1 /* 2 * Routines having to do with the 'struct sk_buff' memory handlers. 3 * 4 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk> 5 * Florian La Roche <rzsfl@rz.uni-sb.de> 6 * 7 * Fixes: 8 * Alan Cox : Fixed the worst of the load 9 * balancer bugs. 10 * Dave Platt : Interrupt stacking fix. 11 * Richard Kooijman : Timestamp fixes. 12 * Alan Cox : Changed buffer format. 13 * Alan Cox : destructor hook for AF_UNIX etc. 14 * Linus Torvalds : Better skb_clone. 15 * Alan Cox : Added skb_copy. 16 * Alan Cox : Added all the changed routines Linus 17 * only put in the headers 18 * Ray VanTassle : Fixed --skb->lock in free 19 * Alan Cox : skb_copy copy arp field 20 * Andi Kleen : slabified it. 21 * Robert Olsson : Removed skb_head_pool 22 * 23 * NOTE: 24 * The __skb_ routines should be called with interrupts 25 * disabled, or you better be *real* sure that the operation is atomic 26 * with respect to whatever list is being frobbed (e.g. via lock_sock() 27 * or via disabling bottom half handlers, etc). 28 * 29 * This program is free software; you can redistribute it and/or 30 * modify it under the terms of the GNU General Public License 31 * as published by the Free Software Foundation; either version 32 * 2 of the License, or (at your option) any later version. 33 */ 34 35 /* 36 * The functions in this file will not compile correctly with gcc 2.4.x 37 */ 38 39 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 40 41 #include <linux/module.h> 42 #include <linux/types.h> 43 #include <linux/kernel.h> 44 #include <linux/kmemcheck.h> 45 #include <linux/mm.h> 46 #include <linux/interrupt.h> 47 #include <linux/in.h> 48 #include <linux/inet.h> 49 #include <linux/slab.h> 50 #include <linux/tcp.h> 51 #include <linux/udp.h> 52 #include <linux/sctp.h> 53 #include <linux/netdevice.h> 54 #ifdef CONFIG_NET_CLS_ACT 55 #include <net/pkt_sched.h> 56 #endif 57 #include <linux/string.h> 58 #include <linux/skbuff.h> 59 #include <linux/splice.h> 60 #include <linux/cache.h> 61 #include <linux/rtnetlink.h> 62 #include <linux/init.h> 63 #include <linux/scatterlist.h> 64 #include <linux/errqueue.h> 65 #include <linux/prefetch.h> 66 #include <linux/if_vlan.h> 67 68 #include <net/protocol.h> 69 #include <net/dst.h> 70 #include <net/sock.h> 71 #include <net/checksum.h> 72 #include <net/ip6_checksum.h> 73 #include <net/xfrm.h> 74 75 #include <asm/uaccess.h> 76 #include <trace/events/skb.h> 77 #include <linux/highmem.h> 78 #include <linux/capability.h> 79 #include <linux/user_namespace.h> 80 81 struct kmem_cache *skbuff_head_cache __read_mostly; 82 static struct kmem_cache *skbuff_fclone_cache __read_mostly; 83 int sysctl_max_skb_frags __read_mostly = MAX_SKB_FRAGS; 84 EXPORT_SYMBOL(sysctl_max_skb_frags); 85 86 /** 87 * skb_panic - private function for out-of-line support 88 * @skb: buffer 89 * @sz: size 90 * @addr: address 91 * @msg: skb_over_panic or skb_under_panic 92 * 93 * Out-of-line support for skb_put() and skb_push(). 94 * Called via the wrapper skb_over_panic() or skb_under_panic(). 95 * Keep out of line to prevent kernel bloat. 96 * __builtin_return_address is not used because it is not always reliable. 97 */ 98 static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr, 99 const char msg[]) 100 { 101 pr_emerg("%s: text:%p len:%d put:%d head:%p data:%p tail:%#lx end:%#lx dev:%s\n", 102 msg, addr, skb->len, sz, skb->head, skb->data, 103 (unsigned long)skb->tail, (unsigned long)skb->end, 104 skb->dev ? skb->dev->name : "<NULL>"); 105 BUG(); 106 } 107 108 static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr) 109 { 110 skb_panic(skb, sz, addr, __func__); 111 } 112 113 static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr) 114 { 115 skb_panic(skb, sz, addr, __func__); 116 } 117 118 /* 119 * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells 120 * the caller if emergency pfmemalloc reserves are being used. If it is and 121 * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves 122 * may be used. Otherwise, the packet data may be discarded until enough 123 * memory is free 124 */ 125 #define kmalloc_reserve(size, gfp, node, pfmemalloc) \ 126 __kmalloc_reserve(size, gfp, node, _RET_IP_, pfmemalloc) 127 128 static void *__kmalloc_reserve(size_t size, gfp_t flags, int node, 129 unsigned long ip, bool *pfmemalloc) 130 { 131 void *obj; 132 bool ret_pfmemalloc = false; 133 134 /* 135 * Try a regular allocation, when that fails and we're not entitled 136 * to the reserves, fail. 137 */ 138 obj = kmalloc_node_track_caller(size, 139 flags | __GFP_NOMEMALLOC | __GFP_NOWARN, 140 node); 141 if (obj || !(gfp_pfmemalloc_allowed(flags))) 142 goto out; 143 144 /* Try again but now we are using pfmemalloc reserves */ 145 ret_pfmemalloc = true; 146 obj = kmalloc_node_track_caller(size, flags, node); 147 148 out: 149 if (pfmemalloc) 150 *pfmemalloc = ret_pfmemalloc; 151 152 return obj; 153 } 154 155 /* Allocate a new skbuff. We do this ourselves so we can fill in a few 156 * 'private' fields and also do memory statistics to find all the 157 * [BEEP] leaks. 158 * 159 */ 160 161 struct sk_buff *__alloc_skb_head(gfp_t gfp_mask, int node) 162 { 163 struct sk_buff *skb; 164 165 /* Get the HEAD */ 166 skb = kmem_cache_alloc_node(skbuff_head_cache, 167 gfp_mask & ~__GFP_DMA, node); 168 if (!skb) 169 goto out; 170 171 /* 172 * Only clear those fields we need to clear, not those that we will 173 * actually initialise below. Hence, don't put any more fields after 174 * the tail pointer in struct sk_buff! 175 */ 176 memset(skb, 0, offsetof(struct sk_buff, tail)); 177 skb->head = NULL; 178 skb->truesize = sizeof(struct sk_buff); 179 atomic_set(&skb->users, 1); 180 181 skb->mac_header = (typeof(skb->mac_header))~0U; 182 out: 183 return skb; 184 } 185 186 /** 187 * __alloc_skb - allocate a network buffer 188 * @size: size to allocate 189 * @gfp_mask: allocation mask 190 * @flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache 191 * instead of head cache and allocate a cloned (child) skb. 192 * If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for 193 * allocations in case the data is required for writeback 194 * @node: numa node to allocate memory on 195 * 196 * Allocate a new &sk_buff. The returned buffer has no headroom and a 197 * tail room of at least size bytes. The object has a reference count 198 * of one. The return is the buffer. On a failure the return is %NULL. 199 * 200 * Buffers may only be allocated from interrupts using a @gfp_mask of 201 * %GFP_ATOMIC. 202 */ 203 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask, 204 int flags, int node) 205 { 206 struct kmem_cache *cache; 207 struct skb_shared_info *shinfo; 208 struct sk_buff *skb; 209 u8 *data; 210 bool pfmemalloc; 211 212 cache = (flags & SKB_ALLOC_FCLONE) 213 ? skbuff_fclone_cache : skbuff_head_cache; 214 215 if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX)) 216 gfp_mask |= __GFP_MEMALLOC; 217 218 /* Get the HEAD */ 219 skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node); 220 if (!skb) 221 goto out; 222 prefetchw(skb); 223 224 /* We do our best to align skb_shared_info on a separate cache 225 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives 226 * aligned memory blocks, unless SLUB/SLAB debug is enabled. 227 * Both skb->head and skb_shared_info are cache line aligned. 228 */ 229 size = SKB_DATA_ALIGN(size); 230 size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 231 data = kmalloc_reserve(size, gfp_mask, node, &pfmemalloc); 232 if (!data) 233 goto nodata; 234 /* kmalloc(size) might give us more room than requested. 235 * Put skb_shared_info exactly at the end of allocated zone, 236 * to allow max possible filling before reallocation. 237 */ 238 size = SKB_WITH_OVERHEAD(ksize(data)); 239 prefetchw(data + size); 240 241 /* 242 * Only clear those fields we need to clear, not those that we will 243 * actually initialise below. Hence, don't put any more fields after 244 * the tail pointer in struct sk_buff! 245 */ 246 memset(skb, 0, offsetof(struct sk_buff, tail)); 247 /* Account for allocated memory : skb + skb->head */ 248 skb->truesize = SKB_TRUESIZE(size); 249 skb->pfmemalloc = pfmemalloc; 250 atomic_set(&skb->users, 1); 251 skb->head = data; 252 skb->data = data; 253 skb_reset_tail_pointer(skb); 254 skb->end = skb->tail + size; 255 skb->mac_header = (typeof(skb->mac_header))~0U; 256 skb->transport_header = (typeof(skb->transport_header))~0U; 257 258 /* make sure we initialize shinfo sequentially */ 259 shinfo = skb_shinfo(skb); 260 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref)); 261 atomic_set(&shinfo->dataref, 1); 262 kmemcheck_annotate_variable(shinfo->destructor_arg); 263 264 if (flags & SKB_ALLOC_FCLONE) { 265 struct sk_buff_fclones *fclones; 266 267 fclones = container_of(skb, struct sk_buff_fclones, skb1); 268 269 kmemcheck_annotate_bitfield(&fclones->skb2, flags1); 270 skb->fclone = SKB_FCLONE_ORIG; 271 atomic_set(&fclones->fclone_ref, 1); 272 273 fclones->skb2.fclone = SKB_FCLONE_CLONE; 274 fclones->skb2.pfmemalloc = pfmemalloc; 275 } 276 out: 277 return skb; 278 nodata: 279 kmem_cache_free(cache, skb); 280 skb = NULL; 281 goto out; 282 } 283 EXPORT_SYMBOL(__alloc_skb); 284 285 /** 286 * __build_skb - build a network buffer 287 * @data: data buffer provided by caller 288 * @frag_size: size of data, or 0 if head was kmalloced 289 * 290 * Allocate a new &sk_buff. Caller provides space holding head and 291 * skb_shared_info. @data must have been allocated by kmalloc() only if 292 * @frag_size is 0, otherwise data should come from the page allocator 293 * or vmalloc() 294 * The return is the new skb buffer. 295 * On a failure the return is %NULL, and @data is not freed. 296 * Notes : 297 * Before IO, driver allocates only data buffer where NIC put incoming frame 298 * Driver should add room at head (NET_SKB_PAD) and 299 * MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info)) 300 * After IO, driver calls build_skb(), to allocate sk_buff and populate it 301 * before giving packet to stack. 302 * RX rings only contains data buffers, not full skbs. 303 */ 304 struct sk_buff *__build_skb(void *data, unsigned int frag_size) 305 { 306 struct skb_shared_info *shinfo; 307 struct sk_buff *skb; 308 unsigned int size = frag_size ? : ksize(data); 309 310 skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC); 311 if (!skb) 312 return NULL; 313 314 size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 315 316 memset(skb, 0, offsetof(struct sk_buff, tail)); 317 skb->truesize = SKB_TRUESIZE(size); 318 atomic_set(&skb->users, 1); 319 skb->head = data; 320 skb->data = data; 321 skb_reset_tail_pointer(skb); 322 skb->end = skb->tail + size; 323 skb->mac_header = (typeof(skb->mac_header))~0U; 324 skb->transport_header = (typeof(skb->transport_header))~0U; 325 326 /* make sure we initialize shinfo sequentially */ 327 shinfo = skb_shinfo(skb); 328 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref)); 329 atomic_set(&shinfo->dataref, 1); 330 kmemcheck_annotate_variable(shinfo->destructor_arg); 331 332 return skb; 333 } 334 335 /* build_skb() is wrapper over __build_skb(), that specifically 336 * takes care of skb->head and skb->pfmemalloc 337 * This means that if @frag_size is not zero, then @data must be backed 338 * by a page fragment, not kmalloc() or vmalloc() 339 */ 340 struct sk_buff *build_skb(void *data, unsigned int frag_size) 341 { 342 struct sk_buff *skb = __build_skb(data, frag_size); 343 344 if (skb && frag_size) { 345 skb->head_frag = 1; 346 if (page_is_pfmemalloc(virt_to_head_page(data))) 347 skb->pfmemalloc = 1; 348 } 349 return skb; 350 } 351 EXPORT_SYMBOL(build_skb); 352 353 #define NAPI_SKB_CACHE_SIZE 64 354 355 struct napi_alloc_cache { 356 struct page_frag_cache page; 357 size_t skb_count; 358 void *skb_cache[NAPI_SKB_CACHE_SIZE]; 359 }; 360 361 static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache); 362 static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache); 363 364 static void *__netdev_alloc_frag(unsigned int fragsz, gfp_t gfp_mask) 365 { 366 struct page_frag_cache *nc; 367 unsigned long flags; 368 void *data; 369 370 local_irq_save(flags); 371 nc = this_cpu_ptr(&netdev_alloc_cache); 372 data = __alloc_page_frag(nc, fragsz, gfp_mask); 373 local_irq_restore(flags); 374 return data; 375 } 376 377 /** 378 * netdev_alloc_frag - allocate a page fragment 379 * @fragsz: fragment size 380 * 381 * Allocates a frag from a page for receive buffer. 382 * Uses GFP_ATOMIC allocations. 383 */ 384 void *netdev_alloc_frag(unsigned int fragsz) 385 { 386 return __netdev_alloc_frag(fragsz, GFP_ATOMIC | __GFP_COLD); 387 } 388 EXPORT_SYMBOL(netdev_alloc_frag); 389 390 static void *__napi_alloc_frag(unsigned int fragsz, gfp_t gfp_mask) 391 { 392 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 393 394 return __alloc_page_frag(&nc->page, fragsz, gfp_mask); 395 } 396 397 void *napi_alloc_frag(unsigned int fragsz) 398 { 399 return __napi_alloc_frag(fragsz, GFP_ATOMIC | __GFP_COLD); 400 } 401 EXPORT_SYMBOL(napi_alloc_frag); 402 403 /** 404 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device 405 * @dev: network device to receive on 406 * @len: length to allocate 407 * @gfp_mask: get_free_pages mask, passed to alloc_skb 408 * 409 * Allocate a new &sk_buff and assign it a usage count of one. The 410 * buffer has NET_SKB_PAD headroom built in. Users should allocate 411 * the headroom they think they need without accounting for the 412 * built in space. The built in space is used for optimisations. 413 * 414 * %NULL is returned if there is no free memory. 415 */ 416 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len, 417 gfp_t gfp_mask) 418 { 419 struct page_frag_cache *nc; 420 unsigned long flags; 421 struct sk_buff *skb; 422 bool pfmemalloc; 423 void *data; 424 425 len += NET_SKB_PAD; 426 427 if ((len > SKB_WITH_OVERHEAD(PAGE_SIZE)) || 428 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) { 429 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE); 430 if (!skb) 431 goto skb_fail; 432 goto skb_success; 433 } 434 435 len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 436 len = SKB_DATA_ALIGN(len); 437 438 if (sk_memalloc_socks()) 439 gfp_mask |= __GFP_MEMALLOC; 440 441 local_irq_save(flags); 442 443 nc = this_cpu_ptr(&netdev_alloc_cache); 444 data = __alloc_page_frag(nc, len, gfp_mask); 445 pfmemalloc = nc->pfmemalloc; 446 447 local_irq_restore(flags); 448 449 if (unlikely(!data)) 450 return NULL; 451 452 skb = __build_skb(data, len); 453 if (unlikely(!skb)) { 454 skb_free_frag(data); 455 return NULL; 456 } 457 458 /* use OR instead of assignment to avoid clearing of bits in mask */ 459 if (pfmemalloc) 460 skb->pfmemalloc = 1; 461 skb->head_frag = 1; 462 463 skb_success: 464 skb_reserve(skb, NET_SKB_PAD); 465 skb->dev = dev; 466 467 skb_fail: 468 return skb; 469 } 470 EXPORT_SYMBOL(__netdev_alloc_skb); 471 472 /** 473 * __napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance 474 * @napi: napi instance this buffer was allocated for 475 * @len: length to allocate 476 * @gfp_mask: get_free_pages mask, passed to alloc_skb and alloc_pages 477 * 478 * Allocate a new sk_buff for use in NAPI receive. This buffer will 479 * attempt to allocate the head from a special reserved region used 480 * only for NAPI Rx allocation. By doing this we can save several 481 * CPU cycles by avoiding having to disable and re-enable IRQs. 482 * 483 * %NULL is returned if there is no free memory. 484 */ 485 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, unsigned int len, 486 gfp_t gfp_mask) 487 { 488 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 489 struct sk_buff *skb; 490 void *data; 491 492 len += NET_SKB_PAD + NET_IP_ALIGN; 493 494 if ((len > SKB_WITH_OVERHEAD(PAGE_SIZE)) || 495 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) { 496 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE); 497 if (!skb) 498 goto skb_fail; 499 goto skb_success; 500 } 501 502 len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 503 len = SKB_DATA_ALIGN(len); 504 505 if (sk_memalloc_socks()) 506 gfp_mask |= __GFP_MEMALLOC; 507 508 data = __alloc_page_frag(&nc->page, len, gfp_mask); 509 if (unlikely(!data)) 510 return NULL; 511 512 skb = __build_skb(data, len); 513 if (unlikely(!skb)) { 514 skb_free_frag(data); 515 return NULL; 516 } 517 518 /* use OR instead of assignment to avoid clearing of bits in mask */ 519 if (nc->page.pfmemalloc) 520 skb->pfmemalloc = 1; 521 skb->head_frag = 1; 522 523 skb_success: 524 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN); 525 skb->dev = napi->dev; 526 527 skb_fail: 528 return skb; 529 } 530 EXPORT_SYMBOL(__napi_alloc_skb); 531 532 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off, 533 int size, unsigned int truesize) 534 { 535 skb_fill_page_desc(skb, i, page, off, size); 536 skb->len += size; 537 skb->data_len += size; 538 skb->truesize += truesize; 539 } 540 EXPORT_SYMBOL(skb_add_rx_frag); 541 542 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size, 543 unsigned int truesize) 544 { 545 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 546 547 skb_frag_size_add(frag, size); 548 skb->len += size; 549 skb->data_len += size; 550 skb->truesize += truesize; 551 } 552 EXPORT_SYMBOL(skb_coalesce_rx_frag); 553 554 static void skb_drop_list(struct sk_buff **listp) 555 { 556 kfree_skb_list(*listp); 557 *listp = NULL; 558 } 559 560 static inline void skb_drop_fraglist(struct sk_buff *skb) 561 { 562 skb_drop_list(&skb_shinfo(skb)->frag_list); 563 } 564 565 static void skb_clone_fraglist(struct sk_buff *skb) 566 { 567 struct sk_buff *list; 568 569 skb_walk_frags(skb, list) 570 skb_get(list); 571 } 572 573 static void skb_free_head(struct sk_buff *skb) 574 { 575 unsigned char *head = skb->head; 576 577 if (skb->head_frag) 578 skb_free_frag(head); 579 else 580 kfree(head); 581 } 582 583 static void skb_release_data(struct sk_buff *skb) 584 { 585 struct skb_shared_info *shinfo = skb_shinfo(skb); 586 int i; 587 588 if (skb->cloned && 589 atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1, 590 &shinfo->dataref)) 591 return; 592 593 for (i = 0; i < shinfo->nr_frags; i++) 594 __skb_frag_unref(&shinfo->frags[i]); 595 596 /* 597 * If skb buf is from userspace, we need to notify the caller 598 * the lower device DMA has done; 599 */ 600 if (shinfo->tx_flags & SKBTX_DEV_ZEROCOPY) { 601 struct ubuf_info *uarg; 602 603 uarg = shinfo->destructor_arg; 604 if (uarg->callback) 605 uarg->callback(uarg, true); 606 } 607 608 if (shinfo->frag_list) 609 kfree_skb_list(shinfo->frag_list); 610 611 skb_free_head(skb); 612 } 613 614 /* 615 * Free an skbuff by memory without cleaning the state. 