xref: /openbmc/linux/net/core/skbuff.c (revision 6c9111bc)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *	Routines having to do with the 'struct sk_buff' memory handlers.
4  *
5  *	Authors:	Alan Cox <alan@lxorguk.ukuu.org.uk>
6  *			Florian La Roche <rzsfl@rz.uni-sb.de>
7  *
8  *	Fixes:
9  *		Alan Cox	:	Fixed the worst of the load
10  *					balancer bugs.
11  *		Dave Platt	:	Interrupt stacking fix.
12  *	Richard Kooijman	:	Timestamp fixes.
13  *		Alan Cox	:	Changed buffer format.
14  *		Alan Cox	:	destructor hook for AF_UNIX etc.
15  *		Linus Torvalds	:	Better skb_clone.
16  *		Alan Cox	:	Added skb_copy.
17  *		Alan Cox	:	Added all the changed routines Linus
18  *					only put in the headers
19  *		Ray VanTassle	:	Fixed --skb->lock in free
20  *		Alan Cox	:	skb_copy copy arp field
21  *		Andi Kleen	:	slabified it.
22  *		Robert Olsson	:	Removed skb_head_pool
23  *
24  *	NOTE:
25  *		The __skb_ routines should be called with interrupts
26  *	disabled, or you better be *real* sure that the operation is atomic
27  *	with respect to whatever list is being frobbed (e.g. via lock_sock()
28  *	or via disabling bottom half handlers, etc).
29  */
30 
31 /*
32  *	The functions in this file will not compile correctly with gcc 2.4.x
33  */
34 
35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
36 
37 #include <linux/module.h>
38 #include <linux/types.h>
39 #include <linux/kernel.h>
40 #include <linux/mm.h>
41 #include <linux/interrupt.h>
42 #include <linux/in.h>
43 #include <linux/inet.h>
44 #include <linux/slab.h>
45 #include <linux/tcp.h>
46 #include <linux/udp.h>
47 #include <linux/sctp.h>
48 #include <linux/netdevice.h>
49 #ifdef CONFIG_NET_CLS_ACT
50 #include <net/pkt_sched.h>
51 #endif
52 #include <linux/string.h>
53 #include <linux/skbuff.h>
54 #include <linux/splice.h>
55 #include <linux/cache.h>
56 #include <linux/rtnetlink.h>
57 #include <linux/init.h>
58 #include <linux/scatterlist.h>
59 #include <linux/errqueue.h>
60 #include <linux/prefetch.h>
61 #include <linux/if_vlan.h>
62 #include <linux/mpls.h>
63 
64 #include <net/protocol.h>
65 #include <net/dst.h>
66 #include <net/sock.h>
67 #include <net/checksum.h>
68 #include <net/ip6_checksum.h>
69 #include <net/xfrm.h>
70 #include <net/mpls.h>
71 #include <net/mptcp.h>
72 
73 #include <linux/uaccess.h>
74 #include <trace/events/skb.h>
75 #include <linux/highmem.h>
76 #include <linux/capability.h>
77 #include <linux/user_namespace.h>
78 #include <linux/indirect_call_wrapper.h>
79 
80 #include "datagram.h"
81 
82 struct kmem_cache *skbuff_head_cache __ro_after_init;
83 static struct kmem_cache *skbuff_fclone_cache __ro_after_init;
84 #ifdef CONFIG_SKB_EXTENSIONS
85 static struct kmem_cache *skbuff_ext_cache __ro_after_init;
86 #endif
87 int sysctl_max_skb_frags __read_mostly = MAX_SKB_FRAGS;
88 EXPORT_SYMBOL(sysctl_max_skb_frags);
89 
90 /**
91  *	skb_panic - private function for out-of-line support
92  *	@skb:	buffer
93  *	@sz:	size
94  *	@addr:	address
95  *	@msg:	skb_over_panic or skb_under_panic
96  *
97  *	Out-of-line support for skb_put() and skb_push().
98  *	Called via the wrapper skb_over_panic() or skb_under_panic().
99  *	Keep out of line to prevent kernel bloat.
100  *	__builtin_return_address is not used because it is not always reliable.
101  */
102 static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr,
103 		      const char msg[])
104 {
105 	pr_emerg("%s: text:%px len:%d put:%d head:%px data:%px tail:%#lx end:%#lx dev:%s\n",
106 		 msg, addr, skb->len, sz, skb->head, skb->data,
107 		 (unsigned long)skb->tail, (unsigned long)skb->end,
108 		 skb->dev ? skb->dev->name : "<NULL>");
109 	BUG();
110 }
111 
112 static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr)
113 {
114 	skb_panic(skb, sz, addr, __func__);
115 }
116 
117 static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr)
118 {
119 	skb_panic(skb, sz, addr, __func__);
120 }
121 
122 /*
123  * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells
124  * the caller if emergency pfmemalloc reserves are being used. If it is and
125  * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves
126  * may be used. Otherwise, the packet data may be discarded until enough
127  * memory is free
128  */
129 #define kmalloc_reserve(size, gfp, node, pfmemalloc) \
130 	 __kmalloc_reserve(size, gfp, node, _RET_IP_, pfmemalloc)
131 
132 static void *__kmalloc_reserve(size_t size, gfp_t flags, int node,
133 			       unsigned long ip, bool *pfmemalloc)
134 {
135 	void *obj;
136 	bool ret_pfmemalloc = false;
137 
138 	/*
139 	 * Try a regular allocation, when that fails and we're not entitled
140 	 * to the reserves, fail.
141 	 */
142 	obj = kmalloc_node_track_caller(size,
143 					flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
144 					node);
145 	if (obj || !(gfp_pfmemalloc_allowed(flags)))
146 		goto out;
147 
148 	/* Try again but now we are using pfmemalloc reserves */
149 	ret_pfmemalloc = true;
150 	obj = kmalloc_node_track_caller(size, flags, node);
151 
152 out:
153 	if (pfmemalloc)
154 		*pfmemalloc = ret_pfmemalloc;
155 
156 	return obj;
157 }
158 
159 /* 	Allocate a new skbuff. We do this ourselves so we can fill in a few
160  *	'private' fields and also do memory statistics to find all the
161  *	[BEEP] leaks.
162  *
163  */
164 
165 /**
166  *	__alloc_skb	-	allocate a network buffer
167  *	@size: size to allocate
168  *	@gfp_mask: allocation mask
169  *	@flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache
170  *		instead of head cache and allocate a cloned (child) skb.
171  *		If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for
172  *		allocations in case the data is required for writeback
173  *	@node: numa node to allocate memory on
174  *
175  *	Allocate a new &sk_buff. The returned buffer has no headroom and a
176  *	tail room of at least size bytes. The object has a reference count
177  *	of one. The return is the buffer. On a failure the return is %NULL.
178  *
179  *	Buffers may only be allocated from interrupts using a @gfp_mask of
180  *	%GFP_ATOMIC.
181  */
182 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
183 			    int flags, int node)
184 {
185 	struct kmem_cache *cache;
186 	struct skb_shared_info *shinfo;
187 	struct sk_buff *skb;
188 	u8 *data;
189 	bool pfmemalloc;
190 
191 	cache = (flags & SKB_ALLOC_FCLONE)
192 		? skbuff_fclone_cache : skbuff_head_cache;
193 
194 	if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX))
195 		gfp_mask |= __GFP_MEMALLOC;
196 
197 	/* Get the HEAD */
198 	skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node);
199 	if (!skb)
200 		goto out;
201 	prefetchw(skb);
202 
203 	/* We do our best to align skb_shared_info on a separate cache
204 	 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives
205 	 * aligned memory blocks, unless SLUB/SLAB debug is enabled.
206 	 * Both skb->head and skb_shared_info are cache line aligned.
207 	 */
208 	size = SKB_DATA_ALIGN(size);
209 	size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
210 	data = kmalloc_reserve(size, gfp_mask, node, &pfmemalloc);
211 	if (!data)
212 		goto nodata;
213 	/* kmalloc(size) might give us more room than requested.
214 	 * Put skb_shared_info exactly at the end of allocated zone,
215 	 * to allow max possible filling before reallocation.
216 	 */
217 	size = SKB_WITH_OVERHEAD(ksize(data));
218 	prefetchw(data + size);
219 
220 	/*
221 	 * Only clear those fields we need to clear, not those that we will
222 	 * actually initialise below. Hence, don't put any more fields after
223 	 * the tail pointer in struct sk_buff!
224 	 */
225 	memset(skb, 0, offsetof(struct sk_buff, tail));
226 	/* Account for allocated memory : skb + skb->head */
227 	skb->truesize = SKB_TRUESIZE(size);
228 	skb->pfmemalloc = pfmemalloc;
229 	refcount_set(&skb->users, 1);
230 	skb->head = data;
231 	skb->data = data;
232 	skb_reset_tail_pointer(skb);
233 	skb->end = skb->tail + size;
234 	skb->mac_header = (typeof(skb->mac_header))~0U;
235 	skb->transport_header = (typeof(skb->transport_header))~0U;
236 
237 	/* make sure we initialize shinfo sequentially */
238 	shinfo = skb_shinfo(skb);
239 	memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
240 	atomic_set(&shinfo->dataref, 1);
241 
242 	if (flags & SKB_ALLOC_FCLONE) {
243 		struct sk_buff_fclones *fclones;
244 
245 		fclones = container_of(skb, struct sk_buff_fclones, skb1);
246 
247 		skb->fclone = SKB_FCLONE_ORIG;
248 		refcount_set(&fclones->fclone_ref, 1);
249 
250 		fclones->skb2.fclone = SKB_FCLONE_CLONE;
251 	}
252 out:
253 	return skb;
254 nodata:
255 	kmem_cache_free(cache, skb);
256 	skb = NULL;
257 	goto out;
258 }
259 EXPORT_SYMBOL(__alloc_skb);
260 
261 /* Caller must provide SKB that is memset cleared */
262 static struct sk_buff *__build_skb_around(struct sk_buff *skb,
263 					  void *data, unsigned int frag_size)
264 {
265 	struct skb_shared_info *shinfo;
266 	unsigned int size = frag_size ? : ksize(data);
267 
268 	size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
269 
270 	/* Assumes caller memset cleared SKB */
271 	skb->truesize = SKB_TRUESIZE(size);
272 	refcount_set(&skb->users, 1);
273 	skb->head = data;
274 	skb->data = data;
275 	skb_reset_tail_pointer(skb);
276 	skb->end = skb->tail + size;
277 	skb->mac_header = (typeof(skb->mac_header))~0U;
278 	skb->transport_header = (typeof(skb->transport_header))~0U;
279 
280 	/* make sure we initialize shinfo sequentially */
281 	shinfo = skb_shinfo(skb);
282 	memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
283 	atomic_set(&shinfo->dataref, 1);
284 
285 	return skb;
286 }
287 
288 /**
289  * __build_skb - build a network buffer
290  * @data: data buffer provided by caller
291  * @frag_size: size of data, or 0 if head was kmalloced
292  *
293  * Allocate a new &sk_buff. Caller provides space holding head and
294  * skb_shared_info. @data must have been allocated by kmalloc() only if
295  * @frag_size is 0, otherwise data should come from the page allocator
296  *  or vmalloc()
297  * The return is the new skb buffer.
298  * On a failure the return is %NULL, and @data is not freed.
299  * Notes :
300  *  Before IO, driver allocates only data buffer where NIC put incoming frame
301  *  Driver should add room at head (NET_SKB_PAD) and
302  *  MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info))
303  *  After IO, driver calls build_skb(), to allocate sk_buff and populate it
304  *  before giving packet to stack.
305  *  RX rings only contains data buffers, not full skbs.
306  */
307 struct sk_buff *__build_skb(void *data, unsigned int frag_size)
308 {
309 	struct sk_buff *skb;
310 
311 	skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC);
312 	if (unlikely(!skb))
313 		return NULL;
314 
315 	memset(skb, 0, offsetof(struct sk_buff, tail));
316 
317 	return __build_skb_around(skb, data, frag_size);
318 }
319 
320 /* build_skb() is wrapper over __build_skb(), that specifically
321  * takes care of skb->head and skb->pfmemalloc
322  * This means that if @frag_size is not zero, then @data must be backed
323  * by a page fragment, not kmalloc() or vmalloc()
324  */
325 struct sk_buff *build_skb(void *data, unsigned int frag_size)
326 {
327 	struct sk_buff *skb = __build_skb(data, frag_size);
328 
329 	if (skb && frag_size) {
330 		skb->head_frag = 1;
331 		if (page_is_pfmemalloc(virt_to_head_page(data)))
332 			skb->pfmemalloc = 1;
333 	}
334 	return skb;
335 }
336 EXPORT_SYMBOL(build_skb);
337 
338 /**
339  * build_skb_around - build a network buffer around provided skb
340  * @skb: sk_buff provide by caller, must be memset cleared
341  * @data: data buffer provided by caller
342  * @frag_size: size of data, or 0 if head was kmalloced
343  */
344 struct sk_buff *build_skb_around(struct sk_buff *skb,
345 				 void *data, unsigned int frag_size)
346 {
347 	if (unlikely(!skb))
348 		return NULL;
349 
350 	skb = __build_skb_around(skb, data, frag_size);
351 
352 	if (skb && frag_size) {
353 		skb->head_frag = 1;
354 		if (page_is_pfmemalloc(virt_to_head_page(data)))
355 			skb->pfmemalloc = 1;
356 	}
357 	return skb;
358 }
359 EXPORT_SYMBOL(build_skb_around);
360 
361 #define NAPI_SKB_CACHE_SIZE	64
362 
363 struct napi_alloc_cache {
364 	struct page_frag_cache page;
365 	unsigned int skb_count;
366 	void *skb_cache[NAPI_SKB_CACHE_SIZE];
367 };
368 
369 static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache);
370 static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache);
371 
372 static void *__napi_alloc_frag(unsigned int fragsz, gfp_t gfp_mask)
373 {
374 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
375 
376 	return page_frag_alloc(&nc->page, fragsz, gfp_mask);
377 }
378 
379 void *napi_alloc_frag(unsigned int fragsz)
380 {
381 	fragsz = SKB_DATA_ALIGN(fragsz);
382 
383 	return __napi_alloc_frag(fragsz, GFP_ATOMIC);
384 }
385 EXPORT_SYMBOL(napi_alloc_frag);
386 
387 /**
388  * netdev_alloc_frag - allocate a page fragment
389  * @fragsz: fragment size
390  *
391  * Allocates a frag from a page for receive buffer.
392  * Uses GFP_ATOMIC allocations.
393  */
394 void *netdev_alloc_frag(unsigned int fragsz)
395 {
396 	struct page_frag_cache *nc;
397 	void *data;
398 
399 	fragsz = SKB_DATA_ALIGN(fragsz);
400 	if (in_irq() || irqs_disabled()) {
401 		nc = this_cpu_ptr(&netdev_alloc_cache);
402 		data = page_frag_alloc(nc, fragsz, GFP_ATOMIC);
403 	} else {
404 		local_bh_disable();
405 		data = __napi_alloc_frag(fragsz, GFP_ATOMIC);
406 		local_bh_enable();
407 	}
408 	return data;
409 }
410 EXPORT_SYMBOL(netdev_alloc_frag);
411 
412 /**
413  *	__netdev_alloc_skb - allocate an skbuff for rx on a specific device
414  *	@dev: network device to receive on
415  *	@len: length to allocate
416  *	@gfp_mask: get_free_pages mask, passed to alloc_skb
417  *
418  *	Allocate a new &sk_buff and assign it a usage count of one. The
419  *	buffer has NET_SKB_PAD headroom built in. Users should allocate
420  *	the headroom they think they need without accounting for the
421  *	built in space. The built in space is used for optimisations.
422  *
423  *	%NULL is returned if there is no free memory.
424  */
425 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len,
426 				   gfp_t gfp_mask)
427 {
428 	struct page_frag_cache *nc;
429 	struct sk_buff *skb;
430 	bool pfmemalloc;
431 	void *data;
432 
433 	len += NET_SKB_PAD;
434 
435 	if ((len > SKB_WITH_OVERHEAD(PAGE_SIZE)) ||
436 	    (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
437 		skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
438 		if (!skb)
439 			goto skb_fail;
440 		goto skb_success;
441 	}
442 
443 	len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
444 	len = SKB_DATA_ALIGN(len);
445 
446 	if (sk_memalloc_socks())
447 		gfp_mask |= __GFP_MEMALLOC;
448 
449 	if (in_irq() || irqs_disabled()) {
450 		nc = this_cpu_ptr(&netdev_alloc_cache);
451 		data = page_frag_alloc(nc, len, gfp_mask);
452 		pfmemalloc = nc->pfmemalloc;
453 	} else {
454 		local_bh_disable();
455 		nc = this_cpu_ptr(&napi_alloc_cache.page);
456 		data = page_frag_alloc(nc, len, gfp_mask);
457 		pfmemalloc = nc->pfmemalloc;
458 		local_bh_enable();
459 	}
460 
461 	if (unlikely(!data))
462 		return NULL;
463 
464 	skb = __build_skb(data, len);
465 	if (unlikely(!skb)) {
466 		skb_free_frag(data);
467 		return NULL;
468 	}
469 
470 	if (pfmemalloc)
471 		skb->pfmemalloc = 1;
472 	skb->head_frag = 1;
473 
474 skb_success:
475 	skb_reserve(skb, NET_SKB_PAD);
476 	skb->dev = dev;
477 
478 skb_fail:
479 	return skb;
480 }
481 EXPORT_SYMBOL(__netdev_alloc_skb);
482 
483 /**
484  *	__napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance
485  *	@napi: napi instance this buffer was allocated for
486  *	@len: length to allocate
487  *	@gfp_mask: get_free_pages mask, passed to alloc_skb and alloc_pages
488  *
489  *	Allocate a new sk_buff for use in NAPI receive.  This buffer will
490  *	attempt to allocate the head from a special reserved region used
491  *	only for NAPI Rx allocation.  By doing this we can save several
492  *	CPU cycles by avoiding having to disable and re-enable IRQs.
493  *
494  *	%NULL is returned if there is no free memory.
495  */
496 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, unsigned int len,
497 				 gfp_t gfp_mask)
498 {
499 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
500 	struct sk_buff *skb;
501 	void *data;
502 
503 	len += NET_SKB_PAD + NET_IP_ALIGN;
504 
505 	if ((len > SKB_WITH_OVERHEAD(PAGE_SIZE)) ||
506 	    (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
507 		skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
508 		if (!skb)
509 			goto skb_fail;
510 		goto skb_success;
511 	}
512 
513 	len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
514 	len = SKB_DATA_ALIGN(len);
515 
516 	if (sk_memalloc_socks())
517 		gfp_mask |= __GFP_MEMALLOC;
518 
519 	data = page_frag_alloc(&nc->page, len, gfp_mask);
520 	if (unlikely(!data))
521 		return NULL;
522 
523 	skb = __build_skb(data, len);
524 	if (unlikely(!skb)) {
525 		skb_free_frag(data);
526 		return NULL;
527 	}
528 
529 	if (nc->page.pfmemalloc)
530 		skb->pfmemalloc = 1;
531 	skb->head_frag = 1;
532 
533 skb_success:
534 	skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN);
535 	skb->dev = napi->dev;
536 
537 skb_fail:
538 	return skb;
539 }
540 EXPORT_SYMBOL(__napi_alloc_skb);
541 
542 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
543 		     int size, unsigned int truesize)
544 {
545 	skb_fill_page_desc(skb, i, page, off, size);
546 	skb->len += size;
547 	skb->data_len += size;
548 	skb->truesize += truesize;
549 }
550 EXPORT_SYMBOL(skb_add_rx_frag);
551 
552 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
553 			  unsigned int truesize)
554 {
555 	skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
556 
557 	skb_frag_size_add(frag, size);
558 	skb->len += size;
559 	skb->data_len += size;
560 	skb->truesize += truesize;
561 }
562 EXPORT_SYMBOL(skb_coalesce_rx_frag);
563 
564 static void skb_drop_list(struct sk_buff **listp)
565 {
566 	kfree_skb_list(*listp);
567 	*listp = NULL;
568 }
569 
570 static inline void skb_drop_fraglist(struct sk_buff *skb)
571 {
572 	skb_drop_list(&skb_shinfo(skb)->frag_list);
573 }
574 
575 static void skb_clone_fraglist(struct sk_buff *skb)
576 {
577 	struct sk_buff *list;
578 
579 	skb_walk_frags(skb, list)
580 		skb_get(list);
581 }
582 
583 static void skb_free_head(struct sk_buff *skb)
584 {
585 	unsigned char *head = skb->head;
586 
587 	if (skb->head_frag)
588 		skb_free_frag(head);
589 	else
590 		kfree(head);
591 }
592 
593 static void skb_release_data(struct sk_buff *skb)
594 {
595 	struct skb_shared_info *shinfo = skb_shinfo(skb);
596 	int i;
597 
598 	if (skb->cloned &&
599 	    atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
600 			      &shinfo->dataref))
601 		return;
602 
603 	for (i = 0; i < shinfo->nr_frags; i++)
604 		__skb_frag_unref(&shinfo->frags[i]);
605 
606 	if (shinfo->frag_list)
607 		kfree_skb_list(shinfo->frag_list);
608 
609 	skb_zcopy_clear(skb, true);
610 	skb_free_head(skb);
611 }
612 
613 /*
614  *	Free an skbuff by memory without cleaning the state.
615  */
616 static void kfree_skbmem(struct sk_buff *skb)
617 {
618 	struct sk_buff_fclones *fclones;
619 
620 	switch (skb->fclone) {
621 	case SKB_FCLONE_UNAVAILABLE:
622 		kmem_cache_free(skbuff_head_cache, skb);
623 		return;
624 
625 	case SKB_FCLONE_ORIG:
626 		fclones = container_of(skb, struct sk_buff_fclones, skb1);
627 
628 		/* We usually free the clone (TX completion) before original skb
629 		 * This test would have no chance to be true for the clone,
630 		 * while here, branch prediction will be good.
631 		 */
632 		if (refcount_read(&fclones->fclone_ref) == 1)
633 			goto fastpath;
634 		break;
635 
636 	default: /* SKB_FCLONE_CLONE */
637 		fclones = container_of(skb, struct sk_buff_fclones, skb2);
638 		break;
639 	}
640 	if (!refcount_dec_and_test(&fclones->fclone_ref))
641 		return;
642 fastpath:
643 	kmem_cache_free(skbuff_fclone_cache, fclones);
644 }
645 
646 void skb_release_head_state(struct sk_buff *skb)
647 {
648 	skb_dst_drop(skb);
649 	if (skb->destructor) {
650 		WARN_ON(in_irq());
651 		skb->destructor(skb);
652 	}
653 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
654 	nf_conntrack_put(skb_nfct(skb));
655 #endif
656 	skb_ext_put(skb);
657 }
658 
659 /* Free everything but the sk_buff shell. */
660 static void skb_release_all(struct sk_buff *skb)
661 {
662 	skb_release_head_state(skb);
663 	if (likely(skb->head))
664 		skb_release_data(skb);
665 }
666 
667 /**
668  *	__kfree_skb - private function
669  *	@skb: buffer
670  *
671  *	Free an sk_buff. Release anything attached to the buffer.
672  *	Clean the state. This is an internal helper function. Users should
673  *	always call kfree_skb
674  */
675 
676 void __kfree_skb(struct sk_buff *skb)
677 {
678 	skb_release_all(skb);
679 	kfree_skbmem(skb);
680 }
681 EXPORT_SYMBOL(__kfree_skb);
682 
683 /**
684  *	kfree_skb - free an sk_buff
685  *	@skb: buffer to free
686  *
687  *	Drop a reference to the buffer and free it if the usage count has
688  *	hit zero.
689  */
690 void kfree_skb(struct sk_buff *skb)
691 {
692 	if (!skb_unref(skb))
693 		return;
694 
695 	trace_kfree_skb(skb, __builtin_return_address(0));
696 	__kfree_skb(skb);
697 }
698 EXPORT_SYMBOL(kfree_skb);
699 
700 void kfree_skb_list(struct sk_buff *segs)
701 {
702 	while (segs) {
703 		struct sk_buff *next = segs->next;
704 
705 		kfree_skb(segs);
706 		segs = next;
707 	}
708 }
709 EXPORT_SYMBOL(kfree_skb_list);
710 
711 /* Dump skb information and contents.
712  *
713  * Must only be called from net_ratelimit()-ed paths.
714  *
715  * Dumps whole packets if full_pkt, only headers otherwise.
716  */
717 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt)
718 {
719 	struct skb_shared_info *sh = skb_shinfo(skb);
720 	struct net_device *dev = skb->dev;
721 	struct sock *sk = skb->sk;
722 	struct sk_buff *list_skb;
723 	bool has_mac, has_trans;
724 	int headroom, tailroom;
725 	int i, len, seg_len;
726 
727 	if (full_pkt)
728 		len = skb->len;
729 	else
730 		len = min_t(int, skb->len, MAX_HEADER + 128);
731 
732 	headroom = skb_headroom(skb);
733 	tailroom = skb_tailroom(skb);
734 
735 	has_mac = skb_mac_header_was_set(skb);
736 	has_trans = skb_transport_header_was_set(skb);
737 
738 	printk("%sskb len=%u headroom=%u headlen=%u tailroom=%u\n"
739 	       "mac=(%d,%d) net=(%d,%d) trans=%d\n"
740 	       "shinfo(txflags=%u nr_frags=%u gso(size=%hu type=%u segs=%hu))\n"
741 	       "csum(0x%x ip_summed=%u complete_sw=%u valid=%u level=%u)\n"
742 	       "hash(0x%x sw=%u l4=%u) proto=0x%04x pkttype=%u iif=%d\n",
743 	       level, skb->len, headroom, skb_headlen(skb), tailroom,
744 	       has_mac ? skb->mac_header : -1,
745 	       has_mac ? skb_mac_header_len(skb) : -1,
746 	       skb->network_header,
747 	       has_trans ? skb_network_header_len(skb) : -1,
748 	       has_trans ? skb->transport_header : -1,
749 	       sh->tx_flags, sh->nr_frags,
750 	       sh->gso_size, sh->gso_type, sh->gso_segs,
751 	       skb->csum, skb->ip_summed, skb->csum_complete_sw,
752 	       skb->csum_valid, skb->csum_level,
753 	       skb->hash, skb->sw_hash, skb->l4_hash,
754 	       ntohs(skb->protocol), skb->pkt_type, skb->skb_iif);
755 
756 	if (dev)
757 		printk("%sdev name=%s feat=0x%pNF\n",
758 		       level, dev->name, &dev->features);
759 	if (sk)
760 		printk("%ssk family=%hu type=%u proto=%u\n",
761 		       level, sk->sk_family, sk->sk_type, sk->sk_protocol);
762 
763 	if (full_pkt && headroom)
764 		print_hex_dump(level, "skb headroom: ", DUMP_PREFIX_OFFSET,
765 			       16, 1, skb->head, headroom, false);
766 
767 	seg_len = min_t(int, skb_headlen(skb), len);
768 	if (seg_len)
769 		print_hex_dump(level, "skb linear:   ", DUMP_PREFIX_OFFSET,
770 			       16, 1, skb->data, seg_len, false);
771 	len -= seg_len;
772 
773 	if (full_pkt && tailroom)
774 		print_hex_dump(level, "skb tailroom: ", DUMP_PREFIX_OFFSET,
775 			       16, 1, skb_tail_pointer(skb), tailroom, false);
776 
777 	for (i = 0; len && i < skb_shinfo(skb)->nr_frags; i++) {
778 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
779 		u32 p_off, p_len, copied;
780 		struct page *p;
781 		u8 *vaddr;
782 
783 		skb_frag_foreach_page(frag, skb_frag_off(frag),
784 				      skb_frag_size(frag), p, p_off, p_len,
785 				      copied) {
786 			seg_len = min_t(int, p_len, len);
787 			vaddr = kmap_atomic(p);
788 			print_hex_dump(level, "skb frag:     ",
789 				       DUMP_PREFIX_OFFSET,
790 				       16, 1, vaddr + p_off, seg_len, false);
791 			kunmap_atomic(vaddr);
792 			len -= seg_len;
793 			if (!len)
794 				break;
795 		}
796 	}
797 
798 	if (full_pkt && skb_has_frag_list(skb)) {
799 		printk("skb fraglist:\n");
800 		skb_walk_frags(skb, list_skb)
801 			skb_dump(level, list_skb, true);
802 	}
803 }
804 EXPORT_SYMBOL(skb_dump);
805 
806 /**
807  *	skb_tx_error - report an sk_buff xmit error
808  *	@skb: buffer that triggered an error
809  *
810  *	Report xmit error if a device callback is tracking this skb.
