xref: /openbmc/linux/net/core/skbuff.c (revision 8dd3cdea)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *	Routines having to do with the 'struct sk_buff' memory handlers.
4  *
5  *	Authors:	Alan Cox <alan@lxorguk.ukuu.org.uk>
6  *			Florian La Roche <rzsfl@rz.uni-sb.de>
7  *
8  *	Fixes:
9  *		Alan Cox	:	Fixed the worst of the load
10  *					balancer bugs.
11  *		Dave Platt	:	Interrupt stacking fix.
12  *	Richard Kooijman	:	Timestamp fixes.
13  *		Alan Cox	:	Changed buffer format.
14  *		Alan Cox	:	destructor hook for AF_UNIX etc.
15  *		Linus Torvalds	:	Better skb_clone.
16  *		Alan Cox	:	Added skb_copy.
17  *		Alan Cox	:	Added all the changed routines Linus
18  *					only put in the headers
19  *		Ray VanTassle	:	Fixed --skb->lock in free
20  *		Alan Cox	:	skb_copy copy arp field
21  *		Andi Kleen	:	slabified it.
22  *		Robert Olsson	:	Removed skb_head_pool
23  *
24  *	NOTE:
25  *		The __skb_ routines should be called with interrupts
26  *	disabled, or you better be *real* sure that the operation is atomic
27  *	with respect to whatever list is being frobbed (e.g. via lock_sock()
28  *	or via disabling bottom half handlers, etc).
29  */
30 
31 /*
32  *	The functions in this file will not compile correctly with gcc 2.4.x
33  */
34 
35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
36 
37 #include <linux/module.h>
38 #include <linux/types.h>
39 #include <linux/kernel.h>
40 #include <linux/mm.h>
41 #include <linux/interrupt.h>
42 #include <linux/in.h>
43 #include <linux/inet.h>
44 #include <linux/slab.h>
45 #include <linux/tcp.h>
46 #include <linux/udp.h>
47 #include <linux/sctp.h>
48 #include <linux/netdevice.h>
49 #ifdef CONFIG_NET_CLS_ACT
50 #include <net/pkt_sched.h>
51 #endif
52 #include <linux/string.h>
53 #include <linux/skbuff.h>
54 #include <linux/splice.h>
55 #include <linux/cache.h>
56 #include <linux/rtnetlink.h>
57 #include <linux/init.h>
58 #include <linux/scatterlist.h>
59 #include <linux/errqueue.h>
60 #include <linux/prefetch.h>
61 #include <linux/if_vlan.h>
62 #include <linux/mpls.h>
63 #include <linux/kcov.h>
64 
65 #include <net/protocol.h>
66 #include <net/dst.h>
67 #include <net/sock.h>
68 #include <net/checksum.h>
69 #include <net/ip6_checksum.h>
70 #include <net/xfrm.h>
71 #include <net/mpls.h>
72 #include <net/mptcp.h>
73 #include <net/mctp.h>
74 #include <net/page_pool.h>
75 
76 #include <linux/uaccess.h>
77 #include <trace/events/skb.h>
78 #include <linux/highmem.h>
79 #include <linux/capability.h>
80 #include <linux/user_namespace.h>
81 #include <linux/indirect_call_wrapper.h>
82 
83 #include "datagram.h"
84 #include "sock_destructor.h"
85 
86 struct kmem_cache *skbuff_head_cache __ro_after_init;
87 static struct kmem_cache *skbuff_fclone_cache __ro_after_init;
88 #ifdef CONFIG_SKB_EXTENSIONS
89 static struct kmem_cache *skbuff_ext_cache __ro_after_init;
90 #endif
91 int sysctl_max_skb_frags __read_mostly = MAX_SKB_FRAGS;
92 EXPORT_SYMBOL(sysctl_max_skb_frags);
93 
94 /**
95  *	skb_panic - private function for out-of-line support
96  *	@skb:	buffer
97  *	@sz:	size
98  *	@addr:	address
99  *	@msg:	skb_over_panic or skb_under_panic
100  *
101  *	Out-of-line support for skb_put() and skb_push().
102  *	Called via the wrapper skb_over_panic() or skb_under_panic().
103  *	Keep out of line to prevent kernel bloat.
104  *	__builtin_return_address is not used because it is not always reliable.
105  */
106 static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr,
107 		      const char msg[])
108 {
109 	pr_emerg("%s: text:%px len:%d put:%d head:%px data:%px tail:%#lx end:%#lx dev:%s\n",
110 		 msg, addr, skb->len, sz, skb->head, skb->data,
111 		 (unsigned long)skb->tail, (unsigned long)skb->end,
112 		 skb->dev ? skb->dev->name : "<NULL>");
113 	BUG();
114 }
115 
116 static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr)
117 {
118 	skb_panic(skb, sz, addr, __func__);
119 }
120 
121 static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr)
122 {
123 	skb_panic(skb, sz, addr, __func__);
124 }
125 
126 #define NAPI_SKB_CACHE_SIZE	64
127 #define NAPI_SKB_CACHE_BULK	16
128 #define NAPI_SKB_CACHE_HALF	(NAPI_SKB_CACHE_SIZE / 2)
129 
130 struct napi_alloc_cache {
131 	struct page_frag_cache page;
132 	unsigned int skb_count;
133 	void *skb_cache[NAPI_SKB_CACHE_SIZE];
134 };
135 
136 static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache);
137 static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache);
138 
139 void *__napi_alloc_frag_align(unsigned int fragsz, unsigned int align_mask)
140 {
141 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
142 
143 	fragsz = SKB_DATA_ALIGN(fragsz);
144 
145 	return page_frag_alloc_align(&nc->page, fragsz, GFP_ATOMIC, align_mask);
146 }
147 EXPORT_SYMBOL(__napi_alloc_frag_align);
148 
149 void *__netdev_alloc_frag_align(unsigned int fragsz, unsigned int align_mask)
150 {
151 	void *data;
152 
153 	fragsz = SKB_DATA_ALIGN(fragsz);
154 	if (in_hardirq() || irqs_disabled()) {
155 		struct page_frag_cache *nc = this_cpu_ptr(&netdev_alloc_cache);
156 
157 		data = page_frag_alloc_align(nc, fragsz, GFP_ATOMIC, align_mask);
158 	} else {
159 		struct napi_alloc_cache *nc;
160 
161 		local_bh_disable();
162 		nc = this_cpu_ptr(&napi_alloc_cache);
163 		data = page_frag_alloc_align(&nc->page, fragsz, GFP_ATOMIC, align_mask);
164 		local_bh_enable();
165 	}
166 	return data;
167 }
168 EXPORT_SYMBOL(__netdev_alloc_frag_align);
169 
170 static struct sk_buff *napi_skb_cache_get(void)
171 {
172 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
173 	struct sk_buff *skb;
174 
175 	if (unlikely(!nc->skb_count))
176 		nc->skb_count = kmem_cache_alloc_bulk(skbuff_head_cache,
177 						      GFP_ATOMIC,
178 						      NAPI_SKB_CACHE_BULK,
179 						      nc->skb_cache);
180 	if (unlikely(!nc->skb_count))
181 		return NULL;
182 
183 	skb = nc->skb_cache[--nc->skb_count];
184 	kasan_unpoison_object_data(skbuff_head_cache, skb);
185 
186 	return skb;
187 }
188 
189 /* Caller must provide SKB that is memset cleared */
190 static void __build_skb_around(struct sk_buff *skb, void *data,
191 			       unsigned int frag_size)
192 {
193 	struct skb_shared_info *shinfo;
194 	unsigned int size = frag_size ? : ksize(data);
195 
196 	size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
197 
198 	/* Assumes caller memset cleared SKB */
199 	skb->truesize = SKB_TRUESIZE(size);
200 	refcount_set(&skb->users, 1);
201 	skb->head = data;
202 	skb->data = data;
203 	skb_reset_tail_pointer(skb);
204 	skb_set_end_offset(skb, size);
205 	skb->mac_header = (typeof(skb->mac_header))~0U;
206 	skb->transport_header = (typeof(skb->transport_header))~0U;
207 
208 	/* make sure we initialize shinfo sequentially */
209 	shinfo = skb_shinfo(skb);
210 	memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
211 	atomic_set(&shinfo->dataref, 1);
212 
213 	skb_set_kcov_handle(skb, kcov_common_handle());
214 }
215 
216 /**
217  * __build_skb - build a network buffer
218  * @data: data buffer provided by caller
219  * @frag_size: size of data, or 0 if head was kmalloced
220  *
221  * Allocate a new &sk_buff. Caller provides space holding head and
222  * skb_shared_info. @data must have been allocated by kmalloc() only if
223  * @frag_size is 0, otherwise data should come from the page allocator
224  *  or vmalloc()
225  * The return is the new skb buffer.
226  * On a failure the return is %NULL, and @data is not freed.
227  * Notes :
228  *  Before IO, driver allocates only data buffer where NIC put incoming frame
229  *  Driver should add room at head (NET_SKB_PAD) and
230  *  MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info))
231  *  After IO, driver calls build_skb(), to allocate sk_buff and populate it
232  *  before giving packet to stack.
233  *  RX rings only contains data buffers, not full skbs.
234  */
235 struct sk_buff *__build_skb(void *data, unsigned int frag_size)
236 {
237 	struct sk_buff *skb;
238 
239 	skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC);
240 	if (unlikely(!skb))
241 		return NULL;
242 
243 	memset(skb, 0, offsetof(struct sk_buff, tail));
244 	__build_skb_around(skb, data, frag_size);
245 
246 	return skb;
247 }
248 
249 /* build_skb() is wrapper over __build_skb(), that specifically
250  * takes care of skb->head and skb->pfmemalloc
251  * This means that if @frag_size is not zero, then @data must be backed
252  * by a page fragment, not kmalloc() or vmalloc()
253  */
254 struct sk_buff *build_skb(void *data, unsigned int frag_size)
255 {
256 	struct sk_buff *skb = __build_skb(data, frag_size);
257 
258 	if (skb && frag_size) {
259 		skb->head_frag = 1;
260 		if (page_is_pfmemalloc(virt_to_head_page(data)))
261 			skb->pfmemalloc = 1;
262 	}
263 	return skb;
264 }
265 EXPORT_SYMBOL(build_skb);
266 
267 /**
268  * build_skb_around - build a network buffer around provided skb
269  * @skb: sk_buff provide by caller, must be memset cleared
270  * @data: data buffer provided by caller
271  * @frag_size: size of data, or 0 if head was kmalloced
272  */
273 struct sk_buff *build_skb_around(struct sk_buff *skb,
274 				 void *data, unsigned int frag_size)
275 {
276 	if (unlikely(!skb))
277 		return NULL;
278 
279 	__build_skb_around(skb, data, frag_size);
280 
281 	if (frag_size) {
282 		skb->head_frag = 1;
283 		if (page_is_pfmemalloc(virt_to_head_page(data)))
284 			skb->pfmemalloc = 1;
285 	}
286 	return skb;
287 }
288 EXPORT_SYMBOL(build_skb_around);
289 
290 /**
291  * __napi_build_skb - build a network buffer
292  * @data: data buffer provided by caller
293  * @frag_size: size of data, or 0 if head was kmalloced
294  *
295  * Version of __build_skb() that uses NAPI percpu caches to obtain
296  * skbuff_head instead of inplace allocation.
297  *
298  * Returns a new &sk_buff on success, %NULL on allocation failure.
299  */
300 static struct sk_buff *__napi_build_skb(void *data, unsigned int frag_size)
301 {
302 	struct sk_buff *skb;
303 
304 	skb = napi_skb_cache_get();
305 	if (unlikely(!skb))
306 		return NULL;
307 
308 	memset(skb, 0, offsetof(struct sk_buff, tail));
309 	__build_skb_around(skb, data, frag_size);
310 
311 	return skb;
312 }
313 
314 /**
315  * napi_build_skb - build a network buffer
316  * @data: data buffer provided by caller
317  * @frag_size: size of data, or 0 if head was kmalloced
318  *
319  * Version of __napi_build_skb() that takes care of skb->head_frag
320  * and skb->pfmemalloc when the data is a page or page fragment.
321  *
322  * Returns a new &sk_buff on success, %NULL on allocation failure.
323  */
324 struct sk_buff *napi_build_skb(void *data, unsigned int frag_size)
325 {
326 	struct sk_buff *skb = __napi_build_skb(data, frag_size);
327 
328 	if (likely(skb) && frag_size) {
329 		skb->head_frag = 1;
330 		skb_propagate_pfmemalloc(virt_to_head_page(data), skb);
331 	}
332 
333 	return skb;
334 }
335 EXPORT_SYMBOL(napi_build_skb);
336 
337 /*
338  * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells
339  * the caller if emergency pfmemalloc reserves are being used. If it is and
340  * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves
341  * may be used. Otherwise, the packet data may be discarded until enough
342  * memory is free
343  */
344 static void *kmalloc_reserve(size_t size, gfp_t flags, int node,
345 			     bool *pfmemalloc)
346 {
347 	void *obj;
348 	bool ret_pfmemalloc = false;
349 
350 	/*
351 	 * Try a regular allocation, when that fails and we're not entitled
352 	 * to the reserves, fail.
353 	 */
354 	obj = kmalloc_node_track_caller(size,
355 					flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
356 					node);
357 	if (obj || !(gfp_pfmemalloc_allowed(flags)))
358 		goto out;
359 
360 	/* Try again but now we are using pfmemalloc reserves */
361 	ret_pfmemalloc = true;
362 	obj = kmalloc_node_track_caller(size, flags, node);
363 
364 out:
365 	if (pfmemalloc)
366 		*pfmemalloc = ret_pfmemalloc;
367 
368 	return obj;
369 }
370 
371 /* 	Allocate a new skbuff. We do this ourselves so we can fill in a few
372  *	'private' fields and also do memory statistics to find all the
373  *	[BEEP] leaks.
374  *
375  */
376 
377 /**
378  *	__alloc_skb	-	allocate a network buffer
379  *	@size: size to allocate
380  *	@gfp_mask: allocation mask
381  *	@flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache
382  *		instead of head cache and allocate a cloned (child) skb.
383  *		If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for
384  *		allocations in case the data is required for writeback
385  *	@node: numa node to allocate memory on
386  *
387  *	Allocate a new &sk_buff. The returned buffer has no headroom and a
388  *	tail room of at least size bytes. The object has a reference count
389  *	of one. The return is the buffer. On a failure the return is %NULL.
390  *
391  *	Buffers may only be allocated from interrupts using a @gfp_mask of
392  *	%GFP_ATOMIC.
393  */
394 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
395 			    int flags, int node)
396 {
397 	struct kmem_cache *cache;
398 	struct sk_buff *skb;
399 	unsigned int osize;
400 	bool pfmemalloc;
401 	u8 *data;
402 
403 	cache = (flags & SKB_ALLOC_FCLONE)
404 		? skbuff_fclone_cache : skbuff_head_cache;
405 
406 	if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX))
407 		gfp_mask |= __GFP_MEMALLOC;
408 
409 	/* Get the HEAD */
410 	if ((flags & (SKB_ALLOC_FCLONE | SKB_ALLOC_NAPI)) == SKB_ALLOC_NAPI &&
411 	    likely(node == NUMA_NO_NODE || node == numa_mem_id()))
412 		skb = napi_skb_cache_get();
413 	else
414 		skb = kmem_cache_alloc_node(cache, gfp_mask & ~GFP_DMA, node);
415 	if (unlikely(!skb))
416 		return NULL;
417 	prefetchw(skb);
418 
419 	/* We do our best to align skb_shared_info on a separate cache
420 	 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives
421 	 * aligned memory blocks, unless SLUB/SLAB debug is enabled.
422 	 * Both skb->head and skb_shared_info are cache line aligned.
423 	 */
424 	size = SKB_DATA_ALIGN(size);
425 	size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
426 	data = kmalloc_reserve(size, gfp_mask, node, &pfmemalloc);
427 	if (unlikely(!data))
428 		goto nodata;
429 	/* kmalloc(size) might give us more room than requested.
430 	 * Put skb_shared_info exactly at the end of allocated zone,
431 	 * to allow max possible filling before reallocation.
432 	 */
433 	osize = ksize(data);
434 	size = SKB_WITH_OVERHEAD(osize);
435 	prefetchw(data + size);
436 
437 	/*
438 	 * Only clear those fields we need to clear, not those that we will
439 	 * actually initialise below. Hence, don't put any more fields after
440 	 * the tail pointer in struct sk_buff!
441 	 */
442 	memset(skb, 0, offsetof(struct sk_buff, tail));
443 	__build_skb_around(skb, data, osize);
444 	skb->pfmemalloc = pfmemalloc;
445 
446 	if (flags & SKB_ALLOC_FCLONE) {
447 		struct sk_buff_fclones *fclones;
448 
449 		fclones = container_of(skb, struct sk_buff_fclones, skb1);
450 
451 		skb->fclone = SKB_FCLONE_ORIG;
452 		refcount_set(&fclones->fclone_ref, 1);
453 
454 		fclones->skb2.fclone = SKB_FCLONE_CLONE;
455 	}
456 
457 	return skb;
458 
459 nodata:
460 	kmem_cache_free(cache, skb);
461 	return NULL;
462 }
463 EXPORT_SYMBOL(__alloc_skb);
464 
465 /**
466  *	__netdev_alloc_skb - allocate an skbuff for rx on a specific device
467  *	@dev: network device to receive on
468  *	@len: length to allocate
469  *	@gfp_mask: get_free_pages mask, passed to alloc_skb
470  *
471  *	Allocate a new &sk_buff and assign it a usage count of one. The
472  *	buffer has NET_SKB_PAD headroom built in. Users should allocate
473  *	the headroom they think they need without accounting for the
474  *	built in space. The built in space is used for optimisations.
475  *
476  *	%NULL is returned if there is no free memory.
477  */
478 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len,
479 				   gfp_t gfp_mask)
480 {
481 	struct page_frag_cache *nc;
482 	struct sk_buff *skb;
483 	bool pfmemalloc;
484 	void *data;
485 
486 	len += NET_SKB_PAD;
487 
488 	/* If requested length is either too small or too big,
489 	 * we use kmalloc() for skb->head allocation.
490 	 */
491 	if (len <= SKB_WITH_OVERHEAD(1024) ||
492 	    len > SKB_WITH_OVERHEAD(PAGE_SIZE) ||
493 	    (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
494 		skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
495 		if (!skb)
496 			goto skb_fail;
497 		goto skb_success;
498 	}
499 
500 	len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
501 	len = SKB_DATA_ALIGN(len);
502 
503 	if (sk_memalloc_socks())
504 		gfp_mask |= __GFP_MEMALLOC;
505 
506 	if (in_hardirq() || irqs_disabled()) {
507 		nc = this_cpu_ptr(&netdev_alloc_cache);
508 		data = page_frag_alloc(nc, len, gfp_mask);
509 		pfmemalloc = nc->pfmemalloc;
510 	} else {
511 		local_bh_disable();
512 		nc = this_cpu_ptr(&napi_alloc_cache.page);
513 		data = page_frag_alloc(nc, len, gfp_mask);
514 		pfmemalloc = nc->pfmemalloc;
515 		local_bh_enable();
516 	}
517 
518 	if (unlikely(!data))
519 		return NULL;
520 
521 	skb = __build_skb(data, len);
522 	if (unlikely(!skb)) {
523 		skb_free_frag(data);
524 		return NULL;
525 	}
526 
527 	if (pfmemalloc)
528 		skb->pfmemalloc = 1;
529 	skb->head_frag = 1;
530 
531 skb_success:
532 	skb_reserve(skb, NET_SKB_PAD);
533 	skb->dev = dev;
534 
535 skb_fail:
536 	return skb;
537 }
538 EXPORT_SYMBOL(__netdev_alloc_skb);
539 
540 /**
541  *	__napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance
542  *	@napi: napi instance this buffer was allocated for
543  *	@len: length to allocate
544  *	@gfp_mask: get_free_pages mask, passed to alloc_skb and alloc_pages
545  *
546  *	Allocate a new sk_buff for use in NAPI receive.  This buffer will
547  *	attempt to allocate the head from a special reserved region used
548  *	only for NAPI Rx allocation.  By doing this we can save several
549  *	CPU cycles by avoiding having to disable and re-enable IRQs.
550  *
551  *	%NULL is returned if there is no free memory.
552  */
553 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, unsigned int len,
554 				 gfp_t gfp_mask)
555 {
556 	struct napi_alloc_cache *nc;
557 	struct sk_buff *skb;
558 	void *data;
559 
560 	len += NET_SKB_PAD + NET_IP_ALIGN;
561 
562 	/* If requested length is either too small or too big,
563 	 * we use kmalloc() for skb->head allocation.
564 	 */
565 	if (len <= SKB_WITH_OVERHEAD(1024) ||
566 	    len > SKB_WITH_OVERHEAD(PAGE_SIZE) ||
567 	    (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
568 		skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX | SKB_ALLOC_NAPI,
569 				  NUMA_NO_NODE);
570 		if (!skb)
571 			goto skb_fail;
572 		goto skb_success;
573 	}
574 
575 	nc = this_cpu_ptr(&napi_alloc_cache);
576 	len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
577 	len = SKB_DATA_ALIGN(len);
578 
579 	if (sk_memalloc_socks())
580 		gfp_mask |= __GFP_MEMALLOC;
581 
582 	data = page_frag_alloc(&nc->page, len, gfp_mask);
583 	if (unlikely(!data))
584 		return NULL;
585 
586 	skb = __napi_build_skb(data, len);
587 	if (unlikely(!skb)) {
588 		skb_free_frag(data);
589 		return NULL;
590 	}
591 
592 	if (nc->page.pfmemalloc)
593 		skb->pfmemalloc = 1;
594 	skb->head_frag = 1;
595 
596 skb_success:
597 	skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN);
598 	skb->dev = napi->dev;
599 
600 skb_fail:
601 	return skb;
602 }
603 EXPORT_SYMBOL(__napi_alloc_skb);
604 
605 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
606 		     int size, unsigned int truesize)
607 {
608 	skb_fill_page_desc(skb, i, page, off, size);
609 	skb->len += size;
610 	skb->data_len += size;
611 	skb->truesize += truesize;
612 }
613 EXPORT_SYMBOL(skb_add_rx_frag);
614 
615 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
616 			  unsigned int truesize)
617 {
618 	skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
619 
620 	skb_frag_size_add(frag, size);
621 	skb->len += size;
622 	skb->data_len += size;
623 	skb->truesize += truesize;
624 }
625 EXPORT_SYMBOL(skb_coalesce_rx_frag);
626 
627 static void skb_drop_list(struct sk_buff **listp)
628 {
629 	kfree_skb_list(*listp);
630 	*listp = NULL;
631 }
632 
633 static inline void skb_drop_fraglist(struct sk_buff *skb)
634 {
635 	skb_drop_list(&skb_shinfo(skb)->frag_list);
636 }
637 
638 static void skb_clone_fraglist(struct sk_buff *skb)
639 {
640 	struct sk_buff *list;
641 
642 	skb_walk_frags(skb, list)
643 		skb_get(list);
644 }
645 
646 static void skb_free_head(struct sk_buff *skb)
647 {
648 	unsigned char *head = skb->head;
649 
650 	if (skb->head_frag) {
651 		if (skb_pp_recycle(skb, head))
652 			return;
653 		skb_free_frag(head);
654 	} else {
655 		kfree(head);
656 	}
657 }
658 
659 static void skb_release_data(struct sk_buff *skb)
660 {
661 	struct skb_shared_info *shinfo = skb_shinfo(skb);
662 	int i;
663 
664 	if (skb->cloned &&
665 	    atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
666 			      &shinfo->dataref))
667 		goto exit;
668 
669 	skb_zcopy_clear(skb, true);
670 
671 	for (i = 0; i < shinfo->nr_frags; i++)
672 		__skb_frag_unref(&shinfo->frags[i], skb->pp_recycle);
673 
674 	if (shinfo->frag_list)
675 		kfree_skb_list(shinfo->frag_list);
676 
677 	skb_free_head(skb);
678 exit:
679 	/* When we clone an SKB we copy the reycling bit. The pp_recycle
680 	 * bit is only set on the head though, so in order to avoid races
681 	 * while trying to recycle fragments on __skb_frag_unref() we need
682 	 * to make one SKB responsible for triggering the recycle path.
683 	 * So disable the recycling bit if an SKB is cloned and we have
684 	 * additional references to the fragmented part of the SKB.
685 	 * Eventually the last SKB will have the recycling bit set and it's
686 	 * dataref set to 0, which will trigger the recycling
687 	 */
688 	skb->pp_recycle = 0;
689 }
690 
691 /*
692  *	Free an skbuff by memory without cleaning the state.
693  */
694 static void kfree_skbmem(struct sk_buff *skb)
695 {
696 	struct sk_buff_fclones *fclones;
697 
698 	switch (skb->fclone) {
699 	case SKB_FCLONE_UNAVAILABLE:
700 		kmem_cache_free(skbuff_head_cache, skb);
701 		return;
702 
703 	case SKB_FCLONE_ORIG:
704 		fclones = container_of(skb, struct sk_buff_fclones, skb1);
705 
706 		/* We usually free the clone (TX completion) before original skb
707 		 * This test would have no chance to be true for the clone,
708 		 * while here, branch prediction will be good.
709 		 */
710 		if (refcount_read(&fclones->fclone_ref) == 1)
711 			goto fastpath;
712 		break;
713 
714 	default: /* SKB_FCLONE_CLONE */
715 		fclones = container_of(skb, struct sk_buff_fclones, skb2);
716 		break;
717 	}
718 	if (!refcount_dec_and_test(&fclones->fclone_ref))
719 		return;
720 fastpath:
721 	kmem_cache_free(skbuff_fclone_cache, fclones);
722 }
723 
724 void skb_release_head_state(struct sk_buff *skb)
725 {
726 	skb_dst_drop(skb);
727 	if (skb->destructor) {
728 		WARN_ON(in_hardirq());
729 		skb->destructor(skb);
730 	}
731 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
732 	nf_conntrack_put(skb_nfct(skb));
733 #endif
734 	skb_ext_put(skb);
735 }
736 
737 /* Free everything but the sk_buff shell. */
738 static void skb_release_all(struct sk_buff *skb)
739 {
740 	skb_release_head_state(skb);
741 	if (likely(skb->head))
742 		skb_release_data(skb);
743 }
744 
745 /**
746  *	__kfree_skb - private function
747  *	@skb: buffer
748  *
749  *	Free an sk_buff. Release anything attached to the buffer.
750  *	Clean the state. This is an internal helper function. Users should
751  *	always call kfree_skb
752  */
753 
754 void __kfree_skb(struct sk_buff *skb)
755 {
756 	skb_release_all(skb);
757 	kfree_skbmem(skb);
758 }
759 EXPORT_SYMBOL(__kfree_skb);
760 
761 /**
762  *	kfree_skb_reason - free an sk_buff with special reason
763  *	@skb: buffer to free
764  *	@reason: reason why this skb is dropped
765  *
766  *	Drop a reference to the buffer and free it if the usage count has
767  *	hit zero. Meanwhile, pass the drop reason to 'kfree_skb'
768  *	tracepoint.
769  */
770 void kfree_skb_reason(struct sk_buff *skb, enum skb_drop_reason reason)
771 {
772 	if (!skb_unref(skb))
773 		return;
774 
775 	trace_kfree_skb(skb, __builtin_return_address(0), reason);
776 	__kfree_skb(skb);
777 }
778 EXPORT_SYMBOL(kfree_skb_reason);
779 
780 void kfree_skb_list_reason(struct sk_buff *segs,
781 			   enum skb_drop_reason reason)
782 {
783 	while (segs) {
784 		struct sk_buff *next = segs->next;
785 
786 		kfree_skb_reason(segs, reason);
787 		segs = next;
788 	}
789 }
790 EXPORT_SYMBOL(kfree_skb_list_reason);
791 
792 /* Dump skb information and contents.
793  *
794  * Must only be called from net_ratelimit()-ed paths.
795  *
796  * Dumps whole packets if full_pkt, only headers otherwise.
