xref: /openbmc/linux/net/core/skbuff.c (revision 6774def6)
1 /*
2  *	Routines having to do with the 'struct sk_buff' memory handlers.
3  *
4  *	Authors:	Alan Cox <alan@lxorguk.ukuu.org.uk>
5  *			Florian La Roche <rzsfl@rz.uni-sb.de>
6  *
7  *	Fixes:
8  *		Alan Cox	:	Fixed the worst of the load
9  *					balancer bugs.
10  *		Dave Platt	:	Interrupt stacking fix.
11  *	Richard Kooijman	:	Timestamp fixes.
12  *		Alan Cox	:	Changed buffer format.
13  *		Alan Cox	:	destructor hook for AF_UNIX etc.
14  *		Linus Torvalds	:	Better skb_clone.
15  *		Alan Cox	:	Added skb_copy.
16  *		Alan Cox	:	Added all the changed routines Linus
17  *					only put in the headers
18  *		Ray VanTassle	:	Fixed --skb->lock in free
19  *		Alan Cox	:	skb_copy copy arp field
20  *		Andi Kleen	:	slabified it.
21  *		Robert Olsson	:	Removed skb_head_pool
22  *
23  *	NOTE:
24  *		The __skb_ routines should be called with interrupts
25  *	disabled, or you better be *real* sure that the operation is atomic
26  *	with respect to whatever list is being frobbed (e.g. via lock_sock()
27  *	or via disabling bottom half handlers, etc).
28  *
29  *	This program is free software; you can redistribute it and/or
30  *	modify it under the terms of the GNU General Public License
31  *	as published by the Free Software Foundation; either version
32  *	2 of the License, or (at your option) any later version.
33  */
34 
35 /*
36  *	The functions in this file will not compile correctly with gcc 2.4.x
37  */
38 
39 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
40 
41 #include <linux/module.h>
42 #include <linux/types.h>
43 #include <linux/kernel.h>
44 #include <linux/kmemcheck.h>
45 #include <linux/mm.h>
46 #include <linux/interrupt.h>
47 #include <linux/in.h>
48 #include <linux/inet.h>
49 #include <linux/slab.h>
50 #include <linux/tcp.h>
51 #include <linux/udp.h>
52 #include <linux/netdevice.h>
53 #ifdef CONFIG_NET_CLS_ACT
54 #include <net/pkt_sched.h>
55 #endif
56 #include <linux/string.h>
57 #include <linux/skbuff.h>
58 #include <linux/splice.h>
59 #include <linux/cache.h>
60 #include <linux/rtnetlink.h>
61 #include <linux/init.h>
62 #include <linux/scatterlist.h>
63 #include <linux/errqueue.h>
64 #include <linux/prefetch.h>
65 #include <linux/if_vlan.h>
66 
67 #include <net/protocol.h>
68 #include <net/dst.h>
69 #include <net/sock.h>
70 #include <net/checksum.h>
71 #include <net/ip6_checksum.h>
72 #include <net/xfrm.h>
73 
74 #include <asm/uaccess.h>
75 #include <trace/events/skb.h>
76 #include <linux/highmem.h>
77 
78 struct kmem_cache *skbuff_head_cache __read_mostly;
79 static struct kmem_cache *skbuff_fclone_cache __read_mostly;
80 
81 /**
82  *	skb_panic - private function for out-of-line support
83  *	@skb:	buffer
84  *	@sz:	size
85  *	@addr:	address
86  *	@msg:	skb_over_panic or skb_under_panic
87  *
88  *	Out-of-line support for skb_put() and skb_push().
89  *	Called via the wrapper skb_over_panic() or skb_under_panic().
90  *	Keep out of line to prevent kernel bloat.
91  *	__builtin_return_address is not used because it is not always reliable.
92  */
93 static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr,
94 		      const char msg[])
95 {
96 	pr_emerg("%s: text:%p len:%d put:%d head:%p data:%p tail:%#lx end:%#lx dev:%s\n",
97 		 msg, addr, skb->len, sz, skb->head, skb->data,
98 		 (unsigned long)skb->tail, (unsigned long)skb->end,
99 		 skb->dev ? skb->dev->name : "<NULL>");
100 	BUG();
101 }
102 
103 static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr)
104 {
105 	skb_panic(skb, sz, addr, __func__);
106 }
107 
108 static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr)
109 {
110 	skb_panic(skb, sz, addr, __func__);
111 }
112 
113 /*
114  * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells
115  * the caller if emergency pfmemalloc reserves are being used. If it is and
116  * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves
117  * may be used. Otherwise, the packet data may be discarded until enough
118  * memory is free
119  */
120 #define kmalloc_reserve(size, gfp, node, pfmemalloc) \
121 	 __kmalloc_reserve(size, gfp, node, _RET_IP_, pfmemalloc)
122 
123 static void *__kmalloc_reserve(size_t size, gfp_t flags, int node,
124 			       unsigned long ip, bool *pfmemalloc)
125 {
126 	void *obj;
127 	bool ret_pfmemalloc = false;
128 
129 	/*
130 	 * Try a regular allocation, when that fails and we're not entitled
131 	 * to the reserves, fail.
132 	 */
133 	obj = kmalloc_node_track_caller(size,
134 					flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
135 					node);
136 	if (obj || !(gfp_pfmemalloc_allowed(flags)))
137 		goto out;
138 
139 	/* Try again but now we are using pfmemalloc reserves */
140 	ret_pfmemalloc = true;
141 	obj = kmalloc_node_track_caller(size, flags, node);
142 
143 out:
144 	if (pfmemalloc)
145 		*pfmemalloc = ret_pfmemalloc;
146 
147 	return obj;
148 }
149 
150 /* 	Allocate a new skbuff. We do this ourselves so we can fill in a few
151  *	'private' fields and also do memory statistics to find all the
152  *	[BEEP] leaks.
153  *
154  */
155 
156 struct sk_buff *__alloc_skb_head(gfp_t gfp_mask, int node)
157 {
158 	struct sk_buff *skb;
159 
160 	/* Get the HEAD */
161 	skb = kmem_cache_alloc_node(skbuff_head_cache,
162 				    gfp_mask & ~__GFP_DMA, node);
163 	if (!skb)
164 		goto out;
165 
166 	/*
167 	 * Only clear those fields we need to clear, not those that we will
168 	 * actually initialise below. Hence, don't put any more fields after
169 	 * the tail pointer in struct sk_buff!
170 	 */
171 	memset(skb, 0, offsetof(struct sk_buff, tail));
172 	skb->head = NULL;
173 	skb->truesize = sizeof(struct sk_buff);
174 	atomic_set(&skb->users, 1);
175 
176 	skb->mac_header = (typeof(skb->mac_header))~0U;
177 out:
178 	return skb;
179 }
180 
181 /**
182  *	__alloc_skb	-	allocate a network buffer
183  *	@size: size to allocate
184  *	@gfp_mask: allocation mask
185  *	@flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache
186  *		instead of head cache and allocate a cloned (child) skb.
187  *		If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for
188  *		allocations in case the data is required for writeback
189  *	@node: numa node to allocate memory on
190  *
191  *	Allocate a new &sk_buff. The returned buffer has no headroom and a
192  *	tail room of at least size bytes. The object has a reference count
193  *	of one. The return is the buffer. On a failure the return is %NULL.
194  *
195  *	Buffers may only be allocated from interrupts using a @gfp_mask of
196  *	%GFP_ATOMIC.
197  */
198 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
199 			    int flags, int node)
200 {
201 	struct kmem_cache *cache;
202 	struct skb_shared_info *shinfo;
203 	struct sk_buff *skb;
204 	u8 *data;
205 	bool pfmemalloc;
206 
207 	cache = (flags & SKB_ALLOC_FCLONE)
208 		? skbuff_fclone_cache : skbuff_head_cache;
209 
210 	if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX))
211 		gfp_mask |= __GFP_MEMALLOC;
212 
213 	/* Get the HEAD */
214 	skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node);
215 	if (!skb)
216 		goto out;
217 	prefetchw(skb);
218 
219 	/* We do our best to align skb_shared_info on a separate cache
220 	 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives
221 	 * aligned memory blocks, unless SLUB/SLAB debug is enabled.
222 	 * Both skb->head and skb_shared_info are cache line aligned.
223 	 */
224 	size = SKB_DATA_ALIGN(size);
225 	size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
226 	data = kmalloc_reserve(size, gfp_mask, node, &pfmemalloc);
227 	if (!data)
228 		goto nodata;
229 	/* kmalloc(size) might give us more room than requested.
230 	 * Put skb_shared_info exactly at the end of allocated zone,
231 	 * to allow max possible filling before reallocation.
232 	 */
233 	size = SKB_WITH_OVERHEAD(ksize(data));
234 	prefetchw(data + size);
235 
236 	/*
237 	 * Only clear those fields we need to clear, not those that we will
238 	 * actually initialise below. Hence, don't put any more fields after
239 	 * the tail pointer in struct sk_buff!
240 	 */
241 	memset(skb, 0, offsetof(struct sk_buff, tail));
242 	/* Account for allocated memory : skb + skb->head */
243 	skb->truesize = SKB_TRUESIZE(size);
244 	skb->pfmemalloc = pfmemalloc;
245 	atomic_set(&skb->users, 1);
246 	skb->head = data;
247 	skb->data = data;
248 	skb_reset_tail_pointer(skb);
249 	skb->end = skb->tail + size;
250 	skb->mac_header = (typeof(skb->mac_header))~0U;
251 	skb->transport_header = (typeof(skb->transport_header))~0U;
252 
253 	/* make sure we initialize shinfo sequentially */
254 	shinfo = skb_shinfo(skb);
255 	memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
256 	atomic_set(&shinfo->dataref, 1);
257 	kmemcheck_annotate_variable(shinfo->destructor_arg);
258 
259 	if (flags & SKB_ALLOC_FCLONE) {
260 		struct sk_buff_fclones *fclones;
261 
262 		fclones = container_of(skb, struct sk_buff_fclones, skb1);
263 
264 		kmemcheck_annotate_bitfield(&fclones->skb2, flags1);
265 		skb->fclone = SKB_FCLONE_ORIG;
266 		atomic_set(&fclones->fclone_ref, 1);
267 
268 		fclones->skb2.fclone = SKB_FCLONE_FREE;
269 		fclones->skb2.pfmemalloc = pfmemalloc;
270 	}
271 out:
272 	return skb;
273 nodata:
274 	kmem_cache_free(cache, skb);
275 	skb = NULL;
276 	goto out;
277 }
278 EXPORT_SYMBOL(__alloc_skb);
279 
280 /**
281  * build_skb - build a network buffer
282  * @data: data buffer provided by caller
283  * @frag_size: size of fragment, or 0 if head was kmalloced
284  *
285  * Allocate a new &sk_buff. Caller provides space holding head and
286  * skb_shared_info. @data must have been allocated by kmalloc() only if
287  * @frag_size is 0, otherwise data should come from the page allocator.
288  * The return is the new skb buffer.
289  * On a failure the return is %NULL, and @data is not freed.
290  * Notes :
291  *  Before IO, driver allocates only data buffer where NIC put incoming frame
292  *  Driver should add room at head (NET_SKB_PAD) and
293  *  MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info))
294  *  After IO, driver calls build_skb(), to allocate sk_buff and populate it
295  *  before giving packet to stack.
296  *  RX rings only contains data buffers, not full skbs.
297  */
298 struct sk_buff *build_skb(void *data, unsigned int frag_size)
299 {
300 	struct skb_shared_info *shinfo;
301 	struct sk_buff *skb;
302 	unsigned int size = frag_size ? : ksize(data);
303 
304 	skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC);
305 	if (!skb)
306 		return NULL;
307 
308 	size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
309 
310 	memset(skb, 0, offsetof(struct sk_buff, tail));
311 	skb->truesize = SKB_TRUESIZE(size);
312 	skb->head_frag = frag_size != 0;
313 	atomic_set(&skb->users, 1);
314 	skb->head = data;
315 	skb->data = data;
316 	skb_reset_tail_pointer(skb);
317 	skb->end = skb->tail + size;
318 	skb->mac_header = (typeof(skb->mac_header))~0U;
319 	skb->transport_header = (typeof(skb->transport_header))~0U;
320 
321 	/* make sure we initialize shinfo sequentially */
322 	shinfo = skb_shinfo(skb);
323 	memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
324 	atomic_set(&shinfo->dataref, 1);
325 	kmemcheck_annotate_variable(shinfo->destructor_arg);
326 
327 	return skb;
328 }
329 EXPORT_SYMBOL(build_skb);
330 
331 struct netdev_alloc_cache {
332 	struct page_frag	frag;
333 	/* we maintain a pagecount bias, so that we dont dirty cache line
334 	 * containing page->_count every time we allocate a fragment.
335 	 */
336 	unsigned int		pagecnt_bias;
337 };
338 static DEFINE_PER_CPU(struct netdev_alloc_cache, netdev_alloc_cache);
339 
340 static void *__netdev_alloc_frag(unsigned int fragsz, gfp_t gfp_mask)
341 {
342 	struct netdev_alloc_cache *nc;
343 	void *data = NULL;
344 	int order;
345 	unsigned long flags;
346 
347 	local_irq_save(flags);
348 	nc = this_cpu_ptr(&netdev_alloc_cache);
349 	if (unlikely(!nc->frag.page)) {
350 refill:
351 		for (order = NETDEV_FRAG_PAGE_MAX_ORDER; ;) {
352 			gfp_t gfp = gfp_mask;
353 
354 			if (order)
355 				gfp |= __GFP_COMP | __GFP_NOWARN;
356 			nc->frag.page = alloc_pages(gfp, order);
357 			if (likely(nc->frag.page))
358 				break;
359 			if (--order < 0)
360 				goto end;
361 		}
362 		nc->frag.size = PAGE_SIZE << order;
363 		/* Even if we own the page, we do not use atomic_set().
364 		 * This would break get_page_unless_zero() users.
365 		 */
366 		atomic_add(NETDEV_PAGECNT_MAX_BIAS - 1,
367 			   &nc->frag.page->_count);
368 		nc->pagecnt_bias = NETDEV_PAGECNT_MAX_BIAS;
369 		nc->frag.offset = 0;
370 	}
371 
372 	if (nc->frag.offset + fragsz > nc->frag.size) {
373 		if (atomic_read(&nc->frag.page->_count) != nc->pagecnt_bias) {
374 			if (!atomic_sub_and_test(nc->pagecnt_bias,
375 						 &nc->frag.page->_count))
376 				goto refill;
377 			/* OK, page count is 0, we can safely set it */
378 			atomic_set(&nc->frag.page->_count,
379 				   NETDEV_PAGECNT_MAX_BIAS);
380 		} else {
381 			atomic_add(NETDEV_PAGECNT_MAX_BIAS - nc->pagecnt_bias,
382 				   &nc->frag.page->_count);
383 		}
384 		nc->pagecnt_bias = NETDEV_PAGECNT_MAX_BIAS;
385 		nc->frag.offset = 0;
386 	}
387 
388 	data = page_address(nc->frag.page) + nc->frag.offset;
389 	nc->frag.offset += fragsz;
390 	nc->pagecnt_bias--;
391 end:
392 	local_irq_restore(flags);
393 	return data;
394 }
395 
396 /**
397  * netdev_alloc_frag - allocate a page fragment
398  * @fragsz: fragment size
399  *
400  * Allocates a frag from a page for receive buffer.
401  * Uses GFP_ATOMIC allocations.
402  */
403 void *netdev_alloc_frag(unsigned int fragsz)
404 {
405 	return __netdev_alloc_frag(fragsz, GFP_ATOMIC | __GFP_COLD);
406 }
407 EXPORT_SYMBOL(netdev_alloc_frag);
408 
409 /**
410  *	__netdev_alloc_skb - allocate an skbuff for rx on a specific device
411  *	@dev: network device to receive on
412  *	@length: length to allocate
413  *	@gfp_mask: get_free_pages mask, passed to alloc_skb
414  *
415  *	Allocate a new &sk_buff and assign it a usage count of one. The
416  *	buffer has unspecified headroom built in. Users should allocate
417  *	the headroom they think they need without accounting for the
418  *	built in space. The built in space is used for optimisations.
419  *
420  *	%NULL is returned if there is no free memory.
421  */
422 struct sk_buff *__netdev_alloc_skb(struct net_device *dev,
423 				   unsigned int length, gfp_t gfp_mask)
424 {
425 	struct sk_buff *skb = NULL;
426 	unsigned int fragsz = SKB_DATA_ALIGN(length + NET_SKB_PAD) +
427 			      SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
428 
429 	if (fragsz <= PAGE_SIZE && !(gfp_mask & (__GFP_WAIT | GFP_DMA))) {
430 		void *data;
431 
432 		if (sk_memalloc_socks())
433 			gfp_mask |= __GFP_MEMALLOC;
434 
435 		data = __netdev_alloc_frag(fragsz, gfp_mask);
436 
437 		if (likely(data)) {
438 			skb = build_skb(data, fragsz);
439 			if (unlikely(!skb))
440 				put_page(virt_to_head_page(data));
441 		}
442 	} else {
443 		skb = __alloc_skb(length + NET_SKB_PAD, gfp_mask,
444 				  SKB_ALLOC_RX, NUMA_NO_NODE);
445 	}
446 	if (likely(skb)) {
447 		skb_reserve(skb, NET_SKB_PAD);
448 		skb->dev = dev;
449 	}
450 	return skb;
451 }
452 EXPORT_SYMBOL(__netdev_alloc_skb);
453 
454 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
455 		     int size, unsigned int truesize)
456 {
457 	skb_fill_page_desc(skb, i, page, off, size);
458 	skb->len += size;
459 	skb->data_len += size;
460 	skb->truesize += truesize;
461 }
462 EXPORT_SYMBOL(skb_add_rx_frag);
463 
464 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
465 			  unsigned int truesize)
466 {
467 	skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
468 
469 	skb_frag_size_add(frag, size);
470 	skb->len += size;
471 	skb->data_len += size;
472 	skb->truesize += truesize;
473 }
474 EXPORT_SYMBOL(skb_coalesce_rx_frag);
475 
476 static void skb_drop_list(struct sk_buff **listp)
477 {
478 	kfree_skb_list(*listp);
479 	*listp = NULL;
480 }
481 
482 static inline void skb_drop_fraglist(struct sk_buff *skb)
483 {
484 	skb_drop_list(&skb_shinfo(skb)->frag_list);
485 }
486 
487 static void skb_clone_fraglist(struct sk_buff *skb)
488 {
489 	struct sk_buff *list;
490 
491 	skb_walk_frags(skb, list)
492 		skb_get(list);
493 }
494 
495 static void skb_free_head(struct sk_buff *skb)
496 {
497 	if (skb->head_frag)
498 		put_page(virt_to_head_page(skb->head));
499 	else
500 		kfree(skb->head);
501 }
502 
503 static void skb_release_data(struct sk_buff *skb)
504 {
505 	struct skb_shared_info *shinfo = skb_shinfo(skb);
506 	int i;
507 
508 	if (skb->cloned &&
509 	    atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
510 			      &shinfo->dataref))
511 		return;
512 
513 	for (i = 0; i < shinfo->nr_frags; i++)
514 		__skb_frag_unref(&shinfo->frags[i]);
515 
516 	/*
517 	 * If skb buf is from userspace, we need to notify the caller
518 	 * the lower device DMA has done;
519 	 */
520 	if (shinfo->tx_flags & SKBTX_DEV_ZEROCOPY) {
521 		struct ubuf_info *uarg;
522 
523 		uarg = shinfo->destructor_arg;
524 		if (uarg->callback)
525 			uarg->callback(uarg, true);
526 	}
527 
528 	if (shinfo->frag_list)
529 		kfree_skb_list(shinfo->frag_list);
530 
531 	skb_free_head(skb);
532 }
533 
534 /*
535  *	Free an skbuff by memory without cleaning the state.
