1 /* 2 * Routines having to do with the 'struct sk_buff' memory handlers. 3 * 4 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk> 5 * Florian La Roche <rzsfl@rz.uni-sb.de> 6 * 7 * Fixes: 8 * Alan Cox : Fixed the worst of the load 9 * balancer bugs. 10 * Dave Platt : Interrupt stacking fix. 11 * Richard Kooijman : Timestamp fixes. 12 * Alan Cox : Changed buffer format. 13 * Alan Cox : destructor hook for AF_UNIX etc. 14 * Linus Torvalds : Better skb_clone. 15 * Alan Cox : Added skb_copy. 16 * Alan Cox : Added all the changed routines Linus 17 * only put in the headers 18 * Ray VanTassle : Fixed --skb->lock in free 19 * Alan Cox : skb_copy copy arp field 20 * Andi Kleen : slabified it. 21 * Robert Olsson : Removed skb_head_pool 22 * 23 * NOTE: 24 * The __skb_ routines should be called with interrupts 25 * disabled, or you better be *real* sure that the operation is atomic 26 * with respect to whatever list is being frobbed (e.g. via lock_sock() 27 * or via disabling bottom half handlers, etc). 28 * 29 * This program is free software; you can redistribute it and/or 30 * modify it under the terms of the GNU General Public License 31 * as published by the Free Software Foundation; either version 32 * 2 of the License, or (at your option) any later version. 33 */ 34 35 /* 36 * The functions in this file will not compile correctly with gcc 2.4.x 37 */ 38 39 #include <linux/module.h> 40 #include <linux/types.h> 41 #include <linux/kernel.h> 42 #include <linux/mm.h> 43 #include <linux/interrupt.h> 44 #include <linux/in.h> 45 #include <linux/inet.h> 46 #include <linux/slab.h> 47 #include <linux/netdevice.h> 48 #ifdef CONFIG_NET_CLS_ACT 49 #include <net/pkt_sched.h> 50 #endif 51 #include <linux/string.h> 52 #include <linux/skbuff.h> 53 #include <linux/splice.h> 54 #include <linux/cache.h> 55 #include <linux/rtnetlink.h> 56 #include <linux/init.h> 57 #include <linux/scatterlist.h> 58 #include <linux/errqueue.h> 59 60 #include <net/protocol.h> 61 #include <net/dst.h> 62 #include <net/sock.h> 63 #include <net/checksum.h> 64 #include <net/xfrm.h> 65 66 #include <asm/uaccess.h> 67 #include <asm/system.h> 68 #include <trace/events/skb.h> 69 70 #include "kmap_skb.h" 71 72 static struct kmem_cache *skbuff_head_cache __read_mostly; 73 static struct kmem_cache *skbuff_fclone_cache __read_mostly; 74 75 static void sock_pipe_buf_release(struct pipe_inode_info *pipe, 76 struct pipe_buffer *buf) 77 { 78 put_page(buf->page); 79 } 80 81 static void sock_pipe_buf_get(struct pipe_inode_info *pipe, 82 struct pipe_buffer *buf) 83 { 84 get_page(buf->page); 85 } 86 87 static int sock_pipe_buf_steal(struct pipe_inode_info *pipe, 88 struct pipe_buffer *buf) 89 { 90 return 1; 91 } 92 93 94 /* Pipe buffer operations for a socket. */ 95 static struct pipe_buf_operations sock_pipe_buf_ops = { 96 .can_merge = 0, 97 .map = generic_pipe_buf_map, 98 .unmap = generic_pipe_buf_unmap, 99 .confirm = generic_pipe_buf_confirm, 100 .release = sock_pipe_buf_release, 101 .steal = sock_pipe_buf_steal, 102 .get = sock_pipe_buf_get, 103 }; 104 105 /* 106 * Keep out-of-line to prevent kernel bloat. 107 * __builtin_return_address is not used because it is not always 108 * reliable. 109 */ 110 111 /** 112 * skb_over_panic - private function 113 * @skb: buffer 114 * @sz: size 115 * @here: address 116 * 117 * Out of line support code for skb_put(). Not user callable. 118 */ 119 void skb_over_panic(struct sk_buff *skb, int sz, void *here) 120 { 121 printk(KERN_EMERG "skb_over_panic: text:%p len:%d put:%d head:%p " 122 "data:%p tail:%#lx end:%#lx dev:%s\n", 123 here, skb->len, sz, skb->head, skb->data, 124 (unsigned long)skb->tail, (unsigned long)skb->end, 125 skb->dev ? skb->dev->name : "<NULL>"); 126 BUG(); 127 } 128 EXPORT_SYMBOL(skb_over_panic); 129 130 /** 131 * skb_under_panic - private function 132 * @skb: buffer 133 * @sz: size 134 * @here: address 135 * 136 * Out of line support code for skb_push(). Not user callable. 137 */ 138 139 void skb_under_panic(struct sk_buff *skb, int sz, void *here) 140 { 141 printk(KERN_EMERG "skb_under_panic: text:%p len:%d put:%d head:%p " 142 "data:%p tail:%#lx end:%#lx dev:%s\n", 143 here, skb->len, sz, skb->head, skb->data, 144 (unsigned long)skb->tail, (unsigned long)skb->end, 145 skb->dev ? skb->dev->name : "<NULL>"); 146 BUG(); 147 } 148 EXPORT_SYMBOL(skb_under_panic); 149 150 /* Allocate a new skbuff. We do this ourselves so we can fill in a few 151 * 'private' fields and also do memory statistics to find all the 152 * [BEEP] leaks. 153 * 154 */ 155 156 /** 157 * __alloc_skb - allocate a network buffer 158 * @size: size to allocate 159 * @gfp_mask: allocation mask 160 * @fclone: allocate from fclone cache instead of head cache 161 * and allocate a cloned (child) skb 162 * @node: numa node to allocate memory on 163 * 164 * Allocate a new &sk_buff. The returned buffer has no headroom and a 165 * tail room of size bytes. The object has a reference count of one. 166 * The return is the buffer. On a failure the return is %NULL. 167 * 168 * Buffers may only be allocated from interrupts using a @gfp_mask of 169 * %GFP_ATOMIC. 170 */ 171 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask, 172 int fclone, int node) 173 { 174 struct kmem_cache *cache; 175 struct skb_shared_info *shinfo; 176 struct sk_buff *skb; 177 u8 *data; 178 179 cache = fclone ? skbuff_fclone_cache : skbuff_head_cache; 180 181 /* Get the HEAD */ 182 skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node); 183 if (!skb) 184 goto out; 185 186 size = SKB_DATA_ALIGN(size); 187 data = kmalloc_node_track_caller(size + sizeof(struct skb_shared_info), 188 gfp_mask, node); 189 if (!data) 190 goto nodata; 191 192 /* 193 * Only clear those fields we need to clear, not those that we will 194 * actually initialise below. Hence, don't put any more fields after 195 * the tail pointer in struct sk_buff! 196 */ 197 memset(skb, 0, offsetof(struct sk_buff, tail)); 198 skb->truesize = size + sizeof(struct sk_buff); 199 atomic_set(&skb->users, 1); 200 skb->head = data; 201 skb->data = data; 202 skb_reset_tail_pointer(skb); 203 skb->end = skb->tail + size; 204 /* make sure we initialize shinfo sequentially */ 205 shinfo = skb_shinfo(skb); 206 atomic_set(&shinfo->dataref, 1); 207 shinfo->nr_frags = 0; 208 shinfo->gso_size = 0; 209 shinfo->gso_segs = 0; 210 shinfo->gso_type = 0; 211 shinfo->ip6_frag_id = 0; 212 shinfo->tx_flags.flags = 0; 213 shinfo->frag_list = NULL; 214 memset(&shinfo->hwtstamps, 0, sizeof(shinfo->hwtstamps)); 215 216 if (fclone) { 217 struct sk_buff *child = skb + 1; 218 atomic_t *fclone_ref = (atomic_t *) (child + 1); 219 220 skb->fclone = SKB_FCLONE_ORIG; 221 atomic_set(fclone_ref, 1); 222 223 child->fclone = SKB_FCLONE_UNAVAILABLE; 224 } 225 out: 226 return skb; 227 nodata: 228 kmem_cache_free(cache, skb); 229 skb = NULL; 230 goto out; 231 } 232 EXPORT_SYMBOL(__alloc_skb); 233 234 /** 235 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device 236 * @dev: network device to receive on 237 * @length: length to allocate 238 * @gfp_mask: get_free_pages mask, passed to alloc_skb 239 * 240 * Allocate a new &sk_buff and assign it a usage count of one. The 241 * buffer has unspecified headroom built in. Users should allocate 242 * the headroom they think they need without accounting for the 243 * built in space. The built in space is used for optimisations. 244 * 245 * %NULL is returned if there is no free memory. 246 */ 247 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, 248 unsigned int length, gfp_t gfp_mask) 249 { 250 int node = dev->dev.parent ? dev_to_node(dev->dev.parent) : -1; 251 struct sk_buff *skb; 252 253 skb = __alloc_skb(length + NET_SKB_PAD, gfp_mask, 0, node); 254 if (likely(skb)) { 255 skb_reserve(skb, NET_SKB_PAD); 256 skb->dev = dev; 257 } 258 return skb; 259 } 260 EXPORT_SYMBOL(__netdev_alloc_skb); 261 262 struct page *__netdev_alloc_page(struct net_device *dev, gfp_t gfp_mask) 263 { 264 int node = dev->dev.parent ? dev_to_node(dev->dev.parent) : -1; 265 struct page *page; 266 267 page = alloc_pages_node(node, gfp_mask, 0); 268 return page; 269 } 270 EXPORT_SYMBOL(__netdev_alloc_page); 271 272 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off, 273 int size) 274 { 275 skb_fill_page_desc(skb, i, page, off, size); 276 skb->len += size; 277 skb->data_len += size; 278 skb->truesize += size; 279 } 280 EXPORT_SYMBOL(skb_add_rx_frag); 281 282 /** 283 * dev_alloc_skb - allocate an skbuff for receiving 284 * @length: length to allocate 285 * 286 * Allocate a new &sk_buff and assign it a usage count of one. The 287 * buffer has unspecified headroom built in. Users should allocate 288 * the headroom they think they need without accounting for the 289 * built in space. The built in space is used for optimisations. 290 * 291 * %NULL is returned if there is no free memory. Although this function 292 * allocates memory it can be called from an interrupt. 293 */ 294 struct sk_buff *dev_alloc_skb(unsigned int length) 295 { 296 /* 297 * There is more code here than it seems: 298 * __dev_alloc_skb is an inline 299 */ 300 return __dev_alloc_skb(length, GFP_ATOMIC); 301 } 302 EXPORT_SYMBOL(dev_alloc_skb); 303 304 static void skb_drop_list(struct sk_buff **listp) 305 { 306 struct sk_buff *list = *listp; 307 308 *listp = NULL; 309 310 do { 311 struct sk_buff *this = list; 312 list = list->next; 313 kfree_skb(this); 314 } while (list); 315 } 316 317 static inline void skb_drop_fraglist(struct sk_buff *skb) 318 { 319 skb_drop_list(&skb_shinfo(skb)->frag_list); 320 } 321 322 static void skb_clone_fraglist(struct sk_buff *skb) 323 { 324 struct sk_buff *list; 325 326 for (list = skb_shinfo(skb)->frag_list; list; list = list->next) 327 skb_get(list); 328 } 329 330 static void skb_release_data(struct sk_buff *skb) 331 { 332 if (!skb->cloned || 333 !atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1, 334 &skb_shinfo(skb)->dataref)) { 335 if (skb_shinfo(skb)->nr_frags) { 336 int i; 337 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 338 put_page(skb_shinfo(skb)->frags[i].page); 339 } 340 341 if (skb_shinfo(skb)->frag_list) 342 skb_drop_fraglist(skb); 343 344 kfree(skb->head); 345 } 346 } 347 348 /* 349 * Free an skbuff by memory without cleaning the state. 350 */ 351 static void kfree_skbmem(struct sk_buff *skb) 352 { 353 struct sk_buff *other; 354 atomic_t *fclone_ref; 355 356 switch (skb->fclone) { 357 case SKB_FCLONE_UNAVAILABLE: 358 kmem_cache_free(skbuff_head_cache, skb); 359 break; 360 361 case SKB_FCLONE_ORIG: 362 fclone_ref = (atomic_t *) (skb + 2); 363 if (atomic_dec_and_test(fclone_ref)) 364 kmem_cache_free(skbuff_fclone_cache, skb); 365 break; 366 367 case SKB_FCLONE_CLONE: 368 fclone_ref = (atomic_t *) (skb + 1); 369 other = skb - 1; 370 371 /* The clone portion is available for 372 * fast-cloning again. 