1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Routines having to do with the 'struct sk_buff' memory handlers. 4 * 5 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk> 6 * Florian La Roche <rzsfl@rz.uni-sb.de> 7 * 8 * Fixes: 9 * Alan Cox : Fixed the worst of the load 10 * balancer bugs. 11 * Dave Platt : Interrupt stacking fix. 12 * Richard Kooijman : Timestamp fixes. 13 * Alan Cox : Changed buffer format. 14 * Alan Cox : destructor hook for AF_UNIX etc. 15 * Linus Torvalds : Better skb_clone. 16 * Alan Cox : Added skb_copy. 17 * Alan Cox : Added all the changed routines Linus 18 * only put in the headers 19 * Ray VanTassle : Fixed --skb->lock in free 20 * Alan Cox : skb_copy copy arp field 21 * Andi Kleen : slabified it. 22 * Robert Olsson : Removed skb_head_pool 23 * 24 * NOTE: 25 * The __skb_ routines should be called with interrupts 26 * disabled, or you better be *real* sure that the operation is atomic 27 * with respect to whatever list is being frobbed (e.g. via lock_sock() 28 * or via disabling bottom half handlers, etc). 29 */ 30 31 /* 32 * The functions in this file will not compile correctly with gcc 2.4.x 33 */ 34 35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 36 37 #include <linux/module.h> 38 #include <linux/types.h> 39 #include <linux/kernel.h> 40 #include <linux/mm.h> 41 #include <linux/interrupt.h> 42 #include <linux/in.h> 43 #include <linux/inet.h> 44 #include <linux/slab.h> 45 #include <linux/tcp.h> 46 #include <linux/udp.h> 47 #include <linux/sctp.h> 48 #include <linux/netdevice.h> 49 #ifdef CONFIG_NET_CLS_ACT 50 #include <net/pkt_sched.h> 51 #endif 52 #include <linux/string.h> 53 #include <linux/skbuff.h> 54 #include <linux/splice.h> 55 #include <linux/cache.h> 56 #include <linux/rtnetlink.h> 57 #include <linux/init.h> 58 #include <linux/scatterlist.h> 59 #include <linux/errqueue.h> 60 #include <linux/prefetch.h> 61 #include <linux/if_vlan.h> 62 #include <linux/mpls.h> 63 #include <linux/kcov.h> 64 65 #include <net/protocol.h> 66 #include <net/dst.h> 67 #include <net/sock.h> 68 #include <net/checksum.h> 69 #include <net/ip6_checksum.h> 70 #include <net/xfrm.h> 71 #include <net/mpls.h> 72 #include <net/mptcp.h> 73 #include <net/page_pool.h> 74 75 #include <linux/uaccess.h> 76 #include <trace/events/skb.h> 77 #include <linux/highmem.h> 78 #include <linux/capability.h> 79 #include <linux/user_namespace.h> 80 #include <linux/indirect_call_wrapper.h> 81 82 #include "datagram.h" 83 84 struct kmem_cache *skbuff_head_cache __ro_after_init; 85 static struct kmem_cache *skbuff_fclone_cache __ro_after_init; 86 #ifdef CONFIG_SKB_EXTENSIONS 87 static struct kmem_cache *skbuff_ext_cache __ro_after_init; 88 #endif 89 int sysctl_max_skb_frags __read_mostly = MAX_SKB_FRAGS; 90 EXPORT_SYMBOL(sysctl_max_skb_frags); 91 92 /** 93 * skb_panic - private function for out-of-line support 94 * @skb: buffer 95 * @sz: size 96 * @addr: address 97 * @msg: skb_over_panic or skb_under_panic 98 * 99 * Out-of-line support for skb_put() and skb_push(). 100 * Called via the wrapper skb_over_panic() or skb_under_panic(). 101 * Keep out of line to prevent kernel bloat. 102 * __builtin_return_address is not used because it is not always reliable. 103 */ 104 static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr, 105 const char msg[]) 106 { 107 pr_emerg("%s: text:%px len:%d put:%d head:%px data:%px tail:%#lx end:%#lx dev:%s\n", 108 msg, addr, skb->len, sz, skb->head, skb->data, 109 (unsigned long)skb->tail, (unsigned long)skb->end, 110 skb->dev ? skb->dev->name : "<NULL>"); 111 BUG(); 112 } 113 114 static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr) 115 { 116 skb_panic(skb, sz, addr, __func__); 117 } 118 119 static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr) 120 { 121 skb_panic(skb, sz, addr, __func__); 122 } 123 124 #define NAPI_SKB_CACHE_SIZE 64 125 #define NAPI_SKB_CACHE_BULK 16 126 #define NAPI_SKB_CACHE_HALF (NAPI_SKB_CACHE_SIZE / 2) 127 128 struct napi_alloc_cache { 129 struct page_frag_cache page; 130 unsigned int skb_count; 131 void *skb_cache[NAPI_SKB_CACHE_SIZE]; 132 }; 133 134 static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache); 135 static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache); 136 137 static void *__alloc_frag_align(unsigned int fragsz, gfp_t gfp_mask, 138 unsigned int align_mask) 139 { 140 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 141 142 return page_frag_alloc_align(&nc->page, fragsz, gfp_mask, align_mask); 143 } 144 145 void *__napi_alloc_frag_align(unsigned int fragsz, unsigned int align_mask) 146 { 147 fragsz = SKB_DATA_ALIGN(fragsz); 148 149 return __alloc_frag_align(fragsz, GFP_ATOMIC, align_mask); 150 } 151 EXPORT_SYMBOL(__napi_alloc_frag_align); 152 153 void *__netdev_alloc_frag_align(unsigned int fragsz, unsigned int align_mask) 154 { 155 struct page_frag_cache *nc; 156 void *data; 157 158 fragsz = SKB_DATA_ALIGN(fragsz); 159 if (in_irq() || irqs_disabled()) { 160 nc = this_cpu_ptr(&netdev_alloc_cache); 161 data = page_frag_alloc_align(nc, fragsz, GFP_ATOMIC, align_mask); 162 } else { 163 local_bh_disable(); 164 data = __alloc_frag_align(fragsz, GFP_ATOMIC, align_mask); 165 local_bh_enable(); 166 } 167 return data; 168 } 169 EXPORT_SYMBOL(__netdev_alloc_frag_align); 170 171 static struct sk_buff *napi_skb_cache_get(void) 172 { 173 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 174 struct sk_buff *skb; 175 176 if (unlikely(!nc->skb_count)) 177 nc->skb_count = kmem_cache_alloc_bulk(skbuff_head_cache, 178 GFP_ATOMIC, 179 NAPI_SKB_CACHE_BULK, 180 nc->skb_cache); 181 if (unlikely(!nc->skb_count)) 182 return NULL; 183 184 skb = nc->skb_cache[--nc->skb_count]; 185 kasan_unpoison_object_data(skbuff_head_cache, skb); 186 187 return skb; 188 } 189 190 /* Caller must provide SKB that is memset cleared */ 191 static void __build_skb_around(struct sk_buff *skb, void *data, 192 unsigned int frag_size) 193 { 194 struct skb_shared_info *shinfo; 195 unsigned int size = frag_size ? : ksize(data); 196 197 size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 198 199 /* Assumes caller memset cleared SKB */ 200 skb->truesize = SKB_TRUESIZE(size); 201 refcount_set(&skb->users, 1); 202 skb->head = data; 203 skb->data = data; 204 skb_reset_tail_pointer(skb); 205 skb->end = skb->tail + size; 206 skb->mac_header = (typeof(skb->mac_header))~0U; 207 skb->transport_header = (typeof(skb->transport_header))~0U; 208 209 /* make sure we initialize shinfo sequentially */ 210 shinfo = skb_shinfo(skb); 211 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref)); 212 atomic_set(&shinfo->dataref, 1); 213 214 skb_set_kcov_handle(skb, kcov_common_handle()); 215 } 216 217 /** 218 * __build_skb - build a network buffer 219 * @data: data buffer provided by caller 220 * @frag_size: size of data, or 0 if head was kmalloced 221 * 222 * Allocate a new &sk_buff. Caller provides space holding head and 223 * skb_shared_info. @data must have been allocated by kmalloc() only if 224 * @frag_size is 0, otherwise data should come from the page allocator 225 * or vmalloc() 226 * The return is the new skb buffer. 227 * On a failure the return is %NULL, and @data is not freed. 228 * Notes : 229 * Before IO, driver allocates only data buffer where NIC put incoming frame 230 * Driver should add room at head (NET_SKB_PAD) and 231 * MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info)) 232 * After IO, driver calls build_skb(), to allocate sk_buff and populate it 233 * before giving packet to stack. 234 * RX rings only contains data buffers, not full skbs. 235 */ 236 struct sk_buff *__build_skb(void *data, unsigned int frag_size) 237 { 238 struct sk_buff *skb; 239 240 skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC); 241 if (unlikely(!skb)) 242 return NULL; 243 244 memset(skb, 0, offsetof(struct sk_buff, tail)); 245 __build_skb_around(skb, data, frag_size); 246 247 return skb; 248 } 249 250 /* build_skb() is wrapper over __build_skb(), that specifically 251 * takes care of skb->head and skb->pfmemalloc 252 * This means that if @frag_size is not zero, then @data must be backed 253 * by a page fragment, not kmalloc() or vmalloc() 254 */ 255 struct sk_buff *build_skb(void *data, unsigned int frag_size) 256 { 257 struct sk_buff *skb = __build_skb(data, frag_size); 258 259 if (skb && frag_size) { 260 skb->head_frag = 1; 261 if (page_is_pfmemalloc(virt_to_head_page(data))) 262 skb->pfmemalloc = 1; 263 } 264 return skb; 265 } 266 EXPORT_SYMBOL(build_skb); 267 268 /** 269 * build_skb_around - build a network buffer around provided skb 270 * @skb: sk_buff provide by caller, must be memset cleared 271 * @data: data buffer provided by caller 272 * @frag_size: size of data, or 0 if head was kmalloced 273 */ 274 struct sk_buff *build_skb_around(struct sk_buff *skb, 275 void *data, unsigned int frag_size) 276 { 277 if (unlikely(!skb)) 278 return NULL; 279 280 __build_skb_around(skb, data, frag_size); 281 282 if (frag_size) { 283 skb->head_frag = 1; 284 if (page_is_pfmemalloc(virt_to_head_page(data))) 285 skb->pfmemalloc = 1; 286 } 287 return skb; 288 } 289 EXPORT_SYMBOL(build_skb_around); 290 291 /** 292 * __napi_build_skb - build a network buffer 293 * @data: data buffer provided by caller 294 * @frag_size: size of data, or 0 if head was kmalloced 295 * 296 * Version of __build_skb() that uses NAPI percpu caches to obtain 297 * skbuff_head instead of inplace allocation. 298 * 299 * Returns a new &sk_buff on success, %NULL on allocation failure. 300 */ 301 static struct sk_buff *__napi_build_skb(void *data, unsigned int frag_size) 302 { 303 struct sk_buff *skb; 304 305 skb = napi_skb_cache_get(); 306 if (unlikely(!skb)) 307 return NULL; 308 309 memset(skb, 0, offsetof(struct sk_buff, tail)); 310 __build_skb_around(skb, data, frag_size); 311 312 return skb; 313 } 314 315 /** 316 * napi_build_skb - build a network buffer 317 * @data: data buffer provided by caller 318 * @frag_size: size of data, or 0 if head was kmalloced 319 * 320 * Version of __napi_build_skb() that takes care of skb->head_frag 321 * and skb->pfmemalloc when the data is a page or page fragment. 322 * 323 * Returns a new &sk_buff on success, %NULL on allocation failure. 324 */ 325 struct sk_buff *napi_build_skb(void *data, unsigned int frag_size) 326 { 327 struct sk_buff *skb = __napi_build_skb(data, frag_size); 328 329 if (likely(skb) && frag_size) { 330 skb->head_frag = 1; 331 skb_propagate_pfmemalloc(virt_to_head_page(data), skb); 332 } 333 334 return skb; 335 } 336 EXPORT_SYMBOL(napi_build_skb); 337 338 /* 339 * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells 340 * the caller if emergency pfmemalloc reserves are being used. If it is and 341 * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves 342 * may be used. Otherwise, the packet data may be discarded until enough 343 * memory is free 344 */ 345 static void *kmalloc_reserve(size_t size, gfp_t flags, int node, 346 bool *pfmemalloc) 347 { 348 void *obj; 349 bool ret_pfmemalloc = false; 350 351 /* 352 * Try a regular allocation, when that fails and we're not entitled 353 * to the reserves, fail. 354 */ 355 obj = kmalloc_node_track_caller(size, 356 flags | __GFP_NOMEMALLOC | __GFP_NOWARN, 357 node); 358 if (obj || !(gfp_pfmemalloc_allowed(flags))) 359 goto out; 360 361 /* Try again but now we are using pfmemalloc reserves */ 362 ret_pfmemalloc = true; 363 obj = kmalloc_node_track_caller(size, flags, node); 364 365 out: 366 if (pfmemalloc) 367 *pfmemalloc = ret_pfmemalloc; 368 369 return obj; 370 } 371 372 /* Allocate a new skbuff. We do this ourselves so we can fill in a few 373 * 'private' fields and also do memory statistics to find all the 374 * [BEEP] leaks. 375 * 376 */ 377 378 /** 379 * __alloc_skb - allocate a network buffer 380 * @size: size to allocate 381 * @gfp_mask: allocation mask 382 * @flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache 383 * instead of head cache and allocate a cloned (child) skb. 384 * If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for 385 * allocations in case the data is required for writeback 386 * @node: numa node to allocate memory on 387 * 388 * Allocate a new &sk_buff. The returned buffer has no headroom and a 389 * tail room of at least size bytes. The object has a reference count 390 * of one. The return is the buffer. On a failure the return is %NULL. 391 * 392 * Buffers may only be allocated from interrupts using a @gfp_mask of 393 * %GFP_ATOMIC. 394 */ 395 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask, 396 int flags, int node) 397 { 398 struct kmem_cache *cache; 399 struct sk_buff *skb; 400 u8 *data; 401 bool pfmemalloc; 402 403 cache = (flags & SKB_ALLOC_FCLONE) 404 ? skbuff_fclone_cache : skbuff_head_cache; 405 406 if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX)) 407 gfp_mask |= __GFP_MEMALLOC; 408 409 /* Get the HEAD */ 410 if ((flags & (SKB_ALLOC_FCLONE | SKB_ALLOC_NAPI)) == SKB_ALLOC_NAPI && 411 likely(node == NUMA_NO_NODE || node == numa_mem_id())) 412 skb = napi_skb_cache_get(); 413 else 414 skb = kmem_cache_alloc_node(cache, gfp_mask & ~GFP_DMA, node); 415 if (unlikely(!skb)) 416 return NULL; 417 prefetchw(skb); 418 419 /* We do our best to align skb_shared_info on a separate cache 420 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives 421 * aligned memory blocks, unless SLUB/SLAB debug is enabled. 422 * Both skb->head and skb_shared_info are cache line aligned. 423 */ 424 size = SKB_DATA_ALIGN(size); 425 size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 426 data = kmalloc_reserve(size, gfp_mask, node, &pfmemalloc); 427 if (unlikely(!data)) 428 goto nodata; 429 /* kmalloc(size) might give us more room than requested. 430 * Put skb_shared_info exactly at the end of allocated zone, 431 * to allow max possible filling before reallocation. 432 */ 433 size = SKB_WITH_OVERHEAD(ksize(data)); 434 prefetchw(data + size); 435 436 /* 437 * Only clear those fields we need to clear, not those that we will 438 * actually initialise below. Hence, don't put any more fields after 439 * the tail pointer in struct sk_buff! 440 */ 441 memset(skb, 0, offsetof(struct sk_buff, tail)); 442 __build_skb_around(skb, data, 0); 443 skb->pfmemalloc = pfmemalloc; 444 445 if (flags & SKB_ALLOC_FCLONE) { 446 struct sk_buff_fclones *fclones; 447 448 fclones = container_of(skb, struct sk_buff_fclones, skb1); 449 450 skb->fclone = SKB_FCLONE_ORIG; 451 refcount_set(&fclones->fclone_ref, 1); 452 453 fclones->skb2.fclone = SKB_FCLONE_CLONE; 454 } 455 456 return skb; 457 458 nodata: 459 kmem_cache_free(cache, skb); 460 return NULL; 461 } 462 EXPORT_SYMBOL(__alloc_skb); 463 464 /** 465 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device 466 * @dev: network device to receive on 467 * @len: length to allocate 468 * @gfp_mask: get_free_pages mask, passed to alloc_skb 469 * 470 * Allocate a new &sk_buff and assign it a usage count of one. The 471 * buffer has NET_SKB_PAD headroom built in. Users should allocate 472 * the headroom they think they need without accounting for the 473 * built in space. The built in space is used for optimisations. 474 * 475 * %NULL is returned if there is no free memory. 476 */ 477 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len, 478 gfp_t gfp_mask) 479 { 480 struct page_frag_cache *nc; 481 struct sk_buff *skb; 482 bool pfmemalloc; 483 void *data; 484 485 len += NET_SKB_PAD; 486 487 /* If requested length is either too small or too big, 488 * we use kmalloc() for skb->head allocation. 489 */ 490 if (len <= SKB_WITH_OVERHEAD(1024) || 491 len > SKB_WITH_OVERHEAD(PAGE_SIZE) || 492 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) { 493 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE); 494 if (!skb) 495 goto skb_fail; 496 goto skb_success; 497 } 498 499 len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 500 len = SKB_DATA_ALIGN(len); 501 502 if (sk_memalloc_socks()) 503 gfp_mask |= __GFP_MEMALLOC; 504 505 if (in_irq() || irqs_disabled()) { 506 nc = this_cpu_ptr(&netdev_alloc_cache); 507 data = page_frag_alloc(nc, len, gfp_mask); 508 pfmemalloc = nc->pfmemalloc; 509 } else { 510 local_bh_disable(); 511 nc = this_cpu_ptr(&napi_alloc_cache.page); 512 data = page_frag_alloc(nc, len, gfp_mask); 513 pfmemalloc = nc->pfmemalloc; 514 local_bh_enable(); 515 } 516 517 if (unlikely(!data)) 518 return NULL; 519 520 skb = __build_skb(data, len); 521 if (unlikely(!skb)) { 522 skb_free_frag(data); 523 return NULL; 524 } 525 526 if (pfmemalloc) 527 skb->pfmemalloc = 1; 528 skb->head_frag = 1; 529 530 skb_success: 531 skb_reserve(skb, NET_SKB_PAD); 532 skb->dev = dev; 533 534 skb_fail: 535 return skb; 536 } 537 EXPORT_SYMBOL(__netdev_alloc_skb); 538 539 /** 540 * __napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance 541 * @napi: napi instance this buffer was allocated for 542 * @len: length to allocate 543 * @gfp_mask: get_free_pages mask, passed to alloc_skb and alloc_pages 544 * 545 * Allocate a new sk_buff for use in NAPI receive. This buffer will 546 * attempt to allocate the head from a special reserved region used 547 * only for NAPI Rx allocation. By doing this we can save several 548 * CPU cycles by avoiding having to disable and re-enable IRQs. 549 * 550 * %NULL is returned if there is no free memory. 551 */ 552 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, unsigned int len, 553 gfp_t gfp_mask) 554 { 555 struct napi_alloc_cache *nc; 556 struct sk_buff *skb; 557 void *data; 558 559 len += NET_SKB_PAD + NET_IP_ALIGN; 560 561 /* If requested length is either too small or too big, 562 * we use kmalloc() for skb->head allocation. 563 */ 564 if (len <= SKB_WITH_OVERHEAD(1024) || 565 len > SKB_WITH_OVERHEAD(PAGE_SIZE) || 566 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) { 567 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX | SKB_ALLOC_NAPI, 568 NUMA_NO_NODE); 569 if (!skb) 570 goto skb_fail; 571 goto skb_success; 572 } 573 574 nc = this_cpu_ptr(&napi_alloc_cache); 575 len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 576 len = SKB_DATA_ALIGN(len); 577 578 if (sk_memalloc_socks()) 579 gfp_mask |= __GFP_MEMALLOC; 580 581 data = page_frag_alloc(&nc->page, len, gfp_mask); 582 if (unlikely(!data)) 583 return NULL; 584 585 skb = __napi_build_skb(data, len); 586 if (unlikely(!skb)) { 587 skb_free_frag(data); 588 return NULL; 589 } 590 591 if (nc->page.pfmemalloc) 592 skb->pfmemalloc = 1; 593 skb->head_frag = 1; 594 595 skb_success: 596 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN); 597 skb->dev = napi->dev; 598 599 skb_fail: 600 return skb; 601 } 602 EXPORT_SYMBOL(__napi_alloc_skb); 603 604 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off, 605 int size, unsigned int truesize) 606 { 607 skb_fill_page_desc(skb, i, page, off, size); 608 skb->len += size; 609 skb->data_len += size; 610 skb->truesize += truesize; 611 } 612 EXPORT_SYMBOL(skb_add_rx_frag); 613 614 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size, 615 unsigned int truesize) 616 { 617 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 618 619 skb_frag_size_add(frag, size); 620 skb->len += size; 621 skb->data_len += size; 622 skb->truesize += truesize; 623 } 624 EXPORT_SYMBOL(skb_coalesce_rx_frag); 625 626 static void skb_drop_list(struct sk_buff **listp) 627 { 628 kfree_skb_list(*listp); 629 *listp = NULL; 630 } 631 632 static inline void skb_drop_fraglist(struct sk_buff *skb) 633 { 634 skb_drop_list(&skb_shinfo(skb)->frag_list); 635 } 636 637 static void skb_clone_fraglist(struct sk_buff *skb) 638 { 639 struct sk_buff *list; 640 641 skb_walk_frags(skb, list) 642 skb_get(list); 643 } 644 645 static void skb_free_head(struct sk_buff *skb) 646 { 647 unsigned char *head = skb->head; 648 649 if (skb->head_frag) { 650 if (skb_pp_recycle(skb, head)) 651 return; 652 skb_free_frag(head); 653 } else { 654 kfree(head); 655 } 656 } 657 658 static void skb_release_data(struct sk_buff *skb) 659 { 660 struct skb_shared_info *shinfo = skb_shinfo(skb); 661 int i; 662 663 if (skb->cloned && 664 atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1, 665 &shinfo->dataref)) 666 return; 667 668 skb_zcopy_clear(skb, true); 669 670 for (i = 0; i < shinfo->nr_frags; i++) 671 __skb_frag_unref(&shinfo->frags[i], skb->pp_recycle); 672 673 if (shinfo->frag_list) 674 kfree_skb_list(shinfo->frag_list); 675 676 skb_free_head(skb); 677 } 678 679 /* 680 * Free an skbuff by memory without cleaning the state. 681 */ 682 static void kfree_skbmem(struct sk_buff *skb) 683 { 684 struct sk_buff_fclones *fclones; 685 686 switch (skb->fclone) { 687 case SKB_FCLONE_UNAVAILABLE: 688 kmem_cache_free(skbuff_head_cache, skb); 689 return; 690 691 case SKB_FCLONE_ORIG: 692 fclones = container_of(skb, struct sk_buff_fclones, skb1); 693 694 /* We usually free the clone (TX completion) before original skb 695 * This test would have no chance to be true for the clone, 696 * while here, branch prediction will be good. 697 */ 698 if (refcount_read(&fclones->fclone_ref) == 1) 699 goto fastpath; 700 break; 701 702 default: /* SKB_FCLONE_CLONE */ 703 fclones = container_of(skb, struct sk_buff_fclones, skb2); 704 break; 705 } 706 if (!refcount_dec_and_test(&fclones->fclone_ref)) 707 return; 708 fastpath: 709 kmem_cache_free(skbuff_fclone_cache, fclones); 710 } 711 712 void skb_release_head_state(struct sk_buff *skb) 713 { 714 skb_dst_drop(skb); 715 if (skb->destructor) { 716 WARN_ON(in_irq()); 717 skb->destructor(skb); 718 } 719 #if IS_ENABLED(CONFIG_NF_CONNTRACK) 720 nf_conntrack_put(skb_nfct(skb)); 721 #endif 722 skb_ext_put(skb); 723 } 724 725 /* Free everything but the sk_buff shell. */ 726 static void skb_release_all(struct sk_buff *skb) 727 { 728 skb_release_head_state(skb); 729 if (likely(skb->head)) 730 skb_release_data(skb); 731 } 732 733 /** 734 * __kfree_skb - private function 735 * @skb: buffer 736 * 737 * Free an sk_buff. Release anything attached to the buffer. 738 * Clean the state. This is an internal helper function. Users should 739 * always call kfree_skb 740 */ 741 742 void __kfree_skb(struct sk_buff *skb) 743 { 744 skb_release_all(skb); 745 kfree_skbmem(skb); 746 } 747 EXPORT_SYMBOL(__kfree_skb); 748 749 /** 750 * kfree_skb - free an sk_buff 751 * @skb: buffer to free 752 * 753 * Drop a reference to the buffer and free it if the usage count has 754 * hit zero. 755 */ 756 void kfree_skb(struct sk_buff *skb) 757 { 758 if (!skb_unref(skb)) 759 return; 760 761 trace_kfree_skb(skb, __builtin_return_address(0)); 762 __kfree_skb(skb); 763 } 764 EXPORT_SYMBOL(kfree_skb); 765 766 void kfree_skb_list(struct sk_buff *segs) 767 { 768 while (segs) { 769 struct sk_buff *next = segs->next; 770 771 kfree_skb(segs); 772 segs = next; 773 } 774 } 775 EXPORT_SYMBOL(kfree_skb_list); 776 777 /* Dump skb information and contents. 778 * 779 * Must only be called from net_ratelimit()-ed paths. 780 * 781 * Dumps whole packets if full_pkt, only headers otherwise. 