536  */
537 static void kfree_skbmem(struct sk_buff *skb)
538 {
539 	struct sk_buff_fclones *fclones;
540 
541 	switch (skb->fclone) {
542 	case SKB_FCLONE_UNAVAILABLE:
543 		kmem_cache_free(skbuff_head_cache, skb);
544 		break;
545 
546 	case SKB_FCLONE_ORIG:
547 		fclones = container_of(skb, struct sk_buff_fclones, skb1);
548 		if (atomic_dec_and_test(&fclones->fclone_ref))
549 			kmem_cache_free(skbuff_fclone_cache, fclones);
550 		break;
551 
552 	case SKB_FCLONE_CLONE:
553 		fclones = container_of(skb, struct sk_buff_fclones, skb2);
554 
555 		/* Warning : We must perform the atomic_dec_and_test() before
556 		 * setting skb->fclone back to SKB_FCLONE_FREE, otherwise
557 		 * skb_clone() could set clone_ref to 2 before our decrement.
558 		 * Anyway, if we are going to free the structure, no need to
559 		 * rewrite skb->fclone.
560 		 */
561 		if (atomic_dec_and_test(&fclones->fclone_ref)) {
562 			kmem_cache_free(skbuff_fclone_cache, fclones);
563 		} else {
564 			/* The clone portion is available for
565 			 * fast-cloning again.
566 			 */
567 			skb->fclone = SKB_FCLONE_FREE;
568 		}
569 		break;
570 	}
571 }
572 
573 static void skb_release_head_state(struct sk_buff *skb)
574 {
575 	skb_dst_drop(skb);
576 #ifdef CONFIG_XFRM
577 	secpath_put(skb->sp);
578 #endif
579 	if (skb->destructor) {
580 		WARN_ON(in_irq());
581 		skb->destructor(skb);
582 	}
583 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
584 	nf_conntrack_put(skb->nfct);
585 #endif
586 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
587 	nf_bridge_put(skb->nf_bridge);
588 #endif
589 /* XXX: IS this still necessary? - JHS */
590 #ifdef CONFIG_NET_SCHED
591 	skb->tc_index = 0;
592 #ifdef CONFIG_NET_CLS_ACT
593 	skb->tc_verd = 0;
594 #endif
595 #endif
596 }
597 
598 /* Free everything but the sk_buff shell. */
599 static void skb_release_all(struct sk_buff *skb)
600 {
601 	skb_release_head_state(skb);
602 	if (likely(skb->head))
603 		skb_release_data(skb);
604 }
605 
606 /**
607  *	__kfree_skb - private function
608  *	@skb: buffer
609  *
610  *	Free an sk_buff. Release anything attached to the buffer.
611  *	Clean the state. This is an internal helper function. Users should
612  *	always call kfree_skb
613  */
614 
615 void __kfree_skb(struct sk_buff *skb)
616 {
617 	skb_release_all(skb);
618 	kfree_skbmem(skb);
619 }
620 EXPORT_SYMBOL(__kfree_skb);
621 
622 /**
623  *	kfree_skb - free an sk_buff
624  *	@skb: buffer to free
625  *
626  *	Drop a reference to the buffer and free it if the usage count has
627  *	hit zero.
628  */
629 void kfree_skb(struct sk_buff *skb)
630 {
631 	if (unlikely(!skb))
632 		return;
633 	if (likely(atomic_read(&skb->users) == 1))
634 		smp_rmb();
635 	else if (likely(!atomic_dec_and_test(&skb->users)))
636 		return;
637 	trace_kfree_skb(skb, __builtin_return_address(0));
638 	__kfree_skb(skb);
639 }
640 EXPORT_SYMBOL(kfree_skb);
641 
642 void kfree_skb_list(struct sk_buff *segs)
643 {
644 	while (segs) {
645 		struct sk_buff *next = segs->next;
646 
647 		kfree_skb(segs);
648 		segs = next;
649 	}
650 }
651 EXPORT_SYMBOL(kfree_skb_list);
652 
653 /**
654  *	skb_tx_error - report an sk_buff xmit error
655  *	@skb: buffer that triggered an error
656  *
657  *	Report xmit error if a device callback is tracking this skb.
658  *	skb must be freed afterwards.
659  */
660 void skb_tx_error(struct sk_buff *skb)
661 {
662 	if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
663 		struct ubuf_info *uarg;
664 
665 		uarg = skb_shinfo(skb)->destructor_arg;
666 		if (uarg->callback)
667 			uarg->callback(uarg, false);
668 		skb_shinfo(skb)->tx_flags &= ~SKBTX_DEV_ZEROCOPY;
669 	}
670 }
671 EXPORT_SYMBOL(skb_tx_error);
672 
673 /**
674  *	consume_skb - free an skbuff
675  *	@skb: buffer to free
676  *
677  *	Drop a ref to the buffer and free it if the usage count has hit zero
678  *	Functions identically to kfree_skb, but kfree_skb assumes that the frame
679  *	is being dropped after a failure and notes that
680  */
681 void consume_skb(struct sk_buff *skb)
682 {
683 	if (unlikely(!skb))
684 		return;
685 	if (likely(atomic_read(&skb->users) == 1))
686 		smp_rmb();
687 	else if (likely(!atomic_dec_and_test(&skb->users)))
688 		return;
689 	trace_consume_skb(skb);
690 	__kfree_skb(skb);
691 }
692 EXPORT_SYMBOL(consume_skb);
693 
694 /* Make sure a field is enclosed inside headers_start/headers_end section */
695 #define CHECK_SKB_FIELD(field) \
696 	BUILD_BUG_ON(offsetof(struct sk_buff, field) <		\
697 		     offsetof(struct sk_buff, headers_start));	\
698 	BUILD_BUG_ON(offsetof(struct sk_buff, field) >		\
699 		     offsetof(struct sk_buff, headers_end));	\
700 
701 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
702 {
703 	new->tstamp		= old->tstamp;
704 	/* We do not copy old->sk */
705 	new->dev		= old->dev;
706 	memcpy(new->cb, old->cb, sizeof(old->cb));
707 	skb_dst_copy(new, old);
708 #ifdef CONFIG_XFRM
709 	new->sp			= secpath_get(old->sp);
710 #endif
711 	__nf_copy(new, old, false);
712 
713 	/* Note : this field could be in headers_start/headers_end section
714 	 * It is not yet because we do not want to have a 16 bit hole
715 	 */
716 	new->queue_mapping = old->queue_mapping;
717 
718 	memcpy(&new->headers_start, &old->headers_start,
719 	       offsetof(struct sk_buff, headers_end) -
720 	       offsetof(struct sk_buff, headers_start));
721 	CHECK_SKB_FIELD(protocol);
722 	CHECK_SKB_FIELD(csum);
723 	CHECK_SKB_FIELD(hash);
724 	CHECK_SKB_FIELD(priority);
725 	CHECK_SKB_FIELD(skb_iif);
726 	CHECK_SKB_FIELD(vlan_proto);
727 	CHECK_SKB_FIELD(vlan_tci);
728 	CHECK_SKB_FIELD(transport_header);
729 	CHECK_SKB_FIELD(network_header);
730 	CHECK_SKB_FIELD(mac_header);
731 	CHECK_SKB_FIELD(inner_protocol);
732 	CHECK_SKB_FIELD(inner_transport_header);
733 	CHECK_SKB_FIELD(inner_network_header);
734 	CHECK_SKB_FIELD(inner_mac_header);
735 	CHECK_SKB_FIELD(mark);
736 #ifdef CONFIG_NETWORK_SECMARK
737 	CHECK_SKB_FIELD(secmark);
738 #endif
739 #ifdef CONFIG_NET_RX_BUSY_POLL
740 	CHECK_SKB_FIELD(napi_id);
741 #endif
742 #ifdef CONFIG_NET_SCHED
743 	CHECK_SKB_FIELD(tc_index);
744 #ifdef CONFIG_NET_CLS_ACT
745 	CHECK_SKB_FIELD(tc_verd);
746 #endif
747 #endif
748 
749 }
750 
751 /*
752  * You should not add any new code to this function.  Add it to
753  * __copy_skb_header above instead.
754  */
755 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
756 {
757 #define C(x) n->x = skb->x
758 
759 	n->next = n->prev = NULL;
760 	n->sk = NULL;
761 	__copy_skb_header(n, skb);
762 
763 	C(len);
764 	C(data_len);
765 	C(mac_len);
766 	n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
767 	n->cloned = 1;
768 	n->nohdr = 0;
769 	n->destructor = NULL;
770 	C(tail);
771 	C(end);
772 	C(head);
773 	C(head_frag);
774 	C(data);
775 	C(truesize);
776 	atomic_set(&n->users, 1);
777 
778 	atomic_inc(&(skb_shinfo(skb)->dataref));
779 	skb->cloned = 1;
780 
781 	return n;
782 #undef C
783 }
784 
785 /**
786  *	skb_morph	-	morph one skb into another
787  *	@dst: the skb to receive the contents
788  *	@src: the skb to supply the contents
789  *
790  *	This is identical to skb_clone except that the target skb is
791  *	supplied by the user.
792  *
793  *	The target skb is returned upon exit.
794  */
795 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
796 {
797 	skb_release_all(dst);
798 	return __skb_clone(dst, src);
799 }
800 EXPORT_SYMBOL_GPL(skb_morph);
801 
802 /**
803  *	skb_copy_ubufs	-	copy userspace skb frags buffers to kernel
804  *	@skb: the skb to modify
805  *	@gfp_mask: allocation priority
806  *
807  *	This must be called on SKBTX_DEV_ZEROCOPY skb.
808  *	It will copy all frags into kernel and drop the reference
809  *	to userspace pages.
810  *
811  *	If this function is called from an interrupt gfp_mask() must be
812  *	%GFP_ATOMIC.
813  *
814  *	Returns 0 on success or a negative error code on failure
815  *	to allocate kernel memory to copy to.
816  */
817 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask)
818 {
819 	int i;
820 	int num_frags = skb_shinfo(skb)->nr_frags;
821 	struct page *page, *head = NULL;
822 	struct ubuf_info *uarg = skb_shinfo(skb)->destructor_arg;
823 
824 	for (i = 0; i < num_frags; i++) {
825 		u8 *vaddr;
826 		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
827 
828 		page = alloc_page(gfp_mask);
829 		if (!page) {
830 			while (head) {
831 				struct page *next = (struct page *)page_private(head);
832 				put_page(head);
833 				head = next;
834 			}
835 			return -ENOMEM;
836 		}
837 		vaddr = kmap_atomic(skb_frag_page(f));
838 		memcpy(page_address(page),
839 		       vaddr + f->page_offset, skb_frag_size(f));
840 		kunmap_atomic(vaddr);
841 		set_page_private(page, (unsigned long)head);
842 		head = page;
843 	}
844 
845 	/* skb frags release userspace buffers */
846 	for (i = 0; i < num_frags; i++)
847 		skb_frag_unref(skb, i);
848 
849 	uarg->callback(uarg, false);
850 
851 	/* skb frags point to kernel buffers */
852 	for (i = num_frags - 1; i >= 0; i--) {
853 		__skb_fill_page_desc(skb, i, head, 0,
854 				     skb_shinfo(skb)->frags[i].size);
855 		head = (struct page *)page_private(head);
856 	}
857 
858 	skb_shinfo(skb)->tx_flags &= ~SKBTX_DEV_ZEROCOPY;
859 	return 0;
860 }
861 EXPORT_SYMBOL_GPL(skb_copy_ubufs);
862 
863 /**
864  *	skb_clone	-	duplicate an sk_buff
865  *	@skb: buffer to clone
866  *	@gfp_mask: allocation priority
867  *
868  *	Duplicate an &sk_buff. The new one is not owned by a socket. Both
869  *	copies share the same packet data but not structure. The new
870  *	buffer has a reference count of 1. If the allocation fails the
871  *	function returns %NULL otherwise the new buffer is returned.
872  *
873  *	If this function is called from an interrupt gfp_mask() must be
874  *	%GFP_ATOMIC.
875  */
876 
877 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
878 {
879 	struct sk_buff_fclones *fclones = container_of(skb,
880 						       struct sk_buff_fclones,
881 						       skb1);
882 	struct sk_buff *n = &fclones->skb2;
883 
884 	if (skb_orphan_frags(skb, gfp_mask))
885 		return NULL;
886 
887 	if (skb->fclone == SKB_FCLONE_ORIG &&
888 	    n->fclone == SKB_FCLONE_FREE) {
889 		n->fclone = SKB_FCLONE_CLONE;
890 		/* As our fastclone was free, clone_ref must be 1 at this point.
891 		 * We could use atomic_inc() here, but it is faster
892 		 * to set the final value.
893 		 */
894 		atomic_set(&fclones->fclone_ref, 2);
895 	} else {
896 		if (skb_pfmemalloc(skb))
897 			gfp_mask |= __GFP_MEMALLOC;
898 
899 		n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
900 		if (!n)
901 			return NULL;
902 
903 		kmemcheck_annotate_bitfield(n, flags1);
904 		n->fclone = SKB_FCLONE_UNAVAILABLE;
905 	}
906 
907 	return __skb_clone(n, skb);
908 }
909 EXPORT_SYMBOL(skb_clone);
910 
911 static void skb_headers_offset_update(struct sk_buff *skb, int off)
912 {
913 	/* Only adjust this if it actually is csum_start rather than csum */
914 	if (skb->ip_summed == CHECKSUM_PARTIAL)
915 		skb->csum_start += off;
916 	/* {transport,network,mac}_header and tail are relative to skb->head */
917 	skb->transport_header += off;
918 	skb->network_header   += off;
919 	if (skb_mac_header_was_set(skb))
920 		skb->mac_header += off;
921 	skb->inner_transport_header += off;
922 	skb->inner_network_header += off;
923 	skb->inner_mac_header += off;
924 }
925 
926 static void copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
927 {
928 	__copy_skb_header(new, old);
929 
930 	skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
931 	skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
932 	skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
933 }
934 
935 static inline int skb_alloc_rx_flag(const struct sk_buff *skb)
936 {
937 	if (skb_pfmemalloc(skb))
938 		return SKB_ALLOC_RX;
939 	return 0;
940 }
941 
942 /**
943  *	skb_copy	-	create private copy of an sk_buff
944  *	@skb: buffer to copy
945  *	@gfp_mask: allocation priority
946  *
947  *	Make a copy of both an &sk_buff and its data. This is used when the
948  *	caller wishes to modify the data and needs a private copy of the
949  *	data to alter. Returns %NULL on failure or the pointer to the buffer
950  *	on success. The returned buffer has a reference count of 1.
951  *
952  *	As by-product this function converts non-linear &sk_buff to linear
953  *	one, so that &sk_buff becomes completely private and caller is allowed
954  *	to modify all the data of returned buffer. This means that this
955  *	function is not recommended for use in circumstances when only
956  *	header is going to be modified. Use pskb_copy() instead.
957  */
958 
959 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
960 {
961 	int headerlen = skb_headroom(skb);
962 	unsigned int size = skb_end_offset(skb) + skb->data_len;
963 	struct sk_buff *n = __alloc_skb(size, gfp_mask,
964 					skb_alloc_rx_flag(skb), NUMA_NO_NODE);
965 
966 	if (!n)
967 		return NULL;
968 
969 	/* Set the data pointer */
970 	skb_reserve(n, headerlen);
971 	/* Set the tail pointer and length */
972 	skb_put(n, skb->len);
973 
974 	if (skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len))
975 		BUG();
976 
977 	copy_skb_header(n, skb);
978 	return n;
979 }
980 EXPORT_SYMBOL(skb_copy);
981 
982 /**
983  *	__pskb_copy_fclone	-  create copy of an sk_buff with private head.
984  *	@skb: buffer to copy
985  *	@headroom: headroom of new skb
986  *	@gfp_mask: allocation priority
987  *	@fclone: if true allocate the copy of the skb from the fclone
988  *	cache instead of the head cache; it is recommended to set this
989  *	to true for the cases where the copy will likely be cloned
990  *
991  *	Make a copy of both an &sk_buff and part of its data, located
992  *	in header. Fragmented data remain shared. This is used when
993  *	the caller wishes to modify only header of &sk_buff and needs
994  *	private copy of the header to alter. Returns %NULL on failure
995  *	or the pointer to the buffer on success.
996  *	The returned buffer has a reference count of 1.
