1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Routines having to do with the 'struct sk_buff' memory handlers. 4 * 5 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk> 6 * Florian La Roche <rzsfl@rz.uni-sb.de> 7 * 8 * Fixes: 9 * Alan Cox : Fixed the worst of the load 10 * balancer bugs. 11 * Dave Platt : Interrupt stacking fix. 12 * Richard Kooijman : Timestamp fixes. 13 * Alan Cox : Changed buffer format. 14 * Alan Cox : destructor hook for AF_UNIX etc. 15 * Linus Torvalds : Better skb_clone. 16 * Alan Cox : Added skb_copy. 17 * Alan Cox : Added all the changed routines Linus 18 * only put in the headers 19 * Ray VanTassle : Fixed --skb->lock in free 20 * Alan Cox : skb_copy copy arp field 21 * Andi Kleen : slabified it. 22 * Robert Olsson : Removed skb_head_pool 23 * 24 * NOTE: 25 * The __skb_ routines should be called with interrupts 26 * disabled, or you better be *real* sure that the operation is atomic 27 * with respect to whatever list is being frobbed (e.g. via lock_sock() 28 * or via disabling bottom half handlers, etc). 29 */ 30 31 /* 32 * The functions in this file will not compile correctly with gcc 2.4.x 33 */ 34 35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 36 37 #include <linux/module.h> 38 #include <linux/types.h> 39 #include <linux/kernel.h> 40 #include <linux/mm.h> 41 #include <linux/interrupt.h> 42 #include <linux/in.h> 43 #include <linux/inet.h> 44 #include <linux/slab.h> 45 #include <linux/tcp.h> 46 #include <linux/udp.h> 47 #include <linux/sctp.h> 48 #include <linux/netdevice.h> 49 #ifdef CONFIG_NET_CLS_ACT 50 #include <net/pkt_sched.h> 51 #endif 52 #include <linux/string.h> 53 #include <linux/skbuff.h> 54 #include <linux/splice.h> 55 #include <linux/cache.h> 56 #include <linux/rtnetlink.h> 57 #include <linux/init.h> 58 #include <linux/scatterlist.h> 59 #include <linux/errqueue.h> 60 #include <linux/prefetch.h> 61 #include <linux/bitfield.h> 62 #include <linux/if_vlan.h> 63 #include <linux/mpls.h> 64 #include <linux/kcov.h> 65 66 #include <net/protocol.h> 67 #include <net/dst.h> 68 #include <net/sock.h> 69 #include <net/checksum.h> 70 #include <net/gso.h> 71 #include <net/ip6_checksum.h> 72 #include <net/xfrm.h> 73 #include <net/mpls.h> 74 #include <net/mptcp.h> 75 #include <net/mctp.h> 76 #include <net/page_pool.h> 77 #include <net/dropreason.h> 78 79 #include <linux/uaccess.h> 80 #include <trace/events/skb.h> 81 #include <linux/highmem.h> 82 #include <linux/capability.h> 83 #include <linux/user_namespace.h> 84 #include <linux/indirect_call_wrapper.h> 85 #include <linux/textsearch.h> 86 87 #include "dev.h" 88 #include "sock_destructor.h" 89 90 struct kmem_cache *skbuff_cache __ro_after_init; 91 static struct kmem_cache *skbuff_fclone_cache __ro_after_init; 92 #ifdef CONFIG_SKB_EXTENSIONS 93 static struct kmem_cache *skbuff_ext_cache __ro_after_init; 94 #endif 95 96 97 static struct kmem_cache *skb_small_head_cache __ro_after_init; 98 99 #define SKB_SMALL_HEAD_SIZE SKB_HEAD_ALIGN(MAX_TCP_HEADER) 100 101 /* We want SKB_SMALL_HEAD_CACHE_SIZE to not be a power of two. 102 * This should ensure that SKB_SMALL_HEAD_HEADROOM is a unique 103 * size, and we can differentiate heads from skb_small_head_cache 104 * vs system slabs by looking at their size (skb_end_offset()). 105 */ 106 #define SKB_SMALL_HEAD_CACHE_SIZE \ 107 (is_power_of_2(SKB_SMALL_HEAD_SIZE) ? \ 108 (SKB_SMALL_HEAD_SIZE + L1_CACHE_BYTES) : \ 109 SKB_SMALL_HEAD_SIZE) 110 111 #define SKB_SMALL_HEAD_HEADROOM \ 112 SKB_WITH_OVERHEAD(SKB_SMALL_HEAD_CACHE_SIZE) 113 114 int sysctl_max_skb_frags __read_mostly = MAX_SKB_FRAGS; 115 EXPORT_SYMBOL(sysctl_max_skb_frags); 116 117 #undef FN 118 #define FN(reason) [SKB_DROP_REASON_##reason] = #reason, 119 static const char * const drop_reasons[] = { 120 [SKB_CONSUMED] = "CONSUMED", 121 DEFINE_DROP_REASON(FN, FN) 122 }; 123 124 static const struct drop_reason_list drop_reasons_core = { 125 .reasons = drop_reasons, 126 .n_reasons = ARRAY_SIZE(drop_reasons), 127 }; 128 129 const struct drop_reason_list __rcu * 130 drop_reasons_by_subsys[SKB_DROP_REASON_SUBSYS_NUM] = { 131 [SKB_DROP_REASON_SUBSYS_CORE] = RCU_INITIALIZER(&drop_reasons_core), 132 }; 133 EXPORT_SYMBOL(drop_reasons_by_subsys); 134 135 /** 136 * drop_reasons_register_subsys - register another drop reason subsystem 137 * @subsys: the subsystem to register, must not be the core 138 * @list: the list of drop reasons within the subsystem, must point to 139 * a statically initialized list 140 */ 141 void drop_reasons_register_subsys(enum skb_drop_reason_subsys subsys, 142 const struct drop_reason_list *list) 143 { 144 if (WARN(subsys <= SKB_DROP_REASON_SUBSYS_CORE || 145 subsys >= ARRAY_SIZE(drop_reasons_by_subsys), 146 "invalid subsystem %d\n", subsys)) 147 return; 148 149 /* must point to statically allocated memory, so INIT is OK */ 150 RCU_INIT_POINTER(drop_reasons_by_subsys[subsys], list); 151 } 152 EXPORT_SYMBOL_GPL(drop_reasons_register_subsys); 153 154 /** 155 * drop_reasons_unregister_subsys - unregister a drop reason subsystem 156 * @subsys: the subsystem to remove, must not be the core 157 * 158 * Note: This will synchronize_rcu() to ensure no users when it returns. 159 */ 160 void drop_reasons_unregister_subsys(enum skb_drop_reason_subsys subsys) 161 { 162 if (WARN(subsys <= SKB_DROP_REASON_SUBSYS_CORE || 163 subsys >= ARRAY_SIZE(drop_reasons_by_subsys), 164 "invalid subsystem %d\n", subsys)) 165 return; 166 167 RCU_INIT_POINTER(drop_reasons_by_subsys[subsys], NULL); 168 169 synchronize_rcu(); 170 } 171 EXPORT_SYMBOL_GPL(drop_reasons_unregister_subsys); 172 173 /** 174 * skb_panic - private function for out-of-line support 175 * @skb: buffer 176 * @sz: size 177 * @addr: address 178 * @msg: skb_over_panic or skb_under_panic 179 * 180 * Out-of-line support for skb_put() and skb_push(). 181 * Called via the wrapper skb_over_panic() or skb_under_panic(). 182 * Keep out of line to prevent kernel bloat. 183 * __builtin_return_address is not used because it is not always reliable. 184 */ 185 static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr, 186 const char msg[]) 187 { 188 pr_emerg("%s: text:%px len:%d put:%d head:%px data:%px tail:%#lx end:%#lx dev:%s\n", 189 msg, addr, skb->len, sz, skb->head, skb->data, 190 (unsigned long)skb->tail, (unsigned long)skb->end, 191 skb->dev ? skb->dev->name : "<NULL>"); 192 BUG(); 193 } 194 195 static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr) 196 { 197 skb_panic(skb, sz, addr, __func__); 198 } 199 200 static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr) 201 { 202 skb_panic(skb, sz, addr, __func__); 203 } 204 205 #define NAPI_SKB_CACHE_SIZE 64 206 #define NAPI_SKB_CACHE_BULK 16 207 #define NAPI_SKB_CACHE_HALF (NAPI_SKB_CACHE_SIZE / 2) 208 209 #if PAGE_SIZE == SZ_4K 210 211 #define NAPI_HAS_SMALL_PAGE_FRAG 1 212 #define NAPI_SMALL_PAGE_PFMEMALLOC(nc) ((nc).pfmemalloc) 213 214 /* specialized page frag allocator using a single order 0 page 215 * and slicing it into 1K sized fragment. Constrained to systems 216 * with a very limited amount of 1K fragments fitting a single 217 * page - to avoid excessive truesize underestimation 218 */ 219 220 struct page_frag_1k { 221 void *va; 222 u16 offset; 223 bool pfmemalloc; 224 }; 225 226 static void *page_frag_alloc_1k(struct page_frag_1k *nc, gfp_t gfp) 227 { 228 struct page *page; 229 int offset; 230 231 offset = nc->offset - SZ_1K; 232 if (likely(offset >= 0)) 233 goto use_frag; 234 235 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0); 236 if (!page) 237 return NULL; 238 239 nc->va = page_address(page); 240 nc->pfmemalloc = page_is_pfmemalloc(page); 241 offset = PAGE_SIZE - SZ_1K; 242 page_ref_add(page, offset / SZ_1K); 243 244 use_frag: 245 nc->offset = offset; 246 return nc->va + offset; 247 } 248 #else 249 250 /* the small page is actually unused in this build; add dummy helpers 251 * to please the compiler and avoid later preprocessor's conditionals 252 */ 253 #define NAPI_HAS_SMALL_PAGE_FRAG 0 254 #define NAPI_SMALL_PAGE_PFMEMALLOC(nc) false 255 256 struct page_frag_1k { 257 }; 258 259 static void *page_frag_alloc_1k(struct page_frag_1k *nc, gfp_t gfp_mask) 260 { 261 return NULL; 262 } 263 264 #endif 265 266 struct napi_alloc_cache { 267 struct page_frag_cache page; 268 struct page_frag_1k page_small; 269 unsigned int skb_count; 270 void *skb_cache[NAPI_SKB_CACHE_SIZE]; 271 }; 272 273 static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache); 274 static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache); 275 276 /* Double check that napi_get_frags() allocates skbs with 277 * skb->head being backed by slab, not a page fragment. 278 * This is to make sure bug fixed in 3226b158e67c 279 * ("net: avoid 32 x truesize under-estimation for tiny skbs") 280 * does not accidentally come back. 281 */ 282 void napi_get_frags_check(struct napi_struct *napi) 283 { 284 struct sk_buff *skb; 285 286 local_bh_disable(); 287 skb = napi_get_frags(napi); 288 WARN_ON_ONCE(!NAPI_HAS_SMALL_PAGE_FRAG && skb && skb->head_frag); 289 napi_free_frags(napi); 290 local_bh_enable(); 291 } 292 293 void *__napi_alloc_frag_align(unsigned int fragsz, unsigned int align_mask) 294 { 295 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 296 297 fragsz = SKB_DATA_ALIGN(fragsz); 298 299 return page_frag_alloc_align(&nc->page, fragsz, GFP_ATOMIC, align_mask); 300 } 301 EXPORT_SYMBOL(__napi_alloc_frag_align); 302 303 void *__netdev_alloc_frag_align(unsigned int fragsz, unsigned int align_mask) 304 { 305 void *data; 306 307 fragsz = SKB_DATA_ALIGN(fragsz); 308 if (in_hardirq() || irqs_disabled()) { 309 struct page_frag_cache *nc = this_cpu_ptr(&netdev_alloc_cache); 310 311 data = page_frag_alloc_align(nc, fragsz, GFP_ATOMIC, align_mask); 312 } else { 313 struct napi_alloc_cache *nc; 314 315 local_bh_disable(); 316 nc = this_cpu_ptr(&napi_alloc_cache); 317 data = page_frag_alloc_align(&nc->page, fragsz, GFP_ATOMIC, align_mask); 318 local_bh_enable(); 319 } 320 return data; 321 } 322 EXPORT_SYMBOL(__netdev_alloc_frag_align); 323 324 static struct sk_buff *napi_skb_cache_get(void) 325 { 326 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 327 struct sk_buff *skb; 328 329 if (unlikely(!nc->skb_count)) { 330 nc->skb_count = kmem_cache_alloc_bulk(skbuff_cache, 331 GFP_ATOMIC, 332 NAPI_SKB_CACHE_BULK, 333 nc->skb_cache); 334 if (unlikely(!nc->skb_count)) 335 return NULL; 336 } 337 338 skb = nc->skb_cache[--nc->skb_count]; 339 kasan_unpoison_object_data(skbuff_cache, skb); 340 341 return skb; 342 } 343 344 static inline void __finalize_skb_around(struct sk_buff *skb, void *data, 345 unsigned int size) 346 { 347 struct skb_shared_info *shinfo; 348 349 size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 350 351 /* Assumes caller memset cleared SKB */ 352 skb->truesize = SKB_TRUESIZE(size); 353 refcount_set(&skb->users, 1); 354 skb->head = data; 355 skb->data = data; 356 skb_reset_tail_pointer(skb); 357 skb_set_end_offset(skb, size); 358 skb->mac_header = (typeof(skb->mac_header))~0U; 359 skb->transport_header = (typeof(skb->transport_header))~0U; 360 skb->alloc_cpu = raw_smp_processor_id(); 361 /* make sure we initialize shinfo sequentially */ 362 shinfo = skb_shinfo(skb); 363 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref)); 364 atomic_set(&shinfo->dataref, 1); 365 366 skb_set_kcov_handle(skb, kcov_common_handle()); 367 } 368 369 static inline void *__slab_build_skb(struct sk_buff *skb, void *data, 370 unsigned int *size) 371 { 372 void *resized; 373 374 /* Must find the allocation size (and grow it to match). */ 375 *size = ksize(data); 376 /* krealloc() will immediately return "data" when 377 * "ksize(data)" is requested: it is the existing upper 378 * bounds. As a result, GFP_ATOMIC will be ignored. Note 379 * that this "new" pointer needs to be passed back to the 380 * caller for use so the __alloc_size hinting will be 381 * tracked correctly. 382 */ 383 resized = krealloc(data, *size, GFP_ATOMIC); 384 WARN_ON_ONCE(resized != data); 385 return resized; 386 } 387 388 /* build_skb() variant which can operate on slab buffers. 389 * Note that this should be used sparingly as slab buffers 390 * cannot be combined efficiently by GRO! 391 */ 392 struct sk_buff *slab_build_skb(void *data) 393 { 394 struct sk_buff *skb; 395 unsigned int size; 396 397 skb = kmem_cache_alloc(skbuff_cache, GFP_ATOMIC); 398 if (unlikely(!skb)) 399 return NULL; 400 401 memset(skb, 0, offsetof(struct sk_buff, tail)); 402 data = __slab_build_skb(skb, data, &size); 403 __finalize_skb_around(skb, data, size); 404 405 return skb; 406 } 407 EXPORT_SYMBOL(slab_build_skb); 408 409 /* Caller must provide SKB that is memset cleared */ 410 static void __build_skb_around(struct sk_buff *skb, void *data, 411 unsigned int frag_size) 412 { 413 unsigned int size = frag_size; 414 415 /* frag_size == 0 is considered deprecated now. Callers 416 * using slab buffer should use slab_build_skb() instead. 417 */ 418 if (WARN_ONCE(size == 0, "Use slab_build_skb() instead")) 419 data = __slab_build_skb(skb, data, &size); 420 421 __finalize_skb_around(skb, data, size); 422 } 423 424 /** 425 * __build_skb - build a network buffer 426 * @data: data buffer provided by caller 427 * @frag_size: size of data (must not be 0) 428 * 429 * Allocate a new &sk_buff. Caller provides space holding head and 430 * skb_shared_info. @data must have been allocated from the page 431 * allocator or vmalloc(). (A @frag_size of 0 to indicate a kmalloc() 432 * allocation is deprecated, and callers should use slab_build_skb() 433 * instead.) 434 * The return is the new skb buffer. 435 * On a failure the return is %NULL, and @data is not freed. 436 * Notes : 437 * Before IO, driver allocates only data buffer where NIC put incoming frame 438 * Driver should add room at head (NET_SKB_PAD) and 439 * MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info)) 440 * After IO, driver calls build_skb(), to allocate sk_buff and populate it 441 * before giving packet to stack. 442 * RX rings only contains data buffers, not full skbs. 443 */ 444 struct sk_buff *__build_skb(void *data, unsigned int frag_size) 445 { 446 struct sk_buff *skb; 447 448 skb = kmem_cache_alloc(skbuff_cache, GFP_ATOMIC); 449 if (unlikely(!skb)) 450 return NULL; 451 452 memset(skb, 0, offsetof(struct sk_buff, tail)); 453 __build_skb_around(skb, data, frag_size); 454 455 return skb; 456 } 457 458 /* build_skb() is wrapper over __build_skb(), that specifically 459 * takes care of skb->head and skb->pfmemalloc 460 */ 461 struct sk_buff *build_skb(void *data, unsigned int frag_size) 462 { 463 struct sk_buff *skb = __build_skb(data, frag_size); 464 465 if (likely(skb && frag_size)) { 466 skb->head_frag = 1; 467 skb_propagate_pfmemalloc(virt_to_head_page(data), skb); 468 } 469 return skb; 470 } 471 EXPORT_SYMBOL(build_skb); 472 473 /** 474 * build_skb_around - build a network buffer around provided skb 475 * @skb: sk_buff provide by caller, must be memset cleared 476 * @data: data buffer provided by caller 477 * @frag_size: size of data 478 */ 479 struct sk_buff *build_skb_around(struct sk_buff *skb, 480 void *data, unsigned int frag_size) 481 { 482 if (unlikely(!skb)) 483 return NULL; 484 485 __build_skb_around(skb, data, frag_size); 486 487 if (frag_size) { 488 skb->head_frag = 1; 489 skb_propagate_pfmemalloc(virt_to_head_page(data), skb); 490 } 491 return skb; 492 } 493 EXPORT_SYMBOL(build_skb_around); 494 495 /** 496 * __napi_build_skb - build a network buffer 497 * @data: data buffer provided by caller 498 * @frag_size: size of data 499 * 500 * Version of __build_skb() that uses NAPI percpu caches to obtain 501 * skbuff_head instead of inplace allocation. 502 * 503 * Returns a new &sk_buff on success, %NULL on allocation failure. 504 */ 505 static struct sk_buff *__napi_build_skb(void *data, unsigned int frag_size) 506 { 507 struct sk_buff *skb; 508 509 skb = napi_skb_cache_get(); 510 if (unlikely(!skb)) 511 return NULL; 512 513 memset(skb, 0, offsetof(struct sk_buff, tail)); 514 __build_skb_around(skb, data, frag_size); 515 516 return skb; 517 } 518 519 /** 520 * napi_build_skb - build a network buffer 521 * @data: data buffer provided by caller 522 * @frag_size: size of data 523 * 524 * Version of __napi_build_skb() that takes care of skb->head_frag 525 * and skb->pfmemalloc when the data is a page or page fragment. 526 * 527 * Returns a new &sk_buff on success, %NULL on allocation failure. 528 */ 529 struct sk_buff *napi_build_skb(void *data, unsigned int frag_size) 530 { 531 struct sk_buff *skb = __napi_build_skb(data, frag_size); 532 533 if (likely(skb) && frag_size) { 534 skb->head_frag = 1; 535 skb_propagate_pfmemalloc(virt_to_head_page(data), skb); 536 } 537 538 return skb; 539 } 540 EXPORT_SYMBOL(napi_build_skb); 541 542 /* 543 * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells 544 * the caller if emergency pfmemalloc reserves are being used. If it is and 545 * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves 546 * may be used. Otherwise, the packet data may be discarded until enough 547 * memory is free 548 */ 549 static void *kmalloc_reserve(unsigned int *size, gfp_t flags, int node, 550 bool *pfmemalloc) 551 { 552 bool ret_pfmemalloc = false; 553 unsigned int obj_size; 554 void *obj; 555 556 obj_size = SKB_HEAD_ALIGN(*size); 557 if (obj_size <= SKB_SMALL_HEAD_CACHE_SIZE && 558 !(flags & KMALLOC_NOT_NORMAL_BITS)) { 559 obj = kmem_cache_alloc_node(skb_small_head_cache, 560 flags | __GFP_NOMEMALLOC | __GFP_NOWARN, 561 node); 562 *size = SKB_SMALL_HEAD_CACHE_SIZE; 563 if (obj || !(gfp_pfmemalloc_allowed(flags))) 564 goto out; 565 /* Try again but now we are using pfmemalloc reserves */ 566 ret_pfmemalloc = true; 567 obj = kmem_cache_alloc_node(skb_small_head_cache, flags, node); 568 goto out; 569 } 570 *size = obj_size = kmalloc_size_roundup(obj_size); 571 /* 572 * Try a regular allocation, when that fails and we're not entitled 573 * to the reserves, fail. 574 */ 575 obj = kmalloc_node_track_caller(obj_size, 576 flags | __GFP_NOMEMALLOC | __GFP_NOWARN, 577 node); 578 if (obj || !(gfp_pfmemalloc_allowed(flags))) 579 goto out; 580 581 /* Try again but now we are using pfmemalloc reserves */ 582 ret_pfmemalloc = true; 583 obj = kmalloc_node_track_caller(obj_size, flags, node); 584 585 out: 586 if (pfmemalloc) 587 *pfmemalloc = ret_pfmemalloc; 588 589 return obj; 590 } 591 592 /* Allocate a new skbuff. We do this ourselves so we can fill in a few 593 * 'private' fields and also do memory statistics to find all the 594 * [BEEP] leaks. 595 * 596 */ 597 598 /** 599 * __alloc_skb - allocate a network buffer 600 * @size: size to allocate 601 * @gfp_mask: allocation mask 602 * @flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache 603 * instead of head cache and allocate a cloned (child) skb. 604 * If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for 605 * allocations in case the data is required for writeback 606 * @node: numa node to allocate memory on 607 * 608 * Allocate a new &sk_buff. The returned buffer has no headroom and a 609 * tail room of at least size bytes. The object has a reference count 610 * of one. The return is the buffer. On a failure the return is %NULL. 611 * 612 * Buffers may only be allocated from interrupts using a @gfp_mask of 613 * %GFP_ATOMIC. 614 */ 615 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask, 616 int flags, int node) 617 { 618 struct kmem_cache *cache; 619 struct sk_buff *skb; 620 bool pfmemalloc; 621 u8 *data; 622 623 cache = (flags & SKB_ALLOC_FCLONE) 624 ? skbuff_fclone_cache : skbuff_cache; 625 626 if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX)) 627 gfp_mask |= __GFP_MEMALLOC; 628 629 /* Get the HEAD */ 630 if ((flags & (SKB_ALLOC_FCLONE | SKB_ALLOC_NAPI)) == SKB_ALLOC_NAPI && 631 likely(node == NUMA_NO_NODE || node == numa_mem_id())) 632 skb = napi_skb_cache_get(); 633 else 634 skb = kmem_cache_alloc_node(cache, gfp_mask & ~GFP_DMA, node); 635 if (unlikely(!skb)) 636 return NULL; 637 prefetchw(skb); 638 639 /* We do our best to align skb_shared_info on a separate cache 640 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives 641 * aligned memory blocks, unless SLUB/SLAB debug is enabled. 642 * Both skb->head and skb_shared_info are cache line aligned. 643 */ 644 data = kmalloc_reserve(&size, gfp_mask, node, &pfmemalloc); 645 if (unlikely(!data)) 646 goto nodata; 647 /* kmalloc_size_roundup() might give us more room than requested. 648 * Put skb_shared_info exactly at the end of allocated zone, 649 * to allow max possible filling before reallocation. 650 */ 651 prefetchw(data + SKB_WITH_OVERHEAD(size)); 652 653 /* 654 * Only clear those fields we need to clear, not those that we will 655 * actually initialise below. Hence, don't put any more fields after 656 * the tail pointer in struct sk_buff! 657 */ 658 memset(skb, 0, offsetof(struct sk_buff, tail)); 659 __build_skb_around(skb, data, size); 660 skb->pfmemalloc = pfmemalloc; 661 662 if (flags & SKB_ALLOC_FCLONE) { 663 struct sk_buff_fclones *fclones; 664 665 fclones = container_of(skb, struct sk_buff_fclones, skb1); 666 667 skb->fclone = SKB_FCLONE_ORIG; 668 refcount_set(&fclones->fclone_ref, 1); 669 } 670 671 return skb; 672 673 nodata: 674 kmem_cache_free(cache, skb); 675 return NULL; 676 } 677 EXPORT_SYMBOL(__alloc_skb); 678 679 /** 680 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device 681 * @dev: network device to receive on 682 * @len: length to allocate 683 * @gfp_mask: get_free_pages mask, passed to alloc_skb 684 * 685 * Allocate a new &sk_buff and assign it a usage count of one. The 686 * buffer has NET_SKB_PAD headroom built in. Users should allocate 687 * the headroom they think they need without accounting for the 688 * built in space. The built in space is used for optimisations. 689 * 690 * %NULL is returned if there is no free memory. 691 */ 692 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len, 693 gfp_t gfp_mask) 694 { 695 struct page_frag_cache *nc; 696 struct sk_buff *skb; 697 bool pfmemalloc; 698 void *data; 699 700 len += NET_SKB_PAD; 701 702 /* If requested length is either too small or too big, 703 * we use kmalloc() for skb->head allocation. 704 */ 705 if (len <= SKB_WITH_OVERHEAD(1024) || 706 len > SKB_WITH_OVERHEAD(PAGE_SIZE) || 707 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) { 708 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE); 709 if (!skb) 710 goto skb_fail; 711 goto skb_success; 712 } 713 714 len = SKB_HEAD_ALIGN(len); 715 716 if (sk_memalloc_socks()) 717 gfp_mask |= __GFP_MEMALLOC; 718 719 if (in_hardirq() || irqs_disabled()) { 720 nc = this_cpu_ptr(&netdev_alloc_cache); 721 data = page_frag_alloc(nc, len, gfp_mask); 722 pfmemalloc = nc->pfmemalloc; 723 } else { 724 local_bh_disable(); 725 nc = this_cpu_ptr(&napi_alloc_cache.page); 726 data = page_frag_alloc(nc, len, gfp_mask); 727 pfmemalloc = nc->pfmemalloc; 728 local_bh_enable(); 729 } 730 731 if (unlikely(!data)) 732 return NULL; 733 734 skb = __build_skb(data, len); 735 if (unlikely(!skb)) { 736 skb_free_frag(data); 737 return NULL; 738 } 739 740 if (pfmemalloc) 741 skb->pfmemalloc = 1; 742 skb->head_frag = 1; 743 744 skb_success: 745 skb_reserve(skb, NET_SKB_PAD); 746 skb->dev = dev; 747 748 skb_fail: 749 return skb; 750 } 751 EXPORT_SYMBOL(__netdev_alloc_skb); 752 753 /** 754 * __napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance 755 * @napi: napi instance this buffer was allocated for 756 * @len: length to allocate 757 * @gfp_mask: get_free_pages mask, passed to alloc_skb and alloc_pages 758 * 759 * Allocate a new sk_buff for use in NAPI receive. This buffer will 760 * attempt to allocate the head from a special reserved region used 761 * only for NAPI Rx allocation. By doing this we can save several 762 * CPU cycles by avoiding having to disable and re-enable IRQs. 763 * 764 * %NULL is returned if there is no free memory. 765 */ 766 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, unsigned int len, 767 gfp_t gfp_mask) 768 { 769 struct napi_alloc_cache *nc; 770 struct sk_buff *skb; 771 bool pfmemalloc; 772 void *data; 773 774 DEBUG_NET_WARN_ON_ONCE(!in_softirq()); 775 len += NET_SKB_PAD + NET_IP_ALIGN; 776 777 /* If requested length is either too small or too big, 778 * we use kmalloc() for skb->head allocation. 