xref: /openbmc/linux/net/core/skbuff.c (revision 643d1f7f)
1 /*
2  *	Routines having to do with the 'struct sk_buff' memory handlers.
3  *
4  *	Authors:	Alan Cox <iiitac@pyr.swan.ac.uk>
5  *			Florian La Roche <rzsfl@rz.uni-sb.de>
6  *
7  *	Version:	$Id: skbuff.c,v 1.90 2001/11/07 05:56:19 davem Exp $
8  *
9  *	Fixes:
10  *		Alan Cox	:	Fixed the worst of the load
11  *					balancer bugs.
12  *		Dave Platt	:	Interrupt stacking fix.
13  *	Richard Kooijman	:	Timestamp fixes.
14  *		Alan Cox	:	Changed buffer format.
15  *		Alan Cox	:	destructor hook for AF_UNIX etc.
16  *		Linus Torvalds	:	Better skb_clone.
17  *		Alan Cox	:	Added skb_copy.
18  *		Alan Cox	:	Added all the changed routines Linus
19  *					only put in the headers
20  *		Ray VanTassle	:	Fixed --skb->lock in free
21  *		Alan Cox	:	skb_copy copy arp field
22  *		Andi Kleen	:	slabified it.
23  *		Robert Olsson	:	Removed skb_head_pool
24  *
25  *	NOTE:
26  *		The __skb_ routines should be called with interrupts
27  *	disabled, or you better be *real* sure that the operation is atomic
28  *	with respect to whatever list is being frobbed (e.g. via lock_sock()
29  *	or via disabling bottom half handlers, etc).
30  *
31  *	This program is free software; you can redistribute it and/or
32  *	modify it under the terms of the GNU General Public License
33  *	as published by the Free Software Foundation; either version
34  *	2 of the License, or (at your option) any later version.
35  */
36 
37 /*
38  *	The functions in this file will not compile correctly with gcc 2.4.x
39  */
40 
41 #include <linux/module.h>
42 #include <linux/types.h>
43 #include <linux/kernel.h>
44 #include <linux/mm.h>
45 #include <linux/interrupt.h>
46 #include <linux/in.h>
47 #include <linux/inet.h>
48 #include <linux/slab.h>
49 #include <linux/netdevice.h>
50 #ifdef CONFIG_NET_CLS_ACT
51 #include <net/pkt_sched.h>
52 #endif
53 #include <linux/string.h>
54 #include <linux/skbuff.h>
55 #include <linux/splice.h>
56 #include <linux/cache.h>
57 #include <linux/rtnetlink.h>
58 #include <linux/init.h>
59 #include <linux/scatterlist.h>
60 
61 #include <net/protocol.h>
62 #include <net/dst.h>
63 #include <net/sock.h>
64 #include <net/checksum.h>
65 #include <net/xfrm.h>
66 
67 #include <asm/uaccess.h>
68 #include <asm/system.h>
69 
70 #include "kmap_skb.h"
71 
72 static struct kmem_cache *skbuff_head_cache __read_mostly;
73 static struct kmem_cache *skbuff_fclone_cache __read_mostly;
74 
75 static void sock_pipe_buf_release(struct pipe_inode_info *pipe,
76 				  struct pipe_buffer *buf)
77 {
78 	struct sk_buff *skb = (struct sk_buff *) buf->private;
79 
80 	kfree_skb(skb);
81 }
82 
83 static void sock_pipe_buf_get(struct pipe_inode_info *pipe,
84 				struct pipe_buffer *buf)
85 {
86 	struct sk_buff *skb = (struct sk_buff *) buf->private;
87 
88 	skb_get(skb);
89 }
90 
91 static int sock_pipe_buf_steal(struct pipe_inode_info *pipe,
92 			       struct pipe_buffer *buf)
93 {
94 	return 1;
95 }
96 
97 
98 /* Pipe buffer operations for a socket. */
99 static struct pipe_buf_operations sock_pipe_buf_ops = {
100 	.can_merge = 0,
101 	.map = generic_pipe_buf_map,
102 	.unmap = generic_pipe_buf_unmap,
103 	.confirm = generic_pipe_buf_confirm,
104 	.release = sock_pipe_buf_release,
105 	.steal = sock_pipe_buf_steal,
106 	.get = sock_pipe_buf_get,
107 };
108 
109 /*
110  *	Keep out-of-line to prevent kernel bloat.
111  *	__builtin_return_address is not used because it is not always
112  *	reliable.
113  */
114 
115 /**
116  *	skb_over_panic	- 	private function
117  *	@skb: buffer
118  *	@sz: size
119  *	@here: address
120  *
121  *	Out of line support code for skb_put(). Not user callable.
122  */
123 void skb_over_panic(struct sk_buff *skb, int sz, void *here)
124 {
125 	printk(KERN_EMERG "skb_over_panic: text:%p len:%d put:%d head:%p "
126 			  "data:%p tail:%#lx end:%#lx dev:%s\n",
127 	       here, skb->len, sz, skb->head, skb->data,
128 	       (unsigned long)skb->tail, (unsigned long)skb->end,
129 	       skb->dev ? skb->dev->name : "<NULL>");
130 	BUG();
131 }
132 
133 /**
134  *	skb_under_panic	- 	private function
135  *	@skb: buffer
136  *	@sz: size
137  *	@here: address
138  *
139  *	Out of line support code for skb_push(). Not user callable.
140  */
141 
142 void skb_under_panic(struct sk_buff *skb, int sz, void *here)
143 {
144 	printk(KERN_EMERG "skb_under_panic: text:%p len:%d put:%d head:%p "
145 			  "data:%p tail:%#lx end:%#lx dev:%s\n",
146 	       here, skb->len, sz, skb->head, skb->data,
147 	       (unsigned long)skb->tail, (unsigned long)skb->end,
148 	       skb->dev ? skb->dev->name : "<NULL>");
149 	BUG();
150 }
151 
152 void skb_truesize_bug(struct sk_buff *skb)
153 {
154 	printk(KERN_ERR "SKB BUG: Invalid truesize (%u) "
155 	       "len=%u, sizeof(sk_buff)=%Zd\n",
156 	       skb->truesize, skb->len, sizeof(struct sk_buff));
157 }
158 EXPORT_SYMBOL(skb_truesize_bug);
159 
160 /* 	Allocate a new skbuff. We do this ourselves so we can fill in a few
161  *	'private' fields and also do memory statistics to find all the
162  *	[BEEP] leaks.
163  *
164  */
165 
166 /**
167  *	__alloc_skb	-	allocate a network buffer
168  *	@size: size to allocate
169  *	@gfp_mask: allocation mask
170  *	@fclone: allocate from fclone cache instead of head cache
171  *		and allocate a cloned (child) skb
172  *	@node: numa node to allocate memory on
173  *
174  *	Allocate a new &sk_buff. The returned buffer has no headroom and a
175  *	tail room of size bytes. The object has a reference count of one.
176  *	The return is the buffer. On a failure the return is %NULL.
177  *
178  *	Buffers may only be allocated from interrupts using a @gfp_mask of
179  *	%GFP_ATOMIC.
180  */
181 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
182 			    int fclone, int node)
183 {
184 	struct kmem_cache *cache;
185 	struct skb_shared_info *shinfo;
186 	struct sk_buff *skb;
187 	u8 *data;
188 
189 	cache = fclone ? skbuff_fclone_cache : skbuff_head_cache;
190 
191 	/* Get the HEAD */
192 	skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node);
193 	if (!skb)
194 		goto out;
195 
196 	size = SKB_DATA_ALIGN(size);
197 	data = kmalloc_node_track_caller(size + sizeof(struct skb_shared_info),
198 			gfp_mask, node);
199 	if (!data)
200 		goto nodata;
201 
202 	/*
203 	 * See comment in sk_buff definition, just before the 'tail' member
204 	 */
205 	memset(skb, 0, offsetof(struct sk_buff, tail));
206 	skb->truesize = size + sizeof(struct sk_buff);
207 	atomic_set(&skb->users, 1);
208 	skb->head = data;
209 	skb->data = data;
210 	skb_reset_tail_pointer(skb);
211 	skb->end = skb->tail + size;
212 	/* make sure we initialize shinfo sequentially */
213 	shinfo = skb_shinfo(skb);
214 	atomic_set(&shinfo->dataref, 1);
215 	shinfo->nr_frags  = 0;
216 	shinfo->gso_size = 0;
217 	shinfo->gso_segs = 0;
218 	shinfo->gso_type = 0;
219 	shinfo->ip6_frag_id = 0;
220 	shinfo->frag_list = NULL;
221 
222 	if (fclone) {
223 		struct sk_buff *child = skb + 1;
224 		atomic_t *fclone_ref = (atomic_t *) (child + 1);
225 
226 		skb->fclone = SKB_FCLONE_ORIG;
227 		atomic_set(fclone_ref, 1);
228 
229 		child->fclone = SKB_FCLONE_UNAVAILABLE;
230 	}
231 out:
232 	return skb;
233 nodata:
234 	kmem_cache_free(cache, skb);
235 	skb = NULL;
236 	goto out;
237 }
238 
239 /**
240  *	__netdev_alloc_skb - allocate an skbuff for rx on a specific device
241  *	@dev: network device to receive on
242  *	@length: length to allocate
243  *	@gfp_mask: get_free_pages mask, passed to alloc_skb
244  *
245  *	Allocate a new &sk_buff and assign it a usage count of one. The
246  *	buffer has unspecified headroom built in. Users should allocate
247  *	the headroom they think they need without accounting for the
248  *	built in space. The built in space is used for optimisations.
249  *
250  *	%NULL is returned if there is no free memory.
251  */
252 struct sk_buff *__netdev_alloc_skb(struct net_device *dev,
253 		unsigned int length, gfp_t gfp_mask)
254 {
255 	int node = dev->dev.parent ? dev_to_node(dev->dev.parent) : -1;
256 	struct sk_buff *skb;
257 
258 	skb = __alloc_skb(length + NET_SKB_PAD, gfp_mask, 0, node);
259 	if (likely(skb)) {
260 		skb_reserve(skb, NET_SKB_PAD);
261 		skb->dev = dev;
262 	}
263 	return skb;
264 }
265 
266 static void skb_drop_list(struct sk_buff **listp)
267 {
268 	struct sk_buff *list = *listp;
269 
270 	*listp = NULL;
271 
272 	do {
273 		struct sk_buff *this = list;
274 		list = list->next;
275 		kfree_skb(this);
276 	} while (list);
277 }
278 
279 static inline void skb_drop_fraglist(struct sk_buff *skb)
280 {
281 	skb_drop_list(&skb_shinfo(skb)->frag_list);
282 }
283 
284 static void skb_clone_fraglist(struct sk_buff *skb)
285 {
286 	struct sk_buff *list;
287 
288 	for (list = skb_shinfo(skb)->frag_list; list; list = list->next)
289 		skb_get(list);
290 }
291 
292 static void skb_release_data(struct sk_buff *skb)
293 {
294 	if (!skb->cloned ||
295 	    !atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
296 			       &skb_shinfo(skb)->dataref)) {
297 		if (skb_shinfo(skb)->nr_frags) {
298 			int i;
299 			for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
300 				put_page(skb_shinfo(skb)->frags[i].page);
301 		}
302 
303 		if (skb_shinfo(skb)->frag_list)
304 			skb_drop_fraglist(skb);
305 
306 		kfree(skb->head);
307 	}
308 }
309 
310 /*
311  *	Free an skbuff by memory without cleaning the state.