373 */ 374 skb->fclone = SKB_FCLONE_UNAVAILABLE; 375 376 if (atomic_dec_and_test(fclone_ref)) 377 kmem_cache_free(skbuff_fclone_cache, other); 378 break; 379 } 380 } 381 382 static void skb_release_head_state(struct sk_buff *skb) 383 { 384 dst_release(skb->dst); 385 #ifdef CONFIG_XFRM 386 secpath_put(skb->sp); 387 #endif 388 if (skb->destructor) { 389 WARN_ON(in_irq()); 390 skb->destructor(skb); 391 } 392 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 393 nf_conntrack_put(skb->nfct); 394 nf_conntrack_put_reasm(skb->nfct_reasm); 395 #endif 396 #ifdef CONFIG_BRIDGE_NETFILTER 397 nf_bridge_put(skb->nf_bridge); 398 #endif 399 /* XXX: IS this still necessary? - JHS */ 400 #ifdef CONFIG_NET_SCHED 401 skb->tc_index = 0; 402 #ifdef CONFIG_NET_CLS_ACT 403 skb->tc_verd = 0; 404 #endif 405 #endif 406 } 407 408 /* Free everything but the sk_buff shell. */ 409 static void skb_release_all(struct sk_buff *skb) 410 { 411 skb_release_head_state(skb); 412 skb_release_data(skb); 413 } 414 415 /** 416 * __kfree_skb - private function 417 * @skb: buffer 418 * 419 * Free an sk_buff. Release anything attached to the buffer. 420 * Clean the state. This is an internal helper function. Users should 421 * always call kfree_skb 422 */ 423 424 void __kfree_skb(struct sk_buff *skb) 425 { 426 skb_release_all(skb); 427 kfree_skbmem(skb); 428 } 429 EXPORT_SYMBOL(__kfree_skb); 430 431 /** 432 * kfree_skb - free an sk_buff 433 * @skb: buffer to free 434 * 435 * Drop a reference to the buffer and free it if the usage count has 436 * hit zero. 437 */ 438 void kfree_skb(struct sk_buff *skb) 439 { 440 if (unlikely(!skb)) 441 return; 442 if (likely(atomic_read(&skb->users) == 1)) 443 smp_rmb(); 444 else if (likely(!atomic_dec_and_test(&skb->users))) 445 return; 446 trace_kfree_skb(skb, __builtin_return_address(0)); 447 __kfree_skb(skb); 448 } 449 EXPORT_SYMBOL(kfree_skb); 450 451 /** 452 * consume_skb - free an skbuff 453 * @skb: buffer to free 454 * 455 * Drop a ref to the buffer and free it if the usage count has hit zero 456 * Functions identically to kfree_skb, but kfree_skb assumes that the frame 457 * is being dropped after a failure and notes that 458 */ 459 void consume_skb(struct sk_buff *skb) 460 { 461 if (unlikely(!skb)) 462 return; 463 if (likely(atomic_read(&skb->users) == 1)) 464 smp_rmb(); 465 else if (likely(!atomic_dec_and_test(&skb->users))) 466 return; 467 __kfree_skb(skb); 468 } 469 EXPORT_SYMBOL(consume_skb); 470 471 /** 472 * skb_recycle_check - check if skb can be reused for receive 473 * @skb: buffer 474 * @skb_size: minimum receive buffer size 475 * 476 * Checks that the skb passed in is not shared or cloned, and 477 * that it is linear and its head portion at least as large as 478 * skb_size so that it can be recycled as a receive buffer. 479 * If these conditions are met, this function does any necessary 480 * reference count dropping and cleans up the skbuff as if it 481 * just came from __alloc_skb(). 482 */ 483 int skb_recycle_check(struct sk_buff *skb, int skb_size) 484 { 485 struct skb_shared_info *shinfo; 486 487 if (skb_is_nonlinear(skb) || skb->fclone != SKB_FCLONE_UNAVAILABLE) 488 return 0; 489 490 skb_size = SKB_DATA_ALIGN(skb_size + NET_SKB_PAD); 491 if (skb_end_pointer(skb) - skb->head < skb_size) 492 return 0; 493 494 if (skb_shared(skb) || skb_cloned(skb)) 495 return 0; 496 497 skb_release_head_state(skb); 498 shinfo = skb_shinfo(skb); 499 atomic_set(&shinfo->dataref, 1); 500 shinfo->nr_frags = 0; 501 shinfo->gso_size = 0; 502 shinfo->gso_segs = 0; 503 shinfo->gso_type = 0; 504 shinfo->ip6_frag_id = 0; 505 shinfo->tx_flags.flags = 0; 506 shinfo->frag_list = NULL; 507 memset(&shinfo->hwtstamps, 0, sizeof(shinfo->hwtstamps)); 508 509 memset(skb, 0, offsetof(struct sk_buff, tail)); 510 skb->data = skb->head + NET_SKB_PAD; 511 skb_reset_tail_pointer(skb); 512 513 return 1; 514 } 515 EXPORT_SYMBOL(skb_recycle_check); 516 517 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old) 518 { 519 new->tstamp = old->tstamp; 520 new->dev = old->dev; 521 new->transport_header = old->transport_header; 522 new->network_header = old->network_header; 523 new->mac_header = old->mac_header; 524 new->dst = dst_clone(old->dst); 525 #ifdef CONFIG_XFRM 526 new->sp = secpath_get(old->sp); 527 #endif 528 memcpy(new->cb, old->cb, sizeof(old->cb)); 529 new->csum_start = old->csum_start; 530 new->csum_offset = old->csum_offset; 531 new->local_df = old->local_df; 532 new->pkt_type = old->pkt_type; 533 new->ip_summed = old->ip_summed; 534 skb_copy_queue_mapping(new, old); 535 new->priority = old->priority; 536 #if defined(CONFIG_IP_VS) || defined(CONFIG_IP_VS_MODULE) 537 new->ipvs_property = old->ipvs_property; 538 #endif 539 new->protocol = old->protocol; 540 new->mark = old->mark; 541 __nf_copy(new, old); 542 #if defined(CONFIG_NETFILTER_XT_TARGET_TRACE) || \ 543 defined(CONFIG_NETFILTER_XT_TARGET_TRACE_MODULE) 544 new->nf_trace = old->nf_trace; 545 #endif 546 #ifdef CONFIG_NET_SCHED 547 new->tc_index = old->tc_index; 548 #ifdef CONFIG_NET_CLS_ACT 549 new->tc_verd = old->tc_verd; 550 #endif 551 #endif 552 new->vlan_tci = old->vlan_tci; 553 554 skb_copy_secmark(new, old); 555 } 556 557 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb) 558 { 559 #define C(x) n->x = skb->x 560 561 n->next = n->prev = NULL; 562 n->sk = NULL; 563 __copy_skb_header(n, skb); 564 565 C(len); 566 C(data_len); 567 C(mac_len); 568 n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len; 569 n->cloned = 1; 570 n->nohdr = 0; 571 n->destructor = NULL; 572 C(iif); 573 C(tail); 574 C(end); 575 C(head); 576 C(data); 577 C(truesize); 578 #if defined(CONFIG_MAC80211) || defined(CONFIG_MAC80211_MODULE) 579 C(do_not_encrypt); 580 C(requeue); 581 #endif 582 atomic_set(&n->users, 1); 583 584 atomic_inc(&(skb_shinfo(skb)->dataref)); 585 skb->cloned = 1; 586 587 return n; 588 #undef C 589 } 590 591 /** 592 * skb_morph - morph one skb into another 593 * @dst: the skb to receive the contents 594 * @src: the skb to supply the contents 595 * 596 * This is identical to skb_clone except that the target skb is 597 * supplied by the user. 598 * 599 * The target skb is returned upon exit. 600 */ 601 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src) 602 { 603 skb_release_all(dst); 604 return __skb_clone(dst, src); 605 } 606 EXPORT_SYMBOL_GPL(skb_morph); 607 608 /** 609 * skb_clone - duplicate an sk_buff 610 * @skb: buffer to clone 611 * @gfp_mask: allocation priority 612 * 613 * Duplicate an &sk_buff. The new one is not owned by a socket. Both 614 * copies share the same packet data but not structure. The new 615 * buffer has a reference count of 1. If the allocation fails the 616 * function returns %NULL otherwise the new buffer is returned. 617 * 618 * If this function is called from an interrupt gfp_mask() must be 619 * %GFP_ATOMIC. 620 */ 621 622 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask) 623 { 624 struct sk_buff *n; 625 626 n = skb + 1; 627 if (skb->fclone == SKB_FCLONE_ORIG && 628 n->fclone == SKB_FCLONE_UNAVAILABLE) { 629 atomic_t *fclone_ref = (atomic_t *) (n + 1); 630 n->fclone = SKB_FCLONE_CLONE; 631 atomic_inc(fclone_ref); 632 } else { 633 n = kmem_cache_alloc(skbuff_head_cache, gfp_mask); 634 if (!n) 635 return NULL; 636 n->fclone = SKB_FCLONE_UNAVAILABLE; 637 } 638 639 return __skb_clone(n, skb); 640 } 641 EXPORT_SYMBOL(skb_clone); 642 643 static void copy_skb_header(struct sk_buff *new, const struct sk_buff *old) 644 { 645 #ifndef NET_SKBUFF_DATA_USES_OFFSET 646 /* 647 * Shift between the two data areas in bytes 648 */ 649 unsigned long offset = new->data - old->data; 650 #endif 651 652 __copy_skb_header(new, old); 653 654 #ifndef NET_SKBUFF_DATA_USES_OFFSET 655 /* {transport,network,mac}_header are relative to skb->head */ 656 new->transport_header += offset; 657 new->network_header += offset; 658 new->mac_header += offset; 659 #endif 660 skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size; 661 skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs; 662 skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type; 663 } 664 665 /** 666 * skb_copy - create private copy of an sk_buff 667 * @skb: buffer to copy 668 * @gfp_mask: allocation priority 669 * 670 * Make a copy of both an &sk_buff and its data. This is used when the 671 * caller wishes to modify the data and needs a private copy of the 672 * data to alter. Returns %NULL on failure or the pointer to the buffer 673 * on success. The returned buffer has a reference count of 1. 674 * 675 * As by-product this function converts non-linear &sk_buff to linear 676 * one, so that &sk_buff becomes completely private and caller is allowed 677 * to modify all the data of returned buffer. This means that this 678 * function is not recommended for use in circumstances when only 679 * header is going to be modified. Use pskb_copy() instead. 680 */ 681 682 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask) 683 { 684 int headerlen = skb->data - skb->head; 685 /* 686 * Allocate the copy buffer 687 */ 688 struct sk_buff *n; 689 #ifdef NET_SKBUFF_DATA_USES_OFFSET 690 n = alloc_skb(skb->end + skb->data_len, gfp_mask); 691 #else 692 n = alloc_skb(skb->end - skb->head + skb->data_len, gfp_mask); 693 #endif 694 if (!n) 695 return NULL; 696 697 /* Set the data pointer */ 698 skb_reserve(n, headerlen); 699 /* Set the tail pointer and length */ 700 skb_put(n, skb->len); 701 702 if (skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len)) 703 BUG(); 704 705 copy_skb_header(n, skb); 706 return n; 707 } 708 EXPORT_SYMBOL(skb_copy); 709 710 /** 711 * pskb_copy - create copy of an sk_buff with private head. 712 * @skb: buffer to copy 713 * @gfp_mask: allocation priority 714 * 715 * Make a copy of both an &sk_buff and part of its data, located 716 * in header. Fragmented data remain shared. This is used when 717 * the caller wishes to modify only header of &sk_buff and needs 718 * private copy of the header to alter. Returns %NULL on failure 719 * or the pointer to the buffer on success. 720 * The returned buffer has a reference count of 1. 