xref: /openbmc/linux/net/core/skbuff.c (revision 78c99ba1)
1 /*
2  *	Routines having to do with the 'struct sk_buff' memory handlers.
3  *
4  *	Authors:	Alan Cox <alan@lxorguk.ukuu.org.uk>
5  *			Florian La Roche <rzsfl@rz.uni-sb.de>
6  *
7  *	Fixes:
8  *		Alan Cox	:	Fixed the worst of the load
9  *					balancer bugs.
10  *		Dave Platt	:	Interrupt stacking fix.
11  *	Richard Kooijman	:	Timestamp fixes.
12  *		Alan Cox	:	Changed buffer format.
13  *		Alan Cox	:	destructor hook for AF_UNIX etc.
14  *		Linus Torvalds	:	Better skb_clone.
15  *		Alan Cox	:	Added skb_copy.
16  *		Alan Cox	:	Added all the changed routines Linus
17  *					only put in the headers
18  *		Ray VanTassle	:	Fixed --skb->lock in free
19  *		Alan Cox	:	skb_copy copy arp field
20  *		Andi Kleen	:	slabified it.
21  *		Robert Olsson	:	Removed skb_head_pool
22  *
23  *	NOTE:
24  *		The __skb_ routines should be called with interrupts
25  *	disabled, or you better be *real* sure that the operation is atomic
26  *	with respect to whatever list is being frobbed (e.g. via lock_sock()
27  *	or via disabling bottom half handlers, etc).
28  *
29  *	This program is free software; you can redistribute it and/or
30  *	modify it under the terms of the GNU General Public License
31  *	as published by the Free Software Foundation; either version
32  *	2 of the License, or (at your option) any later version.
33  */
34 
35 /*
36  *	The functions in this file will not compile correctly with gcc 2.4.x
37  */
38 
39 #include <linux/module.h>
40 #include <linux/types.h>
41 #include <linux/kernel.h>
42 #include <linux/mm.h>
43 #include <linux/interrupt.h>
44 #include <linux/in.h>
45 #include <linux/inet.h>
46 #include <linux/slab.h>
47 #include <linux/netdevice.h>
48 #ifdef CONFIG_NET_CLS_ACT
49 #include <net/pkt_sched.h>
50 #endif
51 #include <linux/string.h>
52 #include <linux/skbuff.h>
53 #include <linux/splice.h>
54 #include <linux/cache.h>
55 #include <linux/rtnetlink.h>
56 #include <linux/init.h>
57 #include <linux/scatterlist.h>
58 #include <linux/errqueue.h>
59 
60 #include <net/protocol.h>
61 #include <net/dst.h>
62 #include <net/sock.h>
63 #include <net/checksum.h>
64 #include <net/xfrm.h>
65 
66 #include <asm/uaccess.h>
67 #include <asm/system.h>
68 #include <trace/events/skb.h>
69 
70 #include "kmap_skb.h"
71 
72 static struct kmem_cache *skbuff_head_cache __read_mostly;
73 static struct kmem_cache *skbuff_fclone_cache __read_mostly;
74 
75 static void sock_pipe_buf_release(struct pipe_inode_info *pipe,
76 				  struct pipe_buffer *buf)
77 {
78 	put_page(buf->page);
79 }
80 
81 static void sock_pipe_buf_get(struct pipe_inode_info *pipe,
82 				struct pipe_buffer *buf)
83 {
84 	get_page(buf->page);
85 }
86 
87 static int sock_pipe_buf_steal(struct pipe_inode_info *pipe,
88 			       struct pipe_buffer *buf)
89 {
90 	return 1;
91 }
92 
93 
94 /* Pipe buffer operations for a socket. */
95 static struct pipe_buf_operations sock_pipe_buf_ops = {
96 	.can_merge = 0,
97 	.map = generic_pipe_buf_map,
98 	.unmap = generic_pipe_buf_unmap,
99 	.confirm = generic_pipe_buf_confirm,
100 	.release = sock_pipe_buf_release,
101 	.steal = sock_pipe_buf_steal,
102 	.get = sock_pipe_buf_get,
103 };
104 
105 /*
106  *	Keep out-of-line to prevent kernel bloat.
107  *	__builtin_return_address is not used because it is not always
108  *	reliable.
109  */
110 
111 /**
112  *	skb_over_panic	- 	private function
113  *	@skb: buffer
114  *	@sz: size
115  *	@here: address
116  *
117  *	Out of line support code for skb_put(). Not user callable.
118  */
119 void skb_over_panic(struct sk_buff *skb, int sz, void *here)
120 {
121 	printk(KERN_EMERG "skb_over_panic: text:%p len:%d put:%d head:%p "
122 			  "data:%p tail:%#lx end:%#lx dev:%s\n",
123 	       here, skb->len, sz, skb->head, skb->data,
124 	       (unsigned long)skb->tail, (unsigned long)skb->end,
125 	       skb->dev ? skb->dev->name : "<NULL>");
126 	BUG();
127 }
128 EXPORT_SYMBOL(skb_over_panic);
129 
130 /**
131  *	skb_under_panic	- 	private function
132  *	@skb: buffer
133  *	@sz: size
134  *	@here: address
135  *
136  *	Out of line support code for skb_push(). Not user callable.
137  */
138 
139 void skb_under_panic(struct sk_buff *skb, int sz, void *here)
140 {
141 	printk(KERN_EMERG "skb_under_panic: text:%p len:%d put:%d head:%p "
142 			  "data:%p tail:%#lx end:%#lx dev:%s\n",
143 	       here, skb->len, sz, skb->head, skb->data,
144 	       (unsigned long)skb->tail, (unsigned long)skb->end,
145 	       skb->dev ? skb->dev->name : "<NULL>");
146 	BUG();
147 }
148 EXPORT_SYMBOL(skb_under_panic);
149 
150 /* 	Allocate a new skbuff. We do this ourselves so we can fill in a few
151  *	'private' fields and also do memory statistics to find all the
152  *	[BEEP] leaks.
153  *
154  */
155 
156 /**
157  *	__alloc_skb	-	allocate a network buffer
158  *	@size: size to allocate
159  *	@gfp_mask: allocation mask
160  *	@fclone: allocate from fclone cache instead of head cache
161  *		and allocate a cloned (child) skb
162  *	@node: numa node to allocate memory on
163  *
164  *	Allocate a new &sk_buff. The returned buffer has no headroom and a
165  *	tail room of size bytes. The object has a reference count of one.
166  *	The return is the buffer. On a failure the return is %NULL.
167  *
168  *	Buffers may only be allocated from interrupts using a @gfp_mask of
169  *	%GFP_ATOMIC.
170  */
171 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
172 			    int fclone, int node)
173 {
174 	struct kmem_cache *cache;
175 	struct skb_shared_info *shinfo;
176 	struct sk_buff *skb;
177 	u8 *data;
178 
179 	cache = fclone ? skbuff_fclone_cache : skbuff_head_cache;
180 
181 	/* Get the HEAD */
182 	skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node);
183 	if (!skb)
184 		goto out;
185 
186 	size = SKB_DATA_ALIGN(size);
187 	data = kmalloc_node_track_caller(size + sizeof(struct skb_shared_info),
188 			gfp_mask, node);
189 	if (!data)
190 		goto nodata;
191 
192 	/*
193 	 * Only clear those fields we need to clear, not those that we will
194 	 * actually initialise below. Hence, don't put any more fields after
195 	 * the tail pointer in struct sk_buff!
196 	 */
197 	memset(skb, 0, offsetof(struct sk_buff, tail));
198 	skb->truesize = size + sizeof(struct sk_buff);
199 	atomic_set(&skb->users, 1);
200 	skb->head = data;
201 	skb->data = data;
202 	skb_reset_tail_pointer(skb);
203 	skb->end = skb->tail + size;
204 	/* make sure we initialize shinfo sequentially */
205 	shinfo = skb_shinfo(skb);
206 	atomic_set(&shinfo->dataref, 1);
207 	shinfo->nr_frags  = 0;
208 	shinfo->gso_size = 0;
209 	shinfo->gso_segs = 0;
210 	shinfo->gso_type = 0;
211 	shinfo->ip6_frag_id = 0;
212 	shinfo->tx_flags.flags = 0;
213 	shinfo->frag_list = NULL;
214 	memset(&shinfo->hwtstamps, 0, sizeof(shinfo->hwtstamps));
215 
216 	if (fclone) {
217 		struct sk_buff *child = skb + 1;
218 		atomic_t *fclone_ref = (atomic_t *) (child + 1);
219 
220 		skb->fclone = SKB_FCLONE_ORIG;
221 		atomic_set(fclone_ref, 1);
222 
223 		child->fclone = SKB_FCLONE_UNAVAILABLE;
224 	}
225 out:
226 	return skb;
227 nodata:
228 	kmem_cache_free(cache, skb);
229 	skb = NULL;
230 	goto out;
231 }
232 EXPORT_SYMBOL(__alloc_skb);
233 
234 /**
235  *	__netdev_alloc_skb - allocate an skbuff for rx on a specific device
236  *	@dev: network device to receive on
237  *	@length: length to allocate
238  *	@gfp_mask: get_free_pages mask, passed to alloc_skb
239  *
240  *	Allocate a new &sk_buff and assign it a usage count of one. The
241  *	buffer has unspecified headroom built in. Users should allocate
242  *	the headroom they think they need without accounting for the
243  *	built in space. The built in space is used for optimisations.
244  *
245  *	%NULL is returned if there is no free memory.
246  */
247 struct sk_buff *__netdev_alloc_skb(struct net_device *dev,
248 		unsigned int length, gfp_t gfp_mask)
249 {
250 	int node = dev->dev.parent ? dev_to_node(dev->dev.parent) : -1;
251 	struct sk_buff *skb;
252 
253 	skb = __alloc_skb(length + NET_SKB_PAD, gfp_mask, 0, node);
254 	if (likely(skb)) {
255 		skb_reserve(skb, NET_SKB_PAD);
256 		skb->dev = dev;
257 	}
258 	return skb;
259 }
260 EXPORT_SYMBOL(__netdev_alloc_skb);
261 
262 struct page *__netdev_alloc_page(struct net_device *dev, gfp_t gfp_mask)
263 {
264 	int node = dev->dev.parent ? dev_to_node(dev->dev.parent) : -1;
265 	struct page *page;
266 
267 	page = alloc_pages_node(node, gfp_mask, 0);
268 	return page;
269 }
270 EXPORT_SYMBOL(__netdev_alloc_page);
271 
272 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
273 		int size)
274 {
275 	skb_fill_page_desc(skb, i, page, off, size);
276 	skb->len += size;
277 	skb->data_len += size;
278 	skb->truesize += size;
279 }
280 EXPORT_SYMBOL(skb_add_rx_frag);
281 
282 /**
283  *	dev_alloc_skb - allocate an skbuff for receiving
284  *	@length: length to allocate
285  *
286  *	Allocate a new &sk_buff and assign it a usage count of one. The
287  *	buffer has unspecified headroom built in. Users should allocate
288  *	the headroom they think they need without accounting for the
289  *	built in space. The built in space is used for optimisations.
290  *
291  *	%NULL is returned if there is no free memory. Although this function
292  *	allocates memory it can be called from an interrupt.
293  */
294 struct sk_buff *dev_alloc_skb(unsigned int length)
295 {
296 	/*
297 	 * There is more code here than it seems:
298 	 * __dev_alloc_skb is an inline
299 	 */
300 	return __dev_alloc_skb(length, GFP_ATOMIC);
301 }
302 EXPORT_SYMBOL(dev_alloc_skb);
303 
304 static void skb_drop_list(struct sk_buff **listp)
305 {
306 	struct sk_buff *list = *listp;
307 
308 	*listp = NULL;
309 
310 	do {
311 		struct sk_buff *this = list;
312 		list = list->next;
313 		kfree_skb(this);
314 	} while (list);
315 }
316 
317 static inline void skb_drop_fraglist(struct sk_buff *skb)
318 {
319 	skb_drop_list(&skb_shinfo(skb)->frag_list);
320 }
321 
322 static void skb_clone_fraglist(struct sk_buff *skb)
323 {
324 	struct sk_buff *list;
325 
326 	for (list = skb_shinfo(skb)->frag_list; list; list = list->next)
327 		skb_get(list);
328 }
329 
330 static void skb_release_data(struct sk_buff *skb)
331 {
332 	if (!skb->cloned ||
333 	    !atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
334 			       &skb_shinfo(skb)->dataref)) {
335 		if (skb_shinfo(skb)->nr_frags) {
336 			int i;
337 			for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
338 				put_page(skb_shinfo(skb)->frags[i].page);
339 		}
340 
341 		if (skb_shinfo(skb)->frag_list)
342 			skb_drop_fraglist(skb);
343 
344 		kfree(skb->head);
345 	}
346 }
347 
348 /*
349  *	Free an skbuff by memory without cleaning the state.
