1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Routines having to do with the 'struct sk_buff' memory handlers. 4 * 5 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk> 6 * Florian La Roche <rzsfl@rz.uni-sb.de> 7 * 8 * Fixes: 9 * Alan Cox : Fixed the worst of the load 10 * balancer bugs. 11 * Dave Platt : Interrupt stacking fix. 12 * Richard Kooijman : Timestamp fixes. 13 * Alan Cox : Changed buffer format. 14 * Alan Cox : destructor hook for AF_UNIX etc. 15 * Linus Torvalds : Better skb_clone. 16 * Alan Cox : Added skb_copy. 17 * Alan Cox : Added all the changed routines Linus 18 * only put in the headers 19 * Ray VanTassle : Fixed --skb->lock in free 20 * Alan Cox : skb_copy copy arp field 21 * Andi Kleen : slabified it. 22 * Robert Olsson : Removed skb_head_pool 23 * 24 * NOTE: 25 * The __skb_ routines should be called with interrupts 26 * disabled, or you better be *real* sure that the operation is atomic 27 * with respect to whatever list is being frobbed (e.g. via lock_sock() 28 * or via disabling bottom half handlers, etc). 29 */ 30 31 /* 32 * The functions in this file will not compile correctly with gcc 2.4.x 33 */ 34 35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 36 37 #include <linux/module.h> 38 #include <linux/types.h> 39 #include <linux/kernel.h> 40 #include <linux/mm.h> 41 #include <linux/interrupt.h> 42 #include <linux/in.h> 43 #include <linux/inet.h> 44 #include <linux/slab.h> 45 #include <linux/tcp.h> 46 #include <linux/udp.h> 47 #include <linux/sctp.h> 48 #include <linux/netdevice.h> 49 #ifdef CONFIG_NET_CLS_ACT 50 #include <net/pkt_sched.h> 51 #endif 52 #include <linux/string.h> 53 #include <linux/skbuff.h> 54 #include <linux/splice.h> 55 #include <linux/cache.h> 56 #include <linux/rtnetlink.h> 57 #include <linux/init.h> 58 #include <linux/scatterlist.h> 59 #include <linux/errqueue.h> 60 #include <linux/prefetch.h> 61 #include <linux/if_vlan.h> 62 #include <linux/mpls.h> 63 64 #include <net/protocol.h> 65 #include <net/dst.h> 66 #include <net/sock.h> 67 #include <net/checksum.h> 68 #include <net/ip6_checksum.h> 69 #include <net/xfrm.h> 70 #include <net/mpls.h> 71 72 #include <linux/uaccess.h> 73 #include <trace/events/skb.h> 74 #include <linux/highmem.h> 75 #include <linux/capability.h> 76 #include <linux/user_namespace.h> 77 #include <linux/indirect_call_wrapper.h> 78 79 #include "datagram.h" 80 81 struct kmem_cache *skbuff_head_cache __ro_after_init; 82 static struct kmem_cache *skbuff_fclone_cache __ro_after_init; 83 #ifdef CONFIG_SKB_EXTENSIONS 84 static struct kmem_cache *skbuff_ext_cache __ro_after_init; 85 #endif 86 int sysctl_max_skb_frags __read_mostly = MAX_SKB_FRAGS; 87 EXPORT_SYMBOL(sysctl_max_skb_frags); 88 89 /** 90 * skb_panic - private function for out-of-line support 91 * @skb: buffer 92 * @sz: size 93 * @addr: address 94 * @msg: skb_over_panic or skb_under_panic 95 * 96 * Out-of-line support for skb_put() and skb_push(). 97 * Called via the wrapper skb_over_panic() or skb_under_panic(). 98 * Keep out of line to prevent kernel bloat. 99 * __builtin_return_address is not used because it is not always reliable. 100 */ 101 static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr, 102 const char msg[]) 103 { 104 pr_emerg("%s: text:%p len:%d put:%d head:%p data:%p tail:%#lx end:%#lx dev:%s\n", 105 msg, addr, skb->len, sz, skb->head, skb->data, 106 (unsigned long)skb->tail, (unsigned long)skb->end, 107 skb->dev ? skb->dev->name : "<NULL>"); 108 BUG(); 109 } 110 111 static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr) 112 { 113 skb_panic(skb, sz, addr, __func__); 114 } 115 116 static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr) 117 { 118 skb_panic(skb, sz, addr, __func__); 119 } 120 121 /* 122 * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells 123 * the caller if emergency pfmemalloc reserves are being used. If it is and 124 * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves 125 * may be used. Otherwise, the packet data may be discarded until enough 126 * memory is free 127 */ 128 #define kmalloc_reserve(size, gfp, node, pfmemalloc) \ 129 __kmalloc_reserve(size, gfp, node, _RET_IP_, pfmemalloc) 130 131 static void *__kmalloc_reserve(size_t size, gfp_t flags, int node, 132 unsigned long ip, bool *pfmemalloc) 133 { 134 void *obj; 135 bool ret_pfmemalloc = false; 136 137 /* 138 * Try a regular allocation, when that fails and we're not entitled 139 * to the reserves, fail. 140 */ 141 obj = kmalloc_node_track_caller(size, 142 flags | __GFP_NOMEMALLOC | __GFP_NOWARN, 143 node); 144 if (obj || !(gfp_pfmemalloc_allowed(flags))) 145 goto out; 146 147 /* Try again but now we are using pfmemalloc reserves */ 148 ret_pfmemalloc = true; 149 obj = kmalloc_node_track_caller(size, flags, node); 150 151 out: 152 if (pfmemalloc) 153 *pfmemalloc = ret_pfmemalloc; 154 155 return obj; 156 } 157 158 /* Allocate a new skbuff. We do this ourselves so we can fill in a few 159 * 'private' fields and also do memory statistics to find all the 160 * [BEEP] leaks. 161 * 162 */ 163 164 /** 165 * __alloc_skb - allocate a network buffer 166 * @size: size to allocate 167 * @gfp_mask: allocation mask 168 * @flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache 169 * instead of head cache and allocate a cloned (child) skb. 170 * If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for 171 * allocations in case the data is required for writeback 172 * @node: numa node to allocate memory on 173 * 174 * Allocate a new &sk_buff. The returned buffer has no headroom and a 175 * tail room of at least size bytes. The object has a reference count 176 * of one. The return is the buffer. On a failure the return is %NULL. 177 * 178 * Buffers may only be allocated from interrupts using a @gfp_mask of 179 * %GFP_ATOMIC. 180 */ 181 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask, 182 int flags, int node) 183 { 184 struct kmem_cache *cache; 185 struct skb_shared_info *shinfo; 186 struct sk_buff *skb; 187 u8 *data; 188 bool pfmemalloc; 189 190 cache = (flags & SKB_ALLOC_FCLONE) 191 ? skbuff_fclone_cache : skbuff_head_cache; 192 193 if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX)) 194 gfp_mask |= __GFP_MEMALLOC; 195 196 /* Get the HEAD */ 197 skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node); 198 if (!skb) 199 goto out; 200 prefetchw(skb); 201 202 /* We do our best to align skb_shared_info on a separate cache 203 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives 204 * aligned memory blocks, unless SLUB/SLAB debug is enabled. 205 * Both skb->head and skb_shared_info are cache line aligned. 206 */ 207 size = SKB_DATA_ALIGN(size); 208 size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 209 data = kmalloc_reserve(size, gfp_mask, node, &pfmemalloc); 210 if (!data) 211 goto nodata; 212 /* kmalloc(size) might give us more room than requested. 213 * Put skb_shared_info exactly at the end of allocated zone, 214 * to allow max possible filling before reallocation. 215 */ 216 size = SKB_WITH_OVERHEAD(ksize(data)); 217 prefetchw(data + size); 218 219 /* 220 * Only clear those fields we need to clear, not those that we will 221 * actually initialise below. Hence, don't put any more fields after 222 * the tail pointer in struct sk_buff! 223 */ 224 memset(skb, 0, offsetof(struct sk_buff, tail)); 225 /* Account for allocated memory : skb + skb->head */ 226 skb->truesize = SKB_TRUESIZE(size); 227 skb->pfmemalloc = pfmemalloc; 228 refcount_set(&skb->users, 1); 229 skb->head = data; 230 skb->data = data; 231 skb_reset_tail_pointer(skb); 232 skb->end = skb->tail + size; 233 skb->mac_header = (typeof(skb->mac_header))~0U; 234 skb->transport_header = (typeof(skb->transport_header))~0U; 235 236 /* make sure we initialize shinfo sequentially */ 237 shinfo = skb_shinfo(skb); 238 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref)); 239 atomic_set(&shinfo->dataref, 1); 240 241 if (flags & SKB_ALLOC_FCLONE) { 242 struct sk_buff_fclones *fclones; 243 244 fclones = container_of(skb, struct sk_buff_fclones, skb1); 245 246 skb->fclone = SKB_FCLONE_ORIG; 247 refcount_set(&fclones->fclone_ref, 1); 248 249 fclones->skb2.fclone = SKB_FCLONE_CLONE; 250 } 251 out: 252 return skb; 253 nodata: 254 kmem_cache_free(cache, skb); 255 skb = NULL; 256 goto out; 257 } 258 EXPORT_SYMBOL(__alloc_skb); 259 260 /* Caller must provide SKB that is memset cleared */ 261 static struct sk_buff *__build_skb_around(struct sk_buff *skb, 262 void *data, unsigned int frag_size) 263 { 264 struct skb_shared_info *shinfo; 265 unsigned int size = frag_size ? : ksize(data); 266 267 size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 268 269 /* Assumes caller memset cleared SKB */ 270 skb->truesize = SKB_TRUESIZE(size); 271 refcount_set(&skb->users, 1); 272 skb->head = data; 273 skb->data = data; 274 skb_reset_tail_pointer(skb); 275 skb->end = skb->tail + size; 276 skb->mac_header = (typeof(skb->mac_header))~0U; 277 skb->transport_header = (typeof(skb->transport_header))~0U; 278 279 /* make sure we initialize shinfo sequentially */ 280 shinfo = skb_shinfo(skb); 281 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref)); 282 atomic_set(&shinfo->dataref, 1); 283 284 return skb; 285 } 286 287 /** 288 * __build_skb - build a network buffer 289 * @data: data buffer provided by caller 290 * @frag_size: size of data, or 0 if head was kmalloced 291 * 292 * Allocate a new &sk_buff. Caller provides space holding head and 293 * skb_shared_info. @data must have been allocated by kmalloc() only if 294 * @frag_size is 0, otherwise data should come from the page allocator 295 * or vmalloc() 296 * The return is the new skb buffer. 297 * On a failure the return is %NULL, and @data is not freed. 298 * Notes : 299 * Before IO, driver allocates only data buffer where NIC put incoming frame 300 * Driver should add room at head (NET_SKB_PAD) and 301 * MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info)) 302 * After IO, driver calls build_skb(), to allocate sk_buff and populate it 303 * before giving packet to stack. 304 * RX rings only contains data buffers, not full skbs. 305 */ 306 struct sk_buff *__build_skb(void *data, unsigned int frag_size) 307 { 308 struct sk_buff *skb; 309 310 skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC); 311 if (unlikely(!skb)) 312 return NULL; 313 314 memset(skb, 0, offsetof(struct sk_buff, tail)); 315 316 return __build_skb_around(skb, data, frag_size); 317 } 318 319 /* build_skb() is wrapper over __build_skb(), that specifically 320 * takes care of skb->head and skb->pfmemalloc 321 * This means that if @frag_size is not zero, then @data must be backed 322 * by a page fragment, not kmalloc() or vmalloc() 323 */ 324 struct sk_buff *build_skb(void *data, unsigned int frag_size) 325 { 326 struct sk_buff *skb = __build_skb(data, frag_size); 327 328 if (skb && frag_size) { 329 skb->head_frag = 1; 330 if (page_is_pfmemalloc(virt_to_head_page(data))) 331 skb->pfmemalloc = 1; 332 } 333 return skb; 334 } 335 EXPORT_SYMBOL(build_skb); 336 337 /** 338 * build_skb_around - build a network buffer around provided skb 339 * @skb: sk_buff provide by caller, must be memset cleared 340 * @data: data buffer provided by caller 341 * @frag_size: size of data, or 0 if head was kmalloced 342 */ 343 struct sk_buff *build_skb_around(struct sk_buff *skb, 344 void *data, unsigned int frag_size) 345 { 346 if (unlikely(!skb)) 347 return NULL; 348 349 skb = __build_skb_around(skb, data, frag_size); 350 351 if (skb && frag_size) { 352 skb->head_frag = 1; 353 if (page_is_pfmemalloc(virt_to_head_page(data))) 354 skb->pfmemalloc = 1; 355 } 356 return skb; 357 } 358 EXPORT_SYMBOL(build_skb_around); 359 360 #define NAPI_SKB_CACHE_SIZE 64 361 362 struct napi_alloc_cache { 363 struct page_frag_cache page; 364 unsigned int skb_count; 365 void *skb_cache[NAPI_SKB_CACHE_SIZE]; 366 }; 367 368 static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache); 369 static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache); 370 371 static void *__napi_alloc_frag(unsigned int fragsz, gfp_t gfp_mask) 372 { 373 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 374 375 return page_frag_alloc(&nc->page, fragsz, gfp_mask); 376 } 377 378 void *napi_alloc_frag(unsigned int fragsz) 379 { 380 fragsz = SKB_DATA_ALIGN(fragsz); 381 382 return __napi_alloc_frag(fragsz, GFP_ATOMIC); 383 } 384 EXPORT_SYMBOL(napi_alloc_frag); 385 386 /** 387 * netdev_alloc_frag - allocate a page fragment 388 * @fragsz: fragment size 389 * 390 * Allocates a frag from a page for receive buffer. 391 * Uses GFP_ATOMIC allocations. 392 */ 393 void *netdev_alloc_frag(unsigned int fragsz) 394 { 395 struct page_frag_cache *nc; 396 void *data; 397 398 fragsz = SKB_DATA_ALIGN(fragsz); 399 if (in_irq() || irqs_disabled()) { 400 nc = this_cpu_ptr(&netdev_alloc_cache); 401 data = page_frag_alloc(nc, fragsz, GFP_ATOMIC); 402 } else { 403 local_bh_disable(); 404 data = __napi_alloc_frag(fragsz, GFP_ATOMIC); 405 local_bh_enable(); 406 } 407 return data; 408 } 409 EXPORT_SYMBOL(netdev_alloc_frag); 410 411 /** 412 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device 413 * @dev: network device to receive on 414 * @len: length to allocate 415 * @gfp_mask: get_free_pages mask, passed to alloc_skb 416 * 417 * Allocate a new &sk_buff and assign it a usage count of one. The 418 * buffer has NET_SKB_PAD headroom built in. Users should allocate 419 * the headroom they think they need without accounting for the 420 * built in space. The built in space is used for optimisations. 421 * 422 * %NULL is returned if there is no free memory. 423 */ 424 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len, 425 gfp_t gfp_mask) 426 { 427 struct page_frag_cache *nc; 428 struct sk_buff *skb; 429 bool pfmemalloc; 430 void *data; 431 432 len += NET_SKB_PAD; 433 434 if ((len > SKB_WITH_OVERHEAD(PAGE_SIZE)) || 435 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) { 436 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE); 437 if (!skb) 438 goto skb_fail; 439 goto skb_success; 440 } 441 442 len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 443 len = SKB_DATA_ALIGN(len); 444 445 if (sk_memalloc_socks()) 446 gfp_mask |= __GFP_MEMALLOC; 447 448 if (in_irq() || irqs_disabled()) { 449 nc = this_cpu_ptr(&netdev_alloc_cache); 450 data = page_frag_alloc(nc, len, gfp_mask); 451 pfmemalloc = nc->pfmemalloc; 452 } else { 453 local_bh_disable(); 454 nc = this_cpu_ptr(&napi_alloc_cache.page); 455 data = page_frag_alloc(nc, len, gfp_mask); 456 pfmemalloc = nc->pfmemalloc; 457 local_bh_enable(); 458 } 459 460 if (unlikely(!data)) 461 return NULL; 462 463 skb = __build_skb(data, len); 464 if (unlikely(!skb)) { 465 skb_free_frag(data); 466 return NULL; 467 } 468 469 /* use OR instead of assignment to avoid clearing of bits in mask */ 470 if (pfmemalloc) 471 skb->pfmemalloc = 1; 472 skb->head_frag = 1; 473 474 skb_success: 475 skb_reserve(skb, NET_SKB_PAD); 476 skb->dev = dev; 477 478 skb_fail: 479 return skb; 480 } 481 EXPORT_SYMBOL(__netdev_alloc_skb); 482 483 /** 484 * __napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance 485 * @napi: napi instance this buffer was allocated for 486 * @len: length to allocate 487 * @gfp_mask: get_free_pages mask, passed to alloc_skb and alloc_pages 488 * 489 * Allocate a new sk_buff for use in NAPI receive. This buffer will 490 * attempt to allocate the head from a special reserved region used 491 * only for NAPI Rx allocation. By doing this we can save several 492 * CPU cycles by avoiding having to disable and re-enable IRQs. 493 * 494 * %NULL is returned if there is no free memory. 495 */ 496 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, unsigned int len, 497 gfp_t gfp_mask) 498 { 499 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 500 struct sk_buff *skb; 501 void *data; 502 503 len += NET_SKB_PAD + NET_IP_ALIGN; 504 505 if ((len > SKB_WITH_OVERHEAD(PAGE_SIZE)) || 506 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) { 507 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE); 508 if (!skb) 509 goto skb_fail; 510 goto skb_success; 511 } 512 513 len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 514 len = SKB_DATA_ALIGN(len); 515 516 if (sk_memalloc_socks()) 517 gfp_mask |= __GFP_MEMALLOC; 518 519 data = page_frag_alloc(&nc->page, len, gfp_mask); 520 if (unlikely(!data)) 521 return NULL; 522 523 skb = __build_skb(data, len); 524 if (unlikely(!skb)) { 525 skb_free_frag(data); 526 return NULL; 527 } 528 529 /* use OR instead of assignment to avoid clearing of bits in mask */ 530 if (nc->page.pfmemalloc) 531 skb->pfmemalloc = 1; 532 skb->head_frag = 1; 533 534 skb_success: 535 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN); 536 skb->dev = napi->dev; 537 538 skb_fail: 539 return skb; 540 } 541 EXPORT_SYMBOL(__napi_alloc_skb); 542 543 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off, 544 int size, unsigned int truesize) 545 { 546 skb_fill_page_desc(skb, i, page, off, size); 547 skb->len += size; 548 skb->data_len += size; 549 skb->truesize += truesize; 550 } 551 EXPORT_SYMBOL(skb_add_rx_frag); 552 553 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size, 554 unsigned int truesize) 555 { 556 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 557 558 skb_frag_size_add(frag, size); 559 skb->len += size; 560 skb->data_len += size; 561 skb->truesize += truesize; 562 } 563 EXPORT_SYMBOL(skb_coalesce_rx_frag); 564 565 static void skb_drop_list(struct sk_buff **listp) 566 { 567 kfree_skb_list(*listp); 568 *listp = NULL; 569 } 570 571 static inline void skb_drop_fraglist(struct sk_buff *skb) 572 { 573 skb_drop_list(&skb_shinfo(skb)->frag_list); 574 } 575 576 static void skb_clone_fraglist(struct sk_buff *skb) 577 { 578 struct sk_buff *list; 579 580 skb_walk_frags(skb, list) 581 skb_get(list); 582 } 583 584 static void skb_free_head(struct sk_buff *skb) 585 { 586 unsigned char *head = skb->head; 587 588 if (skb->head_frag) 589 skb_free_frag(head); 590 else 591 kfree(head); 592 } 593 594 static void skb_release_data(struct sk_buff *skb) 595 { 596 struct skb_shared_info *shinfo = skb_shinfo(skb); 597 int i; 598 599 if (skb->cloned && 600 atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1, 601 &shinfo->dataref)) 602 return; 603 604 for (i = 0; i < shinfo->nr_frags; i++) 605 __skb_frag_unref(&shinfo->frags[i]); 606 607 if (shinfo->frag_list) 608 kfree_skb_list(shinfo->frag_list); 609 610 skb_zcopy_clear(skb, true); 611 skb_free_head(skb); 612 } 613 614 /* 615 * Free an skbuff by memory without cleaning the state. 616 */ 617 static void kfree_skbmem(struct sk_buff *skb) 618 { 619 struct sk_buff_fclones *fclones; 620 621 switch (skb->fclone) { 622 case SKB_FCLONE_UNAVAILABLE: 623 kmem_cache_free(skbuff_head_cache, skb); 624 return; 625 626 case SKB_FCLONE_ORIG: 627 fclones = container_of(skb, struct sk_buff_fclones, skb1); 628 629 /* We usually free the clone (TX completion) before original skb 630 * This test would have no chance to be true for the clone, 631 * while here, branch prediction will be good. 632 */ 633 if (refcount_read(&fclones->fclone_ref) == 1) 634 goto fastpath; 635 break; 636 637 default: /* SKB_FCLONE_CLONE */ 638 fclones = container_of(skb, struct sk_buff_fclones, skb2); 639 break; 640 } 641 if (!refcount_dec_and_test(&fclones->fclone_ref)) 642 return; 643 fastpath: 644 kmem_cache_free(skbuff_fclone_cache, fclones); 645 } 646 647 void skb_release_head_state(struct sk_buff *skb) 648 { 649 skb_dst_drop(skb); 650 if (skb->destructor) { 651 WARN_ON(in_irq()); 652 skb->destructor(skb); 653 } 654 #if IS_ENABLED(CONFIG_NF_CONNTRACK) 655 nf_conntrack_put(skb_nfct(skb)); 656 #endif 657 skb_ext_put(skb); 658 } 659 660 /* Free everything but the sk_buff shell. */ 661 static void skb_release_all(struct sk_buff *skb) 662 { 663 skb_release_head_state(skb); 664 if (likely(skb->head)) 665 skb_release_data(skb); 666 } 667 668 /** 669 * __kfree_skb - private function 670 * @skb: buffer 671 * 672 * Free an sk_buff. Release anything attached to the buffer. 673 * Clean the state. This is an internal helper function. Users should 674 * always call kfree_skb 675 */ 676 677 void __kfree_skb(struct sk_buff *skb) 678 { 679 skb_release_all(skb); 680 kfree_skbmem(skb); 681 } 682 EXPORT_SYMBOL(__kfree_skb); 683 684 /** 685 * kfree_skb - free an sk_buff 686 * @skb: buffer to free 687 * 688 * Drop a reference to the buffer and free it if the usage count has 689 * hit zero. 690 */ 691 void kfree_skb(struct sk_buff *skb) 692 { 693 if (!skb_unref(skb)) 694 return; 695 696 trace_kfree_skb(skb, __builtin_return_address(0)); 697 __kfree_skb(skb); 698 } 699 EXPORT_SYMBOL(kfree_skb); 700 701 void kfree_skb_list(struct sk_buff *segs) 702 { 703 while (segs) { 704 struct sk_buff *next = segs->next; 705 706 kfree_skb(segs); 707 segs = next; 708 } 709 } 710 EXPORT_SYMBOL(kfree_skb_list); 711 712 /* Dump skb information and contents. 713 * 714 * Must only be called from net_ratelimit()-ed paths. 715 * 716 * Dumps up to can_dump_full whole packets if full_pkt, headers otherwise. 