1 /* 2 * Routines having to do with the 'struct sk_buff' memory handlers. 3 * 4 * Authors: Alan Cox <iiitac@pyr.swan.ac.uk> 5 * Florian La Roche <rzsfl@rz.uni-sb.de> 6 * 7 * Version: $Id: skbuff.c,v 1.90 2001/11/07 05:56:19 davem Exp $ 8 * 9 * Fixes: 10 * Alan Cox : Fixed the worst of the load 11 * balancer bugs. 12 * Dave Platt : Interrupt stacking fix. 13 * Richard Kooijman : Timestamp fixes. 14 * Alan Cox : Changed buffer format. 15 * Alan Cox : destructor hook for AF_UNIX etc. 16 * Linus Torvalds : Better skb_clone. 17 * Alan Cox : Added skb_copy. 18 * Alan Cox : Added all the changed routines Linus 19 * only put in the headers 20 * Ray VanTassle : Fixed --skb->lock in free 21 * Alan Cox : skb_copy copy arp field 22 * Andi Kleen : slabified it. 23 * Robert Olsson : Removed skb_head_pool 24 * 25 * NOTE: 26 * The __skb_ routines should be called with interrupts 27 * disabled, or you better be *real* sure that the operation is atomic 28 * with respect to whatever list is being frobbed (e.g. via lock_sock() 29 * or via disabling bottom half handlers, etc). 30 * 31 * This program is free software; you can redistribute it and/or 32 * modify it under the terms of the GNU General Public License 33 * as published by the Free Software Foundation; either version 34 * 2 of the License, or (at your option) any later version. 35 */ 36 37 /* 38 * The functions in this file will not compile correctly with gcc 2.4.x 39 */ 40 41 #include <linux/module.h> 42 #include <linux/types.h> 43 #include <linux/kernel.h> 44 #include <linux/mm.h> 45 #include <linux/interrupt.h> 46 #include <linux/in.h> 47 #include <linux/inet.h> 48 #include <linux/slab.h> 49 #include <linux/netdevice.h> 50 #ifdef CONFIG_NET_CLS_ACT 51 #include <net/pkt_sched.h> 52 #endif 53 #include <linux/string.h> 54 #include <linux/skbuff.h> 55 #include <linux/splice.h> 56 #include <linux/cache.h> 57 #include <linux/rtnetlink.h> 58 #include <linux/init.h> 59 #include <linux/scatterlist.h> 60 61 #include <net/protocol.h> 62 #include <net/dst.h> 63 #include <net/sock.h> 64 #include <net/checksum.h> 65 #include <net/xfrm.h> 66 67 #include <asm/uaccess.h> 68 #include <asm/system.h> 69 70 #include "kmap_skb.h" 71 72 static struct kmem_cache *skbuff_head_cache __read_mostly; 73 static struct kmem_cache *skbuff_fclone_cache __read_mostly; 74 75 static void sock_pipe_buf_release(struct pipe_inode_info *pipe, 76 struct pipe_buffer *buf) 77 { 78 struct sk_buff *skb = (struct sk_buff *) buf->private; 79 80 kfree_skb(skb); 81 } 82 83 static void sock_pipe_buf_get(struct pipe_inode_info *pipe, 84 struct pipe_buffer *buf) 85 { 86 struct sk_buff *skb = (struct sk_buff *) buf->private; 87 88 skb_get(skb); 89 } 90 91 static int sock_pipe_buf_steal(struct pipe_inode_info *pipe, 92 struct pipe_buffer *buf) 93 { 94 return 1; 95 } 96 97 98 /* Pipe buffer operations for a socket. */ 99 static struct pipe_buf_operations sock_pipe_buf_ops = { 100 .can_merge = 0, 101 .map = generic_pipe_buf_map, 102 .unmap = generic_pipe_buf_unmap, 103 .confirm = generic_pipe_buf_confirm, 104 .release = sock_pipe_buf_release, 105 .steal = sock_pipe_buf_steal, 106 .get = sock_pipe_buf_get, 107 }; 108 109 /* 110 * Keep out-of-line to prevent kernel bloat. 111 * __builtin_return_address is not used because it is not always 112 * reliable. 113 */ 114 115 /** 116 * skb_over_panic - private function 117 * @skb: buffer 118 * @sz: size 119 * @here: address 120 * 121 * Out of line support code for skb_put(). Not user callable. 122 */ 123 void skb_over_panic(struct sk_buff *skb, int sz, void *here) 124 { 125 printk(KERN_EMERG "skb_over_panic: text:%p len:%d put:%d head:%p " 126 "data:%p tail:%#lx end:%#lx dev:%s\n", 127 here, skb->len, sz, skb->head, skb->data, 128 (unsigned long)skb->tail, (unsigned long)skb->end, 129 skb->dev ? skb->dev->name : "<NULL>"); 130 BUG(); 131 } 132 133 /** 134 * skb_under_panic - private function 135 * @skb: buffer 136 * @sz: size 137 * @here: address 138 * 139 * Out of line support code for skb_push(). Not user callable. 140 */ 141 142 void skb_under_panic(struct sk_buff *skb, int sz, void *here) 143 { 144 printk(KERN_EMERG "skb_under_panic: text:%p len:%d put:%d head:%p " 145 "data:%p tail:%#lx end:%#lx dev:%s\n", 146 here, skb->len, sz, skb->head, skb->data, 147 (unsigned long)skb->tail, (unsigned long)skb->end, 148 skb->dev ? skb->dev->name : "<NULL>"); 149 BUG(); 150 } 151 152 void skb_truesize_bug(struct sk_buff *skb) 153 { 154 printk(KERN_ERR "SKB BUG: Invalid truesize (%u) " 155 "len=%u, sizeof(sk_buff)=%Zd\n", 156 skb->truesize, skb->len, sizeof(struct sk_buff)); 157 } 158 EXPORT_SYMBOL(skb_truesize_bug); 159 160 /* Allocate a new skbuff. We do this ourselves so we can fill in a few 161 * 'private' fields and also do memory statistics to find all the 162 * [BEEP] leaks. 163 * 164 */ 165 166 /** 167 * __alloc_skb - allocate a network buffer 168 * @size: size to allocate 169 * @gfp_mask: allocation mask 170 * @fclone: allocate from fclone cache instead of head cache 171 * and allocate a cloned (child) skb 172 * @node: numa node to allocate memory on 173 * 174 * Allocate a new &sk_buff. The returned buffer has no headroom and a 175 * tail room of size bytes. The object has a reference count of one. 176 * The return is the buffer. On a failure the return is %NULL. 177 * 178 * Buffers may only be allocated from interrupts using a @gfp_mask of 179 * %GFP_ATOMIC. 180 */ 181 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask, 182 int fclone, int node) 183 { 184 struct kmem_cache *cache; 185 struct skb_shared_info *shinfo; 186 struct sk_buff *skb; 187 u8 *data; 188 189 cache = fclone ? skbuff_fclone_cache : skbuff_head_cache; 190 191 /* Get the HEAD */ 192 skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node); 193 if (!skb) 194 goto out; 195 196 size = SKB_DATA_ALIGN(size); 197 data = kmalloc_node_track_caller(size + sizeof(struct skb_shared_info), 198 gfp_mask, node); 199 if (!data) 200 goto nodata; 201 202 /* 203 * See comment in sk_buff definition, just before the 'tail' member 204 */ 205 memset(skb, 0, offsetof(struct sk_buff, tail)); 206 skb->truesize = size + sizeof(struct sk_buff); 207 atomic_set(&skb->users, 1); 208 skb->head = data; 209 skb->data = data; 210 skb_reset_tail_pointer(skb); 211 skb->end = skb->tail + size; 212 /* make sure we initialize shinfo sequentially */ 213 shinfo = skb_shinfo(skb); 214 atomic_set(&shinfo->dataref, 1); 215 shinfo->nr_frags = 0; 216 shinfo->gso_size = 0; 217 shinfo->gso_segs = 0; 218 shinfo->gso_type = 0; 219 shinfo->ip6_frag_id = 0; 220 shinfo->frag_list = NULL; 221 222 if (fclone) { 223 struct sk_buff *child = skb + 1; 224 atomic_t *fclone_ref = (atomic_t *) (child + 1); 225 226 skb->fclone = SKB_FCLONE_ORIG; 227 atomic_set(fclone_ref, 1); 228 229 child->fclone = SKB_FCLONE_UNAVAILABLE; 230 } 231 out: 232 return skb; 233 nodata: 234 kmem_cache_free(cache, skb); 235 skb = NULL; 236 goto out; 237 } 238 239 /** 240 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device 241 * @dev: network device to receive on 242 * @length: length to allocate 243 * @gfp_mask: get_free_pages mask, passed to alloc_skb 244 * 245 * Allocate a new &sk_buff and assign it a usage count of one. The 246 * buffer has unspecified headroom built in. Users should allocate 247 * the headroom they think they need without accounting for the 248 * built in space. The built in space is used for optimisations. 249 * 250 * %NULL is returned if there is no free memory. 251 */ 252 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, 253 unsigned int length, gfp_t gfp_mask) 254 { 255 int node = dev->dev.parent ? dev_to_node(dev->dev.parent) : -1; 256 struct sk_buff *skb; 257 258 skb = __alloc_skb(length + NET_SKB_PAD, gfp_mask, 0, node); 259 if (likely(skb)) { 260 skb_reserve(skb, NET_SKB_PAD); 261 skb->dev = dev; 262 } 263 return skb; 264 } 265 266 static void skb_drop_list(struct sk_buff **listp) 267 { 268 struct sk_buff *list = *listp; 269 270 *listp = NULL; 271 272 do { 273 struct sk_buff *this = list; 274 list = list->next; 275 kfree_skb(this); 276 } while (list); 277 } 278 279 static inline void skb_drop_fraglist(struct sk_buff *skb) 280 { 281 skb_drop_list(&skb_shinfo(skb)->frag_list); 282 } 283 284 static void skb_clone_fraglist(struct sk_buff *skb) 285 { 286 struct sk_buff *list; 287 288 for (list = skb_shinfo(skb)->frag_list; list; list = list->next) 289 skb_get(list); 290 } 291 292 static void skb_release_data(struct sk_buff *skb) 293 { 294 if (!skb->cloned || 295 !atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1, 296 &skb_shinfo(skb)->dataref)) { 297 if (skb_shinfo(skb)->nr_frags) { 298 int i; 299 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 300 put_page(skb_shinfo(skb)->frags[i].page); 301 } 302 303 if (skb_shinfo(skb)->frag_list) 304 skb_drop_fraglist(skb); 305 306 kfree(skb->head); 307 } 308 } 309 310 /* 311 * Free an skbuff by memory without cleaning the state. 