xref: /openbmc/linux/net/core/skbuff.c (revision 65417d9f)
1 /*
2  *	Routines having to do with the 'struct sk_buff' memory handlers.
3  *
4  *	Authors:	Alan Cox <alan@lxorguk.ukuu.org.uk>
5  *			Florian La Roche <rzsfl@rz.uni-sb.de>
6  *
7  *	Fixes:
8  *		Alan Cox	:	Fixed the worst of the load
9  *					balancer bugs.
10  *		Dave Platt	:	Interrupt stacking fix.
11  *	Richard Kooijman	:	Timestamp fixes.
12  *		Alan Cox	:	Changed buffer format.
13  *		Alan Cox	:	destructor hook for AF_UNIX etc.
14  *		Linus Torvalds	:	Better skb_clone.
15  *		Alan Cox	:	Added skb_copy.
16  *		Alan Cox	:	Added all the changed routines Linus
17  *					only put in the headers
18  *		Ray VanTassle	:	Fixed --skb->lock in free
19  *		Alan Cox	:	skb_copy copy arp field
20  *		Andi Kleen	:	slabified it.
21  *		Robert Olsson	:	Removed skb_head_pool
22  *
23  *	NOTE:
24  *		The __skb_ routines should be called with interrupts
25  *	disabled, or you better be *real* sure that the operation is atomic
26  *	with respect to whatever list is being frobbed (e.g. via lock_sock()
27  *	or via disabling bottom half handlers, etc).
28  *
29  *	This program is free software; you can redistribute it and/or
30  *	modify it under the terms of the GNU General Public License
31  *	as published by the Free Software Foundation; either version
32  *	2 of the License, or (at your option) any later version.
33  */
34 
35 /*
36  *	The functions in this file will not compile correctly with gcc 2.4.x
37  */
38 
39 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
40 
41 #include <linux/module.h>
42 #include <linux/types.h>
43 #include <linux/kernel.h>
44 #include <linux/mm.h>
45 #include <linux/interrupt.h>
46 #include <linux/in.h>
47 #include <linux/inet.h>
48 #include <linux/slab.h>
49 #include <linux/tcp.h>
50 #include <linux/udp.h>
51 #include <linux/sctp.h>
52 #include <linux/netdevice.h>
53 #ifdef CONFIG_NET_CLS_ACT
54 #include <net/pkt_sched.h>
55 #endif
56 #include <linux/string.h>
57 #include <linux/skbuff.h>
58 #include <linux/splice.h>
59 #include <linux/cache.h>
60 #include <linux/rtnetlink.h>
61 #include <linux/init.h>
62 #include <linux/scatterlist.h>
63 #include <linux/errqueue.h>
64 #include <linux/prefetch.h>
65 #include <linux/if_vlan.h>
66 
67 #include <net/protocol.h>
68 #include <net/dst.h>
69 #include <net/sock.h>
70 #include <net/checksum.h>
71 #include <net/ip6_checksum.h>
72 #include <net/xfrm.h>
73 
74 #include <linux/uaccess.h>
75 #include <trace/events/skb.h>
76 #include <linux/highmem.h>
77 #include <linux/capability.h>
78 #include <linux/user_namespace.h>
79 
80 struct kmem_cache *skbuff_head_cache __read_mostly;
81 static struct kmem_cache *skbuff_fclone_cache __read_mostly;
82 int sysctl_max_skb_frags __read_mostly = MAX_SKB_FRAGS;
83 EXPORT_SYMBOL(sysctl_max_skb_frags);
84 
85 /**
86  *	skb_panic - private function for out-of-line support
87  *	@skb:	buffer
88  *	@sz:	size
89  *	@addr:	address
90  *	@msg:	skb_over_panic or skb_under_panic
91  *
92  *	Out-of-line support for skb_put() and skb_push().
93  *	Called via the wrapper skb_over_panic() or skb_under_panic().
94  *	Keep out of line to prevent kernel bloat.
95  *	__builtin_return_address is not used because it is not always reliable.
96  */
97 static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr,
98 		      const char msg[])
99 {
100 	pr_emerg("%s: text:%p len:%d put:%d head:%p data:%p tail:%#lx end:%#lx dev:%s\n",
101 		 msg, addr, skb->len, sz, skb->head, skb->data,
102 		 (unsigned long)skb->tail, (unsigned long)skb->end,
103 		 skb->dev ? skb->dev->name : "<NULL>");
104 	BUG();
105 }
106 
107 static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr)
108 {
109 	skb_panic(skb, sz, addr, __func__);
110 }
111 
112 static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr)
113 {
114 	skb_panic(skb, sz, addr, __func__);
115 }
116 
117 /*
118  * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells
119  * the caller if emergency pfmemalloc reserves are being used. If it is and
120  * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves
121  * may be used. Otherwise, the packet data may be discarded until enough
122  * memory is free
123  */
124 #define kmalloc_reserve(size, gfp, node, pfmemalloc) \
125 	 __kmalloc_reserve(size, gfp, node, _RET_IP_, pfmemalloc)
126 
127 static void *__kmalloc_reserve(size_t size, gfp_t flags, int node,
128 			       unsigned long ip, bool *pfmemalloc)
129 {
130 	void *obj;
131 	bool ret_pfmemalloc = false;
132 
133 	/*
134 	 * Try a regular allocation, when that fails and we're not entitled
135 	 * to the reserves, fail.
136 	 */
137 	obj = kmalloc_node_track_caller(size,
138 					flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
139 					node);
140 	if (obj || !(gfp_pfmemalloc_allowed(flags)))
141 		goto out;
142 
143 	/* Try again but now we are using pfmemalloc reserves */
144 	ret_pfmemalloc = true;
145 	obj = kmalloc_node_track_caller(size, flags, node);
146 
147 out:
148 	if (pfmemalloc)
149 		*pfmemalloc = ret_pfmemalloc;
150 
151 	return obj;
152 }
153 
154 /* 	Allocate a new skbuff. We do this ourselves so we can fill in a few
155  *	'private' fields and also do memory statistics to find all the
156  *	[BEEP] leaks.
157  *
158  */
159 
160 /**
161  *	__alloc_skb	-	allocate a network buffer
162  *	@size: size to allocate
163  *	@gfp_mask: allocation mask
164  *	@flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache
165  *		instead of head cache and allocate a cloned (child) skb.
166  *		If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for
167  *		allocations in case the data is required for writeback
168  *	@node: numa node to allocate memory on
169  *
170  *	Allocate a new &sk_buff. The returned buffer has no headroom and a
171  *	tail room of at least size bytes. The object has a reference count
172  *	of one. The return is the buffer. On a failure the return is %NULL.
173  *
174  *	Buffers may only be allocated from interrupts using a @gfp_mask of
175  *	%GFP_ATOMIC.
176  */
177 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
178 			    int flags, int node)
179 {
180 	struct kmem_cache *cache;
181 	struct skb_shared_info *shinfo;
182 	struct sk_buff *skb;
183 	u8 *data;
184 	bool pfmemalloc;
185 
186 	cache = (flags & SKB_ALLOC_FCLONE)
187 		? skbuff_fclone_cache : skbuff_head_cache;
188 
189 	if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX))
190 		gfp_mask |= __GFP_MEMALLOC;
191 
192 	/* Get the HEAD */
193 	skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node);
194 	if (!skb)
195 		goto out;
196 	prefetchw(skb);
197 
198 	/* We do our best to align skb_shared_info on a separate cache
199 	 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives
200 	 * aligned memory blocks, unless SLUB/SLAB debug is enabled.
201 	 * Both skb->head and skb_shared_info are cache line aligned.
202 	 */
203 	size = SKB_DATA_ALIGN(size);
204 	size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
205 	data = kmalloc_reserve(size, gfp_mask, node, &pfmemalloc);
206 	if (!data)
207 		goto nodata;
208 	/* kmalloc(size) might give us more room than requested.
209 	 * Put skb_shared_info exactly at the end of allocated zone,
210 	 * to allow max possible filling before reallocation.
211 	 */
212 	size = SKB_WITH_OVERHEAD(ksize(data));
213 	prefetchw(data + size);
214 
215 	/*
216 	 * Only clear those fields we need to clear, not those that we will
217 	 * actually initialise below. Hence, don't put any more fields after
218 	 * the tail pointer in struct sk_buff!
219 	 */
220 	memset(skb, 0, offsetof(struct sk_buff, tail));
221 	/* Account for allocated memory : skb + skb->head */
222 	skb->truesize = SKB_TRUESIZE(size);
223 	skb->pfmemalloc = pfmemalloc;
224 	refcount_set(&skb->users, 1);
225 	skb->head = data;
226 	skb->data = data;
227 	skb_reset_tail_pointer(skb);
228 	skb->end = skb->tail + size;
229 	skb->mac_header = (typeof(skb->mac_header))~0U;
230 	skb->transport_header = (typeof(skb->transport_header))~0U;
231 
232 	/* make sure we initialize shinfo sequentially */
233 	shinfo = skb_shinfo(skb);
234 	memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
235 	atomic_set(&shinfo->dataref, 1);
236 
237 	if (flags & SKB_ALLOC_FCLONE) {
238 		struct sk_buff_fclones *fclones;
239 
240 		fclones = container_of(skb, struct sk_buff_fclones, skb1);
241 
242 		skb->fclone = SKB_FCLONE_ORIG;
243 		refcount_set(&fclones->fclone_ref, 1);
244 
245 		fclones->skb2.fclone = SKB_FCLONE_CLONE;
246 	}
247 out:
248 	return skb;
249 nodata:
250 	kmem_cache_free(cache, skb);
251 	skb = NULL;
252 	goto out;
253 }
254 EXPORT_SYMBOL(__alloc_skb);
255 
256 /**
257  * __build_skb - build a network buffer
258  * @data: data buffer provided by caller
259  * @frag_size: size of data, or 0 if head was kmalloced
260  *
261  * Allocate a new &sk_buff. Caller provides space holding head and
262  * skb_shared_info. @data must have been allocated by kmalloc() only if
263  * @frag_size is 0, otherwise data should come from the page allocator
264  *  or vmalloc()
265  * The return is the new skb buffer.
266  * On a failure the return is %NULL, and @data is not freed.
267  * Notes :
268  *  Before IO, driver allocates only data buffer where NIC put incoming frame
269  *  Driver should add room at head (NET_SKB_PAD) and
270  *  MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info))
271  *  After IO, driver calls build_skb(), to allocate sk_buff and populate it
272  *  before giving packet to stack.
273  *  RX rings only contains data buffers, not full skbs.
274  */
275 struct sk_buff *__build_skb(void *data, unsigned int frag_size)
276 {
277 	struct skb_shared_info *shinfo;
278 	struct sk_buff *skb;
279 	unsigned int size = frag_size ? : ksize(data);
280 
281 	skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC);
282 	if (!skb)
283 		return NULL;
284 
285 	size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
286 
287 	memset(skb, 0, offsetof(struct sk_buff, tail));
288 	skb->truesize = SKB_TRUESIZE(size);
289 	refcount_set(&skb->users, 1);
290 	skb->head = data;
291 	skb->data = data;
292 	skb_reset_tail_pointer(skb);
293 	skb->end = skb->tail + size;
294 	skb->mac_header = (typeof(skb->mac_header))~0U;
295 	skb->transport_header = (typeof(skb->transport_header))~0U;
296 
297 	/* make sure we initialize shinfo sequentially */
298 	shinfo = skb_shinfo(skb);
299 	memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
300 	atomic_set(&shinfo->dataref, 1);
301 
302 	return skb;
303 }
304 
305 /* build_skb() is wrapper over __build_skb(), that specifically
306  * takes care of skb->head and skb->pfmemalloc
307  * This means that if @frag_size is not zero, then @data must be backed
308  * by a page fragment, not kmalloc() or vmalloc()
309  */
310 struct sk_buff *build_skb(void *data, unsigned int frag_size)
311 {
312 	struct sk_buff *skb = __build_skb(data, frag_size);
313 
314 	if (skb && frag_size) {
315 		skb->head_frag = 1;
316 		if (page_is_pfmemalloc(virt_to_head_page(data)))
317 			skb->pfmemalloc = 1;
318 	}
319 	return skb;
320 }
321 EXPORT_SYMBOL(build_skb);
322 
323 #define NAPI_SKB_CACHE_SIZE	64
324 
325 struct napi_alloc_cache {
326 	struct page_frag_cache page;
327 	unsigned int skb_count;
328 	void *skb_cache[NAPI_SKB_CACHE_SIZE];
329 };
330 
331 static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache);
332 static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache);
333 
334 static void *__netdev_alloc_frag(unsigned int fragsz, gfp_t gfp_mask)
335 {
336 	struct page_frag_cache *nc;
337 	unsigned long flags;
338 	void *data;
339 
340 	local_irq_save(flags);
341 	nc = this_cpu_ptr(&netdev_alloc_cache);
342 	data = page_frag_alloc(nc, fragsz, gfp_mask);
343 	local_irq_restore(flags);
344 	return data;
345 }
346 
347 /**
348  * netdev_alloc_frag - allocate a page fragment
349  * @fragsz: fragment size
350  *
351  * Allocates a frag from a page for receive buffer.
352  * Uses GFP_ATOMIC allocations.
353  */
354 void *netdev_alloc_frag(unsigned int fragsz)
355 {
356 	return __netdev_alloc_frag(fragsz, GFP_ATOMIC);
357 }
358 EXPORT_SYMBOL(netdev_alloc_frag);
359 
360 static void *__napi_alloc_frag(unsigned int fragsz, gfp_t gfp_mask)
361 {
362 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
363 
364 	return page_frag_alloc(&nc->page, fragsz, gfp_mask);
365 }
366 
367 void *napi_alloc_frag(unsigned int fragsz)
368 {
369 	return __napi_alloc_frag(fragsz, GFP_ATOMIC);
370 }
371 EXPORT_SYMBOL(napi_alloc_frag);
372 
373 /**
374  *	__netdev_alloc_skb - allocate an skbuff for rx on a specific device
375  *	@dev: network device to receive on
376  *	@len: length to allocate
377  *	@gfp_mask: get_free_pages mask, passed to alloc_skb
378  *
379  *	Allocate a new &sk_buff and assign it a usage count of one. The
380  *	buffer has NET_SKB_PAD headroom built in. Users should allocate
381  *	the headroom they think they need without accounting for the
382  *	built in space. The built in space is used for optimisations.
383  *
384  *	%NULL is returned if there is no free memory.
385  */
386 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len,
387 				   gfp_t gfp_mask)
388 {
389 	struct page_frag_cache *nc;
390 	unsigned long flags;
391 	struct sk_buff *skb;
392 	bool pfmemalloc;
393 	void *data;
394 
395 	len += NET_SKB_PAD;
396 
397 	if ((len > SKB_WITH_OVERHEAD(PAGE_SIZE)) ||
398 	    (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
399 		skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
400 		if (!skb)
401 			goto skb_fail;
402 		goto skb_success;
403 	}
404 
405 	len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
406 	len = SKB_DATA_ALIGN(len);
407 
408 	if (sk_memalloc_socks())
409 		gfp_mask |= __GFP_MEMALLOC;
410 
411 	local_irq_save(flags);
412 
413 	nc = this_cpu_ptr(&netdev_alloc_cache);
414 	data = page_frag_alloc(nc, len, gfp_mask);
415 	pfmemalloc = nc->pfmemalloc;
416 
417 	local_irq_restore(flags);
418 
419 	if (unlikely(!data))
420 		return NULL;
421 
422 	skb = __build_skb(data, len);
423 	if (unlikely(!skb)) {
424 		skb_free_frag(data);
425 		return NULL;
426 	}
427 
428 	/* use OR instead of assignment to avoid clearing of bits in mask */
429 	if (pfmemalloc)
430 		skb->pfmemalloc = 1;
431 	skb->head_frag = 1;
432 
433 skb_success:
434 	skb_reserve(skb, NET_SKB_PAD);
435 	skb->dev = dev;
436 
437 skb_fail:
438 	return skb;
439 }
440 EXPORT_SYMBOL(__netdev_alloc_skb);
441 
442 /**
443  *	__napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance
444  *	@napi: napi instance this buffer was allocated for
445  *	@len: length to allocate
446  *	@gfp_mask: get_free_pages mask, passed to alloc_skb and alloc_pages
447  *
448  *	Allocate a new sk_buff for use in NAPI receive.  This buffer will
449  *	attempt to allocate the head from a special reserved region used
450  *	only for NAPI Rx allocation.  By doing this we can save several
451  *	CPU cycles by avoiding having to disable and re-enable IRQs.
452  *
453  *	%NULL is returned if there is no free memory.
454  */
455 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, unsigned int len,
456 				 gfp_t gfp_mask)
457 {
458 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
459 	struct sk_buff *skb;
460 	void *data;
461 
462 	len += NET_SKB_PAD + NET_IP_ALIGN;
463 
464 	if ((len > SKB_WITH_OVERHEAD(PAGE_SIZE)) ||
465 	    (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
466 		skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
467 		if (!skb)
468 			goto skb_fail;
469 		goto skb_success;
470 	}
471 
472 	len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
473 	len = SKB_DATA_ALIGN(len);
474 
475 	if (sk_memalloc_socks())
476 		gfp_mask |= __GFP_MEMALLOC;
477 
478 	data = page_frag_alloc(&nc->page, len, gfp_mask);
479 	if (unlikely(!data))
480 		return NULL;
481 
482 	skb = __build_skb(data, len);
483 	if (unlikely(!skb)) {
484 		skb_free_frag(data);
485 		return NULL;
486 	}
487 
488 	/* use OR instead of assignment to avoid clearing of bits in mask */
489 	if (nc->page.pfmemalloc)
490 		skb->pfmemalloc = 1;
491 	skb->head_frag = 1;
492 
493 skb_success:
494 	skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN);
495 	skb->dev = napi->dev;
496 
497 skb_fail:
498 	return skb;
499 }
500 EXPORT_SYMBOL(__napi_alloc_skb);
501 
502 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
503 		     int size, unsigned int truesize)
504 {
505 	skb_fill_page_desc(skb, i, page, off, size);
506 	skb->len += size;
507 	skb->data_len += size;
508 	skb->truesize += truesize;
509 }
510 EXPORT_SYMBOL(skb_add_rx_frag);
511 
512 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
513 			  unsigned int truesize)
514 {
515 	skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
516 
517 	skb_frag_size_add(frag, size);
518 	skb->len += size;
519 	skb->data_len += size;
520 	skb->truesize += truesize;
521 }
522 EXPORT_SYMBOL(skb_coalesce_rx_frag);
523 
524 static void skb_drop_list(struct sk_buff **listp)
525 {
526 	kfree_skb_list(*listp);
527 	*listp = NULL;
528 }
529 
530 static inline void skb_drop_fraglist(struct sk_buff *skb)
531 {
532 	skb_drop_list(&skb_shinfo(skb)->frag_list);
533 }
534 
535 static void skb_clone_fraglist(struct sk_buff *skb)
536 {
537 	struct sk_buff *list;
538 
539 	skb_walk_frags(skb, list)
540 		skb_get(list);
541 }
542 
543 static void skb_free_head(struct sk_buff *skb)
544 {
545 	unsigned char *head = skb->head;
546 
547 	if (skb->head_frag)
548 		skb_free_frag(head);
549 	else
550 		kfree(head);
551 }
552 
553 static void skb_release_data(struct sk_buff *skb)
554 {
555 	struct skb_shared_info *shinfo = skb_shinfo(skb);
556 	int i;
557 
558 	if (skb->cloned &&
559 	    atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
560 			      &shinfo->dataref))
561 		return;
562 
563 	for (i = 0; i < shinfo->nr_frags; i++)
564 		__skb_frag_unref(&shinfo->frags[i]);
565 
566 	if (shinfo->frag_list)
567 		kfree_skb_list(shinfo->frag_list);
568 
569 	skb_zcopy_clear(skb, true);
570 	skb_free_head(skb);
571 }
572 
573 /*
574  *	Free an skbuff by memory without cleaning the state.
575  */
576 static void kfree_skbmem(struct sk_buff *skb)
577 {
578 	struct sk_buff_fclones *fclones;
579 
580 	switch (skb->fclone) {
581 	case SKB_FCLONE_UNAVAILABLE:
582 		kmem_cache_free(skbuff_head_cache, skb);
583 		return;
584 
585 	case SKB_FCLONE_ORIG:
586 		fclones = container_of(skb, struct sk_buff_fclones, skb1);
587 
588 		/* We usually free the clone (TX completion) before original skb
589 		 * This test would have no chance to be true for the clone,
590 		 * while here, branch prediction will be good.
591 		 */
592 		if (refcount_read(&fclones->fclone_ref) == 1)
593 			goto fastpath;
594 		break;
595 
596 	default: /* SKB_FCLONE_CLONE */
597 		fclones = container_of(skb, struct sk_buff_fclones, skb2);
598 		break;
599 	}
600 	if (!refcount_dec_and_test(&fclones->fclone_ref))
601 		return;
602 fastpath:
603 	kmem_cache_free(skbuff_fclone_cache, fclones);
604 }
605 
606 void skb_release_head_state(struct sk_buff *skb)
607 {
608 	skb_dst_drop(skb);
609 	secpath_reset(skb);
610 	if (skb->destructor) {
611 		WARN_ON(in_irq());
612 		skb->destructor(skb);
613 	}
614 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
615 	nf_conntrack_put(skb_nfct(skb));
616 #endif
617 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
618 	nf_bridge_put(skb->nf_bridge);
619 #endif
620 }
621 
622 /* Free everything but the sk_buff shell. */
623 static void skb_release_all(struct sk_buff *skb)
624 {
625 	skb_release_head_state(skb);
626 	if (likely(skb->head))
627 		skb_release_data(skb);
628 }
629 
630 /**
631  *	__kfree_skb - private function
632  *	@skb: buffer
633  *
634  *	Free an sk_buff. Release anything attached to the buffer.
635  *	Clean the state. This is an internal helper function. Users should
636  *	always call kfree_skb
637  */
638 
639 void __kfree_skb(struct sk_buff *skb)
640 {
641 	skb_release_all(skb);
642 	kfree_skbmem(skb);
643 }
644 EXPORT_SYMBOL(__kfree_skb);
645 
646 /**
647  *	kfree_skb - free an sk_buff
648  *	@skb: buffer to free
649  *
650  *	Drop a reference to the buffer and free it if the usage count has
651  *	hit zero.
652  */
653 void kfree_skb(struct sk_buff *skb)
654 {
655 	if (!skb_unref(skb))
656 		return;
657 
658 	trace_kfree_skb(skb, __builtin_return_address(0));
659 	__kfree_skb(skb);
660 }
661 EXPORT_SYMBOL(kfree_skb);
662 
663 void kfree_skb_list(struct sk_buff *segs)
664 {
665 	while (segs) {
666 		struct sk_buff *next = segs->next;
667 
668 		kfree_skb(segs);
669 		segs = next;
670 	}
671 }
672 EXPORT_SYMBOL(kfree_skb_list);
673 
674 /**
675  *	skb_tx_error - report an sk_buff xmit error
676  *	@skb: buffer that triggered an error
677  *
678  *	Report xmit error if a device callback is tracking this skb.
679  *	skb must be freed afterwards.