717 */ 718 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt) 719 { 720 static atomic_t can_dump_full = ATOMIC_INIT(5); 721 struct skb_shared_info *sh = skb_shinfo(skb); 722 struct net_device *dev = skb->dev; 723 struct sock *sk = skb->sk; 724 struct sk_buff *list_skb; 725 bool has_mac, has_trans; 726 int headroom, tailroom; 727 int i, len, seg_len; 728 729 if (full_pkt) 730 full_pkt = atomic_dec_if_positive(&can_dump_full) >= 0; 731 732 if (full_pkt) 733 len = skb->len; 734 else 735 len = min_t(int, skb->len, MAX_HEADER + 128); 736 737 headroom = skb_headroom(skb); 738 tailroom = skb_tailroom(skb); 739 740 has_mac = skb_mac_header_was_set(skb); 741 has_trans = skb_transport_header_was_set(skb); 742 743 printk("%sskb len=%u headroom=%u headlen=%u tailroom=%u\n" 744 "mac=(%d,%d) net=(%d,%d) trans=%d\n" 745 "shinfo(txflags=%u nr_frags=%u gso(size=%hu type=%u segs=%hu))\n" 746 "csum(0x%x ip_summed=%u complete_sw=%u valid=%u level=%u)\n" 747 "hash(0x%x sw=%u l4=%u) proto=0x%04x pkttype=%u iif=%d\n", 748 level, skb->len, headroom, skb_headlen(skb), tailroom, 749 has_mac ? skb->mac_header : -1, 750 has_mac ? skb_mac_header_len(skb) : -1, 751 skb->network_header, 752 has_trans ? skb_network_header_len(skb) : -1, 753 has_trans ? skb->transport_header : -1, 754 sh->tx_flags, sh->nr_frags, 755 sh->gso_size, sh->gso_type, sh->gso_segs, 756 skb->csum, skb->ip_summed, skb->csum_complete_sw, 757 skb->csum_valid, skb->csum_level, 758 skb->hash, skb->sw_hash, skb->l4_hash, 759 ntohs(skb->protocol), skb->pkt_type, skb->skb_iif); 760 761 if (dev) 762 printk("%sdev name=%s feat=0x%pNF\n", 763 level, dev->name, &dev->features); 764 if (sk) 765 printk("%ssk family=%hu type=%u proto=%u\n", 766 level, sk->sk_family, sk->sk_type, sk->sk_protocol); 767 768 if (full_pkt && headroom) 769 print_hex_dump(level, "skb headroom: ", DUMP_PREFIX_OFFSET, 770 16, 1, skb->head, headroom, false); 771 772 seg_len = min_t(int, skb_headlen(skb), len); 773 if (seg_len) 774 print_hex_dump(level, "skb linear: ", DUMP_PREFIX_OFFSET, 775 16, 1, skb->data, seg_len, false); 776 len -= seg_len; 777 778 if (full_pkt && tailroom) 779 print_hex_dump(level, "skb tailroom: ", DUMP_PREFIX_OFFSET, 780 16, 1, skb_tail_pointer(skb), tailroom, false); 781 782 for (i = 0; len && i < skb_shinfo(skb)->nr_frags; i++) { 783 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 784 u32 p_off, p_len, copied; 785 struct page *p; 786 u8 *vaddr; 787 788 skb_frag_foreach_page(frag, skb_frag_off(frag), 789 skb_frag_size(frag), p, p_off, p_len, 790 copied) { 791 seg_len = min_t(int, p_len, len); 792 vaddr = kmap_atomic(p); 793 print_hex_dump(level, "skb frag: ", 794 DUMP_PREFIX_OFFSET, 795 16, 1, vaddr + p_off, seg_len, false); 796 kunmap_atomic(vaddr); 797 len -= seg_len; 798 if (!len) 799 break; 800 } 801 } 802 803 if (full_pkt && skb_has_frag_list(skb)) { 804 printk("skb fraglist:\n"); 805 skb_walk_frags(skb, list_skb) 806 skb_dump(level, list_skb, true); 807 } 808 } 809 EXPORT_SYMBOL(skb_dump); 810 811 /** 812 * skb_tx_error - report an sk_buff xmit error 813 * @skb: buffer that triggered an error 814 * 815 * Report xmit error if a device callback is tracking this skb. 816 * skb must be freed afterwards. 817 */ 818 void skb_tx_error(struct sk_buff *skb) 819 { 820 skb_zcopy_clear(skb, true); 821 } 822 EXPORT_SYMBOL(skb_tx_error); 823 824 /** 825 * consume_skb - free an skbuff 826 * @skb: buffer to free 827 * 828 * Drop a ref to the buffer and free it if the usage count has hit zero 829 * Functions identically to kfree_skb, but kfree_skb assumes that the frame 830 * is being dropped after a failure and notes that 831 */ 832 void consume_skb(struct sk_buff *skb) 833 { 834 if (!skb_unref(skb)) 835 return; 836 837 trace_consume_skb(skb); 838 __kfree_skb(skb); 839 } 840 EXPORT_SYMBOL(consume_skb); 841 842 /** 843 * consume_stateless_skb - free an skbuff, assuming it is stateless 844 * @skb: buffer to free 845 * 846 * Alike consume_skb(), but this variant assumes that this is the last 847 * skb reference and all the head states have been already dropped 848 */ 849 void __consume_stateless_skb(struct sk_buff *skb) 850 { 851 trace_consume_skb(skb); 852 skb_release_data(skb); 853 kfree_skbmem(skb); 854 } 855 856 void __kfree_skb_flush(void) 857 { 858 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 859 860 /* flush skb_cache if containing objects */ 861 if (nc->skb_count) { 862 kmem_cache_free_bulk(skbuff_head_cache, nc->skb_count, 863 nc->skb_cache); 864 nc->skb_count = 0; 865 } 866 } 867 868 static inline void _kfree_skb_defer(struct sk_buff *skb) 869 { 870 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 871 872 /* drop skb->head and call any destructors for packet */ 873 skb_release_all(skb); 874 875 /* record skb to CPU local list */ 876 nc->skb_cache[nc->skb_count++] = skb; 877 878 #ifdef CONFIG_SLUB 879 /* SLUB writes into objects when freeing */ 880 prefetchw(skb); 881 #endif 882 883 /* flush skb_cache if it is filled */ 884 if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) { 885 kmem_cache_free_bulk(skbuff_head_cache, NAPI_SKB_CACHE_SIZE, 886 nc->skb_cache); 887 nc->skb_count = 0; 888 } 889 } 890 void __kfree_skb_defer(struct sk_buff *skb) 891 { 892 _kfree_skb_defer(skb); 893 } 894 895 void napi_consume_skb(struct sk_buff *skb, int budget) 896 { 897 if (unlikely(!skb)) 898 return; 899 900 /* Zero budget indicate non-NAPI context called us, like netpoll */ 901 if (unlikely(!budget)) { 902 dev_consume_skb_any(skb); 903 return; 904 } 905 906 if (!skb_unref(skb)) 907 return; 908 909 /* if reaching here SKB is ready to free */ 910 trace_consume_skb(skb); 911 912 /* if SKB is a clone, don't handle this case */ 913 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) { 914 __kfree_skb(skb); 915 return; 916 } 917 918 _kfree_skb_defer(skb); 919 } 920 EXPORT_SYMBOL(napi_consume_skb); 921 922 /* Make sure a field is enclosed inside headers_start/headers_end section */ 923 #define CHECK_SKB_FIELD(field) \ 924 BUILD_BUG_ON(offsetof(struct sk_buff, field) < \ 925 offsetof(struct sk_buff, headers_start)); \ 926 BUILD_BUG_ON(offsetof(struct sk_buff, field) > \ 927 offsetof(struct sk_buff, headers_end)); \ 928 929 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old) 930 { 931 new->tstamp = old->tstamp; 932 /* We do not copy old->sk */ 933 new->dev = old->dev; 934 memcpy(new->cb, old->cb, sizeof(old->cb)); 935 skb_dst_copy(new, old); 936 __skb_ext_copy(new, old); 937 __nf_copy(new, old, false); 938 939 /* Note : this field could be in headers_start/headers_end section 940 * It is not yet because we do not want to have a 16 bit hole 941 */ 942 new->queue_mapping = old->queue_mapping; 943 944 memcpy(&new->headers_start, &old->headers_start, 945 offsetof(struct sk_buff, headers_end) - 946 offsetof(struct sk_buff, headers_start)); 947 CHECK_SKB_FIELD(protocol); 948 CHECK_SKB_FIELD(csum); 949 CHECK_SKB_FIELD(hash); 950 CHECK_SKB_FIELD(priority); 951 CHECK_SKB_FIELD(skb_iif); 952 CHECK_SKB_FIELD(vlan_proto); 953 CHECK_SKB_FIELD(vlan_tci); 954 CHECK_SKB_FIELD(transport_header); 955 CHECK_SKB_FIELD(network_header); 956 CHECK_SKB_FIELD(mac_header); 957 CHECK_SKB_FIELD(inner_protocol); 958 CHECK_SKB_FIELD(inner_transport_header); 959 CHECK_SKB_FIELD(inner_network_header); 960 CHECK_SKB_FIELD(inner_mac_header); 961 CHECK_SKB_FIELD(mark); 962 #ifdef CONFIG_NETWORK_SECMARK 963 CHECK_SKB_FIELD(secmark); 964 #endif 965 #ifdef CONFIG_NET_RX_BUSY_POLL 966 CHECK_SKB_FIELD(napi_id); 967 #endif 968 #ifdef CONFIG_XPS 969 CHECK_SKB_FIELD(sender_cpu); 970 #endif 971 #ifdef CONFIG_NET_SCHED 972 CHECK_SKB_FIELD(tc_index); 973 #endif 974 975 } 976 977 /* 978 * You should not add any new code to this function. Add it to 979 * __copy_skb_header above instead. 980 */ 981 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb) 982 { 983 #define C(x) n->x = skb->x 984 985 n->next = n->prev = NULL; 986 n->sk = NULL; 987 __copy_skb_header(n, skb); 988 989 C(len); 990 C(data_len); 991 C(mac_len); 992 n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len; 993 n->cloned = 1; 994 n->nohdr = 0; 995 n->peeked = 0; 996 C(pfmemalloc); 997 n->destructor = NULL; 998 C(tail); 999 C(end); 1000 C(head); 1001 C(head_frag); 1002 C(data); 1003 C(truesize); 1004 refcount_set(&n->users, 1); 1005 1006 atomic_inc(&(skb_shinfo(skb)->dataref)); 1007 skb->cloned = 1; 1008 1009 return n; 1010 #undef C 1011 } 1012 1013 /** 1014 * alloc_skb_for_msg() - allocate sk_buff to wrap frag list forming a msg 1015 * @first: first sk_buff of the msg 1016 */ 1017 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first) 1018 { 1019 struct sk_buff *n; 1020 1021 n = alloc_skb(0, GFP_ATOMIC); 1022 if (!n) 1023 return NULL; 1024 1025 n->len = first->len; 1026 n->data_len = first->len; 1027 n->truesize = first->truesize; 1028 1029 skb_shinfo(n)->frag_list = first; 1030 1031 __copy_skb_header(n, first); 1032 n->destructor = NULL; 1033 1034 return n; 1035 } 1036 EXPORT_SYMBOL_GPL(alloc_skb_for_msg); 1037 1038 /** 1039 * skb_morph - morph one skb into another 1040 * @dst: the skb to receive the contents 1041 * @src: the skb to supply the contents 1042 * 1043 * This is identical to skb_clone except that the target skb is 1044 * supplied by the user. 1045 * 1046 * The target skb is returned upon exit. 1047 */ 1048 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src) 1049 { 1050 skb_release_all(dst); 1051 return __skb_clone(dst, src); 1052 } 1053 EXPORT_SYMBOL_GPL(skb_morph); 1054 1055 int mm_account_pinned_pages(struct mmpin *mmp, size_t size) 1056 { 1057 unsigned long max_pg, num_pg, new_pg, old_pg; 1058 struct user_struct *user; 1059 1060 if (capable(CAP_IPC_LOCK) || !size) 1061 return 0; 1062 1063 num_pg = (size >> PAGE_SHIFT) + 2; /* worst case */ 1064 max_pg = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT; 1065 user = mmp->user ? : current_user(); 1066 1067 do { 1068 old_pg = atomic_long_read(&user->locked_vm); 1069 new_pg = old_pg + num_pg; 1070 if (new_pg > max_pg) 1071 return -ENOBUFS; 1072 } while (atomic_long_cmpxchg(&user->locked_vm, old_pg, new_pg) != 1073 old_pg); 1074 1075 if (!mmp->user) { 1076 mmp->user = get_uid(user); 1077 mmp->num_pg = num_pg; 1078 } else { 1079 mmp->num_pg += num_pg; 1080 } 1081 1082 return 0; 1083 } 1084 EXPORT_SYMBOL_GPL(mm_account_pinned_pages); 1085 1086 void mm_unaccount_pinned_pages(struct mmpin *mmp) 1087 { 1088 if (mmp->user) { 1089 atomic_long_sub(mmp->num_pg, &mmp->user->locked_vm); 1090 free_uid(mmp->user); 1091 } 1092 } 1093 EXPORT_SYMBOL_GPL(mm_unaccount_pinned_pages); 1094 1095 struct ubuf_info *sock_zerocopy_alloc(struct sock *sk, size_t size) 1096 { 1097 struct ubuf_info *uarg; 1098 struct sk_buff *skb; 1099 1100 WARN_ON_ONCE(!in_task()); 1101 1102 skb = sock_omalloc(sk, 0, GFP_KERNEL); 1103 if (!skb) 1104 return NULL; 1105 1106 BUILD_BUG_ON(sizeof(*uarg) > sizeof(skb->cb)); 1107 uarg = (void *)skb->cb; 1108 uarg->mmp.user = NULL; 1109 1110 if (mm_account_pinned_pages(&uarg->mmp, size)) { 1111 kfree_skb(skb); 1112 return NULL; 1113 } 1114 1115 uarg->callback = sock_zerocopy_callback; 1116 uarg->id = ((u32)atomic_inc_return(&sk->sk_zckey)) - 1; 1117 uarg->len = 1; 1118 uarg->bytelen = size; 1119 uarg->zerocopy = 1; 1120 refcount_set(&uarg->refcnt, 1); 1121 sock_hold(sk); 1122 1123 return uarg; 1124 } 1125 EXPORT_SYMBOL_GPL(sock_zerocopy_alloc); 1126 1127 static inline struct sk_buff *skb_from_uarg(struct ubuf_info *uarg) 1128 { 1129 return container_of((void *)uarg, struct sk_buff, cb); 1130 } 1131 1132 struct ubuf_info *sock_zerocopy_realloc(struct sock *sk, size_t size, 1133 struct ubuf_info *uarg) 1134 { 1135 if (uarg) { 1136 const u32 byte_limit = 1 << 19; /* limit to a few TSO */ 1137 u32 bytelen, next; 1138 1139 /* realloc only when socket is locked (TCP, UDP cork), 1140 * so uarg->len and sk_zckey access is serialized 1141 */ 1142 if (!sock_owned_by_user(sk)) { 1143 WARN_ON_ONCE(1); 1144 return NULL; 1145 } 1146 1147 bytelen = uarg->bytelen + size; 1148 if (uarg->len == USHRT_MAX - 1 || bytelen > byte_limit) { 1149 /* TCP can create new skb to attach new uarg */ 1150 if (sk->sk_type == SOCK_STREAM) 1151 goto new_alloc; 1152 return NULL; 1153 } 1154 1155 next = (u32)atomic_read(&sk->sk_zckey); 1156 if ((u32)(uarg->id + uarg->len) == next) { 1157 if (mm_account_pinned_pages(&uarg->mmp, size)) 1158 return NULL; 1159 uarg->len++; 1160 uarg->bytelen = bytelen; 1161 atomic_set(&sk->sk_zckey, ++next); 1162 1163 /* no extra ref when appending to datagram (MSG_MORE) */ 1164 if (sk->sk_type == SOCK_STREAM) 1165 sock_zerocopy_get(uarg); 1166 1167 return uarg; 1168 } 1169 } 1170 1171 new_alloc: 1172 return sock_zerocopy_alloc(sk, size); 1173 } 1174 EXPORT_SYMBOL_GPL(sock_zerocopy_realloc); 1175 1176 static bool skb_zerocopy_notify_extend(struct sk_buff *skb, u32 lo, u16 len) 1177 { 1178 struct sock_exterr_skb *serr = SKB_EXT_ERR(skb); 1179 u32 old_lo, old_hi; 1180 u64 sum_len; 1181 1182 old_lo = serr->ee.ee_info; 1183 old_hi = serr->ee.ee_data; 1184 sum_len = old_hi - old_lo + 1ULL + len; 1185 1186 if (sum_len >= (1ULL << 32)) 1187 return false; 1188 1189 if (lo != old_hi + 1) 1190 return false; 1191 1192 serr->ee.ee_data += len; 1193 return true; 1194 } 1195 1196 void sock_zerocopy_callback(struct ubuf_info *uarg, bool success) 1197 { 1198 struct sk_buff *tail, *skb = skb_from_uarg(uarg); 1199 struct sock_exterr_skb *serr; 1200 struct sock *sk = skb->sk; 1201 struct sk_buff_head *q; 1202 unsigned long flags; 1203 u32 lo, hi; 1204 u16 len; 1205 1206 mm_unaccount_pinned_pages(&uarg->mmp); 1207 1208 /* if !len, there was only 1 call, and it was aborted 1209 * so do not queue a completion notification 1210 */ 1211 if (!uarg->len || sock_flag(sk, SOCK_DEAD)) 1212 goto release; 1213 1214 len = uarg->len; 1215 lo = uarg->id; 1216 hi = uarg->id + len - 1; 1217 1218 serr = SKB_EXT_ERR(skb); 1219 memset(serr, 0, sizeof(*serr)); 1220 serr->ee.ee_errno = 0; 1221 serr->ee.ee_origin = SO_EE_ORIGIN_ZEROCOPY; 1222 serr->ee.ee_data = hi; 1223 serr->ee.ee_info = lo; 1224 if (!success) 1225 serr->ee.ee_code |= SO_EE_CODE_ZEROCOPY_COPIED; 1226 1227 q = &sk->sk_error_queue; 1228 spin_lock_irqsave(&q->lock, flags); 1229 tail = skb_peek_tail(q); 1230 if (!tail || SKB_EXT_ERR(tail)->ee.ee_origin != SO_EE_ORIGIN_ZEROCOPY || 1231 !skb_zerocopy_notify_extend(tail, lo, len)) { 1232 __skb_queue_tail(q, skb); 1233 skb = NULL; 1234 } 1235 spin_unlock_irqrestore(&q->lock, flags); 1236 1237 sk->sk_error_report(sk); 1238 1239 release: 1240 consume_skb(skb); 1241 sock_put(sk); 1242 } 1243 EXPORT_SYMBOL_GPL(sock_zerocopy_callback); 1244 1245 void sock_zerocopy_put(struct ubuf_info *uarg) 1246 { 1247 if (uarg && refcount_dec_and_test(&uarg->refcnt)) { 1248 if (uarg->callback) 1249 uarg->callback(uarg, uarg->zerocopy); 1250 else 1251 consume_skb(skb_from_uarg(uarg)); 1252 } 1253 } 1254 EXPORT_SYMBOL_GPL(sock_zerocopy_put); 1255 1256 void sock_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref) 1257 { 1258 if (uarg) { 1259 struct sock *sk = skb_from_uarg(uarg)->sk; 1260 1261 atomic_dec(&sk->sk_zckey); 1262 uarg->len--; 1263 1264 if (have_uref) 1265 sock_zerocopy_put(uarg); 1266 } 1267 } 1268 EXPORT_SYMBOL_GPL(sock_zerocopy_put_abort); 1269 1270 int skb_zerocopy_iter_dgram(struct sk_buff *skb, struct msghdr *msg, int len) 1271 { 1272 return __zerocopy_sg_from_iter(skb->sk, skb, &msg->msg_iter, len); 1273 } 1274 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_dgram); 1275 1276 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb, 1277 struct msghdr *msg, int len, 1278 struct ubuf_info *uarg) 1279 { 1280 struct ubuf_info *orig_uarg = skb_zcopy(skb); 1281 struct iov_iter orig_iter = msg->msg_iter; 1282 int err, orig_len = skb->len; 1283 1284 /* An skb can only point to one uarg. This edge case happens when 1285 * TCP appends to an skb, but zerocopy_realloc triggered a new alloc. 1286 */ 1287 if (orig_uarg && uarg != orig_uarg) 1288 return -EEXIST; 1289 1290 err = __zerocopy_sg_from_iter(sk, skb, &msg->msg_iter, len); 1291 if (err == -EFAULT || (err == -EMSGSIZE && skb->len == orig_len)) { 1292 struct sock *save_sk = skb->sk; 1293 1294 /* Streams do not free skb on error. Reset to prev state. */ 1295 msg->msg_iter = orig_iter; 1296 skb->sk = sk; 1297 ___pskb_trim(skb, orig_len); 1298 skb->sk = save_sk; 1299 return err; 1300 } 1301 1302 skb_zcopy_set(skb, uarg, NULL); 1303 return skb->len - orig_len; 1304 } 1305 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_stream); 1306 1307 static int skb_zerocopy_clone(struct sk_buff *nskb, struct sk_buff *orig, 1308 gfp_t gfp_mask) 1309 { 1310 if (skb_zcopy(orig)) { 1311 if (skb_zcopy(nskb)) { 1312 /* !gfp_mask callers are verified to !skb_zcopy(nskb) */ 1313 if (!gfp_mask) { 1314 WARN_ON_ONCE(1); 1315 return -ENOMEM; 1316 } 1317 if (skb_uarg(nskb) == skb_uarg(orig)) 1318 return 0; 1319 if (skb_copy_ubufs(nskb, GFP_ATOMIC)) 1320 return -EIO; 1321 } 1322 skb_zcopy_set(nskb, skb_uarg(orig), NULL); 1323 } 1324 return 0; 1325 } 1326 1327 /** 1328 * skb_copy_ubufs - copy userspace skb frags buffers to kernel 1329 * @skb: the skb to modify 1330 * @gfp_mask: allocation priority 1331 * 1332 * This must be called on SKBTX_DEV_ZEROCOPY skb. 1333 * It will copy all frags into kernel and drop the reference 1334 * to userspace pages. 1335 * 1336 * If this function is called from an interrupt gfp_mask() must be 1337 * %GFP_ATOMIC. 1338 * 1339 * Returns 0 on success or a negative error code on failure 1340 * to allocate kernel memory to copy to. 1341 */ 1342 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask) 1343 { 1344 int num_frags = skb_shinfo(skb)->nr_frags; 1345 struct page *page, *head = NULL; 1346 int i, new_frags; 1347 u32 d_off; 1348 1349 if (skb_shared(skb) || skb_unclone(skb, gfp_mask)) 1350 return -EINVAL; 1351 1352 if (!num_frags) 1353 goto release; 1354 1355 new_frags = (__skb_pagelen(skb) + PAGE_SIZE - 1) >> PAGE_SHIFT; 1356 for (i = 0; i < new_frags; i++) { 1357 page = alloc_page(gfp_mask); 1358 if (!page) { 1359 while (head) { 1360 struct page *next = (struct page *)page_private(head); 1361 put_page(head); 1362 head = next; 1363 } 1364 return -ENOMEM; 1365 } 1366 set_page_private(page, (unsigned long)head); 1367 head = page; 1368 } 1369 1370 page = head; 1371 d_off = 0; 1372 for (i = 0; i < num_frags; i++) { 1373 skb_frag_t *f = &skb_shinfo(skb)->frags[i]; 1374 u32 p_off, p_len, copied; 1375 struct page *p; 1376 u8 *vaddr; 1377 1378 skb_frag_foreach_page(f, skb_frag_off(f), skb_frag_size(f), 1379 p, p_off, p_len, copied) { 1380 u32 copy, done = 0; 1381 vaddr = kmap_atomic(p); 1382 1383 while (done < p_len) { 1384 if (d_off == PAGE_SIZE) { 1385 d_off = 0; 1386 page = (struct page *)page_private(page); 1387 } 1388 copy = min_t(u32, PAGE_SIZE - d_off, p_len - done); 1389 memcpy(page_address(page) + d_off, 1390 vaddr + p_off + done, copy); 1391 done += copy; 1392 d_off += copy; 1393 } 1394 kunmap_atomic(vaddr); 1395 } 1396 } 1397 1398 /* skb frags release userspace buffers */ 1399 for (i = 0; i < num_frags; i++) 1400 skb_frag_unref(skb, i); 1401 1402 /* skb frags point to kernel buffers */ 1403 for (i = 0; i < new_frags - 1; i++) { 1404 __skb_fill_page_desc(skb, i, head, 0, PAGE_SIZE); 1405 head = (struct page *)page_private(head); 1406 } 1407 __skb_fill_page_desc(skb, new_frags - 1, head, 0, d_off); 1408 skb_shinfo(skb)->nr_frags = new_frags; 1409 1410 release: 1411 skb_zcopy_clear(skb, false); 1412 return 0; 1413 } 1414 EXPORT_SYMBOL_GPL(skb_copy_ubufs); 1415 1416 /** 1417 * skb_clone - duplicate an sk_buff 1418 * @skb: buffer to clone 1419 * @gfp_mask: allocation priority 1420 * 1421 * Duplicate an &sk_buff. The new one is not owned by a socket. Both 1422 * copies share the same packet data but not structure. The new 1423 * buffer has a reference count of 1. If the allocation fails the 1424 * function returns %NULL otherwise the new buffer is returned. 1425 * 1426 * If this function is called from an interrupt gfp_mask() must be 1427 * %GFP_ATOMIC. 1428 */ 1429 1430 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask) 1431 { 1432 struct sk_buff_fclones *fclones = container_of(skb, 1433 struct sk_buff_fclones, 1434 skb1); 1435 struct sk_buff *n; 1436 1437 if (skb_orphan_frags(skb, gfp_mask)) 1438 return NULL; 1439 1440 if (skb->fclone == SKB_FCLONE_ORIG && 1441 refcount_read(&fclones->fclone_ref) == 1) { 1442 n = &fclones->skb2; 1443 refcount_set(&fclones->fclone_ref, 2); 1444 } else { 1445 if (skb_pfmemalloc(skb)) 1446 gfp_mask |= __GFP_MEMALLOC; 1447 1448 n = kmem_cache_alloc(skbuff_head_cache, gfp_mask); 1449 if (!n) 1450 return NULL; 1451 1452 n->fclone = SKB_FCLONE_UNAVAILABLE; 1453 } 1454 1455 return __skb_clone(n, skb); 1456 } 1457 EXPORT_SYMBOL(skb_clone); 1458 1459 void skb_headers_offset_update(struct sk_buff *skb, int off) 1460 { 1461 /* Only adjust this if it actually is csum_start rather than csum */ 1462 if (skb->ip_summed == CHECKSUM_PARTIAL) 1463 skb->csum_start += off; 1464 /* {transport,network,mac}_header and tail are relative to skb->head */ 1465 skb->transport_header += off; 1466 skb->network_header += off; 1467 if (skb_mac_header_was_set(skb)) 1468 skb->mac_header += off; 1469 skb->inner_transport_header += off; 1470 skb->inner_network_header += off; 1471 skb->inner_mac_header += off; 1472 } 1473 EXPORT_SYMBOL(skb_headers_offset_update); 1474 1475 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old) 1476 { 1477 __copy_skb_header(new, old); 1478 1479 skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size; 1480 skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs; 1481 skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type; 1482 } 1483 EXPORT_SYMBOL(skb_copy_header); 1484 1485 static inline int skb_alloc_rx_flag(const struct sk_buff *skb) 1486 { 1487 if (skb_pfmemalloc(skb)) 1488 return SKB_ALLOC_RX; 1489 return 0; 1490 } 1491 1492 /** 1493 * skb_copy - create private copy of an sk_buff 1494 * @skb: buffer to copy 1495 * @gfp_mask: allocation priority 1496 * 1497 * Make a copy of both an &sk_buff and its data. This is used when the 1498 * caller wishes to modify the data and needs a private copy of the 1499 * data to alter. Returns %NULL on failure or the pointer to the buffer 1500 * on success. The returned buffer has a reference count of 1. 1501 * 1502 * As by-product this function converts non-linear &sk_buff to linear 1503 * one, so that &sk_buff becomes completely private and caller is allowed 1504 * to modify all the data of returned buffer. This means that this 1505 * function is not recommended for use in circumstances when only 1506 * header is going to be modified. Use pskb_copy() instead. 