312 */ 313 static void kfree_skbmem(struct sk_buff *skb) 314 { 315 struct sk_buff *other; 316 atomic_t *fclone_ref; 317 318 switch (skb->fclone) { 319 case SKB_FCLONE_UNAVAILABLE: 320 kmem_cache_free(skbuff_head_cache, skb); 321 break; 322 323 case SKB_FCLONE_ORIG: 324 fclone_ref = (atomic_t *) (skb + 2); 325 if (atomic_dec_and_test(fclone_ref)) 326 kmem_cache_free(skbuff_fclone_cache, skb); 327 break; 328 329 case SKB_FCLONE_CLONE: 330 fclone_ref = (atomic_t *) (skb + 1); 331 other = skb - 1; 332 333 /* The clone portion is available for 334 * fast-cloning again. 335 */ 336 skb->fclone = SKB_FCLONE_UNAVAILABLE; 337 338 if (atomic_dec_and_test(fclone_ref)) 339 kmem_cache_free(skbuff_fclone_cache, other); 340 break; 341 } 342 } 343 344 /* Free everything but the sk_buff shell. */ 345 static void skb_release_all(struct sk_buff *skb) 346 { 347 dst_release(skb->dst); 348 #ifdef CONFIG_XFRM 349 secpath_put(skb->sp); 350 #endif 351 if (skb->destructor) { 352 WARN_ON(in_irq()); 353 skb->destructor(skb); 354 } 355 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 356 nf_conntrack_put(skb->nfct); 357 nf_conntrack_put_reasm(skb->nfct_reasm); 358 #endif 359 #ifdef CONFIG_BRIDGE_NETFILTER 360 nf_bridge_put(skb->nf_bridge); 361 #endif 362 /* XXX: IS this still necessary? - JHS */ 363 #ifdef CONFIG_NET_SCHED 364 skb->tc_index = 0; 365 #ifdef CONFIG_NET_CLS_ACT 366 skb->tc_verd = 0; 367 #endif 368 #endif 369 skb_release_data(skb); 370 } 371 372 /** 373 * __kfree_skb - private function 374 * @skb: buffer 375 * 376 * Free an sk_buff. Release anything attached to the buffer. 377 * Clean the state. This is an internal helper function. Users should 378 * always call kfree_skb 379 */ 380 381 void __kfree_skb(struct sk_buff *skb) 382 { 383 skb_release_all(skb); 384 kfree_skbmem(skb); 385 } 386 387 /** 388 * kfree_skb - free an sk_buff 389 * @skb: buffer to free 390 * 391 * Drop a reference to the buffer and free it if the usage count has 392 * hit zero. 393 */ 394 void kfree_skb(struct sk_buff *skb) 395 { 396 if (unlikely(!skb)) 397 return; 398 if (likely(atomic_read(&skb->users) == 1)) 399 smp_rmb(); 400 else if (likely(!atomic_dec_and_test(&skb->users))) 401 return; 402 __kfree_skb(skb); 403 } 404 405 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old) 406 { 407 new->tstamp = old->tstamp; 408 new->dev = old->dev; 409 new->transport_header = old->transport_header; 410 new->network_header = old->network_header; 411 new->mac_header = old->mac_header; 412 new->dst = dst_clone(old->dst); 413 #ifdef CONFIG_INET 414 new->sp = secpath_get(old->sp); 415 #endif 416 memcpy(new->cb, old->cb, sizeof(old->cb)); 417 new->csum_start = old->csum_start; 418 new->csum_offset = old->csum_offset; 419 new->local_df = old->local_df; 420 new->pkt_type = old->pkt_type; 421 new->ip_summed = old->ip_summed; 422 skb_copy_queue_mapping(new, old); 423 new->priority = old->priority; 424 #if defined(CONFIG_IP_VS) || defined(CONFIG_IP_VS_MODULE) 425 new->ipvs_property = old->ipvs_property; 426 #endif 427 new->protocol = old->protocol; 428 new->mark = old->mark; 429 __nf_copy(new, old); 430 #if defined(CONFIG_NETFILTER_XT_TARGET_TRACE) || \ 431 defined(CONFIG_NETFILTER_XT_TARGET_TRACE_MODULE) 432 new->nf_trace = old->nf_trace; 433 #endif 434 #ifdef CONFIG_NET_SCHED 435 new->tc_index = old->tc_index; 436 #ifdef CONFIG_NET_CLS_ACT 437 new->tc_verd = old->tc_verd; 438 #endif 439 #endif 440 skb_copy_secmark(new, old); 441 } 442 443 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb) 444 { 445 #define C(x) n->x = skb->x 446 447 n->next = n->prev = NULL; 448 n->sk = NULL; 449 __copy_skb_header(n, skb); 450 451 C(len); 452 C(data_len); 453 C(mac_len); 454 n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len; 455 n->cloned = 1; 456 n->nohdr = 0; 457 n->destructor = NULL; 458 C(iif); 459 C(tail); 460 C(end); 461 C(head); 462 C(data); 463 C(truesize); 464 atomic_set(&n->users, 1); 465 466 atomic_inc(&(skb_shinfo(skb)->dataref)); 467 skb->cloned = 1; 468 469 return n; 470 #undef C 471 } 472 473 /** 474 * skb_morph - morph one skb into another 475 * @dst: the skb to receive the contents 476 * @src: the skb to supply the contents 477 * 478 * This is identical to skb_clone except that the target skb is 479 * supplied by the user. 480 * 481 * The target skb is returned upon exit. 482 */ 483 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src) 484 { 485 skb_release_all(dst); 486 return __skb_clone(dst, src); 487 } 488 EXPORT_SYMBOL_GPL(skb_morph); 489 490 /** 491 * skb_clone - duplicate an sk_buff 492 * @skb: buffer to clone 493 * @gfp_mask: allocation priority 494 * 495 * Duplicate an &sk_buff. The new one is not owned by a socket. Both 496 * copies share the same packet data but not structure. The new 497 * buffer has a reference count of 1. If the allocation fails the 498 * function returns %NULL otherwise the new buffer is returned. 499 * 500 * If this function is called from an interrupt gfp_mask() must be 501 * %GFP_ATOMIC. 502 */ 503 504 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask) 505 { 506 struct sk_buff *n; 507 508 n = skb + 1; 509 if (skb->fclone == SKB_FCLONE_ORIG && 510 n->fclone == SKB_FCLONE_UNAVAILABLE) { 511 atomic_t *fclone_ref = (atomic_t *) (n + 1); 512 n->fclone = SKB_FCLONE_CLONE; 513 atomic_inc(fclone_ref); 514 } else { 515 n = kmem_cache_alloc(skbuff_head_cache, gfp_mask); 516 if (!n) 517 return NULL; 518 n->fclone = SKB_FCLONE_UNAVAILABLE; 519 } 520 521 return __skb_clone(n, skb); 522 } 523 524 static void copy_skb_header(struct sk_buff *new, const struct sk_buff *old) 525 { 526 #ifndef NET_SKBUFF_DATA_USES_OFFSET 527 /* 528 * Shift between the two data areas in bytes 529 */ 530 unsigned long offset = new->data - old->data; 531 #endif 532 533 __copy_skb_header(new, old); 534 535 #ifndef NET_SKBUFF_DATA_USES_OFFSET 536 /* {transport,network,mac}_header are relative to skb->head */ 537 new->transport_header += offset; 538 new->network_header += offset; 539 new->mac_header += offset; 540 #endif 541 skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size; 542 skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs; 543 skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type; 544 } 545 546 /** 547 * skb_copy - create private copy of an sk_buff 548 * @skb: buffer to copy 549 * @gfp_mask: allocation priority 550 * 551 * Make a copy of both an &sk_buff and its data. This is used when the 552 * caller wishes to modify the data and needs a private copy of the 553 * data to alter. Returns %NULL on failure or the pointer to the buffer 554 * on success. The returned buffer has a reference count of 1. 555 * 556 * As by-product this function converts non-linear &sk_buff to linear 557 * one, so that &sk_buff becomes completely private and caller is allowed 558 * to modify all the data of returned buffer. This means that this 559 * function is not recommended for use in circumstances when only 560 * header is going to be modified. Use pskb_copy() instead. 561 */ 562 563 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask) 564 { 565 int headerlen = skb->data - skb->head; 566 /* 567 * Allocate the copy buffer 568 */ 569 struct sk_buff *n; 570 #ifdef NET_SKBUFF_DATA_USES_OFFSET 571 n = alloc_skb(skb->end + skb->data_len, gfp_mask); 572 #else 573 n = alloc_skb(skb->end - skb->head + skb->data_len, gfp_mask); 574 #endif 575 if (!n) 576 return NULL; 577 578 /* Set the data pointer */ 579 skb_reserve(n, headerlen); 580 /* Set the tail pointer and length */ 581 skb_put(n, skb->len); 582 583 if (skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len)) 584 BUG(); 585 586 copy_skb_header(n, skb); 587 return n; 588 } 589 590 591 /** 592 * pskb_copy - create copy of an sk_buff with private head. 593 * @skb: buffer to copy 594 * @gfp_mask: allocation priority 595 * 596 * Make a copy of both an &sk_buff and part of its data, located 597 * in header. Fragmented data remain shared. This is used when 598 * the caller wishes to modify only header of &sk_buff and needs 599 * private copy of the header to alter. Returns %NULL on failure 600 * or the pointer to the buffer on success. 601 * The returned buffer has a reference count of 1. 