616 */ 617 static void kfree_skbmem(struct sk_buff *skb) 618 { 619 struct sk_buff_fclones *fclones; 620 621 switch (skb->fclone) { 622 case SKB_FCLONE_UNAVAILABLE: 623 kmem_cache_free(skbuff_head_cache, skb); 624 return; 625 626 case SKB_FCLONE_ORIG: 627 fclones = container_of(skb, struct sk_buff_fclones, skb1); 628 629 /* We usually free the clone (TX completion) before original skb 630 * This test would have no chance to be true for the clone, 631 * while here, branch prediction will be good. 632 */ 633 if (atomic_read(&fclones->fclone_ref) == 1) 634 goto fastpath; 635 break; 636 637 default: /* SKB_FCLONE_CLONE */ 638 fclones = container_of(skb, struct sk_buff_fclones, skb2); 639 break; 640 } 641 if (!atomic_dec_and_test(&fclones->fclone_ref)) 642 return; 643 fastpath: 644 kmem_cache_free(skbuff_fclone_cache, fclones); 645 } 646 647 static void skb_release_head_state(struct sk_buff *skb) 648 { 649 skb_dst_drop(skb); 650 #ifdef CONFIG_XFRM 651 secpath_put(skb->sp); 652 #endif 653 if (skb->destructor) { 654 WARN_ON(in_irq()); 655 skb->destructor(skb); 656 } 657 #if IS_ENABLED(CONFIG_NF_CONNTRACK) 658 nf_conntrack_put(skb->nfct); 659 #endif 660 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 661 nf_bridge_put(skb->nf_bridge); 662 #endif 663 } 664 665 /* Free everything but the sk_buff shell. */ 666 static void skb_release_all(struct sk_buff *skb) 667 { 668 skb_release_head_state(skb); 669 if (likely(skb->head)) 670 skb_release_data(skb); 671 } 672 673 /** 674 * __kfree_skb - private function 675 * @skb: buffer 676 * 677 * Free an sk_buff. Release anything attached to the buffer. 678 * Clean the state. This is an internal helper function. Users should 679 * always call kfree_skb 680 */ 681 682 void __kfree_skb(struct sk_buff *skb) 683 { 684 skb_release_all(skb); 685 kfree_skbmem(skb); 686 } 687 EXPORT_SYMBOL(__kfree_skb); 688 689 /** 690 * kfree_skb - free an sk_buff 691 * @skb: buffer to free 692 * 693 * Drop a reference to the buffer and free it if the usage count has 694 * hit zero. 695 */ 696 void kfree_skb(struct sk_buff *skb) 697 { 698 if (unlikely(!skb)) 699 return; 700 if (likely(atomic_read(&skb->users) == 1)) 701 smp_rmb(); 702 else if (likely(!atomic_dec_and_test(&skb->users))) 703 return; 704 trace_kfree_skb(skb, __builtin_return_address(0)); 705 __kfree_skb(skb); 706 } 707 EXPORT_SYMBOL(kfree_skb); 708 709 void kfree_skb_list(struct sk_buff *segs) 710 { 711 while (segs) { 712 struct sk_buff *next = segs->next; 713 714 kfree_skb(segs); 715 segs = next; 716 } 717 } 718 EXPORT_SYMBOL(kfree_skb_list); 719 720 /** 721 * skb_tx_error - report an sk_buff xmit error 722 * @skb: buffer that triggered an error 723 * 724 * Report xmit error if a device callback is tracking this skb. 725 * skb must be freed afterwards. 726 */ 727 void skb_tx_error(struct sk_buff *skb) 728 { 729 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) { 730 struct ubuf_info *uarg; 731 732 uarg = skb_shinfo(skb)->destructor_arg; 733 if (uarg->callback) 734 uarg->callback(uarg, false); 735 skb_shinfo(skb)->tx_flags &= ~SKBTX_DEV_ZEROCOPY; 736 } 737 } 738 EXPORT_SYMBOL(skb_tx_error); 739 740 /** 741 * consume_skb - free an skbuff 742 * @skb: buffer to free 743 * 744 * Drop a ref to the buffer and free it if the usage count has hit zero 745 * Functions identically to kfree_skb, but kfree_skb assumes that the frame 746 * is being dropped after a failure and notes that 747 */ 748 void consume_skb(struct sk_buff *skb) 749 { 750 if (unlikely(!skb)) 751 return; 752 if (likely(atomic_read(&skb->users) == 1)) 753 smp_rmb(); 754 else if (likely(!atomic_dec_and_test(&skb->users))) 755 return; 756 trace_consume_skb(skb); 757 __kfree_skb(skb); 758 } 759 EXPORT_SYMBOL(consume_skb); 760 761 void __kfree_skb_flush(void) 762 { 763 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 764 765 /* flush skb_cache if containing objects */ 766 if (nc->skb_count) { 767 kmem_cache_free_bulk(skbuff_head_cache, nc->skb_count, 768 nc->skb_cache); 769 nc->skb_count = 0; 770 } 771 } 772 773 static inline void _kfree_skb_defer(struct sk_buff *skb) 774 { 775 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 776 777 /* drop skb->head and call any destructors for packet */ 778 skb_release_all(skb); 779 780 /* record skb to CPU local list */ 781 nc->skb_cache[nc->skb_count++] = skb; 782 783 #ifdef CONFIG_SLUB 784 /* SLUB writes into objects when freeing */ 785 prefetchw(skb); 786 #endif 787 788 /* flush skb_cache if it is filled */ 789 if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) { 790 kmem_cache_free_bulk(skbuff_head_cache, NAPI_SKB_CACHE_SIZE, 791 nc->skb_cache); 792 nc->skb_count = 0; 793 } 794 } 795 void __kfree_skb_defer(struct sk_buff *skb) 796 { 797 _kfree_skb_defer(skb); 798 } 799 800 void napi_consume_skb(struct sk_buff *skb, int budget) 801 { 802 if (unlikely(!skb)) 803 return; 804 805 /* Zero budget indicate non-NAPI context called us, like netpoll */ 806 if (unlikely(!budget)) { 807 dev_consume_skb_any(skb); 808 return; 809 } 810 811 if (likely(atomic_read(&skb->users) == 1)) 812 smp_rmb(); 813 else if (likely(!atomic_dec_and_test(&skb->users))) 814 return; 815 /* if reaching here SKB is ready to free */ 816 trace_consume_skb(skb); 817 818 /* if SKB is a clone, don't handle this case */ 819 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) { 820 __kfree_skb(skb); 821 return; 822 } 823 824 _kfree_skb_defer(skb); 825 } 826 EXPORT_SYMBOL(napi_consume_skb); 827 828 /* Make sure a field is enclosed inside headers_start/headers_end section */ 829 #define CHECK_SKB_FIELD(field) \ 830 BUILD_BUG_ON(offsetof(struct sk_buff, field) < \ 831 offsetof(struct sk_buff, headers_start)); \ 832 BUILD_BUG_ON(offsetof(struct sk_buff, field) > \ 833 offsetof(struct sk_buff, headers_end)); \ 834 835 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old) 836 { 837 new->tstamp = old->tstamp; 838 /* We do not copy old->sk */ 839 new->dev = old->dev; 840 memcpy(new->cb, old->cb, sizeof(old->cb)); 841 skb_dst_copy(new, old); 842 #ifdef CONFIG_XFRM 843 new->sp = secpath_get(old->sp); 844 #endif 845 __nf_copy(new, old, false); 846 847 /* Note : this field could be in headers_start/headers_end section 848 * It is not yet because we do not want to have a 16 bit hole 849 */ 850 new->queue_mapping = old->queue_mapping; 851 852 memcpy(&new->headers_start, &old->headers_start, 853 offsetof(struct sk_buff, headers_end) - 854 offsetof(struct sk_buff, headers_start)); 855 CHECK_SKB_FIELD(protocol); 856 CHECK_SKB_FIELD(csum); 857 CHECK_SKB_FIELD(hash); 858 CHECK_SKB_FIELD(priority); 859 CHECK_SKB_FIELD(skb_iif); 860 CHECK_SKB_FIELD(vlan_proto); 861 CHECK_SKB_FIELD(vlan_tci); 862 CHECK_SKB_FIELD(transport_header); 863 CHECK_SKB_FIELD(network_header); 864 CHECK_SKB_FIELD(mac_header); 865 CHECK_SKB_FIELD(inner_protocol); 866 CHECK_SKB_FIELD(inner_transport_header); 867 CHECK_SKB_FIELD(inner_network_header); 868 CHECK_SKB_FIELD(inner_mac_header); 869 CHECK_SKB_FIELD(mark); 870 #ifdef CONFIG_NETWORK_SECMARK 871 CHECK_SKB_FIELD(secmark); 872 #endif 873 #ifdef CONFIG_NET_RX_BUSY_POLL 874 CHECK_SKB_FIELD(napi_id); 875 #endif 876 #ifdef CONFIG_XPS 877 CHECK_SKB_FIELD(sender_cpu); 878 #endif 879 #ifdef CONFIG_NET_SCHED 880 CHECK_SKB_FIELD(tc_index); 881 #ifdef CONFIG_NET_CLS_ACT 882 CHECK_SKB_FIELD(tc_verd); 883 #endif 884 #endif 885 886 } 887 888 /* 889 * You should not add any new code to this function. Add it to 890 * __copy_skb_header above instead. 891 */ 892 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb) 893 { 894 #define C(x) n->x = skb->x 895 896 n->next = n->prev = NULL; 897 n->sk = NULL; 898 __copy_skb_header(n, skb); 899 900 C(len); 901 C(data_len); 902 C(mac_len); 903 n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len; 904 n->cloned = 1; 905 n->nohdr = 0; 906 n->destructor = NULL; 907 C(tail); 908 C(end); 909 C(head); 910 C(head_frag); 911 C(data); 912 C(truesize); 913 atomic_set(&n->users, 1); 914 915 atomic_inc(&(skb_shinfo(skb)->dataref)); 916 skb->cloned = 1; 917 918 return n; 919 #undef C 920 } 921 922 /** 923 * skb_morph - morph one skb into another 924 * @dst: the skb to receive the contents 925 * @src: the skb to supply the contents 926 * 927 * This is identical to skb_clone except that the target skb is 928 * supplied by the user. 929 * 930 * The target skb is returned upon exit. 931 */ 932 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src) 933 { 934 skb_release_all(dst); 935 return __skb_clone(dst, src); 936 } 937 EXPORT_SYMBOL_GPL(skb_morph); 938 939 /** 940 * skb_copy_ubufs - copy userspace skb frags buffers to kernel 941 * @skb: the skb to modify 942 * @gfp_mask: allocation priority 943 * 944 * This must be called on SKBTX_DEV_ZEROCOPY skb. 945 * It will copy all frags into kernel and drop the reference 946 * to userspace pages. 947 * 948 * If this function is called from an interrupt gfp_mask() must be 949 * %GFP_ATOMIC. 950 * 951 * Returns 0 on success or a negative error code on failure 952 * to allocate kernel memory to copy to. 953 */ 954 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask) 955 { 956 int i; 957 int num_frags = skb_shinfo(skb)->nr_frags; 958 struct page *page, *head = NULL; 959 struct ubuf_info *uarg = skb_shinfo(skb)->destructor_arg; 960 961 for (i = 0; i < num_frags; i++) { 962 u8 *vaddr; 963 skb_frag_t *f = &skb_shinfo(skb)->frags[i]; 964 965 page = alloc_page(gfp_mask); 966 if (!page) { 967 while (head) { 968 struct page *next = (struct page *)page_private(head); 969 put_page(head); 970 head = next; 971 } 972 return -ENOMEM; 973 } 974 vaddr = kmap_atomic(skb_frag_page(f)); 975 memcpy(page_address(page), 976 vaddr + f->page_offset, skb_frag_size(f)); 977 kunmap_atomic(vaddr); 978 set_page_private(page, (unsigned long)head); 979 head = page; 980 } 981 982 /* skb frags release userspace buffers */ 983 for (i = 0; i < num_frags; i++) 984 skb_frag_unref(skb, i); 985 986 uarg->callback(uarg, false); 987 988 /* skb frags point to kernel buffers */ 989 for (i = num_frags - 1; i >= 0; i--) { 990 __skb_fill_page_desc(skb, i, head, 0, 991 skb_shinfo(skb)->frags[i].size); 992 head = (struct page *)page_private(head); 993 } 994 995 skb_shinfo(skb)->tx_flags &= ~SKBTX_DEV_ZEROCOPY; 996 return 0; 997 } 998 EXPORT_SYMBOL_GPL(skb_copy_ubufs); 999 1000 /** 1001 * skb_clone - duplicate an sk_buff 1002 * @skb: buffer to clone 1003 * @gfp_mask: allocation priority 1004 * 1005 * Duplicate an &sk_buff. The new one is not owned by a socket. Both 1006 * copies share the same packet data but not structure. The new 1007 * buffer has a reference count of 1. If the allocation fails the 1008 * function returns %NULL otherwise the new buffer is returned. 1009 * 1010 * If this function is called from an interrupt gfp_mask() must be 1011 * %GFP_ATOMIC. 1012 */ 1013 1014 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask) 1015 { 1016 struct sk_buff_fclones *fclones = container_of(skb, 1017 struct sk_buff_fclones, 1018 skb1); 1019 struct sk_buff *n; 1020 1021 if (skb_orphan_frags(skb, gfp_mask)) 1022 return NULL; 1023 1024 if (skb->fclone == SKB_FCLONE_ORIG && 1025 atomic_read(&fclones->fclone_ref) == 1) { 1026 n = &fclones->skb2; 1027 atomic_set(&fclones->fclone_ref, 2); 1028 } else { 1029 if (skb_pfmemalloc(skb)) 1030 gfp_mask |= __GFP_MEMALLOC; 1031 1032 n = kmem_cache_alloc(skbuff_head_cache, gfp_mask); 1033 if (!n) 1034 return NULL; 1035 1036 kmemcheck_annotate_bitfield(n, flags1); 1037 n->fclone = SKB_FCLONE_UNAVAILABLE; 1038 } 1039 1040 return __skb_clone(n, skb); 1041 } 1042 EXPORT_SYMBOL(skb_clone); 1043 1044 static void skb_headers_offset_update(struct sk_buff *skb, int off) 1045 { 1046 /* Only adjust this if it actually is csum_start rather than csum */ 1047 if (skb->ip_summed == CHECKSUM_PARTIAL) 1048 skb->csum_start += off; 1049 /* {transport,network,mac}_header and tail are relative to skb->head */ 1050 skb->transport_header += off; 1051 skb->network_header += off; 1052 if (skb_mac_header_was_set(skb)) 1053 skb->mac_header += off; 1054 skb->inner_transport_header += off; 1055 skb->inner_network_header += off; 1056 skb->inner_mac_header += off; 1057 } 1058 1059 static void copy_skb_header(struct sk_buff *new, const struct sk_buff *old) 1060 { 1061 __copy_skb_header(new, old); 1062 1063 skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size; 1064 skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs; 1065 skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type; 1066 } 1067 1068 static inline int skb_alloc_rx_flag(const struct sk_buff *skb) 1069 { 1070 if (skb_pfmemalloc(skb)) 1071 return SKB_ALLOC_RX; 1072 return 0; 1073 } 1074 1075 /** 1076 * skb_copy - create private copy of an sk_buff 1077 * @skb: buffer to copy 1078 * @gfp_mask: allocation priority 1079 * 1080 * Make a copy of both an &sk_buff and its data. This is used when the 1081 * caller wishes to modify the data and needs a private copy of the 1082 * data to alter. Returns %NULL on failure or the pointer to the buffer 1083 * on success. The returned buffer has a reference count of 1. 1084 * 1085 * As by-product this function converts non-linear &sk_buff to linear 1086 * one, so that &sk_buff becomes completely private and caller is allowed 1087 * to modify all the data of returned buffer. This means that this 1088 * function is not recommended for use in circumstances when only 1089 * header is going to be modified. Use pskb_copy() instead. 1090 */ 1091 1092 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask) 1093 { 1094 int headerlen = skb_headroom(skb); 1095 unsigned int size = skb_end_offset(skb) + skb->data_len; 1096 struct sk_buff *n = __alloc_skb(size, gfp_mask, 1097 skb_alloc_rx_flag(skb), NUMA_NO_NODE); 1098 1099 if (!n) 1100 return NULL; 1101 1102 /* Set the data pointer */ 1103 skb_reserve(n, headerlen); 1104 /* Set the tail pointer and length */ 1105 skb_put(n, skb->len); 1106 1107 if (skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len)) 1108 BUG(); 1109 1110 copy_skb_header(n, skb); 1111 return n; 1112 } 1113 EXPORT_SYMBOL(skb_copy); 1114 1115 /** 1116 * __pskb_copy_fclone - create copy of an sk_buff with private head. 1117 * @skb: buffer to copy 1118 * @headroom: headroom of new skb 1119 * @gfp_mask: allocation priority 1120 * @fclone: if true allocate the copy of the skb from the fclone 1121 * cache instead of the head cache; it is recommended to set this 1122 * to true for the cases where the copy will likely be cloned 1123 * 1124 * Make a copy of both an &sk_buff and part of its data, located 1125 * in header. Fragmented data remain shared. This is used when 1126 * the caller wishes to modify only header of &sk_buff and needs 1127 * private copy of the header to alter. Returns %NULL on failure 1128 * or the pointer to the buffer on success. 1129 * The returned buffer has a reference count of 1. 1130 */ 1131 1132 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom, 1133 gfp_t gfp_mask, bool fclone) 1134 { 1135 unsigned int size = skb_headlen(skb) + headroom; 1136 int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0); 1137 struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE); 1138 1139 if (!n) 1140 goto out; 1141 1142 /* Set the data pointer */ 1143 skb_reserve(n, headroom); 1144 /* Set the tail pointer and length */ 1145 skb_put(n, skb_headlen(skb)); 1146 /* Copy the bytes */ 1147 skb_copy_from_linear_data(skb, n->data, n->len); 1148 1149 n->truesize += skb->data_len; 1150 n->data_len = skb->data_len; 1151 n->len = skb->len; 1152 1153 if (skb_shinfo(skb)->nr_frags) { 1154 int i; 1155 1156 if (skb_orphan_frags(skb, gfp_mask)) { 1157 kfree_skb(n); 1158 n = NULL; 1159 goto out; 1160 } 1161 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1162 skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i]; 1163 skb_frag_ref(skb, i); 1164 } 1165 skb_shinfo(n)->nr_frags = i; 1166 } 1167 1168 if (skb_has_frag_list(skb)) { 1169 skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list; 1170 skb_clone_fraglist(n); 1171 } 1172 1173 copy_skb_header(n, skb); 1174 out: 1175 return n; 1176 } 1177 EXPORT_SYMBOL(__pskb_copy_fclone); 1178 1179 /** 1180 * pskb_expand_head - reallocate header of &sk_buff 1181 * @skb: buffer to reallocate 1182 * @nhead: room to add at head 1183 * @ntail: room to add at tail 1184 * @gfp_mask: allocation priority 1185 * 1186 * Expands (or creates identical copy, if @nhead and @ntail are zero) 1187 * header of @skb. &sk_buff itself is not changed. &sk_buff MUST have 1188 * reference count of 1. Returns zero in the case of success or error, 1189 * if expansion failed. In the last case, &sk_buff is not changed. 