xref: /openbmc/linux/net/core/skbuff.c (revision 81fa7a69)
1 /*
2  *	Routines having to do with the 'struct sk_buff' memory handlers.
3  *
4  *	Authors:	Alan Cox <alan@lxorguk.ukuu.org.uk>
5  *			Florian La Roche <rzsfl@rz.uni-sb.de>
6  *
7  *	Fixes:
8  *		Alan Cox	:	Fixed the worst of the load
9  *					balancer bugs.
10  *		Dave Platt	:	Interrupt stacking fix.
11  *	Richard Kooijman	:	Timestamp fixes.
12  *		Alan Cox	:	Changed buffer format.
13  *		Alan Cox	:	destructor hook for AF_UNIX etc.
14  *		Linus Torvalds	:	Better skb_clone.
15  *		Alan Cox	:	Added skb_copy.
16  *		Alan Cox	:	Added all the changed routines Linus
17  *					only put in the headers
18  *		Ray VanTassle	:	Fixed --skb->lock in free
19  *		Alan Cox	:	skb_copy copy arp field
20  *		Andi Kleen	:	slabified it.
21  *		Robert Olsson	:	Removed skb_head_pool
22  *
23  *	NOTE:
24  *		The __skb_ routines should be called with interrupts
25  *	disabled, or you better be *real* sure that the operation is atomic
26  *	with respect to whatever list is being frobbed (e.g. via lock_sock()
27  *	or via disabling bottom half handlers, etc).
28  *
29  *	This program is free software; you can redistribute it and/or
30  *	modify it under the terms of the GNU General Public License
31  *	as published by the Free Software Foundation; either version
32  *	2 of the License, or (at your option) any later version.
33  */
34 
35 /*
36  *	The functions in this file will not compile correctly with gcc 2.4.x
37  */
38 
39 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
40 
41 #include <linux/module.h>
42 #include <linux/types.h>
43 #include <linux/kernel.h>
44 #include <linux/mm.h>
45 #include <linux/interrupt.h>
46 #include <linux/in.h>
47 #include <linux/inet.h>
48 #include <linux/slab.h>
49 #include <linux/tcp.h>
50 #include <linux/udp.h>
51 #include <linux/sctp.h>
52 #include <linux/netdevice.h>
53 #ifdef CONFIG_NET_CLS_ACT
54 #include <net/pkt_sched.h>
55 #endif
56 #include <linux/string.h>
57 #include <linux/skbuff.h>
58 #include <linux/splice.h>
59 #include <linux/cache.h>
60 #include <linux/rtnetlink.h>
61 #include <linux/init.h>
62 #include <linux/scatterlist.h>
63 #include <linux/errqueue.h>
64 #include <linux/prefetch.h>
65 #include <linux/if_vlan.h>
66 
67 #include <net/protocol.h>
68 #include <net/dst.h>
69 #include <net/sock.h>
70 #include <net/checksum.h>
71 #include <net/ip6_checksum.h>
72 #include <net/xfrm.h>
73 
74 #include <linux/uaccess.h>
75 #include <trace/events/skb.h>
76 #include <linux/highmem.h>
77 #include <linux/capability.h>
78 #include <linux/user_namespace.h>
79 
80 struct kmem_cache *skbuff_head_cache __ro_after_init;
81 static struct kmem_cache *skbuff_fclone_cache __ro_after_init;
82 int sysctl_max_skb_frags __read_mostly = MAX_SKB_FRAGS;
83 EXPORT_SYMBOL(sysctl_max_skb_frags);
84 
85 /**
86  *	skb_panic - private function for out-of-line support
87  *	@skb:	buffer
88  *	@sz:	size
89  *	@addr:	address
90  *	@msg:	skb_over_panic or skb_under_panic
91  *
92  *	Out-of-line support for skb_put() and skb_push().
93  *	Called via the wrapper skb_over_panic() or skb_under_panic().
94  *	Keep out of line to prevent kernel bloat.
95  *	__builtin_return_address is not used because it is not always reliable.
96  */
97 static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr,
98 		      const char msg[])
99 {
100 	pr_emerg("%s: text:%p len:%d put:%d head:%p data:%p tail:%#lx end:%#lx dev:%s\n",
101 		 msg, addr, skb->len, sz, skb->head, skb->data,
102 		 (unsigned long)skb->tail, (unsigned long)skb->end,
103 		 skb->dev ? skb->dev->name : "<NULL>");
104 	BUG();
105 }
106 
107 static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr)
108 {
109 	skb_panic(skb, sz, addr, __func__);
110 }
111 
112 static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr)
113 {
114 	skb_panic(skb, sz, addr, __func__);
115 }
116 
117 /*
118  * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells
119  * the caller if emergency pfmemalloc reserves are being used. If it is and
120  * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves
121  * may be used. Otherwise, the packet data may be discarded until enough
122  * memory is free
123  */
124 #define kmalloc_reserve(size, gfp, node, pfmemalloc) \
125 	 __kmalloc_reserve(size, gfp, node, _RET_IP_, pfmemalloc)
126 
127 static void *__kmalloc_reserve(size_t size, gfp_t flags, int node,
128 			       unsigned long ip, bool *pfmemalloc)
129 {
130 	void *obj;
131 	bool ret_pfmemalloc = false;
132 
133 	/*
134 	 * Try a regular allocation, when that fails and we're not entitled
135 	 * to the reserves, fail.
136 	 */
137 	obj = kmalloc_node_track_caller(size,
138 					flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
139 					node);
140 	if (obj || !(gfp_pfmemalloc_allowed(flags)))
141 		goto out;
142 
143 	/* Try again but now we are using pfmemalloc reserves */
144 	ret_pfmemalloc = true;
145 	obj = kmalloc_node_track_caller(size, flags, node);
146 
147 out:
148 	if (pfmemalloc)
149 		*pfmemalloc = ret_pfmemalloc;
150 
151 	return obj;
152 }
153 
154 /* 	Allocate a new skbuff. We do this ourselves so we can fill in a few
155  *	'private' fields and also do memory statistics to find all the
156  *	[BEEP] leaks.
157  *
158  */
159 
160 /**
161  *	__alloc_skb	-	allocate a network buffer
162  *	@size: size to allocate
163  *	@gfp_mask: allocation mask
164  *	@flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache
165  *		instead of head cache and allocate a cloned (child) skb.
166  *		If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for
167  *		allocations in case the data is required for writeback
168  *	@node: numa node to allocate memory on
169  *
170  *	Allocate a new &sk_buff. The returned buffer has no headroom and a
171  *	tail room of at least size bytes. The object has a reference count
172  *	of one. The return is the buffer. On a failure the return is %NULL.
173  *
174  *	Buffers may only be allocated from interrupts using a @gfp_mask of
175  *	%GFP_ATOMIC.
176  */
177 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
178 			    int flags, int node)
179 {
180 	struct kmem_cache *cache;
181 	struct skb_shared_info *shinfo;
182 	struct sk_buff *skb;
183 	u8 *data;
184 	bool pfmemalloc;
185 
186 	cache = (flags & SKB_ALLOC_FCLONE)
187 		? skbuff_fclone_cache : skbuff_head_cache;
188 
189 	if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX))
190 		gfp_mask |= __GFP_MEMALLOC;
191 
192 	/* Get the HEAD */
193 	skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node);
194 	if (!skb)
195 		goto out;
196 	prefetchw(skb);
197 
198 	/* We do our best to align skb_shared_info on a separate cache
199 	 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives
200 	 * aligned memory blocks, unless SLUB/SLAB debug is enabled.
201 	 * Both skb->head and skb_shared_info are cache line aligned.
202 	 */
203 	size = SKB_DATA_ALIGN(size);
204 	size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
205 	data = kmalloc_reserve(size, gfp_mask, node, &pfmemalloc);
206 	if (!data)
207 		goto nodata;
208 	/* kmalloc(size) might give us more room than requested.
209 	 * Put skb_shared_info exactly at the end of allocated zone,
210 	 * to allow max possible filling before reallocation.
211 	 */
212 	size = SKB_WITH_OVERHEAD(ksize(data));
213 	prefetchw(data + size);
214 
215 	/*
216 	 * Only clear those fields we need to clear, not those that we will
217 	 * actually initialise below. Hence, don't put any more fields after
218 	 * the tail pointer in struct sk_buff!
219 	 */
220 	memset(skb, 0, offsetof(struct sk_buff, tail));
221 	/* Account for allocated memory : skb + skb->head */
222 	skb->truesize = SKB_TRUESIZE(size);
223 	skb->pfmemalloc = pfmemalloc;
224 	refcount_set(&skb->users, 1);
225 	skb->head = data;
226 	skb->data = data;
227 	skb_reset_tail_pointer(skb);
228 	skb->end = skb->tail + size;
229 	skb->mac_header = (typeof(skb->mac_header))~0U;
230 	skb->transport_header = (typeof(skb->transport_header))~0U;
231 
232 	/* make sure we initialize shinfo sequentially */
233 	shinfo = skb_shinfo(skb);
234 	memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
235 	atomic_set(&shinfo->dataref, 1);
236 
237 	if (flags & SKB_ALLOC_FCLONE) {
238 		struct sk_buff_fclones *fclones;
239 
240 		fclones = container_of(skb, struct sk_buff_fclones, skb1);
241 
242 		skb->fclone = SKB_FCLONE_ORIG;
243 		refcount_set(&fclones->fclone_ref, 1);
244 
245 		fclones->skb2.fclone = SKB_FCLONE_CLONE;
246 	}
247 out:
248 	return skb;
249 nodata:
250 	kmem_cache_free(cache, skb);
251 	skb = NULL;
252 	goto out;
253 }
254 EXPORT_SYMBOL(__alloc_skb);
255 
256 /**
257  * __build_skb - build a network buffer
258  * @data: data buffer provided by caller
259  * @frag_size: size of data, or 0 if head was kmalloced
260  *
261  * Allocate a new &sk_buff. Caller provides space holding head and
262  * skb_shared_info. @data must have been allocated by kmalloc() only if
263  * @frag_size is 0, otherwise data should come from the page allocator
264  *  or vmalloc()
265  * The return is the new skb buffer.
266  * On a failure the return is %NULL, and @data is not freed.
267  * Notes :
268  *  Before IO, driver allocates only data buffer where NIC put incoming frame
269  *  Driver should add room at head (NET_SKB_PAD) and
270  *  MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info))
271  *  After IO, driver calls build_skb(), to allocate sk_buff and populate it
272  *  before giving packet to stack.
273  *  RX rings only contains data buffers, not full skbs.
274  */
275 struct sk_buff *__build_skb(void *data, unsigned int frag_size)
276 {
277 	struct skb_shared_info *shinfo;
278 	struct sk_buff *skb;
279 	unsigned int size = frag_size ? : ksize(data);
280 
281 	skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC);
282 	if (!skb)
283 		return NULL;
284 
285 	size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
286 
287 	memset(skb, 0, offsetof(struct sk_buff, tail));
288 	skb->truesize = SKB_TRUESIZE(size);
289 	refcount_set(&skb->users, 1);
290 	skb->head = data;
291 	skb->data = data;
292 	skb_reset_tail_pointer(skb);
293 	skb->end = skb->tail + size;
294 	skb->mac_header = (typeof(skb->mac_header))~0U;
295 	skb->transport_header = (typeof(skb->transport_header))~0U;
296 
297 	/* make sure we initialize shinfo sequentially */
298 	shinfo = skb_shinfo(skb);
299 	memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
300 	atomic_set(&shinfo->dataref, 1);
301 
302 	return skb;
303 }
304 
305 /* build_skb() is wrapper over __build_skb(), that specifically
306  * takes care of skb->head and skb->pfmemalloc
307  * This means that if @frag_size is not zero, then @data must be backed
308  * by a page fragment, not kmalloc() or vmalloc()
309  */
310 struct sk_buff *build_skb(void *data, unsigned int frag_size)
311 {
312 	struct sk_buff *skb = __build_skb(data, frag_size);
313 
314 	if (skb && frag_size) {
315 		skb->head_frag = 1;
316 		if (page_is_pfmemalloc(virt_to_head_page(data)))
317 			skb->pfmemalloc = 1;
318 	}
319 	return skb;
320 }
321 EXPORT_SYMBOL(build_skb);
322 
323 #define NAPI_SKB_CACHE_SIZE	64
324 
325 struct napi_alloc_cache {
326 	struct page_frag_cache page;
327 	unsigned int skb_count;
328 	void *skb_cache[NAPI_SKB_CACHE_SIZE];
329 };
330 
331 static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache);
332 static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache);
333 
334 static void *__netdev_alloc_frag(unsigned int fragsz, gfp_t gfp_mask)
335 {
336 	struct page_frag_cache *nc;
337 	unsigned long flags;
338 	void *data;
339 
340 	local_irq_save(flags);
341 	nc = this_cpu_ptr(&netdev_alloc_cache);
342 	data = page_frag_alloc(nc, fragsz, gfp_mask);
343 	local_irq_restore(flags);
344 	return data;
345 }
346 
347 /**
348  * netdev_alloc_frag - allocate a page fragment
349  * @fragsz: fragment size
350  *
351  * Allocates a frag from a page for receive buffer.
352  * Uses GFP_ATOMIC allocations.
353  */
354 void *netdev_alloc_frag(unsigned int fragsz)
355 {
356 	return __netdev_alloc_frag(fragsz, GFP_ATOMIC);
357 }
358 EXPORT_SYMBOL(netdev_alloc_frag);
359 
360 static void *__napi_alloc_frag(unsigned int fragsz, gfp_t gfp_mask)
361 {
362 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
363 
364 	return page_frag_alloc(&nc->page, fragsz, gfp_mask);
365 }
366 
367 void *napi_alloc_frag(unsigned int fragsz)
368 {
369 	return __napi_alloc_frag(fragsz, GFP_ATOMIC);
370 }
371 EXPORT_SYMBOL(napi_alloc_frag);
372 
373 /**
374  *	__netdev_alloc_skb - allocate an skbuff for rx on a specific device
375  *	@dev: network device to receive on
376  *	@len: length to allocate
377  *	@gfp_mask: get_free_pages mask, passed to alloc_skb
378  *
379  *	Allocate a new &sk_buff and assign it a usage count of one. The
380  *	buffer has NET_SKB_PAD headroom built in. Users should allocate
381  *	the headroom they think they need without accounting for the
382  *	built in space. The built in space is used for optimisations.
383  *
384  *	%NULL is returned if there is no free memory.
385  */
386 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len,
387 				   gfp_t gfp_mask)
388 {
389 	struct page_frag_cache *nc;
390 	unsigned long flags;
391 	struct sk_buff *skb;
392 	bool pfmemalloc;
393 	void *data;
394 
395 	len += NET_SKB_PAD;
396 
397 	if ((len > SKB_WITH_OVERHEAD(PAGE_SIZE)) ||
398 	    (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
399 		skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
400 		if (!skb)
401 			goto skb_fail;
402 		goto skb_success;
403 	}
404 
405 	len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
406 	len = SKB_DATA_ALIGN(len);
407 
408 	if (sk_memalloc_socks())
409 		gfp_mask |= __GFP_MEMALLOC;
410 
411 	local_irq_save(flags);
412 
413 	nc = this_cpu_ptr(&netdev_alloc_cache);
414 	data = page_frag_alloc(nc, len, gfp_mask);
415 	pfmemalloc = nc->pfmemalloc;
416 
417 	local_irq_restore(flags);
418 
419 	if (unlikely(!data))
420 		return NULL;
421 
422 	skb = __build_skb(data, len);
423 	if (unlikely(!skb)) {
424 		skb_free_frag(data);
425 		return NULL;
426 	}
427 
428 	/* use OR instead of assignment to avoid clearing of bits in mask */
429 	if (pfmemalloc)
430 		skb->pfmemalloc = 1;
431 	skb->head_frag = 1;
432 
433 skb_success:
434 	skb_reserve(skb, NET_SKB_PAD);
435 	skb->dev = dev;
436 
437 skb_fail:
438 	return skb;
439 }
440 EXPORT_SYMBOL(__netdev_alloc_skb);
441 
442 /**
443  *	__napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance
444  *	@napi: napi instance this buffer was allocated for
445  *	@len: length to allocate
446  *	@gfp_mask: get_free_pages mask, passed to alloc_skb and alloc_pages
447  *
448  *	Allocate a new sk_buff for use in NAPI receive.  This buffer will
449  *	attempt to allocate the head from a special reserved region used
450  *	only for NAPI Rx allocation.  By doing this we can save several
451  *	CPU cycles by avoiding having to disable and re-enable IRQs.
452  *
453  *	%NULL is returned if there is no free memory.
454  */
455 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, unsigned int len,
456 				 gfp_t gfp_mask)
457 {
458 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
459 	struct sk_buff *skb;
460 	void *data;
461 
462 	len += NET_SKB_PAD + NET_IP_ALIGN;
463 
464 	if ((len > SKB_WITH_OVERHEAD(PAGE_SIZE)) ||
465 	    (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
466 		skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
467 		if (!skb)
468 			goto skb_fail;
469 		goto skb_success;
470 	}
471 
472 	len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
473 	len = SKB_DATA_ALIGN(len);
474 
475 	if (sk_memalloc_socks())
476 		gfp_mask |= __GFP_MEMALLOC;
477 
478 	data = page_frag_alloc(&nc->page, len, gfp_mask);
479 	if (unlikely(!data))
480 		return NULL;
481 
482 	skb = __build_skb(data, len);
483 	if (unlikely(!skb)) {
484 		skb_free_frag(data);
485 		return NULL;
486 	}
487 
488 	/* use OR instead of assignment to avoid clearing of bits in mask */
489 	if (nc->page.pfmemalloc)
490 		skb->pfmemalloc = 1;
491 	skb->head_frag = 1;
492 
493 skb_success:
494 	skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN);
495 	skb->dev = napi->dev;
496 
497 skb_fail:
498 	return skb;
499 }
500 EXPORT_SYMBOL(__napi_alloc_skb);
501 
502 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
503 		     int size, unsigned int truesize)
504 {
505 	skb_fill_page_desc(skb, i, page, off, size);
506 	skb->len += size;
507 	skb->data_len += size;
508 	skb->truesize += truesize;
509 }
510 EXPORT_SYMBOL(skb_add_rx_frag);
511 
512 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
513 			  unsigned int truesize)
514 {
515 	skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
516 
517 	skb_frag_size_add(frag, size);
518 	skb->len += size;
519 	skb->data_len += size;
520 	skb->truesize += truesize;
521 }
522 EXPORT_SYMBOL(skb_coalesce_rx_frag);
523 
524 static void skb_drop_list(struct sk_buff **listp)
525 {
526 	kfree_skb_list(*listp);
527 	*listp = NULL;
528 }
529 
530 static inline void skb_drop_fraglist(struct sk_buff *skb)
531 {
532 	skb_drop_list(&skb_shinfo(skb)->frag_list);
533 }
534 
535 static void skb_clone_fraglist(struct sk_buff *skb)
536 {
537 	struct sk_buff *list;
538 
539 	skb_walk_frags(skb, list)
540 		skb_get(list);
541 }
542 
543 static void skb_free_head(struct sk_buff *skb)
544 {
545 	unsigned char *head = skb->head;
546 
547 	if (skb->head_frag)
548 		skb_free_frag(head);
549 	else
550 		kfree(head);
551 }
552 
553 static void skb_release_data(struct sk_buff *skb)
554 {
555 	struct skb_shared_info *shinfo = skb_shinfo(skb);
556 	int i;
557 
558 	if (skb->cloned &&
559 	    atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
560 			      &shinfo->dataref))
561 		return;
562 
563 	for (i = 0; i < shinfo->nr_frags; i++)
564 		__skb_frag_unref(&shinfo->frags[i]);
565 
566 	if (shinfo->frag_list)
567 		kfree_skb_list(shinfo->frag_list);
568 
569 	skb_zcopy_clear(skb, true);
570 	skb_free_head(skb);
571 }
572 
573 /*
574  *	Free an skbuff by memory without cleaning the state.
575  */
576 static void kfree_skbmem(struct sk_buff *skb)
577 {
578 	struct sk_buff_fclones *fclones;
579 
580 	switch (skb->fclone) {
581 	case SKB_FCLONE_UNAVAILABLE:
582 		kmem_cache_free(skbuff_head_cache, skb);
583 		return;
584 
585 	case SKB_FCLONE_ORIG:
586 		fclones = container_of(skb, struct sk_buff_fclones, skb1);
587 
588 		/* We usually free the clone (TX completion) before original skb
589 		 * This test would have no chance to be true for the clone,
590 		 * while here, branch prediction will be good.
591 		 */
592 		if (refcount_read(&fclones->fclone_ref) == 1)
593 			goto fastpath;
594 		break;
595 
596 	default: /* SKB_FCLONE_CLONE */
597 		fclones = container_of(skb, struct sk_buff_fclones, skb2);
598 		break;
599 	}
600 	if (!refcount_dec_and_test(&fclones->fclone_ref))
601 		return;
602 fastpath:
603 	kmem_cache_free(skbuff_fclone_cache, fclones);
604 }
605 
606 void skb_release_head_state(struct sk_buff *skb)
607 {
608 	skb_dst_drop(skb);
609 	secpath_reset(skb);
610 	if (skb->destructor) {
611 		WARN_ON(in_irq());
612 		skb->destructor(skb);
613 	}
614 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
615 	nf_conntrack_put(skb_nfct(skb));
616 #endif
617 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
618 	nf_bridge_put(skb->nf_bridge);
619 #endif
620 }
621 
622 /* Free everything but the sk_buff shell. */
623 static void skb_release_all(struct sk_buff *skb)
624 {
625 	skb_release_head_state(skb);
626 	if (likely(skb->head))
627 		skb_release_data(skb);
628 }
629 
630 /**
631  *	__kfree_skb - private function
632  *	@skb: buffer
633  *
634  *	Free an sk_buff. Release anything attached to the buffer.
635  *	Clean the state. This is an internal helper function. Users should
636  *	always call kfree_skb
637  */
638 
639 void __kfree_skb(struct sk_buff *skb)
640 {
641 	skb_release_all(skb);
642 	kfree_skbmem(skb);
643 }
644 EXPORT_SYMBOL(__kfree_skb);
645 
646 /**
647  *	kfree_skb - free an sk_buff
648  *	@skb: buffer to free
649  *
650  *	Drop a reference to the buffer and free it if the usage count has
651  *	hit zero.
652  */
653 void kfree_skb(struct sk_buff *skb)
654 {
655 	if (!skb_unref(skb))
656 		return;
657 
658 	trace_kfree_skb(skb, __builtin_return_address(0));
659 	__kfree_skb(skb);
660 }
661 EXPORT_SYMBOL(kfree_skb);
662 
663 void kfree_skb_list(struct sk_buff *segs)
664 {
665 	while (segs) {
666 		struct sk_buff *next = segs->next;
667 
668 		kfree_skb(segs);
669 		segs = next;
670 	}
671 }
672 EXPORT_SYMBOL(kfree_skb_list);
673 
674 /**
675  *	skb_tx_error - report an sk_buff xmit error
676  *	@skb: buffer that triggered an error
677  *
678  *	Report xmit error if a device callback is tracking this skb.
679  *	skb must be freed afterwards.