811  *	skb must be freed afterwards.
812  */
813 void skb_tx_error(struct sk_buff *skb)
814 {
815 	skb_zcopy_clear(skb, true);
816 }
817 EXPORT_SYMBOL(skb_tx_error);
818 
819 #ifdef CONFIG_TRACEPOINTS
820 /**
821  *	consume_skb - free an skbuff
822  *	@skb: buffer to free
823  *
824  *	Drop a ref to the buffer and free it if the usage count has hit zero
825  *	Functions identically to kfree_skb, but kfree_skb assumes that the frame
826  *	is being dropped after a failure and notes that
827  */
828 void consume_skb(struct sk_buff *skb)
829 {
830 	if (!skb_unref(skb))
831 		return;
832 
833 	trace_consume_skb(skb);
834 	__kfree_skb(skb);
835 }
836 EXPORT_SYMBOL(consume_skb);
837 #endif
838 
839 /**
840  *	consume_stateless_skb - free an skbuff, assuming it is stateless
841  *	@skb: buffer to free
842  *
843  *	Alike consume_skb(), but this variant assumes that this is the last
844  *	skb reference and all the head states have been already dropped
845  */
846 void __consume_stateless_skb(struct sk_buff *skb)
847 {
848 	trace_consume_skb(skb);
849 	skb_release_data(skb);
850 	kfree_skbmem(skb);
851 }
852 
853 void __kfree_skb_flush(void)
854 {
855 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
856 
857 	/* flush skb_cache if containing objects */
858 	if (nc->skb_count) {
859 		kmem_cache_free_bulk(skbuff_head_cache, nc->skb_count,
860 				     nc->skb_cache);
861 		nc->skb_count = 0;
862 	}
863 }
864 
865 static inline void _kfree_skb_defer(struct sk_buff *skb)
866 {
867 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
868 
869 	/* drop skb->head and call any destructors for packet */
870 	skb_release_all(skb);
871 
872 	/* record skb to CPU local list */
873 	nc->skb_cache[nc->skb_count++] = skb;
874 
875 #ifdef CONFIG_SLUB
876 	/* SLUB writes into objects when freeing */
877 	prefetchw(skb);
878 #endif
879 
880 	/* flush skb_cache if it is filled */
881 	if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) {
882 		kmem_cache_free_bulk(skbuff_head_cache, NAPI_SKB_CACHE_SIZE,
883 				     nc->skb_cache);
884 		nc->skb_count = 0;
885 	}
886 }
887 void __kfree_skb_defer(struct sk_buff *skb)
888 {
889 	_kfree_skb_defer(skb);
890 }
891 
892 void napi_consume_skb(struct sk_buff *skb, int budget)
893 {
894 	/* Zero budget indicate non-NAPI context called us, like netpoll */
895 	if (unlikely(!budget)) {
896 		dev_consume_skb_any(skb);
897 		return;
898 	}
899 
900 	if (!skb_unref(skb))
901 		return;
902 
903 	/* if reaching here SKB is ready to free */
904 	trace_consume_skb(skb);
905 
906 	/* if SKB is a clone, don't handle this case */
907 	if (skb->fclone != SKB_FCLONE_UNAVAILABLE) {
908 		__kfree_skb(skb);
909 		return;
910 	}
911 
912 	_kfree_skb_defer(skb);
913 }
914 EXPORT_SYMBOL(napi_consume_skb);
915 
916 /* Make sure a field is enclosed inside headers_start/headers_end section */
917 #define CHECK_SKB_FIELD(field) \
918 	BUILD_BUG_ON(offsetof(struct sk_buff, field) <		\
919 		     offsetof(struct sk_buff, headers_start));	\
920 	BUILD_BUG_ON(offsetof(struct sk_buff, field) >		\
921 		     offsetof(struct sk_buff, headers_end));	\
922 
923 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
924 {
925 	new->tstamp		= old->tstamp;
926 	/* We do not copy old->sk */
927 	new->dev		= old->dev;
928 	memcpy(new->cb, old->cb, sizeof(old->cb));
929 	skb_dst_copy(new, old);
930 	__skb_ext_copy(new, old);
931 	__nf_copy(new, old, false);
932 
933 	/* Note : this field could be in headers_start/headers_end section
934 	 * It is not yet because we do not want to have a 16 bit hole
935 	 */
936 	new->queue_mapping = old->queue_mapping;
937 
938 	memcpy(&new->headers_start, &old->headers_start,
939 	       offsetof(struct sk_buff, headers_end) -
940 	       offsetof(struct sk_buff, headers_start));
941 	CHECK_SKB_FIELD(protocol);
942 	CHECK_SKB_FIELD(csum);
943 	CHECK_SKB_FIELD(hash);
944 	CHECK_SKB_FIELD(priority);
945 	CHECK_SKB_FIELD(skb_iif);
946 	CHECK_SKB_FIELD(vlan_proto);
947 	CHECK_SKB_FIELD(vlan_tci);
948 	CHECK_SKB_FIELD(transport_header);
949 	CHECK_SKB_FIELD(network_header);
950 	CHECK_SKB_FIELD(mac_header);
951 	CHECK_SKB_FIELD(inner_protocol);
952 	CHECK_SKB_FIELD(inner_transport_header);
953 	CHECK_SKB_FIELD(inner_network_header);
954 	CHECK_SKB_FIELD(inner_mac_header);
955 	CHECK_SKB_FIELD(mark);
956 #ifdef CONFIG_NETWORK_SECMARK
957 	CHECK_SKB_FIELD(secmark);
958 #endif
959 #ifdef CONFIG_NET_RX_BUSY_POLL
960 	CHECK_SKB_FIELD(napi_id);
961 #endif
962 #ifdef CONFIG_XPS
963 	CHECK_SKB_FIELD(sender_cpu);
964 #endif
965 #ifdef CONFIG_NET_SCHED
966 	CHECK_SKB_FIELD(tc_index);
967 #endif
968 
969 }
970 
971 /*
972  * You should not add any new code to this function.  Add it to
973  * __copy_skb_header above instead.
974  */
975 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
976 {
977 #define C(x) n->x = skb->x
978 
979 	n->next = n->prev = NULL;
980 	n->sk = NULL;
981 	__copy_skb_header(n, skb);
982 
983 	C(len);
984 	C(data_len);
985 	C(mac_len);
986 	n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
987 	n->cloned = 1;
988 	n->nohdr = 0;
989 	n->peeked = 0;
990 	C(pfmemalloc);
991 	n->destructor = NULL;
992 	C(tail);
993 	C(end);
994 	C(head);
995 	C(head_frag);
996 	C(data);
997 	C(truesize);
998 	refcount_set(&n->users, 1);
999 
1000 	atomic_inc(&(skb_shinfo(skb)->dataref));
1001 	skb->cloned = 1;
1002 
1003 	return n;
1004 #undef C
1005 }
1006 
1007 /**
1008  * alloc_skb_for_msg() - allocate sk_buff to wrap frag list forming a msg
1009  * @first: first sk_buff of the msg
1010  */
1011 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first)
1012 {
1013 	struct sk_buff *n;
1014 
1015 	n = alloc_skb(0, GFP_ATOMIC);
1016 	if (!n)
1017 		return NULL;
1018 
1019 	n->len = first->len;
1020 	n->data_len = first->len;
1021 	n->truesize = first->truesize;
1022 
1023 	skb_shinfo(n)->frag_list = first;
1024 
1025 	__copy_skb_header(n, first);
1026 	n->destructor = NULL;
1027 
1028 	return n;
1029 }
1030 EXPORT_SYMBOL_GPL(alloc_skb_for_msg);
1031 
1032 /**
1033  *	skb_morph	-	morph one skb into another
1034  *	@dst: the skb to receive the contents
1035  *	@src: the skb to supply the contents
1036  *
1037  *	This is identical to skb_clone except that the target skb is
1038  *	supplied by the user.
1039  *
1040  *	The target skb is returned upon exit.
1041  */
1042 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
1043 {
1044 	skb_release_all(dst);
1045 	return __skb_clone(dst, src);
1046 }
1047 EXPORT_SYMBOL_GPL(skb_morph);
1048 
1049 int mm_account_pinned_pages(struct mmpin *mmp, size_t size)
1050 {
1051 	unsigned long max_pg, num_pg, new_pg, old_pg;
1052 	struct user_struct *user;
1053 
1054 	if (capable(CAP_IPC_LOCK) || !size)
1055 		return 0;
1056 
1057 	num_pg = (size >> PAGE_SHIFT) + 2;	/* worst case */
1058 	max_pg = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
1059 	user = mmp->user ? : current_user();
1060 
1061 	do {
1062 		old_pg = atomic_long_read(&user->locked_vm);
1063 		new_pg = old_pg + num_pg;
1064 		if (new_pg > max_pg)
1065 			return -ENOBUFS;
1066 	} while (atomic_long_cmpxchg(&user->locked_vm, old_pg, new_pg) !=
1067 		 old_pg);
1068 
1069 	if (!mmp->user) {
1070 		mmp->user = get_uid(user);
1071 		mmp->num_pg = num_pg;
1072 	} else {
1073 		mmp->num_pg += num_pg;
1074 	}
1075 
1076 	return 0;
1077 }
1078 EXPORT_SYMBOL_GPL(mm_account_pinned_pages);
1079 
1080 void mm_unaccount_pinned_pages(struct mmpin *mmp)
1081 {
1082 	if (mmp->user) {
1083 		atomic_long_sub(mmp->num_pg, &mmp->user->locked_vm);
1084 		free_uid(mmp->user);
1085 	}
1086 }
1087 EXPORT_SYMBOL_GPL(mm_unaccount_pinned_pages);
1088 
1089 struct ubuf_info *sock_zerocopy_alloc(struct sock *sk, size_t size)
1090 {
1091 	struct ubuf_info *uarg;
1092 	struct sk_buff *skb;
1093 
1094 	WARN_ON_ONCE(!in_task());
1095 
1096 	skb = sock_omalloc(sk, 0, GFP_KERNEL);
1097 	if (!skb)
1098 		return NULL;
1099 
1100 	BUILD_BUG_ON(sizeof(*uarg) > sizeof(skb->cb));
1101 	uarg = (void *)skb->cb;
1102 	uarg->mmp.user = NULL;
1103 
1104 	if (mm_account_pinned_pages(&uarg->mmp, size)) {
1105 		kfree_skb(skb);
1106 		return NULL;
1107 	}
1108 
1109 	uarg->callback = sock_zerocopy_callback;
1110 	uarg->id = ((u32)atomic_inc_return(&sk->sk_zckey)) - 1;
1111 	uarg->len = 1;
1112 	uarg->bytelen = size;
1113 	uarg->zerocopy = 1;
1114 	refcount_set(&uarg->refcnt, 1);
1115 	sock_hold(sk);
1116 
1117 	return uarg;
1118 }
1119 EXPORT_SYMBOL_GPL(sock_zerocopy_alloc);
1120 
1121 static inline struct sk_buff *skb_from_uarg(struct ubuf_info *uarg)
1122 {
1123 	return container_of((void *)uarg, struct sk_buff, cb);
1124 }
1125 
1126 struct ubuf_info *sock_zerocopy_realloc(struct sock *sk, size_t size,
1127 					struct ubuf_info *uarg)
1128 {
1129 	if (uarg) {
1130 		const u32 byte_limit = 1 << 19;		/* limit to a few TSO */
1131 		u32 bytelen, next;
1132 
1133 		/* realloc only when socket is locked (TCP, UDP cork),
1134 		 * so uarg->len and sk_zckey access is serialized
1135 		 */
1136 		if (!sock_owned_by_user(sk)) {
1137 			WARN_ON_ONCE(1);
1138 			return NULL;
1139 		}
1140 
1141 		bytelen = uarg->bytelen + size;
1142 		if (uarg->len == USHRT_MAX - 1 || bytelen > byte_limit) {
1143 			/* TCP can create new skb to attach new uarg */
1144 			if (sk->sk_type == SOCK_STREAM)
1145 				goto new_alloc;
1146 			return NULL;
1147 		}
1148 
1149 		next = (u32)atomic_read(&sk->sk_zckey);
1150 		if ((u32)(uarg->id + uarg->len) == next) {
1151 			if (mm_account_pinned_pages(&uarg->mmp, size))
1152 				return NULL;
1153 			uarg->len++;
1154 			uarg->bytelen = bytelen;
1155 			atomic_set(&sk->sk_zckey, ++next);
1156 
1157 			/* no extra ref when appending to datagram (MSG_MORE) */
1158 			if (sk->sk_type == SOCK_STREAM)
1159 				sock_zerocopy_get(uarg);
1160 
1161 			return uarg;
1162 		}
1163 	}
1164 
1165 new_alloc:
1166 	return sock_zerocopy_alloc(sk, size);
1167 }
1168 EXPORT_SYMBOL_GPL(sock_zerocopy_realloc);
1169 
1170 static bool skb_zerocopy_notify_extend(struct sk_buff *skb, u32 lo, u16 len)
1171 {
1172 	struct sock_exterr_skb *serr = SKB_EXT_ERR(skb);
1173 	u32 old_lo, old_hi;
1174 	u64 sum_len;
1175 
1176 	old_lo = serr->ee.ee_info;
1177 	old_hi = serr->ee.ee_data;
1178 	sum_len = old_hi - old_lo + 1ULL + len;
1179 
1180 	if (sum_len >= (1ULL << 32))
1181 		return false;
1182 
1183 	if (lo != old_hi + 1)
1184 		return false;
1185 
1186 	serr->ee.ee_data += len;
1187 	return true;
1188 }
1189 
1190 void sock_zerocopy_callback(struct ubuf_info *uarg, bool success)
1191 {
1192 	struct sk_buff *tail, *skb = skb_from_uarg(uarg);
1193 	struct sock_exterr_skb *serr;
1194 	struct sock *sk = skb->sk;
1195 	struct sk_buff_head *q;
1196 	unsigned long flags;
1197 	u32 lo, hi;
1198 	u16 len;
1199 
1200 	mm_unaccount_pinned_pages(&uarg->mmp);
1201 
1202 	/* if !len, there was only 1 call, and it was aborted
1203 	 * so do not queue a completion notification
1204 	 */
1205 	if (!uarg->len || sock_flag(sk, SOCK_DEAD))
1206 		goto release;
1207 
1208 	len = uarg->len;
1209 	lo = uarg->id;
1210 	hi = uarg->id + len - 1;
1211 
1212 	serr = SKB_EXT_ERR(skb);
1213 	memset(serr, 0, sizeof(*serr));
1214 	serr->ee.ee_errno = 0;
1215 	serr->ee.ee_origin = SO_EE_ORIGIN_ZEROCOPY;
1216 	serr->ee.ee_data = hi;
1217 	serr->ee.ee_info = lo;
1218 	if (!success)
1219 		serr->ee.ee_code |= SO_EE_CODE_ZEROCOPY_COPIED;
1220 
1221 	q = &sk->sk_error_queue;
1222 	spin_lock_irqsave(&q->lock, flags);
1223 	tail = skb_peek_tail(q);
1224 	if (!tail || SKB_EXT_ERR(tail)->ee.ee_origin != SO_EE_ORIGIN_ZEROCOPY ||
1225 	    !skb_zerocopy_notify_extend(tail, lo, len)) {
1226 		__skb_queue_tail(q, skb);
1227 		skb = NULL;
1228 	}
1229 	spin_unlock_irqrestore(&q->lock, flags);
1230 
1231 	sk->sk_error_report(sk);
1232 
1233 release:
1234 	consume_skb(skb);
1235 	sock_put(sk);
1236 }
1237 EXPORT_SYMBOL_GPL(sock_zerocopy_callback);
1238 
1239 void sock_zerocopy_put(struct ubuf_info *uarg)
1240 {
1241 	if (uarg && refcount_dec_and_test(&uarg->refcnt)) {
1242 		if (uarg->callback)
1243 			uarg->callback(uarg, uarg->zerocopy);
1244 		else
1245 			consume_skb(skb_from_uarg(uarg));
1246 	}
1247 }
1248 EXPORT_SYMBOL_GPL(sock_zerocopy_put);
1249 
1250 void sock_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref)
1251 {
1252 	if (uarg) {
1253 		struct sock *sk = skb_from_uarg(uarg)->sk;
1254 
1255 		atomic_dec(&sk->sk_zckey);
1256 		uarg->len--;
1257 
1258 		if (have_uref)
1259 			sock_zerocopy_put(uarg);
1260 	}
1261 }
1262 EXPORT_SYMBOL_GPL(sock_zerocopy_put_abort);
1263 
1264 int skb_zerocopy_iter_dgram(struct sk_buff *skb, struct msghdr *msg, int len)
1265 {
1266 	return __zerocopy_sg_from_iter(skb->sk, skb, &msg->msg_iter, len);
1267 }
1268 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_dgram);
1269 
1270 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
1271 			     struct msghdr *msg, int len,
1272 			     struct ubuf_info *uarg)
1273 {
1274 	struct ubuf_info *orig_uarg = skb_zcopy(skb);
1275 	struct iov_iter orig_iter = msg->msg_iter;
1276 	int err, orig_len = skb->len;
1277 
1278 	/* An skb can only point to one uarg. This edge case happens when
1279 	 * TCP appends to an skb, but zerocopy_realloc triggered a new alloc.
1280 	 */
1281 	if (orig_uarg && uarg != orig_uarg)
1282 		return -EEXIST;
1283 
1284 	err = __zerocopy_sg_from_iter(sk, skb, &msg->msg_iter, len);
1285 	if (err == -EFAULT || (err == -EMSGSIZE && skb->len == orig_len)) {
1286 		struct sock *save_sk = skb->sk;
1287 
1288 		/* Streams do not free skb on error. Reset to prev state. */
1289 		msg->msg_iter = orig_iter;
1290 		skb->sk = sk;
1291 		___pskb_trim(skb, orig_len);
1292 		skb->sk = save_sk;
1293 		return err;
1294 	}
1295 
1296 	skb_zcopy_set(skb, uarg, NULL);
1297 	return skb->len - orig_len;
1298 }
1299 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_stream);
1300 
1301 static int skb_zerocopy_clone(struct sk_buff *nskb, struct sk_buff *orig,
1302 			      gfp_t gfp_mask)
1303 {
1304 	if (skb_zcopy(orig)) {
1305 		if (skb_zcopy(nskb)) {
1306 			/* !gfp_mask callers are verified to !skb_zcopy(nskb) */
1307 			if (!gfp_mask) {
1308 				WARN_ON_ONCE(1);
1309 				return -ENOMEM;
1310 			}
1311 			if (skb_uarg(nskb) == skb_uarg(orig))
1312 				return 0;
1313 			if (skb_copy_ubufs(nskb, GFP_ATOMIC))
1314 				return -EIO;
1315 		}
1316 		skb_zcopy_set(nskb, skb_uarg(orig), NULL);
1317 	}
1318 	return 0;
1319 }
1320 
1321 /**
1322  *	skb_copy_ubufs	-	copy userspace skb frags buffers to kernel
1323  *	@skb: the skb to modify
1324  *	@gfp_mask: allocation priority
1325  *
1326  *	This must be called on SKBTX_DEV_ZEROCOPY skb.
1327  *	It will copy all frags into kernel and drop the reference
1328  *	to userspace pages.
1329  *
1330  *	If this function is called from an interrupt gfp_mask() must be
1331  *	%GFP_ATOMIC.
1332  *
1333  *	Returns 0 on success or a negative error code on failure
1334  *	to allocate kernel memory to copy to.
1335  */
1336 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask)
1337 {
1338 	int num_frags = skb_shinfo(skb)->nr_frags;
1339 	struct page *page, *head = NULL;
1340 	int i, new_frags;
1341 	u32 d_off;
1342 
1343 	if (skb_shared(skb) || skb_unclone(skb, gfp_mask))
1344 		return -EINVAL;
1345 
1346 	if (!num_frags)
1347 		goto release;
1348 
1349 	new_frags = (__skb_pagelen(skb) + PAGE_SIZE - 1) >> PAGE_SHIFT;
1350 	for (i = 0; i < new_frags; i++) {
1351 		page = alloc_page(gfp_mask);
1352 		if (!page) {
1353 			while (head) {
1354 				struct page *next = (struct page *)page_private(head);
1355 				put_page(head);
1356 				head = next;
1357 			}
1358 			return -ENOMEM;
1359 		}
1360 		set_page_private(page, (unsigned long)head);
1361 		head = page;
1362 	}
1363 
1364 	page = head;
1365 	d_off = 0;
1366 	for (i = 0; i < num_frags; i++) {
1367 		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
1368 		u32 p_off, p_len, copied;
1369 		struct page *p;
1370 		u8 *vaddr;
1371 
1372 		skb_frag_foreach_page(f, skb_frag_off(f), skb_frag_size(f),
1373 				      p, p_off, p_len, copied) {
1374 			u32 copy, done = 0;
1375 			vaddr = kmap_atomic(p);
1376 
1377 			while (done < p_len) {
1378 				if (d_off == PAGE_SIZE) {
1379 					d_off = 0;
1380 					page = (struct page *)page_private(page);
1381 				}
1382 				copy = min_t(u32, PAGE_SIZE - d_off, p_len - done);
1383 				memcpy(page_address(page) + d_off,
1384 				       vaddr + p_off + done, copy);
1385 				done += copy;
1386 				d_off += copy;
1387 			}
1388 			kunmap_atomic(vaddr);
1389 		}
1390 	}
1391 
1392 	/* skb frags release userspace buffers */
1393 	for (i = 0; i < num_frags; i++)
1394 		skb_frag_unref(skb, i);
1395 
1396 	/* skb frags point to kernel buffers */
1397 	for (i = 0; i < new_frags - 1; i++) {
1398 		__skb_fill_page_desc(skb, i, head, 0, PAGE_SIZE);
1399 		head = (struct page *)page_private(head);
1400 	}
1401 	__skb_fill_page_desc(skb, new_frags - 1, head, 0, d_off);
1402 	skb_shinfo(skb)->nr_frags = new_frags;
1403 
1404 release:
1405 	skb_zcopy_clear(skb, false);
1406 	return 0;
1407 }
1408 EXPORT_SYMBOL_GPL(skb_copy_ubufs);
1409 
1410 /**
1411  *	skb_clone	-	duplicate an sk_buff
1412  *	@skb: buffer to clone
1413  *	@gfp_mask: allocation priority
1414  *
1415  *	Duplicate an &sk_buff. The new one is not owned by a socket. Both
1416  *	copies share the same packet data but not structure. The new
1417  *	buffer has a reference count of 1. If the allocation fails the
1418  *	function returns %NULL otherwise the new buffer is returned.
1419  *
1420  *	If this function is called from an interrupt gfp_mask() must be
1421  *	%GFP_ATOMIC.
1422  */
1423 
1424 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
1425 {
1426 	struct sk_buff_fclones *fclones = container_of(skb,
1427 						       struct sk_buff_fclones,
1428 						       skb1);
1429 	struct sk_buff *n;
1430 
1431 	if (skb_orphan_frags(skb, gfp_mask))
1432 		return NULL;
1433 
1434 	if (skb->fclone == SKB_FCLONE_ORIG &&
1435 	    refcount_read(&fclones->fclone_ref) == 1) {
1436 		n = &fclones->skb2;
1437 		refcount_set(&fclones->fclone_ref, 2);
1438 	} else {
1439 		if (skb_pfmemalloc(skb))
1440 			gfp_mask |= __GFP_MEMALLOC;
1441 
1442 		n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
1443 		if (!n)
1444 			return NULL;
1445 
1446 		n->fclone = SKB_FCLONE_UNAVAILABLE;
1447 	}
1448 
1449 	return __skb_clone(n, skb);
1450 }
1451 EXPORT_SYMBOL(skb_clone);
1452 
1453 void skb_headers_offset_update(struct sk_buff *skb, int off)
1454 {
1455 	/* Only adjust this if it actually is csum_start rather than csum */
1456 	if (skb->ip_summed == CHECKSUM_PARTIAL)
1457 		skb->csum_start += off;
1458 	/* {transport,network,mac}_header and tail are relative to skb->head */
1459 	skb->transport_header += off;
1460 	skb->network_header   += off;
1461 	if (skb_mac_header_was_set(skb))
1462 		skb->mac_header += off;
1463 	skb->inner_transport_header += off;
1464 	skb->inner_network_header += off;
1465 	skb->inner_mac_header += off;
1466 }
1467 EXPORT_SYMBOL(skb_headers_offset_update);
1468 
1469 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old)
1470 {
1471 	__copy_skb_header(new, old);
1472 
1473 	skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
1474 	skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
1475 	skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
1476 }
1477 EXPORT_SYMBOL(skb_copy_header);
1478 
1479 static inline int skb_alloc_rx_flag(const struct sk_buff *skb)
1480 {
1481 	if (skb_pfmemalloc(skb))
1482 		return SKB_ALLOC_RX;
1483 	return 0;
1484 }
1485 
1486 /**
1487  *	skb_copy	-	create private copy of an sk_buff
1488  *	@skb: buffer to copy
1489  *	@gfp_mask: allocation priority
1490  *
1491  *	Make a copy of both an &sk_buff and its data. This is used when the
1492  *	caller wishes to modify the data and needs a private copy of the
1493  *	data to alter. Returns %NULL on failure or the pointer to the buffer
1494  *	on success. The returned buffer has a reference count of 1.
1495  *
1496  *	As by-product this function converts non-linear &sk_buff to linear
1497  *	one, so that &sk_buff becomes completely private and caller is allowed
1498  *	to modify all the data of returned buffer. This means that this
1499  *	function is not recommended for use in circumstances when only
1500  *	header is going to be modified. Use pskb_copy() instead.
1501  */
1502 
1503 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
1504 {
1505 	int headerlen = skb_headroom(skb);
1506 	unsigned int size = skb_end_offset(skb) + skb->data_len;
1507 	struct sk_buff *n = __alloc_skb(size, gfp_mask,
1508 					skb_alloc_rx_flag(skb), NUMA_NO_NODE);
1509 
1510 	if (!n)
1511 		return NULL;
1512 
1513 	/* Set the data pointer */
1514 	skb_reserve(n, headerlen);
1515 	/* Set the tail pointer and length */
1516 	skb_put(n, skb->len);
1517 
1518 	BUG_ON(skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len));
1519 
1520 	skb_copy_header(n, skb);
1521 	return n;
1522 }
1523 EXPORT_SYMBOL(skb_copy);
1524 
1525 /**
1526  *	__pskb_copy_fclone	-  create copy of an sk_buff with private head.
1527  *	@skb: buffer to copy
1528  *	@headroom: headroom of new skb
1529  *	@gfp_mask: allocation priority
1530  *	@fclone: if true allocate the copy of the skb from the fclone
1531  *	cache instead of the head cache; it is recommended to set this
1532  *	to true for the cases where the copy will likely be cloned
1533  *
1534  *	Make a copy of both an &sk_buff and part of its data, located
1535  *	in header. Fragmented data remain shared. This is used when
1536  *	the caller wishes to modify only header of &sk_buff and needs
1537  *	private copy of the header to alter. Returns %NULL on failure
1538  *	or the pointer to the buffer on success.
1539  *	The returned buffer has a reference count of 1.