602 */ 603 604 struct sk_buff *pskb_copy(struct sk_buff *skb, gfp_t gfp_mask) 605 { 606 /* 607 * Allocate the copy buffer 608 */ 609 struct sk_buff *n; 610 #ifdef NET_SKBUFF_DATA_USES_OFFSET 611 n = alloc_skb(skb->end, gfp_mask); 612 #else 613 n = alloc_skb(skb->end - skb->head, gfp_mask); 614 #endif 615 if (!n) 616 goto out; 617 618 /* Set the data pointer */ 619 skb_reserve(n, skb->data - skb->head); 620 /* Set the tail pointer and length */ 621 skb_put(n, skb_headlen(skb)); 622 /* Copy the bytes */ 623 skb_copy_from_linear_data(skb, n->data, n->len); 624 625 n->truesize += skb->data_len; 626 n->data_len = skb->data_len; 627 n->len = skb->len; 628 629 if (skb_shinfo(skb)->nr_frags) { 630 int i; 631 632 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 633 skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i]; 634 get_page(skb_shinfo(n)->frags[i].page); 635 } 636 skb_shinfo(n)->nr_frags = i; 637 } 638 639 if (skb_shinfo(skb)->frag_list) { 640 skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list; 641 skb_clone_fraglist(n); 642 } 643 644 copy_skb_header(n, skb); 645 out: 646 return n; 647 } 648 649 /** 650 * pskb_expand_head - reallocate header of &sk_buff 651 * @skb: buffer to reallocate 652 * @nhead: room to add at head 653 * @ntail: room to add at tail 654 * @gfp_mask: allocation priority 655 * 656 * Expands (or creates identical copy, if &nhead and &ntail are zero) 657 * header of skb. &sk_buff itself is not changed. &sk_buff MUST have 658 * reference count of 1. Returns zero in the case of success or error, 659 * if expansion failed. In the last case, &sk_buff is not changed. 660 * 661 * All the pointers pointing into skb header may change and must be 662 * reloaded after call to this function. 663 */ 664 665 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, 666 gfp_t gfp_mask) 667 { 668 int i; 669 u8 *data; 670 #ifdef NET_SKBUFF_DATA_USES_OFFSET 671 int size = nhead + skb->end + ntail; 672 #else 673 int size = nhead + (skb->end - skb->head) + ntail; 674 #endif 675 long off; 676 677 if (skb_shared(skb)) 678 BUG(); 679 680 size = SKB_DATA_ALIGN(size); 681 682 data = kmalloc(size + sizeof(struct skb_shared_info), gfp_mask); 683 if (!data) 684 goto nodata; 685 686 /* Copy only real data... and, alas, header. This should be 687 * optimized for the cases when header is void. */ 688 #ifdef NET_SKBUFF_DATA_USES_OFFSET 689 memcpy(data + nhead, skb->head, skb->tail); 690 #else 691 memcpy(data + nhead, skb->head, skb->tail - skb->head); 692 #endif 693 memcpy(data + size, skb_end_pointer(skb), 694 sizeof(struct skb_shared_info)); 695 696 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 697 get_page(skb_shinfo(skb)->frags[i].page); 698 699 if (skb_shinfo(skb)->frag_list) 700 skb_clone_fraglist(skb); 701 702 skb_release_data(skb); 703 704 off = (data + nhead) - skb->head; 705 706 skb->head = data; 707 skb->data += off; 708 #ifdef NET_SKBUFF_DATA_USES_OFFSET 709 skb->end = size; 710 off = nhead; 711 #else 712 skb->end = skb->head + size; 713 #endif 714 /* {transport,network,mac}_header and tail are relative to skb->head */ 715 skb->tail += off; 716 skb->transport_header += off; 717 skb->network_header += off; 718 skb->mac_header += off; 719 skb->csum_start += nhead; 720 skb->cloned = 0; 721 skb->hdr_len = 0; 722 skb->nohdr = 0; 723 atomic_set(&skb_shinfo(skb)->dataref, 1); 724 return 0; 725 726 nodata: 727 return -ENOMEM; 728 } 729 730 /* Make private copy of skb with writable head and some headroom */ 731 732 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom) 733 { 734 struct sk_buff *skb2; 735 int delta = headroom - skb_headroom(skb); 736 737 if (delta <= 0) 738 skb2 = pskb_copy(skb, GFP_ATOMIC); 739 else { 740 skb2 = skb_clone(skb, GFP_ATOMIC); 741 if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0, 742 GFP_ATOMIC)) { 743 kfree_skb(skb2); 744 skb2 = NULL; 745 } 746 } 747 return skb2; 748 } 749 750 751 /** 752 * skb_copy_expand - copy and expand sk_buff 753 * @skb: buffer to copy 754 * @newheadroom: new free bytes at head 755 * @newtailroom: new free bytes at tail 756 * @gfp_mask: allocation priority 757 * 758 * Make a copy of both an &sk_buff and its data and while doing so 759 * allocate additional space. 760 * 761 * This is used when the caller wishes to modify the data and needs a 762 * private copy of the data to alter as well as more space for new fields. 763 * Returns %NULL on failure or the pointer to the buffer 764 * on success. The returned buffer has a reference count of 1. 765 * 766 * You must pass %GFP_ATOMIC as the allocation priority if this function 767 * is called from an interrupt. 768 */ 769 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, 770 int newheadroom, int newtailroom, 771 gfp_t gfp_mask) 772 { 773 /* 774 * Allocate the copy buffer 775 */ 776 struct sk_buff *n = alloc_skb(newheadroom + skb->len + newtailroom, 777 gfp_mask); 778 int oldheadroom = skb_headroom(skb); 779 int head_copy_len, head_copy_off; 780 int off; 781 782 if (!n) 783 return NULL; 784 785 skb_reserve(n, newheadroom); 786 787 /* Set the tail pointer and length */ 788 skb_put(n, skb->len); 789 790 head_copy_len = oldheadroom; 791 head_copy_off = 0; 792 if (newheadroom <= head_copy_len) 793 head_copy_len = newheadroom; 794 else 795 head_copy_off = newheadroom - head_copy_len; 796 797 /* Copy the linear header and data. */ 798 if (skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off, 799 skb->len + head_copy_len)) 800 BUG(); 801 802 copy_skb_header(n, skb); 803 804 off = newheadroom - oldheadroom; 805 n->csum_start += off; 806 #ifdef NET_SKBUFF_DATA_USES_OFFSET 807 n->transport_header += off; 808 n->network_header += off; 809 n->mac_header += off; 810 #endif 811 812 return n; 813 } 814 815 /** 816 * skb_pad - zero pad the tail of an skb 817 * @skb: buffer to pad 818 * @pad: space to pad 819 * 820 * Ensure that a buffer is followed by a padding area that is zero 821 * filled. Used by network drivers which may DMA or transfer data 822 * beyond the buffer end onto the wire. 823 * 824 * May return error in out of memory cases. The skb is freed on error. 825 */ 826 827 int skb_pad(struct sk_buff *skb, int pad) 828 { 829 int err; 830 int ntail; 831 832 /* If the skbuff is non linear tailroom is always zero.. */ 833 if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) { 834 memset(skb->data+skb->len, 0, pad); 835 return 0; 836 } 837 838 ntail = skb->data_len + pad - (skb->end - skb->tail); 839 if (likely(skb_cloned(skb) || ntail > 0)) { 840 err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC); 841 if (unlikely(err)) 842 goto free_skb; 843 } 844 845 /* FIXME: The use of this function with non-linear skb's really needs 846 * to be audited. 847 */ 848 err = skb_linearize(skb); 849 if (unlikely(err)) 850 goto free_skb; 851 852 memset(skb->data + skb->len, 0, pad); 853 return 0; 854 855 free_skb: 856 kfree_skb(skb); 857 return err; 858 } 859 860 /* Trims skb to length len. It can change skb pointers. 861 */ 862 863 int ___pskb_trim(struct sk_buff *skb, unsigned int len) 864 { 865 struct sk_buff **fragp; 866 struct sk_buff *frag; 867 int offset = skb_headlen(skb); 868 int nfrags = skb_shinfo(skb)->nr_frags; 869 int i; 870 int err; 871 872 if (skb_cloned(skb) && 873 unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))) 874 return err; 875 876 i = 0; 877 if (offset >= len) 878 goto drop_pages; 879 880 for (; i < nfrags; i++) { 881 int end = offset + skb_shinfo(skb)->frags[i].size; 882 883 if (end < len) { 884 offset = end; 885 continue; 886 } 887 888 skb_shinfo(skb)->frags[i++].size = len - offset; 889 890 drop_pages: 891 skb_shinfo(skb)->nr_frags = i; 892 893 for (; i < nfrags; i++) 894 put_page(skb_shinfo(skb)->frags[i].page); 895 896 if (skb_shinfo(skb)->frag_list) 897 skb_drop_fraglist(skb); 898 goto done; 899 } 900 901 for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp); 902 fragp = &frag->next) { 903 int end = offset + frag->len; 904 905 if (skb_shared(frag)) { 906 struct sk_buff *nfrag; 907 908 nfrag = skb_clone(frag, GFP_ATOMIC); 909 if (unlikely(!nfrag)) 910 return -ENOMEM; 911 912 nfrag->next = frag->next; 913 kfree_skb(frag); 914 frag = nfrag; 915 *fragp = frag; 916 } 917 918 if (end < len) { 919 offset = end; 920 continue; 921 } 922 923 if (end > len && 924 unlikely((err = pskb_trim(frag, len - offset)))) 925 return err; 926 927 if (frag->next) 928 skb_drop_list(&frag->next); 929 break; 930 } 931 932 done: 933 if (len > skb_headlen(skb)) { 934 skb->data_len -= skb->len - len; 935 skb->len = len; 936 } else { 937 skb->len = len; 938 skb->data_len = 0; 939 skb_set_tail_pointer(skb, len); 940 } 941 942 return 0; 943 } 944 945 /** 946 * __pskb_pull_tail - advance tail of skb header 947 * @skb: buffer to reallocate 948 * @delta: number of bytes to advance tail 949 * 950 * The function makes a sense only on a fragmented &sk_buff, 951 * it expands header moving its tail forward and copying necessary 952 * data from fragmented part. 953 * 954 * &sk_buff MUST have reference count of 1. 