680  */
681 void skb_tx_error(struct sk_buff *skb)
682 {
683 	skb_zcopy_clear(skb, true);
684 }
685 EXPORT_SYMBOL(skb_tx_error);
686 
687 /**
688  *	consume_skb - free an skbuff
689  *	@skb: buffer to free
690  *
691  *	Drop a ref to the buffer and free it if the usage count has hit zero
692  *	Functions identically to kfree_skb, but kfree_skb assumes that the frame
693  *	is being dropped after a failure and notes that
694  */
695 void consume_skb(struct sk_buff *skb)
696 {
697 	if (!skb_unref(skb))
698 		return;
699 
700 	trace_consume_skb(skb);
701 	__kfree_skb(skb);
702 }
703 EXPORT_SYMBOL(consume_skb);
704 
705 /**
706  *	consume_stateless_skb - free an skbuff, assuming it is stateless
707  *	@skb: buffer to free
708  *
709  *	Alike consume_skb(), but this variant assumes that this is the last
710  *	skb reference and all the head states have been already dropped
711  */
712 void __consume_stateless_skb(struct sk_buff *skb)
713 {
714 	trace_consume_skb(skb);
715 	skb_release_data(skb);
716 	kfree_skbmem(skb);
717 }
718 
719 void __kfree_skb_flush(void)
720 {
721 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
722 
723 	/* flush skb_cache if containing objects */
724 	if (nc->skb_count) {
725 		kmem_cache_free_bulk(skbuff_head_cache, nc->skb_count,
726 				     nc->skb_cache);
727 		nc->skb_count = 0;
728 	}
729 }
730 
731 static inline void _kfree_skb_defer(struct sk_buff *skb)
732 {
733 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
734 
735 	/* drop skb->head and call any destructors for packet */
736 	skb_release_all(skb);
737 
738 	/* record skb to CPU local list */
739 	nc->skb_cache[nc->skb_count++] = skb;
740 
741 #ifdef CONFIG_SLUB
742 	/* SLUB writes into objects when freeing */
743 	prefetchw(skb);
744 #endif
745 
746 	/* flush skb_cache if it is filled */
747 	if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) {
748 		kmem_cache_free_bulk(skbuff_head_cache, NAPI_SKB_CACHE_SIZE,
749 				     nc->skb_cache);
750 		nc->skb_count = 0;
751 	}
752 }
753 void __kfree_skb_defer(struct sk_buff *skb)
754 {
755 	_kfree_skb_defer(skb);
756 }
757 
758 void napi_consume_skb(struct sk_buff *skb, int budget)
759 {
760 	if (unlikely(!skb))
761 		return;
762 
763 	/* Zero budget indicate non-NAPI context called us, like netpoll */
764 	if (unlikely(!budget)) {
765 		dev_consume_skb_any(skb);
766 		return;
767 	}
768 
769 	if (!skb_unref(skb))
770 		return;
771 
772 	/* if reaching here SKB is ready to free */
773 	trace_consume_skb(skb);
774 
775 	/* if SKB is a clone, don't handle this case */
776 	if (skb->fclone != SKB_FCLONE_UNAVAILABLE) {
777 		__kfree_skb(skb);
778 		return;
779 	}
780 
781 	_kfree_skb_defer(skb);
782 }
783 EXPORT_SYMBOL(napi_consume_skb);
784 
785 /* Make sure a field is enclosed inside headers_start/headers_end section */
786 #define CHECK_SKB_FIELD(field) \
787 	BUILD_BUG_ON(offsetof(struct sk_buff, field) <		\
788 		     offsetof(struct sk_buff, headers_start));	\
789 	BUILD_BUG_ON(offsetof(struct sk_buff, field) >		\
790 		     offsetof(struct sk_buff, headers_end));	\
791 
792 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
793 {
794 	new->tstamp		= old->tstamp;
795 	/* We do not copy old->sk */
796 	new->dev		= old->dev;
797 	memcpy(new->cb, old->cb, sizeof(old->cb));
798 	skb_dst_copy(new, old);
799 #ifdef CONFIG_XFRM
800 	new->sp			= secpath_get(old->sp);
801 #endif
802 	__nf_copy(new, old, false);
803 
804 	/* Note : this field could be in headers_start/headers_end section
805 	 * It is not yet because we do not want to have a 16 bit hole
806 	 */
807 	new->queue_mapping = old->queue_mapping;
808 
809 	memcpy(&new->headers_start, &old->headers_start,
810 	       offsetof(struct sk_buff, headers_end) -
811 	       offsetof(struct sk_buff, headers_start));
812 	CHECK_SKB_FIELD(protocol);
813 	CHECK_SKB_FIELD(csum);
814 	CHECK_SKB_FIELD(hash);
815 	CHECK_SKB_FIELD(priority);
816 	CHECK_SKB_FIELD(skb_iif);
817 	CHECK_SKB_FIELD(vlan_proto);
818 	CHECK_SKB_FIELD(vlan_tci);
819 	CHECK_SKB_FIELD(transport_header);
820 	CHECK_SKB_FIELD(network_header);
821 	CHECK_SKB_FIELD(mac_header);
822 	CHECK_SKB_FIELD(inner_protocol);
823 	CHECK_SKB_FIELD(inner_transport_header);
824 	CHECK_SKB_FIELD(inner_network_header);
825 	CHECK_SKB_FIELD(inner_mac_header);
826 	CHECK_SKB_FIELD(mark);
827 #ifdef CONFIG_NETWORK_SECMARK
828 	CHECK_SKB_FIELD(secmark);
829 #endif
830 #ifdef CONFIG_NET_RX_BUSY_POLL
831 	CHECK_SKB_FIELD(napi_id);
832 #endif
833 #ifdef CONFIG_XPS
834 	CHECK_SKB_FIELD(sender_cpu);
835 #endif
836 #ifdef CONFIG_NET_SCHED
837 	CHECK_SKB_FIELD(tc_index);
838 #endif
839 
840 }
841 
842 /*
843  * You should not add any new code to this function.  Add it to
844  * __copy_skb_header above instead.
845  */
846 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
847 {
848 #define C(x) n->x = skb->x
849 
850 	n->next = n->prev = NULL;
851 	n->sk = NULL;
852 	__copy_skb_header(n, skb);
853 
854 	C(len);
855 	C(data_len);
856 	C(mac_len);
857 	n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
858 	n->cloned = 1;
859 	n->nohdr = 0;
860 	n->destructor = NULL;
861 	C(tail);
862 	C(end);
863 	C(head);
864 	C(head_frag);
865 	C(data);
866 	C(truesize);
867 	refcount_set(&n->users, 1);
868 
869 	atomic_inc(&(skb_shinfo(skb)->dataref));
870 	skb->cloned = 1;
871 
872 	return n;
873 #undef C
874 }
875 
876 /**
877  *	skb_morph	-	morph one skb into another
878  *	@dst: the skb to receive the contents
879  *	@src: the skb to supply the contents
880  *
881  *	This is identical to skb_clone except that the target skb is
882  *	supplied by the user.
883  *
884  *	The target skb is returned upon exit.
885  */
886 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
887 {
888 	skb_release_all(dst);
889 	return __skb_clone(dst, src);
890 }
891 EXPORT_SYMBOL_GPL(skb_morph);
892 
893 static int mm_account_pinned_pages(struct mmpin *mmp, size_t size)
894 {
895 	unsigned long max_pg, num_pg, new_pg, old_pg;
896 	struct user_struct *user;
897 
898 	if (capable(CAP_IPC_LOCK) || !size)
899 		return 0;
900 
901 	num_pg = (size >> PAGE_SHIFT) + 2;	/* worst case */
902 	max_pg = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
903 	user = mmp->user ? : current_user();
904 
905 	do {
906 		old_pg = atomic_long_read(&user->locked_vm);
907 		new_pg = old_pg + num_pg;
908 		if (new_pg > max_pg)
909 			return -ENOBUFS;
910 	} while (atomic_long_cmpxchg(&user->locked_vm, old_pg, new_pg) !=
911 		 old_pg);
912 
913 	if (!mmp->user) {
914 		mmp->user = get_uid(user);
915 		mmp->num_pg = num_pg;
916 	} else {
917 		mmp->num_pg += num_pg;
918 	}
919 
920 	return 0;
921 }
922 
923 static void mm_unaccount_pinned_pages(struct mmpin *mmp)
924 {
925 	if (mmp->user) {
926 		atomic_long_sub(mmp->num_pg, &mmp->user->locked_vm);
927 		free_uid(mmp->user);
928 	}
929 }
930 
931 struct ubuf_info *sock_zerocopy_alloc(struct sock *sk, size_t size)
932 {
933 	struct ubuf_info *uarg;
934 	struct sk_buff *skb;
935 
936 	WARN_ON_ONCE(!in_task());
937 
938 	if (!sock_flag(sk, SOCK_ZEROCOPY))
939 		return NULL;
940 
941 	skb = sock_omalloc(sk, 0, GFP_KERNEL);
942 	if (!skb)
943 		return NULL;
944 
945 	BUILD_BUG_ON(sizeof(*uarg) > sizeof(skb->cb));
946 	uarg = (void *)skb->cb;
947 	uarg->mmp.user = NULL;
948 
949 	if (mm_account_pinned_pages(&uarg->mmp, size)) {
950 		kfree_skb(skb);
951 		return NULL;
952 	}
953 
954 	uarg->callback = sock_zerocopy_callback;
955 	uarg->id = ((u32)atomic_inc_return(&sk->sk_zckey)) - 1;
956 	uarg->len = 1;
957 	uarg->bytelen = size;
958 	uarg->zerocopy = 1;
959 	refcount_set(&uarg->refcnt, 1);
960 	sock_hold(sk);
961 
962 	return uarg;
963 }
964 EXPORT_SYMBOL_GPL(sock_zerocopy_alloc);
965 
966 static inline struct sk_buff *skb_from_uarg(struct ubuf_info *uarg)
967 {
968 	return container_of((void *)uarg, struct sk_buff, cb);
969 }
970 
971 struct ubuf_info *sock_zerocopy_realloc(struct sock *sk, size_t size,
972 					struct ubuf_info *uarg)
973 {
974 	if (uarg) {
975 		const u32 byte_limit = 1 << 19;		/* limit to a few TSO */
976 		u32 bytelen, next;
977 
978 		/* realloc only when socket is locked (TCP, UDP cork),
979 		 * so uarg->len and sk_zckey access is serialized
980 		 */
981 		if (!sock_owned_by_user(sk)) {
982 			WARN_ON_ONCE(1);
983 			return NULL;
984 		}
985 
986 		bytelen = uarg->bytelen + size;
987 		if (uarg->len == USHRT_MAX - 1 || bytelen > byte_limit) {
988 			/* TCP can create new skb to attach new uarg */
989 			if (sk->sk_type == SOCK_STREAM)
990 				goto new_alloc;
991 			return NULL;
992 		}
993 
994 		next = (u32)atomic_read(&sk->sk_zckey);
995 		if ((u32)(uarg->id + uarg->len) == next) {
996 			if (mm_account_pinned_pages(&uarg->mmp, size))
997 				return NULL;
998 			uarg->len++;
999 			uarg->bytelen = bytelen;
1000 			atomic_set(&sk->sk_zckey, ++next);
1001 			sock_zerocopy_get(uarg);
1002 			return uarg;
1003 		}
1004 	}
1005 
1006 new_alloc:
1007 	return sock_zerocopy_alloc(sk, size);
1008 }
1009 EXPORT_SYMBOL_GPL(sock_zerocopy_realloc);
1010 
1011 static bool skb_zerocopy_notify_extend(struct sk_buff *skb, u32 lo, u16 len)
1012 {
1013 	struct sock_exterr_skb *serr = SKB_EXT_ERR(skb);
1014 	u32 old_lo, old_hi;
1015 	u64 sum_len;
1016 
1017 	old_lo = serr->ee.ee_info;
1018 	old_hi = serr->ee.ee_data;
1019 	sum_len = old_hi - old_lo + 1ULL + len;
1020 
1021 	if (sum_len >= (1ULL << 32))
1022 		return false;
1023 
1024 	if (lo != old_hi + 1)
1025 		return false;
1026 
1027 	serr->ee.ee_data += len;
1028 	return true;
1029 }
1030 
1031 void sock_zerocopy_callback(struct ubuf_info *uarg, bool success)
1032 {
1033 	struct sk_buff *tail, *skb = skb_from_uarg(uarg);
1034 	struct sock_exterr_skb *serr;
1035 	struct sock *sk = skb->sk;
1036 	struct sk_buff_head *q;
1037 	unsigned long flags;
1038 	u32 lo, hi;
1039 	u16 len;
1040 
1041 	mm_unaccount_pinned_pages(&uarg->mmp);
1042 
1043 	/* if !len, there was only 1 call, and it was aborted
1044 	 * so do not queue a completion notification
1045 	 */
1046 	if (!uarg->len || sock_flag(sk, SOCK_DEAD))
1047 		goto release;
1048 
1049 	len = uarg->len;
1050 	lo = uarg->id;
1051 	hi = uarg->id + len - 1;
1052 
1053 	serr = SKB_EXT_ERR(skb);
1054 	memset(serr, 0, sizeof(*serr));
1055 	serr->ee.ee_errno = 0;
1056 	serr->ee.ee_origin = SO_EE_ORIGIN_ZEROCOPY;
1057 	serr->ee.ee_data = hi;
1058 	serr->ee.ee_info = lo;
1059 	if (!success)
1060 		serr->ee.ee_code |= SO_EE_CODE_ZEROCOPY_COPIED;
1061 
1062 	q = &sk->sk_error_queue;
1063 	spin_lock_irqsave(&q->lock, flags);
1064 	tail = skb_peek_tail(q);
1065 	if (!tail || SKB_EXT_ERR(tail)->ee.ee_origin != SO_EE_ORIGIN_ZEROCOPY ||
1066 	    !skb_zerocopy_notify_extend(tail, lo, len)) {
1067 		__skb_queue_tail(q, skb);
1068 		skb = NULL;
1069 	}
1070 	spin_unlock_irqrestore(&q->lock, flags);
1071 
1072 	sk->sk_error_report(sk);
1073 
1074 release:
1075 	consume_skb(skb);
1076 	sock_put(sk);
1077 }
1078 EXPORT_SYMBOL_GPL(sock_zerocopy_callback);
1079 
1080 void sock_zerocopy_put(struct ubuf_info *uarg)
1081 {
1082 	if (uarg && refcount_dec_and_test(&uarg->refcnt)) {
1083 		if (uarg->callback)
1084 			uarg->callback(uarg, uarg->zerocopy);
1085 		else
1086 			consume_skb(skb_from_uarg(uarg));
1087 	}
1088 }
1089 EXPORT_SYMBOL_GPL(sock_zerocopy_put);
1090 
1091 void sock_zerocopy_put_abort(struct ubuf_info *uarg)
1092 {
1093 	if (uarg) {
1094 		struct sock *sk = skb_from_uarg(uarg)->sk;
1095 
1096 		atomic_dec(&sk->sk_zckey);
1097 		uarg->len--;
1098 
1099 		sock_zerocopy_put(uarg);
1100 	}
1101 }
1102 EXPORT_SYMBOL_GPL(sock_zerocopy_put_abort);
1103 
1104 extern int __zerocopy_sg_from_iter(struct sock *sk, struct sk_buff *skb,
1105 				   struct iov_iter *from, size_t length);
1106 
1107 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
1108 			     struct msghdr *msg, int len,
1109 			     struct ubuf_info *uarg)
1110 {
1111 	struct ubuf_info *orig_uarg = skb_zcopy(skb);
1112 	struct iov_iter orig_iter = msg->msg_iter;
1113 	int err, orig_len = skb->len;
1114 
1115 	/* An skb can only point to one uarg. This edge case happens when
1116 	 * TCP appends to an skb, but zerocopy_realloc triggered a new alloc.
1117 	 */
1118 	if (orig_uarg && uarg != orig_uarg)
1119 		return -EEXIST;
1120 
1121 	err = __zerocopy_sg_from_iter(sk, skb, &msg->msg_iter, len);
1122 	if (err == -EFAULT || (err == -EMSGSIZE && skb->len == orig_len)) {
1123 		struct sock *save_sk = skb->sk;
1124 
1125 		/* Streams do not free skb on error. Reset to prev state. */
1126 		msg->msg_iter = orig_iter;
1127 		skb->sk = sk;
1128 		___pskb_trim(skb, orig_len);
1129 		skb->sk = save_sk;
1130 		return err;
1131 	}
1132 
1133 	skb_zcopy_set(skb, uarg);
1134 	return skb->len - orig_len;
1135 }
1136 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_stream);
1137 
1138 static int skb_zerocopy_clone(struct sk_buff *nskb, struct sk_buff *orig,
1139 			      gfp_t gfp_mask)
1140 {
1141 	if (skb_zcopy(orig)) {
1142 		if (skb_zcopy(nskb)) {
1143 			/* !gfp_mask callers are verified to !skb_zcopy(nskb) */
1144 			if (!gfp_mask) {
1145 				WARN_ON_ONCE(1);
1146 				return -ENOMEM;
1147 			}
1148 			if (skb_uarg(nskb) == skb_uarg(orig))
1149 				return 0;
1150 			if (skb_copy_ubufs(nskb, GFP_ATOMIC))
1151 				return -EIO;
1152 		}
1153 		skb_zcopy_set(nskb, skb_uarg(orig));
1154 	}
1155 	return 0;
1156 }
1157 
1158 /**
1159  *	skb_copy_ubufs	-	copy userspace skb frags buffers to kernel
1160  *	@skb: the skb to modify
1161  *	@gfp_mask: allocation priority
1162  *
1163  *	This must be called on SKBTX_DEV_ZEROCOPY skb.
1164  *	It will copy all frags into kernel and drop the reference
1165  *	to userspace pages.
1166  *
1167  *	If this function is called from an interrupt gfp_mask() must be
1168  *	%GFP_ATOMIC.
1169  *
1170  *	Returns 0 on success or a negative error code on failure
1171  *	to allocate kernel memory to copy to.
1172  */
1173 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask)
1174 {
1175 	int num_frags = skb_shinfo(skb)->nr_frags;
1176 	struct page *page, *head = NULL;
1177 	int i, new_frags;
1178 	u32 d_off;
1179 
1180 	if (!num_frags)
1181 		return 0;
1182 
1183 	if (skb_shared(skb) || skb_unclone(skb, gfp_mask))
1184 		return -EINVAL;
1185 
1186 	new_frags = (__skb_pagelen(skb) + PAGE_SIZE - 1) >> PAGE_SHIFT;
1187 	for (i = 0; i < new_frags; i++) {
1188 		page = alloc_page(gfp_mask);
1189 		if (!page) {
1190 			while (head) {
1191 				struct page *next = (struct page *)page_private(head);
1192 				put_page(head);
1193 				head = next;
1194 			}
1195 			return -ENOMEM;
1196 		}
1197 		set_page_private(page, (unsigned long)head);
1198 		head = page;
1199 	}
1200 
1201 	page = head;
1202 	d_off = 0;
1203 	for (i = 0; i < num_frags; i++) {
1204 		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
1205 		u32 p_off, p_len, copied;
1206 		struct page *p;
1207 		u8 *vaddr;
1208 
1209 		skb_frag_foreach_page(f, f->page_offset, skb_frag_size(f),
1210 				      p, p_off, p_len, copied) {
1211 			u32 copy, done = 0;
1212 			vaddr = kmap_atomic(p);
1213 
1214 			while (done < p_len) {
1215 				if (d_off == PAGE_SIZE) {
1216 					d_off = 0;
1217 					page = (struct page *)page_private(page);
1218 				}
1219 				copy = min_t(u32, PAGE_SIZE - d_off, p_len - done);
1220 				memcpy(page_address(page) + d_off,
1221 				       vaddr + p_off + done, copy);
1222 				done += copy;
1223 				d_off += copy;
1224 			}
1225 			kunmap_atomic(vaddr);
1226 		}
1227 	}
1228 
1229 	/* skb frags release userspace buffers */
1230 	for (i = 0; i < num_frags; i++)
1231 		skb_frag_unref(skb, i);
1232 
1233 	/* skb frags point to kernel buffers */
1234 	for (i = 0; i < new_frags - 1; i++) {
1235 		__skb_fill_page_desc(skb, i, head, 0, PAGE_SIZE);
1236 		head = (struct page *)page_private(head);
1237 	}
1238 	__skb_fill_page_desc(skb, new_frags - 1, head, 0, d_off);
1239 	skb_shinfo(skb)->nr_frags = new_frags;
1240 
1241 	skb_zcopy_clear(skb, false);
1242 	return 0;
1243 }
1244 EXPORT_SYMBOL_GPL(skb_copy_ubufs);
1245 
1246 /**
1247  *	skb_clone	-	duplicate an sk_buff
1248  *	@skb: buffer to clone
1249  *	@gfp_mask: allocation priority
1250  *
1251  *	Duplicate an &sk_buff. The new one is not owned by a socket. Both
1252  *	copies share the same packet data but not structure. The new
1253  *	buffer has a reference count of 1. If the allocation fails the
1254  *	function returns %NULL otherwise the new buffer is returned.
1255  *
1256  *	If this function is called from an interrupt gfp_mask() must be
1257  *	%GFP_ATOMIC.
1258  */
1259 
1260 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
1261 {
1262 	struct sk_buff_fclones *fclones = container_of(skb,
1263 						       struct sk_buff_fclones,
1264 						       skb1);
1265 	struct sk_buff *n;
1266 
1267 	if (skb_orphan_frags(skb, gfp_mask))
1268 		return NULL;
1269 
1270 	if (skb->fclone == SKB_FCLONE_ORIG &&
1271 	    refcount_read(&fclones->fclone_ref) == 1) {
1272 		n = &fclones->skb2;
1273 		refcount_set(&fclones->fclone_ref, 2);
1274 	} else {
1275 		if (skb_pfmemalloc(skb))
1276 			gfp_mask |= __GFP_MEMALLOC;
1277 
1278 		n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
1279 		if (!n)
1280 			return NULL;
1281 
1282 		n->fclone = SKB_FCLONE_UNAVAILABLE;
1283 	}
1284 
1285 	return __skb_clone(n, skb);
1286 }
1287 EXPORT_SYMBOL(skb_clone);
1288 
1289 static void skb_headers_offset_update(struct sk_buff *skb, int off)
1290 {
1291 	/* Only adjust this if it actually is csum_start rather than csum */
1292 	if (skb->ip_summed == CHECKSUM_PARTIAL)
1293 		skb->csum_start += off;
1294 	/* {transport,network,mac}_header and tail are relative to skb->head */
1295 	skb->transport_header += off;
1296 	skb->network_header   += off;
1297 	if (skb_mac_header_was_set(skb))
1298 		skb->mac_header += off;
1299 	skb->inner_transport_header += off;
1300 	skb->inner_network_header += off;
1301 	skb->inner_mac_header += off;
1302 }
1303 
1304 static void copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
1305 {
1306 	__copy_skb_header(new, old);
1307 
1308 	skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
1309 	skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
1310 	skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
1311 }
1312 
1313 static inline int skb_alloc_rx_flag(const struct sk_buff *skb)
1314 {
1315 	if (skb_pfmemalloc(skb))
1316 		return SKB_ALLOC_RX;
1317 	return 0;
1318 }
1319 
1320 /**
1321  *	skb_copy	-	create private copy of an sk_buff
1322  *	@skb: buffer to copy
1323  *	@gfp_mask: allocation priority
1324  *
1325  *	Make a copy of both an &sk_buff and its data. This is used when the
1326  *	caller wishes to modify the data and needs a private copy of the
1327  *	data to alter. Returns %NULL on failure or the pointer to the buffer
1328  *	on success. The returned buffer has a reference count of 1.
1329  *
1330  *	As by-product this function converts non-linear &sk_buff to linear
1331  *	one, so that &sk_buff becomes completely private and caller is allowed
1332  *	to modify all the data of returned buffer. This means that this
1333  *	function is not recommended for use in circumstances when only
1334  *	header is going to be modified. Use pskb_copy() instead.