1540  */
1541 
1542 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1543 				   gfp_t gfp_mask, bool fclone)
1544 {
1545 	unsigned int size = skb_headlen(skb) + headroom;
1546 	int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0);
1547 	struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE);
1548 
1549 	if (!n)
1550 		goto out;
1551 
1552 	/* Set the data pointer */
1553 	skb_reserve(n, headroom);
1554 	/* Set the tail pointer and length */
1555 	skb_put(n, skb_headlen(skb));
1556 	/* Copy the bytes */
1557 	skb_copy_from_linear_data(skb, n->data, n->len);
1558 
1559 	n->truesize += skb->data_len;
1560 	n->data_len  = skb->data_len;
1561 	n->len	     = skb->len;
1562 
1563 	if (skb_shinfo(skb)->nr_frags) {
1564 		int i;
1565 
1566 		if (skb_orphan_frags(skb, gfp_mask) ||
1567 		    skb_zerocopy_clone(n, skb, gfp_mask)) {
1568 			kfree_skb(n);
1569 			n = NULL;
1570 			goto out;
1571 		}
1572 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1573 			skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
1574 			skb_frag_ref(skb, i);
1575 		}
1576 		skb_shinfo(n)->nr_frags = i;
1577 	}
1578 
1579 	if (skb_has_frag_list(skb)) {
1580 		skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
1581 		skb_clone_fraglist(n);
1582 	}
1583 
1584 	skb_copy_header(n, skb);
1585 out:
1586 	return n;
1587 }
1588 EXPORT_SYMBOL(__pskb_copy_fclone);
1589 
1590 /**
1591  *	pskb_expand_head - reallocate header of &sk_buff
1592  *	@skb: buffer to reallocate
1593  *	@nhead: room to add at head
1594  *	@ntail: room to add at tail
1595  *	@gfp_mask: allocation priority
1596  *
1597  *	Expands (or creates identical copy, if @nhead and @ntail are zero)
1598  *	header of @skb. &sk_buff itself is not changed. &sk_buff MUST have
1599  *	reference count of 1. Returns zero in the case of success or error,
1600  *	if expansion failed. In the last case, &sk_buff is not changed.
1601  *
1602  *	All the pointers pointing into skb header may change and must be
1603  *	reloaded after call to this function.
1604  */
1605 
1606 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
1607 		     gfp_t gfp_mask)
1608 {
1609 	int i, osize = skb_end_offset(skb);
1610 	int size = osize + nhead + ntail;
1611 	long off;
1612 	u8 *data;
1613 
1614 	BUG_ON(nhead < 0);
1615 
1616 	BUG_ON(skb_shared(skb));
1617 
1618 	size = SKB_DATA_ALIGN(size);
1619 
1620 	if (skb_pfmemalloc(skb))
1621 		gfp_mask |= __GFP_MEMALLOC;
1622 	data = kmalloc_reserve(size + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
1623 			       gfp_mask, NUMA_NO_NODE, NULL);
1624 	if (!data)
1625 		goto nodata;
1626 	size = SKB_WITH_OVERHEAD(ksize(data));
1627 
1628 	/* Copy only real data... and, alas, header. This should be
1629 	 * optimized for the cases when header is void.
1630 	 */
1631 	memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head);
1632 
1633 	memcpy((struct skb_shared_info *)(data + size),
1634 	       skb_shinfo(skb),
1635 	       offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags]));
1636 
1637 	/*
1638 	 * if shinfo is shared we must drop the old head gracefully, but if it
1639 	 * is not we can just drop the old head and let the existing refcount
1640 	 * be since all we did is relocate the values
1641 	 */
1642 	if (skb_cloned(skb)) {
1643 		if (skb_orphan_frags(skb, gfp_mask))
1644 			goto nofrags;
1645 		if (skb_zcopy(skb))
1646 			refcount_inc(&skb_uarg(skb)->refcnt);
1647 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1648 			skb_frag_ref(skb, i);
1649 
1650 		if (skb_has_frag_list(skb))
1651 			skb_clone_fraglist(skb);
1652 
1653 		skb_release_data(skb);
1654 	} else {
1655 		skb_free_head(skb);
1656 	}
1657 	off = (data + nhead) - skb->head;
1658 
1659 	skb->head     = data;
1660 	skb->head_frag = 0;
1661 	skb->data    += off;
1662 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1663 	skb->end      = size;
1664 	off           = nhead;
1665 #else
1666 	skb->end      = skb->head + size;
1667 #endif
1668 	skb->tail	      += off;
1669 	skb_headers_offset_update(skb, nhead);
1670 	skb->cloned   = 0;
1671 	skb->hdr_len  = 0;
1672 	skb->nohdr    = 0;
1673 	atomic_set(&skb_shinfo(skb)->dataref, 1);
1674 
1675 	skb_metadata_clear(skb);
1676 
1677 	/* It is not generally safe to change skb->truesize.
1678 	 * For the moment, we really care of rx path, or
1679 	 * when skb is orphaned (not attached to a socket).
1680 	 */
1681 	if (!skb->sk || skb->destructor == sock_edemux)
1682 		skb->truesize += size - osize;
1683 
1684 	return 0;
1685 
1686 nofrags:
1687 	kfree(data);
1688 nodata:
1689 	return -ENOMEM;
1690 }
1691 EXPORT_SYMBOL(pskb_expand_head);
1692 
1693 /* Make private copy of skb with writable head and some headroom */
1694 
1695 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
1696 {
1697 	struct sk_buff *skb2;
1698 	int delta = headroom - skb_headroom(skb);
1699 
1700 	if (delta <= 0)
1701 		skb2 = pskb_copy(skb, GFP_ATOMIC);
1702 	else {
1703 		skb2 = skb_clone(skb, GFP_ATOMIC);
1704 		if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
1705 					     GFP_ATOMIC)) {
1706 			kfree_skb(skb2);
1707 			skb2 = NULL;
1708 		}
1709 	}
1710 	return skb2;
1711 }
1712 EXPORT_SYMBOL(skb_realloc_headroom);
1713 
1714 /**
1715  *	skb_copy_expand	-	copy and expand sk_buff
1716  *	@skb: buffer to copy
1717  *	@newheadroom: new free bytes at head
1718  *	@newtailroom: new free bytes at tail
1719  *	@gfp_mask: allocation priority
1720  *
1721  *	Make a copy of both an &sk_buff and its data and while doing so
1722  *	allocate additional space.
1723  *
1724  *	This is used when the caller wishes to modify the data and needs a
1725  *	private copy of the data to alter as well as more space for new fields.
1726  *	Returns %NULL on failure or the pointer to the buffer
1727  *	on success. The returned buffer has a reference count of 1.
1728  *
1729  *	You must pass %GFP_ATOMIC as the allocation priority if this function
1730  *	is called from an interrupt.
1731  */
1732 struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
1733 				int newheadroom, int newtailroom,
1734 				gfp_t gfp_mask)
1735 {
1736 	/*
1737 	 *	Allocate the copy buffer
1738 	 */
1739 	struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom,
1740 					gfp_mask, skb_alloc_rx_flag(skb),
1741 					NUMA_NO_NODE);
1742 	int oldheadroom = skb_headroom(skb);
1743 	int head_copy_len, head_copy_off;
1744 
1745 	if (!n)
1746 		return NULL;
1747 
1748 	skb_reserve(n, newheadroom);
1749 
1750 	/* Set the tail pointer and length */
1751 	skb_put(n, skb->len);
1752 
1753 	head_copy_len = oldheadroom;
1754 	head_copy_off = 0;
1755 	if (newheadroom <= head_copy_len)
1756 		head_copy_len = newheadroom;
1757 	else
1758 		head_copy_off = newheadroom - head_copy_len;
1759 
1760 	/* Copy the linear header and data. */
1761 	BUG_ON(skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
1762 			     skb->len + head_copy_len));
1763 
1764 	skb_copy_header(n, skb);
1765 
1766 	skb_headers_offset_update(n, newheadroom - oldheadroom);
1767 
1768 	return n;
1769 }
1770 EXPORT_SYMBOL(skb_copy_expand);
1771 
1772 /**
1773  *	__skb_pad		-	zero pad the tail of an skb
1774  *	@skb: buffer to pad
1775  *	@pad: space to pad
1776  *	@free_on_error: free buffer on error
1777  *
1778  *	Ensure that a buffer is followed by a padding area that is zero
1779  *	filled. Used by network drivers which may DMA or transfer data
1780  *	beyond the buffer end onto the wire.
1781  *
1782  *	May return error in out of memory cases. The skb is freed on error
1783  *	if @free_on_error is true.
1784  */
1785 
1786 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error)
1787 {
1788 	int err;
1789 	int ntail;
1790 
1791 	/* If the skbuff is non linear tailroom is always zero.. */
1792 	if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
1793 		memset(skb->data+skb->len, 0, pad);
1794 		return 0;
1795 	}
1796 
1797 	ntail = skb->data_len + pad - (skb->end - skb->tail);
1798 	if (likely(skb_cloned(skb) || ntail > 0)) {
1799 		err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
1800 		if (unlikely(err))
1801 			goto free_skb;
1802 	}
1803 
1804 	/* FIXME: The use of this function with non-linear skb's really needs
1805 	 * to be audited.
1806 	 */
1807 	err = skb_linearize(skb);
1808 	if (unlikely(err))
1809 		goto free_skb;
1810 
1811 	memset(skb->data + skb->len, 0, pad);
1812 	return 0;
1813 
1814 free_skb:
1815 	if (free_on_error)
1816 		kfree_skb(skb);
1817 	return err;
1818 }
1819 EXPORT_SYMBOL(__skb_pad);
1820 
1821 /**
1822  *	pskb_put - add data to the tail of a potentially fragmented buffer
1823  *	@skb: start of the buffer to use
1824  *	@tail: tail fragment of the buffer to use
1825  *	@len: amount of data to add
1826  *
1827  *	This function extends the used data area of the potentially
1828  *	fragmented buffer. @tail must be the last fragment of @skb -- or
1829  *	@skb itself. If this would exceed the total buffer size the kernel
1830  *	will panic. A pointer to the first byte of the extra data is
1831  *	returned.
1832  */
1833 
1834 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len)
1835 {
1836 	if (tail != skb) {
1837 		skb->data_len += len;
1838 		skb->len += len;
1839 	}
1840 	return skb_put(tail, len);
1841 }
1842 EXPORT_SYMBOL_GPL(pskb_put);
1843 
1844 /**
1845  *	skb_put - add data to a buffer
1846  *	@skb: buffer to use
1847  *	@len: amount of data to add
1848  *
1849  *	This function extends the used data area of the buffer. If this would
1850  *	exceed the total buffer size the kernel will panic. A pointer to the
1851  *	first byte of the extra data is returned.
1852  */
1853 void *skb_put(struct sk_buff *skb, unsigned int len)
1854 {
1855 	void *tmp = skb_tail_pointer(skb);
1856 	SKB_LINEAR_ASSERT(skb);
1857 	skb->tail += len;
1858 	skb->len  += len;
1859 	if (unlikely(skb->tail > skb->end))
1860 		skb_over_panic(skb, len, __builtin_return_address(0));
1861 	return tmp;
1862 }
1863 EXPORT_SYMBOL(skb_put);
1864 
1865 /**
1866  *	skb_push - add data to the start of a buffer
1867  *	@skb: buffer to use
1868  *	@len: amount of data to add
1869  *
1870  *	This function extends the used data area of the buffer at the buffer
1871  *	start. If this would exceed the total buffer headroom the kernel will
1872  *	panic. A pointer to the first byte of the extra data is returned.
1873  */
1874 void *skb_push(struct sk_buff *skb, unsigned int len)
1875 {
1876 	skb->data -= len;
1877 	skb->len  += len;
1878 	if (unlikely(skb->data < skb->head))
1879 		skb_under_panic(skb, len, __builtin_return_address(0));
1880 	return skb->data;
1881 }
1882 EXPORT_SYMBOL(skb_push);
1883 
1884 /**
1885  *	skb_pull - remove data from the start of a buffer
1886  *	@skb: buffer to use
1887  *	@len: amount of data to remove
1888  *
1889  *	This function removes data from the start of a buffer, returning
1890  *	the memory to the headroom. A pointer to the next data in the buffer
1891  *	is returned. Once the data has been pulled future pushes will overwrite
1892  *	the old data.
1893  */
1894 void *skb_pull(struct sk_buff *skb, unsigned int len)
1895 {
1896 	return skb_pull_inline(skb, len);
1897 }
1898 EXPORT_SYMBOL(skb_pull);
1899 
1900 /**
1901  *	skb_trim - remove end from a buffer
1902  *	@skb: buffer to alter
1903  *	@len: new length
1904  *
1905  *	Cut the length of a buffer down by removing data from the tail. If
1906  *	the buffer is already under the length specified it is not modified.
1907  *	The skb must be linear.
1908  */
1909 void skb_trim(struct sk_buff *skb, unsigned int len)
1910 {
1911 	if (skb->len > len)
1912 		__skb_trim(skb, len);
1913 }
1914 EXPORT_SYMBOL(skb_trim);
1915 
1916 /* Trims skb to length len. It can change skb pointers.
1917  */
1918 
1919 int ___pskb_trim(struct sk_buff *skb, unsigned int len)
1920 {
1921 	struct sk_buff **fragp;
1922 	struct sk_buff *frag;
1923 	int offset = skb_headlen(skb);
1924 	int nfrags = skb_shinfo(skb)->nr_frags;
1925 	int i;
1926 	int err;
1927 
1928 	if (skb_cloned(skb) &&
1929 	    unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
1930 		return err;
1931 
1932 	i = 0;
1933 	if (offset >= len)
1934 		goto drop_pages;
1935 
1936 	for (; i < nfrags; i++) {
1937 		int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]);
1938 
1939 		if (end < len) {
1940 			offset = end;
1941 			continue;
1942 		}
1943 
1944 		skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset);
1945 
1946 drop_pages:
1947 		skb_shinfo(skb)->nr_frags = i;
1948 
1949 		for (; i < nfrags; i++)
1950 			skb_frag_unref(skb, i);
1951 
1952 		if (skb_has_frag_list(skb))
1953 			skb_drop_fraglist(skb);
1954 		goto done;
1955 	}
1956 
1957 	for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
1958 	     fragp = &frag->next) {
1959 		int end = offset + frag->len;
1960 
1961 		if (skb_shared(frag)) {
1962 			struct sk_buff *nfrag;
1963 
1964 			nfrag = skb_clone(frag, GFP_ATOMIC);
1965 			if (unlikely(!nfrag))
1966 				return -ENOMEM;
1967 
1968 			nfrag->next = frag->next;
1969 			consume_skb(frag);
1970 			frag = nfrag;
1971 			*fragp = frag;
1972 		}
1973 
1974 		if (end < len) {
1975 			offset = end;
1976 			continue;
1977 		}
1978 
1979 		if (end > len &&
1980 		    unlikely((err = pskb_trim(frag, len - offset))))
1981 			return err;
1982 
1983 		if (frag->next)
1984 			skb_drop_list(&frag->next);
1985 		break;
1986 	}
1987 
1988 done:
1989 	if (len > skb_headlen(skb)) {
1990 		skb->data_len -= skb->len - len;
1991 		skb->len       = len;
1992 	} else {
1993 		skb->len       = len;
1994 		skb->data_len  = 0;
1995 		skb_set_tail_pointer(skb, len);
1996 	}
1997 
1998 	if (!skb->sk || skb->destructor == sock_edemux)
1999 		skb_condense(skb);
2000 	return 0;
2001 }
2002 EXPORT_SYMBOL(___pskb_trim);
2003 
2004 /* Note : use pskb_trim_rcsum() instead of calling this directly
2005  */
2006 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len)
2007 {
2008 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
2009 		int delta = skb->len - len;
2010 
2011 		skb->csum = csum_block_sub(skb->csum,
2012 					   skb_checksum(skb, len, delta, 0),
2013 					   len);
2014 	}
2015 	return __pskb_trim(skb, len);
2016 }
2017 EXPORT_SYMBOL(pskb_trim_rcsum_slow);
2018 
2019 /**
2020  *	__pskb_pull_tail - advance tail of skb header
2021  *	@skb: buffer to reallocate
2022  *	@delta: number of bytes to advance tail
2023  *
2024  *	The function makes a sense only on a fragmented &sk_buff,
2025  *	it expands header moving its tail forward and copying necessary
2026  *	data from fragmented part.
2027  *
2028  *	&sk_buff MUST have reference count of 1.
2029  *
2030  *	Returns %NULL (and &sk_buff does not change) if pull failed
2031  *	or value of new tail of skb in the case of success.
2032  *
2033  *	All the pointers pointing into skb header may change and must be
2034  *	reloaded after call to this function.
2035  */
2036 
2037 /* Moves tail of skb head forward, copying data from fragmented part,
2038  * when it is necessary.
2039  * 1. It may fail due to malloc failure.
2040  * 2. It may change skb pointers.
2041  *
2042  * It is pretty complicated. Luckily, it is called only in exceptional cases.
2043  */
2044 void *__pskb_pull_tail(struct sk_buff *skb, int delta)
2045 {
2046 	/* If skb has not enough free space at tail, get new one
2047 	 * plus 128 bytes for future expansions. If we have enough
2048 	 * room at tail, reallocate without expansion only if skb is cloned.
2049 	 */
2050 	int i, k, eat = (skb->tail + delta) - skb->end;
2051 
2052 	if (eat > 0 || skb_cloned(skb)) {
2053 		if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
2054 				     GFP_ATOMIC))
2055 			return NULL;
2056 	}
2057 
2058 	BUG_ON(skb_copy_bits(skb, skb_headlen(skb),
2059 			     skb_tail_pointer(skb), delta));
2060 
2061 	/* Optimization: no fragments, no reasons to preestimate
2062 	 * size of pulled pages. Superb.
2063 	 */
2064 	if (!skb_has_frag_list(skb))
2065 		goto pull_pages;
2066 
2067 	/* Estimate size of pulled pages. */
2068 	eat = delta;
2069 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2070 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2071 
2072 		if (size >= eat)
2073 			goto pull_pages;
2074 		eat -= size;
2075 	}
2076 
2077 	/* If we need update frag list, we are in troubles.
2078 	 * Certainly, it is possible to add an offset to skb data,
2079 	 * but taking into account that pulling is expected to
2080 	 * be very rare operation, it is worth to fight against
2081 	 * further bloating skb head and crucify ourselves here instead.
2082 	 * Pure masohism, indeed. 8)8)
2083 	 */
2084 	if (eat) {
2085 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
2086 		struct sk_buff *clone = NULL;
2087 		struct sk_buff *insp = NULL;
2088 
2089 		do {
2090 			if (list->len <= eat) {
2091 				/* Eaten as whole. */
2092 				eat -= list->len;
2093 				list = list->next;
2094 				insp = list;
2095 			} else {
2096 				/* Eaten partially. */
2097 
2098 				if (skb_shared(list)) {
2099 					/* Sucks! We need to fork list. :-( */
2100 					clone = skb_clone(list, GFP_ATOMIC);
2101 					if (!clone)
2102 						return NULL;
2103 					insp = list->next;
2104 					list = clone;
2105 				} else {
2106 					/* This may be pulled without
2107 					 * problems. */
2108 					insp = list;
2109 				}
2110 				if (!pskb_pull(list, eat)) {
2111 					kfree_skb(clone);
2112 					return NULL;
2113 				}
2114 				break;
2115 			}
2116 		} while (eat);
2117 
2118 		/* Free pulled out fragments. */
2119 		while ((list = skb_shinfo(skb)->frag_list) != insp) {
2120 			skb_shinfo(skb)->frag_list = list->next;
2121 			kfree_skb(list);
2122 		}
2123 		/* And insert new clone at head. */
2124 		if (clone) {
2125 			clone->next = list;
2126 			skb_shinfo(skb)->frag_list = clone;
2127 		}
2128 	}
2129 	/* Success! Now we may commit changes to skb data. */
2130 
2131 pull_pages:
2132 	eat = delta;
2133 	k = 0;
2134 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2135 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2136 
2137 		if (size <= eat) {
2138 			skb_frag_unref(skb, i);
2139 			eat -= size;
2140 		} else {
2141 			skb_frag_t *frag = &skb_shinfo(skb)->frags[k];
2142 
2143 			*frag = skb_shinfo(skb)->frags[i];
2144 			if (eat) {
2145 				skb_frag_off_add(frag, eat);
2146 				skb_frag_size_sub(frag, eat);
2147 				if (!i)
2148 					goto end;
2149 				eat = 0;
2150 			}
2151 			k++;
2152 		}
2153 	}
2154 	skb_shinfo(skb)->nr_frags = k;
2155 
2156 end:
2157 	skb->tail     += delta;
2158 	skb->data_len -= delta;
2159 
2160 	if (!skb->data_len)
2161 		skb_zcopy_clear(skb, false);
2162 
2163 	return skb_tail_pointer(skb);
2164 }
2165 EXPORT_SYMBOL(__pskb_pull_tail);
2166 
2167 /**
2168  *	skb_copy_bits - copy bits from skb to kernel buffer
2169  *	@skb: source skb
2170  *	@offset: offset in source
2171  *	@to: destination buffer
2172  *	@len: number of bytes to copy
2173  *
2174  *	Copy the specified number of bytes from the source skb to the
2175  *	destination buffer.
2176  *
2177  *	CAUTION ! :
2178  *		If its prototype is ever changed,
2179  *		check arch/{*}/net/{*}.S files,
2180  *		since it is called from BPF assembly code.
2181  */
2182 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
2183 {
2184 	int start = skb_headlen(skb);
2185 	struct sk_buff *frag_iter;
2186 	int i, copy;
2187 
2188 	if (offset > (int)skb->len - len)
2189 		goto fault;
2190 
2191 	/* Copy header. */
2192 	if ((copy = start - offset) > 0) {
2193 		if (copy > len)
2194 			copy = len;
2195 		skb_copy_from_linear_data_offset(skb, offset, to, copy);
2196 		if ((len -= copy) == 0)
2197 			return 0;
2198 		offset += copy;
2199 		to     += copy;
2200 	}
2201 
2202 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2203 		int end;
2204 		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
2205 
2206 		WARN_ON(start > offset + len);
2207 
2208 		end = start + skb_frag_size(f);
2209 		if ((copy = end - offset) > 0) {
2210 			u32 p_off, p_len, copied;
2211 			struct page *p;
2212 			u8 *vaddr;
2213 
2214 			if (copy > len)
2215 				copy = len;
2216 
2217 			skb_frag_foreach_page(f,
2218 					      skb_frag_off(f) + offset - start,
2219 					      copy, p, p_off, p_len, copied) {
2220 				vaddr = kmap_atomic(p);
2221 				memcpy(to + copied, vaddr + p_off, p_len);
2222 				kunmap_atomic(vaddr);
2223 			}
2224 
2225 			if ((len -= copy) == 0)
2226 				return 0;
2227 			offset += copy;
2228 			to     += copy;
2229 		}
2230 		start = end;
2231 	}
2232 
2233 	skb_walk_frags(skb, frag_iter) {
2234 		int end;
2235 
2236 		WARN_ON(start > offset + len);
2237 
2238 		end = start + frag_iter->len;
2239 		if ((copy = end - offset) > 0) {
2240 			if (copy > len)
2241 				copy = len;
2242 			if (skb_copy_bits(frag_iter, offset - start, to, copy))
2243 				goto fault;
2244 			if ((len -= copy) == 0)
2245 				return 0;
2246 			offset += copy;
2247 			to     += copy;
2248 		}
2249 		start = end;
2250 	}
2251 
2252 	if (!len)
2253 		return 0;
2254 
2255 fault:
2256 	return -EFAULT;
2257 }
2258 EXPORT_SYMBOL(skb_copy_bits);
2259 
2260 /*
2261  * Callback from splice_to_pipe(), if we need to release some pages
2262  * at the end of the spd in case we error'ed out in filling the pipe.
2263  */
2264 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
2265 {
2266 	put_page(spd->pages[i]);
2267 }
2268 
2269 static struct page *linear_to_page(struct page *page, unsigned int *len,
2270 				   unsigned int *offset,
2271 				   struct sock *sk)
2272 {
2273 	struct page_frag *pfrag = sk_page_frag(sk);
2274 
2275 	if (!sk_page_frag_refill(sk, pfrag))
2276 		return NULL;
2277 
2278 	*len = min_t(unsigned int, *len, pfrag->size - pfrag->offset);
2279 
2280 	memcpy(page_address(pfrag->page) + pfrag->offset,
2281 	       page_address(page) + *offset, *len);
2282 	*offset = pfrag->offset;
2283 	pfrag->offset += *len;
2284 
2285 	return pfrag->page;
2286 }
2287 
2288 static bool spd_can_coalesce(const struct splice_pipe_desc *spd,
2289 			     struct page *page,
2290 			     unsigned int offset)
2291 {
2292 	return	spd->nr_pages &&
2293 		spd->pages[spd->nr_pages - 1] == page &&
2294 		(spd->partial[spd->nr_pages - 1].offset +
2295 		 spd->partial[spd->nr_pages - 1].len == offset);
2296 }
2297 
2298 /*
2299  * Fill page/offset/length into spd, if it can hold more pages.
2300  */
2301 static bool spd_fill_page(struct splice_pipe_desc *spd,
2302 			  struct pipe_inode_info *pipe, struct page *page,
2303 			  unsigned int *len, unsigned int offset,
2304 			  bool linear,
2305 			  struct sock *sk)
2306 {
2307 	if (unlikely(spd->nr_pages == MAX_SKB_FRAGS))
2308 		return true;
2309 
2310 	if (linear) {
2311 		page = linear_to_page(page, len, &offset, sk);
2312 		if (!page)
2313 			return true;
2314 	}
2315 	if (spd_can_coalesce(spd, page, offset)) {
2316 		spd->partial[spd->nr_pages - 1].len += *len;
2317 		return false;
2318 	}
2319 	get_page(page);
2320 	spd->pages[spd->nr_pages] = page;
2321 	spd->partial[spd->nr_pages].len = *len;
2322 	spd->partial[spd->nr_pages].offset = offset;
2323 	spd->nr_pages++;
2324 
2325 	return false;
2326 }
2327 
2328 static bool __splice_segment(struct page *page, unsigned int poff,
2329 			     unsigned int plen, unsigned int *off,
2330 			     unsigned int *len,
2331 			     struct splice_pipe_desc *spd, bool linear,
2332 			     struct sock *sk,
2333 			     struct pipe_inode_info *pipe)
2334 {
2335 	if (!*len)
2336 		return true;
2337 
2338 	/* skip this segment if already processed */
2339 	if (*off >= plen) {
2340 		*off -= plen;
2341 		return false;
2342 	}
2343 
2344 	/* ignore any bits we already processed */
2345 	poff += *off;
2346 	plen -= *off;
2347 	*off = 0;
2348 
2349 	do {
2350 		unsigned int flen = min(*len, plen);
2351 
2352 		if (spd_fill_page(spd, pipe, page, &flen, poff,
2353 				  linear, sk))
2354 			return true;
2355 		poff += flen;
2356 		plen -= flen;
2357 		*len -= flen;
2358 	} while (*len && plen);
2359 
2360 	return false;
2361 }
2362 
2363 /*
2364  * Map linear and fragment data from the skb to spd. It reports true if the
2365  * pipe is full or if we already spliced the requested length.
2366  */
2367 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe,
2368 			      unsigned int *offset, unsigned int *len,
2369 			      struct splice_pipe_desc *spd, struct sock *sk)
2370 {
2371 	int seg;
2372 	struct sk_buff *iter;
2373 
2374 	/* map the linear part :
2375 	 * If skb->head_frag is set, this 'linear' part is backed by a
2376 	 * fragment, and if the head is not shared with any clones then
2377 	 * we can avoid a copy since we own the head portion of this page.
2378 	 */
2379 	if (__splice_segment(virt_to_page(skb->data),
2380 			     (unsigned long) skb->data & (PAGE_SIZE - 1),
2381 			     skb_headlen(skb),
2382 			     offset, len, spd,
2383 			     skb_head_is_locked(skb),
2384 			     sk, pipe))
2385 		return true;
2386 
2387 	/*
2388 	 * then map the fragments
2389 	 */
2390 	for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
2391 		const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
2392 
2393 		if (__splice_segment(skb_frag_page(f),
2394 				     skb_frag_off(f), skb_frag_size(f),
2395 				     offset, len, spd, false, sk, pipe))
2396 			return true;
2397 	}
2398 
2399 	skb_walk_frags(skb, iter) {
2400 		if (*offset >= iter->len) {
2401 			*offset -= iter->len;
2402 			continue;
2403 		}
2404 		/* __skb_splice_bits() only fails if the output has no room
2405 		 * left, so no point in going over the frag_list for the error
2406 		 * case.