312  */
313 static void kfree_skbmem(struct sk_buff *skb)
314 {
315 	struct sk_buff *other;
316 	atomic_t *fclone_ref;
317 
318 	switch (skb->fclone) {
319 	case SKB_FCLONE_UNAVAILABLE:
320 		kmem_cache_free(skbuff_head_cache, skb);
321 		break;
322 
323 	case SKB_FCLONE_ORIG:
324 		fclone_ref = (atomic_t *) (skb + 2);
325 		if (atomic_dec_and_test(fclone_ref))
326 			kmem_cache_free(skbuff_fclone_cache, skb);
327 		break;
328 
329 	case SKB_FCLONE_CLONE:
330 		fclone_ref = (atomic_t *) (skb + 1);
331 		other = skb - 1;
332 
333 		/* The clone portion is available for
334 		 * fast-cloning again.
335 		 */
336 		skb->fclone = SKB_FCLONE_UNAVAILABLE;
337 
338 		if (atomic_dec_and_test(fclone_ref))
339 			kmem_cache_free(skbuff_fclone_cache, other);
340 		break;
341 	}
342 }
343 
344 /* Free everything but the sk_buff shell. */
345 static void skb_release_all(struct sk_buff *skb)
346 {
347 	dst_release(skb->dst);
348 #ifdef CONFIG_XFRM
349 	secpath_put(skb->sp);
350 #endif
351 	if (skb->destructor) {
352 		WARN_ON(in_irq());
353 		skb->destructor(skb);
354 	}
355 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
356 	nf_conntrack_put(skb->nfct);
357 	nf_conntrack_put_reasm(skb->nfct_reasm);
358 #endif
359 #ifdef CONFIG_BRIDGE_NETFILTER
360 	nf_bridge_put(skb->nf_bridge);
361 #endif
362 /* XXX: IS this still necessary? - JHS */
363 #ifdef CONFIG_NET_SCHED
364 	skb->tc_index = 0;
365 #ifdef CONFIG_NET_CLS_ACT
366 	skb->tc_verd = 0;
367 #endif
368 #endif
369 	skb_release_data(skb);
370 }
371 
372 /**
373  *	__kfree_skb - private function
374  *	@skb: buffer
375  *
376  *	Free an sk_buff. Release anything attached to the buffer.
377  *	Clean the state. This is an internal helper function. Users should
378  *	always call kfree_skb
379  */
380 
381 void __kfree_skb(struct sk_buff *skb)
382 {
383 	skb_release_all(skb);
384 	kfree_skbmem(skb);
385 }
386 
387 /**
388  *	kfree_skb - free an sk_buff
389  *	@skb: buffer to free
390  *
391  *	Drop a reference to the buffer and free it if the usage count has
392  *	hit zero.
393  */
394 void kfree_skb(struct sk_buff *skb)
395 {
396 	if (unlikely(!skb))
397 		return;
398 	if (likely(atomic_read(&skb->users) == 1))
399 		smp_rmb();
400 	else if (likely(!atomic_dec_and_test(&skb->users)))
401 		return;
402 	__kfree_skb(skb);
403 }
404 
405 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
406 {
407 	new->tstamp		= old->tstamp;
408 	new->dev		= old->dev;
409 	new->transport_header	= old->transport_header;
410 	new->network_header	= old->network_header;
411 	new->mac_header		= old->mac_header;
412 	new->dst		= dst_clone(old->dst);
413 #ifdef CONFIG_INET
414 	new->sp			= secpath_get(old->sp);
415 #endif
416 	memcpy(new->cb, old->cb, sizeof(old->cb));
417 	new->csum_start		= old->csum_start;
418 	new->csum_offset	= old->csum_offset;
419 	new->local_df		= old->local_df;
420 	new->pkt_type		= old->pkt_type;
421 	new->ip_summed		= old->ip_summed;
422 	skb_copy_queue_mapping(new, old);
423 	new->priority		= old->priority;
424 #if defined(CONFIG_IP_VS) || defined(CONFIG_IP_VS_MODULE)
425 	new->ipvs_property	= old->ipvs_property;
426 #endif
427 	new->protocol		= old->protocol;
428 	new->mark		= old->mark;
429 	__nf_copy(new, old);
430 #if defined(CONFIG_NETFILTER_XT_TARGET_TRACE) || \
431     defined(CONFIG_NETFILTER_XT_TARGET_TRACE_MODULE)
432 	new->nf_trace		= old->nf_trace;
433 #endif
434 #ifdef CONFIG_NET_SCHED
435 	new->tc_index		= old->tc_index;
436 #ifdef CONFIG_NET_CLS_ACT
437 	new->tc_verd		= old->tc_verd;
438 #endif
439 #endif
440 	skb_copy_secmark(new, old);
441 }
442 
443 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
444 {
445 #define C(x) n->x = skb->x
446 
447 	n->next = n->prev = NULL;
448 	n->sk = NULL;
449 	__copy_skb_header(n, skb);
450 
451 	C(len);
452 	C(data_len);
453 	C(mac_len);
454 	n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
455 	n->cloned = 1;
456 	n->nohdr = 0;
457 	n->destructor = NULL;
458 	C(iif);
459 	C(tail);
460 	C(end);
461 	C(head);
462 	C(data);
463 	C(truesize);
464 	atomic_set(&n->users, 1);
465 
466 	atomic_inc(&(skb_shinfo(skb)->dataref));
467 	skb->cloned = 1;
468 
469 	return n;
470 #undef C
471 }
472 
473 /**
474  *	skb_morph	-	morph one skb into another
475  *	@dst: the skb to receive the contents
476  *	@src: the skb to supply the contents
477  *
478  *	This is identical to skb_clone except that the target skb is
479  *	supplied by the user.
480  *
481  *	The target skb is returned upon exit.
482  */
483 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
484 {
485 	skb_release_all(dst);
486 	return __skb_clone(dst, src);
487 }
488 EXPORT_SYMBOL_GPL(skb_morph);
489 
490 /**
491  *	skb_clone	-	duplicate an sk_buff
492  *	@skb: buffer to clone
493  *	@gfp_mask: allocation priority
494  *
495  *	Duplicate an &sk_buff. The new one is not owned by a socket. Both
496  *	copies share the same packet data but not structure. The new
497  *	buffer has a reference count of 1. If the allocation fails the
498  *	function returns %NULL otherwise the new buffer is returned.
499  *
500  *	If this function is called from an interrupt gfp_mask() must be
501  *	%GFP_ATOMIC.
502  */
503 
504 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
505 {
506 	struct sk_buff *n;
507 
508 	n = skb + 1;
509 	if (skb->fclone == SKB_FCLONE_ORIG &&
510 	    n->fclone == SKB_FCLONE_UNAVAILABLE) {
511 		atomic_t *fclone_ref = (atomic_t *) (n + 1);
512 		n->fclone = SKB_FCLONE_CLONE;
513 		atomic_inc(fclone_ref);
514 	} else {
515 		n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
516 		if (!n)
517 			return NULL;
518 		n->fclone = SKB_FCLONE_UNAVAILABLE;
519 	}
520 
521 	return __skb_clone(n, skb);
522 }
523 
524 static void copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
525 {
526 #ifndef NET_SKBUFF_DATA_USES_OFFSET
527 	/*
528 	 *	Shift between the two data areas in bytes
529 	 */
530 	unsigned long offset = new->data - old->data;
531 #endif
532 
533 	__copy_skb_header(new, old);
534 
535 #ifndef NET_SKBUFF_DATA_USES_OFFSET
536 	/* {transport,network,mac}_header are relative to skb->head */
537 	new->transport_header += offset;
538 	new->network_header   += offset;
539 	new->mac_header	      += offset;
540 #endif
541 	skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
542 	skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
543 	skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
544 }
545 
546 /**
547  *	skb_copy	-	create private copy of an sk_buff
548  *	@skb: buffer to copy
549  *	@gfp_mask: allocation priority
550  *
551  *	Make a copy of both an &sk_buff and its data. This is used when the
552  *	caller wishes to modify the data and needs a private copy of the
553  *	data to alter. Returns %NULL on failure or the pointer to the buffer
554  *	on success. The returned buffer has a reference count of 1.
555  *
556  *	As by-product this function converts non-linear &sk_buff to linear
557  *	one, so that &sk_buff becomes completely private and caller is allowed
558  *	to modify all the data of returned buffer. This means that this
559  *	function is not recommended for use in circumstances when only
560  *	header is going to be modified. Use pskb_copy() instead.
561  */
562 
563 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
564 {
565 	int headerlen = skb->data - skb->head;
566 	/*
567 	 *	Allocate the copy buffer
568 	 */
569 	struct sk_buff *n;
570 #ifdef NET_SKBUFF_DATA_USES_OFFSET
571 	n = alloc_skb(skb->end + skb->data_len, gfp_mask);
572 #else
573 	n = alloc_skb(skb->end - skb->head + skb->data_len, gfp_mask);
574 #endif
575 	if (!n)
576 		return NULL;
577 
578 	/* Set the data pointer */
579 	skb_reserve(n, headerlen);
580 	/* Set the tail pointer and length */
581 	skb_put(n, skb->len);
582 
583 	if (skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len))
584 		BUG();
585 
586 	copy_skb_header(n, skb);
587 	return n;
588 }
589 
590 
591 /**
592  *	pskb_copy	-	create copy of an sk_buff with private head.
593  *	@skb: buffer to copy
594  *	@gfp_mask: allocation priority
595  *
596  *	Make a copy of both an &sk_buff and part of its data, located
597  *	in header. Fragmented data remain shared. This is used when
598  *	the caller wishes to modify only header of &sk_buff and needs
599  *	private copy of the header to alter. Returns %NULL on failure
600  *	or the pointer to the buffer on success.
601  *	The returned buffer has a reference count of 1.