797  */
798 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt)
799 {
800 	struct skb_shared_info *sh = skb_shinfo(skb);
801 	struct net_device *dev = skb->dev;
802 	struct sock *sk = skb->sk;
803 	struct sk_buff *list_skb;
804 	bool has_mac, has_trans;
805 	int headroom, tailroom;
806 	int i, len, seg_len;
807 
808 	if (full_pkt)
809 		len = skb->len;
810 	else
811 		len = min_t(int, skb->len, MAX_HEADER + 128);
812 
813 	headroom = skb_headroom(skb);
814 	tailroom = skb_tailroom(skb);
815 
816 	has_mac = skb_mac_header_was_set(skb);
817 	has_trans = skb_transport_header_was_set(skb);
818 
819 	printk("%sskb len=%u headroom=%u headlen=%u tailroom=%u\n"
820 	       "mac=(%d,%d) net=(%d,%d) trans=%d\n"
821 	       "shinfo(txflags=%u nr_frags=%u gso(size=%hu type=%u segs=%hu))\n"
822 	       "csum(0x%x ip_summed=%u complete_sw=%u valid=%u level=%u)\n"
823 	       "hash(0x%x sw=%u l4=%u) proto=0x%04x pkttype=%u iif=%d\n",
824 	       level, skb->len, headroom, skb_headlen(skb), tailroom,
825 	       has_mac ? skb->mac_header : -1,
826 	       has_mac ? skb_mac_header_len(skb) : -1,
827 	       skb->network_header,
828 	       has_trans ? skb_network_header_len(skb) : -1,
829 	       has_trans ? skb->transport_header : -1,
830 	       sh->tx_flags, sh->nr_frags,
831 	       sh->gso_size, sh->gso_type, sh->gso_segs,
832 	       skb->csum, skb->ip_summed, skb->csum_complete_sw,
833 	       skb->csum_valid, skb->csum_level,
834 	       skb->hash, skb->sw_hash, skb->l4_hash,
835 	       ntohs(skb->protocol), skb->pkt_type, skb->skb_iif);
836 
837 	if (dev)
838 		printk("%sdev name=%s feat=%pNF\n",
839 		       level, dev->name, &dev->features);
840 	if (sk)
841 		printk("%ssk family=%hu type=%u proto=%u\n",
842 		       level, sk->sk_family, sk->sk_type, sk->sk_protocol);
843 
844 	if (full_pkt && headroom)
845 		print_hex_dump(level, "skb headroom: ", DUMP_PREFIX_OFFSET,
846 			       16, 1, skb->head, headroom, false);
847 
848 	seg_len = min_t(int, skb_headlen(skb), len);
849 	if (seg_len)
850 		print_hex_dump(level, "skb linear:   ", DUMP_PREFIX_OFFSET,
851 			       16, 1, skb->data, seg_len, false);
852 	len -= seg_len;
853 
854 	if (full_pkt && tailroom)
855 		print_hex_dump(level, "skb tailroom: ", DUMP_PREFIX_OFFSET,
856 			       16, 1, skb_tail_pointer(skb), tailroom, false);
857 
858 	for (i = 0; len && i < skb_shinfo(skb)->nr_frags; i++) {
859 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
860 		u32 p_off, p_len, copied;
861 		struct page *p;
862 		u8 *vaddr;
863 
864 		skb_frag_foreach_page(frag, skb_frag_off(frag),
865 				      skb_frag_size(frag), p, p_off, p_len,
866 				      copied) {
867 			seg_len = min_t(int, p_len, len);
868 			vaddr = kmap_atomic(p);
869 			print_hex_dump(level, "skb frag:     ",
870 				       DUMP_PREFIX_OFFSET,
871 				       16, 1, vaddr + p_off, seg_len, false);
872 			kunmap_atomic(vaddr);
873 			len -= seg_len;
874 			if (!len)
875 				break;
876 		}
877 	}
878 
879 	if (full_pkt && skb_has_frag_list(skb)) {
880 		printk("skb fraglist:\n");
881 		skb_walk_frags(skb, list_skb)
882 			skb_dump(level, list_skb, true);
883 	}
884 }
885 EXPORT_SYMBOL(skb_dump);
886 
887 /**
888  *	skb_tx_error - report an sk_buff xmit error
889  *	@skb: buffer that triggered an error
890  *
891  *	Report xmit error if a device callback is tracking this skb.
892  *	skb must be freed afterwards.
893  */
894 void skb_tx_error(struct sk_buff *skb)
895 {
896 	skb_zcopy_clear(skb, true);
897 }
898 EXPORT_SYMBOL(skb_tx_error);
899 
900 #ifdef CONFIG_TRACEPOINTS
901 /**
902  *	consume_skb - free an skbuff
903  *	@skb: buffer to free
904  *
905  *	Drop a ref to the buffer and free it if the usage count has hit zero
906  *	Functions identically to kfree_skb, but kfree_skb assumes that the frame
907  *	is being dropped after a failure and notes that
908  */
909 void consume_skb(struct sk_buff *skb)
910 {
911 	if (!skb_unref(skb))
912 		return;
913 
914 	trace_consume_skb(skb);
915 	__kfree_skb(skb);
916 }
917 EXPORT_SYMBOL(consume_skb);
918 #endif
919 
920 /**
921  *	__consume_stateless_skb - free an skbuff, assuming it is stateless
922  *	@skb: buffer to free
923  *
924  *	Alike consume_skb(), but this variant assumes that this is the last
925  *	skb reference and all the head states have been already dropped
926  */
927 void __consume_stateless_skb(struct sk_buff *skb)
928 {
929 	trace_consume_skb(skb);
930 	skb_release_data(skb);
931 	kfree_skbmem(skb);
932 }
933 
934 static void napi_skb_cache_put(struct sk_buff *skb)
935 {
936 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
937 	u32 i;
938 
939 	kasan_poison_object_data(skbuff_head_cache, skb);
940 	nc->skb_cache[nc->skb_count++] = skb;
941 
942 	if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) {
943 		for (i = NAPI_SKB_CACHE_HALF; i < NAPI_SKB_CACHE_SIZE; i++)
944 			kasan_unpoison_object_data(skbuff_head_cache,
945 						   nc->skb_cache[i]);
946 
947 		kmem_cache_free_bulk(skbuff_head_cache, NAPI_SKB_CACHE_HALF,
948 				     nc->skb_cache + NAPI_SKB_CACHE_HALF);
949 		nc->skb_count = NAPI_SKB_CACHE_HALF;
950 	}
951 }
952 
953 void __kfree_skb_defer(struct sk_buff *skb)
954 {
955 	skb_release_all(skb);
956 	napi_skb_cache_put(skb);
957 }
958 
959 void napi_skb_free_stolen_head(struct sk_buff *skb)
960 {
961 	if (unlikely(skb->slow_gro)) {
962 		nf_reset_ct(skb);
963 		skb_dst_drop(skb);
964 		skb_ext_put(skb);
965 		skb_orphan(skb);
966 		skb->slow_gro = 0;
967 	}
968 	napi_skb_cache_put(skb);
969 }
970 
971 void napi_consume_skb(struct sk_buff *skb, int budget)
972 {
973 	/* Zero budget indicate non-NAPI context called us, like netpoll */
974 	if (unlikely(!budget)) {
975 		dev_consume_skb_any(skb);
976 		return;
977 	}
978 
979 	lockdep_assert_in_softirq();
980 
981 	if (!skb_unref(skb))
982 		return;
983 
984 	/* if reaching here SKB is ready to free */
985 	trace_consume_skb(skb);
986 
987 	/* if SKB is a clone, don't handle this case */
988 	if (skb->fclone != SKB_FCLONE_UNAVAILABLE) {
989 		__kfree_skb(skb);
990 		return;
991 	}
992 
993 	skb_release_all(skb);
994 	napi_skb_cache_put(skb);
995 }
996 EXPORT_SYMBOL(napi_consume_skb);
997 
998 /* Make sure a field is contained by headers group */
999 #define CHECK_SKB_FIELD(field) \
1000 	BUILD_BUG_ON(offsetof(struct sk_buff, field) !=		\
1001 		     offsetof(struct sk_buff, headers.field));	\
1002 
1003 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
1004 {
1005 	new->tstamp		= old->tstamp;
1006 	/* We do not copy old->sk */
1007 	new->dev		= old->dev;
1008 	memcpy(new->cb, old->cb, sizeof(old->cb));
1009 	skb_dst_copy(new, old);
1010 	__skb_ext_copy(new, old);
1011 	__nf_copy(new, old, false);
1012 
1013 	/* Note : this field could be in the headers group.
1014 	 * It is not yet because we do not want to have a 16 bit hole
1015 	 */
1016 	new->queue_mapping = old->queue_mapping;
1017 
1018 	memcpy(&new->headers, &old->headers, sizeof(new->headers));
1019 	CHECK_SKB_FIELD(protocol);
1020 	CHECK_SKB_FIELD(csum);
1021 	CHECK_SKB_FIELD(hash);
1022 	CHECK_SKB_FIELD(priority);
1023 	CHECK_SKB_FIELD(skb_iif);
1024 	CHECK_SKB_FIELD(vlan_proto);
1025 	CHECK_SKB_FIELD(vlan_tci);
1026 	CHECK_SKB_FIELD(transport_header);
1027 	CHECK_SKB_FIELD(network_header);
1028 	CHECK_SKB_FIELD(mac_header);
1029 	CHECK_SKB_FIELD(inner_protocol);
1030 	CHECK_SKB_FIELD(inner_transport_header);
1031 	CHECK_SKB_FIELD(inner_network_header);
1032 	CHECK_SKB_FIELD(inner_mac_header);
1033 	CHECK_SKB_FIELD(mark);
1034 #ifdef CONFIG_NETWORK_SECMARK
1035 	CHECK_SKB_FIELD(secmark);
1036 #endif
1037 #ifdef CONFIG_NET_RX_BUSY_POLL
1038 	CHECK_SKB_FIELD(napi_id);
1039 #endif
1040 #ifdef CONFIG_XPS
1041 	CHECK_SKB_FIELD(sender_cpu);
1042 #endif
1043 #ifdef CONFIG_NET_SCHED
1044 	CHECK_SKB_FIELD(tc_index);
1045 #endif
1046 
1047 }
1048 
1049 /*
1050  * You should not add any new code to this function.  Add it to
1051  * __copy_skb_header above instead.
1052  */
1053 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
1054 {
1055 #define C(x) n->x = skb->x
1056 
1057 	n->next = n->prev = NULL;
1058 	n->sk = NULL;
1059 	__copy_skb_header(n, skb);
1060 
1061 	C(len);
1062 	C(data_len);
1063 	C(mac_len);
1064 	n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
1065 	n->cloned = 1;
1066 	n->nohdr = 0;
1067 	n->peeked = 0;
1068 	C(pfmemalloc);
1069 	C(pp_recycle);
1070 	n->destructor = NULL;
1071 	C(tail);
1072 	C(end);
1073 	C(head);
1074 	C(head_frag);
1075 	C(data);
1076 	C(truesize);
1077 	refcount_set(&n->users, 1);
1078 
1079 	atomic_inc(&(skb_shinfo(skb)->dataref));
1080 	skb->cloned = 1;
1081 
1082 	return n;
1083 #undef C
1084 }
1085 
1086 /**
1087  * alloc_skb_for_msg() - allocate sk_buff to wrap frag list forming a msg
1088  * @first: first sk_buff of the msg
1089  */
1090 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first)
1091 {
1092 	struct sk_buff *n;
1093 
1094 	n = alloc_skb(0, GFP_ATOMIC);
1095 	if (!n)
1096 		return NULL;
1097 
1098 	n->len = first->len;
1099 	n->data_len = first->len;
1100 	n->truesize = first->truesize;
1101 
1102 	skb_shinfo(n)->frag_list = first;
1103 
1104 	__copy_skb_header(n, first);
1105 	n->destructor = NULL;
1106 
1107 	return n;
1108 }
1109 EXPORT_SYMBOL_GPL(alloc_skb_for_msg);
1110 
1111 /**
1112  *	skb_morph	-	morph one skb into another
1113  *	@dst: the skb to receive the contents
1114  *	@src: the skb to supply the contents
1115  *
1116  *	This is identical to skb_clone except that the target skb is
1117  *	supplied by the user.
1118  *
1119  *	The target skb is returned upon exit.
1120  */
1121 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
1122 {
1123 	skb_release_all(dst);
1124 	return __skb_clone(dst, src);
1125 }
1126 EXPORT_SYMBOL_GPL(skb_morph);
1127 
1128 int mm_account_pinned_pages(struct mmpin *mmp, size_t size)
1129 {
1130 	unsigned long max_pg, num_pg, new_pg, old_pg;
1131 	struct user_struct *user;
1132 
1133 	if (capable(CAP_IPC_LOCK) || !size)
1134 		return 0;
1135 
1136 	num_pg = (size >> PAGE_SHIFT) + 2;	/* worst case */
1137 	max_pg = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
1138 	user = mmp->user ? : current_user();
1139 
1140 	do {
1141 		old_pg = atomic_long_read(&user->locked_vm);
1142 		new_pg = old_pg + num_pg;
1143 		if (new_pg > max_pg)
1144 			return -ENOBUFS;
1145 	} while (atomic_long_cmpxchg(&user->locked_vm, old_pg, new_pg) !=
1146 		 old_pg);
1147 
1148 	if (!mmp->user) {
1149 		mmp->user = get_uid(user);
1150 		mmp->num_pg = num_pg;
1151 	} else {
1152 		mmp->num_pg += num_pg;
1153 	}
1154 
1155 	return 0;
1156 }
1157 EXPORT_SYMBOL_GPL(mm_account_pinned_pages);
1158 
1159 void mm_unaccount_pinned_pages(struct mmpin *mmp)
1160 {
1161 	if (mmp->user) {
1162 		atomic_long_sub(mmp->num_pg, &mmp->user->locked_vm);
1163 		free_uid(mmp->user);
1164 	}
1165 }
1166 EXPORT_SYMBOL_GPL(mm_unaccount_pinned_pages);
1167 
1168 struct ubuf_info *msg_zerocopy_alloc(struct sock *sk, size_t size)
1169 {
1170 	struct ubuf_info *uarg;
1171 	struct sk_buff *skb;
1172 
1173 	WARN_ON_ONCE(!in_task());
1174 
1175 	skb = sock_omalloc(sk, 0, GFP_KERNEL);
1176 	if (!skb)
1177 		return NULL;
1178 
1179 	BUILD_BUG_ON(sizeof(*uarg) > sizeof(skb->cb));
1180 	uarg = (void *)skb->cb;
1181 	uarg->mmp.user = NULL;
1182 
1183 	if (mm_account_pinned_pages(&uarg->mmp, size)) {
1184 		kfree_skb(skb);
1185 		return NULL;
1186 	}
1187 
1188 	uarg->callback = msg_zerocopy_callback;
1189 	uarg->id = ((u32)atomic_inc_return(&sk->sk_zckey)) - 1;
1190 	uarg->len = 1;
1191 	uarg->bytelen = size;
1192 	uarg->zerocopy = 1;
1193 	uarg->flags = SKBFL_ZEROCOPY_FRAG;
1194 	refcount_set(&uarg->refcnt, 1);
1195 	sock_hold(sk);
1196 
1197 	return uarg;
1198 }
1199 EXPORT_SYMBOL_GPL(msg_zerocopy_alloc);
1200 
1201 static inline struct sk_buff *skb_from_uarg(struct ubuf_info *uarg)
1202 {
1203 	return container_of((void *)uarg, struct sk_buff, cb);
1204 }
1205 
1206 struct ubuf_info *msg_zerocopy_realloc(struct sock *sk, size_t size,
1207 				       struct ubuf_info *uarg)
1208 {
1209 	if (uarg) {
1210 		const u32 byte_limit = 1 << 19;		/* limit to a few TSO */
1211 		u32 bytelen, next;
1212 
1213 		/* realloc only when socket is locked (TCP, UDP cork),
1214 		 * so uarg->len and sk_zckey access is serialized
1215 		 */
1216 		if (!sock_owned_by_user(sk)) {
1217 			WARN_ON_ONCE(1);
1218 			return NULL;
1219 		}
1220 
1221 		bytelen = uarg->bytelen + size;
1222 		if (uarg->len == USHRT_MAX - 1 || bytelen > byte_limit) {
1223 			/* TCP can create new skb to attach new uarg */
1224 			if (sk->sk_type == SOCK_STREAM)
1225 				goto new_alloc;
1226 			return NULL;
1227 		}
1228 
1229 		next = (u32)atomic_read(&sk->sk_zckey);
1230 		if ((u32)(uarg->id + uarg->len) == next) {
1231 			if (mm_account_pinned_pages(&uarg->mmp, size))
1232 				return NULL;
1233 			uarg->len++;
1234 			uarg->bytelen = bytelen;
1235 			atomic_set(&sk->sk_zckey, ++next);
1236 
1237 			/* no extra ref when appending to datagram (MSG_MORE) */
1238 			if (sk->sk_type == SOCK_STREAM)
1239 				net_zcopy_get(uarg);
1240 
1241 			return uarg;
1242 		}
1243 	}
1244 
1245 new_alloc:
1246 	return msg_zerocopy_alloc(sk, size);
1247 }
1248 EXPORT_SYMBOL_GPL(msg_zerocopy_realloc);
1249 
1250 static bool skb_zerocopy_notify_extend(struct sk_buff *skb, u32 lo, u16 len)
1251 {
1252 	struct sock_exterr_skb *serr = SKB_EXT_ERR(skb);
1253 	u32 old_lo, old_hi;
1254 	u64 sum_len;
1255 
1256 	old_lo = serr->ee.ee_info;
1257 	old_hi = serr->ee.ee_data;
1258 	sum_len = old_hi - old_lo + 1ULL + len;
1259 
1260 	if (sum_len >= (1ULL << 32))
1261 		return false;
1262 
1263 	if (lo != old_hi + 1)
1264 		return false;
1265 
1266 	serr->ee.ee_data += len;
1267 	return true;
1268 }
1269 
1270 static void __msg_zerocopy_callback(struct ubuf_info *uarg)
1271 {
1272 	struct sk_buff *tail, *skb = skb_from_uarg(uarg);
1273 	struct sock_exterr_skb *serr;
1274 	struct sock *sk = skb->sk;
1275 	struct sk_buff_head *q;
1276 	unsigned long flags;
1277 	bool is_zerocopy;
1278 	u32 lo, hi;
1279 	u16 len;
1280 
1281 	mm_unaccount_pinned_pages(&uarg->mmp);
1282 
1283 	/* if !len, there was only 1 call, and it was aborted
1284 	 * so do not queue a completion notification
1285 	 */
1286 	if (!uarg->len || sock_flag(sk, SOCK_DEAD))
1287 		goto release;
1288 
1289 	len = uarg->len;
1290 	lo = uarg->id;
1291 	hi = uarg->id + len - 1;
1292 	is_zerocopy = uarg->zerocopy;
1293 
1294 	serr = SKB_EXT_ERR(skb);
1295 	memset(serr, 0, sizeof(*serr));
1296 	serr->ee.ee_errno = 0;
1297 	serr->ee.ee_origin = SO_EE_ORIGIN_ZEROCOPY;
1298 	serr->ee.ee_data = hi;
1299 	serr->ee.ee_info = lo;
1300 	if (!is_zerocopy)
1301 		serr->ee.ee_code |= SO_EE_CODE_ZEROCOPY_COPIED;
1302 
1303 	q = &sk->sk_error_queue;
1304 	spin_lock_irqsave(&q->lock, flags);
1305 	tail = skb_peek_tail(q);
1306 	if (!tail || SKB_EXT_ERR(tail)->ee.ee_origin != SO_EE_ORIGIN_ZEROCOPY ||
1307 	    !skb_zerocopy_notify_extend(tail, lo, len)) {
1308 		__skb_queue_tail(q, skb);
1309 		skb = NULL;
1310 	}
1311 	spin_unlock_irqrestore(&q->lock, flags);
1312 
1313 	sk_error_report(sk);
1314 
1315 release:
1316 	consume_skb(skb);
1317 	sock_put(sk);
1318 }
1319 
1320 void msg_zerocopy_callback(struct sk_buff *skb, struct ubuf_info *uarg,
1321 			   bool success)
1322 {
1323 	uarg->zerocopy = uarg->zerocopy & success;
1324 
1325 	if (refcount_dec_and_test(&uarg->refcnt))
1326 		__msg_zerocopy_callback(uarg);
1327 }
1328 EXPORT_SYMBOL_GPL(msg_zerocopy_callback);
1329 
1330 void msg_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref)
1331 {
1332 	struct sock *sk = skb_from_uarg(uarg)->sk;
1333 
1334 	atomic_dec(&sk->sk_zckey);
1335 	uarg->len--;
1336 
1337 	if (have_uref)
1338 		msg_zerocopy_callback(NULL, uarg, true);
1339 }
1340 EXPORT_SYMBOL_GPL(msg_zerocopy_put_abort);
1341 
1342 int skb_zerocopy_iter_dgram(struct sk_buff *skb, struct msghdr *msg, int len)
1343 {
1344 	return __zerocopy_sg_from_iter(skb->sk, skb, &msg->msg_iter, len);
1345 }
1346 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_dgram);
1347 
1348 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
1349 			     struct msghdr *msg, int len,
1350 			     struct ubuf_info *uarg)
1351 {
1352 	struct ubuf_info *orig_uarg = skb_zcopy(skb);
1353 	struct iov_iter orig_iter = msg->msg_iter;
1354 	int err, orig_len = skb->len;
1355 
1356 	/* An skb can only point to one uarg. This edge case happens when
1357 	 * TCP appends to an skb, but zerocopy_realloc triggered a new alloc.
1358 	 */
1359 	if (orig_uarg && uarg != orig_uarg)
1360 		return -EEXIST;
1361 
1362 	err = __zerocopy_sg_from_iter(sk, skb, &msg->msg_iter, len);
1363 	if (err == -EFAULT || (err == -EMSGSIZE && skb->len == orig_len)) {
1364 		struct sock *save_sk = skb->sk;
1365 
1366 		/* Streams do not free skb on error. Reset to prev state. */
1367 		msg->msg_iter = orig_iter;
1368 		skb->sk = sk;
1369 		___pskb_trim(skb, orig_len);
1370 		skb->sk = save_sk;
1371 		return err;
1372 	}
1373 
1374 	skb_zcopy_set(skb, uarg, NULL);
1375 	return skb->len - orig_len;
1376 }
1377 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_stream);
1378 
1379 static int skb_zerocopy_clone(struct sk_buff *nskb, struct sk_buff *orig,
1380 			      gfp_t gfp_mask)
1381 {
1382 	if (skb_zcopy(orig)) {
1383 		if (skb_zcopy(nskb)) {
1384 			/* !gfp_mask callers are verified to !skb_zcopy(nskb) */
1385 			if (!gfp_mask) {
1386 				WARN_ON_ONCE(1);
1387 				return -ENOMEM;
1388 			}
1389 			if (skb_uarg(nskb) == skb_uarg(orig))
1390 				return 0;
1391 			if (skb_copy_ubufs(nskb, GFP_ATOMIC))
1392 				return -EIO;
1393 		}
1394 		skb_zcopy_set(nskb, skb_uarg(orig), NULL);
1395 	}
1396 	return 0;
1397 }
1398 
1399 /**
1400  *	skb_copy_ubufs	-	copy userspace skb frags buffers to kernel
1401  *	@skb: the skb to modify
1402  *	@gfp_mask: allocation priority
1403  *
1404  *	This must be called on skb with SKBFL_ZEROCOPY_ENABLE.
1405  *	It will copy all frags into kernel and drop the reference
1406  *	to userspace pages.
1407  *
1408  *	If this function is called from an interrupt gfp_mask() must be
1409  *	%GFP_ATOMIC.
1410  *
1411  *	Returns 0 on success or a negative error code on failure
1412  *	to allocate kernel memory to copy to.
1413  */
1414 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask)
1415 {
1416 	int num_frags = skb_shinfo(skb)->nr_frags;
1417 	struct page *page, *head = NULL;
1418 	int i, new_frags;
1419 	u32 d_off;
1420 
1421 	if (skb_shared(skb) || skb_unclone(skb, gfp_mask))
1422 		return -EINVAL;
1423 
1424 	if (!num_frags)
1425 		goto release;
1426 
1427 	new_frags = (__skb_pagelen(skb) + PAGE_SIZE - 1) >> PAGE_SHIFT;
1428 	for (i = 0; i < new_frags; i++) {
1429 		page = alloc_page(gfp_mask);
1430 		if (!page) {
1431 			while (head) {
1432 				struct page *next = (struct page *)page_private(head);
1433 				put_page(head);
1434 				head = next;
1435 			}
1436 			return -ENOMEM;
1437 		}
1438 		set_page_private(page, (unsigned long)head);
1439 		head = page;
1440 	}
1441 
1442 	page = head;
1443 	d_off = 0;
1444 	for (i = 0; i < num_frags; i++) {
1445 		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
1446 		u32 p_off, p_len, copied;
1447 		struct page *p;
1448 		u8 *vaddr;
1449 
1450 		skb_frag_foreach_page(f, skb_frag_off(f), skb_frag_size(f),
1451 				      p, p_off, p_len, copied) {
1452 			u32 copy, done = 0;
1453 			vaddr = kmap_atomic(p);
1454 
1455 			while (done < p_len) {
1456 				if (d_off == PAGE_SIZE) {
1457 					d_off = 0;
1458 					page = (struct page *)page_private(page);
1459 				}
1460 				copy = min_t(u32, PAGE_SIZE - d_off, p_len - done);
1461 				memcpy(page_address(page) + d_off,
1462 				       vaddr + p_off + done, copy);
1463 				done += copy;
1464 				d_off += copy;
1465 			}
1466 			kunmap_atomic(vaddr);
1467 		}
1468 	}
1469 
1470 	/* skb frags release userspace buffers */
1471 	for (i = 0; i < num_frags; i++)
1472 		skb_frag_unref(skb, i);
1473 
1474 	/* skb frags point to kernel buffers */
1475 	for (i = 0; i < new_frags - 1; i++) {
1476 		__skb_fill_page_desc(skb, i, head, 0, PAGE_SIZE);
1477 		head = (struct page *)page_private(head);
1478 	}
1479 	__skb_fill_page_desc(skb, new_frags - 1, head, 0, d_off);
1480 	skb_shinfo(skb)->nr_frags = new_frags;
1481 
1482 release:
1483 	skb_zcopy_clear(skb, false);
1484 	return 0;
1485 }
1486 EXPORT_SYMBOL_GPL(skb_copy_ubufs);
1487 
1488 /**
1489  *	skb_clone	-	duplicate an sk_buff
1490  *	@skb: buffer to clone
1491  *	@gfp_mask: allocation priority
1492  *
1493  *	Duplicate an &sk_buff. The new one is not owned by a socket. Both
1494  *	copies share the same packet data but not structure. The new
1495  *	buffer has a reference count of 1. If the allocation fails the
1496  *	function returns %NULL otherwise the new buffer is returned.
1497  *
1498  *	If this function is called from an interrupt gfp_mask() must be
1499  *	%GFP_ATOMIC.
1500  */
1501 
1502 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
1503 {
1504 	struct sk_buff_fclones *fclones = container_of(skb,
1505 						       struct sk_buff_fclones,
1506 						       skb1);
1507 	struct sk_buff *n;
1508 
1509 	if (skb_orphan_frags(skb, gfp_mask))
1510 		return NULL;
1511 
1512 	if (skb->fclone == SKB_FCLONE_ORIG &&
1513 	    refcount_read(&fclones->fclone_ref) == 1) {
1514 		n = &fclones->skb2;
1515 		refcount_set(&fclones->fclone_ref, 2);
1516 	} else {
1517 		if (skb_pfmemalloc(skb))
1518 			gfp_mask |= __GFP_MEMALLOC;
1519 
1520 		n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
1521 		if (!n)
1522 			return NULL;
1523 
1524 		n->fclone = SKB_FCLONE_UNAVAILABLE;
1525 	}
1526 
1527 	return __skb_clone(n, skb);
1528 }
1529 EXPORT_SYMBOL(skb_clone);
1530 
1531 void skb_headers_offset_update(struct sk_buff *skb, int off)
1532 {
1533 	/* Only adjust this if it actually is csum_start rather than csum */
1534 	if (skb->ip_summed == CHECKSUM_PARTIAL)
1535 		skb->csum_start += off;
1536 	/* {transport,network,mac}_header and tail are relative to skb->head */
1537 	skb->transport_header += off;
1538 	skb->network_header   += off;
1539 	if (skb_mac_header_was_set(skb))
1540 		skb->mac_header += off;
1541 	skb->inner_transport_header += off;
1542 	skb->inner_network_header += off;
1543 	skb->inner_mac_header += off;
1544 }
1545 EXPORT_SYMBOL(skb_headers_offset_update);
1546 
1547 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old)
1548 {
1549 	__copy_skb_header(new, old);
1550 
1551 	skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
1552 	skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
1553 	skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
1554 }
1555 EXPORT_SYMBOL(skb_copy_header);
1556 
1557 static inline int skb_alloc_rx_flag(const struct sk_buff *skb)
1558 {
1559 	if (skb_pfmemalloc(skb))
1560 		return SKB_ALLOC_RX;
1561 	return 0;
1562 }
1563 
1564 /**
1565  *	skb_copy	-	create private copy of an sk_buff
1566  *	@skb: buffer to copy
1567  *	@gfp_mask: allocation priority
1568  *
1569  *	Make a copy of both an &sk_buff and its data. This is used when the
1570  *	caller wishes to modify the data and needs a private copy of the
1571  *	data to alter. Returns %NULL on failure or the pointer to the buffer
1572  *	on success. The returned buffer has a reference count of 1.
