xref: /openbmc/linux/net/core/skbuff.c (revision 7ce05074)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *	Routines having to do with the 'struct sk_buff' memory handlers.
4  *
5  *	Authors:	Alan Cox <alan@lxorguk.ukuu.org.uk>
6  *			Florian La Roche <rzsfl@rz.uni-sb.de>
7  *
8  *	Fixes:
9  *		Alan Cox	:	Fixed the worst of the load
10  *					balancer bugs.
11  *		Dave Platt	:	Interrupt stacking fix.
12  *	Richard Kooijman	:	Timestamp fixes.
13  *		Alan Cox	:	Changed buffer format.
14  *		Alan Cox	:	destructor hook for AF_UNIX etc.
15  *		Linus Torvalds	:	Better skb_clone.
16  *		Alan Cox	:	Added skb_copy.
17  *		Alan Cox	:	Added all the changed routines Linus
18  *					only put in the headers
19  *		Ray VanTassle	:	Fixed --skb->lock in free
20  *		Alan Cox	:	skb_copy copy arp field
21  *		Andi Kleen	:	slabified it.
22  *		Robert Olsson	:	Removed skb_head_pool
23  *
24  *	NOTE:
25  *		The __skb_ routines should be called with interrupts
26  *	disabled, or you better be *real* sure that the operation is atomic
27  *	with respect to whatever list is being frobbed (e.g. via lock_sock()
28  *	or via disabling bottom half handlers, etc).
29  */
30 
31 /*
32  *	The functions in this file will not compile correctly with gcc 2.4.x
33  */
34 
35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
36 
37 #include <linux/module.h>
38 #include <linux/types.h>
39 #include <linux/kernel.h>
40 #include <linux/mm.h>
41 #include <linux/interrupt.h>
42 #include <linux/in.h>
43 #include <linux/inet.h>
44 #include <linux/slab.h>
45 #include <linux/tcp.h>
46 #include <linux/udp.h>
47 #include <linux/sctp.h>
48 #include <linux/netdevice.h>
49 #ifdef CONFIG_NET_CLS_ACT
50 #include <net/pkt_sched.h>
51 #endif
52 #include <linux/string.h>
53 #include <linux/skbuff.h>
54 #include <linux/splice.h>
55 #include <linux/cache.h>
56 #include <linux/rtnetlink.h>
57 #include <linux/init.h>
58 #include <linux/scatterlist.h>
59 #include <linux/errqueue.h>
60 #include <linux/prefetch.h>
61 #include <linux/if_vlan.h>
62 #include <linux/mpls.h>
63 #include <linux/kcov.h>
64 
65 #include <net/protocol.h>
66 #include <net/dst.h>
67 #include <net/sock.h>
68 #include <net/checksum.h>
69 #include <net/ip6_checksum.h>
70 #include <net/xfrm.h>
71 #include <net/mpls.h>
72 #include <net/mptcp.h>
73 #include <net/page_pool.h>
74 
75 #include <linux/uaccess.h>
76 #include <trace/events/skb.h>
77 #include <linux/highmem.h>
78 #include <linux/capability.h>
79 #include <linux/user_namespace.h>
80 #include <linux/indirect_call_wrapper.h>
81 
82 #include "datagram.h"
83 
84 struct kmem_cache *skbuff_head_cache __ro_after_init;
85 static struct kmem_cache *skbuff_fclone_cache __ro_after_init;
86 #ifdef CONFIG_SKB_EXTENSIONS
87 static struct kmem_cache *skbuff_ext_cache __ro_after_init;
88 #endif
89 int sysctl_max_skb_frags __read_mostly = MAX_SKB_FRAGS;
90 EXPORT_SYMBOL(sysctl_max_skb_frags);
91 
92 /**
93  *	skb_panic - private function for out-of-line support
94  *	@skb:	buffer
95  *	@sz:	size
96  *	@addr:	address
97  *	@msg:	skb_over_panic or skb_under_panic
98  *
99  *	Out-of-line support for skb_put() and skb_push().
100  *	Called via the wrapper skb_over_panic() or skb_under_panic().
101  *	Keep out of line to prevent kernel bloat.
102  *	__builtin_return_address is not used because it is not always reliable.
103  */
104 static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr,
105 		      const char msg[])
106 {
107 	pr_emerg("%s: text:%px len:%d put:%d head:%px data:%px tail:%#lx end:%#lx dev:%s\n",
108 		 msg, addr, skb->len, sz, skb->head, skb->data,
109 		 (unsigned long)skb->tail, (unsigned long)skb->end,
110 		 skb->dev ? skb->dev->name : "<NULL>");
111 	BUG();
112 }
113 
114 static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr)
115 {
116 	skb_panic(skb, sz, addr, __func__);
117 }
118 
119 static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr)
120 {
121 	skb_panic(skb, sz, addr, __func__);
122 }
123 
124 #define NAPI_SKB_CACHE_SIZE	64
125 #define NAPI_SKB_CACHE_BULK	16
126 #define NAPI_SKB_CACHE_HALF	(NAPI_SKB_CACHE_SIZE / 2)
127 
128 struct napi_alloc_cache {
129 	struct page_frag_cache page;
130 	unsigned int skb_count;
131 	void *skb_cache[NAPI_SKB_CACHE_SIZE];
132 };
133 
134 static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache);
135 static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache);
136 
137 static void *__alloc_frag_align(unsigned int fragsz, gfp_t gfp_mask,
138 				unsigned int align_mask)
139 {
140 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
141 
142 	return page_frag_alloc_align(&nc->page, fragsz, gfp_mask, align_mask);
143 }
144 
145 void *__napi_alloc_frag_align(unsigned int fragsz, unsigned int align_mask)
146 {
147 	fragsz = SKB_DATA_ALIGN(fragsz);
148 
149 	return __alloc_frag_align(fragsz, GFP_ATOMIC, align_mask);
150 }
151 EXPORT_SYMBOL(__napi_alloc_frag_align);
152 
153 void *__netdev_alloc_frag_align(unsigned int fragsz, unsigned int align_mask)
154 {
155 	struct page_frag_cache *nc;
156 	void *data;
157 
158 	fragsz = SKB_DATA_ALIGN(fragsz);
159 	if (in_irq() || irqs_disabled()) {
160 		nc = this_cpu_ptr(&netdev_alloc_cache);
161 		data = page_frag_alloc_align(nc, fragsz, GFP_ATOMIC, align_mask);
162 	} else {
163 		local_bh_disable();
164 		data = __alloc_frag_align(fragsz, GFP_ATOMIC, align_mask);
165 		local_bh_enable();
166 	}
167 	return data;
168 }
169 EXPORT_SYMBOL(__netdev_alloc_frag_align);
170 
171 static struct sk_buff *napi_skb_cache_get(void)
172 {
173 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
174 	struct sk_buff *skb;
175 
176 	if (unlikely(!nc->skb_count))
177 		nc->skb_count = kmem_cache_alloc_bulk(skbuff_head_cache,
178 						      GFP_ATOMIC,
179 						      NAPI_SKB_CACHE_BULK,
180 						      nc->skb_cache);
181 	if (unlikely(!nc->skb_count))
182 		return NULL;
183 
184 	skb = nc->skb_cache[--nc->skb_count];
185 	kasan_unpoison_object_data(skbuff_head_cache, skb);
186 
187 	return skb;
188 }
189 
190 /* Caller must provide SKB that is memset cleared */
191 static void __build_skb_around(struct sk_buff *skb, void *data,
192 			       unsigned int frag_size)
193 {
194 	struct skb_shared_info *shinfo;
195 	unsigned int size = frag_size ? : ksize(data);
196 
197 	size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
198 
199 	/* Assumes caller memset cleared SKB */
200 	skb->truesize = SKB_TRUESIZE(size);
201 	refcount_set(&skb->users, 1);
202 	skb->head = data;
203 	skb->data = data;
204 	skb_reset_tail_pointer(skb);
205 	skb->end = skb->tail + size;
206 	skb->mac_header = (typeof(skb->mac_header))~0U;
207 	skb->transport_header = (typeof(skb->transport_header))~0U;
208 
209 	/* make sure we initialize shinfo sequentially */
210 	shinfo = skb_shinfo(skb);
211 	memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
212 	atomic_set(&shinfo->dataref, 1);
213 
214 	skb_set_kcov_handle(skb, kcov_common_handle());
215 }
216 
217 /**
218  * __build_skb - build a network buffer
219  * @data: data buffer provided by caller
220  * @frag_size: size of data, or 0 if head was kmalloced
221  *
222  * Allocate a new &sk_buff. Caller provides space holding head and
223  * skb_shared_info. @data must have been allocated by kmalloc() only if
224  * @frag_size is 0, otherwise data should come from the page allocator
225  *  or vmalloc()
226  * The return is the new skb buffer.
227  * On a failure the return is %NULL, and @data is not freed.
228  * Notes :
229  *  Before IO, driver allocates only data buffer where NIC put incoming frame
230  *  Driver should add room at head (NET_SKB_PAD) and
231  *  MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info))
232  *  After IO, driver calls build_skb(), to allocate sk_buff and populate it
233  *  before giving packet to stack.
234  *  RX rings only contains data buffers, not full skbs.
235  */
236 struct sk_buff *__build_skb(void *data, unsigned int frag_size)
237 {
238 	struct sk_buff *skb;
239 
240 	skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC);
241 	if (unlikely(!skb))
242 		return NULL;
243 
244 	memset(skb, 0, offsetof(struct sk_buff, tail));
245 	__build_skb_around(skb, data, frag_size);
246 
247 	return skb;
248 }
249 
250 /* build_skb() is wrapper over __build_skb(), that specifically
251  * takes care of skb->head and skb->pfmemalloc
252  * This means that if @frag_size is not zero, then @data must be backed
253  * by a page fragment, not kmalloc() or vmalloc()
254  */
255 struct sk_buff *build_skb(void *data, unsigned int frag_size)
256 {
257 	struct sk_buff *skb = __build_skb(data, frag_size);
258 
259 	if (skb && frag_size) {
260 		skb->head_frag = 1;
261 		if (page_is_pfmemalloc(virt_to_head_page(data)))
262 			skb->pfmemalloc = 1;
263 	}
264 	return skb;
265 }
266 EXPORT_SYMBOL(build_skb);
267 
268 /**
269  * build_skb_around - build a network buffer around provided skb
270  * @skb: sk_buff provide by caller, must be memset cleared
271  * @data: data buffer provided by caller
272  * @frag_size: size of data, or 0 if head was kmalloced
273  */
274 struct sk_buff *build_skb_around(struct sk_buff *skb,
275 				 void *data, unsigned int frag_size)
276 {
277 	if (unlikely(!skb))
278 		return NULL;
279 
280 	__build_skb_around(skb, data, frag_size);
281 
282 	if (frag_size) {
283 		skb->head_frag = 1;
284 		if (page_is_pfmemalloc(virt_to_head_page(data)))
285 			skb->pfmemalloc = 1;
286 	}
287 	return skb;
288 }
289 EXPORT_SYMBOL(build_skb_around);
290 
291 /**
292  * __napi_build_skb - build a network buffer
293  * @data: data buffer provided by caller
294  * @frag_size: size of data, or 0 if head was kmalloced
295  *
296  * Version of __build_skb() that uses NAPI percpu caches to obtain
297  * skbuff_head instead of inplace allocation.
298  *
299  * Returns a new &sk_buff on success, %NULL on allocation failure.
300  */
301 static struct sk_buff *__napi_build_skb(void *data, unsigned int frag_size)
302 {
303 	struct sk_buff *skb;
304 
305 	skb = napi_skb_cache_get();
306 	if (unlikely(!skb))
307 		return NULL;
308 
309 	memset(skb, 0, offsetof(struct sk_buff, tail));
310 	__build_skb_around(skb, data, frag_size);
311 
312 	return skb;
313 }
314 
315 /**
316  * napi_build_skb - build a network buffer
317  * @data: data buffer provided by caller
318  * @frag_size: size of data, or 0 if head was kmalloced
319  *
320  * Version of __napi_build_skb() that takes care of skb->head_frag
321  * and skb->pfmemalloc when the data is a page or page fragment.
322  *
323  * Returns a new &sk_buff on success, %NULL on allocation failure.
324  */
325 struct sk_buff *napi_build_skb(void *data, unsigned int frag_size)
326 {
327 	struct sk_buff *skb = __napi_build_skb(data, frag_size);
328 
329 	if (likely(skb) && frag_size) {
330 		skb->head_frag = 1;
331 		skb_propagate_pfmemalloc(virt_to_head_page(data), skb);
332 	}
333 
334 	return skb;
335 }
336 EXPORT_SYMBOL(napi_build_skb);
337 
338 /*
339  * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells
340  * the caller if emergency pfmemalloc reserves are being used. If it is and
341  * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves
342  * may be used. Otherwise, the packet data may be discarded until enough
343  * memory is free
344  */
345 static void *kmalloc_reserve(size_t size, gfp_t flags, int node,
346 			     bool *pfmemalloc)
347 {
348 	void *obj;
349 	bool ret_pfmemalloc = false;
350 
351 	/*
352 	 * Try a regular allocation, when that fails and we're not entitled
353 	 * to the reserves, fail.
354 	 */
355 	obj = kmalloc_node_track_caller(size,
356 					flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
357 					node);
358 	if (obj || !(gfp_pfmemalloc_allowed(flags)))
359 		goto out;
360 
361 	/* Try again but now we are using pfmemalloc reserves */
362 	ret_pfmemalloc = true;
363 	obj = kmalloc_node_track_caller(size, flags, node);
364 
365 out:
366 	if (pfmemalloc)
367 		*pfmemalloc = ret_pfmemalloc;
368 
369 	return obj;
370 }
371 
372 /* 	Allocate a new skbuff. We do this ourselves so we can fill in a few
373  *	'private' fields and also do memory statistics to find all the
374  *	[BEEP] leaks.
375  *
376  */
377 
378 /**
379  *	__alloc_skb	-	allocate a network buffer
380  *	@size: size to allocate
381  *	@gfp_mask: allocation mask
382  *	@flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache
383  *		instead of head cache and allocate a cloned (child) skb.
384  *		If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for
385  *		allocations in case the data is required for writeback
386  *	@node: numa node to allocate memory on
387  *
388  *	Allocate a new &sk_buff. The returned buffer has no headroom and a
389  *	tail room of at least size bytes. The object has a reference count
390  *	of one. The return is the buffer. On a failure the return is %NULL.
391  *
392  *	Buffers may only be allocated from interrupts using a @gfp_mask of
393  *	%GFP_ATOMIC.
394  */
395 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
396 			    int flags, int node)
397 {
398 	struct kmem_cache *cache;
399 	struct sk_buff *skb;
400 	u8 *data;
401 	bool pfmemalloc;
402 
403 	cache = (flags & SKB_ALLOC_FCLONE)
404 		? skbuff_fclone_cache : skbuff_head_cache;
405 
406 	if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX))
407 		gfp_mask |= __GFP_MEMALLOC;
408 
409 	/* Get the HEAD */
410 	if ((flags & (SKB_ALLOC_FCLONE | SKB_ALLOC_NAPI)) == SKB_ALLOC_NAPI &&
411 	    likely(node == NUMA_NO_NODE || node == numa_mem_id()))
412 		skb = napi_skb_cache_get();
413 	else
414 		skb = kmem_cache_alloc_node(cache, gfp_mask & ~GFP_DMA, node);
415 	if (unlikely(!skb))
416 		return NULL;
417 	prefetchw(skb);
418 
419 	/* We do our best to align skb_shared_info on a separate cache
420 	 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives
421 	 * aligned memory blocks, unless SLUB/SLAB debug is enabled.
422 	 * Both skb->head and skb_shared_info are cache line aligned.
423 	 */
424 	size = SKB_DATA_ALIGN(size);
425 	size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
426 	data = kmalloc_reserve(size, gfp_mask, node, &pfmemalloc);
427 	if (unlikely(!data))
428 		goto nodata;
429 	/* kmalloc(size) might give us more room than requested.
430 	 * Put skb_shared_info exactly at the end of allocated zone,
431 	 * to allow max possible filling before reallocation.
432 	 */
433 	size = SKB_WITH_OVERHEAD(ksize(data));
434 	prefetchw(data + size);
435 
436 	/*
437 	 * Only clear those fields we need to clear, not those that we will
438 	 * actually initialise below. Hence, don't put any more fields after
439 	 * the tail pointer in struct sk_buff!
440 	 */
441 	memset(skb, 0, offsetof(struct sk_buff, tail));
442 	__build_skb_around(skb, data, 0);
443 	skb->pfmemalloc = pfmemalloc;
444 
445 	if (flags & SKB_ALLOC_FCLONE) {
446 		struct sk_buff_fclones *fclones;
447 
448 		fclones = container_of(skb, struct sk_buff_fclones, skb1);
449 
450 		skb->fclone = SKB_FCLONE_ORIG;
451 		refcount_set(&fclones->fclone_ref, 1);
452 
453 		fclones->skb2.fclone = SKB_FCLONE_CLONE;
454 	}
455 
456 	return skb;
457 
458 nodata:
459 	kmem_cache_free(cache, skb);
460 	return NULL;
461 }
462 EXPORT_SYMBOL(__alloc_skb);
463 
464 /**
465  *	__netdev_alloc_skb - allocate an skbuff for rx on a specific device
466  *	@dev: network device to receive on
467  *	@len: length to allocate
468  *	@gfp_mask: get_free_pages mask, passed to alloc_skb
469  *
470  *	Allocate a new &sk_buff and assign it a usage count of one. The
471  *	buffer has NET_SKB_PAD headroom built in. Users should allocate
472  *	the headroom they think they need without accounting for the
473  *	built in space. The built in space is used for optimisations.
474  *
475  *	%NULL is returned if there is no free memory.
476  */
477 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len,
478 				   gfp_t gfp_mask)
479 {
480 	struct page_frag_cache *nc;
481 	struct sk_buff *skb;
482 	bool pfmemalloc;
483 	void *data;
484 
485 	len += NET_SKB_PAD;
486 
487 	/* If requested length is either too small or too big,
488 	 * we use kmalloc() for skb->head allocation.
489 	 */
490 	if (len <= SKB_WITH_OVERHEAD(1024) ||
491 	    len > SKB_WITH_OVERHEAD(PAGE_SIZE) ||
492 	    (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
493 		skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
494 		if (!skb)
495 			goto skb_fail;
496 		goto skb_success;
497 	}
498 
499 	len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
500 	len = SKB_DATA_ALIGN(len);
501 
502 	if (sk_memalloc_socks())
503 		gfp_mask |= __GFP_MEMALLOC;
504 
505 	if (in_irq() || irqs_disabled()) {
506 		nc = this_cpu_ptr(&netdev_alloc_cache);
507 		data = page_frag_alloc(nc, len, gfp_mask);
508 		pfmemalloc = nc->pfmemalloc;
509 	} else {
510 		local_bh_disable();
511 		nc = this_cpu_ptr(&napi_alloc_cache.page);
512 		data = page_frag_alloc(nc, len, gfp_mask);
513 		pfmemalloc = nc->pfmemalloc;
514 		local_bh_enable();
515 	}
516 
517 	if (unlikely(!data))
518 		return NULL;
519 
520 	skb = __build_skb(data, len);
521 	if (unlikely(!skb)) {
522 		skb_free_frag(data);
523 		return NULL;
524 	}
525 
526 	if (pfmemalloc)
527 		skb->pfmemalloc = 1;
528 	skb->head_frag = 1;
529 
530 skb_success:
531 	skb_reserve(skb, NET_SKB_PAD);
532 	skb->dev = dev;
533 
534 skb_fail:
535 	return skb;
536 }
537 EXPORT_SYMBOL(__netdev_alloc_skb);
538 
539 /**
540  *	__napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance
541  *	@napi: napi instance this buffer was allocated for
542  *	@len: length to allocate
543  *	@gfp_mask: get_free_pages mask, passed to alloc_skb and alloc_pages
544  *
545  *	Allocate a new sk_buff for use in NAPI receive.  This buffer will
546  *	attempt to allocate the head from a special reserved region used
547  *	only for NAPI Rx allocation.  By doing this we can save several
548  *	CPU cycles by avoiding having to disable and re-enable IRQs.
549  *
550  *	%NULL is returned if there is no free memory.
551  */
552 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, unsigned int len,
553 				 gfp_t gfp_mask)
554 {
555 	struct napi_alloc_cache *nc;
556 	struct sk_buff *skb;
557 	void *data;
558 
559 	len += NET_SKB_PAD + NET_IP_ALIGN;
560 
561 	/* If requested length is either too small or too big,
562 	 * we use kmalloc() for skb->head allocation.
563 	 */
564 	if (len <= SKB_WITH_OVERHEAD(1024) ||
565 	    len > SKB_WITH_OVERHEAD(PAGE_SIZE) ||
566 	    (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
567 		skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX | SKB_ALLOC_NAPI,
568 				  NUMA_NO_NODE);
569 		if (!skb)
570 			goto skb_fail;
571 		goto skb_success;
572 	}
573 
574 	nc = this_cpu_ptr(&napi_alloc_cache);
575 	len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
576 	len = SKB_DATA_ALIGN(len);
577 
578 	if (sk_memalloc_socks())
579 		gfp_mask |= __GFP_MEMALLOC;
580 
581 	data = page_frag_alloc(&nc->page, len, gfp_mask);
582 	if (unlikely(!data))
583 		return NULL;
584 
585 	skb = __napi_build_skb(data, len);
586 	if (unlikely(!skb)) {
587 		skb_free_frag(data);
588 		return NULL;
589 	}
590 
591 	if (nc->page.pfmemalloc)
592 		skb->pfmemalloc = 1;
593 	skb->head_frag = 1;
594 
595 skb_success:
596 	skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN);
597 	skb->dev = napi->dev;
598 
599 skb_fail:
600 	return skb;
601 }
602 EXPORT_SYMBOL(__napi_alloc_skb);
603 
604 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
605 		     int size, unsigned int truesize)
606 {
607 	skb_fill_page_desc(skb, i, page, off, size);
608 	skb->len += size;
609 	skb->data_len += size;
610 	skb->truesize += truesize;
611 }
612 EXPORT_SYMBOL(skb_add_rx_frag);
613 
614 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
615 			  unsigned int truesize)
616 {
617 	skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
618 
619 	skb_frag_size_add(frag, size);
620 	skb->len += size;
621 	skb->data_len += size;
622 	skb->truesize += truesize;
623 }
624 EXPORT_SYMBOL(skb_coalesce_rx_frag);
625 
626 static void skb_drop_list(struct sk_buff **listp)
627 {
628 	kfree_skb_list(*listp);
629 	*listp = NULL;
630 }
631 
632 static inline void skb_drop_fraglist(struct sk_buff *skb)
633 {
634 	skb_drop_list(&skb_shinfo(skb)->frag_list);
635 }
636 
637 static void skb_clone_fraglist(struct sk_buff *skb)
638 {
639 	struct sk_buff *list;
640 
641 	skb_walk_frags(skb, list)
642 		skb_get(list);
643 }
644 
645 static void skb_free_head(struct sk_buff *skb)
646 {
647 	unsigned char *head = skb->head;
648 
649 	if (skb->head_frag) {
650 		if (skb_pp_recycle(skb, head))
651 			return;
652 		skb_free_frag(head);
653 	} else {
654 		kfree(head);
655 	}
656 }
657 
658 static void skb_release_data(struct sk_buff *skb)
659 {
660 	struct skb_shared_info *shinfo = skb_shinfo(skb);
661 	int i;
662 
663 	if (skb->cloned &&
664 	    atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
665 			      &shinfo->dataref))
666 		return;
667 
668 	skb_zcopy_clear(skb, true);
669 
670 	for (i = 0; i < shinfo->nr_frags; i++)
671 		__skb_frag_unref(&shinfo->frags[i], skb->pp_recycle);
672 
673 	if (shinfo->frag_list)
674 		kfree_skb_list(shinfo->frag_list);
675 
676 	skb_free_head(skb);
677 }
678 
679 /*
680  *	Free an skbuff by memory without cleaning the state.
681  */
682 static void kfree_skbmem(struct sk_buff *skb)
683 {
684 	struct sk_buff_fclones *fclones;
685 
686 	switch (skb->fclone) {
687 	case SKB_FCLONE_UNAVAILABLE:
688 		kmem_cache_free(skbuff_head_cache, skb);
689 		return;
690 
691 	case SKB_FCLONE_ORIG:
692 		fclones = container_of(skb, struct sk_buff_fclones, skb1);
693 
694 		/* We usually free the clone (TX completion) before original skb
695 		 * This test would have no chance to be true for the clone,
696 		 * while here, branch prediction will be good.
697 		 */
698 		if (refcount_read(&fclones->fclone_ref) == 1)
699 			goto fastpath;
700 		break;
701 
702 	default: /* SKB_FCLONE_CLONE */
703 		fclones = container_of(skb, struct sk_buff_fclones, skb2);
704 		break;
705 	}
706 	if (!refcount_dec_and_test(&fclones->fclone_ref))
707 		return;
708 fastpath:
709 	kmem_cache_free(skbuff_fclone_cache, fclones);
710 }
711 
712 void skb_release_head_state(struct sk_buff *skb)
713 {
714 	skb_dst_drop(skb);
715 	if (skb->destructor) {
716 		WARN_ON(in_irq());
717 		skb->destructor(skb);
718 	}
719 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
720 	nf_conntrack_put(skb_nfct(skb));
721 #endif
722 	skb_ext_put(skb);
723 }
724 
725 /* Free everything but the sk_buff shell. */
726 static void skb_release_all(struct sk_buff *skb)
727 {
728 	skb_release_head_state(skb);
729 	if (likely(skb->head))
730 		skb_release_data(skb);
731 }
732 
733 /**
734  *	__kfree_skb - private function
735  *	@skb: buffer
736  *
737  *	Free an sk_buff. Release anything attached to the buffer.
738  *	Clean the state. This is an internal helper function. Users should
739  *	always call kfree_skb
740  */
741 
742 void __kfree_skb(struct sk_buff *skb)
743 {
744 	skb_release_all(skb);
745 	kfree_skbmem(skb);
746 }
747 EXPORT_SYMBOL(__kfree_skb);
748 
749 /**
750  *	kfree_skb - free an sk_buff
751  *	@skb: buffer to free
752  *
753  *	Drop a reference to the buffer and free it if the usage count has
754  *	hit zero.
755  */
756 void kfree_skb(struct sk_buff *skb)
757 {
758 	if (!skb_unref(skb))
759 		return;
760 
761 	trace_kfree_skb(skb, __builtin_return_address(0));
762 	__kfree_skb(skb);
763 }
764 EXPORT_SYMBOL(kfree_skb);
765 
766 void kfree_skb_list(struct sk_buff *segs)
767 {
768 	while (segs) {
769 		struct sk_buff *next = segs->next;
770 
771 		kfree_skb(segs);
772 		segs = next;
773 	}
774 }
775 EXPORT_SYMBOL(kfree_skb_list);
776 
777 /* Dump skb information and contents.
778  *
779  * Must only be called from net_ratelimit()-ed paths.
780  *
781  * Dumps whole packets if full_pkt, only headers otherwise.
