xref: /openbmc/linux/net/core/skbuff.c (revision 75f25bd3)
1 /*
2  *	Routines having to do with the 'struct sk_buff' memory handlers.
3  *
4  *	Authors:	Alan Cox <alan@lxorguk.ukuu.org.uk>
5  *			Florian La Roche <rzsfl@rz.uni-sb.de>
6  *
7  *	Fixes:
8  *		Alan Cox	:	Fixed the worst of the load
9  *					balancer bugs.
10  *		Dave Platt	:	Interrupt stacking fix.
11  *	Richard Kooijman	:	Timestamp fixes.
12  *		Alan Cox	:	Changed buffer format.
13  *		Alan Cox	:	destructor hook for AF_UNIX etc.
14  *		Linus Torvalds	:	Better skb_clone.
15  *		Alan Cox	:	Added skb_copy.
16  *		Alan Cox	:	Added all the changed routines Linus
17  *					only put in the headers
18  *		Ray VanTassle	:	Fixed --skb->lock in free
19  *		Alan Cox	:	skb_copy copy arp field
20  *		Andi Kleen	:	slabified it.
21  *		Robert Olsson	:	Removed skb_head_pool
22  *
23  *	NOTE:
24  *		The __skb_ routines should be called with interrupts
25  *	disabled, or you better be *real* sure that the operation is atomic
26  *	with respect to whatever list is being frobbed (e.g. via lock_sock()
27  *	or via disabling bottom half handlers, etc).
28  *
29  *	This program is free software; you can redistribute it and/or
30  *	modify it under the terms of the GNU General Public License
31  *	as published by the Free Software Foundation; either version
32  *	2 of the License, or (at your option) any later version.
33  */
34 
35 /*
36  *	The functions in this file will not compile correctly with gcc 2.4.x
37  */
38 
39 #include <linux/module.h>
40 #include <linux/types.h>
41 #include <linux/kernel.h>
42 #include <linux/kmemcheck.h>
43 #include <linux/mm.h>
44 #include <linux/interrupt.h>
45 #include <linux/in.h>
46 #include <linux/inet.h>
47 #include <linux/slab.h>
48 #include <linux/netdevice.h>
49 #ifdef CONFIG_NET_CLS_ACT
50 #include <net/pkt_sched.h>
51 #endif
52 #include <linux/string.h>
53 #include <linux/skbuff.h>
54 #include <linux/splice.h>
55 #include <linux/cache.h>
56 #include <linux/rtnetlink.h>
57 #include <linux/init.h>
58 #include <linux/scatterlist.h>
59 #include <linux/errqueue.h>
60 #include <linux/prefetch.h>
61 
62 #include <net/protocol.h>
63 #include <net/dst.h>
64 #include <net/sock.h>
65 #include <net/checksum.h>
66 #include <net/xfrm.h>
67 
68 #include <asm/uaccess.h>
69 #include <asm/system.h>
70 #include <trace/events/skb.h>
71 
72 #include "kmap_skb.h"
73 
74 static struct kmem_cache *skbuff_head_cache __read_mostly;
75 static struct kmem_cache *skbuff_fclone_cache __read_mostly;
76 
77 static void sock_pipe_buf_release(struct pipe_inode_info *pipe,
78 				  struct pipe_buffer *buf)
79 {
80 	put_page(buf->page);
81 }
82 
83 static void sock_pipe_buf_get(struct pipe_inode_info *pipe,
84 				struct pipe_buffer *buf)
85 {
86 	get_page(buf->page);
87 }
88 
89 static int sock_pipe_buf_steal(struct pipe_inode_info *pipe,
90 			       struct pipe_buffer *buf)
91 {
92 	return 1;
93 }
94 
95 
96 /* Pipe buffer operations for a socket. */
97 static const struct pipe_buf_operations sock_pipe_buf_ops = {
98 	.can_merge = 0,
99 	.map = generic_pipe_buf_map,
100 	.unmap = generic_pipe_buf_unmap,
101 	.confirm = generic_pipe_buf_confirm,
102 	.release = sock_pipe_buf_release,
103 	.steal = sock_pipe_buf_steal,
104 	.get = sock_pipe_buf_get,
105 };
106 
107 /*
108  *	Keep out-of-line to prevent kernel bloat.
109  *	__builtin_return_address is not used because it is not always
110  *	reliable.
111  */
112 
113 /**
114  *	skb_over_panic	- 	private function
115  *	@skb: buffer
116  *	@sz: size
117  *	@here: address
118  *
119  *	Out of line support code for skb_put(). Not user callable.
120  */
121 static void skb_over_panic(struct sk_buff *skb, int sz, void *here)
122 {
123 	printk(KERN_EMERG "skb_over_panic: text:%p len:%d put:%d head:%p "
124 			  "data:%p tail:%#lx end:%#lx dev:%s\n",
125 	       here, skb->len, sz, skb->head, skb->data,
126 	       (unsigned long)skb->tail, (unsigned long)skb->end,
127 	       skb->dev ? skb->dev->name : "<NULL>");
128 	BUG();
129 }
130 
131 /**
132  *	skb_under_panic	- 	private function
133  *	@skb: buffer
134  *	@sz: size
135  *	@here: address
136  *
137  *	Out of line support code for skb_push(). Not user callable.
138  */
139 
140 static void skb_under_panic(struct sk_buff *skb, int sz, void *here)
141 {
142 	printk(KERN_EMERG "skb_under_panic: text:%p len:%d put:%d head:%p "
143 			  "data:%p tail:%#lx end:%#lx dev:%s\n",
144 	       here, skb->len, sz, skb->head, skb->data,
145 	       (unsigned long)skb->tail, (unsigned long)skb->end,
146 	       skb->dev ? skb->dev->name : "<NULL>");
147 	BUG();
148 }
149 
150 /* 	Allocate a new skbuff. We do this ourselves so we can fill in a few
151  *	'private' fields and also do memory statistics to find all the
152  *	[BEEP] leaks.
153  *
154  */
155 
156 /**
157  *	__alloc_skb	-	allocate a network buffer
158  *	@size: size to allocate
159  *	@gfp_mask: allocation mask
160  *	@fclone: allocate from fclone cache instead of head cache
161  *		and allocate a cloned (child) skb
162  *	@node: numa node to allocate memory on
163  *
164  *	Allocate a new &sk_buff. The returned buffer has no headroom and a
165  *	tail room of size bytes. The object has a reference count of one.
166  *	The return is the buffer. On a failure the return is %NULL.
167  *
168  *	Buffers may only be allocated from interrupts using a @gfp_mask of
169  *	%GFP_ATOMIC.
170  */
171 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
172 			    int fclone, int node)
173 {
174 	struct kmem_cache *cache;
175 	struct skb_shared_info *shinfo;
176 	struct sk_buff *skb;
177 	u8 *data;
178 
179 	cache = fclone ? skbuff_fclone_cache : skbuff_head_cache;
180 
181 	/* Get the HEAD */
182 	skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node);
183 	if (!skb)
184 		goto out;
185 	prefetchw(skb);
186 
187 	size = SKB_DATA_ALIGN(size);
188 	data = kmalloc_node_track_caller(size + sizeof(struct skb_shared_info),
189 			gfp_mask, node);
190 	if (!data)
191 		goto nodata;
192 	prefetchw(data + size);
193 
194 	/*
195 	 * Only clear those fields we need to clear, not those that we will
196 	 * actually initialise below. Hence, don't put any more fields after
197 	 * the tail pointer in struct sk_buff!
198 	 */
199 	memset(skb, 0, offsetof(struct sk_buff, tail));
200 	skb->truesize = size + sizeof(struct sk_buff);
201 	atomic_set(&skb->users, 1);
202 	skb->head = data;
203 	skb->data = data;
204 	skb_reset_tail_pointer(skb);
205 	skb->end = skb->tail + size;
206 #ifdef NET_SKBUFF_DATA_USES_OFFSET
207 	skb->mac_header = ~0U;
208 #endif
209 
210 	/* make sure we initialize shinfo sequentially */
211 	shinfo = skb_shinfo(skb);
212 	memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
213 	atomic_set(&shinfo->dataref, 1);
214 	kmemcheck_annotate_variable(shinfo->destructor_arg);
215 
216 	if (fclone) {
217 		struct sk_buff *child = skb + 1;
218 		atomic_t *fclone_ref = (atomic_t *) (child + 1);
219 
220 		kmemcheck_annotate_bitfield(child, flags1);
221 		kmemcheck_annotate_bitfield(child, flags2);
222 		skb->fclone = SKB_FCLONE_ORIG;
223 		atomic_set(fclone_ref, 1);
224 
225 		child->fclone = SKB_FCLONE_UNAVAILABLE;
226 	}
227 out:
228 	return skb;
229 nodata:
230 	kmem_cache_free(cache, skb);
231 	skb = NULL;
232 	goto out;
233 }
234 EXPORT_SYMBOL(__alloc_skb);
235 
236 /**
237  *	__netdev_alloc_skb - allocate an skbuff for rx on a specific device
238  *	@dev: network device to receive on
239  *	@length: length to allocate
240  *	@gfp_mask: get_free_pages mask, passed to alloc_skb
241  *
242  *	Allocate a new &sk_buff and assign it a usage count of one. The
243  *	buffer has unspecified headroom built in. Users should allocate
244  *	the headroom they think they need without accounting for the
245  *	built in space. The built in space is used for optimisations.
246  *
247  *	%NULL is returned if there is no free memory.
248  */
249 struct sk_buff *__netdev_alloc_skb(struct net_device *dev,
250 		unsigned int length, gfp_t gfp_mask)
251 {
252 	struct sk_buff *skb;
253 
254 	skb = __alloc_skb(length + NET_SKB_PAD, gfp_mask, 0, NUMA_NO_NODE);
255 	if (likely(skb)) {
256 		skb_reserve(skb, NET_SKB_PAD);
257 		skb->dev = dev;
258 	}
259 	return skb;
260 }
261 EXPORT_SYMBOL(__netdev_alloc_skb);
262 
263 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
264 		int size)
265 {
266 	skb_fill_page_desc(skb, i, page, off, size);
267 	skb->len += size;
268 	skb->data_len += size;
269 	skb->truesize += size;
270 }
271 EXPORT_SYMBOL(skb_add_rx_frag);
272 
273 /**
274  *	dev_alloc_skb - allocate an skbuff for receiving
275  *	@length: length to allocate
276  *
277  *	Allocate a new &sk_buff and assign it a usage count of one. The
278  *	buffer has unspecified headroom built in. Users should allocate
279  *	the headroom they think they need without accounting for the
280  *	built in space. The built in space is used for optimisations.
281  *
282  *	%NULL is returned if there is no free memory. Although this function
283  *	allocates memory it can be called from an interrupt.
284  */
285 struct sk_buff *dev_alloc_skb(unsigned int length)
286 {
287 	/*
288 	 * There is more code here than it seems:
289 	 * __dev_alloc_skb is an inline
290 	 */
291 	return __dev_alloc_skb(length, GFP_ATOMIC);
292 }
293 EXPORT_SYMBOL(dev_alloc_skb);
294 
295 static void skb_drop_list(struct sk_buff **listp)
296 {
297 	struct sk_buff *list = *listp;
298 
299 	*listp = NULL;
300 
301 	do {
302 		struct sk_buff *this = list;
303 		list = list->next;
304 		kfree_skb(this);
305 	} while (list);
306 }
307 
308 static inline void skb_drop_fraglist(struct sk_buff *skb)
309 {
310 	skb_drop_list(&skb_shinfo(skb)->frag_list);
311 }
312 
313 static void skb_clone_fraglist(struct sk_buff *skb)
314 {
315 	struct sk_buff *list;
316 
317 	skb_walk_frags(skb, list)
318 		skb_get(list);
319 }
320 
321 static void skb_release_data(struct sk_buff *skb)
322 {
323 	if (!skb->cloned ||
324 	    !atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
325 			       &skb_shinfo(skb)->dataref)) {
326 		if (skb_shinfo(skb)->nr_frags) {
327 			int i;
328 			for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
329 				put_page(skb_shinfo(skb)->frags[i].page);
330 		}
331 
332 		/*
333 		 * If skb buf is from userspace, we need to notify the caller
334 		 * the lower device DMA has done;
335 		 */
336 		if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
337 			struct ubuf_info *uarg;
338 
339 			uarg = skb_shinfo(skb)->destructor_arg;
340 			if (uarg->callback)
341 				uarg->callback(uarg);
342 		}
343 
344 		if (skb_has_frag_list(skb))
345 			skb_drop_fraglist(skb);
346 
347 		kfree(skb->head);
348 	}
349 }
350 
351 /*
352  *	Free an skbuff by memory without cleaning the state.
353  */
354 static void kfree_skbmem(struct sk_buff *skb)
355 {
356 	struct sk_buff *other;
357 	atomic_t *fclone_ref;
358 
359 	switch (skb->fclone) {
360 	case SKB_FCLONE_UNAVAILABLE:
361 		kmem_cache_free(skbuff_head_cache, skb);
362 		break;
363 
364 	case SKB_FCLONE_ORIG:
365 		fclone_ref = (atomic_t *) (skb + 2);
366 		if (atomic_dec_and_test(fclone_ref))
367 			kmem_cache_free(skbuff_fclone_cache, skb);
368 		break;
369 
370 	case SKB_FCLONE_CLONE:
371 		fclone_ref = (atomic_t *) (skb + 1);
372 		other = skb - 1;
373 
374 		/* The clone portion is available for
375 		 * fast-cloning again.