2407 		 */
2408 		if (__skb_splice_bits(iter, pipe, offset, len, spd, sk))
2409 			return true;
2410 	}
2411 
2412 	return false;
2413 }
2414 
2415 /*
2416  * Map data from the skb to a pipe. Should handle both the linear part,
2417  * the fragments, and the frag list.
2418  */
2419 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
2420 		    struct pipe_inode_info *pipe, unsigned int tlen,
2421 		    unsigned int flags)
2422 {
2423 	struct partial_page partial[MAX_SKB_FRAGS];
2424 	struct page *pages[MAX_SKB_FRAGS];
2425 	struct splice_pipe_desc spd = {
2426 		.pages = pages,
2427 		.partial = partial,
2428 		.nr_pages_max = MAX_SKB_FRAGS,
2429 		.ops = &nosteal_pipe_buf_ops,
2430 		.spd_release = sock_spd_release,
2431 	};
2432 	int ret = 0;
2433 
2434 	__skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk);
2435 
2436 	if (spd.nr_pages)
2437 		ret = splice_to_pipe(pipe, &spd);
2438 
2439 	return ret;
2440 }
2441 EXPORT_SYMBOL_GPL(skb_splice_bits);
2442 
2443 /* Send skb data on a socket. Socket must be locked. */
2444 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
2445 			 int len)
2446 {
2447 	unsigned int orig_len = len;
2448 	struct sk_buff *head = skb;
2449 	unsigned short fragidx;
2450 	int slen, ret;
2451 
2452 do_frag_list:
2453 
2454 	/* Deal with head data */
2455 	while (offset < skb_headlen(skb) && len) {
2456 		struct kvec kv;
2457 		struct msghdr msg;
2458 
2459 		slen = min_t(int, len, skb_headlen(skb) - offset);
2460 		kv.iov_base = skb->data + offset;
2461 		kv.iov_len = slen;
2462 		memset(&msg, 0, sizeof(msg));
2463 		msg.msg_flags = MSG_DONTWAIT;
2464 
2465 		ret = kernel_sendmsg_locked(sk, &msg, &kv, 1, slen);
2466 		if (ret <= 0)
2467 			goto error;
2468 
2469 		offset += ret;
2470 		len -= ret;
2471 	}
2472 
2473 	/* All the data was skb head? */
2474 	if (!len)
2475 		goto out;
2476 
2477 	/* Make offset relative to start of frags */
2478 	offset -= skb_headlen(skb);
2479 
2480 	/* Find where we are in frag list */
2481 	for (fragidx = 0; fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
2482 		skb_frag_t *frag  = &skb_shinfo(skb)->frags[fragidx];
2483 
2484 		if (offset < skb_frag_size(frag))
2485 			break;
2486 
2487 		offset -= skb_frag_size(frag);
2488 	}
2489 
2490 	for (; len && fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
2491 		skb_frag_t *frag  = &skb_shinfo(skb)->frags[fragidx];
2492 
2493 		slen = min_t(size_t, len, skb_frag_size(frag) - offset);
2494 
2495 		while (slen) {
2496 			ret = kernel_sendpage_locked(sk, skb_frag_page(frag),
2497 						     skb_frag_off(frag) + offset,
2498 						     slen, MSG_DONTWAIT);
2499 			if (ret <= 0)
2500 				goto error;
2501 
2502 			len -= ret;
2503 			offset += ret;
2504 			slen -= ret;
2505 		}
2506 
2507 		offset = 0;
2508 	}
2509 
2510 	if (len) {
2511 		/* Process any frag lists */
2512 
2513 		if (skb == head) {
2514 			if (skb_has_frag_list(skb)) {
2515 				skb = skb_shinfo(skb)->frag_list;
2516 				goto do_frag_list;
2517 			}
2518 		} else if (skb->next) {
2519 			skb = skb->next;
2520 			goto do_frag_list;
2521 		}
2522 	}
2523 
2524 out:
2525 	return orig_len - len;
2526 
2527 error:
2528 	return orig_len == len ? ret : orig_len - len;
2529 }
2530 EXPORT_SYMBOL_GPL(skb_send_sock_locked);
2531 
2532 /**
2533  *	skb_store_bits - store bits from kernel buffer to skb
2534  *	@skb: destination buffer
2535  *	@offset: offset in destination
2536  *	@from: source buffer
2537  *	@len: number of bytes to copy
2538  *
2539  *	Copy the specified number of bytes from the source buffer to the
2540  *	destination skb.  This function handles all the messy bits of
2541  *	traversing fragment lists and such.
2542  */
2543 
2544 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
2545 {
2546 	int start = skb_headlen(skb);
2547 	struct sk_buff *frag_iter;
2548 	int i, copy;
2549 
2550 	if (offset > (int)skb->len - len)
2551 		goto fault;
2552 
2553 	if ((copy = start - offset) > 0) {
2554 		if (copy > len)
2555 			copy = len;
2556 		skb_copy_to_linear_data_offset(skb, offset, from, copy);
2557 		if ((len -= copy) == 0)
2558 			return 0;
2559 		offset += copy;
2560 		from += copy;
2561 	}
2562 
2563 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2564 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2565 		int end;
2566 
2567 		WARN_ON(start > offset + len);
2568 
2569 		end = start + skb_frag_size(frag);
2570 		if ((copy = end - offset) > 0) {
2571 			u32 p_off, p_len, copied;
2572 			struct page *p;
2573 			u8 *vaddr;
2574 
2575 			if (copy > len)
2576 				copy = len;
2577 
2578 			skb_frag_foreach_page(frag,
2579 					      skb_frag_off(frag) + offset - start,
2580 					      copy, p, p_off, p_len, copied) {
2581 				vaddr = kmap_atomic(p);
2582 				memcpy(vaddr + p_off, from + copied, p_len);
2583 				kunmap_atomic(vaddr);
2584 			}
2585 
2586 			if ((len -= copy) == 0)
2587 				return 0;
2588 			offset += copy;
2589 			from += copy;
2590 		}
2591 		start = end;
2592 	}
2593 
2594 	skb_walk_frags(skb, frag_iter) {
2595 		int end;
2596 
2597 		WARN_ON(start > offset + len);
2598 
2599 		end = start + frag_iter->len;
2600 		if ((copy = end - offset) > 0) {
2601 			if (copy > len)
2602 				copy = len;
2603 			if (skb_store_bits(frag_iter, offset - start,
2604 					   from, copy))
2605 				goto fault;
2606 			if ((len -= copy) == 0)
2607 				return 0;
2608 			offset += copy;
2609 			from += copy;
2610 		}
2611 		start = end;
2612 	}
2613 	if (!len)
2614 		return 0;
2615 
2616 fault:
2617 	return -EFAULT;
2618 }
2619 EXPORT_SYMBOL(skb_store_bits);
2620 
2621 /* Checksum skb data. */
2622 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
2623 		      __wsum csum, const struct skb_checksum_ops *ops)
2624 {
2625 	int start = skb_headlen(skb);
2626 	int i, copy = start - offset;
2627 	struct sk_buff *frag_iter;
2628 	int pos = 0;
2629 
2630 	/* Checksum header. */
2631 	if (copy > 0) {
2632 		if (copy > len)
2633 			copy = len;
2634 		csum = INDIRECT_CALL_1(ops->update, csum_partial_ext,
2635 				       skb->data + offset, copy, csum);
2636 		if ((len -= copy) == 0)
2637 			return csum;
2638 		offset += copy;
2639 		pos	= copy;
2640 	}
2641 
2642 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2643 		int end;
2644 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2645 
2646 		WARN_ON(start > offset + len);
2647 
2648 		end = start + skb_frag_size(frag);
2649 		if ((copy = end - offset) > 0) {
2650 			u32 p_off, p_len, copied;
2651 			struct page *p;
2652 			__wsum csum2;
2653 			u8 *vaddr;
2654 
2655 			if (copy > len)
2656 				copy = len;
2657 
2658 			skb_frag_foreach_page(frag,
2659 					      skb_frag_off(frag) + offset - start,
2660 					      copy, p, p_off, p_len, copied) {
2661 				vaddr = kmap_atomic(p);
2662 				csum2 = INDIRECT_CALL_1(ops->update,
2663 							csum_partial_ext,
2664 							vaddr + p_off, p_len, 0);
2665 				kunmap_atomic(vaddr);
2666 				csum = INDIRECT_CALL_1(ops->combine,
2667 						       csum_block_add_ext, csum,
2668 						       csum2, pos, p_len);
2669 				pos += p_len;
2670 			}
2671 
2672 			if (!(len -= copy))
2673 				return csum;
2674 			offset += copy;
2675 		}
2676 		start = end;
2677 	}
2678 
2679 	skb_walk_frags(skb, frag_iter) {
2680 		int end;
2681 
2682 		WARN_ON(start > offset + len);
2683 
2684 		end = start + frag_iter->len;
2685 		if ((copy = end - offset) > 0) {
2686 			__wsum csum2;
2687 			if (copy > len)
2688 				copy = len;
2689 			csum2 = __skb_checksum(frag_iter, offset - start,
2690 					       copy, 0, ops);
2691 			csum = INDIRECT_CALL_1(ops->combine, csum_block_add_ext,
2692 					       csum, csum2, pos, copy);
2693 			if ((len -= copy) == 0)
2694 				return csum;
2695 			offset += copy;
2696 			pos    += copy;
2697 		}
2698 		start = end;
2699 	}
2700 	BUG_ON(len);
2701 
2702 	return csum;
2703 }
2704 EXPORT_SYMBOL(__skb_checksum);
2705 
2706 __wsum skb_checksum(const struct sk_buff *skb, int offset,
2707 		    int len, __wsum csum)
2708 {
2709 	const struct skb_checksum_ops ops = {
2710 		.update  = csum_partial_ext,
2711 		.combine = csum_block_add_ext,
2712 	};
2713 
2714 	return __skb_checksum(skb, offset, len, csum, &ops);
2715 }
2716 EXPORT_SYMBOL(skb_checksum);
2717 
2718 /* Both of above in one bottle. */
2719 
2720 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
2721 				    u8 *to, int len)
2722 {
2723 	int start = skb_headlen(skb);
2724 	int i, copy = start - offset;
2725 	struct sk_buff *frag_iter;
2726 	int pos = 0;
2727 	__wsum csum = 0;
2728 
2729 	/* Copy header. */
2730 	if (copy > 0) {
2731 		if (copy > len)
2732 			copy = len;
2733 		csum = csum_partial_copy_nocheck(skb->data + offset, to,
2734 						 copy);
2735 		if ((len -= copy) == 0)
2736 			return csum;
2737 		offset += copy;
2738 		to     += copy;
2739 		pos	= copy;
2740 	}
2741 
2742 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2743 		int end;
2744 
2745 		WARN_ON(start > offset + len);
2746 
2747 		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
2748 		if ((copy = end - offset) > 0) {
2749 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2750 			u32 p_off, p_len, copied;
2751 			struct page *p;
2752 			__wsum csum2;
2753 			u8 *vaddr;
2754 
2755 			if (copy > len)
2756 				copy = len;
2757 
2758 			skb_frag_foreach_page(frag,
2759 					      skb_frag_off(frag) + offset - start,
2760 					      copy, p, p_off, p_len, copied) {
2761 				vaddr = kmap_atomic(p);
2762 				csum2 = csum_partial_copy_nocheck(vaddr + p_off,
2763 								  to + copied,
2764 								  p_len);
2765 				kunmap_atomic(vaddr);
2766 				csum = csum_block_add(csum, csum2, pos);
2767 				pos += p_len;
2768 			}
2769 
2770 			if (!(len -= copy))
2771 				return csum;
2772 			offset += copy;
2773 			to     += copy;
2774 		}
2775 		start = end;
2776 	}
2777 
2778 	skb_walk_frags(skb, frag_iter) {
2779 		__wsum csum2;
2780 		int end;
2781 
2782 		WARN_ON(start > offset + len);
2783 
2784 		end = start + frag_iter->len;
2785 		if ((copy = end - offset) > 0) {
2786 			if (copy > len)
2787 				copy = len;
2788 			csum2 = skb_copy_and_csum_bits(frag_iter,
2789 						       offset - start,
2790 						       to, copy);
2791 			csum = csum_block_add(csum, csum2, pos);
2792 			if ((len -= copy) == 0)
2793 				return csum;
2794 			offset += copy;
2795 			to     += copy;
2796 			pos    += copy;
2797 		}
2798 		start = end;
2799 	}
2800 	BUG_ON(len);
2801 	return csum;
2802 }
2803 EXPORT_SYMBOL(skb_copy_and_csum_bits);
2804 
2805 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len)
2806 {
2807 	__sum16 sum;
2808 
2809 	sum = csum_fold(skb_checksum(skb, 0, len, skb->csum));
2810 	/* See comments in __skb_checksum_complete(). */
2811 	if (likely(!sum)) {
2812 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
2813 		    !skb->csum_complete_sw)
2814 			netdev_rx_csum_fault(skb->dev, skb);
2815 	}
2816 	if (!skb_shared(skb))
2817 		skb->csum_valid = !sum;
2818 	return sum;
2819 }
2820 EXPORT_SYMBOL(__skb_checksum_complete_head);
2821 
2822 /* This function assumes skb->csum already holds pseudo header's checksum,
2823  * which has been changed from the hardware checksum, for example, by
2824  * __skb_checksum_validate_complete(). And, the original skb->csum must
2825  * have been validated unsuccessfully for CHECKSUM_COMPLETE case.
2826  *
2827  * It returns non-zero if the recomputed checksum is still invalid, otherwise
2828  * zero. The new checksum is stored back into skb->csum unless the skb is
2829  * shared.
2830  */
2831 __sum16 __skb_checksum_complete(struct sk_buff *skb)
2832 {
2833 	__wsum csum;
2834 	__sum16 sum;
2835 
2836 	csum = skb_checksum(skb, 0, skb->len, 0);
2837 
2838 	sum = csum_fold(csum_add(skb->csum, csum));
2839 	/* This check is inverted, because we already knew the hardware
2840 	 * checksum is invalid before calling this function. So, if the
2841 	 * re-computed checksum is valid instead, then we have a mismatch
2842 	 * between the original skb->csum and skb_checksum(). This means either
2843 	 * the original hardware checksum is incorrect or we screw up skb->csum
2844 	 * when moving skb->data around.
2845 	 */
2846 	if (likely(!sum)) {
2847 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
2848 		    !skb->csum_complete_sw)
2849 			netdev_rx_csum_fault(skb->dev, skb);
2850 	}
2851 
2852 	if (!skb_shared(skb)) {
2853 		/* Save full packet checksum */
2854 		skb->csum = csum;
2855 		skb->ip_summed = CHECKSUM_COMPLETE;
2856 		skb->csum_complete_sw = 1;
2857 		skb->csum_valid = !sum;
2858 	}
2859 
2860 	return sum;
2861 }
2862 EXPORT_SYMBOL(__skb_checksum_complete);
2863 
2864 static __wsum warn_crc32c_csum_update(const void *buff, int len, __wsum sum)
2865 {
2866 	net_warn_ratelimited(
2867 		"%s: attempt to compute crc32c without libcrc32c.ko\n",
2868 		__func__);
2869 	return 0;
2870 }
2871 
2872 static __wsum warn_crc32c_csum_combine(__wsum csum, __wsum csum2,
2873 				       int offset, int len)
2874 {
2875 	net_warn_ratelimited(
2876 		"%s: attempt to compute crc32c without libcrc32c.ko\n",
2877 		__func__);
2878 	return 0;
2879 }
2880 
2881 static const struct skb_checksum_ops default_crc32c_ops = {
2882 	.update  = warn_crc32c_csum_update,
2883 	.combine = warn_crc32c_csum_combine,
2884 };
2885 
2886 const struct skb_checksum_ops *crc32c_csum_stub __read_mostly =
2887 	&default_crc32c_ops;
2888 EXPORT_SYMBOL(crc32c_csum_stub);
2889 
2890  /**
2891  *	skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy()
2892  *	@from: source buffer
2893  *
2894  *	Calculates the amount of linear headroom needed in the 'to' skb passed
2895  *	into skb_zerocopy().
2896  */
2897 unsigned int
2898 skb_zerocopy_headlen(const struct sk_buff *from)
2899 {
2900 	unsigned int hlen = 0;
2901 
2902 	if (!from->head_frag ||
2903 	    skb_headlen(from) < L1_CACHE_BYTES ||
2904 	    skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS)
2905 		hlen = skb_headlen(from);
2906 
2907 	if (skb_has_frag_list(from))
2908 		hlen = from->len;
2909 
2910 	return hlen;
2911 }
2912 EXPORT_SYMBOL_GPL(skb_zerocopy_headlen);
2913 
2914 /**
2915  *	skb_zerocopy - Zero copy skb to skb
2916  *	@to: destination buffer
2917  *	@from: source buffer
2918  *	@len: number of bytes to copy from source buffer
2919  *	@hlen: size of linear headroom in destination buffer
2920  *
2921  *	Copies up to `len` bytes from `from` to `to` by creating references
2922  *	to the frags in the source buffer.
2923  *
2924  *	The `hlen` as calculated by skb_zerocopy_headlen() specifies the
2925  *	headroom in the `to` buffer.
2926  *
2927  *	Return value:
2928  *	0: everything is OK
2929  *	-ENOMEM: couldn't orphan frags of @from due to lack of memory
2930  *	-EFAULT: skb_copy_bits() found some problem with skb geometry
2931  */
2932 int
2933 skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen)
2934 {
2935 	int i, j = 0;
2936 	int plen = 0; /* length of skb->head fragment */
2937 	int ret;
2938 	struct page *page;
2939 	unsigned int offset;
2940 
2941 	BUG_ON(!from->head_frag && !hlen);
2942 
2943 	/* dont bother with small payloads */
2944 	if (len <= skb_tailroom(to))
2945 		return skb_copy_bits(from, 0, skb_put(to, len), len);
2946 
2947 	if (hlen) {
2948 		ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen);
2949 		if (unlikely(ret))
2950 			return ret;
2951 		len -= hlen;
2952 	} else {
2953 		plen = min_t(int, skb_headlen(from), len);
2954 		if (plen) {
2955 			page = virt_to_head_page(from->head);
2956 			offset = from->data - (unsigned char *)page_address(page);
2957 			__skb_fill_page_desc(to, 0, page, offset, plen);
2958 			get_page(page);
2959 			j = 1;
2960 			len -= plen;
2961 		}
2962 	}
2963 
2964 	to->truesize += len + plen;
2965 	to->len += len + plen;
2966 	to->data_len += len + plen;
2967 
2968 	if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) {
2969 		skb_tx_error(from);
2970 		return -ENOMEM;
2971 	}
2972 	skb_zerocopy_clone(to, from, GFP_ATOMIC);
2973 
2974 	for (i = 0; i < skb_shinfo(from)->nr_frags; i++) {
2975 		int size;
2976 
2977 		if (!len)
2978 			break;
2979 		skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i];
2980 		size = min_t(int, skb_frag_size(&skb_shinfo(to)->frags[j]),
2981 					len);
2982 		skb_frag_size_set(&skb_shinfo(to)->frags[j], size);
2983 		len -= size;
2984 		skb_frag_ref(to, j);
2985 		j++;
2986 	}
2987 	skb_shinfo(to)->nr_frags = j;
2988 
2989 	return 0;
2990 }
2991 EXPORT_SYMBOL_GPL(skb_zerocopy);
2992 
2993 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
2994 {
2995 	__wsum csum;
2996 	long csstart;
2997 
2998 	if (skb->ip_summed == CHECKSUM_PARTIAL)
2999 		csstart = skb_checksum_start_offset(skb);
3000 	else
3001 		csstart = skb_headlen(skb);
3002 
3003 	BUG_ON(csstart > skb_headlen(skb));
3004 
3005 	skb_copy_from_linear_data(skb, to, csstart);
3006 
3007 	csum = 0;
3008 	if (csstart != skb->len)
3009 		csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
3010 					      skb->len - csstart);
3011 
3012 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
3013 		long csstuff = csstart + skb->csum_offset;
3014 
3015 		*((__sum16 *)(to + csstuff)) = csum_fold(csum);
3016 	}
3017 }
3018 EXPORT_SYMBOL(skb_copy_and_csum_dev);
3019 
3020 /**
3021  *	skb_dequeue - remove from the head of the queue
3022  *	@list: list to dequeue from
3023  *
3024  *	Remove the head of the list. The list lock is taken so the function
3025  *	may be used safely with other locking list functions. The head item is
3026  *	returned or %NULL if the list is empty.
3027  */
3028 
3029 struct sk_buff *skb_dequeue(struct sk_buff_head *list)
3030 {
3031 	unsigned long flags;
3032 	struct sk_buff *result;
3033 
3034 	spin_lock_irqsave(&list->lock, flags);
3035 	result = __skb_dequeue(list);
3036 	spin_unlock_irqrestore(&list->lock, flags);
3037 	return result;
3038 }
3039 EXPORT_SYMBOL(skb_dequeue);
3040 
3041 /**
3042  *	skb_dequeue_tail - remove from the tail of the queue
3043  *	@list: list to dequeue from
3044  *
3045  *	Remove the tail of the list. The list lock is taken so the function
3046  *	may be used safely with other locking list functions. The tail item is
3047  *	returned or %NULL if the list is empty.
3048  */
3049 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
3050 {
3051 	unsigned long flags;
3052 	struct sk_buff *result;
3053 
3054 	spin_lock_irqsave(&list->lock, flags);
3055 	result = __skb_dequeue_tail(list);
3056 	spin_unlock_irqrestore(&list->lock, flags);
3057 	return result;
3058 }
3059 EXPORT_SYMBOL(skb_dequeue_tail);
3060 
3061 /**
3062  *	skb_queue_purge - empty a list
3063  *	@list: list to empty
3064  *
3065  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
3066  *	the list and one reference dropped. This function takes the list
3067  *	lock and is atomic with respect to other list locking functions.
3068  */
3069 void skb_queue_purge(struct sk_buff_head *list)
3070 {
3071 	struct sk_buff *skb;
3072 	while ((skb = skb_dequeue(list)) != NULL)
3073 		kfree_skb(skb);
3074 }
3075 EXPORT_SYMBOL(skb_queue_purge);
3076 
3077 /**
3078  *	skb_rbtree_purge - empty a skb rbtree
3079  *	@root: root of the rbtree to empty
3080  *	Return value: the sum of truesizes of all purged skbs.
3081  *
3082  *	Delete all buffers on an &sk_buff rbtree. Each buffer is removed from
3083  *	the list and one reference dropped. This function does not take
3084  *	any lock. Synchronization should be handled by the caller (e.g., TCP
3085  *	out-of-order queue is protected by the socket lock).
3086  */
3087 unsigned int skb_rbtree_purge(struct rb_root *root)
3088 {
3089 	struct rb_node *p = rb_first(root);
3090 	unsigned int sum = 0;
3091 
3092 	while (p) {
3093 		struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode);
3094 
3095 		p = rb_next(p);
3096 		rb_erase(&skb->rbnode, root);
3097 		sum += skb->truesize;
3098 		kfree_skb(skb);
3099 	}
3100 	return sum;
3101 }
3102 
3103 /**
3104  *	skb_queue_head - queue a buffer at the list head
3105  *	@list: list to use
3106  *	@newsk: buffer to queue
3107  *
3108  *	Queue a buffer at the start of the list. This function takes the
3109  *	list lock and can be used safely with other locking &sk_buff functions
3110  *	safely.
3111  *
3112  *	A buffer cannot be placed on two lists at the same time.
3113  */
3114 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
3115 {
3116 	unsigned long flags;
3117 
3118 	spin_lock_irqsave(&list->lock, flags);
3119 	__skb_queue_head(list, newsk);
3120 	spin_unlock_irqrestore(&list->lock, flags);
3121 }
3122 EXPORT_SYMBOL(skb_queue_head);
3123 
3124 /**
3125  *	skb_queue_tail - queue a buffer at the list tail
3126  *	@list: list to use
3127  *	@newsk: buffer to queue
3128  *
3129  *	Queue a buffer at the tail of the list. This function takes the
3130  *	list lock and can be used safely with other locking &sk_buff functions
3131  *	safely.
3132  *
3133  *	A buffer cannot be placed on two lists at the same time.
3134  */
3135 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
3136 {
3137 	unsigned long flags;
3138 
3139 	spin_lock_irqsave(&list->lock, flags);
3140 	__skb_queue_tail(list, newsk);
3141 	spin_unlock_irqrestore(&list->lock, flags);
3142 }
3143 EXPORT_SYMBOL(skb_queue_tail);
3144 
3145 /**
3146  *	skb_unlink	-	remove a buffer from a list
3147  *	@skb: buffer to remove
3148  *	@list: list to use
3149  *
3150  *	Remove a packet from a list. The list locks are taken and this
3151  *	function is atomic with respect to other list locked calls
3152  *
3153  *	You must know what list the SKB is on.
3154  */
3155 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
3156 {
3157 	unsigned long flags;
3158 
3159 	spin_lock_irqsave(&list->lock, flags);
3160 	__skb_unlink(skb, list);
3161 	spin_unlock_irqrestore(&list->lock, flags);
3162 }
3163 EXPORT_SYMBOL(skb_unlink);
3164 
3165 /**
3166  *	skb_append	-	append a buffer
3167  *	@old: buffer to insert after
3168  *	@newsk: buffer to insert
3169  *	@list: list to use
3170  *
3171  *	Place a packet after a given packet in a list. The list locks are taken
3172  *	and this function is atomic with respect to other list locked calls.
3173  *	A buffer cannot be placed on two lists at the same time.
3174  */
3175 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
3176 {
3177 	unsigned long flags;
3178 
3179 	spin_lock_irqsave(&list->lock, flags);
3180 	__skb_queue_after(list, old, newsk);
3181 	spin_unlock_irqrestore(&list->lock, flags);
3182 }
3183 EXPORT_SYMBOL(skb_append);
3184 
3185 static inline void skb_split_inside_header(struct sk_buff *skb,
3186 					   struct sk_buff* skb1,
3187 					   const u32 len, const int pos)
3188 {
3189 	int i;
3190 
3191 	skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
3192 					 pos - len);
3193 	/* And move data appendix as is. */
3194 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
3195 		skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
3196 
3197 	skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
3198 	skb_shinfo(skb)->nr_frags  = 0;
3199 	skb1->data_len		   = skb->data_len;
3200 	skb1->len		   += skb1->data_len;
3201 	skb->data_len		   = 0;
3202 	skb->len		   = len;
3203 	skb_set_tail_pointer(skb, len);
3204 }
3205 
3206 static inline void skb_split_no_header(struct sk_buff *skb,
3207 				       struct sk_buff* skb1,
3208 				       const u32 len, int pos)
3209 {
3210 	int i, k = 0;
3211 	const int nfrags = skb_shinfo(skb)->nr_frags;
3212 
3213 	skb_shinfo(skb)->nr_frags = 0;
3214 	skb1->len		  = skb1->data_len = skb->len - len;
3215 	skb->len		  = len;
3216 	skb->data_len		  = len - pos;
3217 
3218 	for (i = 0; i < nfrags; i++) {
3219 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
3220 
3221 		if (pos + size > len) {
3222 			skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
3223 
3224 			if (pos < len) {
3225 				/* Split frag.
3226 				 * We have two variants in this case:
3227 				 * 1. Move all the frag to the second
3228 				 *    part, if it is possible. F.e.
3229 				 *    this approach is mandatory for TUX,
3230 				 *    where splitting is expensive.
3231 				 * 2. Split is accurately. We make this.