779 * When the small frag allocator is available, prefer it over kmalloc 780 * for small fragments 781 */ 782 if ((!NAPI_HAS_SMALL_PAGE_FRAG && len <= SKB_WITH_OVERHEAD(1024)) || 783 len > SKB_WITH_OVERHEAD(PAGE_SIZE) || 784 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) { 785 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX | SKB_ALLOC_NAPI, 786 NUMA_NO_NODE); 787 if (!skb) 788 goto skb_fail; 789 goto skb_success; 790 } 791 792 nc = this_cpu_ptr(&napi_alloc_cache); 793 794 if (sk_memalloc_socks()) 795 gfp_mask |= __GFP_MEMALLOC; 796 797 if (NAPI_HAS_SMALL_PAGE_FRAG && len <= SKB_WITH_OVERHEAD(1024)) { 798 /* we are artificially inflating the allocation size, but 799 * that is not as bad as it may look like, as: 800 * - 'len' less than GRO_MAX_HEAD makes little sense 801 * - On most systems, larger 'len' values lead to fragment 802 * size above 512 bytes 803 * - kmalloc would use the kmalloc-1k slab for such values 804 * - Builds with smaller GRO_MAX_HEAD will very likely do 805 * little networking, as that implies no WiFi and no 806 * tunnels support, and 32 bits arches. 807 */ 808 len = SZ_1K; 809 810 data = page_frag_alloc_1k(&nc->page_small, gfp_mask); 811 pfmemalloc = NAPI_SMALL_PAGE_PFMEMALLOC(nc->page_small); 812 } else { 813 len = SKB_HEAD_ALIGN(len); 814 815 data = page_frag_alloc(&nc->page, len, gfp_mask); 816 pfmemalloc = nc->page.pfmemalloc; 817 } 818 819 if (unlikely(!data)) 820 return NULL; 821 822 skb = __napi_build_skb(data, len); 823 if (unlikely(!skb)) { 824 skb_free_frag(data); 825 return NULL; 826 } 827 828 if (pfmemalloc) 829 skb->pfmemalloc = 1; 830 skb->head_frag = 1; 831 832 skb_success: 833 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN); 834 skb->dev = napi->dev; 835 836 skb_fail: 837 return skb; 838 } 839 EXPORT_SYMBOL(__napi_alloc_skb); 840 841 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off, 842 int size, unsigned int truesize) 843 { 844 skb_fill_page_desc(skb, i, page, off, size); 845 skb->len += size; 846 skb->data_len += size; 847 skb->truesize += truesize; 848 } 849 EXPORT_SYMBOL(skb_add_rx_frag); 850 851 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size, 852 unsigned int truesize) 853 { 854 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 855 856 skb_frag_size_add(frag, size); 857 skb->len += size; 858 skb->data_len += size; 859 skb->truesize += truesize; 860 } 861 EXPORT_SYMBOL(skb_coalesce_rx_frag); 862 863 static void skb_drop_list(struct sk_buff **listp) 864 { 865 kfree_skb_list(*listp); 866 *listp = NULL; 867 } 868 869 static inline void skb_drop_fraglist(struct sk_buff *skb) 870 { 871 skb_drop_list(&skb_shinfo(skb)->frag_list); 872 } 873 874 static void skb_clone_fraglist(struct sk_buff *skb) 875 { 876 struct sk_buff *list; 877 878 skb_walk_frags(skb, list) 879 skb_get(list); 880 } 881 882 static bool skb_pp_recycle(struct sk_buff *skb, void *data, bool napi_safe) 883 { 884 if (!IS_ENABLED(CONFIG_PAGE_POOL) || !skb->pp_recycle) 885 return false; 886 return page_pool_return_skb_page(virt_to_page(data), napi_safe); 887 } 888 889 static void skb_kfree_head(void *head, unsigned int end_offset) 890 { 891 if (end_offset == SKB_SMALL_HEAD_HEADROOM) 892 kmem_cache_free(skb_small_head_cache, head); 893 else 894 kfree(head); 895 } 896 897 static void skb_free_head(struct sk_buff *skb, bool napi_safe) 898 { 899 unsigned char *head = skb->head; 900 901 if (skb->head_frag) { 902 if (skb_pp_recycle(skb, head, napi_safe)) 903 return; 904 skb_free_frag(head); 905 } else { 906 skb_kfree_head(head, skb_end_offset(skb)); 907 } 908 } 909 910 static void skb_release_data(struct sk_buff *skb, enum skb_drop_reason reason, 911 bool napi_safe) 912 { 913 struct skb_shared_info *shinfo = skb_shinfo(skb); 914 int i; 915 916 if (skb->cloned && 917 atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1, 918 &shinfo->dataref)) 919 goto exit; 920 921 if (skb_zcopy(skb)) { 922 bool skip_unref = shinfo->flags & SKBFL_MANAGED_FRAG_REFS; 923 924 skb_zcopy_clear(skb, true); 925 if (skip_unref) 926 goto free_head; 927 } 928 929 for (i = 0; i < shinfo->nr_frags; i++) 930 napi_frag_unref(&shinfo->frags[i], skb->pp_recycle, napi_safe); 931 932 free_head: 933 if (shinfo->frag_list) 934 kfree_skb_list_reason(shinfo->frag_list, reason); 935 936 skb_free_head(skb, napi_safe); 937 exit: 938 /* When we clone an SKB we copy the reycling bit. The pp_recycle 939 * bit is only set on the head though, so in order to avoid races 940 * while trying to recycle fragments on __skb_frag_unref() we need 941 * to make one SKB responsible for triggering the recycle path. 942 * So disable the recycling bit if an SKB is cloned and we have 943 * additional references to the fragmented part of the SKB. 944 * Eventually the last SKB will have the recycling bit set and it's 945 * dataref set to 0, which will trigger the recycling 946 */ 947 skb->pp_recycle = 0; 948 } 949 950 /* 951 * Free an skbuff by memory without cleaning the state. 952 */ 953 static void kfree_skbmem(struct sk_buff *skb) 954 { 955 struct sk_buff_fclones *fclones; 956 957 switch (skb->fclone) { 958 case SKB_FCLONE_UNAVAILABLE: 959 kmem_cache_free(skbuff_cache, skb); 960 return; 961 962 case SKB_FCLONE_ORIG: 963 fclones = container_of(skb, struct sk_buff_fclones, skb1); 964 965 /* We usually free the clone (TX completion) before original skb 966 * This test would have no chance to be true for the clone, 967 * while here, branch prediction will be good. 968 */ 969 if (refcount_read(&fclones->fclone_ref) == 1) 970 goto fastpath; 971 break; 972 973 default: /* SKB_FCLONE_CLONE */ 974 fclones = container_of(skb, struct sk_buff_fclones, skb2); 975 break; 976 } 977 if (!refcount_dec_and_test(&fclones->fclone_ref)) 978 return; 979 fastpath: 980 kmem_cache_free(skbuff_fclone_cache, fclones); 981 } 982 983 void skb_release_head_state(struct sk_buff *skb) 984 { 985 skb_dst_drop(skb); 986 if (skb->destructor) { 987 DEBUG_NET_WARN_ON_ONCE(in_hardirq()); 988 skb->destructor(skb); 989 } 990 #if IS_ENABLED(CONFIG_NF_CONNTRACK) 991 nf_conntrack_put(skb_nfct(skb)); 992 #endif 993 skb_ext_put(skb); 994 } 995 996 /* Free everything but the sk_buff shell. */ 997 static void skb_release_all(struct sk_buff *skb, enum skb_drop_reason reason, 998 bool napi_safe) 999 { 1000 skb_release_head_state(skb); 1001 if (likely(skb->head)) 1002 skb_release_data(skb, reason, napi_safe); 1003 } 1004 1005 /** 1006 * __kfree_skb - private function 1007 * @skb: buffer 1008 * 1009 * Free an sk_buff. Release anything attached to the buffer. 1010 * Clean the state. This is an internal helper function. Users should 1011 * always call kfree_skb 1012 */ 1013 1014 void __kfree_skb(struct sk_buff *skb) 1015 { 1016 skb_release_all(skb, SKB_DROP_REASON_NOT_SPECIFIED, false); 1017 kfree_skbmem(skb); 1018 } 1019 EXPORT_SYMBOL(__kfree_skb); 1020 1021 static __always_inline 1022 bool __kfree_skb_reason(struct sk_buff *skb, enum skb_drop_reason reason) 1023 { 1024 if (unlikely(!skb_unref(skb))) 1025 return false; 1026 1027 DEBUG_NET_WARN_ON_ONCE(reason == SKB_NOT_DROPPED_YET || 1028 u32_get_bits(reason, 1029 SKB_DROP_REASON_SUBSYS_MASK) >= 1030 SKB_DROP_REASON_SUBSYS_NUM); 1031 1032 if (reason == SKB_CONSUMED) 1033 trace_consume_skb(skb, __builtin_return_address(0)); 1034 else 1035 trace_kfree_skb(skb, __builtin_return_address(0), reason); 1036 return true; 1037 } 1038 1039 /** 1040 * kfree_skb_reason - free an sk_buff with special reason 1041 * @skb: buffer to free 1042 * @reason: reason why this skb is dropped 1043 * 1044 * Drop a reference to the buffer and free it if the usage count has 1045 * hit zero. Meanwhile, pass the drop reason to 'kfree_skb' 1046 * tracepoint. 1047 */ 1048 void __fix_address 1049 kfree_skb_reason(struct sk_buff *skb, enum skb_drop_reason reason) 1050 { 1051 if (__kfree_skb_reason(skb, reason)) 1052 __kfree_skb(skb); 1053 } 1054 EXPORT_SYMBOL(kfree_skb_reason); 1055 1056 #define KFREE_SKB_BULK_SIZE 16 1057 1058 struct skb_free_array { 1059 unsigned int skb_count; 1060 void *skb_array[KFREE_SKB_BULK_SIZE]; 1061 }; 1062 1063 static void kfree_skb_add_bulk(struct sk_buff *skb, 1064 struct skb_free_array *sa, 1065 enum skb_drop_reason reason) 1066 { 1067 /* if SKB is a clone, don't handle this case */ 1068 if (unlikely(skb->fclone != SKB_FCLONE_UNAVAILABLE)) { 1069 __kfree_skb(skb); 1070 return; 1071 } 1072 1073 skb_release_all(skb, reason, false); 1074 sa->skb_array[sa->skb_count++] = skb; 1075 1076 if (unlikely(sa->skb_count == KFREE_SKB_BULK_SIZE)) { 1077 kmem_cache_free_bulk(skbuff_cache, KFREE_SKB_BULK_SIZE, 1078 sa->skb_array); 1079 sa->skb_count = 0; 1080 } 1081 } 1082 1083 void __fix_address 1084 kfree_skb_list_reason(struct sk_buff *segs, enum skb_drop_reason reason) 1085 { 1086 struct skb_free_array sa; 1087 1088 sa.skb_count = 0; 1089 1090 while (segs) { 1091 struct sk_buff *next = segs->next; 1092 1093 if (__kfree_skb_reason(segs, reason)) { 1094 skb_poison_list(segs); 1095 kfree_skb_add_bulk(segs, &sa, reason); 1096 } 1097 1098 segs = next; 1099 } 1100 1101 if (sa.skb_count) 1102 kmem_cache_free_bulk(skbuff_cache, sa.skb_count, sa.skb_array); 1103 } 1104 EXPORT_SYMBOL(kfree_skb_list_reason); 1105 1106 /* Dump skb information and contents. 1107 * 1108 * Must only be called from net_ratelimit()-ed paths. 1109 * 1110 * Dumps whole packets if full_pkt, only headers otherwise. 1111 */ 1112 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt) 1113 { 1114 struct skb_shared_info *sh = skb_shinfo(skb); 1115 struct net_device *dev = skb->dev; 1116 struct sock *sk = skb->sk; 1117 struct sk_buff *list_skb; 1118 bool has_mac, has_trans; 1119 int headroom, tailroom; 1120 int i, len, seg_len; 1121 1122 if (full_pkt) 1123 len = skb->len; 1124 else 1125 len = min_t(int, skb->len, MAX_HEADER + 128); 1126 1127 headroom = skb_headroom(skb); 1128 tailroom = skb_tailroom(skb); 1129 1130 has_mac = skb_mac_header_was_set(skb); 1131 has_trans = skb_transport_header_was_set(skb); 1132 1133 printk("%sskb len=%u headroom=%u headlen=%u tailroom=%u\n" 1134 "mac=(%d,%d) net=(%d,%d) trans=%d\n" 1135 "shinfo(txflags=%u nr_frags=%u gso(size=%hu type=%u segs=%hu))\n" 1136 "csum(0x%x ip_summed=%u complete_sw=%u valid=%u level=%u)\n" 1137 "hash(0x%x sw=%u l4=%u) proto=0x%04x pkttype=%u iif=%d\n", 1138 level, skb->len, headroom, skb_headlen(skb), tailroom, 1139 has_mac ? skb->mac_header : -1, 1140 has_mac ? skb_mac_header_len(skb) : -1, 1141 skb->network_header, 1142 has_trans ? skb_network_header_len(skb) : -1, 1143 has_trans ? skb->transport_header : -1, 1144 sh->tx_flags, sh->nr_frags, 1145 sh->gso_size, sh->gso_type, sh->gso_segs, 1146 skb->csum, skb->ip_summed, skb->csum_complete_sw, 1147 skb->csum_valid, skb->csum_level, 1148 skb->hash, skb->sw_hash, skb->l4_hash, 1149 ntohs(skb->protocol), skb->pkt_type, skb->skb_iif); 1150 1151 if (dev) 1152 printk("%sdev name=%s feat=%pNF\n", 1153 level, dev->name, &dev->features); 1154 if (sk) 1155 printk("%ssk family=%hu type=%u proto=%u\n", 1156 level, sk->sk_family, sk->sk_type, sk->sk_protocol); 1157 1158 if (full_pkt && headroom) 1159 print_hex_dump(level, "skb headroom: ", DUMP_PREFIX_OFFSET, 1160 16, 1, skb->head, headroom, false); 1161 1162 seg_len = min_t(int, skb_headlen(skb), len); 1163 if (seg_len) 1164 print_hex_dump(level, "skb linear: ", DUMP_PREFIX_OFFSET, 1165 16, 1, skb->data, seg_len, false); 1166 len -= seg_len; 1167 1168 if (full_pkt && tailroom) 1169 print_hex_dump(level, "skb tailroom: ", DUMP_PREFIX_OFFSET, 1170 16, 1, skb_tail_pointer(skb), tailroom, false); 1171 1172 for (i = 0; len && i < skb_shinfo(skb)->nr_frags; i++) { 1173 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 1174 u32 p_off, p_len, copied; 1175 struct page *p; 1176 u8 *vaddr; 1177 1178 skb_frag_foreach_page(frag, skb_frag_off(frag), 1179 skb_frag_size(frag), p, p_off, p_len, 1180 copied) { 1181 seg_len = min_t(int, p_len, len); 1182 vaddr = kmap_atomic(p); 1183 print_hex_dump(level, "skb frag: ", 1184 DUMP_PREFIX_OFFSET, 1185 16, 1, vaddr + p_off, seg_len, false); 1186 kunmap_atomic(vaddr); 1187 len -= seg_len; 1188 if (!len) 1189 break; 1190 } 1191 } 1192 1193 if (full_pkt && skb_has_frag_list(skb)) { 1194 printk("skb fraglist:\n"); 1195 skb_walk_frags(skb, list_skb) 1196 skb_dump(level, list_skb, true); 1197 } 1198 } 1199 EXPORT_SYMBOL(skb_dump); 1200 1201 /** 1202 * skb_tx_error - report an sk_buff xmit error 1203 * @skb: buffer that triggered an error 1204 * 1205 * Report xmit error if a device callback is tracking this skb. 1206 * skb must be freed afterwards. 1207 */ 1208 void skb_tx_error(struct sk_buff *skb) 1209 { 1210 if (skb) { 1211 skb_zcopy_downgrade_managed(skb); 1212 skb_zcopy_clear(skb, true); 1213 } 1214 } 1215 EXPORT_SYMBOL(skb_tx_error); 1216 1217 #ifdef CONFIG_TRACEPOINTS 1218 /** 1219 * consume_skb - free an skbuff 1220 * @skb: buffer to free 1221 * 1222 * Drop a ref to the buffer and free it if the usage count has hit zero 1223 * Functions identically to kfree_skb, but kfree_skb assumes that the frame 1224 * is being dropped after a failure and notes that 1225 */ 1226 void consume_skb(struct sk_buff *skb) 1227 { 1228 if (!skb_unref(skb)) 1229 return; 1230 1231 trace_consume_skb(skb, __builtin_return_address(0)); 1232 __kfree_skb(skb); 1233 } 1234 EXPORT_SYMBOL(consume_skb); 1235 #endif 1236 1237 /** 1238 * __consume_stateless_skb - free an skbuff, assuming it is stateless 1239 * @skb: buffer to free 1240 * 1241 * Alike consume_skb(), but this variant assumes that this is the last 1242 * skb reference and all the head states have been already dropped 1243 */ 1244 void __consume_stateless_skb(struct sk_buff *skb) 1245 { 1246 trace_consume_skb(skb, __builtin_return_address(0)); 1247 skb_release_data(skb, SKB_CONSUMED, false); 1248 kfree_skbmem(skb); 1249 } 1250 1251 static void napi_skb_cache_put(struct sk_buff *skb) 1252 { 1253 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 1254 u32 i; 1255 1256 kasan_poison_object_data(skbuff_cache, skb); 1257 nc->skb_cache[nc->skb_count++] = skb; 1258 1259 if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) { 1260 for (i = NAPI_SKB_CACHE_HALF; i < NAPI_SKB_CACHE_SIZE; i++) 1261 kasan_unpoison_object_data(skbuff_cache, 1262 nc->skb_cache[i]); 1263 1264 kmem_cache_free_bulk(skbuff_cache, NAPI_SKB_CACHE_HALF, 1265 nc->skb_cache + NAPI_SKB_CACHE_HALF); 1266 nc->skb_count = NAPI_SKB_CACHE_HALF; 1267 } 1268 } 1269 1270 void __napi_kfree_skb(struct sk_buff *skb, enum skb_drop_reason reason) 1271 { 1272 skb_release_all(skb, reason, true); 1273 napi_skb_cache_put(skb); 1274 } 1275 1276 void napi_skb_free_stolen_head(struct sk_buff *skb) 1277 { 1278 if (unlikely(skb->slow_gro)) { 1279 nf_reset_ct(skb); 1280 skb_dst_drop(skb); 1281 skb_ext_put(skb); 1282 skb_orphan(skb); 1283 skb->slow_gro = 0; 1284 } 1285 napi_skb_cache_put(skb); 1286 } 1287 1288 void napi_consume_skb(struct sk_buff *skb, int budget) 1289 { 1290 /* Zero budget indicate non-NAPI context called us, like netpoll */ 1291 if (unlikely(!budget)) { 1292 dev_consume_skb_any(skb); 1293 return; 1294 } 1295 1296 DEBUG_NET_WARN_ON_ONCE(!in_softirq()); 1297 1298 if (!skb_unref(skb)) 1299 return; 1300 1301 /* if reaching here SKB is ready to free */ 1302 trace_consume_skb(skb, __builtin_return_address(0)); 1303 1304 /* if SKB is a clone, don't handle this case */ 1305 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) { 1306 __kfree_skb(skb); 1307 return; 1308 } 1309 1310 skb_release_all(skb, SKB_CONSUMED, !!budget); 1311 napi_skb_cache_put(skb); 1312 } 1313 EXPORT_SYMBOL(napi_consume_skb); 1314 1315 /* Make sure a field is contained by headers group */ 1316 #define CHECK_SKB_FIELD(field) \ 1317 BUILD_BUG_ON(offsetof(struct sk_buff, field) != \ 1318 offsetof(struct sk_buff, headers.field)); \ 1319 1320 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old) 1321 { 1322 new->tstamp = old->tstamp; 1323 /* We do not copy old->sk */ 1324 new->dev = old->dev; 1325 memcpy(new->cb, old->cb, sizeof(old->cb)); 1326 skb_dst_copy(new, old); 1327 __skb_ext_copy(new, old); 1328 __nf_copy(new, old, false); 1329 1330 /* Note : this field could be in the headers group. 1331 * It is not yet because we do not want to have a 16 bit hole 1332 */ 1333 new->queue_mapping = old->queue_mapping; 1334 1335 memcpy(&new->headers, &old->headers, sizeof(new->headers)); 1336 CHECK_SKB_FIELD(protocol); 1337 CHECK_SKB_FIELD(csum); 1338 CHECK_SKB_FIELD(hash); 1339 CHECK_SKB_FIELD(priority); 1340 CHECK_SKB_FIELD(skb_iif); 1341 CHECK_SKB_FIELD(vlan_proto); 1342 CHECK_SKB_FIELD(vlan_tci); 1343 CHECK_SKB_FIELD(transport_header); 1344 CHECK_SKB_FIELD(network_header); 1345 CHECK_SKB_FIELD(mac_header); 1346 CHECK_SKB_FIELD(inner_protocol); 1347 CHECK_SKB_FIELD(inner_transport_header); 1348 CHECK_SKB_FIELD(inner_network_header); 1349 CHECK_SKB_FIELD(inner_mac_header); 1350 CHECK_SKB_FIELD(mark); 1351 #ifdef CONFIG_NETWORK_SECMARK 1352 CHECK_SKB_FIELD(secmark); 1353 #endif 1354 #ifdef CONFIG_NET_RX_BUSY_POLL 1355 CHECK_SKB_FIELD(napi_id); 1356 #endif 1357 CHECK_SKB_FIELD(alloc_cpu); 1358 #ifdef CONFIG_XPS 1359 CHECK_SKB_FIELD(sender_cpu); 1360 #endif 1361 #ifdef CONFIG_NET_SCHED 1362 CHECK_SKB_FIELD(tc_index); 1363 #endif 1364 1365 } 1366 1367 /* 1368 * You should not add any new code to this function. Add it to 1369 * __copy_skb_header above instead. 1370 */ 1371 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb) 1372 { 1373 #define C(x) n->x = skb->x 1374 1375 n->next = n->prev = NULL; 1376 n->sk = NULL; 1377 __copy_skb_header(n, skb); 1378 1379 C(len); 1380 C(data_len); 1381 C(mac_len); 1382 n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len; 1383 n->cloned = 1; 1384 n->nohdr = 0; 1385 n->peeked = 0; 1386 C(pfmemalloc); 1387 C(pp_recycle); 1388 n->destructor = NULL; 1389 C(tail); 1390 C(end); 1391 C(head); 1392 C(head_frag); 1393 C(data); 1394 C(truesize); 1395 refcount_set(&n->users, 1); 1396 1397 atomic_inc(&(skb_shinfo(skb)->dataref)); 1398 skb->cloned = 1; 1399 1400 return n; 1401 #undef C 1402 } 1403 1404 /** 1405 * alloc_skb_for_msg() - allocate sk_buff to wrap frag list forming a msg 1406 * @first: first sk_buff of the msg 1407 */ 1408 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first) 1409 { 1410 struct sk_buff *n; 1411 1412 n = alloc_skb(0, GFP_ATOMIC); 1413 if (!n) 1414 return NULL; 1415 1416 n->len = first->len; 1417 n->data_len = first->len; 1418 n->truesize = first->truesize; 1419 1420 skb_shinfo(n)->frag_list = first; 1421 1422 __copy_skb_header(n, first); 1423 n->destructor = NULL; 1424 1425 return n; 1426 } 1427 EXPORT_SYMBOL_GPL(alloc_skb_for_msg); 1428 1429 /** 1430 * skb_morph - morph one skb into another 1431 * @dst: the skb to receive the contents 1432 * @src: the skb to supply the contents 1433 * 1434 * This is identical to skb_clone except that the target skb is 1435 * supplied by the user. 1436 * 1437 * The target skb is returned upon exit. 1438 */ 1439 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src) 1440 { 1441 skb_release_all(dst, SKB_CONSUMED, false); 1442 return __skb_clone(dst, src); 1443 } 1444 EXPORT_SYMBOL_GPL(skb_morph); 1445 1446 int mm_account_pinned_pages(struct mmpin *mmp, size_t size) 1447 { 1448 unsigned long max_pg, num_pg, new_pg, old_pg, rlim; 1449 struct user_struct *user; 1450 1451 if (capable(CAP_IPC_LOCK) || !size) 1452 return 0; 1453 1454 rlim = rlimit(RLIMIT_MEMLOCK); 1455 if (rlim == RLIM_INFINITY) 1456 return 0; 1457 1458 num_pg = (size >> PAGE_SHIFT) + 2; /* worst case */ 1459 max_pg = rlim >> PAGE_SHIFT; 1460 user = mmp->user ? : current_user(); 1461 1462 old_pg = atomic_long_read(&user->locked_vm); 1463 do { 1464 new_pg = old_pg + num_pg; 1465 if (new_pg > max_pg) 1466 return -ENOBUFS; 1467 } while (!atomic_long_try_cmpxchg(&user->locked_vm, &old_pg, new_pg)); 1468 1469 if (!mmp->user) { 1470 mmp->user = get_uid(user); 1471 mmp->num_pg = num_pg; 1472 } else { 1473 mmp->num_pg += num_pg; 1474 } 1475 1476 return 0; 1477 } 1478 EXPORT_SYMBOL_GPL(mm_account_pinned_pages); 1479 1480 void mm_unaccount_pinned_pages(struct mmpin *mmp) 1481 { 1482 if (mmp->user) { 1483 atomic_long_sub(mmp->num_pg, &mmp->user->locked_vm); 1484 free_uid(mmp->user); 1485 } 1486 } 1487 EXPORT_SYMBOL_GPL(mm_unaccount_pinned_pages); 1488 1489 static struct ubuf_info *msg_zerocopy_alloc(struct sock *sk, size_t size) 1490 { 1491 struct ubuf_info_msgzc *uarg; 1492 struct sk_buff *skb; 1493 1494 WARN_ON_ONCE(!in_task()); 1495 1496 skb = sock_omalloc(sk, 0, GFP_KERNEL); 1497 if (!skb) 1498 return NULL; 1499 1500 BUILD_BUG_ON(sizeof(*uarg) > sizeof(skb->cb)); 1501 uarg = (void *)skb->cb; 1502 uarg->mmp.user = NULL; 1503 1504 if (mm_account_pinned_pages(&uarg->mmp, size)) { 1505 kfree_skb(skb); 1506 return NULL; 1507 } 1508 1509 uarg->ubuf.callback = msg_zerocopy_callback; 1510 uarg->id = ((u32)atomic_inc_return(&sk->sk_zckey)) - 1; 1511 uarg->len = 1; 1512 uarg->bytelen = size; 1513 uarg->zerocopy = 1; 1514 uarg->ubuf.flags = SKBFL_ZEROCOPY_FRAG | SKBFL_DONT_ORPHAN; 1515 refcount_set(&uarg->ubuf.refcnt, 1); 1516 sock_hold(sk); 1517 1518 return &uarg->ubuf; 1519 } 1520 1521 static inline struct sk_buff *skb_from_uarg(struct ubuf_info_msgzc *uarg) 1522 { 1523 return container_of((void *)uarg, struct sk_buff, cb); 1524 } 1525 1526 struct ubuf_info *msg_zerocopy_realloc(struct sock *sk, size_t size, 1527 struct ubuf_info *uarg) 1528 { 1529 if (uarg) { 1530 struct ubuf_info_msgzc *uarg_zc; 1531 const u32 byte_limit = 1 << 19; /* limit to a few TSO */ 1532 u32 bytelen, next; 1533 1534 /* there might be non MSG_ZEROCOPY users */ 1535 if (uarg->callback != msg_zerocopy_callback) 1536 return NULL; 1537 1538 /* realloc only when socket is locked (TCP, UDP cork), 1539 * so uarg->len and sk_zckey access is serialized 1540 */ 1541 if (!sock_owned_by_user(sk)) { 1542 WARN_ON_ONCE(1); 1543 return NULL; 1544 } 1545 1546 uarg_zc = uarg_to_msgzc(uarg); 1547 bytelen = uarg_zc->bytelen + size; 1548 if (uarg_zc->len == USHRT_MAX - 1 || bytelen > byte_limit) { 1549 /* TCP can create new skb to attach new uarg */ 1550 if (sk->sk_type == SOCK_STREAM) 1551 goto new_alloc; 1552 return NULL; 1553 } 1554 1555 next = (u32)atomic_read(&sk->sk_zckey); 1556 if ((u32)(uarg_zc->id + uarg_zc->len) == next) { 1557 if (mm_account_pinned_pages(&uarg_zc->mmp, size)) 1558 return NULL; 1559 uarg_zc->len++; 1560 uarg_zc->bytelen = bytelen; 1561 atomic_set(&sk->sk_zckey, ++next); 1562 1563 /* no extra ref when appending to datagram (MSG_MORE) */ 1564 if (sk->sk_type == SOCK_STREAM) 1565 net_zcopy_get(uarg); 1566 1567 return uarg; 1568 } 1569 } 1570 1571 new_alloc: 1572 return msg_zerocopy_alloc(sk, size); 1573 } 1574 EXPORT_SYMBOL_GPL(msg_zerocopy_realloc); 1575 1576 static bool skb_zerocopy_notify_extend(struct sk_buff *skb, u32 lo, u16 len) 1577 { 1578 struct sock_exterr_skb *serr = SKB_EXT_ERR(skb); 1579 u32 old_lo, old_hi; 1580 u64 sum_len; 1581 1582 old_lo = serr->ee.ee_info; 1583 old_hi = serr->ee.ee_data; 1584 sum_len = old_hi - old_lo + 1ULL + len; 1585 1586 if (sum_len >= (1ULL << 32)) 1587 return false; 1588 1589 if (lo != old_hi + 1) 1590 return false; 1591 1592 serr->ee.ee_data += len; 1593 return true; 1594 } 1595 1596 static void __msg_zerocopy_callback(struct ubuf_info_msgzc *uarg) 1597 { 1598 struct sk_buff *tail, *skb = skb_from_uarg(uarg); 1599 struct sock_exterr_skb *serr; 1600 struct sock *sk = skb->sk; 1601 struct sk_buff_head *q; 1602 unsigned long flags; 1603 bool is_zerocopy; 1604 u32 lo, hi; 1605 u16 len; 1606 1607 mm_unaccount_pinned_pages(&uarg->mmp); 1608 1609 /* if !len, there was only 1 call, and it was aborted 1610 * so do not queue a completion notification 1611 */ 1612 if (!uarg->len || sock_flag(sk, SOCK_DEAD)) 1613 goto release; 1614 1615 len = uarg->len; 1616 lo = uarg->id; 1617 hi = uarg->id + len - 1; 1618 is_zerocopy = uarg->zerocopy; 1619 1620 serr = SKB_EXT_ERR(skb); 1621 memset(serr, 0, sizeof(*serr)); 1622 serr->ee.ee_errno = 0; 1623 serr->ee.ee_origin = SO_EE_ORIGIN_ZEROCOPY; 1624 serr->ee.ee_data = hi; 1625 serr->ee.ee_info = lo; 1626 if (!is_zerocopy) 1627 serr->ee.ee_code |= SO_EE_CODE_ZEROCOPY_COPIED; 1628 1629 q = &sk->sk_error_queue; 1630 spin_lock_irqsave(&q->lock, flags); 1631 tail = skb_peek_tail(q); 1632 if (!tail || SKB_EXT_ERR(tail)->ee.ee_origin != SO_EE_ORIGIN_ZEROCOPY || 1633 !skb_zerocopy_notify_extend(tail, lo, len)) { 1634 __skb_queue_tail(q, skb); 1635 skb = NULL; 1636 } 1637 spin_unlock_irqrestore(&q->lock, flags); 1638 1639 sk_error_report(sk); 1640 1641 release: 1642 consume_skb(skb); 1643 sock_put(sk); 1644 } 1645 1646 void msg_zerocopy_callback(struct sk_buff *skb, struct ubuf_info *uarg, 1647 bool success) 1648 { 1649 struct ubuf_info_msgzc *uarg_zc = uarg_to_msgzc(uarg); 1650 1651 uarg_zc->zerocopy = uarg_zc->zerocopy & success; 1652 1653 if (refcount_dec_and_test(&uarg->refcnt)) 1654 __msg_zerocopy_callback(uarg_zc); 1655 } 1656 EXPORT_SYMBOL_GPL(msg_zerocopy_callback); 1657 1658 void msg_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref) 1659 { 1660 struct sock *sk = skb_from_uarg(uarg_to_msgzc(uarg))->sk; 1661 1662 atomic_dec(&sk->sk_zckey); 1663 uarg_to_msgzc(uarg)->len--; 1664 1665 if (have_uref) 1666 msg_zerocopy_callback(NULL, uarg, true); 1667 } 1668 EXPORT_SYMBOL_GPL(msg_zerocopy_put_abort); 1669 1670 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb, 1671 struct msghdr *msg, int len, 1672 struct ubuf_info *uarg) 1673 { 1674 struct ubuf_info *orig_uarg = skb_zcopy(skb); 1675 int err, orig_len = skb->len; 1676 1677 /* An skb can only point to one uarg. This edge case happens when 1678 * TCP appends to an skb, but zerocopy_realloc triggered a new alloc. 