680  */
681 void skb_tx_error(struct sk_buff *skb)
682 {
683 	skb_zcopy_clear(skb, true);
684 }
685 EXPORT_SYMBOL(skb_tx_error);
686 
687 /**
688  *	consume_skb - free an skbuff
689  *	@skb: buffer to free
690  *
691  *	Drop a ref to the buffer and free it if the usage count has hit zero
692  *	Functions identically to kfree_skb, but kfree_skb assumes that the frame
693  *	is being dropped after a failure and notes that
694  */
695 void consume_skb(struct sk_buff *skb)
696 {
697 	if (!skb_unref(skb))
698 		return;
699 
700 	trace_consume_skb(skb);
701 	__kfree_skb(skb);
702 }
703 EXPORT_SYMBOL(consume_skb);
704 
705 /**
706  *	consume_stateless_skb - free an skbuff, assuming it is stateless
707  *	@skb: buffer to free
708  *
709  *	Alike consume_skb(), but this variant assumes that this is the last
710  *	skb reference and all the head states have been already dropped
711  */
712 void __consume_stateless_skb(struct sk_buff *skb)
713 {
714 	trace_consume_skb(skb);
715 	skb_release_data(skb);
716 	kfree_skbmem(skb);
717 }
718 
719 void __kfree_skb_flush(void)
720 {
721 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
722 
723 	/* flush skb_cache if containing objects */
724 	if (nc->skb_count) {
725 		kmem_cache_free_bulk(skbuff_head_cache, nc->skb_count,
726 				     nc->skb_cache);
727 		nc->skb_count = 0;
728 	}
729 }
730 
731 static inline void _kfree_skb_defer(struct sk_buff *skb)
732 {
733 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
734 
735 	/* drop skb->head and call any destructors for packet */
736 	skb_release_all(skb);
737 
738 	/* record skb to CPU local list */
739 	nc->skb_cache[nc->skb_count++] = skb;
740 
741 #ifdef CONFIG_SLUB
742 	/* SLUB writes into objects when freeing */
743 	prefetchw(skb);
744 #endif
745 
746 	/* flush skb_cache if it is filled */
747 	if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) {
748 		kmem_cache_free_bulk(skbuff_head_cache, NAPI_SKB_CACHE_SIZE,
749 				     nc->skb_cache);
750 		nc->skb_count = 0;
751 	}
752 }
753 void __kfree_skb_defer(struct sk_buff *skb)
754 {
755 	_kfree_skb_defer(skb);
756 }
757 
758 void napi_consume_skb(struct sk_buff *skb, int budget)
759 {
760 	if (unlikely(!skb))
761 		return;
762 
763 	/* Zero budget indicate non-NAPI context called us, like netpoll */
764 	if (unlikely(!budget)) {
765 		dev_consume_skb_any(skb);
766 		return;
767 	}
768 
769 	if (!skb_unref(skb))
770 		return;
771 
772 	/* if reaching here SKB is ready to free */
773 	trace_consume_skb(skb);
774 
775 	/* if SKB is a clone, don't handle this case */
776 	if (skb->fclone != SKB_FCLONE_UNAVAILABLE) {
777 		__kfree_skb(skb);
778 		return;
779 	}
780 
781 	_kfree_skb_defer(skb);
782 }
783 EXPORT_SYMBOL(napi_consume_skb);
784 
785 /* Make sure a field is enclosed inside headers_start/headers_end section */
786 #define CHECK_SKB_FIELD(field) \
787 	BUILD_BUG_ON(offsetof(struct sk_buff, field) <		\
788 		     offsetof(struct sk_buff, headers_start));	\
789 	BUILD_BUG_ON(offsetof(struct sk_buff, field) >		\
790 		     offsetof(struct sk_buff, headers_end));	\
791 
792 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
793 {
794 	new->tstamp		= old->tstamp;
795 	/* We do not copy old->sk */
796 	new->dev		= old->dev;
797 	memcpy(new->cb, old->cb, sizeof(old->cb));
798 	skb_dst_copy(new, old);
799 #ifdef CONFIG_XFRM
800 	new->sp			= secpath_get(old->sp);
801 #endif
802 	__nf_copy(new, old, false);
803 
804 	/* Note : this field could be in headers_start/headers_end section
805 	 * It is not yet because we do not want to have a 16 bit hole
806 	 */
807 	new->queue_mapping = old->queue_mapping;
808 
809 	memcpy(&new->headers_start, &old->headers_start,
810 	       offsetof(struct sk_buff, headers_end) -
811 	       offsetof(struct sk_buff, headers_start));
812 	CHECK_SKB_FIELD(protocol);
813 	CHECK_SKB_FIELD(csum);
814 	CHECK_SKB_FIELD(hash);
815 	CHECK_SKB_FIELD(priority);
816 	CHECK_SKB_FIELD(skb_iif);
817 	CHECK_SKB_FIELD(vlan_proto);
818 	CHECK_SKB_FIELD(vlan_tci);
819 	CHECK_SKB_FIELD(transport_header);
820 	CHECK_SKB_FIELD(network_header);
821 	CHECK_SKB_FIELD(mac_header);
822 	CHECK_SKB_FIELD(inner_protocol);
823 	CHECK_SKB_FIELD(inner_transport_header);
824 	CHECK_SKB_FIELD(inner_network_header);
825 	CHECK_SKB_FIELD(inner_mac_header);
826 	CHECK_SKB_FIELD(mark);
827 #ifdef CONFIG_NETWORK_SECMARK
828 	CHECK_SKB_FIELD(secmark);
829 #endif
830 #ifdef CONFIG_NET_RX_BUSY_POLL
831 	CHECK_SKB_FIELD(napi_id);
832 #endif
833 #ifdef CONFIG_XPS
834 	CHECK_SKB_FIELD(sender_cpu);
835 #endif
836 #ifdef CONFIG_NET_SCHED
837 	CHECK_SKB_FIELD(tc_index);
838 #endif
839 
840 }
841 
842 /*
843  * You should not add any new code to this function.  Add it to
844  * __copy_skb_header above instead.
845  */
846 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
847 {
848 #define C(x) n->x = skb->x
849 
850 	n->next = n->prev = NULL;
851 	n->sk = NULL;
852 	__copy_skb_header(n, skb);
853 
854 	C(len);
855 	C(data_len);
856 	C(mac_len);
857 	n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
858 	n->cloned = 1;
859 	n->nohdr = 0;
860 	n->peeked = 0;
861 	C(pfmemalloc);
862 	n->destructor = NULL;
863 	C(tail);
864 	C(end);
865 	C(head);
866 	C(head_frag);
867 	C(data);
868 	C(truesize);
869 	refcount_set(&n->users, 1);
870 
871 	atomic_inc(&(skb_shinfo(skb)->dataref));
872 	skb->cloned = 1;
873 
874 	return n;
875 #undef C
876 }
877 
878 /**
879  *	skb_morph	-	morph one skb into another
880  *	@dst: the skb to receive the contents
881  *	@src: the skb to supply the contents
882  *
883  *	This is identical to skb_clone except that the target skb is
884  *	supplied by the user.
885  *
886  *	The target skb is returned upon exit.
887  */
888 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
889 {
890 	skb_release_all(dst);
891 	return __skb_clone(dst, src);
892 }
893 EXPORT_SYMBOL_GPL(skb_morph);
894 
895 int mm_account_pinned_pages(struct mmpin *mmp, size_t size)
896 {
897 	unsigned long max_pg, num_pg, new_pg, old_pg;
898 	struct user_struct *user;
899 
900 	if (capable(CAP_IPC_LOCK) || !size)
901 		return 0;
902 
903 	num_pg = (size >> PAGE_SHIFT) + 2;	/* worst case */
904 	max_pg = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
905 	user = mmp->user ? : current_user();
906 
907 	do {
908 		old_pg = atomic_long_read(&user->locked_vm);
909 		new_pg = old_pg + num_pg;
910 		if (new_pg > max_pg)
911 			return -ENOBUFS;
912 	} while (atomic_long_cmpxchg(&user->locked_vm, old_pg, new_pg) !=
913 		 old_pg);
914 
915 	if (!mmp->user) {
916 		mmp->user = get_uid(user);
917 		mmp->num_pg = num_pg;
918 	} else {
919 		mmp->num_pg += num_pg;
920 	}
921 
922 	return 0;
923 }
924 EXPORT_SYMBOL_GPL(mm_account_pinned_pages);
925 
926 void mm_unaccount_pinned_pages(struct mmpin *mmp)
927 {
928 	if (mmp->user) {
929 		atomic_long_sub(mmp->num_pg, &mmp->user->locked_vm);
930 		free_uid(mmp->user);
931 	}
932 }
933 EXPORT_SYMBOL_GPL(mm_unaccount_pinned_pages);
934 
935 struct ubuf_info *sock_zerocopy_alloc(struct sock *sk, size_t size)
936 {
937 	struct ubuf_info *uarg;
938 	struct sk_buff *skb;
939 
940 	WARN_ON_ONCE(!in_task());
941 
942 	skb = sock_omalloc(sk, 0, GFP_KERNEL);
943 	if (!skb)
944 		return NULL;
945 
946 	BUILD_BUG_ON(sizeof(*uarg) > sizeof(skb->cb));
947 	uarg = (void *)skb->cb;
948 	uarg->mmp.user = NULL;
949 
950 	if (mm_account_pinned_pages(&uarg->mmp, size)) {
951 		kfree_skb(skb);
952 		return NULL;
953 	}
954 
955 	uarg->callback = sock_zerocopy_callback;
956 	uarg->id = ((u32)atomic_inc_return(&sk->sk_zckey)) - 1;
957 	uarg->len = 1;
958 	uarg->bytelen = size;
959 	uarg->zerocopy = 1;
960 	refcount_set(&uarg->refcnt, 1);
961 	sock_hold(sk);
962 
963 	return uarg;
964 }
965 EXPORT_SYMBOL_GPL(sock_zerocopy_alloc);
966 
967 static inline struct sk_buff *skb_from_uarg(struct ubuf_info *uarg)
968 {
969 	return container_of((void *)uarg, struct sk_buff, cb);
970 }
971 
972 struct ubuf_info *sock_zerocopy_realloc(struct sock *sk, size_t size,
973 					struct ubuf_info *uarg)
974 {
975 	if (uarg) {
976 		const u32 byte_limit = 1 << 19;		/* limit to a few TSO */
977 		u32 bytelen, next;
978 
979 		/* realloc only when socket is locked (TCP, UDP cork),
980 		 * so uarg->len and sk_zckey access is serialized
981 		 */
982 		if (!sock_owned_by_user(sk)) {
983 			WARN_ON_ONCE(1);
984 			return NULL;
985 		}
986 
987 		bytelen = uarg->bytelen + size;
988 		if (uarg->len == USHRT_MAX - 1 || bytelen > byte_limit) {
989 			/* TCP can create new skb to attach new uarg */
990 			if (sk->sk_type == SOCK_STREAM)
991 				goto new_alloc;
992 			return NULL;
993 		}
994 
995 		next = (u32)atomic_read(&sk->sk_zckey);
996 		if ((u32)(uarg->id + uarg->len) == next) {
997 			if (mm_account_pinned_pages(&uarg->mmp, size))
998 				return NULL;
999 			uarg->len++;
1000 			uarg->bytelen = bytelen;
1001 			atomic_set(&sk->sk_zckey, ++next);
1002 			sock_zerocopy_get(uarg);
1003 			return uarg;
1004 		}
1005 	}
1006 
1007 new_alloc:
1008 	return sock_zerocopy_alloc(sk, size);
1009 }
1010 EXPORT_SYMBOL_GPL(sock_zerocopy_realloc);
1011 
1012 static bool skb_zerocopy_notify_extend(struct sk_buff *skb, u32 lo, u16 len)
1013 {
1014 	struct sock_exterr_skb *serr = SKB_EXT_ERR(skb);
1015 	u32 old_lo, old_hi;
1016 	u64 sum_len;
1017 
1018 	old_lo = serr->ee.ee_info;
1019 	old_hi = serr->ee.ee_data;
1020 	sum_len = old_hi - old_lo + 1ULL + len;
1021 
1022 	if (sum_len >= (1ULL << 32))
1023 		return false;
1024 
1025 	if (lo != old_hi + 1)
1026 		return false;
1027 
1028 	serr->ee.ee_data += len;
1029 	return true;
1030 }
1031 
1032 void sock_zerocopy_callback(struct ubuf_info *uarg, bool success)
1033 {
1034 	struct sk_buff *tail, *skb = skb_from_uarg(uarg);
1035 	struct sock_exterr_skb *serr;
1036 	struct sock *sk = skb->sk;
1037 	struct sk_buff_head *q;
1038 	unsigned long flags;
1039 	u32 lo, hi;
1040 	u16 len;
1041 
1042 	mm_unaccount_pinned_pages(&uarg->mmp);
1043 
1044 	/* if !len, there was only 1 call, and it was aborted
1045 	 * so do not queue a completion notification
1046 	 */
1047 	if (!uarg->len || sock_flag(sk, SOCK_DEAD))
1048 		goto release;
1049 
1050 	len = uarg->len;
1051 	lo = uarg->id;
1052 	hi = uarg->id + len - 1;
1053 
1054 	serr = SKB_EXT_ERR(skb);
1055 	memset(serr, 0, sizeof(*serr));
1056 	serr->ee.ee_errno = 0;
1057 	serr->ee.ee_origin = SO_EE_ORIGIN_ZEROCOPY;
1058 	serr->ee.ee_data = hi;
1059 	serr->ee.ee_info = lo;
1060 	if (!success)
1061 		serr->ee.ee_code |= SO_EE_CODE_ZEROCOPY_COPIED;
1062 
1063 	q = &sk->sk_error_queue;
1064 	spin_lock_irqsave(&q->lock, flags);
1065 	tail = skb_peek_tail(q);
1066 	if (!tail || SKB_EXT_ERR(tail)->ee.ee_origin != SO_EE_ORIGIN_ZEROCOPY ||
1067 	    !skb_zerocopy_notify_extend(tail, lo, len)) {
1068 		__skb_queue_tail(q, skb);
1069 		skb = NULL;
1070 	}
1071 	spin_unlock_irqrestore(&q->lock, flags);
1072 
1073 	sk->sk_error_report(sk);
1074 
1075 release:
1076 	consume_skb(skb);
1077 	sock_put(sk);
1078 }
1079 EXPORT_SYMBOL_GPL(sock_zerocopy_callback);
1080 
1081 void sock_zerocopy_put(struct ubuf_info *uarg)
1082 {
1083 	if (uarg && refcount_dec_and_test(&uarg->refcnt)) {
1084 		if (uarg->callback)
1085 			uarg->callback(uarg, uarg->zerocopy);
1086 		else
1087 			consume_skb(skb_from_uarg(uarg));
1088 	}
1089 }
1090 EXPORT_SYMBOL_GPL(sock_zerocopy_put);
1091 
1092 void sock_zerocopy_put_abort(struct ubuf_info *uarg)
1093 {
1094 	if (uarg) {
1095 		struct sock *sk = skb_from_uarg(uarg)->sk;
1096 
1097 		atomic_dec(&sk->sk_zckey);
1098 		uarg->len--;
1099 
1100 		sock_zerocopy_put(uarg);
1101 	}
1102 }
1103 EXPORT_SYMBOL_GPL(sock_zerocopy_put_abort);
1104 
1105 extern int __zerocopy_sg_from_iter(struct sock *sk, struct sk_buff *skb,
1106 				   struct iov_iter *from, size_t length);
1107 
1108 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
1109 			     struct msghdr *msg, int len,
1110 			     struct ubuf_info *uarg)
1111 {
1112 	struct ubuf_info *orig_uarg = skb_zcopy(skb);
1113 	struct iov_iter orig_iter = msg->msg_iter;
1114 	int err, orig_len = skb->len;
1115 
1116 	/* An skb can only point to one uarg. This edge case happens when
1117 	 * TCP appends to an skb, but zerocopy_realloc triggered a new alloc.
1118 	 */
1119 	if (orig_uarg && uarg != orig_uarg)
1120 		return -EEXIST;
1121 
1122 	err = __zerocopy_sg_from_iter(sk, skb, &msg->msg_iter, len);
1123 	if (err == -EFAULT || (err == -EMSGSIZE && skb->len == orig_len)) {
1124 		struct sock *save_sk = skb->sk;
1125 
1126 		/* Streams do not free skb on error. Reset to prev state. */
1127 		msg->msg_iter = orig_iter;
1128 		skb->sk = sk;
1129 		___pskb_trim(skb, orig_len);
1130 		skb->sk = save_sk;
1131 		return err;
1132 	}
1133 
1134 	skb_zcopy_set(skb, uarg);
1135 	return skb->len - orig_len;
1136 }
1137 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_stream);
1138 
1139 static int skb_zerocopy_clone(struct sk_buff *nskb, struct sk_buff *orig,
1140 			      gfp_t gfp_mask)
1141 {
1142 	if (skb_zcopy(orig)) {
1143 		if (skb_zcopy(nskb)) {
1144 			/* !gfp_mask callers are verified to !skb_zcopy(nskb) */
1145 			if (!gfp_mask) {
1146 				WARN_ON_ONCE(1);
1147 				return -ENOMEM;
1148 			}
1149 			if (skb_uarg(nskb) == skb_uarg(orig))
1150 				return 0;
1151 			if (skb_copy_ubufs(nskb, GFP_ATOMIC))
1152 				return -EIO;
1153 		}
1154 		skb_zcopy_set(nskb, skb_uarg(orig));
1155 	}
1156 	return 0;
1157 }
1158 
1159 /**
1160  *	skb_copy_ubufs	-	copy userspace skb frags buffers to kernel
1161  *	@skb: the skb to modify
1162  *	@gfp_mask: allocation priority
1163  *
1164  *	This must be called on SKBTX_DEV_ZEROCOPY skb.
1165  *	It will copy all frags into kernel and drop the reference
1166  *	to userspace pages.
1167  *
1168  *	If this function is called from an interrupt gfp_mask() must be
1169  *	%GFP_ATOMIC.
1170  *
1171  *	Returns 0 on success or a negative error code on failure
1172  *	to allocate kernel memory to copy to.
1173  */
1174 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask)
1175 {
1176 	int num_frags = skb_shinfo(skb)->nr_frags;
1177 	struct page *page, *head = NULL;
1178 	int i, new_frags;
1179 	u32 d_off;
1180 
1181 	if (skb_shared(skb) || skb_unclone(skb, gfp_mask))
1182 		return -EINVAL;
1183 
1184 	if (!num_frags)
1185 		goto release;
1186 
1187 	new_frags = (__skb_pagelen(skb) + PAGE_SIZE - 1) >> PAGE_SHIFT;
1188 	for (i = 0; i < new_frags; i++) {
1189 		page = alloc_page(gfp_mask);
1190 		if (!page) {
1191 			while (head) {
1192 				struct page *next = (struct page *)page_private(head);
1193 				put_page(head);
1194 				head = next;
1195 			}
1196 			return -ENOMEM;
1197 		}
1198 		set_page_private(page, (unsigned long)head);
1199 		head = page;
1200 	}
1201 
1202 	page = head;
1203 	d_off = 0;
1204 	for (i = 0; i < num_frags; i++) {
1205 		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
1206 		u32 p_off, p_len, copied;
1207 		struct page *p;
1208 		u8 *vaddr;
1209 
1210 		skb_frag_foreach_page(f, f->page_offset, skb_frag_size(f),
1211 				      p, p_off, p_len, copied) {
1212 			u32 copy, done = 0;
1213 			vaddr = kmap_atomic(p);
1214 
1215 			while (done < p_len) {
1216 				if (d_off == PAGE_SIZE) {
1217 					d_off = 0;
1218 					page = (struct page *)page_private(page);
1219 				}
1220 				copy = min_t(u32, PAGE_SIZE - d_off, p_len - done);
1221 				memcpy(page_address(page) + d_off,
1222 				       vaddr + p_off + done, copy);
1223 				done += copy;
1224 				d_off += copy;
1225 			}
1226 			kunmap_atomic(vaddr);
1227 		}
1228 	}
1229 
1230 	/* skb frags release userspace buffers */
1231 	for (i = 0; i < num_frags; i++)
1232 		skb_frag_unref(skb, i);
1233 
1234 	/* skb frags point to kernel buffers */
1235 	for (i = 0; i < new_frags - 1; i++) {
1236 		__skb_fill_page_desc(skb, i, head, 0, PAGE_SIZE);
1237 		head = (struct page *)page_private(head);
1238 	}
1239 	__skb_fill_page_desc(skb, new_frags - 1, head, 0, d_off);
1240 	skb_shinfo(skb)->nr_frags = new_frags;
1241 
1242 release:
1243 	skb_zcopy_clear(skb, false);
1244 	return 0;
1245 }
1246 EXPORT_SYMBOL_GPL(skb_copy_ubufs);
1247 
1248 /**
1249  *	skb_clone	-	duplicate an sk_buff
1250  *	@skb: buffer to clone
1251  *	@gfp_mask: allocation priority
1252  *
1253  *	Duplicate an &sk_buff. The new one is not owned by a socket. Both
1254  *	copies share the same packet data but not structure. The new
1255  *	buffer has a reference count of 1. If the allocation fails the
1256  *	function returns %NULL otherwise the new buffer is returned.
1257  *
1258  *	If this function is called from an interrupt gfp_mask() must be
1259  *	%GFP_ATOMIC.
1260  */
1261 
1262 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
1263 {
1264 	struct sk_buff_fclones *fclones = container_of(skb,
1265 						       struct sk_buff_fclones,
1266 						       skb1);
1267 	struct sk_buff *n;
1268 
1269 	if (skb_orphan_frags(skb, gfp_mask))
1270 		return NULL;
1271 
1272 	if (skb->fclone == SKB_FCLONE_ORIG &&
1273 	    refcount_read(&fclones->fclone_ref) == 1) {
1274 		n = &fclones->skb2;
1275 		refcount_set(&fclones->fclone_ref, 2);
1276 	} else {
1277 		if (skb_pfmemalloc(skb))
1278 			gfp_mask |= __GFP_MEMALLOC;
1279 
1280 		n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
1281 		if (!n)
1282 			return NULL;
1283 
1284 		n->fclone = SKB_FCLONE_UNAVAILABLE;
1285 	}
1286 
1287 	return __skb_clone(n, skb);
1288 }
1289 EXPORT_SYMBOL(skb_clone);
1290 
1291 void skb_headers_offset_update(struct sk_buff *skb, int off)
1292 {
1293 	/* Only adjust this if it actually is csum_start rather than csum */
1294 	if (skb->ip_summed == CHECKSUM_PARTIAL)
1295 		skb->csum_start += off;
1296 	/* {transport,network,mac}_header and tail are relative to skb->head */
1297 	skb->transport_header += off;
1298 	skb->network_header   += off;
1299 	if (skb_mac_header_was_set(skb))
1300 		skb->mac_header += off;
1301 	skb->inner_transport_header += off;
1302 	skb->inner_network_header += off;
1303 	skb->inner_mac_header += off;
1304 }
1305 EXPORT_SYMBOL(skb_headers_offset_update);
1306 
1307 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old)
1308 {
1309 	__copy_skb_header(new, old);
1310 
1311 	skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
1312 	skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
1313 	skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
1314 }
1315 EXPORT_SYMBOL(skb_copy_header);
1316 
1317 static inline int skb_alloc_rx_flag(const struct sk_buff *skb)
1318 {
1319 	if (skb_pfmemalloc(skb))
1320 		return SKB_ALLOC_RX;
1321 	return 0;
1322 }
1323 
1324 /**
1325  *	skb_copy	-	create private copy of an sk_buff
1326  *	@skb: buffer to copy
1327  *	@gfp_mask: allocation priority
1328  *
1329  *	Make a copy of both an &sk_buff and its data. This is used when the
1330  *	caller wishes to modify the data and needs a private copy of the
1331  *	data to alter. Returns %NULL on failure or the pointer to the buffer
1332  *	on success. The returned buffer has a reference count of 1.
1333  *
1334  *	As by-product this function converts non-linear &sk_buff to linear
1335  *	one, so that &sk_buff becomes completely private and caller is allowed
1336  *	to modify all the data of returned buffer. This means that this
1337  *	function is not recommended for use in circumstances when only
1338  *	header is going to be modified. Use pskb_copy() instead.
1339  */
1340 
1341 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
1342 {
1343 	int headerlen = skb_headroom(skb);
1344 	unsigned int size = skb_end_offset(skb) + skb->data_len;
1345 	struct sk_buff *n = __alloc_skb(size, gfp_mask,
1346 					skb_alloc_rx_flag(skb), NUMA_NO_NODE);
1347 
1348 	if (!n)
1349 		return NULL;
1350 
1351 	/* Set the data pointer */
1352 	skb_reserve(n, headerlen);
1353 	/* Set the tail pointer and length */
1354 	skb_put(n, skb->len);
1355 
1356 	BUG_ON(skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len));
1357 
1358 	skb_copy_header(n, skb);
1359 	return n;
1360 }
1361 EXPORT_SYMBOL(skb_copy);
1362 
1363 /**
1364  *	__pskb_copy_fclone	-  create copy of an sk_buff with private head.