1190 * 1191 * All the pointers pointing into skb header may change and must be 1192 * reloaded after call to this function. 1193 */ 1194 1195 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, 1196 gfp_t gfp_mask) 1197 { 1198 int i; 1199 u8 *data; 1200 int size = nhead + skb_end_offset(skb) + ntail; 1201 long off; 1202 1203 BUG_ON(nhead < 0); 1204 1205 if (skb_shared(skb)) 1206 BUG(); 1207 1208 size = SKB_DATA_ALIGN(size); 1209 1210 if (skb_pfmemalloc(skb)) 1211 gfp_mask |= __GFP_MEMALLOC; 1212 data = kmalloc_reserve(size + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)), 1213 gfp_mask, NUMA_NO_NODE, NULL); 1214 if (!data) 1215 goto nodata; 1216 size = SKB_WITH_OVERHEAD(ksize(data)); 1217 1218 /* Copy only real data... and, alas, header. This should be 1219 * optimized for the cases when header is void. 1220 */ 1221 memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head); 1222 1223 memcpy((struct skb_shared_info *)(data + size), 1224 skb_shinfo(skb), 1225 offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags])); 1226 1227 /* 1228 * if shinfo is shared we must drop the old head gracefully, but if it 1229 * is not we can just drop the old head and let the existing refcount 1230 * be since all we did is relocate the values 1231 */ 1232 if (skb_cloned(skb)) { 1233 /* copy this zero copy skb frags */ 1234 if (skb_orphan_frags(skb, gfp_mask)) 1235 goto nofrags; 1236 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 1237 skb_frag_ref(skb, i); 1238 1239 if (skb_has_frag_list(skb)) 1240 skb_clone_fraglist(skb); 1241 1242 skb_release_data(skb); 1243 } else { 1244 skb_free_head(skb); 1245 } 1246 off = (data + nhead) - skb->head; 1247 1248 skb->head = data; 1249 skb->head_frag = 0; 1250 skb->data += off; 1251 #ifdef NET_SKBUFF_DATA_USES_OFFSET 1252 skb->end = size; 1253 off = nhead; 1254 #else 1255 skb->end = skb->head + size; 1256 #endif 1257 skb->tail += off; 1258 skb_headers_offset_update(skb, nhead); 1259 skb->cloned = 0; 1260 skb->hdr_len = 0; 1261 skb->nohdr = 0; 1262 atomic_set(&skb_shinfo(skb)->dataref, 1); 1263 return 0; 1264 1265 nofrags: 1266 kfree(data); 1267 nodata: 1268 return -ENOMEM; 1269 } 1270 EXPORT_SYMBOL(pskb_expand_head); 1271 1272 /* Make private copy of skb with writable head and some headroom */ 1273 1274 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom) 1275 { 1276 struct sk_buff *skb2; 1277 int delta = headroom - skb_headroom(skb); 1278 1279 if (delta <= 0) 1280 skb2 = pskb_copy(skb, GFP_ATOMIC); 1281 else { 1282 skb2 = skb_clone(skb, GFP_ATOMIC); 1283 if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0, 1284 GFP_ATOMIC)) { 1285 kfree_skb(skb2); 1286 skb2 = NULL; 1287 } 1288 } 1289 return skb2; 1290 } 1291 EXPORT_SYMBOL(skb_realloc_headroom); 1292 1293 /** 1294 * skb_copy_expand - copy and expand sk_buff 1295 * @skb: buffer to copy 1296 * @newheadroom: new free bytes at head 1297 * @newtailroom: new free bytes at tail 1298 * @gfp_mask: allocation priority 1299 * 1300 * Make a copy of both an &sk_buff and its data and while doing so 1301 * allocate additional space. 1302 * 1303 * This is used when the caller wishes to modify the data and needs a 1304 * private copy of the data to alter as well as more space for new fields. 1305 * Returns %NULL on failure or the pointer to the buffer 1306 * on success. The returned buffer has a reference count of 1. 1307 * 1308 * You must pass %GFP_ATOMIC as the allocation priority if this function 1309 * is called from an interrupt. 1310 */ 1311 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, 1312 int newheadroom, int newtailroom, 1313 gfp_t gfp_mask) 1314 { 1315 /* 1316 * Allocate the copy buffer 1317 */ 1318 struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom, 1319 gfp_mask, skb_alloc_rx_flag(skb), 1320 NUMA_NO_NODE); 1321 int oldheadroom = skb_headroom(skb); 1322 int head_copy_len, head_copy_off; 1323 1324 if (!n) 1325 return NULL; 1326 1327 skb_reserve(n, newheadroom); 1328 1329 /* Set the tail pointer and length */ 1330 skb_put(n, skb->len); 1331 1332 head_copy_len = oldheadroom; 1333 head_copy_off = 0; 1334 if (newheadroom <= head_copy_len) 1335 head_copy_len = newheadroom; 1336 else 1337 head_copy_off = newheadroom - head_copy_len; 1338 1339 /* Copy the linear header and data. */ 1340 if (skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off, 1341 skb->len + head_copy_len)) 1342 BUG(); 1343 1344 copy_skb_header(n, skb); 1345 1346 skb_headers_offset_update(n, newheadroom - oldheadroom); 1347 1348 return n; 1349 } 1350 EXPORT_SYMBOL(skb_copy_expand); 1351 1352 /** 1353 * skb_pad - zero pad the tail of an skb 1354 * @skb: buffer to pad 1355 * @pad: space to pad 1356 * 1357 * Ensure that a buffer is followed by a padding area that is zero 1358 * filled. Used by network drivers which may DMA or transfer data 1359 * beyond the buffer end onto the wire. 1360 * 1361 * May return error in out of memory cases. The skb is freed on error. 1362 */ 1363 1364 int skb_pad(struct sk_buff *skb, int pad) 1365 { 1366 int err; 1367 int ntail; 1368 1369 /* If the skbuff is non linear tailroom is always zero.. */ 1370 if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) { 1371 memset(skb->data+skb->len, 0, pad); 1372 return 0; 1373 } 1374 1375 ntail = skb->data_len + pad - (skb->end - skb->tail); 1376 if (likely(skb_cloned(skb) || ntail > 0)) { 1377 err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC); 1378 if (unlikely(err)) 1379 goto free_skb; 1380 } 1381 1382 /* FIXME: The use of this function with non-linear skb's really needs 1383 * to be audited. 1384 */ 1385 err = skb_linearize(skb); 1386 if (unlikely(err)) 1387 goto free_skb; 1388 1389 memset(skb->data + skb->len, 0, pad); 1390 return 0; 1391 1392 free_skb: 1393 kfree_skb(skb); 1394 return err; 1395 } 1396 EXPORT_SYMBOL(skb_pad); 1397 1398 /** 1399 * pskb_put - add data to the tail of a potentially fragmented buffer 1400 * @skb: start of the buffer to use 1401 * @tail: tail fragment of the buffer to use 1402 * @len: amount of data to add 1403 * 1404 * This function extends the used data area of the potentially 1405 * fragmented buffer. @tail must be the last fragment of @skb -- or 1406 * @skb itself. If this would exceed the total buffer size the kernel 1407 * will panic. A pointer to the first byte of the extra data is 1408 * returned. 1409 */ 1410 1411 unsigned char *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len) 1412 { 1413 if (tail != skb) { 1414 skb->data_len += len; 1415 skb->len += len; 1416 } 1417 return skb_put(tail, len); 1418 } 1419 EXPORT_SYMBOL_GPL(pskb_put); 1420 1421 /** 1422 * skb_put - add data to a buffer 1423 * @skb: buffer to use 1424 * @len: amount of data to add 1425 * 1426 * This function extends the used data area of the buffer. If this would 1427 * exceed the total buffer size the kernel will panic. A pointer to the 1428 * first byte of the extra data is returned. 1429 */ 1430 unsigned char *skb_put(struct sk_buff *skb, unsigned int len) 1431 { 1432 unsigned char *tmp = skb_tail_pointer(skb); 1433 SKB_LINEAR_ASSERT(skb); 1434 skb->tail += len; 1435 skb->len += len; 1436 if (unlikely(skb->tail > skb->end)) 1437 skb_over_panic(skb, len, __builtin_return_address(0)); 1438 return tmp; 1439 } 1440 EXPORT_SYMBOL(skb_put); 1441 1442 /** 1443 * skb_push - add data to the start of a buffer 1444 * @skb: buffer to use 1445 * @len: amount of data to add 1446 * 1447 * This function extends the used data area of the buffer at the buffer 1448 * start. If this would exceed the total buffer headroom the kernel will 1449 * panic. A pointer to the first byte of the extra data is returned. 1450 */ 1451 unsigned char *skb_push(struct sk_buff *skb, unsigned int len) 1452 { 1453 skb->data -= len; 1454 skb->len += len; 1455 if (unlikely(skb->data<skb->head)) 1456 skb_under_panic(skb, len, __builtin_return_address(0)); 1457 return skb->data; 1458 } 1459 EXPORT_SYMBOL(skb_push); 1460 1461 /** 1462 * skb_pull - remove data from the start of a buffer 1463 * @skb: buffer to use 1464 * @len: amount of data to remove 1465 * 1466 * This function removes data from the start of a buffer, returning 1467 * the memory to the headroom. A pointer to the next data in the buffer 1468 * is returned. Once the data has been pulled future pushes will overwrite 1469 * the old data. 1470 */ 1471 unsigned char *skb_pull(struct sk_buff *skb, unsigned int len) 1472 { 1473 return skb_pull_inline(skb, len); 1474 } 1475 EXPORT_SYMBOL(skb_pull); 1476 1477 /** 1478 * skb_trim - remove end from a buffer 1479 * @skb: buffer to alter 1480 * @len: new length 1481 * 1482 * Cut the length of a buffer down by removing data from the tail. If 1483 * the buffer is already under the length specified it is not modified. 1484 * The skb must be linear. 1485 */ 1486 void skb_trim(struct sk_buff *skb, unsigned int len) 1487 { 1488 if (skb->len > len) 1489 __skb_trim(skb, len); 1490 } 1491 EXPORT_SYMBOL(skb_trim); 1492 1493 /* Trims skb to length len. It can change skb pointers. 1494 */ 1495 1496 int ___pskb_trim(struct sk_buff *skb, unsigned int len) 1497 { 1498 struct sk_buff **fragp; 1499 struct sk_buff *frag; 1500 int offset = skb_headlen(skb); 1501 int nfrags = skb_shinfo(skb)->nr_frags; 1502 int i; 1503 int err; 1504 1505 if (skb_cloned(skb) && 1506 unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))) 1507 return err; 1508 1509 i = 0; 1510 if (offset >= len) 1511 goto drop_pages; 1512 1513 for (; i < nfrags; i++) { 1514 int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]); 1515 1516 if (end < len) { 1517 offset = end; 1518 continue; 1519 } 1520 1521 skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset); 1522 1523 drop_pages: 1524 skb_shinfo(skb)->nr_frags = i; 1525 1526 for (; i < nfrags; i++) 1527 skb_frag_unref(skb, i); 1528 1529 if (skb_has_frag_list(skb)) 1530 skb_drop_fraglist(skb); 1531 goto done; 1532 } 1533 1534 for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp); 1535 fragp = &frag->next) { 1536 int end = offset + frag->len; 1537 1538 if (skb_shared(frag)) { 1539 struct sk_buff *nfrag; 1540 1541 nfrag = skb_clone(frag, GFP_ATOMIC); 1542 if (unlikely(!nfrag)) 1543 return -ENOMEM; 1544 1545 nfrag->next = frag->next; 1546 consume_skb(frag); 1547 frag = nfrag; 1548 *fragp = frag; 1549 } 1550 1551 if (end < len) { 1552 offset = end; 1553 continue; 1554 } 1555 1556 if (end > len && 1557 unlikely((err = pskb_trim(frag, len - offset)))) 1558 return err; 1559 1560 if (frag->next) 1561 skb_drop_list(&frag->next); 1562 break; 1563 } 1564 1565 done: 1566 if (len > skb_headlen(skb)) { 1567 skb->data_len -= skb->len - len; 1568 skb->len = len; 1569 } else { 1570 skb->len = len; 1571 skb->data_len = 0; 1572 skb_set_tail_pointer(skb, len); 1573 } 1574 1575 return 0; 1576 } 1577 EXPORT_SYMBOL(___pskb_trim); 1578 1579 /** 1580 * __pskb_pull_tail - advance tail of skb header 1581 * @skb: buffer to reallocate 1582 * @delta: number of bytes to advance tail 1583 * 1584 * The function makes a sense only on a fragmented &sk_buff, 1585 * it expands header moving its tail forward and copying necessary 1586 * data from fragmented part. 1587 * 1588 * &sk_buff MUST have reference count of 1. 1589 * 1590 * Returns %NULL (and &sk_buff does not change) if pull failed 1591 * or value of new tail of skb in the case of success. 1592 * 1593 * All the pointers pointing into skb header may change and must be 1594 * reloaded after call to this function. 1595 */ 1596 1597 /* Moves tail of skb head forward, copying data from fragmented part, 1598 * when it is necessary. 1599 * 1. It may fail due to malloc failure. 1600 * 2. It may change skb pointers. 1601 * 1602 * It is pretty complicated. Luckily, it is called only in exceptional cases. 1603 */ 1604 unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta) 1605 { 1606 /* If skb has not enough free space at tail, get new one 1607 * plus 128 bytes for future expansions. If we have enough 1608 * room at tail, reallocate without expansion only if skb is cloned. 1609 */ 1610 int i, k, eat = (skb->tail + delta) - skb->end; 1611 1612 if (eat > 0 || skb_cloned(skb)) { 1613 if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0, 1614 GFP_ATOMIC)) 1615 return NULL; 1616 } 1617 1618 if (skb_copy_bits(skb, skb_headlen(skb), skb_tail_pointer(skb), delta)) 1619 BUG(); 1620 1621 /* Optimization: no fragments, no reasons to preestimate 1622 * size of pulled pages. Superb. 1623 */ 1624 if (!skb_has_frag_list(skb)) 1625 goto pull_pages; 1626 1627 /* Estimate size of pulled pages. */ 1628 eat = delta; 1629 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1630 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 1631 1632 if (size >= eat) 1633 goto pull_pages; 1634 eat -= size; 1635 } 1636 1637 /* If we need update frag list, we are in troubles. 1638 * Certainly, it possible to add an offset to skb data, 1639 * but taking into account that pulling is expected to 1640 * be very rare operation, it is worth to fight against 1641 * further bloating skb head and crucify ourselves here instead. 1642 * Pure masohism, indeed. 8)8) 1643 */ 1644 if (eat) { 1645 struct sk_buff *list = skb_shinfo(skb)->frag_list; 1646 struct sk_buff *clone = NULL; 1647 struct sk_buff *insp = NULL; 1648 1649 do { 1650 BUG_ON(!list); 1651 1652 if (list->len <= eat) { 1653 /* Eaten as whole. */ 1654 eat -= list->len; 1655 list = list->next; 1656 insp = list; 1657 } else { 1658 /* Eaten partially. */ 1659 1660 if (skb_shared(list)) { 1661 /* Sucks! We need to fork list. :-( */ 1662 clone = skb_clone(list, GFP_ATOMIC); 1663 if (!clone) 1664 return NULL; 1665 insp = list->next; 1666 list = clone; 1667 } else { 1668 /* This may be pulled without 1669 * problems. */ 1670 insp = list; 1671 } 1672 if (!pskb_pull(list, eat)) { 1673 kfree_skb(clone); 1674 return NULL; 1675 } 1676 break; 1677 } 1678 } while (eat); 1679 1680 /* Free pulled out fragments. */ 1681 while ((list = skb_shinfo(skb)->frag_list) != insp) { 1682 skb_shinfo(skb)->frag_list = list->next; 1683 kfree_skb(list); 1684 } 1685 /* And insert new clone at head. */ 1686 if (clone) { 1687 clone->next = list; 1688 skb_shinfo(skb)->frag_list = clone; 1689 } 1690 } 1691 /* Success! Now we may commit changes to skb data. */ 1692 1693 pull_pages: 1694 eat = delta; 1695 k = 0; 1696 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1697 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 1698 1699 if (size <= eat) { 1700 skb_frag_unref(skb, i); 1701 eat -= size; 1702 } else { 1703 skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i]; 1704 if (eat) { 1705 skb_shinfo(skb)->frags[k].page_offset += eat; 1706 skb_frag_size_sub(&skb_shinfo(skb)->frags[k], eat); 1707 eat = 0; 1708 } 1709 k++; 1710 } 1711 } 1712 skb_shinfo(skb)->nr_frags = k; 1713 1714 skb->tail += delta; 1715 skb->data_len -= delta; 1716 1717 return skb_tail_pointer(skb); 1718 } 1719 EXPORT_SYMBOL(__pskb_pull_tail); 1720 1721 /** 1722 * skb_copy_bits - copy bits from skb to kernel buffer 1723 * @skb: source skb 1724 * @offset: offset in source 1725 * @to: destination buffer 1726 * @len: number of bytes to copy 1727 * 1728 * Copy the specified number of bytes from the source skb to the 1729 * destination buffer. 1730 * 1731 * CAUTION ! : 1732 * If its prototype is ever changed, 1733 * check arch/{*}/net/{*}.S files, 1734 * since it is called from BPF assembly code. 1735 */ 1736 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len) 1737 { 1738 int start = skb_headlen(skb); 1739 struct sk_buff *frag_iter; 1740 int i, copy; 1741 1742 if (offset > (int)skb->len - len) 1743 goto fault; 1744 1745 /* Copy header. */ 1746 if ((copy = start - offset) > 0) { 1747 if (copy > len) 1748 copy = len; 1749 skb_copy_from_linear_data_offset(skb, offset, to, copy); 1750 if ((len -= copy) == 0) 1751 return 0; 1752 offset += copy; 1753 to += copy; 1754 } 1755 1756 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1757 int end; 1758 skb_frag_t *f = &skb_shinfo(skb)->frags[i]; 1759 1760 WARN_ON(start > offset + len); 1761 1762 end = start + skb_frag_size(f); 1763 if ((copy = end - offset) > 0) { 1764 u8 *vaddr; 1765 1766 if (copy > len) 1767 copy = len; 1768 1769 vaddr = kmap_atomic(skb_frag_page(f)); 1770 memcpy(to, 1771 vaddr + f->page_offset + offset - start, 1772 copy); 1773 kunmap_atomic(vaddr); 1774 1775 if ((len -= copy) == 0) 1776 return 0; 1777 offset += copy; 1778 to += copy; 1779 } 1780 start = end; 1781 } 1782 1783 skb_walk_frags(skb, frag_iter) { 1784 int end; 1785 1786 WARN_ON(start > offset + len); 1787 1788 end = start + frag_iter->len; 1789 if ((copy = end - offset) > 0) { 1790 if (copy > len) 1791 copy = len; 1792 if (skb_copy_bits(frag_iter, offset - start, to, copy)) 1793 goto fault; 1794 if ((len -= copy) == 0) 1795 return 0; 1796 offset += copy; 1797 to += copy; 1798 } 1799 start = end; 1800 } 1801 1802 if (!len) 1803 return 0; 1804 1805 fault: 1806 return -EFAULT; 1807 } 1808 EXPORT_SYMBOL(skb_copy_bits); 1809 1810 /* 1811 * Callback from splice_to_pipe(), if we need to release some pages 1812 * at the end of the spd in case we error'ed out in filling the pipe. 1813 */ 1814 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i) 1815 { 1816 put_page(spd->pages[i]); 1817 } 1818 1819 static struct page *linear_to_page(struct page *page, unsigned int *len, 1820 unsigned int *offset, 1821 struct sock *sk) 1822 { 1823 struct page_frag *pfrag = sk_page_frag(sk); 1824 1825 if (!sk_page_frag_refill(sk, pfrag)) 1826 return NULL; 1827 1828 *len = min_t(unsigned int, *len, pfrag->size - pfrag->offset); 1829 1830 memcpy(page_address(pfrag->page) + pfrag->offset, 1831 page_address(page) + *offset, *len); 1832 *offset = pfrag->offset; 1833 pfrag->offset += *len; 1834 1835 return pfrag->page; 1836 } 1837 1838 static bool spd_can_coalesce(const struct splice_pipe_desc *spd, 1839 struct page *page, 1840 unsigned int offset) 1841 { 1842 return spd->nr_pages && 1843 spd->pages[spd->nr_pages - 1] == page && 1844 (spd->partial[spd->nr_pages - 1].offset + 1845 spd->partial[spd->nr_pages - 1].len == offset); 1846 } 1847 1848 /* 1849 * Fill page/offset/length into spd, if it can hold more pages. 