376 		 */
377 		skb->fclone = SKB_FCLONE_UNAVAILABLE;
378 
379 		if (atomic_dec_and_test(fclone_ref))
380 			kmem_cache_free(skbuff_fclone_cache, other);
381 		break;
382 	}
383 }
384 
385 static void skb_release_head_state(struct sk_buff *skb)
386 {
387 	skb_dst_drop(skb);
388 #ifdef CONFIG_XFRM
389 	secpath_put(skb->sp);
390 #endif
391 	if (skb->destructor) {
392 		WARN_ON(in_irq());
393 		skb->destructor(skb);
394 	}
395 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
396 	nf_conntrack_put(skb->nfct);
397 #endif
398 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
399 	nf_conntrack_put_reasm(skb->nfct_reasm);
400 #endif
401 #ifdef CONFIG_BRIDGE_NETFILTER
402 	nf_bridge_put(skb->nf_bridge);
403 #endif
404 /* XXX: IS this still necessary? - JHS */
405 #ifdef CONFIG_NET_SCHED
406 	skb->tc_index = 0;
407 #ifdef CONFIG_NET_CLS_ACT
408 	skb->tc_verd = 0;
409 #endif
410 #endif
411 }
412 
413 /* Free everything but the sk_buff shell. */
414 static void skb_release_all(struct sk_buff *skb)
415 {
416 	skb_release_head_state(skb);
417 	skb_release_data(skb);
418 }
419 
420 /**
421  *	__kfree_skb - private function
422  *	@skb: buffer
423  *
424  *	Free an sk_buff. Release anything attached to the buffer.
425  *	Clean the state. This is an internal helper function. Users should
426  *	always call kfree_skb
427  */
428 
429 void __kfree_skb(struct sk_buff *skb)
430 {
431 	skb_release_all(skb);
432 	kfree_skbmem(skb);
433 }
434 EXPORT_SYMBOL(__kfree_skb);
435 
436 /**
437  *	kfree_skb - free an sk_buff
438  *	@skb: buffer to free
439  *
440  *	Drop a reference to the buffer and free it if the usage count has
441  *	hit zero.
442  */
443 void kfree_skb(struct sk_buff *skb)
444 {
445 	if (unlikely(!skb))
446 		return;
447 	if (likely(atomic_read(&skb->users) == 1))
448 		smp_rmb();
449 	else if (likely(!atomic_dec_and_test(&skb->users)))
450 		return;
451 	trace_kfree_skb(skb, __builtin_return_address(0));
452 	__kfree_skb(skb);
453 }
454 EXPORT_SYMBOL(kfree_skb);
455 
456 /**
457  *	consume_skb - free an skbuff
458  *	@skb: buffer to free
459  *
460  *	Drop a ref to the buffer and free it if the usage count has hit zero
461  *	Functions identically to kfree_skb, but kfree_skb assumes that the frame
462  *	is being dropped after a failure and notes that
463  */
464 void consume_skb(struct sk_buff *skb)
465 {
466 	if (unlikely(!skb))
467 		return;
468 	if (likely(atomic_read(&skb->users) == 1))
469 		smp_rmb();
470 	else if (likely(!atomic_dec_and_test(&skb->users)))
471 		return;
472 	trace_consume_skb(skb);
473 	__kfree_skb(skb);
474 }
475 EXPORT_SYMBOL(consume_skb);
476 
477 /**
478  *	skb_recycle_check - check if skb can be reused for receive
479  *	@skb: buffer
480  *	@skb_size: minimum receive buffer size
481  *
482  *	Checks that the skb passed in is not shared or cloned, and
483  *	that it is linear and its head portion at least as large as
484  *	skb_size so that it can be recycled as a receive buffer.
485  *	If these conditions are met, this function does any necessary
486  *	reference count dropping and cleans up the skbuff as if it
487  *	just came from __alloc_skb().
488  */
489 bool skb_recycle_check(struct sk_buff *skb, int skb_size)
490 {
491 	struct skb_shared_info *shinfo;
492 
493 	if (irqs_disabled())
494 		return false;
495 
496 	if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY)
497 		return false;
498 
499 	if (skb_is_nonlinear(skb) || skb->fclone != SKB_FCLONE_UNAVAILABLE)
500 		return false;
501 
502 	skb_size = SKB_DATA_ALIGN(skb_size + NET_SKB_PAD);
503 	if (skb_end_pointer(skb) - skb->head < skb_size)
504 		return false;
505 
506 	if (skb_shared(skb) || skb_cloned(skb))
507 		return false;
508 
509 	skb_release_head_state(skb);
510 
511 	shinfo = skb_shinfo(skb);
512 	memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
513 	atomic_set(&shinfo->dataref, 1);
514 
515 	memset(skb, 0, offsetof(struct sk_buff, tail));
516 	skb->data = skb->head + NET_SKB_PAD;
517 	skb_reset_tail_pointer(skb);
518 
519 	return true;
520 }
521 EXPORT_SYMBOL(skb_recycle_check);
522 
523 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
524 {
525 	new->tstamp		= old->tstamp;
526 	new->dev		= old->dev;
527 	new->transport_header	= old->transport_header;
528 	new->network_header	= old->network_header;
529 	new->mac_header		= old->mac_header;
530 	skb_dst_copy(new, old);
531 	new->rxhash		= old->rxhash;
532 #ifdef CONFIG_XFRM
533 	new->sp			= secpath_get(old->sp);
534 #endif
535 	memcpy(new->cb, old->cb, sizeof(old->cb));
536 	new->csum		= old->csum;
537 	new->local_df		= old->local_df;
538 	new->pkt_type		= old->pkt_type;
539 	new->ip_summed		= old->ip_summed;
540 	skb_copy_queue_mapping(new, old);
541 	new->priority		= old->priority;
542 #if defined(CONFIG_IP_VS) || defined(CONFIG_IP_VS_MODULE)
543 	new->ipvs_property	= old->ipvs_property;
544 #endif
545 	new->protocol		= old->protocol;
546 	new->mark		= old->mark;
547 	new->skb_iif		= old->skb_iif;
548 	__nf_copy(new, old);
549 #if defined(CONFIG_NETFILTER_XT_TARGET_TRACE) || \
550     defined(CONFIG_NETFILTER_XT_TARGET_TRACE_MODULE)
551 	new->nf_trace		= old->nf_trace;
552 #endif
553 #ifdef CONFIG_NET_SCHED
554 	new->tc_index		= old->tc_index;
555 #ifdef CONFIG_NET_CLS_ACT
556 	new->tc_verd		= old->tc_verd;
557 #endif
558 #endif
559 	new->vlan_tci		= old->vlan_tci;
560 
561 	skb_copy_secmark(new, old);
562 }
563 
564 /*
565  * You should not add any new code to this function.  Add it to
566  * __copy_skb_header above instead.
567  */
568 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
569 {
570 #define C(x) n->x = skb->x
571 
572 	n->next = n->prev = NULL;
573 	n->sk = NULL;
574 	__copy_skb_header(n, skb);
575 
576 	C(len);
577 	C(data_len);
578 	C(mac_len);
579 	n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
580 	n->cloned = 1;
581 	n->nohdr = 0;
582 	n->destructor = NULL;
583 	C(tail);
584 	C(end);
585 	C(head);
586 	C(data);
587 	C(truesize);
588 	atomic_set(&n->users, 1);
589 
590 	atomic_inc(&(skb_shinfo(skb)->dataref));
591 	skb->cloned = 1;
592 
593 	return n;
594 #undef C
595 }
596 
597 /**
598  *	skb_morph	-	morph one skb into another
599  *	@dst: the skb to receive the contents
600  *	@src: the skb to supply the contents
601  *
602  *	This is identical to skb_clone except that the target skb is
603  *	supplied by the user.
604  *
605  *	The target skb is returned upon exit.
606  */
607 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
608 {
609 	skb_release_all(dst);
610 	return __skb_clone(dst, src);
611 }
612 EXPORT_SYMBOL_GPL(skb_morph);
613 
614 /* skb frags copy userspace buffers to kernel */
615 static int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask)
616 {
617 	int i;
618 	int num_frags = skb_shinfo(skb)->nr_frags;
619 	struct page *page, *head = NULL;
620 	struct ubuf_info *uarg = skb_shinfo(skb)->destructor_arg;
621 
622 	for (i = 0; i < num_frags; i++) {
623 		u8 *vaddr;
624 		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
625 
626 		page = alloc_page(GFP_ATOMIC);
627 		if (!page) {
628 			while (head) {
629 				struct page *next = (struct page *)head->private;
630 				put_page(head);
631 				head = next;
632 			}
633 			return -ENOMEM;
634 		}
635 		vaddr = kmap_skb_frag(&skb_shinfo(skb)->frags[i]);
636 		memcpy(page_address(page),
637 		       vaddr + f->page_offset, f->size);
638 		kunmap_skb_frag(vaddr);
639 		page->private = (unsigned long)head;
640 		head = page;
641 	}
642 
643 	/* skb frags release userspace buffers */
644 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
645 		put_page(skb_shinfo(skb)->frags[i].page);
646 
647 	uarg->callback(uarg);
648 
649 	/* skb frags point to kernel buffers */
650 	for (i = skb_shinfo(skb)->nr_frags; i > 0; i--) {
651 		skb_shinfo(skb)->frags[i - 1].page_offset = 0;
652 		skb_shinfo(skb)->frags[i - 1].page = head;
653 		head = (struct page *)head->private;
654 	}
655 	return 0;
656 }
657 
658 
659 /**
660  *	skb_clone	-	duplicate an sk_buff
661  *	@skb: buffer to clone
662  *	@gfp_mask: allocation priority
663  *
664  *	Duplicate an &sk_buff. The new one is not owned by a socket. Both
665  *	copies share the same packet data but not structure. The new
666  *	buffer has a reference count of 1. If the allocation fails the
667  *	function returns %NULL otherwise the new buffer is returned.
668  *
669  *	If this function is called from an interrupt gfp_mask() must be
670  *	%GFP_ATOMIC.
671  */
672 
673 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
674 {
675 	struct sk_buff *n;
676 
677 	if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
678 		if (skb_copy_ubufs(skb, gfp_mask))
679 			return NULL;
680 		skb_shinfo(skb)->tx_flags &= ~SKBTX_DEV_ZEROCOPY;
681 	}
682 
683 	n = skb + 1;
684 	if (skb->fclone == SKB_FCLONE_ORIG &&
685 	    n->fclone == SKB_FCLONE_UNAVAILABLE) {
686 		atomic_t *fclone_ref = (atomic_t *) (n + 1);
687 		n->fclone = SKB_FCLONE_CLONE;
688 		atomic_inc(fclone_ref);
689 	} else {
690 		n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
691 		if (!n)
692 			return NULL;
693 
694 		kmemcheck_annotate_bitfield(n, flags1);
695 		kmemcheck_annotate_bitfield(n, flags2);
696 		n->fclone = SKB_FCLONE_UNAVAILABLE;
697 	}
698 
699 	return __skb_clone(n, skb);
700 }
701 EXPORT_SYMBOL(skb_clone);
702 
703 static void copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
704 {
705 #ifndef NET_SKBUFF_DATA_USES_OFFSET
706 	/*
707 	 *	Shift between the two data areas in bytes
708 	 */
709 	unsigned long offset = new->data - old->data;
710 #endif
711 
712 	__copy_skb_header(new, old);
713 
714 #ifndef NET_SKBUFF_DATA_USES_OFFSET
715 	/* {transport,network,mac}_header are relative to skb->head */
716 	new->transport_header += offset;
717 	new->network_header   += offset;
718 	if (skb_mac_header_was_set(new))
719 		new->mac_header	      += offset;
720 #endif
721 	skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
722 	skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
723 	skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
724 }
725 
726 /**
727  *	skb_copy	-	create private copy of an sk_buff
728  *	@skb: buffer to copy
729  *	@gfp_mask: allocation priority
730  *
731  *	Make a copy of both an &sk_buff and its data. This is used when the
732  *	caller wishes to modify the data and needs a private copy of the
733  *	data to alter. Returns %NULL on failure or the pointer to the buffer
734  *	on success. The returned buffer has a reference count of 1.
735  *
736  *	As by-product this function converts non-linear &sk_buff to linear
737  *	one, so that &sk_buff becomes completely private and caller is allowed
738  *	to modify all the data of returned buffer. This means that this
739  *	function is not recommended for use in circumstances when only
740  *	header is going to be modified. Use pskb_copy() instead.
741  */
742 
743 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
744 {
745 	int headerlen = skb_headroom(skb);
746 	unsigned int size = (skb_end_pointer(skb) - skb->head) + skb->data_len;
747 	struct sk_buff *n = alloc_skb(size, gfp_mask);
748 
749 	if (!n)
750 		return NULL;
751 
752 	/* Set the data pointer */
753 	skb_reserve(n, headerlen);
754 	/* Set the tail pointer and length */
755 	skb_put(n, skb->len);
756 
757 	if (skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len))
758 		BUG();
759 
760 	copy_skb_header(n, skb);
761 	return n;
762 }
763 EXPORT_SYMBOL(skb_copy);
764 
765 /**
766  *	pskb_copy	-	create copy of an sk_buff with private head.
767  *	@skb: buffer to copy
768  *	@gfp_mask: allocation priority
769  *
770  *	Make a copy of both an &sk_buff and part of its data, located
771  *	in header. Fragmented data remain shared. This is used when
772  *	the caller wishes to modify only header of &sk_buff and needs
773  *	private copy of the header to alter. Returns %NULL on failure
774  *	or the pointer to the buffer on success.
775  *	The returned buffer has a reference count of 1.
