1 /* 2 * Routines having to do with the 'struct sk_buff' memory handlers. 3 * 4 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk> 5 * Florian La Roche <rzsfl@rz.uni-sb.de> 6 * 7 * Fixes: 8 * Alan Cox : Fixed the worst of the load 9 * balancer bugs. 10 * Dave Platt : Interrupt stacking fix. 11 * Richard Kooijman : Timestamp fixes. 12 * Alan Cox : Changed buffer format. 13 * Alan Cox : destructor hook for AF_UNIX etc. 14 * Linus Torvalds : Better skb_clone. 15 * Alan Cox : Added skb_copy. 16 * Alan Cox : Added all the changed routines Linus 17 * only put in the headers 18 * Ray VanTassle : Fixed --skb->lock in free 19 * Alan Cox : skb_copy copy arp field 20 * Andi Kleen : slabified it. 21 * Robert Olsson : Removed skb_head_pool 22 * 23 * NOTE: 24 * The __skb_ routines should be called with interrupts 25 * disabled, or you better be *real* sure that the operation is atomic 26 * with respect to whatever list is being frobbed (e.g. via lock_sock() 27 * or via disabling bottom half handlers, etc). 28 * 29 * This program is free software; you can redistribute it and/or 30 * modify it under the terms of the GNU General Public License 31 * as published by the Free Software Foundation; either version 32 * 2 of the License, or (at your option) any later version. 33 */ 34 35 /* 36 * The functions in this file will not compile correctly with gcc 2.4.x 37 */ 38 39 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 40 41 #include <linux/module.h> 42 #include <linux/types.h> 43 #include <linux/kernel.h> 44 #include <linux/kmemcheck.h> 45 #include <linux/mm.h> 46 #include <linux/interrupt.h> 47 #include <linux/in.h> 48 #include <linux/inet.h> 49 #include <linux/slab.h> 50 #include <linux/tcp.h> 51 #include <linux/udp.h> 52 #include <linux/sctp.h> 53 #include <linux/netdevice.h> 54 #ifdef CONFIG_NET_CLS_ACT 55 #include <net/pkt_sched.h> 56 #endif 57 #include <linux/string.h> 58 #include <linux/skbuff.h> 59 #include <linux/splice.h> 60 #include <linux/cache.h> 61 #include <linux/rtnetlink.h> 62 #include <linux/init.h> 63 #include <linux/scatterlist.h> 64 #include <linux/errqueue.h> 65 #include <linux/prefetch.h> 66 #include <linux/if_vlan.h> 67 68 #include <net/protocol.h> 69 #include <net/dst.h> 70 #include <net/sock.h> 71 #include <net/checksum.h> 72 #include <net/ip6_checksum.h> 73 #include <net/xfrm.h> 74 75 #include <linux/uaccess.h> 76 #include <trace/events/skb.h> 77 #include <linux/highmem.h> 78 #include <linux/capability.h> 79 #include <linux/user_namespace.h> 80 81 struct kmem_cache *skbuff_head_cache __read_mostly; 82 static struct kmem_cache *skbuff_fclone_cache __read_mostly; 83 int sysctl_max_skb_frags __read_mostly = MAX_SKB_FRAGS; 84 EXPORT_SYMBOL(sysctl_max_skb_frags); 85 86 /** 87 * skb_panic - private function for out-of-line support 88 * @skb: buffer 89 * @sz: size 90 * @addr: address 91 * @msg: skb_over_panic or skb_under_panic 92 * 93 * Out-of-line support for skb_put() and skb_push(). 94 * Called via the wrapper skb_over_panic() or skb_under_panic(). 95 * Keep out of line to prevent kernel bloat. 96 * __builtin_return_address is not used because it is not always reliable. 97 */ 98 static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr, 99 const char msg[]) 100 { 101 pr_emerg("%s: text:%p len:%d put:%d head:%p data:%p tail:%#lx end:%#lx dev:%s\n", 102 msg, addr, skb->len, sz, skb->head, skb->data, 103 (unsigned long)skb->tail, (unsigned long)skb->end, 104 skb->dev ? skb->dev->name : "<NULL>"); 105 BUG(); 106 } 107 108 static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr) 109 { 110 skb_panic(skb, sz, addr, __func__); 111 } 112 113 static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr) 114 { 115 skb_panic(skb, sz, addr, __func__); 116 } 117 118 /* 119 * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells 120 * the caller if emergency pfmemalloc reserves are being used. If it is and 121 * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves 122 * may be used. Otherwise, the packet data may be discarded until enough 123 * memory is free 124 */ 125 #define kmalloc_reserve(size, gfp, node, pfmemalloc) \ 126 __kmalloc_reserve(size, gfp, node, _RET_IP_, pfmemalloc) 127 128 static void *__kmalloc_reserve(size_t size, gfp_t flags, int node, 129 unsigned long ip, bool *pfmemalloc) 130 { 131 void *obj; 132 bool ret_pfmemalloc = false; 133 134 /* 135 * Try a regular allocation, when that fails and we're not entitled 136 * to the reserves, fail. 137 */ 138 obj = kmalloc_node_track_caller(size, 139 flags | __GFP_NOMEMALLOC | __GFP_NOWARN, 140 node); 141 if (obj || !(gfp_pfmemalloc_allowed(flags))) 142 goto out; 143 144 /* Try again but now we are using pfmemalloc reserves */ 145 ret_pfmemalloc = true; 146 obj = kmalloc_node_track_caller(size, flags, node); 147 148 out: 149 if (pfmemalloc) 150 *pfmemalloc = ret_pfmemalloc; 151 152 return obj; 153 } 154 155 /* Allocate a new skbuff. We do this ourselves so we can fill in a few 156 * 'private' fields and also do memory statistics to find all the 157 * [BEEP] leaks. 158 * 159 */ 160 161 struct sk_buff *__alloc_skb_head(gfp_t gfp_mask, int node) 162 { 163 struct sk_buff *skb; 164 165 /* Get the HEAD */ 166 skb = kmem_cache_alloc_node(skbuff_head_cache, 167 gfp_mask & ~__GFP_DMA, node); 168 if (!skb) 169 goto out; 170 171 /* 172 * Only clear those fields we need to clear, not those that we will 173 * actually initialise below. Hence, don't put any more fields after 174 * the tail pointer in struct sk_buff! 175 */ 176 memset(skb, 0, offsetof(struct sk_buff, tail)); 177 skb->head = NULL; 178 skb->truesize = sizeof(struct sk_buff); 179 atomic_set(&skb->users, 1); 180 181 skb->mac_header = (typeof(skb->mac_header))~0U; 182 out: 183 return skb; 184 } 185 186 /** 187 * __alloc_skb - allocate a network buffer 188 * @size: size to allocate 189 * @gfp_mask: allocation mask 190 * @flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache 191 * instead of head cache and allocate a cloned (child) skb. 192 * If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for 193 * allocations in case the data is required for writeback 194 * @node: numa node to allocate memory on 195 * 196 * Allocate a new &sk_buff. The returned buffer has no headroom and a 197 * tail room of at least size bytes. The object has a reference count 198 * of one. The return is the buffer. On a failure the return is %NULL. 199 * 200 * Buffers may only be allocated from interrupts using a @gfp_mask of 201 * %GFP_ATOMIC. 202 */ 203 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask, 204 int flags, int node) 205 { 206 struct kmem_cache *cache; 207 struct skb_shared_info *shinfo; 208 struct sk_buff *skb; 209 u8 *data; 210 bool pfmemalloc; 211 212 cache = (flags & SKB_ALLOC_FCLONE) 213 ? skbuff_fclone_cache : skbuff_head_cache; 214 215 if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX)) 216 gfp_mask |= __GFP_MEMALLOC; 217 218 /* Get the HEAD */ 219 skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node); 220 if (!skb) 221 goto out; 222 prefetchw(skb); 223 224 /* We do our best to align skb_shared_info on a separate cache 225 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives 226 * aligned memory blocks, unless SLUB/SLAB debug is enabled. 227 * Both skb->head and skb_shared_info are cache line aligned. 228 */ 229 size = SKB_DATA_ALIGN(size); 230 size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 231 data = kmalloc_reserve(size, gfp_mask, node, &pfmemalloc); 232 if (!data) 233 goto nodata; 234 /* kmalloc(size) might give us more room than requested. 235 * Put skb_shared_info exactly at the end of allocated zone, 236 * to allow max possible filling before reallocation. 237 */ 238 size = SKB_WITH_OVERHEAD(ksize(data)); 239 prefetchw(data + size); 240 241 /* 242 * Only clear those fields we need to clear, not those that we will 243 * actually initialise below. Hence, don't put any more fields after 244 * the tail pointer in struct sk_buff! 245 */ 246 memset(skb, 0, offsetof(struct sk_buff, tail)); 247 /* Account for allocated memory : skb + skb->head */ 248 skb->truesize = SKB_TRUESIZE(size); 249 skb->pfmemalloc = pfmemalloc; 250 atomic_set(&skb->users, 1); 251 skb->head = data; 252 skb->data = data; 253 skb_reset_tail_pointer(skb); 254 skb->end = skb->tail + size; 255 skb->mac_header = (typeof(skb->mac_header))~0U; 256 skb->transport_header = (typeof(skb->transport_header))~0U; 257 258 /* make sure we initialize shinfo sequentially */ 259 shinfo = skb_shinfo(skb); 260 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref)); 261 atomic_set(&shinfo->dataref, 1); 262 kmemcheck_annotate_variable(shinfo->destructor_arg); 263 264 if (flags & SKB_ALLOC_FCLONE) { 265 struct sk_buff_fclones *fclones; 266 267 fclones = container_of(skb, struct sk_buff_fclones, skb1); 268 269 kmemcheck_annotate_bitfield(&fclones->skb2, flags1); 270 skb->fclone = SKB_FCLONE_ORIG; 271 atomic_set(&fclones->fclone_ref, 1); 272 273 fclones->skb2.fclone = SKB_FCLONE_CLONE; 274 fclones->skb2.pfmemalloc = pfmemalloc; 275 } 276 out: 277 return skb; 278 nodata: 279 kmem_cache_free(cache, skb); 280 skb = NULL; 281 goto out; 282 } 283 EXPORT_SYMBOL(__alloc_skb); 284 285 /** 286 * __build_skb - build a network buffer 287 * @data: data buffer provided by caller 288 * @frag_size: size of data, or 0 if head was kmalloced 289 * 290 * Allocate a new &sk_buff. Caller provides space holding head and 291 * skb_shared_info. @data must have been allocated by kmalloc() only if 292 * @frag_size is 0, otherwise data should come from the page allocator 293 * or vmalloc() 294 * The return is the new skb buffer. 295 * On a failure the return is %NULL, and @data is not freed. 296 * Notes : 297 * Before IO, driver allocates only data buffer where NIC put incoming frame 298 * Driver should add room at head (NET_SKB_PAD) and 299 * MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info)) 300 * After IO, driver calls build_skb(), to allocate sk_buff and populate it 301 * before giving packet to stack. 302 * RX rings only contains data buffers, not full skbs. 303 */ 304 struct sk_buff *__build_skb(void *data, unsigned int frag_size) 305 { 306 struct skb_shared_info *shinfo; 307 struct sk_buff *skb; 308 unsigned int size = frag_size ? : ksize(data); 309 310 skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC); 311 if (!skb) 312 return NULL; 313 314 size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 315 316 memset(skb, 0, offsetof(struct sk_buff, tail)); 317 skb->truesize = SKB_TRUESIZE(size); 318 atomic_set(&skb->users, 1); 319 skb->head = data; 320 skb->data = data; 321 skb_reset_tail_pointer(skb); 322 skb->end = skb->tail + size; 323 skb->mac_header = (typeof(skb->mac_header))~0U; 324 skb->transport_header = (typeof(skb->transport_header))~0U; 325 326 /* make sure we initialize shinfo sequentially */ 327 shinfo = skb_shinfo(skb); 328 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref)); 329 atomic_set(&shinfo->dataref, 1); 330 kmemcheck_annotate_variable(shinfo->destructor_arg); 331 332 return skb; 333 } 334 335 /* build_skb() is wrapper over __build_skb(), that specifically 336 * takes care of skb->head and skb->pfmemalloc 337 * This means that if @frag_size is not zero, then @data must be backed 338 * by a page fragment, not kmalloc() or vmalloc() 339 */ 340 struct sk_buff *build_skb(void *data, unsigned int frag_size) 341 { 342 struct sk_buff *skb = __build_skb(data, frag_size); 343 344 if (skb && frag_size) { 345 skb->head_frag = 1; 346 if (page_is_pfmemalloc(virt_to_head_page(data))) 347 skb->pfmemalloc = 1; 348 } 349 return skb; 350 } 351 EXPORT_SYMBOL(build_skb); 352 353 #define NAPI_SKB_CACHE_SIZE 64 354 355 struct napi_alloc_cache { 356 struct page_frag_cache page; 357 unsigned int skb_count; 358 void *skb_cache[NAPI_SKB_CACHE_SIZE]; 359 }; 360 361 static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache); 362 static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache); 363 364 static void *__netdev_alloc_frag(unsigned int fragsz, gfp_t gfp_mask) 365 { 366 struct page_frag_cache *nc; 367 unsigned long flags; 368 void *data; 369 370 local_irq_save(flags); 371 nc = this_cpu_ptr(&netdev_alloc_cache); 372 data = page_frag_alloc(nc, fragsz, gfp_mask); 373 local_irq_restore(flags); 374 return data; 375 } 376 377 /** 378 * netdev_alloc_frag - allocate a page fragment 379 * @fragsz: fragment size 380 * 381 * Allocates a frag from a page for receive buffer. 382 * Uses GFP_ATOMIC allocations. 383 */ 384 void *netdev_alloc_frag(unsigned int fragsz) 385 { 386 return __netdev_alloc_frag(fragsz, GFP_ATOMIC | __GFP_COLD); 387 } 388 EXPORT_SYMBOL(netdev_alloc_frag); 389 390 static void *__napi_alloc_frag(unsigned int fragsz, gfp_t gfp_mask) 391 { 392 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 393 394 return page_frag_alloc(&nc->page, fragsz, gfp_mask); 395 } 396 397 void *napi_alloc_frag(unsigned int fragsz) 398 { 399 return __napi_alloc_frag(fragsz, GFP_ATOMIC | __GFP_COLD); 400 } 401 EXPORT_SYMBOL(napi_alloc_frag); 402 403 /** 404 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device 405 * @dev: network device to receive on 406 * @len: length to allocate 407 * @gfp_mask: get_free_pages mask, passed to alloc_skb 408 * 409 * Allocate a new &sk_buff and assign it a usage count of one. The 410 * buffer has NET_SKB_PAD headroom built in. Users should allocate 411 * the headroom they think they need without accounting for the 412 * built in space. The built in space is used for optimisations. 413 * 414 * %NULL is returned if there is no free memory. 415 */ 416 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len, 417 gfp_t gfp_mask) 418 { 419 struct page_frag_cache *nc; 420 unsigned long flags; 421 struct sk_buff *skb; 422 bool pfmemalloc; 423 void *data; 424 425 len += NET_SKB_PAD; 426 427 if ((len > SKB_WITH_OVERHEAD(PAGE_SIZE)) || 428 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) { 429 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE); 430 if (!skb) 431 goto skb_fail; 432 goto skb_success; 433 } 434 435 len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 436 len = SKB_DATA_ALIGN(len); 437 438 if (sk_memalloc_socks()) 439 gfp_mask |= __GFP_MEMALLOC; 440 441 local_irq_save(flags); 442 443 nc = this_cpu_ptr(&netdev_alloc_cache); 444 data = page_frag_alloc(nc, len, gfp_mask); 445 pfmemalloc = nc->pfmemalloc; 446 447 local_irq_restore(flags); 448 449 if (unlikely(!data)) 450 return NULL; 451 452 skb = __build_skb(data, len); 453 if (unlikely(!skb)) { 454 skb_free_frag(data); 455 return NULL; 456 } 457 458 /* use OR instead of assignment to avoid clearing of bits in mask */ 459 if (pfmemalloc) 460 skb->pfmemalloc = 1; 461 skb->head_frag = 1; 462 463 skb_success: 464 skb_reserve(skb, NET_SKB_PAD); 465 skb->dev = dev; 466 467 skb_fail: 468 return skb; 469 } 470 EXPORT_SYMBOL(__netdev_alloc_skb); 471 472 /** 473 * __napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance 474 * @napi: napi instance this buffer was allocated for 475 * @len: length to allocate 476 * @gfp_mask: get_free_pages mask, passed to alloc_skb and alloc_pages 477 * 478 * Allocate a new sk_buff for use in NAPI receive. This buffer will 479 * attempt to allocate the head from a special reserved region used 480 * only for NAPI Rx allocation. By doing this we can save several 481 * CPU cycles by avoiding having to disable and re-enable IRQs. 482 * 483 * %NULL is returned if there is no free memory. 484 */ 485 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, unsigned int len, 486 gfp_t gfp_mask) 487 { 488 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 489 struct sk_buff *skb; 490 void *data; 491 492 len += NET_SKB_PAD + NET_IP_ALIGN; 493 494 if ((len > SKB_WITH_OVERHEAD(PAGE_SIZE)) || 495 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) { 496 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE); 497 if (!skb) 498 goto skb_fail; 499 goto skb_success; 500 } 501 502 len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 503 len = SKB_DATA_ALIGN(len); 504 505 if (sk_memalloc_socks()) 506 gfp_mask |= __GFP_MEMALLOC; 507 508 data = page_frag_alloc(&nc->page, len, gfp_mask); 509 if (unlikely(!data)) 510 return NULL; 511 512 skb = __build_skb(data, len); 513 if (unlikely(!skb)) { 514 skb_free_frag(data); 515 return NULL; 516 } 517 518 /* use OR instead of assignment to avoid clearing of bits in mask */ 519 if (nc->page.pfmemalloc) 520 skb->pfmemalloc = 1; 521 skb->head_frag = 1; 522 523 skb_success: 524 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN); 525 skb->dev = napi->dev; 526 527 skb_fail: 528 return skb; 529 } 530 EXPORT_SYMBOL(__napi_alloc_skb); 531 532 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off, 533 int size, unsigned int truesize) 534 { 535 skb_fill_page_desc(skb, i, page, off, size); 536 skb->len += size; 537 skb->data_len += size; 538 skb->truesize += truesize; 539 } 540 EXPORT_SYMBOL(skb_add_rx_frag); 541 542 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size, 543 unsigned int truesize) 544 { 545 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 546 547 skb_frag_size_add(frag, size); 548 skb->len += size; 549 skb->data_len += size; 550 skb->truesize += truesize; 551 } 552 EXPORT_SYMBOL(skb_coalesce_rx_frag); 553 554 static void skb_drop_list(struct sk_buff **listp) 555 { 556 kfree_skb_list(*listp); 557 *listp = NULL; 558 } 559 560 static inline void skb_drop_fraglist(struct sk_buff *skb) 561 { 562 skb_drop_list(&skb_shinfo(skb)->frag_list); 563 } 564 565 static void skb_clone_fraglist(struct sk_buff *skb) 566 { 567 struct sk_buff *list; 568 569 skb_walk_frags(skb, list) 570 skb_get(list); 571 } 572 573 static void skb_free_head(struct sk_buff *skb) 574 { 575 unsigned char *head = skb->head; 576 577 if (skb->head_frag) 578 skb_free_frag(head); 579 else 580 kfree(head); 581 } 582 583 static void skb_release_data(struct sk_buff *skb) 584 { 585 struct skb_shared_info *shinfo = skb_shinfo(skb); 586 int i; 587 588 if (skb->cloned && 589 atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1, 590 &shinfo->dataref)) 591 return; 592 593 for (i = 0; i < shinfo->nr_frags; i++) 594 __skb_frag_unref(&shinfo->frags[i]); 595 596 /* 597 * If skb buf is from userspace, we need to notify the caller 598 * the lower device DMA has done; 599 */ 600 if (shinfo->tx_flags & SKBTX_DEV_ZEROCOPY) { 601 struct ubuf_info *uarg; 602 603 uarg = shinfo->destructor_arg; 604 if (uarg->callback) 605 uarg->callback(uarg, true); 606 } 607 608 if (shinfo->frag_list) 609 kfree_skb_list(shinfo->frag_list); 610 611 skb_free_head(skb); 612 } 613 614 /* 615 * Free an skbuff by memory without cleaning the state. 