602  */
603 
604 struct sk_buff *pskb_copy(struct sk_buff *skb, gfp_t gfp_mask)
605 {
606 	/*
607 	 *	Allocate the copy buffer
608 	 */
609 	struct sk_buff *n;
610 #ifdef NET_SKBUFF_DATA_USES_OFFSET
611 	n = alloc_skb(skb->end, gfp_mask);
612 #else
613 	n = alloc_skb(skb->end - skb->head, gfp_mask);
614 #endif
615 	if (!n)
616 		goto out;
617 
618 	/* Set the data pointer */
619 	skb_reserve(n, skb->data - skb->head);
620 	/* Set the tail pointer and length */
621 	skb_put(n, skb_headlen(skb));
622 	/* Copy the bytes */
623 	skb_copy_from_linear_data(skb, n->data, n->len);
624 
625 	n->truesize += skb->data_len;
626 	n->data_len  = skb->data_len;
627 	n->len	     = skb->len;
628 
629 	if (skb_shinfo(skb)->nr_frags) {
630 		int i;
631 
632 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
633 			skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
634 			get_page(skb_shinfo(n)->frags[i].page);
635 		}
636 		skb_shinfo(n)->nr_frags = i;
637 	}
638 
639 	if (skb_shinfo(skb)->frag_list) {
640 		skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
641 		skb_clone_fraglist(n);
642 	}
643 
644 	copy_skb_header(n, skb);
645 out:
646 	return n;
647 }
648 
649 /**
650  *	pskb_expand_head - reallocate header of &sk_buff
651  *	@skb: buffer to reallocate
652  *	@nhead: room to add at head
653  *	@ntail: room to add at tail
654  *	@gfp_mask: allocation priority
655  *
656  *	Expands (or creates identical copy, if &nhead and &ntail are zero)
657  *	header of skb. &sk_buff itself is not changed. &sk_buff MUST have
658  *	reference count of 1. Returns zero in the case of success or error,
659  *	if expansion failed. In the last case, &sk_buff is not changed.
660  *
661  *	All the pointers pointing into skb header may change and must be
662  *	reloaded after call to this function.
663  */
664 
665 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
666 		     gfp_t gfp_mask)
667 {
668 	int i;
669 	u8 *data;
670 #ifdef NET_SKBUFF_DATA_USES_OFFSET
671 	int size = nhead + skb->end + ntail;
672 #else
673 	int size = nhead + (skb->end - skb->head) + ntail;
674 #endif
675 	long off;
676 
677 	if (skb_shared(skb))
678 		BUG();
679 
680 	size = SKB_DATA_ALIGN(size);
681 
682 	data = kmalloc(size + sizeof(struct skb_shared_info), gfp_mask);
683 	if (!data)
684 		goto nodata;
685 
686 	/* Copy only real data... and, alas, header. This should be
687 	 * optimized for the cases when header is void. */
688 #ifdef NET_SKBUFF_DATA_USES_OFFSET
689 	memcpy(data + nhead, skb->head, skb->tail);
690 #else
691 	memcpy(data + nhead, skb->head, skb->tail - skb->head);
692 #endif
693 	memcpy(data + size, skb_end_pointer(skb),
694 	       sizeof(struct skb_shared_info));
695 
696 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
697 		get_page(skb_shinfo(skb)->frags[i].page);
698 
699 	if (skb_shinfo(skb)->frag_list)
700 		skb_clone_fraglist(skb);
701 
702 	skb_release_data(skb);
703 
704 	off = (data + nhead) - skb->head;
705 
706 	skb->head     = data;
707 	skb->data    += off;
708 #ifdef NET_SKBUFF_DATA_USES_OFFSET
709 	skb->end      = size;
710 	off           = nhead;
711 #else
712 	skb->end      = skb->head + size;
713 #endif
714 	/* {transport,network,mac}_header and tail are relative to skb->head */
715 	skb->tail	      += off;
716 	skb->transport_header += off;
717 	skb->network_header   += off;
718 	skb->mac_header	      += off;
719 	skb->csum_start       += nhead;
720 	skb->cloned   = 0;
721 	skb->hdr_len  = 0;
722 	skb->nohdr    = 0;
723 	atomic_set(&skb_shinfo(skb)->dataref, 1);
724 	return 0;
725 
726 nodata:
727 	return -ENOMEM;
728 }
729 
730 /* Make private copy of skb with writable head and some headroom */
731 
732 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
733 {
734 	struct sk_buff *skb2;
735 	int delta = headroom - skb_headroom(skb);
736 
737 	if (delta <= 0)
738 		skb2 = pskb_copy(skb, GFP_ATOMIC);
739 	else {
740 		skb2 = skb_clone(skb, GFP_ATOMIC);
741 		if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
742 					     GFP_ATOMIC)) {
743 			kfree_skb(skb2);
744 			skb2 = NULL;
745 		}
746 	}
747 	return skb2;
748 }
749 
750 
751 /**
752  *	skb_copy_expand	-	copy and expand sk_buff
753  *	@skb: buffer to copy
754  *	@newheadroom: new free bytes at head
755  *	@newtailroom: new free bytes at tail
756  *	@gfp_mask: allocation priority
757  *
758  *	Make a copy of both an &sk_buff and its data and while doing so
759  *	allocate additional space.
760  *
761  *	This is used when the caller wishes to modify the data and needs a
762  *	private copy of the data to alter as well as more space for new fields.
763  *	Returns %NULL on failure or the pointer to the buffer
764  *	on success. The returned buffer has a reference count of 1.
765  *
766  *	You must pass %GFP_ATOMIC as the allocation priority if this function
767  *	is called from an interrupt.
768  */
769 struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
770 				int newheadroom, int newtailroom,
771 				gfp_t gfp_mask)
772 {
773 	/*
774 	 *	Allocate the copy buffer
775 	 */
776 	struct sk_buff *n = alloc_skb(newheadroom + skb->len + newtailroom,
777 				      gfp_mask);
778 	int oldheadroom = skb_headroom(skb);
779 	int head_copy_len, head_copy_off;
780 	int off;
781 
782 	if (!n)
783 		return NULL;
784 
785 	skb_reserve(n, newheadroom);
786 
787 	/* Set the tail pointer and length */
788 	skb_put(n, skb->len);
789 
790 	head_copy_len = oldheadroom;
791 	head_copy_off = 0;
792 	if (newheadroom <= head_copy_len)
793 		head_copy_len = newheadroom;
794 	else
795 		head_copy_off = newheadroom - head_copy_len;
796 
797 	/* Copy the linear header and data. */
798 	if (skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
799 			  skb->len + head_copy_len))
800 		BUG();
801 
802 	copy_skb_header(n, skb);
803 
804 	off                  = newheadroom - oldheadroom;
805 	n->csum_start       += off;
806 #ifdef NET_SKBUFF_DATA_USES_OFFSET
807 	n->transport_header += off;
808 	n->network_header   += off;
809 	n->mac_header	    += off;
810 #endif
811 
812 	return n;
813 }
814 
815 /**
816  *	skb_pad			-	zero pad the tail of an skb
817  *	@skb: buffer to pad
818  *	@pad: space to pad
819  *
820  *	Ensure that a buffer is followed by a padding area that is zero
821  *	filled. Used by network drivers which may DMA or transfer data
822  *	beyond the buffer end onto the wire.
823  *
824  *	May return error in out of memory cases. The skb is freed on error.
825  */
826 
827 int skb_pad(struct sk_buff *skb, int pad)
828 {
829 	int err;
830 	int ntail;
831 
832 	/* If the skbuff is non linear tailroom is always zero.. */
833 	if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
834 		memset(skb->data+skb->len, 0, pad);
835 		return 0;
836 	}
837 
838 	ntail = skb->data_len + pad - (skb->end - skb->tail);
839 	if (likely(skb_cloned(skb) || ntail > 0)) {
840 		err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
841 		if (unlikely(err))
842 			goto free_skb;
843 	}
844 
845 	/* FIXME: The use of this function with non-linear skb's really needs
846 	 * to be audited.
847 	 */
848 	err = skb_linearize(skb);
849 	if (unlikely(err))
850 		goto free_skb;
851 
852 	memset(skb->data + skb->len, 0, pad);
853 	return 0;
854 
855 free_skb:
856 	kfree_skb(skb);
857 	return err;
858 }
859 
860 /* Trims skb to length len. It can change skb pointers.
861  */
862 
863 int ___pskb_trim(struct sk_buff *skb, unsigned int len)
864 {
865 	struct sk_buff **fragp;
866 	struct sk_buff *frag;
867 	int offset = skb_headlen(skb);
868 	int nfrags = skb_shinfo(skb)->nr_frags;
869 	int i;
870 	int err;
871 
872 	if (skb_cloned(skb) &&
873 	    unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
874 		return err;
875 
876 	i = 0;
877 	if (offset >= len)
878 		goto drop_pages;
879 
880 	for (; i < nfrags; i++) {
881 		int end = offset + skb_shinfo(skb)->frags[i].size;
882 
883 		if (end < len) {
884 			offset = end;
885 			continue;
886 		}
887 
888 		skb_shinfo(skb)->frags[i++].size = len - offset;
889 
890 drop_pages:
891 		skb_shinfo(skb)->nr_frags = i;
892 
893 		for (; i < nfrags; i++)
894 			put_page(skb_shinfo(skb)->frags[i].page);
895 
896 		if (skb_shinfo(skb)->frag_list)
897 			skb_drop_fraglist(skb);
898 		goto done;
899 	}
900 
901 	for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
902 	     fragp = &frag->next) {
903 		int end = offset + frag->len;
904 
905 		if (skb_shared(frag)) {
906 			struct sk_buff *nfrag;
907 
908 			nfrag = skb_clone(frag, GFP_ATOMIC);
909 			if (unlikely(!nfrag))
910 				return -ENOMEM;
911 
912 			nfrag->next = frag->next;
913 			kfree_skb(frag);
914 			frag = nfrag;
915 			*fragp = frag;
916 		}
917 
918 		if (end < len) {
919 			offset = end;
920 			continue;
921 		}
922 
923 		if (end > len &&
924 		    unlikely((err = pskb_trim(frag, len - offset))))
925 			return err;
926 
927 		if (frag->next)
928 			skb_drop_list(&frag->next);
929 		break;
930 	}
931 
932 done:
933 	if (len > skb_headlen(skb)) {
934 		skb->data_len -= skb->len - len;
935 		skb->len       = len;
936 	} else {
937 		skb->len       = len;
938 		skb->data_len  = 0;
939 		skb_set_tail_pointer(skb, len);
940 	}
941 
942 	return 0;
943 }
944 
945 /**
946  *	__pskb_pull_tail - advance tail of skb header
947  *	@skb: buffer to reallocate
948  *	@delta: number of bytes to advance tail
949  *
950  *	The function makes a sense only on a fragmented &sk_buff,
951  *	it expands header moving its tail forward and copying necessary
952  *	data from fragmented part.