721 */ 722 723 struct sk_buff *pskb_copy(struct sk_buff *skb, gfp_t gfp_mask) 724 { 725 /* 726 * Allocate the copy buffer 727 */ 728 struct sk_buff *n; 729 #ifdef NET_SKBUFF_DATA_USES_OFFSET 730 n = alloc_skb(skb->end, gfp_mask); 731 #else 732 n = alloc_skb(skb->end - skb->head, gfp_mask); 733 #endif 734 if (!n) 735 goto out; 736 737 /* Set the data pointer */ 738 skb_reserve(n, skb->data - skb->head); 739 /* Set the tail pointer and length */ 740 skb_put(n, skb_headlen(skb)); 741 /* Copy the bytes */ 742 skb_copy_from_linear_data(skb, n->data, n->len); 743 744 n->truesize += skb->data_len; 745 n->data_len = skb->data_len; 746 n->len = skb->len; 747 748 if (skb_shinfo(skb)->nr_frags) { 749 int i; 750 751 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 752 skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i]; 753 get_page(skb_shinfo(n)->frags[i].page); 754 } 755 skb_shinfo(n)->nr_frags = i; 756 } 757 758 if (skb_shinfo(skb)->frag_list) { 759 skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list; 760 skb_clone_fraglist(n); 761 } 762 763 copy_skb_header(n, skb); 764 out: 765 return n; 766 } 767 EXPORT_SYMBOL(pskb_copy); 768 769 /** 770 * pskb_expand_head - reallocate header of &sk_buff 771 * @skb: buffer to reallocate 772 * @nhead: room to add at head 773 * @ntail: room to add at tail 774 * @gfp_mask: allocation priority 775 * 776 * Expands (or creates identical copy, if &nhead and &ntail are zero) 777 * header of skb. &sk_buff itself is not changed. &sk_buff MUST have 778 * reference count of 1. Returns zero in the case of success or error, 779 * if expansion failed. In the last case, &sk_buff is not changed. 780 * 781 * All the pointers pointing into skb header may change and must be 782 * reloaded after call to this function. 783 */ 784 785 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, 786 gfp_t gfp_mask) 787 { 788 int i; 789 u8 *data; 790 #ifdef NET_SKBUFF_DATA_USES_OFFSET 791 int size = nhead + skb->end + ntail; 792 #else 793 int size = nhead + (skb->end - skb->head) + ntail; 794 #endif 795 long off; 796 797 BUG_ON(nhead < 0); 798 799 if (skb_shared(skb)) 800 BUG(); 801 802 size = SKB_DATA_ALIGN(size); 803 804 data = kmalloc(size + sizeof(struct skb_shared_info), gfp_mask); 805 if (!data) 806 goto nodata; 807 808 /* Copy only real data... and, alas, header. This should be 809 * optimized for the cases when header is void. */ 810 #ifdef NET_SKBUFF_DATA_USES_OFFSET 811 memcpy(data + nhead, skb->head, skb->tail); 812 #else 813 memcpy(data + nhead, skb->head, skb->tail - skb->head); 814 #endif 815 memcpy(data + size, skb_end_pointer(skb), 816 sizeof(struct skb_shared_info)); 817 818 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 819 get_page(skb_shinfo(skb)->frags[i].page); 820 821 if (skb_shinfo(skb)->frag_list) 822 skb_clone_fraglist(skb); 823 824 skb_release_data(skb); 825 826 off = (data + nhead) - skb->head; 827 828 skb->head = data; 829 skb->data += off; 830 #ifdef NET_SKBUFF_DATA_USES_OFFSET 831 skb->end = size; 832 off = nhead; 833 #else 834 skb->end = skb->head + size; 835 #endif 836 /* {transport,network,mac}_header and tail are relative to skb->head */ 837 skb->tail += off; 838 skb->transport_header += off; 839 skb->network_header += off; 840 skb->mac_header += off; 841 skb->csum_start += nhead; 842 skb->cloned = 0; 843 skb->hdr_len = 0; 844 skb->nohdr = 0; 845 atomic_set(&skb_shinfo(skb)->dataref, 1); 846 return 0; 847 848 nodata: 849 return -ENOMEM; 850 } 851 EXPORT_SYMBOL(pskb_expand_head); 852 853 /* Make private copy of skb with writable head and some headroom */ 854 855 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom) 856 { 857 struct sk_buff *skb2; 858 int delta = headroom - skb_headroom(skb); 859 860 if (delta <= 0) 861 skb2 = pskb_copy(skb, GFP_ATOMIC); 862 else { 863 skb2 = skb_clone(skb, GFP_ATOMIC); 864 if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0, 865 GFP_ATOMIC)) { 866 kfree_skb(skb2); 867 skb2 = NULL; 868 } 869 } 870 return skb2; 871 } 872 EXPORT_SYMBOL(skb_realloc_headroom); 873 874 /** 875 * skb_copy_expand - copy and expand sk_buff 876 * @skb: buffer to copy 877 * @newheadroom: new free bytes at head 878 * @newtailroom: new free bytes at tail 879 * @gfp_mask: allocation priority 880 * 881 * Make a copy of both an &sk_buff and its data and while doing so 882 * allocate additional space. 883 * 884 * This is used when the caller wishes to modify the data and needs a 885 * private copy of the data to alter as well as more space for new fields. 886 * Returns %NULL on failure or the pointer to the buffer 887 * on success. The returned buffer has a reference count of 1. 888 * 889 * You must pass %GFP_ATOMIC as the allocation priority if this function 890 * is called from an interrupt. 891 */ 892 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, 893 int newheadroom, int newtailroom, 894 gfp_t gfp_mask) 895 { 896 /* 897 * Allocate the copy buffer 898 */ 899 struct sk_buff *n = alloc_skb(newheadroom + skb->len + newtailroom, 900 gfp_mask); 901 int oldheadroom = skb_headroom(skb); 902 int head_copy_len, head_copy_off; 903 int off; 904 905 if (!n) 906 return NULL; 907 908 skb_reserve(n, newheadroom); 909 910 /* Set the tail pointer and length */ 911 skb_put(n, skb->len); 912 913 head_copy_len = oldheadroom; 914 head_copy_off = 0; 915 if (newheadroom <= head_copy_len) 916 head_copy_len = newheadroom; 917 else 918 head_copy_off = newheadroom - head_copy_len; 919 920 /* Copy the linear header and data. */ 921 if (skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off, 922 skb->len + head_copy_len)) 923 BUG(); 924 925 copy_skb_header(n, skb); 926 927 off = newheadroom - oldheadroom; 928 n->csum_start += off; 929 #ifdef NET_SKBUFF_DATA_USES_OFFSET 930 n->transport_header += off; 931 n->network_header += off; 932 n->mac_header += off; 933 #endif 934 935 return n; 936 } 937 EXPORT_SYMBOL(skb_copy_expand); 938 939 /** 940 * skb_pad - zero pad the tail of an skb 941 * @skb: buffer to pad 942 * @pad: space to pad 943 * 944 * Ensure that a buffer is followed by a padding area that is zero 945 * filled. Used by network drivers which may DMA or transfer data 946 * beyond the buffer end onto the wire. 947 * 948 * May return error in out of memory cases. The skb is freed on error. 949 */ 950 951 int skb_pad(struct sk_buff *skb, int pad) 952 { 953 int err; 954 int ntail; 955 956 /* If the skbuff is non linear tailroom is always zero.. */ 957 if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) { 958 memset(skb->data+skb->len, 0, pad); 959 return 0; 960 } 961 962 ntail = skb->data_len + pad - (skb->end - skb->tail); 963 if (likely(skb_cloned(skb) || ntail > 0)) { 964 err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC); 965 if (unlikely(err)) 966 goto free_skb; 967 } 968 969 /* FIXME: The use of this function with non-linear skb's really needs 970 * to be audited. 971 */ 972 err = skb_linearize(skb); 973 if (unlikely(err)) 974 goto free_skb; 975 976 memset(skb->data + skb->len, 0, pad); 977 return 0; 978 979 free_skb: 980 kfree_skb(skb); 981 return err; 982 } 983 EXPORT_SYMBOL(skb_pad); 984 985 /** 986 * skb_put - add data to a buffer 987 * @skb: buffer to use 988 * @len: amount of data to add 989 * 990 * This function extends the used data area of the buffer. If this would 991 * exceed the total buffer size the kernel will panic. A pointer to the 992 * first byte of the extra data is returned. 993 */ 994 unsigned char *skb_put(struct sk_buff *skb, unsigned int len) 995 { 996 unsigned char *tmp = skb_tail_pointer(skb); 997 SKB_LINEAR_ASSERT(skb); 998 skb->tail += len; 999 skb->len += len; 1000 if (unlikely(skb->tail > skb->end)) 1001 skb_over_panic(skb, len, __builtin_return_address(0)); 1002 return tmp; 1003 } 1004 EXPORT_SYMBOL(skb_put); 1005 1006 /** 1007 * skb_push - add data to the start of a buffer 1008 * @skb: buffer to use 1009 * @len: amount of data to add 1010 * 1011 * This function extends the used data area of the buffer at the buffer 1012 * start. If this would exceed the total buffer headroom the kernel will 1013 * panic. A pointer to the first byte of the extra data is returned. 1014 */ 1015 unsigned char *skb_push(struct sk_buff *skb, unsigned int len) 1016 { 1017 skb->data -= len; 1018 skb->len += len; 1019 if (unlikely(skb->data<skb->head)) 1020 skb_under_panic(skb, len, __builtin_return_address(0)); 1021 return skb->data; 1022 } 1023 EXPORT_SYMBOL(skb_push); 1024 1025 /** 1026 * skb_pull - remove data from the start of a buffer 1027 * @skb: buffer to use 1028 * @len: amount of data to remove 1029 * 1030 * This function removes data from the start of a buffer, returning 1031 * the memory to the headroom. A pointer to the next data in the buffer 1032 * is returned. Once the data has been pulled future pushes will overwrite 1033 * the old data. 1034 */ 1035 unsigned char *skb_pull(struct sk_buff *skb, unsigned int len) 1036 { 1037 return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len); 1038 } 1039 EXPORT_SYMBOL(skb_pull); 1040 1041 /** 1042 * skb_trim - remove end from a buffer 1043 * @skb: buffer to alter 1044 * @len: new length 1045 * 1046 * Cut the length of a buffer down by removing data from the tail. If 1047 * the buffer is already under the length specified it is not modified. 1048 * The skb must be linear. 1049 */ 1050 void skb_trim(struct sk_buff *skb, unsigned int len) 1051 { 1052 if (skb->len > len) 1053 __skb_trim(skb, len); 1054 } 1055 EXPORT_SYMBOL(skb_trim); 1056 1057 /* Trims skb to length len. It can change skb pointers. 1058 */ 1059 1060 int ___pskb_trim(struct sk_buff *skb, unsigned int len) 1061 { 1062 struct sk_buff **fragp; 1063 struct sk_buff *frag; 1064 int offset = skb_headlen(skb); 1065 int nfrags = skb_shinfo(skb)->nr_frags; 1066 int i; 1067 int err; 1068 1069 if (skb_cloned(skb) && 1070 unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))) 1071 return err; 1072 1073 i = 0; 1074 if (offset >= len) 1075 goto drop_pages; 1076 1077 for (; i < nfrags; i++) { 1078 int end = offset + skb_shinfo(skb)->frags[i].size; 1079 1080 if (end < len) { 1081 offset = end; 1082 continue; 1083 } 1084 1085 skb_shinfo(skb)->frags[i++].size = len - offset; 1086 1087 drop_pages: 1088 skb_shinfo(skb)->nr_frags = i; 1089 1090 for (; i < nfrags; i++) 1091 put_page(skb_shinfo(skb)->frags[i].page); 1092 1093 if (skb_shinfo(skb)->frag_list) 1094 skb_drop_fraglist(skb); 1095 goto done; 1096 } 1097 1098 for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp); 1099 fragp = &frag->next) { 1100 int end = offset + frag->len; 1101 1102 if (skb_shared(frag)) { 1103 struct sk_buff *nfrag; 1104 1105 nfrag = skb_clone(frag, GFP_ATOMIC); 1106 if (unlikely(!nfrag)) 1107 return -ENOMEM; 1108 1109 nfrag->next = frag->next; 1110 kfree_skb(frag); 1111 frag = nfrag; 1112 *fragp = frag; 1113 } 1114 1115 if (end < len) { 1116 offset = end; 1117 continue; 1118 } 1119 1120 if (end > len && 1121 unlikely((err = pskb_trim(frag, len - offset)))) 1122 return err; 1123 1124 if (frag->next) 1125 skb_drop_list(&frag->next); 1126 break; 1127 } 1128 1129 done: 1130 if (len > skb_headlen(skb)) { 1131 skb->data_len -= skb->len - len; 1132 skb->len = len; 1133 } else { 1134 skb->len = len; 1135 skb->data_len = 0; 1136 skb_set_tail_pointer(skb, len); 1137 } 1138 1139 return 0; 1140 } 1141 EXPORT_SYMBOL(___pskb_trim); 1142 1143 /** 1144 * __pskb_pull_tail - advance tail of skb header 1145 * @skb: buffer to reallocate 1146 * @delta: number of bytes to advance tail 1147 * 1148 * The function makes a sense only on a fragmented &sk_buff, 1149 * it expands header moving its tail forward and copying necessary 1150 * data from fragmented part. 1151 * 1152 * &sk_buff MUST have reference count of 1. 