616 */ 617 static void kfree_skbmem(struct sk_buff *skb) 618 { 619 struct sk_buff_fclones *fclones; 620 621 switch (skb->fclone) { 622 case SKB_FCLONE_UNAVAILABLE: 623 kmem_cache_free(skbuff_head_cache, skb); 624 return; 625 626 case SKB_FCLONE_ORIG: 627 fclones = container_of(skb, struct sk_buff_fclones, skb1); 628 629 /* We usually free the clone (TX completion) before original skb 630 * This test would have no chance to be true for the clone, 631 * while here, branch prediction will be good. 632 */ 633 if (atomic_read(&fclones->fclone_ref) == 1) 634 goto fastpath; 635 break; 636 637 default: /* SKB_FCLONE_CLONE */ 638 fclones = container_of(skb, struct sk_buff_fclones, skb2); 639 break; 640 } 641 if (!atomic_dec_and_test(&fclones->fclone_ref)) 642 return; 643 fastpath: 644 kmem_cache_free(skbuff_fclone_cache, fclones); 645 } 646 647 static void skb_release_head_state(struct sk_buff *skb) 648 { 649 skb_dst_drop(skb); 650 #ifdef CONFIG_XFRM 651 secpath_put(skb->sp); 652 #endif 653 if (skb->destructor) { 654 WARN_ON(in_irq()); 655 skb->destructor(skb); 656 } 657 #if IS_ENABLED(CONFIG_NF_CONNTRACK) 658 nf_conntrack_put(skb->nfct); 659 #endif 660 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 661 nf_bridge_put(skb->nf_bridge); 662 #endif 663 } 664 665 /* Free everything but the sk_buff shell. */ 666 static void skb_release_all(struct sk_buff *skb) 667 { 668 skb_release_head_state(skb); 669 if (likely(skb->head)) 670 skb_release_data(skb); 671 } 672 673 /** 674 * __kfree_skb - private function 675 * @skb: buffer 676 * 677 * Free an sk_buff. Release anything attached to the buffer. 678 * Clean the state. This is an internal helper function. Users should 679 * always call kfree_skb 680 */ 681 682 void __kfree_skb(struct sk_buff *skb) 683 { 684 skb_release_all(skb); 685 kfree_skbmem(skb); 686 } 687 EXPORT_SYMBOL(__kfree_skb); 688 689 /** 690 * kfree_skb - free an sk_buff 691 * @skb: buffer to free 692 * 693 * Drop a reference to the buffer and free it if the usage count has 694 * hit zero. 695 */ 696 void kfree_skb(struct sk_buff *skb) 697 { 698 if (unlikely(!skb)) 699 return; 700 if (likely(atomic_read(&skb->users) == 1)) 701 smp_rmb(); 702 else if (likely(!atomic_dec_and_test(&skb->users))) 703 return; 704 trace_kfree_skb(skb, __builtin_return_address(0)); 705 __kfree_skb(skb); 706 } 707 EXPORT_SYMBOL(kfree_skb); 708 709 void kfree_skb_list(struct sk_buff *segs) 710 { 711 while (segs) { 712 struct sk_buff *next = segs->next; 713 714 kfree_skb(segs); 715 segs = next; 716 } 717 } 718 EXPORT_SYMBOL(kfree_skb_list); 719 720 /** 721 * skb_tx_error - report an sk_buff xmit error 722 * @skb: buffer that triggered an error 723 * 724 * Report xmit error if a device callback is tracking this skb. 725 * skb must be freed afterwards. 726 */ 727 void skb_tx_error(struct sk_buff *skb) 728 { 729 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) { 730 struct ubuf_info *uarg; 731 732 uarg = skb_shinfo(skb)->destructor_arg; 733 if (uarg->callback) 734 uarg->callback(uarg, false); 735 skb_shinfo(skb)->tx_flags &= ~SKBTX_DEV_ZEROCOPY; 736 } 737 } 738 EXPORT_SYMBOL(skb_tx_error); 739 740 /** 741 * consume_skb - free an skbuff 742 * @skb: buffer to free 743 * 744 * Drop a ref to the buffer and free it if the usage count has hit zero 745 * Functions identically to kfree_skb, but kfree_skb assumes that the frame 746 * is being dropped after a failure and notes that 747 */ 748 void consume_skb(struct sk_buff *skb) 749 { 750 if (unlikely(!skb)) 751 return; 752 if (likely(atomic_read(&skb->users) == 1)) 753 smp_rmb(); 754 else if (likely(!atomic_dec_and_test(&skb->users))) 755 return; 756 trace_consume_skb(skb); 757 __kfree_skb(skb); 758 } 759 EXPORT_SYMBOL(consume_skb); 760 761 void __kfree_skb_flush(void) 762 { 763 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 764 765 /* flush skb_cache if containing objects */ 766 if (nc->skb_count) { 767 kmem_cache_free_bulk(skbuff_head_cache, nc->skb_count, 768 nc->skb_cache); 769 nc->skb_count = 0; 770 } 771 } 772 773 static inline void _kfree_skb_defer(struct sk_buff *skb) 774 { 775 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 776 777 /* drop skb->head and call any destructors for packet */ 778 skb_release_all(skb); 779 780 /* record skb to CPU local list */ 781 nc->skb_cache[nc->skb_count++] = skb; 782 783 #ifdef CONFIG_SLUB 784 /* SLUB writes into objects when freeing */ 785 prefetchw(skb); 786 #endif 787 788 /* flush skb_cache if it is filled */ 789 if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) { 790 kmem_cache_free_bulk(skbuff_head_cache, NAPI_SKB_CACHE_SIZE, 791 nc->skb_cache); 792 nc->skb_count = 0; 793 } 794 } 795 void __kfree_skb_defer(struct sk_buff *skb) 796 { 797 _kfree_skb_defer(skb); 798 } 799 800 void napi_consume_skb(struct sk_buff *skb, int budget) 801 { 802 if (unlikely(!skb)) 803 return; 804 805 /* Zero budget indicate non-NAPI context called us, like netpoll */ 806 if (unlikely(!budget)) { 807 dev_consume_skb_any(skb); 808 return; 809 } 810 811 if (likely(atomic_read(&skb->users) == 1)) 812 smp_rmb(); 813 else if (likely(!atomic_dec_and_test(&skb->users))) 814 return; 815 /* if reaching here SKB is ready to free */ 816 trace_consume_skb(skb); 817 818 /* if SKB is a clone, don't handle this case */ 819 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) { 820 __kfree_skb(skb); 821 return; 822 } 823 824 _kfree_skb_defer(skb); 825 } 826 EXPORT_SYMBOL(napi_consume_skb); 827 828 /* Make sure a field is enclosed inside headers_start/headers_end section */ 829 #define CHECK_SKB_FIELD(field) \ 830 BUILD_BUG_ON(offsetof(struct sk_buff, field) < \ 831 offsetof(struct sk_buff, headers_start)); \ 832 BUILD_BUG_ON(offsetof(struct sk_buff, field) > \ 833 offsetof(struct sk_buff, headers_end)); \ 834 835 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old) 836 { 837 new->tstamp = old->tstamp; 838 /* We do not copy old->sk */ 839 new->dev = old->dev; 840 memcpy(new->cb, old->cb, sizeof(old->cb)); 841 skb_dst_copy(new, old); 842 #ifdef CONFIG_XFRM 843 new->sp = secpath_get(old->sp); 844 #endif 845 __nf_copy(new, old, false); 846 847 /* Note : this field could be in headers_start/headers_end section 848 * It is not yet because we do not want to have a 16 bit hole 849 */ 850 new->queue_mapping = old->queue_mapping; 851 852 memcpy(&new->headers_start, &old->headers_start, 853 offsetof(struct sk_buff, headers_end) - 854 offsetof(struct sk_buff, headers_start)); 855 CHECK_SKB_FIELD(protocol); 856 CHECK_SKB_FIELD(csum); 857 CHECK_SKB_FIELD(hash); 858 CHECK_SKB_FIELD(priority); 859 CHECK_SKB_FIELD(skb_iif); 860 CHECK_SKB_FIELD(vlan_proto); 861 CHECK_SKB_FIELD(vlan_tci); 862 CHECK_SKB_FIELD(transport_header); 863 CHECK_SKB_FIELD(network_header); 864 CHECK_SKB_FIELD(mac_header); 865 CHECK_SKB_FIELD(inner_protocol); 866 CHECK_SKB_FIELD(inner_transport_header); 867 CHECK_SKB_FIELD(inner_network_header); 868 CHECK_SKB_FIELD(inner_mac_header); 869 CHECK_SKB_FIELD(mark); 870 #ifdef CONFIG_NETWORK_SECMARK 871 CHECK_SKB_FIELD(secmark); 872 #endif 873 #ifdef CONFIG_NET_RX_BUSY_POLL 874 CHECK_SKB_FIELD(napi_id); 875 #endif 876 #ifdef CONFIG_XPS 877 CHECK_SKB_FIELD(sender_cpu); 878 #endif 879 #ifdef CONFIG_NET_SCHED 880 CHECK_SKB_FIELD(tc_index); 881 #ifdef CONFIG_NET_CLS_ACT 882 CHECK_SKB_FIELD(tc_verd); 883 #endif 884 #endif 885 886 } 887 888 /* 889 * You should not add any new code to this function. Add it to 890 * __copy_skb_header above instead. 891 */ 892 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb) 893 { 894 #define C(x) n->x = skb->x 895 896 n->next = n->prev = NULL; 897 n->sk = NULL; 898 __copy_skb_header(n, skb); 899 900 C(len); 901 C(data_len); 902 C(mac_len); 903 n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len; 904 n->cloned = 1; 905 n->nohdr = 0; 906 n->destructor = NULL; 907 C(tail); 908 C(end); 909 C(head); 910 C(head_frag); 911 C(data); 912 C(truesize); 913 atomic_set(&n->users, 1); 914 915 atomic_inc(&(skb_shinfo(skb)->dataref)); 916 skb->cloned = 1; 917 918 return n; 919 #undef C 920 } 921 922 /** 923 * skb_morph - morph one skb into another 924 * @dst: the skb to receive the contents 925 * @src: the skb to supply the contents 926 * 927 * This is identical to skb_clone except that the target skb is 928 * supplied by the user. 929 * 930 * The target skb is returned upon exit. 931 */ 932 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src) 933 { 934 skb_release_all(dst); 935 return __skb_clone(dst, src); 936 } 937 EXPORT_SYMBOL_GPL(skb_morph); 938 939 /** 940 * skb_copy_ubufs - copy userspace skb frags buffers to kernel 941 * @skb: the skb to modify 942 * @gfp_mask: allocation priority 943 * 944 * This must be called on SKBTX_DEV_ZEROCOPY skb. 945 * It will copy all frags into kernel and drop the reference 946 * to userspace pages. 947 * 948 * If this function is called from an interrupt gfp_mask() must be 949 * %GFP_ATOMIC. 950 * 951 * Returns 0 on success or a negative error code on failure 952 * to allocate kernel memory to copy to. 953 */ 954 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask) 955 { 956 int i; 957 int num_frags = skb_shinfo(skb)->nr_frags; 958 struct page *page, *head = NULL; 959 struct ubuf_info *uarg = skb_shinfo(skb)->destructor_arg; 960 961 for (i = 0; i < num_frags; i++) { 962 u8 *vaddr; 963 skb_frag_t *f = &skb_shinfo(skb)->frags[i]; 964 965 page = alloc_page(gfp_mask); 966 if (!page) { 967 while (head) { 968 struct page *next = (struct page *)page_private(head); 969 put_page(head); 970 head = next; 971 } 972 return -ENOMEM; 973 } 974 vaddr = kmap_atomic(skb_frag_page(f)); 975 memcpy(page_address(page), 976 vaddr + f->page_offset, skb_frag_size(f)); 977 kunmap_atomic(vaddr); 978 set_page_private(page, (unsigned long)head); 979 head = page; 980 } 981 982 /* skb frags release userspace buffers */ 983 for (i = 0; i < num_frags; i++) 984 skb_frag_unref(skb, i); 985 986 uarg->callback(uarg, false); 987 988 /* skb frags point to kernel buffers */ 989 for (i = num_frags - 1; i >= 0; i--) { 990 __skb_fill_page_desc(skb, i, head, 0, 991 skb_shinfo(skb)->frags[i].size); 992 head = (struct page *)page_private(head); 993 } 994 995 skb_shinfo(skb)->tx_flags &= ~SKBTX_DEV_ZEROCOPY; 996 return 0; 997 } 998 EXPORT_SYMBOL_GPL(skb_copy_ubufs); 999 1000 /** 1001 * skb_clone - duplicate an sk_buff 1002 * @skb: buffer to clone 1003 * @gfp_mask: allocation priority 1004 * 1005 * Duplicate an &sk_buff. The new one is not owned by a socket. Both 1006 * copies share the same packet data but not structure. The new 1007 * buffer has a reference count of 1. If the allocation fails the 1008 * function returns %NULL otherwise the new buffer is returned. 1009 * 1010 * If this function is called from an interrupt gfp_mask() must be 1011 * %GFP_ATOMIC. 1012 */ 1013 1014 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask) 1015 { 1016 struct sk_buff_fclones *fclones = container_of(skb, 1017 struct sk_buff_fclones, 1018 skb1); 1019 struct sk_buff *n; 1020 1021 if (skb_orphan_frags(skb, gfp_mask)) 1022 return NULL; 1023 1024 if (skb->fclone == SKB_FCLONE_ORIG && 1025 atomic_read(&fclones->fclone_ref) == 1) { 1026 n = &fclones->skb2; 1027 atomic_set(&fclones->fclone_ref, 2); 1028 } else { 1029 if (skb_pfmemalloc(skb)) 1030 gfp_mask |= __GFP_MEMALLOC; 1031 1032 n = kmem_cache_alloc(skbuff_head_cache, gfp_mask); 1033 if (!n) 1034 return NULL; 1035 1036 kmemcheck_annotate_bitfield(n, flags1); 1037 n->fclone = SKB_FCLONE_UNAVAILABLE; 1038 } 1039 1040 return __skb_clone(n, skb); 1041 } 1042 EXPORT_SYMBOL(skb_clone); 1043 1044 static void skb_headers_offset_update(struct sk_buff *skb, int off) 1045 { 1046 /* Only adjust this if it actually is csum_start rather than csum */ 1047 if (skb->ip_summed == CHECKSUM_PARTIAL) 1048 skb->csum_start += off; 1049 /* {transport,network,mac}_header and tail are relative to skb->head */ 1050 skb->transport_header += off; 1051 skb->network_header += off; 1052 if (skb_mac_header_was_set(skb)) 1053 skb->mac_header += off; 1054 skb->inner_transport_header += off; 1055 skb->inner_network_header += off; 1056 skb->inner_mac_header += off; 1057 } 1058 1059 static void copy_skb_header(struct sk_buff *new, const struct sk_buff *old) 1060 { 1061 __copy_skb_header(new, old); 1062 1063 skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size; 1064 skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs; 1065 skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type; 1066 } 1067 1068 static inline int skb_alloc_rx_flag(const struct sk_buff *skb) 1069 { 1070 if (skb_pfmemalloc(skb)) 1071 return SKB_ALLOC_RX; 1072 return 0; 1073 } 1074 1075 /** 1076 * skb_copy - create private copy of an sk_buff 1077 * @skb: buffer to copy 1078 * @gfp_mask: allocation priority 1079 * 1080 * Make a copy of both an &sk_buff and its data. This is used when the 1081 * caller wishes to modify the data and needs a private copy of the 1082 * data to alter. Returns %NULL on failure or the pointer to the buffer 1083 * on success. The returned buffer has a reference count of 1. 1084 * 1085 * As by-product this function converts non-linear &sk_buff to linear 1086 * one, so that &sk_buff becomes completely private and caller is allowed 1087 * to modify all the data of returned buffer. This means that this 1088 * function is not recommended for use in circumstances when only 1089 * header is going to be modified. Use pskb_copy() instead. 1090 */ 1091 1092 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask) 1093 { 1094 int headerlen = skb_headroom(skb); 1095 unsigned int size = skb_end_offset(skb) + skb->data_len; 1096 struct sk_buff *n = __alloc_skb(size, gfp_mask, 1097 skb_alloc_rx_flag(skb), NUMA_NO_NODE); 1098 1099 if (!n) 1100 return NULL; 1101 1102 /* Set the data pointer */ 1103 skb_reserve(n, headerlen); 1104 /* Set the tail pointer and length */ 1105 skb_put(n, skb->len); 1106 1107 if (skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len)) 1108 BUG(); 1109 1110 copy_skb_header(n, skb); 1111 return n; 1112 } 1113 EXPORT_SYMBOL(skb_copy); 1114 1115 /** 1116 * __pskb_copy_fclone - create copy of an sk_buff with private head. 1117 * @skb: buffer to copy 1118 * @headroom: headroom of new skb 1119 * @gfp_mask: allocation priority 1120 * @fclone: if true allocate the copy of the skb from the fclone 1121 * cache instead of the head cache; it is recommended to set this 1122 * to true for the cases where the copy will likely be cloned 1123 * 1124 * Make a copy of both an &sk_buff and part of its data, located 1125 * in header. Fragmented data remain shared. This is used when 1126 * the caller wishes to modify only header of &sk_buff and needs 1127 * private copy of the header to alter. Returns %NULL on failure 1128 * or the pointer to the buffer on success. 1129 * The returned buffer has a reference count of 1. 1130 */ 1131 1132 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom, 1133 gfp_t gfp_mask, bool fclone) 1134 { 1135 unsigned int size = skb_headlen(skb) + headroom; 1136 int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0); 1137 struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE); 1138 1139 if (!n) 1140 goto out; 1141 1142 /* Set the data pointer */ 1143 skb_reserve(n, headroom); 1144 /* Set the tail pointer and length */ 1145 skb_put(n, skb_headlen(skb)); 1146 /* Copy the bytes */ 1147 skb_copy_from_linear_data(skb, n->data, n->len); 1148 1149 n->truesize += skb->data_len; 1150 n->data_len = skb->data_len; 1151 n->len = skb->len; 1152 1153 if (skb_shinfo(skb)->nr_frags) { 1154 int i; 1155 1156 if (skb_orphan_frags(skb, gfp_mask)) { 1157 kfree_skb(n); 1158 n = NULL; 1159 goto out; 1160 } 1161 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1162 skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i]; 1163 skb_frag_ref(skb, i); 1164 } 1165 skb_shinfo(n)->nr_frags = i; 1166 } 1167 1168 if (skb_has_frag_list(skb)) { 1169 skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list; 1170 skb_clone_fraglist(n); 1171 } 1172 1173 copy_skb_header(n, skb); 1174 out: 1175 return n; 1176 } 1177 EXPORT_SYMBOL(__pskb_copy_fclone); 1178 1179 /** 1180 * pskb_expand_head - reallocate header of &sk_buff 1181 * @skb: buffer to reallocate 1182 * @nhead: room to add at head 1183 * @ntail: room to add at tail 1184 * @gfp_mask: allocation priority 1185 * 1186 * Expands (or creates identical copy, if @nhead and @ntail are zero) 1187 * header of @skb. &sk_buff itself is not changed. &sk_buff MUST have 1188 * reference count of 1. Returns zero in the case of success or error, 1189 * if expansion failed. In the last case, &sk_buff is not changed. 