1335  */
1336 
1337 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
1338 {
1339 	int headerlen = skb_headroom(skb);
1340 	unsigned int size = skb_end_offset(skb) + skb->data_len;
1341 	struct sk_buff *n = __alloc_skb(size, gfp_mask,
1342 					skb_alloc_rx_flag(skb), NUMA_NO_NODE);
1343 
1344 	if (!n)
1345 		return NULL;
1346 
1347 	/* Set the data pointer */
1348 	skb_reserve(n, headerlen);
1349 	/* Set the tail pointer and length */
1350 	skb_put(n, skb->len);
1351 
1352 	BUG_ON(skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len));
1353 
1354 	copy_skb_header(n, skb);
1355 	return n;
1356 }
1357 EXPORT_SYMBOL(skb_copy);
1358 
1359 /**
1360  *	__pskb_copy_fclone	-  create copy of an sk_buff with private head.
1361  *	@skb: buffer to copy
1362  *	@headroom: headroom of new skb
1363  *	@gfp_mask: allocation priority
1364  *	@fclone: if true allocate the copy of the skb from the fclone
1365  *	cache instead of the head cache; it is recommended to set this
1366  *	to true for the cases where the copy will likely be cloned
1367  *
1368  *	Make a copy of both an &sk_buff and part of its data, located
1369  *	in header. Fragmented data remain shared. This is used when
1370  *	the caller wishes to modify only header of &sk_buff and needs
1371  *	private copy of the header to alter. Returns %NULL on failure
1372  *	or the pointer to the buffer on success.
1373  *	The returned buffer has a reference count of 1.
1374  */
1375 
1376 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1377 				   gfp_t gfp_mask, bool fclone)
1378 {
1379 	unsigned int size = skb_headlen(skb) + headroom;
1380 	int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0);
1381 	struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE);
1382 
1383 	if (!n)
1384 		goto out;
1385 
1386 	/* Set the data pointer */
1387 	skb_reserve(n, headroom);
1388 	/* Set the tail pointer and length */
1389 	skb_put(n, skb_headlen(skb));
1390 	/* Copy the bytes */
1391 	skb_copy_from_linear_data(skb, n->data, n->len);
1392 
1393 	n->truesize += skb->data_len;
1394 	n->data_len  = skb->data_len;
1395 	n->len	     = skb->len;
1396 
1397 	if (skb_shinfo(skb)->nr_frags) {
1398 		int i;
1399 
1400 		if (skb_orphan_frags(skb, gfp_mask) ||
1401 		    skb_zerocopy_clone(n, skb, gfp_mask)) {
1402 			kfree_skb(n);
1403 			n = NULL;
1404 			goto out;
1405 		}
1406 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1407 			skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
1408 			skb_frag_ref(skb, i);
1409 		}
1410 		skb_shinfo(n)->nr_frags = i;
1411 	}
1412 
1413 	if (skb_has_frag_list(skb)) {
1414 		skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
1415 		skb_clone_fraglist(n);
1416 	}
1417 
1418 	copy_skb_header(n, skb);
1419 out:
1420 	return n;
1421 }
1422 EXPORT_SYMBOL(__pskb_copy_fclone);
1423 
1424 /**
1425  *	pskb_expand_head - reallocate header of &sk_buff
1426  *	@skb: buffer to reallocate
1427  *	@nhead: room to add at head
1428  *	@ntail: room to add at tail
1429  *	@gfp_mask: allocation priority
1430  *
1431  *	Expands (or creates identical copy, if @nhead and @ntail are zero)
1432  *	header of @skb. &sk_buff itself is not changed. &sk_buff MUST have
1433  *	reference count of 1. Returns zero in the case of success or error,
1434  *	if expansion failed. In the last case, &sk_buff is not changed.
1435  *
1436  *	All the pointers pointing into skb header may change and must be
1437  *	reloaded after call to this function.
1438  */
1439 
1440 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
1441 		     gfp_t gfp_mask)
1442 {
1443 	int i, osize = skb_end_offset(skb);
1444 	int size = osize + nhead + ntail;
1445 	long off;
1446 	u8 *data;
1447 
1448 	BUG_ON(nhead < 0);
1449 
1450 	BUG_ON(skb_shared(skb));
1451 
1452 	size = SKB_DATA_ALIGN(size);
1453 
1454 	if (skb_pfmemalloc(skb))
1455 		gfp_mask |= __GFP_MEMALLOC;
1456 	data = kmalloc_reserve(size + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
1457 			       gfp_mask, NUMA_NO_NODE, NULL);
1458 	if (!data)
1459 		goto nodata;
1460 	size = SKB_WITH_OVERHEAD(ksize(data));
1461 
1462 	/* Copy only real data... and, alas, header. This should be
1463 	 * optimized for the cases when header is void.
1464 	 */
1465 	memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head);
1466 
1467 	memcpy((struct skb_shared_info *)(data + size),
1468 	       skb_shinfo(skb),
1469 	       offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags]));
1470 
1471 	/*
1472 	 * if shinfo is shared we must drop the old head gracefully, but if it
1473 	 * is not we can just drop the old head and let the existing refcount
1474 	 * be since all we did is relocate the values
1475 	 */
1476 	if (skb_cloned(skb)) {
1477 		if (skb_orphan_frags(skb, gfp_mask))
1478 			goto nofrags;
1479 		if (skb_zcopy(skb))
1480 			refcount_inc(&skb_uarg(skb)->refcnt);
1481 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1482 			skb_frag_ref(skb, i);
1483 
1484 		if (skb_has_frag_list(skb))
1485 			skb_clone_fraglist(skb);
1486 
1487 		skb_release_data(skb);
1488 	} else {
1489 		skb_free_head(skb);
1490 	}
1491 	off = (data + nhead) - skb->head;
1492 
1493 	skb->head     = data;
1494 	skb->head_frag = 0;
1495 	skb->data    += off;
1496 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1497 	skb->end      = size;
1498 	off           = nhead;
1499 #else
1500 	skb->end      = skb->head + size;
1501 #endif
1502 	skb->tail	      += off;
1503 	skb_headers_offset_update(skb, nhead);
1504 	skb->cloned   = 0;
1505 	skb->hdr_len  = 0;
1506 	skb->nohdr    = 0;
1507 	atomic_set(&skb_shinfo(skb)->dataref, 1);
1508 
1509 	skb_metadata_clear(skb);
1510 
1511 	/* It is not generally safe to change skb->truesize.
1512 	 * For the moment, we really care of rx path, or
1513 	 * when skb is orphaned (not attached to a socket).
1514 	 */
1515 	if (!skb->sk || skb->destructor == sock_edemux)
1516 		skb->truesize += size - osize;
1517 
1518 	return 0;
1519 
1520 nofrags:
1521 	kfree(data);
1522 nodata:
1523 	return -ENOMEM;
1524 }
1525 EXPORT_SYMBOL(pskb_expand_head);
1526 
1527 /* Make private copy of skb with writable head and some headroom */
1528 
1529 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
1530 {
1531 	struct sk_buff *skb2;
1532 	int delta = headroom - skb_headroom(skb);
1533 
1534 	if (delta <= 0)
1535 		skb2 = pskb_copy(skb, GFP_ATOMIC);
1536 	else {
1537 		skb2 = skb_clone(skb, GFP_ATOMIC);
1538 		if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
1539 					     GFP_ATOMIC)) {
1540 			kfree_skb(skb2);
1541 			skb2 = NULL;
1542 		}
1543 	}
1544 	return skb2;
1545 }
1546 EXPORT_SYMBOL(skb_realloc_headroom);
1547 
1548 /**
1549  *	skb_copy_expand	-	copy and expand sk_buff
1550  *	@skb: buffer to copy
1551  *	@newheadroom: new free bytes at head
1552  *	@newtailroom: new free bytes at tail
1553  *	@gfp_mask: allocation priority
1554  *
1555  *	Make a copy of both an &sk_buff and its data and while doing so
1556  *	allocate additional space.
1557  *
1558  *	This is used when the caller wishes to modify the data and needs a
1559  *	private copy of the data to alter as well as more space for new fields.
1560  *	Returns %NULL on failure or the pointer to the buffer
1561  *	on success. The returned buffer has a reference count of 1.
1562  *
1563  *	You must pass %GFP_ATOMIC as the allocation priority if this function
1564  *	is called from an interrupt.
1565  */
1566 struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
1567 				int newheadroom, int newtailroom,
1568 				gfp_t gfp_mask)
1569 {
1570 	/*
1571 	 *	Allocate the copy buffer
1572 	 */
1573 	struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom,
1574 					gfp_mask, skb_alloc_rx_flag(skb),
1575 					NUMA_NO_NODE);
1576 	int oldheadroom = skb_headroom(skb);
1577 	int head_copy_len, head_copy_off;
1578 
1579 	if (!n)
1580 		return NULL;
1581 
1582 	skb_reserve(n, newheadroom);
1583 
1584 	/* Set the tail pointer and length */
1585 	skb_put(n, skb->len);
1586 
1587 	head_copy_len = oldheadroom;
1588 	head_copy_off = 0;
1589 	if (newheadroom <= head_copy_len)
1590 		head_copy_len = newheadroom;
1591 	else
1592 		head_copy_off = newheadroom - head_copy_len;
1593 
1594 	/* Copy the linear header and data. */
1595 	BUG_ON(skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
1596 			     skb->len + head_copy_len));
1597 
1598 	copy_skb_header(n, skb);
1599 
1600 	skb_headers_offset_update(n, newheadroom - oldheadroom);
1601 
1602 	return n;
1603 }
1604 EXPORT_SYMBOL(skb_copy_expand);
1605 
1606 /**
1607  *	__skb_pad		-	zero pad the tail of an skb
1608  *	@skb: buffer to pad
1609  *	@pad: space to pad
1610  *	@free_on_error: free buffer on error
1611  *
1612  *	Ensure that a buffer is followed by a padding area that is zero
1613  *	filled. Used by network drivers which may DMA or transfer data
1614  *	beyond the buffer end onto the wire.
1615  *
1616  *	May return error in out of memory cases. The skb is freed on error
1617  *	if @free_on_error is true.
1618  */
1619 
1620 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error)
1621 {
1622 	int err;
1623 	int ntail;
1624 
1625 	/* If the skbuff is non linear tailroom is always zero.. */
1626 	if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
1627 		memset(skb->data+skb->len, 0, pad);
1628 		return 0;
1629 	}
1630 
1631 	ntail = skb->data_len + pad - (skb->end - skb->tail);
1632 	if (likely(skb_cloned(skb) || ntail > 0)) {
1633 		err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
1634 		if (unlikely(err))
1635 			goto free_skb;
1636 	}
1637 
1638 	/* FIXME: The use of this function with non-linear skb's really needs
1639 	 * to be audited.
1640 	 */
1641 	err = skb_linearize(skb);
1642 	if (unlikely(err))
1643 		goto free_skb;
1644 
1645 	memset(skb->data + skb->len, 0, pad);
1646 	return 0;
1647 
1648 free_skb:
1649 	if (free_on_error)
1650 		kfree_skb(skb);
1651 	return err;
1652 }
1653 EXPORT_SYMBOL(__skb_pad);
1654 
1655 /**
1656  *	pskb_put - add data to the tail of a potentially fragmented buffer
1657  *	@skb: start of the buffer to use
1658  *	@tail: tail fragment of the buffer to use
1659  *	@len: amount of data to add
1660  *
1661  *	This function extends the used data area of the potentially
1662  *	fragmented buffer. @tail must be the last fragment of @skb -- or
1663  *	@skb itself. If this would exceed the total buffer size the kernel
1664  *	will panic. A pointer to the first byte of the extra data is
1665  *	returned.
1666  */
1667 
1668 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len)
1669 {
1670 	if (tail != skb) {
1671 		skb->data_len += len;
1672 		skb->len += len;
1673 	}
1674 	return skb_put(tail, len);
1675 }
1676 EXPORT_SYMBOL_GPL(pskb_put);
1677 
1678 /**
1679  *	skb_put - add data to a buffer
1680  *	@skb: buffer to use
1681  *	@len: amount of data to add
1682  *
1683  *	This function extends the used data area of the buffer. If this would
1684  *	exceed the total buffer size the kernel will panic. A pointer to the
1685  *	first byte of the extra data is returned.
1686  */
1687 void *skb_put(struct sk_buff *skb, unsigned int len)
1688 {
1689 	void *tmp = skb_tail_pointer(skb);
1690 	SKB_LINEAR_ASSERT(skb);
1691 	skb->tail += len;
1692 	skb->len  += len;
1693 	if (unlikely(skb->tail > skb->end))
1694 		skb_over_panic(skb, len, __builtin_return_address(0));
1695 	return tmp;
1696 }
1697 EXPORT_SYMBOL(skb_put);
1698 
1699 /**
1700  *	skb_push - add data to the start of a buffer
1701  *	@skb: buffer to use
1702  *	@len: amount of data to add
1703  *
1704  *	This function extends the used data area of the buffer at the buffer
1705  *	start. If this would exceed the total buffer headroom the kernel will
1706  *	panic. A pointer to the first byte of the extra data is returned.
1707  */
1708 void *skb_push(struct sk_buff *skb, unsigned int len)
1709 {
1710 	skb->data -= len;
1711 	skb->len  += len;
1712 	if (unlikely(skb->data<skb->head))
1713 		skb_under_panic(skb, len, __builtin_return_address(0));
1714 	return skb->data;
1715 }
1716 EXPORT_SYMBOL(skb_push);
1717 
1718 /**
1719  *	skb_pull - remove data from the start of a buffer
1720  *	@skb: buffer to use
1721  *	@len: amount of data to remove
1722  *
1723  *	This function removes data from the start of a buffer, returning
1724  *	the memory to the headroom. A pointer to the next data in the buffer
1725  *	is returned. Once the data has been pulled future pushes will overwrite
1726  *	the old data.
1727  */
1728 void *skb_pull(struct sk_buff *skb, unsigned int len)
1729 {
1730 	return skb_pull_inline(skb, len);
1731 }
1732 EXPORT_SYMBOL(skb_pull);
1733 
1734 /**
1735  *	skb_trim - remove end from a buffer
1736  *	@skb: buffer to alter
1737  *	@len: new length
1738  *
1739  *	Cut the length of a buffer down by removing data from the tail. If
1740  *	the buffer is already under the length specified it is not modified.
1741  *	The skb must be linear.
1742  */
1743 void skb_trim(struct sk_buff *skb, unsigned int len)
1744 {
1745 	if (skb->len > len)
1746 		__skb_trim(skb, len);
1747 }
1748 EXPORT_SYMBOL(skb_trim);
1749 
1750 /* Trims skb to length len. It can change skb pointers.
1751  */
1752 
1753 int ___pskb_trim(struct sk_buff *skb, unsigned int len)
1754 {
1755 	struct sk_buff **fragp;
1756 	struct sk_buff *frag;
1757 	int offset = skb_headlen(skb);
1758 	int nfrags = skb_shinfo(skb)->nr_frags;
1759 	int i;
1760 	int err;
1761 
1762 	if (skb_cloned(skb) &&
1763 	    unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
1764 		return err;
1765 
1766 	i = 0;
1767 	if (offset >= len)
1768 		goto drop_pages;
1769 
1770 	for (; i < nfrags; i++) {
1771 		int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]);
1772 
1773 		if (end < len) {
1774 			offset = end;
1775 			continue;
1776 		}
1777 
1778 		skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset);
1779 
1780 drop_pages:
1781 		skb_shinfo(skb)->nr_frags = i;
1782 
1783 		for (; i < nfrags; i++)
1784 			skb_frag_unref(skb, i);
1785 
1786 		if (skb_has_frag_list(skb))
1787 			skb_drop_fraglist(skb);
1788 		goto done;
1789 	}
1790 
1791 	for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
1792 	     fragp = &frag->next) {
1793 		int end = offset + frag->len;
1794 
1795 		if (skb_shared(frag)) {
1796 			struct sk_buff *nfrag;
1797 
1798 			nfrag = skb_clone(frag, GFP_ATOMIC);
1799 			if (unlikely(!nfrag))
1800 				return -ENOMEM;
1801 
1802 			nfrag->next = frag->next;
1803 			consume_skb(frag);
1804 			frag = nfrag;
1805 			*fragp = frag;
1806 		}
1807 
1808 		if (end < len) {
1809 			offset = end;
1810 			continue;
1811 		}
1812 
1813 		if (end > len &&
1814 		    unlikely((err = pskb_trim(frag, len - offset))))
1815 			return err;
1816 
1817 		if (frag->next)
1818 			skb_drop_list(&frag->next);
1819 		break;
1820 	}
1821 
1822 done:
1823 	if (len > skb_headlen(skb)) {
1824 		skb->data_len -= skb->len - len;
1825 		skb->len       = len;
1826 	} else {
1827 		skb->len       = len;
1828 		skb->data_len  = 0;
1829 		skb_set_tail_pointer(skb, len);
1830 	}
1831 
1832 	if (!skb->sk || skb->destructor == sock_edemux)
1833 		skb_condense(skb);
1834 	return 0;
1835 }
1836 EXPORT_SYMBOL(___pskb_trim);
1837 
1838 /**
1839  *	__pskb_pull_tail - advance tail of skb header
1840  *	@skb: buffer to reallocate
1841  *	@delta: number of bytes to advance tail
1842  *
1843  *	The function makes a sense only on a fragmented &sk_buff,
1844  *	it expands header moving its tail forward and copying necessary
1845  *	data from fragmented part.
1846  *
1847  *	&sk_buff MUST have reference count of 1.
1848  *
1849  *	Returns %NULL (and &sk_buff does not change) if pull failed
1850  *	or value of new tail of skb in the case of success.
1851  *
1852  *	All the pointers pointing into skb header may change and must be
1853  *	reloaded after call to this function.
1854  */
1855 
1856 /* Moves tail of skb head forward, copying data from fragmented part,
1857  * when it is necessary.
1858  * 1. It may fail due to malloc failure.
1859  * 2. It may change skb pointers.
1860  *
1861  * It is pretty complicated. Luckily, it is called only in exceptional cases.
1862  */
1863 void *__pskb_pull_tail(struct sk_buff *skb, int delta)
1864 {
1865 	/* If skb has not enough free space at tail, get new one
1866 	 * plus 128 bytes for future expansions. If we have enough
1867 	 * room at tail, reallocate without expansion only if skb is cloned.
1868 	 */
1869 	int i, k, eat = (skb->tail + delta) - skb->end;
1870 
1871 	if (eat > 0 || skb_cloned(skb)) {
1872 		if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
1873 				     GFP_ATOMIC))
1874 			return NULL;
1875 	}
1876 
1877 	BUG_ON(skb_copy_bits(skb, skb_headlen(skb),
1878 			     skb_tail_pointer(skb), delta));
1879 
1880 	/* Optimization: no fragments, no reasons to preestimate
1881 	 * size of pulled pages. Superb.
1882 	 */
1883 	if (!skb_has_frag_list(skb))
1884 		goto pull_pages;
1885 
1886 	/* Estimate size of pulled pages. */
1887 	eat = delta;
1888 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1889 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
1890 
1891 		if (size >= eat)
1892 			goto pull_pages;
1893 		eat -= size;
1894 	}
1895 
1896 	/* If we need update frag list, we are in troubles.
1897 	 * Certainly, it is possible to add an offset to skb data,
1898 	 * but taking into account that pulling is expected to
1899 	 * be very rare operation, it is worth to fight against
1900 	 * further bloating skb head and crucify ourselves here instead.
1901 	 * Pure masohism, indeed. 8)8)
1902 	 */
1903 	if (eat) {
1904 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
1905 		struct sk_buff *clone = NULL;
1906 		struct sk_buff *insp = NULL;
1907 
1908 		do {
1909 			BUG_ON(!list);
1910 
1911 			if (list->len <= eat) {
1912 				/* Eaten as whole. */
1913 				eat -= list->len;
1914 				list = list->next;
1915 				insp = list;
1916 			} else {
1917 				/* Eaten partially. */
1918 
1919 				if (skb_shared(list)) {
1920 					/* Sucks! We need to fork list. :-( */
1921 					clone = skb_clone(list, GFP_ATOMIC);
1922 					if (!clone)
1923 						return NULL;
1924 					insp = list->next;
1925 					list = clone;
1926 				} else {
1927 					/* This may be pulled without
1928 					 * problems. */
1929 					insp = list;
1930 				}
1931 				if (!pskb_pull(list, eat)) {
1932 					kfree_skb(clone);
1933 					return NULL;
1934 				}
1935 				break;
1936 			}
1937 		} while (eat);
1938 
1939 		/* Free pulled out fragments. */
1940 		while ((list = skb_shinfo(skb)->frag_list) != insp) {
1941 			skb_shinfo(skb)->frag_list = list->next;
1942 			kfree_skb(list);
1943 		}
1944 		/* And insert new clone at head. */
1945 		if (clone) {
1946 			clone->next = list;
1947 			skb_shinfo(skb)->frag_list = clone;
1948 		}
1949 	}
1950 	/* Success! Now we may commit changes to skb data. */
1951 
1952 pull_pages:
1953 	eat = delta;
1954 	k = 0;
1955 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1956 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
1957 
1958 		if (size <= eat) {
1959 			skb_frag_unref(skb, i);
1960 			eat -= size;
1961 		} else {
1962 			skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i];
1963 			if (eat) {
1964 				skb_shinfo(skb)->frags[k].page_offset += eat;
1965 				skb_frag_size_sub(&skb_shinfo(skb)->frags[k], eat);
1966 				if (!i)
1967 					goto end;
1968 				eat = 0;
1969 			}
1970 			k++;
1971 		}
1972 	}
1973 	skb_shinfo(skb)->nr_frags = k;
1974 
1975 end:
1976 	skb->tail     += delta;
1977 	skb->data_len -= delta;
1978 
1979 	if (!skb->data_len)
1980 		skb_zcopy_clear(skb, false);
1981 
1982 	return skb_tail_pointer(skb);
1983 }
1984 EXPORT_SYMBOL(__pskb_pull_tail);
1985 
1986 /**
1987  *	skb_copy_bits - copy bits from skb to kernel buffer
1988  *	@skb: source skb
1989  *	@offset: offset in source
1990  *	@to: destination buffer
1991  *	@len: number of bytes to copy
1992  *
1993  *	Copy the specified number of bytes from the source skb to the
1994  *	destination buffer.
1995  *
1996  *	CAUTION ! :
1997  *		If its prototype is ever changed,
1998  *		check arch/{*}/net/{*}.S files,
1999  *		since it is called from BPF assembly code.
2000  */
2001 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
2002 {
2003 	int start = skb_headlen(skb);
2004 	struct sk_buff *frag_iter;
2005 	int i, copy;
2006 
2007 	if (offset > (int)skb->len - len)
2008 		goto fault;
2009 
2010 	/* Copy header. */
2011 	if ((copy = start - offset) > 0) {
2012 		if (copy > len)
2013 			copy = len;
2014 		skb_copy_from_linear_data_offset(skb, offset, to, copy);
2015 		if ((len -= copy) == 0)
2016 			return 0;
2017 		offset += copy;
2018 		to     += copy;
2019 	}
2020 
2021 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2022 		int end;
2023 		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
2024 
2025 		WARN_ON(start > offset + len);
2026 
2027 		end = start + skb_frag_size(f);
2028 		if ((copy = end - offset) > 0) {
2029 			u32 p_off, p_len, copied;
2030 			struct page *p;
2031 			u8 *vaddr;
2032 
2033 			if (copy > len)
2034 				copy = len;
2035 
2036 			skb_frag_foreach_page(f,
2037 					      f->page_offset + offset - start,
2038 					      copy, p, p_off, p_len, copied) {
2039 				vaddr = kmap_atomic(p);
2040 				memcpy(to + copied, vaddr + p_off, p_len);
2041 				kunmap_atomic(vaddr);
2042 			}
2043 
2044 			if ((len -= copy) == 0)
2045 				return 0;
2046 			offset += copy;
2047 			to     += copy;
2048 		}
2049 		start = end;
2050 	}
2051 
2052 	skb_walk_frags(skb, frag_iter) {
2053 		int end;
2054 
2055 		WARN_ON(start > offset + len);
2056 
2057 		end = start + frag_iter->len;
2058 		if ((copy = end - offset) > 0) {
2059 			if (copy > len)
2060 				copy = len;
2061 			if (skb_copy_bits(frag_iter, offset - start, to, copy))
2062 				goto fault;
2063 			if ((len -= copy) == 0)
2064 				return 0;
2065 			offset += copy;
2066 			to     += copy;
2067 		}
2068 		start = end;
2069 	}
2070 
2071 	if (!len)
2072 		return 0;
2073 
2074 fault:
2075 	return -EFAULT;
2076 }
2077 EXPORT_SYMBOL(skb_copy_bits);
2078 
2079 /*
2080  * Callback from splice_to_pipe(), if we need to release some pages
2081  * at the end of the spd in case we error'ed out in filling the pipe.