1153 * 1154 * Returns %NULL (and &sk_buff does not change) if pull failed 1155 * or value of new tail of skb in the case of success. 1156 * 1157 * All the pointers pointing into skb header may change and must be 1158 * reloaded after call to this function. 1159 */ 1160 1161 /* Moves tail of skb head forward, copying data from fragmented part, 1162 * when it is necessary. 1163 * 1. It may fail due to malloc failure. 1164 * 2. It may change skb pointers. 1165 * 1166 * It is pretty complicated. Luckily, it is called only in exceptional cases. 1167 */ 1168 unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta) 1169 { 1170 /* If skb has not enough free space at tail, get new one 1171 * plus 128 bytes for future expansions. If we have enough 1172 * room at tail, reallocate without expansion only if skb is cloned. 1173 */ 1174 int i, k, eat = (skb->tail + delta) - skb->end; 1175 1176 if (eat > 0 || skb_cloned(skb)) { 1177 if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0, 1178 GFP_ATOMIC)) 1179 return NULL; 1180 } 1181 1182 if (skb_copy_bits(skb, skb_headlen(skb), skb_tail_pointer(skb), delta)) 1183 BUG(); 1184 1185 /* Optimization: no fragments, no reasons to preestimate 1186 * size of pulled pages. Superb. 1187 */ 1188 if (!skb_shinfo(skb)->frag_list) 1189 goto pull_pages; 1190 1191 /* Estimate size of pulled pages. */ 1192 eat = delta; 1193 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1194 if (skb_shinfo(skb)->frags[i].size >= eat) 1195 goto pull_pages; 1196 eat -= skb_shinfo(skb)->frags[i].size; 1197 } 1198 1199 /* If we need update frag list, we are in troubles. 1200 * Certainly, it possible to add an offset to skb data, 1201 * but taking into account that pulling is expected to 1202 * be very rare operation, it is worth to fight against 1203 * further bloating skb head and crucify ourselves here instead. 1204 * Pure masohism, indeed. 8)8) 1205 */ 1206 if (eat) { 1207 struct sk_buff *list = skb_shinfo(skb)->frag_list; 1208 struct sk_buff *clone = NULL; 1209 struct sk_buff *insp = NULL; 1210 1211 do { 1212 BUG_ON(!list); 1213 1214 if (list->len <= eat) { 1215 /* Eaten as whole. */ 1216 eat -= list->len; 1217 list = list->next; 1218 insp = list; 1219 } else { 1220 /* Eaten partially. */ 1221 1222 if (skb_shared(list)) { 1223 /* Sucks! We need to fork list. :-( */ 1224 clone = skb_clone(list, GFP_ATOMIC); 1225 if (!clone) 1226 return NULL; 1227 insp = list->next; 1228 list = clone; 1229 } else { 1230 /* This may be pulled without 1231 * problems. */ 1232 insp = list; 1233 } 1234 if (!pskb_pull(list, eat)) { 1235 kfree_skb(clone); 1236 return NULL; 1237 } 1238 break; 1239 } 1240 } while (eat); 1241 1242 /* Free pulled out fragments. */ 1243 while ((list = skb_shinfo(skb)->frag_list) != insp) { 1244 skb_shinfo(skb)->frag_list = list->next; 1245 kfree_skb(list); 1246 } 1247 /* And insert new clone at head. */ 1248 if (clone) { 1249 clone->next = list; 1250 skb_shinfo(skb)->frag_list = clone; 1251 } 1252 } 1253 /* Success! Now we may commit changes to skb data. */ 1254 1255 pull_pages: 1256 eat = delta; 1257 k = 0; 1258 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1259 if (skb_shinfo(skb)->frags[i].size <= eat) { 1260 put_page(skb_shinfo(skb)->frags[i].page); 1261 eat -= skb_shinfo(skb)->frags[i].size; 1262 } else { 1263 skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i]; 1264 if (eat) { 1265 skb_shinfo(skb)->frags[k].page_offset += eat; 1266 skb_shinfo(skb)->frags[k].size -= eat; 1267 eat = 0; 1268 } 1269 k++; 1270 } 1271 } 1272 skb_shinfo(skb)->nr_frags = k; 1273 1274 skb->tail += delta; 1275 skb->data_len -= delta; 1276 1277 return skb_tail_pointer(skb); 1278 } 1279 EXPORT_SYMBOL(__pskb_pull_tail); 1280 1281 /* Copy some data bits from skb to kernel buffer. */ 1282 1283 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len) 1284 { 1285 int i, copy; 1286 int start = skb_headlen(skb); 1287 1288 if (offset > (int)skb->len - len) 1289 goto fault; 1290 1291 /* Copy header. */ 1292 if ((copy = start - offset) > 0) { 1293 if (copy > len) 1294 copy = len; 1295 skb_copy_from_linear_data_offset(skb, offset, to, copy); 1296 if ((len -= copy) == 0) 1297 return 0; 1298 offset += copy; 1299 to += copy; 1300 } 1301 1302 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1303 int end; 1304 1305 WARN_ON(start > offset + len); 1306 1307 end = start + skb_shinfo(skb)->frags[i].size; 1308 if ((copy = end - offset) > 0) { 1309 u8 *vaddr; 1310 1311 if (copy > len) 1312 copy = len; 1313 1314 vaddr = kmap_skb_frag(&skb_shinfo(skb)->frags[i]); 1315 memcpy(to, 1316 vaddr + skb_shinfo(skb)->frags[i].page_offset+ 1317 offset - start, copy); 1318 kunmap_skb_frag(vaddr); 1319 1320 if ((len -= copy) == 0) 1321 return 0; 1322 offset += copy; 1323 to += copy; 1324 } 1325 start = end; 1326 } 1327 1328 if (skb_shinfo(skb)->frag_list) { 1329 struct sk_buff *list = skb_shinfo(skb)->frag_list; 1330 1331 for (; list; list = list->next) { 1332 int end; 1333 1334 WARN_ON(start > offset + len); 1335 1336 end = start + list->len; 1337 if ((copy = end - offset) > 0) { 1338 if (copy > len) 1339 copy = len; 1340 if (skb_copy_bits(list, offset - start, 1341 to, copy)) 1342 goto fault; 1343 if ((len -= copy) == 0) 1344 return 0; 1345 offset += copy; 1346 to += copy; 1347 } 1348 start = end; 1349 } 1350 } 1351 if (!len) 1352 return 0; 1353 1354 fault: 1355 return -EFAULT; 1356 } 1357 EXPORT_SYMBOL(skb_copy_bits); 1358 1359 /* 1360 * Callback from splice_to_pipe(), if we need to release some pages 1361 * at the end of the spd in case we error'ed out in filling the pipe. 1362 */ 1363 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i) 1364 { 1365 put_page(spd->pages[i]); 1366 } 1367 1368 static inline struct page *linear_to_page(struct page *page, unsigned int *len, 1369 unsigned int *offset, 1370 struct sk_buff *skb, struct sock *sk) 1371 { 1372 struct page *p = sk->sk_sndmsg_page; 1373 unsigned int off; 1374 1375 if (!p) { 1376 new_page: 1377 p = sk->sk_sndmsg_page = alloc_pages(sk->sk_allocation, 0); 1378 if (!p) 1379 return NULL; 1380 1381 off = sk->sk_sndmsg_off = 0; 1382 /* hold one ref to this page until it's full */ 1383 } else { 1384 unsigned int mlen; 1385 1386 off = sk->sk_sndmsg_off; 1387 mlen = PAGE_SIZE - off; 1388 if (mlen < 64 && mlen < *len) { 1389 put_page(p); 1390 goto new_page; 1391 } 1392 1393 *len = min_t(unsigned int, *len, mlen); 1394 } 1395 1396 memcpy(page_address(p) + off, page_address(page) + *offset, *len); 1397 sk->sk_sndmsg_off += *len; 1398 *offset = off; 1399 get_page(p); 1400 1401 return p; 1402 } 1403 1404 /* 1405 * Fill page/offset/length into spd, if it can hold more pages. 1406 */ 1407 static inline int spd_fill_page(struct splice_pipe_desc *spd, struct page *page, 1408 unsigned int *len, unsigned int offset, 1409 struct sk_buff *skb, int linear, 1410 struct sock *sk) 1411 { 1412 if (unlikely(spd->nr_pages == PIPE_BUFFERS)) 1413 return 1; 1414 1415 if (linear) { 1416 page = linear_to_page(page, len, &offset, skb, sk); 1417 if (!page) 1418 return 1; 1419 } else 1420 get_page(page); 1421 1422 spd->pages[spd->nr_pages] = page; 1423 spd->partial[spd->nr_pages].len = *len; 1424 spd->partial[spd->nr_pages].offset = offset; 1425 spd->nr_pages++; 1426 1427 return 0; 1428 } 1429 1430 static inline void __segment_seek(struct page **page, unsigned int *poff, 1431 unsigned int *plen, unsigned int off) 1432 { 1433 unsigned long n; 1434 1435 *poff += off; 1436 n = *poff / PAGE_SIZE; 1437 if (n) 1438 *page = nth_page(*page, n); 1439 1440 *poff = *poff % PAGE_SIZE; 1441 *plen -= off; 1442 } 1443 1444 static inline int __splice_segment(struct page *page, unsigned int poff, 1445 unsigned int plen, unsigned int *off, 1446 unsigned int *len, struct sk_buff *skb, 1447 struct splice_pipe_desc *spd, int linear, 1448 struct sock *sk) 1449 { 1450 if (!*len) 1451 return 1; 1452 1453 /* skip this segment if already processed */ 1454 if (*off >= plen) { 1455 *off -= plen; 1456 return 0; 1457 } 1458 1459 /* ignore any bits we already processed */ 1460 if (*off) { 1461 __segment_seek(&page, &poff, &plen, *off); 1462 *off = 0; 1463 } 1464 1465 do { 1466 unsigned int flen = min(*len, plen); 1467 1468 /* the linear region may spread across several pages */ 1469 flen = min_t(unsigned int, flen, PAGE_SIZE - poff); 1470 1471 if (spd_fill_page(spd, page, &flen, poff, skb, linear, sk)) 1472 return 1; 1473 1474 __segment_seek(&page, &poff, &plen, flen); 1475 *len -= flen; 1476 1477 } while (*len && plen); 1478 1479 return 0; 1480 } 1481 1482 /* 1483 * Map linear and fragment data from the skb to spd. It reports failure if the 1484 * pipe is full or if we already spliced the requested length. 1485 */ 1486 static int __skb_splice_bits(struct sk_buff *skb, unsigned int *offset, 1487 unsigned int *len, struct splice_pipe_desc *spd, 1488 struct sock *sk) 1489 { 1490 int seg; 1491 1492 /* 1493 * map the linear part 1494 */ 1495 if (__splice_segment(virt_to_page(skb->data), 1496 (unsigned long) skb->data & (PAGE_SIZE - 1), 1497 skb_headlen(skb), 1498 offset, len, skb, spd, 1, sk)) 1499 return 1; 1500 1501 /* 1502 * then map the fragments 1503 */ 1504 for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) { 1505 const skb_frag_t *f = &skb_shinfo(skb)->frags[seg]; 1506 1507 if (__splice_segment(f->page, f->page_offset, f->size, 1508 offset, len, skb, spd, 0, sk)) 1509 return 1; 1510 } 1511 1512 return 0; 1513 } 1514 1515 /* 1516 * Map data from the skb to a pipe. Should handle both the linear part, 1517 * the fragments, and the frag list. It does NOT handle frag lists within 1518 * the frag list, if such a thing exists. We'd probably need to recurse to 1519 * handle that cleanly. 