776  */
777 
778 struct sk_buff *pskb_copy(struct sk_buff *skb, gfp_t gfp_mask)
779 {
780 	unsigned int size = skb_end_pointer(skb) - skb->head;
781 	struct sk_buff *n = alloc_skb(size, gfp_mask);
782 
783 	if (!n)
784 		goto out;
785 
786 	/* Set the data pointer */
787 	skb_reserve(n, skb_headroom(skb));
788 	/* Set the tail pointer and length */
789 	skb_put(n, skb_headlen(skb));
790 	/* Copy the bytes */
791 	skb_copy_from_linear_data(skb, n->data, n->len);
792 
793 	n->truesize += skb->data_len;
794 	n->data_len  = skb->data_len;
795 	n->len	     = skb->len;
796 
797 	if (skb_shinfo(skb)->nr_frags) {
798 		int i;
799 
800 		if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
801 			if (skb_copy_ubufs(skb, gfp_mask)) {
802 				kfree_skb(n);
803 				n = NULL;
804 				goto out;
805 			}
806 			skb_shinfo(skb)->tx_flags &= ~SKBTX_DEV_ZEROCOPY;
807 		}
808 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
809 			skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
810 			get_page(skb_shinfo(n)->frags[i].page);
811 		}
812 		skb_shinfo(n)->nr_frags = i;
813 	}
814 
815 	if (skb_has_frag_list(skb)) {
816 		skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
817 		skb_clone_fraglist(n);
818 	}
819 
820 	copy_skb_header(n, skb);
821 out:
822 	return n;
823 }
824 EXPORT_SYMBOL(pskb_copy);
825 
826 /**
827  *	pskb_expand_head - reallocate header of &sk_buff
828  *	@skb: buffer to reallocate
829  *	@nhead: room to add at head
830  *	@ntail: room to add at tail
831  *	@gfp_mask: allocation priority
832  *
833  *	Expands (or creates identical copy, if &nhead and &ntail are zero)
834  *	header of skb. &sk_buff itself is not changed. &sk_buff MUST have
835  *	reference count of 1. Returns zero in the case of success or error,
836  *	if expansion failed. In the last case, &sk_buff is not changed.
837  *
838  *	All the pointers pointing into skb header may change and must be
839  *	reloaded after call to this function.
840  */
841 
842 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
843 		     gfp_t gfp_mask)
844 {
845 	int i;
846 	u8 *data;
847 	int size = nhead + (skb_end_pointer(skb) - skb->head) + ntail;
848 	long off;
849 	bool fastpath;
850 
851 	BUG_ON(nhead < 0);
852 
853 	if (skb_shared(skb))
854 		BUG();
855 
856 	size = SKB_DATA_ALIGN(size);
857 
858 	/* Check if we can avoid taking references on fragments if we own
859 	 * the last reference on skb->head. (see skb_release_data())
860 	 */
861 	if (!skb->cloned)
862 		fastpath = true;
863 	else {
864 		int delta = skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1;
865 		fastpath = atomic_read(&skb_shinfo(skb)->dataref) == delta;
866 	}
867 
868 	if (fastpath &&
869 	    size + sizeof(struct skb_shared_info) <= ksize(skb->head)) {
870 		memmove(skb->head + size, skb_shinfo(skb),
871 			offsetof(struct skb_shared_info,
872 				 frags[skb_shinfo(skb)->nr_frags]));
873 		memmove(skb->head + nhead, skb->head,
874 			skb_tail_pointer(skb) - skb->head);
875 		off = nhead;
876 		goto adjust_others;
877 	}
878 
879 	data = kmalloc(size + sizeof(struct skb_shared_info), gfp_mask);
880 	if (!data)
881 		goto nodata;
882 
883 	/* Copy only real data... and, alas, header. This should be
884 	 * optimized for the cases when header is void.
885 	 */
886 	memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head);
887 
888 	memcpy((struct skb_shared_info *)(data + size),
889 	       skb_shinfo(skb),
890 	       offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags]));
891 
892 	if (fastpath) {
893 		kfree(skb->head);
894 	} else {
895 		/* copy this zero copy skb frags */
896 		if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
897 			if (skb_copy_ubufs(skb, gfp_mask))
898 				goto nofrags;
899 			skb_shinfo(skb)->tx_flags &= ~SKBTX_DEV_ZEROCOPY;
900 		}
901 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
902 			get_page(skb_shinfo(skb)->frags[i].page);
903 
904 		if (skb_has_frag_list(skb))
905 			skb_clone_fraglist(skb);
906 
907 		skb_release_data(skb);
908 	}
909 	off = (data + nhead) - skb->head;
910 
911 	skb->head     = data;
912 adjust_others:
913 	skb->data    += off;
914 #ifdef NET_SKBUFF_DATA_USES_OFFSET
915 	skb->end      = size;
916 	off           = nhead;
917 #else
918 	skb->end      = skb->head + size;
919 #endif
920 	/* {transport,network,mac}_header and tail are relative to skb->head */
921 	skb->tail	      += off;
922 	skb->transport_header += off;
923 	skb->network_header   += off;
924 	if (skb_mac_header_was_set(skb))
925 		skb->mac_header += off;
926 	/* Only adjust this if it actually is csum_start rather than csum */
927 	if (skb->ip_summed == CHECKSUM_PARTIAL)
928 		skb->csum_start += nhead;
929 	skb->cloned   = 0;
930 	skb->hdr_len  = 0;
931 	skb->nohdr    = 0;
932 	atomic_set(&skb_shinfo(skb)->dataref, 1);
933 	return 0;
934 
935 nofrags:
936 	kfree(data);
937 nodata:
938 	return -ENOMEM;
939 }
940 EXPORT_SYMBOL(pskb_expand_head);
941 
942 /* Make private copy of skb with writable head and some headroom */
943 
944 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
945 {
946 	struct sk_buff *skb2;
947 	int delta = headroom - skb_headroom(skb);
948 
949 	if (delta <= 0)
950 		skb2 = pskb_copy(skb, GFP_ATOMIC);
951 	else {
952 		skb2 = skb_clone(skb, GFP_ATOMIC);
953 		if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
954 					     GFP_ATOMIC)) {
955 			kfree_skb(skb2);
956 			skb2 = NULL;
957 		}
958 	}
959 	return skb2;
960 }
961 EXPORT_SYMBOL(skb_realloc_headroom);
962 
963 /**
964  *	skb_copy_expand	-	copy and expand sk_buff
965  *	@skb: buffer to copy
966  *	@newheadroom: new free bytes at head
967  *	@newtailroom: new free bytes at tail
968  *	@gfp_mask: allocation priority
969  *
970  *	Make a copy of both an &sk_buff and its data and while doing so
971  *	allocate additional space.
972  *
973  *	This is used when the caller wishes to modify the data and needs a
974  *	private copy of the data to alter as well as more space for new fields.
975  *	Returns %NULL on failure or the pointer to the buffer
976  *	on success. The returned buffer has a reference count of 1.
977  *
978  *	You must pass %GFP_ATOMIC as the allocation priority if this function
979  *	is called from an interrupt.
980  */
981 struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
982 				int newheadroom, int newtailroom,
983 				gfp_t gfp_mask)
984 {
985 	/*
986 	 *	Allocate the copy buffer
987 	 */
988 	struct sk_buff *n = alloc_skb(newheadroom + skb->len + newtailroom,
989 				      gfp_mask);
990 	int oldheadroom = skb_headroom(skb);
991 	int head_copy_len, head_copy_off;
992 	int off;
993 
994 	if (!n)
995 		return NULL;
996 
997 	skb_reserve(n, newheadroom);
998 
999 	/* Set the tail pointer and length */
1000 	skb_put(n, skb->len);
1001 
1002 	head_copy_len = oldheadroom;
1003 	head_copy_off = 0;
1004 	if (newheadroom <= head_copy_len)
1005 		head_copy_len = newheadroom;
1006 	else
1007 		head_copy_off = newheadroom - head_copy_len;
1008 
1009 	/* Copy the linear header and data. */
1010 	if (skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
1011 			  skb->len + head_copy_len))
1012 		BUG();
1013 
1014 	copy_skb_header(n, skb);
1015 
1016 	off                  = newheadroom - oldheadroom;
1017 	if (n->ip_summed == CHECKSUM_PARTIAL)
1018 		n->csum_start += off;
1019 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1020 	n->transport_header += off;
1021 	n->network_header   += off;
1022 	if (skb_mac_header_was_set(skb))
1023 		n->mac_header += off;
1024 #endif
1025 
1026 	return n;
1027 }
1028 EXPORT_SYMBOL(skb_copy_expand);
1029 
1030 /**
1031  *	skb_pad			-	zero pad the tail of an skb
1032  *	@skb: buffer to pad
1033  *	@pad: space to pad
1034  *
1035  *	Ensure that a buffer is followed by a padding area that is zero
1036  *	filled. Used by network drivers which may DMA or transfer data
1037  *	beyond the buffer end onto the wire.
1038  *
1039  *	May return error in out of memory cases. The skb is freed on error.
1040  */
1041 
1042 int skb_pad(struct sk_buff *skb, int pad)
1043 {
1044 	int err;
1045 	int ntail;
1046 
1047 	/* If the skbuff is non linear tailroom is always zero.. */
1048 	if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
1049 		memset(skb->data+skb->len, 0, pad);
1050 		return 0;
1051 	}
1052 
1053 	ntail = skb->data_len + pad - (skb->end - skb->tail);
1054 	if (likely(skb_cloned(skb) || ntail > 0)) {
1055 		err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
1056 		if (unlikely(err))
1057 			goto free_skb;
1058 	}
1059 
1060 	/* FIXME: The use of this function with non-linear skb's really needs
1061 	 * to be audited.
1062 	 */
1063 	err = skb_linearize(skb);
1064 	if (unlikely(err))
1065 		goto free_skb;
1066 
1067 	memset(skb->data + skb->len, 0, pad);
1068 	return 0;
1069 
1070 free_skb:
1071 	kfree_skb(skb);
1072 	return err;
1073 }
1074 EXPORT_SYMBOL(skb_pad);
1075 
1076 /**
1077  *	skb_put - add data to a buffer
1078  *	@skb: buffer to use
1079  *	@len: amount of data to add
1080  *
1081  *	This function extends the used data area of the buffer. If this would
1082  *	exceed the total buffer size the kernel will panic. A pointer to the
1083  *	first byte of the extra data is returned.
1084  */
1085 unsigned char *skb_put(struct sk_buff *skb, unsigned int len)
1086 {
1087 	unsigned char *tmp = skb_tail_pointer(skb);
1088 	SKB_LINEAR_ASSERT(skb);
1089 	skb->tail += len;
1090 	skb->len  += len;
1091 	if (unlikely(skb->tail > skb->end))
1092 		skb_over_panic(skb, len, __builtin_return_address(0));
1093 	return tmp;
1094 }
1095 EXPORT_SYMBOL(skb_put);
1096 
1097 /**
1098  *	skb_push - add data to the start of a buffer
1099  *	@skb: buffer to use
1100  *	@len: amount of data to add
1101  *
1102  *	This function extends the used data area of the buffer at the buffer
1103  *	start. If this would exceed the total buffer headroom the kernel will
1104  *	panic. A pointer to the first byte of the extra data is returned.
1105  */
1106 unsigned char *skb_push(struct sk_buff *skb, unsigned int len)
1107 {
1108 	skb->data -= len;
1109 	skb->len  += len;
1110 	if (unlikely(skb->data<skb->head))
1111 		skb_under_panic(skb, len, __builtin_return_address(0));
1112 	return skb->data;
1113 }
1114 EXPORT_SYMBOL(skb_push);
1115 
1116 /**
1117  *	skb_pull - remove data from the start of a buffer
1118  *	@skb: buffer to use
1119  *	@len: amount of data to remove
1120  *
1121  *	This function removes data from the start of a buffer, returning
1122  *	the memory to the headroom. A pointer to the next data in the buffer
1123  *	is returned. Once the data has been pulled future pushes will overwrite
1124  *	the old data.
1125  */
1126 unsigned char *skb_pull(struct sk_buff *skb, unsigned int len)
1127 {
1128 	return skb_pull_inline(skb, len);
1129 }
1130 EXPORT_SYMBOL(skb_pull);
1131 
1132 /**
1133  *	skb_trim - remove end from a buffer
1134  *	@skb: buffer to alter
1135  *	@len: new length
1136  *
1137  *	Cut the length of a buffer down by removing data from the tail. If
1138  *	the buffer is already under the length specified it is not modified.
1139  *	The skb must be linear.
1140  */
1141 void skb_trim(struct sk_buff *skb, unsigned int len)
1142 {
1143 	if (skb->len > len)
1144 		__skb_trim(skb, len);
1145 }
1146 EXPORT_SYMBOL(skb_trim);
1147 
1148 /* Trims skb to length len. It can change skb pointers.