997  */
998 
999 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1000 				   gfp_t gfp_mask, bool fclone)
1001 {
1002 	unsigned int size = skb_headlen(skb) + headroom;
1003 	int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0);
1004 	struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE);
1005 
1006 	if (!n)
1007 		goto out;
1008 
1009 	/* Set the data pointer */
1010 	skb_reserve(n, headroom);
1011 	/* Set the tail pointer and length */
1012 	skb_put(n, skb_headlen(skb));
1013 	/* Copy the bytes */
1014 	skb_copy_from_linear_data(skb, n->data, n->len);
1015 
1016 	n->truesize += skb->data_len;
1017 	n->data_len  = skb->data_len;
1018 	n->len	     = skb->len;
1019 
1020 	if (skb_shinfo(skb)->nr_frags) {
1021 		int i;
1022 
1023 		if (skb_orphan_frags(skb, gfp_mask)) {
1024 			kfree_skb(n);
1025 			n = NULL;
1026 			goto out;
1027 		}
1028 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1029 			skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
1030 			skb_frag_ref(skb, i);
1031 		}
1032 		skb_shinfo(n)->nr_frags = i;
1033 	}
1034 
1035 	if (skb_has_frag_list(skb)) {
1036 		skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
1037 		skb_clone_fraglist(n);
1038 	}
1039 
1040 	copy_skb_header(n, skb);
1041 out:
1042 	return n;
1043 }
1044 EXPORT_SYMBOL(__pskb_copy_fclone);
1045 
1046 /**
1047  *	pskb_expand_head - reallocate header of &sk_buff
1048  *	@skb: buffer to reallocate
1049  *	@nhead: room to add at head
1050  *	@ntail: room to add at tail
1051  *	@gfp_mask: allocation priority
1052  *
1053  *	Expands (or creates identical copy, if @nhead and @ntail are zero)
1054  *	header of @skb. &sk_buff itself is not changed. &sk_buff MUST have
1055  *	reference count of 1. Returns zero in the case of success or error,
1056  *	if expansion failed. In the last case, &sk_buff is not changed.
1057  *
1058  *	All the pointers pointing into skb header may change and must be
1059  *	reloaded after call to this function.
1060  */
1061 
1062 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
1063 		     gfp_t gfp_mask)
1064 {
1065 	int i;
1066 	u8 *data;
1067 	int size = nhead + skb_end_offset(skb) + ntail;
1068 	long off;
1069 
1070 	BUG_ON(nhead < 0);
1071 
1072 	if (skb_shared(skb))
1073 		BUG();
1074 
1075 	size = SKB_DATA_ALIGN(size);
1076 
1077 	if (skb_pfmemalloc(skb))
1078 		gfp_mask |= __GFP_MEMALLOC;
1079 	data = kmalloc_reserve(size + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
1080 			       gfp_mask, NUMA_NO_NODE, NULL);
1081 	if (!data)
1082 		goto nodata;
1083 	size = SKB_WITH_OVERHEAD(ksize(data));
1084 
1085 	/* Copy only real data... and, alas, header. This should be
1086 	 * optimized for the cases when header is void.
1087 	 */
1088 	memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head);
1089 
1090 	memcpy((struct skb_shared_info *)(data + size),
1091 	       skb_shinfo(skb),
1092 	       offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags]));
1093 
1094 	/*
1095 	 * if shinfo is shared we must drop the old head gracefully, but if it
1096 	 * is not we can just drop the old head and let the existing refcount
1097 	 * be since all we did is relocate the values
1098 	 */
1099 	if (skb_cloned(skb)) {
1100 		/* copy this zero copy skb frags */
1101 		if (skb_orphan_frags(skb, gfp_mask))
1102 			goto nofrags;
1103 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1104 			skb_frag_ref(skb, i);
1105 
1106 		if (skb_has_frag_list(skb))
1107 			skb_clone_fraglist(skb);
1108 
1109 		skb_release_data(skb);
1110 	} else {
1111 		skb_free_head(skb);
1112 	}
1113 	off = (data + nhead) - skb->head;
1114 
1115 	skb->head     = data;
1116 	skb->head_frag = 0;
1117 	skb->data    += off;
1118 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1119 	skb->end      = size;
1120 	off           = nhead;
1121 #else
1122 	skb->end      = skb->head + size;
1123 #endif
1124 	skb->tail	      += off;
1125 	skb_headers_offset_update(skb, nhead);
1126 	skb->cloned   = 0;
1127 	skb->hdr_len  = 0;
1128 	skb->nohdr    = 0;
1129 	atomic_set(&skb_shinfo(skb)->dataref, 1);
1130 	return 0;
1131 
1132 nofrags:
1133 	kfree(data);
1134 nodata:
1135 	return -ENOMEM;
1136 }
1137 EXPORT_SYMBOL(pskb_expand_head);
1138 
1139 /* Make private copy of skb with writable head and some headroom */
1140 
1141 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
1142 {
1143 	struct sk_buff *skb2;
1144 	int delta = headroom - skb_headroom(skb);
1145 
1146 	if (delta <= 0)
1147 		skb2 = pskb_copy(skb, GFP_ATOMIC);
1148 	else {
1149 		skb2 = skb_clone(skb, GFP_ATOMIC);
1150 		if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
1151 					     GFP_ATOMIC)) {
1152 			kfree_skb(skb2);
1153 			skb2 = NULL;
1154 		}
1155 	}
1156 	return skb2;
1157 }
1158 EXPORT_SYMBOL(skb_realloc_headroom);
1159 
1160 /**
1161  *	skb_copy_expand	-	copy and expand sk_buff
1162  *	@skb: buffer to copy
1163  *	@newheadroom: new free bytes at head
1164  *	@newtailroom: new free bytes at tail
1165  *	@gfp_mask: allocation priority
1166  *
1167  *	Make a copy of both an &sk_buff and its data and while doing so
1168  *	allocate additional space.
1169  *
1170  *	This is used when the caller wishes to modify the data and needs a
1171  *	private copy of the data to alter as well as more space for new fields.
1172  *	Returns %NULL on failure or the pointer to the buffer
1173  *	on success. The returned buffer has a reference count of 1.
1174  *
1175  *	You must pass %GFP_ATOMIC as the allocation priority if this function
1176  *	is called from an interrupt.
1177  */
1178 struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
1179 				int newheadroom, int newtailroom,
1180 				gfp_t gfp_mask)
1181 {
1182 	/*
1183 	 *	Allocate the copy buffer
1184 	 */
1185 	struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom,
1186 					gfp_mask, skb_alloc_rx_flag(skb),
1187 					NUMA_NO_NODE);
1188 	int oldheadroom = skb_headroom(skb);
1189 	int head_copy_len, head_copy_off;
1190 
1191 	if (!n)
1192 		return NULL;
1193 
1194 	skb_reserve(n, newheadroom);
1195 
1196 	/* Set the tail pointer and length */
1197 	skb_put(n, skb->len);
1198 
1199 	head_copy_len = oldheadroom;
1200 	head_copy_off = 0;
1201 	if (newheadroom <= head_copy_len)
1202 		head_copy_len = newheadroom;
1203 	else
1204 		head_copy_off = newheadroom - head_copy_len;
1205 
1206 	/* Copy the linear header and data. */
1207 	if (skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
1208 			  skb->len + head_copy_len))
1209 		BUG();
1210 
1211 	copy_skb_header(n, skb);
1212 
1213 	skb_headers_offset_update(n, newheadroom - oldheadroom);
1214 
1215 	return n;
1216 }
1217 EXPORT_SYMBOL(skb_copy_expand);
1218 
1219 /**
1220  *	skb_pad			-	zero pad the tail of an skb
1221  *	@skb: buffer to pad
1222  *	@pad: space to pad
1223  *
1224  *	Ensure that a buffer is followed by a padding area that is zero
1225  *	filled. Used by network drivers which may DMA or transfer data
1226  *	beyond the buffer end onto the wire.
1227  *
1228  *	May return error in out of memory cases. The skb is freed on error.
1229  */
1230 
1231 int skb_pad(struct sk_buff *skb, int pad)
1232 {
1233 	int err;
1234 	int ntail;
1235 
1236 	/* If the skbuff is non linear tailroom is always zero.. */
1237 	if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
1238 		memset(skb->data+skb->len, 0, pad);
1239 		return 0;
1240 	}
1241 
1242 	ntail = skb->data_len + pad - (skb->end - skb->tail);
1243 	if (likely(skb_cloned(skb) || ntail > 0)) {
1244 		err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
1245 		if (unlikely(err))
1246 			goto free_skb;
1247 	}
1248 
1249 	/* FIXME: The use of this function with non-linear skb's really needs
1250 	 * to be audited.
1251 	 */
1252 	err = skb_linearize(skb);
1253 	if (unlikely(err))
1254 		goto free_skb;
1255 
1256 	memset(skb->data + skb->len, 0, pad);
1257 	return 0;
1258 
1259 free_skb:
1260 	kfree_skb(skb);
1261 	return err;
1262 }
1263 EXPORT_SYMBOL(skb_pad);
1264 
1265 /**
1266  *	pskb_put - add data to the tail of a potentially fragmented buffer
1267  *	@skb: start of the buffer to use
1268  *	@tail: tail fragment of the buffer to use
1269  *	@len: amount of data to add
1270  *
1271  *	This function extends the used data area of the potentially
1272  *	fragmented buffer. @tail must be the last fragment of @skb -- or
1273  *	@skb itself. If this would exceed the total buffer size the kernel
1274  *	will panic. A pointer to the first byte of the extra data is
1275  *	returned.
1276  */
1277 
1278 unsigned char *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len)
1279 {
1280 	if (tail != skb) {
1281 		skb->data_len += len;
1282 		skb->len += len;
1283 	}
1284 	return skb_put(tail, len);
1285 }
1286 EXPORT_SYMBOL_GPL(pskb_put);
1287 
1288 /**
1289  *	skb_put - add data to a buffer
1290  *	@skb: buffer to use
1291  *	@len: amount of data to add
1292  *
1293  *	This function extends the used data area of the buffer. If this would
1294  *	exceed the total buffer size the kernel will panic. A pointer to the
1295  *	first byte of the extra data is returned.
1296  */
1297 unsigned char *skb_put(struct sk_buff *skb, unsigned int len)
1298 {
1299 	unsigned char *tmp = skb_tail_pointer(skb);
1300 	SKB_LINEAR_ASSERT(skb);
1301 	skb->tail += len;
1302 	skb->len  += len;
1303 	if (unlikely(skb->tail > skb->end))
1304 		skb_over_panic(skb, len, __builtin_return_address(0));
1305 	return tmp;
1306 }
1307 EXPORT_SYMBOL(skb_put);
1308 
1309 /**
1310  *	skb_push - add data to the start of a buffer
1311  *	@skb: buffer to use
1312  *	@len: amount of data to add
1313  *
1314  *	This function extends the used data area of the buffer at the buffer
1315  *	start. If this would exceed the total buffer headroom the kernel will
1316  *	panic. A pointer to the first byte of the extra data is returned.
1317  */
1318 unsigned char *skb_push(struct sk_buff *skb, unsigned int len)
1319 {
1320 	skb->data -= len;
1321 	skb->len  += len;
1322 	if (unlikely(skb->data<skb->head))
1323 		skb_under_panic(skb, len, __builtin_return_address(0));
1324 	return skb->data;
1325 }
1326 EXPORT_SYMBOL(skb_push);
1327 
1328 /**
1329  *	skb_pull - remove data from the start of a buffer
1330  *	@skb: buffer to use
1331  *	@len: amount of data to remove
1332  *
1333  *	This function removes data from the start of a buffer, returning
1334  *	the memory to the headroom. A pointer to the next data in the buffer
1335  *	is returned. Once the data has been pulled future pushes will overwrite
1336  *	the old data.
1337  */
1338 unsigned char *skb_pull(struct sk_buff *skb, unsigned int len)
1339 {
1340 	return skb_pull_inline(skb, len);
1341 }
1342 EXPORT_SYMBOL(skb_pull);
1343 
1344 /**
1345  *	skb_trim - remove end from a buffer
1346  *	@skb: buffer to alter
1347  *	@len: new length
1348  *
1349  *	Cut the length of a buffer down by removing data from the tail. If
1350  *	the buffer is already under the length specified it is not modified.
1351  *	The skb must be linear.
1352  */
1353 void skb_trim(struct sk_buff *skb, unsigned int len)
1354 {
1355 	if (skb->len > len)
1356 		__skb_trim(skb, len);
1357 }
1358 EXPORT_SYMBOL(skb_trim);
1359 
1360 /* Trims skb to length len. It can change skb pointers.
1361  */
1362 
1363 int ___pskb_trim(struct sk_buff *skb, unsigned int len)
1364 {
1365 	struct sk_buff **fragp;
1366 	struct sk_buff *frag;
1367 	int offset = skb_headlen(skb);
1368 	int nfrags = skb_shinfo(skb)->nr_frags;
1369 	int i;
1370 	int err;
1371 
1372 	if (skb_cloned(skb) &&
1373 	    unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
1374 		return err;
1375 
1376 	i = 0;
1377 	if (offset >= len)
1378 		goto drop_pages;
1379 
1380 	for (; i < nfrags; i++) {
1381 		int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]);
1382 
1383 		if (end < len) {
1384 			offset = end;
1385 			continue;
1386 		}
1387 
1388 		skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset);
1389 
1390 drop_pages:
1391 		skb_shinfo(skb)->nr_frags = i;
1392 
1393 		for (; i < nfrags; i++)
1394 			skb_frag_unref(skb, i);
1395 
1396 		if (skb_has_frag_list(skb))
1397 			skb_drop_fraglist(skb);
1398 		goto done;
1399 	}
1400 
1401 	for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
1402 	     fragp = &frag->next) {
1403 		int end = offset + frag->len;
1404 
1405 		if (skb_shared(frag)) {
1406 			struct sk_buff *nfrag;
1407 
1408 			nfrag = skb_clone(frag, GFP_ATOMIC);
1409 			if (unlikely(!nfrag))
1410 				return -ENOMEM;
1411 
1412 			nfrag->next = frag->next;
1413 			consume_skb(frag);
1414 			frag = nfrag;
1415 			*fragp = frag;
1416 		}
1417 
1418 		if (end < len) {
1419 			offset = end;
1420 			continue;
1421 		}
1422 
1423 		if (end > len &&
1424 		    unlikely((err = pskb_trim(frag, len - offset))))
1425 			return err;
1426 
1427 		if (frag->next)
1428 			skb_drop_list(&frag->next);
1429 		break;
1430 	}
1431 
1432 done:
1433 	if (len > skb_headlen(skb)) {
1434 		skb->data_len -= skb->len - len;
1435 		skb->len       = len;
1436 	} else {
1437 		skb->len       = len;
1438 		skb->data_len  = 0;
1439 		skb_set_tail_pointer(skb, len);
1440 	}
1441 
1442 	return 0;
1443 }
1444 EXPORT_SYMBOL(___pskb_trim);
1445 
1446 /**
1447  *	__pskb_pull_tail - advance tail of skb header
1448  *	@skb: buffer to reallocate
1449  *	@delta: number of bytes to advance tail
1450  *
1451  *	The function makes a sense only on a fragmented &sk_buff,
1452  *	it expands header moving its tail forward and copying necessary
1453  *	data from fragmented part.
1454  *
1455  *	&sk_buff MUST have reference count of 1.
1456  *
1457  *	Returns %NULL (and &sk_buff does not change) if pull failed
1458  *	or value of new tail of skb in the case of success.
1459  *
1460  *	All the pointers pointing into skb header may change and must be
1461  *	reloaded after call to this function.
1462  */
1463 
1464 /* Moves tail of skb head forward, copying data from fragmented part,
1465  * when it is necessary.
1466  * 1. It may fail due to malloc failure.
1467  * 2. It may change skb pointers.
1468  *
1469  * It is pretty complicated. Luckily, it is called only in exceptional cases.
1470  */
1471 unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta)
1472 {
1473 	/* If skb has not enough free space at tail, get new one
1474 	 * plus 128 bytes for future expansions. If we have enough
1475 	 * room at tail, reallocate without expansion only if skb is cloned.
1476 	 */
1477 	int i, k, eat = (skb->tail + delta) - skb->end;
1478 
1479 	if (eat > 0 || skb_cloned(skb)) {
1480 		if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
1481 				     GFP_ATOMIC))
1482 			return NULL;
1483 	}
1484 
1485 	if (skb_copy_bits(skb, skb_headlen(skb), skb_tail_pointer(skb), delta))
1486 		BUG();
1487 
1488 	/* Optimization: no fragments, no reasons to preestimate
1489 	 * size of pulled pages. Superb.
1490 	 */
1491 	if (!skb_has_frag_list(skb))
1492 		goto pull_pages;
1493 
1494 	/* Estimate size of pulled pages. */
1495 	eat = delta;
1496 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1497 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
1498 
1499 		if (size >= eat)
1500 			goto pull_pages;
1501 		eat -= size;
1502 	}
1503 
1504 	/* If we need update frag list, we are in troubles.
1505 	 * Certainly, it possible to add an offset to skb data,
1506 	 * but taking into account that pulling is expected to
1507 	 * be very rare operation, it is worth to fight against
1508 	 * further bloating skb head and crucify ourselves here instead.
1509 	 * Pure masohism, indeed. 8)8)
1510 	 */
1511 	if (eat) {
1512 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
1513 		struct sk_buff *clone = NULL;
1514 		struct sk_buff *insp = NULL;
1515 
1516 		do {
1517 			BUG_ON(!list);
1518 
1519 			if (list->len <= eat) {
1520 				/* Eaten as whole. */
1521 				eat -= list->len;
1522 				list = list->next;
1523 				insp = list;
1524 			} else {
1525 				/* Eaten partially. */
1526 
1527 				if (skb_shared(list)) {
1528 					/* Sucks! We need to fork list. :-( */
1529 					clone = skb_clone(list, GFP_ATOMIC);
1530 					if (!clone)
1531 						return NULL;
1532 					insp = list->next;
1533 					list = clone;
1534 				} else {
1535 					/* This may be pulled without
1536 					 * problems. */
1537 					insp = list;
1538 				}
1539 				if (!pskb_pull(list, eat)) {
1540 					kfree_skb(clone);
1541 					return NULL;
1542 				}
1543 				break;
1544 			}
1545 		} while (eat);
1546 
1547 		/* Free pulled out fragments. */
1548 		while ((list = skb_shinfo(skb)->frag_list) != insp) {
1549 			skb_shinfo(skb)->frag_list = list->next;
1550 			kfree_skb(list);
1551 		}
1552 		/* And insert new clone at head. */
1553 		if (clone) {
1554 			clone->next = list;
1555 			skb_shinfo(skb)->frag_list = clone;
1556 		}
1557 	}
1558 	/* Success! Now we may commit changes to skb data. */
1559 
1560 pull_pages:
1561 	eat = delta;
1562 	k = 0;
1563 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1564 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
1565 
1566 		if (size <= eat) {
1567 			skb_frag_unref(skb, i);
1568 			eat -= size;
1569 		} else {
1570 			skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i];
1571 			if (eat) {
1572 				skb_shinfo(skb)->frags[k].page_offset += eat;
1573 				skb_frag_size_sub(&skb_shinfo(skb)->frags[k], eat);
1574 				eat = 0;
1575 			}
1576 			k++;
1577 		}
1578 	}
1579 	skb_shinfo(skb)->nr_frags = k;
1580 
1581 	skb->tail     += delta;
1582 	skb->data_len -= delta;
1583 
1584 	return skb_tail_pointer(skb);
1585 }
1586 EXPORT_SYMBOL(__pskb_pull_tail);
1587 
1588 /**
1589  *	skb_copy_bits - copy bits from skb to kernel buffer
1590  *	@skb: source skb
1591  *	@offset: offset in source
1592  *	@to: destination buffer
1593  *	@len: number of bytes to copy
1594  *
1595  *	Copy the specified number of bytes from the source skb to the
1596  *	destination buffer.