1850 */ 1851 static bool spd_fill_page(struct splice_pipe_desc *spd, 1852 struct pipe_inode_info *pipe, struct page *page, 1853 unsigned int *len, unsigned int offset, 1854 bool linear, 1855 struct sock *sk) 1856 { 1857 if (unlikely(spd->nr_pages == MAX_SKB_FRAGS)) 1858 return true; 1859 1860 if (linear) { 1861 page = linear_to_page(page, len, &offset, sk); 1862 if (!page) 1863 return true; 1864 } 1865 if (spd_can_coalesce(spd, page, offset)) { 1866 spd->partial[spd->nr_pages - 1].len += *len; 1867 return false; 1868 } 1869 get_page(page); 1870 spd->pages[spd->nr_pages] = page; 1871 spd->partial[spd->nr_pages].len = *len; 1872 spd->partial[spd->nr_pages].offset = offset; 1873 spd->nr_pages++; 1874 1875 return false; 1876 } 1877 1878 static bool __splice_segment(struct page *page, unsigned int poff, 1879 unsigned int plen, unsigned int *off, 1880 unsigned int *len, 1881 struct splice_pipe_desc *spd, bool linear, 1882 struct sock *sk, 1883 struct pipe_inode_info *pipe) 1884 { 1885 if (!*len) 1886 return true; 1887 1888 /* skip this segment if already processed */ 1889 if (*off >= plen) { 1890 *off -= plen; 1891 return false; 1892 } 1893 1894 /* ignore any bits we already processed */ 1895 poff += *off; 1896 plen -= *off; 1897 *off = 0; 1898 1899 do { 1900 unsigned int flen = min(*len, plen); 1901 1902 if (spd_fill_page(spd, pipe, page, &flen, poff, 1903 linear, sk)) 1904 return true; 1905 poff += flen; 1906 plen -= flen; 1907 *len -= flen; 1908 } while (*len && plen); 1909 1910 return false; 1911 } 1912 1913 /* 1914 * Map linear and fragment data from the skb to spd. It reports true if the 1915 * pipe is full or if we already spliced the requested length. 1916 */ 1917 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe, 1918 unsigned int *offset, unsigned int *len, 1919 struct splice_pipe_desc *spd, struct sock *sk) 1920 { 1921 int seg; 1922 struct sk_buff *iter; 1923 1924 /* map the linear part : 1925 * If skb->head_frag is set, this 'linear' part is backed by a 1926 * fragment, and if the head is not shared with any clones then 1927 * we can avoid a copy since we own the head portion of this page. 1928 */ 1929 if (__splice_segment(virt_to_page(skb->data), 1930 (unsigned long) skb->data & (PAGE_SIZE - 1), 1931 skb_headlen(skb), 1932 offset, len, spd, 1933 skb_head_is_locked(skb), 1934 sk, pipe)) 1935 return true; 1936 1937 /* 1938 * then map the fragments 1939 */ 1940 for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) { 1941 const skb_frag_t *f = &skb_shinfo(skb)->frags[seg]; 1942 1943 if (__splice_segment(skb_frag_page(f), 1944 f->page_offset, skb_frag_size(f), 1945 offset, len, spd, false, sk, pipe)) 1946 return true; 1947 } 1948 1949 skb_walk_frags(skb, iter) { 1950 if (*offset >= iter->len) { 1951 *offset -= iter->len; 1952 continue; 1953 } 1954 /* __skb_splice_bits() only fails if the output has no room 1955 * left, so no point in going over the frag_list for the error 1956 * case. 1957 */ 1958 if (__skb_splice_bits(iter, pipe, offset, len, spd, sk)) 1959 return true; 1960 } 1961 1962 return false; 1963 } 1964 1965 ssize_t skb_socket_splice(struct sock *sk, 1966 struct pipe_inode_info *pipe, 1967 struct splice_pipe_desc *spd) 1968 { 1969 int ret; 1970 1971 /* Drop the socket lock, otherwise we have reverse 1972 * locking dependencies between sk_lock and i_mutex 1973 * here as compared to sendfile(). We enter here 1974 * with the socket lock held, and splice_to_pipe() will 1975 * grab the pipe inode lock. For sendfile() emulation, 1976 * we call into ->sendpage() with the i_mutex lock held 1977 * and networking will grab the socket lock. 1978 */ 1979 release_sock(sk); 1980 ret = splice_to_pipe(pipe, spd); 1981 lock_sock(sk); 1982 1983 return ret; 1984 } 1985 1986 /* 1987 * Map data from the skb to a pipe. Should handle both the linear part, 1988 * the fragments, and the frag list. 1989 */ 1990 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset, 1991 struct pipe_inode_info *pipe, unsigned int tlen, 1992 unsigned int flags, 1993 ssize_t (*splice_cb)(struct sock *, 1994 struct pipe_inode_info *, 1995 struct splice_pipe_desc *)) 1996 { 1997 struct partial_page partial[MAX_SKB_FRAGS]; 1998 struct page *pages[MAX_SKB_FRAGS]; 1999 struct splice_pipe_desc spd = { 2000 .pages = pages, 2001 .partial = partial, 2002 .nr_pages_max = MAX_SKB_FRAGS, 2003 .flags = flags, 2004 .ops = &nosteal_pipe_buf_ops, 2005 .spd_release = sock_spd_release, 2006 }; 2007 int ret = 0; 2008 2009 __skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk); 2010 2011 if (spd.nr_pages) 2012 ret = splice_cb(sk, pipe, &spd); 2013 2014 return ret; 2015 } 2016 EXPORT_SYMBOL_GPL(skb_splice_bits); 2017 2018 /** 2019 * skb_store_bits - store bits from kernel buffer to skb 2020 * @skb: destination buffer 2021 * @offset: offset in destination 2022 * @from: source buffer 2023 * @len: number of bytes to copy 2024 * 2025 * Copy the specified number of bytes from the source buffer to the 2026 * destination skb. This function handles all the messy bits of 2027 * traversing fragment lists and such. 2028 */ 2029 2030 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len) 2031 { 2032 int start = skb_headlen(skb); 2033 struct sk_buff *frag_iter; 2034 int i, copy; 2035 2036 if (offset > (int)skb->len - len) 2037 goto fault; 2038 2039 if ((copy = start - offset) > 0) { 2040 if (copy > len) 2041 copy = len; 2042 skb_copy_to_linear_data_offset(skb, offset, from, copy); 2043 if ((len -= copy) == 0) 2044 return 0; 2045 offset += copy; 2046 from += copy; 2047 } 2048 2049 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2050 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2051 int end; 2052 2053 WARN_ON(start > offset + len); 2054 2055 end = start + skb_frag_size(frag); 2056 if ((copy = end - offset) > 0) { 2057 u8 *vaddr; 2058 2059 if (copy > len) 2060 copy = len; 2061 2062 vaddr = kmap_atomic(skb_frag_page(frag)); 2063 memcpy(vaddr + frag->page_offset + offset - start, 2064 from, copy); 2065 kunmap_atomic(vaddr); 2066 2067 if ((len -= copy) == 0) 2068 return 0; 2069 offset += copy; 2070 from += copy; 2071 } 2072 start = end; 2073 } 2074 2075 skb_walk_frags(skb, frag_iter) { 2076 int end; 2077 2078 WARN_ON(start > offset + len); 2079 2080 end = start + frag_iter->len; 2081 if ((copy = end - offset) > 0) { 2082 if (copy > len) 2083 copy = len; 2084 if (skb_store_bits(frag_iter, offset - start, 2085 from, copy)) 2086 goto fault; 2087 if ((len -= copy) == 0) 2088 return 0; 2089 offset += copy; 2090 from += copy; 2091 } 2092 start = end; 2093 } 2094 if (!len) 2095 return 0; 2096 2097 fault: 2098 return -EFAULT; 2099 } 2100 EXPORT_SYMBOL(skb_store_bits); 2101 2102 /* Checksum skb data. */ 2103 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len, 2104 __wsum csum, const struct skb_checksum_ops *ops) 2105 { 2106 int start = skb_headlen(skb); 2107 int i, copy = start - offset; 2108 struct sk_buff *frag_iter; 2109 int pos = 0; 2110 2111 /* Checksum header. */ 2112 if (copy > 0) { 2113 if (copy > len) 2114 copy = len; 2115 csum = ops->update(skb->data + offset, copy, csum); 2116 if ((len -= copy) == 0) 2117 return csum; 2118 offset += copy; 2119 pos = copy; 2120 } 2121 2122 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2123 int end; 2124 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2125 2126 WARN_ON(start > offset + len); 2127 2128 end = start + skb_frag_size(frag); 2129 if ((copy = end - offset) > 0) { 2130 __wsum csum2; 2131 u8 *vaddr; 2132 2133 if (copy > len) 2134 copy = len; 2135 vaddr = kmap_atomic(skb_frag_page(frag)); 2136 csum2 = ops->update(vaddr + frag->page_offset + 2137 offset - start, copy, 0); 2138 kunmap_atomic(vaddr); 2139 csum = ops->combine(csum, csum2, pos, copy); 2140 if (!(len -= copy)) 2141 return csum; 2142 offset += copy; 2143 pos += copy; 2144 } 2145 start = end; 2146 } 2147 2148 skb_walk_frags(skb, frag_iter) { 2149 int end; 2150 2151 WARN_ON(start > offset + len); 2152 2153 end = start + frag_iter->len; 2154 if ((copy = end - offset) > 0) { 2155 __wsum csum2; 2156 if (copy > len) 2157 copy = len; 2158 csum2 = __skb_checksum(frag_iter, offset - start, 2159 copy, 0, ops); 2160 csum = ops->combine(csum, csum2, pos, copy); 2161 if ((len -= copy) == 0) 2162 return csum; 2163 offset += copy; 2164 pos += copy; 2165 } 2166 start = end; 2167 } 2168 BUG_ON(len); 2169 2170 return csum; 2171 } 2172 EXPORT_SYMBOL(__skb_checksum); 2173 2174 __wsum skb_checksum(const struct sk_buff *skb, int offset, 2175 int len, __wsum csum) 2176 { 2177 const struct skb_checksum_ops ops = { 2178 .update = csum_partial_ext, 2179 .combine = csum_block_add_ext, 2180 }; 2181 2182 return __skb_checksum(skb, offset, len, csum, &ops); 2183 } 2184 EXPORT_SYMBOL(skb_checksum); 2185 2186 /* Both of above in one bottle. */ 2187 2188 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, 2189 u8 *to, int len, __wsum csum) 2190 { 2191 int start = skb_headlen(skb); 2192 int i, copy = start - offset; 2193 struct sk_buff *frag_iter; 2194 int pos = 0; 2195 2196 /* Copy header. */ 2197 if (copy > 0) { 2198 if (copy > len) 2199 copy = len; 2200 csum = csum_partial_copy_nocheck(skb->data + offset, to, 2201 copy, csum); 2202 if ((len -= copy) == 0) 2203 return csum; 2204 offset += copy; 2205 to += copy; 2206 pos = copy; 2207 } 2208 2209 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2210 int end; 2211 2212 WARN_ON(start > offset + len); 2213 2214 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]); 2215 if ((copy = end - offset) > 0) { 2216 __wsum csum2; 2217 u8 *vaddr; 2218 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2219 2220 if (copy > len) 2221 copy = len; 2222 vaddr = kmap_atomic(skb_frag_page(frag)); 2223 csum2 = csum_partial_copy_nocheck(vaddr + 2224 frag->page_offset + 2225 offset - start, to, 2226 copy, 0); 2227 kunmap_atomic(vaddr); 2228 csum = csum_block_add(csum, csum2, pos); 2229 if (!(len -= copy)) 2230 return csum; 2231 offset += copy; 2232 to += copy; 2233 pos += copy; 2234 } 2235 start = end; 2236 } 2237 2238 skb_walk_frags(skb, frag_iter) { 2239 __wsum csum2; 2240 int end; 2241 2242 WARN_ON(start > offset + len); 2243 2244 end = start + frag_iter->len; 2245 if ((copy = end - offset) > 0) { 2246 if (copy > len) 2247 copy = len; 2248 csum2 = skb_copy_and_csum_bits(frag_iter, 2249 offset - start, 2250 to, copy, 0); 2251 csum = csum_block_add(csum, csum2, pos); 2252 if ((len -= copy) == 0) 2253 return csum; 2254 offset += copy; 2255 to += copy; 2256 pos += copy; 2257 } 2258 start = end; 2259 } 2260 BUG_ON(len); 2261 return csum; 2262 } 2263 EXPORT_SYMBOL(skb_copy_and_csum_bits); 2264 2265 /** 2266 * skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy() 2267 * @from: source buffer 2268 * 2269 * Calculates the amount of linear headroom needed in the 'to' skb passed 2270 * into skb_zerocopy(). 2271 */ 2272 unsigned int 2273 skb_zerocopy_headlen(const struct sk_buff *from) 2274 { 2275 unsigned int hlen = 0; 2276 2277 if (!from->head_frag || 2278 skb_headlen(from) < L1_CACHE_BYTES || 2279 skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS) 2280 hlen = skb_headlen(from); 2281 2282 if (skb_has_frag_list(from)) 2283 hlen = from->len; 2284 2285 return hlen; 2286 } 2287 EXPORT_SYMBOL_GPL(skb_zerocopy_headlen); 2288 2289 /** 2290 * skb_zerocopy - Zero copy skb to skb 2291 * @to: destination buffer 2292 * @from: source buffer 2293 * @len: number of bytes to copy from source buffer 2294 * @hlen: size of linear headroom in destination buffer 2295 * 2296 * Copies up to `len` bytes from `from` to `to` by creating references 2297 * to the frags in the source buffer. 2298 * 2299 * The `hlen` as calculated by skb_zerocopy_headlen() specifies the 2300 * headroom in the `to` buffer. 2301 * 2302 * Return value: 2303 * 0: everything is OK 2304 * -ENOMEM: couldn't orphan frags of @from due to lack of memory 2305 * -EFAULT: skb_copy_bits() found some problem with skb geometry 2306 */ 2307 int 2308 skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen) 2309 { 2310 int i, j = 0; 2311 int plen = 0; /* length of skb->head fragment */ 2312 int ret; 2313 struct page *page; 2314 unsigned int offset; 2315 2316 BUG_ON(!from->head_frag && !hlen); 2317 2318 /* dont bother with small payloads */ 2319 if (len <= skb_tailroom(to)) 2320 return skb_copy_bits(from, 0, skb_put(to, len), len); 2321 2322 if (hlen) { 2323 ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen); 2324 if (unlikely(ret)) 2325 return ret; 2326 len -= hlen; 2327 } else { 2328 plen = min_t(int, skb_headlen(from), len); 2329 if (plen) { 2330 page = virt_to_head_page(from->head); 2331 offset = from->data - (unsigned char *)page_address(page); 2332 __skb_fill_page_desc(to, 0, page, offset, plen); 2333 get_page(page); 2334 j = 1; 2335 len -= plen; 2336 } 2337 } 2338 2339 to->truesize += len + plen; 2340 to->len += len + plen; 2341 to->data_len += len + plen; 2342 2343 if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) { 2344 skb_tx_error(from); 2345 return -ENOMEM; 2346 } 2347 2348 for (i = 0; i < skb_shinfo(from)->nr_frags; i++) { 2349 if (!len) 2350 break; 2351 skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i]; 2352 skb_shinfo(to)->frags[j].size = min_t(int, skb_shinfo(to)->frags[j].size, len); 2353 len -= skb_shinfo(to)->frags[j].size; 2354 skb_frag_ref(to, j); 2355 j++; 2356 } 2357 skb_shinfo(to)->nr_frags = j; 2358 2359 return 0; 2360 } 2361 EXPORT_SYMBOL_GPL(skb_zerocopy); 2362 2363 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to) 2364 { 2365 __wsum csum; 2366 long csstart; 2367 2368 if (skb->ip_summed == CHECKSUM_PARTIAL) 2369 csstart = skb_checksum_start_offset(skb); 2370 else 2371 csstart = skb_headlen(skb); 2372 2373 BUG_ON(csstart > skb_headlen(skb)); 2374 2375 skb_copy_from_linear_data(skb, to, csstart); 2376 2377 csum = 0; 2378 if (csstart != skb->len) 2379 csum = skb_copy_and_csum_bits(skb, csstart, to + csstart, 2380 skb->len - csstart, 0); 2381 2382 if (skb->ip_summed == CHECKSUM_PARTIAL) { 2383 long csstuff = csstart + skb->csum_offset; 2384 2385 *((__sum16 *)(to + csstuff)) = csum_fold(csum); 2386 } 2387 } 2388 EXPORT_SYMBOL(skb_copy_and_csum_dev); 2389 2390 /** 2391 * skb_dequeue - remove from the head of the queue 2392 * @list: list to dequeue from 2393 * 2394 * Remove the head of the list. The list lock is taken so the function 2395 * may be used safely with other locking list functions. The head item is 2396 * returned or %NULL if the list is empty. 2397 */ 2398 2399 struct sk_buff *skb_dequeue(struct sk_buff_head *list) 2400 { 2401 unsigned long flags; 2402 struct sk_buff *result; 2403 2404 spin_lock_irqsave(&list->lock, flags); 2405 result = __skb_dequeue(list); 2406 spin_unlock_irqrestore(&list->lock, flags); 2407 return result; 2408 } 2409 EXPORT_SYMBOL(skb_dequeue); 2410 2411 /** 2412 * skb_dequeue_tail - remove from the tail of the queue 2413 * @list: list to dequeue from 2414 * 2415 * Remove the tail of the list. The list lock is taken so the function 2416 * may be used safely with other locking list functions. The tail item is 2417 * returned or %NULL if the list is empty. 2418 */ 2419 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list) 2420 { 2421 unsigned long flags; 2422 struct sk_buff *result; 2423 2424 spin_lock_irqsave(&list->lock, flags); 2425 result = __skb_dequeue_tail(list); 2426 spin_unlock_irqrestore(&list->lock, flags); 2427 return result; 2428 } 2429 EXPORT_SYMBOL(skb_dequeue_tail); 2430 2431 /** 2432 * skb_queue_purge - empty a list 2433 * @list: list to empty 2434 * 2435 * Delete all buffers on an &sk_buff list. Each buffer is removed from 2436 * the list and one reference dropped. This function takes the list 2437 * lock and is atomic with respect to other list locking functions. 