1190 * 1191 * All the pointers pointing into skb header may change and must be 1192 * reloaded after call to this function. 1193 */ 1194 1195 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, 1196 gfp_t gfp_mask) 1197 { 1198 int i; 1199 u8 *data; 1200 int size = nhead + skb_end_offset(skb) + ntail; 1201 long off; 1202 1203 BUG_ON(nhead < 0); 1204 1205 if (skb_shared(skb)) 1206 BUG(); 1207 1208 size = SKB_DATA_ALIGN(size); 1209 1210 if (skb_pfmemalloc(skb)) 1211 gfp_mask |= __GFP_MEMALLOC; 1212 data = kmalloc_reserve(size + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)), 1213 gfp_mask, NUMA_NO_NODE, NULL); 1214 if (!data) 1215 goto nodata; 1216 size = SKB_WITH_OVERHEAD(ksize(data)); 1217 1218 /* Copy only real data... and, alas, header. This should be 1219 * optimized for the cases when header is void. 1220 */ 1221 memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head); 1222 1223 memcpy((struct skb_shared_info *)(data + size), 1224 skb_shinfo(skb), 1225 offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags])); 1226 1227 /* 1228 * if shinfo is shared we must drop the old head gracefully, but if it 1229 * is not we can just drop the old head and let the existing refcount 1230 * be since all we did is relocate the values 1231 */ 1232 if (skb_cloned(skb)) { 1233 /* copy this zero copy skb frags */ 1234 if (skb_orphan_frags(skb, gfp_mask)) 1235 goto nofrags; 1236 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 1237 skb_frag_ref(skb, i); 1238 1239 if (skb_has_frag_list(skb)) 1240 skb_clone_fraglist(skb); 1241 1242 skb_release_data(skb); 1243 } else { 1244 skb_free_head(skb); 1245 } 1246 off = (data + nhead) - skb->head; 1247 1248 skb->head = data; 1249 skb->head_frag = 0; 1250 skb->data += off; 1251 #ifdef NET_SKBUFF_DATA_USES_OFFSET 1252 skb->end = size; 1253 off = nhead; 1254 #else 1255 skb->end = skb->head + size; 1256 #endif 1257 skb->tail += off; 1258 skb_headers_offset_update(skb, nhead); 1259 skb->cloned = 0; 1260 skb->hdr_len = 0; 1261 skb->nohdr = 0; 1262 atomic_set(&skb_shinfo(skb)->dataref, 1); 1263 return 0; 1264 1265 nofrags: 1266 kfree(data); 1267 nodata: 1268 return -ENOMEM; 1269 } 1270 EXPORT_SYMBOL(pskb_expand_head); 1271 1272 /* Make private copy of skb with writable head and some headroom */ 1273 1274 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom) 1275 { 1276 struct sk_buff *skb2; 1277 int delta = headroom - skb_headroom(skb); 1278 1279 if (delta <= 0) 1280 skb2 = pskb_copy(skb, GFP_ATOMIC); 1281 else { 1282 skb2 = skb_clone(skb, GFP_ATOMIC); 1283 if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0, 1284 GFP_ATOMIC)) { 1285 kfree_skb(skb2); 1286 skb2 = NULL; 1287 } 1288 } 1289 return skb2; 1290 } 1291 EXPORT_SYMBOL(skb_realloc_headroom); 1292 1293 /** 1294 * skb_copy_expand - copy and expand sk_buff 1295 * @skb: buffer to copy 1296 * @newheadroom: new free bytes at head 1297 * @newtailroom: new free bytes at tail 1298 * @gfp_mask: allocation priority 1299 * 1300 * Make a copy of both an &sk_buff and its data and while doing so 1301 * allocate additional space. 1302 * 1303 * This is used when the caller wishes to modify the data and needs a 1304 * private copy of the data to alter as well as more space for new fields. 1305 * Returns %NULL on failure or the pointer to the buffer 1306 * on success. The returned buffer has a reference count of 1. 1307 * 1308 * You must pass %GFP_ATOMIC as the allocation priority if this function 1309 * is called from an interrupt. 1310 */ 1311 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, 1312 int newheadroom, int newtailroom, 1313 gfp_t gfp_mask) 1314 { 1315 /* 1316 * Allocate the copy buffer 1317 */ 1318 struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom, 1319 gfp_mask, skb_alloc_rx_flag(skb), 1320 NUMA_NO_NODE); 1321 int oldheadroom = skb_headroom(skb); 1322 int head_copy_len, head_copy_off; 1323 1324 if (!n) 1325 return NULL; 1326 1327 skb_reserve(n, newheadroom); 1328 1329 /* Set the tail pointer and length */ 1330 skb_put(n, skb->len); 1331 1332 head_copy_len = oldheadroom; 1333 head_copy_off = 0; 1334 if (newheadroom <= head_copy_len) 1335 head_copy_len = newheadroom; 1336 else 1337 head_copy_off = newheadroom - head_copy_len; 1338 1339 /* Copy the linear header and data. */ 1340 if (skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off, 1341 skb->len + head_copy_len)) 1342 BUG(); 1343 1344 copy_skb_header(n, skb); 1345 1346 skb_headers_offset_update(n, newheadroom - oldheadroom); 1347 1348 return n; 1349 } 1350 EXPORT_SYMBOL(skb_copy_expand); 1351 1352 /** 1353 * skb_pad - zero pad the tail of an skb 1354 * @skb: buffer to pad 1355 * @pad: space to pad 1356 * 1357 * Ensure that a buffer is followed by a padding area that is zero 1358 * filled. Used by network drivers which may DMA or transfer data 1359 * beyond the buffer end onto the wire. 1360 * 1361 * May return error in out of memory cases. The skb is freed on error. 1362 */ 1363 1364 int skb_pad(struct sk_buff *skb, int pad) 1365 { 1366 int err; 1367 int ntail; 1368 1369 /* If the skbuff is non linear tailroom is always zero.. */ 1370 if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) { 1371 memset(skb->data+skb->len, 0, pad); 1372 return 0; 1373 } 1374 1375 ntail = skb->data_len + pad - (skb->end - skb->tail); 1376 if (likely(skb_cloned(skb) || ntail > 0)) { 1377 err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC); 1378 if (unlikely(err)) 1379 goto free_skb; 1380 } 1381 1382 /* FIXME: The use of this function with non-linear skb's really needs 1383 * to be audited. 1384 */ 1385 err = skb_linearize(skb); 1386 if (unlikely(err)) 1387 goto free_skb; 1388 1389 memset(skb->data + skb->len, 0, pad); 1390 return 0; 1391 1392 free_skb: 1393 kfree_skb(skb); 1394 return err; 1395 } 1396 EXPORT_SYMBOL(skb_pad); 1397 1398 /** 1399 * pskb_put - add data to the tail of a potentially fragmented buffer 1400 * @skb: start of the buffer to use 1401 * @tail: tail fragment of the buffer to use 1402 * @len: amount of data to add 1403 * 1404 * This function extends the used data area of the potentially 1405 * fragmented buffer. @tail must be the last fragment of @skb -- or 1406 * @skb itself. If this would exceed the total buffer size the kernel 1407 * will panic. A pointer to the first byte of the extra data is 1408 * returned. 1409 */ 1410 1411 unsigned char *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len) 1412 { 1413 if (tail != skb) { 1414 skb->data_len += len; 1415 skb->len += len; 1416 } 1417 return skb_put(tail, len); 1418 } 1419 EXPORT_SYMBOL_GPL(pskb_put); 1420 1421 /** 1422 * skb_put - add data to a buffer 1423 * @skb: buffer to use 1424 * @len: amount of data to add 1425 * 1426 * This function extends the used data area of the buffer. If this would 1427 * exceed the total buffer size the kernel will panic. A pointer to the 1428 * first byte of the extra data is returned. 1429 */ 1430 unsigned char *skb_put(struct sk_buff *skb, unsigned int len) 1431 { 1432 unsigned char *tmp = skb_tail_pointer(skb); 1433 SKB_LINEAR_ASSERT(skb); 1434 skb->tail += len; 1435 skb->len += len; 1436 if (unlikely(skb->tail > skb->end)) 1437 skb_over_panic(skb, len, __builtin_return_address(0)); 1438 return tmp; 1439 } 1440 EXPORT_SYMBOL(skb_put); 1441 1442 /** 1443 * skb_push - add data to the start of a buffer 1444 * @skb: buffer to use 1445 * @len: amount of data to add 1446 * 1447 * This function extends the used data area of the buffer at the buffer 1448 * start. If this would exceed the total buffer headroom the kernel will 1449 * panic. A pointer to the first byte of the extra data is returned. 1450 */ 1451 unsigned char *skb_push(struct sk_buff *skb, unsigned int len) 1452 { 1453 skb->data -= len; 1454 skb->len += len; 1455 if (unlikely(skb->data<skb->head)) 1456 skb_under_panic(skb, len, __builtin_return_address(0)); 1457 return skb->data; 1458 } 1459 EXPORT_SYMBOL(skb_push); 1460 1461 /** 1462 * skb_pull - remove data from the start of a buffer 1463 * @skb: buffer to use 1464 * @len: amount of data to remove 1465 * 1466 * This function removes data from the start of a buffer, returning 1467 * the memory to the headroom. A pointer to the next data in the buffer 1468 * is returned. Once the data has been pulled future pushes will overwrite 1469 * the old data. 1470 */ 1471 unsigned char *skb_pull(struct sk_buff *skb, unsigned int len) 1472 { 1473 return skb_pull_inline(skb, len); 1474 } 1475 EXPORT_SYMBOL(skb_pull); 1476 1477 /** 1478 * skb_trim - remove end from a buffer 1479 * @skb: buffer to alter 1480 * @len: new length 1481 * 1482 * Cut the length of a buffer down by removing data from the tail. If 1483 * the buffer is already under the length specified it is not modified. 1484 * The skb must be linear. 1485 */ 1486 void skb_trim(struct sk_buff *skb, unsigned int len) 1487 { 1488 if (skb->len > len) 1489 __skb_trim(skb, len); 1490 } 1491 EXPORT_SYMBOL(skb_trim); 1492 1493 /* Trims skb to length len. It can change skb pointers. 1494 */ 1495 1496 int ___pskb_trim(struct sk_buff *skb, unsigned int len) 1497 { 1498 struct sk_buff **fragp; 1499 struct sk_buff *frag; 1500 int offset = skb_headlen(skb); 1501 int nfrags = skb_shinfo(skb)->nr_frags; 1502 int i; 1503 int err; 1504 1505 if (skb_cloned(skb) && 1506 unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))) 1507 return err; 1508 1509 i = 0; 1510 if (offset >= len) 1511 goto drop_pages; 1512 1513 for (; i < nfrags; i++) { 1514 int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]); 1515 1516 if (end < len) { 1517 offset = end; 1518 continue; 1519 } 1520 1521 skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset); 1522 1523 drop_pages: 1524 skb_shinfo(skb)->nr_frags = i; 1525 1526 for (; i < nfrags; i++) 1527 skb_frag_unref(skb, i); 1528 1529 if (skb_has_frag_list(skb)) 1530 skb_drop_fraglist(skb); 1531 goto done; 1532 } 1533 1534 for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp); 1535 fragp = &frag->next) { 1536 int end = offset + frag->len; 1537 1538 if (skb_shared(frag)) { 1539 struct sk_buff *nfrag; 1540 1541 nfrag = skb_clone(frag, GFP_ATOMIC); 1542 if (unlikely(!nfrag)) 1543 return -ENOMEM; 1544 1545 nfrag->next = frag->next; 1546 consume_skb(frag); 1547 frag = nfrag; 1548 *fragp = frag; 1549 } 1550 1551 if (end < len) { 1552 offset = end; 1553 continue; 1554 } 1555 1556 if (end > len && 1557 unlikely((err = pskb_trim(frag, len - offset)))) 1558 return err; 1559 1560 if (frag->next) 1561 skb_drop_list(&frag->next); 1562 break; 1563 } 1564 1565 done: 1566 if (len > skb_headlen(skb)) { 1567 skb->data_len -= skb->len - len; 1568 skb->len = len; 1569 } else { 1570 skb->len = len; 1571 skb->data_len = 0; 1572 skb_set_tail_pointer(skb, len); 1573 } 1574 1575 return 0; 1576 } 1577 EXPORT_SYMBOL(___pskb_trim); 1578 1579 /** 1580 * __pskb_pull_tail - advance tail of skb header 1581 * @skb: buffer to reallocate 1582 * @delta: number of bytes to advance tail 1583 * 1584 * The function makes a sense only on a fragmented &sk_buff, 1585 * it expands header moving its tail forward and copying necessary 1586 * data from fragmented part. 1587 * 1588 * &sk_buff MUST have reference count of 1. 1589 * 1590 * Returns %NULL (and &sk_buff does not change) if pull failed 1591 * or value of new tail of skb in the case of success. 1592 * 1593 * All the pointers pointing into skb header may change and must be 1594 * reloaded after call to this function. 1595 */ 1596 1597 /* Moves tail of skb head forward, copying data from fragmented part, 1598 * when it is necessary. 1599 * 1. It may fail due to malloc failure. 1600 * 2. It may change skb pointers. 1601 * 1602 * It is pretty complicated. Luckily, it is called only in exceptional cases. 1603 */ 1604 unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta) 1605 { 1606 /* If skb has not enough free space at tail, get new one 1607 * plus 128 bytes for future expansions. If we have enough 1608 * room at tail, reallocate without expansion only if skb is cloned. 1609 */ 1610 int i, k, eat = (skb->tail + delta) - skb->end; 1611 1612 if (eat > 0 || skb_cloned(skb)) { 1613 if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0, 1614 GFP_ATOMIC)) 1615 return NULL; 1616 } 1617 1618 if (skb_copy_bits(skb, skb_headlen(skb), skb_tail_pointer(skb), delta)) 1619 BUG(); 1620 1621 /* Optimization: no fragments, no reasons to preestimate 1622 * size of pulled pages. Superb. 1623 */ 1624 if (!skb_has_frag_list(skb)) 1625 goto pull_pages; 1626 1627 /* Estimate size of pulled pages. */ 1628 eat = delta; 1629 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1630 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 1631 1632 if (size >= eat) 1633 goto pull_pages; 1634 eat -= size; 1635 } 1636 1637 /* If we need update frag list, we are in troubles. 1638 * Certainly, it possible to add an offset to skb data, 1639 * but taking into account that pulling is expected to 1640 * be very rare operation, it is worth to fight against 1641 * further bloating skb head and crucify ourselves here instead. 1642 * Pure masohism, indeed. 8)8) 1643 */ 1644 if (eat) { 1645 struct sk_buff *list = skb_shinfo(skb)->frag_list; 1646 struct sk_buff *clone = NULL; 1647 struct sk_buff *insp = NULL; 1648 1649 do { 1650 BUG_ON(!list); 1651 1652 if (list->len <= eat) { 1653 /* Eaten as whole. */ 1654 eat -= list->len; 1655 list = list->next; 1656 insp = list; 1657 } else { 1658 /* Eaten partially. */ 1659 1660 if (skb_shared(list)) { 1661 /* Sucks! We need to fork list. :-( */ 1662 clone = skb_clone(list, GFP_ATOMIC); 1663 if (!clone) 1664 return NULL; 1665 insp = list->next; 1666 list = clone; 1667 } else { 1668 /* This may be pulled without 1669 * problems. */ 1670 insp = list; 1671 } 1672 if (!pskb_pull(list, eat)) { 1673 kfree_skb(clone); 1674 return NULL; 1675 } 1676 break; 1677 } 1678 } while (eat); 1679 1680 /* Free pulled out fragments. */ 1681 while ((list = skb_shinfo(skb)->frag_list) != insp) { 1682 skb_shinfo(skb)->frag_list = list->next; 1683 kfree_skb(list); 1684 } 1685 /* And insert new clone at head. */ 1686 if (clone) { 1687 clone->next = list; 1688 skb_shinfo(skb)->frag_list = clone; 1689 } 1690 } 1691 /* Success! Now we may commit changes to skb data. */ 1692 1693 pull_pages: 1694 eat = delta; 1695 k = 0; 1696 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1697 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 1698 1699 if (size <= eat) { 1700 skb_frag_unref(skb, i); 1701 eat -= size; 1702 } else { 1703 skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i]; 1704 if (eat) { 1705 skb_shinfo(skb)->frags[k].page_offset += eat; 1706 skb_frag_size_sub(&skb_shinfo(skb)->frags[k], eat); 1707 eat = 0; 1708 } 1709 k++; 1710 } 1711 } 1712 skb_shinfo(skb)->nr_frags = k; 1713 1714 skb->tail += delta; 1715 skb->data_len -= delta; 1716 1717 return skb_tail_pointer(skb); 1718 } 1719 EXPORT_SYMBOL(__pskb_pull_tail); 1720 1721 /** 1722 * skb_copy_bits - copy bits from skb to kernel buffer 1723 * @skb: source skb 1724 * @offset: offset in source 1725 * @to: destination buffer 1726 * @len: number of bytes to copy 1727 * 1728 * Copy the specified number of bytes from the source skb to the 1729 * destination buffer. 1730 * 1731 * CAUTION ! : 1732 * If its prototype is ever changed, 1733 * check arch/{*}/net/{*}.S files, 1734 * since it is called from BPF assembly code. 1735 */ 1736 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len) 1737 { 1738 int start = skb_headlen(skb); 1739 struct sk_buff *frag_iter; 1740 int i, copy; 1741 1742 if (offset > (int)skb->len - len) 1743 goto fault; 1744 1745 /* Copy header. */ 1746 if ((copy = start - offset) > 0) { 1747 if (copy > len) 1748 copy = len; 1749 skb_copy_from_linear_data_offset(skb, offset, to, copy); 1750 if ((len -= copy) == 0) 1751 return 0; 1752 offset += copy; 1753 to += copy; 1754 } 1755 1756 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1757 int end; 1758 skb_frag_t *f = &skb_shinfo(skb)->frags[i]; 1759 1760 WARN_ON(start > offset + len); 1761 1762 end = start + skb_frag_size(f); 1763 if ((copy = end - offset) > 0) { 1764 u8 *vaddr; 1765 1766 if (copy > len) 1767 copy = len; 1768 1769 vaddr = kmap_atomic(skb_frag_page(f)); 1770 memcpy(to, 1771 vaddr + f->page_offset + offset - start, 1772 copy); 1773 kunmap_atomic(vaddr); 1774 1775 if ((len -= copy) == 0) 1776 return 0; 1777 offset += copy; 1778 to += copy; 1779 } 1780 start = end; 1781 } 1782 1783 skb_walk_frags(skb, frag_iter) { 1784 int end; 1785 1786 WARN_ON(start > offset + len); 1787 1788 end = start + frag_iter->len; 1789 if ((copy = end - offset) > 0) { 1790 if (copy > len) 1791 copy = len; 1792 if (skb_copy_bits(frag_iter, offset - start, to, copy)) 1793 goto fault; 1794 if ((len -= copy) == 0) 1795 return 0; 1796 offset += copy; 1797 to += copy; 1798 } 1799 start = end; 1800 } 1801 1802 if (!len) 1803 return 0; 1804 1805 fault: 1806 return -EFAULT; 1807 } 1808 EXPORT_SYMBOL(skb_copy_bits); 1809 1810 /* 1811 * Callback from splice_to_pipe(), if we need to release some pages 1812 * at the end of the spd in case we error'ed out in filling the pipe. 1813 */ 1814 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i) 1815 { 1816 put_page(spd->pages[i]); 1817 } 1818 1819 static struct page *linear_to_page(struct page *page, unsigned int *len, 1820 unsigned int *offset, 1821 struct sock *sk) 1822 { 1823 struct page_frag *pfrag = sk_page_frag(sk); 1824 1825 if (!sk_page_frag_refill(sk, pfrag)) 1826 return NULL; 1827 1828 *len = min_t(unsigned int, *len, pfrag->size - pfrag->offset); 1829 1830 memcpy(page_address(pfrag->page) + pfrag->offset, 1831 page_address(page) + *offset, *len); 1832 *offset = pfrag->offset; 1833 pfrag->offset += *len; 1834 1835 return pfrag->page; 1836 } 1837 1838 static bool spd_can_coalesce(const struct splice_pipe_desc *spd, 1839 struct page *page, 1840 unsigned int offset) 1841 { 1842 return spd->nr_pages && 1843 spd->pages[spd->nr_pages - 1] == page && 1844 (spd->partial[spd->nr_pages - 1].offset + 1845 spd->partial[spd->nr_pages - 1].len == offset); 1846 } 1847 1848 /* 1849 * Fill page/offset/length into spd, if it can hold more pages. 