1507 */ 1508 1509 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask) 1510 { 1511 int headerlen = skb_headroom(skb); 1512 unsigned int size = skb_end_offset(skb) + skb->data_len; 1513 struct sk_buff *n = __alloc_skb(size, gfp_mask, 1514 skb_alloc_rx_flag(skb), NUMA_NO_NODE); 1515 1516 if (!n) 1517 return NULL; 1518 1519 /* Set the data pointer */ 1520 skb_reserve(n, headerlen); 1521 /* Set the tail pointer and length */ 1522 skb_put(n, skb->len); 1523 1524 BUG_ON(skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len)); 1525 1526 skb_copy_header(n, skb); 1527 return n; 1528 } 1529 EXPORT_SYMBOL(skb_copy); 1530 1531 /** 1532 * __pskb_copy_fclone - create copy of an sk_buff with private head. 1533 * @skb: buffer to copy 1534 * @headroom: headroom of new skb 1535 * @gfp_mask: allocation priority 1536 * @fclone: if true allocate the copy of the skb from the fclone 1537 * cache instead of the head cache; it is recommended to set this 1538 * to true for the cases where the copy will likely be cloned 1539 * 1540 * Make a copy of both an &sk_buff and part of its data, located 1541 * in header. Fragmented data remain shared. This is used when 1542 * the caller wishes to modify only header of &sk_buff and needs 1543 * private copy of the header to alter. Returns %NULL on failure 1544 * or the pointer to the buffer on success. 1545 * The returned buffer has a reference count of 1. 1546 */ 1547 1548 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom, 1549 gfp_t gfp_mask, bool fclone) 1550 { 1551 unsigned int size = skb_headlen(skb) + headroom; 1552 int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0); 1553 struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE); 1554 1555 if (!n) 1556 goto out; 1557 1558 /* Set the data pointer */ 1559 skb_reserve(n, headroom); 1560 /* Set the tail pointer and length */ 1561 skb_put(n, skb_headlen(skb)); 1562 /* Copy the bytes */ 1563 skb_copy_from_linear_data(skb, n->data, n->len); 1564 1565 n->truesize += skb->data_len; 1566 n->data_len = skb->data_len; 1567 n->len = skb->len; 1568 1569 if (skb_shinfo(skb)->nr_frags) { 1570 int i; 1571 1572 if (skb_orphan_frags(skb, gfp_mask) || 1573 skb_zerocopy_clone(n, skb, gfp_mask)) { 1574 kfree_skb(n); 1575 n = NULL; 1576 goto out; 1577 } 1578 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1579 skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i]; 1580 skb_frag_ref(skb, i); 1581 } 1582 skb_shinfo(n)->nr_frags = i; 1583 } 1584 1585 if (skb_has_frag_list(skb)) { 1586 skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list; 1587 skb_clone_fraglist(n); 1588 } 1589 1590 skb_copy_header(n, skb); 1591 out: 1592 return n; 1593 } 1594 EXPORT_SYMBOL(__pskb_copy_fclone); 1595 1596 /** 1597 * pskb_expand_head - reallocate header of &sk_buff 1598 * @skb: buffer to reallocate 1599 * @nhead: room to add at head 1600 * @ntail: room to add at tail 1601 * @gfp_mask: allocation priority 1602 * 1603 * Expands (or creates identical copy, if @nhead and @ntail are zero) 1604 * header of @skb. &sk_buff itself is not changed. &sk_buff MUST have 1605 * reference count of 1. Returns zero in the case of success or error, 1606 * if expansion failed. In the last case, &sk_buff is not changed. 1607 * 1608 * All the pointers pointing into skb header may change and must be 1609 * reloaded after call to this function. 1610 */ 1611 1612 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, 1613 gfp_t gfp_mask) 1614 { 1615 int i, osize = skb_end_offset(skb); 1616 int size = osize + nhead + ntail; 1617 long off; 1618 u8 *data; 1619 1620 BUG_ON(nhead < 0); 1621 1622 BUG_ON(skb_shared(skb)); 1623 1624 size = SKB_DATA_ALIGN(size); 1625 1626 if (skb_pfmemalloc(skb)) 1627 gfp_mask |= __GFP_MEMALLOC; 1628 data = kmalloc_reserve(size + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)), 1629 gfp_mask, NUMA_NO_NODE, NULL); 1630 if (!data) 1631 goto nodata; 1632 size = SKB_WITH_OVERHEAD(ksize(data)); 1633 1634 /* Copy only real data... and, alas, header. This should be 1635 * optimized for the cases when header is void. 1636 */ 1637 memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head); 1638 1639 memcpy((struct skb_shared_info *)(data + size), 1640 skb_shinfo(skb), 1641 offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags])); 1642 1643 /* 1644 * if shinfo is shared we must drop the old head gracefully, but if it 1645 * is not we can just drop the old head and let the existing refcount 1646 * be since all we did is relocate the values 1647 */ 1648 if (skb_cloned(skb)) { 1649 if (skb_orphan_frags(skb, gfp_mask)) 1650 goto nofrags; 1651 if (skb_zcopy(skb)) 1652 refcount_inc(&skb_uarg(skb)->refcnt); 1653 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 1654 skb_frag_ref(skb, i); 1655 1656 if (skb_has_frag_list(skb)) 1657 skb_clone_fraglist(skb); 1658 1659 skb_release_data(skb); 1660 } else { 1661 skb_free_head(skb); 1662 } 1663 off = (data + nhead) - skb->head; 1664 1665 skb->head = data; 1666 skb->head_frag = 0; 1667 skb->data += off; 1668 #ifdef NET_SKBUFF_DATA_USES_OFFSET 1669 skb->end = size; 1670 off = nhead; 1671 #else 1672 skb->end = skb->head + size; 1673 #endif 1674 skb->tail += off; 1675 skb_headers_offset_update(skb, nhead); 1676 skb->cloned = 0; 1677 skb->hdr_len = 0; 1678 skb->nohdr = 0; 1679 atomic_set(&skb_shinfo(skb)->dataref, 1); 1680 1681 skb_metadata_clear(skb); 1682 1683 /* It is not generally safe to change skb->truesize. 1684 * For the moment, we really care of rx path, or 1685 * when skb is orphaned (not attached to a socket). 1686 */ 1687 if (!skb->sk || skb->destructor == sock_edemux) 1688 skb->truesize += size - osize; 1689 1690 return 0; 1691 1692 nofrags: 1693 kfree(data); 1694 nodata: 1695 return -ENOMEM; 1696 } 1697 EXPORT_SYMBOL(pskb_expand_head); 1698 1699 /* Make private copy of skb with writable head and some headroom */ 1700 1701 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom) 1702 { 1703 struct sk_buff *skb2; 1704 int delta = headroom - skb_headroom(skb); 1705 1706 if (delta <= 0) 1707 skb2 = pskb_copy(skb, GFP_ATOMIC); 1708 else { 1709 skb2 = skb_clone(skb, GFP_ATOMIC); 1710 if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0, 1711 GFP_ATOMIC)) { 1712 kfree_skb(skb2); 1713 skb2 = NULL; 1714 } 1715 } 1716 return skb2; 1717 } 1718 EXPORT_SYMBOL(skb_realloc_headroom); 1719 1720 /** 1721 * skb_copy_expand - copy and expand sk_buff 1722 * @skb: buffer to copy 1723 * @newheadroom: new free bytes at head 1724 * @newtailroom: new free bytes at tail 1725 * @gfp_mask: allocation priority 1726 * 1727 * Make a copy of both an &sk_buff and its data and while doing so 1728 * allocate additional space. 1729 * 1730 * This is used when the caller wishes to modify the data and needs a 1731 * private copy of the data to alter as well as more space for new fields. 1732 * Returns %NULL on failure or the pointer to the buffer 1733 * on success. The returned buffer has a reference count of 1. 1734 * 1735 * You must pass %GFP_ATOMIC as the allocation priority if this function 1736 * is called from an interrupt. 1737 */ 1738 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, 1739 int newheadroom, int newtailroom, 1740 gfp_t gfp_mask) 1741 { 1742 /* 1743 * Allocate the copy buffer 1744 */ 1745 struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom, 1746 gfp_mask, skb_alloc_rx_flag(skb), 1747 NUMA_NO_NODE); 1748 int oldheadroom = skb_headroom(skb); 1749 int head_copy_len, head_copy_off; 1750 1751 if (!n) 1752 return NULL; 1753 1754 skb_reserve(n, newheadroom); 1755 1756 /* Set the tail pointer and length */ 1757 skb_put(n, skb->len); 1758 1759 head_copy_len = oldheadroom; 1760 head_copy_off = 0; 1761 if (newheadroom <= head_copy_len) 1762 head_copy_len = newheadroom; 1763 else 1764 head_copy_off = newheadroom - head_copy_len; 1765 1766 /* Copy the linear header and data. */ 1767 BUG_ON(skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off, 1768 skb->len + head_copy_len)); 1769 1770 skb_copy_header(n, skb); 1771 1772 skb_headers_offset_update(n, newheadroom - oldheadroom); 1773 1774 return n; 1775 } 1776 EXPORT_SYMBOL(skb_copy_expand); 1777 1778 /** 1779 * __skb_pad - zero pad the tail of an skb 1780 * @skb: buffer to pad 1781 * @pad: space to pad 1782 * @free_on_error: free buffer on error 1783 * 1784 * Ensure that a buffer is followed by a padding area that is zero 1785 * filled. Used by network drivers which may DMA or transfer data 1786 * beyond the buffer end onto the wire. 1787 * 1788 * May return error in out of memory cases. The skb is freed on error 1789 * if @free_on_error is true. 1790 */ 1791 1792 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error) 1793 { 1794 int err; 1795 int ntail; 1796 1797 /* If the skbuff is non linear tailroom is always zero.. */ 1798 if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) { 1799 memset(skb->data+skb->len, 0, pad); 1800 return 0; 1801 } 1802 1803 ntail = skb->data_len + pad - (skb->end - skb->tail); 1804 if (likely(skb_cloned(skb) || ntail > 0)) { 1805 err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC); 1806 if (unlikely(err)) 1807 goto free_skb; 1808 } 1809 1810 /* FIXME: The use of this function with non-linear skb's really needs 1811 * to be audited. 1812 */ 1813 err = skb_linearize(skb); 1814 if (unlikely(err)) 1815 goto free_skb; 1816 1817 memset(skb->data + skb->len, 0, pad); 1818 return 0; 1819 1820 free_skb: 1821 if (free_on_error) 1822 kfree_skb(skb); 1823 return err; 1824 } 1825 EXPORT_SYMBOL(__skb_pad); 1826 1827 /** 1828 * pskb_put - add data to the tail of a potentially fragmented buffer 1829 * @skb: start of the buffer to use 1830 * @tail: tail fragment of the buffer to use 1831 * @len: amount of data to add 1832 * 1833 * This function extends the used data area of the potentially 1834 * fragmented buffer. @tail must be the last fragment of @skb -- or 1835 * @skb itself. If this would exceed the total buffer size the kernel 1836 * will panic. A pointer to the first byte of the extra data is 1837 * returned. 1838 */ 1839 1840 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len) 1841 { 1842 if (tail != skb) { 1843 skb->data_len += len; 1844 skb->len += len; 1845 } 1846 return skb_put(tail, len); 1847 } 1848 EXPORT_SYMBOL_GPL(pskb_put); 1849 1850 /** 1851 * skb_put - add data to a buffer 1852 * @skb: buffer to use 1853 * @len: amount of data to add 1854 * 1855 * This function extends the used data area of the buffer. If this would 1856 * exceed the total buffer size the kernel will panic. A pointer to the 1857 * first byte of the extra data is returned. 1858 */ 1859 void *skb_put(struct sk_buff *skb, unsigned int len) 1860 { 1861 void *tmp = skb_tail_pointer(skb); 1862 SKB_LINEAR_ASSERT(skb); 1863 skb->tail += len; 1864 skb->len += len; 1865 if (unlikely(skb->tail > skb->end)) 1866 skb_over_panic(skb, len, __builtin_return_address(0)); 1867 return tmp; 1868 } 1869 EXPORT_SYMBOL(skb_put); 1870 1871 /** 1872 * skb_push - add data to the start of a buffer 1873 * @skb: buffer to use 1874 * @len: amount of data to add 1875 * 1876 * This function extends the used data area of the buffer at the buffer 1877 * start. If this would exceed the total buffer headroom the kernel will 1878 * panic. A pointer to the first byte of the extra data is returned. 1879 */ 1880 void *skb_push(struct sk_buff *skb, unsigned int len) 1881 { 1882 skb->data -= len; 1883 skb->len += len; 1884 if (unlikely(skb->data < skb->head)) 1885 skb_under_panic(skb, len, __builtin_return_address(0)); 1886 return skb->data; 1887 } 1888 EXPORT_SYMBOL(skb_push); 1889 1890 /** 1891 * skb_pull - remove data from the start of a buffer 1892 * @skb: buffer to use 1893 * @len: amount of data to remove 1894 * 1895 * This function removes data from the start of a buffer, returning 1896 * the memory to the headroom. A pointer to the next data in the buffer 1897 * is returned. Once the data has been pulled future pushes will overwrite 1898 * the old data. 1899 */ 1900 void *skb_pull(struct sk_buff *skb, unsigned int len) 1901 { 1902 return skb_pull_inline(skb, len); 1903 } 1904 EXPORT_SYMBOL(skb_pull); 1905 1906 /** 1907 * skb_trim - remove end from a buffer 1908 * @skb: buffer to alter 1909 * @len: new length 1910 * 1911 * Cut the length of a buffer down by removing data from the tail. If 1912 * the buffer is already under the length specified it is not modified. 1913 * The skb must be linear. 1914 */ 1915 void skb_trim(struct sk_buff *skb, unsigned int len) 1916 { 1917 if (skb->len > len) 1918 __skb_trim(skb, len); 1919 } 1920 EXPORT_SYMBOL(skb_trim); 1921 1922 /* Trims skb to length len. It can change skb pointers. 1923 */ 1924 1925 int ___pskb_trim(struct sk_buff *skb, unsigned int len) 1926 { 1927 struct sk_buff **fragp; 1928 struct sk_buff *frag; 1929 int offset = skb_headlen(skb); 1930 int nfrags = skb_shinfo(skb)->nr_frags; 1931 int i; 1932 int err; 1933 1934 if (skb_cloned(skb) && 1935 unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))) 1936 return err; 1937 1938 i = 0; 1939 if (offset >= len) 1940 goto drop_pages; 1941 1942 for (; i < nfrags; i++) { 1943 int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]); 1944 1945 if (end < len) { 1946 offset = end; 1947 continue; 1948 } 1949 1950 skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset); 1951 1952 drop_pages: 1953 skb_shinfo(skb)->nr_frags = i; 1954 1955 for (; i < nfrags; i++) 1956 skb_frag_unref(skb, i); 1957 1958 if (skb_has_frag_list(skb)) 1959 skb_drop_fraglist(skb); 1960 goto done; 1961 } 1962 1963 for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp); 1964 fragp = &frag->next) { 1965 int end = offset + frag->len; 1966 1967 if (skb_shared(frag)) { 1968 struct sk_buff *nfrag; 1969 1970 nfrag = skb_clone(frag, GFP_ATOMIC); 1971 if (unlikely(!nfrag)) 1972 return -ENOMEM; 1973 1974 nfrag->next = frag->next; 1975 consume_skb(frag); 1976 frag = nfrag; 1977 *fragp = frag; 1978 } 1979 1980 if (end < len) { 1981 offset = end; 1982 continue; 1983 } 1984 1985 if (end > len && 1986 unlikely((err = pskb_trim(frag, len - offset)))) 1987 return err; 1988 1989 if (frag->next) 1990 skb_drop_list(&frag->next); 1991 break; 1992 } 1993 1994 done: 1995 if (len > skb_headlen(skb)) { 1996 skb->data_len -= skb->len - len; 1997 skb->len = len; 1998 } else { 1999 skb->len = len; 2000 skb->data_len = 0; 2001 skb_set_tail_pointer(skb, len); 2002 } 2003 2004 if (!skb->sk || skb->destructor == sock_edemux) 2005 skb_condense(skb); 2006 return 0; 2007 } 2008 EXPORT_SYMBOL(___pskb_trim); 2009 2010 /* Note : use pskb_trim_rcsum() instead of calling this directly 2011 */ 2012 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len) 2013 { 2014 if (skb->ip_summed == CHECKSUM_COMPLETE) { 2015 int delta = skb->len - len; 2016 2017 skb->csum = csum_block_sub(skb->csum, 2018 skb_checksum(skb, len, delta, 0), 2019 len); 2020 } 2021 return __pskb_trim(skb, len); 2022 } 2023 EXPORT_SYMBOL(pskb_trim_rcsum_slow); 2024 2025 /** 2026 * __pskb_pull_tail - advance tail of skb header 2027 * @skb: buffer to reallocate 2028 * @delta: number of bytes to advance tail 2029 * 2030 * The function makes a sense only on a fragmented &sk_buff, 2031 * it expands header moving its tail forward and copying necessary 2032 * data from fragmented part. 2033 * 2034 * &sk_buff MUST have reference count of 1. 2035 * 2036 * Returns %NULL (and &sk_buff does not change) if pull failed 2037 * or value of new tail of skb in the case of success. 2038 * 2039 * All the pointers pointing into skb header may change and must be 2040 * reloaded after call to this function. 2041 */ 2042 2043 /* Moves tail of skb head forward, copying data from fragmented part, 2044 * when it is necessary. 2045 * 1. It may fail due to malloc failure. 2046 * 2. It may change skb pointers. 2047 * 2048 * It is pretty complicated. Luckily, it is called only in exceptional cases. 2049 */ 2050 void *__pskb_pull_tail(struct sk_buff *skb, int delta) 2051 { 2052 /* If skb has not enough free space at tail, get new one 2053 * plus 128 bytes for future expansions. If we have enough 2054 * room at tail, reallocate without expansion only if skb is cloned. 2055 */ 2056 int i, k, eat = (skb->tail + delta) - skb->end; 2057 2058 if (eat > 0 || skb_cloned(skb)) { 2059 if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0, 2060 GFP_ATOMIC)) 2061 return NULL; 2062 } 2063 2064 BUG_ON(skb_copy_bits(skb, skb_headlen(skb), 2065 skb_tail_pointer(skb), delta)); 2066 2067 /* Optimization: no fragments, no reasons to preestimate 2068 * size of pulled pages. Superb. 2069 */ 2070 if (!skb_has_frag_list(skb)) 2071 goto pull_pages; 2072 2073 /* Estimate size of pulled pages. */ 2074 eat = delta; 2075 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2076 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 2077 2078 if (size >= eat) 2079 goto pull_pages; 2080 eat -= size; 2081 } 2082 2083 /* If we need update frag list, we are in troubles. 2084 * Certainly, it is possible to add an offset to skb data, 2085 * but taking into account that pulling is expected to 2086 * be very rare operation, it is worth to fight against 2087 * further bloating skb head and crucify ourselves here instead. 2088 * Pure masohism, indeed. 8)8) 2089 */ 2090 if (eat) { 2091 struct sk_buff *list = skb_shinfo(skb)->frag_list; 2092 struct sk_buff *clone = NULL; 2093 struct sk_buff *insp = NULL; 2094 2095 do { 2096 if (list->len <= eat) { 2097 /* Eaten as whole. */ 2098 eat -= list->len; 2099 list = list->next; 2100 insp = list; 2101 } else { 2102 /* Eaten partially. */ 2103 2104 if (skb_shared(list)) { 2105 /* Sucks! We need to fork list. :-( */ 2106 clone = skb_clone(list, GFP_ATOMIC); 2107 if (!clone) 2108 return NULL; 2109 insp = list->next; 2110 list = clone; 2111 } else { 2112 /* This may be pulled without 2113 * problems. */ 2114 insp = list; 2115 } 2116 if (!pskb_pull(list, eat)) { 2117 kfree_skb(clone); 2118 return NULL; 2119 } 2120 break; 2121 } 2122 } while (eat); 2123 2124 /* Free pulled out fragments. */ 2125 while ((list = skb_shinfo(skb)->frag_list) != insp) { 2126 skb_shinfo(skb)->frag_list = list->next; 2127 kfree_skb(list); 2128 } 2129 /* And insert new clone at head. */ 2130 if (clone) { 2131 clone->next = list; 2132 skb_shinfo(skb)->frag_list = clone; 2133 } 2134 } 2135 /* Success! Now we may commit changes to skb data. */ 2136 2137 pull_pages: 2138 eat = delta; 2139 k = 0; 2140 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2141 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 2142 2143 if (size <= eat) { 2144 skb_frag_unref(skb, i); 2145 eat -= size; 2146 } else { 2147 skb_frag_t *frag = &skb_shinfo(skb)->frags[k]; 2148 2149 *frag = skb_shinfo(skb)->frags[i]; 2150 if (eat) { 2151 skb_frag_off_add(frag, eat); 2152 skb_frag_size_sub(frag, eat); 2153 if (!i) 2154 goto end; 2155 eat = 0; 2156 } 2157 k++; 2158 } 2159 } 2160 skb_shinfo(skb)->nr_frags = k; 2161 2162 end: 2163 skb->tail += delta; 2164 skb->data_len -= delta; 2165 2166 if (!skb->data_len) 2167 skb_zcopy_clear(skb, false); 2168 2169 return skb_tail_pointer(skb); 2170 } 2171 EXPORT_SYMBOL(__pskb_pull_tail); 2172 2173 /** 2174 * skb_copy_bits - copy bits from skb to kernel buffer 2175 * @skb: source skb 2176 * @offset: offset in source 2177 * @to: destination buffer 2178 * @len: number of bytes to copy 2179 * 2180 * Copy the specified number of bytes from the source skb to the 2181 * destination buffer. 2182 * 2183 * CAUTION ! : 2184 * If its prototype is ever changed, 2185 * check arch/{*}/net/{*}.S files, 2186 * since it is called from BPF assembly code. 2187 */ 2188 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len) 2189 { 2190 int start = skb_headlen(skb); 2191 struct sk_buff *frag_iter; 2192 int i, copy; 2193 2194 if (offset > (int)skb->len - len) 2195 goto fault; 2196 2197 /* Copy header. */ 2198 if ((copy = start - offset) > 0) { 2199 if (copy > len) 2200 copy = len; 2201 skb_copy_from_linear_data_offset(skb, offset, to, copy); 2202 if ((len -= copy) == 0) 2203 return 0; 2204 offset += copy; 2205 to += copy; 2206 } 2207 2208 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2209 int end; 2210 skb_frag_t *f = &skb_shinfo(skb)->frags[i]; 2211 2212 WARN_ON(start > offset + len); 2213 2214 end = start + skb_frag_size(f); 2215 if ((copy = end - offset) > 0) { 2216 u32 p_off, p_len, copied; 2217 struct page *p; 2218 u8 *vaddr; 2219 2220 if (copy > len) 2221 copy = len; 2222 2223 skb_frag_foreach_page(f, 2224 skb_frag_off(f) + offset - start, 2225 copy, p, p_off, p_len, copied) { 2226 vaddr = kmap_atomic(p); 2227 memcpy(to + copied, vaddr + p_off, p_len); 2228 kunmap_atomic(vaddr); 2229 } 2230 2231 if ((len -= copy) == 0) 2232 return 0; 2233 offset += copy; 2234 to += copy; 2235 } 2236 start = end; 2237 } 2238 2239 skb_walk_frags(skb, frag_iter) { 2240 int end; 2241 2242 WARN_ON(start > offset + len); 2243 2244 end = start + frag_iter->len; 2245 if ((copy = end - offset) > 0) { 2246 if (copy > len) 2247 copy = len; 2248 if (skb_copy_bits(frag_iter, offset - start, to, copy)) 2249 goto fault; 2250 if ((len -= copy) == 0) 2251 return 0; 2252 offset += copy; 2253 to += copy; 2254 } 2255 start = end; 2256 } 2257 2258 if (!len) 2259 return 0; 2260 2261 fault: 2262 return -EFAULT; 2263 } 2264 EXPORT_SYMBOL(skb_copy_bits); 2265 2266 /* 2267 * Callback from splice_to_pipe(), if we need to release some pages 2268 * at the end of the spd in case we error'ed out in filling the pipe. 2269 */ 2270 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i) 2271 { 2272 put_page(spd->pages[i]); 2273 } 2274 2275 static struct page *linear_to_page(struct page *page, unsigned int *len, 2276 unsigned int *offset, 2277 struct sock *sk) 2278 { 2279 struct page_frag *pfrag = sk_page_frag(sk); 2280 2281 if (!sk_page_frag_refill(sk, pfrag)) 2282 return NULL; 2283 2284 *len = min_t(unsigned int, *len, pfrag->size - pfrag->offset); 2285 2286 memcpy(page_address(pfrag->page) + pfrag->offset, 2287 page_address(page) + *offset, *len); 2288 *offset = pfrag->offset; 2289 pfrag->offset += *len; 2290 2291 return pfrag->page; 2292 } 2293 2294 static bool spd_can_coalesce(const struct splice_pipe_desc *spd, 2295 struct page *page, 2296 unsigned int offset) 2297 { 2298 return spd->nr_pages && 2299 spd->pages[spd->nr_pages - 1] == page && 2300 (spd->partial[spd->nr_pages - 1].offset + 2301 spd->partial[spd->nr_pages - 1].len == offset); 2302 } 2303 2304 /* 2305 * Fill page/offset/length into spd, if it can hold more pages. 