2082  */
2083 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
2084 {
2085 	put_page(spd->pages[i]);
2086 }
2087 
2088 static struct page *linear_to_page(struct page *page, unsigned int *len,
2089 				   unsigned int *offset,
2090 				   struct sock *sk)
2091 {
2092 	struct page_frag *pfrag = sk_page_frag(sk);
2093 
2094 	if (!sk_page_frag_refill(sk, pfrag))
2095 		return NULL;
2096 
2097 	*len = min_t(unsigned int, *len, pfrag->size - pfrag->offset);
2098 
2099 	memcpy(page_address(pfrag->page) + pfrag->offset,
2100 	       page_address(page) + *offset, *len);
2101 	*offset = pfrag->offset;
2102 	pfrag->offset += *len;
2103 
2104 	return pfrag->page;
2105 }
2106 
2107 static bool spd_can_coalesce(const struct splice_pipe_desc *spd,
2108 			     struct page *page,
2109 			     unsigned int offset)
2110 {
2111 	return	spd->nr_pages &&
2112 		spd->pages[spd->nr_pages - 1] == page &&
2113 		(spd->partial[spd->nr_pages - 1].offset +
2114 		 spd->partial[spd->nr_pages - 1].len == offset);
2115 }
2116 
2117 /*
2118  * Fill page/offset/length into spd, if it can hold more pages.
2119  */
2120 static bool spd_fill_page(struct splice_pipe_desc *spd,
2121 			  struct pipe_inode_info *pipe, struct page *page,
2122 			  unsigned int *len, unsigned int offset,
2123 			  bool linear,
2124 			  struct sock *sk)
2125 {
2126 	if (unlikely(spd->nr_pages == MAX_SKB_FRAGS))
2127 		return true;
2128 
2129 	if (linear) {
2130 		page = linear_to_page(page, len, &offset, sk);
2131 		if (!page)
2132 			return true;
2133 	}
2134 	if (spd_can_coalesce(spd, page, offset)) {
2135 		spd->partial[spd->nr_pages - 1].len += *len;
2136 		return false;
2137 	}
2138 	get_page(page);
2139 	spd->pages[spd->nr_pages] = page;
2140 	spd->partial[spd->nr_pages].len = *len;
2141 	spd->partial[spd->nr_pages].offset = offset;
2142 	spd->nr_pages++;
2143 
2144 	return false;
2145 }
2146 
2147 static bool __splice_segment(struct page *page, unsigned int poff,
2148 			     unsigned int plen, unsigned int *off,
2149 			     unsigned int *len,
2150 			     struct splice_pipe_desc *spd, bool linear,
2151 			     struct sock *sk,
2152 			     struct pipe_inode_info *pipe)
2153 {
2154 	if (!*len)
2155 		return true;
2156 
2157 	/* skip this segment if already processed */
2158 	if (*off >= plen) {
2159 		*off -= plen;
2160 		return false;
2161 	}
2162 
2163 	/* ignore any bits we already processed */
2164 	poff += *off;
2165 	plen -= *off;
2166 	*off = 0;
2167 
2168 	do {
2169 		unsigned int flen = min(*len, plen);
2170 
2171 		if (spd_fill_page(spd, pipe, page, &flen, poff,
2172 				  linear, sk))
2173 			return true;
2174 		poff += flen;
2175 		plen -= flen;
2176 		*len -= flen;
2177 	} while (*len && plen);
2178 
2179 	return false;
2180 }
2181 
2182 /*
2183  * Map linear and fragment data from the skb to spd. It reports true if the
2184  * pipe is full or if we already spliced the requested length.
2185  */
2186 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe,
2187 			      unsigned int *offset, unsigned int *len,
2188 			      struct splice_pipe_desc *spd, struct sock *sk)
2189 {
2190 	int seg;
2191 	struct sk_buff *iter;
2192 
2193 	/* map the linear part :
2194 	 * If skb->head_frag is set, this 'linear' part is backed by a
2195 	 * fragment, and if the head is not shared with any clones then
2196 	 * we can avoid a copy since we own the head portion of this page.
2197 	 */
2198 	if (__splice_segment(virt_to_page(skb->data),
2199 			     (unsigned long) skb->data & (PAGE_SIZE - 1),
2200 			     skb_headlen(skb),
2201 			     offset, len, spd,
2202 			     skb_head_is_locked(skb),
2203 			     sk, pipe))
2204 		return true;
2205 
2206 	/*
2207 	 * then map the fragments
2208 	 */
2209 	for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
2210 		const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
2211 
2212 		if (__splice_segment(skb_frag_page(f),
2213 				     f->page_offset, skb_frag_size(f),
2214 				     offset, len, spd, false, sk, pipe))
2215 			return true;
2216 	}
2217 
2218 	skb_walk_frags(skb, iter) {
2219 		if (*offset >= iter->len) {
2220 			*offset -= iter->len;
2221 			continue;
2222 		}
2223 		/* __skb_splice_bits() only fails if the output has no room
2224 		 * left, so no point in going over the frag_list for the error
2225 		 * case.
2226 		 */
2227 		if (__skb_splice_bits(iter, pipe, offset, len, spd, sk))
2228 			return true;
2229 	}
2230 
2231 	return false;
2232 }
2233 
2234 /*
2235  * Map data from the skb to a pipe. Should handle both the linear part,
2236  * the fragments, and the frag list.
2237  */
2238 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
2239 		    struct pipe_inode_info *pipe, unsigned int tlen,
2240 		    unsigned int flags)
2241 {
2242 	struct partial_page partial[MAX_SKB_FRAGS];
2243 	struct page *pages[MAX_SKB_FRAGS];
2244 	struct splice_pipe_desc spd = {
2245 		.pages = pages,
2246 		.partial = partial,
2247 		.nr_pages_max = MAX_SKB_FRAGS,
2248 		.ops = &nosteal_pipe_buf_ops,
2249 		.spd_release = sock_spd_release,
2250 	};
2251 	int ret = 0;
2252 
2253 	__skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk);
2254 
2255 	if (spd.nr_pages)
2256 		ret = splice_to_pipe(pipe, &spd);
2257 
2258 	return ret;
2259 }
2260 EXPORT_SYMBOL_GPL(skb_splice_bits);
2261 
2262 /* Send skb data on a socket. Socket must be locked. */
2263 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
2264 			 int len)
2265 {
2266 	unsigned int orig_len = len;
2267 	struct sk_buff *head = skb;
2268 	unsigned short fragidx;
2269 	int slen, ret;
2270 
2271 do_frag_list:
2272 
2273 	/* Deal with head data */
2274 	while (offset < skb_headlen(skb) && len) {
2275 		struct kvec kv;
2276 		struct msghdr msg;
2277 
2278 		slen = min_t(int, len, skb_headlen(skb) - offset);
2279 		kv.iov_base = skb->data + offset;
2280 		kv.iov_len = slen;
2281 		memset(&msg, 0, sizeof(msg));
2282 
2283 		ret = kernel_sendmsg_locked(sk, &msg, &kv, 1, slen);
2284 		if (ret <= 0)
2285 			goto error;
2286 
2287 		offset += ret;
2288 		len -= ret;
2289 	}
2290 
2291 	/* All the data was skb head? */
2292 	if (!len)
2293 		goto out;
2294 
2295 	/* Make offset relative to start of frags */
2296 	offset -= skb_headlen(skb);
2297 
2298 	/* Find where we are in frag list */
2299 	for (fragidx = 0; fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
2300 		skb_frag_t *frag  = &skb_shinfo(skb)->frags[fragidx];
2301 
2302 		if (offset < frag->size)
2303 			break;
2304 
2305 		offset -= frag->size;
2306 	}
2307 
2308 	for (; len && fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
2309 		skb_frag_t *frag  = &skb_shinfo(skb)->frags[fragidx];
2310 
2311 		slen = min_t(size_t, len, frag->size - offset);
2312 
2313 		while (slen) {
2314 			ret = kernel_sendpage_locked(sk, frag->page.p,
2315 						     frag->page_offset + offset,
2316 						     slen, MSG_DONTWAIT);
2317 			if (ret <= 0)
2318 				goto error;
2319 
2320 			len -= ret;
2321 			offset += ret;
2322 			slen -= ret;
2323 		}
2324 
2325 		offset = 0;
2326 	}
2327 
2328 	if (len) {
2329 		/* Process any frag lists */
2330 
2331 		if (skb == head) {
2332 			if (skb_has_frag_list(skb)) {
2333 				skb = skb_shinfo(skb)->frag_list;
2334 				goto do_frag_list;
2335 			}
2336 		} else if (skb->next) {
2337 			skb = skb->next;
2338 			goto do_frag_list;
2339 		}
2340 	}
2341 
2342 out:
2343 	return orig_len - len;
2344 
2345 error:
2346 	return orig_len == len ? ret : orig_len - len;
2347 }
2348 EXPORT_SYMBOL_GPL(skb_send_sock_locked);
2349 
2350 /* Send skb data on a socket. */
2351 int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len)
2352 {
2353 	int ret = 0;
2354 
2355 	lock_sock(sk);
2356 	ret = skb_send_sock_locked(sk, skb, offset, len);
2357 	release_sock(sk);
2358 
2359 	return ret;
2360 }
2361 EXPORT_SYMBOL_GPL(skb_send_sock);
2362 
2363 /**
2364  *	skb_store_bits - store bits from kernel buffer to skb
2365  *	@skb: destination buffer
2366  *	@offset: offset in destination
2367  *	@from: source buffer
2368  *	@len: number of bytes to copy
2369  *
2370  *	Copy the specified number of bytes from the source buffer to the
2371  *	destination skb.  This function handles all the messy bits of
2372  *	traversing fragment lists and such.
2373  */
2374 
2375 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
2376 {
2377 	int start = skb_headlen(skb);
2378 	struct sk_buff *frag_iter;
2379 	int i, copy;
2380 
2381 	if (offset > (int)skb->len - len)
2382 		goto fault;
2383 
2384 	if ((copy = start - offset) > 0) {
2385 		if (copy > len)
2386 			copy = len;
2387 		skb_copy_to_linear_data_offset(skb, offset, from, copy);
2388 		if ((len -= copy) == 0)
2389 			return 0;
2390 		offset += copy;
2391 		from += copy;
2392 	}
2393 
2394 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2395 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2396 		int end;
2397 
2398 		WARN_ON(start > offset + len);
2399 
2400 		end = start + skb_frag_size(frag);
2401 		if ((copy = end - offset) > 0) {
2402 			u32 p_off, p_len, copied;
2403 			struct page *p;
2404 			u8 *vaddr;
2405 
2406 			if (copy > len)
2407 				copy = len;
2408 
2409 			skb_frag_foreach_page(frag,
2410 					      frag->page_offset + offset - start,
2411 					      copy, p, p_off, p_len, copied) {
2412 				vaddr = kmap_atomic(p);
2413 				memcpy(vaddr + p_off, from + copied, p_len);
2414 				kunmap_atomic(vaddr);
2415 			}
2416 
2417 			if ((len -= copy) == 0)
2418 				return 0;
2419 			offset += copy;
2420 			from += copy;
2421 		}
2422 		start = end;
2423 	}
2424 
2425 	skb_walk_frags(skb, frag_iter) {
2426 		int end;
2427 
2428 		WARN_ON(start > offset + len);
2429 
2430 		end = start + frag_iter->len;
2431 		if ((copy = end - offset) > 0) {
2432 			if (copy > len)
2433 				copy = len;
2434 			if (skb_store_bits(frag_iter, offset - start,
2435 					   from, copy))
2436 				goto fault;
2437 			if ((len -= copy) == 0)
2438 				return 0;
2439 			offset += copy;
2440 			from += copy;
2441 		}
2442 		start = end;
2443 	}
2444 	if (!len)
2445 		return 0;
2446 
2447 fault:
2448 	return -EFAULT;
2449 }
2450 EXPORT_SYMBOL(skb_store_bits);
2451 
2452 /* Checksum skb data. */
2453 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
2454 		      __wsum csum, const struct skb_checksum_ops *ops)
2455 {
2456 	int start = skb_headlen(skb);
2457 	int i, copy = start - offset;
2458 	struct sk_buff *frag_iter;
2459 	int pos = 0;
2460 
2461 	/* Checksum header. */
2462 	if (copy > 0) {
2463 		if (copy > len)
2464 			copy = len;
2465 		csum = ops->update(skb->data + offset, copy, csum);
2466 		if ((len -= copy) == 0)
2467 			return csum;
2468 		offset += copy;
2469 		pos	= copy;
2470 	}
2471 
2472 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2473 		int end;
2474 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2475 
2476 		WARN_ON(start > offset + len);
2477 
2478 		end = start + skb_frag_size(frag);
2479 		if ((copy = end - offset) > 0) {
2480 			u32 p_off, p_len, copied;
2481 			struct page *p;
2482 			__wsum csum2;
2483 			u8 *vaddr;
2484 
2485 			if (copy > len)
2486 				copy = len;
2487 
2488 			skb_frag_foreach_page(frag,
2489 					      frag->page_offset + offset - start,
2490 					      copy, p, p_off, p_len, copied) {
2491 				vaddr = kmap_atomic(p);
2492 				csum2 = ops->update(vaddr + p_off, p_len, 0);
2493 				kunmap_atomic(vaddr);
2494 				csum = ops->combine(csum, csum2, pos, p_len);
2495 				pos += p_len;
2496 			}
2497 
2498 			if (!(len -= copy))
2499 				return csum;
2500 			offset += copy;
2501 		}
2502 		start = end;
2503 	}
2504 
2505 	skb_walk_frags(skb, frag_iter) {
2506 		int end;
2507 
2508 		WARN_ON(start > offset + len);
2509 
2510 		end = start + frag_iter->len;
2511 		if ((copy = end - offset) > 0) {
2512 			__wsum csum2;
2513 			if (copy > len)
2514 				copy = len;
2515 			csum2 = __skb_checksum(frag_iter, offset - start,
2516 					       copy, 0, ops);
2517 			csum = ops->combine(csum, csum2, pos, copy);
2518 			if ((len -= copy) == 0)
2519 				return csum;
2520 			offset += copy;
2521 			pos    += copy;
2522 		}
2523 		start = end;
2524 	}
2525 	BUG_ON(len);
2526 
2527 	return csum;
2528 }
2529 EXPORT_SYMBOL(__skb_checksum);
2530 
2531 __wsum skb_checksum(const struct sk_buff *skb, int offset,
2532 		    int len, __wsum csum)
2533 {
2534 	const struct skb_checksum_ops ops = {
2535 		.update  = csum_partial_ext,
2536 		.combine = csum_block_add_ext,
2537 	};
2538 
2539 	return __skb_checksum(skb, offset, len, csum, &ops);
2540 }
2541 EXPORT_SYMBOL(skb_checksum);
2542 
2543 /* Both of above in one bottle. */
2544 
2545 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
2546 				    u8 *to, int len, __wsum csum)
2547 {
2548 	int start = skb_headlen(skb);
2549 	int i, copy = start - offset;
2550 	struct sk_buff *frag_iter;
2551 	int pos = 0;
2552 
2553 	/* Copy header. */
2554 	if (copy > 0) {
2555 		if (copy > len)
2556 			copy = len;
2557 		csum = csum_partial_copy_nocheck(skb->data + offset, to,
2558 						 copy, csum);
2559 		if ((len -= copy) == 0)
2560 			return csum;
2561 		offset += copy;
2562 		to     += copy;
2563 		pos	= copy;
2564 	}
2565 
2566 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2567 		int end;
2568 
2569 		WARN_ON(start > offset + len);
2570 
2571 		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
2572 		if ((copy = end - offset) > 0) {
2573 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2574 			u32 p_off, p_len, copied;
2575 			struct page *p;
2576 			__wsum csum2;
2577 			u8 *vaddr;
2578 
2579 			if (copy > len)
2580 				copy = len;
2581 
2582 			skb_frag_foreach_page(frag,
2583 					      frag->page_offset + offset - start,
2584 					      copy, p, p_off, p_len, copied) {
2585 				vaddr = kmap_atomic(p);
2586 				csum2 = csum_partial_copy_nocheck(vaddr + p_off,
2587 								  to + copied,
2588 								  p_len, 0);
2589 				kunmap_atomic(vaddr);
2590 				csum = csum_block_add(csum, csum2, pos);
2591 				pos += p_len;
2592 			}
2593 
2594 			if (!(len -= copy))
2595 				return csum;
2596 			offset += copy;
2597 			to     += copy;
2598 		}
2599 		start = end;
2600 	}
2601 
2602 	skb_walk_frags(skb, frag_iter) {
2603 		__wsum csum2;
2604 		int end;
2605 
2606 		WARN_ON(start > offset + len);
2607 
2608 		end = start + frag_iter->len;
2609 		if ((copy = end - offset) > 0) {
2610 			if (copy > len)
2611 				copy = len;
2612 			csum2 = skb_copy_and_csum_bits(frag_iter,
2613 						       offset - start,
2614 						       to, copy, 0);
2615 			csum = csum_block_add(csum, csum2, pos);
2616 			if ((len -= copy) == 0)
2617 				return csum;
2618 			offset += copy;
2619 			to     += copy;
2620 			pos    += copy;
2621 		}
2622 		start = end;
2623 	}
2624 	BUG_ON(len);
2625 	return csum;
2626 }
2627 EXPORT_SYMBOL(skb_copy_and_csum_bits);
2628 
2629 static __wsum warn_crc32c_csum_update(const void *buff, int len, __wsum sum)
2630 {
2631 	net_warn_ratelimited(
2632 		"%s: attempt to compute crc32c without libcrc32c.ko\n",
2633 		__func__);
2634 	return 0;
2635 }
2636 
2637 static __wsum warn_crc32c_csum_combine(__wsum csum, __wsum csum2,
2638 				       int offset, int len)
2639 {
2640 	net_warn_ratelimited(
2641 		"%s: attempt to compute crc32c without libcrc32c.ko\n",
2642 		__func__);
2643 	return 0;
2644 }
2645 
2646 static const struct skb_checksum_ops default_crc32c_ops = {
2647 	.update  = warn_crc32c_csum_update,
2648 	.combine = warn_crc32c_csum_combine,
2649 };
2650 
2651 const struct skb_checksum_ops *crc32c_csum_stub __read_mostly =
2652 	&default_crc32c_ops;
2653 EXPORT_SYMBOL(crc32c_csum_stub);
2654 
2655  /**
2656  *	skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy()
2657  *	@from: source buffer
2658  *
2659  *	Calculates the amount of linear headroom needed in the 'to' skb passed
2660  *	into skb_zerocopy().
2661  */
2662 unsigned int
2663 skb_zerocopy_headlen(const struct sk_buff *from)
2664 {
2665 	unsigned int hlen = 0;
2666 
2667 	if (!from->head_frag ||
2668 	    skb_headlen(from) < L1_CACHE_BYTES ||
2669 	    skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS)
2670 		hlen = skb_headlen(from);
2671 
2672 	if (skb_has_frag_list(from))
2673 		hlen = from->len;
2674 
2675 	return hlen;
2676 }
2677 EXPORT_SYMBOL_GPL(skb_zerocopy_headlen);
2678 
2679 /**
2680  *	skb_zerocopy - Zero copy skb to skb
2681  *	@to: destination buffer
2682  *	@from: source buffer
2683  *	@len: number of bytes to copy from source buffer
2684  *	@hlen: size of linear headroom in destination buffer
2685  *
2686  *	Copies up to `len` bytes from `from` to `to` by creating references
2687  *	to the frags in the source buffer.
2688  *
2689  *	The `hlen` as calculated by skb_zerocopy_headlen() specifies the
2690  *	headroom in the `to` buffer.
2691  *
2692  *	Return value:
2693  *	0: everything is OK
2694  *	-ENOMEM: couldn't orphan frags of @from due to lack of memory
2695  *	-EFAULT: skb_copy_bits() found some problem with skb geometry
2696  */
2697 int
2698 skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen)
2699 {
2700 	int i, j = 0;
2701 	int plen = 0; /* length of skb->head fragment */
2702 	int ret;
2703 	struct page *page;
2704 	unsigned int offset;
2705 
2706 	BUG_ON(!from->head_frag && !hlen);
2707 
2708 	/* dont bother with small payloads */
2709 	if (len <= skb_tailroom(to))
2710 		return skb_copy_bits(from, 0, skb_put(to, len), len);
2711 
2712 	if (hlen) {
2713 		ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen);
2714 		if (unlikely(ret))
2715 			return ret;
2716 		len -= hlen;
2717 	} else {
2718 		plen = min_t(int, skb_headlen(from), len);
2719 		if (plen) {
2720 			page = virt_to_head_page(from->head);
2721 			offset = from->data - (unsigned char *)page_address(page);
2722 			__skb_fill_page_desc(to, 0, page, offset, plen);
2723 			get_page(page);
2724 			j = 1;
2725 			len -= plen;
2726 		}
2727 	}
2728 
2729 	to->truesize += len + plen;
2730 	to->len += len + plen;
2731 	to->data_len += len + plen;
2732 
2733 	if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) {
2734 		skb_tx_error(from);
2735 		return -ENOMEM;
2736 	}
2737 	skb_zerocopy_clone(to, from, GFP_ATOMIC);
2738 
2739 	for (i = 0; i < skb_shinfo(from)->nr_frags; i++) {
2740 		if (!len)
2741 			break;
2742 		skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i];
2743 		skb_shinfo(to)->frags[j].size = min_t(int, skb_shinfo(to)->frags[j].size, len);
2744 		len -= skb_shinfo(to)->frags[j].size;
2745 		skb_frag_ref(to, j);
2746 		j++;
2747 	}
2748 	skb_shinfo(to)->nr_frags = j;
2749 
2750 	return 0;
2751 }
2752 EXPORT_SYMBOL_GPL(skb_zerocopy);
2753 
2754 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
2755 {
2756 	__wsum csum;
2757 	long csstart;
2758 
2759 	if (skb->ip_summed == CHECKSUM_PARTIAL)
2760 		csstart = skb_checksum_start_offset(skb);
2761 	else
2762 		csstart = skb_headlen(skb);
2763 
2764 	BUG_ON(csstart > skb_headlen(skb));
2765 
2766 	skb_copy_from_linear_data(skb, to, csstart);
2767 
2768 	csum = 0;
2769 	if (csstart != skb->len)
2770 		csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
2771 					      skb->len - csstart, 0);
2772 
2773 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
2774 		long csstuff = csstart + skb->csum_offset;
2775 
2776 		*((__sum16 *)(to + csstuff)) = csum_fold(csum);
2777 	}
2778 }
2779 EXPORT_SYMBOL(skb_copy_and_csum_dev);
2780 
2781 /**
2782  *	skb_dequeue - remove from the head of the queue
2783  *	@list: list to dequeue from
2784  *
2785  *	Remove the head of the list. The list lock is taken so the function
2786  *	may be used safely with other locking list functions. The head item is
2787  *	returned or %NULL if the list is empty.