1850 */ 1851 static bool spd_fill_page(struct splice_pipe_desc *spd, 1852 struct pipe_inode_info *pipe, struct page *page, 1853 unsigned int *len, unsigned int offset, 1854 bool linear, 1855 struct sock *sk) 1856 { 1857 if (unlikely(spd->nr_pages == MAX_SKB_FRAGS)) 1858 return true; 1859 1860 if (linear) { 1861 page = linear_to_page(page, len, &offset, sk); 1862 if (!page) 1863 return true; 1864 } 1865 if (spd_can_coalesce(spd, page, offset)) { 1866 spd->partial[spd->nr_pages - 1].len += *len; 1867 return false; 1868 } 1869 get_page(page); 1870 spd->pages[spd->nr_pages] = page; 1871 spd->partial[spd->nr_pages].len = *len; 1872 spd->partial[spd->nr_pages].offset = offset; 1873 spd->nr_pages++; 1874 1875 return false; 1876 } 1877 1878 static bool __splice_segment(struct page *page, unsigned int poff, 1879 unsigned int plen, unsigned int *off, 1880 unsigned int *len, 1881 struct splice_pipe_desc *spd, bool linear, 1882 struct sock *sk, 1883 struct pipe_inode_info *pipe) 1884 { 1885 if (!*len) 1886 return true; 1887 1888 /* skip this segment if already processed */ 1889 if (*off >= plen) { 1890 *off -= plen; 1891 return false; 1892 } 1893 1894 /* ignore any bits we already processed */ 1895 poff += *off; 1896 plen -= *off; 1897 *off = 0; 1898 1899 do { 1900 unsigned int flen = min(*len, plen); 1901 1902 if (spd_fill_page(spd, pipe, page, &flen, poff, 1903 linear, sk)) 1904 return true; 1905 poff += flen; 1906 plen -= flen; 1907 *len -= flen; 1908 } while (*len && plen); 1909 1910 return false; 1911 } 1912 1913 /* 1914 * Map linear and fragment data from the skb to spd. It reports true if the 1915 * pipe is full or if we already spliced the requested length. 1916 */ 1917 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe, 1918 unsigned int *offset, unsigned int *len, 1919 struct splice_pipe_desc *spd, struct sock *sk) 1920 { 1921 int seg; 1922 struct sk_buff *iter; 1923 1924 /* map the linear part : 1925 * If skb->head_frag is set, this 'linear' part is backed by a 1926 * fragment, and if the head is not shared with any clones then 1927 * we can avoid a copy since we own the head portion of this page. 1928 */ 1929 if (__splice_segment(virt_to_page(skb->data), 1930 (unsigned long) skb->data & (PAGE_SIZE - 1), 1931 skb_headlen(skb), 1932 offset, len, spd, 1933 skb_head_is_locked(skb), 1934 sk, pipe)) 1935 return true; 1936 1937 /* 1938 * then map the fragments 1939 */ 1940 for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) { 1941 const skb_frag_t *f = &skb_shinfo(skb)->frags[seg]; 1942 1943 if (__splice_segment(skb_frag_page(f), 1944 f->page_offset, skb_frag_size(f), 1945 offset, len, spd, false, sk, pipe)) 1946 return true; 1947 } 1948 1949 skb_walk_frags(skb, iter) { 1950 if (*offset >= iter->len) { 1951 *offset -= iter->len; 1952 continue; 1953 } 1954 /* __skb_splice_bits() only fails if the output has no room 1955 * left, so no point in going over the frag_list for the error 1956 * case. 1957 */ 1958 if (__skb_splice_bits(iter, pipe, offset, len, spd, sk)) 1959 return true; 1960 } 1961 1962 return false; 1963 } 1964 1965 /* 1966 * Map data from the skb to a pipe. Should handle both the linear part, 1967 * the fragments, and the frag list. 1968 */ 1969 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset, 1970 struct pipe_inode_info *pipe, unsigned int tlen, 1971 unsigned int flags) 1972 { 1973 struct partial_page partial[MAX_SKB_FRAGS]; 1974 struct page *pages[MAX_SKB_FRAGS]; 1975 struct splice_pipe_desc spd = { 1976 .pages = pages, 1977 .partial = partial, 1978 .nr_pages_max = MAX_SKB_FRAGS, 1979 .flags = flags, 1980 .ops = &nosteal_pipe_buf_ops, 1981 .spd_release = sock_spd_release, 1982 }; 1983 int ret = 0; 1984 1985 __skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk); 1986 1987 if (spd.nr_pages) 1988 ret = splice_to_pipe(pipe, &spd); 1989 1990 return ret; 1991 } 1992 EXPORT_SYMBOL_GPL(skb_splice_bits); 1993 1994 /** 1995 * skb_store_bits - store bits from kernel buffer to skb 1996 * @skb: destination buffer 1997 * @offset: offset in destination 1998 * @from: source buffer 1999 * @len: number of bytes to copy 2000 * 2001 * Copy the specified number of bytes from the source buffer to the 2002 * destination skb. This function handles all the messy bits of 2003 * traversing fragment lists and such. 2004 */ 2005 2006 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len) 2007 { 2008 int start = skb_headlen(skb); 2009 struct sk_buff *frag_iter; 2010 int i, copy; 2011 2012 if (offset > (int)skb->len - len) 2013 goto fault; 2014 2015 if ((copy = start - offset) > 0) { 2016 if (copy > len) 2017 copy = len; 2018 skb_copy_to_linear_data_offset(skb, offset, from, copy); 2019 if ((len -= copy) == 0) 2020 return 0; 2021 offset += copy; 2022 from += copy; 2023 } 2024 2025 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2026 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2027 int end; 2028 2029 WARN_ON(start > offset + len); 2030 2031 end = start + skb_frag_size(frag); 2032 if ((copy = end - offset) > 0) { 2033 u8 *vaddr; 2034 2035 if (copy > len) 2036 copy = len; 2037 2038 vaddr = kmap_atomic(skb_frag_page(frag)); 2039 memcpy(vaddr + frag->page_offset + offset - start, 2040 from, copy); 2041 kunmap_atomic(vaddr); 2042 2043 if ((len -= copy) == 0) 2044 return 0; 2045 offset += copy; 2046 from += copy; 2047 } 2048 start = end; 2049 } 2050 2051 skb_walk_frags(skb, frag_iter) { 2052 int end; 2053 2054 WARN_ON(start > offset + len); 2055 2056 end = start + frag_iter->len; 2057 if ((copy = end - offset) > 0) { 2058 if (copy > len) 2059 copy = len; 2060 if (skb_store_bits(frag_iter, offset - start, 2061 from, copy)) 2062 goto fault; 2063 if ((len -= copy) == 0) 2064 return 0; 2065 offset += copy; 2066 from += copy; 2067 } 2068 start = end; 2069 } 2070 if (!len) 2071 return 0; 2072 2073 fault: 2074 return -EFAULT; 2075 } 2076 EXPORT_SYMBOL(skb_store_bits); 2077 2078 /* Checksum skb data. */ 2079 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len, 2080 __wsum csum, const struct skb_checksum_ops *ops) 2081 { 2082 int start = skb_headlen(skb); 2083 int i, copy = start - offset; 2084 struct sk_buff *frag_iter; 2085 int pos = 0; 2086 2087 /* Checksum header. */ 2088 if (copy > 0) { 2089 if (copy > len) 2090 copy = len; 2091 csum = ops->update(skb->data + offset, copy, csum); 2092 if ((len -= copy) == 0) 2093 return csum; 2094 offset += copy; 2095 pos = copy; 2096 } 2097 2098 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2099 int end; 2100 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2101 2102 WARN_ON(start > offset + len); 2103 2104 end = start + skb_frag_size(frag); 2105 if ((copy = end - offset) > 0) { 2106 __wsum csum2; 2107 u8 *vaddr; 2108 2109 if (copy > len) 2110 copy = len; 2111 vaddr = kmap_atomic(skb_frag_page(frag)); 2112 csum2 = ops->update(vaddr + frag->page_offset + 2113 offset - start, copy, 0); 2114 kunmap_atomic(vaddr); 2115 csum = ops->combine(csum, csum2, pos, copy); 2116 if (!(len -= copy)) 2117 return csum; 2118 offset += copy; 2119 pos += copy; 2120 } 2121 start = end; 2122 } 2123 2124 skb_walk_frags(skb, frag_iter) { 2125 int end; 2126 2127 WARN_ON(start > offset + len); 2128 2129 end = start + frag_iter->len; 2130 if ((copy = end - offset) > 0) { 2131 __wsum csum2; 2132 if (copy > len) 2133 copy = len; 2134 csum2 = __skb_checksum(frag_iter, offset - start, 2135 copy, 0, ops); 2136 csum = ops->combine(csum, csum2, pos, copy); 2137 if ((len -= copy) == 0) 2138 return csum; 2139 offset += copy; 2140 pos += copy; 2141 } 2142 start = end; 2143 } 2144 BUG_ON(len); 2145 2146 return csum; 2147 } 2148 EXPORT_SYMBOL(__skb_checksum); 2149 2150 __wsum skb_checksum(const struct sk_buff *skb, int offset, 2151 int len, __wsum csum) 2152 { 2153 const struct skb_checksum_ops ops = { 2154 .update = csum_partial_ext, 2155 .combine = csum_block_add_ext, 2156 }; 2157 2158 return __skb_checksum(skb, offset, len, csum, &ops); 2159 } 2160 EXPORT_SYMBOL(skb_checksum); 2161 2162 /* Both of above in one bottle. */ 2163 2164 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, 2165 u8 *to, int len, __wsum csum) 2166 { 2167 int start = skb_headlen(skb); 2168 int i, copy = start - offset; 2169 struct sk_buff *frag_iter; 2170 int pos = 0; 2171 2172 /* Copy header. */ 2173 if (copy > 0) { 2174 if (copy > len) 2175 copy = len; 2176 csum = csum_partial_copy_nocheck(skb->data + offset, to, 2177 copy, csum); 2178 if ((len -= copy) == 0) 2179 return csum; 2180 offset += copy; 2181 to += copy; 2182 pos = copy; 2183 } 2184 2185 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2186 int end; 2187 2188 WARN_ON(start > offset + len); 2189 2190 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]); 2191 if ((copy = end - offset) > 0) { 2192 __wsum csum2; 2193 u8 *vaddr; 2194 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2195 2196 if (copy > len) 2197 copy = len; 2198 vaddr = kmap_atomic(skb_frag_page(frag)); 2199 csum2 = csum_partial_copy_nocheck(vaddr + 2200 frag->page_offset + 2201 offset - start, to, 2202 copy, 0); 2203 kunmap_atomic(vaddr); 2204 csum = csum_block_add(csum, csum2, pos); 2205 if (!(len -= copy)) 2206 return csum; 2207 offset += copy; 2208 to += copy; 2209 pos += copy; 2210 } 2211 start = end; 2212 } 2213 2214 skb_walk_frags(skb, frag_iter) { 2215 __wsum csum2; 2216 int end; 2217 2218 WARN_ON(start > offset + len); 2219 2220 end = start + frag_iter->len; 2221 if ((copy = end - offset) > 0) { 2222 if (copy > len) 2223 copy = len; 2224 csum2 = skb_copy_and_csum_bits(frag_iter, 2225 offset - start, 2226 to, copy, 0); 2227 csum = csum_block_add(csum, csum2, pos); 2228 if ((len -= copy) == 0) 2229 return csum; 2230 offset += copy; 2231 to += copy; 2232 pos += copy; 2233 } 2234 start = end; 2235 } 2236 BUG_ON(len); 2237 return csum; 2238 } 2239 EXPORT_SYMBOL(skb_copy_and_csum_bits); 2240 2241 /** 2242 * skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy() 2243 * @from: source buffer 2244 * 2245 * Calculates the amount of linear headroom needed in the 'to' skb passed 2246 * into skb_zerocopy(). 2247 */ 2248 unsigned int 2249 skb_zerocopy_headlen(const struct sk_buff *from) 2250 { 2251 unsigned int hlen = 0; 2252 2253 if (!from->head_frag || 2254 skb_headlen(from) < L1_CACHE_BYTES || 2255 skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS) 2256 hlen = skb_headlen(from); 2257 2258 if (skb_has_frag_list(from)) 2259 hlen = from->len; 2260 2261 return hlen; 2262 } 2263 EXPORT_SYMBOL_GPL(skb_zerocopy_headlen); 2264 2265 /** 2266 * skb_zerocopy - Zero copy skb to skb 2267 * @to: destination buffer 2268 * @from: source buffer 2269 * @len: number of bytes to copy from source buffer 2270 * @hlen: size of linear headroom in destination buffer 2271 * 2272 * Copies up to `len` bytes from `from` to `to` by creating references 2273 * to the frags in the source buffer. 2274 * 2275 * The `hlen` as calculated by skb_zerocopy_headlen() specifies the 2276 * headroom in the `to` buffer. 2277 * 2278 * Return value: 2279 * 0: everything is OK 2280 * -ENOMEM: couldn't orphan frags of @from due to lack of memory 2281 * -EFAULT: skb_copy_bits() found some problem with skb geometry 2282 */ 2283 int 2284 skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen) 2285 { 2286 int i, j = 0; 2287 int plen = 0; /* length of skb->head fragment */ 2288 int ret; 2289 struct page *page; 2290 unsigned int offset; 2291 2292 BUG_ON(!from->head_frag && !hlen); 2293 2294 /* dont bother with small payloads */ 2295 if (len <= skb_tailroom(to)) 2296 return skb_copy_bits(from, 0, skb_put(to, len), len); 2297 2298 if (hlen) { 2299 ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen); 2300 if (unlikely(ret)) 2301 return ret; 2302 len -= hlen; 2303 } else { 2304 plen = min_t(int, skb_headlen(from), len); 2305 if (plen) { 2306 page = virt_to_head_page(from->head); 2307 offset = from->data - (unsigned char *)page_address(page); 2308 __skb_fill_page_desc(to, 0, page, offset, plen); 2309 get_page(page); 2310 j = 1; 2311 len -= plen; 2312 } 2313 } 2314 2315 to->truesize += len + plen; 2316 to->len += len + plen; 2317 to->data_len += len + plen; 2318 2319 if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) { 2320 skb_tx_error(from); 2321 return -ENOMEM; 2322 } 2323 2324 for (i = 0; i < skb_shinfo(from)->nr_frags; i++) { 2325 if (!len) 2326 break; 2327 skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i]; 2328 skb_shinfo(to)->frags[j].size = min_t(int, skb_shinfo(to)->frags[j].size, len); 2329 len -= skb_shinfo(to)->frags[j].size; 2330 skb_frag_ref(to, j); 2331 j++; 2332 } 2333 skb_shinfo(to)->nr_frags = j; 2334 2335 return 0; 2336 } 2337 EXPORT_SYMBOL_GPL(skb_zerocopy); 2338 2339 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to) 2340 { 2341 __wsum csum; 2342 long csstart; 2343 2344 if (skb->ip_summed == CHECKSUM_PARTIAL) 2345 csstart = skb_checksum_start_offset(skb); 2346 else 2347 csstart = skb_headlen(skb); 2348 2349 BUG_ON(csstart > skb_headlen(skb)); 2350 2351 skb_copy_from_linear_data(skb, to, csstart); 2352 2353 csum = 0; 2354 if (csstart != skb->len) 2355 csum = skb_copy_and_csum_bits(skb, csstart, to + csstart, 2356 skb->len - csstart, 0); 2357 2358 if (skb->ip_summed == CHECKSUM_PARTIAL) { 2359 long csstuff = csstart + skb->csum_offset; 2360 2361 *((__sum16 *)(to + csstuff)) = csum_fold(csum); 2362 } 2363 } 2364 EXPORT_SYMBOL(skb_copy_and_csum_dev); 2365 2366 /** 2367 * skb_dequeue - remove from the head of the queue 2368 * @list: list to dequeue from 2369 * 2370 * Remove the head of the list. The list lock is taken so the function 2371 * may be used safely with other locking list functions. The head item is 2372 * returned or %NULL if the list is empty. 2373 */ 2374 2375 struct sk_buff *skb_dequeue(struct sk_buff_head *list) 2376 { 2377 unsigned long flags; 2378 struct sk_buff *result; 2379 2380 spin_lock_irqsave(&list->lock, flags); 2381 result = __skb_dequeue(list); 2382 spin_unlock_irqrestore(&list->lock, flags); 2383 return result; 2384 } 2385 EXPORT_SYMBOL(skb_dequeue); 2386 2387 /** 2388 * skb_dequeue_tail - remove from the tail of the queue 2389 * @list: list to dequeue from 2390 * 2391 * Remove the tail of the list. The list lock is taken so the function 2392 * may be used safely with other locking list functions. The tail item is 2393 * returned or %NULL if the list is empty. 2394 */ 2395 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list) 2396 { 2397 unsigned long flags; 2398 struct sk_buff *result; 2399 2400 spin_lock_irqsave(&list->lock, flags); 2401 result = __skb_dequeue_tail(list); 2402 spin_unlock_irqrestore(&list->lock, flags); 2403 return result; 2404 } 2405 EXPORT_SYMBOL(skb_dequeue_tail); 2406 2407 /** 2408 * skb_queue_purge - empty a list 2409 * @list: list to empty 2410 * 2411 * Delete all buffers on an &sk_buff list. Each buffer is removed from 2412 * the list and one reference dropped. This function takes the list 2413 * lock and is atomic with respect to other list locking functions. 2414 */ 2415 void skb_queue_purge(struct sk_buff_head *list) 2416 { 2417 struct sk_buff *skb; 2418 while ((skb = skb_dequeue(list)) != NULL) 2419 kfree_skb(skb); 2420 } 2421 EXPORT_SYMBOL(skb_queue_purge); 2422 2423 /** 2424 * skb_rbtree_purge - empty a skb rbtree 2425 * @root: root of the rbtree to empty 2426 * 2427 * Delete all buffers on an &sk_buff rbtree. Each buffer is removed from 2428 * the list and one reference dropped. This function does not take 2429 * any lock. Synchronization should be handled by the caller (e.g., TCP 2430 * out-of-order queue is protected by the socket lock). 2431 */ 2432 void skb_rbtree_purge(struct rb_root *root) 2433 { 2434 struct sk_buff *skb, *next; 2435 2436 rbtree_postorder_for_each_entry_safe(skb, next, root, rbnode) 2437 kfree_skb(skb); 2438 2439 *root = RB_ROOT; 2440 } 2441 2442 /** 2443 * skb_queue_head - queue a buffer at the list head 2444 * @list: list to use 2445 * @newsk: buffer to queue 2446 * 2447 * Queue a buffer at the start of the list. This function takes the 2448 * list lock and can be used safely with other locking &sk_buff functions 2449 * safely. 2450 * 2451 * A buffer cannot be placed on two lists at the same time. 2452 */ 2453 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk) 2454 { 2455 unsigned long flags; 2456 2457 spin_lock_irqsave(&list->lock, flags); 2458 __skb_queue_head(list, newsk); 2459 spin_unlock_irqrestore(&list->lock, flags); 2460 } 2461 EXPORT_SYMBOL(skb_queue_head); 2462 2463 /** 2464 * skb_queue_tail - queue a buffer at the list tail 2465 * @list: list to use 2466 * @newsk: buffer to queue 2467 * 2468 * Queue a buffer at the tail of the list. This function takes the 2469 * list lock and can be used safely with other locking &sk_buff functions 2470 * safely. 