350  */
351 static void kfree_skbmem(struct sk_buff *skb)
352 {
353 	struct sk_buff *other;
354 	atomic_t *fclone_ref;
355 
356 	switch (skb->fclone) {
357 	case SKB_FCLONE_UNAVAILABLE:
358 		kmem_cache_free(skbuff_head_cache, skb);
359 		break;
360 
361 	case SKB_FCLONE_ORIG:
362 		fclone_ref = (atomic_t *) (skb + 2);
363 		if (atomic_dec_and_test(fclone_ref))
364 			kmem_cache_free(skbuff_fclone_cache, skb);
365 		break;
366 
367 	case SKB_FCLONE_CLONE:
368 		fclone_ref = (atomic_t *) (skb + 1);
369 		other = skb - 1;
370 
371 		/* The clone portion is available for
372 		 * fast-cloning again.
373 		 */
374 		skb->fclone = SKB_FCLONE_UNAVAILABLE;
375 
376 		if (atomic_dec_and_test(fclone_ref))
377 			kmem_cache_free(skbuff_fclone_cache, other);
378 		break;
379 	}
380 }
381 
382 static void skb_release_head_state(struct sk_buff *skb)
383 {
384 	dst_release(skb->dst);
385 #ifdef CONFIG_XFRM
386 	secpath_put(skb->sp);
387 #endif
388 	if (skb->destructor) {
389 		WARN_ON(in_irq());
390 		skb->destructor(skb);
391 	}
392 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
393 	nf_conntrack_put(skb->nfct);
394 	nf_conntrack_put_reasm(skb->nfct_reasm);
395 #endif
396 #ifdef CONFIG_BRIDGE_NETFILTER
397 	nf_bridge_put(skb->nf_bridge);
398 #endif
399 /* XXX: IS this still necessary? - JHS */
400 #ifdef CONFIG_NET_SCHED
401 	skb->tc_index = 0;
402 #ifdef CONFIG_NET_CLS_ACT
403 	skb->tc_verd = 0;
404 #endif
405 #endif
406 }
407 
408 /* Free everything but the sk_buff shell. */
409 static void skb_release_all(struct sk_buff *skb)
410 {
411 	skb_release_head_state(skb);
412 	skb_release_data(skb);
413 }
414 
415 /**
416  *	__kfree_skb - private function
417  *	@skb: buffer
418  *
419  *	Free an sk_buff. Release anything attached to the buffer.
420  *	Clean the state. This is an internal helper function. Users should
421  *	always call kfree_skb
422  */
423 
424 void __kfree_skb(struct sk_buff *skb)
425 {
426 	skb_release_all(skb);
427 	kfree_skbmem(skb);
428 }
429 EXPORT_SYMBOL(__kfree_skb);
430 
431 /**
432  *	kfree_skb - free an sk_buff
433  *	@skb: buffer to free
434  *
435  *	Drop a reference to the buffer and free it if the usage count has
436  *	hit zero.
437  */
438 void kfree_skb(struct sk_buff *skb)
439 {
440 	if (unlikely(!skb))
441 		return;
442 	if (likely(atomic_read(&skb->users) == 1))
443 		smp_rmb();
444 	else if (likely(!atomic_dec_and_test(&skb->users)))
445 		return;
446 	trace_kfree_skb(skb, __builtin_return_address(0));
447 	__kfree_skb(skb);
448 }
449 EXPORT_SYMBOL(kfree_skb);
450 
451 /**
452  *	consume_skb - free an skbuff
453  *	@skb: buffer to free
454  *
455  *	Drop a ref to the buffer and free it if the usage count has hit zero
456  *	Functions identically to kfree_skb, but kfree_skb assumes that the frame
457  *	is being dropped after a failure and notes that
458  */
459 void consume_skb(struct sk_buff *skb)
460 {
461 	if (unlikely(!skb))
462 		return;
463 	if (likely(atomic_read(&skb->users) == 1))
464 		smp_rmb();
465 	else if (likely(!atomic_dec_and_test(&skb->users)))
466 		return;
467 	__kfree_skb(skb);
468 }
469 EXPORT_SYMBOL(consume_skb);
470 
471 /**
472  *	skb_recycle_check - check if skb can be reused for receive
473  *	@skb: buffer
474  *	@skb_size: minimum receive buffer size
475  *
476  *	Checks that the skb passed in is not shared or cloned, and
477  *	that it is linear and its head portion at least as large as
478  *	skb_size so that it can be recycled as a receive buffer.
479  *	If these conditions are met, this function does any necessary
480  *	reference count dropping and cleans up the skbuff as if it
481  *	just came from __alloc_skb().
482  */
483 int skb_recycle_check(struct sk_buff *skb, int skb_size)
484 {
485 	struct skb_shared_info *shinfo;
486 
487 	if (skb_is_nonlinear(skb) || skb->fclone != SKB_FCLONE_UNAVAILABLE)
488 		return 0;
489 
490 	skb_size = SKB_DATA_ALIGN(skb_size + NET_SKB_PAD);
491 	if (skb_end_pointer(skb) - skb->head < skb_size)
492 		return 0;
493 
494 	if (skb_shared(skb) || skb_cloned(skb))
495 		return 0;
496 
497 	skb_release_head_state(skb);
498 	shinfo = skb_shinfo(skb);
499 	atomic_set(&shinfo->dataref, 1);
500 	shinfo->nr_frags = 0;
501 	shinfo->gso_size = 0;
502 	shinfo->gso_segs = 0;
503 	shinfo->gso_type = 0;
504 	shinfo->ip6_frag_id = 0;
505 	shinfo->tx_flags.flags = 0;
506 	shinfo->frag_list = NULL;
507 	memset(&shinfo->hwtstamps, 0, sizeof(shinfo->hwtstamps));
508 
509 	memset(skb, 0, offsetof(struct sk_buff, tail));
510 	skb->data = skb->head + NET_SKB_PAD;
511 	skb_reset_tail_pointer(skb);
512 
513 	return 1;
514 }
515 EXPORT_SYMBOL(skb_recycle_check);
516 
517 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
518 {
519 	new->tstamp		= old->tstamp;
520 	new->dev		= old->dev;
521 	new->transport_header	= old->transport_header;
522 	new->network_header	= old->network_header;
523 	new->mac_header		= old->mac_header;
524 	new->dst		= dst_clone(old->dst);
525 #ifdef CONFIG_XFRM
526 	new->sp			= secpath_get(old->sp);
527 #endif
528 	memcpy(new->cb, old->cb, sizeof(old->cb));
529 	new->csum_start		= old->csum_start;
530 	new->csum_offset	= old->csum_offset;
531 	new->local_df		= old->local_df;
532 	new->pkt_type		= old->pkt_type;
533 	new->ip_summed		= old->ip_summed;
534 	skb_copy_queue_mapping(new, old);
535 	new->priority		= old->priority;
536 #if defined(CONFIG_IP_VS) || defined(CONFIG_IP_VS_MODULE)
537 	new->ipvs_property	= old->ipvs_property;
538 #endif
539 	new->protocol		= old->protocol;
540 	new->mark		= old->mark;
541 	__nf_copy(new, old);
542 #if defined(CONFIG_NETFILTER_XT_TARGET_TRACE) || \
543     defined(CONFIG_NETFILTER_XT_TARGET_TRACE_MODULE)
544 	new->nf_trace		= old->nf_trace;
545 #endif
546 #ifdef CONFIG_NET_SCHED
547 	new->tc_index		= old->tc_index;
548 #ifdef CONFIG_NET_CLS_ACT
549 	new->tc_verd		= old->tc_verd;
550 #endif
551 #endif
552 	new->vlan_tci		= old->vlan_tci;
553 
554 	skb_copy_secmark(new, old);
555 }
556 
557 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
558 {
559 #define C(x) n->x = skb->x
560 
561 	n->next = n->prev = NULL;
562 	n->sk = NULL;
563 	__copy_skb_header(n, skb);
564 
565 	C(len);
566 	C(data_len);
567 	C(mac_len);
568 	n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
569 	n->cloned = 1;
570 	n->nohdr = 0;
571 	n->destructor = NULL;
572 	C(iif);
573 	C(tail);
574 	C(end);
575 	C(head);
576 	C(data);
577 	C(truesize);
578 #if defined(CONFIG_MAC80211) || defined(CONFIG_MAC80211_MODULE)
579 	C(do_not_encrypt);
580 	C(requeue);
581 #endif
582 	atomic_set(&n->users, 1);
583 
584 	atomic_inc(&(skb_shinfo(skb)->dataref));
585 	skb->cloned = 1;
586 
587 	return n;
588 #undef C
589 }
590 
591 /**
592  *	skb_morph	-	morph one skb into another
593  *	@dst: the skb to receive the contents
594  *	@src: the skb to supply the contents
595  *
596  *	This is identical to skb_clone except that the target skb is
597  *	supplied by the user.
598  *
599  *	The target skb is returned upon exit.
600  */
601 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
602 {
603 	skb_release_all(dst);
604 	return __skb_clone(dst, src);
605 }
606 EXPORT_SYMBOL_GPL(skb_morph);
607 
608 /**
609  *	skb_clone	-	duplicate an sk_buff
610  *	@skb: buffer to clone
611  *	@gfp_mask: allocation priority
612  *
613  *	Duplicate an &sk_buff. The new one is not owned by a socket. Both
614  *	copies share the same packet data but not structure. The new
615  *	buffer has a reference count of 1. If the allocation fails the
616  *	function returns %NULL otherwise the new buffer is returned.
617  *
618  *	If this function is called from an interrupt gfp_mask() must be
619  *	%GFP_ATOMIC.
620  */
621 
622 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
623 {
624 	struct sk_buff *n;
625 
626 	n = skb + 1;
627 	if (skb->fclone == SKB_FCLONE_ORIG &&
628 	    n->fclone == SKB_FCLONE_UNAVAILABLE) {
629 		atomic_t *fclone_ref = (atomic_t *) (n + 1);
630 		n->fclone = SKB_FCLONE_CLONE;
631 		atomic_inc(fclone_ref);
632 	} else {
633 		n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
634 		if (!n)
635 			return NULL;
636 		n->fclone = SKB_FCLONE_UNAVAILABLE;
637 	}
638 
639 	return __skb_clone(n, skb);
640 }
641 EXPORT_SYMBOL(skb_clone);
642 
643 static void copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
644 {
645 #ifndef NET_SKBUFF_DATA_USES_OFFSET
646 	/*
647 	 *	Shift between the two data areas in bytes
648 	 */
649 	unsigned long offset = new->data - old->data;
650 #endif
651 
652 	__copy_skb_header(new, old);
653 
654 #ifndef NET_SKBUFF_DATA_USES_OFFSET
655 	/* {transport,network,mac}_header are relative to skb->head */
656 	new->transport_header += offset;
657 	new->network_header   += offset;
658 	new->mac_header	      += offset;
659 #endif
660 	skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
661 	skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
662 	skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
663 }
664 
665 /**
666  *	skb_copy	-	create private copy of an sk_buff
667  *	@skb: buffer to copy
668  *	@gfp_mask: allocation priority
669  *
670  *	Make a copy of both an &sk_buff and its data. This is used when the
671  *	caller wishes to modify the data and needs a private copy of the
672  *	data to alter. Returns %NULL on failure or the pointer to the buffer
673  *	on success. The returned buffer has a reference count of 1.
674  *
675  *	As by-product this function converts non-linear &sk_buff to linear
676  *	one, so that &sk_buff becomes completely private and caller is allowed
677  *	to modify all the data of returned buffer. This means that this
678  *	function is not recommended for use in circumstances when only
679  *	header is going to be modified. Use pskb_copy() instead.
680  */
681 
682 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
683 {
684 	int headerlen = skb->data - skb->head;
685 	/*
686 	 *	Allocate the copy buffer
687 	 */
688 	struct sk_buff *n;
689 #ifdef NET_SKBUFF_DATA_USES_OFFSET
690 	n = alloc_skb(skb->end + skb->data_len, gfp_mask);
691 #else
692 	n = alloc_skb(skb->end - skb->head + skb->data_len, gfp_mask);
693 #endif
694 	if (!n)
695 		return NULL;
696 
697 	/* Set the data pointer */
698 	skb_reserve(n, headerlen);
699 	/* Set the tail pointer and length */
700 	skb_put(n, skb->len);
701 
702 	if (skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len))
703 		BUG();
704 
705 	copy_skb_header(n, skb);
706 	return n;
707 }
708 EXPORT_SYMBOL(skb_copy);
709 
710 /**
711  *	pskb_copy	-	create copy of an sk_buff with private head.
712  *	@skb: buffer to copy
713  *	@gfp_mask: allocation priority
714  *
715  *	Make a copy of both an &sk_buff and part of its data, located
716  *	in header. Fragmented data remain shared. This is used when
717  *	the caller wishes to modify only header of &sk_buff and needs
718  *	private copy of the header to alter. Returns %NULL on failure
719  *	or the pointer to the buffer on success.
720  *	The returned buffer has a reference count of 1.