782  */
783 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt)
784 {
785 	struct skb_shared_info *sh = skb_shinfo(skb);
786 	struct net_device *dev = skb->dev;
787 	struct sock *sk = skb->sk;
788 	struct sk_buff *list_skb;
789 	bool has_mac, has_trans;
790 	int headroom, tailroom;
791 	int i, len, seg_len;
792 
793 	if (full_pkt)
794 		len = skb->len;
795 	else
796 		len = min_t(int, skb->len, MAX_HEADER + 128);
797 
798 	headroom = skb_headroom(skb);
799 	tailroom = skb_tailroom(skb);
800 
801 	has_mac = skb_mac_header_was_set(skb);
802 	has_trans = skb_transport_header_was_set(skb);
803 
804 	printk("%sskb len=%u headroom=%u headlen=%u tailroom=%u\n"
805 	       "mac=(%d,%d) net=(%d,%d) trans=%d\n"
806 	       "shinfo(txflags=%u nr_frags=%u gso(size=%hu type=%u segs=%hu))\n"
807 	       "csum(0x%x ip_summed=%u complete_sw=%u valid=%u level=%u)\n"
808 	       "hash(0x%x sw=%u l4=%u) proto=0x%04x pkttype=%u iif=%d\n",
809 	       level, skb->len, headroom, skb_headlen(skb), tailroom,
810 	       has_mac ? skb->mac_header : -1,
811 	       has_mac ? skb_mac_header_len(skb) : -1,
812 	       skb->network_header,
813 	       has_trans ? skb_network_header_len(skb) : -1,
814 	       has_trans ? skb->transport_header : -1,
815 	       sh->tx_flags, sh->nr_frags,
816 	       sh->gso_size, sh->gso_type, sh->gso_segs,
817 	       skb->csum, skb->ip_summed, skb->csum_complete_sw,
818 	       skb->csum_valid, skb->csum_level,
819 	       skb->hash, skb->sw_hash, skb->l4_hash,
820 	       ntohs(skb->protocol), skb->pkt_type, skb->skb_iif);
821 
822 	if (dev)
823 		printk("%sdev name=%s feat=0x%pNF\n",
824 		       level, dev->name, &dev->features);
825 	if (sk)
826 		printk("%ssk family=%hu type=%u proto=%u\n",
827 		       level, sk->sk_family, sk->sk_type, sk->sk_protocol);
828 
829 	if (full_pkt && headroom)
830 		print_hex_dump(level, "skb headroom: ", DUMP_PREFIX_OFFSET,
831 			       16, 1, skb->head, headroom, false);
832 
833 	seg_len = min_t(int, skb_headlen(skb), len);
834 	if (seg_len)
835 		print_hex_dump(level, "skb linear:   ", DUMP_PREFIX_OFFSET,
836 			       16, 1, skb->data, seg_len, false);
837 	len -= seg_len;
838 
839 	if (full_pkt && tailroom)
840 		print_hex_dump(level, "skb tailroom: ", DUMP_PREFIX_OFFSET,
841 			       16, 1, skb_tail_pointer(skb), tailroom, false);
842 
843 	for (i = 0; len && i < skb_shinfo(skb)->nr_frags; i++) {
844 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
845 		u32 p_off, p_len, copied;
846 		struct page *p;
847 		u8 *vaddr;
848 
849 		skb_frag_foreach_page(frag, skb_frag_off(frag),
850 				      skb_frag_size(frag), p, p_off, p_len,
851 				      copied) {
852 			seg_len = min_t(int, p_len, len);
853 			vaddr = kmap_atomic(p);
854 			print_hex_dump(level, "skb frag:     ",
855 				       DUMP_PREFIX_OFFSET,
856 				       16, 1, vaddr + p_off, seg_len, false);
857 			kunmap_atomic(vaddr);
858 			len -= seg_len;
859 			if (!len)
860 				break;
861 		}
862 	}
863 
864 	if (full_pkt && skb_has_frag_list(skb)) {
865 		printk("skb fraglist:\n");
866 		skb_walk_frags(skb, list_skb)
867 			skb_dump(level, list_skb, true);
868 	}
869 }
870 EXPORT_SYMBOL(skb_dump);
871 
872 /**
873  *	skb_tx_error - report an sk_buff xmit error
874  *	@skb: buffer that triggered an error
875  *
876  *	Report xmit error if a device callback is tracking this skb.
877  *	skb must be freed afterwards.
878  */
879 void skb_tx_error(struct sk_buff *skb)
880 {
881 	skb_zcopy_clear(skb, true);
882 }
883 EXPORT_SYMBOL(skb_tx_error);
884 
885 #ifdef CONFIG_TRACEPOINTS
886 /**
887  *	consume_skb - free an skbuff
888  *	@skb: buffer to free
889  *
890  *	Drop a ref to the buffer and free it if the usage count has hit zero
891  *	Functions identically to kfree_skb, but kfree_skb assumes that the frame
892  *	is being dropped after a failure and notes that
893  */
894 void consume_skb(struct sk_buff *skb)
895 {
896 	if (!skb_unref(skb))
897 		return;
898 
899 	trace_consume_skb(skb);
900 	__kfree_skb(skb);
901 }
902 EXPORT_SYMBOL(consume_skb);
903 #endif
904 
905 /**
906  *	__consume_stateless_skb - free an skbuff, assuming it is stateless
907  *	@skb: buffer to free
908  *
909  *	Alike consume_skb(), but this variant assumes that this is the last
910  *	skb reference and all the head states have been already dropped
911  */
912 void __consume_stateless_skb(struct sk_buff *skb)
913 {
914 	trace_consume_skb(skb);
915 	skb_release_data(skb);
916 	kfree_skbmem(skb);
917 }
918 
919 static void napi_skb_cache_put(struct sk_buff *skb)
920 {
921 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
922 	u32 i;
923 
924 	kasan_poison_object_data(skbuff_head_cache, skb);
925 	nc->skb_cache[nc->skb_count++] = skb;
926 
927 	if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) {
928 		for (i = NAPI_SKB_CACHE_HALF; i < NAPI_SKB_CACHE_SIZE; i++)
929 			kasan_unpoison_object_data(skbuff_head_cache,
930 						   nc->skb_cache[i]);
931 
932 		kmem_cache_free_bulk(skbuff_head_cache, NAPI_SKB_CACHE_HALF,
933 				     nc->skb_cache + NAPI_SKB_CACHE_HALF);
934 		nc->skb_count = NAPI_SKB_CACHE_HALF;
935 	}
936 }
937 
938 void __kfree_skb_defer(struct sk_buff *skb)
939 {
940 	skb_release_all(skb);
941 	napi_skb_cache_put(skb);
942 }
943 
944 void napi_skb_free_stolen_head(struct sk_buff *skb)
945 {
946 	nf_reset_ct(skb);
947 	skb_dst_drop(skb);
948 	skb_ext_put(skb);
949 	napi_skb_cache_put(skb);
950 }
951 
952 void napi_consume_skb(struct sk_buff *skb, int budget)
953 {
954 	/* Zero budget indicate non-NAPI context called us, like netpoll */
955 	if (unlikely(!budget)) {
956 		dev_consume_skb_any(skb);
957 		return;
958 	}
959 
960 	lockdep_assert_in_softirq();
961 
962 	if (!skb_unref(skb))
963 		return;
964 
965 	/* if reaching here SKB is ready to free */
966 	trace_consume_skb(skb);
967 
968 	/* if SKB is a clone, don't handle this case */
969 	if (skb->fclone != SKB_FCLONE_UNAVAILABLE) {
970 		__kfree_skb(skb);
971 		return;
972 	}
973 
974 	skb_release_all(skb);
975 	napi_skb_cache_put(skb);
976 }
977 EXPORT_SYMBOL(napi_consume_skb);
978 
979 /* Make sure a field is enclosed inside headers_start/headers_end section */
980 #define CHECK_SKB_FIELD(field) \
981 	BUILD_BUG_ON(offsetof(struct sk_buff, field) <		\
982 		     offsetof(struct sk_buff, headers_start));	\
983 	BUILD_BUG_ON(offsetof(struct sk_buff, field) >		\
984 		     offsetof(struct sk_buff, headers_end));	\
985 
986 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
987 {
988 	new->tstamp		= old->tstamp;
989 	/* We do not copy old->sk */
990 	new->dev		= old->dev;
991 	memcpy(new->cb, old->cb, sizeof(old->cb));
992 	skb_dst_copy(new, old);
993 	__skb_ext_copy(new, old);
994 	__nf_copy(new, old, false);
995 
996 	/* Note : this field could be in headers_start/headers_end section
997 	 * It is not yet because we do not want to have a 16 bit hole
998 	 */
999 	new->queue_mapping = old->queue_mapping;
1000 
1001 	memcpy(&new->headers_start, &old->headers_start,
1002 	       offsetof(struct sk_buff, headers_end) -
1003 	       offsetof(struct sk_buff, headers_start));
1004 	CHECK_SKB_FIELD(protocol);
1005 	CHECK_SKB_FIELD(csum);
1006 	CHECK_SKB_FIELD(hash);
1007 	CHECK_SKB_FIELD(priority);
1008 	CHECK_SKB_FIELD(skb_iif);
1009 	CHECK_SKB_FIELD(vlan_proto);
1010 	CHECK_SKB_FIELD(vlan_tci);
1011 	CHECK_SKB_FIELD(transport_header);
1012 	CHECK_SKB_FIELD(network_header);
1013 	CHECK_SKB_FIELD(mac_header);
1014 	CHECK_SKB_FIELD(inner_protocol);
1015 	CHECK_SKB_FIELD(inner_transport_header);
1016 	CHECK_SKB_FIELD(inner_network_header);
1017 	CHECK_SKB_FIELD(inner_mac_header);
1018 	CHECK_SKB_FIELD(mark);
1019 #ifdef CONFIG_NETWORK_SECMARK
1020 	CHECK_SKB_FIELD(secmark);
1021 #endif
1022 #ifdef CONFIG_NET_RX_BUSY_POLL
1023 	CHECK_SKB_FIELD(napi_id);
1024 #endif
1025 #ifdef CONFIG_XPS
1026 	CHECK_SKB_FIELD(sender_cpu);
1027 #endif
1028 #ifdef CONFIG_NET_SCHED
1029 	CHECK_SKB_FIELD(tc_index);
1030 #endif
1031 
1032 }
1033 
1034 /*
1035  * You should not add any new code to this function.  Add it to
1036  * __copy_skb_header above instead.
1037  */
1038 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
1039 {
1040 #define C(x) n->x = skb->x
1041 
1042 	n->next = n->prev = NULL;
1043 	n->sk = NULL;
1044 	__copy_skb_header(n, skb);
1045 
1046 	C(len);
1047 	C(data_len);
1048 	C(mac_len);
1049 	n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
1050 	n->cloned = 1;
1051 	n->nohdr = 0;
1052 	n->peeked = 0;
1053 	C(pfmemalloc);
1054 	C(pp_recycle);
1055 	n->destructor = NULL;
1056 	C(tail);
1057 	C(end);
1058 	C(head);
1059 	C(head_frag);
1060 	C(data);
1061 	C(truesize);
1062 	refcount_set(&n->users, 1);
1063 
1064 	atomic_inc(&(skb_shinfo(skb)->dataref));
1065 	skb->cloned = 1;
1066 
1067 	return n;
1068 #undef C
1069 }
1070 
1071 /**
1072  * alloc_skb_for_msg() - allocate sk_buff to wrap frag list forming a msg
1073  * @first: first sk_buff of the msg
1074  */
1075 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first)
1076 {
1077 	struct sk_buff *n;
1078 
1079 	n = alloc_skb(0, GFP_ATOMIC);
1080 	if (!n)
1081 		return NULL;
1082 
1083 	n->len = first->len;
1084 	n->data_len = first->len;
1085 	n->truesize = first->truesize;
1086 
1087 	skb_shinfo(n)->frag_list = first;
1088 
1089 	__copy_skb_header(n, first);
1090 	n->destructor = NULL;
1091 
1092 	return n;
1093 }
1094 EXPORT_SYMBOL_GPL(alloc_skb_for_msg);
1095 
1096 /**
1097  *	skb_morph	-	morph one skb into another
1098  *	@dst: the skb to receive the contents
1099  *	@src: the skb to supply the contents
1100  *
1101  *	This is identical to skb_clone except that the target skb is
1102  *	supplied by the user.
1103  *
1104  *	The target skb is returned upon exit.
1105  */
1106 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
1107 {
1108 	skb_release_all(dst);
1109 	return __skb_clone(dst, src);
1110 }
1111 EXPORT_SYMBOL_GPL(skb_morph);
1112 
1113 int mm_account_pinned_pages(struct mmpin *mmp, size_t size)
1114 {
1115 	unsigned long max_pg, num_pg, new_pg, old_pg;
1116 	struct user_struct *user;
1117 
1118 	if (capable(CAP_IPC_LOCK) || !size)
1119 		return 0;
1120 
1121 	num_pg = (size >> PAGE_SHIFT) + 2;	/* worst case */
1122 	max_pg = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
1123 	user = mmp->user ? : current_user();
1124 
1125 	do {
1126 		old_pg = atomic_long_read(&user->locked_vm);
1127 		new_pg = old_pg + num_pg;
1128 		if (new_pg > max_pg)
1129 			return -ENOBUFS;
1130 	} while (atomic_long_cmpxchg(&user->locked_vm, old_pg, new_pg) !=
1131 		 old_pg);
1132 
1133 	if (!mmp->user) {
1134 		mmp->user = get_uid(user);
1135 		mmp->num_pg = num_pg;
1136 	} else {
1137 		mmp->num_pg += num_pg;
1138 	}
1139 
1140 	return 0;
1141 }
1142 EXPORT_SYMBOL_GPL(mm_account_pinned_pages);
1143 
1144 void mm_unaccount_pinned_pages(struct mmpin *mmp)
1145 {
1146 	if (mmp->user) {
1147 		atomic_long_sub(mmp->num_pg, &mmp->user->locked_vm);
1148 		free_uid(mmp->user);
1149 	}
1150 }
1151 EXPORT_SYMBOL_GPL(mm_unaccount_pinned_pages);
1152 
1153 struct ubuf_info *msg_zerocopy_alloc(struct sock *sk, size_t size)
1154 {
1155 	struct ubuf_info *uarg;
1156 	struct sk_buff *skb;
1157 
1158 	WARN_ON_ONCE(!in_task());
1159 
1160 	skb = sock_omalloc(sk, 0, GFP_KERNEL);
1161 	if (!skb)
1162 		return NULL;
1163 
1164 	BUILD_BUG_ON(sizeof(*uarg) > sizeof(skb->cb));
1165 	uarg = (void *)skb->cb;
1166 	uarg->mmp.user = NULL;
1167 
1168 	if (mm_account_pinned_pages(&uarg->mmp, size)) {
1169 		kfree_skb(skb);
1170 		return NULL;
1171 	}
1172 
1173 	uarg->callback = msg_zerocopy_callback;
1174 	uarg->id = ((u32)atomic_inc_return(&sk->sk_zckey)) - 1;
1175 	uarg->len = 1;
1176 	uarg->bytelen = size;
1177 	uarg->zerocopy = 1;
1178 	uarg->flags = SKBFL_ZEROCOPY_FRAG;
1179 	refcount_set(&uarg->refcnt, 1);
1180 	sock_hold(sk);
1181 
1182 	return uarg;
1183 }
1184 EXPORT_SYMBOL_GPL(msg_zerocopy_alloc);
1185 
1186 static inline struct sk_buff *skb_from_uarg(struct ubuf_info *uarg)
1187 {
1188 	return container_of((void *)uarg, struct sk_buff, cb);
1189 }
1190 
1191 struct ubuf_info *msg_zerocopy_realloc(struct sock *sk, size_t size,
1192 				       struct ubuf_info *uarg)
1193 {
1194 	if (uarg) {
1195 		const u32 byte_limit = 1 << 19;		/* limit to a few TSO */
1196 		u32 bytelen, next;
1197 
1198 		/* realloc only when socket is locked (TCP, UDP cork),
1199 		 * so uarg->len and sk_zckey access is serialized
1200 		 */
1201 		if (!sock_owned_by_user(sk)) {
1202 			WARN_ON_ONCE(1);
1203 			return NULL;
1204 		}
1205 
1206 		bytelen = uarg->bytelen + size;
1207 		if (uarg->len == USHRT_MAX - 1 || bytelen > byte_limit) {
1208 			/* TCP can create new skb to attach new uarg */
1209 			if (sk->sk_type == SOCK_STREAM)
1210 				goto new_alloc;
1211 			return NULL;
1212 		}
1213 
1214 		next = (u32)atomic_read(&sk->sk_zckey);
1215 		if ((u32)(uarg->id + uarg->len) == next) {
1216 			if (mm_account_pinned_pages(&uarg->mmp, size))
1217 				return NULL;
1218 			uarg->len++;
1219 			uarg->bytelen = bytelen;
1220 			atomic_set(&sk->sk_zckey, ++next);
1221 
1222 			/* no extra ref when appending to datagram (MSG_MORE) */
1223 			if (sk->sk_type == SOCK_STREAM)
1224 				net_zcopy_get(uarg);
1225 
1226 			return uarg;
1227 		}
1228 	}
1229 
1230 new_alloc:
1231 	return msg_zerocopy_alloc(sk, size);
1232 }
1233 EXPORT_SYMBOL_GPL(msg_zerocopy_realloc);
1234 
1235 static bool skb_zerocopy_notify_extend(struct sk_buff *skb, u32 lo, u16 len)
1236 {
1237 	struct sock_exterr_skb *serr = SKB_EXT_ERR(skb);
1238 	u32 old_lo, old_hi;
1239 	u64 sum_len;
1240 
1241 	old_lo = serr->ee.ee_info;
1242 	old_hi = serr->ee.ee_data;
1243 	sum_len = old_hi - old_lo + 1ULL + len;
1244 
1245 	if (sum_len >= (1ULL << 32))
1246 		return false;
1247 
1248 	if (lo != old_hi + 1)
1249 		return false;
1250 
1251 	serr->ee.ee_data += len;
1252 	return true;
1253 }
1254 
1255 static void __msg_zerocopy_callback(struct ubuf_info *uarg)
1256 {
1257 	struct sk_buff *tail, *skb = skb_from_uarg(uarg);
1258 	struct sock_exterr_skb *serr;
1259 	struct sock *sk = skb->sk;
1260 	struct sk_buff_head *q;
1261 	unsigned long flags;
1262 	bool is_zerocopy;
1263 	u32 lo, hi;
1264 	u16 len;
1265 
1266 	mm_unaccount_pinned_pages(&uarg->mmp);
1267 
1268 	/* if !len, there was only 1 call, and it was aborted
1269 	 * so do not queue a completion notification
1270 	 */
1271 	if (!uarg->len || sock_flag(sk, SOCK_DEAD))
1272 		goto release;
1273 
1274 	len = uarg->len;
1275 	lo = uarg->id;
1276 	hi = uarg->id + len - 1;
1277 	is_zerocopy = uarg->zerocopy;
1278 
1279 	serr = SKB_EXT_ERR(skb);
1280 	memset(serr, 0, sizeof(*serr));
1281 	serr->ee.ee_errno = 0;
1282 	serr->ee.ee_origin = SO_EE_ORIGIN_ZEROCOPY;
1283 	serr->ee.ee_data = hi;
1284 	serr->ee.ee_info = lo;
1285 	if (!is_zerocopy)
1286 		serr->ee.ee_code |= SO_EE_CODE_ZEROCOPY_COPIED;
1287 
1288 	q = &sk->sk_error_queue;
1289 	spin_lock_irqsave(&q->lock, flags);
1290 	tail = skb_peek_tail(q);
1291 	if (!tail || SKB_EXT_ERR(tail)->ee.ee_origin != SO_EE_ORIGIN_ZEROCOPY ||
1292 	    !skb_zerocopy_notify_extend(tail, lo, len)) {
1293 		__skb_queue_tail(q, skb);
1294 		skb = NULL;
1295 	}
1296 	spin_unlock_irqrestore(&q->lock, flags);
1297 
1298 	sk_error_report(sk);
1299 
1300 release:
1301 	consume_skb(skb);
1302 	sock_put(sk);
1303 }
1304 
1305 void msg_zerocopy_callback(struct sk_buff *skb, struct ubuf_info *uarg,
1306 			   bool success)
1307 {
1308 	uarg->zerocopy = uarg->zerocopy & success;
1309 
1310 	if (refcount_dec_and_test(&uarg->refcnt))
1311 		__msg_zerocopy_callback(uarg);
1312 }
1313 EXPORT_SYMBOL_GPL(msg_zerocopy_callback);
1314 
1315 void msg_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref)
1316 {
1317 	struct sock *sk = skb_from_uarg(uarg)->sk;
1318 
1319 	atomic_dec(&sk->sk_zckey);
1320 	uarg->len--;
1321 
1322 	if (have_uref)
1323 		msg_zerocopy_callback(NULL, uarg, true);
1324 }
1325 EXPORT_SYMBOL_GPL(msg_zerocopy_put_abort);
1326 
1327 int skb_zerocopy_iter_dgram(struct sk_buff *skb, struct msghdr *msg, int len)
1328 {
1329 	return __zerocopy_sg_from_iter(skb->sk, skb, &msg->msg_iter, len);
1330 }
1331 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_dgram);
1332 
1333 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
1334 			     struct msghdr *msg, int len,
1335 			     struct ubuf_info *uarg)
1336 {
1337 	struct ubuf_info *orig_uarg = skb_zcopy(skb);
1338 	struct iov_iter orig_iter = msg->msg_iter;
1339 	int err, orig_len = skb->len;
1340 
1341 	/* An skb can only point to one uarg. This edge case happens when
1342 	 * TCP appends to an skb, but zerocopy_realloc triggered a new alloc.
1343 	 */
1344 	if (orig_uarg && uarg != orig_uarg)
1345 		return -EEXIST;
1346 
1347 	err = __zerocopy_sg_from_iter(sk, skb, &msg->msg_iter, len);
1348 	if (err == -EFAULT || (err == -EMSGSIZE && skb->len == orig_len)) {
1349 		struct sock *save_sk = skb->sk;
1350 
1351 		/* Streams do not free skb on error. Reset to prev state. */
1352 		msg->msg_iter = orig_iter;
1353 		skb->sk = sk;
1354 		___pskb_trim(skb, orig_len);
1355 		skb->sk = save_sk;
1356 		return err;
1357 	}
1358 
1359 	skb_zcopy_set(skb, uarg, NULL);
1360 	return skb->len - orig_len;
1361 }
1362 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_stream);
1363 
1364 static int skb_zerocopy_clone(struct sk_buff *nskb, struct sk_buff *orig,
1365 			      gfp_t gfp_mask)
1366 {
1367 	if (skb_zcopy(orig)) {
1368 		if (skb_zcopy(nskb)) {
1369 			/* !gfp_mask callers are verified to !skb_zcopy(nskb) */
1370 			if (!gfp_mask) {
1371 				WARN_ON_ONCE(1);
1372 				return -ENOMEM;
1373 			}
1374 			if (skb_uarg(nskb) == skb_uarg(orig))
1375 				return 0;
1376 			if (skb_copy_ubufs(nskb, GFP_ATOMIC))
1377 				return -EIO;
1378 		}
1379 		skb_zcopy_set(nskb, skb_uarg(orig), NULL);
1380 	}
1381 	return 0;
1382 }
1383 
1384 /**
1385  *	skb_copy_ubufs	-	copy userspace skb frags buffers to kernel
1386  *	@skb: the skb to modify
1387  *	@gfp_mask: allocation priority
1388  *
1389  *	This must be called on skb with SKBFL_ZEROCOPY_ENABLE.
1390  *	It will copy all frags into kernel and drop the reference
1391  *	to userspace pages.
1392  *
1393  *	If this function is called from an interrupt gfp_mask() must be
1394  *	%GFP_ATOMIC.
1395  *
1396  *	Returns 0 on success or a negative error code on failure
1397  *	to allocate kernel memory to copy to.
1398  */
1399 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask)
1400 {
1401 	int num_frags = skb_shinfo(skb)->nr_frags;
1402 	struct page *page, *head = NULL;
1403 	int i, new_frags;
1404 	u32 d_off;
1405 
1406 	if (skb_shared(skb) || skb_unclone(skb, gfp_mask))
1407 		return -EINVAL;
1408 
1409 	if (!num_frags)
1410 		goto release;
1411 
1412 	new_frags = (__skb_pagelen(skb) + PAGE_SIZE - 1) >> PAGE_SHIFT;
1413 	for (i = 0; i < new_frags; i++) {
1414 		page = alloc_page(gfp_mask);
1415 		if (!page) {
1416 			while (head) {
1417 				struct page *next = (struct page *)page_private(head);
1418 				put_page(head);
1419 				head = next;
1420 			}
1421 			return -ENOMEM;
1422 		}
1423 		set_page_private(page, (unsigned long)head);
1424 		head = page;
1425 	}
1426 
1427 	page = head;
1428 	d_off = 0;
1429 	for (i = 0; i < num_frags; i++) {
1430 		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
1431 		u32 p_off, p_len, copied;
1432 		struct page *p;
1433 		u8 *vaddr;
1434 
1435 		skb_frag_foreach_page(f, skb_frag_off(f), skb_frag_size(f),
1436 				      p, p_off, p_len, copied) {
1437 			u32 copy, done = 0;
1438 			vaddr = kmap_atomic(p);
1439 
1440 			while (done < p_len) {
1441 				if (d_off == PAGE_SIZE) {
1442 					d_off = 0;
1443 					page = (struct page *)page_private(page);
1444 				}
1445 				copy = min_t(u32, PAGE_SIZE - d_off, p_len - done);
1446 				memcpy(page_address(page) + d_off,
1447 				       vaddr + p_off + done, copy);
1448 				done += copy;
1449 				d_off += copy;
1450 			}
1451 			kunmap_atomic(vaddr);
1452 		}
1453 	}
1454 
1455 	/* skb frags release userspace buffers */
1456 	for (i = 0; i < num_frags; i++)
1457 		skb_frag_unref(skb, i);
1458 
1459 	/* skb frags point to kernel buffers */
1460 	for (i = 0; i < new_frags - 1; i++) {
1461 		__skb_fill_page_desc(skb, i, head, 0, PAGE_SIZE);
1462 		head = (struct page *)page_private(head);
1463 	}
1464 	__skb_fill_page_desc(skb, new_frags - 1, head, 0, d_off);
1465 	skb_shinfo(skb)->nr_frags = new_frags;
1466 
1467 release:
1468 	skb_zcopy_clear(skb, false);
1469 	return 0;
1470 }
1471 EXPORT_SYMBOL_GPL(skb_copy_ubufs);
1472 
1473 /**
1474  *	skb_clone	-	duplicate an sk_buff
1475  *	@skb: buffer to clone
1476  *	@gfp_mask: allocation priority
1477  *
1478  *	Duplicate an &sk_buff. The new one is not owned by a socket. Both
1479  *	copies share the same packet data but not structure. The new
1480  *	buffer has a reference count of 1. If the allocation fails the
1481  *	function returns %NULL otherwise the new buffer is returned.
1482  *
1483  *	If this function is called from an interrupt gfp_mask() must be
1484  *	%GFP_ATOMIC.
1485  */
1486 
1487 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
1488 {
1489 	struct sk_buff_fclones *fclones = container_of(skb,
1490 						       struct sk_buff_fclones,
1491 						       skb1);
1492 	struct sk_buff *n;
1493 
1494 	if (skb_orphan_frags(skb, gfp_mask))
1495 		return NULL;
1496 
1497 	if (skb->fclone == SKB_FCLONE_ORIG &&
1498 	    refcount_read(&fclones->fclone_ref) == 1) {
1499 		n = &fclones->skb2;
1500 		refcount_set(&fclones->fclone_ref, 2);
1501 	} else {
1502 		if (skb_pfmemalloc(skb))
1503 			gfp_mask |= __GFP_MEMALLOC;
1504 
1505 		n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
1506 		if (!n)
1507 			return NULL;
1508 
1509 		n->fclone = SKB_FCLONE_UNAVAILABLE;
1510 	}
1511 
1512 	return __skb_clone(n, skb);
1513 }
1514 EXPORT_SYMBOL(skb_clone);
1515 
1516 void skb_headers_offset_update(struct sk_buff *skb, int off)
1517 {
1518 	/* Only adjust this if it actually is csum_start rather than csum */
1519 	if (skb->ip_summed == CHECKSUM_PARTIAL)
1520 		skb->csum_start += off;
1521 	/* {transport,network,mac}_header and tail are relative to skb->head */
1522 	skb->transport_header += off;
1523 	skb->network_header   += off;
1524 	if (skb_mac_header_was_set(skb))
1525 		skb->mac_header += off;
1526 	skb->inner_transport_header += off;
1527 	skb->inner_network_header += off;
1528 	skb->inner_mac_header += off;
1529 }
1530 EXPORT_SYMBOL(skb_headers_offset_update);
1531 
1532 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old)
1533 {
1534 	__copy_skb_header(new, old);
1535 
1536 	skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
1537 	skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
1538 	skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
1539 }
1540 EXPORT_SYMBOL(skb_copy_header);
1541 
1542 static inline int skb_alloc_rx_flag(const struct sk_buff *skb)
1543 {
1544 	if (skb_pfmemalloc(skb))
1545 		return SKB_ALLOC_RX;
1546 	return 0;
1547 }
1548 
1549 /**
1550  *	skb_copy	-	create private copy of an sk_buff
1551  *	@skb: buffer to copy
1552  *	@gfp_mask: allocation priority
1553  *
1554  *	Make a copy of both an &sk_buff and its data. This is used when the
1555  *	caller wishes to modify the data and needs a private copy of the
1556  *	data to alter. Returns %NULL on failure or the pointer to the buffer
1557  *	on success. The returned buffer has a reference count of 1.
1558  *
1559  *	As by-product this function converts non-linear &sk_buff to linear
1560  *	one, so that &sk_buff becomes completely private and caller is allowed
1561  *	to modify all the data of returned buffer. This means that this
1562  *	function is not recommended for use in circumstances when only
1563  *	header is going to be modified. Use pskb_copy() instead.
1564  */
1565 
1566 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
1567 {
1568 	int headerlen = skb_headroom(skb);
1569 	unsigned int size = skb_end_offset(skb) + skb->data_len;
1570 	struct sk_buff *n = __alloc_skb(size, gfp_mask,
1571 					skb_alloc_rx_flag(skb), NUMA_NO_NODE);
1572 
1573 	if (!n)
1574 		return NULL;
1575 
1576 	/* Set the data pointer */
1577 	skb_reserve(n, headerlen);
1578 	/* Set the tail pointer and length */
1579 	skb_put(n, skb->len);
1580 
1581 	BUG_ON(skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len));
1582 
1583 	skb_copy_header(n, skb);
1584 	return n;
1585 }
1586 EXPORT_SYMBOL(skb_copy);
1587 
1588 /**
1589  *	__pskb_copy_fclone	-  create copy of an sk_buff with private head.