2306 */ 2307 static bool spd_fill_page(struct splice_pipe_desc *spd, 2308 struct pipe_inode_info *pipe, struct page *page, 2309 unsigned int *len, unsigned int offset, 2310 bool linear, 2311 struct sock *sk) 2312 { 2313 if (unlikely(spd->nr_pages == MAX_SKB_FRAGS)) 2314 return true; 2315 2316 if (linear) { 2317 page = linear_to_page(page, len, &offset, sk); 2318 if (!page) 2319 return true; 2320 } 2321 if (spd_can_coalesce(spd, page, offset)) { 2322 spd->partial[spd->nr_pages - 1].len += *len; 2323 return false; 2324 } 2325 get_page(page); 2326 spd->pages[spd->nr_pages] = page; 2327 spd->partial[spd->nr_pages].len = *len; 2328 spd->partial[spd->nr_pages].offset = offset; 2329 spd->nr_pages++; 2330 2331 return false; 2332 } 2333 2334 static bool __splice_segment(struct page *page, unsigned int poff, 2335 unsigned int plen, unsigned int *off, 2336 unsigned int *len, 2337 struct splice_pipe_desc *spd, bool linear, 2338 struct sock *sk, 2339 struct pipe_inode_info *pipe) 2340 { 2341 if (!*len) 2342 return true; 2343 2344 /* skip this segment if already processed */ 2345 if (*off >= plen) { 2346 *off -= plen; 2347 return false; 2348 } 2349 2350 /* ignore any bits we already processed */ 2351 poff += *off; 2352 plen -= *off; 2353 *off = 0; 2354 2355 do { 2356 unsigned int flen = min(*len, plen); 2357 2358 if (spd_fill_page(spd, pipe, page, &flen, poff, 2359 linear, sk)) 2360 return true; 2361 poff += flen; 2362 plen -= flen; 2363 *len -= flen; 2364 } while (*len && plen); 2365 2366 return false; 2367 } 2368 2369 /* 2370 * Map linear and fragment data from the skb to spd. It reports true if the 2371 * pipe is full or if we already spliced the requested length. 2372 */ 2373 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe, 2374 unsigned int *offset, unsigned int *len, 2375 struct splice_pipe_desc *spd, struct sock *sk) 2376 { 2377 int seg; 2378 struct sk_buff *iter; 2379 2380 /* map the linear part : 2381 * If skb->head_frag is set, this 'linear' part is backed by a 2382 * fragment, and if the head is not shared with any clones then 2383 * we can avoid a copy since we own the head portion of this page. 2384 */ 2385 if (__splice_segment(virt_to_page(skb->data), 2386 (unsigned long) skb->data & (PAGE_SIZE - 1), 2387 skb_headlen(skb), 2388 offset, len, spd, 2389 skb_head_is_locked(skb), 2390 sk, pipe)) 2391 return true; 2392 2393 /* 2394 * then map the fragments 2395 */ 2396 for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) { 2397 const skb_frag_t *f = &skb_shinfo(skb)->frags[seg]; 2398 2399 if (__splice_segment(skb_frag_page(f), 2400 skb_frag_off(f), skb_frag_size(f), 2401 offset, len, spd, false, sk, pipe)) 2402 return true; 2403 } 2404 2405 skb_walk_frags(skb, iter) { 2406 if (*offset >= iter->len) { 2407 *offset -= iter->len; 2408 continue; 2409 } 2410 /* __skb_splice_bits() only fails if the output has no room 2411 * left, so no point in going over the frag_list for the error 2412 * case. 2413 */ 2414 if (__skb_splice_bits(iter, pipe, offset, len, spd, sk)) 2415 return true; 2416 } 2417 2418 return false; 2419 } 2420 2421 /* 2422 * Map data from the skb to a pipe. Should handle both the linear part, 2423 * the fragments, and the frag list. 2424 */ 2425 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset, 2426 struct pipe_inode_info *pipe, unsigned int tlen, 2427 unsigned int flags) 2428 { 2429 struct partial_page partial[MAX_SKB_FRAGS]; 2430 struct page *pages[MAX_SKB_FRAGS]; 2431 struct splice_pipe_desc spd = { 2432 .pages = pages, 2433 .partial = partial, 2434 .nr_pages_max = MAX_SKB_FRAGS, 2435 .ops = &nosteal_pipe_buf_ops, 2436 .spd_release = sock_spd_release, 2437 }; 2438 int ret = 0; 2439 2440 __skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk); 2441 2442 if (spd.nr_pages) 2443 ret = splice_to_pipe(pipe, &spd); 2444 2445 return ret; 2446 } 2447 EXPORT_SYMBOL_GPL(skb_splice_bits); 2448 2449 /* Send skb data on a socket. Socket must be locked. */ 2450 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset, 2451 int len) 2452 { 2453 unsigned int orig_len = len; 2454 struct sk_buff *head = skb; 2455 unsigned short fragidx; 2456 int slen, ret; 2457 2458 do_frag_list: 2459 2460 /* Deal with head data */ 2461 while (offset < skb_headlen(skb) && len) { 2462 struct kvec kv; 2463 struct msghdr msg; 2464 2465 slen = min_t(int, len, skb_headlen(skb) - offset); 2466 kv.iov_base = skb->data + offset; 2467 kv.iov_len = slen; 2468 memset(&msg, 0, sizeof(msg)); 2469 msg.msg_flags = MSG_DONTWAIT; 2470 2471 ret = kernel_sendmsg_locked(sk, &msg, &kv, 1, slen); 2472 if (ret <= 0) 2473 goto error; 2474 2475 offset += ret; 2476 len -= ret; 2477 } 2478 2479 /* All the data was skb head? */ 2480 if (!len) 2481 goto out; 2482 2483 /* Make offset relative to start of frags */ 2484 offset -= skb_headlen(skb); 2485 2486 /* Find where we are in frag list */ 2487 for (fragidx = 0; fragidx < skb_shinfo(skb)->nr_frags; fragidx++) { 2488 skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx]; 2489 2490 if (offset < skb_frag_size(frag)) 2491 break; 2492 2493 offset -= skb_frag_size(frag); 2494 } 2495 2496 for (; len && fragidx < skb_shinfo(skb)->nr_frags; fragidx++) { 2497 skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx]; 2498 2499 slen = min_t(size_t, len, skb_frag_size(frag) - offset); 2500 2501 while (slen) { 2502 ret = kernel_sendpage_locked(sk, skb_frag_page(frag), 2503 skb_frag_off(frag) + offset, 2504 slen, MSG_DONTWAIT); 2505 if (ret <= 0) 2506 goto error; 2507 2508 len -= ret; 2509 offset += ret; 2510 slen -= ret; 2511 } 2512 2513 offset = 0; 2514 } 2515 2516 if (len) { 2517 /* Process any frag lists */ 2518 2519 if (skb == head) { 2520 if (skb_has_frag_list(skb)) { 2521 skb = skb_shinfo(skb)->frag_list; 2522 goto do_frag_list; 2523 } 2524 } else if (skb->next) { 2525 skb = skb->next; 2526 goto do_frag_list; 2527 } 2528 } 2529 2530 out: 2531 return orig_len - len; 2532 2533 error: 2534 return orig_len == len ? ret : orig_len - len; 2535 } 2536 EXPORT_SYMBOL_GPL(skb_send_sock_locked); 2537 2538 /** 2539 * skb_store_bits - store bits from kernel buffer to skb 2540 * @skb: destination buffer 2541 * @offset: offset in destination 2542 * @from: source buffer 2543 * @len: number of bytes to copy 2544 * 2545 * Copy the specified number of bytes from the source buffer to the 2546 * destination skb. This function handles all the messy bits of 2547 * traversing fragment lists and such. 2548 */ 2549 2550 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len) 2551 { 2552 int start = skb_headlen(skb); 2553 struct sk_buff *frag_iter; 2554 int i, copy; 2555 2556 if (offset > (int)skb->len - len) 2557 goto fault; 2558 2559 if ((copy = start - offset) > 0) { 2560 if (copy > len) 2561 copy = len; 2562 skb_copy_to_linear_data_offset(skb, offset, from, copy); 2563 if ((len -= copy) == 0) 2564 return 0; 2565 offset += copy; 2566 from += copy; 2567 } 2568 2569 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2570 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2571 int end; 2572 2573 WARN_ON(start > offset + len); 2574 2575 end = start + skb_frag_size(frag); 2576 if ((copy = end - offset) > 0) { 2577 u32 p_off, p_len, copied; 2578 struct page *p; 2579 u8 *vaddr; 2580 2581 if (copy > len) 2582 copy = len; 2583 2584 skb_frag_foreach_page(frag, 2585 skb_frag_off(frag) + offset - start, 2586 copy, p, p_off, p_len, copied) { 2587 vaddr = kmap_atomic(p); 2588 memcpy(vaddr + p_off, from + copied, p_len); 2589 kunmap_atomic(vaddr); 2590 } 2591 2592 if ((len -= copy) == 0) 2593 return 0; 2594 offset += copy; 2595 from += copy; 2596 } 2597 start = end; 2598 } 2599 2600 skb_walk_frags(skb, frag_iter) { 2601 int end; 2602 2603 WARN_ON(start > offset + len); 2604 2605 end = start + frag_iter->len; 2606 if ((copy = end - offset) > 0) { 2607 if (copy > len) 2608 copy = len; 2609 if (skb_store_bits(frag_iter, offset - start, 2610 from, copy)) 2611 goto fault; 2612 if ((len -= copy) == 0) 2613 return 0; 2614 offset += copy; 2615 from += copy; 2616 } 2617 start = end; 2618 } 2619 if (!len) 2620 return 0; 2621 2622 fault: 2623 return -EFAULT; 2624 } 2625 EXPORT_SYMBOL(skb_store_bits); 2626 2627 /* Checksum skb data. */ 2628 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len, 2629 __wsum csum, const struct skb_checksum_ops *ops) 2630 { 2631 int start = skb_headlen(skb); 2632 int i, copy = start - offset; 2633 struct sk_buff *frag_iter; 2634 int pos = 0; 2635 2636 /* Checksum header. */ 2637 if (copy > 0) { 2638 if (copy > len) 2639 copy = len; 2640 csum = INDIRECT_CALL_1(ops->update, csum_partial_ext, 2641 skb->data + offset, copy, csum); 2642 if ((len -= copy) == 0) 2643 return csum; 2644 offset += copy; 2645 pos = copy; 2646 } 2647 2648 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2649 int end; 2650 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2651 2652 WARN_ON(start > offset + len); 2653 2654 end = start + skb_frag_size(frag); 2655 if ((copy = end - offset) > 0) { 2656 u32 p_off, p_len, copied; 2657 struct page *p; 2658 __wsum csum2; 2659 u8 *vaddr; 2660 2661 if (copy > len) 2662 copy = len; 2663 2664 skb_frag_foreach_page(frag, 2665 skb_frag_off(frag) + offset - start, 2666 copy, p, p_off, p_len, copied) { 2667 vaddr = kmap_atomic(p); 2668 csum2 = INDIRECT_CALL_1(ops->update, 2669 csum_partial_ext, 2670 vaddr + p_off, p_len, 0); 2671 kunmap_atomic(vaddr); 2672 csum = INDIRECT_CALL_1(ops->combine, 2673 csum_block_add_ext, csum, 2674 csum2, pos, p_len); 2675 pos += p_len; 2676 } 2677 2678 if (!(len -= copy)) 2679 return csum; 2680 offset += copy; 2681 } 2682 start = end; 2683 } 2684 2685 skb_walk_frags(skb, frag_iter) { 2686 int end; 2687 2688 WARN_ON(start > offset + len); 2689 2690 end = start + frag_iter->len; 2691 if ((copy = end - offset) > 0) { 2692 __wsum csum2; 2693 if (copy > len) 2694 copy = len; 2695 csum2 = __skb_checksum(frag_iter, offset - start, 2696 copy, 0, ops); 2697 csum = INDIRECT_CALL_1(ops->combine, csum_block_add_ext, 2698 csum, csum2, pos, copy); 2699 if ((len -= copy) == 0) 2700 return csum; 2701 offset += copy; 2702 pos += copy; 2703 } 2704 start = end; 2705 } 2706 BUG_ON(len); 2707 2708 return csum; 2709 } 2710 EXPORT_SYMBOL(__skb_checksum); 2711 2712 __wsum skb_checksum(const struct sk_buff *skb, int offset, 2713 int len, __wsum csum) 2714 { 2715 const struct skb_checksum_ops ops = { 2716 .update = csum_partial_ext, 2717 .combine = csum_block_add_ext, 2718 }; 2719 2720 return __skb_checksum(skb, offset, len, csum, &ops); 2721 } 2722 EXPORT_SYMBOL(skb_checksum); 2723 2724 /* Both of above in one bottle. */ 2725 2726 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, 2727 u8 *to, int len, __wsum csum) 2728 { 2729 int start = skb_headlen(skb); 2730 int i, copy = start - offset; 2731 struct sk_buff *frag_iter; 2732 int pos = 0; 2733 2734 /* Copy header. */ 2735 if (copy > 0) { 2736 if (copy > len) 2737 copy = len; 2738 csum = csum_partial_copy_nocheck(skb->data + offset, to, 2739 copy, csum); 2740 if ((len -= copy) == 0) 2741 return csum; 2742 offset += copy; 2743 to += copy; 2744 pos = copy; 2745 } 2746 2747 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2748 int end; 2749 2750 WARN_ON(start > offset + len); 2751 2752 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]); 2753 if ((copy = end - offset) > 0) { 2754 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2755 u32 p_off, p_len, copied; 2756 struct page *p; 2757 __wsum csum2; 2758 u8 *vaddr; 2759 2760 if (copy > len) 2761 copy = len; 2762 2763 skb_frag_foreach_page(frag, 2764 skb_frag_off(frag) + offset - start, 2765 copy, p, p_off, p_len, copied) { 2766 vaddr = kmap_atomic(p); 2767 csum2 = csum_partial_copy_nocheck(vaddr + p_off, 2768 to + copied, 2769 p_len, 0); 2770 kunmap_atomic(vaddr); 2771 csum = csum_block_add(csum, csum2, pos); 2772 pos += p_len; 2773 } 2774 2775 if (!(len -= copy)) 2776 return csum; 2777 offset += copy; 2778 to += copy; 2779 } 2780 start = end; 2781 } 2782 2783 skb_walk_frags(skb, frag_iter) { 2784 __wsum csum2; 2785 int end; 2786 2787 WARN_ON(start > offset + len); 2788 2789 end = start + frag_iter->len; 2790 if ((copy = end - offset) > 0) { 2791 if (copy > len) 2792 copy = len; 2793 csum2 = skb_copy_and_csum_bits(frag_iter, 2794 offset - start, 2795 to, copy, 0); 2796 csum = csum_block_add(csum, csum2, pos); 2797 if ((len -= copy) == 0) 2798 return csum; 2799 offset += copy; 2800 to += copy; 2801 pos += copy; 2802 } 2803 start = end; 2804 } 2805 BUG_ON(len); 2806 return csum; 2807 } 2808 EXPORT_SYMBOL(skb_copy_and_csum_bits); 2809 2810 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len) 2811 { 2812 __sum16 sum; 2813 2814 sum = csum_fold(skb_checksum(skb, 0, len, skb->csum)); 2815 /* See comments in __skb_checksum_complete(). */ 2816 if (likely(!sum)) { 2817 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) && 2818 !skb->csum_complete_sw) 2819 netdev_rx_csum_fault(skb->dev, skb); 2820 } 2821 if (!skb_shared(skb)) 2822 skb->csum_valid = !sum; 2823 return sum; 2824 } 2825 EXPORT_SYMBOL(__skb_checksum_complete_head); 2826 2827 /* This function assumes skb->csum already holds pseudo header's checksum, 2828 * which has been changed from the hardware checksum, for example, by 2829 * __skb_checksum_validate_complete(). And, the original skb->csum must 2830 * have been validated unsuccessfully for CHECKSUM_COMPLETE case. 2831 * 2832 * It returns non-zero if the recomputed checksum is still invalid, otherwise 2833 * zero. The new checksum is stored back into skb->csum unless the skb is 2834 * shared. 2835 */ 2836 __sum16 __skb_checksum_complete(struct sk_buff *skb) 2837 { 2838 __wsum csum; 2839 __sum16 sum; 2840 2841 csum = skb_checksum(skb, 0, skb->len, 0); 2842 2843 sum = csum_fold(csum_add(skb->csum, csum)); 2844 /* This check is inverted, because we already knew the hardware 2845 * checksum is invalid before calling this function. So, if the 2846 * re-computed checksum is valid instead, then we have a mismatch 2847 * between the original skb->csum and skb_checksum(). This means either 2848 * the original hardware checksum is incorrect or we screw up skb->csum 2849 * when moving skb->data around. 2850 */ 2851 if (likely(!sum)) { 2852 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) && 2853 !skb->csum_complete_sw) 2854 netdev_rx_csum_fault(skb->dev, skb); 2855 } 2856 2857 if (!skb_shared(skb)) { 2858 /* Save full packet checksum */ 2859 skb->csum = csum; 2860 skb->ip_summed = CHECKSUM_COMPLETE; 2861 skb->csum_complete_sw = 1; 2862 skb->csum_valid = !sum; 2863 } 2864 2865 return sum; 2866 } 2867 EXPORT_SYMBOL(__skb_checksum_complete); 2868 2869 static __wsum warn_crc32c_csum_update(const void *buff, int len, __wsum sum) 2870 { 2871 net_warn_ratelimited( 2872 "%s: attempt to compute crc32c without libcrc32c.ko\n", 2873 __func__); 2874 return 0; 2875 } 2876 2877 static __wsum warn_crc32c_csum_combine(__wsum csum, __wsum csum2, 2878 int offset, int len) 2879 { 2880 net_warn_ratelimited( 2881 "%s: attempt to compute crc32c without libcrc32c.ko\n", 2882 __func__); 2883 return 0; 2884 } 2885 2886 static const struct skb_checksum_ops default_crc32c_ops = { 2887 .update = warn_crc32c_csum_update, 2888 .combine = warn_crc32c_csum_combine, 2889 }; 2890 2891 const struct skb_checksum_ops *crc32c_csum_stub __read_mostly = 2892 &default_crc32c_ops; 2893 EXPORT_SYMBOL(crc32c_csum_stub); 2894 2895 /** 2896 * skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy() 2897 * @from: source buffer 2898 * 2899 * Calculates the amount of linear headroom needed in the 'to' skb passed 2900 * into skb_zerocopy(). 2901 */ 2902 unsigned int 2903 skb_zerocopy_headlen(const struct sk_buff *from) 2904 { 2905 unsigned int hlen = 0; 2906 2907 if (!from->head_frag || 2908 skb_headlen(from) < L1_CACHE_BYTES || 2909 skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS) 2910 hlen = skb_headlen(from); 2911 2912 if (skb_has_frag_list(from)) 2913 hlen = from->len; 2914 2915 return hlen; 2916 } 2917 EXPORT_SYMBOL_GPL(skb_zerocopy_headlen); 2918 2919 /** 2920 * skb_zerocopy - Zero copy skb to skb 2921 * @to: destination buffer 2922 * @from: source buffer 2923 * @len: number of bytes to copy from source buffer 2924 * @hlen: size of linear headroom in destination buffer 2925 * 2926 * Copies up to `len` bytes from `from` to `to` by creating references 2927 * to the frags in the source buffer. 2928 * 2929 * The `hlen` as calculated by skb_zerocopy_headlen() specifies the 2930 * headroom in the `to` buffer. 2931 * 2932 * Return value: 2933 * 0: everything is OK 2934 * -ENOMEM: couldn't orphan frags of @from due to lack of memory 2935 * -EFAULT: skb_copy_bits() found some problem with skb geometry 2936 */ 2937 int 2938 skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen) 2939 { 2940 int i, j = 0; 2941 int plen = 0; /* length of skb->head fragment */ 2942 int ret; 2943 struct page *page; 2944 unsigned int offset; 2945 2946 BUG_ON(!from->head_frag && !hlen); 2947 2948 /* dont bother with small payloads */ 2949 if (len <= skb_tailroom(to)) 2950 return skb_copy_bits(from, 0, skb_put(to, len), len); 2951 2952 if (hlen) { 2953 ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen); 2954 if (unlikely(ret)) 2955 return ret; 2956 len -= hlen; 2957 } else { 2958 plen = min_t(int, skb_headlen(from), len); 2959 if (plen) { 2960 page = virt_to_head_page(from->head); 2961 offset = from->data - (unsigned char *)page_address(page); 2962 __skb_fill_page_desc(to, 0, page, offset, plen); 2963 get_page(page); 2964 j = 1; 2965 len -= plen; 2966 } 2967 } 2968 2969 to->truesize += len + plen; 2970 to->len += len + plen; 2971 to->data_len += len + plen; 2972 2973 if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) { 2974 skb_tx_error(from); 2975 return -ENOMEM; 2976 } 2977 skb_zerocopy_clone(to, from, GFP_ATOMIC); 2978 2979 for (i = 0; i < skb_shinfo(from)->nr_frags; i++) { 2980 int size; 2981 2982 if (!len) 2983 break; 2984 skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i]; 2985 size = min_t(int, skb_frag_size(&skb_shinfo(to)->frags[j]), 2986 len); 2987 skb_frag_size_set(&skb_shinfo(to)->frags[j], size); 2988 len -= size; 2989 skb_frag_ref(to, j); 2990 j++; 2991 } 2992 skb_shinfo(to)->nr_frags = j; 2993 2994 return 0; 2995 } 2996 EXPORT_SYMBOL_GPL(skb_zerocopy); 2997 2998 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to) 2999 { 3000 __wsum csum; 3001 long csstart; 3002 3003 if (skb->ip_summed == CHECKSUM_PARTIAL) 3004 csstart = skb_checksum_start_offset(skb); 3005 else 3006 csstart = skb_headlen(skb); 3007 3008 BUG_ON(csstart > skb_headlen(skb)); 3009 3010 skb_copy_from_linear_data(skb, to, csstart); 3011 3012 csum = 0; 3013 if (csstart != skb->len) 3014 csum = skb_copy_and_csum_bits(skb, csstart, to + csstart, 3015 skb->len - csstart, 0); 3016 3017 if (skb->ip_summed == CHECKSUM_PARTIAL) { 3018 long csstuff = csstart + skb->csum_offset; 3019 3020 *((__sum16 *)(to + csstuff)) = csum_fold(csum); 3021 } 3022 } 3023 EXPORT_SYMBOL(skb_copy_and_csum_dev); 3024 3025 /** 3026 * skb_dequeue - remove from the head of the queue 3027 * @list: list to dequeue from 3028 * 3029 * Remove the head of the list. The list lock is taken so the function 3030 * may be used safely with other locking list functions. The head item is 3031 * returned or %NULL if the list is empty. 3032 */ 3033 3034 struct sk_buff *skb_dequeue(struct sk_buff_head *list) 3035 { 3036 unsigned long flags; 3037 struct sk_buff *result; 3038 3039 spin_lock_irqsave(&list->lock, flags); 3040 result = __skb_dequeue(list); 3041 spin_unlock_irqrestore(&list->lock, flags); 3042 return result; 3043 } 3044 EXPORT_SYMBOL(skb_dequeue); 3045 3046 /** 3047 * skb_dequeue_tail - remove from the tail of the queue 3048 * @list: list to dequeue from 3049 * 3050 * Remove the tail of the list. The list lock is taken so the function 3051 * may be used safely with other locking list functions. The tail item is 3052 * returned or %NULL if the list is empty. 3053 */ 3054 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list) 3055 { 3056 unsigned long flags; 3057 struct sk_buff *result; 3058 3059 spin_lock_irqsave(&list->lock, flags); 3060 result = __skb_dequeue_tail(list); 3061 spin_unlock_irqrestore(&list->lock, flags); 3062 return result; 3063 } 3064 EXPORT_SYMBOL(skb_dequeue_tail); 3065 3066 /** 3067 * skb_queue_purge - empty a list 3068 * @list: list to empty 3069 * 3070 * Delete all buffers on an &sk_buff list. Each buffer is removed from 3071 * the list and one reference dropped. This function takes the list 3072 * lock and is atomic with respect to other list locking functions. 3073 */ 3074 void skb_queue_purge(struct sk_buff_head *list) 3075 { 3076 struct sk_buff *skb; 3077 while ((skb = skb_dequeue(list)) != NULL) 3078 kfree_skb(skb); 3079 } 3080 EXPORT_SYMBOL(skb_queue_purge); 3081 3082 /** 3083 * skb_rbtree_purge - empty a skb rbtree 3084 * @root: root of the rbtree to empty 3085 * Return value: the sum of truesizes of all purged skbs. 3086 * 3087 * Delete all buffers on an &sk_buff rbtree. Each buffer is removed from 3088 * the list and one reference dropped. This function does not take 3089 * any lock. Synchronization should be handled by the caller (e.g., TCP 3090 * out-of-order queue is protected by the socket lock). 