1597  *
1598  *	CAUTION ! :
1599  *		If its prototype is ever changed,
1600  *		check arch/{*}/net/{*}.S files,
1601  *		since it is called from BPF assembly code.
1602  */
1603 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
1604 {
1605 	int start = skb_headlen(skb);
1606 	struct sk_buff *frag_iter;
1607 	int i, copy;
1608 
1609 	if (offset > (int)skb->len - len)
1610 		goto fault;
1611 
1612 	/* Copy header. */
1613 	if ((copy = start - offset) > 0) {
1614 		if (copy > len)
1615 			copy = len;
1616 		skb_copy_from_linear_data_offset(skb, offset, to, copy);
1617 		if ((len -= copy) == 0)
1618 			return 0;
1619 		offset += copy;
1620 		to     += copy;
1621 	}
1622 
1623 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1624 		int end;
1625 		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
1626 
1627 		WARN_ON(start > offset + len);
1628 
1629 		end = start + skb_frag_size(f);
1630 		if ((copy = end - offset) > 0) {
1631 			u8 *vaddr;
1632 
1633 			if (copy > len)
1634 				copy = len;
1635 
1636 			vaddr = kmap_atomic(skb_frag_page(f));
1637 			memcpy(to,
1638 			       vaddr + f->page_offset + offset - start,
1639 			       copy);
1640 			kunmap_atomic(vaddr);
1641 
1642 			if ((len -= copy) == 0)
1643 				return 0;
1644 			offset += copy;
1645 			to     += copy;
1646 		}
1647 		start = end;
1648 	}
1649 
1650 	skb_walk_frags(skb, frag_iter) {
1651 		int end;
1652 
1653 		WARN_ON(start > offset + len);
1654 
1655 		end = start + frag_iter->len;
1656 		if ((copy = end - offset) > 0) {
1657 			if (copy > len)
1658 				copy = len;
1659 			if (skb_copy_bits(frag_iter, offset - start, to, copy))
1660 				goto fault;
1661 			if ((len -= copy) == 0)
1662 				return 0;
1663 			offset += copy;
1664 			to     += copy;
1665 		}
1666 		start = end;
1667 	}
1668 
1669 	if (!len)
1670 		return 0;
1671 
1672 fault:
1673 	return -EFAULT;
1674 }
1675 EXPORT_SYMBOL(skb_copy_bits);
1676 
1677 /*
1678  * Callback from splice_to_pipe(), if we need to release some pages
1679  * at the end of the spd in case we error'ed out in filling the pipe.
1680  */
1681 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
1682 {
1683 	put_page(spd->pages[i]);
1684 }
1685 
1686 static struct page *linear_to_page(struct page *page, unsigned int *len,
1687 				   unsigned int *offset,
1688 				   struct sock *sk)
1689 {
1690 	struct page_frag *pfrag = sk_page_frag(sk);
1691 
1692 	if (!sk_page_frag_refill(sk, pfrag))
1693 		return NULL;
1694 
1695 	*len = min_t(unsigned int, *len, pfrag->size - pfrag->offset);
1696 
1697 	memcpy(page_address(pfrag->page) + pfrag->offset,
1698 	       page_address(page) + *offset, *len);
1699 	*offset = pfrag->offset;
1700 	pfrag->offset += *len;
1701 
1702 	return pfrag->page;
1703 }
1704 
1705 static bool spd_can_coalesce(const struct splice_pipe_desc *spd,
1706 			     struct page *page,
1707 			     unsigned int offset)
1708 {
1709 	return	spd->nr_pages &&
1710 		spd->pages[spd->nr_pages - 1] == page &&
1711 		(spd->partial[spd->nr_pages - 1].offset +
1712 		 spd->partial[spd->nr_pages - 1].len == offset);
1713 }
1714 
1715 /*
1716  * Fill page/offset/length into spd, if it can hold more pages.
1717  */
1718 static bool spd_fill_page(struct splice_pipe_desc *spd,
1719 			  struct pipe_inode_info *pipe, struct page *page,
1720 			  unsigned int *len, unsigned int offset,
1721 			  bool linear,
1722 			  struct sock *sk)
1723 {
1724 	if (unlikely(spd->nr_pages == MAX_SKB_FRAGS))
1725 		return true;
1726 
1727 	if (linear) {
1728 		page = linear_to_page(page, len, &offset, sk);
1729 		if (!page)
1730 			return true;
1731 	}
1732 	if (spd_can_coalesce(spd, page, offset)) {
1733 		spd->partial[spd->nr_pages - 1].len += *len;
1734 		return false;
1735 	}
1736 	get_page(page);
1737 	spd->pages[spd->nr_pages] = page;
1738 	spd->partial[spd->nr_pages].len = *len;
1739 	spd->partial[spd->nr_pages].offset = offset;
1740 	spd->nr_pages++;
1741 
1742 	return false;
1743 }
1744 
1745 static bool __splice_segment(struct page *page, unsigned int poff,
1746 			     unsigned int plen, unsigned int *off,
1747 			     unsigned int *len,
1748 			     struct splice_pipe_desc *spd, bool linear,
1749 			     struct sock *sk,
1750 			     struct pipe_inode_info *pipe)
1751 {
1752 	if (!*len)
1753 		return true;
1754 
1755 	/* skip this segment if already processed */
1756 	if (*off >= plen) {
1757 		*off -= plen;
1758 		return false;
1759 	}
1760 
1761 	/* ignore any bits we already processed */
1762 	poff += *off;
1763 	plen -= *off;
1764 	*off = 0;
1765 
1766 	do {
1767 		unsigned int flen = min(*len, plen);
1768 
1769 		if (spd_fill_page(spd, pipe, page, &flen, poff,
1770 				  linear, sk))
1771 			return true;
1772 		poff += flen;
1773 		plen -= flen;
1774 		*len -= flen;
1775 	} while (*len && plen);
1776 
1777 	return false;
1778 }
1779 
1780 /*
1781  * Map linear and fragment data from the skb to spd. It reports true if the
1782  * pipe is full or if we already spliced the requested length.
1783  */
1784 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe,
1785 			      unsigned int *offset, unsigned int *len,
1786 			      struct splice_pipe_desc *spd, struct sock *sk)
1787 {
1788 	int seg;
1789 
1790 	/* map the linear part :
1791 	 * If skb->head_frag is set, this 'linear' part is backed by a
1792 	 * fragment, and if the head is not shared with any clones then
1793 	 * we can avoid a copy since we own the head portion of this page.
1794 	 */
1795 	if (__splice_segment(virt_to_page(skb->data),
1796 			     (unsigned long) skb->data & (PAGE_SIZE - 1),
1797 			     skb_headlen(skb),
1798 			     offset, len, spd,
1799 			     skb_head_is_locked(skb),
1800 			     sk, pipe))
1801 		return true;
1802 
1803 	/*
1804 	 * then map the fragments
1805 	 */
1806 	for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
1807 		const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
1808 
1809 		if (__splice_segment(skb_frag_page(f),
1810 				     f->page_offset, skb_frag_size(f),
1811 				     offset, len, spd, false, sk, pipe))
1812 			return true;
1813 	}
1814 
1815 	return false;
1816 }
1817 
1818 /*
1819  * Map data from the skb to a pipe. Should handle both the linear part,
1820  * the fragments, and the frag list. It does NOT handle frag lists within
1821  * the frag list, if such a thing exists. We'd probably need to recurse to
1822  * handle that cleanly.
1823  */
1824 int skb_splice_bits(struct sk_buff *skb, unsigned int offset,
1825 		    struct pipe_inode_info *pipe, unsigned int tlen,
1826 		    unsigned int flags)
1827 {
1828 	struct partial_page partial[MAX_SKB_FRAGS];
1829 	struct page *pages[MAX_SKB_FRAGS];
1830 	struct splice_pipe_desc spd = {
1831 		.pages = pages,
1832 		.partial = partial,
1833 		.nr_pages_max = MAX_SKB_FRAGS,
1834 		.flags = flags,
1835 		.ops = &nosteal_pipe_buf_ops,
1836 		.spd_release = sock_spd_release,
1837 	};
1838 	struct sk_buff *frag_iter;
1839 	struct sock *sk = skb->sk;
1840 	int ret = 0;
1841 
1842 	/*
1843 	 * __skb_splice_bits() only fails if the output has no room left,
1844 	 * so no point in going over the frag_list for the error case.
1845 	 */
1846 	if (__skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk))
1847 		goto done;
1848 	else if (!tlen)
1849 		goto done;
1850 
1851 	/*
1852 	 * now see if we have a frag_list to map
1853 	 */
1854 	skb_walk_frags(skb, frag_iter) {
1855 		if (!tlen)
1856 			break;
1857 		if (__skb_splice_bits(frag_iter, pipe, &offset, &tlen, &spd, sk))
1858 			break;
1859 	}
1860 
1861 done:
1862 	if (spd.nr_pages) {
1863 		/*
1864 		 * Drop the socket lock, otherwise we have reverse
1865 		 * locking dependencies between sk_lock and i_mutex
1866 		 * here as compared to sendfile(). We enter here
1867 		 * with the socket lock held, and splice_to_pipe() will
1868 		 * grab the pipe inode lock. For sendfile() emulation,
1869 		 * we call into ->sendpage() with the i_mutex lock held
1870 		 * and networking will grab the socket lock.
1871 		 */
1872 		release_sock(sk);
1873 		ret = splice_to_pipe(pipe, &spd);
1874 		lock_sock(sk);
1875 	}
1876 
1877 	return ret;
1878 }
1879 
1880 /**
1881  *	skb_store_bits - store bits from kernel buffer to skb
1882  *	@skb: destination buffer
1883  *	@offset: offset in destination
1884  *	@from: source buffer
1885  *	@len: number of bytes to copy
1886  *
1887  *	Copy the specified number of bytes from the source buffer to the
1888  *	destination skb.  This function handles all the messy bits of
1889  *	traversing fragment lists and such.
1890  */
1891 
1892 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
1893 {
1894 	int start = skb_headlen(skb);
1895 	struct sk_buff *frag_iter;
1896 	int i, copy;
1897 
1898 	if (offset > (int)skb->len - len)
1899 		goto fault;
1900 
1901 	if ((copy = start - offset) > 0) {
1902 		if (copy > len)
1903 			copy = len;
1904 		skb_copy_to_linear_data_offset(skb, offset, from, copy);
1905 		if ((len -= copy) == 0)
1906 			return 0;
1907 		offset += copy;
1908 		from += copy;
1909 	}
1910 
1911 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1912 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1913 		int end;
1914 
1915 		WARN_ON(start > offset + len);
1916 
1917 		end = start + skb_frag_size(frag);
1918 		if ((copy = end - offset) > 0) {
1919 			u8 *vaddr;
1920 
1921 			if (copy > len)
1922 				copy = len;
1923 
1924 			vaddr = kmap_atomic(skb_frag_page(frag));
1925 			memcpy(vaddr + frag->page_offset + offset - start,
1926 			       from, copy);
1927 			kunmap_atomic(vaddr);
1928 
1929 			if ((len -= copy) == 0)
1930 				return 0;
1931 			offset += copy;
1932 			from += copy;
1933 		}
1934 		start = end;
1935 	}
1936 
1937 	skb_walk_frags(skb, frag_iter) {
1938 		int end;
1939 
1940 		WARN_ON(start > offset + len);
1941 
1942 		end = start + frag_iter->len;
1943 		if ((copy = end - offset) > 0) {
1944 			if (copy > len)
1945 				copy = len;
1946 			if (skb_store_bits(frag_iter, offset - start,
1947 					   from, copy))
1948 				goto fault;
1949 			if ((len -= copy) == 0)
1950 				return 0;
1951 			offset += copy;
1952 			from += copy;
1953 		}
1954 		start = end;
1955 	}
1956 	if (!len)
1957 		return 0;
1958 
1959 fault:
1960 	return -EFAULT;
1961 }
1962 EXPORT_SYMBOL(skb_store_bits);
1963 
1964 /* Checksum skb data. */
1965 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
1966 		      __wsum csum, const struct skb_checksum_ops *ops)
1967 {
1968 	int start = skb_headlen(skb);
1969 	int i, copy = start - offset;
1970 	struct sk_buff *frag_iter;
1971 	int pos = 0;
1972 
1973 	/* Checksum header. */
1974 	if (copy > 0) {
1975 		if (copy > len)
1976 			copy = len;
1977 		csum = ops->update(skb->data + offset, copy, csum);
1978 		if ((len -= copy) == 0)
1979 			return csum;
1980 		offset += copy;
1981 		pos	= copy;
1982 	}
1983 
1984 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1985 		int end;
1986 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1987 
1988 		WARN_ON(start > offset + len);
1989 
1990 		end = start + skb_frag_size(frag);
1991 		if ((copy = end - offset) > 0) {
1992 			__wsum csum2;
1993 			u8 *vaddr;
1994 
1995 			if (copy > len)
1996 				copy = len;
1997 			vaddr = kmap_atomic(skb_frag_page(frag));
1998 			csum2 = ops->update(vaddr + frag->page_offset +
1999 					    offset - start, copy, 0);
2000 			kunmap_atomic(vaddr);
2001 			csum = ops->combine(csum, csum2, pos, copy);
2002 			if (!(len -= copy))
2003 				return csum;
2004 			offset += copy;
2005 			pos    += copy;
2006 		}
2007 		start = end;
2008 	}
2009 
2010 	skb_walk_frags(skb, frag_iter) {
2011 		int end;
2012 
2013 		WARN_ON(start > offset + len);
2014 
2015 		end = start + frag_iter->len;
2016 		if ((copy = end - offset) > 0) {
2017 			__wsum csum2;
2018 			if (copy > len)
2019 				copy = len;
2020 			csum2 = __skb_checksum(frag_iter, offset - start,
2021 					       copy, 0, ops);
2022 			csum = ops->combine(csum, csum2, pos, copy);
2023 			if ((len -= copy) == 0)
2024 				return csum;
2025 			offset += copy;
2026 			pos    += copy;
2027 		}
2028 		start = end;
2029 	}
2030 	BUG_ON(len);
2031 
2032 	return csum;
2033 }
2034 EXPORT_SYMBOL(__skb_checksum);
2035 
2036 __wsum skb_checksum(const struct sk_buff *skb, int offset,
2037 		    int len, __wsum csum)
2038 {
2039 	const struct skb_checksum_ops ops = {
2040 		.update  = csum_partial_ext,
2041 		.combine = csum_block_add_ext,
2042 	};
2043 
2044 	return __skb_checksum(skb, offset, len, csum, &ops);
2045 }
2046 EXPORT_SYMBOL(skb_checksum);
2047 
2048 /* Both of above in one bottle. */
2049 
2050 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
2051 				    u8 *to, int len, __wsum csum)
2052 {
2053 	int start = skb_headlen(skb);
2054 	int i, copy = start - offset;
2055 	struct sk_buff *frag_iter;
2056 	int pos = 0;
2057 
2058 	/* Copy header. */
2059 	if (copy > 0) {
2060 		if (copy > len)
2061 			copy = len;
2062 		csum = csum_partial_copy_nocheck(skb->data + offset, to,
2063 						 copy, csum);
2064 		if ((len -= copy) == 0)
2065 			return csum;
2066 		offset += copy;
2067 		to     += copy;
2068 		pos	= copy;
2069 	}
2070 
2071 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2072 		int end;
2073 
2074 		WARN_ON(start > offset + len);
2075 
2076 		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
2077 		if ((copy = end - offset) > 0) {
2078 			__wsum csum2;
2079 			u8 *vaddr;
2080 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2081 
2082 			if (copy > len)
2083 				copy = len;
2084 			vaddr = kmap_atomic(skb_frag_page(frag));
2085 			csum2 = csum_partial_copy_nocheck(vaddr +
2086 							  frag->page_offset +
2087 							  offset - start, to,
2088 							  copy, 0);
2089 			kunmap_atomic(vaddr);
2090 			csum = csum_block_add(csum, csum2, pos);
2091 			if (!(len -= copy))
2092 				return csum;
2093 			offset += copy;
2094 			to     += copy;
2095 			pos    += copy;
2096 		}
2097 		start = end;
2098 	}
2099 
2100 	skb_walk_frags(skb, frag_iter) {
2101 		__wsum csum2;
2102 		int end;
2103 
2104 		WARN_ON(start > offset + len);
2105 
2106 		end = start + frag_iter->len;
2107 		if ((copy = end - offset) > 0) {
2108 			if (copy > len)
2109 				copy = len;
2110 			csum2 = skb_copy_and_csum_bits(frag_iter,
2111 						       offset - start,
2112 						       to, copy, 0);
2113 			csum = csum_block_add(csum, csum2, pos);
2114 			if ((len -= copy) == 0)
2115 				return csum;
2116 			offset += copy;
2117 			to     += copy;
2118 			pos    += copy;
2119 		}
2120 		start = end;
2121 	}
2122 	BUG_ON(len);
2123 	return csum;
2124 }
2125 EXPORT_SYMBOL(skb_copy_and_csum_bits);
2126 
2127  /**
2128  *	skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy()
2129  *	@from: source buffer
2130  *
2131  *	Calculates the amount of linear headroom needed in the 'to' skb passed
2132  *	into skb_zerocopy().
