1 /* 2 * Routines having to do with the 'struct sk_buff' memory handlers. 3 * 4 * Authors: Alan Cox <iiitac@pyr.swan.ac.uk> 5 * Florian La Roche <rzsfl@rz.uni-sb.de> 6 * 7 * Version: $Id: skbuff.c,v 1.90 2001/11/07 05:56:19 davem Exp $ 8 * 9 * Fixes: 10 * Alan Cox : Fixed the worst of the load 11 * balancer bugs. 12 * Dave Platt : Interrupt stacking fix. 13 * Richard Kooijman : Timestamp fixes. 14 * Alan Cox : Changed buffer format. 15 * Alan Cox : destructor hook for AF_UNIX etc. 16 * Linus Torvalds : Better skb_clone. 17 * Alan Cox : Added skb_copy. 18 * Alan Cox : Added all the changed routines Linus 19 * only put in the headers 20 * Ray VanTassle : Fixed --skb->lock in free 21 * Alan Cox : skb_copy copy arp field 22 * Andi Kleen : slabified it. 23 * Robert Olsson : Removed skb_head_pool 24 * 25 * NOTE: 26 * The __skb_ routines should be called with interrupts 27 * disabled, or you better be *real* sure that the operation is atomic 28 * with respect to whatever list is being frobbed (e.g. via lock_sock() 29 * or via disabling bottom half handlers, etc). 30 * 31 * This program is free software; you can redistribute it and/or 32 * modify it under the terms of the GNU General Public License 33 * as published by the Free Software Foundation; either version 34 * 2 of the License, or (at your option) any later version. 35 */ 36 37 /* 38 * The functions in this file will not compile correctly with gcc 2.4.x 39 */ 40 41 #include <linux/module.h> 42 #include <linux/types.h> 43 #include <linux/kernel.h> 44 #include <linux/mm.h> 45 #include <linux/interrupt.h> 46 #include <linux/in.h> 47 #include <linux/inet.h> 48 #include <linux/slab.h> 49 #include <linux/netdevice.h> 50 #ifdef CONFIG_NET_CLS_ACT 51 #include <net/pkt_sched.h> 52 #endif 53 #include <linux/string.h> 54 #include <linux/skbuff.h> 55 #include <linux/splice.h> 56 #include <linux/cache.h> 57 #include <linux/rtnetlink.h> 58 #include <linux/init.h> 59 #include <linux/scatterlist.h> 60 61 #include <net/protocol.h> 62 #include <net/dst.h> 63 #include <net/sock.h> 64 #include <net/checksum.h> 65 #include <net/xfrm.h> 66 67 #include <asm/uaccess.h> 68 #include <asm/system.h> 69 70 #include "kmap_skb.h" 71 72 static struct kmem_cache *skbuff_head_cache __read_mostly; 73 static struct kmem_cache *skbuff_fclone_cache __read_mostly; 74 75 static void sock_pipe_buf_release(struct pipe_inode_info *pipe, 76 struct pipe_buffer *buf) 77 { 78 struct sk_buff *skb = (struct sk_buff *) buf->private; 79 80 kfree_skb(skb); 81 } 82 83 static void sock_pipe_buf_get(struct pipe_inode_info *pipe, 84 struct pipe_buffer *buf) 85 { 86 struct sk_buff *skb = (struct sk_buff *) buf->private; 87 88 skb_get(skb); 89 } 90 91 static int sock_pipe_buf_steal(struct pipe_inode_info *pipe, 92 struct pipe_buffer *buf) 93 { 94 return 1; 95 } 96 97 98 /* Pipe buffer operations for a socket. */ 99 static struct pipe_buf_operations sock_pipe_buf_ops = { 100 .can_merge = 0, 101 .map = generic_pipe_buf_map, 102 .unmap = generic_pipe_buf_unmap, 103 .confirm = generic_pipe_buf_confirm, 104 .release = sock_pipe_buf_release, 105 .steal = sock_pipe_buf_steal, 106 .get = sock_pipe_buf_get, 107 }; 108 109 /* 110 * Keep out-of-line to prevent kernel bloat. 111 * __builtin_return_address is not used because it is not always 112 * reliable. 113 */ 114 115 /** 116 * skb_over_panic - private function 117 * @skb: buffer 118 * @sz: size 119 * @here: address 120 * 121 * Out of line support code for skb_put(). Not user callable. 122 */ 123 void skb_over_panic(struct sk_buff *skb, int sz, void *here) 124 { 125 printk(KERN_EMERG "skb_over_panic: text:%p len:%d put:%d head:%p " 126 "data:%p tail:%#lx end:%#lx dev:%s\n", 127 here, skb->len, sz, skb->head, skb->data, 128 (unsigned long)skb->tail, (unsigned long)skb->end, 129 skb->dev ? skb->dev->name : "<NULL>"); 130 BUG(); 131 } 132 133 /** 134 * skb_under_panic - private function 135 * @skb: buffer 136 * @sz: size 137 * @here: address 138 * 139 * Out of line support code for skb_push(). Not user callable. 140 */ 141 142 void skb_under_panic(struct sk_buff *skb, int sz, void *here) 143 { 144 printk(KERN_EMERG "skb_under_panic: text:%p len:%d put:%d head:%p " 145 "data:%p tail:%#lx end:%#lx dev:%s\n", 146 here, skb->len, sz, skb->head, skb->data, 147 (unsigned long)skb->tail, (unsigned long)skb->end, 148 skb->dev ? skb->dev->name : "<NULL>"); 149 BUG(); 150 } 151 152 void skb_truesize_bug(struct sk_buff *skb) 153 { 154 printk(KERN_ERR "SKB BUG: Invalid truesize (%u) " 155 "len=%u, sizeof(sk_buff)=%Zd\n", 156 skb->truesize, skb->len, sizeof(struct sk_buff)); 157 } 158 EXPORT_SYMBOL(skb_truesize_bug); 159 160 /* Allocate a new skbuff. We do this ourselves so we can fill in a few 161 * 'private' fields and also do memory statistics to find all the 162 * [BEEP] leaks. 163 * 164 */ 165 166 /** 167 * __alloc_skb - allocate a network buffer 168 * @size: size to allocate 169 * @gfp_mask: allocation mask 170 * @fclone: allocate from fclone cache instead of head cache 171 * and allocate a cloned (child) skb 172 * @node: numa node to allocate memory on 173 * 174 * Allocate a new &sk_buff. The returned buffer has no headroom and a 175 * tail room of size bytes. The object has a reference count of one. 176 * The return is the buffer. On a failure the return is %NULL. 177 * 178 * Buffers may only be allocated from interrupts using a @gfp_mask of 179 * %GFP_ATOMIC. 180 */ 181 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask, 182 int fclone, int node) 183 { 184 struct kmem_cache *cache; 185 struct skb_shared_info *shinfo; 186 struct sk_buff *skb; 187 u8 *data; 188 189 cache = fclone ? skbuff_fclone_cache : skbuff_head_cache; 190 191 /* Get the HEAD */ 192 skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node); 193 if (!skb) 194 goto out; 195 196 size = SKB_DATA_ALIGN(size); 197 data = kmalloc_node_track_caller(size + sizeof(struct skb_shared_info), 198 gfp_mask, node); 199 if (!data) 200 goto nodata; 201 202 /* 203 * Only clear those fields we need to clear, not those that we will 204 * actually initialise below. Hence, don't put any more fields after 205 * the tail pointer in struct sk_buff! 206 */ 207 memset(skb, 0, offsetof(struct sk_buff, tail)); 208 skb->truesize = size + sizeof(struct sk_buff); 209 atomic_set(&skb->users, 1); 210 skb->head = data; 211 skb->data = data; 212 skb_reset_tail_pointer(skb); 213 skb->end = skb->tail + size; 214 /* make sure we initialize shinfo sequentially */ 215 shinfo = skb_shinfo(skb); 216 atomic_set(&shinfo->dataref, 1); 217 shinfo->nr_frags = 0; 218 shinfo->gso_size = 0; 219 shinfo->gso_segs = 0; 220 shinfo->gso_type = 0; 221 shinfo->ip6_frag_id = 0; 222 shinfo->frag_list = NULL; 223 224 if (fclone) { 225 struct sk_buff *child = skb + 1; 226 atomic_t *fclone_ref = (atomic_t *) (child + 1); 227 228 skb->fclone = SKB_FCLONE_ORIG; 229 atomic_set(fclone_ref, 1); 230 231 child->fclone = SKB_FCLONE_UNAVAILABLE; 232 } 233 out: 234 return skb; 235 nodata: 236 kmem_cache_free(cache, skb); 237 skb = NULL; 238 goto out; 239 } 240 241 /** 242 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device 243 * @dev: network device to receive on 244 * @length: length to allocate 245 * @gfp_mask: get_free_pages mask, passed to alloc_skb 246 * 247 * Allocate a new &sk_buff and assign it a usage count of one. The 248 * buffer has unspecified headroom built in. Users should allocate 249 * the headroom they think they need without accounting for the 250 * built in space. The built in space is used for optimisations. 251 * 252 * %NULL is returned if there is no free memory. 253 */ 254 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, 255 unsigned int length, gfp_t gfp_mask) 256 { 257 int node = dev->dev.parent ? dev_to_node(dev->dev.parent) : -1; 258 struct sk_buff *skb; 259 260 skb = __alloc_skb(length + NET_SKB_PAD, gfp_mask, 0, node); 261 if (likely(skb)) { 262 skb_reserve(skb, NET_SKB_PAD); 263 skb->dev = dev; 264 } 265 return skb; 266 } 267 268 /** 269 * dev_alloc_skb - allocate an skbuff for receiving 270 * @length: length to allocate 271 * 272 * Allocate a new &sk_buff and assign it a usage count of one. The 273 * buffer has unspecified headroom built in. Users should allocate 274 * the headroom they think they need without accounting for the 275 * built in space. The built in space is used for optimisations. 276 * 277 * %NULL is returned if there is no free memory. Although this function 278 * allocates memory it can be called from an interrupt. 