3091 */ 3092 unsigned int skb_rbtree_purge(struct rb_root *root) 3093 { 3094 struct rb_node *p = rb_first(root); 3095 unsigned int sum = 0; 3096 3097 while (p) { 3098 struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode); 3099 3100 p = rb_next(p); 3101 rb_erase(&skb->rbnode, root); 3102 sum += skb->truesize; 3103 kfree_skb(skb); 3104 } 3105 return sum; 3106 } 3107 3108 /** 3109 * skb_queue_head - queue a buffer at the list head 3110 * @list: list to use 3111 * @newsk: buffer to queue 3112 * 3113 * Queue a buffer at the start of the list. This function takes the 3114 * list lock and can be used safely with other locking &sk_buff functions 3115 * safely. 3116 * 3117 * A buffer cannot be placed on two lists at the same time. 3118 */ 3119 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk) 3120 { 3121 unsigned long flags; 3122 3123 spin_lock_irqsave(&list->lock, flags); 3124 __skb_queue_head(list, newsk); 3125 spin_unlock_irqrestore(&list->lock, flags); 3126 } 3127 EXPORT_SYMBOL(skb_queue_head); 3128 3129 /** 3130 * skb_queue_tail - queue a buffer at the list tail 3131 * @list: list to use 3132 * @newsk: buffer to queue 3133 * 3134 * Queue a buffer at the tail of the list. This function takes the 3135 * list lock and can be used safely with other locking &sk_buff functions 3136 * safely. 3137 * 3138 * A buffer cannot be placed on two lists at the same time. 3139 */ 3140 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk) 3141 { 3142 unsigned long flags; 3143 3144 spin_lock_irqsave(&list->lock, flags); 3145 __skb_queue_tail(list, newsk); 3146 spin_unlock_irqrestore(&list->lock, flags); 3147 } 3148 EXPORT_SYMBOL(skb_queue_tail); 3149 3150 /** 3151 * skb_unlink - remove a buffer from a list 3152 * @skb: buffer to remove 3153 * @list: list to use 3154 * 3155 * Remove a packet from a list. The list locks are taken and this 3156 * function is atomic with respect to other list locked calls 3157 * 3158 * You must know what list the SKB is on. 3159 */ 3160 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list) 3161 { 3162 unsigned long flags; 3163 3164 spin_lock_irqsave(&list->lock, flags); 3165 __skb_unlink(skb, list); 3166 spin_unlock_irqrestore(&list->lock, flags); 3167 } 3168 EXPORT_SYMBOL(skb_unlink); 3169 3170 /** 3171 * skb_append - append a buffer 3172 * @old: buffer to insert after 3173 * @newsk: buffer to insert 3174 * @list: list to use 3175 * 3176 * Place a packet after a given packet in a list. The list locks are taken 3177 * and this function is atomic with respect to other list locked calls. 3178 * A buffer cannot be placed on two lists at the same time. 3179 */ 3180 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list) 3181 { 3182 unsigned long flags; 3183 3184 spin_lock_irqsave(&list->lock, flags); 3185 __skb_queue_after(list, old, newsk); 3186 spin_unlock_irqrestore(&list->lock, flags); 3187 } 3188 EXPORT_SYMBOL(skb_append); 3189 3190 static inline void skb_split_inside_header(struct sk_buff *skb, 3191 struct sk_buff* skb1, 3192 const u32 len, const int pos) 3193 { 3194 int i; 3195 3196 skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len), 3197 pos - len); 3198 /* And move data appendix as is. */ 3199 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 3200 skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i]; 3201 3202 skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags; 3203 skb_shinfo(skb)->nr_frags = 0; 3204 skb1->data_len = skb->data_len; 3205 skb1->len += skb1->data_len; 3206 skb->data_len = 0; 3207 skb->len = len; 3208 skb_set_tail_pointer(skb, len); 3209 } 3210 3211 static inline void skb_split_no_header(struct sk_buff *skb, 3212 struct sk_buff* skb1, 3213 const u32 len, int pos) 3214 { 3215 int i, k = 0; 3216 const int nfrags = skb_shinfo(skb)->nr_frags; 3217 3218 skb_shinfo(skb)->nr_frags = 0; 3219 skb1->len = skb1->data_len = skb->len - len; 3220 skb->len = len; 3221 skb->data_len = len - pos; 3222 3223 for (i = 0; i < nfrags; i++) { 3224 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 3225 3226 if (pos + size > len) { 3227 skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i]; 3228 3229 if (pos < len) { 3230 /* Split frag. 3231 * We have two variants in this case: 3232 * 1. Move all the frag to the second 3233 * part, if it is possible. F.e. 3234 * this approach is mandatory for TUX, 3235 * where splitting is expensive. 3236 * 2. Split is accurately. We make this. 3237 */ 3238 skb_frag_ref(skb, i); 3239 skb_frag_off_add(&skb_shinfo(skb1)->frags[0], len - pos); 3240 skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos); 3241 skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos); 3242 skb_shinfo(skb)->nr_frags++; 3243 } 3244 k++; 3245 } else 3246 skb_shinfo(skb)->nr_frags++; 3247 pos += size; 3248 } 3249 skb_shinfo(skb1)->nr_frags = k; 3250 } 3251 3252 /** 3253 * skb_split - Split fragmented skb to two parts at length len. 3254 * @skb: the buffer to split 3255 * @skb1: the buffer to receive the second part 3256 * @len: new length for skb 3257 */ 3258 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len) 3259 { 3260 int pos = skb_headlen(skb); 3261 3262 skb_shinfo(skb1)->tx_flags |= skb_shinfo(skb)->tx_flags & 3263 SKBTX_SHARED_FRAG; 3264 skb_zerocopy_clone(skb1, skb, 0); 3265 if (len < pos) /* Split line is inside header. */ 3266 skb_split_inside_header(skb, skb1, len, pos); 3267 else /* Second chunk has no header, nothing to copy. */ 3268 skb_split_no_header(skb, skb1, len, pos); 3269 } 3270 EXPORT_SYMBOL(skb_split); 3271 3272 /* Shifting from/to a cloned skb is a no-go. 3273 * 3274 * Caller cannot keep skb_shinfo related pointers past calling here! 3275 */ 3276 static int skb_prepare_for_shift(struct sk_buff *skb) 3277 { 3278 return skb_cloned(skb) && pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 3279 } 3280 3281 /** 3282 * skb_shift - Shifts paged data partially from skb to another 3283 * @tgt: buffer into which tail data gets added 3284 * @skb: buffer from which the paged data comes from 3285 * @shiftlen: shift up to this many bytes 3286 * 3287 * Attempts to shift up to shiftlen worth of bytes, which may be less than 3288 * the length of the skb, from skb to tgt. Returns number bytes shifted. 3289 * It's up to caller to free skb if everything was shifted. 3290 * 3291 * If @tgt runs out of frags, the whole operation is aborted. 3292 * 3293 * Skb cannot include anything else but paged data while tgt is allowed 3294 * to have non-paged data as well. 3295 * 3296 * TODO: full sized shift could be optimized but that would need 3297 * specialized skb free'er to handle frags without up-to-date nr_frags. 3298 */ 3299 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen) 3300 { 3301 int from, to, merge, todo; 3302 skb_frag_t *fragfrom, *fragto; 3303 3304 BUG_ON(shiftlen > skb->len); 3305 3306 if (skb_headlen(skb)) 3307 return 0; 3308 if (skb_zcopy(tgt) || skb_zcopy(skb)) 3309 return 0; 3310 3311 todo = shiftlen; 3312 from = 0; 3313 to = skb_shinfo(tgt)->nr_frags; 3314 fragfrom = &skb_shinfo(skb)->frags[from]; 3315 3316 /* Actual merge is delayed until the point when we know we can 3317 * commit all, so that we don't have to undo partial changes 3318 */ 3319 if (!to || 3320 !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom), 3321 skb_frag_off(fragfrom))) { 3322 merge = -1; 3323 } else { 3324 merge = to - 1; 3325 3326 todo -= skb_frag_size(fragfrom); 3327 if (todo < 0) { 3328 if (skb_prepare_for_shift(skb) || 3329 skb_prepare_for_shift(tgt)) 3330 return 0; 3331 3332 /* All previous frag pointers might be stale! */ 3333 fragfrom = &skb_shinfo(skb)->frags[from]; 3334 fragto = &skb_shinfo(tgt)->frags[merge]; 3335 3336 skb_frag_size_add(fragto, shiftlen); 3337 skb_frag_size_sub(fragfrom, shiftlen); 3338 skb_frag_off_add(fragfrom, shiftlen); 3339 3340 goto onlymerged; 3341 } 3342 3343 from++; 3344 } 3345 3346 /* Skip full, not-fitting skb to avoid expensive operations */ 3347 if ((shiftlen == skb->len) && 3348 (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to)) 3349 return 0; 3350 3351 if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt)) 3352 return 0; 3353 3354 while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) { 3355 if (to == MAX_SKB_FRAGS) 3356 return 0; 3357 3358 fragfrom = &skb_shinfo(skb)->frags[from]; 3359 fragto = &skb_shinfo(tgt)->frags[to]; 3360 3361 if (todo >= skb_frag_size(fragfrom)) { 3362 *fragto = *fragfrom; 3363 todo -= skb_frag_size(fragfrom); 3364 from++; 3365 to++; 3366 3367 } else { 3368 __skb_frag_ref(fragfrom); 3369 skb_frag_page_copy(fragto, fragfrom); 3370 skb_frag_off_copy(fragto, fragfrom); 3371 skb_frag_size_set(fragto, todo); 3372 3373 skb_frag_off_add(fragfrom, todo); 3374 skb_frag_size_sub(fragfrom, todo); 3375 todo = 0; 3376 3377 to++; 3378 break; 3379 } 3380 } 3381 3382 /* Ready to "commit" this state change to tgt */ 3383 skb_shinfo(tgt)->nr_frags = to; 3384 3385 if (merge >= 0) { 3386 fragfrom = &skb_shinfo(skb)->frags[0]; 3387 fragto = &skb_shinfo(tgt)->frags[merge]; 3388 3389 skb_frag_size_add(fragto, skb_frag_size(fragfrom)); 3390 __skb_frag_unref(fragfrom); 3391 } 3392 3393 /* Reposition in the original skb */ 3394 to = 0; 3395 while (from < skb_shinfo(skb)->nr_frags) 3396 skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++]; 3397 skb_shinfo(skb)->nr_frags = to; 3398 3399 BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags); 3400 3401 onlymerged: 3402 /* Most likely the tgt won't ever need its checksum anymore, skb on 3403 * the other hand might need it if it needs to be resent 3404 */ 3405 tgt->ip_summed = CHECKSUM_PARTIAL; 3406 skb->ip_summed = CHECKSUM_PARTIAL; 3407 3408 /* Yak, is it really working this way? Some helper please? */ 3409 skb->len -= shiftlen; 3410 skb->data_len -= shiftlen; 3411 skb->truesize -= shiftlen; 3412 tgt->len += shiftlen; 3413 tgt->data_len += shiftlen; 3414 tgt->truesize += shiftlen; 3415 3416 return shiftlen; 3417 } 3418 3419 /** 3420 * skb_prepare_seq_read - Prepare a sequential read of skb data 3421 * @skb: the buffer to read 3422 * @from: lower offset of data to be read 3423 * @to: upper offset of data to be read 3424 * @st: state variable 3425 * 3426 * Initializes the specified state variable. Must be called before 3427 * invoking skb_seq_read() for the first time. 3428 */ 3429 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from, 3430 unsigned int to, struct skb_seq_state *st) 3431 { 3432 st->lower_offset = from; 3433 st->upper_offset = to; 3434 st->root_skb = st->cur_skb = skb; 3435 st->frag_idx = st->stepped_offset = 0; 3436 st->frag_data = NULL; 3437 } 3438 EXPORT_SYMBOL(skb_prepare_seq_read); 3439 3440 /** 3441 * skb_seq_read - Sequentially read skb data 3442 * @consumed: number of bytes consumed by the caller so far 3443 * @data: destination pointer for data to be returned 3444 * @st: state variable 3445 * 3446 * Reads a block of skb data at @consumed relative to the 3447 * lower offset specified to skb_prepare_seq_read(). Assigns 3448 * the head of the data block to @data and returns the length 3449 * of the block or 0 if the end of the skb data or the upper 3450 * offset has been reached. 3451 * 3452 * The caller is not required to consume all of the data 3453 * returned, i.e. @consumed is typically set to the number 3454 * of bytes already consumed and the next call to 3455 * skb_seq_read() will return the remaining part of the block. 3456 * 3457 * Note 1: The size of each block of data returned can be arbitrary, 3458 * this limitation is the cost for zerocopy sequential 3459 * reads of potentially non linear data. 3460 * 3461 * Note 2: Fragment lists within fragments are not implemented 3462 * at the moment, state->root_skb could be replaced with 3463 * a stack for this purpose. 3464 */ 3465 unsigned int skb_seq_read(unsigned int consumed, const u8 **data, 3466 struct skb_seq_state *st) 3467 { 3468 unsigned int block_limit, abs_offset = consumed + st->lower_offset; 3469 skb_frag_t *frag; 3470 3471 if (unlikely(abs_offset >= st->upper_offset)) { 3472 if (st->frag_data) { 3473 kunmap_atomic(st->frag_data); 3474 st->frag_data = NULL; 3475 } 3476 return 0; 3477 } 3478 3479 next_skb: 3480 block_limit = skb_headlen(st->cur_skb) + st->stepped_offset; 3481 3482 if (abs_offset < block_limit && !st->frag_data) { 3483 *data = st->cur_skb->data + (abs_offset - st->stepped_offset); 3484 return block_limit - abs_offset; 3485 } 3486 3487 if (st->frag_idx == 0 && !st->frag_data) 3488 st->stepped_offset += skb_headlen(st->cur_skb); 3489 3490 while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) { 3491 frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx]; 3492 block_limit = skb_frag_size(frag) + st->stepped_offset; 3493 3494 if (abs_offset < block_limit) { 3495 if (!st->frag_data) 3496 st->frag_data = kmap_atomic(skb_frag_page(frag)); 3497 3498 *data = (u8 *) st->frag_data + skb_frag_off(frag) + 3499 (abs_offset - st->stepped_offset); 3500 3501 return block_limit - abs_offset; 3502 } 3503 3504 if (st->frag_data) { 3505 kunmap_atomic(st->frag_data); 3506 st->frag_data = NULL; 3507 } 3508 3509 st->frag_idx++; 3510 st->stepped_offset += skb_frag_size(frag); 3511 } 3512 3513 if (st->frag_data) { 3514 kunmap_atomic(st->frag_data); 3515 st->frag_data = NULL; 3516 } 3517 3518 if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) { 3519 st->cur_skb = skb_shinfo(st->root_skb)->frag_list; 3520 st->frag_idx = 0; 3521 goto next_skb; 3522 } else if (st->cur_skb->next) { 3523 st->cur_skb = st->cur_skb->next; 3524 st->frag_idx = 0; 3525 goto next_skb; 3526 } 3527 3528 return 0; 3529 } 3530 EXPORT_SYMBOL(skb_seq_read); 3531 3532 /** 3533 * skb_abort_seq_read - Abort a sequential read of skb data 3534 * @st: state variable 3535 * 3536 * Must be called if skb_seq_read() was not called until it 3537 * returned 0. 3538 */ 3539 void skb_abort_seq_read(struct skb_seq_state *st) 3540 { 3541 if (st->frag_data) 3542 kunmap_atomic(st->frag_data); 3543 } 3544 EXPORT_SYMBOL(skb_abort_seq_read); 3545 3546 #define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb)) 3547 3548 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text, 3549 struct ts_config *conf, 3550 struct ts_state *state) 3551 { 3552 return skb_seq_read(offset, text, TS_SKB_CB(state)); 3553 } 3554 3555 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state) 3556 { 3557 skb_abort_seq_read(TS_SKB_CB(state)); 3558 } 3559 3560 /** 3561 * skb_find_text - Find a text pattern in skb data 3562 * @skb: the buffer to look in 3563 * @from: search offset 3564 * @to: search limit 3565 * @config: textsearch configuration 3566 * 3567 * Finds a pattern in the skb data according to the specified 3568 * textsearch configuration. Use textsearch_next() to retrieve 3569 * subsequent occurrences of the pattern. Returns the offset 3570 * to the first occurrence or UINT_MAX if no match was found. 3571 */ 3572 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from, 3573 unsigned int to, struct ts_config *config) 3574 { 3575 struct ts_state state; 3576 unsigned int ret; 3577 3578 config->get_next_block = skb_ts_get_next_block; 3579 config->finish = skb_ts_finish; 3580 3581 skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state)); 3582 3583 ret = textsearch_find(config, &state); 3584 return (ret <= to - from ? ret : UINT_MAX); 3585 } 3586 EXPORT_SYMBOL(skb_find_text); 3587 3588 int skb_append_pagefrags(struct sk_buff *skb, struct page *page, 3589 int offset, size_t size) 3590 { 3591 int i = skb_shinfo(skb)->nr_frags; 3592 3593 if (skb_can_coalesce(skb, i, page, offset)) { 3594 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size); 3595 } else if (i < MAX_SKB_FRAGS) { 3596 get_page(page); 3597 skb_fill_page_desc(skb, i, page, offset, size); 3598 } else { 3599 return -EMSGSIZE; 3600 } 3601 3602 return 0; 3603 } 3604 EXPORT_SYMBOL_GPL(skb_append_pagefrags); 3605 3606 /** 3607 * skb_pull_rcsum - pull skb and update receive checksum 3608 * @skb: buffer to update 3609 * @len: length of data pulled 3610 * 3611 * This function performs an skb_pull on the packet and updates 3612 * the CHECKSUM_COMPLETE checksum. It should be used on 3613 * receive path processing instead of skb_pull unless you know 3614 * that the checksum difference is zero (e.g., a valid IP header) 3615 * or you are setting ip_summed to CHECKSUM_NONE. 3616 */ 3617 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len) 3618 { 3619 unsigned char *data = skb->data; 3620 3621 BUG_ON(len > skb->len); 3622 __skb_pull(skb, len); 3623 skb_postpull_rcsum(skb, data, len); 3624 return skb->data; 3625 } 3626 EXPORT_SYMBOL_GPL(skb_pull_rcsum); 3627 3628 static inline skb_frag_t skb_head_frag_to_page_desc(struct sk_buff *frag_skb) 3629 { 3630 skb_frag_t head_frag; 3631 struct page *page; 3632 3633 page = virt_to_head_page(frag_skb->head); 3634 __skb_frag_set_page(&head_frag, page); 3635 skb_frag_off_set(&head_frag, frag_skb->data - 3636 (unsigned char *)page_address(page)); 3637 skb_frag_size_set(&head_frag, skb_headlen(frag_skb)); 3638 return head_frag; 3639 } 3640 3641 /** 3642 * skb_segment - Perform protocol segmentation on skb. 3643 * @head_skb: buffer to segment 3644 * @features: features for the output path (see dev->features) 3645 * 3646 * This function performs segmentation on the given skb. It returns 3647 * a pointer to the first in a list of new skbs for the segments. 3648 * In case of error it returns ERR_PTR(err). 3649 */ 3650 struct sk_buff *skb_segment(struct sk_buff *head_skb, 3651 netdev_features_t features) 3652 { 3653 struct sk_buff *segs = NULL; 3654 struct sk_buff *tail = NULL; 3655 struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list; 3656 skb_frag_t *frag = skb_shinfo(head_skb)->frags; 3657 unsigned int mss = skb_shinfo(head_skb)->gso_size; 3658 unsigned int doffset = head_skb->data - skb_mac_header(head_skb); 3659 struct sk_buff *frag_skb = head_skb; 3660 unsigned int offset = doffset; 3661 unsigned int tnl_hlen = skb_tnl_header_len(head_skb); 3662 unsigned int partial_segs = 0; 3663 unsigned int headroom; 3664 unsigned int len = head_skb->len; 3665 __be16 proto; 3666 bool csum, sg; 3667 int nfrags = skb_shinfo(head_skb)->nr_frags; 3668 int err = -ENOMEM; 3669 int i = 0; 3670 int pos; 3671 int dummy; 3672 3673 if (list_skb && !list_skb->head_frag && skb_headlen(list_skb) && 3674 (skb_shinfo(head_skb)->gso_type & SKB_GSO_DODGY)) { 3675 /* gso_size is untrusted, and we have a frag_list with a linear 3676 * non head_frag head. 3677 * 3678 * (we assume checking the first list_skb member suffices; 3679 * i.e if either of the list_skb members have non head_frag 3680 * head, then the first one has too). 3681 * 3682 * If head_skb's headlen does not fit requested gso_size, it 3683 * means that the frag_list members do NOT terminate on exact 3684 * gso_size boundaries. Hence we cannot perform skb_frag_t page 3685 * sharing. Therefore we must fallback to copying the frag_list 3686 * skbs; we do so by disabling SG. 3687 */ 3688 if (mss != GSO_BY_FRAGS && mss != skb_headlen(head_skb)) 3689 features &= ~NETIF_F_SG; 3690 } 3691 3692 __skb_push(head_skb, doffset); 3693 proto = skb_network_protocol(head_skb, &dummy); 3694 if (unlikely(!proto)) 3695 return ERR_PTR(-EINVAL); 3696 3697 sg = !!(features & NETIF_F_SG); 3698 csum = !!can_checksum_protocol(features, proto); 3699 3700 if (sg && csum && (mss != GSO_BY_FRAGS)) { 3701 if (!(features & NETIF_F_GSO_PARTIAL)) { 3702 struct sk_buff *iter; 3703 unsigned int frag_len; 3704 3705 if (!list_skb || 3706 !net_gso_ok(features, skb_shinfo(head_skb)->gso_type)) 3707 goto normal; 3708 3709 /* If we get here then all the required 3710 * GSO features except frag_list are supported. 3711 * Try to split the SKB to multiple GSO SKBs 3712 * with no frag_list. 3713 * Currently we can do that only when the buffers don't 3714 * have a linear part and all the buffers except 3715 * the last are of the same length. 