1365  *	@skb: buffer to copy
1366  *	@headroom: headroom of new skb
1367  *	@gfp_mask: allocation priority
1368  *	@fclone: if true allocate the copy of the skb from the fclone
1369  *	cache instead of the head cache; it is recommended to set this
1370  *	to true for the cases where the copy will likely be cloned
1371  *
1372  *	Make a copy of both an &sk_buff and part of its data, located
1373  *	in header. Fragmented data remain shared. This is used when
1374  *	the caller wishes to modify only header of &sk_buff and needs
1375  *	private copy of the header to alter. Returns %NULL on failure
1376  *	or the pointer to the buffer on success.
1377  *	The returned buffer has a reference count of 1.
1378  */
1379 
1380 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1381 				   gfp_t gfp_mask, bool fclone)
1382 {
1383 	unsigned int size = skb_headlen(skb) + headroom;
1384 	int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0);
1385 	struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE);
1386 
1387 	if (!n)
1388 		goto out;
1389 
1390 	/* Set the data pointer */
1391 	skb_reserve(n, headroom);
1392 	/* Set the tail pointer and length */
1393 	skb_put(n, skb_headlen(skb));
1394 	/* Copy the bytes */
1395 	skb_copy_from_linear_data(skb, n->data, n->len);
1396 
1397 	n->truesize += skb->data_len;
1398 	n->data_len  = skb->data_len;
1399 	n->len	     = skb->len;
1400 
1401 	if (skb_shinfo(skb)->nr_frags) {
1402 		int i;
1403 
1404 		if (skb_orphan_frags(skb, gfp_mask) ||
1405 		    skb_zerocopy_clone(n, skb, gfp_mask)) {
1406 			kfree_skb(n);
1407 			n = NULL;
1408 			goto out;
1409 		}
1410 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1411 			skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
1412 			skb_frag_ref(skb, i);
1413 		}
1414 		skb_shinfo(n)->nr_frags = i;
1415 	}
1416 
1417 	if (skb_has_frag_list(skb)) {
1418 		skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
1419 		skb_clone_fraglist(n);
1420 	}
1421 
1422 	skb_copy_header(n, skb);
1423 out:
1424 	return n;
1425 }
1426 EXPORT_SYMBOL(__pskb_copy_fclone);
1427 
1428 /**
1429  *	pskb_expand_head - reallocate header of &sk_buff
1430  *	@skb: buffer to reallocate
1431  *	@nhead: room to add at head
1432  *	@ntail: room to add at tail
1433  *	@gfp_mask: allocation priority
1434  *
1435  *	Expands (or creates identical copy, if @nhead and @ntail are zero)
1436  *	header of @skb. &sk_buff itself is not changed. &sk_buff MUST have
1437  *	reference count of 1. Returns zero in the case of success or error,
1438  *	if expansion failed. In the last case, &sk_buff is not changed.
1439  *
1440  *	All the pointers pointing into skb header may change and must be
1441  *	reloaded after call to this function.
1442  */
1443 
1444 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
1445 		     gfp_t gfp_mask)
1446 {
1447 	int i, osize = skb_end_offset(skb);
1448 	int size = osize + nhead + ntail;
1449 	long off;
1450 	u8 *data;
1451 
1452 	BUG_ON(nhead < 0);
1453 
1454 	BUG_ON(skb_shared(skb));
1455 
1456 	size = SKB_DATA_ALIGN(size);
1457 
1458 	if (skb_pfmemalloc(skb))
1459 		gfp_mask |= __GFP_MEMALLOC;
1460 	data = kmalloc_reserve(size + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
1461 			       gfp_mask, NUMA_NO_NODE, NULL);
1462 	if (!data)
1463 		goto nodata;
1464 	size = SKB_WITH_OVERHEAD(ksize(data));
1465 
1466 	/* Copy only real data... and, alas, header. This should be
1467 	 * optimized for the cases when header is void.
1468 	 */
1469 	memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head);
1470 
1471 	memcpy((struct skb_shared_info *)(data + size),
1472 	       skb_shinfo(skb),
1473 	       offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags]));
1474 
1475 	/*
1476 	 * if shinfo is shared we must drop the old head gracefully, but if it
1477 	 * is not we can just drop the old head and let the existing refcount
1478 	 * be since all we did is relocate the values
1479 	 */
1480 	if (skb_cloned(skb)) {
1481 		if (skb_orphan_frags(skb, gfp_mask))
1482 			goto nofrags;
1483 		if (skb_zcopy(skb))
1484 			refcount_inc(&skb_uarg(skb)->refcnt);
1485 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1486 			skb_frag_ref(skb, i);
1487 
1488 		if (skb_has_frag_list(skb))
1489 			skb_clone_fraglist(skb);
1490 
1491 		skb_release_data(skb);
1492 	} else {
1493 		skb_free_head(skb);
1494 	}
1495 	off = (data + nhead) - skb->head;
1496 
1497 	skb->head     = data;
1498 	skb->head_frag = 0;
1499 	skb->data    += off;
1500 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1501 	skb->end      = size;
1502 	off           = nhead;
1503 #else
1504 	skb->end      = skb->head + size;
1505 #endif
1506 	skb->tail	      += off;
1507 	skb_headers_offset_update(skb, nhead);
1508 	skb->cloned   = 0;
1509 	skb->hdr_len  = 0;
1510 	skb->nohdr    = 0;
1511 	atomic_set(&skb_shinfo(skb)->dataref, 1);
1512 
1513 	skb_metadata_clear(skb);
1514 
1515 	/* It is not generally safe to change skb->truesize.
1516 	 * For the moment, we really care of rx path, or
1517 	 * when skb is orphaned (not attached to a socket).
1518 	 */
1519 	if (!skb->sk || skb->destructor == sock_edemux)
1520 		skb->truesize += size - osize;
1521 
1522 	return 0;
1523 
1524 nofrags:
1525 	kfree(data);
1526 nodata:
1527 	return -ENOMEM;
1528 }
1529 EXPORT_SYMBOL(pskb_expand_head);
1530 
1531 /* Make private copy of skb with writable head and some headroom */
1532 
1533 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
1534 {
1535 	struct sk_buff *skb2;
1536 	int delta = headroom - skb_headroom(skb);
1537 
1538 	if (delta <= 0)
1539 		skb2 = pskb_copy(skb, GFP_ATOMIC);
1540 	else {
1541 		skb2 = skb_clone(skb, GFP_ATOMIC);
1542 		if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
1543 					     GFP_ATOMIC)) {
1544 			kfree_skb(skb2);
1545 			skb2 = NULL;
1546 		}
1547 	}
1548 	return skb2;
1549 }
1550 EXPORT_SYMBOL(skb_realloc_headroom);
1551 
1552 /**
1553  *	skb_copy_expand	-	copy and expand sk_buff
1554  *	@skb: buffer to copy
1555  *	@newheadroom: new free bytes at head
1556  *	@newtailroom: new free bytes at tail
1557  *	@gfp_mask: allocation priority
1558  *
1559  *	Make a copy of both an &sk_buff and its data and while doing so
1560  *	allocate additional space.
1561  *
1562  *	This is used when the caller wishes to modify the data and needs a
1563  *	private copy of the data to alter as well as more space for new fields.
1564  *	Returns %NULL on failure or the pointer to the buffer
1565  *	on success. The returned buffer has a reference count of 1.
1566  *
1567  *	You must pass %GFP_ATOMIC as the allocation priority if this function
1568  *	is called from an interrupt.
1569  */
1570 struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
1571 				int newheadroom, int newtailroom,
1572 				gfp_t gfp_mask)
1573 {
1574 	/*
1575 	 *	Allocate the copy buffer
1576 	 */
1577 	struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom,
1578 					gfp_mask, skb_alloc_rx_flag(skb),
1579 					NUMA_NO_NODE);
1580 	int oldheadroom = skb_headroom(skb);
1581 	int head_copy_len, head_copy_off;
1582 
1583 	if (!n)
1584 		return NULL;
1585 
1586 	skb_reserve(n, newheadroom);
1587 
1588 	/* Set the tail pointer and length */
1589 	skb_put(n, skb->len);
1590 
1591 	head_copy_len = oldheadroom;
1592 	head_copy_off = 0;
1593 	if (newheadroom <= head_copy_len)
1594 		head_copy_len = newheadroom;
1595 	else
1596 		head_copy_off = newheadroom - head_copy_len;
1597 
1598 	/* Copy the linear header and data. */
1599 	BUG_ON(skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
1600 			     skb->len + head_copy_len));
1601 
1602 	skb_copy_header(n, skb);
1603 
1604 	skb_headers_offset_update(n, newheadroom - oldheadroom);
1605 
1606 	return n;
1607 }
1608 EXPORT_SYMBOL(skb_copy_expand);
1609 
1610 /**
1611  *	__skb_pad		-	zero pad the tail of an skb
1612  *	@skb: buffer to pad
1613  *	@pad: space to pad
1614  *	@free_on_error: free buffer on error
1615  *
1616  *	Ensure that a buffer is followed by a padding area that is zero
1617  *	filled. Used by network drivers which may DMA or transfer data
1618  *	beyond the buffer end onto the wire.
1619  *
1620  *	May return error in out of memory cases. The skb is freed on error
1621  *	if @free_on_error is true.
1622  */
1623 
1624 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error)
1625 {
1626 	int err;
1627 	int ntail;
1628 
1629 	/* If the skbuff is non linear tailroom is always zero.. */
1630 	if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
1631 		memset(skb->data+skb->len, 0, pad);
1632 		return 0;
1633 	}
1634 
1635 	ntail = skb->data_len + pad - (skb->end - skb->tail);
1636 	if (likely(skb_cloned(skb) || ntail > 0)) {
1637 		err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
1638 		if (unlikely(err))
1639 			goto free_skb;
1640 	}
1641 
1642 	/* FIXME: The use of this function with non-linear skb's really needs
1643 	 * to be audited.
1644 	 */
1645 	err = skb_linearize(skb);
1646 	if (unlikely(err))
1647 		goto free_skb;
1648 
1649 	memset(skb->data + skb->len, 0, pad);
1650 	return 0;
1651 
1652 free_skb:
1653 	if (free_on_error)
1654 		kfree_skb(skb);
1655 	return err;
1656 }
1657 EXPORT_SYMBOL(__skb_pad);
1658 
1659 /**
1660  *	pskb_put - add data to the tail of a potentially fragmented buffer
1661  *	@skb: start of the buffer to use
1662  *	@tail: tail fragment of the buffer to use
1663  *	@len: amount of data to add
1664  *
1665  *	This function extends the used data area of the potentially
1666  *	fragmented buffer. @tail must be the last fragment of @skb -- or
1667  *	@skb itself. If this would exceed the total buffer size the kernel
1668  *	will panic. A pointer to the first byte of the extra data is
1669  *	returned.
1670  */
1671 
1672 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len)
1673 {
1674 	if (tail != skb) {
1675 		skb->data_len += len;
1676 		skb->len += len;
1677 	}
1678 	return skb_put(tail, len);
1679 }
1680 EXPORT_SYMBOL_GPL(pskb_put);
1681 
1682 /**
1683  *	skb_put - add data to a buffer
1684  *	@skb: buffer to use
1685  *	@len: amount of data to add
1686  *
1687  *	This function extends the used data area of the buffer. If this would
1688  *	exceed the total buffer size the kernel will panic. A pointer to the
1689  *	first byte of the extra data is returned.
1690  */
1691 void *skb_put(struct sk_buff *skb, unsigned int len)
1692 {
1693 	void *tmp = skb_tail_pointer(skb);
1694 	SKB_LINEAR_ASSERT(skb);
1695 	skb->tail += len;
1696 	skb->len  += len;
1697 	if (unlikely(skb->tail > skb->end))
1698 		skb_over_panic(skb, len, __builtin_return_address(0));
1699 	return tmp;
1700 }
1701 EXPORT_SYMBOL(skb_put);
1702 
1703 /**
1704  *	skb_push - add data to the start of a buffer
1705  *	@skb: buffer to use
1706  *	@len: amount of data to add
1707  *
1708  *	This function extends the used data area of the buffer at the buffer
1709  *	start. If this would exceed the total buffer headroom the kernel will
1710  *	panic. A pointer to the first byte of the extra data is returned.
1711  */
1712 void *skb_push(struct sk_buff *skb, unsigned int len)
1713 {
1714 	skb->data -= len;
1715 	skb->len  += len;
1716 	if (unlikely(skb->data < skb->head))
1717 		skb_under_panic(skb, len, __builtin_return_address(0));
1718 	return skb->data;
1719 }
1720 EXPORT_SYMBOL(skb_push);
1721 
1722 /**
1723  *	skb_pull - remove data from the start of a buffer
1724  *	@skb: buffer to use
1725  *	@len: amount of data to remove
1726  *
1727  *	This function removes data from the start of a buffer, returning
1728  *	the memory to the headroom. A pointer to the next data in the buffer
1729  *	is returned. Once the data has been pulled future pushes will overwrite
1730  *	the old data.
1731  */
1732 void *skb_pull(struct sk_buff *skb, unsigned int len)
1733 {
1734 	return skb_pull_inline(skb, len);
1735 }
1736 EXPORT_SYMBOL(skb_pull);
1737 
1738 /**
1739  *	skb_trim - remove end from a buffer
1740  *	@skb: buffer to alter
1741  *	@len: new length
1742  *
1743  *	Cut the length of a buffer down by removing data from the tail. If
1744  *	the buffer is already under the length specified it is not modified.
1745  *	The skb must be linear.
1746  */
1747 void skb_trim(struct sk_buff *skb, unsigned int len)
1748 {
1749 	if (skb->len > len)
1750 		__skb_trim(skb, len);
1751 }
1752 EXPORT_SYMBOL(skb_trim);
1753 
1754 /* Trims skb to length len. It can change skb pointers.
1755  */
1756 
1757 int ___pskb_trim(struct sk_buff *skb, unsigned int len)
1758 {
1759 	struct sk_buff **fragp;
1760 	struct sk_buff *frag;
1761 	int offset = skb_headlen(skb);
1762 	int nfrags = skb_shinfo(skb)->nr_frags;
1763 	int i;
1764 	int err;
1765 
1766 	if (skb_cloned(skb) &&
1767 	    unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
1768 		return err;
1769 
1770 	i = 0;
1771 	if (offset >= len)
1772 		goto drop_pages;
1773 
1774 	for (; i < nfrags; i++) {
1775 		int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]);
1776 
1777 		if (end < len) {
1778 			offset = end;
1779 			continue;
1780 		}
1781 
1782 		skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset);
1783 
1784 drop_pages:
1785 		skb_shinfo(skb)->nr_frags = i;
1786 
1787 		for (; i < nfrags; i++)
1788 			skb_frag_unref(skb, i);
1789 
1790 		if (skb_has_frag_list(skb))
1791 			skb_drop_fraglist(skb);
1792 		goto done;
1793 	}
1794 
1795 	for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
1796 	     fragp = &frag->next) {
1797 		int end = offset + frag->len;
1798 
1799 		if (skb_shared(frag)) {
1800 			struct sk_buff *nfrag;
1801 
1802 			nfrag = skb_clone(frag, GFP_ATOMIC);
1803 			if (unlikely(!nfrag))
1804 				return -ENOMEM;
1805 
1806 			nfrag->next = frag->next;
1807 			consume_skb(frag);
1808 			frag = nfrag;
1809 			*fragp = frag;
1810 		}
1811 
1812 		if (end < len) {
1813 			offset = end;
1814 			continue;
1815 		}
1816 
1817 		if (end > len &&
1818 		    unlikely((err = pskb_trim(frag, len - offset))))
1819 			return err;
1820 
1821 		if (frag->next)
1822 			skb_drop_list(&frag->next);
1823 		break;
1824 	}
1825 
1826 done:
1827 	if (len > skb_headlen(skb)) {
1828 		skb->data_len -= skb->len - len;
1829 		skb->len       = len;
1830 	} else {
1831 		skb->len       = len;
1832 		skb->data_len  = 0;
1833 		skb_set_tail_pointer(skb, len);
1834 	}
1835 
1836 	if (!skb->sk || skb->destructor == sock_edemux)
1837 		skb_condense(skb);
1838 	return 0;
1839 }
1840 EXPORT_SYMBOL(___pskb_trim);
1841 
1842 /* Note : use pskb_trim_rcsum() instead of calling this directly
1843  */
1844 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len)
1845 {
1846 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
1847 		int delta = skb->len - len;
1848 
1849 		skb->csum = csum_block_sub(skb->csum,
1850 					   skb_checksum(skb, len, delta, 0),
1851 					   len);
1852 	}
1853 	return __pskb_trim(skb, len);
1854 }
1855 EXPORT_SYMBOL(pskb_trim_rcsum_slow);
1856 
1857 /**
1858  *	__pskb_pull_tail - advance tail of skb header
1859  *	@skb: buffer to reallocate
1860  *	@delta: number of bytes to advance tail
1861  *
1862  *	The function makes a sense only on a fragmented &sk_buff,
1863  *	it expands header moving its tail forward and copying necessary
1864  *	data from fragmented part.
1865  *
1866  *	&sk_buff MUST have reference count of 1.
1867  *
1868  *	Returns %NULL (and &sk_buff does not change) if pull failed
1869  *	or value of new tail of skb in the case of success.
1870  *
1871  *	All the pointers pointing into skb header may change and must be
1872  *	reloaded after call to this function.
1873  */
1874 
1875 /* Moves tail of skb head forward, copying data from fragmented part,
1876  * when it is necessary.
1877  * 1. It may fail due to malloc failure.
1878  * 2. It may change skb pointers.
1879  *
1880  * It is pretty complicated. Luckily, it is called only in exceptional cases.
1881  */
1882 void *__pskb_pull_tail(struct sk_buff *skb, int delta)
1883 {
1884 	/* If skb has not enough free space at tail, get new one
1885 	 * plus 128 bytes for future expansions. If we have enough
1886 	 * room at tail, reallocate without expansion only if skb is cloned.
1887 	 */
1888 	int i, k, eat = (skb->tail + delta) - skb->end;
1889 
1890 	if (eat > 0 || skb_cloned(skb)) {
1891 		if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
1892 				     GFP_ATOMIC))
1893 			return NULL;
1894 	}
1895 
1896 	BUG_ON(skb_copy_bits(skb, skb_headlen(skb),
1897 			     skb_tail_pointer(skb), delta));
1898 
1899 	/* Optimization: no fragments, no reasons to preestimate
1900 	 * size of pulled pages. Superb.
1901 	 */
1902 	if (!skb_has_frag_list(skb))
1903 		goto pull_pages;
1904 
1905 	/* Estimate size of pulled pages. */
1906 	eat = delta;
1907 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1908 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
1909 
1910 		if (size >= eat)
1911 			goto pull_pages;
1912 		eat -= size;
1913 	}
1914 
1915 	/* If we need update frag list, we are in troubles.
1916 	 * Certainly, it is possible to add an offset to skb data,
1917 	 * but taking into account that pulling is expected to
1918 	 * be very rare operation, it is worth to fight against
1919 	 * further bloating skb head and crucify ourselves here instead.
1920 	 * Pure masohism, indeed. 8)8)
1921 	 */
1922 	if (eat) {
1923 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
1924 		struct sk_buff *clone = NULL;
1925 		struct sk_buff *insp = NULL;
1926 
1927 		do {
1928 			BUG_ON(!list);
1929 
1930 			if (list->len <= eat) {
1931 				/* Eaten as whole. */
1932 				eat -= list->len;
1933 				list = list->next;
1934 				insp = list;
1935 			} else {
1936 				/* Eaten partially. */
1937 
1938 				if (skb_shared(list)) {
1939 					/* Sucks! We need to fork list. :-( */
1940 					clone = skb_clone(list, GFP_ATOMIC);
1941 					if (!clone)
1942 						return NULL;
1943 					insp = list->next;
1944 					list = clone;
1945 				} else {
1946 					/* This may be pulled without
1947 					 * problems. */
1948 					insp = list;
1949 				}
1950 				if (!pskb_pull(list, eat)) {
1951 					kfree_skb(clone);
1952 					return NULL;
1953 				}
1954 				break;
1955 			}
1956 		} while (eat);
1957 
1958 		/* Free pulled out fragments. */
1959 		while ((list = skb_shinfo(skb)->frag_list) != insp) {
1960 			skb_shinfo(skb)->frag_list = list->next;
1961 			kfree_skb(list);
1962 		}
1963 		/* And insert new clone at head. */
1964 		if (clone) {
1965 			clone->next = list;
1966 			skb_shinfo(skb)->frag_list = clone;
1967 		}
1968 	}
1969 	/* Success! Now we may commit changes to skb data. */
1970 
1971 pull_pages:
1972 	eat = delta;
1973 	k = 0;
1974 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1975 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
1976 
1977 		if (size <= eat) {
1978 			skb_frag_unref(skb, i);
1979 			eat -= size;
1980 		} else {
1981 			skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i];
1982 			if (eat) {
1983 				skb_shinfo(skb)->frags[k].page_offset += eat;
1984 				skb_frag_size_sub(&skb_shinfo(skb)->frags[k], eat);
1985 				if (!i)
1986 					goto end;
1987 				eat = 0;
1988 			}
1989 			k++;
1990 		}
1991 	}
1992 	skb_shinfo(skb)->nr_frags = k;
1993 
1994 end:
1995 	skb->tail     += delta;
1996 	skb->data_len -= delta;
1997 
1998 	if (!skb->data_len)
1999 		skb_zcopy_clear(skb, false);
2000 
2001 	return skb_tail_pointer(skb);
2002 }
2003 EXPORT_SYMBOL(__pskb_pull_tail);
2004 
2005 /**
2006  *	skb_copy_bits - copy bits from skb to kernel buffer
2007  *	@skb: source skb
2008  *	@offset: offset in source
2009  *	@to: destination buffer
2010  *	@len: number of bytes to copy
2011  *
2012  *	Copy the specified number of bytes from the source skb to the
2013  *	destination buffer.
2014  *
2015  *	CAUTION ! :
2016  *		If its prototype is ever changed,
2017  *		check arch/{*}/net/{*}.S files,
2018  *		since it is called from BPF assembly code.
2019  */
2020 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
2021 {
2022 	int start = skb_headlen(skb);
2023 	struct sk_buff *frag_iter;
2024 	int i, copy;
2025 
2026 	if (offset > (int)skb->len - len)
2027 		goto fault;
2028 
2029 	/* Copy header. */
2030 	if ((copy = start - offset) > 0) {
2031 		if (copy > len)
2032 			copy = len;
2033 		skb_copy_from_linear_data_offset(skb, offset, to, copy);
2034 		if ((len -= copy) == 0)
2035 			return 0;
2036 		offset += copy;
2037 		to     += copy;
2038 	}
2039 
2040 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2041 		int end;
2042 		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
2043 
2044 		WARN_ON(start > offset + len);
2045 
2046 		end = start + skb_frag_size(f);
2047 		if ((copy = end - offset) > 0) {
2048 			u32 p_off, p_len, copied;
2049 			struct page *p;
2050 			u8 *vaddr;
2051 
2052 			if (copy > len)
2053 				copy = len;
2054 
2055 			skb_frag_foreach_page(f,
2056 					      f->page_offset + offset - start,
2057 					      copy, p, p_off, p_len, copied) {
2058 				vaddr = kmap_atomic(p);
2059 				memcpy(to + copied, vaddr + p_off, p_len);
2060 				kunmap_atomic(vaddr);
2061 			}
2062 
2063 			if ((len -= copy) == 0)
2064 				return 0;
2065 			offset += copy;
2066 			to     += copy;
2067 		}
2068 		start = end;
2069 	}
2070 
2071 	skb_walk_frags(skb, frag_iter) {
2072 		int end;
2073 
2074 		WARN_ON(start > offset + len);
2075 
2076 		end = start + frag_iter->len;
2077 		if ((copy = end - offset) > 0) {
2078 			if (copy > len)
2079 				copy = len;
2080 			if (skb_copy_bits(frag_iter, offset - start, to, copy))
2081 				goto fault;
2082 			if ((len -= copy) == 0)
2083 				return 0;
2084 			offset += copy;
2085 			to     += copy;
2086 		}
2087 		start = end;
2088 	}
2089 
2090 	if (!len)
2091 		return 0;
2092 
2093 fault:
2094 	return -EFAULT;
2095 }
2096 EXPORT_SYMBOL(skb_copy_bits);
2097 
2098 /*
2099  * Callback from splice_to_pipe(), if we need to release some pages
2100  * at the end of the spd in case we error'ed out in filling the pipe.