1679 */ 1680 if (orig_uarg && uarg != orig_uarg) 1681 return -EEXIST; 1682 1683 err = __zerocopy_sg_from_iter(msg, sk, skb, &msg->msg_iter, len); 1684 if (err == -EFAULT || (err == -EMSGSIZE && skb->len == orig_len)) { 1685 struct sock *save_sk = skb->sk; 1686 1687 /* Streams do not free skb on error. Reset to prev state. */ 1688 iov_iter_revert(&msg->msg_iter, skb->len - orig_len); 1689 skb->sk = sk; 1690 ___pskb_trim(skb, orig_len); 1691 skb->sk = save_sk; 1692 return err; 1693 } 1694 1695 skb_zcopy_set(skb, uarg, NULL); 1696 return skb->len - orig_len; 1697 } 1698 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_stream); 1699 1700 void __skb_zcopy_downgrade_managed(struct sk_buff *skb) 1701 { 1702 int i; 1703 1704 skb_shinfo(skb)->flags &= ~SKBFL_MANAGED_FRAG_REFS; 1705 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 1706 skb_frag_ref(skb, i); 1707 } 1708 EXPORT_SYMBOL_GPL(__skb_zcopy_downgrade_managed); 1709 1710 static int skb_zerocopy_clone(struct sk_buff *nskb, struct sk_buff *orig, 1711 gfp_t gfp_mask) 1712 { 1713 if (skb_zcopy(orig)) { 1714 if (skb_zcopy(nskb)) { 1715 /* !gfp_mask callers are verified to !skb_zcopy(nskb) */ 1716 if (!gfp_mask) { 1717 WARN_ON_ONCE(1); 1718 return -ENOMEM; 1719 } 1720 if (skb_uarg(nskb) == skb_uarg(orig)) 1721 return 0; 1722 if (skb_copy_ubufs(nskb, GFP_ATOMIC)) 1723 return -EIO; 1724 } 1725 skb_zcopy_set(nskb, skb_uarg(orig), NULL); 1726 } 1727 return 0; 1728 } 1729 1730 /** 1731 * skb_copy_ubufs - copy userspace skb frags buffers to kernel 1732 * @skb: the skb to modify 1733 * @gfp_mask: allocation priority 1734 * 1735 * This must be called on skb with SKBFL_ZEROCOPY_ENABLE. 1736 * It will copy all frags into kernel and drop the reference 1737 * to userspace pages. 1738 * 1739 * If this function is called from an interrupt gfp_mask() must be 1740 * %GFP_ATOMIC. 1741 * 1742 * Returns 0 on success or a negative error code on failure 1743 * to allocate kernel memory to copy to. 1744 */ 1745 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask) 1746 { 1747 int num_frags = skb_shinfo(skb)->nr_frags; 1748 struct page *page, *head = NULL; 1749 int i, order, psize, new_frags; 1750 u32 d_off; 1751 1752 if (skb_shared(skb) || skb_unclone(skb, gfp_mask)) 1753 return -EINVAL; 1754 1755 if (!num_frags) 1756 goto release; 1757 1758 /* We might have to allocate high order pages, so compute what minimum 1759 * page order is needed. 1760 */ 1761 order = 0; 1762 while ((PAGE_SIZE << order) * MAX_SKB_FRAGS < __skb_pagelen(skb)) 1763 order++; 1764 psize = (PAGE_SIZE << order); 1765 1766 new_frags = (__skb_pagelen(skb) + psize - 1) >> (PAGE_SHIFT + order); 1767 for (i = 0; i < new_frags; i++) { 1768 page = alloc_pages(gfp_mask | __GFP_COMP, order); 1769 if (!page) { 1770 while (head) { 1771 struct page *next = (struct page *)page_private(head); 1772 put_page(head); 1773 head = next; 1774 } 1775 return -ENOMEM; 1776 } 1777 set_page_private(page, (unsigned long)head); 1778 head = page; 1779 } 1780 1781 page = head; 1782 d_off = 0; 1783 for (i = 0; i < num_frags; i++) { 1784 skb_frag_t *f = &skb_shinfo(skb)->frags[i]; 1785 u32 p_off, p_len, copied; 1786 struct page *p; 1787 u8 *vaddr; 1788 1789 skb_frag_foreach_page(f, skb_frag_off(f), skb_frag_size(f), 1790 p, p_off, p_len, copied) { 1791 u32 copy, done = 0; 1792 vaddr = kmap_atomic(p); 1793 1794 while (done < p_len) { 1795 if (d_off == psize) { 1796 d_off = 0; 1797 page = (struct page *)page_private(page); 1798 } 1799 copy = min_t(u32, psize - d_off, p_len - done); 1800 memcpy(page_address(page) + d_off, 1801 vaddr + p_off + done, copy); 1802 done += copy; 1803 d_off += copy; 1804 } 1805 kunmap_atomic(vaddr); 1806 } 1807 } 1808 1809 /* skb frags release userspace buffers */ 1810 for (i = 0; i < num_frags; i++) 1811 skb_frag_unref(skb, i); 1812 1813 /* skb frags point to kernel buffers */ 1814 for (i = 0; i < new_frags - 1; i++) { 1815 __skb_fill_page_desc(skb, i, head, 0, psize); 1816 head = (struct page *)page_private(head); 1817 } 1818 __skb_fill_page_desc(skb, new_frags - 1, head, 0, d_off); 1819 skb_shinfo(skb)->nr_frags = new_frags; 1820 1821 release: 1822 skb_zcopy_clear(skb, false); 1823 return 0; 1824 } 1825 EXPORT_SYMBOL_GPL(skb_copy_ubufs); 1826 1827 /** 1828 * skb_clone - duplicate an sk_buff 1829 * @skb: buffer to clone 1830 * @gfp_mask: allocation priority 1831 * 1832 * Duplicate an &sk_buff. The new one is not owned by a socket. Both 1833 * copies share the same packet data but not structure. The new 1834 * buffer has a reference count of 1. If the allocation fails the 1835 * function returns %NULL otherwise the new buffer is returned. 1836 * 1837 * If this function is called from an interrupt gfp_mask() must be 1838 * %GFP_ATOMIC. 1839 */ 1840 1841 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask) 1842 { 1843 struct sk_buff_fclones *fclones = container_of(skb, 1844 struct sk_buff_fclones, 1845 skb1); 1846 struct sk_buff *n; 1847 1848 if (skb_orphan_frags(skb, gfp_mask)) 1849 return NULL; 1850 1851 if (skb->fclone == SKB_FCLONE_ORIG && 1852 refcount_read(&fclones->fclone_ref) == 1) { 1853 n = &fclones->skb2; 1854 refcount_set(&fclones->fclone_ref, 2); 1855 n->fclone = SKB_FCLONE_CLONE; 1856 } else { 1857 if (skb_pfmemalloc(skb)) 1858 gfp_mask |= __GFP_MEMALLOC; 1859 1860 n = kmem_cache_alloc(skbuff_cache, gfp_mask); 1861 if (!n) 1862 return NULL; 1863 1864 n->fclone = SKB_FCLONE_UNAVAILABLE; 1865 } 1866 1867 return __skb_clone(n, skb); 1868 } 1869 EXPORT_SYMBOL(skb_clone); 1870 1871 void skb_headers_offset_update(struct sk_buff *skb, int off) 1872 { 1873 /* Only adjust this if it actually is csum_start rather than csum */ 1874 if (skb->ip_summed == CHECKSUM_PARTIAL) 1875 skb->csum_start += off; 1876 /* {transport,network,mac}_header and tail are relative to skb->head */ 1877 skb->transport_header += off; 1878 skb->network_header += off; 1879 if (skb_mac_header_was_set(skb)) 1880 skb->mac_header += off; 1881 skb->inner_transport_header += off; 1882 skb->inner_network_header += off; 1883 skb->inner_mac_header += off; 1884 } 1885 EXPORT_SYMBOL(skb_headers_offset_update); 1886 1887 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old) 1888 { 1889 __copy_skb_header(new, old); 1890 1891 skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size; 1892 skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs; 1893 skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type; 1894 } 1895 EXPORT_SYMBOL(skb_copy_header); 1896 1897 static inline int skb_alloc_rx_flag(const struct sk_buff *skb) 1898 { 1899 if (skb_pfmemalloc(skb)) 1900 return SKB_ALLOC_RX; 1901 return 0; 1902 } 1903 1904 /** 1905 * skb_copy - create private copy of an sk_buff 1906 * @skb: buffer to copy 1907 * @gfp_mask: allocation priority 1908 * 1909 * Make a copy of both an &sk_buff and its data. This is used when the 1910 * caller wishes to modify the data and needs a private copy of the 1911 * data to alter. Returns %NULL on failure or the pointer to the buffer 1912 * on success. The returned buffer has a reference count of 1. 1913 * 1914 * As by-product this function converts non-linear &sk_buff to linear 1915 * one, so that &sk_buff becomes completely private and caller is allowed 1916 * to modify all the data of returned buffer. This means that this 1917 * function is not recommended for use in circumstances when only 1918 * header is going to be modified. Use pskb_copy() instead. 1919 */ 1920 1921 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask) 1922 { 1923 int headerlen = skb_headroom(skb); 1924 unsigned int size = skb_end_offset(skb) + skb->data_len; 1925 struct sk_buff *n = __alloc_skb(size, gfp_mask, 1926 skb_alloc_rx_flag(skb), NUMA_NO_NODE); 1927 1928 if (!n) 1929 return NULL; 1930 1931 /* Set the data pointer */ 1932 skb_reserve(n, headerlen); 1933 /* Set the tail pointer and length */ 1934 skb_put(n, skb->len); 1935 1936 BUG_ON(skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len)); 1937 1938 skb_copy_header(n, skb); 1939 return n; 1940 } 1941 EXPORT_SYMBOL(skb_copy); 1942 1943 /** 1944 * __pskb_copy_fclone - create copy of an sk_buff with private head. 1945 * @skb: buffer to copy 1946 * @headroom: headroom of new skb 1947 * @gfp_mask: allocation priority 1948 * @fclone: if true allocate the copy of the skb from the fclone 1949 * cache instead of the head cache; it is recommended to set this 1950 * to true for the cases where the copy will likely be cloned 1951 * 1952 * Make a copy of both an &sk_buff and part of its data, located 1953 * in header. Fragmented data remain shared. This is used when 1954 * the caller wishes to modify only header of &sk_buff and needs 1955 * private copy of the header to alter. Returns %NULL on failure 1956 * or the pointer to the buffer on success. 1957 * The returned buffer has a reference count of 1. 1958 */ 1959 1960 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom, 1961 gfp_t gfp_mask, bool fclone) 1962 { 1963 unsigned int size = skb_headlen(skb) + headroom; 1964 int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0); 1965 struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE); 1966 1967 if (!n) 1968 goto out; 1969 1970 /* Set the data pointer */ 1971 skb_reserve(n, headroom); 1972 /* Set the tail pointer and length */ 1973 skb_put(n, skb_headlen(skb)); 1974 /* Copy the bytes */ 1975 skb_copy_from_linear_data(skb, n->data, n->len); 1976 1977 n->truesize += skb->data_len; 1978 n->data_len = skb->data_len; 1979 n->len = skb->len; 1980 1981 if (skb_shinfo(skb)->nr_frags) { 1982 int i; 1983 1984 if (skb_orphan_frags(skb, gfp_mask) || 1985 skb_zerocopy_clone(n, skb, gfp_mask)) { 1986 kfree_skb(n); 1987 n = NULL; 1988 goto out; 1989 } 1990 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1991 skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i]; 1992 skb_frag_ref(skb, i); 1993 } 1994 skb_shinfo(n)->nr_frags = i; 1995 } 1996 1997 if (skb_has_frag_list(skb)) { 1998 skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list; 1999 skb_clone_fraglist(n); 2000 } 2001 2002 skb_copy_header(n, skb); 2003 out: 2004 return n; 2005 } 2006 EXPORT_SYMBOL(__pskb_copy_fclone); 2007 2008 /** 2009 * pskb_expand_head - reallocate header of &sk_buff 2010 * @skb: buffer to reallocate 2011 * @nhead: room to add at head 2012 * @ntail: room to add at tail 2013 * @gfp_mask: allocation priority 2014 * 2015 * Expands (or creates identical copy, if @nhead and @ntail are zero) 2016 * header of @skb. &sk_buff itself is not changed. &sk_buff MUST have 2017 * reference count of 1. Returns zero in the case of success or error, 2018 * if expansion failed. In the last case, &sk_buff is not changed. 2019 * 2020 * All the pointers pointing into skb header may change and must be 2021 * reloaded after call to this function. 2022 */ 2023 2024 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, 2025 gfp_t gfp_mask) 2026 { 2027 unsigned int osize = skb_end_offset(skb); 2028 unsigned int size = osize + nhead + ntail; 2029 long off; 2030 u8 *data; 2031 int i; 2032 2033 BUG_ON(nhead < 0); 2034 2035 BUG_ON(skb_shared(skb)); 2036 2037 skb_zcopy_downgrade_managed(skb); 2038 2039 if (skb_pfmemalloc(skb)) 2040 gfp_mask |= __GFP_MEMALLOC; 2041 2042 data = kmalloc_reserve(&size, gfp_mask, NUMA_NO_NODE, NULL); 2043 if (!data) 2044 goto nodata; 2045 size = SKB_WITH_OVERHEAD(size); 2046 2047 /* Copy only real data... and, alas, header. This should be 2048 * optimized for the cases when header is void. 2049 */ 2050 memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head); 2051 2052 memcpy((struct skb_shared_info *)(data + size), 2053 skb_shinfo(skb), 2054 offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags])); 2055 2056 /* 2057 * if shinfo is shared we must drop the old head gracefully, but if it 2058 * is not we can just drop the old head and let the existing refcount 2059 * be since all we did is relocate the values 2060 */ 2061 if (skb_cloned(skb)) { 2062 if (skb_orphan_frags(skb, gfp_mask)) 2063 goto nofrags; 2064 if (skb_zcopy(skb)) 2065 refcount_inc(&skb_uarg(skb)->refcnt); 2066 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 2067 skb_frag_ref(skb, i); 2068 2069 if (skb_has_frag_list(skb)) 2070 skb_clone_fraglist(skb); 2071 2072 skb_release_data(skb, SKB_CONSUMED, false); 2073 } else { 2074 skb_free_head(skb, false); 2075 } 2076 off = (data + nhead) - skb->head; 2077 2078 skb->head = data; 2079 skb->head_frag = 0; 2080 skb->data += off; 2081 2082 skb_set_end_offset(skb, size); 2083 #ifdef NET_SKBUFF_DATA_USES_OFFSET 2084 off = nhead; 2085 #endif 2086 skb->tail += off; 2087 skb_headers_offset_update(skb, nhead); 2088 skb->cloned = 0; 2089 skb->hdr_len = 0; 2090 skb->nohdr = 0; 2091 atomic_set(&skb_shinfo(skb)->dataref, 1); 2092 2093 skb_metadata_clear(skb); 2094 2095 /* It is not generally safe to change skb->truesize. 2096 * For the moment, we really care of rx path, or 2097 * when skb is orphaned (not attached to a socket). 2098 */ 2099 if (!skb->sk || skb->destructor == sock_edemux) 2100 skb->truesize += size - osize; 2101 2102 return 0; 2103 2104 nofrags: 2105 skb_kfree_head(data, size); 2106 nodata: 2107 return -ENOMEM; 2108 } 2109 EXPORT_SYMBOL(pskb_expand_head); 2110 2111 /* Make private copy of skb with writable head and some headroom */ 2112 2113 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom) 2114 { 2115 struct sk_buff *skb2; 2116 int delta = headroom - skb_headroom(skb); 2117 2118 if (delta <= 0) 2119 skb2 = pskb_copy(skb, GFP_ATOMIC); 2120 else { 2121 skb2 = skb_clone(skb, GFP_ATOMIC); 2122 if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0, 2123 GFP_ATOMIC)) { 2124 kfree_skb(skb2); 2125 skb2 = NULL; 2126 } 2127 } 2128 return skb2; 2129 } 2130 EXPORT_SYMBOL(skb_realloc_headroom); 2131 2132 /* Note: We plan to rework this in linux-6.4 */ 2133 int __skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri) 2134 { 2135 unsigned int saved_end_offset, saved_truesize; 2136 struct skb_shared_info *shinfo; 2137 int res; 2138 2139 saved_end_offset = skb_end_offset(skb); 2140 saved_truesize = skb->truesize; 2141 2142 res = pskb_expand_head(skb, 0, 0, pri); 2143 if (res) 2144 return res; 2145 2146 skb->truesize = saved_truesize; 2147 2148 if (likely(skb_end_offset(skb) == saved_end_offset)) 2149 return 0; 2150 2151 /* We can not change skb->end if the original or new value 2152 * is SKB_SMALL_HEAD_HEADROOM, as it might break skb_kfree_head(). 2153 */ 2154 if (saved_end_offset == SKB_SMALL_HEAD_HEADROOM || 2155 skb_end_offset(skb) == SKB_SMALL_HEAD_HEADROOM) { 2156 /* We think this path should not be taken. 2157 * Add a temporary trace to warn us just in case. 2158 */ 2159 pr_err_once("__skb_unclone_keeptruesize() skb_end_offset() %u -> %u\n", 2160 saved_end_offset, skb_end_offset(skb)); 2161 WARN_ON_ONCE(1); 2162 return 0; 2163 } 2164 2165 shinfo = skb_shinfo(skb); 2166 2167 /* We are about to change back skb->end, 2168 * we need to move skb_shinfo() to its new location. 2169 */ 2170 memmove(skb->head + saved_end_offset, 2171 shinfo, 2172 offsetof(struct skb_shared_info, frags[shinfo->nr_frags])); 2173 2174 skb_set_end_offset(skb, saved_end_offset); 2175 2176 return 0; 2177 } 2178 2179 /** 2180 * skb_expand_head - reallocate header of &sk_buff 2181 * @skb: buffer to reallocate 2182 * @headroom: needed headroom 2183 * 2184 * Unlike skb_realloc_headroom, this one does not allocate a new skb 2185 * if possible; copies skb->sk to new skb as needed 2186 * and frees original skb in case of failures. 2187 * 2188 * It expect increased headroom and generates warning otherwise. 2189 */ 2190 2191 struct sk_buff *skb_expand_head(struct sk_buff *skb, unsigned int headroom) 2192 { 2193 int delta = headroom - skb_headroom(skb); 2194 int osize = skb_end_offset(skb); 2195 struct sock *sk = skb->sk; 2196 2197 if (WARN_ONCE(delta <= 0, 2198 "%s is expecting an increase in the headroom", __func__)) 2199 return skb; 2200 2201 delta = SKB_DATA_ALIGN(delta); 2202 /* pskb_expand_head() might crash, if skb is shared. */ 2203 if (skb_shared(skb) || !is_skb_wmem(skb)) { 2204 struct sk_buff *nskb = skb_clone(skb, GFP_ATOMIC); 2205 2206 if (unlikely(!nskb)) 2207 goto fail; 2208 2209 if (sk) 2210 skb_set_owner_w(nskb, sk); 2211 consume_skb(skb); 2212 skb = nskb; 2213 } 2214 if (pskb_expand_head(skb, delta, 0, GFP_ATOMIC)) 2215 goto fail; 2216 2217 if (sk && is_skb_wmem(skb)) { 2218 delta = skb_end_offset(skb) - osize; 2219 refcount_add(delta, &sk->sk_wmem_alloc); 2220 skb->truesize += delta; 2221 } 2222 return skb; 2223 2224 fail: 2225 kfree_skb(skb); 2226 return NULL; 2227 } 2228 EXPORT_SYMBOL(skb_expand_head); 2229 2230 /** 2231 * skb_copy_expand - copy and expand sk_buff 2232 * @skb: buffer to copy 2233 * @newheadroom: new free bytes at head 2234 * @newtailroom: new free bytes at tail 2235 * @gfp_mask: allocation priority 2236 * 2237 * Make a copy of both an &sk_buff and its data and while doing so 2238 * allocate additional space. 2239 * 2240 * This is used when the caller wishes to modify the data and needs a 2241 * private copy of the data to alter as well as more space for new fields. 2242 * Returns %NULL on failure or the pointer to the buffer 2243 * on success. The returned buffer has a reference count of 1. 2244 * 2245 * You must pass %GFP_ATOMIC as the allocation priority if this function 2246 * is called from an interrupt. 2247 */ 2248 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, 2249 int newheadroom, int newtailroom, 2250 gfp_t gfp_mask) 2251 { 2252 /* 2253 * Allocate the copy buffer 2254 */ 2255 struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom, 2256 gfp_mask, skb_alloc_rx_flag(skb), 2257 NUMA_NO_NODE); 2258 int oldheadroom = skb_headroom(skb); 2259 int head_copy_len, head_copy_off; 2260 2261 if (!n) 2262 return NULL; 2263 2264 skb_reserve(n, newheadroom); 2265 2266 /* Set the tail pointer and length */ 2267 skb_put(n, skb->len); 2268 2269 head_copy_len = oldheadroom; 2270 head_copy_off = 0; 2271 if (newheadroom <= head_copy_len) 2272 head_copy_len = newheadroom; 2273 else 2274 head_copy_off = newheadroom - head_copy_len; 2275 2276 /* Copy the linear header and data. */ 2277 BUG_ON(skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off, 2278 skb->len + head_copy_len)); 2279 2280 skb_copy_header(n, skb); 2281 2282 skb_headers_offset_update(n, newheadroom - oldheadroom); 2283 2284 return n; 2285 } 2286 EXPORT_SYMBOL(skb_copy_expand); 2287 2288 /** 2289 * __skb_pad - zero pad the tail of an skb 2290 * @skb: buffer to pad 2291 * @pad: space to pad 2292 * @free_on_error: free buffer on error 2293 * 2294 * Ensure that a buffer is followed by a padding area that is zero 2295 * filled. Used by network drivers which may DMA or transfer data 2296 * beyond the buffer end onto the wire. 2297 * 2298 * May return error in out of memory cases. The skb is freed on error 2299 * if @free_on_error is true. 2300 */ 2301 2302 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error) 2303 { 2304 int err; 2305 int ntail; 2306 2307 /* If the skbuff is non linear tailroom is always zero.. */ 2308 if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) { 2309 memset(skb->data+skb->len, 0, pad); 2310 return 0; 2311 } 2312 2313 ntail = skb->data_len + pad - (skb->end - skb->tail); 2314 if (likely(skb_cloned(skb) || ntail > 0)) { 2315 err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC); 2316 if (unlikely(err)) 2317 goto free_skb; 2318 } 2319 2320 /* FIXME: The use of this function with non-linear skb's really needs 2321 * to be audited. 2322 */ 2323 err = skb_linearize(skb); 2324 if (unlikely(err)) 2325 goto free_skb; 2326 2327 memset(skb->data + skb->len, 0, pad); 2328 return 0; 2329 2330 free_skb: 2331 if (free_on_error) 2332 kfree_skb(skb); 2333 return err; 2334 } 2335 EXPORT_SYMBOL(__skb_pad); 2336 2337 /** 2338 * pskb_put - add data to the tail of a potentially fragmented buffer 2339 * @skb: start of the buffer to use 2340 * @tail: tail fragment of the buffer to use 2341 * @len: amount of data to add 2342 * 2343 * This function extends the used data area of the potentially 2344 * fragmented buffer. @tail must be the last fragment of @skb -- or 2345 * @skb itself. If this would exceed the total buffer size the kernel 2346 * will panic. A pointer to the first byte of the extra data is 2347 * returned. 2348 */ 2349 2350 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len) 2351 { 2352 if (tail != skb) { 2353 skb->data_len += len; 2354 skb->len += len; 2355 } 2356 return skb_put(tail, len); 2357 } 2358 EXPORT_SYMBOL_GPL(pskb_put); 2359 2360 /** 2361 * skb_put - add data to a buffer 2362 * @skb: buffer to use 2363 * @len: amount of data to add 2364 * 2365 * This function extends the used data area of the buffer. If this would 2366 * exceed the total buffer size the kernel will panic. A pointer to the 2367 * first byte of the extra data is returned. 2368 */ 2369 void *skb_put(struct sk_buff *skb, unsigned int len) 2370 { 2371 void *tmp = skb_tail_pointer(skb); 2372 SKB_LINEAR_ASSERT(skb); 2373 skb->tail += len; 2374 skb->len += len; 2375 if (unlikely(skb->tail > skb->end)) 2376 skb_over_panic(skb, len, __builtin_return_address(0)); 2377 return tmp; 2378 } 2379 EXPORT_SYMBOL(skb_put); 2380 2381 /** 2382 * skb_push - add data to the start of a buffer 2383 * @skb: buffer to use 2384 * @len: amount of data to add 2385 * 2386 * This function extends the used data area of the buffer at the buffer 2387 * start. If this would exceed the total buffer headroom the kernel will 2388 * panic. A pointer to the first byte of the extra data is returned. 2389 */ 2390 void *skb_push(struct sk_buff *skb, unsigned int len) 2391 { 2392 skb->data -= len; 2393 skb->len += len; 2394 if (unlikely(skb->data < skb->head)) 2395 skb_under_panic(skb, len, __builtin_return_address(0)); 2396 return skb->data; 2397 } 2398 EXPORT_SYMBOL(skb_push); 2399 2400 /** 2401 * skb_pull - remove data from the start of a buffer 2402 * @skb: buffer to use 2403 * @len: amount of data to remove 2404 * 2405 * This function removes data from the start of a buffer, returning 2406 * the memory to the headroom. A pointer to the next data in the buffer 2407 * is returned. Once the data has been pulled future pushes will overwrite 2408 * the old data. 2409 */ 2410 void *skb_pull(struct sk_buff *skb, unsigned int len) 2411 { 2412 return skb_pull_inline(skb, len); 2413 } 2414 EXPORT_SYMBOL(skb_pull); 2415 2416 /** 2417 * skb_pull_data - remove data from the start of a buffer returning its 2418 * original position. 2419 * @skb: buffer to use 2420 * @len: amount of data to remove 2421 * 2422 * This function removes data from the start of a buffer, returning 2423 * the memory to the headroom. A pointer to the original data in the buffer 2424 * is returned after checking if there is enough data to pull. Once the 2425 * data has been pulled future pushes will overwrite the old data. 2426 */ 2427 void *skb_pull_data(struct sk_buff *skb, size_t len) 2428 { 2429 void *data = skb->data; 2430 2431 if (skb->len < len) 2432 return NULL; 2433 2434 skb_pull(skb, len); 2435 2436 return data; 2437 } 2438 EXPORT_SYMBOL(skb_pull_data); 2439 2440 /** 2441 * skb_trim - remove end from a buffer 2442 * @skb: buffer to alter 2443 * @len: new length 2444 * 2445 * Cut the length of a buffer down by removing data from the tail. If 2446 * the buffer is already under the length specified it is not modified. 2447 * The skb must be linear. 2448 */ 2449 void skb_trim(struct sk_buff *skb, unsigned int len) 2450 { 2451 if (skb->len > len) 2452 __skb_trim(skb, len); 2453 } 2454 EXPORT_SYMBOL(skb_trim); 2455 2456 /* Trims skb to length len. It can change skb pointers. 