3716 */ 3717 frag_len = list_skb->len; 3718 skb_walk_frags(head_skb, iter) { 3719 if (frag_len != iter->len && iter->next) 3720 goto normal; 3721 if (skb_headlen(iter) && !iter->head_frag) 3722 goto normal; 3723 3724 len -= iter->len; 3725 } 3726 3727 if (len != frag_len) 3728 goto normal; 3729 } 3730 3731 /* GSO partial only requires that we trim off any excess that 3732 * doesn't fit into an MSS sized block, so take care of that 3733 * now. 3734 */ 3735 partial_segs = len / mss; 3736 if (partial_segs > 1) 3737 mss *= partial_segs; 3738 else 3739 partial_segs = 0; 3740 } 3741 3742 normal: 3743 headroom = skb_headroom(head_skb); 3744 pos = skb_headlen(head_skb); 3745 3746 do { 3747 struct sk_buff *nskb; 3748 skb_frag_t *nskb_frag; 3749 int hsize; 3750 int size; 3751 3752 if (unlikely(mss == GSO_BY_FRAGS)) { 3753 len = list_skb->len; 3754 } else { 3755 len = head_skb->len - offset; 3756 if (len > mss) 3757 len = mss; 3758 } 3759 3760 hsize = skb_headlen(head_skb) - offset; 3761 if (hsize < 0) 3762 hsize = 0; 3763 if (hsize > len || !sg) 3764 hsize = len; 3765 3766 if (!hsize && i >= nfrags && skb_headlen(list_skb) && 3767 (skb_headlen(list_skb) == len || sg)) { 3768 BUG_ON(skb_headlen(list_skb) > len); 3769 3770 i = 0; 3771 nfrags = skb_shinfo(list_skb)->nr_frags; 3772 frag = skb_shinfo(list_skb)->frags; 3773 frag_skb = list_skb; 3774 pos += skb_headlen(list_skb); 3775 3776 while (pos < offset + len) { 3777 BUG_ON(i >= nfrags); 3778 3779 size = skb_frag_size(frag); 3780 if (pos + size > offset + len) 3781 break; 3782 3783 i++; 3784 pos += size; 3785 frag++; 3786 } 3787 3788 nskb = skb_clone(list_skb, GFP_ATOMIC); 3789 list_skb = list_skb->next; 3790 3791 if (unlikely(!nskb)) 3792 goto err; 3793 3794 if (unlikely(pskb_trim(nskb, len))) { 3795 kfree_skb(nskb); 3796 goto err; 3797 } 3798 3799 hsize = skb_end_offset(nskb); 3800 if (skb_cow_head(nskb, doffset + headroom)) { 3801 kfree_skb(nskb); 3802 goto err; 3803 } 3804 3805 nskb->truesize += skb_end_offset(nskb) - hsize; 3806 skb_release_head_state(nskb); 3807 __skb_push(nskb, doffset); 3808 } else { 3809 nskb = __alloc_skb(hsize + doffset + headroom, 3810 GFP_ATOMIC, skb_alloc_rx_flag(head_skb), 3811 NUMA_NO_NODE); 3812 3813 if (unlikely(!nskb)) 3814 goto err; 3815 3816 skb_reserve(nskb, headroom); 3817 __skb_put(nskb, doffset); 3818 } 3819 3820 if (segs) 3821 tail->next = nskb; 3822 else 3823 segs = nskb; 3824 tail = nskb; 3825 3826 __copy_skb_header(nskb, head_skb); 3827 3828 skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom); 3829 skb_reset_mac_len(nskb); 3830 3831 skb_copy_from_linear_data_offset(head_skb, -tnl_hlen, 3832 nskb->data - tnl_hlen, 3833 doffset + tnl_hlen); 3834 3835 if (nskb->len == len + doffset) 3836 goto perform_csum_check; 3837 3838 if (!sg) { 3839 if (!nskb->remcsum_offload) 3840 nskb->ip_summed = CHECKSUM_NONE; 3841 SKB_GSO_CB(nskb)->csum = 3842 skb_copy_and_csum_bits(head_skb, offset, 3843 skb_put(nskb, len), 3844 len, 0); 3845 SKB_GSO_CB(nskb)->csum_start = 3846 skb_headroom(nskb) + doffset; 3847 continue; 3848 } 3849 3850 nskb_frag = skb_shinfo(nskb)->frags; 3851 3852 skb_copy_from_linear_data_offset(head_skb, offset, 3853 skb_put(nskb, hsize), hsize); 3854 3855 skb_shinfo(nskb)->tx_flags |= skb_shinfo(head_skb)->tx_flags & 3856 SKBTX_SHARED_FRAG; 3857 3858 if (skb_orphan_frags(frag_skb, GFP_ATOMIC) || 3859 skb_zerocopy_clone(nskb, frag_skb, GFP_ATOMIC)) 3860 goto err; 3861 3862 while (pos < offset + len) { 3863 if (i >= nfrags) { 3864 i = 0; 3865 nfrags = skb_shinfo(list_skb)->nr_frags; 3866 frag = skb_shinfo(list_skb)->frags; 3867 frag_skb = list_skb; 3868 if (!skb_headlen(list_skb)) { 3869 BUG_ON(!nfrags); 3870 } else { 3871 BUG_ON(!list_skb->head_frag); 3872 3873 /* to make room for head_frag. */ 3874 i--; 3875 frag--; 3876 } 3877 if (skb_orphan_frags(frag_skb, GFP_ATOMIC) || 3878 skb_zerocopy_clone(nskb, frag_skb, 3879 GFP_ATOMIC)) 3880 goto err; 3881 3882 list_skb = list_skb->next; 3883 } 3884 3885 if (unlikely(skb_shinfo(nskb)->nr_frags >= 3886 MAX_SKB_FRAGS)) { 3887 net_warn_ratelimited( 3888 "skb_segment: too many frags: %u %u\n", 3889 pos, mss); 3890 err = -EINVAL; 3891 goto err; 3892 } 3893 3894 *nskb_frag = (i < 0) ? skb_head_frag_to_page_desc(frag_skb) : *frag; 3895 __skb_frag_ref(nskb_frag); 3896 size = skb_frag_size(nskb_frag); 3897 3898 if (pos < offset) { 3899 skb_frag_off_add(nskb_frag, offset - pos); 3900 skb_frag_size_sub(nskb_frag, offset - pos); 3901 } 3902 3903 skb_shinfo(nskb)->nr_frags++; 3904 3905 if (pos + size <= offset + len) { 3906 i++; 3907 frag++; 3908 pos += size; 3909 } else { 3910 skb_frag_size_sub(nskb_frag, pos + size - (offset + len)); 3911 goto skip_fraglist; 3912 } 3913 3914 nskb_frag++; 3915 } 3916 3917 skip_fraglist: 3918 nskb->data_len = len - hsize; 3919 nskb->len += nskb->data_len; 3920 nskb->truesize += nskb->data_len; 3921 3922 perform_csum_check: 3923 if (!csum) { 3924 if (skb_has_shared_frag(nskb) && 3925 __skb_linearize(nskb)) 3926 goto err; 3927 3928 if (!nskb->remcsum_offload) 3929 nskb->ip_summed = CHECKSUM_NONE; 3930 SKB_GSO_CB(nskb)->csum = 3931 skb_checksum(nskb, doffset, 3932 nskb->len - doffset, 0); 3933 SKB_GSO_CB(nskb)->csum_start = 3934 skb_headroom(nskb) + doffset; 3935 } 3936 } while ((offset += len) < head_skb->len); 3937 3938 /* Some callers want to get the end of the list. 3939 * Put it in segs->prev to avoid walking the list. 3940 * (see validate_xmit_skb_list() for example) 3941 */ 3942 segs->prev = tail; 3943 3944 if (partial_segs) { 3945 struct sk_buff *iter; 3946 int type = skb_shinfo(head_skb)->gso_type; 3947 unsigned short gso_size = skb_shinfo(head_skb)->gso_size; 3948 3949 /* Update type to add partial and then remove dodgy if set */ 3950 type |= (features & NETIF_F_GSO_PARTIAL) / NETIF_F_GSO_PARTIAL * SKB_GSO_PARTIAL; 3951 type &= ~SKB_GSO_DODGY; 3952 3953 /* Update GSO info and prepare to start updating headers on 3954 * our way back down the stack of protocols. 3955 */ 3956 for (iter = segs; iter; iter = iter->next) { 3957 skb_shinfo(iter)->gso_size = gso_size; 3958 skb_shinfo(iter)->gso_segs = partial_segs; 3959 skb_shinfo(iter)->gso_type = type; 3960 SKB_GSO_CB(iter)->data_offset = skb_headroom(iter) + doffset; 3961 } 3962 3963 if (tail->len - doffset <= gso_size) 3964 skb_shinfo(tail)->gso_size = 0; 3965 else if (tail != segs) 3966 skb_shinfo(tail)->gso_segs = DIV_ROUND_UP(tail->len - doffset, gso_size); 3967 } 3968 3969 /* Following permits correct backpressure, for protocols 3970 * using skb_set_owner_w(). 3971 * Idea is to tranfert ownership from head_skb to last segment. 3972 */ 3973 if (head_skb->destructor == sock_wfree) { 3974 swap(tail->truesize, head_skb->truesize); 3975 swap(tail->destructor, head_skb->destructor); 3976 swap(tail->sk, head_skb->sk); 3977 } 3978 return segs; 3979 3980 err: 3981 kfree_skb_list(segs); 3982 return ERR_PTR(err); 3983 } 3984 EXPORT_SYMBOL_GPL(skb_segment); 3985 3986 int skb_gro_receive(struct sk_buff *p, struct sk_buff *skb) 3987 { 3988 struct skb_shared_info *pinfo, *skbinfo = skb_shinfo(skb); 3989 unsigned int offset = skb_gro_offset(skb); 3990 unsigned int headlen = skb_headlen(skb); 3991 unsigned int len = skb_gro_len(skb); 3992 unsigned int delta_truesize; 3993 struct sk_buff *lp; 3994 3995 if (unlikely(p->len + len >= 65536 || NAPI_GRO_CB(skb)->flush)) 3996 return -E2BIG; 3997 3998 lp = NAPI_GRO_CB(p)->last; 3999 pinfo = skb_shinfo(lp); 4000 4001 if (headlen <= offset) { 4002 skb_frag_t *frag; 4003 skb_frag_t *frag2; 4004 int i = skbinfo->nr_frags; 4005 int nr_frags = pinfo->nr_frags + i; 4006 4007 if (nr_frags > MAX_SKB_FRAGS) 4008 goto merge; 4009 4010 offset -= headlen; 4011 pinfo->nr_frags = nr_frags; 4012 skbinfo->nr_frags = 0; 4013 4014 frag = pinfo->frags + nr_frags; 4015 frag2 = skbinfo->frags + i; 4016 do { 4017 *--frag = *--frag2; 4018 } while (--i); 4019 4020 skb_frag_off_add(frag, offset); 4021 skb_frag_size_sub(frag, offset); 4022 4023 /* all fragments truesize : remove (head size + sk_buff) */ 4024 delta_truesize = skb->truesize - 4025 SKB_TRUESIZE(skb_end_offset(skb)); 4026 4027 skb->truesize -= skb->data_len; 4028 skb->len -= skb->data_len; 4029 skb->data_len = 0; 4030 4031 NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE; 4032 goto done; 4033 } else if (skb->head_frag) { 4034 int nr_frags = pinfo->nr_frags; 4035 skb_frag_t *frag = pinfo->frags + nr_frags; 4036 struct page *page = virt_to_head_page(skb->head); 4037 unsigned int first_size = headlen - offset; 4038 unsigned int first_offset; 4039 4040 if (nr_frags + 1 + skbinfo->nr_frags > MAX_SKB_FRAGS) 4041 goto merge; 4042 4043 first_offset = skb->data - 4044 (unsigned char *)page_address(page) + 4045 offset; 4046 4047 pinfo->nr_frags = nr_frags + 1 + skbinfo->nr_frags; 4048 4049 __skb_frag_set_page(frag, page); 4050 skb_frag_off_set(frag, first_offset); 4051 skb_frag_size_set(frag, first_size); 4052 4053 memcpy(frag + 1, skbinfo->frags, sizeof(*frag) * skbinfo->nr_frags); 4054 /* We dont need to clear skbinfo->nr_frags here */ 4055 4056 delta_truesize = skb->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff)); 4057 NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE_STOLEN_HEAD; 4058 goto done; 4059 } 4060 4061 merge: 4062 delta_truesize = skb->truesize; 4063 if (offset > headlen) { 4064 unsigned int eat = offset - headlen; 4065 4066 skb_frag_off_add(&skbinfo->frags[0], eat); 4067 skb_frag_size_sub(&skbinfo->frags[0], eat); 4068 skb->data_len -= eat; 4069 skb->len -= eat; 4070 offset = headlen; 4071 } 4072 4073 __skb_pull(skb, offset); 4074 4075 if (NAPI_GRO_CB(p)->last == p) 4076 skb_shinfo(p)->frag_list = skb; 4077 else 4078 NAPI_GRO_CB(p)->last->next = skb; 4079 NAPI_GRO_CB(p)->last = skb; 4080 __skb_header_release(skb); 4081 lp = p; 4082 4083 done: 4084 NAPI_GRO_CB(p)->count++; 4085 p->data_len += len; 4086 p->truesize += delta_truesize; 4087 p->len += len; 4088 if (lp != p) { 4089 lp->data_len += len; 4090 lp->truesize += delta_truesize; 4091 lp->len += len; 4092 } 4093 NAPI_GRO_CB(skb)->same_flow = 1; 4094 return 0; 4095 } 4096 EXPORT_SYMBOL_GPL(skb_gro_receive); 4097 4098 #ifdef CONFIG_SKB_EXTENSIONS 4099 #define SKB_EXT_ALIGN_VALUE 8 4100 #define SKB_EXT_CHUNKSIZEOF(x) (ALIGN((sizeof(x)), SKB_EXT_ALIGN_VALUE) / SKB_EXT_ALIGN_VALUE) 4101 4102 static const u8 skb_ext_type_len[] = { 4103 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 4104 [SKB_EXT_BRIDGE_NF] = SKB_EXT_CHUNKSIZEOF(struct nf_bridge_info), 4105 #endif 4106 #ifdef CONFIG_XFRM 4107 [SKB_EXT_SEC_PATH] = SKB_EXT_CHUNKSIZEOF(struct sec_path), 4108 #endif 4109 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT) 4110 [TC_SKB_EXT] = SKB_EXT_CHUNKSIZEOF(struct tc_skb_ext), 4111 #endif 4112 }; 4113 4114 static __always_inline unsigned int skb_ext_total_length(void) 4115 { 4116 return SKB_EXT_CHUNKSIZEOF(struct skb_ext) + 4117 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 4118 skb_ext_type_len[SKB_EXT_BRIDGE_NF] + 4119 #endif 4120 #ifdef CONFIG_XFRM 4121 skb_ext_type_len[SKB_EXT_SEC_PATH] + 4122 #endif 4123 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT) 4124 skb_ext_type_len[TC_SKB_EXT] + 4125 #endif 4126 0; 4127 } 4128 4129 static void skb_extensions_init(void) 4130 { 4131 BUILD_BUG_ON(SKB_EXT_NUM >= 8); 4132 BUILD_BUG_ON(skb_ext_total_length() > 255); 4133 4134 skbuff_ext_cache = kmem_cache_create("skbuff_ext_cache", 4135 SKB_EXT_ALIGN_VALUE * skb_ext_total_length(), 4136 0, 4137 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 4138 NULL); 4139 } 4140 #else 4141 static void skb_extensions_init(void) {} 4142 #endif 4143 4144 void __init skb_init(void) 4145 { 4146 skbuff_head_cache = kmem_cache_create_usercopy("skbuff_head_cache", 4147 sizeof(struct sk_buff), 4148 0, 4149 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 4150 offsetof(struct sk_buff, cb), 4151 sizeof_field(struct sk_buff, cb), 4152 NULL); 4153 skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache", 4154 sizeof(struct sk_buff_fclones), 4155 0, 4156 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 4157 NULL); 4158 skb_extensions_init(); 4159 } 4160 4161 static int 4162 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len, 4163 unsigned int recursion_level) 4164 { 4165 int start = skb_headlen(skb); 4166 int i, copy = start - offset; 4167 struct sk_buff *frag_iter; 4168 int elt = 0; 4169 4170 if (unlikely(recursion_level >= 24)) 4171 return -EMSGSIZE; 4172 4173 if (copy > 0) { 4174 if (copy > len) 4175 copy = len; 4176 sg_set_buf(sg, skb->data + offset, copy); 4177 elt++; 4178 if ((len -= copy) == 0) 4179 return elt; 4180 offset += copy; 4181 } 4182 4183 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 4184 int end; 4185 4186 WARN_ON(start > offset + len); 4187 4188 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]); 4189 if ((copy = end - offset) > 0) { 4190 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 4191 if (unlikely(elt && sg_is_last(&sg[elt - 1]))) 4192 return -EMSGSIZE; 4193 4194 if (copy > len) 4195 copy = len; 4196 sg_set_page(&sg[elt], skb_frag_page(frag), copy, 4197 skb_frag_off(frag) + offset - start); 4198 elt++; 4199 if (!(len -= copy)) 4200 return elt; 4201 offset += copy; 4202 } 4203 start = end; 4204 } 4205 4206 skb_walk_frags(skb, frag_iter) { 4207 int end, ret; 4208 4209 WARN_ON(start > offset + len); 4210 4211 end = start + frag_iter->len; 4212 if ((copy = end - offset) > 0) { 4213 if (unlikely(elt && sg_is_last(&sg[elt - 1]))) 4214 return -EMSGSIZE; 4215 4216 if (copy > len) 4217 copy = len; 4218 ret = __skb_to_sgvec(frag_iter, sg+elt, offset - start, 4219 copy, recursion_level + 1); 4220 if (unlikely(ret < 0)) 4221 return ret; 4222 elt += ret; 4223 if ((len -= copy) == 0) 4224 return elt; 4225 offset += copy; 4226 } 4227 start = end; 4228 } 4229 BUG_ON(len); 4230 return elt; 4231 } 4232 4233 /** 4234 * skb_to_sgvec - Fill a scatter-gather list from a socket buffer 4235 * @skb: Socket buffer containing the buffers to be mapped 4236 * @sg: The scatter-gather list to map into 4237 * @offset: The offset into the buffer's contents to start mapping 4238 * @len: Length of buffer space to be mapped 4239 * 4240 * Fill the specified scatter-gather list with mappings/pointers into a 4241 * region of the buffer space attached to a socket buffer. Returns either 4242 * the number of scatterlist items used, or -EMSGSIZE if the contents 4243 * could not fit. 4244 */ 4245 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len) 4246 { 4247 int nsg = __skb_to_sgvec(skb, sg, offset, len, 0); 4248 4249 if (nsg <= 0) 4250 return nsg; 4251 4252 sg_mark_end(&sg[nsg - 1]); 4253 4254 return nsg; 4255 } 4256 EXPORT_SYMBOL_GPL(skb_to_sgvec); 4257 4258 /* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given 4259 * sglist without mark the sg which contain last skb data as the end. 4260 * So the caller can mannipulate sg list as will when padding new data after 4261 * the first call without calling sg_unmark_end to expend sg list. 4262 * 4263 * Scenario to use skb_to_sgvec_nomark: 4264 * 1. sg_init_table 4265 * 2. skb_to_sgvec_nomark(payload1) 4266 * 3. skb_to_sgvec_nomark(payload2) 4267 * 4268 * This is equivalent to: 4269 * 1. sg_init_table 4270 * 2. skb_to_sgvec(payload1) 4271 * 3. sg_unmark_end 4272 * 4. skb_to_sgvec(payload2) 4273 * 4274 * When mapping mutilple payload conditionally, skb_to_sgvec_nomark 4275 * is more preferable. 4276 */ 4277 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg, 4278 int offset, int len) 4279 { 4280 return __skb_to_sgvec(skb, sg, offset, len, 0); 4281 } 4282 EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark); 4283 4284 4285 4286 /** 4287 * skb_cow_data - Check that a socket buffer's data buffers are writable 4288 * @skb: The socket buffer to check. 4289 * @tailbits: Amount of trailing space to be added 4290 * @trailer: Returned pointer to the skb where the @tailbits space begins 4291 * 4292 * Make sure that the data buffers attached to a socket buffer are 4293 * writable. If they are not, private copies are made of the data buffers 4294 * and the socket buffer is set to use these instead. 4295 * 4296 * If @tailbits is given, make sure that there is space to write @tailbits 4297 * bytes of data beyond current end of socket buffer. @trailer will be 4298 * set to point to the skb in which this space begins. 4299 * 4300 * The number of scatterlist elements required to completely map the 4301 * COW'd and extended socket buffer will be returned. 4302 */ 4303 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer) 4304 { 4305 int copyflag; 4306 int elt; 4307 struct sk_buff *skb1, **skb_p; 4308 4309 /* If skb is cloned or its head is paged, reallocate 4310 * head pulling out all the pages (pages are considered not writable 4311 * at the moment even if they are anonymous). 4312 */ 4313 if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) && 4314 __pskb_pull_tail(skb, skb_pagelen(skb)-skb_headlen(skb)) == NULL) 4315 return -ENOMEM; 4316 4317 /* Easy case. Most of packets will go this way. */ 4318 if (!skb_has_frag_list(skb)) { 4319 /* A little of trouble, not enough of space for trailer. 4320 * This should not happen, when stack is tuned to generate 4321 * good frames. OK, on miss we reallocate and reserve even more 4322 * space, 128 bytes is fair. */ 4323 4324 if (skb_tailroom(skb) < tailbits && 4325 pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC)) 4326 return -ENOMEM; 4327 4328 /* Voila! */ 4329 *trailer = skb; 4330 return 1; 4331 } 4332 4333 /* Misery. We are in troubles, going to mincer fragments... */ 4334 4335 elt = 1; 4336 skb_p = &skb_shinfo(skb)->frag_list; 4337 copyflag = 0; 4338 4339 while ((skb1 = *skb_p) != NULL) { 4340 int ntail = 0; 4341 4342 /* The fragment is partially pulled by someone, 4343 * this can happen on input. Copy it and everything 4344 * after it. */ 4345 4346 if (skb_shared(skb1)) 4347 copyflag = 1; 4348 4349 /* If the skb is the last, worry about trailer. */ 4350 4351 if (skb1->next == NULL && tailbits) { 4352 if (skb_shinfo(skb1)->nr_frags || 4353 skb_has_frag_list(skb1) || 4354 skb_tailroom(skb1) < tailbits) 4355 ntail = tailbits + 128; 4356 } 4357 4358 if (copyflag || 4359 skb_cloned(skb1) || 4360 ntail || 4361 skb_shinfo(skb1)->nr_frags || 4362 skb_has_frag_list(skb1)) { 4363 struct sk_buff *skb2; 4364 4365 /* Fuck, we are miserable poor guys... */ 4366 if (ntail == 0) 4367 skb2 = skb_copy(skb1, GFP_ATOMIC); 4368 else 4369 skb2 = skb_copy_expand(skb1, 4370 skb_headroom(skb1), 4371 ntail, 4372 GFP_ATOMIC); 4373 if (unlikely(skb2 == NULL)) 4374 return -ENOMEM; 4375 4376 if (skb1->sk) 4377 skb_set_owner_w(skb2, skb1->sk); 4378 4379 /* Looking around. Are we still alive? 4380 * OK, link new skb, drop old one */ 4381 4382 skb2->next = skb1->next; 4383 *skb_p = skb2; 4384 kfree_skb(skb1); 4385 skb1 = skb2; 4386 } 4387 elt++; 4388 *trailer = skb1; 4389 skb_p = &skb1->next; 4390 } 4391 4392 return elt; 4393 } 4394 EXPORT_SYMBOL_GPL(skb_cow_data); 4395 4396 static void sock_rmem_free(struct sk_buff *skb) 4397 { 4398 struct sock *sk = skb->sk; 4399 4400 atomic_sub(skb->truesize, &sk->sk_rmem_alloc); 4401 } 4402 4403 static void skb_set_err_queue(struct sk_buff *skb) 4404 { 4405 /* pkt_type of skbs received on local sockets is never PACKET_OUTGOING. 4406 * So, it is safe to (mis)use it to mark skbs on the error queue. 4407 */ 4408 skb->pkt_type = PACKET_OUTGOING; 4409 BUILD_BUG_ON(PACKET_OUTGOING == 0); 4410 } 4411 4412 /* 4413 * Note: We dont mem charge error packets (no sk_forward_alloc changes) 4414 */ 4415 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb) 4416 { 4417 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >= 4418 (unsigned int)sk->sk_rcvbuf) 4419 return -ENOMEM; 4420 4421 skb_orphan(skb); 4422 skb->sk = sk; 4423 skb->destructor = sock_rmem_free; 4424 atomic_add(skb->truesize, &sk->sk_rmem_alloc); 4425 skb_set_err_queue(skb); 4426 4427 /* before exiting rcu section, make sure dst is refcounted */ 4428 skb_dst_force(skb); 4429 4430 skb_queue_tail(&sk->sk_error_queue, skb); 4431 if (!sock_flag(sk, SOCK_DEAD)) 4432 sk->sk_error_report(sk); 4433 return 0; 4434 } 4435 EXPORT_SYMBOL(sock_queue_err_skb); 4436 4437 static bool is_icmp_err_skb(const struct sk_buff *skb) 4438 { 4439 return skb && (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP || 4440 SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP6); 4441 } 4442 4443 struct sk_buff *sock_dequeue_err_skb(struct sock *sk) 4444 { 4445 struct sk_buff_head *q = &sk->sk_error_queue; 4446 struct sk_buff *skb, *skb_next = NULL; 4447 bool icmp_next = false; 4448 unsigned long flags; 4449 4450 spin_lock_irqsave(&q->lock, flags); 4451 skb = __skb_dequeue(q); 4452 if (skb && (skb_next = skb_peek(q))) { 4453 icmp_next = is_icmp_err_skb(skb_next); 4454 if (icmp_next) 4455 sk->sk_err = SKB_EXT_ERR(skb_next)->ee.ee_origin; 4456 } 4457 spin_unlock_irqrestore(&q->lock, flags); 4458 4459 if (is_icmp_err_skb(skb) && !icmp_next) 4460 sk->sk_err = 0; 4461 4462 if (skb_next) 4463 sk->sk_error_report(sk); 4464 4465 return skb; 4466 } 4467 EXPORT_SYMBOL(sock_dequeue_err_skb); 4468 4469 /** 4470 * skb_clone_sk - create clone of skb, and take reference to socket 4471 * @skb: the skb to clone 4472 * 4473 * This function creates a clone of a buffer that holds a reference on 4474 * sk_refcnt. Buffers created via this function are meant to be 4475 * returned using sock_queue_err_skb, or free via kfree_skb. 4476 * 4477 * When passing buffers allocated with this function to sock_queue_err_skb 4478 * it is necessary to wrap the call with sock_hold/sock_put in order to 4479 * prevent the socket from being released prior to being enqueued on 4480 * the sk_error_queue. 4481 */ 4482 struct sk_buff *skb_clone_sk(struct sk_buff *skb) 4483 { 4484 struct sock *sk = skb->sk; 4485 struct sk_buff *clone; 4486 4487 if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt)) 4488 return NULL; 4489 4490 clone = skb_clone(skb, GFP_ATOMIC); 4491 if (!clone) { 4492 sock_put(sk); 4493 return NULL; 4494 } 4495 4496 clone->sk = sk; 4497 clone->destructor = sock_efree; 4498 4499 return clone; 4500 } 4501 EXPORT_SYMBOL(skb_clone_sk); 4502 4503 static void __skb_complete_tx_timestamp(struct sk_buff *skb, 4504 struct sock *sk, 4505 int tstype, 4506 bool opt_stats) 4507 { 4508 struct sock_exterr_skb *serr; 4509 int err; 4510 4511 BUILD_BUG_ON(sizeof(struct sock_exterr_skb) > sizeof(skb->cb)); 4512 4513 serr = SKB_EXT_ERR(skb); 4514 memset(serr, 0, sizeof(*serr)); 4515 serr->ee.ee_errno = ENOMSG; 4516 serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING; 4517 serr->ee.ee_info = tstype; 4518 serr->opt_stats = opt_stats; 4519 serr->header.h4.iif = skb->dev ? skb->dev->ifindex : 0; 4520 if (sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID) { 4521 serr->ee.ee_data = skb_shinfo(skb)->tskey; 4522 if (sk->sk_protocol == IPPROTO_TCP && 4523 sk->sk_type == SOCK_STREAM) 4524 serr->ee.ee_data -= sk->sk_tskey; 4525 } 4526 4527 err = sock_queue_err_skb(sk, skb); 4528 4529 if (err) 4530 kfree_skb(skb); 4531 } 4532 4533 static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly) 4534 { 4535 bool ret; 4536 4537 if (likely(sysctl_tstamp_allow_data || tsonly)) 4538 return true; 4539 4540 read_lock_bh(&sk->sk_callback_lock); 4541 ret = sk->sk_socket && sk->sk_socket->file && 4542 file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW); 4543 read_unlock_bh(&sk->sk_callback_lock); 4544 return ret; 4545 } 4546 4547 void skb_complete_tx_timestamp(struct sk_buff *skb, 4548 struct skb_shared_hwtstamps *hwtstamps) 4549 { 4550 struct sock *sk = skb->sk; 4551 4552 if (!skb_may_tx_timestamp(sk, false)) 4553 goto err; 4554 4555 /* Take a reference to prevent skb_orphan() from freeing the socket, 4556 * but only if the socket refcount is not zero. 4557 */ 4558 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) { 4559 *skb_hwtstamps(skb) = *hwtstamps; 4560 __skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND, false); 4561 sock_put(sk); 4562 return; 4563 } 4564 4565 err: 4566 kfree_skb(skb); 4567 } 4568 EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp); 4569 4570 void __skb_tstamp_tx(struct sk_buff *orig_skb, 4571 struct skb_shared_hwtstamps *hwtstamps, 4572 struct sock *sk, int tstype) 4573 { 4574 struct sk_buff *skb; 4575 bool tsonly, opt_stats = false; 4576 4577 if (!sk) 4578 return; 4579 4580 if (!hwtstamps && !