2101  */
2102 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
2103 {
2104 	put_page(spd->pages[i]);
2105 }
2106 
2107 static struct page *linear_to_page(struct page *page, unsigned int *len,
2108 				   unsigned int *offset,
2109 				   struct sock *sk)
2110 {
2111 	struct page_frag *pfrag = sk_page_frag(sk);
2112 
2113 	if (!sk_page_frag_refill(sk, pfrag))
2114 		return NULL;
2115 
2116 	*len = min_t(unsigned int, *len, pfrag->size - pfrag->offset);
2117 
2118 	memcpy(page_address(pfrag->page) + pfrag->offset,
2119 	       page_address(page) + *offset, *len);
2120 	*offset = pfrag->offset;
2121 	pfrag->offset += *len;
2122 
2123 	return pfrag->page;
2124 }
2125 
2126 static bool spd_can_coalesce(const struct splice_pipe_desc *spd,
2127 			     struct page *page,
2128 			     unsigned int offset)
2129 {
2130 	return	spd->nr_pages &&
2131 		spd->pages[spd->nr_pages - 1] == page &&
2132 		(spd->partial[spd->nr_pages - 1].offset +
2133 		 spd->partial[spd->nr_pages - 1].len == offset);
2134 }
2135 
2136 /*
2137  * Fill page/offset/length into spd, if it can hold more pages.
2138  */
2139 static bool spd_fill_page(struct splice_pipe_desc *spd,
2140 			  struct pipe_inode_info *pipe, struct page *page,
2141 			  unsigned int *len, unsigned int offset,
2142 			  bool linear,
2143 			  struct sock *sk)
2144 {
2145 	if (unlikely(spd->nr_pages == MAX_SKB_FRAGS))
2146 		return true;
2147 
2148 	if (linear) {
2149 		page = linear_to_page(page, len, &offset, sk);
2150 		if (!page)
2151 			return true;
2152 	}
2153 	if (spd_can_coalesce(spd, page, offset)) {
2154 		spd->partial[spd->nr_pages - 1].len += *len;
2155 		return false;
2156 	}
2157 	get_page(page);
2158 	spd->pages[spd->nr_pages] = page;
2159 	spd->partial[spd->nr_pages].len = *len;
2160 	spd->partial[spd->nr_pages].offset = offset;
2161 	spd->nr_pages++;
2162 
2163 	return false;
2164 }
2165 
2166 static bool __splice_segment(struct page *page, unsigned int poff,
2167 			     unsigned int plen, unsigned int *off,
2168 			     unsigned int *len,
2169 			     struct splice_pipe_desc *spd, bool linear,
2170 			     struct sock *sk,
2171 			     struct pipe_inode_info *pipe)
2172 {
2173 	if (!*len)
2174 		return true;
2175 
2176 	/* skip this segment if already processed */
2177 	if (*off >= plen) {
2178 		*off -= plen;
2179 		return false;
2180 	}
2181 
2182 	/* ignore any bits we already processed */
2183 	poff += *off;
2184 	plen -= *off;
2185 	*off = 0;
2186 
2187 	do {
2188 		unsigned int flen = min(*len, plen);
2189 
2190 		if (spd_fill_page(spd, pipe, page, &flen, poff,
2191 				  linear, sk))
2192 			return true;
2193 		poff += flen;
2194 		plen -= flen;
2195 		*len -= flen;
2196 	} while (*len && plen);
2197 
2198 	return false;
2199 }
2200 
2201 /*
2202  * Map linear and fragment data from the skb to spd. It reports true if the
2203  * pipe is full or if we already spliced the requested length.
2204  */
2205 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe,
2206 			      unsigned int *offset, unsigned int *len,
2207 			      struct splice_pipe_desc *spd, struct sock *sk)
2208 {
2209 	int seg;
2210 	struct sk_buff *iter;
2211 
2212 	/* map the linear part :
2213 	 * If skb->head_frag is set, this 'linear' part is backed by a
2214 	 * fragment, and if the head is not shared with any clones then
2215 	 * we can avoid a copy since we own the head portion of this page.
2216 	 */
2217 	if (__splice_segment(virt_to_page(skb->data),
2218 			     (unsigned long) skb->data & (PAGE_SIZE - 1),
2219 			     skb_headlen(skb),
2220 			     offset, len, spd,
2221 			     skb_head_is_locked(skb),
2222 			     sk, pipe))
2223 		return true;
2224 
2225 	/*
2226 	 * then map the fragments
2227 	 */
2228 	for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
2229 		const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
2230 
2231 		if (__splice_segment(skb_frag_page(f),
2232 				     f->page_offset, skb_frag_size(f),
2233 				     offset, len, spd, false, sk, pipe))
2234 			return true;
2235 	}
2236 
2237 	skb_walk_frags(skb, iter) {
2238 		if (*offset >= iter->len) {
2239 			*offset -= iter->len;
2240 			continue;
2241 		}
2242 		/* __skb_splice_bits() only fails if the output has no room
2243 		 * left, so no point in going over the frag_list for the error
2244 		 * case.
2245 		 */
2246 		if (__skb_splice_bits(iter, pipe, offset, len, spd, sk))
2247 			return true;
2248 	}
2249 
2250 	return false;
2251 }
2252 
2253 /*
2254  * Map data from the skb to a pipe. Should handle both the linear part,
2255  * the fragments, and the frag list.
2256  */
2257 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
2258 		    struct pipe_inode_info *pipe, unsigned int tlen,
2259 		    unsigned int flags)
2260 {
2261 	struct partial_page partial[MAX_SKB_FRAGS];
2262 	struct page *pages[MAX_SKB_FRAGS];
2263 	struct splice_pipe_desc spd = {
2264 		.pages = pages,
2265 		.partial = partial,
2266 		.nr_pages_max = MAX_SKB_FRAGS,
2267 		.ops = &nosteal_pipe_buf_ops,
2268 		.spd_release = sock_spd_release,
2269 	};
2270 	int ret = 0;
2271 
2272 	__skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk);
2273 
2274 	if (spd.nr_pages)
2275 		ret = splice_to_pipe(pipe, &spd);
2276 
2277 	return ret;
2278 }
2279 EXPORT_SYMBOL_GPL(skb_splice_bits);
2280 
2281 /* Send skb data on a socket. Socket must be locked. */
2282 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
2283 			 int len)
2284 {
2285 	unsigned int orig_len = len;
2286 	struct sk_buff *head = skb;
2287 	unsigned short fragidx;
2288 	int slen, ret;
2289 
2290 do_frag_list:
2291 
2292 	/* Deal with head data */
2293 	while (offset < skb_headlen(skb) && len) {
2294 		struct kvec kv;
2295 		struct msghdr msg;
2296 
2297 		slen = min_t(int, len, skb_headlen(skb) - offset);
2298 		kv.iov_base = skb->data + offset;
2299 		kv.iov_len = slen;
2300 		memset(&msg, 0, sizeof(msg));
2301 
2302 		ret = kernel_sendmsg_locked(sk, &msg, &kv, 1, slen);
2303 		if (ret <= 0)
2304 			goto error;
2305 
2306 		offset += ret;
2307 		len -= ret;
2308 	}
2309 
2310 	/* All the data was skb head? */
2311 	if (!len)
2312 		goto out;
2313 
2314 	/* Make offset relative to start of frags */
2315 	offset -= skb_headlen(skb);
2316 
2317 	/* Find where we are in frag list */
2318 	for (fragidx = 0; fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
2319 		skb_frag_t *frag  = &skb_shinfo(skb)->frags[fragidx];
2320 
2321 		if (offset < frag->size)
2322 			break;
2323 
2324 		offset -= frag->size;
2325 	}
2326 
2327 	for (; len && fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
2328 		skb_frag_t *frag  = &skb_shinfo(skb)->frags[fragidx];
2329 
2330 		slen = min_t(size_t, len, frag->size - offset);
2331 
2332 		while (slen) {
2333 			ret = kernel_sendpage_locked(sk, frag->page.p,
2334 						     frag->page_offset + offset,
2335 						     slen, MSG_DONTWAIT);
2336 			if (ret <= 0)
2337 				goto error;
2338 
2339 			len -= ret;
2340 			offset += ret;
2341 			slen -= ret;
2342 		}
2343 
2344 		offset = 0;
2345 	}
2346 
2347 	if (len) {
2348 		/* Process any frag lists */
2349 
2350 		if (skb == head) {
2351 			if (skb_has_frag_list(skb)) {
2352 				skb = skb_shinfo(skb)->frag_list;
2353 				goto do_frag_list;
2354 			}
2355 		} else if (skb->next) {
2356 			skb = skb->next;
2357 			goto do_frag_list;
2358 		}
2359 	}
2360 
2361 out:
2362 	return orig_len - len;
2363 
2364 error:
2365 	return orig_len == len ? ret : orig_len - len;
2366 }
2367 EXPORT_SYMBOL_GPL(skb_send_sock_locked);
2368 
2369 /* Send skb data on a socket. */
2370 int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len)
2371 {
2372 	int ret = 0;
2373 
2374 	lock_sock(sk);
2375 	ret = skb_send_sock_locked(sk, skb, offset, len);
2376 	release_sock(sk);
2377 
2378 	return ret;
2379 }
2380 EXPORT_SYMBOL_GPL(skb_send_sock);
2381 
2382 /**
2383  *	skb_store_bits - store bits from kernel buffer to skb
2384  *	@skb: destination buffer
2385  *	@offset: offset in destination
2386  *	@from: source buffer
2387  *	@len: number of bytes to copy
2388  *
2389  *	Copy the specified number of bytes from the source buffer to the
2390  *	destination skb.  This function handles all the messy bits of
2391  *	traversing fragment lists and such.
2392  */
2393 
2394 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
2395 {
2396 	int start = skb_headlen(skb);
2397 	struct sk_buff *frag_iter;
2398 	int i, copy;
2399 
2400 	if (offset > (int)skb->len - len)
2401 		goto fault;
2402 
2403 	if ((copy = start - offset) > 0) {
2404 		if (copy > len)
2405 			copy = len;
2406 		skb_copy_to_linear_data_offset(skb, offset, from, copy);
2407 		if ((len -= copy) == 0)
2408 			return 0;
2409 		offset += copy;
2410 		from += copy;
2411 	}
2412 
2413 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2414 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2415 		int end;
2416 
2417 		WARN_ON(start > offset + len);
2418 
2419 		end = start + skb_frag_size(frag);
2420 		if ((copy = end - offset) > 0) {
2421 			u32 p_off, p_len, copied;
2422 			struct page *p;
2423 			u8 *vaddr;
2424 
2425 			if (copy > len)
2426 				copy = len;
2427 
2428 			skb_frag_foreach_page(frag,
2429 					      frag->page_offset + offset - start,
2430 					      copy, p, p_off, p_len, copied) {
2431 				vaddr = kmap_atomic(p);
2432 				memcpy(vaddr + p_off, from + copied, p_len);
2433 				kunmap_atomic(vaddr);
2434 			}
2435 
2436 			if ((len -= copy) == 0)
2437 				return 0;
2438 			offset += copy;
2439 			from += copy;
2440 		}
2441 		start = end;
2442 	}
2443 
2444 	skb_walk_frags(skb, frag_iter) {
2445 		int end;
2446 
2447 		WARN_ON(start > offset + len);
2448 
2449 		end = start + frag_iter->len;
2450 		if ((copy = end - offset) > 0) {
2451 			if (copy > len)
2452 				copy = len;
2453 			if (skb_store_bits(frag_iter, offset - start,
2454 					   from, copy))
2455 				goto fault;
2456 			if ((len -= copy) == 0)
2457 				return 0;
2458 			offset += copy;
2459 			from += copy;
2460 		}
2461 		start = end;
2462 	}
2463 	if (!len)
2464 		return 0;
2465 
2466 fault:
2467 	return -EFAULT;
2468 }
2469 EXPORT_SYMBOL(skb_store_bits);
2470 
2471 /* Checksum skb data. */
2472 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
2473 		      __wsum csum, const struct skb_checksum_ops *ops)
2474 {
2475 	int start = skb_headlen(skb);
2476 	int i, copy = start - offset;
2477 	struct sk_buff *frag_iter;
2478 	int pos = 0;
2479 
2480 	/* Checksum header. */
2481 	if (copy > 0) {
2482 		if (copy > len)
2483 			copy = len;
2484 		csum = ops->update(skb->data + offset, copy, csum);
2485 		if ((len -= copy) == 0)
2486 			return csum;
2487 		offset += copy;
2488 		pos	= copy;
2489 	}
2490 
2491 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2492 		int end;
2493 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2494 
2495 		WARN_ON(start > offset + len);
2496 
2497 		end = start + skb_frag_size(frag);
2498 		if ((copy = end - offset) > 0) {
2499 			u32 p_off, p_len, copied;
2500 			struct page *p;
2501 			__wsum csum2;
2502 			u8 *vaddr;
2503 
2504 			if (copy > len)
2505 				copy = len;
2506 
2507 			skb_frag_foreach_page(frag,
2508 					      frag->page_offset + offset - start,
2509 					      copy, p, p_off, p_len, copied) {
2510 				vaddr = kmap_atomic(p);
2511 				csum2 = ops->update(vaddr + p_off, p_len, 0);
2512 				kunmap_atomic(vaddr);
2513 				csum = ops->combine(csum, csum2, pos, p_len);
2514 				pos += p_len;
2515 			}
2516 
2517 			if (!(len -= copy))
2518 				return csum;
2519 			offset += copy;
2520 		}
2521 		start = end;
2522 	}
2523 
2524 	skb_walk_frags(skb, frag_iter) {
2525 		int end;
2526 
2527 		WARN_ON(start > offset + len);
2528 
2529 		end = start + frag_iter->len;
2530 		if ((copy = end - offset) > 0) {
2531 			__wsum csum2;
2532 			if (copy > len)
2533 				copy = len;
2534 			csum2 = __skb_checksum(frag_iter, offset - start,
2535 					       copy, 0, ops);
2536 			csum = ops->combine(csum, csum2, pos, copy);
2537 			if ((len -= copy) == 0)
2538 				return csum;
2539 			offset += copy;
2540 			pos    += copy;
2541 		}
2542 		start = end;
2543 	}
2544 	BUG_ON(len);
2545 
2546 	return csum;
2547 }
2548 EXPORT_SYMBOL(__skb_checksum);
2549 
2550 __wsum skb_checksum(const struct sk_buff *skb, int offset,
2551 		    int len, __wsum csum)
2552 {
2553 	const struct skb_checksum_ops ops = {
2554 		.update  = csum_partial_ext,
2555 		.combine = csum_block_add_ext,
2556 	};
2557 
2558 	return __skb_checksum(skb, offset, len, csum, &ops);
2559 }
2560 EXPORT_SYMBOL(skb_checksum);
2561 
2562 /* Both of above in one bottle. */
2563 
2564 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
2565 				    u8 *to, int len, __wsum csum)
2566 {
2567 	int start = skb_headlen(skb);
2568 	int i, copy = start - offset;
2569 	struct sk_buff *frag_iter;
2570 	int pos = 0;
2571 
2572 	/* Copy header. */
2573 	if (copy > 0) {
2574 		if (copy > len)
2575 			copy = len;
2576 		csum = csum_partial_copy_nocheck(skb->data + offset, to,
2577 						 copy, csum);
2578 		if ((len -= copy) == 0)
2579 			return csum;
2580 		offset += copy;
2581 		to     += copy;
2582 		pos	= copy;
2583 	}
2584 
2585 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2586 		int end;
2587 
2588 		WARN_ON(start > offset + len);
2589 
2590 		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
2591 		if ((copy = end - offset) > 0) {
2592 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2593 			u32 p_off, p_len, copied;
2594 			struct page *p;
2595 			__wsum csum2;
2596 			u8 *vaddr;
2597 
2598 			if (copy > len)
2599 				copy = len;
2600 
2601 			skb_frag_foreach_page(frag,
2602 					      frag->page_offset + offset - start,
2603 					      copy, p, p_off, p_len, copied) {
2604 				vaddr = kmap_atomic(p);
2605 				csum2 = csum_partial_copy_nocheck(vaddr + p_off,
2606 								  to + copied,
2607 								  p_len, 0);
2608 				kunmap_atomic(vaddr);
2609 				csum = csum_block_add(csum, csum2, pos);
2610 				pos += p_len;
2611 			}
2612 
2613 			if (!(len -= copy))
2614 				return csum;
2615 			offset += copy;
2616 			to     += copy;
2617 		}
2618 		start = end;
2619 	}
2620 
2621 	skb_walk_frags(skb, frag_iter) {
2622 		__wsum csum2;
2623 		int end;
2624 
2625 		WARN_ON(start > offset + len);
2626 
2627 		end = start + frag_iter->len;
2628 		if ((copy = end - offset) > 0) {
2629 			if (copy > len)
2630 				copy = len;
2631 			csum2 = skb_copy_and_csum_bits(frag_iter,
2632 						       offset - start,
2633 						       to, copy, 0);
2634 			csum = csum_block_add(csum, csum2, pos);
2635 			if ((len -= copy) == 0)
2636 				return csum;
2637 			offset += copy;
2638 			to     += copy;
2639 			pos    += copy;
2640 		}
2641 		start = end;
2642 	}
2643 	BUG_ON(len);
2644 	return csum;
2645 }
2646 EXPORT_SYMBOL(skb_copy_and_csum_bits);
2647 
2648 static __wsum warn_crc32c_csum_update(const void *buff, int len, __wsum sum)
2649 {
2650 	net_warn_ratelimited(
2651 		"%s: attempt to compute crc32c without libcrc32c.ko\n",
2652 		__func__);
2653 	return 0;
2654 }
2655 
2656 static __wsum warn_crc32c_csum_combine(__wsum csum, __wsum csum2,
2657 				       int offset, int len)
2658 {
2659 	net_warn_ratelimited(
2660 		"%s: attempt to compute crc32c without libcrc32c.ko\n",
2661 		__func__);
2662 	return 0;
2663 }
2664 
2665 static const struct skb_checksum_ops default_crc32c_ops = {
2666 	.update  = warn_crc32c_csum_update,
2667 	.combine = warn_crc32c_csum_combine,
2668 };
2669 
2670 const struct skb_checksum_ops *crc32c_csum_stub __read_mostly =
2671 	&default_crc32c_ops;
2672 EXPORT_SYMBOL(crc32c_csum_stub);
2673 
2674  /**
2675  *	skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy()
2676  *	@from: source buffer
2677  *
2678  *	Calculates the amount of linear headroom needed in the 'to' skb passed
2679  *	into skb_zerocopy().
2680  */
2681 unsigned int
2682 skb_zerocopy_headlen(const struct sk_buff *from)
2683 {
2684 	unsigned int hlen = 0;
2685 
2686 	if (!from->head_frag ||
2687 	    skb_headlen(from) < L1_CACHE_BYTES ||
2688 	    skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS)
2689 		hlen = skb_headlen(from);
2690 
2691 	if (skb_has_frag_list(from))
2692 		hlen = from->len;
2693 
2694 	return hlen;
2695 }
2696 EXPORT_SYMBOL_GPL(skb_zerocopy_headlen);
2697 
2698 /**
2699  *	skb_zerocopy - Zero copy skb to skb
2700  *	@to: destination buffer
2701  *	@from: source buffer
2702  *	@len: number of bytes to copy from source buffer
2703  *	@hlen: size of linear headroom in destination buffer
2704  *
2705  *	Copies up to `len` bytes from `from` to `to` by creating references
2706  *	to the frags in the source buffer.
2707  *
2708  *	The `hlen` as calculated by skb_zerocopy_headlen() specifies the
2709  *	headroom in the `to` buffer.
2710  *
2711  *	Return value:
2712  *	0: everything is OK
2713  *	-ENOMEM: couldn't orphan frags of @from due to lack of memory
2714  *	-EFAULT: skb_copy_bits() found some problem with skb geometry
2715  */
2716 int
2717 skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen)
2718 {
2719 	int i, j = 0;
2720 	int plen = 0; /* length of skb->head fragment */
2721 	int ret;
2722 	struct page *page;
2723 	unsigned int offset;
2724 
2725 	BUG_ON(!from->head_frag && !hlen);
2726 
2727 	/* dont bother with small payloads */
2728 	if (len <= skb_tailroom(to))
2729 		return skb_copy_bits(from, 0, skb_put(to, len), len);
2730 
2731 	if (hlen) {
2732 		ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen);
2733 		if (unlikely(ret))
2734 			return ret;
2735 		len -= hlen;
2736 	} else {
2737 		plen = min_t(int, skb_headlen(from), len);
2738 		if (plen) {
2739 			page = virt_to_head_page(from->head);
2740 			offset = from->data - (unsigned char *)page_address(page);
2741 			__skb_fill_page_desc(to, 0, page, offset, plen);
2742 			get_page(page);
2743 			j = 1;
2744 			len -= plen;
2745 		}
2746 	}
2747 
2748 	to->truesize += len + plen;
2749 	to->len += len + plen;
2750 	to->data_len += len + plen;
2751 
2752 	if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) {
2753 		skb_tx_error(from);
2754 		return -ENOMEM;
2755 	}
2756 	skb_zerocopy_clone(to, from, GFP_ATOMIC);
2757 
2758 	for (i = 0; i < skb_shinfo(from)->nr_frags; i++) {
2759 		if (!len)
2760 			break;
2761 		skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i];
2762 		skb_shinfo(to)->frags[j].size = min_t(int, skb_shinfo(to)->frags[j].size, len);
2763 		len -= skb_shinfo(to)->frags[j].size;
2764 		skb_frag_ref(to, j);
2765 		j++;
2766 	}
2767 	skb_shinfo(to)->nr_frags = j;
2768 
2769 	return 0;
2770 }
2771 EXPORT_SYMBOL_GPL(skb_zerocopy);
2772 
2773 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
2774 {
2775 	__wsum csum;
2776 	long csstart;
2777 
2778 	if (skb->ip_summed == CHECKSUM_PARTIAL)
2779 		csstart = skb_checksum_start_offset(skb);
2780 	else
2781 		csstart = skb_headlen(skb);
2782 
2783 	BUG_ON(csstart > skb_headlen(skb));
2784 
2785 	skb_copy_from_linear_data(skb, to, csstart);
2786 
2787 	csum = 0;
2788 	if (csstart != skb->len)
2789 		csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
2790 					      skb->len - csstart, 0);
2791 
2792 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
2793 		long csstuff = csstart + skb->csum_offset;
2794 
2795 		*((__sum16 *)(to + csstuff)) = csum_fold(csum);
2796 	}
2797 }
2798 EXPORT_SYMBOL(skb_copy_and_csum_dev);
2799 
2800 /**
2801  *	skb_dequeue - remove from the head of the queue
2802  *	@list: list to dequeue from
2803  *
2804  *	Remove the head of the list. The list lock is taken so the function
2805  *	may be used safely with other locking list functions. The head item is
2806  *	returned or %NULL if the list is empty.
2807  */
2808 
2809 struct sk_buff *skb_dequeue(struct sk_buff_head *list)
2810 {
2811 	unsigned long flags;
2812 	struct sk_buff *result;
2813 
2814 	spin_lock_irqsave(&list->lock, flags);
2815 	result = __skb_dequeue(list);
2816 	spin_unlock_irqrestore(&list->lock, flags);
2817 	return result;
2818 }
2819 EXPORT_SYMBOL(skb_dequeue);
2820 
2821 /**
2822  *	skb_dequeue_tail - remove from the tail of the queue
2823  *	@list: list to dequeue from
2824  *
2825  *	Remove the tail of the list. The list lock is taken so the function
2826  *	may be used safely with other locking list functions. The tail item is
2827  *	returned or %NULL if the list is empty.