2457 */ 2458 2459 int ___pskb_trim(struct sk_buff *skb, unsigned int len) 2460 { 2461 struct sk_buff **fragp; 2462 struct sk_buff *frag; 2463 int offset = skb_headlen(skb); 2464 int nfrags = skb_shinfo(skb)->nr_frags; 2465 int i; 2466 int err; 2467 2468 if (skb_cloned(skb) && 2469 unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))) 2470 return err; 2471 2472 i = 0; 2473 if (offset >= len) 2474 goto drop_pages; 2475 2476 for (; i < nfrags; i++) { 2477 int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]); 2478 2479 if (end < len) { 2480 offset = end; 2481 continue; 2482 } 2483 2484 skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset); 2485 2486 drop_pages: 2487 skb_shinfo(skb)->nr_frags = i; 2488 2489 for (; i < nfrags; i++) 2490 skb_frag_unref(skb, i); 2491 2492 if (skb_has_frag_list(skb)) 2493 skb_drop_fraglist(skb); 2494 goto done; 2495 } 2496 2497 for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp); 2498 fragp = &frag->next) { 2499 int end = offset + frag->len; 2500 2501 if (skb_shared(frag)) { 2502 struct sk_buff *nfrag; 2503 2504 nfrag = skb_clone(frag, GFP_ATOMIC); 2505 if (unlikely(!nfrag)) 2506 return -ENOMEM; 2507 2508 nfrag->next = frag->next; 2509 consume_skb(frag); 2510 frag = nfrag; 2511 *fragp = frag; 2512 } 2513 2514 if (end < len) { 2515 offset = end; 2516 continue; 2517 } 2518 2519 if (end > len && 2520 unlikely((err = pskb_trim(frag, len - offset)))) 2521 return err; 2522 2523 if (frag->next) 2524 skb_drop_list(&frag->next); 2525 break; 2526 } 2527 2528 done: 2529 if (len > skb_headlen(skb)) { 2530 skb->data_len -= skb->len - len; 2531 skb->len = len; 2532 } else { 2533 skb->len = len; 2534 skb->data_len = 0; 2535 skb_set_tail_pointer(skb, len); 2536 } 2537 2538 if (!skb->sk || skb->destructor == sock_edemux) 2539 skb_condense(skb); 2540 return 0; 2541 } 2542 EXPORT_SYMBOL(___pskb_trim); 2543 2544 /* Note : use pskb_trim_rcsum() instead of calling this directly 2545 */ 2546 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len) 2547 { 2548 if (skb->ip_summed == CHECKSUM_COMPLETE) { 2549 int delta = skb->len - len; 2550 2551 skb->csum = csum_block_sub(skb->csum, 2552 skb_checksum(skb, len, delta, 0), 2553 len); 2554 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { 2555 int hdlen = (len > skb_headlen(skb)) ? skb_headlen(skb) : len; 2556 int offset = skb_checksum_start_offset(skb) + skb->csum_offset; 2557 2558 if (offset + sizeof(__sum16) > hdlen) 2559 return -EINVAL; 2560 } 2561 return __pskb_trim(skb, len); 2562 } 2563 EXPORT_SYMBOL(pskb_trim_rcsum_slow); 2564 2565 /** 2566 * __pskb_pull_tail - advance tail of skb header 2567 * @skb: buffer to reallocate 2568 * @delta: number of bytes to advance tail 2569 * 2570 * The function makes a sense only on a fragmented &sk_buff, 2571 * it expands header moving its tail forward and copying necessary 2572 * data from fragmented part. 2573 * 2574 * &sk_buff MUST have reference count of 1. 2575 * 2576 * Returns %NULL (and &sk_buff does not change) if pull failed 2577 * or value of new tail of skb in the case of success. 2578 * 2579 * All the pointers pointing into skb header may change and must be 2580 * reloaded after call to this function. 2581 */ 2582 2583 /* Moves tail of skb head forward, copying data from fragmented part, 2584 * when it is necessary. 2585 * 1. It may fail due to malloc failure. 2586 * 2. It may change skb pointers. 2587 * 2588 * It is pretty complicated. Luckily, it is called only in exceptional cases. 2589 */ 2590 void *__pskb_pull_tail(struct sk_buff *skb, int delta) 2591 { 2592 /* If skb has not enough free space at tail, get new one 2593 * plus 128 bytes for future expansions. If we have enough 2594 * room at tail, reallocate without expansion only if skb is cloned. 2595 */ 2596 int i, k, eat = (skb->tail + delta) - skb->end; 2597 2598 if (eat > 0 || skb_cloned(skb)) { 2599 if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0, 2600 GFP_ATOMIC)) 2601 return NULL; 2602 } 2603 2604 BUG_ON(skb_copy_bits(skb, skb_headlen(skb), 2605 skb_tail_pointer(skb), delta)); 2606 2607 /* Optimization: no fragments, no reasons to preestimate 2608 * size of pulled pages. Superb. 2609 */ 2610 if (!skb_has_frag_list(skb)) 2611 goto pull_pages; 2612 2613 /* Estimate size of pulled pages. */ 2614 eat = delta; 2615 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2616 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 2617 2618 if (size >= eat) 2619 goto pull_pages; 2620 eat -= size; 2621 } 2622 2623 /* If we need update frag list, we are in troubles. 2624 * Certainly, it is possible to add an offset to skb data, 2625 * but taking into account that pulling is expected to 2626 * be very rare operation, it is worth to fight against 2627 * further bloating skb head and crucify ourselves here instead. 2628 * Pure masohism, indeed. 8)8) 2629 */ 2630 if (eat) { 2631 struct sk_buff *list = skb_shinfo(skb)->frag_list; 2632 struct sk_buff *clone = NULL; 2633 struct sk_buff *insp = NULL; 2634 2635 do { 2636 if (list->len <= eat) { 2637 /* Eaten as whole. */ 2638 eat -= list->len; 2639 list = list->next; 2640 insp = list; 2641 } else { 2642 /* Eaten partially. */ 2643 if (skb_is_gso(skb) && !list->head_frag && 2644 skb_headlen(list)) 2645 skb_shinfo(skb)->gso_type |= SKB_GSO_DODGY; 2646 2647 if (skb_shared(list)) { 2648 /* Sucks! We need to fork list. :-( */ 2649 clone = skb_clone(list, GFP_ATOMIC); 2650 if (!clone) 2651 return NULL; 2652 insp = list->next; 2653 list = clone; 2654 } else { 2655 /* This may be pulled without 2656 * problems. */ 2657 insp = list; 2658 } 2659 if (!pskb_pull(list, eat)) { 2660 kfree_skb(clone); 2661 return NULL; 2662 } 2663 break; 2664 } 2665 } while (eat); 2666 2667 /* Free pulled out fragments. */ 2668 while ((list = skb_shinfo(skb)->frag_list) != insp) { 2669 skb_shinfo(skb)->frag_list = list->next; 2670 consume_skb(list); 2671 } 2672 /* And insert new clone at head. */ 2673 if (clone) { 2674 clone->next = list; 2675 skb_shinfo(skb)->frag_list = clone; 2676 } 2677 } 2678 /* Success! Now we may commit changes to skb data. */ 2679 2680 pull_pages: 2681 eat = delta; 2682 k = 0; 2683 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2684 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 2685 2686 if (size <= eat) { 2687 skb_frag_unref(skb, i); 2688 eat -= size; 2689 } else { 2690 skb_frag_t *frag = &skb_shinfo(skb)->frags[k]; 2691 2692 *frag = skb_shinfo(skb)->frags[i]; 2693 if (eat) { 2694 skb_frag_off_add(frag, eat); 2695 skb_frag_size_sub(frag, eat); 2696 if (!i) 2697 goto end; 2698 eat = 0; 2699 } 2700 k++; 2701 } 2702 } 2703 skb_shinfo(skb)->nr_frags = k; 2704 2705 end: 2706 skb->tail += delta; 2707 skb->data_len -= delta; 2708 2709 if (!skb->data_len) 2710 skb_zcopy_clear(skb, false); 2711 2712 return skb_tail_pointer(skb); 2713 } 2714 EXPORT_SYMBOL(__pskb_pull_tail); 2715 2716 /** 2717 * skb_copy_bits - copy bits from skb to kernel buffer 2718 * @skb: source skb 2719 * @offset: offset in source 2720 * @to: destination buffer 2721 * @len: number of bytes to copy 2722 * 2723 * Copy the specified number of bytes from the source skb to the 2724 * destination buffer. 2725 * 2726 * CAUTION ! : 2727 * If its prototype is ever changed, 2728 * check arch/{*}/net/{*}.S files, 2729 * since it is called from BPF assembly code. 2730 */ 2731 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len) 2732 { 2733 int start = skb_headlen(skb); 2734 struct sk_buff *frag_iter; 2735 int i, copy; 2736 2737 if (offset > (int)skb->len - len) 2738 goto fault; 2739 2740 /* Copy header. */ 2741 if ((copy = start - offset) > 0) { 2742 if (copy > len) 2743 copy = len; 2744 skb_copy_from_linear_data_offset(skb, offset, to, copy); 2745 if ((len -= copy) == 0) 2746 return 0; 2747 offset += copy; 2748 to += copy; 2749 } 2750 2751 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2752 int end; 2753 skb_frag_t *f = &skb_shinfo(skb)->frags[i]; 2754 2755 WARN_ON(start > offset + len); 2756 2757 end = start + skb_frag_size(f); 2758 if ((copy = end - offset) > 0) { 2759 u32 p_off, p_len, copied; 2760 struct page *p; 2761 u8 *vaddr; 2762 2763 if (copy > len) 2764 copy = len; 2765 2766 skb_frag_foreach_page(f, 2767 skb_frag_off(f) + offset - start, 2768 copy, p, p_off, p_len, copied) { 2769 vaddr = kmap_atomic(p); 2770 memcpy(to + copied, vaddr + p_off, p_len); 2771 kunmap_atomic(vaddr); 2772 } 2773 2774 if ((len -= copy) == 0) 2775 return 0; 2776 offset += copy; 2777 to += copy; 2778 } 2779 start = end; 2780 } 2781 2782 skb_walk_frags(skb, frag_iter) { 2783 int end; 2784 2785 WARN_ON(start > offset + len); 2786 2787 end = start + frag_iter->len; 2788 if ((copy = end - offset) > 0) { 2789 if (copy > len) 2790 copy = len; 2791 if (skb_copy_bits(frag_iter, offset - start, to, copy)) 2792 goto fault; 2793 if ((len -= copy) == 0) 2794 return 0; 2795 offset += copy; 2796 to += copy; 2797 } 2798 start = end; 2799 } 2800 2801 if (!len) 2802 return 0; 2803 2804 fault: 2805 return -EFAULT; 2806 } 2807 EXPORT_SYMBOL(skb_copy_bits); 2808 2809 /* 2810 * Callback from splice_to_pipe(), if we need to release some pages 2811 * at the end of the spd in case we error'ed out in filling the pipe. 2812 */ 2813 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i) 2814 { 2815 put_page(spd->pages[i]); 2816 } 2817 2818 static struct page *linear_to_page(struct page *page, unsigned int *len, 2819 unsigned int *offset, 2820 struct sock *sk) 2821 { 2822 struct page_frag *pfrag = sk_page_frag(sk); 2823 2824 if (!sk_page_frag_refill(sk, pfrag)) 2825 return NULL; 2826 2827 *len = min_t(unsigned int, *len, pfrag->size - pfrag->offset); 2828 2829 memcpy(page_address(pfrag->page) + pfrag->offset, 2830 page_address(page) + *offset, *len); 2831 *offset = pfrag->offset; 2832 pfrag->offset += *len; 2833 2834 return pfrag->page; 2835 } 2836 2837 static bool spd_can_coalesce(const struct splice_pipe_desc *spd, 2838 struct page *page, 2839 unsigned int offset) 2840 { 2841 return spd->nr_pages && 2842 spd->pages[spd->nr_pages - 1] == page && 2843 (spd->partial[spd->nr_pages - 1].offset + 2844 spd->partial[spd->nr_pages - 1].len == offset); 2845 } 2846 2847 /* 2848 * Fill page/offset/length into spd, if it can hold more pages. 2849 */ 2850 static bool spd_fill_page(struct splice_pipe_desc *spd, 2851 struct pipe_inode_info *pipe, struct page *page, 2852 unsigned int *len, unsigned int offset, 2853 bool linear, 2854 struct sock *sk) 2855 { 2856 if (unlikely(spd->nr_pages == MAX_SKB_FRAGS)) 2857 return true; 2858 2859 if (linear) { 2860 page = linear_to_page(page, len, &offset, sk); 2861 if (!page) 2862 return true; 2863 } 2864 if (spd_can_coalesce(spd, page, offset)) { 2865 spd->partial[spd->nr_pages - 1].len += *len; 2866 return false; 2867 } 2868 get_page(page); 2869 spd->pages[spd->nr_pages] = page; 2870 spd->partial[spd->nr_pages].len = *len; 2871 spd->partial[spd->nr_pages].offset = offset; 2872 spd->nr_pages++; 2873 2874 return false; 2875 } 2876 2877 static bool __splice_segment(struct page *page, unsigned int poff, 2878 unsigned int plen, unsigned int *off, 2879 unsigned int *len, 2880 struct splice_pipe_desc *spd, bool linear, 2881 struct sock *sk, 2882 struct pipe_inode_info *pipe) 2883 { 2884 if (!*len) 2885 return true; 2886 2887 /* skip this segment if already processed */ 2888 if (*off >= plen) { 2889 *off -= plen; 2890 return false; 2891 } 2892 2893 /* ignore any bits we already processed */ 2894 poff += *off; 2895 plen -= *off; 2896 *off = 0; 2897 2898 do { 2899 unsigned int flen = min(*len, plen); 2900 2901 if (spd_fill_page(spd, pipe, page, &flen, poff, 2902 linear, sk)) 2903 return true; 2904 poff += flen; 2905 plen -= flen; 2906 *len -= flen; 2907 } while (*len && plen); 2908 2909 return false; 2910 } 2911 2912 /* 2913 * Map linear and fragment data from the skb to spd. It reports true if the 2914 * pipe is full or if we already spliced the requested length. 2915 */ 2916 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe, 2917 unsigned int *offset, unsigned int *len, 2918 struct splice_pipe_desc *spd, struct sock *sk) 2919 { 2920 int seg; 2921 struct sk_buff *iter; 2922 2923 /* map the linear part : 2924 * If skb->head_frag is set, this 'linear' part is backed by a 2925 * fragment, and if the head is not shared with any clones then 2926 * we can avoid a copy since we own the head portion of this page. 2927 */ 2928 if (__splice_segment(virt_to_page(skb->data), 2929 (unsigned long) skb->data & (PAGE_SIZE - 1), 2930 skb_headlen(skb), 2931 offset, len, spd, 2932 skb_head_is_locked(skb), 2933 sk, pipe)) 2934 return true; 2935 2936 /* 2937 * then map the fragments 2938 */ 2939 for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) { 2940 const skb_frag_t *f = &skb_shinfo(skb)->frags[seg]; 2941 2942 if (__splice_segment(skb_frag_page(f), 2943 skb_frag_off(f), skb_frag_size(f), 2944 offset, len, spd, false, sk, pipe)) 2945 return true; 2946 } 2947 2948 skb_walk_frags(skb, iter) { 2949 if (*offset >= iter->len) { 2950 *offset -= iter->len; 2951 continue; 2952 } 2953 /* __skb_splice_bits() only fails if the output has no room 2954 * left, so no point in going over the frag_list for the error 2955 * case. 2956 */ 2957 if (__skb_splice_bits(iter, pipe, offset, len, spd, sk)) 2958 return true; 2959 } 2960 2961 return false; 2962 } 2963 2964 /* 2965 * Map data from the skb to a pipe. Should handle both the linear part, 2966 * the fragments, and the frag list. 2967 */ 2968 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset, 2969 struct pipe_inode_info *pipe, unsigned int tlen, 2970 unsigned int flags) 2971 { 2972 struct partial_page partial[MAX_SKB_FRAGS]; 2973 struct page *pages[MAX_SKB_FRAGS]; 2974 struct splice_pipe_desc spd = { 2975 .pages = pages, 2976 .partial = partial, 2977 .nr_pages_max = MAX_SKB_FRAGS, 2978 .ops = &nosteal_pipe_buf_ops, 2979 .spd_release = sock_spd_release, 2980 }; 2981 int ret = 0; 2982 2983 __skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk); 2984 2985 if (spd.nr_pages) 2986 ret = splice_to_pipe(pipe, &spd); 2987 2988 return ret; 2989 } 2990 EXPORT_SYMBOL_GPL(skb_splice_bits); 2991 2992 static int sendmsg_locked(struct sock *sk, struct msghdr *msg) 2993 { 2994 struct socket *sock = sk->sk_socket; 2995 size_t size = msg_data_left(msg); 2996 2997 if (!sock) 2998 return -EINVAL; 2999 3000 if (!sock->ops->sendmsg_locked) 3001 return sock_no_sendmsg_locked(sk, msg, size); 3002 3003 return sock->ops->sendmsg_locked(sk, msg, size); 3004 } 3005 3006 static int sendmsg_unlocked(struct sock *sk, struct msghdr *msg) 3007 { 3008 struct socket *sock = sk->sk_socket; 3009 3010 if (!sock) 3011 return -EINVAL; 3012 return sock_sendmsg(sock, msg); 3013 } 3014 3015 typedef int (*sendmsg_func)(struct sock *sk, struct msghdr *msg); 3016 static int __skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, 3017 int len, sendmsg_func sendmsg) 3018 { 3019 unsigned int orig_len = len; 3020 struct sk_buff *head = skb; 3021 unsigned short fragidx; 3022 int slen, ret; 3023 3024 do_frag_list: 3025 3026 /* Deal with head data */ 3027 while (offset < skb_headlen(skb) && len) { 3028 struct kvec kv; 3029 struct msghdr msg; 3030 3031 slen = min_t(int, len, skb_headlen(skb) - offset); 3032 kv.iov_base = skb->data + offset; 3033 kv.iov_len = slen; 3034 memset(&msg, 0, sizeof(msg)); 3035 msg.msg_flags = MSG_DONTWAIT; 3036 3037 iov_iter_kvec(&msg.msg_iter, ITER_SOURCE, &kv, 1, slen); 3038 ret = INDIRECT_CALL_2(sendmsg, sendmsg_locked, 3039 sendmsg_unlocked, sk, &msg); 3040 if (ret <= 0) 3041 goto error; 3042 3043 offset += ret; 3044 len -= ret; 3045 } 3046 3047 /* All the data was skb head? */ 3048 if (!len) 3049 goto out; 3050 3051 /* Make offset relative to start of frags */ 3052 offset -= skb_headlen(skb); 3053 3054 /* Find where we are in frag list */ 3055 for (fragidx = 0; fragidx < skb_shinfo(skb)->nr_frags; fragidx++) { 3056 skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx]; 3057 3058 if (offset < skb_frag_size(frag)) 3059 break; 3060 3061 offset -= skb_frag_size(frag); 3062 } 3063 3064 for (; len && fragidx < skb_shinfo(skb)->nr_frags; fragidx++) { 3065 skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx]; 3066 3067 slen = min_t(size_t, len, skb_frag_size(frag) - offset); 3068 3069 while (slen) { 3070 struct bio_vec bvec; 3071 struct msghdr msg = { 3072 .msg_flags = MSG_SPLICE_PAGES | MSG_DONTWAIT, 3073 }; 3074 3075 bvec_set_page(&bvec, skb_frag_page(frag), slen, 3076 skb_frag_off(frag) + offset); 3077 iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, 3078 slen); 3079 3080 ret = INDIRECT_CALL_2(sendmsg, sendmsg_locked, 3081 sendmsg_unlocked, sk, &msg); 3082 if (ret <= 0) 3083 goto error; 3084 3085 len -= ret; 3086 offset += ret; 3087 slen -= ret; 3088 } 3089 3090 offset = 0; 3091 } 3092 3093 if (len) { 3094 /* Process any frag lists */ 3095 3096 if (skb == head) { 3097 if (skb_has_frag_list(skb)) { 3098 skb = skb_shinfo(skb)->frag_list; 3099 goto do_frag_list; 3100 } 3101 } else if (skb->next) { 3102 skb = skb->next; 3103 goto do_frag_list; 3104 } 3105 } 3106 3107 out: 3108 return orig_len - len; 3109 3110 error: 3111 return orig_len == len ? ret : orig_len - len; 3112 } 3113 3114 /* Send skb data on a socket. Socket must be locked. */ 3115 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset, 3116 int len) 3117 { 3118 return __skb_send_sock(sk, skb, offset, len, sendmsg_locked); 3119 } 3120 EXPORT_SYMBOL_GPL(skb_send_sock_locked); 3121 3122 /* Send skb data on a socket. Socket must be unlocked. */ 3123 int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len) 3124 { 3125 return __skb_send_sock(sk, skb, offset, len, sendmsg_unlocked); 3126 } 3127 3128 /** 3129 * skb_store_bits - store bits from kernel buffer to skb 3130 * @skb: destination buffer 3131 * @offset: offset in destination 3132 * @from: source buffer 3133 * @len: number of bytes to copy 3134 * 3135 * Copy the specified number of bytes from the source buffer to the 3136 * destination skb. This function handles all the messy bits of 3137 * traversing fragment lists and such. 3138 */ 3139 3140 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len) 3141 { 3142 int start = skb_headlen(skb); 3143 struct sk_buff *frag_iter; 3144 int i, copy; 3145 3146 if (offset > (int)skb->len - len) 3147 goto fault; 3148 3149 if ((copy = start - offset) > 0) { 3150 if (copy > len) 3151 copy = len; 3152 skb_copy_to_linear_data_offset(skb, offset, from, copy); 3153 if ((len -= copy) == 0) 3154 return 0; 3155 offset += copy; 3156 from += copy; 3157 } 3158 3159 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 3160 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 3161 int end; 3162 3163 WARN_ON(start > offset + len); 3164 3165 end = start + skb_frag_size(frag); 3166 if ((copy = end - offset) > 0) { 3167 u32 p_off, p_len, copied; 3168 struct page *p; 3169 u8 *vaddr; 3170 3171 if (copy > len) 3172 copy = len; 3173 3174 skb_frag_foreach_page(frag, 3175 skb_frag_off(frag) + offset - start, 3176 copy, p, p_off, p_len, copied) { 3177 vaddr = kmap_atomic(p); 3178 memcpy(vaddr + p_off, from + copied, p_len); 3179 kunmap_atomic(vaddr); 3180 } 3181 3182 if ((len -= copy) == 0) 3183 return 0; 3184 offset += copy; 3185 from += copy; 3186 } 3187 start = end; 3188 } 3189 3190 skb_walk_frags(skb, frag_iter) { 3191 int end; 3192 3193 WARN_ON(start > offset + len); 3194 3195 end = start + frag_iter->len; 3196 if ((copy = end - offset) > 0) { 3197 if (copy > len) 3198 copy = len; 3199 if (skb_store_bits(frag_iter, offset - start, 3200 from, copy)) 3201 goto fault; 3202 if ((len -= copy) == 0) 3203 return 0; 3204 offset += copy; 3205 from += copy; 3206 } 3207 start = end; 3208 } 3209 if (!len) 3210 return 0; 3211 3212 fault: 3213 return -EFAULT; 3214 } 3215 EXPORT_SYMBOL(skb_store_bits); 3216 3217 /* Checksum skb data. */ 3218 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len, 3219 __wsum csum, const struct skb_checksum_ops *ops) 3220 { 3221 int start = skb_headlen(skb); 3222 int i, copy = start - offset; 3223 struct sk_buff *frag_iter; 3224 int pos = 0; 3225 3226 /* Checksum header. */ 3227 if (copy > 0) { 3228 if (copy > len) 3229 copy = len; 3230 csum = INDIRECT_CALL_1(ops->update, csum_partial_ext, 3231 skb->data + offset, copy, csum); 3232 if ((len -= copy) == 0) 3233 return csum; 3234 offset += copy; 3235 pos = copy; 3236 } 3237 3238 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 3239 int end; 3240 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 3241 3242 WARN_ON(start > offset + len); 3243 3244 end = start + skb_frag_size(frag); 3245 if ((copy = end - offset) > 0) { 3246 u32 p_off, p_len, copied; 3247 struct page *p; 3248 __wsum csum2; 3249 u8 *vaddr; 3250 3251 if (copy > len) 3252 copy = len; 3253 3254 skb_frag_foreach_page(frag, 3255 skb_frag_off(frag) + offset - start, 3256 copy, p, p_off, p_len, copied) { 3257 vaddr = kmap_atomic(p); 3258 csum2 = INDIRECT_CALL_1(ops->update, 3259 csum_partial_ext, 3260 vaddr + p_off, p_len, 0); 3261 kunmap_atomic(vaddr); 3262 csum = INDIRECT_CALL_1(ops->combine, 3263 csum_block_add_ext, csum, 3264 csum2, pos, p_len); 3265 pos += p_len; 3266 } 3267 3268 if (!(len -= copy)) 3269 return csum; 3270 offset += copy; 3271 } 3272 start = end; 3273 } 3274 3275 skb_walk_frags(skb, frag_iter) { 3276 int end; 3277 3278 WARN_ON(start > offset + len); 3279 3280 end = start + frag_iter->len; 3281 if ((copy = end - offset) > 0) { 3282 __wsum csum2; 3283 if (copy > len) 3284 copy = len; 3285 csum2 = __skb_checksum(frag_iter, offset - start, 3286 copy, 0, ops); 3287 csum = INDIRECT_CALL_1(ops->combine, csum_block_add_ext, 3288 csum, csum2, pos, copy); 3289 if ((len -= copy) == 0) 3290 return csum; 3291 offset += copy; 3292 pos += copy; 3293 } 3294 start = end; 3295 } 3296 BUG_ON(len); 3297 3298 return csum; 3299 } 3300 EXPORT_SYMBOL(__skb_checksum); 3301 3302 __wsum skb_checksum(const struct sk_buff *skb, int offset, 3303 int len, __wsum csum) 3304 { 3305 const struct skb_checksum_ops ops = { 3306 .update = csum_partial_ext, 3307 .combine = csum_block_add_ext, 3308 }; 3309 3310 return __skb_checksum(skb, offset, len, csum, &ops); 3311 } 3312 EXPORT_SYMBOL(skb_checksum); 3313 3314 /* Both of above in one bottle. */ 3315 3316 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, 3317 u8 *to, int len) 3318 { 3319 int start = skb_headlen(skb); 3320 int i, copy = start - offset; 3321 struct sk_buff *frag_iter; 3322 int pos = 0; 3323 __wsum csum = 0; 3324 3325 /* Copy header. */ 3326 if (copy > 0) { 3327 if (copy > len) 3328 copy = len; 3329 csum = csum_partial_copy_nocheck(skb->data + offset, to, 3330 copy); 3331 if ((len -= copy) == 0) 3332 return csum; 3333 offset += copy; 3334 to += copy; 3335 pos = copy; 3336 } 3337 3338 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 3339 int end; 3340 3341 WARN_ON(start > offset + len); 3342 3343 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]); 3344 if ((copy = end - offset) > 0) { 3345 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 3346 u32 p_off, p_len, copied; 3347 struct page *p; 3348 __wsum csum2; 3349 u8 *vaddr; 3350 3351 if (copy > len) 3352 copy = len; 3353 3354 skb_frag_foreach_page(frag, 3355 skb_frag_off(frag) + offset - start, 3356 copy, p, p_off, p_len, copied) { 3357 vaddr = kmap_atomic(p); 3358 csum2 = csum_partial_copy_nocheck(vaddr + p_off, 3359 to + copied, 3360 p_len); 3361 kunmap_atomic(vaddr); 3362 csum = csum_block_add(csum, csum2, pos); 3363 pos += p_len; 3364 } 3365 3366 if (!(len -= copy)) 3367 return csum; 3368 offset += copy; 3369 to += copy; 3370 } 3371 start = end; 3372 } 3373 3374 skb_walk_frags(skb, frag_iter) { 3375 __wsum csum2; 3376 int end; 3377 3378 WARN_ON(start > offset + len); 3379 3380 end = start + frag_iter->len; 3381 if ((copy = end - offset) > 0) { 3382 if (copy > len) 3383 copy = len; 3384 csum2 = skb_copy_and_csum_bits(frag_iter, 3385 offset - start, 3386 to, copy); 3387 csum = csum_block_add(csum, csum2, pos); 3388 if ((len -= copy) == 0) 3389 return csum; 3390 offset += copy; 3391 to += copy; 3392 pos += copy; 3393 } 3394 start = end; 3395 } 3396 BUG_ON(len); 3397 return csum; 3398 } 3399 EXPORT_SYMBOL(skb_copy_and_csum_bits); 3400 3401 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len) 3402 { 3403 __sum16 sum; 3404 3405 sum = csum_fold(skb_checksum(skb, 0, len, skb->csum)); 3406 /* See comments in __skb_checksum_complete(). */ 3407 if (likely(!sum)) { 3408 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) && 3409 !skb->csum_complete_sw) 3410 netdev_rx_csum_fault(skb->dev, skb); 3411 } 3412 if (!skb_shared(skb)) 3413 skb->csum_valid = !sum; 3414 return sum; 3415 } 3416 EXPORT_SYMBOL(__skb_checksum_complete_head); 3417 3418 /* This function assumes skb->csum already holds pseudo header's checksum, 3419 * which has been changed from the hardware checksum, for example, by 3420 * __skb_checksum_validate_complete(). And, the original skb->csum must 3421 * have been validated unsuccessfully for CHECKSUM_COMPLETE case. 3422 * 3423 * It returns non-zero if the recomputed checksum is still invalid, otherwise 3424 * zero. The new checksum is stored back into skb->csum unless the skb is 3425 * shared. 