953  *
954  *	&sk_buff MUST have reference count of 1.
955  *
956  *	Returns %NULL (and &sk_buff does not change) if pull failed
957  *	or value of new tail of skb in the case of success.
958  *
959  *	All the pointers pointing into skb header may change and must be
960  *	reloaded after call to this function.
961  */
962 
963 /* Moves tail of skb head forward, copying data from fragmented part,
964  * when it is necessary.
965  * 1. It may fail due to malloc failure.
966  * 2. It may change skb pointers.
967  *
968  * It is pretty complicated. Luckily, it is called only in exceptional cases.
969  */
970 unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta)
971 {
972 	/* If skb has not enough free space at tail, get new one
973 	 * plus 128 bytes for future expansions. If we have enough
974 	 * room at tail, reallocate without expansion only if skb is cloned.
975 	 */
976 	int i, k, eat = (skb->tail + delta) - skb->end;
977 
978 	if (eat > 0 || skb_cloned(skb)) {
979 		if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
980 				     GFP_ATOMIC))
981 			return NULL;
982 	}
983 
984 	if (skb_copy_bits(skb, skb_headlen(skb), skb_tail_pointer(skb), delta))
985 		BUG();
986 
987 	/* Optimization: no fragments, no reasons to preestimate
988 	 * size of pulled pages. Superb.
989 	 */
990 	if (!skb_shinfo(skb)->frag_list)
991 		goto pull_pages;
992 
993 	/* Estimate size of pulled pages. */
994 	eat = delta;
995 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
996 		if (skb_shinfo(skb)->frags[i].size >= eat)
997 			goto pull_pages;
998 		eat -= skb_shinfo(skb)->frags[i].size;
999 	}
1000 
1001 	/* If we need update frag list, we are in troubles.
1002 	 * Certainly, it possible to add an offset to skb data,
1003 	 * but taking into account that pulling is expected to
1004 	 * be very rare operation, it is worth to fight against
1005 	 * further bloating skb head and crucify ourselves here instead.
1006 	 * Pure masohism, indeed. 8)8)
1007 	 */
1008 	if (eat) {
1009 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
1010 		struct sk_buff *clone = NULL;
1011 		struct sk_buff *insp = NULL;
1012 
1013 		do {
1014 			BUG_ON(!list);
1015 
1016 			if (list->len <= eat) {
1017 				/* Eaten as whole. */
1018 				eat -= list->len;
1019 				list = list->next;
1020 				insp = list;
1021 			} else {
1022 				/* Eaten partially. */
1023 
1024 				if (skb_shared(list)) {
1025 					/* Sucks! We need to fork list. :-( */
1026 					clone = skb_clone(list, GFP_ATOMIC);
1027 					if (!clone)
1028 						return NULL;
1029 					insp = list->next;
1030 					list = clone;
1031 				} else {
1032 					/* This may be pulled without
1033 					 * problems. */
1034 					insp = list;
1035 				}
1036 				if (!pskb_pull(list, eat)) {
1037 					if (clone)
1038 						kfree_skb(clone);
1039 					return NULL;
1040 				}
1041 				break;
1042 			}
1043 		} while (eat);
1044 
1045 		/* Free pulled out fragments. */
1046 		while ((list = skb_shinfo(skb)->frag_list) != insp) {
1047 			skb_shinfo(skb)->frag_list = list->next;
1048 			kfree_skb(list);
1049 		}
1050 		/* And insert new clone at head. */
1051 		if (clone) {
1052 			clone->next = list;
1053 			skb_shinfo(skb)->frag_list = clone;
1054 		}
1055 	}
1056 	/* Success! Now we may commit changes to skb data. */
1057 
1058 pull_pages:
1059 	eat = delta;
1060 	k = 0;
1061 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1062 		if (skb_shinfo(skb)->frags[i].size <= eat) {
1063 			put_page(skb_shinfo(skb)->frags[i].page);
1064 			eat -= skb_shinfo(skb)->frags[i].size;
1065 		} else {
1066 			skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i];
1067 			if (eat) {
1068 				skb_shinfo(skb)->frags[k].page_offset += eat;
1069 				skb_shinfo(skb)->frags[k].size -= eat;
1070 				eat = 0;
1071 			}
1072 			k++;
1073 		}
1074 	}
1075 	skb_shinfo(skb)->nr_frags = k;
1076 
1077 	skb->tail     += delta;
1078 	skb->data_len -= delta;
1079 
1080 	return skb_tail_pointer(skb);
1081 }
1082 
1083 /* Copy some data bits from skb to kernel buffer. */
1084 
1085 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
1086 {
1087 	int i, copy;
1088 	int start = skb_headlen(skb);
1089 
1090 	if (offset > (int)skb->len - len)
1091 		goto fault;
1092 
1093 	/* Copy header. */
1094 	if ((copy = start - offset) > 0) {
1095 		if (copy > len)
1096 			copy = len;
1097 		skb_copy_from_linear_data_offset(skb, offset, to, copy);
1098 		if ((len -= copy) == 0)
1099 			return 0;
1100 		offset += copy;
1101 		to     += copy;
1102 	}
1103 
1104 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1105 		int end;
1106 
1107 		BUG_TRAP(start <= offset + len);
1108 
1109 		end = start + skb_shinfo(skb)->frags[i].size;
1110 		if ((copy = end - offset) > 0) {
1111 			u8 *vaddr;
1112 
1113 			if (copy > len)
1114 				copy = len;
1115 
1116 			vaddr = kmap_skb_frag(&skb_shinfo(skb)->frags[i]);
1117 			memcpy(to,
1118 			       vaddr + skb_shinfo(skb)->frags[i].page_offset+
1119 			       offset - start, copy);
1120 			kunmap_skb_frag(vaddr);
1121 
1122 			if ((len -= copy) == 0)
1123 				return 0;
1124 			offset += copy;
1125 			to     += copy;
1126 		}
1127 		start = end;
1128 	}
1129 
1130 	if (skb_shinfo(skb)->frag_list) {
1131 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
1132 
1133 		for (; list; list = list->next) {
1134 			int end;
1135 
1136 			BUG_TRAP(start <= offset + len);
1137 
1138 			end = start + list->len;
1139 			if ((copy = end - offset) > 0) {
1140 				if (copy > len)
1141 					copy = len;
1142 				if (skb_copy_bits(list, offset - start,
1143 						  to, copy))
1144 					goto fault;
1145 				if ((len -= copy) == 0)
1146 					return 0;
1147 				offset += copy;
1148 				to     += copy;
1149 			}
1150 			start = end;
1151 		}
1152 	}
1153 	if (!len)
1154 		return 0;
1155 
1156 fault:
1157 	return -EFAULT;
1158 }
1159 
1160 /*
1161  * Callback from splice_to_pipe(), if we need to release some pages
1162  * at the end of the spd in case we error'ed out in filling the pipe.
1163  */
1164 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
1165 {
1166 	struct sk_buff *skb = (struct sk_buff *) spd->partial[i].private;
1167 
1168 	kfree_skb(skb);
1169 }
1170 
1171 /*
1172  * Fill page/offset/length into spd, if it can hold more pages.
1173  */
1174 static inline int spd_fill_page(struct splice_pipe_desc *spd, struct page *page,
1175 				unsigned int len, unsigned int offset,
1176 				struct sk_buff *skb)
1177 {
1178 	if (unlikely(spd->nr_pages == PIPE_BUFFERS))
1179 		return 1;
1180 
1181 	spd->pages[spd->nr_pages] = page;
1182 	spd->partial[spd->nr_pages].len = len;
1183 	spd->partial[spd->nr_pages].offset = offset;
1184 	spd->partial[spd->nr_pages].private = (unsigned long) skb_get(skb);
1185 	spd->nr_pages++;
1186 	return 0;
1187 }
1188 
1189 /*
1190  * Map linear and fragment data from the skb to spd. Returns number of
1191  * pages mapped.
1192  */
1193 static int __skb_splice_bits(struct sk_buff *skb, unsigned int *offset,
1194 			     unsigned int *total_len,
1195 			     struct splice_pipe_desc *spd)
1196 {
1197 	unsigned int nr_pages = spd->nr_pages;
1198 	unsigned int poff, plen, len, toff, tlen;
1199 	int headlen, seg;
1200 
1201 	toff = *offset;
1202 	tlen = *total_len;
1203 	if (!tlen)
1204 		goto err;
1205 
1206 	/*
1207 	 * if the offset is greater than the linear part, go directly to
1208 	 * the fragments.
1209 	 */
1210 	headlen = skb_headlen(skb);
1211 	if (toff >= headlen) {
1212 		toff -= headlen;
1213 		goto map_frag;
1214 	}
1215 
1216 	/*
1217 	 * first map the linear region into the pages/partial map, skipping
1218 	 * any potential initial offset.
1219 	 */
1220 	len = 0;
1221 	while (len < headlen) {
1222 		void *p = skb->data + len;
1223 
1224 		poff = (unsigned long) p & (PAGE_SIZE - 1);
1225 		plen = min_t(unsigned int, headlen - len, PAGE_SIZE - poff);
1226 		len += plen;
1227 
1228 		if (toff) {
1229 			if (plen <= toff) {
1230 				toff -= plen;
1231 				continue;
1232 			}
1233 			plen -= toff;
1234 			poff += toff;
1235 			toff = 0;
1236 		}
1237 
1238 		plen = min(plen, tlen);
1239 		if (!plen)
1240 			break;
1241 
1242 		/*
1243 		 * just jump directly to update and return, no point
1244 		 * in going over fragments when the output is full.
1245 		 */
1246 		if (spd_fill_page(spd, virt_to_page(p), plen, poff, skb))
1247 			goto done;
1248 
1249 		tlen -= plen;
1250 	}
1251 
1252 	/*
1253 	 * then map the fragments
1254 	 */
1255 map_frag:
1256 	for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
1257 		const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
1258 
1259 		plen = f->size;
1260 		poff = f->page_offset;
1261 
1262 		if (toff) {
1263 			if (plen <= toff) {
1264 				toff -= plen;
1265 				continue;
1266 			}
1267 			plen -= toff;
1268 			poff += toff;
1269 			toff = 0;
1270 		}
1271 
1272 		plen = min(plen, tlen);
1273 		if (!plen)
1274 			break;
1275 
1276 		if (spd_fill_page(spd, f->page, plen, poff, skb))
1277 			break;
1278 
1279 		tlen -= plen;
1280 	}
1281 
1282 done:
1283 	if (spd->nr_pages - nr_pages) {
1284 		*offset = 0;
1285 		*total_len = tlen;
1286 		return 0;
1287 	}
1288 err:
1289 	return 1;
1290 }
1291 
1292 /*
1293  * Map data from the skb to a pipe. Should handle both the linear part,
1294  * the fragments, and the frag list. It does NOT handle frag lists within
1295  * the frag list, if such a thing exists. We'd probably need to recurse to
1296  * handle that cleanly.