2828  */
2829 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
2830 {
2831 	unsigned long flags;
2832 	struct sk_buff *result;
2833 
2834 	spin_lock_irqsave(&list->lock, flags);
2835 	result = __skb_dequeue_tail(list);
2836 	spin_unlock_irqrestore(&list->lock, flags);
2837 	return result;
2838 }
2839 EXPORT_SYMBOL(skb_dequeue_tail);
2840 
2841 /**
2842  *	skb_queue_purge - empty a list
2843  *	@list: list to empty
2844  *
2845  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
2846  *	the list and one reference dropped. This function takes the list
2847  *	lock and is atomic with respect to other list locking functions.
2848  */
2849 void skb_queue_purge(struct sk_buff_head *list)
2850 {
2851 	struct sk_buff *skb;
2852 	while ((skb = skb_dequeue(list)) != NULL)
2853 		kfree_skb(skb);
2854 }
2855 EXPORT_SYMBOL(skb_queue_purge);
2856 
2857 /**
2858  *	skb_rbtree_purge - empty a skb rbtree
2859  *	@root: root of the rbtree to empty
2860  *	Return value: the sum of truesizes of all purged skbs.
2861  *
2862  *	Delete all buffers on an &sk_buff rbtree. Each buffer is removed from
2863  *	the list and one reference dropped. This function does not take
2864  *	any lock. Synchronization should be handled by the caller (e.g., TCP
2865  *	out-of-order queue is protected by the socket lock).
2866  */
2867 unsigned int skb_rbtree_purge(struct rb_root *root)
2868 {
2869 	struct rb_node *p = rb_first(root);
2870 	unsigned int sum = 0;
2871 
2872 	while (p) {
2873 		struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode);
2874 
2875 		p = rb_next(p);
2876 		rb_erase(&skb->rbnode, root);
2877 		sum += skb->truesize;
2878 		kfree_skb(skb);
2879 	}
2880 	return sum;
2881 }
2882 
2883 /**
2884  *	skb_queue_head - queue a buffer at the list head
2885  *	@list: list to use
2886  *	@newsk: buffer to queue
2887  *
2888  *	Queue a buffer at the start of the list. This function takes the
2889  *	list lock and can be used safely with other locking &sk_buff functions
2890  *	safely.
2891  *
2892  *	A buffer cannot be placed on two lists at the same time.
2893  */
2894 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
2895 {
2896 	unsigned long flags;
2897 
2898 	spin_lock_irqsave(&list->lock, flags);
2899 	__skb_queue_head(list, newsk);
2900 	spin_unlock_irqrestore(&list->lock, flags);
2901 }
2902 EXPORT_SYMBOL(skb_queue_head);
2903 
2904 /**
2905  *	skb_queue_tail - queue a buffer at the list tail
2906  *	@list: list to use
2907  *	@newsk: buffer to queue
2908  *
2909  *	Queue a buffer at the tail of the list. This function takes the
2910  *	list lock and can be used safely with other locking &sk_buff functions
2911  *	safely.
2912  *
2913  *	A buffer cannot be placed on two lists at the same time.
2914  */
2915 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
2916 {
2917 	unsigned long flags;
2918 
2919 	spin_lock_irqsave(&list->lock, flags);
2920 	__skb_queue_tail(list, newsk);
2921 	spin_unlock_irqrestore(&list->lock, flags);
2922 }
2923 EXPORT_SYMBOL(skb_queue_tail);
2924 
2925 /**
2926  *	skb_unlink	-	remove a buffer from a list
2927  *	@skb: buffer to remove
2928  *	@list: list to use
2929  *
2930  *	Remove a packet from a list. The list locks are taken and this
2931  *	function is atomic with respect to other list locked calls
2932  *
2933  *	You must know what list the SKB is on.
2934  */
2935 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
2936 {
2937 	unsigned long flags;
2938 
2939 	spin_lock_irqsave(&list->lock, flags);
2940 	__skb_unlink(skb, list);
2941 	spin_unlock_irqrestore(&list->lock, flags);
2942 }
2943 EXPORT_SYMBOL(skb_unlink);
2944 
2945 /**
2946  *	skb_append	-	append a buffer
2947  *	@old: buffer to insert after
2948  *	@newsk: buffer to insert
2949  *	@list: list to use
2950  *
2951  *	Place a packet after a given packet in a list. The list locks are taken
2952  *	and this function is atomic with respect to other list locked calls.
2953  *	A buffer cannot be placed on two lists at the same time.
2954  */
2955 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
2956 {
2957 	unsigned long flags;
2958 
2959 	spin_lock_irqsave(&list->lock, flags);
2960 	__skb_queue_after(list, old, newsk);
2961 	spin_unlock_irqrestore(&list->lock, flags);
2962 }
2963 EXPORT_SYMBOL(skb_append);
2964 
2965 /**
2966  *	skb_insert	-	insert a buffer
2967  *	@old: buffer to insert before
2968  *	@newsk: buffer to insert
2969  *	@list: list to use
2970  *
2971  *	Place a packet before a given packet in a list. The list locks are
2972  * 	taken and this function is atomic with respect to other list locked
2973  *	calls.
2974  *
2975  *	A buffer cannot be placed on two lists at the same time.
2976  */
2977 void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
2978 {
2979 	unsigned long flags;
2980 
2981 	spin_lock_irqsave(&list->lock, flags);
2982 	__skb_insert(newsk, old->prev, old, list);
2983 	spin_unlock_irqrestore(&list->lock, flags);
2984 }
2985 EXPORT_SYMBOL(skb_insert);
2986 
2987 static inline void skb_split_inside_header(struct sk_buff *skb,
2988 					   struct sk_buff* skb1,
2989 					   const u32 len, const int pos)
2990 {
2991 	int i;
2992 
2993 	skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
2994 					 pos - len);
2995 	/* And move data appendix as is. */
2996 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
2997 		skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
2998 
2999 	skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
3000 	skb_shinfo(skb)->nr_frags  = 0;
3001 	skb1->data_len		   = skb->data_len;
3002 	skb1->len		   += skb1->data_len;
3003 	skb->data_len		   = 0;
3004 	skb->len		   = len;
3005 	skb_set_tail_pointer(skb, len);
3006 }
3007 
3008 static inline void skb_split_no_header(struct sk_buff *skb,
3009 				       struct sk_buff* skb1,
3010 				       const u32 len, int pos)
3011 {
3012 	int i, k = 0;
3013 	const int nfrags = skb_shinfo(skb)->nr_frags;
3014 
3015 	skb_shinfo(skb)->nr_frags = 0;
3016 	skb1->len		  = skb1->data_len = skb->len - len;
3017 	skb->len		  = len;
3018 	skb->data_len		  = len - pos;
3019 
3020 	for (i = 0; i < nfrags; i++) {
3021 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
3022 
3023 		if (pos + size > len) {
3024 			skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
3025 
3026 			if (pos < len) {
3027 				/* Split frag.
3028 				 * We have two variants in this case:
3029 				 * 1. Move all the frag to the second
3030 				 *    part, if it is possible. F.e.
3031 				 *    this approach is mandatory for TUX,
3032 				 *    where splitting is expensive.
3033 				 * 2. Split is accurately. We make this.
3034 				 */
3035 				skb_frag_ref(skb, i);
3036 				skb_shinfo(skb1)->frags[0].page_offset += len - pos;
3037 				skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos);
3038 				skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos);
3039 				skb_shinfo(skb)->nr_frags++;
3040 			}
3041 			k++;
3042 		} else
3043 			skb_shinfo(skb)->nr_frags++;
3044 		pos += size;
3045 	}
3046 	skb_shinfo(skb1)->nr_frags = k;
3047 }
3048 
3049 /**
3050  * skb_split - Split fragmented skb to two parts at length len.
3051  * @skb: the buffer to split
3052  * @skb1: the buffer to receive the second part
3053  * @len: new length for skb
3054  */
3055 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
3056 {
3057 	int pos = skb_headlen(skb);
3058 
3059 	skb_shinfo(skb1)->tx_flags |= skb_shinfo(skb)->tx_flags &
3060 				      SKBTX_SHARED_FRAG;
3061 	skb_zerocopy_clone(skb1, skb, 0);
3062 	if (len < pos)	/* Split line is inside header. */
3063 		skb_split_inside_header(skb, skb1, len, pos);
3064 	else		/* Second chunk has no header, nothing to copy. */
3065 		skb_split_no_header(skb, skb1, len, pos);
3066 }
3067 EXPORT_SYMBOL(skb_split);
3068 
3069 /* Shifting from/to a cloned skb is a no-go.
3070  *
3071  * Caller cannot keep skb_shinfo related pointers past calling here!
3072  */
3073 static int skb_prepare_for_shift(struct sk_buff *skb)
3074 {
3075 	return skb_cloned(skb) && pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3076 }
3077 
3078 /**
3079  * skb_shift - Shifts paged data partially from skb to another
3080  * @tgt: buffer into which tail data gets added
3081  * @skb: buffer from which the paged data comes from
3082  * @shiftlen: shift up to this many bytes
3083  *
3084  * Attempts to shift up to shiftlen worth of bytes, which may be less than
3085  * the length of the skb, from skb to tgt. Returns number bytes shifted.
3086  * It's up to caller to free skb if everything was shifted.
3087  *
3088  * If @tgt runs out of frags, the whole operation is aborted.
3089  *
3090  * Skb cannot include anything else but paged data while tgt is allowed
3091  * to have non-paged data as well.
3092  *
3093  * TODO: full sized shift could be optimized but that would need
3094  * specialized skb free'er to handle frags without up-to-date nr_frags.
3095  */
3096 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
3097 {
3098 	int from, to, merge, todo;
3099 	struct skb_frag_struct *fragfrom, *fragto;
3100 
3101 	BUG_ON(shiftlen > skb->len);
3102 
3103 	if (skb_headlen(skb))
3104 		return 0;
3105 	if (skb_zcopy(tgt) || skb_zcopy(skb))
3106 		return 0;
3107 
3108 	todo = shiftlen;
3109 	from = 0;
3110 	to = skb_shinfo(tgt)->nr_frags;
3111 	fragfrom = &skb_shinfo(skb)->frags[from];
3112 
3113 	/* Actual merge is delayed until the point when we know we can
3114 	 * commit all, so that we don't have to undo partial changes
3115 	 */
3116 	if (!to ||
3117 	    !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom),
3118 			      fragfrom->page_offset)) {
3119 		merge = -1;
3120 	} else {
3121 		merge = to - 1;
3122 
3123 		todo -= skb_frag_size(fragfrom);
3124 		if (todo < 0) {
3125 			if (skb_prepare_for_shift(skb) ||
3126 			    skb_prepare_for_shift(tgt))
3127 				return 0;
3128 
3129 			/* All previous frag pointers might be stale! */
3130 			fragfrom = &skb_shinfo(skb)->frags[from];
3131 			fragto = &skb_shinfo(tgt)->frags[merge];
3132 
3133 			skb_frag_size_add(fragto, shiftlen);
3134 			skb_frag_size_sub(fragfrom, shiftlen);
3135 			fragfrom->page_offset += shiftlen;
3136 
3137 			goto onlymerged;
3138 		}
3139 
3140 		from++;
3141 	}
3142 
3143 	/* Skip full, not-fitting skb to avoid expensive operations */
3144 	if ((shiftlen == skb->len) &&
3145 	    (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
3146 		return 0;
3147 
3148 	if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
3149 		return 0;
3150 
3151 	while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
3152 		if (to == MAX_SKB_FRAGS)
3153 			return 0;
3154 
3155 		fragfrom = &skb_shinfo(skb)->frags[from];
3156 		fragto = &skb_shinfo(tgt)->frags[to];
3157 
3158 		if (todo >= skb_frag_size(fragfrom)) {
3159 			*fragto = *fragfrom;
3160 			todo -= skb_frag_size(fragfrom);
3161 			from++;
3162 			to++;
3163 
3164 		} else {
3165 			__skb_frag_ref(fragfrom);
3166 			fragto->page = fragfrom->page;
3167 			fragto->page_offset = fragfrom->page_offset;
3168 			skb_frag_size_set(fragto, todo);
3169 
3170 			fragfrom->page_offset += todo;
3171 			skb_frag_size_sub(fragfrom, todo);
3172 			todo = 0;
3173 
3174 			to++;
3175 			break;
3176 		}
3177 	}
3178 
3179 	/* Ready to "commit" this state change to tgt */
3180 	skb_shinfo(tgt)->nr_frags = to;
3181 
3182 	if (merge >= 0) {
3183 		fragfrom = &skb_shinfo(skb)->frags[0];
3184 		fragto = &skb_shinfo(tgt)->frags[merge];
3185 
3186 		skb_frag_size_add(fragto, skb_frag_size(fragfrom));
3187 		__skb_frag_unref(fragfrom);
3188 	}
3189 
3190 	/* Reposition in the original skb */
3191 	to = 0;
3192 	while (from < skb_shinfo(skb)->nr_frags)
3193 		skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
3194 	skb_shinfo(skb)->nr_frags = to;
3195 
3196 	BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
3197 
3198 onlymerged:
3199 	/* Most likely the tgt won't ever need its checksum anymore, skb on
3200 	 * the other hand might need it if it needs to be resent
3201 	 */
3202 	tgt->ip_summed = CHECKSUM_PARTIAL;
3203 	skb->ip_summed = CHECKSUM_PARTIAL;
3204 
3205 	/* Yak, is it really working this way? Some helper please? */
3206 	skb->len -= shiftlen;
3207 	skb->data_len -= shiftlen;
3208 	skb->truesize -= shiftlen;
3209 	tgt->len += shiftlen;
3210 	tgt->data_len += shiftlen;
3211 	tgt->truesize += shiftlen;
3212 
3213 	return shiftlen;
3214 }
3215 
3216 /**
3217  * skb_prepare_seq_read - Prepare a sequential read of skb data
3218  * @skb: the buffer to read
3219  * @from: lower offset of data to be read
3220  * @to: upper offset of data to be read
3221  * @st: state variable
3222  *
3223  * Initializes the specified state variable. Must be called before
3224  * invoking skb_seq_read() for the first time.
3225  */
3226 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
3227 			  unsigned int to, struct skb_seq_state *st)
3228 {
3229 	st->lower_offset = from;
3230 	st->upper_offset = to;
3231 	st->root_skb = st->cur_skb = skb;
3232 	st->frag_idx = st->stepped_offset = 0;
3233 	st->frag_data = NULL;
3234 }
3235 EXPORT_SYMBOL(skb_prepare_seq_read);
3236 
3237 /**
3238  * skb_seq_read - Sequentially read skb data
3239  * @consumed: number of bytes consumed by the caller so far
3240  * @data: destination pointer for data to be returned
3241  * @st: state variable
3242  *
3243  * Reads a block of skb data at @consumed relative to the
3244  * lower offset specified to skb_prepare_seq_read(). Assigns
3245  * the head of the data block to @data and returns the length
3246  * of the block or 0 if the end of the skb data or the upper
3247  * offset has been reached.
3248  *
3249  * The caller is not required to consume all of the data
3250  * returned, i.e. @consumed is typically set to the number
3251  * of bytes already consumed and the next call to
3252  * skb_seq_read() will return the remaining part of the block.
3253  *
3254  * Note 1: The size of each block of data returned can be arbitrary,
3255  *       this limitation is the cost for zerocopy sequential
3256  *       reads of potentially non linear data.
3257  *
3258  * Note 2: Fragment lists within fragments are not implemented
3259  *       at the moment, state->root_skb could be replaced with
3260  *       a stack for this purpose.
3261  */
3262 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
3263 			  struct skb_seq_state *st)
3264 {
3265 	unsigned int block_limit, abs_offset = consumed + st->lower_offset;
3266 	skb_frag_t *frag;
3267 
3268 	if (unlikely(abs_offset >= st->upper_offset)) {
3269 		if (st->frag_data) {
3270 			kunmap_atomic(st->frag_data);
3271 			st->frag_data = NULL;
3272 		}
3273 		return 0;
3274 	}
3275 
3276 next_skb:
3277 	block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
3278 
3279 	if (abs_offset < block_limit && !st->frag_data) {
3280 		*data = st->cur_skb->data + (abs_offset - st->stepped_offset);
3281 		return block_limit - abs_offset;
3282 	}
3283 
3284 	if (st->frag_idx == 0 && !st->frag_data)
3285 		st->stepped_offset += skb_headlen(st->cur_skb);
3286 
3287 	while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
3288 		frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
3289 		block_limit = skb_frag_size(frag) + st->stepped_offset;
3290 
3291 		if (abs_offset < block_limit) {
3292 			if (!st->frag_data)
3293 				st->frag_data = kmap_atomic(skb_frag_page(frag));
3294 
3295 			*data = (u8 *) st->frag_data + frag->page_offset +
3296 				(abs_offset - st->stepped_offset);
3297 
3298 			return block_limit - abs_offset;
3299 		}
3300 
3301 		if (st->frag_data) {
3302 			kunmap_atomic(st->frag_data);
3303 			st->frag_data = NULL;
3304 		}
3305 
3306 		st->frag_idx++;
3307 		st->stepped_offset += skb_frag_size(frag);
3308 	}
3309 
3310 	if (st->frag_data) {
3311 		kunmap_atomic(st->frag_data);
3312 		st->frag_data = NULL;
3313 	}
3314 
3315 	if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) {
3316 		st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
3317 		st->frag_idx = 0;
3318 		goto next_skb;
3319 	} else if (st->cur_skb->next) {
3320 		st->cur_skb = st->cur_skb->next;
3321 		st->frag_idx = 0;
3322 		goto next_skb;
3323 	}
3324 
3325 	return 0;
3326 }
3327 EXPORT_SYMBOL(skb_seq_read);
3328 
3329 /**
3330  * skb_abort_seq_read - Abort a sequential read of skb data
3331  * @st: state variable
3332  *
3333  * Must be called if skb_seq_read() was not called until it
3334  * returned 0.
3335  */
3336 void skb_abort_seq_read(struct skb_seq_state *st)
3337 {
3338 	if (st->frag_data)
3339 		kunmap_atomic(st->frag_data);
3340 }
3341 EXPORT_SYMBOL(skb_abort_seq_read);
3342 
3343 #define TS_SKB_CB(state)	((struct skb_seq_state *) &((state)->cb))
3344 
3345 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
3346 					  struct ts_config *conf,
3347 					  struct ts_state *state)
3348 {
3349 	return skb_seq_read(offset, text, TS_SKB_CB(state));
3350 }
3351 
3352 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
3353 {
3354 	skb_abort_seq_read(TS_SKB_CB(state));
3355 }
3356 
3357 /**
3358  * skb_find_text - Find a text pattern in skb data
3359  * @skb: the buffer to look in
3360  * @from: search offset
3361  * @to: search limit
3362  * @config: textsearch configuration
3363  *
3364  * Finds a pattern in the skb data according to the specified
3365  * textsearch configuration. Use textsearch_next() to retrieve
3366  * subsequent occurrences of the pattern. Returns the offset
3367  * to the first occurrence or UINT_MAX if no match was found.
3368  */
3369 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
3370 			   unsigned int to, struct ts_config *config)
3371 {
3372 	struct ts_state state;
3373 	unsigned int ret;
3374 
3375 	config->get_next_block = skb_ts_get_next_block;
3376 	config->finish = skb_ts_finish;
3377 
3378 	skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state));
3379 
3380 	ret = textsearch_find(config, &state);
3381 	return (ret <= to - from ? ret : UINT_MAX);
3382 }
3383 EXPORT_SYMBOL(skb_find_text);
3384 
3385 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
3386 			 int offset, size_t size)
3387 {
3388 	int i = skb_shinfo(skb)->nr_frags;
3389 
3390 	if (skb_can_coalesce(skb, i, page, offset)) {
3391 		skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size);
3392 	} else if (i < MAX_SKB_FRAGS) {
3393 		get_page(page);
3394 		skb_fill_page_desc(skb, i, page, offset, size);
3395 	} else {
3396 		return -EMSGSIZE;
3397 	}
3398 
3399 	return 0;
3400 }
3401 EXPORT_SYMBOL_GPL(skb_append_pagefrags);
3402 
3403 /**
3404  *	skb_pull_rcsum - pull skb and update receive checksum
3405  *	@skb: buffer to update
3406  *	@len: length of data pulled
3407  *
3408  *	This function performs an skb_pull on the packet and updates
3409  *	the CHECKSUM_COMPLETE checksum.  It should be used on
3410  *	receive path processing instead of skb_pull unless you know
3411  *	that the checksum difference is zero (e.g., a valid IP header)
3412  *	or you are setting ip_summed to CHECKSUM_NONE.
3413  */
3414 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
3415 {
3416 	unsigned char *data = skb->data;
3417 
3418 	BUG_ON(len > skb->len);
3419 	__skb_pull(skb, len);
3420 	skb_postpull_rcsum(skb, data, len);
3421 	return skb->data;
3422 }
3423 EXPORT_SYMBOL_GPL(skb_pull_rcsum);
3424 
3425 static inline skb_frag_t skb_head_frag_to_page_desc(struct sk_buff *frag_skb)
3426 {
3427 	skb_frag_t head_frag;
3428 	struct page *page;
3429 
3430 	page = virt_to_head_page(frag_skb->head);
3431 	head_frag.page.p = page;
3432 	head_frag.page_offset = frag_skb->data -
3433 		(unsigned char *)page_address(page);
3434 	head_frag.size = skb_headlen(frag_skb);
3435 	return head_frag;
3436 }
3437 
3438 /**
3439  *	skb_segment - Perform protocol segmentation on skb.
3440  *	@head_skb: buffer to segment
3441  *	@features: features for the output path (see dev->features)
3442  *
3443  *	This function performs segmentation on the given skb.  It returns
3444  *	a pointer to the first in a list of new skbs for the segments.
3445  *	In case of error it returns ERR_PTR(err).
3446  */
3447 struct sk_buff *skb_segment(struct sk_buff *head_skb,
3448 			    netdev_features_t features)
3449 {
3450 	struct sk_buff *segs = NULL;
3451 	struct sk_buff *tail = NULL;
3452 	struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list;
3453 	skb_frag_t *frag = skb_shinfo(head_skb)->frags;
3454 	unsigned int mss = skb_shinfo(head_skb)->gso_size;
3455 	unsigned int doffset = head_skb->data - skb_mac_header(head_skb);
3456 	struct sk_buff *frag_skb = head_skb;
3457 	unsigned int offset = doffset;
3458 	unsigned int tnl_hlen = skb_tnl_header_len(head_skb);
3459 	unsigned int partial_segs = 0;
3460 	unsigned int headroom;
3461 	unsigned int len = head_skb->len;
3462 	__be16 proto;
3463 	bool csum, sg;
3464 	int nfrags = skb_shinfo(head_skb)->nr_frags;
3465 	int err = -ENOMEM;
3466 	int i = 0;
3467 	int pos;
3468 	int dummy;
3469 
3470 	__skb_push(head_skb, doffset);
3471 	proto = skb_network_protocol(head_skb, &dummy);
3472 	if (unlikely(!proto))
3473 		return ERR_PTR(-EINVAL);
3474 
3475 	sg = !!(features & NETIF_F_SG);
3476 	csum = !!can_checksum_protocol(features, proto);
3477 
3478 	if (sg && csum && (mss != GSO_BY_FRAGS))  {
3479 		if (!(features & NETIF_F_GSO_PARTIAL)) {
3480 			struct sk_buff *iter;
3481 			unsigned int frag_len;
3482 
3483 			if (!list_skb ||
3484 			    !net_gso_ok(features, skb_shinfo(head_skb)->gso_type))
3485 				goto normal;
3486 
3487 			/* If we get here then all the required
3488 			 * GSO features except frag_list are supported.
3489 			 * Try to split the SKB to multiple GSO SKBs
3490 			 * with no frag_list.
3491 			 * Currently we can do that only when the buffers don't
3492 			 * have a linear part and all the buffers except
3493 			 * the last are of the same length.
3494 			 */
3495 			frag_len = list_skb->len;
3496 			skb_walk_frags(head_skb, iter) {
3497 				if (frag_len != iter->len && iter->next)
3498 					goto normal;
3499 				if (skb_headlen(iter) && !iter->head_frag)
3500 					goto normal;
3501 
3502 				len -= iter->len;
3503 			}
3504 
3505 			if (len != frag_len)
3506 				goto normal;
3507 		}
3508 
3509 		/* GSO partial only requires that we trim off any excess that
3510 		 * doesn't fit into an MSS sized block, so take care of that
3511 		 * now.
