xref: /openbmc/linux/net/core/skbuff.c (revision 73eb94a0)
1 /*
2  *	Routines having to do with the 'struct sk_buff' memory handlers.
3  *
4  *	Authors:	Alan Cox <alan@lxorguk.ukuu.org.uk>
5  *			Florian La Roche <rzsfl@rz.uni-sb.de>
6  *
7  *	Fixes:
8  *		Alan Cox	:	Fixed the worst of the load
9  *					balancer bugs.
10  *		Dave Platt	:	Interrupt stacking fix.
11  *	Richard Kooijman	:	Timestamp fixes.
12  *		Alan Cox	:	Changed buffer format.
13  *		Alan Cox	:	destructor hook for AF_UNIX etc.
14  *		Linus Torvalds	:	Better skb_clone.
15  *		Alan Cox	:	Added skb_copy.
16  *		Alan Cox	:	Added all the changed routines Linus
17  *					only put in the headers
18  *		Ray VanTassle	:	Fixed --skb->lock in free
19  *		Alan Cox	:	skb_copy copy arp field
20  *		Andi Kleen	:	slabified it.
21  *		Robert Olsson	:	Removed skb_head_pool
22  *
23  *	NOTE:
24  *		The __skb_ routines should be called with interrupts
25  *	disabled, or you better be *real* sure that the operation is atomic
26  *	with respect to whatever list is being frobbed (e.g. via lock_sock()
27  *	or via disabling bottom half handlers, etc).
28  *
29  *	This program is free software; you can redistribute it and/or
30  *	modify it under the terms of the GNU General Public License
31  *	as published by the Free Software Foundation; either version
32  *	2 of the License, or (at your option) any later version.
33  */
34 
35 /*
36  *	The functions in this file will not compile correctly with gcc 2.4.x
37  */
38 
39 #include <linux/module.h>
40 #include <linux/types.h>
41 #include <linux/kernel.h>
42 #include <linux/kmemcheck.h>
43 #include <linux/mm.h>
44 #include <linux/interrupt.h>
45 #include <linux/in.h>
46 #include <linux/inet.h>
47 #include <linux/slab.h>
48 #include <linux/netdevice.h>
49 #ifdef CONFIG_NET_CLS_ACT
50 #include <net/pkt_sched.h>
51 #endif
52 #include <linux/string.h>
53 #include <linux/skbuff.h>
54 #include <linux/splice.h>
55 #include <linux/cache.h>
56 #include <linux/rtnetlink.h>
57 #include <linux/init.h>
58 #include <linux/scatterlist.h>
59 #include <linux/errqueue.h>
60 #include <linux/prefetch.h>
61 
62 #include <net/protocol.h>
63 #include <net/dst.h>
64 #include <net/sock.h>
65 #include <net/checksum.h>
66 #include <net/xfrm.h>
67 
68 #include <asm/uaccess.h>
69 #include <trace/events/skb.h>
70 
71 #include "kmap_skb.h"
72 
73 static struct kmem_cache *skbuff_head_cache __read_mostly;
74 static struct kmem_cache *skbuff_fclone_cache __read_mostly;
75 
76 static void sock_pipe_buf_release(struct pipe_inode_info *pipe,
77 				  struct pipe_buffer *buf)
78 {
79 	put_page(buf->page);
80 }
81 
82 static void sock_pipe_buf_get(struct pipe_inode_info *pipe,
83 				struct pipe_buffer *buf)
84 {
85 	get_page(buf->page);
86 }
87 
88 static int sock_pipe_buf_steal(struct pipe_inode_info *pipe,
89 			       struct pipe_buffer *buf)
90 {
91 	return 1;
92 }
93 
94 
95 /* Pipe buffer operations for a socket. */
96 static const struct pipe_buf_operations sock_pipe_buf_ops = {
97 	.can_merge = 0,
98 	.map = generic_pipe_buf_map,
99 	.unmap = generic_pipe_buf_unmap,
100 	.confirm = generic_pipe_buf_confirm,
101 	.release = sock_pipe_buf_release,
102 	.steal = sock_pipe_buf_steal,
103 	.get = sock_pipe_buf_get,
104 };
105 
106 /*
107  *	Keep out-of-line to prevent kernel bloat.
108  *	__builtin_return_address is not used because it is not always
109  *	reliable.
110  */
111 
112 /**
113  *	skb_over_panic	- 	private function
114  *	@skb: buffer
115  *	@sz: size
116  *	@here: address
117  *
118  *	Out of line support code for skb_put(). Not user callable.
119  */
120 static void skb_over_panic(struct sk_buff *skb, int sz, void *here)
121 {
122 	printk(KERN_EMERG "skb_over_panic: text:%p len:%d put:%d head:%p "
123 			  "data:%p tail:%#lx end:%#lx dev:%s\n",
124 	       here, skb->len, sz, skb->head, skb->data,
125 	       (unsigned long)skb->tail, (unsigned long)skb->end,
126 	       skb->dev ? skb->dev->name : "<NULL>");
127 	BUG();
128 }
129 
130 /**
131  *	skb_under_panic	- 	private function
132  *	@skb: buffer
133  *	@sz: size
134  *	@here: address
135  *
136  *	Out of line support code for skb_push(). Not user callable.
137  */
138 
139 static void skb_under_panic(struct sk_buff *skb, int sz, void *here)
140 {
141 	printk(KERN_EMERG "skb_under_panic: text:%p len:%d put:%d head:%p "
142 			  "data:%p tail:%#lx end:%#lx dev:%s\n",
143 	       here, skb->len, sz, skb->head, skb->data,
144 	       (unsigned long)skb->tail, (unsigned long)skb->end,
145 	       skb->dev ? skb->dev->name : "<NULL>");
146 	BUG();
147 }
148 
149 /* 	Allocate a new skbuff. We do this ourselves so we can fill in a few
150  *	'private' fields and also do memory statistics to find all the
151  *	[BEEP] leaks.
152  *
153  */
154 
155 /**
156  *	__alloc_skb	-	allocate a network buffer
157  *	@size: size to allocate
158  *	@gfp_mask: allocation mask
159  *	@fclone: allocate from fclone cache instead of head cache
160  *		and allocate a cloned (child) skb
161  *	@node: numa node to allocate memory on
162  *
163  *	Allocate a new &sk_buff. The returned buffer has no headroom and a
164  *	tail room of size bytes. The object has a reference count of one.
165  *	The return is the buffer. On a failure the return is %NULL.
166  *
167  *	Buffers may only be allocated from interrupts using a @gfp_mask of
168  *	%GFP_ATOMIC.
169  */
170 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
171 			    int fclone, int node)
172 {
173 	struct kmem_cache *cache;
174 	struct skb_shared_info *shinfo;
175 	struct sk_buff *skb;
176 	u8 *data;
177 
178 	cache = fclone ? skbuff_fclone_cache : skbuff_head_cache;
179 
180 	/* Get the HEAD */
181 	skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node);
182 	if (!skb)
183 		goto out;
184 	prefetchw(skb);
185 
186 	/* We do our best to align skb_shared_info on a separate cache
187 	 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives
188 	 * aligned memory blocks, unless SLUB/SLAB debug is enabled.
189 	 * Both skb->head and skb_shared_info are cache line aligned.
190 	 */
191 	size = SKB_DATA_ALIGN(size);
192 	size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
193 	data = kmalloc_node_track_caller(size, gfp_mask, node);
194 	if (!data)
195 		goto nodata;
196 	/* kmalloc(size) might give us more room than requested.
197 	 * Put skb_shared_info exactly at the end of allocated zone,
198 	 * to allow max possible filling before reallocation.
199 	 */
200 	size = SKB_WITH_OVERHEAD(ksize(data));
201 	prefetchw(data + size);
202 
203 	/*
204 	 * Only clear those fields we need to clear, not those that we will
205 	 * actually initialise below. Hence, don't put any more fields after
206 	 * the tail pointer in struct sk_buff!
207 	 */
208 	memset(skb, 0, offsetof(struct sk_buff, tail));
209 	/* Account for allocated memory : skb + skb->head */
210 	skb->truesize = SKB_TRUESIZE(size);
211 	atomic_set(&skb->users, 1);
212 	skb->head = data;
213 	skb->data = data;
214 	skb_reset_tail_pointer(skb);
215 	skb->end = skb->tail + size;
216 #ifdef NET_SKBUFF_DATA_USES_OFFSET
217 	skb->mac_header = ~0U;
218 #endif
219 
220 	/* make sure we initialize shinfo sequentially */
221 	shinfo = skb_shinfo(skb);
222 	memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
223 	atomic_set(&shinfo->dataref, 1);
224 	kmemcheck_annotate_variable(shinfo->destructor_arg);
225 
226 	if (fclone) {
227 		struct sk_buff *child = skb + 1;
228 		atomic_t *fclone_ref = (atomic_t *) (child + 1);
229 
230 		kmemcheck_annotate_bitfield(child, flags1);
231 		kmemcheck_annotate_bitfield(child, flags2);
232 		skb->fclone = SKB_FCLONE_ORIG;
233 		atomic_set(fclone_ref, 1);
234 
235 		child->fclone = SKB_FCLONE_UNAVAILABLE;
236 	}
237 out:
238 	return skb;
239 nodata:
240 	kmem_cache_free(cache, skb);
241 	skb = NULL;
242 	goto out;
243 }
244 EXPORT_SYMBOL(__alloc_skb);
245 
246 /**
247  * build_skb - build a network buffer
248  * @data: data buffer provided by caller
249  *
250  * Allocate a new &sk_buff. Caller provides space holding head and
251  * skb_shared_info. @data must have been allocated by kmalloc()
252  * The return is the new skb buffer.
253  * On a failure the return is %NULL, and @data is not freed.
254  * Notes :
255  *  Before IO, driver allocates only data buffer where NIC put incoming frame
256  *  Driver should add room at head (NET_SKB_PAD) and
257  *  MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info))
258  *  After IO, driver calls build_skb(), to allocate sk_buff and populate it
259  *  before giving packet to stack.
260  *  RX rings only contains data buffers, not full skbs.
261  */
262 struct sk_buff *build_skb(void *data)
263 {
264 	struct skb_shared_info *shinfo;
265 	struct sk_buff *skb;
266 	unsigned int size;
267 
268 	skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC);
269 	if (!skb)
270 		return NULL;
271 
272 	size = ksize(data) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
273 
274 	memset(skb, 0, offsetof(struct sk_buff, tail));
275 	skb->truesize = SKB_TRUESIZE(size);
276 	atomic_set(&skb->users, 1);
277 	skb->head = data;
278 	skb->data = data;
279 	skb_reset_tail_pointer(skb);
280 	skb->end = skb->tail + size;
281 #ifdef NET_SKBUFF_DATA_USES_OFFSET
282 	skb->mac_header = ~0U;
283 #endif
284 
285 	/* make sure we initialize shinfo sequentially */
286 	shinfo = skb_shinfo(skb);
287 	memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
288 	atomic_set(&shinfo->dataref, 1);
289 	kmemcheck_annotate_variable(shinfo->destructor_arg);
290 
291 	return skb;
292 }
293 EXPORT_SYMBOL(build_skb);
294 
295 /**
296  *	__netdev_alloc_skb - allocate an skbuff for rx on a specific device
297  *	@dev: network device to receive on
298  *	@length: length to allocate
299  *	@gfp_mask: get_free_pages mask, passed to alloc_skb
300  *
301  *	Allocate a new &sk_buff and assign it a usage count of one. The
302  *	buffer has unspecified headroom built in. Users should allocate
303  *	the headroom they think they need without accounting for the
304  *	built in space. The built in space is used for optimisations.
305  *
306  *	%NULL is returned if there is no free memory.
307  */
308 struct sk_buff *__netdev_alloc_skb(struct net_device *dev,
309 		unsigned int length, gfp_t gfp_mask)
310 {
311 	struct sk_buff *skb;
312 
313 	skb = __alloc_skb(length + NET_SKB_PAD, gfp_mask, 0, NUMA_NO_NODE);
314 	if (likely(skb)) {
315 		skb_reserve(skb, NET_SKB_PAD);
316 		skb->dev = dev;
317 	}
318 	return skb;
319 }
320 EXPORT_SYMBOL(__netdev_alloc_skb);
321 
322 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
323 		     int size, unsigned int truesize)
324 {
325 	skb_fill_page_desc(skb, i, page, off, size);
326 	skb->len += size;
327 	skb->data_len += size;
328 	skb->truesize += truesize;
329 }
330 EXPORT_SYMBOL(skb_add_rx_frag);
331 
332 /**
333  *	dev_alloc_skb - allocate an skbuff for receiving
334  *	@length: length to allocate
335  *
336  *	Allocate a new &sk_buff and assign it a usage count of one. The
337  *	buffer has unspecified headroom built in. Users should allocate
338  *	the headroom they think they need without accounting for the
339  *	built in space. The built in space is used for optimisations.
340  *
341  *	%NULL is returned if there is no free memory. Although this function
342  *	allocates memory it can be called from an interrupt.
343  */
344 struct sk_buff *dev_alloc_skb(unsigned int length)
345 {
346 	/*
347 	 * There is more code here than it seems:
348 	 * __dev_alloc_skb is an inline
349 	 */
350 	return __dev_alloc_skb(length, GFP_ATOMIC);
351 }
352 EXPORT_SYMBOL(dev_alloc_skb);
353 
354 static void skb_drop_list(struct sk_buff **listp)
355 {
356 	struct sk_buff *list = *listp;
357 
358 	*listp = NULL;
359 
360 	do {
361 		struct sk_buff *this = list;
362 		list = list->next;
363 		kfree_skb(this);
364 	} while (list);
365 }
366 
367 static inline void skb_drop_fraglist(struct sk_buff *skb)
368 {
369 	skb_drop_list(&skb_shinfo(skb)->frag_list);
370 }
371 
372 static void skb_clone_fraglist(struct sk_buff *skb)
373 {
374 	struct sk_buff *list;
375 
376 	skb_walk_frags(skb, list)
377 		skb_get(list);
378 }
379 
380 static void skb_release_data(struct sk_buff *skb)
381 {
382 	if (!skb->cloned ||
383 	    !atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
384 			       &skb_shinfo(skb)->dataref)) {
385 		if (skb_shinfo(skb)->nr_frags) {
386 			int i;
387 			for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
388 				skb_frag_unref(skb, i);
389 		}
390 
391 		/*
392 		 * If skb buf is from userspace, we need to notify the caller
393 		 * the lower device DMA has done;
394 		 */
395 		if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
396 			struct ubuf_info *uarg;
397 
398 			uarg = skb_shinfo(skb)->destructor_arg;
399 			if (uarg->callback)
400 				uarg->callback(uarg);
401 		}
402 
403 		if (skb_has_frag_list(skb))
404 			skb_drop_fraglist(skb);
405 
406 		kfree(skb->head);
407 	}
408 }
409 
410 /*
411  *	Free an skbuff by memory without cleaning the state.