955 * 956 * Returns %NULL (and &sk_buff does not change) if pull failed 957 * or value of new tail of skb in the case of success. 958 * 959 * All the pointers pointing into skb header may change and must be 960 * reloaded after call to this function. 961 */ 962 963 /* Moves tail of skb head forward, copying data from fragmented part, 964 * when it is necessary. 965 * 1. It may fail due to malloc failure. 966 * 2. It may change skb pointers. 967 * 968 * It is pretty complicated. Luckily, it is called only in exceptional cases. 969 */ 970 unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta) 971 { 972 /* If skb has not enough free space at tail, get new one 973 * plus 128 bytes for future expansions. If we have enough 974 * room at tail, reallocate without expansion only if skb is cloned. 975 */ 976 int i, k, eat = (skb->tail + delta) - skb->end; 977 978 if (eat > 0 || skb_cloned(skb)) { 979 if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0, 980 GFP_ATOMIC)) 981 return NULL; 982 } 983 984 if (skb_copy_bits(skb, skb_headlen(skb), skb_tail_pointer(skb), delta)) 985 BUG(); 986 987 /* Optimization: no fragments, no reasons to preestimate 988 * size of pulled pages. Superb. 989 */ 990 if (!skb_shinfo(skb)->frag_list) 991 goto pull_pages; 992 993 /* Estimate size of pulled pages. */ 994 eat = delta; 995 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 996 if (skb_shinfo(skb)->frags[i].size >= eat) 997 goto pull_pages; 998 eat -= skb_shinfo(skb)->frags[i].size; 999 } 1000 1001 /* If we need update frag list, we are in troubles. 1002 * Certainly, it possible to add an offset to skb data, 1003 * but taking into account that pulling is expected to 1004 * be very rare operation, it is worth to fight against 1005 * further bloating skb head and crucify ourselves here instead. 1006 * Pure masohism, indeed. 8)8) 1007 */ 1008 if (eat) { 1009 struct sk_buff *list = skb_shinfo(skb)->frag_list; 1010 struct sk_buff *clone = NULL; 1011 struct sk_buff *insp = NULL; 1012 1013 do { 1014 BUG_ON(!list); 1015 1016 if (list->len <= eat) { 1017 /* Eaten as whole. */ 1018 eat -= list->len; 1019 list = list->next; 1020 insp = list; 1021 } else { 1022 /* Eaten partially. */ 1023 1024 if (skb_shared(list)) { 1025 /* Sucks! We need to fork list. :-( */ 1026 clone = skb_clone(list, GFP_ATOMIC); 1027 if (!clone) 1028 return NULL; 1029 insp = list->next; 1030 list = clone; 1031 } else { 1032 /* This may be pulled without 1033 * problems. */ 1034 insp = list; 1035 } 1036 if (!pskb_pull(list, eat)) { 1037 if (clone) 1038 kfree_skb(clone); 1039 return NULL; 1040 } 1041 break; 1042 } 1043 } while (eat); 1044 1045 /* Free pulled out fragments. */ 1046 while ((list = skb_shinfo(skb)->frag_list) != insp) { 1047 skb_shinfo(skb)->frag_list = list->next; 1048 kfree_skb(list); 1049 } 1050 /* And insert new clone at head. */ 1051 if (clone) { 1052 clone->next = list; 1053 skb_shinfo(skb)->frag_list = clone; 1054 } 1055 } 1056 /* Success! Now we may commit changes to skb data. */ 1057 1058 pull_pages: 1059 eat = delta; 1060 k = 0; 1061 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1062 if (skb_shinfo(skb)->frags[i].size <= eat) { 1063 put_page(skb_shinfo(skb)->frags[i].page); 1064 eat -= skb_shinfo(skb)->frags[i].size; 1065 } else { 1066 skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i]; 1067 if (eat) { 1068 skb_shinfo(skb)->frags[k].page_offset += eat; 1069 skb_shinfo(skb)->frags[k].size -= eat; 1070 eat = 0; 1071 } 1072 k++; 1073 } 1074 } 1075 skb_shinfo(skb)->nr_frags = k; 1076 1077 skb->tail += delta; 1078 skb->data_len -= delta; 1079 1080 return skb_tail_pointer(skb); 1081 } 1082 1083 /* Copy some data bits from skb to kernel buffer. */ 1084 1085 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len) 1086 { 1087 int i, copy; 1088 int start = skb_headlen(skb); 1089 1090 if (offset > (int)skb->len - len) 1091 goto fault; 1092 1093 /* Copy header. */ 1094 if ((copy = start - offset) > 0) { 1095 if (copy > len) 1096 copy = len; 1097 skb_copy_from_linear_data_offset(skb, offset, to, copy); 1098 if ((len -= copy) == 0) 1099 return 0; 1100 offset += copy; 1101 to += copy; 1102 } 1103 1104 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1105 int end; 1106 1107 BUG_TRAP(start <= offset + len); 1108 1109 end = start + skb_shinfo(skb)->frags[i].size; 1110 if ((copy = end - offset) > 0) { 1111 u8 *vaddr; 1112 1113 if (copy > len) 1114 copy = len; 1115 1116 vaddr = kmap_skb_frag(&skb_shinfo(skb)->frags[i]); 1117 memcpy(to, 1118 vaddr + skb_shinfo(skb)->frags[i].page_offset+ 1119 offset - start, copy); 1120 kunmap_skb_frag(vaddr); 1121 1122 if ((len -= copy) == 0) 1123 return 0; 1124 offset += copy; 1125 to += copy; 1126 } 1127 start = end; 1128 } 1129 1130 if (skb_shinfo(skb)->frag_list) { 1131 struct sk_buff *list = skb_shinfo(skb)->frag_list; 1132 1133 for (; list; list = list->next) { 1134 int end; 1135 1136 BUG_TRAP(start <= offset + len); 1137 1138 end = start + list->len; 1139 if ((copy = end - offset) > 0) { 1140 if (copy > len) 1141 copy = len; 1142 if (skb_copy_bits(list, offset - start, 1143 to, copy)) 1144 goto fault; 1145 if ((len -= copy) == 0) 1146 return 0; 1147 offset += copy; 1148 to += copy; 1149 } 1150 start = end; 1151 } 1152 } 1153 if (!len) 1154 return 0; 1155 1156 fault: 1157 return -EFAULT; 1158 } 1159 1160 /* 1161 * Callback from splice_to_pipe(), if we need to release some pages 1162 * at the end of the spd in case we error'ed out in filling the pipe. 1163 */ 1164 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i) 1165 { 1166 struct sk_buff *skb = (struct sk_buff *) spd->partial[i].private; 1167 1168 kfree_skb(skb); 1169 } 1170 1171 /* 1172 * Fill page/offset/length into spd, if it can hold more pages. 1173 */ 1174 static inline int spd_fill_page(struct splice_pipe_desc *spd, struct page *page, 1175 unsigned int len, unsigned int offset, 1176 struct sk_buff *skb) 1177 { 1178 if (unlikely(spd->nr_pages == PIPE_BUFFERS)) 1179 return 1; 1180 1181 spd->pages[spd->nr_pages] = page; 1182 spd->partial[spd->nr_pages].len = len; 1183 spd->partial[spd->nr_pages].offset = offset; 1184 spd->partial[spd->nr_pages].private = (unsigned long) skb_get(skb); 1185 spd->nr_pages++; 1186 return 0; 1187 } 1188 1189 /* 1190 * Map linear and fragment data from the skb to spd. Returns number of 1191 * pages mapped. 1192 */ 1193 static int __skb_splice_bits(struct sk_buff *skb, unsigned int *offset, 1194 unsigned int *total_len, 1195 struct splice_pipe_desc *spd) 1196 { 1197 unsigned int nr_pages = spd->nr_pages; 1198 unsigned int poff, plen, len, toff, tlen; 1199 int headlen, seg; 1200 1201 toff = *offset; 1202 tlen = *total_len; 1203 if (!tlen) 1204 goto err; 1205 1206 /* 1207 * if the offset is greater than the linear part, go directly to 1208 * the fragments. 1209 */ 1210 headlen = skb_headlen(skb); 1211 if (toff >= headlen) { 1212 toff -= headlen; 1213 goto map_frag; 1214 } 1215 1216 /* 1217 * first map the linear region into the pages/partial map, skipping 1218 * any potential initial offset. 1219 */ 1220 len = 0; 1221 while (len < headlen) { 1222 void *p = skb->data + len; 1223 1224 poff = (unsigned long) p & (PAGE_SIZE - 1); 1225 plen = min_t(unsigned int, headlen - len, PAGE_SIZE - poff); 1226 len += plen; 1227 1228 if (toff) { 1229 if (plen <= toff) { 1230 toff -= plen; 1231 continue; 1232 } 1233 plen -= toff; 1234 poff += toff; 1235 toff = 0; 1236 } 1237 1238 plen = min(plen, tlen); 1239 if (!plen) 1240 break; 1241 1242 /* 1243 * just jump directly to update and return, no point 1244 * in going over fragments when the output is full. 1245 */ 1246 if (spd_fill_page(spd, virt_to_page(p), plen, poff, skb)) 1247 goto done; 1248 1249 tlen -= plen; 1250 } 1251 1252 /* 1253 * then map the fragments 1254 */ 1255 map_frag: 1256 for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) { 1257 const skb_frag_t *f = &skb_shinfo(skb)->frags[seg]; 1258 1259 plen = f->size; 1260 poff = f->page_offset; 1261 1262 if (toff) { 1263 if (plen <= toff) { 1264 toff -= plen; 1265 continue; 1266 } 1267 plen -= toff; 1268 poff += toff; 1269 toff = 0; 1270 } 1271 1272 plen = min(plen, tlen); 1273 if (!plen) 1274 break; 1275 1276 if (spd_fill_page(spd, f->page, plen, poff, skb)) 1277 break; 1278 1279 tlen -= plen; 1280 } 1281 1282 done: 1283 if (spd->nr_pages - nr_pages) { 1284 *offset = 0; 1285 *total_len = tlen; 1286 return 0; 1287 } 1288 err: 1289 return 1; 1290 } 1291 1292 /* 1293 * Map data from the skb to a pipe. Should handle both the linear part, 1294 * the fragments, and the frag list. It does NOT handle frag lists within 1295 * the frag list, if such a thing exists. We'd probably need to recurse to 1296 * handle that cleanly. 