1149  */
1150 
1151 int ___pskb_trim(struct sk_buff *skb, unsigned int len)
1152 {
1153 	struct sk_buff **fragp;
1154 	struct sk_buff *frag;
1155 	int offset = skb_headlen(skb);
1156 	int nfrags = skb_shinfo(skb)->nr_frags;
1157 	int i;
1158 	int err;
1159 
1160 	if (skb_cloned(skb) &&
1161 	    unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
1162 		return err;
1163 
1164 	i = 0;
1165 	if (offset >= len)
1166 		goto drop_pages;
1167 
1168 	for (; i < nfrags; i++) {
1169 		int end = offset + skb_shinfo(skb)->frags[i].size;
1170 
1171 		if (end < len) {
1172 			offset = end;
1173 			continue;
1174 		}
1175 
1176 		skb_shinfo(skb)->frags[i++].size = len - offset;
1177 
1178 drop_pages:
1179 		skb_shinfo(skb)->nr_frags = i;
1180 
1181 		for (; i < nfrags; i++)
1182 			put_page(skb_shinfo(skb)->frags[i].page);
1183 
1184 		if (skb_has_frag_list(skb))
1185 			skb_drop_fraglist(skb);
1186 		goto done;
1187 	}
1188 
1189 	for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
1190 	     fragp = &frag->next) {
1191 		int end = offset + frag->len;
1192 
1193 		if (skb_shared(frag)) {
1194 			struct sk_buff *nfrag;
1195 
1196 			nfrag = skb_clone(frag, GFP_ATOMIC);
1197 			if (unlikely(!nfrag))
1198 				return -ENOMEM;
1199 
1200 			nfrag->next = frag->next;
1201 			kfree_skb(frag);
1202 			frag = nfrag;
1203 			*fragp = frag;
1204 		}
1205 
1206 		if (end < len) {
1207 			offset = end;
1208 			continue;
1209 		}
1210 
1211 		if (end > len &&
1212 		    unlikely((err = pskb_trim(frag, len - offset))))
1213 			return err;
1214 
1215 		if (frag->next)
1216 			skb_drop_list(&frag->next);
1217 		break;
1218 	}
1219 
1220 done:
1221 	if (len > skb_headlen(skb)) {
1222 		skb->data_len -= skb->len - len;
1223 		skb->len       = len;
1224 	} else {
1225 		skb->len       = len;
1226 		skb->data_len  = 0;
1227 		skb_set_tail_pointer(skb, len);
1228 	}
1229 
1230 	return 0;
1231 }
1232 EXPORT_SYMBOL(___pskb_trim);
1233 
1234 /**
1235  *	__pskb_pull_tail - advance tail of skb header
1236  *	@skb: buffer to reallocate
1237  *	@delta: number of bytes to advance tail
1238  *
1239  *	The function makes a sense only on a fragmented &sk_buff,
1240  *	it expands header moving its tail forward and copying necessary
1241  *	data from fragmented part.
1242  *
1243  *	&sk_buff MUST have reference count of 1.
1244  *
1245  *	Returns %NULL (and &sk_buff does not change) if pull failed
1246  *	or value of new tail of skb in the case of success.
1247  *
1248  *	All the pointers pointing into skb header may change and must be
1249  *	reloaded after call to this function.
1250  */
1251 
1252 /* Moves tail of skb head forward, copying data from fragmented part,
1253  * when it is necessary.
1254  * 1. It may fail due to malloc failure.
1255  * 2. It may change skb pointers.
1256  *
1257  * It is pretty complicated. Luckily, it is called only in exceptional cases.
1258  */
1259 unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta)
1260 {
1261 	/* If skb has not enough free space at tail, get new one
1262 	 * plus 128 bytes for future expansions. If we have enough
1263 	 * room at tail, reallocate without expansion only if skb is cloned.
1264 	 */
1265 	int i, k, eat = (skb->tail + delta) - skb->end;
1266 
1267 	if (eat > 0 || skb_cloned(skb)) {
1268 		if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
1269 				     GFP_ATOMIC))
1270 			return NULL;
1271 	}
1272 
1273 	if (skb_copy_bits(skb, skb_headlen(skb), skb_tail_pointer(skb), delta))
1274 		BUG();
1275 
1276 	/* Optimization: no fragments, no reasons to preestimate
1277 	 * size of pulled pages. Superb.
1278 	 */
1279 	if (!skb_has_frag_list(skb))
1280 		goto pull_pages;
1281 
1282 	/* Estimate size of pulled pages. */
1283 	eat = delta;
1284 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1285 		if (skb_shinfo(skb)->frags[i].size >= eat)
1286 			goto pull_pages;
1287 		eat -= skb_shinfo(skb)->frags[i].size;
1288 	}
1289 
1290 	/* If we need update frag list, we are in troubles.
1291 	 * Certainly, it possible to add an offset to skb data,
1292 	 * but taking into account that pulling is expected to
1293 	 * be very rare operation, it is worth to fight against
1294 	 * further bloating skb head and crucify ourselves here instead.
1295 	 * Pure masohism, indeed. 8)8)
1296 	 */
1297 	if (eat) {
1298 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
1299 		struct sk_buff *clone = NULL;
1300 		struct sk_buff *insp = NULL;
1301 
1302 		do {
1303 			BUG_ON(!list);
1304 
1305 			if (list->len <= eat) {
1306 				/* Eaten as whole. */
1307 				eat -= list->len;
1308 				list = list->next;
1309 				insp = list;
1310 			} else {
1311 				/* Eaten partially. */
1312 
1313 				if (skb_shared(list)) {
1314 					/* Sucks! We need to fork list. :-( */
1315 					clone = skb_clone(list, GFP_ATOMIC);
1316 					if (!clone)
1317 						return NULL;
1318 					insp = list->next;
1319 					list = clone;
1320 				} else {
1321 					/* This may be pulled without
1322 					 * problems. */
1323 					insp = list;
1324 				}
1325 				if (!pskb_pull(list, eat)) {
1326 					kfree_skb(clone);
1327 					return NULL;
1328 				}
1329 				break;
1330 			}
1331 		} while (eat);
1332 
1333 		/* Free pulled out fragments. */
1334 		while ((list = skb_shinfo(skb)->frag_list) != insp) {
1335 			skb_shinfo(skb)->frag_list = list->next;
1336 			kfree_skb(list);
1337 		}
1338 		/* And insert new clone at head. */
1339 		if (clone) {
1340 			clone->next = list;
1341 			skb_shinfo(skb)->frag_list = clone;
1342 		}
1343 	}
1344 	/* Success! Now we may commit changes to skb data. */
1345 
1346 pull_pages:
1347 	eat = delta;
1348 	k = 0;
1349 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1350 		if (skb_shinfo(skb)->frags[i].size <= eat) {
1351 			put_page(skb_shinfo(skb)->frags[i].page);
1352 			eat -= skb_shinfo(skb)->frags[i].size;
1353 		} else {
1354 			skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i];
1355 			if (eat) {
1356 				skb_shinfo(skb)->frags[k].page_offset += eat;
1357 				skb_shinfo(skb)->frags[k].size -= eat;
1358 				eat = 0;
1359 			}
1360 			k++;
1361 		}
1362 	}
1363 	skb_shinfo(skb)->nr_frags = k;
1364 
1365 	skb->tail     += delta;
1366 	skb->data_len -= delta;
1367 
1368 	return skb_tail_pointer(skb);
1369 }
1370 EXPORT_SYMBOL(__pskb_pull_tail);
1371 
1372 /**
1373  *	skb_copy_bits - copy bits from skb to kernel buffer
1374  *	@skb: source skb
1375  *	@offset: offset in source
1376  *	@to: destination buffer
1377  *	@len: number of bytes to copy
1378  *
1379  *	Copy the specified number of bytes from the source skb to the
1380  *	destination buffer.
1381  *
1382  *	CAUTION ! :
1383  *		If its prototype is ever changed,
1384  *		check arch/{*}/net/{*}.S files,
1385  *		since it is called from BPF assembly code.
1386  */
1387 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
1388 {
1389 	int start = skb_headlen(skb);
1390 	struct sk_buff *frag_iter;
1391 	int i, copy;
1392 
1393 	if (offset > (int)skb->len - len)
1394 		goto fault;
1395 
1396 	/* Copy header. */
1397 	if ((copy = start - offset) > 0) {
1398 		if (copy > len)
1399 			copy = len;
1400 		skb_copy_from_linear_data_offset(skb, offset, to, copy);
1401 		if ((len -= copy) == 0)
1402 			return 0;
1403 		offset += copy;
1404 		to     += copy;
1405 	}
1406 
1407 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1408 		int end;
1409 
1410 		WARN_ON(start > offset + len);
1411 
1412 		end = start + skb_shinfo(skb)->frags[i].size;
1413 		if ((copy = end - offset) > 0) {
1414 			u8 *vaddr;
1415 
1416 			if (copy > len)
1417 				copy = len;
1418 
1419 			vaddr = kmap_skb_frag(&skb_shinfo(skb)->frags[i]);
1420 			memcpy(to,
1421 			       vaddr + skb_shinfo(skb)->frags[i].page_offset+
1422 			       offset - start, copy);
1423 			kunmap_skb_frag(vaddr);
1424 
1425 			if ((len -= copy) == 0)
1426 				return 0;
1427 			offset += copy;
1428 			to     += copy;
1429 		}
1430 		start = end;
1431 	}
1432 
1433 	skb_walk_frags(skb, frag_iter) {
1434 		int end;
1435 
1436 		WARN_ON(start > offset + len);
1437 
1438 		end = start + frag_iter->len;
1439 		if ((copy = end - offset) > 0) {
1440 			if (copy > len)
1441 				copy = len;
1442 			if (skb_copy_bits(frag_iter, offset - start, to, copy))
1443 				goto fault;
1444 			if ((len -= copy) == 0)
1445 				return 0;
1446 			offset += copy;
1447 			to     += copy;
1448 		}
1449 		start = end;
1450 	}
1451 
1452 	if (!len)
1453 		return 0;
1454 
1455 fault:
1456 	return -EFAULT;
1457 }
1458 EXPORT_SYMBOL(skb_copy_bits);
1459 
1460 /*
1461  * Callback from splice_to_pipe(), if we need to release some pages
1462  * at the end of the spd in case we error'ed out in filling the pipe.
1463  */
1464 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
1465 {
1466 	put_page(spd->pages[i]);
1467 }
1468 
1469 static inline struct page *linear_to_page(struct page *page, unsigned int *len,
1470 					  unsigned int *offset,
1471 					  struct sk_buff *skb, struct sock *sk)
1472 {
1473 	struct page *p = sk->sk_sndmsg_page;
1474 	unsigned int off;
1475 
1476 	if (!p) {
1477 new_page:
1478 		p = sk->sk_sndmsg_page = alloc_pages(sk->sk_allocation, 0);
1479 		if (!p)
1480 			return NULL;
1481 
1482 		off = sk->sk_sndmsg_off = 0;
1483 		/* hold one ref to this page until it's full */
1484 	} else {
1485 		unsigned int mlen;
1486 
1487 		off = sk->sk_sndmsg_off;
1488 		mlen = PAGE_SIZE - off;
1489 		if (mlen < 64 && mlen < *len) {
1490 			put_page(p);
1491 			goto new_page;
1492 		}
1493 
1494 		*len = min_t(unsigned int, *len, mlen);
1495 	}
1496 
1497 	memcpy(page_address(p) + off, page_address(page) + *offset, *len);
1498 	sk->sk_sndmsg_off += *len;
1499 	*offset = off;
1500 	get_page(p);
1501 
1502 	return p;
1503 }
1504 
1505 /*
1506  * Fill page/offset/length into spd, if it can hold more pages.
1507  */
1508 static inline int spd_fill_page(struct splice_pipe_desc *spd,
1509 				struct pipe_inode_info *pipe, struct page *page,
1510 				unsigned int *len, unsigned int offset,
1511 				struct sk_buff *skb, int linear,
1512 				struct sock *sk)
1513 {
1514 	if (unlikely(spd->nr_pages == pipe->buffers))
1515 		return 1;
1516 
1517 	if (linear) {
1518 		page = linear_to_page(page, len, &offset, skb, sk);
1519 		if (!page)
1520 			return 1;
1521 	} else
1522 		get_page(page);
1523 
1524 	spd->pages[spd->nr_pages] = page;
1525 	spd->partial[spd->nr_pages].len = *len;
1526 	spd->partial[spd->nr_pages].offset = offset;
1527 	spd->nr_pages++;
1528 
1529 	return 0;
1530 }
1531 
1532 static inline void __segment_seek(struct page **page, unsigned int *poff,
1533 				  unsigned int *plen, unsigned int off)
1534 {
1535 	unsigned long n;
1536 
1537 	*poff += off;
1538 	n = *poff / PAGE_SIZE;
1539 	if (n)
1540 		*page = nth_page(*page, n);
1541 
1542 	*poff = *poff % PAGE_SIZE;
1543 	*plen -= off;
1544 }
1545 
1546 static inline int __splice_segment(struct page *page, unsigned int poff,
1547 				   unsigned int plen, unsigned int *off,
1548 				   unsigned int *len, struct sk_buff *skb,
1549 				   struct splice_pipe_desc *spd, int linear,
1550 				   struct sock *sk,
1551 				   struct pipe_inode_info *pipe)
1552 {
1553 	if (!*len)
1554 		return 1;
1555 
1556 	/* skip this segment if already processed */
1557 	if (*off >= plen) {
1558 		*off -= plen;
1559 		return 0;
1560 	}
1561 
1562 	/* ignore any bits we already processed */
1563 	if (*off) {
1564 		__segment_seek(&page, &poff, &plen, *off);
1565 		*off = 0;
1566 	}
1567 
1568 	do {
1569 		unsigned int flen = min(*len, plen);
1570 
1571 		/* the linear region may spread across several pages  */
1572 		flen = min_t(unsigned int, flen, PAGE_SIZE - poff);
1573 
1574 		if (spd_fill_page(spd, pipe, page, &flen, poff, skb, linear, sk))
1575 			return 1;
1576 
1577 		__segment_seek(&page, &poff, &plen, flen);
1578 		*len -= flen;
1579 
1580 	} while (*len && plen);
1581 
1582 	return 0;
1583 }
1584 
1585 /*
1586  * Map linear and fragment data from the skb to spd. It reports failure if the
1587  * pipe is full or if we already spliced the requested length.
1588  */
1589 static int __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe,
1590 			     unsigned int *offset, unsigned int *len,
1591 			     struct splice_pipe_desc *spd, struct sock *sk)
1592 {
1593 	int seg;
1594 
1595 	/*
1596 	 * map the linear part
1597 	 */
1598 	if (__splice_segment(virt_to_page(skb->data),
1599 			     (unsigned long) skb->data & (PAGE_SIZE - 1),
1600 			     skb_headlen(skb),
1601 			     offset, len, skb, spd, 1, sk, pipe))
1602 		return 1;
1603 
1604 	/*
1605 	 * then map the fragments
1606 	 */
1607 	for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
1608 		const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
1609 
1610 		if (__splice_segment(f->page, f->page_offset, f->size,
1611 				     offset, len, skb, spd, 0, sk, pipe))
1612 			return 1;
1613 	}
1614 
1615 	return 0;
1616 }
1617 
1618 /*
1619  * Map data from the skb to a pipe. Should handle both the linear part,
1620  * the fragments, and the frag list. It does NOT handle frag lists within
1621  * the frag list, if such a thing exists. We'd probably need to recurse to
1622  * handle that cleanly.
