xref: /openbmc/linux/net/core/skbuff.c (revision 867a0e05)
1 /*
2  *	Routines having to do with the 'struct sk_buff' memory handlers.
3  *
4  *	Authors:	Alan Cox <alan@lxorguk.ukuu.org.uk>
5  *			Florian La Roche <rzsfl@rz.uni-sb.de>
6  *
7  *	Fixes:
8  *		Alan Cox	:	Fixed the worst of the load
9  *					balancer bugs.
10  *		Dave Platt	:	Interrupt stacking fix.
11  *	Richard Kooijman	:	Timestamp fixes.
12  *		Alan Cox	:	Changed buffer format.
13  *		Alan Cox	:	destructor hook for AF_UNIX etc.
14  *		Linus Torvalds	:	Better skb_clone.
15  *		Alan Cox	:	Added skb_copy.
16  *		Alan Cox	:	Added all the changed routines Linus
17  *					only put in the headers
18  *		Ray VanTassle	:	Fixed --skb->lock in free
19  *		Alan Cox	:	skb_copy copy arp field
20  *		Andi Kleen	:	slabified it.
21  *		Robert Olsson	:	Removed skb_head_pool
22  *
23  *	NOTE:
24  *		The __skb_ routines should be called with interrupts
25  *	disabled, or you better be *real* sure that the operation is atomic
26  *	with respect to whatever list is being frobbed (e.g. via lock_sock()
27  *	or via disabling bottom half handlers, etc).
28  *
29  *	This program is free software; you can redistribute it and/or
30  *	modify it under the terms of the GNU General Public License
31  *	as published by the Free Software Foundation; either version
32  *	2 of the License, or (at your option) any later version.
33  */
34 
35 /*
36  *	The functions in this file will not compile correctly with gcc 2.4.x
37  */
38 
39 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
40 
41 #include <linux/module.h>
42 #include <linux/types.h>
43 #include <linux/kernel.h>
44 #include <linux/kmemcheck.h>
45 #include <linux/mm.h>
46 #include <linux/interrupt.h>
47 #include <linux/in.h>
48 #include <linux/inet.h>
49 #include <linux/slab.h>
50 #include <linux/tcp.h>
51 #include <linux/udp.h>
52 #include <linux/netdevice.h>
53 #ifdef CONFIG_NET_CLS_ACT
54 #include <net/pkt_sched.h>
55 #endif
56 #include <linux/string.h>
57 #include <linux/skbuff.h>
58 #include <linux/splice.h>
59 #include <linux/cache.h>
60 #include <linux/rtnetlink.h>
61 #include <linux/init.h>
62 #include <linux/scatterlist.h>
63 #include <linux/errqueue.h>
64 #include <linux/prefetch.h>
65 #include <linux/if_vlan.h>
66 
67 #include <net/protocol.h>
68 #include <net/dst.h>
69 #include <net/sock.h>
70 #include <net/checksum.h>
71 #include <net/ip6_checksum.h>
72 #include <net/xfrm.h>
73 
74 #include <asm/uaccess.h>
75 #include <trace/events/skb.h>
76 #include <linux/highmem.h>
77 
78 struct kmem_cache *skbuff_head_cache __read_mostly;
79 static struct kmem_cache *skbuff_fclone_cache __read_mostly;
80 
81 /**
82  *	skb_panic - private function for out-of-line support
83  *	@skb:	buffer
84  *	@sz:	size
85  *	@addr:	address
86  *	@msg:	skb_over_panic or skb_under_panic
87  *
88  *	Out-of-line support for skb_put() and skb_push().
89  *	Called via the wrapper skb_over_panic() or skb_under_panic().
90  *	Keep out of line to prevent kernel bloat.
91  *	__builtin_return_address is not used because it is not always reliable.
92  */
93 static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr,
94 		      const char msg[])
95 {
96 	pr_emerg("%s: text:%p len:%d put:%d head:%p data:%p tail:%#lx end:%#lx dev:%s\n",
97 		 msg, addr, skb->len, sz, skb->head, skb->data,
98 		 (unsigned long)skb->tail, (unsigned long)skb->end,
99 		 skb->dev ? skb->dev->name : "<NULL>");
100 	BUG();
101 }
102 
103 static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr)
104 {
105 	skb_panic(skb, sz, addr, __func__);
106 }
107 
108 static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr)
109 {
110 	skb_panic(skb, sz, addr, __func__);
111 }
112 
113 /*
114  * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells
115  * the caller if emergency pfmemalloc reserves are being used. If it is and
116  * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves
117  * may be used. Otherwise, the packet data may be discarded until enough
118  * memory is free
119  */
120 #define kmalloc_reserve(size, gfp, node, pfmemalloc) \
121 	 __kmalloc_reserve(size, gfp, node, _RET_IP_, pfmemalloc)
122 
123 static void *__kmalloc_reserve(size_t size, gfp_t flags, int node,
124 			       unsigned long ip, bool *pfmemalloc)
125 {
126 	void *obj;
127 	bool ret_pfmemalloc = false;
128 
129 	/*
130 	 * Try a regular allocation, when that fails and we're not entitled
131 	 * to the reserves, fail.
132 	 */
133 	obj = kmalloc_node_track_caller(size,
134 					flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
135 					node);
136 	if (obj || !(gfp_pfmemalloc_allowed(flags)))
137 		goto out;
138 
139 	/* Try again but now we are using pfmemalloc reserves */
140 	ret_pfmemalloc = true;
141 	obj = kmalloc_node_track_caller(size, flags, node);
142 
143 out:
144 	if (pfmemalloc)
145 		*pfmemalloc = ret_pfmemalloc;
146 
147 	return obj;
148 }
149 
150 /* 	Allocate a new skbuff. We do this ourselves so we can fill in a few
151  *	'private' fields and also do memory statistics to find all the
152  *	[BEEP] leaks.
153  *
154  */
155 
156 struct sk_buff *__alloc_skb_head(gfp_t gfp_mask, int node)
157 {
158 	struct sk_buff *skb;
159 
160 	/* Get the HEAD */
161 	skb = kmem_cache_alloc_node(skbuff_head_cache,
162 				    gfp_mask & ~__GFP_DMA, node);
163 	if (!skb)
164 		goto out;
165 
166 	/*
167 	 * Only clear those fields we need to clear, not those that we will
168 	 * actually initialise below. Hence, don't put any more fields after
169 	 * the tail pointer in struct sk_buff!
170 	 */
171 	memset(skb, 0, offsetof(struct sk_buff, tail));
172 	skb->head = NULL;
173 	skb->truesize = sizeof(struct sk_buff);
174 	atomic_set(&skb->users, 1);
175 
176 	skb->mac_header = (typeof(skb->mac_header))~0U;
177 out:
178 	return skb;
179 }
180 
181 /**
182  *	__alloc_skb	-	allocate a network buffer
183  *	@size: size to allocate
184  *	@gfp_mask: allocation mask
185  *	@flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache
186  *		instead of head cache and allocate a cloned (child) skb.
187  *		If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for
188  *		allocations in case the data is required for writeback
189  *	@node: numa node to allocate memory on
190  *
191  *	Allocate a new &sk_buff. The returned buffer has no headroom and a
192  *	tail room of at least size bytes. The object has a reference count
193  *	of one. The return is the buffer. On a failure the return is %NULL.
194  *
195  *	Buffers may only be allocated from interrupts using a @gfp_mask of
196  *	%GFP_ATOMIC.
197  */
198 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
199 			    int flags, int node)
200 {
201 	struct kmem_cache *cache;
202 	struct skb_shared_info *shinfo;
203 	struct sk_buff *skb;
204 	u8 *data;
205 	bool pfmemalloc;
206 
207 	cache = (flags & SKB_ALLOC_FCLONE)
208 		? skbuff_fclone_cache : skbuff_head_cache;
209 
210 	if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX))
211 		gfp_mask |= __GFP_MEMALLOC;
212 
213 	/* Get the HEAD */
214 	skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node);
215 	if (!skb)
216 		goto out;
217 	prefetchw(skb);
218 
219 	/* We do our best to align skb_shared_info on a separate cache
220 	 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives
221 	 * aligned memory blocks, unless SLUB/SLAB debug is enabled.
222 	 * Both skb->head and skb_shared_info are cache line aligned.
223 	 */
224 	size = SKB_DATA_ALIGN(size);
225 	size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
226 	data = kmalloc_reserve(size, gfp_mask, node, &pfmemalloc);
227 	if (!data)
228 		goto nodata;
229 	/* kmalloc(size) might give us more room than requested.
230 	 * Put skb_shared_info exactly at the end of allocated zone,
231 	 * to allow max possible filling before reallocation.
232 	 */
233 	size = SKB_WITH_OVERHEAD(ksize(data));
234 	prefetchw(data + size);
235 
236 	/*
237 	 * Only clear those fields we need to clear, not those that we will
238 	 * actually initialise below. Hence, don't put any more fields after
239 	 * the tail pointer in struct sk_buff!
240 	 */
241 	memset(skb, 0, offsetof(struct sk_buff, tail));
242 	/* Account for allocated memory : skb + skb->head */
243 	skb->truesize = SKB_TRUESIZE(size);
244 	skb->pfmemalloc = pfmemalloc;
245 	atomic_set(&skb->users, 1);
246 	skb->head = data;
247 	skb->data = data;
248 	skb_reset_tail_pointer(skb);
249 	skb->end = skb->tail + size;
250 	skb->mac_header = (typeof(skb->mac_header))~0U;
251 	skb->transport_header = (typeof(skb->transport_header))~0U;
252 
253 	/* make sure we initialize shinfo sequentially */
254 	shinfo = skb_shinfo(skb);
255 	memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
256 	atomic_set(&shinfo->dataref, 1);
257 	kmemcheck_annotate_variable(shinfo->destructor_arg);
258 
259 	if (flags & SKB_ALLOC_FCLONE) {
260 		struct sk_buff_fclones *fclones;
261 
262 		fclones = container_of(skb, struct sk_buff_fclones, skb1);
263 
264 		kmemcheck_annotate_bitfield(&fclones->skb2, flags1);
265 		skb->fclone = SKB_FCLONE_ORIG;
266 		atomic_set(&fclones->fclone_ref, 1);
267 
268 		fclones->skb2.fclone = SKB_FCLONE_CLONE;
269 		fclones->skb2.pfmemalloc = pfmemalloc;
270 	}
271 out:
272 	return skb;
273 nodata:
274 	kmem_cache_free(cache, skb);
275 	skb = NULL;
276 	goto out;
277 }
278 EXPORT_SYMBOL(__alloc_skb);
279 
280 /**
281  * build_skb - build a network buffer
282  * @data: data buffer provided by caller
283  * @frag_size: size of fragment, or 0 if head was kmalloced
284  *
285  * Allocate a new &sk_buff. Caller provides space holding head and
286  * skb_shared_info. @data must have been allocated by kmalloc() only if
287  * @frag_size is 0, otherwise data should come from the page allocator.
288  * The return is the new skb buffer.
289  * On a failure the return is %NULL, and @data is not freed.
290  * Notes :
291  *  Before IO, driver allocates only data buffer where NIC put incoming frame
292  *  Driver should add room at head (NET_SKB_PAD) and
293  *  MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info))
294  *  After IO, driver calls build_skb(), to allocate sk_buff and populate it
295  *  before giving packet to stack.
296  *  RX rings only contains data buffers, not full skbs.
297  */
298 struct sk_buff *build_skb(void *data, unsigned int frag_size)
299 {
300 	struct skb_shared_info *shinfo;
301 	struct sk_buff *skb;
302 	unsigned int size = frag_size ? : ksize(data);
303 
304 	skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC);
305 	if (!skb)
306 		return NULL;
307 
308 	size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
309 
310 	memset(skb, 0, offsetof(struct sk_buff, tail));
311 	skb->truesize = SKB_TRUESIZE(size);
312 	skb->head_frag = frag_size != 0;
313 	atomic_set(&skb->users, 1);
314 	skb->head = data;
315 	skb->data = data;
316 	skb_reset_tail_pointer(skb);
317 	skb->end = skb->tail + size;
318 	skb->mac_header = (typeof(skb->mac_header))~0U;
319 	skb->transport_header = (typeof(skb->transport_header))~0U;
320 
321 	/* make sure we initialize shinfo sequentially */
322 	shinfo = skb_shinfo(skb);
323 	memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
324 	atomic_set(&shinfo->dataref, 1);
325 	kmemcheck_annotate_variable(shinfo->destructor_arg);
326 
327 	return skb;
328 }
329 EXPORT_SYMBOL(build_skb);
330 
331 struct netdev_alloc_cache {
332 	struct page_frag	frag;
333 	/* we maintain a pagecount bias, so that we dont dirty cache line
334 	 * containing page->_count every time we allocate a fragment.
335 	 */
336 	unsigned int		pagecnt_bias;
337 };
338 static DEFINE_PER_CPU(struct netdev_alloc_cache, netdev_alloc_cache);
339 static DEFINE_PER_CPU(struct netdev_alloc_cache, napi_alloc_cache);
340 
341 static struct page *__page_frag_refill(struct netdev_alloc_cache *nc,
342 				       gfp_t gfp_mask)
343 {
344 	const unsigned int order = NETDEV_FRAG_PAGE_MAX_ORDER;
345 	struct page *page = NULL;
346 	gfp_t gfp = gfp_mask;
347 
348 	if (order) {
349 		gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY;
350 		page = alloc_pages_node(NUMA_NO_NODE, gfp_mask, order);
351 		nc->frag.size = PAGE_SIZE << (page ? order : 0);
352 	}
353 
354 	if (unlikely(!page))
355 		page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
356 
357 	nc->frag.page = page;
358 
359 	return page;
360 }
361 
362 static void *__alloc_page_frag(struct netdev_alloc_cache __percpu *cache,
363 			       unsigned int fragsz, gfp_t gfp_mask)
364 {
365 	struct netdev_alloc_cache *nc = this_cpu_ptr(cache);
366 	struct page *page = nc->frag.page;
367 	unsigned int size;
368 	int offset;
369 
370 	if (unlikely(!page)) {
371 refill:
372 		page = __page_frag_refill(nc, gfp_mask);
373 		if (!page)
374 			return NULL;
375 
376 		/* if size can vary use frag.size else just use PAGE_SIZE */
377 		size = NETDEV_FRAG_PAGE_MAX_ORDER ? nc->frag.size : PAGE_SIZE;
378 
379 		/* Even if we own the page, we do not use atomic_set().
380 		 * This would break get_page_unless_zero() users.
381 		 */
382 		atomic_add(size - 1, &page->_count);
383 
384 		/* reset page count bias and offset to start of new frag */
385 		nc->pagecnt_bias = size;
386 		nc->frag.offset = size;
387 	}
388 
389 	offset = nc->frag.offset - fragsz;
390 	if (unlikely(offset < 0)) {
391 		if (!atomic_sub_and_test(nc->pagecnt_bias, &page->_count))
392 			goto refill;
393 
394 		/* if size can vary use frag.size else just use PAGE_SIZE */
395 		size = NETDEV_FRAG_PAGE_MAX_ORDER ? nc->frag.size : PAGE_SIZE;
396 
397 		/* OK, page count is 0, we can safely set it */
398 		atomic_set(&page->_count, size);
399 
400 		/* reset page count bias and offset to start of new frag */
401 		nc->pagecnt_bias = size;
402 		offset = size - fragsz;
403 	}
404 
405 	nc->pagecnt_bias--;
406 	nc->frag.offset = offset;
407 
408 	return page_address(page) + offset;
409 }
410 
411 static void *__netdev_alloc_frag(unsigned int fragsz, gfp_t gfp_mask)
412 {
413 	unsigned long flags;
414 	void *data;
415 
416 	local_irq_save(flags);
417 	data = __alloc_page_frag(&netdev_alloc_cache, fragsz, gfp_mask);
418 	local_irq_restore(flags);
419 	return data;
420 }
421 
422 /**
423  * netdev_alloc_frag - allocate a page fragment
424  * @fragsz: fragment size
425  *
426  * Allocates a frag from a page for receive buffer.
427  * Uses GFP_ATOMIC allocations.
428  */
429 void *netdev_alloc_frag(unsigned int fragsz)
430 {
431 	return __netdev_alloc_frag(fragsz, GFP_ATOMIC | __GFP_COLD);
432 }
433 EXPORT_SYMBOL(netdev_alloc_frag);
434 
435 static void *__napi_alloc_frag(unsigned int fragsz, gfp_t gfp_mask)
436 {
437 	return __alloc_page_frag(&napi_alloc_cache, fragsz, gfp_mask);
438 }
439 
440 void *napi_alloc_frag(unsigned int fragsz)
441 {
442 	return __napi_alloc_frag(fragsz, GFP_ATOMIC | __GFP_COLD);
443 }
444 EXPORT_SYMBOL(napi_alloc_frag);
445 
446 /**
447  *	__alloc_rx_skb - allocate an skbuff for rx
448  *	@length: length to allocate
449  *	@gfp_mask: get_free_pages mask, passed to alloc_skb
450  *	@flags:	If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for
451  *		allocations in case we have to fallback to __alloc_skb()
452  *		If SKB_ALLOC_NAPI is set, page fragment will be allocated
453  *		from napi_cache instead of netdev_cache.
454  *
455  *	Allocate a new &sk_buff and assign it a usage count of one. The
456  *	buffer has unspecified headroom built in. Users should allocate
457  *	the headroom they think they need without accounting for the
458  *	built in space. The built in space is used for optimisations.
459  *
460  *	%NULL is returned if there is no free memory.
461  */
462 static struct sk_buff *__alloc_rx_skb(unsigned int length, gfp_t gfp_mask,
463 				      int flags)
464 {
465 	struct sk_buff *skb = NULL;
466 	unsigned int fragsz = SKB_DATA_ALIGN(length) +
467 			      SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
468 
469 	if (fragsz <= PAGE_SIZE && !(gfp_mask & (__GFP_WAIT | GFP_DMA))) {
470 		void *data;
471 
472 		if (sk_memalloc_socks())
473 			gfp_mask |= __GFP_MEMALLOC;
474 
475 		data = (flags & SKB_ALLOC_NAPI) ?
476 			__napi_alloc_frag(fragsz, gfp_mask) :
477 			__netdev_alloc_frag(fragsz, gfp_mask);
478 
479 		if (likely(data)) {
480 			skb = build_skb(data, fragsz);
481 			if (unlikely(!skb))
482 				put_page(virt_to_head_page(data));
483 		}
484 	} else {
485 		skb = __alloc_skb(length, gfp_mask,
486 				  SKB_ALLOC_RX, NUMA_NO_NODE);
487 	}
488 	return skb;
489 }
490 
491 /**
492  *	__netdev_alloc_skb - allocate an skbuff for rx on a specific device
493  *	@dev: network device to receive on
494  *	@length: length to allocate
495  *	@gfp_mask: get_free_pages mask, passed to alloc_skb
496  *
497  *	Allocate a new &sk_buff and assign it a usage count of one. The
498  *	buffer has NET_SKB_PAD headroom built in. Users should allocate
499  *	the headroom they think they need without accounting for the
500  *	built in space. The built in space is used for optimisations.
501  *
502  *	%NULL is returned if there is no free memory.