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TX_SWHW) && 4581 skb_shinfo(orig_skb)->tx_flags & SKBTX_IN_PROGRESS) 4582 return; 4583 4584 tsonly = sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TSONLY; 4585 if (!skb_may_tx_timestamp(sk, tsonly)) 4586 return; 4587 4588 if (tsonly) { 4589 #ifdef CONFIG_INET 4590 if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_STATS) && 4591 sk->sk_protocol == IPPROTO_TCP && 4592 sk->sk_type == SOCK_STREAM) { 4593 skb = tcp_get_timestamping_opt_stats(sk); 4594 opt_stats = true; 4595 } else 4596 #endif 4597 skb = alloc_skb(0, GFP_ATOMIC); 4598 } else { 4599 skb = skb_clone(orig_skb, GFP_ATOMIC); 4600 } 4601 if (!skb) 4602 return; 4603 4604 if (tsonly) { 4605 skb_shinfo(skb)->tx_flags |= skb_shinfo(orig_skb)->tx_flags & 4606 SKBTX_ANY_TSTAMP; 4607 skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey; 4608 } 4609 4610 if (hwtstamps) 4611 *skb_hwtstamps(skb) = *hwtstamps; 4612 else 4613 skb->tstamp = ktime_get_real(); 4614 4615 __skb_complete_tx_timestamp(skb, sk, tstype, opt_stats); 4616 } 4617 EXPORT_SYMBOL_GPL(__skb_tstamp_tx); 4618 4619 void skb_tstamp_tx(struct sk_buff *orig_skb, 4620 struct skb_shared_hwtstamps *hwtstamps) 4621 { 4622 return __skb_tstamp_tx(orig_skb, hwtstamps, orig_skb->sk, 4623 SCM_TSTAMP_SND); 4624 } 4625 EXPORT_SYMBOL_GPL(skb_tstamp_tx); 4626 4627 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked) 4628 { 4629 struct sock *sk = skb->sk; 4630 struct sock_exterr_skb *serr; 4631 int err = 1; 4632 4633 skb->wifi_acked_valid = 1; 4634 skb->wifi_acked = acked; 4635 4636 serr = SKB_EXT_ERR(skb); 4637 memset(serr, 0, sizeof(*serr)); 4638 serr->ee.ee_errno = ENOMSG; 4639 serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS; 4640 4641 /* Take a reference to prevent skb_orphan() from freeing the socket, 4642 * but only if the socket refcount is not zero. 4643 */ 4644 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) { 4645 err = sock_queue_err_skb(sk, skb); 4646 sock_put(sk); 4647 } 4648 if (err) 4649 kfree_skb(skb); 4650 } 4651 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack); 4652 4653 /** 4654 * skb_partial_csum_set - set up and verify partial csum values for packet 4655 * @skb: the skb to set 4656 * @start: the number of bytes after skb->data to start checksumming. 4657 * @off: the offset from start to place the checksum. 4658 * 4659 * For untrusted partially-checksummed packets, we need to make sure the values 4660 * for skb->csum_start and skb->csum_offset are valid so we don't oops. 4661 * 4662 * This function checks and sets those values and skb->ip_summed: if this 4663 * returns false you should drop the packet. 4664 */ 4665 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off) 4666 { 4667 u32 csum_end = (u32)start + (u32)off + sizeof(__sum16); 4668 u32 csum_start = skb_headroom(skb) + (u32)start; 4669 4670 if (unlikely(csum_start > U16_MAX || csum_end > skb_headlen(skb))) { 4671 net_warn_ratelimited("bad partial csum: csum=%u/%u headroom=%u headlen=%u\n", 4672 start, off, skb_headroom(skb), skb_headlen(skb)); 4673 return false; 4674 } 4675 skb->ip_summed = CHECKSUM_PARTIAL; 4676 skb->csum_start = csum_start; 4677 skb->csum_offset = off; 4678 skb_set_transport_header(skb, start); 4679 return true; 4680 } 4681 EXPORT_SYMBOL_GPL(skb_partial_csum_set); 4682 4683 static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len, 4684 unsigned int max) 4685 { 4686 if (skb_headlen(skb) >= len) 4687 return 0; 4688 4689 /* If we need to pullup then pullup to the max, so we 4690 * won't need to do it again. 4691 */ 4692 if (max > skb->len) 4693 max = skb->len; 4694 4695 if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL) 4696 return -ENOMEM; 4697 4698 if (skb_headlen(skb) < len) 4699 return -EPROTO; 4700 4701 return 0; 4702 } 4703 4704 #define MAX_TCP_HDR_LEN (15 * 4) 4705 4706 static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb, 4707 typeof(IPPROTO_IP) proto, 4708 unsigned int off) 4709 { 4710 switch (proto) { 4711 int err; 4712 4713 case IPPROTO_TCP: 4714 err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr), 4715 off + MAX_TCP_HDR_LEN); 4716 if (!err && !skb_partial_csum_set(skb, off, 4717 offsetof(struct tcphdr, 4718 check))) 4719 err = -EPROTO; 4720 return err ? ERR_PTR(err) : &tcp_hdr(skb)->check; 4721 4722 case IPPROTO_UDP: 4723 err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr), 4724 off + sizeof(struct udphdr)); 4725 if (!err && !skb_partial_csum_set(skb, off, 4726 offsetof(struct udphdr, 4727 check))) 4728 err = -EPROTO; 4729 return err ? ERR_PTR(err) : &udp_hdr(skb)->check; 4730 } 4731 4732 return ERR_PTR(-EPROTO); 4733 } 4734 4735 /* This value should be large enough to cover a tagged ethernet header plus 4736 * maximally sized IP and TCP or UDP headers. 4737 */ 4738 #define MAX_IP_HDR_LEN 128 4739 4740 static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate) 4741 { 4742 unsigned int off; 4743 bool fragment; 4744 __sum16 *csum; 4745 int err; 4746 4747 fragment = false; 4748 4749 err = skb_maybe_pull_tail(skb, 4750 sizeof(struct iphdr), 4751 MAX_IP_HDR_LEN); 4752 if (err < 0) 4753 goto out; 4754 4755 if (ip_hdr(skb)->frag_off & htons(IP_OFFSET | IP_MF)) 4756 fragment = true; 4757 4758 off = ip_hdrlen(skb); 4759 4760 err = -EPROTO; 4761 4762 if (fragment) 4763 goto out; 4764 4765 csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off); 4766 if (IS_ERR(csum)) 4767 return PTR_ERR(csum); 4768 4769 if (recalculate) 4770 *csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr, 4771 ip_hdr(skb)->daddr, 4772 skb->len - off, 4773 ip_hdr(skb)->protocol, 0); 4774 err = 0; 4775 4776 out: 4777 return err; 4778 } 4779 4780 /* This value should be large enough to cover a tagged ethernet header plus 4781 * an IPv6 header, all options, and a maximal TCP or UDP header. 4782 */ 4783 #define MAX_IPV6_HDR_LEN 256 4784 4785 #define OPT_HDR(type, skb, off) \ 4786 (type *)(skb_network_header(skb) + (off)) 4787 4788 static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate) 4789 { 4790 int err; 4791 u8 nexthdr; 4792 unsigned int off; 4793 unsigned int len; 4794 bool fragment; 4795 bool done; 4796 __sum16 *csum; 4797 4798 fragment = false; 4799 done = false; 4800 4801 off = sizeof(struct ipv6hdr); 4802 4803 err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN); 4804 if (err < 0) 4805 goto out; 4806 4807 nexthdr = ipv6_hdr(skb)->nexthdr; 4808 4809 len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len); 4810 while (off <= len && !done) { 4811 switch (nexthdr) { 4812 case IPPROTO_DSTOPTS: 4813 case IPPROTO_HOPOPTS: 4814 case IPPROTO_ROUTING: { 4815 struct ipv6_opt_hdr *hp; 4816 4817 err = skb_maybe_pull_tail(skb, 4818 off + 4819 sizeof(struct ipv6_opt_hdr), 4820 MAX_IPV6_HDR_LEN); 4821 if (err < 0) 4822 goto out; 4823 4824 hp = OPT_HDR(struct ipv6_opt_hdr, skb, off); 4825 nexthdr = hp->nexthdr; 4826 off += ipv6_optlen(hp); 4827 break; 4828 } 4829 case IPPROTO_AH: { 4830 struct ip_auth_hdr *hp; 4831 4832 err = skb_maybe_pull_tail(skb, 4833 off + 4834 sizeof(struct ip_auth_hdr), 4835 MAX_IPV6_HDR_LEN); 4836 if (err < 0) 4837 goto out; 4838 4839 hp = OPT_HDR(struct ip_auth_hdr, skb, off); 4840 nexthdr = hp->nexthdr; 4841 off += ipv6_authlen(hp); 4842 break; 4843 } 4844 case IPPROTO_FRAGMENT: { 4845 struct frag_hdr *hp; 4846 4847 err = skb_maybe_pull_tail(skb, 4848 off + 4849 sizeof(struct frag_hdr), 4850 MAX_IPV6_HDR_LEN); 4851 if (err < 0) 4852 goto out; 4853 4854 hp = OPT_HDR(struct frag_hdr, skb, off); 4855 4856 if (hp->frag_off & htons(IP6_OFFSET | IP6_MF)) 4857 fragment = true; 4858 4859 nexthdr = hp->nexthdr; 4860 off += sizeof(struct frag_hdr); 4861 break; 4862 } 4863 default: 4864 done = true; 4865 break; 4866 } 4867 } 4868 4869 err = -EPROTO; 4870 4871 if (!done || fragment) 4872 goto out; 4873 4874 csum = skb_checksum_setup_ip(skb, nexthdr, off); 4875 if (IS_ERR(csum)) 4876 return PTR_ERR(csum); 4877 4878 if (recalculate) 4879 *csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr, 4880 &ipv6_hdr(skb)->daddr, 4881 skb->len - off, nexthdr, 0); 4882 err = 0; 4883 4884 out: 4885 return err; 4886 } 4887 4888 /** 4889 * skb_checksum_setup - set up partial checksum offset 4890 * @skb: the skb to set up 4891 * @recalculate: if true the pseudo-header checksum will be recalculated 4892 */ 4893 int skb_checksum_setup(struct sk_buff *skb, bool recalculate) 4894 { 4895 int err; 4896 4897 switch (skb->protocol) { 4898 case htons(ETH_P_IP): 4899 err = skb_checksum_setup_ipv4(skb, recalculate); 4900 break; 4901 4902 case htons(ETH_P_IPV6): 4903 err = skb_checksum_setup_ipv6(skb, recalculate); 4904 break; 4905 4906 default: 4907 err = -EPROTO; 4908 break; 4909 } 4910 4911 return err; 4912 } 4913 EXPORT_SYMBOL(skb_checksum_setup); 4914 4915 /** 4916 * skb_checksum_maybe_trim - maybe trims the given skb 4917 * @skb: the skb to check 4918 * @transport_len: the data length beyond the network header 4919 * 4920 * Checks whether the given skb has data beyond the given transport length. 4921 * If so, returns a cloned skb trimmed to this transport length. 4922 * Otherwise returns the provided skb. Returns NULL in error cases 4923 * (e.g. transport_len exceeds skb length or out-of-memory). 4924 * 4925 * Caller needs to set the skb transport header and free any returned skb if it 4926 * differs from the provided skb. 4927 */ 4928 static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb, 4929 unsigned int transport_len) 4930 { 4931 struct sk_buff *skb_chk; 4932 unsigned int len = skb_transport_offset(skb) + transport_len; 4933 int ret; 4934 4935 if (skb->len < len) 4936 return NULL; 4937 else if (skb->len == len) 4938 return skb; 4939 4940 skb_chk = skb_clone(skb, GFP_ATOMIC); 4941 if (!skb_chk) 4942 return NULL; 4943 4944 ret = pskb_trim_rcsum(skb_chk, len); 4945 if (ret) { 4946 kfree_skb(skb_chk); 4947 return NULL; 4948 } 4949 4950 return skb_chk; 4951 } 4952 4953 /** 4954 * skb_checksum_trimmed - validate checksum of an skb 4955 * @skb: the skb to check 4956 * @transport_len: the data length beyond the network header 4957 * @skb_chkf: checksum function to use 4958 * 4959 * Applies the given checksum function skb_chkf to the provided skb. 4960 * Returns a checked and maybe trimmed skb. Returns NULL on error. 4961 * 4962 * If the skb has data beyond the given transport length, then a 4963 * trimmed & cloned skb is checked and returned. 4964 * 4965 * Caller needs to set the skb transport header and free any returned skb if it 4966 * differs from the provided skb. 4967 */ 4968 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb, 4969 unsigned int transport_len, 4970 __sum16(*skb_chkf)(struct sk_buff *skb)) 4971 { 4972 struct sk_buff *skb_chk; 4973 unsigned int offset = skb_transport_offset(skb); 4974 __sum16 ret; 4975 4976 skb_chk = skb_checksum_maybe_trim(skb, transport_len); 4977 if (!skb_chk) 4978 goto err; 4979 4980 if (!pskb_may_pull(skb_chk, offset)) 4981 goto err; 4982 4983 skb_pull_rcsum(skb_chk, offset); 4984 ret = skb_chkf(skb_chk); 4985 skb_push_rcsum(skb_chk, offset); 4986 4987 if (ret) 4988 goto err; 4989 4990 return skb_chk; 4991 4992 err: 4993 if (skb_chk && skb_chk != skb) 4994 kfree_skb(skb_chk); 4995 4996 return NULL; 4997 4998 } 4999 EXPORT_SYMBOL(skb_checksum_trimmed); 5000 5001 void __skb_warn_lro_forwarding(const struct sk_buff *skb) 5002 { 5003 net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n", 5004 skb->dev->name); 5005 } 5006 EXPORT_SYMBOL(__skb_warn_lro_forwarding); 5007 5008 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen) 5009 { 5010 if (head_stolen) { 5011 skb_release_head_state(skb); 5012 kmem_cache_free(skbuff_head_cache, skb); 5013 } else { 5014 __kfree_skb(skb); 5015 } 5016 } 5017 EXPORT_SYMBOL(kfree_skb_partial); 5018 5019 /** 5020 * skb_try_coalesce - try to merge skb to prior one 5021 * @to: prior buffer 5022 * @from: buffer to add 5023 * @fragstolen: pointer to boolean 5024 * @delta_truesize: how much more was allocated than was requested 5025 */ 5026 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from, 5027 bool *fragstolen, int *delta_truesize) 5028 { 5029 struct skb_shared_info *to_shinfo, *from_shinfo; 5030 int i, delta, len = from->len; 5031 5032 *fragstolen = false; 5033 5034 if (skb_cloned(to)) 5035 return false; 5036 5037 if (len <= skb_tailroom(to)) { 5038 if (len) 5039 BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len)); 5040 *delta_truesize = 0; 5041 return true; 5042 } 5043 5044 to_shinfo = skb_shinfo(to); 5045 from_shinfo = skb_shinfo(from); 5046 if (to_shinfo->frag_list || from_shinfo->frag_list) 5047 return false; 5048 if (skb_zcopy(to) || skb_zcopy(from)) 5049 return false; 5050 5051 if (skb_headlen(from) != 0) { 5052 struct page *page; 5053 unsigned int offset; 5054 5055 if (to_shinfo->nr_frags + 5056 from_shinfo->nr_frags >= MAX_SKB_FRAGS) 5057 return false; 5058 5059 if (skb_head_is_locked(from)) 5060 return false; 5061 5062 delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff)); 5063 5064 page = virt_to_head_page(from->head); 5065 offset = from->data - (unsigned char *)page_address(page); 5066 5067 skb_fill_page_desc(to, to_shinfo->nr_frags, 5068 page, offset, skb_headlen(from)); 5069 *fragstolen = true; 5070 } else { 5071 if (to_shinfo->nr_frags + 5072 from_shinfo->nr_frags > MAX_SKB_FRAGS) 5073 return false; 5074 5075 delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from)); 5076 } 5077 5078 WARN_ON_ONCE(delta < len); 5079 5080 memcpy(to_shinfo->frags + to_shinfo->nr_frags, 5081 from_shinfo->frags, 5082 from_shinfo->nr_frags * sizeof(skb_frag_t)); 5083 to_shinfo->nr_frags += from_shinfo->nr_frags; 5084 5085 if (!skb_cloned(from)) 5086 from_shinfo->nr_frags = 0; 5087 5088 /* if the skb is not cloned this does nothing 5089 * since we set nr_frags to 0. 5090 */ 5091 for (i = 0; i < from_shinfo->nr_frags; i++) 5092 __skb_frag_ref(&from_shinfo->frags[i]); 5093 5094 to->truesize += delta; 5095 to->len += len; 5096 to->data_len += len; 5097 5098 *delta_truesize = delta; 5099 return true; 5100 } 5101 EXPORT_SYMBOL(skb_try_coalesce); 5102 5103 /** 5104 * skb_scrub_packet - scrub an skb 5105 * 5106 * @skb: buffer to clean 5107 * @xnet: packet is crossing netns 5108 * 5109 * skb_scrub_packet can be used after encapsulating or decapsulting a packet 5110 * into/from a tunnel. Some information have to be cleared during these 5111 * operations. 5112 * skb_scrub_packet can also be used to clean a skb before injecting it in 5113 * another namespace (@xnet == true). We have to clear all information in the 5114 * skb that could impact namespace isolation. 5115 */ 5116 void skb_scrub_packet(struct sk_buff *skb, bool xnet) 5117 { 5118 skb->pkt_type = PACKET_HOST; 5119 skb->skb_iif = 0; 5120 skb->ignore_df = 0; 5121 skb_dst_drop(skb); 5122 skb_ext_reset(skb); 5123 nf_reset_ct(skb); 5124 nf_reset_trace(skb); 5125 5126 #ifdef CONFIG_NET_SWITCHDEV 5127 skb->offload_fwd_mark = 0; 5128 skb->offload_l3_fwd_mark = 0; 5129 #endif 5130 5131 if (!xnet) 5132 return; 5133 5134 ipvs_reset(skb); 5135 skb->mark = 0; 5136 skb->tstamp = 0; 5137 } 5138 EXPORT_SYMBOL_GPL(skb_scrub_packet); 5139 5140 /** 5141 * skb_gso_transport_seglen - Return length of individual segments of a gso packet 5142 * 5143 * @skb: GSO skb 5144 * 5145 * skb_gso_transport_seglen is used to determine the real size of the 5146 * individual segments, including Layer4 headers (TCP/UDP). 5147 * 5148 * The MAC/L2 or network (IP, IPv6) headers are not accounted for. 5149 */ 5150 static unsigned int skb_gso_transport_seglen(const struct sk_buff *skb) 5151 { 5152 const struct skb_shared_info *shinfo = skb_shinfo(skb); 5153 unsigned int thlen = 0; 5154 5155 if (skb->encapsulation) { 5156 thlen = skb_inner_transport_header(skb) - 5157 skb_transport_header(skb); 5158 5159 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) 5160 thlen += inner_tcp_hdrlen(skb); 5161 } else if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) { 5162 thlen = tcp_hdrlen(skb); 5163 } else if (unlikely(skb_is_gso_sctp(skb))) { 5164 thlen = sizeof(struct sctphdr); 5165 } else if (shinfo->gso_type & SKB_GSO_UDP_L4) { 5166 thlen = sizeof(struct udphdr); 5167 } 5168 /* UFO sets gso_size to the size of the fragmentation 5169 * payload, i.e. the size of the L4 (UDP) header is already 5170 * accounted for. 5171 */ 5172 return thlen + shinfo->gso_size; 5173 } 5174 5175 /** 5176 * skb_gso_network_seglen - Return length of individual segments of a gso packet 5177 * 5178 * @skb: GSO skb 5179 * 5180 * skb_gso_network_seglen is used to determine the real size of the 5181 * individual segments, including Layer3 (IP, IPv6) and L4 headers (TCP/UDP). 5182 * 5183 * The MAC/L2 header is not accounted for. 5184 */ 5185 static unsigned int skb_gso_network_seglen(const struct sk_buff *skb) 5186 { 5187 unsigned int hdr_len = skb_transport_header(skb) - 5188 skb_network_header(skb); 5189 5190 return hdr_len + skb_gso_transport_seglen(skb); 5191 } 5192 5193 /** 5194 * skb_gso_mac_seglen - Return length of individual segments of a gso packet 5195 * 5196 * @skb: GSO skb 5197 * 5198 * skb_gso_mac_seglen is used to determine the real size of the 5199 * individual segments, including MAC/L2, Layer3 (IP, IPv6) and L4 5200 * headers (TCP/UDP). 5201 */ 5202 static unsigned int skb_gso_mac_seglen(const struct sk_buff *skb) 5203 { 5204 unsigned int hdr_len = skb_transport_header(skb) - skb_mac_header(skb); 5205 5206 return hdr_len + skb_gso_transport_seglen(skb); 5207 } 5208 5209 /** 5210 * skb_gso_size_check - check the skb size, considering GSO_BY_FRAGS 5211 * 5212 * There are a couple of instances where we have a GSO skb, and we 5213 * want to determine what size it would be after it is segmented. 5214 * 5215 * We might want to check: 5216 * - L3+L4+payload size (e.g. IP forwarding) 5217 * - L2+L3+L4+payload size (e.g. sanity check before passing to driver) 5218 * 5219 * This is a helper to do that correctly considering GSO_BY_FRAGS. 5220 * 5221 * @skb: GSO skb 5222 * 5223 * @seg_len: The segmented length (from skb_gso_*_seglen). In the 5224 * GSO_BY_FRAGS case this will be [header sizes + GSO_BY_FRAGS]. 5225 * 5226 * @max_len: The maximum permissible length. 5227 * 5228 * Returns true if the segmented length <= max length. 5229 */ 5230 static inline bool skb_gso_size_check(const struct sk_buff *skb, 5231 unsigned int seg_len, 5232 unsigned int max_len) { 5233 const struct skb_shared_info *shinfo = skb_shinfo(skb); 5234 const struct sk_buff *iter; 5235 5236 if (shinfo->gso_size != GSO_BY_FRAGS) 5237 return seg_len <= max_len; 5238 5239 /* Undo this so we can re-use header sizes */ 5240 seg_len -= GSO_BY_FRAGS; 5241 5242 skb_walk_frags(skb, iter) { 5243 if (seg_len + skb_headlen(iter) > max_len) 5244 return false; 5245 } 5246 5247 return true; 5248 } 5249 5250 /** 5251 * skb_gso_validate_network_len - Will a split GSO skb fit into a given MTU? 5252 * 5253 * @skb: GSO skb 5254 * @mtu: MTU to validate against 5255 * 5256 * skb_gso_validate_network_len validates if a given skb will fit a 5257 * wanted MTU once split. It considers L3 headers, L4 headers, and the 5258 * payload. 5259 */ 5260 bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu) 5261 { 5262 return skb_gso_size_check(skb, skb_gso_network_seglen(skb), mtu); 5263 } 5264 EXPORT_SYMBOL_GPL(skb_gso_validate_network_len); 5265 5266 /** 5267 * skb_gso_validate_mac_len - Will a split GSO skb fit in a given length? 5268 * 5269 * @skb: GSO skb 5270 * @len: length to validate against 5271 * 5272 * skb_gso_validate_mac_len validates if a given skb will fit a wanted 5273 * length once split, including L2, L3 and L4 headers and the payload. 5274 */ 5275 bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len) 5276 { 5277 return skb_gso_size_check(skb, skb_gso_mac_seglen(skb), len); 5278 } 5279 EXPORT_SYMBOL_GPL(skb_gso_validate_mac_len); 5280 5281 static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb) 5282 { 5283 int mac_len, meta_len; 5284 void *meta; 5285 5286 if (skb_cow(skb, skb_headroom(skb)) < 0) { 5287 kfree_skb(skb); 5288 return NULL; 5289 } 5290 5291 mac_len = skb->data - skb_mac_header(skb); 5292 if (likely(mac_len > VLAN_HLEN + ETH_TLEN)) { 5293 memmove(skb_mac_header(skb) + VLAN_HLEN, skb_mac_header(skb), 5294 mac_len - VLAN_HLEN - ETH_TLEN); 5295 } 5296 5297 meta_len = skb_metadata_len(skb); 5298 if (meta_len) { 5299 meta = skb_metadata_end(skb) - meta_len; 5300 memmove(meta + VLAN_HLEN, meta, meta_len); 5301 } 5302 5303 skb->mac_header += VLAN_HLEN; 5304 return skb; 5305 } 5306 5307 struct sk_buff *skb_vlan_untag(struct sk_buff *skb) 5308 { 5309 struct vlan_hdr *vhdr; 5310 u16 vlan_tci; 5311 5312 if (unlikely(skb_vlan_tag_present(skb))) { 5313 /* vlan_tci is already set-up so leave this for another time */ 5314 return skb; 5315 } 5316 5317 skb = skb_share_check(skb, GFP_ATOMIC); 5318 if (unlikely(!skb)) 5319 goto err_free; 5320 5321 if (unlikely(!pskb_may_pull(skb, VLAN_HLEN))) 5322 goto err_free; 5323 5324 vhdr = (struct vlan_hdr *)skb->data; 5325 vlan_tci = ntohs(vhdr->h_vlan_TCI); 5326 __vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci); 5327 5328 skb_pull_rcsum(skb, VLAN_HLEN); 5329 vlan_set_encap_proto(skb, vhdr); 5330 5331 skb = skb_reorder_vlan_header(skb); 5332 if (unlikely(!skb)) 5333 goto err_free; 5334 5335 skb_reset_network_header(skb); 5336 skb_reset_transport_header(skb); 5337 skb_reset_mac_len(skb); 5338 5339 return skb; 5340 5341 err_free: 5342 kfree_skb(skb); 5343 return NULL; 5344 } 5345 EXPORT_SYMBOL(skb_vlan_untag); 5346 5347 int skb_ensure_writable(struct sk_buff *skb, int write_len) 5348 { 5349 if (!pskb_may_pull(skb, write_len)) 5350 return -ENOMEM; 5351 5352 if (!skb_cloned(skb) || skb_clone_writable(skb, write_len)) 5353 return 0; 5354 5355 return pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 5356 } 5357 EXPORT_SYMBOL(skb_ensure_writable); 5358 5359 /* remove VLAN header from packet and update csum accordingly. 