2788  */
2789 
2790 struct sk_buff *skb_dequeue(struct sk_buff_head *list)
2791 {
2792 	unsigned long flags;
2793 	struct sk_buff *result;
2794 
2795 	spin_lock_irqsave(&list->lock, flags);
2796 	result = __skb_dequeue(list);
2797 	spin_unlock_irqrestore(&list->lock, flags);
2798 	return result;
2799 }
2800 EXPORT_SYMBOL(skb_dequeue);
2801 
2802 /**
2803  *	skb_dequeue_tail - remove from the tail of the queue
2804  *	@list: list to dequeue from
2805  *
2806  *	Remove the tail of the list. The list lock is taken so the function
2807  *	may be used safely with other locking list functions. The tail item is
2808  *	returned or %NULL if the list is empty.
2809  */
2810 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
2811 {
2812 	unsigned long flags;
2813 	struct sk_buff *result;
2814 
2815 	spin_lock_irqsave(&list->lock, flags);
2816 	result = __skb_dequeue_tail(list);
2817 	spin_unlock_irqrestore(&list->lock, flags);
2818 	return result;
2819 }
2820 EXPORT_SYMBOL(skb_dequeue_tail);
2821 
2822 /**
2823  *	skb_queue_purge - empty a list
2824  *	@list: list to empty
2825  *
2826  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
2827  *	the list and one reference dropped. This function takes the list
2828  *	lock and is atomic with respect to other list locking functions.
2829  */
2830 void skb_queue_purge(struct sk_buff_head *list)
2831 {
2832 	struct sk_buff *skb;
2833 	while ((skb = skb_dequeue(list)) != NULL)
2834 		kfree_skb(skb);
2835 }
2836 EXPORT_SYMBOL(skb_queue_purge);
2837 
2838 /**
2839  *	skb_rbtree_purge - empty a skb rbtree
2840  *	@root: root of the rbtree to empty
2841  *
2842  *	Delete all buffers on an &sk_buff rbtree. Each buffer is removed from
2843  *	the list and one reference dropped. This function does not take
2844  *	any lock. Synchronization should be handled by the caller (e.g., TCP
2845  *	out-of-order queue is protected by the socket lock).
2846  */
2847 void skb_rbtree_purge(struct rb_root *root)
2848 {
2849 	struct rb_node *p = rb_first(root);
2850 
2851 	while (p) {
2852 		struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode);
2853 
2854 		p = rb_next(p);
2855 		rb_erase(&skb->rbnode, root);
2856 		kfree_skb(skb);
2857 	}
2858 }
2859 
2860 /**
2861  *	skb_queue_head - queue a buffer at the list head
2862  *	@list: list to use
2863  *	@newsk: buffer to queue
2864  *
2865  *	Queue a buffer at the start of the list. This function takes the
2866  *	list lock and can be used safely with other locking &sk_buff functions
2867  *	safely.
2868  *
2869  *	A buffer cannot be placed on two lists at the same time.
2870  */
2871 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
2872 {
2873 	unsigned long flags;
2874 
2875 	spin_lock_irqsave(&list->lock, flags);
2876 	__skb_queue_head(list, newsk);
2877 	spin_unlock_irqrestore(&list->lock, flags);
2878 }
2879 EXPORT_SYMBOL(skb_queue_head);
2880 
2881 /**
2882  *	skb_queue_tail - queue a buffer at the list tail
2883  *	@list: list to use
2884  *	@newsk: buffer to queue
2885  *
2886  *	Queue a buffer at the tail of the list. This function takes the
2887  *	list lock and can be used safely with other locking &sk_buff functions
2888  *	safely.
2889  *
2890  *	A buffer cannot be placed on two lists at the same time.
2891  */
2892 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
2893 {
2894 	unsigned long flags;
2895 
2896 	spin_lock_irqsave(&list->lock, flags);
2897 	__skb_queue_tail(list, newsk);
2898 	spin_unlock_irqrestore(&list->lock, flags);
2899 }
2900 EXPORT_SYMBOL(skb_queue_tail);
2901 
2902 /**
2903  *	skb_unlink	-	remove a buffer from a list
2904  *	@skb: buffer to remove
2905  *	@list: list to use
2906  *
2907  *	Remove a packet from a list. The list locks are taken and this
2908  *	function is atomic with respect to other list locked calls
2909  *
2910  *	You must know what list the SKB is on.
2911  */
2912 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
2913 {
2914 	unsigned long flags;
2915 
2916 	spin_lock_irqsave(&list->lock, flags);
2917 	__skb_unlink(skb, list);
2918 	spin_unlock_irqrestore(&list->lock, flags);
2919 }
2920 EXPORT_SYMBOL(skb_unlink);
2921 
2922 /**
2923  *	skb_append	-	append a buffer
2924  *	@old: buffer to insert after
2925  *	@newsk: buffer to insert
2926  *	@list: list to use
2927  *
2928  *	Place a packet after a given packet in a list. The list locks are taken
2929  *	and this function is atomic with respect to other list locked calls.
2930  *	A buffer cannot be placed on two lists at the same time.
2931  */
2932 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
2933 {
2934 	unsigned long flags;
2935 
2936 	spin_lock_irqsave(&list->lock, flags);
2937 	__skb_queue_after(list, old, newsk);
2938 	spin_unlock_irqrestore(&list->lock, flags);
2939 }
2940 EXPORT_SYMBOL(skb_append);
2941 
2942 /**
2943  *	skb_insert	-	insert a buffer
2944  *	@old: buffer to insert before
2945  *	@newsk: buffer to insert
2946  *	@list: list to use
2947  *
2948  *	Place a packet before a given packet in a list. The list locks are
2949  * 	taken and this function is atomic with respect to other list locked
2950  *	calls.
2951  *
2952  *	A buffer cannot be placed on two lists at the same time.
2953  */
2954 void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
2955 {
2956 	unsigned long flags;
2957 
2958 	spin_lock_irqsave(&list->lock, flags);
2959 	__skb_insert(newsk, old->prev, old, list);
2960 	spin_unlock_irqrestore(&list->lock, flags);
2961 }
2962 EXPORT_SYMBOL(skb_insert);
2963 
2964 static inline void skb_split_inside_header(struct sk_buff *skb,
2965 					   struct sk_buff* skb1,
2966 					   const u32 len, const int pos)
2967 {
2968 	int i;
2969 
2970 	skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
2971 					 pos - len);
2972 	/* And move data appendix as is. */
2973 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
2974 		skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
2975 
2976 	skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
2977 	skb_shinfo(skb)->nr_frags  = 0;
2978 	skb1->data_len		   = skb->data_len;
2979 	skb1->len		   += skb1->data_len;
2980 	skb->data_len		   = 0;
2981 	skb->len		   = len;
2982 	skb_set_tail_pointer(skb, len);
2983 }
2984 
2985 static inline void skb_split_no_header(struct sk_buff *skb,
2986 				       struct sk_buff* skb1,
2987 				       const u32 len, int pos)
2988 {
2989 	int i, k = 0;
2990 	const int nfrags = skb_shinfo(skb)->nr_frags;
2991 
2992 	skb_shinfo(skb)->nr_frags = 0;
2993 	skb1->len		  = skb1->data_len = skb->len - len;
2994 	skb->len		  = len;
2995 	skb->data_len		  = len - pos;
2996 
2997 	for (i = 0; i < nfrags; i++) {
2998 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2999 
3000 		if (pos + size > len) {
3001 			skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
3002 
3003 			if (pos < len) {
3004 				/* Split frag.
3005 				 * We have two variants in this case:
3006 				 * 1. Move all the frag to the second
3007 				 *    part, if it is possible. F.e.
3008 				 *    this approach is mandatory for TUX,
3009 				 *    where splitting is expensive.
3010 				 * 2. Split is accurately. We make this.
3011 				 */
3012 				skb_frag_ref(skb, i);
3013 				skb_shinfo(skb1)->frags[0].page_offset += len - pos;
3014 				skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos);
3015 				skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos);
3016 				skb_shinfo(skb)->nr_frags++;
3017 			}
3018 			k++;
3019 		} else
3020 			skb_shinfo(skb)->nr_frags++;
3021 		pos += size;
3022 	}
3023 	skb_shinfo(skb1)->nr_frags = k;
3024 }
3025 
3026 /**
3027  * skb_split - Split fragmented skb to two parts at length len.
3028  * @skb: the buffer to split
3029  * @skb1: the buffer to receive the second part
3030  * @len: new length for skb
3031  */
3032 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
3033 {
3034 	int pos = skb_headlen(skb);
3035 
3036 	skb_shinfo(skb1)->tx_flags |= skb_shinfo(skb)->tx_flags &
3037 				      SKBTX_SHARED_FRAG;
3038 	skb_zerocopy_clone(skb1, skb, 0);
3039 	if (len < pos)	/* Split line is inside header. */
3040 		skb_split_inside_header(skb, skb1, len, pos);
3041 	else		/* Second chunk has no header, nothing to copy. */
3042 		skb_split_no_header(skb, skb1, len, pos);
3043 }
3044 EXPORT_SYMBOL(skb_split);
3045 
3046 /* Shifting from/to a cloned skb is a no-go.
3047  *
3048  * Caller cannot keep skb_shinfo related pointers past calling here!
3049  */
3050 static int skb_prepare_for_shift(struct sk_buff *skb)
3051 {
3052 	return skb_cloned(skb) && pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3053 }
3054 
3055 /**
3056  * skb_shift - Shifts paged data partially from skb to another
3057  * @tgt: buffer into which tail data gets added
3058  * @skb: buffer from which the paged data comes from
3059  * @shiftlen: shift up to this many bytes
3060  *
3061  * Attempts to shift up to shiftlen worth of bytes, which may be less than
3062  * the length of the skb, from skb to tgt. Returns number bytes shifted.
3063  * It's up to caller to free skb if everything was shifted.
3064  *
3065  * If @tgt runs out of frags, the whole operation is aborted.
3066  *
3067  * Skb cannot include anything else but paged data while tgt is allowed
3068  * to have non-paged data as well.
3069  *
3070  * TODO: full sized shift could be optimized but that would need
3071  * specialized skb free'er to handle frags without up-to-date nr_frags.
3072  */
3073 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
3074 {
3075 	int from, to, merge, todo;
3076 	struct skb_frag_struct *fragfrom, *fragto;
3077 
3078 	BUG_ON(shiftlen > skb->len);
3079 
3080 	if (skb_headlen(skb))
3081 		return 0;
3082 	if (skb_zcopy(tgt) || skb_zcopy(skb))
3083 		return 0;
3084 
3085 	todo = shiftlen;
3086 	from = 0;
3087 	to = skb_shinfo(tgt)->nr_frags;
3088 	fragfrom = &skb_shinfo(skb)->frags[from];
3089 
3090 	/* Actual merge is delayed until the point when we know we can
3091 	 * commit all, so that we don't have to undo partial changes
3092 	 */
3093 	if (!to ||
3094 	    !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom),
3095 			      fragfrom->page_offset)) {
3096 		merge = -1;
3097 	} else {
3098 		merge = to - 1;
3099 
3100 		todo -= skb_frag_size(fragfrom);
3101 		if (todo < 0) {
3102 			if (skb_prepare_for_shift(skb) ||
3103 			    skb_prepare_for_shift(tgt))
3104 				return 0;
3105 
3106 			/* All previous frag pointers might be stale! */
3107 			fragfrom = &skb_shinfo(skb)->frags[from];
3108 			fragto = &skb_shinfo(tgt)->frags[merge];
3109 
3110 			skb_frag_size_add(fragto, shiftlen);
3111 			skb_frag_size_sub(fragfrom, shiftlen);
3112 			fragfrom->page_offset += shiftlen;
3113 
3114 			goto onlymerged;
3115 		}
3116 
3117 		from++;
3118 	}
3119 
3120 	/* Skip full, not-fitting skb to avoid expensive operations */
3121 	if ((shiftlen == skb->len) &&
3122 	    (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
3123 		return 0;
3124 
3125 	if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
3126 		return 0;
3127 
3128 	while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
3129 		if (to == MAX_SKB_FRAGS)
3130 			return 0;
3131 
3132 		fragfrom = &skb_shinfo(skb)->frags[from];
3133 		fragto = &skb_shinfo(tgt)->frags[to];
3134 
3135 		if (todo >= skb_frag_size(fragfrom)) {
3136 			*fragto = *fragfrom;
3137 			todo -= skb_frag_size(fragfrom);
3138 			from++;
3139 			to++;
3140 
3141 		} else {
3142 			__skb_frag_ref(fragfrom);
3143 			fragto->page = fragfrom->page;
3144 			fragto->page_offset = fragfrom->page_offset;
3145 			skb_frag_size_set(fragto, todo);
3146 
3147 			fragfrom->page_offset += todo;
3148 			skb_frag_size_sub(fragfrom, todo);
3149 			todo = 0;
3150 
3151 			to++;
3152 			break;
3153 		}
3154 	}
3155 
3156 	/* Ready to "commit" this state change to tgt */
3157 	skb_shinfo(tgt)->nr_frags = to;
3158 
3159 	if (merge >= 0) {
3160 		fragfrom = &skb_shinfo(skb)->frags[0];
3161 		fragto = &skb_shinfo(tgt)->frags[merge];
3162 
3163 		skb_frag_size_add(fragto, skb_frag_size(fragfrom));
3164 		__skb_frag_unref(fragfrom);
3165 	}
3166 
3167 	/* Reposition in the original skb */
3168 	to = 0;
3169 	while (from < skb_shinfo(skb)->nr_frags)
3170 		skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
3171 	skb_shinfo(skb)->nr_frags = to;
3172 
3173 	BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
3174 
3175 onlymerged:
3176 	/* Most likely the tgt won't ever need its checksum anymore, skb on
3177 	 * the other hand might need it if it needs to be resent
3178 	 */
3179 	tgt->ip_summed = CHECKSUM_PARTIAL;
3180 	skb->ip_summed = CHECKSUM_PARTIAL;
3181 
3182 	/* Yak, is it really working this way? Some helper please? */
3183 	skb->len -= shiftlen;
3184 	skb->data_len -= shiftlen;
3185 	skb->truesize -= shiftlen;
3186 	tgt->len += shiftlen;
3187 	tgt->data_len += shiftlen;
3188 	tgt->truesize += shiftlen;
3189 
3190 	return shiftlen;
3191 }
3192 
3193 /**
3194  * skb_prepare_seq_read - Prepare a sequential read of skb data
3195  * @skb: the buffer to read
3196  * @from: lower offset of data to be read
3197  * @to: upper offset of data to be read
3198  * @st: state variable
3199  *
3200  * Initializes the specified state variable. Must be called before
3201  * invoking skb_seq_read() for the first time.
3202  */
3203 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
3204 			  unsigned int to, struct skb_seq_state *st)
3205 {
3206 	st->lower_offset = from;
3207 	st->upper_offset = to;
3208 	st->root_skb = st->cur_skb = skb;
3209 	st->frag_idx = st->stepped_offset = 0;
3210 	st->frag_data = NULL;
3211 }
3212 EXPORT_SYMBOL(skb_prepare_seq_read);
3213 
3214 /**
3215  * skb_seq_read - Sequentially read skb data
3216  * @consumed: number of bytes consumed by the caller so far
3217  * @data: destination pointer for data to be returned
3218  * @st: state variable
3219  *
3220  * Reads a block of skb data at @consumed relative to the
3221  * lower offset specified to skb_prepare_seq_read(). Assigns
3222  * the head of the data block to @data and returns the length
3223  * of the block or 0 if the end of the skb data or the upper
3224  * offset has been reached.
3225  *
3226  * The caller is not required to consume all of the data
3227  * returned, i.e. @consumed is typically set to the number
3228  * of bytes already consumed and the next call to
3229  * skb_seq_read() will return the remaining part of the block.
3230  *
3231  * Note 1: The size of each block of data returned can be arbitrary,
3232  *       this limitation is the cost for zerocopy sequential
3233  *       reads of potentially non linear data.
3234  *
3235  * Note 2: Fragment lists within fragments are not implemented
3236  *       at the moment, state->root_skb could be replaced with
3237  *       a stack for this purpose.
3238  */
3239 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
3240 			  struct skb_seq_state *st)
3241 {
3242 	unsigned int block_limit, abs_offset = consumed + st->lower_offset;
3243 	skb_frag_t *frag;
3244 
3245 	if (unlikely(abs_offset >= st->upper_offset)) {
3246 		if (st->frag_data) {
3247 			kunmap_atomic(st->frag_data);
3248 			st->frag_data = NULL;
3249 		}
3250 		return 0;
3251 	}
3252 
3253 next_skb:
3254 	block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
3255 
3256 	if (abs_offset < block_limit && !st->frag_data) {
3257 		*data = st->cur_skb->data + (abs_offset - st->stepped_offset);
3258 		return block_limit - abs_offset;
3259 	}
3260 
3261 	if (st->frag_idx == 0 && !st->frag_data)
3262 		st->stepped_offset += skb_headlen(st->cur_skb);
3263 
3264 	while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
3265 		frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
3266 		block_limit = skb_frag_size(frag) + st->stepped_offset;
3267 
3268 		if (abs_offset < block_limit) {
3269 			if (!st->frag_data)
3270 				st->frag_data = kmap_atomic(skb_frag_page(frag));
3271 
3272 			*data = (u8 *) st->frag_data + frag->page_offset +
3273 				(abs_offset - st->stepped_offset);
3274 
3275 			return block_limit - abs_offset;
3276 		}
3277 
3278 		if (st->frag_data) {
3279 			kunmap_atomic(st->frag_data);
3280 			st->frag_data = NULL;
3281 		}
3282 
3283 		st->frag_idx++;
3284 		st->stepped_offset += skb_frag_size(frag);
3285 	}
3286 
3287 	if (st->frag_data) {
3288 		kunmap_atomic(st->frag_data);
3289 		st->frag_data = NULL;
3290 	}
3291 
3292 	if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) {
3293 		st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
3294 		st->frag_idx = 0;
3295 		goto next_skb;
3296 	} else if (st->cur_skb->next) {
3297 		st->cur_skb = st->cur_skb->next;
3298 		st->frag_idx = 0;
3299 		goto next_skb;
3300 	}
3301 
3302 	return 0;
3303 }
3304 EXPORT_SYMBOL(skb_seq_read);
3305 
3306 /**
3307  * skb_abort_seq_read - Abort a sequential read of skb data
3308  * @st: state variable
3309  *
3310  * Must be called if skb_seq_read() was not called until it
3311  * returned 0.
3312  */
3313 void skb_abort_seq_read(struct skb_seq_state *st)
3314 {
3315 	if (st->frag_data)
3316 		kunmap_atomic(st->frag_data);
3317 }
3318 EXPORT_SYMBOL(skb_abort_seq_read);
3319 
3320 #define TS_SKB_CB(state)	((struct skb_seq_state *) &((state)->cb))
3321 
3322 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
3323 					  struct ts_config *conf,
3324 					  struct ts_state *state)
3325 {
3326 	return skb_seq_read(offset, text, TS_SKB_CB(state));
3327 }
3328 
3329 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
3330 {
3331 	skb_abort_seq_read(TS_SKB_CB(state));
3332 }
3333 
3334 /**
3335  * skb_find_text - Find a text pattern in skb data
3336  * @skb: the buffer to look in
3337  * @from: search offset
3338  * @to: search limit
3339  * @config: textsearch configuration
3340  *
3341  * Finds a pattern in the skb data according to the specified
3342  * textsearch configuration. Use textsearch_next() to retrieve
3343  * subsequent occurrences of the pattern. Returns the offset
3344  * to the first occurrence or UINT_MAX if no match was found.
3345  */
3346 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
3347 			   unsigned int to, struct ts_config *config)
3348 {
3349 	struct ts_state state;
3350 	unsigned int ret;
3351 
3352 	config->get_next_block = skb_ts_get_next_block;
3353 	config->finish = skb_ts_finish;
3354 
3355 	skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state));
3356 
3357 	ret = textsearch_find(config, &state);
3358 	return (ret <= to - from ? ret : UINT_MAX);
3359 }
3360 EXPORT_SYMBOL(skb_find_text);
3361 
3362 /**
3363  * skb_append_datato_frags - append the user data to a skb
3364  * @sk: sock  structure
3365  * @skb: skb structure to be appended with user data.
3366  * @getfrag: call back function to be used for getting the user data
3367  * @from: pointer to user message iov
3368  * @length: length of the iov message
3369  *
3370  * Description: This procedure append the user data in the fragment part
3371  * of the skb if any page alloc fails user this procedure returns  -ENOMEM
3372  */
3373 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
3374 			int (*getfrag)(void *from, char *to, int offset,
3375 					int len, int odd, struct sk_buff *skb),
3376 			void *from, int length)
3377 {
3378 	int frg_cnt = skb_shinfo(skb)->nr_frags;
3379 	int copy;
3380 	int offset = 0;
3381 	int ret;
3382 	struct page_frag *pfrag = &current->task_frag;
3383 
3384 	do {
3385 		/* Return error if we don't have space for new frag */
3386 		if (frg_cnt >= MAX_SKB_FRAGS)
3387 			return -EMSGSIZE;
3388 
3389 		if (!sk_page_frag_refill(sk, pfrag))
3390 			return -ENOMEM;
3391 
3392 		/* copy the user data to page */
3393 		copy = min_t(int, length, pfrag->size - pfrag->offset);
3394 
3395 		ret = getfrag(from, page_address(pfrag->page) + pfrag->offset,
3396 			      offset, copy, 0, skb);
3397 		if (ret < 0)
3398 			return -EFAULT;
3399 
3400 		/* copy was successful so update the size parameters */
3401 		skb_fill_page_desc(skb, frg_cnt, pfrag->page, pfrag->offset,
3402 				   copy);
3403 		frg_cnt++;
3404 		pfrag->offset += copy;
3405 		get_page(pfrag->page);
3406 
3407 		skb->truesize += copy;
3408 		refcount_add(copy, &sk->sk_wmem_alloc);
3409 		skb->len += copy;
3410 		skb->data_len += copy;
3411 		offset += copy;
3412 		length -= copy;
3413 
3414 	} while (length > 0);
3415 
3416 	return 0;
3417 }
3418 EXPORT_SYMBOL(skb_append_datato_frags);
3419 
3420 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
3421 			 int offset, size_t size)
3422 {
3423 	int i = skb_shinfo(skb)->nr_frags;
3424 
3425 	if (skb_can_coalesce(skb, i, page, offset)) {
3426 		skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size);
3427 	} else if (i < MAX_SKB_FRAGS) {
3428 		get_page(page);
3429 		skb_fill_page_desc(skb, i, page, offset, size);
3430 	} else {
3431 		return -EMSGSIZE;
3432 	}
3433 
3434 	return 0;
3435 }
3436 EXPORT_SYMBOL_GPL(skb_append_pagefrags);
3437 
3438 /**
3439  *	skb_pull_rcsum - pull skb and update receive checksum
3440  *	@skb: buffer to update
3441  *	@len: length of data pulled
3442  *
3443  *	This function performs an skb_pull on the packet and updates
3444  *	the CHECKSUM_COMPLETE checksum.  It should be used on
3445  *	receive path processing instead of skb_pull unless you know
3446  *	that the checksum difference is zero (e.g., a valid IP header)
3447  *	or you are setting ip_summed to CHECKSUM_NONE.
3448  */
3449 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
3450 {
3451 	unsigned char *data = skb->data;
3452 
3453 	BUG_ON(len > skb->len);
3454 	__skb_pull(skb, len);
3455 	skb_postpull_rcsum(skb, data, len);
3456 	return skb->data;
3457 }
3458 EXPORT_SYMBOL_GPL(skb_pull_rcsum);
3459 
3460 /**
3461  *	skb_segment - Perform protocol segmentation on skb.