3232 				 */
3233 				skb_frag_ref(skb, i);
3234 				skb_frag_off_add(&skb_shinfo(skb1)->frags[0], len - pos);
3235 				skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos);
3236 				skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos);
3237 				skb_shinfo(skb)->nr_frags++;
3238 			}
3239 			k++;
3240 		} else
3241 			skb_shinfo(skb)->nr_frags++;
3242 		pos += size;
3243 	}
3244 	skb_shinfo(skb1)->nr_frags = k;
3245 }
3246 
3247 /**
3248  * skb_split - Split fragmented skb to two parts at length len.
3249  * @skb: the buffer to split
3250  * @skb1: the buffer to receive the second part
3251  * @len: new length for skb
3252  */
3253 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
3254 {
3255 	int pos = skb_headlen(skb);
3256 
3257 	skb_shinfo(skb1)->tx_flags |= skb_shinfo(skb)->tx_flags &
3258 				      SKBTX_SHARED_FRAG;
3259 	skb_zerocopy_clone(skb1, skb, 0);
3260 	if (len < pos)	/* Split line is inside header. */
3261 		skb_split_inside_header(skb, skb1, len, pos);
3262 	else		/* Second chunk has no header, nothing to copy. */
3263 		skb_split_no_header(skb, skb1, len, pos);
3264 }
3265 EXPORT_SYMBOL(skb_split);
3266 
3267 /* Shifting from/to a cloned skb is a no-go.
3268  *
3269  * Caller cannot keep skb_shinfo related pointers past calling here!
3270  */
3271 static int skb_prepare_for_shift(struct sk_buff *skb)
3272 {
3273 	return skb_cloned(skb) && pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3274 }
3275 
3276 /**
3277  * skb_shift - Shifts paged data partially from skb to another
3278  * @tgt: buffer into which tail data gets added
3279  * @skb: buffer from which the paged data comes from
3280  * @shiftlen: shift up to this many bytes
3281  *
3282  * Attempts to shift up to shiftlen worth of bytes, which may be less than
3283  * the length of the skb, from skb to tgt. Returns number bytes shifted.
3284  * It's up to caller to free skb if everything was shifted.
3285  *
3286  * If @tgt runs out of frags, the whole operation is aborted.
3287  *
3288  * Skb cannot include anything else but paged data while tgt is allowed
3289  * to have non-paged data as well.
3290  *
3291  * TODO: full sized shift could be optimized but that would need
3292  * specialized skb free'er to handle frags without up-to-date nr_frags.
3293  */
3294 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
3295 {
3296 	int from, to, merge, todo;
3297 	skb_frag_t *fragfrom, *fragto;
3298 
3299 	BUG_ON(shiftlen > skb->len);
3300 
3301 	if (skb_headlen(skb))
3302 		return 0;
3303 	if (skb_zcopy(tgt) || skb_zcopy(skb))
3304 		return 0;
3305 
3306 	todo = shiftlen;
3307 	from = 0;
3308 	to = skb_shinfo(tgt)->nr_frags;
3309 	fragfrom = &skb_shinfo(skb)->frags[from];
3310 
3311 	/* Actual merge is delayed until the point when we know we can
3312 	 * commit all, so that we don't have to undo partial changes
3313 	 */
3314 	if (!to ||
3315 	    !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom),
3316 			      skb_frag_off(fragfrom))) {
3317 		merge = -1;
3318 	} else {
3319 		merge = to - 1;
3320 
3321 		todo -= skb_frag_size(fragfrom);
3322 		if (todo < 0) {
3323 			if (skb_prepare_for_shift(skb) ||
3324 			    skb_prepare_for_shift(tgt))
3325 				return 0;
3326 
3327 			/* All previous frag pointers might be stale! */
3328 			fragfrom = &skb_shinfo(skb)->frags[from];
3329 			fragto = &skb_shinfo(tgt)->frags[merge];
3330 
3331 			skb_frag_size_add(fragto, shiftlen);
3332 			skb_frag_size_sub(fragfrom, shiftlen);
3333 			skb_frag_off_add(fragfrom, shiftlen);
3334 
3335 			goto onlymerged;
3336 		}
3337 
3338 		from++;
3339 	}
3340 
3341 	/* Skip full, not-fitting skb to avoid expensive operations */
3342 	if ((shiftlen == skb->len) &&
3343 	    (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
3344 		return 0;
3345 
3346 	if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
3347 		return 0;
3348 
3349 	while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
3350 		if (to == MAX_SKB_FRAGS)
3351 			return 0;
3352 
3353 		fragfrom = &skb_shinfo(skb)->frags[from];
3354 		fragto = &skb_shinfo(tgt)->frags[to];
3355 
3356 		if (todo >= skb_frag_size(fragfrom)) {
3357 			*fragto = *fragfrom;
3358 			todo -= skb_frag_size(fragfrom);
3359 			from++;
3360 			to++;
3361 
3362 		} else {
3363 			__skb_frag_ref(fragfrom);
3364 			skb_frag_page_copy(fragto, fragfrom);
3365 			skb_frag_off_copy(fragto, fragfrom);
3366 			skb_frag_size_set(fragto, todo);
3367 
3368 			skb_frag_off_add(fragfrom, todo);
3369 			skb_frag_size_sub(fragfrom, todo);
3370 			todo = 0;
3371 
3372 			to++;
3373 			break;
3374 		}
3375 	}
3376 
3377 	/* Ready to "commit" this state change to tgt */
3378 	skb_shinfo(tgt)->nr_frags = to;
3379 
3380 	if (merge >= 0) {
3381 		fragfrom = &skb_shinfo(skb)->frags[0];
3382 		fragto = &skb_shinfo(tgt)->frags[merge];
3383 
3384 		skb_frag_size_add(fragto, skb_frag_size(fragfrom));
3385 		__skb_frag_unref(fragfrom);
3386 	}
3387 
3388 	/* Reposition in the original skb */
3389 	to = 0;
3390 	while (from < skb_shinfo(skb)->nr_frags)
3391 		skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
3392 	skb_shinfo(skb)->nr_frags = to;
3393 
3394 	BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
3395 
3396 onlymerged:
3397 	/* Most likely the tgt won't ever need its checksum anymore, skb on
3398 	 * the other hand might need it if it needs to be resent
3399 	 */
3400 	tgt->ip_summed = CHECKSUM_PARTIAL;
3401 	skb->ip_summed = CHECKSUM_PARTIAL;
3402 
3403 	/* Yak, is it really working this way? Some helper please? */
3404 	skb->len -= shiftlen;
3405 	skb->data_len -= shiftlen;
3406 	skb->truesize -= shiftlen;
3407 	tgt->len += shiftlen;
3408 	tgt->data_len += shiftlen;
3409 	tgt->truesize += shiftlen;
3410 
3411 	return shiftlen;
3412 }
3413 
3414 /**
3415  * skb_prepare_seq_read - Prepare a sequential read of skb data
3416  * @skb: the buffer to read
3417  * @from: lower offset of data to be read
3418  * @to: upper offset of data to be read
3419  * @st: state variable
3420  *
3421  * Initializes the specified state variable. Must be called before
3422  * invoking skb_seq_read() for the first time.
3423  */
3424 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
3425 			  unsigned int to, struct skb_seq_state *st)
3426 {
3427 	st->lower_offset = from;
3428 	st->upper_offset = to;
3429 	st->root_skb = st->cur_skb = skb;
3430 	st->frag_idx = st->stepped_offset = 0;
3431 	st->frag_data = NULL;
3432 }
3433 EXPORT_SYMBOL(skb_prepare_seq_read);
3434 
3435 /**
3436  * skb_seq_read - Sequentially read skb data
3437  * @consumed: number of bytes consumed by the caller so far
3438  * @data: destination pointer for data to be returned
3439  * @st: state variable
3440  *
3441  * Reads a block of skb data at @consumed relative to the
3442  * lower offset specified to skb_prepare_seq_read(). Assigns
3443  * the head of the data block to @data and returns the length
3444  * of the block or 0 if the end of the skb data or the upper
3445  * offset has been reached.
3446  *
3447  * The caller is not required to consume all of the data
3448  * returned, i.e. @consumed is typically set to the number
3449  * of bytes already consumed and the next call to
3450  * skb_seq_read() will return the remaining part of the block.
3451  *
3452  * Note 1: The size of each block of data returned can be arbitrary,
3453  *       this limitation is the cost for zerocopy sequential
3454  *       reads of potentially non linear data.
3455  *
3456  * Note 2: Fragment lists within fragments are not implemented
3457  *       at the moment, state->root_skb could be replaced with
3458  *       a stack for this purpose.
3459  */
3460 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
3461 			  struct skb_seq_state *st)
3462 {
3463 	unsigned int block_limit, abs_offset = consumed + st->lower_offset;
3464 	skb_frag_t *frag;
3465 
3466 	if (unlikely(abs_offset >= st->upper_offset)) {
3467 		if (st->frag_data) {
3468 			kunmap_atomic(st->frag_data);
3469 			st->frag_data = NULL;
3470 		}
3471 		return 0;
3472 	}
3473 
3474 next_skb:
3475 	block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
3476 
3477 	if (abs_offset < block_limit && !st->frag_data) {
3478 		*data = st->cur_skb->data + (abs_offset - st->stepped_offset);
3479 		return block_limit - abs_offset;
3480 	}
3481 
3482 	if (st->frag_idx == 0 && !st->frag_data)
3483 		st->stepped_offset += skb_headlen(st->cur_skb);
3484 
3485 	while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
3486 		frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
3487 		block_limit = skb_frag_size(frag) + st->stepped_offset;
3488 
3489 		if (abs_offset < block_limit) {
3490 			if (!st->frag_data)
3491 				st->frag_data = kmap_atomic(skb_frag_page(frag));
3492 
3493 			*data = (u8 *) st->frag_data + skb_frag_off(frag) +
3494 				(abs_offset - st->stepped_offset);
3495 
3496 			return block_limit - abs_offset;
3497 		}
3498 
3499 		if (st->frag_data) {
3500 			kunmap_atomic(st->frag_data);
3501 			st->frag_data = NULL;
3502 		}
3503 
3504 		st->frag_idx++;
3505 		st->stepped_offset += skb_frag_size(frag);
3506 	}
3507 
3508 	if (st->frag_data) {
3509 		kunmap_atomic(st->frag_data);
3510 		st->frag_data = NULL;
3511 	}
3512 
3513 	if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) {
3514 		st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
3515 		st->frag_idx = 0;
3516 		goto next_skb;
3517 	} else if (st->cur_skb->next) {
3518 		st->cur_skb = st->cur_skb->next;
3519 		st->frag_idx = 0;
3520 		goto next_skb;
3521 	}
3522 
3523 	return 0;
3524 }
3525 EXPORT_SYMBOL(skb_seq_read);
3526 
3527 /**
3528  * skb_abort_seq_read - Abort a sequential read of skb data
3529  * @st: state variable
3530  *
3531  * Must be called if skb_seq_read() was not called until it
3532  * returned 0.
3533  */
3534 void skb_abort_seq_read(struct skb_seq_state *st)
3535 {
3536 	if (st->frag_data)
3537 		kunmap_atomic(st->frag_data);
3538 }
3539 EXPORT_SYMBOL(skb_abort_seq_read);
3540 
3541 #define TS_SKB_CB(state)	((struct skb_seq_state *) &((state)->cb))
3542 
3543 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
3544 					  struct ts_config *conf,
3545 					  struct ts_state *state)
3546 {
3547 	return skb_seq_read(offset, text, TS_SKB_CB(state));
3548 }
3549 
3550 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
3551 {
3552 	skb_abort_seq_read(TS_SKB_CB(state));
3553 }
3554 
3555 /**
3556  * skb_find_text - Find a text pattern in skb data
3557  * @skb: the buffer to look in
3558  * @from: search offset
3559  * @to: search limit
3560  * @config: textsearch configuration
3561  *
3562  * Finds a pattern in the skb data according to the specified
3563  * textsearch configuration. Use textsearch_next() to retrieve
3564  * subsequent occurrences of the pattern. Returns the offset
3565  * to the first occurrence or UINT_MAX if no match was found.
3566  */
3567 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
3568 			   unsigned int to, struct ts_config *config)
3569 {
3570 	struct ts_state state;
3571 	unsigned int ret;
3572 
3573 	config->get_next_block = skb_ts_get_next_block;
3574 	config->finish = skb_ts_finish;
3575 
3576 	skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state));
3577 
3578 	ret = textsearch_find(config, &state);
3579 	return (ret <= to - from ? ret : UINT_MAX);
3580 }
3581 EXPORT_SYMBOL(skb_find_text);
3582 
3583 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
3584 			 int offset, size_t size)
3585 {
3586 	int i = skb_shinfo(skb)->nr_frags;
3587 
3588 	if (skb_can_coalesce(skb, i, page, offset)) {
3589 		skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size);
3590 	} else if (i < MAX_SKB_FRAGS) {
3591 		get_page(page);
3592 		skb_fill_page_desc(skb, i, page, offset, size);
3593 	} else {
3594 		return -EMSGSIZE;
3595 	}
3596 
3597 	return 0;
3598 }
3599 EXPORT_SYMBOL_GPL(skb_append_pagefrags);
3600 
3601 /**
3602  *	skb_pull_rcsum - pull skb and update receive checksum
3603  *	@skb: buffer to update
3604  *	@len: length of data pulled
3605  *
3606  *	This function performs an skb_pull on the packet and updates
3607  *	the CHECKSUM_COMPLETE checksum.  It should be used on
3608  *	receive path processing instead of skb_pull unless you know
3609  *	that the checksum difference is zero (e.g., a valid IP header)
3610  *	or you are setting ip_summed to CHECKSUM_NONE.
3611  */
3612 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
3613 {
3614 	unsigned char *data = skb->data;
3615 
3616 	BUG_ON(len > skb->len);
3617 	__skb_pull(skb, len);
3618 	skb_postpull_rcsum(skb, data, len);
3619 	return skb->data;
3620 }
3621 EXPORT_SYMBOL_GPL(skb_pull_rcsum);
3622 
3623 static inline skb_frag_t skb_head_frag_to_page_desc(struct sk_buff *frag_skb)
3624 {
3625 	skb_frag_t head_frag;
3626 	struct page *page;
3627 
3628 	page = virt_to_head_page(frag_skb->head);
3629 	__skb_frag_set_page(&head_frag, page);
3630 	skb_frag_off_set(&head_frag, frag_skb->data -
3631 			 (unsigned char *)page_address(page));
3632 	skb_frag_size_set(&head_frag, skb_headlen(frag_skb));
3633 	return head_frag;
3634 }
3635 
3636 struct sk_buff *skb_segment_list(struct sk_buff *skb,
3637 				 netdev_features_t features,
3638 				 unsigned int offset)
3639 {
3640 	struct sk_buff *list_skb = skb_shinfo(skb)->frag_list;
3641 	unsigned int tnl_hlen = skb_tnl_header_len(skb);
3642 	unsigned int delta_truesize = 0;
3643 	unsigned int delta_len = 0;
3644 	struct sk_buff *tail = NULL;
3645 	struct sk_buff *nskb;
3646 
3647 	skb_push(skb, -skb_network_offset(skb) + offset);
3648 
3649 	skb_shinfo(skb)->frag_list = NULL;
3650 
3651 	do {
3652 		nskb = list_skb;
3653 		list_skb = list_skb->next;
3654 
3655 		if (!tail)
3656 			skb->next = nskb;
3657 		else
3658 			tail->next = nskb;
3659 
3660 		tail = nskb;
3661 
3662 		delta_len += nskb->len;
3663 		delta_truesize += nskb->truesize;
3664 
3665 		skb_push(nskb, -skb_network_offset(nskb) + offset);
3666 
3667 		skb_release_head_state(nskb);
3668 		 __copy_skb_header(nskb, skb);
3669 
3670 		skb_headers_offset_update(nskb, skb_headroom(nskb) - skb_headroom(skb));
3671 		skb_copy_from_linear_data_offset(skb, -tnl_hlen,
3672 						 nskb->data - tnl_hlen,
3673 						 offset + tnl_hlen);
3674 
3675 		if (skb_needs_linearize(nskb, features) &&
3676 		    __skb_linearize(nskb))
3677 			goto err_linearize;
3678 
3679 	} while (list_skb);
3680 
3681 	skb->truesize = skb->truesize - delta_truesize;
3682 	skb->data_len = skb->data_len - delta_len;
3683 	skb->len = skb->len - delta_len;
3684 
3685 	skb_gso_reset(skb);
3686 
3687 	skb->prev = tail;
3688 
3689 	if (skb_needs_linearize(skb, features) &&
3690 	    __skb_linearize(skb))
3691 		goto err_linearize;
3692 
3693 	skb_get(skb);
3694 
3695 	return skb;
3696 
3697 err_linearize:
3698 	kfree_skb_list(skb->next);
3699 	skb->next = NULL;
3700 	return ERR_PTR(-ENOMEM);
3701 }
3702 EXPORT_SYMBOL_GPL(skb_segment_list);
3703 
3704 int skb_gro_receive_list(struct sk_buff *p, struct sk_buff *skb)
3705 {
3706 	if (unlikely(p->len + skb->len >= 65536))
3707 		return -E2BIG;
3708 
3709 	if (NAPI_GRO_CB(p)->last == p)
3710 		skb_shinfo(p)->frag_list = skb;
3711 	else
3712 		NAPI_GRO_CB(p)->last->next = skb;
3713 
3714 	skb_pull(skb, skb_gro_offset(skb));
3715 
3716 	NAPI_GRO_CB(p)->last = skb;
3717 	NAPI_GRO_CB(p)->count++;
3718 	p->data_len += skb->len;
3719 	p->truesize += skb->truesize;
3720 	p->len += skb->len;
3721 
3722 	NAPI_GRO_CB(skb)->same_flow = 1;
3723 
3724 	return 0;
3725 }
3726 
3727 /**
3728  *	skb_segment - Perform protocol segmentation on skb.
3729  *	@head_skb: buffer to segment
3730  *	@features: features for the output path (see dev->features)
3731  *
3732  *	This function performs segmentation on the given skb.  It returns
3733  *	a pointer to the first in a list of new skbs for the segments.
3734  *	In case of error it returns ERR_PTR(err).
3735  */
3736 struct sk_buff *skb_segment(struct sk_buff *head_skb,
3737 			    netdev_features_t features)
3738 {
3739 	struct sk_buff *segs = NULL;
3740 	struct sk_buff *tail = NULL;
3741 	struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list;
3742 	skb_frag_t *frag = skb_shinfo(head_skb)->frags;
3743 	unsigned int mss = skb_shinfo(head_skb)->gso_size;
3744 	unsigned int doffset = head_skb->data - skb_mac_header(head_skb);
3745 	struct sk_buff *frag_skb = head_skb;
3746 	unsigned int offset = doffset;
3747 	unsigned int tnl_hlen = skb_tnl_header_len(head_skb);
3748 	unsigned int partial_segs = 0;
3749 	unsigned int headroom;
3750 	unsigned int len = head_skb->len;
3751 	__be16 proto;
3752 	bool csum, sg;
3753 	int nfrags = skb_shinfo(head_skb)->nr_frags;
3754 	int err = -ENOMEM;
3755 	int i = 0;
3756 	int pos;
3757 
3758 	if (list_skb && !list_skb->head_frag && skb_headlen(list_skb) &&
3759 	    (skb_shinfo(head_skb)->gso_type & SKB_GSO_DODGY)) {
3760 		/* gso_size is untrusted, and we have a frag_list with a linear
3761 		 * non head_frag head.
3762 		 *
3763 		 * (we assume checking the first list_skb member suffices;
3764 		 * i.e if either of the list_skb members have non head_frag
3765 		 * head, then the first one has too).
3766 		 *
3767 		 * If head_skb's headlen does not fit requested gso_size, it
3768 		 * means that the frag_list members do NOT terminate on exact
3769 		 * gso_size boundaries. Hence we cannot perform skb_frag_t page
3770 		 * sharing. Therefore we must fallback to copying the frag_list
3771 		 * skbs; we do so by disabling SG.
3772 		 */
3773 		if (mss != GSO_BY_FRAGS && mss != skb_headlen(head_skb))
3774 			features &= ~NETIF_F_SG;
3775 	}
3776 
3777 	__skb_push(head_skb, doffset);
3778 	proto = skb_network_protocol(head_skb, NULL);
3779 	if (unlikely(!proto))
3780 		return ERR_PTR(-EINVAL);
3781 
3782 	sg = !!(features & NETIF_F_SG);
3783 	csum = !!can_checksum_protocol(features, proto);
3784 
3785 	if (sg && csum && (mss != GSO_BY_FRAGS))  {
3786 		if (!(features & NETIF_F_GSO_PARTIAL)) {
3787 			struct sk_buff *iter;
3788 			unsigned int frag_len;
3789 
3790 			if (!list_skb ||
3791 			    !net_gso_ok(features, skb_shinfo(head_skb)->gso_type))
3792 				goto normal;
3793 
3794 			/* If we get here then all the required
3795 			 * GSO features except frag_list are supported.
3796 			 * Try to split the SKB to multiple GSO SKBs
3797 			 * with no frag_list.
3798 			 * Currently we can do that only when the buffers don't
3799 			 * have a linear part and all the buffers except
3800 			 * the last are of the same length.
3801 			 */
3802 			frag_len = list_skb->len;
3803 			skb_walk_frags(head_skb, iter) {
3804 				if (frag_len != iter->len && iter->next)
3805 					goto normal;
3806 				if (skb_headlen(iter) && !iter->head_frag)
3807 					goto normal;
3808 
3809 				len -= iter->len;
3810 			}
3811 
3812 			if (len != frag_len)
3813 				goto normal;
3814 		}
3815 
3816 		/* GSO partial only requires that we trim off any excess that
3817 		 * doesn't fit into an MSS sized block, so take care of that
3818 		 * now.
3819 		 */
3820 		partial_segs = len / mss;
3821 		if (partial_segs > 1)
3822 			mss *= partial_segs;
3823 		else
3824 			partial_segs = 0;
3825 	}
3826 
3827 normal:
3828 	headroom = skb_headroom(head_skb);
3829 	pos = skb_headlen(head_skb);
3830 
3831 	do {
3832 		struct sk_buff *nskb;
3833 		skb_frag_t *nskb_frag;
3834 		int hsize;
3835 		int size;
3836 
3837 		if (unlikely(mss == GSO_BY_FRAGS)) {
3838 			len = list_skb->len;
3839 		} else {
3840 			len = head_skb->len - offset;
3841 			if (len > mss)
3842 				len = mss;
3843 		}
3844 
3845 		hsize = skb_headlen(head_skb) - offset;
3846 		if (hsize < 0)
3847 			hsize = 0;
3848 		if (hsize > len || !sg)
3849 			hsize = len;
3850 
3851 		if (!hsize && i >= nfrags && skb_headlen(list_skb) &&
3852 		    (skb_headlen(list_skb) == len || sg)) {
3853 			BUG_ON(skb_headlen(list_skb) > len);
3854 
3855 			i = 0;
3856 			nfrags = skb_shinfo(list_skb)->nr_frags;
3857 			frag = skb_shinfo(list_skb)->frags;
3858 			frag_skb = list_skb;
3859 			pos += skb_headlen(list_skb);
3860 
3861 			while (pos < offset + len) {
3862 				BUG_ON(i >= nfrags);
3863 
3864 				size = skb_frag_size(frag);
3865 				if (pos + size > offset + len)
3866 					break;
3867 
3868 				i++;
3869 				pos += size;
3870 				frag++;
3871 			}
3872 
3873 			nskb = skb_clone(list_skb, GFP_ATOMIC);
3874 			list_skb = list_skb->next;
3875 
3876 			if (unlikely(!nskb))
3877 				goto err;
3878 
3879 			if (unlikely(pskb_trim(nskb, len))) {
3880 				kfree_skb(nskb);
3881 				goto err;
3882 			}
3883 
3884 			hsize = skb_end_offset(nskb);
3885 			if (skb_cow_head(nskb, doffset + headroom)) {
3886 				kfree_skb(nskb);
3887 				goto err;
3888 			}
3889 
3890 			nskb->truesize += skb_end_offset(nskb) - hsize;
3891 			skb_release_head_state(nskb);
3892 			__skb_push(nskb, doffset);
3893 		} else {
3894 			nskb = __alloc_skb(hsize + doffset + headroom,
3895 					   GFP_ATOMIC, skb_alloc_rx_flag(head_skb),
3896 					   NUMA_NO_NODE);
3897 
3898 			if (unlikely(!nskb))
3899 				goto err;
3900 
3901 			skb_reserve(nskb, headroom);
3902 			__skb_put(nskb, doffset);
3903 		}
3904 
3905 		if (segs)
3906 			tail->next = nskb;
3907 		else
3908 			segs = nskb;
3909 		tail = nskb;
3910 
3911 		__copy_skb_header(nskb, head_skb);
3912 
3913 		skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom);
3914 		skb_reset_mac_len(nskb);
3915 
3916 		skb_copy_from_linear_data_offset(head_skb, -tnl_hlen,
3917 						 nskb->data - tnl_hlen,
3918 						 doffset + tnl_hlen);
3919 
3920 		if (nskb->len == len + doffset)
3921 			goto perform_csum_check;
3922 
3923 		if (!sg) {
3924 			if (!csum) {
3925 				if (!nskb->remcsum_offload)
3926 					nskb->ip_summed = CHECKSUM_NONE;
3927 				SKB_GSO_CB(nskb)->csum =
3928 					skb_copy_and_csum_bits(head_skb, offset,
3929 							       skb_put(nskb,
3930 								       len),
3931 							       len);
3932 				SKB_GSO_CB(nskb)->csum_start =
3933 					skb_headroom(nskb) + doffset;
3934 			} else {
3935 				skb_copy_bits(head_skb, offset,
3936 					      skb_put(nskb, len),
3937 					      len);
3938 			}
3939 			continue;
3940 		}
3941 
3942 		nskb_frag = skb_shinfo(nskb)->frags;
3943 
3944 		skb_copy_from_linear_data_offset(head_skb, offset,
3945 						 skb_put(nskb, hsize), hsize);
3946 
3947 		skb_shinfo(nskb)->tx_flags |= skb_shinfo(head_skb)->tx_flags &
3948 					      SKBTX_SHARED_FRAG;
3949 
3950 		if (skb_orphan_frags(frag_skb, GFP_ATOMIC) ||
3951 		    skb_zerocopy_clone(nskb, frag_skb, GFP_ATOMIC))
3952 			goto err;
3953 
3954 		while (pos < offset + len) {
3955 			if (i >= nfrags) {
3956 				i = 0;
3957 				nfrags = skb_shinfo(list_skb)->nr_frags;
3958 				frag = skb_shinfo(list_skb)->frags;
3959 				frag_skb = list_skb;
3960 				if (!skb_headlen(list_skb)) {
3961 					BUG_ON(!nfrags);
3962 				} else {
3963 					BUG_ON(!list_skb->head_frag);
3964 
3965 					/* to make room for head_frag. */
3966 					i--;
3967 					frag--;
3968 				}
3969 				if (skb_orphan_frags(frag_skb, GFP_ATOMIC) ||
3970 				    skb_zerocopy_clone(nskb, frag_skb,
3971 						       GFP_ATOMIC))
3972 					goto err;
3973 
3974 				list_skb = list_skb->next;
3975 			}
3976 
3977 			if (unlikely(skb_shinfo(nskb)->nr_frags >=
3978 				     MAX_SKB_FRAGS)) {
3979 				net_warn_ratelimited(
3980 					"skb_segment: too many frags: %u %u\n",
3981 					pos, mss);
3982 				err = -EINVAL;
3983 				goto err;
3984 			}
3985 
3986 			*nskb_frag = (i < 0) ? skb_head_frag_to_page_desc(frag_skb) : *frag;
3987 			__skb_frag_ref(nskb_frag);
3988 			size = skb_frag_size(nskb_frag);
3989 
3990 			if (pos < offset) {
3991 				skb_frag_off_add(nskb_frag, offset - pos);
3992 				skb_frag_size_sub(nskb_frag, offset - pos);
3993 			}
3994 
3995 			skb_shinfo(nskb)->nr_frags++;
3996 
3997 			if (pos + size <= offset + len) {
3998 				i++;
3999 				frag++;
4000 				pos += size;
4001 			} else {
4002 				skb_frag_size_sub(nskb_frag, pos + size - (offset + len));
4003 				goto skip_fraglist;
4004 			}
4005 
4006 			nskb_frag++;
4007 		}
4008 
4009 skip_fraglist:
4010 		nskb->data_len = len - hsize;
4011 		nskb->len += nskb->data_len;
4012 		nskb->truesize += nskb->data_len;
4013 
4014 perform_csum_check:
4015 		if (!csum) {
4016 			if (skb_has_shared_frag(nskb) &&
4017 			    __skb_linearize(nskb))
4018 				goto err;
4019 
4020 			if (!nskb->remcsum_offload)
4021 				nskb->ip_summed = CHECKSUM_NONE;
4022 			SKB_GSO_CB(nskb)->csum =
4023 				skb_checksum(nskb, doffset,
4024 					     nskb->len - doffset, 0);
4025 			SKB_GSO_CB(nskb)->csum_start =
4026 				skb_headroom(nskb) + doffset;
4027 		}
4028 	} while ((offset += len) < head_skb->len);
4029 
4030 	/* Some callers want to get the end of the list.