1297  */
1298 int skb_splice_bits(struct sk_buff *__skb, unsigned int offset,
1299 		    struct pipe_inode_info *pipe, unsigned int tlen,
1300 		    unsigned int flags)
1301 {
1302 	struct partial_page partial[PIPE_BUFFERS];
1303 	struct page *pages[PIPE_BUFFERS];
1304 	struct splice_pipe_desc spd = {
1305 		.pages = pages,
1306 		.partial = partial,
1307 		.flags = flags,
1308 		.ops = &sock_pipe_buf_ops,
1309 		.spd_release = sock_spd_release,
1310 	};
1311 	struct sk_buff *skb;
1312 
1313 	/*
1314 	 * I'd love to avoid the clone here, but tcp_read_sock()
1315 	 * ignores reference counts and unconditonally kills the sk_buff
1316 	 * on return from the actor.
1317 	 */
1318 	skb = skb_clone(__skb, GFP_KERNEL);
1319 	if (unlikely(!skb))
1320 		return -ENOMEM;
1321 
1322 	/*
1323 	 * __skb_splice_bits() only fails if the output has no room left,
1324 	 * so no point in going over the frag_list for the error case.
1325 	 */
1326 	if (__skb_splice_bits(skb, &offset, &tlen, &spd))
1327 		goto done;
1328 	else if (!tlen)
1329 		goto done;
1330 
1331 	/*
1332 	 * now see if we have a frag_list to map
1333 	 */
1334 	if (skb_shinfo(skb)->frag_list) {
1335 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
1336 
1337 		for (; list && tlen; list = list->next) {
1338 			if (__skb_splice_bits(list, &offset, &tlen, &spd))
1339 				break;
1340 		}
1341 	}
1342 
1343 done:
1344 	/*
1345 	 * drop our reference to the clone, the pipe consumption will
1346 	 * drop the rest.
1347 	 */
1348 	kfree_skb(skb);
1349 
1350 	if (spd.nr_pages) {
1351 		int ret;
1352 
1353 		/*
1354 		 * Drop the socket lock, otherwise we have reverse
1355 		 * locking dependencies between sk_lock and i_mutex
1356 		 * here as compared to sendfile(). We enter here
1357 		 * with the socket lock held, and splice_to_pipe() will
1358 		 * grab the pipe inode lock. For sendfile() emulation,
1359 		 * we call into ->sendpage() with the i_mutex lock held
1360 		 * and networking will grab the socket lock.
1361 		 */
1362 		release_sock(__skb->sk);
1363 		ret = splice_to_pipe(pipe, &spd);
1364 		lock_sock(__skb->sk);
1365 		return ret;
1366 	}
1367 
1368 	return 0;
1369 }
1370 
1371 /**
1372  *	skb_store_bits - store bits from kernel buffer to skb
1373  *	@skb: destination buffer
1374  *	@offset: offset in destination
1375  *	@from: source buffer
1376  *	@len: number of bytes to copy
1377  *
1378  *	Copy the specified number of bytes from the source buffer to the
1379  *	destination skb.  This function handles all the messy bits of
1380  *	traversing fragment lists and such.
1381  */
1382 
1383 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
1384 {
1385 	int i, copy;
1386 	int start = skb_headlen(skb);
1387 
1388 	if (offset > (int)skb->len - len)
1389 		goto fault;
1390 
1391 	if ((copy = start - offset) > 0) {
1392 		if (copy > len)
1393 			copy = len;
1394 		skb_copy_to_linear_data_offset(skb, offset, from, copy);
1395 		if ((len -= copy) == 0)
1396 			return 0;
1397 		offset += copy;
1398 		from += copy;
1399 	}
1400 
1401 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1402 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1403 		int end;
1404 
1405 		BUG_TRAP(start <= offset + len);
1406 
1407 		end = start + frag->size;
1408 		if ((copy = end - offset) > 0) {
1409 			u8 *vaddr;
1410 
1411 			if (copy > len)
1412 				copy = len;
1413 
1414 			vaddr = kmap_skb_frag(frag);
1415 			memcpy(vaddr + frag->page_offset + offset - start,
1416 			       from, copy);
1417 			kunmap_skb_frag(vaddr);
1418 
1419 			if ((len -= copy) == 0)
1420 				return 0;
1421 			offset += copy;
1422 			from += copy;
1423 		}
1424 		start = end;
1425 	}
1426 
1427 	if (skb_shinfo(skb)->frag_list) {
1428 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
1429 
1430 		for (; list; list = list->next) {
1431 			int end;
1432 
1433 			BUG_TRAP(start <= offset + len);
1434 
1435 			end = start + list->len;
1436 			if ((copy = end - offset) > 0) {
1437 				if (copy > len)
1438 					copy = len;
1439 				if (skb_store_bits(list, offset - start,
1440 						   from, copy))
1441 					goto fault;
1442 				if ((len -= copy) == 0)
1443 					return 0;
1444 				offset += copy;
1445 				from += copy;
1446 			}
1447 			start = end;
1448 		}
1449 	}
1450 	if (!len)
1451 		return 0;
1452 
1453 fault:
1454 	return -EFAULT;
1455 }
1456 
1457 EXPORT_SYMBOL(skb_store_bits);
1458 
1459 /* Checksum skb data. */
1460 
1461 __wsum skb_checksum(const struct sk_buff *skb, int offset,
1462 			  int len, __wsum csum)
1463 {
1464 	int start = skb_headlen(skb);
1465 	int i, copy = start - offset;
1466 	int pos = 0;
1467 
1468 	/* Checksum header. */
1469 	if (copy > 0) {
1470 		if (copy > len)
1471 			copy = len;
1472 		csum = csum_partial(skb->data + offset, copy, csum);
1473 		if ((len -= copy) == 0)
1474 			return csum;
1475 		offset += copy;
1476 		pos	= copy;
1477 	}
1478 
1479 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1480 		int end;
1481 
1482 		BUG_TRAP(start <= offset + len);
1483 
1484 		end = start + skb_shinfo(skb)->frags[i].size;
1485 		if ((copy = end - offset) > 0) {
1486 			__wsum csum2;
1487 			u8 *vaddr;
1488 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1489 
1490 			if (copy > len)
1491 				copy = len;
1492 			vaddr = kmap_skb_frag(frag);
1493 			csum2 = csum_partial(vaddr + frag->page_offset +
1494 					     offset - start, copy, 0);
1495 			kunmap_skb_frag(vaddr);
1496 			csum = csum_block_add(csum, csum2, pos);
1497 			if (!(len -= copy))
1498 				return csum;
1499 			offset += copy;
1500 			pos    += copy;
1501 		}
1502 		start = end;
1503 	}
1504 
1505 	if (skb_shinfo(skb)->frag_list) {
1506 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
1507 
1508 		for (; list; list = list->next) {
1509 			int end;
1510 
1511 			BUG_TRAP(start <= offset + len);
1512 
1513 			end = start + list->len;
1514 			if ((copy = end - offset) > 0) {
1515 				__wsum csum2;
1516 				if (copy > len)
1517 					copy = len;
1518 				csum2 = skb_checksum(list, offset - start,
1519 						     copy, 0);
1520 				csum = csum_block_add(csum, csum2, pos);
1521 				if ((len -= copy) == 0)
1522 					return csum;
1523 				offset += copy;
1524 				pos    += copy;
1525 			}
1526 			start = end;
1527 		}
1528 	}
1529 	BUG_ON(len);
1530 
1531 	return csum;
1532 }
1533 
1534 /* Both of above in one bottle. */
1535 
1536 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
1537 				    u8 *to, int len, __wsum csum)
1538 {
1539 	int start = skb_headlen(skb);
1540 	int i, copy = start - offset;
1541 	int pos = 0;
1542 
1543 	/* Copy header. */
1544 	if (copy > 0) {
1545 		if (copy > len)
1546 			copy = len;
1547 		csum = csum_partial_copy_nocheck(skb->data + offset, to,
1548 						 copy, csum);
1549 		if ((len -= copy) == 0)
1550 			return csum;
1551 		offset += copy;
1552 		to     += copy;
1553 		pos	= copy;
1554 	}
1555 
1556 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1557 		int end;
1558 
1559 		BUG_TRAP(start <= offset + len);
1560 
1561 		end = start + skb_shinfo(skb)->frags[i].size;
1562 		if ((copy = end - offset) > 0) {
1563 			__wsum csum2;
1564 			u8 *vaddr;
1565 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1566 
1567 			if (copy > len)
1568 				copy = len;
1569 			vaddr = kmap_skb_frag(frag);
1570 			csum2 = csum_partial_copy_nocheck(vaddr +
1571 							  frag->page_offset +
1572 							  offset - start, to,
1573 							  copy, 0);
1574 			kunmap_skb_frag(vaddr);
1575 			csum = csum_block_add(csum, csum2, pos);
1576 			if (!(len -= copy))
1577 				return csum;
1578 			offset += copy;
1579 			to     += copy;
1580 			pos    += copy;
1581 		}
1582 		start = end;
1583 	}
1584 
1585 	if (skb_shinfo(skb)->frag_list) {
1586 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
1587 
1588 		for (; list; list = list->next) {
1589 			__wsum csum2;
1590 			int end;
1591 
1592 			BUG_TRAP(start <= offset + len);
1593 
1594 			end = start + list->len;
1595 			if ((copy = end - offset) > 0) {
1596 				if (copy > len)
1597 					copy = len;
1598 				csum2 = skb_copy_and_csum_bits(list,
1599 							       offset - start,
1600 							       to, copy, 0);
1601 				csum = csum_block_add(csum, csum2, pos);
1602 				if ((len -= copy) == 0)
1603 					return csum;
1604 				offset += copy;
1605 				to     += copy;
1606 				pos    += copy;
1607 			}
1608 			start = end;
1609 		}
1610 	}
1611 	BUG_ON(len);
1612 	return csum;
1613 }
1614 
1615 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
1616 {
1617 	__wsum csum;
1618 	long csstart;
1619 
1620 	if (skb->ip_summed == CHECKSUM_PARTIAL)
1621 		csstart = skb->csum_start - skb_headroom(skb);
1622 	else
1623 		csstart = skb_headlen(skb);
1624 
1625 	BUG_ON(csstart > skb_headlen(skb));
1626 
1627 	skb_copy_from_linear_data(skb, to, csstart);
1628 
1629 	csum = 0;
1630 	if (csstart != skb->len)
1631 		csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
1632 					      skb->len - csstart, 0);
1633 
1634 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
1635 		long csstuff = csstart + skb->csum_offset;
1636 
1637 		*((__sum16 *)(to + csstuff)) = csum_fold(csum);
1638 	}
1639 }
1640 
1641 /**
1642  *	skb_dequeue - remove from the head of the queue
1643  *	@list: list to dequeue from
1644  *
1645  *	Remove the head of the list. The list lock is taken so the function
1646  *	may be used safely with other locking list functions. The head item is
1647  *	returned or %NULL if the list is empty.