1520 */ 1521 int skb_splice_bits(struct sk_buff *skb, unsigned int offset, 1522 struct pipe_inode_info *pipe, unsigned int tlen, 1523 unsigned int flags) 1524 { 1525 struct partial_page partial[PIPE_BUFFERS]; 1526 struct page *pages[PIPE_BUFFERS]; 1527 struct splice_pipe_desc spd = { 1528 .pages = pages, 1529 .partial = partial, 1530 .flags = flags, 1531 .ops = &sock_pipe_buf_ops, 1532 .spd_release = sock_spd_release, 1533 }; 1534 struct sock *sk = skb->sk; 1535 1536 /* 1537 * __skb_splice_bits() only fails if the output has no room left, 1538 * so no point in going over the frag_list for the error case. 1539 */ 1540 if (__skb_splice_bits(skb, &offset, &tlen, &spd, sk)) 1541 goto done; 1542 else if (!tlen) 1543 goto done; 1544 1545 /* 1546 * now see if we have a frag_list to map 1547 */ 1548 if (skb_shinfo(skb)->frag_list) { 1549 struct sk_buff *list = skb_shinfo(skb)->frag_list; 1550 1551 for (; list && tlen; list = list->next) { 1552 if (__skb_splice_bits(list, &offset, &tlen, &spd, sk)) 1553 break; 1554 } 1555 } 1556 1557 done: 1558 if (spd.nr_pages) { 1559 int ret; 1560 1561 /* 1562 * Drop the socket lock, otherwise we have reverse 1563 * locking dependencies between sk_lock and i_mutex 1564 * here as compared to sendfile(). We enter here 1565 * with the socket lock held, and splice_to_pipe() will 1566 * grab the pipe inode lock. For sendfile() emulation, 1567 * we call into ->sendpage() with the i_mutex lock held 1568 * and networking will grab the socket lock. 1569 */ 1570 release_sock(sk); 1571 ret = splice_to_pipe(pipe, &spd); 1572 lock_sock(sk); 1573 return ret; 1574 } 1575 1576 return 0; 1577 } 1578 1579 /** 1580 * skb_store_bits - store bits from kernel buffer to skb 1581 * @skb: destination buffer 1582 * @offset: offset in destination 1583 * @from: source buffer 1584 * @len: number of bytes to copy 1585 * 1586 * Copy the specified number of bytes from the source buffer to the 1587 * destination skb. This function handles all the messy bits of 1588 * traversing fragment lists and such. 1589 */ 1590 1591 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len) 1592 { 1593 int i, copy; 1594 int start = skb_headlen(skb); 1595 1596 if (offset > (int)skb->len - len) 1597 goto fault; 1598 1599 if ((copy = start - offset) > 0) { 1600 if (copy > len) 1601 copy = len; 1602 skb_copy_to_linear_data_offset(skb, offset, from, copy); 1603 if ((len -= copy) == 0) 1604 return 0; 1605 offset += copy; 1606 from += copy; 1607 } 1608 1609 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1610 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 1611 int end; 1612 1613 WARN_ON(start > offset + len); 1614 1615 end = start + frag->size; 1616 if ((copy = end - offset) > 0) { 1617 u8 *vaddr; 1618 1619 if (copy > len) 1620 copy = len; 1621 1622 vaddr = kmap_skb_frag(frag); 1623 memcpy(vaddr + frag->page_offset + offset - start, 1624 from, copy); 1625 kunmap_skb_frag(vaddr); 1626 1627 if ((len -= copy) == 0) 1628 return 0; 1629 offset += copy; 1630 from += copy; 1631 } 1632 start = end; 1633 } 1634 1635 if (skb_shinfo(skb)->frag_list) { 1636 struct sk_buff *list = skb_shinfo(skb)->frag_list; 1637 1638 for (; list; list = list->next) { 1639 int end; 1640 1641 WARN_ON(start > offset + len); 1642 1643 end = start + list->len; 1644 if ((copy = end - offset) > 0) { 1645 if (copy > len) 1646 copy = len; 1647 if (skb_store_bits(list, offset - start, 1648 from, copy)) 1649 goto fault; 1650 if ((len -= copy) == 0) 1651 return 0; 1652 offset += copy; 1653 from += copy; 1654 } 1655 start = end; 1656 } 1657 } 1658 if (!len) 1659 return 0; 1660 1661 fault: 1662 return -EFAULT; 1663 } 1664 EXPORT_SYMBOL(skb_store_bits); 1665 1666 /* Checksum skb data. */ 1667 1668 __wsum skb_checksum(const struct sk_buff *skb, int offset, 1669 int len, __wsum csum) 1670 { 1671 int start = skb_headlen(skb); 1672 int i, copy = start - offset; 1673 int pos = 0; 1674 1675 /* Checksum header. */ 1676 if (copy > 0) { 1677 if (copy > len) 1678 copy = len; 1679 csum = csum_partial(skb->data + offset, copy, csum); 1680 if ((len -= copy) == 0) 1681 return csum; 1682 offset += copy; 1683 pos = copy; 1684 } 1685 1686 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1687 int end; 1688 1689 WARN_ON(start > offset + len); 1690 1691 end = start + skb_shinfo(skb)->frags[i].size; 1692 if ((copy = end - offset) > 0) { 1693 __wsum csum2; 1694 u8 *vaddr; 1695 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 1696 1697 if (copy > len) 1698 copy = len; 1699 vaddr = kmap_skb_frag(frag); 1700 csum2 = csum_partial(vaddr + frag->page_offset + 1701 offset - start, copy, 0); 1702 kunmap_skb_frag(vaddr); 1703 csum = csum_block_add(csum, csum2, pos); 1704 if (!(len -= copy)) 1705 return csum; 1706 offset += copy; 1707 pos += copy; 1708 } 1709 start = end; 1710 } 1711 1712 if (skb_shinfo(skb)->frag_list) { 1713 struct sk_buff *list = skb_shinfo(skb)->frag_list; 1714 1715 for (; list; list = list->next) { 1716 int end; 1717 1718 WARN_ON(start > offset + len); 1719 1720 end = start + list->len; 1721 if ((copy = end - offset) > 0) { 1722 __wsum csum2; 1723 if (copy > len) 1724 copy = len; 1725 csum2 = skb_checksum(list, offset - start, 1726 copy, 0); 1727 csum = csum_block_add(csum, csum2, pos); 1728 if ((len -= copy) == 0) 1729 return csum; 1730 offset += copy; 1731 pos += copy; 1732 } 1733 start = end; 1734 } 1735 } 1736 BUG_ON(len); 1737 1738 return csum; 1739 } 1740 EXPORT_SYMBOL(skb_checksum); 1741 1742 /* Both of above in one bottle. */ 1743 1744 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, 1745 u8 *to, int len, __wsum csum) 1746 { 1747 int start = skb_headlen(skb); 1748 int i, copy = start - offset; 1749 int pos = 0; 1750 1751 /* Copy header. */ 1752 if (copy > 0) { 1753 if (copy > len) 1754 copy = len; 1755 csum = csum_partial_copy_nocheck(skb->data + offset, to, 1756 copy, csum); 1757 if ((len -= copy) == 0) 1758 return csum; 1759 offset += copy; 1760 to += copy; 1761 pos = copy; 1762 } 1763 1764 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1765 int end; 1766 1767 WARN_ON(start > offset + len); 1768 1769 end = start + skb_shinfo(skb)->frags[i].size; 1770 if ((copy = end - offset) > 0) { 1771 __wsum csum2; 1772 u8 *vaddr; 1773 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 1774 1775 if (copy > len) 1776 copy = len; 1777 vaddr = kmap_skb_frag(frag); 1778 csum2 = csum_partial_copy_nocheck(vaddr + 1779 frag->page_offset + 1780 offset - start, to, 1781 copy, 0); 1782 kunmap_skb_frag(vaddr); 1783 csum = csum_block_add(csum, csum2, pos); 1784 if (!(len -= copy)) 1785 return csum; 1786 offset += copy; 1787 to += copy; 1788 pos += copy; 1789 } 1790 start = end; 1791 } 1792 1793 if (skb_shinfo(skb)->frag_list) { 1794 struct sk_buff *list = skb_shinfo(skb)->frag_list; 1795 1796 for (; list; list = list->next) { 1797 __wsum csum2; 1798 int end; 1799 1800 WARN_ON(start > offset + len); 1801 1802 end = start + list->len; 1803 if ((copy = end - offset) > 0) { 1804 if (copy > len) 1805 copy = len; 1806 csum2 = skb_copy_and_csum_bits(list, 1807 offset - start, 1808 to, copy, 0); 1809 csum = csum_block_add(csum, csum2, pos); 1810 if ((len -= copy) == 0) 1811 return csum; 1812 offset += copy; 1813 to += copy; 1814 pos += copy; 1815 } 1816 start = end; 1817 } 1818 } 1819 BUG_ON(len); 1820 return csum; 1821 } 1822 EXPORT_SYMBOL(skb_copy_and_csum_bits); 1823 1824 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to) 1825 { 1826 __wsum csum; 1827 long csstart; 1828 1829 if (skb->ip_summed == CHECKSUM_PARTIAL) 1830 csstart = skb->csum_start - skb_headroom(skb); 1831 else 1832 csstart = skb_headlen(skb); 1833 1834 BUG_ON(csstart > skb_headlen(skb)); 1835 1836 skb_copy_from_linear_data(skb, to, csstart); 1837 1838 csum = 0; 1839 if (csstart != skb->len) 1840 csum = skb_copy_and_csum_bits(skb, csstart, to + csstart, 1841 skb->len - csstart, 0); 1842 1843 if (skb->ip_summed == CHECKSUM_PARTIAL) { 1844 long csstuff = csstart + skb->csum_offset; 1845 1846 *((__sum16 *)(to + csstuff)) = csum_fold(csum); 1847 } 1848 } 1849 EXPORT_SYMBOL(skb_copy_and_csum_dev); 1850 1851 /** 1852 * skb_dequeue - remove from the head of the queue 1853 * @list: list to dequeue from 1854 * 1855 * Remove the head of the list. The list lock is taken so the function 1856 * may be used safely with other locking list functions. The head item is 1857 * returned or %NULL if the list is empty. 1858 */ 1859 1860 struct sk_buff *skb_dequeue(struct sk_buff_head *list) 1861 { 1862 unsigned long flags; 1863 struct sk_buff *result; 1864 1865 spin_lock_irqsave(&list->lock, flags); 1866 result = __skb_dequeue(list); 1867 spin_unlock_irqrestore(&list->lock, flags); 1868 return result; 1869 } 1870 EXPORT_SYMBOL(skb_dequeue); 1871 1872 /** 1873 * skb_dequeue_tail - remove from the tail of the queue 1874 * @list: list to dequeue from 1875 * 1876 * Remove the tail of the list. The list lock is taken so the function 1877 * may be used safely with other locking list functions. The tail item is 1878 * returned or %NULL if the list is empty. 1879 */ 1880 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list) 1881 { 1882 unsigned long flags; 1883 struct sk_buff *result; 1884 1885 spin_lock_irqsave(&list->lock, flags); 1886 result = __skb_dequeue_tail(list); 1887 spin_unlock_irqrestore(&list->lock, flags); 1888 return result; 1889 } 1890 EXPORT_SYMBOL(skb_dequeue_tail); 1891 1892 /** 1893 * skb_queue_purge - empty a list 1894 * @list: list to empty 1895 * 1896 * Delete all buffers on an &sk_buff list. Each buffer is removed from 1897 * the list and one reference dropped. This function takes the list 1898 * lock and is atomic with respect to other list locking functions. 1899 */ 1900 void skb_queue_purge(struct sk_buff_head *list) 1901 { 1902 struct sk_buff *skb; 1903 while ((skb = skb_dequeue(list)) != NULL) 1904 kfree_skb(skb); 1905 } 1906 EXPORT_SYMBOL(skb_queue_purge); 1907 1908 /** 1909 * skb_queue_head - queue a buffer at the list head 1910 * @list: list to use 1911 * @newsk: buffer to queue 1912 * 1913 * Queue a buffer at the start of the list. This function takes the 1914 * list lock and can be used safely with other locking &sk_buff functions 1915 * safely. 1916 * 1917 * A buffer cannot be placed on two lists at the same time. 1918 */ 1919 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk) 1920 { 1921 unsigned long flags; 1922 1923 spin_lock_irqsave(&list->lock, flags); 1924 __skb_queue_head(list, newsk); 1925 spin_unlock_irqrestore(&list->lock, flags); 1926 } 1927 EXPORT_SYMBOL(skb_queue_head); 1928 1929 /** 1930 * skb_queue_tail - queue a buffer at the list tail 1931 * @list: list to use 1932 * @newsk: buffer to queue 1933 * 1934 * Queue a buffer at the tail of the list. This function takes the 1935 * list lock and can be used safely with other locking &sk_buff functions 1936 * safely. 