503  */
504 struct sk_buff *__netdev_alloc_skb(struct net_device *dev,
505 				   unsigned int length, gfp_t gfp_mask)
506 {
507 	struct sk_buff *skb;
508 
509 	length += NET_SKB_PAD;
510 	skb = __alloc_rx_skb(length, gfp_mask, 0);
511 
512 	if (likely(skb)) {
513 		skb_reserve(skb, NET_SKB_PAD);
514 		skb->dev = dev;
515 	}
516 
517 	return skb;
518 }
519 EXPORT_SYMBOL(__netdev_alloc_skb);
520 
521 /**
522  *	__napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance
523  *	@napi: napi instance this buffer was allocated for
524  *	@length: length to allocate
525  *	@gfp_mask: get_free_pages mask, passed to alloc_skb and alloc_pages
526  *
527  *	Allocate a new sk_buff for use in NAPI receive.  This buffer will
528  *	attempt to allocate the head from a special reserved region used
529  *	only for NAPI Rx allocation.  By doing this we can save several
530  *	CPU cycles by avoiding having to disable and re-enable IRQs.
531  *
532  *	%NULL is returned if there is no free memory.
533  */
534 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi,
535 				 unsigned int length, gfp_t gfp_mask)
536 {
537 	struct sk_buff *skb;
538 
539 	length += NET_SKB_PAD + NET_IP_ALIGN;
540 	skb = __alloc_rx_skb(length, gfp_mask, SKB_ALLOC_NAPI);
541 
542 	if (likely(skb)) {
543 		skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN);
544 		skb->dev = napi->dev;
545 	}
546 
547 	return skb;
548 }
549 EXPORT_SYMBOL(__napi_alloc_skb);
550 
551 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
552 		     int size, unsigned int truesize)
553 {
554 	skb_fill_page_desc(skb, i, page, off, size);
555 	skb->len += size;
556 	skb->data_len += size;
557 	skb->truesize += truesize;
558 }
559 EXPORT_SYMBOL(skb_add_rx_frag);
560 
561 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
562 			  unsigned int truesize)
563 {
564 	skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
565 
566 	skb_frag_size_add(frag, size);
567 	skb->len += size;
568 	skb->data_len += size;
569 	skb->truesize += truesize;
570 }
571 EXPORT_SYMBOL(skb_coalesce_rx_frag);
572 
573 static void skb_drop_list(struct sk_buff **listp)
574 {
575 	kfree_skb_list(*listp);
576 	*listp = NULL;
577 }
578 
579 static inline void skb_drop_fraglist(struct sk_buff *skb)
580 {
581 	skb_drop_list(&skb_shinfo(skb)->frag_list);
582 }
583 
584 static void skb_clone_fraglist(struct sk_buff *skb)
585 {
586 	struct sk_buff *list;
587 
588 	skb_walk_frags(skb, list)
589 		skb_get(list);
590 }
591 
592 static void skb_free_head(struct sk_buff *skb)
593 {
594 	if (skb->head_frag)
595 		put_page(virt_to_head_page(skb->head));
596 	else
597 		kfree(skb->head);
598 }
599 
600 static void skb_release_data(struct sk_buff *skb)
601 {
602 	struct skb_shared_info *shinfo = skb_shinfo(skb);
603 	int i;
604 
605 	if (skb->cloned &&
606 	    atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
607 			      &shinfo->dataref))
608 		return;
609 
610 	for (i = 0; i < shinfo->nr_frags; i++)
611 		__skb_frag_unref(&shinfo->frags[i]);
612 
613 	/*
614 	 * If skb buf is from userspace, we need to notify the caller
615 	 * the lower device DMA has done;
616 	 */
617 	if (shinfo->tx_flags & SKBTX_DEV_ZEROCOPY) {
618 		struct ubuf_info *uarg;
619 
620 		uarg = shinfo->destructor_arg;
621 		if (uarg->callback)
622 			uarg->callback(uarg, true);
623 	}
624 
625 	if (shinfo->frag_list)
626 		kfree_skb_list(shinfo->frag_list);
627 
628 	skb_free_head(skb);
629 }
630 
631 /*
632  *	Free an skbuff by memory without cleaning the state.
633  */
634 static void kfree_skbmem(struct sk_buff *skb)
635 {
636 	struct sk_buff_fclones *fclones;
637 
638 	switch (skb->fclone) {
639 	case SKB_FCLONE_UNAVAILABLE:
640 		kmem_cache_free(skbuff_head_cache, skb);
641 		return;
642 
643 	case SKB_FCLONE_ORIG:
644 		fclones = container_of(skb, struct sk_buff_fclones, skb1);
645 
646 		/* We usually free the clone (TX completion) before original skb
647 		 * This test would have no chance to be true for the clone,
648 		 * while here, branch prediction will be good.
649 		 */
650 		if (atomic_read(&fclones->fclone_ref) == 1)
651 			goto fastpath;
652 		break;
653 
654 	default: /* SKB_FCLONE_CLONE */
655 		fclones = container_of(skb, struct sk_buff_fclones, skb2);
656 		break;
657 	}
658 	if (!atomic_dec_and_test(&fclones->fclone_ref))
659 		return;
660 fastpath:
661 	kmem_cache_free(skbuff_fclone_cache, fclones);
662 }
663 
664 static void skb_release_head_state(struct sk_buff *skb)
665 {
666 	skb_dst_drop(skb);
667 #ifdef CONFIG_XFRM
668 	secpath_put(skb->sp);
669 #endif
670 	if (skb->destructor) {
671 		WARN_ON(in_irq());
672 		skb->destructor(skb);
673 	}
674 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
675 	nf_conntrack_put(skb->nfct);
676 #endif
677 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
678 	nf_bridge_put(skb->nf_bridge);
679 #endif
680 /* XXX: IS this still necessary? - JHS */
681 #ifdef CONFIG_NET_SCHED
682 	skb->tc_index = 0;
683 #ifdef CONFIG_NET_CLS_ACT
684 	skb->tc_verd = 0;
685 #endif
686 #endif
687 }
688 
689 /* Free everything but the sk_buff shell. */
690 static void skb_release_all(struct sk_buff *skb)
691 {
692 	skb_release_head_state(skb);
693 	if (likely(skb->head))
694 		skb_release_data(skb);
695 }
696 
697 /**
698  *	__kfree_skb - private function
699  *	@skb: buffer
700  *
701  *	Free an sk_buff. Release anything attached to the buffer.
702  *	Clean the state. This is an internal helper function. Users should
703  *	always call kfree_skb
704  */
705 
706 void __kfree_skb(struct sk_buff *skb)
707 {
708 	skb_release_all(skb);
709 	kfree_skbmem(skb);
710 }
711 EXPORT_SYMBOL(__kfree_skb);
712 
713 /**
714  *	kfree_skb - free an sk_buff
715  *	@skb: buffer to free
716  *
717  *	Drop a reference to the buffer and free it if the usage count has
718  *	hit zero.
719  */
720 void kfree_skb(struct sk_buff *skb)
721 {
722 	if (unlikely(!skb))
723 		return;
724 	if (likely(atomic_read(&skb->users) == 1))
725 		smp_rmb();
726 	else if (likely(!atomic_dec_and_test(&skb->users)))
727 		return;
728 	trace_kfree_skb(skb, __builtin_return_address(0));
729 	__kfree_skb(skb);
730 }
731 EXPORT_SYMBOL(kfree_skb);
732 
733 void kfree_skb_list(struct sk_buff *segs)
734 {
735 	while (segs) {
736 		struct sk_buff *next = segs->next;
737 
738 		kfree_skb(segs);
739 		segs = next;
740 	}
741 }
742 EXPORT_SYMBOL(kfree_skb_list);
743 
744 /**
745  *	skb_tx_error - report an sk_buff xmit error
746  *	@skb: buffer that triggered an error
747  *
748  *	Report xmit error if a device callback is tracking this skb.
749  *	skb must be freed afterwards.
750  */
751 void skb_tx_error(struct sk_buff *skb)
752 {
753 	if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
754 		struct ubuf_info *uarg;
755 
756 		uarg = skb_shinfo(skb)->destructor_arg;
757 		if (uarg->callback)
758 			uarg->callback(uarg, false);
759 		skb_shinfo(skb)->tx_flags &= ~SKBTX_DEV_ZEROCOPY;
760 	}
761 }
762 EXPORT_SYMBOL(skb_tx_error);
763 
764 /**
765  *	consume_skb - free an skbuff
766  *	@skb: buffer to free
767  *
768  *	Drop a ref to the buffer and free it if the usage count has hit zero
769  *	Functions identically to kfree_skb, but kfree_skb assumes that the frame
770  *	is being dropped after a failure and notes that
771  */
772 void consume_skb(struct sk_buff *skb)
773 {
774 	if (unlikely(!skb))
775 		return;
776 	if (likely(atomic_read(&skb->users) == 1))
777 		smp_rmb();
778 	else if (likely(!atomic_dec_and_test(&skb->users)))
779 		return;
780 	trace_consume_skb(skb);
781 	__kfree_skb(skb);
782 }
783 EXPORT_SYMBOL(consume_skb);
784 
785 /* Make sure a field is enclosed inside headers_start/headers_end section */
786 #define CHECK_SKB_FIELD(field) \
787 	BUILD_BUG_ON(offsetof(struct sk_buff, field) <		\
788 		     offsetof(struct sk_buff, headers_start));	\
789 	BUILD_BUG_ON(offsetof(struct sk_buff, field) >		\
790 		     offsetof(struct sk_buff, headers_end));	\
791 
792 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
793 {
794 	new->tstamp		= old->tstamp;
795 	/* We do not copy old->sk */
796 	new->dev		= old->dev;
797 	memcpy(new->cb, old->cb, sizeof(old->cb));
798 	skb_dst_copy(new, old);
799 #ifdef CONFIG_XFRM
800 	new->sp			= secpath_get(old->sp);
801 #endif
802 	__nf_copy(new, old, false);
803 
804 	/* Note : this field could be in headers_start/headers_end section
805 	 * It is not yet because we do not want to have a 16 bit hole
806 	 */
807 	new->queue_mapping = old->queue_mapping;
808 
809 	memcpy(&new->headers_start, &old->headers_start,
810 	       offsetof(struct sk_buff, headers_end) -
811 	       offsetof(struct sk_buff, headers_start));
812 	CHECK_SKB_FIELD(protocol);
813 	CHECK_SKB_FIELD(csum);
814 	CHECK_SKB_FIELD(hash);
815 	CHECK_SKB_FIELD(priority);
816 	CHECK_SKB_FIELD(skb_iif);
817 	CHECK_SKB_FIELD(vlan_proto);
818 	CHECK_SKB_FIELD(vlan_tci);
819 	CHECK_SKB_FIELD(transport_header);
820 	CHECK_SKB_FIELD(network_header);
821 	CHECK_SKB_FIELD(mac_header);
822 	CHECK_SKB_FIELD(inner_protocol);
823 	CHECK_SKB_FIELD(inner_transport_header);
824 	CHECK_SKB_FIELD(inner_network_header);
825 	CHECK_SKB_FIELD(inner_mac_header);
826 	CHECK_SKB_FIELD(mark);
827 #ifdef CONFIG_NETWORK_SECMARK
828 	CHECK_SKB_FIELD(secmark);
829 #endif
830 #ifdef CONFIG_NET_RX_BUSY_POLL
831 	CHECK_SKB_FIELD(napi_id);
832 #endif
833 #ifdef CONFIG_NET_SCHED
834 	CHECK_SKB_FIELD(tc_index);
835 #ifdef CONFIG_NET_CLS_ACT
836 	CHECK_SKB_FIELD(tc_verd);
837 #endif
838 #endif
839 
840 }
841 
842 /*
843  * You should not add any new code to this function.  Add it to
844  * __copy_skb_header above instead.
845  */
846 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
847 {
848 #define C(x) n->x = skb->x
849 
850 	n->next = n->prev = NULL;
851 	n->sk = NULL;
852 	__copy_skb_header(n, skb);
853 
854 	C(len);
855 	C(data_len);
856 	C(mac_len);
857 	n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
858 	n->cloned = 1;
859 	n->nohdr = 0;
860 	n->destructor = NULL;
861 	C(tail);
862 	C(end);
863 	C(head);
864 	C(head_frag);
865 	C(data);
866 	C(truesize);
867 	atomic_set(&n->users, 1);
868 
869 	atomic_inc(&(skb_shinfo(skb)->dataref));
870 	skb->cloned = 1;
871 
872 	return n;
873 #undef C
874 }
875 
876 /**
877  *	skb_morph	-	morph one skb into another
878  *	@dst: the skb to receive the contents
879  *	@src: the skb to supply the contents
880  *
881  *	This is identical to skb_clone except that the target skb is
882  *	supplied by the user.
883  *
884  *	The target skb is returned upon exit.
885  */
886 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
887 {
888 	skb_release_all(dst);
889 	return __skb_clone(dst, src);
890 }
891 EXPORT_SYMBOL_GPL(skb_morph);
892 
893 /**
894  *	skb_copy_ubufs	-	copy userspace skb frags buffers to kernel
895  *	@skb: the skb to modify
896  *	@gfp_mask: allocation priority
897  *
898  *	This must be called on SKBTX_DEV_ZEROCOPY skb.
899  *	It will copy all frags into kernel and drop the reference
900  *	to userspace pages.
901  *
902  *	If this function is called from an interrupt gfp_mask() must be
903  *	%GFP_ATOMIC.
904  *
905  *	Returns 0 on success or a negative error code on failure
906  *	to allocate kernel memory to copy to.
907  */
908 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask)
909 {
910 	int i;
911 	int num_frags = skb_shinfo(skb)->nr_frags;
912 	struct page *page, *head = NULL;
913 	struct ubuf_info *uarg = skb_shinfo(skb)->destructor_arg;
914 
915 	for (i = 0; i < num_frags; i++) {
916 		u8 *vaddr;
917 		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
918 
919 		page = alloc_page(gfp_mask);
920 		if (!page) {
921 			while (head) {
922 				struct page *next = (struct page *)page_private(head);
923 				put_page(head);
924 				head = next;
925 			}
926 			return -ENOMEM;
927 		}
928 		vaddr = kmap_atomic(skb_frag_page(f));
929 		memcpy(page_address(page),
930 		       vaddr + f->page_offset, skb_frag_size(f));
931 		kunmap_atomic(vaddr);
932 		set_page_private(page, (unsigned long)head);
933 		head = page;
934 	}
935 
936 	/* skb frags release userspace buffers */
937 	for (i = 0; i < num_frags; i++)
938 		skb_frag_unref(skb, i);
939 
940 	uarg->callback(uarg, false);
941 
942 	/* skb frags point to kernel buffers */
943 	for (i = num_frags - 1; i >= 0; i--) {
944 		__skb_fill_page_desc(skb, i, head, 0,
945 				     skb_shinfo(skb)->frags[i].size);
946 		head = (struct page *)page_private(head);
947 	}
948 
949 	skb_shinfo(skb)->tx_flags &= ~SKBTX_DEV_ZEROCOPY;
950 	return 0;
951 }
952 EXPORT_SYMBOL_GPL(skb_copy_ubufs);
953 
954 /**
955  *	skb_clone	-	duplicate an sk_buff
956  *	@skb: buffer to clone
957  *	@gfp_mask: allocation priority
958  *
959  *	Duplicate an &sk_buff. The new one is not owned by a socket. Both
960  *	copies share the same packet data but not structure. The new
961  *	buffer has a reference count of 1. If the allocation fails the
962  *	function returns %NULL otherwise the new buffer is returned.
963  *
964  *	If this function is called from an interrupt gfp_mask() must be
965  *	%GFP_ATOMIC.
966  */
967 
968 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
969 {
970 	struct sk_buff_fclones *fclones = container_of(skb,
971 						       struct sk_buff_fclones,
972 						       skb1);
973 	struct sk_buff *n;
974 
975 	if (skb_orphan_frags(skb, gfp_mask))
976 		return NULL;
977 
978 	if (skb->fclone == SKB_FCLONE_ORIG &&
979 	    atomic_read(&fclones->fclone_ref) == 1) {
980 		n = &fclones->skb2;
981 		atomic_set(&fclones->fclone_ref, 2);
982 	} else {
983 		if (skb_pfmemalloc(skb))
984 			gfp_mask |= __GFP_MEMALLOC;
985 
986 		n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
987 		if (!n)
988 			return NULL;
989 
990 		kmemcheck_annotate_bitfield(n, flags1);
991 		n->fclone = SKB_FCLONE_UNAVAILABLE;
992 	}
993 
994 	return __skb_clone(n, skb);
995 }
996 EXPORT_SYMBOL(skb_clone);
997 
998 static void skb_headers_offset_update(struct sk_buff *skb, int off)
999 {
1000 	/* Only adjust this if it actually is csum_start rather than csum */
1001 	if (skb->ip_summed == CHECKSUM_PARTIAL)
1002 		skb->csum_start += off;
1003 	/* {transport,network,mac}_header and tail are relative to skb->head */
1004 	skb->transport_header += off;
1005 	skb->network_header   += off;
1006 	if (skb_mac_header_was_set(skb))
1007 		skb->mac_header += off;
1008 	skb->inner_transport_header += off;
1009 	skb->inner_network_header += off;
1010 	skb->inner_mac_header += off;
1011 }
1012 
1013 static void copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
1014 {
1015 	__copy_skb_header(new, old);
1016 
1017 	skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
1018 	skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
1019 	skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
1020 }
1021 
1022 static inline int skb_alloc_rx_flag(const struct sk_buff *skb)
1023 {
1024 	if (skb_pfmemalloc(skb))
1025 		return SKB_ALLOC_RX;
1026 	return 0;
1027 }
1028 
1029 /**
1030  *	skb_copy	-	create private copy of an sk_buff
1031  *	@skb: buffer to copy
1032  *	@gfp_mask: allocation priority
1033  *
1034  *	Make a copy of both an &sk_buff and its data. This is used when the
1035  *	caller wishes to modify the data and needs a private copy of the
1036  *	data to alter. Returns %NULL on failure or the pointer to the buffer
1037  *	on success. The returned buffer has a reference count of 1.
1038  *
1039  *	As by-product this function converts non-linear &sk_buff to linear
1040  *	one, so that &sk_buff becomes completely private and caller is allowed
1041  *	to modify all the data of returned buffer. This means that this
1042  *	function is not recommended for use in circumstances when only
1043  *	header is going to be modified. Use pskb_copy() instead.
1044  */
1045 
1046 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
1047 {
1048 	int headerlen = skb_headroom(skb);
1049 	unsigned int size = skb_end_offset(skb) + skb->data_len;
1050 	struct sk_buff *n = __alloc_skb(size, gfp_mask,
1051 					skb_alloc_rx_flag(skb), NUMA_NO_NODE);
1052 
1053 	if (!n)
1054 		return NULL;
1055 
1056 	/* Set the data pointer */
1057 	skb_reserve(n, headerlen);
1058 	/* Set the tail pointer and length */
1059 	skb_put(n, skb->len);
1060 
1061 	if (skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len))
1062 		BUG();
1063 
1064 	copy_skb_header(n, skb);
1065 	return n;
1066 }
1067 EXPORT_SYMBOL(skb_copy);
1068 
1069 /**
1070  *	__pskb_copy_fclone	-  create copy of an sk_buff with private head.