1648  */
1649 
1650 struct sk_buff *skb_dequeue(struct sk_buff_head *list)
1651 {
1652 	unsigned long flags;
1653 	struct sk_buff *result;
1654 
1655 	spin_lock_irqsave(&list->lock, flags);
1656 	result = __skb_dequeue(list);
1657 	spin_unlock_irqrestore(&list->lock, flags);
1658 	return result;
1659 }
1660 
1661 /**
1662  *	skb_dequeue_tail - remove from the tail of the queue
1663  *	@list: list to dequeue from
1664  *
1665  *	Remove the tail of the list. The list lock is taken so the function
1666  *	may be used safely with other locking list functions. The tail item is
1667  *	returned or %NULL if the list is empty.
1668  */
1669 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
1670 {
1671 	unsigned long flags;
1672 	struct sk_buff *result;
1673 
1674 	spin_lock_irqsave(&list->lock, flags);
1675 	result = __skb_dequeue_tail(list);
1676 	spin_unlock_irqrestore(&list->lock, flags);
1677 	return result;
1678 }
1679 
1680 /**
1681  *	skb_queue_purge - empty a list
1682  *	@list: list to empty
1683  *
1684  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
1685  *	the list and one reference dropped. This function takes the list
1686  *	lock and is atomic with respect to other list locking functions.
1687  */
1688 void skb_queue_purge(struct sk_buff_head *list)
1689 {
1690 	struct sk_buff *skb;
1691 	while ((skb = skb_dequeue(list)) != NULL)
1692 		kfree_skb(skb);
1693 }
1694 
1695 /**
1696  *	skb_queue_head - queue a buffer at the list head
1697  *	@list: list to use
1698  *	@newsk: buffer to queue
1699  *
1700  *	Queue a buffer at the start of the list. This function takes the
1701  *	list lock and can be used safely with other locking &sk_buff functions
1702  *	safely.
1703  *
1704  *	A buffer cannot be placed on two lists at the same time.
1705  */
1706 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
1707 {
1708 	unsigned long flags;
1709 
1710 	spin_lock_irqsave(&list->lock, flags);
1711 	__skb_queue_head(list, newsk);
1712 	spin_unlock_irqrestore(&list->lock, flags);
1713 }
1714 
1715 /**
1716  *	skb_queue_tail - queue a buffer at the list tail
1717  *	@list: list to use
1718  *	@newsk: buffer to queue
1719  *
1720  *	Queue a buffer at the tail of the list. This function takes the
1721  *	list lock and can be used safely with other locking &sk_buff functions
1722  *	safely.
1723  *
1724  *	A buffer cannot be placed on two lists at the same time.
1725  */
1726 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
1727 {
1728 	unsigned long flags;
1729 
1730 	spin_lock_irqsave(&list->lock, flags);
1731 	__skb_queue_tail(list, newsk);
1732 	spin_unlock_irqrestore(&list->lock, flags);
1733 }
1734 
1735 /**
1736  *	skb_unlink	-	remove a buffer from a list
1737  *	@skb: buffer to remove
1738  *	@list: list to use
1739  *
1740  *	Remove a packet from a list. The list locks are taken and this
1741  *	function is atomic with respect to other list locked calls
1742  *
1743  *	You must know what list the SKB is on.
1744  */
1745 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
1746 {
1747 	unsigned long flags;
1748 
1749 	spin_lock_irqsave(&list->lock, flags);
1750 	__skb_unlink(skb, list);
1751 	spin_unlock_irqrestore(&list->lock, flags);
1752 }
1753 
1754 /**
1755  *	skb_append	-	append a buffer
1756  *	@old: buffer to insert after
1757  *	@newsk: buffer to insert
1758  *	@list: list to use
1759  *
1760  *	Place a packet after a given packet in a list. The list locks are taken
1761  *	and this function is atomic with respect to other list locked calls.
1762  *	A buffer cannot be placed on two lists at the same time.
1763  */
1764 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
1765 {
1766 	unsigned long flags;
1767 
1768 	spin_lock_irqsave(&list->lock, flags);
1769 	__skb_append(old, newsk, list);
1770 	spin_unlock_irqrestore(&list->lock, flags);
1771 }
1772 
1773 
1774 /**
1775  *	skb_insert	-	insert a buffer
1776  *	@old: buffer to insert before
1777  *	@newsk: buffer to insert
1778  *	@list: list to use
1779  *
1780  *	Place a packet before a given packet in a list. The list locks are
1781  * 	taken and this function is atomic with respect to other list locked
1782  *	calls.
1783  *
1784  *	A buffer cannot be placed on two lists at the same time.
1785  */
1786 void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
1787 {
1788 	unsigned long flags;
1789 
1790 	spin_lock_irqsave(&list->lock, flags);
1791 	__skb_insert(newsk, old->prev, old, list);
1792 	spin_unlock_irqrestore(&list->lock, flags);
1793 }
1794 
1795 static inline void skb_split_inside_header(struct sk_buff *skb,
1796 					   struct sk_buff* skb1,
1797 					   const u32 len, const int pos)
1798 {
1799 	int i;
1800 
1801 	skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
1802 					 pos - len);
1803 	/* And move data appendix as is. */
1804 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1805 		skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
1806 
1807 	skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
1808 	skb_shinfo(skb)->nr_frags  = 0;
1809 	skb1->data_len		   = skb->data_len;
1810 	skb1->len		   += skb1->data_len;
1811 	skb->data_len		   = 0;
1812 	skb->len		   = len;
1813 	skb_set_tail_pointer(skb, len);
1814 }
1815 
1816 static inline void skb_split_no_header(struct sk_buff *skb,
1817 				       struct sk_buff* skb1,
1818 				       const u32 len, int pos)
1819 {
1820 	int i, k = 0;
1821 	const int nfrags = skb_shinfo(skb)->nr_frags;
1822 
1823 	skb_shinfo(skb)->nr_frags = 0;
1824 	skb1->len		  = skb1->data_len = skb->len - len;
1825 	skb->len		  = len;
1826 	skb->data_len		  = len - pos;
1827 
1828 	for (i = 0; i < nfrags; i++) {
1829 		int size = skb_shinfo(skb)->frags[i].size;
1830 
1831 		if (pos + size > len) {
1832 			skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
1833 
1834 			if (pos < len) {
1835 				/* Split frag.
1836 				 * We have two variants in this case:
1837 				 * 1. Move all the frag to the second
1838 				 *    part, if it is possible. F.e.
1839 				 *    this approach is mandatory for TUX,
1840 				 *    where splitting is expensive.
1841 				 * 2. Split is accurately. We make this.
1842 				 */
1843 				get_page(skb_shinfo(skb)->frags[i].page);
1844 				skb_shinfo(skb1)->frags[0].page_offset += len - pos;
1845 				skb_shinfo(skb1)->frags[0].size -= len - pos;
1846 				skb_shinfo(skb)->frags[i].size	= len - pos;
1847 				skb_shinfo(skb)->nr_frags++;
1848 			}
1849 			k++;
1850 		} else
1851 			skb_shinfo(skb)->nr_frags++;
1852 		pos += size;
1853 	}
1854 	skb_shinfo(skb1)->nr_frags = k;
1855 }
1856 
1857 /**
1858  * skb_split - Split fragmented skb to two parts at length len.
1859  * @skb: the buffer to split
1860  * @skb1: the buffer to receive the second part
1861  * @len: new length for skb
1862  */
1863 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
1864 {
1865 	int pos = skb_headlen(skb);
1866 
1867 	if (len < pos)	/* Split line is inside header. */
1868 		skb_split_inside_header(skb, skb1, len, pos);
1869 	else		/* Second chunk has no header, nothing to copy. */
1870 		skb_split_no_header(skb, skb1, len, pos);
1871 }
1872 
1873 /**
1874  * skb_prepare_seq_read - Prepare a sequential read of skb data
1875  * @skb: the buffer to read
1876  * @from: lower offset of data to be read
1877  * @to: upper offset of data to be read
1878  * @st: state variable
1879  *
1880  * Initializes the specified state variable. Must be called before
1881  * invoking skb_seq_read() for the first time.
1882  */
1883 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
1884 			  unsigned int to, struct skb_seq_state *st)
1885 {
1886 	st->lower_offset = from;
1887 	st->upper_offset = to;
1888 	st->root_skb = st->cur_skb = skb;
1889 	st->frag_idx = st->stepped_offset = 0;
1890 	st->frag_data = NULL;
1891 }
1892 
1893 /**
1894  * skb_seq_read - Sequentially read skb data
1895  * @consumed: number of bytes consumed by the caller so far
1896  * @data: destination pointer for data to be returned
1897  * @st: state variable
1898  *
1899  * Reads a block of skb data at &consumed relative to the
1900  * lower offset specified to skb_prepare_seq_read(). Assigns
1901  * the head of the data block to &data and returns the length
1902  * of the block or 0 if the end of the skb data or the upper
1903  * offset has been reached.
1904  *
1905  * The caller is not required to consume all of the data
1906  * returned, i.e. &consumed is typically set to the number
1907  * of bytes already consumed and the next call to
1908  * skb_seq_read() will return the remaining part of the block.
1909  *
1910  * Note: The size of each block of data returned can be arbitary,
1911  *       this limitation is the cost for zerocopy seqeuental
1912  *       reads of potentially non linear data.
1913  *
1914  * Note: Fragment lists within fragments are not implemented
1915  *       at the moment, state->root_skb could be replaced with
1916  *       a stack for this purpose.