279 */ 280 struct sk_buff *dev_alloc_skb(unsigned int length) 281 { 282 /* 283 * There is more code here than it seems: 284 * __dev_alloc_skb is an inline 285 */ 286 return __dev_alloc_skb(length, GFP_ATOMIC); 287 } 288 EXPORT_SYMBOL(dev_alloc_skb); 289 290 static void skb_drop_list(struct sk_buff **listp) 291 { 292 struct sk_buff *list = *listp; 293 294 *listp = NULL; 295 296 do { 297 struct sk_buff *this = list; 298 list = list->next; 299 kfree_skb(this); 300 } while (list); 301 } 302 303 static inline void skb_drop_fraglist(struct sk_buff *skb) 304 { 305 skb_drop_list(&skb_shinfo(skb)->frag_list); 306 } 307 308 static void skb_clone_fraglist(struct sk_buff *skb) 309 { 310 struct sk_buff *list; 311 312 for (list = skb_shinfo(skb)->frag_list; list; list = list->next) 313 skb_get(list); 314 } 315 316 static void skb_release_data(struct sk_buff *skb) 317 { 318 if (!skb->cloned || 319 !atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1, 320 &skb_shinfo(skb)->dataref)) { 321 if (skb_shinfo(skb)->nr_frags) { 322 int i; 323 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 324 put_page(skb_shinfo(skb)->frags[i].page); 325 } 326 327 if (skb_shinfo(skb)->frag_list) 328 skb_drop_fraglist(skb); 329 330 kfree(skb->head); 331 } 332 } 333 334 /* 335 * Free an skbuff by memory without cleaning the state. 336 */ 337 static void kfree_skbmem(struct sk_buff *skb) 338 { 339 struct sk_buff *other; 340 atomic_t *fclone_ref; 341 342 switch (skb->fclone) { 343 case SKB_FCLONE_UNAVAILABLE: 344 kmem_cache_free(skbuff_head_cache, skb); 345 break; 346 347 case SKB_FCLONE_ORIG: 348 fclone_ref = (atomic_t *) (skb + 2); 349 if (atomic_dec_and_test(fclone_ref)) 350 kmem_cache_free(skbuff_fclone_cache, skb); 351 break; 352 353 case SKB_FCLONE_CLONE: 354 fclone_ref = (atomic_t *) (skb + 1); 355 other = skb - 1; 356 357 /* The clone portion is available for 358 * fast-cloning again. 359 */ 360 skb->fclone = SKB_FCLONE_UNAVAILABLE; 361 362 if (atomic_dec_and_test(fclone_ref)) 363 kmem_cache_free(skbuff_fclone_cache, other); 364 break; 365 } 366 } 367 368 /* Free everything but the sk_buff shell. */ 369 static void skb_release_all(struct sk_buff *skb) 370 { 371 dst_release(skb->dst); 372 #ifdef CONFIG_XFRM 373 secpath_put(skb->sp); 374 #endif 375 if (skb->destructor) { 376 WARN_ON(in_irq()); 377 skb->destructor(skb); 378 } 379 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 380 nf_conntrack_put(skb->nfct); 381 nf_conntrack_put_reasm(skb->nfct_reasm); 382 #endif 383 #ifdef CONFIG_BRIDGE_NETFILTER 384 nf_bridge_put(skb->nf_bridge); 385 #endif 386 /* XXX: IS this still necessary? - JHS */ 387 #ifdef CONFIG_NET_SCHED 388 skb->tc_index = 0; 389 #ifdef CONFIG_NET_CLS_ACT 390 skb->tc_verd = 0; 391 #endif 392 #endif 393 skb_release_data(skb); 394 } 395 396 /** 397 * __kfree_skb - private function 398 * @skb: buffer 399 * 400 * Free an sk_buff. Release anything attached to the buffer. 401 * Clean the state. This is an internal helper function. Users should 402 * always call kfree_skb 403 */ 404 405 void __kfree_skb(struct sk_buff *skb) 406 { 407 skb_release_all(skb); 408 kfree_skbmem(skb); 409 } 410 411 /** 412 * kfree_skb - free an sk_buff 413 * @skb: buffer to free 414 * 415 * Drop a reference to the buffer and free it if the usage count has 416 * hit zero. 417 */ 418 void kfree_skb(struct sk_buff *skb) 419 { 420 if (unlikely(!skb)) 421 return; 422 if (likely(atomic_read(&skb->users) == 1)) 423 smp_rmb(); 424 else if (likely(!atomic_dec_and_test(&skb->users))) 425 return; 426 __kfree_skb(skb); 427 } 428 429 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old) 430 { 431 new->tstamp = old->tstamp; 432 new->dev = old->dev; 433 new->transport_header = old->transport_header; 434 new->network_header = old->network_header; 435 new->mac_header = old->mac_header; 436 new->dst = dst_clone(old->dst); 437 #ifdef CONFIG_INET 438 new->sp = secpath_get(old->sp); 439 #endif 440 memcpy(new->cb, old->cb, sizeof(old->cb)); 441 new->csum_start = old->csum_start; 442 new->csum_offset = old->csum_offset; 443 new->local_df = old->local_df; 444 new->pkt_type = old->pkt_type; 445 new->ip_summed = old->ip_summed; 446 skb_copy_queue_mapping(new, old); 447 new->priority = old->priority; 448 #if defined(CONFIG_IP_VS) || defined(CONFIG_IP_VS_MODULE) 449 new->ipvs_property = old->ipvs_property; 450 #endif 451 new->protocol = old->protocol; 452 new->mark = old->mark; 453 __nf_copy(new, old); 454 #if defined(CONFIG_NETFILTER_XT_TARGET_TRACE) || \ 455 defined(CONFIG_NETFILTER_XT_TARGET_TRACE_MODULE) 456 new->nf_trace = old->nf_trace; 457 #endif 458 #ifdef CONFIG_NET_SCHED 459 new->tc_index = old->tc_index; 460 #ifdef CONFIG_NET_CLS_ACT 461 new->tc_verd = old->tc_verd; 462 #endif 463 #endif 464 skb_copy_secmark(new, old); 465 } 466 467 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb) 468 { 469 #define C(x) n->x = skb->x 470 471 n->next = n->prev = NULL; 472 n->sk = NULL; 473 __copy_skb_header(n, skb); 474 475 C(len); 476 C(data_len); 477 C(mac_len); 478 n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len; 479 n->cloned = 1; 480 n->nohdr = 0; 481 n->destructor = NULL; 482 C(iif); 483 C(tail); 484 C(end); 485 C(head); 486 C(data); 487 C(truesize); 488 atomic_set(&n->users, 1); 489 490 atomic_inc(&(skb_shinfo(skb)->dataref)); 491 skb->cloned = 1; 492 493 return n; 494 #undef C 495 } 496 497 /** 498 * skb_morph - morph one skb into another 499 * @dst: the skb to receive the contents 500 * @src: the skb to supply the contents 501 * 502 * This is identical to skb_clone except that the target skb is 503 * supplied by the user. 504 * 505 * The target skb is returned upon exit. 506 */ 507 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src) 508 { 509 skb_release_all(dst); 510 return __skb_clone(dst, src); 511 } 512 EXPORT_SYMBOL_GPL(skb_morph); 513 514 /** 515 * skb_clone - duplicate an sk_buff 516 * @skb: buffer to clone 517 * @gfp_mask: allocation priority 518 * 519 * Duplicate an &sk_buff. The new one is not owned by a socket. Both 520 * copies share the same packet data but not structure. The new 521 * buffer has a reference count of 1. If the allocation fails the 522 * function returns %NULL otherwise the new buffer is returned. 523 * 524 * If this function is called from an interrupt gfp_mask() must be 525 * %GFP_ATOMIC. 526 */ 527 528 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask) 529 { 530 struct sk_buff *n; 531 532 n = skb + 1; 533 if (skb->fclone == SKB_FCLONE_ORIG && 534 n->fclone == SKB_FCLONE_UNAVAILABLE) { 535 atomic_t *fclone_ref = (atomic_t *) (n + 1); 536 n->fclone = SKB_FCLONE_CLONE; 537 atomic_inc(fclone_ref); 538 } else { 539 n = kmem_cache_alloc(skbuff_head_cache, gfp_mask); 540 if (!n) 541 return NULL; 542 n->fclone = SKB_FCLONE_UNAVAILABLE; 543 } 544 545 return __skb_clone(n, skb); 546 } 547 548 static void copy_skb_header(struct sk_buff *new, const struct sk_buff *old) 549 { 550 #ifndef NET_SKBUFF_DATA_USES_OFFSET 551 /* 552 * Shift between the two data areas in bytes 553 */ 554 unsigned long offset = new->data - old->data; 555 #endif 556 557 __copy_skb_header(new, old); 558 559 #ifndef NET_SKBUFF_DATA_USES_OFFSET 560 /* {transport,network,mac}_header are relative to skb->head */ 561 new->transport_header += offset; 562 new->network_header += offset; 563 new->mac_header += offset; 564 #endif 565 skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size; 566 skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs; 567 skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type; 568 } 569 570 /** 571 * skb_copy - create private copy of an sk_buff 572 * @skb: buffer to copy 573 * @gfp_mask: allocation priority 574 * 575 * Make a copy of both an &sk_buff and its data. This is used when the 576 * caller wishes to modify the data and needs a private copy of the 577 * data to alter. Returns %NULL on failure or the pointer to the buffer 578 * on success. The returned buffer has a reference count of 1. 579 * 580 * As by-product this function converts non-linear &sk_buff to linear 581 * one, so that &sk_buff becomes completely private and caller is allowed 582 * to modify all the data of returned buffer. This means that this 583 * function is not recommended for use in circumstances when only 584 * header is going to be modified. Use pskb_copy() instead. 585 */ 586 587 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask) 588 { 589 int headerlen = skb->data - skb->head; 590 /* 591 * Allocate the copy buffer 592 */ 593 struct sk_buff *n; 594 #ifdef NET_SKBUFF_DATA_USES_OFFSET 595 n = alloc_skb(skb->end + skb->data_len, gfp_mask); 596 #else 597 n = alloc_skb(skb->end - skb->head + skb->data_len, gfp_mask); 598 #endif 599 if (!n) 600 return NULL; 601 602 /* Set the data pointer */ 603 skb_reserve(n, headerlen); 604 /* Set the tail pointer and length */ 605 skb_put(n, skb->len); 606 607 if (skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len)) 608 BUG(); 609 610 copy_skb_header(n, skb); 611 return n; 612 } 613 614 615 /** 616 * pskb_copy - create copy of an sk_buff with private head. 617 * @skb: buffer to copy 618 * @gfp_mask: allocation priority 619 * 620 * Make a copy of both an &sk_buff and part of its data, located 621 * in header. Fragmented data remain shared. This is used when 622 * the caller wishes to modify only header of &sk_buff and needs 623 * private copy of the header to alter. Returns %NULL on failure 624 * or the pointer to the buffer on success. 625 * The returned buffer has a reference count of 1. 