1071  *	@skb: buffer to copy
1072  *	@headroom: headroom of new skb
1073  *	@gfp_mask: allocation priority
1074  *	@fclone: if true allocate the copy of the skb from the fclone
1075  *	cache instead of the head cache; it is recommended to set this
1076  *	to true for the cases where the copy will likely be cloned
1077  *
1078  *	Make a copy of both an &sk_buff and part of its data, located
1079  *	in header. Fragmented data remain shared. This is used when
1080  *	the caller wishes to modify only header of &sk_buff and needs
1081  *	private copy of the header to alter. Returns %NULL on failure
1082  *	or the pointer to the buffer on success.
1083  *	The returned buffer has a reference count of 1.
1084  */
1085 
1086 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1087 				   gfp_t gfp_mask, bool fclone)
1088 {
1089 	unsigned int size = skb_headlen(skb) + headroom;
1090 	int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0);
1091 	struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE);
1092 
1093 	if (!n)
1094 		goto out;
1095 
1096 	/* Set the data pointer */
1097 	skb_reserve(n, headroom);
1098 	/* Set the tail pointer and length */
1099 	skb_put(n, skb_headlen(skb));
1100 	/* Copy the bytes */
1101 	skb_copy_from_linear_data(skb, n->data, n->len);
1102 
1103 	n->truesize += skb->data_len;
1104 	n->data_len  = skb->data_len;
1105 	n->len	     = skb->len;
1106 
1107 	if (skb_shinfo(skb)->nr_frags) {
1108 		int i;
1109 
1110 		if (skb_orphan_frags(skb, gfp_mask)) {
1111 			kfree_skb(n);
1112 			n = NULL;
1113 			goto out;
1114 		}
1115 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1116 			skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
1117 			skb_frag_ref(skb, i);
1118 		}
1119 		skb_shinfo(n)->nr_frags = i;
1120 	}
1121 
1122 	if (skb_has_frag_list(skb)) {
1123 		skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
1124 		skb_clone_fraglist(n);
1125 	}
1126 
1127 	copy_skb_header(n, skb);
1128 out:
1129 	return n;
1130 }
1131 EXPORT_SYMBOL(__pskb_copy_fclone);
1132 
1133 /**
1134  *	pskb_expand_head - reallocate header of &sk_buff
1135  *	@skb: buffer to reallocate
1136  *	@nhead: room to add at head
1137  *	@ntail: room to add at tail
1138  *	@gfp_mask: allocation priority
1139  *
1140  *	Expands (or creates identical copy, if @nhead and @ntail are zero)
1141  *	header of @skb. &sk_buff itself is not changed. &sk_buff MUST have
1142  *	reference count of 1. Returns zero in the case of success or error,
1143  *	if expansion failed. In the last case, &sk_buff is not changed.
1144  *
1145  *	All the pointers pointing into skb header may change and must be
1146  *	reloaded after call to this function.
1147  */
1148 
1149 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
1150 		     gfp_t gfp_mask)
1151 {
1152 	int i;
1153 	u8 *data;
1154 	int size = nhead + skb_end_offset(skb) + ntail;
1155 	long off;
1156 
1157 	BUG_ON(nhead < 0);
1158 
1159 	if (skb_shared(skb))
1160 		BUG();
1161 
1162 	size = SKB_DATA_ALIGN(size);
1163 
1164 	if (skb_pfmemalloc(skb))
1165 		gfp_mask |= __GFP_MEMALLOC;
1166 	data = kmalloc_reserve(size + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
1167 			       gfp_mask, NUMA_NO_NODE, NULL);
1168 	if (!data)
1169 		goto nodata;
1170 	size = SKB_WITH_OVERHEAD(ksize(data));
1171 
1172 	/* Copy only real data... and, alas, header. This should be
1173 	 * optimized for the cases when header is void.
1174 	 */
1175 	memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head);
1176 
1177 	memcpy((struct skb_shared_info *)(data + size),
1178 	       skb_shinfo(skb),
1179 	       offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags]));
1180 
1181 	/*
1182 	 * if shinfo is shared we must drop the old head gracefully, but if it
1183 	 * is not we can just drop the old head and let the existing refcount
1184 	 * be since all we did is relocate the values
1185 	 */
1186 	if (skb_cloned(skb)) {
1187 		/* copy this zero copy skb frags */
1188 		if (skb_orphan_frags(skb, gfp_mask))
1189 			goto nofrags;
1190 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1191 			skb_frag_ref(skb, i);
1192 
1193 		if (skb_has_frag_list(skb))
1194 			skb_clone_fraglist(skb);
1195 
1196 		skb_release_data(skb);
1197 	} else {
1198 		skb_free_head(skb);
1199 	}
1200 	off = (data + nhead) - skb->head;
1201 
1202 	skb->head     = data;
1203 	skb->head_frag = 0;
1204 	skb->data    += off;
1205 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1206 	skb->end      = size;
1207 	off           = nhead;
1208 #else
1209 	skb->end      = skb->head + size;
1210 #endif
1211 	skb->tail	      += off;
1212 	skb_headers_offset_update(skb, nhead);
1213 	skb->cloned   = 0;
1214 	skb->hdr_len  = 0;
1215 	skb->nohdr    = 0;
1216 	atomic_set(&skb_shinfo(skb)->dataref, 1);
1217 	return 0;
1218 
1219 nofrags:
1220 	kfree(data);
1221 nodata:
1222 	return -ENOMEM;
1223 }
1224 EXPORT_SYMBOL(pskb_expand_head);
1225 
1226 /* Make private copy of skb with writable head and some headroom */
1227 
1228 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
1229 {
1230 	struct sk_buff *skb2;
1231 	int delta = headroom - skb_headroom(skb);
1232 
1233 	if (delta <= 0)
1234 		skb2 = pskb_copy(skb, GFP_ATOMIC);
1235 	else {
1236 		skb2 = skb_clone(skb, GFP_ATOMIC);
1237 		if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
1238 					     GFP_ATOMIC)) {
1239 			kfree_skb(skb2);
1240 			skb2 = NULL;
1241 		}
1242 	}
1243 	return skb2;
1244 }
1245 EXPORT_SYMBOL(skb_realloc_headroom);
1246 
1247 /**
1248  *	skb_copy_expand	-	copy and expand sk_buff
1249  *	@skb: buffer to copy
1250  *	@newheadroom: new free bytes at head
1251  *	@newtailroom: new free bytes at tail
1252  *	@gfp_mask: allocation priority
1253  *
1254  *	Make a copy of both an &sk_buff and its data and while doing so
1255  *	allocate additional space.
1256  *
1257  *	This is used when the caller wishes to modify the data and needs a
1258  *	private copy of the data to alter as well as more space for new fields.
1259  *	Returns %NULL on failure or the pointer to the buffer
1260  *	on success. The returned buffer has a reference count of 1.
1261  *
1262  *	You must pass %GFP_ATOMIC as the allocation priority if this function
1263  *	is called from an interrupt.
1264  */
1265 struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
1266 				int newheadroom, int newtailroom,
1267 				gfp_t gfp_mask)
1268 {
1269 	/*
1270 	 *	Allocate the copy buffer
1271 	 */
1272 	struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom,
1273 					gfp_mask, skb_alloc_rx_flag(skb),
1274 					NUMA_NO_NODE);
1275 	int oldheadroom = skb_headroom(skb);
1276 	int head_copy_len, head_copy_off;
1277 
1278 	if (!n)
1279 		return NULL;
1280 
1281 	skb_reserve(n, newheadroom);
1282 
1283 	/* Set the tail pointer and length */
1284 	skb_put(n, skb->len);
1285 
1286 	head_copy_len = oldheadroom;
1287 	head_copy_off = 0;
1288 	if (newheadroom <= head_copy_len)
1289 		head_copy_len = newheadroom;
1290 	else
1291 		head_copy_off = newheadroom - head_copy_len;
1292 
1293 	/* Copy the linear header and data. */
1294 	if (skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
1295 			  skb->len + head_copy_len))
1296 		BUG();
1297 
1298 	copy_skb_header(n, skb);
1299 
1300 	skb_headers_offset_update(n, newheadroom - oldheadroom);
1301 
1302 	return n;
1303 }
1304 EXPORT_SYMBOL(skb_copy_expand);
1305 
1306 /**
1307  *	skb_pad			-	zero pad the tail of an skb
1308  *	@skb: buffer to pad
1309  *	@pad: space to pad
1310  *
1311  *	Ensure that a buffer is followed by a padding area that is zero
1312  *	filled. Used by network drivers which may DMA or transfer data
1313  *	beyond the buffer end onto the wire.
1314  *
1315  *	May return error in out of memory cases. The skb is freed on error.
1316  */
1317 
1318 int skb_pad(struct sk_buff *skb, int pad)
1319 {
1320 	int err;
1321 	int ntail;
1322 
1323 	/* If the skbuff is non linear tailroom is always zero.. */
1324 	if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
1325 		memset(skb->data+skb->len, 0, pad);
1326 		return 0;
1327 	}
1328 
1329 	ntail = skb->data_len + pad - (skb->end - skb->tail);
1330 	if (likely(skb_cloned(skb) || ntail > 0)) {
1331 		err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
1332 		if (unlikely(err))
1333 			goto free_skb;
1334 	}
1335 
1336 	/* FIXME: The use of this function with non-linear skb's really needs
1337 	 * to be audited.
1338 	 */
1339 	err = skb_linearize(skb);
1340 	if (unlikely(err))
1341 		goto free_skb;
1342 
1343 	memset(skb->data + skb->len, 0, pad);
1344 	return 0;
1345 
1346 free_skb:
1347 	kfree_skb(skb);
1348 	return err;
1349 }
1350 EXPORT_SYMBOL(skb_pad);
1351 
1352 /**
1353  *	pskb_put - add data to the tail of a potentially fragmented buffer
1354  *	@skb: start of the buffer to use
1355  *	@tail: tail fragment of the buffer to use
1356  *	@len: amount of data to add
1357  *
1358  *	This function extends the used data area of the potentially
1359  *	fragmented buffer. @tail must be the last fragment of @skb -- or
1360  *	@skb itself. If this would exceed the total buffer size the kernel
1361  *	will panic. A pointer to the first byte of the extra data is
1362  *	returned.
1363  */
1364 
1365 unsigned char *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len)
1366 {
1367 	if (tail != skb) {
1368 		skb->data_len += len;
1369 		skb->len += len;
1370 	}
1371 	return skb_put(tail, len);
1372 }
1373 EXPORT_SYMBOL_GPL(pskb_put);
1374 
1375 /**
1376  *	skb_put - add data to a buffer
1377  *	@skb: buffer to use
1378  *	@len: amount of data to add
1379  *
1380  *	This function extends the used data area of the buffer. If this would
1381  *	exceed the total buffer size the kernel will panic. A pointer to the
1382  *	first byte of the extra data is returned.
1383  */
1384 unsigned char *skb_put(struct sk_buff *skb, unsigned int len)
1385 {
1386 	unsigned char *tmp = skb_tail_pointer(skb);
1387 	SKB_LINEAR_ASSERT(skb);
1388 	skb->tail += len;
1389 	skb->len  += len;
1390 	if (unlikely(skb->tail > skb->end))
1391 		skb_over_panic(skb, len, __builtin_return_address(0));
1392 	return tmp;
1393 }
1394 EXPORT_SYMBOL(skb_put);
1395 
1396 /**
1397  *	skb_push - add data to the start of a buffer
1398  *	@skb: buffer to use
1399  *	@len: amount of data to add
1400  *
1401  *	This function extends the used data area of the buffer at the buffer
1402  *	start. If this would exceed the total buffer headroom the kernel will
1403  *	panic. A pointer to the first byte of the extra data is returned.
1404  */
1405 unsigned char *skb_push(struct sk_buff *skb, unsigned int len)
1406 {
1407 	skb->data -= len;
1408 	skb->len  += len;
1409 	if (unlikely(skb->data<skb->head))
1410 		skb_under_panic(skb, len, __builtin_return_address(0));
1411 	return skb->data;
1412 }
1413 EXPORT_SYMBOL(skb_push);
1414 
1415 /**
1416  *	skb_pull - remove data from the start of a buffer
1417  *	@skb: buffer to use
1418  *	@len: amount of data to remove
1419  *
1420  *	This function removes data from the start of a buffer, returning
1421  *	the memory to the headroom. A pointer to the next data in the buffer
1422  *	is returned. Once the data has been pulled future pushes will overwrite
1423  *	the old data.
1424  */
1425 unsigned char *skb_pull(struct sk_buff *skb, unsigned int len)
1426 {
1427 	return skb_pull_inline(skb, len);
1428 }
1429 EXPORT_SYMBOL(skb_pull);
1430 
1431 /**
1432  *	skb_trim - remove end from a buffer
1433  *	@skb: buffer to alter
1434  *	@len: new length
1435  *
1436  *	Cut the length of a buffer down by removing data from the tail. If
1437  *	the buffer is already under the length specified it is not modified.
1438  *	The skb must be linear.
1439  */
1440 void skb_trim(struct sk_buff *skb, unsigned int len)
1441 {
1442 	if (skb->len > len)
1443 		__skb_trim(skb, len);
1444 }
1445 EXPORT_SYMBOL(skb_trim);
1446 
1447 /* Trims skb to length len. It can change skb pointers.
1448  */
1449 
1450 int ___pskb_trim(struct sk_buff *skb, unsigned int len)
1451 {
1452 	struct sk_buff **fragp;
1453 	struct sk_buff *frag;
1454 	int offset = skb_headlen(skb);
1455 	int nfrags = skb_shinfo(skb)->nr_frags;
1456 	int i;
1457 	int err;
1458 
1459 	if (skb_cloned(skb) &&
1460 	    unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
1461 		return err;
1462 
1463 	i = 0;
1464 	if (offset >= len)
1465 		goto drop_pages;
1466 
1467 	for (; i < nfrags; i++) {
1468 		int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]);
1469 
1470 		if (end < len) {
1471 			offset = end;
1472 			continue;
1473 		}
1474 
1475 		skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset);
1476 
1477 drop_pages:
1478 		skb_shinfo(skb)->nr_frags = i;
1479 
1480 		for (; i < nfrags; i++)
1481 			skb_frag_unref(skb, i);
1482 
1483 		if (skb_has_frag_list(skb))
1484 			skb_drop_fraglist(skb);
1485 		goto done;
1486 	}
1487 
1488 	for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
1489 	     fragp = &frag->next) {
1490 		int end = offset + frag->len;
1491 
1492 		if (skb_shared(frag)) {
1493 			struct sk_buff *nfrag;
1494 
1495 			nfrag = skb_clone(frag, GFP_ATOMIC);
1496 			if (unlikely(!nfrag))
1497 				return -ENOMEM;
1498 
1499 			nfrag->next = frag->next;
1500 			consume_skb(frag);
1501 			frag = nfrag;
1502 			*fragp = frag;
1503 		}
1504 
1505 		if (end < len) {
1506 			offset = end;
1507 			continue;
1508 		}
1509 
1510 		if (end > len &&
1511 		    unlikely((err = pskb_trim(frag, len - offset))))
1512 			return err;
1513 
1514 		if (frag->next)
1515 			skb_drop_list(&frag->next);
1516 		break;
1517 	}
1518 
1519 done:
1520 	if (len > skb_headlen(skb)) {
1521 		skb->data_len -= skb->len - len;
1522 		skb->len       = len;
1523 	} else {
1524 		skb->len       = len;
1525 		skb->data_len  = 0;
1526 		skb_set_tail_pointer(skb, len);
1527 	}
1528 
1529 	return 0;
1530 }
1531 EXPORT_SYMBOL(___pskb_trim);
1532 
1533 /**
1534  *	__pskb_pull_tail - advance tail of skb header
1535  *	@skb: buffer to reallocate
1536  *	@delta: number of bytes to advance tail
1537  *
1538  *	The function makes a sense only on a fragmented &sk_buff,
1539  *	it expands header moving its tail forward and copying necessary
1540  *	data from fragmented part.
1541  *
1542  *	&sk_buff MUST have reference count of 1.
1543  *
1544  *	Returns %NULL (and &sk_buff does not change) if pull failed
1545  *	or value of new tail of skb in the case of success.
1546  *
1547  *	All the pointers pointing into skb header may change and must be
1548  *	reloaded after call to this function.
1549  */
1550 
1551 /* Moves tail of skb head forward, copying data from fragmented part,
1552  * when it is necessary.
1553  * 1. It may fail due to malloc failure.
1554  * 2. It may change skb pointers.
1555  *
1556  * It is pretty complicated. Luckily, it is called only in exceptional cases.
1557  */
1558 unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta)
1559 {
1560 	/* If skb has not enough free space at tail, get new one
1561 	 * plus 128 bytes for future expansions. If we have enough
1562 	 * room at tail, reallocate without expansion only if skb is cloned.
1563 	 */
1564 	int i, k, eat = (skb->tail + delta) - skb->end;
1565 
1566 	if (eat > 0 || skb_cloned(skb)) {
1567 		if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
1568 				     GFP_ATOMIC))
1569 			return NULL;
1570 	}
1571 
1572 	if (skb_copy_bits(skb, skb_headlen(skb), skb_tail_pointer(skb), delta))
1573 		BUG();
1574 
1575 	/* Optimization: no fragments, no reasons to preestimate
1576 	 * size of pulled pages. Superb.
1577 	 */
1578 	if (!skb_has_frag_list(skb))
1579 		goto pull_pages;
1580 
1581 	/* Estimate size of pulled pages. */
1582 	eat = delta;
1583 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1584 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
1585 
1586 		if (size >= eat)
1587 			goto pull_pages;
1588 		eat -= size;
1589 	}
1590 
1591 	/* If we need update frag list, we are in troubles.
1592 	 * Certainly, it possible to add an offset to skb data,
1593 	 * but taking into account that pulling is expected to
1594 	 * be very rare operation, it is worth to fight against
1595 	 * further bloating skb head and crucify ourselves here instead.
1596 	 * Pure masohism, indeed. 8)8)
1597 	 */
1598 	if (eat) {
1599 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
1600 		struct sk_buff *clone = NULL;
1601 		struct sk_buff *insp = NULL;
1602 
1603 		do {
1604 			BUG_ON(!list);
1605 
1606 			if (list->len <= eat) {
1607 				/* Eaten as whole. */
1608 				eat -= list->len;
1609 				list = list->next;
1610 				insp = list;
1611 			} else {
1612 				/* Eaten partially. */
1613 
1614 				if (skb_shared(list)) {
1615 					/* Sucks! We need to fork list. :-( */
1616 					clone = skb_clone(list, GFP_ATOMIC);
1617 					if (!clone)
1618 						return NULL;
1619 					insp = list->next;
1620 					list = clone;
1621 				} else {
1622 					/* This may be pulled without
1623 					 * problems. */
1624 					insp = list;
1625 				}
1626 				if (!pskb_pull(list, eat)) {
1627 					kfree_skb(clone);
1628 					return NULL;
1629 				}
1630 				break;
1631 			}
1632 		} while (eat);
1633 
1634 		/* Free pulled out fragments. */
1635 		while ((list = skb_shinfo(skb)->frag_list) != insp) {
1636 			skb_shinfo(skb)->frag_list = list->next;
1637 			kfree_skb(list);
1638 		}
1639 		/* And insert new clone at head. */
1640 		if (clone) {
1641 			clone->next = list;
1642 			skb_shinfo(skb)->frag_list = clone;
1643 		}
1644 	}
1645 	/* Success! Now we may commit changes to skb data. */
1646 
1647 pull_pages:
1648 	eat = delta;
1649 	k = 0;
1650 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1651 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
1652 
1653 		if (size <= eat) {
1654 			skb_frag_unref(skb, i);
1655 			eat -= size;
1656 		} else {
1657 			skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i];
1658 			if (eat) {
1659 				skb_shinfo(skb)->frags[k].page_offset += eat;
1660 				skb_frag_size_sub(&skb_shinfo(skb)->frags[k], eat);
1661 				eat = 0;
1662 			}
1663 			k++;
1664 		}
1665 	}
1666 	skb_shinfo(skb)->nr_frags = k;
1667 
1668 	skb->tail     += delta;
1669 	skb->data_len -= delta;
1670 
1671 	return skb_tail_pointer(skb);
1672 }
1673 EXPORT_SYMBOL(__pskb_pull_tail);
1674 
1675 /**
1676  *	skb_copy_bits - copy bits from skb to kernel buffer
1677  *	@skb: source skb
1678  *	@offset: offset in source
1679  *	@to: destination buffer
1680  *	@len: number of bytes to copy
1681  *
1682  *	Copy the specified number of bytes from the source skb to the
1683  *	destination buffer.
