xref: /openbmc/linux/net/core/skbuff.c (revision 64c70b1c)
1 /*
2  *	Routines having to do with the 'struct sk_buff' memory handlers.
3  *
4  *	Authors:	Alan Cox <iiitac@pyr.swan.ac.uk>
5  *			Florian La Roche <rzsfl@rz.uni-sb.de>
6  *
7  *	Version:	$Id: skbuff.c,v 1.90 2001/11/07 05:56:19 davem Exp $
8  *
9  *	Fixes:
10  *		Alan Cox	:	Fixed the worst of the load
11  *					balancer bugs.
12  *		Dave Platt	:	Interrupt stacking fix.
13  *	Richard Kooijman	:	Timestamp fixes.
14  *		Alan Cox	:	Changed buffer format.
15  *		Alan Cox	:	destructor hook for AF_UNIX etc.
16  *		Linus Torvalds	:	Better skb_clone.
17  *		Alan Cox	:	Added skb_copy.
18  *		Alan Cox	:	Added all the changed routines Linus
19  *					only put in the headers
20  *		Ray VanTassle	:	Fixed --skb->lock in free
21  *		Alan Cox	:	skb_copy copy arp field
22  *		Andi Kleen	:	slabified it.
23  *		Robert Olsson	:	Removed skb_head_pool
24  *
25  *	NOTE:
26  *		The __skb_ routines should be called with interrupts
27  *	disabled, or you better be *real* sure that the operation is atomic
28  *	with respect to whatever list is being frobbed (e.g. via lock_sock()
29  *	or via disabling bottom half handlers, etc).
30  *
31  *	This program is free software; you can redistribute it and/or
32  *	modify it under the terms of the GNU General Public License
33  *	as published by the Free Software Foundation; either version
34  *	2 of the License, or (at your option) any later version.
35  */
36 
37 /*
38  *	The functions in this file will not compile correctly with gcc 2.4.x
39  */
40 
41 #include <linux/module.h>
42 #include <linux/types.h>
43 #include <linux/kernel.h>
44 #include <linux/mm.h>
45 #include <linux/interrupt.h>
46 #include <linux/in.h>
47 #include <linux/inet.h>
48 #include <linux/slab.h>
49 #include <linux/netdevice.h>
50 #ifdef CONFIG_NET_CLS_ACT
51 #include <net/pkt_sched.h>
52 #endif
53 #include <linux/string.h>
54 #include <linux/skbuff.h>
55 #include <linux/cache.h>
56 #include <linux/rtnetlink.h>
57 #include <linux/init.h>
58 #include <linux/scatterlist.h>
59 
60 #include <net/protocol.h>
61 #include <net/dst.h>
62 #include <net/sock.h>
63 #include <net/checksum.h>
64 #include <net/xfrm.h>
65 
66 #include <asm/uaccess.h>
67 #include <asm/system.h>
68 
69 #include "kmap_skb.h"
70 
71 static struct kmem_cache *skbuff_head_cache __read_mostly;
72 static struct kmem_cache *skbuff_fclone_cache __read_mostly;
73 
74 /*
75  *	Keep out-of-line to prevent kernel bloat.
76  *	__builtin_return_address is not used because it is not always
77  *	reliable.
78  */
79 
80 /**
81  *	skb_over_panic	- 	private function
82  *	@skb: buffer
83  *	@sz: size
84  *	@here: address
85  *
86  *	Out of line support code for skb_put(). Not user callable.
87  */
88 void skb_over_panic(struct sk_buff *skb, int sz, void *here)
89 {
90 	printk(KERN_EMERG "skb_over_panic: text:%p len:%d put:%d head:%p "
91 			  "data:%p tail:%#lx end:%#lx dev:%s\n",
92 	       here, skb->len, sz, skb->head, skb->data,
93 	       (unsigned long)skb->tail, (unsigned long)skb->end,
94 	       skb->dev ? skb->dev->name : "<NULL>");
95 	BUG();
96 }
97 
98 /**
99  *	skb_under_panic	- 	private function
100  *	@skb: buffer
101  *	@sz: size
102  *	@here: address
103  *
104  *	Out of line support code for skb_push(). Not user callable.
105  */
106 
107 void skb_under_panic(struct sk_buff *skb, int sz, void *here)
108 {
109 	printk(KERN_EMERG "skb_under_panic: text:%p len:%d put:%d head:%p "
110 			  "data:%p tail:%#lx end:%#lx dev:%s\n",
111 	       here, skb->len, sz, skb->head, skb->data,
112 	       (unsigned long)skb->tail, (unsigned long)skb->end,
113 	       skb->dev ? skb->dev->name : "<NULL>");
114 	BUG();
115 }
116 
117 void skb_truesize_bug(struct sk_buff *skb)
118 {
119 	printk(KERN_ERR "SKB BUG: Invalid truesize (%u) "
120 	       "len=%u, sizeof(sk_buff)=%Zd\n",
121 	       skb->truesize, skb->len, sizeof(struct sk_buff));
122 }
123 EXPORT_SYMBOL(skb_truesize_bug);
124 
125 /* 	Allocate a new skbuff. We do this ourselves so we can fill in a few
126  *	'private' fields and also do memory statistics to find all the
127  *	[BEEP] leaks.
128  *
129  */
130 
131 /**
132  *	__alloc_skb	-	allocate a network buffer
133  *	@size: size to allocate
134  *	@gfp_mask: allocation mask
135  *	@fclone: allocate from fclone cache instead of head cache
136  *		and allocate a cloned (child) skb
137  *	@node: numa node to allocate memory on
138  *
139  *	Allocate a new &sk_buff. The returned buffer has no headroom and a
140  *	tail room of size bytes. The object has a reference count of one.
141  *	The return is the buffer. On a failure the return is %NULL.
142  *
143  *	Buffers may only be allocated from interrupts using a @gfp_mask of
144  *	%GFP_ATOMIC.
145  */
146 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
147 			    int fclone, int node)
148 {
149 	struct kmem_cache *cache;
150 	struct skb_shared_info *shinfo;
151 	struct sk_buff *skb;
152 	u8 *data;
153 
154 	cache = fclone ? skbuff_fclone_cache : skbuff_head_cache;
155 
156 	/* Get the HEAD */
157 	skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node);
158 	if (!skb)
159 		goto out;
160 
161 	size = SKB_DATA_ALIGN(size);
162 	data = kmalloc_node_track_caller(size + sizeof(struct skb_shared_info),
163 			gfp_mask, node);
164 	if (!data)
165 		goto nodata;
166 
167 	/*
168 	 * See comment in sk_buff definition, just before the 'tail' member
169 	 */
170 	memset(skb, 0, offsetof(struct sk_buff, tail));
171 	skb->truesize = size + sizeof(struct sk_buff);
172 	atomic_set(&skb->users, 1);
173 	skb->head = data;
174 	skb->data = data;
175 	skb_reset_tail_pointer(skb);
176 	skb->end = skb->tail + size;
177 	/* make sure we initialize shinfo sequentially */
178 	shinfo = skb_shinfo(skb);
179 	atomic_set(&shinfo->dataref, 1);
180 	shinfo->nr_frags  = 0;
181 	shinfo->gso_size = 0;
182 	shinfo->gso_segs = 0;
183 	shinfo->gso_type = 0;
184 	shinfo->ip6_frag_id = 0;
185 	shinfo->frag_list = NULL;
186 
187 	if (fclone) {
188 		struct sk_buff *child = skb + 1;
189 		atomic_t *fclone_ref = (atomic_t *) (child + 1);
190 
191 		skb->fclone = SKB_FCLONE_ORIG;
192 		atomic_set(fclone_ref, 1);
193 
194 		child->fclone = SKB_FCLONE_UNAVAILABLE;
195 	}
196 out:
197 	return skb;
198 nodata:
199 	kmem_cache_free(cache, skb);
200 	skb = NULL;
201 	goto out;
202 }
203 
204 /**
205  *	__netdev_alloc_skb - allocate an skbuff for rx on a specific device
206  *	@dev: network device to receive on
207  *	@length: length to allocate
208  *	@gfp_mask: get_free_pages mask, passed to alloc_skb
209  *
210  *	Allocate a new &sk_buff and assign it a usage count of one. The
211  *	buffer has unspecified headroom built in. Users should allocate
212  *	the headroom they think they need without accounting for the
213  *	built in space. The built in space is used for optimisations.
214  *
215  *	%NULL is returned if there is no free memory.
216  */
217 struct sk_buff *__netdev_alloc_skb(struct net_device *dev,
218 		unsigned int length, gfp_t gfp_mask)
219 {
220 	int node = dev->dev.parent ? dev_to_node(dev->dev.parent) : -1;
221 	struct sk_buff *skb;
222 
223 	skb = __alloc_skb(length + NET_SKB_PAD, gfp_mask, 0, node);
224 	if (likely(skb)) {
225 		skb_reserve(skb, NET_SKB_PAD);
226 		skb->dev = dev;
227 	}
228 	return skb;
229 }
230 
231 static void skb_drop_list(struct sk_buff **listp)
232 {
233 	struct sk_buff *list = *listp;
234 
235 	*listp = NULL;
236 
237 	do {
238 		struct sk_buff *this = list;
239 		list = list->next;
240 		kfree_skb(this);
241 	} while (list);
242 }
243 
244 static inline void skb_drop_fraglist(struct sk_buff *skb)
245 {
246 	skb_drop_list(&skb_shinfo(skb)->frag_list);
247 }
248 
249 static void skb_clone_fraglist(struct sk_buff *skb)
250 {
251 	struct sk_buff *list;
252 
253 	for (list = skb_shinfo(skb)->frag_list; list; list = list->next)
254 		skb_get(list);
255 }
256 
257 static void skb_release_data(struct sk_buff *skb)
258 {
259 	if (!skb->cloned ||
260 	    !atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
261 			       &skb_shinfo(skb)->dataref)) {
262 		if (skb_shinfo(skb)->nr_frags) {
263 			int i;
264 			for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
265 				put_page(skb_shinfo(skb)->frags[i].page);
266 		}
267 
268 		if (skb_shinfo(skb)->frag_list)
269 			skb_drop_fraglist(skb);
270 
271 		kfree(skb->head);
272 	}
273 }
274 
275 /*
276  *	Free an skbuff by memory without cleaning the state.