3512 		 */
3513 		partial_segs = len / mss;
3514 		if (partial_segs > 1)
3515 			mss *= partial_segs;
3516 		else
3517 			partial_segs = 0;
3518 	}
3519 
3520 normal:
3521 	headroom = skb_headroom(head_skb);
3522 	pos = skb_headlen(head_skb);
3523 
3524 	do {
3525 		struct sk_buff *nskb;
3526 		skb_frag_t *nskb_frag;
3527 		int hsize;
3528 		int size;
3529 
3530 		if (unlikely(mss == GSO_BY_FRAGS)) {
3531 			len = list_skb->len;
3532 		} else {
3533 			len = head_skb->len - offset;
3534 			if (len > mss)
3535 				len = mss;
3536 		}
3537 
3538 		hsize = skb_headlen(head_skb) - offset;
3539 		if (hsize < 0)
3540 			hsize = 0;
3541 		if (hsize > len || !sg)
3542 			hsize = len;
3543 
3544 		if (!hsize && i >= nfrags && skb_headlen(list_skb) &&
3545 		    (skb_headlen(list_skb) == len || sg)) {
3546 			BUG_ON(skb_headlen(list_skb) > len);
3547 
3548 			i = 0;
3549 			nfrags = skb_shinfo(list_skb)->nr_frags;
3550 			frag = skb_shinfo(list_skb)->frags;
3551 			frag_skb = list_skb;
3552 			pos += skb_headlen(list_skb);
3553 
3554 			while (pos < offset + len) {
3555 				BUG_ON(i >= nfrags);
3556 
3557 				size = skb_frag_size(frag);
3558 				if (pos + size > offset + len)
3559 					break;
3560 
3561 				i++;
3562 				pos += size;
3563 				frag++;
3564 			}
3565 
3566 			nskb = skb_clone(list_skb, GFP_ATOMIC);
3567 			list_skb = list_skb->next;
3568 
3569 			if (unlikely(!nskb))
3570 				goto err;
3571 
3572 			if (unlikely(pskb_trim(nskb, len))) {
3573 				kfree_skb(nskb);
3574 				goto err;
3575 			}
3576 
3577 			hsize = skb_end_offset(nskb);
3578 			if (skb_cow_head(nskb, doffset + headroom)) {
3579 				kfree_skb(nskb);
3580 				goto err;
3581 			}
3582 
3583 			nskb->truesize += skb_end_offset(nskb) - hsize;
3584 			skb_release_head_state(nskb);
3585 			__skb_push(nskb, doffset);
3586 		} else {
3587 			nskb = __alloc_skb(hsize + doffset + headroom,
3588 					   GFP_ATOMIC, skb_alloc_rx_flag(head_skb),
3589 					   NUMA_NO_NODE);
3590 
3591 			if (unlikely(!nskb))
3592 				goto err;
3593 
3594 			skb_reserve(nskb, headroom);
3595 			__skb_put(nskb, doffset);
3596 		}
3597 
3598 		if (segs)
3599 			tail->next = nskb;
3600 		else
3601 			segs = nskb;
3602 		tail = nskb;
3603 
3604 		__copy_skb_header(nskb, head_skb);
3605 
3606 		skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom);
3607 		skb_reset_mac_len(nskb);
3608 
3609 		skb_copy_from_linear_data_offset(head_skb, -tnl_hlen,
3610 						 nskb->data - tnl_hlen,
3611 						 doffset + tnl_hlen);
3612 
3613 		if (nskb->len == len + doffset)
3614 			goto perform_csum_check;
3615 
3616 		if (!sg) {
3617 			if (!nskb->remcsum_offload)
3618 				nskb->ip_summed = CHECKSUM_NONE;
3619 			SKB_GSO_CB(nskb)->csum =
3620 				skb_copy_and_csum_bits(head_skb, offset,
3621 						       skb_put(nskb, len),
3622 						       len, 0);
3623 			SKB_GSO_CB(nskb)->csum_start =
3624 				skb_headroom(nskb) + doffset;
3625 			continue;
3626 		}
3627 
3628 		nskb_frag = skb_shinfo(nskb)->frags;
3629 
3630 		skb_copy_from_linear_data_offset(head_skb, offset,
3631 						 skb_put(nskb, hsize), hsize);
3632 
3633 		skb_shinfo(nskb)->tx_flags |= skb_shinfo(head_skb)->tx_flags &
3634 					      SKBTX_SHARED_FRAG;
3635 
3636 		if (skb_orphan_frags(frag_skb, GFP_ATOMIC) ||
3637 		    skb_zerocopy_clone(nskb, frag_skb, GFP_ATOMIC))
3638 			goto err;
3639 
3640 		while (pos < offset + len) {
3641 			if (i >= nfrags) {
3642 				i = 0;
3643 				nfrags = skb_shinfo(list_skb)->nr_frags;
3644 				frag = skb_shinfo(list_skb)->frags;
3645 				frag_skb = list_skb;
3646 				if (!skb_headlen(list_skb)) {
3647 					BUG_ON(!nfrags);
3648 				} else {
3649 					BUG_ON(!list_skb->head_frag);
3650 
3651 					/* to make room for head_frag. */
3652 					i--;
3653 					frag--;
3654 				}
3655 				if (skb_orphan_frags(frag_skb, GFP_ATOMIC) ||
3656 				    skb_zerocopy_clone(nskb, frag_skb,
3657 						       GFP_ATOMIC))
3658 					goto err;
3659 
3660 				list_skb = list_skb->next;
3661 			}
3662 
3663 			if (unlikely(skb_shinfo(nskb)->nr_frags >=
3664 				     MAX_SKB_FRAGS)) {
3665 				net_warn_ratelimited(
3666 					"skb_segment: too many frags: %u %u\n",
3667 					pos, mss);
3668 				err = -EINVAL;
3669 				goto err;
3670 			}
3671 
3672 			*nskb_frag = (i < 0) ? skb_head_frag_to_page_desc(frag_skb) : *frag;
3673 			__skb_frag_ref(nskb_frag);
3674 			size = skb_frag_size(nskb_frag);
3675 
3676 			if (pos < offset) {
3677 				nskb_frag->page_offset += offset - pos;
3678 				skb_frag_size_sub(nskb_frag, offset - pos);
3679 			}
3680 
3681 			skb_shinfo(nskb)->nr_frags++;
3682 
3683 			if (pos + size <= offset + len) {
3684 				i++;
3685 				frag++;
3686 				pos += size;
3687 			} else {
3688 				skb_frag_size_sub(nskb_frag, pos + size - (offset + len));
3689 				goto skip_fraglist;
3690 			}
3691 
3692 			nskb_frag++;
3693 		}
3694 
3695 skip_fraglist:
3696 		nskb->data_len = len - hsize;
3697 		nskb->len += nskb->data_len;
3698 		nskb->truesize += nskb->data_len;
3699 
3700 perform_csum_check:
3701 		if (!csum) {
3702 			if (skb_has_shared_frag(nskb) &&
3703 			    __skb_linearize(nskb))
3704 				goto err;
3705 
3706 			if (!nskb->remcsum_offload)
3707 				nskb->ip_summed = CHECKSUM_NONE;
3708 			SKB_GSO_CB(nskb)->csum =
3709 				skb_checksum(nskb, doffset,
3710 					     nskb->len - doffset, 0);
3711 			SKB_GSO_CB(nskb)->csum_start =
3712 				skb_headroom(nskb) + doffset;
3713 		}
3714 	} while ((offset += len) < head_skb->len);
3715 
3716 	/* Some callers want to get the end of the list.
3717 	 * Put it in segs->prev to avoid walking the list.
3718 	 * (see validate_xmit_skb_list() for example)
3719 	 */
3720 	segs->prev = tail;
3721 
3722 	if (partial_segs) {
3723 		struct sk_buff *iter;
3724 		int type = skb_shinfo(head_skb)->gso_type;
3725 		unsigned short gso_size = skb_shinfo(head_skb)->gso_size;
3726 
3727 		/* Update type to add partial and then remove dodgy if set */
3728 		type |= (features & NETIF_F_GSO_PARTIAL) / NETIF_F_GSO_PARTIAL * SKB_GSO_PARTIAL;
3729 		type &= ~SKB_GSO_DODGY;
3730 
3731 		/* Update GSO info and prepare to start updating headers on
3732 		 * our way back down the stack of protocols.
3733 		 */
3734 		for (iter = segs; iter; iter = iter->next) {
3735 			skb_shinfo(iter)->gso_size = gso_size;
3736 			skb_shinfo(iter)->gso_segs = partial_segs;
3737 			skb_shinfo(iter)->gso_type = type;
3738 			SKB_GSO_CB(iter)->data_offset = skb_headroom(iter) + doffset;
3739 		}
3740 
3741 		if (tail->len - doffset <= gso_size)
3742 			skb_shinfo(tail)->gso_size = 0;
3743 		else if (tail != segs)
3744 			skb_shinfo(tail)->gso_segs = DIV_ROUND_UP(tail->len - doffset, gso_size);
3745 	}
3746 
3747 	/* Following permits correct backpressure, for protocols
3748 	 * using skb_set_owner_w().
3749 	 * Idea is to tranfert ownership from head_skb to last segment.
3750 	 */
3751 	if (head_skb->destructor == sock_wfree) {
3752 		swap(tail->truesize, head_skb->truesize);
3753 		swap(tail->destructor, head_skb->destructor);
3754 		swap(tail->sk, head_skb->sk);
3755 	}
3756 	return segs;
3757 
3758 err:
3759 	kfree_skb_list(segs);
3760 	return ERR_PTR(err);
3761 }
3762 EXPORT_SYMBOL_GPL(skb_segment);
3763 
3764 int skb_gro_receive(struct sk_buff *p, struct sk_buff *skb)
3765 {
3766 	struct skb_shared_info *pinfo, *skbinfo = skb_shinfo(skb);
3767 	unsigned int offset = skb_gro_offset(skb);
3768 	unsigned int headlen = skb_headlen(skb);
3769 	unsigned int len = skb_gro_len(skb);
3770 	unsigned int delta_truesize;
3771 	struct sk_buff *lp;
3772 
3773 	if (unlikely(p->len + len >= 65536))
3774 		return -E2BIG;
3775 
3776 	lp = NAPI_GRO_CB(p)->last;
3777 	pinfo = skb_shinfo(lp);
3778 
3779 	if (headlen <= offset) {
3780 		skb_frag_t *frag;
3781 		skb_frag_t *frag2;
3782 		int i = skbinfo->nr_frags;
3783 		int nr_frags = pinfo->nr_frags + i;
3784 
3785 		if (nr_frags > MAX_SKB_FRAGS)
3786 			goto merge;
3787 
3788 		offset -= headlen;
3789 		pinfo->nr_frags = nr_frags;
3790 		skbinfo->nr_frags = 0;
3791 
3792 		frag = pinfo->frags + nr_frags;
3793 		frag2 = skbinfo->frags + i;
3794 		do {
3795 			*--frag = *--frag2;
3796 		} while (--i);
3797 
3798 		frag->page_offset += offset;
3799 		skb_frag_size_sub(frag, offset);
3800 
3801 		/* all fragments truesize : remove (head size + sk_buff) */
3802 		delta_truesize = skb->truesize -
3803 				 SKB_TRUESIZE(skb_end_offset(skb));
3804 
3805 		skb->truesize -= skb->data_len;
3806 		skb->len -= skb->data_len;
3807 		skb->data_len = 0;
3808 
3809 		NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE;
3810 		goto done;
3811 	} else if (skb->head_frag) {
3812 		int nr_frags = pinfo->nr_frags;
3813 		skb_frag_t *frag = pinfo->frags + nr_frags;
3814 		struct page *page = virt_to_head_page(skb->head);
3815 		unsigned int first_size = headlen - offset;
3816 		unsigned int first_offset;
3817 
3818 		if (nr_frags + 1 + skbinfo->nr_frags > MAX_SKB_FRAGS)
3819 			goto merge;
3820 
3821 		first_offset = skb->data -
3822 			       (unsigned char *)page_address(page) +
3823 			       offset;
3824 
3825 		pinfo->nr_frags = nr_frags + 1 + skbinfo->nr_frags;
3826 
3827 		frag->page.p	  = page;
3828 		frag->page_offset = first_offset;
3829 		skb_frag_size_set(frag, first_size);
3830 
3831 		memcpy(frag + 1, skbinfo->frags, sizeof(*frag) * skbinfo->nr_frags);
3832 		/* We dont need to clear skbinfo->nr_frags here */
3833 
3834 		delta_truesize = skb->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
3835 		NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE_STOLEN_HEAD;
3836 		goto done;
3837 	}
3838 
3839 merge:
3840 	delta_truesize = skb->truesize;
3841 	if (offset > headlen) {
3842 		unsigned int eat = offset - headlen;
3843 
3844 		skbinfo->frags[0].page_offset += eat;
3845 		skb_frag_size_sub(&skbinfo->frags[0], eat);
3846 		skb->data_len -= eat;
3847 		skb->len -= eat;
3848 		offset = headlen;
3849 	}
3850 
3851 	__skb_pull(skb, offset);
3852 
3853 	if (NAPI_GRO_CB(p)->last == p)
3854 		skb_shinfo(p)->frag_list = skb;
3855 	else
3856 		NAPI_GRO_CB(p)->last->next = skb;
3857 	NAPI_GRO_CB(p)->last = skb;
3858 	__skb_header_release(skb);
3859 	lp = p;
3860 
3861 done:
3862 	NAPI_GRO_CB(p)->count++;
3863 	p->data_len += len;
3864 	p->truesize += delta_truesize;
3865 	p->len += len;
3866 	if (lp != p) {
3867 		lp->data_len += len;
3868 		lp->truesize += delta_truesize;
3869 		lp->len += len;
3870 	}
3871 	NAPI_GRO_CB(skb)->same_flow = 1;
3872 	return 0;
3873 }
3874 EXPORT_SYMBOL_GPL(skb_gro_receive);
3875 
3876 void __init skb_init(void)
3877 {
3878 	skbuff_head_cache = kmem_cache_create_usercopy("skbuff_head_cache",
3879 					      sizeof(struct sk_buff),
3880 					      0,
3881 					      SLAB_HWCACHE_ALIGN|SLAB_PANIC,
3882 					      offsetof(struct sk_buff, cb),
3883 					      sizeof_field(struct sk_buff, cb),
3884 					      NULL);
3885 	skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
3886 						sizeof(struct sk_buff_fclones),
3887 						0,
3888 						SLAB_HWCACHE_ALIGN|SLAB_PANIC,
3889 						NULL);
3890 }
3891 
3892 static int
3893 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len,
3894 	       unsigned int recursion_level)
3895 {
3896 	int start = skb_headlen(skb);
3897 	int i, copy = start - offset;
3898 	struct sk_buff *frag_iter;
3899 	int elt = 0;
3900 
3901 	if (unlikely(recursion_level >= 24))
3902 		return -EMSGSIZE;
3903 
3904 	if (copy > 0) {
3905 		if (copy > len)
3906 			copy = len;
3907 		sg_set_buf(sg, skb->data + offset, copy);
3908 		elt++;
3909 		if ((len -= copy) == 0)
3910 			return elt;
3911 		offset += copy;
3912 	}
3913 
3914 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3915 		int end;
3916 
3917 		WARN_ON(start > offset + len);
3918 
3919 		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
3920 		if ((copy = end - offset) > 0) {
3921 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3922 			if (unlikely(elt && sg_is_last(&sg[elt - 1])))
3923 				return -EMSGSIZE;
3924 
3925 			if (copy > len)
3926 				copy = len;
3927 			sg_set_page(&sg[elt], skb_frag_page(frag), copy,
3928 					frag->page_offset+offset-start);
3929 			elt++;
3930 			if (!(len -= copy))
3931 				return elt;
3932 			offset += copy;
3933 		}
3934 		start = end;
3935 	}
3936 
3937 	skb_walk_frags(skb, frag_iter) {
3938 		int end, ret;
3939 
3940 		WARN_ON(start > offset + len);
3941 
3942 		end = start + frag_iter->len;
3943 		if ((copy = end - offset) > 0) {
3944 			if (unlikely(elt && sg_is_last(&sg[elt - 1])))
3945 				return -EMSGSIZE;
3946 
3947 			if (copy > len)
3948 				copy = len;
3949 			ret = __skb_to_sgvec(frag_iter, sg+elt, offset - start,
3950 					      copy, recursion_level + 1);
3951 			if (unlikely(ret < 0))
3952 				return ret;
3953 			elt += ret;
3954 			if ((len -= copy) == 0)
3955 				return elt;
3956 			offset += copy;
3957 		}
3958 		start = end;
3959 	}
3960 	BUG_ON(len);
3961 	return elt;
3962 }
3963 
3964 /**
3965  *	skb_to_sgvec - Fill a scatter-gather list from a socket buffer
3966  *	@skb: Socket buffer containing the buffers to be mapped
3967  *	@sg: The scatter-gather list to map into
3968  *	@offset: The offset into the buffer's contents to start mapping
3969  *	@len: Length of buffer space to be mapped
3970  *
3971  *	Fill the specified scatter-gather list with mappings/pointers into a
3972  *	region of the buffer space attached to a socket buffer. Returns either
3973  *	the number of scatterlist items used, or -EMSGSIZE if the contents
3974  *	could not fit.
3975  */
3976 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
3977 {
3978 	int nsg = __skb_to_sgvec(skb, sg, offset, len, 0);
3979 
3980 	if (nsg <= 0)
3981 		return nsg;
3982 
3983 	sg_mark_end(&sg[nsg - 1]);
3984 
3985 	return nsg;
3986 }
3987 EXPORT_SYMBOL_GPL(skb_to_sgvec);
3988 
3989 /* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given
3990  * sglist without mark the sg which contain last skb data as the end.
3991  * So the caller can mannipulate sg list as will when padding new data after
3992  * the first call without calling sg_unmark_end to expend sg list.
3993  *
3994  * Scenario to use skb_to_sgvec_nomark:
3995  * 1. sg_init_table
3996  * 2. skb_to_sgvec_nomark(payload1)
3997  * 3. skb_to_sgvec_nomark(payload2)
3998  *
3999  * This is equivalent to:
4000  * 1. sg_init_table
4001  * 2. skb_to_sgvec(payload1)
4002  * 3. sg_unmark_end
4003  * 4. skb_to_sgvec(payload2)
4004  *
4005  * When mapping mutilple payload conditionally, skb_to_sgvec_nomark
4006  * is more preferable.
4007  */
4008 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
4009 			int offset, int len)
4010 {
4011 	return __skb_to_sgvec(skb, sg, offset, len, 0);
4012 }
4013 EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark);
4014 
4015 
4016 
4017 /**
4018  *	skb_cow_data - Check that a socket buffer's data buffers are writable
4019  *	@skb: The socket buffer to check.
4020  *	@tailbits: Amount of trailing space to be added
4021  *	@trailer: Returned pointer to the skb where the @tailbits space begins
4022  *
4023  *	Make sure that the data buffers attached to a socket buffer are
4024  *	writable. If they are not, private copies are made of the data buffers
4025  *	and the socket buffer is set to use these instead.
4026  *
4027  *	If @tailbits is given, make sure that there is space to write @tailbits
4028  *	bytes of data beyond current end of socket buffer.  @trailer will be
4029  *	set to point to the skb in which this space begins.
4030  *
4031  *	The number of scatterlist elements required to completely map the
4032  *	COW'd and extended socket buffer will be returned.
4033  */
4034 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
4035 {
4036 	int copyflag;
4037 	int elt;
4038 	struct sk_buff *skb1, **skb_p;
4039 
4040 	/* If skb is cloned or its head is paged, reallocate
4041 	 * head pulling out all the pages (pages are considered not writable
4042 	 * at the moment even if they are anonymous).
4043 	 */
4044 	if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
4045 	    __pskb_pull_tail(skb, skb_pagelen(skb)-skb_headlen(skb)) == NULL)
4046 		return -ENOMEM;
4047 
4048 	/* Easy case. Most of packets will go this way. */
4049 	if (!skb_has_frag_list(skb)) {
4050 		/* A little of trouble, not enough of space for trailer.
4051 		 * This should not happen, when stack is tuned to generate
4052 		 * good frames. OK, on miss we reallocate and reserve even more
4053 		 * space, 128 bytes is fair. */
4054 
4055 		if (skb_tailroom(skb) < tailbits &&
4056 		    pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
4057 			return -ENOMEM;
4058 
4059 		/* Voila! */
4060 		*trailer = skb;
4061 		return 1;
4062 	}
4063 
4064 	/* Misery. We are in troubles, going to mincer fragments... */
4065 
4066 	elt = 1;
4067 	skb_p = &skb_shinfo(skb)->frag_list;
4068 	copyflag = 0;
4069 
4070 	while ((skb1 = *skb_p) != NULL) {
4071 		int ntail = 0;
4072 
4073 		/* The fragment is partially pulled by someone,
4074 		 * this can happen on input. Copy it and everything
4075 		 * after it. */
4076 
4077 		if (skb_shared(skb1))
4078 			copyflag = 1;
4079 
4080 		/* If the skb is the last, worry about trailer. */
4081 
4082 		if (skb1->next == NULL && tailbits) {
4083 			if (skb_shinfo(skb1)->nr_frags ||
4084 			    skb_has_frag_list(skb1) ||
4085 			    skb_tailroom(skb1) < tailbits)
4086 				ntail = tailbits + 128;
4087 		}
4088 
4089 		if (copyflag ||
4090 		    skb_cloned(skb1) ||
4091 		    ntail ||
4092 		    skb_shinfo(skb1)->nr_frags ||
4093 		    skb_has_frag_list(skb1)) {
4094 			struct sk_buff *skb2;
4095 
4096 			/* Fuck, we are miserable poor guys... */
4097 			if (ntail == 0)
4098 				skb2 = skb_copy(skb1, GFP_ATOMIC);
4099 			else
4100 				skb2 = skb_copy_expand(skb1,
4101 						       skb_headroom(skb1),
4102 						       ntail,
4103 						       GFP_ATOMIC);
4104 			if (unlikely(skb2 == NULL))
4105 				return -ENOMEM;
4106 
4107 			if (skb1->sk)
4108 				skb_set_owner_w(skb2, skb1->sk);
4109 
4110 			/* Looking around. Are we still alive?
4111 			 * OK, link new skb, drop old one */
4112 
4113 			skb2->next = skb1->next;
4114 			*skb_p = skb2;
4115 			kfree_skb(skb1);
4116 			skb1 = skb2;
4117 		}
4118 		elt++;
4119 		*trailer = skb1;
4120 		skb_p = &skb1->next;
4121 	}
4122 
4123 	return elt;
4124 }
4125 EXPORT_SYMBOL_GPL(skb_cow_data);
4126 
4127 static void sock_rmem_free(struct sk_buff *skb)
4128 {
4129 	struct sock *sk = skb->sk;
4130 
4131 	atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
4132 }
4133 
4134 static void skb_set_err_queue(struct sk_buff *skb)
4135 {
4136 	/* pkt_type of skbs received on local sockets is never PACKET_OUTGOING.
4137 	 * So, it is safe to (mis)use it to mark skbs on the error queue.