1590  *	@skb: buffer to copy
1591  *	@headroom: headroom of new skb
1592  *	@gfp_mask: allocation priority
1593  *	@fclone: if true allocate the copy of the skb from the fclone
1594  *	cache instead of the head cache; it is recommended to set this
1595  *	to true for the cases where the copy will likely be cloned
1596  *
1597  *	Make a copy of both an &sk_buff and part of its data, located
1598  *	in header. Fragmented data remain shared. This is used when
1599  *	the caller wishes to modify only header of &sk_buff and needs
1600  *	private copy of the header to alter. Returns %NULL on failure
1601  *	or the pointer to the buffer on success.
1602  *	The returned buffer has a reference count of 1.
1603  */
1604 
1605 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1606 				   gfp_t gfp_mask, bool fclone)
1607 {
1608 	unsigned int size = skb_headlen(skb) + headroom;
1609 	int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0);
1610 	struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE);
1611 
1612 	if (!n)
1613 		goto out;
1614 
1615 	/* Set the data pointer */
1616 	skb_reserve(n, headroom);
1617 	/* Set the tail pointer and length */
1618 	skb_put(n, skb_headlen(skb));
1619 	/* Copy the bytes */
1620 	skb_copy_from_linear_data(skb, n->data, n->len);
1621 
1622 	n->truesize += skb->data_len;
1623 	n->data_len  = skb->data_len;
1624 	n->len	     = skb->len;
1625 
1626 	if (skb_shinfo(skb)->nr_frags) {
1627 		int i;
1628 
1629 		if (skb_orphan_frags(skb, gfp_mask) ||
1630 		    skb_zerocopy_clone(n, skb, gfp_mask)) {
1631 			kfree_skb(n);
1632 			n = NULL;
1633 			goto out;
1634 		}
1635 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1636 			skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
1637 			skb_frag_ref(skb, i);
1638 		}
1639 		skb_shinfo(n)->nr_frags = i;
1640 	}
1641 
1642 	if (skb_has_frag_list(skb)) {
1643 		skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
1644 		skb_clone_fraglist(n);
1645 	}
1646 
1647 	skb_copy_header(n, skb);
1648 out:
1649 	return n;
1650 }
1651 EXPORT_SYMBOL(__pskb_copy_fclone);
1652 
1653 /**
1654  *	pskb_expand_head - reallocate header of &sk_buff
1655  *	@skb: buffer to reallocate
1656  *	@nhead: room to add at head
1657  *	@ntail: room to add at tail
1658  *	@gfp_mask: allocation priority
1659  *
1660  *	Expands (or creates identical copy, if @nhead and @ntail are zero)
1661  *	header of @skb. &sk_buff itself is not changed. &sk_buff MUST have
1662  *	reference count of 1. Returns zero in the case of success or error,
1663  *	if expansion failed. In the last case, &sk_buff is not changed.
1664  *
1665  *	All the pointers pointing into skb header may change and must be
1666  *	reloaded after call to this function.
1667  */
1668 
1669 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
1670 		     gfp_t gfp_mask)
1671 {
1672 	int i, osize = skb_end_offset(skb);
1673 	int size = osize + nhead + ntail;
1674 	long off;
1675 	u8 *data;
1676 
1677 	BUG_ON(nhead < 0);
1678 
1679 	BUG_ON(skb_shared(skb));
1680 
1681 	size = SKB_DATA_ALIGN(size);
1682 
1683 	if (skb_pfmemalloc(skb))
1684 		gfp_mask |= __GFP_MEMALLOC;
1685 	data = kmalloc_reserve(size + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
1686 			       gfp_mask, NUMA_NO_NODE, NULL);
1687 	if (!data)
1688 		goto nodata;
1689 	size = SKB_WITH_OVERHEAD(ksize(data));
1690 
1691 	/* Copy only real data... and, alas, header. This should be
1692 	 * optimized for the cases when header is void.
1693 	 */
1694 	memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head);
1695 
1696 	memcpy((struct skb_shared_info *)(data + size),
1697 	       skb_shinfo(skb),
1698 	       offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags]));
1699 
1700 	/*
1701 	 * if shinfo is shared we must drop the old head gracefully, but if it
1702 	 * is not we can just drop the old head and let the existing refcount
1703 	 * be since all we did is relocate the values
1704 	 */
1705 	if (skb_cloned(skb)) {
1706 		if (skb_orphan_frags(skb, gfp_mask))
1707 			goto nofrags;
1708 		if (skb_zcopy(skb))
1709 			refcount_inc(&skb_uarg(skb)->refcnt);
1710 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1711 			skb_frag_ref(skb, i);
1712 
1713 		if (skb_has_frag_list(skb))
1714 			skb_clone_fraglist(skb);
1715 
1716 		skb_release_data(skb);
1717 	} else {
1718 		skb_free_head(skb);
1719 	}
1720 	off = (data + nhead) - skb->head;
1721 
1722 	skb->head     = data;
1723 	skb->head_frag = 0;
1724 	skb->data    += off;
1725 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1726 	skb->end      = size;
1727 	off           = nhead;
1728 #else
1729 	skb->end      = skb->head + size;
1730 #endif
1731 	skb->tail	      += off;
1732 	skb_headers_offset_update(skb, nhead);
1733 	skb->cloned   = 0;
1734 	skb->hdr_len  = 0;
1735 	skb->nohdr    = 0;
1736 	atomic_set(&skb_shinfo(skb)->dataref, 1);
1737 
1738 	skb_metadata_clear(skb);
1739 
1740 	/* It is not generally safe to change skb->truesize.
1741 	 * For the moment, we really care of rx path, or
1742 	 * when skb is orphaned (not attached to a socket).
1743 	 */
1744 	if (!skb->sk || skb->destructor == sock_edemux)
1745 		skb->truesize += size - osize;
1746 
1747 	return 0;
1748 
1749 nofrags:
1750 	kfree(data);
1751 nodata:
1752 	return -ENOMEM;
1753 }
1754 EXPORT_SYMBOL(pskb_expand_head);
1755 
1756 /* Make private copy of skb with writable head and some headroom */
1757 
1758 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
1759 {
1760 	struct sk_buff *skb2;
1761 	int delta = headroom - skb_headroom(skb);
1762 
1763 	if (delta <= 0)
1764 		skb2 = pskb_copy(skb, GFP_ATOMIC);
1765 	else {
1766 		skb2 = skb_clone(skb, GFP_ATOMIC);
1767 		if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
1768 					     GFP_ATOMIC)) {
1769 			kfree_skb(skb2);
1770 			skb2 = NULL;
1771 		}
1772 	}
1773 	return skb2;
1774 }
1775 EXPORT_SYMBOL(skb_realloc_headroom);
1776 
1777 /**
1778  *	skb_copy_expand	-	copy and expand sk_buff
1779  *	@skb: buffer to copy
1780  *	@newheadroom: new free bytes at head
1781  *	@newtailroom: new free bytes at tail
1782  *	@gfp_mask: allocation priority
1783  *
1784  *	Make a copy of both an &sk_buff and its data and while doing so
1785  *	allocate additional space.
1786  *
1787  *	This is used when the caller wishes to modify the data and needs a
1788  *	private copy of the data to alter as well as more space for new fields.
1789  *	Returns %NULL on failure or the pointer to the buffer
1790  *	on success. The returned buffer has a reference count of 1.
1791  *
1792  *	You must pass %GFP_ATOMIC as the allocation priority if this function
1793  *	is called from an interrupt.
1794  */
1795 struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
1796 				int newheadroom, int newtailroom,
1797 				gfp_t gfp_mask)
1798 {
1799 	/*
1800 	 *	Allocate the copy buffer
1801 	 */
1802 	struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom,
1803 					gfp_mask, skb_alloc_rx_flag(skb),
1804 					NUMA_NO_NODE);
1805 	int oldheadroom = skb_headroom(skb);
1806 	int head_copy_len, head_copy_off;
1807 
1808 	if (!n)
1809 		return NULL;
1810 
1811 	skb_reserve(n, newheadroom);
1812 
1813 	/* Set the tail pointer and length */
1814 	skb_put(n, skb->len);
1815 
1816 	head_copy_len = oldheadroom;
1817 	head_copy_off = 0;
1818 	if (newheadroom <= head_copy_len)
1819 		head_copy_len = newheadroom;
1820 	else
1821 		head_copy_off = newheadroom - head_copy_len;
1822 
1823 	/* Copy the linear header and data. */
1824 	BUG_ON(skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
1825 			     skb->len + head_copy_len));
1826 
1827 	skb_copy_header(n, skb);
1828 
1829 	skb_headers_offset_update(n, newheadroom - oldheadroom);
1830 
1831 	return n;
1832 }
1833 EXPORT_SYMBOL(skb_copy_expand);
1834 
1835 /**
1836  *	__skb_pad		-	zero pad the tail of an skb
1837  *	@skb: buffer to pad
1838  *	@pad: space to pad
1839  *	@free_on_error: free buffer on error
1840  *
1841  *	Ensure that a buffer is followed by a padding area that is zero
1842  *	filled. Used by network drivers which may DMA or transfer data
1843  *	beyond the buffer end onto the wire.
1844  *
1845  *	May return error in out of memory cases. The skb is freed on error
1846  *	if @free_on_error is true.
1847  */
1848 
1849 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error)
1850 {
1851 	int err;
1852 	int ntail;
1853 
1854 	/* If the skbuff is non linear tailroom is always zero.. */
1855 	if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
1856 		memset(skb->data+skb->len, 0, pad);
1857 		return 0;
1858 	}
1859 
1860 	ntail = skb->data_len + pad - (skb->end - skb->tail);
1861 	if (likely(skb_cloned(skb) || ntail > 0)) {
1862 		err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
1863 		if (unlikely(err))
1864 			goto free_skb;
1865 	}
1866 
1867 	/* FIXME: The use of this function with non-linear skb's really needs
1868 	 * to be audited.
1869 	 */
1870 	err = skb_linearize(skb);
1871 	if (unlikely(err))
1872 		goto free_skb;
1873 
1874 	memset(skb->data + skb->len, 0, pad);
1875 	return 0;
1876 
1877 free_skb:
1878 	if (free_on_error)
1879 		kfree_skb(skb);
1880 	return err;
1881 }
1882 EXPORT_SYMBOL(__skb_pad);
1883 
1884 /**
1885  *	pskb_put - add data to the tail of a potentially fragmented buffer
1886  *	@skb: start of the buffer to use
1887  *	@tail: tail fragment of the buffer to use
1888  *	@len: amount of data to add
1889  *
1890  *	This function extends the used data area of the potentially
1891  *	fragmented buffer. @tail must be the last fragment of @skb -- or
1892  *	@skb itself. If this would exceed the total buffer size the kernel
1893  *	will panic. A pointer to the first byte of the extra data is
1894  *	returned.
1895  */
1896 
1897 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len)
1898 {
1899 	if (tail != skb) {
1900 		skb->data_len += len;
1901 		skb->len += len;
1902 	}
1903 	return skb_put(tail, len);
1904 }
1905 EXPORT_SYMBOL_GPL(pskb_put);
1906 
1907 /**
1908  *	skb_put - add data to a buffer
1909  *	@skb: buffer to use
1910  *	@len: amount of data to add
1911  *
1912  *	This function extends the used data area of the buffer. If this would
1913  *	exceed the total buffer size the kernel will panic. A pointer to the
1914  *	first byte of the extra data is returned.
1915  */
1916 void *skb_put(struct sk_buff *skb, unsigned int len)
1917 {
1918 	void *tmp = skb_tail_pointer(skb);
1919 	SKB_LINEAR_ASSERT(skb);
1920 	skb->tail += len;
1921 	skb->len  += len;
1922 	if (unlikely(skb->tail > skb->end))
1923 		skb_over_panic(skb, len, __builtin_return_address(0));
1924 	return tmp;
1925 }
1926 EXPORT_SYMBOL(skb_put);
1927 
1928 /**
1929  *	skb_push - add data to the start of a buffer
1930  *	@skb: buffer to use
1931  *	@len: amount of data to add
1932  *
1933  *	This function extends the used data area of the buffer at the buffer
1934  *	start. If this would exceed the total buffer headroom the kernel will
1935  *	panic. A pointer to the first byte of the extra data is returned.
1936  */
1937 void *skb_push(struct sk_buff *skb, unsigned int len)
1938 {
1939 	skb->data -= len;
1940 	skb->len  += len;
1941 	if (unlikely(skb->data < skb->head))
1942 		skb_under_panic(skb, len, __builtin_return_address(0));
1943 	return skb->data;
1944 }
1945 EXPORT_SYMBOL(skb_push);
1946 
1947 /**
1948  *	skb_pull - remove data from the start of a buffer
1949  *	@skb: buffer to use
1950  *	@len: amount of data to remove
1951  *
1952  *	This function removes data from the start of a buffer, returning
1953  *	the memory to the headroom. A pointer to the next data in the buffer
1954  *	is returned. Once the data has been pulled future pushes will overwrite
1955  *	the old data.
1956  */
1957 void *skb_pull(struct sk_buff *skb, unsigned int len)
1958 {
1959 	return skb_pull_inline(skb, len);
1960 }
1961 EXPORT_SYMBOL(skb_pull);
1962 
1963 /**
1964  *	skb_trim - remove end from a buffer
1965  *	@skb: buffer to alter
1966  *	@len: new length
1967  *
1968  *	Cut the length of a buffer down by removing data from the tail. If
1969  *	the buffer is already under the length specified it is not modified.
1970  *	The skb must be linear.
1971  */
1972 void skb_trim(struct sk_buff *skb, unsigned int len)
1973 {
1974 	if (skb->len > len)
1975 		__skb_trim(skb, len);
1976 }
1977 EXPORT_SYMBOL(skb_trim);
1978 
1979 /* Trims skb to length len. It can change skb pointers.
1980  */
1981 
1982 int ___pskb_trim(struct sk_buff *skb, unsigned int len)
1983 {
1984 	struct sk_buff **fragp;
1985 	struct sk_buff *frag;
1986 	int offset = skb_headlen(skb);
1987 	int nfrags = skb_shinfo(skb)->nr_frags;
1988 	int i;
1989 	int err;
1990 
1991 	if (skb_cloned(skb) &&
1992 	    unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
1993 		return err;
1994 
1995 	i = 0;
1996 	if (offset >= len)
1997 		goto drop_pages;
1998 
1999 	for (; i < nfrags; i++) {
2000 		int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]);
2001 
2002 		if (end < len) {
2003 			offset = end;
2004 			continue;
2005 		}
2006 
2007 		skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset);
2008 
2009 drop_pages:
2010 		skb_shinfo(skb)->nr_frags = i;
2011 
2012 		for (; i < nfrags; i++)
2013 			skb_frag_unref(skb, i);
2014 
2015 		if (skb_has_frag_list(skb))
2016 			skb_drop_fraglist(skb);
2017 		goto done;
2018 	}
2019 
2020 	for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
2021 	     fragp = &frag->next) {
2022 		int end = offset + frag->len;
2023 
2024 		if (skb_shared(frag)) {
2025 			struct sk_buff *nfrag;
2026 
2027 			nfrag = skb_clone(frag, GFP_ATOMIC);
2028 			if (unlikely(!nfrag))
2029 				return -ENOMEM;
2030 
2031 			nfrag->next = frag->next;
2032 			consume_skb(frag);
2033 			frag = nfrag;
2034 			*fragp = frag;
2035 		}
2036 
2037 		if (end < len) {
2038 			offset = end;
2039 			continue;
2040 		}
2041 
2042 		if (end > len &&
2043 		    unlikely((err = pskb_trim(frag, len - offset))))
2044 			return err;
2045 
2046 		if (frag->next)
2047 			skb_drop_list(&frag->next);
2048 		break;
2049 	}
2050 
2051 done:
2052 	if (len > skb_headlen(skb)) {
2053 		skb->data_len -= skb->len - len;
2054 		skb->len       = len;
2055 	} else {
2056 		skb->len       = len;
2057 		skb->data_len  = 0;
2058 		skb_set_tail_pointer(skb, len);
2059 	}
2060 
2061 	if (!skb->sk || skb->destructor == sock_edemux)
2062 		skb_condense(skb);
2063 	return 0;
2064 }
2065 EXPORT_SYMBOL(___pskb_trim);
2066 
2067 /* Note : use pskb_trim_rcsum() instead of calling this directly
2068  */
2069 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len)
2070 {
2071 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
2072 		int delta = skb->len - len;
2073 
2074 		skb->csum = csum_block_sub(skb->csum,
2075 					   skb_checksum(skb, len, delta, 0),
2076 					   len);
2077 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
2078 		int hdlen = (len > skb_headlen(skb)) ? skb_headlen(skb) : len;
2079 		int offset = skb_checksum_start_offset(skb) + skb->csum_offset;
2080 
2081 		if (offset + sizeof(__sum16) > hdlen)
2082 			return -EINVAL;
2083 	}
2084 	return __pskb_trim(skb, len);
2085 }
2086 EXPORT_SYMBOL(pskb_trim_rcsum_slow);
2087 
2088 /**
2089  *	__pskb_pull_tail - advance tail of skb header
2090  *	@skb: buffer to reallocate
2091  *	@delta: number of bytes to advance tail
2092  *
2093  *	The function makes a sense only on a fragmented &sk_buff,
2094  *	it expands header moving its tail forward and copying necessary
2095  *	data from fragmented part.
2096  *
2097  *	&sk_buff MUST have reference count of 1.
2098  *
2099  *	Returns %NULL (and &sk_buff does not change) if pull failed
2100  *	or value of new tail of skb in the case of success.
2101  *
2102  *	All the pointers pointing into skb header may change and must be
2103  *	reloaded after call to this function.
2104  */
2105 
2106 /* Moves tail of skb head forward, copying data from fragmented part,
2107  * when it is necessary.
2108  * 1. It may fail due to malloc failure.
2109  * 2. It may change skb pointers.
2110  *
2111  * It is pretty complicated. Luckily, it is called only in exceptional cases.
2112  */
2113 void *__pskb_pull_tail(struct sk_buff *skb, int delta)
2114 {
2115 	/* If skb has not enough free space at tail, get new one
2116 	 * plus 128 bytes for future expansions. If we have enough
2117 	 * room at tail, reallocate without expansion only if skb is cloned.
2118 	 */
2119 	int i, k, eat = (skb->tail + delta) - skb->end;
2120 
2121 	if (eat > 0 || skb_cloned(skb)) {
2122 		if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
2123 				     GFP_ATOMIC))
2124 			return NULL;
2125 	}
2126 
2127 	BUG_ON(skb_copy_bits(skb, skb_headlen(skb),
2128 			     skb_tail_pointer(skb), delta));
2129 
2130 	/* Optimization: no fragments, no reasons to preestimate
2131 	 * size of pulled pages. Superb.
2132 	 */
2133 	if (!skb_has_frag_list(skb))
2134 		goto pull_pages;
2135 
2136 	/* Estimate size of pulled pages. */
2137 	eat = delta;
2138 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2139 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2140 
2141 		if (size >= eat)
2142 			goto pull_pages;
2143 		eat -= size;
2144 	}
2145 
2146 	/* If we need update frag list, we are in troubles.
2147 	 * Certainly, it is possible to add an offset to skb data,
2148 	 * but taking into account that pulling is expected to
2149 	 * be very rare operation, it is worth to fight against
2150 	 * further bloating skb head and crucify ourselves here instead.
2151 	 * Pure masohism, indeed. 8)8)
2152 	 */
2153 	if (eat) {
2154 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
2155 		struct sk_buff *clone = NULL;
2156 		struct sk_buff *insp = NULL;
2157 
2158 		do {
2159 			if (list->len <= eat) {
2160 				/* Eaten as whole. */
2161 				eat -= list->len;
2162 				list = list->next;
2163 				insp = list;
2164 			} else {
2165 				/* Eaten partially. */
2166 
2167 				if (skb_shared(list)) {
2168 					/* Sucks! We need to fork list. :-( */
2169 					clone = skb_clone(list, GFP_ATOMIC);
2170 					if (!clone)
2171 						return NULL;
2172 					insp = list->next;
2173 					list = clone;
2174 				} else {
2175 					/* This may be pulled without
2176 					 * problems. */
2177 					insp = list;
2178 				}
2179 				if (!pskb_pull(list, eat)) {
2180 					kfree_skb(clone);
2181 					return NULL;
2182 				}
2183 				break;
2184 			}
2185 		} while (eat);
2186 
2187 		/* Free pulled out fragments. */
2188 		while ((list = skb_shinfo(skb)->frag_list) != insp) {
2189 			skb_shinfo(skb)->frag_list = list->next;
2190 			kfree_skb(list);
2191 		}
2192 		/* And insert new clone at head. */
2193 		if (clone) {
2194 			clone->next = list;
2195 			skb_shinfo(skb)->frag_list = clone;
2196 		}
2197 	}
2198 	/* Success! Now we may commit changes to skb data. */
2199 
2200 pull_pages:
2201 	eat = delta;
2202 	k = 0;
2203 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2204 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2205 
2206 		if (size <= eat) {
2207 			skb_frag_unref(skb, i);
2208 			eat -= size;
2209 		} else {
2210 			skb_frag_t *frag = &skb_shinfo(skb)->frags[k];
2211 
2212 			*frag = skb_shinfo(skb)->frags[i];
2213 			if (eat) {
2214 				skb_frag_off_add(frag, eat);
2215 				skb_frag_size_sub(frag, eat);
2216 				if (!i)
2217 					goto end;
2218 				eat = 0;
2219 			}
2220 			k++;
2221 		}
2222 	}
2223 	skb_shinfo(skb)->nr_frags = k;
2224 
2225 end:
2226 	skb->tail     += delta;
2227 	skb->data_len -= delta;
2228 
2229 	if (!skb->data_len)
2230 		skb_zcopy_clear(skb, false);
2231 
2232 	return skb_tail_pointer(skb);
2233 }
2234 EXPORT_SYMBOL(__pskb_pull_tail);
2235 
2236 /**
2237  *	skb_copy_bits - copy bits from skb to kernel buffer
2238  *	@skb: source skb
2239  *	@offset: offset in source
2240  *	@to: destination buffer
2241  *	@len: number of bytes to copy
2242  *
2243  *	Copy the specified number of bytes from the source skb to the
2244  *	destination buffer.
2245  *
2246  *	CAUTION ! :
2247  *		If its prototype is ever changed,
2248  *		check arch/{*}/net/{*}.S files,
2249  *		since it is called from BPF assembly code.
2250  */
2251 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
2252 {
2253 	int start = skb_headlen(skb);
2254 	struct sk_buff *frag_iter;
2255 	int i, copy;
2256 
2257 	if (offset > (int)skb->len - len)
2258 		goto fault;
2259 
2260 	/* Copy header. */
2261 	if ((copy = start - offset) > 0) {
2262 		if (copy > len)
2263 			copy = len;
2264 		skb_copy_from_linear_data_offset(skb, offset, to, copy);
2265 		if ((len -= copy) == 0)
2266 			return 0;
2267 		offset += copy;
2268 		to     += copy;
2269 	}
2270 
2271 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2272 		int end;
2273 		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
2274 
2275 		WARN_ON(start > offset + len);
2276 
2277 		end = start + skb_frag_size(f);
2278 		if ((copy = end - offset) > 0) {
2279 			u32 p_off, p_len, copied;
2280 			struct page *p;
2281 			u8 *vaddr;
2282 
2283 			if (copy > len)
2284 				copy = len;
2285 
2286 			skb_frag_foreach_page(f,
2287 					      skb_frag_off(f) + offset - start,
2288 					      copy, p, p_off, p_len, copied) {
2289 				vaddr = kmap_atomic(p);
2290 				memcpy(to + copied, vaddr + p_off, p_len);
2291 				kunmap_atomic(vaddr);
2292 			}
2293 
2294 			if ((len -= copy) == 0)
2295 				return 0;
2296 			offset += copy;
2297 			to     += copy;
2298 		}
2299 		start = end;
2300 	}
2301 
2302 	skb_walk_frags(skb, frag_iter) {
2303 		int end;
2304 
2305 		WARN_ON(start > offset + len);
2306 
2307 		end = start + frag_iter->len;
2308 		if ((copy = end - offset) > 0) {
2309 			if (copy > len)
2310 				copy = len;
2311 			if (skb_copy_bits(frag_iter, offset - start, to, copy))
2312 				goto fault;
2313 			if ((len -= copy) == 0)
2314 				return 0;
2315 			offset += copy;
2316 			to     += copy;
2317 		}
2318 		start = end;
2319 	}
2320 
2321 	if (!len)
2322 		return 0;
2323 
2324 fault:
2325 	return -EFAULT;
2326 }
2327 EXPORT_SYMBOL(skb_copy_bits);
2328 
2329 /*
2330  * Callback from splice_to_pipe(), if we need to release some pages
2331  * at the end of the spd in case we error'ed out in filling the pipe.
2332  */
2333 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
2334 {
2335 	put_page(spd->pages[i]);
2336 }
2337 
2338 static struct page *linear_to_page(struct page *page, unsigned int *len,
2339 				   unsigned int *offset,
2340 				   struct sock *sk)
2341 {
2342 	struct page_frag *pfrag = sk_page_frag(sk);
2343 
2344 	if (!sk_page_frag_refill(sk, pfrag))
2345 		return NULL;
2346 
2347 	*len = min_t(unsigned int, *len, pfrag->size - pfrag->offset);
2348 
2349 	memcpy(page_address(pfrag->page) + pfrag->offset,
2350 	       page_address(page) + *offset, *len);
2351 	*offset = pfrag->offset;
2352 	pfrag->offset += *len;
2353 
2354 	return pfrag->page;
2355 }
2356 
2357 static bool spd_can_coalesce(const struct splice_pipe_desc *spd,
2358 			     struct page *page,
2359 			     unsigned int offset)
2360 {
2361 	return	spd->nr_pages &&
2362 		spd->pages[spd->nr_pages - 1] == page &&
2363 		(spd->partial[spd->nr_pages - 1].offset +
2364 		 spd->partial[spd->nr_pages - 1].len == offset);
2365 }
2366 
2367 /*
2368  * Fill page/offset/length into spd, if it can hold more pages.
2369  */
2370 static bool spd_fill_page(struct splice_pipe_desc *spd,
2371 			  struct pipe_inode_info *pipe, struct page *page,
2372 			  unsigned int *len, unsigned int offset,
2373 			  bool linear,
2374 			  struct sock *sk)
2375 {
2376 	if (unlikely(spd->nr_pages == MAX_SKB_FRAGS))
2377 		return true;
2378 
2379 	if (linear) {
2380 		page = linear_to_page(page, len, &offset, sk);
2381 		if (!page)
2382 			return true;
2383 	}
2384 	if (spd_can_coalesce(spd, page, offset)) {
2385 		spd->partial[spd->nr_pages - 1].len += *len;
2386 		return false;
2387 	}
2388 	get_page(page);
2389 	spd->pages[spd->nr_pages] = page;
2390 	spd->partial[spd->nr_pages].len = *len;
2391 	spd->partial[spd->nr_pages].offset = offset;
2392 	spd->nr_pages++;
2393 
2394 	return false;
2395 }
2396 
2397 static bool __splice_segment(struct page *page, unsigned int poff,
2398 			     unsigned int plen, unsigned int *off,
2399 			     unsigned int *len,
2400 			     struct splice_pipe_desc *spd, bool linear,
2401 			     struct sock *sk,
2402 			     struct pipe_inode_info *pipe)
2403 {
2404 	if (!*len)
2405 		return true;
2406 
2407 	/* skip this segment if already processed */
2408 	if (*off >= plen) {
2409 		*off -= plen;
2410 		return false;
2411 	}
2412 
2413 	/* ignore any bits we already processed */
2414 	poff += *off;
2415 	plen -= *off;
2416 	*off = 0;
2417 
2418 	do {
2419 		unsigned int flen = min(*len, plen);
2420 
2421 		if (spd_fill_page(spd, pipe, page, &flen, poff,
2422 				  linear, sk))
2423 			return true;
2424 		poff += flen;
2425 		plen -= flen;
2426 		*len -= flen;
2427 	} while (*len && plen);
2428 
2429 	return false;
2430 }
2431 
2432 /*
2433  * Map linear and fragment data from the skb to spd. It reports true if the
2434  * pipe is full or if we already spliced the requested length.
2435  */
2436 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe,
2437 			      unsigned int *offset, unsigned int *len,
2438 			      struct splice_pipe_desc *spd, struct sock *sk)
2439 {
2440 	int seg;
2441 	struct sk_buff *iter;
2442 
2443 	/* map the linear part :
2444 	 * If skb->head_frag is set, this 'linear' part is backed by a
2445 	 * fragment, and if the head is not shared with any clones then
2446 	 * we can avoid a copy since we own the head portion of this page.