1623  */
1624 int skb_splice_bits(struct sk_buff *skb, unsigned int offset,
1625 		    struct pipe_inode_info *pipe, unsigned int tlen,
1626 		    unsigned int flags)
1627 {
1628 	struct partial_page partial[PIPE_DEF_BUFFERS];
1629 	struct page *pages[PIPE_DEF_BUFFERS];
1630 	struct splice_pipe_desc spd = {
1631 		.pages = pages,
1632 		.partial = partial,
1633 		.flags = flags,
1634 		.ops = &sock_pipe_buf_ops,
1635 		.spd_release = sock_spd_release,
1636 	};
1637 	struct sk_buff *frag_iter;
1638 	struct sock *sk = skb->sk;
1639 	int ret = 0;
1640 
1641 	if (splice_grow_spd(pipe, &spd))
1642 		return -ENOMEM;
1643 
1644 	/*
1645 	 * __skb_splice_bits() only fails if the output has no room left,
1646 	 * so no point in going over the frag_list for the error case.
1647 	 */
1648 	if (__skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk))
1649 		goto done;
1650 	else if (!tlen)
1651 		goto done;
1652 
1653 	/*
1654 	 * now see if we have a frag_list to map
1655 	 */
1656 	skb_walk_frags(skb, frag_iter) {
1657 		if (!tlen)
1658 			break;
1659 		if (__skb_splice_bits(frag_iter, pipe, &offset, &tlen, &spd, sk))
1660 			break;
1661 	}
1662 
1663 done:
1664 	if (spd.nr_pages) {
1665 		/*
1666 		 * Drop the socket lock, otherwise we have reverse
1667 		 * locking dependencies between sk_lock and i_mutex
1668 		 * here as compared to sendfile(). We enter here
1669 		 * with the socket lock held, and splice_to_pipe() will
1670 		 * grab the pipe inode lock. For sendfile() emulation,
1671 		 * we call into ->sendpage() with the i_mutex lock held
1672 		 * and networking will grab the socket lock.
1673 		 */
1674 		release_sock(sk);
1675 		ret = splice_to_pipe(pipe, &spd);
1676 		lock_sock(sk);
1677 	}
1678 
1679 	splice_shrink_spd(pipe, &spd);
1680 	return ret;
1681 }
1682 
1683 /**
1684  *	skb_store_bits - store bits from kernel buffer to skb
1685  *	@skb: destination buffer
1686  *	@offset: offset in destination
1687  *	@from: source buffer
1688  *	@len: number of bytes to copy
1689  *
1690  *	Copy the specified number of bytes from the source buffer to the
1691  *	destination skb.  This function handles all the messy bits of
1692  *	traversing fragment lists and such.
1693  */
1694 
1695 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
1696 {
1697 	int start = skb_headlen(skb);
1698 	struct sk_buff *frag_iter;
1699 	int i, copy;
1700 
1701 	if (offset > (int)skb->len - len)
1702 		goto fault;
1703 
1704 	if ((copy = start - offset) > 0) {
1705 		if (copy > len)
1706 			copy = len;
1707 		skb_copy_to_linear_data_offset(skb, offset, from, copy);
1708 		if ((len -= copy) == 0)
1709 			return 0;
1710 		offset += copy;
1711 		from += copy;
1712 	}
1713 
1714 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1715 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1716 		int end;
1717 
1718 		WARN_ON(start > offset + len);
1719 
1720 		end = start + frag->size;
1721 		if ((copy = end - offset) > 0) {
1722 			u8 *vaddr;
1723 
1724 			if (copy > len)
1725 				copy = len;
1726 
1727 			vaddr = kmap_skb_frag(frag);
1728 			memcpy(vaddr + frag->page_offset + offset - start,
1729 			       from, copy);
1730 			kunmap_skb_frag(vaddr);
1731 
1732 			if ((len -= copy) == 0)
1733 				return 0;
1734 			offset += copy;
1735 			from += copy;
1736 		}
1737 		start = end;
1738 	}
1739 
1740 	skb_walk_frags(skb, frag_iter) {
1741 		int end;
1742 
1743 		WARN_ON(start > offset + len);
1744 
1745 		end = start + frag_iter->len;
1746 		if ((copy = end - offset) > 0) {
1747 			if (copy > len)
1748 				copy = len;
1749 			if (skb_store_bits(frag_iter, offset - start,
1750 					   from, copy))
1751 				goto fault;
1752 			if ((len -= copy) == 0)
1753 				return 0;
1754 			offset += copy;
1755 			from += copy;
1756 		}
1757 		start = end;
1758 	}
1759 	if (!len)
1760 		return 0;
1761 
1762 fault:
1763 	return -EFAULT;
1764 }
1765 EXPORT_SYMBOL(skb_store_bits);
1766 
1767 /* Checksum skb data. */
1768 
1769 __wsum skb_checksum(const struct sk_buff *skb, int offset,
1770 			  int len, __wsum csum)
1771 {
1772 	int start = skb_headlen(skb);
1773 	int i, copy = start - offset;
1774 	struct sk_buff *frag_iter;
1775 	int pos = 0;
1776 
1777 	/* Checksum header. */
1778 	if (copy > 0) {
1779 		if (copy > len)
1780 			copy = len;
1781 		csum = csum_partial(skb->data + offset, copy, csum);
1782 		if ((len -= copy) == 0)
1783 			return csum;
1784 		offset += copy;
1785 		pos	= copy;
1786 	}
1787 
1788 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1789 		int end;
1790 
1791 		WARN_ON(start > offset + len);
1792 
1793 		end = start + skb_shinfo(skb)->frags[i].size;
1794 		if ((copy = end - offset) > 0) {
1795 			__wsum csum2;
1796 			u8 *vaddr;
1797 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1798 
1799 			if (copy > len)
1800 				copy = len;
1801 			vaddr = kmap_skb_frag(frag);
1802 			csum2 = csum_partial(vaddr + frag->page_offset +
1803 					     offset - start, copy, 0);
1804 			kunmap_skb_frag(vaddr);
1805 			csum = csum_block_add(csum, csum2, pos);
1806 			if (!(len -= copy))
1807 				return csum;
1808 			offset += copy;
1809 			pos    += copy;
1810 		}
1811 		start = end;
1812 	}
1813 
1814 	skb_walk_frags(skb, frag_iter) {
1815 		int end;
1816 
1817 		WARN_ON(start > offset + len);
1818 
1819 		end = start + frag_iter->len;
1820 		if ((copy = end - offset) > 0) {
1821 			__wsum csum2;
1822 			if (copy > len)
1823 				copy = len;
1824 			csum2 = skb_checksum(frag_iter, offset - start,
1825 					     copy, 0);
1826 			csum = csum_block_add(csum, csum2, pos);
1827 			if ((len -= copy) == 0)
1828 				return csum;
1829 			offset += copy;
1830 			pos    += copy;
1831 		}
1832 		start = end;
1833 	}
1834 	BUG_ON(len);
1835 
1836 	return csum;
1837 }
1838 EXPORT_SYMBOL(skb_checksum);
1839 
1840 /* Both of above in one bottle. */
1841 
1842 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
1843 				    u8 *to, int len, __wsum csum)
1844 {
1845 	int start = skb_headlen(skb);
1846 	int i, copy = start - offset;
1847 	struct sk_buff *frag_iter;
1848 	int pos = 0;
1849 
1850 	/* Copy header. */
1851 	if (copy > 0) {
1852 		if (copy > len)
1853 			copy = len;
1854 		csum = csum_partial_copy_nocheck(skb->data + offset, to,
1855 						 copy, csum);
1856 		if ((len -= copy) == 0)
1857 			return csum;
1858 		offset += copy;
1859 		to     += copy;
1860 		pos	= copy;
1861 	}
1862 
1863 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1864 		int end;
1865 
1866 		WARN_ON(start > offset + len);
1867 
1868 		end = start + skb_shinfo(skb)->frags[i].size;
1869 		if ((copy = end - offset) > 0) {
1870 			__wsum csum2;
1871 			u8 *vaddr;
1872 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1873 
1874 			if (copy > len)
1875 				copy = len;
1876 			vaddr = kmap_skb_frag(frag);
1877 			csum2 = csum_partial_copy_nocheck(vaddr +
1878 							  frag->page_offset +
1879 							  offset - start, to,
1880 							  copy, 0);
1881 			kunmap_skb_frag(vaddr);
1882 			csum = csum_block_add(csum, csum2, pos);
1883 			if (!(len -= copy))
1884 				return csum;
1885 			offset += copy;
1886 			to     += copy;
1887 			pos    += copy;
1888 		}
1889 		start = end;
1890 	}
1891 
1892 	skb_walk_frags(skb, frag_iter) {
1893 		__wsum csum2;
1894 		int end;
1895 
1896 		WARN_ON(start > offset + len);
1897 
1898 		end = start + frag_iter->len;
1899 		if ((copy = end - offset) > 0) {
1900 			if (copy > len)
1901 				copy = len;
1902 			csum2 = skb_copy_and_csum_bits(frag_iter,
1903 						       offset - start,
1904 						       to, copy, 0);
1905 			csum = csum_block_add(csum, csum2, pos);
1906 			if ((len -= copy) == 0)
1907 				return csum;
1908 			offset += copy;
1909 			to     += copy;
1910 			pos    += copy;
1911 		}
1912 		start = end;
1913 	}
1914 	BUG_ON(len);
1915 	return csum;
1916 }
1917 EXPORT_SYMBOL(skb_copy_and_csum_bits);
1918 
1919 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
1920 {
1921 	__wsum csum;
1922 	long csstart;
1923 
1924 	if (skb->ip_summed == CHECKSUM_PARTIAL)
1925 		csstart = skb_checksum_start_offset(skb);
1926 	else
1927 		csstart = skb_headlen(skb);
1928 
1929 	BUG_ON(csstart > skb_headlen(skb));
1930 
1931 	skb_copy_from_linear_data(skb, to, csstart);
1932 
1933 	csum = 0;
1934 	if (csstart != skb->len)
1935 		csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
1936 					      skb->len - csstart, 0);
1937 
1938 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
1939 		long csstuff = csstart + skb->csum_offset;
1940 
1941 		*((__sum16 *)(to + csstuff)) = csum_fold(csum);
1942 	}
1943 }
1944 EXPORT_SYMBOL(skb_copy_and_csum_dev);
1945 
1946 /**
1947  *	skb_dequeue - remove from the head of the queue
1948  *	@list: list to dequeue from
1949  *
1950  *	Remove the head of the list. The list lock is taken so the function
1951  *	may be used safely with other locking list functions. The head item is
1952  *	returned or %NULL if the list is empty.
1953  */
1954 
1955 struct sk_buff *skb_dequeue(struct sk_buff_head *list)
1956 {
1957 	unsigned long flags;
1958 	struct sk_buff *result;
1959 
1960 	spin_lock_irqsave(&list->lock, flags);
1961 	result = __skb_dequeue(list);
1962 	spin_unlock_irqrestore(&list->lock, flags);
1963 	return result;
1964 }
1965 EXPORT_SYMBOL(skb_dequeue);
1966 
1967 /**
1968  *	skb_dequeue_tail - remove from the tail of the queue
1969  *	@list: list to dequeue from
1970  *
1971  *	Remove the tail of the list. The list lock is taken so the function
1972  *	may be used safely with other locking list functions. The tail item is
1973  *	returned or %NULL if the list is empty.
1974  */
1975 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
1976 {
1977 	unsigned long flags;
1978 	struct sk_buff *result;
1979 
1980 	spin_lock_irqsave(&list->lock, flags);
1981 	result = __skb_dequeue_tail(list);
1982 	spin_unlock_irqrestore(&list->lock, flags);
1983 	return result;
1984 }
1985 EXPORT_SYMBOL(skb_dequeue_tail);
1986 
1987 /**
1988  *	skb_queue_purge - empty a list
1989  *	@list: list to empty
1990  *
1991  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
1992  *	the list and one reference dropped. This function takes the list
1993  *	lock and is atomic with respect to other list locking functions.
1994  */
1995 void skb_queue_purge(struct sk_buff_head *list)
1996 {
1997 	struct sk_buff *skb;
1998 	while ((skb = skb_dequeue(list)) != NULL)
1999 		kfree_skb(skb);
2000 }
2001 EXPORT_SYMBOL(skb_queue_purge);
2002 
2003 /**
2004  *	skb_queue_head - queue a buffer at the list head
2005  *	@list: list to use
2006  *	@newsk: buffer to queue
2007  *
2008  *	Queue a buffer at the start of the list. This function takes the
2009  *	list lock and can be used safely with other locking &sk_buff functions
2010  *	safely.
2011  *
2012  *	A buffer cannot be placed on two lists at the same time.
2013  */
2014 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
2015 {
2016 	unsigned long flags;
2017 
2018 	spin_lock_irqsave(&list->lock, flags);
2019 	__skb_queue_head(list, newsk);
2020 	spin_unlock_irqrestore(&list->lock, flags);
2021 }
2022 EXPORT_SYMBOL(skb_queue_head);
2023 
2024 /**
2025  *	skb_queue_tail - queue a buffer at the list tail
2026  *	@list: list to use
2027  *	@newsk: buffer to queue
2028  *
2029  *	Queue a buffer at the tail of the list. This function takes the
2030  *	list lock and can be used safely with other locking &sk_buff functions
2031  *	safely.