721  */
722 
723 struct sk_buff *pskb_copy(struct sk_buff *skb, gfp_t gfp_mask)
724 {
725 	/*
726 	 *	Allocate the copy buffer
727 	 */
728 	struct sk_buff *n;
729 #ifdef NET_SKBUFF_DATA_USES_OFFSET
730 	n = alloc_skb(skb->end, gfp_mask);
731 #else
732 	n = alloc_skb(skb->end - skb->head, gfp_mask);
733 #endif
734 	if (!n)
735 		goto out;
736 
737 	/* Set the data pointer */
738 	skb_reserve(n, skb->data - skb->head);
739 	/* Set the tail pointer and length */
740 	skb_put(n, skb_headlen(skb));
741 	/* Copy the bytes */
742 	skb_copy_from_linear_data(skb, n->data, n->len);
743 
744 	n->truesize += skb->data_len;
745 	n->data_len  = skb->data_len;
746 	n->len	     = skb->len;
747 
748 	if (skb_shinfo(skb)->nr_frags) {
749 		int i;
750 
751 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
752 			skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
753 			get_page(skb_shinfo(n)->frags[i].page);
754 		}
755 		skb_shinfo(n)->nr_frags = i;
756 	}
757 
758 	if (skb_shinfo(skb)->frag_list) {
759 		skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
760 		skb_clone_fraglist(n);
761 	}
762 
763 	copy_skb_header(n, skb);
764 out:
765 	return n;
766 }
767 EXPORT_SYMBOL(pskb_copy);
768 
769 /**
770  *	pskb_expand_head - reallocate header of &sk_buff
771  *	@skb: buffer to reallocate
772  *	@nhead: room to add at head
773  *	@ntail: room to add at tail
774  *	@gfp_mask: allocation priority
775  *
776  *	Expands (or creates identical copy, if &nhead and &ntail are zero)
777  *	header of skb. &sk_buff itself is not changed. &sk_buff MUST have
778  *	reference count of 1. Returns zero in the case of success or error,
779  *	if expansion failed. In the last case, &sk_buff is not changed.
780  *
781  *	All the pointers pointing into skb header may change and must be
782  *	reloaded after call to this function.
783  */
784 
785 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
786 		     gfp_t gfp_mask)
787 {
788 	int i;
789 	u8 *data;
790 #ifdef NET_SKBUFF_DATA_USES_OFFSET
791 	int size = nhead + skb->end + ntail;
792 #else
793 	int size = nhead + (skb->end - skb->head) + ntail;
794 #endif
795 	long off;
796 
797 	BUG_ON(nhead < 0);
798 
799 	if (skb_shared(skb))
800 		BUG();
801 
802 	size = SKB_DATA_ALIGN(size);
803 
804 	data = kmalloc(size + sizeof(struct skb_shared_info), gfp_mask);
805 	if (!data)
806 		goto nodata;
807 
808 	/* Copy only real data... and, alas, header. This should be
809 	 * optimized for the cases when header is void. */
810 #ifdef NET_SKBUFF_DATA_USES_OFFSET
811 	memcpy(data + nhead, skb->head, skb->tail);
812 #else
813 	memcpy(data + nhead, skb->head, skb->tail - skb->head);
814 #endif
815 	memcpy(data + size, skb_end_pointer(skb),
816 	       sizeof(struct skb_shared_info));
817 
818 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
819 		get_page(skb_shinfo(skb)->frags[i].page);
820 
821 	if (skb_shinfo(skb)->frag_list)
822 		skb_clone_fraglist(skb);
823 
824 	skb_release_data(skb);
825 
826 	off = (data + nhead) - skb->head;
827 
828 	skb->head     = data;
829 	skb->data    += off;
830 #ifdef NET_SKBUFF_DATA_USES_OFFSET
831 	skb->end      = size;
832 	off           = nhead;
833 #else
834 	skb->end      = skb->head + size;
835 #endif
836 	/* {transport,network,mac}_header and tail are relative to skb->head */
837 	skb->tail	      += off;
838 	skb->transport_header += off;
839 	skb->network_header   += off;
840 	skb->mac_header	      += off;
841 	skb->csum_start       += nhead;
842 	skb->cloned   = 0;
843 	skb->hdr_len  = 0;
844 	skb->nohdr    = 0;
845 	atomic_set(&skb_shinfo(skb)->dataref, 1);
846 	return 0;
847 
848 nodata:
849 	return -ENOMEM;
850 }
851 EXPORT_SYMBOL(pskb_expand_head);
852 
853 /* Make private copy of skb with writable head and some headroom */
854 
855 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
856 {
857 	struct sk_buff *skb2;
858 	int delta = headroom - skb_headroom(skb);
859 
860 	if (delta <= 0)
861 		skb2 = pskb_copy(skb, GFP_ATOMIC);
862 	else {
863 		skb2 = skb_clone(skb, GFP_ATOMIC);
864 		if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
865 					     GFP_ATOMIC)) {
866 			kfree_skb(skb2);
867 			skb2 = NULL;
868 		}
869 	}
870 	return skb2;
871 }
872 EXPORT_SYMBOL(skb_realloc_headroom);
873 
874 /**
875  *	skb_copy_expand	-	copy and expand sk_buff
876  *	@skb: buffer to copy
877  *	@newheadroom: new free bytes at head
878  *	@newtailroom: new free bytes at tail
879  *	@gfp_mask: allocation priority
880  *
881  *	Make a copy of both an &sk_buff and its data and while doing so
882  *	allocate additional space.
883  *
884  *	This is used when the caller wishes to modify the data and needs a
885  *	private copy of the data to alter as well as more space for new fields.
886  *	Returns %NULL on failure or the pointer to the buffer
887  *	on success. The returned buffer has a reference count of 1.
888  *
889  *	You must pass %GFP_ATOMIC as the allocation priority if this function
890  *	is called from an interrupt.
891  */
892 struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
893 				int newheadroom, int newtailroom,
894 				gfp_t gfp_mask)
895 {
896 	/*
897 	 *	Allocate the copy buffer
898 	 */
899 	struct sk_buff *n = alloc_skb(newheadroom + skb->len + newtailroom,
900 				      gfp_mask);
901 	int oldheadroom = skb_headroom(skb);
902 	int head_copy_len, head_copy_off;
903 	int off;
904 
905 	if (!n)
906 		return NULL;
907 
908 	skb_reserve(n, newheadroom);
909 
910 	/* Set the tail pointer and length */
911 	skb_put(n, skb->len);
912 
913 	head_copy_len = oldheadroom;
914 	head_copy_off = 0;
915 	if (newheadroom <= head_copy_len)
916 		head_copy_len = newheadroom;
917 	else
918 		head_copy_off = newheadroom - head_copy_len;
919 
920 	/* Copy the linear header and data. */
921 	if (skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
922 			  skb->len + head_copy_len))
923 		BUG();
924 
925 	copy_skb_header(n, skb);
926 
927 	off                  = newheadroom - oldheadroom;
928 	n->csum_start       += off;
929 #ifdef NET_SKBUFF_DATA_USES_OFFSET
930 	n->transport_header += off;
931 	n->network_header   += off;
932 	n->mac_header	    += off;
933 #endif
934 
935 	return n;
936 }
937 EXPORT_SYMBOL(skb_copy_expand);
938 
939 /**
940  *	skb_pad			-	zero pad the tail of an skb
941  *	@skb: buffer to pad
942  *	@pad: space to pad
943  *
944  *	Ensure that a buffer is followed by a padding area that is zero
945  *	filled. Used by network drivers which may DMA or transfer data
946  *	beyond the buffer end onto the wire.
947  *
948  *	May return error in out of memory cases. The skb is freed on error.
949  */
950 
951 int skb_pad(struct sk_buff *skb, int pad)
952 {
953 	int err;
954 	int ntail;
955 
956 	/* If the skbuff is non linear tailroom is always zero.. */
957 	if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
958 		memset(skb->data+skb->len, 0, pad);
959 		return 0;
960 	}
961 
962 	ntail = skb->data_len + pad - (skb->end - skb->tail);
963 	if (likely(skb_cloned(skb) || ntail > 0)) {
964 		err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
965 		if (unlikely(err))
966 			goto free_skb;
967 	}
968 
969 	/* FIXME: The use of this function with non-linear skb's really needs
970 	 * to be audited.
971 	 */
972 	err = skb_linearize(skb);
973 	if (unlikely(err))
974 		goto free_skb;
975 
976 	memset(skb->data + skb->len, 0, pad);
977 	return 0;
978 
979 free_skb:
980 	kfree_skb(skb);
981 	return err;
982 }
983 EXPORT_SYMBOL(skb_pad);
984 
985 /**
986  *	skb_put - add data to a buffer
987  *	@skb: buffer to use
988  *	@len: amount of data to add
989  *
990  *	This function extends the used data area of the buffer. If this would
991  *	exceed the total buffer size the kernel will panic. A pointer to the
992  *	first byte of the extra data is returned.
993  */
994 unsigned char *skb_put(struct sk_buff *skb, unsigned int len)
995 {
996 	unsigned char *tmp = skb_tail_pointer(skb);
997 	SKB_LINEAR_ASSERT(skb);
998 	skb->tail += len;
999 	skb->len  += len;
1000 	if (unlikely(skb->tail > skb->end))
1001 		skb_over_panic(skb, len, __builtin_return_address(0));
1002 	return tmp;
1003 }
1004 EXPORT_SYMBOL(skb_put);
1005 
1006 /**
1007  *	skb_push - add data to the start of a buffer
1008  *	@skb: buffer to use
1009  *	@len: amount of data to add
1010  *
1011  *	This function extends the used data area of the buffer at the buffer
1012  *	start. If this would exceed the total buffer headroom the kernel will
1013  *	panic. A pointer to the first byte of the extra data is returned.
1014  */
1015 unsigned char *skb_push(struct sk_buff *skb, unsigned int len)
1016 {
1017 	skb->data -= len;
1018 	skb->len  += len;
1019 	if (unlikely(skb->data<skb->head))
1020 		skb_under_panic(skb, len, __builtin_return_address(0));
1021 	return skb->data;
1022 }
1023 EXPORT_SYMBOL(skb_push);
1024 
1025 /**
1026  *	skb_pull - remove data from the start of a buffer
1027  *	@skb: buffer to use
1028  *	@len: amount of data to remove
1029  *
1030  *	This function removes data from the start of a buffer, returning
1031  *	the memory to the headroom. A pointer to the next data in the buffer
1032  *	is returned. Once the data has been pulled future pushes will overwrite
1033  *	the old data.
1034  */
1035 unsigned char *skb_pull(struct sk_buff *skb, unsigned int len)
1036 {
1037 	return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
1038 }
1039 EXPORT_SYMBOL(skb_pull);
1040 
1041 /**
1042  *	skb_trim - remove end from a buffer
1043  *	@skb: buffer to alter
1044  *	@len: new length
1045  *
1046  *	Cut the length of a buffer down by removing data from the tail. If
1047  *	the buffer is already under the length specified it is not modified.
1048  *	The skb must be linear.
1049  */
1050 void skb_trim(struct sk_buff *skb, unsigned int len)
1051 {
1052 	if (skb->len > len)
1053 		__skb_trim(skb, len);
1054 }
1055 EXPORT_SYMBOL(skb_trim);
1056 
1057 /* Trims skb to length len. It can change skb pointers.
1058  */
1059 
1060 int ___pskb_trim(struct sk_buff *skb, unsigned int len)
1061 {
1062 	struct sk_buff **fragp;
1063 	struct sk_buff *frag;
1064 	int offset = skb_headlen(skb);
1065 	int nfrags = skb_shinfo(skb)->nr_frags;
1066 	int i;
1067 	int err;
1068 
1069 	if (skb_cloned(skb) &&
1070 	    unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
1071 		return err;
1072 
1073 	i = 0;
1074 	if (offset >= len)
1075 		goto drop_pages;
1076 
1077 	for (; i < nfrags; i++) {
1078 		int end = offset + skb_shinfo(skb)->frags[i].size;
1079 
1080 		if (end < len) {
1081 			offset = end;
1082 			continue;
1083 		}
1084 
1085 		skb_shinfo(skb)->frags[i++].size = len - offset;
1086 
1087 drop_pages:
1088 		skb_shinfo(skb)->nr_frags = i;
1089 
1090 		for (; i < nfrags; i++)
1091 			put_page(skb_shinfo(skb)->frags[i].page);
1092 
1093 		if (skb_shinfo(skb)->frag_list)
1094 			skb_drop_fraglist(skb);
1095 		goto done;
1096 	}
1097 
1098 	for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
1099 	     fragp = &frag->next) {
1100 		int end = offset + frag->len;
1101 
1102 		if (skb_shared(frag)) {
1103 			struct sk_buff *nfrag;
1104 
1105 			nfrag = skb_clone(frag, GFP_ATOMIC);
1106 			if (unlikely(!nfrag))
1107 				return -ENOMEM;
1108 
1109 			nfrag->next = frag->next;
1110 			kfree_skb(frag);
1111 			frag = nfrag;
1112 			*fragp = frag;
1113 		}
1114 
1115 		if (end < len) {
1116 			offset = end;
1117 			continue;
1118 		}
1119 
1120 		if (end > len &&
1121 		    unlikely((err = pskb_trim(frag, len - offset))))
1122 			return err;
1123 
1124 		if (frag->next)
1125 			skb_drop_list(&frag->next);
1126 		break;
1127 	}
1128 
1129 done:
1130 	if (len > skb_headlen(skb)) {
1131 		skb->data_len -= skb->len - len;
1132 		skb->len       = len;
1133 	} else {
1134 		skb->len       = len;
1135 		skb->data_len  = 0;
1136 		skb_set_tail_pointer(skb, len);
1137 	}
1138 
1139 	return 0;
1140 }
1141 EXPORT_SYMBOL(___pskb_trim);
1142 
1143 /**
1144  *	__pskb_pull_tail - advance tail of skb header
1145  *	@skb: buffer to reallocate
1146  *	@delta: number of bytes to advance tail
1147  *
1148  *	The function makes a sense only on a fragmented &sk_buff,
1149  *	it expands header moving its tail forward and copying necessary
1150  *	data from fragmented part.