1573  *
1574  *	As by-product this function converts non-linear &sk_buff to linear
1575  *	one, so that &sk_buff becomes completely private and caller is allowed
1576  *	to modify all the data of returned buffer. This means that this
1577  *	function is not recommended for use in circumstances when only
1578  *	header is going to be modified. Use pskb_copy() instead.
1579  */
1580 
1581 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
1582 {
1583 	int headerlen = skb_headroom(skb);
1584 	unsigned int size = skb_end_offset(skb) + skb->data_len;
1585 	struct sk_buff *n = __alloc_skb(size, gfp_mask,
1586 					skb_alloc_rx_flag(skb), NUMA_NO_NODE);
1587 
1588 	if (!n)
1589 		return NULL;
1590 
1591 	/* Set the data pointer */
1592 	skb_reserve(n, headerlen);
1593 	/* Set the tail pointer and length */
1594 	skb_put(n, skb->len);
1595 
1596 	BUG_ON(skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len));
1597 
1598 	skb_copy_header(n, skb);
1599 	return n;
1600 }
1601 EXPORT_SYMBOL(skb_copy);
1602 
1603 /**
1604  *	__pskb_copy_fclone	-  create copy of an sk_buff with private head.
1605  *	@skb: buffer to copy
1606  *	@headroom: headroom of new skb
1607  *	@gfp_mask: allocation priority
1608  *	@fclone: if true allocate the copy of the skb from the fclone
1609  *	cache instead of the head cache; it is recommended to set this
1610  *	to true for the cases where the copy will likely be cloned
1611  *
1612  *	Make a copy of both an &sk_buff and part of its data, located
1613  *	in header. Fragmented data remain shared. This is used when
1614  *	the caller wishes to modify only header of &sk_buff and needs
1615  *	private copy of the header to alter. Returns %NULL on failure
1616  *	or the pointer to the buffer on success.
1617  *	The returned buffer has a reference count of 1.
1618  */
1619 
1620 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1621 				   gfp_t gfp_mask, bool fclone)
1622 {
1623 	unsigned int size = skb_headlen(skb) + headroom;
1624 	int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0);
1625 	struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE);
1626 
1627 	if (!n)
1628 		goto out;
1629 
1630 	/* Set the data pointer */
1631 	skb_reserve(n, headroom);
1632 	/* Set the tail pointer and length */
1633 	skb_put(n, skb_headlen(skb));
1634 	/* Copy the bytes */
1635 	skb_copy_from_linear_data(skb, n->data, n->len);
1636 
1637 	n->truesize += skb->data_len;
1638 	n->data_len  = skb->data_len;
1639 	n->len	     = skb->len;
1640 
1641 	if (skb_shinfo(skb)->nr_frags) {
1642 		int i;
1643 
1644 		if (skb_orphan_frags(skb, gfp_mask) ||
1645 		    skb_zerocopy_clone(n, skb, gfp_mask)) {
1646 			kfree_skb(n);
1647 			n = NULL;
1648 			goto out;
1649 		}
1650 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1651 			skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
1652 			skb_frag_ref(skb, i);
1653 		}
1654 		skb_shinfo(n)->nr_frags = i;
1655 	}
1656 
1657 	if (skb_has_frag_list(skb)) {
1658 		skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
1659 		skb_clone_fraglist(n);
1660 	}
1661 
1662 	skb_copy_header(n, skb);
1663 out:
1664 	return n;
1665 }
1666 EXPORT_SYMBOL(__pskb_copy_fclone);
1667 
1668 /**
1669  *	pskb_expand_head - reallocate header of &sk_buff
1670  *	@skb: buffer to reallocate
1671  *	@nhead: room to add at head
1672  *	@ntail: room to add at tail
1673  *	@gfp_mask: allocation priority
1674  *
1675  *	Expands (or creates identical copy, if @nhead and @ntail are zero)
1676  *	header of @skb. &sk_buff itself is not changed. &sk_buff MUST have
1677  *	reference count of 1. Returns zero in the case of success or error,
1678  *	if expansion failed. In the last case, &sk_buff is not changed.
1679  *
1680  *	All the pointers pointing into skb header may change and must be
1681  *	reloaded after call to this function.
1682  */
1683 
1684 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
1685 		     gfp_t gfp_mask)
1686 {
1687 	int i, osize = skb_end_offset(skb);
1688 	int size = osize + nhead + ntail;
1689 	long off;
1690 	u8 *data;
1691 
1692 	BUG_ON(nhead < 0);
1693 
1694 	BUG_ON(skb_shared(skb));
1695 
1696 	size = SKB_DATA_ALIGN(size);
1697 
1698 	if (skb_pfmemalloc(skb))
1699 		gfp_mask |= __GFP_MEMALLOC;
1700 	data = kmalloc_reserve(size + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
1701 			       gfp_mask, NUMA_NO_NODE, NULL);
1702 	if (!data)
1703 		goto nodata;
1704 	size = SKB_WITH_OVERHEAD(ksize(data));
1705 
1706 	/* Copy only real data... and, alas, header. This should be
1707 	 * optimized for the cases when header is void.
1708 	 */
1709 	memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head);
1710 
1711 	memcpy((struct skb_shared_info *)(data + size),
1712 	       skb_shinfo(skb),
1713 	       offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags]));
1714 
1715 	/*
1716 	 * if shinfo is shared we must drop the old head gracefully, but if it
1717 	 * is not we can just drop the old head and let the existing refcount
1718 	 * be since all we did is relocate the values
1719 	 */
1720 	if (skb_cloned(skb)) {
1721 		if (skb_orphan_frags(skb, gfp_mask))
1722 			goto nofrags;
1723 		if (skb_zcopy(skb))
1724 			refcount_inc(&skb_uarg(skb)->refcnt);
1725 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1726 			skb_frag_ref(skb, i);
1727 
1728 		if (skb_has_frag_list(skb))
1729 			skb_clone_fraglist(skb);
1730 
1731 		skb_release_data(skb);
1732 	} else {
1733 		skb_free_head(skb);
1734 	}
1735 	off = (data + nhead) - skb->head;
1736 
1737 	skb->head     = data;
1738 	skb->head_frag = 0;
1739 	skb->data    += off;
1740 
1741 	skb_set_end_offset(skb, size);
1742 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1743 	off           = nhead;
1744 #endif
1745 	skb->tail	      += off;
1746 	skb_headers_offset_update(skb, nhead);
1747 	skb->cloned   = 0;
1748 	skb->hdr_len  = 0;
1749 	skb->nohdr    = 0;
1750 	atomic_set(&skb_shinfo(skb)->dataref, 1);
1751 
1752 	skb_metadata_clear(skb);
1753 
1754 	/* It is not generally safe to change skb->truesize.
1755 	 * For the moment, we really care of rx path, or
1756 	 * when skb is orphaned (not attached to a socket).
1757 	 */
1758 	if (!skb->sk || skb->destructor == sock_edemux)
1759 		skb->truesize += size - osize;
1760 
1761 	return 0;
1762 
1763 nofrags:
1764 	kfree(data);
1765 nodata:
1766 	return -ENOMEM;
1767 }
1768 EXPORT_SYMBOL(pskb_expand_head);
1769 
1770 /* Make private copy of skb with writable head and some headroom */
1771 
1772 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
1773 {
1774 	struct sk_buff *skb2;
1775 	int delta = headroom - skb_headroom(skb);
1776 
1777 	if (delta <= 0)
1778 		skb2 = pskb_copy(skb, GFP_ATOMIC);
1779 	else {
1780 		skb2 = skb_clone(skb, GFP_ATOMIC);
1781 		if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
1782 					     GFP_ATOMIC)) {
1783 			kfree_skb(skb2);
1784 			skb2 = NULL;
1785 		}
1786 	}
1787 	return skb2;
1788 }
1789 EXPORT_SYMBOL(skb_realloc_headroom);
1790 
1791 int __skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri)
1792 {
1793 	unsigned int saved_end_offset, saved_truesize;
1794 	struct skb_shared_info *shinfo;
1795 	int res;
1796 
1797 	saved_end_offset = skb_end_offset(skb);
1798 	saved_truesize = skb->truesize;
1799 
1800 	res = pskb_expand_head(skb, 0, 0, pri);
1801 	if (res)
1802 		return res;
1803 
1804 	skb->truesize = saved_truesize;
1805 
1806 	if (likely(skb_end_offset(skb) == saved_end_offset))
1807 		return 0;
1808 
1809 	shinfo = skb_shinfo(skb);
1810 
1811 	/* We are about to change back skb->end,
1812 	 * we need to move skb_shinfo() to its new location.
1813 	 */
1814 	memmove(skb->head + saved_end_offset,
1815 		shinfo,
1816 		offsetof(struct skb_shared_info, frags[shinfo->nr_frags]));
1817 
1818 	skb_set_end_offset(skb, saved_end_offset);
1819 
1820 	return 0;
1821 }
1822 
1823 /**
1824  *	skb_expand_head - reallocate header of &sk_buff
1825  *	@skb: buffer to reallocate
1826  *	@headroom: needed headroom
1827  *
1828  *	Unlike skb_realloc_headroom, this one does not allocate a new skb
1829  *	if possible; copies skb->sk to new skb as needed
1830  *	and frees original skb in case of failures.
1831  *
1832  *	It expect increased headroom and generates warning otherwise.
1833  */
1834 
1835 struct sk_buff *skb_expand_head(struct sk_buff *skb, unsigned int headroom)
1836 {
1837 	int delta = headroom - skb_headroom(skb);
1838 	int osize = skb_end_offset(skb);
1839 	struct sock *sk = skb->sk;
1840 
1841 	if (WARN_ONCE(delta <= 0,
1842 		      "%s is expecting an increase in the headroom", __func__))
1843 		return skb;
1844 
1845 	delta = SKB_DATA_ALIGN(delta);
1846 	/* pskb_expand_head() might crash, if skb is shared. */
1847 	if (skb_shared(skb) || !is_skb_wmem(skb)) {
1848 		struct sk_buff *nskb = skb_clone(skb, GFP_ATOMIC);
1849 
1850 		if (unlikely(!nskb))
1851 			goto fail;
1852 
1853 		if (sk)
1854 			skb_set_owner_w(nskb, sk);
1855 		consume_skb(skb);
1856 		skb = nskb;
1857 	}
1858 	if (pskb_expand_head(skb, delta, 0, GFP_ATOMIC))
1859 		goto fail;
1860 
1861 	if (sk && is_skb_wmem(skb)) {
1862 		delta = skb_end_offset(skb) - osize;
1863 		refcount_add(delta, &sk->sk_wmem_alloc);
1864 		skb->truesize += delta;
1865 	}
1866 	return skb;
1867 
1868 fail:
1869 	kfree_skb(skb);
1870 	return NULL;
1871 }
1872 EXPORT_SYMBOL(skb_expand_head);
1873 
1874 /**
1875  *	skb_copy_expand	-	copy and expand sk_buff
1876  *	@skb: buffer to copy
1877  *	@newheadroom: new free bytes at head
1878  *	@newtailroom: new free bytes at tail
1879  *	@gfp_mask: allocation priority
1880  *
1881  *	Make a copy of both an &sk_buff and its data and while doing so
1882  *	allocate additional space.
1883  *
1884  *	This is used when the caller wishes to modify the data and needs a
1885  *	private copy of the data to alter as well as more space for new fields.
1886  *	Returns %NULL on failure or the pointer to the buffer
1887  *	on success. The returned buffer has a reference count of 1.
1888  *
1889  *	You must pass %GFP_ATOMIC as the allocation priority if this function
1890  *	is called from an interrupt.
1891  */
1892 struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
1893 				int newheadroom, int newtailroom,
1894 				gfp_t gfp_mask)
1895 {
1896 	/*
1897 	 *	Allocate the copy buffer
1898 	 */
1899 	struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom,
1900 					gfp_mask, skb_alloc_rx_flag(skb),
1901 					NUMA_NO_NODE);
1902 	int oldheadroom = skb_headroom(skb);
1903 	int head_copy_len, head_copy_off;
1904 
1905 	if (!n)
1906 		return NULL;
1907 
1908 	skb_reserve(n, newheadroom);
1909 
1910 	/* Set the tail pointer and length */
1911 	skb_put(n, skb->len);
1912 
1913 	head_copy_len = oldheadroom;
1914 	head_copy_off = 0;
1915 	if (newheadroom <= head_copy_len)
1916 		head_copy_len = newheadroom;
1917 	else
1918 		head_copy_off = newheadroom - head_copy_len;
1919 
1920 	/* Copy the linear header and data. */
1921 	BUG_ON(skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
1922 			     skb->len + head_copy_len));
1923 
1924 	skb_copy_header(n, skb);
1925 
1926 	skb_headers_offset_update(n, newheadroom - oldheadroom);
1927 
1928 	return n;
1929 }
1930 EXPORT_SYMBOL(skb_copy_expand);
1931 
1932 /**
1933  *	__skb_pad		-	zero pad the tail of an skb
1934  *	@skb: buffer to pad
1935  *	@pad: space to pad
1936  *	@free_on_error: free buffer on error
1937  *
1938  *	Ensure that a buffer is followed by a padding area that is zero
1939  *	filled. Used by network drivers which may DMA or transfer data
1940  *	beyond the buffer end onto the wire.
1941  *
1942  *	May return error in out of memory cases. The skb is freed on error
1943  *	if @free_on_error is true.
1944  */
1945 
1946 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error)
1947 {
1948 	int err;
1949 	int ntail;
1950 
1951 	/* If the skbuff is non linear tailroom is always zero.. */
1952 	if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
1953 		memset(skb->data+skb->len, 0, pad);
1954 		return 0;
1955 	}
1956 
1957 	ntail = skb->data_len + pad - (skb->end - skb->tail);
1958 	if (likely(skb_cloned(skb) || ntail > 0)) {
1959 		err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
1960 		if (unlikely(err))
1961 			goto free_skb;
1962 	}
1963 
1964 	/* FIXME: The use of this function with non-linear skb's really needs
1965 	 * to be audited.
1966 	 */
1967 	err = skb_linearize(skb);
1968 	if (unlikely(err))
1969 		goto free_skb;
1970 
1971 	memset(skb->data + skb->len, 0, pad);
1972 	return 0;
1973 
1974 free_skb:
1975 	if (free_on_error)
1976 		kfree_skb(skb);
1977 	return err;
1978 }
1979 EXPORT_SYMBOL(__skb_pad);
1980 
1981 /**
1982  *	pskb_put - add data to the tail of a potentially fragmented buffer
1983  *	@skb: start of the buffer to use
1984  *	@tail: tail fragment of the buffer to use
1985  *	@len: amount of data to add
1986  *
1987  *	This function extends the used data area of the potentially
1988  *	fragmented buffer. @tail must be the last fragment of @skb -- or
1989  *	@skb itself. If this would exceed the total buffer size the kernel
1990  *	will panic. A pointer to the first byte of the extra data is
1991  *	returned.
1992  */
1993 
1994 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len)
1995 {
1996 	if (tail != skb) {
1997 		skb->data_len += len;
1998 		skb->len += len;
1999 	}
2000 	return skb_put(tail, len);
2001 }
2002 EXPORT_SYMBOL_GPL(pskb_put);
2003 
2004 /**
2005  *	skb_put - add data to a buffer
2006  *	@skb: buffer to use
2007  *	@len: amount of data to add
2008  *
2009  *	This function extends the used data area of the buffer. If this would
2010  *	exceed the total buffer size the kernel will panic. A pointer to the
2011  *	first byte of the extra data is returned.
2012  */
2013 void *skb_put(struct sk_buff *skb, unsigned int len)
2014 {
2015 	void *tmp = skb_tail_pointer(skb);
2016 	SKB_LINEAR_ASSERT(skb);
2017 	skb->tail += len;
2018 	skb->len  += len;
2019 	if (unlikely(skb->tail > skb->end))
2020 		skb_over_panic(skb, len, __builtin_return_address(0));
2021 	return tmp;
2022 }
2023 EXPORT_SYMBOL(skb_put);
2024 
2025 /**
2026  *	skb_push - add data to the start of a buffer
2027  *	@skb: buffer to use
2028  *	@len: amount of data to add
2029  *
2030  *	This function extends the used data area of the buffer at the buffer
2031  *	start. If this would exceed the total buffer headroom the kernel will
2032  *	panic. A pointer to the first byte of the extra data is returned.
2033  */
2034 void *skb_push(struct sk_buff *skb, unsigned int len)
2035 {
2036 	skb->data -= len;
2037 	skb->len  += len;
2038 	if (unlikely(skb->data < skb->head))
2039 		skb_under_panic(skb, len, __builtin_return_address(0));
2040 	return skb->data;
2041 }
2042 EXPORT_SYMBOL(skb_push);
2043 
2044 /**
2045  *	skb_pull - remove data from the start of a buffer
2046  *	@skb: buffer to use
2047  *	@len: amount of data to remove
2048  *
2049  *	This function removes data from the start of a buffer, returning
2050  *	the memory to the headroom. A pointer to the next data in the buffer
2051  *	is returned. Once the data has been pulled future pushes will overwrite
2052  *	the old data.
2053  */
2054 void *skb_pull(struct sk_buff *skb, unsigned int len)
2055 {
2056 	return skb_pull_inline(skb, len);
2057 }
2058 EXPORT_SYMBOL(skb_pull);
2059 
2060 /**
2061  *	skb_pull_data - remove data from the start of a buffer returning its
2062  *	original position.
2063  *	@skb: buffer to use
2064  *	@len: amount of data to remove
2065  *
2066  *	This function removes data from the start of a buffer, returning
2067  *	the memory to the headroom. A pointer to the original data in the buffer
2068  *	is returned after checking if there is enough data to pull. Once the
2069  *	data has been pulled future pushes will overwrite the old data.
2070  */
2071 void *skb_pull_data(struct sk_buff *skb, size_t len)
2072 {
2073 	void *data = skb->data;
2074 
2075 	if (skb->len < len)
2076 		return NULL;
2077 
2078 	skb_pull(skb, len);
2079 
2080 	return data;
2081 }
2082 EXPORT_SYMBOL(skb_pull_data);
2083 
2084 /**
2085  *	skb_trim - remove end from a buffer
2086  *	@skb: buffer to alter
2087  *	@len: new length
2088  *
2089  *	Cut the length of a buffer down by removing data from the tail. If
2090  *	the buffer is already under the length specified it is not modified.
2091  *	The skb must be linear.
2092  */
2093 void skb_trim(struct sk_buff *skb, unsigned int len)
2094 {
2095 	if (skb->len > len)
2096 		__skb_trim(skb, len);
2097 }
2098 EXPORT_SYMBOL(skb_trim);
2099 
2100 /* Trims skb to length len. It can change skb pointers.
2101  */
2102 
2103 int ___pskb_trim(struct sk_buff *skb, unsigned int len)
2104 {
2105 	struct sk_buff **fragp;
2106 	struct sk_buff *frag;
2107 	int offset = skb_headlen(skb);
2108 	int nfrags = skb_shinfo(skb)->nr_frags;
2109 	int i;
2110 	int err;
2111 
2112 	if (skb_cloned(skb) &&
2113 	    unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
2114 		return err;
2115 
2116 	i = 0;
2117 	if (offset >= len)
2118 		goto drop_pages;
2119 
2120 	for (; i < nfrags; i++) {
2121 		int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]);
2122 
2123 		if (end < len) {
2124 			offset = end;
2125 			continue;
2126 		}
2127 
2128 		skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset);
2129 
2130 drop_pages:
2131 		skb_shinfo(skb)->nr_frags = i;
2132 
2133 		for (; i < nfrags; i++)
2134 			skb_frag_unref(skb, i);
2135 
2136 		if (skb_has_frag_list(skb))
2137 			skb_drop_fraglist(skb);
2138 		goto done;
2139 	}
2140 
2141 	for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
2142 	     fragp = &frag->next) {
2143 		int end = offset + frag->len;
2144 
2145 		if (skb_shared(frag)) {
2146 			struct sk_buff *nfrag;
2147 
2148 			nfrag = skb_clone(frag, GFP_ATOMIC);
2149 			if (unlikely(!nfrag))
2150 				return -ENOMEM;
2151 
2152 			nfrag->next = frag->next;
2153 			consume_skb(frag);
2154 			frag = nfrag;
2155 			*fragp = frag;
2156 		}
2157 
2158 		if (end < len) {
2159 			offset = end;
2160 			continue;
2161 		}
2162 
2163 		if (end > len &&
2164 		    unlikely((err = pskb_trim(frag, len - offset))))
2165 			return err;
2166 
2167 		if (frag->next)
2168 			skb_drop_list(&frag->next);
2169 		break;
2170 	}
2171 
2172 done:
2173 	if (len > skb_headlen(skb)) {
2174 		skb->data_len -= skb->len - len;
2175 		skb->len       = len;
2176 	} else {
2177 		skb->len       = len;
2178 		skb->data_len  = 0;
2179 		skb_set_tail_pointer(skb, len);
2180 	}
2181 
2182 	if (!skb->sk || skb->destructor == sock_edemux)
2183 		skb_condense(skb);
2184 	return 0;
2185 }
2186 EXPORT_SYMBOL(___pskb_trim);
2187 
2188 /* Note : use pskb_trim_rcsum() instead of calling this directly
2189  */
2190 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len)
2191 {
2192 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
2193 		int delta = skb->len - len;
2194 
2195 		skb->csum = csum_block_sub(skb->csum,
2196 					   skb_checksum(skb, len, delta, 0),
2197 					   len);
2198 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
2199 		int hdlen = (len > skb_headlen(skb)) ? skb_headlen(skb) : len;
2200 		int offset = skb_checksum_start_offset(skb) + skb->csum_offset;
2201 
2202 		if (offset + sizeof(__sum16) > hdlen)
2203 			return -EINVAL;
2204 	}
2205 	return __pskb_trim(skb, len);
2206 }
2207 EXPORT_SYMBOL(pskb_trim_rcsum_slow);
2208 
2209 /**
2210  *	__pskb_pull_tail - advance tail of skb header
2211  *	@skb: buffer to reallocate
2212  *	@delta: number of bytes to advance tail
2213  *
2214  *	The function makes a sense only on a fragmented &sk_buff,
2215  *	it expands header moving its tail forward and copying necessary
2216  *	data from fragmented part.
2217  *
2218  *	&sk_buff MUST have reference count of 1.
2219  *
2220  *	Returns %NULL (and &sk_buff does not change) if pull failed
2221  *	or value of new tail of skb in the case of success.
2222  *
2223  *	All the pointers pointing into skb header may change and must be
2224  *	reloaded after call to this function.
2225  */
2226 
2227 /* Moves tail of skb head forward, copying data from fragmented part,
2228  * when it is necessary.
2229  * 1. It may fail due to malloc failure.
2230  * 2. It may change skb pointers.
2231  *
2232  * It is pretty complicated. Luckily, it is called only in exceptional cases.
2233  */
2234 void *__pskb_pull_tail(struct sk_buff *skb, int delta)
2235 {
2236 	/* If skb has not enough free space at tail, get new one
2237 	 * plus 128 bytes for future expansions. If we have enough
2238 	 * room at tail, reallocate without expansion only if skb is cloned.
2239 	 */
2240 	int i, k, eat = (skb->tail + delta) - skb->end;
2241 
2242 	if (eat > 0 || skb_cloned(skb)) {
2243 		if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
2244 				     GFP_ATOMIC))
2245 			return NULL;
2246 	}
2247 
2248 	BUG_ON(skb_copy_bits(skb, skb_headlen(skb),
2249 			     skb_tail_pointer(skb), delta));
2250 
2251 	/* Optimization: no fragments, no reasons to preestimate
2252 	 * size of pulled pages. Superb.
2253 	 */
2254 	if (!skb_has_frag_list(skb))
2255 		goto pull_pages;
2256 
2257 	/* Estimate size of pulled pages. */
2258 	eat = delta;
2259 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2260 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2261 
2262 		if (size >= eat)
2263 			goto pull_pages;
2264 		eat -= size;
2265 	}
2266 
2267 	/* If we need update frag list, we are in troubles.
2268 	 * Certainly, it is possible to add an offset to skb data,
2269 	 * but taking into account that pulling is expected to
2270 	 * be very rare operation, it is worth to fight against
2271 	 * further bloating skb head and crucify ourselves here instead.
2272 	 * Pure masohism, indeed. 8)8)
2273 	 */
2274 	if (eat) {
2275 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
2276 		struct sk_buff *clone = NULL;
2277 		struct sk_buff *insp = NULL;
2278 
2279 		do {
2280 			if (list->len <= eat) {
2281 				/* Eaten as whole. */
2282 				eat -= list->len;
2283 				list = list->next;
2284 				insp = list;
2285 			} else {
2286 				/* Eaten partially. */
2287 
2288 				if (skb_shared(list)) {
2289 					/* Sucks! We need to fork list. :-( */
2290 					clone = skb_clone(list, GFP_ATOMIC);
2291 					if (!clone)
2292 						return NULL;
2293 					insp = list->next;
2294 					list = clone;
2295 				} else {
2296 					/* This may be pulled without
2297 					 * problems. */
2298 					insp = list;
2299 				}
2300 				if (!pskb_pull(list, eat)) {
2301 					kfree_skb(clone);
2302 					return NULL;
2303 				}
2304 				break;
2305 			}
2306 		} while (eat);
2307 
2308 		/* Free pulled out fragments. */
2309 		while ((list = skb_shinfo(skb)->frag_list) != insp) {
2310 			skb_shinfo(skb)->frag_list = list->next;
2311 			consume_skb(list);
2312 		}
2313 		/* And insert new clone at head. */
2314 		if (clone) {
2315 			clone->next = list;
2316 			skb_shinfo(skb)->frag_list = clone;
2317 		}
2318 	}
2319 	/* Success! Now we may commit changes to skb data. */
2320 
2321 pull_pages:
2322 	eat = delta;
2323 	k = 0;
2324 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2325 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2326 
2327 		if (size <= eat) {
2328 			skb_frag_unref(skb, i);
2329 			eat -= size;
2330 		} else {
2331 			skb_frag_t *frag = &skb_shinfo(skb)->frags[k];
2332 
2333 			*frag = skb_shinfo(skb)->frags[i];
2334 			if (eat) {
2335 				skb_frag_off_add(frag, eat);
2336 				skb_frag_size_sub(frag, eat);
2337 				if (!i)
2338 					goto end;
2339 				eat = 0;
2340 			}
2341 			k++;
2342 		}
2343 	}
2344 	skb_shinfo(skb)->nr_frags = k;
2345 
2346 end:
2347 	skb->tail     += delta;
2348 	skb->data_len -= delta;
2349 
2350 	if (!skb->data_len)
2351 		skb_zcopy_clear(skb, false);
2352 
2353 	return skb_tail_pointer(skb);
2354 }
2355 EXPORT_SYMBOL(__pskb_pull_tail);
2356 
2357 /**
2358  *	skb_copy_bits - copy bits from skb to kernel buffer
2359  *	@skb: source skb
2360  *	@offset: offset in source
2361  *	@to: destination buffer
2362  *	@len: number of bytes to copy
2363  *
2364  *	Copy the specified number of bytes from the source skb to the
2365  *	destination buffer.
2366  *
2367  *	CAUTION ! :
2368  *		If its prototype is ever changed,
2369  *		check arch/{*}/net/{*}.S files,
2370  *		since it is called from BPF assembly code.
2371  */
2372 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
2373 {
2374 	int start = skb_headlen(skb);
2375 	struct sk_buff *frag_iter;
2376 	int i, copy;
2377 
2378 	if (offset > (int)skb->len - len)
2379 		goto fault;
2380 
2381 	/* Copy header. */
2382 	if ((copy = start - offset) > 0) {
2383 		if (copy > len)
2384 			copy = len;
2385 		skb_copy_from_linear_data_offset(skb, offset, to, copy);
2386 		if ((len -= copy) == 0)
2387 			return 0;
2388 		offset += copy;
2389 		to     += copy;
2390 	}
2391 
2392 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2393 		int end;
2394 		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
2395 
2396 		WARN_ON(start > offset + len);
2397 
2398 		end = start + skb_frag_size(f);
2399 		if ((copy = end - offset) > 0) {
2400 			u32 p_off, p_len, copied;
2401 			struct page *p;
2402 			u8 *vaddr;
2403 
2404 			if (copy > len)
2405 				copy = len;
2406 
2407 			skb_frag_foreach_page(f,
2408 					      skb_frag_off(f) + offset - start,
2409 					      copy, p, p_off, p_len, copied) {
2410 				vaddr = kmap_atomic(p);
2411 				memcpy(to + copied, vaddr + p_off, p_len);
2412 				kunmap_atomic(vaddr);
2413 			}
2414 
2415 			if ((len -= copy) == 0)
2416 				return 0;
2417 			offset += copy;
2418 			to     += copy;
2419 		}
2420 		start = end;
2421 	}
2422 
2423 	skb_walk_frags(skb, frag_iter) {
2424 		int end;
2425 
2426 		WARN_ON(start > offset + len);
2427 
2428 		end = start + frag_iter->len;
2429 		if ((copy = end - offset) > 0) {
2430 			if (copy > len)
2431 				copy = len;
2432 			if (skb_copy_bits(frag_iter, offset - start, to, copy))
2433 				goto fault;
2434 			if ((len -= copy) == 0)
2435 				return 0;
2436 			offset += copy;
2437 			to     += copy;
2438 		}
2439 		start = end;
2440 	}
2441 
2442 	if (!len)
2443 		return 0;
2444 
2445 fault:
2446 	return -EFAULT;
2447 }
2448 EXPORT_SYMBOL(skb_copy_bits);
2449 
2450 /*
2451  * Callback from splice_to_pipe(), if we need to release some pages
2452  * at the end of the spd in case we error'ed out in filling the pipe.