277  */
278 void kfree_skbmem(struct sk_buff *skb)
279 {
280 	struct sk_buff *other;
281 	atomic_t *fclone_ref;
282 
283 	skb_release_data(skb);
284 	switch (skb->fclone) {
285 	case SKB_FCLONE_UNAVAILABLE:
286 		kmem_cache_free(skbuff_head_cache, skb);
287 		break;
288 
289 	case SKB_FCLONE_ORIG:
290 		fclone_ref = (atomic_t *) (skb + 2);
291 		if (atomic_dec_and_test(fclone_ref))
292 			kmem_cache_free(skbuff_fclone_cache, skb);
293 		break;
294 
295 	case SKB_FCLONE_CLONE:
296 		fclone_ref = (atomic_t *) (skb + 1);
297 		other = skb - 1;
298 
299 		/* The clone portion is available for
300 		 * fast-cloning again.
301 		 */
302 		skb->fclone = SKB_FCLONE_UNAVAILABLE;
303 
304 		if (atomic_dec_and_test(fclone_ref))
305 			kmem_cache_free(skbuff_fclone_cache, other);
306 		break;
307 	}
308 }
309 
310 /**
311  *	__kfree_skb - private function
312  *	@skb: buffer
313  *
314  *	Free an sk_buff. Release anything attached to the buffer.
315  *	Clean the state. This is an internal helper function. Users should
316  *	always call kfree_skb
317  */
318 
319 void __kfree_skb(struct sk_buff *skb)
320 {
321 	dst_release(skb->dst);
322 #ifdef CONFIG_XFRM
323 	secpath_put(skb->sp);
324 #endif
325 	if (skb->destructor) {
326 		WARN_ON(in_irq());
327 		skb->destructor(skb);
328 	}
329 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
330 	nf_conntrack_put(skb->nfct);
331 	nf_conntrack_put_reasm(skb->nfct_reasm);
332 #endif
333 #ifdef CONFIG_BRIDGE_NETFILTER
334 	nf_bridge_put(skb->nf_bridge);
335 #endif
336 /* XXX: IS this still necessary? - JHS */
337 #ifdef CONFIG_NET_SCHED
338 	skb->tc_index = 0;
339 #ifdef CONFIG_NET_CLS_ACT
340 	skb->tc_verd = 0;
341 #endif
342 #endif
343 
344 	kfree_skbmem(skb);
345 }
346 
347 /**
348  *	kfree_skb - free an sk_buff
349  *	@skb: buffer to free
350  *
351  *	Drop a reference to the buffer and free it if the usage count has
352  *	hit zero.
353  */
354 void kfree_skb(struct sk_buff *skb)
355 {
356 	if (unlikely(!skb))
357 		return;
358 	if (likely(atomic_read(&skb->users) == 1))
359 		smp_rmb();
360 	else if (likely(!atomic_dec_and_test(&skb->users)))
361 		return;
362 	__kfree_skb(skb);
363 }
364 
365 /**
366  *	skb_clone	-	duplicate an sk_buff
367  *	@skb: buffer to clone
368  *	@gfp_mask: allocation priority
369  *
370  *	Duplicate an &sk_buff. The new one is not owned by a socket. Both
371  *	copies share the same packet data but not structure. The new
372  *	buffer has a reference count of 1. If the allocation fails the
373  *	function returns %NULL otherwise the new buffer is returned.
374  *
375  *	If this function is called from an interrupt gfp_mask() must be
376  *	%GFP_ATOMIC.
377  */
378 
379 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
380 {
381 	struct sk_buff *n;
382 
383 	n = skb + 1;
384 	if (skb->fclone == SKB_FCLONE_ORIG &&
385 	    n->fclone == SKB_FCLONE_UNAVAILABLE) {
386 		atomic_t *fclone_ref = (atomic_t *) (n + 1);
387 		n->fclone = SKB_FCLONE_CLONE;
388 		atomic_inc(fclone_ref);
389 	} else {
390 		n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
391 		if (!n)
392 			return NULL;
393 		n->fclone = SKB_FCLONE_UNAVAILABLE;
394 	}
395 
396 #define C(x) n->x = skb->x
397 
398 	n->next = n->prev = NULL;
399 	n->sk = NULL;
400 	C(tstamp);
401 	C(dev);
402 	C(transport_header);
403 	C(network_header);
404 	C(mac_header);
405 	C(dst);
406 	dst_clone(skb->dst);
407 	C(sp);
408 #ifdef CONFIG_INET
409 	secpath_get(skb->sp);
410 #endif
411 	memcpy(n->cb, skb->cb, sizeof(skb->cb));
412 	C(len);
413 	C(data_len);
414 	C(mac_len);
415 	C(csum);
416 	C(local_df);
417 	n->cloned = 1;
418 	n->nohdr = 0;
419 	C(pkt_type);
420 	C(ip_summed);
421 	C(priority);
422 #if defined(CONFIG_IP_VS) || defined(CONFIG_IP_VS_MODULE)
423 	C(ipvs_property);
424 #endif
425 	C(protocol);
426 	n->destructor = NULL;
427 	C(mark);
428 	__nf_copy(n, skb);
429 #ifdef CONFIG_NET_SCHED
430 	C(tc_index);
431 #ifdef CONFIG_NET_CLS_ACT
432 	n->tc_verd = SET_TC_VERD(skb->tc_verd,0);
433 	n->tc_verd = CLR_TC_OK2MUNGE(n->tc_verd);
434 	n->tc_verd = CLR_TC_MUNGED(n->tc_verd);
435 	C(iif);
436 #endif
437 #endif
438 	skb_copy_secmark(n, skb);
439 	C(truesize);
440 	atomic_set(&n->users, 1);
441 	C(head);
442 	C(data);
443 	C(tail);
444 	C(end);
445 
446 	atomic_inc(&(skb_shinfo(skb)->dataref));
447 	skb->cloned = 1;
448 
449 	return n;
450 }
451 
452 static void copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
453 {
454 #ifndef NET_SKBUFF_DATA_USES_OFFSET
455 	/*
456 	 *	Shift between the two data areas in bytes
457 	 */
458 	unsigned long offset = new->data - old->data;
459 #endif
460 	new->sk		= NULL;
461 	new->dev	= old->dev;
462 	new->priority	= old->priority;
463 	new->protocol	= old->protocol;
464 	new->dst	= dst_clone(old->dst);
465 #ifdef CONFIG_INET
466 	new->sp		= secpath_get(old->sp);
467 #endif
468 	new->transport_header = old->transport_header;
469 	new->network_header   = old->network_header;
470 	new->mac_header	      = old->mac_header;
471 #ifndef NET_SKBUFF_DATA_USES_OFFSET
472 	/* {transport,network,mac}_header are relative to skb->head */
473 	new->transport_header += offset;
474 	new->network_header   += offset;
475 	new->mac_header	      += offset;
476 #endif
477 	memcpy(new->cb, old->cb, sizeof(old->cb));
478 	new->local_df	= old->local_df;
479 	new->fclone	= SKB_FCLONE_UNAVAILABLE;
480 	new->pkt_type	= old->pkt_type;
481 	new->tstamp	= old->tstamp;
482 	new->destructor = NULL;
483 	new->mark	= old->mark;
484 	__nf_copy(new, old);
485 #if defined(CONFIG_IP_VS) || defined(CONFIG_IP_VS_MODULE)
486 	new->ipvs_property = old->ipvs_property;
487 #endif
488 #ifdef CONFIG_NET_SCHED
489 #ifdef CONFIG_NET_CLS_ACT
490 	new->tc_verd = old->tc_verd;
491 #endif
492 	new->tc_index	= old->tc_index;
493 #endif
494 	skb_copy_secmark(new, old);
495 	atomic_set(&new->users, 1);
496 	skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
497 	skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
498 	skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
499 }
500 
501 /**
502  *	skb_copy	-	create private copy of an sk_buff
503  *	@skb: buffer to copy
504  *	@gfp_mask: allocation priority
505  *
506  *	Make a copy of both an &sk_buff and its data. This is used when the
507  *	caller wishes to modify the data and needs a private copy of the
508  *	data to alter. Returns %NULL on failure or the pointer to the buffer
509  *	on success. The returned buffer has a reference count of 1.
510  *
511  *	As by-product this function converts non-linear &sk_buff to linear
512  *	one, so that &sk_buff becomes completely private and caller is allowed
513  *	to modify all the data of returned buffer. This means that this
514  *	function is not recommended for use in circumstances when only
515  *	header is going to be modified. Use pskb_copy() instead.