2032  *
2033  *	A buffer cannot be placed on two lists at the same time.
2034  */
2035 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
2036 {
2037 	unsigned long flags;
2038 
2039 	spin_lock_irqsave(&list->lock, flags);
2040 	__skb_queue_tail(list, newsk);
2041 	spin_unlock_irqrestore(&list->lock, flags);
2042 }
2043 EXPORT_SYMBOL(skb_queue_tail);
2044 
2045 /**
2046  *	skb_unlink	-	remove a buffer from a list
2047  *	@skb: buffer to remove
2048  *	@list: list to use
2049  *
2050  *	Remove a packet from a list. The list locks are taken and this
2051  *	function is atomic with respect to other list locked calls
2052  *
2053  *	You must know what list the SKB is on.
2054  */
2055 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
2056 {
2057 	unsigned long flags;
2058 
2059 	spin_lock_irqsave(&list->lock, flags);
2060 	__skb_unlink(skb, list);
2061 	spin_unlock_irqrestore(&list->lock, flags);
2062 }
2063 EXPORT_SYMBOL(skb_unlink);
2064 
2065 /**
2066  *	skb_append	-	append a buffer
2067  *	@old: buffer to insert after
2068  *	@newsk: buffer to insert
2069  *	@list: list to use
2070  *
2071  *	Place a packet after a given packet in a list. The list locks are taken
2072  *	and this function is atomic with respect to other list locked calls.
2073  *	A buffer cannot be placed on two lists at the same time.
2074  */
2075 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
2076 {
2077 	unsigned long flags;
2078 
2079 	spin_lock_irqsave(&list->lock, flags);
2080 	__skb_queue_after(list, old, newsk);
2081 	spin_unlock_irqrestore(&list->lock, flags);
2082 }
2083 EXPORT_SYMBOL(skb_append);
2084 
2085 /**
2086  *	skb_insert	-	insert a buffer
2087  *	@old: buffer to insert before
2088  *	@newsk: buffer to insert
2089  *	@list: list to use
2090  *
2091  *	Place a packet before a given packet in a list. The list locks are
2092  * 	taken and this function is atomic with respect to other list locked
2093  *	calls.
2094  *
2095  *	A buffer cannot be placed on two lists at the same time.
2096  */
2097 void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
2098 {
2099 	unsigned long flags;
2100 
2101 	spin_lock_irqsave(&list->lock, flags);
2102 	__skb_insert(newsk, old->prev, old, list);
2103 	spin_unlock_irqrestore(&list->lock, flags);
2104 }
2105 EXPORT_SYMBOL(skb_insert);
2106 
2107 static inline void skb_split_inside_header(struct sk_buff *skb,
2108 					   struct sk_buff* skb1,
2109 					   const u32 len, const int pos)
2110 {
2111 	int i;
2112 
2113 	skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
2114 					 pos - len);
2115 	/* And move data appendix as is. */
2116 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
2117 		skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
2118 
2119 	skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
2120 	skb_shinfo(skb)->nr_frags  = 0;
2121 	skb1->data_len		   = skb->data_len;
2122 	skb1->len		   += skb1->data_len;
2123 	skb->data_len		   = 0;
2124 	skb->len		   = len;
2125 	skb_set_tail_pointer(skb, len);
2126 }
2127 
2128 static inline void skb_split_no_header(struct sk_buff *skb,
2129 				       struct sk_buff* skb1,
2130 				       const u32 len, int pos)
2131 {
2132 	int i, k = 0;
2133 	const int nfrags = skb_shinfo(skb)->nr_frags;
2134 
2135 	skb_shinfo(skb)->nr_frags = 0;
2136 	skb1->len		  = skb1->data_len = skb->len - len;
2137 	skb->len		  = len;
2138 	skb->data_len		  = len - pos;
2139 
2140 	for (i = 0; i < nfrags; i++) {
2141 		int size = skb_shinfo(skb)->frags[i].size;
2142 
2143 		if (pos + size > len) {
2144 			skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
2145 
2146 			if (pos < len) {
2147 				/* Split frag.
2148 				 * We have two variants in this case:
2149 				 * 1. Move all the frag to the second
2150 				 *    part, if it is possible. F.e.
2151 				 *    this approach is mandatory for TUX,
2152 				 *    where splitting is expensive.
2153 				 * 2. Split is accurately. We make this.
2154 				 */
2155 				get_page(skb_shinfo(skb)->frags[i].page);
2156 				skb_shinfo(skb1)->frags[0].page_offset += len - pos;
2157 				skb_shinfo(skb1)->frags[0].size -= len - pos;
2158 				skb_shinfo(skb)->frags[i].size	= len - pos;
2159 				skb_shinfo(skb)->nr_frags++;
2160 			}
2161 			k++;
2162 		} else
2163 			skb_shinfo(skb)->nr_frags++;
2164 		pos += size;
2165 	}
2166 	skb_shinfo(skb1)->nr_frags = k;
2167 }
2168 
2169 /**
2170  * skb_split - Split fragmented skb to two parts at length len.
2171  * @skb: the buffer to split
2172  * @skb1: the buffer to receive the second part
2173  * @len: new length for skb
2174  */
2175 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
2176 {
2177 	int pos = skb_headlen(skb);
2178 
2179 	if (len < pos)	/* Split line is inside header. */
2180 		skb_split_inside_header(skb, skb1, len, pos);
2181 	else		/* Second chunk has no header, nothing to copy. */
2182 		skb_split_no_header(skb, skb1, len, pos);
2183 }
2184 EXPORT_SYMBOL(skb_split);
2185 
2186 /* Shifting from/to a cloned skb is a no-go.
2187  *
2188  * Caller cannot keep skb_shinfo related pointers past calling here!
2189  */
2190 static int skb_prepare_for_shift(struct sk_buff *skb)
2191 {
2192 	return skb_cloned(skb) && pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2193 }
2194 
2195 /**
2196  * skb_shift - Shifts paged data partially from skb to another
2197  * @tgt: buffer into which tail data gets added
2198  * @skb: buffer from which the paged data comes from
2199  * @shiftlen: shift up to this many bytes
2200  *
2201  * Attempts to shift up to shiftlen worth of bytes, which may be less than
2202  * the length of the skb, from tgt to skb. Returns number bytes shifted.
2203  * It's up to caller to free skb if everything was shifted.
2204  *
2205  * If @tgt runs out of frags, the whole operation is aborted.
2206  *
2207  * Skb cannot include anything else but paged data while tgt is allowed
2208  * to have non-paged data as well.
2209  *
2210  * TODO: full sized shift could be optimized but that would need
2211  * specialized skb free'er to handle frags without up-to-date nr_frags.
2212  */
2213 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
2214 {
2215 	int from, to, merge, todo;
2216 	struct skb_frag_struct *fragfrom, *fragto;
2217 
2218 	BUG_ON(shiftlen > skb->len);
2219 	BUG_ON(skb_headlen(skb));	/* Would corrupt stream */
2220 
2221 	todo = shiftlen;
2222 	from = 0;
2223 	to = skb_shinfo(tgt)->nr_frags;
2224 	fragfrom = &skb_shinfo(skb)->frags[from];
2225 
2226 	/* Actual merge is delayed until the point when we know we can
2227 	 * commit all, so that we don't have to undo partial changes
2228 	 */
2229 	if (!to ||
2230 	    !skb_can_coalesce(tgt, to, fragfrom->page, fragfrom->page_offset)) {
2231 		merge = -1;
2232 	} else {
2233 		merge = to - 1;
2234 
2235 		todo -= fragfrom->size;
2236 		if (todo < 0) {
2237 			if (skb_prepare_for_shift(skb) ||
2238 			    skb_prepare_for_shift(tgt))
2239 				return 0;
2240 
2241 			/* All previous frag pointers might be stale! */
2242 			fragfrom = &skb_shinfo(skb)->frags[from];
2243 			fragto = &skb_shinfo(tgt)->frags[merge];
2244 
2245 			fragto->size += shiftlen;
2246 			fragfrom->size -= shiftlen;
2247 			fragfrom->page_offset += shiftlen;
2248 
2249 			goto onlymerged;
2250 		}
2251 
2252 		from++;
2253 	}
2254 
2255 	/* Skip full, not-fitting skb to avoid expensive operations */
2256 	if ((shiftlen == skb->len) &&
2257 	    (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
2258 		return 0;
2259 
2260 	if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
2261 		return 0;
2262 
2263 	while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
2264 		if (to == MAX_SKB_FRAGS)
2265 			return 0;
2266 
2267 		fragfrom = &skb_shinfo(skb)->frags[from];
2268 		fragto = &skb_shinfo(tgt)->frags[to];
2269 
2270 		if (todo >= fragfrom->size) {
2271 			*fragto = *fragfrom;
2272 			todo -= fragfrom->size;
2273 			from++;
2274 			to++;
2275 
2276 		} else {
2277 			get_page(fragfrom->page);
2278 			fragto->page = fragfrom->page;
2279 			fragto->page_offset = fragfrom->page_offset;
2280 			fragto->size = todo;
2281 
2282 			fragfrom->page_offset += todo;
2283 			fragfrom->size -= todo;
2284 			todo = 0;
2285 
2286 			to++;
2287 			break;
2288 		}
2289 	}
2290 
2291 	/* Ready to "commit" this state change to tgt */
2292 	skb_shinfo(tgt)->nr_frags = to;
2293 
2294 	if (merge >= 0) {
2295 		fragfrom = &skb_shinfo(skb)->frags[0];
2296 		fragto = &skb_shinfo(tgt)->frags[merge];
2297 
2298 		fragto->size += fragfrom->size;
2299 		put_page(fragfrom->page);
2300 	}
2301 
2302 	/* Reposition in the original skb */
2303 	to = 0;
2304 	while (from < skb_shinfo(skb)->nr_frags)
2305 		skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
2306 	skb_shinfo(skb)->nr_frags = to;
2307 
2308 	BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
2309 
2310 onlymerged:
2311 	/* Most likely the tgt won't ever need its checksum anymore, skb on
2312 	 * the other hand might need it if it needs to be resent
2313 	 */
2314 	tgt->ip_summed = CHECKSUM_PARTIAL;
2315 	skb->ip_summed = CHECKSUM_PARTIAL;
2316 
2317 	/* Yak, is it really working this way? Some helper please? */
2318 	skb->len -= shiftlen;
2319 	skb->data_len -= shiftlen;
2320 	skb->truesize -= shiftlen;
2321 	tgt->len += shiftlen;
2322 	tgt->data_len += shiftlen;
2323 	tgt->truesize += shiftlen;
2324 
2325 	return shiftlen;
2326 }
2327 
2328 /**
2329  * skb_prepare_seq_read - Prepare a sequential read of skb data
2330  * @skb: the buffer to read
2331  * @from: lower offset of data to be read
2332  * @to: upper offset of data to be read
2333  * @st: state variable
2334  *
2335  * Initializes the specified state variable. Must be called before
2336  * invoking skb_seq_read() for the first time.
2337  */
2338 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
2339 			  unsigned int to, struct skb_seq_state *st)
2340 {
2341 	st->lower_offset = from;
2342 	st->upper_offset = to;
2343 	st->root_skb = st->cur_skb = skb;
2344 	st->frag_idx = st->stepped_offset = 0;
2345 	st->frag_data = NULL;
2346 }
2347 EXPORT_SYMBOL(skb_prepare_seq_read);
2348 
2349 /**
2350  * skb_seq_read - Sequentially read skb data
2351  * @consumed: number of bytes consumed by the caller so far
2352  * @data: destination pointer for data to be returned
2353  * @st: state variable
2354  *
2355  * Reads a block of skb data at &consumed relative to the
2356  * lower offset specified to skb_prepare_seq_read(). Assigns
2357  * the head of the data block to &data and returns the length
2358  * of the block or 0 if the end of the skb data or the upper
2359  * offset has been reached.
2360  *
2361  * The caller is not required to consume all of the data
2362  * returned, i.e. &consumed is typically set to the number
2363  * of bytes already consumed and the next call to
2364  * skb_seq_read() will return the remaining part of the block.
2365  *
2366  * Note 1: The size of each block of data returned can be arbitrary,
2367  *       this limitation is the cost for zerocopy seqeuental
2368  *       reads of potentially non linear data.
2369  *
2370  * Note 2: Fragment lists within fragments are not implemented
2371  *       at the moment, state->root_skb could be replaced with
2372  *       a stack for this purpose.
2373  */
2374 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
2375 			  struct skb_seq_state *st)
2376 {
2377 	unsigned int block_limit, abs_offset = consumed + st->lower_offset;
2378 	skb_frag_t *frag;
2379 
2380 	if (unlikely(abs_offset >= st->upper_offset))
2381 		return 0;
2382 
2383 next_skb:
2384 	block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
2385 
2386 	if (abs_offset < block_limit && !st->frag_data) {
2387 		*data = st->cur_skb->data + (abs_offset - st->stepped_offset);
2388 		return block_limit - abs_offset;
2389 	}
2390 
2391 	if (st->frag_idx == 0 && !st->frag_data)
2392 		st->stepped_offset += skb_headlen(st->cur_skb);
2393 
2394 	while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
2395 		frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
2396 		block_limit = frag->size + st->stepped_offset;
2397 
2398 		if (abs_offset < block_limit) {
2399 			if (!st->frag_data)
2400 				st->frag_data = kmap_skb_frag(frag);
2401 
2402 			*data = (u8 *) st->frag_data + frag->page_offset +
2403 				(abs_offset - st->stepped_offset);
2404 
2405 			return block_limit - abs_offset;
2406 		}
2407 
2408 		if (st->frag_data) {
2409 			kunmap_skb_frag(st->frag_data);
2410 			st->frag_data = NULL;
2411 		}
2412 
2413 		st->frag_idx++;
2414 		st->stepped_offset += frag->size;
2415 	}
2416 
2417 	if (st->frag_data) {
2418 		kunmap_skb_frag(st->frag_data);
2419 		st->frag_data = NULL;
2420 	}
2421 
2422 	if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) {
2423 		st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
2424 		st->frag_idx = 0;
2425 		goto next_skb;
2426 	} else if (st->cur_skb->next) {
2427 		st->cur_skb = st->cur_skb->next;
2428 		st->frag_idx = 0;
2429 		goto next_skb;
2430 	}
2431 
2432 	return 0;
2433 }
2434 EXPORT_SYMBOL(skb_seq_read);
2435 
2436 /**
2437  * skb_abort_seq_read - Abort a sequential read of skb data
2438  * @st: state variable
2439  *
2440  * Must be called if skb_seq_read() was not called until it
2441  * returned 0.