2471 * 2472 * A buffer cannot be placed on two lists at the same time. 2473 */ 2474 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk) 2475 { 2476 unsigned long flags; 2477 2478 spin_lock_irqsave(&list->lock, flags); 2479 __skb_queue_tail(list, newsk); 2480 spin_unlock_irqrestore(&list->lock, flags); 2481 } 2482 EXPORT_SYMBOL(skb_queue_tail); 2483 2484 /** 2485 * skb_unlink - remove a buffer from a list 2486 * @skb: buffer to remove 2487 * @list: list to use 2488 * 2489 * Remove a packet from a list. The list locks are taken and this 2490 * function is atomic with respect to other list locked calls 2491 * 2492 * You must know what list the SKB is on. 2493 */ 2494 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list) 2495 { 2496 unsigned long flags; 2497 2498 spin_lock_irqsave(&list->lock, flags); 2499 __skb_unlink(skb, list); 2500 spin_unlock_irqrestore(&list->lock, flags); 2501 } 2502 EXPORT_SYMBOL(skb_unlink); 2503 2504 /** 2505 * skb_append - append a buffer 2506 * @old: buffer to insert after 2507 * @newsk: buffer to insert 2508 * @list: list to use 2509 * 2510 * Place a packet after a given packet in a list. The list locks are taken 2511 * and this function is atomic with respect to other list locked calls. 2512 * A buffer cannot be placed on two lists at the same time. 2513 */ 2514 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list) 2515 { 2516 unsigned long flags; 2517 2518 spin_lock_irqsave(&list->lock, flags); 2519 __skb_queue_after(list, old, newsk); 2520 spin_unlock_irqrestore(&list->lock, flags); 2521 } 2522 EXPORT_SYMBOL(skb_append); 2523 2524 /** 2525 * skb_insert - insert a buffer 2526 * @old: buffer to insert before 2527 * @newsk: buffer to insert 2528 * @list: list to use 2529 * 2530 * Place a packet before a given packet in a list. The list locks are 2531 * taken and this function is atomic with respect to other list locked 2532 * calls. 2533 * 2534 * A buffer cannot be placed on two lists at the same time. 2535 */ 2536 void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list) 2537 { 2538 unsigned long flags; 2539 2540 spin_lock_irqsave(&list->lock, flags); 2541 __skb_insert(newsk, old->prev, old, list); 2542 spin_unlock_irqrestore(&list->lock, flags); 2543 } 2544 EXPORT_SYMBOL(skb_insert); 2545 2546 static inline void skb_split_inside_header(struct sk_buff *skb, 2547 struct sk_buff* skb1, 2548 const u32 len, const int pos) 2549 { 2550 int i; 2551 2552 skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len), 2553 pos - len); 2554 /* And move data appendix as is. */ 2555 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 2556 skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i]; 2557 2558 skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags; 2559 skb_shinfo(skb)->nr_frags = 0; 2560 skb1->data_len = skb->data_len; 2561 skb1->len += skb1->data_len; 2562 skb->data_len = 0; 2563 skb->len = len; 2564 skb_set_tail_pointer(skb, len); 2565 } 2566 2567 static inline void skb_split_no_header(struct sk_buff *skb, 2568 struct sk_buff* skb1, 2569 const u32 len, int pos) 2570 { 2571 int i, k = 0; 2572 const int nfrags = skb_shinfo(skb)->nr_frags; 2573 2574 skb_shinfo(skb)->nr_frags = 0; 2575 skb1->len = skb1->data_len = skb->len - len; 2576 skb->len = len; 2577 skb->data_len = len - pos; 2578 2579 for (i = 0; i < nfrags; i++) { 2580 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 2581 2582 if (pos + size > len) { 2583 skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i]; 2584 2585 if (pos < len) { 2586 /* Split frag. 2587 * We have two variants in this case: 2588 * 1. Move all the frag to the second 2589 * part, if it is possible. F.e. 2590 * this approach is mandatory for TUX, 2591 * where splitting is expensive. 2592 * 2. Split is accurately. We make this. 2593 */ 2594 skb_frag_ref(skb, i); 2595 skb_shinfo(skb1)->frags[0].page_offset += len - pos; 2596 skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos); 2597 skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos); 2598 skb_shinfo(skb)->nr_frags++; 2599 } 2600 k++; 2601 } else 2602 skb_shinfo(skb)->nr_frags++; 2603 pos += size; 2604 } 2605 skb_shinfo(skb1)->nr_frags = k; 2606 } 2607 2608 /** 2609 * skb_split - Split fragmented skb to two parts at length len. 2610 * @skb: the buffer to split 2611 * @skb1: the buffer to receive the second part 2612 * @len: new length for skb 2613 */ 2614 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len) 2615 { 2616 int pos = skb_headlen(skb); 2617 2618 skb_shinfo(skb1)->tx_flags = skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG; 2619 if (len < pos) /* Split line is inside header. */ 2620 skb_split_inside_header(skb, skb1, len, pos); 2621 else /* Second chunk has no header, nothing to copy. */ 2622 skb_split_no_header(skb, skb1, len, pos); 2623 } 2624 EXPORT_SYMBOL(skb_split); 2625 2626 /* Shifting from/to a cloned skb is a no-go. 2627 * 2628 * Caller cannot keep skb_shinfo related pointers past calling here! 2629 */ 2630 static int skb_prepare_for_shift(struct sk_buff *skb) 2631 { 2632 return skb_cloned(skb) && pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 2633 } 2634 2635 /** 2636 * skb_shift - Shifts paged data partially from skb to another 2637 * @tgt: buffer into which tail data gets added 2638 * @skb: buffer from which the paged data comes from 2639 * @shiftlen: shift up to this many bytes 2640 * 2641 * Attempts to shift up to shiftlen worth of bytes, which may be less than 2642 * the length of the skb, from skb to tgt. Returns number bytes shifted. 2643 * It's up to caller to free skb if everything was shifted. 2644 * 2645 * If @tgt runs out of frags, the whole operation is aborted. 2646 * 2647 * Skb cannot include anything else but paged data while tgt is allowed 2648 * to have non-paged data as well. 2649 * 2650 * TODO: full sized shift could be optimized but that would need 2651 * specialized skb free'er to handle frags without up-to-date nr_frags. 2652 */ 2653 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen) 2654 { 2655 int from, to, merge, todo; 2656 struct skb_frag_struct *fragfrom, *fragto; 2657 2658 BUG_ON(shiftlen > skb->len); 2659 2660 if (skb_headlen(skb)) 2661 return 0; 2662 2663 todo = shiftlen; 2664 from = 0; 2665 to = skb_shinfo(tgt)->nr_frags; 2666 fragfrom = &skb_shinfo(skb)->frags[from]; 2667 2668 /* Actual merge is delayed until the point when we know we can 2669 * commit all, so that we don't have to undo partial changes 2670 */ 2671 if (!to || 2672 !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom), 2673 fragfrom->page_offset)) { 2674 merge = -1; 2675 } else { 2676 merge = to - 1; 2677 2678 todo -= skb_frag_size(fragfrom); 2679 if (todo < 0) { 2680 if (skb_prepare_for_shift(skb) || 2681 skb_prepare_for_shift(tgt)) 2682 return 0; 2683 2684 /* All previous frag pointers might be stale! */ 2685 fragfrom = &skb_shinfo(skb)->frags[from]; 2686 fragto = &skb_shinfo(tgt)->frags[merge]; 2687 2688 skb_frag_size_add(fragto, shiftlen); 2689 skb_frag_size_sub(fragfrom, shiftlen); 2690 fragfrom->page_offset += shiftlen; 2691 2692 goto onlymerged; 2693 } 2694 2695 from++; 2696 } 2697 2698 /* Skip full, not-fitting skb to avoid expensive operations */ 2699 if ((shiftlen == skb->len) && 2700 (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to)) 2701 return 0; 2702 2703 if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt)) 2704 return 0; 2705 2706 while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) { 2707 if (to == MAX_SKB_FRAGS) 2708 return 0; 2709 2710 fragfrom = &skb_shinfo(skb)->frags[from]; 2711 fragto = &skb_shinfo(tgt)->frags[to]; 2712 2713 if (todo >= skb_frag_size(fragfrom)) { 2714 *fragto = *fragfrom; 2715 todo -= skb_frag_size(fragfrom); 2716 from++; 2717 to++; 2718 2719 } else { 2720 __skb_frag_ref(fragfrom); 2721 fragto->page = fragfrom->page; 2722 fragto->page_offset = fragfrom->page_offset; 2723 skb_frag_size_set(fragto, todo); 2724 2725 fragfrom->page_offset += todo; 2726 skb_frag_size_sub(fragfrom, todo); 2727 todo = 0; 2728 2729 to++; 2730 break; 2731 } 2732 } 2733 2734 /* Ready to "commit" this state change to tgt */ 2735 skb_shinfo(tgt)->nr_frags = to; 2736 2737 if (merge >= 0) { 2738 fragfrom = &skb_shinfo(skb)->frags[0]; 2739 fragto = &skb_shinfo(tgt)->frags[merge]; 2740 2741 skb_frag_size_add(fragto, skb_frag_size(fragfrom)); 2742 __skb_frag_unref(fragfrom); 2743 } 2744 2745 /* Reposition in the original skb */ 2746 to = 0; 2747 while (from < skb_shinfo(skb)->nr_frags) 2748 skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++]; 2749 skb_shinfo(skb)->nr_frags = to; 2750 2751 BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags); 2752 2753 onlymerged: 2754 /* Most likely the tgt won't ever need its checksum anymore, skb on 2755 * the other hand might need it if it needs to be resent 2756 */ 2757 tgt->ip_summed = CHECKSUM_PARTIAL; 2758 skb->ip_summed = CHECKSUM_PARTIAL; 2759 2760 /* Yak, is it really working this way? Some helper please? */ 2761 skb->len -= shiftlen; 2762 skb->data_len -= shiftlen; 2763 skb->truesize -= shiftlen; 2764 tgt->len += shiftlen; 2765 tgt->data_len += shiftlen; 2766 tgt->truesize += shiftlen; 2767 2768 return shiftlen; 2769 } 2770 2771 /** 2772 * skb_prepare_seq_read - Prepare a sequential read of skb data 2773 * @skb: the buffer to read 2774 * @from: lower offset of data to be read 2775 * @to: upper offset of data to be read 2776 * @st: state variable 2777 * 2778 * Initializes the specified state variable. Must be called before 2779 * invoking skb_seq_read() for the first time. 2780 */ 2781 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from, 2782 unsigned int to, struct skb_seq_state *st) 2783 { 2784 st->lower_offset = from; 2785 st->upper_offset = to; 2786 st->root_skb = st->cur_skb = skb; 2787 st->frag_idx = st->stepped_offset = 0; 2788 st->frag_data = NULL; 2789 } 2790 EXPORT_SYMBOL(skb_prepare_seq_read); 2791 2792 /** 2793 * skb_seq_read - Sequentially read skb data 2794 * @consumed: number of bytes consumed by the caller so far 2795 * @data: destination pointer for data to be returned 2796 * @st: state variable 2797 * 2798 * Reads a block of skb data at @consumed relative to the 2799 * lower offset specified to skb_prepare_seq_read(). Assigns 2800 * the head of the data block to @data and returns the length 2801 * of the block or 0 if the end of the skb data or the upper 2802 * offset has been reached. 2803 * 2804 * The caller is not required to consume all of the data 2805 * returned, i.e. @consumed is typically set to the number 2806 * of bytes already consumed and the next call to 2807 * skb_seq_read() will return the remaining part of the block. 2808 * 2809 * Note 1: The size of each block of data returned can be arbitrary, 2810 * this limitation is the cost for zerocopy sequential 2811 * reads of potentially non linear data. 2812 * 2813 * Note 2: Fragment lists within fragments are not implemented 2814 * at the moment, state->root_skb could be replaced with 2815 * a stack for this purpose. 2816 */ 2817 unsigned int skb_seq_read(unsigned int consumed, const u8 **data, 2818 struct skb_seq_state *st) 2819 { 2820 unsigned int block_limit, abs_offset = consumed + st->lower_offset; 2821 skb_frag_t *frag; 2822 2823 if (unlikely(abs_offset >= st->upper_offset)) { 2824 if (st->frag_data) { 2825 kunmap_atomic(st->frag_data); 2826 st->frag_data = NULL; 2827 } 2828 return 0; 2829 } 2830 2831 next_skb: 2832 block_limit = skb_headlen(st->cur_skb) + st->stepped_offset; 2833 2834 if (abs_offset < block_limit && !st->frag_data) { 2835 *data = st->cur_skb->data + (abs_offset - st->stepped_offset); 2836 return block_limit - abs_offset; 2837 } 2838 2839 if (st->frag_idx == 0 && !st->frag_data) 2840 st->stepped_offset += skb_headlen(st->cur_skb); 2841 2842 while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) { 2843 frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx]; 2844 block_limit = skb_frag_size(frag) + st->stepped_offset; 2845 2846 if (abs_offset < block_limit) { 2847 if (!st->frag_data) 2848 st->frag_data = kmap_atomic(skb_frag_page(frag)); 2849 2850 *data = (u8 *) st->frag_data + frag->page_offset + 2851 (abs_offset - st->stepped_offset); 2852 2853 return block_limit - abs_offset; 2854 } 2855 2856 if (st->frag_data) { 2857 kunmap_atomic(st->frag_data); 2858 st->frag_data = NULL; 2859 } 2860 2861 st->frag_idx++; 2862 st->stepped_offset += skb_frag_size(frag); 2863 } 2864 2865 if (st->frag_data) { 2866 kunmap_atomic(st->frag_data); 2867 st->frag_data = NULL; 2868 } 2869 2870 if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) { 2871 st->cur_skb = skb_shinfo(st->root_skb)->frag_list; 2872 st->frag_idx = 0; 2873 goto next_skb; 2874 } else if (st->cur_skb->next) { 2875 st->cur_skb = st->cur_skb->next; 2876 st->frag_idx = 0; 2877 goto next_skb; 2878 } 2879 2880 return 0; 2881 } 2882 EXPORT_SYMBOL(skb_seq_read); 2883 2884 /** 2885 * skb_abort_seq_read - Abort a sequential read of skb data 2886 * @st: state variable 2887 * 2888 * Must be called if skb_seq_read() was not called until it 2889 * returned 0. 2890 */ 2891 void skb_abort_seq_read(struct skb_seq_state *st) 2892 { 2893 if (st->frag_data) 2894 kunmap_atomic(st->frag_data); 2895 } 2896 EXPORT_SYMBOL(skb_abort_seq_read); 2897 2898 #define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb)) 2899 2900 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text, 2901 struct ts_config *conf, 2902 struct ts_state *state) 2903 { 2904 return skb_seq_read(offset, text, TS_SKB_CB(state)); 2905 } 2906 2907 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state) 2908 { 2909 skb_abort_seq_read(TS_SKB_CB(state)); 2910 } 2911 2912 /** 2913 * skb_find_text - Find a text pattern in skb data 2914 * @skb: the buffer to look in 2915 * @from: search offset 2916 * @to: search limit 2917 * @config: textsearch configuration 2918 * 2919 * Finds a pattern in the skb data according to the specified 2920 * textsearch configuration. Use textsearch_next() to retrieve 2921 * subsequent occurrences of the pattern. Returns the offset 2922 * to the first occurrence or UINT_MAX if no match was found. 2923 */ 2924 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from, 2925 unsigned int to, struct ts_config *config) 2926 { 2927 struct ts_state state; 2928 unsigned int ret; 2929 2930 config->get_next_block = skb_ts_get_next_block; 2931 config->finish = skb_ts_finish; 2932 2933 skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state)); 2934 2935 ret = textsearch_find(config, &state); 2936 return (ret <= to - from ? ret : UINT_MAX); 2937 } 2938 EXPORT_SYMBOL(skb_find_text); 2939 2940 /** 2941 * skb_append_datato_frags - append the user data to a skb 2942 * @sk: sock structure 2943 * @skb: skb structure to be appended with user data. 2944 * @getfrag: call back function to be used for getting the user data 2945 * @from: pointer to user message iov 2946 * @length: length of the iov message 2947 * 2948 * Description: This procedure append the user data in the fragment part 2949 * of the skb if any page alloc fails user this procedure returns -ENOMEM 2950 */ 2951 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb, 2952 int (*getfrag)(void *from, char *to, int offset, 2953 int len, int odd, struct sk_buff *skb), 2954 void *from, int length) 2955 { 2956 int frg_cnt = skb_shinfo(skb)->nr_frags; 2957 int copy; 2958 int offset = 0; 2959 int ret; 2960 struct page_frag *pfrag = ¤t->task_frag; 2961 2962 do { 2963 /* Return error if we don't have space for new frag */ 2964 if (frg_cnt >= MAX_SKB_FRAGS) 2965 return -EMSGSIZE; 2966 2967 if (!sk_page_frag_refill(sk, pfrag)) 2968 return -ENOMEM; 2969 2970 /* copy the user data to page */ 2971 copy = min_t(int, length, pfrag->size - pfrag->offset); 2972 2973 ret = getfrag(from, page_address(pfrag->page) + pfrag->offset, 2974 offset, copy, 0, skb); 2975 if (ret < 0) 2976 return -EFAULT; 2977 2978 /* copy was successful so update the size parameters */ 2979 skb_fill_page_desc(skb, frg_cnt, pfrag->page, pfrag->offset, 2980 copy); 2981 frg_cnt++; 2982 pfrag->offset += copy; 2983 get_page(pfrag->page); 2984 2985 skb->truesize += copy; 2986 atomic_add(copy, &sk->sk_wmem_alloc); 2987 skb->len += copy; 2988 skb->data_len += copy; 2989 offset += copy; 2990 length -= copy; 2991 2992 } while (length > 0); 2993 2994 return 0; 2995 } 2996 EXPORT_SYMBOL(skb_append_datato_frags); 2997 2998 int skb_append_pagefrags(struct sk_buff *skb, struct page *page, 2999 int offset, size_t size) 3000 { 3001 int i = skb_shinfo(skb)->nr_frags; 3002 3003 if (skb_can_coalesce(skb, i, page, offset)) { 3004 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size); 3005 } else if (i < MAX_SKB_FRAGS) { 3006 get_page(page); 3007 skb_fill_page_desc(skb, i, page, offset, size); 3008 } else { 3009 return -EMSGSIZE; 3010 } 3011 3012 return 0; 3013 } 3014 EXPORT_SYMBOL_GPL(skb_append_pagefrags); 3015 3016 /** 3017 * skb_pull_rcsum - pull skb and update receive checksum 3018 * @skb: buffer to update 3019 * @len: length of data pulled 3020 * 3021 * This function performs an skb_pull on the packet and updates 3022 * the CHECKSUM_COMPLETE checksum. It should be used on 3023 * receive path processing instead of skb_pull unless you know 3024 * that the checksum difference is zero (e.g., a valid IP header) 3025 * or you are setting ip_summed to CHECKSUM_NONE. 3026 */ 3027 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len) 3028 { 3029 unsigned char *data = skb->data; 3030 3031 BUG_ON(len > skb->len); 3032 __skb_pull(skb, len); 3033 skb_postpull_rcsum(skb, data, len); 3034 return skb->data; 3035 } 3036 EXPORT_SYMBOL_GPL(skb_pull_rcsum); 3037 3038 /** 3039 * skb_segment - Perform protocol segmentation on skb. 3040 * @head_skb: buffer to segment 3041 * @features: features for the output path (see dev->features) 3042 * 3043 * This function performs segmentation on the given skb. It returns 3044 * a pointer to the first in a list of new skbs for the segments. 3045 * In case of error it returns ERR_PTR(err). 