4031 	 * Put it in segs->prev to avoid walking the list.
4032 	 * (see validate_xmit_skb_list() for example)
4033 	 */
4034 	segs->prev = tail;
4035 
4036 	if (partial_segs) {
4037 		struct sk_buff *iter;
4038 		int type = skb_shinfo(head_skb)->gso_type;
4039 		unsigned short gso_size = skb_shinfo(head_skb)->gso_size;
4040 
4041 		/* Update type to add partial and then remove dodgy if set */
4042 		type |= (features & NETIF_F_GSO_PARTIAL) / NETIF_F_GSO_PARTIAL * SKB_GSO_PARTIAL;
4043 		type &= ~SKB_GSO_DODGY;
4044 
4045 		/* Update GSO info and prepare to start updating headers on
4046 		 * our way back down the stack of protocols.
4047 		 */
4048 		for (iter = segs; iter; iter = iter->next) {
4049 			skb_shinfo(iter)->gso_size = gso_size;
4050 			skb_shinfo(iter)->gso_segs = partial_segs;
4051 			skb_shinfo(iter)->gso_type = type;
4052 			SKB_GSO_CB(iter)->data_offset = skb_headroom(iter) + doffset;
4053 		}
4054 
4055 		if (tail->len - doffset <= gso_size)
4056 			skb_shinfo(tail)->gso_size = 0;
4057 		else if (tail != segs)
4058 			skb_shinfo(tail)->gso_segs = DIV_ROUND_UP(tail->len - doffset, gso_size);
4059 	}
4060 
4061 	/* Following permits correct backpressure, for protocols
4062 	 * using skb_set_owner_w().
4063 	 * Idea is to tranfert ownership from head_skb to last segment.
4064 	 */
4065 	if (head_skb->destructor == sock_wfree) {
4066 		swap(tail->truesize, head_skb->truesize);
4067 		swap(tail->destructor, head_skb->destructor);
4068 		swap(tail->sk, head_skb->sk);
4069 	}
4070 	return segs;
4071 
4072 err:
4073 	kfree_skb_list(segs);
4074 	return ERR_PTR(err);
4075 }
4076 EXPORT_SYMBOL_GPL(skb_segment);
4077 
4078 int skb_gro_receive(struct sk_buff *p, struct sk_buff *skb)
4079 {
4080 	struct skb_shared_info *pinfo, *skbinfo = skb_shinfo(skb);
4081 	unsigned int offset = skb_gro_offset(skb);
4082 	unsigned int headlen = skb_headlen(skb);
4083 	unsigned int len = skb_gro_len(skb);
4084 	unsigned int delta_truesize;
4085 	struct sk_buff *lp;
4086 
4087 	if (unlikely(p->len + len >= 65536 || NAPI_GRO_CB(skb)->flush))
4088 		return -E2BIG;
4089 
4090 	lp = NAPI_GRO_CB(p)->last;
4091 	pinfo = skb_shinfo(lp);
4092 
4093 	if (headlen <= offset) {
4094 		skb_frag_t *frag;
4095 		skb_frag_t *frag2;
4096 		int i = skbinfo->nr_frags;
4097 		int nr_frags = pinfo->nr_frags + i;
4098 
4099 		if (nr_frags > MAX_SKB_FRAGS)
4100 			goto merge;
4101 
4102 		offset -= headlen;
4103 		pinfo->nr_frags = nr_frags;
4104 		skbinfo->nr_frags = 0;
4105 
4106 		frag = pinfo->frags + nr_frags;
4107 		frag2 = skbinfo->frags + i;
4108 		do {
4109 			*--frag = *--frag2;
4110 		} while (--i);
4111 
4112 		skb_frag_off_add(frag, offset);
4113 		skb_frag_size_sub(frag, offset);
4114 
4115 		/* all fragments truesize : remove (head size + sk_buff) */
4116 		delta_truesize = skb->truesize -
4117 				 SKB_TRUESIZE(skb_end_offset(skb));
4118 
4119 		skb->truesize -= skb->data_len;
4120 		skb->len -= skb->data_len;
4121 		skb->data_len = 0;
4122 
4123 		NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE;
4124 		goto done;
4125 	} else if (skb->head_frag) {
4126 		int nr_frags = pinfo->nr_frags;
4127 		skb_frag_t *frag = pinfo->frags + nr_frags;
4128 		struct page *page = virt_to_head_page(skb->head);
4129 		unsigned int first_size = headlen - offset;
4130 		unsigned int first_offset;
4131 
4132 		if (nr_frags + 1 + skbinfo->nr_frags > MAX_SKB_FRAGS)
4133 			goto merge;
4134 
4135 		first_offset = skb->data -
4136 			       (unsigned char *)page_address(page) +
4137 			       offset;
4138 
4139 		pinfo->nr_frags = nr_frags + 1 + skbinfo->nr_frags;
4140 
4141 		__skb_frag_set_page(frag, page);
4142 		skb_frag_off_set(frag, first_offset);
4143 		skb_frag_size_set(frag, first_size);
4144 
4145 		memcpy(frag + 1, skbinfo->frags, sizeof(*frag) * skbinfo->nr_frags);
4146 		/* We dont need to clear skbinfo->nr_frags here */
4147 
4148 		delta_truesize = skb->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
4149 		NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE_STOLEN_HEAD;
4150 		goto done;
4151 	}
4152 
4153 merge:
4154 	delta_truesize = skb->truesize;
4155 	if (offset > headlen) {
4156 		unsigned int eat = offset - headlen;
4157 
4158 		skb_frag_off_add(&skbinfo->frags[0], eat);
4159 		skb_frag_size_sub(&skbinfo->frags[0], eat);
4160 		skb->data_len -= eat;
4161 		skb->len -= eat;
4162 		offset = headlen;
4163 	}
4164 
4165 	__skb_pull(skb, offset);
4166 
4167 	if (NAPI_GRO_CB(p)->last == p)
4168 		skb_shinfo(p)->frag_list = skb;
4169 	else
4170 		NAPI_GRO_CB(p)->last->next = skb;
4171 	NAPI_GRO_CB(p)->last = skb;
4172 	__skb_header_release(skb);
4173 	lp = p;
4174 
4175 done:
4176 	NAPI_GRO_CB(p)->count++;
4177 	p->data_len += len;
4178 	p->truesize += delta_truesize;
4179 	p->len += len;
4180 	if (lp != p) {
4181 		lp->data_len += len;
4182 		lp->truesize += delta_truesize;
4183 		lp->len += len;
4184 	}
4185 	NAPI_GRO_CB(skb)->same_flow = 1;
4186 	return 0;
4187 }
4188 
4189 #ifdef CONFIG_SKB_EXTENSIONS
4190 #define SKB_EXT_ALIGN_VALUE	8
4191 #define SKB_EXT_CHUNKSIZEOF(x)	(ALIGN((sizeof(x)), SKB_EXT_ALIGN_VALUE) / SKB_EXT_ALIGN_VALUE)
4192 
4193 static const u8 skb_ext_type_len[] = {
4194 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4195 	[SKB_EXT_BRIDGE_NF] = SKB_EXT_CHUNKSIZEOF(struct nf_bridge_info),
4196 #endif
4197 #ifdef CONFIG_XFRM
4198 	[SKB_EXT_SEC_PATH] = SKB_EXT_CHUNKSIZEOF(struct sec_path),
4199 #endif
4200 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4201 	[TC_SKB_EXT] = SKB_EXT_CHUNKSIZEOF(struct tc_skb_ext),
4202 #endif
4203 #if IS_ENABLED(CONFIG_MPTCP)
4204 	[SKB_EXT_MPTCP] = SKB_EXT_CHUNKSIZEOF(struct mptcp_ext),
4205 #endif
4206 };
4207 
4208 static __always_inline unsigned int skb_ext_total_length(void)
4209 {
4210 	return SKB_EXT_CHUNKSIZEOF(struct skb_ext) +
4211 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4212 		skb_ext_type_len[SKB_EXT_BRIDGE_NF] +
4213 #endif
4214 #ifdef CONFIG_XFRM
4215 		skb_ext_type_len[SKB_EXT_SEC_PATH] +
4216 #endif
4217 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4218 		skb_ext_type_len[TC_SKB_EXT] +
4219 #endif
4220 #if IS_ENABLED(CONFIG_MPTCP)
4221 		skb_ext_type_len[SKB_EXT_MPTCP] +
4222 #endif
4223 		0;
4224 }
4225 
4226 static void skb_extensions_init(void)
4227 {
4228 	BUILD_BUG_ON(SKB_EXT_NUM >= 8);
4229 	BUILD_BUG_ON(skb_ext_total_length() > 255);
4230 
4231 	skbuff_ext_cache = kmem_cache_create("skbuff_ext_cache",
4232 					     SKB_EXT_ALIGN_VALUE * skb_ext_total_length(),
4233 					     0,
4234 					     SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4235 					     NULL);
4236 }
4237 #else
4238 static void skb_extensions_init(void) {}
4239 #endif
4240 
4241 void __init skb_init(void)
4242 {
4243 	skbuff_head_cache = kmem_cache_create_usercopy("skbuff_head_cache",
4244 					      sizeof(struct sk_buff),
4245 					      0,
4246 					      SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4247 					      offsetof(struct sk_buff, cb),
4248 					      sizeof_field(struct sk_buff, cb),
4249 					      NULL);
4250 	skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
4251 						sizeof(struct sk_buff_fclones),
4252 						0,
4253 						SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4254 						NULL);
4255 	skb_extensions_init();
4256 }
4257 
4258 static int
4259 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len,
4260 	       unsigned int recursion_level)
4261 {
4262 	int start = skb_headlen(skb);
4263 	int i, copy = start - offset;
4264 	struct sk_buff *frag_iter;
4265 	int elt = 0;
4266 
4267 	if (unlikely(recursion_level >= 24))
4268 		return -EMSGSIZE;
4269 
4270 	if (copy > 0) {
4271 		if (copy > len)
4272 			copy = len;
4273 		sg_set_buf(sg, skb->data + offset, copy);
4274 		elt++;
4275 		if ((len -= copy) == 0)
4276 			return elt;
4277 		offset += copy;
4278 	}
4279 
4280 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
4281 		int end;
4282 
4283 		WARN_ON(start > offset + len);
4284 
4285 		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
4286 		if ((copy = end - offset) > 0) {
4287 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4288 			if (unlikely(elt && sg_is_last(&sg[elt - 1])))
4289 				return -EMSGSIZE;
4290 
4291 			if (copy > len)
4292 				copy = len;
4293 			sg_set_page(&sg[elt], skb_frag_page(frag), copy,
4294 				    skb_frag_off(frag) + offset - start);
4295 			elt++;
4296 			if (!(len -= copy))
4297 				return elt;
4298 			offset += copy;
4299 		}
4300 		start = end;
4301 	}
4302 
4303 	skb_walk_frags(skb, frag_iter) {
4304 		int end, ret;
4305 
4306 		WARN_ON(start > offset + len);
4307 
4308 		end = start + frag_iter->len;
4309 		if ((copy = end - offset) > 0) {
4310 			if (unlikely(elt && sg_is_last(&sg[elt - 1])))
4311 				return -EMSGSIZE;
4312 
4313 			if (copy > len)
4314 				copy = len;
4315 			ret = __skb_to_sgvec(frag_iter, sg+elt, offset - start,
4316 					      copy, recursion_level + 1);
4317 			if (unlikely(ret < 0))
4318 				return ret;
4319 			elt += ret;
4320 			if ((len -= copy) == 0)
4321 				return elt;
4322 			offset += copy;
4323 		}
4324 		start = end;
4325 	}
4326 	BUG_ON(len);
4327 	return elt;
4328 }
4329 
4330 /**
4331  *	skb_to_sgvec - Fill a scatter-gather list from a socket buffer
4332  *	@skb: Socket buffer containing the buffers to be mapped
4333  *	@sg: The scatter-gather list to map into
4334  *	@offset: The offset into the buffer's contents to start mapping
4335  *	@len: Length of buffer space to be mapped
4336  *
4337  *	Fill the specified scatter-gather list with mappings/pointers into a
4338  *	region of the buffer space attached to a socket buffer. Returns either
4339  *	the number of scatterlist items used, or -EMSGSIZE if the contents
4340  *	could not fit.
4341  */
4342 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
4343 {
4344 	int nsg = __skb_to_sgvec(skb, sg, offset, len, 0);
4345 
4346 	if (nsg <= 0)
4347 		return nsg;
4348 
4349 	sg_mark_end(&sg[nsg - 1]);
4350 
4351 	return nsg;
4352 }
4353 EXPORT_SYMBOL_GPL(skb_to_sgvec);
4354 
4355 /* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given
4356  * sglist without mark the sg which contain last skb data as the end.
4357  * So the caller can mannipulate sg list as will when padding new data after
4358  * the first call without calling sg_unmark_end to expend sg list.
4359  *
4360  * Scenario to use skb_to_sgvec_nomark:
4361  * 1. sg_init_table
4362  * 2. skb_to_sgvec_nomark(payload1)
4363  * 3. skb_to_sgvec_nomark(payload2)
4364  *
4365  * This is equivalent to:
4366  * 1. sg_init_table
4367  * 2. skb_to_sgvec(payload1)
4368  * 3. sg_unmark_end
4369  * 4. skb_to_sgvec(payload2)
4370  *
4371  * When mapping mutilple payload conditionally, skb_to_sgvec_nomark
4372  * is more preferable.
4373  */
4374 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
4375 			int offset, int len)
4376 {
4377 	return __skb_to_sgvec(skb, sg, offset, len, 0);
4378 }
4379 EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark);
4380 
4381 
4382 
4383 /**
4384  *	skb_cow_data - Check that a socket buffer's data buffers are writable
4385  *	@skb: The socket buffer to check.
4386  *	@tailbits: Amount of trailing space to be added
4387  *	@trailer: Returned pointer to the skb where the @tailbits space begins
4388  *
4389  *	Make sure that the data buffers attached to a socket buffer are
4390  *	writable. If they are not, private copies are made of the data buffers
4391  *	and the socket buffer is set to use these instead.
4392  *
4393  *	If @tailbits is given, make sure that there is space to write @tailbits
4394  *	bytes of data beyond current end of socket buffer.  @trailer will be
4395  *	set to point to the skb in which this space begins.
4396  *
4397  *	The number of scatterlist elements required to completely map the
4398  *	COW'd and extended socket buffer will be returned.
4399  */
4400 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
4401 {
4402 	int copyflag;
4403 	int elt;
4404 	struct sk_buff *skb1, **skb_p;
4405 
4406 	/* If skb is cloned or its head is paged, reallocate
4407 	 * head pulling out all the pages (pages are considered not writable
4408 	 * at the moment even if they are anonymous).
4409 	 */
4410 	if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
4411 	    !__pskb_pull_tail(skb, __skb_pagelen(skb)))
4412 		return -ENOMEM;
4413 
4414 	/* Easy case. Most of packets will go this way. */
4415 	if (!skb_has_frag_list(skb)) {
4416 		/* A little of trouble, not enough of space for trailer.
4417 		 * This should not happen, when stack is tuned to generate
4418 		 * good frames. OK, on miss we reallocate and reserve even more
4419 		 * space, 128 bytes is fair. */
4420 
4421 		if (skb_tailroom(skb) < tailbits &&
4422 		    pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
4423 			return -ENOMEM;
4424 
4425 		/* Voila! */
4426 		*trailer = skb;
4427 		return 1;
4428 	}
4429 
4430 	/* Misery. We are in troubles, going to mincer fragments... */
4431 
4432 	elt = 1;
4433 	skb_p = &skb_shinfo(skb)->frag_list;
4434 	copyflag = 0;
4435 
4436 	while ((skb1 = *skb_p) != NULL) {
4437 		int ntail = 0;
4438 
4439 		/* The fragment is partially pulled by someone,
4440 		 * this can happen on input. Copy it and everything
4441 		 * after it. */
4442 
4443 		if (skb_shared(skb1))
4444 			copyflag = 1;
4445 
4446 		/* If the skb is the last, worry about trailer. */
4447 
4448 		if (skb1->next == NULL && tailbits) {
4449 			if (skb_shinfo(skb1)->nr_frags ||
4450 			    skb_has_frag_list(skb1) ||
4451 			    skb_tailroom(skb1) < tailbits)
4452 				ntail = tailbits + 128;
4453 		}
4454 
4455 		if (copyflag ||
4456 		    skb_cloned(skb1) ||
4457 		    ntail ||
4458 		    skb_shinfo(skb1)->nr_frags ||
4459 		    skb_has_frag_list(skb1)) {
4460 			struct sk_buff *skb2;
4461 
4462 			/* Fuck, we are miserable poor guys... */
4463 			if (ntail == 0)
4464 				skb2 = skb_copy(skb1, GFP_ATOMIC);
4465 			else
4466 				skb2 = skb_copy_expand(skb1,
4467 						       skb_headroom(skb1),
4468 						       ntail,
4469 						       GFP_ATOMIC);
4470 			if (unlikely(skb2 == NULL))
4471 				return -ENOMEM;
4472 
4473 			if (skb1->sk)
4474 				skb_set_owner_w(skb2, skb1->sk);
4475 
4476 			/* Looking around. Are we still alive?
4477 			 * OK, link new skb, drop old one */
4478 
4479 			skb2->next = skb1->next;
4480 			*skb_p = skb2;
4481 			kfree_skb(skb1);
4482 			skb1 = skb2;
4483 		}
4484 		elt++;
4485 		*trailer = skb1;
4486 		skb_p = &skb1->next;
4487 	}
4488 
4489 	return elt;
4490 }
4491 EXPORT_SYMBOL_GPL(skb_cow_data);
4492 
4493 static void sock_rmem_free(struct sk_buff *skb)
4494 {
4495 	struct sock *sk = skb->sk;
4496 
4497 	atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
4498 }
4499 
4500 static void skb_set_err_queue(struct sk_buff *skb)
4501 {
4502 	/* pkt_type of skbs received on local sockets is never PACKET_OUTGOING.
4503 	 * So, it is safe to (mis)use it to mark skbs on the error queue.
4504 	 */
4505 	skb->pkt_type = PACKET_OUTGOING;
4506 	BUILD_BUG_ON(PACKET_OUTGOING == 0);
4507 }
4508 
4509 /*
4510  * Note: We dont mem charge error packets (no sk_forward_alloc changes)
4511  */
4512 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
4513 {
4514 	if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
4515 	    (unsigned int)READ_ONCE(sk->sk_rcvbuf))
4516 		return -ENOMEM;
4517 
4518 	skb_orphan(skb);
4519 	skb->sk = sk;
4520 	skb->destructor = sock_rmem_free;
4521 	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
4522 	skb_set_err_queue(skb);
4523 
4524 	/* before exiting rcu section, make sure dst is refcounted */
4525 	skb_dst_force(skb);
4526 
4527 	skb_queue_tail(&sk->sk_error_queue, skb);
4528 	if (!sock_flag(sk, SOCK_DEAD))
4529 		sk->sk_error_report(sk);
4530 	return 0;
4531 }
4532 EXPORT_SYMBOL(sock_queue_err_skb);
4533 
4534 static bool is_icmp_err_skb(const struct sk_buff *skb)
4535 {
4536 	return skb && (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP ||
4537 		       SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP6);
4538 }
4539 
4540 struct sk_buff *sock_dequeue_err_skb(struct sock *sk)
4541 {
4542 	struct sk_buff_head *q = &sk->sk_error_queue;
4543 	struct sk_buff *skb, *skb_next = NULL;
4544 	bool icmp_next = false;
4545 	unsigned long flags;
4546 
4547 	spin_lock_irqsave(&q->lock, flags);
4548 	skb = __skb_dequeue(q);
4549 	if (skb && (skb_next = skb_peek(q))) {
4550 		icmp_next = is_icmp_err_skb(skb_next);
4551 		if (icmp_next)
4552 			sk->sk_err = SKB_EXT_ERR(skb_next)->ee.ee_origin;
4553 	}
4554 	spin_unlock_irqrestore(&q->lock, flags);
4555 
4556 	if (is_icmp_err_skb(skb) && !icmp_next)
4557 		sk->sk_err = 0;
4558 
4559 	if (skb_next)
4560 		sk->sk_error_report(sk);
4561 
4562 	return skb;
4563 }
4564 EXPORT_SYMBOL(sock_dequeue_err_skb);
4565 
4566 /**
4567  * skb_clone_sk - create clone of skb, and take reference to socket
4568  * @skb: the skb to clone
4569  *
4570  * This function creates a clone of a buffer that holds a reference on
4571  * sk_refcnt.  Buffers created via this function are meant to be
4572  * returned using sock_queue_err_skb, or free via kfree_skb.
4573  *
4574  * When passing buffers allocated with this function to sock_queue_err_skb
4575  * it is necessary to wrap the call with sock_hold/sock_put in order to
4576  * prevent the socket from being released prior to being enqueued on
4577  * the sk_error_queue.
4578  */
4579 struct sk_buff *skb_clone_sk(struct sk_buff *skb)
4580 {
4581 	struct sock *sk = skb->sk;
4582 	struct sk_buff *clone;
4583 
4584 	if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt))
4585 		return NULL;
4586 
4587 	clone = skb_clone(skb, GFP_ATOMIC);
4588 	if (!clone) {
4589 		sock_put(sk);
4590 		return NULL;
4591 	}
4592 
4593 	clone->sk = sk;
4594 	clone->destructor = sock_efree;
4595 
4596 	return clone;
4597 }
4598 EXPORT_SYMBOL(skb_clone_sk);
4599 
4600 static void __skb_complete_tx_timestamp(struct sk_buff *skb,
4601 					struct sock *sk,
4602 					int tstype,
4603 					bool opt_stats)
4604 {
4605 	struct sock_exterr_skb *serr;
4606 	int err;
4607 
4608 	BUILD_BUG_ON(sizeof(struct sock_exterr_skb) > sizeof(skb->cb));
4609 
4610 	serr = SKB_EXT_ERR(skb);
4611 	memset(serr, 0, sizeof(*serr));
4612 	serr->ee.ee_errno = ENOMSG;
4613 	serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
4614 	serr->ee.ee_info = tstype;
4615 	serr->opt_stats = opt_stats;
4616 	serr->header.h4.iif = skb->dev ? skb->dev->ifindex : 0;
4617 	if (sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID) {
4618 		serr->ee.ee_data = skb_shinfo(skb)->tskey;
4619 		if (sk->sk_protocol == IPPROTO_TCP &&
4620 		    sk->sk_type == SOCK_STREAM)
4621 			serr->ee.ee_data -= sk->sk_tskey;
4622 	}
4623 
4624 	err = sock_queue_err_skb(sk, skb);
4625 
4626 	if (err)
4627 		kfree_skb(skb);
4628 }
4629 
4630 static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly)
4631 {
4632 	bool ret;
4633 
4634 	if (likely(sysctl_tstamp_allow_data || tsonly))
4635 		return true;
4636 
4637 	read_lock_bh(&sk->sk_callback_lock);
4638 	ret = sk->sk_socket && sk->sk_socket->file &&
4639 	      file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW);
4640 	read_unlock_bh(&sk->sk_callback_lock);
4641 	return ret;
4642 }
4643 
4644 void skb_complete_tx_timestamp(struct sk_buff *skb,
4645 			       struct skb_shared_hwtstamps *hwtstamps)
4646 {
4647 	struct sock *sk = skb->sk;
4648 
4649 	if (!skb_may_tx_timestamp(sk, false))
4650 		goto err;
4651 
4652 	/* Take a reference to prevent skb_orphan() from freeing the socket,
4653 	 * but only if the socket refcount is not zero.
4654 	 */
4655 	if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
4656 		*skb_hwtstamps(skb) = *hwtstamps;
4657 		__skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND, false);
4658 		sock_put(sk);
4659 		return;
4660 	}
4661 
4662 err:
4663 	kfree_skb(skb);
4664 }
4665 EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp);
4666 
4667 void __skb_tstamp_tx(struct sk_buff *orig_skb,
4668 		     struct skb_shared_hwtstamps *hwtstamps,
4669 		     struct sock *sk, int tstype)
4670 {
4671 	struct sk_buff *skb;
4672 	bool tsonly, opt_stats = false;
4673 
4674 	if (!sk)
4675 		return;
4676 
4677 	if (!hwtstamps && !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TX_SWHW) &&
4678 	    skb_shinfo(orig_skb)->tx_flags & SKBTX_IN_PROGRESS)
4679 		return;
4680 
4681 	tsonly = sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TSONLY;
4682 	if (!skb_may_tx_timestamp(sk, tsonly))
4683 		return;
4684 
4685 	if (tsonly) {
4686 #ifdef CONFIG_INET
4687 		if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_STATS) &&
4688 		    sk->sk_protocol == IPPROTO_TCP &&
4689 		    sk->sk_type == SOCK_STREAM) {
4690 			skb = tcp_get_timestamping_opt_stats(sk, orig_skb);
4691 			opt_stats = true;
4692 		} else
4693 #endif
4694 			skb = alloc_skb(0, GFP_ATOMIC);
4695 	} else {
4696 		skb = skb_clone(orig_skb, GFP_ATOMIC);
4697 	}
4698 	if (!skb)
4699 		return;
4700 
4701 	if (tsonly) {
4702 		skb_shinfo(skb)->tx_flags |= skb_shinfo(orig_skb)->tx_flags &
4703 					     SKBTX_ANY_TSTAMP;
4704 		skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey;
4705 	}
4706 
4707 	if (hwtstamps)
4708 		*skb_hwtstamps(skb) = *hwtstamps;
4709 	else
4710 		skb->tstamp = ktime_get_real();
4711 
4712 	__skb_complete_tx_timestamp(skb, sk, tstype, opt_stats);
4713 }
4714 EXPORT_SYMBOL_GPL(__skb_tstamp_tx);
4715 
4716 void skb_tstamp_tx(struct sk_buff *orig_skb,
4717 		   struct skb_shared_hwtstamps *hwtstamps)
4718 {
4719 	return __skb_tstamp_tx(orig_skb, hwtstamps, orig_skb->sk,
4720 			       SCM_TSTAMP_SND);
4721 }
4722 EXPORT_SYMBOL_GPL(skb_tstamp_tx);
4723 
4724 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked)
4725 {
4726 	struct sock *sk = skb->sk;
4727 	struct sock_exterr_skb *serr;
4728 	int err = 1;
4729 
4730 	skb->wifi_acked_valid = 1;
4731 	skb->wifi_acked = acked;
4732 
4733 	serr = SKB_EXT_ERR(skb);
4734 	memset(serr, 0, sizeof(*serr));
4735 	serr->ee.ee_errno = ENOMSG;
4736 	serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS;
4737 
4738 	/* Take a reference to prevent skb_orphan() from freeing the socket,
4739 	 * but only if the socket refcount is not zero.
4740 	 */
4741 	if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
4742 		err = sock_queue_err_skb(sk, skb);
4743 		sock_put(sk);
4744 	}
4745 	if (err)
4746 		kfree_skb(skb);
4747 }
4748 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack);
4749 
4750 /**
4751  * skb_partial_csum_set - set up and verify partial csum values for packet
4752  * @skb: the skb to set
4753  * @start: the number of bytes after skb->data to start checksumming.