1684  *
1685  *	CAUTION ! :
1686  *		If its prototype is ever changed,
1687  *		check arch/{*}/net/{*}.S files,
1688  *		since it is called from BPF assembly code.
1689  */
1690 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
1691 {
1692 	int start = skb_headlen(skb);
1693 	struct sk_buff *frag_iter;
1694 	int i, copy;
1695 
1696 	if (offset > (int)skb->len - len)
1697 		goto fault;
1698 
1699 	/* Copy header. */
1700 	if ((copy = start - offset) > 0) {
1701 		if (copy > len)
1702 			copy = len;
1703 		skb_copy_from_linear_data_offset(skb, offset, to, copy);
1704 		if ((len -= copy) == 0)
1705 			return 0;
1706 		offset += copy;
1707 		to     += copy;
1708 	}
1709 
1710 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1711 		int end;
1712 		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
1713 
1714 		WARN_ON(start > offset + len);
1715 
1716 		end = start + skb_frag_size(f);
1717 		if ((copy = end - offset) > 0) {
1718 			u8 *vaddr;
1719 
1720 			if (copy > len)
1721 				copy = len;
1722 
1723 			vaddr = kmap_atomic(skb_frag_page(f));
1724 			memcpy(to,
1725 			       vaddr + f->page_offset + offset - start,
1726 			       copy);
1727 			kunmap_atomic(vaddr);
1728 
1729 			if ((len -= copy) == 0)
1730 				return 0;
1731 			offset += copy;
1732 			to     += copy;
1733 		}
1734 		start = end;
1735 	}
1736 
1737 	skb_walk_frags(skb, frag_iter) {
1738 		int end;
1739 
1740 		WARN_ON(start > offset + len);
1741 
1742 		end = start + frag_iter->len;
1743 		if ((copy = end - offset) > 0) {
1744 			if (copy > len)
1745 				copy = len;
1746 			if (skb_copy_bits(frag_iter, offset - start, to, copy))
1747 				goto fault;
1748 			if ((len -= copy) == 0)
1749 				return 0;
1750 			offset += copy;
1751 			to     += copy;
1752 		}
1753 		start = end;
1754 	}
1755 
1756 	if (!len)
1757 		return 0;
1758 
1759 fault:
1760 	return -EFAULT;
1761 }
1762 EXPORT_SYMBOL(skb_copy_bits);
1763 
1764 /*
1765  * Callback from splice_to_pipe(), if we need to release some pages
1766  * at the end of the spd in case we error'ed out in filling the pipe.
1767  */
1768 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
1769 {
1770 	put_page(spd->pages[i]);
1771 }
1772 
1773 static struct page *linear_to_page(struct page *page, unsigned int *len,
1774 				   unsigned int *offset,
1775 				   struct sock *sk)
1776 {
1777 	struct page_frag *pfrag = sk_page_frag(sk);
1778 
1779 	if (!sk_page_frag_refill(sk, pfrag))
1780 		return NULL;
1781 
1782 	*len = min_t(unsigned int, *len, pfrag->size - pfrag->offset);
1783 
1784 	memcpy(page_address(pfrag->page) + pfrag->offset,
1785 	       page_address(page) + *offset, *len);
1786 	*offset = pfrag->offset;
1787 	pfrag->offset += *len;
1788 
1789 	return pfrag->page;
1790 }
1791 
1792 static bool spd_can_coalesce(const struct splice_pipe_desc *spd,
1793 			     struct page *page,
1794 			     unsigned int offset)
1795 {
1796 	return	spd->nr_pages &&
1797 		spd->pages[spd->nr_pages - 1] == page &&
1798 		(spd->partial[spd->nr_pages - 1].offset +
1799 		 spd->partial[spd->nr_pages - 1].len == offset);
1800 }
1801 
1802 /*
1803  * Fill page/offset/length into spd, if it can hold more pages.
1804  */
1805 static bool spd_fill_page(struct splice_pipe_desc *spd,
1806 			  struct pipe_inode_info *pipe, struct page *page,
1807 			  unsigned int *len, unsigned int offset,
1808 			  bool linear,
1809 			  struct sock *sk)
1810 {
1811 	if (unlikely(spd->nr_pages == MAX_SKB_FRAGS))
1812 		return true;
1813 
1814 	if (linear) {
1815 		page = linear_to_page(page, len, &offset, sk);
1816 		if (!page)
1817 			return true;
1818 	}
1819 	if (spd_can_coalesce(spd, page, offset)) {
1820 		spd->partial[spd->nr_pages - 1].len += *len;
1821 		return false;
1822 	}
1823 	get_page(page);
1824 	spd->pages[spd->nr_pages] = page;
1825 	spd->partial[spd->nr_pages].len = *len;
1826 	spd->partial[spd->nr_pages].offset = offset;
1827 	spd->nr_pages++;
1828 
1829 	return false;
1830 }
1831 
1832 static bool __splice_segment(struct page *page, unsigned int poff,
1833 			     unsigned int plen, unsigned int *off,
1834 			     unsigned int *len,
1835 			     struct splice_pipe_desc *spd, bool linear,
1836 			     struct sock *sk,
1837 			     struct pipe_inode_info *pipe)
1838 {
1839 	if (!*len)
1840 		return true;
1841 
1842 	/* skip this segment if already processed */
1843 	if (*off >= plen) {
1844 		*off -= plen;
1845 		return false;
1846 	}
1847 
1848 	/* ignore any bits we already processed */
1849 	poff += *off;
1850 	plen -= *off;
1851 	*off = 0;
1852 
1853 	do {
1854 		unsigned int flen = min(*len, plen);
1855 
1856 		if (spd_fill_page(spd, pipe, page, &flen, poff,
1857 				  linear, sk))
1858 			return true;
1859 		poff += flen;
1860 		plen -= flen;
1861 		*len -= flen;
1862 	} while (*len && plen);
1863 
1864 	return false;
1865 }
1866 
1867 /*
1868  * Map linear and fragment data from the skb to spd. It reports true if the
1869  * pipe is full or if we already spliced the requested length.
1870  */
1871 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe,
1872 			      unsigned int *offset, unsigned int *len,
1873 			      struct splice_pipe_desc *spd, struct sock *sk)
1874 {
1875 	int seg;
1876 
1877 	/* map the linear part :
1878 	 * If skb->head_frag is set, this 'linear' part is backed by a
1879 	 * fragment, and if the head is not shared with any clones then
1880 	 * we can avoid a copy since we own the head portion of this page.
1881 	 */
1882 	if (__splice_segment(virt_to_page(skb->data),
1883 			     (unsigned long) skb->data & (PAGE_SIZE - 1),
1884 			     skb_headlen(skb),
1885 			     offset, len, spd,
1886 			     skb_head_is_locked(skb),
1887 			     sk, pipe))
1888 		return true;
1889 
1890 	/*
1891 	 * then map the fragments
1892 	 */
1893 	for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
1894 		const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
1895 
1896 		if (__splice_segment(skb_frag_page(f),
1897 				     f->page_offset, skb_frag_size(f),
1898 				     offset, len, spd, false, sk, pipe))
1899 			return true;
1900 	}
1901 
1902 	return false;
1903 }
1904 
1905 /*
1906  * Map data from the skb to a pipe. Should handle both the linear part,
1907  * the fragments, and the frag list. It does NOT handle frag lists within
1908  * the frag list, if such a thing exists. We'd probably need to recurse to
1909  * handle that cleanly.
1910  */
1911 int skb_splice_bits(struct sk_buff *skb, unsigned int offset,
1912 		    struct pipe_inode_info *pipe, unsigned int tlen,
1913 		    unsigned int flags)
1914 {
1915 	struct partial_page partial[MAX_SKB_FRAGS];
1916 	struct page *pages[MAX_SKB_FRAGS];
1917 	struct splice_pipe_desc spd = {
1918 		.pages = pages,
1919 		.partial = partial,
1920 		.nr_pages_max = MAX_SKB_FRAGS,
1921 		.flags = flags,
1922 		.ops = &nosteal_pipe_buf_ops,
1923 		.spd_release = sock_spd_release,
1924 	};
1925 	struct sk_buff *frag_iter;
1926 	struct sock *sk = skb->sk;
1927 	int ret = 0;
1928 
1929 	/*
1930 	 * __skb_splice_bits() only fails if the output has no room left,
1931 	 * so no point in going over the frag_list for the error case.
1932 	 */
1933 	if (__skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk))
1934 		goto done;
1935 	else if (!tlen)
1936 		goto done;
1937 
1938 	/*
1939 	 * now see if we have a frag_list to map
1940 	 */
1941 	skb_walk_frags(skb, frag_iter) {
1942 		if (!tlen)
1943 			break;
1944 		if (__skb_splice_bits(frag_iter, pipe, &offset, &tlen, &spd, sk))
1945 			break;
1946 	}
1947 
1948 done:
1949 	if (spd.nr_pages) {
1950 		/*
1951 		 * Drop the socket lock, otherwise we have reverse
1952 		 * locking dependencies between sk_lock and i_mutex
1953 		 * here as compared to sendfile(). We enter here
1954 		 * with the socket lock held, and splice_to_pipe() will
1955 		 * grab the pipe inode lock. For sendfile() emulation,
1956 		 * we call into ->sendpage() with the i_mutex lock held
1957 		 * and networking will grab the socket lock.
1958 		 */
1959 		release_sock(sk);
1960 		ret = splice_to_pipe(pipe, &spd);
1961 		lock_sock(sk);
1962 	}
1963 
1964 	return ret;
1965 }
1966 
1967 /**
1968  *	skb_store_bits - store bits from kernel buffer to skb
1969  *	@skb: destination buffer
1970  *	@offset: offset in destination
1971  *	@from: source buffer
1972  *	@len: number of bytes to copy
1973  *
1974  *	Copy the specified number of bytes from the source buffer to the
1975  *	destination skb.  This function handles all the messy bits of
1976  *	traversing fragment lists and such.
1977  */
1978 
1979 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
1980 {
1981 	int start = skb_headlen(skb);
1982 	struct sk_buff *frag_iter;
1983 	int i, copy;
1984 
1985 	if (offset > (int)skb->len - len)
1986 		goto fault;
1987 
1988 	if ((copy = start - offset) > 0) {
1989 		if (copy > len)
1990 			copy = len;
1991 		skb_copy_to_linear_data_offset(skb, offset, from, copy);
1992 		if ((len -= copy) == 0)
1993 			return 0;
1994 		offset += copy;
1995 		from += copy;
1996 	}
1997 
1998 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1999 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2000 		int end;
2001 
2002 		WARN_ON(start > offset + len);
2003 
2004 		end = start + skb_frag_size(frag);
2005 		if ((copy = end - offset) > 0) {
2006 			u8 *vaddr;
2007 
2008 			if (copy > len)
2009 				copy = len;
2010 
2011 			vaddr = kmap_atomic(skb_frag_page(frag));
2012 			memcpy(vaddr + frag->page_offset + offset - start,
2013 			       from, copy);
2014 			kunmap_atomic(vaddr);
2015 
2016 			if ((len -= copy) == 0)
2017 				return 0;
2018 			offset += copy;
2019 			from += copy;
2020 		}
2021 		start = end;
2022 	}
2023 
2024 	skb_walk_frags(skb, frag_iter) {
2025 		int end;
2026 
2027 		WARN_ON(start > offset + len);
2028 
2029 		end = start + frag_iter->len;
2030 		if ((copy = end - offset) > 0) {
2031 			if (copy > len)
2032 				copy = len;
2033 			if (skb_store_bits(frag_iter, offset - start,
2034 					   from, copy))
2035 				goto fault;
2036 			if ((len -= copy) == 0)
2037 				return 0;
2038 			offset += copy;
2039 			from += copy;
2040 		}
2041 		start = end;
2042 	}
2043 	if (!len)
2044 		return 0;
2045 
2046 fault:
2047 	return -EFAULT;
2048 }
2049 EXPORT_SYMBOL(skb_store_bits);
2050 
2051 /* Checksum skb data. */
2052 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
2053 		      __wsum csum, const struct skb_checksum_ops *ops)
2054 {
2055 	int start = skb_headlen(skb);
2056 	int i, copy = start - offset;
2057 	struct sk_buff *frag_iter;
2058 	int pos = 0;
2059 
2060 	/* Checksum header. */
2061 	if (copy > 0) {
2062 		if (copy > len)
2063 			copy = len;
2064 		csum = ops->update(skb->data + offset, copy, csum);
2065 		if ((len -= copy) == 0)
2066 			return csum;
2067 		offset += copy;
2068 		pos	= copy;
2069 	}
2070 
2071 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2072 		int end;
2073 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2074 
2075 		WARN_ON(start > offset + len);
2076 
2077 		end = start + skb_frag_size(frag);
2078 		if ((copy = end - offset) > 0) {
2079 			__wsum csum2;
2080 			u8 *vaddr;
2081 
2082 			if (copy > len)
2083 				copy = len;
2084 			vaddr = kmap_atomic(skb_frag_page(frag));
2085 			csum2 = ops->update(vaddr + frag->page_offset +
2086 					    offset - start, copy, 0);
2087 			kunmap_atomic(vaddr);
2088 			csum = ops->combine(csum, csum2, pos, copy);
2089 			if (!(len -= copy))
2090 				return csum;
2091 			offset += copy;
2092 			pos    += copy;
2093 		}
2094 		start = end;
2095 	}
2096 
2097 	skb_walk_frags(skb, frag_iter) {
2098 		int end;
2099 
2100 		WARN_ON(start > offset + len);
2101 
2102 		end = start + frag_iter->len;
2103 		if ((copy = end - offset) > 0) {
2104 			__wsum csum2;
2105 			if (copy > len)
2106 				copy = len;
2107 			csum2 = __skb_checksum(frag_iter, offset - start,
2108 					       copy, 0, ops);
2109 			csum = ops->combine(csum, csum2, pos, copy);
2110 			if ((len -= copy) == 0)
2111 				return csum;
2112 			offset += copy;
2113 			pos    += copy;
2114 		}
2115 		start = end;
2116 	}
2117 	BUG_ON(len);
2118 
2119 	return csum;
2120 }
2121 EXPORT_SYMBOL(__skb_checksum);
2122 
2123 __wsum skb_checksum(const struct sk_buff *skb, int offset,
2124 		    int len, __wsum csum)
2125 {
2126 	const struct skb_checksum_ops ops = {
2127 		.update  = csum_partial_ext,
2128 		.combine = csum_block_add_ext,
2129 	};
2130 
2131 	return __skb_checksum(skb, offset, len, csum, &ops);
2132 }
2133 EXPORT_SYMBOL(skb_checksum);
2134 
2135 /* Both of above in one bottle. */
2136 
2137 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
2138 				    u8 *to, int len, __wsum csum)
2139 {
2140 	int start = skb_headlen(skb);
2141 	int i, copy = start - offset;
2142 	struct sk_buff *frag_iter;
2143 	int pos = 0;
2144 
2145 	/* Copy header. */
2146 	if (copy > 0) {
2147 		if (copy > len)
2148 			copy = len;
2149 		csum = csum_partial_copy_nocheck(skb->data + offset, to,
2150 						 copy, csum);
2151 		if ((len -= copy) == 0)
2152 			return csum;
2153 		offset += copy;
2154 		to     += copy;
2155 		pos	= copy;
2156 	}
2157 
2158 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2159 		int end;
2160 
2161 		WARN_ON(start > offset + len);
2162 
2163 		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
2164 		if ((copy = end - offset) > 0) {
2165 			__wsum csum2;
2166 			u8 *vaddr;
2167 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2168 
2169 			if (copy > len)
2170 				copy = len;
2171 			vaddr = kmap_atomic(skb_frag_page(frag));
2172 			csum2 = csum_partial_copy_nocheck(vaddr +
2173 							  frag->page_offset +
2174 							  offset - start, to,
2175 							  copy, 0);
2176 			kunmap_atomic(vaddr);
2177 			csum = csum_block_add(csum, csum2, pos);
2178 			if (!(len -= copy))
2179 				return csum;
2180 			offset += copy;
2181 			to     += copy;
2182 			pos    += copy;
2183 		}
2184 		start = end;
2185 	}
2186 
2187 	skb_walk_frags(skb, frag_iter) {
2188 		__wsum csum2;
2189 		int end;
2190 
2191 		WARN_ON(start > offset + len);
2192 
2193 		end = start + frag_iter->len;
2194 		if ((copy = end - offset) > 0) {
2195 			if (copy > len)
2196 				copy = len;
2197 			csum2 = skb_copy_and_csum_bits(frag_iter,
2198 						       offset - start,
2199 						       to, copy, 0);
2200 			csum = csum_block_add(csum, csum2, pos);
2201 			if ((len -= copy) == 0)
2202 				return csum;
2203 			offset += copy;
2204 			to     += copy;
2205 			pos    += copy;
2206 		}
2207 		start = end;
2208 	}
2209 	BUG_ON(len);
2210 	return csum;
2211 }
2212 EXPORT_SYMBOL(skb_copy_and_csum_bits);
2213 
2214  /**
2215  *	skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy()
2216  *	@from: source buffer
2217  *
2218  *	Calculates the amount of linear headroom needed in the 'to' skb passed
2219  *	into skb_zerocopy().
2220  */
2221 unsigned int
2222 skb_zerocopy_headlen(const struct sk_buff *from)
2223 {
2224 	unsigned int hlen = 0;
2225 
2226 	if (!from->head_frag ||
2227 	    skb_headlen(from) < L1_CACHE_BYTES ||
2228 	    skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS)
2229 		hlen = skb_headlen(from);
2230 
2231 	if (skb_has_frag_list(from))
2232 		hlen = from->len;
2233 
2234 	return hlen;
2235 }
2236 EXPORT_SYMBOL_GPL(skb_zerocopy_headlen);
2237 
2238 /**
2239  *	skb_zerocopy - Zero copy skb to skb
2240  *	@to: destination buffer
2241  *	@from: source buffer
2242  *	@len: number of bytes to copy from source buffer
2243  *	@hlen: size of linear headroom in destination buffer
2244  *
2245  *	Copies up to `len` bytes from `from` to `to` by creating references
2246  *	to the frags in the source buffer.