3046 */ 3047 struct sk_buff *skb_segment(struct sk_buff *head_skb, 3048 netdev_features_t features) 3049 { 3050 struct sk_buff *segs = NULL; 3051 struct sk_buff *tail = NULL; 3052 struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list; 3053 skb_frag_t *frag = skb_shinfo(head_skb)->frags; 3054 unsigned int mss = skb_shinfo(head_skb)->gso_size; 3055 unsigned int doffset = head_skb->data - skb_mac_header(head_skb); 3056 struct sk_buff *frag_skb = head_skb; 3057 unsigned int offset = doffset; 3058 unsigned int tnl_hlen = skb_tnl_header_len(head_skb); 3059 unsigned int partial_segs = 0; 3060 unsigned int headroom; 3061 unsigned int len = head_skb->len; 3062 __be16 proto; 3063 bool csum, sg; 3064 int nfrags = skb_shinfo(head_skb)->nr_frags; 3065 int err = -ENOMEM; 3066 int i = 0; 3067 int pos; 3068 int dummy; 3069 3070 __skb_push(head_skb, doffset); 3071 proto = skb_network_protocol(head_skb, &dummy); 3072 if (unlikely(!proto)) 3073 return ERR_PTR(-EINVAL); 3074 3075 sg = !!(features & NETIF_F_SG); 3076 csum = !!can_checksum_protocol(features, proto); 3077 3078 if (sg && csum && (mss != GSO_BY_FRAGS)) { 3079 if (!(features & NETIF_F_GSO_PARTIAL)) { 3080 struct sk_buff *iter; 3081 3082 if (!list_skb || 3083 !net_gso_ok(features, skb_shinfo(head_skb)->gso_type)) 3084 goto normal; 3085 3086 /* Split the buffer at the frag_list pointer. 3087 * This is based on the assumption that all 3088 * buffers in the chain excluding the last 3089 * containing the same amount of data. 3090 */ 3091 skb_walk_frags(head_skb, iter) { 3092 if (skb_headlen(iter)) 3093 goto normal; 3094 3095 len -= iter->len; 3096 } 3097 } 3098 3099 /* GSO partial only requires that we trim off any excess that 3100 * doesn't fit into an MSS sized block, so take care of that 3101 * now. 3102 */ 3103 partial_segs = len / mss; 3104 if (partial_segs > 1) 3105 mss *= partial_segs; 3106 else 3107 partial_segs = 0; 3108 } 3109 3110 normal: 3111 headroom = skb_headroom(head_skb); 3112 pos = skb_headlen(head_skb); 3113 3114 do { 3115 struct sk_buff *nskb; 3116 skb_frag_t *nskb_frag; 3117 int hsize; 3118 int size; 3119 3120 if (unlikely(mss == GSO_BY_FRAGS)) { 3121 len = list_skb->len; 3122 } else { 3123 len = head_skb->len - offset; 3124 if (len > mss) 3125 len = mss; 3126 } 3127 3128 hsize = skb_headlen(head_skb) - offset; 3129 if (hsize < 0) 3130 hsize = 0; 3131 if (hsize > len || !sg) 3132 hsize = len; 3133 3134 if (!hsize && i >= nfrags && skb_headlen(list_skb) && 3135 (skb_headlen(list_skb) == len || sg)) { 3136 BUG_ON(skb_headlen(list_skb) > len); 3137 3138 i = 0; 3139 nfrags = skb_shinfo(list_skb)->nr_frags; 3140 frag = skb_shinfo(list_skb)->frags; 3141 frag_skb = list_skb; 3142 pos += skb_headlen(list_skb); 3143 3144 while (pos < offset + len) { 3145 BUG_ON(i >= nfrags); 3146 3147 size = skb_frag_size(frag); 3148 if (pos + size > offset + len) 3149 break; 3150 3151 i++; 3152 pos += size; 3153 frag++; 3154 } 3155 3156 nskb = skb_clone(list_skb, GFP_ATOMIC); 3157 list_skb = list_skb->next; 3158 3159 if (unlikely(!nskb)) 3160 goto err; 3161 3162 if (unlikely(pskb_trim(nskb, len))) { 3163 kfree_skb(nskb); 3164 goto err; 3165 } 3166 3167 hsize = skb_end_offset(nskb); 3168 if (skb_cow_head(nskb, doffset + headroom)) { 3169 kfree_skb(nskb); 3170 goto err; 3171 } 3172 3173 nskb->truesize += skb_end_offset(nskb) - hsize; 3174 skb_release_head_state(nskb); 3175 __skb_push(nskb, doffset); 3176 } else { 3177 nskb = __alloc_skb(hsize + doffset + headroom, 3178 GFP_ATOMIC, skb_alloc_rx_flag(head_skb), 3179 NUMA_NO_NODE); 3180 3181 if (unlikely(!nskb)) 3182 goto err; 3183 3184 skb_reserve(nskb, headroom); 3185 __skb_put(nskb, doffset); 3186 } 3187 3188 if (segs) 3189 tail->next = nskb; 3190 else 3191 segs = nskb; 3192 tail = nskb; 3193 3194 __copy_skb_header(nskb, head_skb); 3195 3196 skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom); 3197 skb_reset_mac_len(nskb); 3198 3199 skb_copy_from_linear_data_offset(head_skb, -tnl_hlen, 3200 nskb->data - tnl_hlen, 3201 doffset + tnl_hlen); 3202 3203 if (nskb->len == len + doffset) 3204 goto perform_csum_check; 3205 3206 if (!sg) { 3207 if (!nskb->remcsum_offload) 3208 nskb->ip_summed = CHECKSUM_NONE; 3209 SKB_GSO_CB(nskb)->csum = 3210 skb_copy_and_csum_bits(head_skb, offset, 3211 skb_put(nskb, len), 3212 len, 0); 3213 SKB_GSO_CB(nskb)->csum_start = 3214 skb_headroom(nskb) + doffset; 3215 continue; 3216 } 3217 3218 nskb_frag = skb_shinfo(nskb)->frags; 3219 3220 skb_copy_from_linear_data_offset(head_skb, offset, 3221 skb_put(nskb, hsize), hsize); 3222 3223 skb_shinfo(nskb)->tx_flags = skb_shinfo(head_skb)->tx_flags & 3224 SKBTX_SHARED_FRAG; 3225 3226 while (pos < offset + len) { 3227 if (i >= nfrags) { 3228 BUG_ON(skb_headlen(list_skb)); 3229 3230 i = 0; 3231 nfrags = skb_shinfo(list_skb)->nr_frags; 3232 frag = skb_shinfo(list_skb)->frags; 3233 frag_skb = list_skb; 3234 3235 BUG_ON(!nfrags); 3236 3237 list_skb = list_skb->next; 3238 } 3239 3240 if (unlikely(skb_shinfo(nskb)->nr_frags >= 3241 MAX_SKB_FRAGS)) { 3242 net_warn_ratelimited( 3243 "skb_segment: too many frags: %u %u\n", 3244 pos, mss); 3245 goto err; 3246 } 3247 3248 if (unlikely(skb_orphan_frags(frag_skb, GFP_ATOMIC))) 3249 goto err; 3250 3251 *nskb_frag = *frag; 3252 __skb_frag_ref(nskb_frag); 3253 size = skb_frag_size(nskb_frag); 3254 3255 if (pos < offset) { 3256 nskb_frag->page_offset += offset - pos; 3257 skb_frag_size_sub(nskb_frag, offset - pos); 3258 } 3259 3260 skb_shinfo(nskb)->nr_frags++; 3261 3262 if (pos + size <= offset + len) { 3263 i++; 3264 frag++; 3265 pos += size; 3266 } else { 3267 skb_frag_size_sub(nskb_frag, pos + size - (offset + len)); 3268 goto skip_fraglist; 3269 } 3270 3271 nskb_frag++; 3272 } 3273 3274 skip_fraglist: 3275 nskb->data_len = len - hsize; 3276 nskb->len += nskb->data_len; 3277 nskb->truesize += nskb->data_len; 3278 3279 perform_csum_check: 3280 if (!csum) { 3281 if (skb_has_shared_frag(nskb)) { 3282 err = __skb_linearize(nskb); 3283 if (err) 3284 goto err; 3285 } 3286 if (!nskb->remcsum_offload) 3287 nskb->ip_summed = CHECKSUM_NONE; 3288 SKB_GSO_CB(nskb)->csum = 3289 skb_checksum(nskb, doffset, 3290 nskb->len - doffset, 0); 3291 SKB_GSO_CB(nskb)->csum_start = 3292 skb_headroom(nskb) + doffset; 3293 } 3294 } while ((offset += len) < head_skb->len); 3295 3296 /* Some callers want to get the end of the list. 3297 * Put it in segs->prev to avoid walking the list. 3298 * (see validate_xmit_skb_list() for example) 3299 */ 3300 segs->prev = tail; 3301 3302 if (partial_segs) { 3303 struct sk_buff *iter; 3304 int type = skb_shinfo(head_skb)->gso_type; 3305 unsigned short gso_size = skb_shinfo(head_skb)->gso_size; 3306 3307 /* Update type to add partial and then remove dodgy if set */ 3308 type |= (features & NETIF_F_GSO_PARTIAL) / NETIF_F_GSO_PARTIAL * SKB_GSO_PARTIAL; 3309 type &= ~SKB_GSO_DODGY; 3310 3311 /* Update GSO info and prepare to start updating headers on 3312 * our way back down the stack of protocols. 3313 */ 3314 for (iter = segs; iter; iter = iter->next) { 3315 skb_shinfo(iter)->gso_size = gso_size; 3316 skb_shinfo(iter)->gso_segs = partial_segs; 3317 skb_shinfo(iter)->gso_type = type; 3318 SKB_GSO_CB(iter)->data_offset = skb_headroom(iter) + doffset; 3319 } 3320 3321 if (tail->len - doffset <= gso_size) 3322 skb_shinfo(tail)->gso_size = 0; 3323 else if (tail != segs) 3324 skb_shinfo(tail)->gso_segs = DIV_ROUND_UP(tail->len - doffset, gso_size); 3325 } 3326 3327 /* Following permits correct backpressure, for protocols 3328 * using skb_set_owner_w(). 3329 * Idea is to tranfert ownership from head_skb to last segment. 3330 */ 3331 if (head_skb->destructor == sock_wfree) { 3332 swap(tail->truesize, head_skb->truesize); 3333 swap(tail->destructor, head_skb->destructor); 3334 swap(tail->sk, head_skb->sk); 3335 } 3336 return segs; 3337 3338 err: 3339 kfree_skb_list(segs); 3340 return ERR_PTR(err); 3341 } 3342 EXPORT_SYMBOL_GPL(skb_segment); 3343 3344 int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb) 3345 { 3346 struct skb_shared_info *pinfo, *skbinfo = skb_shinfo(skb); 3347 unsigned int offset = skb_gro_offset(skb); 3348 unsigned int headlen = skb_headlen(skb); 3349 unsigned int len = skb_gro_len(skb); 3350 struct sk_buff *lp, *p = *head; 3351 unsigned int delta_truesize; 3352 3353 if (unlikely(p->len + len >= 65536)) 3354 return -E2BIG; 3355 3356 lp = NAPI_GRO_CB(p)->last; 3357 pinfo = skb_shinfo(lp); 3358 3359 if (headlen <= offset) { 3360 skb_frag_t *frag; 3361 skb_frag_t *frag2; 3362 int i = skbinfo->nr_frags; 3363 int nr_frags = pinfo->nr_frags + i; 3364 3365 if (nr_frags > MAX_SKB_FRAGS) 3366 goto merge; 3367 3368 offset -= headlen; 3369 pinfo->nr_frags = nr_frags; 3370 skbinfo->nr_frags = 0; 3371 3372 frag = pinfo->frags + nr_frags; 3373 frag2 = skbinfo->frags + i; 3374 do { 3375 *--frag = *--frag2; 3376 } while (--i); 3377 3378 frag->page_offset += offset; 3379 skb_frag_size_sub(frag, offset); 3380 3381 /* all fragments truesize : remove (head size + sk_buff) */ 3382 delta_truesize = skb->truesize - 3383 SKB_TRUESIZE(skb_end_offset(skb)); 3384 3385 skb->truesize -= skb->data_len; 3386 skb->len -= skb->data_len; 3387 skb->data_len = 0; 3388 3389 NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE; 3390 goto done; 3391 } else if (skb->head_frag) { 3392 int nr_frags = pinfo->nr_frags; 3393 skb_frag_t *frag = pinfo->frags + nr_frags; 3394 struct page *page = virt_to_head_page(skb->head); 3395 unsigned int first_size = headlen - offset; 3396 unsigned int first_offset; 3397 3398 if (nr_frags + 1 + skbinfo->nr_frags > MAX_SKB_FRAGS) 3399 goto merge; 3400 3401 first_offset = skb->data - 3402 (unsigned char *)page_address(page) + 3403 offset; 3404 3405 pinfo->nr_frags = nr_frags + 1 + skbinfo->nr_frags; 3406 3407 frag->page.p = page; 3408 frag->page_offset = first_offset; 3409 skb_frag_size_set(frag, first_size); 3410 3411 memcpy(frag + 1, skbinfo->frags, sizeof(*frag) * skbinfo->nr_frags); 3412 /* We dont need to clear skbinfo->nr_frags here */ 3413 3414 delta_truesize = skb->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff)); 3415 NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE_STOLEN_HEAD; 3416 goto done; 3417 } 3418 3419 merge: 3420 delta_truesize = skb->truesize; 3421 if (offset > headlen) { 3422 unsigned int eat = offset - headlen; 3423 3424 skbinfo->frags[0].page_offset += eat; 3425 skb_frag_size_sub(&skbinfo->frags[0], eat); 3426 skb->data_len -= eat; 3427 skb->len -= eat; 3428 offset = headlen; 3429 } 3430 3431 __skb_pull(skb, offset); 3432 3433 if (NAPI_GRO_CB(p)->last == p) 3434 skb_shinfo(p)->frag_list = skb; 3435 else 3436 NAPI_GRO_CB(p)->last->next = skb; 3437 NAPI_GRO_CB(p)->last = skb; 3438 __skb_header_release(skb); 3439 lp = p; 3440 3441 done: 3442 NAPI_GRO_CB(p)->count++; 3443 p->data_len += len; 3444 p->truesize += delta_truesize; 3445 p->len += len; 3446 if (lp != p) { 3447 lp->data_len += len; 3448 lp->truesize += delta_truesize; 3449 lp->len += len; 3450 } 3451 NAPI_GRO_CB(skb)->same_flow = 1; 3452 return 0; 3453 } 3454 EXPORT_SYMBOL_GPL(skb_gro_receive); 3455 3456 void __init skb_init(void) 3457 { 3458 skbuff_head_cache = kmem_cache_create("skbuff_head_cache", 3459 sizeof(struct sk_buff), 3460 0, 3461 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 3462 NULL); 3463 skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache", 3464 sizeof(struct sk_buff_fclones), 3465 0, 3466 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 3467 NULL); 3468 } 3469 3470 /** 3471 * skb_to_sgvec - Fill a scatter-gather list from a socket buffer 3472 * @skb: Socket buffer containing the buffers to be mapped 3473 * @sg: The scatter-gather list to map into 3474 * @offset: The offset into the buffer's contents to start mapping 3475 * @len: Length of buffer space to be mapped 3476 * 3477 * Fill the specified scatter-gather list with mappings/pointers into a 3478 * region of the buffer space attached to a socket buffer. 3479 */ 3480 static int 3481 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len) 3482 { 3483 int start = skb_headlen(skb); 3484 int i, copy = start - offset; 3485 struct sk_buff *frag_iter; 3486 int elt = 0; 3487 3488 if (copy > 0) { 3489 if (copy > len) 3490 copy = len; 3491 sg_set_buf(sg, skb->data + offset, copy); 3492 elt++; 3493 if ((len -= copy) == 0) 3494 return elt; 3495 offset += copy; 3496 } 3497 3498 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 3499 int end; 3500 3501 WARN_ON(start > offset + len); 3502 3503 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]); 3504 if ((copy = end - offset) > 0) { 3505 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 3506 3507 if (copy > len) 3508 copy = len; 3509 sg_set_page(&sg[elt], skb_frag_page(frag), copy, 3510 frag->page_offset+offset-start); 3511 elt++; 3512 if (!(len -= copy)) 3513 return elt; 3514 offset += copy; 3515 } 3516 start = end; 3517 } 3518 3519 skb_walk_frags(skb, frag_iter) { 3520 int end; 3521 3522 WARN_ON(start > offset + len); 3523 3524 end = start + frag_iter->len; 3525 if ((copy = end - offset) > 0) { 3526 if (copy > len) 3527 copy = len; 3528 elt += __skb_to_sgvec(frag_iter, sg+elt, offset - start, 3529 copy); 3530 if ((len -= copy) == 0) 3531 return elt; 3532 offset += copy; 3533 } 3534 start = end; 3535 } 3536 BUG_ON(len); 3537 return elt; 3538 } 3539 3540 /* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given 3541 * sglist without mark the sg which contain last skb data as the end. 3542 * So the caller can mannipulate sg list as will when padding new data after 3543 * the first call without calling sg_unmark_end to expend sg list. 3544 * 3545 * Scenario to use skb_to_sgvec_nomark: 3546 * 1. sg_init_table 3547 * 2. skb_to_sgvec_nomark(payload1) 3548 * 3. skb_to_sgvec_nomark(payload2) 3549 * 3550 * This is equivalent to: 3551 * 1. sg_init_table 3552 * 2. skb_to_sgvec(payload1) 3553 * 3. sg_unmark_end 3554 * 4. skb_to_sgvec(payload2) 3555 * 3556 * When mapping mutilple payload conditionally, skb_to_sgvec_nomark 3557 * is more preferable. 3558 */ 3559 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg, 3560 int offset, int len) 3561 { 3562 return __skb_to_sgvec(skb, sg, offset, len); 3563 } 3564 EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark); 3565 3566 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len) 3567 { 3568 int nsg = __skb_to_sgvec(skb, sg, offset, len); 3569 3570 sg_mark_end(&sg[nsg - 1]); 3571 3572 return nsg; 3573 } 3574 EXPORT_SYMBOL_GPL(skb_to_sgvec); 3575 3576 /** 3577 * skb_cow_data - Check that a socket buffer's data buffers are writable 3578 * @skb: The socket buffer to check. 3579 * @tailbits: Amount of trailing space to be added 3580 * @trailer: Returned pointer to the skb where the @tailbits space begins 3581 * 3582 * Make sure that the data buffers attached to a socket buffer are 3583 * writable. If they are not, private copies are made of the data buffers 3584 * and the socket buffer is set to use these instead. 3585 * 3586 * If @tailbits is given, make sure that there is space to write @tailbits 3587 * bytes of data beyond current end of socket buffer. @trailer will be 3588 * set to point to the skb in which this space begins. 3589 * 3590 * The number of scatterlist elements required to completely map the 3591 * COW'd and extended socket buffer will be returned. 3592 */ 3593 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer) 3594 { 3595 int copyflag; 3596 int elt; 3597 struct sk_buff *skb1, **skb_p; 3598 3599 /* If skb is cloned or its head is paged, reallocate 3600 * head pulling out all the pages (pages are considered not writable 3601 * at the moment even if they are anonymous). 3602 */ 3603 if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) && 3604 __pskb_pull_tail(skb, skb_pagelen(skb)-skb_headlen(skb)) == NULL) 3605 return -ENOMEM; 3606 3607 /* Easy case. Most of packets will go this way. */ 3608 if (!skb_has_frag_list(skb)) { 3609 /* A little of trouble, not enough of space for trailer. 3610 * This should not happen, when stack is tuned to generate 3611 * good frames. OK, on miss we reallocate and reserve even more 3612 * space, 128 bytes is fair. */ 3613 3614 if (skb_tailroom(skb) < tailbits && 3615 pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC)) 3616 return -ENOMEM; 3617 3618 /* Voila! */ 3619 *trailer = skb; 3620 return 1; 3621 } 3622 3623 /* Misery. We are in troubles, going to mincer fragments... */ 3624 3625 elt = 1; 3626 skb_p = &skb_shinfo(skb)->frag_list; 3627 copyflag = 0; 3628 3629 while ((skb1 = *skb_p) != NULL) { 3630 int ntail = 0; 3631 3632 /* The fragment is partially pulled by someone, 3633 * this can happen on input. Copy it and everything 3634 * after it. */ 3635 3636 if (skb_shared(skb1)) 3637 copyflag = 1; 3638 3639 /* If the skb is the last, worry about trailer. */ 3640 3641 if (skb1->next == NULL && tailbits) { 3642 if (skb_shinfo(skb1)->nr_frags || 3643 skb_has_frag_list(skb1) || 3644 skb_tailroom(skb1) < tailbits) 3645 ntail = tailbits + 128; 3646 } 3647 3648 if (copyflag || 3649 skb_cloned(skb1) || 3650 ntail || 3651 skb_shinfo(skb1)->nr_frags || 3652 skb_has_frag_list(skb1)) { 3653 struct sk_buff *skb2; 3654 3655 /* Fuck, we are miserable poor guys... */ 3656 if (ntail == 0) 3657 skb2 = skb_copy(skb1, GFP_ATOMIC); 3658 else 3659 skb2 = skb_copy_expand(skb1, 3660 skb_headroom(skb1), 3661 ntail, 3662 GFP_ATOMIC); 3663 if (unlikely(skb2 == NULL)) 3664 return -ENOMEM; 3665 3666 if (skb1->sk) 3667 skb_set_owner_w(skb2, skb1->sk); 3668 3669 /* Looking around. Are we still alive? 