2453  */
2454 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
2455 {
2456 	put_page(spd->pages[i]);
2457 }
2458 
2459 static struct page *linear_to_page(struct page *page, unsigned int *len,
2460 				   unsigned int *offset,
2461 				   struct sock *sk)
2462 {
2463 	struct page_frag *pfrag = sk_page_frag(sk);
2464 
2465 	if (!sk_page_frag_refill(sk, pfrag))
2466 		return NULL;
2467 
2468 	*len = min_t(unsigned int, *len, pfrag->size - pfrag->offset);
2469 
2470 	memcpy(page_address(pfrag->page) + pfrag->offset,
2471 	       page_address(page) + *offset, *len);
2472 	*offset = pfrag->offset;
2473 	pfrag->offset += *len;
2474 
2475 	return pfrag->page;
2476 }
2477 
2478 static bool spd_can_coalesce(const struct splice_pipe_desc *spd,
2479 			     struct page *page,
2480 			     unsigned int offset)
2481 {
2482 	return	spd->nr_pages &&
2483 		spd->pages[spd->nr_pages - 1] == page &&
2484 		(spd->partial[spd->nr_pages - 1].offset +
2485 		 spd->partial[spd->nr_pages - 1].len == offset);
2486 }
2487 
2488 /*
2489  * Fill page/offset/length into spd, if it can hold more pages.
2490  */
2491 static bool spd_fill_page(struct splice_pipe_desc *spd,
2492 			  struct pipe_inode_info *pipe, struct page *page,
2493 			  unsigned int *len, unsigned int offset,
2494 			  bool linear,
2495 			  struct sock *sk)
2496 {
2497 	if (unlikely(spd->nr_pages == MAX_SKB_FRAGS))
2498 		return true;
2499 
2500 	if (linear) {
2501 		page = linear_to_page(page, len, &offset, sk);
2502 		if (!page)
2503 			return true;
2504 	}
2505 	if (spd_can_coalesce(spd, page, offset)) {
2506 		spd->partial[spd->nr_pages - 1].len += *len;
2507 		return false;
2508 	}
2509 	get_page(page);
2510 	spd->pages[spd->nr_pages] = page;
2511 	spd->partial[spd->nr_pages].len = *len;
2512 	spd->partial[spd->nr_pages].offset = offset;
2513 	spd->nr_pages++;
2514 
2515 	return false;
2516 }
2517 
2518 static bool __splice_segment(struct page *page, unsigned int poff,
2519 			     unsigned int plen, unsigned int *off,
2520 			     unsigned int *len,
2521 			     struct splice_pipe_desc *spd, bool linear,
2522 			     struct sock *sk,
2523 			     struct pipe_inode_info *pipe)
2524 {
2525 	if (!*len)
2526 		return true;
2527 
2528 	/* skip this segment if already processed */
2529 	if (*off >= plen) {
2530 		*off -= plen;
2531 		return false;
2532 	}
2533 
2534 	/* ignore any bits we already processed */
2535 	poff += *off;
2536 	plen -= *off;
2537 	*off = 0;
2538 
2539 	do {
2540 		unsigned int flen = min(*len, plen);
2541 
2542 		if (spd_fill_page(spd, pipe, page, &flen, poff,
2543 				  linear, sk))
2544 			return true;
2545 		poff += flen;
2546 		plen -= flen;
2547 		*len -= flen;
2548 	} while (*len && plen);
2549 
2550 	return false;
2551 }
2552 
2553 /*
2554  * Map linear and fragment data from the skb to spd. It reports true if the
2555  * pipe is full or if we already spliced the requested length.
2556  */
2557 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe,
2558 			      unsigned int *offset, unsigned int *len,
2559 			      struct splice_pipe_desc *spd, struct sock *sk)
2560 {
2561 	int seg;
2562 	struct sk_buff *iter;
2563 
2564 	/* map the linear part :
2565 	 * If skb->head_frag is set, this 'linear' part is backed by a
2566 	 * fragment, and if the head is not shared with any clones then
2567 	 * we can avoid a copy since we own the head portion of this page.
2568 	 */
2569 	if (__splice_segment(virt_to_page(skb->data),
2570 			     (unsigned long) skb->data & (PAGE_SIZE - 1),
2571 			     skb_headlen(skb),
2572 			     offset, len, spd,
2573 			     skb_head_is_locked(skb),
2574 			     sk, pipe))
2575 		return true;
2576 
2577 	/*
2578 	 * then map the fragments
2579 	 */
2580 	for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
2581 		const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
2582 
2583 		if (__splice_segment(skb_frag_page(f),
2584 				     skb_frag_off(f), skb_frag_size(f),
2585 				     offset, len, spd, false, sk, pipe))
2586 			return true;
2587 	}
2588 
2589 	skb_walk_frags(skb, iter) {
2590 		if (*offset >= iter->len) {
2591 			*offset -= iter->len;
2592 			continue;
2593 		}
2594 		/* __skb_splice_bits() only fails if the output has no room
2595 		 * left, so no point in going over the frag_list for the error
2596 		 * case.
2597 		 */
2598 		if (__skb_splice_bits(iter, pipe, offset, len, spd, sk))
2599 			return true;
2600 	}
2601 
2602 	return false;
2603 }
2604 
2605 /*
2606  * Map data from the skb to a pipe. Should handle both the linear part,
2607  * the fragments, and the frag list.
2608  */
2609 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
2610 		    struct pipe_inode_info *pipe, unsigned int tlen,
2611 		    unsigned int flags)
2612 {
2613 	struct partial_page partial[MAX_SKB_FRAGS];
2614 	struct page *pages[MAX_SKB_FRAGS];
2615 	struct splice_pipe_desc spd = {
2616 		.pages = pages,
2617 		.partial = partial,
2618 		.nr_pages_max = MAX_SKB_FRAGS,
2619 		.ops = &nosteal_pipe_buf_ops,
2620 		.spd_release = sock_spd_release,
2621 	};
2622 	int ret = 0;
2623 
2624 	__skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk);
2625 
2626 	if (spd.nr_pages)
2627 		ret = splice_to_pipe(pipe, &spd);
2628 
2629 	return ret;
2630 }
2631 EXPORT_SYMBOL_GPL(skb_splice_bits);
2632 
2633 static int sendmsg_unlocked(struct sock *sk, struct msghdr *msg,
2634 			    struct kvec *vec, size_t num, size_t size)
2635 {
2636 	struct socket *sock = sk->sk_socket;
2637 
2638 	if (!sock)
2639 		return -EINVAL;
2640 	return kernel_sendmsg(sock, msg, vec, num, size);
2641 }
2642 
2643 static int sendpage_unlocked(struct sock *sk, struct page *page, int offset,
2644 			     size_t size, int flags)
2645 {
2646 	struct socket *sock = sk->sk_socket;
2647 
2648 	if (!sock)
2649 		return -EINVAL;
2650 	return kernel_sendpage(sock, page, offset, size, flags);
2651 }
2652 
2653 typedef int (*sendmsg_func)(struct sock *sk, struct msghdr *msg,
2654 			    struct kvec *vec, size_t num, size_t size);
2655 typedef int (*sendpage_func)(struct sock *sk, struct page *page, int offset,
2656 			     size_t size, int flags);
2657 static int __skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset,
2658 			   int len, sendmsg_func sendmsg, sendpage_func sendpage)
2659 {
2660 	unsigned int orig_len = len;
2661 	struct sk_buff *head = skb;
2662 	unsigned short fragidx;
2663 	int slen, ret;
2664 
2665 do_frag_list:
2666 
2667 	/* Deal with head data */
2668 	while (offset < skb_headlen(skb) && len) {
2669 		struct kvec kv;
2670 		struct msghdr msg;
2671 
2672 		slen = min_t(int, len, skb_headlen(skb) - offset);
2673 		kv.iov_base = skb->data + offset;
2674 		kv.iov_len = slen;
2675 		memset(&msg, 0, sizeof(msg));
2676 		msg.msg_flags = MSG_DONTWAIT;
2677 
2678 		ret = INDIRECT_CALL_2(sendmsg, kernel_sendmsg_locked,
2679 				      sendmsg_unlocked, sk, &msg, &kv, 1, slen);
2680 		if (ret <= 0)
2681 			goto error;
2682 
2683 		offset += ret;
2684 		len -= ret;
2685 	}
2686 
2687 	/* All the data was skb head? */
2688 	if (!len)
2689 		goto out;
2690 
2691 	/* Make offset relative to start of frags */
2692 	offset -= skb_headlen(skb);
2693 
2694 	/* Find where we are in frag list */
2695 	for (fragidx = 0; fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
2696 		skb_frag_t *frag  = &skb_shinfo(skb)->frags[fragidx];
2697 
2698 		if (offset < skb_frag_size(frag))
2699 			break;
2700 
2701 		offset -= skb_frag_size(frag);
2702 	}
2703 
2704 	for (; len && fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
2705 		skb_frag_t *frag  = &skb_shinfo(skb)->frags[fragidx];
2706 
2707 		slen = min_t(size_t, len, skb_frag_size(frag) - offset);
2708 
2709 		while (slen) {
2710 			ret = INDIRECT_CALL_2(sendpage, kernel_sendpage_locked,
2711 					      sendpage_unlocked, sk,
2712 					      skb_frag_page(frag),
2713 					      skb_frag_off(frag) + offset,
2714 					      slen, MSG_DONTWAIT);
2715 			if (ret <= 0)
2716 				goto error;
2717 
2718 			len -= ret;
2719 			offset += ret;
2720 			slen -= ret;
2721 		}
2722 
2723 		offset = 0;
2724 	}
2725 
2726 	if (len) {
2727 		/* Process any frag lists */
2728 
2729 		if (skb == head) {
2730 			if (skb_has_frag_list(skb)) {
2731 				skb = skb_shinfo(skb)->frag_list;
2732 				goto do_frag_list;
2733 			}
2734 		} else if (skb->next) {
2735 			skb = skb->next;
2736 			goto do_frag_list;
2737 		}
2738 	}
2739 
2740 out:
2741 	return orig_len - len;
2742 
2743 error:
2744 	return orig_len == len ? ret : orig_len - len;
2745 }
2746 
2747 /* Send skb data on a socket. Socket must be locked. */
2748 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
2749 			 int len)
2750 {
2751 	return __skb_send_sock(sk, skb, offset, len, kernel_sendmsg_locked,
2752 			       kernel_sendpage_locked);
2753 }
2754 EXPORT_SYMBOL_GPL(skb_send_sock_locked);
2755 
2756 /* Send skb data on a socket. Socket must be unlocked. */
2757 int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len)
2758 {
2759 	return __skb_send_sock(sk, skb, offset, len, sendmsg_unlocked,
2760 			       sendpage_unlocked);
2761 }
2762 
2763 /**
2764  *	skb_store_bits - store bits from kernel buffer to skb
2765  *	@skb: destination buffer
2766  *	@offset: offset in destination
2767  *	@from: source buffer
2768  *	@len: number of bytes to copy
2769  *
2770  *	Copy the specified number of bytes from the source buffer to the
2771  *	destination skb.  This function handles all the messy bits of
2772  *	traversing fragment lists and such.
2773  */
2774 
2775 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
2776 {
2777 	int start = skb_headlen(skb);
2778 	struct sk_buff *frag_iter;
2779 	int i, copy;
2780 
2781 	if (offset > (int)skb->len - len)
2782 		goto fault;
2783 
2784 	if ((copy = start - offset) > 0) {
2785 		if (copy > len)
2786 			copy = len;
2787 		skb_copy_to_linear_data_offset(skb, offset, from, copy);
2788 		if ((len -= copy) == 0)
2789 			return 0;
2790 		offset += copy;
2791 		from += copy;
2792 	}
2793 
2794 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2795 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2796 		int end;
2797 
2798 		WARN_ON(start > offset + len);
2799 
2800 		end = start + skb_frag_size(frag);
2801 		if ((copy = end - offset) > 0) {
2802 			u32 p_off, p_len, copied;
2803 			struct page *p;
2804 			u8 *vaddr;
2805 
2806 			if (copy > len)
2807 				copy = len;
2808 
2809 			skb_frag_foreach_page(frag,
2810 					      skb_frag_off(frag) + offset - start,
2811 					      copy, p, p_off, p_len, copied) {
2812 				vaddr = kmap_atomic(p);
2813 				memcpy(vaddr + p_off, from + copied, p_len);
2814 				kunmap_atomic(vaddr);
2815 			}
2816 
2817 			if ((len -= copy) == 0)
2818 				return 0;
2819 			offset += copy;
2820 			from += copy;
2821 		}
2822 		start = end;
2823 	}
2824 
2825 	skb_walk_frags(skb, frag_iter) {
2826 		int end;
2827 
2828 		WARN_ON(start > offset + len);
2829 
2830 		end = start + frag_iter->len;
2831 		if ((copy = end - offset) > 0) {
2832 			if (copy > len)
2833 				copy = len;
2834 			if (skb_store_bits(frag_iter, offset - start,
2835 					   from, copy))
2836 				goto fault;
2837 			if ((len -= copy) == 0)
2838 				return 0;
2839 			offset += copy;
2840 			from += copy;
2841 		}
2842 		start = end;
2843 	}
2844 	if (!len)
2845 		return 0;
2846 
2847 fault:
2848 	return -EFAULT;
2849 }
2850 EXPORT_SYMBOL(skb_store_bits);
2851 
2852 /* Checksum skb data. */
2853 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
2854 		      __wsum csum, const struct skb_checksum_ops *ops)
2855 {
2856 	int start = skb_headlen(skb);
2857 	int i, copy = start - offset;
2858 	struct sk_buff *frag_iter;
2859 	int pos = 0;
2860 
2861 	/* Checksum header. */
2862 	if (copy > 0) {
2863 		if (copy > len)
2864 			copy = len;
2865 		csum = INDIRECT_CALL_1(ops->update, csum_partial_ext,
2866 				       skb->data + offset, copy, csum);
2867 		if ((len -= copy) == 0)
2868 			return csum;
2869 		offset += copy;
2870 		pos	= copy;
2871 	}
2872 
2873 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2874 		int end;
2875 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2876 
2877 		WARN_ON(start > offset + len);
2878 
2879 		end = start + skb_frag_size(frag);
2880 		if ((copy = end - offset) > 0) {
2881 			u32 p_off, p_len, copied;
2882 			struct page *p;
2883 			__wsum csum2;
2884 			u8 *vaddr;
2885 
2886 			if (copy > len)
2887 				copy = len;
2888 
2889 			skb_frag_foreach_page(frag,
2890 					      skb_frag_off(frag) + offset - start,
2891 					      copy, p, p_off, p_len, copied) {
2892 				vaddr = kmap_atomic(p);
2893 				csum2 = INDIRECT_CALL_1(ops->update,
2894 							csum_partial_ext,
2895 							vaddr + p_off, p_len, 0);
2896 				kunmap_atomic(vaddr);
2897 				csum = INDIRECT_CALL_1(ops->combine,
2898 						       csum_block_add_ext, csum,
2899 						       csum2, pos, p_len);
2900 				pos += p_len;
2901 			}
2902 
2903 			if (!(len -= copy))
2904 				return csum;
2905 			offset += copy;
2906 		}
2907 		start = end;
2908 	}
2909 
2910 	skb_walk_frags(skb, frag_iter) {
2911 		int end;
2912 
2913 		WARN_ON(start > offset + len);
2914 
2915 		end = start + frag_iter->len;
2916 		if ((copy = end - offset) > 0) {
2917 			__wsum csum2;
2918 			if (copy > len)
2919 				copy = len;
2920 			csum2 = __skb_checksum(frag_iter, offset - start,
2921 					       copy, 0, ops);
2922 			csum = INDIRECT_CALL_1(ops->combine, csum_block_add_ext,
2923 					       csum, csum2, pos, copy);
2924 			if ((len -= copy) == 0)
2925 				return csum;
2926 			offset += copy;
2927 			pos    += copy;
2928 		}
2929 		start = end;
2930 	}
2931 	BUG_ON(len);
2932 
2933 	return csum;
2934 }
2935 EXPORT_SYMBOL(__skb_checksum);
2936 
2937 __wsum skb_checksum(const struct sk_buff *skb, int offset,
2938 		    int len, __wsum csum)
2939 {
2940 	const struct skb_checksum_ops ops = {
2941 		.update  = csum_partial_ext,
2942 		.combine = csum_block_add_ext,
2943 	};
2944 
2945 	return __skb_checksum(skb, offset, len, csum, &ops);
2946 }
2947 EXPORT_SYMBOL(skb_checksum);
2948 
2949 /* Both of above in one bottle. */
2950 
2951 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
2952 				    u8 *to, int len)
2953 {
2954 	int start = skb_headlen(skb);
2955 	int i, copy = start - offset;
2956 	struct sk_buff *frag_iter;
2957 	int pos = 0;
2958 	__wsum csum = 0;
2959 
2960 	/* Copy header. */
2961 	if (copy > 0) {
2962 		if (copy > len)
2963 			copy = len;
2964 		csum = csum_partial_copy_nocheck(skb->data + offset, to,
2965 						 copy);
2966 		if ((len -= copy) == 0)
2967 			return csum;
2968 		offset += copy;
2969 		to     += copy;
2970 		pos	= copy;
2971 	}
2972 
2973 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2974 		int end;
2975 
2976 		WARN_ON(start > offset + len);
2977 
2978 		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
2979 		if ((copy = end - offset) > 0) {
2980 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2981 			u32 p_off, p_len, copied;
2982 			struct page *p;
2983 			__wsum csum2;
2984 			u8 *vaddr;
2985 
2986 			if (copy > len)
2987 				copy = len;
2988 
2989 			skb_frag_foreach_page(frag,
2990 					      skb_frag_off(frag) + offset - start,
2991 					      copy, p, p_off, p_len, copied) {
2992 				vaddr = kmap_atomic(p);
2993 				csum2 = csum_partial_copy_nocheck(vaddr + p_off,
2994 								  to + copied,
2995 								  p_len);
2996 				kunmap_atomic(vaddr);
2997 				csum = csum_block_add(csum, csum2, pos);
2998 				pos += p_len;
2999 			}
3000 
3001 			if (!(len -= copy))
3002 				return csum;
3003 			offset += copy;
3004 			to     += copy;
3005 		}
3006 		start = end;
3007 	}
3008 
3009 	skb_walk_frags(skb, frag_iter) {
3010 		__wsum csum2;
3011 		int end;
3012 
3013 		WARN_ON(start > offset + len);
3014 
3015 		end = start + frag_iter->len;
3016 		if ((copy = end - offset) > 0) {
3017 			if (copy > len)
3018 				copy = len;
3019 			csum2 = skb_copy_and_csum_bits(frag_iter,
3020 						       offset - start,
3021 						       to, copy);
3022 			csum = csum_block_add(csum, csum2, pos);
3023 			if ((len -= copy) == 0)
3024 				return csum;
3025 			offset += copy;
3026 			to     += copy;
3027 			pos    += copy;
3028 		}
3029 		start = end;
3030 	}
3031 	BUG_ON(len);
3032 	return csum;
3033 }
3034 EXPORT_SYMBOL(skb_copy_and_csum_bits);
3035 
3036 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len)
3037 {
3038 	__sum16 sum;
3039 
3040 	sum = csum_fold(skb_checksum(skb, 0, len, skb->csum));
3041 	/* See comments in __skb_checksum_complete(). */
3042 	if (likely(!sum)) {
3043 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
3044 		    !skb->csum_complete_sw)
3045 			netdev_rx_csum_fault(skb->dev, skb);
3046 	}
3047 	if (!skb_shared(skb))
3048 		skb->csum_valid = !sum;
3049 	return sum;
3050 }
3051 EXPORT_SYMBOL(__skb_checksum_complete_head);
3052 
3053 /* This function assumes skb->csum already holds pseudo header's checksum,
3054  * which has been changed from the hardware checksum, for example, by
3055  * __skb_checksum_validate_complete(). And, the original skb->csum must
3056  * have been validated unsuccessfully for CHECKSUM_COMPLETE case.
3057  *
3058  * It returns non-zero if the recomputed checksum is still invalid, otherwise
3059  * zero. The new checksum is stored back into skb->csum unless the skb is
3060  * shared.
3061  */
3062 __sum16 __skb_checksum_complete(struct sk_buff *skb)
3063 {
3064 	__wsum csum;
3065 	__sum16 sum;
3066 
3067 	csum = skb_checksum(skb, 0, skb->len, 0);
3068 
3069 	sum = csum_fold(csum_add(skb->csum, csum));
3070 	/* This check is inverted, because we already knew the hardware
3071 	 * checksum is invalid before calling this function. So, if the
3072 	 * re-computed checksum is valid instead, then we have a mismatch
3073 	 * between the original skb->csum and skb_checksum(). This means either
3074 	 * the original hardware checksum is incorrect or we screw up skb->csum
3075 	 * when moving skb->data around.
3076 	 */
3077 	if (likely(!sum)) {
3078 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
3079 		    !skb->csum_complete_sw)
3080 			netdev_rx_csum_fault(skb->dev, skb);
3081 	}
3082 
3083 	if (!skb_shared(skb)) {
3084 		/* Save full packet checksum */
3085 		skb->csum = csum;
3086 		skb->ip_summed = CHECKSUM_COMPLETE;
3087 		skb->csum_complete_sw = 1;
3088 		skb->csum_valid = !sum;
3089 	}
3090 
3091 	return sum;
3092 }
3093 EXPORT_SYMBOL(__skb_checksum_complete);
3094 
3095 static __wsum warn_crc32c_csum_update(const void *buff, int len, __wsum sum)
3096 {
3097 	net_warn_ratelimited(
3098 		"%s: attempt to compute crc32c without libcrc32c.ko\n",
3099 		__func__);
3100 	return 0;
3101 }
3102 
3103 static __wsum warn_crc32c_csum_combine(__wsum csum, __wsum csum2,
3104 				       int offset, int len)
3105 {
3106 	net_warn_ratelimited(
3107 		"%s: attempt to compute crc32c without libcrc32c.ko\n",
3108 		__func__);
3109 	return 0;
3110 }
3111 
3112 static const struct skb_checksum_ops default_crc32c_ops = {
3113 	.update  = warn_crc32c_csum_update,
3114 	.combine = warn_crc32c_csum_combine,
3115 };
3116 
3117 const struct skb_checksum_ops *crc32c_csum_stub __read_mostly =
3118 	&default_crc32c_ops;
3119 EXPORT_SYMBOL(crc32c_csum_stub);
3120 
3121  /**
3122  *	skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy()
3123  *	@from: source buffer
3124  *
3125  *	Calculates the amount of linear headroom needed in the 'to' skb passed
3126  *	into skb_zerocopy().
3127  */
3128 unsigned int
3129 skb_zerocopy_headlen(const struct sk_buff *from)
3130 {
3131 	unsigned int hlen = 0;
3132 
3133 	if (!from->head_frag ||
3134 	    skb_headlen(from) < L1_CACHE_BYTES ||
3135 	    skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS) {
3136 		hlen = skb_headlen(from);
3137 		if (!hlen)
3138 			hlen = from->len;
3139 	}
3140 
3141 	if (skb_has_frag_list(from))
3142 		hlen = from->len;
3143 
3144 	return hlen;
3145 }
3146 EXPORT_SYMBOL_GPL(skb_zerocopy_headlen);
3147 
3148 /**
3149  *	skb_zerocopy - Zero copy skb to skb
3150  *	@to: destination buffer
3151  *	@from: source buffer
3152  *	@len: number of bytes to copy from source buffer
3153  *	@hlen: size of linear headroom in destination buffer
3154  *
3155  *	Copies up to `len` bytes from `from` to `to` by creating references
3156  *	to the frags in the source buffer.
3157  *
3158  *	The `hlen` as calculated by skb_zerocopy_headlen() specifies the
3159  *	headroom in the `to` buffer.
3160  *
3161  *	Return value:
3162  *	0: everything is OK
3163  *	-ENOMEM: couldn't orphan frags of @from due to lack of memory
3164  *	-EFAULT: skb_copy_bits() found some problem with skb geometry
3165  */
3166 int
3167 skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen)
3168 {
3169 	int i, j = 0;
3170 	int plen = 0; /* length of skb->head fragment */
3171 	int ret;
3172 	struct page *page;
3173 	unsigned int offset;
3174 
3175 	BUG_ON(!from->head_frag && !hlen);
3176 
3177 	/* dont bother with small payloads */
3178 	if (len <= skb_tailroom(to))
3179 		return skb_copy_bits(from, 0, skb_put(to, len), len);
3180 
3181 	if (hlen) {
3182 		ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen);
3183 		if (unlikely(ret))
3184 			return ret;
3185 		len -= hlen;
3186 	} else {
3187 		plen = min_t(int, skb_headlen(from), len);
3188 		if (plen) {
3189 			page = virt_to_head_page(from->head);
3190 			offset = from->data - (unsigned char *)page_address(page);
3191 			__skb_fill_page_desc(to, 0, page, offset, plen);
3192 			get_page(page);
3193 			j = 1;
3194 			len -= plen;
3195 		}
3196 	}
3197 
3198 	to->truesize += len + plen;
3199 	to->len += len + plen;
3200 	to->data_len += len + plen;
3201 
3202 	if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) {
3203 		skb_tx_error(from);
3204 		return -ENOMEM;
3205 	}
3206 	skb_zerocopy_clone(to, from, GFP_ATOMIC);
3207 
3208 	for (i = 0; i < skb_shinfo(from)->nr_frags; i++) {
3209 		int size;
3210 
3211 		if (!len)
3212 			break;
3213 		skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i];
3214 		size = min_t(int, skb_frag_size(&skb_shinfo(to)->frags[j]),
3215 					len);
3216 		skb_frag_size_set(&skb_shinfo(to)->frags[j], size);
3217 		len -= size;
3218 		skb_frag_ref(to, j);
3219 		j++;
3220 	}
3221 	skb_shinfo(to)->nr_frags = j;
3222 
3223 	return 0;
3224 }
3225 EXPORT_SYMBOL_GPL(skb_zerocopy);
3226 
3227 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
3228 {
3229 	__wsum csum;
3230 	long csstart;
3231 
3232 	if (skb->ip_summed == CHECKSUM_PARTIAL)
3233 		csstart = skb_checksum_start_offset(skb);
3234 	else
3235 		csstart = skb_headlen(skb);
3236 
3237 	BUG_ON(csstart > skb_headlen(skb));
3238 
3239 	skb_copy_from_linear_data(skb, to, csstart);
3240 
3241 	csum = 0;
3242 	if (csstart != skb->len)
3243 		csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
3244 					      skb->len - csstart);
3245 
3246 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
3247 		long csstuff = csstart + skb->csum_offset;
3248 
3249 		*((__sum16 *)(to + csstuff)) = csum_fold(csum);
3250 	}
3251 }
3252 EXPORT_SYMBOL(skb_copy_and_csum_dev);
3253 
3254 /**
3255  *	skb_dequeue - remove from the head of the queue
3256  *	@list: list to dequeue from
3257  *
3258  *	Remove the head of the list. The list lock is taken so the function
3259  *	may be used safely with other locking list functions. The head item is
3260  *	returned or %NULL if the list is empty.
3261  */
3262 
3263 struct sk_buff *skb_dequeue(struct sk_buff_head *list)
3264 {
3265 	unsigned long flags;
3266 	struct sk_buff *result;
3267 
3268 	spin_lock_irqsave(&list->lock, flags);
3269 	result = __skb_dequeue(list);
3270 	spin_unlock_irqrestore(&list->lock, flags);
3271 	return result;
3272 }
3273 EXPORT_SYMBOL(skb_dequeue);
3274 
3275 /**
3276  *	skb_dequeue_tail - remove from the tail of the queue
3277  *	@list: list to dequeue from
3278  *
3279  *	Remove the tail of the list. The list lock is taken so the function
3280  *	may be used safely with other locking list functions. The tail item is
3281  *	returned or %NULL if the list is empty.
3282  */
3283 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
3284 {
3285 	unsigned long flags;
3286 	struct sk_buff *result;
3287 
3288 	spin_lock_irqsave(&list->lock, flags);
3289 	result = __skb_dequeue_tail(list);
3290 	spin_unlock_irqrestore(&list->lock, flags);
3291 	return result;
3292 }
3293 EXPORT_SYMBOL(skb_dequeue_tail);
3294 
3295 /**
3296  *	skb_queue_purge - empty a list
3297  *	@list: list to empty
3298  *
3299  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
3300  *	the list and one reference dropped. This function takes the list
3301  *	lock and is atomic with respect to other list locking functions.