626 */ 627 628 struct sk_buff *pskb_copy(struct sk_buff *skb, gfp_t gfp_mask) 629 { 630 /* 631 * Allocate the copy buffer 632 */ 633 struct sk_buff *n; 634 #ifdef NET_SKBUFF_DATA_USES_OFFSET 635 n = alloc_skb(skb->end, gfp_mask); 636 #else 637 n = alloc_skb(skb->end - skb->head, gfp_mask); 638 #endif 639 if (!n) 640 goto out; 641 642 /* Set the data pointer */ 643 skb_reserve(n, skb->data - skb->head); 644 /* Set the tail pointer and length */ 645 skb_put(n, skb_headlen(skb)); 646 /* Copy the bytes */ 647 skb_copy_from_linear_data(skb, n->data, n->len); 648 649 n->truesize += skb->data_len; 650 n->data_len = skb->data_len; 651 n->len = skb->len; 652 653 if (skb_shinfo(skb)->nr_frags) { 654 int i; 655 656 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 657 skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i]; 658 get_page(skb_shinfo(n)->frags[i].page); 659 } 660 skb_shinfo(n)->nr_frags = i; 661 } 662 663 if (skb_shinfo(skb)->frag_list) { 664 skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list; 665 skb_clone_fraglist(n); 666 } 667 668 copy_skb_header(n, skb); 669 out: 670 return n; 671 } 672 673 /** 674 * pskb_expand_head - reallocate header of &sk_buff 675 * @skb: buffer to reallocate 676 * @nhead: room to add at head 677 * @ntail: room to add at tail 678 * @gfp_mask: allocation priority 679 * 680 * Expands (or creates identical copy, if &nhead and &ntail are zero) 681 * header of skb. &sk_buff itself is not changed. &sk_buff MUST have 682 * reference count of 1. Returns zero in the case of success or error, 683 * if expansion failed. In the last case, &sk_buff is not changed. 684 * 685 * All the pointers pointing into skb header may change and must be 686 * reloaded after call to this function. 687 */ 688 689 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, 690 gfp_t gfp_mask) 691 { 692 int i; 693 u8 *data; 694 #ifdef NET_SKBUFF_DATA_USES_OFFSET 695 int size = nhead + skb->end + ntail; 696 #else 697 int size = nhead + (skb->end - skb->head) + ntail; 698 #endif 699 long off; 700 701 if (skb_shared(skb)) 702 BUG(); 703 704 size = SKB_DATA_ALIGN(size); 705 706 data = kmalloc(size + sizeof(struct skb_shared_info), gfp_mask); 707 if (!data) 708 goto nodata; 709 710 /* Copy only real data... and, alas, header. This should be 711 * optimized for the cases when header is void. */ 712 #ifdef NET_SKBUFF_DATA_USES_OFFSET 713 memcpy(data + nhead, skb->head, skb->tail); 714 #else 715 memcpy(data + nhead, skb->head, skb->tail - skb->head); 716 #endif 717 memcpy(data + size, skb_end_pointer(skb), 718 sizeof(struct skb_shared_info)); 719 720 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 721 get_page(skb_shinfo(skb)->frags[i].page); 722 723 if (skb_shinfo(skb)->frag_list) 724 skb_clone_fraglist(skb); 725 726 skb_release_data(skb); 727 728 off = (data + nhead) - skb->head; 729 730 skb->head = data; 731 skb->data += off; 732 #ifdef NET_SKBUFF_DATA_USES_OFFSET 733 skb->end = size; 734 off = nhead; 735 #else 736 skb->end = skb->head + size; 737 #endif 738 /* {transport,network,mac}_header and tail are relative to skb->head */ 739 skb->tail += off; 740 skb->transport_header += off; 741 skb->network_header += off; 742 skb->mac_header += off; 743 skb->csum_start += nhead; 744 skb->cloned = 0; 745 skb->hdr_len = 0; 746 skb->nohdr = 0; 747 atomic_set(&skb_shinfo(skb)->dataref, 1); 748 return 0; 749 750 nodata: 751 return -ENOMEM; 752 } 753 754 /* Make private copy of skb with writable head and some headroom */ 755 756 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom) 757 { 758 struct sk_buff *skb2; 759 int delta = headroom - skb_headroom(skb); 760 761 if (delta <= 0) 762 skb2 = pskb_copy(skb, GFP_ATOMIC); 763 else { 764 skb2 = skb_clone(skb, GFP_ATOMIC); 765 if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0, 766 GFP_ATOMIC)) { 767 kfree_skb(skb2); 768 skb2 = NULL; 769 } 770 } 771 return skb2; 772 } 773 774 775 /** 776 * skb_copy_expand - copy and expand sk_buff 777 * @skb: buffer to copy 778 * @newheadroom: new free bytes at head 779 * @newtailroom: new free bytes at tail 780 * @gfp_mask: allocation priority 781 * 782 * Make a copy of both an &sk_buff and its data and while doing so 783 * allocate additional space. 784 * 785 * This is used when the caller wishes to modify the data and needs a 786 * private copy of the data to alter as well as more space for new fields. 787 * Returns %NULL on failure or the pointer to the buffer 788 * on success. The returned buffer has a reference count of 1. 789 * 790 * You must pass %GFP_ATOMIC as the allocation priority if this function 791 * is called from an interrupt. 792 */ 793 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, 794 int newheadroom, int newtailroom, 795 gfp_t gfp_mask) 796 { 797 /* 798 * Allocate the copy buffer 799 */ 800 struct sk_buff *n = alloc_skb(newheadroom + skb->len + newtailroom, 801 gfp_mask); 802 int oldheadroom = skb_headroom(skb); 803 int head_copy_len, head_copy_off; 804 int off; 805 806 if (!n) 807 return NULL; 808 809 skb_reserve(n, newheadroom); 810 811 /* Set the tail pointer and length */ 812 skb_put(n, skb->len); 813 814 head_copy_len = oldheadroom; 815 head_copy_off = 0; 816 if (newheadroom <= head_copy_len) 817 head_copy_len = newheadroom; 818 else 819 head_copy_off = newheadroom - head_copy_len; 820 821 /* Copy the linear header and data. */ 822 if (skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off, 823 skb->len + head_copy_len)) 824 BUG(); 825 826 copy_skb_header(n, skb); 827 828 off = newheadroom - oldheadroom; 829 n->csum_start += off; 830 #ifdef NET_SKBUFF_DATA_USES_OFFSET 831 n->transport_header += off; 832 n->network_header += off; 833 n->mac_header += off; 834 #endif 835 836 return n; 837 } 838 839 /** 840 * skb_pad - zero pad the tail of an skb 841 * @skb: buffer to pad 842 * @pad: space to pad 843 * 844 * Ensure that a buffer is followed by a padding area that is zero 845 * filled. Used by network drivers which may DMA or transfer data 846 * beyond the buffer end onto the wire. 847 * 848 * May return error in out of memory cases. The skb is freed on error. 849 */ 850 851 int skb_pad(struct sk_buff *skb, int pad) 852 { 853 int err; 854 int ntail; 855 856 /* If the skbuff is non linear tailroom is always zero.. */ 857 if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) { 858 memset(skb->data+skb->len, 0, pad); 859 return 0; 860 } 861 862 ntail = skb->data_len + pad - (skb->end - skb->tail); 863 if (likely(skb_cloned(skb) || ntail > 0)) { 864 err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC); 865 if (unlikely(err)) 866 goto free_skb; 867 } 868 869 /* FIXME: The use of this function with non-linear skb's really needs 870 * to be audited. 871 */ 872 err = skb_linearize(skb); 873 if (unlikely(err)) 874 goto free_skb; 875 876 memset(skb->data + skb->len, 0, pad); 877 return 0; 878 879 free_skb: 880 kfree_skb(skb); 881 return err; 882 } 883 884 /** 885 * skb_put - add data to a buffer 886 * @skb: buffer to use 887 * @len: amount of data to add 888 * 889 * This function extends the used data area of the buffer. If this would 890 * exceed the total buffer size the kernel will panic. A pointer to the 891 * first byte of the extra data is returned. 892 */ 893 unsigned char *skb_put(struct sk_buff *skb, unsigned int len) 894 { 895 unsigned char *tmp = skb_tail_pointer(skb); 896 SKB_LINEAR_ASSERT(skb); 897 skb->tail += len; 898 skb->len += len; 899 if (unlikely(skb->tail > skb->end)) 900 skb_over_panic(skb, len, __builtin_return_address(0)); 901 return tmp; 902 } 903 EXPORT_SYMBOL(skb_put); 904 905 /** 906 * skb_push - add data to the start of a buffer 907 * @skb: buffer to use 908 * @len: amount of data to add 909 * 910 * This function extends the used data area of the buffer at the buffer 911 * start. If this would exceed the total buffer headroom the kernel will 912 * panic. A pointer to the first byte of the extra data is returned. 913 */ 914 unsigned char *skb_push(struct sk_buff *skb, unsigned int len) 915 { 916 skb->data -= len; 917 skb->len += len; 918 if (unlikely(skb->data<skb->head)) 919 skb_under_panic(skb, len, __builtin_return_address(0)); 920 return skb->data; 921 } 922 EXPORT_SYMBOL(skb_push); 923 924 /** 925 * skb_pull - remove data from the start of a buffer 926 * @skb: buffer to use 927 * @len: amount of data to remove 928 * 929 * This function removes data from the start of a buffer, returning 930 * the memory to the headroom. A pointer to the next data in the buffer 931 * is returned. Once the data has been pulled future pushes will overwrite 932 * the old data. 933 */ 934 unsigned char *skb_pull(struct sk_buff *skb, unsigned int len) 935 { 936 return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len); 937 } 938 EXPORT_SYMBOL(skb_pull); 939 940 /** 941 * skb_trim - remove end from a buffer 942 * @skb: buffer to alter 943 * @len: new length 944 * 945 * Cut the length of a buffer down by removing data from the tail. If 946 * the buffer is already under the length specified it is not modified. 947 * The skb must be linear. 948 */ 949 void skb_trim(struct sk_buff *skb, unsigned int len) 950 { 951 if (skb->len > len) 952 __skb_trim(skb, len); 953 } 954 EXPORT_SYMBOL(skb_trim); 955 956 /* Trims skb to length len. It can change skb pointers. 