2447 	 */
2448 	if (__splice_segment(virt_to_page(skb->data),
2449 			     (unsigned long) skb->data & (PAGE_SIZE - 1),
2450 			     skb_headlen(skb),
2451 			     offset, len, spd,
2452 			     skb_head_is_locked(skb),
2453 			     sk, pipe))
2454 		return true;
2455 
2456 	/*
2457 	 * then map the fragments
2458 	 */
2459 	for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
2460 		const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
2461 
2462 		if (__splice_segment(skb_frag_page(f),
2463 				     skb_frag_off(f), skb_frag_size(f),
2464 				     offset, len, spd, false, sk, pipe))
2465 			return true;
2466 	}
2467 
2468 	skb_walk_frags(skb, iter) {
2469 		if (*offset >= iter->len) {
2470 			*offset -= iter->len;
2471 			continue;
2472 		}
2473 		/* __skb_splice_bits() only fails if the output has no room
2474 		 * left, so no point in going over the frag_list for the error
2475 		 * case.
2476 		 */
2477 		if (__skb_splice_bits(iter, pipe, offset, len, spd, sk))
2478 			return true;
2479 	}
2480 
2481 	return false;
2482 }
2483 
2484 /*
2485  * Map data from the skb to a pipe. Should handle both the linear part,
2486  * the fragments, and the frag list.
2487  */
2488 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
2489 		    struct pipe_inode_info *pipe, unsigned int tlen,
2490 		    unsigned int flags)
2491 {
2492 	struct partial_page partial[MAX_SKB_FRAGS];
2493 	struct page *pages[MAX_SKB_FRAGS];
2494 	struct splice_pipe_desc spd = {
2495 		.pages = pages,
2496 		.partial = partial,
2497 		.nr_pages_max = MAX_SKB_FRAGS,
2498 		.ops = &nosteal_pipe_buf_ops,
2499 		.spd_release = sock_spd_release,
2500 	};
2501 	int ret = 0;
2502 
2503 	__skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk);
2504 
2505 	if (spd.nr_pages)
2506 		ret = splice_to_pipe(pipe, &spd);
2507 
2508 	return ret;
2509 }
2510 EXPORT_SYMBOL_GPL(skb_splice_bits);
2511 
2512 static int sendmsg_unlocked(struct sock *sk, struct msghdr *msg,
2513 			    struct kvec *vec, size_t num, size_t size)
2514 {
2515 	struct socket *sock = sk->sk_socket;
2516 
2517 	if (!sock)
2518 		return -EINVAL;
2519 	return kernel_sendmsg(sock, msg, vec, num, size);
2520 }
2521 
2522 static int sendpage_unlocked(struct sock *sk, struct page *page, int offset,
2523 			     size_t size, int flags)
2524 {
2525 	struct socket *sock = sk->sk_socket;
2526 
2527 	if (!sock)
2528 		return -EINVAL;
2529 	return kernel_sendpage(sock, page, offset, size, flags);
2530 }
2531 
2532 typedef int (*sendmsg_func)(struct sock *sk, struct msghdr *msg,
2533 			    struct kvec *vec, size_t num, size_t size);
2534 typedef int (*sendpage_func)(struct sock *sk, struct page *page, int offset,
2535 			     size_t size, int flags);
2536 static int __skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset,
2537 			   int len, sendmsg_func sendmsg, sendpage_func sendpage)
2538 {
2539 	unsigned int orig_len = len;
2540 	struct sk_buff *head = skb;
2541 	unsigned short fragidx;
2542 	int slen, ret;
2543 
2544 do_frag_list:
2545 
2546 	/* Deal with head data */
2547 	while (offset < skb_headlen(skb) && len) {
2548 		struct kvec kv;
2549 		struct msghdr msg;
2550 
2551 		slen = min_t(int, len, skb_headlen(skb) - offset);
2552 		kv.iov_base = skb->data + offset;
2553 		kv.iov_len = slen;
2554 		memset(&msg, 0, sizeof(msg));
2555 		msg.msg_flags = MSG_DONTWAIT;
2556 
2557 		ret = INDIRECT_CALL_2(sendmsg, kernel_sendmsg_locked,
2558 				      sendmsg_unlocked, sk, &msg, &kv, 1, slen);
2559 		if (ret <= 0)
2560 			goto error;
2561 
2562 		offset += ret;
2563 		len -= ret;
2564 	}
2565 
2566 	/* All the data was skb head? */
2567 	if (!len)
2568 		goto out;
2569 
2570 	/* Make offset relative to start of frags */
2571 	offset -= skb_headlen(skb);
2572 
2573 	/* Find where we are in frag list */
2574 	for (fragidx = 0; fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
2575 		skb_frag_t *frag  = &skb_shinfo(skb)->frags[fragidx];
2576 
2577 		if (offset < skb_frag_size(frag))
2578 			break;
2579 
2580 		offset -= skb_frag_size(frag);
2581 	}
2582 
2583 	for (; len && fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
2584 		skb_frag_t *frag  = &skb_shinfo(skb)->frags[fragidx];
2585 
2586 		slen = min_t(size_t, len, skb_frag_size(frag) - offset);
2587 
2588 		while (slen) {
2589 			ret = INDIRECT_CALL_2(sendpage, kernel_sendpage_locked,
2590 					      sendpage_unlocked, sk,
2591 					      skb_frag_page(frag),
2592 					      skb_frag_off(frag) + offset,
2593 					      slen, MSG_DONTWAIT);
2594 			if (ret <= 0)
2595 				goto error;
2596 
2597 			len -= ret;
2598 			offset += ret;
2599 			slen -= ret;
2600 		}
2601 
2602 		offset = 0;
2603 	}
2604 
2605 	if (len) {
2606 		/* Process any frag lists */
2607 
2608 		if (skb == head) {
2609 			if (skb_has_frag_list(skb)) {
2610 				skb = skb_shinfo(skb)->frag_list;
2611 				goto do_frag_list;
2612 			}
2613 		} else if (skb->next) {
2614 			skb = skb->next;
2615 			goto do_frag_list;
2616 		}
2617 	}
2618 
2619 out:
2620 	return orig_len - len;
2621 
2622 error:
2623 	return orig_len == len ? ret : orig_len - len;
2624 }
2625 
2626 /* Send skb data on a socket. Socket must be locked. */
2627 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
2628 			 int len)
2629 {
2630 	return __skb_send_sock(sk, skb, offset, len, kernel_sendmsg_locked,
2631 			       kernel_sendpage_locked);
2632 }
2633 EXPORT_SYMBOL_GPL(skb_send_sock_locked);
2634 
2635 /* Send skb data on a socket. Socket must be unlocked. */
2636 int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len)
2637 {
2638 	return __skb_send_sock(sk, skb, offset, len, sendmsg_unlocked,
2639 			       sendpage_unlocked);
2640 }
2641 
2642 /**
2643  *	skb_store_bits - store bits from kernel buffer to skb
2644  *	@skb: destination buffer
2645  *	@offset: offset in destination
2646  *	@from: source buffer
2647  *	@len: number of bytes to copy
2648  *
2649  *	Copy the specified number of bytes from the source buffer to the
2650  *	destination skb.  This function handles all the messy bits of
2651  *	traversing fragment lists and such.
2652  */
2653 
2654 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
2655 {
2656 	int start = skb_headlen(skb);
2657 	struct sk_buff *frag_iter;
2658 	int i, copy;
2659 
2660 	if (offset > (int)skb->len - len)
2661 		goto fault;
2662 
2663 	if ((copy = start - offset) > 0) {
2664 		if (copy > len)
2665 			copy = len;
2666 		skb_copy_to_linear_data_offset(skb, offset, from, copy);
2667 		if ((len -= copy) == 0)
2668 			return 0;
2669 		offset += copy;
2670 		from += copy;
2671 	}
2672 
2673 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2674 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2675 		int end;
2676 
2677 		WARN_ON(start > offset + len);
2678 
2679 		end = start + skb_frag_size(frag);
2680 		if ((copy = end - offset) > 0) {
2681 			u32 p_off, p_len, copied;
2682 			struct page *p;
2683 			u8 *vaddr;
2684 
2685 			if (copy > len)
2686 				copy = len;
2687 
2688 			skb_frag_foreach_page(frag,
2689 					      skb_frag_off(frag) + offset - start,
2690 					      copy, p, p_off, p_len, copied) {
2691 				vaddr = kmap_atomic(p);
2692 				memcpy(vaddr + p_off, from + copied, p_len);
2693 				kunmap_atomic(vaddr);
2694 			}
2695 
2696 			if ((len -= copy) == 0)
2697 				return 0;
2698 			offset += copy;
2699 			from += copy;
2700 		}
2701 		start = end;
2702 	}
2703 
2704 	skb_walk_frags(skb, frag_iter) {
2705 		int end;
2706 
2707 		WARN_ON(start > offset + len);
2708 
2709 		end = start + frag_iter->len;
2710 		if ((copy = end - offset) > 0) {
2711 			if (copy > len)
2712 				copy = len;
2713 			if (skb_store_bits(frag_iter, offset - start,
2714 					   from, copy))
2715 				goto fault;
2716 			if ((len -= copy) == 0)
2717 				return 0;
2718 			offset += copy;
2719 			from += copy;
2720 		}
2721 		start = end;
2722 	}
2723 	if (!len)
2724 		return 0;
2725 
2726 fault:
2727 	return -EFAULT;
2728 }
2729 EXPORT_SYMBOL(skb_store_bits);
2730 
2731 /* Checksum skb data. */
2732 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
2733 		      __wsum csum, const struct skb_checksum_ops *ops)
2734 {
2735 	int start = skb_headlen(skb);
2736 	int i, copy = start - offset;
2737 	struct sk_buff *frag_iter;
2738 	int pos = 0;
2739 
2740 	/* Checksum header. */
2741 	if (copy > 0) {
2742 		if (copy > len)
2743 			copy = len;
2744 		csum = INDIRECT_CALL_1(ops->update, csum_partial_ext,
2745 				       skb->data + offset, copy, csum);
2746 		if ((len -= copy) == 0)
2747 			return csum;
2748 		offset += copy;
2749 		pos	= copy;
2750 	}
2751 
2752 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2753 		int end;
2754 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2755 
2756 		WARN_ON(start > offset + len);
2757 
2758 		end = start + skb_frag_size(frag);
2759 		if ((copy = end - offset) > 0) {
2760 			u32 p_off, p_len, copied;
2761 			struct page *p;
2762 			__wsum csum2;
2763 			u8 *vaddr;
2764 
2765 			if (copy > len)
2766 				copy = len;
2767 
2768 			skb_frag_foreach_page(frag,
2769 					      skb_frag_off(frag) + offset - start,
2770 					      copy, p, p_off, p_len, copied) {
2771 				vaddr = kmap_atomic(p);
2772 				csum2 = INDIRECT_CALL_1(ops->update,
2773 							csum_partial_ext,
2774 							vaddr + p_off, p_len, 0);
2775 				kunmap_atomic(vaddr);
2776 				csum = INDIRECT_CALL_1(ops->combine,
2777 						       csum_block_add_ext, csum,
2778 						       csum2, pos, p_len);
2779 				pos += p_len;
2780 			}
2781 
2782 			if (!(len -= copy))
2783 				return csum;
2784 			offset += copy;
2785 		}
2786 		start = end;
2787 	}
2788 
2789 	skb_walk_frags(skb, frag_iter) {
2790 		int end;
2791 
2792 		WARN_ON(start > offset + len);
2793 
2794 		end = start + frag_iter->len;
2795 		if ((copy = end - offset) > 0) {
2796 			__wsum csum2;
2797 			if (copy > len)
2798 				copy = len;
2799 			csum2 = __skb_checksum(frag_iter, offset - start,
2800 					       copy, 0, ops);
2801 			csum = INDIRECT_CALL_1(ops->combine, csum_block_add_ext,
2802 					       csum, csum2, pos, copy);
2803 			if ((len -= copy) == 0)
2804 				return csum;
2805 			offset += copy;
2806 			pos    += copy;
2807 		}
2808 		start = end;
2809 	}
2810 	BUG_ON(len);
2811 
2812 	return csum;
2813 }
2814 EXPORT_SYMBOL(__skb_checksum);
2815 
2816 __wsum skb_checksum(const struct sk_buff *skb, int offset,
2817 		    int len, __wsum csum)
2818 {
2819 	const struct skb_checksum_ops ops = {
2820 		.update  = csum_partial_ext,
2821 		.combine = csum_block_add_ext,
2822 	};
2823 
2824 	return __skb_checksum(skb, offset, len, csum, &ops);
2825 }
2826 EXPORT_SYMBOL(skb_checksum);
2827 
2828 /* Both of above in one bottle. */
2829 
2830 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
2831 				    u8 *to, int len)
2832 {
2833 	int start = skb_headlen(skb);
2834 	int i, copy = start - offset;
2835 	struct sk_buff *frag_iter;
2836 	int pos = 0;
2837 	__wsum csum = 0;
2838 
2839 	/* Copy header. */
2840 	if (copy > 0) {
2841 		if (copy > len)
2842 			copy = len;
2843 		csum = csum_partial_copy_nocheck(skb->data + offset, to,
2844 						 copy);
2845 		if ((len -= copy) == 0)
2846 			return csum;
2847 		offset += copy;
2848 		to     += copy;
2849 		pos	= copy;
2850 	}
2851 
2852 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2853 		int end;
2854 
2855 		WARN_ON(start > offset + len);
2856 
2857 		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
2858 		if ((copy = end - offset) > 0) {
2859 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2860 			u32 p_off, p_len, copied;
2861 			struct page *p;
2862 			__wsum csum2;
2863 			u8 *vaddr;
2864 
2865 			if (copy > len)
2866 				copy = len;
2867 
2868 			skb_frag_foreach_page(frag,
2869 					      skb_frag_off(frag) + offset - start,
2870 					      copy, p, p_off, p_len, copied) {
2871 				vaddr = kmap_atomic(p);
2872 				csum2 = csum_partial_copy_nocheck(vaddr + p_off,
2873 								  to + copied,
2874 								  p_len);
2875 				kunmap_atomic(vaddr);
2876 				csum = csum_block_add(csum, csum2, pos);
2877 				pos += p_len;
2878 			}
2879 
2880 			if (!(len -= copy))
2881 				return csum;
2882 			offset += copy;
2883 			to     += copy;
2884 		}
2885 		start = end;
2886 	}
2887 
2888 	skb_walk_frags(skb, frag_iter) {
2889 		__wsum csum2;
2890 		int end;
2891 
2892 		WARN_ON(start > offset + len);
2893 
2894 		end = start + frag_iter->len;
2895 		if ((copy = end - offset) > 0) {
2896 			if (copy > len)
2897 				copy = len;
2898 			csum2 = skb_copy_and_csum_bits(frag_iter,
2899 						       offset - start,
2900 						       to, copy);
2901 			csum = csum_block_add(csum, csum2, pos);
2902 			if ((len -= copy) == 0)
2903 				return csum;
2904 			offset += copy;
2905 			to     += copy;
2906 			pos    += copy;
2907 		}
2908 		start = end;
2909 	}
2910 	BUG_ON(len);
2911 	return csum;
2912 }
2913 EXPORT_SYMBOL(skb_copy_and_csum_bits);
2914 
2915 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len)
2916 {
2917 	__sum16 sum;
2918 
2919 	sum = csum_fold(skb_checksum(skb, 0, len, skb->csum));
2920 	/* See comments in __skb_checksum_complete(). */
2921 	if (likely(!sum)) {
2922 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
2923 		    !skb->csum_complete_sw)
2924 			netdev_rx_csum_fault(skb->dev, skb);
2925 	}
2926 	if (!skb_shared(skb))
2927 		skb->csum_valid = !sum;
2928 	return sum;
2929 }
2930 EXPORT_SYMBOL(__skb_checksum_complete_head);
2931 
2932 /* This function assumes skb->csum already holds pseudo header's checksum,
2933  * which has been changed from the hardware checksum, for example, by
2934  * __skb_checksum_validate_complete(). And, the original skb->csum must
2935  * have been validated unsuccessfully for CHECKSUM_COMPLETE case.
2936  *
2937  * It returns non-zero if the recomputed checksum is still invalid, otherwise
2938  * zero. The new checksum is stored back into skb->csum unless the skb is
2939  * shared.
2940  */
2941 __sum16 __skb_checksum_complete(struct sk_buff *skb)
2942 {
2943 	__wsum csum;
2944 	__sum16 sum;
2945 
2946 	csum = skb_checksum(skb, 0, skb->len, 0);
2947 
2948 	sum = csum_fold(csum_add(skb->csum, csum));
2949 	/* This check is inverted, because we already knew the hardware
2950 	 * checksum is invalid before calling this function. So, if the
2951 	 * re-computed checksum is valid instead, then we have a mismatch
2952 	 * between the original skb->csum and skb_checksum(). This means either
2953 	 * the original hardware checksum is incorrect or we screw up skb->csum
2954 	 * when moving skb->data around.
2955 	 */
2956 	if (likely(!sum)) {
2957 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
2958 		    !skb->csum_complete_sw)
2959 			netdev_rx_csum_fault(skb->dev, skb);
2960 	}
2961 
2962 	if (!skb_shared(skb)) {
2963 		/* Save full packet checksum */
2964 		skb->csum = csum;
2965 		skb->ip_summed = CHECKSUM_COMPLETE;
2966 		skb->csum_complete_sw = 1;
2967 		skb->csum_valid = !sum;
2968 	}
2969 
2970 	return sum;
2971 }
2972 EXPORT_SYMBOL(__skb_checksum_complete);
2973 
2974 static __wsum warn_crc32c_csum_update(const void *buff, int len, __wsum sum)
2975 {
2976 	net_warn_ratelimited(
2977 		"%s: attempt to compute crc32c without libcrc32c.ko\n",
2978 		__func__);
2979 	return 0;
2980 }
2981 
2982 static __wsum warn_crc32c_csum_combine(__wsum csum, __wsum csum2,
2983 				       int offset, int len)
2984 {
2985 	net_warn_ratelimited(
2986 		"%s: attempt to compute crc32c without libcrc32c.ko\n",
2987 		__func__);
2988 	return 0;
2989 }
2990 
2991 static const struct skb_checksum_ops default_crc32c_ops = {
2992 	.update  = warn_crc32c_csum_update,
2993 	.combine = warn_crc32c_csum_combine,
2994 };
2995 
2996 const struct skb_checksum_ops *crc32c_csum_stub __read_mostly =
2997 	&default_crc32c_ops;
2998 EXPORT_SYMBOL(crc32c_csum_stub);
2999 
3000  /**
3001  *	skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy()
3002  *	@from: source buffer
3003  *
3004  *	Calculates the amount of linear headroom needed in the 'to' skb passed
3005  *	into skb_zerocopy().
3006  */
3007 unsigned int
3008 skb_zerocopy_headlen(const struct sk_buff *from)
3009 {
3010 	unsigned int hlen = 0;
3011 
3012 	if (!from->head_frag ||
3013 	    skb_headlen(from) < L1_CACHE_BYTES ||
3014 	    skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS)
3015 		hlen = skb_headlen(from);
3016 
3017 	if (skb_has_frag_list(from))
3018 		hlen = from->len;
3019 
3020 	return hlen;
3021 }
3022 EXPORT_SYMBOL_GPL(skb_zerocopy_headlen);
3023 
3024 /**
3025  *	skb_zerocopy - Zero copy skb to skb
3026  *	@to: destination buffer
3027  *	@from: source buffer
3028  *	@len: number of bytes to copy from source buffer
3029  *	@hlen: size of linear headroom in destination buffer
3030  *
3031  *	Copies up to `len` bytes from `from` to `to` by creating references
3032  *	to the frags in the source buffer.
3033  *
3034  *	The `hlen` as calculated by skb_zerocopy_headlen() specifies the
3035  *	headroom in the `to` buffer.
3036  *
3037  *	Return value:
3038  *	0: everything is OK
3039  *	-ENOMEM: couldn't orphan frags of @from due to lack of memory
3040  *	-EFAULT: skb_copy_bits() found some problem with skb geometry
3041  */
3042 int
3043 skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen)
3044 {
3045 	int i, j = 0;
3046 	int plen = 0; /* length of skb->head fragment */
3047 	int ret;
3048 	struct page *page;
3049 	unsigned int offset;
3050 
3051 	BUG_ON(!from->head_frag && !hlen);
3052 
3053 	/* dont bother with small payloads */
3054 	if (len <= skb_tailroom(to))
3055 		return skb_copy_bits(from, 0, skb_put(to, len), len);
3056 
3057 	if (hlen) {
3058 		ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen);
3059 		if (unlikely(ret))
3060 			return ret;
3061 		len -= hlen;
3062 	} else {
3063 		plen = min_t(int, skb_headlen(from), len);
3064 		if (plen) {
3065 			page = virt_to_head_page(from->head);
3066 			offset = from->data - (unsigned char *)page_address(page);
3067 			__skb_fill_page_desc(to, 0, page, offset, plen);
3068 			get_page(page);
3069 			j = 1;
3070 			len -= plen;
3071 		}
3072 	}
3073 
3074 	to->truesize += len + plen;
3075 	to->len += len + plen;
3076 	to->data_len += len + plen;
3077 
3078 	if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) {
3079 		skb_tx_error(from);
3080 		return -ENOMEM;
3081 	}
3082 	skb_zerocopy_clone(to, from, GFP_ATOMIC);
3083 
3084 	for (i = 0; i < skb_shinfo(from)->nr_frags; i++) {
3085 		int size;
3086 
3087 		if (!len)
3088 			break;
3089 		skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i];
3090 		size = min_t(int, skb_frag_size(&skb_shinfo(to)->frags[j]),
3091 					len);
3092 		skb_frag_size_set(&skb_shinfo(to)->frags[j], size);
3093 		len -= size;
3094 		skb_frag_ref(to, j);
3095 		j++;
3096 	}
3097 	skb_shinfo(to)->nr_frags = j;
3098 
3099 	return 0;
3100 }
3101 EXPORT_SYMBOL_GPL(skb_zerocopy);
3102 
3103 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
3104 {
3105 	__wsum csum;
3106 	long csstart;
3107 
3108 	if (skb->ip_summed == CHECKSUM_PARTIAL)
3109 		csstart = skb_checksum_start_offset(skb);
3110 	else
3111 		csstart = skb_headlen(skb);
3112 
3113 	BUG_ON(csstart > skb_headlen(skb));
3114 
3115 	skb_copy_from_linear_data(skb, to, csstart);
3116 
3117 	csum = 0;
3118 	if (csstart != skb->len)
3119 		csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
3120 					      skb->len - csstart);
3121 
3122 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
3123 		long csstuff = csstart + skb->csum_offset;
3124 
3125 		*((__sum16 *)(to + csstuff)) = csum_fold(csum);
3126 	}
3127 }
3128 EXPORT_SYMBOL(skb_copy_and_csum_dev);
3129 
3130 /**
3131  *	skb_dequeue - remove from the head of the queue
3132  *	@list: list to dequeue from
3133  *
3134  *	Remove the head of the list. The list lock is taken so the function
3135  *	may be used safely with other locking list functions. The head item is
3136  *	returned or %NULL if the list is empty.
3137  */
3138 
3139 struct sk_buff *skb_dequeue(struct sk_buff_head *list)
3140 {
3141 	unsigned long flags;
3142 	struct sk_buff *result;
3143 
3144 	spin_lock_irqsave(&list->lock, flags);
3145 	result = __skb_dequeue(list);
3146 	spin_unlock_irqrestore(&list->lock, flags);
3147 	return result;
3148 }
3149 EXPORT_SYMBOL(skb_dequeue);
3150 
3151 /**
3152  *	skb_dequeue_tail - remove from the tail of the queue
3153  *	@list: list to dequeue from
3154  *
3155  *	Remove the tail of the list. The list lock is taken so the function
3156  *	may be used safely with other locking list functions. The tail item is
3157  *	returned or %NULL if the list is empty.
3158  */
3159 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
3160 {
3161 	unsigned long flags;
3162 	struct sk_buff *result;
3163 
3164 	spin_lock_irqsave(&list->lock, flags);
3165 	result = __skb_dequeue_tail(list);
3166 	spin_unlock_irqrestore(&list->lock, flags);
3167 	return result;
3168 }
3169 EXPORT_SYMBOL(skb_dequeue_tail);
3170 
3171 /**
3172  *	skb_queue_purge - empty a list
3173  *	@list: list to empty
3174  *
3175  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
3176  *	the list and one reference dropped. This function takes the list
3177  *	lock and is atomic with respect to other list locking functions.
3178  */
3179 void skb_queue_purge(struct sk_buff_head *list)
3180 {
3181 	struct sk_buff *skb;
3182 	while ((skb = skb_dequeue(list)) != NULL)
3183 		kfree_skb(skb);
3184 }
3185 EXPORT_SYMBOL(skb_queue_purge);
3186 
3187 /**
3188  *	skb_rbtree_purge - empty a skb rbtree
3189  *	@root: root of the rbtree to empty
3190  *	Return value: the sum of truesizes of all purged skbs.
3191  *
3192  *	Delete all buffers on an &sk_buff rbtree. Each buffer is removed from
3193  *	the list and one reference dropped. This function does not take
3194  *	any lock. Synchronization should be handled by the caller (e.g., TCP
3195  *	out-of-order queue is protected by the socket lock).
3196  */
3197 unsigned int skb_rbtree_purge(struct rb_root *root)
3198 {
3199 	struct rb_node *p = rb_first(root);
3200 	unsigned int sum = 0;
3201 
3202 	while (p) {
3203 		struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode);
3204 
3205 		p = rb_next(p);
3206 		rb_erase(&skb->rbnode, root);
3207 		sum += skb->truesize;
3208 		kfree_skb(skb);
3209 	}
3210 	return sum;
3211 }
3212 
3213 /**
3214  *	skb_queue_head - queue a buffer at the list head
3215  *	@list: list to use
3216  *	@newsk: buffer to queue
3217  *
3218  *	Queue a buffer at the start of the list. This function takes the
3219  *	list lock and can be used safely with other locking &sk_buff functions
3220  *	safely.
3221  *
3222  *	A buffer cannot be placed on two lists at the same time.
3223  */
3224 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
3225 {
3226 	unsigned long flags;
3227 
3228 	spin_lock_irqsave(&list->lock, flags);
3229 	__skb_queue_head(list, newsk);
3230 	spin_unlock_irqrestore(&list->lock, flags);
3231 }
3232 EXPORT_SYMBOL(skb_queue_head);
3233 
3234 /**
3235  *	skb_queue_tail - queue a buffer at the list tail
3236  *	@list: list to use
3237  *	@newsk: buffer to queue
3238  *
3239  *	Queue a buffer at the tail of the list. This function takes the
3240  *	list lock and can be used safely with other locking &sk_buff functions
3241  *	safely.
3242  *
3243  *	A buffer cannot be placed on two lists at the same time.
3244  */
3245 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
3246 {
3247 	unsigned long flags;
3248 
3249 	spin_lock_irqsave(&list->lock, flags);
3250 	__skb_queue_tail(list, newsk);
3251 	spin_unlock_irqrestore(&list->lock, flags);
3252 }
3253 EXPORT_SYMBOL(skb_queue_tail);
3254 
3255 /**
3256  *	skb_unlink	-	remove a buffer from a list
3257  *	@skb: buffer to remove
3258  *	@list: list to use
3259  *
3260  *	Remove a packet from a list. The list locks are taken and this
3261  *	function is atomic with respect to other list locked calls
3262  *
3263  *	You must know what list the SKB is on.
3264  */
3265 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
3266 {
3267 	unsigned long flags;
3268 
3269 	spin_lock_irqsave(&list->lock, flags);
3270 	__skb_unlink(skb, list);
3271 	spin_unlock_irqrestore(&list->lock, flags);
3272 }
3273 EXPORT_SYMBOL(skb_unlink);
3274 
3275 /**
3276  *	skb_append	-	append a buffer
3277  *	@old: buffer to insert after
3278  *	@newsk: buffer to insert
3279  *	@list: list to use
3280  *
3281  *	Place a packet after a given packet in a list. The list locks are taken
3282  *	and this function is atomic with respect to other list locked calls.
3283  *	A buffer cannot be placed on two lists at the same time.
3284  */
3285 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
3286 {
3287 	unsigned long flags;
3288 
3289 	spin_lock_irqsave(&list->lock, flags);
3290 	__skb_queue_after(list, old, newsk);
3291 	spin_unlock_irqrestore(&list->lock, flags);
3292 }
3293 EXPORT_SYMBOL(skb_append);
3294 
3295 static inline void skb_split_inside_header(struct sk_buff *skb,
3296 					   struct sk_buff* skb1,
3297 					   const u32 len, const int pos)
3298 {
3299 	int i;
3300 
3301 	skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
3302 					 pos - len);
3303 	/* And move data appendix as is. */
3304 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
3305 		skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
3306 
3307 	skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
3308 	skb_shinfo(skb)->nr_frags  = 0;
3309 	skb1->data_len		   = skb->data_len;
3310 	skb1->len		   += skb1->data_len;
3311 	skb->data_len		   = 0;
3312 	skb->len		   = len;
3313 	skb_set_tail_pointer(skb, len);
3314 }
3315 
3316 static inline void skb_split_no_header(struct sk_buff *skb,
3317 				       struct sk_buff* skb1,
3318 				       const u32 len, int pos)
3319 {
3320 	int i, k = 0;
3321 	const int nfrags = skb_shinfo(skb)->nr_frags;
3322 
3323 	skb_shinfo(skb)->nr_frags = 0;
3324 	skb1->len		  = skb1->data_len = skb->len - len;
3325 	skb->len		  = len;
3326 	skb->data_len		  = len - pos;
3327 
3328 	for (i = 0; i < nfrags; i++) {
3329 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
3330 
3331 		if (pos + size > len) {
3332 			skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
3333 
3334 			if (pos < len) {
3335 				/* Split frag.