1151  *
1152  *	&sk_buff MUST have reference count of 1.
1153  *
1154  *	Returns %NULL (and &sk_buff does not change) if pull failed
1155  *	or value of new tail of skb in the case of success.
1156  *
1157  *	All the pointers pointing into skb header may change and must be
1158  *	reloaded after call to this function.
1159  */
1160 
1161 /* Moves tail of skb head forward, copying data from fragmented part,
1162  * when it is necessary.
1163  * 1. It may fail due to malloc failure.
1164  * 2. It may change skb pointers.
1165  *
1166  * It is pretty complicated. Luckily, it is called only in exceptional cases.
1167  */
1168 unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta)
1169 {
1170 	/* If skb has not enough free space at tail, get new one
1171 	 * plus 128 bytes for future expansions. If we have enough
1172 	 * room at tail, reallocate without expansion only if skb is cloned.
1173 	 */
1174 	int i, k, eat = (skb->tail + delta) - skb->end;
1175 
1176 	if (eat > 0 || skb_cloned(skb)) {
1177 		if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
1178 				     GFP_ATOMIC))
1179 			return NULL;
1180 	}
1181 
1182 	if (skb_copy_bits(skb, skb_headlen(skb), skb_tail_pointer(skb), delta))
1183 		BUG();
1184 
1185 	/* Optimization: no fragments, no reasons to preestimate
1186 	 * size of pulled pages. Superb.
1187 	 */
1188 	if (!skb_shinfo(skb)->frag_list)
1189 		goto pull_pages;
1190 
1191 	/* Estimate size of pulled pages. */
1192 	eat = delta;
1193 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1194 		if (skb_shinfo(skb)->frags[i].size >= eat)
1195 			goto pull_pages;
1196 		eat -= skb_shinfo(skb)->frags[i].size;
1197 	}
1198 
1199 	/* If we need update frag list, we are in troubles.
1200 	 * Certainly, it possible to add an offset to skb data,
1201 	 * but taking into account that pulling is expected to
1202 	 * be very rare operation, it is worth to fight against
1203 	 * further bloating skb head and crucify ourselves here instead.
1204 	 * Pure masohism, indeed. 8)8)
1205 	 */
1206 	if (eat) {
1207 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
1208 		struct sk_buff *clone = NULL;
1209 		struct sk_buff *insp = NULL;
1210 
1211 		do {
1212 			BUG_ON(!list);
1213 
1214 			if (list->len <= eat) {
1215 				/* Eaten as whole. */
1216 				eat -= list->len;
1217 				list = list->next;
1218 				insp = list;
1219 			} else {
1220 				/* Eaten partially. */
1221 
1222 				if (skb_shared(list)) {
1223 					/* Sucks! We need to fork list. :-( */
1224 					clone = skb_clone(list, GFP_ATOMIC);
1225 					if (!clone)
1226 						return NULL;
1227 					insp = list->next;
1228 					list = clone;
1229 				} else {
1230 					/* This may be pulled without
1231 					 * problems. */
1232 					insp = list;
1233 				}
1234 				if (!pskb_pull(list, eat)) {
1235 					kfree_skb(clone);
1236 					return NULL;
1237 				}
1238 				break;
1239 			}
1240 		} while (eat);
1241 
1242 		/* Free pulled out fragments. */
1243 		while ((list = skb_shinfo(skb)->frag_list) != insp) {
1244 			skb_shinfo(skb)->frag_list = list->next;
1245 			kfree_skb(list);
1246 		}
1247 		/* And insert new clone at head. */
1248 		if (clone) {
1249 			clone->next = list;
1250 			skb_shinfo(skb)->frag_list = clone;
1251 		}
1252 	}
1253 	/* Success! Now we may commit changes to skb data. */
1254 
1255 pull_pages:
1256 	eat = delta;
1257 	k = 0;
1258 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1259 		if (skb_shinfo(skb)->frags[i].size <= eat) {
1260 			put_page(skb_shinfo(skb)->frags[i].page);
1261 			eat -= skb_shinfo(skb)->frags[i].size;
1262 		} else {
1263 			skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i];
1264 			if (eat) {
1265 				skb_shinfo(skb)->frags[k].page_offset += eat;
1266 				skb_shinfo(skb)->frags[k].size -= eat;
1267 				eat = 0;
1268 			}
1269 			k++;
1270 		}
1271 	}
1272 	skb_shinfo(skb)->nr_frags = k;
1273 
1274 	skb->tail     += delta;
1275 	skb->data_len -= delta;
1276 
1277 	return skb_tail_pointer(skb);
1278 }
1279 EXPORT_SYMBOL(__pskb_pull_tail);
1280 
1281 /* Copy some data bits from skb to kernel buffer. */
1282 
1283 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
1284 {
1285 	int i, copy;
1286 	int start = skb_headlen(skb);
1287 
1288 	if (offset > (int)skb->len - len)
1289 		goto fault;
1290 
1291 	/* Copy header. */
1292 	if ((copy = start - offset) > 0) {
1293 		if (copy > len)
1294 			copy = len;
1295 		skb_copy_from_linear_data_offset(skb, offset, to, copy);
1296 		if ((len -= copy) == 0)
1297 			return 0;
1298 		offset += copy;
1299 		to     += copy;
1300 	}
1301 
1302 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1303 		int end;
1304 
1305 		WARN_ON(start > offset + len);
1306 
1307 		end = start + skb_shinfo(skb)->frags[i].size;
1308 		if ((copy = end - offset) > 0) {
1309 			u8 *vaddr;
1310 
1311 			if (copy > len)
1312 				copy = len;
1313 
1314 			vaddr = kmap_skb_frag(&skb_shinfo(skb)->frags[i]);
1315 			memcpy(to,
1316 			       vaddr + skb_shinfo(skb)->frags[i].page_offset+
1317 			       offset - start, copy);
1318 			kunmap_skb_frag(vaddr);
1319 
1320 			if ((len -= copy) == 0)
1321 				return 0;
1322 			offset += copy;
1323 			to     += copy;
1324 		}
1325 		start = end;
1326 	}
1327 
1328 	if (skb_shinfo(skb)->frag_list) {
1329 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
1330 
1331 		for (; list; list = list->next) {
1332 			int end;
1333 
1334 			WARN_ON(start > offset + len);
1335 
1336 			end = start + list->len;
1337 			if ((copy = end - offset) > 0) {
1338 				if (copy > len)
1339 					copy = len;
1340 				if (skb_copy_bits(list, offset - start,
1341 						  to, copy))
1342 					goto fault;
1343 				if ((len -= copy) == 0)
1344 					return 0;
1345 				offset += copy;
1346 				to     += copy;
1347 			}
1348 			start = end;
1349 		}
1350 	}
1351 	if (!len)
1352 		return 0;
1353 
1354 fault:
1355 	return -EFAULT;
1356 }
1357 EXPORT_SYMBOL(skb_copy_bits);
1358 
1359 /*
1360  * Callback from splice_to_pipe(), if we need to release some pages
1361  * at the end of the spd in case we error'ed out in filling the pipe.
1362  */
1363 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
1364 {
1365 	put_page(spd->pages[i]);
1366 }
1367 
1368 static inline struct page *linear_to_page(struct page *page, unsigned int *len,
1369 					  unsigned int *offset,
1370 					  struct sk_buff *skb, struct sock *sk)
1371 {
1372 	struct page *p = sk->sk_sndmsg_page;
1373 	unsigned int off;
1374 
1375 	if (!p) {
1376 new_page:
1377 		p = sk->sk_sndmsg_page = alloc_pages(sk->sk_allocation, 0);
1378 		if (!p)
1379 			return NULL;
1380 
1381 		off = sk->sk_sndmsg_off = 0;
1382 		/* hold one ref to this page until it's full */
1383 	} else {
1384 		unsigned int mlen;
1385 
1386 		off = sk->sk_sndmsg_off;
1387 		mlen = PAGE_SIZE - off;
1388 		if (mlen < 64 && mlen < *len) {
1389 			put_page(p);
1390 			goto new_page;
1391 		}
1392 
1393 		*len = min_t(unsigned int, *len, mlen);
1394 	}
1395 
1396 	memcpy(page_address(p) + off, page_address(page) + *offset, *len);
1397 	sk->sk_sndmsg_off += *len;
1398 	*offset = off;
1399 	get_page(p);
1400 
1401 	return p;
1402 }
1403 
1404 /*
1405  * Fill page/offset/length into spd, if it can hold more pages.
1406  */
1407 static inline int spd_fill_page(struct splice_pipe_desc *spd, struct page *page,
1408 				unsigned int *len, unsigned int offset,
1409 				struct sk_buff *skb, int linear,
1410 				struct sock *sk)
1411 {
1412 	if (unlikely(spd->nr_pages == PIPE_BUFFERS))
1413 		return 1;
1414 
1415 	if (linear) {
1416 		page = linear_to_page(page, len, &offset, skb, sk);
1417 		if (!page)
1418 			return 1;
1419 	} else
1420 		get_page(page);
1421 
1422 	spd->pages[spd->nr_pages] = page;
1423 	spd->partial[spd->nr_pages].len = *len;
1424 	spd->partial[spd->nr_pages].offset = offset;
1425 	spd->nr_pages++;
1426 
1427 	return 0;
1428 }
1429 
1430 static inline void __segment_seek(struct page **page, unsigned int *poff,
1431 				  unsigned int *plen, unsigned int off)
1432 {
1433 	unsigned long n;
1434 
1435 	*poff += off;
1436 	n = *poff / PAGE_SIZE;
1437 	if (n)
1438 		*page = nth_page(*page, n);
1439 
1440 	*poff = *poff % PAGE_SIZE;
1441 	*plen -= off;
1442 }
1443 
1444 static inline int __splice_segment(struct page *page, unsigned int poff,
1445 				   unsigned int plen, unsigned int *off,
1446 				   unsigned int *len, struct sk_buff *skb,
1447 				   struct splice_pipe_desc *spd, int linear,
1448 				   struct sock *sk)
1449 {
1450 	if (!*len)
1451 		return 1;
1452 
1453 	/* skip this segment if already processed */
1454 	if (*off >= plen) {
1455 		*off -= plen;
1456 		return 0;
1457 	}
1458 
1459 	/* ignore any bits we already processed */
1460 	if (*off) {
1461 		__segment_seek(&page, &poff, &plen, *off);
1462 		*off = 0;
1463 	}
1464 
1465 	do {
1466 		unsigned int flen = min(*len, plen);
1467 
1468 		/* the linear region may spread across several pages  */
1469 		flen = min_t(unsigned int, flen, PAGE_SIZE - poff);
1470 
1471 		if (spd_fill_page(spd, page, &flen, poff, skb, linear, sk))
1472 			return 1;
1473 
1474 		__segment_seek(&page, &poff, &plen, flen);
1475 		*len -= flen;
1476 
1477 	} while (*len && plen);
1478 
1479 	return 0;
1480 }
1481 
1482 /*
1483  * Map linear and fragment data from the skb to spd. It reports failure if the
1484  * pipe is full or if we already spliced the requested length.
1485  */
1486 static int __skb_splice_bits(struct sk_buff *skb, unsigned int *offset,
1487 			     unsigned int *len, struct splice_pipe_desc *spd,
1488 			     struct sock *sk)
1489 {
1490 	int seg;
1491 
1492 	/*
1493 	 * map the linear part
1494 	 */
1495 	if (__splice_segment(virt_to_page(skb->data),
1496 			     (unsigned long) skb->data & (PAGE_SIZE - 1),
1497 			     skb_headlen(skb),
1498 			     offset, len, skb, spd, 1, sk))
1499 		return 1;
1500 
1501 	/*
1502 	 * then map the fragments
1503 	 */
1504 	for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
1505 		const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
1506 
1507 		if (__splice_segment(f->page, f->page_offset, f->size,
1508 				     offset, len, skb, spd, 0, sk))
1509 			return 1;
1510 	}
1511 
1512 	return 0;
1513 }
1514 
1515 /*
1516  * Map data from the skb to a pipe. Should handle both the linear part,
1517  * the fragments, and the frag list. It does NOT handle frag lists within
1518  * the frag list, if such a thing exists. We'd probably need to recurse to
1519  * handle that cleanly.
1520  */
1521 int skb_splice_bits(struct sk_buff *skb, unsigned int offset,
1522 		    struct pipe_inode_info *pipe, unsigned int tlen,
1523 		    unsigned int flags)
1524 {
1525 	struct partial_page partial[PIPE_BUFFERS];
1526 	struct page *pages[PIPE_BUFFERS];
1527 	struct splice_pipe_desc spd = {
1528 		.pages = pages,
1529 		.partial = partial,
1530 		.flags = flags,
1531 		.ops = &sock_pipe_buf_ops,
1532 		.spd_release = sock_spd_release,
1533 	};
1534 	struct sock *sk = skb->sk;
1535 
1536 	/*
1537 	 * __skb_splice_bits() only fails if the output has no room left,
1538 	 * so no point in going over the frag_list for the error case.