782 */ 783 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt) 784 { 785 struct skb_shared_info *sh = skb_shinfo(skb); 786 struct net_device *dev = skb->dev; 787 struct sock *sk = skb->sk; 788 struct sk_buff *list_skb; 789 bool has_mac, has_trans; 790 int headroom, tailroom; 791 int i, len, seg_len; 792 793 if (full_pkt) 794 len = skb->len; 795 else 796 len = min_t(int, skb->len, MAX_HEADER + 128); 797 798 headroom = skb_headroom(skb); 799 tailroom = skb_tailroom(skb); 800 801 has_mac = skb_mac_header_was_set(skb); 802 has_trans = skb_transport_header_was_set(skb); 803 804 printk("%sskb len=%u headroom=%u headlen=%u tailroom=%u\n" 805 "mac=(%d,%d) net=(%d,%d) trans=%d\n" 806 "shinfo(txflags=%u nr_frags=%u gso(size=%hu type=%u segs=%hu))\n" 807 "csum(0x%x ip_summed=%u complete_sw=%u valid=%u level=%u)\n" 808 "hash(0x%x sw=%u l4=%u) proto=0x%04x pkttype=%u iif=%d\n", 809 level, skb->len, headroom, skb_headlen(skb), tailroom, 810 has_mac ? skb->mac_header : -1, 811 has_mac ? skb_mac_header_len(skb) : -1, 812 skb->network_header, 813 has_trans ? skb_network_header_len(skb) : -1, 814 has_trans ? skb->transport_header : -1, 815 sh->tx_flags, sh->nr_frags, 816 sh->gso_size, sh->gso_type, sh->gso_segs, 817 skb->csum, skb->ip_summed, skb->csum_complete_sw, 818 skb->csum_valid, skb->csum_level, 819 skb->hash, skb->sw_hash, skb->l4_hash, 820 ntohs(skb->protocol), skb->pkt_type, skb->skb_iif); 821 822 if (dev) 823 printk("%sdev name=%s feat=0x%pNF\n", 824 level, dev->name, &dev->features); 825 if (sk) 826 printk("%ssk family=%hu type=%u proto=%u\n", 827 level, sk->sk_family, sk->sk_type, sk->sk_protocol); 828 829 if (full_pkt && headroom) 830 print_hex_dump(level, "skb headroom: ", DUMP_PREFIX_OFFSET, 831 16, 1, skb->head, headroom, false); 832 833 seg_len = min_t(int, skb_headlen(skb), len); 834 if (seg_len) 835 print_hex_dump(level, "skb linear: ", DUMP_PREFIX_OFFSET, 836 16, 1, skb->data, seg_len, false); 837 len -= seg_len; 838 839 if (full_pkt && tailroom) 840 print_hex_dump(level, "skb tailroom: ", DUMP_PREFIX_OFFSET, 841 16, 1, skb_tail_pointer(skb), tailroom, false); 842 843 for (i = 0; len && i < skb_shinfo(skb)->nr_frags; i++) { 844 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 845 u32 p_off, p_len, copied; 846 struct page *p; 847 u8 *vaddr; 848 849 skb_frag_foreach_page(frag, skb_frag_off(frag), 850 skb_frag_size(frag), p, p_off, p_len, 851 copied) { 852 seg_len = min_t(int, p_len, len); 853 vaddr = kmap_atomic(p); 854 print_hex_dump(level, "skb frag: ", 855 DUMP_PREFIX_OFFSET, 856 16, 1, vaddr + p_off, seg_len, false); 857 kunmap_atomic(vaddr); 858 len -= seg_len; 859 if (!len) 860 break; 861 } 862 } 863 864 if (full_pkt && skb_has_frag_list(skb)) { 865 printk("skb fraglist:\n"); 866 skb_walk_frags(skb, list_skb) 867 skb_dump(level, list_skb, true); 868 } 869 } 870 EXPORT_SYMBOL(skb_dump); 871 872 /** 873 * skb_tx_error - report an sk_buff xmit error 874 * @skb: buffer that triggered an error 875 * 876 * Report xmit error if a device callback is tracking this skb. 877 * skb must be freed afterwards. 878 */ 879 void skb_tx_error(struct sk_buff *skb) 880 { 881 skb_zcopy_clear(skb, true); 882 } 883 EXPORT_SYMBOL(skb_tx_error); 884 885 #ifdef CONFIG_TRACEPOINTS 886 /** 887 * consume_skb - free an skbuff 888 * @skb: buffer to free 889 * 890 * Drop a ref to the buffer and free it if the usage count has hit zero 891 * Functions identically to kfree_skb, but kfree_skb assumes that the frame 892 * is being dropped after a failure and notes that 893 */ 894 void consume_skb(struct sk_buff *skb) 895 { 896 if (!skb_unref(skb)) 897 return; 898 899 trace_consume_skb(skb); 900 __kfree_skb(skb); 901 } 902 EXPORT_SYMBOL(consume_skb); 903 #endif 904 905 /** 906 * __consume_stateless_skb - free an skbuff, assuming it is stateless 907 * @skb: buffer to free 908 * 909 * Alike consume_skb(), but this variant assumes that this is the last 910 * skb reference and all the head states have been already dropped 911 */ 912 void __consume_stateless_skb(struct sk_buff *skb) 913 { 914 trace_consume_skb(skb); 915 skb_release_data(skb); 916 kfree_skbmem(skb); 917 } 918 919 static void napi_skb_cache_put(struct sk_buff *skb) 920 { 921 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 922 u32 i; 923 924 kasan_poison_object_data(skbuff_head_cache, skb); 925 nc->skb_cache[nc->skb_count++] = skb; 926 927 if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) { 928 for (i = NAPI_SKB_CACHE_HALF; i < NAPI_SKB_CACHE_SIZE; i++) 929 kasan_unpoison_object_data(skbuff_head_cache, 930 nc->skb_cache[i]); 931 932 kmem_cache_free_bulk(skbuff_head_cache, NAPI_SKB_CACHE_HALF, 933 nc->skb_cache + NAPI_SKB_CACHE_HALF); 934 nc->skb_count = NAPI_SKB_CACHE_HALF; 935 } 936 } 937 938 void __kfree_skb_defer(struct sk_buff *skb) 939 { 940 skb_release_all(skb); 941 napi_skb_cache_put(skb); 942 } 943 944 void napi_skb_free_stolen_head(struct sk_buff *skb) 945 { 946 nf_reset_ct(skb); 947 skb_dst_drop(skb); 948 skb_ext_put(skb); 949 napi_skb_cache_put(skb); 950 } 951 952 void napi_consume_skb(struct sk_buff *skb, int budget) 953 { 954 /* Zero budget indicate non-NAPI context called us, like netpoll */ 955 if (unlikely(!budget)) { 956 dev_consume_skb_any(skb); 957 return; 958 } 959 960 lockdep_assert_in_softirq(); 961 962 if (!skb_unref(skb)) 963 return; 964 965 /* if reaching here SKB is ready to free */ 966 trace_consume_skb(skb); 967 968 /* if SKB is a clone, don't handle this case */ 969 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) { 970 __kfree_skb(skb); 971 return; 972 } 973 974 skb_release_all(skb); 975 napi_skb_cache_put(skb); 976 } 977 EXPORT_SYMBOL(napi_consume_skb); 978 979 /* Make sure a field is enclosed inside headers_start/headers_end section */ 980 #define CHECK_SKB_FIELD(field) \ 981 BUILD_BUG_ON(offsetof(struct sk_buff, field) < \ 982 offsetof(struct sk_buff, headers_start)); \ 983 BUILD_BUG_ON(offsetof(struct sk_buff, field) > \ 984 offsetof(struct sk_buff, headers_end)); \ 985 986 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old) 987 { 988 new->tstamp = old->tstamp; 989 /* We do not copy old->sk */ 990 new->dev = old->dev; 991 memcpy(new->cb, old->cb, sizeof(old->cb)); 992 skb_dst_copy(new, old); 993 __skb_ext_copy(new, old); 994 __nf_copy(new, old, false); 995 996 /* Note : this field could be in headers_start/headers_end section 997 * It is not yet because we do not want to have a 16 bit hole 998 */ 999 new->queue_mapping = old->queue_mapping; 1000 1001 memcpy(&new->headers_start, &old->headers_start, 1002 offsetof(struct sk_buff, headers_end) - 1003 offsetof(struct sk_buff, headers_start)); 1004 CHECK_SKB_FIELD(protocol); 1005 CHECK_SKB_FIELD(csum); 1006 CHECK_SKB_FIELD(hash); 1007 CHECK_SKB_FIELD(priority); 1008 CHECK_SKB_FIELD(skb_iif); 1009 CHECK_SKB_FIELD(vlan_proto); 1010 CHECK_SKB_FIELD(vlan_tci); 1011 CHECK_SKB_FIELD(transport_header); 1012 CHECK_SKB_FIELD(network_header); 1013 CHECK_SKB_FIELD(mac_header); 1014 CHECK_SKB_FIELD(inner_protocol); 1015 CHECK_SKB_FIELD(inner_transport_header); 1016 CHECK_SKB_FIELD(inner_network_header); 1017 CHECK_SKB_FIELD(inner_mac_header); 1018 CHECK_SKB_FIELD(mark); 1019 #ifdef CONFIG_NETWORK_SECMARK 1020 CHECK_SKB_FIELD(secmark); 1021 #endif 1022 #ifdef CONFIG_NET_RX_BUSY_POLL 1023 CHECK_SKB_FIELD(napi_id); 1024 #endif 1025 #ifdef CONFIG_XPS 1026 CHECK_SKB_FIELD(sender_cpu); 1027 #endif 1028 #ifdef CONFIG_NET_SCHED 1029 CHECK_SKB_FIELD(tc_index); 1030 #endif 1031 1032 } 1033 1034 /* 1035 * You should not add any new code to this function. Add it to 1036 * __copy_skb_header above instead. 1037 */ 1038 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb) 1039 { 1040 #define C(x) n->x = skb->x 1041 1042 n->next = n->prev = NULL; 1043 n->sk = NULL; 1044 __copy_skb_header(n, skb); 1045 1046 C(len); 1047 C(data_len); 1048 C(mac_len); 1049 n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len; 1050 n->cloned = 1; 1051 n->nohdr = 0; 1052 n->peeked = 0; 1053 C(pfmemalloc); 1054 C(pp_recycle); 1055 n->destructor = NULL; 1056 C(tail); 1057 C(end); 1058 C(head); 1059 C(head_frag); 1060 C(data); 1061 C(truesize); 1062 refcount_set(&n->users, 1); 1063 1064 atomic_inc(&(skb_shinfo(skb)->dataref)); 1065 skb->cloned = 1; 1066 1067 return n; 1068 #undef C 1069 } 1070 1071 /** 1072 * alloc_skb_for_msg() - allocate sk_buff to wrap frag list forming a msg 1073 * @first: first sk_buff of the msg 1074 */ 1075 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first) 1076 { 1077 struct sk_buff *n; 1078 1079 n = alloc_skb(0, GFP_ATOMIC); 1080 if (!n) 1081 return NULL; 1082 1083 n->len = first->len; 1084 n->data_len = first->len; 1085 n->truesize = first->truesize; 1086 1087 skb_shinfo(n)->frag_list = first; 1088 1089 __copy_skb_header(n, first); 1090 n->destructor = NULL; 1091 1092 return n; 1093 } 1094 EXPORT_SYMBOL_GPL(alloc_skb_for_msg); 1095 1096 /** 1097 * skb_morph - morph one skb into another 1098 * @dst: the skb to receive the contents 1099 * @src: the skb to supply the contents 1100 * 1101 * This is identical to skb_clone except that the target skb is 1102 * supplied by the user. 1103 * 1104 * The target skb is returned upon exit. 1105 */ 1106 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src) 1107 { 1108 skb_release_all(dst); 1109 return __skb_clone(dst, src); 1110 } 1111 EXPORT_SYMBOL_GPL(skb_morph); 1112 1113 int mm_account_pinned_pages(struct mmpin *mmp, size_t size) 1114 { 1115 unsigned long max_pg, num_pg, new_pg, old_pg; 1116 struct user_struct *user; 1117 1118 if (capable(CAP_IPC_LOCK) || !size) 1119 return 0; 1120 1121 num_pg = (size >> PAGE_SHIFT) + 2; /* worst case */ 1122 max_pg = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT; 1123 user = mmp->user ? : current_user(); 1124 1125 do { 1126 old_pg = atomic_long_read(&user->locked_vm); 1127 new_pg = old_pg + num_pg; 1128 if (new_pg > max_pg) 1129 return -ENOBUFS; 1130 } while (atomic_long_cmpxchg(&user->locked_vm, old_pg, new_pg) != 1131 old_pg); 1132 1133 if (!mmp->user) { 1134 mmp->user = get_uid(user); 1135 mmp->num_pg = num_pg; 1136 } else { 1137 mmp->num_pg += num_pg; 1138 } 1139 1140 return 0; 1141 } 1142 EXPORT_SYMBOL_GPL(mm_account_pinned_pages); 1143 1144 void mm_unaccount_pinned_pages(struct mmpin *mmp) 1145 { 1146 if (mmp->user) { 1147 atomic_long_sub(mmp->num_pg, &mmp->user->locked_vm); 1148 free_uid(mmp->user); 1149 } 1150 } 1151 EXPORT_SYMBOL_GPL(mm_unaccount_pinned_pages); 1152 1153 struct ubuf_info *msg_zerocopy_alloc(struct sock *sk, size_t size) 1154 { 1155 struct ubuf_info *uarg; 1156 struct sk_buff *skb; 1157 1158 WARN_ON_ONCE(!in_task()); 1159 1160 skb = sock_omalloc(sk, 0, GFP_KERNEL); 1161 if (!skb) 1162 return NULL; 1163 1164 BUILD_BUG_ON(sizeof(*uarg) > sizeof(skb->cb)); 1165 uarg = (void *)skb->cb; 1166 uarg->mmp.user = NULL; 1167 1168 if (mm_account_pinned_pages(&uarg->mmp, size)) { 1169 kfree_skb(skb); 1170 return NULL; 1171 } 1172 1173 uarg->callback = msg_zerocopy_callback; 1174 uarg->id = ((u32)atomic_inc_return(&sk->sk_zckey)) - 1; 1175 uarg->len = 1; 1176 uarg->bytelen = size; 1177 uarg->zerocopy = 1; 1178 uarg->flags = SKBFL_ZEROCOPY_FRAG; 1179 refcount_set(&uarg->refcnt, 1); 1180 sock_hold(sk); 1181 1182 return uarg; 1183 } 1184 EXPORT_SYMBOL_GPL(msg_zerocopy_alloc); 1185 1186 static inline struct sk_buff *skb_from_uarg(struct ubuf_info *uarg) 1187 { 1188 return container_of((void *)uarg, struct sk_buff, cb); 1189 } 1190 1191 struct ubuf_info *msg_zerocopy_realloc(struct sock *sk, size_t size, 1192 struct ubuf_info *uarg) 1193 { 1194 if (uarg) { 1195 const u32 byte_limit = 1 << 19; /* limit to a few TSO */ 1196 u32 bytelen, next; 1197 1198 /* realloc only when socket is locked (TCP, UDP cork), 1199 * so uarg->len and sk_zckey access is serialized 1200 */ 1201 if (!sock_owned_by_user(sk)) { 1202 WARN_ON_ONCE(1); 1203 return NULL; 1204 } 1205 1206 bytelen = uarg->bytelen + size; 1207 if (uarg->len == USHRT_MAX - 1 || bytelen > byte_limit) { 1208 /* TCP can create new skb to attach new uarg */ 1209 if (sk->sk_type == SOCK_STREAM) 1210 goto new_alloc; 1211 return NULL; 1212 } 1213 1214 next = (u32)atomic_read(&sk->sk_zckey); 1215 if ((u32)(uarg->id + uarg->len) == next) { 1216 if (mm_account_pinned_pages(&uarg->mmp, size)) 1217 return NULL; 1218 uarg->len++; 1219 uarg->bytelen = bytelen; 1220 atomic_set(&sk->sk_zckey, ++next); 1221 1222 /* no extra ref when appending to datagram (MSG_MORE) */ 1223 if (sk->sk_type == SOCK_STREAM) 1224 net_zcopy_get(uarg); 1225 1226 return uarg; 1227 } 1228 } 1229 1230 new_alloc: 1231 return msg_zerocopy_alloc(sk, size); 1232 } 1233 EXPORT_SYMBOL_GPL(msg_zerocopy_realloc); 1234 1235 static bool skb_zerocopy_notify_extend(struct sk_buff *skb, u32 lo, u16 len) 1236 { 1237 struct sock_exterr_skb *serr = SKB_EXT_ERR(skb); 1238 u32 old_lo, old_hi; 1239 u64 sum_len; 1240 1241 old_lo = serr->ee.ee_info; 1242 old_hi = serr->ee.ee_data; 1243 sum_len = old_hi - old_lo + 1ULL + len; 1244 1245 if (sum_len >= (1ULL << 32)) 1246 return false; 1247 1248 if (lo != old_hi + 1) 1249 return false; 1250 1251 serr->ee.ee_data += len; 1252 return true; 1253 } 1254 1255 static void __msg_zerocopy_callback(struct ubuf_info *uarg) 1256 { 1257 struct sk_buff *tail, *skb = skb_from_uarg(uarg); 1258 struct sock_exterr_skb *serr; 1259 struct sock *sk = skb->sk; 1260 struct sk_buff_head *q; 1261 unsigned long flags; 1262 bool is_zerocopy; 1263 u32 lo, hi; 1264 u16 len; 1265 1266 mm_unaccount_pinned_pages(&uarg->mmp); 1267 1268 /* if !len, there was only 1 call, and it was aborted 1269 * so do not queue a completion notification 1270 */ 1271 if (!uarg->len || sock_flag(sk, SOCK_DEAD)) 1272 goto release; 1273 1274 len = uarg->len; 1275 lo = uarg->id; 1276 hi = uarg->id + len - 1; 1277 is_zerocopy = uarg->zerocopy; 1278 1279 serr = SKB_EXT_ERR(skb); 1280 memset(serr, 0, sizeof(*serr)); 1281 serr->ee.ee_errno = 0; 1282 serr->ee.ee_origin = SO_EE_ORIGIN_ZEROCOPY; 1283 serr->ee.ee_data = hi; 1284 serr->ee.ee_info = lo; 1285 if (!is_zerocopy) 1286 serr->ee.ee_code |= SO_EE_CODE_ZEROCOPY_COPIED; 1287 1288 q = &sk->sk_error_queue; 1289 spin_lock_irqsave(&q->lock, flags); 1290 tail = skb_peek_tail(q); 1291 if (!tail || SKB_EXT_ERR(tail)->ee.ee_origin != SO_EE_ORIGIN_ZEROCOPY || 1292 !skb_zerocopy_notify_extend(tail, lo, len)) { 1293 __skb_queue_tail(q, skb); 1294 skb = NULL; 1295 } 1296 spin_unlock_irqrestore(&q->lock, flags); 1297 1298 sk_error_report(sk); 1299 1300 release: 1301 consume_skb(skb); 1302 sock_put(sk); 1303 } 1304 1305 void msg_zerocopy_callback(struct sk_buff *skb, struct ubuf_info *uarg, 1306 bool success) 1307 { 1308 uarg->zerocopy = uarg->zerocopy & success; 1309 1310 if (refcount_dec_and_test(&uarg->refcnt)) 1311 __msg_zerocopy_callback(uarg); 1312 } 1313 EXPORT_SYMBOL_GPL(msg_zerocopy_callback); 1314 1315 void msg_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref) 1316 { 1317 struct sock *sk = skb_from_uarg(uarg)->sk; 1318 1319 atomic_dec(&sk->sk_zckey); 1320 uarg->len--; 1321 1322 if (have_uref) 1323 msg_zerocopy_callback(NULL, uarg, true); 1324 } 1325 EXPORT_SYMBOL_GPL(msg_zerocopy_put_abort); 1326 1327 int skb_zerocopy_iter_dgram(struct sk_buff *skb, struct msghdr *msg, int len) 1328 { 1329 return __zerocopy_sg_from_iter(skb->sk, skb, &msg->msg_iter, len); 1330 } 1331 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_dgram); 1332 1333 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb, 1334 struct msghdr *msg, int len, 1335 struct ubuf_info *uarg) 1336 { 1337 struct ubuf_info *orig_uarg = skb_zcopy(skb); 1338 struct iov_iter orig_iter = msg->msg_iter; 1339 int err, orig_len = skb->len; 1340 1341 /* An skb can only point to one uarg. This edge case happens when 1342 * TCP appends to an skb, but zerocopy_realloc triggered a new alloc. 1343 */ 1344 if (orig_uarg && uarg != orig_uarg) 1345 return -EEXIST; 1346 1347 err = __zerocopy_sg_from_iter(sk, skb, &msg->msg_iter, len); 1348 if (err == -EFAULT || (err == -EMSGSIZE && skb->len == orig_len)) { 1349 struct sock *save_sk = skb->sk; 1350 1351 /* Streams do not free skb on error. Reset to prev state. */ 1352 msg->msg_iter = orig_iter; 1353 skb->sk = sk; 1354 ___pskb_trim(skb, orig_len); 1355 skb->sk = save_sk; 1356 return err; 1357 } 1358 1359 skb_zcopy_set(skb, uarg, NULL); 1360 return skb->len - orig_len; 1361 } 1362 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_stream); 1363 1364 static int skb_zerocopy_clone(struct sk_buff *nskb, struct sk_buff *orig, 1365 gfp_t gfp_mask) 1366 { 1367 if (skb_zcopy(orig)) { 1368 if (skb_zcopy(nskb)) { 1369 /* !gfp_mask callers are verified to !skb_zcopy(nskb) */ 1370 if (!gfp_mask) { 1371 WARN_ON_ONCE(1); 1372 return -ENOMEM; 1373 } 1374 if (skb_uarg(nskb) == skb_uarg(orig)) 1375 return 0; 1376 if (skb_copy_ubufs(nskb, GFP_ATOMIC)) 1377 return -EIO; 1378 } 1379 skb_zcopy_set(nskb, skb_uarg(orig), NULL); 1380 } 1381 return 0; 1382 } 1383 1384 /** 1385 * skb_copy_ubufs - copy userspace skb frags buffers to kernel 1386 * @skb: the skb to modify 1387 * @gfp_mask: allocation priority 1388 * 1389 * This must be called on skb with SKBFL_ZEROCOPY_ENABLE. 1390 * It will copy all frags into kernel and drop the reference 1391 * to userspace pages. 1392 * 1393 * If this function is called from an interrupt gfp_mask() must be 1394 * %GFP_ATOMIC. 1395 * 1396 * Returns 0 on success or a negative error code on failure 1397 * to allocate kernel memory to copy to. 1398 */ 1399 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask) 1400 { 1401 int num_frags = skb_shinfo(skb)->nr_frags; 1402 struct page *page, *head = NULL; 1403 int i, new_frags; 1404 u32 d_off; 1405 1406 if (skb_shared(skb) || skb_unclone(skb, gfp_mask)) 1407 return -EINVAL; 1408 1409 if (!num_frags) 1410 goto release; 1411 1412 new_frags = (__skb_pagelen(skb) + PAGE_SIZE - 1) >> PAGE_SHIFT; 1413 for (i = 0; i < new_frags; i++) { 1414 page = alloc_page(gfp_mask); 1415 if (!page) { 1416 while (head) { 1417 struct page *next = (struct page *)page_private(head); 1418 put_page(head); 1419 head = next; 1420 } 1421 return -ENOMEM; 1422 } 1423 set_page_private(page, (unsigned long)head); 1424 head = page; 1425 } 1426 1427 page = head; 1428 d_off = 0; 1429 for (i = 0; i < num_frags; i++) { 1430 skb_frag_t *f = &skb_shinfo(skb)->frags[i]; 1431 u32 p_off, p_len, copied; 1432 struct page *p; 1433 u8 *vaddr; 1434 1435 skb_frag_foreach_page(f, skb_frag_off(f), skb_frag_size(f), 1436 p, p_off, p_len, copied) { 1437 u32 copy, done = 0; 1438 vaddr = kmap_atomic(p); 1439 1440 while (done < p_len) { 1441 if (d_off == PAGE_SIZE) { 1442 d_off = 0; 1443 page = (struct page *)page_private(page); 1444 } 1445 copy = min_t(u32, PAGE_SIZE - d_off, p_len - done); 1446 memcpy(page_address(page) + d_off, 1447 vaddr + p_off + done, copy); 1448 done += copy; 1449 d_off += copy; 1450 } 1451 kunmap_atomic(vaddr); 1452 } 1453 } 1454 1455 /* skb frags release userspace buffers */ 1456 for (i = 0; i < num_frags; i++) 1457 skb_frag_unref(skb, i); 1458 1459 /* skb frags point to kernel buffers */ 1460 for (i = 0; i < new_frags - 1; i++) { 1461 __skb_fill_page_desc(skb, i, head, 0, PAGE_SIZE); 1462 head = (struct page *)page_private(head); 1463 } 1464 __skb_fill_page_desc(skb, new_frags - 1, head, 0, d_off); 1465 skb_shinfo(skb)->nr_frags = new_frags; 1466 1467 release: 1468 skb_zcopy_clear(skb, false); 1469 return 0; 1470 } 1471 EXPORT_SYMBOL_GPL(skb_copy_ubufs); 1472 1473 /** 1474 * skb_clone - duplicate an sk_buff 1475 * @skb: buffer to clone 1476 * @gfp_mask: allocation priority 1477 * 1478 * Duplicate an &sk_buff. The new one is not owned by a socket. Both 1479 * copies share the same packet data but not structure. The new 1480 * buffer has a reference count of 1. If the allocation fails the 1481 * function returns %NULL otherwise the new buffer is returned. 1482 * 1483 * If this function is called from an interrupt gfp_mask() must be 1484 * %GFP_ATOMIC. 1485 */ 1486 1487 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask) 1488 { 1489 struct sk_buff_fclones *fclones = container_of(skb, 1490 struct sk_buff_fclones, 1491 skb1); 1492 struct sk_buff *n; 1493 1494 if (skb_orphan_frags(skb, gfp_mask)) 1495 return NULL; 1496 1497 if (skb->fclone == SKB_FCLONE_ORIG && 1498 refcount_read(&fclones->fclone_ref) == 1) { 1499 n = &fclones->skb2; 1500 refcount_set(&fclones->fclone_ref, 2); 1501 } else { 1502 if (skb_pfmemalloc(skb)) 1503 gfp_mask |= __GFP_MEMALLOC; 1504 1505 n = kmem_cache_alloc(skbuff_head_cache, gfp_mask); 1506 if (!n) 1507 return NULL; 1508 1509 n->fclone = SKB_FCLONE_UNAVAILABLE; 1510 } 1511 1512 return __skb_clone(n, skb); 1513 } 1514 EXPORT_SYMBOL(skb_clone); 1515 1516 void skb_headers_offset_update(struct sk_buff *skb, int off) 1517 { 1518 /* Only adjust this if it actually is csum_start rather than csum */ 1519 if (skb->ip_summed == CHECKSUM_PARTIAL) 1520 skb->csum_start += off; 1521 /* {transport,network,mac}_header and tail are relative to skb->head */ 1522 skb->transport_header += off; 1523 skb->network_header += off; 1524 if (skb_mac_header_was_set(skb)) 1525 skb->mac_header += off; 1526 skb->inner_transport_header += off; 1527 skb->inner_network_header += off; 1528 skb->inner_mac_header += off; 1529 } 1530 EXPORT_SYMBOL(skb_headers_offset_update); 1531 1532 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old) 1533 { 1534 __copy_skb_header(new, old); 1535 1536 skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size; 1537 skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs; 1538 skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type; 1539 } 1540 EXPORT_SYMBOL(skb_copy_header); 1541 1542 static inline int skb_alloc_rx_flag(const struct sk_buff *skb) 1543 { 1544 if (skb_pfmemalloc(skb)) 1545 return SKB_ALLOC_RX; 1546 return 0; 1547 } 1548 1549 /** 1550 * skb_copy - create private copy of an sk_buff 1551 * @skb: buffer to copy 1552 * @gfp_mask: allocation priority 1553 * 1554 * Make a copy of both an &sk_buff and its data. This is used when the 1555 * caller wishes to modify the data and needs a private copy of the 1556 * data to alter. Returns %NULL on failure or the pointer to the buffer 1557 * on success. The returned buffer has a reference count of 1. 1558 * 1559 * As by-product this function converts non-linear &sk_buff to linear 1560 * one, so that &sk_buff becomes completely private and caller is allowed 1561 * to modify all the data of returned buffer. This means that this 1562 * function is not recommended for use in circumstances when only 1563 * header is going to be modified. Use pskb_copy() instead. 1564 */ 1565 1566 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask) 1567 { 1568 int headerlen = skb_headroom(skb); 1569 unsigned int size = skb_end_offset(skb) + skb->data_len; 1570 struct sk_buff *n = __alloc_skb(size, gfp_mask, 1571 skb_alloc_rx_flag(skb), NUMA_NO_NODE); 1572 1573 if (!n) 1574 return NULL; 1575 1576 /* Set the data pointer */ 1577 skb_reserve(n, headerlen); 1578 /* Set the tail pointer and length */ 1579 skb_put(n, skb->len); 1580 1581 BUG_ON(skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len)); 1582 1583 skb_copy_header(n, skb); 1584 return n; 1585 } 1586 EXPORT_SYMBOL(skb_copy); 1587 1588 /** 1589 * __pskb_copy_fclone - create copy of an sk_buff with private head. 1590 * @skb: buffer to copy 1591 * @headroom: headroom of new skb 1592 * @gfp_mask: allocation priority 1593 * @fclone: if true allocate the copy of the skb from the fclone 1594 * cache instead of the head cache; it is recommended to set this 1595 * to true for the cases where the copy will likely be cloned 1596 * 1597 * Make a copy of both an &sk_buff and part of its data, located 1598 * in header. Fragmented data remain shared. This is used when 1599 * the caller wishes to modify only header of &sk_buff and needs 1600 * private copy of the header to alter. Returns %NULL on failure 1601 * or the pointer to the buffer on success. 