3336 				 * We have two variants in this case:
3337 				 * 1. Move all the frag to the second
3338 				 *    part, if it is possible. F.e.
3339 				 *    this approach is mandatory for TUX,
3340 				 *    where splitting is expensive.
3341 				 * 2. Split is accurately. We make this.
3342 				 */
3343 				skb_frag_ref(skb, i);
3344 				skb_frag_off_add(&skb_shinfo(skb1)->frags[0], len - pos);
3345 				skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos);
3346 				skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos);
3347 				skb_shinfo(skb)->nr_frags++;
3348 			}
3349 			k++;
3350 		} else
3351 			skb_shinfo(skb)->nr_frags++;
3352 		pos += size;
3353 	}
3354 	skb_shinfo(skb1)->nr_frags = k;
3355 }
3356 
3357 /**
3358  * skb_split - Split fragmented skb to two parts at length len.
3359  * @skb: the buffer to split
3360  * @skb1: the buffer to receive the second part
3361  * @len: new length for skb
3362  */
3363 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
3364 {
3365 	int pos = skb_headlen(skb);
3366 
3367 	skb_shinfo(skb1)->flags |= skb_shinfo(skb)->flags & SKBFL_SHARED_FRAG;
3368 	skb_zerocopy_clone(skb1, skb, 0);
3369 	if (len < pos)	/* Split line is inside header. */
3370 		skb_split_inside_header(skb, skb1, len, pos);
3371 	else		/* Second chunk has no header, nothing to copy. */
3372 		skb_split_no_header(skb, skb1, len, pos);
3373 }
3374 EXPORT_SYMBOL(skb_split);
3375 
3376 /* Shifting from/to a cloned skb is a no-go.
3377  *
3378  * Caller cannot keep skb_shinfo related pointers past calling here!
3379  */
3380 static int skb_prepare_for_shift(struct sk_buff *skb)
3381 {
3382 	int ret = 0;
3383 
3384 	if (skb_cloned(skb)) {
3385 		/* Save and restore truesize: pskb_expand_head() may reallocate
3386 		 * memory where ksize(kmalloc(S)) != ksize(kmalloc(S)), but we
3387 		 * cannot change truesize at this point.
3388 		 */
3389 		unsigned int save_truesize = skb->truesize;
3390 
3391 		ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3392 		skb->truesize = save_truesize;
3393 	}
3394 	return ret;
3395 }
3396 
3397 /**
3398  * skb_shift - Shifts paged data partially from skb to another
3399  * @tgt: buffer into which tail data gets added
3400  * @skb: buffer from which the paged data comes from
3401  * @shiftlen: shift up to this many bytes
3402  *
3403  * Attempts to shift up to shiftlen worth of bytes, which may be less than
3404  * the length of the skb, from skb to tgt. Returns number bytes shifted.
3405  * It's up to caller to free skb if everything was shifted.
3406  *
3407  * If @tgt runs out of frags, the whole operation is aborted.
3408  *
3409  * Skb cannot include anything else but paged data while tgt is allowed
3410  * to have non-paged data as well.
3411  *
3412  * TODO: full sized shift could be optimized but that would need
3413  * specialized skb free'er to handle frags without up-to-date nr_frags.
3414  */
3415 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
3416 {
3417 	int from, to, merge, todo;
3418 	skb_frag_t *fragfrom, *fragto;
3419 
3420 	BUG_ON(shiftlen > skb->len);
3421 
3422 	if (skb_headlen(skb))
3423 		return 0;
3424 	if (skb_zcopy(tgt) || skb_zcopy(skb))
3425 		return 0;
3426 
3427 	todo = shiftlen;
3428 	from = 0;
3429 	to = skb_shinfo(tgt)->nr_frags;
3430 	fragfrom = &skb_shinfo(skb)->frags[from];
3431 
3432 	/* Actual merge is delayed until the point when we know we can
3433 	 * commit all, so that we don't have to undo partial changes
3434 	 */
3435 	if (!to ||
3436 	    !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom),
3437 			      skb_frag_off(fragfrom))) {
3438 		merge = -1;
3439 	} else {
3440 		merge = to - 1;
3441 
3442 		todo -= skb_frag_size(fragfrom);
3443 		if (todo < 0) {
3444 			if (skb_prepare_for_shift(skb) ||
3445 			    skb_prepare_for_shift(tgt))
3446 				return 0;
3447 
3448 			/* All previous frag pointers might be stale! */
3449 			fragfrom = &skb_shinfo(skb)->frags[from];
3450 			fragto = &skb_shinfo(tgt)->frags[merge];
3451 
3452 			skb_frag_size_add(fragto, shiftlen);
3453 			skb_frag_size_sub(fragfrom, shiftlen);
3454 			skb_frag_off_add(fragfrom, shiftlen);
3455 
3456 			goto onlymerged;
3457 		}
3458 
3459 		from++;
3460 	}
3461 
3462 	/* Skip full, not-fitting skb to avoid expensive operations */
3463 	if ((shiftlen == skb->len) &&
3464 	    (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
3465 		return 0;
3466 
3467 	if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
3468 		return 0;
3469 
3470 	while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
3471 		if (to == MAX_SKB_FRAGS)
3472 			return 0;
3473 
3474 		fragfrom = &skb_shinfo(skb)->frags[from];
3475 		fragto = &skb_shinfo(tgt)->frags[to];
3476 
3477 		if (todo >= skb_frag_size(fragfrom)) {
3478 			*fragto = *fragfrom;
3479 			todo -= skb_frag_size(fragfrom);
3480 			from++;
3481 			to++;
3482 
3483 		} else {
3484 			__skb_frag_ref(fragfrom);
3485 			skb_frag_page_copy(fragto, fragfrom);
3486 			skb_frag_off_copy(fragto, fragfrom);
3487 			skb_frag_size_set(fragto, todo);
3488 
3489 			skb_frag_off_add(fragfrom, todo);
3490 			skb_frag_size_sub(fragfrom, todo);
3491 			todo = 0;
3492 
3493 			to++;
3494 			break;
3495 		}
3496 	}
3497 
3498 	/* Ready to "commit" this state change to tgt */
3499 	skb_shinfo(tgt)->nr_frags = to;
3500 
3501 	if (merge >= 0) {
3502 		fragfrom = &skb_shinfo(skb)->frags[0];
3503 		fragto = &skb_shinfo(tgt)->frags[merge];
3504 
3505 		skb_frag_size_add(fragto, skb_frag_size(fragfrom));
3506 		__skb_frag_unref(fragfrom, skb->pp_recycle);
3507 	}
3508 
3509 	/* Reposition in the original skb */
3510 	to = 0;
3511 	while (from < skb_shinfo(skb)->nr_frags)
3512 		skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
3513 	skb_shinfo(skb)->nr_frags = to;
3514 
3515 	BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
3516 
3517 onlymerged:
3518 	/* Most likely the tgt won't ever need its checksum anymore, skb on
3519 	 * the other hand might need it if it needs to be resent
3520 	 */
3521 	tgt->ip_summed = CHECKSUM_PARTIAL;
3522 	skb->ip_summed = CHECKSUM_PARTIAL;
3523 
3524 	/* Yak, is it really working this way? Some helper please? */
3525 	skb->len -= shiftlen;
3526 	skb->data_len -= shiftlen;
3527 	skb->truesize -= shiftlen;
3528 	tgt->len += shiftlen;
3529 	tgt->data_len += shiftlen;
3530 	tgt->truesize += shiftlen;
3531 
3532 	return shiftlen;
3533 }
3534 
3535 /**
3536  * skb_prepare_seq_read - Prepare a sequential read of skb data
3537  * @skb: the buffer to read
3538  * @from: lower offset of data to be read
3539  * @to: upper offset of data to be read
3540  * @st: state variable
3541  *
3542  * Initializes the specified state variable. Must be called before
3543  * invoking skb_seq_read() for the first time.
3544  */
3545 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
3546 			  unsigned int to, struct skb_seq_state *st)
3547 {
3548 	st->lower_offset = from;
3549 	st->upper_offset = to;
3550 	st->root_skb = st->cur_skb = skb;
3551 	st->frag_idx = st->stepped_offset = 0;
3552 	st->frag_data = NULL;
3553 	st->frag_off = 0;
3554 }
3555 EXPORT_SYMBOL(skb_prepare_seq_read);
3556 
3557 /**
3558  * skb_seq_read - Sequentially read skb data
3559  * @consumed: number of bytes consumed by the caller so far
3560  * @data: destination pointer for data to be returned
3561  * @st: state variable
3562  *
3563  * Reads a block of skb data at @consumed relative to the
3564  * lower offset specified to skb_prepare_seq_read(). Assigns
3565  * the head of the data block to @data and returns the length
3566  * of the block or 0 if the end of the skb data or the upper
3567  * offset has been reached.
3568  *
3569  * The caller is not required to consume all of the data
3570  * returned, i.e. @consumed is typically set to the number
3571  * of bytes already consumed and the next call to
3572  * skb_seq_read() will return the remaining part of the block.
3573  *
3574  * Note 1: The size of each block of data returned can be arbitrary,
3575  *       this limitation is the cost for zerocopy sequential
3576  *       reads of potentially non linear data.
3577  *
3578  * Note 2: Fragment lists within fragments are not implemented
3579  *       at the moment, state->root_skb could be replaced with
3580  *       a stack for this purpose.
3581  */
3582 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
3583 			  struct skb_seq_state *st)
3584 {
3585 	unsigned int block_limit, abs_offset = consumed + st->lower_offset;
3586 	skb_frag_t *frag;
3587 
3588 	if (unlikely(abs_offset >= st->upper_offset)) {
3589 		if (st->frag_data) {
3590 			kunmap_atomic(st->frag_data);
3591 			st->frag_data = NULL;
3592 		}
3593 		return 0;
3594 	}
3595 
3596 next_skb:
3597 	block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
3598 
3599 	if (abs_offset < block_limit && !st->frag_data) {
3600 		*data = st->cur_skb->data + (abs_offset - st->stepped_offset);
3601 		return block_limit - abs_offset;
3602 	}
3603 
3604 	if (st->frag_idx == 0 && !st->frag_data)
3605 		st->stepped_offset += skb_headlen(st->cur_skb);
3606 
3607 	while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
3608 		unsigned int pg_idx, pg_off, pg_sz;
3609 
3610 		frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
3611 
3612 		pg_idx = 0;
3613 		pg_off = skb_frag_off(frag);
3614 		pg_sz = skb_frag_size(frag);
3615 
3616 		if (skb_frag_must_loop(skb_frag_page(frag))) {
3617 			pg_idx = (pg_off + st->frag_off) >> PAGE_SHIFT;
3618 			pg_off = offset_in_page(pg_off + st->frag_off);
3619 			pg_sz = min_t(unsigned int, pg_sz - st->frag_off,
3620 						    PAGE_SIZE - pg_off);
3621 		}
3622 
3623 		block_limit = pg_sz + st->stepped_offset;
3624 		if (abs_offset < block_limit) {
3625 			if (!st->frag_data)
3626 				st->frag_data = kmap_atomic(skb_frag_page(frag) + pg_idx);
3627 
3628 			*data = (u8 *)st->frag_data + pg_off +
3629 				(abs_offset - st->stepped_offset);
3630 
3631 			return block_limit - abs_offset;
3632 		}
3633 
3634 		if (st->frag_data) {
3635 			kunmap_atomic(st->frag_data);
3636 			st->frag_data = NULL;
3637 		}
3638 
3639 		st->stepped_offset += pg_sz;
3640 		st->frag_off += pg_sz;
3641 		if (st->frag_off == skb_frag_size(frag)) {
3642 			st->frag_off = 0;
3643 			st->frag_idx++;
3644 		}
3645 	}
3646 
3647 	if (st->frag_data) {
3648 		kunmap_atomic(st->frag_data);
3649 		st->frag_data = NULL;
3650 	}
3651 
3652 	if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) {
3653 		st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
3654 		st->frag_idx = 0;
3655 		goto next_skb;
3656 	} else if (st->cur_skb->next) {
3657 		st->cur_skb = st->cur_skb->next;
3658 		st->frag_idx = 0;
3659 		goto next_skb;
3660 	}
3661 
3662 	return 0;
3663 }
3664 EXPORT_SYMBOL(skb_seq_read);
3665 
3666 /**
3667  * skb_abort_seq_read - Abort a sequential read of skb data
3668  * @st: state variable
3669  *
3670  * Must be called if skb_seq_read() was not called until it
3671  * returned 0.
3672  */
3673 void skb_abort_seq_read(struct skb_seq_state *st)
3674 {
3675 	if (st->frag_data)
3676 		kunmap_atomic(st->frag_data);
3677 }
3678 EXPORT_SYMBOL(skb_abort_seq_read);
3679 
3680 #define TS_SKB_CB(state)	((struct skb_seq_state *) &((state)->cb))
3681 
3682 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
3683 					  struct ts_config *conf,
3684 					  struct ts_state *state)
3685 {
3686 	return skb_seq_read(offset, text, TS_SKB_CB(state));
3687 }
3688 
3689 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
3690 {
3691 	skb_abort_seq_read(TS_SKB_CB(state));
3692 }
3693 
3694 /**
3695  * skb_find_text - Find a text pattern in skb data
3696  * @skb: the buffer to look in
3697  * @from: search offset
3698  * @to: search limit
3699  * @config: textsearch configuration
3700  *
3701  * Finds a pattern in the skb data according to the specified
3702  * textsearch configuration. Use textsearch_next() to retrieve
3703  * subsequent occurrences of the pattern. Returns the offset
3704  * to the first occurrence or UINT_MAX if no match was found.
3705  */
3706 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
3707 			   unsigned int to, struct ts_config *config)
3708 {
3709 	struct ts_state state;
3710 	unsigned int ret;
3711 
3712 	BUILD_BUG_ON(sizeof(struct skb_seq_state) > sizeof(state.cb));
3713 
3714 	config->get_next_block = skb_ts_get_next_block;
3715 	config->finish = skb_ts_finish;
3716 
3717 	skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state));
3718 
3719 	ret = textsearch_find(config, &state);
3720 	return (ret <= to - from ? ret : UINT_MAX);
3721 }
3722 EXPORT_SYMBOL(skb_find_text);
3723 
3724 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
3725 			 int offset, size_t size)
3726 {
3727 	int i = skb_shinfo(skb)->nr_frags;
3728 
3729 	if (skb_can_coalesce(skb, i, page, offset)) {
3730 		skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size);
3731 	} else if (i < MAX_SKB_FRAGS) {
3732 		get_page(page);
3733 		skb_fill_page_desc(skb, i, page, offset, size);
3734 	} else {
3735 		return -EMSGSIZE;
3736 	}
3737 
3738 	return 0;
3739 }
3740 EXPORT_SYMBOL_GPL(skb_append_pagefrags);
3741 
3742 /**
3743  *	skb_pull_rcsum - pull skb and update receive checksum
3744  *	@skb: buffer to update
3745  *	@len: length of data pulled
3746  *
3747  *	This function performs an skb_pull on the packet and updates
3748  *	the CHECKSUM_COMPLETE checksum.  It should be used on
3749  *	receive path processing instead of skb_pull unless you know
3750  *	that the checksum difference is zero (e.g., a valid IP header)
3751  *	or you are setting ip_summed to CHECKSUM_NONE.
3752  */
3753 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
3754 {
3755 	unsigned char *data = skb->data;
3756 
3757 	BUG_ON(len > skb->len);
3758 	__skb_pull(skb, len);
3759 	skb_postpull_rcsum(skb, data, len);
3760 	return skb->data;
3761 }
3762 EXPORT_SYMBOL_GPL(skb_pull_rcsum);
3763 
3764 static inline skb_frag_t skb_head_frag_to_page_desc(struct sk_buff *frag_skb)
3765 {
3766 	skb_frag_t head_frag;
3767 	struct page *page;
3768 
3769 	page = virt_to_head_page(frag_skb->head);
3770 	__skb_frag_set_page(&head_frag, page);
3771 	skb_frag_off_set(&head_frag, frag_skb->data -
3772 			 (unsigned char *)page_address(page));
3773 	skb_frag_size_set(&head_frag, skb_headlen(frag_skb));
3774 	return head_frag;
3775 }
3776 
3777 struct sk_buff *skb_segment_list(struct sk_buff *skb,
3778 				 netdev_features_t features,
3779 				 unsigned int offset)
3780 {
3781 	struct sk_buff *list_skb = skb_shinfo(skb)->frag_list;
3782 	unsigned int tnl_hlen = skb_tnl_header_len(skb);
3783 	unsigned int delta_truesize = 0;
3784 	unsigned int delta_len = 0;
3785 	struct sk_buff *tail = NULL;
3786 	struct sk_buff *nskb, *tmp;
3787 	int err;
3788 
3789 	skb_push(skb, -skb_network_offset(skb) + offset);
3790 
3791 	skb_shinfo(skb)->frag_list = NULL;
3792 
3793 	do {
3794 		nskb = list_skb;
3795 		list_skb = list_skb->next;
3796 
3797 		err = 0;
3798 		if (skb_shared(nskb)) {
3799 			tmp = skb_clone(nskb, GFP_ATOMIC);
3800 			if (tmp) {
3801 				consume_skb(nskb);
3802 				nskb = tmp;
3803 				err = skb_unclone(nskb, GFP_ATOMIC);
3804 			} else {
3805 				err = -ENOMEM;
3806 			}
3807 		}
3808 
3809 		if (!tail)
3810 			skb->next = nskb;
3811 		else
3812 			tail->next = nskb;
3813 
3814 		if (unlikely(err)) {
3815 			nskb->next = list_skb;
3816 			goto err_linearize;
3817 		}
3818 
3819 		tail = nskb;
3820 
3821 		delta_len += nskb->len;
3822 		delta_truesize += nskb->truesize;
3823 
3824 		skb_push(nskb, -skb_network_offset(nskb) + offset);
3825 
3826 		skb_release_head_state(nskb);
3827 		 __copy_skb_header(nskb, skb);
3828 
3829 		skb_headers_offset_update(nskb, skb_headroom(nskb) - skb_headroom(skb));
3830 		skb_copy_from_linear_data_offset(skb, -tnl_hlen,
3831 						 nskb->data - tnl_hlen,
3832 						 offset + tnl_hlen);
3833 
3834 		if (skb_needs_linearize(nskb, features) &&
3835 		    __skb_linearize(nskb))
3836 			goto err_linearize;
3837 
3838 	} while (list_skb);
3839 
3840 	skb->truesize = skb->truesize - delta_truesize;
3841 	skb->data_len = skb->data_len - delta_len;
3842 	skb->len = skb->len - delta_len;
3843 
3844 	skb_gso_reset(skb);
3845 
3846 	skb->prev = tail;
3847 
3848 	if (skb_needs_linearize(skb, features) &&
3849 	    __skb_linearize(skb))
3850 		goto err_linearize;
3851 
3852 	skb_get(skb);
3853 
3854 	return skb;
3855 
3856 err_linearize:
3857 	kfree_skb_list(skb->next);
3858 	skb->next = NULL;
3859 	return ERR_PTR(-ENOMEM);
3860 }
3861 EXPORT_SYMBOL_GPL(skb_segment_list);
3862 
3863 int skb_gro_receive_list(struct sk_buff *p, struct sk_buff *skb)
3864 {
3865 	if (unlikely(p->len + skb->len >= 65536))
3866 		return -E2BIG;
3867 
3868 	if (NAPI_GRO_CB(p)->last == p)
3869 		skb_shinfo(p)->frag_list = skb;
3870 	else
3871 		NAPI_GRO_CB(p)->last->next = skb;
3872 
3873 	skb_pull(skb, skb_gro_offset(skb));
3874 
3875 	NAPI_GRO_CB(p)->last = skb;
3876 	NAPI_GRO_CB(p)->count++;
3877 	p->data_len += skb->len;
3878 	p->truesize += skb->truesize;
3879 	p->len += skb->len;
3880 
3881 	NAPI_GRO_CB(skb)->same_flow = 1;
3882 
3883 	return 0;
3884 }
3885 
3886 /**
3887  *	skb_segment - Perform protocol segmentation on skb.
3888  *	@head_skb: buffer to segment
3889  *	@features: features for the output path (see dev->features)
3890  *
3891  *	This function performs segmentation on the given skb.  It returns
3892  *	a pointer to the first in a list of new skbs for the segments.
3893  *	In case of error it returns ERR_PTR(err).
3894  */
3895 struct sk_buff *skb_segment(struct sk_buff *head_skb,
3896 			    netdev_features_t features)
3897 {
3898 	struct sk_buff *segs = NULL;
3899 	struct sk_buff *tail = NULL;
3900 	struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list;
3901 	skb_frag_t *frag = skb_shinfo(head_skb)->frags;
3902 	unsigned int mss = skb_shinfo(head_skb)->gso_size;
3903 	unsigned int doffset = head_skb->data - skb_mac_header(head_skb);
3904 	struct sk_buff *frag_skb = head_skb;
3905 	unsigned int offset = doffset;
3906 	unsigned int tnl_hlen = skb_tnl_header_len(head_skb);
3907 	unsigned int partial_segs = 0;
3908 	unsigned int headroom;
3909 	unsigned int len = head_skb->len;
3910 	__be16 proto;
3911 	bool csum, sg;
3912 	int nfrags = skb_shinfo(head_skb)->nr_frags;
3913 	int err = -ENOMEM;
3914 	int i = 0;
3915 	int pos;
3916 
3917 	if (list_skb && !list_skb->head_frag && skb_headlen(list_skb) &&
3918 	    (skb_shinfo(head_skb)->gso_type & SKB_GSO_DODGY)) {
3919 		/* gso_size is untrusted, and we have a frag_list with a linear
3920 		 * non head_frag head.
3921 		 *
3922 		 * (we assume checking the first list_skb member suffices;
3923 		 * i.e if either of the list_skb members have non head_frag
3924 		 * head, then the first one has too).
3925 		 *
3926 		 * If head_skb's headlen does not fit requested gso_size, it
3927 		 * means that the frag_list members do NOT terminate on exact
3928 		 * gso_size boundaries. Hence we cannot perform skb_frag_t page
3929 		 * sharing. Therefore we must fallback to copying the frag_list
3930 		 * skbs; we do so by disabling SG.
3931 		 */
3932 		if (mss != GSO_BY_FRAGS && mss != skb_headlen(head_skb))
3933 			features &= ~NETIF_F_SG;
3934 	}
3935 
3936 	__skb_push(head_skb, doffset);
3937 	proto = skb_network_protocol(head_skb, NULL);
3938 	if (unlikely(!proto))
3939 		return ERR_PTR(-EINVAL);
3940 
3941 	sg = !!(features & NETIF_F_SG);
3942 	csum = !!can_checksum_protocol(features, proto);
3943 
3944 	if (sg && csum && (mss != GSO_BY_FRAGS))  {
3945 		if (!(features & NETIF_F_GSO_PARTIAL)) {
3946 			struct sk_buff *iter;
3947 			unsigned int frag_len;
3948 
3949 			if (!list_skb ||
3950 			    !net_gso_ok(features, skb_shinfo(head_skb)->gso_type))
3951 				goto normal;
3952 
3953 			/* If we get here then all the required
3954 			 * GSO features except frag_list are supported.
3955 			 * Try to split the SKB to multiple GSO SKBs
3956 			 * with no frag_list.
3957 			 * Currently we can do that only when the buffers don't
3958 			 * have a linear part and all the buffers except
3959 			 * the last are of the same length.
3960 			 */
3961 			frag_len = list_skb->len;
3962 			skb_walk_frags(head_skb, iter) {
3963 				if (frag_len != iter->len && iter->next)
3964 					goto normal;
3965 				if (skb_headlen(iter) && !iter->head_frag)
3966 					goto normal;
3967 
3968 				len -= iter->len;
3969 			}
3970 
3971 			if (len != frag_len)
3972 				goto normal;
3973 		}
3974 
3975 		/* GSO partial only requires that we trim off any excess that
3976 		 * doesn't fit into an MSS sized block, so take care of that
3977 		 * now.
3978 		 */
3979 		partial_segs = len / mss;
3980 		if (partial_segs > 1)
3981 			mss *= partial_segs;
3982 		else
3983 			partial_segs = 0;
3984 	}
3985 
3986 normal:
3987 	headroom = skb_headroom(head_skb);
3988 	pos = skb_headlen(head_skb);
3989 
3990 	do {
3991 		struct sk_buff *nskb;
3992 		skb_frag_t *nskb_frag;
3993 		int hsize;
3994 		int size;
3995 
3996 		if (unlikely(mss == GSO_BY_FRAGS)) {
3997 			len = list_skb->len;
3998 		} else {
3999 			len = head_skb->len - offset;
4000 			if (len > mss)
4001 				len = mss;
4002 		}
4003 
4004 		hsize = skb_headlen(head_skb) - offset;
4005 
4006 		if (hsize <= 0 && i >= nfrags && skb_headlen(list_skb) &&
4007 		    (skb_headlen(list_skb) == len || sg)) {
4008 			BUG_ON(skb_headlen(list_skb) > len);
4009 
4010 			i = 0;
4011 			nfrags = skb_shinfo(list_skb)->nr_frags;
4012 			frag = skb_shinfo(list_skb)->frags;
4013 			frag_skb = list_skb;
4014 			pos += skb_headlen(list_skb);
4015 
4016 			while (pos < offset + len) {
4017 				BUG_ON(i >= nfrags);
4018 
4019 				size = skb_frag_size(frag);
4020 				if (pos + size > offset + len)
4021 					break;
4022 
4023 				i++;
4024 				pos += size;
4025 				frag++;
4026 			}
4027 
4028 			nskb = skb_clone(list_skb, GFP_ATOMIC);
4029 			list_skb = list_skb->next;
4030 
4031 			if (unlikely(!nskb))
4032 				goto err;
4033 
4034 			if (unlikely(pskb_trim(nskb, len))) {
4035 				kfree_skb(nskb);
4036 				goto err;
4037 			}
4038 
4039 			hsize = skb_end_offset(nskb);
4040 			if (skb_cow_head(nskb, doffset + headroom)) {
4041 				kfree_skb(nskb);
4042 				goto err;
4043 			}
4044 
4045 			nskb->truesize += skb_end_offset(nskb) - hsize;
4046 			skb_release_head_state(nskb);
4047 			__skb_push(nskb, doffset);
4048 		} else {
4049 			if (hsize < 0)
4050 				hsize = 0;
4051 			if (hsize > len || !sg)
4052 				hsize = len;
4053 
4054 			nskb = __alloc_skb(hsize + doffset + headroom,
4055 					   GFP_ATOMIC, skb_alloc_rx_flag(head_skb),
4056 					   NUMA_NO_NODE);
4057 
4058 			if (unlikely(!nskb))
4059 				goto err;
4060 
4061 			skb_reserve(nskb, headroom);
4062 			__skb_put(nskb, doffset);
4063 		}
4064 
4065 		if (segs)
4066 			tail->next = nskb;
4067 		else
4068 			segs = nskb;
4069 		tail = nskb;
4070 
4071 		__copy_skb_header(nskb, head_skb);
4072 
4073 		skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom);
4074 		skb_reset_mac_len(nskb);
4075 
4076 		skb_copy_from_linear_data_offset(head_skb, -tnl_hlen,
4077 						 nskb->data - tnl_hlen,
4078 						 doffset + tnl_hlen);
4079 
4080 		if (nskb->len == len + doffset)
4081 			goto perform_csum_check;
4082 
4083 		if (!sg) {
4084 			if (!csum) {
4085 				if (!nskb->remcsum_offload)
4086 					nskb->ip_summed = CHECKSUM_NONE;
4087 				SKB_GSO_CB(nskb)->csum =
4088 					skb_copy_and_csum_bits(head_skb, offset,
4089 							       skb_put(nskb,
4090 								       len),
4091 							       len);
4092 				SKB_GSO_CB(nskb)->csum_start =
4093 					skb_headroom(nskb) + doffset;
4094 			} else {
4095 				skb_copy_bits(head_skb, offset,
4096 					      skb_put(nskb, len),
4097 					      len);
4098 			}
4099 			continue;
4100 		}
4101 
4102 		nskb_frag = skb_shinfo(nskb)->frags;
4103 
4104 		skb_copy_from_linear_data_offset(head_skb, offset,
4105 						 skb_put(nskb, hsize), hsize);
4106 
4107 		skb_shinfo(nskb)->flags |= skb_shinfo(head_skb)->flags &
4108 					   SKBFL_SHARED_FRAG;
4109 
4110 		if (skb_orphan_frags(frag_skb, GFP_ATOMIC) ||
4111 		    skb_zerocopy_clone(nskb, frag_skb, GFP_ATOMIC))
4112 			goto err;
4113 
4114 		while (pos < offset + len) {
4115 			if (i >= nfrags) {
4116 				i = 0;
4117 				nfrags = skb_shinfo(list_skb)->nr_frags;
4118 				frag = skb_shinfo(list_skb)->frags;
4119 				frag_skb = list_skb;
4120 				if (!skb_headlen(list_skb)) {
4121 					BUG_ON(!nfrags);
4122 				} else {
4123 					BUG_ON(!list_skb->head_frag);
4124 
4125 					/* to make room for head_frag. */
4126 					i--;
4127 					frag--;
4128 				}
4129 				if (skb_orphan_frags(frag_skb, GFP_ATOMIC) ||
4130 				    skb_zerocopy_clone(nskb, frag_skb,
4131 						       GFP_ATOMIC))
4132 					goto err;
4133 
4134 				list_skb = list_skb->next;
4135 			}
4136 
4137 			if (unlikely(skb_shinfo(nskb)->nr_frags >=
4138 				     MAX_SKB_FRAGS)) {
4139 				net_warn_ratelimited(
4140 					"skb_segment: too many frags: %u %u\n",
4141 					pos, mss);
4142 				err = -EINVAL;
4143 				goto err;
4144 			}
4145 
4146 			*nskb_frag = (i < 0) ? skb_head_frag_to_page_desc(frag_skb) : *frag;
4147 			__skb_frag_ref(nskb_frag);
4148 			size = skb_frag_size(nskb_frag);
4149 
4150 			if (pos < offset) {
4151 				skb_frag_off_add(nskb_frag, offset - pos);
4152 				skb_frag_size_sub(nskb_frag, offset - pos);
4153 			}
4154 
4155 			skb_shinfo(nskb)->nr_frags++;
4156 
4157 			if (pos + size <= offset + len) {
4158 				i++;
4159 				frag++;
4160 				pos += size;
4161 			} else {
4162 				skb_frag_size_sub(nskb_frag, pos + size - (offset + len));
4163 				goto skip_fraglist;
4164 			}
4165 
4166 			nskb_frag++;
4167 		}
4168 
4169 skip_fraglist:
4170 		nskb->data_len = len - hsize;
4171 		nskb->len += nskb->data_len;
4172 		nskb->truesize += nskb->data_len;
4173 
4174 perform_csum_check:
4175 		if (!csum) {
4176 			if (skb_has_shared_frag(nskb) &&
4177 			    __skb_linearize(nskb))
4178 				goto err;
4179 
4180 			if (!nskb->remcsum_offload)
4181 				nskb->ip_summed = CHECKSUM_NONE;
4182 			SKB_GSO_CB(nskb)->csum =
4183 				skb_checksum(nskb, doffset,
4184 					     nskb->len - doffset, 0);
4185 			SKB_GSO_CB(nskb)->csum_start =
4186 				skb_headroom(nskb) + doffset;
4187 		}
4188 	} while ((offset += len) < head_skb->len);
4189 
4190 	/* Some callers want to get the end of the list.