957 */ 958 959 int ___pskb_trim(struct sk_buff *skb, unsigned int len) 960 { 961 struct sk_buff **fragp; 962 struct sk_buff *frag; 963 int offset = skb_headlen(skb); 964 int nfrags = skb_shinfo(skb)->nr_frags; 965 int i; 966 int err; 967 968 if (skb_cloned(skb) && 969 unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))) 970 return err; 971 972 i = 0; 973 if (offset >= len) 974 goto drop_pages; 975 976 for (; i < nfrags; i++) { 977 int end = offset + skb_shinfo(skb)->frags[i].size; 978 979 if (end < len) { 980 offset = end; 981 continue; 982 } 983 984 skb_shinfo(skb)->frags[i++].size = len - offset; 985 986 drop_pages: 987 skb_shinfo(skb)->nr_frags = i; 988 989 for (; i < nfrags; i++) 990 put_page(skb_shinfo(skb)->frags[i].page); 991 992 if (skb_shinfo(skb)->frag_list) 993 skb_drop_fraglist(skb); 994 goto done; 995 } 996 997 for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp); 998 fragp = &frag->next) { 999 int end = offset + frag->len; 1000 1001 if (skb_shared(frag)) { 1002 struct sk_buff *nfrag; 1003 1004 nfrag = skb_clone(frag, GFP_ATOMIC); 1005 if (unlikely(!nfrag)) 1006 return -ENOMEM; 1007 1008 nfrag->next = frag->next; 1009 kfree_skb(frag); 1010 frag = nfrag; 1011 *fragp = frag; 1012 } 1013 1014 if (end < len) { 1015 offset = end; 1016 continue; 1017 } 1018 1019 if (end > len && 1020 unlikely((err = pskb_trim(frag, len - offset)))) 1021 return err; 1022 1023 if (frag->next) 1024 skb_drop_list(&frag->next); 1025 break; 1026 } 1027 1028 done: 1029 if (len > skb_headlen(skb)) { 1030 skb->data_len -= skb->len - len; 1031 skb->len = len; 1032 } else { 1033 skb->len = len; 1034 skb->data_len = 0; 1035 skb_set_tail_pointer(skb, len); 1036 } 1037 1038 return 0; 1039 } 1040 1041 /** 1042 * __pskb_pull_tail - advance tail of skb header 1043 * @skb: buffer to reallocate 1044 * @delta: number of bytes to advance tail 1045 * 1046 * The function makes a sense only on a fragmented &sk_buff, 1047 * it expands header moving its tail forward and copying necessary 1048 * data from fragmented part. 1049 * 1050 * &sk_buff MUST have reference count of 1. 1051 * 1052 * Returns %NULL (and &sk_buff does not change) if pull failed 1053 * or value of new tail of skb in the case of success. 1054 * 1055 * All the pointers pointing into skb header may change and must be 1056 * reloaded after call to this function. 1057 */ 1058 1059 /* Moves tail of skb head forward, copying data from fragmented part, 1060 * when it is necessary. 1061 * 1. It may fail due to malloc failure. 1062 * 2. It may change skb pointers. 1063 * 1064 * It is pretty complicated. Luckily, it is called only in exceptional cases. 1065 */ 1066 unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta) 1067 { 1068 /* If skb has not enough free space at tail, get new one 1069 * plus 128 bytes for future expansions. If we have enough 1070 * room at tail, reallocate without expansion only if skb is cloned. 1071 */ 1072 int i, k, eat = (skb->tail + delta) - skb->end; 1073 1074 if (eat > 0 || skb_cloned(skb)) { 1075 if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0, 1076 GFP_ATOMIC)) 1077 return NULL; 1078 } 1079 1080 if (skb_copy_bits(skb, skb_headlen(skb), skb_tail_pointer(skb), delta)) 1081 BUG(); 1082 1083 /* Optimization: no fragments, no reasons to preestimate 1084 * size of pulled pages. Superb. 1085 */ 1086 if (!skb_shinfo(skb)->frag_list) 1087 goto pull_pages; 1088 1089 /* Estimate size of pulled pages. */ 1090 eat = delta; 1091 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1092 if (skb_shinfo(skb)->frags[i].size >= eat) 1093 goto pull_pages; 1094 eat -= skb_shinfo(skb)->frags[i].size; 1095 } 1096 1097 /* If we need update frag list, we are in troubles. 1098 * Certainly, it possible to add an offset to skb data, 1099 * but taking into account that pulling is expected to 1100 * be very rare operation, it is worth to fight against 1101 * further bloating skb head and crucify ourselves here instead. 1102 * Pure masohism, indeed. 8)8) 1103 */ 1104 if (eat) { 1105 struct sk_buff *list = skb_shinfo(skb)->frag_list; 1106 struct sk_buff *clone = NULL; 1107 struct sk_buff *insp = NULL; 1108 1109 do { 1110 BUG_ON(!list); 1111 1112 if (list->len <= eat) { 1113 /* Eaten as whole. */ 1114 eat -= list->len; 1115 list = list->next; 1116 insp = list; 1117 } else { 1118 /* Eaten partially. */ 1119 1120 if (skb_shared(list)) { 1121 /* Sucks! We need to fork list. :-( */ 1122 clone = skb_clone(list, GFP_ATOMIC); 1123 if (!clone) 1124 return NULL; 1125 insp = list->next; 1126 list = clone; 1127 } else { 1128 /* This may be pulled without 1129 * problems. */ 1130 insp = list; 1131 } 1132 if (!pskb_pull(list, eat)) { 1133 if (clone) 1134 kfree_skb(clone); 1135 return NULL; 1136 } 1137 break; 1138 } 1139 } while (eat); 1140 1141 /* Free pulled out fragments. */ 1142 while ((list = skb_shinfo(skb)->frag_list) != insp) { 1143 skb_shinfo(skb)->frag_list = list->next; 1144 kfree_skb(list); 1145 } 1146 /* And insert new clone at head. */ 1147 if (clone) { 1148 clone->next = list; 1149 skb_shinfo(skb)->frag_list = clone; 1150 } 1151 } 1152 /* Success! Now we may commit changes to skb data. */ 1153 1154 pull_pages: 1155 eat = delta; 1156 k = 0; 1157 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1158 if (skb_shinfo(skb)->frags[i].size <= eat) { 1159 put_page(skb_shinfo(skb)->frags[i].page); 1160 eat -= skb_shinfo(skb)->frags[i].size; 1161 } else { 1162 skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i]; 1163 if (eat) { 1164 skb_shinfo(skb)->frags[k].page_offset += eat; 1165 skb_shinfo(skb)->frags[k].size -= eat; 1166 eat = 0; 1167 } 1168 k++; 1169 } 1170 } 1171 skb_shinfo(skb)->nr_frags = k; 1172 1173 skb->tail += delta; 1174 skb->data_len -= delta; 1175 1176 return skb_tail_pointer(skb); 1177 } 1178 1179 /* Copy some data bits from skb to kernel buffer. */ 1180 1181 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len) 1182 { 1183 int i, copy; 1184 int start = skb_headlen(skb); 1185 1186 if (offset > (int)skb->len - len) 1187 goto fault; 1188 1189 /* Copy header. */ 1190 if ((copy = start - offset) > 0) { 1191 if (copy > len) 1192 copy = len; 1193 skb_copy_from_linear_data_offset(skb, offset, to, copy); 1194 if ((len -= copy) == 0) 1195 return 0; 1196 offset += copy; 1197 to += copy; 1198 } 1199 1200 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1201 int end; 1202 1203 BUG_TRAP(start <= offset + len); 1204 1205 end = start + skb_shinfo(skb)->frags[i].size; 1206 if ((copy = end - offset) > 0) { 1207 u8 *vaddr; 1208 1209 if (copy > len) 1210 copy = len; 1211 1212 vaddr = kmap_skb_frag(&skb_shinfo(skb)->frags[i]); 1213 memcpy(to, 1214 vaddr + skb_shinfo(skb)->frags[i].page_offset+ 1215 offset - start, copy); 1216 kunmap_skb_frag(vaddr); 1217 1218 if ((len -= copy) == 0) 1219 return 0; 1220 offset += copy; 1221 to += copy; 1222 } 1223 start = end; 1224 } 1225 1226 if (skb_shinfo(skb)->frag_list) { 1227 struct sk_buff *list = skb_shinfo(skb)->frag_list; 1228 1229 for (; list; list = list->next) { 1230 int end; 1231 1232 BUG_TRAP(start <= offset + len); 1233 1234 end = start + list->len; 1235 if ((copy = end - offset) > 0) { 1236 if (copy > len) 1237 copy = len; 1238 if (skb_copy_bits(list, offset - start, 1239 to, copy)) 1240 goto fault; 1241 if ((len -= copy) == 0) 1242 return 0; 1243 offset += copy; 1244 to += copy; 1245 } 1246 start = end; 1247 } 1248 } 1249 if (!len) 1250 return 0; 1251 1252 fault: 1253 return -EFAULT; 1254 } 1255 1256 /* 1257 * Callback from splice_to_pipe(), if we need to release some pages 1258 * at the end of the spd in case we error'ed out in filling the pipe. 1259 */ 1260 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i) 1261 { 1262 struct sk_buff *skb = (struct sk_buff *) spd->partial[i].private; 1263 1264 kfree_skb(skb); 1265 } 1266 1267 /* 1268 * Fill page/offset/length into spd, if it can hold more pages. 1269 */ 1270 static inline int spd_fill_page(struct splice_pipe_desc *spd, struct page *page, 1271 unsigned int len, unsigned int offset, 1272 struct sk_buff *skb) 1273 { 1274 if (unlikely(spd->nr_pages == PIPE_BUFFERS)) 1275 return 1; 1276 1277 spd->pages[spd->nr_pages] = page; 1278 spd->partial[spd->nr_pages].len = len; 1279 spd->partial[spd->nr_pages].offset = offset; 1280 spd->partial[spd->nr_pages].private = (unsigned long) skb_get(skb); 1281 spd->nr_pages++; 1282 return 0; 1283 } 1284 1285 /* 1286 * Map linear and fragment data from the skb to spd. Returns number of 1287 * pages mapped. 1288 */ 1289 static int __skb_splice_bits(struct sk_buff *skb, unsigned int *offset, 1290 unsigned int *total_len, 1291 struct splice_pipe_desc *spd) 1292 { 1293 unsigned int nr_pages = spd->nr_pages; 1294 unsigned int poff, plen, len, toff, tlen; 1295 int headlen, seg; 1296 1297 toff = *offset; 1298 tlen = *total_len; 1299 if (!tlen) 1300 goto err; 1301 1302 /* 1303 * if the offset is greater than the linear part, go directly to 1304 * the fragments. 1305 */ 1306 headlen = skb_headlen(skb); 1307 if (toff >= headlen) { 1308 toff -= headlen; 1309 goto map_frag; 1310 } 1311 1312 /* 1313 * first map the linear region into the pages/partial map, skipping 1314 * any potential initial offset. 