1297 */ 1298 int skb_splice_bits(struct sk_buff *__skb, unsigned int offset, 1299 struct pipe_inode_info *pipe, unsigned int tlen, 1300 unsigned int flags) 1301 { 1302 struct partial_page partial[PIPE_BUFFERS]; 1303 struct page *pages[PIPE_BUFFERS]; 1304 struct splice_pipe_desc spd = { 1305 .pages = pages, 1306 .partial = partial, 1307 .flags = flags, 1308 .ops = &sock_pipe_buf_ops, 1309 .spd_release = sock_spd_release, 1310 }; 1311 struct sk_buff *skb; 1312 1313 /* 1314 * I'd love to avoid the clone here, but tcp_read_sock() 1315 * ignores reference counts and unconditonally kills the sk_buff 1316 * on return from the actor. 1317 */ 1318 skb = skb_clone(__skb, GFP_KERNEL); 1319 if (unlikely(!skb)) 1320 return -ENOMEM; 1321 1322 /* 1323 * __skb_splice_bits() only fails if the output has no room left, 1324 * so no point in going over the frag_list for the error case. 1325 */ 1326 if (__skb_splice_bits(skb, &offset, &tlen, &spd)) 1327 goto done; 1328 else if (!tlen) 1329 goto done; 1330 1331 /* 1332 * now see if we have a frag_list to map 1333 */ 1334 if (skb_shinfo(skb)->frag_list) { 1335 struct sk_buff *list = skb_shinfo(skb)->frag_list; 1336 1337 for (; list && tlen; list = list->next) { 1338 if (__skb_splice_bits(list, &offset, &tlen, &spd)) 1339 break; 1340 } 1341 } 1342 1343 done: 1344 /* 1345 * drop our reference to the clone, the pipe consumption will 1346 * drop the rest. 1347 */ 1348 kfree_skb(skb); 1349 1350 if (spd.nr_pages) { 1351 int ret; 1352 1353 /* 1354 * Drop the socket lock, otherwise we have reverse 1355 * locking dependencies between sk_lock and i_mutex 1356 * here as compared to sendfile(). We enter here 1357 * with the socket lock held, and splice_to_pipe() will 1358 * grab the pipe inode lock. For sendfile() emulation, 1359 * we call into ->sendpage() with the i_mutex lock held 1360 * and networking will grab the socket lock. 1361 */ 1362 release_sock(__skb->sk); 1363 ret = splice_to_pipe(pipe, &spd); 1364 lock_sock(__skb->sk); 1365 return ret; 1366 } 1367 1368 return 0; 1369 } 1370 1371 /** 1372 * skb_store_bits - store bits from kernel buffer to skb 1373 * @skb: destination buffer 1374 * @offset: offset in destination 1375 * @from: source buffer 1376 * @len: number of bytes to copy 1377 * 1378 * Copy the specified number of bytes from the source buffer to the 1379 * destination skb. This function handles all the messy bits of 1380 * traversing fragment lists and such. 1381 */ 1382 1383 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len) 1384 { 1385 int i, copy; 1386 int start = skb_headlen(skb); 1387 1388 if (offset > (int)skb->len - len) 1389 goto fault; 1390 1391 if ((copy = start - offset) > 0) { 1392 if (copy > len) 1393 copy = len; 1394 skb_copy_to_linear_data_offset(skb, offset, from, copy); 1395 if ((len -= copy) == 0) 1396 return 0; 1397 offset += copy; 1398 from += copy; 1399 } 1400 1401 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1402 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 1403 int end; 1404 1405 BUG_TRAP(start <= offset + len); 1406 1407 end = start + frag->size; 1408 if ((copy = end - offset) > 0) { 1409 u8 *vaddr; 1410 1411 if (copy > len) 1412 copy = len; 1413 1414 vaddr = kmap_skb_frag(frag); 1415 memcpy(vaddr + frag->page_offset + offset - start, 1416 from, copy); 1417 kunmap_skb_frag(vaddr); 1418 1419 if ((len -= copy) == 0) 1420 return 0; 1421 offset += copy; 1422 from += copy; 1423 } 1424 start = end; 1425 } 1426 1427 if (skb_shinfo(skb)->frag_list) { 1428 struct sk_buff *list = skb_shinfo(skb)->frag_list; 1429 1430 for (; list; list = list->next) { 1431 int end; 1432 1433 BUG_TRAP(start <= offset + len); 1434 1435 end = start + list->len; 1436 if ((copy = end - offset) > 0) { 1437 if (copy > len) 1438 copy = len; 1439 if (skb_store_bits(list, offset - start, 1440 from, copy)) 1441 goto fault; 1442 if ((len -= copy) == 0) 1443 return 0; 1444 offset += copy; 1445 from += copy; 1446 } 1447 start = end; 1448 } 1449 } 1450 if (!len) 1451 return 0; 1452 1453 fault: 1454 return -EFAULT; 1455 } 1456 1457 EXPORT_SYMBOL(skb_store_bits); 1458 1459 /* Checksum skb data. */ 1460 1461 __wsum skb_checksum(const struct sk_buff *skb, int offset, 1462 int len, __wsum csum) 1463 { 1464 int start = skb_headlen(skb); 1465 int i, copy = start - offset; 1466 int pos = 0; 1467 1468 /* Checksum header. */ 1469 if (copy > 0) { 1470 if (copy > len) 1471 copy = len; 1472 csum = csum_partial(skb->data + offset, copy, csum); 1473 if ((len -= copy) == 0) 1474 return csum; 1475 offset += copy; 1476 pos = copy; 1477 } 1478 1479 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1480 int end; 1481 1482 BUG_TRAP(start <= offset + len); 1483 1484 end = start + skb_shinfo(skb)->frags[i].size; 1485 if ((copy = end - offset) > 0) { 1486 __wsum csum2; 1487 u8 *vaddr; 1488 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 1489 1490 if (copy > len) 1491 copy = len; 1492 vaddr = kmap_skb_frag(frag); 1493 csum2 = csum_partial(vaddr + frag->page_offset + 1494 offset - start, copy, 0); 1495 kunmap_skb_frag(vaddr); 1496 csum = csum_block_add(csum, csum2, pos); 1497 if (!(len -= copy)) 1498 return csum; 1499 offset += copy; 1500 pos += copy; 1501 } 1502 start = end; 1503 } 1504 1505 if (skb_shinfo(skb)->frag_list) { 1506 struct sk_buff *list = skb_shinfo(skb)->frag_list; 1507 1508 for (; list; list = list->next) { 1509 int end; 1510 1511 BUG_TRAP(start <= offset + len); 1512 1513 end = start + list->len; 1514 if ((copy = end - offset) > 0) { 1515 __wsum csum2; 1516 if (copy > len) 1517 copy = len; 1518 csum2 = skb_checksum(list, offset - start, 1519 copy, 0); 1520 csum = csum_block_add(csum, csum2, pos); 1521 if ((len -= copy) == 0) 1522 return csum; 1523 offset += copy; 1524 pos += copy; 1525 } 1526 start = end; 1527 } 1528 } 1529 BUG_ON(len); 1530 1531 return csum; 1532 } 1533 1534 /* Both of above in one bottle. */ 1535 1536 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, 1537 u8 *to, int len, __wsum csum) 1538 { 1539 int start = skb_headlen(skb); 1540 int i, copy = start - offset; 1541 int pos = 0; 1542 1543 /* Copy header. */ 1544 if (copy > 0) { 1545 if (copy > len) 1546 copy = len; 1547 csum = csum_partial_copy_nocheck(skb->data + offset, to, 1548 copy, csum); 1549 if ((len -= copy) == 0) 1550 return csum; 1551 offset += copy; 1552 to += copy; 1553 pos = copy; 1554 } 1555 1556 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1557 int end; 1558 1559 BUG_TRAP(start <= offset + len); 1560 1561 end = start + skb_shinfo(skb)->frags[i].size; 1562 if ((copy = end - offset) > 0) { 1563 __wsum csum2; 1564 u8 *vaddr; 1565 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 1566 1567 if (copy > len) 1568 copy = len; 1569 vaddr = kmap_skb_frag(frag); 1570 csum2 = csum_partial_copy_nocheck(vaddr + 1571 frag->page_offset + 1572 offset - start, to, 1573 copy, 0); 1574 kunmap_skb_frag(vaddr); 1575 csum = csum_block_add(csum, csum2, pos); 1576 if (!(len -= copy)) 1577 return csum; 1578 offset += copy; 1579 to += copy; 1580 pos += copy; 1581 } 1582 start = end; 1583 } 1584 1585 if (skb_shinfo(skb)->frag_list) { 1586 struct sk_buff *list = skb_shinfo(skb)->frag_list; 1587 1588 for (; list; list = list->next) { 1589 __wsum csum2; 1590 int end; 1591 1592 BUG_TRAP(start <= offset + len); 1593 1594 end = start + list->len; 1595 if ((copy = end - offset) > 0) { 1596 if (copy > len) 1597 copy = len; 1598 csum2 = skb_copy_and_csum_bits(list, 1599 offset - start, 1600 to, copy, 0); 1601 csum = csum_block_add(csum, csum2, pos); 1602 if ((len -= copy) == 0) 1603 return csum; 1604 offset += copy; 1605 to += copy; 1606 pos += copy; 1607 } 1608 start = end; 1609 } 1610 } 1611 BUG_ON(len); 1612 return csum; 1613 } 1614 1615 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to) 1616 { 1617 __wsum csum; 1618 long csstart; 1619 1620 if (skb->ip_summed == CHECKSUM_PARTIAL) 1621 csstart = skb->csum_start - skb_headroom(skb); 1622 else 1623 csstart = skb_headlen(skb); 1624 1625 BUG_ON(csstart > skb_headlen(skb)); 1626 1627 skb_copy_from_linear_data(skb, to, csstart); 1628 1629 csum = 0; 1630 if (csstart != skb->len) 1631 csum = skb_copy_and_csum_bits(skb, csstart, to + csstart, 1632 skb->len - csstart, 0); 1633 1634 if (skb->ip_summed == CHECKSUM_PARTIAL) { 1635 long csstuff = csstart + skb->csum_offset; 1636 1637 *((__sum16 *)(to + csstuff)) = csum_fold(csum); 1638 } 1639 } 1640 1641 /** 1642 * skb_dequeue - remove from the head of the queue 1643 * @list: list to dequeue from 1644 * 1645 * Remove the head of the list. The list lock is taken so the function 1646 * may be used safely with other locking list functions. The head item is 1647 * returned or %NULL if the list is empty. 