2247  *
2248  *	The `hlen` as calculated by skb_zerocopy_headlen() specifies the
2249  *	headroom in the `to` buffer.
2250  *
2251  *	Return value:
2252  *	0: everything is OK
2253  *	-ENOMEM: couldn't orphan frags of @from due to lack of memory
2254  *	-EFAULT: skb_copy_bits() found some problem with skb geometry
2255  */
2256 int
2257 skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen)
2258 {
2259 	int i, j = 0;
2260 	int plen = 0; /* length of skb->head fragment */
2261 	int ret;
2262 	struct page *page;
2263 	unsigned int offset;
2264 
2265 	BUG_ON(!from->head_frag && !hlen);
2266 
2267 	/* dont bother with small payloads */
2268 	if (len <= skb_tailroom(to))
2269 		return skb_copy_bits(from, 0, skb_put(to, len), len);
2270 
2271 	if (hlen) {
2272 		ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen);
2273 		if (unlikely(ret))
2274 			return ret;
2275 		len -= hlen;
2276 	} else {
2277 		plen = min_t(int, skb_headlen(from), len);
2278 		if (plen) {
2279 			page = virt_to_head_page(from->head);
2280 			offset = from->data - (unsigned char *)page_address(page);
2281 			__skb_fill_page_desc(to, 0, page, offset, plen);
2282 			get_page(page);
2283 			j = 1;
2284 			len -= plen;
2285 		}
2286 	}
2287 
2288 	to->truesize += len + plen;
2289 	to->len += len + plen;
2290 	to->data_len += len + plen;
2291 
2292 	if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) {
2293 		skb_tx_error(from);
2294 		return -ENOMEM;
2295 	}
2296 
2297 	for (i = 0; i < skb_shinfo(from)->nr_frags; i++) {
2298 		if (!len)
2299 			break;
2300 		skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i];
2301 		skb_shinfo(to)->frags[j].size = min_t(int, skb_shinfo(to)->frags[j].size, len);
2302 		len -= skb_shinfo(to)->frags[j].size;
2303 		skb_frag_ref(to, j);
2304 		j++;
2305 	}
2306 	skb_shinfo(to)->nr_frags = j;
2307 
2308 	return 0;
2309 }
2310 EXPORT_SYMBOL_GPL(skb_zerocopy);
2311 
2312 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
2313 {
2314 	__wsum csum;
2315 	long csstart;
2316 
2317 	if (skb->ip_summed == CHECKSUM_PARTIAL)
2318 		csstart = skb_checksum_start_offset(skb);
2319 	else
2320 		csstart = skb_headlen(skb);
2321 
2322 	BUG_ON(csstart > skb_headlen(skb));
2323 
2324 	skb_copy_from_linear_data(skb, to, csstart);
2325 
2326 	csum = 0;
2327 	if (csstart != skb->len)
2328 		csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
2329 					      skb->len - csstart, 0);
2330 
2331 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
2332 		long csstuff = csstart + skb->csum_offset;
2333 
2334 		*((__sum16 *)(to + csstuff)) = csum_fold(csum);
2335 	}
2336 }
2337 EXPORT_SYMBOL(skb_copy_and_csum_dev);
2338 
2339 /**
2340  *	skb_dequeue - remove from the head of the queue
2341  *	@list: list to dequeue from
2342  *
2343  *	Remove the head of the list. The list lock is taken so the function
2344  *	may be used safely with other locking list functions. The head item is
2345  *	returned or %NULL if the list is empty.
2346  */
2347 
2348 struct sk_buff *skb_dequeue(struct sk_buff_head *list)
2349 {
2350 	unsigned long flags;
2351 	struct sk_buff *result;
2352 
2353 	spin_lock_irqsave(&list->lock, flags);
2354 	result = __skb_dequeue(list);
2355 	spin_unlock_irqrestore(&list->lock, flags);
2356 	return result;
2357 }
2358 EXPORT_SYMBOL(skb_dequeue);
2359 
2360 /**
2361  *	skb_dequeue_tail - remove from the tail of the queue
2362  *	@list: list to dequeue from
2363  *
2364  *	Remove the tail of the list. The list lock is taken so the function
2365  *	may be used safely with other locking list functions. The tail item is
2366  *	returned or %NULL if the list is empty.
2367  */
2368 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
2369 {
2370 	unsigned long flags;
2371 	struct sk_buff *result;
2372 
2373 	spin_lock_irqsave(&list->lock, flags);
2374 	result = __skb_dequeue_tail(list);
2375 	spin_unlock_irqrestore(&list->lock, flags);
2376 	return result;
2377 }
2378 EXPORT_SYMBOL(skb_dequeue_tail);
2379 
2380 /**
2381  *	skb_queue_purge - empty a list
2382  *	@list: list to empty
2383  *
2384  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
2385  *	the list and one reference dropped. This function takes the list
2386  *	lock and is atomic with respect to other list locking functions.
2387  */
2388 void skb_queue_purge(struct sk_buff_head *list)
2389 {
2390 	struct sk_buff *skb;
2391 	while ((skb = skb_dequeue(list)) != NULL)
2392 		kfree_skb(skb);
2393 }
2394 EXPORT_SYMBOL(skb_queue_purge);
2395 
2396 /**
2397  *	skb_queue_head - queue a buffer at the list head
2398  *	@list: list to use
2399  *	@newsk: buffer to queue
2400  *
2401  *	Queue a buffer at the start of the list. This function takes the
2402  *	list lock and can be used safely with other locking &sk_buff functions
2403  *	safely.
2404  *
2405  *	A buffer cannot be placed on two lists at the same time.
2406  */
2407 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
2408 {
2409 	unsigned long flags;
2410 
2411 	spin_lock_irqsave(&list->lock, flags);
2412 	__skb_queue_head(list, newsk);
2413 	spin_unlock_irqrestore(&list->lock, flags);
2414 }
2415 EXPORT_SYMBOL(skb_queue_head);
2416 
2417 /**
2418  *	skb_queue_tail - queue a buffer at the list tail
2419  *	@list: list to use
2420  *	@newsk: buffer to queue
2421  *
2422  *	Queue a buffer at the tail of the list. This function takes the
2423  *	list lock and can be used safely with other locking &sk_buff functions
2424  *	safely.
2425  *
2426  *	A buffer cannot be placed on two lists at the same time.
2427  */
2428 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
2429 {
2430 	unsigned long flags;
2431 
2432 	spin_lock_irqsave(&list->lock, flags);
2433 	__skb_queue_tail(list, newsk);
2434 	spin_unlock_irqrestore(&list->lock, flags);
2435 }
2436 EXPORT_SYMBOL(skb_queue_tail);
2437 
2438 /**
2439  *	skb_unlink	-	remove a buffer from a list
2440  *	@skb: buffer to remove
2441  *	@list: list to use
2442  *
2443  *	Remove a packet from a list. The list locks are taken and this
2444  *	function is atomic with respect to other list locked calls
2445  *
2446  *	You must know what list the SKB is on.
2447  */
2448 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
2449 {
2450 	unsigned long flags;
2451 
2452 	spin_lock_irqsave(&list->lock, flags);
2453 	__skb_unlink(skb, list);
2454 	spin_unlock_irqrestore(&list->lock, flags);
2455 }
2456 EXPORT_SYMBOL(skb_unlink);
2457 
2458 /**
2459  *	skb_append	-	append a buffer
2460  *	@old: buffer to insert after
2461  *	@newsk: buffer to insert
2462  *	@list: list to use
2463  *
2464  *	Place a packet after a given packet in a list. The list locks are taken
2465  *	and this function is atomic with respect to other list locked calls.
2466  *	A buffer cannot be placed on two lists at the same time.
2467  */
2468 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
2469 {
2470 	unsigned long flags;
2471 
2472 	spin_lock_irqsave(&list->lock, flags);
2473 	__skb_queue_after(list, old, newsk);
2474 	spin_unlock_irqrestore(&list->lock, flags);
2475 }
2476 EXPORT_SYMBOL(skb_append);
2477 
2478 /**
2479  *	skb_insert	-	insert a buffer
2480  *	@old: buffer to insert before
2481  *	@newsk: buffer to insert
2482  *	@list: list to use
2483  *
2484  *	Place a packet before a given packet in a list. The list locks are
2485  * 	taken and this function is atomic with respect to other list locked
2486  *	calls.
2487  *
2488  *	A buffer cannot be placed on two lists at the same time.
2489  */
2490 void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
2491 {
2492 	unsigned long flags;
2493 
2494 	spin_lock_irqsave(&list->lock, flags);
2495 	__skb_insert(newsk, old->prev, old, list);
2496 	spin_unlock_irqrestore(&list->lock, flags);
2497 }
2498 EXPORT_SYMBOL(skb_insert);
2499 
2500 static inline void skb_split_inside_header(struct sk_buff *skb,
2501 					   struct sk_buff* skb1,
2502 					   const u32 len, const int pos)
2503 {
2504 	int i;
2505 
2506 	skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
2507 					 pos - len);
2508 	/* And move data appendix as is. */
2509 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
2510 		skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
2511 
2512 	skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
2513 	skb_shinfo(skb)->nr_frags  = 0;
2514 	skb1->data_len		   = skb->data_len;
2515 	skb1->len		   += skb1->data_len;
2516 	skb->data_len		   = 0;
2517 	skb->len		   = len;
2518 	skb_set_tail_pointer(skb, len);
2519 }
2520 
2521 static inline void skb_split_no_header(struct sk_buff *skb,
2522 				       struct sk_buff* skb1,
2523 				       const u32 len, int pos)
2524 {
2525 	int i, k = 0;
2526 	const int nfrags = skb_shinfo(skb)->nr_frags;
2527 
2528 	skb_shinfo(skb)->nr_frags = 0;
2529 	skb1->len		  = skb1->data_len = skb->len - len;
2530 	skb->len		  = len;
2531 	skb->data_len		  = len - pos;
2532 
2533 	for (i = 0; i < nfrags; i++) {
2534 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2535 
2536 		if (pos + size > len) {
2537 			skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
2538 
2539 			if (pos < len) {
2540 				/* Split frag.
2541 				 * We have two variants in this case:
2542 				 * 1. Move all the frag to the second
2543 				 *    part, if it is possible. F.e.
2544 				 *    this approach is mandatory for TUX,
2545 				 *    where splitting is expensive.
2546 				 * 2. Split is accurately. We make this.
2547 				 */
2548 				skb_frag_ref(skb, i);
2549 				skb_shinfo(skb1)->frags[0].page_offset += len - pos;
2550 				skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos);
2551 				skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos);
2552 				skb_shinfo(skb)->nr_frags++;
2553 			}
2554 			k++;
2555 		} else
2556 			skb_shinfo(skb)->nr_frags++;
2557 		pos += size;
2558 	}
2559 	skb_shinfo(skb1)->nr_frags = k;
2560 }
2561 
2562 /**
2563  * skb_split - Split fragmented skb to two parts at length len.
2564  * @skb: the buffer to split
2565  * @skb1: the buffer to receive the second part
2566  * @len: new length for skb
2567  */
2568 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
2569 {
2570 	int pos = skb_headlen(skb);
2571 
2572 	skb_shinfo(skb1)->tx_flags = skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG;
2573 	if (len < pos)	/* Split line is inside header. */
2574 		skb_split_inside_header(skb, skb1, len, pos);
2575 	else		/* Second chunk has no header, nothing to copy. */
2576 		skb_split_no_header(skb, skb1, len, pos);
2577 }
2578 EXPORT_SYMBOL(skb_split);
2579 
2580 /* Shifting from/to a cloned skb is a no-go.
2581  *
2582  * Caller cannot keep skb_shinfo related pointers past calling here!
2583  */
2584 static int skb_prepare_for_shift(struct sk_buff *skb)
2585 {
2586 	return skb_cloned(skb) && pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2587 }
2588 
2589 /**
2590  * skb_shift - Shifts paged data partially from skb to another
2591  * @tgt: buffer into which tail data gets added
2592  * @skb: buffer from which the paged data comes from
2593  * @shiftlen: shift up to this many bytes
2594  *
2595  * Attempts to shift up to shiftlen worth of bytes, which may be less than
2596  * the length of the skb, from skb to tgt. Returns number bytes shifted.
2597  * It's up to caller to free skb if everything was shifted.
2598  *
2599  * If @tgt runs out of frags, the whole operation is aborted.
2600  *
2601  * Skb cannot include anything else but paged data while tgt is allowed
2602  * to have non-paged data as well.
2603  *
2604  * TODO: full sized shift could be optimized but that would need
2605  * specialized skb free'er to handle frags without up-to-date nr_frags.
2606  */
2607 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
2608 {
2609 	int from, to, merge, todo;
2610 	struct skb_frag_struct *fragfrom, *fragto;
2611 
2612 	BUG_ON(shiftlen > skb->len);
2613 	BUG_ON(skb_headlen(skb));	/* Would corrupt stream */
2614 
2615 	todo = shiftlen;
2616 	from = 0;
2617 	to = skb_shinfo(tgt)->nr_frags;
2618 	fragfrom = &skb_shinfo(skb)->frags[from];
2619 
2620 	/* Actual merge is delayed until the point when we know we can
2621 	 * commit all, so that we don't have to undo partial changes
2622 	 */
2623 	if (!to ||
2624 	    !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom),
2625 			      fragfrom->page_offset)) {
2626 		merge = -1;
2627 	} else {
2628 		merge = to - 1;
2629 
2630 		todo -= skb_frag_size(fragfrom);
2631 		if (todo < 0) {
2632 			if (skb_prepare_for_shift(skb) ||
2633 			    skb_prepare_for_shift(tgt))
2634 				return 0;
2635 
2636 			/* All previous frag pointers might be stale! */
2637 			fragfrom = &skb_shinfo(skb)->frags[from];
2638 			fragto = &skb_shinfo(tgt)->frags[merge];
2639 
2640 			skb_frag_size_add(fragto, shiftlen);
2641 			skb_frag_size_sub(fragfrom, shiftlen);
2642 			fragfrom->page_offset += shiftlen;
2643 
2644 			goto onlymerged;
2645 		}
2646 
2647 		from++;
2648 	}
2649 
2650 	/* Skip full, not-fitting skb to avoid expensive operations */
2651 	if ((shiftlen == skb->len) &&
2652 	    (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
2653 		return 0;
2654 
2655 	if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
2656 		return 0;
2657 
2658 	while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
2659 		if (to == MAX_SKB_FRAGS)
2660 			return 0;
2661 
2662 		fragfrom = &skb_shinfo(skb)->frags[from];
2663 		fragto = &skb_shinfo(tgt)->frags[to];
2664 
2665 		if (todo >= skb_frag_size(fragfrom)) {
2666 			*fragto = *fragfrom;
2667 			todo -= skb_frag_size(fragfrom);
2668 			from++;
2669 			to++;
2670 
2671 		} else {
2672 			__skb_frag_ref(fragfrom);
2673 			fragto->page = fragfrom->page;
2674 			fragto->page_offset = fragfrom->page_offset;
2675 			skb_frag_size_set(fragto, todo);
2676 
2677 			fragfrom->page_offset += todo;
2678 			skb_frag_size_sub(fragfrom, todo);
2679 			todo = 0;
2680 
2681 			to++;
2682 			break;
2683 		}
2684 	}
2685 
2686 	/* Ready to "commit" this state change to tgt */
2687 	skb_shinfo(tgt)->nr_frags = to;
2688 
2689 	if (merge >= 0) {
2690 		fragfrom = &skb_shinfo(skb)->frags[0];
2691 		fragto = &skb_shinfo(tgt)->frags[merge];
2692 
2693 		skb_frag_size_add(fragto, skb_frag_size(fragfrom));
2694 		__skb_frag_unref(fragfrom);
2695 	}
2696 
2697 	/* Reposition in the original skb */
2698 	to = 0;
2699 	while (from < skb_shinfo(skb)->nr_frags)
2700 		skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
2701 	skb_shinfo(skb)->nr_frags = to;
2702 
2703 	BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
2704 
2705 onlymerged:
2706 	/* Most likely the tgt won't ever need its checksum anymore, skb on
2707 	 * the other hand might need it if it needs to be resent
2708 	 */
2709 	tgt->ip_summed = CHECKSUM_PARTIAL;
2710 	skb->ip_summed = CHECKSUM_PARTIAL;
2711 
2712 	/* Yak, is it really working this way? Some helper please? */
2713 	skb->len -= shiftlen;
2714 	skb->data_len -= shiftlen;
2715 	skb->truesize -= shiftlen;
2716 	tgt->len += shiftlen;
2717 	tgt->data_len += shiftlen;
2718 	tgt->truesize += shiftlen;
2719 
2720 	return shiftlen;
2721 }
2722 
2723 /**
2724  * skb_prepare_seq_read - Prepare a sequential read of skb data
2725  * @skb: the buffer to read
2726  * @from: lower offset of data to be read
2727  * @to: upper offset of data to be read
2728  * @st: state variable
2729  *
2730  * Initializes the specified state variable. Must be called before
2731  * invoking skb_seq_read() for the first time.
2732  */
2733 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
2734 			  unsigned int to, struct skb_seq_state *st)
2735 {
2736 	st->lower_offset = from;
2737 	st->upper_offset = to;
2738 	st->root_skb = st->cur_skb = skb;
2739 	st->frag_idx = st->stepped_offset = 0;
2740 	st->frag_data = NULL;
2741 }
2742 EXPORT_SYMBOL(skb_prepare_seq_read);
2743 
2744 /**
2745  * skb_seq_read - Sequentially read skb data
2746  * @consumed: number of bytes consumed by the caller so far
2747  * @data: destination pointer for data to be returned
2748  * @st: state variable
2749  *
2750  * Reads a block of skb data at @consumed relative to the
2751  * lower offset specified to skb_prepare_seq_read(). Assigns
2752  * the head of the data block to @data and returns the length
2753  * of the block or 0 if the end of the skb data or the upper
2754  * offset has been reached.
2755  *
2756  * The caller is not required to consume all of the data
2757  * returned, i.e. @consumed is typically set to the number
2758  * of bytes already consumed and the next call to
2759  * skb_seq_read() will return the remaining part of the block.
2760  *
2761  * Note 1: The size of each block of data returned can be arbitrary,
2762  *       this limitation is the cost for zerocopy sequential
2763  *       reads of potentially non linear data.
2764  *
2765  * Note 2: Fragment lists within fragments are not implemented
2766  *       at the moment, state->root_skb could be replaced with
2767  *       a stack for this purpose.