1315 */ 1316 len = 0; 1317 while (len < headlen) { 1318 void *p = skb->data + len; 1319 1320 poff = (unsigned long) p & (PAGE_SIZE - 1); 1321 plen = min_t(unsigned int, headlen - len, PAGE_SIZE - poff); 1322 len += plen; 1323 1324 if (toff) { 1325 if (plen <= toff) { 1326 toff -= plen; 1327 continue; 1328 } 1329 plen -= toff; 1330 poff += toff; 1331 toff = 0; 1332 } 1333 1334 plen = min(plen, tlen); 1335 if (!plen) 1336 break; 1337 1338 /* 1339 * just jump directly to update and return, no point 1340 * in going over fragments when the output is full. 1341 */ 1342 if (spd_fill_page(spd, virt_to_page(p), plen, poff, skb)) 1343 goto done; 1344 1345 tlen -= plen; 1346 } 1347 1348 /* 1349 * then map the fragments 1350 */ 1351 map_frag: 1352 for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) { 1353 const skb_frag_t *f = &skb_shinfo(skb)->frags[seg]; 1354 1355 plen = f->size; 1356 poff = f->page_offset; 1357 1358 if (toff) { 1359 if (plen <= toff) { 1360 toff -= plen; 1361 continue; 1362 } 1363 plen -= toff; 1364 poff += toff; 1365 toff = 0; 1366 } 1367 1368 plen = min(plen, tlen); 1369 if (!plen) 1370 break; 1371 1372 if (spd_fill_page(spd, f->page, plen, poff, skb)) 1373 break; 1374 1375 tlen -= plen; 1376 } 1377 1378 done: 1379 if (spd->nr_pages - nr_pages) { 1380 *offset = 0; 1381 *total_len = tlen; 1382 return 0; 1383 } 1384 err: 1385 return 1; 1386 } 1387 1388 /* 1389 * Map data from the skb to a pipe. Should handle both the linear part, 1390 * the fragments, and the frag list. It does NOT handle frag lists within 1391 * the frag list, if such a thing exists. We'd probably need to recurse to 1392 * handle that cleanly. 1393 */ 1394 int skb_splice_bits(struct sk_buff *__skb, unsigned int offset, 1395 struct pipe_inode_info *pipe, unsigned int tlen, 1396 unsigned int flags) 1397 { 1398 struct partial_page partial[PIPE_BUFFERS]; 1399 struct page *pages[PIPE_BUFFERS]; 1400 struct splice_pipe_desc spd = { 1401 .pages = pages, 1402 .partial = partial, 1403 .flags = flags, 1404 .ops = &sock_pipe_buf_ops, 1405 .spd_release = sock_spd_release, 1406 }; 1407 struct sk_buff *skb; 1408 1409 /* 1410 * I'd love to avoid the clone here, but tcp_read_sock() 1411 * ignores reference counts and unconditonally kills the sk_buff 1412 * on return from the actor. 1413 */ 1414 skb = skb_clone(__skb, GFP_KERNEL); 1415 if (unlikely(!skb)) 1416 return -ENOMEM; 1417 1418 /* 1419 * __skb_splice_bits() only fails if the output has no room left, 1420 * so no point in going over the frag_list for the error case. 1421 */ 1422 if (__skb_splice_bits(skb, &offset, &tlen, &spd)) 1423 goto done; 1424 else if (!tlen) 1425 goto done; 1426 1427 /* 1428 * now see if we have a frag_list to map 1429 */ 1430 if (skb_shinfo(skb)->frag_list) { 1431 struct sk_buff *list = skb_shinfo(skb)->frag_list; 1432 1433 for (; list && tlen; list = list->next) { 1434 if (__skb_splice_bits(list, &offset, &tlen, &spd)) 1435 break; 1436 } 1437 } 1438 1439 done: 1440 /* 1441 * drop our reference to the clone, the pipe consumption will 1442 * drop the rest. 1443 */ 1444 kfree_skb(skb); 1445 1446 if (spd.nr_pages) { 1447 int ret; 1448 struct sock *sk = __skb->sk; 1449 1450 /* 1451 * Drop the socket lock, otherwise we have reverse 1452 * locking dependencies between sk_lock and i_mutex 1453 * here as compared to sendfile(). We enter here 1454 * with the socket lock held, and splice_to_pipe() will 1455 * grab the pipe inode lock. For sendfile() emulation, 1456 * we call into ->sendpage() with the i_mutex lock held 1457 * and networking will grab the socket lock. 1458 */ 1459 release_sock(sk); 1460 ret = splice_to_pipe(pipe, &spd); 1461 lock_sock(sk); 1462 return ret; 1463 } 1464 1465 return 0; 1466 } 1467 1468 /** 1469 * skb_store_bits - store bits from kernel buffer to skb 1470 * @skb: destination buffer 1471 * @offset: offset in destination 1472 * @from: source buffer 1473 * @len: number of bytes to copy 1474 * 1475 * Copy the specified number of bytes from the source buffer to the 1476 * destination skb. This function handles all the messy bits of 1477 * traversing fragment lists and such. 1478 */ 1479 1480 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len) 1481 { 1482 int i, copy; 1483 int start = skb_headlen(skb); 1484 1485 if (offset > (int)skb->len - len) 1486 goto fault; 1487 1488 if ((copy = start - offset) > 0) { 1489 if (copy > len) 1490 copy = len; 1491 skb_copy_to_linear_data_offset(skb, offset, from, copy); 1492 if ((len -= copy) == 0) 1493 return 0; 1494 offset += copy; 1495 from += copy; 1496 } 1497 1498 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1499 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 1500 int end; 1501 1502 BUG_TRAP(start <= offset + len); 1503 1504 end = start + frag->size; 1505 if ((copy = end - offset) > 0) { 1506 u8 *vaddr; 1507 1508 if (copy > len) 1509 copy = len; 1510 1511 vaddr = kmap_skb_frag(frag); 1512 memcpy(vaddr + frag->page_offset + offset - start, 1513 from, copy); 1514 kunmap_skb_frag(vaddr); 1515 1516 if ((len -= copy) == 0) 1517 return 0; 1518 offset += copy; 1519 from += copy; 1520 } 1521 start = end; 1522 } 1523 1524 if (skb_shinfo(skb)->frag_list) { 1525 struct sk_buff *list = skb_shinfo(skb)->frag_list; 1526 1527 for (; list; list = list->next) { 1528 int end; 1529 1530 BUG_TRAP(start <= offset + len); 1531 1532 end = start + list->len; 1533 if ((copy = end - offset) > 0) { 1534 if (copy > len) 1535 copy = len; 1536 if (skb_store_bits(list, offset - start, 1537 from, copy)) 1538 goto fault; 1539 if ((len -= copy) == 0) 1540 return 0; 1541 offset += copy; 1542 from += copy; 1543 } 1544 start = end; 1545 } 1546 } 1547 if (!len) 1548 return 0; 1549 1550 fault: 1551 return -EFAULT; 1552 } 1553 1554 EXPORT_SYMBOL(skb_store_bits); 1555 1556 /* Checksum skb data. */ 1557 1558 __wsum skb_checksum(const struct sk_buff *skb, int offset, 1559 int len, __wsum csum) 1560 { 1561 int start = skb_headlen(skb); 1562 int i, copy = start - offset; 1563 int pos = 0; 1564 1565 /* Checksum header. */ 1566 if (copy > 0) { 1567 if (copy > len) 1568 copy = len; 1569 csum = csum_partial(skb->data + offset, copy, csum); 1570 if ((len -= copy) == 0) 1571 return csum; 1572 offset += copy; 1573 pos = copy; 1574 } 1575 1576 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1577 int end; 1578 1579 BUG_TRAP(start <= offset + len); 1580 1581 end = start + skb_shinfo(skb)->frags[i].size; 1582 if ((copy = end - offset) > 0) { 1583 __wsum csum2; 1584 u8 *vaddr; 1585 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 1586 1587 if (copy > len) 1588 copy = len; 1589 vaddr = kmap_skb_frag(frag); 1590 csum2 = csum_partial(vaddr + frag->page_offset + 1591 offset - start, copy, 0); 1592 kunmap_skb_frag(vaddr); 1593 csum = csum_block_add(csum, csum2, pos); 1594 if (!(len -= copy)) 1595 return csum; 1596 offset += copy; 1597 pos += copy; 1598 } 1599 start = end; 1600 } 1601 1602 if (skb_shinfo(skb)->frag_list) { 1603 struct sk_buff *list = skb_shinfo(skb)->frag_list; 1604 1605 for (; list; list = list->next) { 1606 int end; 1607 1608 BUG_TRAP(start <= offset + len); 1609 1610 end = start + list->len; 1611 if ((copy = end - offset) > 0) { 1612 __wsum csum2; 1613 if (copy > len) 1614 copy = len; 1615 csum2 = skb_checksum(list, offset - start, 1616 copy, 0); 1617 csum = csum_block_add(csum, csum2, pos); 1618 if ((len -= copy) == 0) 1619 return csum; 1620 offset += copy; 1621 pos += copy; 1622 } 1623 start = end; 1624 } 1625 } 1626 BUG_ON(len); 1627 1628 return csum; 1629 } 1630 1631 /* Both of above in one bottle. */ 1632 1633 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, 1634 u8 *to, int len, __wsum csum) 1635 { 1636 int start = skb_headlen(skb); 1637 int i, copy = start - offset; 1638 int pos = 0; 1639 1640 /* Copy header. */ 1641 if (copy > 0) { 1642 if (copy > len) 1643 copy = len; 1644 csum = csum_partial_copy_nocheck(skb->data + offset, to, 1645 copy, csum); 1646 if ((len -= copy) == 0) 1647 return csum; 1648 offset += copy; 1649 to += copy; 1650 pos = copy; 1651 } 1652 1653 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1654 int end; 1655 1656 BUG_TRAP(start <= offset + len); 1657 1658 end = start + skb_shinfo(skb)->frags[i].size; 1659 if ((copy = end - offset) > 0) { 1660 __wsum csum2; 1661 u8 *vaddr; 1662 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 1663 1664 if (copy > len) 1665 copy = len; 1666 vaddr = kmap_skb_frag(frag); 1667 csum2 = csum_partial_copy_nocheck(vaddr + 1668 frag->page_offset + 1669 offset - start, to, 1670 copy, 0); 1671 kunmap_skb_frag(vaddr); 1672 csum = csum_block_add(csum, csum2, pos); 1673 if (!