2438 */ 2439 void skb_queue_purge(struct sk_buff_head *list) 2440 { 2441 struct sk_buff *skb; 2442 while ((skb = skb_dequeue(list)) != NULL) 2443 kfree_skb(skb); 2444 } 2445 EXPORT_SYMBOL(skb_queue_purge); 2446 2447 /** 2448 * skb_queue_head - queue a buffer at the list head 2449 * @list: list to use 2450 * @newsk: buffer to queue 2451 * 2452 * Queue a buffer at the start of the list. This function takes the 2453 * list lock and can be used safely with other locking &sk_buff functions 2454 * safely. 2455 * 2456 * A buffer cannot be placed on two lists at the same time. 2457 */ 2458 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk) 2459 { 2460 unsigned long flags; 2461 2462 spin_lock_irqsave(&list->lock, flags); 2463 __skb_queue_head(list, newsk); 2464 spin_unlock_irqrestore(&list->lock, flags); 2465 } 2466 EXPORT_SYMBOL(skb_queue_head); 2467 2468 /** 2469 * skb_queue_tail - queue a buffer at the list tail 2470 * @list: list to use 2471 * @newsk: buffer to queue 2472 * 2473 * Queue a buffer at the tail of the list. This function takes the 2474 * list lock and can be used safely with other locking &sk_buff functions 2475 * safely. 2476 * 2477 * A buffer cannot be placed on two lists at the same time. 2478 */ 2479 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk) 2480 { 2481 unsigned long flags; 2482 2483 spin_lock_irqsave(&list->lock, flags); 2484 __skb_queue_tail(list, newsk); 2485 spin_unlock_irqrestore(&list->lock, flags); 2486 } 2487 EXPORT_SYMBOL(skb_queue_tail); 2488 2489 /** 2490 * skb_unlink - remove a buffer from a list 2491 * @skb: buffer to remove 2492 * @list: list to use 2493 * 2494 * Remove a packet from a list. The list locks are taken and this 2495 * function is atomic with respect to other list locked calls 2496 * 2497 * You must know what list the SKB is on. 2498 */ 2499 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list) 2500 { 2501 unsigned long flags; 2502 2503 spin_lock_irqsave(&list->lock, flags); 2504 __skb_unlink(skb, list); 2505 spin_unlock_irqrestore(&list->lock, flags); 2506 } 2507 EXPORT_SYMBOL(skb_unlink); 2508 2509 /** 2510 * skb_append - append a buffer 2511 * @old: buffer to insert after 2512 * @newsk: buffer to insert 2513 * @list: list to use 2514 * 2515 * Place a packet after a given packet in a list. The list locks are taken 2516 * and this function is atomic with respect to other list locked calls. 2517 * A buffer cannot be placed on two lists at the same time. 2518 */ 2519 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list) 2520 { 2521 unsigned long flags; 2522 2523 spin_lock_irqsave(&list->lock, flags); 2524 __skb_queue_after(list, old, newsk); 2525 spin_unlock_irqrestore(&list->lock, flags); 2526 } 2527 EXPORT_SYMBOL(skb_append); 2528 2529 /** 2530 * skb_insert - insert a buffer 2531 * @old: buffer to insert before 2532 * @newsk: buffer to insert 2533 * @list: list to use 2534 * 2535 * Place a packet before a given packet in a list. The list locks are 2536 * taken and this function is atomic with respect to other list locked 2537 * calls. 2538 * 2539 * A buffer cannot be placed on two lists at the same time. 2540 */ 2541 void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list) 2542 { 2543 unsigned long flags; 2544 2545 spin_lock_irqsave(&list->lock, flags); 2546 __skb_insert(newsk, old->prev, old, list); 2547 spin_unlock_irqrestore(&list->lock, flags); 2548 } 2549 EXPORT_SYMBOL(skb_insert); 2550 2551 static inline void skb_split_inside_header(struct sk_buff *skb, 2552 struct sk_buff* skb1, 2553 const u32 len, const int pos) 2554 { 2555 int i; 2556 2557 skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len), 2558 pos - len); 2559 /* And move data appendix as is. */ 2560 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 2561 skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i]; 2562 2563 skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags; 2564 skb_shinfo(skb)->nr_frags = 0; 2565 skb1->data_len = skb->data_len; 2566 skb1->len += skb1->data_len; 2567 skb->data_len = 0; 2568 skb->len = len; 2569 skb_set_tail_pointer(skb, len); 2570 } 2571 2572 static inline void skb_split_no_header(struct sk_buff *skb, 2573 struct sk_buff* skb1, 2574 const u32 len, int pos) 2575 { 2576 int i, k = 0; 2577 const int nfrags = skb_shinfo(skb)->nr_frags; 2578 2579 skb_shinfo(skb)->nr_frags = 0; 2580 skb1->len = skb1->data_len = skb->len - len; 2581 skb->len = len; 2582 skb->data_len = len - pos; 2583 2584 for (i = 0; i < nfrags; i++) { 2585 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 2586 2587 if (pos + size > len) { 2588 skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i]; 2589 2590 if (pos < len) { 2591 /* Split frag. 2592 * We have two variants in this case: 2593 * 1. Move all the frag to the second 2594 * part, if it is possible. F.e. 2595 * this approach is mandatory for TUX, 2596 * where splitting is expensive. 2597 * 2. Split is accurately. We make this. 2598 */ 2599 skb_frag_ref(skb, i); 2600 skb_shinfo(skb1)->frags[0].page_offset += len - pos; 2601 skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos); 2602 skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos); 2603 skb_shinfo(skb)->nr_frags++; 2604 } 2605 k++; 2606 } else 2607 skb_shinfo(skb)->nr_frags++; 2608 pos += size; 2609 } 2610 skb_shinfo(skb1)->nr_frags = k; 2611 } 2612 2613 /** 2614 * skb_split - Split fragmented skb to two parts at length len. 2615 * @skb: the buffer to split 2616 * @skb1: the buffer to receive the second part 2617 * @len: new length for skb 2618 */ 2619 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len) 2620 { 2621 int pos = skb_headlen(skb); 2622 2623 skb_shinfo(skb1)->tx_flags = skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG; 2624 if (len < pos) /* Split line is inside header. */ 2625 skb_split_inside_header(skb, skb1, len, pos); 2626 else /* Second chunk has no header, nothing to copy. */ 2627 skb_split_no_header(skb, skb1, len, pos); 2628 } 2629 EXPORT_SYMBOL(skb_split); 2630 2631 /* Shifting from/to a cloned skb is a no-go. 2632 * 2633 * Caller cannot keep skb_shinfo related pointers past calling here! 2634 */ 2635 static int skb_prepare_for_shift(struct sk_buff *skb) 2636 { 2637 return skb_cloned(skb) && pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 2638 } 2639 2640 /** 2641 * skb_shift - Shifts paged data partially from skb to another 2642 * @tgt: buffer into which tail data gets added 2643 * @skb: buffer from which the paged data comes from 2644 * @shiftlen: shift up to this many bytes 2645 * 2646 * Attempts to shift up to shiftlen worth of bytes, which may be less than 2647 * the length of the skb, from skb to tgt. Returns number bytes shifted. 2648 * It's up to caller to free skb if everything was shifted. 2649 * 2650 * If @tgt runs out of frags, the whole operation is aborted. 2651 * 2652 * Skb cannot include anything else but paged data while tgt is allowed 2653 * to have non-paged data as well. 2654 * 2655 * TODO: full sized shift could be optimized but that would need 2656 * specialized skb free'er to handle frags without up-to-date nr_frags. 2657 */ 2658 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen) 2659 { 2660 int from, to, merge, todo; 2661 struct skb_frag_struct *fragfrom, *fragto; 2662 2663 BUG_ON(shiftlen > skb->len); 2664 BUG_ON(skb_headlen(skb)); /* Would corrupt stream */ 2665 2666 todo = shiftlen; 2667 from = 0; 2668 to = skb_shinfo(tgt)->nr_frags; 2669 fragfrom = &skb_shinfo(skb)->frags[from]; 2670 2671 /* Actual merge is delayed until the point when we know we can 2672 * commit all, so that we don't have to undo partial changes 2673 */ 2674 if (!to || 2675 !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom), 2676 fragfrom->page_offset)) { 2677 merge = -1; 2678 } else { 2679 merge = to - 1; 2680 2681 todo -= skb_frag_size(fragfrom); 2682 if (todo < 0) { 2683 if (skb_prepare_for_shift(skb) || 2684 skb_prepare_for_shift(tgt)) 2685 return 0; 2686 2687 /* All previous frag pointers might be stale! */ 2688 fragfrom = &skb_shinfo(skb)->frags[from]; 2689 fragto = &skb_shinfo(tgt)->frags[merge]; 2690 2691 skb_frag_size_add(fragto, shiftlen); 2692 skb_frag_size_sub(fragfrom, shiftlen); 2693 fragfrom->page_offset += shiftlen; 2694 2695 goto onlymerged; 2696 } 2697 2698 from++; 2699 } 2700 2701 /* Skip full, not-fitting skb to avoid expensive operations */ 2702 if ((shiftlen == skb->len) && 2703 (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to)) 2704 return 0; 2705 2706 if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt)) 2707 return 0; 2708 2709 while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) { 2710 if (to == MAX_SKB_FRAGS) 2711 return 0; 2712 2713 fragfrom = &skb_shinfo(skb)->frags[from]; 2714 fragto = &skb_shinfo(tgt)->frags[to]; 2715 2716 if (todo >= skb_frag_size(fragfrom)) { 2717 *fragto = *fragfrom; 2718 todo -= skb_frag_size(fragfrom); 2719 from++; 2720 to++; 2721 2722 } else { 2723 __skb_frag_ref(fragfrom); 2724 fragto->page = fragfrom->page; 2725 fragto->page_offset = fragfrom->page_offset; 2726 skb_frag_size_set(fragto, todo); 2727 2728 fragfrom->page_offset += todo; 2729 skb_frag_size_sub(fragfrom, todo); 2730 todo = 0; 2731 2732 to++; 2733 break; 2734 } 2735 } 2736 2737 /* Ready to "commit" this state change to tgt */ 2738 skb_shinfo(tgt)->nr_frags = to; 2739 2740 if (merge >= 0) { 2741 fragfrom = &skb_shinfo(skb)->frags[0]; 2742 fragto = &skb_shinfo(tgt)->frags[merge]; 2743 2744 skb_frag_size_add(fragto, skb_frag_size(fragfrom)); 2745 __skb_frag_unref(fragfrom); 2746 } 2747 2748 /* Reposition in the original skb */ 2749 to = 0; 2750 while (from < skb_shinfo(skb)->nr_frags) 2751 skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++]; 2752 skb_shinfo(skb)->nr_frags = to; 2753 2754 BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags); 2755 2756 onlymerged: 2757 /* Most likely the tgt won't ever need its checksum anymore, skb on 2758 * the other hand might need it if it needs to be resent 2759 */ 2760 tgt->ip_summed = CHECKSUM_PARTIAL; 2761 skb->ip_summed = CHECKSUM_PARTIAL; 2762 2763 /* Yak, is it really working this way? Some helper please? */ 2764 skb->len -= shiftlen; 2765 skb->data_len -= shiftlen; 2766 skb->truesize -= shiftlen; 2767 tgt->len += shiftlen; 2768 tgt->data_len += shiftlen; 2769 tgt->truesize += shiftlen; 2770 2771 return shiftlen; 2772 } 2773 2774 /** 2775 * skb_prepare_seq_read - Prepare a sequential read of skb data 2776 * @skb: the buffer to read 2777 * @from: lower offset of data to be read 2778 * @to: upper offset of data to be read 2779 * @st: state variable 2780 * 2781 * Initializes the specified state variable. Must be called before 2782 * invoking skb_seq_read() for the first time. 2783 */ 2784 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from, 2785 unsigned int to, struct skb_seq_state *st) 2786 { 2787 st->lower_offset = from; 2788 st->upper_offset = to; 2789 st->root_skb = st->cur_skb = skb; 2790 st->frag_idx = st->stepped_offset = 0; 2791 st->frag_data = NULL; 2792 } 2793 EXPORT_SYMBOL(skb_prepare_seq_read); 2794 2795 /** 2796 * skb_seq_read - Sequentially read skb data 2797 * @consumed: number of bytes consumed by the caller so far 2798 * @data: destination pointer for data to be returned 2799 * @st: state variable 2800 * 2801 * Reads a block of skb data at @consumed relative to the 2802 * lower offset specified to skb_prepare_seq_read(). Assigns 2803 * the head of the data block to @data and returns the length 2804 * of the block or 0 if the end of the skb data or the upper 2805 * offset has been reached. 2806 * 2807 * The caller is not required to consume all of the data 2808 * returned, i.e. @consumed is typically set to the number 2809 * of bytes already consumed and the next call to 2810 * skb_seq_read() will return the remaining part of the block. 2811 * 2812 * Note 1: The size of each block of data returned can be arbitrary, 2813 * this limitation is the cost for zerocopy sequential 2814 * reads of potentially non linear data. 2815 * 2816 * Note 2: Fragment lists within fragments are not implemented 2817 * at the moment, state->root_skb could be replaced with 2818 * a stack for this purpose. 2819 */ 2820 unsigned int skb_seq_read(unsigned int consumed, const u8 **data, 2821 struct skb_seq_state *st) 2822 { 2823 unsigned int block_limit, abs_offset = consumed + st->lower_offset; 2824 skb_frag_t *frag; 2825 2826 if (unlikely(abs_offset >= st->upper_offset)) { 2827 if (st->frag_data) { 2828 kunmap_atomic(st->frag_data); 2829 st->frag_data = NULL; 2830 } 2831 return 0; 2832 } 2833 2834 next_skb: 2835 block_limit = skb_headlen(st->cur_skb) + st->stepped_offset; 2836 2837 if (abs_offset < block_limit && !st->frag_data) { 2838 *data = st->cur_skb->data + (abs_offset - st->stepped_offset); 2839 return block_limit - abs_offset; 2840 } 2841 2842 if (st->frag_idx == 0 && !st->frag_data) 2843 st->stepped_offset += skb_headlen(st->cur_skb); 2844 2845 while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) { 2846 frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx]; 2847 block_limit = skb_frag_size(frag) + st->stepped_offset; 2848 2849 if (abs_offset < block_limit) { 2850 if (!st->frag_data) 2851 st->frag_data = kmap_atomic(skb_frag_page(frag)); 2852 2853 *data = (u8 *) st->frag_data + frag->page_offset + 2854 (abs_offset - st->stepped_offset); 2855 2856 return block_limit - abs_offset; 2857 } 2858 2859 if (st->frag_data) { 2860 kunmap_atomic(st->frag_data); 2861 st->frag_data = NULL; 2862 } 2863 2864 st->frag_idx++; 2865 st->stepped_offset += skb_frag_size(frag); 2866 } 2867 2868 if (st->frag_data) { 2869 kunmap_atomic(st->frag_data); 2870 st->frag_data = NULL; 2871 } 2872 2873 if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) { 2874 st->cur_skb = skb_shinfo(st->root_skb)->frag_list; 2875 st->frag_idx = 0; 2876 goto next_skb; 2877 } else if (st->cur_skb->next) { 2878 st->cur_skb = st->cur_skb->next; 2879 st->frag_idx = 0; 2880 goto next_skb; 2881 } 2882 2883 return 0; 2884 } 2885 EXPORT_SYMBOL(skb_seq_read); 2886 2887 /** 2888 * skb_abort_seq_read - Abort a sequential read of skb data 2889 * @st: state variable 2890 * 2891 * Must be called if skb_seq_read() was not called until it 2892 * returned 0. 2893 */ 2894 void skb_abort_seq_read(struct skb_seq_state *st) 2895 { 2896 if (st->frag_data) 2897 kunmap_atomic(st->frag_data); 2898 } 2899 EXPORT_SYMBOL(skb_abort_seq_read); 2900 2901 #define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb)) 2902 2903 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text, 2904 struct ts_config *conf, 2905 struct ts_state *state) 2906 { 2907 return skb_seq_read(offset, text, TS_SKB_CB(state)); 2908 } 2909 2910 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state) 2911 { 2912 skb_abort_seq_read(TS_SKB_CB(state)); 2913 } 2914 2915 /** 2916 * skb_find_text - Find a text pattern in skb data 2917 * @skb: the buffer to look in 2918 * @from: search offset 2919 * @to: search limit 2920 * @config: textsearch configuration 2921 * 2922 * Finds a pattern in the skb data according to the specified 2923 * textsearch configuration. Use textsearch_next() to retrieve 2924 * subsequent occurrences of the pattern. Returns the offset 2925 * to the first occurrence or UINT_MAX if no match was found. 2926 */ 2927 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from, 2928 unsigned int to, struct ts_config *config) 2929 { 2930 struct ts_state state; 2931 unsigned int ret; 2932 2933 config->get_next_block = skb_ts_get_next_block; 2934 config->finish = skb_ts_finish; 2935 2936 skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state)); 2937 2938 ret = textsearch_find(config, &state); 2939 return (ret <= to - from ? ret : UINT_MAX); 2940 } 2941 EXPORT_SYMBOL(skb_find_text); 2942 2943 /** 2944 * skb_append_datato_frags - append the user data to a skb 2945 * @sk: sock structure 2946 * @skb: skb structure to be appended with user data. 2947 * @getfrag: call back function to be used for getting the user data 2948 * @from: pointer to user message iov 2949 * @length: length of the iov message 2950 * 2951 * Description: This procedure append the user data in the fragment part 2952 * of the skb if any page alloc fails user this procedure returns -ENOMEM 2953 */ 2954 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb, 2955 int (*getfrag)(void *from, char *to, int offset, 2956 int len, int odd, struct sk_buff *skb), 2957 void *from, int length) 2958 { 2959 int frg_cnt = skb_shinfo(skb)->nr_frags; 2960 int copy; 2961 int offset = 0; 2962 int ret; 2963 struct page_frag *pfrag = ¤t->task_frag; 2964 2965 do { 2966 /* Return error if we don't have space for new frag */ 2967 if (frg_cnt >= MAX_SKB_FRAGS) 2968 return -EMSGSIZE; 2969 2970 if (!sk_page_frag_refill(sk, pfrag)) 2971 return -ENOMEM; 2972 2973 /* copy the user data to page */ 2974 copy = min_t(int, length, pfrag->size - pfrag->offset); 2975 2976 ret = getfrag(from, page_address(pfrag->page) + pfrag->offset, 2977 offset, copy, 0, skb); 2978 if (ret < 0) 2979 return -EFAULT; 2980 2981 /* copy was successful so update the size parameters */ 2982 skb_fill_page_desc(skb, frg_cnt, pfrag->page, pfrag->offset, 2983 copy); 2984 frg_cnt++; 2985 pfrag->offset += copy; 2986 get_page(pfrag->page); 2987 2988 skb->truesize += copy; 2989 atomic_add(copy, &sk->sk_wmem_alloc); 2990 skb->len += copy; 2991 skb->data_len += copy; 2992 offset += copy; 2993 length -= copy; 2994 2995 } while (length > 0); 2996 2997 return 0; 2998 } 2999 EXPORT_SYMBOL(skb_append_datato_frags); 3000 3001 int skb_append_pagefrags(struct sk_buff *skb, struct page *page, 3002 int offset, size_t size) 3003 { 3004 int i = skb_shinfo(skb)->nr_frags; 3005 3006 if (skb_can_coalesce(skb, i, page, offset)) { 3007 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size); 3008 } else if (i < MAX_SKB_FRAGS) { 3009 get_page(page); 3010 skb_fill_page_desc(skb, i, page, offset, size); 3011 } else { 3012 return -EMSGSIZE; 3013 } 3014 3015 return 0; 3016 } 3017 EXPORT_SYMBOL_GPL(skb_append_pagefrags); 3018 3019 /** 3020 * skb_pull_rcsum - pull skb and update receive checksum 3021 * @skb: buffer to update 3022 * @len: length of data pulled 3023 * 3024 * This function performs an skb_pull on the packet and updates 3025 * the CHECKSUM_COMPLETE checksum. It should be used on 3026 * receive path processing instead of skb_pull unless you know 3027 * that the checksum difference is zero (e.g., a valid IP header) 3028 * or you are setting ip_summed to CHECKSUM_NONE. 3029 */ 3030 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len) 3031 { 3032 unsigned char *data = skb->data; 3033 3034 BUG_ON(len > skb->len); 3035 __skb_pull(skb, len); 3036 skb_postpull_rcsum(skb, data, len); 3037 return skb->data; 3038 } 3039 EXPORT_SYMBOL_GPL(skb_pull_rcsum); 3040 3041 /** 3042 * skb_segment - Perform protocol segmentation on skb. 3043 * @head_skb: buffer to segment 3044 * @features: features for the output path (see dev->features) 3045 * 3046 * This function performs segmentation on the given skb. It returns 3047 * a pointer to the first in a list of new skbs for the segments. 