1917  */
1918 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
1919 			  struct skb_seq_state *st)
1920 {
1921 	unsigned int block_limit, abs_offset = consumed + st->lower_offset;
1922 	skb_frag_t *frag;
1923 
1924 	if (unlikely(abs_offset >= st->upper_offset))
1925 		return 0;
1926 
1927 next_skb:
1928 	block_limit = skb_headlen(st->cur_skb);
1929 
1930 	if (abs_offset < block_limit) {
1931 		*data = st->cur_skb->data + abs_offset;
1932 		return block_limit - abs_offset;
1933 	}
1934 
1935 	if (st->frag_idx == 0 && !st->frag_data)
1936 		st->stepped_offset += skb_headlen(st->cur_skb);
1937 
1938 	while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
1939 		frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
1940 		block_limit = frag->size + st->stepped_offset;
1941 
1942 		if (abs_offset < block_limit) {
1943 			if (!st->frag_data)
1944 				st->frag_data = kmap_skb_frag(frag);
1945 
1946 			*data = (u8 *) st->frag_data + frag->page_offset +
1947 				(abs_offset - st->stepped_offset);
1948 
1949 			return block_limit - abs_offset;
1950 		}
1951 
1952 		if (st->frag_data) {
1953 			kunmap_skb_frag(st->frag_data);
1954 			st->frag_data = NULL;
1955 		}
1956 
1957 		st->frag_idx++;
1958 		st->stepped_offset += frag->size;
1959 	}
1960 
1961 	if (st->frag_data) {
1962 		kunmap_skb_frag(st->frag_data);
1963 		st->frag_data = NULL;
1964 	}
1965 
1966 	if (st->cur_skb->next) {
1967 		st->cur_skb = st->cur_skb->next;
1968 		st->frag_idx = 0;
1969 		goto next_skb;
1970 	} else if (st->root_skb == st->cur_skb &&
1971 		   skb_shinfo(st->root_skb)->frag_list) {
1972 		st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
1973 		goto next_skb;
1974 	}
1975 
1976 	return 0;
1977 }
1978 
1979 /**
1980  * skb_abort_seq_read - Abort a sequential read of skb data
1981  * @st: state variable
1982  *
1983  * Must be called if skb_seq_read() was not called until it
1984  * returned 0.
1985  */
1986 void skb_abort_seq_read(struct skb_seq_state *st)
1987 {
1988 	if (st->frag_data)
1989 		kunmap_skb_frag(st->frag_data);
1990 }
1991 
1992 #define TS_SKB_CB(state)	((struct skb_seq_state *) &((state)->cb))
1993 
1994 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
1995 					  struct ts_config *conf,
1996 					  struct ts_state *state)
1997 {
1998 	return skb_seq_read(offset, text, TS_SKB_CB(state));
1999 }
2000 
2001 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
2002 {
2003 	skb_abort_seq_read(TS_SKB_CB(state));
2004 }
2005 
2006 /**
2007  * skb_find_text - Find a text pattern in skb data
2008  * @skb: the buffer to look in
2009  * @from: search offset
2010  * @to: search limit
2011  * @config: textsearch configuration
2012  * @state: uninitialized textsearch state variable
2013  *
2014  * Finds a pattern in the skb data according to the specified
2015  * textsearch configuration. Use textsearch_next() to retrieve
2016  * subsequent occurrences of the pattern. Returns the offset
2017  * to the first occurrence or UINT_MAX if no match was found.
2018  */
2019 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
2020 			   unsigned int to, struct ts_config *config,
2021 			   struct ts_state *state)
2022 {
2023 	unsigned int ret;
2024 
2025 	config->get_next_block = skb_ts_get_next_block;
2026 	config->finish = skb_ts_finish;
2027 
2028 	skb_prepare_seq_read(skb, from, to, TS_SKB_CB(state));
2029 
2030 	ret = textsearch_find(config, state);
2031 	return (ret <= to - from ? ret : UINT_MAX);
2032 }
2033 
2034 /**
2035  * skb_append_datato_frags: - append the user data to a skb
2036  * @sk: sock  structure
2037  * @skb: skb structure to be appened with user data.
2038  * @getfrag: call back function to be used for getting the user data
2039  * @from: pointer to user message iov
2040  * @length: length of the iov message
2041  *
2042  * Description: This procedure append the user data in the fragment part
2043  * of the skb if any page alloc fails user this procedure returns  -ENOMEM
2044  */
2045 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
2046 			int (*getfrag)(void *from, char *to, int offset,
2047 					int len, int odd, struct sk_buff *skb),
2048 			void *from, int length)
2049 {
2050 	int frg_cnt = 0;
2051 	skb_frag_t *frag = NULL;
2052 	struct page *page = NULL;
2053 	int copy, left;
2054 	int offset = 0;
2055 	int ret;
2056 
2057 	do {
2058 		/* Return error if we don't have space for new frag */
2059 		frg_cnt = skb_shinfo(skb)->nr_frags;
2060 		if (frg_cnt >= MAX_SKB_FRAGS)
2061 			return -EFAULT;
2062 
2063 		/* allocate a new page for next frag */
2064 		page = alloc_pages(sk->sk_allocation, 0);
2065 
2066 		/* If alloc_page fails just return failure and caller will
2067 		 * free previous allocated pages by doing kfree_skb()
2068 		 */
2069 		if (page == NULL)
2070 			return -ENOMEM;
2071 
2072 		/* initialize the next frag */
2073 		sk->sk_sndmsg_page = page;
2074 		sk->sk_sndmsg_off = 0;
2075 		skb_fill_page_desc(skb, frg_cnt, page, 0, 0);
2076 		skb->truesize += PAGE_SIZE;
2077 		atomic_add(PAGE_SIZE, &sk->sk_wmem_alloc);
2078 
2079 		/* get the new initialized frag */
2080 		frg_cnt = skb_shinfo(skb)->nr_frags;
2081 		frag = &skb_shinfo(skb)->frags[frg_cnt - 1];
2082 
2083 		/* copy the user data to page */
2084 		left = PAGE_SIZE - frag->page_offset;
2085 		copy = (length > left)? left : length;
2086 
2087 		ret = getfrag(from, (page_address(frag->page) +
2088 			    frag->page_offset + frag->size),
2089 			    offset, copy, 0, skb);
2090 		if (ret < 0)
2091 			return -EFAULT;
2092 
2093 		/* copy was successful so update the size parameters */
2094 		sk->sk_sndmsg_off += copy;
2095 		frag->size += copy;
2096 		skb->len += copy;
2097 		skb->data_len += copy;
2098 		offset += copy;
2099 		length -= copy;
2100 
2101 	} while (length > 0);
2102 
2103 	return 0;
2104 }
2105 
2106 /**
2107  *	skb_pull_rcsum - pull skb and update receive checksum
2108  *	@skb: buffer to update
2109  *	@start: start of data before pull
2110  *	@len: length of data pulled
2111  *
2112  *	This function performs an skb_pull on the packet and updates
2113  *	update the CHECKSUM_COMPLETE checksum.  It should be used on
2114  *	receive path processing instead of skb_pull unless you know
2115  *	that the checksum difference is zero (e.g., a valid IP header)
2116  *	or you are setting ip_summed to CHECKSUM_NONE.
2117  */
2118 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
2119 {
2120 	BUG_ON(len > skb->len);
2121 	skb->len -= len;
2122 	BUG_ON(skb->len < skb->data_len);
2123 	skb_postpull_rcsum(skb, skb->data, len);
2124 	return skb->data += len;
2125 }
2126 
2127 EXPORT_SYMBOL_GPL(skb_pull_rcsum);
2128 
2129 /**
2130  *	skb_segment - Perform protocol segmentation on skb.
2131  *	@skb: buffer to segment
2132  *	@features: features for the output path (see dev->features)
2133  *
2134  *	This function performs segmentation on the given skb.  It returns
2135  *	the segment at the given position.  It returns NULL if there are
2136  *	no more segments to generate, or when an error is encountered.
2137  */
2138 struct sk_buff *skb_segment(struct sk_buff *skb, int features)
2139 {
2140 	struct sk_buff *segs = NULL;
2141 	struct sk_buff *tail = NULL;
2142 	unsigned int mss = skb_shinfo(skb)->gso_size;
2143 	unsigned int doffset = skb->data - skb_mac_header(skb);
2144 	unsigned int offset = doffset;
2145 	unsigned int headroom;
2146 	unsigned int len;
2147 	int sg = features & NETIF_F_SG;
2148 	int nfrags = skb_shinfo(skb)->nr_frags;
2149 	int err = -ENOMEM;
2150 	int i = 0;
2151 	int pos;
2152 
2153 	__skb_push(skb, doffset);
2154 	headroom = skb_headroom(skb);
2155 	pos = skb_headlen(skb);
2156 
2157 	do {
2158 		struct sk_buff *nskb;
2159 		skb_frag_t *frag;
2160 		int hsize;
2161 		int k;
2162 		int size;
2163 
2164 		len = skb->len - offset;
2165 		if (len > mss)
2166 			len = mss;
2167 
2168 		hsize = skb_headlen(skb) - offset;
2169 		if (hsize < 0)
2170 			hsize = 0;
2171 		if (hsize > len || !sg)
2172 			hsize = len;
2173 
2174 		nskb = alloc_skb(hsize + doffset + headroom, GFP_ATOMIC);
2175 		if (unlikely(!nskb))
2176 			goto err;
2177 
2178 		if (segs)
2179 			tail->next = nskb;
2180 		else
2181 			segs = nskb;
2182 		tail = nskb;
2183 
2184 		nskb->dev = skb->dev;
2185 		skb_copy_queue_mapping(nskb, skb);
2186 		nskb->priority = skb->priority;
2187 		nskb->protocol = skb->protocol;
2188 		nskb->dst = dst_clone(skb->dst);
2189 		memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
2190 		nskb->pkt_type = skb->pkt_type;
2191 		nskb->mac_len = skb->mac_len;
2192 
2193 		skb_reserve(nskb, headroom);
2194 		skb_reset_mac_header(nskb);
2195 		skb_set_network_header(nskb, skb->mac_len);
2196 		nskb->transport_header = (nskb->network_header +
2197 					  skb_network_header_len(skb));
2198 		skb_copy_from_linear_data(skb, skb_put(nskb, doffset),
2199 					  doffset);
2200 		if (!sg) {
2201 			nskb->csum = skb_copy_and_csum_bits(skb, offset,
2202 							    skb_put(nskb, len),
2203 							    len, 0);
2204 			continue;
2205 		}
2206 
2207 		frag = skb_shinfo(nskb)->frags;
2208 		k = 0;
2209 
2210 		nskb->ip_summed = CHECKSUM_PARTIAL;
2211 		nskb->csum = skb->csum;
2212 		skb_copy_from_linear_data_offset(skb, offset,
2213 						 skb_put(nskb, hsize), hsize);
2214 
2215 		while (pos < offset + len) {
2216 			BUG_ON(i >= nfrags);
2217 
2218 			*frag = skb_shinfo(skb)->frags[i];
2219 			get_page(frag->page);
2220 			size = frag->size;
2221 
2222 			if (pos < offset) {
2223 				frag->page_offset += offset - pos;
2224 				frag->size -= offset - pos;
2225 			}
2226 
2227 			k++;
2228 
2229 			if (pos + size <= offset + len) {
2230 				i++;
2231 				pos += size;
2232 			} else {
2233 				frag->size -= pos + size - (offset + len);
2234 				break;
2235 			}
2236 
2237 			frag++;
2238 		}
2239 
2240 		skb_shinfo(nskb)->nr_frags = k;
2241 		nskb->data_len = len - hsize;
2242 		nskb->len += nskb->data_len;
2243 		nskb->truesize += nskb->data_len;
2244 	} while ((offset += len) < skb->len);
2245 
2246 	return segs;
2247 
2248 err:
2249 	while ((skb = segs)) {
2250 		segs = skb->next;
2251 		kfree_skb(skb);
2252 	}
2253 	return ERR_PTR(err);
2254 }
2255 
2256 EXPORT_SYMBOL_GPL(skb_segment);
2257 
2258 void __init skb_init(void)
2259 {
2260 	skbuff_head_cache = kmem_cache_create("skbuff_head_cache",
2261 					      sizeof(struct sk_buff),
2262 					      0,
2263 					      SLAB_HWCACHE_ALIGN|SLAB_PANIC,
2264 					      NULL);
2265 	skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
2266 						(2*sizeof(struct sk_buff)) +
2267 						sizeof(atomic_t),
2268 						0,
2269 						SLAB_HWCACHE_ALIGN|SLAB_PANIC,
2270 						NULL);
2271 }
2272 
2273 /**
2274  *	skb_to_sgvec - Fill a scatter-gather list from a socket buffer
2275  *	@skb: Socket buffer containing the buffers to be mapped
2276  *	@sg: The scatter-gather list to map into
2277  *	@offset: The offset into the buffer's contents to start mapping
2278  *	@len: Length of buffer space to be mapped
2279  *
2280  *	Fill the specified scatter-gather list with mappings/pointers into a
2281  *	region of the buffer space attached to a socket buffer.