(len -= copy)) 1674 return csum; 1675 offset += copy; 1676 to += copy; 1677 pos += copy; 1678 } 1679 start = end; 1680 } 1681 1682 if (skb_shinfo(skb)->frag_list) { 1683 struct sk_buff *list = skb_shinfo(skb)->frag_list; 1684 1685 for (; list; list = list->next) { 1686 __wsum csum2; 1687 int end; 1688 1689 BUG_TRAP(start <= offset + len); 1690 1691 end = start + list->len; 1692 if ((copy = end - offset) > 0) { 1693 if (copy > len) 1694 copy = len; 1695 csum2 = skb_copy_and_csum_bits(list, 1696 offset - start, 1697 to, copy, 0); 1698 csum = csum_block_add(csum, csum2, pos); 1699 if ((len -= copy) == 0) 1700 return csum; 1701 offset += copy; 1702 to += copy; 1703 pos += copy; 1704 } 1705 start = end; 1706 } 1707 } 1708 BUG_ON(len); 1709 return csum; 1710 } 1711 1712 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to) 1713 { 1714 __wsum csum; 1715 long csstart; 1716 1717 if (skb->ip_summed == CHECKSUM_PARTIAL) 1718 csstart = skb->csum_start - skb_headroom(skb); 1719 else 1720 csstart = skb_headlen(skb); 1721 1722 BUG_ON(csstart > skb_headlen(skb)); 1723 1724 skb_copy_from_linear_data(skb, to, csstart); 1725 1726 csum = 0; 1727 if (csstart != skb->len) 1728 csum = skb_copy_and_csum_bits(skb, csstart, to + csstart, 1729 skb->len - csstart, 0); 1730 1731 if (skb->ip_summed == CHECKSUM_PARTIAL) { 1732 long csstuff = csstart + skb->csum_offset; 1733 1734 *((__sum16 *)(to + csstuff)) = csum_fold(csum); 1735 } 1736 } 1737 1738 /** 1739 * skb_dequeue - remove from the head of the queue 1740 * @list: list to dequeue from 1741 * 1742 * Remove the head of the list. The list lock is taken so the function 1743 * may be used safely with other locking list functions. The head item is 1744 * returned or %NULL if the list is empty. 1745 */ 1746 1747 struct sk_buff *skb_dequeue(struct sk_buff_head *list) 1748 { 1749 unsigned long flags; 1750 struct sk_buff *result; 1751 1752 spin_lock_irqsave(&list->lock, flags); 1753 result = __skb_dequeue(list); 1754 spin_unlock_irqrestore(&list->lock, flags); 1755 return result; 1756 } 1757 1758 /** 1759 * skb_dequeue_tail - remove from the tail of the queue 1760 * @list: list to dequeue from 1761 * 1762 * Remove the tail of the list. The list lock is taken so the function 1763 * may be used safely with other locking list functions. The tail item is 1764 * returned or %NULL if the list is empty. 1765 */ 1766 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list) 1767 { 1768 unsigned long flags; 1769 struct sk_buff *result; 1770 1771 spin_lock_irqsave(&list->lock, flags); 1772 result = __skb_dequeue_tail(list); 1773 spin_unlock_irqrestore(&list->lock, flags); 1774 return result; 1775 } 1776 1777 /** 1778 * skb_queue_purge - empty a list 1779 * @list: list to empty 1780 * 1781 * Delete all buffers on an &sk_buff list. Each buffer is removed from 1782 * the list and one reference dropped. This function takes the list 1783 * lock and is atomic with respect to other list locking functions. 1784 */ 1785 void skb_queue_purge(struct sk_buff_head *list) 1786 { 1787 struct sk_buff *skb; 1788 while ((skb = skb_dequeue(list)) != NULL) 1789 kfree_skb(skb); 1790 } 1791 1792 /** 1793 * skb_queue_head - queue a buffer at the list head 1794 * @list: list to use 1795 * @newsk: buffer to queue 1796 * 1797 * Queue a buffer at the start of the list. This function takes the 1798 * list lock and can be used safely with other locking &sk_buff functions 1799 * safely. 1800 * 1801 * A buffer cannot be placed on two lists at the same time. 1802 */ 1803 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk) 1804 { 1805 unsigned long flags; 1806 1807 spin_lock_irqsave(&list->lock, flags); 1808 __skb_queue_head(list, newsk); 1809 spin_unlock_irqrestore(&list->lock, flags); 1810 } 1811 1812 /** 1813 * skb_queue_tail - queue a buffer at the list tail 1814 * @list: list to use 1815 * @newsk: buffer to queue 1816 * 1817 * Queue a buffer at the tail of the list. This function takes the 1818 * list lock and can be used safely with other locking &sk_buff functions 1819 * safely. 1820 * 1821 * A buffer cannot be placed on two lists at the same time. 1822 */ 1823 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk) 1824 { 1825 unsigned long flags; 1826 1827 spin_lock_irqsave(&list->lock, flags); 1828 __skb_queue_tail(list, newsk); 1829 spin_unlock_irqrestore(&list->lock, flags); 1830 } 1831 1832 /** 1833 * skb_unlink - remove a buffer from a list 1834 * @skb: buffer to remove 1835 * @list: list to use 1836 * 1837 * Remove a packet from a list. The list locks are taken and this 1838 * function is atomic with respect to other list locked calls 1839 * 1840 * You must know what list the SKB is on. 1841 */ 1842 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list) 1843 { 1844 unsigned long flags; 1845 1846 spin_lock_irqsave(&list->lock, flags); 1847 __skb_unlink(skb, list); 1848 spin_unlock_irqrestore(&list->lock, flags); 1849 } 1850 1851 /** 1852 * skb_append - append a buffer 1853 * @old: buffer to insert after 1854 * @newsk: buffer to insert 1855 * @list: list to use 1856 * 1857 * Place a packet after a given packet in a list. The list locks are taken 1858 * and this function is atomic with respect to other list locked calls. 1859 * A buffer cannot be placed on two lists at the same time. 1860 */ 1861 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list) 1862 { 1863 unsigned long flags; 1864 1865 spin_lock_irqsave(&list->lock, flags); 1866 __skb_queue_after(list, old, newsk); 1867 spin_unlock_irqrestore(&list->lock, flags); 1868 } 1869 1870 1871 /** 1872 * skb_insert - insert a buffer 1873 * @old: buffer to insert before 1874 * @newsk: buffer to insert 1875 * @list: list to use 1876 * 1877 * Place a packet before a given packet in a list. The list locks are 1878 * taken and this function is atomic with respect to other list locked 1879 * calls. 1880 * 1881 * A buffer cannot be placed on two lists at the same time. 1882 */ 1883 void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list) 1884 { 1885 unsigned long flags; 1886 1887 spin_lock_irqsave(&list->lock, flags); 1888 __skb_insert(newsk, old->prev, old, list); 1889 spin_unlock_irqrestore(&list->lock, flags); 1890 } 1891 1892 static inline void skb_split_inside_header(struct sk_buff *skb, 1893 struct sk_buff* skb1, 1894 const u32 len, const int pos) 1895 { 1896 int i; 1897 1898 skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len), 1899 pos - len); 1900 /* And move data appendix as is. */ 1901 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 1902 skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i]; 1903 1904 skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags; 1905 skb_shinfo(skb)->nr_frags = 0; 1906 skb1->data_len = skb->data_len; 1907 skb1->len += skb1->data_len; 1908 skb->data_len = 0; 1909 skb->len = len; 1910 skb_set_tail_pointer(skb, len); 1911 } 1912 1913 static inline void skb_split_no_header(struct sk_buff *skb, 1914 struct sk_buff* skb1, 1915 const u32 len, int pos) 1916 { 1917 int i, k = 0; 1918 const int nfrags = skb_shinfo(skb)->nr_frags; 1919 1920 skb_shinfo(skb)->nr_frags = 0; 1921 skb1->len = skb1->data_len = skb->len - len; 1922 skb->len = len; 1923 skb->data_len = len - pos; 1924 1925 for (i = 0; i < nfrags; i++) { 1926 int size = skb_shinfo(skb)->frags[i].size; 1927 1928 if (pos + size > len) { 1929 skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i]; 1930 1931 if (pos < len) { 1932 /* Split frag. 1933 * We have two variants in this case: 1934 * 1. Move all the frag to the second 1935 * part, if it is possible. F.e. 1936 * this approach is mandatory for TUX, 1937 * where splitting is expensive. 1938 * 2. Split is accurately. We make this. 1939 */ 1940 get_page(skb_shinfo(skb)->frags[i].page); 1941 skb_shinfo(skb1)->frags[0].page_offset += len - pos; 1942 skb_shinfo(skb1)->frags[0].size -= len - pos; 1943 skb_shinfo(skb)->frags[i].size = len - pos; 1944 skb_shinfo(skb)->nr_frags++; 1945 } 1946 k++; 1947 } else 1948 skb_shinfo(skb)->nr_frags++; 1949 pos += size; 1950 } 1951 skb_shinfo(skb1)->nr_frags = k; 1952 } 1953 1954 /** 1955 * skb_split - Split fragmented skb to two parts at length len. 1956 * @skb: the buffer to split 1957 * @skb1: the buffer to receive the second part 1958 * @len: new length for skb 1959 */ 1960 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len) 1961 { 1962 int pos = skb_headlen(skb); 1963 1964 if (len < pos) /* Split line is inside header. */ 1965 skb_split_inside_header(skb, skb1, len, pos); 1966 else /* Second chunk has no header, nothing to copy. */ 1967 skb_split_no_header(skb, skb1, len, pos); 1968 } 1969 1970 /** 1971 * skb_prepare_seq_read - Prepare a sequential read of skb data 1972 * @skb: the buffer to read 1973 * @from: lower offset of data to be read 1974 * @to: upper offset of data to be read 1975 * @st: state variable 1976 * 1977 * Initializes the specified state variable. Must be called before 1978 * invoking skb_seq_read() for the first time. 1979 */ 1980 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from, 1981 unsigned int to, struct skb_seq_state *st) 1982 { 1983 st->lower_offset = from; 1984 st->upper_offset = to; 1985 st->root_skb = st->cur_skb = skb; 1986 st->frag_idx = st->stepped_offset = 0; 1987 st->frag_data = NULL; 1988 } 1989 1990 /** 1991 * skb_seq_read - Sequentially read skb data 1992 * @consumed: number of bytes consumed by the caller so far 1993 * @data: destination pointer for data to be returned 1994 * @st: state variable 1995 * 1996 * Reads a block of skb data at &consumed relative to the 1997 * lower offset specified to skb_prepare_seq_read(). Assigns 1998 * the head of the data block to &data and returns the length 1999 * of the block or 0 if the end of the skb data or the upper 2000 * offset has been reached. 