1648 */ 1649 1650 struct sk_buff *skb_dequeue(struct sk_buff_head *list) 1651 { 1652 unsigned long flags; 1653 struct sk_buff *result; 1654 1655 spin_lock_irqsave(&list->lock, flags); 1656 result = __skb_dequeue(list); 1657 spin_unlock_irqrestore(&list->lock, flags); 1658 return result; 1659 } 1660 1661 /** 1662 * skb_dequeue_tail - remove from the tail of the queue 1663 * @list: list to dequeue from 1664 * 1665 * Remove the tail of the list. The list lock is taken so the function 1666 * may be used safely with other locking list functions. The tail item is 1667 * returned or %NULL if the list is empty. 1668 */ 1669 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list) 1670 { 1671 unsigned long flags; 1672 struct sk_buff *result; 1673 1674 spin_lock_irqsave(&list->lock, flags); 1675 result = __skb_dequeue_tail(list); 1676 spin_unlock_irqrestore(&list->lock, flags); 1677 return result; 1678 } 1679 1680 /** 1681 * skb_queue_purge - empty a list 1682 * @list: list to empty 1683 * 1684 * Delete all buffers on an &sk_buff list. Each buffer is removed from 1685 * the list and one reference dropped. This function takes the list 1686 * lock and is atomic with respect to other list locking functions. 1687 */ 1688 void skb_queue_purge(struct sk_buff_head *list) 1689 { 1690 struct sk_buff *skb; 1691 while ((skb = skb_dequeue(list)) != NULL) 1692 kfree_skb(skb); 1693 } 1694 1695 /** 1696 * skb_queue_head - queue a buffer at the list head 1697 * @list: list to use 1698 * @newsk: buffer to queue 1699 * 1700 * Queue a buffer at the start of the list. This function takes the 1701 * list lock and can be used safely with other locking &sk_buff functions 1702 * safely. 1703 * 1704 * A buffer cannot be placed on two lists at the same time. 1705 */ 1706 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk) 1707 { 1708 unsigned long flags; 1709 1710 spin_lock_irqsave(&list->lock, flags); 1711 __skb_queue_head(list, newsk); 1712 spin_unlock_irqrestore(&list->lock, flags); 1713 } 1714 1715 /** 1716 * skb_queue_tail - queue a buffer at the list tail 1717 * @list: list to use 1718 * @newsk: buffer to queue 1719 * 1720 * Queue a buffer at the tail of the list. This function takes the 1721 * list lock and can be used safely with other locking &sk_buff functions 1722 * safely. 1723 * 1724 * A buffer cannot be placed on two lists at the same time. 1725 */ 1726 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk) 1727 { 1728 unsigned long flags; 1729 1730 spin_lock_irqsave(&list->lock, flags); 1731 __skb_queue_tail(list, newsk); 1732 spin_unlock_irqrestore(&list->lock, flags); 1733 } 1734 1735 /** 1736 * skb_unlink - remove a buffer from a list 1737 * @skb: buffer to remove 1738 * @list: list to use 1739 * 1740 * Remove a packet from a list. The list locks are taken and this 1741 * function is atomic with respect to other list locked calls 1742 * 1743 * You must know what list the SKB is on. 1744 */ 1745 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list) 1746 { 1747 unsigned long flags; 1748 1749 spin_lock_irqsave(&list->lock, flags); 1750 __skb_unlink(skb, list); 1751 spin_unlock_irqrestore(&list->lock, flags); 1752 } 1753 1754 /** 1755 * skb_append - append a buffer 1756 * @old: buffer to insert after 1757 * @newsk: buffer to insert 1758 * @list: list to use 1759 * 1760 * Place a packet after a given packet in a list. The list locks are taken 1761 * and this function is atomic with respect to other list locked calls. 1762 * A buffer cannot be placed on two lists at the same time. 1763 */ 1764 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list) 1765 { 1766 unsigned long flags; 1767 1768 spin_lock_irqsave(&list->lock, flags); 1769 __skb_append(old, newsk, list); 1770 spin_unlock_irqrestore(&list->lock, flags); 1771 } 1772 1773 1774 /** 1775 * skb_insert - insert a buffer 1776 * @old: buffer to insert before 1777 * @newsk: buffer to insert 1778 * @list: list to use 1779 * 1780 * Place a packet before a given packet in a list. The list locks are 1781 * taken and this function is atomic with respect to other list locked 1782 * calls. 1783 * 1784 * A buffer cannot be placed on two lists at the same time. 1785 */ 1786 void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list) 1787 { 1788 unsigned long flags; 1789 1790 spin_lock_irqsave(&list->lock, flags); 1791 __skb_insert(newsk, old->prev, old, list); 1792 spin_unlock_irqrestore(&list->lock, flags); 1793 } 1794 1795 static inline void skb_split_inside_header(struct sk_buff *skb, 1796 struct sk_buff* skb1, 1797 const u32 len, const int pos) 1798 { 1799 int i; 1800 1801 skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len), 1802 pos - len); 1803 /* And move data appendix as is. */ 1804 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 1805 skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i]; 1806 1807 skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags; 1808 skb_shinfo(skb)->nr_frags = 0; 1809 skb1->data_len = skb->data_len; 1810 skb1->len += skb1->data_len; 1811 skb->data_len = 0; 1812 skb->len = len; 1813 skb_set_tail_pointer(skb, len); 1814 } 1815 1816 static inline void skb_split_no_header(struct sk_buff *skb, 1817 struct sk_buff* skb1, 1818 const u32 len, int pos) 1819 { 1820 int i, k = 0; 1821 const int nfrags = skb_shinfo(skb)->nr_frags; 1822 1823 skb_shinfo(skb)->nr_frags = 0; 1824 skb1->len = skb1->data_len = skb->len - len; 1825 skb->len = len; 1826 skb->data_len = len - pos; 1827 1828 for (i = 0; i < nfrags; i++) { 1829 int size = skb_shinfo(skb)->frags[i].size; 1830 1831 if (pos + size > len) { 1832 skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i]; 1833 1834 if (pos < len) { 1835 /* Split frag. 1836 * We have two variants in this case: 1837 * 1. Move all the frag to the second 1838 * part, if it is possible. F.e. 1839 * this approach is mandatory for TUX, 1840 * where splitting is expensive. 1841 * 2. Split is accurately. We make this. 1842 */ 1843 get_page(skb_shinfo(skb)->frags[i].page); 1844 skb_shinfo(skb1)->frags[0].page_offset += len - pos; 1845 skb_shinfo(skb1)->frags[0].size -= len - pos; 1846 skb_shinfo(skb)->frags[i].size = len - pos; 1847 skb_shinfo(skb)->nr_frags++; 1848 } 1849 k++; 1850 } else 1851 skb_shinfo(skb)->nr_frags++; 1852 pos += size; 1853 } 1854 skb_shinfo(skb1)->nr_frags = k; 1855 } 1856 1857 /** 1858 * skb_split - Split fragmented skb to two parts at length len. 1859 * @skb: the buffer to split 1860 * @skb1: the buffer to receive the second part 1861 * @len: new length for skb 1862 */ 1863 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len) 1864 { 1865 int pos = skb_headlen(skb); 1866 1867 if (len < pos) /* Split line is inside header. */ 1868 skb_split_inside_header(skb, skb1, len, pos); 1869 else /* Second chunk has no header, nothing to copy. */ 1870 skb_split_no_header(skb, skb1, len, pos); 1871 } 1872 1873 /** 1874 * skb_prepare_seq_read - Prepare a sequential read of skb data 1875 * @skb: the buffer to read 1876 * @from: lower offset of data to be read 1877 * @to: upper offset of data to be read 1878 * @st: state variable 1879 * 1880 * Initializes the specified state variable. Must be called before 1881 * invoking skb_seq_read() for the first time. 1882 */ 1883 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from, 1884 unsigned int to, struct skb_seq_state *st) 1885 { 1886 st->lower_offset = from; 1887 st->upper_offset = to; 1888 st->root_skb = st->cur_skb = skb; 1889 st->frag_idx = st->stepped_offset = 0; 1890 st->frag_data = NULL; 1891 } 1892 1893 /** 1894 * skb_seq_read - Sequentially read skb data 1895 * @consumed: number of bytes consumed by the caller so far 1896 * @data: destination pointer for data to be returned 1897 * @st: state variable 1898 * 1899 * Reads a block of skb data at &consumed relative to the 1900 * lower offset specified to skb_prepare_seq_read(). Assigns 1901 * the head of the data block to &data and returns the length 1902 * of the block or 0 if the end of the skb data or the upper 1903 * offset has been reached. 