3670 * OK, link new skb, drop old one */ 3671 3672 skb2->next = skb1->next; 3673 *skb_p = skb2; 3674 kfree_skb(skb1); 3675 skb1 = skb2; 3676 } 3677 elt++; 3678 *trailer = skb1; 3679 skb_p = &skb1->next; 3680 } 3681 3682 return elt; 3683 } 3684 EXPORT_SYMBOL_GPL(skb_cow_data); 3685 3686 static void sock_rmem_free(struct sk_buff *skb) 3687 { 3688 struct sock *sk = skb->sk; 3689 3690 atomic_sub(skb->truesize, &sk->sk_rmem_alloc); 3691 } 3692 3693 /* 3694 * Note: We dont mem charge error packets (no sk_forward_alloc changes) 3695 */ 3696 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb) 3697 { 3698 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >= 3699 (unsigned int)sk->sk_rcvbuf) 3700 return -ENOMEM; 3701 3702 skb_orphan(skb); 3703 skb->sk = sk; 3704 skb->destructor = sock_rmem_free; 3705 atomic_add(skb->truesize, &sk->sk_rmem_alloc); 3706 3707 /* before exiting rcu section, make sure dst is refcounted */ 3708 skb_dst_force(skb); 3709 3710 skb_queue_tail(&sk->sk_error_queue, skb); 3711 if (!sock_flag(sk, SOCK_DEAD)) 3712 sk->sk_data_ready(sk); 3713 return 0; 3714 } 3715 EXPORT_SYMBOL(sock_queue_err_skb); 3716 3717 static bool is_icmp_err_skb(const struct sk_buff *skb) 3718 { 3719 return skb && (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP || 3720 SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP6); 3721 } 3722 3723 struct sk_buff *sock_dequeue_err_skb(struct sock *sk) 3724 { 3725 struct sk_buff_head *q = &sk->sk_error_queue; 3726 struct sk_buff *skb, *skb_next = NULL; 3727 bool icmp_next = false; 3728 unsigned long flags; 3729 3730 spin_lock_irqsave(&q->lock, flags); 3731 skb = __skb_dequeue(q); 3732 if (skb && (skb_next = skb_peek(q))) 3733 icmp_next = is_icmp_err_skb(skb_next); 3734 spin_unlock_irqrestore(&q->lock, flags); 3735 3736 if (is_icmp_err_skb(skb) && !icmp_next) 3737 sk->sk_err = 0; 3738 3739 if (skb_next) 3740 sk->sk_error_report(sk); 3741 3742 return skb; 3743 } 3744 EXPORT_SYMBOL(sock_dequeue_err_skb); 3745 3746 /** 3747 * skb_clone_sk - create clone of skb, and take reference to socket 3748 * @skb: the skb to clone 3749 * 3750 * This function creates a clone of a buffer that holds a reference on 3751 * sk_refcnt. Buffers created via this function are meant to be 3752 * returned using sock_queue_err_skb, or free via kfree_skb. 3753 * 3754 * When passing buffers allocated with this function to sock_queue_err_skb 3755 * it is necessary to wrap the call with sock_hold/sock_put in order to 3756 * prevent the socket from being released prior to being enqueued on 3757 * the sk_error_queue. 3758 */ 3759 struct sk_buff *skb_clone_sk(struct sk_buff *skb) 3760 { 3761 struct sock *sk = skb->sk; 3762 struct sk_buff *clone; 3763 3764 if (!sk || !atomic_inc_not_zero(&sk->sk_refcnt)) 3765 return NULL; 3766 3767 clone = skb_clone(skb, GFP_ATOMIC); 3768 if (!clone) { 3769 sock_put(sk); 3770 return NULL; 3771 } 3772 3773 clone->sk = sk; 3774 clone->destructor = sock_efree; 3775 3776 return clone; 3777 } 3778 EXPORT_SYMBOL(skb_clone_sk); 3779 3780 static void __skb_complete_tx_timestamp(struct sk_buff *skb, 3781 struct sock *sk, 3782 int tstype) 3783 { 3784 struct sock_exterr_skb *serr; 3785 int err; 3786 3787 serr = SKB_EXT_ERR(skb); 3788 memset(serr, 0, sizeof(*serr)); 3789 serr->ee.ee_errno = ENOMSG; 3790 serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING; 3791 serr->ee.ee_info = tstype; 3792 if (sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID) { 3793 serr->ee.ee_data = skb_shinfo(skb)->tskey; 3794 if (sk->sk_protocol == IPPROTO_TCP && 3795 sk->sk_type == SOCK_STREAM) 3796 serr->ee.ee_data -= sk->sk_tskey; 3797 } 3798 3799 err = sock_queue_err_skb(sk, skb); 3800 3801 if (err) 3802 kfree_skb(skb); 3803 } 3804 3805 static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly) 3806 { 3807 bool ret; 3808 3809 if (likely(sysctl_tstamp_allow_data || tsonly)) 3810 return true; 3811 3812 read_lock_bh(&sk->sk_callback_lock); 3813 ret = sk->sk_socket && sk->sk_socket->file && 3814 file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW); 3815 read_unlock_bh(&sk->sk_callback_lock); 3816 return ret; 3817 } 3818 3819 void skb_complete_tx_timestamp(struct sk_buff *skb, 3820 struct skb_shared_hwtstamps *hwtstamps) 3821 { 3822 struct sock *sk = skb->sk; 3823 3824 if (!skb_may_tx_timestamp(sk, false)) 3825 return; 3826 3827 /* take a reference to prevent skb_orphan() from freeing the socket */ 3828 sock_hold(sk); 3829 3830 *skb_hwtstamps(skb) = *hwtstamps; 3831 __skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND); 3832 3833 sock_put(sk); 3834 } 3835 EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp); 3836 3837 void __skb_tstamp_tx(struct sk_buff *orig_skb, 3838 struct skb_shared_hwtstamps *hwtstamps, 3839 struct sock *sk, int tstype) 3840 { 3841 struct sk_buff *skb; 3842 bool tsonly; 3843 3844 if (!sk) 3845 return; 3846 3847 tsonly = sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TSONLY; 3848 if (!skb_may_tx_timestamp(sk, tsonly)) 3849 return; 3850 3851 if (tsonly) { 3852 #ifdef CONFIG_INET 3853 if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_STATS) && 3854 sk->sk_protocol == IPPROTO_TCP && 3855 sk->sk_type == SOCK_STREAM) 3856 skb = tcp_get_timestamping_opt_stats(sk); 3857 else 3858 #endif 3859 skb = alloc_skb(0, GFP_ATOMIC); 3860 } else { 3861 skb = skb_clone(orig_skb, GFP_ATOMIC); 3862 } 3863 if (!skb) 3864 return; 3865 3866 if (tsonly) { 3867 skb_shinfo(skb)->tx_flags = skb_shinfo(orig_skb)->tx_flags; 3868 skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey; 3869 } 3870 3871 if (hwtstamps) 3872 *skb_hwtstamps(skb) = *hwtstamps; 3873 else 3874 skb->tstamp = ktime_get_real(); 3875 3876 __skb_complete_tx_timestamp(skb, sk, tstype); 3877 } 3878 EXPORT_SYMBOL_GPL(__skb_tstamp_tx); 3879 3880 void skb_tstamp_tx(struct sk_buff *orig_skb, 3881 struct skb_shared_hwtstamps *hwtstamps) 3882 { 3883 return __skb_tstamp_tx(orig_skb, hwtstamps, orig_skb->sk, 3884 SCM_TSTAMP_SND); 3885 } 3886 EXPORT_SYMBOL_GPL(skb_tstamp_tx); 3887 3888 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked) 3889 { 3890 struct sock *sk = skb->sk; 3891 struct sock_exterr_skb *serr; 3892 int err; 3893 3894 skb->wifi_acked_valid = 1; 3895 skb->wifi_acked = acked; 3896 3897 serr = SKB_EXT_ERR(skb); 3898 memset(serr, 0, sizeof(*serr)); 3899 serr->ee.ee_errno = ENOMSG; 3900 serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS; 3901 3902 /* take a reference to prevent skb_orphan() from freeing the socket */ 3903 sock_hold(sk); 3904 3905 err = sock_queue_err_skb(sk, skb); 3906 if (err) 3907 kfree_skb(skb); 3908 3909 sock_put(sk); 3910 } 3911 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack); 3912 3913 /** 3914 * skb_partial_csum_set - set up and verify partial csum values for packet 3915 * @skb: the skb to set 3916 * @start: the number of bytes after skb->data to start checksumming. 3917 * @off: the offset from start to place the checksum. 3918 * 3919 * For untrusted partially-checksummed packets, we need to make sure the values 3920 * for skb->csum_start and skb->csum_offset are valid so we don't oops. 3921 * 3922 * This function checks and sets those values and skb->ip_summed: if this 3923 * returns false you should drop the packet. 3924 */ 3925 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off) 3926 { 3927 if (unlikely(start > skb_headlen(skb)) || 3928 unlikely((int)start + off > skb_headlen(skb) - 2)) { 3929 net_warn_ratelimited("bad partial csum: csum=%u/%u len=%u\n", 3930 start, off, skb_headlen(skb)); 3931 return false; 3932 } 3933 skb->ip_summed = CHECKSUM_PARTIAL; 3934 skb->csum_start = skb_headroom(skb) + start; 3935 skb->csum_offset = off; 3936 skb_set_transport_header(skb, start); 3937 return true; 3938 } 3939 EXPORT_SYMBOL_GPL(skb_partial_csum_set); 3940 3941 static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len, 3942 unsigned int max) 3943 { 3944 if (skb_headlen(skb) >= len) 3945 return 0; 3946 3947 /* If we need to pullup then pullup to the max, so we 3948 * won't need to do it again. 3949 */ 3950 if (max > skb->len) 3951 max = skb->len; 3952 3953 if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL) 3954 return -ENOMEM; 3955 3956 if (skb_headlen(skb) < len) 3957 return -EPROTO; 3958 3959 return 0; 3960 } 3961 3962 #define MAX_TCP_HDR_LEN (15 * 4) 3963 3964 static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb, 3965 typeof(IPPROTO_IP) proto, 3966 unsigned int off) 3967 { 3968 switch (proto) { 3969 int err; 3970 3971 case IPPROTO_TCP: 3972 err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr), 3973 off + MAX_TCP_HDR_LEN); 3974 if (!err && !skb_partial_csum_set(skb, off, 3975 offsetof(struct tcphdr, 3976 check))) 3977 err = -EPROTO; 3978 return err ? ERR_PTR(err) : &tcp_hdr(skb)->check; 3979 3980 case IPPROTO_UDP: 3981 err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr), 3982 off + sizeof(struct udphdr)); 3983 if (!err && !skb_partial_csum_set(skb, off, 3984 offsetof(struct udphdr, 3985 check))) 3986 err = -EPROTO; 3987 return err ? ERR_PTR(err) : &udp_hdr(skb)->check; 3988 } 3989 3990 return ERR_PTR(-EPROTO); 3991 } 3992 3993 /* This value should be large enough to cover a tagged ethernet header plus 3994 * maximally sized IP and TCP or UDP headers. 3995 */ 3996 #define MAX_IP_HDR_LEN 128 3997 3998 static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate) 3999 { 4000 unsigned int off; 4001 bool fragment; 4002 __sum16 *csum; 4003 int err; 4004 4005 fragment = false; 4006 4007 err = skb_maybe_pull_tail(skb, 4008 sizeof(struct iphdr), 4009 MAX_IP_HDR_LEN); 4010 if (err < 0) 4011 goto out; 4012 4013 if (ip_hdr(skb)->frag_off & htons(IP_OFFSET | IP_MF)) 4014 fragment = true; 4015 4016 off = ip_hdrlen(skb); 4017 4018 err = -EPROTO; 4019 4020 if (fragment) 4021 goto out; 4022 4023 csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off); 4024 if (IS_ERR(csum)) 4025 return PTR_ERR(csum); 4026 4027 if (recalculate) 4028 *csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr, 4029 ip_hdr(skb)->daddr, 4030 skb->len - off, 4031 ip_hdr(skb)->protocol, 0); 4032 err = 0; 4033 4034 out: 4035 return err; 4036 } 4037 4038 /* This value should be large enough to cover a tagged ethernet header plus 4039 * an IPv6 header, all options, and a maximal TCP or UDP header. 4040 */ 4041 #define MAX_IPV6_HDR_LEN 256 4042 4043 #define OPT_HDR(type, skb, off) \ 4044 (type *)(skb_network_header(skb) + (off)) 4045 4046 static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate) 4047 { 4048 int err; 4049 u8 nexthdr; 4050 unsigned int off; 4051 unsigned int len; 4052 bool fragment; 4053 bool done; 4054 __sum16 *csum; 4055 4056 fragment = false; 4057 done = false; 4058 4059 off = sizeof(struct ipv6hdr); 4060 4061 err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN); 4062 if (err < 0) 4063 goto out; 4064 4065 nexthdr = ipv6_hdr(skb)->nexthdr; 4066 4067 len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len); 4068 while (off <= len && !done) { 4069 switch (nexthdr) { 4070 case IPPROTO_DSTOPTS: 4071 case IPPROTO_HOPOPTS: 4072 case IPPROTO_ROUTING: { 4073 struct ipv6_opt_hdr *hp; 4074 4075 err = skb_maybe_pull_tail(skb, 4076 off + 4077 sizeof(struct ipv6_opt_hdr), 4078 MAX_IPV6_HDR_LEN); 4079 if (err < 0) 4080 goto out; 4081 4082 hp = OPT_HDR(struct ipv6_opt_hdr, skb, off); 4083 nexthdr = hp->nexthdr; 4084 off += ipv6_optlen(hp); 4085 break; 4086 } 4087 case IPPROTO_AH: { 4088 struct ip_auth_hdr *hp; 4089 4090 err = skb_maybe_pull_tail(skb, 4091 off + 4092 sizeof(struct ip_auth_hdr), 4093 MAX_IPV6_HDR_LEN); 4094 if (err < 0) 4095 goto out; 4096 4097 hp = OPT_HDR(struct ip_auth_hdr, skb, off); 4098 nexthdr = hp->nexthdr; 4099 off += ipv6_authlen(hp); 4100 break; 4101 } 4102 case IPPROTO_FRAGMENT: { 4103 struct frag_hdr *hp; 4104 4105 err = skb_maybe_pull_tail(skb, 4106 off + 4107 sizeof(struct frag_hdr), 4108 MAX_IPV6_HDR_LEN); 4109 if (err < 0) 4110 goto out; 4111 4112 hp = OPT_HDR(struct frag_hdr, skb, off); 4113 4114 if (hp->frag_off & htons(IP6_OFFSET | IP6_MF)) 4115 fragment = true; 4116 4117 nexthdr = hp->nexthdr; 4118 off += sizeof(struct frag_hdr); 4119 break; 4120 } 4121 default: 4122 done = true; 4123 break; 4124 } 4125 } 4126 4127 err = -EPROTO; 4128 4129 if (!done || fragment) 4130 goto out; 4131 4132 csum = skb_checksum_setup_ip(skb, nexthdr, off); 4133 if (IS_ERR(csum)) 4134 return PTR_ERR(csum); 4135 4136 if (recalculate) 4137 *csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr, 4138 &ipv6_hdr(skb)->daddr, 4139 skb->len - off, nexthdr, 0); 4140 err = 0; 4141 4142 out: 4143 return err; 4144 } 4145 4146 /** 4147 * skb_checksum_setup - set up partial checksum offset 4148 * @skb: the skb to set up 4149 * @recalculate: if true the pseudo-header checksum will be recalculated 4150 */ 4151 int skb_checksum_setup(struct sk_buff *skb, bool recalculate) 4152 { 4153 int err; 4154 4155 switch (skb->protocol) { 4156 case htons(ETH_P_IP): 4157 err = skb_checksum_setup_ipv4(skb, recalculate); 4158 break; 4159 4160 case htons(ETH_P_IPV6): 4161 err = skb_checksum_setup_ipv6(skb, recalculate); 4162 break; 4163 4164 default: 4165 err = -EPROTO; 4166 break; 4167 } 4168 4169 return err; 4170 } 4171 EXPORT_SYMBOL(skb_checksum_setup); 4172 4173 /** 4174 * skb_checksum_maybe_trim - maybe trims the given skb 4175 * @skb: the skb to check 4176 * @transport_len: the data length beyond the network header 4177 * 4178 * Checks whether the given skb has data beyond the given transport length. 4179 * If so, returns a cloned skb trimmed to this transport length. 4180 * Otherwise returns the provided skb. Returns NULL in error cases 4181 * (e.g. transport_len exceeds skb length or out-of-memory). 4182 * 4183 * Caller needs to set the skb transport header and free any returned skb if it 4184 * differs from the provided skb. 4185 */ 4186 static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb, 4187 unsigned int transport_len) 4188 { 4189 struct sk_buff *skb_chk; 4190 unsigned int len = skb_transport_offset(skb) + transport_len; 4191 int ret; 4192 4193 if (skb->len < len) 4194 return NULL; 4195 else if (skb->len == len) 4196 return skb; 4197 4198 skb_chk = skb_clone(skb, GFP_ATOMIC); 4199 if (!skb_chk) 4200 return NULL; 4201 4202 ret = pskb_trim_rcsum(skb_chk, len); 4203 if (ret) { 4204 kfree_skb(skb_chk); 4205 return NULL; 4206 } 4207 4208 return skb_chk; 4209 } 4210 4211 /** 4212 * skb_checksum_trimmed - validate checksum of an skb 4213 * @skb: the skb to check 4214 * @transport_len: the data length beyond the network header 4215 * @skb_chkf: checksum function to use 4216 * 4217 * Applies the given checksum function skb_chkf to the provided skb. 4218 * Returns a checked and maybe trimmed skb. Returns NULL on error. 4219 * 4220 * If the skb has data beyond the given transport length, then a 4221 * trimmed & cloned skb is checked and returned. 4222 * 4223 * Caller needs to set the skb transport header and free any returned skb if it 4224 * differs from the provided skb. 4225 */ 4226 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb, 4227 unsigned int transport_len, 4228 __sum16(*skb_chkf)(struct sk_buff *skb)) 4229 { 4230 struct sk_buff *skb_chk; 4231 unsigned int offset = skb_transport_offset(skb); 4232 __sum16 ret; 4233 4234 skb_chk = skb_checksum_maybe_trim(skb, transport_len); 4235 if (!skb_chk) 4236 goto err; 4237 4238 if (!pskb_may_pull(skb_chk, offset)) 4239 goto err; 4240 4241 skb_pull_rcsum(skb_chk, offset); 4242 ret = skb_chkf(skb_chk); 4243 skb_push_rcsum(skb_chk, offset); 4244 4245 if (ret) 4246 goto err; 4247 4248 return skb_chk; 4249 4250 err: 4251 if (skb_chk && skb_chk != skb) 4252 kfree_skb(skb_chk); 4253 4254 return NULL; 4255 4256 } 4257 EXPORT_SYMBOL(skb_checksum_trimmed); 4258 4259 void __skb_warn_lro_forwarding(const struct sk_buff *skb) 4260 { 4261 net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n", 4262 skb->dev->name); 4263 } 4264 EXPORT_SYMBOL(__skb_warn_lro_forwarding); 4265 4266 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen) 4267 { 4268 if (head_stolen) { 4269 skb_release_head_state(skb); 4270 kmem_cache_free(skbuff_head_cache, skb); 4271 } else { 4272 __kfree_skb(skb); 4273 } 4274 } 4275 EXPORT_SYMBOL(kfree_skb_partial); 4276 4277 /** 4278 * skb_try_coalesce - try to merge skb to prior one 4279 * @to: prior buffer 4280 * @from: buffer to add 4281 * @fragstolen: pointer to boolean 4282 * @delta_truesize: how much more was allocated than was requested 4283 */ 4284 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from, 4285 bool *fragstolen, int *delta_truesize) 4286 { 4287 int i, delta, len = from->len; 4288 4289 *fragstolen = false; 4290 4291 if (skb_cloned(to)) 4292 return false; 4293 4294 if (len <= skb_tailroom(to)) { 4295 if (len) 4296 BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len)); 4297 *delta_truesize = 0; 4298 return true; 4299 } 4300 4301 if (skb_has_frag_list(to) || skb_has_frag_list(from)) 4302 return false; 4303 4304 if (skb_headlen(from) != 0) { 4305 struct page *page; 4306 unsigned int offset; 4307 4308 if (skb_shinfo(to)->nr_frags + 4309 skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS) 4310 return false; 4311 4312 if (skb_head_is_locked(from)) 4313 return false; 4314 4315 delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff)); 4316 4317 page = virt_to_head_page(from->head); 4318 offset = from->data - (unsigned char *)page_address(page); 4319 4320 skb_fill_page_desc(to, skb_shinfo(to)->nr_frags, 4321 page, offset, skb_headlen(from)); 4322 *fragstolen = true; 4323 } else { 4324 if (skb_shinfo(to)->nr_frags + 4325 skb_shinfo(from)->nr_frags > MAX_SKB_FRAGS) 4326 return false; 4327 4328 delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from)); 4329 } 4330 4331 WARN_ON_ONCE(delta < len); 4332 4333 memcpy(skb_shinfo(to)->frags + skb_shinfo(to)->nr_frags, 4334 skb_shinfo(from)->frags, 4335 skb_shinfo(from)->nr_frags * sizeof(skb_frag_t)); 4336 skb_shinfo(to)->nr_frags += skb_shinfo(from)->nr_frags; 4337 4338 if (!skb_cloned(from)) 4339 skb_shinfo(from)->nr_frags = 0; 4340 4341 /* if the skb is not cloned this does nothing 4342 * since we set nr_frags to 0. 