1539 	 */
1540 	if (__skb_splice_bits(skb, &offset, &tlen, &spd, sk))
1541 		goto done;
1542 	else if (!tlen)
1543 		goto done;
1544 
1545 	/*
1546 	 * now see if we have a frag_list to map
1547 	 */
1548 	if (skb_shinfo(skb)->frag_list) {
1549 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
1550 
1551 		for (; list && tlen; list = list->next) {
1552 			if (__skb_splice_bits(list, &offset, &tlen, &spd, sk))
1553 				break;
1554 		}
1555 	}
1556 
1557 done:
1558 	if (spd.nr_pages) {
1559 		int ret;
1560 
1561 		/*
1562 		 * Drop the socket lock, otherwise we have reverse
1563 		 * locking dependencies between sk_lock and i_mutex
1564 		 * here as compared to sendfile(). We enter here
1565 		 * with the socket lock held, and splice_to_pipe() will
1566 		 * grab the pipe inode lock. For sendfile() emulation,
1567 		 * we call into ->sendpage() with the i_mutex lock held
1568 		 * and networking will grab the socket lock.
1569 		 */
1570 		release_sock(sk);
1571 		ret = splice_to_pipe(pipe, &spd);
1572 		lock_sock(sk);
1573 		return ret;
1574 	}
1575 
1576 	return 0;
1577 }
1578 
1579 /**
1580  *	skb_store_bits - store bits from kernel buffer to skb
1581  *	@skb: destination buffer
1582  *	@offset: offset in destination
1583  *	@from: source buffer
1584  *	@len: number of bytes to copy
1585  *
1586  *	Copy the specified number of bytes from the source buffer to the
1587  *	destination skb.  This function handles all the messy bits of
1588  *	traversing fragment lists and such.
1589  */
1590 
1591 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
1592 {
1593 	int i, copy;
1594 	int start = skb_headlen(skb);
1595 
1596 	if (offset > (int)skb->len - len)
1597 		goto fault;
1598 
1599 	if ((copy = start - offset) > 0) {
1600 		if (copy > len)
1601 			copy = len;
1602 		skb_copy_to_linear_data_offset(skb, offset, from, copy);
1603 		if ((len -= copy) == 0)
1604 			return 0;
1605 		offset += copy;
1606 		from += copy;
1607 	}
1608 
1609 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1610 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1611 		int end;
1612 
1613 		WARN_ON(start > offset + len);
1614 
1615 		end = start + frag->size;
1616 		if ((copy = end - offset) > 0) {
1617 			u8 *vaddr;
1618 
1619 			if (copy > len)
1620 				copy = len;
1621 
1622 			vaddr = kmap_skb_frag(frag);
1623 			memcpy(vaddr + frag->page_offset + offset - start,
1624 			       from, copy);
1625 			kunmap_skb_frag(vaddr);
1626 
1627 			if ((len -= copy) == 0)
1628 				return 0;
1629 			offset += copy;
1630 			from += copy;
1631 		}
1632 		start = end;
1633 	}
1634 
1635 	if (skb_shinfo(skb)->frag_list) {
1636 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
1637 
1638 		for (; list; list = list->next) {
1639 			int end;
1640 
1641 			WARN_ON(start > offset + len);
1642 
1643 			end = start + list->len;
1644 			if ((copy = end - offset) > 0) {
1645 				if (copy > len)
1646 					copy = len;
1647 				if (skb_store_bits(list, offset - start,
1648 						   from, copy))
1649 					goto fault;
1650 				if ((len -= copy) == 0)
1651 					return 0;
1652 				offset += copy;
1653 				from += copy;
1654 			}
1655 			start = end;
1656 		}
1657 	}
1658 	if (!len)
1659 		return 0;
1660 
1661 fault:
1662 	return -EFAULT;
1663 }
1664 EXPORT_SYMBOL(skb_store_bits);
1665 
1666 /* Checksum skb data. */
1667 
1668 __wsum skb_checksum(const struct sk_buff *skb, int offset,
1669 			  int len, __wsum csum)
1670 {
1671 	int start = skb_headlen(skb);
1672 	int i, copy = start - offset;
1673 	int pos = 0;
1674 
1675 	/* Checksum header. */
1676 	if (copy > 0) {
1677 		if (copy > len)
1678 			copy = len;
1679 		csum = csum_partial(skb->data + offset, copy, csum);
1680 		if ((len -= copy) == 0)
1681 			return csum;
1682 		offset += copy;
1683 		pos	= copy;
1684 	}
1685 
1686 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1687 		int end;
1688 
1689 		WARN_ON(start > offset + len);
1690 
1691 		end = start + skb_shinfo(skb)->frags[i].size;
1692 		if ((copy = end - offset) > 0) {
1693 			__wsum csum2;
1694 			u8 *vaddr;
1695 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1696 
1697 			if (copy > len)
1698 				copy = len;
1699 			vaddr = kmap_skb_frag(frag);
1700 			csum2 = csum_partial(vaddr + frag->page_offset +
1701 					     offset - start, copy, 0);
1702 			kunmap_skb_frag(vaddr);
1703 			csum = csum_block_add(csum, csum2, pos);
1704 			if (!(len -= copy))
1705 				return csum;
1706 			offset += copy;
1707 			pos    += copy;
1708 		}
1709 		start = end;
1710 	}
1711 
1712 	if (skb_shinfo(skb)->frag_list) {
1713 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
1714 
1715 		for (; list; list = list->next) {
1716 			int end;
1717 
1718 			WARN_ON(start > offset + len);
1719 
1720 			end = start + list->len;
1721 			if ((copy = end - offset) > 0) {
1722 				__wsum csum2;
1723 				if (copy > len)
1724 					copy = len;
1725 				csum2 = skb_checksum(list, offset - start,
1726 						     copy, 0);
1727 				csum = csum_block_add(csum, csum2, pos);
1728 				if ((len -= copy) == 0)
1729 					return csum;
1730 				offset += copy;
1731 				pos    += copy;
1732 			}
1733 			start = end;
1734 		}
1735 	}
1736 	BUG_ON(len);
1737 
1738 	return csum;
1739 }
1740 EXPORT_SYMBOL(skb_checksum);
1741 
1742 /* Both of above in one bottle. */
1743 
1744 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
1745 				    u8 *to, int len, __wsum csum)
1746 {
1747 	int start = skb_headlen(skb);
1748 	int i, copy = start - offset;
1749 	int pos = 0;
1750 
1751 	/* Copy header. */
1752 	if (copy > 0) {
1753 		if (copy > len)
1754 			copy = len;
1755 		csum = csum_partial_copy_nocheck(skb->data + offset, to,
1756 						 copy, csum);
1757 		if ((len -= copy) == 0)
1758 			return csum;
1759 		offset += copy;
1760 		to     += copy;
1761 		pos	= copy;
1762 	}
1763 
1764 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1765 		int end;
1766 
1767 		WARN_ON(start > offset + len);
1768 
1769 		end = start + skb_shinfo(skb)->frags[i].size;
1770 		if ((copy = end - offset) > 0) {
1771 			__wsum csum2;
1772 			u8 *vaddr;
1773 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1774 
1775 			if (copy > len)
1776 				copy = len;
1777 			vaddr = kmap_skb_frag(frag);
1778 			csum2 = csum_partial_copy_nocheck(vaddr +
1779 							  frag->page_offset +
1780 							  offset - start, to,
1781 							  copy, 0);
1782 			kunmap_skb_frag(vaddr);
1783 			csum = csum_block_add(csum, csum2, pos);
1784 			if (!(len -= copy))
1785 				return csum;
1786 			offset += copy;
1787 			to     += copy;
1788 			pos    += copy;
1789 		}
1790 		start = end;
1791 	}
1792 
1793 	if (skb_shinfo(skb)->frag_list) {
1794 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
1795 
1796 		for (; list; list = list->next) {
1797 			__wsum csum2;
1798 			int end;
1799 
1800 			WARN_ON(start > offset + len);
1801 
1802 			end = start + list->len;
1803 			if ((copy = end - offset) > 0) {
1804 				if (copy > len)
1805 					copy = len;
1806 				csum2 = skb_copy_and_csum_bits(list,
1807 							       offset - start,
1808 							       to, copy, 0);
1809 				csum = csum_block_add(csum, csum2, pos);
1810 				if ((len -= copy) == 0)
1811 					return csum;
1812 				offset += copy;
1813 				to     += copy;
1814 				pos    += copy;
1815 			}
1816 			start = end;
1817 		}
1818 	}
1819 	BUG_ON(len);
1820 	return csum;
1821 }
1822 EXPORT_SYMBOL(skb_copy_and_csum_bits);
1823 
1824 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
1825 {
1826 	__wsum csum;
1827 	long csstart;
1828 
1829 	if (skb->ip_summed == CHECKSUM_PARTIAL)
1830 		csstart = skb->csum_start - skb_headroom(skb);
1831 	else
1832 		csstart = skb_headlen(skb);
1833 
1834 	BUG_ON(csstart > skb_headlen(skb));
1835 
1836 	skb_copy_from_linear_data(skb, to, csstart);
1837 
1838 	csum = 0;
1839 	if (csstart != skb->len)
1840 		csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
1841 					      skb->len - csstart, 0);
1842 
1843 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
1844 		long csstuff = csstart + skb->csum_offset;
1845 
1846 		*((__sum16 *)(to + csstuff)) = csum_fold(csum);
1847 	}
1848 }
1849 EXPORT_SYMBOL(skb_copy_and_csum_dev);
1850 
1851 /**
1852  *	skb_dequeue - remove from the head of the queue
1853  *	@list: list to dequeue from
1854  *
1855  *	Remove the head of the list. The list lock is taken so the function
1856  *	may be used safely with other locking list functions. The head item is
1857  *	returned or %NULL if the list is empty.
1858  */
1859 
1860 struct sk_buff *skb_dequeue(struct sk_buff_head *list)
1861 {
1862 	unsigned long flags;
1863 	struct sk_buff *result;
1864 
1865 	spin_lock_irqsave(&list->lock, flags);
1866 	result = __skb_dequeue(list);
1867 	spin_unlock_irqrestore(&list->lock, flags);
1868 	return result;
1869 }
1870 EXPORT_SYMBOL(skb_dequeue);
1871 
1872 /**
1873  *	skb_dequeue_tail - remove from the tail of the queue
1874  *	@list: list to dequeue from
1875  *
1876  *	Remove the tail of the list. The list lock is taken so the function
1877  *	may be used safely with other locking list functions. The tail item is
1878  *	returned or %NULL if the list is empty.
1879  */
1880 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
1881 {
1882 	unsigned long flags;
1883 	struct sk_buff *result;
1884 
1885 	spin_lock_irqsave(&list->lock, flags);
1886 	result = __skb_dequeue_tail(list);
1887 	spin_unlock_irqrestore(&list->lock, flags);
1888 	return result;
1889 }
1890 EXPORT_SYMBOL(skb_dequeue_tail);
1891 
1892 /**
1893  *	skb_queue_purge - empty a list
1894  *	@list: list to empty
1895  *
1896  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
1897  *	the list and one reference dropped. This function takes the list
1898  *	lock and is atomic with respect to other list locking functions.
1899  */
1900 void skb_queue_purge(struct sk_buff_head *list)
1901 {
1902 	struct sk_buff *skb;
1903 	while ((skb = skb_dequeue(list)) != NULL)
1904 		kfree_skb(skb);
1905 }
1906 EXPORT_SYMBOL(skb_queue_purge);
1907 
1908 /**
1909  *	skb_queue_head - queue a buffer at the list head
1910  *	@list: list to use
1911  *	@newsk: buffer to queue
1912  *
1913  *	Queue a buffer at the start of the list. This function takes the
1914  *	list lock and can be used safely with other locking &sk_buff functions
1915  *	safely.
1916  *
1917  *	A buffer cannot be placed on two lists at the same time.
1918  */
1919 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
1920 {
1921 	unsigned long flags;
1922 
1923 	spin_lock_irqsave(&list->lock, flags);
1924 	__skb_queue_head(list, newsk);
1925 	spin_unlock_irqrestore(&list->lock, flags);
1926 }
1927 EXPORT_SYMBOL(skb_queue_head);
1928 
1929 /**
1930  *	skb_queue_tail - queue a buffer at the list tail
1931  *	@list: list to use
1932  *	@newsk: buffer to queue
1933  *
1934  *	Queue a buffer at the tail of the list. This function takes the
1935  *	list lock and can be used safely with other locking &sk_buff functions
1936  *	safely.
1937  *
1938  *	A buffer cannot be placed on two lists at the same time.
1939  */
1940 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
1941 {
1942 	unsigned long flags;
1943 
1944 	spin_lock_irqsave(&list->lock, flags);
1945 	__skb_queue_tail(list, newsk);
1946 	spin_unlock_irqrestore(&list->lock, flags);
1947 }
1948 EXPORT_SYMBOL(skb_queue_tail);
1949 
1950 /**
1951  *	skb_unlink	-	remove a buffer from a list
1952  *	@skb: buffer to remove
1953  *	@list: list to use
1954  *
1955  *	Remove a packet from a list. The list locks are taken and this
1956  *	function is atomic with respect to other list locked calls
1957  *
1958  *	You must know what list the SKB is on.