2133  */
2134 unsigned int
2135 skb_zerocopy_headlen(const struct sk_buff *from)
2136 {
2137 	unsigned int hlen = 0;
2138 
2139 	if (!from->head_frag ||
2140 	    skb_headlen(from) < L1_CACHE_BYTES ||
2141 	    skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS)
2142 		hlen = skb_headlen(from);
2143 
2144 	if (skb_has_frag_list(from))
2145 		hlen = from->len;
2146 
2147 	return hlen;
2148 }
2149 EXPORT_SYMBOL_GPL(skb_zerocopy_headlen);
2150 
2151 /**
2152  *	skb_zerocopy - Zero copy skb to skb
2153  *	@to: destination buffer
2154  *	@from: source buffer
2155  *	@len: number of bytes to copy from source buffer
2156  *	@hlen: size of linear headroom in destination buffer
2157  *
2158  *	Copies up to `len` bytes from `from` to `to` by creating references
2159  *	to the frags in the source buffer.
2160  *
2161  *	The `hlen` as calculated by skb_zerocopy_headlen() specifies the
2162  *	headroom in the `to` buffer.
2163  *
2164  *	Return value:
2165  *	0: everything is OK
2166  *	-ENOMEM: couldn't orphan frags of @from due to lack of memory
2167  *	-EFAULT: skb_copy_bits() found some problem with skb geometry
2168  */
2169 int
2170 skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen)
2171 {
2172 	int i, j = 0;
2173 	int plen = 0; /* length of skb->head fragment */
2174 	int ret;
2175 	struct page *page;
2176 	unsigned int offset;
2177 
2178 	BUG_ON(!from->head_frag && !hlen);
2179 
2180 	/* dont bother with small payloads */
2181 	if (len <= skb_tailroom(to))
2182 		return skb_copy_bits(from, 0, skb_put(to, len), len);
2183 
2184 	if (hlen) {
2185 		ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen);
2186 		if (unlikely(ret))
2187 			return ret;
2188 		len -= hlen;
2189 	} else {
2190 		plen = min_t(int, skb_headlen(from), len);
2191 		if (plen) {
2192 			page = virt_to_head_page(from->head);
2193 			offset = from->data - (unsigned char *)page_address(page);
2194 			__skb_fill_page_desc(to, 0, page, offset, plen);
2195 			get_page(page);
2196 			j = 1;
2197 			len -= plen;
2198 		}
2199 	}
2200 
2201 	to->truesize += len + plen;
2202 	to->len += len + plen;
2203 	to->data_len += len + plen;
2204 
2205 	if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) {
2206 		skb_tx_error(from);
2207 		return -ENOMEM;
2208 	}
2209 
2210 	for (i = 0; i < skb_shinfo(from)->nr_frags; i++) {
2211 		if (!len)
2212 			break;
2213 		skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i];
2214 		skb_shinfo(to)->frags[j].size = min_t(int, skb_shinfo(to)->frags[j].size, len);
2215 		len -= skb_shinfo(to)->frags[j].size;
2216 		skb_frag_ref(to, j);
2217 		j++;
2218 	}
2219 	skb_shinfo(to)->nr_frags = j;
2220 
2221 	return 0;
2222 }
2223 EXPORT_SYMBOL_GPL(skb_zerocopy);
2224 
2225 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
2226 {
2227 	__wsum csum;
2228 	long csstart;
2229 
2230 	if (skb->ip_summed == CHECKSUM_PARTIAL)
2231 		csstart = skb_checksum_start_offset(skb);
2232 	else
2233 		csstart = skb_headlen(skb);
2234 
2235 	BUG_ON(csstart > skb_headlen(skb));
2236 
2237 	skb_copy_from_linear_data(skb, to, csstart);
2238 
2239 	csum = 0;
2240 	if (csstart != skb->len)
2241 		csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
2242 					      skb->len - csstart, 0);
2243 
2244 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
2245 		long csstuff = csstart + skb->csum_offset;
2246 
2247 		*((__sum16 *)(to + csstuff)) = csum_fold(csum);
2248 	}
2249 }
2250 EXPORT_SYMBOL(skb_copy_and_csum_dev);
2251 
2252 /**
2253  *	skb_dequeue - remove from the head of the queue
2254  *	@list: list to dequeue from
2255  *
2256  *	Remove the head of the list. The list lock is taken so the function
2257  *	may be used safely with other locking list functions. The head item is
2258  *	returned or %NULL if the list is empty.
2259  */
2260 
2261 struct sk_buff *skb_dequeue(struct sk_buff_head *list)
2262 {
2263 	unsigned long flags;
2264 	struct sk_buff *result;
2265 
2266 	spin_lock_irqsave(&list->lock, flags);
2267 	result = __skb_dequeue(list);
2268 	spin_unlock_irqrestore(&list->lock, flags);
2269 	return result;
2270 }
2271 EXPORT_SYMBOL(skb_dequeue);
2272 
2273 /**
2274  *	skb_dequeue_tail - remove from the tail of the queue
2275  *	@list: list to dequeue from
2276  *
2277  *	Remove the tail of the list. The list lock is taken so the function
2278  *	may be used safely with other locking list functions. The tail item is
2279  *	returned or %NULL if the list is empty.
2280  */
2281 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
2282 {
2283 	unsigned long flags;
2284 	struct sk_buff *result;
2285 
2286 	spin_lock_irqsave(&list->lock, flags);
2287 	result = __skb_dequeue_tail(list);
2288 	spin_unlock_irqrestore(&list->lock, flags);
2289 	return result;
2290 }
2291 EXPORT_SYMBOL(skb_dequeue_tail);
2292 
2293 /**
2294  *	skb_queue_purge - empty a list
2295  *	@list: list to empty
2296  *
2297  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
2298  *	the list and one reference dropped. This function takes the list
2299  *	lock and is atomic with respect to other list locking functions.
2300  */
2301 void skb_queue_purge(struct sk_buff_head *list)
2302 {
2303 	struct sk_buff *skb;
2304 	while ((skb = skb_dequeue(list)) != NULL)
2305 		kfree_skb(skb);
2306 }
2307 EXPORT_SYMBOL(skb_queue_purge);
2308 
2309 /**
2310  *	skb_queue_head - queue a buffer at the list head
2311  *	@list: list to use
2312  *	@newsk: buffer to queue
2313  *
2314  *	Queue a buffer at the start of the list. This function takes the
2315  *	list lock and can be used safely with other locking &sk_buff functions
2316  *	safely.
2317  *
2318  *	A buffer cannot be placed on two lists at the same time.
2319  */
2320 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
2321 {
2322 	unsigned long flags;
2323 
2324 	spin_lock_irqsave(&list->lock, flags);
2325 	__skb_queue_head(list, newsk);
2326 	spin_unlock_irqrestore(&list->lock, flags);
2327 }
2328 EXPORT_SYMBOL(skb_queue_head);
2329 
2330 /**
2331  *	skb_queue_tail - queue a buffer at the list tail
2332  *	@list: list to use
2333  *	@newsk: buffer to queue
2334  *
2335  *	Queue a buffer at the tail of the list. This function takes the
2336  *	list lock and can be used safely with other locking &sk_buff functions
2337  *	safely.
2338  *
2339  *	A buffer cannot be placed on two lists at the same time.
2340  */
2341 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
2342 {
2343 	unsigned long flags;
2344 
2345 	spin_lock_irqsave(&list->lock, flags);
2346 	__skb_queue_tail(list, newsk);
2347 	spin_unlock_irqrestore(&list->lock, flags);
2348 }
2349 EXPORT_SYMBOL(skb_queue_tail);
2350 
2351 /**
2352  *	skb_unlink	-	remove a buffer from a list
2353  *	@skb: buffer to remove
2354  *	@list: list to use
2355  *
2356  *	Remove a packet from a list. The list locks are taken and this
2357  *	function is atomic with respect to other list locked calls
2358  *
2359  *	You must know what list the SKB is on.
2360  */
2361 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
2362 {
2363 	unsigned long flags;
2364 
2365 	spin_lock_irqsave(&list->lock, flags);
2366 	__skb_unlink(skb, list);
2367 	spin_unlock_irqrestore(&list->lock, flags);
2368 }
2369 EXPORT_SYMBOL(skb_unlink);
2370 
2371 /**
2372  *	skb_append	-	append a buffer
2373  *	@old: buffer to insert after
2374  *	@newsk: buffer to insert
2375  *	@list: list to use
2376  *
2377  *	Place a packet after a given packet in a list. The list locks are taken
2378  *	and this function is atomic with respect to other list locked calls.
2379  *	A buffer cannot be placed on two lists at the same time.
2380  */
2381 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
2382 {
2383 	unsigned long flags;
2384 
2385 	spin_lock_irqsave(&list->lock, flags);
2386 	__skb_queue_after(list, old, newsk);
2387 	spin_unlock_irqrestore(&list->lock, flags);
2388 }
2389 EXPORT_SYMBOL(skb_append);
2390 
2391 /**
2392  *	skb_insert	-	insert a buffer
2393  *	@old: buffer to insert before
2394  *	@newsk: buffer to insert
2395  *	@list: list to use
2396  *
2397  *	Place a packet before a given packet in a list. The list locks are
2398  * 	taken and this function is atomic with respect to other list locked
2399  *	calls.
2400  *
2401  *	A buffer cannot be placed on two lists at the same time.
2402  */
2403 void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
2404 {
2405 	unsigned long flags;
2406 
2407 	spin_lock_irqsave(&list->lock, flags);
2408 	__skb_insert(newsk, old->prev, old, list);
2409 	spin_unlock_irqrestore(&list->lock, flags);
2410 }
2411 EXPORT_SYMBOL(skb_insert);
2412 
2413 static inline void skb_split_inside_header(struct sk_buff *skb,
2414 					   struct sk_buff* skb1,
2415 					   const u32 len, const int pos)
2416 {
2417 	int i;
2418 
2419 	skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
2420 					 pos - len);
2421 	/* And move data appendix as is. */
2422 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
2423 		skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
2424 
2425 	skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
2426 	skb_shinfo(skb)->nr_frags  = 0;
2427 	skb1->data_len		   = skb->data_len;
2428 	skb1->len		   += skb1->data_len;
2429 	skb->data_len		   = 0;
2430 	skb->len		   = len;
2431 	skb_set_tail_pointer(skb, len);
2432 }
2433 
2434 static inline void skb_split_no_header(struct sk_buff *skb,
2435 				       struct sk_buff* skb1,
2436 				       const u32 len, int pos)
2437 {
2438 	int i, k = 0;
2439 	const int nfrags = skb_shinfo(skb)->nr_frags;
2440 
2441 	skb_shinfo(skb)->nr_frags = 0;
2442 	skb1->len		  = skb1->data_len = skb->len - len;
2443 	skb->len		  = len;
2444 	skb->data_len		  = len - pos;
2445 
2446 	for (i = 0; i < nfrags; i++) {
2447 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2448 
2449 		if (pos + size > len) {
2450 			skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
2451 
2452 			if (pos < len) {
2453 				/* Split frag.
2454 				 * We have two variants in this case:
2455 				 * 1. Move all the frag to the second
2456 				 *    part, if it is possible. F.e.
2457 				 *    this approach is mandatory for TUX,
2458 				 *    where splitting is expensive.
2459 				 * 2. Split is accurately. We make this.
2460 				 */
2461 				skb_frag_ref(skb, i);
2462 				skb_shinfo(skb1)->frags[0].page_offset += len - pos;
2463 				skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos);
2464 				skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos);
2465 				skb_shinfo(skb)->nr_frags++;
2466 			}
2467 			k++;
2468 		} else
2469 			skb_shinfo(skb)->nr_frags++;
2470 		pos += size;
2471 	}
2472 	skb_shinfo(skb1)->nr_frags = k;
2473 }
2474 
2475 /**
2476  * skb_split - Split fragmented skb to two parts at length len.
2477  * @skb: the buffer to split
2478  * @skb1: the buffer to receive the second part
2479  * @len: new length for skb
2480  */
2481 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
2482 {
2483 	int pos = skb_headlen(skb);
2484 
2485 	skb_shinfo(skb1)->tx_flags = skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG;
2486 	if (len < pos)	/* Split line is inside header. */
2487 		skb_split_inside_header(skb, skb1, len, pos);
2488 	else		/* Second chunk has no header, nothing to copy. */
2489 		skb_split_no_header(skb, skb1, len, pos);
2490 }
2491 EXPORT_SYMBOL(skb_split);
2492 
2493 /* Shifting from/to a cloned skb is a no-go.
2494  *
2495  * Caller cannot keep skb_shinfo related pointers past calling here!
2496  */
2497 static int skb_prepare_for_shift(struct sk_buff *skb)
2498 {
2499 	return skb_cloned(skb) && pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2500 }
2501 
2502 /**
2503  * skb_shift - Shifts paged data partially from skb to another
2504  * @tgt: buffer into which tail data gets added
2505  * @skb: buffer from which the paged data comes from
2506  * @shiftlen: shift up to this many bytes
2507  *
2508  * Attempts to shift up to shiftlen worth of bytes, which may be less than
2509  * the length of the skb, from skb to tgt. Returns number bytes shifted.
2510  * It's up to caller to free skb if everything was shifted.
2511  *
2512  * If @tgt runs out of frags, the whole operation is aborted.
2513  *
2514  * Skb cannot include anything else but paged data while tgt is allowed
2515  * to have non-paged data as well.
2516  *
2517  * TODO: full sized shift could be optimized but that would need
2518  * specialized skb free'er to handle frags without up-to-date nr_frags.
2519  */
2520 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
2521 {
2522 	int from, to, merge, todo;
2523 	struct skb_frag_struct *fragfrom, *fragto;
2524 
2525 	BUG_ON(shiftlen > skb->len);
2526 	BUG_ON(skb_headlen(skb));	/* Would corrupt stream */
2527 
2528 	todo = shiftlen;
2529 	from = 0;
2530 	to = skb_shinfo(tgt)->nr_frags;
2531 	fragfrom = &skb_shinfo(skb)->frags[from];
2532 
2533 	/* Actual merge is delayed until the point when we know we can
2534 	 * commit all, so that we don't have to undo partial changes
2535 	 */
2536 	if (!to ||
2537 	    !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom),
2538 			      fragfrom->page_offset)) {
2539 		merge = -1;
2540 	} else {
2541 		merge = to - 1;
2542 
2543 		todo -= skb_frag_size(fragfrom);
2544 		if (todo < 0) {
2545 			if (skb_prepare_for_shift(skb) ||
2546 			    skb_prepare_for_shift(tgt))
2547 				return 0;
2548 
2549 			/* All previous frag pointers might be stale! */
2550 			fragfrom = &skb_shinfo(skb)->frags[from];
2551 			fragto = &skb_shinfo(tgt)->frags[merge];
2552 
2553 			skb_frag_size_add(fragto, shiftlen);
2554 			skb_frag_size_sub(fragfrom, shiftlen);
2555 			fragfrom->page_offset += shiftlen;
2556 
2557 			goto onlymerged;
2558 		}
2559 
2560 		from++;
2561 	}
2562 
2563 	/* Skip full, not-fitting skb to avoid expensive operations */
2564 	if ((shiftlen == skb->len) &&
2565 	    (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
2566 		return 0;
2567 
2568 	if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
2569 		return 0;
2570 
2571 	while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
2572 		if (to == MAX_SKB_FRAGS)
2573 			return 0;
2574 
2575 		fragfrom = &skb_shinfo(skb)->frags[from];
2576 		fragto = &skb_shinfo(tgt)->frags[to];
2577 
2578 		if (todo >= skb_frag_size(fragfrom)) {
2579 			*fragto = *fragfrom;
2580 			todo -= skb_frag_size(fragfrom);
2581 			from++;
2582 			to++;
2583 
2584 		} else {
2585 			__skb_frag_ref(fragfrom);
2586 			fragto->page = fragfrom->page;
2587 			fragto->page_offset = fragfrom->page_offset;
2588 			skb_frag_size_set(fragto, todo);
2589 
2590 			fragfrom->page_offset += todo;
2591 			skb_frag_size_sub(fragfrom, todo);
2592 			todo = 0;
2593 
2594 			to++;
2595 			break;
2596 		}
2597 	}
2598 
2599 	/* Ready to "commit" this state change to tgt */
2600 	skb_shinfo(tgt)->nr_frags = to;
2601 
2602 	if (merge >= 0) {
2603 		fragfrom = &skb_shinfo(skb)->frags[0];
2604 		fragto = &skb_shinfo(tgt)->frags[merge];
2605 
2606 		skb_frag_size_add(fragto, skb_frag_size(fragfrom));
2607 		__skb_frag_unref(fragfrom);
2608 	}
2609 
2610 	/* Reposition in the original skb */
2611 	to = 0;
2612 	while (from < skb_shinfo(skb)->nr_frags)
2613 		skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
2614 	skb_shinfo(skb)->nr_frags = to;
2615 
2616 	BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
2617 
2618 onlymerged:
2619 	/* Most likely the tgt won't ever need its checksum anymore, skb on
2620 	 * the other hand might need it if it needs to be resent
2621 	 */
2622 	tgt->ip_summed = CHECKSUM_PARTIAL;
2623 	skb->ip_summed = CHECKSUM_PARTIAL;
2624 
2625 	/* Yak, is it really working this way? Some helper please? */
2626 	skb->len -= shiftlen;
2627 	skb->data_len -= shiftlen;
2628 	skb->truesize -= shiftlen;
2629 	tgt->len += shiftlen;
2630 	tgt->data_len += shiftlen;
2631 	tgt->truesize += shiftlen;
2632 
2633 	return shiftlen;
2634 }
2635 
2636 /**
2637  * skb_prepare_seq_read - Prepare a sequential read of skb data
2638  * @skb: the buffer to read
2639  * @from: lower offset of data to be read
2640  * @to: upper offset of data to be read
2641  * @st: state variable
2642  *
2643  * Initializes the specified state variable. Must be called before
2644  * invoking skb_seq_read() for the first time.
2645  */
2646 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
2647 			  unsigned int to, struct skb_seq_state *st)
2648 {
2649 	st->lower_offset = from;
2650 	st->upper_offset = to;
2651 	st->root_skb = st->cur_skb = skb;
2652 	st->frag_idx = st->stepped_offset = 0;
2653 	st->frag_data = NULL;
2654 }
2655 EXPORT_SYMBOL(skb_prepare_seq_read);
2656 
2657 /**
2658  * skb_seq_read - Sequentially read skb data
2659  * @consumed: number of bytes consumed by the caller so far
2660  * @data: destination pointer for data to be returned
2661  * @st: state variable
2662  *
2663  * Reads a block of skb data at @consumed relative to the
2664  * lower offset specified to skb_prepare_seq_read(). Assigns
2665  * the head of the data block to @data and returns the length
2666  * of the block or 0 if the end of the skb data or the upper
2667  * offset has been reached.