2001 * 2002 * The caller is not required to consume all of the data 2003 * returned, i.e. &consumed is typically set to the number 2004 * of bytes already consumed and the next call to 2005 * skb_seq_read() will return the remaining part of the block. 2006 * 2007 * Note 1: The size of each block of data returned can be arbitary, 2008 * this limitation is the cost for zerocopy seqeuental 2009 * reads of potentially non linear data. 2010 * 2011 * Note 2: Fragment lists within fragments are not implemented 2012 * at the moment, state->root_skb could be replaced with 2013 * a stack for this purpose. 2014 */ 2015 unsigned int skb_seq_read(unsigned int consumed, const u8 **data, 2016 struct skb_seq_state *st) 2017 { 2018 unsigned int block_limit, abs_offset = consumed + st->lower_offset; 2019 skb_frag_t *frag; 2020 2021 if (unlikely(abs_offset >= st->upper_offset)) 2022 return 0; 2023 2024 next_skb: 2025 block_limit = skb_headlen(st->cur_skb); 2026 2027 if (abs_offset < block_limit) { 2028 *data = st->cur_skb->data + abs_offset; 2029 return block_limit - abs_offset; 2030 } 2031 2032 if (st->frag_idx == 0 && !st->frag_data) 2033 st->stepped_offset += skb_headlen(st->cur_skb); 2034 2035 while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) { 2036 frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx]; 2037 block_limit = frag->size + st->stepped_offset; 2038 2039 if (abs_offset < block_limit) { 2040 if (!st->frag_data) 2041 st->frag_data = kmap_skb_frag(frag); 2042 2043 *data = (u8 *) st->frag_data + frag->page_offset + 2044 (abs_offset - st->stepped_offset); 2045 2046 return block_limit - abs_offset; 2047 } 2048 2049 if (st->frag_data) { 2050 kunmap_skb_frag(st->frag_data); 2051 st->frag_data = NULL; 2052 } 2053 2054 st->frag_idx++; 2055 st->stepped_offset += frag->size; 2056 } 2057 2058 if (st->frag_data) { 2059 kunmap_skb_frag(st->frag_data); 2060 st->frag_data = NULL; 2061 } 2062 2063 if (st->cur_skb->next) { 2064 st->cur_skb = st->cur_skb->next; 2065 st->frag_idx = 0; 2066 goto next_skb; 2067 } else if (st->root_skb == st->cur_skb && 2068 skb_shinfo(st->root_skb)->frag_list) { 2069 st->cur_skb = skb_shinfo(st->root_skb)->frag_list; 2070 goto next_skb; 2071 } 2072 2073 return 0; 2074 } 2075 2076 /** 2077 * skb_abort_seq_read - Abort a sequential read of skb data 2078 * @st: state variable 2079 * 2080 * Must be called if skb_seq_read() was not called until it 2081 * returned 0. 2082 */ 2083 void skb_abort_seq_read(struct skb_seq_state *st) 2084 { 2085 if (st->frag_data) 2086 kunmap_skb_frag(st->frag_data); 2087 } 2088 2089 #define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb)) 2090 2091 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text, 2092 struct ts_config *conf, 2093 struct ts_state *state) 2094 { 2095 return skb_seq_read(offset, text, TS_SKB_CB(state)); 2096 } 2097 2098 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state) 2099 { 2100 skb_abort_seq_read(TS_SKB_CB(state)); 2101 } 2102 2103 /** 2104 * skb_find_text - Find a text pattern in skb data 2105 * @skb: the buffer to look in 2106 * @from: search offset 2107 * @to: search limit 2108 * @config: textsearch configuration 2109 * @state: uninitialized textsearch state variable 2110 * 2111 * Finds a pattern in the skb data according to the specified 2112 * textsearch configuration. Use textsearch_next() to retrieve 2113 * subsequent occurrences of the pattern. Returns the offset 2114 * to the first occurrence or UINT_MAX if no match was found. 2115 */ 2116 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from, 2117 unsigned int to, struct ts_config *config, 2118 struct ts_state *state) 2119 { 2120 unsigned int ret; 2121 2122 config->get_next_block = skb_ts_get_next_block; 2123 config->finish = skb_ts_finish; 2124 2125 skb_prepare_seq_read(skb, from, to, TS_SKB_CB(state)); 2126 2127 ret = textsearch_find(config, state); 2128 return (ret <= to - from ? ret : UINT_MAX); 2129 } 2130 2131 /** 2132 * skb_append_datato_frags: - append the user data to a skb 2133 * @sk: sock structure 2134 * @skb: skb structure to be appened with user data. 2135 * @getfrag: call back function to be used for getting the user data 2136 * @from: pointer to user message iov 2137 * @length: length of the iov message 2138 * 2139 * Description: This procedure append the user data in the fragment part 2140 * of the skb if any page alloc fails user this procedure returns -ENOMEM 2141 */ 2142 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb, 2143 int (*getfrag)(void *from, char *to, int offset, 2144 int len, int odd, struct sk_buff *skb), 2145 void *from, int length) 2146 { 2147 int frg_cnt = 0; 2148 skb_frag_t *frag = NULL; 2149 struct page *page = NULL; 2150 int copy, left; 2151 int offset = 0; 2152 int ret; 2153 2154 do { 2155 /* Return error if we don't have space for new frag */ 2156 frg_cnt = skb_shinfo(skb)->nr_frags; 2157 if (frg_cnt >= MAX_SKB_FRAGS) 2158 return -EFAULT; 2159 2160 /* allocate a new page for next frag */ 2161 page = alloc_pages(sk->sk_allocation, 0); 2162 2163 /* If alloc_page fails just return failure and caller will 2164 * free previous allocated pages by doing kfree_skb() 2165 */ 2166 if (page == NULL) 2167 return -ENOMEM; 2168 2169 /* initialize the next frag */ 2170 sk->sk_sndmsg_page = page; 2171 sk->sk_sndmsg_off = 0; 2172 skb_fill_page_desc(skb, frg_cnt, page, 0, 0); 2173 skb->truesize += PAGE_SIZE; 2174 atomic_add(PAGE_SIZE, &sk->sk_wmem_alloc); 2175 2176 /* get the new initialized frag */ 2177 frg_cnt = skb_shinfo(skb)->nr_frags; 2178 frag = &skb_shinfo(skb)->frags[frg_cnt - 1]; 2179 2180 /* copy the user data to page */ 2181 left = PAGE_SIZE - frag->page_offset; 2182 copy = (length > left)? left : length; 2183 2184 ret = getfrag(from, (page_address(frag->page) + 2185 frag->page_offset + frag->size), 2186 offset, copy, 0, skb); 2187 if (ret < 0) 2188 return -EFAULT; 2189 2190 /* copy was successful so update the size parameters */ 2191 sk->sk_sndmsg_off += copy; 2192 frag->size += copy; 2193 skb->len += copy; 2194 skb->data_len += copy; 2195 offset += copy; 2196 length -= copy; 2197 2198 } while (length > 0); 2199 2200 return 0; 2201 } 2202 2203 /** 2204 * skb_pull_rcsum - pull skb and update receive checksum 2205 * @skb: buffer to update 2206 * @len: length of data pulled 2207 * 2208 * This function performs an skb_pull on the packet and updates 2209 * the CHECKSUM_COMPLETE checksum. It should be used on 2210 * receive path processing instead of skb_pull unless you know 2211 * that the checksum difference is zero (e.g., a valid IP header) 2212 * or you are setting ip_summed to CHECKSUM_NONE. 2213 */ 2214 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len) 2215 { 2216 BUG_ON(len > skb->len); 2217 skb->len -= len; 2218 BUG_ON(skb->len < skb->data_len); 2219 skb_postpull_rcsum(skb, skb->data, len); 2220 return skb->data += len; 2221 } 2222 2223 EXPORT_SYMBOL_GPL(skb_pull_rcsum); 2224 2225 /** 2226 * skb_segment - Perform protocol segmentation on skb. 2227 * @skb: buffer to segment 2228 * @features: features for the output path (see dev->features) 2229 * 2230 * This function performs segmentation on the given skb. It returns 2231 * a pointer to the first in a list of new skbs for the segments. 2232 * In case of error it returns ERR_PTR(err). 2233 */ 2234 struct sk_buff *skb_segment(struct sk_buff *skb, int features) 2235 { 2236 struct sk_buff *segs = NULL; 2237 struct sk_buff *tail = NULL; 2238 unsigned int mss = skb_shinfo(skb)->gso_size; 2239 unsigned int doffset = skb->data - skb_mac_header(skb); 2240 unsigned int offset = doffset; 2241 unsigned int headroom; 2242 unsigned int len; 2243 int sg = features & NETIF_F_SG; 2244 int nfrags = skb_shinfo(skb)->nr_frags; 2245 int err = -ENOMEM; 2246 int i = 0; 2247 int pos; 2248 2249 __skb_push(skb, doffset); 2250 headroom = skb_headroom(skb); 2251 pos = skb_headlen(skb); 2252 2253 do { 2254 struct sk_buff *nskb; 2255 skb_frag_t *frag; 2256 int hsize; 2257 int k; 2258 int size; 2259 2260 len = skb->len - offset; 2261 if (len > mss) 2262 len = mss; 2263 2264 hsize = skb_headlen(skb) - offset; 2265 if (hsize < 0) 2266 hsize = 0; 2267 if (hsize > len || !sg) 2268 hsize = len; 2269 2270 nskb = alloc_skb(hsize + doffset + headroom, GFP_ATOMIC); 2271 if (unlikely(!nskb)) 2272 goto err; 2273 2274 if (segs) 2275 tail->next = nskb; 2276 else 2277 segs = nskb; 2278 tail = nskb; 2279 2280 nskb->dev = skb->dev; 2281 skb_copy_queue_mapping(nskb, skb); 2282 nskb->priority = skb->priority; 2283 nskb->protocol = skb->protocol; 2284 nskb->dst = dst_clone(skb->dst); 2285 memcpy(nskb->cb, skb->cb, sizeof(skb->cb)); 2286 nskb->pkt_type = skb->pkt_type; 2287 nskb->mac_len = skb->mac_len; 2288 2289 skb_reserve(nskb, headroom); 2290 skb_reset_mac_header(nskb); 2291 skb_set_network_header(nskb, skb->mac_len); 2292 nskb->transport_header = (nskb->network_header + 2293 skb_network_header_len(skb)); 2294 skb_copy_from_linear_data(skb, skb_put(nskb, doffset), 2295 doffset); 2296 if (!sg) { 2297 nskb->csum = skb_copy_and_csum_bits(skb, offset, 2298 skb_put(nskb, len), 2299 len, 0); 2300 continue; 2301 } 2302 2303 frag = skb_shinfo(nskb)->frags; 2304 k = 0; 2305 2306 