2768  */
2769 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
2770 			  struct skb_seq_state *st)
2771 {
2772 	unsigned int block_limit, abs_offset = consumed + st->lower_offset;
2773 	skb_frag_t *frag;
2774 
2775 	if (unlikely(abs_offset >= st->upper_offset)) {
2776 		if (st->frag_data) {
2777 			kunmap_atomic(st->frag_data);
2778 			st->frag_data = NULL;
2779 		}
2780 		return 0;
2781 	}
2782 
2783 next_skb:
2784 	block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
2785 
2786 	if (abs_offset < block_limit && !st->frag_data) {
2787 		*data = st->cur_skb->data + (abs_offset - st->stepped_offset);
2788 		return block_limit - abs_offset;
2789 	}
2790 
2791 	if (st->frag_idx == 0 && !st->frag_data)
2792 		st->stepped_offset += skb_headlen(st->cur_skb);
2793 
2794 	while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
2795 		frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
2796 		block_limit = skb_frag_size(frag) + st->stepped_offset;
2797 
2798 		if (abs_offset < block_limit) {
2799 			if (!st->frag_data)
2800 				st->frag_data = kmap_atomic(skb_frag_page(frag));
2801 
2802 			*data = (u8 *) st->frag_data + frag->page_offset +
2803 				(abs_offset - st->stepped_offset);
2804 
2805 			return block_limit - abs_offset;
2806 		}
2807 
2808 		if (st->frag_data) {
2809 			kunmap_atomic(st->frag_data);
2810 			st->frag_data = NULL;
2811 		}
2812 
2813 		st->frag_idx++;
2814 		st->stepped_offset += skb_frag_size(frag);
2815 	}
2816 
2817 	if (st->frag_data) {
2818 		kunmap_atomic(st->frag_data);
2819 		st->frag_data = NULL;
2820 	}
2821 
2822 	if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) {
2823 		st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
2824 		st->frag_idx = 0;
2825 		goto next_skb;
2826 	} else if (st->cur_skb->next) {
2827 		st->cur_skb = st->cur_skb->next;
2828 		st->frag_idx = 0;
2829 		goto next_skb;
2830 	}
2831 
2832 	return 0;
2833 }
2834 EXPORT_SYMBOL(skb_seq_read);
2835 
2836 /**
2837  * skb_abort_seq_read - Abort a sequential read of skb data
2838  * @st: state variable
2839  *
2840  * Must be called if skb_seq_read() was not called until it
2841  * returned 0.
2842  */
2843 void skb_abort_seq_read(struct skb_seq_state *st)
2844 {
2845 	if (st->frag_data)
2846 		kunmap_atomic(st->frag_data);
2847 }
2848 EXPORT_SYMBOL(skb_abort_seq_read);
2849 
2850 #define TS_SKB_CB(state)	((struct skb_seq_state *) &((state)->cb))
2851 
2852 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
2853 					  struct ts_config *conf,
2854 					  struct ts_state *state)
2855 {
2856 	return skb_seq_read(offset, text, TS_SKB_CB(state));
2857 }
2858 
2859 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
2860 {
2861 	skb_abort_seq_read(TS_SKB_CB(state));
2862 }
2863 
2864 /**
2865  * skb_find_text - Find a text pattern in skb data
2866  * @skb: the buffer to look in
2867  * @from: search offset
2868  * @to: search limit
2869  * @config: textsearch configuration
2870  * @state: uninitialized textsearch state variable
2871  *
2872  * Finds a pattern in the skb data according to the specified
2873  * textsearch configuration. Use textsearch_next() to retrieve
2874  * subsequent occurrences of the pattern. Returns the offset
2875  * to the first occurrence or UINT_MAX if no match was found.
2876  */
2877 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
2878 			   unsigned int to, struct ts_config *config,
2879 			   struct ts_state *state)
2880 {
2881 	unsigned int ret;
2882 
2883 	config->get_next_block = skb_ts_get_next_block;
2884 	config->finish = skb_ts_finish;
2885 
2886 	skb_prepare_seq_read(skb, from, to, TS_SKB_CB(state));
2887 
2888 	ret = textsearch_find(config, state);
2889 	return (ret <= to - from ? ret : UINT_MAX);
2890 }
2891 EXPORT_SYMBOL(skb_find_text);
2892 
2893 /**
2894  * skb_append_datato_frags - append the user data to a skb
2895  * @sk: sock  structure
2896  * @skb: skb structure to be appended with user data.
2897  * @getfrag: call back function to be used for getting the user data
2898  * @from: pointer to user message iov
2899  * @length: length of the iov message
2900  *
2901  * Description: This procedure append the user data in the fragment part
2902  * of the skb if any page alloc fails user this procedure returns  -ENOMEM
2903  */
2904 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
2905 			int (*getfrag)(void *from, char *to, int offset,
2906 					int len, int odd, struct sk_buff *skb),
2907 			void *from, int length)
2908 {
2909 	int frg_cnt = skb_shinfo(skb)->nr_frags;
2910 	int copy;
2911 	int offset = 0;
2912 	int ret;
2913 	struct page_frag *pfrag = &current->task_frag;
2914 
2915 	do {
2916 		/* Return error if we don't have space for new frag */
2917 		if (frg_cnt >= MAX_SKB_FRAGS)
2918 			return -EMSGSIZE;
2919 
2920 		if (!sk_page_frag_refill(sk, pfrag))
2921 			return -ENOMEM;
2922 
2923 		/* copy the user data to page */
2924 		copy = min_t(int, length, pfrag->size - pfrag->offset);
2925 
2926 		ret = getfrag(from, page_address(pfrag->page) + pfrag->offset,
2927 			      offset, copy, 0, skb);
2928 		if (ret < 0)
2929 			return -EFAULT;
2930 
2931 		/* copy was successful so update the size parameters */
2932 		skb_fill_page_desc(skb, frg_cnt, pfrag->page, pfrag->offset,
2933 				   copy);
2934 		frg_cnt++;
2935 		pfrag->offset += copy;
2936 		get_page(pfrag->page);
2937 
2938 		skb->truesize += copy;
2939 		atomic_add(copy, &sk->sk_wmem_alloc);
2940 		skb->len += copy;
2941 		skb->data_len += copy;
2942 		offset += copy;
2943 		length -= copy;
2944 
2945 	} while (length > 0);
2946 
2947 	return 0;
2948 }
2949 EXPORT_SYMBOL(skb_append_datato_frags);
2950 
2951 /**
2952  *	skb_pull_rcsum - pull skb and update receive checksum
2953  *	@skb: buffer to update
2954  *	@len: length of data pulled
2955  *
2956  *	This function performs an skb_pull on the packet and updates
2957  *	the CHECKSUM_COMPLETE checksum.  It should be used on
2958  *	receive path processing instead of skb_pull unless you know
2959  *	that the checksum difference is zero (e.g., a valid IP header)
2960  *	or you are setting ip_summed to CHECKSUM_NONE.
2961  */
2962 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
2963 {
2964 	BUG_ON(len > skb->len);
2965 	skb->len -= len;
2966 	BUG_ON(skb->len < skb->data_len);
2967 	skb_postpull_rcsum(skb, skb->data, len);
2968 	return skb->data += len;
2969 }
2970 EXPORT_SYMBOL_GPL(skb_pull_rcsum);
2971 
2972 /**
2973  *	skb_segment - Perform protocol segmentation on skb.
2974  *	@head_skb: buffer to segment
2975  *	@features: features for the output path (see dev->features)
2976  *
2977  *	This function performs segmentation on the given skb.  It returns
2978  *	a pointer to the first in a list of new skbs for the segments.
2979  *	In case of error it returns ERR_PTR(err).
2980  */
2981 struct sk_buff *skb_segment(struct sk_buff *head_skb,
2982 			    netdev_features_t features)
2983 {
2984 	struct sk_buff *segs = NULL;
2985 	struct sk_buff *tail = NULL;
2986 	struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list;
2987 	skb_frag_t *frag = skb_shinfo(head_skb)->frags;
2988 	unsigned int mss = skb_shinfo(head_skb)->gso_size;
2989 	unsigned int doffset = head_skb->data - skb_mac_header(head_skb);
2990 	struct sk_buff *frag_skb = head_skb;
2991 	unsigned int offset = doffset;
2992 	unsigned int tnl_hlen = skb_tnl_header_len(head_skb);
2993 	unsigned int headroom;
2994 	unsigned int len;
2995 	__be16 proto;
2996 	bool csum;
2997 	int sg = !!(features & NETIF_F_SG);
2998 	int nfrags = skb_shinfo(head_skb)->nr_frags;
2999 	int err = -ENOMEM;
3000 	int i = 0;
3001 	int pos;
3002 	int dummy;
3003 
3004 	__skb_push(head_skb, doffset);
3005 	proto = skb_network_protocol(head_skb, &dummy);
3006 	if (unlikely(!proto))
3007 		return ERR_PTR(-EINVAL);
3008 
3009 	csum = !head_skb->encap_hdr_csum &&
3010 	    !!can_checksum_protocol(features, proto);
3011 
3012 	headroom = skb_headroom(head_skb);
3013 	pos = skb_headlen(head_skb);
3014 
3015 	do {
3016 		struct sk_buff *nskb;
3017 		skb_frag_t *nskb_frag;
3018 		int hsize;
3019 		int size;
3020 
3021 		len = head_skb->len - offset;
3022 		if (len > mss)
3023 			len = mss;
3024 
3025 		hsize = skb_headlen(head_skb) - offset;
3026 		if (hsize < 0)
3027 			hsize = 0;
3028 		if (hsize > len || !sg)
3029 			hsize = len;
3030 
3031 		if (!hsize && i >= nfrags && skb_headlen(list_skb) &&
3032 		    (skb_headlen(list_skb) == len || sg)) {
3033 			BUG_ON(skb_headlen(list_skb) > len);
3034 
3035 			i = 0;
3036 			nfrags = skb_shinfo(list_skb)->nr_frags;
3037 			frag = skb_shinfo(list_skb)->frags;
3038 			frag_skb = list_skb;
3039 			pos += skb_headlen(list_skb);
3040 
3041 			while (pos < offset + len) {
3042 				BUG_ON(i >= nfrags);
3043 
3044 				size = skb_frag_size(frag);
3045 				if (pos + size > offset + len)
3046 					break;
3047 
3048 				i++;
3049 				pos += size;
3050 				frag++;
3051 			}
3052 
3053 			nskb = skb_clone(list_skb, GFP_ATOMIC);
3054 			list_skb = list_skb->next;
3055 
3056 			if (unlikely(!nskb))
3057 				goto err;
3058 
3059 			if (unlikely(pskb_trim(nskb, len))) {
3060 				kfree_skb(nskb);
3061 				goto err;
3062 			}
3063 
3064 			hsize = skb_end_offset(nskb);
3065 			if (skb_cow_head(nskb, doffset + headroom)) {
3066 				kfree_skb(nskb);
3067 				goto err;
3068 			}
3069 
3070 			nskb->truesize += skb_end_offset(nskb) - hsize;
3071 			skb_release_head_state(nskb);
3072 			__skb_push(nskb, doffset);
3073 		} else {
3074 			nskb = __alloc_skb(hsize + doffset + headroom,
3075 					   GFP_ATOMIC, skb_alloc_rx_flag(head_skb),
3076 					   NUMA_NO_NODE);
3077 
3078 			if (unlikely(!nskb))
3079 				goto err;
3080 
3081 			skb_reserve(nskb, headroom);
3082 			__skb_put(nskb, doffset);
3083 		}
3084 
3085 		if (segs)
3086 			tail->next = nskb;
3087 		else
3088 			segs = nskb;
3089 		tail = nskb;
3090 
3091 		__copy_skb_header(nskb, head_skb);
3092 
3093 		skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom);
3094 		skb_reset_mac_len(nskb);
3095 
3096 		skb_copy_from_linear_data_offset(head_skb, -tnl_hlen,
3097 						 nskb->data - tnl_hlen,
3098 						 doffset + tnl_hlen);
3099 
3100 		if (nskb->len == len + doffset)
3101 			goto perform_csum_check;
3102 
3103 		if (!sg && !nskb->remcsum_offload) {
3104 			nskb->ip_summed = CHECKSUM_NONE;
3105 			nskb->csum = skb_copy_and_csum_bits(head_skb, offset,
3106 							    skb_put(nskb, len),
3107 							    len, 0);
3108 			SKB_GSO_CB(nskb)->csum_start =
3109 			    skb_headroom(nskb) + doffset;
3110 			continue;
3111 		}
3112 
3113 		nskb_frag = skb_shinfo(nskb)->frags;
3114 
3115 		skb_copy_from_linear_data_offset(head_skb, offset,
3116 						 skb_put(nskb, hsize), hsize);
3117 
3118 		skb_shinfo(nskb)->tx_flags = skb_shinfo(head_skb)->tx_flags &
3119 			SKBTX_SHARED_FRAG;
3120 
3121 		while (pos < offset + len) {
3122 			if (i >= nfrags) {
3123 				BUG_ON(skb_headlen(list_skb));
3124 
3125 				i = 0;
3126 				nfrags = skb_shinfo(list_skb)->nr_frags;
3127 				frag = skb_shinfo(list_skb)->frags;
3128 				frag_skb = list_skb;
3129 
3130 				BUG_ON(!nfrags);
3131 
3132 				list_skb = list_skb->next;
3133 			}
3134 
3135 			if (unlikely(skb_shinfo(nskb)->nr_frags >=
3136 				     MAX_SKB_FRAGS)) {
3137 				net_warn_ratelimited(
3138 					"skb_segment: too many frags: %u %u\n",
3139 					pos, mss);
3140 				goto err;
3141 			}
3142 
3143 			if (unlikely(skb_orphan_frags(frag_skb, GFP_ATOMIC)))
3144 				goto err;
3145 
3146 			*nskb_frag = *frag;
3147 			__skb_frag_ref(nskb_frag);
3148 			size = skb_frag_size(nskb_frag);
3149 
3150 			if (pos < offset) {
3151 				nskb_frag->page_offset += offset - pos;
3152 				skb_frag_size_sub(nskb_frag, offset - pos);
3153 			}
3154 
3155 			skb_shinfo(nskb)->nr_frags++;
3156 
3157 			if (pos + size <= offset + len) {
3158 				i++;
3159 				frag++;
3160 				pos += size;
3161 			} else {
3162 				skb_frag_size_sub(nskb_frag, pos + size - (offset + len));
3163 				goto skip_fraglist;
3164 			}
3165 
3166 			nskb_frag++;
3167 		}
3168 
3169 skip_fraglist:
3170 		nskb->data_len = len - hsize;
3171 		nskb->len += nskb->data_len;
3172 		nskb->truesize += nskb->data_len;
3173 
3174 perform_csum_check:
3175 		if (!csum && !nskb->remcsum_offload) {
3176 			nskb->csum = skb_checksum(nskb, doffset,
3177 						  nskb->len - doffset, 0);
3178 			nskb->ip_summed = CHECKSUM_NONE;
3179 			SKB_GSO_CB(nskb)->csum_start =
3180 			    skb_headroom(nskb) + doffset;
3181 		}
3182 	} while ((offset += len) < head_skb->len);
3183 
3184 	/* Some callers want to get the end of the list.
3185 	 * Put it in segs->prev to avoid walking the list.
3186 	 * (see validate_xmit_skb_list() for example)
3187 	 */
3188 	segs->prev = tail;
3189 
3190 	/* Following permits correct backpressure, for protocols
3191 	 * using skb_set_owner_w().
3192 	 * Idea is to tranfert ownership from head_skb to last segment.
3193 	 */
3194 	if (head_skb->destructor == sock_wfree) {
3195 		swap(tail->truesize, head_skb->truesize);
3196 		swap(tail->destructor, head_skb->destructor);
3197 		swap(tail->sk, head_skb->sk);
3198 	}
3199 	return segs;
3200 
3201 err:
3202 	kfree_skb_list(segs);
3203 	return ERR_PTR(err);
3204 }
3205 EXPORT_SYMBOL_GPL(skb_segment);
3206 
3207 int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb)
3208 {
3209 	struct skb_shared_info *pinfo, *skbinfo = skb_shinfo(skb);
3210 	unsigned int offset = skb_gro_offset(skb);
3211 	unsigned int headlen = skb_headlen(skb);
3212 	struct sk_buff *nskb, *lp, *p = *head;
3213 	unsigned int len = skb_gro_len(skb);
3214 	unsigned int delta_truesize;
3215 	unsigned int headroom;
3216 
3217 	if (unlikely(p->len + len >= 65536))
3218 		return -E2BIG;
3219 
3220 	lp = NAPI_GRO_CB(p)->last;
3221 	pinfo = skb_shinfo(lp);
3222 
3223 	if (headlen <= offset) {
3224 		skb_frag_t *frag;
3225 		skb_frag_t *frag2;
3226 		int i = skbinfo->nr_frags;
3227 		int nr_frags = pinfo->nr_frags + i;
3228 
3229 		if (nr_frags > MAX_SKB_FRAGS)
3230 			goto merge;
3231 
3232 		offset -= headlen;
3233 		pinfo->nr_frags = nr_frags;
3234 		skbinfo->nr_frags = 0;
3235 
3236 		frag = pinfo->frags + nr_frags;
3237 		frag2 = skbinfo->frags + i;
3238 		do {
3239 			*--frag = *--frag2;
3240 		} while (--i);
3241 
3242 		frag->page_offset += offset;
3243 		skb_frag_size_sub(frag, offset);
3244 
3245 		/* all fragments truesize : remove (head size + sk_buff) */
3246 		delta_truesize = skb->truesize -
3247 				 SKB_TRUESIZE(skb_end_offset(skb));
3248 
3249 		skb->truesize -= skb->data_len;
3250 		skb->len -= skb->data_len;
3251 		skb->data_len = 0;
3252 
3253 		NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE;
3254 		goto done;
3255 	} else if (skb->head_frag) {
3256 		int nr_frags = pinfo->nr_frags;
3257 		skb_frag_t *frag = pinfo->frags + nr_frags;
3258 		struct page *page = virt_to_head_page(skb->head);
3259 		unsigned int first_size = headlen - offset;
3260 		unsigned int first_offset;
3261 
3262 		if (nr_frags + 1 + skbinfo->nr_frags > MAX_SKB_FRAGS)
3263 			goto merge;
3264 
3265 		first_offset = skb->data -
3266 			       (unsigned char *)page_address(page) +
3267 			       offset;
3268 
3269 		pinfo->nr_frags = nr_frags + 1 + skbinfo->nr_frags;
3270 
3271 		frag->page.p	  = page;
3272 		frag->page_offset = first_offset;
3273 		skb_frag_size_set(frag, first_size);
3274 
3275 		memcpy(frag + 1, skbinfo->frags, sizeof(*frag) * skbinfo->nr_frags);
3276 		/* We dont need to clear skbinfo->nr_frags here */
3277 
3278 		delta_truesize = skb->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
3279 		NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE_STOLEN_HEAD;
3280 		goto done;
3281 	}
3282 	/* switch back to head shinfo */
3283 	pinfo = skb_shinfo(p);
3284 
3285 	if (pinfo->frag_list)
3286 		goto merge;
3287 	if (skb_gro_len(p) != pinfo->gso_size)
3288 		return -E2BIG;
3289 
3290 	headroom = skb_headroom(p);
3291 	nskb = alloc_skb(headroom + skb_gro_offset(p), GFP_ATOMIC);
3292 	if (unlikely(!nskb))
3293 		return -ENOMEM;
3294 
3295 	__copy_skb_header(nskb, p);
3296 	nskb->mac_len = p->mac_len;
3297 
3298 	skb_reserve(nskb, headroom);
3299 	__skb_put(nskb, skb_gro_offset(p));
3300 
3301 	skb_set_mac_header(nskb, skb_mac_header(p) - p->data);
3302 	skb_set_network_header(nskb, skb_network_offset(p));
3303 	skb_set_transport_header(nskb, skb_transport_offset(p));
3304 
3305 	__skb_pull(p, skb_gro_offset(p));
3306 	memcpy(skb_mac_header(nskb), skb_mac_header(p),
3307 	       p->data - skb_mac_header(p));
3308 
3309 	skb_shinfo(nskb)->frag_list = p;
3310 	skb_shinfo(nskb)->gso_size = pinfo->gso_size;
3311 	pinfo->gso_size = 0;
3312 	__skb_header_release(p);
3313 	NAPI_GRO_CB(nskb)->last = p;
3314 
3315 	nskb->data_len += p->len;
3316 	nskb->truesize += p->truesize;
3317 	nskb->len += p->len;
3318 
3319 	*head = nskb;
3320 	nskb->next = p->next;
3321 	p->next = NULL;
3322 
3323 	p = nskb;
3324 
3325 merge:
3326 	delta_truesize = skb->truesize;
3327 	if (offset > headlen) {
3328 		unsigned int eat = offset - headlen;
3329 
3330 		skbinfo->frags[0].page_offset += eat;
3331 		skb_frag_size_sub(&skbinfo->frags[0], eat);
3332 		skb->data_len -= eat;
3333 		skb->len -= eat;
3334 		offset = headlen;
3335 	}
3336 
3337 	__skb_pull(skb, offset);
3338 
3339 	if (NAPI_GRO_CB(p)->last == p)
3340 		skb_shinfo(p)->frag_list = skb;
3341 	else
3342 		NAPI_GRO_CB(p)->last->next = skb;
3343 	NAPI_GRO_CB(p)->last = skb;
3344 	__skb_header_release(skb);
3345 	lp = p;
3346 
3347 done:
3348 	NAPI_GRO_CB(p)->count++;
3349 	p->data_len += len;
3350 	p->truesize += delta_truesize;
3351 	p->len += len;
3352 	if (lp != p) {
3353 		lp->data_len += len;
3354 		lp->truesize += delta_truesize;
3355 		lp->len += len;
3356 	}
3357 	NAPI_GRO_CB(skb)->same_flow = 1;
3358 	return 0;
3359 }
3360 
3361 void __init skb_init(void)
3362 {
3363 	skbuff_head_cache = kmem_cache_create("skbuff_head_cache",
3364 					      sizeof(struct sk_buff),
3365 					      0,
3366 					      SLAB_HWCACHE_ALIGN|SLAB_PANIC,
3367 					      NULL);
3368 	skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
3369 						sizeof(struct sk_buff_fclones),
3370 						0,
3371 						SLAB_HWCACHE_ALIGN|SLAB_PANIC,
3372 						NULL);
3373 }
3374 
3375 /**
3376  *	skb_to_sgvec - Fill a scatter-gather list from a socket buffer
3377  *	@skb: Socket buffer containing the buffers to be mapped
3378  *	@sg: The scatter-gather list to map into
3379  *	@offset: The offset into the buffer's contents to start mapping
3380  *	@len: Length of buffer space to be mapped
3381  *
3382  *	Fill the specified scatter-gather list with mappings/pointers into a
3383  *	region of the buffer space attached to a socket buffer.