3302  */
3303 void skb_queue_purge(struct sk_buff_head *list)
3304 {
3305 	struct sk_buff *skb;
3306 	while ((skb = skb_dequeue(list)) != NULL)
3307 		kfree_skb(skb);
3308 }
3309 EXPORT_SYMBOL(skb_queue_purge);
3310 
3311 /**
3312  *	skb_rbtree_purge - empty a skb rbtree
3313  *	@root: root of the rbtree to empty
3314  *	Return value: the sum of truesizes of all purged skbs.
3315  *
3316  *	Delete all buffers on an &sk_buff rbtree. Each buffer is removed from
3317  *	the list and one reference dropped. This function does not take
3318  *	any lock. Synchronization should be handled by the caller (e.g., TCP
3319  *	out-of-order queue is protected by the socket lock).
3320  */
3321 unsigned int skb_rbtree_purge(struct rb_root *root)
3322 {
3323 	struct rb_node *p = rb_first(root);
3324 	unsigned int sum = 0;
3325 
3326 	while (p) {
3327 		struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode);
3328 
3329 		p = rb_next(p);
3330 		rb_erase(&skb->rbnode, root);
3331 		sum += skb->truesize;
3332 		kfree_skb(skb);
3333 	}
3334 	return sum;
3335 }
3336 
3337 /**
3338  *	skb_queue_head - queue a buffer at the list head
3339  *	@list: list to use
3340  *	@newsk: buffer to queue
3341  *
3342  *	Queue a buffer at the start of the list. This function takes the
3343  *	list lock and can be used safely with other locking &sk_buff functions
3344  *	safely.
3345  *
3346  *	A buffer cannot be placed on two lists at the same time.
3347  */
3348 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
3349 {
3350 	unsigned long flags;
3351 
3352 	spin_lock_irqsave(&list->lock, flags);
3353 	__skb_queue_head(list, newsk);
3354 	spin_unlock_irqrestore(&list->lock, flags);
3355 }
3356 EXPORT_SYMBOL(skb_queue_head);
3357 
3358 /**
3359  *	skb_queue_tail - queue a buffer at the list tail
3360  *	@list: list to use
3361  *	@newsk: buffer to queue
3362  *
3363  *	Queue a buffer at the tail of the list. This function takes the
3364  *	list lock and can be used safely with other locking &sk_buff functions
3365  *	safely.
3366  *
3367  *	A buffer cannot be placed on two lists at the same time.
3368  */
3369 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
3370 {
3371 	unsigned long flags;
3372 
3373 	spin_lock_irqsave(&list->lock, flags);
3374 	__skb_queue_tail(list, newsk);
3375 	spin_unlock_irqrestore(&list->lock, flags);
3376 }
3377 EXPORT_SYMBOL(skb_queue_tail);
3378 
3379 /**
3380  *	skb_unlink	-	remove a buffer from a list
3381  *	@skb: buffer to remove
3382  *	@list: list to use
3383  *
3384  *	Remove a packet from a list. The list locks are taken and this
3385  *	function is atomic with respect to other list locked calls
3386  *
3387  *	You must know what list the SKB is on.
3388  */
3389 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
3390 {
3391 	unsigned long flags;
3392 
3393 	spin_lock_irqsave(&list->lock, flags);
3394 	__skb_unlink(skb, list);
3395 	spin_unlock_irqrestore(&list->lock, flags);
3396 }
3397 EXPORT_SYMBOL(skb_unlink);
3398 
3399 /**
3400  *	skb_append	-	append a buffer
3401  *	@old: buffer to insert after
3402  *	@newsk: buffer to insert
3403  *	@list: list to use
3404  *
3405  *	Place a packet after a given packet in a list. The list locks are taken
3406  *	and this function is atomic with respect to other list locked calls.
3407  *	A buffer cannot be placed on two lists at the same time.
3408  */
3409 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
3410 {
3411 	unsigned long flags;
3412 
3413 	spin_lock_irqsave(&list->lock, flags);
3414 	__skb_queue_after(list, old, newsk);
3415 	spin_unlock_irqrestore(&list->lock, flags);
3416 }
3417 EXPORT_SYMBOL(skb_append);
3418 
3419 static inline void skb_split_inside_header(struct sk_buff *skb,
3420 					   struct sk_buff* skb1,
3421 					   const u32 len, const int pos)
3422 {
3423 	int i;
3424 
3425 	skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
3426 					 pos - len);
3427 	/* And move data appendix as is. */
3428 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
3429 		skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
3430 
3431 	skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
3432 	skb_shinfo(skb)->nr_frags  = 0;
3433 	skb1->data_len		   = skb->data_len;
3434 	skb1->len		   += skb1->data_len;
3435 	skb->data_len		   = 0;
3436 	skb->len		   = len;
3437 	skb_set_tail_pointer(skb, len);
3438 }
3439 
3440 static inline void skb_split_no_header(struct sk_buff *skb,
3441 				       struct sk_buff* skb1,
3442 				       const u32 len, int pos)
3443 {
3444 	int i, k = 0;
3445 	const int nfrags = skb_shinfo(skb)->nr_frags;
3446 
3447 	skb_shinfo(skb)->nr_frags = 0;
3448 	skb1->len		  = skb1->data_len = skb->len - len;
3449 	skb->len		  = len;
3450 	skb->data_len		  = len - pos;
3451 
3452 	for (i = 0; i < nfrags; i++) {
3453 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
3454 
3455 		if (pos + size > len) {
3456 			skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
3457 
3458 			if (pos < len) {
3459 				/* Split frag.
3460 				 * We have two variants in this case:
3461 				 * 1. Move all the frag to the second
3462 				 *    part, if it is possible. F.e.
3463 				 *    this approach is mandatory for TUX,
3464 				 *    where splitting is expensive.
3465 				 * 2. Split is accurately. We make this.
3466 				 */
3467 				skb_frag_ref(skb, i);
3468 				skb_frag_off_add(&skb_shinfo(skb1)->frags[0], len - pos);
3469 				skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos);
3470 				skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos);
3471 				skb_shinfo(skb)->nr_frags++;
3472 			}
3473 			k++;
3474 		} else
3475 			skb_shinfo(skb)->nr_frags++;
3476 		pos += size;
3477 	}
3478 	skb_shinfo(skb1)->nr_frags = k;
3479 }
3480 
3481 /**
3482  * skb_split - Split fragmented skb to two parts at length len.
3483  * @skb: the buffer to split
3484  * @skb1: the buffer to receive the second part
3485  * @len: new length for skb
3486  */
3487 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
3488 {
3489 	int pos = skb_headlen(skb);
3490 	const int zc_flags = SKBFL_SHARED_FRAG | SKBFL_PURE_ZEROCOPY;
3491 
3492 	skb_shinfo(skb1)->flags |= skb_shinfo(skb)->flags & zc_flags;
3493 	skb_zerocopy_clone(skb1, skb, 0);
3494 	if (len < pos)	/* Split line is inside header. */
3495 		skb_split_inside_header(skb, skb1, len, pos);
3496 	else		/* Second chunk has no header, nothing to copy. */
3497 		skb_split_no_header(skb, skb1, len, pos);
3498 }
3499 EXPORT_SYMBOL(skb_split);
3500 
3501 /* Shifting from/to a cloned skb is a no-go.
3502  *
3503  * Caller cannot keep skb_shinfo related pointers past calling here!
3504  */
3505 static int skb_prepare_for_shift(struct sk_buff *skb)
3506 {
3507 	return skb_unclone_keeptruesize(skb, GFP_ATOMIC);
3508 }
3509 
3510 /**
3511  * skb_shift - Shifts paged data partially from skb to another
3512  * @tgt: buffer into which tail data gets added
3513  * @skb: buffer from which the paged data comes from
3514  * @shiftlen: shift up to this many bytes
3515  *
3516  * Attempts to shift up to shiftlen worth of bytes, which may be less than
3517  * the length of the skb, from skb to tgt. Returns number bytes shifted.
3518  * It's up to caller to free skb if everything was shifted.
3519  *
3520  * If @tgt runs out of frags, the whole operation is aborted.
3521  *
3522  * Skb cannot include anything else but paged data while tgt is allowed
3523  * to have non-paged data as well.
3524  *
3525  * TODO: full sized shift could be optimized but that would need
3526  * specialized skb free'er to handle frags without up-to-date nr_frags.
3527  */
3528 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
3529 {
3530 	int from, to, merge, todo;
3531 	skb_frag_t *fragfrom, *fragto;
3532 
3533 	BUG_ON(shiftlen > skb->len);
3534 
3535 	if (skb_headlen(skb))
3536 		return 0;
3537 	if (skb_zcopy(tgt) || skb_zcopy(skb))
3538 		return 0;
3539 
3540 	todo = shiftlen;
3541 	from = 0;
3542 	to = skb_shinfo(tgt)->nr_frags;
3543 	fragfrom = &skb_shinfo(skb)->frags[from];
3544 
3545 	/* Actual merge is delayed until the point when we know we can
3546 	 * commit all, so that we don't have to undo partial changes
3547 	 */
3548 	if (!to ||
3549 	    !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom),
3550 			      skb_frag_off(fragfrom))) {
3551 		merge = -1;
3552 	} else {
3553 		merge = to - 1;
3554 
3555 		todo -= skb_frag_size(fragfrom);
3556 		if (todo < 0) {
3557 			if (skb_prepare_for_shift(skb) ||
3558 			    skb_prepare_for_shift(tgt))
3559 				return 0;
3560 
3561 			/* All previous frag pointers might be stale! */
3562 			fragfrom = &skb_shinfo(skb)->frags[from];
3563 			fragto = &skb_shinfo(tgt)->frags[merge];
3564 
3565 			skb_frag_size_add(fragto, shiftlen);
3566 			skb_frag_size_sub(fragfrom, shiftlen);
3567 			skb_frag_off_add(fragfrom, shiftlen);
3568 
3569 			goto onlymerged;
3570 		}
3571 
3572 		from++;
3573 	}
3574 
3575 	/* Skip full, not-fitting skb to avoid expensive operations */
3576 	if ((shiftlen == skb->len) &&
3577 	    (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
3578 		return 0;
3579 
3580 	if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
3581 		return 0;
3582 
3583 	while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
3584 		if (to == MAX_SKB_FRAGS)
3585 			return 0;
3586 
3587 		fragfrom = &skb_shinfo(skb)->frags[from];
3588 		fragto = &skb_shinfo(tgt)->frags[to];
3589 
3590 		if (todo >= skb_frag_size(fragfrom)) {
3591 			*fragto = *fragfrom;
3592 			todo -= skb_frag_size(fragfrom);
3593 			from++;
3594 			to++;
3595 
3596 		} else {
3597 			__skb_frag_ref(fragfrom);
3598 			skb_frag_page_copy(fragto, fragfrom);
3599 			skb_frag_off_copy(fragto, fragfrom);
3600 			skb_frag_size_set(fragto, todo);
3601 
3602 			skb_frag_off_add(fragfrom, todo);
3603 			skb_frag_size_sub(fragfrom, todo);
3604 			todo = 0;
3605 
3606 			to++;
3607 			break;
3608 		}
3609 	}
3610 
3611 	/* Ready to "commit" this state change to tgt */
3612 	skb_shinfo(tgt)->nr_frags = to;
3613 
3614 	if (merge >= 0) {
3615 		fragfrom = &skb_shinfo(skb)->frags[0];
3616 		fragto = &skb_shinfo(tgt)->frags[merge];
3617 
3618 		skb_frag_size_add(fragto, skb_frag_size(fragfrom));
3619 		__skb_frag_unref(fragfrom, skb->pp_recycle);
3620 	}
3621 
3622 	/* Reposition in the original skb */
3623 	to = 0;
3624 	while (from < skb_shinfo(skb)->nr_frags)
3625 		skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
3626 	skb_shinfo(skb)->nr_frags = to;
3627 
3628 	BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
3629 
3630 onlymerged:
3631 	/* Most likely the tgt won't ever need its checksum anymore, skb on
3632 	 * the other hand might need it if it needs to be resent
3633 	 */
3634 	tgt->ip_summed = CHECKSUM_PARTIAL;
3635 	skb->ip_summed = CHECKSUM_PARTIAL;
3636 
3637 	/* Yak, is it really working this way? Some helper please? */
3638 	skb->len -= shiftlen;
3639 	skb->data_len -= shiftlen;
3640 	skb->truesize -= shiftlen;
3641 	tgt->len += shiftlen;
3642 	tgt->data_len += shiftlen;
3643 	tgt->truesize += shiftlen;
3644 
3645 	return shiftlen;
3646 }
3647 
3648 /**
3649  * skb_prepare_seq_read - Prepare a sequential read of skb data
3650  * @skb: the buffer to read
3651  * @from: lower offset of data to be read
3652  * @to: upper offset of data to be read
3653  * @st: state variable
3654  *
3655  * Initializes the specified state variable. Must be called before
3656  * invoking skb_seq_read() for the first time.
3657  */
3658 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
3659 			  unsigned int to, struct skb_seq_state *st)
3660 {
3661 	st->lower_offset = from;
3662 	st->upper_offset = to;
3663 	st->root_skb = st->cur_skb = skb;
3664 	st->frag_idx = st->stepped_offset = 0;
3665 	st->frag_data = NULL;
3666 	st->frag_off = 0;
3667 }
3668 EXPORT_SYMBOL(skb_prepare_seq_read);
3669 
3670 /**
3671  * skb_seq_read - Sequentially read skb data
3672  * @consumed: number of bytes consumed by the caller so far
3673  * @data: destination pointer for data to be returned
3674  * @st: state variable
3675  *
3676  * Reads a block of skb data at @consumed relative to the
3677  * lower offset specified to skb_prepare_seq_read(). Assigns
3678  * the head of the data block to @data and returns the length
3679  * of the block or 0 if the end of the skb data or the upper
3680  * offset has been reached.
3681  *
3682  * The caller is not required to consume all of the data
3683  * returned, i.e. @consumed is typically set to the number
3684  * of bytes already consumed and the next call to
3685  * skb_seq_read() will return the remaining part of the block.
3686  *
3687  * Note 1: The size of each block of data returned can be arbitrary,
3688  *       this limitation is the cost for zerocopy sequential
3689  *       reads of potentially non linear data.
3690  *
3691  * Note 2: Fragment lists within fragments are not implemented
3692  *       at the moment, state->root_skb could be replaced with
3693  *       a stack for this purpose.
3694  */
3695 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
3696 			  struct skb_seq_state *st)
3697 {
3698 	unsigned int block_limit, abs_offset = consumed + st->lower_offset;
3699 	skb_frag_t *frag;
3700 
3701 	if (unlikely(abs_offset >= st->upper_offset)) {
3702 		if (st->frag_data) {
3703 			kunmap_atomic(st->frag_data);
3704 			st->frag_data = NULL;
3705 		}
3706 		return 0;
3707 	}
3708 
3709 next_skb:
3710 	block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
3711 
3712 	if (abs_offset < block_limit && !st->frag_data) {
3713 		*data = st->cur_skb->data + (abs_offset - st->stepped_offset);
3714 		return block_limit - abs_offset;
3715 	}
3716 
3717 	if (st->frag_idx == 0 && !st->frag_data)
3718 		st->stepped_offset += skb_headlen(st->cur_skb);
3719 
3720 	while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
3721 		unsigned int pg_idx, pg_off, pg_sz;
3722 
3723 		frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
3724 
3725 		pg_idx = 0;
3726 		pg_off = skb_frag_off(frag);
3727 		pg_sz = skb_frag_size(frag);
3728 
3729 		if (skb_frag_must_loop(skb_frag_page(frag))) {
3730 			pg_idx = (pg_off + st->frag_off) >> PAGE_SHIFT;
3731 			pg_off = offset_in_page(pg_off + st->frag_off);
3732 			pg_sz = min_t(unsigned int, pg_sz - st->frag_off,
3733 						    PAGE_SIZE - pg_off);
3734 		}
3735 
3736 		block_limit = pg_sz + st->stepped_offset;
3737 		if (abs_offset < block_limit) {
3738 			if (!st->frag_data)
3739 				st->frag_data = kmap_atomic(skb_frag_page(frag) + pg_idx);
3740 
3741 			*data = (u8 *)st->frag_data + pg_off +
3742 				(abs_offset - st->stepped_offset);
3743 
3744 			return block_limit - abs_offset;
3745 		}
3746 
3747 		if (st->frag_data) {
3748 			kunmap_atomic(st->frag_data);
3749 			st->frag_data = NULL;
3750 		}
3751 
3752 		st->stepped_offset += pg_sz;
3753 		st->frag_off += pg_sz;
3754 		if (st->frag_off == skb_frag_size(frag)) {
3755 			st->frag_off = 0;
3756 			st->frag_idx++;
3757 		}
3758 	}
3759 
3760 	if (st->frag_data) {
3761 		kunmap_atomic(st->frag_data);
3762 		st->frag_data = NULL;
3763 	}
3764 
3765 	if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) {
3766 		st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
3767 		st->frag_idx = 0;
3768 		goto next_skb;
3769 	} else if (st->cur_skb->next) {
3770 		st->cur_skb = st->cur_skb->next;
3771 		st->frag_idx = 0;
3772 		goto next_skb;
3773 	}
3774 
3775 	return 0;
3776 }
3777 EXPORT_SYMBOL(skb_seq_read);
3778 
3779 /**
3780  * skb_abort_seq_read - Abort a sequential read of skb data
3781  * @st: state variable
3782  *
3783  * Must be called if skb_seq_read() was not called until it
3784  * returned 0.
3785  */
3786 void skb_abort_seq_read(struct skb_seq_state *st)
3787 {
3788 	if (st->frag_data)
3789 		kunmap_atomic(st->frag_data);
3790 }
3791 EXPORT_SYMBOL(skb_abort_seq_read);
3792 
3793 #define TS_SKB_CB(state)	((struct skb_seq_state *) &((state)->cb))
3794 
3795 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
3796 					  struct ts_config *conf,
3797 					  struct ts_state *state)
3798 {
3799 	return skb_seq_read(offset, text, TS_SKB_CB(state));
3800 }
3801 
3802 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
3803 {
3804 	skb_abort_seq_read(TS_SKB_CB(state));
3805 }
3806 
3807 /**
3808  * skb_find_text - Find a text pattern in skb data
3809  * @skb: the buffer to look in
3810  * @from: search offset
3811  * @to: search limit
3812  * @config: textsearch configuration
3813  *
3814  * Finds a pattern in the skb data according to the specified
3815  * textsearch configuration. Use textsearch_next() to retrieve
3816  * subsequent occurrences of the pattern. Returns the offset
3817  * to the first occurrence or UINT_MAX if no match was found.
3818  */
3819 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
3820 			   unsigned int to, struct ts_config *config)
3821 {
3822 	struct ts_state state;
3823 	unsigned int ret;
3824 
3825 	BUILD_BUG_ON(sizeof(struct skb_seq_state) > sizeof(state.cb));
3826 
3827 	config->get_next_block = skb_ts_get_next_block;
3828 	config->finish = skb_ts_finish;
3829 
3830 	skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state));
3831 
3832 	ret = textsearch_find(config, &state);
3833 	return (ret <= to - from ? ret : UINT_MAX);
3834 }
3835 EXPORT_SYMBOL(skb_find_text);
3836 
3837 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
3838 			 int offset, size_t size)
3839 {
3840 	int i = skb_shinfo(skb)->nr_frags;
3841 
3842 	if (skb_can_coalesce(skb, i, page, offset)) {
3843 		skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size);
3844 	} else if (i < MAX_SKB_FRAGS) {
3845 		get_page(page);
3846 		skb_fill_page_desc(skb, i, page, offset, size);
3847 	} else {
3848 		return -EMSGSIZE;
3849 	}
3850 
3851 	return 0;
3852 }
3853 EXPORT_SYMBOL_GPL(skb_append_pagefrags);
3854 
3855 /**
3856  *	skb_pull_rcsum - pull skb and update receive checksum
3857  *	@skb: buffer to update
3858  *	@len: length of data pulled
3859  *
3860  *	This function performs an skb_pull on the packet and updates
3861  *	the CHECKSUM_COMPLETE checksum.  It should be used on
3862  *	receive path processing instead of skb_pull unless you know
3863  *	that the checksum difference is zero (e.g., a valid IP header)
3864  *	or you are setting ip_summed to CHECKSUM_NONE.
3865  */
3866 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
3867 {
3868 	unsigned char *data = skb->data;
3869 
3870 	BUG_ON(len > skb->len);
3871 	__skb_pull(skb, len);
3872 	skb_postpull_rcsum(skb, data, len);
3873 	return skb->data;
3874 }
3875 EXPORT_SYMBOL_GPL(skb_pull_rcsum);
3876 
3877 static inline skb_frag_t skb_head_frag_to_page_desc(struct sk_buff *frag_skb)
3878 {
3879 	skb_frag_t head_frag;
3880 	struct page *page;
3881 
3882 	page = virt_to_head_page(frag_skb->head);
3883 	__skb_frag_set_page(&head_frag, page);
3884 	skb_frag_off_set(&head_frag, frag_skb->data -
3885 			 (unsigned char *)page_address(page));
3886 	skb_frag_size_set(&head_frag, skb_headlen(frag_skb));
3887 	return head_frag;
3888 }
3889 
3890 struct sk_buff *skb_segment_list(struct sk_buff *skb,
3891 				 netdev_features_t features,
3892 				 unsigned int offset)
3893 {
3894 	struct sk_buff *list_skb = skb_shinfo(skb)->frag_list;
3895 	unsigned int tnl_hlen = skb_tnl_header_len(skb);
3896 	unsigned int delta_truesize = 0;
3897 	unsigned int delta_len = 0;
3898 	struct sk_buff *tail = NULL;
3899 	struct sk_buff *nskb, *tmp;
3900 	int err;
3901 
3902 	skb_push(skb, -skb_network_offset(skb) + offset);
3903 
3904 	skb_shinfo(skb)->frag_list = NULL;
3905 
3906 	do {
3907 		nskb = list_skb;
3908 		list_skb = list_skb->next;
3909 
3910 		err = 0;
3911 		delta_truesize += nskb->truesize;
3912 		if (skb_shared(nskb)) {
3913 			tmp = skb_clone(nskb, GFP_ATOMIC);
3914 			if (tmp) {
3915 				consume_skb(nskb);
3916 				nskb = tmp;
3917 				err = skb_unclone(nskb, GFP_ATOMIC);
3918 			} else {
3919 				err = -ENOMEM;
3920 			}
3921 		}
3922 
3923 		if (!tail)
3924 			skb->next = nskb;
3925 		else
3926 			tail->next = nskb;
3927 
3928 		if (unlikely(err)) {
3929 			nskb->next = list_skb;
3930 			goto err_linearize;
3931 		}
3932 
3933 		tail = nskb;
3934 
3935 		delta_len += nskb->len;
3936 
3937 		skb_push(nskb, -skb_network_offset(nskb) + offset);
3938 
3939 		skb_release_head_state(nskb);
3940 		__copy_skb_header(nskb, skb);
3941 
3942 		skb_headers_offset_update(nskb, skb_headroom(nskb) - skb_headroom(skb));
3943 		skb_copy_from_linear_data_offset(skb, -tnl_hlen,
3944 						 nskb->data - tnl_hlen,
3945 						 offset + tnl_hlen);
3946 
3947 		if (skb_needs_linearize(nskb, features) &&
3948 		    __skb_linearize(nskb))
3949 			goto err_linearize;
3950 
3951 	} while (list_skb);
3952 
3953 	skb->truesize = skb->truesize - delta_truesize;
3954 	skb->data_len = skb->data_len - delta_len;
3955 	skb->len = skb->len - delta_len;
3956 
3957 	skb_gso_reset(skb);
3958 
3959 	skb->prev = tail;
3960 
3961 	if (skb_needs_linearize(skb, features) &&
3962 	    __skb_linearize(skb))
3963 		goto err_linearize;
3964 
3965 	skb_get(skb);
3966 
3967 	return skb;
3968 
3969 err_linearize:
3970 	kfree_skb_list(skb->next);
3971 	skb->next = NULL;
3972 	return ERR_PTR(-ENOMEM);
3973 }
3974 EXPORT_SYMBOL_GPL(skb_segment_list);
3975 
3976 /**
3977  *	skb_segment - Perform protocol segmentation on skb.
3978  *	@head_skb: buffer to segment
3979  *	@features: features for the output path (see dev->features)
3980  *
3981  *	This function performs segmentation on the given skb.  It returns
3982  *	a pointer to the first in a list of new skbs for the segments.
3983  *	In case of error it returns ERR_PTR(err).
3984  */
3985 struct sk_buff *skb_segment(struct sk_buff *head_skb,
3986 			    netdev_features_t features)
3987 {
3988 	struct sk_buff *segs = NULL;
3989 	struct sk_buff *tail = NULL;
3990 	struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list;
3991 	skb_frag_t *frag = skb_shinfo(head_skb)->frags;
3992 	unsigned int mss = skb_shinfo(head_skb)->gso_size;
3993 	unsigned int doffset = head_skb->data - skb_mac_header(head_skb);
3994 	struct sk_buff *frag_skb = head_skb;
3995 	unsigned int offset = doffset;
3996 	unsigned int tnl_hlen = skb_tnl_header_len(head_skb);
3997 	unsigned int partial_segs = 0;
3998 	unsigned int headroom;
3999 	unsigned int len = head_skb->len;
4000 	__be16 proto;
4001 	bool csum, sg;
4002 	int nfrags = skb_shinfo(head_skb)->nr_frags;
4003 	int err = -ENOMEM;
4004 	int i = 0;
4005 	int pos;
4006 
4007 	if (list_skb && !list_skb->head_frag && skb_headlen(list_skb) &&
4008 	    (skb_shinfo(head_skb)->gso_type & SKB_GSO_DODGY)) {
4009 		/* gso_size is untrusted, and we have a frag_list with a linear
4010 		 * non head_frag head.
4011 		 *
4012 		 * (we assume checking the first list_skb member suffices;
4013 		 * i.e if either of the list_skb members have non head_frag
4014 		 * head, then the first one has too).
4015 		 *
4016 		 * If head_skb's headlen does not fit requested gso_size, it
4017 		 * means that the frag_list members do NOT terminate on exact
4018 		 * gso_size boundaries. Hence we cannot perform skb_frag_t page
4019 		 * sharing. Therefore we must fallback to copying the frag_list
4020 		 * skbs; we do so by disabling SG.
4021 		 */
4022 		if (mss != GSO_BY_FRAGS && mss != skb_headlen(head_skb))
4023 			features &= ~NETIF_F_SG;
4024 	}
4025 
4026 	__skb_push(head_skb, doffset);
4027 	proto = skb_network_protocol(head_skb, NULL);
4028 	if (unlikely(!proto))
4029 		return ERR_PTR(-EINVAL);
4030 
4031 	sg = !!(features & NETIF_F_SG);
4032 	csum = !!can_checksum_protocol(features, proto);
4033 
4034 	if (sg && csum && (mss != GSO_BY_FRAGS))  {
4035 		if (!(features & NETIF_F_GSO_PARTIAL)) {
4036 			struct sk_buff *iter;
4037 			unsigned int frag_len;
4038 
4039 			if (!list_skb ||
4040 			    !net_gso_ok(features, skb_shinfo(head_skb)->gso_type))
4041 				goto normal;
4042 
4043 			/* If we get here then all the required
4044 			 * GSO features except frag_list are supported.
4045 			 * Try to split the SKB to multiple GSO SKBs
4046 			 * with no frag_list.
4047 			 * Currently we can do that only when the buffers don't
4048 			 * have a linear part and all the buffers except
4049 			 * the last are of the same length.
4050 			 */
4051 			frag_len = list_skb->len;
4052 			skb_walk_frags(head_skb, iter) {
4053 				if (frag_len != iter->len && iter->next)
4054 					goto normal;
4055 				if (skb_headlen(iter) && !iter->head_frag)
4056 					goto normal;
4057 
4058 				len -= iter->len;
4059 			}
4060 
4061 			if (len != frag_len)
4062 				goto normal;
4063 		}
4064 
4065 		/* GSO partial only requires that we trim off any excess that
4066 		 * doesn't fit into an MSS sized block, so take care of that
4067 		 * now.