1904 * 1905 * The caller is not required to consume all of the data 1906 * returned, i.e. &consumed is typically set to the number 1907 * of bytes already consumed and the next call to 1908 * skb_seq_read() will return the remaining part of the block. 1909 * 1910 * Note: The size of each block of data returned can be arbitary, 1911 * this limitation is the cost for zerocopy seqeuental 1912 * reads of potentially non linear data. 1913 * 1914 * Note: Fragment lists within fragments are not implemented 1915 * at the moment, state->root_skb could be replaced with 1916 * a stack for this purpose. 1917 */ 1918 unsigned int skb_seq_read(unsigned int consumed, const u8 **data, 1919 struct skb_seq_state *st) 1920 { 1921 unsigned int block_limit, abs_offset = consumed + st->lower_offset; 1922 skb_frag_t *frag; 1923 1924 if (unlikely(abs_offset >= st->upper_offset)) 1925 return 0; 1926 1927 next_skb: 1928 block_limit = skb_headlen(st->cur_skb); 1929 1930 if (abs_offset < block_limit) { 1931 *data = st->cur_skb->data + abs_offset; 1932 return block_limit - abs_offset; 1933 } 1934 1935 if (st->frag_idx == 0 && !st->frag_data) 1936 st->stepped_offset += skb_headlen(st->cur_skb); 1937 1938 while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) { 1939 frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx]; 1940 block_limit = frag->size + st->stepped_offset; 1941 1942 if (abs_offset < block_limit) { 1943 if (!st->frag_data) 1944 st->frag_data = kmap_skb_frag(frag); 1945 1946 *data = (u8 *) st->frag_data + frag->page_offset + 1947 (abs_offset - st->stepped_offset); 1948 1949 return block_limit - abs_offset; 1950 } 1951 1952 if (st->frag_data) { 1953 kunmap_skb_frag(st->frag_data); 1954 st->frag_data = NULL; 1955 } 1956 1957 st->frag_idx++; 1958 st->stepped_offset += frag->size; 1959 } 1960 1961 if (st->frag_data) { 1962 kunmap_skb_frag(st->frag_data); 1963 st->frag_data = NULL; 1964 } 1965 1966 if (st->cur_skb->next) { 1967 st->cur_skb = st->cur_skb->next; 1968 st->frag_idx = 0; 1969 goto next_skb; 1970 } else if (st->root_skb == st->cur_skb && 1971 skb_shinfo(st->root_skb)->frag_list) { 1972 st->cur_skb = skb_shinfo(st->root_skb)->frag_list; 1973 goto next_skb; 1974 } 1975 1976 return 0; 1977 } 1978 1979 /** 1980 * skb_abort_seq_read - Abort a sequential read of skb data 1981 * @st: state variable 1982 * 1983 * Must be called if skb_seq_read() was not called until it 1984 * returned 0. 1985 */ 1986 void skb_abort_seq_read(struct skb_seq_state *st) 1987 { 1988 if (st->frag_data) 1989 kunmap_skb_frag(st->frag_data); 1990 } 1991 1992 #define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb)) 1993 1994 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text, 1995 struct ts_config *conf, 1996 struct ts_state *state) 1997 { 1998 return skb_seq_read(offset, text, TS_SKB_CB(state)); 1999 } 2000 2001 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state) 2002 { 2003 skb_abort_seq_read(TS_SKB_CB(state)); 2004 } 2005 2006 /** 2007 * skb_find_text - Find a text pattern in skb data 2008 * @skb: the buffer to look in 2009 * @from: search offset 2010 * @to: search limit 2011 * @config: textsearch configuration 2012 * @state: uninitialized textsearch state variable 2013 * 2014 * Finds a pattern in the skb data according to the specified 2015 * textsearch configuration. Use textsearch_next() to retrieve 2016 * subsequent occurrences of the pattern. Returns the offset 2017 * to the first occurrence or UINT_MAX if no match was found. 2018 */ 2019 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from, 2020 unsigned int to, struct ts_config *config, 2021 struct ts_state *state) 2022 { 2023 unsigned int ret; 2024 2025 config->get_next_block = skb_ts_get_next_block; 2026 config->finish = skb_ts_finish; 2027 2028 skb_prepare_seq_read(skb, from, to, TS_SKB_CB(state)); 2029 2030 ret = textsearch_find(config, state); 2031 return (ret <= to - from ? ret : UINT_MAX); 2032 } 2033 2034 /** 2035 * skb_append_datato_frags: - append the user data to a skb 2036 * @sk: sock structure 2037 * @skb: skb structure to be appened with user data. 2038 * @getfrag: call back function to be used for getting the user data 2039 * @from: pointer to user message iov 2040 * @length: length of the iov message 2041 * 2042 * Description: This procedure append the user data in the fragment part 2043 * of the skb if any page alloc fails user this procedure returns -ENOMEM 2044 */ 2045 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb, 2046 int (*getfrag)(void *from, char *to, int offset, 2047 int len, int odd, struct sk_buff *skb), 2048 void *from, int length) 2049 { 2050 int frg_cnt = 0; 2051 skb_frag_t *frag = NULL; 2052 struct page *page = NULL; 2053 int copy, left; 2054 int offset = 0; 2055 int ret; 2056 2057 do { 2058 /* Return error if we don't have space for new frag */ 2059 frg_cnt = skb_shinfo(skb)->nr_frags; 2060 if (frg_cnt >= MAX_SKB_FRAGS) 2061 return -EFAULT; 2062 2063 /* allocate a new page for next frag */ 2064 page = alloc_pages(sk->sk_allocation, 0); 2065 2066 /* If alloc_page fails just return failure and caller will 2067 * free previous allocated pages by doing kfree_skb() 2068 */ 2069 if (page == NULL) 2070 return -ENOMEM; 2071 2072 /* initialize the next frag */ 2073 sk->sk_sndmsg_page = page; 2074 sk->sk_sndmsg_off = 0; 2075 skb_fill_page_desc(skb, frg_cnt, page, 0, 0); 2076 skb->truesize += PAGE_SIZE; 2077 atomic_add(PAGE_SIZE, &sk->sk_wmem_alloc); 2078 2079 /* get the new initialized frag */ 2080 frg_cnt = skb_shinfo(skb)->nr_frags; 2081 frag = &skb_shinfo(skb)->frags[frg_cnt - 1]; 2082 2083 /* copy the user data to page */ 2084 left = PAGE_SIZE - frag->page_offset; 2085 copy = (length > left)? left : length; 2086 2087 ret = getfrag(from, (page_address(frag->page) + 2088 frag->page_offset + frag->size), 2089 offset, copy, 0, skb); 2090 if (ret < 0) 2091 return -EFAULT; 2092 2093 /* copy was successful so update the size parameters */ 2094 sk->sk_sndmsg_off += copy; 2095 frag->size += copy; 2096 skb->len += copy; 2097 skb->data_len += copy; 2098 offset += copy; 2099 length -= copy; 2100 2101 } while (length > 0); 2102 2103 return 0; 2104 } 2105 2106 /** 2107 * skb_pull_rcsum - pull skb and update receive checksum 2108 * @skb: buffer to update 2109 * @start: start of data before pull 2110 * @len: length of data pulled 2111 * 2112 * This function performs an skb_pull on the packet and updates 2113 * update the CHECKSUM_COMPLETE checksum. It should be used on 2114 * receive path processing instead of skb_pull unless you know 2115 * that the checksum difference is zero (e.g., a valid IP header) 2116 * or you are setting ip_summed to CHECKSUM_NONE. 2117 */ 2118 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len) 2119 { 2120 BUG_ON(len > skb->len); 2121 skb->len -= len; 2122 BUG_ON(skb->len < skb->data_len); 2123 skb_postpull_rcsum(skb, skb->data, len); 2124 return skb->data += len; 2125 } 2126 2127 EXPORT_SYMBOL_GPL(skb_pull_rcsum); 2128 2129 /** 2130 * skb_segment - Perform protocol segmentation on skb. 2131 * @skb: buffer to segment 2132 * @features: features for the output path (see dev->features) 2133 * 2134 * This function performs segmentation on the given skb. It returns 2135 * the segment at the given position. It returns NULL if there are 2136 * no more segments to generate, or when an error is encountered. 2137 */ 2138 struct sk_buff *skb_segment(struct sk_buff *skb, int features) 2139 { 2140 struct sk_buff *segs = NULL; 2141 struct sk_buff *tail = NULL; 2142 unsigned int mss = skb_shinfo(skb)->gso_size; 2143 unsigned int doffset = skb->data - skb_mac_header(skb); 2144 unsigned int offset = doffset; 2145 unsigned int headroom; 2146 unsigned int len; 2147 int sg = features & NETIF_F_SG; 2148 int nfrags = skb_shinfo(skb)->nr_frags; 2149 int err = -ENOMEM; 2150 int i = 0; 2151 int pos; 2152 2153 __skb_push(skb, doffset); 2154 headroom = skb_headroom(skb); 2155 pos = skb_headlen(skb); 2156 2157 do { 2158 struct sk_buff *nskb; 2159 skb_frag_t *frag; 2160 int hsize; 2161 int k; 2162 int size; 2163 2164 len = skb->len - offset; 2165 if (len > mss) 2166 len = mss; 2167 2168 hsize = skb_headlen(skb) - offset; 2169 if (hsize < 0) 2170 hsize = 0; 2171 if (hsize > len || !sg) 2172 hsize = len; 2173 2174 nskb = alloc_skb(hsize + doffset + headroom, GFP_ATOMIC); 2175 if (unlikely(!nskb)) 2176 goto err; 2177 2178 if (segs) 2179 tail->next = nskb; 2180 else 2181 segs = nskb; 2182 tail = nskb; 2183 2184 nskb->dev = skb->dev; 2185 skb_copy_queue_mapping(nskb, skb); 2186 nskb->priority = skb->priority; 2187 nskb->protocol = skb->protocol; 2188 nskb->dst = dst_clone(skb->dst); 2189 memcpy(nskb->cb, skb->cb, sizeof(skb->cb)); 2190 nskb->pkt_type = skb->pkt_type; 2191 nskb->mac_len = skb->mac_len; 2192 2193 skb_reserve(nskb, headroom); 2194 skb_reset_mac_header(nskb); 2195 skb_set_network_header(nskb, skb->mac_len); 2196 nskb->transport_header = (nskb->network_header + 2197 skb_network_header_len(skb)); 2198 skb_copy_from_linear_data(skb, skb_put(nskb, doffset), 2199 doffset); 2200 if (!sg) { 2201 nskb->csum = skb_copy_and_csum_bits(skb, offset, 2202 skb_put(nskb, len), 2203 len, 0); 2204 continue; 2205 } 2206 2207 frag = skb_shinfo(nskb)->frags; 2208 k = 0; 2209 2210 nskb->ip_summed = CHECKSUM_PARTIAL; 2211 nskb->csum = skb->csum; 2212 skb_copy_from_linear_data_offset(skb, offset, 2213 skb_put(nskb, hsize), hsize); 2214 2215 while (pos < offset + len) { 2216 BUG_ON(i >= nfrags); 2217 2218 *frag = skb_shinfo(skb)->frags[i]; 2219 get_page(frag->page); 2220 size = frag->size; 2221 2222 if (pos < offset) { 2223 frag->page_offset += offset - pos; 2224 frag->size -= offset - pos; 2225 } 2226 2227 k++; 2228 2229 if (pos + size <= offset + len) { 2230 i++; 2231 pos += size; 2232 } else { 2233 frag->size -= pos + size - (offset + len); 2234 break; 2235 } 2236 2237 frag++; 2238 } 2239 2240 skb_shinfo(nskb)->nr_frags = k; 2241 nskb->data_len = len - hsize; 2242 nskb->len += nskb->data_len; 2243 nskb->truesize += nskb->data_len; 2244 } while ((offset += len) < skb->len); 2245 2246 return segs; 2247 2248 err: 2249 while ((skb = segs)) { 2250 segs = skb->next; 2251 kfree_skb(skb); 2252 } 2253 return ERR_PTR(err); 2254 } 2255 2256 EXPORT_SYMBOL_GPL(skb_segment); 2257 2258 void __init skb_init(void) 2259 { 2260 skbuff_head_cache = kmem_cache_create("skbuff_head_cache", 2261 sizeof(struct sk_buff), 2262 0, 2263 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 2264 NULL); 2265 skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache", 2266 (2*sizeof(struct sk_buff)) + 2267 sizeof(atomic_t), 2268 0, 2269 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 2270 NULL); 2271 } 2272 2273 /** 2274 * skb_to_sgvec - Fill a scatter-gather list from a socket buffer 2275 * @skb: Socket buffer containing the buffers to be mapped 2276 * @sg: The scatter-gather list to map into 2277 * @offset: The offset into the buffer's contents to start mapping 2278 * @len: Length of buffer space to be mapped 2279 * 2280 * Fill the specified scatter-gather list with mappings/pointers into a 2281 * region of the buffer space attached to a socket buffer. 2282 */ 2283 static int 2284 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len) 2285 { 2286 int start = skb_headlen(skb); 2287 int i, copy = start - offset; 2288 int elt = 0; 2289 2290 if (copy > 0) { 2291 if (copy > len) 2292 copy = len; 2293 sg_set_buf(sg, skb->data + offset, copy); 2294 elt++; 2295 if ((len -= copy) == 0) 2296 return elt; 2297 offset += copy; 2298 } 2299 2300 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2301 int end; 2302 2303 BUG_TRAP(start <= offset + len); 2304 2305 end = start + skb_shinfo(skb)->frags[i].size; 2306 if ((copy = end - offset) > 0) { 2307 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2308 2309 if (copy > len) 2310 copy = len; 2311 sg_set_page(&sg[elt], frag->page, copy, 2312 frag->page_offset+offset-start); 2313 elt++; 2314 if (!(len -= copy)) 2315 return elt; 2316 offset += copy; 2317 } 2318 start = end; 2319 } 2320 2321 if (skb_shinfo(skb)->frag_list) { 2322 struct sk_buff *list = skb_shinfo(skb)->frag_list; 2323 2324 for (; list; list = list->next) { 2325 int end; 2326 2327 BUG_TRAP(start <= offset + len); 2328 2329 end = start + list->len; 2330 if ((copy = end - offset) > 0) { 2331 if (copy > len) 2332 copy = len; 2333 elt += __skb_to_sgvec(list, sg+elt, offset - start, 2334 copy); 2335 if ((len -= copy) == 0) 2336 return elt; 2337 offset += copy; 2338 } 2339 start = end; 2340 } 2341 } 2342 BUG_ON(len); 2343 return elt; 2344 } 2345 2346 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len) 2347 { 2348 int nsg = __skb_to_sgvec(skb, sg, offset, len); 2349 2350 sg_mark_end(&sg[nsg - 1]); 2351 2352 return nsg; 2353 } 2354 2355 /** 2356 * skb_cow_data - Check that a socket buffer's data buffers are writable 2357 * @skb: The socket buffer to check. 2358 * @tailbits: Amount of trailing space to be added 2359 * @trailer: Returned pointer to the skb where the @tailbits space begins 2360 * 2361 * Make sure that the data buffers attached to a socket buffer are 2362 * writable. If they are not, private copies are made of the data buffers 2363 * and the socket buffer is set to use these instead. 2364 * 2365 * If @tailbits is given, make sure that there is space to write @tailbits 2366 * bytes of data beyond current end of socket buffer. @trailer will be 2367 * set to point to the skb in which this space begins. 2368 * 2369 * The number of scatterlist elements required to completely map the 2370 * COW'd and extended socket buffer will be returned. 2371 */ 2372 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer) 2373 { 2374 int copyflag; 2375 int elt; 2376 struct sk_buff *skb1, **skb_p; 2377 2378 /* If skb is cloned or its head is paged, reallocate 2379 * head pulling out all the pages (pages are considered not writable 2380 * at the moment even if they are anonymous). 2381 */ 2382 if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) && 2383 __pskb_pull_tail(skb, skb_pagelen(skb)-skb_headlen(skb)) == NULL) 2384 return -ENOMEM; 2385 2386 /* Easy case. Most of packets will go this way. */ 2387 if (!skb_shinfo(skb)->frag_list) { 2388 /* A little of trouble, not enough of space for trailer. 2389 * This should not happen, when stack is tuned to generate 2390 * good frames. OK, on miss we reallocate and reserve even more 2391 * space, 128 bytes is fair. */ 2392 2393 if (skb_tailroom(skb) < tailbits && 2394 pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC)) 2395 return -ENOMEM; 2396 2397 /* Voila! */ 2398 *trailer = skb; 2399 return 1; 2400 } 2401 2402 /* Misery. We are in troubles, going to mincer fragments... */ 2403 2404 elt = 1; 2405 skb_p = &skb_shinfo(skb)->frag_list; 2406 copyflag = 0; 2407 2408 while ((skb1 = *skb_p) != NULL) { 2409 int ntail = 0; 2410 2411 /* The fragment is partially pulled by someone, 2412 * this can happen on input. Copy it and everything 2413 * after it. */ 2414 2415 if (skb_shared(skb1)) 2416 copyflag = 1; 2417 2418 /* If the skb is the last, worry about trailer. */ 2419 2420 if (skb1->next == NULL && tailbits) { 2421 if (skb_shinfo(skb1)->nr_frags || 2422 skb_shinfo(skb1)->frag_list || 2423 skb_tailroom(skb1) < tailbits) 2424 ntail = tailbits + 128; 2425 } 2426 2427 if (copyflag || 2428 skb_cloned(skb1) || 2429 ntail || 2430 skb_shinfo(skb1)->nr_frags || 2431 skb_shinfo(skb1)->frag_list) { 2432 struct sk_buff *skb2; 2433 2434 /* Fuck, we are miserable poor guys... */ 2435 if (ntail == 0) 2436 skb2 = skb_copy(skb1, GFP_ATOMIC); 2437 else 2438 skb2 = skb_copy_expand(skb1, 2439 skb_headroom(skb1), 2440 ntail, 2441 GFP_ATOMIC); 2442 if (unlikely(skb2 == NULL)) 2443 return -ENOMEM; 2444 2445 if (skb1->sk) 2446 skb_set_owner_w(skb2, skb1->sk); 2447 2448 /* Looking around. Are we still alive? 2449 * OK, link new skb, drop old one */ 2450 2451 skb2->next = skb1->next; 2452 *skb_p = skb2; 2453 kfree_skb(skb1); 2454 skb1 = skb2; 2455 } 2456 elt++; 2457 *trailer = skb1; 2458 skb_p = &skb1->next; 2459 } 2460 2461 return elt; 2462 } 2463 2464 EXPORT_SYMBOL(___pskb_trim); 2465 EXPORT_SYMBOL(__kfree_skb); 2466 EXPORT_SYMBOL(kfree_skb); 2467 EXPORT_SYMBOL(__pskb_pull_tail); 2468 EXPORT_SYMBOL(__alloc_skb); 2469 EXPORT_SYMBOL(__netdev_alloc_skb); 2470 EXPORT_SYMBOL(pskb_copy); 2471 EXPORT_SYMBOL(pskb_expand_head); 2472 EXPORT_SYMBOL(skb_checksum); 2473 EXPORT_SYMBOL(skb_clone); 2474 EXPORT_SYMBOL(skb_copy); 2475 EXPORT_SYMBOL(skb_copy_and_csum_bits); 2476 EXPORT_SYMBOL(skb_copy_and_csum_dev); 2477 EXPORT_SYMBOL(skb_copy_bits); 2478 EXPORT_SYMBOL(skb_copy_expand); 2479 EXPORT_SYMBOL(skb_over_panic); 2480 EXPORT_SYMBOL(skb_pad); 2481 EXPORT_SYMBOL(skb_realloc_headroom); 2482 EXPORT_SYMBOL(skb_under_panic); 2483 EXPORT_SYMBOL(skb_dequeue); 2484 EXPORT_SYMBOL(skb_dequeue_tail); 2485 EXPORT_SYMBOL(skb_insert); 2486 EXPORT_SYMBOL(skb_queue_purge); 2487 EXPORT_SYMBOL(skb_queue_head); 2488 EXPORT_SYMBOL(skb_queue_tail); 2489 EXPORT_SYMBOL(skb_unlink); 2490 EXPORT_SYMBOL(skb_append); 2491 EXPORT_SYMBOL(skb_split); 2492 EXPORT_SYMBOL(skb_prepare_seq_read); 2493 EXPORT_SYMBOL(skb_seq_read); 2494 EXPORT_SYMBOL(skb_abort_seq_read); 2495 EXPORT_SYMBOL(skb_find_text); 2496 EXPORT_SYMBOL(skb_append_datato_frags); 2497 2498 EXPORT_SYMBOL_GPL(skb_to_sgvec); 2499 EXPORT_SYMBOL_GPL(skb_cow_data); 2500