2282  */
2283 static int
2284 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
2285 {
2286 	int start = skb_headlen(skb);
2287 	int i, copy = start - offset;
2288 	int elt = 0;
2289 
2290 	if (copy > 0) {
2291 		if (copy > len)
2292 			copy = len;
2293 		sg_set_buf(sg, skb->data + offset, copy);
2294 		elt++;
2295 		if ((len -= copy) == 0)
2296 			return elt;
2297 		offset += copy;
2298 	}
2299 
2300 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2301 		int end;
2302 
2303 		BUG_TRAP(start <= offset + len);
2304 
2305 		end = start + skb_shinfo(skb)->frags[i].size;
2306 		if ((copy = end - offset) > 0) {
2307 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2308 
2309 			if (copy > len)
2310 				copy = len;
2311 			sg_set_page(&sg[elt], frag->page, copy,
2312 					frag->page_offset+offset-start);
2313 			elt++;
2314 			if (!(len -= copy))
2315 				return elt;
2316 			offset += copy;
2317 		}
2318 		start = end;
2319 	}
2320 
2321 	if (skb_shinfo(skb)->frag_list) {
2322 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
2323 
2324 		for (; list; list = list->next) {
2325 			int end;
2326 
2327 			BUG_TRAP(start <= offset + len);
2328 
2329 			end = start + list->len;
2330 			if ((copy = end - offset) > 0) {
2331 				if (copy > len)
2332 					copy = len;
2333 				elt += __skb_to_sgvec(list, sg+elt, offset - start,
2334 						      copy);
2335 				if ((len -= copy) == 0)
2336 					return elt;
2337 				offset += copy;
2338 			}
2339 			start = end;
2340 		}
2341 	}
2342 	BUG_ON(len);
2343 	return elt;
2344 }
2345 
2346 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
2347 {
2348 	int nsg = __skb_to_sgvec(skb, sg, offset, len);
2349 
2350 	sg_mark_end(&sg[nsg - 1]);
2351 
2352 	return nsg;
2353 }
2354 
2355 /**
2356  *	skb_cow_data - Check that a socket buffer's data buffers are writable
2357  *	@skb: The socket buffer to check.
2358  *	@tailbits: Amount of trailing space to be added
2359  *	@trailer: Returned pointer to the skb where the @tailbits space begins
2360  *
2361  *	Make sure that the data buffers attached to a socket buffer are
2362  *	writable. If they are not, private copies are made of the data buffers
2363  *	and the socket buffer is set to use these instead.
2364  *
2365  *	If @tailbits is given, make sure that there is space to write @tailbits
2366  *	bytes of data beyond current end of socket buffer.  @trailer will be
2367  *	set to point to the skb in which this space begins.
2368  *
2369  *	The number of scatterlist elements required to completely map the
2370  *	COW'd and extended socket buffer will be returned.
2371  */
2372 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
2373 {
2374 	int copyflag;
2375 	int elt;
2376 	struct sk_buff *skb1, **skb_p;
2377 
2378 	/* If skb is cloned or its head is paged, reallocate
2379 	 * head pulling out all the pages (pages are considered not writable
2380 	 * at the moment even if they are anonymous).
2381 	 */
2382 	if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
2383 	    __pskb_pull_tail(skb, skb_pagelen(skb)-skb_headlen(skb)) == NULL)
2384 		return -ENOMEM;
2385 
2386 	/* Easy case. Most of packets will go this way. */
2387 	if (!skb_shinfo(skb)->frag_list) {
2388 		/* A little of trouble, not enough of space for trailer.
2389 		 * This should not happen, when stack is tuned to generate
2390 		 * good frames. OK, on miss we reallocate and reserve even more
2391 		 * space, 128 bytes is fair. */
2392 
2393 		if (skb_tailroom(skb) < tailbits &&
2394 		    pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
2395 			return -ENOMEM;
2396 
2397 		/* Voila! */
2398 		*trailer = skb;
2399 		return 1;
2400 	}
2401 
2402 	/* Misery. We are in troubles, going to mincer fragments... */
2403 
2404 	elt = 1;
2405 	skb_p = &skb_shinfo(skb)->frag_list;
2406 	copyflag = 0;
2407 
2408 	while ((skb1 = *skb_p) != NULL) {
2409 		int ntail = 0;
2410 
2411 		/* The fragment is partially pulled by someone,
2412 		 * this can happen on input. Copy it and everything
2413 		 * after it. */
2414 
2415 		if (skb_shared(skb1))
2416 			copyflag = 1;
2417 
2418 		/* If the skb is the last, worry about trailer. */
2419 
2420 		if (skb1->next == NULL && tailbits) {
2421 			if (skb_shinfo(skb1)->nr_frags ||
2422 			    skb_shinfo(skb1)->frag_list ||
2423 			    skb_tailroom(skb1) < tailbits)
2424 				ntail = tailbits + 128;
2425 		}
2426 
2427 		if (copyflag ||
2428 		    skb_cloned(skb1) ||
2429 		    ntail ||
2430 		    skb_shinfo(skb1)->nr_frags ||
2431 		    skb_shinfo(skb1)->frag_list) {
2432 			struct sk_buff *skb2;
2433 
2434 			/* Fuck, we are miserable poor guys... */
2435 			if (ntail == 0)
2436 				skb2 = skb_copy(skb1, GFP_ATOMIC);
2437 			else
2438 				skb2 = skb_copy_expand(skb1,
2439 						       skb_headroom(skb1),
2440 						       ntail,
2441 						       GFP_ATOMIC);
2442 			if (unlikely(skb2 == NULL))
2443 				return -ENOMEM;
2444 
2445 			if (skb1->sk)
2446 				skb_set_owner_w(skb2, skb1->sk);
2447 
2448 			/* Looking around. Are we still alive?
2449 			 * OK, link new skb, drop old one */
2450 
2451 			skb2->next = skb1->next;
2452 			*skb_p = skb2;
2453 			kfree_skb(skb1);
2454 			skb1 = skb2;
2455 		}
2456 		elt++;
2457 		*trailer = skb1;
2458 		skb_p = &skb1->next;
2459 	}
2460 
2461 	return elt;
2462 }
2463 
2464 EXPORT_SYMBOL(___pskb_trim);
2465 EXPORT_SYMBOL(__kfree_skb);
2466 EXPORT_SYMBOL(kfree_skb);
2467 EXPORT_SYMBOL(__pskb_pull_tail);
2468 EXPORT_SYMBOL(__alloc_skb);
2469 EXPORT_SYMBOL(__netdev_alloc_skb);
2470 EXPORT_SYMBOL(pskb_copy);
2471 EXPORT_SYMBOL(pskb_expand_head);
2472 EXPORT_SYMBOL(skb_checksum);
2473 EXPORT_SYMBOL(skb_clone);
2474 EXPORT_SYMBOL(skb_copy);
2475 EXPORT_SYMBOL(skb_copy_and_csum_bits);
2476 EXPORT_SYMBOL(skb_copy_and_csum_dev);
2477 EXPORT_SYMBOL(skb_copy_bits);
2478 EXPORT_SYMBOL(skb_copy_expand);
2479 EXPORT_SYMBOL(skb_over_panic);
2480 EXPORT_SYMBOL(skb_pad);
2481 EXPORT_SYMBOL(skb_realloc_headroom);
2482 EXPORT_SYMBOL(skb_under_panic);
2483 EXPORT_SYMBOL(skb_dequeue);
2484 EXPORT_SYMBOL(skb_dequeue_tail);
2485 EXPORT_SYMBOL(skb_insert);
2486 EXPORT_SYMBOL(skb_queue_purge);
2487 EXPORT_SYMBOL(skb_queue_head);
2488 EXPORT_SYMBOL(skb_queue_tail);
2489 EXPORT_SYMBOL(skb_unlink);
2490 EXPORT_SYMBOL(skb_append);
2491 EXPORT_SYMBOL(skb_split);
2492 EXPORT_SYMBOL(skb_prepare_seq_read);
2493 EXPORT_SYMBOL(skb_seq_read);
2494 EXPORT_SYMBOL(skb_abort_seq_read);
2495 EXPORT_SYMBOL(skb_find_text);
2496 EXPORT_SYMBOL(skb_append_datato_frags);
2497 
2498 EXPORT_SYMBOL_GPL(skb_to_sgvec);
2499 EXPORT_SYMBOL_GPL(skb_cow_data);
2500