3462  *	@head_skb: buffer to segment
3463  *	@features: features for the output path (see dev->features)
3464  *
3465  *	This function performs segmentation on the given skb.  It returns
3466  *	a pointer to the first in a list of new skbs for the segments.
3467  *	In case of error it returns ERR_PTR(err).
3468  */
3469 struct sk_buff *skb_segment(struct sk_buff *head_skb,
3470 			    netdev_features_t features)
3471 {
3472 	struct sk_buff *segs = NULL;
3473 	struct sk_buff *tail = NULL;
3474 	struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list;
3475 	skb_frag_t *frag = skb_shinfo(head_skb)->frags;
3476 	unsigned int mss = skb_shinfo(head_skb)->gso_size;
3477 	unsigned int doffset = head_skb->data - skb_mac_header(head_skb);
3478 	struct sk_buff *frag_skb = head_skb;
3479 	unsigned int offset = doffset;
3480 	unsigned int tnl_hlen = skb_tnl_header_len(head_skb);
3481 	unsigned int partial_segs = 0;
3482 	unsigned int headroom;
3483 	unsigned int len = head_skb->len;
3484 	__be16 proto;
3485 	bool csum, sg;
3486 	int nfrags = skb_shinfo(head_skb)->nr_frags;
3487 	int err = -ENOMEM;
3488 	int i = 0;
3489 	int pos;
3490 	int dummy;
3491 
3492 	__skb_push(head_skb, doffset);
3493 	proto = skb_network_protocol(head_skb, &dummy);
3494 	if (unlikely(!proto))
3495 		return ERR_PTR(-EINVAL);
3496 
3497 	sg = !!(features & NETIF_F_SG);
3498 	csum = !!can_checksum_protocol(features, proto);
3499 
3500 	if (sg && csum && (mss != GSO_BY_FRAGS))  {
3501 		if (!(features & NETIF_F_GSO_PARTIAL)) {
3502 			struct sk_buff *iter;
3503 			unsigned int frag_len;
3504 
3505 			if (!list_skb ||
3506 			    !net_gso_ok(features, skb_shinfo(head_skb)->gso_type))
3507 				goto normal;
3508 
3509 			/* If we get here then all the required
3510 			 * GSO features except frag_list are supported.
3511 			 * Try to split the SKB to multiple GSO SKBs
3512 			 * with no frag_list.
3513 			 * Currently we can do that only when the buffers don't
3514 			 * have a linear part and all the buffers except
3515 			 * the last are of the same length.
3516 			 */
3517 			frag_len = list_skb->len;
3518 			skb_walk_frags(head_skb, iter) {
3519 				if (frag_len != iter->len && iter->next)
3520 					goto normal;
3521 				if (skb_headlen(iter) && !iter->head_frag)
3522 					goto normal;
3523 
3524 				len -= iter->len;
3525 			}
3526 
3527 			if (len != frag_len)
3528 				goto normal;
3529 		}
3530 
3531 		/* GSO partial only requires that we trim off any excess that
3532 		 * doesn't fit into an MSS sized block, so take care of that
3533 		 * now.
3534 		 */
3535 		partial_segs = len / mss;
3536 		if (partial_segs > 1)
3537 			mss *= partial_segs;
3538 		else
3539 			partial_segs = 0;
3540 	}
3541 
3542 normal:
3543 	headroom = skb_headroom(head_skb);
3544 	pos = skb_headlen(head_skb);
3545 
3546 	do {
3547 		struct sk_buff *nskb;
3548 		skb_frag_t *nskb_frag;
3549 		int hsize;
3550 		int size;
3551 
3552 		if (unlikely(mss == GSO_BY_FRAGS)) {
3553 			len = list_skb->len;
3554 		} else {
3555 			len = head_skb->len - offset;
3556 			if (len > mss)
3557 				len = mss;
3558 		}
3559 
3560 		hsize = skb_headlen(head_skb) - offset;
3561 		if (hsize < 0)
3562 			hsize = 0;
3563 		if (hsize > len || !sg)
3564 			hsize = len;
3565 
3566 		if (!hsize && i >= nfrags && skb_headlen(list_skb) &&
3567 		    (skb_headlen(list_skb) == len || sg)) {
3568 			BUG_ON(skb_headlen(list_skb) > len);
3569 
3570 			i = 0;
3571 			nfrags = skb_shinfo(list_skb)->nr_frags;
3572 			frag = skb_shinfo(list_skb)->frags;
3573 			frag_skb = list_skb;
3574 			pos += skb_headlen(list_skb);
3575 
3576 			while (pos < offset + len) {
3577 				BUG_ON(i >= nfrags);
3578 
3579 				size = skb_frag_size(frag);
3580 				if (pos + size > offset + len)
3581 					break;
3582 
3583 				i++;
3584 				pos += size;
3585 				frag++;
3586 			}
3587 
3588 			nskb = skb_clone(list_skb, GFP_ATOMIC);
3589 			list_skb = list_skb->next;
3590 
3591 			if (unlikely(!nskb))
3592 				goto err;
3593 
3594 			if (unlikely(pskb_trim(nskb, len))) {
3595 				kfree_skb(nskb);
3596 				goto err;
3597 			}
3598 
3599 			hsize = skb_end_offset(nskb);
3600 			if (skb_cow_head(nskb, doffset + headroom)) {
3601 				kfree_skb(nskb);
3602 				goto err;
3603 			}
3604 
3605 			nskb->truesize += skb_end_offset(nskb) - hsize;
3606 			skb_release_head_state(nskb);
3607 			__skb_push(nskb, doffset);
3608 		} else {
3609 			nskb = __alloc_skb(hsize + doffset + headroom,
3610 					   GFP_ATOMIC, skb_alloc_rx_flag(head_skb),
3611 					   NUMA_NO_NODE);
3612 
3613 			if (unlikely(!nskb))
3614 				goto err;
3615 
3616 			skb_reserve(nskb, headroom);
3617 			__skb_put(nskb, doffset);
3618 		}
3619 
3620 		if (segs)
3621 			tail->next = nskb;
3622 		else
3623 			segs = nskb;
3624 		tail = nskb;
3625 
3626 		__copy_skb_header(nskb, head_skb);
3627 
3628 		skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom);
3629 		skb_reset_mac_len(nskb);
3630 
3631 		skb_copy_from_linear_data_offset(head_skb, -tnl_hlen,
3632 						 nskb->data - tnl_hlen,
3633 						 doffset + tnl_hlen);
3634 
3635 		if (nskb->len == len + doffset)
3636 			goto perform_csum_check;
3637 
3638 		if (!sg) {
3639 			if (!nskb->remcsum_offload)
3640 				nskb->ip_summed = CHECKSUM_NONE;
3641 			SKB_GSO_CB(nskb)->csum =
3642 				skb_copy_and_csum_bits(head_skb, offset,
3643 						       skb_put(nskb, len),
3644 						       len, 0);
3645 			SKB_GSO_CB(nskb)->csum_start =
3646 				skb_headroom(nskb) + doffset;
3647 			continue;
3648 		}
3649 
3650 		nskb_frag = skb_shinfo(nskb)->frags;
3651 
3652 		skb_copy_from_linear_data_offset(head_skb, offset,
3653 						 skb_put(nskb, hsize), hsize);
3654 
3655 		skb_shinfo(nskb)->tx_flags |= skb_shinfo(head_skb)->tx_flags &
3656 					      SKBTX_SHARED_FRAG;
3657 		if (skb_zerocopy_clone(nskb, head_skb, GFP_ATOMIC))
3658 			goto err;
3659 
3660 		while (pos < offset + len) {
3661 			if (i >= nfrags) {
3662 				BUG_ON(skb_headlen(list_skb));
3663 
3664 				i = 0;
3665 				nfrags = skb_shinfo(list_skb)->nr_frags;
3666 				frag = skb_shinfo(list_skb)->frags;
3667 				frag_skb = list_skb;
3668 
3669 				BUG_ON(!nfrags);
3670 
3671 				list_skb = list_skb->next;
3672 			}
3673 
3674 			if (unlikely(skb_shinfo(nskb)->nr_frags >=
3675 				     MAX_SKB_FRAGS)) {
3676 				net_warn_ratelimited(
3677 					"skb_segment: too many frags: %u %u\n",
3678 					pos, mss);
3679 				goto err;
3680 			}
3681 
3682 			if (unlikely(skb_orphan_frags(frag_skb, GFP_ATOMIC)))
3683 				goto err;
3684 
3685 			*nskb_frag = *frag;
3686 			__skb_frag_ref(nskb_frag);
3687 			size = skb_frag_size(nskb_frag);
3688 
3689 			if (pos < offset) {
3690 				nskb_frag->page_offset += offset - pos;
3691 				skb_frag_size_sub(nskb_frag, offset - pos);
3692 			}
3693 
3694 			skb_shinfo(nskb)->nr_frags++;
3695 
3696 			if (pos + size <= offset + len) {
3697 				i++;
3698 				frag++;
3699 				pos += size;
3700 			} else {
3701 				skb_frag_size_sub(nskb_frag, pos + size - (offset + len));
3702 				goto skip_fraglist;
3703 			}
3704 
3705 			nskb_frag++;
3706 		}
3707 
3708 skip_fraglist:
3709 		nskb->data_len = len - hsize;
3710 		nskb->len += nskb->data_len;
3711 		nskb->truesize += nskb->data_len;
3712 
3713 perform_csum_check:
3714 		if (!csum) {
3715 			if (skb_has_shared_frag(nskb)) {
3716 				err = __skb_linearize(nskb);
3717 				if (err)
3718 					goto err;
3719 			}
3720 			if (!nskb->remcsum_offload)
3721 				nskb->ip_summed = CHECKSUM_NONE;
3722 			SKB_GSO_CB(nskb)->csum =
3723 				skb_checksum(nskb, doffset,
3724 					     nskb->len - doffset, 0);
3725 			SKB_GSO_CB(nskb)->csum_start =
3726 				skb_headroom(nskb) + doffset;
3727 		}
3728 	} while ((offset += len) < head_skb->len);
3729 
3730 	/* Some callers want to get the end of the list.
3731 	 * Put it in segs->prev to avoid walking the list.
3732 	 * (see validate_xmit_skb_list() for example)
3733 	 */
3734 	segs->prev = tail;
3735 
3736 	if (partial_segs) {
3737 		struct sk_buff *iter;
3738 		int type = skb_shinfo(head_skb)->gso_type;
3739 		unsigned short gso_size = skb_shinfo(head_skb)->gso_size;
3740 
3741 		/* Update type to add partial and then remove dodgy if set */
3742 		type |= (features & NETIF_F_GSO_PARTIAL) / NETIF_F_GSO_PARTIAL * SKB_GSO_PARTIAL;
3743 		type &= ~SKB_GSO_DODGY;
3744 
3745 		/* Update GSO info and prepare to start updating headers on
3746 		 * our way back down the stack of protocols.
3747 		 */
3748 		for (iter = segs; iter; iter = iter->next) {
3749 			skb_shinfo(iter)->gso_size = gso_size;
3750 			skb_shinfo(iter)->gso_segs = partial_segs;
3751 			skb_shinfo(iter)->gso_type = type;
3752 			SKB_GSO_CB(iter)->data_offset = skb_headroom(iter) + doffset;
3753 		}
3754 
3755 		if (tail->len - doffset <= gso_size)
3756 			skb_shinfo(tail)->gso_size = 0;
3757 		else if (tail != segs)
3758 			skb_shinfo(tail)->gso_segs = DIV_ROUND_UP(tail->len - doffset, gso_size);
3759 	}
3760 
3761 	/* Following permits correct backpressure, for protocols
3762 	 * using skb_set_owner_w().
3763 	 * Idea is to tranfert ownership from head_skb to last segment.
3764 	 */
3765 	if (head_skb->destructor == sock_wfree) {
3766 		swap(tail->truesize, head_skb->truesize);
3767 		swap(tail->destructor, head_skb->destructor);
3768 		swap(tail->sk, head_skb->sk);
3769 	}
3770 	return segs;
3771 
3772 err:
3773 	kfree_skb_list(segs);
3774 	return ERR_PTR(err);
3775 }
3776 EXPORT_SYMBOL_GPL(skb_segment);
3777 
3778 int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb)
3779 {
3780 	struct skb_shared_info *pinfo, *skbinfo = skb_shinfo(skb);
3781 	unsigned int offset = skb_gro_offset(skb);
3782 	unsigned int headlen = skb_headlen(skb);
3783 	unsigned int len = skb_gro_len(skb);
3784 	struct sk_buff *lp, *p = *head;
3785 	unsigned int delta_truesize;
3786 
3787 	if (unlikely(p->len + len >= 65536))
3788 		return -E2BIG;
3789 
3790 	lp = NAPI_GRO_CB(p)->last;
3791 	pinfo = skb_shinfo(lp);
3792 
3793 	if (headlen <= offset) {
3794 		skb_frag_t *frag;
3795 		skb_frag_t *frag2;
3796 		int i = skbinfo->nr_frags;
3797 		int nr_frags = pinfo->nr_frags + i;
3798 
3799 		if (nr_frags > MAX_SKB_FRAGS)
3800 			goto merge;
3801 
3802 		offset -= headlen;
3803 		pinfo->nr_frags = nr_frags;
3804 		skbinfo->nr_frags = 0;
3805 
3806 		frag = pinfo->frags + nr_frags;
3807 		frag2 = skbinfo->frags + i;
3808 		do {
3809 			*--frag = *--frag2;
3810 		} while (--i);
3811 
3812 		frag->page_offset += offset;
3813 		skb_frag_size_sub(frag, offset);
3814 
3815 		/* all fragments truesize : remove (head size + sk_buff) */
3816 		delta_truesize = skb->truesize -
3817 				 SKB_TRUESIZE(skb_end_offset(skb));
3818 
3819 		skb->truesize -= skb->data_len;
3820 		skb->len -= skb->data_len;
3821 		skb->data_len = 0;
3822 
3823 		NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE;
3824 		goto done;
3825 	} else if (skb->head_frag) {
3826 		int nr_frags = pinfo->nr_frags;
3827 		skb_frag_t *frag = pinfo->frags + nr_frags;
3828 		struct page *page = virt_to_head_page(skb->head);
3829 		unsigned int first_size = headlen - offset;
3830 		unsigned int first_offset;
3831 
3832 		if (nr_frags + 1 + skbinfo->nr_frags > MAX_SKB_FRAGS)
3833 			goto merge;
3834 
3835 		first_offset = skb->data -
3836 			       (unsigned char *)page_address(page) +
3837 			       offset;
3838 
3839 		pinfo->nr_frags = nr_frags + 1 + skbinfo->nr_frags;
3840 
3841 		frag->page.p	  = page;
3842 		frag->page_offset = first_offset;
3843 		skb_frag_size_set(frag, first_size);
3844 
3845 		memcpy(frag + 1, skbinfo->frags, sizeof(*frag) * skbinfo->nr_frags);
3846 		/* We dont need to clear skbinfo->nr_frags here */
3847 
3848 		delta_truesize = skb->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
3849 		NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE_STOLEN_HEAD;
3850 		goto done;
3851 	}
3852 
3853 merge:
3854 	delta_truesize = skb->truesize;
3855 	if (offset > headlen) {
3856 		unsigned int eat = offset - headlen;
3857 
3858 		skbinfo->frags[0].page_offset += eat;
3859 		skb_frag_size_sub(&skbinfo->frags[0], eat);
3860 		skb->data_len -= eat;
3861 		skb->len -= eat;
3862 		offset = headlen;
3863 	}
3864 
3865 	__skb_pull(skb, offset);
3866 
3867 	if (NAPI_GRO_CB(p)->last == p)
3868 		skb_shinfo(p)->frag_list = skb;
3869 	else
3870 		NAPI_GRO_CB(p)->last->next = skb;
3871 	NAPI_GRO_CB(p)->last = skb;
3872 	__skb_header_release(skb);
3873 	lp = p;
3874 
3875 done:
3876 	NAPI_GRO_CB(p)->count++;
3877 	p->data_len += len;
3878 	p->truesize += delta_truesize;
3879 	p->len += len;
3880 	if (lp != p) {
3881 		lp->data_len += len;
3882 		lp->truesize += delta_truesize;
3883 		lp->len += len;
3884 	}
3885 	NAPI_GRO_CB(skb)->same_flow = 1;
3886 	return 0;
3887 }
3888 EXPORT_SYMBOL_GPL(skb_gro_receive);
3889 
3890 void __init skb_init(void)
3891 {
3892 	skbuff_head_cache = kmem_cache_create("skbuff_head_cache",
3893 					      sizeof(struct sk_buff),
3894 					      0,
3895 					      SLAB_HWCACHE_ALIGN|SLAB_PANIC,
3896 					      NULL);
3897 	skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
3898 						sizeof(struct sk_buff_fclones),
3899 						0,
3900 						SLAB_HWCACHE_ALIGN|SLAB_PANIC,
3901 						NULL);
3902 }
3903 
3904 static int
3905 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len,
3906 	       unsigned int recursion_level)
3907 {
3908 	int start = skb_headlen(skb);
3909 	int i, copy = start - offset;
3910 	struct sk_buff *frag_iter;
3911 	int elt = 0;
3912 
3913 	if (unlikely(recursion_level >= 24))
3914 		return -EMSGSIZE;
3915 
3916 	if (copy > 0) {
3917 		if (copy > len)
3918 			copy = len;
3919 		sg_set_buf(sg, skb->data + offset, copy);
3920 		elt++;
3921 		if ((len -= copy) == 0)
3922 			return elt;
3923 		offset += copy;
3924 	}
3925 
3926 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3927 		int end;
3928 
3929 		WARN_ON(start > offset + len);
3930 
3931 		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
3932 		if ((copy = end - offset) > 0) {
3933 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3934 			if (unlikely(elt && sg_is_last(&sg[elt - 1])))
3935 				return -EMSGSIZE;
3936 
3937 			if (copy > len)
3938 				copy = len;
3939 			sg_set_page(&sg[elt], skb_frag_page(frag), copy,
3940 					frag->page_offset+offset-start);
3941 			elt++;
3942 			if (!(len -= copy))
3943 				return elt;
3944 			offset += copy;
3945 		}
3946 		start = end;
3947 	}
3948 
3949 	skb_walk_frags(skb, frag_iter) {
3950 		int end, ret;
3951 
3952 		WARN_ON(start > offset + len);
3953 
3954 		end = start + frag_iter->len;
3955 		if ((copy = end - offset) > 0) {
3956 			if (unlikely(elt && sg_is_last(&sg[elt - 1])))
3957 				return -EMSGSIZE;
3958 
3959 			if (copy > len)
3960 				copy = len;
3961 			ret = __skb_to_sgvec(frag_iter, sg+elt, offset - start,
3962 					      copy, recursion_level + 1);
3963 			if (unlikely(ret < 0))
3964 				return ret;
3965 			elt += ret;
3966 			if ((len -= copy) == 0)
3967 				return elt;
3968 			offset += copy;
3969 		}
3970 		start = end;
3971 	}
3972 	BUG_ON(len);
3973 	return elt;
3974 }
3975 
3976 /**
3977  *	skb_to_sgvec - Fill a scatter-gather list from a socket buffer
3978  *	@skb: Socket buffer containing the buffers to be mapped
3979  *	@sg: The scatter-gather list to map into
3980  *	@offset: The offset into the buffer's contents to start mapping
3981  *	@len: Length of buffer space to be mapped
3982  *
3983  *	Fill the specified scatter-gather list with mappings/pointers into a
3984  *	region of the buffer space attached to a socket buffer. Returns either
3985  *	the number of scatterlist items used, or -EMSGSIZE if the contents
3986  *	could not fit.
3987  */
3988 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
3989 {
3990 	int nsg = __skb_to_sgvec(skb, sg, offset, len, 0);
3991 
3992 	if (nsg <= 0)
3993 		return nsg;
3994 
3995 	sg_mark_end(&sg[nsg - 1]);
3996 
3997 	return nsg;
3998 }
3999 EXPORT_SYMBOL_GPL(skb_to_sgvec);
4000 
4001 /* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given
4002  * sglist without mark the sg which contain last skb data as the end.
4003  * So the caller can mannipulate sg list as will when padding new data after
4004  * the first call without calling sg_unmark_end to expend sg list.
4005  *
4006  * Scenario to use skb_to_sgvec_nomark:
4007  * 1. sg_init_table
4008  * 2. skb_to_sgvec_nomark(payload1)
4009  * 3. skb_to_sgvec_nomark(payload2)
4010  *
4011  * This is equivalent to:
4012  * 1. sg_init_table
4013  * 2. skb_to_sgvec(payload1)
4014  * 3. sg_unmark_end
4015  * 4. skb_to_sgvec(payload2)
4016  *
4017  * When mapping mutilple payload conditionally, skb_to_sgvec_nomark
4018  * is more preferable.
4019  */
4020 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
4021 			int offset, int len)
4022 {
4023 	return __skb_to_sgvec(skb, sg, offset, len, 0);
4024 }
4025 EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark);
4026 
4027 
4028 
4029 /**
4030  *	skb_cow_data - Check that a socket buffer's data buffers are writable
4031  *	@skb: The socket buffer to check.
4032  *	@tailbits: Amount of trailing space to be added
4033  *	@trailer: Returned pointer to the skb where the @tailbits space begins
4034  *
4035  *	Make sure that the data buffers attached to a socket buffer are
4036  *	writable. If they are not, private copies are made of the data buffers
4037  *	and the socket buffer is set to use these instead.
4038  *
4039  *	If @tailbits is given, make sure that there is space to write @tailbits
4040  *	bytes of data beyond current end of socket buffer.  @trailer will be
4041  *	set to point to the skb in which this space begins.
4042  *
4043  *	The number of scatterlist elements required to completely map the
4044  *	COW'd and extended socket buffer will be returned.
4045  */
4046 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
4047 {
4048 	int copyflag;
4049 	int elt;
4050 	struct sk_buff *skb1, **skb_p;
4051 
4052 	/* If skb is cloned or its head is paged, reallocate
4053 	 * head pulling out all the pages (pages are considered not writable
4054 	 * at the moment even if they are anonymous).
4055 	 */
4056 	if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
4057 	    __pskb_pull_tail(skb, skb_pagelen(skb)-skb_headlen(skb)) == NULL)
4058 		return -ENOMEM;
4059 
4060 	/* Easy case. Most of packets will go this way. */
4061 	if (!skb_has_frag_list(skb)) {
4062 		/* A little of trouble, not enough of space for trailer.
4063 		 * This should not happen, when stack is tuned to generate
4064 		 * good frames. OK, on miss we reallocate and reserve even more
4065 		 * space, 128 bytes is fair. */
4066 
4067 		if (skb_tailroom(skb) < tailbits &&
4068 		    pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
4069 			return -ENOMEM;
4070 
4071 		/* Voila! */
4072 		*trailer = skb;
4073 		return 1;
4074 	}
4075 
4076 	/* Misery. We are in troubles, going to mincer fragments... */
4077 
4078 	elt = 1;
4079 	skb_p = &skb_shinfo(skb)->frag_list;
4080 	copyflag = 0;
4081 
4082 	while ((skb1 = *skb_p) != NULL) {
4083 		int ntail = 0;
4084 
4085 		/* The fragment is partially pulled by someone,
4086 		 * this can happen on input. Copy it and everything
4087 		 * after it. */
4088 
4089 		if (skb_shared(skb1))
4090 			copyflag = 1;
4091 
4092 		/* If the skb is the last, worry about trailer. */
4093 
4094 		if (skb1->next == NULL && tailbits) {
4095 			if (skb_shinfo(skb1)->nr_frags ||
4096 			    skb_has_frag_list(skb1) ||
4097 			    skb_tailroom(skb1) < tailbits)
4098 				ntail = tailbits + 128;
4099 		}
4100 
4101 		if (copyflag ||
4102 		    skb_cloned(skb1) ||
4103 		    ntail ||
4104 		    skb_shinfo(skb1)->nr_frags ||
4105 		    skb_has_frag_list(skb1)) {
4106 			struct sk_buff *skb2;
4107 
4108 			/* Fuck, we are miserable poor guys... */
4109 			if (ntail == 0)
4110 				skb2 = skb_copy(skb1, GFP_ATOMIC);
4111 			else
4112 				skb2 = skb_copy_expand(skb1,
4113 						       skb_headroom(skb1),
4114 						       ntail,
4115 						       GFP_ATOMIC);
4116 			if (unlikely(skb2 == NULL))
4117 				return -ENOMEM;
4118 
4119 			if (skb1->sk)
4120 				skb_set_owner_w(skb2, skb1->sk);
4121 
4122 			/* Looking around. Are we still alive?