2442  */
2443 void skb_abort_seq_read(struct skb_seq_state *st)
2444 {
2445 	if (st->frag_data)
2446 		kunmap_skb_frag(st->frag_data);
2447 }
2448 EXPORT_SYMBOL(skb_abort_seq_read);
2449 
2450 #define TS_SKB_CB(state)	((struct skb_seq_state *) &((state)->cb))
2451 
2452 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
2453 					  struct ts_config *conf,
2454 					  struct ts_state *state)
2455 {
2456 	return skb_seq_read(offset, text, TS_SKB_CB(state));
2457 }
2458 
2459 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
2460 {
2461 	skb_abort_seq_read(TS_SKB_CB(state));
2462 }
2463 
2464 /**
2465  * skb_find_text - Find a text pattern in skb data
2466  * @skb: the buffer to look in
2467  * @from: search offset
2468  * @to: search limit
2469  * @config: textsearch configuration
2470  * @state: uninitialized textsearch state variable
2471  *
2472  * Finds a pattern in the skb data according to the specified
2473  * textsearch configuration. Use textsearch_next() to retrieve
2474  * subsequent occurrences of the pattern. Returns the offset
2475  * to the first occurrence or UINT_MAX if no match was found.
2476  */
2477 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
2478 			   unsigned int to, struct ts_config *config,
2479 			   struct ts_state *state)
2480 {
2481 	unsigned int ret;
2482 
2483 	config->get_next_block = skb_ts_get_next_block;
2484 	config->finish = skb_ts_finish;
2485 
2486 	skb_prepare_seq_read(skb, from, to, TS_SKB_CB(state));
2487 
2488 	ret = textsearch_find(config, state);
2489 	return (ret <= to - from ? ret : UINT_MAX);
2490 }
2491 EXPORT_SYMBOL(skb_find_text);
2492 
2493 /**
2494  * skb_append_datato_frags: - append the user data to a skb
2495  * @sk: sock  structure
2496  * @skb: skb structure to be appened with user data.
2497  * @getfrag: call back function to be used for getting the user data
2498  * @from: pointer to user message iov
2499  * @length: length of the iov message
2500  *
2501  * Description: This procedure append the user data in the fragment part
2502  * of the skb if any page alloc fails user this procedure returns  -ENOMEM
2503  */
2504 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
2505 			int (*getfrag)(void *from, char *to, int offset,
2506 					int len, int odd, struct sk_buff *skb),
2507 			void *from, int length)
2508 {
2509 	int frg_cnt = 0;
2510 	skb_frag_t *frag = NULL;
2511 	struct page *page = NULL;
2512 	int copy, left;
2513 	int offset = 0;
2514 	int ret;
2515 
2516 	do {
2517 		/* Return error if we don't have space for new frag */
2518 		frg_cnt = skb_shinfo(skb)->nr_frags;
2519 		if (frg_cnt >= MAX_SKB_FRAGS)
2520 			return -EFAULT;
2521 
2522 		/* allocate a new page for next frag */
2523 		page = alloc_pages(sk->sk_allocation, 0);
2524 
2525 		/* If alloc_page fails just return failure and caller will
2526 		 * free previous allocated pages by doing kfree_skb()
2527 		 */
2528 		if (page == NULL)
2529 			return -ENOMEM;
2530 
2531 		/* initialize the next frag */
2532 		skb_fill_page_desc(skb, frg_cnt, page, 0, 0);
2533 		skb->truesize += PAGE_SIZE;
2534 		atomic_add(PAGE_SIZE, &sk->sk_wmem_alloc);
2535 
2536 		/* get the new initialized frag */
2537 		frg_cnt = skb_shinfo(skb)->nr_frags;
2538 		frag = &skb_shinfo(skb)->frags[frg_cnt - 1];
2539 
2540 		/* copy the user data to page */
2541 		left = PAGE_SIZE - frag->page_offset;
2542 		copy = (length > left)? left : length;
2543 
2544 		ret = getfrag(from, (page_address(frag->page) +
2545 			    frag->page_offset + frag->size),
2546 			    offset, copy, 0, skb);
2547 		if (ret < 0)
2548 			return -EFAULT;
2549 
2550 		/* copy was successful so update the size parameters */
2551 		frag->size += copy;
2552 		skb->len += copy;
2553 		skb->data_len += copy;
2554 		offset += copy;
2555 		length -= copy;
2556 
2557 	} while (length > 0);
2558 
2559 	return 0;
2560 }
2561 EXPORT_SYMBOL(skb_append_datato_frags);
2562 
2563 /**
2564  *	skb_pull_rcsum - pull skb and update receive checksum
2565  *	@skb: buffer to update
2566  *	@len: length of data pulled
2567  *
2568  *	This function performs an skb_pull on the packet and updates
2569  *	the CHECKSUM_COMPLETE checksum.  It should be used on
2570  *	receive path processing instead of skb_pull unless you know
2571  *	that the checksum difference is zero (e.g., a valid IP header)
2572  *	or you are setting ip_summed to CHECKSUM_NONE.
2573  */
2574 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
2575 {
2576 	BUG_ON(len > skb->len);
2577 	skb->len -= len;
2578 	BUG_ON(skb->len < skb->data_len);
2579 	skb_postpull_rcsum(skb, skb->data, len);
2580 	return skb->data += len;
2581 }
2582 EXPORT_SYMBOL_GPL(skb_pull_rcsum);
2583 
2584 /**
2585  *	skb_segment - Perform protocol segmentation on skb.
2586  *	@skb: buffer to segment
2587  *	@features: features for the output path (see dev->features)
2588  *
2589  *	This function performs segmentation on the given skb.  It returns
2590  *	a pointer to the first in a list of new skbs for the segments.
2591  *	In case of error it returns ERR_PTR(err).
2592  */
2593 struct sk_buff *skb_segment(struct sk_buff *skb, u32 features)
2594 {
2595 	struct sk_buff *segs = NULL;
2596 	struct sk_buff *tail = NULL;
2597 	struct sk_buff *fskb = skb_shinfo(skb)->frag_list;
2598 	unsigned int mss = skb_shinfo(skb)->gso_size;
2599 	unsigned int doffset = skb->data - skb_mac_header(skb);
2600 	unsigned int offset = doffset;
2601 	unsigned int headroom;
2602 	unsigned int len;
2603 	int sg = !!(features & NETIF_F_SG);
2604 	int nfrags = skb_shinfo(skb)->nr_frags;
2605 	int err = -ENOMEM;
2606 	int i = 0;
2607 	int pos;
2608 
2609 	__skb_push(skb, doffset);
2610 	headroom = skb_headroom(skb);
2611 	pos = skb_headlen(skb);
2612 
2613 	do {
2614 		struct sk_buff *nskb;
2615 		skb_frag_t *frag;
2616 		int hsize;
2617 		int size;
2618 
2619 		len = skb->len - offset;
2620 		if (len > mss)
2621 			len = mss;
2622 
2623 		hsize = skb_headlen(skb) - offset;
2624 		if (hsize < 0)
2625 			hsize = 0;
2626 		if (hsize > len || !sg)
2627 			hsize = len;
2628 
2629 		if (!hsize && i >= nfrags) {
2630 			BUG_ON(fskb->len != len);
2631 
2632 			pos += len;
2633 			nskb = skb_clone(fskb, GFP_ATOMIC);
2634 			fskb = fskb->next;
2635 
2636 			if (unlikely(!nskb))
2637 				goto err;
2638 
2639 			hsize = skb_end_pointer(nskb) - nskb->head;
2640 			if (skb_cow_head(nskb, doffset + headroom)) {
2641 				kfree_skb(nskb);
2642 				goto err;
2643 			}
2644 
2645 			nskb->truesize += skb_end_pointer(nskb) - nskb->head -
2646 					  hsize;
2647 			skb_release_head_state(nskb);
2648 			__skb_push(nskb, doffset);
2649 		} else {
2650 			nskb = alloc_skb(hsize + doffset + headroom,
2651 					 GFP_ATOMIC);
2652 
2653 			if (unlikely(!nskb))
2654 				goto err;
2655 
2656 			skb_reserve(nskb, headroom);
2657 			__skb_put(nskb, doffset);
2658 		}
2659 
2660 		if (segs)
2661 			tail->next = nskb;
2662 		else
2663 			segs = nskb;
2664 		tail = nskb;
2665 
2666 		__copy_skb_header(nskb, skb);
2667 		nskb->mac_len = skb->mac_len;
2668 
2669 		/* nskb and skb might have different headroom */
2670 		if (nskb->ip_summed == CHECKSUM_PARTIAL)
2671 			nskb->csum_start += skb_headroom(nskb) - headroom;
2672 
2673 		skb_reset_mac_header(nskb);
2674 		skb_set_network_header(nskb, skb->mac_len);
2675 		nskb->transport_header = (nskb->network_header +
2676 					  skb_network_header_len(skb));
2677 		skb_copy_from_linear_data(skb, nskb->data, doffset);
2678 
2679 		if (fskb != skb_shinfo(skb)->frag_list)
2680 			continue;
2681 
2682 		if (!sg) {
2683 			nskb->ip_summed = CHECKSUM_NONE;
2684 			nskb->csum = skb_copy_and_csum_bits(skb, offset,
2685 							    skb_put(nskb, len),
2686 							    len, 0);
2687 			continue;
2688 		}
2689 
2690 		frag = skb_shinfo(nskb)->frags;
2691 
2692 		skb_copy_from_linear_data_offset(skb, offset,
2693 						 skb_put(nskb, hsize), hsize);
2694 
2695 		while (pos < offset + len && i < nfrags) {
2696 			*frag = skb_shinfo(skb)->frags[i];
2697 			get_page(frag->page);
2698 			size = frag->size;
2699 
2700 			if (pos < offset) {
2701 				frag->page_offset += offset - pos;
2702 				frag->size -= offset - pos;
2703 			}
2704 
2705 			skb_shinfo(nskb)->nr_frags++;
2706 
2707 			if (pos + size <= offset + len) {
2708 				i++;
2709 				pos += size;
2710 			} else {
2711 				frag->size -= pos + size - (offset + len);
2712 				goto skip_fraglist;
2713 			}
2714 
2715 			frag++;
2716 		}
2717 
2718 		if (pos < offset + len) {
2719 			struct sk_buff *fskb2 = fskb;
2720 
2721 			BUG_ON(pos + fskb->len != offset + len);
2722 
2723 			pos += fskb->len;
2724 			fskb = fskb->next;
2725 
2726 			if (fskb2->next) {
2727 				fskb2 = skb_clone(fskb2, GFP_ATOMIC);
2728 				if (!fskb2)
2729 					goto err;
2730 			} else
2731 				skb_get(fskb2);
2732 
2733 			SKB_FRAG_ASSERT(nskb);
2734 			skb_shinfo(nskb)->frag_list = fskb2;
2735 		}
2736 
2737 skip_fraglist:
2738 		nskb->data_len = len - hsize;
2739 		nskb->len += nskb->data_len;
2740 		nskb->truesize += nskb->data_len;
2741 	} while ((offset += len) < skb->len);
2742 
2743 	return segs;
2744 
2745 err:
2746 	while ((skb = segs)) {
2747 		segs = skb->next;
2748 		kfree_skb(skb);
2749 	}
2750 	return ERR_PTR(err);
2751 }
2752 EXPORT_SYMBOL_GPL(skb_segment);
2753 
2754 int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb)
2755 {
2756 	struct sk_buff *p = *head;
2757 	struct sk_buff *nskb;
2758 	struct skb_shared_info *skbinfo = skb_shinfo(skb);
2759 	struct skb_shared_info *pinfo = skb_shinfo(p);
2760 	unsigned int headroom;
2761 	unsigned int len = skb_gro_len(skb);
2762 	unsigned int offset = skb_gro_offset(skb);
2763 	unsigned int headlen = skb_headlen(skb);
2764 
2765 	if (p->len + len >= 65536)
2766 		return -E2BIG;
2767 
2768 	if (pinfo->frag_list)
2769 		goto merge;
2770 	else if (headlen <= offset) {
2771 		skb_frag_t *frag;
2772 		skb_frag_t *frag2;
2773 		int i = skbinfo->nr_frags;
2774 		int nr_frags = pinfo->nr_frags + i;
2775 
2776 		offset -= headlen;
2777 
2778 		if (nr_frags > MAX_SKB_FRAGS)
2779 			return -E2BIG;
2780 
2781 		pinfo->nr_frags = nr_frags;
2782 		skbinfo->nr_frags = 0;
2783 
2784 		frag = pinfo->frags + nr_frags;
2785 		frag2 = skbinfo->frags + i;
2786 		do {
2787 			*--frag = *--frag2;
2788 		} while (--i);
2789 
2790 		frag->page_offset += offset;
2791 		frag->size -= offset;
2792 
2793 		skb->truesize -= skb->data_len;
2794 		skb->len -= skb->data_len;
2795 		skb->data_len = 0;
2796 
2797 		NAPI_GRO_CB(skb)->free = 1;
2798 		goto done;
2799 	} else if (skb_gro_len(p) != pinfo->gso_size)
2800 		return -E2BIG;
2801 
2802 	headroom = skb_headroom(p);
2803 	nskb = alloc_skb(headroom + skb_gro_offset(p), GFP_ATOMIC);
2804 	if (unlikely(!nskb))
2805 		return -ENOMEM;
2806 
2807 	__copy_skb_header(nskb, p);
2808 	nskb->mac_len = p->mac_len;
2809 
2810 	skb_reserve(nskb, headroom);
2811 	__skb_put(nskb, skb_gro_offset(p));
2812 
2813 	skb_set_mac_header(nskb, skb_mac_header(p) - p->data);
2814 	skb_set_network_header(nskb, skb_network_offset(p));
2815 	skb_set_transport_header(nskb, skb_transport_offset(p));
2816 
2817 	__skb_pull(p, skb_gro_offset(p));
2818 	memcpy(skb_mac_header(nskb), skb_mac_header(p),
2819 	       p->data - skb_mac_header(p));
2820 
2821 	*NAPI_GRO_CB(nskb) = *NAPI_GRO_CB(p);
2822 	skb_shinfo(nskb)->frag_list = p;
2823 	skb_shinfo(nskb)->gso_size = pinfo->gso_size;
2824 	pinfo->gso_size = 0;
2825 	skb_header_release(p);
2826 	nskb->prev = p;
2827 
2828 	nskb->data_len += p->len;
2829 	nskb->truesize += p->len;
2830 	nskb->len += p->len;
2831 
2832 	*head = nskb;
2833 	nskb->next = p->next;
2834 	p->next = NULL;
2835 
2836 	p = nskb;
2837 
2838 merge:
2839 	if (offset > headlen) {
2840 		unsigned int eat = offset - headlen;
2841 
2842 		skbinfo->frags[0].page_offset += eat;
2843 		skbinfo->frags[0].size -= eat;
2844 		skb->data_len -= eat;
2845 		skb->len -= eat;
2846 		offset = headlen;
2847 	}
2848 
2849 	__skb_pull(skb, offset);
2850 
2851 	p->prev->next = skb;
2852 	p->prev = skb;
2853 	skb_header_release(skb);
2854 
2855 done:
2856 	NAPI_GRO_CB(p)->count++;
2857 	p->data_len += len;
2858 	p->truesize += len;
2859 	p->len += len;
2860 
2861 	NAPI_GRO_CB(skb)->same_flow = 1;
2862 	return 0;
2863 }
2864 EXPORT_SYMBOL_GPL(skb_gro_receive);
2865 
2866 void __init skb_init(void)
2867 {
2868 	skbuff_head_cache = kmem_cache_create("skbuff_head_cache",
2869 					      sizeof(struct sk_buff),
2870 					      0,
2871 					      SLAB_HWCACHE_ALIGN|SLAB_PANIC,
2872 					      NULL);
2873 	skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
2874 						(2*sizeof(struct sk_buff)) +
2875 						sizeof(atomic_t),
2876 						0,
2877 						SLAB_HWCACHE_ALIGN|SLAB_PANIC,
2878 						NULL);
2879 }
2880 
2881 /**
2882  *	skb_to_sgvec - Fill a scatter-gather list from a socket buffer
2883  *	@skb: Socket buffer containing the buffers to be mapped
2884  *	@sg: The scatter-gather list to map into
2885  *	@offset: The offset into the buffer's contents to start mapping
2886  *	@len: Length of buffer space to be mapped
2887  *
2888  *	Fill the specified scatter-gather list with mappings/pointers into a
2889  *	region of the buffer space attached to a socket buffer.