4068 		 */
4069 		partial_segs = len / mss;
4070 		if (partial_segs > 1)
4071 			mss *= partial_segs;
4072 		else
4073 			partial_segs = 0;
4074 	}
4075 
4076 normal:
4077 	headroom = skb_headroom(head_skb);
4078 	pos = skb_headlen(head_skb);
4079 
4080 	do {
4081 		struct sk_buff *nskb;
4082 		skb_frag_t *nskb_frag;
4083 		int hsize;
4084 		int size;
4085 
4086 		if (unlikely(mss == GSO_BY_FRAGS)) {
4087 			len = list_skb->len;
4088 		} else {
4089 			len = head_skb->len - offset;
4090 			if (len > mss)
4091 				len = mss;
4092 		}
4093 
4094 		hsize = skb_headlen(head_skb) - offset;
4095 
4096 		if (hsize <= 0 && i >= nfrags && skb_headlen(list_skb) &&
4097 		    (skb_headlen(list_skb) == len || sg)) {
4098 			BUG_ON(skb_headlen(list_skb) > len);
4099 
4100 			i = 0;
4101 			nfrags = skb_shinfo(list_skb)->nr_frags;
4102 			frag = skb_shinfo(list_skb)->frags;
4103 			frag_skb = list_skb;
4104 			pos += skb_headlen(list_skb);
4105 
4106 			while (pos < offset + len) {
4107 				BUG_ON(i >= nfrags);
4108 
4109 				size = skb_frag_size(frag);
4110 				if (pos + size > offset + len)
4111 					break;
4112 
4113 				i++;
4114 				pos += size;
4115 				frag++;
4116 			}
4117 
4118 			nskb = skb_clone(list_skb, GFP_ATOMIC);
4119 			list_skb = list_skb->next;
4120 
4121 			if (unlikely(!nskb))
4122 				goto err;
4123 
4124 			if (unlikely(pskb_trim(nskb, len))) {
4125 				kfree_skb(nskb);
4126 				goto err;
4127 			}
4128 
4129 			hsize = skb_end_offset(nskb);
4130 			if (skb_cow_head(nskb, doffset + headroom)) {
4131 				kfree_skb(nskb);
4132 				goto err;
4133 			}
4134 
4135 			nskb->truesize += skb_end_offset(nskb) - hsize;
4136 			skb_release_head_state(nskb);
4137 			__skb_push(nskb, doffset);
4138 		} else {
4139 			if (hsize < 0)
4140 				hsize = 0;
4141 			if (hsize > len || !sg)
4142 				hsize = len;
4143 
4144 			nskb = __alloc_skb(hsize + doffset + headroom,
4145 					   GFP_ATOMIC, skb_alloc_rx_flag(head_skb),
4146 					   NUMA_NO_NODE);
4147 
4148 			if (unlikely(!nskb))
4149 				goto err;
4150 
4151 			skb_reserve(nskb, headroom);
4152 			__skb_put(nskb, doffset);
4153 		}
4154 
4155 		if (segs)
4156 			tail->next = nskb;
4157 		else
4158 			segs = nskb;
4159 		tail = nskb;
4160 
4161 		__copy_skb_header(nskb, head_skb);
4162 
4163 		skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom);
4164 		skb_reset_mac_len(nskb);
4165 
4166 		skb_copy_from_linear_data_offset(head_skb, -tnl_hlen,
4167 						 nskb->data - tnl_hlen,
4168 						 doffset + tnl_hlen);
4169 
4170 		if (nskb->len == len + doffset)
4171 			goto perform_csum_check;
4172 
4173 		if (!sg) {
4174 			if (!csum) {
4175 				if (!nskb->remcsum_offload)
4176 					nskb->ip_summed = CHECKSUM_NONE;
4177 				SKB_GSO_CB(nskb)->csum =
4178 					skb_copy_and_csum_bits(head_skb, offset,
4179 							       skb_put(nskb,
4180 								       len),
4181 							       len);
4182 				SKB_GSO_CB(nskb)->csum_start =
4183 					skb_headroom(nskb) + doffset;
4184 			} else {
4185 				skb_copy_bits(head_skb, offset,
4186 					      skb_put(nskb, len),
4187 					      len);
4188 			}
4189 			continue;
4190 		}
4191 
4192 		nskb_frag = skb_shinfo(nskb)->frags;
4193 
4194 		skb_copy_from_linear_data_offset(head_skb, offset,
4195 						 skb_put(nskb, hsize), hsize);
4196 
4197 		skb_shinfo(nskb)->flags |= skb_shinfo(head_skb)->flags &
4198 					   SKBFL_SHARED_FRAG;
4199 
4200 		if (skb_orphan_frags(frag_skb, GFP_ATOMIC) ||
4201 		    skb_zerocopy_clone(nskb, frag_skb, GFP_ATOMIC))
4202 			goto err;
4203 
4204 		while (pos < offset + len) {
4205 			if (i >= nfrags) {
4206 				i = 0;
4207 				nfrags = skb_shinfo(list_skb)->nr_frags;
4208 				frag = skb_shinfo(list_skb)->frags;
4209 				frag_skb = list_skb;
4210 				if (!skb_headlen(list_skb)) {
4211 					BUG_ON(!nfrags);
4212 				} else {
4213 					BUG_ON(!list_skb->head_frag);
4214 
4215 					/* to make room for head_frag. */
4216 					i--;
4217 					frag--;
4218 				}
4219 				if (skb_orphan_frags(frag_skb, GFP_ATOMIC) ||
4220 				    skb_zerocopy_clone(nskb, frag_skb,
4221 						       GFP_ATOMIC))
4222 					goto err;
4223 
4224 				list_skb = list_skb->next;
4225 			}
4226 
4227 			if (unlikely(skb_shinfo(nskb)->nr_frags >=
4228 				     MAX_SKB_FRAGS)) {
4229 				net_warn_ratelimited(
4230 					"skb_segment: too many frags: %u %u\n",
4231 					pos, mss);
4232 				err = -EINVAL;
4233 				goto err;
4234 			}
4235 
4236 			*nskb_frag = (i < 0) ? skb_head_frag_to_page_desc(frag_skb) : *frag;
4237 			__skb_frag_ref(nskb_frag);
4238 			size = skb_frag_size(nskb_frag);
4239 
4240 			if (pos < offset) {
4241 				skb_frag_off_add(nskb_frag, offset - pos);
4242 				skb_frag_size_sub(nskb_frag, offset - pos);
4243 			}
4244 
4245 			skb_shinfo(nskb)->nr_frags++;
4246 
4247 			if (pos + size <= offset + len) {
4248 				i++;
4249 				frag++;
4250 				pos += size;
4251 			} else {
4252 				skb_frag_size_sub(nskb_frag, pos + size - (offset + len));
4253 				goto skip_fraglist;
4254 			}
4255 
4256 			nskb_frag++;
4257 		}
4258 
4259 skip_fraglist:
4260 		nskb->data_len = len - hsize;
4261 		nskb->len += nskb->data_len;
4262 		nskb->truesize += nskb->data_len;
4263 
4264 perform_csum_check:
4265 		if (!csum) {
4266 			if (skb_has_shared_frag(nskb) &&
4267 			    __skb_linearize(nskb))
4268 				goto err;
4269 
4270 			if (!nskb->remcsum_offload)
4271 				nskb->ip_summed = CHECKSUM_NONE;
4272 			SKB_GSO_CB(nskb)->csum =
4273 				skb_checksum(nskb, doffset,
4274 					     nskb->len - doffset, 0);
4275 			SKB_GSO_CB(nskb)->csum_start =
4276 				skb_headroom(nskb) + doffset;
4277 		}
4278 	} while ((offset += len) < head_skb->len);
4279 
4280 	/* Some callers want to get the end of the list.
4281 	 * Put it in segs->prev to avoid walking the list.
4282 	 * (see validate_xmit_skb_list() for example)
4283 	 */
4284 	segs->prev = tail;
4285 
4286 	if (partial_segs) {
4287 		struct sk_buff *iter;
4288 		int type = skb_shinfo(head_skb)->gso_type;
4289 		unsigned short gso_size = skb_shinfo(head_skb)->gso_size;
4290 
4291 		/* Update type to add partial and then remove dodgy if set */
4292 		type |= (features & NETIF_F_GSO_PARTIAL) / NETIF_F_GSO_PARTIAL * SKB_GSO_PARTIAL;
4293 		type &= ~SKB_GSO_DODGY;
4294 
4295 		/* Update GSO info and prepare to start updating headers on
4296 		 * our way back down the stack of protocols.
4297 		 */
4298 		for (iter = segs; iter; iter = iter->next) {
4299 			skb_shinfo(iter)->gso_size = gso_size;
4300 			skb_shinfo(iter)->gso_segs = partial_segs;
4301 			skb_shinfo(iter)->gso_type = type;
4302 			SKB_GSO_CB(iter)->data_offset = skb_headroom(iter) + doffset;
4303 		}
4304 
4305 		if (tail->len - doffset <= gso_size)
4306 			skb_shinfo(tail)->gso_size = 0;
4307 		else if (tail != segs)
4308 			skb_shinfo(tail)->gso_segs = DIV_ROUND_UP(tail->len - doffset, gso_size);
4309 	}
4310 
4311 	/* Following permits correct backpressure, for protocols
4312 	 * using skb_set_owner_w().
4313 	 * Idea is to tranfert ownership from head_skb to last segment.
4314 	 */
4315 	if (head_skb->destructor == sock_wfree) {
4316 		swap(tail->truesize, head_skb->truesize);
4317 		swap(tail->destructor, head_skb->destructor);
4318 		swap(tail->sk, head_skb->sk);
4319 	}
4320 	return segs;
4321 
4322 err:
4323 	kfree_skb_list(segs);
4324 	return ERR_PTR(err);
4325 }
4326 EXPORT_SYMBOL_GPL(skb_segment);
4327 
4328 #ifdef CONFIG_SKB_EXTENSIONS
4329 #define SKB_EXT_ALIGN_VALUE	8
4330 #define SKB_EXT_CHUNKSIZEOF(x)	(ALIGN((sizeof(x)), SKB_EXT_ALIGN_VALUE) / SKB_EXT_ALIGN_VALUE)
4331 
4332 static const u8 skb_ext_type_len[] = {
4333 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4334 	[SKB_EXT_BRIDGE_NF] = SKB_EXT_CHUNKSIZEOF(struct nf_bridge_info),
4335 #endif
4336 #ifdef CONFIG_XFRM
4337 	[SKB_EXT_SEC_PATH] = SKB_EXT_CHUNKSIZEOF(struct sec_path),
4338 #endif
4339 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4340 	[TC_SKB_EXT] = SKB_EXT_CHUNKSIZEOF(struct tc_skb_ext),
4341 #endif
4342 #if IS_ENABLED(CONFIG_MPTCP)
4343 	[SKB_EXT_MPTCP] = SKB_EXT_CHUNKSIZEOF(struct mptcp_ext),
4344 #endif
4345 #if IS_ENABLED(CONFIG_MCTP_FLOWS)
4346 	[SKB_EXT_MCTP] = SKB_EXT_CHUNKSIZEOF(struct mctp_flow),
4347 #endif
4348 };
4349 
4350 static __always_inline unsigned int skb_ext_total_length(void)
4351 {
4352 	return SKB_EXT_CHUNKSIZEOF(struct skb_ext) +
4353 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4354 		skb_ext_type_len[SKB_EXT_BRIDGE_NF] +
4355 #endif
4356 #ifdef CONFIG_XFRM
4357 		skb_ext_type_len[SKB_EXT_SEC_PATH] +
4358 #endif
4359 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4360 		skb_ext_type_len[TC_SKB_EXT] +
4361 #endif
4362 #if IS_ENABLED(CONFIG_MPTCP)
4363 		skb_ext_type_len[SKB_EXT_MPTCP] +
4364 #endif
4365 #if IS_ENABLED(CONFIG_MCTP_FLOWS)
4366 		skb_ext_type_len[SKB_EXT_MCTP] +
4367 #endif
4368 		0;
4369 }
4370 
4371 static void skb_extensions_init(void)
4372 {
4373 	BUILD_BUG_ON(SKB_EXT_NUM >= 8);
4374 	BUILD_BUG_ON(skb_ext_total_length() > 255);
4375 
4376 	skbuff_ext_cache = kmem_cache_create("skbuff_ext_cache",
4377 					     SKB_EXT_ALIGN_VALUE * skb_ext_total_length(),
4378 					     0,
4379 					     SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4380 					     NULL);
4381 }
4382 #else
4383 static void skb_extensions_init(void) {}
4384 #endif
4385 
4386 void __init skb_init(void)
4387 {
4388 	skbuff_head_cache = kmem_cache_create_usercopy("skbuff_head_cache",
4389 					      sizeof(struct sk_buff),
4390 					      0,
4391 					      SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4392 					      offsetof(struct sk_buff, cb),
4393 					      sizeof_field(struct sk_buff, cb),
4394 					      NULL);
4395 	skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
4396 						sizeof(struct sk_buff_fclones),
4397 						0,
4398 						SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4399 						NULL);
4400 	skb_extensions_init();
4401 }
4402 
4403 static int
4404 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len,
4405 	       unsigned int recursion_level)
4406 {
4407 	int start = skb_headlen(skb);
4408 	int i, copy = start - offset;
4409 	struct sk_buff *frag_iter;
4410 	int elt = 0;
4411 
4412 	if (unlikely(recursion_level >= 24))
4413 		return -EMSGSIZE;
4414 
4415 	if (copy > 0) {
4416 		if (copy > len)
4417 			copy = len;
4418 		sg_set_buf(sg, skb->data + offset, copy);
4419 		elt++;
4420 		if ((len -= copy) == 0)
4421 			return elt;
4422 		offset += copy;
4423 	}
4424 
4425 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
4426 		int end;
4427 
4428 		WARN_ON(start > offset + len);
4429 
4430 		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
4431 		if ((copy = end - offset) > 0) {
4432 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4433 			if (unlikely(elt && sg_is_last(&sg[elt - 1])))
4434 				return -EMSGSIZE;
4435 
4436 			if (copy > len)
4437 				copy = len;
4438 			sg_set_page(&sg[elt], skb_frag_page(frag), copy,
4439 				    skb_frag_off(frag) + offset - start);
4440 			elt++;
4441 			if (!(len -= copy))
4442 				return elt;
4443 			offset += copy;
4444 		}
4445 		start = end;
4446 	}
4447 
4448 	skb_walk_frags(skb, frag_iter) {
4449 		int end, ret;
4450 
4451 		WARN_ON(start > offset + len);
4452 
4453 		end = start + frag_iter->len;
4454 		if ((copy = end - offset) > 0) {
4455 			if (unlikely(elt && sg_is_last(&sg[elt - 1])))
4456 				return -EMSGSIZE;
4457 
4458 			if (copy > len)
4459 				copy = len;
4460 			ret = __skb_to_sgvec(frag_iter, sg+elt, offset - start,
4461 					      copy, recursion_level + 1);
4462 			if (unlikely(ret < 0))
4463 				return ret;
4464 			elt += ret;
4465 			if ((len -= copy) == 0)
4466 				return elt;
4467 			offset += copy;
4468 		}
4469 		start = end;
4470 	}
4471 	BUG_ON(len);
4472 	return elt;
4473 }
4474 
4475 /**
4476  *	skb_to_sgvec - Fill a scatter-gather list from a socket buffer
4477  *	@skb: Socket buffer containing the buffers to be mapped
4478  *	@sg: The scatter-gather list to map into
4479  *	@offset: The offset into the buffer's contents to start mapping
4480  *	@len: Length of buffer space to be mapped
4481  *
4482  *	Fill the specified scatter-gather list with mappings/pointers into a
4483  *	region of the buffer space attached to a socket buffer. Returns either
4484  *	the number of scatterlist items used, or -EMSGSIZE if the contents
4485  *	could not fit.
4486  */
4487 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
4488 {
4489 	int nsg = __skb_to_sgvec(skb, sg, offset, len, 0);
4490 
4491 	if (nsg <= 0)
4492 		return nsg;
4493 
4494 	sg_mark_end(&sg[nsg - 1]);
4495 
4496 	return nsg;
4497 }
4498 EXPORT_SYMBOL_GPL(skb_to_sgvec);
4499 
4500 /* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given
4501  * sglist without mark the sg which contain last skb data as the end.
4502  * So the caller can mannipulate sg list as will when padding new data after
4503  * the first call without calling sg_unmark_end to expend sg list.
4504  *
4505  * Scenario to use skb_to_sgvec_nomark:
4506  * 1. sg_init_table
4507  * 2. skb_to_sgvec_nomark(payload1)
4508  * 3. skb_to_sgvec_nomark(payload2)
4509  *
4510  * This is equivalent to:
4511  * 1. sg_init_table
4512  * 2. skb_to_sgvec(payload1)
4513  * 3. sg_unmark_end
4514  * 4. skb_to_sgvec(payload2)
4515  *
4516  * When mapping mutilple payload conditionally, skb_to_sgvec_nomark
4517  * is more preferable.
4518  */
4519 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
4520 			int offset, int len)
4521 {
4522 	return __skb_to_sgvec(skb, sg, offset, len, 0);
4523 }
4524 EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark);
4525 
4526 
4527 
4528 /**
4529  *	skb_cow_data - Check that a socket buffer's data buffers are writable
4530  *	@skb: The socket buffer to check.
4531  *	@tailbits: Amount of trailing space to be added
4532  *	@trailer: Returned pointer to the skb where the @tailbits space begins
4533  *
4534  *	Make sure that the data buffers attached to a socket buffer are
4535  *	writable. If they are not, private copies are made of the data buffers
4536  *	and the socket buffer is set to use these instead.
4537  *
4538  *	If @tailbits is given, make sure that there is space to write @tailbits
4539  *	bytes of data beyond current end of socket buffer.  @trailer will be
4540  *	set to point to the skb in which this space begins.
4541  *
4542  *	The number of scatterlist elements required to completely map the
4543  *	COW'd and extended socket buffer will be returned.
4544  */
4545 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
4546 {
4547 	int copyflag;
4548 	int elt;
4549 	struct sk_buff *skb1, **skb_p;
4550 
4551 	/* If skb is cloned or its head is paged, reallocate
4552 	 * head pulling out all the pages (pages are considered not writable
4553 	 * at the moment even if they are anonymous).
4554 	 */
4555 	if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
4556 	    !__pskb_pull_tail(skb, __skb_pagelen(skb)))
4557 		return -ENOMEM;
4558 
4559 	/* Easy case. Most of packets will go this way. */
4560 	if (!skb_has_frag_list(skb)) {
4561 		/* A little of trouble, not enough of space for trailer.
4562 		 * This should not happen, when stack is tuned to generate
4563 		 * good frames. OK, on miss we reallocate and reserve even more
4564 		 * space, 128 bytes is fair. */
4565 
4566 		if (skb_tailroom(skb) < tailbits &&
4567 		    pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
4568 			return -ENOMEM;
4569 
4570 		/* Voila! */
4571 		*trailer = skb;
4572 		return 1;
4573 	}
4574 
4575 	/* Misery. We are in troubles, going to mincer fragments... */
4576 
4577 	elt = 1;
4578 	skb_p = &skb_shinfo(skb)->frag_list;
4579 	copyflag = 0;
4580 
4581 	while ((skb1 = *skb_p) != NULL) {
4582 		int ntail = 0;
4583 
4584 		/* The fragment is partially pulled by someone,
4585 		 * this can happen on input. Copy it and everything
4586 		 * after it. */
4587 
4588 		if (skb_shared(skb1))
4589 			copyflag = 1;
4590 
4591 		/* If the skb is the last, worry about trailer. */
4592 
4593 		if (skb1->next == NULL && tailbits) {
4594 			if (skb_shinfo(skb1)->nr_frags ||
4595 			    skb_has_frag_list(skb1) ||
4596 			    skb_tailroom(skb1) < tailbits)
4597 				ntail = tailbits + 128;
4598 		}
4599 
4600 		if (copyflag ||
4601 		    skb_cloned(skb1) ||
4602 		    ntail ||
4603 		    skb_shinfo(skb1)->nr_frags ||
4604 		    skb_has_frag_list(skb1)) {
4605 			struct sk_buff *skb2;
4606 
4607 			/* Fuck, we are miserable poor guys... */
4608 			if (ntail == 0)
4609 				skb2 = skb_copy(skb1, GFP_ATOMIC);
4610 			else
4611 				skb2 = skb_copy_expand(skb1,
4612 						       skb_headroom(skb1),
4613 						       ntail,
4614 						       GFP_ATOMIC);
4615 			if (unlikely(skb2 == NULL))
4616 				return -ENOMEM;
4617 
4618 			if (skb1->sk)
4619 				skb_set_owner_w(skb2, skb1->sk);
4620 
4621 			/* Looking around. Are we still alive?
4622 			 * OK, link new skb, drop old one */
4623 
4624 			skb2->next = skb1->next;
4625 			*skb_p = skb2;
4626 			kfree_skb(skb1);
4627 			skb1 = skb2;
4628 		}
4629 		elt++;
4630 		*trailer = skb1;
4631 		skb_p = &skb1->next;
4632 	}
4633 
4634 	return elt;
4635 }
4636 EXPORT_SYMBOL_GPL(skb_cow_data);
4637 
4638 static void sock_rmem_free(struct sk_buff *skb)
4639 {
4640 	struct sock *sk = skb->sk;
4641 
4642 	atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
4643 }
4644 
4645 static void skb_set_err_queue(struct sk_buff *skb)
4646 {
4647 	/* pkt_type of skbs received on local sockets is never PACKET_OUTGOING.
4648 	 * So, it is safe to (mis)use it to mark skbs on the error queue.
4649 	 */
4650 	skb->pkt_type = PACKET_OUTGOING;
4651 	BUILD_BUG_ON(PACKET_OUTGOING == 0);
4652 }
4653 
4654 /*
4655  * Note: We dont mem charge error packets (no sk_forward_alloc changes)
4656  */
4657 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
4658 {
4659 	if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
4660 	    (unsigned int)READ_ONCE(sk->sk_rcvbuf))
4661 		return -ENOMEM;
4662 
4663 	skb_orphan(skb);
4664 	skb->sk = sk;
4665 	skb->destructor = sock_rmem_free;
4666 	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
4667 	skb_set_err_queue(skb);
4668 
4669 	/* before exiting rcu section, make sure dst is refcounted */
4670 	skb_dst_force(skb);
4671 
4672 	skb_queue_tail(&sk->sk_error_queue, skb);
4673 	if (!sock_flag(sk, SOCK_DEAD))
4674 		sk_error_report(sk);
4675 	return 0;
4676 }
4677 EXPORT_SYMBOL(sock_queue_err_skb);
4678 
4679 static bool is_icmp_err_skb(const struct sk_buff *skb)
4680 {
4681 	return skb && (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP ||
4682 		       SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP6);
4683 }
4684 
4685 struct sk_buff *sock_dequeue_err_skb(struct sock *sk)
4686 {
4687 	struct sk_buff_head *q = &sk->sk_error_queue;
4688 	struct sk_buff *skb, *skb_next = NULL;
4689 	bool icmp_next = false;
4690 	unsigned long flags;
4691 
4692 	spin_lock_irqsave(&q->lock, flags);
4693 	skb = __skb_dequeue(q);
4694 	if (skb && (skb_next = skb_peek(q))) {
4695 		icmp_next = is_icmp_err_skb(skb_next);
4696 		if (icmp_next)
4697 			sk->sk_err = SKB_EXT_ERR(skb_next)->ee.ee_errno;
4698 	}
4699 	spin_unlock_irqrestore(&q->lock, flags);
4700 
4701 	if (is_icmp_err_skb(skb) && !icmp_next)
4702 		sk->sk_err = 0;
4703 
4704 	if (skb_next)
4705 		sk_error_report(sk);
4706 
4707 	return skb;
4708 }
4709 EXPORT_SYMBOL(sock_dequeue_err_skb);
4710 
4711 /**
4712  * skb_clone_sk - create clone of skb, and take reference to socket
4713  * @skb: the skb to clone
4714  *
4715  * This function creates a clone of a buffer that holds a reference on
4716  * sk_refcnt.  Buffers created via this function are meant to be
4717  * returned using sock_queue_err_skb, or free via kfree_skb.
4718  *
4719  * When passing buffers allocated with this function to sock_queue_err_skb
4720  * it is necessary to wrap the call with sock_hold/sock_put in order to
4721  * prevent the socket from being released prior to being enqueued on
4722  * the sk_error_queue.
4723  */
4724 struct sk_buff *skb_clone_sk(struct sk_buff *skb)
4725 {
4726 	struct sock *sk = skb->sk;
4727 	struct sk_buff *clone;
4728 
4729 	if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt))
4730 		return NULL;
4731 
4732 	clone = skb_clone(skb, GFP_ATOMIC);
4733 	if (!clone) {
4734 		sock_put(sk);
4735 		return NULL;
4736 	}
4737 
4738 	clone->sk = sk;
4739 	clone->destructor = sock_efree;
4740 
4741 	return clone;
4742 }
4743 EXPORT_SYMBOL(skb_clone_sk);
4744 
4745 static void __skb_complete_tx_timestamp(struct sk_buff *skb,
4746 					struct sock *sk,
4747 					int tstype,
4748 					bool opt_stats)
4749 {
4750 	struct sock_exterr_skb *serr;
4751 	int err;
4752 
4753 	BUILD_BUG_ON(sizeof(struct sock_exterr_skb) > sizeof(skb->cb));
4754 
4755 	serr = SKB_EXT_ERR(skb);
4756 	memset(serr, 0, sizeof(*serr));
4757 	serr->ee.ee_errno = ENOMSG;
4758 	serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
4759 	serr->ee.ee_info = tstype;
4760 	serr->opt_stats = opt_stats;
4761 	serr->header.h4.iif = skb->dev ? skb->dev->ifindex : 0;
4762 	if (sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID) {
4763 		serr->ee.ee_data = skb_shinfo(skb)->tskey;
4764 		if (sk_is_tcp(sk))
4765 			serr->ee.ee_data -= atomic_read(&sk->sk_tskey);
4766 	}
4767 
4768 	err = sock_queue_err_skb(sk, skb);
4769 
4770 	if (err)
4771 		kfree_skb(skb);
4772 }
4773 
4774 static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly)
4775 {
4776 	bool ret;
4777 
4778 	if (likely(sysctl_tstamp_allow_data || tsonly))
4779 		return true;
4780 
4781 	read_lock_bh(&sk->sk_callback_lock);
4782 	ret = sk->sk_socket && sk->sk_socket->file &&
4783 	      file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW);
4784 	read_unlock_bh(&sk->sk_callback_lock);
4785 	return ret;
4786 }
4787 
4788 void skb_complete_tx_timestamp(struct sk_buff *skb,
4789 			       struct skb_shared_hwtstamps *hwtstamps)
4790 {
4791 	struct sock *sk = skb->sk;
4792 
4793 	if (!skb_may_tx_timestamp(sk, false))
4794 		goto err;
4795 
4796 	/* Take a reference to prevent skb_orphan() from freeing the socket,
4797 	 * but only if the socket refcount is not zero.
4798 	 */
4799 	if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
4800 		*skb_hwtstamps(skb) = *hwtstamps;
4801 		__skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND, false);
4802 		sock_put(sk);
4803 		return;
4804 	}
4805 
4806 err:
4807 	kfree_skb(skb);
4808 }
4809 EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp);
4810 
4811 void __skb_tstamp_tx(struct sk_buff *orig_skb,
4812 		     const struct sk_buff *ack_skb,
4813 		     struct skb_shared_hwtstamps *hwtstamps,
4814 		     struct sock *sk, int tstype)
4815 {
4816 	struct sk_buff *skb;
4817 	bool tsonly, opt_stats = false;
4818 
4819 	if (!sk)
4820 		return;
4821 
4822 	if (!hwtstamps && !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TX_SWHW) &&
4823 	    skb_shinfo(orig_skb)->tx_flags & SKBTX_IN_PROGRESS)
4824 		return;
4825 
4826 	tsonly = sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TSONLY;
4827 	if (!skb_may_tx_timestamp(sk, tsonly))
4828 		return;
4829 
4830 	if (tsonly) {
4831 #ifdef CONFIG_INET
4832 		if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_STATS) &&
4833 		    sk_is_tcp(sk)) {
4834 			skb = tcp_get_timestamping_opt_stats(sk, orig_skb,
4835 							     ack_skb);
4836 			opt_stats = true;
4837 		} else
4838 #endif
4839 			skb = alloc_skb(0, GFP_ATOMIC);
4840 	} else {
4841 		skb = skb_clone(orig_skb, GFP_ATOMIC);
4842 	}
4843 	if (!skb)
4844 		return;
4845 
4846 	if (tsonly) {
4847 		skb_shinfo(skb)->tx_flags |= skb_shinfo(orig_skb)->tx_flags &
4848 					     SKBTX_ANY_TSTAMP;
4849 		skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey;
4850 	}
4851 
4852 	if (hwtstamps)
4853 		*skb_hwtstamps(skb) = *hwtstamps;
4854 	else
4855 		__net_timestamp(skb);
4856 
4857 	__skb_complete_tx_timestamp(skb, sk, tstype, opt_stats);
4858 }
4859 EXPORT_SYMBOL_GPL(__skb_tstamp_tx);
4860 
4861 void skb_tstamp_tx(struct sk_buff *orig_skb,
4862 		   struct skb_shared_hwtstamps *hwtstamps)
4863 {
4864 	return __skb_tstamp_tx(orig_skb, NULL, hwtstamps, orig_skb->sk,
4865 			       SCM_TSTAMP_SND);
4866 }
4867 EXPORT_SYMBOL_GPL(skb_tstamp_tx);
4868 
4869 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked)
4870 {
4871 	struct sock *sk = skb->sk;
4872 	struct sock_exterr_skb *serr;
4873 	int err = 1;
4874 
4875 	skb->wifi_acked_valid = 1;
4876 	skb->wifi_acked = acked;
4877 
4878 	serr = SKB_EXT_ERR(skb);
4879 	memset(serr, 0, sizeof(*serr));
4880 	serr->ee.ee_errno = ENOMSG;
4881 	serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS;
4882 
4883 	/* Take a reference to prevent skb_orphan() from freeing the socket,
4884 	 * but only if the socket refcount is not zero.