412  */
413 static void kfree_skbmem(struct sk_buff *skb)
414 {
415 	struct sk_buff *other;
416 	atomic_t *fclone_ref;
417 
418 	switch (skb->fclone) {
419 	case SKB_FCLONE_UNAVAILABLE:
420 		kmem_cache_free(skbuff_head_cache, skb);
421 		break;
422 
423 	case SKB_FCLONE_ORIG:
424 		fclone_ref = (atomic_t *) (skb + 2);
425 		if (atomic_dec_and_test(fclone_ref))
426 			kmem_cache_free(skbuff_fclone_cache, skb);
427 		break;
428 
429 	case SKB_FCLONE_CLONE:
430 		fclone_ref = (atomic_t *) (skb + 1);
431 		other = skb - 1;
432 
433 		/* The clone portion is available for
434 		 * fast-cloning again.
435 		 */
436 		skb->fclone = SKB_FCLONE_UNAVAILABLE;
437 
438 		if (atomic_dec_and_test(fclone_ref))
439 			kmem_cache_free(skbuff_fclone_cache, other);
440 		break;
441 	}
442 }
443 
444 static void skb_release_head_state(struct sk_buff *skb)
445 {
446 	skb_dst_drop(skb);
447 #ifdef CONFIG_XFRM
448 	secpath_put(skb->sp);
449 #endif
450 	if (skb->destructor) {
451 		WARN_ON(in_irq());
452 		skb->destructor(skb);
453 	}
454 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
455 	nf_conntrack_put(skb->nfct);
456 #endif
457 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
458 	nf_conntrack_put_reasm(skb->nfct_reasm);
459 #endif
460 #ifdef CONFIG_BRIDGE_NETFILTER
461 	nf_bridge_put(skb->nf_bridge);
462 #endif
463 /* XXX: IS this still necessary? - JHS */
464 #ifdef CONFIG_NET_SCHED
465 	skb->tc_index = 0;
466 #ifdef CONFIG_NET_CLS_ACT
467 	skb->tc_verd = 0;
468 #endif
469 #endif
470 }
471 
472 /* Free everything but the sk_buff shell. */
473 static void skb_release_all(struct sk_buff *skb)
474 {
475 	skb_release_head_state(skb);
476 	skb_release_data(skb);
477 }
478 
479 /**
480  *	__kfree_skb - private function
481  *	@skb: buffer
482  *
483  *	Free an sk_buff. Release anything attached to the buffer.
484  *	Clean the state. This is an internal helper function. Users should
485  *	always call kfree_skb
486  */
487 
488 void __kfree_skb(struct sk_buff *skb)
489 {
490 	skb_release_all(skb);
491 	kfree_skbmem(skb);
492 }
493 EXPORT_SYMBOL(__kfree_skb);
494 
495 /**
496  *	kfree_skb - free an sk_buff
497  *	@skb: buffer to free
498  *
499  *	Drop a reference to the buffer and free it if the usage count has
500  *	hit zero.
501  */
502 void kfree_skb(struct sk_buff *skb)
503 {
504 	if (unlikely(!skb))
505 		return;
506 	if (likely(atomic_read(&skb->users) == 1))
507 		smp_rmb();
508 	else if (likely(!atomic_dec_and_test(&skb->users)))
509 		return;
510 	trace_kfree_skb(skb, __builtin_return_address(0));
511 	__kfree_skb(skb);
512 }
513 EXPORT_SYMBOL(kfree_skb);
514 
515 /**
516  *	consume_skb - free an skbuff
517  *	@skb: buffer to free
518  *
519  *	Drop a ref to the buffer and free it if the usage count has hit zero
520  *	Functions identically to kfree_skb, but kfree_skb assumes that the frame
521  *	is being dropped after a failure and notes that
522  */
523 void consume_skb(struct sk_buff *skb)
524 {
525 	if (unlikely(!skb))
526 		return;
527 	if (likely(atomic_read(&skb->users) == 1))
528 		smp_rmb();
529 	else if (likely(!atomic_dec_and_test(&skb->users)))
530 		return;
531 	trace_consume_skb(skb);
532 	__kfree_skb(skb);
533 }
534 EXPORT_SYMBOL(consume_skb);
535 
536 /**
537  * 	skb_recycle - clean up an skb for reuse
538  * 	@skb: buffer
539  *
540  * 	Recycles the skb to be reused as a receive buffer. This
541  * 	function does any necessary reference count dropping, and
542  * 	cleans up the skbuff as if it just came from __alloc_skb().
543  */
544 void skb_recycle(struct sk_buff *skb)
545 {
546 	struct skb_shared_info *shinfo;
547 
548 	skb_release_head_state(skb);
549 
550 	shinfo = skb_shinfo(skb);
551 	memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
552 	atomic_set(&shinfo->dataref, 1);
553 
554 	memset(skb, 0, offsetof(struct sk_buff, tail));
555 	skb->data = skb->head + NET_SKB_PAD;
556 	skb_reset_tail_pointer(skb);
557 }
558 EXPORT_SYMBOL(skb_recycle);
559 
560 /**
561  *	skb_recycle_check - check if skb can be reused for receive
562  *	@skb: buffer
563  *	@skb_size: minimum receive buffer size
564  *
565  *	Checks that the skb passed in is not shared or cloned, and
566  *	that it is linear and its head portion at least as large as
567  *	skb_size so that it can be recycled as a receive buffer.
568  *	If these conditions are met, this function does any necessary
569  *	reference count dropping and cleans up the skbuff as if it
570  *	just came from __alloc_skb().
571  */
572 bool skb_recycle_check(struct sk_buff *skb, int skb_size)
573 {
574 	if (!skb_is_recycleable(skb, skb_size))
575 		return false;
576 
577 	skb_recycle(skb);
578 
579 	return true;
580 }
581 EXPORT_SYMBOL(skb_recycle_check);
582 
583 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
584 {
585 	new->tstamp		= old->tstamp;
586 	new->dev		= old->dev;
587 	new->transport_header	= old->transport_header;
588 	new->network_header	= old->network_header;
589 	new->mac_header		= old->mac_header;
590 	skb_dst_copy(new, old);
591 	new->rxhash		= old->rxhash;
592 	new->ooo_okay		= old->ooo_okay;
593 	new->l4_rxhash		= old->l4_rxhash;
594 	new->no_fcs		= old->no_fcs;
595 #ifdef CONFIG_XFRM
596 	new->sp			= secpath_get(old->sp);
597 #endif
598 	memcpy(new->cb, old->cb, sizeof(old->cb));
599 	new->csum		= old->csum;
600 	new->local_df		= old->local_df;
601 	new->pkt_type		= old->pkt_type;
602 	new->ip_summed		= old->ip_summed;
603 	skb_copy_queue_mapping(new, old);
604 	new->priority		= old->priority;
605 #if IS_ENABLED(CONFIG_IP_VS)
606 	new->ipvs_property	= old->ipvs_property;
607 #endif
608 	new->protocol		= old->protocol;
609 	new->mark		= old->mark;
610 	new->skb_iif		= old->skb_iif;
611 	__nf_copy(new, old);
612 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE)
613 	new->nf_trace		= old->nf_trace;
614 #endif
615 #ifdef CONFIG_NET_SCHED
616 	new->tc_index		= old->tc_index;
617 #ifdef CONFIG_NET_CLS_ACT
618 	new->tc_verd		= old->tc_verd;
619 #endif
620 #endif
621 	new->vlan_tci		= old->vlan_tci;
622 
623 	skb_copy_secmark(new, old);
624 }
625 
626 /*
627  * You should not add any new code to this function.  Add it to
628  * __copy_skb_header above instead.
629  */
630 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
631 {
632 #define C(x) n->x = skb->x
633 
634 	n->next = n->prev = NULL;
635 	n->sk = NULL;
636 	__copy_skb_header(n, skb);
637 
638 	C(len);
639 	C(data_len);
640 	C(mac_len);
641 	n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
642 	n->cloned = 1;
643 	n->nohdr = 0;
644 	n->destructor = NULL;
645 	C(tail);
646 	C(end);
647 	C(head);
648 	C(data);
649 	C(truesize);
650 	atomic_set(&n->users, 1);
651 
652 	atomic_inc(&(skb_shinfo(skb)->dataref));
653 	skb->cloned = 1;
654 
655 	return n;
656 #undef C
657 }
658 
659 /**
660  *	skb_morph	-	morph one skb into another
661  *	@dst: the skb to receive the contents
662  *	@src: the skb to supply the contents
663  *
664  *	This is identical to skb_clone except that the target skb is
665  *	supplied by the user.
666  *
667  *	The target skb is returned upon exit.
668  */
669 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
670 {
671 	skb_release_all(dst);
672 	return __skb_clone(dst, src);
673 }
674 EXPORT_SYMBOL_GPL(skb_morph);
675 
676 /*	skb_copy_ubufs	-	copy userspace skb frags buffers to kernel
677  *	@skb: the skb to modify
678  *	@gfp_mask: allocation priority
679  *
680  *	This must be called on SKBTX_DEV_ZEROCOPY skb.
681  *	It will copy all frags into kernel and drop the reference
682  *	to userspace pages.
683  *
684  *	If this function is called from an interrupt gfp_mask() must be
685  *	%GFP_ATOMIC.
686  *
687  *	Returns 0 on success or a negative error code on failure
688  *	to allocate kernel memory to copy to.
689  */
690 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask)
691 {
692 	int i;
693 	int num_frags = skb_shinfo(skb)->nr_frags;
694 	struct page *page, *head = NULL;
695 	struct ubuf_info *uarg = skb_shinfo(skb)->destructor_arg;
696 
697 	for (i = 0; i < num_frags; i++) {
698 		u8 *vaddr;
699 		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
700 
701 		page = alloc_page(GFP_ATOMIC);
702 		if (!page) {
703 			while (head) {
704 				struct page *next = (struct page *)head->private;
705 				put_page(head);
706 				head = next;
707 			}
708 			return -ENOMEM;
709 		}
710 		vaddr = kmap_skb_frag(&skb_shinfo(skb)->frags[i]);
711 		memcpy(page_address(page),
712 		       vaddr + f->page_offset, skb_frag_size(f));
713 		kunmap_skb_frag(vaddr);
714 		page->private = (unsigned long)head;
715 		head = page;
716 	}
717 
718 	/* skb frags release userspace buffers */
719 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
720 		skb_frag_unref(skb, i);
721 
722 	uarg->callback(uarg);
723 
724 	/* skb frags point to kernel buffers */
725 	for (i = skb_shinfo(skb)->nr_frags; i > 0; i--) {
726 		__skb_fill_page_desc(skb, i-1, head, 0,
727 				     skb_shinfo(skb)->frags[i - 1].size);
728 		head = (struct page *)head->private;
729 	}
730 
731 	skb_shinfo(skb)->tx_flags &= ~SKBTX_DEV_ZEROCOPY;
732 	return 0;
733 }
734 
735 
736 /**
737  *	skb_clone	-	duplicate an sk_buff
738  *	@skb: buffer to clone
739  *	@gfp_mask: allocation priority
740  *
741  *	Duplicate an &sk_buff. The new one is not owned by a socket. Both
742  *	copies share the same packet data but not structure. The new
743  *	buffer has a reference count of 1. If the allocation fails the
744  *	function returns %NULL otherwise the new buffer is returned.
745  *
746  *	If this function is called from an interrupt gfp_mask() must be
747  *	%GFP_ATOMIC.
748  */
749 
750 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
751 {
752 	struct sk_buff *n;
753 
754 	if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
755 		if (skb_copy_ubufs(skb, gfp_mask))
756 			return NULL;
757 	}
758 
759 	n = skb + 1;
760 	if (skb->fclone == SKB_FCLONE_ORIG &&
761 	    n->fclone == SKB_FCLONE_UNAVAILABLE) {
762 		atomic_t *fclone_ref = (atomic_t *) (n + 1);
763 		n->fclone = SKB_FCLONE_CLONE;
764 		atomic_inc(fclone_ref);
765 	} else {
766 		n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
767 		if (!n)
768 			return NULL;
769 
770 		kmemcheck_annotate_bitfield(n, flags1);
771 		kmemcheck_annotate_bitfield(n, flags2);
772 		n->fclone = SKB_FCLONE_UNAVAILABLE;
773 	}
774 
775 	return __skb_clone(n, skb);
776 }
777 EXPORT_SYMBOL(skb_clone);
778 
779 static void copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
780 {
781 #ifndef NET_SKBUFF_DATA_USES_OFFSET
782 	/*
783 	 *	Shift between the two data areas in bytes
784 	 */
785 	unsigned long offset = new->data - old->data;
786 #endif
787 
788 	__copy_skb_header(new, old);
789 
790 #ifndef NET_SKBUFF_DATA_USES_OFFSET
791 	/* {transport,network,mac}_header are relative to skb->head */
792 	new->transport_header += offset;
793 	new->network_header   += offset;
794 	if (skb_mac_header_was_set(new))
795 		new->mac_header	      += offset;
796 #endif
797 	skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
798 	skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
799 	skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
800 }
801 
802 /**
803  *	skb_copy	-	create private copy of an sk_buff
804  *	@skb: buffer to copy
805  *	@gfp_mask: allocation priority
806  *
807  *	Make a copy of both an &sk_buff and its data. This is used when the
808  *	caller wishes to modify the data and needs a private copy of the
809  *	data to alter. Returns %NULL on failure or the pointer to the buffer
810  *	on success. The returned buffer has a reference count of 1.