516  */
517 
518 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
519 {
520 	int headerlen = skb->data - skb->head;
521 	/*
522 	 *	Allocate the copy buffer
523 	 */
524 	struct sk_buff *n;
525 #ifdef NET_SKBUFF_DATA_USES_OFFSET
526 	n = alloc_skb(skb->end + skb->data_len, gfp_mask);
527 #else
528 	n = alloc_skb(skb->end - skb->head + skb->data_len, gfp_mask);
529 #endif
530 	if (!n)
531 		return NULL;
532 
533 	/* Set the data pointer */
534 	skb_reserve(n, headerlen);
535 	/* Set the tail pointer and length */
536 	skb_put(n, skb->len);
537 	n->csum	     = skb->csum;
538 	n->ip_summed = skb->ip_summed;
539 
540 	if (skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len))
541 		BUG();
542 
543 	copy_skb_header(n, skb);
544 	return n;
545 }
546 
547 
548 /**
549  *	pskb_copy	-	create copy of an sk_buff with private head.
550  *	@skb: buffer to copy
551  *	@gfp_mask: allocation priority
552  *
553  *	Make a copy of both an &sk_buff and part of its data, located
554  *	in header. Fragmented data remain shared. This is used when
555  *	the caller wishes to modify only header of &sk_buff and needs
556  *	private copy of the header to alter. Returns %NULL on failure
557  *	or the pointer to the buffer on success.
558  *	The returned buffer has a reference count of 1.
559  */
560 
561 struct sk_buff *pskb_copy(struct sk_buff *skb, gfp_t gfp_mask)
562 {
563 	/*
564 	 *	Allocate the copy buffer
565 	 */
566 	struct sk_buff *n;
567 #ifdef NET_SKBUFF_DATA_USES_OFFSET
568 	n = alloc_skb(skb->end, gfp_mask);
569 #else
570 	n = alloc_skb(skb->end - skb->head, gfp_mask);
571 #endif
572 	if (!n)
573 		goto out;
574 
575 	/* Set the data pointer */
576 	skb_reserve(n, skb->data - skb->head);
577 	/* Set the tail pointer and length */
578 	skb_put(n, skb_headlen(skb));
579 	/* Copy the bytes */
580 	skb_copy_from_linear_data(skb, n->data, n->len);
581 	n->csum	     = skb->csum;
582 	n->ip_summed = skb->ip_summed;
583 
584 	n->truesize += skb->data_len;
585 	n->data_len  = skb->data_len;
586 	n->len	     = skb->len;
587 
588 	if (skb_shinfo(skb)->nr_frags) {
589 		int i;
590 
591 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
592 			skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
593 			get_page(skb_shinfo(n)->frags[i].page);
594 		}
595 		skb_shinfo(n)->nr_frags = i;
596 	}
597 
598 	if (skb_shinfo(skb)->frag_list) {
599 		skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
600 		skb_clone_fraglist(n);
601 	}
602 
603 	copy_skb_header(n, skb);
604 out:
605 	return n;
606 }
607 
608 /**
609  *	pskb_expand_head - reallocate header of &sk_buff
610  *	@skb: buffer to reallocate
611  *	@nhead: room to add at head
612  *	@ntail: room to add at tail
613  *	@gfp_mask: allocation priority
614  *
615  *	Expands (or creates identical copy, if &nhead and &ntail are zero)
616  *	header of skb. &sk_buff itself is not changed. &sk_buff MUST have
617  *	reference count of 1. Returns zero in the case of success or error,
618  *	if expansion failed. In the last case, &sk_buff is not changed.
619  *
620  *	All the pointers pointing into skb header may change and must be
621  *	reloaded after call to this function.
622  */
623 
624 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
625 		     gfp_t gfp_mask)
626 {
627 	int i;
628 	u8 *data;
629 #ifdef NET_SKBUFF_DATA_USES_OFFSET
630 	int size = nhead + skb->end + ntail;
631 #else
632 	int size = nhead + (skb->end - skb->head) + ntail;
633 #endif
634 	long off;
635 
636 	if (skb_shared(skb))
637 		BUG();
638 
639 	size = SKB_DATA_ALIGN(size);
640 
641 	data = kmalloc(size + sizeof(struct skb_shared_info), gfp_mask);
642 	if (!data)
643 		goto nodata;
644 
645 	/* Copy only real data... and, alas, header. This should be
646 	 * optimized for the cases when header is void. */
647 #ifdef NET_SKBUFF_DATA_USES_OFFSET
648 	memcpy(data + nhead, skb->head, skb->tail);
649 #else
650 	memcpy(data + nhead, skb->head, skb->tail - skb->head);
651 #endif
652 	memcpy(data + size, skb_end_pointer(skb),
653 	       sizeof(struct skb_shared_info));
654 
655 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
656 		get_page(skb_shinfo(skb)->frags[i].page);
657 
658 	if (skb_shinfo(skb)->frag_list)
659 		skb_clone_fraglist(skb);
660 
661 	skb_release_data(skb);
662 
663 	off = (data + nhead) - skb->head;
664 
665 	skb->head     = data;
666 	skb->data    += off;
667 #ifdef NET_SKBUFF_DATA_USES_OFFSET
668 	skb->end      = size;
669 	off           = nhead;
670 #else
671 	skb->end      = skb->head + size;
672 #endif
673 	/* {transport,network,mac}_header and tail are relative to skb->head */
674 	skb->tail	      += off;
675 	skb->transport_header += off;
676 	skb->network_header   += off;
677 	skb->mac_header	      += off;
678 	skb->cloned   = 0;
679 	skb->nohdr    = 0;
680 	atomic_set(&skb_shinfo(skb)->dataref, 1);
681 	return 0;
682 
683 nodata:
684 	return -ENOMEM;
685 }
686 
687 /* Make private copy of skb with writable head and some headroom */
688 
689 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
690 {
691 	struct sk_buff *skb2;
692 	int delta = headroom - skb_headroom(skb);
693 
694 	if (delta <= 0)
695 		skb2 = pskb_copy(skb, GFP_ATOMIC);
696 	else {
697 		skb2 = skb_clone(skb, GFP_ATOMIC);
698 		if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
699 					     GFP_ATOMIC)) {
700 			kfree_skb(skb2);
701 			skb2 = NULL;
702 		}
703 	}
704 	return skb2;
705 }
706 
707 
708 /**
709  *	skb_copy_expand	-	copy and expand sk_buff
710  *	@skb: buffer to copy
711  *	@newheadroom: new free bytes at head
712  *	@newtailroom: new free bytes at tail
713  *	@gfp_mask: allocation priority
714  *
715  *	Make a copy of both an &sk_buff and its data and while doing so
716  *	allocate additional space.
717  *
718  *	This is used when the caller wishes to modify the data and needs a
719  *	private copy of the data to alter as well as more space for new fields.
720  *	Returns %NULL on failure or the pointer to the buffer
721  *	on success. The returned buffer has a reference count of 1.
722  *
723  *	You must pass %GFP_ATOMIC as the allocation priority if this function
724  *	is called from an interrupt.
725  *
726  *	BUG ALERT: ip_summed is not copied. Why does this work? Is it used
727  *	only by netfilter in the cases when checksum is recalculated? --ANK
728  */
729 struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
730 				int newheadroom, int newtailroom,
731 				gfp_t gfp_mask)
732 {
733 	/*
734 	 *	Allocate the copy buffer
735 	 */
736 	struct sk_buff *n = alloc_skb(newheadroom + skb->len + newtailroom,
737 				      gfp_mask);
738 	int oldheadroom = skb_headroom(skb);
739 	int head_copy_len, head_copy_off;
740 	int off = 0;
741 
742 	if (!n)
743 		return NULL;
744 
745 	skb_reserve(n, newheadroom);
746 
747 	/* Set the tail pointer and length */
748 	skb_put(n, skb->len);
749 
750 	head_copy_len = oldheadroom;
751 	head_copy_off = 0;
752 	if (newheadroom <= head_copy_len)
753 		head_copy_len = newheadroom;
754 	else
755 		head_copy_off = newheadroom - head_copy_len;
756 
757 	/* Copy the linear header and data. */
758 	if (skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
759 			  skb->len + head_copy_len))
760 		BUG();
761 
762 	copy_skb_header(n, skb);
763 
764 #ifdef NET_SKBUFF_DATA_USES_OFFSET
765 	off                  = newheadroom - oldheadroom;
766 #endif
767 	n->transport_header += off;
768 	n->network_header   += off;
769 	n->mac_header	    += off;
770 
771 	return n;
772 }
773 
774 /**
775  *	skb_pad			-	zero pad the tail of an skb
776  *	@skb: buffer to pad
777  *	@pad: space to pad
778  *
779  *	Ensure that a buffer is followed by a padding area that is zero
780  *	filled. Used by network drivers which may DMA or transfer data
781  *	beyond the buffer end onto the wire.
782  *
783  *	May return error in out of memory cases. The skb is freed on error.
784  */
785 
786 int skb_pad(struct sk_buff *skb, int pad)
787 {
788 	int err;
789 	int ntail;
790 
791 	/* If the skbuff is non linear tailroom is always zero.. */
792 	if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
793 		memset(skb->data+skb->len, 0, pad);
794 		return 0;
795 	}
796 
797 	ntail = skb->data_len + pad - (skb->end - skb->tail);
798 	if (likely(skb_cloned(skb) || ntail > 0)) {
799 		err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
800 		if (unlikely(err))
801 			goto free_skb;
802 	}
803 
804 	/* FIXME: The use of this function with non-linear skb's really needs
805 	 * to be audited.
806 	 */
807 	err = skb_linearize(skb);
808 	if (unlikely(err))
809 		goto free_skb;
810 
811 	memset(skb->data + skb->len, 0, pad);
812 	return 0;
813 
814 free_skb:
815 	kfree_skb(skb);
816 	return err;
817 }
818 
819 /* Trims skb to length len. It can change skb pointers.