4885 	 */
4886 	if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
4887 		err = sock_queue_err_skb(sk, skb);
4888 		sock_put(sk);
4889 	}
4890 	if (err)
4891 		kfree_skb(skb);
4892 }
4893 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack);
4894 
4895 /**
4896  * skb_partial_csum_set - set up and verify partial csum values for packet
4897  * @skb: the skb to set
4898  * @start: the number of bytes after skb->data to start checksumming.
4899  * @off: the offset from start to place the checksum.
4900  *
4901  * For untrusted partially-checksummed packets, we need to make sure the values
4902  * for skb->csum_start and skb->csum_offset are valid so we don't oops.
4903  *
4904  * This function checks and sets those values and skb->ip_summed: if this
4905  * returns false you should drop the packet.
4906  */
4907 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
4908 {
4909 	u32 csum_end = (u32)start + (u32)off + sizeof(__sum16);
4910 	u32 csum_start = skb_headroom(skb) + (u32)start;
4911 
4912 	if (unlikely(csum_start > U16_MAX || csum_end > skb_headlen(skb))) {
4913 		net_warn_ratelimited("bad partial csum: csum=%u/%u headroom=%u headlen=%u\n",
4914 				     start, off, skb_headroom(skb), skb_headlen(skb));
4915 		return false;
4916 	}
4917 	skb->ip_summed = CHECKSUM_PARTIAL;
4918 	skb->csum_start = csum_start;
4919 	skb->csum_offset = off;
4920 	skb_set_transport_header(skb, start);
4921 	return true;
4922 }
4923 EXPORT_SYMBOL_GPL(skb_partial_csum_set);
4924 
4925 static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len,
4926 			       unsigned int max)
4927 {
4928 	if (skb_headlen(skb) >= len)
4929 		return 0;
4930 
4931 	/* If we need to pullup then pullup to the max, so we
4932 	 * won't need to do it again.
4933 	 */
4934 	if (max > skb->len)
4935 		max = skb->len;
4936 
4937 	if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL)
4938 		return -ENOMEM;
4939 
4940 	if (skb_headlen(skb) < len)
4941 		return -EPROTO;
4942 
4943 	return 0;
4944 }
4945 
4946 #define MAX_TCP_HDR_LEN (15 * 4)
4947 
4948 static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb,
4949 				      typeof(IPPROTO_IP) proto,
4950 				      unsigned int off)
4951 {
4952 	int err;
4953 
4954 	switch (proto) {
4955 	case IPPROTO_TCP:
4956 		err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr),
4957 					  off + MAX_TCP_HDR_LEN);
4958 		if (!err && !skb_partial_csum_set(skb, off,
4959 						  offsetof(struct tcphdr,
4960 							   check)))
4961 			err = -EPROTO;
4962 		return err ? ERR_PTR(err) : &tcp_hdr(skb)->check;
4963 
4964 	case IPPROTO_UDP:
4965 		err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr),
4966 					  off + sizeof(struct udphdr));
4967 		if (!err && !skb_partial_csum_set(skb, off,
4968 						  offsetof(struct udphdr,
4969 							   check)))
4970 			err = -EPROTO;
4971 		return err ? ERR_PTR(err) : &udp_hdr(skb)->check;
4972 	}
4973 
4974 	return ERR_PTR(-EPROTO);
4975 }
4976 
4977 /* This value should be large enough to cover a tagged ethernet header plus
4978  * maximally sized IP and TCP or UDP headers.
4979  */
4980 #define MAX_IP_HDR_LEN 128
4981 
4982 static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate)
4983 {
4984 	unsigned int off;
4985 	bool fragment;
4986 	__sum16 *csum;
4987 	int err;
4988 
4989 	fragment = false;
4990 
4991 	err = skb_maybe_pull_tail(skb,
4992 				  sizeof(struct iphdr),
4993 				  MAX_IP_HDR_LEN);
4994 	if (err < 0)
4995 		goto out;
4996 
4997 	if (ip_is_fragment(ip_hdr(skb)))
4998 		fragment = true;
4999 
5000 	off = ip_hdrlen(skb);
5001 
5002 	err = -EPROTO;
5003 
5004 	if (fragment)
5005 		goto out;
5006 
5007 	csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off);
5008 	if (IS_ERR(csum))
5009 		return PTR_ERR(csum);
5010 
5011 	if (recalculate)
5012 		*csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
5013 					   ip_hdr(skb)->daddr,
5014 					   skb->len - off,
5015 					   ip_hdr(skb)->protocol, 0);
5016 	err = 0;
5017 
5018 out:
5019 	return err;
5020 }
5021 
5022 /* This value should be large enough to cover a tagged ethernet header plus
5023  * an IPv6 header, all options, and a maximal TCP or UDP header.
5024  */
5025 #define MAX_IPV6_HDR_LEN 256
5026 
5027 #define OPT_HDR(type, skb, off) \
5028 	(type *)(skb_network_header(skb) + (off))
5029 
5030 static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate)
5031 {
5032 	int err;
5033 	u8 nexthdr;
5034 	unsigned int off;
5035 	unsigned int len;
5036 	bool fragment;
5037 	bool done;
5038 	__sum16 *csum;
5039 
5040 	fragment = false;
5041 	done = false;
5042 
5043 	off = sizeof(struct ipv6hdr);
5044 
5045 	err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN);
5046 	if (err < 0)
5047 		goto out;
5048 
5049 	nexthdr = ipv6_hdr(skb)->nexthdr;
5050 
5051 	len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len);
5052 	while (off <= len && !done) {
5053 		switch (nexthdr) {
5054 		case IPPROTO_DSTOPTS:
5055 		case IPPROTO_HOPOPTS:
5056 		case IPPROTO_ROUTING: {
5057 			struct ipv6_opt_hdr *hp;
5058 
5059 			err = skb_maybe_pull_tail(skb,
5060 						  off +
5061 						  sizeof(struct ipv6_opt_hdr),
5062 						  MAX_IPV6_HDR_LEN);
5063 			if (err < 0)
5064 				goto out;
5065 
5066 			hp = OPT_HDR(struct ipv6_opt_hdr, skb, off);
5067 			nexthdr = hp->nexthdr;
5068 			off += ipv6_optlen(hp);
5069 			break;
5070 		}
5071 		case IPPROTO_AH: {
5072 			struct ip_auth_hdr *hp;
5073 
5074 			err = skb_maybe_pull_tail(skb,
5075 						  off +
5076 						  sizeof(struct ip_auth_hdr),
5077 						  MAX_IPV6_HDR_LEN);
5078 			if (err < 0)
5079 				goto out;
5080 
5081 			hp = OPT_HDR(struct ip_auth_hdr, skb, off);
5082 			nexthdr = hp->nexthdr;
5083 			off += ipv6_authlen(hp);
5084 			break;
5085 		}
5086 		case IPPROTO_FRAGMENT: {
5087 			struct frag_hdr *hp;
5088 
5089 			err = skb_maybe_pull_tail(skb,
5090 						  off +
5091 						  sizeof(struct frag_hdr),
5092 						  MAX_IPV6_HDR_LEN);
5093 			if (err < 0)
5094 				goto out;
5095 
5096 			hp = OPT_HDR(struct frag_hdr, skb, off);
5097 
5098 			if (hp->frag_off & htons(IP6_OFFSET | IP6_MF))
5099 				fragment = true;
5100 
5101 			nexthdr = hp->nexthdr;
5102 			off += sizeof(struct frag_hdr);
5103 			break;
5104 		}
5105 		default:
5106 			done = true;
5107 			break;
5108 		}
5109 	}
5110 
5111 	err = -EPROTO;
5112 
5113 	if (!done || fragment)
5114 		goto out;
5115 
5116 	csum = skb_checksum_setup_ip(skb, nexthdr, off);
5117 	if (IS_ERR(csum))
5118 		return PTR_ERR(csum);
5119 
5120 	if (recalculate)
5121 		*csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
5122 					 &ipv6_hdr(skb)->daddr,
5123 					 skb->len - off, nexthdr, 0);
5124 	err = 0;
5125 
5126 out:
5127 	return err;
5128 }
5129 
5130 /**
5131  * skb_checksum_setup - set up partial checksum offset
5132  * @skb: the skb to set up
5133  * @recalculate: if true the pseudo-header checksum will be recalculated
5134  */
5135 int skb_checksum_setup(struct sk_buff *skb, bool recalculate)
5136 {
5137 	int err;
5138 
5139 	switch (skb->protocol) {
5140 	case htons(ETH_P_IP):
5141 		err = skb_checksum_setup_ipv4(skb, recalculate);
5142 		break;
5143 
5144 	case htons(ETH_P_IPV6):
5145 		err = skb_checksum_setup_ipv6(skb, recalculate);
5146 		break;
5147 
5148 	default:
5149 		err = -EPROTO;
5150 		break;
5151 	}
5152 
5153 	return err;
5154 }
5155 EXPORT_SYMBOL(skb_checksum_setup);
5156 
5157 /**
5158  * skb_checksum_maybe_trim - maybe trims the given skb
5159  * @skb: the skb to check
5160  * @transport_len: the data length beyond the network header
5161  *
5162  * Checks whether the given skb has data beyond the given transport length.
5163  * If so, returns a cloned skb trimmed to this transport length.
5164  * Otherwise returns the provided skb. Returns NULL in error cases
5165  * (e.g. transport_len exceeds skb length or out-of-memory).
5166  *
5167  * Caller needs to set the skb transport header and free any returned skb if it
5168  * differs from the provided skb.
5169  */
5170 static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb,
5171 					       unsigned int transport_len)
5172 {
5173 	struct sk_buff *skb_chk;
5174 	unsigned int len = skb_transport_offset(skb) + transport_len;
5175 	int ret;
5176 
5177 	if (skb->len < len)
5178 		return NULL;
5179 	else if (skb->len == len)
5180 		return skb;
5181 
5182 	skb_chk = skb_clone(skb, GFP_ATOMIC);
5183 	if (!skb_chk)
5184 		return NULL;
5185 
5186 	ret = pskb_trim_rcsum(skb_chk, len);
5187 	if (ret) {
5188 		kfree_skb(skb_chk);
5189 		return NULL;
5190 	}
5191 
5192 	return skb_chk;
5193 }
5194 
5195 /**
5196  * skb_checksum_trimmed - validate checksum of an skb
5197  * @skb: the skb to check
5198  * @transport_len: the data length beyond the network header
5199  * @skb_chkf: checksum function to use
5200  *
5201  * Applies the given checksum function skb_chkf to the provided skb.
5202  * Returns a checked and maybe trimmed skb. Returns NULL on error.
5203  *
5204  * If the skb has data beyond the given transport length, then a
5205  * trimmed & cloned skb is checked and returned.
5206  *
5207  * Caller needs to set the skb transport header and free any returned skb if it
5208  * differs from the provided skb.
5209  */
5210 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
5211 				     unsigned int transport_len,
5212 				     __sum16(*skb_chkf)(struct sk_buff *skb))
5213 {
5214 	struct sk_buff *skb_chk;
5215 	unsigned int offset = skb_transport_offset(skb);
5216 	__sum16 ret;
5217 
5218 	skb_chk = skb_checksum_maybe_trim(skb, transport_len);
5219 	if (!skb_chk)
5220 		goto err;
5221 
5222 	if (!pskb_may_pull(skb_chk, offset))
5223 		goto err;
5224 
5225 	skb_pull_rcsum(skb_chk, offset);
5226 	ret = skb_chkf(skb_chk);
5227 	skb_push_rcsum(skb_chk, offset);
5228 
5229 	if (ret)
5230 		goto err;
5231 
5232 	return skb_chk;
5233 
5234 err:
5235 	if (skb_chk && skb_chk != skb)
5236 		kfree_skb(skb_chk);
5237 
5238 	return NULL;
5239 
5240 }
5241 EXPORT_SYMBOL(skb_checksum_trimmed);
5242 
5243 void __skb_warn_lro_forwarding(const struct sk_buff *skb)
5244 {
5245 	net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n",
5246 			     skb->dev->name);
5247 }
5248 EXPORT_SYMBOL(__skb_warn_lro_forwarding);
5249 
5250 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen)
5251 {
5252 	if (head_stolen) {
5253 		skb_release_head_state(skb);
5254 		kmem_cache_free(skbuff_head_cache, skb);
5255 	} else {
5256 		__kfree_skb(skb);
5257 	}
5258 }
5259 EXPORT_SYMBOL(kfree_skb_partial);
5260 
5261 /**
5262  * skb_try_coalesce - try to merge skb to prior one
5263  * @to: prior buffer
5264  * @from: buffer to add
5265  * @fragstolen: pointer to boolean
5266  * @delta_truesize: how much more was allocated than was requested
5267  */
5268 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
5269 		      bool *fragstolen, int *delta_truesize)
5270 {
5271 	struct skb_shared_info *to_shinfo, *from_shinfo;
5272 	int i, delta, len = from->len;
5273 
5274 	*fragstolen = false;
5275 
5276 	if (skb_cloned(to))
5277 		return false;
5278 
5279 	/* The page pool signature of struct page will eventually figure out
5280 	 * which pages can be recycled or not but for now let's prohibit slab
5281 	 * allocated and page_pool allocated SKBs from being coalesced.
5282 	 */
5283 	if (to->pp_recycle != from->pp_recycle)
5284 		return false;
5285 
5286 	if (len <= skb_tailroom(to)) {
5287 		if (len)
5288 			BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len));
5289 		*delta_truesize = 0;
5290 		return true;
5291 	}
5292 
5293 	to_shinfo = skb_shinfo(to);
5294 	from_shinfo = skb_shinfo(from);
5295 	if (to_shinfo->frag_list || from_shinfo->frag_list)
5296 		return false;
5297 	if (skb_zcopy(to) || skb_zcopy(from))
5298 		return false;
5299 
5300 	if (skb_headlen(from) != 0) {
5301 		struct page *page;
5302 		unsigned int offset;
5303 
5304 		if (to_shinfo->nr_frags +
5305 		    from_shinfo->nr_frags >= MAX_SKB_FRAGS)
5306 			return false;
5307 
5308 		if (skb_head_is_locked(from))
5309 			return false;
5310 
5311 		delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
5312 
5313 		page = virt_to_head_page(from->head);
5314 		offset = from->data - (unsigned char *)page_address(page);
5315 
5316 		skb_fill_page_desc(to, to_shinfo->nr_frags,
5317 				   page, offset, skb_headlen(from));
5318 		*fragstolen = true;
5319 	} else {
5320 		if (to_shinfo->nr_frags +
5321 		    from_shinfo->nr_frags > MAX_SKB_FRAGS)
5322 			return false;
5323 
5324 		delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from));
5325 	}
5326 
5327 	WARN_ON_ONCE(delta < len);
5328 
5329 	memcpy(to_shinfo->frags + to_shinfo->nr_frags,
5330 	       from_shinfo->frags,
5331 	       from_shinfo->nr_frags * sizeof(skb_frag_t));
5332 	to_shinfo->nr_frags += from_shinfo->nr_frags;
5333 
5334 	if (!skb_cloned(from))
5335 		from_shinfo->nr_frags = 0;
5336 
5337 	/* if the skb is not cloned this does nothing
5338 	 * since we set nr_frags to 0.
5339 	 */
5340 	for (i = 0; i < from_shinfo->nr_frags; i++)
5341 		__skb_frag_ref(&from_shinfo->frags[i]);
5342 
5343 	to->truesize += delta;
5344 	to->len += len;
5345 	to->data_len += len;
5346 
5347 	*delta_truesize = delta;
5348 	return true;
5349 }
5350 EXPORT_SYMBOL(skb_try_coalesce);
5351 
5352 /**
5353  * skb_scrub_packet - scrub an skb
5354  *
5355  * @skb: buffer to clean
5356  * @xnet: packet is crossing netns
5357  *
5358  * skb_scrub_packet can be used after encapsulating or decapsulting a packet
5359  * into/from a tunnel. Some information have to be cleared during these
5360  * operations.
5361  * skb_scrub_packet can also be used to clean a skb before injecting it in
5362  * another namespace (@xnet == true). We have to clear all information in the
5363  * skb that could impact namespace isolation.
5364  */
5365 void skb_scrub_packet(struct sk_buff *skb, bool xnet)
5366 {
5367 	skb->pkt_type = PACKET_HOST;
5368 	skb->skb_iif = 0;
5369 	skb->ignore_df = 0;
5370 	skb_dst_drop(skb);
5371 	skb_ext_reset(skb);
5372 	nf_reset_ct(skb);
5373 	nf_reset_trace(skb);
5374 
5375 #ifdef CONFIG_NET_SWITCHDEV
5376 	skb->offload_fwd_mark = 0;
5377 	skb->offload_l3_fwd_mark = 0;
5378 #endif
5379 
5380 	if (!xnet)
5381 		return;
5382 
5383 	ipvs_reset(skb);
5384 	skb->mark = 0;
5385 	skb_clear_tstamp(skb);
5386 }
5387 EXPORT_SYMBOL_GPL(skb_scrub_packet);
5388 
5389 /**
5390  * skb_gso_transport_seglen - Return length of individual segments of a gso packet
5391  *
5392  * @skb: GSO skb
5393  *
5394  * skb_gso_transport_seglen is used to determine the real size of the
5395  * individual segments, including Layer4 headers (TCP/UDP).
5396  *
5397  * The MAC/L2 or network (IP, IPv6) headers are not accounted for.
5398  */
5399 static unsigned int skb_gso_transport_seglen(const struct sk_buff *skb)
5400 {
5401 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
5402 	unsigned int thlen = 0;
5403 
5404 	if (skb->encapsulation) {
5405 		thlen = skb_inner_transport_header(skb) -
5406 			skb_transport_header(skb);
5407 
5408 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
5409 			thlen += inner_tcp_hdrlen(skb);
5410 	} else if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
5411 		thlen = tcp_hdrlen(skb);
5412 	} else if (unlikely(skb_is_gso_sctp(skb))) {
5413 		thlen = sizeof(struct sctphdr);
5414 	} else if (shinfo->gso_type & SKB_GSO_UDP_L4) {
5415 		thlen = sizeof(struct udphdr);
5416 	}
5417 	/* UFO sets gso_size to the size of the fragmentation
5418 	 * payload, i.e. the size of the L4 (UDP) header is already
5419 	 * accounted for.
5420 	 */
5421 	return thlen + shinfo->gso_size;
5422 }
5423 
5424 /**
5425  * skb_gso_network_seglen - Return length of individual segments of a gso packet
5426  *
5427  * @skb: GSO skb
5428  *
5429  * skb_gso_network_seglen is used to determine the real size of the
5430  * individual segments, including Layer3 (IP, IPv6) and L4 headers (TCP/UDP).
5431  *
5432  * The MAC/L2 header is not accounted for.
5433  */
5434 static unsigned int skb_gso_network_seglen(const struct sk_buff *skb)
5435 {
5436 	unsigned int hdr_len = skb_transport_header(skb) -
5437 			       skb_network_header(skb);
5438 
5439 	return hdr_len + skb_gso_transport_seglen(skb);
5440 }
5441 
5442 /**
5443  * skb_gso_mac_seglen - Return length of individual segments of a gso packet
5444  *
5445  * @skb: GSO skb
5446  *
5447  * skb_gso_mac_seglen is used to determine the real size of the
5448  * individual segments, including MAC/L2, Layer3 (IP, IPv6) and L4
5449  * headers (TCP/UDP).
5450  */
5451 static unsigned int skb_gso_mac_seglen(const struct sk_buff *skb)
5452 {
5453 	unsigned int hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
5454 
5455 	return hdr_len + skb_gso_transport_seglen(skb);
5456 }
5457 
5458 /**
5459  * skb_gso_size_check - check the skb size, considering GSO_BY_FRAGS
5460  *
5461  * There are a couple of instances where we have a GSO skb, and we
5462  * want to determine what size it would be after it is segmented.
5463  *
5464  * We might want to check:
5465  * -    L3+L4+payload size (e.g. IP forwarding)
5466  * - L2+L3+L4+payload size (e.g. sanity check before passing to driver)
5467  *
5468  * This is a helper to do that correctly considering GSO_BY_FRAGS.
5469  *
5470  * @skb: GSO skb
5471  *
5472  * @seg_len: The segmented length (from skb_gso_*_seglen). In the
5473  *           GSO_BY_FRAGS case this will be [header sizes + GSO_BY_FRAGS].
5474  *
5475  * @max_len: The maximum permissible length.
5476  *
5477  * Returns true if the segmented length <= max length.
5478  */
5479 static inline bool skb_gso_size_check(const struct sk_buff *skb,
5480 				      unsigned int seg_len,
5481 				      unsigned int max_len) {
5482 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
5483 	const struct sk_buff *iter;
5484 
5485 	if (shinfo->gso_size != GSO_BY_FRAGS)
5486 		return seg_len <= max_len;
5487 
5488 	/* Undo this so we can re-use header sizes */
5489 	seg_len -= GSO_BY_FRAGS;
5490 
5491 	skb_walk_frags(skb, iter) {
5492 		if (seg_len + skb_headlen(iter) > max_len)
5493 			return false;
5494 	}
5495 
5496 	return true;
5497 }
5498 
5499 /**
5500  * skb_gso_validate_network_len - Will a split GSO skb fit into a given MTU?
5501  *
5502  * @skb: GSO skb
5503  * @mtu: MTU to validate against
5504  *
5505  * skb_gso_validate_network_len validates if a given skb will fit a
5506  * wanted MTU once split. It considers L3 headers, L4 headers, and the
5507  * payload.
5508  */
5509 bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu)
5510 {
5511 	return skb_gso_size_check(skb, skb_gso_network_seglen(skb), mtu);
5512 }
5513 EXPORT_SYMBOL_GPL(skb_gso_validate_network_len);
5514 
5515 /**
5516  * skb_gso_validate_mac_len - Will a split GSO skb fit in a given length?
5517  *
5518  * @skb: GSO skb
5519  * @len: length to validate against
5520  *
5521  * skb_gso_validate_mac_len validates if a given skb will fit a wanted
5522  * length once split, including L2, L3 and L4 headers and the payload.
5523  */
5524 bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len)
5525 {
5526 	return skb_gso_size_check(skb, skb_gso_mac_seglen(skb), len);
5527 }
5528 EXPORT_SYMBOL_GPL(skb_gso_validate_mac_len);
5529 
5530 static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb)
5531 {
5532 	int mac_len, meta_len;
5533 	void *meta;
5534 
5535 	if (skb_cow(skb, skb_headroom(skb)) < 0) {
5536 		kfree_skb(skb);
5537 		return NULL;
5538 	}
5539 
5540 	mac_len = skb->data - skb_mac_header(skb);
5541 	if (likely(mac_len > VLAN_HLEN + ETH_TLEN)) {
5542 		memmove(skb_mac_header(skb) + VLAN_HLEN, skb_mac_header(skb),
5543 			mac_len - VLAN_HLEN - ETH_TLEN);
5544 	}
5545 
5546 	meta_len = skb_metadata_len(skb);
5547 	if (meta_len) {
5548 		meta = skb_metadata_end(skb) - meta_len;
5549 		memmove(meta + VLAN_HLEN, meta, meta_len);
5550 	}
5551 
5552 	skb->mac_header += VLAN_HLEN;
5553 	return skb;
5554 }
5555 
5556 struct sk_buff *skb_vlan_untag(struct sk_buff *skb)
5557 {
5558 	struct vlan_hdr *vhdr;
5559 	u16 vlan_tci;
5560 
5561 	if (unlikely(skb_vlan_tag_present(skb))) {
5562 		/* vlan_tci is already set-up so leave this for another time */
5563 		return skb;
5564 	}
5565 
5566 	skb = skb_share_check(skb, GFP_ATOMIC);
5567 	if (unlikely(!skb))
5568 		goto err_free;
5569 	/* We may access the two bytes after vlan_hdr in vlan_set_encap_proto(). */
5570 	if (unlikely(!pskb_may_pull(skb, VLAN_HLEN + sizeof(unsigned short))))
5571 		goto err_free;
5572 
5573 	vhdr = (struct vlan_hdr *)skb->data;
5574 	vlan_tci = ntohs(vhdr->h_vlan_TCI);
5575 	__vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci);
5576 
5577 	skb_pull_rcsum(skb, VLAN_HLEN);
5578 	vlan_set_encap_proto(skb, vhdr);
5579 
5580 	skb = skb_reorder_vlan_header(skb);
5581 	if (unlikely(!skb))
5582 		goto err_free;
5583 
5584 	skb_reset_network_header(skb);
5585 	if (!skb_transport_header_was_set(skb))
5586 		skb_reset_transport_header(skb);
5587 	skb_reset_mac_len(skb);
5588 
5589 	return skb;
5590 
5591 err_free:
5592 	kfree_skb(skb);
5593 	return NULL;
5594 }
5595 EXPORT_SYMBOL(skb_vlan_untag);
5596 
5597 int skb_ensure_writable(struct sk_buff *skb, int write_len)
5598 {
5599 	if (!pskb_may_pull(skb, write_len))
5600 		return -ENOMEM;
5601 
5602 	if (!skb_cloned(skb) || skb_clone_writable(skb, write_len))
5603 		return 0;
5604 
5605 	return pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
5606 }
5607 EXPORT_SYMBOL(skb_ensure_writable);
5608 
5609 /* remove VLAN header from packet and update csum accordingly.
5610  * expects a non skb_vlan_tag_present skb with a vlan tag payload
5611  */
5612 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci)
5613 {
5614 	struct vlan_hdr *vhdr;
5615 	int offset = skb->data - skb_mac_header(skb);
5616 	int err;
5617 
5618 	if (WARN_ONCE(offset,
5619 		      "__skb_vlan_pop got skb with skb->data not at mac header (offset %d)\n",
5620 		      offset)) {
5621 		return -EINVAL;
5622 	}
5623 
5624 	err = skb_ensure_writable(skb, VLAN_ETH_HLEN);
5625 	if (unlikely(err))
5626 		return err;
5627 
5628 	skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
5629 
5630 	vhdr = (struct vlan_hdr *)(skb->data + ETH_HLEN);
5631 	*vlan_tci = ntohs(vhdr->h_vlan_TCI);
5632 
5633 	memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN);
5634 	__skb_pull(skb, VLAN_HLEN);
5635 
5636 	vlan_set_encap_proto(skb, vhdr);
5637 	skb->mac_header += VLAN_HLEN;
5638 
5639 	if (skb_network_offset(skb) < ETH_HLEN)
5640 		skb_set_network_header(skb, ETH_HLEN);
5641 
5642 	skb_reset_mac_len(skb);
5643 
5644 	return err;
5645 }
5646 EXPORT_SYMBOL(__skb_vlan_pop);
5647 
5648 /* Pop a vlan tag either from hwaccel or from payload.
5649  * Expects skb->data at mac header.
5650  */
5651 int skb_vlan_pop(struct sk_buff *skb)
5652 {
5653 	u16 vlan_tci;
5654 	__be16 vlan_proto;
5655 	int err;
5656 
5657 	if (likely(skb_vlan_tag_present(skb))) {
5658 		__vlan_hwaccel_clear_tag(skb);
5659 	} else {
5660 		if (unlikely(!eth_type_vlan(skb->protocol)))
5661 			return 0;
5662 
5663 		err = __skb_vlan_pop(skb, &vlan_tci);
5664 		if (err)
5665 			return err;
5666 	}
5667 	/* move next vlan tag to hw accel tag */
5668 	if (likely(!eth_type_vlan(skb->protocol)))
5669 		return 0;
5670 
5671 	vlan_proto = skb->protocol;
5672 	err = __skb_vlan_pop(skb, &vlan_tci);
5673 	if (unlikely(err))
5674 		return err;
5675 
5676 	__vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
5677 	return 0;
5678 }
5679 EXPORT_SYMBOL(skb_vlan_pop);
5680 
5681 /* Push a vlan tag either into hwaccel or into payload (if hwaccel tag present).
5682  * Expects skb->data at mac header.