3426 */ 3427 __sum16 __skb_checksum_complete(struct sk_buff *skb) 3428 { 3429 __wsum csum; 3430 __sum16 sum; 3431 3432 csum = skb_checksum(skb, 0, skb->len, 0); 3433 3434 sum = csum_fold(csum_add(skb->csum, csum)); 3435 /* This check is inverted, because we already knew the hardware 3436 * checksum is invalid before calling this function. So, if the 3437 * re-computed checksum is valid instead, then we have a mismatch 3438 * between the original skb->csum and skb_checksum(). This means either 3439 * the original hardware checksum is incorrect or we screw up skb->csum 3440 * when moving skb->data around. 3441 */ 3442 if (likely(!sum)) { 3443 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) && 3444 !skb->csum_complete_sw) 3445 netdev_rx_csum_fault(skb->dev, skb); 3446 } 3447 3448 if (!skb_shared(skb)) { 3449 /* Save full packet checksum */ 3450 skb->csum = csum; 3451 skb->ip_summed = CHECKSUM_COMPLETE; 3452 skb->csum_complete_sw = 1; 3453 skb->csum_valid = !sum; 3454 } 3455 3456 return sum; 3457 } 3458 EXPORT_SYMBOL(__skb_checksum_complete); 3459 3460 static __wsum warn_crc32c_csum_update(const void *buff, int len, __wsum sum) 3461 { 3462 net_warn_ratelimited( 3463 "%s: attempt to compute crc32c without libcrc32c.ko\n", 3464 __func__); 3465 return 0; 3466 } 3467 3468 static __wsum warn_crc32c_csum_combine(__wsum csum, __wsum csum2, 3469 int offset, int len) 3470 { 3471 net_warn_ratelimited( 3472 "%s: attempt to compute crc32c without libcrc32c.ko\n", 3473 __func__); 3474 return 0; 3475 } 3476 3477 static const struct skb_checksum_ops default_crc32c_ops = { 3478 .update = warn_crc32c_csum_update, 3479 .combine = warn_crc32c_csum_combine, 3480 }; 3481 3482 const struct skb_checksum_ops *crc32c_csum_stub __read_mostly = 3483 &default_crc32c_ops; 3484 EXPORT_SYMBOL(crc32c_csum_stub); 3485 3486 /** 3487 * skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy() 3488 * @from: source buffer 3489 * 3490 * Calculates the amount of linear headroom needed in the 'to' skb passed 3491 * into skb_zerocopy(). 3492 */ 3493 unsigned int 3494 skb_zerocopy_headlen(const struct sk_buff *from) 3495 { 3496 unsigned int hlen = 0; 3497 3498 if (!from->head_frag || 3499 skb_headlen(from) < L1_CACHE_BYTES || 3500 skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS) { 3501 hlen = skb_headlen(from); 3502 if (!hlen) 3503 hlen = from->len; 3504 } 3505 3506 if (skb_has_frag_list(from)) 3507 hlen = from->len; 3508 3509 return hlen; 3510 } 3511 EXPORT_SYMBOL_GPL(skb_zerocopy_headlen); 3512 3513 /** 3514 * skb_zerocopy - Zero copy skb to skb 3515 * @to: destination buffer 3516 * @from: source buffer 3517 * @len: number of bytes to copy from source buffer 3518 * @hlen: size of linear headroom in destination buffer 3519 * 3520 * Copies up to `len` bytes from `from` to `to` by creating references 3521 * to the frags in the source buffer. 3522 * 3523 * The `hlen` as calculated by skb_zerocopy_headlen() specifies the 3524 * headroom in the `to` buffer. 3525 * 3526 * Return value: 3527 * 0: everything is OK 3528 * -ENOMEM: couldn't orphan frags of @from due to lack of memory 3529 * -EFAULT: skb_copy_bits() found some problem with skb geometry 3530 */ 3531 int 3532 skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen) 3533 { 3534 int i, j = 0; 3535 int plen = 0; /* length of skb->head fragment */ 3536 int ret; 3537 struct page *page; 3538 unsigned int offset; 3539 3540 BUG_ON(!from->head_frag && !hlen); 3541 3542 /* dont bother with small payloads */ 3543 if (len <= skb_tailroom(to)) 3544 return skb_copy_bits(from, 0, skb_put(to, len), len); 3545 3546 if (hlen) { 3547 ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen); 3548 if (unlikely(ret)) 3549 return ret; 3550 len -= hlen; 3551 } else { 3552 plen = min_t(int, skb_headlen(from), len); 3553 if (plen) { 3554 page = virt_to_head_page(from->head); 3555 offset = from->data - (unsigned char *)page_address(page); 3556 __skb_fill_page_desc(to, 0, page, offset, plen); 3557 get_page(page); 3558 j = 1; 3559 len -= plen; 3560 } 3561 } 3562 3563 skb_len_add(to, len + plen); 3564 3565 if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) { 3566 skb_tx_error(from); 3567 return -ENOMEM; 3568 } 3569 skb_zerocopy_clone(to, from, GFP_ATOMIC); 3570 3571 for (i = 0; i < skb_shinfo(from)->nr_frags; i++) { 3572 int size; 3573 3574 if (!len) 3575 break; 3576 skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i]; 3577 size = min_t(int, skb_frag_size(&skb_shinfo(to)->frags[j]), 3578 len); 3579 skb_frag_size_set(&skb_shinfo(to)->frags[j], size); 3580 len -= size; 3581 skb_frag_ref(to, j); 3582 j++; 3583 } 3584 skb_shinfo(to)->nr_frags = j; 3585 3586 return 0; 3587 } 3588 EXPORT_SYMBOL_GPL(skb_zerocopy); 3589 3590 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to) 3591 { 3592 __wsum csum; 3593 long csstart; 3594 3595 if (skb->ip_summed == CHECKSUM_PARTIAL) 3596 csstart = skb_checksum_start_offset(skb); 3597 else 3598 csstart = skb_headlen(skb); 3599 3600 BUG_ON(csstart > skb_headlen(skb)); 3601 3602 skb_copy_from_linear_data(skb, to, csstart); 3603 3604 csum = 0; 3605 if (csstart != skb->len) 3606 csum = skb_copy_and_csum_bits(skb, csstart, to + csstart, 3607 skb->len - csstart); 3608 3609 if (skb->ip_summed == CHECKSUM_PARTIAL) { 3610 long csstuff = csstart + skb->csum_offset; 3611 3612 *((__sum16 *)(to + csstuff)) = csum_fold(csum); 3613 } 3614 } 3615 EXPORT_SYMBOL(skb_copy_and_csum_dev); 3616 3617 /** 3618 * skb_dequeue - remove from the head of the queue 3619 * @list: list to dequeue from 3620 * 3621 * Remove the head of the list. The list lock is taken so the function 3622 * may be used safely with other locking list functions. The head item is 3623 * returned or %NULL if the list is empty. 3624 */ 3625 3626 struct sk_buff *skb_dequeue(struct sk_buff_head *list) 3627 { 3628 unsigned long flags; 3629 struct sk_buff *result; 3630 3631 spin_lock_irqsave(&list->lock, flags); 3632 result = __skb_dequeue(list); 3633 spin_unlock_irqrestore(&list->lock, flags); 3634 return result; 3635 } 3636 EXPORT_SYMBOL(skb_dequeue); 3637 3638 /** 3639 * skb_dequeue_tail - remove from the tail of the queue 3640 * @list: list to dequeue from 3641 * 3642 * Remove the tail of the list. The list lock is taken so the function 3643 * may be used safely with other locking list functions. The tail item is 3644 * returned or %NULL if the list is empty. 3645 */ 3646 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list) 3647 { 3648 unsigned long flags; 3649 struct sk_buff *result; 3650 3651 spin_lock_irqsave(&list->lock, flags); 3652 result = __skb_dequeue_tail(list); 3653 spin_unlock_irqrestore(&list->lock, flags); 3654 return result; 3655 } 3656 EXPORT_SYMBOL(skb_dequeue_tail); 3657 3658 /** 3659 * skb_queue_purge - empty a list 3660 * @list: list to empty 3661 * 3662 * Delete all buffers on an &sk_buff list. Each buffer is removed from 3663 * the list and one reference dropped. This function takes the list 3664 * lock and is atomic with respect to other list locking functions. 3665 */ 3666 void skb_queue_purge(struct sk_buff_head *list) 3667 { 3668 struct sk_buff *skb; 3669 while ((skb = skb_dequeue(list)) != NULL) 3670 kfree_skb(skb); 3671 } 3672 EXPORT_SYMBOL(skb_queue_purge); 3673 3674 /** 3675 * skb_rbtree_purge - empty a skb rbtree 3676 * @root: root of the rbtree to empty 3677 * Return value: the sum of truesizes of all purged skbs. 3678 * 3679 * Delete all buffers on an &sk_buff rbtree. Each buffer is removed from 3680 * the list and one reference dropped. This function does not take 3681 * any lock. Synchronization should be handled by the caller (e.g., TCP 3682 * out-of-order queue is protected by the socket lock). 3683 */ 3684 unsigned int skb_rbtree_purge(struct rb_root *root) 3685 { 3686 struct rb_node *p = rb_first(root); 3687 unsigned int sum = 0; 3688 3689 while (p) { 3690 struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode); 3691 3692 p = rb_next(p); 3693 rb_erase(&skb->rbnode, root); 3694 sum += skb->truesize; 3695 kfree_skb(skb); 3696 } 3697 return sum; 3698 } 3699 3700 /** 3701 * skb_queue_head - queue a buffer at the list head 3702 * @list: list to use 3703 * @newsk: buffer to queue 3704 * 3705 * Queue a buffer at the start of the list. This function takes the 3706 * list lock and can be used safely with other locking &sk_buff functions 3707 * safely. 3708 * 3709 * A buffer cannot be placed on two lists at the same time. 3710 */ 3711 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk) 3712 { 3713 unsigned long flags; 3714 3715 spin_lock_irqsave(&list->lock, flags); 3716 __skb_queue_head(list, newsk); 3717 spin_unlock_irqrestore(&list->lock, flags); 3718 } 3719 EXPORT_SYMBOL(skb_queue_head); 3720 3721 /** 3722 * skb_queue_tail - queue a buffer at the list tail 3723 * @list: list to use 3724 * @newsk: buffer to queue 3725 * 3726 * Queue a buffer at the tail of the list. This function takes the 3727 * list lock and can be used safely with other locking &sk_buff functions 3728 * safely. 3729 * 3730 * A buffer cannot be placed on two lists at the same time. 3731 */ 3732 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk) 3733 { 3734 unsigned long flags; 3735 3736 spin_lock_irqsave(&list->lock, flags); 3737 __skb_queue_tail(list, newsk); 3738 spin_unlock_irqrestore(&list->lock, flags); 3739 } 3740 EXPORT_SYMBOL(skb_queue_tail); 3741 3742 /** 3743 * skb_unlink - remove a buffer from a list 3744 * @skb: buffer to remove 3745 * @list: list to use 3746 * 3747 * Remove a packet from a list. The list locks are taken and this 3748 * function is atomic with respect to other list locked calls 3749 * 3750 * You must know what list the SKB is on. 3751 */ 3752 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list) 3753 { 3754 unsigned long flags; 3755 3756 spin_lock_irqsave(&list->lock, flags); 3757 __skb_unlink(skb, list); 3758 spin_unlock_irqrestore(&list->lock, flags); 3759 } 3760 EXPORT_SYMBOL(skb_unlink); 3761 3762 /** 3763 * skb_append - append a buffer 3764 * @old: buffer to insert after 3765 * @newsk: buffer to insert 3766 * @list: list to use 3767 * 3768 * Place a packet after a given packet in a list. The list locks are taken 3769 * and this function is atomic with respect to other list locked calls. 3770 * A buffer cannot be placed on two lists at the same time. 3771 */ 3772 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list) 3773 { 3774 unsigned long flags; 3775 3776 spin_lock_irqsave(&list->lock, flags); 3777 __skb_queue_after(list, old, newsk); 3778 spin_unlock_irqrestore(&list->lock, flags); 3779 } 3780 EXPORT_SYMBOL(skb_append); 3781 3782 static inline void skb_split_inside_header(struct sk_buff *skb, 3783 struct sk_buff* skb1, 3784 const u32 len, const int pos) 3785 { 3786 int i; 3787 3788 skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len), 3789 pos - len); 3790 /* And move data appendix as is. */ 3791 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 3792 skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i]; 3793 3794 skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags; 3795 skb_shinfo(skb)->nr_frags = 0; 3796 skb1->data_len = skb->data_len; 3797 skb1->len += skb1->data_len; 3798 skb->data_len = 0; 3799 skb->len = len; 3800 skb_set_tail_pointer(skb, len); 3801 } 3802 3803 static inline void skb_split_no_header(struct sk_buff *skb, 3804 struct sk_buff* skb1, 3805 const u32 len, int pos) 3806 { 3807 int i, k = 0; 3808 const int nfrags = skb_shinfo(skb)->nr_frags; 3809 3810 skb_shinfo(skb)->nr_frags = 0; 3811 skb1->len = skb1->data_len = skb->len - len; 3812 skb->len = len; 3813 skb->data_len = len - pos; 3814 3815 for (i = 0; i < nfrags; i++) { 3816 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 3817 3818 if (pos + size > len) { 3819 skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i]; 3820 3821 if (pos < len) { 3822 /* Split frag. 3823 * We have two variants in this case: 3824 * 1. Move all the frag to the second 3825 * part, if it is possible. F.e. 3826 * this approach is mandatory for TUX, 3827 * where splitting is expensive. 3828 * 2. Split is accurately. We make this. 3829 */ 3830 skb_frag_ref(skb, i); 3831 skb_frag_off_add(&skb_shinfo(skb1)->frags[0], len - pos); 3832 skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos); 3833 skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos); 3834 skb_shinfo(skb)->nr_frags++; 3835 } 3836 k++; 3837 } else 3838 skb_shinfo(skb)->nr_frags++; 3839 pos += size; 3840 } 3841 skb_shinfo(skb1)->nr_frags = k; 3842 } 3843 3844 /** 3845 * skb_split - Split fragmented skb to two parts at length len. 3846 * @skb: the buffer to split 3847 * @skb1: the buffer to receive the second part 3848 * @len: new length for skb 3849 */ 3850 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len) 3851 { 3852 int pos = skb_headlen(skb); 3853 const int zc_flags = SKBFL_SHARED_FRAG | SKBFL_PURE_ZEROCOPY; 3854 3855 skb_zcopy_downgrade_managed(skb); 3856 3857 skb_shinfo(skb1)->flags |= skb_shinfo(skb)->flags & zc_flags; 3858 skb_zerocopy_clone(skb1, skb, 0); 3859 if (len < pos) /* Split line is inside header. */ 3860 skb_split_inside_header(skb, skb1, len, pos); 3861 else /* Second chunk has no header, nothing to copy. */ 3862 skb_split_no_header(skb, skb1, len, pos); 3863 } 3864 EXPORT_SYMBOL(skb_split); 3865 3866 /* Shifting from/to a cloned skb is a no-go. 3867 * 3868 * Caller cannot keep skb_shinfo related pointers past calling here! 3869 */ 3870 static int skb_prepare_for_shift(struct sk_buff *skb) 3871 { 3872 return skb_unclone_keeptruesize(skb, GFP_ATOMIC); 3873 } 3874 3875 /** 3876 * skb_shift - Shifts paged data partially from skb to another 3877 * @tgt: buffer into which tail data gets added 3878 * @skb: buffer from which the paged data comes from 3879 * @shiftlen: shift up to this many bytes 3880 * 3881 * Attempts to shift up to shiftlen worth of bytes, which may be less than 3882 * the length of the skb, from skb to tgt. Returns number bytes shifted. 3883 * It's up to caller to free skb if everything was shifted. 3884 * 3885 * If @tgt runs out of frags, the whole operation is aborted. 3886 * 3887 * Skb cannot include anything else but paged data while tgt is allowed 3888 * to have non-paged data as well. 3889 * 3890 * TODO: full sized shift could be optimized but that would need 3891 * specialized skb free'er to handle frags without up-to-date nr_frags. 3892 */ 3893 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen) 3894 { 3895 int from, to, merge, todo; 3896 skb_frag_t *fragfrom, *fragto; 3897 3898 BUG_ON(shiftlen > skb->len); 3899 3900 if (skb_headlen(skb)) 3901 return 0; 3902 if (skb_zcopy(tgt) || skb_zcopy(skb)) 3903 return 0; 3904 3905 todo = shiftlen; 3906 from = 0; 3907 to = skb_shinfo(tgt)->nr_frags; 3908 fragfrom = &skb_shinfo(skb)->frags[from]; 3909 3910 /* Actual merge is delayed until the point when we know we can 3911 * commit all, so that we don't have to undo partial changes 3912 */ 3913 if (!to || 3914 !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom), 3915 skb_frag_off(fragfrom))) { 3916 merge = -1; 3917 } else { 3918 merge = to - 1; 3919 3920 todo -= skb_frag_size(fragfrom); 3921 if (todo < 0) { 3922 if (skb_prepare_for_shift(skb) || 3923 skb_prepare_for_shift(tgt)) 3924 return 0; 3925 3926 /* All previous frag pointers might be stale! */ 3927 fragfrom = &skb_shinfo(skb)->frags[from]; 3928 fragto = &skb_shinfo(tgt)->frags[merge]; 3929 3930 skb_frag_size_add(fragto, shiftlen); 3931 skb_frag_size_sub(fragfrom, shiftlen); 3932 skb_frag_off_add(fragfrom, shiftlen); 3933 3934 goto onlymerged; 3935 } 3936 3937 from++; 3938 } 3939 3940 /* Skip full, not-fitting skb to avoid expensive operations */ 3941 if ((shiftlen == skb->len) && 3942 (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to)) 3943 return 0; 3944 3945 if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt)) 3946 return 0; 3947 3948 while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) { 3949 if (to == MAX_SKB_FRAGS) 3950 return 0; 3951 3952 fragfrom = &skb_shinfo(skb)->frags[from]; 3953 fragto = &skb_shinfo(tgt)->frags[to]; 3954 3955 if (todo >= skb_frag_size(fragfrom)) { 3956 *fragto = *fragfrom; 3957 todo -= skb_frag_size(fragfrom); 3958 from++; 3959 to++; 3960 3961 } else { 3962 __skb_frag_ref(fragfrom); 3963 skb_frag_page_copy(fragto, fragfrom); 3964 skb_frag_off_copy(fragto, fragfrom); 3965 skb_frag_size_set(fragto, todo); 3966 3967 skb_frag_off_add(fragfrom, todo); 3968 skb_frag_size_sub(fragfrom, todo); 3969 todo = 0; 3970 3971 to++; 3972 break; 3973 } 3974 } 3975 3976 /* Ready to "commit" this state change to tgt */ 3977 skb_shinfo(tgt)->nr_frags = to; 3978 3979 if (merge >= 0) { 3980 fragfrom = &skb_shinfo(skb)->frags[0]; 3981 fragto = &skb_shinfo(tgt)->frags[merge]; 3982 3983 skb_frag_size_add(fragto, skb_frag_size(fragfrom)); 3984 __skb_frag_unref(fragfrom, skb->pp_recycle); 3985 } 3986 3987 /* Reposition in the original skb */ 3988 to = 0; 3989 while (from < skb_shinfo(skb)->nr_frags) 3990 skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++]; 3991 skb_shinfo(skb)->nr_frags = to; 3992 3993 BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags); 3994 3995 onlymerged: 3996 /* Most likely the tgt won't ever need its checksum anymore, skb on 3997 * the other hand might need it if it needs to be resent 3998 */ 3999 tgt->ip_summed = CHECKSUM_PARTIAL; 4000 skb->ip_summed = CHECKSUM_PARTIAL; 4001 4002 skb_len_add(skb, -shiftlen); 4003 skb_len_add(tgt, shiftlen); 4004 4005 return shiftlen; 4006 } 4007 4008 /** 4009 * skb_prepare_seq_read - Prepare a sequential read of skb data 4010 * @skb: the buffer to read 4011 * @from: lower offset of data to be read 4012 * @to: upper offset of data to be read 4013 * @st: state variable 4014 * 4015 * Initializes the specified state variable. Must be called before 4016 * invoking skb_seq_read() for the first time. 4017 */ 4018 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from, 4019 unsigned int to, struct skb_seq_state *st) 4020 { 4021 st->lower_offset = from; 4022 st->upper_offset = to; 4023 st->root_skb = st->cur_skb = skb; 4024 st->frag_idx = st->stepped_offset = 0; 4025 st->frag_data = NULL; 4026 st->frag_off = 0; 4027 } 4028 EXPORT_SYMBOL(skb_prepare_seq_read); 4029 4030 /** 4031 * skb_seq_read - Sequentially read skb data 4032 * @consumed: number of bytes consumed by the caller so far 4033 * @data: destination pointer for data to be returned 4034 * @st: state variable 4035 * 4036 * Reads a block of skb data at @consumed relative to the 4037 * lower offset specified to skb_prepare_seq_read(). Assigns 4038 * the head of the data block to @data and returns the length 4039 * of the block or 0 if the end of the skb data or the upper 4040 * offset has been reached. 4041 * 4042 * The caller is not required to consume all of the data 4043 * returned, i.e. @consumed is typically set to the number 4044 * of bytes already consumed and the next call to 4045 * skb_seq_read() will return the remaining part of the block. 4046 * 4047 * Note 1: The size of each block of data returned can be arbitrary, 4048 * this limitation is the cost for zerocopy sequential 4049 * reads of potentially non linear data. 4050 * 4051 * Note 2: Fragment lists within fragments are not implemented 4052 * at the moment, state->root_skb could be replaced with 4053 * a stack for this purpose. 4054 */ 4055 unsigned int skb_seq_read(unsigned int consumed, const u8 **data, 4056 struct skb_seq_state *st) 4057 { 4058 unsigned int block_limit, abs_offset = consumed + st->lower_offset; 4059 skb_frag_t *frag; 4060 4061 if (unlikely(abs_offset >= st->upper_offset)) { 4062 if (st->frag_data) { 4063 kunmap_atomic(st->frag_data); 4064 st->frag_data = NULL; 4065 } 4066 return 0; 4067 } 4068 4069 next_skb: 4070 block_limit = skb_headlen(st->cur_skb) + st->stepped_offset; 4071 4072 if (abs_offset < block_limit && !st->frag_data) { 4073 *data = st->cur_skb->data + (abs_offset - st->stepped_offset); 4074 return block_limit - abs_offset; 4075 } 4076 4077 if (st->frag_idx == 0 && !st->frag_data) 4078 st->stepped_offset += skb_headlen(st->cur_skb); 4079 4080 while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) { 4081 unsigned int pg_idx, pg_off, pg_sz; 4082 4083 frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx]; 4084 4085 pg_idx = 0; 4086 pg_off = skb_frag_off(frag); 4087 pg_sz = skb_frag_size(frag); 4088 4089 if (skb_frag_must_loop(skb_frag_page(frag))) { 4090 pg_idx = (pg_off + st->frag_off) >> PAGE_SHIFT; 4091 pg_off = offset_in_page(pg_off + st->frag_off); 4092 pg_sz = min_t(unsigned int, pg_sz - st->frag_off, 4093 PAGE_SIZE - pg_off); 4094 } 4095 4096 block_limit = pg_sz + st->stepped_offset; 4097 if (abs_offset < block_limit) { 4098 if (!st->frag_data) 4099 st->frag_data = kmap_atomic(skb_frag_page(frag) + pg_idx); 4100 4101 *data = (u8 *)st->frag_data + pg_off + 4102 (abs_offset - st->stepped_offset); 4103 4104 return block_limit - abs_offset; 4105 } 4106 4107 if (st->frag_data) { 4108 kunmap_atomic(st->frag_data); 4109 st->frag_data = NULL; 4110 } 4111 4112 st->stepped_offset += pg_sz; 4113 st->frag_off += pg_sz; 4114 if (st->frag_off == skb_frag_size(frag)) { 4115 st->frag_off = 0; 4116 st->frag_idx++; 4117 } 4118 } 4119 4120 if (st->frag_data) { 4121 kunmap_atomic(st->frag_data); 4122 st->frag_data = NULL; 4123 } 4124 4125 if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) { 4126 st->cur_skb = skb_shinfo(st->root_skb)->frag_list; 4127 st->frag_idx = 0; 4128 goto next_skb; 4129 } else if (st->cur_skb->next) { 4130 st->cur_skb = st->cur_skb->next; 4131 st->frag_idx = 0; 4132 goto next_skb; 4133 } 4134 4135 return 0; 4136 } 4137 EXPORT_SYMBOL(skb_seq_read); 4138 4139 /** 4140 * skb_abort_seq_read - Abort a sequential read of skb data 4141 * @st: state variable 4142 * 4143 * Must be called if skb_seq_read() was not called until it 4144 * returned 0. 4145 */ 4146 void skb_abort_seq_read(struct skb_seq_state *st) 4147 { 4148 if (st->frag_data) 4149 kunmap_atomic(st->frag_data); 4150 } 4151 EXPORT_SYMBOL(skb_abort_seq_read); 4152 4153 #define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb)) 4154 4155 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text, 4156 struct ts_config *conf, 4157 struct ts_state *state) 4158 { 4159 return skb_seq_read(offset, text, TS_SKB_CB(state)); 4160 } 4161 4162 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state) 4163 { 4164 skb_abort_seq_read(TS_SKB_CB(state)); 4165 } 4166 4167 /** 4168 * skb_find_text - Find a text pattern in skb data 4169 * @skb: the buffer to look in 4170 * @from: search offset 4171 * @to: search limit 4172 * @config: textsearch configuration 4173 * 4174 * Finds a pattern in the skb data according to the specified 4175 * textsearch configuration. Use textsearch_next() to retrieve 4176 * subsequent occurrences of the pattern. Returns the offset 4177 * to the first occurrence or UINT_MAX if no match was found. 