811  *
812  *	As by-product this function converts non-linear &sk_buff to linear
813  *	one, so that &sk_buff becomes completely private and caller is allowed
814  *	to modify all the data of returned buffer. This means that this
815  *	function is not recommended for use in circumstances when only
816  *	header is going to be modified. Use pskb_copy() instead.
817  */
818 
819 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
820 {
821 	int headerlen = skb_headroom(skb);
822 	unsigned int size = (skb_end_pointer(skb) - skb->head) + skb->data_len;
823 	struct sk_buff *n = alloc_skb(size, gfp_mask);
824 
825 	if (!n)
826 		return NULL;
827 
828 	/* Set the data pointer */
829 	skb_reserve(n, headerlen);
830 	/* Set the tail pointer and length */
831 	skb_put(n, skb->len);
832 
833 	if (skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len))
834 		BUG();
835 
836 	copy_skb_header(n, skb);
837 	return n;
838 }
839 EXPORT_SYMBOL(skb_copy);
840 
841 /**
842  *	__pskb_copy	-	create copy of an sk_buff with private head.
843  *	@skb: buffer to copy
844  *	@headroom: headroom of new skb
845  *	@gfp_mask: allocation priority
846  *
847  *	Make a copy of both an &sk_buff and part of its data, located
848  *	in header. Fragmented data remain shared. This is used when
849  *	the caller wishes to modify only header of &sk_buff and needs
850  *	private copy of the header to alter. Returns %NULL on failure
851  *	or the pointer to the buffer on success.
852  *	The returned buffer has a reference count of 1.
853  */
854 
855 struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom, gfp_t gfp_mask)
856 {
857 	unsigned int size = skb_headlen(skb) + headroom;
858 	struct sk_buff *n = alloc_skb(size, gfp_mask);
859 
860 	if (!n)
861 		goto out;
862 
863 	/* Set the data pointer */
864 	skb_reserve(n, headroom);
865 	/* Set the tail pointer and length */
866 	skb_put(n, skb_headlen(skb));
867 	/* Copy the bytes */
868 	skb_copy_from_linear_data(skb, n->data, n->len);
869 
870 	n->truesize += skb->data_len;
871 	n->data_len  = skb->data_len;
872 	n->len	     = skb->len;
873 
874 	if (skb_shinfo(skb)->nr_frags) {
875 		int i;
876 
877 		if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
878 			if (skb_copy_ubufs(skb, gfp_mask)) {
879 				kfree_skb(n);
880 				n = NULL;
881 				goto out;
882 			}
883 		}
884 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
885 			skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
886 			skb_frag_ref(skb, i);
887 		}
888 		skb_shinfo(n)->nr_frags = i;
889 	}
890 
891 	if (skb_has_frag_list(skb)) {
892 		skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
893 		skb_clone_fraglist(n);
894 	}
895 
896 	copy_skb_header(n, skb);
897 out:
898 	return n;
899 }
900 EXPORT_SYMBOL(__pskb_copy);
901 
902 /**
903  *	pskb_expand_head - reallocate header of &sk_buff
904  *	@skb: buffer to reallocate
905  *	@nhead: room to add at head
906  *	@ntail: room to add at tail
907  *	@gfp_mask: allocation priority
908  *
909  *	Expands (or creates identical copy, if &nhead and &ntail are zero)
910  *	header of skb. &sk_buff itself is not changed. &sk_buff MUST have
911  *	reference count of 1. Returns zero in the case of success or error,
912  *	if expansion failed. In the last case, &sk_buff is not changed.
913  *
914  *	All the pointers pointing into skb header may change and must be
915  *	reloaded after call to this function.
916  */
917 
918 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
919 		     gfp_t gfp_mask)
920 {
921 	int i;
922 	u8 *data;
923 	int size = nhead + (skb_end_pointer(skb) - skb->head) + ntail;
924 	long off;
925 	bool fastpath;
926 
927 	BUG_ON(nhead < 0);
928 
929 	if (skb_shared(skb))
930 		BUG();
931 
932 	size = SKB_DATA_ALIGN(size);
933 
934 	/* Check if we can avoid taking references on fragments if we own
935 	 * the last reference on skb->head. (see skb_release_data())
936 	 */
937 	if (!skb->cloned)
938 		fastpath = true;
939 	else {
940 		int delta = skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1;
941 		fastpath = atomic_read(&skb_shinfo(skb)->dataref) == delta;
942 	}
943 
944 	if (fastpath &&
945 	    size + sizeof(struct skb_shared_info) <= ksize(skb->head)) {
946 		memmove(skb->head + size, skb_shinfo(skb),
947 			offsetof(struct skb_shared_info,
948 				 frags[skb_shinfo(skb)->nr_frags]));
949 		memmove(skb->head + nhead, skb->head,
950 			skb_tail_pointer(skb) - skb->head);
951 		off = nhead;
952 		goto adjust_others;
953 	}
954 
955 	data = kmalloc(size + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
956 		       gfp_mask);
957 	if (!data)
958 		goto nodata;
959 	size = SKB_WITH_OVERHEAD(ksize(data));
960 
961 	/* Copy only real data... and, alas, header. This should be
962 	 * optimized for the cases when header is void.
963 	 */
964 	memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head);
965 
966 	memcpy((struct skb_shared_info *)(data + size),
967 	       skb_shinfo(skb),
968 	       offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags]));
969 
970 	if (fastpath) {
971 		kfree(skb->head);
972 	} else {
973 		/* copy this zero copy skb frags */
974 		if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
975 			if (skb_copy_ubufs(skb, gfp_mask))
976 				goto nofrags;
977 		}
978 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
979 			skb_frag_ref(skb, i);
980 
981 		if (skb_has_frag_list(skb))
982 			skb_clone_fraglist(skb);
983 
984 		skb_release_data(skb);
985 	}
986 	off = (data + nhead) - skb->head;
987 
988 	skb->head     = data;
989 adjust_others:
990 	skb->data    += off;
991 #ifdef NET_SKBUFF_DATA_USES_OFFSET
992 	skb->end      = size;
993 	off           = nhead;
994 #else
995 	skb->end      = skb->head + size;
996 #endif
997 	/* {transport,network,mac}_header and tail are relative to skb->head */
998 	skb->tail	      += off;
999 	skb->transport_header += off;
1000 	skb->network_header   += off;
1001 	if (skb_mac_header_was_set(skb))
1002 		skb->mac_header += off;
1003 	/* Only adjust this if it actually is csum_start rather than csum */
1004 	if (skb->ip_summed == CHECKSUM_PARTIAL)
1005 		skb->csum_start += nhead;
1006 	skb->cloned   = 0;
1007 	skb->hdr_len  = 0;
1008 	skb->nohdr    = 0;
1009 	atomic_set(&skb_shinfo(skb)->dataref, 1);
1010 	return 0;
1011 
1012 nofrags:
1013 	kfree(data);
1014 nodata:
1015 	return -ENOMEM;
1016 }
1017 EXPORT_SYMBOL(pskb_expand_head);
1018 
1019 /* Make private copy of skb with writable head and some headroom */
1020 
1021 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
1022 {
1023 	struct sk_buff *skb2;
1024 	int delta = headroom - skb_headroom(skb);
1025 
1026 	if (delta <= 0)
1027 		skb2 = pskb_copy(skb, GFP_ATOMIC);
1028 	else {
1029 		skb2 = skb_clone(skb, GFP_ATOMIC);
1030 		if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
1031 					     GFP_ATOMIC)) {
1032 			kfree_skb(skb2);
1033 			skb2 = NULL;
1034 		}
1035 	}
1036 	return skb2;
1037 }
1038 EXPORT_SYMBOL(skb_realloc_headroom);
1039 
1040 /**
1041  *	skb_copy_expand	-	copy and expand sk_buff
1042  *	@skb: buffer to copy
1043  *	@newheadroom: new free bytes at head
1044  *	@newtailroom: new free bytes at tail
1045  *	@gfp_mask: allocation priority
1046  *
1047  *	Make a copy of both an &sk_buff and its data and while doing so
1048  *	allocate additional space.
1049  *
1050  *	This is used when the caller wishes to modify the data and needs a
1051  *	private copy of the data to alter as well as more space for new fields.
1052  *	Returns %NULL on failure or the pointer to the buffer
1053  *	on success. The returned buffer has a reference count of 1.
1054  *
1055  *	You must pass %GFP_ATOMIC as the allocation priority if this function
1056  *	is called from an interrupt.
1057  */
1058 struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
1059 				int newheadroom, int newtailroom,
1060 				gfp_t gfp_mask)
1061 {
1062 	/*
1063 	 *	Allocate the copy buffer
1064 	 */
1065 	struct sk_buff *n = alloc_skb(newheadroom + skb->len + newtailroom,
1066 				      gfp_mask);
1067 	int oldheadroom = skb_headroom(skb);
1068 	int head_copy_len, head_copy_off;
1069 	int off;
1070 
1071 	if (!n)
1072 		return NULL;
1073 
1074 	skb_reserve(n, newheadroom);
1075 
1076 	/* Set the tail pointer and length */
1077 	skb_put(n, skb->len);
1078 
1079 	head_copy_len = oldheadroom;
1080 	head_copy_off = 0;
1081 	if (newheadroom <= head_copy_len)
1082 		head_copy_len = newheadroom;
1083 	else
1084 		head_copy_off = newheadroom - head_copy_len;
1085 
1086 	/* Copy the linear header and data. */
1087 	if (skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
1088 			  skb->len + head_copy_len))
1089 		BUG();
1090 
1091 	copy_skb_header(n, skb);
1092 
1093 	off                  = newheadroom - oldheadroom;
1094 	if (n->ip_summed == CHECKSUM_PARTIAL)
1095 		n->csum_start += off;
1096 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1097 	n->transport_header += off;
1098 	n->network_header   += off;
1099 	if (skb_mac_header_was_set(skb))
1100 		n->mac_header += off;
1101 #endif
1102 
1103 	return n;
1104 }
1105 EXPORT_SYMBOL(skb_copy_expand);
1106 
1107 /**
1108  *	skb_pad			-	zero pad the tail of an skb
1109  *	@skb: buffer to pad
1110  *	@pad: space to pad
1111  *
1112  *	Ensure that a buffer is followed by a padding area that is zero
1113  *	filled. Used by network drivers which may DMA or transfer data
1114  *	beyond the buffer end onto the wire.
1115  *
1116  *	May return error in out of memory cases. The skb is freed on error.
1117  */
1118 
1119 int skb_pad(struct sk_buff *skb, int pad)
1120 {
1121 	int err;
1122 	int ntail;
1123 
1124 	/* If the skbuff is non linear tailroom is always zero.. */
1125 	if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
1126 		memset(skb->data+skb->len, 0, pad);
1127 		return 0;
1128 	}
1129 
1130 	ntail = skb->data_len + pad - (skb->end - skb->tail);
1131 	if (likely(skb_cloned(skb) || ntail > 0)) {
1132 		err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
1133 		if (unlikely(err))
1134 			goto free_skb;
1135 	}
1136 
1137 	/* FIXME: The use of this function with non-linear skb's really needs
1138 	 * to be audited.
1139 	 */
1140 	err = skb_linearize(skb);
1141 	if (unlikely(err))
1142 		goto free_skb;
1143 
1144 	memset(skb->data + skb->len, 0, pad);
1145 	return 0;
1146 
1147 free_skb:
1148 	kfree_skb(skb);
1149 	return err;
1150 }
1151 EXPORT_SYMBOL(skb_pad);
1152 
1153 /**
1154  *	skb_put - add data to a buffer
1155  *	@skb: buffer to use
1156  *	@len: amount of data to add
1157  *
1158  *	This function extends the used data area of the buffer. If this would
1159  *	exceed the total buffer size the kernel will panic. A pointer to the
1160  *	first byte of the extra data is returned.
1161  */
1162 unsigned char *skb_put(struct sk_buff *skb, unsigned int len)
1163 {
1164 	unsigned char *tmp = skb_tail_pointer(skb);
1165 	SKB_LINEAR_ASSERT(skb);
1166 	skb->tail += len;
1167 	skb->len  += len;
1168 	if (unlikely(skb->tail > skb->end))
1169 		skb_over_panic(skb, len, __builtin_return_address(0));
1170 	return tmp;
1171 }
1172 EXPORT_SYMBOL(skb_put);
1173 
1174 /**
1175  *	skb_push - add data to the start of a buffer
1176  *	@skb: buffer to use
1177  *	@len: amount of data to add
1178  *
1179  *	This function extends the used data area of the buffer at the buffer
1180  *	start. If this would exceed the total buffer headroom the kernel will
1181  *	panic. A pointer to the first byte of the extra data is returned.
1182  */
1183 unsigned char *skb_push(struct sk_buff *skb, unsigned int len)
1184 {
1185 	skb->data -= len;
1186 	skb->len  += len;
1187 	if (unlikely(skb->data<skb->head))
1188 		skb_under_panic(skb, len, __builtin_return_address(0));
1189 	return skb->data;
1190 }
1191 EXPORT_SYMBOL(skb_push);
1192 
1193 /**
1194  *	skb_pull - remove data from the start of a buffer
1195  *	@skb: buffer to use
1196  *	@len: amount of data to remove
1197  *
1198  *	This function removes data from the start of a buffer, returning
1199  *	the memory to the headroom. A pointer to the next data in the buffer
1200  *	is returned. Once the data has been pulled future pushes will overwrite
1201  *	the old data.
1202  */
1203 unsigned char *skb_pull(struct sk_buff *skb, unsigned int len)
1204 {
1205 	return skb_pull_inline(skb, len);
1206 }
1207 EXPORT_SYMBOL(skb_pull);
1208 
1209 /**
1210  *	skb_trim - remove end from a buffer
1211  *	@skb: buffer to alter
1212  *	@len: new length
1213  *
1214  *	Cut the length of a buffer down by removing data from the tail. If
1215  *	the buffer is already under the length specified it is not modified.
1216  *	The skb must be linear.