1602 * The returned buffer has a reference count of 1. 1603 */ 1604 1605 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom, 1606 gfp_t gfp_mask, bool fclone) 1607 { 1608 unsigned int size = skb_headlen(skb) + headroom; 1609 int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0); 1610 struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE); 1611 1612 if (!n) 1613 goto out; 1614 1615 /* Set the data pointer */ 1616 skb_reserve(n, headroom); 1617 /* Set the tail pointer and length */ 1618 skb_put(n, skb_headlen(skb)); 1619 /* Copy the bytes */ 1620 skb_copy_from_linear_data(skb, n->data, n->len); 1621 1622 n->truesize += skb->data_len; 1623 n->data_len = skb->data_len; 1624 n->len = skb->len; 1625 1626 if (skb_shinfo(skb)->nr_frags) { 1627 int i; 1628 1629 if (skb_orphan_frags(skb, gfp_mask) || 1630 skb_zerocopy_clone(n, skb, gfp_mask)) { 1631 kfree_skb(n); 1632 n = NULL; 1633 goto out; 1634 } 1635 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1636 skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i]; 1637 skb_frag_ref(skb, i); 1638 } 1639 skb_shinfo(n)->nr_frags = i; 1640 } 1641 1642 if (skb_has_frag_list(skb)) { 1643 skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list; 1644 skb_clone_fraglist(n); 1645 } 1646 1647 skb_copy_header(n, skb); 1648 out: 1649 return n; 1650 } 1651 EXPORT_SYMBOL(__pskb_copy_fclone); 1652 1653 /** 1654 * pskb_expand_head - reallocate header of &sk_buff 1655 * @skb: buffer to reallocate 1656 * @nhead: room to add at head 1657 * @ntail: room to add at tail 1658 * @gfp_mask: allocation priority 1659 * 1660 * Expands (or creates identical copy, if @nhead and @ntail are zero) 1661 * header of @skb. &sk_buff itself is not changed. &sk_buff MUST have 1662 * reference count of 1. Returns zero in the case of success or error, 1663 * if expansion failed. In the last case, &sk_buff is not changed. 1664 * 1665 * All the pointers pointing into skb header may change and must be 1666 * reloaded after call to this function. 1667 */ 1668 1669 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, 1670 gfp_t gfp_mask) 1671 { 1672 int i, osize = skb_end_offset(skb); 1673 int size = osize + nhead + ntail; 1674 long off; 1675 u8 *data; 1676 1677 BUG_ON(nhead < 0); 1678 1679 BUG_ON(skb_shared(skb)); 1680 1681 size = SKB_DATA_ALIGN(size); 1682 1683 if (skb_pfmemalloc(skb)) 1684 gfp_mask |= __GFP_MEMALLOC; 1685 data = kmalloc_reserve(size + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)), 1686 gfp_mask, NUMA_NO_NODE, NULL); 1687 if (!data) 1688 goto nodata; 1689 size = SKB_WITH_OVERHEAD(ksize(data)); 1690 1691 /* Copy only real data... and, alas, header. This should be 1692 * optimized for the cases when header is void. 1693 */ 1694 memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head); 1695 1696 memcpy((struct skb_shared_info *)(data + size), 1697 skb_shinfo(skb), 1698 offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags])); 1699 1700 /* 1701 * if shinfo is shared we must drop the old head gracefully, but if it 1702 * is not we can just drop the old head and let the existing refcount 1703 * be since all we did is relocate the values 1704 */ 1705 if (skb_cloned(skb)) { 1706 if (skb_orphan_frags(skb, gfp_mask)) 1707 goto nofrags; 1708 if (skb_zcopy(skb)) 1709 refcount_inc(&skb_uarg(skb)->refcnt); 1710 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 1711 skb_frag_ref(skb, i); 1712 1713 if (skb_has_frag_list(skb)) 1714 skb_clone_fraglist(skb); 1715 1716 skb_release_data(skb); 1717 } else { 1718 skb_free_head(skb); 1719 } 1720 off = (data + nhead) - skb->head; 1721 1722 skb->head = data; 1723 skb->head_frag = 0; 1724 skb->data += off; 1725 #ifdef NET_SKBUFF_DATA_USES_OFFSET 1726 skb->end = size; 1727 off = nhead; 1728 #else 1729 skb->end = skb->head + size; 1730 #endif 1731 skb->tail += off; 1732 skb_headers_offset_update(skb, nhead); 1733 skb->cloned = 0; 1734 skb->hdr_len = 0; 1735 skb->nohdr = 0; 1736 atomic_set(&skb_shinfo(skb)->dataref, 1); 1737 1738 skb_metadata_clear(skb); 1739 1740 /* It is not generally safe to change skb->truesize. 1741 * For the moment, we really care of rx path, or 1742 * when skb is orphaned (not attached to a socket). 1743 */ 1744 if (!skb->sk || skb->destructor == sock_edemux) 1745 skb->truesize += size - osize; 1746 1747 return 0; 1748 1749 nofrags: 1750 kfree(data); 1751 nodata: 1752 return -ENOMEM; 1753 } 1754 EXPORT_SYMBOL(pskb_expand_head); 1755 1756 /* Make private copy of skb with writable head and some headroom */ 1757 1758 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom) 1759 { 1760 struct sk_buff *skb2; 1761 int delta = headroom - skb_headroom(skb); 1762 1763 if (delta <= 0) 1764 skb2 = pskb_copy(skb, GFP_ATOMIC); 1765 else { 1766 skb2 = skb_clone(skb, GFP_ATOMIC); 1767 if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0, 1768 GFP_ATOMIC)) { 1769 kfree_skb(skb2); 1770 skb2 = NULL; 1771 } 1772 } 1773 return skb2; 1774 } 1775 EXPORT_SYMBOL(skb_realloc_headroom); 1776 1777 /** 1778 * skb_copy_expand - copy and expand sk_buff 1779 * @skb: buffer to copy 1780 * @newheadroom: new free bytes at head 1781 * @newtailroom: new free bytes at tail 1782 * @gfp_mask: allocation priority 1783 * 1784 * Make a copy of both an &sk_buff and its data and while doing so 1785 * allocate additional space. 1786 * 1787 * This is used when the caller wishes to modify the data and needs a 1788 * private copy of the data to alter as well as more space for new fields. 1789 * Returns %NULL on failure or the pointer to the buffer 1790 * on success. The returned buffer has a reference count of 1. 1791 * 1792 * You must pass %GFP_ATOMIC as the allocation priority if this function 1793 * is called from an interrupt. 1794 */ 1795 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, 1796 int newheadroom, int newtailroom, 1797 gfp_t gfp_mask) 1798 { 1799 /* 1800 * Allocate the copy buffer 1801 */ 1802 struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom, 1803 gfp_mask, skb_alloc_rx_flag(skb), 1804 NUMA_NO_NODE); 1805 int oldheadroom = skb_headroom(skb); 1806 int head_copy_len, head_copy_off; 1807 1808 if (!n) 1809 return NULL; 1810 1811 skb_reserve(n, newheadroom); 1812 1813 /* Set the tail pointer and length */ 1814 skb_put(n, skb->len); 1815 1816 head_copy_len = oldheadroom; 1817 head_copy_off = 0; 1818 if (newheadroom <= head_copy_len) 1819 head_copy_len = newheadroom; 1820 else 1821 head_copy_off = newheadroom - head_copy_len; 1822 1823 /* Copy the linear header and data. */ 1824 BUG_ON(skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off, 1825 skb->len + head_copy_len)); 1826 1827 skb_copy_header(n, skb); 1828 1829 skb_headers_offset_update(n, newheadroom - oldheadroom); 1830 1831 return n; 1832 } 1833 EXPORT_SYMBOL(skb_copy_expand); 1834 1835 /** 1836 * __skb_pad - zero pad the tail of an skb 1837 * @skb: buffer to pad 1838 * @pad: space to pad 1839 * @free_on_error: free buffer on error 1840 * 1841 * Ensure that a buffer is followed by a padding area that is zero 1842 * filled. Used by network drivers which may DMA or transfer data 1843 * beyond the buffer end onto the wire. 1844 * 1845 * May return error in out of memory cases. The skb is freed on error 1846 * if @free_on_error is true. 1847 */ 1848 1849 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error) 1850 { 1851 int err; 1852 int ntail; 1853 1854 /* If the skbuff is non linear tailroom is always zero.. */ 1855 if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) { 1856 memset(skb->data+skb->len, 0, pad); 1857 return 0; 1858 } 1859 1860 ntail = skb->data_len + pad - (skb->end - skb->tail); 1861 if (likely(skb_cloned(skb) || ntail > 0)) { 1862 err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC); 1863 if (unlikely(err)) 1864 goto free_skb; 1865 } 1866 1867 /* FIXME: The use of this function with non-linear skb's really needs 1868 * to be audited. 1869 */ 1870 err = skb_linearize(skb); 1871 if (unlikely(err)) 1872 goto free_skb; 1873 1874 memset(skb->data + skb->len, 0, pad); 1875 return 0; 1876 1877 free_skb: 1878 if (free_on_error) 1879 kfree_skb(skb); 1880 return err; 1881 } 1882 EXPORT_SYMBOL(__skb_pad); 1883 1884 /** 1885 * pskb_put - add data to the tail of a potentially fragmented buffer 1886 * @skb: start of the buffer to use 1887 * @tail: tail fragment of the buffer to use 1888 * @len: amount of data to add 1889 * 1890 * This function extends the used data area of the potentially 1891 * fragmented buffer. @tail must be the last fragment of @skb -- or 1892 * @skb itself. If this would exceed the total buffer size the kernel 1893 * will panic. A pointer to the first byte of the extra data is 1894 * returned. 1895 */ 1896 1897 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len) 1898 { 1899 if (tail != skb) { 1900 skb->data_len += len; 1901 skb->len += len; 1902 } 1903 return skb_put(tail, len); 1904 } 1905 EXPORT_SYMBOL_GPL(pskb_put); 1906 1907 /** 1908 * skb_put - add data to a buffer 1909 * @skb: buffer to use 1910 * @len: amount of data to add 1911 * 1912 * This function extends the used data area of the buffer. If this would 1913 * exceed the total buffer size the kernel will panic. A pointer to the 1914 * first byte of the extra data is returned. 1915 */ 1916 void *skb_put(struct sk_buff *skb, unsigned int len) 1917 { 1918 void *tmp = skb_tail_pointer(skb); 1919 SKB_LINEAR_ASSERT(skb); 1920 skb->tail += len; 1921 skb->len += len; 1922 if (unlikely(skb->tail > skb->end)) 1923 skb_over_panic(skb, len, __builtin_return_address(0)); 1924 return tmp; 1925 } 1926 EXPORT_SYMBOL(skb_put); 1927 1928 /** 1929 * skb_push - add data to the start of a buffer 1930 * @skb: buffer to use 1931 * @len: amount of data to add 1932 * 1933 * This function extends the used data area of the buffer at the buffer 1934 * start. If this would exceed the total buffer headroom the kernel will 1935 * panic. A pointer to the first byte of the extra data is returned. 1936 */ 1937 void *skb_push(struct sk_buff *skb, unsigned int len) 1938 { 1939 skb->data -= len; 1940 skb->len += len; 1941 if (unlikely(skb->data < skb->head)) 1942 skb_under_panic(skb, len, __builtin_return_address(0)); 1943 return skb->data; 1944 } 1945 EXPORT_SYMBOL(skb_push); 1946 1947 /** 1948 * skb_pull - remove data from the start of a buffer 1949 * @skb: buffer to use 1950 * @len: amount of data to remove 1951 * 1952 * This function removes data from the start of a buffer, returning 1953 * the memory to the headroom. A pointer to the next data in the buffer 1954 * is returned. Once the data has been pulled future pushes will overwrite 1955 * the old data. 1956 */ 1957 void *skb_pull(struct sk_buff *skb, unsigned int len) 1958 { 1959 return skb_pull_inline(skb, len); 1960 } 1961 EXPORT_SYMBOL(skb_pull); 1962 1963 /** 1964 * skb_trim - remove end from a buffer 1965 * @skb: buffer to alter 1966 * @len: new length 1967 * 1968 * Cut the length of a buffer down by removing data from the tail. If 1969 * the buffer is already under the length specified it is not modified. 1970 * The skb must be linear. 1971 */ 1972 void skb_trim(struct sk_buff *skb, unsigned int len) 1973 { 1974 if (skb->len > len) 1975 __skb_trim(skb, len); 1976 } 1977 EXPORT_SYMBOL(skb_trim); 1978 1979 /* Trims skb to length len. It can change skb pointers. 1980 */ 1981 1982 int ___pskb_trim(struct sk_buff *skb, unsigned int len) 1983 { 1984 struct sk_buff **fragp; 1985 struct sk_buff *frag; 1986 int offset = skb_headlen(skb); 1987 int nfrags = skb_shinfo(skb)->nr_frags; 1988 int i; 1989 int err; 1990 1991 if (skb_cloned(skb) && 1992 unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))) 1993 return err; 1994 1995 i = 0; 1996 if (offset >= len) 1997 goto drop_pages; 1998 1999 for (; i < nfrags; i++) { 2000 int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]); 2001 2002 if (end < len) { 2003 offset = end; 2004 continue; 2005 } 2006 2007 skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset); 2008 2009 drop_pages: 2010 skb_shinfo(skb)->nr_frags = i; 2011 2012 for (; i < nfrags; i++) 2013 skb_frag_unref(skb, i); 2014 2015 if (skb_has_frag_list(skb)) 2016 skb_drop_fraglist(skb); 2017 goto done; 2018 } 2019 2020 for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp); 2021 fragp = &frag->next) { 2022 int end = offset + frag->len; 2023 2024 if (skb_shared(frag)) { 2025 struct sk_buff *nfrag; 2026 2027 nfrag = skb_clone(frag, GFP_ATOMIC); 2028 if (unlikely(!nfrag)) 2029 return -ENOMEM; 2030 2031 nfrag->next = frag->next; 2032 consume_skb(frag); 2033 frag = nfrag; 2034 *fragp = frag; 2035 } 2036 2037 if (end < len) { 2038 offset = end; 2039 continue; 2040 } 2041 2042 if (end > len && 2043 unlikely((err = pskb_trim(frag, len - offset)))) 2044 return err; 2045 2046 if (frag->next) 2047 skb_drop_list(&frag->next); 2048 break; 2049 } 2050 2051 done: 2052 if (len > skb_headlen(skb)) { 2053 skb->data_len -= skb->len - len; 2054 skb->len = len; 2055 } else { 2056 skb->len = len; 2057 skb->data_len = 0; 2058 skb_set_tail_pointer(skb, len); 2059 } 2060 2061 if (!skb->sk || skb->destructor == sock_edemux) 2062 skb_condense(skb); 2063 return 0; 2064 } 2065 EXPORT_SYMBOL(___pskb_trim); 2066 2067 /* Note : use pskb_trim_rcsum() instead of calling this directly 2068 */ 2069 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len) 2070 { 2071 if (skb->ip_summed == CHECKSUM_COMPLETE) { 2072 int delta = skb->len - len; 2073 2074 skb->csum = csum_block_sub(skb->csum, 2075 skb_checksum(skb, len, delta, 0), 2076 len); 2077 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { 2078 int hdlen = (len > skb_headlen(skb)) ? skb_headlen(skb) : len; 2079 int offset = skb_checksum_start_offset(skb) + skb->csum_offset; 2080 2081 if (offset + sizeof(__sum16) > hdlen) 2082 return -EINVAL; 2083 } 2084 return __pskb_trim(skb, len); 2085 } 2086 EXPORT_SYMBOL(pskb_trim_rcsum_slow); 2087 2088 /** 2089 * __pskb_pull_tail - advance tail of skb header 2090 * @skb: buffer to reallocate 2091 * @delta: number of bytes to advance tail 2092 * 2093 * The function makes a sense only on a fragmented &sk_buff, 2094 * it expands header moving its tail forward and copying necessary 2095 * data from fragmented part. 2096 * 2097 * &sk_buff MUST have reference count of 1. 2098 * 2099 * Returns %NULL (and &sk_buff does not change) if pull failed 2100 * or value of new tail of skb in the case of success. 2101 * 2102 * All the pointers pointing into skb header may change and must be 2103 * reloaded after call to this function. 2104 */ 2105 2106 /* Moves tail of skb head forward, copying data from fragmented part, 2107 * when it is necessary. 2108 * 1. It may fail due to malloc failure. 2109 * 2. It may change skb pointers. 2110 * 2111 * It is pretty complicated. Luckily, it is called only in exceptional cases. 2112 */ 2113 void *__pskb_pull_tail(struct sk_buff *skb, int delta) 2114 { 2115 /* If skb has not enough free space at tail, get new one 2116 * plus 128 bytes for future expansions. If we have enough 2117 * room at tail, reallocate without expansion only if skb is cloned. 2118 */ 2119 int i, k, eat = (skb->tail + delta) - skb->end; 2120 2121 if (eat > 0 || skb_cloned(skb)) { 2122 if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0, 2123 GFP_ATOMIC)) 2124 return NULL; 2125 } 2126 2127 BUG_ON(skb_copy_bits(skb, skb_headlen(skb), 2128 skb_tail_pointer(skb), delta)); 2129 2130 /* Optimization: no fragments, no reasons to preestimate 2131 * size of pulled pages. Superb. 2132 */ 2133 if (!skb_has_frag_list(skb)) 2134 goto pull_pages; 2135 2136 /* Estimate size of pulled pages. */ 2137 eat = delta; 2138 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2139 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 2140 2141 if (size >= eat) 2142 goto pull_pages; 2143 eat -= size; 2144 } 2145 2146 /* If we need update frag list, we are in troubles. 2147 * Certainly, it is possible to add an offset to skb data, 2148 * but taking into account that pulling is expected to 2149 * be very rare operation, it is worth to fight against 2150 * further bloating skb head and crucify ourselves here instead. 2151 * Pure masohism, indeed. 8)8) 2152 */ 2153 if (eat) { 2154 struct sk_buff *list = skb_shinfo(skb)->frag_list; 2155 struct sk_buff *clone = NULL; 2156 struct sk_buff *insp = NULL; 2157 2158 do { 2159 if (list->len <= eat) { 2160 /* Eaten as whole. */ 2161 eat -= list->len; 2162 list = list->next; 2163 insp = list; 2164 } else { 2165 /* Eaten partially. */ 2166 2167 if (skb_shared(list)) { 2168 /* Sucks! We need to fork list. :-( */ 2169 clone = skb_clone(list, GFP_ATOMIC); 2170 if (!clone) 2171 return NULL; 2172 insp = list->next; 2173 list = clone; 2174 } else { 2175 /* This may be pulled without 2176 * problems. */ 2177 insp = list; 2178 } 2179 if (!pskb_pull(list, eat)) { 2180 kfree_skb(clone); 2181 return NULL; 2182 } 2183 break; 2184 } 2185 } while (eat); 2186 2187 /* Free pulled out fragments. */ 2188 while ((list = skb_shinfo(skb)->frag_list) != insp) { 2189 skb_shinfo(skb)->frag_list = list->next; 2190 kfree_skb(list); 2191 } 2192 /* And insert new clone at head. */ 2193 if (clone) { 2194 clone->next = list; 2195 skb_shinfo(skb)->frag_list = clone; 2196 } 2197 } 2198 /* Success! Now we may commit changes to skb data. */ 2199 2200 pull_pages: 2201 eat = delta; 2202 k = 0; 2203 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2204 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 2205 2206 if (size <= eat) { 2207 skb_frag_unref(skb, i); 2208 eat -= size; 2209 } else { 2210 skb_frag_t *frag = &skb_shinfo(skb)->frags[k]; 2211 2212 *frag = skb_shinfo(skb)->frags[i]; 2213 if (eat) { 2214 skb_frag_off_add(frag, eat); 2215 skb_frag_size_sub(frag, eat); 2216 if (!i) 2217 goto end; 2218 eat = 0; 2219 } 2220 k++; 2221 } 2222 } 2223 skb_shinfo(skb)->nr_frags = k; 2224 2225 end: 2226 skb->tail += delta; 2227 skb->data_len -= delta; 2228 2229 if (!skb->data_len) 2230 skb_zcopy_clear(skb, false); 2231 2232 return skb_tail_pointer(skb); 2233 } 2234 EXPORT_SYMBOL(__pskb_pull_tail); 2235 2236 /** 2237 * skb_copy_bits - copy bits from skb to kernel buffer 2238 * @skb: source skb 2239 * @offset: offset in source 2240 * @to: destination buffer 2241 * @len: number of bytes to copy 2242 * 2243 * Copy the specified number of bytes from the source skb to the 2244 * destination buffer. 2245 * 2246 * CAUTION ! : 2247 * If its prototype is ever changed, 2248 * check arch/{*}/net/{*}.S files, 2249 * since it is called from BPF assembly code. 2250 */ 2251 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len) 2252 { 2253 int start = skb_headlen(skb); 2254 struct sk_buff *frag_iter; 2255 int i, copy; 2256 2257 if (offset > (int)skb->len - len) 2258 goto fault; 2259 2260 /* Copy header. */ 2261 if ((copy = start - offset) > 0) { 2262 if (copy > len) 2263 copy = len; 2264 skb_copy_from_linear_data_offset(skb, offset, to, copy); 2265 if ((len -= copy) == 0) 2266 return 0; 2267 offset += copy; 2268 to += copy; 2269 } 2270 2271 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2272 int end; 2273 skb_frag_t *f = &skb_shinfo(skb)->frags[i]; 2274 2275 WARN_ON(start > offset + len); 2276 2277 end = start + skb_frag_size(f); 2278 if ((copy = end - offset) > 0) { 2279 u32 p_off, p_len, copied; 2280 struct page *p; 2281 u8 *vaddr; 2282 2283 if (copy > len) 2284 copy = len; 2285 2286 skb_frag_foreach_page(f, 2287 skb_frag_off(f) + offset - start, 2288 copy, p, p_off, p_len, copied) { 2289 vaddr = kmap_atomic(p); 2290 memcpy(to + copied, vaddr + p_off, p_len); 2291 kunmap_atomic(vaddr); 2292 } 2293 2294 if ((len -= copy) == 0) 2295 return 0; 2296 offset += copy; 2297 to += copy; 2298 } 2299 start = end; 2300 } 2301 2302 skb_walk_frags(skb, frag_iter) { 2303 int end; 2304 2305 WARN_ON(start > offset + len); 2306 2307 end = start + frag_iter->len; 2308 if ((copy = end - offset) > 0) { 2309 if (copy > len) 2310 copy = len; 2311 if (skb_copy_bits(frag_iter, offset - start, to, copy)) 2312 goto fault; 2313 if ((len -= copy) == 0) 2314 return 0; 2315 offset += copy; 2316 to += copy; 2317 } 2318 start = end; 2319 } 2320 2321 if (!len) 2322 return 0; 2323 2324 fault: 2325 return -EFAULT; 2326 } 2327 EXPORT_SYMBOL(skb_copy_bits); 2328 2329 /* 2330 * Callback from splice_to_pipe(), if we need to release some pages 2331 * at the end of the spd in case we error'ed out in filling the pipe. 2332 */ 2333 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i) 2334 { 2335 put_page(spd->pages[i]); 2336 } 2337 2338 static struct page *linear_to_page(struct page *page, unsigned int *len, 2339 unsigned int *offset, 2340 struct sock *sk) 2341 { 2342 struct page_frag *pfrag = sk_page_frag(sk); 2343 2344 if (!sk_page_frag_refill(sk, pfrag)) 2345 return NULL; 2346 2347 *len = min_t(unsigned int, *len, pfrag->size - pfrag->offset); 2348 2349 memcpy(page_address(pfrag->page) + pfrag->offset, 2350 page_address(page) + *offset, *len); 2351 *offset = pfrag->offset; 2352 pfrag->offset += *len; 2353 2354 return pfrag->page; 2355 } 2356 2357 static bool spd_can_coalesce(const struct splice_pipe_desc *spd, 2358 struct page *page, 2359 unsigned int offset) 2360 { 2361 return spd->nr_pages && 2362 spd->pages[spd->nr_pages - 1] == page && 2363 (spd->partial[spd->nr_pages - 1].offset + 2364 spd->partial[spd->nr_pages - 1].len == offset); 2365 } 2366 2367 /* 2368 * Fill page/offset/length into spd, if it can hold more pages. 2369 */ 2370 static bool spd_fill_page(struct splice_pipe_desc *spd, 2371 struct pipe_inode_info *pipe, struct page *page, 2372 unsigned int *len, unsigned int offset, 2373 bool linear, 2374 struct sock *sk) 2375 { 2376 if (unlikely(spd->nr_pages == MAX_SKB_FRAGS)) 2377 return true; 2378 2379 if (linear) { 2380 page = linear_to_page(page, len, &offset, sk); 2381 if (!page) 2382 return true; 2383 } 2384 if (spd_can_coalesce(spd, page, offset)) { 2385 spd->partial[spd->nr_pages - 1].len += *len; 2386 return false; 2387 } 2388 get_page(page); 2389 spd->pages[spd->nr_pages] = page; 2390 spd->partial[spd->nr_pages].len = *len; 2391 spd->partial[spd->nr_pages].offset = offset; 2392 spd->nr_pages++; 2393 2394 return false; 2395 } 2396 2397 static bool __splice_segment(struct page *page, unsigned int poff, 2398 unsigned int plen, unsigned int *off, 2399 unsigned int *len, 2400 struct splice_pipe_desc *spd, bool linear, 2401 struct sock *sk, 2402 struct pipe_inode_info *pipe) 2403 { 2404 if (!