2668  *
2669  * The caller is not required to consume all of the data
2670  * returned, i.e. @consumed is typically set to the number
2671  * of bytes already consumed and the next call to
2672  * skb_seq_read() will return the remaining part of the block.
2673  *
2674  * Note 1: The size of each block of data returned can be arbitrary,
2675  *       this limitation is the cost for zerocopy sequential
2676  *       reads of potentially non linear data.
2677  *
2678  * Note 2: Fragment lists within fragments are not implemented
2679  *       at the moment, state->root_skb could be replaced with
2680  *       a stack for this purpose.
2681  */
2682 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
2683 			  struct skb_seq_state *st)
2684 {
2685 	unsigned int block_limit, abs_offset = consumed + st->lower_offset;
2686 	skb_frag_t *frag;
2687 
2688 	if (unlikely(abs_offset >= st->upper_offset)) {
2689 		if (st->frag_data) {
2690 			kunmap_atomic(st->frag_data);
2691 			st->frag_data = NULL;
2692 		}
2693 		return 0;
2694 	}
2695 
2696 next_skb:
2697 	block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
2698 
2699 	if (abs_offset < block_limit && !st->frag_data) {
2700 		*data = st->cur_skb->data + (abs_offset - st->stepped_offset);
2701 		return block_limit - abs_offset;
2702 	}
2703 
2704 	if (st->frag_idx == 0 && !st->frag_data)
2705 		st->stepped_offset += skb_headlen(st->cur_skb);
2706 
2707 	while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
2708 		frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
2709 		block_limit = skb_frag_size(frag) + st->stepped_offset;
2710 
2711 		if (abs_offset < block_limit) {
2712 			if (!st->frag_data)
2713 				st->frag_data = kmap_atomic(skb_frag_page(frag));
2714 
2715 			*data = (u8 *) st->frag_data + frag->page_offset +
2716 				(abs_offset - st->stepped_offset);
2717 
2718 			return block_limit - abs_offset;
2719 		}
2720 
2721 		if (st->frag_data) {
2722 			kunmap_atomic(st->frag_data);
2723 			st->frag_data = NULL;
2724 		}
2725 
2726 		st->frag_idx++;
2727 		st->stepped_offset += skb_frag_size(frag);
2728 	}
2729 
2730 	if (st->frag_data) {
2731 		kunmap_atomic(st->frag_data);
2732 		st->frag_data = NULL;
2733 	}
2734 
2735 	if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) {
2736 		st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
2737 		st->frag_idx = 0;
2738 		goto next_skb;
2739 	} else if (st->cur_skb->next) {
2740 		st->cur_skb = st->cur_skb->next;
2741 		st->frag_idx = 0;
2742 		goto next_skb;
2743 	}
2744 
2745 	return 0;
2746 }
2747 EXPORT_SYMBOL(skb_seq_read);
2748 
2749 /**
2750  * skb_abort_seq_read - Abort a sequential read of skb data
2751  * @st: state variable
2752  *
2753  * Must be called if skb_seq_read() was not called until it
2754  * returned 0.
2755  */
2756 void skb_abort_seq_read(struct skb_seq_state *st)
2757 {
2758 	if (st->frag_data)
2759 		kunmap_atomic(st->frag_data);
2760 }
2761 EXPORT_SYMBOL(skb_abort_seq_read);
2762 
2763 #define TS_SKB_CB(state)	((struct skb_seq_state *) &((state)->cb))
2764 
2765 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
2766 					  struct ts_config *conf,
2767 					  struct ts_state *state)
2768 {
2769 	return skb_seq_read(offset, text, TS_SKB_CB(state));
2770 }
2771 
2772 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
2773 {
2774 	skb_abort_seq_read(TS_SKB_CB(state));
2775 }
2776 
2777 /**
2778  * skb_find_text - Find a text pattern in skb data
2779  * @skb: the buffer to look in
2780  * @from: search offset
2781  * @to: search limit
2782  * @config: textsearch configuration
2783  * @state: uninitialized textsearch state variable
2784  *
2785  * Finds a pattern in the skb data according to the specified
2786  * textsearch configuration. Use textsearch_next() to retrieve
2787  * subsequent occurrences of the pattern. Returns the offset
2788  * to the first occurrence or UINT_MAX if no match was found.
2789  */
2790 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
2791 			   unsigned int to, struct ts_config *config,
2792 			   struct ts_state *state)
2793 {
2794 	unsigned int ret;
2795 
2796 	config->get_next_block = skb_ts_get_next_block;
2797 	config->finish = skb_ts_finish;
2798 
2799 	skb_prepare_seq_read(skb, from, to, TS_SKB_CB(state));
2800 
2801 	ret = textsearch_find(config, state);
2802 	return (ret <= to - from ? ret : UINT_MAX);
2803 }
2804 EXPORT_SYMBOL(skb_find_text);
2805 
2806 /**
2807  * skb_append_datato_frags - append the user data to a skb
2808  * @sk: sock  structure
2809  * @skb: skb structure to be appended with user data.
2810  * @getfrag: call back function to be used for getting the user data
2811  * @from: pointer to user message iov
2812  * @length: length of the iov message
2813  *
2814  * Description: This procedure append the user data in the fragment part
2815  * of the skb if any page alloc fails user this procedure returns  -ENOMEM
2816  */
2817 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
2818 			int (*getfrag)(void *from, char *to, int offset,
2819 					int len, int odd, struct sk_buff *skb),
2820 			void *from, int length)
2821 {
2822 	int frg_cnt = skb_shinfo(skb)->nr_frags;
2823 	int copy;
2824 	int offset = 0;
2825 	int ret;
2826 	struct page_frag *pfrag = &current->task_frag;
2827 
2828 	do {
2829 		/* Return error if we don't have space for new frag */
2830 		if (frg_cnt >= MAX_SKB_FRAGS)
2831 			return -EMSGSIZE;
2832 
2833 		if (!sk_page_frag_refill(sk, pfrag))
2834 			return -ENOMEM;
2835 
2836 		/* copy the user data to page */
2837 		copy = min_t(int, length, pfrag->size - pfrag->offset);
2838 
2839 		ret = getfrag(from, page_address(pfrag->page) + pfrag->offset,
2840 			      offset, copy, 0, skb);
2841 		if (ret < 0)
2842 			return -EFAULT;
2843 
2844 		/* copy was successful so update the size parameters */
2845 		skb_fill_page_desc(skb, frg_cnt, pfrag->page, pfrag->offset,
2846 				   copy);
2847 		frg_cnt++;
2848 		pfrag->offset += copy;
2849 		get_page(pfrag->page);
2850 
2851 		skb->truesize += copy;
2852 		atomic_add(copy, &sk->sk_wmem_alloc);
2853 		skb->len += copy;
2854 		skb->data_len += copy;
2855 		offset += copy;
2856 		length -= copy;
2857 
2858 	} while (length > 0);
2859 
2860 	return 0;
2861 }
2862 EXPORT_SYMBOL(skb_append_datato_frags);
2863 
2864 /**
2865  *	skb_pull_rcsum - pull skb and update receive checksum
2866  *	@skb: buffer to update
2867  *	@len: length of data pulled
2868  *
2869  *	This function performs an skb_pull on the packet and updates
2870  *	the CHECKSUM_COMPLETE checksum.  It should be used on
2871  *	receive path processing instead of skb_pull unless you know
2872  *	that the checksum difference is zero (e.g., a valid IP header)
2873  *	or you are setting ip_summed to CHECKSUM_NONE.
2874  */
2875 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
2876 {
2877 	BUG_ON(len > skb->len);
2878 	skb->len -= len;
2879 	BUG_ON(skb->len < skb->data_len);
2880 	skb_postpull_rcsum(skb, skb->data, len);
2881 	return skb->data += len;
2882 }
2883 EXPORT_SYMBOL_GPL(skb_pull_rcsum);
2884 
2885 /**
2886  *	skb_segment - Perform protocol segmentation on skb.
2887  *	@head_skb: buffer to segment
2888  *	@features: features for the output path (see dev->features)
2889  *
2890  *	This function performs segmentation on the given skb.  It returns
2891  *	a pointer to the first in a list of new skbs for the segments.
2892  *	In case of error it returns ERR_PTR(err).
2893  */
2894 struct sk_buff *skb_segment(struct sk_buff *head_skb,
2895 			    netdev_features_t features)
2896 {
2897 	struct sk_buff *segs = NULL;
2898 	struct sk_buff *tail = NULL;
2899 	struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list;
2900 	skb_frag_t *frag = skb_shinfo(head_skb)->frags;
2901 	unsigned int mss = skb_shinfo(head_skb)->gso_size;
2902 	unsigned int doffset = head_skb->data - skb_mac_header(head_skb);
2903 	struct sk_buff *frag_skb = head_skb;
2904 	unsigned int offset = doffset;
2905 	unsigned int tnl_hlen = skb_tnl_header_len(head_skb);
2906 	unsigned int headroom;
2907 	unsigned int len;
2908 	__be16 proto;
2909 	bool csum;
2910 	int sg = !!(features & NETIF_F_SG);
2911 	int nfrags = skb_shinfo(head_skb)->nr_frags;
2912 	int err = -ENOMEM;
2913 	int i = 0;
2914 	int pos;
2915 	int dummy;
2916 
2917 	__skb_push(head_skb, doffset);
2918 	proto = skb_network_protocol(head_skb, &dummy);
2919 	if (unlikely(!proto))
2920 		return ERR_PTR(-EINVAL);
2921 
2922 	csum = !head_skb->encap_hdr_csum &&
2923 	    !!can_checksum_protocol(features, proto);
2924 
2925 	headroom = skb_headroom(head_skb);
2926 	pos = skb_headlen(head_skb);
2927 
2928 	do {
2929 		struct sk_buff *nskb;
2930 		skb_frag_t *nskb_frag;
2931 		int hsize;
2932 		int size;
2933 
2934 		len = head_skb->len - offset;
2935 		if (len > mss)
2936 			len = mss;
2937 
2938 		hsize = skb_headlen(head_skb) - offset;
2939 		if (hsize < 0)
2940 			hsize = 0;
2941 		if (hsize > len || !sg)
2942 			hsize = len;
2943 
2944 		if (!hsize && i >= nfrags && skb_headlen(list_skb) &&
2945 		    (skb_headlen(list_skb) == len || sg)) {
2946 			BUG_ON(skb_headlen(list_skb) > len);
2947 
2948 			i = 0;
2949 			nfrags = skb_shinfo(list_skb)->nr_frags;
2950 			frag = skb_shinfo(list_skb)->frags;
2951 			frag_skb = list_skb;
2952 			pos += skb_headlen(list_skb);
2953 
2954 			while (pos < offset + len) {
2955 				BUG_ON(i >= nfrags);
2956 
2957 				size = skb_frag_size(frag);
2958 				if (pos + size > offset + len)
2959 					break;
2960 
2961 				i++;
2962 				pos += size;
2963 				frag++;
2964 			}
2965 
2966 			nskb = skb_clone(list_skb, GFP_ATOMIC);
2967 			list_skb = list_skb->next;
2968 
2969 			if (unlikely(!nskb))
2970 				goto err;
2971 
2972 			if (unlikely(pskb_trim(nskb, len))) {
2973 				kfree_skb(nskb);
2974 				goto err;
2975 			}
2976 
2977 			hsize = skb_end_offset(nskb);
2978 			if (skb_cow_head(nskb, doffset + headroom)) {
2979 				kfree_skb(nskb);
2980 				goto err;
2981 			}
2982 
2983 			nskb->truesize += skb_end_offset(nskb) - hsize;
2984 			skb_release_head_state(nskb);
2985 			__skb_push(nskb, doffset);
2986 		} else {
2987 			nskb = __alloc_skb(hsize + doffset + headroom,
2988 					   GFP_ATOMIC, skb_alloc_rx_flag(head_skb),
2989 					   NUMA_NO_NODE);
2990 
2991 			if (unlikely(!nskb))
2992 				goto err;
2993 
2994 			skb_reserve(nskb, headroom);
2995 			__skb_put(nskb, doffset);
2996 		}
2997 
2998 		if (segs)
2999 			tail->next = nskb;
3000 		else
3001 			segs = nskb;
3002 		tail = nskb;
3003 
3004 		__copy_skb_header(nskb, head_skb);
3005 
3006 		skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom);
3007 		skb_reset_mac_len(nskb);
3008 
3009 		skb_copy_from_linear_data_offset(head_skb, -tnl_hlen,
3010 						 nskb->data - tnl_hlen,
3011 						 doffset + tnl_hlen);
3012 
3013 		if (nskb->len == len + doffset)
3014 			goto perform_csum_check;
3015 
3016 		if (!sg) {
3017 			nskb->ip_summed = CHECKSUM_NONE;
3018 			nskb->csum = skb_copy_and_csum_bits(head_skb, offset,
3019 							    skb_put(nskb, len),
3020 							    len, 0);
3021 			SKB_GSO_CB(nskb)->csum_start =
3022 			    skb_headroom(nskb) + doffset;
3023 			continue;
3024 		}
3025 
3026 		nskb_frag = skb_shinfo(nskb)->frags;
3027 
3028 		skb_copy_from_linear_data_offset(head_skb, offset,
3029 						 skb_put(nskb, hsize), hsize);
3030 
3031 		skb_shinfo(nskb)->tx_flags = skb_shinfo(head_skb)->tx_flags &
3032 			SKBTX_SHARED_FRAG;
3033 
3034 		while (pos < offset + len) {
3035 			if (i >= nfrags) {
3036 				BUG_ON(skb_headlen(list_skb));
3037 
3038 				i = 0;
3039 				nfrags = skb_shinfo(list_skb)->nr_frags;
3040 				frag = skb_shinfo(list_skb)->frags;
3041 				frag_skb = list_skb;
3042 
3043 				BUG_ON(!nfrags);
3044 
3045 				list_skb = list_skb->next;
3046 			}
3047 
3048 			if (unlikely(skb_shinfo(nskb)->nr_frags >=
3049 				     MAX_SKB_FRAGS)) {
3050 				net_warn_ratelimited(
3051 					"skb_segment: too many frags: %u %u\n",
3052 					pos, mss);
3053 				goto err;
3054 			}
3055 
3056 			if (unlikely(skb_orphan_frags(frag_skb, GFP_ATOMIC)))
3057 				goto err;
3058 
3059 			*nskb_frag = *frag;
3060 			__skb_frag_ref(nskb_frag);
3061 			size = skb_frag_size(nskb_frag);
3062 
3063 			if (pos < offset) {
3064 				nskb_frag->page_offset += offset - pos;
3065 				skb_frag_size_sub(nskb_frag, offset - pos);
3066 			}
3067 
3068 			skb_shinfo(nskb)->nr_frags++;
3069 
3070 			if (pos + size <= offset + len) {
3071 				i++;
3072 				frag++;
3073 				pos += size;
3074 			} else {
3075 				skb_frag_size_sub(nskb_frag, pos + size - (offset + len));
3076 				goto skip_fraglist;
3077 			}
3078 
3079 			nskb_frag++;
3080 		}
3081 
3082 skip_fraglist:
3083 		nskb->data_len = len - hsize;
3084 		nskb->len += nskb->data_len;
3085 		nskb->truesize += nskb->data_len;
3086 
3087 perform_csum_check:
3088 		if (!csum) {
3089 			nskb->csum = skb_checksum(nskb, doffset,
3090 						  nskb->len - doffset, 0);
3091 			nskb->ip_summed = CHECKSUM_NONE;
3092 			SKB_GSO_CB(nskb)->csum_start =
3093 			    skb_headroom(nskb) + doffset;
3094 		}
3095 	} while ((offset += len) < head_skb->len);
3096 
3097 	/* Some callers want to get the end of the list.
3098 	 * Put it in segs->prev to avoid walking the list.