1217  */
1218 void skb_trim(struct sk_buff *skb, unsigned int len)
1219 {
1220 	if (skb->len > len)
1221 		__skb_trim(skb, len);
1222 }
1223 EXPORT_SYMBOL(skb_trim);
1224 
1225 /* Trims skb to length len. It can change skb pointers.
1226  */
1227 
1228 int ___pskb_trim(struct sk_buff *skb, unsigned int len)
1229 {
1230 	struct sk_buff **fragp;
1231 	struct sk_buff *frag;
1232 	int offset = skb_headlen(skb);
1233 	int nfrags = skb_shinfo(skb)->nr_frags;
1234 	int i;
1235 	int err;
1236 
1237 	if (skb_cloned(skb) &&
1238 	    unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
1239 		return err;
1240 
1241 	i = 0;
1242 	if (offset >= len)
1243 		goto drop_pages;
1244 
1245 	for (; i < nfrags; i++) {
1246 		int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]);
1247 
1248 		if (end < len) {
1249 			offset = end;
1250 			continue;
1251 		}
1252 
1253 		skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset);
1254 
1255 drop_pages:
1256 		skb_shinfo(skb)->nr_frags = i;
1257 
1258 		for (; i < nfrags; i++)
1259 			skb_frag_unref(skb, i);
1260 
1261 		if (skb_has_frag_list(skb))
1262 			skb_drop_fraglist(skb);
1263 		goto done;
1264 	}
1265 
1266 	for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
1267 	     fragp = &frag->next) {
1268 		int end = offset + frag->len;
1269 
1270 		if (skb_shared(frag)) {
1271 			struct sk_buff *nfrag;
1272 
1273 			nfrag = skb_clone(frag, GFP_ATOMIC);
1274 			if (unlikely(!nfrag))
1275 				return -ENOMEM;
1276 
1277 			nfrag->next = frag->next;
1278 			kfree_skb(frag);
1279 			frag = nfrag;
1280 			*fragp = frag;
1281 		}
1282 
1283 		if (end < len) {
1284 			offset = end;
1285 			continue;
1286 		}
1287 
1288 		if (end > len &&
1289 		    unlikely((err = pskb_trim(frag, len - offset))))
1290 			return err;
1291 
1292 		if (frag->next)
1293 			skb_drop_list(&frag->next);
1294 		break;
1295 	}
1296 
1297 done:
1298 	if (len > skb_headlen(skb)) {
1299 		skb->data_len -= skb->len - len;
1300 		skb->len       = len;
1301 	} else {
1302 		skb->len       = len;
1303 		skb->data_len  = 0;
1304 		skb_set_tail_pointer(skb, len);
1305 	}
1306 
1307 	return 0;
1308 }
1309 EXPORT_SYMBOL(___pskb_trim);
1310 
1311 /**
1312  *	__pskb_pull_tail - advance tail of skb header
1313  *	@skb: buffer to reallocate
1314  *	@delta: number of bytes to advance tail
1315  *
1316  *	The function makes a sense only on a fragmented &sk_buff,
1317  *	it expands header moving its tail forward and copying necessary
1318  *	data from fragmented part.
1319  *
1320  *	&sk_buff MUST have reference count of 1.
1321  *
1322  *	Returns %NULL (and &sk_buff does not change) if pull failed
1323  *	or value of new tail of skb in the case of success.
1324  *
1325  *	All the pointers pointing into skb header may change and must be
1326  *	reloaded after call to this function.
1327  */
1328 
1329 /* Moves tail of skb head forward, copying data from fragmented part,
1330  * when it is necessary.
1331  * 1. It may fail due to malloc failure.
1332  * 2. It may change skb pointers.
1333  *
1334  * It is pretty complicated. Luckily, it is called only in exceptional cases.
1335  */
1336 unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta)
1337 {
1338 	/* If skb has not enough free space at tail, get new one
1339 	 * plus 128 bytes for future expansions. If we have enough
1340 	 * room at tail, reallocate without expansion only if skb is cloned.
1341 	 */
1342 	int i, k, eat = (skb->tail + delta) - skb->end;
1343 
1344 	if (eat > 0 || skb_cloned(skb)) {
1345 		if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
1346 				     GFP_ATOMIC))
1347 			return NULL;
1348 	}
1349 
1350 	if (skb_copy_bits(skb, skb_headlen(skb), skb_tail_pointer(skb), delta))
1351 		BUG();
1352 
1353 	/* Optimization: no fragments, no reasons to preestimate
1354 	 * size of pulled pages. Superb.
1355 	 */
1356 	if (!skb_has_frag_list(skb))
1357 		goto pull_pages;
1358 
1359 	/* Estimate size of pulled pages. */
1360 	eat = delta;
1361 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1362 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
1363 
1364 		if (size >= eat)
1365 			goto pull_pages;
1366 		eat -= size;
1367 	}
1368 
1369 	/* If we need update frag list, we are in troubles.
1370 	 * Certainly, it possible to add an offset to skb data,
1371 	 * but taking into account that pulling is expected to
1372 	 * be very rare operation, it is worth to fight against
1373 	 * further bloating skb head and crucify ourselves here instead.
1374 	 * Pure masohism, indeed. 8)8)
1375 	 */
1376 	if (eat) {
1377 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
1378 		struct sk_buff *clone = NULL;
1379 		struct sk_buff *insp = NULL;
1380 
1381 		do {
1382 			BUG_ON(!list);
1383 
1384 			if (list->len <= eat) {
1385 				/* Eaten as whole. */
1386 				eat -= list->len;
1387 				list = list->next;
1388 				insp = list;
1389 			} else {
1390 				/* Eaten partially. */
1391 
1392 				if (skb_shared(list)) {
1393 					/* Sucks! We need to fork list. :-( */
1394 					clone = skb_clone(list, GFP_ATOMIC);
1395 					if (!clone)
1396 						return NULL;
1397 					insp = list->next;
1398 					list = clone;
1399 				} else {
1400 					/* This may be pulled without
1401 					 * problems. */
1402 					insp = list;
1403 				}
1404 				if (!pskb_pull(list, eat)) {
1405 					kfree_skb(clone);
1406 					return NULL;
1407 				}
1408 				break;
1409 			}
1410 		} while (eat);
1411 
1412 		/* Free pulled out fragments. */
1413 		while ((list = skb_shinfo(skb)->frag_list) != insp) {
1414 			skb_shinfo(skb)->frag_list = list->next;
1415 			kfree_skb(list);
1416 		}
1417 		/* And insert new clone at head. */
1418 		if (clone) {
1419 			clone->next = list;
1420 			skb_shinfo(skb)->frag_list = clone;
1421 		}
1422 	}
1423 	/* Success! Now we may commit changes to skb data. */
1424 
1425 pull_pages:
1426 	eat = delta;
1427 	k = 0;
1428 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1429 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
1430 
1431 		if (size <= eat) {
1432 			skb_frag_unref(skb, i);
1433 			eat -= size;
1434 		} else {
1435 			skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i];
1436 			if (eat) {
1437 				skb_shinfo(skb)->frags[k].page_offset += eat;
1438 				skb_frag_size_sub(&skb_shinfo(skb)->frags[k], eat);
1439 				eat = 0;
1440 			}
1441 			k++;
1442 		}
1443 	}
1444 	skb_shinfo(skb)->nr_frags = k;
1445 
1446 	skb->tail     += delta;
1447 	skb->data_len -= delta;
1448 
1449 	return skb_tail_pointer(skb);
1450 }
1451 EXPORT_SYMBOL(__pskb_pull_tail);
1452 
1453 /**
1454  *	skb_copy_bits - copy bits from skb to kernel buffer
1455  *	@skb: source skb
1456  *	@offset: offset in source
1457  *	@to: destination buffer
1458  *	@len: number of bytes to copy
1459  *
1460  *	Copy the specified number of bytes from the source skb to the
1461  *	destination buffer.
1462  *
1463  *	CAUTION ! :
1464  *		If its prototype is ever changed,
1465  *		check arch/{*}/net/{*}.S files,
1466  *		since it is called from BPF assembly code.
1467  */
1468 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
1469 {
1470 	int start = skb_headlen(skb);
1471 	struct sk_buff *frag_iter;
1472 	int i, copy;
1473 
1474 	if (offset > (int)skb->len - len)
1475 		goto fault;
1476 
1477 	/* Copy header. */
1478 	if ((copy = start - offset) > 0) {
1479 		if (copy > len)
1480 			copy = len;
1481 		skb_copy_from_linear_data_offset(skb, offset, to, copy);
1482 		if ((len -= copy) == 0)
1483 			return 0;
1484 		offset += copy;
1485 		to     += copy;
1486 	}
1487 
1488 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1489 		int end;
1490 
1491 		WARN_ON(start > offset + len);
1492 
1493 		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
1494 		if ((copy = end - offset) > 0) {
1495 			u8 *vaddr;
1496 
1497 			if (copy > len)
1498 				copy = len;
1499 
1500 			vaddr = kmap_skb_frag(&skb_shinfo(skb)->frags[i]);
1501 			memcpy(to,
1502 			       vaddr + skb_shinfo(skb)->frags[i].page_offset+
1503 			       offset - start, copy);
1504 			kunmap_skb_frag(vaddr);
1505 
1506 			if ((len -= copy) == 0)
1507 				return 0;
1508 			offset += copy;
1509 			to     += copy;
1510 		}
1511 		start = end;
1512 	}
1513 
1514 	skb_walk_frags(skb, frag_iter) {
1515 		int end;
1516 
1517 		WARN_ON(start > offset + len);
1518 
1519 		end = start + frag_iter->len;
1520 		if ((copy = end - offset) > 0) {
1521 			if (copy > len)
1522 				copy = len;
1523 			if (skb_copy_bits(frag_iter, offset - start, to, copy))
1524 				goto fault;
1525 			if ((len -= copy) == 0)
1526 				return 0;
1527 			offset += copy;
1528 			to     += copy;
1529 		}
1530 		start = end;
1531 	}
1532 
1533 	if (!len)
1534 		return 0;
1535 
1536 fault:
1537 	return -EFAULT;
1538 }
1539 EXPORT_SYMBOL(skb_copy_bits);
1540 
1541 /*
1542  * Callback from splice_to_pipe(), if we need to release some pages
1543  * at the end of the spd in case we error'ed out in filling the pipe.
1544  */
1545 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
1546 {
1547 	put_page(spd->pages[i]);
1548 }
1549 
1550 static inline struct page *linear_to_page(struct page *page, unsigned int *len,
1551 					  unsigned int *offset,
1552 					  struct sk_buff *skb, struct sock *sk)
1553 {
1554 	struct page *p = sk->sk_sndmsg_page;
1555 	unsigned int off;
1556 
1557 	if (!p) {
1558 new_page:
1559 		p = sk->sk_sndmsg_page = alloc_pages(sk->sk_allocation, 0);
1560 		if (!p)
1561 			return NULL;
1562 
1563 		off = sk->sk_sndmsg_off = 0;
1564 		/* hold one ref to this page until it's full */
1565 	} else {
1566 		unsigned int mlen;
1567 
1568 		off = sk->sk_sndmsg_off;
1569 		mlen = PAGE_SIZE - off;
1570 		if (mlen < 64 && mlen < *len) {
1571 			put_page(p);
1572 			goto new_page;
1573 		}
1574 
1575 		*len = min_t(unsigned int, *len, mlen);
1576 	}
1577 
1578 	memcpy(page_address(p) + off, page_address(page) + *offset, *len);
1579 	sk->sk_sndmsg_off += *len;
1580 	*offset = off;
1581 	get_page(p);
1582 
1583 	return p;
1584 }
1585 
1586 /*
1587  * Fill page/offset/length into spd, if it can hold more pages.
1588  */
1589 static inline int spd_fill_page(struct splice_pipe_desc *spd,
1590 				struct pipe_inode_info *pipe, struct page *page,
1591 				unsigned int *len, unsigned int offset,
1592 				struct sk_buff *skb, int linear,
1593 				struct sock *sk)
1594 {
1595 	if (unlikely(spd->nr_pages == pipe->buffers))
1596 		return 1;
1597 
1598 	if (linear) {
1599 		page = linear_to_page(page, len, &offset, skb, sk);
1600 		if (!page)
1601 			return 1;
1602 	} else
1603 		get_page(page);
1604 
1605 	spd->pages[spd->nr_pages] = page;
1606 	spd->partial[spd->nr_pages].len = *len;
1607 	spd->partial[spd->nr_pages].offset = offset;
1608 	spd->nr_pages++;
1609 
1610 	return 0;
1611 }
1612 
1613 static inline void __segment_seek(struct page **page, unsigned int *poff,
1614 				  unsigned int *plen, unsigned int off)
1615 {
1616 	unsigned long n;
1617 
1618 	*poff += off;
1619 	n = *poff / PAGE_SIZE;
1620 	if (n)
1621 		*page = nth_page(*page, n);
1622 
1623 	*poff = *poff % PAGE_SIZE;
1624 	*plen -= off;
1625 }
1626 
1627 static inline int __splice_segment(struct page *page, unsigned int poff,
1628 				   unsigned int plen, unsigned int *off,
1629 				   unsigned int *len, struct sk_buff *skb,
1630 				   struct splice_pipe_desc *spd, int linear,
1631 				   struct sock *sk,
1632 				   struct pipe_inode_info *pipe)
1633 {
1634 	if (!*len)
1635 		return 1;
1636 
1637 	/* skip this segment if already processed */
1638 	if (*off >= plen) {
1639 		*off -= plen;
1640 		return 0;
1641 	}
1642 
1643 	/* ignore any bits we already processed */
1644 	if (*off) {
1645 		__segment_seek(&page, &poff, &plen, *off);
1646 		*off = 0;
1647 	}
1648 
1649 	do {
1650 		unsigned int flen = min(*len, plen);
1651 
1652 		/* the linear region may spread across several pages  */
1653 		flen = min_t(unsigned int, flen, PAGE_SIZE - poff);
1654 
1655 		if (spd_fill_page(spd, pipe, page, &flen, poff, skb, linear, sk))
1656 			return 1;
1657 
1658 		__segment_seek(&page, &poff, &plen, flen);
1659 		*len -= flen;
1660 
1661 	} while (*len && plen);
1662 
1663 	return 0;
1664 }
1665 
1666 /*
1667  * Map linear and fragment data from the skb to spd. It reports failure if the
1668  * pipe is full or if we already spliced the requested length.