*len) 2405 return true; 2406 2407 /* skip this segment if already processed */ 2408 if (*off >= plen) { 2409 *off -= plen; 2410 return false; 2411 } 2412 2413 /* ignore any bits we already processed */ 2414 poff += *off; 2415 plen -= *off; 2416 *off = 0; 2417 2418 do { 2419 unsigned int flen = min(*len, plen); 2420 2421 if (spd_fill_page(spd, pipe, page, &flen, poff, 2422 linear, sk)) 2423 return true; 2424 poff += flen; 2425 plen -= flen; 2426 *len -= flen; 2427 } while (*len && plen); 2428 2429 return false; 2430 } 2431 2432 /* 2433 * Map linear and fragment data from the skb to spd. It reports true if the 2434 * pipe is full or if we already spliced the requested length. 2435 */ 2436 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe, 2437 unsigned int *offset, unsigned int *len, 2438 struct splice_pipe_desc *spd, struct sock *sk) 2439 { 2440 int seg; 2441 struct sk_buff *iter; 2442 2443 /* map the linear part : 2444 * If skb->head_frag is set, this 'linear' part is backed by a 2445 * fragment, and if the head is not shared with any clones then 2446 * we can avoid a copy since we own the head portion of this page. 2447 */ 2448 if (__splice_segment(virt_to_page(skb->data), 2449 (unsigned long) skb->data & (PAGE_SIZE - 1), 2450 skb_headlen(skb), 2451 offset, len, spd, 2452 skb_head_is_locked(skb), 2453 sk, pipe)) 2454 return true; 2455 2456 /* 2457 * then map the fragments 2458 */ 2459 for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) { 2460 const skb_frag_t *f = &skb_shinfo(skb)->frags[seg]; 2461 2462 if (__splice_segment(skb_frag_page(f), 2463 skb_frag_off(f), skb_frag_size(f), 2464 offset, len, spd, false, sk, pipe)) 2465 return true; 2466 } 2467 2468 skb_walk_frags(skb, iter) { 2469 if (*offset >= iter->len) { 2470 *offset -= iter->len; 2471 continue; 2472 } 2473 /* __skb_splice_bits() only fails if the output has no room 2474 * left, so no point in going over the frag_list for the error 2475 * case. 2476 */ 2477 if (__skb_splice_bits(iter, pipe, offset, len, spd, sk)) 2478 return true; 2479 } 2480 2481 return false; 2482 } 2483 2484 /* 2485 * Map data from the skb to a pipe. Should handle both the linear part, 2486 * the fragments, and the frag list. 2487 */ 2488 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset, 2489 struct pipe_inode_info *pipe, unsigned int tlen, 2490 unsigned int flags) 2491 { 2492 struct partial_page partial[MAX_SKB_FRAGS]; 2493 struct page *pages[MAX_SKB_FRAGS]; 2494 struct splice_pipe_desc spd = { 2495 .pages = pages, 2496 .partial = partial, 2497 .nr_pages_max = MAX_SKB_FRAGS, 2498 .ops = &nosteal_pipe_buf_ops, 2499 .spd_release = sock_spd_release, 2500 }; 2501 int ret = 0; 2502 2503 __skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk); 2504 2505 if (spd.nr_pages) 2506 ret = splice_to_pipe(pipe, &spd); 2507 2508 return ret; 2509 } 2510 EXPORT_SYMBOL_GPL(skb_splice_bits); 2511 2512 static int sendmsg_unlocked(struct sock *sk, struct msghdr *msg, 2513 struct kvec *vec, size_t num, size_t size) 2514 { 2515 struct socket *sock = sk->sk_socket; 2516 2517 if (!sock) 2518 return -EINVAL; 2519 return kernel_sendmsg(sock, msg, vec, num, size); 2520 } 2521 2522 static int sendpage_unlocked(struct sock *sk, struct page *page, int offset, 2523 size_t size, int flags) 2524 { 2525 struct socket *sock = sk->sk_socket; 2526 2527 if (!sock) 2528 return -EINVAL; 2529 return kernel_sendpage(sock, page, offset, size, flags); 2530 } 2531 2532 typedef int (*sendmsg_func)(struct sock *sk, struct msghdr *msg, 2533 struct kvec *vec, size_t num, size_t size); 2534 typedef int (*sendpage_func)(struct sock *sk, struct page *page, int offset, 2535 size_t size, int flags); 2536 static int __skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, 2537 int len, sendmsg_func sendmsg, sendpage_func sendpage) 2538 { 2539 unsigned int orig_len = len; 2540 struct sk_buff *head = skb; 2541 unsigned short fragidx; 2542 int slen, ret; 2543 2544 do_frag_list: 2545 2546 /* Deal with head data */ 2547 while (offset < skb_headlen(skb) && len) { 2548 struct kvec kv; 2549 struct msghdr msg; 2550 2551 slen = min_t(int, len, skb_headlen(skb) - offset); 2552 kv.iov_base = skb->data + offset; 2553 kv.iov_len = slen; 2554 memset(&msg, 0, sizeof(msg)); 2555 msg.msg_flags = MSG_DONTWAIT; 2556 2557 ret = INDIRECT_CALL_2(sendmsg, kernel_sendmsg_locked, 2558 sendmsg_unlocked, sk, &msg, &kv, 1, slen); 2559 if (ret <= 0) 2560 goto error; 2561 2562 offset += ret; 2563 len -= ret; 2564 } 2565 2566 /* All the data was skb head? */ 2567 if (!len) 2568 goto out; 2569 2570 /* Make offset relative to start of frags */ 2571 offset -= skb_headlen(skb); 2572 2573 /* Find where we are in frag list */ 2574 for (fragidx = 0; fragidx < skb_shinfo(skb)->nr_frags; fragidx++) { 2575 skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx]; 2576 2577 if (offset < skb_frag_size(frag)) 2578 break; 2579 2580 offset -= skb_frag_size(frag); 2581 } 2582 2583 for (; len && fragidx < skb_shinfo(skb)->nr_frags; fragidx++) { 2584 skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx]; 2585 2586 slen = min_t(size_t, len, skb_frag_size(frag) - offset); 2587 2588 while (slen) { 2589 ret = INDIRECT_CALL_2(sendpage, kernel_sendpage_locked, 2590 sendpage_unlocked, sk, 2591 skb_frag_page(frag), 2592 skb_frag_off(frag) + offset, 2593 slen, MSG_DONTWAIT); 2594 if (ret <= 0) 2595 goto error; 2596 2597 len -= ret; 2598 offset += ret; 2599 slen -= ret; 2600 } 2601 2602 offset = 0; 2603 } 2604 2605 if (len) { 2606 /* Process any frag lists */ 2607 2608 if (skb == head) { 2609 if (skb_has_frag_list(skb)) { 2610 skb = skb_shinfo(skb)->frag_list; 2611 goto do_frag_list; 2612 } 2613 } else if (skb->next) { 2614 skb = skb->next; 2615 goto do_frag_list; 2616 } 2617 } 2618 2619 out: 2620 return orig_len - len; 2621 2622 error: 2623 return orig_len == len ? ret : orig_len - len; 2624 } 2625 2626 /* Send skb data on a socket. Socket must be locked. */ 2627 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset, 2628 int len) 2629 { 2630 return __skb_send_sock(sk, skb, offset, len, kernel_sendmsg_locked, 2631 kernel_sendpage_locked); 2632 } 2633 EXPORT_SYMBOL_GPL(skb_send_sock_locked); 2634 2635 /* Send skb data on a socket. Socket must be unlocked. */ 2636 int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len) 2637 { 2638 return __skb_send_sock(sk, skb, offset, len, sendmsg_unlocked, 2639 sendpage_unlocked); 2640 } 2641 2642 /** 2643 * skb_store_bits - store bits from kernel buffer to skb 2644 * @skb: destination buffer 2645 * @offset: offset in destination 2646 * @from: source buffer 2647 * @len: number of bytes to copy 2648 * 2649 * Copy the specified number of bytes from the source buffer to the 2650 * destination skb. This function handles all the messy bits of 2651 * traversing fragment lists and such. 2652 */ 2653 2654 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len) 2655 { 2656 int start = skb_headlen(skb); 2657 struct sk_buff *frag_iter; 2658 int i, copy; 2659 2660 if (offset > (int)skb->len - len) 2661 goto fault; 2662 2663 if ((copy = start - offset) > 0) { 2664 if (copy > len) 2665 copy = len; 2666 skb_copy_to_linear_data_offset(skb, offset, from, copy); 2667 if ((len -= copy) == 0) 2668 return 0; 2669 offset += copy; 2670 from += copy; 2671 } 2672 2673 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2674 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2675 int end; 2676 2677 WARN_ON(start > offset + len); 2678 2679 end = start + skb_frag_size(frag); 2680 if ((copy = end - offset) > 0) { 2681 u32 p_off, p_len, copied; 2682 struct page *p; 2683 u8 *vaddr; 2684 2685 if (copy > len) 2686 copy = len; 2687 2688 skb_frag_foreach_page(frag, 2689 skb_frag_off(frag) + offset - start, 2690 copy, p, p_off, p_len, copied) { 2691 vaddr = kmap_atomic(p); 2692 memcpy(vaddr + p_off, from + copied, p_len); 2693 kunmap_atomic(vaddr); 2694 } 2695 2696 if ((len -= copy) == 0) 2697 return 0; 2698 offset += copy; 2699 from += copy; 2700 } 2701 start = end; 2702 } 2703 2704 skb_walk_frags(skb, frag_iter) { 2705 int end; 2706 2707 WARN_ON(start > offset + len); 2708 2709 end = start + frag_iter->len; 2710 if ((copy = end - offset) > 0) { 2711 if (copy > len) 2712 copy = len; 2713 if (skb_store_bits(frag_iter, offset - start, 2714 from, copy)) 2715 goto fault; 2716 if ((len -= copy) == 0) 2717 return 0; 2718 offset += copy; 2719 from += copy; 2720 } 2721 start = end; 2722 } 2723 if (!len) 2724 return 0; 2725 2726 fault: 2727 return -EFAULT; 2728 } 2729 EXPORT_SYMBOL(skb_store_bits); 2730 2731 /* Checksum skb data. */ 2732 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len, 2733 __wsum csum, const struct skb_checksum_ops *ops) 2734 { 2735 int start = skb_headlen(skb); 2736 int i, copy = start - offset; 2737 struct sk_buff *frag_iter; 2738 int pos = 0; 2739 2740 /* Checksum header. */ 2741 if (copy > 0) { 2742 if (copy > len) 2743 copy = len; 2744 csum = INDIRECT_CALL_1(ops->update, csum_partial_ext, 2745 skb->data + offset, copy, csum); 2746 if ((len -= copy) == 0) 2747 return csum; 2748 offset += copy; 2749 pos = copy; 2750 } 2751 2752 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2753 int end; 2754 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2755 2756 WARN_ON(start > offset + len); 2757 2758 end = start + skb_frag_size(frag); 2759 if ((copy = end - offset) > 0) { 2760 u32 p_off, p_len, copied; 2761 struct page *p; 2762 __wsum csum2; 2763 u8 *vaddr; 2764 2765 if (copy > len) 2766 copy = len; 2767 2768 skb_frag_foreach_page(frag, 2769 skb_frag_off(frag) + offset - start, 2770 copy, p, p_off, p_len, copied) { 2771 vaddr = kmap_atomic(p); 2772 csum2 = INDIRECT_CALL_1(ops->update, 2773 csum_partial_ext, 2774 vaddr + p_off, p_len, 0); 2775 kunmap_atomic(vaddr); 2776 csum = INDIRECT_CALL_1(ops->combine, 2777 csum_block_add_ext, csum, 2778 csum2, pos, p_len); 2779 pos += p_len; 2780 } 2781 2782 if (!(len -= copy)) 2783 return csum; 2784 offset += copy; 2785 } 2786 start = end; 2787 } 2788 2789 skb_walk_frags(skb, frag_iter) { 2790 int end; 2791 2792 WARN_ON(start > offset + len); 2793 2794 end = start + frag_iter->len; 2795 if ((copy = end - offset) > 0) { 2796 __wsum csum2; 2797 if (copy > len) 2798 copy = len; 2799 csum2 = __skb_checksum(frag_iter, offset - start, 2800 copy, 0, ops); 2801 csum = INDIRECT_CALL_1(ops->combine, csum_block_add_ext, 2802 csum, csum2, pos, copy); 2803 if ((len -= copy) == 0) 2804 return csum; 2805 offset += copy; 2806 pos += copy; 2807 } 2808 start = end; 2809 } 2810 BUG_ON(len); 2811 2812 return csum; 2813 } 2814 EXPORT_SYMBOL(__skb_checksum); 2815 2816 __wsum skb_checksum(const struct sk_buff *skb, int offset, 2817 int len, __wsum csum) 2818 { 2819 const struct skb_checksum_ops ops = { 2820 .update = csum_partial_ext, 2821 .combine = csum_block_add_ext, 2822 }; 2823 2824 return __skb_checksum(skb, offset, len, csum, &ops); 2825 } 2826 EXPORT_SYMBOL(skb_checksum); 2827 2828 /* Both of above in one bottle. */ 2829 2830 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, 2831 u8 *to, int len) 2832 { 2833 int start = skb_headlen(skb); 2834 int i, copy = start - offset; 2835 struct sk_buff *frag_iter; 2836 int pos = 0; 2837 __wsum csum = 0; 2838 2839 /* Copy header. */ 2840 if (copy > 0) { 2841 if (copy > len) 2842 copy = len; 2843 csum = csum_partial_copy_nocheck(skb->data + offset, to, 2844 copy); 2845 if ((len -= copy) == 0) 2846 return csum; 2847 offset += copy; 2848 to += copy; 2849 pos = copy; 2850 } 2851 2852 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2853 int end; 2854 2855 WARN_ON(start > offset + len); 2856 2857 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]); 2858 if ((copy = end - offset) > 0) { 2859 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2860 u32 p_off, p_len, copied; 2861 struct page *p; 2862 __wsum csum2; 2863 u8 *vaddr; 2864 2865 if (copy > len) 2866 copy = len; 2867 2868 skb_frag_foreach_page(frag, 2869 skb_frag_off(frag) + offset - start, 2870 copy, p, p_off, p_len, copied) { 2871 vaddr = kmap_atomic(p); 2872 csum2 = csum_partial_copy_nocheck(vaddr + p_off, 2873 to + copied, 2874 p_len); 2875 kunmap_atomic(vaddr); 2876 csum = csum_block_add(csum, csum2, pos); 2877 pos += p_len; 2878 } 2879 2880 if (!(len -= copy)) 2881 return csum; 2882 offset += copy; 2883 to += copy; 2884 } 2885 start = end; 2886 } 2887 2888 skb_walk_frags(skb, frag_iter) { 2889 __wsum csum2; 2890 int end; 2891 2892 WARN_ON(start > offset + len); 2893 2894 end = start + frag_iter->len; 2895 if ((copy = end - offset) > 0) { 2896 if (copy > len) 2897 copy = len; 2898 csum2 = skb_copy_and_csum_bits(frag_iter, 2899 offset - start, 2900 to, copy); 2901 csum = csum_block_add(csum, csum2, pos); 2902 if ((len -= copy) == 0) 2903 return csum; 2904 offset += copy; 2905 to += copy; 2906 pos += copy; 2907 } 2908 start = end; 2909 } 2910 BUG_ON(len); 2911 return csum; 2912 } 2913 EXPORT_SYMBOL(skb_copy_and_csum_bits); 2914 2915 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len) 2916 { 2917 __sum16 sum; 2918 2919 sum = csum_fold(skb_checksum(skb, 0, len, skb->csum)); 2920 /* See comments in __skb_checksum_complete(). */ 2921 if (likely(!sum)) { 2922 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) && 2923 !skb->csum_complete_sw) 2924 netdev_rx_csum_fault(skb->dev, skb); 2925 } 2926 if (!skb_shared(skb)) 2927 skb->csum_valid = !sum; 2928 return sum; 2929 } 2930 EXPORT_SYMBOL(__skb_checksum_complete_head); 2931 2932 /* This function assumes skb->csum already holds pseudo header's checksum, 2933 * which has been changed from the hardware checksum, for example, by 2934 * __skb_checksum_validate_complete(). And, the original skb->csum must 2935 * have been validated unsuccessfully for CHECKSUM_COMPLETE case. 2936 * 2937 * It returns non-zero if the recomputed checksum is still invalid, otherwise 2938 * zero. The new checksum is stored back into skb->csum unless the skb is 2939 * shared. 2940 */ 2941 __sum16 __skb_checksum_complete(struct sk_buff *skb) 2942 { 2943 __wsum csum; 2944 __sum16 sum; 2945 2946 csum = skb_checksum(skb, 0, skb->len, 0); 2947 2948 sum = csum_fold(csum_add(skb->csum, csum)); 2949 /* This check is inverted, because we already knew the hardware 2950 * checksum is invalid before calling this function. So, if the 2951 * re-computed checksum is valid instead, then we have a mismatch 2952 * between the original skb->csum and skb_checksum(). This means either 2953 * the original hardware checksum is incorrect or we screw up skb->csum 2954 * when moving skb->data around. 2955 */ 2956 if (likely(!sum)) { 2957 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) && 2958 !skb->csum_complete_sw) 2959 netdev_rx_csum_fault(skb->dev, skb); 2960 } 2961 2962 if (!skb_shared(skb)) { 2963 /* Save full packet checksum */ 2964 skb->csum = csum; 2965 skb->ip_summed = CHECKSUM_COMPLETE; 2966 skb->csum_complete_sw = 1; 2967 skb->csum_valid = !sum; 2968 } 2969 2970 return sum; 2971 } 2972 EXPORT_SYMBOL(__skb_checksum_complete); 2973 2974 static __wsum warn_crc32c_csum_update(const void *buff, int len, __wsum sum) 2975 { 2976 net_warn_ratelimited( 2977 "%s: attempt to compute crc32c without libcrc32c.ko\n", 2978 __func__); 2979 return 0; 2980 } 2981 2982 static __wsum warn_crc32c_csum_combine(__wsum csum, __wsum csum2, 2983 int offset, int len) 2984 { 2985 net_warn_ratelimited( 2986 "%s: attempt to compute crc32c without libcrc32c.ko\n", 2987 __func__); 2988 return 0; 2989 } 2990 2991 static const struct skb_checksum_ops default_crc32c_ops = { 2992 .update = warn_crc32c_csum_update, 2993 .combine = warn_crc32c_csum_combine, 2994 }; 2995 2996 const struct skb_checksum_ops *crc32c_csum_stub __read_mostly = 2997 &default_crc32c_ops; 2998 EXPORT_SYMBOL(crc32c_csum_stub); 2999 3000 /** 3001 * skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy() 3002 * @from: source buffer 3003 * 3004 * Calculates the amount of linear headroom needed in the 'to' skb passed 3005 * into skb_zerocopy(). 3006 */ 3007 unsigned int 3008 skb_zerocopy_headlen(const struct sk_buff *from) 3009 { 3010 unsigned int hlen = 0; 3011 3012 if (!from->head_frag || 3013 skb_headlen(from) < L1_CACHE_BYTES || 3014 skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS) 3015 hlen = skb_headlen(from); 3016 3017 if (skb_has_frag_list(from)) 3018 hlen = from->len; 3019 3020 return hlen; 3021 } 3022 EXPORT_SYMBOL_GPL(skb_zerocopy_headlen); 3023 3024 /** 3025 * skb_zerocopy - Zero copy skb to skb 3026 * @to: destination buffer 3027 * @from: source buffer 3028 * @len: number of bytes to copy from source buffer 3029 * @hlen: size of linear headroom in destination buffer 3030 * 3031 * Copies up to `len` bytes from `from` to `to` by creating references 3032 * to the frags in the source buffer. 3033 * 3034 * The `hlen` as calculated by skb_zerocopy_headlen() specifies the 3035 * headroom in the `to` buffer. 3036 * 3037 * Return value: 3038 * 0: everything is OK 3039 * -ENOMEM: couldn't orphan frags of @from due to lack of memory 3040 * -EFAULT: skb_copy_bits() found some problem with skb geometry 3041 */ 3042 int 3043 skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen) 3044 { 3045 int i, j = 0; 3046 int plen = 0; /* length of skb->head fragment */ 3047 int ret; 3048 struct page *page; 3049 unsigned int offset; 3050 3051 BUG_ON(!from->head_frag && !hlen); 3052 3053 /* dont bother with small payloads */ 3054 if (len <= skb_tailroom(to)) 3055 return skb_copy_bits(from, 0, skb_put(to, len), len); 3056 3057 if (hlen) { 3058 ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen); 3059 if (unlikely(ret)) 3060 return ret; 3061 len -= hlen; 3062 } else { 3063 plen = min_t(int, skb_headlen(from), len); 3064 if (plen) { 3065 page = virt_to_head_page(from->head); 3066 offset = from->data - (unsigned char *)page_address(page); 3067 __skb_fill_page_desc(to, 0, page, offset, plen); 3068 get_page(page); 3069 j = 1; 3070 len -= plen; 3071 } 3072 } 3073 3074 to->truesize += len + plen; 3075 to->len += len + plen; 3076 to->data_len += len + plen; 3077 3078 if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) { 3079 skb_tx_error(from); 3080 return -ENOMEM; 3081 } 3082 skb_zerocopy_clone(to, from, GFP_ATOMIC); 3083 3084 for (i = 0; i < skb_shinfo(from)->nr_frags; i++) { 3085 int size; 3086 3087 if (!len) 3088 break; 3089 skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i]; 3090 size = min_t(int, skb_frag_size(&skb_shinfo(to)->frags[j]), 3091 len); 3092 skb_frag_size_set(&skb_shinfo(to)->frags[j], size); 3093 len -= size; 3094 skb_frag_ref(to, j); 3095 j++; 3096 } 3097 skb_shinfo(to)->nr_frags = j; 3098 3099 return 0; 3100 } 3101 EXPORT_SYMBOL_GPL(skb_zerocopy); 3102 3103 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to) 3104 { 3105 __wsum csum; 3106 long csstart; 3107 3108 if (skb->ip_summed == CHECKSUM_PARTIAL) 3109 csstart = skb_checksum_start_offset(skb); 3110 else 3111 csstart = skb_headlen(skb); 3112 3113 BUG_ON(csstart > skb_headlen(skb)); 3114 3115 skb_copy_from_linear_data(skb, to, csstart); 3116 3117 csum = 0; 3118 if (csstart != skb->len) 3119 csum = skb_copy_and_csum_bits(skb, csstart, to + csstart, 3120 skb->len - csstart); 3121 3122 if (skb->ip_summed == CHECKSUM_PARTIAL) { 3123 long csstuff = csstart + skb->csum_offset; 3124 3125 *((__sum16 *)(to + csstuff)) = csum_fold(csum); 3126 } 3127 } 3128 EXPORT_SYMBOL(skb_copy_and_csum_dev); 3129 3130 /** 3131 * skb_dequeue - remove from the head of the queue 3132 * @list: list to dequeue from 3133 * 3134 * Remove the head of the list. The list lock is taken so the function 3135 * may be used safely with other locking list functions. The head item is 3136 * returned or %NULL if the list is empty. 3137 */ 3138 3139 struct sk_buff *skb_dequeue(struct sk_buff_head *list) 3140 { 3141 unsigned long flags; 3142 struct sk_buff *result; 3143 3144 spin_lock_irqsave(&list->lock, flags); 3145 result = __skb_dequeue(list); 3146 spin_unlock_irqrestore(&list->lock, flags); 3147 return result; 3148 } 3149 EXPORT_SYMBOL(skb_dequeue); 3150 3151 /** 3152 * skb_dequeue_tail - remove from the tail of the queue 3153 * @list: list to dequeue from 3154 * 3155 * Remove the tail of the list. The list lock is taken so the function 3156 * may be used safely with other locking list functions. The tail item is 3157 * returned or %NULL if the list is empty. 3158 */ 3159 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list) 3160 { 3161 unsigned long flags; 3162 struct sk_buff *result; 3163 3164 spin_lock_irqsave(&list->lock, flags); 3165 result = __skb_dequeue_tail(list); 3166 spin_unlock_irqrestore(&list->lock, flags); 3167 return result; 3168 } 3169 EXPORT_SYMBOL(skb_dequeue_tail); 3170 3171 /** 3172 * skb_queue_purge - empty a list 3173 * @list: list to empty 3174 * 3175 * Delete all buffers on an &sk_buff list. Each buffer is removed from 3176 * the list and one reference dropped. This function takes the list 3177 * lock and is atomic with respect to other list locking functions. 3178 */ 3179 void skb_queue_purge(struct sk_buff_head *list) 3180 { 3181 struct sk_buff *skb; 3182 while ((skb = skb_dequeue(list)) != NULL) 3183 kfree_skb(skb); 3184 } 3185 EXPORT_SYMBOL(skb_queue_purge); 3186 3187 /** 3188 * skb_rbtree_purge - empty a skb rbtree 3189 * @root: root of the rbtree to empty 3190 * Return value: the sum of truesizes of all purged skbs. 3191 * 3192 * Delete all buffers on an &sk_buff rbtree. Each buffer is removed from 3193 * the list and one reference dropped. This function does not take 3194 * any lock. Synchronization should be handled by the caller (e.g., TCP 3195 * out-of-order queue is protected by the socket lock). 3196 */ 3197 unsigned int skb_rbtree_purge(struct rb_root *root) 3198 { 3199 struct rb_node *p = rb_first(root); 3200 unsigned int sum = 0; 3201 3202 while (p) { 3203 struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode); 3204 3205 p = rb_next(p); 3206 rb_erase(&skb->rbnode, root); 3207 sum += skb->truesize; 3208 kfree_skb(skb); 3209 } 3210 return sum; 3211 } 3212 3213 /** 3214 * skb_queue_head - queue a buffer at the list head 3215 * @list: list to use 3216 * @newsk: buffer to queue 3217 * 3218 * Queue a buffer at the start of the list. This function takes the 3219 * list lock and can be used safely with other locking &sk_buff functions 3220 * safely. 3221 * 3222 * A buffer cannot be placed on two lists at the same time. 3223 */ 3224 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk) 3225 { 3226 unsigned long flags; 3227 3228 spin_lock_irqsave(&list->lock, flags); 3229 __skb_queue_head(list, newsk); 3230 spin_unlock_irqrestore(&list->lock, flags); 3231 } 3232 EXPORT_SYMBOL(skb_queue_head); 3233 3234 /** 3235 * skb_queue_tail - queue a buffer at the list tail 3236 * @list: list to use 3237 * @newsk: buffer to queue 3238 * 3239 * Queue a buffer at the tail of the list. This function takes the 3240 * list lock and can be used safely with other locking &sk_buff functions 3241 * safely. 