4191 	 * Put it in segs->prev to avoid walking the list.
4192 	 * (see validate_xmit_skb_list() for example)
4193 	 */
4194 	segs->prev = tail;
4195 
4196 	if (partial_segs) {
4197 		struct sk_buff *iter;
4198 		int type = skb_shinfo(head_skb)->gso_type;
4199 		unsigned short gso_size = skb_shinfo(head_skb)->gso_size;
4200 
4201 		/* Update type to add partial and then remove dodgy if set */
4202 		type |= (features & NETIF_F_GSO_PARTIAL) / NETIF_F_GSO_PARTIAL * SKB_GSO_PARTIAL;
4203 		type &= ~SKB_GSO_DODGY;
4204 
4205 		/* Update GSO info and prepare to start updating headers on
4206 		 * our way back down the stack of protocols.
4207 		 */
4208 		for (iter = segs; iter; iter = iter->next) {
4209 			skb_shinfo(iter)->gso_size = gso_size;
4210 			skb_shinfo(iter)->gso_segs = partial_segs;
4211 			skb_shinfo(iter)->gso_type = type;
4212 			SKB_GSO_CB(iter)->data_offset = skb_headroom(iter) + doffset;
4213 		}
4214 
4215 		if (tail->len - doffset <= gso_size)
4216 			skb_shinfo(tail)->gso_size = 0;
4217 		else if (tail != segs)
4218 			skb_shinfo(tail)->gso_segs = DIV_ROUND_UP(tail->len - doffset, gso_size);
4219 	}
4220 
4221 	/* Following permits correct backpressure, for protocols
4222 	 * using skb_set_owner_w().
4223 	 * Idea is to tranfert ownership from head_skb to last segment.
4224 	 */
4225 	if (head_skb->destructor == sock_wfree) {
4226 		swap(tail->truesize, head_skb->truesize);
4227 		swap(tail->destructor, head_skb->destructor);
4228 		swap(tail->sk, head_skb->sk);
4229 	}
4230 	return segs;
4231 
4232 err:
4233 	kfree_skb_list(segs);
4234 	return ERR_PTR(err);
4235 }
4236 EXPORT_SYMBOL_GPL(skb_segment);
4237 
4238 int skb_gro_receive(struct sk_buff *p, struct sk_buff *skb)
4239 {
4240 	struct skb_shared_info *pinfo, *skbinfo = skb_shinfo(skb);
4241 	unsigned int offset = skb_gro_offset(skb);
4242 	unsigned int headlen = skb_headlen(skb);
4243 	unsigned int len = skb_gro_len(skb);
4244 	unsigned int delta_truesize;
4245 	struct sk_buff *lp;
4246 
4247 	if (unlikely(p->len + len >= 65536 || NAPI_GRO_CB(skb)->flush))
4248 		return -E2BIG;
4249 
4250 	lp = NAPI_GRO_CB(p)->last;
4251 	pinfo = skb_shinfo(lp);
4252 
4253 	if (headlen <= offset) {
4254 		skb_frag_t *frag;
4255 		skb_frag_t *frag2;
4256 		int i = skbinfo->nr_frags;
4257 		int nr_frags = pinfo->nr_frags + i;
4258 
4259 		if (nr_frags > MAX_SKB_FRAGS)
4260 			goto merge;
4261 
4262 		offset -= headlen;
4263 		pinfo->nr_frags = nr_frags;
4264 		skbinfo->nr_frags = 0;
4265 
4266 		frag = pinfo->frags + nr_frags;
4267 		frag2 = skbinfo->frags + i;
4268 		do {
4269 			*--frag = *--frag2;
4270 		} while (--i);
4271 
4272 		skb_frag_off_add(frag, offset);
4273 		skb_frag_size_sub(frag, offset);
4274 
4275 		/* all fragments truesize : remove (head size + sk_buff) */
4276 		delta_truesize = skb->truesize -
4277 				 SKB_TRUESIZE(skb_end_offset(skb));
4278 
4279 		skb->truesize -= skb->data_len;
4280 		skb->len -= skb->data_len;
4281 		skb->data_len = 0;
4282 
4283 		NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE;
4284 		goto done;
4285 	} else if (skb->head_frag) {
4286 		int nr_frags = pinfo->nr_frags;
4287 		skb_frag_t *frag = pinfo->frags + nr_frags;
4288 		struct page *page = virt_to_head_page(skb->head);
4289 		unsigned int first_size = headlen - offset;
4290 		unsigned int first_offset;
4291 
4292 		if (nr_frags + 1 + skbinfo->nr_frags > MAX_SKB_FRAGS)
4293 			goto merge;
4294 
4295 		first_offset = skb->data -
4296 			       (unsigned char *)page_address(page) +
4297 			       offset;
4298 
4299 		pinfo->nr_frags = nr_frags + 1 + skbinfo->nr_frags;
4300 
4301 		__skb_frag_set_page(frag, page);
4302 		skb_frag_off_set(frag, first_offset);
4303 		skb_frag_size_set(frag, first_size);
4304 
4305 		memcpy(frag + 1, skbinfo->frags, sizeof(*frag) * skbinfo->nr_frags);
4306 		/* We dont need to clear skbinfo->nr_frags here */
4307 
4308 		delta_truesize = skb->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
4309 		NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE_STOLEN_HEAD;
4310 		goto done;
4311 	}
4312 
4313 merge:
4314 	delta_truesize = skb->truesize;
4315 	if (offset > headlen) {
4316 		unsigned int eat = offset - headlen;
4317 
4318 		skb_frag_off_add(&skbinfo->frags[0], eat);
4319 		skb_frag_size_sub(&skbinfo->frags[0], eat);
4320 		skb->data_len -= eat;
4321 		skb->len -= eat;
4322 		offset = headlen;
4323 	}
4324 
4325 	__skb_pull(skb, offset);
4326 
4327 	if (NAPI_GRO_CB(p)->last == p)
4328 		skb_shinfo(p)->frag_list = skb;
4329 	else
4330 		NAPI_GRO_CB(p)->last->next = skb;
4331 	NAPI_GRO_CB(p)->last = skb;
4332 	__skb_header_release(skb);
4333 	lp = p;
4334 
4335 done:
4336 	NAPI_GRO_CB(p)->count++;
4337 	p->data_len += len;
4338 	p->truesize += delta_truesize;
4339 	p->len += len;
4340 	if (lp != p) {
4341 		lp->data_len += len;
4342 		lp->truesize += delta_truesize;
4343 		lp->len += len;
4344 	}
4345 	NAPI_GRO_CB(skb)->same_flow = 1;
4346 	return 0;
4347 }
4348 
4349 #ifdef CONFIG_SKB_EXTENSIONS
4350 #define SKB_EXT_ALIGN_VALUE	8
4351 #define SKB_EXT_CHUNKSIZEOF(x)	(ALIGN((sizeof(x)), SKB_EXT_ALIGN_VALUE) / SKB_EXT_ALIGN_VALUE)
4352 
4353 static const u8 skb_ext_type_len[] = {
4354 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4355 	[SKB_EXT_BRIDGE_NF] = SKB_EXT_CHUNKSIZEOF(struct nf_bridge_info),
4356 #endif
4357 #ifdef CONFIG_XFRM
4358 	[SKB_EXT_SEC_PATH] = SKB_EXT_CHUNKSIZEOF(struct sec_path),
4359 #endif
4360 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4361 	[TC_SKB_EXT] = SKB_EXT_CHUNKSIZEOF(struct tc_skb_ext),
4362 #endif
4363 #if IS_ENABLED(CONFIG_MPTCP)
4364 	[SKB_EXT_MPTCP] = SKB_EXT_CHUNKSIZEOF(struct mptcp_ext),
4365 #endif
4366 };
4367 
4368 static __always_inline unsigned int skb_ext_total_length(void)
4369 {
4370 	return SKB_EXT_CHUNKSIZEOF(struct skb_ext) +
4371 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4372 		skb_ext_type_len[SKB_EXT_BRIDGE_NF] +
4373 #endif
4374 #ifdef CONFIG_XFRM
4375 		skb_ext_type_len[SKB_EXT_SEC_PATH] +
4376 #endif
4377 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4378 		skb_ext_type_len[TC_SKB_EXT] +
4379 #endif
4380 #if IS_ENABLED(CONFIG_MPTCP)
4381 		skb_ext_type_len[SKB_EXT_MPTCP] +
4382 #endif
4383 		0;
4384 }
4385 
4386 static void skb_extensions_init(void)
4387 {
4388 	BUILD_BUG_ON(SKB_EXT_NUM >= 8);
4389 	BUILD_BUG_ON(skb_ext_total_length() > 255);
4390 
4391 	skbuff_ext_cache = kmem_cache_create("skbuff_ext_cache",
4392 					     SKB_EXT_ALIGN_VALUE * skb_ext_total_length(),
4393 					     0,
4394 					     SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4395 					     NULL);
4396 }
4397 #else
4398 static void skb_extensions_init(void) {}
4399 #endif
4400 
4401 void __init skb_init(void)
4402 {
4403 	skbuff_head_cache = kmem_cache_create_usercopy("skbuff_head_cache",
4404 					      sizeof(struct sk_buff),
4405 					      0,
4406 					      SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4407 					      offsetof(struct sk_buff, cb),
4408 					      sizeof_field(struct sk_buff, cb),
4409 					      NULL);
4410 	skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
4411 						sizeof(struct sk_buff_fclones),
4412 						0,
4413 						SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4414 						NULL);
4415 	skb_extensions_init();
4416 }
4417 
4418 static int
4419 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len,
4420 	       unsigned int recursion_level)
4421 {
4422 	int start = skb_headlen(skb);
4423 	int i, copy = start - offset;
4424 	struct sk_buff *frag_iter;
4425 	int elt = 0;
4426 
4427 	if (unlikely(recursion_level >= 24))
4428 		return -EMSGSIZE;
4429 
4430 	if (copy > 0) {
4431 		if (copy > len)
4432 			copy = len;
4433 		sg_set_buf(sg, skb->data + offset, copy);
4434 		elt++;
4435 		if ((len -= copy) == 0)
4436 			return elt;
4437 		offset += copy;
4438 	}
4439 
4440 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
4441 		int end;
4442 
4443 		WARN_ON(start > offset + len);
4444 
4445 		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
4446 		if ((copy = end - offset) > 0) {
4447 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4448 			if (unlikely(elt && sg_is_last(&sg[elt - 1])))
4449 				return -EMSGSIZE;
4450 
4451 			if (copy > len)
4452 				copy = len;
4453 			sg_set_page(&sg[elt], skb_frag_page(frag), copy,
4454 				    skb_frag_off(frag) + offset - start);
4455 			elt++;
4456 			if (!(len -= copy))
4457 				return elt;
4458 			offset += copy;
4459 		}
4460 		start = end;
4461 	}
4462 
4463 	skb_walk_frags(skb, frag_iter) {
4464 		int end, ret;
4465 
4466 		WARN_ON(start > offset + len);
4467 
4468 		end = start + frag_iter->len;
4469 		if ((copy = end - offset) > 0) {
4470 			if (unlikely(elt && sg_is_last(&sg[elt - 1])))
4471 				return -EMSGSIZE;
4472 
4473 			if (copy > len)
4474 				copy = len;
4475 			ret = __skb_to_sgvec(frag_iter, sg+elt, offset - start,
4476 					      copy, recursion_level + 1);
4477 			if (unlikely(ret < 0))
4478 				return ret;
4479 			elt += ret;
4480 			if ((len -= copy) == 0)
4481 				return elt;
4482 			offset += copy;
4483 		}
4484 		start = end;
4485 	}
4486 	BUG_ON(len);
4487 	return elt;
4488 }
4489 
4490 /**
4491  *	skb_to_sgvec - Fill a scatter-gather list from a socket buffer
4492  *	@skb: Socket buffer containing the buffers to be mapped
4493  *	@sg: The scatter-gather list to map into
4494  *	@offset: The offset into the buffer's contents to start mapping
4495  *	@len: Length of buffer space to be mapped
4496  *
4497  *	Fill the specified scatter-gather list with mappings/pointers into a
4498  *	region of the buffer space attached to a socket buffer. Returns either
4499  *	the number of scatterlist items used, or -EMSGSIZE if the contents
4500  *	could not fit.
4501  */
4502 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
4503 {
4504 	int nsg = __skb_to_sgvec(skb, sg, offset, len, 0);
4505 
4506 	if (nsg <= 0)
4507 		return nsg;
4508 
4509 	sg_mark_end(&sg[nsg - 1]);
4510 
4511 	return nsg;
4512 }
4513 EXPORT_SYMBOL_GPL(skb_to_sgvec);
4514 
4515 /* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given
4516  * sglist without mark the sg which contain last skb data as the end.
4517  * So the caller can mannipulate sg list as will when padding new data after
4518  * the first call without calling sg_unmark_end to expend sg list.
4519  *
4520  * Scenario to use skb_to_sgvec_nomark:
4521  * 1. sg_init_table
4522  * 2. skb_to_sgvec_nomark(payload1)
4523  * 3. skb_to_sgvec_nomark(payload2)
4524  *
4525  * This is equivalent to:
4526  * 1. sg_init_table
4527  * 2. skb_to_sgvec(payload1)
4528  * 3. sg_unmark_end
4529  * 4. skb_to_sgvec(payload2)
4530  *
4531  * When mapping mutilple payload conditionally, skb_to_sgvec_nomark
4532  * is more preferable.
4533  */
4534 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
4535 			int offset, int len)
4536 {
4537 	return __skb_to_sgvec(skb, sg, offset, len, 0);
4538 }
4539 EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark);
4540 
4541 
4542 
4543 /**
4544  *	skb_cow_data - Check that a socket buffer's data buffers are writable
4545  *	@skb: The socket buffer to check.
4546  *	@tailbits: Amount of trailing space to be added
4547  *	@trailer: Returned pointer to the skb where the @tailbits space begins
4548  *
4549  *	Make sure that the data buffers attached to a socket buffer are
4550  *	writable. If they are not, private copies are made of the data buffers
4551  *	and the socket buffer is set to use these instead.
4552  *
4553  *	If @tailbits is given, make sure that there is space to write @tailbits
4554  *	bytes of data beyond current end of socket buffer.  @trailer will be
4555  *	set to point to the skb in which this space begins.
4556  *
4557  *	The number of scatterlist elements required to completely map the
4558  *	COW'd and extended socket buffer will be returned.
4559  */
4560 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
4561 {
4562 	int copyflag;
4563 	int elt;
4564 	struct sk_buff *skb1, **skb_p;
4565 
4566 	/* If skb is cloned or its head is paged, reallocate
4567 	 * head pulling out all the pages (pages are considered not writable
4568 	 * at the moment even if they are anonymous).
4569 	 */
4570 	if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
4571 	    !__pskb_pull_tail(skb, __skb_pagelen(skb)))
4572 		return -ENOMEM;
4573 
4574 	/* Easy case. Most of packets will go this way. */
4575 	if (!skb_has_frag_list(skb)) {
4576 		/* A little of trouble, not enough of space for trailer.
4577 		 * This should not happen, when stack is tuned to generate
4578 		 * good frames. OK, on miss we reallocate and reserve even more
4579 		 * space, 128 bytes is fair. */
4580 
4581 		if (skb_tailroom(skb) < tailbits &&
4582 		    pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
4583 			return -ENOMEM;
4584 
4585 		/* Voila! */
4586 		*trailer = skb;
4587 		return 1;
4588 	}
4589 
4590 	/* Misery. We are in troubles, going to mincer fragments... */
4591 
4592 	elt = 1;
4593 	skb_p = &skb_shinfo(skb)->frag_list;
4594 	copyflag = 0;
4595 
4596 	while ((skb1 = *skb_p) != NULL) {
4597 		int ntail = 0;
4598 
4599 		/* The fragment is partially pulled by someone,
4600 		 * this can happen on input. Copy it and everything
4601 		 * after it. */
4602 
4603 		if (skb_shared(skb1))
4604 			copyflag = 1;
4605 
4606 		/* If the skb is the last, worry about trailer. */
4607 
4608 		if (skb1->next == NULL && tailbits) {
4609 			if (skb_shinfo(skb1)->nr_frags ||
4610 			    skb_has_frag_list(skb1) ||
4611 			    skb_tailroom(skb1) < tailbits)
4612 				ntail = tailbits + 128;
4613 		}
4614 
4615 		if (copyflag ||
4616 		    skb_cloned(skb1) ||
4617 		    ntail ||
4618 		    skb_shinfo(skb1)->nr_frags ||
4619 		    skb_has_frag_list(skb1)) {
4620 			struct sk_buff *skb2;
4621 
4622 			/* Fuck, we are miserable poor guys... */
4623 			if (ntail == 0)
4624 				skb2 = skb_copy(skb1, GFP_ATOMIC);
4625 			else
4626 				skb2 = skb_copy_expand(skb1,
4627 						       skb_headroom(skb1),
4628 						       ntail,
4629 						       GFP_ATOMIC);
4630 			if (unlikely(skb2 == NULL))
4631 				return -ENOMEM;
4632 
4633 			if (skb1->sk)
4634 				skb_set_owner_w(skb2, skb1->sk);
4635 
4636 			/* Looking around. Are we still alive?
4637 			 * OK, link new skb, drop old one */
4638 
4639 			skb2->next = skb1->next;
4640 			*skb_p = skb2;
4641 			kfree_skb(skb1);
4642 			skb1 = skb2;
4643 		}
4644 		elt++;
4645 		*trailer = skb1;
4646 		skb_p = &skb1->next;
4647 	}
4648 
4649 	return elt;
4650 }
4651 EXPORT_SYMBOL_GPL(skb_cow_data);
4652 
4653 static void sock_rmem_free(struct sk_buff *skb)
4654 {
4655 	struct sock *sk = skb->sk;
4656 
4657 	atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
4658 }
4659 
4660 static void skb_set_err_queue(struct sk_buff *skb)
4661 {
4662 	/* pkt_type of skbs received on local sockets is never PACKET_OUTGOING.
4663 	 * So, it is safe to (mis)use it to mark skbs on the error queue.
4664 	 */
4665 	skb->pkt_type = PACKET_OUTGOING;
4666 	BUILD_BUG_ON(PACKET_OUTGOING == 0);
4667 }
4668 
4669 /*
4670  * Note: We dont mem charge error packets (no sk_forward_alloc changes)
4671  */
4672 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
4673 {
4674 	if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
4675 	    (unsigned int)READ_ONCE(sk->sk_rcvbuf))
4676 		return -ENOMEM;
4677 
4678 	skb_orphan(skb);
4679 	skb->sk = sk;
4680 	skb->destructor = sock_rmem_free;
4681 	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
4682 	skb_set_err_queue(skb);
4683 
4684 	/* before exiting rcu section, make sure dst is refcounted */
4685 	skb_dst_force(skb);
4686 
4687 	skb_queue_tail(&sk->sk_error_queue, skb);
4688 	if (!sock_flag(sk, SOCK_DEAD))
4689 		sk_error_report(sk);
4690 	return 0;
4691 }
4692 EXPORT_SYMBOL(sock_queue_err_skb);
4693 
4694 static bool is_icmp_err_skb(const struct sk_buff *skb)
4695 {
4696 	return skb && (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP ||
4697 		       SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP6);
4698 }
4699 
4700 struct sk_buff *sock_dequeue_err_skb(struct sock *sk)
4701 {
4702 	struct sk_buff_head *q = &sk->sk_error_queue;
4703 	struct sk_buff *skb, *skb_next = NULL;
4704 	bool icmp_next = false;
4705 	unsigned long flags;
4706 
4707 	spin_lock_irqsave(&q->lock, flags);
4708 	skb = __skb_dequeue(q);
4709 	if (skb && (skb_next = skb_peek(q))) {
4710 		icmp_next = is_icmp_err_skb(skb_next);
4711 		if (icmp_next)
4712 			sk->sk_err = SKB_EXT_ERR(skb_next)->ee.ee_errno;
4713 	}
4714 	spin_unlock_irqrestore(&q->lock, flags);
4715 
4716 	if (is_icmp_err_skb(skb) && !icmp_next)
4717 		sk->sk_err = 0;
4718 
4719 	if (skb_next)
4720 		sk_error_report(sk);
4721 
4722 	return skb;
4723 }
4724 EXPORT_SYMBOL(sock_dequeue_err_skb);
4725 
4726 /**
4727  * skb_clone_sk - create clone of skb, and take reference to socket
4728  * @skb: the skb to clone
4729  *
4730  * This function creates a clone of a buffer that holds a reference on
4731  * sk_refcnt.  Buffers created via this function are meant to be
4732  * returned using sock_queue_err_skb, or free via kfree_skb.
4733  *
4734  * When passing buffers allocated with this function to sock_queue_err_skb
4735  * it is necessary to wrap the call with sock_hold/sock_put in order to
4736  * prevent the socket from being released prior to being enqueued on
4737  * the sk_error_queue.
4738  */
4739 struct sk_buff *skb_clone_sk(struct sk_buff *skb)
4740 {
4741 	struct sock *sk = skb->sk;
4742 	struct sk_buff *clone;
4743 
4744 	if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt))
4745 		return NULL;
4746 
4747 	clone = skb_clone(skb, GFP_ATOMIC);
4748 	if (!clone) {
4749 		sock_put(sk);
4750 		return NULL;
4751 	}
4752 
4753 	clone->sk = sk;
4754 	clone->destructor = sock_efree;
4755 
4756 	return clone;
4757 }
4758 EXPORT_SYMBOL(skb_clone_sk);
4759 
4760 static void __skb_complete_tx_timestamp(struct sk_buff *skb,
4761 					struct sock *sk,
4762 					int tstype,
4763 					bool opt_stats)
4764 {
4765 	struct sock_exterr_skb *serr;
4766 	int err;
4767 
4768 	BUILD_BUG_ON(sizeof(struct sock_exterr_skb) > sizeof(skb->cb));
4769 
4770 	serr = SKB_EXT_ERR(skb);
4771 	memset(serr, 0, sizeof(*serr));
4772 	serr->ee.ee_errno = ENOMSG;
4773 	serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
4774 	serr->ee.ee_info = tstype;
4775 	serr->opt_stats = opt_stats;
4776 	serr->header.h4.iif = skb->dev ? skb->dev->ifindex : 0;
4777 	if (sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID) {
4778 		serr->ee.ee_data = skb_shinfo(skb)->tskey;
4779 		if (sk->sk_protocol == IPPROTO_TCP &&
4780 		    sk->sk_type == SOCK_STREAM)
4781 			serr->ee.ee_data -= sk->sk_tskey;
4782 	}
4783 
4784 	err = sock_queue_err_skb(sk, skb);
4785 
4786 	if (err)
4787 		kfree_skb(skb);
4788 }
4789 
4790 static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly)
4791 {
4792 	bool ret;
4793 
4794 	if (likely(sysctl_tstamp_allow_data || tsonly))
4795 		return true;
4796 
4797 	read_lock_bh(&sk->sk_callback_lock);
4798 	ret = sk->sk_socket && sk->sk_socket->file &&
4799 	      file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW);
4800 	read_unlock_bh(&sk->sk_callback_lock);
4801 	return ret;
4802 }
4803 
4804 void skb_complete_tx_timestamp(struct sk_buff *skb,
4805 			       struct skb_shared_hwtstamps *hwtstamps)
4806 {
4807 	struct sock *sk = skb->sk;
4808 
4809 	if (!skb_may_tx_timestamp(sk, false))
4810 		goto err;
4811 
4812 	/* Take a reference to prevent skb_orphan() from freeing the socket,
4813 	 * but only if the socket refcount is not zero.
4814 	 */
4815 	if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
4816 		*skb_hwtstamps(skb) = *hwtstamps;
4817 		__skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND, false);
4818 		sock_put(sk);
4819 		return;
4820 	}
4821 
4822 err:
4823 	kfree_skb(skb);
4824 }
4825 EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp);
4826 
4827 void __skb_tstamp_tx(struct sk_buff *orig_skb,
4828 		     const struct sk_buff *ack_skb,
4829 		     struct skb_shared_hwtstamps *hwtstamps,
4830 		     struct sock *sk, int tstype)
4831 {
4832 	struct sk_buff *skb;
4833 	bool tsonly, opt_stats = false;
4834 
4835 	if (!sk)
4836 		return;
4837 
4838 	if (!hwtstamps && !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TX_SWHW) &&
4839 	    skb_shinfo(orig_skb)->tx_flags & SKBTX_IN_PROGRESS)
4840 		return;
4841 
4842 	tsonly = sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TSONLY;
4843 	if (!skb_may_tx_timestamp(sk, tsonly))
4844 		return;
4845 
4846 	if (tsonly) {
4847 #ifdef CONFIG_INET
4848 		if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_STATS) &&
4849 		    sk->sk_protocol == IPPROTO_TCP &&
4850 		    sk->sk_type == SOCK_STREAM) {
4851 			skb = tcp_get_timestamping_opt_stats(sk, orig_skb,
4852 							     ack_skb);
4853 			opt_stats = true;
4854 		} else
4855 #endif
4856 			skb = alloc_skb(0, GFP_ATOMIC);
4857 	} else {
4858 		skb = skb_clone(orig_skb, GFP_ATOMIC);
4859 	}
4860 	if (!skb)
4861 		return;
4862 
4863 	if (tsonly) {
4864 		skb_shinfo(skb)->tx_flags |= skb_shinfo(orig_skb)->tx_flags &
4865 					     SKBTX_ANY_TSTAMP;
4866 		skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey;
4867 	}
4868 
4869 	if (hwtstamps)
4870 		*skb_hwtstamps(skb) = *hwtstamps;
4871 	else
4872 		skb->tstamp = ktime_get_real();
4873 
4874 	__skb_complete_tx_timestamp(skb, sk, tstype, opt_stats);
4875 }
4876 EXPORT_SYMBOL_GPL(__skb_tstamp_tx);
4877 
4878 void skb_tstamp_tx(struct sk_buff *orig_skb,
4879 		   struct skb_shared_hwtstamps *hwtstamps)
4880 {
4881 	return __skb_tstamp_tx(orig_skb, NULL, hwtstamps, orig_skb->sk,
4882 			       SCM_TSTAMP_SND);
4883 }
4884 EXPORT_SYMBOL_GPL(skb_tstamp_tx);
4885 
4886 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked)
4887 {
4888 	struct sock *sk = skb->sk;
4889 	struct sock_exterr_skb *serr;
4890 	int err = 1;
4891 
4892 	skb->wifi_acked_valid = 1;
4893 	skb->wifi_acked = acked;
4894 
4895 	serr = SKB_EXT_ERR(skb);
4896 	memset(serr, 0, sizeof(*serr));
4897 	serr->ee.ee_errno = ENOMSG;
4898 	serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS;
4899 
4900 	/* Take a reference to prevent skb_orphan() from freeing the socket,
4901 	 * but only if the socket refcount is not zero.