3048 * In case of error it returns ERR_PTR(err). 3049 */ 3050 struct sk_buff *skb_segment(struct sk_buff *head_skb, 3051 netdev_features_t features) 3052 { 3053 struct sk_buff *segs = NULL; 3054 struct sk_buff *tail = NULL; 3055 struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list; 3056 skb_frag_t *frag = skb_shinfo(head_skb)->frags; 3057 unsigned int mss = skb_shinfo(head_skb)->gso_size; 3058 unsigned int doffset = head_skb->data - skb_mac_header(head_skb); 3059 struct sk_buff *frag_skb = head_skb; 3060 unsigned int offset = doffset; 3061 unsigned int tnl_hlen = skb_tnl_header_len(head_skb); 3062 unsigned int partial_segs = 0; 3063 unsigned int headroom; 3064 unsigned int len = head_skb->len; 3065 __be16 proto; 3066 bool csum, sg; 3067 int nfrags = skb_shinfo(head_skb)->nr_frags; 3068 int err = -ENOMEM; 3069 int i = 0; 3070 int pos; 3071 int dummy; 3072 3073 __skb_push(head_skb, doffset); 3074 proto = skb_network_protocol(head_skb, &dummy); 3075 if (unlikely(!proto)) 3076 return ERR_PTR(-EINVAL); 3077 3078 sg = !!(features & NETIF_F_SG); 3079 csum = !!can_checksum_protocol(features, proto); 3080 3081 /* GSO partial only requires that we trim off any excess that 3082 * doesn't fit into an MSS sized block, so take care of that 3083 * now. 3084 */ 3085 if (sg && csum && (features & NETIF_F_GSO_PARTIAL)) { 3086 partial_segs = len / mss; 3087 if (partial_segs > 1) 3088 mss *= partial_segs; 3089 else 3090 partial_segs = 0; 3091 } 3092 3093 headroom = skb_headroom(head_skb); 3094 pos = skb_headlen(head_skb); 3095 3096 do { 3097 struct sk_buff *nskb; 3098 skb_frag_t *nskb_frag; 3099 int hsize; 3100 int size; 3101 3102 if (unlikely(mss == GSO_BY_FRAGS)) { 3103 len = list_skb->len; 3104 } else { 3105 len = head_skb->len - offset; 3106 if (len > mss) 3107 len = mss; 3108 } 3109 3110 hsize = skb_headlen(head_skb) - offset; 3111 if (hsize < 0) 3112 hsize = 0; 3113 if (hsize > len || !sg) 3114 hsize = len; 3115 3116 if (!hsize && i >= nfrags && skb_headlen(list_skb) && 3117 (skb_headlen(list_skb) == len || sg)) { 3118 BUG_ON(skb_headlen(list_skb) > len); 3119 3120 i = 0; 3121 nfrags = skb_shinfo(list_skb)->nr_frags; 3122 frag = skb_shinfo(list_skb)->frags; 3123 frag_skb = list_skb; 3124 pos += skb_headlen(list_skb); 3125 3126 while (pos < offset + len) { 3127 BUG_ON(i >= nfrags); 3128 3129 size = skb_frag_size(frag); 3130 if (pos + size > offset + len) 3131 break; 3132 3133 i++; 3134 pos += size; 3135 frag++; 3136 } 3137 3138 nskb = skb_clone(list_skb, GFP_ATOMIC); 3139 list_skb = list_skb->next; 3140 3141 if (unlikely(!nskb)) 3142 goto err; 3143 3144 if (unlikely(pskb_trim(nskb, len))) { 3145 kfree_skb(nskb); 3146 goto err; 3147 } 3148 3149 hsize = skb_end_offset(nskb); 3150 if (skb_cow_head(nskb, doffset + headroom)) { 3151 kfree_skb(nskb); 3152 goto err; 3153 } 3154 3155 nskb->truesize += skb_end_offset(nskb) - hsize; 3156 skb_release_head_state(nskb); 3157 __skb_push(nskb, doffset); 3158 } else { 3159 nskb = __alloc_skb(hsize + doffset + headroom, 3160 GFP_ATOMIC, skb_alloc_rx_flag(head_skb), 3161 NUMA_NO_NODE); 3162 3163 if (unlikely(!nskb)) 3164 goto err; 3165 3166 skb_reserve(nskb, headroom); 3167 __skb_put(nskb, doffset); 3168 } 3169 3170 if (segs) 3171 tail->next = nskb; 3172 else 3173 segs = nskb; 3174 tail = nskb; 3175 3176 __copy_skb_header(nskb, head_skb); 3177 3178 skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom); 3179 skb_reset_mac_len(nskb); 3180 3181 skb_copy_from_linear_data_offset(head_skb, -tnl_hlen, 3182 nskb->data - tnl_hlen, 3183 doffset + tnl_hlen); 3184 3185 if (nskb->len == len + doffset) 3186 goto perform_csum_check; 3187 3188 if (!sg) { 3189 if (!nskb->remcsum_offload) 3190 nskb->ip_summed = CHECKSUM_NONE; 3191 SKB_GSO_CB(nskb)->csum = 3192 skb_copy_and_csum_bits(head_skb, offset, 3193 skb_put(nskb, len), 3194 len, 0); 3195 SKB_GSO_CB(nskb)->csum_start = 3196 skb_headroom(nskb) + doffset; 3197 continue; 3198 } 3199 3200 nskb_frag = skb_shinfo(nskb)->frags; 3201 3202 skb_copy_from_linear_data_offset(head_skb, offset, 3203 skb_put(nskb, hsize), hsize); 3204 3205 skb_shinfo(nskb)->tx_flags = skb_shinfo(head_skb)->tx_flags & 3206 SKBTX_SHARED_FRAG; 3207 3208 while (pos < offset + len) { 3209 if (i >= nfrags) { 3210 BUG_ON(skb_headlen(list_skb)); 3211 3212 i = 0; 3213 nfrags = skb_shinfo(list_skb)->nr_frags; 3214 frag = skb_shinfo(list_skb)->frags; 3215 frag_skb = list_skb; 3216 3217 BUG_ON(!nfrags); 3218 3219 list_skb = list_skb->next; 3220 } 3221 3222 if (unlikely(skb_shinfo(nskb)->nr_frags >= 3223 MAX_SKB_FRAGS)) { 3224 net_warn_ratelimited( 3225 "skb_segment: too many frags: %u %u\n", 3226 pos, mss); 3227 goto err; 3228 } 3229 3230 if (unlikely(skb_orphan_frags(frag_skb, GFP_ATOMIC))) 3231 goto err; 3232 3233 *nskb_frag = *frag; 3234 __skb_frag_ref(nskb_frag); 3235 size = skb_frag_size(nskb_frag); 3236 3237 if (pos < offset) { 3238 nskb_frag->page_offset += offset - pos; 3239 skb_frag_size_sub(nskb_frag, offset - pos); 3240 } 3241 3242 skb_shinfo(nskb)->nr_frags++; 3243 3244 if (pos + size <= offset + len) { 3245 i++; 3246 frag++; 3247 pos += size; 3248 } else { 3249 skb_frag_size_sub(nskb_frag, pos + size - (offset + len)); 3250 goto skip_fraglist; 3251 } 3252 3253 nskb_frag++; 3254 } 3255 3256 skip_fraglist: 3257 nskb->data_len = len - hsize; 3258 nskb->len += nskb->data_len; 3259 nskb->truesize += nskb->data_len; 3260 3261 perform_csum_check: 3262 if (!csum) { 3263 if (skb_has_shared_frag(nskb)) { 3264 err = __skb_linearize(nskb); 3265 if (err) 3266 goto err; 3267 } 3268 if (!nskb->remcsum_offload) 3269 nskb->ip_summed = CHECKSUM_NONE; 3270 SKB_GSO_CB(nskb)->csum = 3271 skb_checksum(nskb, doffset, 3272 nskb->len - doffset, 0); 3273 SKB_GSO_CB(nskb)->csum_start = 3274 skb_headroom(nskb) + doffset; 3275 } 3276 } while ((offset += len) < head_skb->len); 3277 3278 /* Some callers want to get the end of the list. 3279 * Put it in segs->prev to avoid walking the list. 3280 * (see validate_xmit_skb_list() for example) 3281 */ 3282 segs->prev = tail; 3283 3284 /* Update GSO info on first skb in partial sequence. */ 3285 if (partial_segs) { 3286 int type = skb_shinfo(head_skb)->gso_type; 3287 3288 /* Update type to add partial and then remove dodgy if set */ 3289 type |= SKB_GSO_PARTIAL; 3290 type &= ~SKB_GSO_DODGY; 3291 3292 /* Update GSO info and prepare to start updating headers on 3293 * our way back down the stack of protocols. 3294 */ 3295 skb_shinfo(segs)->gso_size = skb_shinfo(head_skb)->gso_size; 3296 skb_shinfo(segs)->gso_segs = partial_segs; 3297 skb_shinfo(segs)->gso_type = type; 3298 SKB_GSO_CB(segs)->data_offset = skb_headroom(segs) + doffset; 3299 } 3300 3301 /* Following permits correct backpressure, for protocols 3302 * using skb_set_owner_w(). 3303 * Idea is to tranfert ownership from head_skb to last segment. 3304 */ 3305 if (head_skb->destructor == sock_wfree) { 3306 swap(tail->truesize, head_skb->truesize); 3307 swap(tail->destructor, head_skb->destructor); 3308 swap(tail->sk, head_skb->sk); 3309 } 3310 return segs; 3311 3312 err: 3313 kfree_skb_list(segs); 3314 return ERR_PTR(err); 3315 } 3316 EXPORT_SYMBOL_GPL(skb_segment); 3317 3318 int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb) 3319 { 3320 struct skb_shared_info *pinfo, *skbinfo = skb_shinfo(skb); 3321 unsigned int offset = skb_gro_offset(skb); 3322 unsigned int headlen = skb_headlen(skb); 3323 unsigned int len = skb_gro_len(skb); 3324 struct sk_buff *lp, *p = *head; 3325 unsigned int delta_truesize; 3326 3327 if (unlikely(p->len + len >= 65536)) 3328 return -E2BIG; 3329 3330 lp = NAPI_GRO_CB(p)->last; 3331 pinfo = skb_shinfo(lp); 3332 3333 if (headlen <= offset) { 3334 skb_frag_t *frag; 3335 skb_frag_t *frag2; 3336 int i = skbinfo->nr_frags; 3337 int nr_frags = pinfo->nr_frags + i; 3338 3339 if (nr_frags > MAX_SKB_FRAGS) 3340 goto merge; 3341 3342 offset -= headlen; 3343 pinfo->nr_frags = nr_frags; 3344 skbinfo->nr_frags = 0; 3345 3346 frag = pinfo->frags + nr_frags; 3347 frag2 = skbinfo->frags + i; 3348 do { 3349 *--frag = *--frag2; 3350 } while (--i); 3351 3352 frag->page_offset += offset; 3353 skb_frag_size_sub(frag, offset); 3354 3355 /* all fragments truesize : remove (head size + sk_buff) */ 3356 delta_truesize = skb->truesize - 3357 SKB_TRUESIZE(skb_end_offset(skb)); 3358 3359 skb->truesize -= skb->data_len; 3360 skb->len -= skb->data_len; 3361 skb->data_len = 0; 3362 3363 NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE; 3364 goto done; 3365 } else if (skb->head_frag) { 3366 int nr_frags = pinfo->nr_frags; 3367 skb_frag_t *frag = pinfo->frags + nr_frags; 3368 struct page *page = virt_to_head_page(skb->head); 3369 unsigned int first_size = headlen - offset; 3370 unsigned int first_offset; 3371 3372 if (nr_frags + 1 + skbinfo->nr_frags > MAX_SKB_FRAGS) 3373 goto merge; 3374 3375 first_offset = skb->data - 3376 (unsigned char *)page_address(page) + 3377 offset; 3378 3379 pinfo->nr_frags = nr_frags + 1 + skbinfo->nr_frags; 3380 3381 frag->page.p = page; 3382 frag->page_offset = first_offset; 3383 skb_frag_size_set(frag, first_size); 3384 3385 memcpy(frag + 1, skbinfo->frags, sizeof(*frag) * skbinfo->nr_frags); 3386 /* We dont need to clear skbinfo->nr_frags here */ 3387 3388 delta_truesize = skb->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff)); 3389 NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE_STOLEN_HEAD; 3390 goto done; 3391 } 3392 3393 merge: 3394 delta_truesize = skb->truesize; 3395 if (offset > headlen) { 3396 unsigned int eat = offset - headlen; 3397 3398 skbinfo->frags[0].page_offset += eat; 3399 skb_frag_size_sub(&skbinfo->frags[0], eat); 3400 skb->data_len -= eat; 3401 skb->len -= eat; 3402 offset = headlen; 3403 } 3404 3405 __skb_pull(skb, offset); 3406 3407 if (NAPI_GRO_CB(p)->last == p) 3408 skb_shinfo(p)->frag_list = skb; 3409 else 3410 NAPI_GRO_CB(p)->last->next = skb; 3411 NAPI_GRO_CB(p)->last = skb; 3412 __skb_header_release(skb); 3413 lp = p; 3414 3415 done: 3416 NAPI_GRO_CB(p)->count++; 3417 p->data_len += len; 3418 p->truesize += delta_truesize; 3419 p->len += len; 3420 if (lp != p) { 3421 lp->data_len += len; 3422 lp->truesize += delta_truesize; 3423 lp->len += len; 3424 } 3425 NAPI_GRO_CB(skb)->same_flow = 1; 3426 return 0; 3427 } 3428 EXPORT_SYMBOL_GPL(skb_gro_receive); 3429 3430 void __init skb_init(void) 3431 { 3432 skbuff_head_cache = kmem_cache_create("skbuff_head_cache", 3433 sizeof(struct sk_buff), 3434 0, 3435 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 3436 NULL); 3437 skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache", 3438 sizeof(struct sk_buff_fclones), 3439 0, 3440 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 3441 NULL); 3442 } 3443 3444 /** 3445 * skb_to_sgvec - Fill a scatter-gather list from a socket buffer 3446 * @skb: Socket buffer containing the buffers to be mapped 3447 * @sg: The scatter-gather list to map into 3448 * @offset: The offset into the buffer's contents to start mapping 3449 * @len: Length of buffer space to be mapped 3450 * 3451 * Fill the specified scatter-gather list with mappings/pointers into a 3452 * region of the buffer space attached to a socket buffer. 3453 */ 3454 static int 3455 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len) 3456 { 3457 int start = skb_headlen(skb); 3458 int i, copy = start - offset; 3459 struct sk_buff *frag_iter; 3460 int elt = 0; 3461 3462 if (copy > 0) { 3463 if (copy > len) 3464 copy = len; 3465 sg_set_buf(sg, skb->data + offset, copy); 3466 elt++; 3467 if ((len -= copy) == 0) 3468 return elt; 3469 offset += copy; 3470 } 3471 3472 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 3473 int end; 3474 3475 WARN_ON(start > offset + len); 3476 3477 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]); 3478 if ((copy = end - offset) > 0) { 3479 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 3480 3481 if (copy > len) 3482 copy = len; 3483 sg_set_page(&sg[elt], skb_frag_page(frag), copy, 3484 frag->page_offset+offset-start); 3485 elt++; 3486 if (!(len -= copy)) 3487 return elt; 3488 offset += copy; 3489 } 3490 start = end; 3491 } 3492 3493 skb_walk_frags(skb, frag_iter) { 3494 int end; 3495 3496 WARN_ON(start > offset + len); 3497 3498 end = start + frag_iter->len; 3499 if ((copy = end - offset) > 0) { 3500 if (copy > len) 3501 copy = len; 3502 elt += __skb_to_sgvec(frag_iter, sg+elt, offset - start, 3503 copy); 3504 if ((len -= copy) == 0) 3505 return elt; 3506 offset += copy; 3507 } 3508 start = end; 3509 } 3510 BUG_ON(len); 3511 return elt; 3512 } 3513 3514 /* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given 3515 * sglist without mark the sg which contain last skb data as the end. 3516 * So the caller can mannipulate sg list as will when padding new data after 3517 * the first call without calling sg_unmark_end to expend sg list. 3518 * 3519 * Scenario to use skb_to_sgvec_nomark: 3520 * 1. sg_init_table 3521 * 2. skb_to_sgvec_nomark(payload1) 3522 * 3. skb_to_sgvec_nomark(payload2) 3523 * 3524 * This is equivalent to: 3525 * 1. sg_init_table 3526 * 2. skb_to_sgvec(payload1) 3527 * 3. sg_unmark_end 3528 * 4. skb_to_sgvec(payload2) 3529 * 3530 * When mapping mutilple payload conditionally, skb_to_sgvec_nomark 3531 * is more preferable. 3532 */ 3533 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg, 3534 int offset, int len) 3535 { 3536 return __skb_to_sgvec(skb, sg, offset, len); 3537 } 3538 EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark); 3539 3540 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len) 3541 { 3542 int nsg = __skb_to_sgvec(skb, sg, offset, len); 3543 3544 sg_mark_end(&sg[nsg - 1]); 3545 3546 return nsg; 3547 } 3548 EXPORT_SYMBOL_GPL(skb_to_sgvec); 3549 3550 /** 3551 * skb_cow_data - Check that a socket buffer's data buffers are writable 3552 * @skb: The socket buffer to check. 3553 * @tailbits: Amount of trailing space to be added 3554 * @trailer: Returned pointer to the skb where the @tailbits space begins 3555 * 3556 * Make sure that the data buffers attached to a socket buffer are 3557 * writable. If they are not, private copies are made of the data buffers 3558 * and the socket buffer is set to use these instead. 3559 * 3560 * If @tailbits is given, make sure that there is space to write @tailbits 3561 * bytes of data beyond current end of socket buffer. @trailer will be 3562 * set to point to the skb in which this space begins. 3563 * 3564 * The number of scatterlist elements required to completely map the 3565 * COW'd and extended socket buffer will be returned. 3566 */ 3567 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer) 3568 { 3569 int copyflag; 3570 int elt; 3571 struct sk_buff *skb1, **skb_p; 3572 3573 /* If skb is cloned or its head is paged, reallocate 3574 * head pulling out all the pages (pages are considered not writable 3575 * at the moment even if they are anonymous). 3576 */ 3577 if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) && 3578 __pskb_pull_tail(skb, skb_pagelen(skb)-skb_headlen(skb)) == NULL) 3579 return -ENOMEM; 3580 3581 /* Easy case. Most of packets will go this way. */ 3582 if (!skb_has_frag_list(skb)) { 3583 /* A little of trouble, not enough of space for trailer. 