4138 	 */
4139 	skb->pkt_type = PACKET_OUTGOING;
4140 	BUILD_BUG_ON(PACKET_OUTGOING == 0);
4141 }
4142 
4143 /*
4144  * Note: We dont mem charge error packets (no sk_forward_alloc changes)
4145  */
4146 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
4147 {
4148 	if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
4149 	    (unsigned int)sk->sk_rcvbuf)
4150 		return -ENOMEM;
4151 
4152 	skb_orphan(skb);
4153 	skb->sk = sk;
4154 	skb->destructor = sock_rmem_free;
4155 	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
4156 	skb_set_err_queue(skb);
4157 
4158 	/* before exiting rcu section, make sure dst is refcounted */
4159 	skb_dst_force(skb);
4160 
4161 	skb_queue_tail(&sk->sk_error_queue, skb);
4162 	if (!sock_flag(sk, SOCK_DEAD))
4163 		sk->sk_error_report(sk);
4164 	return 0;
4165 }
4166 EXPORT_SYMBOL(sock_queue_err_skb);
4167 
4168 static bool is_icmp_err_skb(const struct sk_buff *skb)
4169 {
4170 	return skb && (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP ||
4171 		       SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP6);
4172 }
4173 
4174 struct sk_buff *sock_dequeue_err_skb(struct sock *sk)
4175 {
4176 	struct sk_buff_head *q = &sk->sk_error_queue;
4177 	struct sk_buff *skb, *skb_next = NULL;
4178 	bool icmp_next = false;
4179 	unsigned long flags;
4180 
4181 	spin_lock_irqsave(&q->lock, flags);
4182 	skb = __skb_dequeue(q);
4183 	if (skb && (skb_next = skb_peek(q))) {
4184 		icmp_next = is_icmp_err_skb(skb_next);
4185 		if (icmp_next)
4186 			sk->sk_err = SKB_EXT_ERR(skb_next)->ee.ee_origin;
4187 	}
4188 	spin_unlock_irqrestore(&q->lock, flags);
4189 
4190 	if (is_icmp_err_skb(skb) && !icmp_next)
4191 		sk->sk_err = 0;
4192 
4193 	if (skb_next)
4194 		sk->sk_error_report(sk);
4195 
4196 	return skb;
4197 }
4198 EXPORT_SYMBOL(sock_dequeue_err_skb);
4199 
4200 /**
4201  * skb_clone_sk - create clone of skb, and take reference to socket
4202  * @skb: the skb to clone
4203  *
4204  * This function creates a clone of a buffer that holds a reference on
4205  * sk_refcnt.  Buffers created via this function are meant to be
4206  * returned using sock_queue_err_skb, or free via kfree_skb.
4207  *
4208  * When passing buffers allocated with this function to sock_queue_err_skb
4209  * it is necessary to wrap the call with sock_hold/sock_put in order to
4210  * prevent the socket from being released prior to being enqueued on
4211  * the sk_error_queue.
4212  */
4213 struct sk_buff *skb_clone_sk(struct sk_buff *skb)
4214 {
4215 	struct sock *sk = skb->sk;
4216 	struct sk_buff *clone;
4217 
4218 	if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt))
4219 		return NULL;
4220 
4221 	clone = skb_clone(skb, GFP_ATOMIC);
4222 	if (!clone) {
4223 		sock_put(sk);
4224 		return NULL;
4225 	}
4226 
4227 	clone->sk = sk;
4228 	clone->destructor = sock_efree;
4229 
4230 	return clone;
4231 }
4232 EXPORT_SYMBOL(skb_clone_sk);
4233 
4234 static void __skb_complete_tx_timestamp(struct sk_buff *skb,
4235 					struct sock *sk,
4236 					int tstype,
4237 					bool opt_stats)
4238 {
4239 	struct sock_exterr_skb *serr;
4240 	int err;
4241 
4242 	BUILD_BUG_ON(sizeof(struct sock_exterr_skb) > sizeof(skb->cb));
4243 
4244 	serr = SKB_EXT_ERR(skb);
4245 	memset(serr, 0, sizeof(*serr));
4246 	serr->ee.ee_errno = ENOMSG;
4247 	serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
4248 	serr->ee.ee_info = tstype;
4249 	serr->opt_stats = opt_stats;
4250 	serr->header.h4.iif = skb->dev ? skb->dev->ifindex : 0;
4251 	if (sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID) {
4252 		serr->ee.ee_data = skb_shinfo(skb)->tskey;
4253 		if (sk->sk_protocol == IPPROTO_TCP &&
4254 		    sk->sk_type == SOCK_STREAM)
4255 			serr->ee.ee_data -= sk->sk_tskey;
4256 	}
4257 
4258 	err = sock_queue_err_skb(sk, skb);
4259 
4260 	if (err)
4261 		kfree_skb(skb);
4262 }
4263 
4264 static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly)
4265 {
4266 	bool ret;
4267 
4268 	if (likely(sysctl_tstamp_allow_data || tsonly))
4269 		return true;
4270 
4271 	read_lock_bh(&sk->sk_callback_lock);
4272 	ret = sk->sk_socket && sk->sk_socket->file &&
4273 	      file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW);
4274 	read_unlock_bh(&sk->sk_callback_lock);
4275 	return ret;
4276 }
4277 
4278 void skb_complete_tx_timestamp(struct sk_buff *skb,
4279 			       struct skb_shared_hwtstamps *hwtstamps)
4280 {
4281 	struct sock *sk = skb->sk;
4282 
4283 	if (!skb_may_tx_timestamp(sk, false))
4284 		goto err;
4285 
4286 	/* Take a reference to prevent skb_orphan() from freeing the socket,
4287 	 * but only if the socket refcount is not zero.
4288 	 */
4289 	if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
4290 		*skb_hwtstamps(skb) = *hwtstamps;
4291 		__skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND, false);
4292 		sock_put(sk);
4293 		return;
4294 	}
4295 
4296 err:
4297 	kfree_skb(skb);
4298 }
4299 EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp);
4300 
4301 void __skb_tstamp_tx(struct sk_buff *orig_skb,
4302 		     struct skb_shared_hwtstamps *hwtstamps,
4303 		     struct sock *sk, int tstype)
4304 {
4305 	struct sk_buff *skb;
4306 	bool tsonly, opt_stats = false;
4307 
4308 	if (!sk)
4309 		return;
4310 
4311 	if (!hwtstamps && !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TX_SWHW) &&
4312 	    skb_shinfo(orig_skb)->tx_flags & SKBTX_IN_PROGRESS)
4313 		return;
4314 
4315 	tsonly = sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TSONLY;
4316 	if (!skb_may_tx_timestamp(sk, tsonly))
4317 		return;
4318 
4319 	if (tsonly) {
4320 #ifdef CONFIG_INET
4321 		if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_STATS) &&
4322 		    sk->sk_protocol == IPPROTO_TCP &&
4323 		    sk->sk_type == SOCK_STREAM) {
4324 			skb = tcp_get_timestamping_opt_stats(sk);
4325 			opt_stats = true;
4326 		} else
4327 #endif
4328 			skb = alloc_skb(0, GFP_ATOMIC);
4329 	} else {
4330 		skb = skb_clone(orig_skb, GFP_ATOMIC);
4331 	}
4332 	if (!skb)
4333 		return;
4334 
4335 	if (tsonly) {
4336 		skb_shinfo(skb)->tx_flags |= skb_shinfo(orig_skb)->tx_flags &
4337 					     SKBTX_ANY_TSTAMP;
4338 		skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey;
4339 	}
4340 
4341 	if (hwtstamps)
4342 		*skb_hwtstamps(skb) = *hwtstamps;
4343 	else
4344 		skb->tstamp = ktime_get_real();
4345 
4346 	__skb_complete_tx_timestamp(skb, sk, tstype, opt_stats);
4347 }
4348 EXPORT_SYMBOL_GPL(__skb_tstamp_tx);
4349 
4350 void skb_tstamp_tx(struct sk_buff *orig_skb,
4351 		   struct skb_shared_hwtstamps *hwtstamps)
4352 {
4353 	return __skb_tstamp_tx(orig_skb, hwtstamps, orig_skb->sk,
4354 			       SCM_TSTAMP_SND);
4355 }
4356 EXPORT_SYMBOL_GPL(skb_tstamp_tx);
4357 
4358 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked)
4359 {
4360 	struct sock *sk = skb->sk;
4361 	struct sock_exterr_skb *serr;
4362 	int err = 1;
4363 
4364 	skb->wifi_acked_valid = 1;
4365 	skb->wifi_acked = acked;
4366 
4367 	serr = SKB_EXT_ERR(skb);
4368 	memset(serr, 0, sizeof(*serr));
4369 	serr->ee.ee_errno = ENOMSG;
4370 	serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS;
4371 
4372 	/* Take a reference to prevent skb_orphan() from freeing the socket,
4373 	 * but only if the socket refcount is not zero.
4374 	 */
4375 	if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
4376 		err = sock_queue_err_skb(sk, skb);
4377 		sock_put(sk);
4378 	}
4379 	if (err)
4380 		kfree_skb(skb);
4381 }
4382 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack);
4383 
4384 /**
4385  * skb_partial_csum_set - set up and verify partial csum values for packet
4386  * @skb: the skb to set
4387  * @start: the number of bytes after skb->data to start checksumming.
4388  * @off: the offset from start to place the checksum.
4389  *
4390  * For untrusted partially-checksummed packets, we need to make sure the values
4391  * for skb->csum_start and skb->csum_offset are valid so we don't oops.
4392  *
4393  * This function checks and sets those values and skb->ip_summed: if this
4394  * returns false you should drop the packet.
4395  */
4396 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
4397 {
4398 	u32 csum_end = (u32)start + (u32)off + sizeof(__sum16);
4399 	u32 csum_start = skb_headroom(skb) + (u32)start;
4400 
4401 	if (unlikely(csum_start > U16_MAX || csum_end > skb_headlen(skb))) {
4402 		net_warn_ratelimited("bad partial csum: csum=%u/%u headroom=%u headlen=%u\n",
4403 				     start, off, skb_headroom(skb), skb_headlen(skb));
4404 		return false;
4405 	}
4406 	skb->ip_summed = CHECKSUM_PARTIAL;
4407 	skb->csum_start = csum_start;
4408 	skb->csum_offset = off;
4409 	skb_set_transport_header(skb, start);
4410 	return true;
4411 }
4412 EXPORT_SYMBOL_GPL(skb_partial_csum_set);
4413 
4414 static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len,
4415 			       unsigned int max)
4416 {
4417 	if (skb_headlen(skb) >= len)
4418 		return 0;
4419 
4420 	/* If we need to pullup then pullup to the max, so we
4421 	 * won't need to do it again.
4422 	 */
4423 	if (max > skb->len)
4424 		max = skb->len;
4425 
4426 	if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL)
4427 		return -ENOMEM;
4428 
4429 	if (skb_headlen(skb) < len)
4430 		return -EPROTO;
4431 
4432 	return 0;
4433 }
4434 
4435 #define MAX_TCP_HDR_LEN (15 * 4)
4436 
4437 static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb,
4438 				      typeof(IPPROTO_IP) proto,
4439 				      unsigned int off)
4440 {
4441 	switch (proto) {
4442 		int err;
4443 
4444 	case IPPROTO_TCP:
4445 		err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr),
4446 					  off + MAX_TCP_HDR_LEN);
4447 		if (!err && !skb_partial_csum_set(skb, off,
4448 						  offsetof(struct tcphdr,
4449 							   check)))
4450 			err = -EPROTO;
4451 		return err ? ERR_PTR(err) : &tcp_hdr(skb)->check;
4452 
4453 	case IPPROTO_UDP:
4454 		err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr),
4455 					  off + sizeof(struct udphdr));
4456 		if (!err && !skb_partial_csum_set(skb, off,
4457 						  offsetof(struct udphdr,
4458 							   check)))
4459 			err = -EPROTO;
4460 		return err ? ERR_PTR(err) : &udp_hdr(skb)->check;
4461 	}
4462 
4463 	return ERR_PTR(-EPROTO);
4464 }
4465 
4466 /* This value should be large enough to cover a tagged ethernet header plus
4467  * maximally sized IP and TCP or UDP headers.
4468  */
4469 #define MAX_IP_HDR_LEN 128
4470 
4471 static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate)
4472 {
4473 	unsigned int off;
4474 	bool fragment;
4475 	__sum16 *csum;
4476 	int err;
4477 
4478 	fragment = false;
4479 
4480 	err = skb_maybe_pull_tail(skb,
4481 				  sizeof(struct iphdr),
4482 				  MAX_IP_HDR_LEN);
4483 	if (err < 0)
4484 		goto out;
4485 
4486 	if (ip_hdr(skb)->frag_off & htons(IP_OFFSET | IP_MF))
4487 		fragment = true;
4488 
4489 	off = ip_hdrlen(skb);
4490 
4491 	err = -EPROTO;
4492 
4493 	if (fragment)
4494 		goto out;
4495 
4496 	csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off);
4497 	if (IS_ERR(csum))
4498 		return PTR_ERR(csum);
4499 
4500 	if (recalculate)
4501 		*csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
4502 					   ip_hdr(skb)->daddr,
4503 					   skb->len - off,
4504 					   ip_hdr(skb)->protocol, 0);
4505 	err = 0;
4506 
4507 out:
4508 	return err;
4509 }
4510 
4511 /* This value should be large enough to cover a tagged ethernet header plus
4512  * an IPv6 header, all options, and a maximal TCP or UDP header.
4513  */
4514 #define MAX_IPV6_HDR_LEN 256
4515 
4516 #define OPT_HDR(type, skb, off) \
4517 	(type *)(skb_network_header(skb) + (off))
4518 
4519 static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate)
4520 {
4521 	int err;
4522 	u8 nexthdr;
4523 	unsigned int off;
4524 	unsigned int len;
4525 	bool fragment;
4526 	bool done;
4527 	__sum16 *csum;
4528 
4529 	fragment = false;
4530 	done = false;
4531 
4532 	off = sizeof(struct ipv6hdr);
4533 
4534 	err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN);
4535 	if (err < 0)
4536 		goto out;
4537 
4538 	nexthdr = ipv6_hdr(skb)->nexthdr;
4539 
4540 	len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len);
4541 	while (off <= len && !done) {
4542 		switch (nexthdr) {
4543 		case IPPROTO_DSTOPTS:
4544 		case IPPROTO_HOPOPTS:
4545 		case IPPROTO_ROUTING: {
4546 			struct ipv6_opt_hdr *hp;
4547 
4548 			err = skb_maybe_pull_tail(skb,
4549 						  off +
4550 						  sizeof(struct ipv6_opt_hdr),
4551 						  MAX_IPV6_HDR_LEN);
4552 			if (err < 0)
4553 				goto out;
4554 
4555 			hp = OPT_HDR(struct ipv6_opt_hdr, skb, off);
4556 			nexthdr = hp->nexthdr;
4557 			off += ipv6_optlen(hp);
4558 			break;
4559 		}
4560 		case IPPROTO_AH: {
4561 			struct ip_auth_hdr *hp;
4562 
4563 			err = skb_maybe_pull_tail(skb,
4564 						  off +
4565 						  sizeof(struct ip_auth_hdr),
4566 						  MAX_IPV6_HDR_LEN);
4567 			if (err < 0)
4568 				goto out;
4569 
4570 			hp = OPT_HDR(struct ip_auth_hdr, skb, off);
4571 			nexthdr = hp->nexthdr;
4572 			off += ipv6_authlen(hp);
4573 			break;
4574 		}
4575 		case IPPROTO_FRAGMENT: {
4576 			struct frag_hdr *hp;
4577 
4578 			err = skb_maybe_pull_tail(skb,
4579 						  off +
4580 						  sizeof(struct frag_hdr),
4581 						  MAX_IPV6_HDR_LEN);
4582 			if (err < 0)
4583 				goto out;
4584 
4585 			hp = OPT_HDR(struct frag_hdr, skb, off);
4586 
4587 			if (hp->frag_off & htons(IP6_OFFSET | IP6_MF))
4588 				fragment = true;
4589 
4590 			nexthdr = hp->nexthdr;
4591 			off += sizeof(struct frag_hdr);
4592 			break;
4593 		}
4594 		default:
4595 			done = true;
4596 			break;
4597 		}
4598 	}
4599 
4600 	err = -EPROTO;
4601 
4602 	if (!done || fragment)
4603 		goto out;
4604 
4605 	csum = skb_checksum_setup_ip(skb, nexthdr, off);
4606 	if (IS_ERR(csum))
4607 		return PTR_ERR(csum);
4608 
4609 	if (recalculate)
4610 		*csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
4611 					 &ipv6_hdr(skb)->daddr,
4612 					 skb->len - off, nexthdr, 0);
4613 	err = 0;
4614 
4615 out:
4616 	return err;
4617 }
4618 
4619 /**
4620  * skb_checksum_setup - set up partial checksum offset
4621  * @skb: the skb to set up
4622  * @recalculate: if true the pseudo-header checksum will be recalculated
4623  */
4624 int skb_checksum_setup(struct sk_buff *skb, bool recalculate)
4625 {
4626 	int err;
4627 
4628 	switch (skb->protocol) {
4629 	case htons(ETH_P_IP):
4630 		err = skb_checksum_setup_ipv4(skb, recalculate);
4631 		break;
4632 
4633 	case htons(ETH_P_IPV6):
4634 		err = skb_checksum_setup_ipv6(skb, recalculate);
4635 		break;
4636 
4637 	default:
4638 		err = -EPROTO;
4639 		break;
4640 	}
4641 
4642 	return err;
4643 }
4644 EXPORT_SYMBOL(skb_checksum_setup);
4645 
4646 /**
4647  * skb_checksum_maybe_trim - maybe trims the given skb
4648  * @skb: the skb to check
4649  * @transport_len: the data length beyond the network header
4650  *
4651  * Checks whether the given skb has data beyond the given transport length.
4652  * If so, returns a cloned skb trimmed to this transport length.
4653  * Otherwise returns the provided skb. Returns NULL in error cases
4654  * (e.g. transport_len exceeds skb length or out-of-memory).
4655  *
4656  * Caller needs to set the skb transport header and free any returned skb if it
4657  * differs from the provided skb.
4658  */
4659 static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb,
4660 					       unsigned int transport_len)
4661 {
4662 	struct sk_buff *skb_chk;
4663 	unsigned int len = skb_transport_offset(skb) + transport_len;
4664 	int ret;
4665 
4666 	if (skb->len < len)
4667 		return NULL;
4668 	else if (skb->len == len)
4669 		return skb;
4670 
4671 	skb_chk = skb_clone(skb, GFP_ATOMIC);
4672 	if (!skb_chk)
4673 		return NULL;
4674 
4675 	ret = pskb_trim_rcsum(skb_chk, len);
4676 	if (ret) {
4677 		kfree_skb(skb_chk);
4678 		return NULL;
4679 	}
4680 
4681 	return skb_chk;
4682 }
4683 
4684 /**
4685  * skb_checksum_trimmed - validate checksum of an skb
4686  * @skb: the skb to check
4687  * @transport_len: the data length beyond the network header
4688  * @skb_chkf: checksum function to use
4689  *
4690  * Applies the given checksum function skb_chkf to the provided skb.
4691  * Returns a checked and maybe trimmed skb. Returns NULL on error.
4692  *
4693  * If the skb has data beyond the given transport length, then a
4694  * trimmed & cloned skb is checked and returned.
4695  *
4696  * Caller needs to set the skb transport header and free any returned skb if it
4697  * differs from the provided skb.
4698  */
4699 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
4700 				     unsigned int transport_len,
4701 				     __sum16(*skb_chkf)(struct sk_buff *skb))
4702 {
4703 	struct sk_buff *skb_chk;
4704 	unsigned int offset = skb_transport_offset(skb);
4705 	__sum16 ret;
4706 
4707 	skb_chk = skb_checksum_maybe_trim(skb, transport_len);
4708 	if (!skb_chk)
4709 		goto err;
4710 
4711 	if (!pskb_may_pull(skb_chk, offset))
4712 		goto err;
4713 
4714 	skb_pull_rcsum(skb_chk, offset);
4715 	ret = skb_chkf(skb_chk);
4716 	skb_push_rcsum(skb_chk, offset);
4717 
4718 	if (ret)
4719 		goto err;
4720 
4721 	return skb_chk;
4722 
4723 err:
4724 	if (skb_chk && skb_chk != skb)
4725 		kfree_skb(skb_chk);
4726 
4727 	return NULL;
4728 
4729 }
4730 EXPORT_SYMBOL(skb_checksum_trimmed);
4731 
4732 void __skb_warn_lro_forwarding(const struct sk_buff *skb)
4733 {
4734 	net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n",
4735 			     skb->dev->name);
4736 }
4737 EXPORT_SYMBOL(__skb_warn_lro_forwarding);
4738 
4739 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen)
4740 {
4741 	if (head_stolen) {
4742 		skb_release_head_state(skb);
4743 		kmem_cache_free(skbuff_head_cache, skb);
4744 	} else {
4745 		__kfree_skb(skb);
4746 	}
4747 }
4748 EXPORT_SYMBOL(kfree_skb_partial);
4749 
4750 /**
4751  * skb_try_coalesce - try to merge skb to prior one
4752  * @to: prior buffer
4753  * @from: buffer to add
4754  * @fragstolen: pointer to boolean
4755  * @delta_truesize: how much more was allocated than was requested
4756  */
4757 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
4758 		      bool *fragstolen, int *delta_truesize)
4759 {
4760 	struct skb_shared_info *to_shinfo, *from_shinfo;
4761 	int i, delta, len = from->len;
4762 
4763 	*fragstolen = false;
4764 
4765 	if (skb_cloned(to))
4766 		return false;
4767 
4768 	if (len <= skb_tailroom(to)) {
4769 		if (len)
4770 			BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len));
4771 		*delta_truesize = 0;
4772 		return true;
4773 	}
4774 
4775 	to_shinfo = skb_shinfo(to);
4776 	from_shinfo = skb_shinfo(from);
4777 	if (to_shinfo->frag_list || from_shinfo->frag_list)
4778 		return false;
4779 	if (skb_zcopy(to) || skb_zcopy(from))
4780 		return false;
4781 
4782 	if (skb_headlen(from) != 0) {
4783 		struct page *page;
4784 		unsigned int offset;
4785 
4786 		if (to_shinfo->nr_frags +
4787 		    from_shinfo->nr_frags >= MAX_SKB_FRAGS)
4788 			return false;
4789 
4790 		if (skb_head_is_locked(from))
4791 			return false;
4792 
4793 		delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
4794 
4795 		page = virt_to_head_page(from->head);
4796 		offset = from->data - (unsigned char *)page_address(page);
4797 
4798 		skb_fill_page_desc(to, to_shinfo->nr_frags,
4799 				   page, offset, skb_headlen(from));
4800 		*fragstolen = true;
4801 	} else {
4802 		if (to_shinfo->nr_frags +
4803 		    from_shinfo->nr_frags > MAX_SKB_FRAGS)
4804 			return false;
4805 
4806 		delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from));
4807 	}
4808 
4809 	WARN_ON_ONCE(delta < len);
4810 
4811 	memcpy(to_shinfo->frags + to_shinfo->nr_frags,
4812 	       from_shinfo->frags,
4813 	       from_shinfo->nr_frags * sizeof(skb_frag_t));
4814 	to_shinfo->nr_frags += from_shinfo->nr_frags;
4815 
4816 	if (!skb_cloned(from))
4817 		from_shinfo->nr_frags = 0;
4818 
4819 	/* if the skb is not cloned this does nothing
4820 	 * since we set nr_frags to 0.
4821 	 */
4822 	for (i = 0; i < from_shinfo->nr_frags; i++)
4823 		__skb_frag_ref(&from_shinfo->frags[i]);
4824 
4825 	to->truesize += delta;
4826 	to->len += len;
4827 	to->data_len += len;
4828 
4829 	*delta_truesize = delta;
4830 	return true;
4831 }
4832 EXPORT_SYMBOL(skb_try_coalesce);
4833 
4834 /**
4835  * skb_scrub_packet - scrub an skb
4836  *
4837  * @skb: buffer to clean
4838  * @xnet: packet is crossing netns
4839  *
4840  * skb_scrub_packet can be used after encapsulating or decapsulting a packet
4841  * into/from a tunnel. Some information have to be cleared during these
4842  * operations.
4843  * skb_scrub_packet can also be used to clean a skb before injecting it in
4844  * another namespace (@xnet == true). We have to clear all information in the
4845  * skb that could impact namespace isolation.