1669  */
1670 static int __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe,
1671 			     unsigned int *offset, unsigned int *len,
1672 			     struct splice_pipe_desc *spd, struct sock *sk)
1673 {
1674 	int seg;
1675 
1676 	/*
1677 	 * map the linear part
1678 	 */
1679 	if (__splice_segment(virt_to_page(skb->data),
1680 			     (unsigned long) skb->data & (PAGE_SIZE - 1),
1681 			     skb_headlen(skb),
1682 			     offset, len, skb, spd, 1, sk, pipe))
1683 		return 1;
1684 
1685 	/*
1686 	 * then map the fragments
1687 	 */
1688 	for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
1689 		const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
1690 
1691 		if (__splice_segment(skb_frag_page(f),
1692 				     f->page_offset, skb_frag_size(f),
1693 				     offset, len, skb, spd, 0, sk, pipe))
1694 			return 1;
1695 	}
1696 
1697 	return 0;
1698 }
1699 
1700 /*
1701  * Map data from the skb to a pipe. Should handle both the linear part,
1702  * the fragments, and the frag list. It does NOT handle frag lists within
1703  * the frag list, if such a thing exists. We'd probably need to recurse to
1704  * handle that cleanly.
1705  */
1706 int skb_splice_bits(struct sk_buff *skb, unsigned int offset,
1707 		    struct pipe_inode_info *pipe, unsigned int tlen,
1708 		    unsigned int flags)
1709 {
1710 	struct partial_page partial[PIPE_DEF_BUFFERS];
1711 	struct page *pages[PIPE_DEF_BUFFERS];
1712 	struct splice_pipe_desc spd = {
1713 		.pages = pages,
1714 		.partial = partial,
1715 		.flags = flags,
1716 		.ops = &sock_pipe_buf_ops,
1717 		.spd_release = sock_spd_release,
1718 	};
1719 	struct sk_buff *frag_iter;
1720 	struct sock *sk = skb->sk;
1721 	int ret = 0;
1722 
1723 	if (splice_grow_spd(pipe, &spd))
1724 		return -ENOMEM;
1725 
1726 	/*
1727 	 * __skb_splice_bits() only fails if the output has no room left,
1728 	 * so no point in going over the frag_list for the error case.
1729 	 */
1730 	if (__skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk))
1731 		goto done;
1732 	else if (!tlen)
1733 		goto done;
1734 
1735 	/*
1736 	 * now see if we have a frag_list to map
1737 	 */
1738 	skb_walk_frags(skb, frag_iter) {
1739 		if (!tlen)
1740 			break;
1741 		if (__skb_splice_bits(frag_iter, pipe, &offset, &tlen, &spd, sk))
1742 			break;
1743 	}
1744 
1745 done:
1746 	if (spd.nr_pages) {
1747 		/*
1748 		 * Drop the socket lock, otherwise we have reverse
1749 		 * locking dependencies between sk_lock and i_mutex
1750 		 * here as compared to sendfile(). We enter here
1751 		 * with the socket lock held, and splice_to_pipe() will
1752 		 * grab the pipe inode lock. For sendfile() emulation,
1753 		 * we call into ->sendpage() with the i_mutex lock held
1754 		 * and networking will grab the socket lock.
1755 		 */
1756 		release_sock(sk);
1757 		ret = splice_to_pipe(pipe, &spd);
1758 		lock_sock(sk);
1759 	}
1760 
1761 	splice_shrink_spd(pipe, &spd);
1762 	return ret;
1763 }
1764 
1765 /**
1766  *	skb_store_bits - store bits from kernel buffer to skb
1767  *	@skb: destination buffer
1768  *	@offset: offset in destination
1769  *	@from: source buffer
1770  *	@len: number of bytes to copy
1771  *
1772  *	Copy the specified number of bytes from the source buffer to the
1773  *	destination skb.  This function handles all the messy bits of
1774  *	traversing fragment lists and such.
1775  */
1776 
1777 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
1778 {
1779 	int start = skb_headlen(skb);
1780 	struct sk_buff *frag_iter;
1781 	int i, copy;
1782 
1783 	if (offset > (int)skb->len - len)
1784 		goto fault;
1785 
1786 	if ((copy = start - offset) > 0) {
1787 		if (copy > len)
1788 			copy = len;
1789 		skb_copy_to_linear_data_offset(skb, offset, from, copy);
1790 		if ((len -= copy) == 0)
1791 			return 0;
1792 		offset += copy;
1793 		from += copy;
1794 	}
1795 
1796 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1797 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1798 		int end;
1799 
1800 		WARN_ON(start > offset + len);
1801 
1802 		end = start + skb_frag_size(frag);
1803 		if ((copy = end - offset) > 0) {
1804 			u8 *vaddr;
1805 
1806 			if (copy > len)
1807 				copy = len;
1808 
1809 			vaddr = kmap_skb_frag(frag);
1810 			memcpy(vaddr + frag->page_offset + offset - start,
1811 			       from, copy);
1812 			kunmap_skb_frag(vaddr);
1813 
1814 			if ((len -= copy) == 0)
1815 				return 0;
1816 			offset += copy;
1817 			from += copy;
1818 		}
1819 		start = end;
1820 	}
1821 
1822 	skb_walk_frags(skb, frag_iter) {
1823 		int end;
1824 
1825 		WARN_ON(start > offset + len);
1826 
1827 		end = start + frag_iter->len;
1828 		if ((copy = end - offset) > 0) {
1829 			if (copy > len)
1830 				copy = len;
1831 			if (skb_store_bits(frag_iter, offset - start,
1832 					   from, copy))
1833 				goto fault;
1834 			if ((len -= copy) == 0)
1835 				return 0;
1836 			offset += copy;
1837 			from += copy;
1838 		}
1839 		start = end;
1840 	}
1841 	if (!len)
1842 		return 0;
1843 
1844 fault:
1845 	return -EFAULT;
1846 }
1847 EXPORT_SYMBOL(skb_store_bits);
1848 
1849 /* Checksum skb data. */
1850 
1851 __wsum skb_checksum(const struct sk_buff *skb, int offset,
1852 			  int len, __wsum csum)
1853 {
1854 	int start = skb_headlen(skb);
1855 	int i, copy = start - offset;
1856 	struct sk_buff *frag_iter;
1857 	int pos = 0;
1858 
1859 	/* Checksum header. */
1860 	if (copy > 0) {
1861 		if (copy > len)
1862 			copy = len;
1863 		csum = csum_partial(skb->data + offset, copy, csum);
1864 		if ((len -= copy) == 0)
1865 			return csum;
1866 		offset += copy;
1867 		pos	= copy;
1868 	}
1869 
1870 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1871 		int end;
1872 
1873 		WARN_ON(start > offset + len);
1874 
1875 		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
1876 		if ((copy = end - offset) > 0) {
1877 			__wsum csum2;
1878 			u8 *vaddr;
1879 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1880 
1881 			if (copy > len)
1882 				copy = len;
1883 			vaddr = kmap_skb_frag(frag);
1884 			csum2 = csum_partial(vaddr + frag->page_offset +
1885 					     offset - start, copy, 0);
1886 			kunmap_skb_frag(vaddr);
1887 			csum = csum_block_add(csum, csum2, pos);
1888 			if (!(len -= copy))
1889 				return csum;
1890 			offset += copy;
1891 			pos    += copy;
1892 		}
1893 		start = end;
1894 	}
1895 
1896 	skb_walk_frags(skb, frag_iter) {
1897 		int end;
1898 
1899 		WARN_ON(start > offset + len);
1900 
1901 		end = start + frag_iter->len;
1902 		if ((copy = end - offset) > 0) {
1903 			__wsum csum2;
1904 			if (copy > len)
1905 				copy = len;
1906 			csum2 = skb_checksum(frag_iter, offset - start,
1907 					     copy, 0);
1908 			csum = csum_block_add(csum, csum2, pos);
1909 			if ((len -= copy) == 0)
1910 				return csum;
1911 			offset += copy;
1912 			pos    += copy;
1913 		}
1914 		start = end;
1915 	}
1916 	BUG_ON(len);
1917 
1918 	return csum;
1919 }
1920 EXPORT_SYMBOL(skb_checksum);
1921 
1922 /* Both of above in one bottle. */
1923 
1924 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
1925 				    u8 *to, int len, __wsum csum)
1926 {
1927 	int start = skb_headlen(skb);
1928 	int i, copy = start - offset;
1929 	struct sk_buff *frag_iter;
1930 	int pos = 0;
1931 
1932 	/* Copy header. */
1933 	if (copy > 0) {
1934 		if (copy > len)
1935 			copy = len;
1936 		csum = csum_partial_copy_nocheck(skb->data + offset, to,
1937 						 copy, csum);
1938 		if ((len -= copy) == 0)
1939 			return csum;
1940 		offset += copy;
1941 		to     += copy;
1942 		pos	= copy;
1943 	}
1944 
1945 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1946 		int end;
1947 
1948 		WARN_ON(start > offset + len);
1949 
1950 		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
1951 		if ((copy = end - offset) > 0) {
1952 			__wsum csum2;
1953 			u8 *vaddr;
1954 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1955 
1956 			if (copy > len)
1957 				copy = len;
1958 			vaddr = kmap_skb_frag(frag);
1959 			csum2 = csum_partial_copy_nocheck(vaddr +
1960 							  frag->page_offset +
1961 							  offset - start, to,
1962 							  copy, 0);
1963 			kunmap_skb_frag(vaddr);
1964 			csum = csum_block_add(csum, csum2, pos);
1965 			if (!(len -= copy))
1966 				return csum;
1967 			offset += copy;
1968 			to     += copy;
1969 			pos    += copy;
1970 		}
1971 		start = end;
1972 	}
1973 
1974 	skb_walk_frags(skb, frag_iter) {
1975 		__wsum csum2;
1976 		int end;
1977 
1978 		WARN_ON(start > offset + len);
1979 
1980 		end = start + frag_iter->len;
1981 		if ((copy = end - offset) > 0) {
1982 			if (copy > len)
1983 				copy = len;
1984 			csum2 = skb_copy_and_csum_bits(frag_iter,
1985 						       offset - start,
1986 						       to, copy, 0);
1987 			csum = csum_block_add(csum, csum2, pos);
1988 			if ((len -= copy) == 0)
1989 				return csum;
1990 			offset += copy;
1991 			to     += copy;
1992 			pos    += copy;
1993 		}
1994 		start = end;
1995 	}
1996 	BUG_ON(len);
1997 	return csum;
1998 }
1999 EXPORT_SYMBOL(skb_copy_and_csum_bits);
2000 
2001 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
2002 {
2003 	__wsum csum;
2004 	long csstart;
2005 
2006 	if (skb->ip_summed == CHECKSUM_PARTIAL)
2007 		csstart = skb_checksum_start_offset(skb);
2008 	else
2009 		csstart = skb_headlen(skb);
2010 
2011 	BUG_ON(csstart > skb_headlen(skb));
2012 
2013 	skb_copy_from_linear_data(skb, to, csstart);
2014 
2015 	csum = 0;
2016 	if (csstart != skb->len)
2017 		csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
2018 					      skb->len - csstart, 0);
2019 
2020 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
2021 		long csstuff = csstart + skb->csum_offset;
2022 
2023 		*((__sum16 *)(to + csstuff)) = csum_fold(csum);
2024 	}
2025 }
2026 EXPORT_SYMBOL(skb_copy_and_csum_dev);
2027 
2028 /**
2029  *	skb_dequeue - remove from the head of the queue
2030  *	@list: list to dequeue from
2031  *
2032  *	Remove the head of the list. The list lock is taken so the function
2033  *	may be used safely with other locking list functions. The head item is
2034  *	returned or %NULL if the list is empty.
2035  */
2036 
2037 struct sk_buff *skb_dequeue(struct sk_buff_head *list)
2038 {
2039 	unsigned long flags;
2040 	struct sk_buff *result;
2041 
2042 	spin_lock_irqsave(&list->lock, flags);
2043 	result = __skb_dequeue(list);
2044 	spin_unlock_irqrestore(&list->lock, flags);
2045 	return result;
2046 }
2047 EXPORT_SYMBOL(skb_dequeue);
2048 
2049 /**
2050  *	skb_dequeue_tail - remove from the tail of the queue
2051  *	@list: list to dequeue from
2052  *
2053  *	Remove the tail of the list. The list lock is taken so the function
2054  *	may be used safely with other locking list functions. The tail item is
2055  *	returned or %NULL if the list is empty.
2056  */
2057 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
2058 {
2059 	unsigned long flags;
2060 	struct sk_buff *result;
2061 
2062 	spin_lock_irqsave(&list->lock, flags);
2063 	result = __skb_dequeue_tail(list);
2064 	spin_unlock_irqrestore(&list->lock, flags);
2065 	return result;
2066 }
2067 EXPORT_SYMBOL(skb_dequeue_tail);
2068 
2069 /**
2070  *	skb_queue_purge - empty a list
2071  *	@list: list to empty
2072  *
2073  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
2074  *	the list and one reference dropped. This function takes the list
2075  *	lock and is atomic with respect to other list locking functions.
2076  */
2077 void skb_queue_purge(struct sk_buff_head *list)
2078 {
2079 	struct sk_buff *skb;
2080 	while ((skb = skb_dequeue(list)) != NULL)
2081 		kfree_skb(skb);
2082 }
2083 EXPORT_SYMBOL(skb_queue_purge);
2084 
2085 /**
2086  *	skb_queue_head - queue a buffer at the list head
2087  *	@list: list to use
2088  *	@newsk: buffer to queue
2089  *
2090  *	Queue a buffer at the start of the list. This function takes the
2091  *	list lock and can be used safely with other locking &sk_buff functions
2092  *	safely.
2093  *
2094  *	A buffer cannot be placed on two lists at the same time.