820  */
821 
822 int ___pskb_trim(struct sk_buff *skb, unsigned int len)
823 {
824 	struct sk_buff **fragp;
825 	struct sk_buff *frag;
826 	int offset = skb_headlen(skb);
827 	int nfrags = skb_shinfo(skb)->nr_frags;
828 	int i;
829 	int err;
830 
831 	if (skb_cloned(skb) &&
832 	    unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
833 		return err;
834 
835 	i = 0;
836 	if (offset >= len)
837 		goto drop_pages;
838 
839 	for (; i < nfrags; i++) {
840 		int end = offset + skb_shinfo(skb)->frags[i].size;
841 
842 		if (end < len) {
843 			offset = end;
844 			continue;
845 		}
846 
847 		skb_shinfo(skb)->frags[i++].size = len - offset;
848 
849 drop_pages:
850 		skb_shinfo(skb)->nr_frags = i;
851 
852 		for (; i < nfrags; i++)
853 			put_page(skb_shinfo(skb)->frags[i].page);
854 
855 		if (skb_shinfo(skb)->frag_list)
856 			skb_drop_fraglist(skb);
857 		goto done;
858 	}
859 
860 	for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
861 	     fragp = &frag->next) {
862 		int end = offset + frag->len;
863 
864 		if (skb_shared(frag)) {
865 			struct sk_buff *nfrag;
866 
867 			nfrag = skb_clone(frag, GFP_ATOMIC);
868 			if (unlikely(!nfrag))
869 				return -ENOMEM;
870 
871 			nfrag->next = frag->next;
872 			kfree_skb(frag);
873 			frag = nfrag;
874 			*fragp = frag;
875 		}
876 
877 		if (end < len) {
878 			offset = end;
879 			continue;
880 		}
881 
882 		if (end > len &&
883 		    unlikely((err = pskb_trim(frag, len - offset))))
884 			return err;
885 
886 		if (frag->next)
887 			skb_drop_list(&frag->next);
888 		break;
889 	}
890 
891 done:
892 	if (len > skb_headlen(skb)) {
893 		skb->data_len -= skb->len - len;
894 		skb->len       = len;
895 	} else {
896 		skb->len       = len;
897 		skb->data_len  = 0;
898 		skb_set_tail_pointer(skb, len);
899 	}
900 
901 	return 0;
902 }
903 
904 /**
905  *	__pskb_pull_tail - advance tail of skb header
906  *	@skb: buffer to reallocate
907  *	@delta: number of bytes to advance tail
908  *
909  *	The function makes a sense only on a fragmented &sk_buff,
910  *	it expands header moving its tail forward and copying necessary
911  *	data from fragmented part.
912  *
913  *	&sk_buff MUST have reference count of 1.
914  *
915  *	Returns %NULL (and &sk_buff does not change) if pull failed
916  *	or value of new tail of skb in the case of success.
917  *
918  *	All the pointers pointing into skb header may change and must be
919  *	reloaded after call to this function.
920  */
921 
922 /* Moves tail of skb head forward, copying data from fragmented part,
923  * when it is necessary.
924  * 1. It may fail due to malloc failure.
925  * 2. It may change skb pointers.
926  *
927  * It is pretty complicated. Luckily, it is called only in exceptional cases.
928  */
929 unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta)
930 {
931 	/* If skb has not enough free space at tail, get new one
932 	 * plus 128 bytes for future expansions. If we have enough
933 	 * room at tail, reallocate without expansion only if skb is cloned.
934 	 */
935 	int i, k, eat = (skb->tail + delta) - skb->end;
936 
937 	if (eat > 0 || skb_cloned(skb)) {
938 		if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
939 				     GFP_ATOMIC))
940 			return NULL;
941 	}
942 
943 	if (skb_copy_bits(skb, skb_headlen(skb), skb_tail_pointer(skb), delta))
944 		BUG();
945 
946 	/* Optimization: no fragments, no reasons to preestimate
947 	 * size of pulled pages. Superb.
948 	 */
949 	if (!skb_shinfo(skb)->frag_list)
950 		goto pull_pages;
951 
952 	/* Estimate size of pulled pages. */
953 	eat = delta;
954 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
955 		if (skb_shinfo(skb)->frags[i].size >= eat)
956 			goto pull_pages;
957 		eat -= skb_shinfo(skb)->frags[i].size;
958 	}
959 
960 	/* If we need update frag list, we are in troubles.
961 	 * Certainly, it possible to add an offset to skb data,
962 	 * but taking into account that pulling is expected to
963 	 * be very rare operation, it is worth to fight against
964 	 * further bloating skb head and crucify ourselves here instead.
965 	 * Pure masohism, indeed. 8)8)
966 	 */
967 	if (eat) {
968 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
969 		struct sk_buff *clone = NULL;
970 		struct sk_buff *insp = NULL;
971 
972 		do {
973 			BUG_ON(!list);
974 
975 			if (list->len <= eat) {
976 				/* Eaten as whole. */
977 				eat -= list->len;
978 				list = list->next;
979 				insp = list;
980 			} else {
981 				/* Eaten partially. */
982 
983 				if (skb_shared(list)) {
984 					/* Sucks! We need to fork list. :-( */
985 					clone = skb_clone(list, GFP_ATOMIC);
986 					if (!clone)
987 						return NULL;
988 					insp = list->next;
989 					list = clone;
990 				} else {
991 					/* This may be pulled without
992 					 * problems. */
993 					insp = list;
994 				}
995 				if (!pskb_pull(list, eat)) {
996 					if (clone)
997 						kfree_skb(clone);
998 					return NULL;
999 				}
1000 				break;
1001 			}
1002 		} while (eat);
1003 
1004 		/* Free pulled out fragments. */
1005 		while ((list = skb_shinfo(skb)->frag_list) != insp) {
1006 			skb_shinfo(skb)->frag_list = list->next;
1007 			kfree_skb(list);
1008 		}
1009 		/* And insert new clone at head. */
1010 		if (clone) {
1011 			clone->next = list;
1012 			skb_shinfo(skb)->frag_list = clone;
1013 		}
1014 	}
1015 	/* Success! Now we may commit changes to skb data. */
1016 
1017 pull_pages:
1018 	eat = delta;
1019 	k = 0;
1020 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1021 		if (skb_shinfo(skb)->frags[i].size <= eat) {
1022 			put_page(skb_shinfo(skb)->frags[i].page);
1023 			eat -= skb_shinfo(skb)->frags[i].size;
1024 		} else {
1025 			skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i];
1026 			if (eat) {
1027 				skb_shinfo(skb)->frags[k].page_offset += eat;
1028 				skb_shinfo(skb)->frags[k].size -= eat;
1029 				eat = 0;
1030 			}
1031 			k++;
1032 		}
1033 	}
1034 	skb_shinfo(skb)->nr_frags = k;
1035 
1036 	skb->tail     += delta;
1037 	skb->data_len -= delta;
1038 
1039 	return skb_tail_pointer(skb);
1040 }
1041 
1042 /* Copy some data bits from skb to kernel buffer. */
1043 
1044 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
1045 {
1046 	int i, copy;
1047 	int start = skb_headlen(skb);
1048 
1049 	if (offset > (int)skb->len - len)
1050 		goto fault;
1051 
1052 	/* Copy header. */
1053 	if ((copy = start - offset) > 0) {
1054 		if (copy > len)
1055 			copy = len;
1056 		skb_copy_from_linear_data_offset(skb, offset, to, copy);
1057 		if ((len -= copy) == 0)
1058 			return 0;
1059 		offset += copy;
1060 		to     += copy;
1061 	}
1062 
1063 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1064 		int end;
1065 
1066 		BUG_TRAP(start <= offset + len);
1067 
1068 		end = start + skb_shinfo(skb)->frags[i].size;
1069 		if ((copy = end - offset) > 0) {
1070 			u8 *vaddr;
1071 
1072 			if (copy > len)
1073 				copy = len;
1074 
1075 			vaddr = kmap_skb_frag(&skb_shinfo(skb)->frags[i]);
1076 			memcpy(to,
1077 			       vaddr + skb_shinfo(skb)->frags[i].page_offset+
1078 			       offset - start, copy);
1079 			kunmap_skb_frag(vaddr);
1080 
1081 			if ((len -= copy) == 0)
1082 				return 0;
1083 			offset += copy;
1084 			to     += copy;
1085 		}
1086 		start = end;
1087 	}
1088 
1089 	if (skb_shinfo(skb)->frag_list) {
1090 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
1091 
1092 		for (; list; list = list->next) {
1093 			int end;
1094 
1095 			BUG_TRAP(start <= offset + len);
1096 
1097 			end = start + list->len;
1098 			if ((copy = end - offset) > 0) {
1099 				if (copy > len)
1100 					copy = len;
1101 				if (skb_copy_bits(list, offset - start,
1102 						  to, copy))
1103 					goto fault;
1104 				if ((len -= copy) == 0)
1105 					return 0;
1106 				offset += copy;
1107 				to     += copy;
1108 			}
1109 			start = end;
1110 		}
1111 	}
1112 	if (!len)
1113 		return 0;
1114 
1115 fault:
1116 	return -EFAULT;
1117 }
1118 
1119 /**
1120  *	skb_store_bits - store bits from kernel buffer to skb
1121  *	@skb: destination buffer
1122  *	@offset: offset in destination
1123  *	@from: source buffer
1124  *	@len: number of bytes to copy
1125  *
1126  *	Copy the specified number of bytes from the source buffer to the
1127  *	destination skb.  This function handles all the messy bits of
1128  *	traversing fragment lists and such.