1959  */
1960 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
1961 {
1962 	unsigned long flags;
1963 
1964 	spin_lock_irqsave(&list->lock, flags);
1965 	__skb_unlink(skb, list);
1966 	spin_unlock_irqrestore(&list->lock, flags);
1967 }
1968 EXPORT_SYMBOL(skb_unlink);
1969 
1970 /**
1971  *	skb_append	-	append a buffer
1972  *	@old: buffer to insert after
1973  *	@newsk: buffer to insert
1974  *	@list: list to use
1975  *
1976  *	Place a packet after a given packet in a list. The list locks are taken
1977  *	and this function is atomic with respect to other list locked calls.
1978  *	A buffer cannot be placed on two lists at the same time.
1979  */
1980 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
1981 {
1982 	unsigned long flags;
1983 
1984 	spin_lock_irqsave(&list->lock, flags);
1985 	__skb_queue_after(list, old, newsk);
1986 	spin_unlock_irqrestore(&list->lock, flags);
1987 }
1988 EXPORT_SYMBOL(skb_append);
1989 
1990 /**
1991  *	skb_insert	-	insert a buffer
1992  *	@old: buffer to insert before
1993  *	@newsk: buffer to insert
1994  *	@list: list to use
1995  *
1996  *	Place a packet before a given packet in a list. The list locks are
1997  * 	taken and this function is atomic with respect to other list locked
1998  *	calls.
1999  *
2000  *	A buffer cannot be placed on two lists at the same time.
2001  */
2002 void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
2003 {
2004 	unsigned long flags;
2005 
2006 	spin_lock_irqsave(&list->lock, flags);
2007 	__skb_insert(newsk, old->prev, old, list);
2008 	spin_unlock_irqrestore(&list->lock, flags);
2009 }
2010 EXPORT_SYMBOL(skb_insert);
2011 
2012 static inline void skb_split_inside_header(struct sk_buff *skb,
2013 					   struct sk_buff* skb1,
2014 					   const u32 len, const int pos)
2015 {
2016 	int i;
2017 
2018 	skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
2019 					 pos - len);
2020 	/* And move data appendix as is. */
2021 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
2022 		skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
2023 
2024 	skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
2025 	skb_shinfo(skb)->nr_frags  = 0;
2026 	skb1->data_len		   = skb->data_len;
2027 	skb1->len		   += skb1->data_len;
2028 	skb->data_len		   = 0;
2029 	skb->len		   = len;
2030 	skb_set_tail_pointer(skb, len);
2031 }
2032 
2033 static inline void skb_split_no_header(struct sk_buff *skb,
2034 				       struct sk_buff* skb1,
2035 				       const u32 len, int pos)
2036 {
2037 	int i, k = 0;
2038 	const int nfrags = skb_shinfo(skb)->nr_frags;
2039 
2040 	skb_shinfo(skb)->nr_frags = 0;
2041 	skb1->len		  = skb1->data_len = skb->len - len;
2042 	skb->len		  = len;
2043 	skb->data_len		  = len - pos;
2044 
2045 	for (i = 0; i < nfrags; i++) {
2046 		int size = skb_shinfo(skb)->frags[i].size;
2047 
2048 		if (pos + size > len) {
2049 			skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
2050 
2051 			if (pos < len) {
2052 				/* Split frag.
2053 				 * We have two variants in this case:
2054 				 * 1. Move all the frag to the second
2055 				 *    part, if it is possible. F.e.
2056 				 *    this approach is mandatory for TUX,
2057 				 *    where splitting is expensive.
2058 				 * 2. Split is accurately. We make this.
2059 				 */
2060 				get_page(skb_shinfo(skb)->frags[i].page);
2061 				skb_shinfo(skb1)->frags[0].page_offset += len - pos;
2062 				skb_shinfo(skb1)->frags[0].size -= len - pos;
2063 				skb_shinfo(skb)->frags[i].size	= len - pos;
2064 				skb_shinfo(skb)->nr_frags++;
2065 			}
2066 			k++;
2067 		} else
2068 			skb_shinfo(skb)->nr_frags++;
2069 		pos += size;
2070 	}
2071 	skb_shinfo(skb1)->nr_frags = k;
2072 }
2073 
2074 /**
2075  * skb_split - Split fragmented skb to two parts at length len.
2076  * @skb: the buffer to split
2077  * @skb1: the buffer to receive the second part
2078  * @len: new length for skb
2079  */
2080 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
2081 {
2082 	int pos = skb_headlen(skb);
2083 
2084 	if (len < pos)	/* Split line is inside header. */
2085 		skb_split_inside_header(skb, skb1, len, pos);
2086 	else		/* Second chunk has no header, nothing to copy. */
2087 		skb_split_no_header(skb, skb1, len, pos);
2088 }
2089 EXPORT_SYMBOL(skb_split);
2090 
2091 /* Shifting from/to a cloned skb is a no-go.
2092  *
2093  * Caller cannot keep skb_shinfo related pointers past calling here!
2094  */
2095 static int skb_prepare_for_shift(struct sk_buff *skb)
2096 {
2097 	return skb_cloned(skb) && pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2098 }
2099 
2100 /**
2101  * skb_shift - Shifts paged data partially from skb to another
2102  * @tgt: buffer into which tail data gets added
2103  * @skb: buffer from which the paged data comes from
2104  * @shiftlen: shift up to this many bytes
2105  *
2106  * Attempts to shift up to shiftlen worth of bytes, which may be less than
2107  * the length of the skb, from tgt to skb. Returns number bytes shifted.
2108  * It's up to caller to free skb if everything was shifted.
2109  *
2110  * If @tgt runs out of frags, the whole operation is aborted.
2111  *
2112  * Skb cannot include anything else but paged data while tgt is allowed
2113  * to have non-paged data as well.
2114  *
2115  * TODO: full sized shift could be optimized but that would need
2116  * specialized skb free'er to handle frags without up-to-date nr_frags.
2117  */
2118 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
2119 {
2120 	int from, to, merge, todo;
2121 	struct skb_frag_struct *fragfrom, *fragto;
2122 
2123 	BUG_ON(shiftlen > skb->len);
2124 	BUG_ON(skb_headlen(skb));	/* Would corrupt stream */
2125 
2126 	todo = shiftlen;
2127 	from = 0;
2128 	to = skb_shinfo(tgt)->nr_frags;
2129 	fragfrom = &skb_shinfo(skb)->frags[from];
2130 
2131 	/* Actual merge is delayed until the point when we know we can
2132 	 * commit all, so that we don't have to undo partial changes
2133 	 */
2134 	if (!to ||
2135 	    !skb_can_coalesce(tgt, to, fragfrom->page, fragfrom->page_offset)) {
2136 		merge = -1;
2137 	} else {
2138 		merge = to - 1;
2139 
2140 		todo -= fragfrom->size;
2141 		if (todo < 0) {
2142 			if (skb_prepare_for_shift(skb) ||
2143 			    skb_prepare_for_shift(tgt))
2144 				return 0;
2145 
2146 			/* All previous frag pointers might be stale! */
2147 			fragfrom = &skb_shinfo(skb)->frags[from];
2148 			fragto = &skb_shinfo(tgt)->frags[merge];
2149 
2150 			fragto->size += shiftlen;
2151 			fragfrom->size -= shiftlen;
2152 			fragfrom->page_offset += shiftlen;
2153 
2154 			goto onlymerged;
2155 		}
2156 
2157 		from++;
2158 	}
2159 
2160 	/* Skip full, not-fitting skb to avoid expensive operations */
2161 	if ((shiftlen == skb->len) &&
2162 	    (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
2163 		return 0;
2164 
2165 	if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
2166 		return 0;
2167 
2168 	while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
2169 		if (to == MAX_SKB_FRAGS)
2170 			return 0;
2171 
2172 		fragfrom = &skb_shinfo(skb)->frags[from];
2173 		fragto = &skb_shinfo(tgt)->frags[to];
2174 
2175 		if (todo >= fragfrom->size) {
2176 			*fragto = *fragfrom;
2177 			todo -= fragfrom->size;
2178 			from++;
2179 			to++;
2180 
2181 		} else {
2182 			get_page(fragfrom->page);
2183 			fragto->page = fragfrom->page;
2184 			fragto->page_offset = fragfrom->page_offset;
2185 			fragto->size = todo;
2186 
2187 			fragfrom->page_offset += todo;
2188 			fragfrom->size -= todo;
2189 			todo = 0;
2190 
2191 			to++;
2192 			break;
2193 		}
2194 	}
2195 
2196 	/* Ready to "commit" this state change to tgt */
2197 	skb_shinfo(tgt)->nr_frags = to;
2198 
2199 	if (merge >= 0) {
2200 		fragfrom = &skb_shinfo(skb)->frags[0];
2201 		fragto = &skb_shinfo(tgt)->frags[merge];
2202 
2203 		fragto->size += fragfrom->size;
2204 		put_page(fragfrom->page);
2205 	}
2206 
2207 	/* Reposition in the original skb */
2208 	to = 0;
2209 	while (from < skb_shinfo(skb)->nr_frags)
2210 		skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
2211 	skb_shinfo(skb)->nr_frags = to;
2212 
2213 	BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
2214 
2215 onlymerged:
2216 	/* Most likely the tgt won't ever need its checksum anymore, skb on
2217 	 * the other hand might need it if it needs to be resent
2218 	 */
2219 	tgt->ip_summed = CHECKSUM_PARTIAL;
2220 	skb->ip_summed = CHECKSUM_PARTIAL;
2221 
2222 	/* Yak, is it really working this way? Some helper please? */
2223 	skb->len -= shiftlen;
2224 	skb->data_len -= shiftlen;
2225 	skb->truesize -= shiftlen;
2226 	tgt->len += shiftlen;
2227 	tgt->data_len += shiftlen;
2228 	tgt->truesize += shiftlen;
2229 
2230 	return shiftlen;
2231 }
2232 
2233 /**
2234  * skb_prepare_seq_read - Prepare a sequential read of skb data
2235  * @skb: the buffer to read
2236  * @from: lower offset of data to be read
2237  * @to: upper offset of data to be read
2238  * @st: state variable
2239  *
2240  * Initializes the specified state variable. Must be called before
2241  * invoking skb_seq_read() for the first time.
2242  */
2243 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
2244 			  unsigned int to, struct skb_seq_state *st)
2245 {
2246 	st->lower_offset = from;
2247 	st->upper_offset = to;
2248 	st->root_skb = st->cur_skb = skb;
2249 	st->frag_idx = st->stepped_offset = 0;
2250 	st->frag_data = NULL;
2251 }
2252 EXPORT_SYMBOL(skb_prepare_seq_read);
2253 
2254 /**
2255  * skb_seq_read - Sequentially read skb data
2256  * @consumed: number of bytes consumed by the caller so far
2257  * @data: destination pointer for data to be returned
2258  * @st: state variable
2259  *
2260  * Reads a block of skb data at &consumed relative to the
2261  * lower offset specified to skb_prepare_seq_read(). Assigns
2262  * the head of the data block to &data and returns the length
2263  * of the block or 0 if the end of the skb data or the upper
2264  * offset has been reached.
2265  *
2266  * The caller is not required to consume all of the data
2267  * returned, i.e. &consumed is typically set to the number
2268  * of bytes already consumed and the next call to
2269  * skb_seq_read() will return the remaining part of the block.
2270  *
2271  * Note 1: The size of each block of data returned can be arbitary,
2272  *       this limitation is the cost for zerocopy seqeuental
2273  *       reads of potentially non linear data.
2274  *
2275  * Note 2: Fragment lists within fragments are not implemented
2276  *       at the moment, state->root_skb could be replaced with
2277  *       a stack for this purpose.
2278  */
2279 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
2280 			  struct skb_seq_state *st)
2281 {
2282 	unsigned int block_limit, abs_offset = consumed + st->lower_offset;
2283 	skb_frag_t *frag;
2284 
2285 	if (unlikely(abs_offset >= st->upper_offset))
2286 		return 0;
2287 
2288 next_skb:
2289 	block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
2290 
2291 	if (abs_offset < block_limit && !st->frag_data) {
2292 		*data = st->cur_skb->data + (abs_offset - st->stepped_offset);
2293 		return block_limit - abs_offset;
2294 	}
2295 
2296 	if (st->frag_idx == 0 && !st->frag_data)
2297 		st->stepped_offset += skb_headlen(st->cur_skb);
2298 
2299 	while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
2300 		frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
2301 		block_limit = frag->size + st->stepped_offset;
2302 
2303 		if (abs_offset < block_limit) {
2304 			if (!st->frag_data)
2305 				st->frag_data = kmap_skb_frag(frag);
2306 
2307 			*data = (u8 *) st->frag_data + frag->page_offset +
2308 				(abs_offset - st->stepped_offset);
2309 
2310 			return block_limit - abs_offset;
2311 		}
2312 
2313 		if (st->frag_data) {
2314 			kunmap_skb_frag(st->frag_data);
2315 			st->frag_data = NULL;
2316 		}
2317 
2318 		st->frag_idx++;
2319 		st->stepped_offset += frag->size;
2320 	}
2321 
2322 	if (st->frag_data) {
2323 		kunmap_skb_frag(st->frag_data);
2324 		st->frag_data = NULL;
2325 	}
2326 
2327 	if (st->root_skb == st->cur_skb &&
2328 	    skb_shinfo(st->root_skb)->frag_list) {
2329 		st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
2330 		st->frag_idx = 0;
2331 		goto next_skb;
2332 	} else if (st->cur_skb->next) {
2333 		st->cur_skb = st->cur_skb->next;
2334 		st->frag_idx = 0;
2335 		goto next_skb;
2336 	}
2337 
2338 	return 0;
2339 }
2340 EXPORT_SYMBOL(skb_seq_read);
2341 
2342 /**
2343  * skb_abort_seq_read - Abort a sequential read of skb data
2344  * @st: state variable
2345  *
2346  * Must be called if skb_seq_read() was not called until it
2347  * returned 0.