3584 * This should not happen, when stack is tuned to generate 3585 * good frames. OK, on miss we reallocate and reserve even more 3586 * space, 128 bytes is fair. */ 3587 3588 if (skb_tailroom(skb) < tailbits && 3589 pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC)) 3590 return -ENOMEM; 3591 3592 /* Voila! */ 3593 *trailer = skb; 3594 return 1; 3595 } 3596 3597 /* Misery. We are in troubles, going to mincer fragments... */ 3598 3599 elt = 1; 3600 skb_p = &skb_shinfo(skb)->frag_list; 3601 copyflag = 0; 3602 3603 while ((skb1 = *skb_p) != NULL) { 3604 int ntail = 0; 3605 3606 /* The fragment is partially pulled by someone, 3607 * this can happen on input. Copy it and everything 3608 * after it. */ 3609 3610 if (skb_shared(skb1)) 3611 copyflag = 1; 3612 3613 /* If the skb is the last, worry about trailer. */ 3614 3615 if (skb1->next == NULL && tailbits) { 3616 if (skb_shinfo(skb1)->nr_frags || 3617 skb_has_frag_list(skb1) || 3618 skb_tailroom(skb1) < tailbits) 3619 ntail = tailbits + 128; 3620 } 3621 3622 if (copyflag || 3623 skb_cloned(skb1) || 3624 ntail || 3625 skb_shinfo(skb1)->nr_frags || 3626 skb_has_frag_list(skb1)) { 3627 struct sk_buff *skb2; 3628 3629 /* Fuck, we are miserable poor guys... */ 3630 if (ntail == 0) 3631 skb2 = skb_copy(skb1, GFP_ATOMIC); 3632 else 3633 skb2 = skb_copy_expand(skb1, 3634 skb_headroom(skb1), 3635 ntail, 3636 GFP_ATOMIC); 3637 if (unlikely(skb2 == NULL)) 3638 return -ENOMEM; 3639 3640 if (skb1->sk) 3641 skb_set_owner_w(skb2, skb1->sk); 3642 3643 /* Looking around. Are we still alive? 3644 * OK, link new skb, drop old one */ 3645 3646 skb2->next = skb1->next; 3647 *skb_p = skb2; 3648 kfree_skb(skb1); 3649 skb1 = skb2; 3650 } 3651 elt++; 3652 *trailer = skb1; 3653 skb_p = &skb1->next; 3654 } 3655 3656 return elt; 3657 } 3658 EXPORT_SYMBOL_GPL(skb_cow_data); 3659 3660 static void sock_rmem_free(struct sk_buff *skb) 3661 { 3662 struct sock *sk = skb->sk; 3663 3664 atomic_sub(skb->truesize, &sk->sk_rmem_alloc); 3665 } 3666 3667 /* 3668 * Note: We dont mem charge error packets (no sk_forward_alloc changes) 3669 */ 3670 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb) 3671 { 3672 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >= 3673 (unsigned int)sk->sk_rcvbuf) 3674 return -ENOMEM; 3675 3676 skb_orphan(skb); 3677 skb->sk = sk; 3678 skb->destructor = sock_rmem_free; 3679 atomic_add(skb->truesize, &sk->sk_rmem_alloc); 3680 3681 /* before exiting rcu section, make sure dst is refcounted */ 3682 skb_dst_force(skb); 3683 3684 skb_queue_tail(&sk->sk_error_queue, skb); 3685 if (!sock_flag(sk, SOCK_DEAD)) 3686 sk->sk_data_ready(sk); 3687 return 0; 3688 } 3689 EXPORT_SYMBOL(sock_queue_err_skb); 3690 3691 struct sk_buff *sock_dequeue_err_skb(struct sock *sk) 3692 { 3693 struct sk_buff_head *q = &sk->sk_error_queue; 3694 struct sk_buff *skb, *skb_next; 3695 unsigned long flags; 3696 int err = 0; 3697 3698 spin_lock_irqsave(&q->lock, flags); 3699 skb = __skb_dequeue(q); 3700 if (skb && (skb_next = skb_peek(q))) 3701 err = SKB_EXT_ERR(skb_next)->ee.ee_errno; 3702 spin_unlock_irqrestore(&q->lock, flags); 3703 3704 sk->sk_err = err; 3705 if (err) 3706 sk->sk_error_report(sk); 3707 3708 return skb; 3709 } 3710 EXPORT_SYMBOL(sock_dequeue_err_skb); 3711 3712 /** 3713 * skb_clone_sk - create clone of skb, and take reference to socket 3714 * @skb: the skb to clone 3715 * 3716 * This function creates a clone of a buffer that holds a reference on 3717 * sk_refcnt. Buffers created via this function are meant to be 3718 * returned using sock_queue_err_skb, or free via kfree_skb. 3719 * 3720 * When passing buffers allocated with this function to sock_queue_err_skb 3721 * it is necessary to wrap the call with sock_hold/sock_put in order to 3722 * prevent the socket from being released prior to being enqueued on 3723 * the sk_error_queue. 3724 */ 3725 struct sk_buff *skb_clone_sk(struct sk_buff *skb) 3726 { 3727 struct sock *sk = skb->sk; 3728 struct sk_buff *clone; 3729 3730 if (!sk || !atomic_inc_not_zero(&sk->sk_refcnt)) 3731 return NULL; 3732 3733 clone = skb_clone(skb, GFP_ATOMIC); 3734 if (!clone) { 3735 sock_put(sk); 3736 return NULL; 3737 } 3738 3739 clone->sk = sk; 3740 clone->destructor = sock_efree; 3741 3742 return clone; 3743 } 3744 EXPORT_SYMBOL(skb_clone_sk); 3745 3746 static void __skb_complete_tx_timestamp(struct sk_buff *skb, 3747 struct sock *sk, 3748 int tstype) 3749 { 3750 struct sock_exterr_skb *serr; 3751 int err; 3752 3753 serr = SKB_EXT_ERR(skb); 3754 memset(serr, 0, sizeof(*serr)); 3755 serr->ee.ee_errno = ENOMSG; 3756 serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING; 3757 serr->ee.ee_info = tstype; 3758 if (sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID) { 3759 serr->ee.ee_data = skb_shinfo(skb)->tskey; 3760 if (sk->sk_protocol == IPPROTO_TCP && 3761 sk->sk_type == SOCK_STREAM) 3762 serr->ee.ee_data -= sk->sk_tskey; 3763 } 3764 3765 err = sock_queue_err_skb(sk, skb); 3766 3767 if (err) 3768 kfree_skb(skb); 3769 } 3770 3771 static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly) 3772 { 3773 bool ret; 3774 3775 if (likely(sysctl_tstamp_allow_data || tsonly)) 3776 return true; 3777 3778 read_lock_bh(&sk->sk_callback_lock); 3779 ret = sk->sk_socket && sk->sk_socket->file && 3780 file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW); 3781 read_unlock_bh(&sk->sk_callback_lock); 3782 return ret; 3783 } 3784 3785 void skb_complete_tx_timestamp(struct sk_buff *skb, 3786 struct skb_shared_hwtstamps *hwtstamps) 3787 { 3788 struct sock *sk = skb->sk; 3789 3790 if (!skb_may_tx_timestamp(sk, false)) 3791 return; 3792 3793 /* take a reference to prevent skb_orphan() from freeing the socket */ 3794 sock_hold(sk); 3795 3796 *skb_hwtstamps(skb) = *hwtstamps; 3797 __skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND); 3798 3799 sock_put(sk); 3800 } 3801 EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp); 3802 3803 void __skb_tstamp_tx(struct sk_buff *orig_skb, 3804 struct skb_shared_hwtstamps *hwtstamps, 3805 struct sock *sk, int tstype) 3806 { 3807 struct sk_buff *skb; 3808 bool tsonly; 3809 3810 if (!sk) 3811 return; 3812 3813 tsonly = sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TSONLY; 3814 if (!skb_may_tx_timestamp(sk, tsonly)) 3815 return; 3816 3817 if (tsonly) 3818 skb = alloc_skb(0, GFP_ATOMIC); 3819 else 3820 skb = skb_clone(orig_skb, GFP_ATOMIC); 3821 if (!skb) 3822 return; 3823 3824 if (tsonly) { 3825 skb_shinfo(skb)->tx_flags = skb_shinfo(orig_skb)->tx_flags; 3826 skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey; 3827 } 3828 3829 if (hwtstamps) 3830 *skb_hwtstamps(skb) = *hwtstamps; 3831 else 3832 skb->tstamp = ktime_get_real(); 3833 3834 __skb_complete_tx_timestamp(skb, sk, tstype); 3835 } 3836 EXPORT_SYMBOL_GPL(__skb_tstamp_tx); 3837 3838 void skb_tstamp_tx(struct sk_buff *orig_skb, 3839 struct skb_shared_hwtstamps *hwtstamps) 3840 { 3841 return __skb_tstamp_tx(orig_skb, hwtstamps, orig_skb->sk, 3842 SCM_TSTAMP_SND); 3843 } 3844 EXPORT_SYMBOL_GPL(skb_tstamp_tx); 3845 3846 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked) 3847 { 3848 struct sock *sk = skb->sk; 3849 struct sock_exterr_skb *serr; 3850 int err; 3851 3852 skb->wifi_acked_valid = 1; 3853 skb->wifi_acked = acked; 3854 3855 serr = SKB_EXT_ERR(skb); 3856 memset(serr, 0, sizeof(*serr)); 3857 serr->ee.ee_errno = ENOMSG; 3858 serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS; 3859 3860 /* take a reference to prevent skb_orphan() from freeing the socket */ 3861 sock_hold(sk); 3862 3863 err = sock_queue_err_skb(sk, skb); 3864 if (err) 3865 kfree_skb(skb); 3866 3867 sock_put(sk); 3868 } 3869 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack); 3870 3871 /** 3872 * skb_partial_csum_set - set up and verify partial csum values for packet 3873 * @skb: the skb to set 3874 * @start: the number of bytes after skb->data to start checksumming. 3875 * @off: the offset from start to place the checksum. 3876 * 3877 * For untrusted partially-checksummed packets, we need to make sure the values 3878 * for skb->csum_start and skb->csum_offset are valid so we don't oops. 3879 * 3880 * This function checks and sets those values and skb->ip_summed: if this 3881 * returns false you should drop the packet. 3882 */ 3883 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off) 3884 { 3885 if (unlikely(start > skb_headlen(skb)) || 3886 unlikely((int)start + off > skb_headlen(skb) - 2)) { 3887 net_warn_ratelimited("bad partial csum: csum=%u/%u len=%u\n", 3888 start, off, skb_headlen(skb)); 3889 return false; 3890 } 3891 skb->ip_summed = CHECKSUM_PARTIAL; 3892 skb->csum_start = skb_headroom(skb) + start; 3893 skb->csum_offset = off; 3894 skb_set_transport_header(skb, start); 3895 return true; 3896 } 3897 EXPORT_SYMBOL_GPL(skb_partial_csum_set); 3898 3899 static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len, 3900 unsigned int max) 3901 { 3902 if (skb_headlen(skb) >= len) 3903 return 0; 3904 3905 /* If we need to pullup then pullup to the max, so we 3906 * won't need to do it again. 3907 */ 3908 if (max > skb->len) 3909 max = skb->len; 3910 3911 if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL) 3912 return -ENOMEM; 3913 3914 if (skb_headlen(skb) < len) 3915 return -EPROTO; 3916 3917 return 0; 3918 } 3919 3920 #define MAX_TCP_HDR_LEN (15 * 4) 3921 3922 static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb, 3923 typeof(IPPROTO_IP) proto, 3924 unsigned int off) 3925 { 3926 switch (proto) { 3927 int err; 3928 3929 case IPPROTO_TCP: 3930 err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr), 3931 off + MAX_TCP_HDR_LEN); 3932 if (!err && !skb_partial_csum_set(skb, off, 3933 offsetof(struct tcphdr, 3934 check))) 3935 err = -EPROTO; 3936 return err ? ERR_PTR(err) : &tcp_hdr(skb)->check; 3937 3938 case IPPROTO_UDP: 3939 err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr), 3940 off + sizeof(struct udphdr)); 3941 if (!err && !skb_partial_csum_set(skb, off, 3942 offsetof(struct udphdr, 3943 check))) 3944 err = -EPROTO; 3945 return err ? ERR_PTR(err) : &udp_hdr(skb)->check; 3946 } 3947 3948 return ERR_PTR(-EPROTO); 3949 } 3950 3951 /* This value should be large enough to cover a tagged ethernet header plus 3952 * maximally sized IP and TCP or UDP headers. 3953 */ 3954 #define MAX_IP_HDR_LEN 128 3955 3956 static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate) 3957 { 3958 unsigned int off; 3959 bool fragment; 3960 __sum16 *csum; 3961 int err; 3962 3963 fragment = false; 3964 3965 err = skb_maybe_pull_tail(skb, 3966 sizeof(struct iphdr), 3967 MAX_IP_HDR_LEN); 3968 if (err < 0) 3969 goto out; 3970 3971 if (ip_hdr(skb)->frag_off & htons(IP_OFFSET | IP_MF)) 3972 fragment = true; 3973 3974 off = ip_hdrlen(skb); 3975 3976 err = -EPROTO; 3977 3978 if (fragment) 3979 goto out; 3980 3981 csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off); 3982 if (IS_ERR(csum)) 3983 return PTR_ERR(csum); 3984 3985 if (recalculate) 3986 *csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr, 3987 ip_hdr(skb)->daddr, 3988 skb->len - off, 3989 ip_hdr(skb)->protocol, 0); 3990 err = 0; 3991 3992 out: 3993 return err; 3994 } 3995 3996 /* This value should be large enough to cover a tagged ethernet header plus 3997 * an IPv6 header, all options, and a maximal TCP or UDP header. 3998 */ 3999 #define MAX_IPV6_HDR_LEN 256 4000 4001 #define OPT_HDR(type, skb, off) \ 4002 (type *)(skb_network_header(skb) + (off)) 4003 4004 static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate) 4005 { 4006 int err; 4007 u8 nexthdr; 4008 unsigned int off; 4009 unsigned int len; 4010 bool fragment; 4011 bool done; 4012 __sum16 *csum; 4013 4014 fragment = false; 4015 done = false; 4016 4017 off = sizeof(struct ipv6hdr); 4018 4019 err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN); 4020 if (err < 0) 4021 goto out; 4022 4023 nexthdr = ipv6_hdr(skb)->nexthdr; 4024 4025 len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len); 4026 while (off <= len && !done) { 4027 switch (nexthdr) { 4028 case IPPROTO_DSTOPTS: 4029 case IPPROTO_HOPOPTS: 4030 case IPPROTO_ROUTING: { 4031 struct ipv6_opt_hdr *hp; 4032 4033 err = skb_maybe_pull_tail(skb, 4034 off + 4035 sizeof(struct ipv6_opt_hdr), 4036 MAX_IPV6_HDR_LEN); 4037 if (err < 0) 4038 goto out; 4039 4040 hp = OPT_HDR(struct ipv6_opt_hdr, skb, off); 4041 nexthdr = hp->nexthdr; 4042 off += ipv6_optlen(hp); 4043 break; 4044 } 4045 case IPPROTO_AH: { 4046 struct ip_auth_hdr *hp; 4047 4048 err = skb_maybe_pull_tail(skb, 4049 off + 4050 sizeof(struct ip_auth_hdr), 4051 MAX_IPV6_HDR_LEN); 4052 if (err < 0) 4053 goto out; 4054 4055 hp = OPT_HDR(struct ip_auth_hdr, skb, off); 4056 nexthdr = hp->nexthdr; 4057 off += ipv6_authlen(hp); 4058 break; 4059 } 4060 case IPPROTO_FRAGMENT: { 4061 struct frag_hdr *hp; 4062 4063 err = skb_maybe_pull_tail(skb, 4064 off + 4065 sizeof(struct frag_hdr), 4066 MAX_IPV6_HDR_LEN); 4067 if (err < 0) 4068 goto out; 4069 4070 hp = OPT_HDR(struct frag_hdr, skb, off); 4071 4072 if (hp->frag_off & htons(IP6_OFFSET | IP6_MF)) 4073 fragment = true; 4074 4075 nexthdr = hp->nexthdr; 4076 off += sizeof(struct frag_hdr); 4077 break; 4078 } 4079 default: 4080 done = true; 4081 break; 4082 } 4083 } 4084 4085 err = -EPROTO; 4086 4087 if (!done || fragment) 4088 goto out; 4089 4090 csum = skb_checksum_setup_ip(skb, nexthdr, off); 4091 if (IS_ERR(csum)) 4092 return PTR_ERR(csum); 4093 4094 if (recalculate) 4095 *csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr, 4096 &ipv6_hdr(skb)->daddr, 4097 skb->len - off, nexthdr, 0); 4098 err = 0; 4099 4100 out: 4101 return err; 4102 } 4103 4104 /** 4105 * skb_checksum_setup - set up partial checksum offset 4106 * @skb: the skb to set up 4107 * @recalculate: if true the pseudo-header checksum will be recalculated 4108 */ 4109 int skb_checksum_setup(struct sk_buff *skb, bool recalculate) 4110 { 4111 int err; 4112 4113 switch (skb->protocol) { 4114 case htons(ETH_P_IP): 4115 err = skb_checksum_setup_ipv4(skb, recalculate); 4116 break; 4117 4118 case htons(ETH_P_IPV6): 4119 err = skb_checksum_setup_ipv6(skb, recalculate); 4120 break; 4121 4122 default: 4123 err = -EPROTO; 4124 break; 4125 } 4126 4127 return err; 4128 } 4129 EXPORT_SYMBOL(skb_checksum_setup); 4130 4131 /** 4132 * skb_checksum_maybe_trim - maybe trims the given skb 4133 * @skb: the skb to check 4134 * @transport_len: the data length beyond the network header 4135 * 4136 * Checks whether the given skb has data beyond the given transport length. 4137 * If so, returns a cloned skb trimmed to this transport length. 4138 * Otherwise returns the provided skb. Returns NULL in error cases 4139 * (e.g. transport_len exceeds skb length or out-of-memory). 4140 * 4141 * Caller needs to set the skb transport header and free any returned skb if it 4142 * differs from the provided skb. 4143 */ 4144 static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb, 4145 unsigned int transport_len) 4146 { 4147 struct sk_buff *skb_chk; 4148 unsigned int len = skb_transport_offset(skb) + transport_len; 4149 int ret; 4150 4151 if (skb->len < len) 4152 return NULL; 4153 else if (skb->len == len) 4154 return skb; 4155 4156 skb_chk = skb_clone(skb, GFP_ATOMIC); 4157 if (!skb_chk) 4158 return NULL; 4159 4160 ret = pskb_trim_rcsum(skb_chk, len); 4161 if (ret) { 4162 kfree_skb(skb_chk); 4163 return NULL; 4164 } 4165 4166 return skb_chk; 4167 } 4168 4169 /** 4170 * skb_checksum_trimmed - validate checksum of an skb 4171 * @skb: the skb to check 4172 * @transport_len: the data length beyond the network header 4173 * @skb_chkf: checksum function to use 4174 * 4175 * Applies the given checksum function skb_chkf to the provided skb. 4176 * Returns a checked and maybe trimmed skb. Returns NULL on error. 4177 * 4178 * If the skb has data beyond the given transport length, then a 4179 * trimmed & cloned skb is checked and returned. 4180 * 4181 * Caller needs to set the skb transport header and free any returned skb if it 4182 * differs from the provided skb. 4183 */ 4184 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb, 4185 unsigned int transport_len, 4186 __sum16(*skb_chkf)(struct sk_buff *skb)) 4187 { 4188 struct sk_buff *skb_chk; 4189 unsigned int offset = skb_transport_offset(skb); 4190 __sum16 ret; 4191 4192 skb_chk = skb_checksum_maybe_trim(skb, transport_len); 4193 if (!skb_chk) 4194 goto err; 4195 4196 if (!pskb_may_pull(skb_chk, offset)) 4197 goto err; 4198 4199 skb_pull_rcsum(skb_chk, offset); 4200 ret = skb_chkf(skb_chk); 4201 skb_push_rcsum(skb_chk, offset); 4202 4203 if (ret) 4204 goto err; 4205 4206 return skb_chk; 4207 4208 err: 4209 if (skb_chk && skb_chk != skb) 4210 kfree_skb(skb_chk); 4211 4212 return NULL; 4213 4214 } 4215 EXPORT_SYMBOL(skb_checksum_trimmed); 4216 4217 void __skb_warn_lro_forwarding(const struct sk_buff *skb) 4218 { 4219 net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n", 4220 skb->dev->name); 4221 } 4222 EXPORT_SYMBOL(__skb_warn_lro_forwarding); 4223 4224 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen) 4225 { 4226 if (head_stolen) { 4227 skb_release_head_state(skb); 4228 kmem_cache_free(skbuff_head_cache, skb); 4229 } else { 4230 __kfree_skb(skb); 4231 } 4232 } 4233 EXPORT_SYMBOL(kfree_skb_partial); 4234 4235 /** 4236 * skb_try_coalesce - try to merge skb to prior one 4237 * @to: prior buffer 4238 * @from: buffer to add 4239 * @fragstolen: pointer to boolean 4240 * @delta_truesize: how much more was allocated than was requested 4241 */ 4242 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from, 4243 bool *fragstolen, int *delta_truesize) 4244 { 4245 int i, delta, len = from->len; 4246 4247 *fragstolen = false; 4248 4249 if (skb_cloned(to)) 4250 return false; 4251 4252 if (len <= skb_tailroom(to)) { 4253 if (len) 4254 BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len)); 4255 *delta_truesize = 0; 4256 return true; 4257 } 4258 4259 if (skb_has_frag_list(to) || skb_has_frag_list(from)) 4260 return false; 4261 4262 if (skb_headlen(from) != 0) { 4263 struct page *page; 4264 unsigned int offset; 4265 4266 if (skb_shinfo(to)->nr_frags + 4267 skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS) 4268 return false; 4269 4270 if (skb_head_is_locked(from)) 4271 return false; 4272 4273 delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff)); 4274 4275 page = virt_to_head_page(from->head); 4276 offset = from->data - (unsigned char *)page_address(page); 4277 4278 skb_fill_page_desc(to, skb_shinfo(to)->nr_frags, 4279 page, offset, skb_headlen(from)); 4280 *fragstolen = true; 4281 } else { 4282 if (skb_shinfo(to)->nr_frags + 4283 skb_shinfo(from)->nr_frags > MAX_SKB_FRAGS) 4284 return false; 4285 4286 delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from)); 4287 } 4288 4289 WARN_ON_ONCE(delta < len); 4290 4291 memcpy(skb_shinfo(to)->frags + skb_shinfo(to)->nr_frags, 4292 skb_shinfo(from)->frags, 4293 skb_shinfo(from)->nr_frags * sizeof(skb_frag_t)); 4294 skb_shinfo(to)->nr_frags += skb_shinfo(from)->nr_frags; 4295 4296 if (!skb_cloned(from)) 4297 skb_shinfo(from)->nr_frags = 0; 4298 4299 /* if the skb is not cloned this does nothing 4300 * since we set nr_frags to 0. 