1129  */
1130 
1131 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
1132 {
1133 	int i, copy;
1134 	int start = skb_headlen(skb);
1135 
1136 	if (offset > (int)skb->len - len)
1137 		goto fault;
1138 
1139 	if ((copy = start - offset) > 0) {
1140 		if (copy > len)
1141 			copy = len;
1142 		skb_copy_to_linear_data_offset(skb, offset, from, copy);
1143 		if ((len -= copy) == 0)
1144 			return 0;
1145 		offset += copy;
1146 		from += copy;
1147 	}
1148 
1149 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1150 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1151 		int end;
1152 
1153 		BUG_TRAP(start <= offset + len);
1154 
1155 		end = start + frag->size;
1156 		if ((copy = end - offset) > 0) {
1157 			u8 *vaddr;
1158 
1159 			if (copy > len)
1160 				copy = len;
1161 
1162 			vaddr = kmap_skb_frag(frag);
1163 			memcpy(vaddr + frag->page_offset + offset - start,
1164 			       from, copy);
1165 			kunmap_skb_frag(vaddr);
1166 
1167 			if ((len -= copy) == 0)
1168 				return 0;
1169 			offset += copy;
1170 			from += copy;
1171 		}
1172 		start = end;
1173 	}
1174 
1175 	if (skb_shinfo(skb)->frag_list) {
1176 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
1177 
1178 		for (; list; list = list->next) {
1179 			int end;
1180 
1181 			BUG_TRAP(start <= offset + len);
1182 
1183 			end = start + list->len;
1184 			if ((copy = end - offset) > 0) {
1185 				if (copy > len)
1186 					copy = len;
1187 				if (skb_store_bits(list, offset - start,
1188 						   from, copy))
1189 					goto fault;
1190 				if ((len -= copy) == 0)
1191 					return 0;
1192 				offset += copy;
1193 				from += copy;
1194 			}
1195 			start = end;
1196 		}
1197 	}
1198 	if (!len)
1199 		return 0;
1200 
1201 fault:
1202 	return -EFAULT;
1203 }
1204 
1205 EXPORT_SYMBOL(skb_store_bits);
1206 
1207 /* Checksum skb data. */
1208 
1209 __wsum skb_checksum(const struct sk_buff *skb, int offset,
1210 			  int len, __wsum csum)
1211 {
1212 	int start = skb_headlen(skb);
1213 	int i, copy = start - offset;
1214 	int pos = 0;
1215 
1216 	/* Checksum header. */
1217 	if (copy > 0) {
1218 		if (copy > len)
1219 			copy = len;
1220 		csum = csum_partial(skb->data + offset, copy, csum);
1221 		if ((len -= copy) == 0)
1222 			return csum;
1223 		offset += copy;
1224 		pos	= copy;
1225 	}
1226 
1227 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1228 		int end;
1229 
1230 		BUG_TRAP(start <= offset + len);
1231 
1232 		end = start + skb_shinfo(skb)->frags[i].size;
1233 		if ((copy = end - offset) > 0) {
1234 			__wsum csum2;
1235 			u8 *vaddr;
1236 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1237 
1238 			if (copy > len)
1239 				copy = len;
1240 			vaddr = kmap_skb_frag(frag);
1241 			csum2 = csum_partial(vaddr + frag->page_offset +
1242 					     offset - start, copy, 0);
1243 			kunmap_skb_frag(vaddr);
1244 			csum = csum_block_add(csum, csum2, pos);
1245 			if (!(len -= copy))
1246 				return csum;
1247 			offset += copy;
1248 			pos    += copy;
1249 		}
1250 		start = end;
1251 	}
1252 
1253 	if (skb_shinfo(skb)->frag_list) {
1254 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
1255 
1256 		for (; list; list = list->next) {
1257 			int end;
1258 
1259 			BUG_TRAP(start <= offset + len);
1260 
1261 			end = start + list->len;
1262 			if ((copy = end - offset) > 0) {
1263 				__wsum csum2;
1264 				if (copy > len)
1265 					copy = len;
1266 				csum2 = skb_checksum(list, offset - start,
1267 						     copy, 0);
1268 				csum = csum_block_add(csum, csum2, pos);
1269 				if ((len -= copy) == 0)
1270 					return csum;
1271 				offset += copy;
1272 				pos    += copy;
1273 			}
1274 			start = end;
1275 		}
1276 	}
1277 	BUG_ON(len);
1278 
1279 	return csum;
1280 }
1281 
1282 /* Both of above in one bottle. */
1283 
1284 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
1285 				    u8 *to, int len, __wsum csum)
1286 {
1287 	int start = skb_headlen(skb);
1288 	int i, copy = start - offset;
1289 	int pos = 0;
1290 
1291 	/* Copy header. */
1292 	if (copy > 0) {
1293 		if (copy > len)
1294 			copy = len;
1295 		csum = csum_partial_copy_nocheck(skb->data + offset, to,
1296 						 copy, csum);
1297 		if ((len -= copy) == 0)
1298 			return csum;
1299 		offset += copy;
1300 		to     += copy;
1301 		pos	= copy;
1302 	}
1303 
1304 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1305 		int end;
1306 
1307 		BUG_TRAP(start <= offset + len);
1308 
1309 		end = start + skb_shinfo(skb)->frags[i].size;
1310 		if ((copy = end - offset) > 0) {
1311 			__wsum csum2;
1312 			u8 *vaddr;
1313 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1314 
1315 			if (copy > len)
1316 				copy = len;
1317 			vaddr = kmap_skb_frag(frag);
1318 			csum2 = csum_partial_copy_nocheck(vaddr +
1319 							  frag->page_offset +
1320 							  offset - start, to,
1321 							  copy, 0);
1322 			kunmap_skb_frag(vaddr);
1323 			csum = csum_block_add(csum, csum2, pos);
1324 			if (!(len -= copy))
1325 				return csum;
1326 			offset += copy;
1327 			to     += copy;
1328 			pos    += copy;
1329 		}
1330 		start = end;
1331 	}
1332 
1333 	if (skb_shinfo(skb)->frag_list) {
1334 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
1335 
1336 		for (; list; list = list->next) {
1337 			__wsum csum2;
1338 			int end;
1339 
1340 			BUG_TRAP(start <= offset + len);
1341 
1342 			end = start + list->len;
1343 			if ((copy = end - offset) > 0) {
1344 				if (copy > len)
1345 					copy = len;
1346 				csum2 = skb_copy_and_csum_bits(list,
1347 							       offset - start,
1348 							       to, copy, 0);
1349 				csum = csum_block_add(csum, csum2, pos);
1350 				if ((len -= copy) == 0)
1351 					return csum;
1352 				offset += copy;
1353 				to     += copy;
1354 				pos    += copy;
1355 			}
1356 			start = end;
1357 		}
1358 	}
1359 	BUG_ON(len);
1360 	return csum;
1361 }
1362 
1363 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
1364 {
1365 	__wsum csum;
1366 	long csstart;
1367 
1368 	if (skb->ip_summed == CHECKSUM_PARTIAL)
1369 		csstart = skb->csum_start - skb_headroom(skb);
1370 	else
1371 		csstart = skb_headlen(skb);
1372 
1373 	BUG_ON(csstart > skb_headlen(skb));
1374 
1375 	skb_copy_from_linear_data(skb, to, csstart);
1376 
1377 	csum = 0;
1378 	if (csstart != skb->len)
1379 		csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
1380 					      skb->len - csstart, 0);
1381 
1382 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
1383 		long csstuff = csstart + skb->csum_offset;
1384 
1385 		*((__sum16 *)(to + csstuff)) = csum_fold(csum);
1386 	}
1387 }
1388 
1389 /**
1390  *	skb_dequeue - remove from the head of the queue
1391  *	@list: list to dequeue from
1392  *
1393  *	Remove the head of the list. The list lock is taken so the function
1394  *	may be used safely with other locking list functions. The head item is
1395  *	returned or %NULL if the list is empty.
1396  */
1397 
1398 struct sk_buff *skb_dequeue(struct sk_buff_head *list)
1399 {
1400 	unsigned long flags;
1401 	struct sk_buff *result;
1402 
1403 	spin_lock_irqsave(&list->lock, flags);
1404 	result = __skb_dequeue(list);
1405 	spin_unlock_irqrestore(&list->lock, flags);
1406 	return result;
1407 }
1408 
1409 /**
1410  *	skb_dequeue_tail - remove from the tail of the queue
1411  *	@list: list to dequeue from
1412  *
1413  *	Remove the tail of the list. The list lock is taken so the function
1414  *	may be used safely with other locking list functions. The tail item is
1415  *	returned or %NULL if the list is empty.
1416  */
1417 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
1418 {
1419 	unsigned long flags;
1420 	struct sk_buff *result;
1421 
1422 	spin_lock_irqsave(&list->lock, flags);
1423 	result = __skb_dequeue_tail(list);
1424 	spin_unlock_irqrestore(&list->lock, flags);
1425 	return result;
1426 }
1427 
1428 /**
1429  *	skb_queue_purge - empty a list
1430  *	@list: list to empty
1431  *
1432  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
1433  *	the list and one reference dropped. This function takes the list
1434  *	lock and is atomic with respect to other list locking functions.
1435  */
1436 void skb_queue_purge(struct sk_buff_head *list)
1437 {
1438 	struct sk_buff *skb;
1439 	while ((skb = skb_dequeue(list)) != NULL)
1440 		kfree_skb(skb);
1441 }
1442 
1443 /**
1444  *	skb_queue_head - queue a buffer at the list head
1445  *	@list: list to use
1446  *	@newsk: buffer to queue
1447  *
1448  *	Queue a buffer at the start of the list. This function takes the
1449  *	list lock and can be used safely with other locking &sk_buff functions
1450  *	safely.
1451  *
1452  *	A buffer cannot be placed on two lists at the same time.