2348  */
2349 void skb_abort_seq_read(struct skb_seq_state *st)
2350 {
2351 	if (st->frag_data)
2352 		kunmap_skb_frag(st->frag_data);
2353 }
2354 EXPORT_SYMBOL(skb_abort_seq_read);
2355 
2356 #define TS_SKB_CB(state)	((struct skb_seq_state *) &((state)->cb))
2357 
2358 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
2359 					  struct ts_config *conf,
2360 					  struct ts_state *state)
2361 {
2362 	return skb_seq_read(offset, text, TS_SKB_CB(state));
2363 }
2364 
2365 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
2366 {
2367 	skb_abort_seq_read(TS_SKB_CB(state));
2368 }
2369 
2370 /**
2371  * skb_find_text - Find a text pattern in skb data
2372  * @skb: the buffer to look in
2373  * @from: search offset
2374  * @to: search limit
2375  * @config: textsearch configuration
2376  * @state: uninitialized textsearch state variable
2377  *
2378  * Finds a pattern in the skb data according to the specified
2379  * textsearch configuration. Use textsearch_next() to retrieve
2380  * subsequent occurrences of the pattern. Returns the offset
2381  * to the first occurrence or UINT_MAX if no match was found.
2382  */
2383 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
2384 			   unsigned int to, struct ts_config *config,
2385 			   struct ts_state *state)
2386 {
2387 	unsigned int ret;
2388 
2389 	config->get_next_block = skb_ts_get_next_block;
2390 	config->finish = skb_ts_finish;
2391 
2392 	skb_prepare_seq_read(skb, from, to, TS_SKB_CB(state));
2393 
2394 	ret = textsearch_find(config, state);
2395 	return (ret <= to - from ? ret : UINT_MAX);
2396 }
2397 EXPORT_SYMBOL(skb_find_text);
2398 
2399 /**
2400  * skb_append_datato_frags: - append the user data to a skb
2401  * @sk: sock  structure
2402  * @skb: skb structure to be appened with user data.
2403  * @getfrag: call back function to be used for getting the user data
2404  * @from: pointer to user message iov
2405  * @length: length of the iov message
2406  *
2407  * Description: This procedure append the user data in the fragment part
2408  * of the skb if any page alloc fails user this procedure returns  -ENOMEM
2409  */
2410 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
2411 			int (*getfrag)(void *from, char *to, int offset,
2412 					int len, int odd, struct sk_buff *skb),
2413 			void *from, int length)
2414 {
2415 	int frg_cnt = 0;
2416 	skb_frag_t *frag = NULL;
2417 	struct page *page = NULL;
2418 	int copy, left;
2419 	int offset = 0;
2420 	int ret;
2421 
2422 	do {
2423 		/* Return error if we don't have space for new frag */
2424 		frg_cnt = skb_shinfo(skb)->nr_frags;
2425 		if (frg_cnt >= MAX_SKB_FRAGS)
2426 			return -EFAULT;
2427 
2428 		/* allocate a new page for next frag */
2429 		page = alloc_pages(sk->sk_allocation, 0);
2430 
2431 		/* If alloc_page fails just return failure and caller will
2432 		 * free previous allocated pages by doing kfree_skb()
2433 		 */
2434 		if (page == NULL)
2435 			return -ENOMEM;
2436 
2437 		/* initialize the next frag */
2438 		sk->sk_sndmsg_page = page;
2439 		sk->sk_sndmsg_off = 0;
2440 		skb_fill_page_desc(skb, frg_cnt, page, 0, 0);
2441 		skb->truesize += PAGE_SIZE;
2442 		atomic_add(PAGE_SIZE, &sk->sk_wmem_alloc);
2443 
2444 		/* get the new initialized frag */
2445 		frg_cnt = skb_shinfo(skb)->nr_frags;
2446 		frag = &skb_shinfo(skb)->frags[frg_cnt - 1];
2447 
2448 		/* copy the user data to page */
2449 		left = PAGE_SIZE - frag->page_offset;
2450 		copy = (length > left)? left : length;
2451 
2452 		ret = getfrag(from, (page_address(frag->page) +
2453 			    frag->page_offset + frag->size),
2454 			    offset, copy, 0, skb);
2455 		if (ret < 0)
2456 			return -EFAULT;
2457 
2458 		/* copy was successful so update the size parameters */
2459 		sk->sk_sndmsg_off += copy;
2460 		frag->size += copy;
2461 		skb->len += copy;
2462 		skb->data_len += copy;
2463 		offset += copy;
2464 		length -= copy;
2465 
2466 	} while (length > 0);
2467 
2468 	return 0;
2469 }
2470 EXPORT_SYMBOL(skb_append_datato_frags);
2471 
2472 /**
2473  *	skb_pull_rcsum - pull skb and update receive checksum
2474  *	@skb: buffer to update
2475  *	@len: length of data pulled
2476  *
2477  *	This function performs an skb_pull on the packet and updates
2478  *	the CHECKSUM_COMPLETE checksum.  It should be used on
2479  *	receive path processing instead of skb_pull unless you know
2480  *	that the checksum difference is zero (e.g., a valid IP header)
2481  *	or you are setting ip_summed to CHECKSUM_NONE.
2482  */
2483 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
2484 {
2485 	BUG_ON(len > skb->len);
2486 	skb->len -= len;
2487 	BUG_ON(skb->len < skb->data_len);
2488 	skb_postpull_rcsum(skb, skb->data, len);
2489 	return skb->data += len;
2490 }
2491 
2492 EXPORT_SYMBOL_GPL(skb_pull_rcsum);
2493 
2494 /**
2495  *	skb_segment - Perform protocol segmentation on skb.
2496  *	@skb: buffer to segment
2497  *	@features: features for the output path (see dev->features)
2498  *
2499  *	This function performs segmentation on the given skb.  It returns
2500  *	a pointer to the first in a list of new skbs for the segments.
2501  *	In case of error it returns ERR_PTR(err).
2502  */
2503 struct sk_buff *skb_segment(struct sk_buff *skb, int features)
2504 {
2505 	struct sk_buff *segs = NULL;
2506 	struct sk_buff *tail = NULL;
2507 	struct sk_buff *fskb = skb_shinfo(skb)->frag_list;
2508 	unsigned int mss = skb_shinfo(skb)->gso_size;
2509 	unsigned int doffset = skb->data - skb_mac_header(skb);
2510 	unsigned int offset = doffset;
2511 	unsigned int headroom;
2512 	unsigned int len;
2513 	int sg = features & NETIF_F_SG;
2514 	int nfrags = skb_shinfo(skb)->nr_frags;
2515 	int err = -ENOMEM;
2516 	int i = 0;
2517 	int pos;
2518 
2519 	__skb_push(skb, doffset);
2520 	headroom = skb_headroom(skb);
2521 	pos = skb_headlen(skb);
2522 
2523 	do {
2524 		struct sk_buff *nskb;
2525 		skb_frag_t *frag;
2526 		int hsize;
2527 		int size;
2528 
2529 		len = skb->len - offset;
2530 		if (len > mss)
2531 			len = mss;
2532 
2533 		hsize = skb_headlen(skb) - offset;
2534 		if (hsize < 0)
2535 			hsize = 0;
2536 		if (hsize > len || !sg)
2537 			hsize = len;
2538 
2539 		if (!hsize && i >= nfrags) {
2540 			BUG_ON(fskb->len != len);
2541 
2542 			pos += len;
2543 			nskb = skb_clone(fskb, GFP_ATOMIC);
2544 			fskb = fskb->next;
2545 
2546 			if (unlikely(!nskb))
2547 				goto err;
2548 
2549 			hsize = skb_end_pointer(nskb) - nskb->head;
2550 			if (skb_cow_head(nskb, doffset + headroom)) {
2551 				kfree_skb(nskb);
2552 				goto err;
2553 			}
2554 
2555 			nskb->truesize += skb_end_pointer(nskb) - nskb->head -
2556 					  hsize;
2557 			skb_release_head_state(nskb);
2558 			__skb_push(nskb, doffset);
2559 		} else {
2560 			nskb = alloc_skb(hsize + doffset + headroom,
2561 					 GFP_ATOMIC);
2562 
2563 			if (unlikely(!nskb))
2564 				goto err;
2565 
2566 			skb_reserve(nskb, headroom);
2567 			__skb_put(nskb, doffset);
2568 		}
2569 
2570 		if (segs)
2571 			tail->next = nskb;
2572 		else
2573 			segs = nskb;
2574 		tail = nskb;
2575 
2576 		__copy_skb_header(nskb, skb);
2577 		nskb->mac_len = skb->mac_len;
2578 
2579 		skb_reset_mac_header(nskb);
2580 		skb_set_network_header(nskb, skb->mac_len);
2581 		nskb->transport_header = (nskb->network_header +
2582 					  skb_network_header_len(skb));
2583 		skb_copy_from_linear_data(skb, nskb->data, doffset);
2584 
2585 		if (fskb != skb_shinfo(skb)->frag_list)
2586 			continue;
2587 
2588 		if (!sg) {
2589 			nskb->ip_summed = CHECKSUM_NONE;
2590 			nskb->csum = skb_copy_and_csum_bits(skb, offset,
2591 							    skb_put(nskb, len),
2592 							    len, 0);
2593 			continue;
2594 		}
2595 
2596 		frag = skb_shinfo(nskb)->frags;
2597 
2598 		skb_copy_from_linear_data_offset(skb, offset,
2599 						 skb_put(nskb, hsize), hsize);
2600 
2601 		while (pos < offset + len && i < nfrags) {
2602 			*frag = skb_shinfo(skb)->frags[i];
2603 			get_page(frag->page);
2604 			size = frag->size;
2605 
2606 			if (pos < offset) {
2607 				frag->page_offset += offset - pos;
2608 				frag->size -= offset - pos;
2609 			}
2610 
2611 			skb_shinfo(nskb)->nr_frags++;
2612 
2613 			if (pos + size <= offset + len) {
2614 				i++;
2615 				pos += size;
2616 			} else {
2617 				frag->size -= pos + size - (offset + len);
2618 				goto skip_fraglist;
2619 			}
2620 
2621 			frag++;
2622 		}
2623 
2624 		if (pos < offset + len) {
2625 			struct sk_buff *fskb2 = fskb;
2626 
2627 			BUG_ON(pos + fskb->len != offset + len);
2628 
2629 			pos += fskb->len;
2630 			fskb = fskb->next;
2631 
2632 			if (fskb2->next) {
2633 				fskb2 = skb_clone(fskb2, GFP_ATOMIC);
2634 				if (!fskb2)
2635 					goto err;
2636 			} else
2637 				skb_get(fskb2);
2638 
2639 			BUG_ON(skb_shinfo(nskb)->frag_list);
2640 			skb_shinfo(nskb)->frag_list = fskb2;
2641 		}
2642 
2643 skip_fraglist:
2644 		nskb->data_len = len - hsize;
2645 		nskb->len += nskb->data_len;
2646 		nskb->truesize += nskb->data_len;
2647 	} while ((offset += len) < skb->len);
2648 
2649 	return segs;
2650 
2651 err:
2652 	while ((skb = segs)) {
2653 		segs = skb->next;
2654 		kfree_skb(skb);
2655 	}
2656 	return ERR_PTR(err);
2657 }
2658 EXPORT_SYMBOL_GPL(skb_segment);
2659 
2660 int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb)
2661 {
2662 	struct sk_buff *p = *head;
2663 	struct sk_buff *nskb;
2664 	unsigned int headroom;
2665 	unsigned int len = skb_gro_len(skb);
2666 
2667 	if (p->len + len >= 65536)
2668 		return -E2BIG;
2669 
2670 	if (skb_shinfo(p)->frag_list)
2671 		goto merge;
2672 	else if (skb_headlen(skb) <= skb_gro_offset(skb)) {
2673 		if (skb_shinfo(p)->nr_frags + skb_shinfo(skb)->nr_frags >
2674 		    MAX_SKB_FRAGS)
2675 			return -E2BIG;
2676 
2677 		skb_shinfo(skb)->frags[0].page_offset +=
2678 			skb_gro_offset(skb) - skb_headlen(skb);
2679 		skb_shinfo(skb)->frags[0].size -=
2680 			skb_gro_offset(skb) - skb_headlen(skb);
2681 
2682 		memcpy(skb_shinfo(p)->frags + skb_shinfo(p)->nr_frags,
2683 		       skb_shinfo(skb)->frags,
2684 		       skb_shinfo(skb)->nr_frags * sizeof(skb_frag_t));
2685 
2686 		skb_shinfo(p)->nr_frags += skb_shinfo(skb)->nr_frags;
2687 		skb_shinfo(skb)->nr_frags = 0;
2688 
2689 		skb->truesize -= skb->data_len;
2690 		skb->len -= skb->data_len;
2691 		skb->data_len = 0;
2692 
2693 		NAPI_GRO_CB(skb)->free = 1;
2694 		goto done;
2695 	}
2696 