4123 			 * OK, link new skb, drop old one */
4124 
4125 			skb2->next = skb1->next;
4126 			*skb_p = skb2;
4127 			kfree_skb(skb1);
4128 			skb1 = skb2;
4129 		}
4130 		elt++;
4131 		*trailer = skb1;
4132 		skb_p = &skb1->next;
4133 	}
4134 
4135 	return elt;
4136 }
4137 EXPORT_SYMBOL_GPL(skb_cow_data);
4138 
4139 static void sock_rmem_free(struct sk_buff *skb)
4140 {
4141 	struct sock *sk = skb->sk;
4142 
4143 	atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
4144 }
4145 
4146 static void skb_set_err_queue(struct sk_buff *skb)
4147 {
4148 	/* pkt_type of skbs received on local sockets is never PACKET_OUTGOING.
4149 	 * So, it is safe to (mis)use it to mark skbs on the error queue.
4150 	 */
4151 	skb->pkt_type = PACKET_OUTGOING;
4152 	BUILD_BUG_ON(PACKET_OUTGOING == 0);
4153 }
4154 
4155 /*
4156  * Note: We dont mem charge error packets (no sk_forward_alloc changes)
4157  */
4158 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
4159 {
4160 	if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
4161 	    (unsigned int)sk->sk_rcvbuf)
4162 		return -ENOMEM;
4163 
4164 	skb_orphan(skb);
4165 	skb->sk = sk;
4166 	skb->destructor = sock_rmem_free;
4167 	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
4168 	skb_set_err_queue(skb);
4169 
4170 	/* before exiting rcu section, make sure dst is refcounted */
4171 	skb_dst_force(skb);
4172 
4173 	skb_queue_tail(&sk->sk_error_queue, skb);
4174 	if (!sock_flag(sk, SOCK_DEAD))
4175 		sk->sk_data_ready(sk);
4176 	return 0;
4177 }
4178 EXPORT_SYMBOL(sock_queue_err_skb);
4179 
4180 static bool is_icmp_err_skb(const struct sk_buff *skb)
4181 {
4182 	return skb && (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP ||
4183 		       SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP6);
4184 }
4185 
4186 struct sk_buff *sock_dequeue_err_skb(struct sock *sk)
4187 {
4188 	struct sk_buff_head *q = &sk->sk_error_queue;
4189 	struct sk_buff *skb, *skb_next = NULL;
4190 	bool icmp_next = false;
4191 	unsigned long flags;
4192 
4193 	spin_lock_irqsave(&q->lock, flags);
4194 	skb = __skb_dequeue(q);
4195 	if (skb && (skb_next = skb_peek(q))) {
4196 		icmp_next = is_icmp_err_skb(skb_next);
4197 		if (icmp_next)
4198 			sk->sk_err = SKB_EXT_ERR(skb_next)->ee.ee_origin;
4199 	}
4200 	spin_unlock_irqrestore(&q->lock, flags);
4201 
4202 	if (is_icmp_err_skb(skb) && !icmp_next)
4203 		sk->sk_err = 0;
4204 
4205 	if (skb_next)
4206 		sk->sk_error_report(sk);
4207 
4208 	return skb;
4209 }
4210 EXPORT_SYMBOL(sock_dequeue_err_skb);
4211 
4212 /**
4213  * skb_clone_sk - create clone of skb, and take reference to socket
4214  * @skb: the skb to clone
4215  *
4216  * This function creates a clone of a buffer that holds a reference on
4217  * sk_refcnt.  Buffers created via this function are meant to be
4218  * returned using sock_queue_err_skb, or free via kfree_skb.
4219  *
4220  * When passing buffers allocated with this function to sock_queue_err_skb
4221  * it is necessary to wrap the call with sock_hold/sock_put in order to
4222  * prevent the socket from being released prior to being enqueued on
4223  * the sk_error_queue.
4224  */
4225 struct sk_buff *skb_clone_sk(struct sk_buff *skb)
4226 {
4227 	struct sock *sk = skb->sk;
4228 	struct sk_buff *clone;
4229 
4230 	if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt))
4231 		return NULL;
4232 
4233 	clone = skb_clone(skb, GFP_ATOMIC);
4234 	if (!clone) {
4235 		sock_put(sk);
4236 		return NULL;
4237 	}
4238 
4239 	clone->sk = sk;
4240 	clone->destructor = sock_efree;
4241 
4242 	return clone;
4243 }
4244 EXPORT_SYMBOL(skb_clone_sk);
4245 
4246 static void __skb_complete_tx_timestamp(struct sk_buff *skb,
4247 					struct sock *sk,
4248 					int tstype,
4249 					bool opt_stats)
4250 {
4251 	struct sock_exterr_skb *serr;
4252 	int err;
4253 
4254 	BUILD_BUG_ON(sizeof(struct sock_exterr_skb) > sizeof(skb->cb));
4255 
4256 	serr = SKB_EXT_ERR(skb);
4257 	memset(serr, 0, sizeof(*serr));
4258 	serr->ee.ee_errno = ENOMSG;
4259 	serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
4260 	serr->ee.ee_info = tstype;
4261 	serr->opt_stats = opt_stats;
4262 	serr->header.h4.iif = skb->dev ? skb->dev->ifindex : 0;
4263 	if (sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID) {
4264 		serr->ee.ee_data = skb_shinfo(skb)->tskey;
4265 		if (sk->sk_protocol == IPPROTO_TCP &&
4266 		    sk->sk_type == SOCK_STREAM)
4267 			serr->ee.ee_data -= sk->sk_tskey;
4268 	}
4269 
4270 	err = sock_queue_err_skb(sk, skb);
4271 
4272 	if (err)
4273 		kfree_skb(skb);
4274 }
4275 
4276 static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly)
4277 {
4278 	bool ret;
4279 
4280 	if (likely(sysctl_tstamp_allow_data || tsonly))
4281 		return true;
4282 
4283 	read_lock_bh(&sk->sk_callback_lock);
4284 	ret = sk->sk_socket && sk->sk_socket->file &&
4285 	      file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW);
4286 	read_unlock_bh(&sk->sk_callback_lock);
4287 	return ret;
4288 }
4289 
4290 void skb_complete_tx_timestamp(struct sk_buff *skb,
4291 			       struct skb_shared_hwtstamps *hwtstamps)
4292 {
4293 	struct sock *sk = skb->sk;
4294 
4295 	if (!skb_may_tx_timestamp(sk, false))
4296 		return;
4297 
4298 	/* Take a reference to prevent skb_orphan() from freeing the socket,
4299 	 * but only if the socket refcount is not zero.
4300 	 */
4301 	if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
4302 		*skb_hwtstamps(skb) = *hwtstamps;
4303 		__skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND, false);
4304 		sock_put(sk);
4305 	}
4306 }
4307 EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp);
4308 
4309 void __skb_tstamp_tx(struct sk_buff *orig_skb,
4310 		     struct skb_shared_hwtstamps *hwtstamps,
4311 		     struct sock *sk, int tstype)
4312 {
4313 	struct sk_buff *skb;
4314 	bool tsonly, opt_stats = false;
4315 
4316 	if (!sk)
4317 		return;
4318 
4319 	if (!hwtstamps && !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TX_SWHW) &&
4320 	    skb_shinfo(orig_skb)->tx_flags & SKBTX_IN_PROGRESS)
4321 		return;
4322 
4323 	tsonly = sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TSONLY;
4324 	if (!skb_may_tx_timestamp(sk, tsonly))
4325 		return;
4326 
4327 	if (tsonly) {
4328 #ifdef CONFIG_INET
4329 		if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_STATS) &&
4330 		    sk->sk_protocol == IPPROTO_TCP &&
4331 		    sk->sk_type == SOCK_STREAM) {
4332 			skb = tcp_get_timestamping_opt_stats(sk);
4333 			opt_stats = true;
4334 		} else
4335 #endif
4336 			skb = alloc_skb(0, GFP_ATOMIC);
4337 	} else {
4338 		skb = skb_clone(orig_skb, GFP_ATOMIC);
4339 	}
4340 	if (!skb)
4341 		return;
4342 
4343 	if (tsonly) {
4344 		skb_shinfo(skb)->tx_flags |= skb_shinfo(orig_skb)->tx_flags &
4345 					     SKBTX_ANY_TSTAMP;
4346 		skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey;
4347 	}
4348 
4349 	if (hwtstamps)
4350 		*skb_hwtstamps(skb) = *hwtstamps;
4351 	else
4352 		skb->tstamp = ktime_get_real();
4353 
4354 	__skb_complete_tx_timestamp(skb, sk, tstype, opt_stats);
4355 }
4356 EXPORT_SYMBOL_GPL(__skb_tstamp_tx);
4357 
4358 void skb_tstamp_tx(struct sk_buff *orig_skb,
4359 		   struct skb_shared_hwtstamps *hwtstamps)
4360 {
4361 	return __skb_tstamp_tx(orig_skb, hwtstamps, orig_skb->sk,
4362 			       SCM_TSTAMP_SND);
4363 }
4364 EXPORT_SYMBOL_GPL(skb_tstamp_tx);
4365 
4366 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked)
4367 {
4368 	struct sock *sk = skb->sk;
4369 	struct sock_exterr_skb *serr;
4370 	int err = 1;
4371 
4372 	skb->wifi_acked_valid = 1;
4373 	skb->wifi_acked = acked;
4374 
4375 	serr = SKB_EXT_ERR(skb);
4376 	memset(serr, 0, sizeof(*serr));
4377 	serr->ee.ee_errno = ENOMSG;
4378 	serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS;
4379 
4380 	/* Take a reference to prevent skb_orphan() from freeing the socket,
4381 	 * but only if the socket refcount is not zero.
4382 	 */
4383 	if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
4384 		err = sock_queue_err_skb(sk, skb);
4385 		sock_put(sk);
4386 	}
4387 	if (err)
4388 		kfree_skb(skb);
4389 }
4390 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack);
4391 
4392 /**
4393  * skb_partial_csum_set - set up and verify partial csum values for packet
4394  * @skb: the skb to set
4395  * @start: the number of bytes after skb->data to start checksumming.
4396  * @off: the offset from start to place the checksum.
4397  *
4398  * For untrusted partially-checksummed packets, we need to make sure the values
4399  * for skb->csum_start and skb->csum_offset are valid so we don't oops.
4400  *
4401  * This function checks and sets those values and skb->ip_summed: if this
4402  * returns false you should drop the packet.
4403  */
4404 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
4405 {
4406 	if (unlikely(start > skb_headlen(skb)) ||
4407 	    unlikely((int)start + off > skb_headlen(skb) - 2)) {
4408 		net_warn_ratelimited("bad partial csum: csum=%u/%u len=%u\n",
4409 				     start, off, skb_headlen(skb));
4410 		return false;
4411 	}
4412 	skb->ip_summed = CHECKSUM_PARTIAL;
4413 	skb->csum_start = skb_headroom(skb) + start;
4414 	skb->csum_offset = off;
4415 	skb_set_transport_header(skb, start);
4416 	return true;
4417 }
4418 EXPORT_SYMBOL_GPL(skb_partial_csum_set);
4419 
4420 static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len,
4421 			       unsigned int max)
4422 {
4423 	if (skb_headlen(skb) >= len)
4424 		return 0;
4425 
4426 	/* If we need to pullup then pullup to the max, so we
4427 	 * won't need to do it again.
4428 	 */
4429 	if (max > skb->len)
4430 		max = skb->len;
4431 
4432 	if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL)
4433 		return -ENOMEM;
4434 
4435 	if (skb_headlen(skb) < len)
4436 		return -EPROTO;
4437 
4438 	return 0;
4439 }
4440 
4441 #define MAX_TCP_HDR_LEN (15 * 4)
4442 
4443 static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb,
4444 				      typeof(IPPROTO_IP) proto,
4445 				      unsigned int off)
4446 {
4447 	switch (proto) {
4448 		int err;
4449 
4450 	case IPPROTO_TCP:
4451 		err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr),
4452 					  off + MAX_TCP_HDR_LEN);
4453 		if (!err && !skb_partial_csum_set(skb, off,
4454 						  offsetof(struct tcphdr,
4455 							   check)))
4456 			err = -EPROTO;
4457 		return err ? ERR_PTR(err) : &tcp_hdr(skb)->check;
4458 
4459 	case IPPROTO_UDP:
4460 		err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr),
4461 					  off + sizeof(struct udphdr));
4462 		if (!err && !skb_partial_csum_set(skb, off,
4463 						  offsetof(struct udphdr,
4464 							   check)))
4465 			err = -EPROTO;
4466 		return err ? ERR_PTR(err) : &udp_hdr(skb)->check;
4467 	}
4468 
4469 	return ERR_PTR(-EPROTO);
4470 }
4471 
4472 /* This value should be large enough to cover a tagged ethernet header plus
4473  * maximally sized IP and TCP or UDP headers.
4474  */
4475 #define MAX_IP_HDR_LEN 128
4476 
4477 static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate)
4478 {
4479 	unsigned int off;
4480 	bool fragment;
4481 	__sum16 *csum;
4482 	int err;
4483 
4484 	fragment = false;
4485 
4486 	err = skb_maybe_pull_tail(skb,
4487 				  sizeof(struct iphdr),
4488 				  MAX_IP_HDR_LEN);
4489 	if (err < 0)
4490 		goto out;
4491 
4492 	if (ip_hdr(skb)->frag_off & htons(IP_OFFSET | IP_MF))
4493 		fragment = true;
4494 
4495 	off = ip_hdrlen(skb);
4496 
4497 	err = -EPROTO;
4498 
4499 	if (fragment)
4500 		goto out;
4501 
4502 	csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off);
4503 	if (IS_ERR(csum))
4504 		return PTR_ERR(csum);
4505 
4506 	if (recalculate)
4507 		*csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
4508 					   ip_hdr(skb)->daddr,
4509 					   skb->len - off,
4510 					   ip_hdr(skb)->protocol, 0);
4511 	err = 0;
4512 
4513 out:
4514 	return err;
4515 }
4516 
4517 /* This value should be large enough to cover a tagged ethernet header plus
4518  * an IPv6 header, all options, and a maximal TCP or UDP header.
4519  */
4520 #define MAX_IPV6_HDR_LEN 256
4521 
4522 #define OPT_HDR(type, skb, off) \
4523 	(type *)(skb_network_header(skb) + (off))
4524 
4525 static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate)
4526 {
4527 	int err;
4528 	u8 nexthdr;
4529 	unsigned int off;
4530 	unsigned int len;
4531 	bool fragment;
4532 	bool done;
4533 	__sum16 *csum;
4534 
4535 	fragment = false;
4536 	done = false;
4537 
4538 	off = sizeof(struct ipv6hdr);
4539 
4540 	err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN);
4541 	if (err < 0)
4542 		goto out;
4543 
4544 	nexthdr = ipv6_hdr(skb)->nexthdr;
4545 
4546 	len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len);
4547 	while (off <= len && !done) {
4548 		switch (nexthdr) {
4549 		case IPPROTO_DSTOPTS:
4550 		case IPPROTO_HOPOPTS:
4551 		case IPPROTO_ROUTING: {
4552 			struct ipv6_opt_hdr *hp;
4553 
4554 			err = skb_maybe_pull_tail(skb,
4555 						  off +
4556 						  sizeof(struct ipv6_opt_hdr),
4557 						  MAX_IPV6_HDR_LEN);
4558 			if (err < 0)
4559 				goto out;
4560 
4561 			hp = OPT_HDR(struct ipv6_opt_hdr, skb, off);
4562 			nexthdr = hp->nexthdr;
4563 			off += ipv6_optlen(hp);
4564 			break;
4565 		}
4566 		case IPPROTO_AH: {
4567 			struct ip_auth_hdr *hp;
4568 
4569 			err = skb_maybe_pull_tail(skb,
4570 						  off +
4571 						  sizeof(struct ip_auth_hdr),
4572 						  MAX_IPV6_HDR_LEN);
4573 			if (err < 0)
4574 				goto out;
4575 
4576 			hp = OPT_HDR(struct ip_auth_hdr, skb, off);
4577 			nexthdr = hp->nexthdr;
4578 			off += ipv6_authlen(hp);
4579 			break;
4580 		}
4581 		case IPPROTO_FRAGMENT: {
4582 			struct frag_hdr *hp;
4583 
4584 			err = skb_maybe_pull_tail(skb,
4585 						  off +
4586 						  sizeof(struct frag_hdr),
4587 						  MAX_IPV6_HDR_LEN);
4588 			if (err < 0)
4589 				goto out;
4590 
4591 			hp = OPT_HDR(struct frag_hdr, skb, off);
4592 
4593 			if (hp->frag_off & htons(IP6_OFFSET | IP6_MF))
4594 				fragment = true;
4595 
4596 			nexthdr = hp->nexthdr;
4597 			off += sizeof(struct frag_hdr);
4598 			break;
4599 		}
4600 		default:
4601 			done = true;
4602 			break;
4603 		}
4604 	}
4605 
4606 	err = -EPROTO;
4607 
4608 	if (!done || fragment)
4609 		goto out;
4610 
4611 	csum = skb_checksum_setup_ip(skb, nexthdr, off);
4612 	if (IS_ERR(csum))
4613 		return PTR_ERR(csum);
4614 
4615 	if (recalculate)
4616 		*csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
4617 					 &ipv6_hdr(skb)->daddr,
4618 					 skb->len - off, nexthdr, 0);
4619 	err = 0;
4620 
4621 out:
4622 	return err;
4623 }
4624 
4625 /**
4626  * skb_checksum_setup - set up partial checksum offset
4627  * @skb: the skb to set up
4628  * @recalculate: if true the pseudo-header checksum will be recalculated
4629  */
4630 int skb_checksum_setup(struct sk_buff *skb, bool recalculate)
4631 {
4632 	int err;
4633 
4634 	switch (skb->protocol) {
4635 	case htons(ETH_P_IP):
4636 		err = skb_checksum_setup_ipv4(skb, recalculate);
4637 		break;
4638 
4639 	case htons(ETH_P_IPV6):
4640 		err = skb_checksum_setup_ipv6(skb, recalculate);
4641 		break;
4642 
4643 	default:
4644 		err = -EPROTO;
4645 		break;
4646 	}
4647 
4648 	return err;
4649 }
4650 EXPORT_SYMBOL(skb_checksum_setup);
4651 
4652 /**
4653  * skb_checksum_maybe_trim - maybe trims the given skb
4654  * @skb: the skb to check
4655  * @transport_len: the data length beyond the network header
4656  *
4657  * Checks whether the given skb has data beyond the given transport length.
4658  * If so, returns a cloned skb trimmed to this transport length.
4659  * Otherwise returns the provided skb. Returns NULL in error cases
4660  * (e.g. transport_len exceeds skb length or out-of-memory).
4661  *
4662  * Caller needs to set the skb transport header and free any returned skb if it
4663  * differs from the provided skb.
4664  */
4665 static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb,
4666 					       unsigned int transport_len)
4667 {
4668 	struct sk_buff *skb_chk;
4669 	unsigned int len = skb_transport_offset(skb) + transport_len;
4670 	int ret;
4671 
4672 	if (skb->len < len)
4673 		return NULL;
4674 	else if (skb->len == len)
4675 		return skb;
4676 
4677 	skb_chk = skb_clone(skb, GFP_ATOMIC);
4678 	if (!skb_chk)
4679 		return NULL;
4680 
4681 	ret = pskb_trim_rcsum(skb_chk, len);
4682 	if (ret) {
4683 		kfree_skb(skb_chk);
4684 		return NULL;
4685 	}
4686 
4687 	return skb_chk;
4688 }
4689 
4690 /**
4691  * skb_checksum_trimmed - validate checksum of an skb
4692  * @skb: the skb to check
4693  * @transport_len: the data length beyond the network header
4694  * @skb_chkf: checksum function to use
4695  *
4696  * Applies the given checksum function skb_chkf to the provided skb.
4697  * Returns a checked and maybe trimmed skb. Returns NULL on error.
4698  *
4699  * If the skb has data beyond the given transport length, then a
4700  * trimmed & cloned skb is checked and returned.
4701  *
4702  * Caller needs to set the skb transport header and free any returned skb if it
4703  * differs from the provided skb.
4704  */
4705 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
4706 				     unsigned int transport_len,
4707 				     __sum16(*skb_chkf)(struct sk_buff *skb))
4708 {
4709 	struct sk_buff *skb_chk;
4710 	unsigned int offset = skb_transport_offset(skb);
4711 	__sum16 ret;
4712 
4713 	skb_chk = skb_checksum_maybe_trim(skb, transport_len);
4714 	if (!skb_chk)
4715 		goto err;
4716 
4717 	if (!pskb_may_pull(skb_chk, offset))
4718 		goto err;
4719 
4720 	skb_pull_rcsum(skb_chk, offset);
4721 	ret = skb_chkf(skb_chk);
4722 	skb_push_rcsum(skb_chk, offset);
4723 
4724 	if (ret)
4725 		goto err;
4726 
4727 	return skb_chk;
4728 
4729 err:
4730 	if (skb_chk && skb_chk != skb)
4731 		kfree_skb(skb_chk);
4732 
4733 	return NULL;
4734 
4735 }
4736 EXPORT_SYMBOL(skb_checksum_trimmed);
4737 
4738 void __skb_warn_lro_forwarding(const struct sk_buff *skb)
4739 {
4740 	net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n",
4741 			     skb->dev->name);
4742 }
4743 EXPORT_SYMBOL(__skb_warn_lro_forwarding);
4744 
4745 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen)
4746 {
4747 	if (head_stolen) {
4748 		skb_release_head_state(skb);
4749 		kmem_cache_free(skbuff_head_cache, skb);
4750 	} else {
4751 		__kfree_skb(skb);
4752 	}
4753 }
4754 EXPORT_SYMBOL(kfree_skb_partial);
4755 
4756 /**
4757  * skb_try_coalesce - try to merge skb to prior one
4758  * @to: prior buffer
4759  * @from: buffer to add
4760  * @fragstolen: pointer to boolean
4761  * @delta_truesize: how much more was allocated than was requested
4762  */
4763 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
4764 		      bool *fragstolen, int *delta_truesize)
4765 {
4766 	struct skb_shared_info *to_shinfo, *from_shinfo;
4767 	int i, delta, len = from->len;
4768 
4769 	*fragstolen = false;
4770 
4771 	if (skb_cloned(to))
4772 		return false;
4773 
4774 	if (len <= skb_tailroom(to)) {
4775 		if (len)
4776 			BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len));
4777 		*delta_truesize = 0;
4778 		return true;
4779 	}
4780 
4781 	to_shinfo = skb_shinfo(to);
4782 	from_shinfo = skb_shinfo(from);
4783 	if (to_shinfo->frag_list || from_shinfo->frag_list)
4784 		return false;
4785 	if (skb_zcopy(to) || skb_zcopy(from))
4786 		return false;
4787 
4788 	if (skb_headlen(from) != 0) {
4789 		struct page *page;
4790 		unsigned int offset;
4791 
4792 		if (to_shinfo->nr_frags +
4793 		    from_shinfo->nr_frags >= MAX_SKB_FRAGS)
4794 			return false;
4795 
4796 		if (skb_head_is_locked(from))
4797 			return false;
4798 
4799 		delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
4800 
4801 		page = virt_to_head_page(from->head);
4802 		offset = from->data - (unsigned char *)page_address(page);
4803 
4804 		skb_fill_page_desc(to, to_shinfo->nr_frags,
4805 				   page, offset, skb_headlen(from));
4806 		*fragstolen = true;
4807 	} else {
4808 		if (to_shinfo->nr_frags +
4809 		    from_shinfo->nr_frags > MAX_SKB_FRAGS)
4810 			return false;
4811 
4812 		delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from));
4813 	}
4814 
4815 	WARN_ON_ONCE(delta < len);
4816 
4817 	memcpy(to_shinfo->frags + to_shinfo->nr_frags,
4818 	       from_shinfo->frags,
4819 	       from_shinfo->nr_frags * sizeof(skb_frag_t));
4820 	to_shinfo->nr_frags += from_shinfo->nr_frags;
4821 
4822 	if (!skb_cloned(from))
4823 		from_shinfo->nr_frags = 0;
4824 
4825 	/* if the skb is not cloned this does nothing
4826 	 * since we set nr_frags to 0.