1453  */
1454 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
1455 {
1456 	unsigned long flags;
1457 
1458 	spin_lock_irqsave(&list->lock, flags);
1459 	__skb_queue_head(list, newsk);
1460 	spin_unlock_irqrestore(&list->lock, flags);
1461 }
1462 
1463 /**
1464  *	skb_queue_tail - queue a buffer at the list tail
1465  *	@list: list to use
1466  *	@newsk: buffer to queue
1467  *
1468  *	Queue a buffer at the tail of the list. This function takes the
1469  *	list lock and can be used safely with other locking &sk_buff functions
1470  *	safely.
1471  *
1472  *	A buffer cannot be placed on two lists at the same time.
1473  */
1474 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
1475 {
1476 	unsigned long flags;
1477 
1478 	spin_lock_irqsave(&list->lock, flags);
1479 	__skb_queue_tail(list, newsk);
1480 	spin_unlock_irqrestore(&list->lock, flags);
1481 }
1482 
1483 /**
1484  *	skb_unlink	-	remove a buffer from a list
1485  *	@skb: buffer to remove
1486  *	@list: list to use
1487  *
1488  *	Remove a packet from a list. The list locks are taken and this
1489  *	function is atomic with respect to other list locked calls
1490  *
1491  *	You must know what list the SKB is on.
1492  */
1493 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
1494 {
1495 	unsigned long flags;
1496 
1497 	spin_lock_irqsave(&list->lock, flags);
1498 	__skb_unlink(skb, list);
1499 	spin_unlock_irqrestore(&list->lock, flags);
1500 }
1501 
1502 /**
1503  *	skb_append	-	append a buffer
1504  *	@old: buffer to insert after
1505  *	@newsk: buffer to insert
1506  *	@list: list to use
1507  *
1508  *	Place a packet after a given packet in a list. The list locks are taken
1509  *	and this function is atomic with respect to other list locked calls.
1510  *	A buffer cannot be placed on two lists at the same time.
1511  */
1512 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
1513 {
1514 	unsigned long flags;
1515 
1516 	spin_lock_irqsave(&list->lock, flags);
1517 	__skb_append(old, newsk, list);
1518 	spin_unlock_irqrestore(&list->lock, flags);
1519 }
1520 
1521 
1522 /**
1523  *	skb_insert	-	insert a buffer
1524  *	@old: buffer to insert before
1525  *	@newsk: buffer to insert
1526  *	@list: list to use
1527  *
1528  *	Place a packet before a given packet in a list. The list locks are
1529  * 	taken and this function is atomic with respect to other list locked
1530  *	calls.
1531  *
1532  *	A buffer cannot be placed on two lists at the same time.
1533  */
1534 void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
1535 {
1536 	unsigned long flags;
1537 
1538 	spin_lock_irqsave(&list->lock, flags);
1539 	__skb_insert(newsk, old->prev, old, list);
1540 	spin_unlock_irqrestore(&list->lock, flags);
1541 }
1542 
1543 static inline void skb_split_inside_header(struct sk_buff *skb,
1544 					   struct sk_buff* skb1,
1545 					   const u32 len, const int pos)
1546 {
1547 	int i;
1548 
1549 	skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
1550 					 pos - len);
1551 	/* And move data appendix as is. */
1552 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1553 		skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
1554 
1555 	skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
1556 	skb_shinfo(skb)->nr_frags  = 0;
1557 	skb1->data_len		   = skb->data_len;
1558 	skb1->len		   += skb1->data_len;
1559 	skb->data_len		   = 0;
1560 	skb->len		   = len;
1561 	skb_set_tail_pointer(skb, len);
1562 }
1563 
1564 static inline void skb_split_no_header(struct sk_buff *skb,
1565 				       struct sk_buff* skb1,
1566 				       const u32 len, int pos)
1567 {
1568 	int i, k = 0;
1569 	const int nfrags = skb_shinfo(skb)->nr_frags;
1570 
1571 	skb_shinfo(skb)->nr_frags = 0;
1572 	skb1->len		  = skb1->data_len = skb->len - len;
1573 	skb->len		  = len;
1574 	skb->data_len		  = len - pos;
1575 
1576 	for (i = 0; i < nfrags; i++) {
1577 		int size = skb_shinfo(skb)->frags[i].size;
1578 
1579 		if (pos + size > len) {
1580 			skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
1581 
1582 			if (pos < len) {
1583 				/* Split frag.
1584 				 * We have two variants in this case:
1585 				 * 1. Move all the frag to the second
1586 				 *    part, if it is possible. F.e.
1587 				 *    this approach is mandatory for TUX,
1588 				 *    where splitting is expensive.
1589 				 * 2. Split is accurately. We make this.
1590 				 */
1591 				get_page(skb_shinfo(skb)->frags[i].page);
1592 				skb_shinfo(skb1)->frags[0].page_offset += len - pos;
1593 				skb_shinfo(skb1)->frags[0].size -= len - pos;
1594 				skb_shinfo(skb)->frags[i].size	= len - pos;
1595 				skb_shinfo(skb)->nr_frags++;
1596 			}
1597 			k++;
1598 		} else
1599 			skb_shinfo(skb)->nr_frags++;
1600 		pos += size;
1601 	}
1602 	skb_shinfo(skb1)->nr_frags = k;
1603 }
1604 
1605 /**
1606  * skb_split - Split fragmented skb to two parts at length len.
1607  * @skb: the buffer to split
1608  * @skb1: the buffer to receive the second part
1609  * @len: new length for skb
1610  */
1611 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
1612 {
1613 	int pos = skb_headlen(skb);
1614 
1615 	if (len < pos)	/* Split line is inside header. */
1616 		skb_split_inside_header(skb, skb1, len, pos);
1617 	else		/* Second chunk has no header, nothing to copy. */
1618 		skb_split_no_header(skb, skb1, len, pos);
1619 }
1620 
1621 /**
1622  * skb_prepare_seq_read - Prepare a sequential read of skb data
1623  * @skb: the buffer to read
1624  * @from: lower offset of data to be read
1625  * @to: upper offset of data to be read
1626  * @st: state variable
1627  *
1628  * Initializes the specified state variable. Must be called before
1629  * invoking skb_seq_read() for the first time.
1630  */
1631 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
1632 			  unsigned int to, struct skb_seq_state *st)
1633 {
1634 	st->lower_offset = from;
1635 	st->upper_offset = to;
1636 	st->root_skb = st->cur_skb = skb;
1637 	st->frag_idx = st->stepped_offset = 0;
1638 	st->frag_data = NULL;
1639 }
1640 
1641 /**
1642  * skb_seq_read - Sequentially read skb data
1643  * @consumed: number of bytes consumed by the caller so far
1644  * @data: destination pointer for data to be returned
1645  * @st: state variable
1646  *
1647  * Reads a block of skb data at &consumed relative to the
1648  * lower offset specified to skb_prepare_seq_read(). Assigns
1649  * the head of the data block to &data and returns the length
1650  * of the block or 0 if the end of the skb data or the upper
1651  * offset has been reached.
1652  *
1653  * The caller is not required to consume all of the data
1654  * returned, i.e. &consumed is typically set to the number
1655  * of bytes already consumed and the next call to
1656  * skb_seq_read() will return the remaining part of the block.
1657  *
1658  * Note: The size of each block of data returned can be arbitary,
1659  *       this limitation is the cost for zerocopy seqeuental
1660  *       reads of potentially non linear data.
1661  *
1662  * Note: Fragment lists within fragments are not implemented
1663  *       at the moment, state->root_skb could be replaced with
1664  *       a stack for this purpose.
1665  */
1666 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
1667 			  struct skb_seq_state *st)
1668 {
1669 	unsigned int block_limit, abs_offset = consumed + st->lower_offset;
1670 	skb_frag_t *frag;
1671 
1672 	if (unlikely(abs_offset >= st->upper_offset))
1673 		return 0;
1674 
1675 next_skb:
1676 	block_limit = skb_headlen(st->cur_skb);
1677 
1678 	if (abs_offset < block_limit) {
1679 		*data = st->cur_skb->data + abs_offset;
1680 		return block_limit - abs_offset;
1681 	}
1682 
1683 	if (st->frag_idx == 0 && !st->frag_data)
1684 		st->stepped_offset += skb_headlen(st->cur_skb);
1685 
1686 	while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
1687 		frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
1688 		block_limit = frag->size + st->stepped_offset;
1689 
1690 		if (abs_offset < block_limit) {
1691 			if (!st->frag_data)
1692 				st->frag_data = kmap_skb_frag(frag);
1693 
1694 			*data = (u8 *) st->frag_data + frag->page_offset +
1695 				(abs_offset - st->stepped_offset);
1696 
1697 			return block_limit - abs_offset;
1698 		}
1699 
1700 		if (st->frag_data) {
1701 			kunmap_skb_frag(st->frag_data);
1702 			st->frag_data = NULL;
1703 		}
1704 
1705 		st->frag_idx++;
1706 		st->stepped_offset += frag->size;
1707 	}
1708 
1709 	if (st->frag_data) {
1710 		kunmap_skb_frag(st->frag_data);
1711 		st->frag_data = NULL;
1712 	}
1713 
1714 	if (st->cur_skb->next) {
1715 		st->cur_skb = st->cur_skb->next;
1716 		st->frag_idx = 0;
1717 		goto next_skb;
1718 	} else if (st->root_skb == st->cur_skb &&
1719 		   skb_shinfo(st->root_skb)->frag_list) {
1720 		st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
1721 		goto next_skb;
1722 	}
1723 
1724 	return 0;
1725 }
1726 
1727 /**
1728  * skb_abort_seq_read - Abort a sequential read of skb data
1729  * @st: state variable
1730  *
1731  * Must be called if skb_seq_read() was not called until it
1732  * returned 0.