4301 */ 4302 for (i = 0; i < skb_shinfo(from)->nr_frags; i++) 4303 skb_frag_ref(from, i); 4304 4305 to->truesize += delta; 4306 to->len += len; 4307 to->data_len += len; 4308 4309 *delta_truesize = delta; 4310 return true; 4311 } 4312 EXPORT_SYMBOL(skb_try_coalesce); 4313 4314 /** 4315 * skb_scrub_packet - scrub an skb 4316 * 4317 * @skb: buffer to clean 4318 * @xnet: packet is crossing netns 4319 * 4320 * skb_scrub_packet can be used after encapsulating or decapsulting a packet 4321 * into/from a tunnel. Some information have to be cleared during these 4322 * operations. 4323 * skb_scrub_packet can also be used to clean a skb before injecting it in 4324 * another namespace (@xnet == true). We have to clear all information in the 4325 * skb that could impact namespace isolation. 4326 */ 4327 void skb_scrub_packet(struct sk_buff *skb, bool xnet) 4328 { 4329 skb->tstamp.tv64 = 0; 4330 skb->pkt_type = PACKET_HOST; 4331 skb->skb_iif = 0; 4332 skb->ignore_df = 0; 4333 skb_dst_drop(skb); 4334 secpath_reset(skb); 4335 nf_reset(skb); 4336 nf_reset_trace(skb); 4337 4338 if (!xnet) 4339 return; 4340 4341 skb_orphan(skb); 4342 skb->mark = 0; 4343 } 4344 EXPORT_SYMBOL_GPL(skb_scrub_packet); 4345 4346 /** 4347 * skb_gso_transport_seglen - Return length of individual segments of a gso packet 4348 * 4349 * @skb: GSO skb 4350 * 4351 * skb_gso_transport_seglen is used to determine the real size of the 4352 * individual segments, including Layer4 headers (TCP/UDP). 4353 * 4354 * The MAC/L2 or network (IP, IPv6) headers are not accounted for. 4355 */ 4356 unsigned int skb_gso_transport_seglen(const struct sk_buff *skb) 4357 { 4358 const struct skb_shared_info *shinfo = skb_shinfo(skb); 4359 unsigned int thlen = 0; 4360 4361 if (skb->encapsulation) { 4362 thlen = skb_inner_transport_header(skb) - 4363 skb_transport_header(skb); 4364 4365 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) 4366 thlen += inner_tcp_hdrlen(skb); 4367 } else if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) { 4368 thlen = tcp_hdrlen(skb); 4369 } else if (unlikely(shinfo->gso_type & SKB_GSO_SCTP)) { 4370 thlen = sizeof(struct sctphdr); 4371 } 4372 /* UFO sets gso_size to the size of the fragmentation 4373 * payload, i.e. the size of the L4 (UDP) header is already 4374 * accounted for. 4375 */ 4376 return thlen + shinfo->gso_size; 4377 } 4378 EXPORT_SYMBOL_GPL(skb_gso_transport_seglen); 4379 4380 /** 4381 * skb_gso_validate_mtu - Return in case such skb fits a given MTU 4382 * 4383 * @skb: GSO skb 4384 * @mtu: MTU to validate against 4385 * 4386 * skb_gso_validate_mtu validates if a given skb will fit a wanted MTU 4387 * once split. 4388 */ 4389 bool skb_gso_validate_mtu(const struct sk_buff *skb, unsigned int mtu) 4390 { 4391 const struct skb_shared_info *shinfo = skb_shinfo(skb); 4392 const struct sk_buff *iter; 4393 unsigned int hlen; 4394 4395 hlen = skb_gso_network_seglen(skb); 4396 4397 if (shinfo->gso_size != GSO_BY_FRAGS) 4398 return hlen <= mtu; 4399 4400 /* Undo this so we can re-use header sizes */ 4401 hlen -= GSO_BY_FRAGS; 4402 4403 skb_walk_frags(skb, iter) { 4404 if (hlen + skb_headlen(iter) > mtu) 4405 return false; 4406 } 4407 4408 return true; 4409 } 4410 EXPORT_SYMBOL_GPL(skb_gso_validate_mtu); 4411 4412 static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb) 4413 { 4414 if (skb_cow(skb, skb_headroom(skb)) < 0) { 4415 kfree_skb(skb); 4416 return NULL; 4417 } 4418 4419 memmove(skb->data - ETH_HLEN, skb->data - skb->mac_len - VLAN_HLEN, 4420 2 * ETH_ALEN); 4421 skb->mac_header += VLAN_HLEN; 4422 return skb; 4423 } 4424 4425 struct sk_buff *skb_vlan_untag(struct sk_buff *skb) 4426 { 4427 struct vlan_hdr *vhdr; 4428 u16 vlan_tci; 4429 4430 if (unlikely(skb_vlan_tag_present(skb))) { 4431 /* vlan_tci is already set-up so leave this for another time */ 4432 return skb; 4433 } 4434 4435 skb = skb_share_check(skb, GFP_ATOMIC); 4436 if (unlikely(!skb)) 4437 goto err_free; 4438 4439 if (unlikely(!pskb_may_pull(skb, VLAN_HLEN))) 4440 goto err_free; 4441 4442 vhdr = (struct vlan_hdr *)skb->data; 4443 vlan_tci = ntohs(vhdr->h_vlan_TCI); 4444 __vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci); 4445 4446 skb_pull_rcsum(skb, VLAN_HLEN); 4447 vlan_set_encap_proto(skb, vhdr); 4448 4449 skb = skb_reorder_vlan_header(skb); 4450 if (unlikely(!skb)) 4451 goto err_free; 4452 4453 skb_reset_network_header(skb); 4454 skb_reset_transport_header(skb); 4455 skb_reset_mac_len(skb); 4456 4457 return skb; 4458 4459 err_free: 4460 kfree_skb(skb); 4461 return NULL; 4462 } 4463 EXPORT_SYMBOL(skb_vlan_untag); 4464 4465 int skb_ensure_writable(struct sk_buff *skb, int write_len) 4466 { 4467 if (!pskb_may_pull(skb, write_len)) 4468 return -ENOMEM; 4469 4470 if (!skb_cloned(skb) || skb_clone_writable(skb, write_len)) 4471 return 0; 4472 4473 return pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 4474 } 4475 EXPORT_SYMBOL(skb_ensure_writable); 4476 4477 /* remove VLAN header from packet and update csum accordingly. */ 4478 static int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci) 4479 { 4480 struct vlan_hdr *vhdr; 4481 unsigned int offset = skb->data - skb_mac_header(skb); 4482 int err; 4483 4484 __skb_push(skb, offset); 4485 err = skb_ensure_writable(skb, VLAN_ETH_HLEN); 4486 if (unlikely(err)) 4487 goto pull; 4488 4489 skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN); 4490 4491 vhdr = (struct vlan_hdr *)(skb->data + ETH_HLEN); 4492 *vlan_tci = ntohs(vhdr->h_vlan_TCI); 4493 4494 memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN); 4495 __skb_pull(skb, VLAN_HLEN); 4496 4497 vlan_set_encap_proto(skb, vhdr); 4498 skb->mac_header += VLAN_HLEN; 4499 4500 if (skb_network_offset(skb) < ETH_HLEN) 4501 skb_set_network_header(skb, ETH_HLEN); 4502 4503 skb_reset_mac_len(skb); 4504 pull: 4505 __skb_pull(skb, offset); 4506 4507 return err; 4508 } 4509 4510 int skb_vlan_pop(struct sk_buff *skb) 4511 { 4512 u16 vlan_tci; 4513 __be16 vlan_proto; 4514 int err; 4515 4516 if (likely(skb_vlan_tag_present(skb))) { 4517 skb->vlan_tci = 0; 4518 } else { 4519 if (unlikely((skb->protocol != htons(ETH_P_8021Q) && 4520 skb->protocol != htons(ETH_P_8021AD)) || 4521 skb->len < VLAN_ETH_HLEN)) 4522 return 0; 4523 4524 err = __skb_vlan_pop(skb, &vlan_tci); 4525 if (err) 4526 return err; 4527 } 4528 /* move next vlan tag to hw accel tag */ 4529 if (likely((skb->protocol != htons(ETH_P_8021Q) && 4530 skb->protocol != htons(ETH_P_8021AD)) || 4531 skb->len < VLAN_ETH_HLEN)) 4532 return 0; 4533 4534 vlan_proto = skb->protocol; 4535 err = __skb_vlan_pop(skb, &vlan_tci); 4536 if (unlikely(err)) 4537 return err; 4538 4539 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci); 4540 return 0; 4541 } 4542 EXPORT_SYMBOL(skb_vlan_pop); 4543 4544 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci) 4545 { 4546 if (skb_vlan_tag_present(skb)) { 4547 unsigned int offset = skb->data - skb_mac_header(skb); 4548 int err; 4549 4550 /* __vlan_insert_tag expect skb->data pointing to mac header. 4551 * So change skb->data before calling it and change back to 4552 * original position later 4553 */ 4554 __skb_push(skb, offset); 4555 err = __vlan_insert_tag(skb, skb->vlan_proto, 4556 skb_vlan_tag_get(skb)); 4557 if (err) { 4558 __skb_pull(skb, offset); 4559 return err; 4560 } 4561 4562 skb->protocol = skb->vlan_proto; 4563 skb->mac_len += VLAN_HLEN; 4564 4565 skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN); 4566 __skb_pull(skb, offset); 4567 } 4568 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci); 4569 return 0; 4570 } 4571 EXPORT_SYMBOL(skb_vlan_push); 4572 4573 /** 4574 * alloc_skb_with_frags - allocate skb with page frags 4575 * 4576 * @header_len: size of linear part 4577 * @data_len: needed length in frags 4578 * @max_page_order: max page order desired. 4579 * @errcode: pointer to error code if any 4580 * @gfp_mask: allocation mask 4581 * 4582 * This can be used to allocate a paged skb, given a maximal order for frags. 4583 */ 4584 struct sk_buff *alloc_skb_with_frags(unsigned long header_len, 4585 unsigned long data_len, 4586 int max_page_order, 4587 int *errcode, 4588 gfp_t gfp_mask) 4589 { 4590 int npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT; 4591 unsigned long chunk; 4592 struct sk_buff *skb; 4593 struct page *page; 4594 gfp_t gfp_head; 4595 int i; 4596 4597 *errcode = -EMSGSIZE; 4598 /* Note this test could be relaxed, if we succeed to allocate 4599 * high order pages... 4600 */ 4601 if (npages > MAX_SKB_FRAGS) 4602 return NULL; 4603 4604 gfp_head = gfp_mask; 4605 if (gfp_head & __GFP_DIRECT_RECLAIM) 4606 gfp_head |= __GFP_REPEAT; 4607 4608 *errcode = -ENOBUFS; 4609 skb = alloc_skb(header_len, gfp_head); 4610 if (!skb) 4611 return NULL; 4612 4613 skb->truesize += npages << PAGE_SHIFT; 4614 4615 for (i = 0; npages > 0; i++) { 4616 int order = max_page_order; 4617 4618 while (order) { 4619 if (npages >= 1 << order) { 4620 page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) | 4621 __GFP_COMP | 4622 __GFP_NOWARN | 4623 __GFP_NORETRY, 4624 order); 4625 if (page) 4626 goto fill_page; 4627 /* Do not retry other high order allocations */ 4628 order = 1; 4629 max_page_order = 0; 4630 } 4631 order--; 4632 } 4633 page = alloc_page(gfp_mask); 4634 if (!page) 4635 goto failure; 4636 fill_page: 4637 chunk = min_t(unsigned long, data_len, 4638 PAGE_SIZE << order); 4639 skb_fill_page_desc(skb, i, page, 0, chunk); 4640 data_len -= chunk; 4641 npages -= 1 << order; 4642 } 4643 return skb; 4644 4645 failure: 4646 kfree_skb(skb); 4647 return NULL; 4648 } 4649 EXPORT_SYMBOL(alloc_skb_with_frags); 4650 4651 /* carve out the first off bytes from skb when off < headlen */ 4652 static int pskb_carve_inside_header(struct sk_buff *skb, const u32 off, 4653 const int headlen, gfp_t gfp_mask) 4654 { 4655 int i; 4656 int size = skb_end_offset(skb); 4657 int new_hlen = headlen - off; 4658 u8 *data; 4659 4660 size = SKB_DATA_ALIGN(size); 4661 4662 if (skb_pfmemalloc(skb)) 4663 gfp_mask |= __GFP_MEMALLOC; 4664 data = kmalloc_reserve(size + 4665 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)), 4666 gfp_mask, NUMA_NO_NODE, NULL); 4667 if (!data) 4668 return -ENOMEM; 4669 4670 size = SKB_WITH_OVERHEAD(ksize(data)); 4671 4672 /* Copy real data, and all frags */ 4673 skb_copy_from_linear_data_offset(skb, off, data, new_hlen); 4674 skb->len -= off; 4675 4676 memcpy((struct skb_shared_info *)(data + size), 4677 skb_shinfo(skb), 4678 offsetof(struct skb_shared_info, 4679 frags[skb_shinfo(skb)->nr_frags])); 4680 if (skb_cloned(skb)) { 4681 /* drop the old head gracefully */ 4682 if (skb_orphan_frags(skb, gfp_mask)) { 4683 kfree(data); 4684 return -ENOMEM; 4685 } 4686 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 4687 skb_frag_ref(skb, i); 4688 if (skb_has_frag_list(skb)) 4689 skb_clone_fraglist(skb); 4690 skb_release_data(skb); 4691 } else { 4692 /* we can reuse existing recount- all we did was 4693 * relocate values 4694 */ 4695 skb_free_head(skb); 4696 } 4697 4698 skb->head = data; 4699 skb->data = data; 4700 skb->head_frag = 0; 4701 #ifdef NET_SKBUFF_DATA_USES_OFFSET 4702 skb->end = size; 4703 #else 4704 skb->end = skb->head + size; 4705 #endif 4706 skb_set_tail_pointer(skb, skb_headlen(skb)); 4707 skb_headers_offset_update(skb, 0); 4708 skb->cloned = 0; 4709 skb->hdr_len = 0; 4710 skb->nohdr = 0; 4711 atomic_set(&skb_shinfo(skb)->dataref, 1); 4712 4713 return 0; 4714 } 4715 4716 static int pskb_carve(struct sk_buff *skb, const u32 off, gfp_t gfp); 4717 4718 /* carve out the first eat bytes from skb's frag_list. May recurse into 4719 * pskb_carve() 4720 */ 4721 static int pskb_carve_frag_list(struct sk_buff *skb, 4722 struct skb_shared_info *shinfo, int eat, 4723 gfp_t gfp_mask) 4724 { 4725 struct sk_buff *list = shinfo->frag_list; 4726 struct sk_buff *clone = NULL; 4727 struct sk_buff *insp = NULL; 4728 4729 do { 4730 if (!list) { 4731 pr_err("Not enough bytes to eat. Want %d\n", eat); 4732 return -EFAULT; 4733 } 4734 if (list->len <= eat) { 4735 /* Eaten as whole. */ 4736 eat -= list->len; 4737 list = list->next; 4738 insp = list; 4739 } else { 4740 /* Eaten partially. */ 4741 if (skb_shared(list)) { 4742 clone = skb_clone(list, gfp_mask); 4743 if (!clone) 4744 return -ENOMEM; 4745 insp = list->next; 4746 list = clone; 4747 } else { 4748 /* This may be pulled without problems. */ 4749 insp = list; 4750 } 4751 if (pskb_carve(list, eat, gfp_mask) < 0) { 4752 kfree_skb(clone); 4753 return -ENOMEM; 4754 } 4755 break; 4756 } 4757 } while (eat); 4758 4759 /* Free pulled out fragments. */ 4760 while ((list = shinfo->frag_list) != insp) { 4761 shinfo->frag_list = list->next; 4762 kfree_skb(list); 4763 } 4764 /* And insert new clone at head. */ 4765 if (clone) { 4766 clone->next = list; 4767 shinfo->frag_list = clone; 4768 } 4769 return 0; 4770 } 4771 4772 /* carve off first len bytes from skb. Split line (off) is in the 4773 * non-linear part of skb 4774 */ 4775 static int pskb_carve_inside_nonlinear(struct sk_buff *skb, const u32 off, 4776 int pos, gfp_t gfp_mask) 4777 { 4778 int i, k = 0; 4779 int size = skb_end_offset(skb); 4780 u8 *data; 4781 const int nfrags = skb_shinfo(skb)->nr_frags; 4782 struct skb_shared_info *shinfo; 4783 4784 size = SKB_DATA_ALIGN(size); 4785 4786 if (skb_pfmemalloc(skb)) 4787 gfp_mask |= __GFP_MEMALLOC; 4788 data = kmalloc_reserve(size + 4789 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)), 4790 gfp_mask, NUMA_NO_NODE, NULL); 4791 if (!data) 4792 return -ENOMEM; 4793 4794 size = SKB_WITH_OVERHEAD(ksize(data)); 4795 4796 memcpy((struct skb_shared_info *)(data + size), 4797 skb_shinfo(skb), offsetof(struct skb_shared_info, 4798 frags[skb_shinfo(skb)->nr_frags])); 4799 if (skb_orphan_frags(skb, gfp_mask)) { 4800 kfree(data); 4801 return -ENOMEM; 4802 } 4803 shinfo = (struct skb_shared_info *)(data + size); 4804 for (i = 0; i < nfrags; i++) { 4805 int fsize = skb_frag_size(&skb_shinfo(skb)->frags[i]); 4806 4807 if (pos + fsize > off) { 4808 shinfo->frags[k] = skb_shinfo(skb)->frags[i]; 4809 4810 if (pos < off) { 4811 /* Split frag. 4812 * We have two variants in this case: 4813 * 1. Move all the frag to the second 4814 * part, if it is possible. F.e. 4815 * this approach is mandatory for TUX, 4816 * where splitting is expensive. 4817 * 2. Split is accurately. We make this. 4818 */ 4819 shinfo->frags[0].page_offset += off - pos; 4820 skb_frag_size_sub(&shinfo->frags[0], off - pos); 4821 } 4822 skb_frag_ref(skb, i); 4823 k++; 4824 } 4825 pos += fsize; 4826 } 4827 shinfo->nr_frags = k; 4828 if (skb_has_frag_list(skb)) 4829 skb_clone_fraglist(skb); 4830 4831 if (k == 0) { 4832 /* split line is in frag list */ 4833 pskb_carve_frag_list(skb, shinfo, off - pos, gfp_mask); 4834 } 4835 skb_release_data(skb); 4836 4837 skb->head = data; 4838 skb->head_frag = 0; 4839 skb->data = data; 4840 #ifdef NET_SKBUFF_DATA_USES_OFFSET 4841 skb->end = size; 4842 #else 4843 skb->end = skb->head + size; 4844 #endif 4845 skb_reset_tail_pointer(skb); 4846 skb_headers_offset_update(skb, 0); 4847 skb->cloned = 0; 4848 skb->hdr_len = 0; 4849 skb->nohdr = 0; 4850 skb->len -= off; 4851 skb->data_len = skb->len; 4852 atomic_set(&skb_shinfo(skb)->dataref, 1); 4853 return 0; 4854 } 4855 4856 /* remove len bytes from the beginning of the skb */ 4857 static int pskb_carve(struct sk_buff *skb, const u32 len, gfp_t gfp) 4858 { 4859 int headlen = skb_headlen(skb); 4860 4861 if (len < headlen) 4862 return pskb_carve_inside_header(skb, len, headlen, gfp); 4863 else 4864 return pskb_carve_inside_nonlinear(skb, len, headlen, gfp); 4865 } 4866 4867 /* Extract to_copy bytes starting at off from skb, and return this in 4868 * a new skb 4869 */ 4870 struct sk_buff *pskb_extract(struct sk_buff *skb, int off, 4871 int to_copy, gfp_t gfp) 4872 { 4873 struct sk_buff *clone = skb_clone(skb, gfp); 4874 4875 if (!clone) 4876 return NULL; 4877 4878 if (pskb_carve(clone, off, gfp) < 0 || 4879 pskb_trim(clone, to_copy)) { 4880 kfree_skb(clone); 4881 return NULL; 4882 } 4883 return clone; 4884 } 4885 EXPORT_SYMBOL(pskb_extract); 4886