4827 	 */
4828 	for (i = 0; i < from_shinfo->nr_frags; i++)
4829 		__skb_frag_ref(&from_shinfo->frags[i]);
4830 
4831 	to->truesize += delta;
4832 	to->len += len;
4833 	to->data_len += len;
4834 
4835 	*delta_truesize = delta;
4836 	return true;
4837 }
4838 EXPORT_SYMBOL(skb_try_coalesce);
4839 
4840 /**
4841  * skb_scrub_packet - scrub an skb
4842  *
4843  * @skb: buffer to clean
4844  * @xnet: packet is crossing netns
4845  *
4846  * skb_scrub_packet can be used after encapsulating or decapsulting a packet
4847  * into/from a tunnel. Some information have to be cleared during these
4848  * operations.
4849  * skb_scrub_packet can also be used to clean a skb before injecting it in
4850  * another namespace (@xnet == true). We have to clear all information in the
4851  * skb that could impact namespace isolation.
4852  */
4853 void skb_scrub_packet(struct sk_buff *skb, bool xnet)
4854 {
4855 	skb->tstamp = 0;
4856 	skb->pkt_type = PACKET_HOST;
4857 	skb->skb_iif = 0;
4858 	skb->ignore_df = 0;
4859 	skb_dst_drop(skb);
4860 	secpath_reset(skb);
4861 	nf_reset(skb);
4862 	nf_reset_trace(skb);
4863 
4864 	if (!xnet)
4865 		return;
4866 
4867 	ipvs_reset(skb);
4868 	skb_orphan(skb);
4869 	skb->mark = 0;
4870 }
4871 EXPORT_SYMBOL_GPL(skb_scrub_packet);
4872 
4873 /**
4874  * skb_gso_transport_seglen - Return length of individual segments of a gso packet
4875  *
4876  * @skb: GSO skb
4877  *
4878  * skb_gso_transport_seglen is used to determine the real size of the
4879  * individual segments, including Layer4 headers (TCP/UDP).
4880  *
4881  * The MAC/L2 or network (IP, IPv6) headers are not accounted for.
4882  */
4883 unsigned int skb_gso_transport_seglen(const struct sk_buff *skb)
4884 {
4885 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
4886 	unsigned int thlen = 0;
4887 
4888 	if (skb->encapsulation) {
4889 		thlen = skb_inner_transport_header(skb) -
4890 			skb_transport_header(skb);
4891 
4892 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
4893 			thlen += inner_tcp_hdrlen(skb);
4894 	} else if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
4895 		thlen = tcp_hdrlen(skb);
4896 	} else if (unlikely(shinfo->gso_type & SKB_GSO_SCTP)) {
4897 		thlen = sizeof(struct sctphdr);
4898 	}
4899 	/* UFO sets gso_size to the size of the fragmentation
4900 	 * payload, i.e. the size of the L4 (UDP) header is already
4901 	 * accounted for.
4902 	 */
4903 	return thlen + shinfo->gso_size;
4904 }
4905 EXPORT_SYMBOL_GPL(skb_gso_transport_seglen);
4906 
4907 /**
4908  * skb_gso_validate_mtu - Return in case such skb fits a given MTU
4909  *
4910  * @skb: GSO skb
4911  * @mtu: MTU to validate against
4912  *
4913  * skb_gso_validate_mtu validates if a given skb will fit a wanted MTU
4914  * once split.
4915  */
4916 bool skb_gso_validate_mtu(const struct sk_buff *skb, unsigned int mtu)
4917 {
4918 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
4919 	const struct sk_buff *iter;
4920 	unsigned int hlen;
4921 
4922 	hlen = skb_gso_network_seglen(skb);
4923 
4924 	if (shinfo->gso_size != GSO_BY_FRAGS)
4925 		return hlen <= mtu;
4926 
4927 	/* Undo this so we can re-use header sizes */
4928 	hlen -= GSO_BY_FRAGS;
4929 
4930 	skb_walk_frags(skb, iter) {
4931 		if (hlen + skb_headlen(iter) > mtu)
4932 			return false;
4933 	}
4934 
4935 	return true;
4936 }
4937 EXPORT_SYMBOL_GPL(skb_gso_validate_mtu);
4938 
4939 static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb)
4940 {
4941 	if (skb_cow(skb, skb_headroom(skb)) < 0) {
4942 		kfree_skb(skb);
4943 		return NULL;
4944 	}
4945 
4946 	memmove(skb->data - ETH_HLEN, skb->data - skb->mac_len - VLAN_HLEN,
4947 		2 * ETH_ALEN);
4948 	skb->mac_header += VLAN_HLEN;
4949 	return skb;
4950 }
4951 
4952 struct sk_buff *skb_vlan_untag(struct sk_buff *skb)
4953 {
4954 	struct vlan_hdr *vhdr;
4955 	u16 vlan_tci;
4956 
4957 	if (unlikely(skb_vlan_tag_present(skb))) {
4958 		/* vlan_tci is already set-up so leave this for another time */
4959 		return skb;
4960 	}
4961 
4962 	skb = skb_share_check(skb, GFP_ATOMIC);
4963 	if (unlikely(!skb))
4964 		goto err_free;
4965 
4966 	if (unlikely(!pskb_may_pull(skb, VLAN_HLEN)))
4967 		goto err_free;
4968 
4969 	vhdr = (struct vlan_hdr *)skb->data;
4970 	vlan_tci = ntohs(vhdr->h_vlan_TCI);
4971 	__vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci);
4972 
4973 	skb_pull_rcsum(skb, VLAN_HLEN);
4974 	vlan_set_encap_proto(skb, vhdr);
4975 
4976 	skb = skb_reorder_vlan_header(skb);
4977 	if (unlikely(!skb))
4978 		goto err_free;
4979 
4980 	skb_reset_network_header(skb);
4981 	skb_reset_transport_header(skb);
4982 	skb_reset_mac_len(skb);
4983 
4984 	return skb;
4985 
4986 err_free:
4987 	kfree_skb(skb);
4988 	return NULL;
4989 }
4990 EXPORT_SYMBOL(skb_vlan_untag);
4991 
4992 int skb_ensure_writable(struct sk_buff *skb, int write_len)
4993 {
4994 	if (!pskb_may_pull(skb, write_len))
4995 		return -ENOMEM;
4996 
4997 	if (!skb_cloned(skb) || skb_clone_writable(skb, write_len))
4998 		return 0;
4999 
5000 	return pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
5001 }
5002 EXPORT_SYMBOL(skb_ensure_writable);
5003 
5004 /* remove VLAN header from packet and update csum accordingly.
5005  * expects a non skb_vlan_tag_present skb with a vlan tag payload
5006  */
5007 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci)
5008 {
5009 	struct vlan_hdr *vhdr;
5010 	int offset = skb->data - skb_mac_header(skb);
5011 	int err;
5012 
5013 	if (WARN_ONCE(offset,
5014 		      "__skb_vlan_pop got skb with skb->data not at mac header (offset %d)\n",
5015 		      offset)) {
5016 		return -EINVAL;
5017 	}
5018 
5019 	err = skb_ensure_writable(skb, VLAN_ETH_HLEN);
5020 	if (unlikely(err))
5021 		return err;
5022 
5023 	skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
5024 
5025 	vhdr = (struct vlan_hdr *)(skb->data + ETH_HLEN);
5026 	*vlan_tci = ntohs(vhdr->h_vlan_TCI);
5027 
5028 	memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN);
5029 	__skb_pull(skb, VLAN_HLEN);
5030 
5031 	vlan_set_encap_proto(skb, vhdr);
5032 	skb->mac_header += VLAN_HLEN;
5033 
5034 	if (skb_network_offset(skb) < ETH_HLEN)
5035 		skb_set_network_header(skb, ETH_HLEN);
5036 
5037 	skb_reset_mac_len(skb);
5038 
5039 	return err;
5040 }
5041 EXPORT_SYMBOL(__skb_vlan_pop);
5042 
5043 /* Pop a vlan tag either from hwaccel or from payload.
5044  * Expects skb->data at mac header.
5045  */
5046 int skb_vlan_pop(struct sk_buff *skb)
5047 {
5048 	u16 vlan_tci;
5049 	__be16 vlan_proto;
5050 	int err;
5051 
5052 	if (likely(skb_vlan_tag_present(skb))) {
5053 		skb->vlan_tci = 0;
5054 	} else {
5055 		if (unlikely(!eth_type_vlan(skb->protocol)))
5056 			return 0;
5057 
5058 		err = __skb_vlan_pop(skb, &vlan_tci);
5059 		if (err)
5060 			return err;
5061 	}
5062 	/* move next vlan tag to hw accel tag */
5063 	if (likely(!eth_type_vlan(skb->protocol)))
5064 		return 0;
5065 
5066 	vlan_proto = skb->protocol;
5067 	err = __skb_vlan_pop(skb, &vlan_tci);
5068 	if (unlikely(err))
5069 		return err;
5070 
5071 	__vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
5072 	return 0;
5073 }
5074 EXPORT_SYMBOL(skb_vlan_pop);
5075 
5076 /* Push a vlan tag either into hwaccel or into payload (if hwaccel tag present).
5077  * Expects skb->data at mac header.
5078  */
5079 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci)
5080 {
5081 	if (skb_vlan_tag_present(skb)) {
5082 		int offset = skb->data - skb_mac_header(skb);
5083 		int err;
5084 
5085 		if (WARN_ONCE(offset,
5086 			      "skb_vlan_push got skb with skb->data not at mac header (offset %d)\n",
5087 			      offset)) {
5088 			return -EINVAL;
5089 		}
5090 
5091 		err = __vlan_insert_tag(skb, skb->vlan_proto,
5092 					skb_vlan_tag_get(skb));
5093 		if (err)
5094 			return err;
5095 
5096 		skb->protocol = skb->vlan_proto;
5097 		skb->mac_len += VLAN_HLEN;
5098 
5099 		skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
5100 	}
5101 	__vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
5102 	return 0;
5103 }
5104 EXPORT_SYMBOL(skb_vlan_push);
5105 
5106 /**
5107  * alloc_skb_with_frags - allocate skb with page frags
5108  *
5109  * @header_len: size of linear part
5110  * @data_len: needed length in frags
5111  * @max_page_order: max page order desired.
5112  * @errcode: pointer to error code if any
5113  * @gfp_mask: allocation mask
5114  *
5115  * This can be used to allocate a paged skb, given a maximal order for frags.
5116  */
5117 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
5118 				     unsigned long data_len,
5119 				     int max_page_order,
5120 				     int *errcode,
5121 				     gfp_t gfp_mask)
5122 {
5123 	int npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
5124 	unsigned long chunk;
5125 	struct sk_buff *skb;
5126 	struct page *page;
5127 	gfp_t gfp_head;
5128 	int i;
5129 
5130 	*errcode = -EMSGSIZE;
5131 	/* Note this test could be relaxed, if we succeed to allocate
5132 	 * high order pages...
5133 	 */
5134 	if (npages > MAX_SKB_FRAGS)
5135 		return NULL;
5136 
5137 	gfp_head = gfp_mask;
5138 	if (gfp_head & __GFP_DIRECT_RECLAIM)
5139 		gfp_head |= __GFP_RETRY_MAYFAIL;
5140 
5141 	*errcode = -ENOBUFS;
5142 	skb = alloc_skb(header_len, gfp_head);
5143 	if (!skb)
5144 		return NULL;
5145 
5146 	skb->truesize += npages << PAGE_SHIFT;
5147 
5148 	for (i = 0; npages > 0; i++) {
5149 		int order = max_page_order;
5150 
5151 		while (order) {
5152 			if (npages >= 1 << order) {
5153 				page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) |
5154 						   __GFP_COMP |
5155 						   __GFP_NOWARN |
5156 						   __GFP_NORETRY,
5157 						   order);
5158 				if (page)
5159 					goto fill_page;
5160 				/* Do not retry other high order allocations */
5161 				order = 1;
5162 				max_page_order = 0;
5163 			}
5164 			order--;
5165 		}
5166 		page = alloc_page(gfp_mask);
5167 		if (!page)
5168 			goto failure;
5169 fill_page:
5170 		chunk = min_t(unsigned long, data_len,
5171 			      PAGE_SIZE << order);
5172 		skb_fill_page_desc(skb, i, page, 0, chunk);
5173 		data_len -= chunk;
5174 		npages -= 1 << order;
5175 	}
5176 	return skb;
5177 
5178 failure:
5179 	kfree_skb(skb);
5180 	return NULL;
5181 }
5182 EXPORT_SYMBOL(alloc_skb_with_frags);
5183 
5184 /* carve out the first off bytes from skb when off < headlen */
5185 static int pskb_carve_inside_header(struct sk_buff *skb, const u32 off,
5186 				    const int headlen, gfp_t gfp_mask)
5187 {
5188 	int i;
5189 	int size = skb_end_offset(skb);
5190 	int new_hlen = headlen - off;
5191 	u8 *data;
5192 
5193 	size = SKB_DATA_ALIGN(size);
5194 
5195 	if (skb_pfmemalloc(skb))
5196 		gfp_mask |= __GFP_MEMALLOC;
5197 	data = kmalloc_reserve(size +
5198 			       SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
5199 			       gfp_mask, NUMA_NO_NODE, NULL);
5200 	if (!data)
5201 		return -ENOMEM;
5202 
5203 	size = SKB_WITH_OVERHEAD(ksize(data));
5204 
5205 	/* Copy real data, and all frags */
5206 	skb_copy_from_linear_data_offset(skb, off, data, new_hlen);
5207 	skb->len -= off;
5208 
5209 	memcpy((struct skb_shared_info *)(data + size),
5210 	       skb_shinfo(skb),
5211 	       offsetof(struct skb_shared_info,
5212 			frags[skb_shinfo(skb)->nr_frags]));
5213 	if (skb_cloned(skb)) {
5214 		/* drop the old head gracefully */
5215 		if (skb_orphan_frags(skb, gfp_mask)) {
5216 			kfree(data);
5217 			return -ENOMEM;
5218 		}
5219 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
5220 			skb_frag_ref(skb, i);
5221 		if (skb_has_frag_list(skb))
5222 			skb_clone_fraglist(skb);
5223 		skb_release_data(skb);
5224 	} else {
5225 		/* we can reuse existing recount- all we did was
5226 		 * relocate values
5227 		 */
5228 		skb_free_head(skb);
5229 	}
5230 
5231 	skb->head = data;
5232 	skb->data = data;
5233 	skb->head_frag = 0;
5234 #ifdef NET_SKBUFF_DATA_USES_OFFSET
5235 	skb->end = size;
5236 #else
5237 	skb->end = skb->head + size;
5238 #endif
5239 	skb_set_tail_pointer(skb, skb_headlen(skb));
5240 	skb_headers_offset_update(skb, 0);
5241 	skb->cloned = 0;
5242 	skb->hdr_len = 0;
5243 	skb->nohdr = 0;
5244 	atomic_set(&skb_shinfo(skb)->dataref, 1);
5245 
5246 	return 0;
5247 }
5248 
5249 static int pskb_carve(struct sk_buff *skb, const u32 off, gfp_t gfp);
5250 
5251 /* carve out the first eat bytes from skb's frag_list. May recurse into
5252  * pskb_carve()
5253  */
5254 static int pskb_carve_frag_list(struct sk_buff *skb,
5255 				struct skb_shared_info *shinfo, int eat,
5256 				gfp_t gfp_mask)
5257 {
5258 	struct sk_buff *list = shinfo->frag_list;
5259 	struct sk_buff *clone = NULL;
5260 	struct sk_buff *insp = NULL;
5261 
5262 	do {
5263 		if (!list) {
5264 			pr_err("Not enough bytes to eat. Want %d\n", eat);
5265 			return -EFAULT;
5266 		}
5267 		if (list->len <= eat) {
5268 			/* Eaten as whole. */
5269 			eat -= list->len;
5270 			list = list->next;
5271 			insp = list;
5272 		} else {
5273 			/* Eaten partially. */
5274 			if (skb_shared(list)) {
5275 				clone = skb_clone(list, gfp_mask);
5276 				if (!clone)
5277 					return -ENOMEM;
5278 				insp = list->next;
5279 				list = clone;
5280 			} else {
5281 				/* This may be pulled without problems. */
5282 				insp = list;
5283 			}
5284 			if (pskb_carve(list, eat, gfp_mask) < 0) {
5285 				kfree_skb(clone);
5286 				return -ENOMEM;
5287 			}
5288 			break;
5289 		}
5290 	} while (eat);
5291 
5292 	/* Free pulled out fragments. */
5293 	while ((list = shinfo->frag_list) != insp) {
5294 		shinfo->frag_list = list->next;
5295 		kfree_skb(list);
5296 	}
5297 	/* And insert new clone at head. */
5298 	if (clone) {
5299 		clone->next = list;
5300 		shinfo->frag_list = clone;
5301 	}
5302 	return 0;
5303 }
5304 
5305 /* carve off first len bytes from skb. Split line (off) is in the
5306  * non-linear part of skb
5307  */
5308 static int pskb_carve_inside_nonlinear(struct sk_buff *skb, const u32 off,
5309 				       int pos, gfp_t gfp_mask)
5310 {
5311 	int i, k = 0;
5312 	int size = skb_end_offset(skb);
5313 	u8 *data;
5314 	const int nfrags = skb_shinfo(skb)->nr_frags;
5315 	struct skb_shared_info *shinfo;
5316 
5317 	size = SKB_DATA_ALIGN(size);
5318 
5319 	if (skb_pfmemalloc(skb))
5320 		gfp_mask |= __GFP_MEMALLOC;
5321 	data = kmalloc_reserve(size +
5322 			       SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
5323 			       gfp_mask, NUMA_NO_NODE, NULL);
5324 	if (!data)
5325 		return -ENOMEM;
5326 
5327 	size = SKB_WITH_OVERHEAD(ksize(data));
5328 
5329 	memcpy((struct skb_shared_info *)(data + size),
5330 	       skb_shinfo(skb), offsetof(struct skb_shared_info,
5331 					 frags[skb_shinfo(skb)->nr_frags]));
5332 	if (skb_orphan_frags(skb, gfp_mask)) {
5333 		kfree(data);
5334 		return -ENOMEM;
5335 	}
5336 	shinfo = (struct skb_shared_info *)(data + size);
5337 	for (i = 0; i < nfrags; i++) {
5338 		int fsize = skb_frag_size(&skb_shinfo(skb)->frags[i]);
5339 
5340 		if (pos + fsize > off) {
5341 			shinfo->frags[k] = skb_shinfo(skb)->frags[i];
5342 
5343 			if (pos < off) {
5344 				/* Split frag.
5345 				 * We have two variants in this case:
5346 				 * 1. Move all the frag to the second
5347 				 *    part, if it is possible. F.e.
5348 				 *    this approach is mandatory for TUX,
5349 				 *    where splitting is expensive.
5350 				 * 2. Split is accurately. We make this.
5351 				 */
5352 				shinfo->frags[0].page_offset += off - pos;
5353 				skb_frag_size_sub(&shinfo->frags[0], off - pos);
5354 			}
5355 			skb_frag_ref(skb, i);
5356 			k++;
5357 		}
5358 		pos += fsize;
5359 	}
5360 	shinfo->nr_frags = k;
5361 	if (skb_has_frag_list(skb))
5362 		skb_clone_fraglist(skb);
5363 
5364 	if (k == 0) {
5365 		/* split line is in frag list */
5366 		pskb_carve_frag_list(skb, shinfo, off - pos, gfp_mask);
5367 	}
5368 	skb_release_data(skb);
5369 
5370 	skb->head = data;
5371 	skb->head_frag = 0;
5372 	skb->data = data;
5373 #ifdef NET_SKBUFF_DATA_USES_OFFSET
5374 	skb->end = size;
5375 #else
5376 	skb->end = skb->head + size;
5377 #endif
5378 	skb_reset_tail_pointer(skb);
5379 	skb_headers_offset_update(skb, 0);
5380 	skb->cloned   = 0;
5381 	skb->hdr_len  = 0;
5382 	skb->nohdr    = 0;
5383 	skb->len -= off;
5384 	skb->data_len = skb->len;
5385 	atomic_set(&skb_shinfo(skb)->dataref, 1);
5386 	return 0;
5387 }
5388 
5389 /* remove len bytes from the beginning of the skb */
5390 static int pskb_carve(struct sk_buff *skb, const u32 len, gfp_t gfp)
5391 {
5392 	int headlen = skb_headlen(skb);
5393 
5394 	if (len < headlen)
5395 		return pskb_carve_inside_header(skb, len, headlen, gfp);
5396 	else
5397 		return pskb_carve_inside_nonlinear(skb, len, headlen, gfp);
5398 }
5399 
5400 /* Extract to_copy bytes starting at off from skb, and return this in
5401  * a new skb
5402  */
5403 struct sk_buff *pskb_extract(struct sk_buff *skb, int off,
5404 			     int to_copy, gfp_t gfp)
5405 {
5406 	struct sk_buff  *clone = skb_clone(skb, gfp);
5407 
5408 	if (!clone)
5409 		return NULL;
5410 
5411 	if (pskb_carve(clone, off, gfp) < 0 ||
5412 	    pskb_trim(clone, to_copy)) {
5413 		kfree_skb(clone);
5414 		return NULL;
5415 	}
5416 	return clone;
5417 }
5418 EXPORT_SYMBOL(pskb_extract);
5419 
5420 /**
5421  * skb_condense - try to get rid of fragments/frag_list if possible
5422  * @skb: buffer
5423  *
5424  * Can be used to save memory before skb is added to a busy queue.
5425  * If packet has bytes in frags and enough tail room in skb->head,
5426  * pull all of them, so that we can free the frags right now and adjust
5427  * truesize.
5428  * Notes:
5429  *	We do not reallocate skb->head thus can not fail.
5430  *	Caller must re-evaluate skb->truesize if needed.
5431  */
5432 void skb_condense(struct sk_buff *skb)
5433 {
5434 	if (skb->data_len) {
5435 		if (skb->data_len > skb->end - skb->tail ||
5436 		    skb_cloned(skb))
5437 			return;
5438 
5439 		/* Nice, we can free page frag(s) right now */
5440 		__pskb_pull_tail(skb, skb->data_len);
5441 	}
5442 	/* At this point, skb->truesize might be over estimated,
5443 	 * because skb had a fragment, and fragments do not tell
5444 	 * their truesize.
5445 	 * When we pulled its content into skb->head, fragment
5446 	 * was freed, but __pskb_pull_tail() could not possibly
5447 	 * adjust skb->truesize, not knowing the frag truesize.
5448 	 */
5449 	skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
5450 }
5451