_SYMBOL(__skb_ext_put);
6256 #endif /* CONFIG_SKB_EXTENSIONS */
6257