5683  */
5684 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci)
5685 {
5686 	if (skb_vlan_tag_present(skb)) {
5687 		int offset = skb->data - skb_mac_header(skb);
5688 		int err;
5689 
5690 		if (WARN_ONCE(offset,
5691 			      "skb_vlan_push got skb with skb->data not at mac header (offset %d)\n",
5692 			      offset)) {
5693 			return -EINVAL;
5694 		}
5695 
5696 		err = __vlan_insert_tag(skb, skb->vlan_proto,
5697 					skb_vlan_tag_get(skb));
5698 		if (err)
5699 			return err;
5700 
5701 		skb->protocol = skb->vlan_proto;
5702 		skb->mac_len += VLAN_HLEN;
5703 
5704 		skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
5705 	}
5706 	__vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
5707 	return 0;
5708 }
5709 EXPORT_SYMBOL(skb_vlan_push);
5710 
5711 /**
5712  * skb_eth_pop() - Drop the Ethernet header at the head of a packet
5713  *
5714  * @skb: Socket buffer to modify
5715  *
5716  * Drop the Ethernet header of @skb.
5717  *
5718  * Expects that skb->data points to the mac header and that no VLAN tags are
5719  * present.
5720  *
5721  * Returns 0 on success, -errno otherwise.
5722  */
5723 int skb_eth_pop(struct sk_buff *skb)
5724 {
5725 	if (!pskb_may_pull(skb, ETH_HLEN) || skb_vlan_tagged(skb) ||
5726 	    skb_network_offset(skb) < ETH_HLEN)
5727 		return -EPROTO;
5728 
5729 	skb_pull_rcsum(skb, ETH_HLEN);
5730 	skb_reset_mac_header(skb);
5731 	skb_reset_mac_len(skb);
5732 
5733 	return 0;
5734 }
5735 EXPORT_SYMBOL(skb_eth_pop);
5736 
5737 /**
5738  * skb_eth_push() - Add a new Ethernet header at the head of a packet
5739  *
5740  * @skb: Socket buffer to modify
5741  * @dst: Destination MAC address of the new header
5742  * @src: Source MAC address of the new header
5743  *
5744  * Prepend @skb with a new Ethernet header.
5745  *
5746  * Expects that skb->data points to the mac header, which must be empty.
5747  *
5748  * Returns 0 on success, -errno otherwise.
5749  */
5750 int skb_eth_push(struct sk_buff *skb, const unsigned char *dst,
5751 		 const unsigned char *src)
5752 {
5753 	struct ethhdr *eth;
5754 	int err;
5755 
5756 	if (skb_network_offset(skb) || skb_vlan_tag_present(skb))
5757 		return -EPROTO;
5758 
5759 	err = skb_cow_head(skb, sizeof(*eth));
5760 	if (err < 0)
5761 		return err;
5762 
5763 	skb_push(skb, sizeof(*eth));
5764 	skb_reset_mac_header(skb);
5765 	skb_reset_mac_len(skb);
5766 
5767 	eth = eth_hdr(skb);
5768 	ether_addr_copy(eth->h_dest, dst);
5769 	ether_addr_copy(eth->h_source, src);
5770 	eth->h_proto = skb->protocol;
5771 
5772 	skb_postpush_rcsum(skb, eth, sizeof(*eth));
5773 
5774 	return 0;
5775 }
5776 EXPORT_SYMBOL(skb_eth_push);
5777 
5778 /* Update the ethertype of hdr and the skb csum value if required. */
5779 static void skb_mod_eth_type(struct sk_buff *skb, struct ethhdr *hdr,
5780 			     __be16 ethertype)
5781 {
5782 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
5783 		__be16 diff[] = { ~hdr->h_proto, ethertype };
5784 
5785 		skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum);
5786 	}
5787 
5788 	hdr->h_proto = ethertype;
5789 }
5790 
5791 /**
5792  * skb_mpls_push() - push a new MPLS header after mac_len bytes from start of
5793  *                   the packet
5794  *
5795  * @skb: buffer
5796  * @mpls_lse: MPLS label stack entry to push
5797  * @mpls_proto: ethertype of the new MPLS header (expects 0x8847 or 0x8848)
5798  * @mac_len: length of the MAC header
5799  * @ethernet: flag to indicate if the resulting packet after skb_mpls_push is
5800  *            ethernet
5801  *
5802  * Expects skb->data at mac header.
5803  *
5804  * Returns 0 on success, -errno otherwise.
5805  */
5806 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto,
5807 		  int mac_len, bool ethernet)
5808 {
5809 	struct mpls_shim_hdr *lse;
5810 	int err;
5811 
5812 	if (unlikely(!eth_p_mpls(mpls_proto)))
5813 		return -EINVAL;
5814 
5815 	/* Networking stack does not allow simultaneous Tunnel and MPLS GSO. */
5816 	if (skb->encapsulation)
5817 		return -EINVAL;
5818 
5819 	err = skb_cow_head(skb, MPLS_HLEN);
5820 	if (unlikely(err))
5821 		return err;
5822 
5823 	if (!skb->inner_protocol) {
5824 		skb_set_inner_network_header(skb, skb_network_offset(skb));
5825 		skb_set_inner_protocol(skb, skb->protocol);
5826 	}
5827 
5828 	skb_push(skb, MPLS_HLEN);
5829 	memmove(skb_mac_header(skb) - MPLS_HLEN, skb_mac_header(skb),
5830 		mac_len);
5831 	skb_reset_mac_header(skb);
5832 	skb_set_network_header(skb, mac_len);
5833 	skb_reset_mac_len(skb);
5834 
5835 	lse = mpls_hdr(skb);
5836 	lse->label_stack_entry = mpls_lse;
5837 	skb_postpush_rcsum(skb, lse, MPLS_HLEN);
5838 
5839 	if (ethernet && mac_len >= ETH_HLEN)
5840 		skb_mod_eth_type(skb, eth_hdr(skb), mpls_proto);
5841 	skb->protocol = mpls_proto;
5842 
5843 	return 0;
5844 }
5845 EXPORT_SYMBOL_GPL(skb_mpls_push);
5846 
5847 /**
5848  * skb_mpls_pop() - pop the outermost MPLS header
5849  *
5850  * @skb: buffer
5851  * @next_proto: ethertype of header after popped MPLS header
5852  * @mac_len: length of the MAC header
5853  * @ethernet: flag to indicate if the packet is ethernet
5854  *
5855  * Expects skb->data at mac header.
5856  *
5857  * Returns 0 on success, -errno otherwise.
5858  */
5859 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len,
5860 		 bool ethernet)
5861 {
5862 	int err;
5863 
5864 	if (unlikely(!eth_p_mpls(skb->protocol)))
5865 		return 0;
5866 
5867 	err = skb_ensure_writable(skb, mac_len + MPLS_HLEN);
5868 	if (unlikely(err))
5869 		return err;
5870 
5871 	skb_postpull_rcsum(skb, mpls_hdr(skb), MPLS_HLEN);
5872 	memmove(skb_mac_header(skb) + MPLS_HLEN, skb_mac_header(skb),
5873 		mac_len);
5874 
5875 	__skb_pull(skb, MPLS_HLEN);
5876 	skb_reset_mac_header(skb);
5877 	skb_set_network_header(skb, mac_len);
5878 
5879 	if (ethernet && mac_len >= ETH_HLEN) {
5880 		struct ethhdr *hdr;
5881 
5882 		/* use mpls_hdr() to get ethertype to account for VLANs. */
5883 		hdr = (struct ethhdr *)((void *)mpls_hdr(skb) - ETH_HLEN);
5884 		skb_mod_eth_type(skb, hdr, next_proto);
5885 	}
5886 	skb->protocol = next_proto;
5887 
5888 	return 0;
5889 }
5890 EXPORT_SYMBOL_GPL(skb_mpls_pop);
5891 
5892 /**
5893  * skb_mpls_update_lse() - modify outermost MPLS header and update csum
5894  *
5895  * @skb: buffer
5896  * @mpls_lse: new MPLS label stack entry to update to
5897  *
5898  * Expects skb->data at mac header.
5899  *
5900  * Returns 0 on success, -errno otherwise.
5901  */
5902 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse)
5903 {
5904 	int err;
5905 
5906 	if (unlikely(!eth_p_mpls(skb->protocol)))
5907 		return -EINVAL;
5908 
5909 	err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN);
5910 	if (unlikely(err))
5911 		return err;
5912 
5913 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
5914 		__be32 diff[] = { ~mpls_hdr(skb)->label_stack_entry, mpls_lse };
5915 
5916 		skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum);
5917 	}
5918 
5919 	mpls_hdr(skb)->label_stack_entry = mpls_lse;
5920 
5921 	return 0;
5922 }
5923 EXPORT_SYMBOL_GPL(skb_mpls_update_lse);
5924 
5925 /**
5926  * skb_mpls_dec_ttl() - decrement the TTL of the outermost MPLS header
5927  *
5928  * @skb: buffer
5929  *
5930  * Expects skb->data at mac header.
5931  *
5932  * Returns 0 on success, -errno otherwise.
5933  */
5934 int skb_mpls_dec_ttl(struct sk_buff *skb)
5935 {
5936 	u32 lse;
5937 	u8 ttl;
5938 
5939 	if (unlikely(!eth_p_mpls(skb->protocol)))
5940 		return -EINVAL;
5941 
5942 	if (!pskb_may_pull(skb, skb_network_offset(skb) + MPLS_HLEN))
5943 		return -ENOMEM;
5944 
5945 	lse = be32_to_cpu(mpls_hdr(skb)->label_stack_entry);
5946 	ttl = (lse & MPLS_LS_TTL_MASK) >> MPLS_LS_TTL_SHIFT;
5947 	if (!--ttl)
5948 		return -EINVAL;
5949 
5950 	lse &= ~MPLS_LS_TTL_MASK;
5951 	lse |= ttl << MPLS_LS_TTL_SHIFT;
5952 
5953 	return skb_mpls_update_lse(skb, cpu_to_be32(lse));
5954 }
5955 EXPORT_SYMBOL_GPL(skb_mpls_dec_ttl);
5956 
5957 /**
5958  * alloc_skb_with_frags - allocate skb with page frags
5959  *
5960  * @header_len: size of linear part
5961  * @data_len: needed length in frags
5962  * @max_page_order: max page order desired.
5963  * @errcode: pointer to error code if any
5964  * @gfp_mask: allocation mask
5965  *
5966  * This can be used to allocate a paged skb, given a maximal order for frags.
5967  */
5968 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
5969 				     unsigned long data_len,
5970 				     int max_page_order,
5971 				     int *errcode,
5972 				     gfp_t gfp_mask)
5973 {
5974 	int npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
5975 	unsigned long chunk;
5976 	struct sk_buff *skb;
5977 	struct page *page;
5978 	int i;
5979 
5980 	*errcode = -EMSGSIZE;
5981 	/* Note this test could be relaxed, if we succeed to allocate
5982 	 * high order pages...
5983 	 */
5984 	if (npages > MAX_SKB_FRAGS)
5985 		return NULL;
5986 
5987 	*errcode = -ENOBUFS;
5988 	skb = alloc_skb(header_len, gfp_mask);
5989 	if (!skb)
5990 		return NULL;
5991 
5992 	skb->truesize += npages << PAGE_SHIFT;
5993 
5994 	for (i = 0; npages > 0; i++) {
5995 		int order = max_page_order;
5996 
5997 		while (order) {
5998 			if (npages >= 1 << order) {
5999 				page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) |
6000 						   __GFP_COMP |
6001 						   __GFP_NOWARN,
6002 						   order);
6003 				if (page)
6004 					goto fill_page;
6005 				/* Do not retry other high order allocations */
6006 				order = 1;
6007 				max_page_order = 0;
6008 			}
6009 			order--;
6010 		}
6011 		page = alloc_page(gfp_mask);
6012 		if (!page)
6013 			goto failure;
6014 fill_page:
6015 		chunk = min_t(unsigned long, data_len,
6016 			      PAGE_SIZE << order);
6017 		skb_fill_page_desc(skb, i, page, 0, chunk);
6018 		data_len -= chunk;
6019 		npages -= 1 << order;
6020 	}
6021 	return skb;
6022 
6023 failure:
6024 	kfree_skb(skb);
6025 	return NULL;
6026 }
6027 EXPORT_SYMBOL(alloc_skb_with_frags);
6028 
6029 /* carve out the first off bytes from skb when off < headlen */
6030 static int pskb_carve_inside_header(struct sk_buff *skb, const u32 off,
6031 				    const int headlen, gfp_t gfp_mask)
6032 {
6033 	int i;
6034 	int size = skb_end_offset(skb);
6035 	int new_hlen = headlen - off;
6036 	u8 *data;
6037 
6038 	size = SKB_DATA_ALIGN(size);
6039 
6040 	if (skb_pfmemalloc(skb))
6041 		gfp_mask |= __GFP_MEMALLOC;
6042 	data = kmalloc_reserve(size +
6043 			       SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
6044 			       gfp_mask, NUMA_NO_NODE, NULL);
6045 	if (!data)
6046 		return -ENOMEM;
6047 
6048 	size = SKB_WITH_OVERHEAD(ksize(data));
6049 
6050 	/* Copy real data, and all frags */
6051 	skb_copy_from_linear_data_offset(skb, off, data, new_hlen);
6052 	skb->len -= off;
6053 
6054 	memcpy((struct skb_shared_info *)(data + size),
6055 	       skb_shinfo(skb),
6056 	       offsetof(struct skb_shared_info,
6057 			frags[skb_shinfo(skb)->nr_frags]));
6058 	if (skb_cloned(skb)) {
6059 		/* drop the old head gracefully */
6060 		if (skb_orphan_frags(skb, gfp_mask)) {
6061 			kfree(data);
6062 			return -ENOMEM;
6063 		}
6064 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
6065 			skb_frag_ref(skb, i);
6066 		if (skb_has_frag_list(skb))
6067 			skb_clone_fraglist(skb);
6068 		skb_release_data(skb);
6069 	} else {
6070 		/* we can reuse existing recount- all we did was
6071 		 * relocate values
6072 		 */
6073 		skb_free_head(skb);
6074 	}
6075 
6076 	skb->head = data;
6077 	skb->data = data;
6078 	skb->head_frag = 0;
6079 	skb_set_end_offset(skb, size);
6080 	skb_set_tail_pointer(skb, skb_headlen(skb));
6081 	skb_headers_offset_update(skb, 0);
6082 	skb->cloned = 0;
6083 	skb->hdr_len = 0;
6084 	skb->nohdr = 0;
6085 	atomic_set(&skb_shinfo(skb)->dataref, 1);
6086 
6087 	return 0;
6088 }
6089 
6090 static int pskb_carve(struct sk_buff *skb, const u32 off, gfp_t gfp);
6091 
6092 /* carve out the first eat bytes from skb's frag_list. May recurse into
6093  * pskb_carve()
6094  */
6095 static int pskb_carve_frag_list(struct sk_buff *skb,
6096 				struct skb_shared_info *shinfo, int eat,
6097 				gfp_t gfp_mask)
6098 {
6099 	struct sk_buff *list = shinfo->frag_list;
6100 	struct sk_buff *clone = NULL;
6101 	struct sk_buff *insp = NULL;
6102 
6103 	do {
6104 		if (!list) {
6105 			pr_err("Not enough bytes to eat. Want %d\n", eat);
6106 			return -EFAULT;
6107 		}
6108 		if (list->len <= eat) {
6109 			/* Eaten as whole. */
6110 			eat -= list->len;
6111 			list = list->next;
6112 			insp = list;
6113 		} else {
6114 			/* Eaten partially. */
6115 			if (skb_shared(list)) {
6116 				clone = skb_clone(list, gfp_mask);
6117 				if (!clone)
6118 					return -ENOMEM;
6119 				insp = list->next;
6120 				list = clone;
6121 			} else {
6122 				/* This may be pulled without problems. */
6123 				insp = list;
6124 			}
6125 			if (pskb_carve(list, eat, gfp_mask) < 0) {
6126 				kfree_skb(clone);
6127 				return -ENOMEM;
6128 			}
6129 			break;
6130 		}
6131 	} while (eat);
6132 
6133 	/* Free pulled out fragments. */
6134 	while ((list = shinfo->frag_list) != insp) {
6135 		shinfo->frag_list = list->next;
6136 		consume_skb(list);
6137 	}
6138 	/* And insert new clone at head. */
6139 	if (clone) {
6140 		clone->next = list;
6141 		shinfo->frag_list = clone;
6142 	}
6143 	return 0;
6144 }
6145 
6146 /* carve off first len bytes from skb. Split line (off) is in the
6147  * non-linear part of skb
6148  */
6149 static int pskb_carve_inside_nonlinear(struct sk_buff *skb, const u32 off,
6150 				       int pos, gfp_t gfp_mask)
6151 {
6152 	int i, k = 0;
6153 	int size = skb_end_offset(skb);
6154 	u8 *data;
6155 	const int nfrags = skb_shinfo(skb)->nr_frags;
6156 	struct skb_shared_info *shinfo;
6157 
6158 	size = SKB_DATA_ALIGN(size);
6159 
6160 	if (skb_pfmemalloc(skb))
6161 		gfp_mask |= __GFP_MEMALLOC;
6162 	data = kmalloc_reserve(size +
6163 			       SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
6164 			       gfp_mask, NUMA_NO_NODE, NULL);
6165 	if (!data)
6166 		return -ENOMEM;
6167 
6168 	size = SKB_WITH_OVERHEAD(ksize(data));
6169 
6170 	memcpy((struct skb_shared_info *)(data + size),
6171 	       skb_shinfo(skb), offsetof(struct skb_shared_info, frags[0]));
6172 	if (skb_orphan_frags(skb, gfp_mask)) {
6173 		kfree(data);
6174 		return -ENOMEM;
6175 	}
6176 	shinfo = (struct skb_shared_info *)(data + size);
6177 	for (i = 0; i < nfrags; i++) {
6178 		int fsize = skb_frag_size(&skb_shinfo(skb)->frags[i]);
6179 
6180 		if (pos + fsize > off) {
6181 			shinfo->frags[k] = skb_shinfo(skb)->frags[i];
6182 
6183 			if (pos < off) {
6184 				/* Split frag.
6185 				 * We have two variants in this case:
6186 				 * 1. Move all the frag to the second
6187 				 *    part, if it is possible. F.e.
6188 				 *    this approach is mandatory for TUX,
6189 				 *    where splitting is expensive.
6190 				 * 2. Split is accurately. We make this.
6191 				 */
6192 				skb_frag_off_add(&shinfo->frags[0], off - pos);
6193 				skb_frag_size_sub(&shinfo->frags[0], off - pos);
6194 			}
6195 			skb_frag_ref(skb, i);
6196 			k++;
6197 		}
6198 		pos += fsize;
6199 	}
6200 	shinfo->nr_frags = k;
6201 	if (skb_has_frag_list(skb))
6202 		skb_clone_fraglist(skb);
6203 
6204 	/* split line is in frag list */
6205 	if (k == 0 && pskb_carve_frag_list(skb, shinfo, off - pos, gfp_mask)) {
6206 		/* skb_frag_unref() is not needed here as shinfo->nr_frags = 0. */
6207 		if (skb_has_frag_list(skb))
6208 			kfree_skb_list(skb_shinfo(skb)->frag_list);
6209 		kfree(data);
6210 		return -ENOMEM;
6211 	}
6212 	skb_release_data(skb);
6213 
6214 	skb->head = data;
6215 	skb->head_frag = 0;
6216 	skb->data = data;
6217 	skb_set_end_offset(skb, size);
6218 	skb_reset_tail_pointer(skb);
6219 	skb_headers_offset_update(skb, 0);
6220 	skb->cloned   = 0;
6221 	skb->hdr_len  = 0;
6222 	skb->nohdr    = 0;
6223 	skb->len -= off;
6224 	skb->data_len = skb->len;
6225 	atomic_set(&skb_shinfo(skb)->dataref, 1);
6226 	return 0;
6227 }
6228 
6229 /* remove len bytes from the beginning of the skb */
6230 static int pskb_carve(struct sk_buff *skb, const u32 len, gfp_t gfp)
6231 {
6232 	int headlen = skb_headlen(skb);
6233 
6234 	if (len < headlen)
6235 		return pskb_carve_inside_header(skb, len, headlen, gfp);
6236 	else
6237 		return pskb_carve_inside_nonlinear(skb, len, headlen, gfp);
6238 }
6239 
6240 /* Extract to_copy bytes starting at off from skb, and return this in
6241  * a new skb
6242  */
6243 struct sk_buff *pskb_extract(struct sk_buff *skb, int off,
6244 			     int to_copy, gfp_t gfp)
6245 {
6246 	struct sk_buff  *clone = skb_clone(skb, gfp);
6247 
6248 	if (!clone)
6249 		return NULL;
6250 
6251 	if (pskb_carve(clone, off, gfp) < 0 ||
6252 	    pskb_trim(clone, to_copy)) {
6253 		kfree_skb(clone);
6254 		return NULL;
6255 	}
6256 	return clone;
6257 }
6258 EXPORT_SYMBOL(pskb_extract);
6259 
6260 /**
6261  * skb_condense - try to get rid of fragments/frag_list if possible
6262  * @skb: buffer
6263  *
6264  * Can be used to save memory before skb is added to a busy queue.
6265  * If packet has bytes in frags and enough tail room in skb->head,
6266  * pull all of them, so that we can free the frags right now and adjust
6267  * truesize.
6268  * Notes:
6269  *	We do not reallocate skb->head thus can not fail.
6270  *	Caller must re-evaluate skb->truesize if needed.
6271  */
6272 void skb_condense(struct sk_buff *skb)
6273 {
6274 	if (skb->data_len) {
6275 		if (skb->data_len > skb->end - skb->tail ||
6276 		    skb_cloned(skb))
6277 			return;
6278 
6279 		/* Nice, we can free page frag(s) right now */
6280 		__pskb_pull_tail(skb, skb->data_len);
6281 	}
6282 	/* At this point, skb->truesize might be over estimated,
6283 	 * because skb had a fragment, and fragments do not tell
6284 	 * their truesize.
6285 	 * When we pulled its content into skb->head, fragment
6286 	 * was freed, but __pskb_pull_tail() could not possibly
6287 	 * adjust skb->truesize, not knowing the frag truesize.
6288 	 */
6289 	skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
6290 }
6291 
6292 #ifdef CONFIG_SKB_EXTENSIONS
6293 static void *skb_ext_get_ptr(struct skb_ext *ext, enum skb_ext_id id)
6294 {
6295 	return (void *)ext + (ext->offset[id] * SKB_EXT_ALIGN_VALUE);
6296 }
6297 
6298 /**
6299  * __skb_ext_alloc - allocate a new skb extensions storage
6300  *
6301  * @flags: See kmalloc().
6302  *
6303  * Returns the newly allocated pointer. The pointer can later attached to a
6304  * skb via __skb_ext_set().
6305  * Note: caller must handle the skb_ext as an opaque data.
6306  */
6307 struct skb_ext *__skb_ext_alloc(gfp_t flags)
6308 {
6309 	struct skb_ext *new = kmem_cache_alloc(skbuff_ext_cache, flags);
6310 
6311 	if (new) {
6312 		memset(new->offset, 0, sizeof(new->offset));
6313 		refcount_set(&new->refcnt, 1);
6314 	}
6315 
6316 	return new;
6317 }
6318 
6319 static struct skb_ext *skb_ext_maybe_cow(struct skb_ext *old,
6320 					 unsigned int old_active)
6321 {
6322 	struct skb_ext *new;
6323 
6324 	if (refcount_read(&old->refcnt) == 1)
6325 		return old;
6326 
6327 	new = kmem_cache_alloc(skbuff_ext_cache, GFP_ATOMIC);
6328 	if (!new)
6329 		return NULL;
6330 
6331 	memcpy(new, old, old->chunks * SKB_EXT_ALIGN_VALUE);
6332 	refcount_set(&new->refcnt, 1);
6333 
6334 #ifdef CONFIG_XFRM
6335 	if (old_active & (1 << SKB_EXT_SEC_PATH)) {
6336 		struct sec_path *sp = skb_ext_get_ptr(old, SKB_EXT_SEC_PATH);
6337 		unsigned int i;
6338 
6339 		for (i = 0; i < sp->len; i++)
6340 			xfrm_state_hold(sp->xvec[i]);
6341 	}
6342 #endif
6343 	__skb_ext_put(old);
6344 	return new;
6345 }
6346 
6347 /**
6348  * __skb_ext_set - attach the specified extension storage to this skb
6349  * @skb: buffer
6350  * @id: extension id
6351  * @ext: extension storage previously allocated via __skb_ext_alloc()
6352  *
6353  * Existing extensions, if any, are cleared.
6354  *
6355  * Returns the pointer to the extension.
6356  */
6357 void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id,
6358 		    struct skb_ext *ext)
6359 {
6360 	unsigned int newlen, newoff = SKB_EXT_CHUNKSIZEOF(*ext);
6361 
6362 	skb_ext_put(skb);
6363 	newlen = newoff + skb_ext_type_len[id];
6364 	ext->chunks = newlen;
6365 	ext->offset[id] = newoff;
6366 	skb->extensions = ext;
6367 	skb->active_extensions = 1 << id;
6368 	return skb_ext_get_ptr(ext, id);
6369 }
6370 
6371 /**
6372  * skb_ext_add - allocate space for given extension, COW if needed
6373  * @skb: buffer
6374  * @id: extension to allocate space for
6375  *
6376  * Allocates enough space for the given extension.
6377  * If the extension is already present, a pointer to that extension
6378  * is returned.
6379  *
6380  * If the skb was cloned, COW applies and the returned memory can be
6381  * modified without changing the extension space of clones buffers.
6382  *
6383  * Returns pointer to the extension or NULL on allocation failure.
6384  */
6385 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id)
6386 {
6387 	struct skb_ext *new, *old = NULL;
6388 	unsigned int newlen, newoff;
6389 
6390 	if (skb->active_extensions) {
6391 		old = skb->extensions;
6392 
6393 		new = skb_ext_maybe_cow(old, skb->active_extensions);
6394 		if (!new)
6395 			return NULL;
6396 
6397 		if (__skb_ext_exist(new, id))
6398 			goto set_active;
6399 
6400 		newoff = new->chunks;
6401 	} else {
6402 		newoff = SKB_EXT_CHUNKSIZEOF(*new);
6403 
6404 		new = __skb_ext_alloc(GFP_ATOMIC);
6405 		if (!new)
6406 			return NULL;
6407 	}
6408 
6409 	newlen = newoff + skb_ext_type_len[id];
6410 	new->chunks = newlen;
6411 	new->offset[id] = newoff;
6412 set_active:
6413 	skb->slow_gro = 1;
6414 	skb->extensions = new;
6415 	skb->active_extensions |= 1 << id;
6416 	return skb_ext_get_ptr(new, id);
6417 }
6418 EXPORT_SYMBOL(skb_ext_add);
6419 
6420 #ifdef CONFIG_XFRM
6421 static void skb_ext_put_sp(struct sec_path *sp)
6422 {
6423 	unsigned int i;
6424 
6425 	for (i = 0; i < sp->len; i++)
6426 		xfrm_state_put(sp->xvec[i]);
6427 }
6428 #endif
6429 
6430 #ifdef CONFIG_MCTP_FLOWS
6431 static void skb_ext_put_mctp(struct mctp_flow *flow)
6432 {
6433 	if (flow->key)
6434 		mctp_key_unref(flow->key);
6435 }
6436 #endif
6437 
6438 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id)
6439 {
6440 	struct skb_ext *ext = skb->extensions;
6441 
6442 	skb->active_extensions &= ~(1 << id);
6443 	if (skb->active_extensions == 0) {
6444 		skb->extensions = NULL;
6445 		__skb_ext_put(ext);
6446 #ifdef CONFIG_XFRM
6447 	} else if (id == SKB_EXT_SEC_PATH &&
6448 		   refcount_read(&ext->refcnt) == 1) {
6449 		struct sec_path *sp = skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH);
6450 
6451 		skb_ext_put_sp(sp);
6452 		sp->len = 0;
6453 #endif
6454 	}
6455 }
6456 EXPORT_SYMBOL(__skb_ext_del);
6457 
6458 void __skb_ext_put(struct skb_ext *ext)
6459 {
6460 	/* If this is last clone, nothing can increment
6461 	 * it after check passes.  Avoids one atomic op.
6462 	 */
6463 	if (refcount_read(&ext->refcnt) == 1)
6464 		goto free_now;
6465 
6466 	if (!refcount_dec_and_test(&ext->refcnt))
6467 		return;
6468 free_now:
6469 #ifdef CONFIG_XFRM
6470 	if (__skb_ext_exist(ext, SKB_EXT_SEC_PATH))
6471 		skb_ext_put_sp(skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH));
6472 #endif
6473 #ifdef CONFIG_MCTP_FLOWS
6474 	if (__skb_ext_exist(ext, SKB_EXT_MCTP))
6475 		skb_ext_put_mctp(skb_ext_get_ptr(ext, SKB_EXT_MCTP));
6476 #endif
6477 
6478 	kmem_cache_free(skbuff_ext_cache, ext);
6479 }
6480 EXPORT_SYMBOL(__skb_ext_put);
6481 #endif /* CONFIG_SKB_EXTENSIONS */
6482