5360 * expects a non skb_vlan_tag_present skb with a vlan tag payload 5361 */ 5362 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci) 5363 { 5364 struct vlan_hdr *vhdr; 5365 int offset = skb->data - skb_mac_header(skb); 5366 int err; 5367 5368 if (WARN_ONCE(offset, 5369 "__skb_vlan_pop got skb with skb->data not at mac header (offset %d)\n", 5370 offset)) { 5371 return -EINVAL; 5372 } 5373 5374 err = skb_ensure_writable(skb, VLAN_ETH_HLEN); 5375 if (unlikely(err)) 5376 return err; 5377 5378 skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN); 5379 5380 vhdr = (struct vlan_hdr *)(skb->data + ETH_HLEN); 5381 *vlan_tci = ntohs(vhdr->h_vlan_TCI); 5382 5383 memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN); 5384 __skb_pull(skb, VLAN_HLEN); 5385 5386 vlan_set_encap_proto(skb, vhdr); 5387 skb->mac_header += VLAN_HLEN; 5388 5389 if (skb_network_offset(skb) < ETH_HLEN) 5390 skb_set_network_header(skb, ETH_HLEN); 5391 5392 skb_reset_mac_len(skb); 5393 5394 return err; 5395 } 5396 EXPORT_SYMBOL(__skb_vlan_pop); 5397 5398 /* Pop a vlan tag either from hwaccel or from payload. 5399 * Expects skb->data at mac header. 5400 */ 5401 int skb_vlan_pop(struct sk_buff *skb) 5402 { 5403 u16 vlan_tci; 5404 __be16 vlan_proto; 5405 int err; 5406 5407 if (likely(skb_vlan_tag_present(skb))) { 5408 __vlan_hwaccel_clear_tag(skb); 5409 } else { 5410 if (unlikely(!eth_type_vlan(skb->protocol))) 5411 return 0; 5412 5413 err = __skb_vlan_pop(skb, &vlan_tci); 5414 if (err) 5415 return err; 5416 } 5417 /* move next vlan tag to hw accel tag */ 5418 if (likely(!eth_type_vlan(skb->protocol))) 5419 return 0; 5420 5421 vlan_proto = skb->protocol; 5422 err = __skb_vlan_pop(skb, &vlan_tci); 5423 if (unlikely(err)) 5424 return err; 5425 5426 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci); 5427 return 0; 5428 } 5429 EXPORT_SYMBOL(skb_vlan_pop); 5430 5431 /* Push a vlan tag either into hwaccel or into payload (if hwaccel tag present). 5432 * Expects skb->data at mac header. 5433 */ 5434 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci) 5435 { 5436 if (skb_vlan_tag_present(skb)) { 5437 int offset = skb->data - skb_mac_header(skb); 5438 int err; 5439 5440 if (WARN_ONCE(offset, 5441 "skb_vlan_push got skb with skb->data not at mac header (offset %d)\n", 5442 offset)) { 5443 return -EINVAL; 5444 } 5445 5446 err = __vlan_insert_tag(skb, skb->vlan_proto, 5447 skb_vlan_tag_get(skb)); 5448 if (err) 5449 return err; 5450 5451 skb->protocol = skb->vlan_proto; 5452 skb->mac_len += VLAN_HLEN; 5453 5454 skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN); 5455 } 5456 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci); 5457 return 0; 5458 } 5459 EXPORT_SYMBOL(skb_vlan_push); 5460 5461 /* Update the ethertype of hdr and the skb csum value if required. */ 5462 static void skb_mod_eth_type(struct sk_buff *skb, struct ethhdr *hdr, 5463 __be16 ethertype) 5464 { 5465 if (skb->ip_summed == CHECKSUM_COMPLETE) { 5466 __be16 diff[] = { ~hdr->h_proto, ethertype }; 5467 5468 skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum); 5469 } 5470 5471 hdr->h_proto = ethertype; 5472 } 5473 5474 /** 5475 * skb_mpls_push() - push a new MPLS header after the mac header 5476 * 5477 * @skb: buffer 5478 * @mpls_lse: MPLS label stack entry to push 5479 * @mpls_proto: ethertype of the new MPLS header (expects 0x8847 or 0x8848) 5480 * 5481 * Expects skb->data at mac header. 5482 * 5483 * Returns 0 on success, -errno otherwise. 5484 */ 5485 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto) 5486 { 5487 struct mpls_shim_hdr *lse; 5488 int err; 5489 5490 if (unlikely(!eth_p_mpls(mpls_proto))) 5491 return -EINVAL; 5492 5493 /* Networking stack does not allow simultaneous Tunnel and MPLS GSO. */ 5494 if (skb->encapsulation) 5495 return -EINVAL; 5496 5497 err = skb_cow_head(skb, MPLS_HLEN); 5498 if (unlikely(err)) 5499 return err; 5500 5501 if (!skb->inner_protocol) { 5502 skb_set_inner_network_header(skb, skb->mac_len); 5503 skb_set_inner_protocol(skb, skb->protocol); 5504 } 5505 5506 skb_push(skb, MPLS_HLEN); 5507 memmove(skb_mac_header(skb) - MPLS_HLEN, skb_mac_header(skb), 5508 skb->mac_len); 5509 skb_reset_mac_header(skb); 5510 skb_set_network_header(skb, skb->mac_len); 5511 5512 lse = mpls_hdr(skb); 5513 lse->label_stack_entry = mpls_lse; 5514 skb_postpush_rcsum(skb, lse, MPLS_HLEN); 5515 5516 if (skb->dev && skb->dev->type == ARPHRD_ETHER) 5517 skb_mod_eth_type(skb, eth_hdr(skb), mpls_proto); 5518 skb->protocol = mpls_proto; 5519 5520 return 0; 5521 } 5522 EXPORT_SYMBOL_GPL(skb_mpls_push); 5523 5524 /** 5525 * skb_mpls_pop() - pop the outermost MPLS header 5526 * 5527 * @skb: buffer 5528 * @next_proto: ethertype of header after popped MPLS header 5529 * 5530 * Expects skb->data at mac header. 5531 * 5532 * Returns 0 on success, -errno otherwise. 5533 */ 5534 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto) 5535 { 5536 int err; 5537 5538 if (unlikely(!eth_p_mpls(skb->protocol))) 5539 return -EINVAL; 5540 5541 err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN); 5542 if (unlikely(err)) 5543 return err; 5544 5545 skb_postpull_rcsum(skb, mpls_hdr(skb), MPLS_HLEN); 5546 memmove(skb_mac_header(skb) + MPLS_HLEN, skb_mac_header(skb), 5547 skb->mac_len); 5548 5549 __skb_pull(skb, MPLS_HLEN); 5550 skb_reset_mac_header(skb); 5551 skb_set_network_header(skb, skb->mac_len); 5552 5553 if (skb->dev && skb->dev->type == ARPHRD_ETHER) { 5554 struct ethhdr *hdr; 5555 5556 /* use mpls_hdr() to get ethertype to account for VLANs. */ 5557 hdr = (struct ethhdr *)((void *)mpls_hdr(skb) - ETH_HLEN); 5558 skb_mod_eth_type(skb, hdr, next_proto); 5559 } 5560 skb->protocol = next_proto; 5561 5562 return 0; 5563 } 5564 EXPORT_SYMBOL_GPL(skb_mpls_pop); 5565 5566 /** 5567 * skb_mpls_update_lse() - modify outermost MPLS header and update csum 5568 * 5569 * @skb: buffer 5570 * @mpls_lse: new MPLS label stack entry to update to 5571 * 5572 * Expects skb->data at mac header. 5573 * 5574 * Returns 0 on success, -errno otherwise. 5575 */ 5576 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse) 5577 { 5578 int err; 5579 5580 if (unlikely(!eth_p_mpls(skb->protocol))) 5581 return -EINVAL; 5582 5583 err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN); 5584 if (unlikely(err)) 5585 return err; 5586 5587 if (skb->ip_summed == CHECKSUM_COMPLETE) { 5588 __be32 diff[] = { ~mpls_hdr(skb)->label_stack_entry, mpls_lse }; 5589 5590 skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum); 5591 } 5592 5593 mpls_hdr(skb)->label_stack_entry = mpls_lse; 5594 5595 return 0; 5596 } 5597 EXPORT_SYMBOL_GPL(skb_mpls_update_lse); 5598 5599 /** 5600 * skb_mpls_dec_ttl() - decrement the TTL of the outermost MPLS header 5601 * 5602 * @skb: buffer 5603 * 5604 * Expects skb->data at mac header. 5605 * 5606 * Returns 0 on success, -errno otherwise. 5607 */ 5608 int skb_mpls_dec_ttl(struct sk_buff *skb) 5609 { 5610 u32 lse; 5611 u8 ttl; 5612 5613 if (unlikely(!eth_p_mpls(skb->protocol))) 5614 return -EINVAL; 5615 5616 lse = be32_to_cpu(mpls_hdr(skb)->label_stack_entry); 5617 ttl = (lse & MPLS_LS_TTL_MASK) >> MPLS_LS_TTL_SHIFT; 5618 if (!--ttl) 5619 return -EINVAL; 5620 5621 lse &= ~MPLS_LS_TTL_MASK; 5622 lse |= ttl << MPLS_LS_TTL_SHIFT; 5623 5624 return skb_mpls_update_lse(skb, cpu_to_be32(lse)); 5625 } 5626 EXPORT_SYMBOL_GPL(skb_mpls_dec_ttl); 5627 5628 /** 5629 * alloc_skb_with_frags - allocate skb with page frags 5630 * 5631 * @header_len: size of linear part 5632 * @data_len: needed length in frags 5633 * @max_page_order: max page order desired. 5634 * @errcode: pointer to error code if any 5635 * @gfp_mask: allocation mask 5636 * 5637 * This can be used to allocate a paged skb, given a maximal order for frags. 5638 */ 5639 struct sk_buff *alloc_skb_with_frags(unsigned long header_len, 5640 unsigned long data_len, 5641 int max_page_order, 5642 int *errcode, 5643 gfp_t gfp_mask) 5644 { 5645 int npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT; 5646 unsigned long chunk; 5647 struct sk_buff *skb; 5648 struct page *page; 5649 int i; 5650 5651 *errcode = -EMSGSIZE; 5652 /* Note this test could be relaxed, if we succeed to allocate 5653 * high order pages... 5654 */ 5655 if (npages > MAX_SKB_FRAGS) 5656 return NULL; 5657 5658 *errcode = -ENOBUFS; 5659 skb = alloc_skb(header_len, gfp_mask); 5660 if (!skb) 5661 return NULL; 5662 5663 skb->truesize += npages << PAGE_SHIFT; 5664 5665 for (i = 0; npages > 0; i++) { 5666 int order = max_page_order; 5667 5668 while (order) { 5669 if (npages >= 1 << order) { 5670 page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) | 5671 __GFP_COMP | 5672 __GFP_NOWARN, 5673 order); 5674 if (page) 5675 goto fill_page; 5676 /* Do not retry other high order allocations */ 5677 order = 1; 5678 max_page_order = 0; 5679 } 5680 order--; 5681 } 5682 page = alloc_page(gfp_mask); 5683 if (!page) 5684 goto failure; 5685 fill_page: 5686 chunk = min_t(unsigned long, data_len, 5687 PAGE_SIZE << order); 5688 skb_fill_page_desc(skb, i, page, 0, chunk); 5689 data_len -= chunk; 5690 npages -= 1 << order; 5691 } 5692 return skb; 5693 5694 failure: 5695 kfree_skb(skb); 5696 return NULL; 5697 } 5698 EXPORT_SYMBOL(alloc_skb_with_frags); 5699 5700 /* carve out the first off bytes from skb when off < headlen */ 5701 static int pskb_carve_inside_header(struct sk_buff *skb, const u32 off, 5702 const int headlen, gfp_t gfp_mask) 5703 { 5704 int i; 5705 int size = skb_end_offset(skb); 5706 int new_hlen = headlen - off; 5707 u8 *data; 5708 5709 size = SKB_DATA_ALIGN(size); 5710 5711 if (skb_pfmemalloc(skb)) 5712 gfp_mask |= __GFP_MEMALLOC; 5713 data = kmalloc_reserve(size + 5714 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)), 5715 gfp_mask, NUMA_NO_NODE, NULL); 5716 if (!data) 5717 return -ENOMEM; 5718 5719 size = SKB_WITH_OVERHEAD(ksize(data)); 5720 5721 /* Copy real data, and all frags */ 5722 skb_copy_from_linear_data_offset(skb, off, data, new_hlen); 5723 skb->len -= off; 5724 5725 memcpy((struct skb_shared_info *)(data + size), 5726 skb_shinfo(skb), 5727 offsetof(struct skb_shared_info, 5728 frags[skb_shinfo(skb)->nr_frags])); 5729 if (skb_cloned(skb)) { 5730 /* drop the old head gracefully */ 5731 if (skb_orphan_frags(skb, gfp_mask)) { 5732 kfree(data); 5733 return -ENOMEM; 5734 } 5735 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 5736 skb_frag_ref(skb, i); 5737 if (skb_has_frag_list(skb)) 5738 skb_clone_fraglist(skb); 5739 skb_release_data(skb); 5740 } else { 5741 /* we can reuse existing recount- all we did was 5742 * relocate values 5743 */ 5744 skb_free_head(skb); 5745 } 5746 5747 skb->head = data; 5748 skb->data = data; 5749 skb->head_frag = 0; 5750 #ifdef NET_SKBUFF_DATA_USES_OFFSET 5751 skb->end = size; 5752 #else 5753 skb->end = skb->head + size; 5754 #endif 5755 skb_set_tail_pointer(skb, skb_headlen(skb)); 5756 skb_headers_offset_update(skb, 0); 5757 skb->cloned = 0; 5758 skb->hdr_len = 0; 5759 skb->nohdr = 0; 5760 atomic_set(&skb_shinfo(skb)->dataref, 1); 5761 5762 return 0; 5763 } 5764 5765 static int pskb_carve(struct sk_buff *skb, const u32 off, gfp_t gfp); 5766 5767 /* carve out the first eat bytes from skb's frag_list. May recurse into 5768 * pskb_carve() 5769 */ 5770 static int pskb_carve_frag_list(struct sk_buff *skb, 5771 struct skb_shared_info *shinfo, int eat, 5772 gfp_t gfp_mask) 5773 { 5774 struct sk_buff *list = shinfo->frag_list; 5775 struct sk_buff *clone = NULL; 5776 struct sk_buff *insp = NULL; 5777 5778 do { 5779 if (!list) { 5780 pr_err("Not enough bytes to eat. Want %d\n", eat); 5781 return -EFAULT; 5782 } 5783 if (list->len <= eat) { 5784 /* Eaten as whole. */ 5785 eat -= list->len; 5786 list = list->next; 5787 insp = list; 5788 } else { 5789 /* Eaten partially. */ 5790 if (skb_shared(list)) { 5791 clone = skb_clone(list, gfp_mask); 5792 if (!clone) 5793 return -ENOMEM; 5794 insp = list->next; 5795 list = clone; 5796 } else { 5797 /* This may be pulled without problems. */ 5798 insp = list; 5799 } 5800 if (pskb_carve(list, eat, gfp_mask) < 0) { 5801 kfree_skb(clone); 5802 return -ENOMEM; 5803 } 5804 break; 5805 } 5806 } while (eat); 5807 5808 /* Free pulled out fragments. */ 5809 while ((list = shinfo->frag_list) != insp) { 5810 shinfo->frag_list = list->next; 5811 kfree_skb(list); 5812 } 5813 /* And insert new clone at head. */ 5814 if (clone) { 5815 clone->next = list; 5816 shinfo->frag_list = clone; 5817 } 5818 return 0; 5819 } 5820 5821 /* carve off first len bytes from skb. Split line (off) is in the 5822 * non-linear part of skb 5823 */ 5824 static int pskb_carve_inside_nonlinear(struct sk_buff *skb, const u32 off, 5825 int pos, gfp_t gfp_mask) 5826 { 5827 int i, k = 0; 5828 int size = skb_end_offset(skb); 5829 u8 *data; 5830 const int nfrags = skb_shinfo(skb)->nr_frags; 5831 struct skb_shared_info *shinfo; 5832 5833 size = SKB_DATA_ALIGN(size); 5834 5835 if (skb_pfmemalloc(skb)) 5836 gfp_mask |= __GFP_MEMALLOC; 5837 data = kmalloc_reserve(size + 5838 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)), 5839 gfp_mask, NUMA_NO_NODE, NULL); 5840 if (!data) 5841 return -ENOMEM; 5842 5843 size = SKB_WITH_OVERHEAD(ksize(data)); 5844 5845 memcpy((struct skb_shared_info *)(data + size), 5846 skb_shinfo(skb), offsetof(struct skb_shared_info, 5847 frags[skb_shinfo(skb)->nr_frags])); 5848 if (skb_orphan_frags(skb, gfp_mask)) { 5849 kfree(data); 5850 return -ENOMEM; 5851 } 5852 shinfo = (struct skb_shared_info *)(data + size); 5853 for (i = 0; i < nfrags; i++) { 5854 int fsize = skb_frag_size(&skb_shinfo(skb)->frags[i]); 5855 5856 if (pos + fsize > off) { 5857 shinfo->frags[k] = skb_shinfo(skb)->frags[i]; 5858 5859 if (pos < off) { 5860 /* Split frag. 5861 * We have two variants in this case: 5862 * 1. Move all the frag to the second 5863 * part, if it is possible. F.e. 5864 * this approach is mandatory for TUX, 5865 * where splitting is expensive. 5866 * 2. Split is accurately. We make this. 5867 */ 5868 skb_frag_off_add(&shinfo->frags[0], off - pos); 5869 skb_frag_size_sub(&shinfo->frags[0], off - pos); 5870 } 5871 skb_frag_ref(skb, i); 5872 k++; 5873 } 5874 pos += fsize; 5875 } 5876 shinfo->nr_frags = k; 5877 if (skb_has_frag_list(skb)) 5878 skb_clone_fraglist(skb); 5879 5880 if (k == 0) { 5881 /* split line is in frag list */ 5882 pskb_carve_frag_list(skb, shinfo, off - pos, gfp_mask); 5883 } 5884 skb_release_data(skb); 5885 5886 skb->head = data; 5887 skb->head_frag = 0; 5888 skb->data = data; 5889 #ifdef NET_SKBUFF_DATA_USES_OFFSET 5890 skb->end = size; 5891 #else 5892 skb->end = skb->head + size; 5893 #endif 5894 skb_reset_tail_pointer(skb); 5895 skb_headers_offset_update(skb, 0); 5896 skb->cloned = 0; 5897 skb->hdr_len = 0; 5898 skb->nohdr = 0; 5899 skb->len -= off; 5900 skb->data_len = skb->len; 5901 atomic_set(&skb_shinfo(skb)->dataref, 1); 5902 return 0; 5903 } 5904 5905 /* remove len bytes from the beginning of the skb */ 5906 static int pskb_carve(struct sk_buff *skb, const u32 len, gfp_t gfp) 5907 { 5908 int headlen = skb_headlen(skb); 5909 5910 if (len < headlen) 5911 return pskb_carve_inside_header(skb, len, headlen, gfp); 5912 else 5913 return pskb_carve_inside_nonlinear(skb, len, headlen, gfp); 5914 } 5915 5916 /* Extract to_copy bytes starting at off from skb, and return this in 5917 * a new skb 5918 */ 5919 struct sk_buff *pskb_extract(struct sk_buff *skb, int off, 5920 int to_copy, gfp_t gfp) 5921 { 5922 struct sk_buff *clone = skb_clone(skb, gfp); 5923 5924 if (!clone) 5925 return NULL; 5926 5927 if (pskb_carve(clone, off, gfp) < 0 || 5928 pskb_trim(clone, to_copy)) { 5929 kfree_skb(clone); 5930 return NULL; 5931 } 5932 return clone; 5933 } 5934 EXPORT_SYMBOL(pskb_extract); 5935 5936 /** 5937 * skb_condense - try to get rid of fragments/frag_list if possible 5938 * @skb: buffer 5939 * 5940 * Can be used to save memory before skb is added to a busy queue. 5941 * If packet has bytes in frags and enough tail room in skb->head, 5942 * pull all of them, so that we can free the frags right now and adjust 5943 * truesize. 5944 * Notes: 5945 * We do not reallocate skb->head thus can not fail. 5946 * Caller must re-evaluate skb->truesize if needed. 5947 */ 5948 void skb_condense(struct sk_buff *skb) 5949 { 5950 if (skb->data_len) { 5951 if (skb->data_len > skb->end - skb->tail || 5952 skb_cloned(skb)) 5953 return; 5954 5955 /* Nice, we can free page frag(s) right now */ 5956 __pskb_pull_tail(skb, skb->data_len); 5957 } 5958 /* At this point, skb->truesize might be over estimated, 5959 * because skb had a fragment, and fragments do not tell 5960 * their truesize. 5961 * When we pulled its content into skb->head, fragment 5962 * was freed, but __pskb_pull_tail() could not possibly 5963 * adjust skb->truesize, not knowing the frag truesize. 5964 */ 5965 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb)); 5966 } 5967 5968 #ifdef CONFIG_SKB_EXTENSIONS 5969 static void *skb_ext_get_ptr(struct skb_ext *ext, enum skb_ext_id id) 5970 { 5971 return (void *)ext + (ext->offset[id] * SKB_EXT_ALIGN_VALUE); 5972 } 5973 5974 static struct skb_ext *skb_ext_alloc(void) 5975 { 5976 struct skb_ext *new = kmem_cache_alloc(skbuff_ext_cache, GFP_ATOMIC); 5977 5978 if (new) { 5979 memset(new->offset, 0, sizeof(new->offset)); 5980 refcount_set(&new->refcnt, 1); 5981 } 5982 5983 return new; 5984 } 5985 5986 static struct skb_ext *skb_ext_maybe_cow(struct skb_ext *old, 5987 unsigned int old_active) 5988 { 5989 struct skb_ext *new; 5990 5991 if (refcount_read(&old->refcnt) == 1) 5992 return old; 5993 5994 new = kmem_cache_alloc(skbuff_ext_cache, GFP_ATOMIC); 5995 if (!new) 5996 return NULL; 5997 5998 memcpy(new, old, old->chunks * SKB_EXT_ALIGN_VALUE); 5999 refcount_set(&new->refcnt, 1); 6000 6001 #ifdef CONFIG_XFRM 6002 if (old_active & (1 << SKB_EXT_SEC_PATH)) { 6003 struct sec_path *sp = skb_ext_get_ptr(old, SKB_EXT_SEC_PATH); 6004 unsigned int i; 6005 6006 for (i = 0; i < sp->len; i++) 6007 xfrm_state_hold(sp->xvec[i]); 6008 } 6009 #endif 6010 __skb_ext_put(old); 6011 return new; 6012 } 6013 6014 /** 6015 * skb_ext_add - allocate space for given extension, COW if needed 6016 * @skb: buffer 6017 * @id: extension to allocate space for 6018 * 6019 * Allocates enough space for the given extension. 6020 * If the extension is already present, a pointer to that extension 6021 * is returned. 6022 * 6023 * If the skb was cloned, COW applies and the returned memory can be 6024 * modified without changing the extension space of clones buffers. 6025 * 6026 * Returns pointer to the extension or NULL on allocation failure. 6027 */ 6028 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id) 6029 { 6030 struct skb_ext *new, *old = NULL; 6031 unsigned int newlen, newoff; 6032 6033 if (skb->active_extensions) { 6034 old = skb->extensions; 6035 6036 new = skb_ext_maybe_cow(old, skb->active_extensions); 6037 if (!new) 6038 return NULL; 6039 6040 if (__skb_ext_exist(new, id)) 6041 goto set_active; 6042 6043 newoff = new->chunks; 6044 } else { 6045 newoff = SKB_EXT_CHUNKSIZEOF(*new); 6046 6047 new = skb_ext_alloc(); 6048 if (!new) 6049 return NULL; 6050 } 6051 6052 newlen = newoff + skb_ext_type_len[id]; 6053 new->chunks = newlen; 6054 new->offset[id] = newoff; 6055 set_active: 6056 skb->extensions = new; 6057 skb->active_extensions |= 1 << id; 6058 return skb_ext_get_ptr(new, id); 6059 } 6060 EXPORT_SYMBOL(skb_ext_add); 6061 6062 #ifdef CONFIG_XFRM 6063 static void skb_ext_put_sp(struct sec_path *sp) 6064 { 6065 unsigned int i; 6066 6067 for (i = 0; i < sp->len; i++) 6068 xfrm_state_put(sp->xvec[i]); 6069 } 6070 #endif 6071 6072 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id) 6073 { 6074 struct skb_ext *ext = skb->extensions; 6075 6076 skb->active_extensions &= ~(1 << id); 6077 if (skb->active_extensions == 0) { 6078 skb->extensions = NULL; 6079 __skb_ext_put(ext); 6080 #ifdef CONFIG_XFRM 6081 } else if (id == SKB_EXT_SEC_PATH && 6082 refcount_read(&ext->refcnt) == 1) { 6083 struct sec_path *sp = skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH); 6084 6085 skb_ext_put_sp(sp); 6086 sp->len = 0; 6087 #endif 6088 } 6089 } 6090 EXPORT_SYMBOL(__skb_ext_del); 6091 6092 void __skb_ext_put(struct skb_ext *ext) 6093 { 6094 /* If this is last clone, nothing can increment 6095 * it after check passes. Avoids one atomic op. 6096 */ 6097 if (refcount_read(&ext->refcnt) == 1) 6098 goto free_now; 6099 6100 if (!refcount_dec_and_test(&ext->refcnt)) 6101 return; 6102 free_now: 6103 #ifdef CONFIG_XFRM 6104 if (__skb_ext_exist(ext, SKB_EXT_SEC_PATH)) 6105 skb_ext_put_sp(skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH)); 6106 #endif 6107 6108 kmem_cache_free(skbuff_ext_cache, ext); 6109 } 6110 EXPORT_SYMBOL(__skb_ext_put); 6111 #endif /* CONFIG_SKB_EXTENSIONS */ 6112