4846  */
4847 void skb_scrub_packet(struct sk_buff *skb, bool xnet)
4848 {
4849 	skb->pkt_type = PACKET_HOST;
4850 	skb->skb_iif = 0;
4851 	skb->ignore_df = 0;
4852 	skb_dst_drop(skb);
4853 	secpath_reset(skb);
4854 	nf_reset(skb);
4855 	nf_reset_trace(skb);
4856 
4857 	if (!xnet)
4858 		return;
4859 
4860 	ipvs_reset(skb);
4861 	skb->mark = 0;
4862 	skb->tstamp = 0;
4863 }
4864 EXPORT_SYMBOL_GPL(skb_scrub_packet);
4865 
4866 /**
4867  * skb_gso_transport_seglen - Return length of individual segments of a gso packet
4868  *
4869  * @skb: GSO skb
4870  *
4871  * skb_gso_transport_seglen is used to determine the real size of the
4872  * individual segments, including Layer4 headers (TCP/UDP).
4873  *
4874  * The MAC/L2 or network (IP, IPv6) headers are not accounted for.
4875  */
4876 static unsigned int skb_gso_transport_seglen(const struct sk_buff *skb)
4877 {
4878 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
4879 	unsigned int thlen = 0;
4880 
4881 	if (skb->encapsulation) {
4882 		thlen = skb_inner_transport_header(skb) -
4883 			skb_transport_header(skb);
4884 
4885 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
4886 			thlen += inner_tcp_hdrlen(skb);
4887 	} else if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
4888 		thlen = tcp_hdrlen(skb);
4889 	} else if (unlikely(skb_is_gso_sctp(skb))) {
4890 		thlen = sizeof(struct sctphdr);
4891 	} else if (shinfo->gso_type & SKB_GSO_UDP_L4) {
4892 		thlen = sizeof(struct udphdr);
4893 	}
4894 	/* UFO sets gso_size to the size of the fragmentation
4895 	 * payload, i.e. the size of the L4 (UDP) header is already
4896 	 * accounted for.
4897 	 */
4898 	return thlen + shinfo->gso_size;
4899 }
4900 
4901 /**
4902  * skb_gso_network_seglen - Return length of individual segments of a gso packet
4903  *
4904  * @skb: GSO skb
4905  *
4906  * skb_gso_network_seglen is used to determine the real size of the
4907  * individual segments, including Layer3 (IP, IPv6) and L4 headers (TCP/UDP).
4908  *
4909  * The MAC/L2 header is not accounted for.
4910  */
4911 static unsigned int skb_gso_network_seglen(const struct sk_buff *skb)
4912 {
4913 	unsigned int hdr_len = skb_transport_header(skb) -
4914 			       skb_network_header(skb);
4915 
4916 	return hdr_len + skb_gso_transport_seglen(skb);
4917 }
4918 
4919 /**
4920  * skb_gso_mac_seglen - Return length of individual segments of a gso packet
4921  *
4922  * @skb: GSO skb
4923  *
4924  * skb_gso_mac_seglen is used to determine the real size of the
4925  * individual segments, including MAC/L2, Layer3 (IP, IPv6) and L4
4926  * headers (TCP/UDP).
4927  */
4928 static unsigned int skb_gso_mac_seglen(const struct sk_buff *skb)
4929 {
4930 	unsigned int hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
4931 
4932 	return hdr_len + skb_gso_transport_seglen(skb);
4933 }
4934 
4935 /**
4936  * skb_gso_size_check - check the skb size, considering GSO_BY_FRAGS
4937  *
4938  * There are a couple of instances where we have a GSO skb, and we
4939  * want to determine what size it would be after it is segmented.
4940  *
4941  * We might want to check:
4942  * -    L3+L4+payload size (e.g. IP forwarding)
4943  * - L2+L3+L4+payload size (e.g. sanity check before passing to driver)
4944  *
4945  * This is a helper to do that correctly considering GSO_BY_FRAGS.
4946  *
4947  * @seg_len: The segmented length (from skb_gso_*_seglen). In the
4948  *           GSO_BY_FRAGS case this will be [header sizes + GSO_BY_FRAGS].
4949  *
4950  * @max_len: The maximum permissible length.
4951  *
4952  * Returns true if the segmented length <= max length.
4953  */
4954 static inline bool skb_gso_size_check(const struct sk_buff *skb,
4955 				      unsigned int seg_len,
4956 				      unsigned int max_len) {
4957 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
4958 	const struct sk_buff *iter;
4959 
4960 	if (shinfo->gso_size != GSO_BY_FRAGS)
4961 		return seg_len <= max_len;
4962 
4963 	/* Undo this so we can re-use header sizes */
4964 	seg_len -= GSO_BY_FRAGS;
4965 
4966 	skb_walk_frags(skb, iter) {
4967 		if (seg_len + skb_headlen(iter) > max_len)
4968 			return false;
4969 	}
4970 
4971 	return true;
4972 }
4973 
4974 /**
4975  * skb_gso_validate_network_len - Will a split GSO skb fit into a given MTU?
4976  *
4977  * @skb: GSO skb
4978  * @mtu: MTU to validate against
4979  *
4980  * skb_gso_validate_network_len validates if a given skb will fit a
4981  * wanted MTU once split. It considers L3 headers, L4 headers, and the
4982  * payload.
4983  */
4984 bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu)
4985 {
4986 	return skb_gso_size_check(skb, skb_gso_network_seglen(skb), mtu);
4987 }
4988 EXPORT_SYMBOL_GPL(skb_gso_validate_network_len);
4989 
4990 /**
4991  * skb_gso_validate_mac_len - Will a split GSO skb fit in a given length?
4992  *
4993  * @skb: GSO skb
4994  * @len: length to validate against
4995  *
4996  * skb_gso_validate_mac_len validates if a given skb will fit a wanted
4997  * length once split, including L2, L3 and L4 headers and the payload.
4998  */
4999 bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len)
5000 {
5001 	return skb_gso_size_check(skb, skb_gso_mac_seglen(skb), len);
5002 }
5003 EXPORT_SYMBOL_GPL(skb_gso_validate_mac_len);
5004 
5005 static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb)
5006 {
5007 	int mac_len;
5008 
5009 	if (skb_cow(skb, skb_headroom(skb)) < 0) {
5010 		kfree_skb(skb);
5011 		return NULL;
5012 	}
5013 
5014 	mac_len = skb->data - skb_mac_header(skb);
5015 	if (likely(mac_len > VLAN_HLEN + ETH_TLEN)) {
5016 		memmove(skb_mac_header(skb) + VLAN_HLEN, skb_mac_header(skb),
5017 			mac_len - VLAN_HLEN - ETH_TLEN);
5018 	}
5019 	skb->mac_header += VLAN_HLEN;
5020 	return skb;
5021 }
5022 
5023 struct sk_buff *skb_vlan_untag(struct sk_buff *skb)
5024 {
5025 	struct vlan_hdr *vhdr;
5026 	u16 vlan_tci;
5027 
5028 	if (unlikely(skb_vlan_tag_present(skb))) {
5029 		/* vlan_tci is already set-up so leave this for another time */
5030 		return skb;
5031 	}
5032 
5033 	skb = skb_share_check(skb, GFP_ATOMIC);
5034 	if (unlikely(!skb))
5035 		goto err_free;
5036 
5037 	if (unlikely(!pskb_may_pull(skb, VLAN_HLEN)))
5038 		goto err_free;
5039 
5040 	vhdr = (struct vlan_hdr *)skb->data;
5041 	vlan_tci = ntohs(vhdr->h_vlan_TCI);
5042 	__vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci);
5043 
5044 	skb_pull_rcsum(skb, VLAN_HLEN);
5045 	vlan_set_encap_proto(skb, vhdr);
5046 
5047 	skb = skb_reorder_vlan_header(skb);
5048 	if (unlikely(!skb))
5049 		goto err_free;
5050 
5051 	skb_reset_network_header(skb);
5052 	skb_reset_transport_header(skb);
5053 	skb_reset_mac_len(skb);
5054 
5055 	return skb;
5056 
5057 err_free:
5058 	kfree_skb(skb);
5059 	return NULL;
5060 }
5061 EXPORT_SYMBOL(skb_vlan_untag);
5062 
5063 int skb_ensure_writable(struct sk_buff *skb, int write_len)
5064 {
5065 	if (!pskb_may_pull(skb, write_len))
5066 		return -ENOMEM;
5067 
5068 	if (!skb_cloned(skb) || skb_clone_writable(skb, write_len))
5069 		return 0;
5070 
5071 	return pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
5072 }
5073 EXPORT_SYMBOL(skb_ensure_writable);
5074 
5075 /* remove VLAN header from packet and update csum accordingly.
5076  * expects a non skb_vlan_tag_present skb with a vlan tag payload
5077  */
5078 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci)
5079 {
5080 	struct vlan_hdr *vhdr;
5081 	int offset = skb->data - skb_mac_header(skb);
5082 	int err;
5083 
5084 	if (WARN_ONCE(offset,
5085 		      "__skb_vlan_pop got skb with skb->data not at mac header (offset %d)\n",
5086 		      offset)) {
5087 		return -EINVAL;
5088 	}
5089 
5090 	err = skb_ensure_writable(skb, VLAN_ETH_HLEN);
5091 	if (unlikely(err))
5092 		return err;
5093 
5094 	skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
5095 
5096 	vhdr = (struct vlan_hdr *)(skb->data + ETH_HLEN);
5097 	*vlan_tci = ntohs(vhdr->h_vlan_TCI);
5098 
5099 	memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN);
5100 	__skb_pull(skb, VLAN_HLEN);
5101 
5102 	vlan_set_encap_proto(skb, vhdr);
5103 	skb->mac_header += VLAN_HLEN;
5104 
5105 	if (skb_network_offset(skb) < ETH_HLEN)
5106 		skb_set_network_header(skb, ETH_HLEN);
5107 
5108 	skb_reset_mac_len(skb);
5109 
5110 	return err;
5111 }
5112 EXPORT_SYMBOL(__skb_vlan_pop);
5113 
5114 /* Pop a vlan tag either from hwaccel or from payload.
5115  * Expects skb->data at mac header.
5116  */
5117 int skb_vlan_pop(struct sk_buff *skb)
5118 {
5119 	u16 vlan_tci;
5120 	__be16 vlan_proto;
5121 	int err;
5122 
5123 	if (likely(skb_vlan_tag_present(skb))) {
5124 		skb->vlan_tci = 0;
5125 	} else {
5126 		if (unlikely(!eth_type_vlan(skb->protocol)))
5127 			return 0;
5128 
5129 		err = __skb_vlan_pop(skb, &vlan_tci);
5130 		if (err)
5131 			return err;
5132 	}
5133 	/* move next vlan tag to hw accel tag */
5134 	if (likely(!eth_type_vlan(skb->protocol)))
5135 		return 0;
5136 
5137 	vlan_proto = skb->protocol;
5138 	err = __skb_vlan_pop(skb, &vlan_tci);
5139 	if (unlikely(err))
5140 		return err;
5141 
5142 	__vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
5143 	return 0;
5144 }
5145 EXPORT_SYMBOL(skb_vlan_pop);
5146 
5147 /* Push a vlan tag either into hwaccel or into payload (if hwaccel tag present).
5148  * Expects skb->data at mac header.
5149  */
5150 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci)
5151 {
5152 	if (skb_vlan_tag_present(skb)) {
5153 		int offset = skb->data - skb_mac_header(skb);
5154 		int err;
5155 
5156 		if (WARN_ONCE(offset,
5157 			      "skb_vlan_push got skb with skb->data not at mac header (offset %d)\n",
5158 			      offset)) {
5159 			return -EINVAL;
5160 		}
5161 
5162 		err = __vlan_insert_tag(skb, skb->vlan_proto,
5163 					skb_vlan_tag_get(skb));
5164 		if (err)
5165 			return err;
5166 
5167 		skb->protocol = skb->vlan_proto;
5168 		skb->mac_len += VLAN_HLEN;
5169 
5170 		skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
5171 	}
5172 	__vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
5173 	return 0;
5174 }
5175 EXPORT_SYMBOL(skb_vlan_push);
5176 
5177 /**
5178  * alloc_skb_with_frags - allocate skb with page frags
5179  *
5180  * @header_len: size of linear part
5181  * @data_len: needed length in frags
5182  * @max_page_order: max page order desired.
5183  * @errcode: pointer to error code if any
5184  * @gfp_mask: allocation mask
5185  *
5186  * This can be used to allocate a paged skb, given a maximal order for frags.
5187  */
5188 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
5189 				     unsigned long data_len,
5190 				     int max_page_order,
5191 				     int *errcode,
5192 				     gfp_t gfp_mask)
5193 {
5194 	int npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
5195 	unsigned long chunk;
5196 	struct sk_buff *skb;
5197 	struct page *page;
5198 	gfp_t gfp_head;
5199 	int i;
5200 
5201 	*errcode = -EMSGSIZE;
5202 	/* Note this test could be relaxed, if we succeed to allocate
5203 	 * high order pages...
5204 	 */
5205 	if (npages > MAX_SKB_FRAGS)
5206 		return NULL;
5207 
5208 	gfp_head = gfp_mask;
5209 	if (gfp_head & __GFP_DIRECT_RECLAIM)
5210 		gfp_head |= __GFP_RETRY_MAYFAIL;
5211 
5212 	*errcode = -ENOBUFS;
5213 	skb = alloc_skb(header_len, gfp_head);
5214 	if (!skb)
5215 		return NULL;
5216 
5217 	skb->truesize += npages << PAGE_SHIFT;
5218 
5219 	for (i = 0; npages > 0; i++) {
5220 		int order = max_page_order;
5221 
5222 		while (order) {
5223 			if (npages >= 1 << order) {
5224 				page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) |
5225 						   __GFP_COMP |
5226 						   __GFP_NOWARN,
5227 						   order);
5228 				if (page)
5229 					goto fill_page;
5230 				/* Do not retry other high order allocations */
5231 				order = 1;
5232 				max_page_order = 0;
5233 			}
5234 			order--;
5235 		}
5236 		page = alloc_page(gfp_mask);
5237 		if (!page)
5238 			goto failure;
5239 fill_page:
5240 		chunk = min_t(unsigned long, data_len,
5241 			      PAGE_SIZE << order);
5242 		skb_fill_page_desc(skb, i, page, 0, chunk);
5243 		data_len -= chunk;
5244 		npages -= 1 << order;
5245 	}
5246 	return skb;
5247 
5248 failure:
5249 	kfree_skb(skb);
5250 	return NULL;
5251 }
5252 EXPORT_SYMBOL(alloc_skb_with_frags);
5253 
5254 /* carve out the first off bytes from skb when off < headlen */
5255 static int pskb_carve_inside_header(struct sk_buff *skb, const u32 off,
5256 				    const int headlen, gfp_t gfp_mask)
5257 {
5258 	int i;
5259 	int size = skb_end_offset(skb);
5260 	int new_hlen = headlen - off;
5261 	u8 *data;
5262 
5263 	size = SKB_DATA_ALIGN(size);
5264 
5265 	if (skb_pfmemalloc(skb))
5266 		gfp_mask |= __GFP_MEMALLOC;
5267 	data = kmalloc_reserve(size +
5268 			       SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
5269 			       gfp_mask, NUMA_NO_NODE, NULL);
5270 	if (!data)
5271 		return -ENOMEM;
5272 
5273 	size = SKB_WITH_OVERHEAD(ksize(data));
5274 
5275 	/* Copy real data, and all frags */
5276 	skb_copy_from_linear_data_offset(skb, off, data, new_hlen);
5277 	skb->len -= off;
5278 
5279 	memcpy((struct skb_shared_info *)(data + size),
5280 	       skb_shinfo(skb),
5281 	       offsetof(struct skb_shared_info,
5282 			frags[skb_shinfo(skb)->nr_frags]));
5283 	if (skb_cloned(skb)) {
5284 		/* drop the old head gracefully */
5285 		if (skb_orphan_frags(skb, gfp_mask)) {
5286 			kfree(data);
5287 			return -ENOMEM;
5288 		}
5289 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
5290 			skb_frag_ref(skb, i);
5291 		if (skb_has_frag_list(skb))
5292 			skb_clone_fraglist(skb);
5293 		skb_release_data(skb);
5294 	} else {
5295 		/* we can reuse existing recount- all we did was
5296 		 * relocate values
5297 		 */
5298 		skb_free_head(skb);
5299 	}
5300 
5301 	skb->head = data;
5302 	skb->data = data;
5303 	skb->head_frag = 0;
5304 #ifdef NET_SKBUFF_DATA_USES_OFFSET
5305 	skb->end = size;
5306 #else
5307 	skb->end = skb->head + size;
5308 #endif
5309 	skb_set_tail_pointer(skb, skb_headlen(skb));
5310 	skb_headers_offset_update(skb, 0);
5311 	skb->cloned = 0;
5312 	skb->hdr_len = 0;
5313 	skb->nohdr = 0;
5314 	atomic_set(&skb_shinfo(skb)->dataref, 1);
5315 
5316 	return 0;
5317 }
5318 
5319 static int pskb_carve(struct sk_buff *skb, const u32 off, gfp_t gfp);
5320 
5321 /* carve out the first eat bytes from skb's frag_list. May recurse into
5322  * pskb_carve()
5323  */
5324 static int pskb_carve_frag_list(struct sk_buff *skb,
5325 				struct skb_shared_info *shinfo, int eat,
5326 				gfp_t gfp_mask)
5327 {
5328 	struct sk_buff *list = shinfo->frag_list;
5329 	struct sk_buff *clone = NULL;
5330 	struct sk_buff *insp = NULL;
5331 
5332 	do {
5333 		if (!list) {
5334 			pr_err("Not enough bytes to eat. Want %d\n", eat);
5335 			return -EFAULT;
5336 		}
5337 		if (list->len <= eat) {
5338 			/* Eaten as whole. */
5339 			eat -= list->len;
5340 			list = list->next;
5341 			insp = list;
5342 		} else {
5343 			/* Eaten partially. */
5344 			if (skb_shared(list)) {
5345 				clone = skb_clone(list, gfp_mask);
5346 				if (!clone)
5347 					return -ENOMEM;
5348 				insp = list->next;
5349 				list = clone;
5350 			} else {
5351 				/* This may be pulled without problems. */
5352 				insp = list;
5353 			}
5354 			if (pskb_carve(list, eat, gfp_mask) < 0) {
5355 				kfree_skb(clone);
5356 				return -ENOMEM;
5357 			}
5358 			break;
5359 		}
5360 	} while (eat);
5361 
5362 	/* Free pulled out fragments. */
5363 	while ((list = shinfo->frag_list) != insp) {
5364 		shinfo->frag_list = list->next;
5365 		kfree_skb(list);
5366 	}
5367 	/* And insert new clone at head. */
5368 	if (clone) {
5369 		clone->next = list;
5370 		shinfo->frag_list = clone;
5371 	}
5372 	return 0;
5373 }
5374 
5375 /* carve off first len bytes from skb. Split line (off) is in the
5376  * non-linear part of skb
5377  */
5378 static int pskb_carve_inside_nonlinear(struct sk_buff *skb, const u32 off,
5379 				       int pos, gfp_t gfp_mask)
5380 {
5381 	int i, k = 0;
5382 	int size = skb_end_offset(skb);
5383 	u8 *data;
5384 	const int nfrags = skb_shinfo(skb)->nr_frags;
5385 	struct skb_shared_info *shinfo;
5386 
5387 	size = SKB_DATA_ALIGN(size);
5388 
5389 	if (skb_pfmemalloc(skb))
5390 		gfp_mask |= __GFP_MEMALLOC;
5391 	data = kmalloc_reserve(size +
5392 			       SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
5393 			       gfp_mask, NUMA_NO_NODE, NULL);
5394 	if (!data)
5395 		return -ENOMEM;
5396 
5397 	size = SKB_WITH_OVERHEAD(ksize(data));
5398 
5399 	memcpy((struct skb_shared_info *)(data + size),
5400 	       skb_shinfo(skb), offsetof(struct skb_shared_info,
5401 					 frags[skb_shinfo(skb)->nr_frags]));
5402 	if (skb_orphan_frags(skb, gfp_mask)) {
5403 		kfree(data);
5404 		return -ENOMEM;
5405 	}
5406 	shinfo = (struct skb_shared_info *)(data + size);
5407 	for (i = 0; i < nfrags; i++) {
5408 		int fsize = skb_frag_size(&skb_shinfo(skb)->frags[i]);
5409 
5410 		if (pos + fsize > off) {
5411 			shinfo->frags[k] = skb_shinfo(skb)->frags[i];
5412 
5413 			if (pos < off) {
5414 				/* Split frag.
5415 				 * We have two variants in this case:
5416 				 * 1. Move all the frag to the second
5417 				 *    part, if it is possible. F.e.
5418 				 *    this approach is mandatory for TUX,
5419 				 *    where splitting is expensive.
5420 				 * 2. Split is accurately. We make this.
5421 				 */
5422 				shinfo->frags[0].page_offset += off - pos;
5423 				skb_frag_size_sub(&shinfo->frags[0], off - pos);
5424 			}
5425 			skb_frag_ref(skb, i);
5426 			k++;
5427 		}
5428 		pos += fsize;
5429 	}
5430 	shinfo->nr_frags = k;
5431 	if (skb_has_frag_list(skb))
5432 		skb_clone_fraglist(skb);
5433 
5434 	if (k == 0) {
5435 		/* split line is in frag list */
5436 		pskb_carve_frag_list(skb, shinfo, off - pos, gfp_mask);
5437 	}
5438 	skb_release_data(skb);
5439 
5440 	skb->head = data;
5441 	skb->head_frag = 0;
5442 	skb->data = data;
5443 #ifdef NET_SKBUFF_DATA_USES_OFFSET
5444 	skb->end = size;
5445 #else
5446 	skb->end = skb->head + size;
5447 #endif
5448 	skb_reset_tail_pointer(skb);
5449 	skb_headers_offset_update(skb, 0);
5450 	skb->cloned   = 0;
5451 	skb->hdr_len  = 0;
5452 	skb->nohdr    = 0;
5453 	skb->len -= off;
5454 	skb->data_len = skb->len;
5455 	atomic_set(&skb_shinfo(skb)->dataref, 1);
5456 	return 0;
5457 }
5458 
5459 /* remove len bytes from the beginning of the skb */
5460 static int pskb_carve(struct sk_buff *skb, const u32 len, gfp_t gfp)
5461 {
5462 	int headlen = skb_headlen(skb);
5463 
5464 	if (len < headlen)
5465 		return pskb_carve_inside_header(skb, len, headlen, gfp);
5466 	else
5467 		return pskb_carve_inside_nonlinear(skb, len, headlen, gfp);
5468 }
5469 
5470 /* Extract to_copy bytes starting at off from skb, and return this in
5471  * a new skb
5472  */
5473 struct sk_buff *pskb_extract(struct sk_buff *skb, int off,
5474 			     int to_copy, gfp_t gfp)
5475 {
5476 	struct sk_buff  *clone = skb_clone(skb, gfp);
5477 
5478 	if (!clone)
5479 		return NULL;
5480 
5481 	if (pskb_carve(clone, off, gfp) < 0 ||
5482 	    pskb_trim(clone, to_copy)) {
5483 		kfree_skb(clone);
5484 		return NULL;
5485 	}
5486 	return clone;
5487 }
5488 EXPORT_SYMBOL(pskb_extract);
5489 
5490 /**
5491  * skb_condense - try to get rid of fragments/frag_list if possible
5492  * @skb: buffer
5493  *
5494  * Can be used to save memory before skb is added to a busy queue.
5495  * If packet has bytes in frags and enough tail room in skb->head,
5496  * pull all of them, so that we can free the frags right now and adjust
5497  * truesize.
5498  * Notes:
5499  *	We do not reallocate skb->head thus can not fail.
5500  *	Caller must re-evaluate skb->truesize if needed.
5501  */
5502 void skb_condense(struct sk_buff *skb)
5503 {
5504 	if (skb->data_len) {
5505 		if (skb->data_len > skb->end - skb->tail ||
5506 		    skb_cloned(skb))
5507 			return;
5508 
5509 		/* Nice, we can free page frag(s) right now */
5510 		__pskb_pull_tail(skb, skb->data_len);
5511 	}
5512 	/* At this point, skb->truesize might be over estimated,
5513 	 * because skb had a fragment, and fragments do not tell
5514 	 * their truesize.
5515 	 * When we pulled its content into skb->head, fragment
5516 	 * was freed, but __pskb_pull_tail() could not possibly
5517 	 * adjust skb->truesize, not knowing the frag truesize.
5518 	 */
5519 	skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
5520 }
5521