3384  */
3385 static int
3386 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
3387 {
3388 	int start = skb_headlen(skb);
3389 	int i, copy = start - offset;
3390 	struct sk_buff *frag_iter;
3391 	int elt = 0;
3392 
3393 	if (copy > 0) {
3394 		if (copy > len)
3395 			copy = len;
3396 		sg_set_buf(sg, skb->data + offset, copy);
3397 		elt++;
3398 		if ((len -= copy) == 0)
3399 			return elt;
3400 		offset += copy;
3401 	}
3402 
3403 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3404 		int end;
3405 
3406 		WARN_ON(start > offset + len);
3407 
3408 		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
3409 		if ((copy = end - offset) > 0) {
3410 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3411 
3412 			if (copy > len)
3413 				copy = len;
3414 			sg_set_page(&sg[elt], skb_frag_page(frag), copy,
3415 					frag->page_offset+offset-start);
3416 			elt++;
3417 			if (!(len -= copy))
3418 				return elt;
3419 			offset += copy;
3420 		}
3421 		start = end;
3422 	}
3423 
3424 	skb_walk_frags(skb, frag_iter) {
3425 		int end;
3426 
3427 		WARN_ON(start > offset + len);
3428 
3429 		end = start + frag_iter->len;
3430 		if ((copy = end - offset) > 0) {
3431 			if (copy > len)
3432 				copy = len;
3433 			elt += __skb_to_sgvec(frag_iter, sg+elt, offset - start,
3434 					      copy);
3435 			if ((len -= copy) == 0)
3436 				return elt;
3437 			offset += copy;
3438 		}
3439 		start = end;
3440 	}
3441 	BUG_ON(len);
3442 	return elt;
3443 }
3444 
3445 /* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given
3446  * sglist without mark the sg which contain last skb data as the end.
3447  * So the caller can mannipulate sg list as will when padding new data after
3448  * the first call without calling sg_unmark_end to expend sg list.
3449  *
3450  * Scenario to use skb_to_sgvec_nomark:
3451  * 1. sg_init_table
3452  * 2. skb_to_sgvec_nomark(payload1)
3453  * 3. skb_to_sgvec_nomark(payload2)
3454  *
3455  * This is equivalent to:
3456  * 1. sg_init_table
3457  * 2. skb_to_sgvec(payload1)
3458  * 3. sg_unmark_end
3459  * 4. skb_to_sgvec(payload2)
3460  *
3461  * When mapping mutilple payload conditionally, skb_to_sgvec_nomark
3462  * is more preferable.
3463  */
3464 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
3465 			int offset, int len)
3466 {
3467 	return __skb_to_sgvec(skb, sg, offset, len);
3468 }
3469 EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark);
3470 
3471 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
3472 {
3473 	int nsg = __skb_to_sgvec(skb, sg, offset, len);
3474 
3475 	sg_mark_end(&sg[nsg - 1]);
3476 
3477 	return nsg;
3478 }
3479 EXPORT_SYMBOL_GPL(skb_to_sgvec);
3480 
3481 /**
3482  *	skb_cow_data - Check that a socket buffer's data buffers are writable
3483  *	@skb: The socket buffer to check.
3484  *	@tailbits: Amount of trailing space to be added
3485  *	@trailer: Returned pointer to the skb where the @tailbits space begins
3486  *
3487  *	Make sure that the data buffers attached to a socket buffer are
3488  *	writable. If they are not, private copies are made of the data buffers
3489  *	and the socket buffer is set to use these instead.
3490  *
3491  *	If @tailbits is given, make sure that there is space to write @tailbits
3492  *	bytes of data beyond current end of socket buffer.  @trailer will be
3493  *	set to point to the skb in which this space begins.
3494  *
3495  *	The number of scatterlist elements required to completely map the
3496  *	COW'd and extended socket buffer will be returned.
3497  */
3498 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
3499 {
3500 	int copyflag;
3501 	int elt;
3502 	struct sk_buff *skb1, **skb_p;
3503 
3504 	/* If skb is cloned or its head is paged, reallocate
3505 	 * head pulling out all the pages (pages are considered not writable
3506 	 * at the moment even if they are anonymous).
3507 	 */
3508 	if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
3509 	    __pskb_pull_tail(skb, skb_pagelen(skb)-skb_headlen(skb)) == NULL)
3510 		return -ENOMEM;
3511 
3512 	/* Easy case. Most of packets will go this way. */
3513 	if (!skb_has_frag_list(skb)) {
3514 		/* A little of trouble, not enough of space for trailer.
3515 		 * This should not happen, when stack is tuned to generate
3516 		 * good frames. OK, on miss we reallocate and reserve even more
3517 		 * space, 128 bytes is fair. */
3518 
3519 		if (skb_tailroom(skb) < tailbits &&
3520 		    pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
3521 			return -ENOMEM;
3522 
3523 		/* Voila! */
3524 		*trailer = skb;
3525 		return 1;
3526 	}
3527 
3528 	/* Misery. We are in troubles, going to mincer fragments... */
3529 
3530 	elt = 1;
3531 	skb_p = &skb_shinfo(skb)->frag_list;
3532 	copyflag = 0;
3533 
3534 	while ((skb1 = *skb_p) != NULL) {
3535 		int ntail = 0;
3536 
3537 		/* The fragment is partially pulled by someone,
3538 		 * this can happen on input. Copy it and everything
3539 		 * after it. */
3540 
3541 		if (skb_shared(skb1))
3542 			copyflag = 1;
3543 
3544 		/* If the skb is the last, worry about trailer. */
3545 
3546 		if (skb1->next == NULL && tailbits) {
3547 			if (skb_shinfo(skb1)->nr_frags ||
3548 			    skb_has_frag_list(skb1) ||
3549 			    skb_tailroom(skb1) < tailbits)
3550 				ntail = tailbits + 128;
3551 		}
3552 
3553 		if (copyflag ||
3554 		    skb_cloned(skb1) ||
3555 		    ntail ||
3556 		    skb_shinfo(skb1)->nr_frags ||
3557 		    skb_has_frag_list(skb1)) {
3558 			struct sk_buff *skb2;
3559 
3560 			/* Fuck, we are miserable poor guys... */
3561 			if (ntail == 0)
3562 				skb2 = skb_copy(skb1, GFP_ATOMIC);
3563 			else
3564 				skb2 = skb_copy_expand(skb1,
3565 						       skb_headroom(skb1),
3566 						       ntail,
3567 						       GFP_ATOMIC);
3568 			if (unlikely(skb2 == NULL))
3569 				return -ENOMEM;
3570 
3571 			if (skb1->sk)
3572 				skb_set_owner_w(skb2, skb1->sk);
3573 
3574 			/* Looking around. Are we still alive?
3575 			 * OK, link new skb, drop old one */
3576 
3577 			skb2->next = skb1->next;
3578 			*skb_p = skb2;
3579 			kfree_skb(skb1);
3580 			skb1 = skb2;
3581 		}
3582 		elt++;
3583 		*trailer = skb1;
3584 		skb_p = &skb1->next;
3585 	}
3586 
3587 	return elt;
3588 }
3589 EXPORT_SYMBOL_GPL(skb_cow_data);
3590 
3591 static void sock_rmem_free(struct sk_buff *skb)
3592 {
3593 	struct sock *sk = skb->sk;
3594 
3595 	atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
3596 }
3597 
3598 /*
3599  * Note: We dont mem charge error packets (no sk_forward_alloc changes)
3600  */
3601 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
3602 {
3603 	if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
3604 	    (unsigned int)sk->sk_rcvbuf)
3605 		return -ENOMEM;
3606 
3607 	skb_orphan(skb);
3608 	skb->sk = sk;
3609 	skb->destructor = sock_rmem_free;
3610 	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
3611 
3612 	/* before exiting rcu section, make sure dst is refcounted */
3613 	skb_dst_force(skb);
3614 
3615 	skb_queue_tail(&sk->sk_error_queue, skb);
3616 	if (!sock_flag(sk, SOCK_DEAD))
3617 		sk->sk_data_ready(sk);
3618 	return 0;
3619 }
3620 EXPORT_SYMBOL(sock_queue_err_skb);
3621 
3622 struct sk_buff *sock_dequeue_err_skb(struct sock *sk)
3623 {
3624 	struct sk_buff_head *q = &sk->sk_error_queue;
3625 	struct sk_buff *skb, *skb_next;
3626 	int err = 0;
3627 
3628 	spin_lock_bh(&q->lock);
3629 	skb = __skb_dequeue(q);
3630 	if (skb && (skb_next = skb_peek(q)))
3631 		err = SKB_EXT_ERR(skb_next)->ee.ee_errno;
3632 	spin_unlock_bh(&q->lock);
3633 
3634 	sk->sk_err = err;
3635 	if (err)
3636 		sk->sk_error_report(sk);
3637 
3638 	return skb;
3639 }
3640 EXPORT_SYMBOL(sock_dequeue_err_skb);
3641 
3642 /**
3643  * skb_clone_sk - create clone of skb, and take reference to socket
3644  * @skb: the skb to clone
3645  *
3646  * This function creates a clone of a buffer that holds a reference on
3647  * sk_refcnt.  Buffers created via this function are meant to be
3648  * returned using sock_queue_err_skb, or free via kfree_skb.
3649  *
3650  * When passing buffers allocated with this function to sock_queue_err_skb
3651  * it is necessary to wrap the call with sock_hold/sock_put in order to
3652  * prevent the socket from being released prior to being enqueued on
3653  * the sk_error_queue.
3654  */
3655 struct sk_buff *skb_clone_sk(struct sk_buff *skb)
3656 {
3657 	struct sock *sk = skb->sk;
3658 	struct sk_buff *clone;
3659 
3660 	if (!sk || !atomic_inc_not_zero(&sk->sk_refcnt))
3661 		return NULL;
3662 
3663 	clone = skb_clone(skb, GFP_ATOMIC);
3664 	if (!clone) {
3665 		sock_put(sk);
3666 		return NULL;
3667 	}
3668 
3669 	clone->sk = sk;
3670 	clone->destructor = sock_efree;
3671 
3672 	return clone;
3673 }
3674 EXPORT_SYMBOL(skb_clone_sk);
3675 
3676 static void __skb_complete_tx_timestamp(struct sk_buff *skb,
3677 					struct sock *sk,
3678 					int tstype)
3679 {
3680 	struct sock_exterr_skb *serr;
3681 	int err;
3682 
3683 	serr = SKB_EXT_ERR(skb);
3684 	memset(serr, 0, sizeof(*serr));
3685 	serr->ee.ee_errno = ENOMSG;
3686 	serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
3687 	serr->ee.ee_info = tstype;
3688 	if (sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID) {
3689 		serr->ee.ee_data = skb_shinfo(skb)->tskey;
3690 		if (sk->sk_protocol == IPPROTO_TCP)
3691 			serr->ee.ee_data -= sk->sk_tskey;
3692 	}
3693 
3694 	err = sock_queue_err_skb(sk, skb);
3695 
3696 	if (err)
3697 		kfree_skb(skb);
3698 }
3699 
3700 void skb_complete_tx_timestamp(struct sk_buff *skb,
3701 			       struct skb_shared_hwtstamps *hwtstamps)
3702 {
3703 	struct sock *sk = skb->sk;
3704 
3705 	/* take a reference to prevent skb_orphan() from freeing the socket */
3706 	sock_hold(sk);
3707 
3708 	*skb_hwtstamps(skb) = *hwtstamps;
3709 	__skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND);
3710 
3711 	sock_put(sk);
3712 }
3713 EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp);
3714 
3715 void __skb_tstamp_tx(struct sk_buff *orig_skb,
3716 		     struct skb_shared_hwtstamps *hwtstamps,
3717 		     struct sock *sk, int tstype)
3718 {
3719 	struct sk_buff *skb;
3720 
3721 	if (!sk)
3722 		return;
3723 
3724 	if (hwtstamps)
3725 		*skb_hwtstamps(orig_skb) = *hwtstamps;
3726 	else
3727 		orig_skb->tstamp = ktime_get_real();
3728 
3729 	skb = skb_clone(orig_skb, GFP_ATOMIC);
3730 	if (!skb)
3731 		return;
3732 
3733 	__skb_complete_tx_timestamp(skb, sk, tstype);
3734 }
3735 EXPORT_SYMBOL_GPL(__skb_tstamp_tx);
3736 
3737 void skb_tstamp_tx(struct sk_buff *orig_skb,
3738 		   struct skb_shared_hwtstamps *hwtstamps)
3739 {
3740 	return __skb_tstamp_tx(orig_skb, hwtstamps, orig_skb->sk,
3741 			       SCM_TSTAMP_SND);
3742 }
3743 EXPORT_SYMBOL_GPL(skb_tstamp_tx);
3744 
3745 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked)
3746 {
3747 	struct sock *sk = skb->sk;
3748 	struct sock_exterr_skb *serr;
3749 	int err;
3750 
3751 	skb->wifi_acked_valid = 1;
3752 	skb->wifi_acked = acked;
3753 
3754 	serr = SKB_EXT_ERR(skb);
3755 	memset(serr, 0, sizeof(*serr));
3756 	serr->ee.ee_errno = ENOMSG;
3757 	serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS;
3758 
3759 	/* take a reference to prevent skb_orphan() from freeing the socket */
3760 	sock_hold(sk);
3761 
3762 	err = sock_queue_err_skb(sk, skb);
3763 	if (err)
3764 		kfree_skb(skb);
3765 
3766 	sock_put(sk);
3767 }
3768 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack);
3769 
3770 
3771 /**
3772  * skb_partial_csum_set - set up and verify partial csum values for packet
3773  * @skb: the skb to set
3774  * @start: the number of bytes after skb->data to start checksumming.
3775  * @off: the offset from start to place the checksum.
3776  *
3777  * For untrusted partially-checksummed packets, we need to make sure the values
3778  * for skb->csum_start and skb->csum_offset are valid so we don't oops.
3779  *
3780  * This function checks and sets those values and skb->ip_summed: if this
3781  * returns false you should drop the packet.
3782  */
3783 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
3784 {
3785 	if (unlikely(start > skb_headlen(skb)) ||
3786 	    unlikely((int)start + off > skb_headlen(skb) - 2)) {
3787 		net_warn_ratelimited("bad partial csum: csum=%u/%u len=%u\n",
3788 				     start, off, skb_headlen(skb));
3789 		return false;
3790 	}
3791 	skb->ip_summed = CHECKSUM_PARTIAL;
3792 	skb->csum_start = skb_headroom(skb) + start;
3793 	skb->csum_offset = off;
3794 	skb_set_transport_header(skb, start);
3795 	return true;
3796 }
3797 EXPORT_SYMBOL_GPL(skb_partial_csum_set);
3798 
3799 static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len,
3800 			       unsigned int max)
3801 {
3802 	if (skb_headlen(skb) >= len)
3803 		return 0;
3804 
3805 	/* If we need to pullup then pullup to the max, so we
3806 	 * won't need to do it again.
3807 	 */
3808 	if (max > skb->len)
3809 		max = skb->len;
3810 
3811 	if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL)
3812 		return -ENOMEM;
3813 
3814 	if (skb_headlen(skb) < len)
3815 		return -EPROTO;
3816 
3817 	return 0;
3818 }
3819 
3820 #define MAX_TCP_HDR_LEN (15 * 4)
3821 
3822 static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb,
3823 				      typeof(IPPROTO_IP) proto,
3824 				      unsigned int off)
3825 {
3826 	switch (proto) {
3827 		int err;
3828 
3829 	case IPPROTO_TCP:
3830 		err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr),
3831 					  off + MAX_TCP_HDR_LEN);
3832 		if (!err && !skb_partial_csum_set(skb, off,
3833 						  offsetof(struct tcphdr,
3834 							   check)))
3835 			err = -EPROTO;
3836 		return err ? ERR_PTR(err) : &tcp_hdr(skb)->check;
3837 
3838 	case IPPROTO_UDP:
3839 		err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr),
3840 					  off + sizeof(struct udphdr));
3841 		if (!err && !skb_partial_csum_set(skb, off,
3842 						  offsetof(struct udphdr,
3843 							   check)))
3844 			err = -EPROTO;
3845 		return err ? ERR_PTR(err) : &udp_hdr(skb)->check;
3846 	}
3847 
3848 	return ERR_PTR(-EPROTO);
3849 }
3850 
3851 /* This value should be large enough to cover a tagged ethernet header plus
3852  * maximally sized IP and TCP or UDP headers.