1937 * 1938 * A buffer cannot be placed on two lists at the same time. 1939 */ 1940 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk) 1941 { 1942 unsigned long flags; 1943 1944 spin_lock_irqsave(&list->lock, flags); 1945 __skb_queue_tail(list, newsk); 1946 spin_unlock_irqrestore(&list->lock, flags); 1947 } 1948 EXPORT_SYMBOL(skb_queue_tail); 1949 1950 /** 1951 * skb_unlink - remove a buffer from a list 1952 * @skb: buffer to remove 1953 * @list: list to use 1954 * 1955 * Remove a packet from a list. The list locks are taken and this 1956 * function is atomic with respect to other list locked calls 1957 * 1958 * You must know what list the SKB is on. 1959 */ 1960 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list) 1961 { 1962 unsigned long flags; 1963 1964 spin_lock_irqsave(&list->lock, flags); 1965 __skb_unlink(skb, list); 1966 spin_unlock_irqrestore(&list->lock, flags); 1967 } 1968 EXPORT_SYMBOL(skb_unlink); 1969 1970 /** 1971 * skb_append - append a buffer 1972 * @old: buffer to insert after 1973 * @newsk: buffer to insert 1974 * @list: list to use 1975 * 1976 * Place a packet after a given packet in a list. The list locks are taken 1977 * and this function is atomic with respect to other list locked calls. 1978 * A buffer cannot be placed on two lists at the same time. 1979 */ 1980 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list) 1981 { 1982 unsigned long flags; 1983 1984 spin_lock_irqsave(&list->lock, flags); 1985 __skb_queue_after(list, old, newsk); 1986 spin_unlock_irqrestore(&list->lock, flags); 1987 } 1988 EXPORT_SYMBOL(skb_append); 1989 1990 /** 1991 * skb_insert - insert a buffer 1992 * @old: buffer to insert before 1993 * @newsk: buffer to insert 1994 * @list: list to use 1995 * 1996 * Place a packet before a given packet in a list. The list locks are 1997 * taken and this function is atomic with respect to other list locked 1998 * calls. 1999 * 2000 * A buffer cannot be placed on two lists at the same time. 2001 */ 2002 void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list) 2003 { 2004 unsigned long flags; 2005 2006 spin_lock_irqsave(&list->lock, flags); 2007 __skb_insert(newsk, old->prev, old, list); 2008 spin_unlock_irqrestore(&list->lock, flags); 2009 } 2010 EXPORT_SYMBOL(skb_insert); 2011 2012 static inline void skb_split_inside_header(struct sk_buff *skb, 2013 struct sk_buff* skb1, 2014 const u32 len, const int pos) 2015 { 2016 int i; 2017 2018 skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len), 2019 pos - len); 2020 /* And move data appendix as is. */ 2021 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 2022 skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i]; 2023 2024 skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags; 2025 skb_shinfo(skb)->nr_frags = 0; 2026 skb1->data_len = skb->data_len; 2027 skb1->len += skb1->data_len; 2028 skb->data_len = 0; 2029 skb->len = len; 2030 skb_set_tail_pointer(skb, len); 2031 } 2032 2033 static inline void skb_split_no_header(struct sk_buff *skb, 2034 struct sk_buff* skb1, 2035 const u32 len, int pos) 2036 { 2037 int i, k = 0; 2038 const int nfrags = skb_shinfo(skb)->nr_frags; 2039 2040 skb_shinfo(skb)->nr_frags = 0; 2041 skb1->len = skb1->data_len = skb->len - len; 2042 skb->len = len; 2043 skb->data_len = len - pos; 2044 2045 for (i = 0; i < nfrags; i++) { 2046 int size = skb_shinfo(skb)->frags[i].size; 2047 2048 if (pos + size > len) { 2049 skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i]; 2050 2051 if (pos < len) { 2052 /* Split frag. 2053 * We have two variants in this case: 2054 * 1. Move all the frag to the second 2055 * part, if it is possible. F.e. 2056 * this approach is mandatory for TUX, 2057 * where splitting is expensive. 2058 * 2. Split is accurately. We make this. 2059 */ 2060 get_page(skb_shinfo(skb)->frags[i].page); 2061 skb_shinfo(skb1)->frags[0].page_offset += len - pos; 2062 skb_shinfo(skb1)->frags[0].size -= len - pos; 2063 skb_shinfo(skb)->frags[i].size = len - pos; 2064 skb_shinfo(skb)->nr_frags++; 2065 } 2066 k++; 2067 } else 2068 skb_shinfo(skb)->nr_frags++; 2069 pos += size; 2070 } 2071 skb_shinfo(skb1)->nr_frags = k; 2072 } 2073 2074 /** 2075 * skb_split - Split fragmented skb to two parts at length len. 2076 * @skb: the buffer to split 2077 * @skb1: the buffer to receive the second part 2078 * @len: new length for skb 2079 */ 2080 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len) 2081 { 2082 int pos = skb_headlen(skb); 2083 2084 if (len < pos) /* Split line is inside header. */ 2085 skb_split_inside_header(skb, skb1, len, pos); 2086 else /* Second chunk has no header, nothing to copy. */ 2087 skb_split_no_header(skb, skb1, len, pos); 2088 } 2089 EXPORT_SYMBOL(skb_split); 2090 2091 /* Shifting from/to a cloned skb is a no-go. 2092 * 2093 * Caller cannot keep skb_shinfo related pointers past calling here! 2094 */ 2095 static int skb_prepare_for_shift(struct sk_buff *skb) 2096 { 2097 return skb_cloned(skb) && pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 2098 } 2099 2100 /** 2101 * skb_shift - Shifts paged data partially from skb to another 2102 * @tgt: buffer into which tail data gets added 2103 * @skb: buffer from which the paged data comes from 2104 * @shiftlen: shift up to this many bytes 2105 * 2106 * Attempts to shift up to shiftlen worth of bytes, which may be less than 2107 * the length of the skb, from tgt to skb. Returns number bytes shifted. 2108 * It's up to caller to free skb if everything was shifted. 2109 * 2110 * If @tgt runs out of frags, the whole operation is aborted. 2111 * 2112 * Skb cannot include anything else but paged data while tgt is allowed 2113 * to have non-paged data as well. 2114 * 2115 * TODO: full sized shift could be optimized but that would need 2116 * specialized skb free'er to handle frags without up-to-date nr_frags. 2117 */ 2118 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen) 2119 { 2120 int from, to, merge, todo; 2121 struct skb_frag_struct *fragfrom, *fragto; 2122 2123 BUG_ON(shiftlen > skb->len); 2124 BUG_ON(skb_headlen(skb)); /* Would corrupt stream */ 2125 2126 todo = shiftlen; 2127 from = 0; 2128 to = skb_shinfo(tgt)->nr_frags; 2129 fragfrom = &skb_shinfo(skb)->frags[from]; 2130 2131 /* Actual merge is delayed until the point when we know we can 2132 * commit all, so that we don't have to undo partial changes 2133 */ 2134 if (!to || 2135 !skb_can_coalesce(tgt, to, fragfrom->page, fragfrom->page_offset)) { 2136 merge = -1; 2137 } else { 2138 merge = to - 1; 2139 2140 todo -= fragfrom->size; 2141 if (todo < 0) { 2142 if (skb_prepare_for_shift(skb) || 2143 skb_prepare_for_shift(tgt)) 2144 return 0; 2145 2146 /* All previous frag pointers might be stale! */ 2147 fragfrom = &skb_shinfo(skb)->frags[from]; 2148 fragto = &skb_shinfo(tgt)->frags[merge]; 2149 2150 fragto->size += shiftlen; 2151 fragfrom->size -= shiftlen; 2152 fragfrom->page_offset += shiftlen; 2153 2154 goto onlymerged; 2155 } 2156 2157 from++; 2158 } 2159 2160 /* Skip full, not-fitting skb to avoid expensive operations */ 2161 if ((shiftlen == skb->len) && 2162 (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to)) 2163 return 0; 2164 2165 if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt)) 2166 return 0; 2167 2168 while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) { 2169 if (to == MAX_SKB_FRAGS) 2170 return 0; 2171 2172 fragfrom = &skb_shinfo(skb)->frags[from]; 2173 fragto = &skb_shinfo(tgt)->frags[to]; 2174 2175 if (todo >= fragfrom->size) { 2176 *fragto = *fragfrom; 2177 todo -= fragfrom->size; 2178 from++; 2179 to++; 2180 2181 } else { 2182 get_page(fragfrom->page); 2183 fragto->page = fragfrom->page; 2184 fragto->page_offset = fragfrom->page_offset; 2185 fragto->size = todo; 2186 2187 fragfrom->page_offset += todo; 2188 fragfrom->size -= todo; 2189 todo = 0; 2190 2191 to++; 2192 break; 2193 } 2194 } 2195 2196 /* Ready to "commit" this state change to tgt */ 2197 skb_shinfo(tgt)->nr_frags = to; 2198 2199 if (merge >= 0) { 2200 fragfrom = &skb_shinfo(skb)->frags[0]; 2201 fragto = &skb_shinfo(tgt)->frags[merge]; 2202 2203 fragto->size += fragfrom->size; 2204 put_page(fragfrom->page); 2205 } 2206 2207 /* Reposition in the original skb */ 2208 to = 0; 2209 while (from < skb_shinfo(skb)->nr_frags) 2210 skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++]; 2211 skb_shinfo(skb)->nr_frags = to; 2212 2213 BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags); 2214 2215 onlymerged: 2216 /* Most likely the tgt won't ever need its checksum anymore, skb on 2217 * the other hand might need it if it needs to be resent 2218 */ 2219 tgt->ip_summed = CHECKSUM_PARTIAL; 2220 skb->ip_summed = CHECKSUM_PARTIAL; 2221 2222 /* Yak, is it really working this way? Some helper please? */ 2223 skb->len -= shiftlen; 2224 skb->data_len -= shiftlen; 2225 skb->truesize -= shiftlen; 2226 tgt->len += shiftlen; 2227 tgt->data_len += shiftlen; 2228 tgt->truesize += shiftlen; 2229 2230 return shiftlen; 2231 } 2232 2233 /** 2234 * skb_prepare_seq_read - Prepare a sequential read of skb data 2235 * @skb: the buffer to read 2236 * @from: lower offset of data to be read 2237 * @to: upper offset of data to be read 2238 * @st: state variable 2239 * 2240 * Initializes the specified state variable. Must be called before 2241 * invoking skb_seq_read() for the first time. 2242 */ 2243 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from, 2244 unsigned int to, struct skb_seq_state *st) 2245 { 2246 st->lower_offset = from; 2247 st->upper_offset = to; 2248 st->root_skb = st->cur_skb = skb; 2249 st->frag_idx = st->stepped_offset = 0; 2250 st->frag_data = NULL; 2251 } 2252 EXPORT_SYMBOL(skb_prepare_seq_read); 2253 2254 /** 2255 * skb_seq_read - Sequentially read skb data 2256 * @consumed: number of bytes consumed by the caller so far 2257 * @data: destination pointer for data to be returned 2258 * @st: state variable 2259 * 2260 * Reads a block of skb data at &consumed relative to the 2261 * lower offset specified to skb_prepare_seq_read(). Assigns 2262 * the head of the data block to &data and returns the length 2263 * of the block or 0 if the end of the skb data or the upper 2264 * offset has been reached. 2265 * 2266 * The caller is not required to consume all of the data 2267 * returned, i.e. &consumed is typically set to the number 2268 * of bytes already consumed and the next call to 2269 * skb_seq_read() will return the remaining part of the block. 2270 * 2271 * Note 1: The size of each block of data returned can be arbitary, 2272 * this limitation is the cost for zerocopy seqeuental 2273 * reads of potentially non linear data. 2274 * 2275 * Note 2: Fragment lists within fragments are not implemented 2276 * at the moment, state->root_skb could be replaced with 2277 * a stack for this purpose. 