1733  */
1734 void skb_abort_seq_read(struct skb_seq_state *st)
1735 {
1736 	if (st->frag_data)
1737 		kunmap_skb_frag(st->frag_data);
1738 }
1739 
1740 #define TS_SKB_CB(state)	((struct skb_seq_state *) &((state)->cb))
1741 
1742 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
1743 					  struct ts_config *conf,
1744 					  struct ts_state *state)
1745 {
1746 	return skb_seq_read(offset, text, TS_SKB_CB(state));
1747 }
1748 
1749 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
1750 {
1751 	skb_abort_seq_read(TS_SKB_CB(state));
1752 }
1753 
1754 /**
1755  * skb_find_text - Find a text pattern in skb data
1756  * @skb: the buffer to look in
1757  * @from: search offset
1758  * @to: search limit
1759  * @config: textsearch configuration
1760  * @state: uninitialized textsearch state variable
1761  *
1762  * Finds a pattern in the skb data according to the specified
1763  * textsearch configuration. Use textsearch_next() to retrieve
1764  * subsequent occurrences of the pattern. Returns the offset
1765  * to the first occurrence or UINT_MAX if no match was found.
1766  */
1767 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
1768 			   unsigned int to, struct ts_config *config,
1769 			   struct ts_state *state)
1770 {
1771 	unsigned int ret;
1772 
1773 	config->get_next_block = skb_ts_get_next_block;
1774 	config->finish = skb_ts_finish;
1775 
1776 	skb_prepare_seq_read(skb, from, to, TS_SKB_CB(state));
1777 
1778 	ret = textsearch_find(config, state);
1779 	return (ret <= to - from ? ret : UINT_MAX);
1780 }
1781 
1782 /**
1783  * skb_append_datato_frags: - append the user data to a skb
1784  * @sk: sock  structure
1785  * @skb: skb structure to be appened with user data.
1786  * @getfrag: call back function to be used for getting the user data
1787  * @from: pointer to user message iov
1788  * @length: length of the iov message
1789  *
1790  * Description: This procedure append the user data in the fragment part
1791  * of the skb if any page alloc fails user this procedure returns  -ENOMEM
1792  */
1793 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
1794 			int (*getfrag)(void *from, char *to, int offset,
1795 					int len, int odd, struct sk_buff *skb),
1796 			void *from, int length)
1797 {
1798 	int frg_cnt = 0;
1799 	skb_frag_t *frag = NULL;
1800 	struct page *page = NULL;
1801 	int copy, left;
1802 	int offset = 0;
1803 	int ret;
1804 
1805 	do {
1806 		/* Return error if we don't have space for new frag */
1807 		frg_cnt = skb_shinfo(skb)->nr_frags;
1808 		if (frg_cnt >= MAX_SKB_FRAGS)
1809 			return -EFAULT;
1810 
1811 		/* allocate a new page for next frag */
1812 		page = alloc_pages(sk->sk_allocation, 0);
1813 
1814 		/* If alloc_page fails just return failure and caller will
1815 		 * free previous allocated pages by doing kfree_skb()
1816 		 */
1817 		if (page == NULL)
1818 			return -ENOMEM;
1819 
1820 		/* initialize the next frag */
1821 		sk->sk_sndmsg_page = page;
1822 		sk->sk_sndmsg_off = 0;
1823 		skb_fill_page_desc(skb, frg_cnt, page, 0, 0);
1824 		skb->truesize += PAGE_SIZE;
1825 		atomic_add(PAGE_SIZE, &sk->sk_wmem_alloc);
1826 
1827 		/* get the new initialized frag */
1828 		frg_cnt = skb_shinfo(skb)->nr_frags;
1829 		frag = &skb_shinfo(skb)->frags[frg_cnt - 1];
1830 
1831 		/* copy the user data to page */
1832 		left = PAGE_SIZE - frag->page_offset;
1833 		copy = (length > left)? left : length;
1834 
1835 		ret = getfrag(from, (page_address(frag->page) +
1836 			    frag->page_offset + frag->size),
1837 			    offset, copy, 0, skb);
1838 		if (ret < 0)
1839 			return -EFAULT;
1840 
1841 		/* copy was successful so update the size parameters */
1842 		sk->sk_sndmsg_off += copy;
1843 		frag->size += copy;
1844 		skb->len += copy;
1845 		skb->data_len += copy;
1846 		offset += copy;
1847 		length -= copy;
1848 
1849 	} while (length > 0);
1850 
1851 	return 0;
1852 }
1853 
1854 /**
1855  *	skb_pull_rcsum - pull skb and update receive checksum
1856  *	@skb: buffer to update
1857  *	@start: start of data before pull
1858  *	@len: length of data pulled
1859  *
1860  *	This function performs an skb_pull on the packet and updates
1861  *	update the CHECKSUM_COMPLETE checksum.  It should be used on
1862  *	receive path processing instead of skb_pull unless you know
1863  *	that the checksum difference is zero (e.g., a valid IP header)
1864  *	or you are setting ip_summed to CHECKSUM_NONE.
1865  */
1866 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
1867 {
1868 	BUG_ON(len > skb->len);
1869 	skb->len -= len;
1870 	BUG_ON(skb->len < skb->data_len);
1871 	skb_postpull_rcsum(skb, skb->data, len);
1872 	return skb->data += len;
1873 }
1874 
1875 EXPORT_SYMBOL_GPL(skb_pull_rcsum);
1876 
1877 /**
1878  *	skb_segment - Perform protocol segmentation on skb.
1879  *	@skb: buffer to segment
1880  *	@features: features for the output path (see dev->features)
1881  *
1882  *	This function performs segmentation on the given skb.  It returns
1883  *	the segment at the given position.  It returns NULL if there are
1884  *	no more segments to generate, or when an error is encountered.
1885  */
1886 struct sk_buff *skb_segment(struct sk_buff *skb, int features)
1887 {
1888 	struct sk_buff *segs = NULL;
1889 	struct sk_buff *tail = NULL;
1890 	unsigned int mss = skb_shinfo(skb)->gso_size;
1891 	unsigned int doffset = skb->data - skb_mac_header(skb);
1892 	unsigned int offset = doffset;
1893 	unsigned int headroom;
1894 	unsigned int len;
1895 	int sg = features & NETIF_F_SG;
1896 	int nfrags = skb_shinfo(skb)->nr_frags;
1897 	int err = -ENOMEM;
1898 	int i = 0;
1899 	int pos;
1900 
1901 	__skb_push(skb, doffset);
1902 	headroom = skb_headroom(skb);
1903 	pos = skb_headlen(skb);
1904 
1905 	do {
1906 		struct sk_buff *nskb;
1907 		skb_frag_t *frag;
1908 		int hsize;
1909 		int k;
1910 		int size;
1911 
1912 		len = skb->len - offset;
1913 		if (len > mss)
1914 			len = mss;
1915 
1916 		hsize = skb_headlen(skb) - offset;
1917 		if (hsize < 0)
1918 			hsize = 0;
1919 		if (hsize > len || !sg)
1920 			hsize = len;
1921 
1922 		nskb = alloc_skb(hsize + doffset + headroom, GFP_ATOMIC);
1923 		if (unlikely(!nskb))
1924 			goto err;
1925 
1926 		if (segs)
1927 			tail->next = nskb;
1928 		else
1929 			segs = nskb;
1930 		tail = nskb;
1931 
1932 		nskb->dev = skb->dev;
1933 		nskb->priority = skb->priority;
1934 		nskb->protocol = skb->protocol;
1935 		nskb->dst = dst_clone(skb->dst);
1936 		memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
1937 		nskb->pkt_type = skb->pkt_type;
1938 		nskb->mac_len = skb->mac_len;
1939 
1940 		skb_reserve(nskb, headroom);
1941 		skb_reset_mac_header(nskb);
1942 		skb_set_network_header(nskb, skb->mac_len);
1943 		nskb->transport_header = (nskb->network_header +
1944 					  skb_network_header_len(skb));
1945 		skb_copy_from_linear_data(skb, skb_put(nskb, doffset),
1946 					  doffset);
1947 		if (!sg) {
1948 			nskb->csum = skb_copy_and_csum_bits(skb, offset,
1949 							    skb_put(nskb, len),
1950 							    len, 0);
1951 			continue;
1952 		}
1953 
1954 		frag = skb_shinfo(nskb)->frags;
1955 		k = 0;
1956 
1957 		nskb->ip_summed = CHECKSUM_PARTIAL;
1958 		nskb->csum = skb->csum;
1959 		skb_copy_from_linear_data_offset(skb, offset,
1960 						 skb_put(nskb, hsize), hsize);
1961 
1962 		while (pos < offset + len) {
1963 			BUG_ON(i >= nfrags);
1964 
1965 			*frag = skb_shinfo(skb)->frags[i];
1966 			get_page(frag->page);
1967 			size = frag->size;
1968 
1969 			if (pos < offset) {
1970 				frag->page_offset += offset - pos;
1971 				frag->size -= offset - pos;
1972 			}
1973 
1974 			k++;
1975 
1976 			if (pos + size <= offset + len) {
1977 				i++;
1978 				pos += size;
1979 			} else {
1980 				frag->size -= pos + size - (offset + len);
1981 				break;
1982 			}
1983 
1984 			frag++;
1985 		}
1986 
1987 		skb_shinfo(nskb)->nr_frags = k;
1988 		nskb->data_len = len - hsize;
1989 		nskb->len += nskb->data_len;
1990 		nskb->truesize += nskb->data_len;
1991 	} while ((offset += len) < skb->len);
1992 
1993 	return segs;
1994 
1995 err:
1996 	while ((skb = segs)) {
1997 		segs = skb->next;
1998 		kfree_skb(skb);
1999 	}
2000 	return ERR_PTR(err);
2001 }
2002 
2003 EXPORT_SYMBOL_GPL(skb_segment);
2004 
2005 void __init skb_init(void)
2006 {
2007 	skbuff_head_cache = kmem_cache_create("skbuff_head_cache",
2008 					      sizeof(struct sk_buff),
2009 					      0,
2010 					      SLAB_HWCACHE_ALIGN|SLAB_PANIC,
2011 					      NULL, NULL);
2012 	skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
2013 						(2*sizeof(struct sk_buff)) +
2014 						sizeof(atomic_t),
2015 						0,
2016 						SLAB_HWCACHE_ALIGN|SLAB_PANIC,
2017 						NULL, NULL);
2018 }
2019 
2020 /**
2021  *	skb_to_sgvec - Fill a scatter-gather list from a socket buffer
2022  *	@skb: Socket buffer containing the buffers to be mapped
2023  *	@sg: The scatter-gather list to map into
2024  *	@offset: The offset into the buffer's contents to start mapping
2025  *	@len: Length of buffer space to be mapped
2026  *
2027  *	Fill the specified scatter-gather list with mappings/pointers into a
2028  *	region of the buffer space attached to a socket buffer.