nskb->ip_summed = CHECKSUM_PARTIAL; 2307 nskb->csum = skb->csum; 2308 skb_copy_from_linear_data_offset(skb, offset, 2309 skb_put(nskb, hsize), hsize); 2310 2311 while (pos < offset + len) { 2312 BUG_ON(i >= nfrags); 2313 2314 *frag = skb_shinfo(skb)->frags[i]; 2315 get_page(frag->page); 2316 size = frag->size; 2317 2318 if (pos < offset) { 2319 frag->page_offset += offset - pos; 2320 frag->size -= offset - pos; 2321 } 2322 2323 k++; 2324 2325 if (pos + size <= offset + len) { 2326 i++; 2327 pos += size; 2328 } else { 2329 frag->size -= pos + size - (offset + len); 2330 break; 2331 } 2332 2333 frag++; 2334 } 2335 2336 skb_shinfo(nskb)->nr_frags = k; 2337 nskb->data_len = len - hsize; 2338 nskb->len += nskb->data_len; 2339 nskb->truesize += nskb->data_len; 2340 } while ((offset += len) < skb->len); 2341 2342 return segs; 2343 2344 err: 2345 while ((skb = segs)) { 2346 segs = skb->next; 2347 kfree_skb(skb); 2348 } 2349 return ERR_PTR(err); 2350 } 2351 2352 EXPORT_SYMBOL_GPL(skb_segment); 2353 2354 void __init skb_init(void) 2355 { 2356 skbuff_head_cache = kmem_cache_create("skbuff_head_cache", 2357 sizeof(struct sk_buff), 2358 0, 2359 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 2360 NULL); 2361 skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache", 2362 (2*sizeof(struct sk_buff)) + 2363 sizeof(atomic_t), 2364 0, 2365 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 2366 NULL); 2367 } 2368 2369 /** 2370 * skb_to_sgvec - Fill a scatter-gather list from a socket buffer 2371 * @skb: Socket buffer containing the buffers to be mapped 2372 * @sg: The scatter-gather list to map into 2373 * @offset: The offset into the buffer's contents to start mapping 2374 * @len: Length of buffer space to be mapped 2375 * 2376 * Fill the specified scatter-gather list with mappings/pointers into a 2377 * region of the buffer space attached to a socket buffer. 2378 */ 2379 static int 2380 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len) 2381 { 2382 int start = skb_headlen(skb); 2383 int i, copy = start - offset; 2384 int elt = 0; 2385 2386 if (copy > 0) { 2387 if (copy > len) 2388 copy = len; 2389 sg_set_buf(sg, skb->data + offset, copy); 2390 elt++; 2391 if ((len -= copy) == 0) 2392 return elt; 2393 offset += copy; 2394 } 2395 2396 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2397 int end; 2398 2399 BUG_TRAP(start <= offset + len); 2400 2401 end = start + skb_shinfo(skb)->frags[i].size; 2402 if ((copy = end - offset) > 0) { 2403 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2404 2405 if (copy > len) 2406 copy = len; 2407 sg_set_page(&sg[elt], frag->page, copy, 2408 frag->page_offset+offset-start); 2409 elt++; 2410 if (!(len -= copy)) 2411 return elt; 2412 offset += copy; 2413 } 2414 start = end; 2415 } 2416 2417 if (skb_shinfo(skb)->frag_list) { 2418 struct sk_buff *list = skb_shinfo(skb)->frag_list; 2419 2420 for (; list; list = list->next) { 2421 int end; 2422 2423 BUG_TRAP(start <= offset + len); 2424 2425 end = start + list->len; 2426 if ((copy = end - offset) > 0) { 2427 if (copy > len) 2428 copy = len; 2429 elt += __skb_to_sgvec(list, sg+elt, offset - start, 2430 copy); 2431 if ((len -= copy) == 0) 2432 return elt; 2433 offset += copy; 2434 } 2435 start = end; 2436 } 2437 } 2438 BUG_ON(len); 2439 return elt; 2440 } 2441 2442 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len) 2443 { 2444 int nsg = __skb_to_sgvec(skb, sg, offset, len); 2445 2446 sg_mark_end(&sg[nsg - 1]); 2447 2448 return nsg; 2449 } 2450 2451 /** 2452 * skb_cow_data - Check that a socket buffer's data buffers are writable 2453 * @skb: The socket buffer to check. 2454 * @tailbits: Amount of trailing space to be added 2455 * @trailer: Returned pointer to the skb where the @tailbits space begins 2456 * 2457 * Make sure that the data buffers attached to a socket buffer are 2458 * writable. If they are not, private copies are made of the data buffers 2459 * and the socket buffer is set to use these instead. 2460 * 2461 * If @tailbits is given, make sure that there is space to write @tailbits 2462 * bytes of data beyond current end of socket buffer. @trailer will be 2463 * set to point to the skb in which this space begins. 2464 * 2465 * The number of scatterlist elements required to completely map the 2466 * COW'd and extended socket buffer will be returned. 2467 */ 2468 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer) 2469 { 2470 int copyflag; 2471 int elt; 2472 struct sk_buff *skb1, **skb_p; 2473 2474 /* If skb is cloned or its head is paged, reallocate 2475 * head pulling out all the pages (pages are considered not writable 2476 * at the moment even if they are anonymous). 2477 */ 2478 if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) && 2479 __pskb_pull_tail(skb, skb_pagelen(skb)-skb_headlen(skb)) == NULL) 2480 return -ENOMEM; 2481 2482 /* Easy case. Most of packets will go this way. */ 2483 if (!skb_shinfo(skb)->frag_list) { 2484 /* A little of trouble, not enough of space for trailer. 2485 * This should not happen, when stack is tuned to generate 2486 * good frames. OK, on miss we reallocate and reserve even more 2487 * space, 128 bytes is fair. */ 2488 2489 if (skb_tailroom(skb) < tailbits && 2490 pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC)) 2491 return -ENOMEM; 2492 2493 /* Voila! */ 2494 *trailer = skb; 2495 return 1; 2496 } 2497 2498 /* Misery. We are in troubles, going to mincer fragments... */ 2499 2500 elt = 1; 2501 skb_p = &skb_shinfo(skb)->frag_list; 2502 copyflag = 0; 2503 2504 while ((skb1 = *skb_p) != NULL) { 2505 int ntail = 0; 2506 2507 /* The fragment is partially pulled by someone, 2508 * this can happen on input. Copy it and everything 2509 * after it. */ 2510 2511 if (skb_shared(skb1)) 2512 copyflag = 1; 2513 2514 /* If the skb is the last, worry about trailer. */ 2515 2516 if (skb1->next == NULL && tailbits) { 2517 if (skb_shinfo(skb1)->nr_frags || 2518 skb_shinfo(skb1)->frag_list || 2519 skb_tailroom(skb1) < tailbits) 2520 ntail = tailbits + 128; 2521 } 2522 2523 if (copyflag || 2524 skb_cloned(skb1) || 2525 ntail || 2526 skb_shinfo(skb1)->nr_frags || 2527 skb_shinfo(skb1)->frag_list) { 2528 struct sk_buff *skb2; 2529 2530 /* Fuck, we are miserable poor guys... */ 2531 if (ntail == 0) 2532 skb2 = skb_copy(skb1, GFP_ATOMIC); 2533 else 2534 skb2 = skb_copy_expand(skb1, 2535 skb_headroom(skb1), 2536 ntail, 2537 GFP_ATOMIC); 2538 if (unlikely(skb2 == NULL)) 2539 return -ENOMEM; 2540 2541 if (skb1->sk) 2542 skb_set_owner_w(skb2, skb1->sk); 2543 2544 /* Looking around. Are we still alive? 2545 * OK, link new skb, drop old one */ 2546 2547 skb2->next = skb1->next; 2548 *skb_p = skb2; 2549 kfree_skb(skb1); 2550 skb1 = skb2; 2551 } 2552 elt++; 2553 *trailer = skb1; 2554 skb_p = &skb1->next; 2555 } 2556 2557 return elt; 2558 } 2559 2560 /** 2561 * skb_partial_csum_set - set up and verify partial csum values for packet 2562 * @skb: the skb to set 2563 * @start: the number of bytes after skb->data to start checksumming. 2564 * @off: the offset from start to place the checksum. 2565 * 2566 * For untrusted partially-checksummed packets, we need to make sure the values 2567 * for skb->csum_start and skb->csum_offset are valid so we don't oops. 2568 * 2569 * This function checks and sets those values and skb->ip_summed: if this 2570 * returns false you should drop the packet. 2571 */ 2572 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off) 2573 { 2574 if (unlikely(start > skb->len - 2) || 2575 unlikely((int)start + off > skb->len - 2)) { 2576 if (net_ratelimit()) 2577 printk(KERN_WARNING 2578 "bad partial csum: csum=%u/%u len=%u\n", 2579 start, off, skb->len); 2580 return false; 2581 } 2582 skb->ip_summed = CHECKSUM_PARTIAL; 2583 skb->csum_start = skb_headroom(skb) + start; 2584 skb->csum_offset = off; 2585 return true; 2586 } 2587 2588 EXPORT_SYMBOL(___pskb_trim); 2589 EXPORT_SYMBOL(__kfree_skb); 2590 EXPORT_SYMBOL(kfree_skb); 2591 EXPORT_SYMBOL(__pskb_pull_tail); 2592 EXPORT_SYMBOL(__alloc_skb); 2593 EXPORT_SYMBOL(__netdev_alloc_skb); 2594 EXPORT_SYMBOL(pskb_copy); 2595 EXPORT_SYMBOL(pskb_expand_head); 2596 EXPORT_SYMBOL(skb_checksum); 2597 EXPORT_SYMBOL(skb_clone); 2598 EXPORT_SYMBOL(skb_copy); 2599 EXPORT_SYMBOL(skb_copy_and_csum_bits); 2600 EXPORT_SYMBOL(skb_copy_and_csum_dev); 2601 EXPORT_SYMBOL(skb_copy_bits); 2602 EXPORT_SYMBOL(skb_copy_expand); 2603 EXPORT_SYMBOL(skb_over_panic); 2604 EXPORT_SYMBOL(skb_pad); 2605 EXPORT_SYMBOL(skb_realloc_headroom); 2606 EXPORT_SYMBOL(skb_under_panic); 2607 EXPORT_SYMBOL(skb_dequeue); 2608 EXPORT_SYMBOL(skb_dequeue_tail); 2609 EXPORT_SYMBOL(skb_insert); 2610 EXPORT_SYMBOL(skb_queue_purge); 2611 EXPORT_SYMBOL(skb_queue_head); 2612 EXPORT_SYMBOL(skb_queue_tail); 2613 EXPORT_SYMBOL(skb_unlink); 2614 EXPORT_SYMBOL(skb_append); 2615 EXPORT_SYMBOL(skb_split); 2616 EXPORT_SYMBOL(skb_prepare_seq_read); 2617 EXPORT_SYMBOL(skb_seq_read); 2618 EXPORT_SYMBOL(skb_abort_seq_read); 2619 EXPORT_SYMBOL(skb_find_text); 2620 EXPORT_SYMBOL(skb_append_datato_frags); 2621 2622 EXPORT_SYMBOL_GPL(skb_to_sgvec); 2623 EXPORT_SYMBOL_GPL(skb_cow_data); 2624 EXPORT_SYMBOL_GPL(skb_partial_csum_set); 2625