3242 * 3243 * A buffer cannot be placed on two lists at the same time. 3244 */ 3245 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk) 3246 { 3247 unsigned long flags; 3248 3249 spin_lock_irqsave(&list->lock, flags); 3250 __skb_queue_tail(list, newsk); 3251 spin_unlock_irqrestore(&list->lock, flags); 3252 } 3253 EXPORT_SYMBOL(skb_queue_tail); 3254 3255 /** 3256 * skb_unlink - remove a buffer from a list 3257 * @skb: buffer to remove 3258 * @list: list to use 3259 * 3260 * Remove a packet from a list. The list locks are taken and this 3261 * function is atomic with respect to other list locked calls 3262 * 3263 * You must know what list the SKB is on. 3264 */ 3265 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list) 3266 { 3267 unsigned long flags; 3268 3269 spin_lock_irqsave(&list->lock, flags); 3270 __skb_unlink(skb, list); 3271 spin_unlock_irqrestore(&list->lock, flags); 3272 } 3273 EXPORT_SYMBOL(skb_unlink); 3274 3275 /** 3276 * skb_append - append a buffer 3277 * @old: buffer to insert after 3278 * @newsk: buffer to insert 3279 * @list: list to use 3280 * 3281 * Place a packet after a given packet in a list. The list locks are taken 3282 * and this function is atomic with respect to other list locked calls. 3283 * A buffer cannot be placed on two lists at the same time. 3284 */ 3285 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list) 3286 { 3287 unsigned long flags; 3288 3289 spin_lock_irqsave(&list->lock, flags); 3290 __skb_queue_after(list, old, newsk); 3291 spin_unlock_irqrestore(&list->lock, flags); 3292 } 3293 EXPORT_SYMBOL(skb_append); 3294 3295 static inline void skb_split_inside_header(struct sk_buff *skb, 3296 struct sk_buff* skb1, 3297 const u32 len, const int pos) 3298 { 3299 int i; 3300 3301 skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len), 3302 pos - len); 3303 /* And move data appendix as is. */ 3304 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 3305 skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i]; 3306 3307 skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags; 3308 skb_shinfo(skb)->nr_frags = 0; 3309 skb1->data_len = skb->data_len; 3310 skb1->len += skb1->data_len; 3311 skb->data_len = 0; 3312 skb->len = len; 3313 skb_set_tail_pointer(skb, len); 3314 } 3315 3316 static inline void skb_split_no_header(struct sk_buff *skb, 3317 struct sk_buff* skb1, 3318 const u32 len, int pos) 3319 { 3320 int i, k = 0; 3321 const int nfrags = skb_shinfo(skb)->nr_frags; 3322 3323 skb_shinfo(skb)->nr_frags = 0; 3324 skb1->len = skb1->data_len = skb->len - len; 3325 skb->len = len; 3326 skb->data_len = len - pos; 3327 3328 for (i = 0; i < nfrags; i++) { 3329 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 3330 3331 if (pos + size > len) { 3332 skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i]; 3333 3334 if (pos < len) { 3335 /* Split frag. 3336 * We have two variants in this case: 3337 * 1. Move all the frag to the second 3338 * part, if it is possible. F.e. 3339 * this approach is mandatory for TUX, 3340 * where splitting is expensive. 3341 * 2. Split is accurately. We make this. 3342 */ 3343 skb_frag_ref(skb, i); 3344 skb_frag_off_add(&skb_shinfo(skb1)->frags[0], len - pos); 3345 skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos); 3346 skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos); 3347 skb_shinfo(skb)->nr_frags++; 3348 } 3349 k++; 3350 } else 3351 skb_shinfo(skb)->nr_frags++; 3352 pos += size; 3353 } 3354 skb_shinfo(skb1)->nr_frags = k; 3355 } 3356 3357 /** 3358 * skb_split - Split fragmented skb to two parts at length len. 3359 * @skb: the buffer to split 3360 * @skb1: the buffer to receive the second part 3361 * @len: new length for skb 3362 */ 3363 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len) 3364 { 3365 int pos = skb_headlen(skb); 3366 3367 skb_shinfo(skb1)->flags |= skb_shinfo(skb)->flags & SKBFL_SHARED_FRAG; 3368 skb_zerocopy_clone(skb1, skb, 0); 3369 if (len < pos) /* Split line is inside header. */ 3370 skb_split_inside_header(skb, skb1, len, pos); 3371 else /* Second chunk has no header, nothing to copy. */ 3372 skb_split_no_header(skb, skb1, len, pos); 3373 } 3374 EXPORT_SYMBOL(skb_split); 3375 3376 /* Shifting from/to a cloned skb is a no-go. 3377 * 3378 * Caller cannot keep skb_shinfo related pointers past calling here! 3379 */ 3380 static int skb_prepare_for_shift(struct sk_buff *skb) 3381 { 3382 int ret = 0; 3383 3384 if (skb_cloned(skb)) { 3385 /* Save and restore truesize: pskb_expand_head() may reallocate 3386 * memory where ksize(kmalloc(S)) != ksize(kmalloc(S)), but we 3387 * cannot change truesize at this point. 3388 */ 3389 unsigned int save_truesize = skb->truesize; 3390 3391 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 3392 skb->truesize = save_truesize; 3393 } 3394 return ret; 3395 } 3396 3397 /** 3398 * skb_shift - Shifts paged data partially from skb to another 3399 * @tgt: buffer into which tail data gets added 3400 * @skb: buffer from which the paged data comes from 3401 * @shiftlen: shift up to this many bytes 3402 * 3403 * Attempts to shift up to shiftlen worth of bytes, which may be less than 3404 * the length of the skb, from skb to tgt. Returns number bytes shifted. 3405 * It's up to caller to free skb if everything was shifted. 3406 * 3407 * If @tgt runs out of frags, the whole operation is aborted. 3408 * 3409 * Skb cannot include anything else but paged data while tgt is allowed 3410 * to have non-paged data as well. 3411 * 3412 * TODO: full sized shift could be optimized but that would need 3413 * specialized skb free'er to handle frags without up-to-date nr_frags. 3414 */ 3415 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen) 3416 { 3417 int from, to, merge, todo; 3418 skb_frag_t *fragfrom, *fragto; 3419 3420 BUG_ON(shiftlen > skb->len); 3421 3422 if (skb_headlen(skb)) 3423 return 0; 3424 if (skb_zcopy(tgt) || skb_zcopy(skb)) 3425 return 0; 3426 3427 todo = shiftlen; 3428 from = 0; 3429 to = skb_shinfo(tgt)->nr_frags; 3430 fragfrom = &skb_shinfo(skb)->frags[from]; 3431 3432 /* Actual merge is delayed until the point when we know we can 3433 * commit all, so that we don't have to undo partial changes 3434 */ 3435 if (!to || 3436 !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom), 3437 skb_frag_off(fragfrom))) { 3438 merge = -1; 3439 } else { 3440 merge = to - 1; 3441 3442 todo -= skb_frag_size(fragfrom); 3443 if (todo < 0) { 3444 if (skb_prepare_for_shift(skb) || 3445 skb_prepare_for_shift(tgt)) 3446 return 0; 3447 3448 /* All previous frag pointers might be stale! */ 3449 fragfrom = &skb_shinfo(skb)->frags[from]; 3450 fragto = &skb_shinfo(tgt)->frags[merge]; 3451 3452 skb_frag_size_add(fragto, shiftlen); 3453 skb_frag_size_sub(fragfrom, shiftlen); 3454 skb_frag_off_add(fragfrom, shiftlen); 3455 3456 goto onlymerged; 3457 } 3458 3459 from++; 3460 } 3461 3462 /* Skip full, not-fitting skb to avoid expensive operations */ 3463 if ((shiftlen == skb->len) && 3464 (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to)) 3465 return 0; 3466 3467 if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt)) 3468 return 0; 3469 3470 while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) { 3471 if (to == MAX_SKB_FRAGS) 3472 return 0; 3473 3474 fragfrom = &skb_shinfo(skb)->frags[from]; 3475 fragto = &skb_shinfo(tgt)->frags[to]; 3476 3477 if (todo >= skb_frag_size(fragfrom)) { 3478 *fragto = *fragfrom; 3479 todo -= skb_frag_size(fragfrom); 3480 from++; 3481 to++; 3482 3483 } else { 3484 __skb_frag_ref(fragfrom); 3485 skb_frag_page_copy(fragto, fragfrom); 3486 skb_frag_off_copy(fragto, fragfrom); 3487 skb_frag_size_set(fragto, todo); 3488 3489 skb_frag_off_add(fragfrom, todo); 3490 skb_frag_size_sub(fragfrom, todo); 3491 todo = 0; 3492 3493 to++; 3494 break; 3495 } 3496 } 3497 3498 /* Ready to "commit" this state change to tgt */ 3499 skb_shinfo(tgt)->nr_frags = to; 3500 3501 if (merge >= 0) { 3502 fragfrom = &skb_shinfo(skb)->frags[0]; 3503 fragto = &skb_shinfo(tgt)->frags[merge]; 3504 3505 skb_frag_size_add(fragto, skb_frag_size(fragfrom)); 3506 __skb_frag_unref(fragfrom, skb->pp_recycle); 3507 } 3508 3509 /* Reposition in the original skb */ 3510 to = 0; 3511 while (from < skb_shinfo(skb)->nr_frags) 3512 skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++]; 3513 skb_shinfo(skb)->nr_frags = to; 3514 3515 BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags); 3516 3517 onlymerged: 3518 /* Most likely the tgt won't ever need its checksum anymore, skb on 3519 * the other hand might need it if it needs to be resent 3520 */ 3521 tgt->ip_summed = CHECKSUM_PARTIAL; 3522 skb->ip_summed = CHECKSUM_PARTIAL; 3523 3524 /* Yak, is it really working this way? Some helper please? */ 3525 skb->len -= shiftlen; 3526 skb->data_len -= shiftlen; 3527 skb->truesize -= shiftlen; 3528 tgt->len += shiftlen; 3529 tgt->data_len += shiftlen; 3530 tgt->truesize += shiftlen; 3531 3532 return shiftlen; 3533 } 3534 3535 /** 3536 * skb_prepare_seq_read - Prepare a sequential read of skb data 3537 * @skb: the buffer to read 3538 * @from: lower offset of data to be read 3539 * @to: upper offset of data to be read 3540 * @st: state variable 3541 * 3542 * Initializes the specified state variable. Must be called before 3543 * invoking skb_seq_read() for the first time. 3544 */ 3545 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from, 3546 unsigned int to, struct skb_seq_state *st) 3547 { 3548 st->lower_offset = from; 3549 st->upper_offset = to; 3550 st->root_skb = st->cur_skb = skb; 3551 st->frag_idx = st->stepped_offset = 0; 3552 st->frag_data = NULL; 3553 st->frag_off = 0; 3554 } 3555 EXPORT_SYMBOL(skb_prepare_seq_read); 3556 3557 /** 3558 * skb_seq_read - Sequentially read skb data 3559 * @consumed: number of bytes consumed by the caller so far 3560 * @data: destination pointer for data to be returned 3561 * @st: state variable 3562 * 3563 * Reads a block of skb data at @consumed relative to the 3564 * lower offset specified to skb_prepare_seq_read(). Assigns 3565 * the head of the data block to @data and returns the length 3566 * of the block or 0 if the end of the skb data or the upper 3567 * offset has been reached. 3568 * 3569 * The caller is not required to consume all of the data 3570 * returned, i.e. @consumed is typically set to the number 3571 * of bytes already consumed and the next call to 3572 * skb_seq_read() will return the remaining part of the block. 3573 * 3574 * Note 1: The size of each block of data returned can be arbitrary, 3575 * this limitation is the cost for zerocopy sequential 3576 * reads of potentially non linear data. 3577 * 3578 * Note 2: Fragment lists within fragments are not implemented 3579 * at the moment, state->root_skb could be replaced with 3580 * a stack for this purpose. 3581 */ 3582 unsigned int skb_seq_read(unsigned int consumed, const u8 **data, 3583 struct skb_seq_state *st) 3584 { 3585 unsigned int block_limit, abs_offset = consumed + st->lower_offset; 3586 skb_frag_t *frag; 3587 3588 if (unlikely(abs_offset >= st->upper_offset)) { 3589 if (st->frag_data) { 3590 kunmap_atomic(st->frag_data); 3591 st->frag_data = NULL; 3592 } 3593 return 0; 3594 } 3595 3596 next_skb: 3597 block_limit = skb_headlen(st->cur_skb) + st->stepped_offset; 3598 3599 if (abs_offset < block_limit && !st->frag_data) { 3600 *data = st->cur_skb->data + (abs_offset - st->stepped_offset); 3601 return block_limit - abs_offset; 3602 } 3603 3604 if (st->frag_idx == 0 && !st->frag_data) 3605 st->stepped_offset += skb_headlen(st->cur_skb); 3606 3607 while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) { 3608 unsigned int pg_idx, pg_off, pg_sz; 3609 3610 frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx]; 3611 3612 pg_idx = 0; 3613 pg_off = skb_frag_off(frag); 3614 pg_sz = skb_frag_size(frag); 3615 3616 if (skb_frag_must_loop(skb_frag_page(frag))) { 3617 pg_idx = (pg_off + st->frag_off) >> PAGE_SHIFT; 3618 pg_off = offset_in_page(pg_off + st->frag_off); 3619 pg_sz = min_t(unsigned int, pg_sz - st->frag_off, 3620 PAGE_SIZE - pg_off); 3621 } 3622 3623 block_limit = pg_sz + st->stepped_offset; 3624 if (abs_offset < block_limit) { 3625 if (!st->frag_data) 3626 st->frag_data = kmap_atomic(skb_frag_page(frag) + pg_idx); 3627 3628 *data = (u8 *)st->frag_data + pg_off + 3629 (abs_offset - st->stepped_offset); 3630 3631 return block_limit - abs_offset; 3632 } 3633 3634 if (st->frag_data) { 3635 kunmap_atomic(st->frag_data); 3636 st->frag_data = NULL; 3637 } 3638 3639 st->stepped_offset += pg_sz; 3640 st->frag_off += pg_sz; 3641 if (st->frag_off == skb_frag_size(frag)) { 3642 st->frag_off = 0; 3643 st->frag_idx++; 3644 } 3645 } 3646 3647 if (st->frag_data) { 3648 kunmap_atomic(st->frag_data); 3649 st->frag_data = NULL; 3650 } 3651 3652 if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) { 3653 st->cur_skb = skb_shinfo(st->root_skb)->frag_list; 3654 st->frag_idx = 0; 3655 goto next_skb; 3656 } else if (st->cur_skb->next) { 3657 st->cur_skb = st->cur_skb->next; 3658 st->frag_idx = 0; 3659 goto next_skb; 3660 } 3661 3662 return 0; 3663 } 3664 EXPORT_SYMBOL(skb_seq_read); 3665 3666 /** 3667 * skb_abort_seq_read - Abort a sequential read of skb data 3668 * @st: state variable 3669 * 3670 * Must be called if skb_seq_read() was not called until it 3671 * returned 0. 3672 */ 3673 void skb_abort_seq_read(struct skb_seq_state *st) 3674 { 3675 if (st->frag_data) 3676 kunmap_atomic(st->frag_data); 3677 } 3678 EXPORT_SYMBOL(skb_abort_seq_read); 3679 3680 #define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb)) 3681 3682 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text, 3683 struct ts_config *conf, 3684 struct ts_state *state) 3685 { 3686 return skb_seq_read(offset, text, TS_SKB_CB(state)); 3687 } 3688 3689 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state) 3690 { 3691 skb_abort_seq_read(TS_SKB_CB(state)); 3692 } 3693 3694 /** 3695 * skb_find_text - Find a text pattern in skb data 3696 * @skb: the buffer to look in 3697 * @from: search offset 3698 * @to: search limit 3699 * @config: textsearch configuration 3700 * 3701 * Finds a pattern in the skb data according to the specified 3702 * textsearch configuration. Use textsearch_next() to retrieve 3703 * subsequent occurrences of the pattern. Returns the offset 3704 * to the first occurrence or UINT_MAX if no match was found. 3705 */ 3706 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from, 3707 unsigned int to, struct ts_config *config) 3708 { 3709 struct ts_state state; 3710 unsigned int ret; 3711 3712 BUILD_BUG_ON(sizeof(struct skb_seq_state) > sizeof(state.cb)); 3713 3714 config->get_next_block = skb_ts_get_next_block; 3715 config->finish = skb_ts_finish; 3716 3717 skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state)); 3718 3719 ret = textsearch_find(config, &state); 3720 return (ret <= to - from ? ret : UINT_MAX); 3721 } 3722 EXPORT_SYMBOL(skb_find_text); 3723 3724 int skb_append_pagefrags(struct sk_buff *skb, struct page *page, 3725 int offset, size_t size) 3726 { 3727 int i = skb_shinfo(skb)->nr_frags; 3728 3729 if (skb_can_coalesce(skb, i, page, offset)) { 3730 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size); 3731 } else if (i < MAX_SKB_FRAGS) { 3732 get_page(page); 3733 skb_fill_page_desc(skb, i, page, offset, size); 3734 } else { 3735 return -EMSGSIZE; 3736 } 3737 3738 return 0; 3739 } 3740 EXPORT_SYMBOL_GPL(skb_append_pagefrags); 3741 3742 /** 3743 * skb_pull_rcsum - pull skb and update receive checksum 3744 * @skb: buffer to update 3745 * @len: length of data pulled 3746 * 3747 * This function performs an skb_pull on the packet and updates 3748 * the CHECKSUM_COMPLETE checksum. It should be used on 3749 * receive path processing instead of skb_pull unless you know 3750 * that the checksum difference is zero (e.g., a valid IP header) 3751 * or you are setting ip_summed to CHECKSUM_NONE. 3752 */ 3753 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len) 3754 { 3755 unsigned char *data = skb->data; 3756 3757 BUG_ON(len > skb->len); 3758 __skb_pull(skb, len); 3759 skb_postpull_rcsum(skb, data, len); 3760 return skb->data; 3761 } 3762 EXPORT_SYMBOL_GPL(skb_pull_rcsum); 3763 3764 static inline skb_frag_t skb_head_frag_to_page_desc(struct sk_buff *frag_skb) 3765 { 3766 skb_frag_t head_frag; 3767 struct page *page; 3768 3769 page = virt_to_head_page(frag_skb->head); 3770 __skb_frag_set_page(&head_frag, page); 3771 skb_frag_off_set(&head_frag, frag_skb->data - 3772 (unsigned char *)page_address(page)); 3773 skb_frag_size_set(&head_frag, skb_headlen(frag_skb)); 3774 return head_frag; 3775 } 3776 3777 struct sk_buff *skb_segment_list(struct sk_buff *skb, 3778 netdev_features_t features, 3779 unsigned int offset) 3780 { 3781 struct sk_buff *list_skb = skb_shinfo(skb)->frag_list; 3782 unsigned int tnl_hlen = skb_tnl_header_len(skb); 3783 unsigned int delta_truesize = 0; 3784 unsigned int delta_len = 0; 3785 struct sk_buff *tail = NULL; 3786 struct sk_buff *nskb, *tmp; 3787 int err; 3788 3789 skb_push(skb, -skb_network_offset(skb) + offset); 3790 3791 skb_shinfo(skb)->frag_list = NULL; 3792 3793 do { 3794 nskb = list_skb; 3795 list_skb = list_skb->next; 3796 3797 err = 0; 3798 if (skb_shared(nskb)) { 3799 tmp = skb_clone(nskb, GFP_ATOMIC); 3800 if (tmp) { 3801 consume_skb(nskb); 3802 nskb = tmp; 3803 err = skb_unclone(nskb, GFP_ATOMIC); 3804 } else { 3805 err = -ENOMEM; 3806 } 3807 } 3808 3809 if (!tail) 3810 skb->next = nskb; 3811 else 3812 tail->next = nskb; 3813 3814 if (unlikely(err)) { 3815 nskb->next = list_skb; 3816 goto err_linearize; 3817 } 3818 3819 tail = nskb; 3820 3821 delta_len += nskb->len; 3822 delta_truesize += nskb->truesize; 3823 3824 skb_push(nskb, -skb_network_offset(nskb) + offset); 3825 3826 skb_release_head_state(nskb); 3827 __copy_skb_header(nskb, skb); 3828 3829 skb_headers_offset_update(nskb, skb_headroom(nskb) - skb_headroom(skb)); 3830 skb_copy_from_linear_data_offset(skb, -tnl_hlen, 3831 nskb->data - tnl_hlen, 3832 offset + tnl_hlen); 3833 3834 if (skb_needs_linearize(nskb, features) && 3835 __skb_linearize(nskb)) 3836 goto err_linearize; 3837 3838 } while (list_skb); 3839 3840 skb->truesize = skb->truesize - delta_truesize; 3841 skb->data_len = skb->data_len - delta_len; 3842 skb->len = skb->len - delta_len; 3843 3844 skb_gso_reset(skb); 3845 3846 skb->prev = tail; 3847 3848 if (skb_needs_linearize(skb, features) && 3849 __skb_linearize(skb)) 3850 goto err_linearize; 3851 3852 skb_get(skb); 3853 3854 return skb; 3855 3856 err_linearize: 3857 kfree_skb_list(skb->next); 3858 skb->next = NULL; 3859 return ERR_PTR(-ENOMEM); 3860 } 3861 EXPORT_SYMBOL_GPL(skb_segment_list); 3862 3863 int skb_gro_receive_list(struct sk_buff *p, struct sk_buff *skb) 3864 { 3865 if (unlikely(p->len + skb->len >= 65536)) 3866 return -E2BIG; 3867 3868 if (NAPI_GRO_CB(p)->last == p) 3869 skb_shinfo(p)->frag_list = skb; 3870 else 3871 NAPI_GRO_CB(p)->last->next = skb; 3872 3873 skb_pull(skb, skb_gro_offset(skb)); 3874 3875 NAPI_GRO_CB(p)->last = skb; 3876 NAPI_GRO_CB(p)->count++; 3877 p->data_len += skb->len; 3878 p->truesize += skb->truesize; 3879 p->len += skb->len; 3880 3881 NAPI_GRO_CB(skb)->same_flow = 1; 3882 3883 return 0; 3884 } 3885 3886 /** 3887 * skb_segment - Perform protocol segmentation on skb. 3888 * @head_skb: buffer to segment 3889 * @features: features for the output path (see dev->features) 3890 * 3891 * This function performs segmentation on the given skb. It returns 3892 * a pointer to the first in a list of new skbs for the segments. 3893 * In case of error it returns ERR_PTR(err). 3894 */ 3895 struct sk_buff *skb_segment(struct sk_buff *head_skb, 3896 netdev_features_t features) 3897 { 3898 struct sk_buff *segs = NULL; 3899 struct sk_buff *tail = NULL; 3900 struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list; 3901 skb_frag_t *frag = skb_shinfo(head_skb)->frags; 3902 unsigned int mss = skb_shinfo(head_skb)->gso_size; 3903 unsigned int doffset = head_skb->data - skb_mac_header(head_skb); 3904 struct sk_buff *frag_skb = head_skb; 3905 unsigned int offset = doffset; 3906 unsigned int tnl_hlen = skb_tnl_header_len(head_skb); 3907 unsigned int partial_segs = 0; 3908 unsigned int headroom; 3909 unsigned int len = head_skb->len; 3910 __be16 proto; 3911 bool csum, sg; 3912 int nfrags = skb_shinfo(head_skb)->nr_frags; 3913 int err = -ENOMEM; 3914 int i = 0; 3915 int pos; 3916 3917 if (list_skb && !list_skb->head_frag && skb_headlen(list_skb) && 3918 (skb_shinfo(head_skb)->gso_type & SKB_GSO_DODGY)) { 3919 /* gso_size is untrusted, and we have a frag_list with a linear 3920 * non head_frag head. 3921 * 3922 * (we assume checking the first list_skb member suffices; 3923 * i.e if either of the list_skb members have non head_frag 3924 * head, then the first one has too). 3925 * 3926 * If head_skb's headlen does not fit requested gso_size, it 3927 * means that the frag_list members do NOT terminate on exact 3928 * gso_size boundaries. Hence we cannot perform skb_frag_t page 3929 * sharing. Therefore we must fallback to copying the frag_list 3930 * skbs; we do so by disabling SG. 3931 */ 3932 if (mss != GSO_BY_FRAGS && mss != skb_headlen(head_skb)) 3933 features &= ~NETIF_F_SG; 3934 } 3935 3936 __skb_push(head_skb, doffset); 3937 proto = skb_network_protocol(head_skb, NULL); 3938 if (unlikely(!proto)) 3939 return ERR_PTR(-EINVAL); 3940 3941 sg = !!(features & NETIF_F_SG); 3942 csum = !!can_checksum_protocol(features, proto); 3943 3944 if (sg && csum && (mss != GSO_BY_FRAGS)) { 3945 if (!(features & NETIF_F_GSO_PARTIAL)) { 3946 struct sk_buff *iter; 3947 unsigned int frag_len; 3948 3949 if (!list_skb || 3950 !net_gso_ok(features, skb_shinfo(head_skb)->gso_type)) 3951 goto normal; 3952 3953 /* If we get here then all the required 3954 * GSO features except frag_list are supported. 3955 * Try to split the SKB to multiple GSO SKBs 3956 * with no frag_list. 3957 * Currently we can do that only when the buffers don't 3958 * have a linear part and all the buffers except 3959 * the last are of the same length. 