4178 */ 4179 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from, 4180 unsigned int to, struct ts_config *config) 4181 { 4182 struct ts_state state; 4183 unsigned int ret; 4184 4185 BUILD_BUG_ON(sizeof(struct skb_seq_state) > sizeof(state.cb)); 4186 4187 config->get_next_block = skb_ts_get_next_block; 4188 config->finish = skb_ts_finish; 4189 4190 skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state)); 4191 4192 ret = textsearch_find(config, &state); 4193 return (ret <= to - from ? ret : UINT_MAX); 4194 } 4195 EXPORT_SYMBOL(skb_find_text); 4196 4197 int skb_append_pagefrags(struct sk_buff *skb, struct page *page, 4198 int offset, size_t size, size_t max_frags) 4199 { 4200 int i = skb_shinfo(skb)->nr_frags; 4201 4202 if (skb_can_coalesce(skb, i, page, offset)) { 4203 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size); 4204 } else if (i < max_frags) { 4205 skb_zcopy_downgrade_managed(skb); 4206 get_page(page); 4207 skb_fill_page_desc_noacc(skb, i, page, offset, size); 4208 } else { 4209 return -EMSGSIZE; 4210 } 4211 4212 return 0; 4213 } 4214 EXPORT_SYMBOL_GPL(skb_append_pagefrags); 4215 4216 /** 4217 * skb_pull_rcsum - pull skb and update receive checksum 4218 * @skb: buffer to update 4219 * @len: length of data pulled 4220 * 4221 * This function performs an skb_pull on the packet and updates 4222 * the CHECKSUM_COMPLETE checksum. It should be used on 4223 * receive path processing instead of skb_pull unless you know 4224 * that the checksum difference is zero (e.g., a valid IP header) 4225 * or you are setting ip_summed to CHECKSUM_NONE. 4226 */ 4227 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len) 4228 { 4229 unsigned char *data = skb->data; 4230 4231 BUG_ON(len > skb->len); 4232 __skb_pull(skb, len); 4233 skb_postpull_rcsum(skb, data, len); 4234 return skb->data; 4235 } 4236 EXPORT_SYMBOL_GPL(skb_pull_rcsum); 4237 4238 static inline skb_frag_t skb_head_frag_to_page_desc(struct sk_buff *frag_skb) 4239 { 4240 skb_frag_t head_frag; 4241 struct page *page; 4242 4243 page = virt_to_head_page(frag_skb->head); 4244 skb_frag_fill_page_desc(&head_frag, page, frag_skb->data - 4245 (unsigned char *)page_address(page), 4246 skb_headlen(frag_skb)); 4247 return head_frag; 4248 } 4249 4250 struct sk_buff *skb_segment_list(struct sk_buff *skb, 4251 netdev_features_t features, 4252 unsigned int offset) 4253 { 4254 struct sk_buff *list_skb = skb_shinfo(skb)->frag_list; 4255 unsigned int tnl_hlen = skb_tnl_header_len(skb); 4256 unsigned int delta_truesize = 0; 4257 unsigned int delta_len = 0; 4258 struct sk_buff *tail = NULL; 4259 struct sk_buff *nskb, *tmp; 4260 int len_diff, err; 4261 4262 skb_push(skb, -skb_network_offset(skb) + offset); 4263 4264 /* Ensure the head is writeable before touching the shared info */ 4265 err = skb_unclone(skb, GFP_ATOMIC); 4266 if (err) 4267 goto err_linearize; 4268 4269 skb_shinfo(skb)->frag_list = NULL; 4270 4271 while (list_skb) { 4272 nskb = list_skb; 4273 list_skb = list_skb->next; 4274 4275 err = 0; 4276 delta_truesize += nskb->truesize; 4277 if (skb_shared(nskb)) { 4278 tmp = skb_clone(nskb, GFP_ATOMIC); 4279 if (tmp) { 4280 consume_skb(nskb); 4281 nskb = tmp; 4282 err = skb_unclone(nskb, GFP_ATOMIC); 4283 } else { 4284 err = -ENOMEM; 4285 } 4286 } 4287 4288 if (!tail) 4289 skb->next = nskb; 4290 else 4291 tail->next = nskb; 4292 4293 if (unlikely(err)) { 4294 nskb->next = list_skb; 4295 goto err_linearize; 4296 } 4297 4298 tail = nskb; 4299 4300 delta_len += nskb->len; 4301 4302 skb_push(nskb, -skb_network_offset(nskb) + offset); 4303 4304 skb_release_head_state(nskb); 4305 len_diff = skb_network_header_len(nskb) - skb_network_header_len(skb); 4306 __copy_skb_header(nskb, skb); 4307 4308 skb_headers_offset_update(nskb, skb_headroom(nskb) - skb_headroom(skb)); 4309 nskb->transport_header += len_diff; 4310 skb_copy_from_linear_data_offset(skb, -tnl_hlen, 4311 nskb->data - tnl_hlen, 4312 offset + tnl_hlen); 4313 4314 if (skb_needs_linearize(nskb, features) && 4315 __skb_linearize(nskb)) 4316 goto err_linearize; 4317 } 4318 4319 skb->truesize = skb->truesize - delta_truesize; 4320 skb->data_len = skb->data_len - delta_len; 4321 skb->len = skb->len - delta_len; 4322 4323 skb_gso_reset(skb); 4324 4325 skb->prev = tail; 4326 4327 if (skb_needs_linearize(skb, features) && 4328 __skb_linearize(skb)) 4329 goto err_linearize; 4330 4331 skb_get(skb); 4332 4333 return skb; 4334 4335 err_linearize: 4336 kfree_skb_list(skb->next); 4337 skb->next = NULL; 4338 return ERR_PTR(-ENOMEM); 4339 } 4340 EXPORT_SYMBOL_GPL(skb_segment_list); 4341 4342 /** 4343 * skb_segment - Perform protocol segmentation on skb. 4344 * @head_skb: buffer to segment 4345 * @features: features for the output path (see dev->features) 4346 * 4347 * This function performs segmentation on the given skb. It returns 4348 * a pointer to the first in a list of new skbs for the segments. 4349 * In case of error it returns ERR_PTR(err). 4350 */ 4351 struct sk_buff *skb_segment(struct sk_buff *head_skb, 4352 netdev_features_t features) 4353 { 4354 struct sk_buff *segs = NULL; 4355 struct sk_buff *tail = NULL; 4356 struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list; 4357 skb_frag_t *frag = skb_shinfo(head_skb)->frags; 4358 unsigned int mss = skb_shinfo(head_skb)->gso_size; 4359 unsigned int doffset = head_skb->data - skb_mac_header(head_skb); 4360 struct sk_buff *frag_skb = head_skb; 4361 unsigned int offset = doffset; 4362 unsigned int tnl_hlen = skb_tnl_header_len(head_skb); 4363 unsigned int partial_segs = 0; 4364 unsigned int headroom; 4365 unsigned int len = head_skb->len; 4366 __be16 proto; 4367 bool csum, sg; 4368 int nfrags = skb_shinfo(head_skb)->nr_frags; 4369 int err = -ENOMEM; 4370 int i = 0; 4371 int pos; 4372 4373 if ((skb_shinfo(head_skb)->gso_type & SKB_GSO_DODGY) && 4374 mss != GSO_BY_FRAGS && mss != skb_headlen(head_skb)) { 4375 struct sk_buff *check_skb; 4376 4377 for (check_skb = list_skb; check_skb; check_skb = check_skb->next) { 4378 if (skb_headlen(check_skb) && !check_skb->head_frag) { 4379 /* gso_size is untrusted, and we have a frag_list with 4380 * a linear non head_frag item. 4381 * 4382 * If head_skb's headlen does not fit requested gso_size, 4383 * it means that the frag_list members do NOT terminate 4384 * on exact gso_size boundaries. Hence we cannot perform 4385 * skb_frag_t page sharing. Therefore we must fallback to 4386 * copying the frag_list skbs; we do so by disabling SG. 4387 */ 4388 features &= ~NETIF_F_SG; 4389 break; 4390 } 4391 } 4392 } 4393 4394 __skb_push(head_skb, doffset); 4395 proto = skb_network_protocol(head_skb, NULL); 4396 if (unlikely(!proto)) 4397 return ERR_PTR(-EINVAL); 4398 4399 sg = !!(features & NETIF_F_SG); 4400 csum = !!can_checksum_protocol(features, proto); 4401 4402 if (sg && csum && (mss != GSO_BY_FRAGS)) { 4403 if (!(features & NETIF_F_GSO_PARTIAL)) { 4404 struct sk_buff *iter; 4405 unsigned int frag_len; 4406 4407 if (!list_skb || 4408 !net_gso_ok(features, skb_shinfo(head_skb)->gso_type)) 4409 goto normal; 4410 4411 /* If we get here then all the required 4412 * GSO features except frag_list are supported. 4413 * Try to split the SKB to multiple GSO SKBs 4414 * with no frag_list. 4415 * Currently we can do that only when the buffers don't 4416 * have a linear part and all the buffers except 4417 * the last are of the same length. 4418 */ 4419 frag_len = list_skb->len; 4420 skb_walk_frags(head_skb, iter) { 4421 if (frag_len != iter->len && iter->next) 4422 goto normal; 4423 if (skb_headlen(iter) && !iter->head_frag) 4424 goto normal; 4425 4426 len -= iter->len; 4427 } 4428 4429 if (len != frag_len) 4430 goto normal; 4431 } 4432 4433 /* GSO partial only requires that we trim off any excess that 4434 * doesn't fit into an MSS sized block, so take care of that 4435 * now. 4436 */ 4437 partial_segs = len / mss; 4438 if (partial_segs > 1) 4439 mss *= partial_segs; 4440 else 4441 partial_segs = 0; 4442 } 4443 4444 normal: 4445 headroom = skb_headroom(head_skb); 4446 pos = skb_headlen(head_skb); 4447 4448 do { 4449 struct sk_buff *nskb; 4450 skb_frag_t *nskb_frag; 4451 int hsize; 4452 int size; 4453 4454 if (unlikely(mss == GSO_BY_FRAGS)) { 4455 len = list_skb->len; 4456 } else { 4457 len = head_skb->len - offset; 4458 if (len > mss) 4459 len = mss; 4460 } 4461 4462 hsize = skb_headlen(head_skb) - offset; 4463 4464 if (hsize <= 0 && i >= nfrags && skb_headlen(list_skb) && 4465 (skb_headlen(list_skb) == len || sg)) { 4466 BUG_ON(skb_headlen(list_skb) > len); 4467 4468 i = 0; 4469 nfrags = skb_shinfo(list_skb)->nr_frags; 4470 frag = skb_shinfo(list_skb)->frags; 4471 frag_skb = list_skb; 4472 pos += skb_headlen(list_skb); 4473 4474 while (pos < offset + len) { 4475 BUG_ON(i >= nfrags); 4476 4477 size = skb_frag_size(frag); 4478 if (pos + size > offset + len) 4479 break; 4480 4481 i++; 4482 pos += size; 4483 frag++; 4484 } 4485 4486 nskb = skb_clone(list_skb, GFP_ATOMIC); 4487 list_skb = list_skb->next; 4488 4489 if (unlikely(!nskb)) 4490 goto err; 4491 4492 if (unlikely(pskb_trim(nskb, len))) { 4493 kfree_skb(nskb); 4494 goto err; 4495 } 4496 4497 hsize = skb_end_offset(nskb); 4498 if (skb_cow_head(nskb, doffset + headroom)) { 4499 kfree_skb(nskb); 4500 goto err; 4501 } 4502 4503 nskb->truesize += skb_end_offset(nskb) - hsize; 4504 skb_release_head_state(nskb); 4505 __skb_push(nskb, doffset); 4506 } else { 4507 if (hsize < 0) 4508 hsize = 0; 4509 if (hsize > len || !sg) 4510 hsize = len; 4511 4512 nskb = __alloc_skb(hsize + doffset + headroom, 4513 GFP_ATOMIC, skb_alloc_rx_flag(head_skb), 4514 NUMA_NO_NODE); 4515 4516 if (unlikely(!nskb)) 4517 goto err; 4518 4519 skb_reserve(nskb, headroom); 4520 __skb_put(nskb, doffset); 4521 } 4522 4523 if (segs) 4524 tail->next = nskb; 4525 else 4526 segs = nskb; 4527 tail = nskb; 4528 4529 __copy_skb_header(nskb, head_skb); 4530 4531 skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom); 4532 skb_reset_mac_len(nskb); 4533 4534 skb_copy_from_linear_data_offset(head_skb, -tnl_hlen, 4535 nskb->data - tnl_hlen, 4536 doffset + tnl_hlen); 4537 4538 if (nskb->len == len + doffset) 4539 goto perform_csum_check; 4540 4541 if (!sg) { 4542 if (!csum) { 4543 if (!nskb->remcsum_offload) 4544 nskb->ip_summed = CHECKSUM_NONE; 4545 SKB_GSO_CB(nskb)->csum = 4546 skb_copy_and_csum_bits(head_skb, offset, 4547 skb_put(nskb, 4548 len), 4549 len); 4550 SKB_GSO_CB(nskb)->csum_start = 4551 skb_headroom(nskb) + doffset; 4552 } else { 4553 if (skb_copy_bits(head_skb, offset, skb_put(nskb, len), len)) 4554 goto err; 4555 } 4556 continue; 4557 } 4558 4559 nskb_frag = skb_shinfo(nskb)->frags; 4560 4561 skb_copy_from_linear_data_offset(head_skb, offset, 4562 skb_put(nskb, hsize), hsize); 4563 4564 skb_shinfo(nskb)->flags |= skb_shinfo(head_skb)->flags & 4565 SKBFL_SHARED_FRAG; 4566 4567 if (skb_orphan_frags(frag_skb, GFP_ATOMIC) || 4568 skb_zerocopy_clone(nskb, frag_skb, GFP_ATOMIC)) 4569 goto err; 4570 4571 while (pos < offset + len) { 4572 if (i >= nfrags) { 4573 i = 0; 4574 nfrags = skb_shinfo(list_skb)->nr_frags; 4575 frag = skb_shinfo(list_skb)->frags; 4576 frag_skb = list_skb; 4577 if (!skb_headlen(list_skb)) { 4578 BUG_ON(!nfrags); 4579 } else { 4580 BUG_ON(!list_skb->head_frag); 4581 4582 /* to make room for head_frag. */ 4583 i--; 4584 frag--; 4585 } 4586 if (skb_orphan_frags(frag_skb, GFP_ATOMIC) || 4587 skb_zerocopy_clone(nskb, frag_skb, 4588 GFP_ATOMIC)) 4589 goto err; 4590 4591 list_skb = list_skb->next; 4592 } 4593 4594 if (unlikely(skb_shinfo(nskb)->nr_frags >= 4595 MAX_SKB_FRAGS)) { 4596 net_warn_ratelimited( 4597 "skb_segment: too many frags: %u %u\n", 4598 pos, mss); 4599 err = -EINVAL; 4600 goto err; 4601 } 4602 4603 *nskb_frag = (i < 0) ? skb_head_frag_to_page_desc(frag_skb) : *frag; 4604 __skb_frag_ref(nskb_frag); 4605 size = skb_frag_size(nskb_frag); 4606 4607 if (pos < offset) { 4608 skb_frag_off_add(nskb_frag, offset - pos); 4609 skb_frag_size_sub(nskb_frag, offset - pos); 4610 } 4611 4612 skb_shinfo(nskb)->nr_frags++; 4613 4614 if (pos + size <= offset + len) { 4615 i++; 4616 frag++; 4617 pos += size; 4618 } else { 4619 skb_frag_size_sub(nskb_frag, pos + size - (offset + len)); 4620 goto skip_fraglist; 4621 } 4622 4623 nskb_frag++; 4624 } 4625 4626 skip_fraglist: 4627 nskb->data_len = len - hsize; 4628 nskb->len += nskb->data_len; 4629 nskb->truesize += nskb->data_len; 4630 4631 perform_csum_check: 4632 if (!csum) { 4633 if (skb_has_shared_frag(nskb) && 4634 __skb_linearize(nskb)) 4635 goto err; 4636 4637 if (!nskb->remcsum_offload) 4638 nskb->ip_summed = CHECKSUM_NONE; 4639 SKB_GSO_CB(nskb)->csum = 4640 skb_checksum(nskb, doffset, 4641 nskb->len - doffset, 0); 4642 SKB_GSO_CB(nskb)->csum_start = 4643 skb_headroom(nskb) + doffset; 4644 } 4645 } while ((offset += len) < head_skb->len); 4646 4647 /* Some callers want to get the end of the list. 4648 * Put it in segs->prev to avoid walking the list. 4649 * (see validate_xmit_skb_list() for example) 4650 */ 4651 segs->prev = tail; 4652 4653 if (partial_segs) { 4654 struct sk_buff *iter; 4655 int type = skb_shinfo(head_skb)->gso_type; 4656 unsigned short gso_size = skb_shinfo(head_skb)->gso_size; 4657 4658 /* Update type to add partial and then remove dodgy if set */ 4659 type |= (features & NETIF_F_GSO_PARTIAL) / NETIF_F_GSO_PARTIAL * SKB_GSO_PARTIAL; 4660 type &= ~SKB_GSO_DODGY; 4661 4662 /* Update GSO info and prepare to start updating headers on 4663 * our way back down the stack of protocols. 4664 */ 4665 for (iter = segs; iter; iter = iter->next) { 4666 skb_shinfo(iter)->gso_size = gso_size; 4667 skb_shinfo(iter)->gso_segs = partial_segs; 4668 skb_shinfo(iter)->gso_type = type; 4669 SKB_GSO_CB(iter)->data_offset = skb_headroom(iter) + doffset; 4670 } 4671 4672 if (tail->len - doffset <= gso_size) 4673 skb_shinfo(tail)->gso_size = 0; 4674 else if (tail != segs) 4675 skb_shinfo(tail)->gso_segs = DIV_ROUND_UP(tail->len - doffset, gso_size); 4676 } 4677 4678 /* Following permits correct backpressure, for protocols 4679 * using skb_set_owner_w(). 4680 * Idea is to tranfert ownership from head_skb to last segment. 4681 */ 4682 if (head_skb->destructor == sock_wfree) { 4683 swap(tail->truesize, head_skb->truesize); 4684 swap(tail->destructor, head_skb->destructor); 4685 swap(tail->sk, head_skb->sk); 4686 } 4687 return segs; 4688 4689 err: 4690 kfree_skb_list(segs); 4691 return ERR_PTR(err); 4692 } 4693 EXPORT_SYMBOL_GPL(skb_segment); 4694 4695 #ifdef CONFIG_SKB_EXTENSIONS 4696 #define SKB_EXT_ALIGN_VALUE 8 4697 #define SKB_EXT_CHUNKSIZEOF(x) (ALIGN((sizeof(x)), SKB_EXT_ALIGN_VALUE) / SKB_EXT_ALIGN_VALUE) 4698 4699 static const u8 skb_ext_type_len[] = { 4700 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 4701 [SKB_EXT_BRIDGE_NF] = SKB_EXT_CHUNKSIZEOF(struct nf_bridge_info), 4702 #endif 4703 #ifdef CONFIG_XFRM 4704 [SKB_EXT_SEC_PATH] = SKB_EXT_CHUNKSIZEOF(struct sec_path), 4705 #endif 4706 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT) 4707 [TC_SKB_EXT] = SKB_EXT_CHUNKSIZEOF(struct tc_skb_ext), 4708 #endif 4709 #if IS_ENABLED(CONFIG_MPTCP) 4710 [SKB_EXT_MPTCP] = SKB_EXT_CHUNKSIZEOF(struct mptcp_ext), 4711 #endif 4712 #if IS_ENABLED(CONFIG_MCTP_FLOWS) 4713 [SKB_EXT_MCTP] = SKB_EXT_CHUNKSIZEOF(struct mctp_flow), 4714 #endif 4715 }; 4716 4717 static __always_inline unsigned int skb_ext_total_length(void) 4718 { 4719 return SKB_EXT_CHUNKSIZEOF(struct skb_ext) + 4720 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 4721 skb_ext_type_len[SKB_EXT_BRIDGE_NF] + 4722 #endif 4723 #ifdef CONFIG_XFRM 4724 skb_ext_type_len[SKB_EXT_SEC_PATH] + 4725 #endif 4726 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT) 4727 skb_ext_type_len[TC_SKB_EXT] + 4728 #endif 4729 #if IS_ENABLED(CONFIG_MPTCP) 4730 skb_ext_type_len[SKB_EXT_MPTCP] + 4731 #endif 4732 #if IS_ENABLED(CONFIG_MCTP_FLOWS) 4733 skb_ext_type_len[SKB_EXT_MCTP] + 4734 #endif 4735 0; 4736 } 4737 4738 static void skb_extensions_init(void) 4739 { 4740 BUILD_BUG_ON(SKB_EXT_NUM >= 8); 4741 BUILD_BUG_ON(skb_ext_total_length() > 255); 4742 4743 skbuff_ext_cache = kmem_cache_create("skbuff_ext_cache", 4744 SKB_EXT_ALIGN_VALUE * skb_ext_total_length(), 4745 0, 4746 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 4747 NULL); 4748 } 4749 #else 4750 static void skb_extensions_init(void) {} 4751 #endif 4752 4753 void __init skb_init(void) 4754 { 4755 skbuff_cache = kmem_cache_create_usercopy("skbuff_head_cache", 4756 sizeof(struct sk_buff), 4757 0, 4758 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 4759 offsetof(struct sk_buff, cb), 4760 sizeof_field(struct sk_buff, cb), 4761 NULL); 4762 skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache", 4763 sizeof(struct sk_buff_fclones), 4764 0, 4765 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 4766 NULL); 4767 /* usercopy should only access first SKB_SMALL_HEAD_HEADROOM bytes. 4768 * struct skb_shared_info is located at the end of skb->head, 4769 * and should not be copied to/from user. 4770 */ 4771 skb_small_head_cache = kmem_cache_create_usercopy("skbuff_small_head", 4772 SKB_SMALL_HEAD_CACHE_SIZE, 4773 0, 4774 SLAB_HWCACHE_ALIGN | SLAB_PANIC, 4775 0, 4776 SKB_SMALL_HEAD_HEADROOM, 4777 NULL); 4778 skb_extensions_init(); 4779 } 4780 4781 static int 4782 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len, 4783 unsigned int recursion_level) 4784 { 4785 int start = skb_headlen(skb); 4786 int i, copy = start - offset; 4787 struct sk_buff *frag_iter; 4788 int elt = 0; 4789 4790 if (unlikely(recursion_level >= 24)) 4791 return -EMSGSIZE; 4792 4793 if (copy > 0) { 4794 if (copy > len) 4795 copy = len; 4796 sg_set_buf(sg, skb->data + offset, copy); 4797 elt++; 4798 if ((len -= copy) == 0) 4799 return elt; 4800 offset += copy; 4801 } 4802 4803 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 4804 int end; 4805 4806 WARN_ON(start > offset + len); 4807 4808 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]); 4809 if ((copy = end - offset) > 0) { 4810 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 4811 if (unlikely(elt && sg_is_last(&sg[elt - 1]))) 4812 return -EMSGSIZE; 4813 4814 if (copy > len) 4815 copy = len; 4816 sg_set_page(&sg[elt], skb_frag_page(frag), copy, 4817 skb_frag_off(frag) + offset - start); 4818 elt++; 4819 if (!(len -= copy)) 4820 return elt; 4821 offset += copy; 4822 } 4823 start = end; 4824 } 4825 4826 skb_walk_frags(skb, frag_iter) { 4827 int end, ret; 4828 4829 WARN_ON(start > offset + len); 4830 4831 end = start + frag_iter->len; 4832 if ((copy = end - offset) > 0) { 4833 if (unlikely(elt && sg_is_last(&sg[elt - 1]))) 4834 return -EMSGSIZE; 4835 4836 if (copy > len) 4837 copy = len; 4838 ret = __skb_to_sgvec(frag_iter, sg+elt, offset - start, 4839 copy, recursion_level + 1); 4840 if (unlikely(ret < 0)) 4841 return ret; 4842 elt += ret; 4843 if ((len -= copy) == 0) 4844 return elt; 4845 offset += copy; 4846 } 4847 start = end; 4848 } 4849 BUG_ON(len); 4850 return elt; 4851 } 4852 4853 /** 4854 * skb_to_sgvec - Fill a scatter-gather list from a socket buffer 4855 * @skb: Socket buffer containing the buffers to be mapped 4856 * @sg: The scatter-gather list to map into 4857 * @offset: The offset into the buffer's contents to start mapping 4858 * @len: Length of buffer space to be mapped 4859 * 4860 * Fill the specified scatter-gather list with mappings/pointers into a 4861 * region of the buffer space attached to a socket buffer. Returns either 4862 * the number of scatterlist items used, or -EMSGSIZE if the contents 4863 * could not fit. 4864 */ 4865 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len) 4866 { 4867 int nsg = __skb_to_sgvec(skb, sg, offset, len, 0); 4868 4869 if (nsg <= 0) 4870 return nsg; 4871 4872 sg_mark_end(&sg[nsg - 1]); 4873 4874 return nsg; 4875 } 4876 EXPORT_SYMBOL_GPL(skb_to_sgvec); 4877 4878 /* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given 4879 * sglist without mark the sg which contain last skb data as the end. 4880 * So the caller can mannipulate sg list as will when padding new data after 4881 * the first call without calling sg_unmark_end to expend sg list. 4882 * 4883 * Scenario to use skb_to_sgvec_nomark: 4884 * 1. sg_init_table 4885 * 2. skb_to_sgvec_nomark(payload1) 4886 * 3. skb_to_sgvec_nomark(payload2) 4887 * 4888 * This is equivalent to: 4889 * 1. sg_init_table 4890 * 2. skb_to_sgvec(payload1) 4891 * 3. sg_unmark_end 4892 * 4. skb_to_sgvec(payload2) 4893 * 4894 * When mapping mutilple payload conditionally, skb_to_sgvec_nomark 4895 * is more preferable. 4896 */ 4897 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg, 4898 int offset, int len) 4899 { 4900 return __skb_to_sgvec(skb, sg, offset, len, 0); 4901 } 4902 EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark); 4903 4904 4905 4906 /** 4907 * skb_cow_data - Check that a socket buffer's data buffers are writable 4908 * @skb: The socket buffer to check. 4909 * @tailbits: Amount of trailing space to be added 4910 * @trailer: Returned pointer to the skb where the @tailbits space begins 4911 * 4912 * Make sure that the data buffers attached to a socket buffer are 4913 * writable. If they are not, private copies are made of the data buffers 4914 * and the socket buffer is set to use these instead. 4915 * 4916 * If @tailbits is given, make sure that there is space to write @tailbits 4917 * bytes of data beyond current end of socket buffer. @trailer will be 4918 * set to point to the skb in which this space begins. 4919 * 4920 * The number of scatterlist elements required to completely map the 4921 * COW'd and extended socket buffer will be returned. 4922 */ 4923 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer) 4924 { 4925 int copyflag; 4926 int elt; 4927 struct sk_buff *skb1, **skb_p; 4928 4929 /* If skb is cloned or its head is paged, reallocate 4930 * head pulling out all the pages (pages are considered not writable 4931 * at the moment even if they are anonymous). 4932 */ 4933 if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) && 4934 !__pskb_pull_tail(skb, __skb_pagelen(skb))) 4935 return -ENOMEM; 4936 4937 /* Easy case. Most of packets will go this way. */ 4938 if (!skb_has_frag_list(skb)) { 4939 /* A little of trouble, not enough of space for trailer. 4940 * This should not happen, when stack is tuned to generate 4941 * good frames. OK, on miss we reallocate and reserve even more 4942 * space, 128 bytes is fair. */ 4943 4944 if (skb_tailroom(skb) < tailbits && 4945 pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC)) 4946 return -ENOMEM; 4947 4948 /* Voila! */ 4949 *trailer = skb; 4950 return 1; 4951 } 4952 4953 /* Misery. We are in troubles, going to mincer fragments... */ 4954 4955 elt = 1; 4956 skb_p = &skb_shinfo(skb)->frag_list; 4957 copyflag = 0; 4958 4959 while ((skb1 = *skb_p) != NULL) { 4960 int ntail = 0; 4961 4962 /* The fragment is partially pulled by someone, 4963 * this can happen on input. Copy it and everything 4964 * after it. */ 4965 4966 if (skb_shared(skb1)) 4967 copyflag = 1; 4968 4969 /* If the skb is the last, worry about trailer. */ 4970 4971 if (skb1->next == NULL && tailbits) { 4972 if (skb_shinfo(skb1)->nr_frags || 4973 skb_has_frag_list(skb1) || 4974 skb_tailroom(skb1) < tailbits) 4975 ntail = tailbits + 128; 4976 } 4977 4978 if (copyflag || 4979 skb_cloned(skb1) || 4980 ntail || 4981 skb_shinfo(skb1)->nr_frags || 4982 skb_has_frag_list(skb1)) { 4983 struct sk_buff *skb2; 4984 4985 /* Fuck, we are miserable poor guys... */ 4986 if (ntail == 0) 4987 skb2 = skb_copy(skb1, GFP_ATOMIC); 4988 else 4989 skb2 = skb_copy_expand(skb1, 4990 skb_headroom(skb1), 4991 ntail, 4992 GFP_ATOMIC); 4993 if (unlikely(skb2 == NULL)) 4994 return -ENOMEM; 4995 4996 if (skb1->sk) 4997 skb_set_owner_w(skb2, skb1->sk); 4998 4999 /* Looking around. Are we still alive? 5000 * OK, link new skb, drop old one */ 5001 5002 skb2->next = skb1->next; 5003 *skb_p = skb2; 5004 kfree_skb(skb1); 5005 skb1 = skb2; 5006 } 5007 elt++; 5008 *trailer = skb1; 5009 skb_p = &skb1->next; 5010 } 5011 5012 return elt; 5013 } 5014 EXPORT_SYMBOL_GPL(skb_cow_data); 5015 5016 static void sock_rmem_free(struct sk_buff *skb) 5017 { 5018 struct sock *sk = skb->sk; 5019 5020 atomic_sub(skb->truesize, &sk->sk_rmem_alloc); 5021 } 5022 5023 static void skb_set_err_queue(struct sk_buff *skb) 5024 { 5025 /* pkt_type of skbs received on local sockets is never PACKET_OUTGOING. 5026 * So, it is safe to (mis)use it to mark skbs on the error queue. 5027 */ 5028 skb->pkt_type = PACKET_OUTGOING; 5029 BUILD_BUG_ON(PACKET_OUTGOING == 0); 5030 } 5031 5032 /* 5033 * Note: We dont mem charge error packets (no sk_forward_alloc changes) 5034 */ 5035 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb) 5036 { 5037 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >= 5038 (unsigned int)READ_ONCE(sk->sk_rcvbuf)) 5039 return -ENOMEM; 5040 5041 skb_orphan(skb); 5042 skb->sk = sk; 5043 skb->destructor = sock_rmem_free; 5044 atomic_add(skb->truesize, &sk->sk_rmem_alloc); 5045 skb_set_err_queue(skb); 5046 5047 /* before exiting rcu section, make sure dst is refcounted */ 5048 skb_dst_force(skb); 5049 5050 skb_queue_tail(&sk->sk_error_queue, skb); 5051 if (!sock_flag(sk, SOCK_DEAD)) 5052 sk_error_report(sk); 5053 return 0; 5054 } 5055 EXPORT_SYMBOL(sock_queue_err_skb); 5056 5057 static bool is_icmp_err_skb(const struct sk_buff *skb) 5058 { 5059 return skb && (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP || 5060 SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP6); 5061 } 5062 5063 struct sk_buff *sock_dequeue_err_skb(struct sock *sk) 5064 { 5065 struct sk_buff_head *q = &sk->sk_error_queue; 5066 struct sk_buff *skb, *skb_next = NULL; 5067 bool icmp_next = false; 5068 unsigned long flags; 5069 5070 spin_lock_irqsave(&q->lock, flags); 5071 skb = __skb_dequeue(q); 5072 if (skb && (skb_next = skb_peek(q))) { 5073 icmp_next = is_icmp_err_skb(skb_next); 5074 if (icmp_next) 5075 sk->sk_err = SKB_EXT_ERR(skb_next)->ee.ee_errno; 5076 } 5077 spin_unlock_irqrestore(&q->lock, flags); 5078 5079 if (is_icmp_err_skb(skb) && !icmp_next) 5080 sk->sk_err = 0; 5081 5082 if (skb_next) 5083 sk_error_report(sk); 5084 5085 return skb; 5086 } 5087 EXPORT_SYMBOL(sock_dequeue_err_skb); 5088 5089 /** 5090 * skb_clone_sk - create clone of skb, and take reference to socket 5091 * @skb: the skb to clone 5092 * 5093 * This function creates a clone of a buffer that holds a reference on 5094 * sk_refcnt. Buffers created via this function are meant to be 5095 * returned using sock_queue_err_skb, or free via kfree_skb. 5096 * 5097 * When passing buffers allocated with this function to sock_queue_err_skb 5098 * it is necessary to wrap the call with sock_hold/sock_put in order to 5099 * prevent the socket from being released prior to being enqueued on 5100 * the sk_error_queue. 