4754  * @off: the offset from start to place the checksum.
4755  *
4756  * For untrusted partially-checksummed packets, we need to make sure the values
4757  * for skb->csum_start and skb->csum_offset are valid so we don't oops.
4758  *
4759  * This function checks and sets those values and skb->ip_summed: if this
4760  * returns false you should drop the packet.
4761  */
4762 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
4763 {
4764 	u32 csum_end = (u32)start + (u32)off + sizeof(__sum16);
4765 	u32 csum_start = skb_headroom(skb) + (u32)start;
4766 
4767 	if (unlikely(csum_start > U16_MAX || csum_end > skb_headlen(skb))) {
4768 		net_warn_ratelimited("bad partial csum: csum=%u/%u headroom=%u headlen=%u\n",
4769 				     start, off, skb_headroom(skb), skb_headlen(skb));
4770 		return false;
4771 	}
4772 	skb->ip_summed = CHECKSUM_PARTIAL;
4773 	skb->csum_start = csum_start;
4774 	skb->csum_offset = off;
4775 	skb_set_transport_header(skb, start);
4776 	return true;
4777 }
4778 EXPORT_SYMBOL_GPL(skb_partial_csum_set);
4779 
4780 static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len,
4781 			       unsigned int max)
4782 {
4783 	if (skb_headlen(skb) >= len)
4784 		return 0;
4785 
4786 	/* If we need to pullup then pullup to the max, so we
4787 	 * won't need to do it again.
4788 	 */
4789 	if (max > skb->len)
4790 		max = skb->len;
4791 
4792 	if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL)
4793 		return -ENOMEM;
4794 
4795 	if (skb_headlen(skb) < len)
4796 		return -EPROTO;
4797 
4798 	return 0;
4799 }
4800 
4801 #define MAX_TCP_HDR_LEN (15 * 4)
4802 
4803 static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb,
4804 				      typeof(IPPROTO_IP) proto,
4805 				      unsigned int off)
4806 {
4807 	int err;
4808 
4809 	switch (proto) {
4810 	case IPPROTO_TCP:
4811 		err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr),
4812 					  off + MAX_TCP_HDR_LEN);
4813 		if (!err && !skb_partial_csum_set(skb, off,
4814 						  offsetof(struct tcphdr,
4815 							   check)))
4816 			err = -EPROTO;
4817 		return err ? ERR_PTR(err) : &tcp_hdr(skb)->check;
4818 
4819 	case IPPROTO_UDP:
4820 		err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr),
4821 					  off + sizeof(struct udphdr));
4822 		if (!err && !skb_partial_csum_set(skb, off,
4823 						  offsetof(struct udphdr,
4824 							   check)))
4825 			err = -EPROTO;
4826 		return err ? ERR_PTR(err) : &udp_hdr(skb)->check;
4827 	}
4828 
4829 	return ERR_PTR(-EPROTO);
4830 }
4831 
4832 /* This value should be large enough to cover a tagged ethernet header plus
4833  * maximally sized IP and TCP or UDP headers.
4834  */
4835 #define MAX_IP_HDR_LEN 128
4836 
4837 static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate)
4838 {
4839 	unsigned int off;
4840 	bool fragment;
4841 	__sum16 *csum;
4842 	int err;
4843 
4844 	fragment = false;
4845 
4846 	err = skb_maybe_pull_tail(skb,
4847 				  sizeof(struct iphdr),
4848 				  MAX_IP_HDR_LEN);
4849 	if (err < 0)
4850 		goto out;
4851 
4852 	if (ip_is_fragment(ip_hdr(skb)))
4853 		fragment = true;
4854 
4855 	off = ip_hdrlen(skb);
4856 
4857 	err = -EPROTO;
4858 
4859 	if (fragment)
4860 		goto out;
4861 
4862 	csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off);
4863 	if (IS_ERR(csum))
4864 		return PTR_ERR(csum);
4865 
4866 	if (recalculate)
4867 		*csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
4868 					   ip_hdr(skb)->daddr,
4869 					   skb->len - off,
4870 					   ip_hdr(skb)->protocol, 0);
4871 	err = 0;
4872 
4873 out:
4874 	return err;
4875 }
4876 
4877 /* This value should be large enough to cover a tagged ethernet header plus
4878  * an IPv6 header, all options, and a maximal TCP or UDP header.
4879  */
4880 #define MAX_IPV6_HDR_LEN 256
4881 
4882 #define OPT_HDR(type, skb, off) \
4883 	(type *)(skb_network_header(skb) + (off))
4884 
4885 static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate)
4886 {
4887 	int err;
4888 	u8 nexthdr;
4889 	unsigned int off;
4890 	unsigned int len;
4891 	bool fragment;
4892 	bool done;
4893 	__sum16 *csum;
4894 
4895 	fragment = false;
4896 	done = false;
4897 
4898 	off = sizeof(struct ipv6hdr);
4899 
4900 	err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN);
4901 	if (err < 0)
4902 		goto out;
4903 
4904 	nexthdr = ipv6_hdr(skb)->nexthdr;
4905 
4906 	len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len);
4907 	while (off <= len && !done) {
4908 		switch (nexthdr) {
4909 		case IPPROTO_DSTOPTS:
4910 		case IPPROTO_HOPOPTS:
4911 		case IPPROTO_ROUTING: {
4912 			struct ipv6_opt_hdr *hp;
4913 
4914 			err = skb_maybe_pull_tail(skb,
4915 						  off +
4916 						  sizeof(struct ipv6_opt_hdr),
4917 						  MAX_IPV6_HDR_LEN);
4918 			if (err < 0)
4919 				goto out;
4920 
4921 			hp = OPT_HDR(struct ipv6_opt_hdr, skb, off);
4922 			nexthdr = hp->nexthdr;
4923 			off += ipv6_optlen(hp);
4924 			break;
4925 		}
4926 		case IPPROTO_AH: {
4927 			struct ip_auth_hdr *hp;
4928 
4929 			err = skb_maybe_pull_tail(skb,
4930 						  off +
4931 						  sizeof(struct ip_auth_hdr),
4932 						  MAX_IPV6_HDR_LEN);
4933 			if (err < 0)
4934 				goto out;
4935 
4936 			hp = OPT_HDR(struct ip_auth_hdr, skb, off);
4937 			nexthdr = hp->nexthdr;
4938 			off += ipv6_authlen(hp);
4939 			break;
4940 		}
4941 		case IPPROTO_FRAGMENT: {
4942 			struct frag_hdr *hp;
4943 
4944 			err = skb_maybe_pull_tail(skb,
4945 						  off +
4946 						  sizeof(struct frag_hdr),
4947 						  MAX_IPV6_HDR_LEN);
4948 			if (err < 0)
4949 				goto out;
4950 
4951 			hp = OPT_HDR(struct frag_hdr, skb, off);
4952 
4953 			if (hp->frag_off & htons(IP6_OFFSET | IP6_MF))
4954 				fragment = true;
4955 
4956 			nexthdr = hp->nexthdr;
4957 			off += sizeof(struct frag_hdr);
4958 			break;
4959 		}
4960 		default:
4961 			done = true;
4962 			break;
4963 		}
4964 	}
4965 
4966 	err = -EPROTO;
4967 
4968 	if (!done || fragment)
4969 		goto out;
4970 
4971 	csum = skb_checksum_setup_ip(skb, nexthdr, off);
4972 	if (IS_ERR(csum))
4973 		return PTR_ERR(csum);
4974 
4975 	if (recalculate)
4976 		*csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
4977 					 &ipv6_hdr(skb)->daddr,
4978 					 skb->len - off, nexthdr, 0);
4979 	err = 0;
4980 
4981 out:
4982 	return err;
4983 }
4984 
4985 /**
4986  * skb_checksum_setup - set up partial checksum offset
4987  * @skb: the skb to set up
4988  * @recalculate: if true the pseudo-header checksum will be recalculated
4989  */
4990 int skb_checksum_setup(struct sk_buff *skb, bool recalculate)
4991 {
4992 	int err;
4993 
4994 	switch (skb->protocol) {
4995 	case htons(ETH_P_IP):
4996 		err = skb_checksum_setup_ipv4(skb, recalculate);
4997 		break;
4998 
4999 	case htons(ETH_P_IPV6):
5000 		err = skb_checksum_setup_ipv6(skb, recalculate);
5001 		break;
5002 
5003 	default:
5004 		err = -EPROTO;
5005 		break;
5006 	}
5007 
5008 	return err;
5009 }
5010 EXPORT_SYMBOL(skb_checksum_setup);
5011 
5012 /**
5013  * skb_checksum_maybe_trim - maybe trims the given skb
5014  * @skb: the skb to check
5015  * @transport_len: the data length beyond the network header
5016  *
5017  * Checks whether the given skb has data beyond the given transport length.
5018  * If so, returns a cloned skb trimmed to this transport length.
5019  * Otherwise returns the provided skb. Returns NULL in error cases
5020  * (e.g. transport_len exceeds skb length or out-of-memory).
5021  *
5022  * Caller needs to set the skb transport header and free any returned skb if it
5023  * differs from the provided skb.
5024  */
5025 static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb,
5026 					       unsigned int transport_len)
5027 {
5028 	struct sk_buff *skb_chk;
5029 	unsigned int len = skb_transport_offset(skb) + transport_len;
5030 	int ret;
5031 
5032 	if (skb->len < len)
5033 		return NULL;
5034 	else if (skb->len == len)
5035 		return skb;
5036 
5037 	skb_chk = skb_clone(skb, GFP_ATOMIC);
5038 	if (!skb_chk)
5039 		return NULL;
5040 
5041 	ret = pskb_trim_rcsum(skb_chk, len);
5042 	if (ret) {
5043 		kfree_skb(skb_chk);
5044 		return NULL;
5045 	}
5046 
5047 	return skb_chk;
5048 }
5049 
5050 /**
5051  * skb_checksum_trimmed - validate checksum of an skb
5052  * @skb: the skb to check
5053  * @transport_len: the data length beyond the network header
5054  * @skb_chkf: checksum function to use
5055  *
5056  * Applies the given checksum function skb_chkf to the provided skb.
5057  * Returns a checked and maybe trimmed skb. Returns NULL on error.
5058  *
5059  * If the skb has data beyond the given transport length, then a
5060  * trimmed & cloned skb is checked and returned.
5061  *
5062  * Caller needs to set the skb transport header and free any returned skb if it
5063  * differs from the provided skb.
5064  */
5065 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
5066 				     unsigned int transport_len,
5067 				     __sum16(*skb_chkf)(struct sk_buff *skb))
5068 {
5069 	struct sk_buff *skb_chk;
5070 	unsigned int offset = skb_transport_offset(skb);
5071 	__sum16 ret;
5072 
5073 	skb_chk = skb_checksum_maybe_trim(skb, transport_len);
5074 	if (!skb_chk)
5075 		goto err;
5076 
5077 	if (!pskb_may_pull(skb_chk, offset))
5078 		goto err;
5079 
5080 	skb_pull_rcsum(skb_chk, offset);
5081 	ret = skb_chkf(skb_chk);
5082 	skb_push_rcsum(skb_chk, offset);
5083 
5084 	if (ret)
5085 		goto err;
5086 
5087 	return skb_chk;
5088 
5089 err:
5090 	if (skb_chk && skb_chk != skb)
5091 		kfree_skb(skb_chk);
5092 
5093 	return NULL;
5094 
5095 }
5096 EXPORT_SYMBOL(skb_checksum_trimmed);
5097 
5098 void __skb_warn_lro_forwarding(const struct sk_buff *skb)
5099 {
5100 	net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n",
5101 			     skb->dev->name);
5102 }
5103 EXPORT_SYMBOL(__skb_warn_lro_forwarding);
5104 
5105 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen)
5106 {
5107 	if (head_stolen) {
5108 		skb_release_head_state(skb);
5109 		kmem_cache_free(skbuff_head_cache, skb);
5110 	} else {
5111 		__kfree_skb(skb);
5112 	}
5113 }
5114 EXPORT_SYMBOL(kfree_skb_partial);
5115 
5116 /**
5117  * skb_try_coalesce - try to merge skb to prior one
5118  * @to: prior buffer
5119  * @from: buffer to add
5120  * @fragstolen: pointer to boolean
5121  * @delta_truesize: how much more was allocated than was requested
5122  */
5123 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
5124 		      bool *fragstolen, int *delta_truesize)
5125 {
5126 	struct skb_shared_info *to_shinfo, *from_shinfo;
5127 	int i, delta, len = from->len;
5128 
5129 	*fragstolen = false;
5130 
5131 	if (skb_cloned(to))
5132 		return false;
5133 
5134 	if (len <= skb_tailroom(to)) {
5135 		if (len)
5136 			BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len));
5137 		*delta_truesize = 0;
5138 		return true;
5139 	}
5140 
5141 	to_shinfo = skb_shinfo(to);
5142 	from_shinfo = skb_shinfo(from);
5143 	if (to_shinfo->frag_list || from_shinfo->frag_list)
5144 		return false;
5145 	if (skb_zcopy(to) || skb_zcopy(from))
5146 		return false;
5147 
5148 	if (skb_headlen(from) != 0) {
5149 		struct page *page;
5150 		unsigned int offset;
5151 
5152 		if (to_shinfo->nr_frags +
5153 		    from_shinfo->nr_frags >= MAX_SKB_FRAGS)
5154 			return false;
5155 
5156 		if (skb_head_is_locked(from))
5157 			return false;
5158 
5159 		delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
5160 
5161 		page = virt_to_head_page(from->head);
5162 		offset = from->data - (unsigned char *)page_address(page);
5163 
5164 		skb_fill_page_desc(to, to_shinfo->nr_frags,
5165 				   page, offset, skb_headlen(from));
5166 		*fragstolen = true;
5167 	} else {
5168 		if (to_shinfo->nr_frags +
5169 		    from_shinfo->nr_frags > MAX_SKB_FRAGS)
5170 			return false;
5171 
5172 		delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from));
5173 	}
5174 
5175 	WARN_ON_ONCE(delta < len);
5176 
5177 	memcpy(to_shinfo->frags + to_shinfo->nr_frags,
5178 	       from_shinfo->frags,
5179 	       from_shinfo->nr_frags * sizeof(skb_frag_t));
5180 	to_shinfo->nr_frags += from_shinfo->nr_frags;
5181 
5182 	if (!skb_cloned(from))
5183 		from_shinfo->nr_frags = 0;
5184 
5185 	/* if the skb is not cloned this does nothing
5186 	 * since we set nr_frags to 0.
5187 	 */
5188 	for (i = 0; i < from_shinfo->nr_frags; i++)
5189 		__skb_frag_ref(&from_shinfo->frags[i]);
5190 
5191 	to->truesize += delta;
5192 	to->len += len;
5193 	to->data_len += len;
5194 
5195 	*delta_truesize = delta;
5196 	return true;
5197 }
5198 EXPORT_SYMBOL(skb_try_coalesce);
5199 
5200 /**
5201  * skb_scrub_packet - scrub an skb
5202  *
5203  * @skb: buffer to clean
5204  * @xnet: packet is crossing netns
5205  *
5206  * skb_scrub_packet can be used after encapsulating or decapsulting a packet
5207  * into/from a tunnel. Some information have to be cleared during these
5208  * operations.
5209  * skb_scrub_packet can also be used to clean a skb before injecting it in
5210  * another namespace (@xnet == true). We have to clear all information in the
5211  * skb that could impact namespace isolation.
5212  */
5213 void skb_scrub_packet(struct sk_buff *skb, bool xnet)
5214 {
5215 	skb->pkt_type = PACKET_HOST;
5216 	skb->skb_iif = 0;
5217 	skb->ignore_df = 0;
5218 	skb_dst_drop(skb);
5219 	skb_ext_reset(skb);
5220 	nf_reset_ct(skb);
5221 	nf_reset_trace(skb);
5222 
5223 #ifdef CONFIG_NET_SWITCHDEV
5224 	skb->offload_fwd_mark = 0;
5225 	skb->offload_l3_fwd_mark = 0;
5226 #endif
5227 
5228 	if (!xnet)
5229 		return;
5230 
5231 	ipvs_reset(skb);
5232 	skb->mark = 0;
5233 	skb->tstamp = 0;
5234 }
5235 EXPORT_SYMBOL_GPL(skb_scrub_packet);
5236 
5237 /**
5238  * skb_gso_transport_seglen - Return length of individual segments of a gso packet
5239  *
5240  * @skb: GSO skb
5241  *
5242  * skb_gso_transport_seglen is used to determine the real size of the
5243  * individual segments, including Layer4 headers (TCP/UDP).
5244  *
5245  * The MAC/L2 or network (IP, IPv6) headers are not accounted for.
5246  */
5247 static unsigned int skb_gso_transport_seglen(const struct sk_buff *skb)
5248 {
5249 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
5250 	unsigned int thlen = 0;
5251 
5252 	if (skb->encapsulation) {
5253 		thlen = skb_inner_transport_header(skb) -
5254 			skb_transport_header(skb);
5255 
5256 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
5257 			thlen += inner_tcp_hdrlen(skb);
5258 	} else if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
5259 		thlen = tcp_hdrlen(skb);
5260 	} else if (unlikely(skb_is_gso_sctp(skb))) {
5261 		thlen = sizeof(struct sctphdr);
5262 	} else if (shinfo->gso_type & SKB_GSO_UDP_L4) {
5263 		thlen = sizeof(struct udphdr);
5264 	}
5265 	/* UFO sets gso_size to the size of the fragmentation
5266 	 * payload, i.e. the size of the L4 (UDP) header is already
5267 	 * accounted for.
5268 	 */
5269 	return thlen + shinfo->gso_size;
5270 }
5271 
5272 /**
5273  * skb_gso_network_seglen - Return length of individual segments of a gso packet
5274  *
5275  * @skb: GSO skb
5276  *
5277  * skb_gso_network_seglen is used to determine the real size of the
5278  * individual segments, including Layer3 (IP, IPv6) and L4 headers (TCP/UDP).
5279  *
5280  * The MAC/L2 header is not accounted for.
5281  */
5282 static unsigned int skb_gso_network_seglen(const struct sk_buff *skb)
5283 {
5284 	unsigned int hdr_len = skb_transport_header(skb) -
5285 			       skb_network_header(skb);
5286 
5287 	return hdr_len + skb_gso_transport_seglen(skb);
5288 }
5289 
5290 /**
5291  * skb_gso_mac_seglen - Return length of individual segments of a gso packet
5292  *
5293  * @skb: GSO skb
5294  *
5295  * skb_gso_mac_seglen is used to determine the real size of the
5296  * individual segments, including MAC/L2, Layer3 (IP, IPv6) and L4
5297  * headers (TCP/UDP).
5298  */
5299 static unsigned int skb_gso_mac_seglen(const struct sk_buff *skb)
5300 {
5301 	unsigned int hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
5302 
5303 	return hdr_len + skb_gso_transport_seglen(skb);
5304 }
5305 
5306 /**
5307  * skb_gso_size_check - check the skb size, considering GSO_BY_FRAGS
5308  *
5309  * There are a couple of instances where we have a GSO skb, and we
5310  * want to determine what size it would be after it is segmented.
5311  *
5312  * We might want to check:
5313  * -    L3+L4+payload size (e.g. IP forwarding)
5314  * - L2+L3+L4+payload size (e.g. sanity check before passing to driver)
5315  *
5316  * This is a helper to do that correctly considering GSO_BY_FRAGS.
5317  *
5318  * @skb: GSO skb
5319  *
5320  * @seg_len: The segmented length (from skb_gso_*_seglen). In the
5321  *           GSO_BY_FRAGS case this will be [header sizes + GSO_BY_FRAGS].
5322  *
5323  * @max_len: The maximum permissible length.
5324  *
5325  * Returns true if the segmented length <= max length.
5326  */
5327 static inline bool skb_gso_size_check(const struct sk_buff *skb,
5328 				      unsigned int seg_len,
5329 				      unsigned int max_len) {
5330 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
5331 	const struct sk_buff *iter;
5332 
5333 	if (shinfo->gso_size != GSO_BY_FRAGS)
5334 		return seg_len <= max_len;
5335 
5336 	/* Undo this so we can re-use header sizes */
5337 	seg_len -= GSO_BY_FRAGS;
5338 
5339 	skb_walk_frags(skb, iter) {
5340 		if (seg_len + skb_headlen(iter) > max_len)
5341 			return false;
5342 	}
5343 
5344 	return true;
5345 }
5346 
5347 /**
5348  * skb_gso_validate_network_len - Will a split GSO skb fit into a given MTU?
5349  *
5350  * @skb: GSO skb
5351  * @mtu: MTU to validate against
5352  *
5353  * skb_gso_validate_network_len validates if a given skb will fit a
5354  * wanted MTU once split. It considers L3 headers, L4 headers, and the
5355  * payload.
5356  */
5357 bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu)
5358 {
5359 	return skb_gso_size_check(skb, skb_gso_network_seglen(skb), mtu);
5360 }
5361 EXPORT_SYMBOL_GPL(skb_gso_validate_network_len);
5362 
5363 /**
5364  * skb_gso_validate_mac_len - Will a split GSO skb fit in a given length?
5365  *
5366  * @skb: GSO skb
5367  * @len: length to validate against
5368  *
5369  * skb_gso_validate_mac_len validates if a given skb will fit a wanted
5370  * length once split, including L2, L3 and L4 headers and the payload.
5371  */
5372 bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len)
5373 {
5374 	return skb_gso_size_check(skb, skb_gso_mac_seglen(skb), len);
5375 }
5376 EXPORT_SYMBOL_GPL(skb_gso_validate_mac_len);
5377 
5378 static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb)
5379 {
5380 	int mac_len, meta_len;
5381 	void *meta;
5382 
5383 	if (skb_cow(skb, skb_headroom(skb)) < 0) {
5384 		kfree_skb(skb);
5385 		return NULL;
5386 	}
5387 
5388 	mac_len = skb->data - skb_mac_header(skb);
5389 	if (likely(mac_len > VLAN_HLEN + ETH_TLEN)) {
5390 		memmove(skb_mac_header(skb) + VLAN_HLEN, skb_mac_header(skb),
5391 			mac_len - VLAN_HLEN - ETH_TLEN);
5392 	}
5393 
5394 	meta_len = skb_metadata_len(skb);
5395 	if (meta_len) {
5396 		meta = skb_metadata_end(skb) - meta_len;
5397 		memmove(meta + VLAN_HLEN, meta, meta_len);
5398 	}
5399 
5400 	skb->mac_header += VLAN_HLEN;
5401 	return skb;
5402 }
5403 
5404 struct sk_buff *skb_vlan_untag(struct sk_buff *skb)
5405 {
5406 	struct vlan_hdr *vhdr;
5407 	u16 vlan_tci;
5408 
5409 	if (unlikely(skb_vlan_tag_present(skb))) {
5410 		/* vlan_tci is already set-up so leave this for another time */
5411 		return skb;
5412 	}
5413 
5414 	skb = skb_share_check(skb, GFP_ATOMIC);
5415 	if (unlikely(!skb))
5416 		goto err_free;
5417 	/* We may access the two bytes after vlan_hdr in vlan_set_encap_proto(). */
5418 	if (unlikely(!pskb_may_pull(skb, VLAN_HLEN + sizeof(unsigned short))))
5419 		goto err_free;
5420 
5421 	vhdr = (struct vlan_hdr *)skb->data;
5422 	vlan_tci = ntohs(vhdr->h_vlan_TCI);
5423 	__vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci);
5424 
5425 	skb_pull_rcsum(skb, VLAN_HLEN);
5426 	vlan_set_encap_proto(skb, vhdr);
5427 
5428 	skb = skb_reorder_vlan_header(skb);
5429 	if (unlikely(!skb))
5430 		goto err_free;
5431 
5432 	skb_reset_network_header(skb);
5433 	skb_reset_transport_header(skb);
5434 	skb_reset_mac_len(skb);
5435 
5436 	return skb;
5437 
5438 err_free:
5439 	kfree_skb(skb);
5440 	return NULL;
5441 }
5442 EXPORT_SYMBOL(skb_vlan_untag);
5443 
5444 int skb_ensure_writable(struct sk_buff *skb, int write_len)
5445 {
5446 	if (!pskb_may_pull(skb, write_len))
5447 		return -ENOMEM;
5448 
5449 	if (!skb_cloned(skb) || skb_clone_writable(skb, write_len))
5450 		return 0;
5451 
5452 	return pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
5453 }
5454 EXPORT_SYMBOL(skb_ensure_writable);
5455 
5456 /* remove VLAN header from packet and update csum accordingly.
5457  * expects a non skb_vlan_tag_present skb with a vlan tag payload
5458  */
5459 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci)
5460 {
5461 	struct vlan_hdr *vhdr;
5462 	int offset = skb->data - skb_mac_header(skb);
5463 	int err;
5464 
5465 	if (WARN_ONCE(offset,
5466 		      "__skb_vlan_pop got skb with skb->data not at mac header (offset %d)\n",
5467 		      offset)) {
5468 		return -EINVAL;
5469 	}
5470 
5471 	err = skb_ensure_writable(skb, VLAN_ETH_HLEN);
5472 	if (unlikely(err))
5473 		return err;
5474 
5475 	skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
5476 
5477 	vhdr = (struct vlan_hdr *)(skb->data + ETH_HLEN);
5478 	*vlan_tci = ntohs(vhdr->h_vlan_TCI);
5479 
5480 	memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN);
5481 	__skb_pull(skb, VLAN_HLEN);
5482 
5483 	vlan_set_encap_proto(skb, vhdr);
5484 	skb->mac_header += VLAN_HLEN;
5485 
5486 	if (skb_network_offset(skb) < ETH_HLEN)
5487 		skb_set_network_header(skb, ETH_HLEN);
5488 
5489 	skb_reset_mac_len(skb);
5490 
5491 	return err;
5492 }
5493 EXPORT_SYMBOL(__skb_vlan_pop);
5494 
5495 /* Pop a vlan tag either from hwaccel or from payload.
5496  * Expects skb->data at mac header.
5497  */
5498 int skb_vlan_pop(struct sk_buff *skb)
5499 {
5500 	u16 vlan_tci;
5501 	__be16 vlan_proto;
5502 	int err;
5503 
5504 	if (likely(skb_vlan_tag_present(skb))) {
5505 		__vlan_hwaccel_clear_tag(skb);
5506 	} else {
5507 		if (unlikely(!eth_type_vlan(skb->protocol)))
5508 			return 0;
5509 
5510 		err = __skb_vlan_pop(skb, &vlan_tci);
5511 		if (err)
5512 			return err;
5513 	}
5514 	/* move next vlan tag to hw accel tag */
5515 	if (likely(!eth_type_vlan(skb->protocol)))
5516 		return 0;
5517 
5518 	vlan_proto = skb->protocol;
5519 	err = __skb_vlan_pop(skb, &vlan_tci);
5520 	if (unlikely(err))
5521 		return err;
5522 
5523 	__vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
5524 	return 0;
5525 }
5526 EXPORT_SYMBOL(skb_vlan_pop);
5527 
5528 /* Push a vlan tag either into hwaccel or into payload (if hwaccel tag present).
5529  * Expects skb->data at mac header.
5530  */
5531 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci)
5532 {
5533 	if (skb_vlan_tag_present(skb)) {
5534 		int offset = skb->data - skb_mac_header(skb);
5535 		int err;
5536 
5537 		if (WARN_ONCE(offset,
5538 			      "skb_vlan_push got skb with skb->data not at mac header (offset %d)\n",
5539 			      offset)) {
5540 			return -EINVAL;
5541 		}
5542 
5543 		err = __vlan_insert_tag(skb, skb->vlan_proto,
5544 					skb_vlan_tag_get(skb));
5545 		if (err)
5546 			return err;
5547 
5548 		skb->protocol = skb->vlan_proto;
5549 		skb->mac_len += VLAN_HLEN;
5550 
5551 		skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
5552 	}
5553 	__vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
5554 	return 0;
5555 }
5556 EXPORT_SYMBOL(skb_vlan_push);
5557 
5558 /**
5559  * skb_eth_pop() - Drop the Ethernet header at the head of a packet
5560  *
5561  * @skb: Socket buffer to modify
5562  *
5563  * Drop the Ethernet header of @skb.