2278 */ 2279 unsigned int skb_seq_read(unsigned int consumed, const u8 **data, 2280 struct skb_seq_state *st) 2281 { 2282 unsigned int block_limit, abs_offset = consumed + st->lower_offset; 2283 skb_frag_t *frag; 2284 2285 if (unlikely(abs_offset >= st->upper_offset)) 2286 return 0; 2287 2288 next_skb: 2289 block_limit = skb_headlen(st->cur_skb) + st->stepped_offset; 2290 2291 if (abs_offset < block_limit && !st->frag_data) { 2292 *data = st->cur_skb->data + (abs_offset - st->stepped_offset); 2293 return block_limit - abs_offset; 2294 } 2295 2296 if (st->frag_idx == 0 && !st->frag_data) 2297 st->stepped_offset += skb_headlen(st->cur_skb); 2298 2299 while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) { 2300 frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx]; 2301 block_limit = frag->size + st->stepped_offset; 2302 2303 if (abs_offset < block_limit) { 2304 if (!st->frag_data) 2305 st->frag_data = kmap_skb_frag(frag); 2306 2307 *data = (u8 *) st->frag_data + frag->page_offset + 2308 (abs_offset - st->stepped_offset); 2309 2310 return block_limit - abs_offset; 2311 } 2312 2313 if (st->frag_data) { 2314 kunmap_skb_frag(st->frag_data); 2315 st->frag_data = NULL; 2316 } 2317 2318 st->frag_idx++; 2319 st->stepped_offset += frag->size; 2320 } 2321 2322 if (st->frag_data) { 2323 kunmap_skb_frag(st->frag_data); 2324 st->frag_data = NULL; 2325 } 2326 2327 if (st->root_skb == st->cur_skb && 2328 skb_shinfo(st->root_skb)->frag_list) { 2329 st->cur_skb = skb_shinfo(st->root_skb)->frag_list; 2330 st->frag_idx = 0; 2331 goto next_skb; 2332 } else if (st->cur_skb->next) { 2333 st->cur_skb = st->cur_skb->next; 2334 st->frag_idx = 0; 2335 goto next_skb; 2336 } 2337 2338 return 0; 2339 } 2340 EXPORT_SYMBOL(skb_seq_read); 2341 2342 /** 2343 * skb_abort_seq_read - Abort a sequential read of skb data 2344 * @st: state variable 2345 * 2346 * Must be called if skb_seq_read() was not called until it 2347 * returned 0. 2348 */ 2349 void skb_abort_seq_read(struct skb_seq_state *st) 2350 { 2351 if (st->frag_data) 2352 kunmap_skb_frag(st->frag_data); 2353 } 2354 EXPORT_SYMBOL(skb_abort_seq_read); 2355 2356 #define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb)) 2357 2358 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text, 2359 struct ts_config *conf, 2360 struct ts_state *state) 2361 { 2362 return skb_seq_read(offset, text, TS_SKB_CB(state)); 2363 } 2364 2365 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state) 2366 { 2367 skb_abort_seq_read(TS_SKB_CB(state)); 2368 } 2369 2370 /** 2371 * skb_find_text - Find a text pattern in skb data 2372 * @skb: the buffer to look in 2373 * @from: search offset 2374 * @to: search limit 2375 * @config: textsearch configuration 2376 * @state: uninitialized textsearch state variable 2377 * 2378 * Finds a pattern in the skb data according to the specified 2379 * textsearch configuration. Use textsearch_next() to retrieve 2380 * subsequent occurrences of the pattern. Returns the offset 2381 * to the first occurrence or UINT_MAX if no match was found. 2382 */ 2383 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from, 2384 unsigned int to, struct ts_config *config, 2385 struct ts_state *state) 2386 { 2387 unsigned int ret; 2388 2389 config->get_next_block = skb_ts_get_next_block; 2390 config->finish = skb_ts_finish; 2391 2392 skb_prepare_seq_read(skb, from, to, TS_SKB_CB(state)); 2393 2394 ret = textsearch_find(config, state); 2395 return (ret <= to - from ? ret : UINT_MAX); 2396 } 2397 EXPORT_SYMBOL(skb_find_text); 2398 2399 /** 2400 * skb_append_datato_frags: - append the user data to a skb 2401 * @sk: sock structure 2402 * @skb: skb structure to be appened with user data. 2403 * @getfrag: call back function to be used for getting the user data 2404 * @from: pointer to user message iov 2405 * @length: length of the iov message 2406 * 2407 * Description: This procedure append the user data in the fragment part 2408 * of the skb if any page alloc fails user this procedure returns -ENOMEM 2409 */ 2410 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb, 2411 int (*getfrag)(void *from, char *to, int offset, 2412 int len, int odd, struct sk_buff *skb), 2413 void *from, int length) 2414 { 2415 int frg_cnt = 0; 2416 skb_frag_t *frag = NULL; 2417 struct page *page = NULL; 2418 int copy, left; 2419 int offset = 0; 2420 int ret; 2421 2422 do { 2423 /* Return error if we don't have space for new frag */ 2424 frg_cnt = skb_shinfo(skb)->nr_frags; 2425 if (frg_cnt >= MAX_SKB_FRAGS) 2426 return -EFAULT; 2427 2428 /* allocate a new page for next frag */ 2429 page = alloc_pages(sk->sk_allocation, 0); 2430 2431 /* If alloc_page fails just return failure and caller will 2432 * free previous allocated pages by doing kfree_skb() 2433 */ 2434 if (page == NULL) 2435 return -ENOMEM; 2436 2437 /* initialize the next frag */ 2438 sk->sk_sndmsg_page = page; 2439 sk->sk_sndmsg_off = 0; 2440 skb_fill_page_desc(skb, frg_cnt, page, 0, 0); 2441 skb->truesize += PAGE_SIZE; 2442 atomic_add(PAGE_SIZE, &sk->sk_wmem_alloc); 2443 2444 /* get the new initialized frag */ 2445 frg_cnt = skb_shinfo(skb)->nr_frags; 2446 frag = &skb_shinfo(skb)->frags[frg_cnt - 1]; 2447 2448 /* copy the user data to page */ 2449 left = PAGE_SIZE - frag->page_offset; 2450 copy = (length > left)? left : length; 2451 2452 ret = getfrag(from, (page_address(frag->page) + 2453 frag->page_offset + frag->size), 2454 offset, copy, 0, skb); 2455 if (ret < 0) 2456 return -EFAULT; 2457 2458 /* copy was successful so update the size parameters */ 2459 sk->sk_sndmsg_off += copy; 2460 frag->size += copy; 2461 skb->len += copy; 2462 skb->data_len += copy; 2463 offset += copy; 2464 length -= copy; 2465 2466 } while (length > 0); 2467 2468 return 0; 2469 } 2470 EXPORT_SYMBOL(skb_append_datato_frags); 2471 2472 /** 2473 * skb_pull_rcsum - pull skb and update receive checksum 2474 * @skb: buffer to update 2475 * @len: length of data pulled 2476 * 2477 * This function performs an skb_pull on the packet and updates 2478 * the CHECKSUM_COMPLETE checksum. It should be used on 2479 * receive path processing instead of skb_pull unless you know 2480 * that the checksum difference is zero (e.g., a valid IP header) 2481 * or you are setting ip_summed to CHECKSUM_NONE. 2482 */ 2483 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len) 2484 { 2485 BUG_ON(len > skb->len); 2486 skb->len -= len; 2487 BUG_ON(skb->len < skb->data_len); 2488 skb_postpull_rcsum(skb, skb->data, len); 2489 return skb->data += len; 2490 } 2491 2492 EXPORT_SYMBOL_GPL(skb_pull_rcsum); 2493 2494 /** 2495 * skb_segment - Perform protocol segmentation on skb. 2496 * @skb: buffer to segment 2497 * @features: features for the output path (see dev->features) 2498 * 2499 * This function performs segmentation on the given skb. It returns 2500 * a pointer to the first in a list of new skbs for the segments. 2501 * In case of error it returns ERR_PTR(err). 2502 */ 2503 struct sk_buff *skb_segment(struct sk_buff *skb, int features) 2504 { 2505 struct sk_buff *segs = NULL; 2506 struct sk_buff *tail = NULL; 2507 struct sk_buff *fskb = skb_shinfo(skb)->frag_list; 2508 unsigned int mss = skb_shinfo(skb)->gso_size; 2509 unsigned int doffset = skb->data - skb_mac_header(skb); 2510 unsigned int offset = doffset; 2511 unsigned int headroom; 2512 unsigned int len; 2513 int sg = features & NETIF_F_SG; 2514 int nfrags = skb_shinfo(skb)->nr_frags; 2515 int err = -ENOMEM; 2516 int i = 0; 2517 int pos; 2518 2519 __skb_push(skb, doffset); 2520 headroom = skb_headroom(skb); 2521 pos = skb_headlen(skb); 2522 2523 do { 2524 struct sk_buff *nskb; 2525 skb_frag_t *frag; 2526 int hsize; 2527 int size; 2528 2529 len = skb->len - offset; 2530 if (len > mss) 2531 len = mss; 2532 2533 hsize = skb_headlen(skb) - offset; 2534 if (hsize < 0) 2535 hsize = 0; 2536 if (hsize > len || !sg) 2537 hsize = len; 2538 2539 if (!hsize && i >= nfrags) { 2540 BUG_ON(fskb->len != len); 2541 2542 pos += len; 2543 nskb = skb_clone(fskb, GFP_ATOMIC); 2544 fskb = fskb->next; 2545 2546 if (unlikely(!nskb)) 2547 goto err; 2548 2549 hsize = skb_end_pointer(nskb) - nskb->head; 2550 if (skb_cow_head(nskb, doffset + headroom)) { 2551 kfree_skb(nskb); 2552 goto err; 2553 } 2554 2555 nskb->truesize += skb_end_pointer(nskb) - nskb->head - 2556 hsize; 2557 skb_release_head_state(nskb); 2558 __skb_push(nskb, doffset); 2559 } else { 2560 nskb = alloc_skb(hsize + doffset + headroom, 2561 GFP_ATOMIC); 2562 2563 if (unlikely(!nskb)) 2564 goto err; 2565 2566 skb_reserve(nskb, headroom); 2567 __skb_put(nskb, doffset); 2568 } 2569 2570 if (segs) 2571 tail->next = nskb; 2572 else 2573 segs = nskb; 2574 tail = nskb; 2575 2576 __copy_skb_header(nskb, skb); 2577 nskb->mac_len = skb->mac_len; 2578 2579 skb_reset_mac_header(nskb); 2580 skb_set_network_header(nskb, skb->mac_len); 2581 nskb->transport_header = (nskb->network_header + 2582 skb_network_header_len(skb)); 2583 skb_copy_from_linear_data(skb, nskb->data, doffset); 2584 2585 if (fskb != skb_shinfo(skb)->frag_list) 2586 continue; 2587 2588 if (!sg) { 2589 nskb->ip_summed = CHECKSUM_NONE; 2590 nskb->csum = skb_copy_and_csum_bits(skb, offset, 2591 skb_put(nskb, len), 2592 len, 0); 2593 continue; 2594 } 2595 2596 frag = skb_shinfo(nskb)->frags; 2597 2598 skb_copy_from_linear_data_offset(skb, offset, 2599 skb_put(nskb, hsize), hsize); 2600 2601 while (pos < offset + len && i < nfrags) { 2602 *frag = skb_shinfo(skb)->frags[i]; 2603 get_page(frag->page); 2604 size = frag->size; 2605 2606 if (pos < offset) { 2607 frag->page_offset += offset - pos; 2608 frag->size -= offset - pos; 2609 } 2610 2611 skb_shinfo(nskb)->nr_frags++; 2612 2613 if (pos + size <= offset + len) { 2614 i++; 2615 pos += size; 2616 } else { 2617 frag->size -= pos + size - (offset + len); 2618 goto skip_fraglist; 2619 } 2620 2621 frag++; 2622 } 2623 2624 if (pos < offset + len) { 2625 struct sk_buff *fskb2 = fskb; 2626 2627 BUG_ON(pos + fskb->len != offset + len); 2628 2629 pos += fskb->len; 2630 fskb = fskb->next; 2631 2632 if (fskb2->next) { 2633 fskb2 = skb_clone(fskb2, GFP_ATOMIC); 2634 if (!fskb2) 2635 goto err; 2636 } else 2637 skb_get(fskb2); 2638 2639 BUG_ON(skb_shinfo(nskb)->frag_list); 2640 skb_shinfo(nskb)->frag_list = fskb2; 2641 } 2642 2643 skip_fraglist: 2644 nskb->data_len = len - hsize; 2645 nskb->len += nskb->data_len; 2646 nskb->truesize += nskb->data_len; 2647 } while ((offset += len) < skb->len); 2648 2649 return segs; 2650 2651 err: 2652 while ((skb = segs)) { 2653 segs = skb->next; 2654 kfree_skb(skb); 2655 } 2656 return ERR_PTR(err); 2657 } 2658 EXPORT_SYMBOL_GPL(skb_segment); 2659 2660 int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb) 2661 { 2662 struct sk_buff *p = *head; 2663 struct sk_buff *nskb; 2664 unsigned int headroom; 2665 unsigned int