3853  */
3854 #define MAX_IP_HDR_LEN 128
3855 
3856 static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate)
3857 {
3858 	unsigned int off;
3859 	bool fragment;
3860 	__sum16 *csum;
3861 	int err;
3862 
3863 	fragment = false;
3864 
3865 	err = skb_maybe_pull_tail(skb,
3866 				  sizeof(struct iphdr),
3867 				  MAX_IP_HDR_LEN);
3868 	if (err < 0)
3869 		goto out;
3870 
3871 	if (ip_hdr(skb)->frag_off & htons(IP_OFFSET | IP_MF))
3872 		fragment = true;
3873 
3874 	off = ip_hdrlen(skb);
3875 
3876 	err = -EPROTO;
3877 
3878 	if (fragment)
3879 		goto out;
3880 
3881 	csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off);
3882 	if (IS_ERR(csum))
3883 		return PTR_ERR(csum);
3884 
3885 	if (recalculate)
3886 		*csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
3887 					   ip_hdr(skb)->daddr,
3888 					   skb->len - off,
3889 					   ip_hdr(skb)->protocol, 0);
3890 	err = 0;
3891 
3892 out:
3893 	return err;
3894 }
3895 
3896 /* This value should be large enough to cover a tagged ethernet header plus
3897  * an IPv6 header, all options, and a maximal TCP or UDP header.
3898  */
3899 #define MAX_IPV6_HDR_LEN 256
3900 
3901 #define OPT_HDR(type, skb, off) \
3902 	(type *)(skb_network_header(skb) + (off))
3903 
3904 static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate)
3905 {
3906 	int err;
3907 	u8 nexthdr;
3908 	unsigned int off;
3909 	unsigned int len;
3910 	bool fragment;
3911 	bool done;
3912 	__sum16 *csum;
3913 
3914 	fragment = false;
3915 	done = false;
3916 
3917 	off = sizeof(struct ipv6hdr);
3918 
3919 	err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN);
3920 	if (err < 0)
3921 		goto out;
3922 
3923 	nexthdr = ipv6_hdr(skb)->nexthdr;
3924 
3925 	len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len);
3926 	while (off <= len && !done) {
3927 		switch (nexthdr) {
3928 		case IPPROTO_DSTOPTS:
3929 		case IPPROTO_HOPOPTS:
3930 		case IPPROTO_ROUTING: {
3931 			struct ipv6_opt_hdr *hp;
3932 
3933 			err = skb_maybe_pull_tail(skb,
3934 						  off +
3935 						  sizeof(struct ipv6_opt_hdr),
3936 						  MAX_IPV6_HDR_LEN);
3937 			if (err < 0)
3938 				goto out;
3939 
3940 			hp = OPT_HDR(struct ipv6_opt_hdr, skb, off);
3941 			nexthdr = hp->nexthdr;
3942 			off += ipv6_optlen(hp);
3943 			break;
3944 		}
3945 		case IPPROTO_AH: {
3946 			struct ip_auth_hdr *hp;
3947 
3948 			err = skb_maybe_pull_tail(skb,
3949 						  off +
3950 						  sizeof(struct ip_auth_hdr),
3951 						  MAX_IPV6_HDR_LEN);
3952 			if (err < 0)
3953 				goto out;
3954 
3955 			hp = OPT_HDR(struct ip_auth_hdr, skb, off);
3956 			nexthdr = hp->nexthdr;
3957 			off += ipv6_authlen(hp);
3958 			break;
3959 		}
3960 		case IPPROTO_FRAGMENT: {
3961 			struct frag_hdr *hp;
3962 
3963 			err = skb_maybe_pull_tail(skb,
3964 						  off +
3965 						  sizeof(struct frag_hdr),
3966 						  MAX_IPV6_HDR_LEN);
3967 			if (err < 0)
3968 				goto out;
3969 
3970 			hp = OPT_HDR(struct frag_hdr, skb, off);
3971 
3972 			if (hp->frag_off & htons(IP6_OFFSET | IP6_MF))
3973 				fragment = true;
3974 
3975 			nexthdr = hp->nexthdr;
3976 			off += sizeof(struct frag_hdr);
3977 			break;
3978 		}
3979 		default:
3980 			done = true;
3981 			break;
3982 		}
3983 	}
3984 
3985 	err = -EPROTO;
3986 
3987 	if (!done || fragment)
3988 		goto out;
3989 
3990 	csum = skb_checksum_setup_ip(skb, nexthdr, off);
3991 	if (IS_ERR(csum))
3992 		return PTR_ERR(csum);
3993 
3994 	if (recalculate)
3995 		*csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
3996 					 &ipv6_hdr(skb)->daddr,
3997 					 skb->len - off, nexthdr, 0);
3998 	err = 0;
3999 
4000 out:
4001 	return err;
4002 }
4003 
4004 /**
4005  * skb_checksum_setup - set up partial checksum offset
4006  * @skb: the skb to set up
4007  * @recalculate: if true the pseudo-header checksum will be recalculated
4008  */
4009 int skb_checksum_setup(struct sk_buff *skb, bool recalculate)
4010 {
4011 	int err;
4012 
4013 	switch (skb->protocol) {
4014 	case htons(ETH_P_IP):
4015 		err = skb_checksum_setup_ipv4(skb, recalculate);
4016 		break;
4017 
4018 	case htons(ETH_P_IPV6):
4019 		err = skb_checksum_setup_ipv6(skb, recalculate);
4020 		break;
4021 
4022 	default:
4023 		err = -EPROTO;
4024 		break;
4025 	}
4026 
4027 	return err;
4028 }
4029 EXPORT_SYMBOL(skb_checksum_setup);
4030 
4031 void __skb_warn_lro_forwarding(const struct sk_buff *skb)
4032 {
4033 	net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n",
4034 			     skb->dev->name);
4035 }
4036 EXPORT_SYMBOL(__skb_warn_lro_forwarding);
4037 
4038 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen)
4039 {
4040 	if (head_stolen) {
4041 		skb_release_head_state(skb);
4042 		kmem_cache_free(skbuff_head_cache, skb);
4043 	} else {
4044 		__kfree_skb(skb);
4045 	}
4046 }
4047 EXPORT_SYMBOL(kfree_skb_partial);
4048 
4049 /**
4050  * skb_try_coalesce - try to merge skb to prior one
4051  * @to: prior buffer
4052  * @from: buffer to add
4053  * @fragstolen: pointer to boolean
4054  * @delta_truesize: how much more was allocated than was requested
4055  */
4056 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
4057 		      bool *fragstolen, int *delta_truesize)
4058 {
4059 	int i, delta, len = from->len;
4060 
4061 	*fragstolen = false;
4062 
4063 	if (skb_cloned(to))
4064 		return false;
4065 
4066 	if (len <= skb_tailroom(to)) {
4067 		if (len)
4068 			BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len));
4069 		*delta_truesize = 0;
4070 		return true;
4071 	}
4072 
4073 	if (skb_has_frag_list(to) || skb_has_frag_list(from))
4074 		return false;
4075 
4076 	if (skb_headlen(from) != 0) {
4077 		struct page *page;
4078 		unsigned int offset;
4079 
4080 		if (skb_shinfo(to)->nr_frags +
4081 		    skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS)
4082 			return false;
4083 
4084 		if (skb_head_is_locked(from))
4085 			return false;
4086 
4087 		delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
4088 
4089 		page = virt_to_head_page(from->head);
4090 		offset = from->data - (unsigned char *)page_address(page);
4091 
4092 		skb_fill_page_desc(to, skb_shinfo(to)->nr_frags,
4093 				   page, offset, skb_headlen(from));
4094 		*fragstolen = true;
4095 	} else {
4096 		if (skb_shinfo(to)->nr_frags +
4097 		    skb_shinfo(from)->nr_frags > MAX_SKB_FRAGS)
4098 			return false;
4099 
4100 		delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from));
4101 	}
4102 
4103 	WARN_ON_ONCE(delta < len);
4104 
4105 	memcpy(skb_shinfo(to)->frags + skb_shinfo(to)->nr_frags,
4106 	       skb_shinfo(from)->frags,
4107 	       skb_shinfo(from)->nr_frags * sizeof(skb_frag_t));
4108 	skb_shinfo(to)->nr_frags += skb_shinfo(from)->nr_frags;
4109 
4110 	if (!skb_cloned(from))
4111 		skb_shinfo(from)->nr_frags = 0;
4112 
4113 	/* if the skb is not cloned this does nothing
4114 	 * since we set nr_frags to 0.
4115 	 */
4116 	for (i = 0; i < skb_shinfo(from)->nr_frags; i++)
4117 		skb_frag_ref(from, i);
4118 
4119 	to->truesize += delta;
4120 	to->len += len;
4121 	to->data_len += len;
4122 
4123 	*delta_truesize = delta;
4124 	return true;
4125 }
4126 EXPORT_SYMBOL(skb_try_coalesce);
4127 
4128 /**
4129  * skb_scrub_packet - scrub an skb
4130  *
4131  * @skb: buffer to clean
4132  * @xnet: packet is crossing netns
4133  *
4134  * skb_scrub_packet can be used after encapsulating or decapsulting a packet
4135  * into/from a tunnel. Some information have to be cleared during these
4136  * operations.
4137  * skb_scrub_packet can also be used to clean a skb before injecting it in
4138  * another namespace (@xnet == true). We have to clear all information in the
4139  * skb that could impact namespace isolation.
4140  */
4141 void skb_scrub_packet(struct sk_buff *skb, bool xnet)
4142 {
4143 	if (xnet)
4144 		skb_orphan(skb);
4145 	skb->tstamp.tv64 = 0;
4146 	skb->pkt_type = PACKET_HOST;
4147 	skb->skb_iif = 0;
4148 	skb->ignore_df = 0;
4149 	skb_dst_drop(skb);
4150 	skb->mark = 0;
4151 	skb_init_secmark(skb);
4152 	secpath_reset(skb);
4153 	nf_reset(skb);
4154 	nf_reset_trace(skb);
4155 }
4156 EXPORT_SYMBOL_GPL(skb_scrub_packet);
4157 
4158 /**
4159  * skb_gso_transport_seglen - Return length of individual segments of a gso packet
4160  *
4161  * @skb: GSO skb
4162  *
4163  * skb_gso_transport_seglen is used to determine the real size of the
4164  * individual segments, including Layer4 headers (TCP/UDP).
4165  *
4166  * The MAC/L2 or network (IP, IPv6) headers are not accounted for.
4167  */
4168 unsigned int skb_gso_transport_seglen(const struct sk_buff *skb)
4169 {
4170 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
4171 	unsigned int thlen = 0;
4172 
4173 	if (skb->encapsulation) {
4174 		thlen = skb_inner_transport_header(skb) -
4175 			skb_transport_header(skb);
4176 
4177 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
4178 			thlen += inner_tcp_hdrlen(skb);
4179 	} else if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
4180 		thlen = tcp_hdrlen(skb);
4181 	}
4182 	/* UFO sets gso_size to the size of the fragmentation
4183 	 * payload, i.e. the size of the L4 (UDP) header is already
4184 	 * accounted for.
4185 	 */
4186 	return thlen + shinfo->gso_size;
4187 }
4188 EXPORT_SYMBOL_GPL(skb_gso_transport_seglen);
4189 
4190 static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb)
4191 {
4192 	if (skb_cow(skb, skb_headroom(skb)) < 0) {
4193 		kfree_skb(skb);
4194 		return NULL;
4195 	}
4196 
4197 	memmove(skb->data - ETH_HLEN, skb->data - VLAN_ETH_HLEN, 2 * ETH_ALEN);
4198 	skb->mac_header += VLAN_HLEN;
4199 	return skb;
4200 }
4201 
4202 struct sk_buff *skb_vlan_untag(struct sk_buff *skb)
4203 {
4204 	struct vlan_hdr *vhdr;
4205 	u16 vlan_tci;
4206 
4207 	if (unlikely(vlan_tx_tag_present(skb))) {
4208 		/* vlan_tci is already set-up so leave this for another time */
4209 		return skb;
4210 	}
4211 
4212 	skb = skb_share_check(skb, GFP_ATOMIC);
4213 	if (unlikely(!skb))
4214 		goto err_free;
4215 
4216 	if (unlikely(!pskb_may_pull(skb, VLAN_HLEN)))
4217 		goto err_free;
4218 
4219 	vhdr = (struct vlan_hdr *)skb->data;
4220 	vlan_tci = ntohs(vhdr->h_vlan_TCI);
4221 	__vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci);
4222 
4223 	skb_pull_rcsum(skb, VLAN_HLEN);
4224 	vlan_set_encap_proto(skb, vhdr);
4225 
4226 	skb = skb_reorder_vlan_header(skb);
4227 	if (unlikely(!skb))
4228 		goto err_free;
4229 
4230 	skb_reset_network_header(skb);
4231 	skb_reset_transport_header(skb);
4232 	skb_reset_mac_len(skb);
4233 
4234 	return skb;
4235 
4236 err_free:
4237 	kfree_skb(skb);
4238 	return NULL;
4239 }
4240 EXPORT_SYMBOL(skb_vlan_untag);
4241 
4242 int skb_ensure_writable(struct sk_buff *skb, int write_len)
4243 {
4244 	if (!pskb_may_pull(skb, write_len))
4245 		return -ENOMEM;
4246 
4247 	if (!skb_cloned(skb) || skb_clone_writable(skb, write_len))
4248 		return 0;
4249 
4250 	return pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
4251 }
4252 EXPORT_SYMBOL(skb_ensure_writable);
4253 
4254 /* remove VLAN header from packet and update csum accordingly. */
4255 static int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci)
4256 {
4257 	struct vlan_hdr *vhdr;
4258 	unsigned int offset = skb->data - skb_mac_header(skb);
4259 	int err;
4260 
4261 	__skb_push(skb, offset);
4262 	err = skb_ensure_writable(skb, VLAN_ETH_HLEN);
4263 	if (unlikely(err))
4264 		goto pull;
4265 
4266 	skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
4267 
4268 	vhdr = (struct vlan_hdr *)(skb->data + ETH_HLEN);
4269 	*vlan_tci = ntohs(vhdr->h_vlan_TCI);
4270 
4271 	memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN);
4272 	__skb_pull(skb, VLAN_HLEN);
4273 
4274 	vlan_set_encap_proto(skb, vhdr);
4275 	skb->mac_header += VLAN_HLEN;
4276 
4277 	if (skb_network_offset(skb) < ETH_HLEN)
4278 		skb_set_network_header(skb, ETH_HLEN);
4279 
4280 	skb_reset_mac_len(skb);
4281 pull:
4282 	__skb_pull(skb, offset);
4283 
4284 	return err;
4285 }
4286 
4287 int skb_vlan_pop(struct sk_buff *skb)
4288 {
4289 	u16 vlan_tci;
4290 	__be16 vlan_proto;
4291 	int err;
4292 
4293 	if (likely(vlan_tx_tag_present(skb))) {
4294 		skb->vlan_tci = 0;
4295 	} else {
4296 		if (unlikely((skb->protocol != htons(ETH_P_8021Q) &&
4297 			      skb->protocol != htons(ETH_P_8021AD)) ||
4298 			     skb->len < VLAN_ETH_HLEN))
4299 			return 0;
4300 
4301 		err = __skb_vlan_pop(skb, &vlan_tci);
4302 		if (err)
4303 			return err;
4304 	}
4305 	/* move next vlan tag to hw accel tag */
4306 	if (likely((skb->protocol != htons(ETH_P_8021Q) &&
4307 		    skb->protocol != htons(ETH_P_8021AD)) ||
4308 		   skb->len < VLAN_ETH_HLEN))
4309 		return 0;
4310 
4311 	vlan_proto = skb->protocol;
4312 	err = __skb_vlan_pop(skb, &vlan_tci);
4313 	if (unlikely(err))
4314 		return err;
4315 
4316 	__vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
4317 	return 0;
4318 }
4319 EXPORT_SYMBOL(skb_vlan_pop);
4320 
4321 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci)
4322 {
4323 	if (vlan_tx_tag_present(skb)) {
4324 		unsigned int offset = skb->data - skb_mac_header(skb);
4325 		int err;
4326 
4327 		/* __vlan_insert_tag expect skb->data pointing to mac header.
4328 		 * So change skb->data before calling it and change back to
4329 		 * original position later
4330 		 */
4331 		__skb_push(skb, offset);
4332 		err = __vlan_insert_tag(skb, skb->vlan_proto,
4333 					vlan_tx_tag_get(skb));
4334 		if (err)
4335 			return err;
4336 		skb->protocol = skb->vlan_proto;
4337 		skb->mac_len += VLAN_HLEN;
4338 		__skb_pull(skb, offset);
4339 
4340 		if (skb->ip_summed == CHECKSUM_COMPLETE)
4341 			skb->csum = csum_add(skb->csum, csum_partial(skb->data
4342 					+ (2 * ETH_ALEN), VLAN_HLEN, 0));
4343 	}
4344 	__vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
4345 	return 0;
4346 }
4347 EXPORT_SYMBOL(skb_vlan_push);
4348 
4349 /**
4350  * alloc_skb_with_frags - allocate skb with page frags
4351  *
4352  * @header_len: size of linear part
4353  * @data_len: needed length in frags
4354  * @max_page_order: max page order desired.
4355  * @errcode: pointer to error code if any
4356  * @gfp_mask: allocation mask
4357  *
4358  * This can be used to allocate a paged skb, given a maximal order for frags.
4359  */
4360 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
4361 				     unsigned long data_len,
4362 				     int max_page_order,
4363 				     int *errcode,
4364 				     gfp_t gfp_mask)
4365 {
4366 	int npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
4367 	unsigned long chunk;
4368 	struct sk_buff *skb;
4369 	struct page *page;
4370 	gfp_t gfp_head;
4371 	int i;
4372 
4373 	*errcode = -EMSGSIZE;
4374 	/* Note this test could be relaxed, if we succeed to allocate
4375 	 * high order pages...
4376 	 */
4377 	if (npages > MAX_SKB_FRAGS)
4378 		return NULL;
4379 
4380 	gfp_head = gfp_mask;
4381 	if (gfp_head & __GFP_WAIT)
4382 		gfp_head |= __GFP_REPEAT;
4383 
4384 	*errcode = -ENOBUFS;
4385 	skb = alloc_skb(header_len, gfp_head);
4386 	if (!skb)
4387 		return NULL;
4388 
4389 	skb->truesize += npages << PAGE_SHIFT;
4390 
4391 	for (i = 0; npages > 0; i++) {
4392 		int order = max_page_order;
4393 
4394 		while (order) {
4395 			if (npages >= 1 << order) {
4396 				page = alloc_pages(gfp_mask |
4397 						   __GFP_COMP |
4398 						   __GFP_NOWARN |
4399 						   __GFP_NORETRY,
4400 						   order);
4401 				if (page)
4402 					goto fill_page;
4403 				/* Do not retry other high order allocations */
4404 				order = 1;
4405 				max_page_order = 0;
4406 			}
4407 			order--;
4408 		}
4409 		page = alloc_page(gfp_mask);
4410 		if (!page)
4411 			goto failure;
4412 fill_page:
4413 		chunk = min_t(unsigned long, data_len,
4414 			      PAGE_SIZE << order);
4415 		skb_fill_page_desc(skb, i, page, 0, chunk);
4416 		data_len -= chunk;
4417 		npages -= 1 << order;
4418 	}
4419 	return skb;
4420 
4421 failure:
4422 	kfree_skb(skb);
4423 	return NULL;
4424 }
4425 EXPORT_SYMBOL(alloc_skb_with_frags);
4426