3960 */ 3961 frag_len = list_skb->len; 3962 skb_walk_frags(head_skb, iter) { 3963 if (frag_len != iter->len && iter->next) 3964 goto normal; 3965 if (skb_headlen(iter) && !iter->head_frag) 3966 goto normal; 3967 3968 len -= iter->len; 3969 } 3970 3971 if (len != frag_len) 3972 goto normal; 3973 } 3974 3975 /* GSO partial only requires that we trim off any excess that 3976 * doesn't fit into an MSS sized block, so take care of that 3977 * now. 3978 */ 3979 partial_segs = len / mss; 3980 if (partial_segs > 1) 3981 mss *= partial_segs; 3982 else 3983 partial_segs = 0; 3984 } 3985 3986 normal: 3987 headroom = skb_headroom(head_skb); 3988 pos = skb_headlen(head_skb); 3989 3990 do { 3991 struct sk_buff *nskb; 3992 skb_frag_t *nskb_frag; 3993 int hsize; 3994 int size; 3995 3996 if (unlikely(mss == GSO_BY_FRAGS)) { 3997 len = list_skb->len; 3998 } else { 3999 len = head_skb->len - offset; 4000 if (len > mss) 4001 len = mss; 4002 } 4003 4004 hsize = skb_headlen(head_skb) - offset; 4005 4006 if (hsize <= 0 && i >= nfrags && skb_headlen(list_skb) && 4007 (skb_headlen(list_skb) == len || sg)) { 4008 BUG_ON(skb_headlen(list_skb) > len); 4009 4010 i = 0; 4011 nfrags = skb_shinfo(list_skb)->nr_frags; 4012 frag = skb_shinfo(list_skb)->frags; 4013 frag_skb = list_skb; 4014 pos += skb_headlen(list_skb); 4015 4016 while (pos < offset + len) { 4017 BUG_ON(i >= nfrags); 4018 4019 size = skb_frag_size(frag); 4020 if (pos + size > offset + len) 4021 break; 4022 4023 i++; 4024 pos += size; 4025 frag++; 4026 } 4027 4028 nskb = skb_clone(list_skb, GFP_ATOMIC); 4029 list_skb = list_skb->next; 4030 4031 if (unlikely(!nskb)) 4032 goto err; 4033 4034 if (unlikely(pskb_trim(nskb, len))) { 4035 kfree_skb(nskb); 4036 goto err; 4037 } 4038 4039 hsize = skb_end_offset(nskb); 4040 if (skb_cow_head(nskb, doffset + headroom)) { 4041 kfree_skb(nskb); 4042 goto err; 4043 } 4044 4045 nskb->truesize += skb_end_offset(nskb) - hsize; 4046 skb_release_head_state(nskb); 4047 __skb_push(nskb, doffset); 4048 } else { 4049 if (hsize < 0) 4050 hsize = 0; 4051 if (hsize > len || !sg) 4052 hsize = len; 4053 4054 nskb = __alloc_skb(hsize + doffset + headroom, 4055 GFP_ATOMIC, skb_alloc_rx_flag(head_skb), 4056 NUMA_NO_NODE); 4057 4058 if (unlikely(!nskb)) 4059 goto err; 4060 4061 skb_reserve(nskb, headroom); 4062 __skb_put(nskb, doffset); 4063 } 4064 4065 if (segs) 4066 tail->next = nskb; 4067 else 4068 segs = nskb; 4069 tail = nskb; 4070 4071 __copy_skb_header(nskb, head_skb); 4072 4073 skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom); 4074 skb_reset_mac_len(nskb); 4075 4076 skb_copy_from_linear_data_offset(head_skb, -tnl_hlen, 4077 nskb->data - tnl_hlen, 4078 doffset + tnl_hlen); 4079 4080 if (nskb->len == len + doffset) 4081 goto perform_csum_check; 4082 4083 if (!sg) { 4084 if (!csum) { 4085 if (!nskb->remcsum_offload) 4086 nskb->ip_summed = CHECKSUM_NONE; 4087 SKB_GSO_CB(nskb)->csum = 4088 skb_copy_and_csum_bits(head_skb, offset, 4089 skb_put(nskb, 4090 len), 4091 len); 4092 SKB_GSO_CB(nskb)->csum_start = 4093 skb_headroom(nskb) + doffset; 4094 } else { 4095 skb_copy_bits(head_skb, offset, 4096 skb_put(nskb, len), 4097 len); 4098 } 4099 continue; 4100 } 4101 4102 nskb_frag = skb_shinfo(nskb)->frags; 4103 4104 skb_copy_from_linear_data_offset(head_skb, offset, 4105 skb_put(nskb, hsize), hsize); 4106 4107 skb_shinfo(nskb)->flags |= skb_shinfo(head_skb)->flags & 4108 SKBFL_SHARED_FRAG; 4109 4110 if (skb_orphan_frags(frag_skb, GFP_ATOMIC) || 4111 skb_zerocopy_clone(nskb, frag_skb, GFP_ATOMIC)) 4112 goto err; 4113 4114 while (pos < offset + len) { 4115 if (i >= nfrags) { 4116 i = 0; 4117 nfrags = skb_shinfo(list_skb)->nr_frags; 4118 frag = skb_shinfo(list_skb)->frags; 4119 frag_skb = list_skb; 4120 if (!skb_headlen(list_skb)) { 4121 BUG_ON(!nfrags); 4122 } else { 4123 BUG_ON(!list_skb->head_frag); 4124 4125 /* to make room for head_frag. */ 4126 i--; 4127 frag--; 4128 } 4129 if (skb_orphan_frags(frag_skb, GFP_ATOMIC) || 4130 skb_zerocopy_clone(nskb, frag_skb, 4131 GFP_ATOMIC)) 4132 goto err; 4133 4134 list_skb = list_skb->next; 4135 } 4136 4137 if (unlikely(skb_shinfo(nskb)->nr_frags >= 4138 MAX_SKB_FRAGS)) { 4139 net_warn_ratelimited( 4140 "skb_segment: too many frags: %u %u\n", 4141 pos, mss); 4142 err = -EINVAL; 4143 goto err; 4144 } 4145 4146 *nskb_frag = (i < 0) ? skb_head_frag_to_page_desc(frag_skb) : *frag; 4147 __skb_frag_ref(nskb_frag); 4148 size = skb_frag_size(nskb_frag); 4149 4150 if (pos < offset) { 4151 skb_frag_off_add(nskb_frag, offset - pos); 4152 skb_frag_size_sub(nskb_frag, offset - pos); 4153 } 4154 4155 skb_shinfo(nskb)->nr_frags++; 4156 4157 if (pos + size <= offset + len) { 4158 i++; 4159 frag++; 4160 pos += size; 4161 } else { 4162 skb_frag_size_sub(nskb_frag, pos + size - (offset + len)); 4163 goto skip_fraglist; 4164 } 4165 4166 nskb_frag++; 4167 } 4168 4169 skip_fraglist: 4170 nskb->data_len = len - hsize; 4171 nskb->len += nskb->data_len; 4172 nskb->truesize += nskb->data_len; 4173 4174 perform_csum_check: 4175 if (!csum) { 4176 if (skb_has_shared_frag(nskb) && 4177 __skb_linearize(nskb)) 4178 goto err; 4179 4180 if (!nskb->remcsum_offload) 4181 nskb->ip_summed = CHECKSUM_NONE; 4182 SKB_GSO_CB(nskb)->csum = 4183 skb_checksum(nskb, doffset, 4184 nskb->len - doffset, 0); 4185 SKB_GSO_CB(nskb)->csum_start = 4186 skb_headroom(nskb) + doffset; 4187 } 4188 } while ((offset += len) < head_skb->len); 4189 4190 /* Some callers want to get the end of the list. 4191 * Put it in segs->prev to avoid walking the list. 4192 * (see validate_xmit_skb_list() for example) 4193 */ 4194 segs->prev = tail; 4195 4196 if (partial_segs) { 4197 struct sk_buff *iter; 4198 int type = skb_shinfo(head_skb)->gso_type; 4199 unsigned short gso_size = skb_shinfo(head_skb)->gso_size; 4200 4201 /* Update type to add partial and then remove dodgy if set */ 4202 type |= (features & NETIF_F_GSO_PARTIAL) / NETIF_F_GSO_PARTIAL * SKB_GSO_PARTIAL; 4203 type &= ~SKB_GSO_DODGY; 4204 4205 /* Update GSO info and prepare to start updating headers on 4206 * our way back down the stack of protocols. 4207 */ 4208 for (iter = segs; iter; iter = iter->next) { 4209 skb_shinfo(iter)->gso_size = gso_size; 4210 skb_shinfo(iter)->gso_segs = partial_segs; 4211 skb_shinfo(iter)->gso_type = type; 4212 SKB_GSO_CB(iter)->data_offset = skb_headroom(iter) + doffset; 4213 } 4214 4215 if (tail->len - doffset <= gso_size) 4216 skb_shinfo(tail)->gso_size = 0; 4217 else if (tail != segs) 4218 skb_shinfo(tail)->gso_segs = DIV_ROUND_UP(tail->len - doffset, gso_size); 4219 } 4220 4221 /* Following permits correct backpressure, for protocols 4222 * using skb_set_owner_w(). 4223 * Idea is to tranfert ownership from head_skb to last segment. 4224 */ 4225 if (head_skb->destructor == sock_wfree) { 4226 swap(tail->truesize, head_skb->truesize); 4227 swap(tail->destructor, head_skb->destructor); 4228 swap(tail->sk, head_skb->sk); 4229 } 4230 return segs; 4231 4232 err: 4233 kfree_skb_list(segs); 4234 return ERR_PTR(err); 4235 } 4236 EXPORT_SYMBOL_GPL(skb_segment); 4237 4238 int skb_gro_receive(struct sk_buff *p, struct sk_buff *skb) 4239 { 4240 struct skb_shared_info *pinfo, *skbinfo = skb_shinfo(skb); 4241 unsigned int offset = skb_gro_offset(skb); 4242 unsigned int headlen = skb_headlen(skb); 4243 unsigned int len = skb_gro_len(skb); 4244 unsigned int delta_truesize; 4245 struct sk_buff *lp; 4246 4247 if (unlikely(p->len + len >= 65536 || NAPI_GRO_CB(skb)->flush)) 4248 return -E2BIG; 4249 4250 lp = NAPI_GRO_CB(p)->last; 4251 pinfo = skb_shinfo(lp); 4252 4253 if (headlen <= offset) { 4254 skb_frag_t *frag; 4255 skb_frag_t *frag2; 4256 int i = skbinfo->nr_frags; 4257 int nr_frags = pinfo->nr_frags + i; 4258 4259 if (nr_frags > MAX_SKB_FRAGS) 4260 goto merge; 4261 4262 offset -= headlen; 4263 pinfo->nr_frags = nr_frags; 4264 skbinfo->nr_frags = 0; 4265 4266 frag = pinfo->frags + nr_frags; 4267 frag2 = skbinfo->frags + i; 4268 do { 4269 *--frag = *--frag2; 4270 } while (--i); 4271 4272 skb_frag_off_add(frag, offset); 4273 skb_frag_size_sub(frag, offset); 4274 4275 /* all fragments truesize : remove (head size + sk_buff) */ 4276 delta_truesize = skb->truesize - 4277 SKB_TRUESIZE(skb_end_offset(skb)); 4278 4279 skb->truesize -= skb->data_len; 4280 skb->len -= skb->data_len; 4281 skb->data_len = 0; 4282 4283 NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE; 4284 goto done; 4285 } else if (skb->head_frag) { 4286 int nr_frags = pinfo->nr_frags; 4287 skb_frag_t *frag = pinfo->frags + nr_frags; 4288 struct page *page = virt_to_head_page(skb->head); 4289 unsigned int first_size = headlen - offset; 4290 unsigned int first_offset; 4291 4292 if (nr_frags + 1 + skbinfo->nr_frags > MAX_SKB_FRAGS) 4293 goto merge; 4294 4295 first_offset = skb->data - 4296 (unsigned char *)page_address(page) + 4297 offset; 4298 4299 pinfo->nr_frags = nr_frags + 1 + skbinfo->nr_frags; 4300 4301 __skb_frag_set_page(frag, page); 4302 skb_frag_off_set(frag, first_offset); 4303 skb_frag_size_set(frag, first_size); 4304 4305 memcpy(frag + 1, skbinfo->frags, sizeof(*frag) * skbinfo->nr_frags); 4306 /* We dont need to clear skbinfo->nr_frags here */ 4307 4308 delta_truesize = skb->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff)); 4309 NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE_STOLEN_HEAD; 4310 goto done; 4311 } 4312 4313 merge: 4314 delta_truesize = skb->truesize; 4315 if (offset > headlen) { 4316 unsigned int eat = offset - headlen; 4317 4318 skb_frag_off_add(&skbinfo->frags[0], eat); 4319 skb_frag_size_sub(&skbinfo->frags[0], eat); 4320 skb->data_len -= eat; 4321 skb->len -= eat; 4322 offset = headlen; 4323 } 4324 4325 __skb_pull(skb, offset); 4326 4327 if (NAPI_GRO_CB(p)->last == p) 4328 skb_shinfo(p)->frag_list = skb; 4329 else 4330 NAPI_GRO_CB(p)->last->next = skb; 4331 NAPI_GRO_CB(p)->last = skb; 4332 __skb_header_release(skb); 4333 lp = p; 4334 4335 done: 4336 NAPI_GRO_CB(p)->count++; 4337 p->data_len += len; 4338 p->truesize += delta_truesize; 4339 p->len += len; 4340 if (lp != p) { 4341 lp->data_len += len; 4342 lp->truesize += delta_truesize; 4343 lp->len += len; 4344 } 4345 NAPI_GRO_CB(skb)->same_flow = 1; 4346 return 0; 4347 } 4348 4349 #ifdef CONFIG_SKB_EXTENSIONS 4350 #define SKB_EXT_ALIGN_VALUE 8 4351 #define SKB_EXT_CHUNKSIZEOF(x) (ALIGN((sizeof(x)), SKB_EXT_ALIGN_VALUE) / SKB_EXT_ALIGN_VALUE) 4352 4353 static const u8 skb_ext_type_len[] = { 4354 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 4355 [SKB_EXT_BRIDGE_NF] = SKB_EXT_CHUNKSIZEOF(struct nf_bridge_info), 4356 #endif 4357 #ifdef CONFIG_XFRM 4358 [SKB_EXT_SEC_PATH] = SKB_EXT_CHUNKSIZEOF(struct sec_path), 4359 #endif 4360 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT) 4361 [TC_SKB_EXT] = SKB_EXT_CHUNKSIZEOF(struct tc_skb_ext), 4362 #endif 4363 #if IS_ENABLED(CONFIG_MPTCP) 4364 [SKB_EXT_MPTCP] = SKB_EXT_CHUNKSIZEOF(struct mptcp_ext), 4365 #endif 4366 }; 4367 4368 static __always_inline unsigned int skb_ext_total_length(void) 4369 { 4370 return SKB_EXT_CHUNKSIZEOF(struct skb_ext) + 4371 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 4372 skb_ext_type_len[SKB_EXT_BRIDGE_NF] + 4373 #endif 4374 #ifdef CONFIG_XFRM 4375 skb_ext_type_len[SKB_EXT_SEC_PATH] + 4376 #endif 4377 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT) 4378 skb_ext_type_len[TC_SKB_EXT] + 4379 #endif 4380 #if IS_ENABLED(CONFIG_MPTCP) 4381 skb_ext_type_len[SKB_EXT_MPTCP] + 4382 #endif 4383 0; 4384 } 4385 4386 static void skb_extensions_init(void) 4387 { 4388 BUILD_BUG_ON(SKB_EXT_NUM >= 8); 4389 BUILD_BUG_ON(skb_ext_total_length() > 255); 4390 4391 skbuff_ext_cache = kmem_cache_create("skbuff_ext_cache", 4392 SKB_EXT_ALIGN_VALUE * skb_ext_total_length(), 4393 0, 4394 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 4395 NULL); 4396 } 4397 #else 4398 static void skb_extensions_init(void) {} 4399 #endif 4400 4401 void __init skb_init(void) 4402 { 4403 skbuff_head_cache = kmem_cache_create_usercopy("skbuff_head_cache", 4404 sizeof(struct sk_buff), 4405 0, 4406 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 4407 offsetof(struct sk_buff, cb), 4408 sizeof_field(struct sk_buff, cb), 4409 NULL); 4410 skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache", 4411 sizeof(struct sk_buff_fclones), 4412 0, 4413 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 4414 NULL); 4415 skb_extensions_init(); 4416 } 4417 4418 static int 4419 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len, 4420 unsigned int recursion_level) 4421 { 4422 int start = skb_headlen(skb); 4423 int i, copy = start - offset; 4424 struct sk_buff *frag_iter; 4425 int elt = 0; 4426 4427 if (unlikely(recursion_level >= 24)) 4428 return -EMSGSIZE; 4429 4430 if (copy > 0) { 4431 if (copy > len) 4432 copy = len; 4433 sg_set_buf(sg, skb->data + offset, copy); 4434 elt++; 4435 if ((len -= copy) == 0) 4436 return elt; 4437 offset += copy; 4438 } 4439 4440 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 4441 int end; 4442 4443 WARN_ON(start > offset + len); 4444 4445 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]); 4446 if ((copy = end - offset) > 0) { 4447 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 4448 if (unlikely(elt && sg_is_last(&sg[elt - 1]))) 4449 return -EMSGSIZE; 4450 4451 if (copy > len) 4452 copy = len; 4453 sg_set_page(&sg[elt], skb_frag_page(frag), copy, 4454 skb_frag_off(frag) + offset - start); 4455 elt++; 4456 if (!(len -= copy)) 4457 return elt; 4458 offset += copy; 4459 } 4460 start = end; 4461 } 4462 4463 skb_walk_frags(skb, frag_iter) { 4464 int end, ret; 4465 4466 WARN_ON(start > offset + len); 4467 4468 end = start + frag_iter->len; 4469 if ((copy = end - offset) > 0) { 4470 if (unlikely(elt && sg_is_last(&sg[elt - 1]))) 4471 return -EMSGSIZE; 4472 4473 if (copy > len) 4474 copy = len; 4475 ret = __skb_to_sgvec(frag_iter, sg+elt, offset - start, 4476 copy, recursion_level + 1); 4477 if (unlikely(ret < 0)) 4478 return ret; 4479 elt += ret; 4480 if ((len -= copy) == 0) 4481 return elt; 4482 offset += copy; 4483 } 4484 start = end; 4485 } 4486 BUG_ON(len); 4487 return elt; 4488 } 4489 4490 /** 4491 * skb_to_sgvec - Fill a scatter-gather list from a socket buffer 4492 * @skb: Socket buffer containing the buffers to be mapped 4493 * @sg: The scatter-gather list to map into 4494 * @offset: The offset into the buffer's contents to start mapping 4495 * @len: Length of buffer space to be mapped 4496 * 4497 * Fill the specified scatter-gather list with mappings/pointers into a 4498 * region of the buffer space attached to a socket buffer. Returns either 4499 * the number of scatterlist items used, or -EMSGSIZE if the contents 4500 * could not fit. 4501 */ 4502 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len) 4503 { 4504 int nsg = __skb_to_sgvec(skb, sg, offset, len, 0); 4505 4506 if (nsg <= 0) 4507 return nsg; 4508 4509 sg_mark_end(&sg[nsg - 1]); 4510 4511 return nsg; 4512 } 4513 EXPORT_SYMBOL_GPL(skb_to_sgvec); 4514 4515 /* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given 4516 * sglist without mark the sg which contain last skb data as the end. 4517 * So the caller can mannipulate sg list as will when padding new data after 4518 * the first call without calling sg_unmark_end to expend sg list. 4519 * 4520 * Scenario to use skb_to_sgvec_nomark: 4521 * 1. sg_init_table 4522 * 2. skb_to_sgvec_nomark(payload1) 4523 * 3. skb_to_sgvec_nomark(payload2) 4524 * 4525 * This is equivalent to: 4526 * 1. sg_init_table 4527 * 2. skb_to_sgvec(payload1) 4528 * 3. sg_unmark_end 4529 * 4. skb_to_sgvec(payload2) 4530 * 4531 * When mapping mutilple payload conditionally, skb_to_sgvec_nomark 4532 * is more preferable. 4533 */ 4534 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg, 4535 int offset, int len) 4536 { 4537 return __skb_to_sgvec(skb, sg, offset, len, 0); 4538 } 4539 EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark); 4540 4541 4542 4543 /** 4544 * skb_cow_data - Check that a socket buffer's data buffers are writable 4545 * @skb: The socket buffer to check. 4546 * @tailbits: Amount of trailing space to be added 4547 * @trailer: Returned pointer to the skb where the @tailbits space begins 4548 * 4549 * Make sure that the data buffers attached to a socket buffer are 4550 * writable. If they are not, private copies are made of the data buffers 4551 * and the socket buffer is set to use these instead. 4552 * 4553 * If @tailbits is given, make sure that there is space to write @tailbits 4554 * bytes of data beyond current end of socket buffer. @trailer will be 4555 * set to point to the skb in which this space begins. 4556 * 4557 * The number of scatterlist elements required to completely map the 4558 * COW'd and extended socket buffer will be returned. 4559 */ 4560 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer) 4561 { 4562 int copyflag; 4563 int elt; 4564 struct sk_buff *skb1, **skb_p; 4565 4566 /* If skb is cloned or its head is paged, reallocate 4567 * head pulling out all the pages (pages are considered not writable 4568 * at the moment even if they are anonymous). 4569 */ 4570 if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) && 4571 !__pskb_pull_tail(skb, __skb_pagelen(skb))) 4572 return -ENOMEM; 4573 4574 /* Easy case. Most of packets will go this way. */ 4575 if (!skb_has_frag_list(skb)) { 4576 /* A little of trouble, not enough of space for trailer. 4577 * This should not happen, when stack is tuned to generate 4578 * good frames. OK, on miss we reallocate and reserve even more 4579 * space, 128 bytes is fair. */ 4580 4581 if (skb_tailroom(skb) < tailbits && 4582 pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC)) 4583 return -ENOMEM; 4584 4585 /* Voila! */ 4586 *trailer = skb; 4587 return 1; 4588 } 4589 4590 /* Misery. We are in troubles, going to mincer fragments... */ 4591 4592 elt = 1; 4593 skb_p = &skb_shinfo(skb)->frag_list; 4594 copyflag = 0; 4595 4596 while ((skb1 = *skb_p) != NULL) { 4597 int ntail = 0; 4598 4599 /* The fragment is partially pulled by someone, 4600 * this can happen on input. Copy it and everything 4601 * after it. */ 4602 4603 if (skb_shared(skb1)) 4604 copyflag = 1; 4605 4606 /* If the skb is the last, worry about trailer. */ 4607 4608 if (skb1->next == NULL && tailbits) { 4609 if (skb_shinfo(skb1)->nr_frags || 4610 skb_has_frag_list(skb1) || 4611 skb_tailroom(skb1) < tailbits) 4612 ntail = tailbits + 128; 4613 } 4614 4615 if (copyflag || 4616 skb_cloned(skb1) || 4617 ntail || 4618 skb_shinfo(skb1)->nr_frags || 4619 skb_has_frag_list(skb1)) { 4620 struct sk_buff *skb2; 4621 4622 /* Fuck, we are miserable poor guys... */ 4623 if (ntail == 0) 4624 skb2 = skb_copy(skb1, GFP_ATOMIC); 4625 else 4626 skb2 = skb_copy_expand(skb1, 4627 skb_headroom(skb1), 4628 ntail, 4629 GFP_ATOMIC); 4630 if (unlikely(skb2 == NULL)) 4631 return -ENOMEM; 4632 4633 if (skb1->sk) 4634 skb_set_owner_w(skb2, skb1->sk); 4635 4636 /* Looking around. Are we still alive? 4637 * OK, link new skb, drop old one */ 4638 4639 skb2->next = skb1->next; 4640 *skb_p = skb2; 4641 kfree_skb(skb1); 4642 skb1 = skb2; 4643 } 4644 elt++; 4645 *trailer = skb1; 4646 skb_p = &skb1->next; 4647 } 4648 4649 return elt; 4650 } 4651 EXPORT_SYMBOL_GPL(skb_cow_data); 4652 4653 static void sock_rmem_free(struct sk_buff *skb) 4654 { 4655 struct sock *sk = skb->sk; 4656 4657 atomic_sub(skb->truesize, &sk->sk_rmem_alloc); 4658 } 4659 4660 static void skb_set_err_queue(struct sk_buff *skb) 4661 { 4662 /* pkt_type of skbs received on local sockets is never PACKET_OUTGOING. 4663 * So, it is safe to (mis)use it to mark skbs on the error queue. 4664 */ 4665 skb->pkt_type = PACKET_OUTGOING; 4666 BUILD_BUG_ON(PACKET_OUTGOING == 0); 4667 } 4668 4669 /* 4670 * Note: We dont mem charge error packets (no sk_forward_alloc changes) 4671 */ 4672 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb) 4673 { 4674 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >= 4675 (unsigned int)READ_ONCE(sk->sk_rcvbuf)) 4676 return -ENOMEM; 4677 4678 skb_orphan(skb); 4679 skb->sk = sk; 4680 skb->destructor = sock_rmem_free; 4681 atomic_add(skb->truesize, &sk->sk_rmem_alloc); 4682 skb_set_err_queue(skb); 4683 4684 /* before exiting rcu section, make sure dst is refcounted */ 4685 skb_dst_force(skb); 4686 4687 skb_queue_tail(&sk->sk_error_queue, skb); 4688 if (!sock_flag(sk, SOCK_DEAD)) 4689 sk_error_report(sk); 4690 return 0; 4691 } 4692 EXPORT_SYMBOL(sock_queue_err_skb); 4693 4694 static bool is_icmp_err_skb(const struct sk_buff *skb) 4695 { 4696 return skb && (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP || 4697 SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP6); 4698 } 4699 4700 struct sk_buff *sock_dequeue_err_skb(struct sock *sk) 4701 { 4702 struct sk_buff_head *q = &sk->sk_error_queue; 4703 struct sk_buff *skb, *skb_next = NULL; 4704 bool icmp_next = false; 4705 unsigned long flags; 4706 4707 spin_lock_irqsave(&q->lock, flags); 4708 skb = __skb_dequeue(q); 4709 if (skb && (skb_next = skb_peek(q))) { 4710 icmp_next = is_icmp_err_skb(skb_next); 4711 if (icmp_next) 4712 sk->sk_err = SKB_EXT_ERR(skb_next)->ee.ee_errno; 4713 } 4714 spin_unlock_irqrestore(&q->lock, flags); 4715 4716 if (is_icmp_err_skb(skb) && !icmp_next) 4717 sk->sk_err = 0; 4718 4719 if (skb_next) 4720 sk_error_report(sk); 4721 4722 return skb; 4723 } 4724 EXPORT_SYMBOL(sock_dequeue_err_skb); 4725 4726 /** 4727 * skb_clone_sk - create clone of skb, and take reference to socket 4728 * @skb: the skb to clone 4729 * 4730 * This function creates a clone of a buffer that holds a reference on 4731 * sk_refcnt. Buffers created via this function are meant to be 4732 * returned using sock_queue_err_skb, or free via kfree_skb. 4733 * 4734 * When passing buffers allocated with this function to sock_queue_err_skb 4735 * it is necessary to wrap the call with sock_hold/sock_put in order to 4736 * prevent the socket from being released prior to being enqueued on 4737 * the sk_error_queue. 4738 */ 4739 struct sk_buff *skb_clone_sk(struct sk_buff *skb) 4740 { 4741 struct sock *sk = skb->sk; 4742 struct sk_buff *clone; 4743 4744 if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt)) 4745 return NULL; 4746 4747 clone = skb_clone(skb, GFP_ATOMIC); 4748 if (!clone) { 4749 sock_put(sk); 4750 return NULL; 4751 } 4752 4753 clone->sk = sk; 4754 clone->destructor = sock_efree; 4755 4756 return clone; 4757 } 4758 EXPORT_SYMBOL(skb_clone_sk); 4759 4760 static void __skb_complete_tx_timestamp(struct sk_buff *skb, 4761 struct sock *sk, 4762 int tstype, 4763 bool opt_stats) 4764 { 4765 struct sock_exterr_skb *serr; 4766 int err; 4767 4768 BUILD_BUG_ON(sizeof(struct sock_exterr_skb) > sizeof(skb->cb)); 4769 4770 serr = SKB_EXT_ERR(skb); 4771 memset(serr, 0, sizeof(*serr)); 4772 serr->ee.ee_errno = ENOMSG; 4773 serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING; 4774 serr->ee.ee_info = tstype; 4775 serr->opt_stats = opt_stats; 4776 serr->header.h4.iif = skb->dev ? skb->dev->ifindex : 0; 4777 if (sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID) { 4778 serr->ee.ee_data = skb_shinfo(skb)->tskey; 4779 if (sk->sk_protocol == IPPROTO_TCP && 4780 sk->sk_type == SOCK_STREAM) 4781 serr->ee.ee_data -= sk->sk_tskey; 4782 } 4783 4784 err = sock_queue_err_skb(sk, skb); 4785 4786 if (err) 4787 kfree_skb(skb); 4788 } 4789 4790 static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly) 4791 { 4792 bool ret; 4793 4794 if (likely(sysctl_tstamp_allow_data || tsonly)) 4795 return true; 4796 4797 read_lock_bh(&sk->sk_callback_lock); 4798 ret = sk->sk_socket && sk->sk_socket->file && 4799 file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW); 4800 read_unlock_bh(&sk->sk_callback_lock); 4801 return ret; 4802 } 4803 4804 void skb_complete_tx_timestamp(struct sk_buff *skb, 4805 struct skb_shared_hwtstamps *hwtstamps) 4806 { 4807 struct sock *sk = skb->sk; 4808 4809 if (!skb_may_tx_timestamp(sk, false)) 4810 goto err; 4811 4812 /* Take a reference to prevent skb_orphan() from freeing the socket, 4813 * but only if the socket refcount is not zero. 4814 */ 4815 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) { 4816 *skb_hwtstamps(skb) = *hwtstamps; 4817 __skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND, false); 4818 sock_put(sk); 4819 return; 4820 } 4821 4822 err: 4823 kfree_skb(skb); 4824 } 4825 EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp); 4826 4827 void __skb_tstamp_tx(struct sk_buff *orig_skb, 4828 const struct sk_buff *ack_skb, 4829 struct skb_shared_hwtstamps *hwtstamps, 4830 struct sock *sk, int tstype) 4831 { 4832 struct sk_buff *skb; 4833 bool tsonly, opt_stats = false; 4834 4835 if (!sk) 4836 return; 4837 4838 if (!hwtstamps && !