4902 	 */
4903 	if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
4904 		err = sock_queue_err_skb(sk, skb);
4905 		sock_put(sk);
4906 	}
4907 	if (err)
4908 		kfree_skb(skb);
4909 }
4910 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack);
4911 
4912 /**
4913  * skb_partial_csum_set - set up and verify partial csum values for packet
4914  * @skb: the skb to set
4915  * @start: the number of bytes after skb->data to start checksumming.
4916  * @off: the offset from start to place the checksum.
4917  *
4918  * For untrusted partially-checksummed packets, we need to make sure the values
4919  * for skb->csum_start and skb->csum_offset are valid so we don't oops.
4920  *
4921  * This function checks and sets those values and skb->ip_summed: if this
4922  * returns false you should drop the packet.
4923  */
4924 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
4925 {
4926 	u32 csum_end = (u32)start + (u32)off + sizeof(__sum16);
4927 	u32 csum_start = skb_headroom(skb) + (u32)start;
4928 
4929 	if (unlikely(csum_start > U16_MAX || csum_end > skb_headlen(skb))) {
4930 		net_warn_ratelimited("bad partial csum: csum=%u/%u headroom=%u headlen=%u\n",
4931 				     start, off, skb_headroom(skb), skb_headlen(skb));
4932 		return false;
4933 	}
4934 	skb->ip_summed = CHECKSUM_PARTIAL;
4935 	skb->csum_start = csum_start;
4936 	skb->csum_offset = off;
4937 	skb_set_transport_header(skb, start);
4938 	return true;
4939 }
4940 EXPORT_SYMBOL_GPL(skb_partial_csum_set);
4941 
4942 static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len,
4943 			       unsigned int max)
4944 {
4945 	if (skb_headlen(skb) >= len)
4946 		return 0;
4947 
4948 	/* If we need to pullup then pullup to the max, so we
4949 	 * won't need to do it again.
4950 	 */
4951 	if (max > skb->len)
4952 		max = skb->len;
4953 
4954 	if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL)
4955 		return -ENOMEM;
4956 
4957 	if (skb_headlen(skb) < len)
4958 		return -EPROTO;
4959 
4960 	return 0;
4961 }
4962 
4963 #define MAX_TCP_HDR_LEN (15 * 4)
4964 
4965 static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb,
4966 				      typeof(IPPROTO_IP) proto,
4967 				      unsigned int off)
4968 {
4969 	int err;
4970 
4971 	switch (proto) {
4972 	case IPPROTO_TCP:
4973 		err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr),
4974 					  off + MAX_TCP_HDR_LEN);
4975 		if (!err && !skb_partial_csum_set(skb, off,
4976 						  offsetof(struct tcphdr,
4977 							   check)))
4978 			err = -EPROTO;
4979 		return err ? ERR_PTR(err) : &tcp_hdr(skb)->check;
4980 
4981 	case IPPROTO_UDP:
4982 		err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr),
4983 					  off + sizeof(struct udphdr));
4984 		if (!err && !skb_partial_csum_set(skb, off,
4985 						  offsetof(struct udphdr,
4986 							   check)))
4987 			err = -EPROTO;
4988 		return err ? ERR_PTR(err) : &udp_hdr(skb)->check;
4989 	}
4990 
4991 	return ERR_PTR(-EPROTO);
4992 }
4993 
4994 /* This value should be large enough to cover a tagged ethernet header plus
4995  * maximally sized IP and TCP or UDP headers.
4996  */
4997 #define MAX_IP_HDR_LEN 128
4998 
4999 static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate)
5000 {
5001 	unsigned int off;
5002 	bool fragment;
5003 	__sum16 *csum;
5004 	int err;
5005 
5006 	fragment = false;
5007 
5008 	err = skb_maybe_pull_tail(skb,
5009 				  sizeof(struct iphdr),
5010 				  MAX_IP_HDR_LEN);
5011 	if (err < 0)
5012 		goto out;
5013 
5014 	if (ip_is_fragment(ip_hdr(skb)))
5015 		fragment = true;
5016 
5017 	off = ip_hdrlen(skb);
5018 
5019 	err = -EPROTO;
5020 
5021 	if (fragment)
5022 		goto out;
5023 
5024 	csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off);
5025 	if (IS_ERR(csum))
5026 		return PTR_ERR(csum);
5027 
5028 	if (recalculate)
5029 		*csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
5030 					   ip_hdr(skb)->daddr,
5031 					   skb->len - off,
5032 					   ip_hdr(skb)->protocol, 0);
5033 	err = 0;
5034 
5035 out:
5036 	return err;
5037 }
5038 
5039 /* This value should be large enough to cover a tagged ethernet header plus
5040  * an IPv6 header, all options, and a maximal TCP or UDP header.
5041  */
5042 #define MAX_IPV6_HDR_LEN 256
5043 
5044 #define OPT_HDR(type, skb, off) \
5045 	(type *)(skb_network_header(skb) + (off))
5046 
5047 static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate)
5048 {
5049 	int err;
5050 	u8 nexthdr;
5051 	unsigned int off;
5052 	unsigned int len;
5053 	bool fragment;
5054 	bool done;
5055 	__sum16 *csum;
5056 
5057 	fragment = false;
5058 	done = false;
5059 
5060 	off = sizeof(struct ipv6hdr);
5061 
5062 	err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN);
5063 	if (err < 0)
5064 		goto out;
5065 
5066 	nexthdr = ipv6_hdr(skb)->nexthdr;
5067 
5068 	len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len);
5069 	while (off <= len && !done) {
5070 		switch (nexthdr) {
5071 		case IPPROTO_DSTOPTS:
5072 		case IPPROTO_HOPOPTS:
5073 		case IPPROTO_ROUTING: {
5074 			struct ipv6_opt_hdr *hp;
5075 
5076 			err = skb_maybe_pull_tail(skb,
5077 						  off +
5078 						  sizeof(struct ipv6_opt_hdr),
5079 						  MAX_IPV6_HDR_LEN);
5080 			if (err < 0)
5081 				goto out;
5082 
5083 			hp = OPT_HDR(struct ipv6_opt_hdr, skb, off);
5084 			nexthdr = hp->nexthdr;
5085 			off += ipv6_optlen(hp);
5086 			break;
5087 		}
5088 		case IPPROTO_AH: {
5089 			struct ip_auth_hdr *hp;
5090 
5091 			err = skb_maybe_pull_tail(skb,
5092 						  off +
5093 						  sizeof(struct ip_auth_hdr),
5094 						  MAX_IPV6_HDR_LEN);
5095 			if (err < 0)
5096 				goto out;
5097 
5098 			hp = OPT_HDR(struct ip_auth_hdr, skb, off);
5099 			nexthdr = hp->nexthdr;
5100 			off += ipv6_authlen(hp);
5101 			break;
5102 		}
5103 		case IPPROTO_FRAGMENT: {
5104 			struct frag_hdr *hp;
5105 
5106 			err = skb_maybe_pull_tail(skb,
5107 						  off +
5108 						  sizeof(struct frag_hdr),
5109 						  MAX_IPV6_HDR_LEN);
5110 			if (err < 0)
5111 				goto out;
5112 
5113 			hp = OPT_HDR(struct frag_hdr, skb, off);
5114 
5115 			if (hp->frag_off & htons(IP6_OFFSET | IP6_MF))
5116 				fragment = true;
5117 
5118 			nexthdr = hp->nexthdr;
5119 			off += sizeof(struct frag_hdr);
5120 			break;
5121 		}
5122 		default:
5123 			done = true;
5124 			break;
5125 		}
5126 	}
5127 
5128 	err = -EPROTO;
5129 
5130 	if (!done || fragment)
5131 		goto out;
5132 
5133 	csum = skb_checksum_setup_ip(skb, nexthdr, off);
5134 	if (IS_ERR(csum))
5135 		return PTR_ERR(csum);
5136 
5137 	if (recalculate)
5138 		*csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
5139 					 &ipv6_hdr(skb)->daddr,
5140 					 skb->len - off, nexthdr, 0);
5141 	err = 0;
5142 
5143 out:
5144 	return err;
5145 }
5146 
5147 /**
5148  * skb_checksum_setup - set up partial checksum offset
5149  * @skb: the skb to set up
5150  * @recalculate: if true the pseudo-header checksum will be recalculated
5151  */
5152 int skb_checksum_setup(struct sk_buff *skb, bool recalculate)
5153 {
5154 	int err;
5155 
5156 	switch (skb->protocol) {
5157 	case htons(ETH_P_IP):
5158 		err = skb_checksum_setup_ipv4(skb, recalculate);
5159 		break;
5160 
5161 	case htons(ETH_P_IPV6):
5162 		err = skb_checksum_setup_ipv6(skb, recalculate);
5163 		break;
5164 
5165 	default:
5166 		err = -EPROTO;
5167 		break;
5168 	}
5169 
5170 	return err;
5171 }
5172 EXPORT_SYMBOL(skb_checksum_setup);
5173 
5174 /**
5175  * skb_checksum_maybe_trim - maybe trims the given skb
5176  * @skb: the skb to check
5177  * @transport_len: the data length beyond the network header
5178  *
5179  * Checks whether the given skb has data beyond the given transport length.
5180  * If so, returns a cloned skb trimmed to this transport length.
5181  * Otherwise returns the provided skb. Returns NULL in error cases
5182  * (e.g. transport_len exceeds skb length or out-of-memory).
5183  *
5184  * Caller needs to set the skb transport header and free any returned skb if it
5185  * differs from the provided skb.
5186  */
5187 static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb,
5188 					       unsigned int transport_len)
5189 {
5190 	struct sk_buff *skb_chk;
5191 	unsigned int len = skb_transport_offset(skb) + transport_len;
5192 	int ret;
5193 
5194 	if (skb->len < len)
5195 		return NULL;
5196 	else if (skb->len == len)
5197 		return skb;
5198 
5199 	skb_chk = skb_clone(skb, GFP_ATOMIC);
5200 	if (!skb_chk)
5201 		return NULL;
5202 
5203 	ret = pskb_trim_rcsum(skb_chk, len);
5204 	if (ret) {
5205 		kfree_skb(skb_chk);
5206 		return NULL;
5207 	}
5208 
5209 	return skb_chk;
5210 }
5211 
5212 /**
5213  * skb_checksum_trimmed - validate checksum of an skb
5214  * @skb: the skb to check
5215  * @transport_len: the data length beyond the network header
5216  * @skb_chkf: checksum function to use
5217  *
5218  * Applies the given checksum function skb_chkf to the provided skb.
5219  * Returns a checked and maybe trimmed skb. Returns NULL on error.
5220  *
5221  * If the skb has data beyond the given transport length, then a
5222  * trimmed & cloned skb is checked and returned.
5223  *
5224  * Caller needs to set the skb transport header and free any returned skb if it
5225  * differs from the provided skb.
5226  */
5227 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
5228 				     unsigned int transport_len,
5229 				     __sum16(*skb_chkf)(struct sk_buff *skb))
5230 {
5231 	struct sk_buff *skb_chk;
5232 	unsigned int offset = skb_transport_offset(skb);
5233 	__sum16 ret;
5234 
5235 	skb_chk = skb_checksum_maybe_trim(skb, transport_len);
5236 	if (!skb_chk)
5237 		goto err;
5238 
5239 	if (!pskb_may_pull(skb_chk, offset))
5240 		goto err;
5241 
5242 	skb_pull_rcsum(skb_chk, offset);
5243 	ret = skb_chkf(skb_chk);
5244 	skb_push_rcsum(skb_chk, offset);
5245 
5246 	if (ret)
5247 		goto err;
5248 
5249 	return skb_chk;
5250 
5251 err:
5252 	if (skb_chk && skb_chk != skb)
5253 		kfree_skb(skb_chk);
5254 
5255 	return NULL;
5256 
5257 }
5258 EXPORT_SYMBOL(skb_checksum_trimmed);
5259 
5260 void __skb_warn_lro_forwarding(const struct sk_buff *skb)
5261 {
5262 	net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n",
5263 			     skb->dev->name);
5264 }
5265 EXPORT_SYMBOL(__skb_warn_lro_forwarding);
5266 
5267 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen)
5268 {
5269 	if (head_stolen) {
5270 		skb_release_head_state(skb);
5271 		kmem_cache_free(skbuff_head_cache, skb);
5272 	} else {
5273 		__kfree_skb(skb);
5274 	}
5275 }
5276 EXPORT_SYMBOL(kfree_skb_partial);
5277 
5278 /**
5279  * skb_try_coalesce - try to merge skb to prior one
5280  * @to: prior buffer
5281  * @from: buffer to add
5282  * @fragstolen: pointer to boolean
5283  * @delta_truesize: how much more was allocated than was requested
5284  */
5285 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
5286 		      bool *fragstolen, int *delta_truesize)
5287 {
5288 	struct skb_shared_info *to_shinfo, *from_shinfo;
5289 	int i, delta, len = from->len;
5290 
5291 	*fragstolen = false;
5292 
5293 	if (skb_cloned(to))
5294 		return false;
5295 
5296 	/* The page pool signature of struct page will eventually figure out
5297 	 * which pages can be recycled or not but for now let's prohibit slab
5298 	 * allocated and page_pool allocated SKBs from being coalesced.
5299 	 */
5300 	if (to->pp_recycle != from->pp_recycle)
5301 		return false;
5302 
5303 	if (len <= skb_tailroom(to)) {
5304 		if (len)
5305 			BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len));
5306 		*delta_truesize = 0;
5307 		return true;
5308 	}
5309 
5310 	to_shinfo = skb_shinfo(to);
5311 	from_shinfo = skb_shinfo(from);
5312 	if (to_shinfo->frag_list || from_shinfo->frag_list)
5313 		return false;
5314 	if (skb_zcopy(to) || skb_zcopy(from))
5315 		return false;
5316 
5317 	if (skb_headlen(from) != 0) {
5318 		struct page *page;
5319 		unsigned int offset;
5320 
5321 		if (to_shinfo->nr_frags +
5322 		    from_shinfo->nr_frags >= MAX_SKB_FRAGS)
5323 			return false;
5324 
5325 		if (skb_head_is_locked(from))
5326 			return false;
5327 
5328 		delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
5329 
5330 		page = virt_to_head_page(from->head);
5331 		offset = from->data - (unsigned char *)page_address(page);
5332 
5333 		skb_fill_page_desc(to, to_shinfo->nr_frags,
5334 				   page, offset, skb_headlen(from));
5335 		*fragstolen = true;
5336 	} else {
5337 		if (to_shinfo->nr_frags +
5338 		    from_shinfo->nr_frags > MAX_SKB_FRAGS)
5339 			return false;
5340 
5341 		delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from));
5342 	}
5343 
5344 	WARN_ON_ONCE(delta < len);
5345 
5346 	memcpy(to_shinfo->frags + to_shinfo->nr_frags,
5347 	       from_shinfo->frags,
5348 	       from_shinfo->nr_frags * sizeof(skb_frag_t));
5349 	to_shinfo->nr_frags += from_shinfo->nr_frags;
5350 
5351 	if (!skb_cloned(from))
5352 		from_shinfo->nr_frags = 0;
5353 
5354 	/* if the skb is not cloned this does nothing
5355 	 * since we set nr_frags to 0.
5356 	 */
5357 	for (i = 0; i < from_shinfo->nr_frags; i++)
5358 		__skb_frag_ref(&from_shinfo->frags[i]);
5359 
5360 	to->truesize += delta;
5361 	to->len += len;
5362 	to->data_len += len;
5363 
5364 	*delta_truesize = delta;
5365 	return true;
5366 }
5367 EXPORT_SYMBOL(skb_try_coalesce);
5368 
5369 /**
5370  * skb_scrub_packet - scrub an skb
5371  *
5372  * @skb: buffer to clean
5373  * @xnet: packet is crossing netns
5374  *
5375  * skb_scrub_packet can be used after encapsulating or decapsulting a packet
5376  * into/from a tunnel. Some information have to be cleared during these
5377  * operations.
5378  * skb_scrub_packet can also be used to clean a skb before injecting it in
5379  * another namespace (@xnet == true). We have to clear all information in the
5380  * skb that could impact namespace isolation.
5381  */
5382 void skb_scrub_packet(struct sk_buff *skb, bool xnet)
5383 {
5384 	skb->pkt_type = PACKET_HOST;
5385 	skb->skb_iif = 0;
5386 	skb->ignore_df = 0;
5387 	skb_dst_drop(skb);
5388 	skb_ext_reset(skb);
5389 	nf_reset_ct(skb);
5390 	nf_reset_trace(skb);
5391 
5392 #ifdef CONFIG_NET_SWITCHDEV
5393 	skb->offload_fwd_mark = 0;
5394 	skb->offload_l3_fwd_mark = 0;
5395 #endif
5396 
5397 	if (!xnet)
5398 		return;
5399 
5400 	ipvs_reset(skb);
5401 	skb->mark = 0;
5402 	skb->tstamp = 0;
5403 }
5404 EXPORT_SYMBOL_GPL(skb_scrub_packet);
5405 
5406 /**
5407  * skb_gso_transport_seglen - Return length of individual segments of a gso packet
5408  *
5409  * @skb: GSO skb
5410  *
5411  * skb_gso_transport_seglen is used to determine the real size of the
5412  * individual segments, including Layer4 headers (TCP/UDP).
5413  *
5414  * The MAC/L2 or network (IP, IPv6) headers are not accounted for.
5415  */
5416 static unsigned int skb_gso_transport_seglen(const struct sk_buff *skb)
5417 {
5418 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
5419 	unsigned int thlen = 0;
5420 
5421 	if (skb->encapsulation) {
5422 		thlen = skb_inner_transport_header(skb) -
5423 			skb_transport_header(skb);
5424 
5425 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
5426 			thlen += inner_tcp_hdrlen(skb);
5427 	} else if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
5428 		thlen = tcp_hdrlen(skb);
5429 	} else if (unlikely(skb_is_gso_sctp(skb))) {
5430 		thlen = sizeof(struct sctphdr);
5431 	} else if (shinfo->gso_type & SKB_GSO_UDP_L4) {
5432 		thlen = sizeof(struct udphdr);
5433 	}
5434 	/* UFO sets gso_size to the size of the fragmentation
5435 	 * payload, i.e. the size of the L4 (UDP) header is already
5436 	 * accounted for.
5437 	 */
5438 	return thlen + shinfo->gso_size;
5439 }
5440 
5441 /**
5442  * skb_gso_network_seglen - Return length of individual segments of a gso packet
5443  *
5444  * @skb: GSO skb
5445  *
5446  * skb_gso_network_seglen is used to determine the real size of the
5447  * individual segments, including Layer3 (IP, IPv6) and L4 headers (TCP/UDP).
5448  *
5449  * The MAC/L2 header is not accounted for.
5450  */
5451 static unsigned int skb_gso_network_seglen(const struct sk_buff *skb)
5452 {
5453 	unsigned int hdr_len = skb_transport_header(skb) -
5454 			       skb_network_header(skb);
5455 
5456 	return hdr_len + skb_gso_transport_seglen(skb);
5457 }
5458 
5459 /**
5460  * skb_gso_mac_seglen - Return length of individual segments of a gso packet
5461  *
5462  * @skb: GSO skb
5463  *
5464  * skb_gso_mac_seglen is used to determine the real size of the
5465  * individual segments, including MAC/L2, Layer3 (IP, IPv6) and L4
5466  * headers (TCP/UDP).
5467  */
5468 static unsigned int skb_gso_mac_seglen(const struct sk_buff *skb)
5469 {
5470 	unsigned int hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
5471 
5472 	return hdr_len + skb_gso_transport_seglen(skb);
5473 }
5474 
5475 /**
5476  * skb_gso_size_check - check the skb size, considering GSO_BY_FRAGS
5477  *
5478  * There are a couple of instances where we have a GSO skb, and we
5479  * want to determine what size it would be after it is segmented.
5480  *
5481  * We might want to check:
5482  * -    L3+L4+payload size (e.g. IP forwarding)
5483  * - L2+L3+L4+payload size (e.g. sanity check before passing to driver)
5484  *
5485  * This is a helper to do that correctly considering GSO_BY_FRAGS.
5486  *
5487  * @skb: GSO skb
5488  *
5489  * @seg_len: The segmented length (from skb_gso_*_seglen). In the
5490  *           GSO_BY_FRAGS case this will be [header sizes + GSO_BY_FRAGS].
5491  *
5492  * @max_len: The maximum permissible length.
5493  *
5494  * Returns true if the segmented length <= max length.
5495  */
5496 static inline bool skb_gso_size_check(const struct sk_buff *skb,
5497 				      unsigned int seg_len,
5498 				      unsigned int max_len) {
5499 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
5500 	const struct sk_buff *iter;
5501 
5502 	if (shinfo->gso_size != GSO_BY_FRAGS)
5503 		return seg_len <= max_len;
5504 
5505 	/* Undo this so we can re-use header sizes */
5506 	seg_len -= GSO_BY_FRAGS;
5507 
5508 	skb_walk_frags(skb, iter) {
5509 		if (seg_len + skb_headlen(iter) > max_len)
5510 			return false;
5511 	}
5512 
5513 	return true;
5514 }
5515 
5516 /**
5517  * skb_gso_validate_network_len - Will a split GSO skb fit into a given MTU?
5518  *
5519  * @skb: GSO skb
5520  * @mtu: MTU to validate against
5521  *
5522  * skb_gso_validate_network_len validates if a given skb will fit a
5523  * wanted MTU once split. It considers L3 headers, L4 headers, and the
5524  * payload.
5525  */
5526 bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu)
5527 {
5528 	return skb_gso_size_check(skb, skb_gso_network_seglen(skb), mtu);
5529 }
5530 EXPORT_SYMBOL_GPL(skb_gso_validate_network_len);
5531 
5532 /**
5533  * skb_gso_validate_mac_len - Will a split GSO skb fit in a given length?
5534  *
5535  * @skb: GSO skb
5536  * @len: length to validate against
5537  *
5538  * skb_gso_validate_mac_len validates if a given skb will fit a wanted
5539  * length once split, including L2, L3 and L4 headers and the payload.
5540  */
5541 bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len)
5542 {
5543 	return skb_gso_size_check(skb, skb_gso_mac_seglen(skb), len);
5544 }
5545 EXPORT_SYMBOL_GPL(skb_gso_validate_mac_len);
5546 
5547 static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb)
5548 {
5549 	int mac_len, meta_len;
5550 	void *meta;
5551 
5552 	if (skb_cow(skb, skb_headroom(skb)) < 0) {
5553 		kfree_skb(skb);
5554 		return NULL;
5555 	}
5556 
5557 	mac_len = skb->data - skb_mac_header(skb);
5558 	if (likely(mac_len > VLAN_HLEN + ETH_TLEN)) {
5559 		memmove(skb_mac_header(skb) + VLAN_HLEN, skb_mac_header(skb),
5560 			mac_len - VLAN_HLEN - ETH_TLEN);
5561 	}
5562 
5563 	meta_len = skb_metadata_len(skb);
5564 	if (meta_len) {
5565 		meta = skb_metadata_end(skb) - meta_len;
5566 		memmove(meta + VLAN_HLEN, meta, meta_len);
5567 	}
5568 
5569 	skb->mac_header += VLAN_HLEN;
5570 	return skb;
5571 }
5572 
5573 struct sk_buff *skb_vlan_untag(struct sk_buff *skb)
5574 {
5575 	struct vlan_hdr *vhdr;
5576 	u16 vlan_tci;
5577 
5578 	if (unlikely(skb_vlan_tag_present(skb))) {
5579 		/* vlan_tci is already set-up so leave this for another time */
5580 		return skb;
5581 	}
5582 
5583 	skb = skb_share_check(skb, GFP_ATOMIC);
5584 	if (unlikely(!skb))
5585 		goto err_free;
5586 	/* We may access the two bytes after vlan_hdr in vlan_set_encap_proto(). */
5587 	if (unlikely(!pskb_may_pull(skb, VLAN_HLEN + sizeof(unsigned short))))
5588 		goto err_free;
5589 
5590 	vhdr = (struct vlan_hdr *)skb->data;
5591 	vlan_tci = ntohs(vhdr->h_vlan_TCI);
5592 	__vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci);
5593 
5594 	skb_pull_rcsum(skb, VLAN_HLEN);
5595 	vlan_set_encap_proto(skb, vhdr);
5596 
5597 	skb = skb_reorder_vlan_header(skb);
5598 	if (unlikely(!skb))
5599 		goto err_free;
5600 
5601 	skb_reset_network_header(skb);
5602 	if (!skb_transport_header_was_set(skb))
5603 		skb_reset_transport_header(skb);
5604 	skb_reset_mac_len(skb);
5605 
5606 	return skb;
5607 
5608 err_free:
5609 	kfree_skb(skb);
5610 	return NULL;
5611 }
5612 EXPORT_SYMBOL(skb_vlan_untag);
5613 
5614 int skb_ensure_writable(struct sk_buff *skb, int write_len)
5615 {
5616 	if (!pskb_may_pull(skb, write_len))
5617 		return -ENOMEM;
5618 
5619 	if (!skb_cloned(skb) || skb_clone_writable(skb, write_len))
5620 		return 0;
5621 
5622 	return pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
5623 }
5624 EXPORT_SYMBOL(skb_ensure_writable);
5625 
5626 /* remove VLAN header from packet and update csum accordingly.
5627  * expects a non skb_vlan_tag_present skb with a vlan tag payload
5628  */
5629 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci)
5630 {
5631 	struct vlan_hdr *vhdr;
5632 	int offset = skb->data - skb_mac_header(skb);
5633 	int err;
5634 
5635 	if (WARN_ONCE(offset,
5636 		      "__skb_vlan_pop got skb with skb->data not at mac header (offset %d)\n",
5637 		      offset)) {
5638 		return -EINVAL;
5639 	}
5640 
5641 	err = skb_ensure_writable(skb, VLAN_ETH_HLEN);
5642 	if (unlikely(err))
5643 		return err;
5644 
5645 	skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
5646 
5647 	vhdr = (struct vlan_hdr *)(skb->data + ETH_HLEN);
5648 	*vlan_tci = ntohs(vhdr->h_vlan_TCI);
5649 
5650 	memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN);
5651 	__skb_pull(skb, VLAN_HLEN);
5652 
5653 	vlan_set_encap_proto(skb, vhdr);
5654 	skb->mac_header += VLAN_HLEN;
5655 
5656 	if (skb_network_offset(skb) < ETH_HLEN)
5657 		skb_set_network_header(skb, ETH_HLEN);
5658 
5659 	skb_reset_mac_len(skb);
5660 
5661 	return err;
5662 }
5663 EXPORT_SYMBOL(__skb_vlan_pop);
5664 
5665 /* Pop a vlan tag either from hwaccel or from payload.
5666  * Expects skb->data at mac header.
5667  */
5668 int skb_vlan_pop(struct sk_buff *skb)
5669 {
5670 	u16 vlan_tci;
5671 	__be16 vlan_proto;
5672 	int err;
5673 
5674 	if (likely(skb_vlan_tag_present(skb))) {
5675 		__vlan_hwaccel_clear_tag(skb);
5676 	} else {
5677 		if (unlikely(!eth_type_vlan(skb->protocol)))
5678 			return 0;
5679 
5680 		err = __skb_vlan_pop(skb, &vlan_tci);
5681 		if (err)
5682 			return err;
5683 	}
5684 	/* move next vlan tag to hw accel tag */
5685 	if (likely(!eth_type_vlan(skb->protocol)))
5686 		return 0;
5687 
5688 	vlan_proto = skb->protocol;
5689 	err = __skb_vlan_pop(skb, &vlan_tci);
5690 	if (unlikely(err))
5691 		return err;
5692 
5693 	__vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
5694 	return 0;
5695 }
5696 EXPORT_SYMBOL(skb_vlan_pop);
5697 
5698 /* Push a vlan tag either into hwaccel or into payload (if hwaccel tag present).