2029  */
2030 int
2031 skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
2032 {
2033 	int start = skb_headlen(skb);
2034 	int i, copy = start - offset;
2035 	int elt = 0;
2036 
2037 	if (copy > 0) {
2038 		if (copy > len)
2039 			copy = len;
2040 		sg[elt].page = virt_to_page(skb->data + offset);
2041 		sg[elt].offset = (unsigned long)(skb->data + offset) % PAGE_SIZE;
2042 		sg[elt].length = copy;
2043 		elt++;
2044 		if ((len -= copy) == 0)
2045 			return elt;
2046 		offset += copy;
2047 	}
2048 
2049 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2050 		int end;
2051 
2052 		BUG_TRAP(start <= offset + len);
2053 
2054 		end = start + skb_shinfo(skb)->frags[i].size;
2055 		if ((copy = end - offset) > 0) {
2056 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2057 
2058 			if (copy > len)
2059 				copy = len;
2060 			sg[elt].page = frag->page;
2061 			sg[elt].offset = frag->page_offset+offset-start;
2062 			sg[elt].length = copy;
2063 			elt++;
2064 			if (!(len -= copy))
2065 				return elt;
2066 			offset += copy;
2067 		}
2068 		start = end;
2069 	}
2070 
2071 	if (skb_shinfo(skb)->frag_list) {
2072 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
2073 
2074 		for (; list; list = list->next) {
2075 			int end;
2076 
2077 			BUG_TRAP(start <= offset + len);
2078 
2079 			end = start + list->len;
2080 			if ((copy = end - offset) > 0) {
2081 				if (copy > len)
2082 					copy = len;
2083 				elt += skb_to_sgvec(list, sg+elt, offset - start, copy);
2084 				if ((len -= copy) == 0)
2085 					return elt;
2086 				offset += copy;
2087 			}
2088 			start = end;
2089 		}
2090 	}
2091 	BUG_ON(len);
2092 	return elt;
2093 }
2094 
2095 /**
2096  *	skb_cow_data - Check that a socket buffer's data buffers are writable
2097  *	@skb: The socket buffer to check.
2098  *	@tailbits: Amount of trailing space to be added
2099  *	@trailer: Returned pointer to the skb where the @tailbits space begins
2100  *
2101  *	Make sure that the data buffers attached to a socket buffer are
2102  *	writable. If they are not, private copies are made of the data buffers
2103  *	and the socket buffer is set to use these instead.
2104  *
2105  *	If @tailbits is given, make sure that there is space to write @tailbits
2106  *	bytes of data beyond current end of socket buffer.  @trailer will be
2107  *	set to point to the skb in which this space begins.
2108  *
2109  *	The number of scatterlist elements required to completely map the
2110  *	COW'd and extended socket buffer will be returned.
2111  */
2112 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
2113 {
2114 	int copyflag;
2115 	int elt;
2116 	struct sk_buff *skb1, **skb_p;
2117 
2118 	/* If skb is cloned or its head is paged, reallocate
2119 	 * head pulling out all the pages (pages are considered not writable
2120 	 * at the moment even if they are anonymous).
2121 	 */
2122 	if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
2123 	    __pskb_pull_tail(skb, skb_pagelen(skb)-skb_headlen(skb)) == NULL)
2124 		return -ENOMEM;
2125 
2126 	/* Easy case. Most of packets will go this way. */
2127 	if (!skb_shinfo(skb)->frag_list) {
2128 		/* A little of trouble, not enough of space for trailer.
2129 		 * This should not happen, when stack is tuned to generate
2130 		 * good frames. OK, on miss we reallocate and reserve even more
2131 		 * space, 128 bytes is fair. */
2132 
2133 		if (skb_tailroom(skb) < tailbits &&
2134 		    pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
2135 			return -ENOMEM;
2136 
2137 		/* Voila! */
2138 		*trailer = skb;
2139 		return 1;
2140 	}
2141 
2142 	/* Misery. We are in troubles, going to mincer fragments... */
2143 
2144 	elt = 1;
2145 	skb_p = &skb_shinfo(skb)->frag_list;
2146 	copyflag = 0;
2147 
2148 	while ((skb1 = *skb_p) != NULL) {
2149 		int ntail = 0;
2150 
2151 		/* The fragment is partially pulled by someone,
2152 		 * this can happen on input. Copy it and everything
2153 		 * after it. */
2154 
2155 		if (skb_shared(skb1))
2156 			copyflag = 1;
2157 
2158 		/* If the skb is the last, worry about trailer. */
2159 
2160 		if (skb1->next == NULL && tailbits) {
2161 			if (skb_shinfo(skb1)->nr_frags ||
2162 			    skb_shinfo(skb1)->frag_list ||
2163 			    skb_tailroom(skb1) < tailbits)
2164 				ntail = tailbits + 128;
2165 		}
2166 
2167 		if (copyflag ||
2168 		    skb_cloned(skb1) ||
2169 		    ntail ||
2170 		    skb_shinfo(skb1)->nr_frags ||
2171 		    skb_shinfo(skb1)->frag_list) {
2172 			struct sk_buff *skb2;
2173 
2174 			/* Fuck, we are miserable poor guys... */
2175 			if (ntail == 0)
2176 				skb2 = skb_copy(skb1, GFP_ATOMIC);
2177 			else
2178 				skb2 = skb_copy_expand(skb1,
2179 						       skb_headroom(skb1),
2180 						       ntail,
2181 						       GFP_ATOMIC);
2182 			if (unlikely(skb2 == NULL))
2183 				return -ENOMEM;
2184 
2185 			if (skb1->sk)
2186 				skb_set_owner_w(skb2, skb1->sk);
2187 
2188 			/* Looking around. Are we still alive?
2189 			 * OK, link new skb, drop old one */
2190 
2191 			skb2->next = skb1->next;
2192 			*skb_p = skb2;
2193 			kfree_skb(skb1);
2194 			skb1 = skb2;
2195 		}
2196 		elt++;
2197 		*trailer = skb1;
2198 		skb_p = &skb1->next;
2199 	}
2200 
2201 	return elt;
2202 }
2203 
2204 EXPORT_SYMBOL(___pskb_trim);
2205 EXPORT_SYMBOL(__kfree_skb);
2206 EXPORT_SYMBOL(kfree_skb);
2207 EXPORT_SYMBOL(__pskb_pull_tail);
2208 EXPORT_SYMBOL(__alloc_skb);
2209 EXPORT_SYMBOL(__netdev_alloc_skb);
2210 EXPORT_SYMBOL(pskb_copy);
2211 EXPORT_SYMBOL(pskb_expand_head);
2212 EXPORT_SYMBOL(skb_checksum);
2213 EXPORT_SYMBOL(skb_clone);
2214 EXPORT_SYMBOL(skb_copy);
2215 EXPORT_SYMBOL(skb_copy_and_csum_bits);
2216 EXPORT_SYMBOL(skb_copy_and_csum_dev);
2217 EXPORT_SYMBOL(skb_copy_bits);
2218 EXPORT_SYMBOL(skb_copy_expand);
2219 EXPORT_SYMBOL(skb_over_panic);
2220 EXPORT_SYMBOL(skb_pad);
2221 EXPORT_SYMBOL(skb_realloc_headroom);
2222 EXPORT_SYMBOL(skb_under_panic);
2223 EXPORT_SYMBOL(skb_dequeue);
2224 EXPORT_SYMBOL(skb_dequeue_tail);
2225 EXPORT_SYMBOL(skb_insert);
2226 EXPORT_SYMBOL(skb_queue_purge);
2227 EXPORT_SYMBOL(skb_queue_head);
2228 EXPORT_SYMBOL(skb_queue_tail);
2229 EXPORT_SYMBOL(skb_unlink);
2230 EXPORT_SYMBOL(skb_append);
2231 EXPORT_SYMBOL(skb_split);
2232 EXPORT_SYMBOL(skb_prepare_seq_read);
2233 EXPORT_SYMBOL(skb_seq_read);
2234 EXPORT_SYMBOL(skb_abort_seq_read);
2235 EXPORT_SYMBOL(skb_find_text);
2236 EXPORT_SYMBOL(skb_append_datato_frags);
2237 
2238 EXPORT_SYMBOL_GPL(skb_to_sgvec);
2239 EXPORT_SYMBOL_GPL(skb_cow_data);
2240