2095  */
2096 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
2097 {
2098 	unsigned long flags;
2099 
2100 	spin_lock_irqsave(&list->lock, flags);
2101 	__skb_queue_head(list, newsk);
2102 	spin_unlock_irqrestore(&list->lock, flags);
2103 }
2104 EXPORT_SYMBOL(skb_queue_head);
2105 
2106 /**
2107  *	skb_queue_tail - queue a buffer at the list tail
2108  *	@list: list to use
2109  *	@newsk: buffer to queue
2110  *
2111  *	Queue a buffer at the tail of the list. This function takes the
2112  *	list lock and can be used safely with other locking &sk_buff functions
2113  *	safely.
2114  *
2115  *	A buffer cannot be placed on two lists at the same time.
2116  */
2117 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
2118 {
2119 	unsigned long flags;
2120 
2121 	spin_lock_irqsave(&list->lock, flags);
2122 	__skb_queue_tail(list, newsk);
2123 	spin_unlock_irqrestore(&list->lock, flags);
2124 }
2125 EXPORT_SYMBOL(skb_queue_tail);
2126 
2127 /**
2128  *	skb_unlink	-	remove a buffer from a list
2129  *	@skb: buffer to remove
2130  *	@list: list to use
2131  *
2132  *	Remove a packet from a list. The list locks are taken and this
2133  *	function is atomic with respect to other list locked calls
2134  *
2135  *	You must know what list the SKB is on.
2136  */
2137 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
2138 {
2139 	unsigned long flags;
2140 
2141 	spin_lock_irqsave(&list->lock, flags);
2142 	__skb_unlink(skb, list);
2143 	spin_unlock_irqrestore(&list->lock, flags);
2144 }
2145 EXPORT_SYMBOL(skb_unlink);
2146 
2147 /**
2148  *	skb_append	-	append a buffer
2149  *	@old: buffer to insert after
2150  *	@newsk: buffer to insert
2151  *	@list: list to use
2152  *
2153  *	Place a packet after a given packet in a list. The list locks are taken
2154  *	and this function is atomic with respect to other list locked calls.
2155  *	A buffer cannot be placed on two lists at the same time.
2156  */
2157 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
2158 {
2159 	unsigned long flags;
2160 
2161 	spin_lock_irqsave(&list->lock, flags);
2162 	__skb_queue_after(list, old, newsk);
2163 	spin_unlock_irqrestore(&list->lock, flags);
2164 }
2165 EXPORT_SYMBOL(skb_append);
2166 
2167 /**
2168  *	skb_insert	-	insert a buffer
2169  *	@old: buffer to insert before
2170  *	@newsk: buffer to insert
2171  *	@list: list to use
2172  *
2173  *	Place a packet before a given packet in a list. The list locks are
2174  * 	taken and this function is atomic with respect to other list locked
2175  *	calls.
2176  *
2177  *	A buffer cannot be placed on two lists at the same time.
2178  */
2179 void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
2180 {
2181 	unsigned long flags;
2182 
2183 	spin_lock_irqsave(&list->lock, flags);
2184 	__skb_insert(newsk, old->prev, old, list);
2185 	spin_unlock_irqrestore(&list->lock, flags);
2186 }
2187 EXPORT_SYMBOL(skb_insert);
2188 
2189 static inline void skb_split_inside_header(struct sk_buff *skb,
2190 					   struct sk_buff* skb1,
2191 					   const u32 len, const int pos)
2192 {
2193 	int i;
2194 
2195 	skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
2196 					 pos - len);
2197 	/* And move data appendix as is. */
2198 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
2199 		skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
2200 
2201 	skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
2202 	skb_shinfo(skb)->nr_frags  = 0;
2203 	skb1->data_len		   = skb->data_len;
2204 	skb1->len		   += skb1->data_len;
2205 	skb->data_len		   = 0;
2206 	skb->len		   = len;
2207 	skb_set_tail_pointer(skb, len);
2208 }
2209 
2210 static inline void skb_split_no_header(struct sk_buff *skb,
2211 				       struct sk_buff* skb1,
2212 				       const u32 len, int pos)
2213 {
2214 	int i, k = 0;
2215 	const int nfrags = skb_shinfo(skb)->nr_frags;
2216 
2217 	skb_shinfo(skb)->nr_frags = 0;
2218 	skb1->len		  = skb1->data_len = skb->len - len;
2219 	skb->len		  = len;
2220 	skb->data_len		  = len - pos;
2221 
2222 	for (i = 0; i < nfrags; i++) {
2223 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2224 
2225 		if (pos + size > len) {
2226 			skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
2227 
2228 			if (pos < len) {
2229 				/* Split frag.
2230 				 * We have two variants in this case:
2231 				 * 1. Move all the frag to the second
2232 				 *    part, if it is possible. F.e.
2233 				 *    this approach is mandatory for TUX,
2234 				 *    where splitting is expensive.
2235 				 * 2. Split is accurately. We make this.
2236 				 */
2237 				skb_frag_ref(skb, i);
2238 				skb_shinfo(skb1)->frags[0].page_offset += len - pos;
2239 				skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos);
2240 				skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos);
2241 				skb_shinfo(skb)->nr_frags++;
2242 			}
2243 			k++;
2244 		} else
2245 			skb_shinfo(skb)->nr_frags++;
2246 		pos += size;
2247 	}
2248 	skb_shinfo(skb1)->nr_frags = k;
2249 }
2250 
2251 /**
2252  * skb_split - Split fragmented skb to two parts at length len.
2253  * @skb: the buffer to split
2254  * @skb1: the buffer to receive the second part
2255  * @len: new length for skb
2256  */
2257 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
2258 {
2259 	int pos = skb_headlen(skb);
2260 
2261 	if (len < pos)	/* Split line is inside header. */
2262 		skb_split_inside_header(skb, skb1, len, pos);
2263 	else		/* Second chunk has no header, nothing to copy. */
2264 		skb_split_no_header(skb, skb1, len, pos);
2265 }
2266 EXPORT_SYMBOL(skb_split);
2267 
2268 /* Shifting from/to a cloned skb is a no-go.
2269  *
2270  * Caller cannot keep skb_shinfo related pointers past calling here!
2271  */
2272 static int skb_prepare_for_shift(struct sk_buff *skb)
2273 {
2274 	return skb_cloned(skb) && pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2275 }
2276 
2277 /**
2278  * skb_shift - Shifts paged data partially from skb to another
2279  * @tgt: buffer into which tail data gets added
2280  * @skb: buffer from which the paged data comes from
2281  * @shiftlen: shift up to this many bytes
2282  *
2283  * Attempts to shift up to shiftlen worth of bytes, which may be less than
2284  * the length of the skb, from skb to tgt. Returns number bytes shifted.
2285  * It's up to caller to free skb if everything was shifted.
2286  *
2287  * If @tgt runs out of frags, the whole operation is aborted.
2288  *
2289  * Skb cannot include anything else but paged data while tgt is allowed
2290  * to have non-paged data as well.
2291  *
2292  * TODO: full sized shift could be optimized but that would need
2293  * specialized skb free'er to handle frags without up-to-date nr_frags.
2294  */
2295 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
2296 {
2297 	int from, to, merge, todo;
2298 	struct skb_frag_struct *fragfrom, *fragto;
2299 
2300 	BUG_ON(shiftlen > skb->len);
2301 	BUG_ON(skb_headlen(skb));	/* Would corrupt stream */
2302 
2303 	todo = shiftlen;
2304 	from = 0;
2305 	to = skb_shinfo(tgt)->nr_frags;
2306 	fragfrom = &skb_shinfo(skb)->frags[from];
2307 
2308 	/* Actual merge is delayed until the point when we know we can
2309 	 * commit all, so that we don't have to undo partial changes
2310 	 */
2311 	if (!to ||
2312 	    !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom),
2313 			      fragfrom->page_offset)) {
2314 		merge = -1;
2315 	} else {
2316 		merge = to - 1;
2317 
2318 		todo -= skb_frag_size(fragfrom);
2319 		if (todo < 0) {
2320 			if (skb_prepare_for_shift(skb) ||
2321 			    skb_prepare_for_shift(tgt))
2322 				return 0;
2323 
2324 			/* All previous frag pointers might be stale! */
2325 			fragfrom = &skb_shinfo(skb)->frags[from];
2326 			fragto = &skb_shinfo(tgt)->frags[merge];
2327 
2328 			skb_frag_size_add(fragto, shiftlen);
2329 			skb_frag_size_sub(fragfrom, shiftlen);
2330 			fragfrom->page_offset += shiftlen;
2331 
2332 			goto onlymerged;
2333 		}
2334 
2335 		from++;
2336 	}
2337 
2338 	/* Skip full, not-fitting skb to avoid expensive operations */
2339 	if ((shiftlen == skb->len) &&
2340 	    (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
2341 		return 0;
2342 
2343 	if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
2344 		return 0;
2345 
2346 	while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
2347 		if (to == MAX_SKB_FRAGS)
2348 			return 0;
2349 
2350 		fragfrom = &skb_shinfo(skb)->frags[from];
2351 		fragto = &skb_shinfo(tgt)->frags[to];
2352 
2353 		if (todo >= skb_frag_size(fragfrom)) {
2354 			*fragto = *fragfrom;
2355 			todo -= skb_frag_size(fragfrom);
2356 			from++;
2357 			to++;
2358 
2359 		} else {
2360 			__skb_frag_ref(fragfrom);
2361 			fragto->page = fragfrom->page;
2362 			fragto->page_offset = fragfrom->page_offset;
2363 			skb_frag_size_set(fragto, todo);
2364 
2365 			fragfrom->page_offset += todo;
2366 			skb_frag_size_sub(fragfrom, todo);
2367 			todo = 0;
2368 
2369 			to++;
2370 			break;
2371 		}
2372 	}
2373 
2374 	/* Ready to "commit" this state change to tgt */
2375 	skb_shinfo(tgt)->nr_frags = to;
2376 
2377 	if (merge >= 0) {
2378 		fragfrom = &skb_shinfo(skb)->frags[0];
2379 		fragto = &skb_shinfo(tgt)->frags[merge];
2380 
2381 		skb_frag_size_add(fragto, skb_frag_size(fragfrom));
2382 		__skb_frag_unref(fragfrom);
2383 	}
2384 
2385 	/* Reposition in the original skb */
2386 	to = 0;
2387 	while (from < skb_shinfo(skb)->nr_frags)
2388 		skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
2389 	skb_shinfo(skb)->nr_frags = to;
2390 
2391 	BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
2392 
2393 onlymerged:
2394 	/* Most likely the tgt won't ever need its checksum anymore, skb on
2395 	 * the other hand might need it if it needs to be resent
2396 	 */
2397 	tgt->ip_summed = CHECKSUM_PARTIAL;
2398 	skb->ip_summed = CHECKSUM_PARTIAL;
2399 
2400 	/* Yak, is it really working this way? Some helper please? */
2401 	skb->len -= shiftlen;
2402 	skb->data_len -= shiftlen;
2403 	skb->truesize -= shiftlen;
2404 	tgt->len += shiftlen;
2405 	tgt->data_len += shiftlen;
2406 	tgt->truesize += shiftlen;
2407 
2408 	return shiftlen;
2409 }
2410 
2411 /**
2412  * skb_prepare_seq_read - Prepare a sequential read of skb data
2413  * @skb: the buffer to read
2414  * @from: lower offset of data to be read
2415  * @to: upper offset of data to be read
2416  * @st: state variable
2417  *
2418  * Initializes the specified state variable. Must be called before
2419  * invoking skb_seq_read() for the first time.
2420  */
2421 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
2422 			  unsigned int to, struct skb_seq_state *st)
2423 {
2424 	st->lower_offset = from;
2425 	st->upper_offset = to;
2426 	st->root_skb = st->cur_skb = skb;
2427 	st->frag_idx = st->stepped_offset = 0;
2428 	st->frag_data = NULL;
2429 }
2430 EXPORT_SYMBOL(skb_prepare_seq_read);
2431 
2432 /**
2433  * skb_seq_read - Sequentially read skb data
2434  * @consumed: number of bytes consumed by the caller so far
2435  * @data: destination pointer for data to be returned
2436  * @st: state variable
2437  *
2438  * Reads a block of skb data at &consumed relative to the
2439  * lower offset specified to skb_prepare_seq_read(). Assigns
2440  * the head of the data block to &data and returns the length
2441  * of the block or 0 if the end of the skb data or the upper
2442  * offset has been reached.
2443  *
2444  * The caller is not required to consume all of the data
2445  * returned, i.e. &consumed is typically set to the number
2446  * of bytes already consumed and the next call to
2447  * skb_seq_read() will return the remaining part of the block.
2448  *
2449  * Note 1: The size of each block of data returned can be arbitrary,
2450  *       this limitation is the cost for zerocopy seqeuental
2451  *       reads of potentially non linear data.
2452  *
2453  * Note 2: Fragment lists within fragments are not implemented
2454  *       at the moment, state->root_skb could be replaced with
2455  *       a stack for this purpose.
2456  */
2457 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
2458 			  struct skb_seq_state *st)
2459 {
2460 	unsigned int block_limit, abs_offset = consumed + st->lower_offset;
2461 	skb_frag_t *frag;
2462 
2463 	if (unlikely(abs_offset >= st->upper_offset))
2464 		return 0;
2465 
2466 next_skb:
2467 	block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
2468 
2469 	if (abs_offset < block_limit && !st->frag_data) {
2470 		*data = st->cur_skb->data + (abs_offset - st->stepped_offset);
2471 		return block_limit - abs_offset;
2472 	}
2473 
2474 	if (st->frag_idx == 0 && !st->frag_data)
2475 		st->stepped_offset += skb_headlen(st->cur_skb);
2476 
2477 	while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
2478 		frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
2479 		block_limit = skb_frag_size(frag) + st->stepped_offset;
2480 
2481 		if (abs_offset < block_limit) {
2482 			if (!st->frag_data)
2483 				st->frag_data = kmap_skb_frag(frag);
2484 
2485 			*data = (u8 *) st->frag_data + frag->page_offset +
2486 				(abs_offset - st->stepped_offset);
2487 
2488 			return block_limit - abs_offset;
2489 		}
2490 
2491 		if (st->frag_data) {
2492 			kunmap_skb_frag(st->frag_data);
2493 			st->frag_data = NULL;
2494 		}
2495 
2496 		st->frag_idx++;
2497 		st->stepped_offset += skb_frag_size(frag);
2498 	}
2499 
2500 	if (st->frag_data) {
2501 		kunmap_skb_frag(st->frag_data);
2502 		st->frag_data = NULL;
2503 	}
2504 
2505 	if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) {
2506 		st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
2507 		st->frag_idx = 0;
2508 		goto next_skb;
2509 	} else if (st->cur_skb->next) {
2510 		st->cur_skb = st->cur_skb->next;
2511 		st->frag_idx = 0;
2512 		goto next_skb;
2513 	}
2514 
2515 	return 0;
2516 }
2517 EXPORT_SYMBOL(skb_seq_read);
2518 
2519 /**
2520  * skb_abort_seq_read - Abort a sequential read of skb data
2521  * @st: state variable
2522  *
2523  * Must be called if skb_seq_read() was not called until it
2524  * returned 0.