5699  * Expects skb->data at mac header.
5700  */
5701 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci)
5702 {
5703 	if (skb_vlan_tag_present(skb)) {
5704 		int offset = skb->data - skb_mac_header(skb);
5705 		int err;
5706 
5707 		if (WARN_ONCE(offset,
5708 			      "skb_vlan_push got skb with skb->data not at mac header (offset %d)\n",
5709 			      offset)) {
5710 			return -EINVAL;
5711 		}
5712 
5713 		err = __vlan_insert_tag(skb, skb->vlan_proto,
5714 					skb_vlan_tag_get(skb));
5715 		if (err)
5716 			return err;
5717 
5718 		skb->protocol = skb->vlan_proto;
5719 		skb->mac_len += VLAN_HLEN;
5720 
5721 		skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
5722 	}
5723 	__vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
5724 	return 0;
5725 }
5726 EXPORT_SYMBOL(skb_vlan_push);
5727 
5728 /**
5729  * skb_eth_pop() - Drop the Ethernet header at the head of a packet
5730  *
5731  * @skb: Socket buffer to modify
5732  *
5733  * Drop the Ethernet header of @skb.
5734  *
5735  * Expects that skb->data points to the mac header and that no VLAN tags are
5736  * present.
5737  *
5738  * Returns 0 on success, -errno otherwise.
5739  */
5740 int skb_eth_pop(struct sk_buff *skb)
5741 {
5742 	if (!pskb_may_pull(skb, ETH_HLEN) || skb_vlan_tagged(skb) ||
5743 	    skb_network_offset(skb) < ETH_HLEN)
5744 		return -EPROTO;
5745 
5746 	skb_pull_rcsum(skb, ETH_HLEN);
5747 	skb_reset_mac_header(skb);
5748 	skb_reset_mac_len(skb);
5749 
5750 	return 0;
5751 }
5752 EXPORT_SYMBOL(skb_eth_pop);
5753 
5754 /**
5755  * skb_eth_push() - Add a new Ethernet header at the head of a packet
5756  *
5757  * @skb: Socket buffer to modify
5758  * @dst: Destination MAC address of the new header
5759  * @src: Source MAC address of the new header
5760  *
5761  * Prepend @skb with a new Ethernet header.
5762  *
5763  * Expects that skb->data points to the mac header, which must be empty.
5764  *
5765  * Returns 0 on success, -errno otherwise.
5766  */
5767 int skb_eth_push(struct sk_buff *skb, const unsigned char *dst,
5768 		 const unsigned char *src)
5769 {
5770 	struct ethhdr *eth;
5771 	int err;
5772 
5773 	if (skb_network_offset(skb) || skb_vlan_tag_present(skb))
5774 		return -EPROTO;
5775 
5776 	err = skb_cow_head(skb, sizeof(*eth));
5777 	if (err < 0)
5778 		return err;
5779 
5780 	skb_push(skb, sizeof(*eth));
5781 	skb_reset_mac_header(skb);
5782 	skb_reset_mac_len(skb);
5783 
5784 	eth = eth_hdr(skb);
5785 	ether_addr_copy(eth->h_dest, dst);
5786 	ether_addr_copy(eth->h_source, src);
5787 	eth->h_proto = skb->protocol;
5788 
5789 	skb_postpush_rcsum(skb, eth, sizeof(*eth));
5790 
5791 	return 0;
5792 }
5793 EXPORT_SYMBOL(skb_eth_push);
5794 
5795 /* Update the ethertype of hdr and the skb csum value if required. */
5796 static void skb_mod_eth_type(struct sk_buff *skb, struct ethhdr *hdr,
5797 			     __be16 ethertype)
5798 {
5799 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
5800 		__be16 diff[] = { ~hdr->h_proto, ethertype };
5801 
5802 		skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum);
5803 	}
5804 
5805 	hdr->h_proto = ethertype;
5806 }
5807 
5808 /**
5809  * skb_mpls_push() - push a new MPLS header after mac_len bytes from start of
5810  *                   the packet
5811  *
5812  * @skb: buffer
5813  * @mpls_lse: MPLS label stack entry to push
5814  * @mpls_proto: ethertype of the new MPLS header (expects 0x8847 or 0x8848)
5815  * @mac_len: length of the MAC header
5816  * @ethernet: flag to indicate if the resulting packet after skb_mpls_push is
5817  *            ethernet
5818  *
5819  * Expects skb->data at mac header.
5820  *
5821  * Returns 0 on success, -errno otherwise.
5822  */
5823 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto,
5824 		  int mac_len, bool ethernet)
5825 {
5826 	struct mpls_shim_hdr *lse;
5827 	int err;
5828 
5829 	if (unlikely(!eth_p_mpls(mpls_proto)))
5830 		return -EINVAL;
5831 
5832 	/* Networking stack does not allow simultaneous Tunnel and MPLS GSO. */
5833 	if (skb->encapsulation)
5834 		return -EINVAL;
5835 
5836 	err = skb_cow_head(skb, MPLS_HLEN);
5837 	if (unlikely(err))
5838 		return err;
5839 
5840 	if (!skb->inner_protocol) {
5841 		skb_set_inner_network_header(skb, skb_network_offset(skb));
5842 		skb_set_inner_protocol(skb, skb->protocol);
5843 	}
5844 
5845 	skb_push(skb, MPLS_HLEN);
5846 	memmove(skb_mac_header(skb) - MPLS_HLEN, skb_mac_header(skb),
5847 		mac_len);
5848 	skb_reset_mac_header(skb);
5849 	skb_set_network_header(skb, mac_len);
5850 	skb_reset_mac_len(skb);
5851 
5852 	lse = mpls_hdr(skb);
5853 	lse->label_stack_entry = mpls_lse;
5854 	skb_postpush_rcsum(skb, lse, MPLS_HLEN);
5855 
5856 	if (ethernet && mac_len >= ETH_HLEN)
5857 		skb_mod_eth_type(skb, eth_hdr(skb), mpls_proto);
5858 	skb->protocol = mpls_proto;
5859 
5860 	return 0;
5861 }
5862 EXPORT_SYMBOL_GPL(skb_mpls_push);
5863 
5864 /**
5865  * skb_mpls_pop() - pop the outermost MPLS header
5866  *
5867  * @skb: buffer
5868  * @next_proto: ethertype of header after popped MPLS header
5869  * @mac_len: length of the MAC header
5870  * @ethernet: flag to indicate if the packet is ethernet
5871  *
5872  * Expects skb->data at mac header.
5873  *
5874  * Returns 0 on success, -errno otherwise.
5875  */
5876 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len,
5877 		 bool ethernet)
5878 {
5879 	int err;
5880 
5881 	if (unlikely(!eth_p_mpls(skb->protocol)))
5882 		return 0;
5883 
5884 	err = skb_ensure_writable(skb, mac_len + MPLS_HLEN);
5885 	if (unlikely(err))
5886 		return err;
5887 
5888 	skb_postpull_rcsum(skb, mpls_hdr(skb), MPLS_HLEN);
5889 	memmove(skb_mac_header(skb) + MPLS_HLEN, skb_mac_header(skb),
5890 		mac_len);
5891 
5892 	__skb_pull(skb, MPLS_HLEN);
5893 	skb_reset_mac_header(skb);
5894 	skb_set_network_header(skb, mac_len);
5895 
5896 	if (ethernet && mac_len >= ETH_HLEN) {
5897 		struct ethhdr *hdr;
5898 
5899 		/* use mpls_hdr() to get ethertype to account for VLANs. */
5900 		hdr = (struct ethhdr *)((void *)mpls_hdr(skb) - ETH_HLEN);
5901 		skb_mod_eth_type(skb, hdr, next_proto);
5902 	}
5903 	skb->protocol = next_proto;
5904 
5905 	return 0;
5906 }
5907 EXPORT_SYMBOL_GPL(skb_mpls_pop);
5908 
5909 /**
5910  * skb_mpls_update_lse() - modify outermost MPLS header and update csum
5911  *
5912  * @skb: buffer
5913  * @mpls_lse: new MPLS label stack entry to update to
5914  *
5915  * Expects skb->data at mac header.
5916  *
5917  * Returns 0 on success, -errno otherwise.
5918  */
5919 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse)
5920 {
5921 	int err;
5922 
5923 	if (unlikely(!eth_p_mpls(skb->protocol)))
5924 		return -EINVAL;
5925 
5926 	err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN);
5927 	if (unlikely(err))
5928 		return err;
5929 
5930 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
5931 		__be32 diff[] = { ~mpls_hdr(skb)->label_stack_entry, mpls_lse };
5932 
5933 		skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum);
5934 	}
5935 
5936 	mpls_hdr(skb)->label_stack_entry = mpls_lse;
5937 
5938 	return 0;
5939 }
5940 EXPORT_SYMBOL_GPL(skb_mpls_update_lse);
5941 
5942 /**
5943  * skb_mpls_dec_ttl() - decrement the TTL of the outermost MPLS header
5944  *
5945  * @skb: buffer
5946  *
5947  * Expects skb->data at mac header.
5948  *
5949  * Returns 0 on success, -errno otherwise.
5950  */
5951 int skb_mpls_dec_ttl(struct sk_buff *skb)
5952 {
5953 	u32 lse;
5954 	u8 ttl;
5955 
5956 	if (unlikely(!eth_p_mpls(skb->protocol)))
5957 		return -EINVAL;
5958 
5959 	if (!pskb_may_pull(skb, skb_network_offset(skb) + MPLS_HLEN))
5960 		return -ENOMEM;
5961 
5962 	lse = be32_to_cpu(mpls_hdr(skb)->label_stack_entry);
5963 	ttl = (lse & MPLS_LS_TTL_MASK) >> MPLS_LS_TTL_SHIFT;
5964 	if (!--ttl)
5965 		return -EINVAL;
5966 
5967 	lse &= ~MPLS_LS_TTL_MASK;
5968 	lse |= ttl << MPLS_LS_TTL_SHIFT;
5969 
5970 	return skb_mpls_update_lse(skb, cpu_to_be32(lse));
5971 }
5972 EXPORT_SYMBOL_GPL(skb_mpls_dec_ttl);
5973 
5974 /**
5975  * alloc_skb_with_frags - allocate skb with page frags
5976  *
5977  * @header_len: size of linear part
5978  * @data_len: needed length in frags
5979  * @max_page_order: max page order desired.
5980  * @errcode: pointer to error code if any
5981  * @gfp_mask: allocation mask
5982  *
5983  * This can be used to allocate a paged skb, given a maximal order for frags.
5984  */
5985 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
5986 				     unsigned long data_len,
5987 				     int max_page_order,
5988 				     int *errcode,
5989 				     gfp_t gfp_mask)
5990 {
5991 	int npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
5992 	unsigned long chunk;
5993 	struct sk_buff *skb;
5994 	struct page *page;
5995 	int i;
5996 
5997 	*errcode = -EMSGSIZE;
5998 	/* Note this test could be relaxed, if we succeed to allocate
5999 	 * high order pages...
6000 	 */
6001 	if (npages > MAX_SKB_FRAGS)
6002 		return NULL;
6003 
6004 	*errcode = -ENOBUFS;
6005 	skb = alloc_skb(header_len, gfp_mask);
6006 	if (!skb)
6007 		return NULL;
6008 
6009 	skb->truesize += npages << PAGE_SHIFT;
6010 
6011 	for (i = 0; npages > 0; i++) {
6012 		int order = max_page_order;
6013 
6014 		while (order) {
6015 			if (npages >= 1 << order) {
6016 				page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) |
6017 						   __GFP_COMP |
6018 						   __GFP_NOWARN,
6019 						   order);
6020 				if (page)
6021 					goto fill_page;
6022 				/* Do not retry other high order allocations */
6023 				order = 1;
6024 				max_page_order = 0;
6025 			}
6026 			order--;
6027 		}
6028 		page = alloc_page(gfp_mask);
6029 		if (!page)
6030 			goto failure;
6031 fill_page:
6032 		chunk = min_t(unsigned long, data_len,
6033 			      PAGE_SIZE << order);
6034 		skb_fill_page_desc(skb, i, page, 0, chunk);
6035 		data_len -= chunk;
6036 		npages -= 1 << order;
6037 	}
6038 	return skb;
6039 
6040 failure:
6041 	kfree_skb(skb);
6042 	return NULL;
6043 }
6044 EXPORT_SYMBOL(alloc_skb_with_frags);
6045 
6046 /* carve out the first off bytes from skb when off < headlen */
6047 static int pskb_carve_inside_header(struct sk_buff *skb, const u32 off,
6048 				    const int headlen, gfp_t gfp_mask)
6049 {
6050 	int i;
6051 	int size = skb_end_offset(skb);
6052 	int new_hlen = headlen - off;
6053 	u8 *data;
6054 
6055 	size = SKB_DATA_ALIGN(size);
6056 
6057 	if (skb_pfmemalloc(skb))
6058 		gfp_mask |= __GFP_MEMALLOC;
6059 	data = kmalloc_reserve(size +
6060 			       SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
6061 			       gfp_mask, NUMA_NO_NODE, NULL);
6062 	if (!data)
6063 		return -ENOMEM;
6064 
6065 	size = SKB_WITH_OVERHEAD(ksize(data));
6066 
6067 	/* Copy real data, and all frags */
6068 	skb_copy_from_linear_data_offset(skb, off, data, new_hlen);
6069 	skb->len -= off;
6070 
6071 	memcpy((struct skb_shared_info *)(data + size),
6072 	       skb_shinfo(skb),
6073 	       offsetof(struct skb_shared_info,
6074 			frags[skb_shinfo(skb)->nr_frags]));
6075 	if (skb_cloned(skb)) {
6076 		/* drop the old head gracefully */
6077 		if (skb_orphan_frags(skb, gfp_mask)) {
6078 			kfree(data);
6079 			return -ENOMEM;
6080 		}
6081 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
6082 			skb_frag_ref(skb, i);
6083 		if (skb_has_frag_list(skb))
6084 			skb_clone_fraglist(skb);
6085 		skb_release_data(skb);
6086 	} else {
6087 		/* we can reuse existing recount- all we did was
6088 		 * relocate values
6089 		 */
6090 		skb_free_head(skb);
6091 	}
6092 
6093 	skb->head = data;
6094 	skb->data = data;
6095 	skb->head_frag = 0;
6096 #ifdef NET_SKBUFF_DATA_USES_OFFSET
6097 	skb->end = size;
6098 #else
6099 	skb->end = skb->head + size;
6100 #endif
6101 	skb_set_tail_pointer(skb, skb_headlen(skb));
6102 	skb_headers_offset_update(skb, 0);
6103 	skb->cloned = 0;
6104 	skb->hdr_len = 0;
6105 	skb->nohdr = 0;
6106 	atomic_set(&skb_shinfo(skb)->dataref, 1);
6107 
6108 	return 0;
6109 }
6110 
6111 static int pskb_carve(struct sk_buff *skb, const u32 off, gfp_t gfp);
6112 
6113 /* carve out the first eat bytes from skb's frag_list. May recurse into
6114  * pskb_carve()
6115  */
6116 static int pskb_carve_frag_list(struct sk_buff *skb,
6117 				struct skb_shared_info *shinfo, int eat,
6118 				gfp_t gfp_mask)
6119 {
6120 	struct sk_buff *list = shinfo->frag_list;
6121 	struct sk_buff *clone = NULL;
6122 	struct sk_buff *insp = NULL;
6123 
6124 	do {
6125 		if (!list) {
6126 			pr_err("Not enough bytes to eat. Want %d\n", eat);
6127 			return -EFAULT;
6128 		}
6129 		if (list->len <= eat) {
6130 			/* Eaten as whole. */
6131 			eat -= list->len;
6132 			list = list->next;
6133 			insp = list;
6134 		} else {
6135 			/* Eaten partially. */
6136 			if (skb_shared(list)) {
6137 				clone = skb_clone(list, gfp_mask);
6138 				if (!clone)
6139 					return -ENOMEM;
6140 				insp = list->next;
6141 				list = clone;
6142 			} else {
6143 				/* This may be pulled without problems. */
6144 				insp = list;
6145 			}
6146 			if (pskb_carve(list, eat, gfp_mask) < 0) {
6147 				kfree_skb(clone);
6148 				return -ENOMEM;
6149 			}
6150 			break;
6151 		}
6152 	} while (eat);
6153 
6154 	/* Free pulled out fragments. */
6155 	while ((list = shinfo->frag_list) != insp) {
6156 		shinfo->frag_list = list->next;
6157 		kfree_skb(list);
6158 	}
6159 	/* And insert new clone at head. */
6160 	if (clone) {
6161 		clone->next = list;
6162 		shinfo->frag_list = clone;
6163 	}
6164 	return 0;
6165 }
6166 
6167 /* carve off first len bytes from skb. Split line (off) is in the
6168  * non-linear part of skb
6169  */
6170 static int pskb_carve_inside_nonlinear(struct sk_buff *skb, const u32 off,
6171 				       int pos, gfp_t gfp_mask)
6172 {
6173 	int i, k = 0;
6174 	int size = skb_end_offset(skb);
6175 	u8 *data;
6176 	const int nfrags = skb_shinfo(skb)->nr_frags;
6177 	struct skb_shared_info *shinfo;
6178 
6179 	size = SKB_DATA_ALIGN(size);
6180 
6181 	if (skb_pfmemalloc(skb))
6182 		gfp_mask |= __GFP_MEMALLOC;
6183 	data = kmalloc_reserve(size +
6184 			       SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
6185 			       gfp_mask, NUMA_NO_NODE, NULL);
6186 	if (!data)
6187 		return -ENOMEM;
6188 
6189 	size = SKB_WITH_OVERHEAD(ksize(data));
6190 
6191 	memcpy((struct skb_shared_info *)(data + size),
6192 	       skb_shinfo(skb), offsetof(struct skb_shared_info, frags[0]));
6193 	if (skb_orphan_frags(skb, gfp_mask)) {
6194 		kfree(data);
6195 		return -ENOMEM;
6196 	}
6197 	shinfo = (struct skb_shared_info *)(data + size);
6198 	for (i = 0; i < nfrags; i++) {
6199 		int fsize = skb_frag_size(&skb_shinfo(skb)->frags[i]);
6200 
6201 		if (pos + fsize > off) {
6202 			shinfo->frags[k] = skb_shinfo(skb)->frags[i];
6203 
6204 			if (pos < off) {
6205 				/* Split frag.
6206 				 * We have two variants in this case:
6207 				 * 1. Move all the frag to the second
6208 				 *    part, if it is possible. F.e.
6209 				 *    this approach is mandatory for TUX,
6210 				 *    where splitting is expensive.
6211 				 * 2. Split is accurately. We make this.
6212 				 */
6213 				skb_frag_off_add(&shinfo->frags[0], off - pos);
6214 				skb_frag_size_sub(&shinfo->frags[0], off - pos);
6215 			}
6216 			skb_frag_ref(skb, i);
6217 			k++;
6218 		}
6219 		pos += fsize;
6220 	}
6221 	shinfo->nr_frags = k;
6222 	if (skb_has_frag_list(skb))
6223 		skb_clone_fraglist(skb);
6224 
6225 	/* split line is in frag list */
6226 	if (k == 0 && pskb_carve_frag_list(skb, shinfo, off - pos, gfp_mask)) {
6227 		/* skb_frag_unref() is not needed here as shinfo->nr_frags = 0. */
6228 		if (skb_has_frag_list(skb))
6229 			kfree_skb_list(skb_shinfo(skb)->frag_list);
6230 		kfree(data);
6231 		return -ENOMEM;
6232 	}
6233 	skb_release_data(skb);
6234 
6235 	skb->head = data;
6236 	skb->head_frag = 0;
6237 	skb->data = data;
6238 #ifdef NET_SKBUFF_DATA_USES_OFFSET
6239 	skb->end = size;
6240 #else
6241 	skb->end = skb->head + size;
6242 #endif
6243 	skb_reset_tail_pointer(skb);
6244 	skb_headers_offset_update(skb, 0);
6245 	skb->cloned   = 0;
6246 	skb->hdr_len  = 0;
6247 	skb->nohdr    = 0;
6248 	skb->len -= off;
6249 	skb->data_len = skb->len;
6250 	atomic_set(&skb_shinfo(skb)->dataref, 1);
6251 	return 0;
6252 }
6253 
6254 /* remove len bytes from the beginning of the skb */
6255 static int pskb_carve(struct sk_buff *skb, const u32 len, gfp_t gfp)
6256 {
6257 	int headlen = skb_headlen(skb);
6258 
6259 	if (len < headlen)
6260 		return pskb_carve_inside_header(skb, len, headlen, gfp);
6261 	else
6262 		return pskb_carve_inside_nonlinear(skb, len, headlen, gfp);
6263 }
6264 
6265 /* Extract to_copy bytes starting at off from skb, and return this in
6266  * a new skb
6267  */
6268 struct sk_buff *pskb_extract(struct sk_buff *skb, int off,
6269 			     int to_copy, gfp_t gfp)
6270 {
6271 	struct sk_buff  *clone = skb_clone(skb, gfp);
6272 
6273 	if (!clone)
6274 		return NULL;
6275 
6276 	if (pskb_carve(clone, off, gfp) < 0 ||
6277 	    pskb_trim(clone, to_copy)) {
6278 		kfree_skb(clone);
6279 		return NULL;
6280 	}
6281 	return clone;
6282 }
6283 EXPORT_SYMBOL(pskb_extract);
6284 
6285 /**
6286  * skb_condense - try to get rid of fragments/frag_list if possible
6287  * @skb: buffer
6288  *
6289  * Can be used to save memory before skb is added to a busy queue.
6290  * If packet has bytes in frags and enough tail room in skb->head,
6291  * pull all of them, so that we can free the frags right now and adjust
6292  * truesize.
6293  * Notes:
6294  *	We do not reallocate skb->head thus can not fail.
6295  *	Caller must re-evaluate skb->truesize if needed.
6296  */
6297 void skb_condense(struct sk_buff *skb)
6298 {
6299 	if (skb->data_len) {
6300 		if (skb->data_len > skb->end - skb->tail ||
6301 		    skb_cloned(skb))
6302 			return;
6303 
6304 		/* Nice, we can free page frag(s) right now */
6305 		__pskb_pull_tail(skb, skb->data_len);
6306 	}
6307 	/* At this point, skb->truesize might be over estimated,
6308 	 * because skb had a fragment, and fragments do not tell
6309 	 * their truesize.
6310 	 * When we pulled its content into skb->head, fragment
6311 	 * was freed, but __pskb_pull_tail() could not possibly
6312 	 * adjust skb->truesize, not knowing the frag truesize.
6313 	 */
6314 	skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
6315 }
6316 
6317 #ifdef CONFIG_SKB_EXTENSIONS
6318 static void *skb_ext_get_ptr(struct skb_ext *ext, enum skb_ext_id id)
6319 {
6320 	return (void *)ext + (ext->offset[id] * SKB_EXT_ALIGN_VALUE);
6321 }
6322 
6323 /**
6324  * __skb_ext_alloc - allocate a new skb extensions storage
6325  *
6326  * @flags: See kmalloc().
6327  *
6328  * Returns the newly allocated pointer. The pointer can later attached to a
6329  * skb via __skb_ext_set().
6330  * Note: caller must handle the skb_ext as an opaque data.
6331  */
6332 struct skb_ext *__skb_ext_alloc(gfp_t flags)
6333 {
6334 	struct skb_ext *new = kmem_cache_alloc(skbuff_ext_cache, flags);
6335 
6336 	if (new) {
6337 		memset(new->offset, 0, sizeof(new->offset));
6338 		refcount_set(&new->refcnt, 1);
6339 	}
6340 
6341 	return new;
6342 }
6343 
6344 static struct skb_ext *skb_ext_maybe_cow(struct skb_ext *old,
6345 					 unsigned int old_active)
6346 {
6347 	struct skb_ext *new;
6348 
6349 	if (refcount_read(&old->refcnt) == 1)
6350 		return old;
6351 
6352 	new = kmem_cache_alloc(skbuff_ext_cache, GFP_ATOMIC);
6353 	if (!new)
6354 		return NULL;
6355 
6356 	memcpy(new, old, old->chunks * SKB_EXT_ALIGN_VALUE);
6357 	refcount_set(&new->refcnt, 1);
6358 
6359 #ifdef CONFIG_XFRM
6360 	if (old_active & (1 << SKB_EXT_SEC_PATH)) {
6361 		struct sec_path *sp = skb_ext_get_ptr(old, SKB_EXT_SEC_PATH);
6362 		unsigned int i;
6363 
6364 		for (i = 0; i < sp->len; i++)
6365 			xfrm_state_hold(sp->xvec[i]);
6366 	}
6367 #endif
6368 	__skb_ext_put(old);
6369 	return new;
6370 }
6371 
6372 /**
6373  * __skb_ext_set - attach the specified extension storage to this skb
6374  * @skb: buffer
6375  * @id: extension id
6376  * @ext: extension storage previously allocated via __skb_ext_alloc()
6377  *
6378  * Existing extensions, if any, are cleared.
6379  *
6380  * Returns the pointer to the extension.
6381  */
6382 void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id,
6383 		    struct skb_ext *ext)
6384 {
6385 	unsigned int newlen, newoff = SKB_EXT_CHUNKSIZEOF(*ext);
6386 
6387 	skb_ext_put(skb);
6388 	newlen = newoff + skb_ext_type_len[id];
6389 	ext->chunks = newlen;
6390 	ext->offset[id] = newoff;
6391 	skb->extensions = ext;
6392 	skb->active_extensions = 1 << id;
6393 	return skb_ext_get_ptr(ext, id);
6394 }
6395 
6396 /**
6397  * skb_ext_add - allocate space for given extension, COW if needed
6398  * @skb: buffer
6399  * @id: extension to allocate space for
6400  *
6401  * Allocates enough space for the given extension.
6402  * If the extension is already present, a pointer to that extension
6403  * is returned.
6404  *
6405  * If the skb was cloned, COW applies and the returned memory can be
6406  * modified without changing the extension space of clones buffers.
6407  *
6408  * Returns pointer to the extension or NULL on allocation failure.
6409  */
6410 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id)
6411 {
6412 	struct skb_ext *new, *old = NULL;
6413 	unsigned int newlen, newoff;
6414 
6415 	if (skb->active_extensions) {
6416 		old = skb->extensions;
6417 
6418 		new = skb_ext_maybe_cow(old, skb->active_extensions);
6419 		if (!new)
6420 			return NULL;
6421 
6422 		if (__skb_ext_exist(new, id))
6423 			goto set_active;
6424 
6425 		newoff = new->chunks;
6426 	} else {
6427 		newoff = SKB_EXT_CHUNKSIZEOF(*new);
6428 
6429 		new = __skb_ext_alloc(GFP_ATOMIC);
6430 		if (!new)
6431 			return NULL;
6432 	}
6433 
6434 	newlen = newoff + skb_ext_type_len[id];
6435 	new->chunks = newlen;
6436 	new->offset[id] = newoff;
6437 set_active:
6438 	skb->extensions = new;
6439 	skb->active_extensions |= 1 << id;
6440 	return skb_ext_get_ptr(new, id);
6441 }
6442 EXPORT_SYMBOL(skb_ext_add);
6443 
6444 #ifdef CONFIG_XFRM
6445 static void skb_ext_put_sp(struct sec_path *sp)
6446 {
6447 	unsigned int i;
6448 
6449 	for (i = 0; i < sp->len; i++)
6450 		xfrm_state_put(sp->xvec[i]);
6451 }
6452 #endif
6453 
6454 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id)
6455 {
6456 	struct skb_ext *ext = skb->extensions;
6457 
6458 	skb->active_extensions &= ~(1 << id);
6459 	if (skb->active_extensions == 0) {
6460 		skb->extensions = NULL;
6461 		__skb_ext_put(ext);
6462 #ifdef CONFIG_XFRM
6463 	} else if (id == SKB_EXT_SEC_PATH &&
6464 		   refcount_read(&ext->refcnt) == 1) {
6465 		struct sec_path *sp = skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH);
6466 
6467 		skb_ext_put_sp(sp);
6468 		sp->len = 0;
6469 #endif
6470 	}
6471 }
6472 EXPORT_SYMBOL(__skb_ext_del);
6473 
6474 void __skb_ext_put(struct skb_ext *ext)
6475 {
6476 	/* If this is last clone, nothing can increment
6477 	 * it after check passes.  Avoids one atomic op.
6478 	 */
6479 	if (refcount_read(&ext->refcnt) == 1)
6480 		goto free_now;
6481 
6482 	if (!refcount_dec_and_test(&ext->refcnt))
6483 		return;
6484 free_now:
6485 #ifdef CONFIG_XFRM
6486 	if (__skb_ext_exist(ext, SKB_EXT_SEC_PATH))
6487 		skb_ext_put_sp(skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH));
6488 #endif
6489 
6490 	kmem_cache_free(skbuff_ext_cache, ext);
6491 }
6492 EXPORT_SYMBOL(__skb_ext_put);
6493 #endif /* CONFIG_SKB_EXTENSIONS */
6494