2697 	headroom = skb_headroom(p);
2698 	nskb = netdev_alloc_skb(p->dev, headroom + skb_gro_offset(p));
2699 	if (unlikely(!nskb))
2700 		return -ENOMEM;
2701 
2702 	__copy_skb_header(nskb, p);
2703 	nskb->mac_len = p->mac_len;
2704 
2705 	skb_reserve(nskb, headroom);
2706 	__skb_put(nskb, skb_gro_offset(p));
2707 
2708 	skb_set_mac_header(nskb, skb_mac_header(p) - p->data);
2709 	skb_set_network_header(nskb, skb_network_offset(p));
2710 	skb_set_transport_header(nskb, skb_transport_offset(p));
2711 
2712 	__skb_pull(p, skb_gro_offset(p));
2713 	memcpy(skb_mac_header(nskb), skb_mac_header(p),
2714 	       p->data - skb_mac_header(p));
2715 
2716 	*NAPI_GRO_CB(nskb) = *NAPI_GRO_CB(p);
2717 	skb_shinfo(nskb)->frag_list = p;
2718 	skb_shinfo(nskb)->gso_size = skb_shinfo(p)->gso_size;
2719 	skb_header_release(p);
2720 	nskb->prev = p;
2721 
2722 	nskb->data_len += p->len;
2723 	nskb->truesize += p->len;
2724 	nskb->len += p->len;
2725 
2726 	*head = nskb;
2727 	nskb->next = p->next;
2728 	p->next = NULL;
2729 
2730 	p = nskb;
2731 
2732 merge:
2733 	if (skb_gro_offset(skb) > skb_headlen(skb)) {
2734 		skb_shinfo(skb)->frags[0].page_offset +=
2735 			skb_gro_offset(skb) - skb_headlen(skb);
2736 		skb_shinfo(skb)->frags[0].size -=
2737 			skb_gro_offset(skb) - skb_headlen(skb);
2738 		skb_gro_reset_offset(skb);
2739 		skb_gro_pull(skb, skb_headlen(skb));
2740 	}
2741 
2742 	__skb_pull(skb, skb_gro_offset(skb));
2743 
2744 	p->prev->next = skb;
2745 	p->prev = skb;
2746 	skb_header_release(skb);
2747 
2748 done:
2749 	NAPI_GRO_CB(p)->count++;
2750 	p->data_len += len;
2751 	p->truesize += len;
2752 	p->len += len;
2753 
2754 	NAPI_GRO_CB(skb)->same_flow = 1;
2755 	return 0;
2756 }
2757 EXPORT_SYMBOL_GPL(skb_gro_receive);
2758 
2759 void __init skb_init(void)
2760 {
2761 	skbuff_head_cache = kmem_cache_create("skbuff_head_cache",
2762 					      sizeof(struct sk_buff),
2763 					      0,
2764 					      SLAB_HWCACHE_ALIGN|SLAB_PANIC,
2765 					      NULL);
2766 	skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
2767 						(2*sizeof(struct sk_buff)) +
2768 						sizeof(atomic_t),
2769 						0,
2770 						SLAB_HWCACHE_ALIGN|SLAB_PANIC,
2771 						NULL);
2772 }
2773 
2774 /**
2775  *	skb_to_sgvec - Fill a scatter-gather list from a socket buffer
2776  *	@skb: Socket buffer containing the buffers to be mapped
2777  *	@sg: The scatter-gather list to map into
2778  *	@offset: The offset into the buffer's contents to start mapping
2779  *	@len: Length of buffer space to be mapped
2780  *
2781  *	Fill the specified scatter-gather list with mappings/pointers into a
2782  *	region of the buffer space attached to a socket buffer.
2783  */
2784 static int
2785 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
2786 {
2787 	int start = skb_headlen(skb);
2788 	int i, copy = start - offset;
2789 	int elt = 0;
2790 
2791 	if (copy > 0) {
2792 		if (copy > len)
2793 			copy = len;
2794 		sg_set_buf(sg, skb->data + offset, copy);
2795 		elt++;
2796 		if ((len -= copy) == 0)
2797 			return elt;
2798 		offset += copy;
2799 	}
2800 
2801 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2802 		int end;
2803 
2804 		WARN_ON(start > offset + len);
2805 
2806 		end = start + skb_shinfo(skb)->frags[i].size;
2807 		if ((copy = end - offset) > 0) {
2808 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2809 
2810 			if (copy > len)
2811 				copy = len;
2812 			sg_set_page(&sg[elt], frag->page, copy,
2813 					frag->page_offset+offset-start);
2814 			elt++;
2815 			if (!(len -= copy))
2816 				return elt;
2817 			offset += copy;
2818 		}
2819 		start = end;
2820 	}
2821 
2822 	if (skb_shinfo(skb)->frag_list) {
2823 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
2824 
2825 		for (; list; list = list->next) {
2826 			int end;
2827 
2828 			WARN_ON(start > offset + len);
2829 
2830 			end = start + list->len;
2831 			if ((copy = end - offset) > 0) {
2832 				if (copy > len)
2833 					copy = len;
2834 				elt += __skb_to_sgvec(list, sg+elt, offset - start,
2835 						      copy);
2836 				if ((len -= copy) == 0)
2837 					return elt;
2838 				offset += copy;
2839 			}
2840 			start = end;
2841 		}
2842 	}
2843 	BUG_ON(len);
2844 	return elt;
2845 }
2846 
2847 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
2848 {
2849 	int nsg = __skb_to_sgvec(skb, sg, offset, len);
2850 
2851 	sg_mark_end(&sg[nsg - 1]);
2852 
2853 	return nsg;
2854 }
2855 EXPORT_SYMBOL_GPL(skb_to_sgvec);
2856 
2857 /**
2858  *	skb_cow_data - Check that a socket buffer's data buffers are writable
2859  *	@skb: The socket buffer to check.
2860  *	@tailbits: Amount of trailing space to be added
2861  *	@trailer: Returned pointer to the skb where the @tailbits space begins
2862  *
2863  *	Make sure that the data buffers attached to a socket buffer are
2864  *	writable. If they are not, private copies are made of the data buffers
2865  *	and the socket buffer is set to use these instead.
2866  *
2867  *	If @tailbits is given, make sure that there is space to write @tailbits
2868  *	bytes of data beyond current end of socket buffer.  @trailer will be
2869  *	set to point to the skb in which this space begins.
2870  *
2871  *	The number of scatterlist elements required to completely map the
2872  *	COW'd and extended socket buffer will be returned.
2873  */
2874 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
2875 {
2876 	int copyflag;
2877 	int elt;
2878 	struct sk_buff *skb1, **skb_p;
2879 
2880 	/* If skb is cloned or its head is paged, reallocate
2881 	 * head pulling out all the pages (pages are considered not writable
2882 	 * at the moment even if they are anonymous).
2883 	 */
2884 	if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
2885 	    __pskb_pull_tail(skb, skb_pagelen(skb)-skb_headlen(skb)) == NULL)
2886 		return -ENOMEM;
2887 
2888 	/* Easy case. Most of packets will go this way. */
2889 	if (!skb_shinfo(skb)->frag_list) {
2890 		/* A little of trouble, not enough of space for trailer.
2891 		 * This should not happen, when stack is tuned to generate
2892 		 * good frames. OK, on miss we reallocate and reserve even more
2893 		 * space, 128 bytes is fair. */
2894 
2895 		if (skb_tailroom(skb) < tailbits &&
2896 		    pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
2897 			return -ENOMEM;
2898 
2899 		/* Voila! */
2900 		*trailer = skb;
2901 		return 1;
2902 	}
2903 
2904 	/* Misery. We are in troubles, going to mincer fragments... */
2905 
2906 	elt = 1;
2907 	skb_p = &skb_shinfo(skb)->frag_list;
2908 	copyflag = 0;
2909 
2910 	while ((skb1 = *skb_p) != NULL) {
2911 		int ntail = 0;
2912 
2913 		/* The fragment is partially pulled by someone,
2914 		 * this can happen on input. Copy it and everything
2915 		 * after it. */
2916 
2917 		if (skb_shared(skb1))
2918 			copyflag = 1;
2919 
2920 		/* If the skb is the last, worry about trailer. */
2921 
2922 		if (skb1->next == NULL && tailbits) {
2923 			if (skb_shinfo(skb1)->nr_frags ||
2924 			    skb_shinfo(skb1)->frag_list ||
2925 			    skb_tailroom(skb1) < tailbits)
2926 				ntail = tailbits + 128;
2927 		}
2928 
2929 		if (copyflag ||
2930 		    skb_cloned(skb1) ||
2931 		    ntail ||
2932 		    skb_shinfo(skb1)->nr_frags ||
2933 		    skb_shinfo(skb1)->frag_list) {
2934 			struct sk_buff *skb2;
2935 
2936 			/* Fuck, we are miserable poor guys... */
2937 			if (ntail == 0)
2938 				skb2 = skb_copy(skb1, GFP_ATOMIC);
2939 			else
2940 				skb2 = skb_copy_expand(skb1,
2941 						       skb_headroom(skb1),
2942 						       ntail,
2943 						       GFP_ATOMIC);
2944 			if (unlikely(skb2 == NULL))
2945 				return -ENOMEM;
2946 
2947 			if (skb1->sk)
2948 				skb_set_owner_w(skb2, skb1->sk);
2949 
2950 			/* Looking around. Are we still alive?
2951 			 * OK, link new skb, drop old one */
2952 
2953 			skb2->next = skb1->next;
2954 			*skb_p = skb2;
2955 			kfree_skb(skb1);
2956 			skb1 = skb2;
2957 		}
2958 		elt++;
2959 		*trailer = skb1;
2960 		skb_p = &skb1->next;
2961 	}
2962 
2963 	return elt;
2964 }
2965 EXPORT_SYMBOL_GPL(skb_cow_data);
2966 
2967 void skb_tstamp_tx(struct sk_buff *orig_skb,
2968 		struct skb_shared_hwtstamps *hwtstamps)
2969 {
2970 	struct sock *sk = orig_skb->sk;
2971 	struct sock_exterr_skb *serr;
2972 	struct sk_buff *skb;
2973 	int err;
2974 
2975 	if (!sk)
2976 		return;
2977 
2978 	skb = skb_clone(orig_skb, GFP_ATOMIC);
2979 	if (!skb)
2980 		return;
2981 
2982 	if (hwtstamps) {
2983 		*skb_hwtstamps(skb) =
2984 			*hwtstamps;
2985 	} else {
2986 		/*
2987 		 * no hardware time stamps available,
2988 		 * so keep the skb_shared_tx and only
2989 		 * store software time stamp
2990 		 */
2991 		skb->tstamp = ktime_get_real();
2992 	}
2993 
2994 	serr = SKB_EXT_ERR(skb);
2995 	memset(serr, 0, sizeof(*serr));
2996 	serr->ee.ee_errno = ENOMSG;
2997 	serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
2998 	err = sock_queue_err_skb(sk, skb);
2999 	if (err)
3000 		kfree_skb(skb);
3001 }
3002 EXPORT_SYMBOL_GPL(skb_tstamp_tx);
3003 
3004 
3005 /**
3006  * skb_partial_csum_set - set up and verify partial csum values for packet
3007  * @skb: the skb to set
3008  * @start: the number of bytes after skb->data to start checksumming.
3009  * @off: the offset from start to place the checksum.
3010  *
3011  * For untrusted partially-checksummed packets, we need to make sure the values
3012  * for skb->csum_start and skb->csum_offset are valid so we don't oops.
3013  *
3014  * This function checks and sets those values and skb->ip_summed: if this
3015  * returns false you should drop the packet.
3016  */
3017 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
3018 {
3019 	if (unlikely(start > skb->len - 2) ||
3020 	    unlikely((int)start + off > skb->len - 2)) {
3021 		if (net_ratelimit())
3022 			printk(KERN_WARNING
3023 			       "bad partial csum: csum=%u/%u len=%u\n",
3024 			       start, off, skb->len);
3025 		return false;
3026 	}
3027 	skb->ip_summed = CHECKSUM_PARTIAL;
3028 	skb->csum_start = skb_headroom(skb) + start;
3029 	skb->csum_offset = off;
3030 	return true;
3031 }
3032 EXPORT_SYMBOL_GPL(skb_partial_csum_set);
3033 
3034 void __skb_warn_lro_forwarding(const struct sk_buff *skb)
3035 {
3036 	if (net_ratelimit())
3037 		pr_warning("%s: received packets cannot be forwarded"
3038 			   " while LRO is enabled\n", skb->dev->name);
3039 }
3040 EXPORT_SYMBOL(__skb_warn_lro_forwarding);
3041