len = skb_gro_len(skb); 2666 2667 if (p->len + len >= 65536) 2668 return -E2BIG; 2669 2670 if (skb_shinfo(p)->frag_list) 2671 goto merge; 2672 else if (skb_headlen(skb) <= skb_gro_offset(skb)) { 2673 if (skb_shinfo(p)->nr_frags + skb_shinfo(skb)->nr_frags > 2674 MAX_SKB_FRAGS) 2675 return -E2BIG; 2676 2677 skb_shinfo(skb)->frags[0].page_offset += 2678 skb_gro_offset(skb) - skb_headlen(skb); 2679 skb_shinfo(skb)->frags[0].size -= 2680 skb_gro_offset(skb) - skb_headlen(skb); 2681 2682 memcpy(skb_shinfo(p)->frags + skb_shinfo(p)->nr_frags, 2683 skb_shinfo(skb)->frags, 2684 skb_shinfo(skb)->nr_frags * sizeof(skb_frag_t)); 2685 2686 skb_shinfo(p)->nr_frags += skb_shinfo(skb)->nr_frags; 2687 skb_shinfo(skb)->nr_frags = 0; 2688 2689 skb->truesize -= skb->data_len; 2690 skb->len -= skb->data_len; 2691 skb->data_len = 0; 2692 2693 NAPI_GRO_CB(skb)->free = 1; 2694 goto done; 2695 } 2696 2697 headroom = skb_headroom(p); 2698 nskb = netdev_alloc_skb(p->dev, headroom + skb_gro_offset(p)); 2699 if (unlikely(!nskb)) 2700 return -ENOMEM; 2701 2702 __copy_skb_header(nskb, p); 2703 nskb->mac_len = p->mac_len; 2704 2705 skb_reserve(nskb, headroom); 2706 __skb_put(nskb, skb_gro_offset(p)); 2707 2708 skb_set_mac_header(nskb, skb_mac_header(p) - p->data); 2709 skb_set_network_header(nskb, skb_network_offset(p)); 2710 skb_set_transport_header(nskb, skb_transport_offset(p)); 2711 2712 __skb_pull(p, skb_gro_offset(p)); 2713 memcpy(skb_mac_header(nskb), skb_mac_header(p), 2714 p->data - skb_mac_header(p)); 2715 2716 *NAPI_GRO_CB(nskb) = *NAPI_GRO_CB(p); 2717 skb_shinfo(nskb)->frag_list = p; 2718 skb_shinfo(nskb)->gso_size = skb_shinfo(p)->gso_size; 2719 skb_header_release(p); 2720 nskb->prev = p; 2721 2722 nskb->data_len += p->len; 2723 nskb->truesize += p->len; 2724 nskb->len += p->len; 2725 2726 *head = nskb; 2727 nskb->next = p->next; 2728 p->next = NULL; 2729 2730 p = nskb; 2731 2732 merge: 2733 if (skb_gro_offset(skb) > skb_headlen(skb)) { 2734 skb_shinfo(skb)->frags[0].page_offset += 2735 skb_gro_offset(skb) - skb_headlen(skb); 2736 skb_shinfo(skb)->frags[0].size -= 2737 skb_gro_offset(skb) - skb_headlen(skb); 2738 skb_gro_reset_offset(skb); 2739 skb_gro_pull(skb, skb_headlen(skb)); 2740 } 2741 2742 __skb_pull(skb, skb_gro_offset(skb)); 2743 2744 p->prev->next = skb; 2745 p->prev = skb; 2746 skb_header_release(skb); 2747 2748 done: 2749 NAPI_GRO_CB(p)->count++; 2750 p->data_len += len; 2751 p->truesize += len; 2752 p->len += len; 2753 2754 NAPI_GRO_CB(skb)->same_flow = 1; 2755 return 0; 2756 } 2757 EXPORT_SYMBOL_GPL(skb_gro_receive); 2758 2759 void __init skb_init(void) 2760 { 2761 skbuff_head_cache = kmem_cache_create("skbuff_head_cache", 2762 sizeof(struct sk_buff), 2763 0, 2764 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 2765 NULL); 2766 skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache", 2767 (2*sizeof(struct sk_buff)) + 2768 sizeof(atomic_t), 2769 0, 2770 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 2771 NULL); 2772 } 2773 2774 /** 2775 * skb_to_sgvec - Fill a scatter-gather list from a socket buffer 2776 * @skb: Socket buffer containing the buffers to be mapped 2777 * @sg: The scatter-gather list to map into 2778 * @offset: The offset into the buffer's contents to start mapping 2779 * @len: Length of buffer space to be mapped 2780 * 2781 * Fill the specified scatter-gather list with mappings/pointers into a 2782 * region of the buffer space attached to a socket buffer. 2783 */ 2784 static int 2785 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len) 2786 { 2787 int start = skb_headlen(skb); 2788 int i, copy = start - offset; 2789 int elt = 0; 2790 2791 if (copy > 0) { 2792 if (copy > len) 2793 copy = len; 2794 sg_set_buf(sg, skb->data + offset, copy); 2795 elt++; 2796 if ((len -= copy) == 0) 2797 return elt; 2798 offset += copy; 2799 } 2800 2801 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2802 int end; 2803 2804 WARN_ON(start > offset + len); 2805 2806 end = start + skb_shinfo(skb)->frags[i].size; 2807 if ((copy = end - offset) > 0) { 2808 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2809 2810 if (copy > len) 2811 copy = len; 2812 sg_set_page(&sg[elt], frag->page, copy, 2813 frag->page_offset+offset-start); 2814 elt++; 2815 if (!(len -= copy)) 2816 return elt; 2817 offset += copy; 2818 } 2819 start = end; 2820 } 2821 2822 if (skb_shinfo(skb)->frag_list) { 2823 struct sk_buff *list = skb_shinfo(skb)->frag_list; 2824 2825 for (; list; list = list->next) { 2826 int end; 2827 2828 WARN_ON(start > offset + len); 2829 2830 end = start + list->len; 2831 if ((copy = end - offset) > 0) { 2832 if (copy > len) 2833 copy = len; 2834 elt += __skb_to_sgvec(list, sg+elt, offset - start, 2835 copy); 2836 if ((len -= copy) == 0) 2837 return elt; 2838 offset += copy; 2839 } 2840 start = end; 2841 } 2842 } 2843 BUG_ON(len); 2844 return elt; 2845 } 2846 2847 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len) 2848 { 2849 int nsg = __skb_to_sgvec(skb, sg, offset, len); 2850 2851 sg_mark_end(&sg[nsg - 1]); 2852 2853 return nsg; 2854 } 2855 EXPORT_SYMBOL_GPL(skb_to_sgvec); 2856 2857 /** 2858 * skb_cow_data - Check that a socket buffer's data buffers are writable 2859 * @skb: The socket buffer to check. 2860 * @tailbits: Amount of trailing space to be added 2861 * @trailer: Returned pointer to the skb where the @tailbits space begins 2862 * 2863 * Make sure that the data buffers attached to a socket buffer are 2864 * writable. If they are not, private copies are made of the data buffers 2865 * and the socket buffer is set to use these instead. 2866 * 2867 * If @tailbits is given, make sure that there is space to write @tailbits 2868 * bytes of data beyond current end of socket buffer. @trailer will be 2869 * set to point to the skb in which this space begins. 2870 * 2871 * The number of scatterlist elements required to completely map the 2872 * COW'd and extended socket buffer will be returned. 2873 */ 2874 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer) 2875 { 2876 int copyflag; 2877 int elt; 2878 struct sk_buff *skb1, **skb_p; 2879 2880 /* If skb is cloned or its head is paged, reallocate 2881 * head pulling out all the pages (pages are considered not writable 2882 * at the moment even if they are anonymous). 2883 */ 2884 if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) && 2885 __pskb_pull_tail(skb, skb_pagelen(skb)-skb_headlen(skb)) == NULL) 2886 return -ENOMEM; 2887 2888 /* Easy case. Most of packets will go this way. */ 2889 if (!skb_shinfo(skb)->frag_list) { 2890 /* A little of trouble, not enough of space for trailer. 2891 * This should not happen, when stack is tuned to generate 2892 * good frames. OK, on miss we reallocate and reserve even more 2893 * space, 128 bytes is fair. */ 2894 2895 if (skb_tailroom(skb) < tailbits && 2896 pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC)) 2897 return -ENOMEM; 2898 2899 /* Voila! */ 2900 *trailer = skb; 2901 return 1; 2902 } 2903 2904 /* Misery. We are in troubles, going to mincer fragments... */ 2905 2906 elt = 1; 2907 skb_p = &skb_shinfo(skb)->frag_list; 2908 copyflag = 0; 2909 2910 while ((skb1 = *skb_p) != NULL) { 2911 int ntail = 0; 2912 2913 /* The fragment is partially pulled by someone, 2914 * this can happen on input. Copy it and everything 2915 * after it. */ 2916 2917 if (skb_shared(skb1)) 2918 copyflag = 1; 2919 2920 /* If the skb is the last, worry about trailer. */ 2921 2922 if (skb1->next == NULL && tailbits) { 2923 if (skb_shinfo(skb1)->nr_frags || 2924 skb_shinfo(skb1)->frag_list || 2925 skb_tailroom(skb1) < tailbits) 2926 ntail = tailbits + 128; 2927 } 2928 2929 if (copyflag || 2930 skb_cloned(skb1) || 2931 ntail || 2932 skb_shinfo(skb1)->nr_frags || 2933 skb_shinfo(skb1)->frag_list) { 2934 struct sk_buff *skb2; 2935 2936 /* Fuck, we are miserable poor guys... */ 2937 if (ntail == 0) 2938 skb2 = skb_copy(skb1, GFP_ATOMIC); 2939 else 2940 skb2 = skb_copy_expand(skb1, 2941 skb_headroom(skb1), 2942 ntail, 2943 GFP_ATOMIC); 2944 if (unlikely(skb2 == NULL)) 2945 return -ENOMEM; 2946 2947 if (skb1->sk) 2948 skb_set_owner_w(skb2, skb1->sk); 2949 2950 /* Looking around. Are we still alive? 2951 * OK, link new skb, drop old one */ 2952 2953 skb2->next = skb1->next; 2954 *skb_p = skb2; 2955 kfree_skb(skb1); 2956 skb1 = skb2; 2957 } 2958 elt++; 2959 *trailer = skb1; 2960 skb_p = &skb1->next; 2961 } 2962 2963 return elt; 2964 } 2965 EXPORT_SYMBOL_GPL(skb_cow_data); 2966 2967 void skb_tstamp_tx(struct sk_buff *orig_skb, 2968 struct skb_shared_hwtstamps *hwtstamps) 2969 { 2970 struct sock *sk = orig_skb->sk; 2971 struct sock_exterr_skb *serr; 2972 struct sk_buff *skb; 2973 int err; 2974 2975 if (!sk) 2976 return; 2977 2978 skb = skb_clone(orig_skb, GFP_ATOMIC); 2979 if (!skb) 2980 return; 2981 2982 if (hwtstamps) { 2983 *skb_hwtstamps(skb) = 2984 *hwtstamps; 2985 } else { 2986 /* 2987 * no hardware time stamps available, 2988 * so keep the skb_shared_tx and only 2989 * store software time stamp 2990 */ 2991 skb->tstamp = ktime_get_real(); 2992 } 2993 2994 serr = SKB_EXT_ERR(skb); 2995 memset(serr, 0, sizeof(*serr)); 2996 serr->ee.ee_errno = ENOMSG; 2997 serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING; 2998 err = sock_queue_err_skb(sk, skb); 2999 if (err) 3000 kfree_skb(skb); 3001 } 3002 EXPORT_SYMBOL_GPL(skb_tstamp_tx); 3003 3004 3005 /** 3006 * skb_partial_csum_set - set up and verify partial csum values for packet 3007 * @skb: the skb to set 3008 * @start: the number of bytes after skb->data to start checksumming. 3009 * @off: the offset from start to place the checksum. 3010 * 3011 * For untrusted partially-checksummed packets, we need to make sure the values 3012 * for skb->csum_start and skb->csum_offset are valid so we don't oops. 3013 * 3014 * This function checks and sets those values and skb->ip_summed: if this 3015 * returns false you should drop the packet. 3016 */ 3017 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off) 3018 { 3019 if (unlikely(start > skb->len - 2) || 3020 unlikely((int)start + off > skb->len - 2)) { 3021 if (net_ratelimit()) 3022 printk(KERN_WARNING 3023 "bad partial csum: csum=%u/%u len=%u\n", 3024 start, off, skb->len); 3025 return false; 3026 } 3027 skb->ip_summed = CHECKSUM_PARTIAL; 3028 skb->csum_start = skb_headroom(skb) + start; 3029 skb->csum_offset = off; 3030 return true; 3031 } 3032 EXPORT_SYMBOL_GPL(skb_partial_csum_set); 3033 3034 void __skb_warn_lro_forwarding(const struct sk_buff *skb) 3035 { 3036 if (net_ratelimit()) 3037 pr_warning("%s: received packets cannot be forwarded" 3038 " while LRO is enabled\n", skb->dev->name); 3039 } 3040 EXPORT_SYMBOL(__skb_warn_lro_forwarding); 3041