5101 */ 5102 struct sk_buff *skb_clone_sk(struct sk_buff *skb) 5103 { 5104 struct sock *sk = skb->sk; 5105 struct sk_buff *clone; 5106 5107 if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt)) 5108 return NULL; 5109 5110 clone = skb_clone(skb, GFP_ATOMIC); 5111 if (!clone) { 5112 sock_put(sk); 5113 return NULL; 5114 } 5115 5116 clone->sk = sk; 5117 clone->destructor = sock_efree; 5118 5119 return clone; 5120 } 5121 EXPORT_SYMBOL(skb_clone_sk); 5122 5123 static void __skb_complete_tx_timestamp(struct sk_buff *skb, 5124 struct sock *sk, 5125 int tstype, 5126 bool opt_stats) 5127 { 5128 struct sock_exterr_skb *serr; 5129 int err; 5130 5131 BUILD_BUG_ON(sizeof(struct sock_exterr_skb) > sizeof(skb->cb)); 5132 5133 serr = SKB_EXT_ERR(skb); 5134 memset(serr, 0, sizeof(*serr)); 5135 serr->ee.ee_errno = ENOMSG; 5136 serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING; 5137 serr->ee.ee_info = tstype; 5138 serr->opt_stats = opt_stats; 5139 serr->header.h4.iif = skb->dev ? skb->dev->ifindex : 0; 5140 if (sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID) { 5141 serr->ee.ee_data = skb_shinfo(skb)->tskey; 5142 if (sk_is_tcp(sk)) 5143 serr->ee.ee_data -= atomic_read(&sk->sk_tskey); 5144 } 5145 5146 err = sock_queue_err_skb(sk, skb); 5147 5148 if (err) 5149 kfree_skb(skb); 5150 } 5151 5152 static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly) 5153 { 5154 bool ret; 5155 5156 if (likely(READ_ONCE(sysctl_tstamp_allow_data) || tsonly)) 5157 return true; 5158 5159 read_lock_bh(&sk->sk_callback_lock); 5160 ret = sk->sk_socket && sk->sk_socket->file && 5161 file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW); 5162 read_unlock_bh(&sk->sk_callback_lock); 5163 return ret; 5164 } 5165 5166 void skb_complete_tx_timestamp(struct sk_buff *skb, 5167 struct skb_shared_hwtstamps *hwtstamps) 5168 { 5169 struct sock *sk = skb->sk; 5170 5171 if (!skb_may_tx_timestamp(sk, false)) 5172 goto err; 5173 5174 /* Take a reference to prevent skb_orphan() from freeing the socket, 5175 * but only if the socket refcount is not zero. 5176 */ 5177 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) { 5178 *skb_hwtstamps(skb) = *hwtstamps; 5179 __skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND, false); 5180 sock_put(sk); 5181 return; 5182 } 5183 5184 err: 5185 kfree_skb(skb); 5186 } 5187 EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp); 5188 5189 void __skb_tstamp_tx(struct sk_buff *orig_skb, 5190 const struct sk_buff *ack_skb, 5191 struct skb_shared_hwtstamps *hwtstamps, 5192 struct sock *sk, int tstype) 5193 { 5194 struct sk_buff *skb; 5195 bool tsonly, opt_stats = false; 5196 5197 if (!sk) 5198 return; 5199 5200 if (!hwtstamps && !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TX_SWHW) && 5201 skb_shinfo(orig_skb)->tx_flags & SKBTX_IN_PROGRESS) 5202 return; 5203 5204 tsonly = sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TSONLY; 5205 if (!skb_may_tx_timestamp(sk, tsonly)) 5206 return; 5207 5208 if (tsonly) { 5209 #ifdef CONFIG_INET 5210 if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_STATS) && 5211 sk_is_tcp(sk)) { 5212 skb = tcp_get_timestamping_opt_stats(sk, orig_skb, 5213 ack_skb); 5214 opt_stats = true; 5215 } else 5216 #endif 5217 skb = alloc_skb(0, GFP_ATOMIC); 5218 } else { 5219 skb = skb_clone(orig_skb, GFP_ATOMIC); 5220 5221 if (skb_orphan_frags_rx(skb, GFP_ATOMIC)) { 5222 kfree_skb(skb); 5223 return; 5224 } 5225 } 5226 if (!skb) 5227 return; 5228 5229 if (tsonly) { 5230 skb_shinfo(skb)->tx_flags |= skb_shinfo(orig_skb)->tx_flags & 5231 SKBTX_ANY_TSTAMP; 5232 skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey; 5233 } 5234 5235 if (hwtstamps) 5236 *skb_hwtstamps(skb) = *hwtstamps; 5237 else 5238 __net_timestamp(skb); 5239 5240 __skb_complete_tx_timestamp(skb, sk, tstype, opt_stats); 5241 } 5242 EXPORT_SYMBOL_GPL(__skb_tstamp_tx); 5243 5244 void skb_tstamp_tx(struct sk_buff *orig_skb, 5245 struct skb_shared_hwtstamps *hwtstamps) 5246 { 5247 return __skb_tstamp_tx(orig_skb, NULL, hwtstamps, orig_skb->sk, 5248 SCM_TSTAMP_SND); 5249 } 5250 EXPORT_SYMBOL_GPL(skb_tstamp_tx); 5251 5252 #ifdef CONFIG_WIRELESS 5253 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked) 5254 { 5255 struct sock *sk = skb->sk; 5256 struct sock_exterr_skb *serr; 5257 int err = 1; 5258 5259 skb->wifi_acked_valid = 1; 5260 skb->wifi_acked = acked; 5261 5262 serr = SKB_EXT_ERR(skb); 5263 memset(serr, 0, sizeof(*serr)); 5264 serr->ee.ee_errno = ENOMSG; 5265 serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS; 5266 5267 /* Take a reference to prevent skb_orphan() from freeing the socket, 5268 * but only if the socket refcount is not zero. 5269 */ 5270 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) { 5271 err = sock_queue_err_skb(sk, skb); 5272 sock_put(sk); 5273 } 5274 if (err) 5275 kfree_skb(skb); 5276 } 5277 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack); 5278 #endif /* CONFIG_WIRELESS */ 5279 5280 /** 5281 * skb_partial_csum_set - set up and verify partial csum values for packet 5282 * @skb: the skb to set 5283 * @start: the number of bytes after skb->data to start checksumming. 5284 * @off: the offset from start to place the checksum. 5285 * 5286 * For untrusted partially-checksummed packets, we need to make sure the values 5287 * for skb->csum_start and skb->csum_offset are valid so we don't oops. 5288 * 5289 * This function checks and sets those values and skb->ip_summed: if this 5290 * returns false you should drop the packet. 5291 */ 5292 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off) 5293 { 5294 u32 csum_end = (u32)start + (u32)off + sizeof(__sum16); 5295 u32 csum_start = skb_headroom(skb) + (u32)start; 5296 5297 if (unlikely(csum_start >= U16_MAX || csum_end > skb_headlen(skb))) { 5298 net_warn_ratelimited("bad partial csum: csum=%u/%u headroom=%u headlen=%u\n", 5299 start, off, skb_headroom(skb), skb_headlen(skb)); 5300 return false; 5301 } 5302 skb->ip_summed = CHECKSUM_PARTIAL; 5303 skb->csum_start = csum_start; 5304 skb->csum_offset = off; 5305 skb->transport_header = csum_start; 5306 return true; 5307 } 5308 EXPORT_SYMBOL_GPL(skb_partial_csum_set); 5309 5310 static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len, 5311 unsigned int max) 5312 { 5313 if (skb_headlen(skb) >= len) 5314 return 0; 5315 5316 /* If we need to pullup then pullup to the max, so we 5317 * won't need to do it again. 5318 */ 5319 if (max > skb->len) 5320 max = skb->len; 5321 5322 if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL) 5323 return -ENOMEM; 5324 5325 if (skb_headlen(skb) < len) 5326 return -EPROTO; 5327 5328 return 0; 5329 } 5330 5331 #define MAX_TCP_HDR_LEN (15 * 4) 5332 5333 static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb, 5334 typeof(IPPROTO_IP) proto, 5335 unsigned int off) 5336 { 5337 int err; 5338 5339 switch (proto) { 5340 case IPPROTO_TCP: 5341 err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr), 5342 off + MAX_TCP_HDR_LEN); 5343 if (!err && !skb_partial_csum_set(skb, off, 5344 offsetof(struct tcphdr, 5345 check))) 5346 err = -EPROTO; 5347 return err ? ERR_PTR(err) : &tcp_hdr(skb)->check; 5348 5349 case IPPROTO_UDP: 5350 err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr), 5351 off + sizeof(struct udphdr)); 5352 if (!err && !skb_partial_csum_set(skb, off, 5353 offsetof(struct udphdr, 5354 check))) 5355 err = -EPROTO; 5356 return err ? ERR_PTR(err) : &udp_hdr(skb)->check; 5357 } 5358 5359 return ERR_PTR(-EPROTO); 5360 } 5361 5362 /* This value should be large enough to cover a tagged ethernet header plus 5363 * maximally sized IP and TCP or UDP headers. 5364 */ 5365 #define MAX_IP_HDR_LEN 128 5366 5367 static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate) 5368 { 5369 unsigned int off; 5370 bool fragment; 5371 __sum16 *csum; 5372 int err; 5373 5374 fragment = false; 5375 5376 err = skb_maybe_pull_tail(skb, 5377 sizeof(struct iphdr), 5378 MAX_IP_HDR_LEN); 5379 if (err < 0) 5380 goto out; 5381 5382 if (ip_is_fragment(ip_hdr(skb))) 5383 fragment = true; 5384 5385 off = ip_hdrlen(skb); 5386 5387 err = -EPROTO; 5388 5389 if (fragment) 5390 goto out; 5391 5392 csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off); 5393 if (IS_ERR(csum)) 5394 return PTR_ERR(csum); 5395 5396 if (recalculate) 5397 *csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr, 5398 ip_hdr(skb)->daddr, 5399 skb->len - off, 5400 ip_hdr(skb)->protocol, 0); 5401 err = 0; 5402 5403 out: 5404 return err; 5405 } 5406 5407 /* This value should be large enough to cover a tagged ethernet header plus 5408 * an IPv6 header, all options, and a maximal TCP or UDP header. 5409 */ 5410 #define MAX_IPV6_HDR_LEN 256 5411 5412 #define OPT_HDR(type, skb, off) \ 5413 (type *)(skb_network_header(skb) + (off)) 5414 5415 static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate) 5416 { 5417 int err; 5418 u8 nexthdr; 5419 unsigned int off; 5420 unsigned int len; 5421 bool fragment; 5422 bool done; 5423 __sum16 *csum; 5424 5425 fragment = false; 5426 done = false; 5427 5428 off = sizeof(struct ipv6hdr); 5429 5430 err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN); 5431 if (err < 0) 5432 goto out; 5433 5434 nexthdr = ipv6_hdr(skb)->nexthdr; 5435 5436 len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len); 5437 while (off <= len && !done) { 5438 switch (nexthdr) { 5439 case IPPROTO_DSTOPTS: 5440 case IPPROTO_HOPOPTS: 5441 case IPPROTO_ROUTING: { 5442 struct ipv6_opt_hdr *hp; 5443 5444 err = skb_maybe_pull_tail(skb, 5445 off + 5446 sizeof(struct ipv6_opt_hdr), 5447 MAX_IPV6_HDR_LEN); 5448 if (err < 0) 5449 goto out; 5450 5451 hp = OPT_HDR(struct ipv6_opt_hdr, skb, off); 5452 nexthdr = hp->nexthdr; 5453 off += ipv6_optlen(hp); 5454 break; 5455 } 5456 case IPPROTO_AH: { 5457 struct ip_auth_hdr *hp; 5458 5459 err = skb_maybe_pull_tail(skb, 5460 off + 5461 sizeof(struct ip_auth_hdr), 5462 MAX_IPV6_HDR_LEN); 5463 if (err < 0) 5464 goto out; 5465 5466 hp = OPT_HDR(struct ip_auth_hdr, skb, off); 5467 nexthdr = hp->nexthdr; 5468 off += ipv6_authlen(hp); 5469 break; 5470 } 5471 case IPPROTO_FRAGMENT: { 5472 struct frag_hdr *hp; 5473 5474 err = skb_maybe_pull_tail(skb, 5475 off + 5476 sizeof(struct frag_hdr), 5477 MAX_IPV6_HDR_LEN); 5478 if (err < 0) 5479 goto out; 5480 5481 hp = OPT_HDR(struct frag_hdr, skb, off); 5482 5483 if (hp->frag_off & htons(IP6_OFFSET | IP6_MF)) 5484 fragment = true; 5485 5486 nexthdr = hp->nexthdr; 5487 off += sizeof(struct frag_hdr); 5488 break; 5489 } 5490 default: 5491 done = true; 5492 break; 5493 } 5494 } 5495 5496 err = -EPROTO; 5497 5498 if (!done || fragment) 5499 goto out; 5500 5501 csum = skb_checksum_setup_ip(skb, nexthdr, off); 5502 if (IS_ERR(csum)) 5503 return PTR_ERR(csum); 5504 5505 if (recalculate) 5506 *csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr, 5507 &ipv6_hdr(skb)->daddr, 5508 skb->len - off, nexthdr, 0); 5509 err = 0; 5510 5511 out: 5512 return err; 5513 } 5514 5515 /** 5516 * skb_checksum_setup - set up partial checksum offset 5517 * @skb: the skb to set up 5518 * @recalculate: if true the pseudo-header checksum will be recalculated 5519 */ 5520 int skb_checksum_setup(struct sk_buff *skb, bool recalculate) 5521 { 5522 int err; 5523 5524 switch (skb->protocol) { 5525 case htons(ETH_P_IP): 5526 err = skb_checksum_setup_ipv4(skb, recalculate); 5527 break; 5528 5529 case htons(ETH_P_IPV6): 5530 err = skb_checksum_setup_ipv6(skb, recalculate); 5531 break; 5532 5533 default: 5534 err = -EPROTO; 5535 break; 5536 } 5537 5538 return err; 5539 } 5540 EXPORT_SYMBOL(skb_checksum_setup); 5541 5542 /** 5543 * skb_checksum_maybe_trim - maybe trims the given skb 5544 * @skb: the skb to check 5545 * @transport_len: the data length beyond the network header 5546 * 5547 * Checks whether the given skb has data beyond the given transport length. 5548 * If so, returns a cloned skb trimmed to this transport length. 5549 * Otherwise returns the provided skb. Returns NULL in error cases 5550 * (e.g. transport_len exceeds skb length or out-of-memory). 5551 * 5552 * Caller needs to set the skb transport header and free any returned skb if it 5553 * differs from the provided skb. 5554 */ 5555 static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb, 5556 unsigned int transport_len) 5557 { 5558 struct sk_buff *skb_chk; 5559 unsigned int len = skb_transport_offset(skb) + transport_len; 5560 int ret; 5561 5562 if (skb->len < len) 5563 return NULL; 5564 else if (skb->len == len) 5565 return skb; 5566 5567 skb_chk = skb_clone(skb, GFP_ATOMIC); 5568 if (!skb_chk) 5569 return NULL; 5570 5571 ret = pskb_trim_rcsum(skb_chk, len); 5572 if (ret) { 5573 kfree_skb(skb_chk); 5574 return NULL; 5575 } 5576 5577 return skb_chk; 5578 } 5579 5580 /** 5581 * skb_checksum_trimmed - validate checksum of an skb 5582 * @skb: the skb to check 5583 * @transport_len: the data length beyond the network header 5584 * @skb_chkf: checksum function to use 5585 * 5586 * Applies the given checksum function skb_chkf to the provided skb. 5587 * Returns a checked and maybe trimmed skb. Returns NULL on error. 5588 * 5589 * If the skb has data beyond the given transport length, then a 5590 * trimmed & cloned skb is checked and returned. 5591 * 5592 * Caller needs to set the skb transport header and free any returned skb if it 5593 * differs from the provided skb. 5594 */ 5595 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb, 5596 unsigned int transport_len, 5597 __sum16(*skb_chkf)(struct sk_buff *skb)) 5598 { 5599 struct sk_buff *skb_chk; 5600 unsigned int offset = skb_transport_offset(skb); 5601 __sum16 ret; 5602 5603 skb_chk = skb_checksum_maybe_trim(skb, transport_len); 5604 if (!skb_chk) 5605 goto err; 5606 5607 if (!pskb_may_pull(skb_chk, offset)) 5608 goto err; 5609 5610 skb_pull_rcsum(skb_chk, offset); 5611 ret = skb_chkf(skb_chk); 5612 skb_push_rcsum(skb_chk, offset); 5613 5614 if (ret) 5615 goto err; 5616 5617 return skb_chk; 5618 5619 err: 5620 if (skb_chk && skb_chk != skb) 5621 kfree_skb(skb_chk); 5622 5623 return NULL; 5624 5625 } 5626 EXPORT_SYMBOL(skb_checksum_trimmed); 5627 5628 void __skb_warn_lro_forwarding(const struct sk_buff *skb) 5629 { 5630 net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n", 5631 skb->dev->name); 5632 } 5633 EXPORT_SYMBOL(__skb_warn_lro_forwarding); 5634 5635 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen) 5636 { 5637 if (head_stolen) { 5638 skb_release_head_state(skb); 5639 kmem_cache_free(skbuff_cache, skb); 5640 } else { 5641 __kfree_skb(skb); 5642 } 5643 } 5644 EXPORT_SYMBOL(kfree_skb_partial); 5645 5646 /** 5647 * skb_try_coalesce - try to merge skb to prior one 5648 * @to: prior buffer 5649 * @from: buffer to add 5650 * @fragstolen: pointer to boolean 5651 * @delta_truesize: how much more was allocated than was requested 5652 */ 5653 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from, 5654 bool *fragstolen, int *delta_truesize) 5655 { 5656 struct skb_shared_info *to_shinfo, *from_shinfo; 5657 int i, delta, len = from->len; 5658 5659 *fragstolen = false; 5660 5661 if (skb_cloned(to)) 5662 return false; 5663 5664 /* In general, avoid mixing page_pool and non-page_pool allocated 5665 * pages within the same SKB. Additionally avoid dealing with clones 5666 * with page_pool pages, in case the SKB is using page_pool fragment 5667 * references (PP_FLAG_PAGE_FRAG). Since we only take full page 5668 * references for cloned SKBs at the moment that would result in 5669 * inconsistent reference counts. 5670 * In theory we could take full references if @from is cloned and 5671 * !@to->pp_recycle but its tricky (due to potential race with 5672 * the clone disappearing) and rare, so not worth dealing with. 5673 */ 5674 if (to->pp_recycle != from->pp_recycle || 5675 (from->pp_recycle && skb_cloned(from))) 5676 return false; 5677 5678 if (len <= skb_tailroom(to)) { 5679 if (len) 5680 BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len)); 5681 *delta_truesize = 0; 5682 return true; 5683 } 5684 5685 to_shinfo = skb_shinfo(to); 5686 from_shinfo = skb_shinfo(from); 5687 if (to_shinfo->frag_list || from_shinfo->frag_list) 5688 return false; 5689 if (skb_zcopy(to) || skb_zcopy(from)) 5690 return false; 5691 5692 if (skb_headlen(from) != 0) { 5693 struct page *page; 5694 unsigned int offset; 5695 5696 if (to_shinfo->nr_frags + 5697 from_shinfo->nr_frags >= MAX_SKB_FRAGS) 5698 return false; 5699 5700 if (skb_head_is_locked(from)) 5701 return false; 5702 5703 delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff)); 5704 5705 page = virt_to_head_page(from->head); 5706 offset = from->data - (unsigned char *)page_address(page); 5707 5708 skb_fill_page_desc(to, to_shinfo->nr_frags, 5709 page, offset, skb_headlen(from)); 5710 *fragstolen = true; 5711 } else { 5712 if (to_shinfo->nr_frags + 5713 from_shinfo->nr_frags > MAX_SKB_FRAGS) 5714 return false; 5715 5716 delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from)); 5717 } 5718 5719 WARN_ON_ONCE(delta < len); 5720 5721 memcpy(to_shinfo->frags + to_shinfo->nr_frags, 5722 from_shinfo->frags, 5723 from_shinfo->nr_frags * sizeof(skb_frag_t)); 5724 to_shinfo->nr_frags += from_shinfo->nr_frags; 5725 5726 if (!skb_cloned(from)) 5727 from_shinfo->nr_frags = 0; 5728 5729 /* if the skb is not cloned this does nothing 5730 * since we set nr_frags to 0. 5731 */ 5732 for (i = 0; i < from_shinfo->nr_frags; i++) 5733 __skb_frag_ref(&from_shinfo->frags[i]); 5734 5735 to->truesize += delta; 5736 to->len += len; 5737 to->data_len += len; 5738 5739 *delta_truesize = delta; 5740 return true; 5741 } 5742 EXPORT_SYMBOL(skb_try_coalesce); 5743 5744 /** 5745 * skb_scrub_packet - scrub an skb 5746 * 5747 * @skb: buffer to clean 5748 * @xnet: packet is crossing netns 5749 * 5750 * skb_scrub_packet can be used after encapsulating or decapsulting a packet 5751 * into/from a tunnel. Some information have to be cleared during these 5752 * operations. 5753 * skb_scrub_packet can also be used to clean a skb before injecting it in 5754 * another namespace (@xnet == true). We have to clear all information in the 5755 * skb that could impact namespace isolation. 5756 */ 5757 void skb_scrub_packet(struct sk_buff *skb, bool xnet) 5758 { 5759 skb->pkt_type = PACKET_HOST; 5760 skb->skb_iif = 0; 5761 skb->ignore_df = 0; 5762 skb_dst_drop(skb); 5763 skb_ext_reset(skb); 5764 nf_reset_ct(skb); 5765 nf_reset_trace(skb); 5766 5767 #ifdef CONFIG_NET_SWITCHDEV 5768 skb->offload_fwd_mark = 0; 5769 skb->offload_l3_fwd_mark = 0; 5770 #endif 5771 5772 if (!xnet) 5773 return; 5774 5775 ipvs_reset(skb); 5776 skb->mark = 0; 5777 skb_clear_tstamp(skb); 5778 } 5779 EXPORT_SYMBOL_GPL(skb_scrub_packet); 5780 5781 static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb) 5782 { 5783 int mac_len, meta_len; 5784 void *meta; 5785 5786 if (skb_cow(skb, skb_headroom(skb)) < 0) { 5787 kfree_skb(skb); 5788 return NULL; 5789 } 5790 5791 mac_len = skb->data - skb_mac_header(skb); 5792 if (likely(mac_len > VLAN_HLEN + ETH_TLEN)) { 5793 memmove(skb_mac_header(skb) + VLAN_HLEN, skb_mac_header(skb), 5794 mac_len - VLAN_HLEN - ETH_TLEN); 5795 } 5796 5797 meta_len = skb_metadata_len(skb); 5798 if (meta_len) { 5799 meta = skb_metadata_end(skb) - meta_len; 5800 memmove(meta + VLAN_HLEN, meta, meta_len); 5801 } 5802 5803 skb->mac_header += VLAN_HLEN; 5804 return skb; 5805 } 5806 5807 struct sk_buff *skb_vlan_untag(struct sk_buff *skb) 5808 { 5809 struct vlan_hdr *vhdr; 5810 u16 vlan_tci; 5811 5812 if (unlikely(skb_vlan_tag_present(skb))) { 5813 /* vlan_tci is already set-up so leave this for another time */ 5814 return skb; 5815 } 5816 5817 skb = skb_share_check(skb, GFP_ATOMIC); 5818 if (unlikely(!skb)) 5819 goto err_free; 5820 /* We may access the two bytes after vlan_hdr in vlan_set_encap_proto(). */ 5821 if (unlikely(!pskb_may_pull(skb, VLAN_HLEN + sizeof(unsigned short)))) 5822 goto err_free; 5823 5824 vhdr = (struct vlan_hdr *)skb->data; 5825 vlan_tci = ntohs(vhdr->h_vlan_TCI); 5826 __vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci); 5827 5828 skb_pull_rcsum(skb, VLAN_HLEN); 5829 vlan_set_encap_proto(skb, vhdr); 5830 5831 skb = skb_reorder_vlan_header(skb); 5832 if (unlikely(!skb)) 5833 goto err_free; 5834 5835 skb_reset_network_header(skb); 5836 if (!skb_transport_header_was_set(skb)) 5837 skb_reset_transport_header(skb); 5838 skb_reset_mac_len(skb); 5839 5840 return skb; 5841 5842 err_free: 5843 kfree_skb(skb); 5844 return NULL; 5845 } 5846 EXPORT_SYMBOL(skb_vlan_untag); 5847 5848 int skb_ensure_writable(struct sk_buff *skb, unsigned int write_len) 5849 { 5850 if (!pskb_may_pull(skb, write_len)) 5851 return -ENOMEM; 5852 5853 if (!skb_cloned(skb) || skb_clone_writable(skb, write_len)) 5854 return 0; 5855 5856 return pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 5857 } 5858 EXPORT_SYMBOL(skb_ensure_writable); 5859 5860 /* remove VLAN header from packet and update csum accordingly. 5861 * expects a non skb_vlan_tag_present skb with a vlan tag payload 5862 */ 5863 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci) 5864 { 5865 int offset = skb->data - skb_mac_header(skb); 5866 int err; 5867 5868 if (WARN_ONCE(offset, 5869 "__skb_vlan_pop got skb with skb->data not at mac header (offset %d)\n", 5870 offset)) { 5871 return -EINVAL; 5872 } 5873 5874 err = skb_ensure_writable(skb, VLAN_ETH_HLEN); 5875 if (unlikely(err)) 5876 return err; 5877 5878 skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN); 5879 5880 vlan_remove_tag(skb, vlan_tci); 5881 5882 skb->mac_header += VLAN_HLEN; 5883 5884 if (skb_network_offset(skb) < ETH_HLEN) 5885 skb_set_network_header(skb, ETH_HLEN); 5886 5887 skb_reset_mac_len(skb); 5888 5889 return err; 5890 } 5891 EXPORT_SYMBOL(__skb_vlan_pop); 5892 5893 /* Pop a vlan tag either from hwaccel or from payload. 5894 * Expects skb->data at mac header. 5895 */ 5896 int skb_vlan_pop(struct sk_buff *skb) 5897 { 5898 u16 vlan_tci; 5899 __be16 vlan_proto; 5900 int err; 5901 5902 if (likely(skb_vlan_tag_present(skb))) { 5903 __vlan_hwaccel_clear_tag(skb); 5904 } else { 5905 if (unlikely(!eth_type_vlan(skb->protocol))) 5906 return 0; 5907 5908 err = __skb_vlan_pop(skb, &vlan_tci); 5909 if (err) 5910 return err; 5911 } 5912 /* move next vlan tag to hw accel tag */ 5913 if (likely(!eth_type_vlan(skb->protocol))) 5914 return 0; 5915 5916 vlan_proto = skb->protocol; 5917 err = __skb_vlan_pop(skb, &vlan_tci); 5918 if (unlikely(err)) 5919 return err; 5920 5921 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci); 5922 return 0; 5923 } 5924 EXPORT_SYMBOL(skb_vlan_pop); 5925 5926 /* Push a vlan tag either into hwaccel or into payload (if hwaccel tag present). 5927 * Expects skb->data at mac header. 5928 */ 5929 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci) 5930 { 5931 if (skb_vlan_tag_present(skb)) { 5932 int offset = skb->data - skb_mac_header(skb); 5933 int err; 5934 5935 if (WARN_ONCE(offset, 5936 "skb_vlan_push got skb with skb->data not at mac header (offset %d)\n", 5937 offset)) { 5938 return -EINVAL; 5939 } 5940 5941 err = __vlan_insert_tag(skb, skb->vlan_proto, 5942 skb_vlan_tag_get(skb)); 5943 if (err) 5944 return err; 5945 5946 skb->protocol = skb->vlan_proto; 5947 skb->mac_len += VLAN_HLEN; 5948 5949 skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN); 5950 } 5951 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci); 5952 return 0; 5953 } 5954 EXPORT_SYMBOL(skb_vlan_push); 5955 5956 /** 5957 * skb_eth_pop() - Drop the Ethernet header at the head of a packet 5958 * 5959 * @skb: Socket buffer to modify 5960 * 5961 * Drop the Ethernet header of @skb. 5962 * 5963 * Expects that skb->data points to the mac header and that no VLAN tags are 5964 * present. 5965 * 5966 * Returns 0 on success, -errno otherwise. 5967 */ 5968 int skb_eth_pop(struct sk_buff *skb) 5969 { 5970 if (!pskb_may_pull(skb, ETH_HLEN) || skb_vlan_tagged(skb) || 5971 skb_network_offset(skb) < ETH_HLEN) 5972 return -EPROTO; 5973 5974 skb_pull_rcsum(skb, ETH_HLEN); 5975 skb_reset_mac_header(skb); 5976 skb_reset_mac_len(skb); 5977 5978 return 0; 5979 } 5980 EXPORT_SYMBOL(skb_eth_pop); 5981 5982 /** 5983 * skb_eth_push() - Add a new Ethernet header at the head of a packet 5984 * 5985 * @skb: Socket buffer to modify 5986 * @dst: Destination MAC address of the new header 5987 * @src: Source MAC address of the new header 5988 * 5989 * Prepend @skb with a new Ethernet header. 