2525  */
2526 void skb_abort_seq_read(struct skb_seq_state *st)
2527 {
2528 	if (st->frag_data)
2529 		kunmap_skb_frag(st->frag_data);
2530 }
2531 EXPORT_SYMBOL(skb_abort_seq_read);
2532 
2533 #define TS_SKB_CB(state)	((struct skb_seq_state *) &((state)->cb))
2534 
2535 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
2536 					  struct ts_config *conf,
2537 					  struct ts_state *state)
2538 {
2539 	return skb_seq_read(offset, text, TS_SKB_CB(state));
2540 }
2541 
2542 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
2543 {
2544 	skb_abort_seq_read(TS_SKB_CB(state));
2545 }
2546 
2547 /**
2548  * skb_find_text - Find a text pattern in skb data
2549  * @skb: the buffer to look in
2550  * @from: search offset
2551  * @to: search limit
2552  * @config: textsearch configuration
2553  * @state: uninitialized textsearch state variable
2554  *
2555  * Finds a pattern in the skb data according to the specified
2556  * textsearch configuration. Use textsearch_next() to retrieve
2557  * subsequent occurrences of the pattern. Returns the offset
2558  * to the first occurrence or UINT_MAX if no match was found.
2559  */
2560 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
2561 			   unsigned int to, struct ts_config *config,
2562 			   struct ts_state *state)
2563 {
2564 	unsigned int ret;
2565 
2566 	config->get_next_block = skb_ts_get_next_block;
2567 	config->finish = skb_ts_finish;
2568 
2569 	skb_prepare_seq_read(skb, from, to, TS_SKB_CB(state));
2570 
2571 	ret = textsearch_find(config, state);
2572 	return (ret <= to - from ? ret : UINT_MAX);
2573 }
2574 EXPORT_SYMBOL(skb_find_text);
2575 
2576 /**
2577  * skb_append_datato_frags: - append the user data to a skb
2578  * @sk: sock  structure
2579  * @skb: skb structure to be appened with user data.
2580  * @getfrag: call back function to be used for getting the user data
2581  * @from: pointer to user message iov
2582  * @length: length of the iov message
2583  *
2584  * Description: This procedure append the user data in the fragment part
2585  * of the skb if any page alloc fails user this procedure returns  -ENOMEM
2586  */
2587 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
2588 			int (*getfrag)(void *from, char *to, int offset,
2589 					int len, int odd, struct sk_buff *skb),
2590 			void *from, int length)
2591 {
2592 	int frg_cnt = 0;
2593 	skb_frag_t *frag = NULL;
2594 	struct page *page = NULL;
2595 	int copy, left;
2596 	int offset = 0;
2597 	int ret;
2598 
2599 	do {
2600 		/* Return error if we don't have space for new frag */
2601 		frg_cnt = skb_shinfo(skb)->nr_frags;
2602 		if (frg_cnt >= MAX_SKB_FRAGS)
2603 			return -EFAULT;
2604 
2605 		/* allocate a new page for next frag */
2606 		page = alloc_pages(sk->sk_allocation, 0);
2607 
2608 		/* If alloc_page fails just return failure and caller will
2609 		 * free previous allocated pages by doing kfree_skb()
2610 		 */
2611 		if (page == NULL)
2612 			return -ENOMEM;
2613 
2614 		/* initialize the next frag */
2615 		skb_fill_page_desc(skb, frg_cnt, page, 0, 0);
2616 		skb->truesize += PAGE_SIZE;
2617 		atomic_add(PAGE_SIZE, &sk->sk_wmem_alloc);
2618 
2619 		/* get the new initialized frag */
2620 		frg_cnt = skb_shinfo(skb)->nr_frags;
2621 		frag = &skb_shinfo(skb)->frags[frg_cnt - 1];
2622 
2623 		/* copy the user data to page */
2624 		left = PAGE_SIZE - frag->page_offset;
2625 		copy = (length > left)? left : length;
2626 
2627 		ret = getfrag(from, skb_frag_address(frag) + skb_frag_size(frag),
2628 			    offset, copy, 0, skb);
2629 		if (ret < 0)
2630 			return -EFAULT;
2631 
2632 		/* copy was successful so update the size parameters */
2633 		skb_frag_size_add(frag, copy);
2634 		skb->len += copy;
2635 		skb->data_len += copy;
2636 		offset += copy;
2637 		length -= copy;
2638 
2639 	} while (length > 0);
2640 
2641 	return 0;
2642 }
2643 EXPORT_SYMBOL(skb_append_datato_frags);
2644 
2645 /**
2646  *	skb_pull_rcsum - pull skb and update receive checksum
2647  *	@skb: buffer to update
2648  *	@len: length of data pulled
2649  *
2650  *	This function performs an skb_pull on the packet and updates
2651  *	the CHECKSUM_COMPLETE checksum.  It should be used on
2652  *	receive path processing instead of skb_pull unless you know
2653  *	that the checksum difference is zero (e.g., a valid IP header)
2654  *	or you are setting ip_summed to CHECKSUM_NONE.
2655  */
2656 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
2657 {
2658 	BUG_ON(len > skb->len);
2659 	skb->len -= len;
2660 	BUG_ON(skb->len < skb->data_len);
2661 	skb_postpull_rcsum(skb, skb->data, len);
2662 	return skb->data += len;
2663 }
2664 EXPORT_SYMBOL_GPL(skb_pull_rcsum);
2665 
2666 /**
2667  *	skb_segment - Perform protocol segmentation on skb.
2668  *	@skb: buffer to segment
2669  *	@features: features for the output path (see dev->features)
2670  *
2671  *	This function performs segmentation on the given skb.  It returns
2672  *	a pointer to the first in a list of new skbs for the segments.
2673  *	In case of error it returns ERR_PTR(err).
2674  */
2675 struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features)
2676 {
2677 	struct sk_buff *segs = NULL;
2678 	struct sk_buff *tail = NULL;
2679 	struct sk_buff *fskb = skb_shinfo(skb)->frag_list;
2680 	unsigned int mss = skb_shinfo(skb)->gso_size;
2681 	unsigned int doffset = skb->data - skb_mac_header(skb);
2682 	unsigned int offset = doffset;
2683 	unsigned int headroom;
2684 	unsigned int len;
2685 	int sg = !!(features & NETIF_F_SG);
2686 	int nfrags = skb_shinfo(skb)->nr_frags;
2687 	int err = -ENOMEM;
2688 	int i = 0;
2689 	int pos;
2690 
2691 	__skb_push(skb, doffset);
2692 	headroom = skb_headroom(skb);
2693 	pos = skb_headlen(skb);
2694 
2695 	do {
2696 		struct sk_buff *nskb;
2697 		skb_frag_t *frag;
2698 		int hsize;
2699 		int size;
2700 
2701 		len = skb->len - offset;
2702 		if (len > mss)
2703 			len = mss;
2704 
2705 		hsize = skb_headlen(skb) - offset;
2706 		if (hsize < 0)
2707 			hsize = 0;
2708 		if (hsize > len || !sg)
2709 			hsize = len;
2710 
2711 		if (!hsize && i >= nfrags) {
2712 			BUG_ON(fskb->len != len);
2713 
2714 			pos += len;
2715 			nskb = skb_clone(fskb, GFP_ATOMIC);
2716 			fskb = fskb->next;
2717 
2718 			if (unlikely(!nskb))
2719 				goto err;
2720 
2721 			hsize = skb_end_pointer(nskb) - nskb->head;
2722 			if (skb_cow_head(nskb, doffset + headroom)) {
2723 				kfree_skb(nskb);
2724 				goto err;
2725 			}
2726 
2727 			nskb->truesize += skb_end_pointer(nskb) - nskb->head -
2728 					  hsize;
2729 			skb_release_head_state(nskb);
2730 			__skb_push(nskb, doffset);
2731 		} else {
2732 			nskb = alloc_skb(hsize + doffset + headroom,
2733 					 GFP_ATOMIC);
2734 
2735 			if (unlikely(!nskb))
2736 				goto err;
2737 
2738 			skb_reserve(nskb, headroom);
2739 			__skb_put(nskb, doffset);
2740 		}
2741 
2742 		if (segs)
2743 			tail->next = nskb;
2744 		else
2745 			segs = nskb;
2746 		tail = nskb;
2747 
2748 		__copy_skb_header(nskb, skb);
2749 		nskb->mac_len = skb->mac_len;
2750 
2751 		/* nskb and skb might have different headroom */
2752 		if (nskb->ip_summed == CHECKSUM_PARTIAL)
2753 			nskb->csum_start += skb_headroom(nskb) - headroom;
2754 
2755 		skb_reset_mac_header(nskb);
2756 		skb_set_network_header(nskb, skb->mac_len);
2757 		nskb->transport_header = (nskb->network_header +
2758 					  skb_network_header_len(skb));
2759 		skb_copy_from_linear_data(skb, nskb->data, doffset);
2760 
2761 		if (fskb != skb_shinfo(skb)->frag_list)
2762 			continue;
2763 
2764 		if (!sg) {
2765 			nskb->ip_summed = CHECKSUM_NONE;
2766 			nskb->csum = skb_copy_and_csum_bits(skb, offset,
2767 							    skb_put(nskb, len),
2768 							    len, 0);
2769 			continue;
2770 		}
2771 
2772 		frag = skb_shinfo(nskb)->frags;
2773 
2774 		skb_copy_from_linear_data_offset(skb, offset,
2775 						 skb_put(nskb, hsize), hsize);
2776 
2777 		while (pos < offset + len && i < nfrags) {
2778 			*frag = skb_shinfo(skb)->frags[i];
2779 			__skb_frag_ref(frag);
2780 			size = skb_frag_size(frag);
2781 
2782 			if (pos < offset) {
2783 				frag->page_offset += offset - pos;
2784 				skb_frag_size_sub(frag, offset - pos);
2785 			}
2786 
2787 			skb_shinfo(nskb)->nr_frags++;
2788 
2789 			if (pos + size <= offset + len) {
2790 				i++;
2791 				pos += size;
2792 			} else {
2793 				skb_frag_size_sub(frag, pos + size - (offset + len));
2794 				goto skip_fraglist;
2795 			}
2796 
2797 			frag++;
2798 		}
2799 
2800 		if (pos < offset + len) {
2801 			struct sk_buff *fskb2 = fskb;
2802 
2803 			BUG_ON(pos + fskb->len != offset + len);
2804 
2805 			pos += fskb->len;
2806 			fskb = fskb->next;
2807 
2808 			if (fskb2->next) {
2809 				fskb2 = skb_clone(fskb2, GFP_ATOMIC);
2810 				if (!fskb2)
2811 					goto err;
2812 			} else
2813 				skb_get(fskb2);
2814 
2815 			SKB_FRAG_ASSERT(nskb);
2816 			skb_shinfo(nskb)->frag_list = fskb2;
2817 		}
2818 
2819 skip_fraglist:
2820 		nskb->data_len = len - hsize;
2821 		nskb->len += nskb->data_len;
2822 		nskb->truesize += nskb->data_len;
2823 	} while ((offset += len) < skb->len);
2824 
2825 	return segs;
2826 
2827 err:
2828 	while ((skb = segs)) {
2829 		segs = skb->next;
2830 		kfree_skb(skb);
2831 	}
2832 	return ERR_PTR(err);
2833 }
2834 EXPORT_SYMBOL_GPL(skb_segment);
2835 
2836 int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb)
2837 {
2838 	struct sk_buff *p = *head;
2839 	struct sk_buff *nskb;
2840 	struct skb_shared_info *skbinfo = skb_shinfo(skb);
2841 	struct skb_shared_info *pinfo = skb_shinfo(p);
2842 	unsigned int headroom;
2843 	unsigned int len = skb_gro_len(skb);
2844 	unsigned int offset = skb_gro_offset(skb);
2845 	unsigned int headlen = skb_headlen(skb);
2846 
2847 	if (p->len + len >= 65536)
2848 		return -E2BIG;
2849 
2850 	if (pinfo->frag_list)
2851 		goto merge;
2852 	else if (headlen <= offset) {
2853 		skb_frag_t *frag;
2854 		skb_frag_t *frag2;
2855 		int i = skbinfo->nr_frags;
2856 		int nr_frags = pinfo->nr_frags + i;
2857 
2858 		offset -= headlen;
2859 
2860 		if (nr_frags > MAX_SKB_FRAGS)
2861 			return -E2BIG;
2862 
2863 		pinfo->nr_frags = nr_frags;
2864 		skbinfo->nr_frags = 0;
2865 
2866 		frag = pinfo->frags + nr_frags;
2867 		frag2 = skbinfo->frags + i;
2868 		do {
2869 			*--frag = *--frag2;
2870 		} while (--i);
2871 
2872 		frag->page_offset += offset;
2873 		skb_frag_size_sub(frag, offset);
2874 
2875 		skb->truesize -= skb->data_len;
2876 		skb->len -= skb->data_len;
2877 		skb->data_len = 0;
2878 
2879 		NAPI_GRO_CB(skb)->free = 1;
2880 		goto done;
2881 	} else if (skb_gro_len(p) != pinfo->gso_size)
2882 		return -E2BIG;
2883 
2884 	headroom = skb_headroom(p);
2885 	nskb = alloc_skb(headroom + skb_gro_offset(p), GFP_ATOMIC);
2886 	if (unlikely(!nskb))
2887 		return -ENOMEM;
2888 
2889 	__copy_skb_header(nskb, p);
2890 	nskb->mac_len = p->mac_len;
2891 
2892 	skb_reserve(nskb, headroom);
2893 	__skb_put(nskb, skb_gro_offset(p));
2894 
2895 	skb_set_mac_header(nskb, skb_mac_header(p) - p->data);
2896 	skb_set_network_header(nskb, skb_network_offset(p));
2897 	skb_set_transport_header(nskb, skb_transport_offset(p));
2898 
2899 	__skb_pull(p, skb_gro_offset(p));
2900 	memcpy(skb_mac_header(nskb), skb_mac_header(p),
2901 	       p->data - skb_mac_header(p));
2902 
2903 	*NAPI_GRO_CB(nskb) = *NAPI_GRO_CB(p);
2904 	skb_shinfo(nskb)->frag_list = p;
2905 	skb_shinfo(nskb)->gso_size = pinfo->gso_size;
2906 	pinfo->gso_size = 0;
2907 	skb_header_release(p);
2908 	nskb->prev = p;
2909 
2910 	nskb->data_len += p->len;
2911 	nskb->truesize += p->truesize;
2912 	nskb->len += p->len;
2913 
2914 	*head = nskb;
2915 	nskb->next = p->next;
2916 	p->next = NULL;
2917 
2918 	p = nskb;
2919 
2920 merge:
2921 	p->truesize += skb->truesize - len;
2922 	if (offset > headlen) {
2923 		unsigned int eat = offset - headlen;
2924 
2925 		skbinfo->frags[0].page_offset += eat;
2926 		skb_frag_size_sub(&skbinfo->frags[0], eat);
2927 		skb->data_len -= eat;
2928 		skb->len -= eat;
2929 		offset = headlen;
2930 	}
2931 
2932 	__skb_pull(skb, offset);
2933 
2934 	p->prev->next = skb;
2935 	p->prev = skb;
2936 	skb_header_release(skb);
2937 
2938 done:
2939 	NAPI_GRO_CB(p)->count++;
2940 	p->data_len += len;
2941 	p->truesize += len;
2942 	p->len += len;
2943 
2944 	NAPI_GRO_CB(skb)->same_flow = 1;
2945 	return 0;
2946 }
2947 EXPORT_SYMBOL_GPL(skb_gro_receive);
2948 
2949 void __init skb_init(void)
2950 {
2951 	skbuff_head_cache = kmem_cache_create("skbuff_head_cache",
2952 					      sizeof(struct sk_buff),
2953 					      0,
2954 					      SLAB_HWCACHE_ALIGN|SLAB_PANIC,
2955 					      NULL);
2956 	skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
2957 						(2*sizeof(struct sk_buff)) +
2958 						sizeof(atomic_t),
2959 						0,
2960 						SLAB_HWCACHE_ALIGN|SLAB_PANIC,
2961 						NULL);
2962 }
2963 
2964 /**
2965  *	skb_to_sgvec - Fill a scatter-gather list from a socket buffer
2966  *	@skb: Socket buffer containing the buffers to be mapped
2967  *	@sg: The scatter-gather list to map into
2968  *	@offset: The offset into the buffer's contents to start mapping
2969  *	@len: Length of buffer space to be mapped
2970  *
2971  *	Fill the specified scatter-gather list with mappings/pointers into a
2972  *	region of the buffer space attached to a socket buffer.