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TX_SWHW) && 4839 skb_shinfo(orig_skb)->tx_flags & SKBTX_IN_PROGRESS) 4840 return; 4841 4842 tsonly = sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TSONLY; 4843 if (!skb_may_tx_timestamp(sk, tsonly)) 4844 return; 4845 4846 if (tsonly) { 4847 #ifdef CONFIG_INET 4848 if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_STATS) && 4849 sk->sk_protocol == IPPROTO_TCP && 4850 sk->sk_type == SOCK_STREAM) { 4851 skb = tcp_get_timestamping_opt_stats(sk, orig_skb, 4852 ack_skb); 4853 opt_stats = true; 4854 } else 4855 #endif 4856 skb = alloc_skb(0, GFP_ATOMIC); 4857 } else { 4858 skb = skb_clone(orig_skb, GFP_ATOMIC); 4859 } 4860 if (!skb) 4861 return; 4862 4863 if (tsonly) { 4864 skb_shinfo(skb)->tx_flags |= skb_shinfo(orig_skb)->tx_flags & 4865 SKBTX_ANY_TSTAMP; 4866 skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey; 4867 } 4868 4869 if (hwtstamps) 4870 *skb_hwtstamps(skb) = *hwtstamps; 4871 else 4872 skb->tstamp = ktime_get_real(); 4873 4874 __skb_complete_tx_timestamp(skb, sk, tstype, opt_stats); 4875 } 4876 EXPORT_SYMBOL_GPL(__skb_tstamp_tx); 4877 4878 void skb_tstamp_tx(struct sk_buff *orig_skb, 4879 struct skb_shared_hwtstamps *hwtstamps) 4880 { 4881 return __skb_tstamp_tx(orig_skb, NULL, hwtstamps, orig_skb->sk, 4882 SCM_TSTAMP_SND); 4883 } 4884 EXPORT_SYMBOL_GPL(skb_tstamp_tx); 4885 4886 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked) 4887 { 4888 struct sock *sk = skb->sk; 4889 struct sock_exterr_skb *serr; 4890 int err = 1; 4891 4892 skb->wifi_acked_valid = 1; 4893 skb->wifi_acked = acked; 4894 4895 serr = SKB_EXT_ERR(skb); 4896 memset(serr, 0, sizeof(*serr)); 4897 serr->ee.ee_errno = ENOMSG; 4898 serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS; 4899 4900 /* Take a reference to prevent skb_orphan() from freeing the socket, 4901 * but only if the socket refcount is not zero. 4902 */ 4903 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) { 4904 err = sock_queue_err_skb(sk, skb); 4905 sock_put(sk); 4906 } 4907 if (err) 4908 kfree_skb(skb); 4909 } 4910 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack); 4911 4912 /** 4913 * skb_partial_csum_set - set up and verify partial csum values for packet 4914 * @skb: the skb to set 4915 * @start: the number of bytes after skb->data to start checksumming. 4916 * @off: the offset from start to place the checksum. 4917 * 4918 * For untrusted partially-checksummed packets, we need to make sure the values 4919 * for skb->csum_start and skb->csum_offset are valid so we don't oops. 4920 * 4921 * This function checks and sets those values and skb->ip_summed: if this 4922 * returns false you should drop the packet. 4923 */ 4924 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off) 4925 { 4926 u32 csum_end = (u32)start + (u32)off + sizeof(__sum16); 4927 u32 csum_start = skb_headroom(skb) + (u32)start; 4928 4929 if (unlikely(csum_start > U16_MAX || csum_end > skb_headlen(skb))) { 4930 net_warn_ratelimited("bad partial csum: csum=%u/%u headroom=%u headlen=%u\n", 4931 start, off, skb_headroom(skb), skb_headlen(skb)); 4932 return false; 4933 } 4934 skb->ip_summed = CHECKSUM_PARTIAL; 4935 skb->csum_start = csum_start; 4936 skb->csum_offset = off; 4937 skb_set_transport_header(skb, start); 4938 return true; 4939 } 4940 EXPORT_SYMBOL_GPL(skb_partial_csum_set); 4941 4942 static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len, 4943 unsigned int max) 4944 { 4945 if (skb_headlen(skb) >= len) 4946 return 0; 4947 4948 /* If we need to pullup then pullup to the max, so we 4949 * won't need to do it again. 4950 */ 4951 if (max > skb->len) 4952 max = skb->len; 4953 4954 if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL) 4955 return -ENOMEM; 4956 4957 if (skb_headlen(skb) < len) 4958 return -EPROTO; 4959 4960 return 0; 4961 } 4962 4963 #define MAX_TCP_HDR_LEN (15 * 4) 4964 4965 static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb, 4966 typeof(IPPROTO_IP) proto, 4967 unsigned int off) 4968 { 4969 int err; 4970 4971 switch (proto) { 4972 case IPPROTO_TCP: 4973 err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr), 4974 off + MAX_TCP_HDR_LEN); 4975 if (!err && !skb_partial_csum_set(skb, off, 4976 offsetof(struct tcphdr, 4977 check))) 4978 err = -EPROTO; 4979 return err ? ERR_PTR(err) : &tcp_hdr(skb)->check; 4980 4981 case IPPROTO_UDP: 4982 err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr), 4983 off + sizeof(struct udphdr)); 4984 if (!err && !skb_partial_csum_set(skb, off, 4985 offsetof(struct udphdr, 4986 check))) 4987 err = -EPROTO; 4988 return err ? ERR_PTR(err) : &udp_hdr(skb)->check; 4989 } 4990 4991 return ERR_PTR(-EPROTO); 4992 } 4993 4994 /* This value should be large enough to cover a tagged ethernet header plus 4995 * maximally sized IP and TCP or UDP headers. 4996 */ 4997 #define MAX_IP_HDR_LEN 128 4998 4999 static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate) 5000 { 5001 unsigned int off; 5002 bool fragment; 5003 __sum16 *csum; 5004 int err; 5005 5006 fragment = false; 5007 5008 err = skb_maybe_pull_tail(skb, 5009 sizeof(struct iphdr), 5010 MAX_IP_HDR_LEN); 5011 if (err < 0) 5012 goto out; 5013 5014 if (ip_is_fragment(ip_hdr(skb))) 5015 fragment = true; 5016 5017 off = ip_hdrlen(skb); 5018 5019 err = -EPROTO; 5020 5021 if (fragment) 5022 goto out; 5023 5024 csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off); 5025 if (IS_ERR(csum)) 5026 return PTR_ERR(csum); 5027 5028 if (recalculate) 5029 *csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr, 5030 ip_hdr(skb)->daddr, 5031 skb->len - off, 5032 ip_hdr(skb)->protocol, 0); 5033 err = 0; 5034 5035 out: 5036 return err; 5037 } 5038 5039 /* This value should be large enough to cover a tagged ethernet header plus 5040 * an IPv6 header, all options, and a maximal TCP or UDP header. 5041 */ 5042 #define MAX_IPV6_HDR_LEN 256 5043 5044 #define OPT_HDR(type, skb, off) \ 5045 (type *)(skb_network_header(skb) + (off)) 5046 5047 static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate) 5048 { 5049 int err; 5050 u8 nexthdr; 5051 unsigned int off; 5052 unsigned int len; 5053 bool fragment; 5054 bool done; 5055 __sum16 *csum; 5056 5057 fragment = false; 5058 done = false; 5059 5060 off = sizeof(struct ipv6hdr); 5061 5062 err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN); 5063 if (err < 0) 5064 goto out; 5065 5066 nexthdr = ipv6_hdr(skb)->nexthdr; 5067 5068 len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len); 5069 while (off <= len && !done) { 5070 switch (nexthdr) { 5071 case IPPROTO_DSTOPTS: 5072 case IPPROTO_HOPOPTS: 5073 case IPPROTO_ROUTING: { 5074 struct ipv6_opt_hdr *hp; 5075 5076 err = skb_maybe_pull_tail(skb, 5077 off + 5078 sizeof(struct ipv6_opt_hdr), 5079 MAX_IPV6_HDR_LEN); 5080 if (err < 0) 5081 goto out; 5082 5083 hp = OPT_HDR(struct ipv6_opt_hdr, skb, off); 5084 nexthdr = hp->nexthdr; 5085 off += ipv6_optlen(hp); 5086 break; 5087 } 5088 case IPPROTO_AH: { 5089 struct ip_auth_hdr *hp; 5090 5091 err = skb_maybe_pull_tail(skb, 5092 off + 5093 sizeof(struct ip_auth_hdr), 5094 MAX_IPV6_HDR_LEN); 5095 if (err < 0) 5096 goto out; 5097 5098 hp = OPT_HDR(struct ip_auth_hdr, skb, off); 5099 nexthdr = hp->nexthdr; 5100 off += ipv6_authlen(hp); 5101 break; 5102 } 5103 case IPPROTO_FRAGMENT: { 5104 struct frag_hdr *hp; 5105 5106 err = skb_maybe_pull_tail(skb, 5107 off + 5108 sizeof(struct frag_hdr), 5109 MAX_IPV6_HDR_LEN); 5110 if (err < 0) 5111 goto out; 5112 5113 hp = OPT_HDR(struct frag_hdr, skb, off); 5114 5115 if (hp->frag_off & htons(IP6_OFFSET | IP6_MF)) 5116 fragment = true; 5117 5118 nexthdr = hp->nexthdr; 5119 off += sizeof(struct frag_hdr); 5120 break; 5121 } 5122 default: 5123 done = true; 5124 break; 5125 } 5126 } 5127 5128 err = -EPROTO; 5129 5130 if (!done || fragment) 5131 goto out; 5132 5133 csum = skb_checksum_setup_ip(skb, nexthdr, off); 5134 if (IS_ERR(csum)) 5135 return PTR_ERR(csum); 5136 5137 if (recalculate) 5138 *csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr, 5139 &ipv6_hdr(skb)->daddr, 5140 skb->len - off, nexthdr, 0); 5141 err = 0; 5142 5143 out: 5144 return err; 5145 } 5146 5147 /** 5148 * skb_checksum_setup - set up partial checksum offset 5149 * @skb: the skb to set up 5150 * @recalculate: if true the pseudo-header checksum will be recalculated 5151 */ 5152 int skb_checksum_setup(struct sk_buff *skb, bool recalculate) 5153 { 5154 int err; 5155 5156 switch (skb->protocol) { 5157 case htons(ETH_P_IP): 5158 err = skb_checksum_setup_ipv4(skb, recalculate); 5159 break; 5160 5161 case htons(ETH_P_IPV6): 5162 err = skb_checksum_setup_ipv6(skb, recalculate); 5163 break; 5164 5165 default: 5166 err = -EPROTO; 5167 break; 5168 } 5169 5170 return err; 5171 } 5172 EXPORT_SYMBOL(skb_checksum_setup); 5173 5174 /** 5175 * skb_checksum_maybe_trim - maybe trims the given skb 5176 * @skb: the skb to check 5177 * @transport_len: the data length beyond the network header 5178 * 5179 * Checks whether the given skb has data beyond the given transport length. 5180 * If so, returns a cloned skb trimmed to this transport length. 5181 * Otherwise returns the provided skb. Returns NULL in error cases 5182 * (e.g. transport_len exceeds skb length or out-of-memory). 5183 * 5184 * Caller needs to set the skb transport header and free any returned skb if it 5185 * differs from the provided skb. 5186 */ 5187 static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb, 5188 unsigned int transport_len) 5189 { 5190 struct sk_buff *skb_chk; 5191 unsigned int len = skb_transport_offset(skb) + transport_len; 5192 int ret; 5193 5194 if (skb->len < len) 5195 return NULL; 5196 else if (skb->len == len) 5197 return skb; 5198 5199 skb_chk = skb_clone(skb, GFP_ATOMIC); 5200 if (!skb_chk) 5201 return NULL; 5202 5203 ret = pskb_trim_rcsum(skb_chk, len); 5204 if (ret) { 5205 kfree_skb(skb_chk); 5206 return NULL; 5207 } 5208 5209 return skb_chk; 5210 } 5211 5212 /** 5213 * skb_checksum_trimmed - validate checksum of an skb 5214 * @skb: the skb to check 5215 * @transport_len: the data length beyond the network header 5216 * @skb_chkf: checksum function to use 5217 * 5218 * Applies the given checksum function skb_chkf to the provided skb. 5219 * Returns a checked and maybe trimmed skb. Returns NULL on error. 5220 * 5221 * If the skb has data beyond the given transport length, then a 5222 * trimmed & cloned skb is checked and returned. 5223 * 5224 * Caller needs to set the skb transport header and free any returned skb if it 5225 * differs from the provided skb. 5226 */ 5227 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb, 5228 unsigned int transport_len, 5229 __sum16(*skb_chkf)(struct sk_buff *skb)) 5230 { 5231 struct sk_buff *skb_chk; 5232 unsigned int offset = skb_transport_offset(skb); 5233 __sum16 ret; 5234 5235 skb_chk = skb_checksum_maybe_trim(skb, transport_len); 5236 if (!skb_chk) 5237 goto err; 5238 5239 if (!pskb_may_pull(skb_chk, offset)) 5240 goto err; 5241 5242 skb_pull_rcsum(skb_chk, offset); 5243 ret = skb_chkf(skb_chk); 5244 skb_push_rcsum(skb_chk, offset); 5245 5246 if (ret) 5247 goto err; 5248 5249 return skb_chk; 5250 5251 err: 5252 if (skb_chk && skb_chk != skb) 5253 kfree_skb(skb_chk); 5254 5255 return NULL; 5256 5257 } 5258 EXPORT_SYMBOL(skb_checksum_trimmed); 5259 5260 void __skb_warn_lro_forwarding(const struct sk_buff *skb) 5261 { 5262 net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n", 5263 skb->dev->name); 5264 } 5265 EXPORT_SYMBOL(__skb_warn_lro_forwarding); 5266 5267 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen) 5268 { 5269 if (head_stolen) { 5270 skb_release_head_state(skb); 5271 kmem_cache_free(skbuff_head_cache, skb); 5272 } else { 5273 __kfree_skb(skb); 5274 } 5275 } 5276 EXPORT_SYMBOL(kfree_skb_partial); 5277 5278 /** 5279 * skb_try_coalesce - try to merge skb to prior one 5280 * @to: prior buffer 5281 * @from: buffer to add 5282 * @fragstolen: pointer to boolean 5283 * @delta_truesize: how much more was allocated than was requested 5284 */ 5285 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from, 5286 bool *fragstolen, int *delta_truesize) 5287 { 5288 struct skb_shared_info *to_shinfo, *from_shinfo; 5289 int i, delta, len = from->len; 5290 5291 *fragstolen = false; 5292 5293 if (skb_cloned(to)) 5294 return false; 5295 5296 /* The page pool signature of struct page will eventually figure out 5297 * which pages can be recycled or not but for now let's prohibit slab 5298 * allocated and page_pool allocated SKBs from being coalesced. 5299 */ 5300 if (to->pp_recycle != from->pp_recycle) 5301 return false; 5302 5303 if (len <= skb_tailroom(to)) { 5304 if (len) 5305 BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len)); 5306 *delta_truesize = 0; 5307 return true; 5308 } 5309 5310 to_shinfo = skb_shinfo(to); 5311 from_shinfo = skb_shinfo(from); 5312 if (to_shinfo->frag_list || from_shinfo->frag_list) 5313 return false; 5314 if (skb_zcopy(to) || skb_zcopy(from)) 5315 return false; 5316 5317 if (skb_headlen(from) != 0) { 5318 struct page *page; 5319 unsigned int offset; 5320 5321 if (to_shinfo->nr_frags + 5322 from_shinfo->nr_frags >= MAX_SKB_FRAGS) 5323 return false; 5324 5325 if (skb_head_is_locked(from)) 5326 return false; 5327 5328 delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff)); 5329 5330 page = virt_to_head_page(from->head); 5331 offset = from->data - (unsigned char *)page_address(page); 5332 5333 skb_fill_page_desc(to, to_shinfo->nr_frags, 5334 page, offset, skb_headlen(from)); 5335 *fragstolen = true; 5336 } else { 5337 if (to_shinfo->nr_frags + 5338 from_shinfo->nr_frags > MAX_SKB_FRAGS) 5339 return false; 5340 5341 delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from)); 5342 } 5343 5344 WARN_ON_ONCE(delta < len); 5345 5346 memcpy(to_shinfo->frags + to_shinfo->nr_frags, 5347 from_shinfo->frags, 5348 from_shinfo->nr_frags * sizeof(skb_frag_t)); 5349 to_shinfo->nr_frags += from_shinfo->nr_frags; 5350 5351 if (!skb_cloned(from)) 5352 from_shinfo->nr_frags = 0; 5353 5354 /* if the skb is not cloned this does nothing 5355 * since we set nr_frags to 0. 5356 */ 5357 for (i = 0; i < from_shinfo->nr_frags; i++) 5358 __skb_frag_ref(&from_shinfo->frags[i]); 5359 5360 to->truesize += delta; 5361 to->len += len; 5362 to->data_len += len; 5363 5364 *delta_truesize = delta; 5365 return true; 5366 } 5367 EXPORT_SYMBOL(skb_try_coalesce); 5368 5369 /** 5370 * skb_scrub_packet - scrub an skb 5371 * 5372 * @skb: buffer to clean 5373 * @xnet: packet is crossing netns 5374 * 5375 * skb_scrub_packet can be used after encapsulating or decapsulting a packet 5376 * into/from a tunnel. Some information have to be cleared during these 5377 * operations. 5378 * skb_scrub_packet can also be used to clean a skb before injecting it in 5379 * another namespace (@xnet == true). We have to clear all information in the 5380 * skb that could impact namespace isolation. 5381 */ 5382 void skb_scrub_packet(struct sk_buff *skb, bool xnet) 5383 { 5384 skb->pkt_type = PACKET_HOST; 5385 skb->skb_iif = 0; 5386 skb->ignore_df = 0; 5387 skb_dst_drop(skb); 5388 skb_ext_reset(skb); 5389 nf_reset_ct(skb); 5390 nf_reset_trace(skb); 5391 5392 #ifdef CONFIG_NET_SWITCHDEV 5393 skb->offload_fwd_mark = 0; 5394 skb->offload_l3_fwd_mark = 0; 5395 #endif 5396 5397 if (!xnet) 5398 return; 5399 5400 ipvs_reset(skb); 5401 skb->mark = 0; 5402 skb->tstamp = 0; 5403 } 5404 EXPORT_SYMBOL_GPL(skb_scrub_packet); 5405 5406 /** 5407 * skb_gso_transport_seglen - Return length of individual segments of a gso packet 5408 * 5409 * @skb: GSO skb 5410 * 5411 * skb_gso_transport_seglen is used to determine the real size of the 5412 * individual segments, including Layer4 headers (TCP/UDP). 5413 * 5414 * The MAC/L2 or network (IP, IPv6) headers are not accounted for. 5415 */ 5416 static unsigned int skb_gso_transport_seglen(const struct sk_buff *skb) 5417 { 5418 const struct skb_shared_info *shinfo = skb_shinfo(skb); 5419 unsigned int thlen = 0; 5420 5421 if (skb->encapsulation) { 5422 thlen = skb_inner_transport_header(skb) - 5423 skb_transport_header(skb); 5424 5425 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) 5426 thlen += inner_tcp_hdrlen(skb); 5427 } else if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) { 5428 thlen = tcp_hdrlen(skb); 5429 } else if (unlikely(skb_is_gso_sctp(skb))) { 5430 thlen = sizeof(struct sctphdr); 5431 } else if (shinfo->gso_type & SKB_GSO_UDP_L4) { 5432 thlen = sizeof(struct udphdr); 5433 } 5434 /* UFO sets gso_size to the size of the fragmentation 5435 * payload, i.e. the size of the L4 (UDP) header is already 5436 * accounted for. 5437 */ 5438 return thlen + shinfo->gso_size; 5439 } 5440 5441 /** 5442 * skb_gso_network_seglen - Return length of individual segments of a gso packet 5443 * 5444 * @skb: GSO skb 5445 * 5446 * skb_gso_network_seglen is used to determine the real size of the 5447 * individual segments, including Layer3 (IP, IPv6) and L4 headers (TCP/UDP). 5448 * 5449 * The MAC/L2 header is not accounted for. 5450 */ 5451 static unsigned int skb_gso_network_seglen(const struct sk_buff *skb) 5452 { 5453 unsigned int hdr_len = skb_transport_header(skb) - 5454 skb_network_header(skb); 5455 5456 return hdr_len + skb_gso_transport_seglen(skb); 5457 } 5458 5459 /** 5460 * skb_gso_mac_seglen - Return length of individual segments of a gso packet 5461 * 5462 * @skb: GSO skb 5463 * 5464 * skb_gso_mac_seglen is used to determine the real size of the 5465 * individual segments, including MAC/L2, Layer3 (IP, IPv6) and L4 5466 * headers (TCP/UDP). 5467 */ 5468 static unsigned int skb_gso_mac_seglen(const struct sk_buff *skb) 5469 { 5470 unsigned int hdr_len = skb_transport_header(skb) - skb_mac_header(skb); 5471 5472 return hdr_len + skb_gso_transport_seglen(skb); 5473 } 5474 5475 /** 5476 * skb_gso_size_check - check the skb size, considering GSO_BY_FRAGS 5477 * 5478 * There are a couple of instances where we have a GSO skb, and we 5479 * want to determine what size it would be after it is segmented. 5480 * 5481 * We might want to check: 5482 * - L3+L4+payload size (e.g. IP forwarding) 5483 * - L2+L3+L4+payload size (e.g. sanity check before passing to driver) 5484 * 5485 * This is a helper to do that correctly considering GSO_BY_FRAGS. 5486 * 5487 * @skb: GSO skb 5488 * 5489 * @seg_len: The segmented length (from skb_gso_*_seglen). In the 5490 * GSO_BY_FRAGS case this will be [header sizes + GSO_BY_FRAGS]. 5491 * 5492 * @max_len: The maximum permissible length. 5493 * 5494 * Returns true if the segmented length <= max length. 5495 */ 5496 static inline bool skb_gso_size_check(const struct sk_buff *skb, 5497 unsigned int seg_len, 5498 unsigned int max_len) { 5499 const struct skb_shared_info *shinfo = skb_shinfo(skb); 5500 const struct sk_buff *iter; 5501 5502 if (shinfo->gso_size != GSO_BY_FRAGS) 5503 return seg_len <= max_len; 5504 5505 /* Undo this so we can re-use header sizes */ 5506 seg_len -= GSO_BY_FRAGS; 5507 5508 skb_walk_frags(skb, iter) { 5509 if (seg_len + skb_headlen(iter) > max_len) 5510 return false; 5511 } 5512 5513 return true; 5514 } 5515 5516 /** 5517 * skb_gso_validate_network_len - Will a split GSO skb fit into a given MTU? 5518 * 5519 * @skb: GSO skb 5520 * @mtu: MTU to validate against 5521 * 5522 * skb_gso_validate_network_len validates if a given skb will fit a 5523 * wanted MTU once split. It considers L3 headers, L4 headers, and the 5524 * payload. 5525 */ 5526 bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu) 5527 { 5528 return skb_gso_size_check(skb, skb_gso_network_seglen(skb), mtu); 5529 } 5530 EXPORT_SYMBOL_GPL(skb_gso_validate_network_len); 5531 5532 /** 5533 * skb_gso_validate_mac_len - Will a split GSO skb fit in a given length? 5534 * 5535 * @skb: GSO skb 5536 * @len: length to validate against 5537 * 5538 * skb_gso_validate_mac_len validates if a given skb will fit a wanted 5539 * length once split, including L2, L3 and L4 headers and the payload. 5540 */ 5541 bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len) 5542 { 5543 return skb_gso_size_check(skb, skb_gso_mac_seglen(skb), len); 5544 } 5545 EXPORT_SYMBOL_GPL(skb_gso_validate_mac_len); 5546 5547 static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb) 5548 { 5549 int mac_len, meta_len; 5550 void *meta; 5551 5552 if (skb_cow(skb, skb_headroom(skb)) < 0) { 5553 kfree_skb(skb); 5554 return NULL; 5555 } 5556 5557 mac_len = skb->data - skb_mac_header(skb); 5558 if (likely(mac_len > VLAN_HLEN + ETH_TLEN)) { 5559 memmove(skb_mac_header(skb) + VLAN_HLEN, skb_mac_header(skb), 5560 mac_len - VLAN_HLEN - ETH_TLEN); 5561 } 5562 5563 meta_len = skb_metadata_len(skb); 5564 if (meta_len) { 5565 meta = skb_metadata_end(skb) - meta_len; 5566 memmove(meta + VLAN_HLEN, meta, meta_len); 5567 } 5568 5569 skb->mac_header += VLAN_HLEN; 5570 return skb; 5571 } 5572 5573 struct sk_buff *skb_vlan_untag(struct sk_buff *skb) 5574 { 5575 struct vlan_hdr *vhdr; 5576 u16 vlan_tci; 5577 5578 if (unlikely(skb_vlan_tag_present(skb))) { 5579 /* vlan_tci is already set-up so leave this for another time */ 5580 return skb; 5581 } 5582 5583 skb = skb_share_check(skb, GFP_ATOMIC); 5584 if (unlikely(!skb)) 5585 goto err_free; 5586 /* We may access the two bytes after vlan_hdr in vlan_set_encap_proto(). */ 5587 if (unlikely(!pskb_may_pull(skb, VLAN_HLEN + sizeof(unsigned short)))) 5588 goto err_free; 5589 5590 vhdr = (struct vlan_hdr *)skb->data; 5591 vlan_tci = ntohs(vhdr->h_vlan_TCI); 5592 __vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci); 5593 5594 skb_pull_rcsum(skb, VLAN_HLEN); 5595 vlan_set_encap_proto(skb, vhdr); 5596 5597 skb = skb_reorder_vlan_header(skb); 5598 if (unlikely(!skb)) 5599 goto err_free; 5600 5601 skb_reset_network_header(skb); 5602 if (!skb_transport_header_was_set(skb)) 5603 skb_reset_transport_header(skb); 5604 skb_reset_mac_len(skb); 5605 5606 return skb; 5607 5608 err_free: 5609 kfree_skb(skb); 5610 return NULL; 5611 } 5612 EXPORT_SYMBOL(skb_vlan_untag); 5613 5614 int skb_ensure_writable(struct sk_buff *skb, int write_len) 5615 { 5616 if (!pskb_may_pull(skb, write_len)) 5617 return -ENOMEM; 5618 5619 if (!skb_cloned(skb) || skb_clone_writable(skb, write_len)) 5620 return 0; 5621 5622 return pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 5623 } 5624 EXPORT_SYMBOL(skb_ensure_writable); 5625 5626 /* remove VLAN header from packet and update csum accordingly. 5627 * expects a non skb_vlan_tag_present skb with a vlan tag payload 5628 */ 5629 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci) 5630 { 5631 struct vlan_hdr *vhdr; 5632 int offset = skb->data - skb_mac_header(skb); 5633 int err; 5634 5635 if (WARN_ONCE(offset, 5636 "__skb_vlan_pop got skb with skb->data not at mac header (offset %d)\n", 5637 offset)) { 5638 return -EINVAL; 5639 } 5640 5641 err = skb_ensure_writable(skb, VLAN_ETH_HLEN); 5642 if (unlikely(err)) 5643 return err; 5644 5645 skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN); 5646 5647 vhdr = (struct vlan_hdr *)(skb->data + ETH_HLEN); 5648 *vlan_tci = ntohs(vhdr->h_vlan_TCI); 5649 5650 memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN); 5651 __skb_pull(skb, VLAN_HLEN); 5652 5653 vlan_set_encap_proto(skb, vhdr); 5654 skb->mac_header += VLAN_HLEN; 5655 5656 if (skb_network_offset(skb) < ETH_HLEN) 5657 skb_set_network_header(skb, ETH_HLEN); 5658 5659 skb_reset_mac_len(skb); 5660 5661 return err; 5662 } 5663 EXPORT_SYMBOL(__skb_vlan_pop); 5664 5665 /* Pop a vlan tag either from hwaccel or from payload. 