5564  *
5565  * Expects that skb->data points to the mac header and that no VLAN tags are
5566  * present.
5567  *
5568  * Returns 0 on success, -errno otherwise.
5569  */
5570 int skb_eth_pop(struct sk_buff *skb)
5571 {
5572 	if (!pskb_may_pull(skb, ETH_HLEN) || skb_vlan_tagged(skb) ||
5573 	    skb_network_offset(skb) < ETH_HLEN)
5574 		return -EPROTO;
5575 
5576 	skb_pull_rcsum(skb, ETH_HLEN);
5577 	skb_reset_mac_header(skb);
5578 	skb_reset_mac_len(skb);
5579 
5580 	return 0;
5581 }
5582 EXPORT_SYMBOL(skb_eth_pop);
5583 
5584 /**
5585  * skb_eth_push() - Add a new Ethernet header at the head of a packet
5586  *
5587  * @skb: Socket buffer to modify
5588  * @dst: Destination MAC address of the new header
5589  * @src: Source MAC address of the new header
5590  *
5591  * Prepend @skb with a new Ethernet header.
5592  *
5593  * Expects that skb->data points to the mac header, which must be empty.
5594  *
5595  * Returns 0 on success, -errno otherwise.
5596  */
5597 int skb_eth_push(struct sk_buff *skb, const unsigned char *dst,
5598 		 const unsigned char *src)
5599 {
5600 	struct ethhdr *eth;
5601 	int err;
5602 
5603 	if (skb_network_offset(skb) || skb_vlan_tag_present(skb))
5604 		return -EPROTO;
5605 
5606 	err = skb_cow_head(skb, sizeof(*eth));
5607 	if (err < 0)
5608 		return err;
5609 
5610 	skb_push(skb, sizeof(*eth));
5611 	skb_reset_mac_header(skb);
5612 	skb_reset_mac_len(skb);
5613 
5614 	eth = eth_hdr(skb);
5615 	ether_addr_copy(eth->h_dest, dst);
5616 	ether_addr_copy(eth->h_source, src);
5617 	eth->h_proto = skb->protocol;
5618 
5619 	skb_postpush_rcsum(skb, eth, sizeof(*eth));
5620 
5621 	return 0;
5622 }
5623 EXPORT_SYMBOL(skb_eth_push);
5624 
5625 /* Update the ethertype of hdr and the skb csum value if required. */
5626 static void skb_mod_eth_type(struct sk_buff *skb, struct ethhdr *hdr,
5627 			     __be16 ethertype)
5628 {
5629 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
5630 		__be16 diff[] = { ~hdr->h_proto, ethertype };
5631 
5632 		skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum);
5633 	}
5634 
5635 	hdr->h_proto = ethertype;
5636 }
5637 
5638 /**
5639  * skb_mpls_push() - push a new MPLS header after mac_len bytes from start of
5640  *                   the packet
5641  *
5642  * @skb: buffer
5643  * @mpls_lse: MPLS label stack entry to push
5644  * @mpls_proto: ethertype of the new MPLS header (expects 0x8847 or 0x8848)
5645  * @mac_len: length of the MAC header
5646  * @ethernet: flag to indicate if the resulting packet after skb_mpls_push is
5647  *            ethernet
5648  *
5649  * Expects skb->data at mac header.
5650  *
5651  * Returns 0 on success, -errno otherwise.
5652  */
5653 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto,
5654 		  int mac_len, bool ethernet)
5655 {
5656 	struct mpls_shim_hdr *lse;
5657 	int err;
5658 
5659 	if (unlikely(!eth_p_mpls(mpls_proto)))
5660 		return -EINVAL;
5661 
5662 	/* Networking stack does not allow simultaneous Tunnel and MPLS GSO. */
5663 	if (skb->encapsulation)
5664 		return -EINVAL;
5665 
5666 	err = skb_cow_head(skb, MPLS_HLEN);
5667 	if (unlikely(err))
5668 		return err;
5669 
5670 	if (!skb->inner_protocol) {
5671 		skb_set_inner_network_header(skb, skb_network_offset(skb));
5672 		skb_set_inner_protocol(skb, skb->protocol);
5673 	}
5674 
5675 	skb_push(skb, MPLS_HLEN);
5676 	memmove(skb_mac_header(skb) - MPLS_HLEN, skb_mac_header(skb),
5677 		mac_len);
5678 	skb_reset_mac_header(skb);
5679 	skb_set_network_header(skb, mac_len);
5680 	skb_reset_mac_len(skb);
5681 
5682 	lse = mpls_hdr(skb);
5683 	lse->label_stack_entry = mpls_lse;
5684 	skb_postpush_rcsum(skb, lse, MPLS_HLEN);
5685 
5686 	if (ethernet && mac_len >= ETH_HLEN)
5687 		skb_mod_eth_type(skb, eth_hdr(skb), mpls_proto);
5688 	skb->protocol = mpls_proto;
5689 
5690 	return 0;
5691 }
5692 EXPORT_SYMBOL_GPL(skb_mpls_push);
5693 
5694 /**
5695  * skb_mpls_pop() - pop the outermost MPLS header
5696  *
5697  * @skb: buffer
5698  * @next_proto: ethertype of header after popped MPLS header
5699  * @mac_len: length of the MAC header
5700  * @ethernet: flag to indicate if the packet is ethernet
5701  *
5702  * Expects skb->data at mac header.
5703  *
5704  * Returns 0 on success, -errno otherwise.
5705  */
5706 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len,
5707 		 bool ethernet)
5708 {
5709 	int err;
5710 
5711 	if (unlikely(!eth_p_mpls(skb->protocol)))
5712 		return 0;
5713 
5714 	err = skb_ensure_writable(skb, mac_len + MPLS_HLEN);
5715 	if (unlikely(err))
5716 		return err;
5717 
5718 	skb_postpull_rcsum(skb, mpls_hdr(skb), MPLS_HLEN);
5719 	memmove(skb_mac_header(skb) + MPLS_HLEN, skb_mac_header(skb),
5720 		mac_len);
5721 
5722 	__skb_pull(skb, MPLS_HLEN);
5723 	skb_reset_mac_header(skb);
5724 	skb_set_network_header(skb, mac_len);
5725 
5726 	if (ethernet && mac_len >= ETH_HLEN) {
5727 		struct ethhdr *hdr;
5728 
5729 		/* use mpls_hdr() to get ethertype to account for VLANs. */
5730 		hdr = (struct ethhdr *)((void *)mpls_hdr(skb) - ETH_HLEN);
5731 		skb_mod_eth_type(skb, hdr, next_proto);
5732 	}
5733 	skb->protocol = next_proto;
5734 
5735 	return 0;
5736 }
5737 EXPORT_SYMBOL_GPL(skb_mpls_pop);
5738 
5739 /**
5740  * skb_mpls_update_lse() - modify outermost MPLS header and update csum
5741  *
5742  * @skb: buffer
5743  * @mpls_lse: new MPLS label stack entry to update to
5744  *
5745  * Expects skb->data at mac header.
5746  *
5747  * Returns 0 on success, -errno otherwise.
5748  */
5749 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse)
5750 {
5751 	int err;
5752 
5753 	if (unlikely(!eth_p_mpls(skb->protocol)))
5754 		return -EINVAL;
5755 
5756 	err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN);
5757 	if (unlikely(err))
5758 		return err;
5759 
5760 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
5761 		__be32 diff[] = { ~mpls_hdr(skb)->label_stack_entry, mpls_lse };
5762 
5763 		skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum);
5764 	}
5765 
5766 	mpls_hdr(skb)->label_stack_entry = mpls_lse;
5767 
5768 	return 0;
5769 }
5770 EXPORT_SYMBOL_GPL(skb_mpls_update_lse);
5771 
5772 /**
5773  * skb_mpls_dec_ttl() - decrement the TTL of the outermost MPLS header
5774  *
5775  * @skb: buffer
5776  *
5777  * Expects skb->data at mac header.
5778  *
5779  * Returns 0 on success, -errno otherwise.
5780  */
5781 int skb_mpls_dec_ttl(struct sk_buff *skb)
5782 {
5783 	u32 lse;
5784 	u8 ttl;
5785 
5786 	if (unlikely(!eth_p_mpls(skb->protocol)))
5787 		return -EINVAL;
5788 
5789 	lse = be32_to_cpu(mpls_hdr(skb)->label_stack_entry);
5790 	ttl = (lse & MPLS_LS_TTL_MASK) >> MPLS_LS_TTL_SHIFT;
5791 	if (!--ttl)
5792 		return -EINVAL;
5793 
5794 	lse &= ~MPLS_LS_TTL_MASK;
5795 	lse |= ttl << MPLS_LS_TTL_SHIFT;
5796 
5797 	return skb_mpls_update_lse(skb, cpu_to_be32(lse));
5798 }
5799 EXPORT_SYMBOL_GPL(skb_mpls_dec_ttl);
5800 
5801 /**
5802  * alloc_skb_with_frags - allocate skb with page frags
5803  *
5804  * @header_len: size of linear part
5805  * @data_len: needed length in frags
5806  * @max_page_order: max page order desired.
5807  * @errcode: pointer to error code if any
5808  * @gfp_mask: allocation mask
5809  *
5810  * This can be used to allocate a paged skb, given a maximal order for frags.
5811  */
5812 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
5813 				     unsigned long data_len,
5814 				     int max_page_order,
5815 				     int *errcode,
5816 				     gfp_t gfp_mask)
5817 {
5818 	int npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
5819 	unsigned long chunk;
5820 	struct sk_buff *skb;
5821 	struct page *page;
5822 	int i;
5823 
5824 	*errcode = -EMSGSIZE;
5825 	/* Note this test could be relaxed, if we succeed to allocate
5826 	 * high order pages...
5827 	 */
5828 	if (npages > MAX_SKB_FRAGS)
5829 		return NULL;
5830 
5831 	*errcode = -ENOBUFS;
5832 	skb = alloc_skb(header_len, gfp_mask);
5833 	if (!skb)
5834 		return NULL;
5835 
5836 	skb->truesize += npages << PAGE_SHIFT;
5837 
5838 	for (i = 0; npages > 0; i++) {
5839 		int order = max_page_order;
5840 
5841 		while (order) {
5842 			if (npages >= 1 << order) {
5843 				page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) |
5844 						   __GFP_COMP |
5845 						   __GFP_NOWARN,
5846 						   order);
5847 				if (page)
5848 					goto fill_page;
5849 				/* Do not retry other high order allocations */
5850 				order = 1;
5851 				max_page_order = 0;
5852 			}
5853 			order--;
5854 		}
5855 		page = alloc_page(gfp_mask);
5856 		if (!page)
5857 			goto failure;
5858 fill_page:
5859 		chunk = min_t(unsigned long, data_len,
5860 			      PAGE_SIZE << order);
5861 		skb_fill_page_desc(skb, i, page, 0, chunk);
5862 		data_len -= chunk;
5863 		npages -= 1 << order;
5864 	}
5865 	return skb;
5866 
5867 failure:
5868 	kfree_skb(skb);
5869 	return NULL;
5870 }
5871 EXPORT_SYMBOL(alloc_skb_with_frags);
5872 
5873 /* carve out the first off bytes from skb when off < headlen */
5874 static int pskb_carve_inside_header(struct sk_buff *skb, const u32 off,
5875 				    const int headlen, gfp_t gfp_mask)
5876 {
5877 	int i;
5878 	int size = skb_end_offset(skb);
5879 	int new_hlen = headlen - off;
5880 	u8 *data;
5881 
5882 	size = SKB_DATA_ALIGN(size);
5883 
5884 	if (skb_pfmemalloc(skb))
5885 		gfp_mask |= __GFP_MEMALLOC;
5886 	data = kmalloc_reserve(size +
5887 			       SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
5888 			       gfp_mask, NUMA_NO_NODE, NULL);
5889 	if (!data)
5890 		return -ENOMEM;
5891 
5892 	size = SKB_WITH_OVERHEAD(ksize(data));
5893 
5894 	/* Copy real data, and all frags */
5895 	skb_copy_from_linear_data_offset(skb, off, data, new_hlen);
5896 	skb->len -= off;
5897 
5898 	memcpy((struct skb_shared_info *)(data + size),
5899 	       skb_shinfo(skb),
5900 	       offsetof(struct skb_shared_info,
5901 			frags[skb_shinfo(skb)->nr_frags]));
5902 	if (skb_cloned(skb)) {
5903 		/* drop the old head gracefully */
5904 		if (skb_orphan_frags(skb, gfp_mask)) {
5905 			kfree(data);
5906 			return -ENOMEM;
5907 		}
5908 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
5909 			skb_frag_ref(skb, i);
5910 		if (skb_has_frag_list(skb))
5911 			skb_clone_fraglist(skb);
5912 		skb_release_data(skb);
5913 	} else {
5914 		/* we can reuse existing recount- all we did was
5915 		 * relocate values
5916 		 */
5917 		skb_free_head(skb);
5918 	}
5919 
5920 	skb->head = data;
5921 	skb->data = data;
5922 	skb->head_frag = 0;
5923 #ifdef NET_SKBUFF_DATA_USES_OFFSET
5924 	skb->end = size;
5925 #else
5926 	skb->end = skb->head + size;
5927 #endif
5928 	skb_set_tail_pointer(skb, skb_headlen(skb));
5929 	skb_headers_offset_update(skb, 0);
5930 	skb->cloned = 0;
5931 	skb->hdr_len = 0;
5932 	skb->nohdr = 0;
5933 	atomic_set(&skb_shinfo(skb)->dataref, 1);
5934 
5935 	return 0;
5936 }
5937 
5938 static int pskb_carve(struct sk_buff *skb, const u32 off, gfp_t gfp);
5939 
5940 /* carve out the first eat bytes from skb's frag_list. May recurse into
5941  * pskb_carve()
5942  */
5943 static int pskb_carve_frag_list(struct sk_buff *skb,
5944 				struct skb_shared_info *shinfo, int eat,
5945 				gfp_t gfp_mask)
5946 {
5947 	struct sk_buff *list = shinfo->frag_list;
5948 	struct sk_buff *clone = NULL;
5949 	struct sk_buff *insp = NULL;
5950 
5951 	do {
5952 		if (!list) {
5953 			pr_err("Not enough bytes to eat. Want %d\n", eat);
5954 			return -EFAULT;
5955 		}
5956 		if (list->len <= eat) {
5957 			/* Eaten as whole. */
5958 			eat -= list->len;
5959 			list = list->next;
5960 			insp = list;
5961 		} else {
5962 			/* Eaten partially. */
5963 			if (skb_shared(list)) {
5964 				clone = skb_clone(list, gfp_mask);
5965 				if (!clone)
5966 					return -ENOMEM;
5967 				insp = list->next;
5968 				list = clone;
5969 			} else {
5970 				/* This may be pulled without problems. */
5971 				insp = list;
5972 			}
5973 			if (pskb_carve(list, eat, gfp_mask) < 0) {
5974 				kfree_skb(clone);
5975 				return -ENOMEM;
5976 			}
5977 			break;
5978 		}
5979 	} while (eat);
5980 
5981 	/* Free pulled out fragments. */
5982 	while ((list = shinfo->frag_list) != insp) {
5983 		shinfo->frag_list = list->next;
5984 		kfree_skb(list);
5985 	}
5986 	/* And insert new clone at head. */
5987 	if (clone) {
5988 		clone->next = list;
5989 		shinfo->frag_list = clone;
5990 	}
5991 	return 0;
5992 }
5993 
5994 /* carve off first len bytes from skb. Split line (off) is in the
5995  * non-linear part of skb
5996  */
5997 static int pskb_carve_inside_nonlinear(struct sk_buff *skb, const u32 off,
5998 				       int pos, gfp_t gfp_mask)
5999 {
6000 	int i, k = 0;
6001 	int size = skb_end_offset(skb);
6002 	u8 *data;
6003 	const int nfrags = skb_shinfo(skb)->nr_frags;
6004 	struct skb_shared_info *shinfo;
6005 
6006 	size = SKB_DATA_ALIGN(size);
6007 
6008 	if (skb_pfmemalloc(skb))
6009 		gfp_mask |= __GFP_MEMALLOC;
6010 	data = kmalloc_reserve(size +
6011 			       SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
6012 			       gfp_mask, NUMA_NO_NODE, NULL);
6013 	if (!data)
6014 		return -ENOMEM;
6015 
6016 	size = SKB_WITH_OVERHEAD(ksize(data));
6017 
6018 	memcpy((struct skb_shared_info *)(data + size),
6019 	       skb_shinfo(skb), offsetof(struct skb_shared_info, frags[0]));
6020 	if (skb_orphan_frags(skb, gfp_mask)) {
6021 		kfree(data);
6022 		return -ENOMEM;
6023 	}
6024 	shinfo = (struct skb_shared_info *)(data + size);
6025 	for (i = 0; i < nfrags; i++) {
6026 		int fsize = skb_frag_size(&skb_shinfo(skb)->frags[i]);
6027 
6028 		if (pos + fsize > off) {
6029 			shinfo->frags[k] = skb_shinfo(skb)->frags[i];
6030 
6031 			if (pos < off) {
6032 				/* Split frag.
6033 				 * We have two variants in this case:
6034 				 * 1. Move all the frag to the second
6035 				 *    part, if it is possible. F.e.
6036 				 *    this approach is mandatory for TUX,
6037 				 *    where splitting is expensive.
6038 				 * 2. Split is accurately. We make this.
6039 				 */
6040 				skb_frag_off_add(&shinfo->frags[0], off - pos);
6041 				skb_frag_size_sub(&shinfo->frags[0], off - pos);
6042 			}
6043 			skb_frag_ref(skb, i);
6044 			k++;
6045 		}
6046 		pos += fsize;
6047 	}
6048 	shinfo->nr_frags = k;
6049 	if (skb_has_frag_list(skb))
6050 		skb_clone_fraglist(skb);
6051 
6052 	/* split line is in frag list */
6053 	if (k == 0 && pskb_carve_frag_list(skb, shinfo, off - pos, gfp_mask)) {
6054 		/* skb_frag_unref() is not needed here as shinfo->nr_frags = 0. */
6055 		if (skb_has_frag_list(skb))
6056 			kfree_skb_list(skb_shinfo(skb)->frag_list);
6057 		kfree(data);
6058 		return -ENOMEM;
6059 	}
6060 	skb_release_data(skb);
6061 
6062 	skb->head = data;
6063 	skb->head_frag = 0;
6064 	skb->data = data;
6065 #ifdef NET_SKBUFF_DATA_USES_OFFSET
6066 	skb->end = size;
6067 #else
6068 	skb->end = skb->head + size;
6069 #endif
6070 	skb_reset_tail_pointer(skb);
6071 	skb_headers_offset_update(skb, 0);
6072 	skb->cloned   = 0;
6073 	skb->hdr_len  = 0;
6074 	skb->nohdr    = 0;
6075 	skb->len -= off;
6076 	skb->data_len = skb->len;
6077 	atomic_set(&skb_shinfo(skb)->dataref, 1);
6078 	return 0;
6079 }
6080 
6081 /* remove len bytes from the beginning of the skb */
6082 static int pskb_carve(struct sk_buff *skb, const u32 len, gfp_t gfp)
6083 {
6084 	int headlen = skb_headlen(skb);
6085 
6086 	if (len < headlen)
6087 		return pskb_carve_inside_header(skb, len, headlen, gfp);
6088 	else
6089 		return pskb_carve_inside_nonlinear(skb, len, headlen, gfp);
6090 }
6091 
6092 /* Extract to_copy bytes starting at off from skb, and return this in
6093  * a new skb
6094  */
6095 struct sk_buff *pskb_extract(struct sk_buff *skb, int off,
6096 			     int to_copy, gfp_t gfp)
6097 {
6098 	struct sk_buff  *clone = skb_clone(skb, gfp);
6099 
6100 	if (!clone)
6101 		return NULL;
6102 
6103 	if (pskb_carve(clone, off, gfp) < 0 ||
6104 	    pskb_trim(clone, to_copy)) {
6105 		kfree_skb(clone);
6106 		return NULL;
6107 	}
6108 	return clone;
6109 }
6110 EXPORT_SYMBOL(pskb_extract);
6111 
6112 /**
6113  * skb_condense - try to get rid of fragments/frag_list if possible
6114  * @skb: buffer
6115  *
6116  * Can be used to save memory before skb is added to a busy queue.
6117  * If packet has bytes in frags and enough tail room in skb->head,
6118  * pull all of them, so that we can free the frags right now and adjust
6119  * truesize.
6120  * Notes:
6121  *	We do not reallocate skb->head thus can not fail.
6122  *	Caller must re-evaluate skb->truesize if needed.
6123  */
6124 void skb_condense(struct sk_buff *skb)
6125 {
6126 	if (skb->data_len) {
6127 		if (skb->data_len > skb->end - skb->tail ||
6128 		    skb_cloned(skb))
6129 			return;
6130 
6131 		/* Nice, we can free page frag(s) right now */
6132 		__pskb_pull_tail(skb, skb->data_len);
6133 	}
6134 	/* At this point, skb->truesize might be over estimated,
6135 	 * because skb had a fragment, and fragments do not tell
6136 	 * their truesize.
6137 	 * When we pulled its content into skb->head, fragment
6138 	 * was freed, but __pskb_pull_tail() could not possibly
6139 	 * adjust skb->truesize, not knowing the frag truesize.
6140 	 */
6141 	skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
6142 }
6143 
6144 #ifdef CONFIG_SKB_EXTENSIONS
6145 static void *skb_ext_get_ptr(struct skb_ext *ext, enum skb_ext_id id)
6146 {
6147 	return (void *)ext + (ext->offset[id] * SKB_EXT_ALIGN_VALUE);
6148 }
6149 
6150 /**
6151  * __skb_ext_alloc - allocate a new skb extensions storage
6152  *
6153  * @flags: See kmalloc().
6154  *
6155  * Returns the newly allocated pointer. The pointer can later attached to a
6156  * skb via __skb_ext_set().
6157  * Note: caller must handle the skb_ext as an opaque data.
6158  */
6159 struct skb_ext *__skb_ext_alloc(gfp_t flags)
6160 {
6161 	struct skb_ext *new = kmem_cache_alloc(skbuff_ext_cache, flags);
6162 
6163 	if (new) {
6164 		memset(new->offset, 0, sizeof(new->offset));
6165 		refcount_set(&new->refcnt, 1);
6166 	}
6167 
6168 	return new;
6169 }
6170 
6171 static struct skb_ext *skb_ext_maybe_cow(struct skb_ext *old,
6172 					 unsigned int old_active)
6173 {
6174 	struct skb_ext *new;
6175 
6176 	if (refcount_read(&old->refcnt) == 1)
6177 		return old;
6178 
6179 	new = kmem_cache_alloc(skbuff_ext_cache, GFP_ATOMIC);
6180 	if (!new)
6181 		return NULL;
6182 
6183 	memcpy(new, old, old->chunks * SKB_EXT_ALIGN_VALUE);
6184 	refcount_set(&new->refcnt, 1);
6185 
6186 #ifdef CONFIG_XFRM
6187 	if (old_active & (1 << SKB_EXT_SEC_PATH)) {
6188 		struct sec_path *sp = skb_ext_get_ptr(old, SKB_EXT_SEC_PATH);
6189 		unsigned int i;
6190 
6191 		for (i = 0; i < sp->len; i++)
6192 			xfrm_state_hold(sp->xvec[i]);
6193 	}
6194 #endif
6195 	__skb_ext_put(old);
6196 	return new;
6197 }
6198 
6199 /**
6200  * __skb_ext_set - attach the specified extension storage to this skb
6201  * @skb: buffer
6202  * @id: extension id
6203  * @ext: extension storage previously allocated via __skb_ext_alloc()
6204  *
6205  * Existing extensions, if any, are cleared.
6206  *
6207  * Returns the pointer to the extension.
6208  */
6209 void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id,
6210 		    struct skb_ext *ext)
6211 {
6212 	unsigned int newlen, newoff = SKB_EXT_CHUNKSIZEOF(*ext);
6213 
6214 	skb_ext_put(skb);
6215 	newlen = newoff + skb_ext_type_len[id];
6216 	ext->chunks = newlen;
6217 	ext->offset[id] = newoff;
6218 	skb->extensions = ext;
6219 	skb->active_extensions = 1 << id;
6220 	return skb_ext_get_ptr(ext, id);
6221 }
6222 
6223 /**
6224  * skb_ext_add - allocate space for given extension, COW if needed
6225  * @skb: buffer
6226  * @id: extension to allocate space for
6227  *
6228  * Allocates enough space for the given extension.
6229  * If the extension is already present, a pointer to that extension
6230  * is returned.
6231  *
6232  * If the skb was cloned, COW applies and the returned memory can be
6233  * modified without changing the extension space of clones buffers.
6234  *
6235  * Returns pointer to the extension or NULL on allocation failure.
6236  */
6237 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id)
6238 {
6239 	struct skb_ext *new, *old = NULL;
6240 	unsigned int newlen, newoff;
6241 
6242 	if (skb->active_extensions) {
6243 		old = skb->extensions;
6244 
6245 		new = skb_ext_maybe_cow(old, skb->active_extensions);
6246 		if (!new)
6247 			return NULL;
6248 
6249 		if (__skb_ext_exist(new, id))
6250 			goto set_active;
6251 
6252 		newoff = new->chunks;
6253 	} else {
6254 		newoff = SKB_EXT_CHUNKSIZEOF(*new);
6255 
6256 		new = __skb_ext_alloc(GFP_ATOMIC);
6257 		if (!new)
6258 			return NULL;
6259 	}
6260 
6261 	newlen = newoff + skb_ext_type_len[id];
6262 	new->chunks = newlen;
6263 	new->offset[id] = newoff;
6264 set_active:
6265 	skb->extensions = new;
6266 	skb->active_extensions |= 1 << id;
6267 	return skb_ext_get_ptr(new, id);
6268 }
6269 EXPORT_SYMBOL(skb_ext_add);
6270 
6271 #ifdef CONFIG_XFRM
6272 static void skb_ext_put_sp(struct sec_path *sp)
6273 {
6274 	unsigned int i;
6275 
6276 	for (i = 0; i < sp->len; i++)
6277 		xfrm_state_put(sp->xvec[i]);
6278 }
6279 #endif
6280 
6281 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id)
6282 {
6283 	struct skb_ext *ext = skb->extensions;
6284 
6285 	skb->active_extensions &= ~(1 << id);
6286 	if (skb->active_extensions == 0) {
6287 		skb->extensions = NULL;
6288 		__skb_ext_put(ext);
6289 #ifdef CONFIG_XFRM
6290 	} else if (id == SKB_EXT_SEC_PATH &&
6291 		   refcount_read(&ext->refcnt) == 1) {
6292 		struct sec_path *sp = skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH);
6293 
6294 		skb_ext_put_sp(sp);
6295 		sp->len = 0;
6296 #endif
6297 	}
6298 }
6299 EXPORT_SYMBOL(__skb_ext_del);
6300 
6301 void __skb_ext_put(struct skb_ext *ext)
6302 {
6303 	/* If this is last clone, nothing can increment
6304 	 * it after check passes.  Avoids one atomic op.
6305 	 */
6306 	if (refcount_read(&ext->refcnt) == 1)
6307 		goto free_now;
6308 
6309 	if (!refcount_dec_and_test(&ext->refcnt))
6310 		return;
6311 free_now:
6312 #ifdef CONFIG_XFRM
6313 	if (__skb_ext_exist(ext, SKB_EXT_SEC_PATH))
6314 		skb_ext_put_sp(skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH));
6315 #endif
6316 
6317 	kmem_cache_free(skbuff_ext_cache, ext);
6318 }
6319 EXPORT_SYMBOL(__skb_ext_put);
6320 #endif /* CONFIG_SKB_EXTENSIONS */
6321