3099 	 * (see validate_xmit_skb_list() for example)
3100 	 */
3101 	segs->prev = tail;
3102 	return segs;
3103 
3104 err:
3105 	kfree_skb_list(segs);
3106 	return ERR_PTR(err);
3107 }
3108 EXPORT_SYMBOL_GPL(skb_segment);
3109 
3110 int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb)
3111 {
3112 	struct skb_shared_info *pinfo, *skbinfo = skb_shinfo(skb);
3113 	unsigned int offset = skb_gro_offset(skb);
3114 	unsigned int headlen = skb_headlen(skb);
3115 	struct sk_buff *nskb, *lp, *p = *head;
3116 	unsigned int len = skb_gro_len(skb);
3117 	unsigned int delta_truesize;
3118 	unsigned int headroom;
3119 
3120 	if (unlikely(p->len + len >= 65536))
3121 		return -E2BIG;
3122 
3123 	lp = NAPI_GRO_CB(p)->last;
3124 	pinfo = skb_shinfo(lp);
3125 
3126 	if (headlen <= offset) {
3127 		skb_frag_t *frag;
3128 		skb_frag_t *frag2;
3129 		int i = skbinfo->nr_frags;
3130 		int nr_frags = pinfo->nr_frags + i;
3131 
3132 		if (nr_frags > MAX_SKB_FRAGS)
3133 			goto merge;
3134 
3135 		offset -= headlen;
3136 		pinfo->nr_frags = nr_frags;
3137 		skbinfo->nr_frags = 0;
3138 
3139 		frag = pinfo->frags + nr_frags;
3140 		frag2 = skbinfo->frags + i;
3141 		do {
3142 			*--frag = *--frag2;
3143 		} while (--i);
3144 
3145 		frag->page_offset += offset;
3146 		skb_frag_size_sub(frag, offset);
3147 
3148 		/* all fragments truesize : remove (head size + sk_buff) */
3149 		delta_truesize = skb->truesize -
3150 				 SKB_TRUESIZE(skb_end_offset(skb));
3151 
3152 		skb->truesize -= skb->data_len;
3153 		skb->len -= skb->data_len;
3154 		skb->data_len = 0;
3155 
3156 		NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE;
3157 		goto done;
3158 	} else if (skb->head_frag) {
3159 		int nr_frags = pinfo->nr_frags;
3160 		skb_frag_t *frag = pinfo->frags + nr_frags;
3161 		struct page *page = virt_to_head_page(skb->head);
3162 		unsigned int first_size = headlen - offset;
3163 		unsigned int first_offset;
3164 
3165 		if (nr_frags + 1 + skbinfo->nr_frags > MAX_SKB_FRAGS)
3166 			goto merge;
3167 
3168 		first_offset = skb->data -
3169 			       (unsigned char *)page_address(page) +
3170 			       offset;
3171 
3172 		pinfo->nr_frags = nr_frags + 1 + skbinfo->nr_frags;
3173 
3174 		frag->page.p	  = page;
3175 		frag->page_offset = first_offset;
3176 		skb_frag_size_set(frag, first_size);
3177 
3178 		memcpy(frag + 1, skbinfo->frags, sizeof(*frag) * skbinfo->nr_frags);
3179 		/* We dont need to clear skbinfo->nr_frags here */
3180 
3181 		delta_truesize = skb->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
3182 		NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE_STOLEN_HEAD;
3183 		goto done;
3184 	}
3185 	/* switch back to head shinfo */
3186 	pinfo = skb_shinfo(p);
3187 
3188 	if (pinfo->frag_list)
3189 		goto merge;
3190 	if (skb_gro_len(p) != pinfo->gso_size)
3191 		return -E2BIG;
3192 
3193 	headroom = skb_headroom(p);
3194 	nskb = alloc_skb(headroom + skb_gro_offset(p), GFP_ATOMIC);
3195 	if (unlikely(!nskb))
3196 		return -ENOMEM;
3197 
3198 	__copy_skb_header(nskb, p);
3199 	nskb->mac_len = p->mac_len;
3200 
3201 	skb_reserve(nskb, headroom);
3202 	__skb_put(nskb, skb_gro_offset(p));
3203 
3204 	skb_set_mac_header(nskb, skb_mac_header(p) - p->data);
3205 	skb_set_network_header(nskb, skb_network_offset(p));
3206 	skb_set_transport_header(nskb, skb_transport_offset(p));
3207 
3208 	__skb_pull(p, skb_gro_offset(p));
3209 	memcpy(skb_mac_header(nskb), skb_mac_header(p),
3210 	       p->data - skb_mac_header(p));
3211 
3212 	skb_shinfo(nskb)->frag_list = p;
3213 	skb_shinfo(nskb)->gso_size = pinfo->gso_size;
3214 	pinfo->gso_size = 0;
3215 	__skb_header_release(p);
3216 	NAPI_GRO_CB(nskb)->last = p;
3217 
3218 	nskb->data_len += p->len;
3219 	nskb->truesize += p->truesize;
3220 	nskb->len += p->len;
3221 
3222 	*head = nskb;
3223 	nskb->next = p->next;
3224 	p->next = NULL;
3225 
3226 	p = nskb;
3227 
3228 merge:
3229 	delta_truesize = skb->truesize;
3230 	if (offset > headlen) {
3231 		unsigned int eat = offset - headlen;
3232 
3233 		skbinfo->frags[0].page_offset += eat;
3234 		skb_frag_size_sub(&skbinfo->frags[0], eat);
3235 		skb->data_len -= eat;
3236 		skb->len -= eat;
3237 		offset = headlen;
3238 	}
3239 
3240 	__skb_pull(skb, offset);
3241 
3242 	if (NAPI_GRO_CB(p)->last == p)
3243 		skb_shinfo(p)->frag_list = skb;
3244 	else
3245 		NAPI_GRO_CB(p)->last->next = skb;
3246 	NAPI_GRO_CB(p)->last = skb;
3247 	__skb_header_release(skb);
3248 	lp = p;
3249 
3250 done:
3251 	NAPI_GRO_CB(p)->count++;
3252 	p->data_len += len;
3253 	p->truesize += delta_truesize;
3254 	p->len += len;
3255 	if (lp != p) {
3256 		lp->data_len += len;
3257 		lp->truesize += delta_truesize;
3258 		lp->len += len;
3259 	}
3260 	NAPI_GRO_CB(skb)->same_flow = 1;
3261 	return 0;
3262 }
3263 
3264 void __init skb_init(void)
3265 {
3266 	skbuff_head_cache = kmem_cache_create("skbuff_head_cache",
3267 					      sizeof(struct sk_buff),
3268 					      0,
3269 					      SLAB_HWCACHE_ALIGN|SLAB_PANIC,
3270 					      NULL);
3271 	skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
3272 						sizeof(struct sk_buff_fclones),
3273 						0,
3274 						SLAB_HWCACHE_ALIGN|SLAB_PANIC,
3275 						NULL);
3276 }
3277 
3278 /**
3279  *	skb_to_sgvec - Fill a scatter-gather list from a socket buffer
3280  *	@skb: Socket buffer containing the buffers to be mapped
3281  *	@sg: The scatter-gather list to map into
3282  *	@offset: The offset into the buffer's contents to start mapping
3283  *	@len: Length of buffer space to be mapped
3284  *
3285  *	Fill the specified scatter-gather list with mappings/pointers into a
3286  *	region of the buffer space attached to a socket buffer.
3287  */
3288 static int
3289 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
3290 {
3291 	int start = skb_headlen(skb);
3292 	int i, copy = start - offset;
3293 	struct sk_buff *frag_iter;
3294 	int elt = 0;
3295 
3296 	if (copy > 0) {
3297 		if (copy > len)
3298 			copy = len;
3299 		sg_set_buf(sg, skb->data + offset, copy);
3300 		elt++;
3301 		if ((len -= copy) == 0)
3302 			return elt;
3303 		offset += copy;
3304 	}
3305 
3306 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3307 		int end;
3308 
3309 		WARN_ON(start > offset + len);
3310 
3311 		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
3312 		if ((copy = end - offset) > 0) {
3313 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3314 
3315 			if (copy > len)
3316 				copy = len;
3317 			sg_set_page(&sg[elt], skb_frag_page(frag), copy,
3318 					frag->page_offset+offset-start);
3319 			elt++;
3320 			if (!(len -= copy))
3321 				return elt;
3322 			offset += copy;
3323 		}
3324 		start = end;
3325 	}
3326 
3327 	skb_walk_frags(skb, frag_iter) {
3328 		int end;
3329 
3330 		WARN_ON(start > offset + len);
3331 
3332 		end = start + frag_iter->len;
3333 		if ((copy = end - offset) > 0) {
3334 			if (copy > len)
3335 				copy = len;
3336 			elt += __skb_to_sgvec(frag_iter, sg+elt, offset - start,
3337 					      copy);
3338 			if ((len -= copy) == 0)
3339 				return elt;
3340 			offset += copy;
3341 		}
3342 		start = end;
3343 	}
3344 	BUG_ON(len);
3345 	return elt;
3346 }
3347 
3348 /* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given
3349  * sglist without mark the sg which contain last skb data as the end.
3350  * So the caller can mannipulate sg list as will when padding new data after
3351  * the first call without calling sg_unmark_end to expend sg list.
3352  *
3353  * Scenario to use skb_to_sgvec_nomark:
3354  * 1. sg_init_table
3355  * 2. skb_to_sgvec_nomark(payload1)
3356  * 3. skb_to_sgvec_nomark(payload2)
3357  *
3358  * This is equivalent to:
3359  * 1. sg_init_table
3360  * 2. skb_to_sgvec(payload1)
3361  * 3. sg_unmark_end
3362  * 4. skb_to_sgvec(payload2)
3363  *
3364  * When mapping mutilple payload conditionally, skb_to_sgvec_nomark
3365  * is more preferable.
3366  */
3367 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
3368 			int offset, int len)
3369 {
3370 	return __skb_to_sgvec(skb, sg, offset, len);
3371 }
3372 EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark);
3373 
3374 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
3375 {
3376 	int nsg = __skb_to_sgvec(skb, sg, offset, len);
3377 
3378 	sg_mark_end(&sg[nsg - 1]);
3379 
3380 	return nsg;
3381 }
3382 EXPORT_SYMBOL_GPL(skb_to_sgvec);
3383 
3384 /**
3385  *	skb_cow_data - Check that a socket buffer's data buffers are writable
3386  *	@skb: The socket buffer to check.
3387  *	@tailbits: Amount of trailing space to be added
3388  *	@trailer: Returned pointer to the skb where the @tailbits space begins
3389  *
3390  *	Make sure that the data buffers attached to a socket buffer are
3391  *	writable. If they are not, private copies are made of the data buffers
3392  *	and the socket buffer is set to use these instead.
3393  *
3394  *	If @tailbits is given, make sure that there is space to write @tailbits
3395  *	bytes of data beyond current end of socket buffer.  @trailer will be
3396  *	set to point to the skb in which this space begins.
3397  *
3398  *	The number of scatterlist elements required to completely map the
3399  *	COW'd and extended socket buffer will be returned.
3400  */
3401 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
3402 {
3403 	int copyflag;
3404 	int elt;
3405 	struct sk_buff *skb1, **skb_p;
3406 
3407 	/* If skb is cloned or its head is paged, reallocate
3408 	 * head pulling out all the pages (pages are considered not writable
3409 	 * at the moment even if they are anonymous).
3410 	 */
3411 	if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
3412 	    __pskb_pull_tail(skb, skb_pagelen(skb)-skb_headlen(skb)) == NULL)
3413 		return -ENOMEM;
3414 
3415 	/* Easy case. Most of packets will go this way. */
3416 	if (!skb_has_frag_list(skb)) {
3417 		/* A little of trouble, not enough of space for trailer.
3418 		 * This should not happen, when stack is tuned to generate
3419 		 * good frames. OK, on miss we reallocate and reserve even more
3420 		 * space, 128 bytes is fair. */
3421 
3422 		if (skb_tailroom(skb) < tailbits &&
3423 		    pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
3424 			return -ENOMEM;
3425 
3426 		/* Voila! */
3427 		*trailer = skb;
3428 		return 1;
3429 	}
3430 
3431 	/* Misery. We are in troubles, going to mincer fragments... */
3432 
3433 	elt = 1;
3434 	skb_p = &skb_shinfo(skb)->frag_list;
3435 	copyflag = 0;
3436 
3437 	while ((skb1 = *skb_p) != NULL) {
3438 		int ntail = 0;
3439 
3440 		/* The fragment is partially pulled by someone,
3441 		 * this can happen on input. Copy it and everything
3442 		 * after it. */
3443 
3444 		if (skb_shared(skb1))
3445 			copyflag = 1;
3446 
3447 		/* If the skb is the last, worry about trailer. */
3448 
3449 		if (skb1->next == NULL && tailbits) {
3450 			if (skb_shinfo(skb1)->nr_frags ||
3451 			    skb_has_frag_list(skb1) ||
3452 			    skb_tailroom(skb1) < tailbits)
3453 				ntail = tailbits + 128;
3454 		}
3455 
3456 		if (copyflag ||
3457 		    skb_cloned(skb1) ||
3458 		    ntail ||
3459 		    skb_shinfo(skb1)->nr_frags ||
3460 		    skb_has_frag_list(skb1)) {
3461 			struct sk_buff *skb2;
3462 
3463 			/* Fuck, we are miserable poor guys... */
3464 			if (ntail == 0)
3465 				skb2 = skb_copy(skb1, GFP_ATOMIC);
3466 			else
3467 				skb2 = skb_copy_expand(skb1,
3468 						       skb_headroom(skb1),
3469 						       ntail,
3470 						       GFP_ATOMIC);
3471 			if (unlikely(skb2 == NULL))
3472 				return -ENOMEM;
3473 
3474 			if (skb1->sk)
3475 				skb_set_owner_w(skb2, skb1->sk);
3476 
3477 			/* Looking around. Are we still alive?
3478 			 * OK, link new skb, drop old one */
3479 
3480 			skb2->next = skb1->next;
3481 			*skb_p = skb2;
3482 			kfree_skb(skb1);
3483 			skb1 = skb2;
3484 		}
3485 		elt++;
3486 		*trailer = skb1;
3487 		skb_p = &skb1->next;
3488 	}
3489 
3490 	return elt;
3491 }
3492 EXPORT_SYMBOL_GPL(skb_cow_data);
3493 
3494 static void sock_rmem_free(struct sk_buff *skb)
3495 {
3496 	struct sock *sk = skb->sk;
3497 
3498 	atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
3499 }
3500 
3501 /*
3502  * Note: We dont mem charge error packets (no sk_forward_alloc changes)
3503  */
3504 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
3505 {
3506 	if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
3507 	    (unsigned int)sk->sk_rcvbuf)
3508 		return -ENOMEM;
3509 
3510 	skb_orphan(skb);
3511 	skb->sk = sk;
3512 	skb->destructor = sock_rmem_free;
3513 	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
3514 
3515 	/* before exiting rcu section, make sure dst is refcounted */
3516 	skb_dst_force(skb);
3517 
3518 	skb_queue_tail(&sk->sk_error_queue, skb);
3519 	if (!sock_flag(sk, SOCK_DEAD))
3520 		sk->sk_data_ready(sk);
3521 	return 0;
3522 }
3523 EXPORT_SYMBOL(sock_queue_err_skb);
3524 
3525 struct sk_buff *sock_dequeue_err_skb(struct sock *sk)
3526 {
3527 	struct sk_buff_head *q = &sk->sk_error_queue;
3528 	struct sk_buff *skb, *skb_next;
3529 	int err = 0;
3530 
3531 	spin_lock_bh(&q->lock);
3532 	skb = __skb_dequeue(q);
3533 	if (skb && (skb_next = skb_peek(q)))
3534 		err = SKB_EXT_ERR(skb_next)->ee.ee_errno;
3535 	spin_unlock_bh(&q->lock);
3536 
3537 	sk->sk_err = err;
3538 	if (err)
3539 		sk->sk_error_report(sk);
3540 
3541 	return skb;
3542 }
3543 EXPORT_SYMBOL(sock_dequeue_err_skb);
3544 
3545 /**
3546  * skb_clone_sk - create clone of skb, and take reference to socket
3547  * @skb: the skb to clone
3548  *
3549  * This function creates a clone of a buffer that holds a reference on
3550  * sk_refcnt.  Buffers created via this function are meant to be
3551  * returned using sock_queue_err_skb, or free via kfree_skb.
3552  *
3553  * When passing buffers allocated with this function to sock_queue_err_skb
3554  * it is necessary to wrap the call with sock_hold/sock_put in order to
3555  * prevent the socket from being released prior to being enqueued on
3556  * the sk_error_queue.
3557  */
3558 struct sk_buff *skb_clone_sk(struct sk_buff *skb)
3559 {
3560 	struct sock *sk = skb->sk;
3561 	struct sk_buff *clone;
3562 
3563 	if (!sk || !atomic_inc_not_zero(&sk->sk_refcnt))
3564 		return NULL;
3565 
3566 	clone = skb_clone(skb, GFP_ATOMIC);
3567 	if (!clone) {
3568 		sock_put(sk);
3569 		return NULL;
3570 	}
3571 
3572 	clone->sk = sk;
3573 	clone->destructor = sock_efree;
3574 
3575 	return clone;
3576 }
3577 EXPORT_SYMBOL(skb_clone_sk);
3578 
3579 static void __skb_complete_tx_timestamp(struct sk_buff *skb,
3580 					struct sock *sk,
3581 					int tstype)
3582 {
3583 	struct sock_exterr_skb *serr;
3584 	int err;
3585 
3586 	serr = SKB_EXT_ERR(skb);
3587 	memset(serr, 0, sizeof(*serr));
3588 	serr->ee.ee_errno = ENOMSG;
3589 	serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
3590 	serr->ee.ee_info = tstype;
3591 	if (sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID) {
3592 		serr->ee.ee_data = skb_shinfo(skb)->tskey;
3593 		if (sk->sk_protocol == IPPROTO_TCP)
3594 			serr->ee.ee_data -= sk->sk_tskey;
3595 	}
3596 
3597 	err = sock_queue_err_skb(sk, skb);
3598 
3599 	if (err)
3600 		kfree_skb(skb);
3601 }
3602 
3603 void skb_complete_tx_timestamp(struct sk_buff *skb,
3604 			       struct skb_shared_hwtstamps *hwtstamps)
3605 {
3606 	struct sock *sk = skb->sk;
3607 
3608 	/* take a reference to prevent skb_orphan() from freeing the socket */
3609 	sock_hold(sk);
3610 
3611 	*skb_hwtstamps(skb) = *hwtstamps;
3612 	__skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND);
3613 
3614 	sock_put(sk);
3615 }
3616 EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp);
3617 
3618 void __skb_tstamp_tx(struct sk_buff *orig_skb,
3619 		     struct skb_shared_hwtstamps *hwtstamps,
3620 		     struct sock *sk, int tstype)
3621 {
3622 	struct sk_buff *skb;
3623 
3624 	if (!sk)
3625 		return;
3626 
3627 	if (hwtstamps)
3628 		*skb_hwtstamps(orig_skb) = *hwtstamps;
3629 	else
3630 		orig_skb->tstamp = ktime_get_real();
3631 
3632 	skb = skb_clone(orig_skb, GFP_ATOMIC);
3633 	if (!skb)
3634 		return;
3635 
3636 	__skb_complete_tx_timestamp(skb, sk, tstype);
3637 }
3638 EXPORT_SYMBOL_GPL(__skb_tstamp_tx);
3639 
3640 void skb_tstamp_tx(struct sk_buff *orig_skb,
3641 		   struct skb_shared_hwtstamps *hwtstamps)
3642 {
3643 	return __skb_tstamp_tx(orig_skb, hwtstamps, orig_skb->sk,
3644 			       SCM_TSTAMP_SND);
3645 }
3646 EXPORT_SYMBOL_GPL(skb_tstamp_tx);
3647 
3648 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked)
3649 {
3650 	struct sock *sk = skb->sk;
3651 	struct sock_exterr_skb *serr;
3652 	int err;
3653 
3654 	skb->wifi_acked_valid = 1;
3655 	skb->wifi_acked = acked;
3656 
3657 	serr = SKB_EXT_ERR(skb);
3658 	memset(serr, 0, sizeof(*serr));
3659 	serr->ee.ee_errno = ENOMSG;
3660 	serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS;
3661 
3662 	/* take a reference to prevent skb_orphan() from freeing the socket */
3663 	sock_hold(sk);
3664 
3665 	err = sock_queue_err_skb(sk, skb);
3666 	if (err)
3667 		kfree_skb(skb);
3668 
3669 	sock_put(sk);
3670 }
3671 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack);
3672 
3673 
3674 /**
3675  * skb_partial_csum_set - set up and verify partial csum values for packet
3676  * @skb: the skb to set
3677  * @start: the number of bytes after skb->data to start checksumming.