5666 * Expects skb->data at mac header. 5667 */ 5668 int skb_vlan_pop(struct sk_buff *skb) 5669 { 5670 u16 vlan_tci; 5671 __be16 vlan_proto; 5672 int err; 5673 5674 if (likely(skb_vlan_tag_present(skb))) { 5675 __vlan_hwaccel_clear_tag(skb); 5676 } else { 5677 if (unlikely(!eth_type_vlan(skb->protocol))) 5678 return 0; 5679 5680 err = __skb_vlan_pop(skb, &vlan_tci); 5681 if (err) 5682 return err; 5683 } 5684 /* move next vlan tag to hw accel tag */ 5685 if (likely(!eth_type_vlan(skb->protocol))) 5686 return 0; 5687 5688 vlan_proto = skb->protocol; 5689 err = __skb_vlan_pop(skb, &vlan_tci); 5690 if (unlikely(err)) 5691 return err; 5692 5693 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci); 5694 return 0; 5695 } 5696 EXPORT_SYMBOL(skb_vlan_pop); 5697 5698 /* Push a vlan tag either into hwaccel or into payload (if hwaccel tag present). 5699 * Expects skb->data at mac header. 5700 */ 5701 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci) 5702 { 5703 if (skb_vlan_tag_present(skb)) { 5704 int offset = skb->data - skb_mac_header(skb); 5705 int err; 5706 5707 if (WARN_ONCE(offset, 5708 "skb_vlan_push got skb with skb->data not at mac header (offset %d)\n", 5709 offset)) { 5710 return -EINVAL; 5711 } 5712 5713 err = __vlan_insert_tag(skb, skb->vlan_proto, 5714 skb_vlan_tag_get(skb)); 5715 if (err) 5716 return err; 5717 5718 skb->protocol = skb->vlan_proto; 5719 skb->mac_len += VLAN_HLEN; 5720 5721 skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN); 5722 } 5723 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci); 5724 return 0; 5725 } 5726 EXPORT_SYMBOL(skb_vlan_push); 5727 5728 /** 5729 * skb_eth_pop() - Drop the Ethernet header at the head of a packet 5730 * 5731 * @skb: Socket buffer to modify 5732 * 5733 * Drop the Ethernet header of @skb. 5734 * 5735 * Expects that skb->data points to the mac header and that no VLAN tags are 5736 * present. 5737 * 5738 * Returns 0 on success, -errno otherwise. 5739 */ 5740 int skb_eth_pop(struct sk_buff *skb) 5741 { 5742 if (!pskb_may_pull(skb, ETH_HLEN) || skb_vlan_tagged(skb) || 5743 skb_network_offset(skb) < ETH_HLEN) 5744 return -EPROTO; 5745 5746 skb_pull_rcsum(skb, ETH_HLEN); 5747 skb_reset_mac_header(skb); 5748 skb_reset_mac_len(skb); 5749 5750 return 0; 5751 } 5752 EXPORT_SYMBOL(skb_eth_pop); 5753 5754 /** 5755 * skb_eth_push() - Add a new Ethernet header at the head of a packet 5756 * 5757 * @skb: Socket buffer to modify 5758 * @dst: Destination MAC address of the new header 5759 * @src: Source MAC address of the new header 5760 * 5761 * Prepend @skb with a new Ethernet header. 5762 * 5763 * Expects that skb->data points to the mac header, which must be empty. 5764 * 5765 * Returns 0 on success, -errno otherwise. 5766 */ 5767 int skb_eth_push(struct sk_buff *skb, const unsigned char *dst, 5768 const unsigned char *src) 5769 { 5770 struct ethhdr *eth; 5771 int err; 5772 5773 if (skb_network_offset(skb) || skb_vlan_tag_present(skb)) 5774 return -EPROTO; 5775 5776 err = skb_cow_head(skb, sizeof(*eth)); 5777 if (err < 0) 5778 return err; 5779 5780 skb_push(skb, sizeof(*eth)); 5781 skb_reset_mac_header(skb); 5782 skb_reset_mac_len(skb); 5783 5784 eth = eth_hdr(skb); 5785 ether_addr_copy(eth->h_dest, dst); 5786 ether_addr_copy(eth->h_source, src); 5787 eth->h_proto = skb->protocol; 5788 5789 skb_postpush_rcsum(skb, eth, sizeof(*eth)); 5790 5791 return 0; 5792 } 5793 EXPORT_SYMBOL(skb_eth_push); 5794 5795 /* Update the ethertype of hdr and the skb csum value if required. */ 5796 static void skb_mod_eth_type(struct sk_buff *skb, struct ethhdr *hdr, 5797 __be16 ethertype) 5798 { 5799 if (skb->ip_summed == CHECKSUM_COMPLETE) { 5800 __be16 diff[] = { ~hdr->h_proto, ethertype }; 5801 5802 skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum); 5803 } 5804 5805 hdr->h_proto = ethertype; 5806 } 5807 5808 /** 5809 * skb_mpls_push() - push a new MPLS header after mac_len bytes from start of 5810 * the packet 5811 * 5812 * @skb: buffer 5813 * @mpls_lse: MPLS label stack entry to push 5814 * @mpls_proto: ethertype of the new MPLS header (expects 0x8847 or 0x8848) 5815 * @mac_len: length of the MAC header 5816 * @ethernet: flag to indicate if the resulting packet after skb_mpls_push is 5817 * ethernet 5818 * 5819 * Expects skb->data at mac header. 5820 * 5821 * Returns 0 on success, -errno otherwise. 5822 */ 5823 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto, 5824 int mac_len, bool ethernet) 5825 { 5826 struct mpls_shim_hdr *lse; 5827 int err; 5828 5829 if (unlikely(!eth_p_mpls(mpls_proto))) 5830 return -EINVAL; 5831 5832 /* Networking stack does not allow simultaneous Tunnel and MPLS GSO. */ 5833 if (skb->encapsulation) 5834 return -EINVAL; 5835 5836 err = skb_cow_head(skb, MPLS_HLEN); 5837 if (unlikely(err)) 5838 return err; 5839 5840 if (!skb->inner_protocol) { 5841 skb_set_inner_network_header(skb, skb_network_offset(skb)); 5842 skb_set_inner_protocol(skb, skb->protocol); 5843 } 5844 5845 skb_push(skb, MPLS_HLEN); 5846 memmove(skb_mac_header(skb) - MPLS_HLEN, skb_mac_header(skb), 5847 mac_len); 5848 skb_reset_mac_header(skb); 5849 skb_set_network_header(skb, mac_len); 5850 skb_reset_mac_len(skb); 5851 5852 lse = mpls_hdr(skb); 5853 lse->label_stack_entry = mpls_lse; 5854 skb_postpush_rcsum(skb, lse, MPLS_HLEN); 5855 5856 if (ethernet && mac_len >= ETH_HLEN) 5857 skb_mod_eth_type(skb, eth_hdr(skb), mpls_proto); 5858 skb->protocol = mpls_proto; 5859 5860 return 0; 5861 } 5862 EXPORT_SYMBOL_GPL(skb_mpls_push); 5863 5864 /** 5865 * skb_mpls_pop() - pop the outermost MPLS header 5866 * 5867 * @skb: buffer 5868 * @next_proto: ethertype of header after popped MPLS header 5869 * @mac_len: length of the MAC header 5870 * @ethernet: flag to indicate if the packet is ethernet 5871 * 5872 * Expects skb->data at mac header. 5873 * 5874 * Returns 0 on success, -errno otherwise. 5875 */ 5876 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len, 5877 bool ethernet) 5878 { 5879 int err; 5880 5881 if (unlikely(!eth_p_mpls(skb->protocol))) 5882 return 0; 5883 5884 err = skb_ensure_writable(skb, mac_len + MPLS_HLEN); 5885 if (unlikely(err)) 5886 return err; 5887 5888 skb_postpull_rcsum(skb, mpls_hdr(skb), MPLS_HLEN); 5889 memmove(skb_mac_header(skb) + MPLS_HLEN, skb_mac_header(skb), 5890 mac_len); 5891 5892 __skb_pull(skb, MPLS_HLEN); 5893 skb_reset_mac_header(skb); 5894 skb_set_network_header(skb, mac_len); 5895 5896 if (ethernet && mac_len >= ETH_HLEN) { 5897 struct ethhdr *hdr; 5898 5899 /* use mpls_hdr() to get ethertype to account for VLANs. */ 5900 hdr = (struct ethhdr *)((void *)mpls_hdr(skb) - ETH_HLEN); 5901 skb_mod_eth_type(skb, hdr, next_proto); 5902 } 5903 skb->protocol = next_proto; 5904 5905 return 0; 5906 } 5907 EXPORT_SYMBOL_GPL(skb_mpls_pop); 5908 5909 /** 5910 * skb_mpls_update_lse() - modify outermost MPLS header and update csum 5911 * 5912 * @skb: buffer 5913 * @mpls_lse: new MPLS label stack entry to update to 5914 * 5915 * Expects skb->data at mac header. 5916 * 5917 * Returns 0 on success, -errno otherwise. 5918 */ 5919 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse) 5920 { 5921 int err; 5922 5923 if (unlikely(!eth_p_mpls(skb->protocol))) 5924 return -EINVAL; 5925 5926 err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN); 5927 if (unlikely(err)) 5928 return err; 5929 5930 if (skb->ip_summed == CHECKSUM_COMPLETE) { 5931 __be32 diff[] = { ~mpls_hdr(skb)->label_stack_entry, mpls_lse }; 5932 5933 skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum); 5934 } 5935 5936 mpls_hdr(skb)->label_stack_entry = mpls_lse; 5937 5938 return 0; 5939 } 5940 EXPORT_SYMBOL_GPL(skb_mpls_update_lse); 5941 5942 /** 5943 * skb_mpls_dec_ttl() - decrement the TTL of the outermost MPLS header 5944 * 5945 * @skb: buffer 5946 * 5947 * Expects skb->data at mac header. 5948 * 5949 * Returns 0 on success, -errno otherwise. 5950 */ 5951 int skb_mpls_dec_ttl(struct sk_buff *skb) 5952 { 5953 u32 lse; 5954 u8 ttl; 5955 5956 if (unlikely(!eth_p_mpls(skb->protocol))) 5957 return -EINVAL; 5958 5959 if (!pskb_may_pull(skb, skb_network_offset(skb) + MPLS_HLEN)) 5960 return -ENOMEM; 5961 5962 lse = be32_to_cpu(mpls_hdr(skb)->label_stack_entry); 5963 ttl = (lse & MPLS_LS_TTL_MASK) >> MPLS_LS_TTL_SHIFT; 5964 if (!--ttl) 5965 return -EINVAL; 5966 5967 lse &= ~MPLS_LS_TTL_MASK; 5968 lse |= ttl << MPLS_LS_TTL_SHIFT; 5969 5970 return skb_mpls_update_lse(skb, cpu_to_be32(lse)); 5971 } 5972 EXPORT_SYMBOL_GPL(skb_mpls_dec_ttl); 5973 5974 /** 5975 * alloc_skb_with_frags - allocate skb with page frags 5976 * 5977 * @header_len: size of linear part 5978 * @data_len: needed length in frags 5979 * @max_page_order: max page order desired. 5980 * @errcode: pointer to error code if any 5981 * @gfp_mask: allocation mask 5982 * 5983 * This can be used to allocate a paged skb, given a maximal order for frags. 5984 */ 5985 struct sk_buff *alloc_skb_with_frags(unsigned long header_len, 5986 unsigned long data_len, 5987 int max_page_order, 5988 int *errcode, 5989 gfp_t gfp_mask) 5990 { 5991 int npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT; 5992 unsigned long chunk; 5993 struct sk_buff *skb; 5994 struct page *page; 5995 int i; 5996 5997 *errcode = -EMSGSIZE; 5998 /* Note this test could be relaxed, if we succeed to allocate 5999 * high order pages... 6000 */ 6001 if (npages > MAX_SKB_FRAGS) 6002 return NULL; 6003 6004 *errcode = -ENOBUFS; 6005 skb = alloc_skb(header_len, gfp_mask); 6006 if (!skb) 6007 return NULL; 6008 6009 skb->truesize += npages << PAGE_SHIFT; 6010 6011 for (i = 0; npages > 0; i++) { 6012 int order = max_page_order; 6013 6014 while (order) { 6015 if (npages >= 1 << order) { 6016 page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) | 6017 __GFP_COMP | 6018 __GFP_NOWARN, 6019 order); 6020 if (page) 6021 goto fill_page; 6022 /* Do not retry other high order allocations */ 6023 order = 1; 6024 max_page_order = 0; 6025 } 6026 order--; 6027 } 6028 page = alloc_page(gfp_mask); 6029 if (!page) 6030 goto failure; 6031 fill_page: 6032 chunk = min_t(unsigned long, data_len, 6033 PAGE_SIZE << order); 6034 skb_fill_page_desc(skb, i, page, 0, chunk); 6035 data_len -= chunk; 6036 npages -= 1 << order; 6037 } 6038 return skb; 6039 6040 failure: 6041 kfree_skb(skb); 6042 return NULL; 6043 } 6044 EXPORT_SYMBOL(alloc_skb_with_frags); 6045 6046 /* carve out the first off bytes from skb when off < headlen */ 6047 static int pskb_carve_inside_header(struct sk_buff *skb, const u32 off, 6048 const int headlen, gfp_t gfp_mask) 6049 { 6050 int i; 6051 int size = skb_end_offset(skb); 6052 int new_hlen = headlen - off; 6053 u8 *data; 6054 6055 size = SKB_DATA_ALIGN(size); 6056 6057 if (skb_pfmemalloc(skb)) 6058 gfp_mask |= __GFP_MEMALLOC; 6059 data = kmalloc_reserve(size + 6060 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)), 6061 gfp_mask, NUMA_NO_NODE, NULL); 6062 if (!data) 6063 return -ENOMEM; 6064 6065 size = SKB_WITH_OVERHEAD(ksize(data)); 6066 6067 /* Copy real data, and all frags */ 6068 skb_copy_from_linear_data_offset(skb, off, data, new_hlen); 6069 skb->len -= off; 6070 6071 memcpy((struct skb_shared_info *)(data + size), 6072 skb_shinfo(skb), 6073 offsetof(struct skb_shared_info, 6074 frags[skb_shinfo(skb)->nr_frags])); 6075 if (skb_cloned(skb)) { 6076 /* drop the old head gracefully */ 6077 if (skb_orphan_frags(skb, gfp_mask)) { 6078 kfree(data); 6079 return -ENOMEM; 6080 } 6081 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 6082 skb_frag_ref(skb, i); 6083 if (skb_has_frag_list(skb)) 6084 skb_clone_fraglist(skb); 6085 skb_release_data(skb); 6086 } else { 6087 /* we can reuse existing recount- all we did was 6088 * relocate values 6089 */ 6090 skb_free_head(skb); 6091 } 6092 6093 skb->head = data; 6094 skb->data = data; 6095 skb->head_frag = 0; 6096 #ifdef NET_SKBUFF_DATA_USES_OFFSET 6097 skb->end = size; 6098 #else 6099 skb->end = skb->head + size; 6100 #endif 6101 skb_set_tail_pointer(skb, skb_headlen(skb)); 6102 skb_headers_offset_update(skb, 0); 6103 skb->cloned = 0; 6104 skb->hdr_len = 0; 6105 skb->nohdr = 0; 6106 atomic_set(&skb_shinfo(skb)->dataref, 1); 6107 6108 return 0; 6109 } 6110 6111 static int pskb_carve(struct sk_buff *skb, const u32 off, gfp_t gfp); 6112 6113 /* carve out the first eat bytes from skb's frag_list. May recurse into 6114 * pskb_carve() 6115 */ 6116 static int pskb_carve_frag_list(struct sk_buff *skb, 6117 struct skb_shared_info *shinfo, int eat, 6118 gfp_t gfp_mask) 6119 { 6120 struct sk_buff *list = shinfo->frag_list; 6121 struct sk_buff *clone = NULL; 6122 struct sk_buff *insp = NULL; 6123 6124 do { 6125 if (!list) { 6126 pr_err("Not enough bytes to eat. Want %d\n", eat); 6127 return -EFAULT; 6128 } 6129 if (list->len <= eat) { 6130 /* Eaten as whole. */ 6131 eat -= list->len; 6132 list = list->next; 6133 insp = list; 6134 } else { 6135 /* Eaten partially. */ 6136 if (skb_shared(list)) { 6137 clone = skb_clone(list, gfp_mask); 6138 if (!clone) 6139 return -ENOMEM; 6140 insp = list->next; 6141 list = clone; 6142 } else { 6143 /* This may be pulled without problems. */ 6144 insp = list; 6145 } 6146 if (pskb_carve(list, eat, gfp_mask) < 0) { 6147 kfree_skb(clone); 6148 return -ENOMEM; 6149 } 6150 break; 6151 } 6152 } while (eat); 6153 6154 /* Free pulled out fragments. */ 6155 while ((list = shinfo->frag_list) != insp) { 6156 shinfo->frag_list = list->next; 6157 kfree_skb(list); 6158 } 6159 /* And insert new clone at head. */ 6160 if (clone) { 6161 clone->next = list; 6162 shinfo->frag_list = clone; 6163 } 6164 return 0; 6165 } 6166 6167 /* carve off first len bytes from skb. Split line (off) is in the 6168 * non-linear part of skb 6169 */ 6170 static int pskb_carve_inside_nonlinear(struct sk_buff *skb, const u32 off, 6171 int pos, gfp_t gfp_mask) 6172 { 6173 int i, k = 0; 6174 int size = skb_end_offset(skb); 6175 u8 *data; 6176 const int nfrags = skb_shinfo(skb)->nr_frags; 6177 struct skb_shared_info *shinfo; 6178 6179 size = SKB_DATA_ALIGN(size); 6180 6181 if (skb_pfmemalloc(skb)) 6182 gfp_mask |= __GFP_MEMALLOC; 6183 data = kmalloc_reserve(size + 6184 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)), 6185 gfp_mask, NUMA_NO_NODE, NULL); 6186 if (!data) 6187 return -ENOMEM; 6188 6189 size = SKB_WITH_OVERHEAD(ksize(data)); 6190 6191 memcpy((struct skb_shared_info *)(data + size), 6192 skb_shinfo(skb), offsetof(struct skb_shared_info, frags[0])); 6193 if (skb_orphan_frags(skb, gfp_mask)) { 6194 kfree(data); 6195 return -ENOMEM; 6196 } 6197 shinfo = (struct skb_shared_info *)(data + size); 6198 for (i = 0; i < nfrags; i++) { 6199 int fsize = skb_frag_size(&skb_shinfo(skb)->frags[i]); 6200 6201 if (pos + fsize > off) { 6202 shinfo->frags[k] = skb_shinfo(skb)->frags[i]; 6203 6204 if (pos < off) { 6205 /* Split frag. 6206 * We have two variants in this case: 6207 * 1. Move all the frag to the second 6208 * part, if it is possible. F.e. 6209 * this approach is mandatory for TUX, 6210 * where splitting is expensive. 6211 * 2. Split is accurately. We make this. 6212 */ 6213 skb_frag_off_add(&shinfo->frags[0], off - pos); 6214 skb_frag_size_sub(&shinfo->frags[0], off - pos); 6215 } 6216 skb_frag_ref(skb, i); 6217 k++; 6218 } 6219 pos += fsize; 6220 } 6221 shinfo->nr_frags = k; 6222 if (skb_has_frag_list(skb)) 6223 skb_clone_fraglist(skb); 6224 6225 /* split line is in frag list */ 6226 if (k == 0 && pskb_carve_frag_list(skb, shinfo, off - pos, gfp_mask)) { 6227 /* skb_frag_unref() is not needed here as shinfo->nr_frags = 0. */ 6228 if (skb_has_frag_list(skb)) 6229 kfree_skb_list(skb_shinfo(skb)->frag_list); 6230 kfree(data); 6231 return -ENOMEM; 6232 } 6233 skb_release_data(skb); 6234 6235 skb->head = data; 6236 skb->head_frag = 0; 6237 skb->data = data; 6238 #ifdef NET_SKBUFF_DATA_USES_OFFSET 6239 skb->end = size; 6240 #else 6241 skb->end = skb->head + size; 6242 #endif 6243 skb_reset_tail_pointer(skb); 6244 skb_headers_offset_update(skb, 0); 6245 skb->cloned = 0; 6246 skb->hdr_len = 0; 6247 skb->nohdr = 0; 6248 skb->len -= off; 6249 skb->data_len = skb->len; 6250 atomic_set(&skb_shinfo(skb)->dataref, 1); 6251 return 0; 6252 } 6253 6254 /* remove len bytes from the beginning of the skb */ 6255 static int pskb_carve(struct sk_buff *skb, const u32 len, gfp_t gfp) 6256 { 6257 int headlen = skb_headlen(skb); 6258 6259 if (len < headlen) 6260 return pskb_carve_inside_header(skb, len, headlen, gfp); 6261 else 6262 return pskb_carve_inside_nonlinear(skb, len, headlen, gfp); 6263 } 6264 6265 /* Extract to_copy bytes starting at off from skb, and return this in 6266 * a new skb 6267 */ 6268 struct sk_buff *pskb_extract(struct sk_buff *skb, int off, 6269 int to_copy, gfp_t gfp) 6270 { 6271 struct sk_buff *clone = skb_clone(skb, gfp); 6272 6273 if (!clone) 6274 return NULL; 6275 6276 if (pskb_carve(clone, off, gfp) < 0 || 6277 pskb_trim(clone, to_copy)) { 6278 kfree_skb(clone); 6279 return NULL; 6280 } 6281 return clone; 6282 } 6283 EXPORT_SYMBOL(pskb_extract); 6284 6285 /** 6286 * skb_condense - try to get rid of fragments/frag_list if possible 6287 * @skb: buffer 6288 * 6289 * Can be used to save memory before skb is added to a busy queue. 6290 * If packet has bytes in frags and enough tail room in skb->head, 6291 * pull all of them, so that we can free the frags right now and adjust 6292 * truesize. 6293 * Notes: 6294 * We do not reallocate skb->head thus can not fail. 6295 * Caller must re-evaluate skb->truesize if needed. 6296 */ 6297 void skb_condense(struct sk_buff *skb) 6298 { 6299 if (skb->data_len) { 6300 if (skb->data_len > skb->end - skb->tail || 6301 skb_cloned(skb)) 6302 return; 6303 6304 /* Nice, we can free page frag(s) right now */ 6305 __pskb_pull_tail(skb, skb->data_len); 6306 } 6307 /* At this point, skb->truesize might be over estimated, 6308 * because skb had a fragment, and fragments do not tell 6309 * their truesize. 6310 * When we pulled its content into skb->head, fragment 6311 * was freed, but __pskb_pull_tail() could not possibly 6312 * adjust skb->truesize, not knowing the frag truesize. 6313 */ 6314 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb)); 6315 } 6316 6317 #ifdef CONFIG_SKB_EXTENSIONS 6318 static void *skb_ext_get_ptr(struct skb_ext *ext, enum skb_ext_id id) 6319 { 6320 return (void *)ext + (ext->offset[id] * SKB_EXT_ALIGN_VALUE); 6321 } 6322 6323 /** 6324 * __skb_ext_alloc - allocate a new skb extensions storage 6325 * 6326 * @flags: See kmalloc(). 6327 * 6328 * Returns the newly allocated pointer. The pointer can later attached to a 6329 * skb via __skb_ext_set(). 6330 * Note: caller must handle the skb_ext as an opaque data. 6331 */ 6332 struct skb_ext *__skb_ext_alloc(gfp_t flags) 6333 { 6334 struct skb_ext *new = kmem_cache_alloc(skbuff_ext_cache, flags); 6335 6336 if (new) { 6337 memset(new->offset, 0, sizeof(new->offset)); 6338 refcount_set(&new->refcnt, 1); 6339 } 6340 6341 return new; 6342 } 6343 6344 static struct skb_ext *skb_ext_maybe_cow(struct skb_ext *old, 6345 unsigned int old_active) 6346 { 6347 struct skb_ext *new; 6348 6349 if (refcount_read(&old->refcnt) == 1) 6350 return old; 6351 6352 new = kmem_cache_alloc(skbuff_ext_cache, GFP_ATOMIC); 6353 if (!new) 6354 return NULL; 6355 6356 memcpy(new, old, old->chunks * SKB_EXT_ALIGN_VALUE); 6357 refcount_set(&new->refcnt, 1); 6358 6359 #ifdef CONFIG_XFRM 6360 if (old_active & (1 << SKB_EXT_SEC_PATH)) { 6361 struct sec_path *sp = skb_ext_get_ptr(old, SKB_EXT_SEC_PATH); 6362 unsigned int i; 6363 6364 for (i = 0; i < sp->len; i++) 6365 xfrm_state_hold(sp->xvec[i]); 6366 } 6367 #endif 6368 __skb_ext_put(old); 6369 return new; 6370 } 6371 6372 /** 6373 * __skb_ext_set - attach the specified extension storage to this skb 6374 * @skb: buffer 6375 * @id: extension id 6376 * @ext: extension storage previously allocated via __skb_ext_alloc() 6377 * 6378 * Existing extensions, if any, are cleared. 6379 * 6380 * Returns the pointer to the extension. 6381 */ 6382 void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id, 6383 struct skb_ext *ext) 6384 { 6385 unsigned int newlen, newoff = SKB_EXT_CHUNKSIZEOF(*ext); 6386 6387 skb_ext_put(skb); 6388 newlen = newoff + skb_ext_type_len[id]; 6389 ext->chunks = newlen; 6390 ext->offset[id] = newoff; 6391 skb->extensions = ext; 6392 skb->active_extensions = 1 << id; 6393 return skb_ext_get_ptr(ext, id); 6394 } 6395 6396 /** 6397 * skb_ext_add - allocate space for given extension, COW if needed 6398 * @skb: buffer 6399 * @id: extension to allocate space for 6400 * 6401 * Allocates enough space for the given extension. 6402 * If the extension is already present, a pointer to that extension 6403 * is returned. 6404 * 6405 * If the skb was cloned, COW applies and the returned memory can be 6406 * modified without changing the extension space of clones buffers. 6407 * 6408 * Returns pointer to the extension or NULL on allocation failure. 6409 */ 6410 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id) 6411 { 6412 struct skb_ext *new, *old = NULL; 6413 unsigned int newlen, newoff; 6414 6415 if (skb->active_extensions) { 6416 old = skb->extensions; 6417 6418 new = skb_ext_maybe_cow(old, skb->active_extensions); 6419 if (!new) 6420 return NULL; 6421 6422 if (__skb_ext_exist(new, id)) 6423 goto set_active; 6424 6425 newoff = new->chunks; 6426 } else { 6427 newoff = SKB_EXT_CHUNKSIZEOF(*new); 6428 6429 new = __skb_ext_alloc(GFP_ATOMIC); 6430 if (!new) 6431 return NULL; 6432 } 6433 6434 newlen = newoff + skb_ext_type_len[id]; 6435 new->chunks = newlen; 6436 new->offset[id] = newoff; 6437 set_active: 6438 skb->extensions = new; 6439 skb->active_extensions |= 1 << id; 6440 return skb_ext_get_ptr(new, id); 6441 } 6442 EXPORT_SYMBOL(skb_ext_add); 6443 6444 #ifdef CONFIG_XFRM 6445 static void skb_ext_put_sp(struct sec_path *sp) 6446 { 6447 unsigned int i; 6448 6449 for (i = 0; i < sp->len; i++) 6450 xfrm_state_put(sp->xvec[i]); 6451 } 6452 #endif 6453 6454 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id) 6455 { 6456 struct skb_ext *ext = skb->extensions; 6457 6458 skb->active_extensions &= ~(1 << id); 6459 if (skb->active_extensions == 0) { 6460 skb->extensions = NULL; 6461 __skb_ext_put(ext); 6462 #ifdef CONFIG_XFRM 6463 } else if (id == SKB_EXT_SEC_PATH && 6464 refcount_read(&ext->refcnt) == 1) { 6465 struct sec_path *sp = skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH); 6466 6467 skb_ext_put_sp(sp); 6468 sp->len = 0; 6469 #endif 6470 } 6471 } 6472 EXPORT_SYMBOL(__skb_ext_del); 6473 6474 void __skb_ext_put(struct skb_ext *ext) 6475 { 6476 /* If this is last clone, nothing can increment 6477 * it after check passes. Avoids one atomic op. 6478 */ 6479 if (refcount_read(&ext->refcnt) == 1) 6480 goto free_now; 6481 6482 if (!refcount_dec_and_test(&ext->refcnt)) 6483 return; 6484 free_now: 6485 #ifdef CONFIG_XFRM 6486 if (__skb_ext_exist(ext, SKB_EXT_SEC_PATH)) 6487 skb_ext_put_sp(skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH)); 6488 #endif 6489 6490 kmem_cache_free(skbuff_ext_cache, ext); 6491 } 6492 EXPORT_SYMBOL(__skb_ext_put); 6493 #endif /* CONFIG_SKB_EXTENSIONS */ 6494