2890  */
2891 static int
2892 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
2893 {
2894 	int start = skb_headlen(skb);
2895 	int i, copy = start - offset;
2896 	struct sk_buff *frag_iter;
2897 	int elt = 0;
2898 
2899 	if (copy > 0) {
2900 		if (copy > len)
2901 			copy = len;
2902 		sg_set_buf(sg, skb->data + offset, copy);
2903 		elt++;
2904 		if ((len -= copy) == 0)
2905 			return elt;
2906 		offset += copy;
2907 	}
2908 
2909 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2910 		int end;
2911 
2912 		WARN_ON(start > offset + len);
2913 
2914 		end = start + skb_shinfo(skb)->frags[i].size;
2915 		if ((copy = end - offset) > 0) {
2916 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2917 
2918 			if (copy > len)
2919 				copy = len;
2920 			sg_set_page(&sg[elt], frag->page, copy,
2921 					frag->page_offset+offset-start);
2922 			elt++;
2923 			if (!(len -= copy))
2924 				return elt;
2925 			offset += copy;
2926 		}
2927 		start = end;
2928 	}
2929 
2930 	skb_walk_frags(skb, frag_iter) {
2931 		int end;
2932 
2933 		WARN_ON(start > offset + len);
2934 
2935 		end = start + frag_iter->len;
2936 		if ((copy = end - offset) > 0) {
2937 			if (copy > len)
2938 				copy = len;
2939 			elt += __skb_to_sgvec(frag_iter, sg+elt, offset - start,
2940 					      copy);
2941 			if ((len -= copy) == 0)
2942 				return elt;
2943 			offset += copy;
2944 		}
2945 		start = end;
2946 	}
2947 	BUG_ON(len);
2948 	return elt;
2949 }
2950 
2951 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
2952 {
2953 	int nsg = __skb_to_sgvec(skb, sg, offset, len);
2954 
2955 	sg_mark_end(&sg[nsg - 1]);
2956 
2957 	return nsg;
2958 }
2959 EXPORT_SYMBOL_GPL(skb_to_sgvec);
2960 
2961 /**
2962  *	skb_cow_data - Check that a socket buffer's data buffers are writable
2963  *	@skb: The socket buffer to check.
2964  *	@tailbits: Amount of trailing space to be added
2965  *	@trailer: Returned pointer to the skb where the @tailbits space begins
2966  *
2967  *	Make sure that the data buffers attached to a socket buffer are
2968  *	writable. If they are not, private copies are made of the data buffers
2969  *	and the socket buffer is set to use these instead.
2970  *
2971  *	If @tailbits is given, make sure that there is space to write @tailbits
2972  *	bytes of data beyond current end of socket buffer.  @trailer will be
2973  *	set to point to the skb in which this space begins.
2974  *
2975  *	The number of scatterlist elements required to completely map the
2976  *	COW'd and extended socket buffer will be returned.
2977  */
2978 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
2979 {
2980 	int copyflag;
2981 	int elt;
2982 	struct sk_buff *skb1, **skb_p;
2983 
2984 	/* If skb is cloned or its head is paged, reallocate
2985 	 * head pulling out all the pages (pages are considered not writable
2986 	 * at the moment even if they are anonymous).
2987 	 */
2988 	if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
2989 	    __pskb_pull_tail(skb, skb_pagelen(skb)-skb_headlen(skb)) == NULL)
2990 		return -ENOMEM;
2991 
2992 	/* Easy case. Most of packets will go this way. */
2993 	if (!skb_has_frag_list(skb)) {
2994 		/* A little of trouble, not enough of space for trailer.
2995 		 * This should not happen, when stack is tuned to generate
2996 		 * good frames. OK, on miss we reallocate and reserve even more
2997 		 * space, 128 bytes is fair. */
2998 
2999 		if (skb_tailroom(skb) < tailbits &&
3000 		    pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
3001 			return -ENOMEM;
3002 
3003 		/* Voila! */
3004 		*trailer = skb;
3005 		return 1;
3006 	}
3007 
3008 	/* Misery. We are in troubles, going to mincer fragments... */
3009 
3010 	elt = 1;
3011 	skb_p = &skb_shinfo(skb)->frag_list;
3012 	copyflag = 0;
3013 
3014 	while ((skb1 = *skb_p) != NULL) {
3015 		int ntail = 0;
3016 
3017 		/* The fragment is partially pulled by someone,
3018 		 * this can happen on input. Copy it and everything
3019 		 * after it. */
3020 
3021 		if (skb_shared(skb1))
3022 			copyflag = 1;
3023 
3024 		/* If the skb is the last, worry about trailer. */
3025 
3026 		if (skb1->next == NULL && tailbits) {
3027 			if (skb_shinfo(skb1)->nr_frags ||
3028 			    skb_has_frag_list(skb1) ||
3029 			    skb_tailroom(skb1) < tailbits)
3030 				ntail = tailbits + 128;
3031 		}
3032 
3033 		if (copyflag ||
3034 		    skb_cloned(skb1) ||
3035 		    ntail ||
3036 		    skb_shinfo(skb1)->nr_frags ||
3037 		    skb_has_frag_list(skb1)) {
3038 			struct sk_buff *skb2;
3039 
3040 			/* Fuck, we are miserable poor guys... */
3041 			if (ntail == 0)
3042 				skb2 = skb_copy(skb1, GFP_ATOMIC);
3043 			else
3044 				skb2 = skb_copy_expand(skb1,
3045 						       skb_headroom(skb1),
3046 						       ntail,
3047 						       GFP_ATOMIC);
3048 			if (unlikely(skb2 == NULL))
3049 				return -ENOMEM;
3050 
3051 			if (skb1->sk)
3052 				skb_set_owner_w(skb2, skb1->sk);
3053 
3054 			/* Looking around. Are we still alive?
3055 			 * OK, link new skb, drop old one */
3056 
3057 			skb2->next = skb1->next;
3058 			*skb_p = skb2;
3059 			kfree_skb(skb1);
3060 			skb1 = skb2;
3061 		}
3062 		elt++;
3063 		*trailer = skb1;
3064 		skb_p = &skb1->next;
3065 	}
3066 
3067 	return elt;
3068 }
3069 EXPORT_SYMBOL_GPL(skb_cow_data);
3070 
3071 static void sock_rmem_free(struct sk_buff *skb)
3072 {
3073 	struct sock *sk = skb->sk;
3074 
3075 	atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
3076 }
3077 
3078 /*
3079  * Note: We dont mem charge error packets (no sk_forward_alloc changes)
3080  */
3081 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
3082 {
3083 	if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
3084 	    (unsigned)sk->sk_rcvbuf)
3085 		return -ENOMEM;
3086 
3087 	skb_orphan(skb);
3088 	skb->sk = sk;
3089 	skb->destructor = sock_rmem_free;
3090 	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
3091 
3092 	/* before exiting rcu section, make sure dst is refcounted */
3093 	skb_dst_force(skb);
3094 
3095 	skb_queue_tail(&sk->sk_error_queue, skb);
3096 	if (!sock_flag(sk, SOCK_DEAD))
3097 		sk->sk_data_ready(sk, skb->len);
3098 	return 0;
3099 }
3100 EXPORT_SYMBOL(sock_queue_err_skb);
3101 
3102 void skb_tstamp_tx(struct sk_buff *orig_skb,
3103 		struct skb_shared_hwtstamps *hwtstamps)
3104 {
3105 	struct sock *sk = orig_skb->sk;
3106 	struct sock_exterr_skb *serr;
3107 	struct sk_buff *skb;
3108 	int err;
3109 
3110 	if (!sk)
3111 		return;
3112 
3113 	skb = skb_clone(orig_skb, GFP_ATOMIC);
3114 	if (!skb)
3115 		return;
3116 
3117 	if (hwtstamps) {
3118 		*skb_hwtstamps(skb) =
3119 			*hwtstamps;
3120 	} else {
3121 		/*
3122 		 * no hardware time stamps available,
3123 		 * so keep the shared tx_flags and only
3124 		 * store software time stamp
3125 		 */
3126 		skb->tstamp = ktime_get_real();
3127 	}
3128 
3129 	serr = SKB_EXT_ERR(skb);
3130 	memset(serr, 0, sizeof(*serr));
3131 	serr->ee.ee_errno = ENOMSG;
3132 	serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
3133 
3134 	err = sock_queue_err_skb(sk, skb);
3135 
3136 	if (err)
3137 		kfree_skb(skb);
3138 }
3139 EXPORT_SYMBOL_GPL(skb_tstamp_tx);
3140 
3141 
3142 /**
3143  * skb_partial_csum_set - set up and verify partial csum values for packet
3144  * @skb: the skb to set
3145  * @start: the number of bytes after skb->data to start checksumming.
3146  * @off: the offset from start to place the checksum.
3147  *
3148  * For untrusted partially-checksummed packets, we need to make sure the values
3149  * for skb->csum_start and skb->csum_offset are valid so we don't oops.
3150  *
3151  * This function checks and sets those values and skb->ip_summed: if this
3152  * returns false you should drop the packet.
3153  */
3154 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
3155 {
3156 	if (unlikely(start > skb_headlen(skb)) ||
3157 	    unlikely((int)start + off > skb_headlen(skb) - 2)) {
3158 		if (net_ratelimit())
3159 			printk(KERN_WARNING
3160 			       "bad partial csum: csum=%u/%u len=%u\n",
3161 			       start, off, skb_headlen(skb));
3162 		return false;
3163 	}
3164 	skb->ip_summed = CHECKSUM_PARTIAL;
3165 	skb->csum_start = skb_headroom(skb) + start;
3166 	skb->csum_offset = off;
3167 	return true;
3168 }
3169 EXPORT_SYMBOL_GPL(skb_partial_csum_set);
3170 
3171 void __skb_warn_lro_forwarding(const struct sk_buff *skb)
3172 {
3173 	if (net_ratelimit())
3174 		pr_warning("%s: received packets cannot be forwarded"
3175 			   " while LRO is enabled\n", skb->dev->name);
3176 }
3177 EXPORT_SYMBOL(__skb_warn_lro_forwarding);
3178