2973  */
2974 static int
2975 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
2976 {
2977 	int start = skb_headlen(skb);
2978 	int i, copy = start - offset;
2979 	struct sk_buff *frag_iter;
2980 	int elt = 0;
2981 
2982 	if (copy > 0) {
2983 		if (copy > len)
2984 			copy = len;
2985 		sg_set_buf(sg, skb->data + offset, copy);
2986 		elt++;
2987 		if ((len -= copy) == 0)
2988 			return elt;
2989 		offset += copy;
2990 	}
2991 
2992 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2993 		int end;
2994 
2995 		WARN_ON(start > offset + len);
2996 
2997 		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
2998 		if ((copy = end - offset) > 0) {
2999 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3000 
3001 			if (copy > len)
3002 				copy = len;
3003 			sg_set_page(&sg[elt], skb_frag_page(frag), copy,
3004 					frag->page_offset+offset-start);
3005 			elt++;
3006 			if (!(len -= copy))
3007 				return elt;
3008 			offset += copy;
3009 		}
3010 		start = end;
3011 	}
3012 
3013 	skb_walk_frags(skb, frag_iter) {
3014 		int end;
3015 
3016 		WARN_ON(start > offset + len);
3017 
3018 		end = start + frag_iter->len;
3019 		if ((copy = end - offset) > 0) {
3020 			if (copy > len)
3021 				copy = len;
3022 			elt += __skb_to_sgvec(frag_iter, sg+elt, offset - start,
3023 					      copy);
3024 			if ((len -= copy) == 0)
3025 				return elt;
3026 			offset += copy;
3027 		}
3028 		start = end;
3029 	}
3030 	BUG_ON(len);
3031 	return elt;
3032 }
3033 
3034 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
3035 {
3036 	int nsg = __skb_to_sgvec(skb, sg, offset, len);
3037 
3038 	sg_mark_end(&sg[nsg - 1]);
3039 
3040 	return nsg;
3041 }
3042 EXPORT_SYMBOL_GPL(skb_to_sgvec);
3043 
3044 /**
3045  *	skb_cow_data - Check that a socket buffer's data buffers are writable
3046  *	@skb: The socket buffer to check.
3047  *	@tailbits: Amount of trailing space to be added
3048  *	@trailer: Returned pointer to the skb where the @tailbits space begins
3049  *
3050  *	Make sure that the data buffers attached to a socket buffer are
3051  *	writable. If they are not, private copies are made of the data buffers
3052  *	and the socket buffer is set to use these instead.
3053  *
3054  *	If @tailbits is given, make sure that there is space to write @tailbits
3055  *	bytes of data beyond current end of socket buffer.  @trailer will be
3056  *	set to point to the skb in which this space begins.
3057  *
3058  *	The number of scatterlist elements required to completely map the
3059  *	COW'd and extended socket buffer will be returned.
3060  */
3061 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
3062 {
3063 	int copyflag;
3064 	int elt;
3065 	struct sk_buff *skb1, **skb_p;
3066 
3067 	/* If skb is cloned or its head is paged, reallocate
3068 	 * head pulling out all the pages (pages are considered not writable
3069 	 * at the moment even if they are anonymous).
3070 	 */
3071 	if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
3072 	    __pskb_pull_tail(skb, skb_pagelen(skb)-skb_headlen(skb)) == NULL)
3073 		return -ENOMEM;
3074 
3075 	/* Easy case. Most of packets will go this way. */
3076 	if (!skb_has_frag_list(skb)) {
3077 		/* A little of trouble, not enough of space for trailer.
3078 		 * This should not happen, when stack is tuned to generate
3079 		 * good frames. OK, on miss we reallocate and reserve even more
3080 		 * space, 128 bytes is fair. */
3081 
3082 		if (skb_tailroom(skb) < tailbits &&
3083 		    pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
3084 			return -ENOMEM;
3085 
3086 		/* Voila! */
3087 		*trailer = skb;
3088 		return 1;
3089 	}
3090 
3091 	/* Misery. We are in troubles, going to mincer fragments... */
3092 
3093 	elt = 1;
3094 	skb_p = &skb_shinfo(skb)->frag_list;
3095 	copyflag = 0;
3096 
3097 	while ((skb1 = *skb_p) != NULL) {
3098 		int ntail = 0;
3099 
3100 		/* The fragment is partially pulled by someone,
3101 		 * this can happen on input. Copy it and everything
3102 		 * after it. */
3103 
3104 		if (skb_shared(skb1))
3105 			copyflag = 1;
3106 
3107 		/* If the skb is the last, worry about trailer. */
3108 
3109 		if (skb1->next == NULL && tailbits) {
3110 			if (skb_shinfo(skb1)->nr_frags ||
3111 			    skb_has_frag_list(skb1) ||
3112 			    skb_tailroom(skb1) < tailbits)
3113 				ntail = tailbits + 128;
3114 		}
3115 
3116 		if (copyflag ||
3117 		    skb_cloned(skb1) ||
3118 		    ntail ||
3119 		    skb_shinfo(skb1)->nr_frags ||
3120 		    skb_has_frag_list(skb1)) {
3121 			struct sk_buff *skb2;
3122 
3123 			/* Fuck, we are miserable poor guys... */
3124 			if (ntail == 0)
3125 				skb2 = skb_copy(skb1, GFP_ATOMIC);
3126 			else
3127 				skb2 = skb_copy_expand(skb1,
3128 						       skb_headroom(skb1),
3129 						       ntail,
3130 						       GFP_ATOMIC);
3131 			if (unlikely(skb2 == NULL))
3132 				return -ENOMEM;
3133 
3134 			if (skb1->sk)
3135 				skb_set_owner_w(skb2, skb1->sk);
3136 
3137 			/* Looking around. Are we still alive?
3138 			 * OK, link new skb, drop old one */
3139 
3140 			skb2->next = skb1->next;
3141 			*skb_p = skb2;
3142 			kfree_skb(skb1);
3143 			skb1 = skb2;
3144 		}
3145 		elt++;
3146 		*trailer = skb1;
3147 		skb_p = &skb1->next;
3148 	}
3149 
3150 	return elt;
3151 }
3152 EXPORT_SYMBOL_GPL(skb_cow_data);
3153 
3154 static void sock_rmem_free(struct sk_buff *skb)
3155 {
3156 	struct sock *sk = skb->sk;
3157 
3158 	atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
3159 }
3160 
3161 /*
3162  * Note: We dont mem charge error packets (no sk_forward_alloc changes)
3163  */
3164 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
3165 {
3166 	int len = skb->len;
3167 
3168 	if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
3169 	    (unsigned)sk->sk_rcvbuf)
3170 		return -ENOMEM;
3171 
3172 	skb_orphan(skb);
3173 	skb->sk = sk;
3174 	skb->destructor = sock_rmem_free;
3175 	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
3176 
3177 	/* before exiting rcu section, make sure dst is refcounted */
3178 	skb_dst_force(skb);
3179 
3180 	skb_queue_tail(&sk->sk_error_queue, skb);
3181 	if (!sock_flag(sk, SOCK_DEAD))
3182 		sk->sk_data_ready(sk, len);
3183 	return 0;
3184 }
3185 EXPORT_SYMBOL(sock_queue_err_skb);
3186 
3187 void skb_tstamp_tx(struct sk_buff *orig_skb,
3188 		struct skb_shared_hwtstamps *hwtstamps)
3189 {
3190 	struct sock *sk = orig_skb->sk;
3191 	struct sock_exterr_skb *serr;
3192 	struct sk_buff *skb;
3193 	int err;
3194 
3195 	if (!sk)
3196 		return;
3197 
3198 	skb = skb_clone(orig_skb, GFP_ATOMIC);
3199 	if (!skb)
3200 		return;
3201 
3202 	if (hwtstamps) {
3203 		*skb_hwtstamps(skb) =
3204 			*hwtstamps;
3205 	} else {
3206 		/*
3207 		 * no hardware time stamps available,
3208 		 * so keep the shared tx_flags and only
3209 		 * store software time stamp
3210 		 */
3211 		skb->tstamp = ktime_get_real();
3212 	}
3213 
3214 	serr = SKB_EXT_ERR(skb);
3215 	memset(serr, 0, sizeof(*serr));
3216 	serr->ee.ee_errno = ENOMSG;
3217 	serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
3218 
3219 	err = sock_queue_err_skb(sk, skb);
3220 
3221 	if (err)
3222 		kfree_skb(skb);
3223 }
3224 EXPORT_SYMBOL_GPL(skb_tstamp_tx);
3225 
3226 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked)
3227 {
3228 	struct sock *sk = skb->sk;
3229 	struct sock_exterr_skb *serr;
3230 	int err;
3231 
3232 	skb->wifi_acked_valid = 1;
3233 	skb->wifi_acked = acked;
3234 
3235 	serr = SKB_EXT_ERR(skb);
3236 	memset(serr, 0, sizeof(*serr));
3237 	serr->ee.ee_errno = ENOMSG;
3238 	serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS;
3239 
3240 	err = sock_queue_err_skb(sk, skb);
3241 	if (err)
3242 		kfree_skb(skb);
3243 }
3244 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack);
3245 
3246 
3247 /**
3248  * skb_partial_csum_set - set up and verify partial csum values for packet
3249  * @skb: the skb to set
3250  * @start: the number of bytes after skb->data to start checksumming.
3251  * @off: the offset from start to place the checksum.
3252  *
3253  * For untrusted partially-checksummed packets, we need to make sure the values
3254  * for skb->csum_start and skb->csum_offset are valid so we don't oops.
3255  *
3256  * This function checks and sets those values and skb->ip_summed: if this
3257  * returns false you should drop the packet.
3258  */
3259 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
3260 {
3261 	if (unlikely(start > skb_headlen(skb)) ||
3262 	    unlikely((int)start + off > skb_headlen(skb) - 2)) {
3263 		if (net_ratelimit())
3264 			printk(KERN_WARNING
3265 			       "bad partial csum: csum=%u/%u len=%u\n",
3266 			       start, off, skb_headlen(skb));
3267 		return false;
3268 	}
3269 	skb->ip_summed = CHECKSUM_PARTIAL;
3270 	skb->csum_start = skb_headroom(skb) + start;
3271 	skb->csum_offset = off;
3272 	return true;
3273 }
3274 EXPORT_SYMBOL_GPL(skb_partial_csum_set);
3275 
3276 void __skb_warn_lro_forwarding(const struct sk_buff *skb)
3277 {
3278 	if (net_ratelimit())
3279 		pr_warning("%s: received packets cannot be forwarded"
3280 			   " while LRO is enabled\n", skb->dev->name);
3281 }
3282 EXPORT_SYMBOL(__skb_warn_lro_forwarding);
3283