4343 */ 4344 for (i = 0; i < skb_shinfo(from)->nr_frags; i++) 4345 skb_frag_ref(from, i); 4346 4347 to->truesize += delta; 4348 to->len += len; 4349 to->data_len += len; 4350 4351 *delta_truesize = delta; 4352 return true; 4353 } 4354 EXPORT_SYMBOL(skb_try_coalesce); 4355 4356 /** 4357 * skb_scrub_packet - scrub an skb 4358 * 4359 * @skb: buffer to clean 4360 * @xnet: packet is crossing netns 4361 * 4362 * skb_scrub_packet can be used after encapsulating or decapsulting a packet 4363 * into/from a tunnel. Some information have to be cleared during these 4364 * operations. 4365 * skb_scrub_packet can also be used to clean a skb before injecting it in 4366 * another namespace (@xnet == true). We have to clear all information in the 4367 * skb that could impact namespace isolation. 4368 */ 4369 void skb_scrub_packet(struct sk_buff *skb, bool xnet) 4370 { 4371 skb->tstamp = 0; 4372 skb->pkt_type = PACKET_HOST; 4373 skb->skb_iif = 0; 4374 skb->ignore_df = 0; 4375 skb_dst_drop(skb); 4376 secpath_reset(skb); 4377 nf_reset(skb); 4378 nf_reset_trace(skb); 4379 4380 if (!xnet) 4381 return; 4382 4383 skb_orphan(skb); 4384 skb->mark = 0; 4385 } 4386 EXPORT_SYMBOL_GPL(skb_scrub_packet); 4387 4388 /** 4389 * skb_gso_transport_seglen - Return length of individual segments of a gso packet 4390 * 4391 * @skb: GSO skb 4392 * 4393 * skb_gso_transport_seglen is used to determine the real size of the 4394 * individual segments, including Layer4 headers (TCP/UDP). 4395 * 4396 * The MAC/L2 or network (IP, IPv6) headers are not accounted for. 4397 */ 4398 unsigned int skb_gso_transport_seglen(const struct sk_buff *skb) 4399 { 4400 const struct skb_shared_info *shinfo = skb_shinfo(skb); 4401 unsigned int thlen = 0; 4402 4403 if (skb->encapsulation) { 4404 thlen = skb_inner_transport_header(skb) - 4405 skb_transport_header(skb); 4406 4407 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) 4408 thlen += inner_tcp_hdrlen(skb); 4409 } else if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) { 4410 thlen = tcp_hdrlen(skb); 4411 } else if (unlikely(shinfo->gso_type & SKB_GSO_SCTP)) { 4412 thlen = sizeof(struct sctphdr); 4413 } 4414 /* UFO sets gso_size to the size of the fragmentation 4415 * payload, i.e. the size of the L4 (UDP) header is already 4416 * accounted for. 4417 */ 4418 return thlen + shinfo->gso_size; 4419 } 4420 EXPORT_SYMBOL_GPL(skb_gso_transport_seglen); 4421 4422 /** 4423 * skb_gso_validate_mtu - Return in case such skb fits a given MTU 4424 * 4425 * @skb: GSO skb 4426 * @mtu: MTU to validate against 4427 * 4428 * skb_gso_validate_mtu validates if a given skb will fit a wanted MTU 4429 * once split. 4430 */ 4431 bool skb_gso_validate_mtu(const struct sk_buff *skb, unsigned int mtu) 4432 { 4433 const struct skb_shared_info *shinfo = skb_shinfo(skb); 4434 const struct sk_buff *iter; 4435 unsigned int hlen; 4436 4437 hlen = skb_gso_network_seglen(skb); 4438 4439 if (shinfo->gso_size != GSO_BY_FRAGS) 4440 return hlen <= mtu; 4441 4442 /* Undo this so we can re-use header sizes */ 4443 hlen -= GSO_BY_FRAGS; 4444 4445 skb_walk_frags(skb, iter) { 4446 if (hlen + skb_headlen(iter) > mtu) 4447 return false; 4448 } 4449 4450 return true; 4451 } 4452 EXPORT_SYMBOL_GPL(skb_gso_validate_mtu); 4453 4454 static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb) 4455 { 4456 if (skb_cow(skb, skb_headroom(skb)) < 0) { 4457 kfree_skb(skb); 4458 return NULL; 4459 } 4460 4461 memmove(skb->data - ETH_HLEN, skb->data - skb->mac_len - VLAN_HLEN, 4462 2 * ETH_ALEN); 4463 skb->mac_header += VLAN_HLEN; 4464 return skb; 4465 } 4466 4467 struct sk_buff *skb_vlan_untag(struct sk_buff *skb) 4468 { 4469 struct vlan_hdr *vhdr; 4470 u16 vlan_tci; 4471 4472 if (unlikely(skb_vlan_tag_present(skb))) { 4473 /* vlan_tci is already set-up so leave this for another time */ 4474 return skb; 4475 } 4476 4477 skb = skb_share_check(skb, GFP_ATOMIC); 4478 if (unlikely(!skb)) 4479 goto err_free; 4480 4481 if (unlikely(!pskb_may_pull(skb, VLAN_HLEN))) 4482 goto err_free; 4483 4484 vhdr = (struct vlan_hdr *)skb->data; 4485 vlan_tci = ntohs(vhdr->h_vlan_TCI); 4486 __vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci); 4487 4488 skb_pull_rcsum(skb, VLAN_HLEN); 4489 vlan_set_encap_proto(skb, vhdr); 4490 4491 skb = skb_reorder_vlan_header(skb); 4492 if (unlikely(!skb)) 4493 goto err_free; 4494 4495 skb_reset_network_header(skb); 4496 skb_reset_transport_header(skb); 4497 skb_reset_mac_len(skb); 4498 4499 return skb; 4500 4501 err_free: 4502 kfree_skb(skb); 4503 return NULL; 4504 } 4505 EXPORT_SYMBOL(skb_vlan_untag); 4506 4507 int skb_ensure_writable(struct sk_buff *skb, int write_len) 4508 { 4509 if (!pskb_may_pull(skb, write_len)) 4510 return -ENOMEM; 4511 4512 if (!skb_cloned(skb) || skb_clone_writable(skb, write_len)) 4513 return 0; 4514 4515 return pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 4516 } 4517 EXPORT_SYMBOL(skb_ensure_writable); 4518 4519 /* remove VLAN header from packet and update csum accordingly. 4520 * expects a non skb_vlan_tag_present skb with a vlan tag payload 4521 */ 4522 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci) 4523 { 4524 struct vlan_hdr *vhdr; 4525 int offset = skb->data - skb_mac_header(skb); 4526 int err; 4527 4528 if (WARN_ONCE(offset, 4529 "__skb_vlan_pop got skb with skb->data not at mac header (offset %d)\n", 4530 offset)) { 4531 return -EINVAL; 4532 } 4533 4534 err = skb_ensure_writable(skb, VLAN_ETH_HLEN); 4535 if (unlikely(err)) 4536 return err; 4537 4538 skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN); 4539 4540 vhdr = (struct vlan_hdr *)(skb->data + ETH_HLEN); 4541 *vlan_tci = ntohs(vhdr->h_vlan_TCI); 4542 4543 memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN); 4544 __skb_pull(skb, VLAN_HLEN); 4545 4546 vlan_set_encap_proto(skb, vhdr); 4547 skb->mac_header += VLAN_HLEN; 4548 4549 if (skb_network_offset(skb) < ETH_HLEN) 4550 skb_set_network_header(skb, ETH_HLEN); 4551 4552 skb_reset_mac_len(skb); 4553 4554 return err; 4555 } 4556 EXPORT_SYMBOL(__skb_vlan_pop); 4557 4558 /* Pop a vlan tag either from hwaccel or from payload. 4559 * Expects skb->data at mac header. 4560 */ 4561 int skb_vlan_pop(struct sk_buff *skb) 4562 { 4563 u16 vlan_tci; 4564 __be16 vlan_proto; 4565 int err; 4566 4567 if (likely(skb_vlan_tag_present(skb))) { 4568 skb->vlan_tci = 0; 4569 } else { 4570 if (unlikely(!eth_type_vlan(skb->protocol))) 4571 return 0; 4572 4573 err = __skb_vlan_pop(skb, &vlan_tci); 4574 if (err) 4575 return err; 4576 } 4577 /* move next vlan tag to hw accel tag */ 4578 if (likely(!eth_type_vlan(skb->protocol))) 4579 return 0; 4580 4581 vlan_proto = skb->protocol; 4582 err = __skb_vlan_pop(skb, &vlan_tci); 4583 if (unlikely(err)) 4584 return err; 4585 4586 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci); 4587 return 0; 4588 } 4589 EXPORT_SYMBOL(skb_vlan_pop); 4590 4591 /* Push a vlan tag either into hwaccel or into payload (if hwaccel tag present). 4592 * Expects skb->data at mac header. 4593 */ 4594 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci) 4595 { 4596 if (skb_vlan_tag_present(skb)) { 4597 int offset = skb->data - skb_mac_header(skb); 4598 int err; 4599 4600 if (WARN_ONCE(offset, 4601 "skb_vlan_push got skb with skb->data not at mac header (offset %d)\n", 4602 offset)) { 4603 return -EINVAL; 4604 } 4605 4606 err = __vlan_insert_tag(skb, skb->vlan_proto, 4607 skb_vlan_tag_get(skb)); 4608 if (err) 4609 return err; 4610 4611 skb->protocol = skb->vlan_proto; 4612 skb->mac_len += VLAN_HLEN; 4613 4614 skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN); 4615 } 4616 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci); 4617 return 0; 4618 } 4619 EXPORT_SYMBOL(skb_vlan_push); 4620 4621 /** 4622 * alloc_skb_with_frags - allocate skb with page frags 4623 * 4624 * @header_len: size of linear part 4625 * @data_len: needed length in frags 4626 * @max_page_order: max page order desired. 4627 * @errcode: pointer to error code if any 4628 * @gfp_mask: allocation mask 4629 * 4630 * This can be used to allocate a paged skb, given a maximal order for frags. 4631 */ 4632 struct sk_buff *alloc_skb_with_frags(unsigned long header_len, 4633 unsigned long data_len, 4634 int max_page_order, 4635 int *errcode, 4636 gfp_t gfp_mask) 4637 { 4638 int npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT; 4639 unsigned long chunk; 4640 struct sk_buff *skb; 4641 struct page *page; 4642 gfp_t gfp_head; 4643 int i; 4644 4645 *errcode = -EMSGSIZE; 4646 /* Note this test could be relaxed, if we succeed to allocate 4647 * high order pages... 4648 */ 4649 if (npages > MAX_SKB_FRAGS) 4650 return NULL; 4651 4652 gfp_head = gfp_mask; 4653 if (gfp_head & __GFP_DIRECT_RECLAIM) 4654 gfp_head |= __GFP_REPEAT; 4655 4656 *errcode = -ENOBUFS; 4657 skb = alloc_skb(header_len, gfp_head); 4658 if (!skb) 4659 return NULL; 4660 4661 skb->truesize += npages << PAGE_SHIFT; 4662 4663 for (i = 0; npages > 0; i++) { 4664 int order = max_page_order; 4665 4666 while (order) { 4667 if (npages >= 1 << order) { 4668 page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) | 4669 __GFP_COMP | 4670 __GFP_NOWARN | 4671 __GFP_NORETRY, 4672 order); 4673 if (page) 4674 goto fill_page; 4675 /* Do not retry other high order allocations */ 4676 order = 1; 4677 max_page_order = 0; 4678 } 4679 order--; 4680 } 4681 page = alloc_page(gfp_mask); 4682 if (!page) 4683 goto failure; 4684 fill_page: 4685 chunk = min_t(unsigned long, data_len, 4686 PAGE_SIZE << order); 4687 skb_fill_page_desc(skb, i, page, 0, chunk); 4688 data_len -= chunk; 4689 npages -= 1 << order; 4690 } 4691 return skb; 4692 4693 failure: 4694 kfree_skb(skb); 4695 return NULL; 4696 } 4697 EXPORT_SYMBOL(alloc_skb_with_frags); 4698 4699 /* carve out the first off bytes from skb when off < headlen */ 4700 static int pskb_carve_inside_header(struct sk_buff *skb, const u32 off, 4701 const int headlen, gfp_t gfp_mask) 4702 { 4703 int i; 4704 int size = skb_end_offset(skb); 4705 int new_hlen = headlen - off; 4706 u8 *data; 4707 4708 size = SKB_DATA_ALIGN(size); 4709 4710 if (skb_pfmemalloc(skb)) 4711 gfp_mask |= __GFP_MEMALLOC; 4712 data = kmalloc_reserve(size + 4713 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)), 4714 gfp_mask, NUMA_NO_NODE, NULL); 4715 if (!data) 4716 return -ENOMEM; 4717 4718 size = SKB_WITH_OVERHEAD(ksize(data)); 4719 4720 /* Copy real data, and all frags */ 4721 skb_copy_from_linear_data_offset(skb, off, data, new_hlen); 4722 skb->len -= off; 4723 4724 memcpy((struct skb_shared_info *)(data + size), 4725 skb_shinfo(skb), 4726 offsetof(struct skb_shared_info, 4727 frags[skb_shinfo(skb)->nr_frags])); 4728 if (skb_cloned(skb)) { 4729 /* drop the old head gracefully */ 4730 if (skb_orphan_frags(skb, gfp_mask)) { 4731 kfree(data); 4732 return -ENOMEM; 4733 } 4734 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 4735 skb_frag_ref(skb, i); 4736 if (skb_has_frag_list(skb)) 4737 skb_clone_fraglist(skb); 4738 skb_release_data(skb); 4739 } else { 4740 /* we can reuse existing recount- all we did was 4741 * relocate values 4742 */ 4743 skb_free_head(skb); 4744 } 4745 4746 skb->head = data; 4747 skb->data = data; 4748 skb->head_frag = 0; 4749 #ifdef NET_SKBUFF_DATA_USES_OFFSET 4750 skb->end = size; 4751 #else 4752 skb->end = skb->head + size; 4753 #endif 4754 skb_set_tail_pointer(skb, skb_headlen(skb)); 4755 skb_headers_offset_update(skb, 0); 4756 skb->cloned = 0; 4757 skb->hdr_len = 0; 4758 skb->nohdr = 0; 4759 atomic_set(&skb_shinfo(skb)->dataref, 1); 4760 4761 return 0; 4762 } 4763 4764 static int pskb_carve(struct sk_buff *skb, const u32 off, gfp_t gfp); 4765 4766 /* carve out the first eat bytes from skb's frag_list. May recurse into 4767 * pskb_carve() 4768 */ 4769 static int pskb_carve_frag_list(struct sk_buff *skb, 4770 struct skb_shared_info *shinfo, int eat, 4771 gfp_t gfp_mask) 4772 { 4773 struct sk_buff *list = shinfo->frag_list; 4774 struct sk_buff *clone = NULL; 4775 struct sk_buff *insp = NULL; 4776 4777 do { 4778 if (!list) { 4779 pr_err("Not enough bytes to eat. Want %d\n", eat); 4780 return -EFAULT; 4781 } 4782 if (list->len <= eat) { 4783 /* Eaten as whole. */ 4784 eat -= list->len; 4785 list = list->next; 4786 insp = list; 4787 } else { 4788 /* Eaten partially. */ 4789 if (skb_shared(list)) { 4790 clone = skb_clone(list, gfp_mask); 4791 if (!clone) 4792 return -ENOMEM; 4793 insp = list->next; 4794 list = clone; 4795 } else { 4796 /* This may be pulled without problems. */ 4797 insp = list; 4798 } 4799 if (pskb_carve(list, eat, gfp_mask) < 0) { 4800 kfree_skb(clone); 4801 return -ENOMEM; 4802 } 4803 break; 4804 } 4805 } while (eat); 4806 4807 /* Free pulled out fragments. */ 4808 while ((list = shinfo->frag_list) != insp) { 4809 shinfo->frag_list = list->next; 4810 kfree_skb(list); 4811 } 4812 /* And insert new clone at head. */ 4813 if (clone) { 4814 clone->next = list; 4815 shinfo->frag_list = clone; 4816 } 4817 return 0; 4818 } 4819 4820 /* carve off first len bytes from skb. Split line (off) is in the 4821 * non-linear part of skb 4822 */ 4823 static int pskb_carve_inside_nonlinear(struct sk_buff *skb, const u32 off, 4824 int pos, gfp_t gfp_mask) 4825 { 4826 int i, k = 0; 4827 int size = skb_end_offset(skb); 4828 u8 *data; 4829 const int nfrags = skb_shinfo(skb)->nr_frags; 4830 struct skb_shared_info *shinfo; 4831 4832 size = SKB_DATA_ALIGN(size); 4833 4834 if (skb_pfmemalloc(skb)) 4835 gfp_mask |= __GFP_MEMALLOC; 4836 data = kmalloc_reserve(size + 4837 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)), 4838 gfp_mask, NUMA_NO_NODE, NULL); 4839 if (!data) 4840 return -ENOMEM; 4841 4842 size = SKB_WITH_OVERHEAD(ksize(data)); 4843 4844 memcpy((struct skb_shared_info *)(data + size), 4845 skb_shinfo(skb), offsetof(struct skb_shared_info, 4846 frags[skb_shinfo(skb)->nr_frags])); 4847 if (skb_orphan_frags(skb, gfp_mask)) { 4848 kfree(data); 4849 return -ENOMEM; 4850 } 4851 shinfo = (struct skb_shared_info *)(data + size); 4852 for (i = 0; i < nfrags; i++) { 4853 int fsize = skb_frag_size(&skb_shinfo(skb)->frags[i]); 4854 4855 if (pos + fsize > off) { 4856 shinfo->frags[k] = skb_shinfo(skb)->frags[i]; 4857 4858 if (pos < off) { 4859 /* Split frag. 4860 * We have two variants in this case: 4861 * 1. Move all the frag to the second 4862 * part, if it is possible. F.e. 4863 * this approach is mandatory for TUX, 4864 * where splitting is expensive. 4865 * 2. Split is accurately. We make this. 4866 */ 4867 shinfo->frags[0].page_offset += off - pos; 4868 skb_frag_size_sub(&shinfo->frags[0], off - pos); 4869 } 4870 skb_frag_ref(skb, i); 4871 k++; 4872 } 4873 pos += fsize; 4874 } 4875 shinfo->nr_frags = k; 4876 if (skb_has_frag_list(skb)) 4877 skb_clone_fraglist(skb); 4878 4879 if (k == 0) { 4880 /* split line is in frag list */ 4881 pskb_carve_frag_list(skb, shinfo, off - pos, gfp_mask); 4882 } 4883 skb_release_data(skb); 4884 4885 skb->head = data; 4886 skb->head_frag = 0; 4887 skb->data = data; 4888 #ifdef NET_SKBUFF_DATA_USES_OFFSET 4889 skb->end = size; 4890 #else 4891 skb->end = skb->head + size; 4892 #endif 4893 skb_reset_tail_pointer(skb); 4894 skb_headers_offset_update(skb, 0); 4895 skb->cloned = 0; 4896 skb->hdr_len = 0; 4897 skb->nohdr = 0; 4898 skb->len -= off; 4899 skb->data_len = skb->len; 4900 atomic_set(&skb_shinfo(skb)->dataref, 1); 4901 return 0; 4902 } 4903 4904 /* remove len bytes from the beginning of the skb */ 4905 static int pskb_carve(struct sk_buff *skb, const u32 len, gfp_t gfp) 4906 { 4907 int headlen = skb_headlen(skb); 4908 4909 if (len < headlen) 4910 return pskb_carve_inside_header(skb, len, headlen, gfp); 4911 else 4912 return pskb_carve_inside_nonlinear(skb, len, headlen, gfp); 4913 } 4914 4915 /* Extract to_copy bytes starting at off from skb, and return this in 4916 * a new skb 4917 */ 4918 struct sk_buff *pskb_extract(struct sk_buff *skb, int off, 4919 int to_copy, gfp_t gfp) 4920 { 4921 struct sk_buff *clone = skb_clone(skb, gfp); 4922 4923 if (!clone) 4924 return NULL; 4925 4926 if (pskb_carve(clone, off, gfp) < 0 || 4927 pskb_trim(clone, to_copy)) { 4928 kfree_skb(clone); 4929 return NULL; 4930 } 4931 return clone; 4932 } 4933 EXPORT_SYMBOL(pskb_extract); 4934 4935 /** 4936 * skb_condense - try to get rid of fragments/frag_list if possible 4937 * @skb: buffer 4938 * 4939 * Can be used to save memory before skb is added to a busy queue. 4940 * If packet has bytes in frags and enough tail room in skb->head, 4941 * pull all of them, so that we can free the frags right now and adjust 4942 * truesize. 4943 * Notes: 4944 * We do not reallocate skb->head thus can not fail. 4945 * Caller must re-evaluate skb->truesize if needed. 4946 */ 4947 void skb_condense(struct sk_buff *skb) 4948 { 4949 if (skb->data_len) { 4950 if (skb->data_len > skb->end - skb->tail || 4951 skb_cloned(skb)) 4952 return; 4953 4954 /* Nice, we can free page frag(s) right now */ 4955 __pskb_pull_tail(skb, skb->data_len); 4956 } 4957 /* At this point, skb->truesize might be over estimated, 4958 * because skb had a fragment, and fragments do not tell 4959 * their truesize. 4960 * When we pulled its content into skb->head, fragment 4961 * was freed, but __pskb_pull_tail() could not possibly 4962 * adjust skb->truesize, not knowing the frag truesize. 4963 */ 4964 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb)); 4965 } 4966