3678  * @off: the offset from start to place the checksum.
3679  *
3680  * For untrusted partially-checksummed packets, we need to make sure the values
3681  * for skb->csum_start and skb->csum_offset are valid so we don't oops.
3682  *
3683  * This function checks and sets those values and skb->ip_summed: if this
3684  * returns false you should drop the packet.
3685  */
3686 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
3687 {
3688 	if (unlikely(start > skb_headlen(skb)) ||
3689 	    unlikely((int)start + off > skb_headlen(skb) - 2)) {
3690 		net_warn_ratelimited("bad partial csum: csum=%u/%u len=%u\n",
3691 				     start, off, skb_headlen(skb));
3692 		return false;
3693 	}
3694 	skb->ip_summed = CHECKSUM_PARTIAL;
3695 	skb->csum_start = skb_headroom(skb) + start;
3696 	skb->csum_offset = off;
3697 	skb_set_transport_header(skb, start);
3698 	return true;
3699 }
3700 EXPORT_SYMBOL_GPL(skb_partial_csum_set);
3701 
3702 static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len,
3703 			       unsigned int max)
3704 {
3705 	if (skb_headlen(skb) >= len)
3706 		return 0;
3707 
3708 	/* If we need to pullup then pullup to the max, so we
3709 	 * won't need to do it again.
3710 	 */
3711 	if (max > skb->len)
3712 		max = skb->len;
3713 
3714 	if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL)
3715 		return -ENOMEM;
3716 
3717 	if (skb_headlen(skb) < len)
3718 		return -EPROTO;
3719 
3720 	return 0;
3721 }
3722 
3723 #define MAX_TCP_HDR_LEN (15 * 4)
3724 
3725 static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb,
3726 				      typeof(IPPROTO_IP) proto,
3727 				      unsigned int off)
3728 {
3729 	switch (proto) {
3730 		int err;
3731 
3732 	case IPPROTO_TCP:
3733 		err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr),
3734 					  off + MAX_TCP_HDR_LEN);
3735 		if (!err && !skb_partial_csum_set(skb, off,
3736 						  offsetof(struct tcphdr,
3737 							   check)))
3738 			err = -EPROTO;
3739 		return err ? ERR_PTR(err) : &tcp_hdr(skb)->check;
3740 
3741 	case IPPROTO_UDP:
3742 		err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr),
3743 					  off + sizeof(struct udphdr));
3744 		if (!err && !skb_partial_csum_set(skb, off,
3745 						  offsetof(struct udphdr,
3746 							   check)))
3747 			err = -EPROTO;
3748 		return err ? ERR_PTR(err) : &udp_hdr(skb)->check;
3749 	}
3750 
3751 	return ERR_PTR(-EPROTO);
3752 }
3753 
3754 /* This value should be large enough to cover a tagged ethernet header plus
3755  * maximally sized IP and TCP or UDP headers.
3756  */
3757 #define MAX_IP_HDR_LEN 128
3758 
3759 static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate)
3760 {
3761 	unsigned int off;
3762 	bool fragment;
3763 	__sum16 *csum;
3764 	int err;
3765 
3766 	fragment = false;
3767 
3768 	err = skb_maybe_pull_tail(skb,
3769 				  sizeof(struct iphdr),
3770 				  MAX_IP_HDR_LEN);
3771 	if (err < 0)
3772 		goto out;
3773 
3774 	if (ip_hdr(skb)->frag_off & htons(IP_OFFSET | IP_MF))
3775 		fragment = true;
3776 
3777 	off = ip_hdrlen(skb);
3778 
3779 	err = -EPROTO;
3780 
3781 	if (fragment)
3782 		goto out;
3783 
3784 	csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off);
3785 	if (IS_ERR(csum))
3786 		return PTR_ERR(csum);
3787 
3788 	if (recalculate)
3789 		*csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
3790 					   ip_hdr(skb)->daddr,
3791 					   skb->len - off,
3792 					   ip_hdr(skb)->protocol, 0);
3793 	err = 0;
3794 
3795 out:
3796 	return err;
3797 }
3798 
3799 /* This value should be large enough to cover a tagged ethernet header plus
3800  * an IPv6 header, all options, and a maximal TCP or UDP header.
3801  */
3802 #define MAX_IPV6_HDR_LEN 256
3803 
3804 #define OPT_HDR(type, skb, off) \
3805 	(type *)(skb_network_header(skb) + (off))
3806 
3807 static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate)
3808 {
3809 	int err;
3810 	u8 nexthdr;
3811 	unsigned int off;
3812 	unsigned int len;
3813 	bool fragment;
3814 	bool done;
3815 	__sum16 *csum;
3816 
3817 	fragment = false;
3818 	done = false;
3819 
3820 	off = sizeof(struct ipv6hdr);
3821 
3822 	err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN);
3823 	if (err < 0)
3824 		goto out;
3825 
3826 	nexthdr = ipv6_hdr(skb)->nexthdr;
3827 
3828 	len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len);
3829 	while (off <= len && !done) {
3830 		switch (nexthdr) {
3831 		case IPPROTO_DSTOPTS:
3832 		case IPPROTO_HOPOPTS:
3833 		case IPPROTO_ROUTING: {
3834 			struct ipv6_opt_hdr *hp;
3835 
3836 			err = skb_maybe_pull_tail(skb,
3837 						  off +
3838 						  sizeof(struct ipv6_opt_hdr),
3839 						  MAX_IPV6_HDR_LEN);
3840 			if (err < 0)
3841 				goto out;
3842 
3843 			hp = OPT_HDR(struct ipv6_opt_hdr, skb, off);
3844 			nexthdr = hp->nexthdr;
3845 			off += ipv6_optlen(hp);
3846 			break;
3847 		}
3848 		case IPPROTO_AH: {
3849 			struct ip_auth_hdr *hp;
3850 
3851 			err = skb_maybe_pull_tail(skb,
3852 						  off +
3853 						  sizeof(struct ip_auth_hdr),
3854 						  MAX_IPV6_HDR_LEN);
3855 			if (err < 0)
3856 				goto out;
3857 
3858 			hp = OPT_HDR(struct ip_auth_hdr, skb, off);
3859 			nexthdr = hp->nexthdr;
3860 			off += ipv6_authlen(hp);
3861 			break;
3862 		}
3863 		case IPPROTO_FRAGMENT: {
3864 			struct frag_hdr *hp;
3865 
3866 			err = skb_maybe_pull_tail(skb,
3867 						  off +
3868 						  sizeof(struct frag_hdr),
3869 						  MAX_IPV6_HDR_LEN);
3870 			if (err < 0)
3871 				goto out;
3872 
3873 			hp = OPT_HDR(struct frag_hdr, skb, off);
3874 
3875 			if (hp->frag_off & htons(IP6_OFFSET | IP6_MF))
3876 				fragment = true;
3877 
3878 			nexthdr = hp->nexthdr;
3879 			off += sizeof(struct frag_hdr);
3880 			break;
3881 		}
3882 		default:
3883 			done = true;
3884 			break;
3885 		}
3886 	}
3887 
3888 	err = -EPROTO;
3889 
3890 	if (!done || fragment)
3891 		goto out;
3892 
3893 	csum = skb_checksum_setup_ip(skb, nexthdr, off);
3894 	if (IS_ERR(csum))
3895 		return PTR_ERR(csum);
3896 
3897 	if (recalculate)
3898 		*csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
3899 					 &ipv6_hdr(skb)->daddr,
3900 					 skb->len - off, nexthdr, 0);
3901 	err = 0;
3902 
3903 out:
3904 	return err;
3905 }
3906 
3907 /**
3908  * skb_checksum_setup - set up partial checksum offset
3909  * @skb: the skb to set up
3910  * @recalculate: if true the pseudo-header checksum will be recalculated
3911  */
3912 int skb_checksum_setup(struct sk_buff *skb, bool recalculate)
3913 {
3914 	int err;
3915 
3916 	switch (skb->protocol) {
3917 	case htons(ETH_P_IP):
3918 		err = skb_checksum_setup_ipv4(skb, recalculate);
3919 		break;
3920 
3921 	case htons(ETH_P_IPV6):
3922 		err = skb_checksum_setup_ipv6(skb, recalculate);
3923 		break;
3924 
3925 	default:
3926 		err = -EPROTO;
3927 		break;
3928 	}
3929 
3930 	return err;
3931 }
3932 EXPORT_SYMBOL(skb_checksum_setup);
3933 
3934 void __skb_warn_lro_forwarding(const struct sk_buff *skb)
3935 {
3936 	net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n",
3937 			     skb->dev->name);
3938 }
3939 EXPORT_SYMBOL(__skb_warn_lro_forwarding);
3940 
3941 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen)
3942 {
3943 	if (head_stolen) {
3944 		skb_release_head_state(skb);
3945 		kmem_cache_free(skbuff_head_cache, skb);
3946 	} else {
3947 		__kfree_skb(skb);
3948 	}
3949 }
3950 EXPORT_SYMBOL(kfree_skb_partial);
3951 
3952 /**
3953  * skb_try_coalesce - try to merge skb to prior one
3954  * @to: prior buffer
3955  * @from: buffer to add
3956  * @fragstolen: pointer to boolean
3957  * @delta_truesize: how much more was allocated than was requested
3958  */
3959 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
3960 		      bool *fragstolen, int *delta_truesize)
3961 {
3962 	int i, delta, len = from->len;
3963 
3964 	*fragstolen = false;
3965 
3966 	if (skb_cloned(to))
3967 		return false;
3968 
3969 	if (len <= skb_tailroom(to)) {
3970 		if (len)
3971 			BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len));
3972 		*delta_truesize = 0;
3973 		return true;
3974 	}
3975 
3976 	if (skb_has_frag_list(to) || skb_has_frag_list(from))
3977 		return false;
3978 
3979 	if (skb_headlen(from) != 0) {
3980 		struct page *page;
3981 		unsigned int offset;
3982 
3983 		if (skb_shinfo(to)->nr_frags +
3984 		    skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS)
3985 			return false;
3986 
3987 		if (skb_head_is_locked(from))
3988 			return false;
3989 
3990 		delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
3991 
3992 		page = virt_to_head_page(from->head);
3993 		offset = from->data - (unsigned char *)page_address(page);
3994 
3995 		skb_fill_page_desc(to, skb_shinfo(to)->nr_frags,
3996 				   page, offset, skb_headlen(from));
3997 		*fragstolen = true;
3998 	} else {
3999 		if (skb_shinfo(to)->nr_frags +
4000 		    skb_shinfo(from)->nr_frags > MAX_SKB_FRAGS)
4001 			return false;
4002 
4003 		delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from));
4004 	}
4005 
4006 	WARN_ON_ONCE(delta < len);
4007 
4008 	memcpy(skb_shinfo(to)->frags + skb_shinfo(to)->nr_frags,
4009 	       skb_shinfo(from)->frags,
4010 	       skb_shinfo(from)->nr_frags * sizeof(skb_frag_t));
4011 	skb_shinfo(to)->nr_frags += skb_shinfo(from)->nr_frags;
4012 
4013 	if (!skb_cloned(from))
4014 		skb_shinfo(from)->nr_frags = 0;
4015 
4016 	/* if the skb is not cloned this does nothing
4017 	 * since we set nr_frags to 0.
4018 	 */
4019 	for (i = 0; i < skb_shinfo(from)->nr_frags; i++)
4020 		skb_frag_ref(from, i);
4021 
4022 	to->truesize += delta;
4023 	to->len += len;
4024 	to->data_len += len;
4025 
4026 	*delta_truesize = delta;
4027 	return true;
4028 }
4029 EXPORT_SYMBOL(skb_try_coalesce);
4030 
4031 /**
4032  * skb_scrub_packet - scrub an skb
4033  *
4034  * @skb: buffer to clean
4035  * @xnet: packet is crossing netns
4036  *
4037  * skb_scrub_packet can be used after encapsulating or decapsulting a packet
4038  * into/from a tunnel. Some information have to be cleared during these
4039  * operations.
4040  * skb_scrub_packet can also be used to clean a skb before injecting it in
4041  * another namespace (@xnet == true). We have to clear all information in the
4042  * skb that could impact namespace isolation.
4043  */
4044 void skb_scrub_packet(struct sk_buff *skb, bool xnet)
4045 {
4046 	if (xnet)
4047 		skb_orphan(skb);
4048 	skb->tstamp.tv64 = 0;
4049 	skb->pkt_type = PACKET_HOST;
4050 	skb->skb_iif = 0;
4051 	skb->ignore_df = 0;
4052 	skb_dst_drop(skb);
4053 	skb->mark = 0;
4054 	secpath_reset(skb);
4055 	nf_reset(skb);
4056 	nf_reset_trace(skb);
4057 }
4058 EXPORT_SYMBOL_GPL(skb_scrub_packet);
4059 
4060 /**
4061  * skb_gso_transport_seglen - Return length of individual segments of a gso packet
4062  *
4063  * @skb: GSO skb
4064  *
4065  * skb_gso_transport_seglen is used to determine the real size of the
4066  * individual segments, including Layer4 headers (TCP/UDP).
4067  *
4068  * The MAC/L2 or network (IP, IPv6) headers are not accounted for.
4069  */
4070 unsigned int skb_gso_transport_seglen(const struct sk_buff *skb)
4071 {
4072 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
4073 	unsigned int thlen = 0;
4074 
4075 	if (skb->encapsulation) {
4076 		thlen = skb_inner_transport_header(skb) -
4077 			skb_transport_header(skb);
4078 
4079 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
4080 			thlen += inner_tcp_hdrlen(skb);
4081 	} else if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
4082 		thlen = tcp_hdrlen(skb);
4083 	}
4084 	/* UFO sets gso_size to the size of the fragmentation
4085 	 * payload, i.e. the size of the L4 (UDP) header is already
4086 	 * accounted for.
4087 	 */
4088 	return thlen + shinfo->gso_size;
4089 }
4090 EXPORT_SYMBOL_GPL(skb_gso_transport_seglen);
4091 
4092 static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb)
4093 {
4094 	if (skb_cow(skb, skb_headroom(skb)) < 0) {
4095 		kfree_skb(skb);
4096 		return NULL;
4097 	}
4098 
4099 	memmove(skb->data - ETH_HLEN, skb->data - VLAN_ETH_HLEN, 2 * ETH_ALEN);
4100 	skb->mac_header += VLAN_HLEN;
4101 	return skb;
4102 }
4103 
4104 struct sk_buff *skb_vlan_untag(struct sk_buff *skb)
4105 {
4106 	struct vlan_hdr *vhdr;
4107 	u16 vlan_tci;
4108 
4109 	if (unlikely(vlan_tx_tag_present(skb))) {
4110 		/* vlan_tci is already set-up so leave this for another time */
4111 		return skb;
4112 	}
4113 
4114 	skb = skb_share_check(skb, GFP_ATOMIC);
4115 	if (unlikely(!skb))
4116 		goto err_free;
4117 
4118 	if (unlikely(!pskb_may_pull(skb, VLAN_HLEN)))
4119 		goto err_free;
4120 
4121 	vhdr = (struct vlan_hdr *)skb->data;
4122 	vlan_tci = ntohs(vhdr->h_vlan_TCI);
4123 	__vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci);
4124 
4125 	skb_pull_rcsum(skb, VLAN_HLEN);
4126 	vlan_set_encap_proto(skb, vhdr);
4127 
4128 	skb = skb_reorder_vlan_header(skb);
4129 	if (unlikely(!skb))
4130 		goto err_free;
4131 
4132 	skb_reset_network_header(skb);
4133 	skb_reset_transport_header(skb);
4134 	skb_reset_mac_len(skb);
4135 
4136 	return skb;
4137 
4138 err_free:
4139 	kfree_skb(skb);
4140 	return NULL;
4141 }
4142 EXPORT_SYMBOL(skb_vlan_untag);
4143 
4144 /**
4145  * alloc_skb_with_frags - allocate skb with page frags
4146  *
4147  * @header_len: size of linear part
4148  * @data_len: needed length in frags
4149  * @max_page_order: max page order desired.
4150  * @errcode: pointer to error code if any
4151  * @gfp_mask: allocation mask
4152  *
4153  * This can be used to allocate a paged skb, given a maximal order for frags.
4154  */
4155 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
4156 				     unsigned long data_len,
4157 				     int max_page_order,
4158 				     int *errcode,
4159 				     gfp_t gfp_mask)
4160 {
4161 	int npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
4162 	unsigned long chunk;
4163 	struct sk_buff *skb;
4164 	struct page *page;
4165 	gfp_t gfp_head;
4166 	int i;
4167 
4168 	*errcode = -EMSGSIZE;
4169 	/* Note this test could be relaxed, if we succeed to allocate
4170 	 * high order pages...
4171 	 */
4172 	if (npages > MAX_SKB_FRAGS)
4173 		return NULL;
4174 
4175 	gfp_head = gfp_mask;
4176 	if (gfp_head & __GFP_WAIT)
4177 		gfp_head |= __GFP_REPEAT;
4178 
4179 	*errcode = -ENOBUFS;
4180 	skb = alloc_skb(header_len, gfp_head);
4181 	if (!skb)
4182 		return NULL;
4183 
4184 	skb->truesize += npages << PAGE_SHIFT;
4185 
4186 	for (i = 0; npages > 0; i++) {
4187 		int order = max_page_order;
4188 
4189 		while (order) {
4190 			if (npages >= 1 << order) {
4191 				page = alloc_pages(gfp_mask |
4192 						   __GFP_COMP |
4193 						   __GFP_NOWARN |
4194 						   __GFP_NORETRY,
4195 						   order);
4196 				if (page)
4197 					goto fill_page;
4198 				/* Do not retry other high order allocations */
4199 				order = 1;
4200 				max_page_order = 0;
4201 			}
4202 			order--;
4203 		}
4204 		page = alloc_page(gfp_mask);
4205 		if (!page)
4206 			goto failure;
4207 fill_page:
4208 		chunk = min_t(unsigned long, data_len,
4209 			      PAGE_SIZE << order);
4210 		skb_fill_page_desc(skb, i, page, 0, chunk);
4211 		data_len -= chunk;
4212 		npages -= 1 << order;
4213 	}
4214 	return skb;
4215 
4216 failure:
4217 	kfree_skb(skb);
4218 	return NULL;
4219 }
4220 EXPORT_SYMBOL(alloc_skb_with_frags);
4221