5990 * 5991 * Expects that skb->data points to the mac header, which must be empty. 5992 * 5993 * Returns 0 on success, -errno otherwise. 5994 */ 5995 int skb_eth_push(struct sk_buff *skb, const unsigned char *dst, 5996 const unsigned char *src) 5997 { 5998 struct ethhdr *eth; 5999 int err; 6000 6001 if (skb_network_offset(skb) || skb_vlan_tag_present(skb)) 6002 return -EPROTO; 6003 6004 err = skb_cow_head(skb, sizeof(*eth)); 6005 if (err < 0) 6006 return err; 6007 6008 skb_push(skb, sizeof(*eth)); 6009 skb_reset_mac_header(skb); 6010 skb_reset_mac_len(skb); 6011 6012 eth = eth_hdr(skb); 6013 ether_addr_copy(eth->h_dest, dst); 6014 ether_addr_copy(eth->h_source, src); 6015 eth->h_proto = skb->protocol; 6016 6017 skb_postpush_rcsum(skb, eth, sizeof(*eth)); 6018 6019 return 0; 6020 } 6021 EXPORT_SYMBOL(skb_eth_push); 6022 6023 /* Update the ethertype of hdr and the skb csum value if required. */ 6024 static void skb_mod_eth_type(struct sk_buff *skb, struct ethhdr *hdr, 6025 __be16 ethertype) 6026 { 6027 if (skb->ip_summed == CHECKSUM_COMPLETE) { 6028 __be16 diff[] = { ~hdr->h_proto, ethertype }; 6029 6030 skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum); 6031 } 6032 6033 hdr->h_proto = ethertype; 6034 } 6035 6036 /** 6037 * skb_mpls_push() - push a new MPLS header after mac_len bytes from start of 6038 * the packet 6039 * 6040 * @skb: buffer 6041 * @mpls_lse: MPLS label stack entry to push 6042 * @mpls_proto: ethertype of the new MPLS header (expects 0x8847 or 0x8848) 6043 * @mac_len: length of the MAC header 6044 * @ethernet: flag to indicate if the resulting packet after skb_mpls_push is 6045 * ethernet 6046 * 6047 * Expects skb->data at mac header. 6048 * 6049 * Returns 0 on success, -errno otherwise. 6050 */ 6051 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto, 6052 int mac_len, bool ethernet) 6053 { 6054 struct mpls_shim_hdr *lse; 6055 int err; 6056 6057 if (unlikely(!eth_p_mpls(mpls_proto))) 6058 return -EINVAL; 6059 6060 /* Networking stack does not allow simultaneous Tunnel and MPLS GSO. */ 6061 if (skb->encapsulation) 6062 return -EINVAL; 6063 6064 err = skb_cow_head(skb, MPLS_HLEN); 6065 if (unlikely(err)) 6066 return err; 6067 6068 if (!skb->inner_protocol) { 6069 skb_set_inner_network_header(skb, skb_network_offset(skb)); 6070 skb_set_inner_protocol(skb, skb->protocol); 6071 } 6072 6073 skb_push(skb, MPLS_HLEN); 6074 memmove(skb_mac_header(skb) - MPLS_HLEN, skb_mac_header(skb), 6075 mac_len); 6076 skb_reset_mac_header(skb); 6077 skb_set_network_header(skb, mac_len); 6078 skb_reset_mac_len(skb); 6079 6080 lse = mpls_hdr(skb); 6081 lse->label_stack_entry = mpls_lse; 6082 skb_postpush_rcsum(skb, lse, MPLS_HLEN); 6083 6084 if (ethernet && mac_len >= ETH_HLEN) 6085 skb_mod_eth_type(skb, eth_hdr(skb), mpls_proto); 6086 skb->protocol = mpls_proto; 6087 6088 return 0; 6089 } 6090 EXPORT_SYMBOL_GPL(skb_mpls_push); 6091 6092 /** 6093 * skb_mpls_pop() - pop the outermost MPLS header 6094 * 6095 * @skb: buffer 6096 * @next_proto: ethertype of header after popped MPLS header 6097 * @mac_len: length of the MAC header 6098 * @ethernet: flag to indicate if the packet is ethernet 6099 * 6100 * Expects skb->data at mac header. 6101 * 6102 * Returns 0 on success, -errno otherwise. 6103 */ 6104 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len, 6105 bool ethernet) 6106 { 6107 int err; 6108 6109 if (unlikely(!eth_p_mpls(skb->protocol))) 6110 return 0; 6111 6112 err = skb_ensure_writable(skb, mac_len + MPLS_HLEN); 6113 if (unlikely(err)) 6114 return err; 6115 6116 skb_postpull_rcsum(skb, mpls_hdr(skb), MPLS_HLEN); 6117 memmove(skb_mac_header(skb) + MPLS_HLEN, skb_mac_header(skb), 6118 mac_len); 6119 6120 __skb_pull(skb, MPLS_HLEN); 6121 skb_reset_mac_header(skb); 6122 skb_set_network_header(skb, mac_len); 6123 6124 if (ethernet && mac_len >= ETH_HLEN) { 6125 struct ethhdr *hdr; 6126 6127 /* use mpls_hdr() to get ethertype to account for VLANs. */ 6128 hdr = (struct ethhdr *)((void *)mpls_hdr(skb) - ETH_HLEN); 6129 skb_mod_eth_type(skb, hdr, next_proto); 6130 } 6131 skb->protocol = next_proto; 6132 6133 return 0; 6134 } 6135 EXPORT_SYMBOL_GPL(skb_mpls_pop); 6136 6137 /** 6138 * skb_mpls_update_lse() - modify outermost MPLS header and update csum 6139 * 6140 * @skb: buffer 6141 * @mpls_lse: new MPLS label stack entry to update to 6142 * 6143 * Expects skb->data at mac header. 6144 * 6145 * Returns 0 on success, -errno otherwise. 6146 */ 6147 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse) 6148 { 6149 int err; 6150 6151 if (unlikely(!eth_p_mpls(skb->protocol))) 6152 return -EINVAL; 6153 6154 err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN); 6155 if (unlikely(err)) 6156 return err; 6157 6158 if (skb->ip_summed == CHECKSUM_COMPLETE) { 6159 __be32 diff[] = { ~mpls_hdr(skb)->label_stack_entry, mpls_lse }; 6160 6161 skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum); 6162 } 6163 6164 mpls_hdr(skb)->label_stack_entry = mpls_lse; 6165 6166 return 0; 6167 } 6168 EXPORT_SYMBOL_GPL(skb_mpls_update_lse); 6169 6170 /** 6171 * skb_mpls_dec_ttl() - decrement the TTL of the outermost MPLS header 6172 * 6173 * @skb: buffer 6174 * 6175 * Expects skb->data at mac header. 6176 * 6177 * Returns 0 on success, -errno otherwise. 6178 */ 6179 int skb_mpls_dec_ttl(struct sk_buff *skb) 6180 { 6181 u32 lse; 6182 u8 ttl; 6183 6184 if (unlikely(!eth_p_mpls(skb->protocol))) 6185 return -EINVAL; 6186 6187 if (!pskb_may_pull(skb, skb_network_offset(skb) + MPLS_HLEN)) 6188 return -ENOMEM; 6189 6190 lse = be32_to_cpu(mpls_hdr(skb)->label_stack_entry); 6191 ttl = (lse & MPLS_LS_TTL_MASK) >> MPLS_LS_TTL_SHIFT; 6192 if (!--ttl) 6193 return -EINVAL; 6194 6195 lse &= ~MPLS_LS_TTL_MASK; 6196 lse |= ttl << MPLS_LS_TTL_SHIFT; 6197 6198 return skb_mpls_update_lse(skb, cpu_to_be32(lse)); 6199 } 6200 EXPORT_SYMBOL_GPL(skb_mpls_dec_ttl); 6201 6202 /** 6203 * alloc_skb_with_frags - allocate skb with page frags 6204 * 6205 * @header_len: size of linear part 6206 * @data_len: needed length in frags 6207 * @order: max page order desired. 6208 * @errcode: pointer to error code if any 6209 * @gfp_mask: allocation mask 6210 * 6211 * This can be used to allocate a paged skb, given a maximal order for frags. 6212 */ 6213 struct sk_buff *alloc_skb_with_frags(unsigned long header_len, 6214 unsigned long data_len, 6215 int order, 6216 int *errcode, 6217 gfp_t gfp_mask) 6218 { 6219 unsigned long chunk; 6220 struct sk_buff *skb; 6221 struct page *page; 6222 int nr_frags = 0; 6223 6224 *errcode = -EMSGSIZE; 6225 if (unlikely(data_len > MAX_SKB_FRAGS * (PAGE_SIZE << order))) 6226 return NULL; 6227 6228 *errcode = -ENOBUFS; 6229 skb = alloc_skb(header_len, gfp_mask); 6230 if (!skb) 6231 return NULL; 6232 6233 while (data_len) { 6234 if (nr_frags == MAX_SKB_FRAGS - 1) 6235 goto failure; 6236 while (order && PAGE_ALIGN(data_len) < (PAGE_SIZE << order)) 6237 order--; 6238 6239 if (order) { 6240 page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) | 6241 __GFP_COMP | 6242 __GFP_NOWARN, 6243 order); 6244 if (!page) { 6245 order--; 6246 continue; 6247 } 6248 } else { 6249 page = alloc_page(gfp_mask); 6250 if (!page) 6251 goto failure; 6252 } 6253 chunk = min_t(unsigned long, data_len, 6254 PAGE_SIZE << order); 6255 skb_fill_page_desc(skb, nr_frags, page, 0, chunk); 6256 nr_frags++; 6257 skb->truesize += (PAGE_SIZE << order); 6258 data_len -= chunk; 6259 } 6260 return skb; 6261 6262 failure: 6263 kfree_skb(skb); 6264 return NULL; 6265 } 6266 EXPORT_SYMBOL(alloc_skb_with_frags); 6267 6268 /* carve out the first off bytes from skb when off < headlen */ 6269 static int pskb_carve_inside_header(struct sk_buff *skb, const u32 off, 6270 const int headlen, gfp_t gfp_mask) 6271 { 6272 int i; 6273 unsigned int size = skb_end_offset(skb); 6274 int new_hlen = headlen - off; 6275 u8 *data; 6276 6277 if (skb_pfmemalloc(skb)) 6278 gfp_mask |= __GFP_MEMALLOC; 6279 6280 data = kmalloc_reserve(&size, gfp_mask, NUMA_NO_NODE, NULL); 6281 if (!data) 6282 return -ENOMEM; 6283 size = SKB_WITH_OVERHEAD(size); 6284 6285 /* Copy real data, and all frags */ 6286 skb_copy_from_linear_data_offset(skb, off, data, new_hlen); 6287 skb->len -= off; 6288 6289 memcpy((struct skb_shared_info *)(data + size), 6290 skb_shinfo(skb), 6291 offsetof(struct skb_shared_info, 6292 frags[skb_shinfo(skb)->nr_frags])); 6293 if (skb_cloned(skb)) { 6294 /* drop the old head gracefully */ 6295 if (skb_orphan_frags(skb, gfp_mask)) { 6296 skb_kfree_head(data, size); 6297 return -ENOMEM; 6298 } 6299 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 6300 skb_frag_ref(skb, i); 6301 if (skb_has_frag_list(skb)) 6302 skb_clone_fraglist(skb); 6303 skb_release_data(skb, SKB_CONSUMED, false); 6304 } else { 6305 /* we can reuse existing recount- all we did was 6306 * relocate values 6307 */ 6308 skb_free_head(skb, false); 6309 } 6310 6311 skb->head = data; 6312 skb->data = data; 6313 skb->head_frag = 0; 6314 skb_set_end_offset(skb, size); 6315 skb_set_tail_pointer(skb, skb_headlen(skb)); 6316 skb_headers_offset_update(skb, 0); 6317 skb->cloned = 0; 6318 skb->hdr_len = 0; 6319 skb->nohdr = 0; 6320 atomic_set(&skb_shinfo(skb)->dataref, 1); 6321 6322 return 0; 6323 } 6324 6325 static int pskb_carve(struct sk_buff *skb, const u32 off, gfp_t gfp); 6326 6327 /* carve out the first eat bytes from skb's frag_list. May recurse into 6328 * pskb_carve() 6329 */ 6330 static int pskb_carve_frag_list(struct sk_buff *skb, 6331 struct skb_shared_info *shinfo, int eat, 6332 gfp_t gfp_mask) 6333 { 6334 struct sk_buff *list = shinfo->frag_list; 6335 struct sk_buff *clone = NULL; 6336 struct sk_buff *insp = NULL; 6337 6338 do { 6339 if (!list) { 6340 pr_err("Not enough bytes to eat. Want %d\n", eat); 6341 return -EFAULT; 6342 } 6343 if (list->len <= eat) { 6344 /* Eaten as whole. */ 6345 eat -= list->len; 6346 list = list->next; 6347 insp = list; 6348 } else { 6349 /* Eaten partially. */ 6350 if (skb_shared(list)) { 6351 clone = skb_clone(list, gfp_mask); 6352 if (!clone) 6353 return -ENOMEM; 6354 insp = list->next; 6355 list = clone; 6356 } else { 6357 /* This may be pulled without problems. */ 6358 insp = list; 6359 } 6360 if (pskb_carve(list, eat, gfp_mask) < 0) { 6361 kfree_skb(clone); 6362 return -ENOMEM; 6363 } 6364 break; 6365 } 6366 } while (eat); 6367 6368 /* Free pulled out fragments. */ 6369 while ((list = shinfo->frag_list) != insp) { 6370 shinfo->frag_list = list->next; 6371 consume_skb(list); 6372 } 6373 /* And insert new clone at head. */ 6374 if (clone) { 6375 clone->next = list; 6376 shinfo->frag_list = clone; 6377 } 6378 return 0; 6379 } 6380 6381 /* carve off first len bytes from skb. Split line (off) is in the 6382 * non-linear part of skb 6383 */ 6384 static int pskb_carve_inside_nonlinear(struct sk_buff *skb, const u32 off, 6385 int pos, gfp_t gfp_mask) 6386 { 6387 int i, k = 0; 6388 unsigned int size = skb_end_offset(skb); 6389 u8 *data; 6390 const int nfrags = skb_shinfo(skb)->nr_frags; 6391 struct skb_shared_info *shinfo; 6392 6393 if (skb_pfmemalloc(skb)) 6394 gfp_mask |= __GFP_MEMALLOC; 6395 6396 data = kmalloc_reserve(&size, gfp_mask, NUMA_NO_NODE, NULL); 6397 if (!data) 6398 return -ENOMEM; 6399 size = SKB_WITH_OVERHEAD(size); 6400 6401 memcpy((struct skb_shared_info *)(data + size), 6402 skb_shinfo(skb), offsetof(struct skb_shared_info, frags[0])); 6403 if (skb_orphan_frags(skb, gfp_mask)) { 6404 skb_kfree_head(data, size); 6405 return -ENOMEM; 6406 } 6407 shinfo = (struct skb_shared_info *)(data + size); 6408 for (i = 0; i < nfrags; i++) { 6409 int fsize = skb_frag_size(&skb_shinfo(skb)->frags[i]); 6410 6411 if (pos + fsize > off) { 6412 shinfo->frags[k] = skb_shinfo(skb)->frags[i]; 6413 6414 if (pos < off) { 6415 /* Split frag. 6416 * We have two variants in this case: 6417 * 1. Move all the frag to the second 6418 * part, if it is possible. F.e. 6419 * this approach is mandatory for TUX, 6420 * where splitting is expensive. 6421 * 2. Split is accurately. We make this. 6422 */ 6423 skb_frag_off_add(&shinfo->frags[0], off - pos); 6424 skb_frag_size_sub(&shinfo->frags[0], off - pos); 6425 } 6426 skb_frag_ref(skb, i); 6427 k++; 6428 } 6429 pos += fsize; 6430 } 6431 shinfo->nr_frags = k; 6432 if (skb_has_frag_list(skb)) 6433 skb_clone_fraglist(skb); 6434 6435 /* split line is in frag list */ 6436 if (k == 0 && pskb_carve_frag_list(skb, shinfo, off - pos, gfp_mask)) { 6437 /* skb_frag_unref() is not needed here as shinfo->nr_frags = 0. */ 6438 if (skb_has_frag_list(skb)) 6439 kfree_skb_list(skb_shinfo(skb)->frag_list); 6440 skb_kfree_head(data, size); 6441 return -ENOMEM; 6442 } 6443 skb_release_data(skb, SKB_CONSUMED, false); 6444 6445 skb->head = data; 6446 skb->head_frag = 0; 6447 skb->data = data; 6448 skb_set_end_offset(skb, size); 6449 skb_reset_tail_pointer(skb); 6450 skb_headers_offset_update(skb, 0); 6451 skb->cloned = 0; 6452 skb->hdr_len = 0; 6453 skb->nohdr = 0; 6454 skb->len -= off; 6455 skb->data_len = skb->len; 6456 atomic_set(&skb_shinfo(skb)->dataref, 1); 6457 return 0; 6458 } 6459 6460 /* remove len bytes from the beginning of the skb */ 6461 static int pskb_carve(struct sk_buff *skb, const u32 len, gfp_t gfp) 6462 { 6463 int headlen = skb_headlen(skb); 6464 6465 if (len < headlen) 6466 return pskb_carve_inside_header(skb, len, headlen, gfp); 6467 else 6468 return pskb_carve_inside_nonlinear(skb, len, headlen, gfp); 6469 } 6470 6471 /* Extract to_copy bytes starting at off from skb, and return this in 6472 * a new skb 6473 */ 6474 struct sk_buff *pskb_extract(struct sk_buff *skb, int off, 6475 int to_copy, gfp_t gfp) 6476 { 6477 struct sk_buff *clone = skb_clone(skb, gfp); 6478 6479 if (!clone) 6480 return NULL; 6481 6482 if (pskb_carve(clone, off, gfp) < 0 || 6483 pskb_trim(clone, to_copy)) { 6484 kfree_skb(clone); 6485 return NULL; 6486 } 6487 return clone; 6488 } 6489 EXPORT_SYMBOL(pskb_extract); 6490 6491 /** 6492 * skb_condense - try to get rid of fragments/frag_list if possible 6493 * @skb: buffer 6494 * 6495 * Can be used to save memory before skb is added to a busy queue. 6496 * If packet has bytes in frags and enough tail room in skb->head, 6497 * pull all of them, so that we can free the frags right now and adjust 6498 * truesize. 6499 * Notes: 6500 * We do not reallocate skb->head thus can not fail. 6501 * Caller must re-evaluate skb->truesize if needed. 6502 */ 6503 void skb_condense(struct sk_buff *skb) 6504 { 6505 if (skb->data_len) { 6506 if (skb->data_len > skb->end - skb->tail || 6507 skb_cloned(skb)) 6508 return; 6509 6510 /* Nice, we can free page frag(s) right now */ 6511 __pskb_pull_tail(skb, skb->data_len); 6512 } 6513 /* At this point, skb->truesize might be over estimated, 6514 * because skb had a fragment, and fragments do not tell 6515 * their truesize. 6516 * When we pulled its content into skb->head, fragment 6517 * was freed, but __pskb_pull_tail() could not possibly 6518 * adjust skb->truesize, not knowing the frag truesize. 6519 */ 6520 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb)); 6521 } 6522 EXPORT_SYMBOL(skb_condense); 6523 6524 #ifdef CONFIG_SKB_EXTENSIONS 6525 static void *skb_ext_get_ptr(struct skb_ext *ext, enum skb_ext_id id) 6526 { 6527 return (void *)ext + (ext->offset[id] * SKB_EXT_ALIGN_VALUE); 6528 } 6529 6530 /** 6531 * __skb_ext_alloc - allocate a new skb extensions storage 6532 * 6533 * @flags: See kmalloc(). 6534 * 6535 * Returns the newly allocated pointer. The pointer can later attached to a 6536 * skb via __skb_ext_set(). 6537 * Note: caller must handle the skb_ext as an opaque data. 6538 */ 6539 struct skb_ext *__skb_ext_alloc(gfp_t flags) 6540 { 6541 struct skb_ext *new = kmem_cache_alloc(skbuff_ext_cache, flags); 6542 6543 if (new) { 6544 memset(new->offset, 0, sizeof(new->offset)); 6545 refcount_set(&new->refcnt, 1); 6546 } 6547 6548 return new; 6549 } 6550 6551 static struct skb_ext *skb_ext_maybe_cow(struct skb_ext *old, 6552 unsigned int old_active) 6553 { 6554 struct skb_ext *new; 6555 6556 if (refcount_read(&old->refcnt) == 1) 6557 return old; 6558 6559 new = kmem_cache_alloc(skbuff_ext_cache, GFP_ATOMIC); 6560 if (!new) 6561 return NULL; 6562 6563 memcpy(new, old, old->chunks * SKB_EXT_ALIGN_VALUE); 6564 refcount_set(&new->refcnt, 1); 6565 6566 #ifdef CONFIG_XFRM 6567 if (old_active & (1 << SKB_EXT_SEC_PATH)) { 6568 struct sec_path *sp = skb_ext_get_ptr(old, SKB_EXT_SEC_PATH); 6569 unsigned int i; 6570 6571 for (i = 0; i < sp->len; i++) 6572 xfrm_state_hold(sp->xvec[i]); 6573 } 6574 #endif 6575 __skb_ext_put(old); 6576 return new; 6577 } 6578 6579 /** 6580 * __skb_ext_set - attach the specified extension storage to this skb 6581 * @skb: buffer 6582 * @id: extension id 6583 * @ext: extension storage previously allocated via __skb_ext_alloc() 6584 * 6585 * Existing extensions, if any, are cleared. 6586 * 6587 * Returns the pointer to the extension. 6588 */ 6589 void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id, 6590 struct skb_ext *ext) 6591 { 6592 unsigned int newlen, newoff = SKB_EXT_CHUNKSIZEOF(*ext); 6593 6594 skb_ext_put(skb); 6595 newlen = newoff + skb_ext_type_len[id]; 6596 ext->chunks = newlen; 6597 ext->offset[id] = newoff; 6598 skb->extensions = ext; 6599 skb->active_extensions = 1 << id; 6600 return skb_ext_get_ptr(ext, id); 6601 } 6602 6603 /** 6604 * skb_ext_add - allocate space for given extension, COW if needed 6605 * @skb: buffer 6606 * @id: extension to allocate space for 6607 * 6608 * Allocates enough space for the given extension. 6609 * If the extension is already present, a pointer to that extension 6610 * is returned. 6611 * 6612 * If the skb was cloned, COW applies and the returned memory can be 6613 * modified without changing the extension space of clones buffers. 6614 * 6615 * Returns pointer to the extension or NULL on allocation failure. 6616 */ 6617 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id) 6618 { 6619 struct skb_ext *new, *old = NULL; 6620 unsigned int newlen, newoff; 6621 6622 if (skb->active_extensions) { 6623 old = skb->extensions; 6624 6625 new = skb_ext_maybe_cow(old, skb->active_extensions); 6626 if (!new) 6627 return NULL; 6628 6629 if (__skb_ext_exist(new, id)) 6630 goto set_active; 6631 6632 newoff = new->chunks; 6633 } else { 6634 newoff = SKB_EXT_CHUNKSIZEOF(*new); 6635 6636 new = __skb_ext_alloc(GFP_ATOMIC); 6637 if (!new) 6638 return NULL; 6639 } 6640 6641 newlen = newoff + skb_ext_type_len[id]; 6642 new->chunks = newlen; 6643 new->offset[id] = newoff; 6644 set_active: 6645 skb->slow_gro = 1; 6646 skb->extensions = new; 6647 skb->active_extensions |= 1 << id; 6648 return skb_ext_get_ptr(new, id); 6649 } 6650 EXPORT_SYMBOL(skb_ext_add); 6651 6652 #ifdef CONFIG_XFRM 6653 static void skb_ext_put_sp(struct sec_path *sp) 6654 { 6655 unsigned int i; 6656 6657 for (i = 0; i < sp->len; i++) 6658 xfrm_state_put(sp->xvec[i]); 6659 } 6660 #endif 6661 6662 #ifdef CONFIG_MCTP_FLOWS 6663 static void skb_ext_put_mctp(struct mctp_flow *flow) 6664 { 6665 if (flow->key) 6666 mctp_key_unref(flow->key); 6667 } 6668 #endif 6669 6670 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id) 6671 { 6672 struct skb_ext *ext = skb->extensions; 6673 6674 skb->active_extensions &= ~(1 << id); 6675 if (skb->active_extensions == 0) { 6676 skb->extensions = NULL; 6677 __skb_ext_put(ext); 6678 #ifdef CONFIG_XFRM 6679 } else if (id == SKB_EXT_SEC_PATH && 6680 refcount_read(&ext->refcnt) == 1) { 6681 struct sec_path *sp = skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH); 6682 6683 skb_ext_put_sp(sp); 6684 sp->len = 0; 6685 #endif 6686 } 6687 } 6688 EXPORT_SYMBOL(__skb_ext_del); 6689 6690 void __skb_ext_put(struct skb_ext *ext) 6691 { 6692 /* If this is last clone, nothing can increment 6693 * it after check passes. Avoids one atomic op. 6694 */ 6695 if (refcount_read(&ext->refcnt) == 1) 6696 goto free_now; 6697 6698 if (!refcount_dec_and_test(&ext->refcnt)) 6699 return; 6700 free_now: 6701 #ifdef CONFIG_XFRM 6702 if (__skb_ext_exist(ext, SKB_EXT_SEC_PATH)) 6703 skb_ext_put_sp(skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH)); 6704 #endif 6705 #ifdef CONFIG_MCTP_FLOWS 6706 if (__skb_ext_exist(ext, SKB_EXT_MCTP)) 6707 skb_ext_put_mctp(skb_ext_get_ptr(ext, SKB_EXT_MCTP)); 6708 #endif 6709 6710 kmem_cache_free(skbuff_ext_cache, ext); 6711 } 6712 EXPORT_SYMBOL(__skb_ext_put); 6713 #endif /* CONFIG_SKB_EXTENSIONS */ 6714 6715 /** 6716 * skb_attempt_defer_free - queue skb for remote freeing 6717 * @skb: buffer 6718 * 6719 * Put @skb in a per-cpu list, using the cpu which 6720 * allocated the skb/pages to reduce false sharing 6721 * and memory zone spinlock contention. 6722 */ 6723 void skb_attempt_defer_free(struct sk_buff *skb) 6724 { 6725 int cpu = skb->alloc_cpu; 6726 struct softnet_data *sd; 6727 unsigned int defer_max; 6728 bool kick; 6729 6730 if (WARN_ON_ONCE(cpu >= nr_cpu_ids) || 6731 !cpu_online(cpu) || 6732 cpu == raw_smp_processor_id()) { 6733 nodefer: __kfree_skb(skb); 6734 return; 6735 } 6736 6737 DEBUG_NET_WARN_ON_ONCE(skb_dst(skb)); 6738 DEBUG_NET_WARN_ON_ONCE(skb->destructor); 6739 6740 sd = &per_cpu(softnet_data, cpu); 6741 defer_max = READ_ONCE(sysctl_skb_defer_max); 6742 if (READ_ONCE(sd->defer_count) >= defer_max) 6743 goto nodefer; 6744 6745 spin_lock_bh(&sd->defer_lock); 6746 /* Send an IPI every time queue reaches half capacity. */ 6747 kick = sd->defer_count == (defer_max >> 1); 6748 /* Paired with the READ_ONCE() few lines above */ 6749 WRITE_ONCE(sd->defer_count, sd->defer_count + 1); 6750 6751 skb->next = sd->defer_list; 6752 /* Paired with READ_ONCE() in skb_defer_free_flush() */ 6753 WRITE_ONCE(sd->defer_list, skb); 6754 spin_unlock_bh(&sd->defer_lock); 6755 6756 /* Make sure to trigger NET_RX_SOFTIRQ on the remote CPU 6757 * if we are unlucky enough (this seems very unlikely). 6758 */ 6759 if (unlikely(kick) && !cmpxchg(&sd->defer_ipi_scheduled, 0, 1)) 6760 smp_call_function_single_async(cpu, &sd->defer_csd); 6761 } 6762 6763 static void skb_splice_csum_page(struct sk_buff *skb, struct page *page, 6764 size_t offset, size_t len) 6765 { 6766 const char *kaddr; 6767 __wsum csum; 6768 6769 kaddr = kmap_local_page(page); 6770 csum = csum_partial(kaddr + offset, len, 0); 6771 kunmap_local(kaddr); 6772 skb->csum = csum_block_add(skb->csum, csum, skb->len); 6773 } 6774 6775 /** 6776 * skb_splice_from_iter - Splice (or copy) pages to skbuff 6777 * @skb: The buffer to add pages to 6778 * @iter: Iterator representing the pages to be added 6779 * @maxsize: Maximum amount of pages to be added 6780 * @gfp: Allocation flags 6781 * 6782 * This is a common helper function for supporting MSG_SPLICE_PAGES. It 6783 * extracts pages from an iterator and adds them to the socket buffer if 6784 * possible, copying them to fragments if not possible (such as if they're slab 6785 * pages). 6786 * 6787 * Returns the amount of data spliced/copied or -EMSGSIZE if there's 6788 * insufficient space in the buffer to transfer anything. 6789 */ 6790 ssize_t skb_splice_from_iter(struct sk_buff *skb, struct iov_iter *iter, 6791 ssize_t maxsize, gfp_t gfp) 6792 { 6793 size_t frag_limit = READ_ONCE(sysctl_max_skb_frags); 6794 struct page *pages[8], **ppages = pages; 6795 ssize_t spliced = 0, ret = 0; 6796 unsigned int i; 6797 6798 while (iter->count > 0) { 6799 ssize_t space, nr, len; 6800 size_t off; 6801 6802 ret = -EMSGSIZE; 6803 space = frag_limit - skb_shinfo(skb)->nr_frags; 6804 if (space < 0) 6805 break; 6806 6807 /* We might be able to coalesce without increasing nr_frags */ 6808 nr = clamp_t(size_t, space, 1, ARRAY_SIZE(pages)); 6809 6810 len = iov_iter_extract_pages(iter, &ppages, maxsize, nr, 0, &off); 6811 if (len <= 0) { 6812 ret = len ?: -EIO; 6813 break; 6814 } 6815 6816 i = 0; 6817 do { 6818 struct page *page = pages[i++]; 6819 size_t part = min_t(size_t, PAGE_SIZE - off, len); 6820 6821 ret = -EIO; 6822 if (WARN_ON_ONCE(!sendpage_ok(page))) 6823 goto out; 6824 6825 ret = skb_append_pagefrags(skb, page, off, part, 6826 frag_limit); 6827 if (ret < 0) { 6828 iov_iter_revert(iter, len); 6829 goto out; 6830 } 6831 6832 if (skb->ip_summed == CHECKSUM_NONE) 6833 skb_splice_csum_page(skb, page, off, part); 6834 6835 off = 0; 6836 spliced += part; 6837 maxsize -= part; 6838 len -= part; 6839 } while (len > 0); 6840 6841 if (maxsize <= 0) 6842 break; 6843 } 6844 6845 out: 6846 skb_len_add(skb, spliced); 6847 return spliced ?: ret; 6848 } 6849 EXPORT_SYMBOL(skb_splice_from_iter); 6850